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Introduction

Let P be a topological property, let X be a topological space and let H(X)
be a hyperspace over X. A natural question to ask is

does H(X) satisfy P when X satisfies P?

In this work we study the properties of cohesion and almost zero-dimensionality
on X and their relations to the hyperspace of non-empty compact subsets of
X with the Vietoris topology.

This work is divided into five chapters: Chapter 1 consists of preliminar-
ies. In this chapter the most important concepts and results are presented
in order to explain the development of this work. This chapter is consti-
tuted by three sections. In the first, we talk about some basic concepts of
topology. In the second section we analyze the property of being cohesive
and the property of almost zero-dimensionality, we introduce Erdős space E,
complete Erdős space Ec, and stable Erdős space Eωc , and we study some
of their properties. Also, in this section we present the topological charac-
terizations of Erdős spaces, we introduce the concept of factor, and we give
the characterization of the factors of Erdős spaces. In the third section of
Chapter 1, we present the hyperspaces that we study throughout the thesis,
and the basic theory of hyperspaces endowed with the Vietoris topology. In
particular, we analyze when these hyperspaces are compact, connected, zero-
dimensional and metrizable.

Chapter 2 is devoted to studying the relations between the properties of
being cohesive and being almost zero-dimensional in the hyperspace of com-
pact subsets of X, K(X), the hyperspace of finite subsets of X, F(X), and
the symmetric products Fn(X) of X.

The first important result in Chapter 2 (Propositon 2.2 ) says that a space
X is almost zero-dimensional if and only if K(X) is almost zero-dimensional.
A natural question arises from the above result: Is there a space X that
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is not almost zero-dimensional such that dim(X) = dim(K(X)) = 1? The
last section of Chapter 2 gives us an affirmative answer to this question.
Moreover, several examples are given.

Another important result in Chapter 2 (Proposition 2.8) says that if X is
cohesive, then Fn(X), F(X) and K(X) are cohesive as well.

In Chapter 3 we study the hyperspaces of Erdős space and complete Erdős
space. We show that for any natural number n, Fn(E) is homeomorphic to
E (Theorem 3.7), Fn(Ec) is homeomorphic to Ec (Theorem 3.21) and that
F(E) is homeomorphic to E (Theorem 3.10). In this chapter we also prove
that the hyperspace of compact subsets of Erdős space is not homeomorphic
to Erdős space. We also present a short analysis of the space F(Ec), and we
decide why it is not homeomorphic to either Ec, E or Eωc .

From the above results, we note that F(Ec) has a topological structure
similar to that of Q×Ec. This leads us to wonder if F(Ec) is homeomorphic
to Q × Ec. The answer to the previous question is in the affirmative. We
present the proof in Chapter 4.

In Chapter 4 we introduce the classes of spaces σL and σE ; these two
classes are inspired by the classes SLC and E from [3]. We use these classes
to give a characterization of the space Q× Ec. In this chapter we show that
the class σL is equal to σE , and that if X ∈ σE , then X is homeomorphic to
Q × Ec. We also prove that F(Ec) ∈ σE , and so we conclude that F(Ec) is
homeomorphic to Q×Ec. Moreover, in this chapter we study the hyperspaces
of Q× Ec, and we give a characterization of the factors of Q× Ec.

In Chapter 5 we present several results related to continuous images,
extensions of continuous functions, and compactifications of almost zero-
dimensional spaces.
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Chapter 1

Preliminaries

1.1 Basic topology

It will be assumed that all spaces are separable and metrizable. That is,
all spaces X have a countable dense subset and there is a metric on X that
generates the topology of X. We write X ≈ Y to denote the fact that X is
homeomorphic to the space Y . By ω we denote the set of natural numbers
including zero, N is the set ω \ {0}, Q is the set of rational numbers, P is
the set of irrational numbers, 2ω is the Cantor set, and R is the set of real
numbers. We say that a space X is crowded if X does not have isolated
points. Let A be a subset of a topological space X. We will write intX(A) for
the interior, clX(A) for the closure and bdX(A) for the boundary of A in X.
Let d be an admissible metric for a space X. A sequence (xn)n∈N of elements
of X is a Cauchy sequence if for every ε > 0 there is an M ∈ N such that
d(xm, xn) < ε for all n,m ≥ M . We call the metric space (X, d) complete if
every Cauchy sequence has a limit in X. In this case we say that the space X
is completely metrizable. A separable completely metrizable space is called
Polish. A space X is a first category space if X =

⋃
n∈NXi where each

Xi is nowhere dense in X; X is aBaire space if the intersection of countably
many dense open subsets of X is still dense. A space X is zero-dimensional
if it has a base of clopen sets, and X is a totally disconnected space if for
any two distinct x, y ∈ X, there is a clopen subset U of X such that x ∈ U
and y /∈ U . The following result gives some examples of Baire spaces.

Theorem 1.1 ([21, Theorem A.6.6]). Every Polish is a Baire space.
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A Borel set is any set B in a topological space X that can be formed from
open sets through the operations of countable union, countable intersection,
and complement. Some types of sets that are Borel that we use in this thesis
are the following.

Definition 1.2. Let X be a space and A a subset of X.

1. We say that A is a Gδ-subset of X if it is a countable intersection of
open subsets of X, and A is an Fσ-subset of X if it is a countable union
of closed subsets of X.

2. We say that A is a Gδσ-subset of X if it is a countable union of Gδ-
subsets of X, and A is an Fσδ-subset of X if it is a countable intersec-
tion of Fσ-subsets of X.

Note that if A is a Gδ-subset of a space X, then X \ A is an Fσ-subset of
X, and if A is a Gδσ-subset of X, then X \ A is an Fσδ-subset of X. A
known fact is that every closed subset of a metric space X is a Gδ-subset of
X. Therefore every open subset of a metric space is an Fσ-subset of X. An
important property of complete spaces is the following.

Theorem 1.3 ([21, Theorem A.6.3]). X is a Polish space if and only if X
is a Gδ-subset of any space Y containing X.

A space X is called an absolute Gδ if it is a Gδ-subset of every space
it is embedded in. We define the notions absolute Fσ, absolute Gδσ and
absolute Fσδ similarly. The following Theorem characterizes the sets that
are absolute Gδ, absolute Fσ and absolute Gδσ, and absolute Fσδ.

Theorem 1.4 ([21, Theorem A.13.2]). Let X be a space.

1. X is an absolute Gδ if and only if X is complete.

2. X is an absolute Fσ if and only if X is σ-compact.

3. X is an absolute Gδσ if and only if X is the union of countably many
complete spaces.

4. X is an absolute Fσδ if and only if X can be imbedded in some complete
space as an Fσδ-subset.

Example 1.5. 1. Since Q is a σ-compact space, by 2 of Theorem 1.4, it
is an absolute Fσ.
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2. By Theorem 1.3 every complete space is an absolute Gδ.

3. Qω is an absolute Fσδ space (see [[21, Corolallry A.13.4]]).

4. Erdős space is an absolute Fσδ but is not an absolute Gδσ (see [[3,
Remark 5.5]])

5. the product of the rational numbers and complete Erdős space that is
an absolute Gδσ and absolute Fσδ (see [[3, Remark 4.12]]).

To end this section we will talk a little about Stone’s space. Let X be a
zero-dimensional space, and let B(X) = {A ⊂ X : A is clopen}. Note that
B(X) satisfies the following:

1. If A,B ∈ B(X), then A ∩B ∈ B(X), and A ∪B ∈ B(X);

2. For each A,B,C ∈ B(X), we have that A∩(B∪C) = (A∩B)∪(A∩C),
and;

3. For any A ∈ B(X), we have that X \ A ∈ B(X).

B(X) is known as the Boolean algebra of clopens. There are other types of
more general Boolean algebras but in this thesis we only use the Boolean
algebra of clopen sets. Recall that a filter p on X is a subset of ℘(X) that
satisfies the following conditins:

1. X ∈ p

2. if A,B ∈ p, then A ∩B ∈ p

3. if A ∈ p and A ⊂ B, then B ∈ p.

An ultrafilter is a filter that is not proper contained in any other filter.
We define S as the set {p ⊂ B(X) : p is an ultrafilter} and λ(A) = {p ∈ S :
A ∈ p}. It is known that {λ(A) : A ∈ B} is a base for a Hausdorff topology
in S. This space with this topology is known as Stone space associated
with B(X). Some of the properties of S with the topology whose base is
{λ(A) : A ∈ B} are the following:

1. S is a compact space and X is a dense subset of S.

2. S is a zero-dimensional space.
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3. If U ∈ B(X), then clS(U) is an open subset of S.

For more information about the properties of Stone’s space consult ([24, pag.
155]).

1.2 Erdős spaces

The two most important spaces in this thesis are Erdős space and complete
Erdős space. These spaces are subsets of

`2 =

{
(xn)n∈ω ∈ Rω :

∑
n∈ω

x2n <∞

}

The topology on `2 is generated by the norm ‖z‖ = (
∑∞

n=0 z
2
n)1/2 where

z ∈ `2. Erdős space is defined to be the space

E = {(xn)n∈ω ∈ `2 : ∀i ∈ ω, xi ∈ Q},

and complete Erdős space is the space

Ec = {(xn)n∈ω ∈ `2 : ∀i ∈ ω, xi ∈ {0} ∪ {1/n : n ∈ N}}

These two spaces were introduced by Erdős in 1940 in [9] as examples of
totally disconnected and non-zero-dimensional spaces.

For every z ∈ `2\Ec, there exists n ∈ ω such that zn /∈ {0}∪{1/n : n ∈ N}.
So there exists an open subset U of R such that zn ∈ U and U ∩ ({0}∪{1/n :
n ∈ N}) = ∅. Then W = {x ∈ `2 : xn ∈ U} is an open subset of `2 such that
z ∈ W ⊂ `2 \Ec. Therefore Ec is a closed subset of `2, and E is an Fσδ subset
of `2 (see Remark 4.12 in [3]). Since `2 is a complete space by Theorem 1.4,
Ec is an absolute Gδ and E is an absolute Fσδ but E is not an absolute Gδσ

(see Remark 4.12 in [3]).
We have the following important result about convergence in `2.

Proposition 1.6 ([21, Lemma 1.1.12]). Suppose that (x(n))n∈ω is a sequence
in `2 and x ∈ `2. Then the following statements are equivalent:

1. limn→∞ x(n) = x in `2

2. limn→∞ ‖x(n)‖ = ‖x‖ and for every i ∈ ω limn→∞ x(n)i = xi.
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This proposition shows that the norm topology on `2 is the weakest topol-
ogy that contains the product topology inherited from Rω and makes the
norm continuous.
Let ϕ : X → [−∞,∞] be a function. We say that ϕ is upper semi-
continuous (USC) if for every t ∈ R the set f←[[−∞, t)] is an open subset
of X. Similarly, f is called lower semi-continuous (LSC) if for every t ∈ R
the set f←[(t,∞)] is an open subset of X.

Lemma 1.7. Every closed ball {x ∈ `2 : ‖x‖ ≤ t} for t > 0 is a closed subset
of Rω.

Proof. Let t > 0 and suppose that x ∈ Rω is such that ‖x‖ > t. Then we can
find an m ∈ N such that

∑
i≤m |xi| > t2. Since this sum is a continuous func-

tion of the vector (x0, . . . , xm) we can find a δ > 0 such that
∑

i≤m |yi| > t2

whenever |xi−yi| < δ for 0 ≤ i ≤ m. Consider the basic open neighbourhood
U of x with respect to the product topology on Rω given by

U = {y ∈ Rω : |xi − yi| < δ for 0 ≤ i ≤ m}.

Note that ‖y‖ > t for all y ∈ U .

Observe that the norm as a function from `2 to [0,∞] is not continuous
with the product topology, because the sequence xn = (y1, . . . , yn2 , 0 . . .) →
(0, . . . , 0 . . .) in `2 (where yk = 1/n for all n ∈ N and k ∈ {1, . . . , n2}) but
‖xn‖ = (

∑
n=1 1/n2)1/2 does not converge to 0. Note that for any t ∈ (0, 1)

and x ∈ {y ∈ Rω : ‖y‖ ∈ (t, 1]} we have that x ∈ U ⊂ {y ∈ Rω : ‖y‖ ∈ (t, 1]}
(where U is as in the Lemma 1.7). This implies that the norm is an LSC
function.

On the other hand with Proposition 1.6 and Lemma 1.7 we see that we can
also describe the norm topology on `2 as the topology that is generated by
the product topology together with the sets {z ∈ `2 : ‖z‖ < t} for t > 0. We
point out the following connection between the two topologies on E and Ec.
From Lemma 1.7 that every closed ε-ball in E is also a closed subset in Qω.
This means that every point in E has arbitrarily small neighbourhoods which
are closed sets in Qω. Clearly, Lemma 1.7 also implies that every closed ε-ball
in Ec is also a closed subset in ({0} ∪ {1/n : n ∈ N})ω.

Definition 1.8. A space (X, τ) is almost zero-dimensional (AZD) if
there is a set Z that contains X and a topology T on Z, such that (Z, T ) is
a zero-dimensional space, O∩X is an open subset in X for each O ∈ T , and
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every point of X has a neighbourhood base in X consisting of sets that are
closed in (Z, T )

In Definition 1.8 we will also say that the space (Z, T ) is a witness to the
almost zero-dimensionality of X.
Thus E and Ec are almost zero-dimensional spaces. The space Qω is a witness
to the almost zero-dimensionality of E and the space ({0} ∪ {1/n : n ∈ N})ω
is a witness to the almost zero-dimensionality of Ec. From the Definition 1.8
the following is immediate.

Remark 1.9. A space X is almost zero-dimensional if and only if there is
a topology on X witnessing this fact.

A set in a space is a C-set if it is the intersection of clopen sets. Observe
that every C-set is closed and that finite unions and finite intersections of
C-sets are also C-sets. The following Proposition gives us an important
equivalence of almost zero-dimension using C-sets.

Proposition 1.10 ([3, Remark 2.4]). A space is AZD if and only if it has
a base of C-sets.

A separable metric space X is one-dimensional if it is not zero-dimensional
and has a base β of neighborhoods such that bdX(U) 6= ∅ and is zero-
dimensional for any U ∈ β. If X has dimension one we write dim(X) = 1.
In general we can define the dimension of a space X for any n ∈ N but in
this thesis we will only use the definition of dimension 0 and 1.
Erdős in [9] proved that both E and Ec are one-dimensional. This result
make these spaces important examples in Dimension Theory.

Some properties of almost zero-dimensional spaces are the following ones.:

Proposition 1.11. 1. All zero-dimensional spaces are almost zero-dimensional.

2. Any subset of a almost zero-dimensional space is almost zero-dimensional.

3. The countable product of almost zero-dimensional spaces is almost zero-
dimensional.

4. All almost zero-dimensional spaces are totally disconnected.

Proof. (1) Let (X,W) be a zero-dimensional space. By Remark 1.9 it is clear
thatW is witness to the almost zero-dimensionality of X. Therefore X is an
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AZD space.
(2) Let X be an almost zero-dimensional space, and A be a subset of X. By
Remark 1.9 there is a witness topology W of X. Let W � A = {U ∩A : U ∈
W}, let us note that W � A is witness to the almost zero-dimensionality of
A. Therefore A is an AZD space.
(3) Let {Xn : n ∈ N} be a family of almost zero-dimensional spaces and
X =

∏
{Xn : n ∈ N}. By remark 1.9 there are witness topologies Wn of

Xn for every n ∈ N. Let W be the topology of
∏
{(Xn,Wn) : n ∈ N}. We

claim that W witness to the almost zero-dimensionality of X. It is clear
that (X,W) is a zero-dimensional space. Also if U is a basic open subset
of (X,W), then there are open subsets U1, . . . Un of (X1,W1), . . . , (Xn,Wn)
respectively such that U =

⋂
k≤n π

←
k [Uk] (where πk : (X,W) → (Xk,Wk) is

the projection). Since Wk is witness the almost zero-dimensionality of Xk,
then Uk is an open subset of Xk for each k ≤ n. Therefore U is an open
subset in X. Let (xn)n∈N ∈ X and let U be a basic open subset X such
that x ∈ U then there are U1, . . . , Un open subsets of X1, . . . Xn respectively
such that U =

⋂
k≤n π

←
k [Uk] (where πk : X → Xk is the projection). Since

x ∈ U , then xi ∈ Ui, since Wi is a witness topology of Xi, then there exists
a neighborhood Vi of xi in Xi that is a closed in Wi and Vi ⊂ Ui. Let
V =

⋂
k≤n π

←
k [Vk], then x ∈ V ⊂ U . Moreover since Vi is a closed subset of

(X,Wi) for each i ≤ n, then V is a closed subset of (X,W). Since V1, . . . , Vn
are neighborhoods of x1, . . . , xn respectively then V is neighborhood of x in
X. Therefore X is an AZD space
(4) Let X be an AZD space. By remark 1.9 there is a witness topology W
of X. Let x, y ∈ X, since (X,W) is a zero-dimensional space there exists a
clopen subset in (X,W), such that x ∈ U and y /∈ U . Since U is a clopen
subset of X, the space X is totally disconnected.

Note that if X is a locally compact and AZD space, then X is zero-
dimensional by item 4 from Proposition 1.11, and from the fact that all
totally-disconnected and compact spaces are zero-dimensional (see Theorem
6.2.9 in [7]). This implies that an AZD space that is not a zero-dimensional
space is not locally compact.

Let ϕ : X → [0,∞) be a USC function. We define

Gϕ
0 = {〈x, ϕ(x)〉 : x ∈ X, ϕ(x) > 0}, and

Lϕ0 = {〈x, t〉 : x ∈ X, 0 ≤ t ≤ ϕ(x)}.

The following Lemma tells us that every almost zero-dimensional space is
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homeomorphic to Gϕ
0 where ϕ is an USC function. This lemma is also of

great importance in Chapter 4.

Lemma 1.12 ([3, Lemma 4.11]). Let X be a space and let Z be a zero-
dimensional space that contains X as a subset (but not necessarily as a sub-
space). Then the following statements are equivalent:

1. Z is a witness to the almost zero-dimensionality of X.

2. there exists a USC function ϕ : Z → [0, 1] such that ϕ←[0] = Z \ X
and the map h : X → Gϕ

0 that is defined by the rule h(x) = (x, ϕ(x))
is a homeomorphism.

Oversteegen and Tymchatyn proved that every almost zero-dimensional
space is at most one-dimensional. Since Gϕ

0 ⊂ [0, 1]×Z, and dim(Z×[0, 1]) =
1 (see Theorem 7.3.17 in [7]), we have dim(Gϕ

0 ) ≤ 1 (see Theorem 7.1.1 in
[7]). Therefore, by the Lemma 1.12, every almost zero-dimensional space has
a dimension less than or equal to 1.

A subset A of `2 is called bounded if it is bounded in norm, that is, if
there is an M ∈ N such that ‖a‖ ≤M for all a ∈ A. If A is not bounded we
call it an unbounded set.

Lemma 1.13 ([9]). Every clopen subset of E and Ec is unbounded.

From Lemma 1.13 follows that every point in E has a neighborhood that
does not contain (nonempty) clopen sets. Later in [3] J. Dijkstra and J. van
Mill formalized this concept as follows.

Definition 1.14 ([3, Definition 5.1]). Let X be a space and let A ⊂ ℘(X) \
{∅}. The space X is called A-cohesive space if every point of the space has
a neighborhood that does not contain nonempty proper clopen subsets of any
element of A. If a space X is {X}-cohesive then we simply call X cohesive.

Definition 1.14 is of importance for the topological characterizations of
E, Ec and Eωc . Note that all connected spaces are cohesive and that the
dimension of a cohesive space is greater than or equal to one.

Remark 1.15 ([3, Remark 5.2]). If Y is any space and X is a space that is A-
cohesive then X×Y is {A×B : A ∈ A and B ⊂ Y }-cohesive. In particular,
if X is {As : s ∈ S}-cohesive, then Xn is {As1 × . . .×Asn : sj ∈ S}-cohesive
for any n ∈ N.
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As a generalization of the construction of E and Ec, consider a fixed se-
quence E0, E1, E2, . . . of subsets of R and let

E = {z ∈ `2 : zn ∈ En for every n ∈ ω}.

If we consider En = Q for all n ∈ N we obtain Erdős space and if we consider
En = {0} ∪ {1/n : n ∈ N} for all n ∈ N we obtain complete Erdős space.

The following theorem tells us when space E is cohesive.

Theorem 1.16 ([6, Theorem 1]). Assume that E is not empty and that every
En is zero-dimensional. For each ε > 0 we let η(ε) ∈ Rω be given by

η(ε)n = sup{|a| : a ∈ En ∩ [−ε, ε]}

where sup(∅) = 0. The following statements are equivalent:

1. ‖η(ε)‖ =∞ for each ε > 0

2. there exists x ∈
∏

n∈NEn with ‖x‖ =∞ and limn→∞ xn = 0;

3. every nonempty clopen subset of E is unbounded;

4. E is cohesive ; and

5. dim(E) > 0

Note that under the conditions of this theorem the space E is almost zero-
dimensional: the product space

∏
n∈NEn is a witness to the almost zero-

dimensionality of E Since every almost zero-dimensional space is at most
one-dimensional, the condition (5) is equivalent to dim(E) = 1.

Recall that if A0, A1, . . . is a sequence of subsets of a space X then

lim sup
n→∞

An =
∞⋂
n=0

clX(
∞⋃
n=k

Ak).

A point x in a topological space X is called a cluster point of a set A ⊂ X
if x ∈ clX(A \ {x}).

Corollary 1.17. If 0 is a cluster point of lim supn→∞En then every nonempty
clopen subset of E is unbounded.
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Proof. If E is empty, then the conclusion is void. Let E 6= ∅ and let n ∈ N.
Select a t ∈ lim supk→∞En such that 0 < |t| < 1/n. Choose a sequence of
natural numbers k0 < k1 < k2 < . . . such that there is, for each j ∈ N, a
tj ∈ Ekj with limj→∞ tj = t. We may assume that for every j, 1

2
|t| < |tj| <

1/n. Thus η(1/n)kj ≥ |tj| > 1
2
|t| for each j and hence ‖η(n)‖ = ∞, proving

statement (1) of Theorem 1.16.

We will use Corollary 1.17 to show that E is cohesive. In this case En = Q
for each n ∈ N, then lim supn→∞En = R. Clearly 0 is a cluster point R. On
the other hand En = {0} ∪ {1/n : n ∈ N} for each n ∈ N for the case of
Ec, then lim supn→∞({0} ∪ {1/n : n ∈ N}) = {0} ∪ {1/n : n ∈ N}. Note
0 ∈ clR({1/n : n ∈ N}), that is, 0 is a cluster point {0} ∪ {1/n : n ∈ N}. By
Colollary 1.17 every nonempty clopen subset of E or Ec is unbounded. By
Theorem 1.16 E and Ec are cohesive spaces.

1.2.1 Characterization of E

The spaces E, Ec, and also Eωc were characterized by Dijkstra and van Mill
in [3] [4], and [5] respectively. The characterizations of Erdős space and
complete Erdős space are of great importance in this thesis. Before we can
formulate these characterizations we need to introduce some notions.

Definition 1.18. If A is a nonempty set then A<ω denotes the set of all
finite strings of elements of A, including the null string ∅. If s ∈ A<ω then
|s| denotes its length. In this context the set A is called alphabet. Let Aω

denote the set of all infinite strings of elements of A.

Note that if s ∈ A<ω and t ∈ A<ω ∪ Aω, then we put s ≺ t if s is an
initial substring of t; that is, there is an r ∈ A<ω ∪ Aω with s_r = t,
where _ denotes concatenation of strings. Also if t ∈ A<ω ∪ Aω and k ∈ ω,
t � k ∈ A<ω is the element of A<ω characterized by t � k ≺ t and |t � k| = k.

Definition 1.19. A tree T on A is a subset of A<ω that is closed under
initial segments, i.e., if s ∈ T and t ≺ s then t ∈ T .

Elements of tree T are called nodes. An infinite branch of T is an element
r of Aω such that r � k ∈ T for every k ∈ ω. The body of T , written as [T ],
is the set of all infinite branches of T . If s, t ∈ T are such that s ≺ t and
|t| = |s| + 1, then we say that t is an immediate successor of s and succ(s)
denotes the set of immediate successors of s in T .
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The trees considered in Definition 1.19 are said to have height ω. But
there are also trees with heights greater than ω. In this thesis we will not
talk about those types of trees, only countable trees are considered.

Definition 1.20. Let n ≥ 2. If S1, . . . , Sn are trees over A1, . . . , An, re-
spectively, and if s1 = a11, . . . , a

1
k ∈ S1, . . . , sn = an1 , . . . , a

n
k ∈ Sn, are strings

of equal length, then we define the string s1 ∗ . . . ∗ sn over A1 × . . . × An
by s1 ∗ . . . ∗ sn = (a11, . . . , a

n
1 ), . . . , (a1k, . . . , a

n
k). We define the product tree

S1 ∗ . . . ∗ Sn over A1 × . . . × An as the partially ordered subset {s1 ∗ . . . ∗
sn : si ∈ Si for all i ∈ {1, . . . , n} and |s1| = . . . = |sn|} of the alphabet
(A1 × . . .× An)<ω.

Remark 1.21. Let n ≥ 2, and let S1, . . . , Sn trees over A1, . . . , An, respec-
tively. Then S1 ∗ . . . ∗ Sn is indeed a tree over A1 × . . .× An. The following
statements hold.

1. Let s1, t1 ∈ S1, . . . sn, tn ∈ Sn with |s1| = . . . = |sn| and |t1| = . . . = |tn|.
Then s1 ∗ . . . ∗ sn ≺S1∗...∗Sn t1 ∗ . . . ∗ tn if and only if si ≺Si

ti for all
i ∈ {1, . . . , n}.

2. Let s1, t1 ∈ S1, . . . sn, tn ∈ Sn with |s1| = . . . = |sn| and |t1| = . . . = |tn|.
Then t1 ∗ . . . ∗ tn ∈ succ(s1 ∗ . . . ∗ sn) in S1 ∗ . . . ∗ Sn if and only if
ti ∈ succ(si) in Si for all i ∈ {1, . . . , n}.

3. The body of S1 ∗ . . .∗Sn, [S1 ∗ . . .∗Sn], is equal to the set {(ŝ1, . . . , ŝn) :
ŝk ∈ [Sk] for all k ∈ {1, . . . , n}}.

4. Let t̂1 ∈ [S1], . . . , t̂n ∈ [Sn], and let k ∈ ω. Then

(t̂1, . . . , t̂n) � k = (t̂1 � k, . . . , t̂n � k) = t̂1 � k ∗ . . . ∗ t̂n � k.

Let X be a space. Let (An)n∈ω a sequence of sets of X. We say that
(An)n∈ω converges to x if for each open subset U such that x ∈ U there
exists m ∈ ω such that Ak ⊂ U if m ≤ k.

Definition 1.22. Let T be a tree and let (Xs)s∈T be a system of subsets of
a space X (called a scheme) such that Xt ⊂ Xs whenever s ≺ t. A subset A
of X is called an anchor for (Xs)s∈T in X if either for every t ∈ [T ] we have
Xt�k ∩ A = ∅ for some k ∈ ω or the sequence Xt�k0 , . . . , Xt�n . . . converges to
a point in X.
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Example 1.23. As the space Qω is a witness to the almost zero-dimensionality
of E; let W be the topology that E inherits from Qω. Put T = Q<ω and for
s = q0, . . . , qn ∈ T , with n ∈ ω, let the closed subset Qω

s of Qω be given by

Qω
s = {x ∈ Qω : xi = qi for 0 ≤ i ≤ n}

Put Es = Qω
s ∩ E for s ∈ T and let B be a bounded subset of E. We show

that B is an anchor for (Es)s∈T in (E,W). Let z = (q0, q1, . . .) ∈ [T ] be
such that Ez�k ∩ B 6= ∅; for all k ∈ ω. It is clear that Ez�k converges to
the point z ∈ Qω in the product topology of Qω, hence it suffices to show
that z ∈ E. Since B is bounded there is an M ∈ N such that B ⊂ {x ∈
Qω : ‖x‖ ≤ M} and because Ez�k ∩ B 6= ∅; for all k ∈ ω this means that
‖(q0, q1, . . . , qk, 0, 0, . . .)‖ ≤M for all k ∈ ω. Beacuse there exists p ∈ Ez�k∩B
such that p = (q0, q1, . . . qk, xk+1, 0, . . .) and p ∈ {x ∈ Qω : ‖x‖ ≤M}, then

‖(q0, q1, . . . , qk, 0, 0, . . .)‖ ≤ ‖p‖ ≤M.

Since the norm function is LSC on Qω we have

‖z‖ ≤ lim
n→∞

‖(q0, . . . , qn, . . .)‖ ≤M

so z ∈ E.

Dijkstra and van Mill proved the following characterization of E.

Theorem 1.24 ([3, Theorem 8.13]). A nonempty space E is homeomorphic
to E if and only if there exists a topology W on E that witnesses the almost
zero-dimensionality of E and there exists a nonempty tree T over a countable
alphabet and subspaces Es of E that are closed with respect to W for each
s ∈ T such that:

1. E∅ = E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

2. each x ∈ E has a neighborhood U that is an anchor for (Es)s∈T in
(E,W)

3. for each s ∈ T and t ∈ succ(s), we have that Et is nowhere dense in
Es, and

4. E is {Es : s ∈ T}-cohesive.
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Theorem 1.24 is known as the intrinsic characterization of E. Another char-
acterization of E in terms of USC functions is known as the extrinsic char-
acterization of E. We will not mention this last characterization here but it
is found in [3].
As an illustration of Theorem 1.24 we show that E satisfies the conditions
of Theorem 1.24. Let the topology W on E, the tree T , and the subspaces
Es ⊂ E for s ∈ T be as in Example 1.23. It is clear that Es is closed in (E,W)
for all s ∈ T and conditions (1) and (3) are easily seen to be satisfied. Fur-
thermore, it follows from Example 1.23 that every bounded neighbourhood
of a point x ∈ E is an anchor for (Es)s∈T in (E,W), so condition (2) is
satisfied. Finally, as noted before, it follows from Corollary 1.17 that every
nonempty clopen subset of Es is unbounded. This means that a bounded
neighbourhood of a point x ∈ E does not contain nonempty clopen subsets
of any space Es, hence condition (4) is satisfied as well.

A consequence of Theorem 1.24 is that every open subset of E is homeo-
morphic to E. If U is an open subset of E, then the topology W � U , the
tree T ′ = {s ∈ T : U ∩ Es 6= ∅} and the sets {U ∩ Es : s ∈ T ′} satisfy the
conditions of Theorem 1.24.

Definition 1.25. Let X be a space. A space Y is called an X-factor, if there
is a space Z such that Y × Z is homeomorphic to X.

The following theorem characterizes the factors of E.

Theorem 1.26 ([3, Theorem 9.2 items (2) and (5)]). E is an E-factor if and
only if E admits a closed embedding into E.

Since E× E is homeomorphic to E, then E is a factor of itself. Also from
Theorem 1.26 it can be shown that E is homeomorphic to Eω(see [3, Corollary
9.4]) and that every complete AZD space is a factor of E (see [3, Corollary
9.3]), with this we have E is homeomorphic to E×Ec and to E×Eωc . Another
consequence of Theorem 1.26 that is useful in this work is the following result.

Proposition 1.27 ([3, Proposition 9.1]). Ec ×Qω ≈ E

1.2.2 Characterization of Ec

Now we will talk about the characterizations of complete Erdős space, in
this case we will mention the intrinsic and extrinsic characterization. Both
of these characterizations will be used.
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Let ϕ : X → [0,∞) be a USC function. We say that ϕ is a Lelek function
if X is zero-dimensional, the set {x ∈ X : ϕ(x) > 0} is dense in X and Gϕ

0

is dense in Lϕ0 . The existence of Lelek functions with domain equal to the
Cantor set 2ω follows from Lelek’s original construction [15] of what is now
called the Lelek fan (Figure 1.1).

Example 1.28. Let ϕ0 : Rω → [0,∞] be the function given by ϕ0(x) =∑
n∈N |xn|. With an argument analogous to that of Lemma 1.7 it can be

shown that ϕ0 is an LSC function. Let X = ({0} ∪ {1/n : n ∈ N})ω
and let ϕ = ϕ0 � X, then ϕ is an LSC function. Let η = f ◦ ϕ where
f : [0,∞]→ [0, 1] given by f(x) = 1

1+x
if x ∈ [0,∞) and f(x) = 0 if x =∞.

We are going to show that η is a Lelek function. Since f is a continuous
and decreasing function, η is an USC function. To prove that η is a Lelek
function it is enough to prove that {(x, ϕ(x)) : ϕ(x) <∞} is a dense subset
in {(x, t) : ϕ(x) ≤ t} because g = idRω × f is a continuous function and
g[{(x, ϕ(x)) : ϕ(x) <∞}] = Gη

0 and g[{(x, t) : ϕ(x) ≤ t}] = Lη0.
Let (x0, t0) ∈ {(x, t) : ϕ(x) ≤ t}, m ∈ N. If x0n > 0, let’s consider Wn =
{x ∈ X : xn = x0n}, and if x0n = 0, let’s consider Wn = {x ∈ X : xn < 1/m},
then Wn is an open subset of X such that x0 ∈ Wn. Let U =

⋂
n≤mWn, then

x0 ∈ U . Let δ > 0, k ∈ ω such that 1/k < δ and d = t0 −
∑

n≤m x
0
n. Note

that d > 0, because 0 <
∑

n∈N x
0
n ≤ t0. As

∑
n∈N 1/n does not converge,

then the set A = {n ∈ N : n/k > d} is not empty. Let r = minA and
y = (x01, . . . , x

0
m, xm+1, . . . , xm+r, 0, . . .) where xm+1 = . . . = xm+r = 1/k.

Note that y ∈ U and ϕ(y) =
∑

n≤m x
0
n + r/k. For choice of r we have to

r − 1

k
< d <

r + 1

k

This implies that | r
k
− d| < 1

k
< δ. On the other hand

|t0 − ϕ(y)| = |t0 + d− d− ϕ(y)| = |t0 + d+
∑
n≤m

x0n − t0 −
∑
n≤m

x0n −
r

k
| =

|d− r

k
| < 1

k
< δ

Therefore |t0 − ϕ(y)| < δ. That is ϕ(y) ∈ (t0 − δ, t0 + δ). Then (y, ϕ(y)) ∈
{(x, ϕ(x)) : ϕ(x) <∞} and (y, ϕ(y)) ∈ Um×(t0−δ, t0+δ). Thus {(x, ϕ(x)) :
ϕ(x) <∞} is dense in {(x, t) : ϕ(x) ≤ t}. So η is a Lelek function.
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Figure 1.1: Lelek Fan

The following Lemma tells us under what conditions we can find a Lelek
function when we have a USC function.

Lemma 1.29 ([3, Lemma 5.9]). Let ϕ be a USC function from a zero-
dimensional space X to [0,∞) and let A be a collection of subsets of X such
that ∅ /∈ A, Gϕ

0 is {Gϕ
0 � A : A ∈ A}-cohesive, and A′ = {x ∈ A : ϕ(x) > 0}

is dense in A for each A ∈ A. Then there exists a USC function ψ : X →
[0,∞) such that ψ ≤ ϕ, the natural bijection h from the graph of ϕ to the
graph of ψ is continuous, the restriction h � Gϕ

0 → Gψ
0 is a homeomorphism,

and for every A ∈ A we have that ψ � A is a Lelek function.

The following Theorem was proved by Kawamura, Oversteegen, and Tym-
chatyn in [11].

Theorem 1.30. If ϕ : 2ω → [0, 1] is a Lelek function, then Gϕ
0 is homeomor-

phic to Ec.

Theorem 1.30 is an extrinsic characterization of Ec. Since the space X
in example 1.28 is homeomorphic to 2ω, then by Theorem 1.30 Gη

0 ≈ Ec.
By Corollary 1.17, Gη

0 is cohesive and by Lemma 1.12, X is witness to the
almost zero-dimension of Gη

0. By Definition 1.9 every point of Gη
0 has a

neighbourhood base β in Gη
0 consisting of sets that are closed in X. Since X

is a compact space, then every U ∈ β is a compact subset in X. By Lemma
1.12 Gη

0 ⊂ X (but not as subspace). Let Y = Gη
0 be seen as a subspace of X,

then Y is witness to the almost zero-dimension of Gη
0. Since U ⊂ Y , then U

is a compact subset in Y . We conclude that Gη
0 is cohesive and every point

in Gη
0 has a neighborhood which is compact subset of Y . Theorem 1.31 tells

us that these two properties characterize the space Ec. Theorem 1.31 is the
intrinsic characterization of Ec.
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Theorem 1.31 ([2, Theorem 3.1, items (1), (2) and (3)]). Let (E , τ) be a
topological space. The following statements are equivalent.

1. E is homeomorphic to Ec.

2. E is cohesive and there exists a zero-dimensional topology W in E such
that every point in E has a neighborhood in τ which is compact with
respect to W.

3. E is cohesive and there exists a zero-dimensional topology W in E such
that every point in E has a neighborhood in τ which is complete with
respect to W.

Theorem 1.31 was proved by Dijkstra and van Mill. Also, in the case of Ec
each open subset of Ec is homeomorphic to Ec. And we have the following
Theorem that characterizes its factors.

Theorem 1.32 ([2, Theorem 3.2]). E is an Ec-factor if and only if E admits
a closed embedding into Ec.

An important consequence of Theorems 1.31 and 1.32 is the following The-
orem.

Theorem 1.33 ([2, Theorem 3.5]). A nonempty space is homeomorphic to
Ec if and only if it is cohesive and Ec-factor.

The following Proposition tells us that the spaces Ec and Eωc are different.

Proposition 1.34. Every subset of Eωc with a nonempty interior contains
closed copies of the space itself.

Proof. Let A be a subset of Eωc such that intEω
c
(A) 6= ∅. Then A contains a

subset of the form {(x1, . . . , xn)} × Eωc .

Corollary 1.35 ([5, Corollary 3.6]). Ec is not homeomorphic to Eωc .

The space Eωc also has its own characterization but we will not mention it
(see [5]), we will only mention the characterization of its factors.

Theorem 1.36 ([5, Theorem 6.5]). E is an Eωc -factor if and only if E is an
AZD complete space.
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1.3 Hyperspaces

In this section we will study some properties of hyperspaces such as metriz-
ability, compactness and dimension zero.

1.3.1 Vietoris topology

Let X be a topological space. We define CL(X) ⊂ ℘(X) as the set of all
closed nonempty subsets of X.

For n ∈ N and subsets U1, . . . , Un of a topological space X, we denote by
〈U1, . . . , Un〉 the collection{

F ∈ CL(X) : F ⊂
n⋃
k=1

Uk and F ∩ Uk 6= ∅ for k ≤ n

}
.

If n = 1 we have

〈U1〉 = {F ∈ CL(X) : F ⊂ U1} and

If n = 2 and U1 = X we have

〈X,U2〉 = {F ∈ CL(X) : F ∩ U2 6= ∅}.

Usually CL(X) is endowed with the topology known as the Vietoris
Topology, having as its canonical base all the sets of the form 〈U1, . . . , Un〉
where Uk is a non-empty open subset of X for each k ≤ n.

Remark 1.37. If U is a closed subset of X, then 〈U〉 and 〈U,X〉 are closed
subsets of CL(X). This is because 〈U〉 = CL(X) \ 〈X,X \ U〉 and 〈X,U〉 =
CL(X) \ 〈X \ U〉.

It follows that if U1 . . . Un are closed subsets of X, then 〈U1, . . . Un〉 is a
closed subset in CL(X) since that 〈U1, . . . Un〉 = 〈

⋃
k≤n Uk〉 ∩ 〈U1, X〉 ∩ . . . ∩

〈Un, X〉. The following subsets of CL(X) are what we will study in this
thesis.

Definition 1.38. Let X be a topological space. We define

� Fn(X) = {A ∈ CL(X) : |A| ≤ n} for each n ∈ N,

� F(X) = {A ∈ CL(X) : |A| < ω},
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� K(X) = {F ∈ CL(X) : F is a compact subset of X }.

The hyperspace Fn(X) is also known as n-th symmetric product. Notice
that for each n ∈ N, Fn(X) ⊂ Fn+1(X), and F(X) =

⋃
n∈ω Fn(X).

Proposition 1.39 ([18, Proposition 2.4]). Let n ∈ N, and let X be a crowded
space. Then Fn(X) is a closed and nowhere dense subset of Fn+1(X), of
F(X) and K(X)

Proposition 1.40. Let U be a proper open subset of X, then

1. K(U) is a proper open subset of K(X).

2. F(U) is a proper open subset of F(X).

3. Fn(U) is a proper open subset of Fn(X).

Proof. We are going to show 1; the other items are shown in an analogous
way. Let F ∈ K(U), then F ⊂ U . Since F is a compact and X is metrizable,
there exists an open subset V of X such that F ⊂ V ⊂ clX(V ) ⊂ U . We
claim that 〈V 〉 ⊂ K(U). Let H ∈ 〈V 〉, then H ⊂ V ⊂ U . Therefore K(U)
is an open subset of K(X). On the other hand, given that X \ U 6= ∅, then
{x} ∈ K(X) \ K(U) (where x ∈ X \ U). That is, K(U) is a proper open
subset of K(X).

Corollary 1.41. Let B be a closed subset of X, then

1. K(B) is a closed subset of K(X).

2. F(B) is a closed subset of F(X).

3. Fn(B) is a closed subset of Fn(X).

Proof. We are going to show 1; the other items are shown in an analogous
way. Let B be a closed subset of X. We are going to show that K(X)\K(B),
is an open subsets of K(X). Let K ∈ K(X) \ K(B), then K ∩ B = ∅.
Since X is a metric space, there exists an open subset U of X such that
K ⊂ U ⊂ X \ B. Let 〈U〉, then 〈U〉 is an open subset of K(X) such that
K ∈ 〈U〉 and 〈U〉 ∩ K(B) = ∅. This implies that K(X) \ K(B) is an open
subset of K(X).
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Proposition 1.42. If A admits a closed embedding into X, then for each
n ∈ N, Fn(A) admits a closed embedding into Fn(X), and F(A) admits a
closed embedding into F(X).

Proof. We will only show that Fn(A) admits a closed embedding into Fn(X),
the proof that F(A) admits a closed embedding into F(X) is done in an
analogous way. Let e : A → X be a closed embedding. Let e1 : Fn(A) →
Fn(X) given by e1({x1, . . . , xk}) = {e(x1), . . . , e(xk)}, by the continuity of
e we have that e←1 [〈U1, . . . , Uk〉] = 〈e←[U1], . . . , e

←[Uk]〉. Therefore e1 is a
continuous function. On the other hand if E,F ∈ Fn(A) and E 6= F , then
there exists x ∈ E and y ∈ F such that x 6= y and e(x) 6= e(y). Therefore
e1(F ) 6= e1(E). This implies that e1 is an injective function. Since e[A] is a
closed subset of X then by 1.41 Fn(e[A]) is a closed subset of Fn(X). On
the other hand, let us note that e1[Fn(A)] = Fn(e[A]). Therefore e1[Fn(A)]
is closed subset of Fn(X). Thus e1 is a closed embedding.

Proposition 1.43 ([18, Proposition 2.4.3]). For each n ∈ N the function
qn : Xn → Fn(X) defined by qn(x1, . . . , xn) = {x1, . . . , xn} is continuous and
perfect.

From now on, in this thesis the symbol qn will denote the function defined
in Proposition 1.43. Note that q1 is a homeomorphism, thus X ≈ F1(X).
On the other hand with Proposition 1.43 we obtain that if X is a compact
space, then Fn(X) is a compact space for all n ∈ N. Later we will see that if
X is a compact space, then K(X) is a compact space (Theorem 1.48). The
next result tells us when the spaces Fn(X), F(X) and K(X) are connected.
This result is useful in section 2 of Chapter 2

Theorem 1.44 ([18, Theorem 4.10]). For a topological space X the following
statements are equivalent.

1. X is a connected space;

2. F(X) is a connected space;

3. For all n ∈ N, Fn(X) is a connected space;

4. There exists n ∈ N such that Fn(X) is a connected space;

5. K(X) is a connected space.
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Remember that in this thesis all spaces are considered metric, so it is
natural to know when CL(X) is metric. The following Theorem tells us
when CL(X) is normal.

Theorem 1.45 ([25, Velicko]). CL(X) is normal if and only if X is a com-
pact space.

Theorem 1.45 implies that CL(X) is a metric space if and only if X is a
compact metric space. This implies that CL(E) and CL(Ec) are not a metric
spaces since E and Ec are not compact spaces. But for the case of K(X) we
have the following result:

Theorem 1.46 ( [18, Proposition 4.1]). Let X be a separable and metrizable
space. Then

� K(X) is a separable and metrizable space.

�� If X is a Polish space, then K(X) is a Polish space.

By Theorem 1.46 Fn(X) and F(X) are metrizable spaces and in the case
that X is a Polish space then Fn(X) is a Polish space. Therefore in this
thesis we will only study the hyperspaces Fn(X), F(X) and K(X). Another
important property that we must know is when K(X) is a zero-dimensional
space, since every AZD space has a zero-dimensional space associated with
it.( Definition 1.8)

Theorem 1.47 ([18, Proposition 4.13.1]). X is a zero-dimensional space if
and only if K(X) is a zero-dimensional space.

Since all zero-dimensional spaces are almost zero-dimensional, by Theo-
rem 1.36 and Proposition 1.46 we have that if X is a complete and zero-
dimensional space, then K(X), and Fn(X) are factors of Eωc . In the next
chapter we will show that this result is true for every complete AZD space.

Finally we present a Theorem about compactness in K(X). It is important
in Chapter 3 of this work.

Theorem 1.48 ([18, Theorem 4.2]). X is a compact space if and only if
K(X) is a compact space.

The following result is immediate from the previous Theorem.

Corollary 1.49. Let V1, . . . , Vn be compact subsets of X, then 〈V1, . . . , Vn〉
is a compact subset of K(X), and therefore 〈V1, . . . , Vn〉∩Fn(X) is a compact
subset of Fn(X) for each n ∈ N.



Chapter 2

Almost Zero-Dimesion and
Cohesion in Hyperspaces

In this chapter we will talk about the properties of almost zero-dimensionality
and cohesion in hyperspaces.

2.1 AZD Hyperspaces.

We begin by studying the property of almost zero-dimensionality in the dif-
ferent hyperspaces defined in Chapter 1.

Proposition 2.1. Let X be a metric AZD space. Then CL(X) is a metric
and AZD space if and only if X is a compact and zero-dimensional space.

Proof. If CL(X) is a metric space by Theorem 1.45 X is a compact. By
Theorem 1.45 CL(X) is a compact and AZD space. By Proposition 1.11,
CL(X) is a zero-dimensional space. Therefore X is a zero-dimensional space,
by Theorem 1.47. On the other hand if X is a compact, then CL(X) =
K(X). By Theorem 1.47 and Theorem 1.48, CL(X) is a compact and zero-
dimensional space.

This result tells us that the class of spaces such that CL(X) is an AZD
metric space coincides with the class of zero-dimensional compact metric
spaces. For the case of K(X) we have the following result. This result is
fundamental in the remainder of the thesis.

22
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Proposition 2.2. For a topological space X the following statements are
equivalent.

1. X is an AZD space.

2. K(X) is an AZD space.

3. If F1(X) ⊂ A ⊂ K(X), then A is an AZD space.

Proof. The implication (2)⇒ (3) is obvious, and (3)⇒ (1) follows from the
fact that F1(X) is homeomorphic to X.
(1) ⇒ (2) : We are going to prove that K(X) satisfies the conditions of Re-
mark 1.9. LetW be a topology which witnesses the almost zero-dimensionali-
ty of X. Consider the space Y = (X,W). AsW is coarser than the topology
of X, then K(X) ⊂ K(Y ). Let (Z,W0) be the space K(X) considered with
the topology inherited as a subspace of K(Y ). Since 〈V1, . . . , Vn〉 ∩ Z is an
open subset of K(X), when V1, . . . , Vn are elements of W , we have that the
topology W0 of Z is coarser than the topology of the K(X). Moreover, by
Proposition 1.47, (Z,W0) is zero-dimensional. Now, we are going to prove
that each element in K(X) has a local neighborhood base consisting of sub-
sets that are closed in (Z,W0). Let F ∈ K(X) and let U = 〈U1, . . . , Um〉 be
a canonical open subset of K(X) such that F ∈ U . For each x ∈ F there is
a neighborhood Vx of x in X such that x ∈ Vx ⊂

⋂
{Uj : x ∈ Uj} and Vx is

closed in Y . Then {intX(Vx) : x ∈ F} is an open cover of F in X. As F is a
compact subset of X, there exists x1, . . . , xk ∈ F such that F ⊂

⋃k
i=1 Vxi . For

each i ≤ m, let yi ∈ F∩Ui. Note that F ∈ 〈Vx1 , . . . , Vxk , Vy1 , . . . , Vym〉. Let us
see that VU := 〈Vx1 , . . . , Vxk , Vy1 , . . . , Vym〉 ∩ K(X) ⊂ U . Indeed, let H ∈ VU .

Then H ⊂
⋃k
i=1 Vxi∪

⋃m
j=1 Vyj and H∩Vz 6= ∅ for z ∈ {x1, . . . , xk, y1, . . . , ym}.

By the choice of Vxi and Vyj , we have
⋃k
i=1 Vxi ∪

⋃m
j=1 Vyj ⊂

⋃
i≤m Ui, and

for each j ≤ m there exists a z ∈ {x1, . . . , xk, y1, . . . , ym} such that Vz ⊂ Uj.
Then H ⊂

⋃
i≤m Ui and H ∩ Ui 6= ∅ for i ≤ m. Thus VU ⊂ U , moreover

〈〈Vx1 , . . . , Vxk , Vy1 , . . . , Vym〉 is a closed subset in K(Y ) by Remark 1.37 so
〈Vx1 , . . . , Vxk , Vy1 , . . . , Vym〉 ∩Z is a closed subset of Z. Therefore, the collec-
tion of all the sets VU where U is a canonical open set of K(X) containing
F , form a local neighborhood base of F consisting of closed sets in (Z,W0).
Hence, by Remark 1.9, K(X) is an AZD space.
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Corollary 2.3. Let X be an AZD space. Suppose that W is a witness
topology of the almost zero-dimensionality of X. If U1, . . . , Un are closed sets
of (X,W), then 〈U1, . . . , Un〉 ∩ K(X) is a C-set of K(X).

Proof. Let Z as in the proof of 2⇒ 1 in Proposition 2.2 and U1, . . . , Uk closed
subsets of (X,W). Since 〈U1, . . . Uk〉 ∩ Z is a closed subset in Z and Z is a
zero-dimensional space, then 〈U1, . . . , Uk〉 ∩ Z is a C-set of Z. By Remark
1.9 〈U1, . . . , Uk〉 ∩ Z is a C-set of K(X).

Corollary 2.4. Let X be an AZD space. Suppose that W is a witness topol-
ogy of the almost zero-dimensionality of X, then the topology of Fn(X,W),
(F(X,W)), witnesses the almost zero-dimensionality of Fn(X), (F(X) re-
spectively).

Proof. Let Z be as in the proof of 2 ⇒ 1 in Proposition 2.2. By item
2 of Proposition 1.11, Fn(X) ∩ Z (and F(X) ∩ Z) witnesses the almost
zero-dimensionality of Fn(X), (F(X) respectively). Note that Fn(X,W) ≈
Fn(X) ∩ Z and F(X,W) ≈ F(X) ∩ Z by the proof of Proposition 2.2.

Since every AZD space has dimension less than or equal that one, by Propo-
sition 2.2, dim(K(X)) ≤ 1. By Theorem 1.47 we have that if dim(K(X)) = 0
if and only if dim(X) = 0. This implies that dim(K(X)) = 1 if and only if
dim(X) = 1. This argument implies the following Corollary.

Corollary 2.5. Let X be an AZD space, then dim(K(X)) ≤ 1 and dim(K(X)) =
1 if and only if dim(X) = 1.

The omission of the hypothesis of almost zero-dimensionality on X in the
previous corollary produces the following natural question.

Question 2.6. Is there a space X that is not AZD such that dim(X) =
dim(K(X)) = 1?

The answer to this question is affirmative, and was given Roman Pol in a
personal communication. In the next section of this chapter we present an
example. We finish this section with the following result.

Proposition 2.7. Let X be an almost zero-dimensional space, then for each
n ∈ N, Fn(X) is a C-set of CL(X), K(X), F(X), and Fn+1(X).
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Proof. Let m ∈ N be fixed, we will show that Fm(X) is a C-set of CL(X).
LetW be a witness topology of X and d a metric for X. There exists a dense
embedding e : (X,W)→ 2ω. Since 2ω is a compact space for each ε > 0, there
exists a finite partition Uε of clopen subsets of 2ω whose diameter is less than
ε. Let Ckn = {〈X ∩ e←[U1], . . . , X ∩ e←[Uk]〉 : U1, . . . , Uk ∈ U1/n, and k ≤ m},
and let Cn =

⋃
k≤m Ckn. Note that X ∩ e←[Uj] is a clopen subset of X for

each Uj ∈ U1/n and X =
⋃
Uj∈U1/n(X ∩ e←[Uj]), so that Cn is a cover of

Fm(X) for each n ∈ N. Since 〈X ∩ e←[U1], . . . , X ∩ e←[Uk]〉 is a clopen
subset of CL(X) for each U1, . . . , Uk ∈ U1/n and U1/n is finite. We see that
Dn =

⋃
Cn is a clopen subset of CL(X) such that Fm(X) ⊂ Dn for every

n ∈ N. We claim that Fm(X) =
⋂
n∈NDn. Since for each n ∈ N, we have

Fm(X) ⊂ Dn, we conclude that Fm(X) ⊂
⋂
n∈NDn. On the other hand,

if H ∈ CL(X) \ Fm(X), then |H| > m. Let x1, . . . , xm+1 ∈ H such that
xj 6= xi if i 6= j and ε = (min{d(xi, xj) : xi, xj ∈ {x1, . . . , xm+1}})/2. Then if
V ∈ Uε we have |V ∩ {x1, . . . , xm+1}| ≤ 1. Let i ∈ N such that 1/i < ε, then
if 〈U1, . . . , Ul〉 ∈ C1/i, we have that H /∈ 〈U1, . . . , Ul〉, for each l ≤ m, and so
H /∈ D1/i. Therefore H /∈

⋂
Dn. It follows that Fm(X) =

⋂
n∈NDn.

To show that Fn(X) is a C-set of Fn+1(X), F(X) and K(X), note that
Fn+1(X)∩Dm, F(X)∩Dm, and K(X)∩Dm are clopen subsets of Fn+1(X),
F(X) and K(X) respectively and Fn(X) =

⋂
m∈N(Dm∩Fn+1(X)), Fn(X) =⋂

m∈N(Dm ∩ F(X)), and Fn(X) =
⋂
m∈N(Dm ∩ K(X)).

Since the C-sets are closed, then F(X) cannot be C-set of K(X) or CL(X).
Also K(X) cannot be a C-set of CL(X), since F(X) is a dense subset of K(X)
and of CL(X), and K(X) is a dense subset of CL(X).

2.2 Cohesive Hyperspaces

In this section we will see how cohesion behaves in the different hyperspaces
defined in Chapter 1. The following result relates the cohesion property
between a space X and its symmetric products.

Proposition 2.8. Let n ∈ N and let X be a space that is {As : s ∈ S}-
cohesive. Then Fn(X) is {qn[As1 × . . .× Asn ] : s1, . . . , sn ∈ S}-cohesive.

Proof. Suppose that Fn(X) is not {qn[As1 × . . . × Asn ] : s1, . . . , sn ∈ S}-
cohesive. Then there exists F ∈ Fn(X) and a local base β of F , such that
any U ∈ β contains a non-empty proper clopen subset of some element of
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{qn[As1 × . . .× Asn ] : s1, . . . , sn ∈ S}. Let us suppose that F = {x1, . . . , xk}
with xj 6= xi for each i, j ∈ {1, . . . , k}. Let βx1 , . . . , βxk be local bases of the
points x1, . . . , xk respectively such that if i 6= j, Uj ∈ βxj and Ui ∈ βxi , then
Uj ∩ Ui = ∅. Let x = (x1, . . . , xk, xk+1, . . . , xn) in Xn, where xk = xk+1 =
. . . = xn. Note that β0 = {U1× . . .×Uk+1 . . .×Un : Uj ∈ βxj j ≤ k and Uk =
Uk+1 = . . . = Un} is a local base at x. Let Vj ∈ βxj be fixed for each
j ∈ {i, . . . , k}. Note that F ∈ N = 〈V1, . . . , Vk〉 and that x ∈ V1 × . . .× Vn.
By our assumption there are s1, . . . , sn ∈ S, and an open subset U ∈ β,
and a non-empty proper clopen subset V of qn[As1 × . . . × Asn ] such that
V ⊂ U ⊂ N .

Let g = qn � As1 × . . .× Asn . As g is continuous, we have that g←[V ] is a
clopen subset of As1 × . . .× Asn . Let C = g←[V ] ∩ (V1 × . . .× Vn).

It is clear that C is an open subset of As1 × . . . × Asn , because g←[V ]
and V1 × . . .× Vn are open. To see that is closed let us consider a sequence
{(ym1 , . . . , ymn ) : m ∈ N} of points of C such that (ym1 , . . . , y

m
n )→ (y1, . . . , yn).

Since qn is continuous, the sequence {qn((ym1 , . . . , y
m
n )) = g((ym1 , . . . , y

m
n )) :

m ∈ ω} converges to qn(y1, . . . , yn). Note that for every m ∈ ω, we have that
qn((ym1 , . . . , y

m
n )) ∈ V . Since V is closed in qn[As1 × . . .× Asn ], we have that

qn(y1 . . . , yn) ∈ V . Hence (y1, . . . , yn) ∈ q←n [V ]. On the other hand, as V ⊂ N ,
yj ∈ Vj as ymj ∈ Vj for m ∈ N. Thus C is clopen in As1 × . . .× Asn . This is
a contradiction, to remark 1.15, so Xn is {As1 × . . .× Asn : s1, . . . , sn ∈ S}-
cohesive.

Lemma 2.9. Let X be a space that is {As : s ∈ S}-cohesive, witnessed by a
base B of open sets. Consider the following collection of subsets of F(X):

A = {qn[As1 × . . .× Asn ] : n ∈ N, ∀i ∈ {1, . . . , n} (si ∈ S)}

Then F(X) is A-cohesive, and the open sets that witness this may be taken
from the collection C = {〈U1, . . . , Un〉 : ∀i ∈ {1, . . . , n} (Ui ∈ B)}.

Proof. Let F ∈ F(X), suppose that F = {x1, . . . , xk} with xj 6= xi if i 6= j.
For each j ∈ {1, . . . , n}, let Vj ∈ B with xj ∈ Vj. We can assume that if
i 6= j then Vi ∩ Vj = ∅. Let V = 〈V1, . . . , Vk〉, note that F ∈ V . We claim
that V does not contain clopen subsets of any element of A. Suppose there
are s1, . . . , sm ∈ S such that V contains a non-empty proper clopen subset
O of qm[As1 × . . . × Asm ]. As V ∩ Fk−1(X) = ∅, it follows that m ≥ k. If
i ∈ (k,m], we define Vi = Vk. In this way, V = 〈V1, . . . , Vm〉. Thus O∩Fm(X)
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is a clopen subset of Fm(X). Let x = (x1, . . . , xk, xk+1, . . . , xm) where xk =
xk+1 = . . . = xm. Note that x ∈ V1× . . .×Vm. Let gm = qm � As1× . . .×Asm
and C = g←m [O∩Fm(X)]∩ (V1× . . .×Vm). By Proposition 2.8, C is a clopen
subset of As1 × . . .×Asm such that C ⊂ V1× . . .×Vm; this is a contradiction
by remark 1.15.

With the previous Lemma we can prove the following

Proposition 2.10. If X a cohesive space, then K(X) is a cohesive space.

Proof. Let F ∈ K(X), then there exists x1, . . . , xn ∈ F and W1, . . . ,Wn

neighborhoods such that xi ∈ Wi and Wi does not contain clopen non-empty
subsets of X. Let W = 〈W1, . . . ,Wn〉, then F ∈ W . We claim that W
does not contain clopen non-empty subsets of K(X). Suppose there exists
a clopen subset O of K(X) such that O ⊂ W . Then O ∩ F(X) is a clopen
subset and W ∩F(X) is a neighborhood of H = {x1, . . . , xn} in F(X) such
that O ∩ F(X) ⊂ W ∩ F(X). Furthermore, for each n ∈ N, O ∩ Fn(X) ⊂
O∩F(X) ⊂ W∩F(X). For each n ∈ N we have the equalityqn[Xn] = Fn(X),
let A = {Fn(X) : n ∈ N}, by Lemma 2.9 F(X) is {Fn(X) : n ∈ N}-cohesive,
and O ∩ F(X) ∈ C. So for every n ∈ N, O ∩ Fn(X) = ∅, this implies that
O ∩ F(X) = ∅, which is a contradiction. Therefore W does not contain
clopens subsets of K(X).

We present an alternative method to show that the spaces K(X), F(X),
and Fn(X) are cohesive using the concept of one-point connectification. The
concept of one-point connectification relates the properties of cohesion and
almost zero-dimensionality.

Definition 2.11. A one-point connectification of a space X is a con-
nected extension Y of the space such that the remainder Y \X is a singleton.

Example 2.12. Let p be a point outside Ec, consider E+
c = Ec ∪ {p} whose

neighbourhoods of {p} are the complements of closed bounded sets of Ec. We
claim that E+

c is metric separable connected space.
We will prove that E+

c is a metric space. It’s enough prove that E+
c is

regular second countable. Consider the following sets Bm = {x ∈ Ec : ‖x‖ ≤
m}, then Bm is a closed bounded of Ec for each m ∈ N. On the other hand
if U is an open subset of E+

c such that p ∈ U , then there exists a subset B
that is closed and bounded such that U = (Ec \B)∪ {p}. Since B is bounded
there exists m ∈ N such that B ⊂ Bm, this implies that (Ec \Bm)∪{p} ⊂ U .
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Therefore β0 = {(Ec \ Bn) ∪ {p} : n ∈ N} is a local countable base of p.
Therefore if β1 = {B(x, 1/n) : x ∈ Ec, n ∈ N} where B(x, 1/n) = {p ∈
Ec : d(x, p) < 1/n}, then β = β0 ∪ β1 is a countable base of E+

c . We will
now prove that X is regular. Let x ∈ E+

c , and let U be an open subset of
E+
c such that x ∈ U . Without loss of generality we can assume that U ∈ β.

Note that if x ∈ Ec, then there exists an open subset W of E+
c such that

x ∈ W ⊂ clE+
c

(W ) ⊂ U . If x = p, then U = (Ec \Bn) ∪ {p} for some n ∈ N.
Note that Bn ⊂ {x ∈ Ec : ‖x‖ < n+ 1} ⊂ Bn+1, then

(Ec \Bn+1) ∪ {p} ⊂ (Ec \ {x ∈ Ec : ‖x‖ < n+ 1}) ∪ {p} ⊂ (Ec \Bn) ∪ {p}.

Note that (Ec \ {x ∈ Ec : ‖x‖ < n + 1}) ∪ {p} is a closed subset of E+
c .

Therefore clE+
c

(Ec \Bn+1)∪ {p} ⊂ (Ec \ {x ∈ Ec : ‖x‖ < n+ 1})∪ {p}. Thus
E+
c is a second countable and regular space.
Finally, we will show that E+

c is connected. Let U be a clopen subset of E+
c ,

then V = E+
c \U is a clopen subset of E+

c . Since E+
c = U ∪V , then p ∈ U or

p ∈ V . Suppose that p ∈ U , then V is a clopen subset of Ec, and by Lemma
1.13 V is an unbounded set of Ec. On the other hand as p ∈ U , then there
exists a bounded set W such that p ∈ (X \W ) ∪ {p} ⊂ U . This implies that
V ⊂ W . Therefore V is a bounded set of Ec, which is a contradiction.

The following result gives necessary and sufficient conditions for a metric
separable space X to have a metric and separable one-point connectification.

Theorem 2.13 (Knaster [14]). Let X be a separable metric space. Then X
has a one-point connectification Y which is metrizable and separable if and
only if X is embeddable in a separable metric connected space Z as proper
open subset of Z.

Proposition 2.14. If X has a metrizable and separable one-point connec-
tification, then K(X), Fn(X) and F(X) each have a metric and separable
one-point connectification.

Proof. If Y is a metric and separable one-point connectification of X, then
by Theorem 1.44 and Proposition 1.46 K(Y ), Fn(Y ) and F(Y ) are metric
and separable connected spaces. As X is a proper open subset of Y , then by
Proposition 1.40 K(X), Fn(X) and F(X) are proper open subsets of K(Y ),
Fn(Y ) and F(Y ), respectively. By Theorem 2.13 the spaces K(X), Fn(X)
and F(X) each have, metric and separable one-point connectifications.
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It is known that if a space admits a one-point connectification, then it is
cohesive. Moreover if an almost zero-dimensional space is cohesive, then it
admits a one point connectification (see [3, Proposition 5.4])

Corollary 2.15. If X is a cohesive AZD space, then Fn(X),F(X),K(X)
are cohesive AZD spaces.

Proof. As X is a cohesive AZD space, it has a one-point connectification.
By Proposition 2.14 Fn(X),F(X),K(X) have a one-point connectification.
Thus Fn(X),F(X),K(X) are cohesive. Furthermore, by Proposition, 2.2
Fn(X),F(X), and K(X) are AZD.

Corollary 2.16. Fn(Ec), Fn(E), F(Ec), F(E), K(Ec) and K(E) are cohesive
AZD spaces.

Proof. This result follows from Corollary 2.15 and from the fact that Ec and
E are cohesive AZD spaces.

The following result holds for any Hausdorff topological space.

Proposition 2.17. If X has a one-point connectification, then CL(X), K(X),
Fn(X) and F(X) each have a one-point connectification.

Proof. Let Y = {p} ∪ X be a one-point connectification of X. Since Y is
connected then by Theorem 1.44H is connected ifH ∈ {CL(Y ),K(Y ),Fn(Y )
F(Y )}. Let A = {F ∈ H : p ∈ F}, and consider the space Z = H/A. Note
that Z is a connected spaces, since it is a continuous image of H and Z \{A}
is homeomorphic to CL(X),K(X),Fn(X),F(X) respectively. Therefore Z is
a connected extension by a point of CL(X),K(X),Fn(X),F(X) respectively.

Note that the space Z in the proof of the Proposition 2.17 is not neces-
sarily Hausdorff or metrizable, the behavior of the separation axioms and
metrizability depend on the properties of the subset A in H. The following
two Corollaries follow from the previous Proposition.

Corollary 2.18. If X has a one-point connectification, then CL(X), K(X),
Fn(X) and F(X) are cohesive spaces.

Corollary 2.19. CL(E) and CL(Ec) are cohesive spaces.
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2.3 An Example by Roman Pol

In this part of the thesis we will study an example of a space Y that is
not almost zero-dimensional but dim(K(Y )) = dim(Y ) = 1 This example
answers question 2.6 asked in Section 1 of this chapter. This example was
given by Roman Pol in personal communication with the author.
Let X be an AZD and cohesive space (for example E, Ec), then X has
a one-point connectification (see Proposition in 5.4 [3]). We will give two
examples of this type of spaces: the first one we will call Y and the other
one P . Suppose that Y = {p} ∪ X where p /∈ X. Since Y is connected is
connected, it is not an AZD space.
Now let us consider E+

c of example 2.12 and N = {0} ∪ {1/n : n ∈ N}. Let

P = [Ec × {1/n : n ∈ N}] ∪ {(p, 0)}
with the topology inherited from E+

c ×N .
Note that every Ec×{1/n} s clopen in P , hence (p, 0) is a C-set in P . By

item (3) from Proposition 1.11 P \{(p, 0)} is an AZD space, and P is a totally
disconnected because if x, y ∈ P such that x 6= (p, 0) and y 6= (p, 0) then
there exists U and a clopen subset of P such that x ∈ U and y /∈ U , since
P \ {(p, 0)} is an AZD. On the other hand if x = (p, 0), and y = (x, 1/m)
when x ∈ Ec, U = E+

c ×{1/m} is a clopen subset of P , y ∈ U and x /∈ U . Let
a be a fixed point in Ec and consider the closed subset A = {(a, 1/n) : n ∈ N}
of P . We claim that for every C-set neighbourhood U of (p, 0) in P , the set
A\U is finite (thus, P is not an AZD space and A is not a C-set). Let U be a
C-set neighbourhood of (p, 0) in P . Then there is a neighbourhood V of p in
E+
c and n ∈ N such that V × {1/k : k ≥ n} ⊂ U . Assume that (a, 1/k) /∈ U

for k ≥ n. Select a clopen set C such that (a, 1/k) ∈ C ⊂ P \ U . Note that
C0 = {x ∈ Ec : (x, 1/k) ∈ C} is a clopen subset of Ec that is disjoint from V ,
and hence C0 is bounded. Since a ∈ C0 we have a contradiction by Lemma
1.13.

Let Z ∈ {P, Y } and d a metric for Z. For each n ∈ N, let Bn = {z ∈
Z : d(z, q) < 1/n} and let En = Z \ Bn, where q = p if Z = Y or q =
(p, 0) if Z = P . Note that for any n ∈ N, En is an AZD space and, by
Proposition 2.2, K(En) is an AZD space. By item (3) from Proposition 1.11
N =

∏
n∈N[K(En) ∪ {∅}] is an AZD space (let’s consider the set {∅} as an

isolated point of K(En) ∪ {∅} ).
Let

L = {(K1, K2, . . .) ∈ N : for m ≥ n,Km ∩ En = Kn}, and
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S = {H ∈ K(Z) : q ∈ H}.

Let’s consider the following functions G : L → S and Gn : S → πn[L] (where
πn is the projection to the n-th coordinate) such that

G(K1, K2, . . .) = {q} ∪
⋃
n∈N

Kn, and

Gn(K) = K ∩ En

Theorem 2.20 (Roman Pol-2020). G is well defined and is a homeomor-
phism.

Proof. To prove that G is well defined, let C be an open cover of {q}∪
⋃
n∈NKn

in Z. Since q ∈ {q}∪
⋃
n∈ωKn, we can suppose that Bm ∈ C for some m. Note

that ({q}∪
⋃
n∈NKn) \Km ⊂ Bm, since Z \Km ⊂ Bm. As {U ∩Em : U ∈ C}

is an open cover of Km and Km is a compact subset of Em, then there exists
U1, . . . , Uk, such that Km ⊂

⋃
i≤k(Ui ∩ Em). Therefore {Bm, U1, . . . , Uk} is a

finte subcover of C, that is {q}∪
⋃
n∈NKn is a compact subset of Z. Therefore

G is well defined.
Let’s prove that G is injective, let K̂ = (K1, K2, . . .), Ĥ = (H1, H2, . . .) ∈ L

such that Ĥ 6= K̂, then there exists k ∈ N so that Hk 6= Kk. Therefore there
exists x ∈ Hk \ Kk, then x ∈ G(Ĥ) and x /∈ G(K̂). That is, G is injective.
Now let’s see that G is surjective, let K ∈ S. We define Kn = K ∩En, since
En is a closed subset in Z, then Kn is empty or is a compact subset of En.
Then Kn ∈ K(En) ∪ {∅} for each n ∈ N, therefore (K ∩ E1, . . .) ∈ L and
G((K ∩ E1, . . .)) = K. That is, G is surjective. Before proving that G is a
homeomorphism, let’s show that

B = {〈U1, . . . , Un, Bk〉 ∩ S : n, k ∈ N and U1, . . . , Un are

open subsets of Z \ {p}} ∪ {〈Bk〉 : k ∈ N}

is a base for S.
Let K ∈ S and W = 〈W1, . . . ,Wn〉 an open subset of K(Z) such that

K ∈ W . If Kn 6= ∅ for some n ∈ N, then Hr 6= ∅ for r ≥ n, without
loss of generality we can assume that n = 1. As p ∈ K ∈ W , then there
exists j ≤ n such that p ∈

⋂
{Wj : j ≤ n, p ∈ Wj}, and k ∈ N such that

p ∈ Bk ⊂
⋂
{Wj : j ≤ n, p ∈ Wj}. To find an element V of the base B such

that K ∈ V ⊂ W , we consider two cases. If K \ Bk = ∅ or if K \ Bk 6= ∅. If
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K \Bk = ∅ then K ⊂ Bk. Therefore K ∈ 〈Bk〉 ⊂ W . If K \Bk 6= ∅ then for
each x ∈ K \Bk there exists Ux such that x ∈ Ux ⊂

⋂
{Wj : j ≤ n, x ∈ Wj},

as K \ Bk is compact and {Ux : x ∈ K \ Bk} is an open cover of K \ Bk,
there exists x1, . . . , xl ∈ K \ Bk such that K \ Bk ∈ 〈Ux1 , . . . , Uxl〉. Let
V = 〈Ux1 , . . . , Uxl , Bk〉 ∩ S, note that K ∈ V , and V ⊂ W ∩ S. On the other
hand if K = {p}, there exists k ∈ N such that p ∈ Bk and p ∈ Bk ⊂

⋂
{Wj :

j ≤ n, p ∈ Wj} this implies that K ∈ 〈Bk〉 ⊂ W . Therefore B is a base for
S.

Let K = (H1, . . . , Hn, . . .) ∈ L, and U ∈ B such that H = G(K) ∈ U . If
H = {p}, then U = 〈Bk〉 for some k ∈ N and Hn = ∅ for each n ∈ N. Let
W = {∅}k× [〈Bk〉∩ (K(Ek+1)∪{∅})]×

∏
m>k+1[K(Em)∪{∅}], note that K ∈

W , and G[W ] ⊂ U . If Hi 6= ∅ for some i ∈ N, then Hr 6= ∅ for r ≥ n, without
loss of generality we can assume that i = 1, and that U = 〈U1, . . . , Un, Bk〉
for some n, k ∈ N. Let A = {j ∈ N : Ul ∩ Hj 6= ∅ for all l ≤ n} and as
{Hk : k ∈ N}, is not finite, then A 6= ∅. Let r = minA, if r < k, then
Fk ∩ Uj = ∅ for some j ≤ n, so Fr ∩ Uj 6= ∅ and Fr ∩ Uj ⊂ Bk. Let

N = {(F1, F2, . . .) ∈ L : Fr ∈ 〈U1, . . . , Un, Bk〉}.
Note that K ∈ N , if F = (F1, F2, . . .) ∈ N and G(F1, F2, . . .) = F , then
p ∈ F \ Fk ⊂ Br ⊂ Bk, so F ∈ U . If r ≤ k, then Hk \ Hr ⊂

⋃
j≤n Uj and

H \Hk ⊂ Bk. Let

N = {(F1, F2, . . .) ∈ L : Fk ∈ 〈U1, . . . , Un〉}.
Note that K ∈ N . If (F1, . . . , Fk, . . .) ∈ N , and G(F1, . . . , Fk, . . .) = F , then
p ∈ F \ Fk ⊂ Bk, so F ∈ U . This implies that G is a continuous function.
Finally we will show that G−1 is a continuous function, if U is a basic open
subset of L, then U = (

⋂
j∈F π

←
j [Wj]) ∩ L, where Wj is an open subset of

K(Ej) ∪ {∅} and F is a finite subset of N. Hence

(G−1)←[U ] =
⋂
j∈F

(G−1)←[π←j [Wj]] ∩ S =
⋂
j∈F

G←n [Wj].

So it is sufficient to show the continuity of Gn for any n. To prove that
Gn is continuous, it is sufficient to show that G←n [〈U1, . . . , Uk〉 ∩ K(En)] and
G←n [{∅}] are open subsets of S, where U1, . . . , Uk are open subsets of Z \ {p}
such that En ∩ Uj 6= ∅ for each j ≤ k. We will show that

G←n [〈U1, . . . Uk〉 ∩ K(En)] = S ∩ 〈U1, . . . , Uk, Bn〉
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and that
G←n [{∅}] = S ∩ 〈Bn〉

Let H ∈ S ∩ 〈U1, . . . , Uk, Bn〉, then Hn 6= ∅, H \ Hn ⊂ Bn, and Hn ∈
[〈U1, . . . , Uk〉 ∪ {∅}] ∩ K(En), thus H ∈ G←n [〈U1, . . . , Uk〉 ∩ K(En)]. Let F ∈
G←n [〈U1, . . . , Uk〉 ∩ K(En)], then Fn = F ∩ En ∈ 〈U1, . . . , Uk〉 ∩ K(En) and
F \ Fn ⊂ Bn then F ∈ 〈U1 . . . , Uk, Bn〉. Let H ∈ S ∩ 〈Bn〉, then Hn = ∅,
therefore, Hn ∈ {∅}, thus H ∈ G←n [{∅}]. Let F ∈ G←n [{∅}], then Fn =
F ∩ En = ∅, thus F ⊂ Bn then F ∈ 〈Bn〉. This implies that Gn is a
continuous function. Therefore G is a homeomorphism.

Corollary 2.21. dim(Z) = dim(K(Z)) = 1.

Proof. Note that K(Z) = K(Z \ {q})∪S. As K(Z \ {q}) is an AZD cohesive
space, then dim(K(Z \{q})) = 1. By Theorem 2.20, S is homeomorphic to L
and dim(L) = 1 because L is an AZD, but L is not a zero-dimensinal space.
This implies that dim(S) = 1. Thus dim(K(Z)) = 1.

Corollary 2.22. (Roman Pol-2020) There exists a connected space X such
that dim(X) = dim(K(X)) = 1.

Proof. Consider the space Y at the beginning of the section. By Corollary
2.21 we have the result.

Corollary 2.23. There exists a totally disconnected space X which is not
AZD such that dim(X) = dim(K(X)) = 1.

Proof. Consider the space P at the beginning of the section. By Corollary
2.21 we have the result.

Note that the spaces given in the Corollaries 2.22 and 2.23 are unions of
AZD spaces. A natural question is:
Does every space Z of dimension 1 that is not AZD and is a finite the union of
subspaces AZD satisfies that dim(K(Z)) = 1 ? The answer to this question
is negative because [0, 1] is not an AZD space, but is a union of Q ∩ [0, 1]
and P ∩ [0, 1] which are AZD spaces, and dim(K([0, 1])) is not 1.

On the other hand it is known that if X is a compact space of dimension
1, then the dimension of K(X) is not finite (see [23, pag 123]). This implies
that if a space X has a compact subset of dimension 1 then dimension of
K(X) is not finite. Then for K(X) to have finite dimension each A ∈ K(X)
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must have dimension zero. From this the following question arises: If X is a
non-compact space of dimension 1 such that every compact subset of X has
dimension zero, then K(X) has dimension 1? With the following Theorem,
we will show that it is not enough that the compact subsets of a space X of
dimension 1 have dimension 0 for that hyperspace of compact subsets of X
have to dimension 1.

Theorem 2.24. [22, Theorem 4.1] There exists a space X of dimension 1
such that all its compacta have dimension 0 and dim(X2) = 2.

Example 2.25. Let Y = X × {0, 1} where X is as in Theorem 2.24, then
dim(Y ) = 1 and for each compact subset F of X we have that dim(F ) = 0.
Let f : X2 → K(X) given by f(x, y) = {(x, 0), (y, 1)}. Note that f is an
embedding. This implies that dim(K(Y )) ≥ 2.

Question 2.26. Let X be a space of dimension 1, such that dim(Xω) = 1
and for each A ∈ K(X), dim(A) = 0. Does K(X) have dimension 1?.



Chapter 3

Hyperspaces of Ec and E

In this chapter we will study the different hyperspaces of the spaces Ec and
E. The main objective of this chapter is to show that for any n ∈ N, Fn(E)
is homeomorphic to E, Fn(Ec) is homeomorphic to Ec and F(E) is homeo-
morphic to E. Also we show why K(E) is not homeomorphic to E and that
F(Ec) is not homeomorphic to Ec or E.

3.1 Hyperspaces of E

In a personal communication Professor Jan van Mill explained to us that
K(E) is not Borel. Since E contains a closed copy of Q (see [13]), the space
K(E) contains a closed copy of K(Q). But it is known that K(Q) is not a
Borel set (see [13]), thus K(E) is not a Borel set. Therefore K(E) is not
homeomorphic to E or Ec. Furthermore, K(E) cannot be a factor of any of
these spaces. Therefore, in this section we only study the hyperspaces F(E)
and Fn(E). However, there is another direction that is worth exploring.
Michalewski proved in [19] that K(Q) is a topological group. Thus, the
following is a natural question.

Question 3.1. Is K(E) homogeneous?

3.1.1 Symmetric products of E

In this section we are going to show that Fn(E) satisfies conditions of Theo-
rem 1.24. First we present preliminary results.

35
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Lemma 3.2. Let f : X → Y be a continuous and surjective function and
let (An)n∈ω be a sequence of sets of X converging to x in X, then (f [An])n∈ω
converges to f(x).

Proof. Let U be an open subset of Y , such that f(x) ∈ U . Since f is a
continuous function, f←[U ] is an open subset of X such that x ∈ f←[U ].
Since (An)n∈N converges to x, then there exists m ∈ N such that if n ≥
m, then An ⊂ f←[U ]. This implies that f [An] ⊂ U if n ≥ m, therefore
(f [An])n∈N converges to f(x).

Lemma 3.3. Let f : X → Y be a continuous and surjective function. Let A
and B be subsets of Y , such that f←[A] has empty interior in f←[B]. Then
A has empty interior in B.

Proof. Let us suppose A has non-empty interior in B. Then there exists
y ∈ A and an open subset V of Y such that y ∈ B ∩ V ⊂ A. Let x ∈ X
such that f(x) = y, then x ∈ f←[B]∩ f←[V ] ⊂ f←[A], which contradicts the
hypothesis.

Lemma 3.4. Let A1, . . . , An be subsets of B1, . . . , Bn respectively, if Ai has
empty interior for some i ∈ {1, . . . , n}, then A1× . . .×An has empty interior
in B1 × . . .×Bn.

Proof. Suppose that A1 × . . .×An has non-empty interior in B1 × . . .×Bn,
then there are open subsets U1, . . . , Un of B1, . . . , Bn respectively, such that
U1×. . .×Un ⊂ A1×. . .×An. This implies that Ui ⊂ Ai for each i ∈ {1, . . . , n};
this contradicts that Ai has empty interior for some i ∈ {1, . . . , n}.

By Theorem 1.24 there is a topology W for E which is a witness to the
almost zero-dimensionality of E, a countable tree T and a family of sets
E = {Es : s ∈ T} which are closed with respect to W which satisfy the
conditions of Theorem 1.24 for E. Let Wn the topology of (E,W)n, T n =
{s1∗. . .∗sn : s1, . . . , sn ∈ T and |s1| = . . . = |sn|} and for each s1∗. . .∗sn ∈ T n
let Es1∗...∗sn be the subset Es1 × . . .× Esn of En.

Lemma 3.5. The collectionsWn, T n and En = {Es1∗...∗sn : s1∗ . . .∗sn ∈ T n}
satisfy the conditions of Theorem 1.24 for En.

Proof. Since T is a tree over the countable alphabet A, T n is a tree over
the countable alphabet An (Definition 1.19). By item 3 of Proposition 1.11
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Wn is witness to the almost zero-dimensionality of En. Moreover, it is clear
that each Es1∗...∗sn is closed in En. On the other hand E∅ = E, so E∅∗...∗∅ =
E∅ × . . .× E∅ = En. Furthermore,

Es1 × . . .× Esn =
⋃
{Et1 : t1 ∈ succ(s1)} × . . .×

⋃
{Etn : t1 ∈ succ(sn)} =⋃

{Et1 × . . .× Etn : t1 ∗ . . . ∗ tn ∈ succ(s1 ∗ . . . ∗ sn)} =⋃
{Et1∗...∗tn : t1 ∗ . . . ∗ tn ∈ succ(s1 ∗ . . . ∗ sn)}

(see Remark 1.21).
Now we are going to prove that Wn, T n and En satisfy condition (2) of
Theorem 1.24. Let (x1, . . . , xn) ∈ En and, for each i ∈ {1, . . . , n}, let Ui be a
neighborhood of xi which is an anchor for E . Let t̂ ∈ T n; then t̂ = (t̂1, . . . , t̂n)
with t̂i ∈ [T ] for each i ∈ {1, . . . , n} (Remark 1.21). We define

J = {i ∈ {1, . . . , n} : there exists m ∈ N such that Et̂i�m ∩ Ui = ∅}.

First assume that J 6= ∅; then E(t̂1,...,t̂n)�m ∩ (U1 × . . .× Un) = (Et̂1�m × . . .×
Et̂n�m)) ∩ (U1 × . . . × Un) = (Et̂1�m ∩ U1) × . . . × (Et̂n�m ∩ Un) = ∅. Now
assume that J = ∅. Since Ui is an anchor for E for each i ∈ {1, . . . , n},
the sequence (Et̂i�j)j<ω converges to a point zi in E. Therefore, the sequence
(Et̂1�j×. . .×Et̂n�j)j<ω converges to (z1, . . . , zn) ∈ En. But Et̂1�j×. . .×Et̂n�j =
Et̂1�j∗...∗t̂n�j = E(t̂1�j,...,t̂n�j) = Et̂�j (see Remark 1.21). Hence, the sequence
(Et̂�j)j<ω converges to (z1, . . . , zn).

We now verify condition (3) of Theorem 1.24. Suppose t1 ∗ . . . ∗ tn ∈
succ(s1 ∗ . . . ∗ sn), then for each i ∈ {1, . . . , n} ti ∈ succ(si) (Remark 1.21).
Thus, Eti is nowhere dense in Esi for each i ∈ {1, . . . , n}. By Lemma 3.4
Et1× . . .×Etn is nowhere dense in Es1× . . .×Esn . Condition (4) of Theorem
1.24 follows from Remark 1.15.

We need to define the neighborhoods that will work as anchors for the
symmetric products.

Let F = {x1, . . . , xk} ∈ F(E). For each j ≤ k, let Uxj be a neighborhood
of xj which is anchor in (E,W). Let UF = 〈Ux1 , . . . , Uxk〉.

Lemma 3.6. If F ∈ Fn(X), the set UF∩Fn(X) is an anchor for (Fn(E),Wn).
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Proof. Let F = {x1, . . . , xk} ∈ Fn(E), and UF defined as above. Consider
t ∈ [T n]. If there exists i ∈ ω such that UF ∩ qn[Et1�i × . . .× Etn�i] = ∅ then
we are finished. Now suppose that for each i ∈ ω

(∗) UF ∩ qn[Et1�i × . . .× Etn�i] 6= ∅.

We claim that for all i ∈ ω and j ≤ n, there exists l(i, j) ∈ ω such that,
Ul(i,j) ∩ Etj�i 6= ∅. By (∗) there exists (y1, . . . , yn) ∈ Et1�i,× . . . × Etn�i such
that

{y1, . . . , yn} = qn(y1, . . . , yn) ∈ UF = 〈Ux1 , . . . , Uxk〉.
So there is l ≤ n such that yj ∈ Uxl ; this proves the claim.

If we fix j, this defines a function i 7→ l(i, j) with domain ω and codomain
{1, . . . , k}. This implies that there exists an infinite A ⊂ ω and fixed lj ∈ N
such that Etj�i ∩ Ulj 6= ∅ for each i ∈ A. As Etj�s ⊂ Etj�t if s < t, then
Etj�i ∩ Ulj 6= ∅ for all i ∈ ω. Therefore {Etj�i : i ∈ ω} converges in (E,W) to
a point pj ∈ E; this holds for all j ∈ {1, . . . , n}.

Therefore {Et1�i× . . .×Etn�i : i ∈ ω} converges in (En,Wn) to (p1, . . . , pn).
So {qn[Et1�i × . . .× Etn�i] : i ∈ ω} converges in Fn(E,W) to qn((p1, . . . , pn)).

Theorem 3.7. For any n ∈ N, Fn(E) is homeomorphic to E.

Proof. Let n ∈ N be fixed. We are going to prove that Fn(E) is homeomor-
phic to E using Theorem 1.24. Because of Lemma 3.5 we know that if the
topology W , the tree T and the family {Es : s ∈ T} satisfy the conditions
of Theorem 1.24 for E, then the product topology (E,W)n, which we denote
here as Wn, T n = {s1 ∗ . . . ∗ sn : s1, . . . , sn ∈ T and |s1| = . . . = |sn|}
(Definition 1.19) and the family {Es1∗...∗sn : s1 ∗ . . . ∗ sn ∈ T n} where
Es1∗...∗sn = Es1 × . . . × Esn for each s1, . . . , sn ∈ T with |s1| = . . . = |sn|,
satisfy all the conditions of Theorem 1.24.

Let qn : En → Fn(E). Let W ′ be the Vietoris topology in Fn(E,W). The
tree T ′ that we are going to consider is T ′ = T n, and the family S ′ of subsets
of Fn(E) indexing by T n that we are going to prove to be closed with respect
to Wn is S ′ = {Hs1∗...∗sn : s1 ∗ . . . ∗ sn ∈ T n} where Hs1∗...∗sn := qn[Es1∗...∗sn ]
for each s1 ∗ . . . ∗ sn ∈ T n. We will prove then that W ′, T ′ and S ′ satisfy the
conditions required in Theorem 1.24 for Fn(E).

Indeed, the fact that the Vietoris topology in F(E,W) witnesses that
Fn(E) is almost zero-dimensional follows from the proof of Proposition 2.2.
By Proposition 2.8, Fn(E) is {qn[Es1× . . .×Esn ] : s1∗ . . .∗sn ∈ T n}-cohesive.
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That is, Fn(E) is {Hs1∗...∗sn : s1 ∗ . . . ∗ sn ∈ T n}-cohesive. Moreover, T ′ = T n

is a tree over a countable alphabet. On the other hand, for each s ∈ T , Es is
a closed subset of (E,W), hence for s1, . . . , sn ∈ T satisfying |s1| = . . . = |sn|,
Es1 × . . .× Esn is closed in (E,W)n. Additionaly, since function g is closed,
qn[Es1 × . . .× Esn ] is closed in (Fn(E),W ′).

Now we are going to prove that W ′, T ′ and S ′ satisfy conditions (1), (2)
and (3) of Theorem 1.24. For ∅ = ∅∗. . .∗∅ ∈ T n, H∅∗...∗∅ = qn[E∅×. . .×E∅] =
qn[E] = Fn(E). Let s1 ∗ . . . ∗ sn be an element in T n. Using Lemma 3.5, we
have that Hs1∗...∗sn := qn[Es1∗...∗sn ] = qn[

⋃
{Et1∗...∗tn : t1 ∗ . . . ∗ tn ∈ succ(s1 ∗

. . .∗sn)}] =
⋃
{qn[Et1∗...∗tn ] : t1∗. . .∗tn ∈ succ(s1∗. . .∗sn)} =

⋃
{Ht1∗...∗tn : t1∗

. . .∗ tn ∈ succ(s1 ∗ . . .∗sn)}. This proves thatW ′, T ′ and S ′ satisfy condition
(1) of Theorem 1.24. In order to prove that W ′, T ′ and S ′ satisfy condition
(2) of Theorem 1.24, we take F ∈ Fn(E). Assume that F = {x1, . . . , xn}. For
each j ≤ n there exists a neighborhood Uj of xj which is an anchor for E. By
Lemma 3.6 U = 〈U1, . . . , Un〉 is an anchor. Finally, we will prove thatW ′, T ′
and S ′ satisfy condition (3) of Theorem 1.24. If t1∗. . .∗tn ∈ succ(s1∗. . .∗sn),
then for each i ∈ {1, . . . , n}, ti ∈ succ(si) (Remark 1.21). Thus, Eti is
nowhere dense in Esi for each i ∈ {1, . . . , n}. This implies that for each
permutation h : {1, . . . , n} → {1, . . . , n}, Eth(1) × . . . × Eth(n)

is nowhere
dense in Esh(1)× . . .×Esh(n)

. Therefore,
⋃
h∈P (Eth(1)× . . .×Eth(n)

) is nowhere
dense in

⋃
h∈P (Esh(1) × . . . × Esh(n)

) where P is the set of permutations of
{1, . . . , n}. Note that

q←n [qn[Et1 × . . .× Etn ]] =
⋃
h∈P

(Eth(1) × . . .× Eth(n)
) ⊂ q←n [qn[Es1 × . . .× Esn ]]

and
q←n [qn[Es1 × . . .× Esn ]] =

⋃
h∈P

(Esh(1) × . . .× Esh(n)
).

As the finite union of nowhere dense sets is nowhere dense, by Lemma 3.3
qn[Et1 × . . . × Etn ] is a nowhere dense subset of qn[Es1 × . . . × Esn ]. By
Theorem 1.24, all the above proves that Fn(E) is homeomorphic to E.

Corollary 3.8. Let n ∈ N, if X is an E-factor, then Fn(X) is an E-factor.

Proof. If X is an E-factor. By Theorem 1.26 X can be embedded as a closed
subset of E. By Proposition 1.42 Fn(X) can be embedded as a closed subset
of Fn(E). By Theorem 3.7, we have that Fn(E) is homeomorphic to E. Thus
Fn(X) is an E-factor by Theorem 1.26.
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Corollary 3.9. For each k < n the space Fn(E) \ Fk(E) is homeomorphic
to E.

Proof. This follows from Theorem 3.5 and the fact that Fn(E) \ Fk(E) is an
open subset of Fn(E).

3.1.2 The hyperspace of finite sets of E

David S. Lipham in [16] has shown that if X is an Erdős space factor then
the Vietoris hyperspace F(X) of finite subsets of X is an Erdős factor. The
objective of this section is to wrap up this topic with the following result.

Theorem 3.10. F(E) is homeomorphic to E.

Proof. By Theorem 3.7 for each n ∈ N the topology Wn, the tree T n and
collection En = {qn(Es1 × . . . × Esn) : s1 ∗ . . . ∗ sn ∈ T n} satisfy conditions
(1), (3) and (4) of Theorem 1.24 for Fn(E). Consider the tree

T = {∅} ∪ {〈n〉_s1 ∗ . . . ∗ sn : n ∈ ω, s1 ∗ . . . ∗ sn ∈ T n}.

Let X∅ = F(E) and X〈n〉_s1∗...∗sn = qn[Es1 × . . . × Esn ] for each n ∈ ω and
s1 ∗ . . .∗sn ∈ T n. LetW ′ be the Vietoris topology on F(E,W). Then we will
prove that W ′, T , S = {Xs : s ∈ T} and {UF : F ∈ F(E)} satisfy the condi-
tions required in Theorem 1.24 for F(E). Indeed, the fact that the Vietoris
topology on F(E,W) witnesses that F(E) is almost zero-dimensional follows
from the proof of Proposition 2.2. On the other hand, for each s1∗. . .∗sn ∈ Tn,
qn[Es1 × . . .×Esn ] is a closed subset of Fn(E,W), hence qn[Es1 × . . .×Esn ]
is closed in F(E,W), because Fn(E,W) is closed in F(E,W) (by Propo-
sition1.39). For ∅ ∈ T , we have succT (∅) = {〈n〉_∅1 ∗ . . . ∗ ∅n : n ∈
ω, ∅1 ∗ . . . ∗ ∅n ∈ Tn} so X〈n〉_∅1∗...∗∅n = Fn(E). Hence X〈n〉_∅1∗...∗∅n is a
nowhere dense subset of X∅ and X∅ =

⋃
t∈succT (∅)Xt. On the other hand,

if 〈n〉_s1 ∗ . . . ∗ sn ∈ T \ {∅}, succT (〈n〉_s1 ∗ . . . ∗ sn) = {〈n〉_t : t ∈
succTn(s1 ∗ . . . ∗ sn)}. Then for each 〈n〉_s1 ∗ . . . ∗ sn ∈ T \ {∅}, we have
X〈n〉_s1∗...∗sn =

⋃
{X〈n〉_t : t ∈ succTn(s1 ∗ . . . ∗ sn)} and X〈n〉_t is a nowhere

dense subset of X〈n〉_s1∗...∗sn if t ∈ succT (s1 ∗ . . . ∗ sn). Thus, conditions (1)
and (3) of Theorem 1.24 for F(E) are satisfied. Now we prove condition (2).
Let F ∈ F(E). Suppose that F = {x1, . . . , xk} with xj 6= xi if i 6= j so
UF = 〈Ux1 , . . . , Uxk〉. We claim that UF is an anchor inW ′. Let t̂ ∈ [T ], then
there exists n ∈ ω such that t̂ = 〈n〉_t̂n and t̂n ∈ [T n]. Also, there exists
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ti ∈ [T ] such that t̂n = (t1, . . . , tn).

Case 1: k ≤ n. By Lemma 3.6, UF ∩Fn(E) is a anchor of F in (Fn(E),Wn).
We will show that UF ∩Xt̂�i = ∅ for some i ∈ ω, or that (Xt̂�i)i∈ω converges in
(F(E),W ′). If UF ∩Xt̂�i = ∅ for some i ∈ ω, we are finished. If UF ∩Xt̂�i 6= ∅
for each i ∈ ω, as Xt̂�i+1 = X〈n〉_ t̂n�i = qn[Et1�i × . . . × Etn�i] ⊂ Fn(E)
then (UF ∩ Fn(E)) ∩ Xt̂�i 6= ∅ for each i ∈ ω. Hence (Xt̂�i)i∈ω converges in
(F(E),W ′) because UF ∩ Fn(E) is a anchor of F in (Fn(E),Wn). So UF is
anchor of F in (F(E),W ′).

Case 2: k > n. For each j ∈ (n, k], let’s consider tj ∈ [T ] such that
tj = tn. Let ŝ = (t1, . . . , tn, tn+1, . . . , tk), then ŝ ∈ [T k]. By Lemma 3.6,
UF ∩ Fk(E) is a anchor of F in (Fk(E),Wk), i.e. X〈k〉_ŝ�j ∩ UF = ∅ for some
j ∈ ω, or (X〈k〉_ŝ�j)j∈ω converges. We claim that either Xt̂�j ∩ UF = ∅ for
some j ∈ ω, or (Xt̂�j)j∈ω converges. Note that for all j ∈ ω

(∗) qn[Et1�j × . . .× Etn�j] ⊂ ϕk[Et1�j × . . .× Etn�j × Etn+1�j × . . .× Etk�j].

Let’s suppose that Xt̂�j ∩ UF 6= ∅ for each j ∈ ω. By (∗) we have X〈k〉_ŝ�j ∩
UF 6= ∅, then (X〈k〉_ŝ�j)j∈ω converges to some A ∈ Fk(E). Hence (qn[Et1�j ×
. . .× Etn�j])j∈ω converges to A. Then (Xt̂�j)j∈ω converges to A.

Thus, condition (2) of Theorem 1.24 for F(E) is satisfied. By Lemma 2.9,
F(E) is {Xs : s ∈ T}-cohesive. Hence, condition (4) of Theorem 1.24 for
F(E) is satisfied. Then by Theorem 1.24 the space F(E) is homeomorphic
to E.

With the previous theorem we can give another proof of David S. Lipham’s
result mentioned at the beginning of this section.

Corollary 3.11. If X is an E-factor, then F(X) is an E-factor.

Proof. If X is an E-factor. By Theorem 1.26 X can be embedded as a closed
subset of E. By Proposition 1.42 F(X) can be embedded as a closed subset
of F(E). By Theorem 3.10, the space F(E) is homeomorphic to E. Thus
F(X) is an E-factor.

Corollary 3.12. For each n > 1 we have F(E) \ Fn(E) ≈ E.

Proof. This follows from Theorem 3.10 and the fact that F(E) \ Fk(E) is an
open subset of F(E).
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3.1.3 Sierpiński stratifications

In this section we give some indirect applications of Theorems 3.7 and 3.10.
A system of sets (Xs)s∈T is a Sierpiński stratification ([3, Definition 7.1, p.
31]) of a space X if:

1. T is a non-empty tree over a countable alphabet,

2. each Xs is a closed subset of X,

3. X∅ = X, Xs =
⋃
{Xt : t ∈ succ(s)},

4. if σ ∈ [T ] then the sequence Xσ�1, . . . , Xσ�n, . . . converges to a point in
X.

Note that in Theorem 3.7 it is implicitly proved that if (Xs)s∈T is a
Sierpiński stratification of a space X, then Cn = {qn[Xs1 × . . . × Xsn ] :
s1 ∗ . . . ∗ sn ∈ T n} is a Sierpiński stratification of Fn(X). Define X∅ = X
and X〈n〉_s1∗...∗sn = qn[Xs1 × . . . × Xsn ] for n ∈ N and s1 ∗ . . . ∗ sn ∈ T n.
Then by an argument similar to the proof of Theorem 3.10 we conclude
that C = {X∅} ∪ {X〈n〉_s1∗...∗sn : n ∈ N, s1 ∗ . . . ∗ sn ∈ T n} is a Sierpiński
stratification of F(X). So we have the following Corollary.

Corollary 3.13. Let (Xs)s∈T be Sierpiński stratification of a space X. Then

1. For each n ∈ N, Cn is a Sierpiński stratification of Fn(X).

2. C is a Sierpiński stratification of F(X).

Van Engelen proved in ([8, Theorem A.1.6]) that a zero-dimensional X
space is homeomorphic to Qω if X has a Sierpiński stratification (Xs)s∈T
such that Xt is nowhere dense in Xs, if t ∈ succ(s). Using this fact, the
following corollary can be proved.

Corollary 3.14. The spaces Fn(Qω), F(Qω) are homeomorphic to Qω.

Proof. Let (Xs)s∈T be Sierpiński stratification of a space Qω such that Xt is
nowhere dense in Xs, if t ∈ succ(s). By Corollary 3.13 for each n ∈ N, Cn and
C are Sierpiński stratifications of Fn(X) and F(X), respectively. By Lemma
3.3 we have that qn[Xt1 × . . .×Xtn ] is nowhere dense in qn[Xs1 × . . .×Xsn ]
if t1 ∗ . . . ∗ tn ∈ succ(s1 ∗ . . . ∗ sn) and that X〈n〉_t1∗...∗tn is nowhere dense in
X〈n〉_s1∗...∗sn if 〈n〉_t1 ∗ . . . ∗ tn ∈ succ(〈n〉_s1 ∗ . . . ∗ sn).
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David Lipham proved in [16] that if X is an E-factor, then it admits a
Sierpiński stratification (Bs)s∈T . We can consider the sets Bs as subsets of
(X,W), where W is a topology witness to the almost zero-dimensionality of
X. A natural question is this.

Question 3.15. If X is a E-factor.
Under what conditions is (X,W) homeomorphic to Qω?

3.2 Hyperspaces of Ec

We will begin by studying K(Ec). In this case K(Ec) is a Borel set, moreover
by Proposition 1.46 and Theorem 1.4, K(Ec) is an absolute Gδ. An immediate
result we have is the fallowing.

Corollary 3.16. K(Ec) is an Eωc -factor, and an E-factor.

Proof. By the Proposition 1.46 and Proposition 2.2 K(Ec) is a Polish AZD
space. Then by Theorem 1.36 K(Ec) is an Eωc -factor, and by Corollary 9.3 of
[3], K(Ec) is an E-factor.

By Proposition 2.2 and 1.46 K(Ec) is a complete and AZD space. On the
other hand let us note that the only AZD and complete spaces that have a
characterization are Ec and Eωc , then a natural question is:

Question 3.17. Is K(Ec) homeomorphic to Ec or Eωc ?

3.2.1 Symmetric products of Ec

In this section we are going to show that Fn(Ec) ≈ Ec and some of the
consequences of this result. For a topological space (X, τ), the symbol τFn(X)

denotes the Vietoris topology in Fn(X). We introduce the following definition
to simplify the notation.

Definition 3.18. Let X be a set and let τ1 and τ2 two topologies in X, if
(X, τ1, τ2) satisfies that:

1. τ1 ⊂ τ2 and τ1 is a zero-dimensional topology such that every point in
X has a neighborhood in τ2 which is compact with respect to τ1, we say
that (X, τ1, τ2) has property C1.
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2. τ1 ⊂ τ2 and τ1 is a zero-dimensional topology such that every point in
X has a neighborhood in τ2 which is complete with respect to τ1, we say
that (X, τ1, τ2) has property C2.

Note that property C1 is inherited by closed sets with respect to τ1 and
the property C2 is inherited by Gδ subsets with respect to τ1.

Using Definition 3.18 we can state Theorem 1.31 as follows:

Theorem 3.19. Let (E , τ) be a topological space. The following statements
are equivalent.

1. E is homeomorphic to Ec.

2. E is cohesive and there exists a topology W in E such that (E , τ,W)
has property C1.

3. E is cohesive and there exists a topology W in E such that (E , τ,W)
has property C2.

Proposition 3.20. Let X be a set and let τ1 and τ2 be two topologies on X.
If (X, τ1, τ2) has the property C1 or C2, then for any n ∈ N, we have that
(Fn(X), τ1Fn(X), τ2Fn(X)) has the property C1 or C2, respectively.

Proof. First of all, since τ1 is a zero-dimensional topology on X, then by
Theorem 1.47 τ1Fn(X) is a zero-dimensional topology on Fn(X). Now, let
F ∈ Fn(X) and U ∈ τ2Fn(X) such that F ∈ U . Let us suppose that
U = 〈U1, . . . , Um〉 and that F = {x1, . . . , xl}. For each xk ∈ F there
exists Vk ∈ τ2 and a compact subset (resp., complete subset) Kk of X
with respect to τ1 such that xk ∈ Vk ⊂ Kk ⊂

⋂
{Uj : xk ∈ Uj}. Then

F ∈ 〈V1, . . . , Vl〉 ⊂ 〈K1, . . . , Kl〉 ⊂ U . Note that Z =
⋃l
j=1Kj is a compact

subset (resp., complete subset) with respect to τ1. Then by Theorem 1.48
and Proposition 1.46 Fn(Z) is a compact(resp., complete subset) with respect
to τ1Fn(X). Moreover 〈K1, . . . , Kl〉 ⊂ Fn(Z). By Remark 1.37 〈K1, . . . , Km〉
is a closed subset with respect to τ1Fn(X), then 〈K1, . . . , Km〉 is a compact
subset (resp., complete subset) with respect that τ1Fn(X). This proves that
(Fn(X), τ1Fn(X), τ2Fn(X)) has property C1 (resp.,C2).

Theorem 3.21. For any n ∈ N, Fn(Ec) is homeomorphic to Ec.
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Proof. LetW be a topology in Ec which satisfies the conditions in item (2) of
Theorem 3.19. By Corolary 2.4,WFn(Ec) is coaser than the Vietoris topology
on Fn(Ec). By Proposition 3.20 and Corollary 2.15, Ec satisfies all conditions
in item (2) of Theorem 3.19. Thus, by Theorem 3.19 Fn(Ec) is homeomorphic
to Ec.

Corollary 3.22. Let n ∈ N, if X is an Ec-factor, then Fn(X) is an Ec-
factor.

Proof. If X is an Ec-factor. By Theorem 1.32 X can be embedded as a closed
subset of Ec. By 1.42 Fn(X) can be embedded as a closed subset of Fn(Ec).
By Theorem 3.21, the space Fn(Ec) is homeomorphic to Ec. Thus Fn(X) is
an Ec-factor.

Corollary 3.23. For each k < n we have that Fn(Ec) \ Fk(Ec) is homeo-
morphic to Ec.

Proof. This follows from Theorem 3.21 and the fact that Fn(Ec) \ Fk(Ec) is
an open subset of Fn(Ec).

3.2.2 The hyperspace of finite sets of Ec

In this section we are going to talk about why F(Ec) is not homeomorphic
to E, Ec or Eωc . This part of the work is the motivation for the next chapter.

By Proposition 1.39 Fn(Ec) is nowhere dense subset of F(Ec), then F(Ec)
is of the first category. Since Ec and Eωc are Polish spaces, then by Theorem
1.1 Ec and Eωc are not of the first category. This implies that F(Ec) cannot
be homeomorphic to Ec or Eωc .

On the other hand as Ec is a complete space then by Proposition 1.46 and
Fn(Ec) is a Polish space for any n ∈ N, then by Theorem 1.3 and Theorem
1.4 Fn(Ec) is an absolute Gδ. Therefore F(Ec) is an absolute Gδσ by Theorem
1.4. This implies that F(Ec) is not homeomorphic to E since E is an absolute
Fσδ but it is not a Gδσ (see Remark 4.12 [3]).

Furthermore, the space F(Ec)) is not a factor of Ec (or Eωc because oth-
erwise by Theorems 1.32 and 1.36 there would be closed sets of Ec (or Eωc )
homeomorphic to F(Ec). This would imply that F(Ec) is a Polish space
which is false. But the space F(Ec) is a factor of E by Theorem 1.26 and
Corollary 3.11.
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Proposition 3.24. F(Ec) is an absolute Gδσ, an absolute Fσδ, and it is a
countable union of nowhere dense copies of Ec.

We already know that F(Ec) is not homeomorphic to E, Ec or Eωc and by
Theorem 3.21 and Proposition 1.39 F(Ec) is a countable union of nowhere
dense copies of Ec. Next we will see that the space Q × Ec has properties
similar to those of F(Ec).

Remark 3.25. Q× Ec is an absolute Gδσ and an absolute Fσδ

Proof. To see that Q × Ec is an absolute Gδσ, it is suficient to notice that
Q×Ec is a countable union of Polish spaces. Next, assume that Q×Ec ⊂ X
where X is any separable metrizable space. For each q ∈ Q, let Fq = {q}×Ec.
Then G = X \

⋃
{clX(Fq) : q ∈ Q} is a Gδ in X. Fix q ∈ Q. Since Fq is Polish

we know that clX(Fq) \ Fq is a countable union of sets that are closed in Fq,
and thus, in X. But closed sets in separable metrizable spaces are Gδ. Thus,
clX(Fq) \Fq is Gδσ in X. Since X \ (Q×Ec) = G∪ (

⋃
{clX(Fq) : q ∈ Q}) we

conclude that the complement of Q × Ec is a Gδσ so Q × Ec itself is Fσδ in
X.

Proposition 3.26. Q×Ec is countable union of nowhere dense copies of Ec.

Proof. Let d be the metric in Q that inherited from R with the usual metric.
Since Q is countable we can list Q as {qn : n ∈ N}. We will construct a
sequence {Fn : n ∈ N} of compact subspaces of Q such that

(a) F1 = {q1} and qn ∈ Fn

(b) Fn ⊂ Fn+1

(c) Fn+1 \ Fn is countable, discrete, and dense in Fn+1.

To construct F2, let’s consider a sequence {pk : k ∈ N} that converges to q1
and add the point q2 to it. Note that F2 is a compact space and satisfies
the required conditions. In general, for any n ∈ N to construct Fn+1 we
do the following. By item (c) we have that Fn \ Fn−1 is a discrete space
if n ≥ 2, then for each x ∈ Fn \ Fn−1, there exists an m ∈ N such that
(x− (1/m), x+ (1/m))∩ (Fn \Fn−1) = {x}. Therefore (x, x+ (1/m))∩ (Fn \
Fn−1) = ∅. Let Ax = {pxk : k ∈ N} be a sequence such that converges to x
and Ax ⊂ (x, x + 1/k) and pn+1

x > pnx. On the other hand if x ∈ Fn−1, by
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item (c) there exists a sequence {pkx : k ∈ N} ⊂ Fn \ Fn−1 such that and
pn+1
x > pnx and {pkx : k ∈ N} converges to x. Let Ax = {pkx + (1/k) : k ∈
N}, then Ax converges to x. We define Fn+1 = (

⋃
x∈Fn

Ax ∪ {qn+1}) ∪ Fn.
Clearly qn+1 ∈ Fn+1, Fn ⊂ Fn+1 and Fn+1 is countable and closed. Note
that if y ∈ Fn+1 \ Fn, then y = qkx + (1/k) where x ∈ Fn−1. Therefore
(qkx, q

k
x + (2/k)) ∩ (Fn+1 \ Fn) = {qkx + (1/k)}, if y = qkx where x ∈ Fn \ Fn−1

then (qk+1
x , qk−1x ) ∩ (Fn+1 \ Fn) = {qkx}. If r ∈ Q \ Fn+1, and as Fn is closed

there exists x, y ∈ Q such that r ∈ (x, y) and (x, y)∩ Fn = ∅. If x ∈ Fn then
Ax ∩ (x, y) is infinite and if t ∈ Fn \ {x}, then At ∩ (x, y) = ∅. Then there
exists l ∈ N such that r ∈ U = (t − (1/l), t + (1/l)) and U ∩ Fn+1 = ∅. If
y ∈ Fn then there exists x1 ∈ Fn such that r ∈ (x1, y) or not. If there exists
x1 ∈ Fn such that r ∈ (x1, y) then we do the same as the previous case and
if there is no exists x1 ∈ Fn such that r ∈ (x1, y), then (x, y) ∩ Fn+1 = ∅.
Therefore Fn+1\Fn is a discrete space and Fn+1 is closed. To prove that Fn+1

is compact it is sufficient to prove that it is bounded. Since Fn is compact
the set Fn is bounded, therefore there exists N ∈ N such that Fn ⊂ (−N,N),
by construction of Fn+1, we conclude that Fn+1 ⊂ (−N − (1/m), N + (1/r))
for some r,m ∈ N. So Fn+1 is compact. With this we finish the construction.

Since Fn is a compact and zero-dimensional space, then Fn can be embed-
ded as a closed subset of Ec. By Theorem 1.32 Fn × Ec ≈ Ec.

With Proposition 3.26 and the Remark 3.25 we have that Q×Ec and F(Ec)
has similar properties. This leads us to the next conjecture.

Conjecture 3.27. Q× Ec ≈ F(Ec)

In Chapter 4 we will show that this conjecture is true.



Chapter 4

A Characterization of the
product Q× Ec

In this chapter we are going to prove an intrinsic and an extrinsic charac-
terization of space Q×Ec with these characterizations an answer is given to
the conjecture 3.27 made in section 3 of Chapter 3. A characterization of the
factors of space Q× Ec will also be given.

4.1 Classes σL and σE
In this section we define the classes of spaces σL and σE that we will use
to characterize Q× Ec. The choice of these symbols is made in the spirit of
classes SLC and E from [3].

Definition 4.1. We define σL to be the class of all triples (C,X, ϕ) such that
C is a compact, zero-dimensional, crowded metrizable space, ϕ : C → [0, 1)
is an USC function and X =

⋃
{Xn : n ∈ ω} is a dense subset of C such that

for each n ∈ ω the following hold

1. Xn is a closed, crowded subset of C,

2. Xn ⊂ Xn+1,

3. ϕ � Xn is a Lelek function, and

4. Gϕ�Xn

0 is nowhere dense in G
ϕ�Xn+1

0 .

48
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We will say that a space E is generated by (C,X, ϕ) if E is homeomorphic
to Gϕ�X

0 .

As mentioned in the Chapter 1, by the extrinsic characterization of Ec
(Theorem 1.30), in Definition 4.1 the space Gϕ�Xn

0 is homeomorphic to Ec for
each n ∈ ω. So indeed, E is a countable increasing union of nowhere dense
subsets, each homeomorphic to complete Erdős space.

Definition 4.2. We define σE to be the class of all separable metrizable
spaces E such that there exists a topology W on E that is witness to the
almost zero-dimensionality of E, a collection {En : n ∈ ω} of subsets of E
and a base β of neighborhoods of E such that

(a) E =
⋃
{En : n ∈ ω},

(b) for each n ∈ ω, En is a crowded nowhere dense subset of En+1,

(c) for each n ∈ ω, En is closed in W,

(d) E is {En : n ∈ ω}-cohesive, and

(e) for each V ∈ β, V ∩ En is compact in W � En for each n ∈ ω.

By the intrinsic characterization of Ec (Theorem 1.31), in Definition 4.2, En
is homemorphic to Ec for every n ∈ ω. So again E is a countable increasing
union of nowhere dense subsets, each homeomorphic to complete Erdős space.

We first prove that the space that we want to characterize is an element
of σE and then, that spaces from σE can be generated by triples from σL.

Lemma 4.3. Q× Ec ∈ σE.

Proof. By Theorem 1.31, there exists a topology W1 on Ec, witness of the
almost zero-dimensionality of Ec, such that Ec has a neighborhood base β0
of subsets that are compact in W1. Let W be the product topology of
Q× (Ec,W1). Let β be the collection of all sets of the form V ×B, where V
is non-empty and clopen in Q, and B ∈ β0. Choose a sequence {Fn : n ∈ ω}
of compact subsets of Q such that (i) Fn ⊂ Fn+1 for every n ∈ ω, (ii)
Fn+1 \ Fn is countable discrete, and dense in Fn+1 for every n ∈ ω, and (iii)
Q =

⋃
{Fn : n ∈ ω} as in proof Proposition 3.26. Let En = Fn × Ec for

every n ∈ ω. We claim that the topologyW , the collection {En : n ∈ ω} and
β satifsy the conditions in Definition 4.2 for Q × Ec. First, notice that W
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witnesses that Q × Ec is almost zero-dimensional. Conditions (a), (b) and
(c) follow directly from our choices.

Next, we prove (d). Let (x, y) ∈ Q×Ec and let m = min{k ∈ ω : x ∈ Fk}.
Since Ec is cohesive, there exists an open set U of Ec such that x ∈ U and U
contains no non-empty clopen subsets. Let V be open in Q such that x ∈ V
and V ∩ Fk = ∅ if k < m. Define W = V × U . Let n ∈ ω, we argue that
W ∩ En contains no non-empty clopen sets. This is clear if n < m since
W ∩ En = ∅ so consider the case when n ≥ m. Assume that O ⊂ W ∩ En
is clopen and non-empty, and consider (a, b) ∈ O. Then ({a} × Ec) ∩ O is a
non-empty clopen subset of {a} × Ec such that ({a} × Ec) ∩ O ⊂ {a} × U .
This is a contradiction to our choice of U . We conclude that (d) holds.

Finally, let us prove (e). Let V ×B ∈ β and n ∈ ω. Then (V ×B)∩En =
(V ∩ Fn) × B, which is compact. Also, it is clear that β is a base for the
topology of Q× Ec. This completes the proof of this result.

For the next result we will need to state the following definitions.
If ϕ : X → R then we define

M(ϕ) = sup{|ϕ(x)| : x ∈ X} ∈ [0,∞].

If X = ∅ then we use the convention M(ϕ) = sup ∅ = 0.

Definition 4.4. Let ϕ : X → R be a function and let X be a subset of a
metric space (Y, d). We define extY ϕ : Y → [0,∞] by

(extY ϕ)(y) = lim
ε→0

M(ϕ � (X ∩ Uε(y))); for y ∈ Y,

where Uε(y) = {x ∈ Y : d(x, y) < ε}.

Proposition 4.5. If E ∈ σE then there exists (C,X, ϕ) ∈ σL that generates
E.

Proof. From Definition 4.2, let us consider for E: the witness topology W ,
the base β of neighborhoods, and the collection {En : n ∈ ω}.

We may assume that β is countable. For every B ∈ β, let BB be a countable
collection of clopen subsets of (E,W) such that B =

⋂
BB. Let the boolean

algebra clopens that is generated by {BB : B ∈ β}, then there exists a
compact, zero-dimensional and metric space C containing (E,W) as a dense
subspace and such that clC(O) is clopen in C for every O ∈

⋃
{BB : B ∈ β}
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(see page 4). For every n ∈ ω let Xn = clC(En); notice that Xn ∩ E = En
since En is closed in W . Define X =

⋃
{Xn : n ∈ ω}.

We claim that X is a witness to the almost zero-dimensionality; we will
prove that B is closed in X for every B ∈ β. It is enough to prove that if
m ∈ ω and B ∈ β are fixed then(⋂

{clC(O) : O ∈ BB}
)
∩Xm = B ∩Xm. (∗)

The right side of (∗) is contained in the left side by the definition of BB. So
take z ∈ C that is not on the right side of (∗), we will prove that it is not on
the left side.

We may assume that z ∈ Xm. By the choice of β, we know that B∩Xm is
compact. So there is an open set U of C such that z ∈ U and clC(U)∩ (B ∩
Xm) = ∅. Let F = clC(U) ∩ Em. Notice that F is closed in (Em,W � Em),
and thus, in (E,W). Also, since U ∩ Xn is open in Xn, En is dense in
Xn and z ∈ U ∩ Xn, then it easily follows that z ∈ clC(F ). Finally, F is
disjoint from B because F ∩B = (clC(U)∩Em)∩B = clC(U)∩ (B ∩Em) =
clC(U) ∩ (B ∩ Xm) = ∅. Then F and B are two disjoint closed subsets in
(E,W) so there exists O ∈ BB such that O ∩ F = ∅. Since clC(O) is open
in K and disjoint from F , it is also disjoint from clC(F ). But z ∈ clC(F ), so
z /∈ clC(O). This shows that z is not on the left side of (∗).

We have proved that X is a witness to the almost zero-dimensionality of
〈E,W〉. By Lemma 1.12 there exists a USC function ψ0 : X → [0, 1) such
that ψ←0 (0) = X \ E and the function h0 : E → Gψ0

0 defined by h0(x) =
(x, ψ0(x)) is a homeomorphism. By condition (d) in Definition 4.2 we know
that Gψ0

0 is {Gψ0�Xn

0 : n ∈ ω}-cohesive. Moreover, {x ∈ Xn : ψ0(x) > 0} = En
is dense in Xn for every n ∈ ω. Lemma 1.29 tells us that we can find a
USC function ψ1 : X → [0, 1) such that ψ1 � Xn is a Lelek function for each
n ∈ ω, and the function h1 : Gψ0

0 → Gψ1

0 given by h1((x, ψ0(x))) = (x, ψ1(x))
is a homeomorphism. Now, let ϕ = extC(ψ1) : C → [0, 1). Then (C,X, ϕ)
can be easily seen to be an element of σL and h1 ◦ h0 : E → Gϕ�X

0 is a
homeomorphism.This completes the proof of this result.

Our main result will be the following.

Theorem 4.6. Let E be a space. Then the following are equivalent:

1. E ∈ σE,

2. there exists (C,X, ϕ) ∈ σL that generates E, and
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3. E is homeomorphic to Q× Ec.

The proof of Theorem 4.6 will be given as follows. First, notice that by
Proposition 4.5, (i) implies (ii). That (iii) imples (i) is Lemma 4.3. Also, by
Lemma 4.3, σE is non-empty so σL is non-empty as well. Thus, in order to
prove that (ii) implies (iii) it is enough to show that any two spaces generated
by triples of σL are homeomorphic. This will be the content of Section 4.2.

Given a separable metrizable space X, in [20] CAP(X) is defined to be
the class of separable metrizable spaces Y =

⋃
{Xn : n ∈ ω} such that Xn

is closed in X, Xn is a nowhere dense subset of Xn+1 and Xn ≈ X for each
n ∈ ω. So σE ⊂ CAP(Ec) but we do not know whether the other inclusion
holds.

Question 4.7. Is σE = CAP(Ec)?

4.2 Uniqueness theorem

In this section we present the proof of Theorem 4.6.

Definition 4.8. Let ϕ : X → [0,∞), ψ : Y → [0,∞) be USC functions,
ϕ and ψ are m-equivalent if there is a homeomorphism h : X → Y and a
continuous function α : X → (0,∞) such that ψ ◦ h = α · ϕ.

It follows that when ϕ and ψ are m-equivalent then Gϕ
0 is homeomorphic

to Gψ
0 . So, according to the discussion at the end of the previous section, in

order to prove Theorem 4.6, it is sufficient to prove the following statement.

Proposition 4.9. Let (C,X, ϕ), (D, Y, ψ) ∈ σL. Then there exists a home-
omorphism h : C → D and a continuous function α : C → (0,∞) such that
f [X] = Y and ψ ◦ h = α · ϕ.

The rest of this section will consist on a proof of Proposition 4.9. The
construction of the homeomorphism h will require us to use two different
techniques and mix them. First, we need the tools used in [3] to extend
homeomorphisms using Lelek functions.

Theorem 4.10 ([3, Theorem 6.2, p. 26]). If ϕ : C → [0,∞) and ψ : D →
[0,∞) are Lelek functions with C and D compact, and t > |log (M(ϕ)/M(ψ))|,
then there exists a homeomorphism h : C → D and a continuous function
α : C → (0,∞) such that ψ ◦ h = α · φ and M(log ◦α) < t.
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Theorem 4.11 ([3, Theorem 6.4, p. 28]). Let ϕ : C → [0,∞) and ψ : D →
[0,∞) be Lelek functions with C and D compact. Let A ⊂ C and B ⊂
D be closed such that Gϕ�A

0 and Gψ�B
0 are nowhere dense in Gϕ

0 and Gψ
0 ,

respectively. Let h : A → B be a homeomorphism and α : A → (0,∞) a
continuous function such that ψ ◦ h = α · (ϕ � A). If t ∈ R is such that
t > |log (M(ψ)/M(ϕ))| and M(log ◦α) < t then there is a homeomorphism
H : C → D and a continuous function β : C → (0,∞) such that H � A = h,
β � C = α, ψ ◦H = β · ϕ and M(log ◦β) < t.

Theorem 4.10 is called the Uniqueness Theorem for Lelek functions; The-
orem 4.11 is the Homeomorphism Extension Theorem for Lelek funcions.

The second tool we will need is that of Knaster-Reichbach covers .

Definition 4.12. Let X and Y be zero-dimensional spaces, A ⊂ X and
B ⊂ Y be closed and nowhere dense in X and Y , respectively. Moreover,
let h : A → B be a homeomorphism. A triple 〈U ,V , η〉 is called a Knaster-
Reichbach cover, or KR-cover, for 〈X\A, Y \B, h〉 if the following conditions
are satisfied:

1. U is a partition of X \ A into non-empty clopen subsets of X,

2. V is a partition of Y \B into non-empty clopen subsets of Y ,

3. η : U → V is a bijection,

4. if for every U ∈ U , gU : U → η(U) is a bijection, then the function
H = h ∪

(⋃
U∈U gU

)
is continuous at all points of A, and its inverse

H−1 is continuous at all points of B.

KR-covers were used by Knaster and Reichbach [12] to prove homeomor-
phism extension results in the class of all zero-dimensional spaces. The term
KR-cover was first used by van Engelen [8] who proved their existence in
a general setting. However, in this thesis we will not need the existence of
KR-covers in general. We will only need the following straightforward result
which is a specific case of KR-covers.

Lemma 4.13. Fix a metric on 2ω. Let F ⊂ 2ω be closed and assume that
U = {Un : n ∈ ω} is a partition of 2ω \F into clopen sets such that for every
ε > 0 the set {n ∈ ω : diam(Un) ≥ ε} is finite. Assume that h : 2ω → 2ω has
the following properties
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1. h is a bijection,

2. h � F = idF ,

3. for each n ∈ ω, h[Un] = Un, and

4. for each n ∈ ω, h � Un : Un → Un is a homeomorphism.

Then h is a homeomorphism.

Proof. Let A = {xn ∈ X : n ∈ N} be a sequence of X such that xn → x. We
have the following cases.

1. A ⊂ X \ F and x ∈ X \ F

2. A ⊂ F and x ∈ F ,

3. A ⊂ X \ F and x ∈ F .

Note that in cases 1, 2 by hypothesis we have that limi→∞ h(xi) = h(x).
Then is enough prove item 3. As A ⊂ X \ F , then for any xn ∈ A, there
exists k(n) ∈ N such that xn ∈ Vk(n). Given that h[Vk(n)] = Vk(n), then
{xn, h(xn)} ⊂ Vk(n). This implies that d(xn, h(xn)) ≤ diam(Vk(n)). Given
that diam(Vk(n))→ 0, then d(xn, h(xn))→ 0. On the other hand, note that,

d(h(xn), x) ≤ d(xn, x) + d(xn, h(xn))

This implies that h(xn)→ x.

We then remark that the proof of Proposition 4.9 will be an amalgamation
of the Dijkstra-van Mill proof of Theorem 7.5 from [3] and the van Engelen
proof of Theorem 3.2.6 from [8]. The functions h and α in the statement of
Proposition 4.9 will be uniform limits of functions. The following discussion
can be found in [21].

Let X and Y be compact metrizable spaces and let ρ be a metric on Y . In
the set C(X, Y ) = {f ∈ Y X : f is continuous} we define the uniform metric
ρ by ρ(f, g) = sup{ρ(f(x), g(x)) : x ∈ X}, when f, g ∈ C(X, Y ). It is known
that this metric is complete so we may construct complicated continuous
functions using Cauchy sequences of simpler continuous functions.

For a compact space X, H(X) denotes the subset of C(X,X) consisting
of homeomorphisms. However, even though Cauchy sequences of homeo-
morphisms will converge to continuous functions, they will not necessarily
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converge to a homeomorphism. In order to achieve this, we will use the In-
ductive Convergence Criterion. We present the statement of this criterion as
it appears in [8].

Theorem 4.14 ([8, Lemma 3.2.5]). Let X be a zero-dimensional compact
metric space with metric ρ and for each n ∈ ω, let hn : X → X be a homeo-
morphism. If for every n ∈ N we have that ρ(hn+1, hn) < εn, where

εn = min{2−n, 3−n ·min{min{ρ(hi(x), hi(y)) : x, y ∈ X,
ρ(x, y) ≥ 1/n} : i ≤ n}},

then the uniform limit h = limn→∞hn is a homeomorphism.

The exact values of the numbers εn in the statement of Theorem 4.14 are
not important. What we will use is that εn is a positive number than can be
calculated once the first n+1 homeomorphisms h0, . . . , hn have been defined.

Before we continue with the proof of Proposition 4.9, we stop to give two
final ingredients in the proof.

Lemma 4.15 ([3, Lemma 4.8]). Let X be a zero-dimensional space, Y ⊂ X,
let ψ : Y → [0,∞) be a USC function and ϕ = extX(ψ). Then ϕ is USC,
ψ ⊂ ϕ and the graph of ψ is dense in the graph of ϕ.

Lemma 4.16. If (C,X, ψ) ∈ σL then there exists a Lelek function ϕ : C →
[0, 1] such that (C,X, ϕ) ∈ σL, ϕ � X = ψ � X and the graph of ϕ � X is
dense in the graph of ϕ.

Proof. Let d0 be a metric for C and consider the metric d(〈x, y〉, 〈z, w〉) =
d0(x, z) + |y − w| defined on C × [0, 1]. Define ϕ = extC(ψ � X).

We show that ϕ is a Lelek function. Let p ∈ C with ϕ(p) > 0, t ∈ (0, ϕ(p))
and ε > 0, we want to find q ∈ Gϕ

0 such that d(q, 〈p, t〉) < ε. By Lemma
4.15 we know that the graph of ψ � X is dense in the graph of ϕ so there
exists k ∈ ω and x ∈ Xk such that d(〈x, ψ(x)〉, 〈p, ϕ(p)〉) < ε/2. We may
also assume that ψ(x) > t. Since ψ � Xk is a Lelek function, there is z ∈ Xk

such that d(〈z, ψ(z)〉, 〈x, t〉) < ε/2. So let q = 〈z, ψ(z)〉. By Lemma 4.15 we
know that ψ(z) = ϕ(z) so q ∈ Gϕ

0 . Then

d(q, 〈p, t〉) = d0(z, p) + |ψ(z)− t|
≤ d0(z, x) + d0(x, p) + |ψ(z)− t|
= d(〈z, ψ(z)〉, 〈x, t〉) + d0(x, p)
≤ d(〈z, ψ(z)〉, 〈x, t〉) + d(〈x, ψ(x)〉, 〈p, ϕ(p)〉)
< ε/2 + ε/2
= ε.



CHAPTER 4. A CHARACTERIZATION OF THE PRODUCT Q× EC56

This shows that ϕ is a Lelek function. The remaining condition holds directly
from Lemma 4.15.

The constant function with value 1 will be denoted by 1.

Lemma 4.17. Let F ⊂ 2ω be closed and let {Vn : n ∈ ω} be a partition of
2ω \ F into clopen non-empty subsets. Assume that α : 2ω → (0,∞) has the
following properties

1. α � F = 1 � F ,

2. limn→∞M(log ◦(α � Vn)) = 0, and

3. α � Vn is continuous for each n ∈ ω.

Then α is continuous.

Proof. Let A = {xn ∈ X : n ∈ N} be a sequence of X such that xn → x. We
have the following cases.

1. A ⊂ X \ F and x ∈ X \ F

2. A ⊂ F and x ∈ F ,

3. A ⊂ X \ F and x ∈ F .

Note that in cases 1, 2 by hypothesis limi→∞ α(xi) = α(x). Then is enough
prove item 3.

Let ε > 0. By the continuity of the exponential function there is δ > 0
be such that if t ∈ (−δ, δ) then et ∈ (1 − ε, 1 + ε). By condition (2) there
exists N ∈ ω such that if n ≥ N , then |M(log ◦(α � Vn))| < δ. On the
other hand, there exists k ∈ ω such that if i > k then xi ∈

⋃
{Vn : n ≥ N}.

If i ≥ k we obtain that |log (α(xi))| < δ so log(α(xi)) ∈ (−δ, δ). Thus,
α(xi) ∈ (1− ε, 1 + ε) so |α(xi)− 1| < ε.

Proof of Proposition 4.9. Without loss of generality we assume that C =
D = 2ω, and we fix some metric ρ on 2ω. By an application of Lemma 4.16
we can assume that ϕ and ψ are Lelek functions, that the graph of ϕ � X
is dense in the graph of ϕ, and that the graph of ψ � Y is dense in the
graph of ψ. After this, apply Theorem 4.10, so we may assume that ϕ = ψ.
Then (2ω, X, ϕ), (2ω, Y, ϕ) ∈ σL so there are collections {Xn : n ∈ ω} and
{Yn : n ∈ ω} that satisfy the conditions in Definition 4.1. Notice that since
the graphs of ϕ � X and ϕ � Y are dense in the graph of ϕ it is easy to see
that
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(∗) if U ⊂ X is open then

M(ϕ � U) = sup{M(ϕ � U∩Xi) : i ∈ ω} = sup{M(ϕ � U∩Yi) : i ∈ ω}.

Given s ∈ ω<ω, we construct clopen sets Us and Vs of 2ω, closed nowhere
dense sets Ds and Es of X and Y , respectively, and for every m ∈ ω a
continuous function βm : 2ω → (0, 1) and a homeomorphism hm : 2ω → 2ω.
We abreviate the composition hn ◦ . . . ◦ h0 = fn for all n ∈ ω. We will use
the Inductive Convergence Criterion (Theorem 4.14) to make the homeomor-
phisms converge, so at step n we may calculate the corresponding εn > 0.
Our construction will have the following properties.

(a) U∅ = V∅ = 2ω.

(b) For each s ∈ ω<ω, Ds ⊂ Us and Es ⊂ Vs.

(c) For every n ∈ ω and s ∈ ωn, {Us_i : i ∈ ω} is a partition of Us \Ds and
{Vs_i : i ∈ ω} is a partition of Vs \ Es.

(d) For every n ∈ ω, Xn ⊂
⋃
{Ds : s ∈ ω≤n} and Yn ⊂

⋃
{Es : s ∈ ω≤n}.

(e) For every n ∈ ω and s ∈ ωn+1, diam(Us) ≤ 2−n and diam(Vs) ≤
min{2−n, εn}.

(f) For every n ∈ ω and s ∈ ωn, fn[Ds] = Es.

(g) For every n ∈ ω and s ∈ ωn, hn+1 � Es = idEs .

(h) For every n ∈ ω and s ∈ ωn, fn+1[Us] = Vs.

(i) For every n, k ∈ ω, {s ∈ ωn : diam(Us) ≥ 2−k} is finite.

(j) For every n ∈ ω and x ∈ 2ω, |log(βn+1(x)/βn(x))| < 2−n.

(k) For every n ∈ ω, ϕ = (βn · ϕ) ◦ f−1n .

Let us assume that we have finished this construction, we claim that f =
limn→∞ fn exists, is a homeomorphism and f [X] = Y .

First, let x ∈ 2ω and n ∈ ω. If x ∈
⋃
s∈ωn Ds, then fn(x) = fn+1(x)

by conditions (f) and (g). Thus, ρ(fn(x), fn+1(x)) = 0. Otherwise, by (c)
there exists s ∈ ωn+1 with x ∈ Us. By (h), fn(x) ∈ Vs. Moreover, applying
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(c) and (h) we conclude that fn+1(x) ∈ Vs. So ρ(fn(x), fn+1(x)) < εn by
the second part of (e). Thus, ρ(fn, fn+1) < εn and we can apply the Induc-
tive Convergence Criterion to conclude that f is well-defined and in fact, a
homeomorphism.

Next, let x ∈ X so x ∈ Xm for some m ∈ ω. Thus, by (b) there exists
s ∈ ω≤m such that x ∈ Ds. Then f|s|(x) ∈ Es ⊂ Y by (f). By (g) it
inductively follows that fn(x) = f|s|(x) for every n ≥ |s|. This implies that
f(x) ∈ Y . A completely analogous argument shows that if y ∈ Y then there
is x ∈ X such that f(x) = y. This shows that f [X] = Y .

By (j) we know that {βn : n ∈ ω} is a Cauchy sequence with the uniform
metric so β = limn→∞ βn exists and is a continuous function. Using the first
part of (e) it is possible to prove that {f−1n : n ∈ ω} is also a Cauchy sequence
and converges to f−1; this proof is completely analogous to the proof that
f = limn→∞ fn so we omit it. Then, by uniform continuity we infer that
limn→∞ βn ◦ f−1n = β ◦ f . So using that ϕ is USC and (k) we obtain the
following

β(x) · ϕ(x) = limn→∞ βn(x) · ϕ(x)
= limn→∞ ϕ(fn(x))
≤ ϕ(f(x))
= limn→∞ ϕ(fn(f−1n (f(x))))
= limn→∞ βn(f−1n (f(x))) · ϕ(f−1n (f(x)))
≤ β(x) · ϕ(x)

Thus, ϕ ◦ f = β · ϕ. This argument is completely analogous to the one in
[3, Theorem 7.5].

Now we carry out the construction. Let γ : ω<ω \ {∅} → ω be any function
such that γ � ωm+1 is injective for all m ∈ ω.

Step 0. Let U∅ = V∅ = 2ω, as in condition (a). From (∗) we infer that
there exists k∅ ∈ ω such that

log (M(ϕ))− log (M(ϕ � Xk∅)) < 1/2, and

log (M(ϕ))− log (M(ϕ � Yk∅)) < 1/2.

Define D∅ = Xk∅ and E∅ = Yk∅ . Then ϕ � D∅ and ϕ � E∅ are Lelek functions,
and |log(M(ϕ � D∅)/M(ϕ � E∅))| < 1 so we may apply Theorem 4.10 to

obtain a homeomorphism ĥ∅ : D∅ → E∅ and a continuous function α∅ : D∅ →
(0,∞) such that ϕ ◦ ĥ∅ = (ϕ � D∅) · α∅ and M(log ◦α∅) < t. After this,
apply Theorem 4.11 to find a homeomorphism h0 : 2ω → 2ω and a continuous
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function β0 : 2ω → (0,∞) such that h0 � D∅ = ĥ∅, β0 � D∅ = α∅, ϕ◦h0 = ϕ·β0
and M(log ◦α0) < 1.

Notice that since h0 = f0 this implies (k) for n = 0. Let {Vn : n ∈ ω} be a
partition of E∅ into clopen sets with their diameters converging to 0. We may
assume that diam(Vn) < min{ε0, 1} for every n ∈ ω. We define Un = h←0 [Vn]
for each n ∈ ω. Without loss of generality we may assume that for all n ∈ ω,
diam(Un) < 1. With this we have finished step 0 in the construction.

Inductive step: Assume that we have constructed the sets Ds, Es for s ∈
ω≤m, the sets Us, Vs for s ∈ ω≤m+1 the homeomorphisms hi for i ≤ m, and the
continuous functions βi for i ≤ m. Notice that by condition (c) it inductively
follows that

⋃
{Ds : s ∈ ω≤m} and

⋃
{Es : s ∈ ω≤m} are closed because their

complement is
⋃
{Us : s ∈ ωm+1}, and

⋃
{Vs : s ∈ ωm+1}, respectively.

Fix t ∈ ωm+1. First, notice that by (∗) we have that there exists kt ∈ ω
such that

log (M(ϕ � Vt))− log (M(ϕ � Vt ∩ Ykt)) < 2−(m+1+γ(t)).

Notice that ϕ � Vt ∩ Ykt is a Lelek function.
Recall that (k) says that ϕ = (βm ·ϕ) ◦ f−1n . In particular this implies that

ϕ � Vt = (βm ·ϕ) � Ut ◦ f−1n � Vt; from this we infer the following. First, using
(∗) we may assume that kt ∈ ω is such that

log (M(ϕ � Vt))− log (M(ϕ � Vt ∩ fm[Xkt ])) < 2−(m+1+γ(t)).

Also, ϕ � Vt ∩ fm[Xkt ] is a Lelek function.
So define Dt = Vt∩ fm[Xkt ] and Et = Vt∩Ykt . Then ϕ � Dt and ϕ � Et are

Lelek functions, and |log(M(ϕ � Dt)/M(ϕ � Et))| < 2−(m+γ(t)) so we may ap-

ply Theorem 4.10 to obtain a homeomorphism ĥt : Dt → Et and a continuous
function α̂t : Dt → (0,∞) such that ϕ◦ĥt = ϕ·α̂t andM(log ◦α̂t) < 2−(m+γ(t)).
Then apply Theorem 4.11 to find a homeomorphism ht : Vt → Vt and a con-
tinuous function αt : Vt → (0,∞) such that ht � Dt = ĥt, αt � Dt = t̂t,
ϕ ◦ ht = ϕ · αt and M(log ◦αt) < 2−(m+γ(t)).

Let Em =
⋃
{Es : s ∈ ω≤m}. Then define

hm+1 = idEm ∪
⋃
{hs : s ∈ ωm+1},

by Lemma 4.13 it follows that hm+1 is a homeomorphism. Also, define

αm+1 = 1 � Em ∪
⋃
{αs : s ∈ ωm+1},
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and βm+1(x) = αm+1(fm(x)) · βm(x) for all x ∈ 2ω. By Lemma 4.17, αm+1 is
continuous so βm+1 is continuous.

Now, fix t ∈ ωm+1 again. Write Vt \Et as a union of a countable, pairwise
disjoint collection of clopen sets, all diameters of which are smaller than
min{εm, 2−m} and converge to 0. Let {Vt_i : i ∈ ω} be such partition and for
each i ∈ ω, let Ut_i = f−1m+1[Vt_i]. Without loss of generality we may assume
that for i ∈ ω, diam(Ut_i) < 2−m.

We leave the verification that all conditions (a) to (k) hold in this step of
the induction to the reader. This concludes the inductive step, and the proof
of this result.

4.3 The hyperspace of finite sets of Ec

In this section we will apply the Theorem 4.6 to prove that F(Ec) ≈ Q×Ec.

Proposition 4.18. F(Ec) ∈ σE

Proof. According to (2) in Theorem 1.31 there is a witness topology W0 for
Ec and a base β0 for Ec of sets that are compact in W0. Let W1 the Vietoris
topology in K(Ec,W0) and define W =W1 � F(Ec). Let β be the collection
of all sets of the form 〈U0, . . . , Un〉∩F(Ec) where n ∈ ω and Uj ∈ β0 for each
j ≤ n. Also, for every n ∈ ω let En = Fn+1(Ec). We will now check that
these choices satisfy the conditions in Definition 4.2.

By 1.47 we know thatW1 is zero-dimensional soW is also zero-dimensional.
By Proposition 2.2W witnesses that F(Ec) is almost zero-dimensional. Con-
dition (a) clearly holds.

For (b), fix n ∈ ω. Since Ec is crowded and Fn+1(Ec) is a continuous image
of En+1

c (under the function qn defined in Proposition 1.43), then Fn+1(Ec) is
crowded. By Proposition 1.39 Fn(X) is closed in K(X) for any topological
space X and all n ∈ N. By Proposition 1.39 Fn+2(Ec) \ Fn+1(Ec) is dense
in Fn+2(Ec). Since Ec has no isolated points then the set D of all x ∈ En+2

c

such that if i, j ≤ n+ 2 and i 6= j, then x(i) 6= x(j) is easily seen to be dense
in En+2

c . Then qn+2[D] = Fn+2(Ec) \ Fn+1(Ec) is dense in Fn+2(Ec). This
proves (b).

Also, Fn+1(Ec) is W-closed in F(Ec) for all n ∈ ω, which implies (c).
Let S = {0} and A0 = Ec. The collection A from Lemma 2.9 is equal
to {Fn+1(Ec) : n ∈ ω}. Thus, by Lemma 2.9 we obtain (d). Finally, by
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Proposition 3.20 that if U ∈ β and n ∈ ω, then U ∩ Fn+1(Ec) is compact in
W � Fn+1(Ec), which implies (e).

Corollary 4.19. F(Ec) ≈ Q× Ec.

Here it is natural to ask about F(Q×Ec), we will prove that this space is
homemorphic to Q× Ec as well.

Proposition 4.20. Let E ∈ σE. If n ∈ N then Fn(E) ∈ σE.

Proof. Let W , {En : n ∈ N} and β be witnesses of E ∈ σE . By Proposi-
tion 2.2, the Vietoris topology W0 of Fn(E,W) witnesses the almost zero-
dimensionality of F(E). For each m ∈ N, let Zm = pm[En

m]. We define β0
to be the collection of the sets of the form 〈U0, . . . , Uk〉 where k ∈ N and
Ui ∈ β for every i ≤ k. We claim that W0, {Zm : m ∈ N} and β0 witness
that Fn(E) ∈ σE .

Conditions (a), (b) and (c) are easily seen to follow. By Lemma 2.9, we
infer that Fn(E) is {Fn(Em) : m ∈ N}-cohesive, which is (d). Now, let U =
〈U0, . . . , Uk〉 ∈ β0 and m ∈ N. Notice that U ∩Zm ⊂ 〈U0∩Em, . . . , Uk∩Em〉.
Now, by the choice of β we know that Ui ∩ Em is compact in W for every
i ≤ k. Thus, the set 〈U0∩Em, . . . , Uk∩Em〉 is compact inW0. Since U∩Zm is
closed inW0, it is also compact. This proves (e) and completes the proof.

Proposition 4.21. If E ∈ σE, then F(E) ∈ σE.

Proof. Let W , {En : n ∈ N} and β be witnesses of E ∈ σE . Let W0 be the
Vietoris topology of Fn(E,W). For each m ∈ N, let Zn = qn[En

n ]. We define
β0 to be the collection of the sets of the form 〈U0, . . . , Uk〉 where k ∈ N and
Ui ∈ β for every i ≤ k. The proof that W0, {Zm : m ∈ N} and β0 witness
that F(E) ∈ σE is completely analogous to the proof of Proposition 4.20 and
we will leave it to the reader.

Corollary 4.22. If n ∈ N, then Fn(Q× Ec) ≈ Q× Ec. Also, F(Q× Ec) ≈
Q× Ec.

4.4 The σ-product of Ec

Given a space X, a cardinal κ and e ∈ X, the support of x with respect to e
is the set suppe(x) = {α ∈ κ : x(α) 6= e}. Then the σ-product of κ copies of
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X with basic point e is σ(X, e)κ = {x ∈ Xκ : |suppe(x)| < ω} as a subspace
of Xκ. It is known that σ(X, e)κ is dense in Xκ.

Now, consider X = Ec. Since Ec is homogeneous, the choice of the point e
is irrelevant. Denote σ(Eωc , e) = σEωc . Since σEωc is separable and metrizable,
it is natural to ask the following.

Question 4.23. Is σEc
ω homeomorphic to Q× Ec?

In [17] D. Lipham prove that the question 4.23 is affirmative. We use the
following stratification. Given n ∈ ω, define σnEc = {x ∈ Eωc : suppe(x) ⊂ n}.
But with this stratification we were not able to answer question 4.23. In the
following we will show some properties of this stratification.

Proposition 4.24. σnEc = {x ∈ Eωc : suppe(x) ⊂ n} is a closed subset of
σEc

ω for each n ∈ N.

Proof. We will show that σEc
ω\σnEc is a open subset of σEc

ω for each n ∈ N.
Let x ∈ σEcω\σnEc, then there exists k1, . . . , kn ∈ N such that πkj(e) 6= πkj(x)
for each j ∈ {1, . . . , n}. For each i ∈ {1, . . . , n}, let Ui a open subset of Ec
such that πki(x) ∈ Ui and πkj(z) /∈ Ui if j 6= i. Then x ∈

⋂n
i=1 π

←
ki

(Ui) and⋂n
k=1 π

←
ki

(Ui) ∩ σnEc = ∅ thus σnEc is a closed subset of σEc
ω.

By Proposition 4.24 σnEc is closed in Eωc . and homeomorphic to Enc for
each n ∈ ω since the function fn : σnEc → Enc defined by fn(x) = (xi)i∈N
is a homeomorphism; so in fact it is a closed copy of Ec if n 6= 0. In fact,
using an argument similar to the one in Remark 1.15 it is possible to prove
the following.

Lemma 4.25. σEc
ω is {σnEc : n ∈ N}-cohesive.

Proof. Let z ∈ σEc
ω, we need to find an open set V of σEc

ω containing z
but no non-empty clopen subset of any element of {σnEc : n ∈ N}. Since Ec
is cohesive there exists an open set U ⊂ Ec such that z0 ∈ U and U contains
no non-empty clopen subsets of Ec. We claim that V = U × Ec

ω\{0} is the
open set we are looking for.

Clearly, z ∈ V . Let n ∈ N and assume that O is a non-empty clopen set of
σnEc with O ⊂ V . Notice that V ∩ σnEc = U × Ec

n\{0} × {e}ω\n. Let p ∈ O
and let q = p � ω \ {0}; notice that q ∈ Ec

n\{0}×{e}ω\n. Then O∩ (Ec×{q})
is a non-empty clopen subset of V ∩ σnEc ∩ (Ec × {p}) = U × {q}. This
contradicts our choice of U and concludes the proof.
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Also, a natural witness topology for σEωc can be obtained by using the
restriction of the product topology of the witness topology for Ec. The reader
will not find it difficult to prove that properties (a) to (d) of Definition 4.2
hold but property (e) does not hold.

4.5 Factors of Q× Ec

Recall that in section 2 of Chapter 1, we mentioned the characterizations of
the factors of E, Ec and Eωc . Then we found it natural to try to characterize
the factors of Q× Ec.

Lemma 4.26. 1. Q×Ec does not contain any closed subspace homeomor-
phic to Eωc .

2. Q× Ec does not contain any closed subspace homeomorphic to E.

Proof. Let e : Eωc → Q×Ec be a closed embedding. Choose some enumeration
Q = {qn : n ∈ ω}. Notice that Fn = e←[{qn} × Ec] is a closed subset of Eωc
for every n ∈ ω. By Theorem 1.1 there exists m ∈ ω such that Fm has
non-empty interior in Eωc . By Proposition 1.35 every open subset of Eωc has
a closed copy of itself. Thus, this implies that there is a closed copy of Eωc in
{qm}×Ec. However, Eωc is cohesive by Remark 1.15 and every closed cohesive
subset of Ec is homeomorphic to Ec by Theorem 1.33. This is a contradiction
to Corolary 1.35. Thus, (a) holds.

Now, let e : E→ Q×Ec be a closed embedding. Again, let Q = {qn : n ∈ ω}
be an enumeration and let Fn = e←[{qn} × Ec] for every n ∈ ω. Since e is a
closed embedding, for every n ∈ ω, Fn is homeomorphic to a closed subset
of Ec so it is completely metrizable. This implies that E is an absolute Gδσ,
and this contradicts [3, Remark 5.5]. This completes the proof of (b).

Lemma 4.27. 1. Every Ec-factor is a (Q× Ec)-factor.

2. The space Q is a (Q× Ec)-factor but is not a Ec-factor.

3. Every (Q× Ec)-factor is a E-factor.

4. The space E is a E-factor that is not a (Q× Ec)-factor.

5. The space Eωc is a E-factor that is not a (Q× Ec)-factor.
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Proof. For (i), let X be a Ec-factor. By Therem 1.32, X × Ec ≈ Ec. Thus,
X× (Q×Ec) ≈ Q× (X×Ec) ≈ Q×Ec. For (2), notice that since Q×Q ≈ Q
then Q is a (Q× Ec)-factor but it is not a Ec-factor because it is not Polish.
For (3), let X be a (Q×Ec)-factor. By Proposition 1.27, Ec×Qω ≈ E. Thus,
X×E ≈ X×(Ec×Qω) ≈ X×(Q×Ec)×Qω ≈ (Q×Ec)×Qω ≈ Ec×Qω ≈ E.
For (4), it is clear that E is a E-factor. However, E is not a (Q× Ec)-factor
because in that case Q × Ec would have a closed copy of E and we have
proved that this is impossible in Lemma 4.26. For (5), recall that Eωc is an
E-factor by Corolary 9.3 of [3] and it cannot be a (Q× Ec)-factor, again by
Lemma 4.26.

Theorem 4.28. For a non-empty space E the following are equivalent:

(i) E × (Q× Ec) is homeomorphic to Q× Ec,

(ii) E is a (Q× Ec)-factor,

(iii) there are a topologyW on E witnessing that E is almost zero-dimensional,
a collection of W-closed non-empty subsets {En : n ∈ ω} and a base of
neighborhoods β such that

(1) E =
⋃
{En : n ∈ ω},

(2) for every n ∈ ω, En ⊂ En+1, and

(3) for every U ∈ β and n ∈ ω, U ∩ En is compact in W.

Proof. Condition (i) clearly implies (ii).
Next, we prove that (ii) implies (iii). Since E is a Q×Ec-factor, there is a

space Z such that E×Z ≈ Q×Ec. LetW , {Xn : n ∈ ω} and β be witnesses
of E ×Z ∈ σE as in Definition 4.2. Fix a ∈ Z and let A = E × {a}; we may
choose a in such a way that A ∩ E0 6= ∅. We define En = Xn ∩ A for every
n ∈ ω, W0 =W � A and β0 = {U ∩ A : U ∈ β}. It is not hard to prove that
these sets have the corresponding properties (1), (ii) and (iii) replacing E for
A.

Finally, we prove that (iii) implies (i). Let W0, {En : n ∈ ω} and β0 as
in item (iii) for E. Let W , {Xn : n ∈ ω} and β witnessing that Q × Ec, as
in Lemma 4.3. Let W1 be the product topology of 〈E,W0〉 × 〈Q × Ec,W〉.
Notice that En×Xn isW1-closed for every n ∈ ω. Thus,W1 clearly witnesses
that E× (Q×Ec) is almost zero-dimensional. Finally, let β1 = {U ×V : U ∈
β0, V ∈ β1}.
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We claim thatW1, {En×Xn : n ∈ ω} and β1 witness that E×(Q×Ec) ∈ σE .
Conditions (a), (b) and (c) from Definition 4.2 are easily checked. By Remark
1.15 we obtain that E × (Q × Ec) is {En × Xn : n ∈ ω}-cohesive. Finally,
given U × V ∈ β1 and n ∈ ω, since U ∩ En is compact in W0 and V ∩Xn is
compact in W , then (U × V )∩ (En×Xn) is compact in W1. This concludes
the proof.

Corollary 4.29. If X is a (Q×Ec)-factor, then Fn(X) and F(X) are (Q×
Ec)-factors.

Proof. From the proof of Proposition 4.20 and Proposition 4.21 it follows
that Fn(X) and F(X) satisfy the conditions (1),(2) and (3) of item (iii) of
the Theorem 4.28. Therefore Fn(X) and F(X) are (Q× Ec)-factors.

Question 4.30. Can we remove mention of the zero-dimensional witness
topology in Theorem 4.28 by adding the following statement?

(4) E is a union of a countable collection of C-sets, each of which is a
Ec-factor.

David Lipham has informed us that, however, if we change “C-sets” to
“closed sets” in (4) of Question 4.30, the resulting statement is not equivalent
to E being an (Q×Ec)-factor. This is because in [16] he gave an example of
an Fσ subset of Ec that is not an E-factor.

4.6 Dense embeddings of Q× Ec

In this section we consider when Q × Ec can be embedded in almost zero-
dimensional spaces as a dense subset. The following theorem characterizes
Q.

Theorem 4.31 ([8, Theorem 2.4.1 (Sierpiński) ]). The space of rationals Q
is the only countable crowded space.

By Theorem 4.31 every countable crowded dense subset of Ec is homeo-
morphic to Q and Enc ≈ Ec for each n ∈ N, then we obtain the following.

Example 4.32. There is a dense Fσ subset of Ec that is homeomorphic to
Q× Ec.
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Since question 4.23 is affirmative and σEωc is a dense and an Fσ subset of
Eωc , we have the following example.

Example 4.33. There is a dense Fσ subset of Ec
ω that is homeomorphic to

Q× Ec.

We recall that it is still unkown whether the hyperspace K(Ec) is homeo-
morphic to Ec (see Question 3.17) but now we know that it has a dense copy
of Q× Ec by Corollary 4.19. Thus we make the following question.

Question 4.34. Let X ⊂ Ec be dense and a countable union of nowhere
dense C-sets. If X is cohesive, is it homeomorphic to Q× Ec?

Notice that Question 4.34 is related to Question 4.7



Chapter 5

Miscellanea on AZD spaces

In this chapter we will talk about various topics related to almost zero-
dimensional spaces that have little to do with the previous chapters. We will
talk about extension of functions and compactificafions in the class of almost
zero-dimensional spaces.

The following theorem is important in the theory of almost zero- dimen-
sional spaces. We have not mentioned it before because it is only used in
this part of the thesis.

Theorem 5.1 ([3, Theorem 4.19]). A nonempty subset of an almost zero-
dimensional space X is a retract of X if and only if it is a C-set in X.

Corollary 5.2. Let X be a space AZD, let A be a C-set of X, and f : A→ X
a continuous function, then there exists a continuous function F : X → X
such that F � A = f .

Proof. Since A is a C-set of X, by Theorem 5.1 there is a retraction r : X →
A. Then F = f ◦ r satisfies that F � A = f .

Corollary 5.3. Any continuous function f : Fn(X) → H has a continuous
extension where H ∈ {Fn+1(X),F(X),K(X)}.

Proof. It is immediate from Corollary 5.2 and Proposition 2.7.

67
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Corollary 5.4. Let A and B be a C-sets of X and Y respectively. Let
f : A→ B be a continuous function. Then there exists a continuous function
F : X → Y such that F � A = f .

Proof. From Theorem 5.1 it follows that there is continuous function r : X →
A such that r � A = idA. Therefore it implies that H = idX ◦ f ◦ r satisfies
what is requested.

Proposition 5.5. Let X be an AZD cohesive space. Let f : Ec → X be
an open surjective function. Let W be a topology as in item 2 of Theorem
1.31. If f0 : (Ec,W) → X, given by f0(x) = f(x) is continuous, then X is
homeomorphic to Ec

Proof. By Remark 1.9 idEc : Ec → (Ec,W) and idX : X → (X,W1) are
continuous functions, therefore f : Ec → X is a continuous function, since
f = f0 ◦ id; also the function f1 : (Ec,W)→ (X,W1) given by f1(x) = f0(x)
is a continuous function, because f1 = idX ◦ f0. Let x ∈ X and let U be an
open subset of X such that x ∈ U . Since f is a continuous and surjective
function, there exists w ∈ Ec such that f(w) = x and V a neighborhood
that is a compact in W such that x ∈ f [V ] ⊂ U . Since f is a open function,
then x ∈ f [intEc(V )] ⊂ intXf [V ]. That is, f [V ] is a neighborhood of x in X.
Since f1 is a continuous function and f [V ] = f1[V ] then f [V ] is a compact
in W1. Therefore X is homeomorphic to Ec by item 2 of Theorem 1.31.

Proposition 5.6. Let X be a Polish AZD, and cohesive space such that there
exists a witness topology W such that (X,W) ≈ Q× 2ω, then there exists an
open dense subset U of X such that U ≈ Ec .

Proof. By Theorem 5.2 in [20] we have that (X,W) =
⋃
n∈N Fn such that Fn

is a compact nowhere dense in (X,W) and Fn ⊂ Fn+1. On the other hand,
X is also the union of the {Fn : n ∈ N}. Since X is a Baire space, then
there exists n ∈ N such that intX(Fn) 6= ∅. Without loss of generality we
can assume that intX(F1) 6= ∅. Let n ∈ N, such thar En = intX(Fn) 6= ∅,
and E =

⋃
n∈NEn. Note that E is an open dense subset of X. Let’s prove

that E ≈ Ec. Since X is cohesive and E is an open subset of X, then E
is cohesive. On the other hand, let x ∈ E, then x ∈ En for some n ∈ N.
Since En is an open subset of X, then there exists a neighborhood Wx of
x such that Wx ⊂ En and Wx is a closed subset of (X,W). Note that
Wx ⊂ (Fn,W � Fn), this implies thatWx is a compact subset of (En,W � En).
Let A = {Wx : x ∈ E}, then A is base of E and satisfies the conditions of
Theorem 1.31 Therefore E ≈ Ec.
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Proposition 5.7. Eωc , is not the union of a space E homeomorphic to Ec
and a nowhere dense subset F such that F ∩ Ec = ∅.

Proof. Suppose that Eωc = E ∪ F , where F is a nowhere dense subset of Eωc
and E homeomorphic to is Ec. Then X = Eωc \ F is homeomorphic to Ec.
Since intEω

c
(X) 6= ∅, then there exists a basic open subset U of Eωc , such

that U is subset a of X. This implies that U has a closed copy of Eωc . On
the other hand, since U is homeomorphic to an open subset V of Ec, then
U ≈ V ≈ Ec (see Proposition 3.4 in [2]). Therefore Ec has a closed copy of
Eωc , by Theorem 1.32 Eωc ≈ Ec, which is a contradiction.

From this result the following question arises

Question 5.8. If X is a space as in Proposition 5.6, is X homeomorphic to
Ec?

Corollary 5.9. If X is a space as in Proposition 5.6, then Eωc is not home-
omorphic to X

Proof. By Proposition 5.6 we have that X, is the union of Ec and a nowhere
dense subset F . Then by Proposition 5.7 Eωc is not homeomorphic to X.

A compactification is a pair (Y, e) where Y is a compact space and
e : X → Y is an embedding such that e[X] is a dense in Y .

Corollary 5.10. Let X be an AZD space, and Y be a metric compactification
of X. If Y is an AZD space, then X is zero-dimensional.

Proof. By item 4 from Proposition 1.11, Y is a compact totally discon-
nected space. This implies that Y is zero-dimensional. Therefore X is zero-
dimensional.

Note that in the case that we have an almost zero-dimensional space of
dimension 1 by Corollary 5.10 we have that any metric compactification Y
of X is not an AZD space. Even more, Y is also not a totally disconnected
space. This implies there is a connected component of Y with more than one
point. In the case of Ec we have that there is a compactification Y of Ec that
is connected. This compactification is the Lelek fan (see [15]). The following
statement gives us a necessary condition for a space X to have a connected
compactification.
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Proposition 5.11. If X is a cohesive and almost zero-dimensional space,
then X has a connected compactification.

Proof. Since X is a cohesive and almost zero-dimensional space, then it has
a connected extension by a point Y . Since Y is a metric, separable space,
then it has a countable base, therefore Y admits a embedding e into [0, 1]ω.
Let Z = cl[0,1]ω(e[Y ]), then Z is a connected and compact space. Since X is
a dense subset of Y , we conclude that X is a dense subset of Z.

Corollary 5.12. Connected compactifications exist for the following spaces:
Eωc , E and Q× Ec.

Proof. It follows from Proposition 5.11.

Corollary 5.13. Connected compactifications exist for the following spaces:
K(E), K(Ec), K(Eωc ), and K(Q× Ec).

Proof. It follows from Proposition 5.11 and Corollary 2.15.

Note that Q is an AZD space that is not cohesive, but the space [0, 1] is a
connected compactification of Q. Let us observe that Lelek fan is a connected
compactification of Ec of dimension 1 (see [15]). Another question that arises
from the proof of the Proposition 5.11 is the following:

Question 5.14. Let Z be space of the proof of Proposition 5.11. Is Z finite-
dimensional?

From now on we will consider the AZD spaces as Hausdorff spaces that
have a base of neighborhoods of C-sets.

Remark 5.15. All Hausdorff AZD space X, is regular. Let x ∈ X and
U be an open subset of X such that x ∈ U . Since X is an AZD space,
then there exists B a C-set of X such that x ∈ intX(B) ⊂ B ⊂ U . Then
clX(int(B)) ⊂ U , since B is a closed subset in X.

Given a space X, its weight w(x) is defined as the smallest infinite cardinal
κ such that X has a base of cardinality κ.

Proposition 5.16. Let X be an AZD space with w(X) = κ. Then there
exists a zero-dimensional topology W coarser than the topology in X such
that w(X,W) ≤ κ.
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Proof. Let β be a base of C-sets of X such that |β| = κ. Suppose that
β = {Bα : α ∈ κ}. Since w(X) = κ, then for every Bα, there exists
Fα = {Uα

γ : γ ∈ κ} such that for each γ ∈ κ, Uα
γ is a clopen subset of

X and Bα =
⋂
Fα. Let F1

α = {X \ Uα
γ : Uα

γ ∈ Fα}, C =
⋃
α∈κFα ∪

⋃
α∈κF1

α

and W be the topology whose subbase is C, by construction w(X,W) ≤ κ
and W is coarser topology than topology on X.

Proposition 5.17. Let X be an AZD space with w(X) = κ, then X can be
condensed into Eκ and Eκc .

Proof. Note that 2κ admits a embedding into Eκ and Eκc . By Proposition
5.16 there exists a zero-dimensional topologyW , such that w(X,W) ≤ κ. So
(X,W) admits a embedding into 2κ. Let e1 : 2κ → Eκc , e2 : (X,W)→ 2κ be
embeddings and id : X → (X,W), then f = e1 ◦e2 ◦ id is a condensation.

The following question arises from proposition

Question 5.18. Let X be an AZD space with w(X) = κ. Does X admit a
embedding into Eκ?
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des homéomorphies, Fund. Math. 40 (1953), 180–193.

[13] A.S Kechris Classical Descriptive set theory, Springer-Verlang, New
York 1994.
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246 (2021), no. 1, 395- 402.

[17] D. Lipham, The σ-product and CAP of complete Erdős space, preprint
available at https://arxiv.org/abs/2112.10172v1

[18] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71
(1951), 152–182.

[19] H. Michalewski, Homogeneity of K(Q), Tsukuba J. Math. 24 (2000), no.
2, 297–302.

[20] van Mill, J.; Characterization of some zero-dimensional separable metric
spaces, Trans. Amer. Math. Soc. 264, No. 1 (1981), 205–215.

[21] van Mill, J.; The Infinite-Dimensional Topology of Function Spaces.
North-Holland Mathematical Library, 64. North-Holland Publishing
Co., Amsterdam, 2001. xii+630 pp. ISBN: 0-444-50557-1

[22] van Mill and Pol On spaces without non-trivial subcontinua and the di-
mension of their producs, Topology and Applications 142 (2004),31-48.

[23] Nadler Sam B. Jr. Dimension Theory: an introduction with exercises.
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Symbols used

℘(X)———- power set of X.

f←(A) —— inverse image of A, i.e f←(A) is the set {x : f(x) ∈ A}.

intX(A) —— interior of A in the topological space X.

clX(A) —– clausure of A in the topological space X.

bdX(A) —– boundary of A in the topological space X.

dim(X)——– dimension of a space X.
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Index

Fσ-set, 3
Fσδ-set, 3
Gδ-set, 3
Gδσ-set, 3
A-cohesive, 9
m-equivalent functions, 52

hyperspace of compact subsets of
X, 19

hyperspace of finite subsets of X,
18

lower semi-continuous function, 6
upper semi-continuous function, 6

absolute Fσ, 3
absolute Fσδ, 3
absolute Gδ, 3
absolute Gδσ, 3
almost zero-dimensional space, 6

Baire space, 2
boolean algebra of clopen sets, 4
Borel set, 3
bounded set, 9

C-set, 7
Cauchy sequence, 2
cluster point, 10
compactification, 69

complete Erdős space, 5
crowded space, 2

Erdős space, 5

filter, 4

Knaster-Reichbach covers, 53

Lelek Function, 15

metric complete space, 2

one-point connectification, 27

polish space, 2

space first category, 2
Stone space, 4
symmetric product, 19

totally disconnected space, 2

ultrafilter, 4
uniform metric, 54

Vietoris Topology, 18

witness topology, 7

zero-dimensional space, 2
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