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Introduction

Let P be a topological property, let X be a topological space and let H(X)
be a hyperspace over X. A natural question to ask is

does H(X) satisfy P when X satisfies P?

In this work we study the properties of cohesion and almost zero-dimensionality
on X and their relations to the hyperspace of non-empty compact subsets of
X with the Vietoris topology.

This work is divided into five chapters: Chapter 1 consists of preliminar-
ies. In this chapter the most important concepts and results are presented
in order to explain the development of this work. This chapter is consti-
tuted by three sections. In the first, we talk about some basic concepts of
topology. In the second section we analyze the property of being cohesive
and the property of almost zero-dimensionality, we introduce Erdés space €,
complete Erdos space €., and stable Erdds space €Y, and we study some
of their properties. Also, in this section we present the topological charac-
terizations of Erdos spaces, we introduce the concept of factor, and we give
the characterization of the factors of Erdés spaces. In the third section of
Chapter 1, we present the hyperspaces that we study throughout the thesis,
and the basic theory of hyperspaces endowed with the Vietoris topology. In
particular, we analyze when these hyperspaces are compact, connected, zero-
dimensional and metrizable.

Chapter 2 is devoted to studying the relations between the properties of
being cohesive and being almost zero-dimensional in the hyperspace of com-
pact subsets of X, KC(X), the hyperspace of finite subsets of X, F(X), and
the symmetric products F,(X) of X.

The first important result in Chapter 2 (Propositon) says that a space
X is almost zero-dimensional if and only if K(X) is almost zero-dimensional.
A natural question arises from the above result: Is there a space X that



is not almost zero-dimensional such that dim(X) = dim(K(X)) = 17 The
last section of Chapter 2 gives us an affirmative answer to this question.
Moreover, several examples are given.

Another important result in Chapter 2 (Proposition says that if X is
cohesive, then F,,(X), F(X) and (X)) are cohesive as well.

In Chapter 3 we study the hyperspaces of Erdés space and complete Erdés
space. We show that for any natural number n, F,,(€) is homeomorphic to
¢ (Theorem B.7)), F,.(€.) is homeomorphic to €, (Theorem and that
F(€) is homeomorphic to € (Theorem [3.10). In this chapter we also prove
that the hyperspace of compact subsets of Erdds space is not homeomorphic
to Erdés space. We also present a short analysis of the space F(€&,.), and we
decide why it is not homeomorphic to either €., € or E¥.

From the above results, we note that F(€.) has a topological structure
similar to that of Q x &.. This leads us to wonder if F(&.) is homeomorphic
to Q x €.. The answer to the previous question is in the affirmative. We
present the proof in Chapter 4.

In Chapter 4 we introduce the classes of spaces 0L and ¢&; these two
classes are inspired by the classes SLC and E from [3]. We use these classes
to give a characterization of the space Q x &,.. In this chapter we show that
the class oL is equal to ¢&, and that if X € ¢&, then X is homeomorphic to
Q x €.. We also prove that F(€&.) € o€, and so we conclude that F(&,.) is
homeomorphic to Q x .. Moreover, in this chapter we study the hyperspaces
of Q x €., and we give a characterization of the factors of Q x €.

In Chapter 5 we present several results related to continuous images,
extensions of continuous functions, and compactifications of almost zero-
dimensional spaces.
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Chapter 1

Preliminaries

1.1 Basic topology

It will be assumed that all spaces are separable and metrizable. That is,
all spaces X have a countable dense subset and there is a metric on X that
generates the topology of X. We write X ~ Y to denote the fact that X is
homeomorphic to the space Y. By w we denote the set of natural numbers
including zero, N is the set w \ {0}, Q is the set of rational numbers, P is
the set of irrational numbers, 2 is the Cantor set, and R is the set of real
numbers. We say that a space X is crowded if X does not have isolated
points. Let A be a subset of a topological space X. We will write int x(A) for
the interior, clx(A) for the closure and bdx(A) for the boundary of A in X.
Let d be an admissible metric for a space X. A sequence (z,),en of elements
of X is a Cauchy sequence if for every € > 0 there is an M € N such that
d(xpm, x,) < € for all n,m > M. We call the metric space (X, d) complete if
every Cauchy sequence has a limit in X. In this case we say that the space X
is completely metrizable. A separable completely metrizable space is called
Polish. A space X is a first category space if X = [, .y X; where each
X, is nowhere dense in X; X is aBaire space if the intersection of countably
many dense open subsets of X is still dense. A space X is zero-dimensional
if it has a base of clopen sets, and X is a totally disconnected space if for
any two distinct x,y € X, there is a clopen subset U of X such that x € U
and y ¢ U. The following result gives some examples of Baire spaces.

Theorem 1.1 (|21, Theorem A.6.6]). Every Polish is a Baire space.
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A Borel set is any set B in a topological space X that can be formed from
open sets through the operations of countable union, countable intersection,
and complement. Some types of sets that are Borel that we use in this thesis
are the following.

Definition 1.2. Let X be a space and A a subset of X.

1. We say that A is a Gg-subset of X if it is a countable intersection of
open subsets of X, and A is an F,-subset of X if it is a countable union
of closed subsets of X.

2. We say that A is a Gs,-subset of X if it is a countable union of Gs-
subsets of X, and A is an F,5-subset of X if it is a countable intersec-
tion of F,-subsets of X.

Note that if A is a Gs-subset of a space X, then X \ A is an F,-subset of
X, and if A is a Gs,-subset of X, then X \ A is an F,s-subset of X. A
known fact is that every closed subset of a metric space X is a Gs-subset of
X. Therefore every open subset of a metric space is an F,-subset of X. An
important property of complete spaces is the following.

Theorem 1.3 (|21, Theorem A.6.3]). X is a Polish space if and only if X
is a Gg-subset of any space Y containing X .

A space X is called an absolute Gy if it is a Gs-subset of every space
it is embedded in. We define the notions absolute F,, absolute Gs, and
absolute F,; similarly. The following Theorem characterizes the sets that
are absolute G, absolute F, and absolute Gs,, and absolute F,s.

Theorem 1.4 ([2I, Theorem A.13.2]). Let X be a space.
1. X is an absolute Gs if and only if X is complete.
2. X is an absolute F, if and only if X is o-compact.

3. X is an absolute Gs, if and only if X is the union of countably many
complete spaces.

4. X is an absolute F,g5 if and only if X can be imbedded in some complete
space as an Fy5-subset.

Example 1.5. 1. Since Q is a o-compact space, by 2 of Theorem it
1s an absolute F,.
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2. By Theorem[1.5 every complete space is an absolute Gy.
3. Q¥ is an absolute F,s space (see [[21, Corolallry A.15.4]]).

4. Erdds space is an absolute F,s but is not an absolute Gs, (see [[3,
Remark 5.5]])

5. the product of the rational numbers and complete Erdds space that is
an absolute Gs, and absolute F,s (see [[3, Remark 4.12]]).

To end this section we will talk a little about Stone’s space. Let X be a
zero-dimensional space, and let B(X) = {A C X : A is clopen}. Note that
B(X) satisfies the following:

1. If A,B € B(X), then AN B € B(X), and AU B € B(X);
2. For each A, B,C € B(X), we have that AN(BUC) = (ANB)U(ANC),

and;
3. For any A € B(X), we have that X \ A € B(X).

B(X) is known as the Boolean algebra of clopens. There are other types of
more general Boolean algebras but in this thesis we only use the Boolean
algebra of clopen sets. Recall that a filter p on X is a subset of p(X) that
satisfies the following conditins:

1. Xep
2. if A,Bep, then ANBep
3. if A€ pand A C B, then B € p.

An ultrafilter is a filter that is not proper contained in any other filter.
We define S as the set {p C B(X) : p is an ultrafilter} and \(A) = {p € S :
A € p}. It is known that {\(A) : A € B} is a base for a Hausdorff topology
in S. This space with this topology is known as Stone space associated
with B(X). Some of the properties of S with the topology whose base is
{\(A) : A € B} are the following:

1. S is a compact space and X is a dense subset of S.

2. S is a zero-dimensional space.
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3. If U € B(X), then clg(U) is an open subset of S.

For more information about the properties of Stone’s space consult ([24], pag.
155]).

1.2 Erdos spaces

The two most important spaces in this thesis are Erdés space and complete
Erdés space. These spaces are subsets of

0% = {(:cn)new e RY: in < oo}

new

The topology on ¢? is generated by the norm |[|z]| = (3207, 22)Y/2 where
z € (2. Erdés space is defined to be the space

¢ = {(xn)new € 62 S w,T; € Q}?
and complete Erdés space is the space
€, = {(Tp)new € £ : Vi €w,2; € {0} U{1/n:n € N}}

These two spaces were introduced by Erdds in 1940 in [9] as examples of
totally disconnected and non-zero-dimensional spaces.

For every z € (?\ €., there exists n € w such that z, ¢ {0}U{1/n : n € N}.
So there exists an open subset U of R such that z, € U and UN ({0} U{1/n :
n €N})=0. Then W = {z € (*: x, € U} is an open subset of £* such that
z € W C %\ €. Therefore €, is a closed subset of £2, and € is an F,s subset
of /2 (see Remark 4.12 in [3]). Since ¢? is a complete space by Theorem [1.4]
€. is an absolute G5 and € is an absolute F,s but € is not an absolute Gy,
(see Remark 4.12 in [3]).

We have the following important result about convergence in £2.

Proposition 1.6 ([2I, Lemma 1.1.12]). Suppose that (x(n))new is a sequence
in (? and x € (*. Then the following statements are equivalent:

1. lim, oo x(n) =  in (2

2. lim, o0 ||z(n)|| = ||z|| and for every i € w lim, o x(n); = ;.
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This proposition shows that the norm topology on ¢? is the weakest topol-

ogy that contains the product topology inherited from R“ and makes the
norm continuous.
Let ¢: X — [—00,00] be a function. We say that ¢ is upper semi-
continuous (USC) if for every ¢ € R the set f<[[—00,t)] is an open subset
of X. Similarly, f is called lower semi-continuous (LSC) if for every t € R
the set f[(t,00)] is an open subset of X.

Lemma 1.7. Every closed ball {x € (* : ||z|| <t} fort > 0 is a closed subset
of R¥.

Proof. Let t > 0 and suppose that € R¥ is such that ||z| > ¢. Then we can
find an m € N such that >, |z;| > ¢*. Since this sum is a continuous func-
tion of the vector (o, ..., ,,) we can find a § > 0 such that >, |y:| > >
whenever |z; —y;| < § for 0 < i < m. Consider the basic open neighbourhood
U of x with respect to the product topology on R“ given by

U={yeRY: |z;—y| < for 0 <i<m}.
Note that ||y|| > ¢ for all y € U. O

Observe that the norm as a function from ¢% to [0, 00] is not continuous
with the product topology, because the sequence x,, = (y1,...,¥n2,0...) —
(0,...,0...) in £* (where y, = 1/n for all n € N and k € {1,...,n%}) but
2zl = (32,,—; 1/n*)Y? does not converge to 0. Note that for any ¢ € (0,1)
and x € {y € R : ||y|| € (¢,1]} we have that x € U C {y € R¥ : ||y|| € (¢, 1]}
(where U is as in the Lemma [L.7). This implies that the norm is an LSC
function.

On the other hand with Proposition[I.6 and Lemmal[I.7 we see that we can
also describe the norm topology on ¢? as the topology that is generated by
the product topology together with the sets {z € ¢?: ||z|| < t} for t > 0. We
point out the following connection between the two topologies on € and €..
From Lemma that every closed e-ball in € is also a closed subset in Qv.
This means that every point in € has arbitrarily small neighbourhoods which
are closed sets in Q“. Clearly, Lemmal/[l.7] also implies that every closed e-ball
in &, is also a closed subset in ({0} U{1/n:n € N})~.

Definition 1.8. A space (X,7) is almost zero-dimensional (AZD) if
there is a set Z that contains X and a topology T on Z, such that (Z,T) is
a zero-dimensional space, ONX is an open subset in X for each O € T, and



CHAPTER 1. PRELIMINARIES 7

every point of X has a neighbourhood base in X consisting of sets that are
closed in (Z,T)

In Definition [1.8| we will also say that the space (Z,7) is a witness to the
almost zero-dimensionality of X.
Thus ¢ and €, are almost zero-dimensional spaces. The space Q“ is a witness
to the almost zero-dimensionality of € and the space ({0} U{1/n:n € N})*
is a witness to the almost zero-dimensionality of &.. From the Definition [1.8
the following is immediate.

Remark 1.9. A space X is almost zero-dimensional if and only if there is
a topology on X witnessing this fact.

A set in a space is a C-set if it is the intersection of clopen sets. Observe
that every C-set is closed and that finite unions and finite intersections of
C-sets are also C-sets. The following Proposition gives us an important
equivalence of almost zero-dimension using C-sets.

Proposition 1.10 ([3, Remark 2.4]). A space is AZD if and only if it has
a base of C-sets.

A separable metric space X is one-dimensional if it is not zero-dimensional
and has a base 8 of neighborhoods such that bdx(U) # 0 and is zero-
dimensional for any U € . If X has dimension one we write dim(X) = 1.
In general we can define the dimension of a space X for any n € N but in
this thesis we will only use the definition of dimension 0 and 1.

Erdés in [9] proved that both & and €. are one-dimensional. This result
make these spaces important examples in Dimension Theory.

Some properties of almost zero-dimensional spaces are the following ones.:

Proposition 1.11. 1. All zero-dimensional spaces are almost zero-dimensional.
2. Any subset of a almost zero-dimensional space is almost zero-dimensional.

3. The countable product of almost zero-dimensional spaces is almost zero-
dimensional.

4. All almost zero-dimensional spaces are totally disconnected.

Proof. (1) Let (X, W) be a zero-dimensional space. By Remark[1.9]it is clear
that W is witness to the almost zero-dimensionality of X. Therefore X is an
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AZD space.

(2) Let X be an almost zero-dimensional space, and A be a subset of X. By
Remark there is a witness topology W of X. Let W[ A={UNA:U €
W}, let us note that W | A is witness to the almost zero-dimensionality of
A. Therefore A is an AZ D space.

(3) Let {X,, : n € N} be a family of almost zero-dimensional spaces and
X = [[{X, : n € N}. By remark there are witness topologies W, of
X, for every n € N. Let W be the topology of [[{(Xn, Wy) : n € N}. We
claim that W witness to the almost zero-dimensionality of X. It is clear
that (X, W) is a zero-dimensional space. Also if U is a basic open subset
of (X, W), then there are open subsets Uy, ... U, of (X1, W1),..., (X, Wh)
respectively such that U = (.., 75 [Ux] (where m : (X, W) — (X, Wy) is
the projection). Since W, is witness the almost zero-dimensionality of X,
then U} is an open subset of X, for each k& < n. Therefore U is an open
subset in X. Let (z,)nen € X and let U be a basic open subset X such
that x € U then there are Uy, ..., U, open subsets of Xi,...X,, respectively
such that U = (., mx [Uk] (where 7, : X — Xj, is the projection). Since
x € U, then z; € U;, since W; is a witness topology of X;, then there exists
a neighborhood V; of z; in X; that is a closed in W, and V; C U;. Let
V' = Ne<n T [Vil, then x € V. C U. Moreover since V; is a closed subset of
(X, W) for each i < n, then V is a closed subset of (X, W). Since V;,...,V,
are neighborhoods of x1,...,z, respectively then V is neighborhood of z in
X. Therefore X is an AZD space

(4) Let X be an AZD space. By remark there is a witness topology W
of X. Let z,y € X, since (X, W) is a zero-dimensional space there exists a
clopen subset in (X, W), such that x € U and y ¢ U. Since U is a clopen
subset of X, the space X is totally disconnected. O

Note that if X is a locally compact and AZD space, then X is zero-
dimensional by item 4 from Proposition and from the fact that all
totally-disconnected and compact spaces are zero-dimensional (see Theorem
6.2.9 in [7]). This implies that an AZD space that is not a zero-dimensional
space is not locally compact.

Let ¢: X — [0,00) be a USC' function. We define

Gy = {{z,p(x)): z € X, p(x) >0}, and
Ly = {{z,t):xe X, 0<t<g(x)}.

The following Lemma tells us that every almost zero-dimensional space is
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homeomorphic to G§ where ¢ is an USC function. This lemma is also of
great importance in Chapter 4.

Lemma 1.12 ([3, Lemma 4.11]). Let X be a space and let Z be a zero-
dimensional space that contains X as a subset (but not necessarily as a sub-
space). Then the following statements are equivalent:

1. 7 is a witness to the almost zero-dimensionality of X.

2. there exists a USC function ¢ : Z — [0,1] such that ¢ [0] = Z\ X
and the map h : X — G§ that is defined by the rule h(z) = (x,p(x))

18 a homeomorphism.

Oversteegen and Tymchatyn proved that every almost zero-dimensional
space is at most one-dimensional. Since G§ C [0,1]x Z, and dim(Z x[0,1]) =
1 (see Theorem 7.3.17 in [7]), we have dim(G§) < 1 (see Theorem 7.1.1 in
[7]). Therefore, by the Lemma|[1.12] every almost zero-dimensional space has
a dimension less than or equal to 1.

A subset A of ¢? is called bounded if it is bounded in norm, that is, if
there is an M € N such that ||a|]| < M for all a € A. If A is not bounded we
call it an unbounded set.

Lemma 1.13 ([9]). Every clopen subset of € and €. is unbounded.

From Lemma follows that every point in € has a neighborhood that
does not contain (nonempty) clopen sets. Later in [3] J. Dijkstra and J. van
Mill formalized this concept as follows.

Definition 1.14 ([3, Definition 5.1]). Let X be a space and let A C p(X) \
{0}. The space X is called A-cohesive space if every point of the space has
a neighborhood that does not contain nonempty proper clopen subsets of any
element of A. If a space X is {X }-cohesive then we simply call X cohesive.

Definition is of importance for the topological characterizations of
¢, €. and €Y. Note that all connected spaces are cohesive and that the
dimension of a cohesive space is greater than or equal to one.

Remark 1.15 ([3, Remark 5.2]). IfY is any space and X is a space that is A-
cohesive then X XY is {Ax B: A€ A and B C Y }-cohesive. In particular,
if X is {As 1 s € S}-cohesive, then X™ is {As, X ... x A, 1 s; € S}-cohesive
for any n € N.
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As a generalization of the construction of € and €&, consider a fixed se-
quence Fy, E4, Es, ... of subsets of R and let

E={z€*:2,€E, for everyn € w}.

If we consider E,, = Q for all n € N we obtain Erdés space and if we consider
E, ={0}U{1/n:n e N} for all n € N we obtain complete Erdds space.
The following theorem tells us when space £ is cohesive.

Theorem 1.16 ([6l Theorem 1}). Assume that £ is not empty and that every
E, is zero-dimensional. For each € > 0 we let n(e) € R¥ be given by

n(e), = sup{la| : a € E, N [—¢, €]}
where sup(0) = 0. The following statements are equivalent:
1. |In(e)|l = oo for each e >0
there exists x € [[,cn En with ||z]| = 0o and lim, . z, = 0;
every nonempty clopen subset of £ is unbounded;

& is cohesive ; and

v e e

dim(€) >0

Note that under the conditions of this theorem the space £ is almost zero-
dimensional: the product space [[,.y En is a witness to the almost zero-
dimensionality of £ Since every almost zero-dimensional space is at most
one-dimensional, the condition (5) is equivalent to dim(&) = 1.

Recall that if Ay, Ay, ... is a sequence of subsets of a space X then

limsup A4,, = ﬁ Clx([j Ap).
n=00 n=0 n=k

A point z in a topological space X is called a cluster point of a set A C X
if x € clx(A\ {x}).

Corollary 1.17. If0 is a cluster point of lim sup,,_, ., E,, then every nonempty
clopen subset of £ is unbounded.
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Proof. If £ is empty, then the conclusion is void. Let £ # () and let n € N,
Select a t € limsup,_,, F, such that 0 < || < 1/n. Choose a sequence of
natural numbers ky < k; < ko < ... such that there is, for each j € N, a
t; € By, with lim;_.. t; = t. We may assume that for every j, 3[t| < [t;] <
1/n. Thus n(1/n), > [t;| > $]¢| for each j and hence ||n(n)| = oo, proving
statement (1) of Theorem [1.16] O

We will use Corollary [I.17 to show that € is cohesive. In this case E,, = Q
for each n € N, then limsup,,_,  F, = R. Clearly 0 is a cluster point R. On
the other hand E,, = {0} U{1l/n : n € N} for each n € N for the case of
¢., then limsup,,_, . ({0} U{1/n :n € N}) = {0} U{1l/n : n € N}. Note
0 € clg({1/n : n € N}), that is, 0 is a cluster point {0} U{1/n :n € N}. By
Colollary every nonempty clopen subset of & or €, is unbounded. By
Theorem [1.16| € and &, are cohesive spaces.

1.2.1 Characterization of ¢

The spaces €, &., and also €¥ were characterized by Dijkstra and van Mill
in [3] [4], and [5] respectively. The characterizations of Erdés space and
complete Erdds space are of great importance in this thesis. Before we can
formulate these characterizations we need to introduce some notions.

Definition 1.18. If A is a nonempty set then A< denotes the set of all
finite strings of elements of A, including the null string O. If s € A<“ then
|s| denotes its length. In this context the set A is called alphabet. Let A¥
denote the set of all infinite strings of elements of A.

Note that if s € A<¥ and t € A<¥ U A%, then we put s < ¢ if s is an
initial substring of ¢; that is, there is an r € A<¥ U A¥ with s™r = t,
where —~ denotes concatenation of strings. Also if t € A<¥ U A“ and k € w,
t | ke A<¥ is the element of A< characterized by ¢ [ k <t and |t [ k| = k.

Definition 1.19. A tree T on A is a subset of A<¥ that is closed under
initial segments, i.e., if s €T andt < s thent € T.

Elements of tree 1" are called nodes. An infinite branch of T"is an element
r of A¥ such that r | k € T for every k € w. The body of T, written as [T,
is the set of all infinite branches of T'. If s,¢ € T are such that s < ¢ and
|t| = |s| + 1, then we say that ¢ is an immediate successor of s and succ(s)
denotes the set of immediate successors of s in 7.
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The trees considered in Definition [1.19 are said to have height w. But
there are also trees with heights greater than w. In this thesis we will not
talk about those types of trees, only countable trees are considered.

Definition 1.20. Let n > 2. If Sy,...,S, are trees over Ay,..., A,, re-
spectively, and if sy = a},...,a}, € S1,...,8, = a},...,a} € Sy, are strings
of equal length, then we define the string sy * ... * s, over Ay X ... x A,
by s1%...x5, = (ai,...,a}),...,(a},...,a}). We define the product tree
Sy % ...% S, over Ay X ... x A, as the partially ordered subset {si * ...
Sp ot 8 € S; foralli € {1,...,n} and |s;| = ... = |su|} of the alphabet
(A1 X ... x Ap)=v.

Remark 1.21. Let n > 2, and let S4,...,S, trees over Aq,...,A,, respec-
tively. Then Sy *...x .S, is indeed a tree over Ay X ... X A,. The following
statements hold.

1. Let sy, t1 € Sy, ... 8n,t, €Sy with|s1] = ... = |s,| and [t;| = ... = |t,].
Then sy % ...% Sy, =g,4.45, t1 % ... %t, if and only if s; <g, t; for all
ie{l,...,n}.

2. Let s1,t1 € S1,...8p,ty €S, with|s1] = ... = |s,| and |[t;| = ... = |t,].

Then ty % ... xt, € succ(sy * ... % 8,) in Sy % ...*x S, if and only if
t; € succ(s;) in S; for alli € {1,...,n}.

3. The body of Sy*...%S,, [S1*...xS,], is equal to the set {(51,...,5,) :
Sk € [Sk| for all k € {1,...,n}}.

4. Lett, € [Sy),...,t, € [Sy], and let k € w. Then

(s st) Th=(t1 [ koo tn TR) =0 [k, %ty | k.

Let X be a space. Let (A,)new @ sequence of sets of X. We say that
(An)new converges to z if for each open subset U such that x € U there
exists m € w such that A, C U if m < k.

Definition 1.22. Let T be a tree and let (Xs)ser be a system of subsets of
a space X (called a scheme) such that X; C X, whenever s <t. A subset A
of X is called an anchor for (X)ser in X if either for every t € [T] we have
XyrkNA= 0 for some k € w or the sequence Xitkos - - - Xtn - - - converges to
a point in X.



CHAPTER 1. PRELIMINARIES 13

Example 1.23. As the space Q¥ is a witness to the almost zero-dimensionality
of €; let W be the topology that & inherits from Q. Put T = Q< and for
$=4qo,---,qn €T, withn € w, let the closed subset Q¥ of Q¥ be given by

@L«::{l’e@wixizqifwogign}

Put €, = QYN E for s € T and let B be a bounded subset of €. We show
that B is an anchor for (&s)ser in (E,W). Let z = (qo,qu,...) € [T] be
such that €., N B # 0; for all k € w. It is clear that €.y, converges to
the point z € QY in the product topology of Q“, hence it suffices to show
that z € €. Since B is bounded there is an M € N such that B C {x €
Q¥ : |lz|| < M} and because €, N B # 0; for all k € w this means that
(g0, q1y- -Gk, 0,0,...)|| < M forallk € w. Beacuse there existsp € €,;,NB
such that p = (qo, 1, - - - Gk, Th11,0,...) and p € {x € Q¥ : ||z|| < M}, then

||(q07q1a"'7q1€70707"')|| S ||p|| S M.

Since the norm function is LSC' on Q¥ we have

Ilz]] < lim ||(q0y- -y Gn,--)|| < M
n—oo
so z € €.
Dijkstra and van Mill proved the following characterization of €.

Theorem 1.24 ([3, Theorem 8.13]). A nonempty space E is homeomorphic
to € if and only if there exists a topology VW on E that witnesses the almost
zero-dimensionality of E and there exists a nonempty tree T over a countable
alphabet and subspaces Es of E that are closed with respect to W for each
s €T such that:

1. By =F and E; = |J{E}; : t € succ(s)} whenever s € T,

2. each x € E has a neighborhood U that is an anchor for (Eg)ser in
(E,W)

3. for each s € T and t € succ(s), we have that E; is nowhere dense in
E, and

4. Eis {Es : s € T'}-cohesive.
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Theorem [L.24] is known as the intrinsic characterization of €. Another char-
acterization of € in terms of USC' functions is known as the extrinsic char-
acterization of €. We will not mention this last characterization here but it
is found in [3].

As an illustration of Theorem [[.24] we show that € satisfies the conditions
of Theorem Let the topology W on €, the tree T', and the subspaces
¢, C €for s € T be as in Example[1.23] It is clear that €, is closed in (E, W)
for all s € T and conditions (1) and (3) are easily seen to be satisfied. Fur-
thermore, it follows from Example that every bounded neighbourhood
of a point x € E is an anchor for (&)ser in (E, W), so condition (2) is
satisfied. Finally, as noted before, it follows from Corollary that every
nonempty clopen subset of &, is unbounded. This means that a bounded
neighbourhood of a point z € € does not contain nonempty clopen subsets
of any space &, hence condition (4) is satisfied as well.

A consequence of Theorem is that every open subset of € is homeo-
morphic to €. If U is an open subset of &, then the topology W | U, the
tree T" = {s € T : UN &, # (0} and the sets {U N &, : s € T'} satisfy the
conditions of Theorem [L.24]

Definition 1.25. Let X be a space. A spaceY is called an X -factor, if there
1S a space Z such that'Y X Z is homeomorphic to X.

The following theorem characterizes the factors of €.

Theorem 1.26 ([3, Theorem 9.2 items (2) and (5)]). E is an E-factor if and
only if E admits a closed embedding into €.

Since & x & is homeomorphic to &, then € is a factor of itself. Also from
Theorem[1.26]it can be shown that € is homeomorphic to € (see [3, Corollary
9.4]) and that every complete AZD space is a factor of € (see [3, Corollary
9.3]), with this we have & is homeomorphic to € x &, and to & x . Another
consequence of Theorem [I.20] that is useful in this work is the following result.

Proposition 1.27 ([3, Proposition 9.1]). €. x Q¥ ~ &

1.2.2 Characterization of ¢,

Now we will talk about the characterizations of complete Erdos space, in
this case we will mention the intrinsic and extrinsic characterization. Both
of these characterizations will be used.
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Let ¢: X — [0,00) be a USC function. We say that ¢ is a Lelek function
if X is zero-dimensional, the set {x € X: ¢(z) > 0} is dense in X and G§
is dense in L§. The existence of Lelek functions with domain equal to the

Cantor set 2¢ follows from Lelek’s original construction [I5] of what is now
called the Lelek fan (Figure[L.1).

Example 1.28. Let ¢ : RY — [0,00] be the function given by @o(x) =
Y onen |Tn|. With an argument analogous to that of Lemma it can be
shown that @q is an LSC function. Let X = ({0} U{l/n : n € N})¥
and let ¢ = @y [ X, then ¢ is an LSC function. Let n = f o where
f:10,00] = [0,1] given by f(x) = 135 if x € [0,00) and f(x) =0 if x = oco.
We are going to show that n is a Lelek function. Since f is a continuous
and decreasing function, n is an USC' function. To prove that n is a Lelek
function it is enough to prove that {(z,p(z)) : p(z) < oo} is a dense subset
in {(z,t) : p(x) < t} because g = idge X f is a continuous function and
gl{(z, ¢(x)) : ¢(x) < 00} = Gy and g[{(z,1) : p(x) < t}] = L.

Let (2°,1°) € {(z,t) : p(x) < t}, m € N. If 22 > 0, let’s consider W,, =
{reX iz, =122}, and if 2 =0, let’s consider W,, = {z € X : x, < 1/m},
then W, is an open subset of X such that 2° € W,,. Let U = Moo Wa, then
2 € U. Let 6§ >0, k € w such that 1/k < § and d =t° —>_ _ 2% Note

n<m “'n*

that d > 0, because 0 < >, a2 < t°. As >, _y1/n does not converge,
then the set A = {n € N : n/k > d} is not empty. Let r = min A and
y = (29,...,2% i1y T, 0,..) where Ty = ... = Tpyr = 1/k.
Note that y € U and p(y) = 3, ., ¥y +7/k. For choice of r we have to
r—1 r+1
<d<
k k

This implies that |5 — d| < 1 < 6. On the other hand

,
=@ =" +d—d—p@)| =" +d+ ) oy —t' =D ap— | =
n<m n<m
r 1
d——|<=<§
| k|<k<

Therefore [t° — p(y)| < 6. That is p(y) € (t° — 6,t° +5). Then (y,o(y)) €

{(z,0(2)) : p(z) < 0o} and (y, p(y)) € Up x (t°—6,t°40). Thus {(z, p(x)) :
p(x) < oo} is dense in {(z,t) : p(x) < t}. Sonis a Lelek function.
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Figure 1.1: Lelek Fan

The following Lemma tells us under what conditions we can find a Lelek
function when we have a USC function.

Lemma 1.29 ([3, Lemma 5.9]). Let ¢ be a USC function from a zero-
dimensional space X to [0,00) and let A be a collection of subsets of X such
that 0 ¢ A, G is {G§ | A: A€ A}-cohesive, and A" = {x € A: p(x) > 0}
is dense in A for each A € A. Then there exists a USC function ¢ : X —
[0,00) such that 1 < @, the natural bijection h from the graph of ¢ to the
graph of 1 is continuous, the restriction h | G — Gg 1s a homeomorphism,
and for every A € A we have that ¢ [ A is a Lelek function.

The following Theorem was proved by Kawamura, Oversteegen, and Tym-
chatyn in [I1].

Theorem 1.30. If p: 2¥ — [0, 1] is a Lelek function, then G is homeomor-
phic to €.

Theorem [1.30] is an extrinsic characterization of &.. Since the space X
in example [1.2§] is homeomorphic to 2¢, then by Theorem Gl ~ €.
By Corollary @, G is cohesive and by Lemma m, X is witness to the
almost zero-dimension of G{j. By Definition every point of G{ has a
neighbourhood base 8 in G{ consisting of sets that are closed in X. Since X
is a compact space, then every U € 3 is a compact subset in X. By Lemma
G{¢ € X (but not as subspace). Let Y = G be seen as a subspace of X
then Y is witness to the almost zero-dimension of G{. Since U C Y, then U
is a compact subset in Y. We conclude that G{ is cohesive and every point
in G{ has a neighborhood which is compact subset of Y. Theorem tells
us that these two properties characterize the space €.. Theorem [1.31]is the
intrinsic characterization of &,.




CHAPTER 1. PRELIMINARIES 17

Theorem 1.31 ([2, Theorem 3.1, items (1), (2) and (3)]). Let (€,7) be a
topological space. The following statements are equivalent.

1. € is homeomorphic to €.

2. & 1s cohesive and there exists a zero-dimensional topology W in € such
that every point in € has a neighborhood in T which is compact with
respect to V.

3. & 1s cohesive and there exists a zero-dimensional topology W in € such
that every point in € has a neighborhood in T which is complete with
respect to V.

Theorem [I.31] was proved by Dijkstra and van Mill. Also, in the case of €,
each open subset of &, is homeomorphic to .. And we have the following
Theorem that characterizes its factors.

Theorem 1.32 ([2, Theorem 3.2]). E is an €.-factor if and only if E admits
a closed embedding into €.

An important consequence of Theorems and is the following The-

orern.

Theorem 1.33 ([2, Theorem 3.5]). A nonempty space is homeomorphic to
&, if and only if it is cohesive and E.-factor.

The following Proposition tells us that the spaces €. and €% are different.

Proposition 1.34. Every subset of €Y with a nonempty interior contains
closed copies of the space itself.

Proof. Let A be a subset of € such that inte.(A) # 0. Then A contains a
subset of the form {(z1,...,2,)} x E¥. O

Corollary 1.35 ([5, Corollary 3.6]). &, is not homeomorphic to €.

The space €% also has its own characterization but we will not mention it
(see [5]), we will only mention the characterization of its factors.

Theorem 1.36 ([5, Theorem 6.5]). E is an €“-factor if and only if E is an
AZD complete space.
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1.3 Hyperspaces

In this section we will study some properties of hyperspaces such as metriz-
ability, compactness and dimension zero.

1.3.1 Vietoris topology

Let X be a topological space. We define CL(X) C p(X) as the set of all
closed nonempty subsets of X.

For n € N and subsets Uy, ..., U, of a topological space X, we denote by
(Uy,...,U,) the collection

{FECE(X):FCUUk andFﬂUk#(Dforkrgn}.

k=1

If n =1 we have

(U)) ={F e€CL(X): FCU} and
If n =2 and U; = X we have

(X,Us) = {F € CL(X) : FNU, # 0}.

Usually CL(X) is endowed with the topology known as the Vietoris
Topology, having as its canonical base all the sets of the form (Uy, ..., U,)
where Uy is a non-empty open subset of X for each & < n.

Remark 1.37. If U is a closed subset of X, then (U) and (U, X) are closed
subsets of CL(X). This is because (U) = CL(X) \ (X, X \U) and (X,U) =
CLX)\(X\U).

It follows that if U;...U, are closed subsets of X, then (Uy,...U,) is a
closed subset in CL(X) since that (Uy,...Upn) = (U<, Ur) N (U1, X) N ... N
(Un, X). The following subsets of CL(X) are what we will study in this
thesis.

Definition 1.38. Let X be a topological space. We define
o Fou(X)={AeCL(X):|Al <n} for eachn € N,
o F(X)={AecCLX):|A|l <w},



CHAPTER 1. PRELIMINARIES 19

o K(X)={F e€CL(X):F is acompact subset of X }.

The hyperspace F,,(X) is also known as n-th symmetric product. Notice
that for each n € N, F,,(X) C Fpp1(X), and F(X) = U, c,, Fn(X).

Proposition 1.39 ([I8, Proposition 2.4]). Letn € N, and let X be a crowded
space. Then F,(X) is a closed and nowhere dense subset of F,11(X), of
F(X) and K(X)

Proposition 1.40. Let U be a proper open subset of X, then
1. K(U) is a proper open subset of IC(X).
2. F(U) is a proper open subset of F(X).
3. Fa(U) is a proper open subset of F,,(X).

Proof. We are going to show 1; the other items are shown in an analogous
way. Let I € IC(U), then F' C U. Since F'is a compact and X is metrizable,
there exists an open subset V' of X such that FF C V C clx(V) C U. We
claim that (V) C K(U). Let H € (V), then H C V C U. Therefore K(U)
is an open subset of (X). On the other hand, given that X \ U # 0, then
{z} € K(X)\ KL(U) (where z € X \ U). That is, K(U) is a proper open
subset of IC(X). O

Corollary 1.41. Let B be a closed subset of X, then
1. K(B) is a closed subset of K(X).
2. F(B) is a closed subset of F(X).
3. Fn(B) is a closed subset of F,(X).

Proof. We are going to show 1; the other items are shown in an analogous
way. Let B be a closed subset of X. We are going to show that IC(X)\ K(B),
is an open subsets of K(X). Let K € K(X)\ K(B), then K N B = 0.
Since X is a metric space, there exists an open subset U of X such that
K c U cC X\ B. Let (U), then (U) is an open subset of IC(X) such that
K € (U) and (U) N K(B) = (. This implies that (X) \ K(B) is an open
subset of K(X). O
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Proposition 1.42. If A admits a closed embedding into X, then for each
n € N, F.(A) admits a closed embedding into F,(X), and F(A) admits a
closed embedding into F(X).

Proof. We will only show that F,,(A) admits a closed embedding into F,,(X),
the proof that F(A) admits a closed embedding into F(X) is done in an
analogous way. Let e: A — X be a closed embedding. Let e; : F,(A) —
Fn(X) given by ey ({z1,...,xx}) = {e(x1),...,e(zg)}, by the continuity of
e we have that ej [(Uy,...,Uy)] = (e [Ui],...,e"[Uk]). Therefore e, is a
continuous function. On the other hand if £, F € F,(A) and F # F, then
there exists z € E and y € F such that x # y and e(z) # e(y). Therefore
e1(F) # ey (E). This implies that e; is an injective function. Since e[4] is a
closed subset of X then by Fn(elA]) is a closed subset of F,(X). On
the other hand, let us note that e;[F,(A)] = F.(e[A]). Therefore e;[F,(A)]
is closed subset of F,,(X). Thus e; is a closed embedding.

[

Proposition 1.43 ([I8, Proposition 2.4.3]). For each n € N the function
Gn : X" — Fo(X) defined by qn(z1, ..., x,) = {x1,...,2,} is continuous and
perfect.

From now on, in this thesis the symbol ¢, will denote the function defined
in Proposition [1.43] Note that ¢; is a homeomorphism, thus X ~ Fi(X).
On the other hand with Proposition [1.43| we obtain that if X is a compact
space, then F,(X) is a compact space for all n € N. Later we will see that if
X is a compact space, then K(X) is a compact space (Theorem [1.48)). The
next result tells us when the spaces F,,(X), F(X) and K(X) are connected.
This result is useful in section 2 of Chapter 2

Theorem 1.44 ([I8, Theorem 4.10]). For a topological space X the following
statements are equivalent.

1. X is a connected space;

2. F(X) is a connected space;

3. For alln € N, F,(X) is a connected space;

4. There exists n € N such that F,(X) is a connected space;

5. K(X) is a connected space.
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Remember that in this thesis all spaces are considered metric, so it is
natural to know when CL(X) is metric. The following Theorem tells us
when CL(X) is normal.

Theorem 1.45 ([25] Velicko]). CL(X) is normal if and only if X is a com-
pact space.

Theorem implies that CL(X) is a metric space if and only if X is a
compact metric space. This implies that CL(€) and CL(€&,) are not a metric
spaces since € and &, are not compact spaces. But for the case of K(X) we
have the following result:

Theorem 1.46 ( [I8, Proposition 4.1]). Let X be a separable and metrizable
space. Then

e K(X) is a separable and metrizable space.

ee [f X is a Polish space, then KC(X) is a Polish space.

By Theorem Fn(X) and F(X) are metrizable spaces and in the case
that X is a Polish space then F,(X) is a Polish space. Therefore in this
thesis we will only study the hyperspaces F,,(X), F(X) and IC(X). Another
important property that we must know is when K(X) is a zero-dimensional
space, since every AZ D space has a zero-dimensional space associated with

it.( Definition
Theorem 1.47 (|18, Proposition 4.13.1]). X is a zero-dimensional space if
and only if K(X) is a zero-dimensional space.

Since all zero-dimensional spaces are almost zero-dimensional, by Theo-
rem [1.36] and Proposition we have that if X is a complete and zero-
dimensional space, then K(X), and F,(X) are factors of €. In the next
chapter we will show that this result is true for every complete AZ D space.

Finally we present a Theorem about compactness in K(X). It is important
in Chapter 3 of this work.

Theorem 1.48 ([I8, Theorem 4.2]). X is a compact space if and only if
K(X) is a compact space.

The following result is immediate from the previous Theorem.

Corollary 1.49. Let Vi,...,V,, be compact subsets of X, then (Vi,..., V,)
is a compact subset of IC(X), and therefore (Vi,..., Vo) NF,(X) is a compact
subset of Fn(X) for each n € N.



Chapter 2

Almost Zero-Dimesion and
Cohesion in Hyperspaces

In this chapter we will talk about the properties of almost zero-dimensionality
and cohesion in hyperspaces.

2.1 AZD Hyperspaces.

We begin by studying the property of almost zero-dimensionality in the dif-
ferent hyperspaces defined in Chapter 1.

Proposition 2.1. Let X be a metric AZD space. Then CL(X) is a metric
and AZD space if and only if X is a compact and zero-dimensional space.

Proof. If CL(X) is a metric space by Theorem m X is a compact. By
Theorem CL(X) is a compact and AZD space. By Proposition [I.11]
CL(X) is a zero-dimensional space. Therefore X is a zero-dimensional space,
by Theorem On the other hand if X is a compact, then CL(X) =
K(X). By Theorem and Theorem CL(X) is a compact and zero-
dimensional space. O

This result tells us that the class of spaces such that CL(X) is an AZD
metric space coincides with the class of zero-dimensional compact metric
spaces. For the case of IC(X) we have the following result. This result is
fundamental in the remainder of the thesis.

22
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Proposition 2.2. For a topological space X the following statements are
equivalent.

1. X is an AZD space.
2. K(X) is an AZD space.
3. If Fi(X) c AC K(X), then A is an AZD space.

Proof. The implication (2) = (3) is obvious, and (3) = (1) follows from the
fact that F1(X) is homeomorphic to X.
(1) = (2) : We are going to prove that K(X) satisfies the conditions of Re-
mark[I.9] Let W be a topology which witnesses the almost zero-dimensionali-
ty of X. Consider the space Y = (X, W). As W is coarser than the topology
of X, then IC(X) C K£(Y). Let (Z,W,) be the space K(X) considered with
the topology inherited as a subspace of K(Y). Since (Vi,...,V,) N Z is an
open subset of (X)), when Vi, ..., V, are elements of W, we have that the
topology Wy of Z is coarser than the topology of the K(X). Moreover, by
Proposition (Z, W) is zero-dimensional. Now, we are going to prove
that each element in /C(X) has a local neighborhood base consisting of sub-
sets that are closed in (Z,Wp). Let F' € K(X) and let U = (Uy,...,Uy,,) be
a canonical open subset of K(X) such that F' € U. For each z € F there is
a neighborhood V,, of  in X such that z € V,, C ({U; : « € U;} and V is
closed in Y. Then {intx(V,) : x € F'} is an open cover of F'in X. As F'is a
compact subset of X, there exists x1, ...,z € F such that F' C Ule Vz,. For
cach i < m,let y; € FNU;. Note that F € (V. ..., Vo, Vi, ..., Vy,). Let us
see that Vi := (Vo .., Vo, Vi oo, Vi) NK(X) CU. Indeed, let H € V.
Then H ¢ J¥, Ve, WU, Vi, and HOV, # O for 2 € {z1, .., 2,15+, Y )
By the choice of V,, and V,,, we have UL, Vi, U Ui Vi, € Uicyn Uiy and
for each j < m there exists a z € {z1,...,2, y1,...,Yn} such that V, C Uj.
Then H C ,.,, Ui and HNU; # 0 for i < m. Thus V; C U, moreover
(Vs oo s Vs Vs o, V) is a closed subset in K(Y) by Remark SO
(Vrs ooy Vs Vi -, Vi) N Z is & closed subset of Z. Therefore, the collec-
tion of all the sets 1y, where U is a canonical open set of (X)) containing
F| form a local neighborhood base of F' consisting of closed sets in (Z, W)).
Hence, by Remark [1.9] K(X) is an AZD space.

O
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Corollary 2.3. Let X be an AZD space. Suppose that W is a witness
topology of the almost zero-dimensionality of X. If Uy, ..., U, are closed sets
of (X, W), then (Uy,...,U,) NK(X) is a C-set of K(X).

Proof. Let Z as in the proof of 2 = 1 in Proposition[2.2]and Uy, . . ., Uy closed
subsets of (X, W). Since (Uy,...Ux) N Z is a closed subset in Z and 7 is a
zero-dimensional space, then (Uy,...,Ux) N Z is a C-set of Z. By Remark
1.9 (Uy,...,Ux) N Z is a C-set of K(X). O

Corollary 2.4. Let X be an AZD space. Suppose that W is a witness topol-
ogy of the almost zero-dimensionality of X, then the topology of F,(X, W),
(F(X,W)), witnesses the almost zero-dimensionality of F,(X), (F(X) re-
spectively).

Proof. Let Z be as in the proof of 2 = 1 in Proposition 2.2l By item
2 of Proposition [L.11], F,(X) N Z (and F(X) N Z) witnesses the almost
zero-dimensionality of F,,(X), (F(X) respectively). Note that F,(X, W) ~
Fo(X)N Z and F(X, W) =~ F(X)N Z by the proof of Proposition O

Since every AZD space has dimension less than or equal that one, by Propo-
sition[2.2] dim(K(X)) < 1. By Theorem 1.47 we have that if dim(K (X)) =0
if and only if dim(X) = 0. This implies that dim(K(X)) = 1 if and only if
dim(X) = 1. This argument implies the following Corollary.

Corollary 2.5. Let X be an AZD space, then dim(K(X)) < 1 and dim(K(X)) =
1 if and only if dim(X) = 1.

The omission of the hypothesis of almost zero-dimensionality on X in the
previous corollary produces the following natural question.

Question 2.6. Is there a space X that is not AZD such that dim(X) =
dim(K(X)) =17

The answer to this question is affirmative, and was given Roman Pol in a
personal communication. In the next section of this chapter we present an
example. We finish this section with the following result.

Proposition 2.7. Let X be an almost zero-dimensional space, then for each

neN, F.(X) is a C-set of CL(X), K(X), F(X), and Fpi1(X).
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Proof. Let m € N be fixed, we will show that F,,(X) is a C-set of CL(X).
Let W be a witness topology of X and d a metric for X. There exists a dense
embedding e : (X, W) — 2. Since 2“ is a compact space for each € > 0, there
exists a finite partition U, of clopen subsets of 2 whose diameter is less than
e. Let CF = {(X ne[Uh],.... X Ne [U]) : Un,..., Uy € Uy, and k < m},
and let C,, = U,<,,CE. Note that X Ne“[U,] is a clopen subset of X for
each U; € Uy, and X = UUjeul/n(X N e [Uj]), so that C, is a cover of
Fm(X) for each n € N. Since (X NeT[Uy],..., X NeT[U]) is a clopen
subset of CL(X) for each Uy, ..., Uy € Uyn and Uy, is finite. We see that
D,, = UC, is a clopen subset of CL(X) such that F,,(X) C D, for every
n € N. We claim that F,,(X) = (), ey Pn- Since for each n € N, we have
Fm(X) C Dy, we conclude that F;,(X) C (),ecn Pn- On the other hand,
if H € CL(X) \ Fu(X), then |H| > m. Let xy,...,2,11 € H such that
xj # x; if i # j and € = (min{d(z;, z;) : x5, x; € {x1,..., 2my1}})/2. Then if
V € U, we have |V N {xy,...,2m1}| < 1. Let i € N such that 1/i < ¢, then
if (Uy,...,U;) € Cy);, we have that H ¢ (Uy,...,U;), for each [ < m, and so
H ¢ D, ;. Therefore H ¢ (\D,. It follows that F,,(X) = (,.cn DPn-

To show that F,(X) is a C-set of F,11(X), F(X) and K(X), note that
Foi1(X)ND,,, F(X)ND,,, and K(X)ND,, are clopen subsets of F,1(X),
F(X) and K(X) respectively and F,(X) = (,,en(Pm N Frg1(X)), Fu(X) =
(P 0 F(X)), and Fo(X) = (1D (1 K(X)). .

Since the C-sets are closed, then F(X) cannot be C-set of IC(X) or CL(X).
Also K(X) cannot be a C-set of CL(X), since F(X) is a dense subset of (X))
and of CL(X), and K(X) is a dense subset of CL(X).

2.2 Cohesive Hyperspaces

In this section we will see how cohesion behaves in the different hyperspaces
defined in Chapter 1. The following result relates the cohesion property
between a space X and its symmetric products.

Proposition 2.8. Let n € N and let X be a space that is {As : s € S}-
cohesive. Then F,(X) is {qu[As, X ... X Ag, ] : 51,...,8, € S}-cohesive.

Proof. Suppose that F,(X) is not {g,[As, X ... X Ag,] : $1,...,8, € S}-
cohesive. Then there exists F' € F,(X) and a local base 5 of F, such that
any U € [ contains a non-empty proper clopen subset of some element of
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{qu[As, X ... X Ag] :51,...,8, € S}. Let us suppose that F' = {z1,..., 2}
with x; # z; for each 7,5 € {1,...,k}. Let B,,,..., B, be local bases of the
points xy, ...,z respectively such that if i # j, U; € B,, and U; € f3,,, then

U;NnU; =0. Let @ = (x1,...,%k, Tt1, .- -, Ty) in X", where xp = 41 =
... = ay,. Note that Sy = {Ur x ... X Upy1... XUy, : Uj € By; j < k and U =
Ugt1 = ... = U,} is a local base at x. Let V; € Be; be fixed for each
j € {i,...,k}. Note that F e N = (V4,...,V;) and that x € V} x ... x V.
By our assumption there are si,...,s, € S, and an open subset U € [,

and a non-empty proper clopen subset V of ¢,[As, X ... x A, ] such that
VCUCN.

Let g =qn | As, X ... X As,. As g is continuous, we have that g [V] is a
clopen subset of Ay, X ... x Ay, . Let C =g [V]N (V1 x...xV,).

It is clear that C' is an open subset of As x ... x Ay , because g [V]
and V] x ... x V,, are open. To see that is closed let us consider a sequence
{(y,...,y") : m € N} of points of C such that (y7*,...,y") = (Y1, -, Yn)-
Since ¢, is continuous, the sequence {¢,((v7",...,y"")) = g((v]", ..., y")) :
m € w} converges to ¢,(yi, .. .,yn). Note that for every m € w, we have that
(Y1, ... y)) € V. Since V is closed in ¢,[As, X ... X Ag, |, we have that
(Y1 --.,yn) € V. Hence (y1,...,yn) € ¢, [V]. On the other hand, asV C N,
y; € Vyas y" € V; for m € N. Thus C is clopen in Ay, X ... x Ay . This is
a contradiction, to remark so X™is {As, X ... X A, 181,...,8, €S}
cohesive.

]

Lemma 2.9. Let X be a space that is {As : s € S}-cohesive, witnessed by a
base B of open sets. Consider the following collection of subsets of F(X):

A={q.JAs, X ... x A ] :neN Vie{l,...,n}(s; € 95)}

Then F(X) is A-cohesive, and the open sets that witness this may be taken
from the collection C = {{Uy,...,U,) : Vi e {1,...,n} (U; € B)}.

Proof. Let F' € F(X), suppose that F' = {zy,...,z;} with z; # x; if i # j.
For each j € {1,...,n}, let V; € B with z; € V;. We can assume that if
i # jthen V,NV; = 0. Let V = (V4,..., V), note that F' € V. We claim
that V' does not contain clopen subsets of any element of A. Suppose there
are Sy, ...,S, € S such that V contains a non-empty proper clopen subset
O of gnlAs, X ... X Ag . As VN Fe1(X) = 0, it follows that m > k. If
i € (k,m], we define V; = V. In this way, V = (V4,..., V). Thus ONF,,(X)



CHAPTER 2. AZD AND COHESIVES HYPERSPACES 27

is a clopen subset of F,,,(X). Let x = (x1,..., Tk, Tps1,- - ., Try) Where x5 =
Tpt1 = ... = Ty. Notethat v € Vi x... x V. Let gy = @ | Asy X ... X As,,
and C' = ¢/ [ONF,(X)]N (Vi x ... x Vy,). By Proposition 2.8} C'is a clopen
subset of Ay, X ... X Ay, such that C' C Vj x ... x V,,; this is a contradiction
by remark O

With the previous Lemma we can prove the following
Proposition 2.10. If X a cohesive space, then K(X) is a cohesive space.

Proof. Let F € K(X), then there exists zy,...,2, € F and Wy,..., W,
neighborhoods such that x; € W; and W; does not contain clopen non-empty
subsets of X. Let W = (Wy,...,W,), then FF € W. We claim that W
does not contain clopen non-empty subsets of K(X). Suppose there exists
a clopen subset O of (X)) such that O C W. Then O N F(X) is a clopen
subset and W N F(X) is a neighborhood of H = {z1,...,z,} in F(X) such
that O N F(X) C W N F(X). Furthermore, for each n € N, O N F,(X) C
ONF(X) C WNF(X). For each n € N we have the equalityq, [ X"| = F,(X),
let A = {F,(X) :n € N}, by Lemma [2.9 F(X) is {F,(X) : n € N}-cohesive,
and O N F(X) € C. So for every n € N, O N F,(X) = 0, this implies that
O N F(X) = (), which is a contradiction. Therefore W does not contain
clopens subsets of I(X). O

We present an alternative method to show that the spaces I(X), F(X),
and F,, (X)) are cohesive using the concept of one-point connectification. The
concept of one-point connectification relates the properties of cohesion and
almost zero-dimensionality.

Definition 2.11. A one-point connectification of a space X is a con-
nected extension'Y of the space such that the remainder Y \ X is a singleton.

Example 2.12. Let p be a point outside €., consider €& = €. U {p} whose
neighbourhoods of {p} are the complements of closed bounded sets of €.. We
claim that €F is metric separable connected space.

We will prove that €} is a metric space. It’s enough prove that €} is
regular second countable. Consider the following sets B, = {x € €.: ||z| <
m}, then B, is a closed bounded of €. for each m € N. On the other hand
if U is an open subset of € such that p € U, then there exists a subset B
that is closed and bounded such that U = (€.\ B)U{p}. Since B is bounded
there exists m € N such that B C By, this implies that (€. \ B,,) U{p} C U.
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Therefore By = {(€.\ B,) U{p} : n € N} is a local countable base of p.
Therefore if py = {B(x,1/n) : x € €,n € N} where B(z,1/n) = {p €
¢, d(x,p) < 1/n}, then 5 = Py U By is a countable base of €F. We will
now prove that X is reqular. Let x € €F, and let U be an open subset of
T such that x € U. Without loss of generality we can assume that U € 3.
Note that if v € €., then there exists an open subset W of €I such that
v €W Cecler (W) CU. Ifv=p, then U = (€. \ B,) U{p} for somen € N.
Note that B, C {x € &.:||z|| <n+ 1} C Byy1, then

(€:\ Bny1) U{p} C (€ \{x € & : x| <n+1}) U{p} C (€ \ B,) U{p}.

Note that (€. \ {z € €. : ||z|]| < n+ 1}) U {p} is a closed subset of €.
Therefore clg+ (€. \ Bni1) U{p} C (€ \{z € €. : [[z|| <n+1})U{p}. Thus
EF is a second countable and regular space.

Finally, we will show that € is connected. Let U be a clopen subset of €,
then V.= &€\ U is a clopen subset of €. Since €F =U UV, thenp € U or
p € V. Suppose that p € U, then V is a clopen subset of €., and by Lemma
V is an unbounded set of €.. On the other hand as p € U, then there
exists a bounded set W such that p € (X \ W)U {p} C U. This implies that
V C W. Therefore V is a bounded set of €., which is a contradiction.

The following result gives necessary and sufficient conditions for a metric
separable space X to have a metric and separable one-point connectification.

Theorem 2.13 (Knaster [I4]). Let X be a separable metric space. Then X
has a one-point connectification Y which is metrizable and separable if and
only if X is embeddable in a separable metric connected space Z as proper
open subset of Z.

Proposition 2.14. If X has a metrizable and separable one-point connec-
tification, then K(X), F.(X) and F(X) each have a metric and separable
one-point connectification.

Proof. 1f Y is a metric and separable one-point connectification of X, then
by Theorem and Proposition K(Y), Fo(Y) and F(Y') are metric
and separable connected spaces. As X is a proper open subset of Y, then by
Proposition K(X), Fo(X) and F(X) are proper open subsets of K(Y),
Fo.(Y) and F(Y), respectively. By Theorem the spaces K(X), Fn(X)
and F(X) each have, metric and separable one-point connectifications.

m
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It is known that if a space admits a one-point connectification, then it is
cohesive. Moreover if an almost zero-dimensional space is cohesive, then it
admits a one point connectification (see [3, Proposition 5.4])

Corollary 2.15. If X is a cohesive AZD space, then F,(X),F(X),K(X)
are cohesive AZD spaces.

Proof. As X is a cohesive AZD space, it has a one-point connectification.
By Proposition Fo(X), F(X),K(X) have a one-point connectification.
Thus F,(X), F(X),K(X) are cohesive. Furthermore, by Proposition,
Fo(X), F(X), and K(X) are AZD. 0

Corollary 2.16. F,(€.), F.(€), F(€.), F(€), K(€&.) and K(€&) are cohesive
AZD spaces.

Proof. This result follows from Corollary and from the fact that €. and
¢ are cohesive AZD spaces. O

The following result holds for any Hausdorff topological space.

Proposition 2.17. If X has a one-point connectification, then CL(X), K(X),
Fo(X) and F(X) each have a one-point connectification.

Proof. Let Y = {p} U X be a one-point connectification of X. Since Y is
connected then by Theorem[1.44H is connected if H € {CL(Y ), K(Y), Fn(Y)
F(Y)}. Let A={F € H:pe F}, and consider the space Z = H/A. Note
that Z is a connected spaces, since it is a continuous image of H and Z\ { A}
is homeomorphic to CL(X), K(X), F,.(X), F(X) respectively. Therefore Z is
a connected extension by a point of CL(X), K(X), F.(X), F(X) respectively.

[l

Note that the space Z in the proof of the Proposition [2.17] is not neces-
sarily Hausdorff or metrizable, the behavior of the separation axioms and
metrizability depend on the properties of the subset A in H. The following
two Corollaries follow from the previous Proposition.

Corollary 2.18. If X has a one-point connectification, then CL(X), K(X),
Fo(X) and F(X) are cohesive spaces.

Corollary 2.19. CL(€) and CL(€,) are cohesive spaces.
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2.3 An Example by Roman Pol

In this part of the thesis we will study an example of a space Y that is
not almost zero-dimensional but dim(K(Y)) = dim(Y) = 1 This example
answers question asked in Section 1 of this chapter. This example was
given by Roman Pol in personal communication with the author.

Let X be an AZD and cohesive space (for example &, &.), then X has
a one-point connectification (see Proposition in 5.4 [3]). We will give two
examples of this type of spaces: the first one we will call Y and the other
one P. Suppose that Y = {p} U X where p ¢ X. Since Y is connected is
connected, it is not an AZD space.

Now let us consider &/ of example 2.12]and N = {0} U{1/n: n € N}. Let

P=[¢.x{l/n:neN}U{(p,0)}

with the topology inherited from & x N.

Note that every €. x {1/n} s clopen in P, hence (p,0) is a C-set in P. By
item (3) from Proposition[1.11] P\{(p, 0)} is an AZD space, and P is a totally
disconnected because if z,y € P such that = # (p,0) and y # (p,0) then
there exists U and a clopen subset of P such that x € U and y ¢ U, since
P\ {(p,0)} is an AZD. On the other hand if z = (p,0), and y = (x,1/m)
when z € €., U = € x{1/m} is a clopen subset of P,y € U and x ¢ U. Let
a be a fixed point in €, and consider the closed subset A = {(a,1/n) : n € N}
of P. We claim that for every C-set neighbourhood U of (p,0) in P, the set
A\U is finite (thus, P is not an AZD space and A is not a C-set). Let U be a
C-set neighbourhood of (p,0) in P. Then there is a neighbourhood V' of p in
¢ and n € N such that V x {1/k : k > n} C U. Assume that (a,1/k) ¢ U
for k > n. Select a clopen set C' such that (a,1/k) € C C P\ U. Note that
Co={x € €.:(x,1/k) € C} is a clopen subset of &, that is disjoint from V/,
and hence (Y is bounded. Since a € Cy we have a contradiction by Lemma
INE

Let Z € {P,Y} and d a metric for Z. For each n € N, let B, = {2z €
Z :d(z,q) < 1/n} and let E, = Z\ B, where ¢ = pif Z =Y or ¢ =
(p,0) if Z = P. Note that for any n € N, E, is an AZD space and, by
Proposition 2.2} K(E,) is an AZD space. By item (3) from Proposition [L.1]]
N = [1,enK(E,) U{0}] is an AZD space (let’s consider the set {0} as an
isolated point of K(E,) U {0} ).

Let

L={(K,Ky...)eN:form>nK,NE,=K,} and
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S={HeK(Z):qe H}.

Let’s consider the following functions G : £ — S and G,, : S — m,[L] (where
T, is the projection to the n-th coordinate) such that

G(Ky1, Ky,...) = {q} U | | Kn, and

neN
G.(K)=KnE,

Theorem 2.20 (Roman Pol-2020). G is well defined and is a homeomor-
phism.

Proof. To prove that G is well defined, let C be an open cover of {q}UU, o Kn
in Z. Since ¢ € {q}UlJ,,c,, I£n, We can suppose that B,,, € C for some m. Note
that ({¢} UU,en Kn) \ K C By, since Z\ Ky, C By, As{UNE,, : U €C}
is an open cover of K,, and K,, is a compact subset of E,,, then there exists
Uy, ..., Uy, such that K, C J,.,.(U; N E,,). Therefore {B,,,U,...,U;} is a
finte subcover of C, that is {g}UlJ, .y K, is a compact subset of Z. Therefore
G is well defined. R R

Let’s prove that G is injective, let K = (K1, Ks,...),H = (Hy,Hs,...) € L
such that H #* K , then there exists k € N so that/\ Hy, # Kj. Therefore there
exists © € Hy \ Ki, then z € G(H) and = ¢ G(K). That is, G is injective.
Now let’s see that G is surjective, let K € S. We define K,, = K N E,,, since
FE, is a closed subset in Z, then K, is empty or is a compact subset of E,,.
Then K, € K(E,) U {0} for each n € N, therefore (K N Ey,...) € £ and
G((KNE,...)) =K. That is, G is surjective. Before proving that G is a
homeomorphism, let’s show that

neN

B={(U,...,U,,B,)NS:n,keN and Uy,...,U, are

open subsets of Z \ {p}} U{(Bx) : k € N}

is a base for S.

Let K € § and W = (Wy,...,W,) an open subset of K(Z) such that
K e W. If K, # 0 for some n € N, then H, # ) for r > n, without
loss of generality we can assume that n = 1. As p € K € W, then there
exists 7 < n such that p € (\{W; : j < n,p € W,}, and k € N such that
p€ B C({W,:j <n,pe W,}. To find an element V of the base B such
that K € V C W, we consider two cases. If K\ By =0 or if K\ By, # 0. If
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K\ B, =0 then K C By. Therefore K € (By) C W. If K\ By # ) then for
each x € K\ By, there exists U, such that x € U, C ([{W, : j <n,z € W,},
as K \ By is compact and {U, : + € K \ By} is an open cover of K \ By,
there exists zy,...,2; € K \ By such that K \ By € (U,,,...,U,,). Let
V= (U,..., Uy, Br) NS, note that K € V, and ¥V C WNS. On the other
hand if K = {p}, there exists k € N such that p € B, and p € B, C [ [{W; :
Jj < n,p € W} this implies that K € (By) C W. Therefore B is a base for
S.

Let K = (Hy,...,H,,...) € £, and U € B such that H = G(K) e Y. If
H = {p}, then U = (By) for some k € N and H,, = ) for each n € N. Let
W = {0}* x [(Bi) N (K(Erq1) U{0})] X [T,5 51 [K(Er) U{0}], note that K
W, and GIW] C U. If H; # () for some i € N, then H, # () for r > n, without
loss of generality we can assume that ¢ = 1, and that U = (Uy,...,U,, By)
for some n,k € N. Let A= {j e N: UnNH; # 0 foralll < n} and as
{H}, : k € N}, is not finite, then A # (). Let r = min A, if r < k, then
F,NU; =0 for some j <n,so F,NU; # 0 and F, NU; C By. Let

N ={(F,F,..)€L:F. €(U,...,Uy, B}

Note that K € N, if F = (F|,F5,...) € N and G(F, Fy,...) = F, then
pe F\F, CB, CBy,soFel. Ifr<k,then H,\ H, C |J,.,,U; and
H\ Hy C By, Let

Jjsn

N:{(Fl,Fg,...)G,CZFkG<U1,...,Un>}.

Note that K € N. If (Fy,...,Fy,...) € N, and G(F},..., Fy,...) = F, then
p € F\ F, C By, so F € U. This implies that G is a continuous function.
Finally we will show that G~! is a continuous function, if U is a basic open
subset of £, then U = ((;cp 7 [W;]) N L, where W is an open subset of
K(E;) U{0} and F is a finite subset of N. Hence

(G = ﬂ(g’l)%[ﬂﬂwjﬂ ns = ﬂ G W],

So it is sufficient to show the continuity of G, for any n. To prove that
G,, is continuous, it is sufficient to show that G~ [(Uy, ..., Us) N K(E,)] and
G5 [{0}] are open subsets of S, where Uy, ..., Uy, are open subsets of Z \ {p}
such that E, NU; # () for each j < k. We will show that

GEUUL, ... Uy NK(E)] =S8N (U, ...,Us, By)
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and that
G, {0} =8N (B.)

Let H € SN{Uy,...,U,By,), then H, # 0, H\ H, C B,, and H, €
(U, ..., Up) U{0} N K(E,), thus H € G [(Uy,...,Ux) NK(E,)]. Let F €
G Uy, ..., Ux) NK(Ey)], then F,, = FNE, € (Uy,...,Uy) N K(E,) and
F\F, C B, then F € (Uy...,Uy,B,). Let H € SN (B,), then H, = 0,
therefore, H,, € {0}, thus H € GS[{0}]. Let F' € G [{0}], then F, =
FNE, =0, thus F C B, then F € (B,). This implies that G, is a
continuous function. Therefore G is a homeomorphism.

UJ

Corollary 2.21. dim(Z) = dim(K(Z)) = 1.

Proof. Note that K(Z) = K(Z\{q})US. As K(Z\{q}) is an AZD cohesive
space, then dim(K(Z\{q})) = 1. By Theorem [2.20} S is homeomorphic to £
and dim(L) = 1 because L is an AZD, but £ is not a zero-dimensinal space.
This implies that dim(S) = 1. Thus dim(K(Z)) = 1. O

Corollary 2.22. (Roman Pol-2020) There exists a connected space X such
that dim(X) = dim(K(X)) = 1.

Proof. Consider the space Y at the beginning of the section. By Corollary
2.21] we have the result. O

Corollary 2.23. There exists a totally disconnected space X which is not
AZD such that dim(X) = dim(K(X)) = 1.

Proof. Consider the space P at the beginning of the section. By Corollary
2.21] we have the result. O

Note that the spaces given in the Corollaries and are unions of

AZD spaces. A natural question is:
Does every space Z of dimension 1 that is not AZ D and is a finite the union of
subspaces AZD satisfies that dim(K(Z)) =1 7 The answer to this question
is negative because [0, 1] is not an AZD space, but is a union of Q N [0, 1]
and P N [0, 1] which are AZD spaces, and dim(C(]0,1])) is not 1.

On the other hand it is known that if X is a compact space of dimension
1, then the dimension of K(X) is not finite (see [23, pag 123]). This implies
that if a space X has a compact subset of dimension 1 then dimension of
K(X) is not finite. Then for IC(X) to have finite dimension each A € K(X)
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must have dimension zero. From this the following question arises: If X is a
non-compact space of dimension 1 such that every compact subset of X has
dimension zero, then I(X') has dimension 17 With the following Theorem,
we will show that it is not enough that the compact subsets of a space X of
dimension 1 have dimension 0 for that hyperspace of compact subsets of X
have to dimension 1.

Theorem 2.24. [22, Theorem 4.1] There exists a space X of dimension 1
such that all its compacta have dimension 0 and dim(X?) = 2.

Example 2.25. Let Y = X x {0,1} where X is as in Theorem [2.2]) then
dim(Y') =1 and for each compact subset F' of X we have that dim(F') = 0.
Let f: X? — K(X) given by f(z,y) = {(2,0),(y,1)}. Note that f is an
embedding. This implies that dim(K(Y)) > 2.

Question 2.26. Let X be a space of dimension 1, such that dim(X%) = 1
and for each A € K(X), dim(A) = 0. Does K(X) have dimension 1%.



Chapter 3

Hyperspaces of ¢, and ¢

In this chapter we will study the different hyperspaces of the spaces €. and
¢. The main objective of this chapter is to show that for any n € N, F,(€&)
is homeomorphic to €, F,(€.) is homeomorphic to €. and F(€) is homeo-
morphic to €. Also we show why IC(€) is not homeomorphic to & and that
F(€&.) is not homeomorphic to &, or €.

3.1 Hyperspaces of &

In a personal communication Professor Jan van Mill explained to us that
K(€) is not Borel. Since & contains a closed copy of Q (see [13]), the space
K(€) contains a closed copy of K(Q). But it is known that C(Q) is not a
Borel set (see [13]), thus IC(€&) is not a Borel set. Therefore K(€) is not
homeomorphic to € or €.. Furthermore, (&) cannot be a factor of any of
these spaces. Therefore, in this section we only study the hyperspaces F (&)
and F,,(€). However, there is another direction that is worth exploring.
Michalewski proved in [19] that K(Q) is a topological group. Thus, the
following is a natural question.

Question 3.1. Is (&) homogeneous?

3.1.1 Symmetric products of &

In this section we are going to show that F,,(€) satisfies conditions of Theo-
rem First we present preliminary results.

35
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Lemma 3.2. Let f : X — Y be a continuous and surjective function and
let (Ap)new be a sequence of sets of X converging to x in X, then (f[An])new
converges to f(x).

Proof. Let U be an open subset of Y, such that f(z) € U. Since f is a
continuous function, f<[U] is an open subset of X such that z € f<[U].
Since (A, )nen converges to x, then there exists m € N such that if n >
m, then A, C f<[U]. This implies that f[A,] C U if n > m, therefore
(f[An])nen converges to f(z).

]

Lemma 3.3. Let f : X — Y be a continuous and surjective function. Let A
and B be subsets of Y, such that f<[A] has empty interior in f<[B]. Then
A has empty interior in B.

Proof. Let us suppose A has non-empty interior in B. Then there exists
y € A and an open subset V of Y such that y € BNV C A. Let x € X
such that f(z) =y, then x € f<[B]N f<[V] C fT[A], which contradicts the
hypothesis. O]

Lemma 3.4. Let Aq,..., A, be subsets of By, ..., B, respectively, if A; has
empty interior for somei € {1,...,n}, then Ay X ...x A, has empty interior
m By x ... X B,,.

Proof. Suppose that A; x ... x A, has non-empty interior in By X ... X B,
then there are open subsets Uy,...,U, of By,..., B, respectively, such that
Upx...xU, C Ay x...xA,. Thisimplies that U; C A; foreachi € {1,...,n};
this contradicts that A; has empty interior for some i € {1,...,n}. ]

By Theorem there is a topology W for € which is a witness to the
almost zero-dimensionality of &, a countable tree T" and a family of sets
E = {E; : s € T} which are closed with respect to W which satisfy the
conditions of Theorem for €. Let W™ the topology of (& W)" T" =
{s1%... %8, 1 81,...,8, €T and |s1| = ... = |s,|} and for each sy%. . .xs, € T™
let Es, .. s, be the subset Fg x ... x E of &".

Lemma 3.5. The collections W™, T"™ and E™ = {Es,«. xs, : S1%...%8, € T"}
satisfy the conditions of Theorem [I.2]] for €™.

Proof. Since T is a tree over the countable alphabet A, T™ is a tree over
the countable alphabet A™ (Definition [1.19)). By item 3 of Proposition m
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W" is witness to the almost zero-dimensionality of &". Moreover, it is clear
that each Fj . s, is closed in €. On the other hand Ey = &, so Fy, ¢ =
Ey x ... x By = €". Furthermore,

Eq x ... X Ey = U{Etl ity € suce(sy)} X ... X U{Etn Dty € succ(s,)} =

U{Etl><...><Etn:tl*...*tnEsucc(sl*...*sn)}:

U{Etl*---*tn tty k. ok b, € suce(sy k... % S,)}

(see Remark |1.21]).

Now we are going to prove that W™, T™ and €" satisfy condition (2) of
Theorem [1.24] Let (z1,...,,) € €" and, for each i € {1,...,n}, let U; be a
neighborhood of z; which is an anchor for £. Let t e then t=(t,....tn)
with #; € [T for each i € {1,...,n} (Remark [1.21). We define

={ie{l,...,n}: there exists m € N such that Er,,, NU; = 0}.

First assume that J # 0; then Bz 7, N (Ur x Un) = (Egppp X . X
Epp)) N (U x .o x Uy) = (EgrmﬂUﬂ S X (En nU,) = 0. NOW
assume that J = (. Since U; is an anchor for £ for each ie{l,....n},
the sequence (Er Y )j<w converges to a point z; in €. Therefore, the sequence
(Egqp; .- X Eg ;) j<w converges to (21, ..., 2,) € €". But By, X... X Ep
Et?[j*...*tmj = E(m] ..... o) = Eayj (see Remark - Hence the sequence
(E%;)j<w converges to (21, ..., 2n).

We now verify condition (3) of Theorem [1.24] Suppose t1 % ...
succ(sy * ... % s,), then for each i € {1, .. n} ti € succ(s Remark-
Thus, E;, is nowhere dense in Ej, for each ie{l,... n} By Lemma
Ei, x...x E, is nowhere dense in E, X ...x E, . Condition (4) of Theorem
[L24] follows from Remark [L.T5 O

We need to define the neighborhoods that will work as anchors for the
symmetric products.

Let F' = {zy,..., 21} € F(€). For each j <k, let U,, be a neighborhood
of x; which is anchor in (&, W). Let Up = (Uy,,...,Us,).

Lemma 3.6. If F' € F,(X), the set UpNF,,(X) is an anchor for (F,(€), W,).
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Proof. Let F' = {xy,...,zx} € Fn(€), and Ur defined as above. Consider
t € [T™]. If there exists i € w such that Up N gu[Ey i X ... X By, ] = 0 then
we are finished. Now suppose that for each i € w

(*) Z/{F M Qn[Etm X ... X Etn[i] # @

We claim that for all i € w and j < n, there exists [(i,j) € w such that,
Uig) N By, # 0. By (%) there exists (y1,...,9n) € Eypi, X ... X By p; such
that

{1, U} = @1y yn) €Up = (Uyy, ..., Uy,).

So there is | < n such that y; € U,,; this proves the claim.

If we fix j, this defines a function i — (7, j) with domain w and codomain
{1,...,k}. This implies that there exists an infinite A C w and fixed [; € N
such that E;;; N U, # () for each i € A. As Ei s C Eyp if s < ¢, then
Ey iU, # 0 for all i € w. Therefore {Ey,}; : i € w} converges in (€, W) to
a point p; € €; this holds for all j € {1,...,n}.

Therefore {Ey,;; X ... x By, : @ € w} converges in (€™, W") to (p1,...,Pn).
So {qn[Et i X ... X By, ] 1 i € w} converges in F, (€, W) to ¢,((p1,---,pn))-

]

Theorem 3.7. For any n € N, F,,(€) is homeomorphic to €.

Proof. Let n € N be fixed. We are going to prove that F,(€) is homeomor-
phic to & using Theorem [1.24] Because of Lemma |3.5] we know that if the
topology W, the tree T' and the family {F; : s € T'} satisfy the conditions
of Theorem for &, then the product topology (&, W)", which we denote

here as W™, T" = {s; * ... % 8, : S1,...,8, € T and |s1| = ... = |s,|}
(Definition [1.19) and the family {Fg . 4, : S1 % ... % S, € T"} where
Eg i ss, = Es; x ... X By for each sq,...,s, € T with [s1] = ... = |s4],

satisfy all the conditions of Theorem [1.24]

Let g, : € — F,(€). Let W' be the Vietoris topology in F,,(€,W). The
tree T" that we are going to consider is 77 = T", and the family S’ of subsets
of F,(€) indexing by T™ that we are going to prove to be closed with respect
to W is 8" = {Hg s xs, 1 S1% ... %S, € T"} where Hy .y is, = Gn|Es . x5,
for each sy *...xs, € T™. We will prove then that W', T" and &’ satisfy the
conditions required in Theorem for F,,(€).

Indeed, the fact that the Vietoris topology in F(&, W) witnesses that
Fo(€) is almost zero-dimensional follows from the proof of Proposition .
By Proposition 2.8 F,(€) is {gn[Es, X ... X E,] : s1%...%s, € T"}-cohesive.
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That is, F,(€) is {Hy«. s, : 81 % ... % 8, € T"}-cohesive. Moreover, T' = T™
is a tree over a countable alphabet. On the other hand, for each s € T, F; is
a closed subset of (&, W), hence for s1, ..., s, € T satisfying |s1| = ... = |4/,
Eq x ...x E, is closed in (&, W)". Additionaly, since function g is closed,
qn|Es, X ... X Eg, ] is closed in (F,(&), W').

Now we are going to prove that W', 7" and &’ satisfy conditions (1), (2)
and (3) of Theorem[1.24] For §) = 0x...x0 € T, Hy, .9 = qu[Epx...x Ey] =
4n[€] = Fo(€). Let s1 % ... % s, be an element in 7. Using Lemma [3.5 we
have that Hg . s, := @u[Fsis.xs,] = WU{Etx.st, 1 11 % ... % t, € succ(sy *
oo k80) = U@l Brps s, ]« tix. . xty, € succ(syx. . .xs,)} = U{Hpyeout,, @ t1%
...kt, € succ(sy*...%s,)} . This proves that W', T" and &’ satisfy condition
(1) of Theorem [1.24] In order to prove that W', T" and S’ satisfy condition
(2) of Theorem|[1.24] we take F' € F,(€). Assume that F' = {z1,...,z,}. For
each j < n there exists a neighborhood U; of x; which is an anchor for €. By
Lemmau = (Uy,...,U,) is an anchor. Finally, we will prove that W' T"
and &' satisfy condition (3) of Theorem Ifty%...xt, € succ(sy*...%xS,),
then for each i € {1,...,n}, t; € succ(s;) (Remark [1.21). Thus, Ej, is
nowhere dense in Ej, for each ¢ € {1,...,n}. This implies that for each
permutation h : {1,...,n} — {1,...,n}, By x ... x By, = is nowhere
dense in B, x...x Ey, . Therefore, UhEP(Eth(l) X ... X Eth(n)) is nowhere
dense in ,cp(Es, ) X -+ X Ey, ) where P is the set of permutations of
{1,...,n}. Note that

a5 (gl Ee % ... x Bl = | J(Eiy % - X Ey) Cay lan[Es x .. x By ]
hepP

and
05 [ Eey % . x B )l = | (B, x - x By )
heP
As the finite union of nowhere dense sets is nowhere dense, by Lemma [3.3
qn|Ey, X ... X Ey ] is a nowhere dense subset of ¢,[Es, X ... X FEg |. By
Theorem [1.24] all the above proves that F, (&) is homeomorphic to €. [J

Corollary 3.8. Let n € N, if X is an €-factor, then F,,(X) is an E-factor.

Proof. 1t X is an E-factor. By Theorem [1.26| X can be embedded as a closed
subset of €. By Proposition [1.42] F,,(X) can be embedded as a closed subset
of F,(€). By Theorem [3.7, we have that F,,(€) is homeomorphic to €. Thus
Fn(X) is an E-factor by Theorem [1.26] O
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Corollary 3.9. For each k < n the space F,,(€) \ Fi(€) is homeomorphic
to €.

Proof. This follows from Theorem [3.5 and the fact that F,,(€) \ Fi(€) is an
open subset of F,,(€). O

3.1.2 The hyperspace of finite sets of ¢

David S. Lipham in [I6] has shown that if X is an Erdés space factor then
the Vietoris hyperspace F(X) of finite subsets of X is an Erdds factor. The
objective of this section is to wrap up this topic with the following result.

Theorem 3.10. F(&) is homeomorphic to €.

Proof. By Theorem for each n € N the topology W,, the tree T™ and
collection &, = {q,(Es, X ... X By ) : 81 % ... %8, € T"} satisfy conditions
(1), (3) and (4) of Theorem for F,(€). Consider the tree

T={0Uu{(n) s *...x8,:n€EwW, S %...%s, €T"}.

Let Xy = F(€) and X(py—s,5. 45, = @u|Es; X ... X Eg ] for each n € w and
s1%...%s, € T". Let W be the Vietoris topology on F (&, W). Then we will
prove that W/, T, S = {X,: s € T} and {Ur : F € F(€)} satisfy the condi-
tions required in Theorem for F(€). Indeed, the fact that the Vietoris
topology on F (€&, W) witnesses that F(&) is almost zero-dimensional follows
from the proof of Proposition[2.2] On the other hand, for each sy%. . .xs, € T,,
qn[Es, X ... X Fy | is a closed subset of F,,(€ W), hence ¢,[Fs, X ... x E ]
is closed in F(€&, W), because F,,(€, W) is closed in F(E W) (by Propo-
sitiof1.39). For 0 € T, we have sucer() = {(n)" 01 ... %0, : n €
w, 0 % ... %0, € T,} s0 Xiy~pe.40, = Fn(€). Hence Xiy—p,4 40, is a
nowhere dense subset of Xy and Xy = U, yeep9) X+ On the other hand,
if (n)"sy%...%8, € T\ {0}, succr({n)"sy x...xs,) = {{n)"t : t €
sucern(sy % ... x s,)}. Then for each (n)~s; *...%xs, € T\ {0}, we have
Xy ~srsnsn = U{X@my~t 1 T € sucern(sy * ... xs,)} and Xy~ is a nowhere
dense subset of Xy~ 4. xs, if t € succp(sy * ... % s,). Thus, conditions (1)
and (3) of Theorem for F (&) are satisfied. Now we prove condition (2).
Let F' € F(€). Suppose that F' = {xy,..., 25} with x; # z; if i # j so
Up = (U,,,...,Uy,). We claim that Uy is an anchor in W'. Let ¢ € [T7], then
there exists n € w such that ¢ = (n)~%, and t, € [T"]. Also, there exists
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t; € [T] such that &, = (t1,...,t,).

Case 1: k < n. By Lemma[3.6] Ur N F,(€) is a anchor of F in (F,(€), W,).
We will show that Ur N X7, = 0 for some i € w, or that (X7,;)ic, converges in
(F(&),W). IfUr N X7, = 0 for some i € w, we are finished. If Up N Xz, # 0
for each i € w, as Xg;yy = Xz = GlBnp X ... X By ] C Fu(€)
then (Ur N F,(€)) N Xz, # 0 for each i € w. Hence (Xp;)ic, converges in
(F(€),W') because Ur N F,,(€) is a anchor of F in (F,(€),W,). So UF is
anchor of F in (F(€&),W).

Case 2: k > n. For each j € (n, k|, let’s consider t; € [T such that
tj = to. Let § = (ti,....tn,tns1, ... 1), then 3 € [T*]. By Lemma [3.6]
Up N Fi(€) is a anchor of F in (Fi(€), Wy), i.e. X~z NUp = 0 for some
J € w, or (X(y~a1)jew converges. We claim that either Xz, NUp = ) for

some j € w, or (Xg;)jen converges. Note that for all j € w

(%) @ulBe1j X oo X Bl ConlBypy X oo X By X By g X X Byl

Let’s suppose that Xz, NUp # 0 for each j € w. By (*) we have X~g; N
Up # 0, then (X ky~31j)jew converges to some A € Fj(€). Hence (gn[Et,p; X
.. X By 15]) jew converges to A. Then (X7;);e. converges to A.

Thus, condition (2) of Theorem for F(€) is satisfied. By Lemma [2.9]
F(€) is {X : s € T}-cohesive. Hence, condition (4) of Theorem [1.24] for
F(€) is satisfied. Then by Theorem the space F(€&) is homeomorphic
to €. ]

With the previous theorem we can give another proof of David S. Lipham’s
result mentioned at the beginning of this section.

Corollary 3.11. If X is an €-factor, then F(X) is an E-factor.

Proof. If X is an E-factor. By Theorem [I.26) X can be embedded as a closed
subset of €. By Proposition F(X) can be embedded as a closed subset
of F(€&). By Theorem the space F(€&) is homeomorphic to €. Thus
F(X) is an E-factor. O

Corollary 3.12. For each n > 1 we have F(€) \ F,(€) ~ €.

Proof. This follows from Theorem and the fact that F(€&) \ Fi(€) is an
open subset of F(€&). O
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3.1.3 Sierpinski stratifications

In this section we give some indirect applications of Theorems and
A system of sets (X;)ser is a Sierpiniski stratification ([3, Definition 7.1, p.
31]) of a space X if:

1. T is a non-empty tree over a countable alphabet,
2. each X is a closed subset of X,
3. Xg =X, Xs = U{X; : t € suce(s)},

4. if o € [T] then the sequence X1, ..., Xy, ... converges to a point in
X.

Note that in Theorem it is implicitly proved that if (X)ser is a
Sierpiniski stratification of a space X, then C, = {¢,[X;, x ... x X, | :
Sy %...%s, € T"} is a Sierpinski stratification of F,,(X). Define Xy = X
and Xy ~spnmsn, = @l Xs; X ... X X | forn € Nand sy %...xs, € T™.
Then by an argument similar to the proof of Theorem [3.10] we conclude
that C = {Xp} U {X(n)~ss.vs, : 1 € Nysp % ... x5, € T"} is a Sierpinski
stratification of F(X). So we have the following Corollary.

Corollary 3.13. Let (X,)ser be Sierpinski stratification of a space X. Then
1. For each n € N, C, is a Sierpinski stratification of F,(X).
2. C is a Sierpinski stratification of F(X).

Van Engelen proved in ([8, Theorem A.1.6]) that a zero-dimensional X
space is homeomorphic to Q“ if X has a Sierpiniski stratification (X)ser
such that X; is nowhere dense in X, if ¢ € succ(s). Using this fact, the
following corollary can be proved.

Corollary 3.14. The spaces F,,(Q¥), F(Q¥) are homeomorphic to Q.

Proof. Let (X)ser be Sierpinski stratification of a space Q* such that X; is
nowhere dense in X, if t € succ(s). By Corollary 3.13|for each n € N, C,, and
C are Sierpinski stratifications of F,,(X) and F(X), respectively. By Lemma
[3.3] we have that g,[X;, % ... x X, ] is nowhere dense in ¢,[X;, X ... x X, ]
if ¢y ... xt, € succ(sy *...*s,) and that Xy~ 4. s, is nowhere dense in
Xiny~siromsn i (M)t %ok by, € suce((n)7sy % ... % s,,). O
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David Lipham proved in [16] that if X is an &-factor, then it admits a
Sierpinski stratification (Bs)ser. We can consider the sets By as subsets of
(X, W), where W is a topology witness to the almost zero-dimensionality of
X. A natural question is this.

Question 3.15. If X s a €-factor.
Under what conditions is (X, W) homeomorphic to Q“?

3.2 Hyperspaces of €.

We will begin by studying K(€&,). In this case IC(&..) is a Borel set, moreover
by Proposition and Theorem|[L.4] K(€.) is an absolute G5. An immediate
result we have is the fallowing.

Corollary 3.16. K(€.) is an €¥-factor, and an E-factor.

Proof. By the Proposition and Proposition K(€&,.) is a Polish AZD
space. Then by Theorem K(€.) is an €Y-factor, and by Corollary 9.3 of
[B], £(€&,) is an E-factor.

0

By Proposition [2.2| and K(€,) is a complete and AZD space. On the
other hand let us note that the only AZD and complete spaces that have a
characterization are €, and €2, then a natural question is:

Question 3.17. Is IC(€&.) homeomorphic to €. or €27

3.2.1 Symmetric products of €.

In this section we are going to show that F,(€.) ~ €. and some of the
consequences of this result. For a topological space (X, 7), the symbol 7£, (x)
denotes the Vietoris topology in F,,(X ). We introduce the following definition
to simplify the notation.

Definition 3.18. Let X be a set and let 71 and 5 two topologies in X, if
(X, 71, 72) satisfies that:

1. 71 C 1y and 1 is a zero-dimensional topology such that every point in
X has a neighborhood in 9 which is compact with respect to T, we say
that (X, 11, 72) has property C.
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2. 71 C 1y and 11 1S a zero-dimensional topology such that every point in
X has a neighborhood in 5 which is complete with respect to T, we say
that (X, 11, T2) has property Cs.

Note that property C is inherited by closed sets with respect to 7 and
the property C is inherited by G subsets with respect to 7y.
Using Definition [3.18 we can state Theorem [1.31] as follows:

Theorem 3.19. Let (€,7) be a topological space. The following statements
are equivalent.

1. € is homeomorphic to €.

2. £ is cohesive and there exists a topology W in € such that (€, 7, W)
has property C.

3. £ is cohesive and there exists a topology W in € such that (€, 7, W)
has property Cs.

Proposition 3.20. Let X be a set and let 7, and 15 be two topologies on X.
If (X, 71, 7m) has the property Cy or Cy, then for any n € N, we have that
(FulX), Tix,(x), ToF.(x)) has the property Cy or Csy, respectively.

Proof. First of all, since 7, is a zero-dimensional topology on X, then by
Theorem Ti7,(x) is a zero-dimensional topology on F,(X). Now, let
F e F.(X) and U € Tor,(x) such that F' € U. Let us suppose that
U = (U,...,U,) and that F = {xq,...,2;}. For each z; € F there
exists Vi, € 7o and a compact subset (resp., complete subset) Kj of X
with respect to 7 such that z, € V, € K, € ({U; : zx € U;}. Then
Fe(W,..., V) C(Ky,...,K;) CU. Note that Z = Ué’:1 K, is a compact
subset (resp., complete subset) with respect to 7. Then by Theorem m
and Proposition[1.46) F,,(Z) is a compact(resp., complete subset) with respect
to Tz, (x). Moreover (K,...,K;) C F,(Z). By Remark (Kq,...,Ky,)
is a closed subset with respect to 717,(x), then (Ki,..., K,,) is a compact
subset (resp., complete subset) with respect that 7x,(x). This proves that
(Ful(X), Tir,(x), T2F,(x)) has property C; (resp.,C5).

]

Theorem 3.21. For any n € N, F,,(€&.) is homeomorphic to €.
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Proof. Let W be a topology in €. which satisfies the conditions in item (2) of
Theorem By Corolary W, (e.) is coaser than the Vietoris topology
on F,(€&,.). By Proposition [3.20and Corollary €. satisfies all conditions
in item (2) of Theorem[3.19 Thus, by Theorem [3.19) F,,(&.) is homeomorphic
to €.

]

Corollary 3.22. Let n € N, if X is an E.-factor, then F,(X) is an €.-
factor.

Proof. If X is an €.-factor. By Theorem[I.32] X can be embedded as a closed
subset of €.. By Fn(X) can be embedded as a closed subset of F,(€&,).
By Theorem the space F,(€.) is homeomorphic to €.. Thus F,(X) is
an €E.-factor. O

Corollary 3.23. For each k < n we have that F,(€.) \ Fr(€.) is homeo-
morphic to €.

Proof. This follows from Theorem and the fact that F,(€.) \ Fi(€&,) is
an open subset of F,(&,). O

3.2.2 The hyperspace of finite sets of €.

In this section we are going to talk about why F(&,) is not homeomorphic
to €, €. or &Y. This part of the work is the motivation for the next chapter.

By Proposition Fn(€.) is nowhere dense subset of F(&,), then F(€&,)
is of the first category. Since &, and ¢ are Polish spaces, then by Theorem
€. and ¥ are not of the first category. This implies that F(€&.) cannot
be homeomorphic to &, or &.

On the other hand as €, is a complete space then by Proposition and
Fn(€.) is a Polish space for any n € N, then by Theorem and Theorem
fn(QEC) is an absolute Gs. Therefore F(&,.) is an absolute G, by Theorem
[1.4] This implies that F(€&.) is not homeomorphic to € since € is an absolute
F,s but it is not a G, (see Remark 4.12 [3]).

Furthermore, the space F(€&.)) is not a factor of €. (or ¥ because oth-
erwise by Theorems and there would be closed sets of €. (or &%)
homeomorphic to F(€&.). This would imply that F(&.) is a Polish space
which is false. But the space F(€&.) is a factor of € by Theorem and

Corollary
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Proposition 3.24. F(&,.) is an absolute Gs,, an absolute Fys, and it is a
countable union of nowhere dense copies of €.

We already know that F(€&,.) is not homeomorphic to €, €. or ¥ and by
Theorem and Proposition F(€.) is a countable union of nowhere
dense copies of €.. Next we will see that the space Q x &, has properties
similar to those of F(€&,).

Remark 3.25. Q x &, is an absolute Gs, and an absolute F;

Proof. To see that Q x €, is an absolute Gj,, it is suficient to notice that
Q x €&, is a countable union of Polish spaces. Next, assume that Q x &, C X
where X is any separable metrizable space. For each g € Q, let F, = {¢} X €...
Then G = X \|U{clx(F,) : ¢ € Q}isaGsin X. Fix ¢ € Q. Since Fj, is Polish
we know that clx (F;) \ F, is a countable union of sets that are closed in Fy,
and thus, in X. But closed sets in separable metrizable spaces are Gs. Thus,
clx(F,) \ F, is Gsp in X. Since X \ (Q x €.) = GU (U{clx(F,) : ¢ € Q}) we
conclude that the complement of Q x €. is a G5, so Q x €&, itself is F5 in
X.

O

Proposition 3.26. Q x €. is countable union of nowhere dense copies of €.

Proof. Let d be the metric in Q that inherited from R with the usual metric.
Since Q is countable we can list Q as {¢, : n € N}. We will construct a
sequence {F), : n € N} of compact subspaces of Q such that

(a) Fi ={q} and g, € F,
(b) F, C Fo1
(¢) Fni1\ F, is countable, discrete, and dense in F), .

To construct Fy, let’s consider a sequence {p; : k € N} that converges to ¢
and add the point ¢, to it. Note that F, is a compact space and satisfies
the required conditions. In general, for any n € N to construct F,,; we
do the following. By item (c) we have that F, \ F,_; is a discrete space
if n > 2, then for each x € F, \ F,_1, there exists an m € N such that
(x—(1/m),z+ (1/m))N(F,\ F—1) = {z}. Therefore (z,z+ (1/m))N(F,\
F,1) =10. Let A, = {p} : k € N} be a sequence such that converges to x
and A, C (x,z + 1/k) and p”™ > p”. On the other hand if z € F,_;, by

T
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item (c) there exists a sequence {p* : k € N} C F, \ F,_; such that and
p»tt > p® and {pF : k € N} converges to . Let A, = {p* + (1/k) : k €
N}, then A, converges to x. We define F, 11 = (U,ep Ae U {dni1}) U Fi.
Clearly ¢n,+1 € Fyy1, F,, C F,y1 and F, 4 is countable and closed. Note
that if y € Fny1 \ Fy, then y = ¢* + (1/k) where x € F, ;. Therefore
(a5, a5 + (2/k) N (Foni \ Fy) = {q; + (1/k)}, if y = q; where z € F,, \ F,y
then (¢t ¢" 1) N (B \ Fn) = {¢"}. It r € Q\ F,41, and as F), is closed
there exists z,y € Q such that r € (x,y) and (z,y) N F, = 0. If x € F,, then
A, N (z,y) is infinite and if t € F, \ {z}, then 4; N (z,y) = 0. Then there
exists [ € N such that r € U = (¢t — (1/1),t + (1/1)) and U N F, 1y = 0. If
y € F, then there exists x; € F,, such that r € (x1,y) or not. If there exists
x1 € F, such that r € (z1,y) then we do the same as the previous case and
if there is no exists x; € F, such that r € (z1,y), then (z,y) N F,41 = 0.
Therefore F,, 1\ F, is a discrete space and F,,; is closed. To prove that F,
is compact it is sufficient to prove that it is bounded. Since Fj, is compact
the set F,, is bounded, therefore there exists N € N such that F,, C (=N, N),
by construction of F, 1, we conclude that F,1; C (=N — (1/m), N + (1/r))
for some r,m € N. So F},; is compact. With this we finish the construction.
Since F;, is a compact and zero-dimensional space, then F;, can be embed-

ded as a closed subset of €.. By Theorem [1.32 F}, x €. ~ €.
[

With Proposition and the Remark we have that Q x €. and F(€&,)
has similar properties. This leads us to the next conjecture.

Conjecture 3.27. Q x ¢, ~ F(€&,)

In Chapter 4 we will show that this conjecture is true.



Chapter 4

A Characterization of the
product Q x €.

In this chapter we are going to prove an intrinsic and an extrinsic charac-
terization of space Q x &, with these characterizations an answer is given to
the conjecture [3.27 made in section 3 of Chapter 3. A characterization of the
factors of space Q x €, will also be given.

4.1 Classes oL and ¢€&

In this section we define the classes of spaces oL and o€ that we will use
to characterize Q x €.. The choice of these symbols is made in the spirit of
classes SLC and & from [3].

Definition 4.1. We define o L to be the class of all triples (C, X, @) such that
C' is a compact, zero-dimensional, crowded metrizable space, ¢: C' — [0,1)
is an USC function and X = |J{X,: n € w} is a dense subset of C' such that
for each n € w the following hold

1. X, is a closed, crowded subset of C,
2. Xn C X,
3. ¢ | X, is a Lelek function, and

Xn - . X
4. G s nowhere dense in G

48
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We will say that a space E is generated by (C, X, ¢) if E is homeomorphic
to GEIX

As mentioned in the Chapter 1, by the extrinsic characterization of &,
(Theorem, in Deﬁnitionthe space G§ %" is homeomorphic to &, for
each n € w. So indeed, E is a countable increasing union of nowhere dense
subsets, each homeomorphic to complete Erdés space.

Definition 4.2. We define o€ to be the class of all separable metrizable
spaces E such that there exists a topology VW on E that is witness to the

almost zero-dimensionality of E, a collection {E,: n € w} of subsets of E
and a base B of neighborhoods of E such that

(a) E=J{E,: n €w},

(b) for each n € w, E, is a crowded nowhere dense subset of Ep 1,
(¢) for each n € w, E, is closed in W,

(d) E is {E,: n € w}-cohesive, and

(e) for each V € B, VNE, is compact in W | E,, for eachn € w.

By the intrinsic characterization of €, (Theorem, in Definition , E,
is homemorphic to &, for every n € w. So again F is a countable increasing
union of nowhere dense subsets, each homeomorphic to complete Erdos space.

We first prove that the space that we want to characterize is an element
of o€ and then, that spaces from o€ can be generated by triples from o L.

Lemma 4.3. Q x €, € €.

Proof. By Theorem there exists a topology W, on €., witness of the
almost zero-dimensionality of €., such that €. has a neighborhood base [
of subsets that are compact in W;. Let W be the product topology of
Q x (&, W)). Let 8 be the collection of all sets of the form V x B, where V/
is non-empty and clopen in Q, and B € fy. Choose a sequence {F,,: n € w}
of compact subsets of Q such that (i) F, C F,4 for every n € w, (ii)
F,1\ F, is countable discrete, and dense in F, for every n € w, and (iii)
Q = U{F.: n € w} as in proof Proposition . Let E,, = F,, x &, for
every n € w. We claim that the topology W, the collection {F, : n € w} and
[ satifsy the conditions in Definition for Q x €.. First, notice that W
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witnesses that Q x €. is almost zero-dimensional. Conditions (a), (b) and
(c) follow directly from our choices.

Next, we prove (d). Let (z,y) € Q x €, and let m = min{k € w: x € F,}.
Since €, is cohesive, there exists an open set U of &, such that x € U and U
contains no non-empty clopen subsets. Let V' be open in Q such that x € V
and VNEF, =0if k <m. Define W =V x U. Let n € w, we argue that
W N E, contains no non-empty clopen sets. This is clear if n < m since
W N E, = ( so consider the case when n > m. Assume that O C W N E,
is clopen and non-empty, and consider (a,b) € O. Then ({a} x €.)NO is a
non-empty clopen subset of {a} x €. such that ({a} x €.)NO C {a} x U.
This is a contradiction to our choice of U. We conclude that (d) holds.

Finally, let us prove (e). Let V x B € fand n € w. Then (V x B)NE, =
(V N F,) x B, which is compact. Also, it is clear that /5 is a base for the
topology of Q x €.. This completes the proof of this result. O

For the next result we will need to state the following definitions.
If o : X — R then we define

M(p) = sup{[o(z)] - € X} € [0, 00].
If X = () then we use the convention M (y) = sup® = 0.

Definition 4.4. Let ¢ : X — R be a function and let X be a subset of a
metric space (Y,d). We define extyp : Y — [0, 00| by
(extyp)(y) = Um M(p [ (X NUc(y))); fory €Y,

e—0

where Uc(y) ={z €Y :d(x,y) < €}.

Proposition 4.5. If E € o€ then there exists (C, X, p) € oL that generates
E.

Proof. From Definition let us consider for E: the witness topology W,
the base [ of neighborhoods, and the collection {E,,: n € w}.

We may assume that 3 is countable. For every B € 3, let Bg be a countable
collection of clopen subsets of (£, W) such that B =[] Bp. Let the boolean
algebra clopens that is generated by {Bg : B € [}, then there exists a
compact, zero-dimensional and metric space C' containing (F, V) as a dense
subspace and such that clg(O) is clopen in C for every O € | J{Bp: B € 8}
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(see page 4). For every n € w let X,, = clo(E,); notice that X,, N E = E,
since B, is closed in W. Define X = [ J{X,,: n € w}.

We claim that X is a witness to the almost zero-dimensionality; we will
prove that B is closed in X for every B € (. It is enough to prove that if
m € w and B € (8 are fixed then

T

The right side of () is contained in the left side by the definition of Bg. So
take z € C that is not on the right side of (x), we will prove that it is not on
the left side.

We may assume that z € X,,,. By the choice of 3, we know that BN X,, is
compact. So there is an open set U of C' such that z € U and cla(U) N (BN
X)) =0. Let F = clg(U) N E,,. Notice that F' is closed in (E,,, W | E,),
and thus, in (E,W). Also, since U N X,, is open in X,,, F, is dense in
X, and z € U N X, then it easily follows that z € clg(F). Finally, F is
disjoint from B because FNB = (clc(U)NE,,)NB =cla(U)N(BNE,) =
cle(U)N (BN X,,) = 0. Then F and B are two disjoint closed subsets in
(E, W) so there exists O € Bg such that O N F = (). Since clg(O) is open
in K and disjoint from F', it is also disjoint from clo(F'). But z € cla(F), so
z ¢ clg(O). This shows that z is not on the left side of (x).

We have proved that X is a witness to the almost zero-dimensionality of
(E,). By Lemma there exists a USC function ¢y: X — [0, 1) such
that ¢ (0) = X \ E and the function hg: E — G.° defined by hg(z) =
(x,10(x)) is a homeomorphism. By condition (d) in Definition 4.2| we know
that G4° is {G¢°"": n € w}-cohesive. Moreover, {z € X, : tho(z) > 0} = E,
is dense in X,, for every n € w. Lemma tells us that we can find a
USC function ¢;: X — [0, 1) such that ¢y [ X,, is a Lelek function for each
n € w, and the function hy: G§° — G given by hy((z,1o(x))) = (z, 11 (x))
is a homeomorphism. Now, let ¢ = exte(1): C — [0,1). Then (C, X, ¢)
can be easily seen to be an element of o£ and hy o ho: E — GE'¥ is a
homeomorphism.This completes the proof of this result. O

Our main result will be the following.

Theorem 4.6. Let E be a space. Then the following are equivalent:
1. F € o€,
2. there exists (C, X, p) € oL that generates E, and
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3. E is homeomorphic to Q x €.

The proof of Theorem will be given as follows. First, notice that by
Proposition [£.5] (i) implies (ii). That (iii) imples (i) is Lemma Also, by
Lemma [£.3] ¢&€ is non-empty so oL is non-empty as well. Thus, in order to
prove that (ii) implies (iii) it is enough to show that any two spaces generated
by triples of oL are homeomorphic. This will be the content of Section 4.2.

Given a separable metrizable space X, in [20] CAP(X) is defined to be
the class of separable metrizable spaces Y = [J{X,,: n € w} such that X,
is closed in X, X, is a nowhere dense subset of X, ;; and X,, = X for each
n € w. So o€ C CAP(€&,) but we do not know whether the other inclusion
holds.

Question 4.7. Is 0€ = CAP(&,)?

4.2 Uniqueness theorem

In this section we present the proof of Theorem [£.6]

Definition 4.8. Let ¢: X — [0,00), ¢¥: Y — [0,00) be USC functions,
@ and Y are m-equivalent if there is a homeomorphism h: X — Y and a
continuous function a: X — (0,00) such that poh = «a - .

It follows that when ¢ and ¢ are m-equivalent then G is homeomorphic
to Gg. So, according to the discussion at the end of the previous section, in
order to prove Theorem it is sufficient to prove the following statement.

Proposition 4.9. Let (C, X, ), (D,Y,1) € oL. Then there exists a home-
omorphism h: C — D and a continuous function a: C' — (0,00) such that
fIX]=Y andpoh=a- .

The rest of this section will consist on a proof of Proposition [£.9] The
construction of the homeomorphism h will require us to use two different
techniques and mix them. First, we need the tools used in [3] to extend
homeomorphisms using Lelek functions.

Theorem 4.10 ([3, Theorem 6.2, p. 26]). If p: C — [0,00) and : D —
[0, 00) are Lelek functions with C and D compact, and t > |log (M (¢)/M(¢))],
then there exists a homeomorphism h: C — D and a continuous function
a: C — (0,00) such thatpoh = a - ¢ and M(logoa) < t.
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Theorem 4.11 (3, Theorem 6.4, p. 28]). Let ¢: C' — [0,00) and ¢: D —
[0,00) be Lelek functions with C' and D compact. Let A C C and B C
D be closed such that GZ'* and GY'P are nowhere dense in GY and GY,
respectively. Let h: A — B be a homeomorphism and a: A — (0,00) a
continuous function such that v oh = o - (p [ A). Ift € R is such that
t > |log (M(v)/M(p))| and M(logoa) < t then there is a homeomorphism
H: C — D and a continuous function f: C' — (0,00) such that H [ A = h,
B1C=a,oH=p3p and M(logop) < t.

Theorem [4.10] is called the Uniqueness Theorem for Lelek functions; The-
orem [4.11}is the Homeomorphism Extension Theorem for Lelek funcions.
The second tool we will need is that of Knaster-Reichbach covers.

Definition 4.12. Let X and Y be zero-dimensional spaces, A C X and
B C Y be closed and nowhere dense in X and Y, respectively. Moreover,
let h: A — B be a homeomorphism. A triple (U,V,n) is called a Knaster-
Reichbach cover, or KR-cover, for (X\ A, Y\ B, h) if the following conditions
are satisfied:

1. U is a partition of X \ A into non-empty clopen subsets of X,
V is a partition of Y \ B into non-empty clopen subsets of Y,

n: U —V 1s a bijection,

if for every U € U, gu: U — n(U) is a bijection, then the function
H=hu (UUeL{ gU) is continuous at all points of A, and its inverse
H~' is continuous at all points of B.

KR-covers were used by Knaster and Reichbach [12] to prove homeomor-
phism extension results in the class of all zero-dimensional spaces. The term
KR-cover was first used by van Engelen [8] who proved their existence in
a general setting. However, in this thesis we will not need the existence of
KR-covers in general. We will only need the following straightforward result
which is a specific case of KR-covers.

Lemma 4.13. Fiz a metric on 2. Let F' C 2% be closed and assume that
U={U,:n € w} is a partition of 2* \ F into clopen sets such that for every
€ > 0 the set {n € w: diam(U,) > €} is finite. Assume that h: 2* — 2 has
the following properties
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1. h s a byection,

2. h|F=idp,

3. for each n € w, h|U,] = U,, and

4. for eachn € w, h | U,: U, — U, is a homeomorphism.
Then h is a homeomorphism.

Proof. Let A= {x, € X : n € N} be a sequence of X such that z,, — z. We
have the following cases.

. ACX\Fandzxe X\F
2. ACFandx € F,
3. ACX\FandzeF.

Note that in cases 1, 2 by hypothesis we have that lim; ,. h(z;) = h(x).
Then is enough prove item 3. As A C X \ F, then for any z,, € A, there
exists k(n) € N such that z, € Vi,). Given that h[Vim)] = Vi), then
{@n, h(zy)} C Vigny. This implies that d(x,, h(z,)) < diam(Viw)). Given
that diam(Vim)) — 0, then d(xy, h(z,)) — 0. On the other hand, note that,

d(h(zy), x) < d(xp, x) + d(zn, h(x,))
This implies that h(z,) — . O

We then remark that the proof of Proposition [£.9 will be an amalgamation
of the Dijkstra-van Mill proof of Theorem 7.5 from [3] and the van Engelen
proof of Theorem 3.2.6 from [§]. The functions h and « in the statement of
Proposition [4.9] will be uniform limits of functions. The following discussion
can be found in [21].

Let X and Y be compact metrizable spaces and let p be a metric on Y. In
theset C(X,Y) = {f € YX: fis continuous} we define the uniform metric
p by p(f,q9) =sup{p(f(x),g(x)): x € X}, when f,g € C(X,Y). It is known
that this metric is complete so we may construct complicated continuous
functions using Cauchy sequences of simpler continuous functions.

For a compact space X, H(X) denotes the subset of C'(X, X) consisting
of homeomorphisms. However, even though Cauchy sequences of homeo-
morphisms will converge to continuous functions, they will not necessarily
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converge to a homeomorphism. In order to achieve this, we will use the In-
ductive Convergence Criterion. We present the statement of this criterion as
it appears in [§].

Theorem 4.14 ([8, Lemma 3.2.5]). Let X be a zero-dimensional compact
metric space with metric p and for eachn € w, let h,: X — X be a homeo-
morphism. If for every n € N we have that p(hyi1, hy) < €,, where

€, = min{27", 37" - min{min{p(hi(x), hi(y)): =,y € X,

plz,y) = 1/n} i < n}},
then the uniform limit h = limy,_,ooh, s a homeomorphism.

The exact values of the numbers €, in the statement of Theorem are
not important. What we will use is that ¢, is a positive number than can be
calculated once the first n+ 1 homeomorphisms hy, ..., h, have been defined.

Before we continue with the proof of Proposition [4.9, we stop to give two
final ingredients in the proof.

Lemma 4.15 ([3, Lemma 4.8]). Let X be a zero-dimensional space, Y C X,
let 1Y — [0,00) be a USC function and ¢ = extx (). Then ¢ is USC,
¥ C ¢ and the graph of 1 is dense in the graph of .

Lemma 4.16. If (C, X,v) € oL then there exists a Lelek function ¢: C' —
0,1] such that (C,X,p) € oL, ¢ | X = [ X and the graph of ¢ | X is
dense in the graph of ¢.

Proof. Let dy be a metric for C' and consider the metric d((z,y), (z,w)) =
do(z,2) + |y — w| defined on C' x [0, 1]. Define ¢ = exte (v | X).

We show that ¢ is a Lelek function. Let p € C' with ¢(p) > 0, t € (0, ¢(p))
and € > 0, we want to find ¢ € G such that d(q, (p,t)) < e. By Lemma
4.15| we know that the graph of ¢ | X is dense in the graph of ¢ so there
exists k € w and € X such that d({x,¥(x)), (p, o(p))) < €/2. We may
also assume that ¢ (z) > t. Since ¥ | Xj is a Lelek function, there is z € X,

such that d(({z,1(2)), (z,t)) < €/2. So let ¢ = (z,7%(z)). By Lemma we
know that 1(z) = p(z) so ¢ € G§. Then

d(q, (p. 1)) do(z,p) + |(z) — ]

do(z, ) + do(z,p) + [¢(2) — ¢
d({z,9(2)), (. 1)) + do(z, p)

d({z,9(2)), (z, 1)) + d((z, ¥ (2)), (p, ¢(p)))
€/2+¢/2

AN IA
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This shows that ¢ is a Lelek function. The remaining condition holds directly
from Lemma .15 L

The constant function with value 1 will be denoted by 1.

Lemma 4.17. Let F' C 2 be closed and let {V,,: n € w} be a partition of
29\ F into clopen non-empty subsets. Assume that o: 2¥ — (0,00) has the
following properties

I.alF=1]F,
2. limy, oM (logo(a | V,,)) =0, and
3. a 'V, is conlinuous for each n € w.

Then a is continuous.

Proof. Let A= {x, € X : n € N} be a sequence of X such that x,, — z. We
have the following cases.

. ACX\Fandzxe X\F
2. ACFandx € F,

3. ACX\FandzxeF.

Note that in cases 1, 2 by hypothesis lim; . a(z;) = a(x). Then is enough
prove item 3.

Let € > 0. By the continuity of the exponential function there is § > 0
be such that if t € (—4,0) then €' € (1 —¢,1+ ¢€). By condition (2) there
exists N € w such that if n > N, then |[M(logo(a | V,,))| < d§. On the
other hand, there exists k € w such that if ¢ > k then x; € | J{V,: n > N}.
If i > k we obtain that |log(a(z;))| < ¢ so log(a(x;)) € (—0,d). Thus,
a(z;)) € (1 —€,14¢€) so |a(x;) — 1] <e. O

Proof of Proposition[{.9. Without loss of generality we assume that C' =
D = 2¥ and we fix some metric p on 2¥. By an application of Lemma
we can assume that ¢ and 1 are Lelek functions, that the graph of ¢ [ X
is dense in the graph of ¢, and that the graph of ¢ [ Y is dense in the
graph of 1. After this, apply Theorem so we may assume that ¢ = 1.
Then (2, X, ), (2¥,Y,¢) € oL so there are collections {X,,: n € w} and
{Y,,: n € w} that satisfy the conditions in Definition Notice that since
the graphs of ¢ | X and ¢ [ Y are dense in the graph of ¢ it is easy to see
that
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(%) if U C X is open then

M(p [ U)=sup{M(¢ [ UNX;):i €w}=sup{M(p | UNY;): i € w}.

Given s € w=¥, we construct clopen sets U, and V; of 2¥, closed nowhere
dense sets Dy and E, of X and Y, respectively, and for every m € w a
continuous function (,,: 2¥ — (0,1) and a homeomorphism h,,: 2¢ — 2“.
We abreviate the composition h, o...0 hyg = f, for all n € w. We will use
the Inductive Convergence Criterion (Theorem- ) to make the homeomor-
phisms converge, so at step n we may calculate the corresponding ¢, > 0.
Our construction will have the following properties.

(a) Uy =Vy =2
(b) For each s € w<*, Dy C Uy and E; C V.

(c) For every n € w and s € w", {Us~;: i € w} is a partition of U\ Dy and
{Vs~;: 1 € w} is a partition of V \ Ej.

(d) For every n € w, X,, C | J{Ds: s € w="} and Y,, C | J{F,: s € w="}.

(e) For every n € w and s € w"™, diam(U,) < 27" and diam(V;) <
min{27", ¢, }.

(f) For every n € w and s € w", f,[Ds] = E.

(g) For every n € w and s € wW", hy41 | Es = idpg,.
(i) For every n,k € w, {s € w": diam(U,) > 27*} is finite.
(J
(k) For every n € w, ¢ = (B, - ) o f,,*.

)
)
(h) For every n € w and s € w", f,11[Us] = V.
)
) For every n € w and z € 2¢, |log(B,41(x)/Bn(x))] < 27"
)

Let us assume that we have finished this construction, we claim that f =
lim,, . f, exists, is a homeomorphism and f[X] =Y.

First, let * € 2¥ and n € w. If ¥ € (J,cn Ds, then fo(z) = fori(2)
by conditions (f) and (g). Thus, p(f.(z), far1(x)) = 0. Otherwise, by (c)
there exists s € w"™ with z € U,. By (h), f.(x) € V,. Moreover, applying
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(c) and (h) we conclude that f,11(z) € V. So p(fu(x), fus1(z)) < €, by
the second part of (e). Thus, p(fn, fur1) < €, and we can apply the Induc-
tive Convergence Criterion to conclude that f is well-defined and in fact, a
homeomorphism.

Next, let x € X so x € X,, for some m € w. Thus, by (b) there exists
s € w=™ such that # € Dy. Then fiy(z) € E; C Y by (f). By (g) it
inductively follows that f,(z) = fis|(z) for every n > |s|. This implies that
f(z) € Y. A completely analogous argument shows that if y € Y then there
is x € X such that f(z) =y. This shows that f[X] =Y.

By (j) we know that {f,,: n € w} is a Cauchy sequence with the uniform
metric so 8 = lim,,_,+ 5, exists and is a continuous function. Using the first
part of (e) it is possible to prove that {f,!: n € w} is also a Cauchy sequence
and converges to f~!; this proof is completely analogous to the proof that
f = lim, . f, so we omit it. Then, by uniform continuity we infer that
lim,, oo B © f;;1 = Bo f. So using that ¢ is USC and (k) we obtain the
following

Blx) - p(x)

limy, 00 B () - @(2)

limy, o0 @(f (7))

p(f(x))

limy, o0 o (fu (£ ' (f(2))))
limy, o0 B (S (f(2))) - (
Bx) - p(x)

Thus, po f = - p. This argument is completely analogous to the one in
[3, Theorem 7.5].

Now we carry out the construction. Let v: w<“\ {}} — w be any function
such that v [ w™! is injective for all m € w.

Step 0. Let Uy = Vj = 2, as in condition (a). From (%) we infer that
there exists kyp € w such that

A

fit(f(@)))

IA

log (M(p)) —log (M (¢ | Xi,)) <1/2, and

log (M () —log (M (e | Yi,)) < 1/2.
Define Dy = X}, and Ey = Yy,. Then ¢ [ Dy and ¢ | Ey are Lelek functions,
and [log(M (¢ | Dy)/M(¢ | Ey))| < 1 so we may apply Theorem to
obtain a homeomorphism hy: Dy — Ej and a continuous function ag: Dy —

(0,00) such that ¢ O% = (¢ | Dy) - ay and M(logoay) < t. After this,
apply Theorem to find a homeomorphism hq: 2* — 2“ and a continuous
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function fy: 2 — (0, 00) such that hg [ Dy = ﬁ@, Bo | Dy = ay, pohg = ©-fy
and M (logoay) < 1.

Notice that since hg = fo this implies (k) for n = 0. Let {V,,: n € w} be a
partition of Ejy into clopen sets with their diameters converging to 0. We may
assume that diam(V;,) < min{egy, 1} for every n € w. We define U,, = h{ [V,]
for each n € w. Without loss of generality we may assume that for all n € w,
diam(U,,) < 1. With this we have finished step 0 in the construction.

Inductive step: Assume that we have constructed the sets D,, FE, for s €
wS™ the sets Uy, V, for s € wS™*! the homeomorphisms h; for i < m, and the
continuous functions f; for i < m. Notice that by condition (c) it inductively
follows that (J{Ds: s € w=™} and | J{E,: s € w="} are closed because their
complement is (J{U, : s € w™ '}, and [J{V; : s € w™ !}, respectively.

Fix t € w™. First, notice that by (*) we have that there exists k; € w
such that

log (M(p [ V;)) = log (M(p | V; NYy,)) < 27 (mH1+()

Notice that ¢ [ V; MY}, is a Lelek function.

Recall that (k) says that ¢ = (8, - ) o f,'. In particular this implies that
0 Vi=(Bm-p) | Uo f ']V from this we infer the following. First, using
(¥) we may assume that k; € w is such that

log (M(p I V4)) —log (M(e [ ViN fiu[Xk,])) < 9= (m+147(t))

Also, ¢ [ Vi N fin[Xk,] is a Lelek function.

So deﬁne Dy = VN f|Xy,] and E, =V, ﬂth Then ¢ | D; and ¢ | E; are
Lelek functions, and [log(M (¢ [ Dy)/M (¢ | Ey))| <27 (m+7() 50 we may ap-
ply Theoremto obtain a homeomorphlsm ht D; — E,; and a continuous
function a;: D; — (0, 00) such that <poht @-a; and M (log oqvy) < 2~ (m+7(1),
Then apply Theorem [.11] to find a homeomorphism h;: V; — V; and a con-
tinuous function ay: V; — (0,00) such that hy [ Dy = ht, o | D, = t,
wohy = o, and M(logoay) < 2~ (m+1®),

Let Em = U{Es: s € w="}. Then define

hpyr = idg,, U U{hs: s € wmttl,
by Lemma it follows that h,,1 is a homeomorphism. Also, define

i1 =1 B, U U{as: 5 € W™t
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and Br41(2) = apg1 (fin(2)) - B () for all z € 2¥. By Lemma et 18

continuous so [3,,11 is continuous.

Now, fix t € w™! again. Write V; \ E; as a union of a countable, pairwise
disjoint collection of clopen sets, all diameters of which are smaller than
min{e,,, 27"} and converge to 0. Let {V;~;: i € w} be such partition and for
each 1 € w, let U;~; = fT;il[th]. Without loss of generality we may assume
that for i € w, diam(Up~;) < 27™.

We leave the verification that all conditions (a) to (k) hold in this step of
the induction to the reader. This concludes the inductive step, and the proof

of this result. O

4.3 The hyperspace of finite sets of €.

In this section we will apply the Theorem to prove that F(€,.) =~ Q x €&,..
Proposition 4.18. F(€.) € o€

Proof. According to (2) in Theorem there is a witness topology W, for
€. and a base [y for €. of sets that are compact in W,. Let W, the Vietoris
topology in IC(€., W) and define W = W, | F(€&.). Let 8 be the collection
of all sets of the form (U, ..., U,) N F(€.) where n € w and U; € 3, for each
Jj < n. Also, for every n € w let E, = F,11(€.). We will now check that
these choices satisfy the conditions in Definition 4.2

By[1.47 we know that W), is zero-dimensional so W is also zero-dimensional.
By Proposition 2.2] W witnesses that F(&,) is almost zero-dimensional. Con-
dition (a) clearly holds.

For (b), fix n € w. Since €&, is crowded and F,,11(€&,) is a continuous image
of € (under the function g, defined in Proposition , then F,.1(€,) is
crowded. By Proposition Fn(X) is closed in (X)) for any topological
space X and all n € N. By Proposition m Fnia(€) \ Fri1(€.) is dense
in F,2(€.). Since €, has no isolated points then the set D of all z € €712
such that if 7, 7 < n+2 and ¢ # j, then z(i) # x(j) is easily seen to be dense
in €2, Then ¢,42[D] = Fni2(€.) \ Frr1(€.) is dense in F, 2(€.). This
proves (b).

Also, Fr41(€.) is W-closed in F(€,) for all n € w, which implies (c).
Let S = {0} and Ay = €. The collection A from Lemma is equal
to {Fnt1(€.): n € w}. Thus, by Lemma we obtain (d). Finally, by
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Proposition that if 4/ € § and n € w, then U N F,11(€,) is compact in
W I Fni1(€,), which implies (e). O

Corollary 4.19. F(¢.) ~ Q x €.

Here it is natural to ask about F(Q x €.), we will prove that this space is
homemorphic to Q x €&, as well.

Proposition 4.20. Let E € o€. If n € N then F,(F) € €.

Proof. Let W, {E,,: n € N} and /8 be witnesses of £ € ¢£. By Proposi-
tion [2.2] the Vietoris topology Wy of F,(E, W) witnesses the almost zero-
dimensionality of F(E). For each m € N, let Z,, = pn,,[E"]. We define 5,
to be the collection of the sets of the form (U, ...,U;) where k € N and
U; € B for every i < k. We claim that Wy, {Z,, : m € N} and f, witness
that F,(F) € of.

Conditions (a), (b) and (c) are easily seen to follow. By Lemma [2.9 we
infer that F,(F) is {F,.(Ey): m € N}-cohesive, which is (d). Now, let U =
(Uo,...,Us) € Bp and m € N. Notice that UNZ,,, C (UsNEp, ..., U NE).
Now, by the choice of § we know that U; N E,, is compact in W for every
i < k. Thus, the set (UyNE,,, ..., UxyNE,,) is compact in W. Since UNZ,, is
closed in W, it is also compact. This proves (e) and completes the proof. [

Proposition 4.21. If E € &, then F(F) € of.

Proof. Let W, {E,,: n € N} and (8 be witnesses of E € 0€. Let W, be the
Vietoris topology of F,,(E,W). For each m € N, let Z,, = ¢,,[E"]. We define
Bo to be the collection of the sets of the form (U, ..., Us) where k € N and
U; €  for every i < k. The proof that Wy, {Z,, : m € N} and [, witness
that F(F) € o€ is completely analogous to the proof of Proposition and
we will leave it to the reader. O]

Corollary 4.22. Ifn € N, then F,,(Q x €.) = Q x €. Also, F(Q x €,.) ~
Q x €.

4.4 The o-product of &,

Given a space X, a cardinal k and e € X, the support of x with respect to e
is the set supp,(z) = {a € k: x(a) # e}. Then the o-product of k copies of
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X with basic point e is o(X,e)* = {x € X": |supp,(z)| < w} as a subspace
of X*. It is known that o(X,e)" is dense in X*.

Now, consider X = €,. Since €, is homogeneous, the choice of the point e
is irrelevant. Denote o(€¥, e) = o0&, Since 0 & is separable and metrizable,
it is natural to ask the following.

Question 4.23. Is 0&.“ homeomorphic to Q x &€.?

In [I7] D. Lipham prove that the question is affirmative. We use the
following stratification. Given n € w, define 0,,&, = {x € €¥: supp,(z) C n}.
But with this stratification we were not able to answer question In the
following we will show some properties of this stratification.

Proposition 4.24. 0,&. = {z € €¥: supp,(z) C n} is a closed subset of
o€ for each n € N.

Proof. We will show that 0 €.\ 0, €. is a open subset of 0 €.” for each n € N.
Let x € 0€.*\0, &, then there exists k, . .., k, € Nsuch that 7, (e) # m, ()
for each j € {1,...,n}. For each i € {1,...,n}, let U; a open subset of &,
such that m, () € U; and m,(2) ¢ U; if j # 4. Then x € (), 7 (U;) and
MNr_y W,:(UZ') No,¢, = 0 thus 0, &, is a closed subset of o &,~. O

By Proposition 0,€. is closed in €Y. and homeomorphic to & for
each n € w since the function f, : 0,&. — €2 defined by f,(z) = (z;)ien
is a homeomorphism; so in fact it is a closed copy of €. if n # 0. In fact,
using an argument similar to the one in Remark it is possible to prove
the following.

Lemma 4.25. 0€.” is {0,,&.: n € N}-cohesive.

Proof. Let z € 0€.”, we need to find an open set V' of o&.” containing z
but no non-empty clopen subset of any element of {0,&.: n € N}. Since &,
is cohesive there exists an open set U C €, such that zp € U and U contains
no non-empty clopen subsets of .. We claim that V' = U x ¢ MO s the
open set we are looking for.

Clearly, z € V. Let n € N and assume that O is a non-empty clopen set of
0,€, with O € V. Notice that V No,& = U x €M% x {e}*\" Let p € O
and let ¢ = p | w\ {0}; notice that ¢ € &,"\% x {e}*\*. Then ON (&, x {¢})
is a non-empty clopen subset of V N o,&. N (€. x {p}) = U x {q}. This
contradicts our choice of U and concludes the proof. O
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Also, a natural witness topology for ¢&¥ can be obtained by using the
restriction of the product topology of the witness topology for €.. The reader
will not find it difficult to prove that properties (a) to (d) of Definition
hold but property (e) does not hold.

4.5 Factors of Q x €&,

Recall that in section 2 of Chapter 1, we mentioned the characterizations of
the factors of €, €. and €;. Then we found it natural to try to characterize
the factors of Q x €&,.

Lemma 4.26. 1. Qx €&, does not contain any closed subspace homeomor-
phic to &2.

2. Q x €&, does not contain any closed subspace homeomorphic to €.

Proof. Lete: € — Qx €. be a closed embedding. Choose some enumeration
Q = {gn: n € w}. Notice that F,, = e [{g,} x & is a closed subset of ¢¥
for every n € w. By Theorem there exists m € w such that £, has
non-empty interior in €. By Proposition every open subset of € has
a closed copy of itself. Thus, this implies that there is a closed copy of & in
{qm} x €.. However, ¥ is cohesive by Remark and every closed cohesive
subset of €. is homeomorphic to €, by Theorem [1.33] This is a contradiction
to Corolary [L.35] Thus, (a) holds.

Now, let e: & — QX €, be a closed embedding. Again, let Q = {¢,,: n € w}
be an enumeration and let F,, = e“[{g,} x €.] for every n € w. Since e is a
closed embedding, for every n € w, F), is homeomorphic to a closed subset
of €. so it is completely metrizable. This implies that € is an absolute Gjy,,
and this contradicts [3, Remark 5.5]. This completes the proof of (b). O

Lemma 4.27. 1. Every €.-factor is a (Q x &,.)-factor.
2. The space Q is a (Q x &,.)-factor but is not a €.-factor.
3. Every (Q x €.)-factor is a E-factor.
4. The space € is a E-factor that is not a (Q x €.)-factor.

5. The space €% is a €-factor that is not a (Q x &.)-factor.
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Proof. For (i), let X be a €.factor. By Therem X x €. =~ ¢, Thus,
Xx(Qx€)~Qx (X x€.)~QxE,. For (2), notice that since Q xQ = Q
then Q is a (Q x &.)-factor but it is not a &_-factor because it is not Polish.
For (3), let X be a (Q x &.)-factor. By Proposition[1.27, €.x Q“ ~ €. Thus,
XXxEr XX(ExQY)m X x(Qx€)xQ¥~ (Qx€E)xQ¥~ €& xQ¥ ~ €.
For (4), it is clear that € is a €-factor. However, € is not a (Q x &.)-factor
because in that case Q x €. would have a closed copy of & and we have
proved that this is impossible in Lemma [1.26] For (5), recall that € is an
¢-factor by Corolary 9.3 of [3] and it cannot be a (Q x €.)-factor, again by
Lemma [£.26 O

Theorem 4.28. For a non-empty space E the following are equivalent:
(i) E x (Q x &.) is homeomorphic to Q x €,
(1) E is a (Q x €.)-factor,

(i1i) there are a topology W on E witnessing that E is almost zero-dimensional,
a collection of W-closed non-empty subsets {E, : n € w} and a base of
neighborhoods 3 such that

(1) E=J{E,: n€w},
(2) for everyn € w, E, C E,.1, and
(8) for every U € 8 and n € w, U N E,, is compact in W.

Proof. Condition (i) clearly implies (ii).

Next, we prove that (ii) implies (iii). Since E is a Q x &.-factor, there is a
space Z such that Ex Z = Q x €.. Let W, {X,,: n € w} and § be witnesses
of E x Z € € as in Definition §.2] Fix a € Z and let A = E x {a}; we may
choose a in such a way that AN Ey # (). We define E,, = X,, N A for every
new Wy=W /| Aand 5y ={UNA: U € B}. It is not hard to prove that
these sets have the corresponding properties (1), (ii) and (iii) replacing E for
A.

Finally, we prove that (iii) implies (i). Let Wy, {E,: n € w} and [y as
in item (iii) for E. Let W, {X,,;: n € w} and § witnessing that Q x €., as
in Lemma [4.3] Let Wy be the product topology of (E, Wp) x (Q x &, W).
Notice that E, x X,, is W-closed for every n € w. Thus, W, clearly witnesses
that £ x (Q x &,) is almost zero-dimensional. Finally, let ; = {UxV: U €

507 Ve ﬂl}
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We claim that Wy, {E,, x X,,: n € w} and ; witness that Ex(Qx€,.) € o€.
Conditions (a), (b) and (c) from Definition [{.2)are easily checked. By Remark
we obtain that ' x (Q x &,.) is {E,, x X,,: n € w}-cohesive. Finally,
given U x V € 8; and n € w, since U N E,, is compact in W, and V N X, is
compact in W, then (U x V)N (E,, x X,,) is compact in W,;. This concludes
the proof. n

Corollary 4.29. If X is a (Q x &.)-factor, then F,,(X) and F(X) are (Q x
&, )-factors.

Proof. From the proof of Proposition and Proposition it follows
that F,(X) and F(X) satisfy the conditions (1),(2) and (3) of item (iii) of
the Theorem [4.28] Therefore F,,(X) and F(X) are (Q x €&.)-factors. O

Question 4.30. Can we remove mention of the zero-dimensional witness
topology in Theorem [{.2§ by adding the following statement?

(4) E is a union of a countable collection of C-sets, each of which is a
E.-factor.

David Lipham has informed us that, however, if we change “C-sets” to
“closed sets” in (4) of Question [4.30} the resulting statement is not equivalent
to E being an (Q x &,)-factor. This is because in [16] he gave an example of
an F, subset of &, that is not an &-factor.

4.6 Dense embeddings of Q x €&,

In this section we consider when Q@ x €, can be embedded in almost zero-
dimensional spaces as a dense subset. The following theorem characterizes

Q.

Theorem 4.31 ([8, Theorem 2.4.1 (Sierpinski) |). The space of rationals Q
15 the only countable crowded space.

By Theorem every countable crowded dense subset of &, is homeo-
morphic to Q and € ~ €. for each n € N, then we obtain the following.

Example 4.32. There is a dense F, subset of €. that is homeomorphic to
Q x €.
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Since question is affirmative and o0& is a dense and an F, subset of
¢¥  we have the following example.

Example 4.33. There is a dense F, subset of €.” that is homeomorphic to
Q x €.

We recall that it is still unkown whether the hyperspace IC(€&,.) is homeo-
morphic to €. (see Question [3.17)) but now we know that it has a dense copy
of Q x €. by Corollary [4.19] Thus we make the following question.

Question 4.34. Let X C €, be dense and a countable union of nowhere
dense C-sets. If X is cohesive, is it homeomorphic to Q x €.?

Notice that Question is related to Question [£.7]



Chapter 5

Miscellanea on AZD spaces

In this chapter we will talk about various topics related to almost zero-
dimensional spaces that have little to do with the previous chapters. We will
talk about extension of functions and compactificafions in the class of almost
zero-dimensional spaces.

The following theorem is important in the theory of almost zero- dimen-
sional spaces. We have not mentioned it before because it is only used in
this part of the thesis.

Theorem 5.1 ([3, Theorem 4.19]). A nonempty subset of an almost zero-
dimensional space X s a retract of X if and only if it is a C-set in X.

Corollary 5.2. Let X be a space AZD, let A be a C-set of X, and f : A — X
a continuous function, then there exists a continuous function F : X — X

such that FF' | A= f.

Proof. Since A is a C-set of X, by Theorem there is a retraction r : X —
A. Then F' = f or satisfies that F' | A = f. m

Corollary 5.3. Any continuous function f : F,(X) — H has a continuous
extension where H € {F,41(X), F(X), KL(X)}.

Proof. Tt is immediate from Corollary [5.2] and Proposition O

67
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Corollary 5.4. Let A and B be a C-sets of X and Y respectively. Let
f+A— B be a continuous function. Then there exists a continuous function
F:X =Y suchthat F | A= f.

Proof. From Theorem [5.1]it follows that there is continuous function r : X —
A such that r | A =1ids. Therefore it implies that H = idx o f o r satisfies
what is requested. O

Proposition 5.5. Let X be an AZD cohesive space. Let f : €. — X be
an open surjective function. Let W be a topology as in item 2 of Theorem

1.31. If fo : (€, W) — X, given by fo(x) = f(x) is continuous, then X is
homeomorphic to €,

Proof. By Remark idg, : € — (€, W) and idy : X — (X, W) are
continuous functions, therefore f: €. — X is a continuous function, since
f = fooid; also the function f; : (€., W) — (X, W) given by fi(z) = fo(x)
is a continuous function, because f; = idx o fy. Let x € X and let U be an
open subset of X such that x € U. Since f is a continuous and surjective
function, there exists w € €. such that f(w) = z and V a neighborhood
that is a compact in W such that = € f[V] C U. Since f is a open function,
then x € flinte, (V)] Cintx f[V]. That is, f[V] is a neighborhood of = in X.
Since f; is a continuous function and f[V] = fi[V] then f[V] is a compact
in Wy. Therefore X is homeomorphic to &, by item 2 of Theorem [[.3T} O

Proposition 5.6. Let X be a Polish AZD, and cohesive space such that there
exists a witness topology W such that (X, W) ~ Q x 2¥, then there ezists an
open dense subset U of X such that U ~ €, .

Proof. By Theorem 5.2 in [20] we have that (X, W) = J, oy F» such that I,
is a compact nowhere dense in (X, W) and F,, C F, ;1. On the other hand,
X is also the union of the {F,, : n € N}. Since X is a Baire space, then
there exists n € N such that intx(F,) # 0. Without loss of generality we
can assume that intx(Fy) # 0. Let n € N, such thar E,, = intx(F,) # 0,
and E = |J,cy En- Note that £ is an open dense subset of X. Let’s prove
that £ ~ €. Since X is cohesive and E is an open subset of X, then F
is cohesive. On the other hand, let x € E, then x € FE, for some n € N.
Since E, is an open subset of X, then there exists a neighborhood W, of
x such that W, C E, and W, is a closed subset of (X,W). Note that
W, C (F,,W | F,), this implies that W, is a compact subset of (E,, W | E,).
Let A= {W, : x € E}, then A is base of E and satisfies the conditions of
Theorem [1.31| Therefore F =~ €,. O
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Proposition 5.7. €Y s not the union of a space E homeomorphic to €.
and a nowhere dense subset F' such that F N &, = (.

Proof. Suppose that & = E'U F', where F' is a nowhere dense subset of ¥
and E homeomorphic to is €.. Then X = &\ F is homeomorphic to €&..
Since intes(X) # 0, then there exists a basic open subset U of €, such
that U is subset a of X. This implies that U has a closed copy of €. On
the other hand, since U is homeomorphic to an open subset V' of €., then
U~V =~ €. (see Proposition 3.4 in [2]). Therefore &, has a closed copy of
¢« by Theorem ¢¥ ~ €., which is a contradiction. O

From this result the following question arises

Question 5.8. If X is a space as in Proposition|5.6, is X homeomorphic to
E.?

Corollary 5.9. If X is a space as in Proposition[5.6, then €% is not home-
omorphic to X

Proof. By Proposition [5.6| we have that X, is the union of €. and a nowhere
dense subset F'. Then by Proposition €% is not homeomorphic to X. [

A compactification is a pair (Y,e) where Y is a compact space and
e: X — Y is an embedding such that e[X] is a dense in Y.

Corollary 5.10. Let X be an AZD space, and Y be a metric compactification
of X. If Y is an AZD space, then X is zero-dimensional.

Proof. By item 4 from Proposition [[.11, Y is a compact totally discon-
nected space. This implies that Y is zero-dimensional. Therefore X is zero-
dimensional. [

Note that in the case that we have an almost zero-dimensional space of
dimension 1 by Corollary we have that any metric compactification Y
of X is not an AZD space. Even more, Y is also not a totally disconnected
space. This implies there is a connected component of Y with more than one
point. In the case of €. we have that there is a compactification Y of €, that
is connected. This compactification is the Lelek fan (see [15]). The following
statement gives us a necessary condition for a space X to have a connected
compactification.
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Proposition 5.11. If X is a cohesive and almost zero-dimensional space,
then X has a connected compactification.

Proof. Since X is a cohesive and almost zero-dimensional space, then it has
a connected extension by a point Y. Since Y is a metric, separable space,
then it has a countable base, therefore Y admits a embedding e into [0, 1]*.
Let Z = cljp 1+ (e[Y]), then Z is a connected and compact space. Since X is
a dense subset of Y, we conclude that X is a dense subset of Z. O

Corollary 5.12. Connected compactifications exist for the following spaces:
¢ ¢ and Q x €.

Proof. Tt follows from Proposition m

Corollary 5.13. Connected compactifications exist for the following spaces:

K(€), K(€,), K(&Y), and K(Q x &.).
Proof. Tt follows from Proposition and Corollary O

Note that Q is an AZD space that is not cohesive, but the space [0, 1] is a
connected compactification of Q. Let us observe that Lelek fan is a connected
compactification of €. of dimension 1 (see [15]). Another question that arises
from the proof of the Proposition [5.11|is the following:

Question 5.14. Let Z be space of the proof of Proposition|5.11. Is Z finite-
dimensional?

From now on we will consider the AZD spaces as Hausdorff spaces that
have a base of neighborhoods of C-sets.

Remark 5.15. All Hausdorff AZD space X, is reqular. Let x € X and
U be an open subset of X such that x € U. Since X is an AZD space,
then there exists B a C-set of X such that x € intx(B) C B C U. Then
clx(int(B)) C U, since B is a closed subset in X.

Given a space X, its weight w(z) is defined as the smallest infinite cardinal
x such that X has a base of cardinality &.

Proposition 5.16. Let X be an AZD space with w(X) = k. Then there
exists a zero-dimensional topology W coarser than the topology in X such

that w(X, W) < k.
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Proof. Let [ be a base of C-sets of X such that |f| = k. Suppose that
B = {Bs : a € kK}. Since w(X) = k&, then for every B,, there exists
Fo = {Ug : v € K} such that for each v € &, U is a clopen subset of
X and B, = Fo. Let F, = {X\ U2 : UY € Fu}, C = Uae, Fa UlUaer Fa
and W be the topology whose subbase is C, by construction w(X, W) < k
and W is coarser topology than topology on X. O]

Proposition 5.17. Let X be an AZD space with w(X) = k, then X can be
condensed into " and Ef.

Proof. Note that 2" admits a embedding into €* and ¢%. By Proposition
there exists a zero-dimensional topology W, such that w(X, W) < k. So
(X, W) admits a embedding into 2°. Let e; : 2° — €5 ey : (X, W) — 2" be
embeddings and id : X — (X, W), then f = ej0ey0id is a condensation. [

The following question arises from proposition

Question 5.18. Let X be an AZD space with w(X) = k. Does X admit a
embedding into "7
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Symbols used

o(X) - power set of X.
(4 inverse image of A, i.e f©(A) is the set {x : f(x) € A}.
intx(A) —— interior of A in the topological space X.

clx(A) — clausure of A in the topological space X.
bdx (A) — boundary of A in the topological space X.

dim(X )——— dimension of a space X.
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Index

F,-set, 3 complete Erdés space, 5
F,s-set, 3 crowded space, 2
Gs-set, 3

Gso-set, 3 Erdés space, 5

A-cohesive, 9

. . filter, 4
m-~equivalent functions, 52 o

Knaster-Reichbach covers, 53
hyperspace of compact subsets of

X, 19 Lelek Function, 15
hyperspace of finite subsets of X,

18 metric complete space, 2
lower semi-continuous function, 6
upper semi-continuous function, 6 one-point connectification, 27
absolute Fj, 3 polish space, 2

absolute Fs, 3
absolute Gs, 3
absolute Gs,, 3
almost zero-dimensional space, 6

space first category, 2
Stone space, 4
symmetric product, 19
Baire space, 2 totally disconnected space, 2
boolean algebra of clopen sets, 4
Borel set, 3

bounded set, 9

ultrafilter, 4
uniform metric, 54

Coset, 7 Vietoris Topology, 18

Cauchy sequence, 2
cluster point, 10
compactification, 69 zero-dimensional space, 2

witness topology, 7
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