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A B S T R A C T

The application-oriented MIMO control-estimation design problem for an important
class spatially distributed tubular reactors is addressed in an integral design approach,
including early and late lumping implementations. First, the saturated output feed-
back control and state estimation problem for the tubular reactor class is considered
following an efficient early lumping approach. On the basis of a finite dimensional
model obtained from the application of the so-called efficient modeling approach
for tubular reactors, passivity and detectability solvability properties, in terms of the
number of sensors and their locations, are identified, and then a saturated output
feedback controller is build as the combination of a saturated passive state feedback
control law and a geometric observer. Closed-loop robust stability is ensured in
terms of sensor locations, control saturation limits and gains. For application-oriented
purposes, the advanced output feedback controller is realized, by model redesign,
as a set of decentralized PI controller with antiwindup scheme and a decoupled
pointwise-like observer, with low computational load, for state estimation purposes.
The design is accompanied with structural and gain tuning to set the actuator and
sensor configuration, the sensor locations, the control limits and the gains of the
control-estimation scheme. Simulation results shown the effectiveness of the proposed
control-estimation scheme.

In the next part of the study, within a late lumping approach, a second control-
estimation system, which considers unconstrained control, is build by combining
a nonlinear control with two terms: (i) a pointwise temperature driven stabilizing
control term, based on a sensor location dependent output linearizing property, and
(ii) a section-wise control term, inspired in inventory control ideas and feedback
passivtion by output selection; and a distributed pointwise observer. The exponential
stability of the closed-loop origin is ensured in terms of sensor location and control
gains. The control-estimation system implementation is done by performing an
efficient late lumping step, by recalling the efficient modeling approach, to draw
a low implementable algorithm. The implementation scheme is accompanied with
sensor and actuator configuration, sensor locations and gains. The performance of
this second control-estimation system is assessed with numerical simulations.

In the final part of the study, first, a comparative simulation-based study between the
obtained closed-loop robust performance with the two proposed control-estimation
schemes and a third control-monitoring system constructed by combining an ex-
isting adaptive controller that produce a distributed control action and the same
pointwise observer used in the proposed schemes. It is shown that the proposed
algorithms present best or similar behavior than its adaptive counterpart. Then, in
an exploratory an informal way, the construction of each control-estimation system,
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initially done in an early or late lumping approach, are performed following the
opposite approach, late or early, with the appropriate theoretical tools for analysis
and synthesis. The obtained results suggests that both control-estimation schemes
can be derived following the early or late lumping settings to end up with exactly
the same implementable algorithm. As closure, it is shown with simulations that
the combination of the controllers of the two proposed control-estimation schemes
produces closed-loop behavior improvement.
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Part I

A B O U T T H I S S T U D Y

This is an introductory preview of this thesis work. Here the technolog-
ical relevance and motivation of the tubular reactor control-estimation
problem is identified and put in perspective with the related literature to
highlight the pertinence of the proposed methodology. Then, the prob-
lem is technically stated and the methodological scope of this study is
established. The contributions of the present study are highlighted. A
case study which will be used througout the entire work for illustration
of theoretical developments is presented. Finally, some useful theoretical
tools and the efficient modeling approach that underlie the whole work
are summarized.
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1
I N T R O D U C T I O N

1.1 motivation

Along the years, tubular reactors have been widely employed on chemical industries
as one of the most important operating units. Several raw material are treated on
tubular reactors to produce precursors for other processes or terminated chemical
products such as ethylene, ethanol and ammonia [57]. Other applications of tubular
reactors include waste water treatment [65] and bioprocesses [46].

The physical phenomena involved in the dynamic behavior of exothermic jacketed
tubular reactors are: (i) diffusive-convective mass and heat transport, (ii) heat con-
duction with the cooling jacket, and (iii) exothermic chemical reactions which is the
mechanism that convert reactants into products and generates an excess of heat. These
transport and reaction phenomena, modeled by Partial Differential Equations (PDEs),
interact in a complex manner to produce a rich nonlinear dynamic behavior that
includes multiple (stable and unstable) steady-states, limit cycling, chaos, parameter
sensitivity, among others [129; 130; 131; 71].

According to the previous ideas, the tubular reactor Control-Estimation (CE) prob-
lem is a difficult task that demands precise and robust Control-Estimation Sys-
tems (CESs) to satisfy operational (product quality, reliable functioning, etc.) and
supervisory (for setpoint adjustment, fault detection and isolation, etc.) requirements,
as well as physical constraints (such as limited control action). In what follows, the
motivation of the present study from the industrial and research points of view are
established.

1.1.1 Industrial practice perspective

In most industries, tubular reactors are usually stabilized (around a nominal steady-
state that satisfy production requirements) with Proportional-Integral (PI) controllers
[88; 119; 70; 42; 121]. PI control has low cost, reliable functioning, and acceptance by
practitioners, but its implementation requires experience, insight, and testing [119; 89].
The industrial design of PI controllers for tubular reactors with limited control action:
(i) is based on a lumped Ordinary Differential Equation (ODE) input/output model
(at least for testing purposes), (ii) requires an adequate selection of the number of
sensors and actuators and their locations to achieve reliable closed-loop behavior, and
(iii) use a proper (ad-hoc) Anti-Windup (AW) scheme for saturation handling [132].

3
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4 introduction

For industrial monitoring purposes, the (extended) Kalman Filter [95] and data
driven techniques [90] are widely employed to perform state estimation to assess
control performance (for retuning or adjustment of setpoints), as well as fault detection
and isolation [90]. These estimation algorithms [45; 46]: (i) are constructed and/or
implemented on the basis of lumped ODE models, and (ii) require an adequate
selection of the number of sensors and their locations to achieve reliable performance.

According to the current state of industrial control practice and new trends raised
up by the industrial paradigm Industry 4.0 [90], the main interests of industry on
control topics are Proportional-Integral-Derivative (PID) control and Model Predictive
Control (MPC) (the unique advanced technique accepted in industry). Furthermore, it
is agreed that PID control is of upmost relevance and ubiquitous, and its performance
enhancement is relevant for industries. Nevertheless, it has been reported [88; 90] that
most of the industrial PID loops are poorly tuned, implying low plant performance,
so that in some cases open-loop control is preferred. PID control and MPC coexist
in factories in a hierarchical structure with three layers: (i) an upper large-term
optimization (over months or years) which consider economic requirements and
resource constraints, (ii) an intermediate mid-term optimization (over weeks, days)
driven by MPC algorithms that computes setpoints, and (iii) a bottom short-term
control decision layer composed by PID controllers (that use the setpoints computed
by the MPCs in the previous layer) to drive field equipment (valves and pumps).

Accordingly, the ubiquity of PID control will remain, with monitoring for perfor-
mance assessment as an important ally. Thus, the areas of improvement for industrial
CES in tubular reactors are: (i) the design of reliable, robust, and simple output
feedback controllers similar to PID ones, (ii) new and more efficient PID tuning and
retuning for different operating conditions and uncertain systems, (iii) the consider-
ation of structural tuning or retuning to enhance control performance (sensor and
actuator configuration as design degree of freedom), and (iv) regarding estimation,
the design of computationally efficient and robust algorithms.

1.1.2 Academic research perspective

In academic research studies, usually the solution to the CE problem of tubular reactors
is performed using advanced model-based techniques [109; 24; 72; 73; 39; 83; 36; 104;
38]. Basically, two different approaches are followed, the so-called early lumping and
late lumping. On the one hand, the early lumping approach (first discretize then
design and implant) yields a ready to implement CES according to the mature control
theory for ODE systems, but most designs lack reliability assurance via PDE model-
based closed-loop stability. On the other hand, at the cost of more mathematical
complexity, the late lumping approach (first design, then discretize and implant)
retains throughout control design the reactor physics inherent to the PDE model, and



1.1 motivation 5

formal closed-loop stability conditions can be drawn for certain classes of distributed
control systems.

In the early lumping approach, the first design step is to construct a lumped
ODE model that approximates, accurately enough, the dynamic behavior of the PDE

tubular reactor model, either by spatial discretization or model reduction techniques
[36]. Then, model-based design is employed to come up with the CE algorithm,
assurance of closed-loop functioning and performed assessment. The implantation
is straightforward since the design is done in a lumped model. Usually, in the early
lumping step, efficient models are drawn to describe local transient behavior, but
not much attention is given to the dynamic behavior beyond locality (ignoring the
possibility of generation of spurious steady-states) [22].

Contrarily, in the late lumping approach, the PDE model is used for the design of
the CES based on the properties of the distributed dynamics [93]. Reliable functioning
is ensured for the infinite dimensional closed-loop system. At the implementation step
(which does not receive much attention), usually high dimensional finite-difference
lumped ODE models or low dimensional orthogonal collocation methods are used.
The fact that this may lead to unduly computational load and even generation of
spurious steady-states or extraneous attractors is usually neglected.

An important conclusion of the above discussion is that each approach, early or late,
may present problems at the design or implementation stage, if the inherent problems
of the opposite approach are ignored. For instance, in the early or late lumping design
of CES for tubular reactors, usually both approaches overlook a key applicability
subject: the extent of spatial lumping in the light of on-line computational load, which
reflects number of ODEs and their ill-conditioning, and the generation of spurious
dynamic behaviors [22].

In both, early and late lumping approaches, several advanced control and estimation
techniques have been proposed and combined to design CESs for tubular reactors.
Among these techniques, passivity-based control (studies only in control [9; 110;
140; 141; 142]), and MPC [50; 49; 48; 82] are two techniques that have received much
attention. Important advances have been presented in both areas, nevertheless, most
of these control and/or estimation designs are too complex in comparison with the
standard and widely employed industrial PID control and data driven estimation
techniques, and thus usually are not considered relevant for industrial deployment.

The preceding considerations motivate the aims of this study, the improvement of
industrial PI control and estimation algorithms using an advanced and application-
oriented model-based approach. The design must have: (i) criteria for selection of the
number of sensors and their locations, (ii) assurance of robust closed-loop functioning,
(iii) simple tuning guidelines, (iv) simplicity, as much as possible, in terms of linearity,
and dynamic coupling, and (v) an efficient lumping implementation. For this end, the
open-loop dynamics of the system will be exploited: the interplay between stabilizing



6 introduction

mechanisms (mass and heat transport, heat conduction, and mass consumption
phenomena) with destabilizing ones (heat production by reaction).

Both paths, early and late lumping, will be considered. The former one will be
employed first since it enables a clear way to use powerful and well-known CE design
techniques for lumped systems, including robust closed-loop stability for the lumped
tubular reactor model. Then, the late lumping approach will be used to construct, on
the basis of the tubular reactor PDE model, a similar CE algorithm as well as assurance
of closed-loop stability.

1.2 methodological approach

According to the preceding discussion, in this work the aim is to design CES which
preserves some well known properties of industrial-like control and estimators algo-
rithms, such as, simplicity, simple tuning guidelines, low computational load. Also,
the designed CES must have reliable performance with assurance of closed-loop ro-
bust stability in the presence of exogenous disturbances and uncertain conditions
(in the sense of practical stability). Furthermore, the design must be accompanied
with criteria for the selection of sensors and/or actuators and control limits. This
complex objective will be reached by following a constructive control [118] approach
in a three-step methodological procedure: (i) starting with the construction of a
Multiple Input Multiple Output (MIMO) CES for an unstable tubular reactor within an
early lumping approach, then (ii) a second MIMO CES will be constructed in the late
lumping framework for an unstable tubular reactor, (iii) finally, the implications of
each design for its opposite will be explored.

In the first step, using an efficient modeling approach for tubular reactor modeled by
PDEs [22], a low order finite-dimensional lumped model will be obtained. Then, using
a nonlinear constructive control approach, a MIMO output feedback controller for joint
state stabilization and estimation will be constructed with geometric techniques. The
assurance of closed-loop robust and reliable functioning will be established within
a practical stability framework based on structural and Input-to-State Stability (ISS).
The implementation must be, as possible as it could be, similar to what is used in
industry, i. e., PI control and simple estimation schemes.

In the second step, the tubular reactor CE problem is faced within the late-lumping
approach. Using constructive ideas, the transport and reaction dynamic mechanisms
will be analyzed to identify how this interaction produce destabilizing or stabilizing
effect along space yielding to the identification of sensible regions in which the
sensors must be placed. Then, using this measurements a MIMO controller will be
constructed to stabilize an (open-loop) unstable profile pair and an additional control
term for behavior improvement will be drawn with inventory control ideas. An
estimator, with innovation mechanism as simple as possible, will be used later for
output feedback control and estimation purposes. The stability will be assured with
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the help of functional analysis. Following the efficient modeling approach, a reliable
late lumping method will be used to implement the control-estimation system.

In the last step, a methodological question arise: for the particular tubular reactor
class, there is a chance that constructing a control estimation system using the early
and late lumping approaches leads to the same implementation result? The answer
to this question will be explored. The implications and connections between the two
proposed CES, constructed within an early or late lumping methodology, will be
explored in the opposite, late or early lumping approach, respectively.

1.3 state of the art

As mentioned before, the CE problem of tubular reactor has been tackled with two
strategies: the early and late lumping methods. Several review papers can be found in
the literature [109; 24; 72; 73; 39; 83; 36; 104; 38] in which the issues of modeling, model
reduction, PDE dynamics analysis, and estimation and control synthesis for general
distributed parameter systems, and chemical engineering problems in particular,
including tubular reactors. The next revision to the state of the art is based on the
available tubular reactor CE found on the above review papers and other references
therein. Special attention is given to the following issues: (i) the discretization or model
approximation scheme used for implementation (knowing that for early lumping
this is the first step of the design, and that in late lumping is the latest one), (ii) the
type of the employed control and estimation techniques, (iii) the method to select the
number of sensors and their locations, (iv) the consideration of control saturation in
the controller design, and (iv) the assurance of robust closed-loop stability.

1.3.1 Early lumping approach

The early lumping approach was the first natural step for the design of CE schemes for
distributed parameter systems. This is so because, the available analysis and synthesis
techniques for lumped ODE models were very matured compared with the current
state of development of theory for systems modeled by PDEs. Two main approaches
exists for model-based CES design purposes: (i) obtain a reduced state-space ODE

model, and (ii) obtain a reduced model with considers only input/output interactions
for the measured variables. In the present review only the first case is considered.

One of the very first strategies used on the CE problem of tubular reactors was the
use of Finite Differences (FD) to obtain a lumped model and then linearize it around
an steady-state of interest. This is the case of Pell and Aris in [105], where a least
square estimation algorithm and an optimizing control are constructed. The authors
consider the limiting case in which the FD approximation converge to the infinitesimal
case so that the proposed control and estimation system is continuous in space.
The methodology is illustrated with a tubular reactor with stochastic disturbances.
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The works of Amundson and co-workers in the 60’s and 70’s decades [15], where a
mathematical perspective of several chemical engineering problems is given, include
a large collections of studies on stability, estimation and control of tubular reactors
where mostly orthogonal collocation is used to obtain lumped ODE models.

In the 70’s and 80’s decades, a bunch of theoretical and experimental studies
on control of fixed-bed, homogeneous and heterogeneous tubular reactors were
developed. Some of these works are collected and resemble in the review papers by
Jørgensen [72] and Jørgensen and Jensen [73]. At that time, most studies were based
on discretized or approximated models where FD or weighted residuals (orthogonal
collocation being the most popular) techniques were employed. Then, linearized
models computed around an steady-state of interest (possibly open-loop unstable),
were employed for CE synthesis. Regarding the estimation task, Kalman Filtering,
Luenberger observers, and least square estimation schemes were employed. For
control synthesis, several approaches have been employed, such as pole placement,
LQ, LQG, optimal control, self-tuning regulators, adaptive control, internal model
control, modal control, and frequency domain-based designs, among others.

With the development of new lumping methods and advanced nonlinear CE tech-
niques, further studies, that draw lumped nonlinear tubular reactor ODE models,
were developed during the late 80’s and early 90’s. The works of Balas, Daoutidis
and Christofides [24; 36] were based on Galerkin methods (a special case of the
method of proper orthogonal collocation) and its combination with approximated
inertial manifolds to obtain a nonlinear model reduction technique. On the basis of
this lumped ODE models, different CESs were developed by combining linear and
nonlinear Luenberger observers for state estimation with controllers coming from
application of differential geometric (partial) feedback linearization, robust control by
Lyapunov redesign, and nonlinear optimal control design techniques.

Recent studies on CESs designs for tubular reactors includes: orthogonal collocation
for model reduction and the combination of a linear Luenberger observer with
adaptive linearizing control [47] or Kalman filtering for estimation purposes combined
with MPC [5]. It is worth noting the big effort of Christofides and co-workers in the
use of nonlinear Galerkin methods (combined with approximated inertial manifolds)
for the construction of Luenberger and static estimators which are combined with
several control techniques: (i) robust Lyapunov-redesign control [37; 2], (ii) geometric
feedback linearizing control [17; 18; 20], (iii) MPC [50; 49; 48], (iv) Economic Model
Predictive Control (EMPC) [82], and (v) adaptive control [107].

Other approaches combines infinite power series ansatz for model reduction with
Luenberger estimation and flatness-based feedforward and geometric feedback control
[91], FD discretization methods for the design of CES based on open-loop observers and
geometric control [137; 138], and nonlinear geometric estimation with passivity-based
control [99; Bad+20]. Recent studies includes: (i) nonlinear discretizing schemes such
as weighting essentially non-oscillatory schemes, particle filtering for state estimation
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and MPC [63], and (ii) orthogonal collocation for model reduction, Kalman filtering
for state estimation and nonlinear MPC [74].

Most of the above mentioned CE studies follows an application-oriented approach
and contribute with important results, nevertheless, according to the late lumping
approach, inherited from the use of lumped models, the distributed nature of the
system is not completely exploited or taken into account in the design procedure.
As mentioned in [30], the reliable functioning of the designed control estimation
system in terms of practical stability and state reconstruction convergence it is not
independent on the model reduction technique and may be affected by a non adequate
lumping. For instance, it is well recognized that some discretization schemes such as
FD, finite element or orthogonal collocation (possibly on finite differences or elements),
if are not properly employed, may lead to generation of spurious steady-states, limit
cycling,and high frequency oscillatory behavior. Furthermore, spill-over effects may
produce unstable closed-loop dynamics [61].

1.3.2 Late lumping approach

With the development of suitable theory for the analysis of PDE systems, the late
lumping approach emerged, in the late 80’s, as an appealing method for the analysis
and design of CE algorithms for tubular reactors, this having the advantage that
closed-loop reliable functioning can be assured for the real dynamics of the distributed
system under consideration.

CES designs for tubular reactors, includes, for the control part, several techniques
such as flatness-based, modal, backstepping, optimizing, adaptive, sliding mode,
and MPC control designs [92; 124; 134; 135; 102; 46]. The state estimation task is
usually performed with distributed linear or nonlinear Luenberger observers, Kalman
Filters or other techniques such as least square estimation and asymptotic or interval
observers. The studies listed below are presented here because: (i) the proposed
control-estimation methodology is of methodological interest, and/or (ii) special
attention is given to the implementation step.

One of the first designed CESs is the one proposed by Windes and Ray [134; 135],
in which a robust CE scheme, that also considers online yield optimization based
on the temperature hotspot measurements, is constructed as the combination of:
(i) a distributed least squares-based state estimation, (ii) a parameter estimation
scheme, (iii) a cascaded control for wall temperature with a digital PI control with
rate constraints in the outer loop and a PID in the inner loop, and (iv) an optimizing
scheme for the computation of the hotspot setpoint. The implementation is pursued
using orthogonal collocation.

Dochain [46] propose a CES for chemical and biological tubular reactors where an
asymptotic observer (which using reaction invariant manifolds avoids the need to
know the reaction rate function), driven by the temperature profile measurement, is
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combined with an adaptive linearizing control law. For implementation purposes,
guidelines for the use of orthogonal collocation or FD on a coarse grid are given.

A CES based on sliding mode control is proposed in [102], the design considers a
discontinuous feedback controller driven by a full state (or reduced order) observer
with a discontinuous correction term. The design is applied to an open-loop unstable
tubular reactor. It is assumed that the system is of minimum phase, the measured
output is the entire temperature profile, and the control input is the jacket temperature.
The implementation of the controller is performed using backwards FD over a fine
mesh with a large number interior points.

In [124], on the basis of a boundary measurement at the end of the reactor and
boundary control at the inlet, a linear backstepping infinite dimensional observer-
based output feedback controller is constructed, and applied to a, rather academic,
tubular reactor example.

In [92], flatness-based feedforward and feedback control are combined to design
a CES. Formal power series and summability methods are used to approximate
the system dynamics and for the design of the infinite dimensional feedforward
term. Then, the feedback term (a PID controller) and a Luenberger observer are
designed on the basis of a truncation of the formal power series introduced in the
first step of the design. Reliable closed-loop performance is ensured and the proposed
control-estimation system is applied to an unstable tubular reactor with boundary
measurements and controls. The closed-loop system is simulated by using the power
series expansion for the implementation of the controller while the system is simulated
with a high order spatial discretization based on the method of lines.

Recently, a new late lumping approach [139; 77; 78], propose the use of the linearized
PDE tubular reactor model is converted into a continuous-space-discrete-time model
by means of the Cayley-Tustin transform. Then, a discrete-time Luenberger observer
is designed and combined, to construct an output feedback controller, with different
MPCs, which account for control and state constraints as well as closed-loop stability.
The implementation is based on the discrete-time model obtained by the Cayley-Tustin
transform and spatial discretization with an Euler scheme.

Passivity-based control is a design technique which is particular case of dissipativity
which considers as supply rate the inner product between the vector of inputs and
outputs that must be of the same dimension [31]. Passivity is a concept that comes
from electrical and mechanical system [103] and has been extended for general
nonlinear abstract systems [126]. Since the energy approach of passivity-based control
does not suit well the variables commonly employed in distributed chemical processes,
the extension of this technique has been done using a thermodynamic representation
of process systems [9; 110; 140; 141; 142]. Nevertheless, the concept of feedback
passivation has not been interpreted within a chemical engineering framework in
terms of transport, conduction and reaction phenomena in tubular reactors.
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From the previous review, it is identified that several tubular reactor CE studies have
been proposed, the extension of several control and estimation techniques originated
for finite-dimensional systems are employed. In other cases, analysis and synthesis
techniques explicitly constructed for infinite dimensional systems are considered.
Undoubtedly these studies represent important contributions to the field, however, the
late lumping designs usually neglect, with few exceptions, the relevance of efficient
implementation schemes and the fact that the proposed CES ar too complex to be
considered in an industrial practice setting.

1.3.3 Sensors and actuators

In most of the preceding studies, the vector of measured outputs is a set of pointwise
temperatures at fixed axial locations. Regarding actuators, usually inlet flows or the
cooling jacket are considered. As it must be pointed out in [67], while experimental
tubular reactors have plenty of sensors and actuators because usually they are highly
instrumented, in industrial applications usually only few fixed sensors and actuators
are available. Thus, it is important to design robust and reliable control-estimation
systems that use a limited quantity of measured outputs and control inputs.

When the actuator and sensor configuration is a design degrees of freedom for
CE purposes, several configuration design techniques can be found in the literature.
For the selection of sensors and their locations, usually model-based or data driven
optimization techniques are applied (see, e. g., [108] for a detailed review on both
methods). For instance, in model-based procedures on can find: (i) the maximization
of local (about a prescribed steady-state operation) standard or Gramian observability
or detectability measures [62; 133; 29; 8; 7; 120], and (ii) nonlinear optimization [20;
19]. In the area of data-driven optimization [127; 98; 108] present approaches in which
different sensitivity measures constructed with simulation data are optimized to
determine the sensor locations. Regarding actuators, the most used technique is to
employ optimization algorithms which minimize performance indexes that penalize
control effort with explicit dependency on the actuator location [16; 20; 19].

The above mentioned studies establish systematic procedures, based on optimiza-
tion algorithms, that give sensor and actuator configurations that ensures adequate CE

performance in relation with the related penalty function. Nevertheless, the location
of sensors and/or actuators within a model-based comprehensive approach related
to the physical phenomena that take place has not been fully explored, furthermore,
the connection between advanced sensor placement techniques and the industrial
sensitivity criterion have not been connected in a formal manner.
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1.3.4 Constrained control of tubular reactors

It is well known that the limited capacity of actuators must be considered for the
design of constrained control schemes due to the fact that control saturation may
lead to poor closed-loop performance. For instance, in finite-dimensional open-loop
unstable chemical processes it has been shown that control saturation may lead to
unstable closed-loop functioning if control limits are not selected properly [35; 10; 11].

In industrial settings, when saturated PI control is considered, a common drawback
is the generation of windup effects due to accumulation of regulation error in the
integral term. This issue is addressed with ad-hoc techniques such as: conditional
integration, back calculation, and autonomous reset schemes, as well as combination
of them [132]. Other techniques includes observer-based designs [66].

In the context of advanced control, saturation is usually handled with optimal
nonlinear control, using the Sontag formula, or in MPC designs, as constraints in the
optimal control problem setting [3; 1; 4; 49; 5; 82; 63]. Another approach is the one
used in [94] where finite time transition between steady-states with limited control
actuation is solved as a constrained two-point boundary value problem.

Besides the preceding studies propose controllers for tubular reactors that ensure
robust stability in the presence of control and state constraints, in all these approaches
the control limits are fixed and not considered as a design degree of freedom. Fur-
thermore, the possibility of having undesired closed-loop steady-states due to the
combination of control saturation and open-loop instability are simply ignored.

1.3.5 Comments regarding the state of the art

From the previous review to the available, industrial and academic research, literature
on CES, sensor and actuator configuration strategies, and constrained control for
tubular reactors, the following areas of opportunity have been identified:

• The improvement of industrial CES designs on: (i) control tuning and retuning
for operation in wide regions of the state space, (ii) model-based estimation for
performance monitoring purposes, (iii) systematization of selection of sensor
locations, and (iv) actuator saturation handling.

• The early or late lumping must be performed in a robust fashion to obtain
reliable models for model-based design or implementation purposes, that avoids
spurious transient and static behaviors and present efficient computational load.

• Regarding the late lumping approach, beyond MPC, most of the proposed
designs are too complex to be considered for implantation in industrial control
of tubular reactors, thus advanced model-based design must lead to robust and
efficient controllers with simple implementation schemes.
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• Passivity-based control, asides from the thermodynamics framework, has not
been interpreted within a physical perspective for control design.

• The structural tuning, i.e., consideration of sensor and actuators as design
degrees of freedom for the CE problem, can be further exploited for performance
enhancement within a passivity-based framework.

• Selection of control limits as design degree of freedom has not been explored,
furthermore, the avoidance of appearances of undesired closed-loop transient
or static behaviors due to the combination of open-loop multiplicity and control
saturation have not been analyzed in tubular reactors studies.

1.4 contributions

In the light of the previously identified issues, the main contributions on the design
of CES of the present study are:

• The construction, from an early lumping perspective, of a MIMO CES for a multi–
jacket unstable tubular reactor as the combination of a saturated robust passive
nonlinear stabilizing controller and a nonlinear geometric estimator which can
be implemented as an industrial PI controller with saturation handling via a
back calculation scheme with a decoupled robustly convergent estimator. The
design is accompanied with simple tuning and implementation guidelines with
criteria for the selection of sensor location and control limits, and assurance of
robust and reliable closed-loop functioning.

• In a late lumping approach, a second MIMO CES is constructed as an observer-
based output feedback control for a multi–jacket possibly open-loop unstable
tubular reactor. The scheme is composed by: (i) a stabilizing MIMO state-feedback
control, (ii) a supplementary inventory-like passive state-feedback component
for behavior improvement. The output feedback controller is implemented
with the use of a pointwise observer, leading to a control design with: (i) a
closed-loop stability condition in terms of the sensor set and control gains, (ii)
an application-oriented control gain-measurement tuning procedure, and (iii)
reduced on-line computational load via efficient late lumping.

• The exploration of connections and implications of each of the preceding CESs

with its opposite lumping approach. An answer to the question: for the particular
class of chemical tubular reactor class under study, is it possible to arise to the
same implementation system going from the early and late lumping approaches?

The above problems, that can be considered as three methodological steps, are
tackled within a constructive control framework [118]: instead of using generic CE

design techniques for nonlinear systems, the exploitation of the specific characteristics
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of the considered reactor class will be employed throughout the CE design procedure.
Different theoretical and practical tools will be used throughout design steps, from
the off-line development to the on-line implementation, such as linear and nonlinear
finite and infinite dimensional dynamics [76; 118; 39; 38], chemical reactor engineering
sciences [57; 64], bifurcation theory [71], passivity-based control [118; 31], realization
theory [122], PID [132], inventory [88; 119; 110], and lumping techniques [22].

Methodologically speaking, the early and late lumping approaches are used for
CE design within an efficient modeling [22] and application-oriented framework
leading to: (i) the use of several model variants for off-line developments and on-line
implementation, (ii) procedures for sensor/actuator selection, and gain and control
limits tuning, and (iii) assurance of robust stability, in the sense of ISS.

The efficient modeling approach recommends the use of FD or finite elements
instead of orthogonal collocations due to the fact that the former method preserves
the physical interactions of transport and reaction phenomena. The efficient modeling
approach provides a systematic procedure to obtain a finite-dimensional model that
avoids spurious transient and static behaviors and ensures efficient computational
load in the light of typical parameter uncertainty and discretization errors [22].

In the first methodological step, using the FD and the efficient modeling approach,
a lumped model will be obtained and then used, within a constructive control spirit
[118], to identify passivity and detectability properties to draw a CES composed by
a saturated passive nonlinear state feedback controller and a geometric observer.
Closed-loop robust and reliable functioning, in the presence of parasitic dynamics, is
established in terms of sensor location, control limits and gains. It is shown that the
controller can be implemented as an industrial PI controller with an AW term of back
calculation type [132] and decoupled from a estimator with low computational load.

In the second step, the CE problem is solved with a late lumping strategy. A
MIMO CES, with unconstrained control, is constructed to modify the natural interplay
(open-loop destabilizing) between transport and reaction dynamic mechanisms at
key spatial locations, so that the target steady-state becomes stable. The controller
is supplemented with an additional inventory-like control term for performance
improvement. A pointwise state estimator [115] is used for output feedback control
and estimation purposes. Following the efficient modeling approach, the CES is
implemented with late lumping with low computational load. Closed-loop stability,
in terms of sensor locations and gains, is assured for the distributed model .

In the last step, the two proposed CESs are put in perspective between them and
compared with existing CE algorithms. The extension of the early and late lumping
design strategies to their opposites, late or early, is explored in an informal manner.
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1.5 summary

Based on the respective industrial and academic research states of the art, the con-
sidered tubular reactor joint CE problem has been motivated and justified. The
methodological approach which will be followed has been motivated in general terms,
and the main contributions have been announced.





2
C O N T R O L E S T I M AT I O N P R O B L E M

In this chapter, the Multiple Input Multiple Output (MIMO) Control-Estimation (CE)
problem for a class of exothermic chemical tubular reactors with a coolant jacket with
multiple sections and multiple sensors is formulated. The cases of unconstrained and
constrained control action are considered. To introduce the problem, first, the tubular
reactor model is introduced and its open-loop dynamics are briefly described. Then,
the CE problem is technically stated. This is followed by a detailed delineation of the
methodological strategy employed throughout the entire study. Finally, a case study
that will be used for illustration of theoretical developments is introduced.

2.1 the reactor class

Consider the jacketed tubular reactor (with volume V, cross area A, perimeter P,
and length L) depicted in Figure 2.1, where a reactant (fed at constant flow rate Q,
concentration Ce(ta), and temperature Te(ta)) is converted into product through an
exothermic reaction R(C, T). The reactor is cooled with a multi–jacket subdivided in
q subsections, all of the same size L

q , with region of actuation
[ L(i−1)

q , Li
q

]
, i = 1, . . . , q,

and individual per jacket temperature Tc,i(ta), i = 1, . . . , q. Each section of the reactor
is equipped with one temperature sensor at location li, thus the set of temperature
outputs is T(li, ta), i = 1, . . . , q.

The state of the tubular reactor is defined as the pair

{C(l, ta), T(l, ta)} , 0 ≤ l ≤ L, ta > 0, (2.1a)

composed by the distributed concentration C(l, ta) and temperature T(l, ta) profiles
which vary along the spatial and temporal coordinates l ∈ [0, L] and ta ∈ R, respec-
tively. Under standard assumptions [57], the corresponding dynamics are obtained
from the mass and heat balances described by the following pair of parabolic Partial
Differential Equations (PDEs):

∂ta C(l, ta) = Dm∂2
l c(l, ta)− vQ∂lC(l, ta)− R(C(l, ta), T(l, ta)), (2.1b)

∂ta T(l, ta) = Dh∂2
l T(l, ta)− vQ∂lT(l, ta) + ΘR(C(l, ta), T(l, ta))−

− H(T(l, ta)− Tc(l, ta)), (2.1c)

Dm∂lC(0, ta) = vQ(C(0, ta)− Ce(ta)), ∂lC(L, ta) = 0, (2.1d)

Dh∂lT(0, ta) = vQ(T(0, ta)− Te(ta)), ∂lT(L, ta) = 0, (2.1e)

C(l, 0) = C0(l), (2.1f)

T(l, 0) = T0(l). (2.1g)
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Figure 2.1: Tubular reactor and its control monitoring scheme

In (2.1), (2.1b) [or (2.1c)] is the mass (or heat) balance with boundary (2.1d) [or
(2.1e)] and initial (2.1f) [or (2.1g)] conditions. The constant axial velocity is defined
as vQ = Q

A , Dm (or Dh) is the mass (or heat) dispersion number. The parameters
H = UhP

ρcp
and G = (−∆HR)

ρΘcp
, are defined in terms of the heat transfer coefficient Uh, heat

of reaction −∆Hr, and density (or specific heat capacity) of the reacting mixture ρG
(or cp). R[C(l, ta), T(l, ta)] is the reaction rate function which is defined pointwise over
the axial position and is assumed to be monotonically increasing on the concentration
and bounded with respect to its arguments.

The jacket temperature Tc(l, ta) is given as

Tc(l, ta) =
q

∑
i=1

Bi(l)Tc,i(ta), (2.1h)

where Bi, i = 1, . . . , q is the characteristic function of the i-th actuator, and is given by

Bi(l) =

1 if l ∈ Ri

0 else
, i = 1, . . . , 1, Ri =


( L(i−1)

q , iL
q

]
if 1 ≤ i ≤ q− 1[ L(i−1)

q , L
)

if i = q
, (2.1i)

where Ri, i = 1, . . . , q are the fixed regions of actuation of each jacket section with
length dependent on the number of jacket sections q. The set of temperature measure-
ments is defined as

Tm,i(ta) := Tm,i(li, ta), li ∈ Ri, i = 1, . . . , q. (2.1j)

Since the operational aim is to produce a high yield, the controlled output is defined
as the outlet concentration C(L, ta). The exogenous inputs are the inlet concentration
Ce(ta) and the inlet temperature Te(ta).

Due to physical restrictions, the exogenous inputs are bounded as follows

0 ≤ Ce(ta) ≤ C+
e , T−e ≤ Te(ta) ≤ T+

e , (2.2a)

where (·)− [or (·)+] is the lower (or upper) limit of (·). The jacket temperatures satisfy
the bounds

T−c ≤ Tc,i(l, ta) ≤ T+
c , i = 1, . . . , q. (2.2b)
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Consequently, by mass and energy conservation (2nd law of thermodynamics), reactor-
jacket heat exchange directionality (1st law of thermodynamics) and the continuity of
the reaction rate function, the concentration and temperature profiles are bounded as:

0 ≤ C(l, ta) ≤ C+
e , min{T−e , T−c } ≤ T(l, ta) ≤ max{T+

e , T+
c }+ Ta, (2.2c)

where Ta = GC̄e is the adiabatic temperature rise referred to the nominal concentration
C̄e. Here ¯(·) denotes the nominal value of (·).

For given nominal values of flow Q̄, feed concentration C̄e (or temperature τ̄e), and
nominal jacket temperature profile T̄c(l) = ∑

q
i=1 Bi(l)T̄c,i and T̄c,i = T̄c, i = 1, . . . , q, the

concentration and temperature profile pair at steady-state
{

C̄(l), T̄(l)
}

, 0 ≤ l ≤ L
is the solution to the Ordinary Differential Equation (ODE) boundary value problem

Dm
d2C̄(l)

dl2 − vQ
dC̄(l)

dl
− R(C̄(l), T̄(l)) = 0,

Dh
d2T̄(l)

dl2 − vQ
dT̄(l)

dl
+ GR(C̄(l), T̄(l))− H(T̄(l)− T̄c(l)) = 0,

Dm
dC(0)

dl
= v̄Q(C̄(0)− C̄e), Dh

dT(0)
dl

= v̄Q(T̄(0)− T̄e),

dC(L)
dl

= 0,
dT(L)

dl
= 0.

For simplification of notation, consider the following scaling coordinate change for
the independent time and space variables

t =
vQ

L
ta, s =

l
L

. (2.3a)

Define the dimensionless concentrations referred to the nominal inlet one:

c(s, t) =
C
(

Ls, L
vQ

t
)

C̄e
, ce(t) =

Ce

(
L

vQ
t
)

C̄e
, (2.3b)

as well as the dimensionless temperatures referred to the adiabatic temperature rise:

τ(s, t) =
T
(

Ls, L
vQ

t
)

Ta
, τe(t) =

Te

(
L

vQ
t
)

Ta
, τc(s, t) =

Tc

(
Ls, L

vQ
t
)

Ta
. (2.3c)

From the substitution of the dimensionless variables (2.3) on (2.1h), the dimension-
less control input is defined as

τc(s, t) =
q

∑
i=1

βi(s)τc,i(t), τc(t) =


τc,1(t)

...

τc,q(t)

 , (2.4a)
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where the characteristic functions of the actuators βi(s), i = 1, . . . q are defined as

βi(s) =

1 if s ∈ Ri

0 else
, i = 1, . . . , q, Ri =


( i−1

q , i
q

]
if 1 ≤ i ≤ q− 1[ i−1

q , 1
)

if i = q
, (2.4b)

Proceeding in a similar manner, the vector of measured outputs is defined as

τm,i =
∫ 1

0
δi(s)τ(s, t)ds, i = 1 . . . , 1, τm(t) =


τm,1(t)

...

τm,q(t)

 , (2.5a)

where the sensor characteristic functions δi(s) = δ(s− ςi) are Dirac delta functions
at the sensor locations ςi. The latter ones are grouped in the sensor location set ς

defined as

ς = {ςi ∈ Ri ⊂ (0, 1), i = 1, . . . , q} . (2.5b)

Finally, the controlled output is

co(t) := c(1, t). (2.6)

With the previous definitions, the dimensionless reactor model is described as

∂tc(s, t) =
1

Pem
∂2

s c(s, t)− ∂sc(s, t)− r(c(s, t), τ(s, t)), (2.7a)

∂tτ(s, t) =
1

Peh
∂2

s τ(s, t)− ∂sτ(s, t)− υτ(s, t) + r(c(s, t), τ(s, t))−

− υ
q

∑
i=1

βi(s)τc,i(t), (2.7b)

1
Pem

∂sc(0, t) = c(0, t)− ce(t), ∂sc(1, t) = 0, (2.7c)

1
Peh

∂sτ(0, t) = τ(0, t)− τe(t), ∂sτ(1, t) = 0, (2.7d)

c(s, 0) = c0(s), (2.7e)

τ(s, 0) = τ0(s), (2.7f)

τm,i(t) =
∫ 1

0
δi(s)τ(s, t)ds, i = 1, . . . , q, cz(t) = c(1, t), (2.7g)

where c(s, t) [or τ(s, t)] is the concentration (or temperature) state profile, the exoge-
nous inputs are: the inlet concentration (or temperature) ce(t) [or τe(t)]. The reaction
rate function and the related parameters in dimensionless form are given by

r(c, τ) =
LR(C̄ec, Taτ)

v̄QC̄e
, Pem =

LvQ

Dm
, Peh =

LvQ

Dh
, υ =

LH
vQ

,
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Pem, Peh, are the mass and heat Peclet numbers while υ is the heat exchange number.
From the mass and heat conservation restrictions given by (2.2), the dimensionless

variables involved in (2.7) are defined over bounded set as established next:

ce(t) ∈ [0, c+e ], τe(t) ∈ [τ−e , τ+
e ], (2.8a)

for the exogenous inputs. For the concentration and temperature profiles:

c(s, t) ∈ [0, c+e ] := C τ(s, t) ∈ [τ−, τ+] := T , (2.8b)

and the control input

τc,i(t) ∈ [τ−c , τ+
c ] := Tc, i = 1, . . . , q. (2.8c)

From (2.8b) the state profiles are defined over the product set X :

[c(s, t) τ(s, t)]T ∈ X = C ×T . (2.8d)

The corresponding steady-state profiles [c̄(s, t) τ̄(s, t)]T, for given nominal feed con-
centration c̄e (or temperature τ̄e) and jacket temperature profile τ̄c(s, t) = τ̄c ∑

q
i=1 βi(s),

are the solution to the two point boundary value problem

1
Pem

d2c̄(s)
ds2 − dc̄(s)

ds
− r(c̄(s), τ̄(s)) = 0,

1
Peh

d2τ̄(s)
ds2 − dτ̄(s)

ds
− υτ̄(s, t) + r(c̄(s), τ̄(s)) + υτ̄c

q

∑
i=1

βi(s) = 0,

1
Pem

dc(0)
ds

= c̄(0)− c̄e,
1

Peh

dτ(0)
ds

= τ̄(0)− τ̄e,

dc(1)
ds

= 0,
dτ(1)

ds
= 0.

The associated steady-state outputs are given by

τ̄m,i =
∫ 1

0
δi(s)τ̄(s)ds, i = 1, . . . , q, c̄o = c̄(1).

2.2 open-loop dynamics

In this section, the open-loop dynamics, in terms of limit sets (steady-states and limit
cycles) of the tubular reactor class (2.7) are characterized.
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2.2.1 Nominal distributed dynamics and limit sets

Henceforth, the explicit dependency on the spatial (s) and time (t) independent vari-
ables will be omitted for brevity and written only when needed for clarity purposes.
Define the temperature and concentration profiles and exogenous inputs vectors:

χ =

[
χ1

χ2

]
=

[
c(s, t)

τ(s, t)

]
, χe =

[
χ1,e

χ2,e

]
=

[
ce(t)

τe(t)

]
.

Thus, the reactor dynamics can be rewritten in compact form as

∂tχ = F (χ) + G (χ) +Bcτc, (2.9a)

Bb(χ, χe) = 0, (2.9b)

χ(0) = χ0, (2.9c)

τm =
∫ 1

0
H mχds, co = H oχ(1, t), (2.9d)

where τc, τm, and co are defined in (2.6), (2.4), (2.5a), respectively. The functions F ,
G , and Bc are

F (χ) = Pe−1∂2
s χ− ∂sχ− υg1χ, Pe =

[
Pem 0

0 Peh

]
, g1 =

[
0

1

]
,

G (χ) =

[
−ρ(χ)

ρ(χ),

]
, Bb(χ, χe) =

[
Pe−1∂sχ(0, t)− χ(0, t) + χe(t)

∂sχ(1, t)

]
.

The input and output maps are given by

Bc = υg1β, β =


β1
...

βq


T

, H m = gT
1 δ, δ =


δ1
...

δq

 , H o =

[
1

0

]
.

By virtue of the boundedness and continuity of the reaction rate function r (see
[136]), for given initial state-input data (χ0, χe, τc), the Partial Differential Equation
(PDE) model (2.9) has a unique solution motion χ with unique output signal τm, i. e.,

χ(t) = tχ(t, χ0, χe, τc), τm(t) =
∫ 1

0
H mtχ(t, χ0, χe, τc)ds.

For constant input data (χ̄e, τ̄c), the motion χ reaches exponentially a stable steady-
state χ̄ or a limit cycle χ̄(t), i. e.,

(χe, τc) = (χ̄e, τ̄c), χ0 /∈ S = Ss ∪Sl ⇒ χ(t)→ χ̄ ∈ Ss or χ̄(t) ∈ Sl

where

Ss =
{

χ̄1, . . . , χ̄ns

}
, Sl =

{
χ̄1(t), . . . , χ̄nl

(t)
}

, (2.10)

Ss (or Sl) is the set of ns (or nl) steady-states (or limit cycles).
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2.3 problem

The CE problem consist in designing, a decentralized model-based on-line Control-
Estimation System (CES) (depicted in Figure 2.2) composed by an output feedback
MIMO controller and an estimator. The CES has the form

θ̇ = Γ(θ, τm, χe, p,Sq, Kθ), θ(0) = θ0, (2.11a)

χ̂ = Ω(θ,Sq), (2.11b)

τc = µs(θ, τm, χe, p, Kθ ,Sq), τc,i ∈ Tc, (2.11c)

Driven by output τm and exogenous input χe (if available) measurements, the dynamic
CES, which use a tubular reactor model Γ with internal state θ and parameters p,
produce the state estimate χ̂ and the control action τc, each one given by the output
maps Ω and µs, respectively. The vector of gains Kθ and the CES structure Sq are
given as

Kθ = (Kc, Ke), Sq = (nθ , q, ς, Tc). (2.11d)

Kθ contains control Kc and estimator Ke gains. In Sq, nθ is the finite dimension of the
CES, q is the number of coolant jacket sections and sensors, ς is the sensor location
set (2.5b), and Tc = [τ−c , τ+

c ], defined in (2.8c), is the admissible size of i-th control
action, i = 1, . . . , q. In (2.11c), the symbol µs denotes component-wise saturation, with
limits (τ−c , τ+

c ), of each entry of the control output map µ (i = 1, . . . , q):

µs(·) := satτ+
c

τ−c
[µ(·)] =


satτ+

c
τ−c
[µ1(·)]
...

satτ+
c

τ−c
[µq(·)]

 , satτ+
c

τ−c
[µi(·)]


τ+

c if µi(·) > τ+
c

µi(·) if τ−c < µi(·) < τ+
c ,

τ−c if τ−c < µi(·)

In agreement with [67], since industrial tubular reactors are operated with a low
amount of sensors and actuators, in this study only the cases for q = 1, 2, 3 will be
considered for the design of the MIMO CES (2.11).

The CES (2.11) must: (i) adjust with saturated output-feedback control µs the coolant
temperature vector τc to attain closed-loop robust stability and output regulation
about a prescribed (possibly open-loop unstable) steady-state-outputs pair (χ̄, τ̄m, c̄o)

which ensures high yield (c̄o ≈ 0), (ii) provide a robustly convergent estimate χ̂ of the
concentration-temperature profile χ, and (iii) satisfy a trade-off between convergence
speed, control effort, computational efficiency and complexity.

Despite the finite dimension of CES (2.11), for implementation purposes, its design
may be done following either the early or late lumping approaches. In both cases, the
lumping step will be performed using the efficient modeling approach [22].

It must be pointed out that in this study only the control input τc is considered
for design, in the understanding that it corresponds with the master component
of a typical cascade control configuration. The design of the slave component is a
straightforward task [34] that is omitted in the study.
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Figure 2.2: Multi–jacket tubular reactor with a MIMO CES and constrained control action.

2.4 methodological approach

The problem is solved within a constructive [118] and application-oriented framework
for process control design [116]. The aim is to obtain a CES, for the considered class
of open-loop unstable tubular reactors, similar to what is use in industrial practice
supplemented with the benefits of model-based design: assurance of robust stability
and formal criteria for the selection of the structure of the CES. Three methodological
steps will be considered for the solution of the CE problem. In a first step, within the
early lumping approach, a MIMO CES, with constrained control, will be designed by
exploiting passivity and detectability properties and realization theory to obtain a CES

composed by a PI control decoupled from the estimator. This design is appealing for
industrial practice since it is a well-known structure. In a second step, an advanced
MIMO CES, with unconstrained control, will be constructed within a late lumping
approach by the exploitation of constructive and inventory control ideas. In the final
step, the implications of each design in the opposite perspective, late or early lumping,
will be explored.

Specifically, in the first methodological step, a CES design will be performed on
the basis of a lumped model obtained from the application of the efficient modeling
approach [22]. Using this model, the CES will be constructed as the combination
of a passive controller and a geometric observer. The solvability properties will be
established in terms of the sensor location and control limits by using the concepts of
zero dynamics and closed-loop detectability of the Single Input-Single Output (SISO)
case that are inherited to the MIMO setting. The closed-loop stability will be ensured
within a practical stability framework. Finally, by using concepts from realization
theory and the inseparability principle of Skelton [123], the CES will be realized as a
decoupled PI controller with AWs protection and a pointwise-like observer.
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In the second step, within a late lumping approach, an advanced CES system
is designed by exploiting the interplay between the stabilizing heat transport and
destabilizing heat generation mechanisms. This is done by studying the system as an
Lur’e interconnection: stability conditions for the linear dynamics as first established
and then modified to account for the nonlinear effects of the reaction rate function. An
additional control component, drawn with the relationship between heat inventory
control and passivity for distributed systems, leads to the control component of the
CES. A pointwise observer is considered for output feedback control and estimation
purposes. Closed-loop stability conditions in terms of the structure of the CES and
gains are characterized together with structural-gain tuning guidelines.

The proposed CES are put in perspective with their industrial counterparts and other
advanced CES, including the comparison of the proposed sensor location criteria with
the usually employed in industry, and simulation-based comparison of closed-loop
performance with an adaptive output feedback controller coupled with a pointwise
observer. Finally, the extension of the first CES, designed within an early lumping
strategy, is explored in the infinite dimensional setting. Then, the extension of the
second CES, constructed in the late lumping framework, is explored in the early
lumping case. The performance of the proposed CESs is compared and the benefits of
each one are identified and combined to obtain a mixed CES which combines the two
design methodologies.

2.5 case study

Without restricting the approach, the theoretical developments and the functioning of
the proposed CES will be illustrated and tested with a representative bistable reactor
example [129; 130; 131] that has been employed in previous studies with advanced
model-based nonlinear feedback stabilizing control [102; 30; Fra+20; FA].

A first order chemical reaction is considered

r(c, τ) = cebr− ar
τ , ar =

Ea

RgTa
, br = lnDa, (2.12)

where Ea is the activation energy, Rg is the ideal gases constant, Ta is the adiabatic
temperature rise, and Da is the Damkohler number. The tubular reactor dimensionless
parameters and nominal input values are given in Table 2.1.

The application of a standard FD PDE solver with N = Npde = 200, yields that the
reactor example has a three-steady-state set (2.10) and no limit cycles, i. e.,

Ŝ (Npde,p) = Ŝs(Npde, p) =
{

χ̄N,E, χ̄N , χ̄N,I
}

, Ŝl(Npde, p) = ∅.

The three steady-states are presented in Figure 2.3: an extinction-ignition stable
steady-state pair

{
χ̄N,E, χ̄N,I

}
with an unstable saddle χ̄N in between. This example

captures basic nonlinear characteristics of important industrial reactors with reported
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parameter value uncertainty

Pem 5 ±10 %

Peh 5 ±10 %

υ 1 ±5 %

a 50 ±3 %

b 23.719 ±3 %

input value domain

c̄e 1 [0.5, 1.5]

τ̄e 2 [1.5, 2.5]

τ̄c 1.5 [0.7, 2.3]

Table 2.1: Nominal parameters and inputs for the case study.

experimental data, like the bistable biomass gasification [22; 44], and the ammonia
synthesis with abnormal behavior in close to bifurcation operation condition [97].

The dynamic behavior of the tubular reactor is shown in Figure 2.4, in the presented
two simulations1, the state profiles are initialized around the unstable steady-state,
each simulation considers a different basin of attraction. For the initial profile on the
upper temperature basin of attraction, see Figure 2.4a, the states are pushed away
from the unstable saddle to the ignition steady-state. In case of the lower temperature
basin of attraction, in Figure 2.4b, the states are repelled by the unstable saddle and
settle down in the extinction steady-state.

The operational goal of the tubular reactor is to ensure high yield while keeping
the hotspot temperature profile far from dangerous high values, accordingly, the
unstable target steady state χ̄N is selected for closed-loop operation since it has high
conversion (χ1(1, t) ≈ 0.15) and the associated temperature profiles has a hotspot
with acceptable temperature out of dangerous operation (in comparison with the
ignition stable steady-state with high yield but dangerous temperature profile).

2.6 summary

In this chapter, the class of tubular reactors under study, the general CE problem, the
methodological approach, and a case study that will be used throughout the present
study have been stated. The considered tubular reactor class and the corresponding
spatially distributed model were first presented. Then the CE problem that will be

1 All simulations performed in this thesis work will be executed with Matlab ODE integrator ode45 on
an Intel© Core™ i7-6500U CPU with 2.50 GHz × 2 personal computer with Linux Mint 19.3 operative
system.
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Figure 2.3: Reactor case exmple: concentration-temperature interpolated steady-states profile
pair with FD PDE solver-type of order Npde = 200; (i) stable exctinction (or ignition) steady-
state χ̄N,E (or χ̄N,I) (black plots), and (ii) unstable saddle steady-state χ̄N (red plots). For the
unstable steady state, the typical sensor location for industrial SISO PI control, based on the
sensitivity criterion, is indicated at ss

y ≈ 0.25, and the hotspot at sh ≈ 0.5.

solved was formulated. The methodological approach that will be followed throughout
the rest of the work was introduced in detail, including the formulation of three
methodological steps employed to solve the CE problem. Finally, a case study, to
illustrate theoretical developments, was presented: a representative tubular reactor
with a first order chemical reaction and Arrhenius temperature dependency.

The proposed three-step methodology for the solution of the MIMO CE problem
splits the analysis and synthesis procedures in three objects of study: (i) the CE

problem of a multi–jacket tubular reactor with saturated control using an efficiently
discretized lumped model, (ii) the version of the problem with unconstrained control
and to infinite-dimensional tubular reactor model with an efficient late lumping
implementation, and (iii) the implications of each of the previous designs using
the opposite (late or early) lumping approach. All designs must be accompanied
with assurance of robust stability, criteria for the structural (i. e., sensor and actuator
configuration and control limits) and gain tuning, and an efficient implementation.
All this will be accomplished within an application-oriented perspective.

It must be pointed out that each of these problems constitutes an important field of
actual studies in the chemical process engineering sciences and offers an interesting
contribution with respect to the preceding literature
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Figure 2.4: Open-loop transient behavior of the case study with initial profile pair around the
unstable steady-state. The initial profile pair is in black solid thick lines, while the unstable
saddle steady-state is shown in red solid thick lines.
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P R E L I M I N A R I E S : R O B U S T S TA B I L I T Y F R A M E W O R K A N D
E F F I C I E N T M O D E L I N G A P P R O A C H

In this chapter, the stability notion and the efficient modeling approach, ingredients
that underlain the present study, are recalled from the literature. First, the robust
stability concept, i. e., practical stability in the sense of exponential Input-to-State
Stability (ISS) [125] is established for finite and infinite dimensional systems defined
in suitable spaces. The above mentioned concepts are introduced for certain class of
nonlinear systems and then particularized for nonlinear models usually employed to
describe the behavior od chemical reactors, this includes system composed by linear
and nonlinear components and interconnected systems. Then, a brief description of
the employed efficient modeling approach [22] is given, including methodological
concepts and a detailed explanation of the algorithm and the application of the
method to the case example.

3.1 robust stability framework

Industrial tubular reactors are subjected to uncertainties and fluctuating exogenous
input disturbances. Thus, and adequate concept of stability suited for this setting is
in order. Furthermore, a stability concept easy to apply and with physical meaning
must be considered. A suited definition of stability that match the requirements
previously described is the one of practical stability: Input-to-State Stability (ISS) [125;
75] over a finite domain of interest in which the variables of the tubular reactor have
physical sense. In short words, practical stability means [80]: steady-state exponential
stability when no disturbances are present, and ultimately boundedness around steady-state
with admissible size excursions in the presence of exogenous disturbances of admissible size.

To illustrate the concepts introduced on this chapter, consider the following dynamic
nonautonomous system of finite or infinite dimension, that without loss of generality
has the origin as steady-state (possibly non unique), and is subjected to parameter
errors p̃, exogenous time varying input vector d, output measurement uncertainty ỹ,
and controlled output uncertainty z̃(t):

ẋ(t) = f 1(x(t), p + p̃, d(t), u(t)), x(0) = x0, (3.1a)

y(t) = Cyx(t) + ỹ(t), z(t) = Czx(t) + z̃(t), (3.1b)

where

f 1(0, p, 0, 0) = 0. (3.1c)

29



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



30 preliminaries : robust stability framework and efficient modeling approach

The state x ∈ X (possibly distributed in space) is a vector that contains the concen-
tration and temperature profiles in deviation from a steady-state of interest and is
defined in a suitable state-space X (an euclidian or L2 space), d ∈ D ⊂ R2 is the
vector of exogenous inputs, u ∈ U ∈ Rq is the control input vector, p is the vector of
nominal parameters, y ∈ Rq is the measured output vector, and z is the controlled
output. Consider that the set of admissible initial conditions, errors and disturbances
satisfy the bounds

‖x0‖X ≤ δx0, ‖p‖ ≤ δp, ‖d(t)‖ ≤ εd(t), ‖ũ(t)‖ ≤ εu(t), (3.2a)

where the majorizing functions εd(t) > 0 and εu(t) > 0 satisfy

sup
t≥0

εd(t) ≤ ε+d , sup
t>0
≤ ε+u . (3.2b)

The definition of robust stability [125], that underlies the present study is stated next.

Definition 3.1. Robust stability.
System (3.1a), defined in the set X = {x ∈ X | ‖x‖ ≤ rx} and subjected to bounded initial
state, errors and inputs, according to (3.2) is said to be locally robustly (exponentially) stable
if it has the origin as the unique steady-state, and satisfy the bounding expression

‖x0‖X ≤ δx, ‖d(t)‖sup ≤ ε+d , ‖u(t)‖sup ≤ ε+u ⇒ ‖x(t)‖ ≤ axe−νxtδx + εx, (3.3)

where εx =: axδx + bpδp + bdε+d + buε+u > 0. If rx is the radius set of X the result is nonlocal.

Note that (3.3) implies local ISS for system (3.1a): the origin is exponentially stable
under nominal conditions (without disturbances) and ultimately bounded with
admissible ultimate bound dependent on the size of admissible disturbances.

Definition 3.1 applies for systems composed by nominal f and disturbance g terms:

ẋ = f (x) + g(x; p̃, d, u), x(0) = x0, (3.4a)

where f and g, which accounts for the effect of uncertainties are given by:

f (x) = f 1(x, p, 0, 0), g(x; p̃, d, u) = f 1(x, p + p̃, d, u)− f 1(x, p, 0, 0), (3.4b)

and g satisfy the Lipschitz bound

‖g(x, p̃, d, u)‖ ≤ Lg
x ‖x‖+ Lg

p ‖p̃‖+ Lg
d ‖d‖+ lg

u ‖u‖ . (3.4c)

Assuming that the nominal system, (3.4a) with g = 0, is exponentially stable, then,
by the converse Lyapunov theorems [76], there exist a quadratic Lyapunov functional
V(x) : X ⊂ X → R that satisfy the following bounds on x ∈ X

c1 ‖x‖2 ≤ V(x) ≤ c2 ‖x‖2 , ∂xV f (x) ≤ −c3 ‖x‖2 , ‖∂xV‖ ≤ c4 ‖x‖ . (3.5a)



3.1 robust stability framework 31

and the state of the nominal system is bounded as

‖x‖ ≤ axe−λxt ‖x0‖ , ax =

√
c2

c1
, λx =

1
2

c3

c2
. (3.5b)

With the previous result and the employment of the comparison method (see [76,
Subsections 9.2 and 9.3]) the robust stability of the perturbed system (3.4) can be
established according to the following result.

Lemma 3.1. Robust stability of perturbed systems. Proof in Section a.1
Let x = 0 be an exponentially stable equilibrium point of the nominal system, (3.4a) with
g = 0, defined in the set X = {x ∈ X | ‖x‖ ≤ rx} where rx is the set radius of X (or X ).
Let V(x) be a Lyapunov function of the nominal system that satisfies (3.5a) in X (or in X ).
Suppose that the exogenous inputs and parameter error satisfy (3.2), and the perturbation
term g(x, p̃, d, u) satisfies (3.4c). Provided that

νx = λx −
c4Lg

x

c1
> 0, (3.6a)

and x0 and bp, bd, bu satisfy

‖x0‖ ≤
rx

ax
⇒ δx0 ≤

rx

ax
, bpδp + bdε+d + buε+u := εx ≤ rx, (3.6b)

where
ax

νx

(
Lg

p, Lg
d, Lg

u
)

:=
(
bp, bd, bu

)
. (3.6c)

Then, the state of the perturbed system (3.4) satisfies (3.3) locally on X (or nonlocally on X ).

Lemma 3.1 gives sufficient conditions to characterize the robust stability property
used in this study. A straightforward result is the exponential stability of the origin in
the presence of vanishing disturbances. This is established next.

Corollary 3.1. Let x = 0 be an exponentially stable equilibrium point of the nominal system
(3.4) with g = 0 defined in the state-space X = {x ∈ X | ‖x‖ ≤ rx} where rx is the radius
set of X (or X ). Let V(x) be a Lyapunov functional of the nominal system that satisfies (3.5a)
in X (or X ). Suppose that the bounding conditions in (3.2) are met with satisfied

lim
t→∞

εd(t) = 0, lim
t→∞

εu(t) = 0, (3.7)

and the perturbation term g(x, p̃, d, u) is Lipschitz bounded as in (3.4c). Then the origin of
(3.4) is a locally (or nonlocally) exponentially stable steady-state over X (or X ).

Several classes of chemical reactors, including the discretized models of tubular
ones, are modeled as finite dimensional systems composed by a linear part, associated
to transport phenomena and a nonlinear one due to chemical reaction. When this
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is the case, (3.4) is composed by a linear nominal part and a nonlinear Lipschitz
bounded perturbation term g, i. e.,

ẋ = Ax + g(x, p̃, d, u), x(0) = x0, (3.8a)

where A is a Hurwitz matrix. Then, there exist a Lyapunov function for the nominal
part of the system (i. e., g = 0)

V = xTPx, P = PT > 0. (3.8b)

where the matrix P satisfies the Lyapunov inequality

ATP + PA + 2ζP < 0, ζ < |λA
∗|, λA

∗ = max
λn∈σ(A)

{Re(λn)} , aP =
λP
∗

λP∗
, (3.8c)

where λP∗ = minλn∈σ(P){λn} and λP
∗ = maxλn∈σ(P){λn(P)}. Then, the constants in

(3.5a) are replaced with

c1 = λP∗, c2 = λP
∗, c3 = −2ζλP

∗, c4 = 2λP
∗, (3.8d)

Accordingly, the following result can be established.

Corollary 3.2. Proof in Section a.2. Let x = 0 be an exponentially stable equilibrium point
of the nominal linear system, (3.8a) with g = 0, defined in the set X = {x ∈ X | ‖x‖ ≤ rx}
where rx is the radius set of X (or in X ). Let V(x) be the quadratic Lyapunov function of
the nominal system that satisfies (3.8c)-(3.8d) in X (or in X ). Suppose that the bounding
conditions (3.2) and the Lipschitz bound (3.4c) of the perturbation term g(x, p̃, d, u) are all
satisfied. Provided that x0 and bp, bd, bu satisfy (3.6b), then if

νx = ζ − axLg
x > 0, ax = aP, (3.9)

then, the solutions of the perturbed system (3.4) satisfies (3.3) locally in X (or nonlocally in
X ) with νx and (bp, bd, bu) given as in (3.6c).

If the constant aP = λP
∗

λP∗
is overestimated, an alternative is to use the bound of the

transition matrix related to the linear part of the system (3.8a):∥∥eAt∥∥ ≤ aAe−λA
∗t = aAe−|λA

∗|t, −λA
∗ = max

λn∈σ(A)
{Re(λn)}, (3.10)

where aA > 0, and −λA
∗ is maximum real part of the eigenvalues λn in the spectrum

σ(A) of matrix A.
In this case, the robust stability is characterized by the following result.

Corollary 3.3. Proof in Section a.2. Consider the perturbed system (3.8a) with state x ∈ X =

{x ∈ X | ‖x‖ ≤ rx} where rx is the radius set of X (or X ), Hurwitz matrix A that satisfies
(3.10), g that satisfies (3.4c), and the exogenous inputs satisfying (3.2b). If the condition

νx = |λA
∗| − axLg

x > 0, ax = aA, (3.11)

is met, then the equilibrium of (3.8a) is locally (or nonlocally) robustly stable and satisfy (3.3)
over X (or X ) with decaying rate νx, and constant ax and (bp, bd, bu) given as in (3.6c).
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The finite dimensional approximation of the model of a tubular reactor is composed
by two or more sets of ODEs, each of these sets corresponds to a state profile. These
models can be written as interconnected subsystems composed by linear and nonlinear
components. In what follows, two useful stability results for this class of system are
introduced. The first one is an alternative form to use the integral bounds used in the
proof of Lemma 3.1, while the second one gives conditions for the robust stability of
the origin of two interconnected robustly stable subsystems of the form

ẋ1 = f 1(x1) + g1(x1, x2; p̃1, d1, u1), x1(0) = x10, (3.12a)

ẋ2 = f 2(x2) + g2(x1, x2; p̃2, d2, u2), x1(0) = x20. (3.12b)

Each nominal subsystem has its origin exponentially stable and each gi is Lipschitz
bounded with respect to its arguments as in (3.4c). Additionally, when g1(x1, 0; p̃1, d1, u1)

and g2(0, x2; p̃2, d2, u2) are at play, their origins remain robustly stable and satisfies
(3.3) with parameters {(ζ j, aPj)( or λAj

∗, aAj), bpj, bdj, buj}, j = 1, 2, respectively. From
the application of Corollary 3.2 (or 3.3), each subsystem satisfy

νxj = ζxj − aPjL
gj
xj > 0, ( or νxj = |λAj

∗| − aAjL
gj
xj > 0), j = 1, 2. (3.13)

The following lemma and theorem establish conditions for robust stability of the
interconnected system with state x =

[
xT

1 xT
2
]T.

Lemma 3.2. Proof in Section a.3.1 Inequalities (a.2) and (3.3) are, respectively, equivalent to
the following differential inequalities:

‖x‖ ≤ Ξ, Ξ̇ = −νxΞ + ax
(

Lg
pδp + Lg

dεd(t) + Lg
uεu
)

, Ξ(0) = ax ‖x0‖ , (3.14a)

‖x‖ ≤ Ξ, Ξ̇ ≤ −νxΞ + ax
(

Lg
pδp + Lg

dε+d + Lg
uε+u
)

, Ξ(0) = ax ‖x0‖ . (3.14b)

Note that from the inequalities in (3.14) and the use of the comparison lemma, the
inequalities (a.2) and (3.3) can be obtained.

Proposition 3.1. ISS Small Gain Theorem for interconnections. Proof in Section a.3.2
Consider the interconnected system (3.12). Assume that without the interconnection each
subsystem is loacally (or not locally) exponentially stable in the nominal case, and each
perturbed subsystem is locally (or nonlocally) robustly stable and satisfies (3.13). Then, the
interconnection is locally (or not locally) robustly stable if

νx1νx2 − ax1ax2Lg
1 Lg

2 > 0, (3.15)

and the state of the interconnection satisfies (3.3) with parameters λx, ax and bp, bd and bu.

The previous results are some of the theoretical tools that will be used to analyze
the open and closed-loop stability properties of the tubular reactor model in finite or
infinite dimension. These mathematical tools will be combined with physical insight
to interpret within and engineering perspective the mechanisms at play in the tubular
reactor dynamics. The gained insight will be exploited to design Control-Estimation
Systems (CESs) for the considered class of tubular reactors.
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3.2 efficient modeling approach for tubular reactors

Industrial tubular reactors are stabilized with Single Input-Single Output (SISO)
Proportional-Integral (PI) temperature control and monitored with data driven tech-
niques [70; 121; 89; 100; 108]. Thus, the consideration of advanced early and late
lumping CESs rises design-maintenance cost and reliability concerns because its im-
plementation requires the on-line integration of a large number of nonlinear Ordinary
Differential Equations (ODEs).

According to [22], on one hand, several lumping techniques for the modeling of
tubular reactor with steady-state multiplicity have been used. For instance, global
and local orthogonal collocation on finite elements for two-profile reactors, and
local (from first to fourth order) Finite Differences (FD) for multiple-profile reactors.
Usually, this methods requires moderate to large discretization orden Npde and only
reproduce local behaviors. On the other hand, the cell modeling approach [41; 40;
84]: (i) questions the use of a discretization order Npde because it leads to unduly
ill-conditioning and computational load by overmodeling in the light of parameter
uncertainty and the breaking down of the pseudo-continuity assumption for the
modeling of distributed reactors at particle and/or eddy scale, (ii) recommends as
low order the reactor length-to-eddy/particle scale quotient, (iii) lacks criteria to
preclude limit set alteration by overlumping, and (iv) has been recently supplemented
with a procedure to choose the discretization order [22], by combining numerical
continuation-based bifurcation [43; 87] and error propagation [69] analyses.

3.2.1 Discrete lumped model

The efficient modeling approach [22] recommends the use of a spatial discretization
scheme with FD or finite element methods because the natural interaction between
neighbor spatial locations of transport phenomena is retained. Accordingly, and
without loss of generality, a lumped model is obtained next by the application of a FD

scheme to the spatially distributed model (2.7).
The spatial coordinate s ∈ [0, 1] is discretized over a homogeneous mesh S with

size grid ∆s, N interior points and two boundaries ones:

sk ∈ S = 0, . . . , k∆s, . . . , 1, k = 1, . . . , N + 1, ∆s =
1

(N + 1)
. (3.16)

The approximation of the state profiles χ1(s, t), χ2(s, t) at the discretization points is
given by the sequences χj,k, j = 1, 2, k = 0, . . . , N + 1:

χj,k(t) = χj(sk, t), j = 1, 2. (3.17a)
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are the corresponding discretized concentration and temperature steady-state profiles.
The first and second spatial derivatives are approximated with first backward and
second central finite differences, i. e.,

∂sχj(sk, t) ≈
χj,k(t)− χj,k−1(t)

∆s
, ∂2

s χj(sk, t) ≈
χj,k+1(t)− 2χj,k(t) + χj,k−1(t)

∆s2 , (3.17b)

with substitution of χj,0 for k = 1 and χj,N+1 for k = N by using the boundary
conditions, at k = 0 (or k = N + 1) first forward (or backward) FD were used.

To draw the lumped model, define the state variables xj, j = 1, 2 (with the origin
shifted to the discretized target steady-state χ̄ for closed-loop operation), as well as
the deviated (from nominal values (d, u)) exogenous and control input vectors:

xj =


χj,1 − χ̄j,1

...

χj,N − χ̄j,N

 , d =

[
χ1,e − χ̄1,e

χ2,e − χ̄2,e

]
, u =


τc,1 − τ̄c,1

...

τc − τ̄c

 .

The sensor location set, over the discretization mesh S can be redefined as

ς = {ςi = smi ∈ Ri ⊂ S , i = 1, . . . , q} , (3.18a)

where mi ∈ Ri are the mesh points in which temperature measurement are taken,
and the jacket section intervals are redefined as

Ri =
[
s (i−1)N

q +1
, s iN

q

)
, i = 1, . . . , q− 1, Rq =

[
s (q−i)N

q +1
, sN

]
. (3.18b)

Thus, the measured output vector is written as

y =


χ2,m1(ς1, t)− χ̄2,m1(ς1, t)

...

χ2,mq(ςq, t)− χ̄2,mq(ςq, t)

 =


χ2,m1(sm1 , t)− χ̄2,m1(sm1 , t)

...

χ2,mq(smq , t)− χ̄2,mq(smk , t)

 .

Finally, the controlled output is given as

z = χ2,N − χ̄2,N .

With the previous definitions, the lumped reactor dynamics in state-space form are

ẋ1 = A1x1 −ψ(x1, x2) + Bd,1d1, x1(0) = x10, (3.19a)

ẋ2 = A2x2 + ψ(x1, x2) + Bd,2d2 + Bu,2u, x2(0) = x20, (3.19b)

y = Cy,2x2, z = Cz,1x1. (3.19c)

The states of the systems evolve in the sets xj ∈ Xj, j = 1, 2 where each Xj is a
bounded and compact set in the euclidian space RN . Each component of the control
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input vector is defined in the bounded set U, and the exogenous input vector d is
defined also in a bounded and compact set D.

The system and boundary condition matrices are

Aj =



−dj cj

bj −aj cj

bj
. . . . . .
. . . . . . cj

bj aj cj

bj aj cj

bj aj cj

bj
. . . . . .
. . . . . . cj

bj −aj cj

bj −dj



, Bd,j =


1

∆s

0
...

0

 ,

for j = 1, 2 with entries defined as

a1 = −2 + Pem∆s
Pem∆s2 , b1 =

1 + Pem∆s

Pem∆s2 , c1 =
1

Pem∆s2 , d1 = a1 + c1,

a2 = −2 + Peh∆s + Pehυ∆s2

Peh∆s2 , b2 =
1 + Peh∆s

Peh∆s2 , c2 =
1

Peh∆s2 , d2 = a2 + c2.

The nonlinear function and its entries are

ψ(x1, x2) =


ψ1(x1,1, x2,1)

...

ψN(x1,N , x2,N)

 =


r(x1,1 + χ̄1,1, x2,1 + χ̄2,1)− r(χ̄1,1, χ̄2,1)

...

r(x1,N + χ̄1,N , x2,N + χ̄2,N)− r(χ̄1,N , χ̄2,N)

 (3.20)

for k = 1, . . . , N. The input and output matrices are

Bu,2 = υ
[
b1 . . . bq

]
, Cy,2 =


c1
...

cq

 , Cz,1 =
[
0 . . . 0 1

]
,

where bi ∈ R1,N , and ci ∈ RN,1 are column and row vectors, respectively, defined as

bi =

1 if sk ∈ Ri

0 else
, ci =

1 if sk = s,i

0 else
, k = 1, . . . , N, i = 1, . . . , q.

The following assumption is considered for the lumped nonlinear function ψ.
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Assumption 3.1. The reaction rate function ψ is assumed to be monotonically increasing
with respect to the concentration vector x1, it vanishes only at the origin and satisfies a
Lipschitz bounding condition i. e.,

ψ(0, 0) = 0, ‖ψ(x1, x2)‖ ≤ Lψ
x1 ‖x1‖+ Lψ

x2 ‖x‖2 , (3.21)

where Lψ
xj , j = 1, 2 are local Lipschitz constants that depend on the state-space in which model

(3.19) is defined, and ‖(·)‖ is the euclidian norm in the space Xj.

In compact form, the reactor dynamics can be written as

ẋ = Ax + Bdd + Ψ(x) + Buu, x(0) = x0, (3.22a)

y = Cyx, z = Czx, χN = I(x), (3.22b)

where x =
[

x1 x2

]T
∈ R2N is the state, and χN is an approximated profile pair

computed through the interpolation scheme I . The related matrices are

A =

[
A1 0

0 A2

]
, Bu =

[
0

Bu,2

]
, Cy =

[
0 Cy,2

]
, Cz =

[
Cz,1 0

]
, Bd =

[
Bd,1

Bd,2

]
,

and the nonlinear function is defined as Psi(x) =
[
−ψ(x1, x2) ψ(x2, x2)

]T
.

For given initial state-input data (x0, d(t), u(t)), the ODE model (3.22) has a unique
solution motion x with unique output signal y, i. e.,

x(t) = tx(t, x0, d, u), y(t) = Cytχ(t, x0, d, u).

For vanishing input trajectories (d(t), u(t)), the motion x reaches exponentially a
stable steady-state x̄ or a limit cycle x̄(t), i. e.,

(d(t), u(t))→ (0, 0), x0 /∈ S = Ss ∪ Sl ⇒ x(t)→ x̄ ∈ Ss or x̄(t) ∈ Sl

where Ss (or Sl) is the set of ns (or nl) steady-states (or limit cycles) (the origin x = 0
is included in the set Ss):

Ss = {x̄1, . . . , x̄ns} , Sl = {x̄1(t), . . . , x̄nl (t)} . (3.23)

By the convergence of the FD discretization scheme (3.16) [86], as N → ∞ the state
motion χN (or the limit set S) of the lumped model (3.19) becomes, in the sense of
the L2 (or a suitable set) norm, the one of the distributed model:

lim
N→∞

χN(t) = χ(t), (or lim
N→∞

S = S ). (3.24)
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3.2.2 Discretization order selection procedure

The efficient modeling approach for tubular reactors is a systematic procedure to
select the discretization order of a lumped model that approximates the dynamic
behavior of a PDE model of interest, and overcomes unduly computational load.
The aim is to determine the smallest integer N that ensures a robust (with respect
to discretization order) quantitative description, up to kinetics-transport parameter
uncertainty. The detailed algorithm is in [22] and here an adapted version (for the
class of tubular reactors at hand) is briefly described.

The method compares two set metrics to determine the discretization order of
(3.22): (i) the parametric error εp, computed with the transient and static responses of
the reference model (3.22) with Npde and typical parameter uncertainty p̃, and (ii) the
discretization error εd computed with nominal parameters p and for N ∈ (N−, Npde).
The algorithm start at N− where spurious static behavior is avoided and stops at Ne

where the discretization error is comparable with the parametric one, i.e., εp ≈ εd.
The complete algorithm is presented in detail next.

As in [22], define the discretization order interval

N = [N−, . . . , Npde], N∗ + 1, (3.25)

where the model (3.22) is structurally stable over N [79], in the sense that S is
topologically invariant with respect to order change in N . The order Npde (from 100

to 400 for the considered reactor class) is the one of a standard FD PDE solver, the
order N− is determined by the ultimate bifurcation order N∗. Denote by

Ŝ ≈ S(N, p), N ∈ N , (3.26)

the numerically computed limit set S, and define the sizes (in suitable norm) of: (i)
the parameter error (induced in S by typical transport-kinetics parameter errors p̃)

εp(Npde, p̃) =
∥∥Ŝ(Npde, p + p̃, t)− Ŝ(Npde, p, t)

∥∥
S

, εp(Npde, 0) = 0, (3.27a)

and (ii) the Npde-to-N discretization error (with parameter p)

εd(N, Npde) =
∥∥Ŝ(N, p, t)− Ŝ(Npde, p, t)

∥∥
S , εd(Npde, Npde) = 0, (3.27b)

of the Npde-to-N discretization error with nominal parameter p. The norm set ‖(·)‖S

measures de distance between limit sets (see Appendix b).

Definition 3.2. Discretization order [22]
The efficient discretization order is the least integer N that satisfies

Ne = min
N∈N

3 εd(N, Npde) ≈/ εp(Npde, p̃), Ne ∈ N (3.28)

where the discretization error size is less or comparable with the parametric error size.
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According to [22], the efficient discretization order Ne (3.28) is computed by the
following algorithm: (i) the parametric error line (in the discretization-error plane E :
Nvsε)

Cd =
{
(N, ε) ∈ E | ε = εd(N, Npde)

}
, (3.29a)

build with error propagation analysis, (ii) the parametric error curve

Cp =
{
(N, ε) ∈ E | ε = εp(Npde, p̃)

}
(3.29b)

computed with N-continuation from N = 1, (iii) the reliable discretization order

N− > N∗ + 1 (3.29c)

on the basis of the N-bifurcation graph (3.26), (iv) the efficient discretization order
Ne(3.28) from the intersection

[Ne, εp(Npde, p̃)] = Cp ∩ Cd ⊂ E = N ×R, (3.29d)

of the curve Cd (3.29a) with the line Cp (3.29b), and (v) the corresponding ODE model
dimension

ne = 2Ne (3.29e)

since the state of the discretized models use ne ODEs for each state profile (concentra-
tion and temperature).

The preceding computationally intensive determination of the efficient discretiza-
tion order Ne, which includes PDE solver-like high order Npde, is part of the a priori
(before implementation) stage of the proposed CES design methodology. The efficient
discretization order Ne will be employed in: (i) the off-lime determination of the
sensor locations and control limits of Chapter 4, and (ii) the online implementation of
the proposed CESs of Chapter 4 and Chapter 5.

3.2.3 Application to the case study

The application ot the procedure Section 3.2.2 to the case study defined in Section 2.5
yields the efficient ODE discretization order

Ne = 20 3 [Ne, εp(Npde, p̃)] = Cd ∩ Cp, (3.30)

determined, as shown in Figure 3.1, by the intersection (3.28), in the order-error plane
E , of the error discretization curve Cd (3.29a) with parametric line Cp (3.29b). The
errors sizes εd and εp were computed with the open-loop response to the deviated
initial state (χ10, χ̄20) = (0.9χ̄1,N , 1.5χ̄2,N).
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Figure 3.1: Determination of the efficient discretization order Ne = 20 by the intersection of
the curve Cd (3.29a) with parametric error line Cp (3.29b).

Figure 3.2: Open-loop bifurcation diagram (steady-state temperature τ̄N(0.1) vs N) Ŝ(N, p) =
Ss(N, p) (3.23): (i) interval N = [4, . . . , 30] of robust bistability, (ii) bifurcation order N∗ = 3,
and (iii) interval [1,2] of spurious monostability.

In Figure 3.2 is presented the limit set bifurcation graph Ŝ associated with the
execution of Step 2 in Section 3.2.2, showing that the efficient discretization order Ne

of Figure 3.1 is in the interval N (3.25) where the lumped model (3.22) with order N
is robust with respect to order change, i. e.,

Ne = 20 ∈ N = [N−, . . . , Npde], N− = N∗ + 1 = 4, N∗, Npde = 200, (3.31)

where N∗ = 3 is the bifurcation order, in the sense that the discretization order
is robustly (structurally stable) mono (or bi) stable for N > (or <) N∗, with order
change from N∗ = 3 to N∗ − 1 = 2 the model becomes monostable: the stable
ignition-unstable steady-state pair

{
χ̄N , χ̄N,I

}
vanishes while the stable extinction

χ̄N,E remains.
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Figure 3.3: Stable (black plots) and unstable (dashed red plots) concentration (cN) and
temperature (τN) interpolated steady-state profile pairs χ̄N = I(x̄) computed with FD PDE

solver (N = Npde = 200) (dashed-dotted lines for stable profiles and continuous lines for the
unstable one) and efficient (N = Ne = 20) (dotted lines for the stable profiles and dashed
lines for the unstable one) order. The stable

Accordingly, the reactor model (3.22) is of dimension nr = 2Ne = 40 and is
discretized over a mesh (3.16) with 20 equidistant interior points with discretization
size step of ∆s = 1

Ne+1 = 1
21 . The three steady-states of the efficient model, (3.22)

with order Ne = 20, are presented in Figure 3.3 , including comparison against the
steady-state profiles obtained (Figure 2.3) with PDE solver-like order Npde = 200.

The previous results indicates that the off-line developments of Chapter 4 will be
done using an efficient low dimensional model, (Nr = 40) that overcomes: (i) the
low computational load of a large dimensional one (using Npde = 200 of standard
FD-based PDE solvers), and (ii) the inherent ill-conditioning of low dimensional models
(obtained with orthogonal collocations or finite elements). Furthermore, the on-line
implementations of the designed CESs on Chapter 4 and Chapter 5 will be performed
on the basis of a low order model avoiding on-line computational load.

3.3 summary

In this chapter, the robust stability concept that will be employed for stability analysis
on finite and infinite dimensions has been introduced. Also, the efficient modeling
approach developed in [22] has been introduced and adapted to class of tubular
reactor on the study to obtain an efficient lumping scheme.
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The stability concept that has been introduces, and called robust stability, is the
one of practical stability in an ISS framework: a system that has the robust stability
property posses, under nominal conditions, an exponentially stable origin, and in
the presence of parameter and modeling bounded errors, and exogenous fluctuating
bounded inputs, the system has its state ultimately bounded with bounding size
depending on the size of the exponential rate of convergence of the nominal system,
and the size of the disturbances. The robust stability property was technically stated
and useful lemmas and theorems were established. This set of mathematical tools
will be employed along the rest of the study to characterize (or determine) open-loop
(or closed-loop) stability properties.

The considered efficient modeling approach and the related numerical procedure
were described. This algorithm yields a tubular reactor lumped model, that can be
used for early lumping design or late lumping implementation, that captures the
main dynamic behavior and physical properties of the distributed model and avoids
computational burden while ensuring the preclusion of spurious static and dynamic
behaviors. This method will be of great importance for the remaining of the present
study since it will enable the off-line developments of Chapter 4 for the construction of
a computationally efficient CES, and the on-line implementations of the two proposed
CESs designed in Chapter 4 and Chapter 5.



Part II

E A R LY L U M P I N G A P P R O A C H

In this part of the thesis work, a control-estimation system is designed
by employing an early lumping approach. First, the so-called efficient
modeling approach is used to obtain a low order finite-difference lumped
model for control-estimation design and implementation purposes. On the
basis of this model, an advanced constrained control-estimation system
is build on the basis of two solvability properties characterized in terms
of the number of sensors and their locations: passivity and closed-loop
detectability. The closed-loop stability is established with small gains
arguments, in terms of sensor locations, control limits and gains. At the
implementation step, the control-estimation system is realized as a set of
decentralized PI controllers with antiwindup protection and a decoupled
observer for the estimation task. The efficiency and robustness of the
control-estimation algorithm is assessed by an extensive simulation study.
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4
C O N T R O L - E S T I M AT I O N S Y S T E M D E S I G N : E A R LY L U M P I N G
A P P R O A C H

In this chapter the solution to the joint Control-Estimation (CE) problem delineated
in Part i and stated in Chapter 2 (Section 2.3) is solved within an early lumping
approach by using the efficiently discretized lumped model (3.22) (Section 3.2.1) with
model order ne = 2Ne (3.28) (Section 3.2.2) delineated in Section 3.2.

Using an application-oriented perspective, a Control-Estimation System (CES) will
be constructed as the combination of a passive saturated state feedback controller
and a geometric estimator, with passivity and closed-loop detectability as solvability
conditions. Then through model redesign this CES will be realized as a decoupled
Proportional-Integral (PI) controller with back-calculation type Anti-Windup (AW)
protector and a closed-loop pointwise-like estimator driven by point measurements.
The design will be accompanied with robust stability assurance, and criteria for the
selection of sensor-actuator configuration, sensor locations and control limits.

4.1 early lumping control-estimation problem setting

Applying the efficient modeling approach presented in Section 3.2, the corresponding
state space model in deviation form from the target (open-loop unstable) steady-state
for closed-loop operation is given as

ẋ1 = A1x1 −ψ(x1, x2) + Bd,1d1, x1(0) = x10, (4.1a)

ẋ2 = A2x2 + ψ(x1, x2) + Bd,2d2 + Bu,2u, x2(0) = x20, (4.1b)

y = Cy,2x2, z = Cz,1x1, χn = I(x1, x2), (4.1c)

with states xj ∈ Xj, j = 1, 2 in the bounded and compact sets, exogenous inputs dj,
j = 1, 2, control input u, with bounded entries ui ∈ U, measured y and controlled z
outputs, and approximated concentration-temperature profiles I .

Considering that all mathematical models are only approximation from real physical
phenomena, the model mismatch between reality and a Ordinary Differential Equation
(ODE) used for modeling purposes can be represented with a parasitic dynamics
coupled with the mathematical model. These parasitic dynamics accounts for: (i) fast
unmodeled dynamics, due to assumptions made for model simplification, such as
eddy, turbulence and radiation phenomena, (ii) approximation error due to lumping,

45
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and (iii) noise-like sensor and actuator errors. Accordingly, the lumped actual reactor
model, written in compact form,is given as

ẋ = Ax + Gψ(x) + Bdd + Buu + e(x, d, u; π, p̃), x(0) = x0, (4.2a)

π̇ = Π(x, d, u; π, w), π(0) = π0, (4.2b)

y = Cyx + h̃y(π), z = Czx + h̃z(π), χN = J (x), (4.2c)

where (Ia×b (or 0a×b) is an identity (or a zero) matrix of dimension a× b)

A =

[
A1 0Ne×Ne

0Ne×Ne A2

]
, G =

[
INe×Ne

−INe×Ne

]
, Bu =

[
0Ne×q

Bu,2

]
, Bd =

[
Bd,1

Bd,2

]
,

Cy =
[
0q×Ne Cy,2

]
, Cz =

[
Cz,1 01×Ne

]
.

The parasitic dynamics (4.2b), with state π and excited by the fluctuating input w,
are: (i) assumed robustly stable in the sense of Definition 3.1, i. e., they satisfy a bound
of the type (3.3) which can be written in differential form by using Lemma 3.2:

‖π(t)‖ ≤ sπ(t) : ṡπ = −λπsπ + lΠ
w εw(t), sπ(0) = sx(0) = aπ ‖π0‖ , (4.3)

and (ii) coupled to the reactor dynamics by the term e, hy and hz.
The CE problem treated in this chapter, is to design the CES (2.11), so that the closed-

loop system, the application of (2.11) with saturated entry-wise control component
(i. e., ui ∈ Uc ⊂ U) to the actual reactor dynamics (4.2), is robustly stable. Note that
the control set Uc ⊂ U is a degree of freedom. The design will be performed within
the early lumping approach, based on the nominal model (4.1) and the stability and
control functioning assessment will be performed with model (4.2).

4.2 open-loop dynamics

Here, the open-loop dynamics of the discrete reactor model (4.1) are analyzed with
emphasis on the understanding and identification, within a physical and engineering
perspective, of the main dynamic mechanism that contribute to the stabilization or
destabilization of the reactor dynamics around each steady-state. First the steady-state
multiplicity is characterized with bifurcation analysis, then the open-loop dynamics
are studied as the interconnection of two Lur’e subsystems, finally the zero dynamics
are characterized in the normal form and in original coordinate.

4.2.1 Partitioned coordinate

For the upcoming theoretical developments, a state partition useful for static and
zero dynamics analyses is introduced next. First, the dynamics are described in this
coordinate and then the related statics are analyzed through bifurcation analysis that
yields a useful method to analyze high dimensional statics.
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4.2.1.1 Partitioned dynamics

Consider, the Multiple Input Multiple Output (MIMO) system (4.1), the next transfor-
mation accommodates the temperature state in not measured-measured coordinate:[

x2,n

x2,m

]
=

[
Cn

Cy,2

]
x2, x2 =

[
CT

n CT
y,2

] [x2,n

x2,m

]
= CT

n x2,n +CT
y,2x2,m, M =

[
Cn

Cy,2

]
,

where x2,n ∈ Rq (or x2,m ∈ RN−q)is the unmeasured (or measured) state. The square
matrix M ∈ RN is an identity permutation matrix that satisfies M−1 = MT.

Considering the above state partition, the reactor dynamics are written as

ẋ1 = A1x1 + Bd,1d1 −ψn,m(x1, x2,n, x2,m), x1(0) = x10, (4.4a)

ẋ2,n = An,n
2 x2,n + An,m

2 x2,m + Bn
d,2d2 + ψn(x1, x2,n) + Bn

u,2u, x2,n(0) = x2n0,(4.4b)

ẋ2,m = Am,m
2 x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, x2,m) + Bm

u,2u, x2,m(0) = x2m0,(4.4c)

y = x2,m, z = Cz,1x1, (4.4d)

where the involved matrices Am,m
2 ∈ Rq,q, Am,n

2 ∈ Rq,N−q, An,n
2 ∈ RN−q,N−q, An,m

2 ∈
RN−q,q, Bm

d,2 ∈ Rq, Bn
d,2 ∈ RN−q, Bm

u,2 ∈ Rq,q, Bn
u,2 ∈ RN−q,q are defined as

Am,m
2 = Cy,2 A2CT

y,2, Am,n
2 = Cy,2 A2CT

n , An,n
2 = Cn A2CT

n , An,m
2 = Cn A2CT

y,2,

Bm
d,2 = Cy,2Bd,2, Bm

u,2 = Cy,2Bu,2, Bn
d,2 = CnBd,2, Bn

u,2 = CnBu,2.

Specifically, the control input matrices Bm
u,2 and Bn

u,2 are defined as

Bm
u,2 = υIq×q, Bn

u,2 = υ
[
bn

1 . . . bn
q

]
, bn

i =

1 if sk ∈ Ri

0 else
, (4.4e)

for k = 1, . . . , N − q, i = 1, . . . , q and bn
i ∈ R1×q are column vectors.

The nonlinear terms ψn,m : RN × RN → RN , ψm : Rq × Rq → Rq, and ψn :
RN−q ×RN−q → RN−q are given as

ψn,m(x1, x2,m, x2,n) = ψ(x1, CT
y,2x2,m + CT

n x2,n),

ψm(x1, x2,m) = Cy,2ψ(x1, CT
y,2x2,m + CT

n x2,n)

ψn(x1, x2,n) = Cnψ(x1, CT
y,2x2,m + CT

n x2,n)

The above defined matrices and functions correspond to permutations and partitions
of the original ones. Additionally, the nonlinear functions ϕn,m, ψn and ψm satisfy the
following local Lipschitz bounds (where ‖(·)‖ denotes Euclidian norm)∥∥∥ϕn,m(x1, x2,n, x2,m)

∥∥∥ ≤ Lϕn,m
x1 ‖x1‖ Lϕn,m

x2,n ‖x2,n‖+ Lϕn,m
x2,m ‖x2,m‖ ∀x1, (4.5a)

‖ψm(x1, x2,m)‖ ≤ Lψm
x1 ‖x1‖+ Lψm

x2,m ‖x2,m‖ , (4.5b)

‖ψn(x1, x2,n)‖ ≤ Lψn
x1 ‖x1‖+ Lψn

x2,n ‖x2,n‖ . (4.5c)
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In compact form the rector dynamics are written as

ẋ1 = f 1(x1, x2,n, d1), x1(0) = x10,

ẋ2,n = f 2,n(x1, x2,n, x2,m, d2) + Bn
u,2u, x2,n(0) = x2n0,

ẋ2,m = f 2,m(x1, x2,n, x2,m, d2) + Bm
u,2u, x2,m(0) = x2m0,

where

f 1(x1, x2,n, xd,m) = A1 + Bd,1d1 −ϕn,m(x1, x2,n, x2,m),

f 2,n(x1, x2,n, x2,m, d2) = An,n
2 x2,n + An,m

2 x2,m + Bn
d,2d2 + ψn(x1, x2,n),

f 2,m(x1, x2,n, x2,m, d2) = Am,m
2 x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, x2,m).

4.2.1.2 Steady-state multiplicity: a bifurcation analysis

Consider the open-loop statics in explicit form under nominal conditions, i. e., d = 0

0 = f 1(x̄1, x̄2,n, x̄2,m, 0), (4.6)

0 = f 2,n(x̄1, x̄2,n, x̄2,m, 0) + Bn
u,2ū, (4.7)

0 = f 2,m(x̄1, x̄2,n, x̄2,m, 0) + Bm
u,2ū, (4.8)

ȳ = x̄2,m, z̄ = Cz,1 x̄1. (4.9)

From the first equation, the solution for the concentration vector is x̄1 = f1(x̄2,n, x̄2,m),
and substitute in the second equation:

0 = f2,n(f1(x̄2,n, x̄2,m), x̄2,n, x̄2,m, 0) + Bn
u,2ū

solve for x2,nto get x̄2,n = f2,n(x̄2,m, ū) and substitute in f 2,m:

0 = f 2,m(f1(x̄2,n, f2,n(x̄2,m, ū), x̄2,m, 0) + Bm
u,2ū := F (ȳ, ū) (4.10)

The above expression can be inverted for y to obtain and Input-Output Bifurcation
Map (IOBM) to perform steady-state multiplicity analysis:

x̄2,m,l = yl = fu(ū), x̄2,n,l = f2,n(x̄2,m,l , ū), x̄1,l = f1(x̄2,n,i, x̄2,m,i), l = 1, . . . , ns, (4.11)

where fu is the solution of for the static value of the output of (4.10). From the above
expressions, if ū is varied in a set of physical interest, an IOBM can be constructed to
analyze how the steady-state set varies with ū.

Furthermore, (4.10) may be inverted for ū to perform an input-multiplicity analysis:
for given ȳ, the IOBM (4.10) can be solved for ūl , l = 1, . . . , ns, and then using the
expressions for the other two states the complete statics can be found:

ūl = fy(ȳl), x̄2,n,l = f2,n(x̄2,m,l , ūl), x̄1 = f1(x̄2,n,l , x̄2,m,l), l = 1, . . . , ns, (4.12)
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where fy is the solution of for the static value of the input of (4.10). From the above
expressions, if ȳ is varied an IOBM can be constructed to analyze how the steady-state
set and the corresponding value of the input vary with ȳ.

In the above expression, fu and fy may not be solvable analytically but numerically.
Furthermore, in the Single Input-Single Output (SISO) case, the previous analyses
enable to generate IOBM with geometric representation that will be used for open-loop,
zero dynamics, and closed-loop steady-state multiplicity analyses.

4.2.2 Open-loop analysis

The dynamics of the concentration-temperature dynamics can be interpreted as the
interconnection of two Lur’e systems: a linear component in negative (or positive)
feedback interconnection with a nonlinearity. This structure enables the stability
analysis of each individual state by first studying the properties of the linear part and
then the effect of the nonlinear reaction rate function.

For the purpose at hand, recall system (3.19) with u = 0:

ẋ1 = A1x1 + Bd,1d1 −ψ(x1, x2), x1(0) = x10, (4.13a)

ẋ2 = A2x2 + Bd,2d2 + ψ(x1, x2), x2(0) = x20. (4.13b)

The concentration (or temperature) dynamics are composed by a linear stabilizing
part, due to mass (or heat) transport, in negative (or positive) feedback interconnection
with the term ψ, that reflects the stabilizing (or destabilizing) capability of the sync
(or source) effect of the consumption of reactant (or heat production) by the chemical
reaction. Also, the function ψ couples the temperature and concentration dynamics.

In Appendix c, using a Gerschgorin circles [128], it is shown that matrices Aj are
Hurwitz with dominant eigenvalues λAj

∗, j = 1, 2. When ψ = 0Ne×1 in (4.13), the ap-
plication of Corollary 3.2 (or Corollary 3.2), leads to conclude that when dj(t) 6= 0, each

subsystem is robustly stable with parameters {ζ j, aPj ,
axj‖Bd,j‖

ζ j
}(or {|λA1

∗|, aAj ,
axj‖Bd,j‖

λA1
∗ }.

Once established the stability of the linear components of the concentration and
temperature dynamics, what follows is to analyze the effect of the negative or positive
interconnection, respectively, with the reaction rate function. This is analyzed next.

4.2.2.1 Concentration dynamics

For the purpose at hand, recall the open-loop dynamics (4.13), and note that the
reaction rate function has decoupled entries from the concentration and temperature
states, see (3.20). The function ψ(x1, x2) can be rewritten as follows

ψ(x1, x2) = ϕ1(x1) +ϕ12(x1; x2), (4.14a)

where

ϕ1(x1) := ψ(x1, 0), ϕ12(x1; x2) := ψ(x1, x2)−ψ(x1, 0). (4.14b)
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Due to the Lipschitz continuity of the reaction rate function ψ, the entries of the
function ϕ1 satisfy the following sector conditions

akx2
1,k ≤ x1,k ϕ1,k(x1,k) ≤ bkx2

1,k, k = 1, . . . , Ne.

Using the above expression, it can be shown that for a matrix P1 = PT
1 > 0 of

appropriate dimensions, the following expression holds

(ϕ1(x1)− ax1)
T P1 (ϕ1(x1)− bx1) ≤ 0,

with a = maxk{ak} and b = maxk{bk}. Some algebraic manipulations yield to

xT
1 Pϕ1(x1) ≥ cxT

1 P1x1 + dϕT
1 (x1)P1ϕ1(x1), c =

ab

a + b
, d =

1
a + b

. (4.15)

Furthermore, the function ϕ12 is, uniformly Lipschitz bounded with respect to x2:

‖ϕ12(x1; x2)‖ = ‖ψ(x1, x2)−ψ(x1, 0)‖ ≤ Lϕ12
x2 ‖x2‖ . (4.16)

With the previous preparations, the robust stability of the concentration dynamics
is established next. First, the concentration dynamics (4.13a) is rewritten using (4.14a),

ẋ1 = A1x1 + Bd,1d1 −ϕ1(x1)−ϕ12(x1; x2), x1(0) = x10.

For the purpose at hand, consider the Lyapunov function

V1(x1) = xT
1 P1x1, P1 = PT

1 > 0,

where P1 satisfy the Lyapunov equation (3.8c) and (3.8d) in X1,r = {x1 ∈ X1 | ‖x1‖ ≤
rx,1} with parameters ζ1 > |λA1

∗| and aP1 =
λP1
∗

λP1 ∗
. The time derivative along the

trajectories of the concentration dynamics is

V̇1 = xT
1 (AT

1 P1 + P1A1)x1 + 2xT
1 P1Bd,1d1 − 2xT

1 P1ϕ1(x1)− 2xT
1 P1ϕ12(x1; x2),

= xT
1 (AT

1 P1 + P1A1)x1 + 2xT
1 P1Bd,1d1 − 2cxT

1 P1x1 − 2dϕT
1 (x1)P1ϕ1(x1)−

− 2xT
1 P1ϕ12(x1; x2),

≤ −2(ζ1 + c)xT
1 P1x1 + 2xT

1 P1Bd,1d1 − 2xT
1 P1ϕ12(x1; x2),

where (3.8c) and (4.15) have been used. Taking norms of the last two terms in the
above inequality, and the use of the triangle inequality and the bound (4.16) yields

V̇1 ≤ −2(ζ1 + γ)xT
1 P1x1 + 2λP1

∗ ‖x1‖
(
‖Bd,1‖ |d1(t)|+ 2Lϕ12

x2 ‖x2‖
)

.

Proceed as in the proof of Corollary 3.2 (or Corollary 3.3), to get the estimate

‖x1(t)‖ ≤ a1 ‖x10‖ e−ν1t + a1

∫ t

0
e−ν1(t−t)(‖Bd,1‖ |d1(t)|+ Lϕ12

x2 ‖x2(t)‖)dt. (4.17a)
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where

ν1 = ζ1 + c, a1 = aP1 . (4.17b)

Considering the finite domains ‖x10‖ ≤ δ10, supt≥t εd(t) ≤ εd1, supt≥t ‖x2(t)‖ ≤ εx2,
the previous inequality is written as

‖x1(t)‖ ≤ a1δ10e−ν1t + bd1 εd1 + bx2εx2.

If the following conditions are satisfied

ν1 > 0, a1δ10 ≤ εx1, bd1 εd1 + bx2εx2 ≤ εx1, (4.18)

the robust stability of the concentration dynamics with respect to the inlet concentra-

tion and the temperature state is ensured, with parameters bd1 =
a1‖Bd,1‖

ν1
, bd =

a1Lϕ12
x2

ν1
.

Using (3.10) instead of (3.8d), the parameters (4.17b) can be also defined as

ν1 = |λA1
∗|+ c, a1 = aA1 . (4.19)

From a physical perspective, both transport and reaction phenomena contribute
with stabilizing effects (as measured by ν1 > 0), and ensures the exponential stability
of the origin x1 in X1,r when there is no exogenous inputs. If the origin is unique,
then the robust stability is ensured nonlocally for the whole set X1. Contrarily, if there
is steady-state multiplicity, the stability result is local over X1,r, and for temperature
trajectories that violates the second condition in (4.18), the concentration trajectories
are pushed away of the subset X1,r, destroying the local robust stability property.
Accordingly, from a control perspective, feedback must be used to produce bounded
and vanishing temperature trajectories to drive the concentration profile to the origin.

4.2.2.2 Temperature dynamics

Consider the temperature dynamics (4.13b) with initial conditions, inlet temperature
and bounded concentration trajectories defined over the finite domains ‖x20‖ ≤ δ20,
supt≤t εd2 ≤ ε+d2, and supt≤t ‖x1(t)‖ ≤ εx1, and state defined in the set X2,r = {x2 ∈
X2 | ‖x2‖ ≤ rx2}. Furthermore, ψ satisfy the Lipschitz condition (3.21) with constants
Lψ

xj , j = 1, 2. The application of Corollary 3.2 (or Corollary 3.3) yields to

‖x2(t)‖ ≤ a2 ‖x20‖ e−ν2 + a2

∫ t

0
e−ν2(t−t)

(
‖Bd,2‖ εd2 + Lψ

x1 ‖x1‖
)

dt, (4.20a)

where

ν2 = ζ2 − a2Lψ
x2 , a2 = aP2 , ( or ν2 = |λA1

∗| − a2Lψ
x2 , a2 = aA2),

or equivalently

‖x20‖ ≤ δ20 ⇒ ‖x2(t)‖ ≤ a2 ‖x20‖ e−ν2t + bd2ε+2e + bx1εx1,
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with bd2 =
a2‖Bd,2‖

ν1
, and bx1 =

a2Lψ
x1

ν2
. The above expressions state that the temperature

dynamics are robustly stable in the finite domain X2,r if

ν2 > 0, a2δ20 ≤ εx2, bd2ε+d,2 + bx1εx1 ≤ εx2. (4.21)

If the origin is not unique, the second and third conditions in (4.21) restrict the size of
initial conditions and exogenous inputs so that temperature trajectories do not leave
the set X2,r. If the origin is unique, then nonlocal robust stability is ensured in X2.

From a physical perspective, in case the origin is unstable since the inlet temperature
and the concentration are exogenous bounded inputs that remain close to zero and
satisfy the third condition in (4.21), the main destabilizing effect is the domination of
the destabilizing dynamic mechanism, heat production, over the stabilizing ones, heat
transport and exchange with the jacket. Accordingly, the control aim is to modify the
interplay between stabilizing transport and destabilizing reaction phenomena so that
the open-loop unstable origin becomes robustly stable.

4.2.2.3 Interconnected dynamics

Once stability conditions for the concentration and temperature dynamics have been
drawn, the robust stability of the interconnection (4.13) is assured in the next result.

Proposition 4.1. Robust stability of the open-loop dynamics.
Consider the reactor dynamics (4.13), with state x = [xT

1 xT
2 ]

T ∈ X = {X1,r × X2,r} (or
X = X1 × X2), and bounded exogenous input d = [d1 d2]T. Assume that the concentration
and temperature dynamics separately are robustly stable and that (4.17a), (4.18) (or (4.19)),
(4.20), and (4.21) are satisfied. If the following condition is met

ν2 −
a1a2Lϕ12

x2 Lψ
x1

ν1
> 0, (4.22)

then, if the origin is (or not) the unique steady-state then the interconnection is robustly stable
nonlocally (or locally) in X = X1 × X2 (or X = {X1,r × X2,r}) and the state trajectories
satisfy (3.3) with constants νx, ax, and bd.

Proof. Apply Lemma 3.1 to the system (4.13) to obtain (4.22) as requirement for robust
stability. When this condition is met, then the state trajectories are bounded as

‖x(t)‖ ≤ ax ‖x0‖ e−λxt + ax

∫ t

0
e−λx(t−t)εd(t)dt. (4.23)

After taking the maximum of εd(t), the state trajectories satisfy (3.3) with

λx = max
λj∈σ(As)

{Re(λj)}, j = 1, 2, As =

[
−ν1 a1Lϕ12

x2

a2Lψ
x1 −ν2

]
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(a) Spectra of matrix A1. (b) Spectra of matrix A2.

Figure 4.1: Eigenvalues and Gerghorin circles of matrices Aj, j = 1, 2 of the case example.

ax = as(a1 + a2), bd =
ax ‖Bd‖

λx
, Bd =

[
a1 ‖Bd,1‖ 0

0 a2 ‖Bd,2‖

]
.

From a physical perspective, in the inequality (4.22): the first term ν2 = measures
the destabilizing effect of the heat generation by reaction on the heat balance against
stabilization by transport, and the second term measures destabilizing effects by
interconnection between the concentration and temperature dynamics. Thus, the
stability condition requires the stabilizing heat transport phenomenon to dominates
the destabilizing heat generation and mass and heat interaction by chemical reaction.
In case of instability, heat generation dominates the stabilizing effect of the heat
transport so that the assumptions of Proposition 4.1 are not fulfilled. From a control
perspective, the aim is to ensure that the heat generation is dominated by heat
transport and additional heat removal induced by feedback.

4.2.3 Case example: stability analysis

Here, the previous stability analysis es applied to the case example introduced in
Section 2.5 to analyze its stability property around the unstable steady-state.

Model 3.19 with the efficient discretization order Ne = 20, reaction rate function
(2.12) and parameters and nominal input values given in Table 2.1 is considered. The
spectrum of the matrices Aj, j = 1, 2 defined after 3.19 are presented in Figure 4.1
accompanied with the corresponding Gersghorin circles (see Appendix c). It can be
seen that both matrices have only real eigenvalues and all of them are in the left half
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(a) Slopes e
ar− br

χ̄2,k , k = 1, . . . , 20. (b) Functions ϕ1,k(x1,k), k = 1, . . . , 20.

Figure 4.2: Sector condition of the function ϕ1(x1) in terms of its entries ϕ1,k(x1,k) =

x1,ke
ar− br

χ̄2,k .

of the complex plane. Thus, the maximum eigenvalues for each matrix are negative
and given as

λA1
∗ ≈ −1.88, λA2

∗ ≈ −2.88.

Picking ζ1 = 1.00 and ζ2 = 2.00, the solution of corresponding Lyapunov inequal-
ities (3.8c) (solved using CVX a Matlab package for specifying and solving convex
programs [60; 59]) yields to Pj, j = 1, 2 with constants a1 ≈ 2.50 and a2 ≈ 2.50.

Considering (2.12), the entries of the nonlinearity ψ (3.20) are given as

ψk(x1,k, x2,k) = (x1,k + χ̄1,k)e
a− b

x2,k+χ̄2,k − χ̄1,ke
a− b

χ̄2,k , k = 1, . . . , N,

then, the entries of the nonlinear functions ϕ(x1) and ϕ12(x1, x2) are:

ϕ1,k(x1,k) = x1,ke
ar− br

χ̄2,k , ϕ12,k(x1,k, x2,k) = (x1,k + χ̄1,k)

(
e

ar− br
x2,k+χ̄2,k − e

ar− br
χ̄2,k

)
.

The evaluation of the sector condition of ϕ1(x1) stated in (4.15), is straightforward

since functions ϕ1,k(x1,k) are straight lines with slopes given by e
ar− br

χ̄2,k , shown in
Figure 4.2. It can be seen that the sector bounds a and b are

a = min
{

e
ar− br

χ̄2,k

}
= e

ar− br
χ̄2,1 ≈ 0.81, b = max

{
e

ar− br
χ̄2,n

}
= e

ar− br
χ̄2,11 ≈ 8.35, (4.24)

which yields to the parameter c ≈ 0.74.
The use of the mean value theorem rise that the Lipschitz constants of the function

ψ(x1, x2)can be computed as Lψ
xj =

∥∥∥∂xj ψ(x1, x2)
∥∥∥. Considering that

∂x1 ψ(x1, x2) = diag
([

e
ar− br

x2,1+χ̄2,1 . . . e
ar− br

x2,N+χ̄2,N

])
,

∂x2 ψ(x1, x2) = diag
([

b x1,1+χ̄1,1
(x2,1+χ̄2,1)2 e

a− b
x2,1+χ̄2,1 . . . b x1,N+χ̄1,N

(x2,N+χ̄2,N)2 e
a− b

x2,N+χ̄2,N

])
,



4.3 zero dynamics and sensor location criterion 55

then the Lipschitz constants are

Lψ
x1 = max

{
e

a− b
x2,k+χ̄2,k

}
, Lψ

x2 = max
{

b
x1,k + χ̄1,k

(x2,k + χ̄2,k)2 e
a− b

x2,k+χ̄2,k

}
.

The numeric evaluation of the above expressions in the sets X1 and X2, gives

Lψ
x1 ≈ 2.44, Lψ

x2 ≈ 11.19.

The concentration subsystem is robustly stable in X1 because

ν1 = ζ1 + γ ≈ 1 + 0.74 ≈ 1.74 > 0. (4.25a)

The condition for stability of the temperature dynamics is not fulfilled:

ν2 = ζ2 − a2Lψ
x2 ≈ 2− (2.50)(11.18) ≈ −25.95 ≯ 0. (4.25b)

Accordingly, condition (4.21) is not fulfilled nor (3.12). Note that this do not proof the
instability of the steady-state of interest (since the stated implications of Proposition 3.1
and Proposition 4.1 are just of sufficiency type). The instability of the unstable steady-
state is confirmed by the evaluation of the linearization of the temperature dynamics
around the corresponding steady-state: there is an eigenvalue with positive real part.

4.3 zero dynamics and sensor location criterion

Here, the robust stability of the MIMO zero dynamics of the reactor model (4.1) are
studied in the normal form [32] and in original coordinate. The concept of the zero
dynamics [76] is of upmost relevance for the present study since it plays an important
role in the design of feedback control strategies. The SISO case, will be employed to
characterize the steady-state multiplicity for the selection of sensor locations.

Recall the partitioned model (4.4). Since y = x2,m, the vector of relative degrees for
the control input-measured output vectors pair

rd(u, y) =
[
1 . . . 1

]
(4.26)

is robustly well-defined if the matrix Bm
u is not singular. Condition that is met since

υ > 0: the coolant jacket is designed so that the heat extraction from inside the reactor
to the jacket is always enable. Accordingly, the zero dynamics is of dimension N − q.
In the following the stability of the zero dynamics is characterized.
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4.3.1 Normal form

Consider the following dipheomorphism, well-defined in the state space X, which is
presented in original concentration-temperature coordinate as well as concentration
and partitioned temperature state:

Tx =

 x1

Ex2

Cy,2x2

 =

 IN×N 0 0

0N−q×N ECT
n ECT

y,2

0 0 I


 x1

x2,n

x2,m

 =

η1

η2

ξ

 (4.27)

where E ∈ RN−q×N is defined such that the following expression holds

Ex2 =



x2,n,1 − x2,n,2
...

x2,n,k − x2,n,k+1
...

x2,n,N−q − x2,n,1


.

The inverse transformation is x1

x2,n

x2,m

 =

IN×N 0 0

0N×N (ECT
n )
−1 −(ECT

n )
−1ECT

y,2

0 0 Iq,q


η1

η2

ξ

 .

The application of the transformation (4.27) to (4.4) yields the normal form

η̇1 = A1η1 + Bd,1d1 −ψ
η
1(η1, η2, ξ), η1(0) = η10,

η̇2 = Aη
2 η2 + Aξ

2ξ + Bη
d,2d2 + ψ

η
2(η1, η2, ξ), η2(0) = η20,

ξ̇ = Am,m
2 x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, x2,m) + Bm

u,2u, ξ(0) = ξ0,

y = ξ, z = Cz,1η1.

Note that the internal state η1 is equal to the concentration state x1, while the state η2
is a linear combination of the unmeasured, x2,n, and measured, x2,m, temperatures.
The external state ξ is the measured temperature x2,m and is written in the original
coordinates for convenience. The involved matrices and functions are:

Aη
2 = 2EA2CT

n (ECT
n )
−1, Aξ

2 = 2EA2(CT
y,2 − CT

n (ECT
n )
−1ECT

y,2), Bη
d,2 = 2EBd,2,

ψ
η
1(η1, η2, ξ) = ψ

(
η1, (ECT

n )
−1η2 − (ECT

y,2ξ), ξ
)

,

ψ
η
2(η1, η2, ξ) = 2Eψ

(
η1, (ECT

n )
−1η2 − (ECT

y,2ξ), ξ
)
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The employment of the same representation as in (4.14a) for the nonlinear function
ψ

η
1 with respect to its argument ξ and η2 (iteratively) and for the nonlinear function

ψ
η
2 with respect to arguments ξ, yields the dynamic model

η̇1 = A1η1 + Bd,1d1 −ϕ
η
1(η1)−ϕ

η
12(η1, η2)−ϕ

ξ
1(η1, η2, ξ)ξ, η1(0) = η10, (4.28a)

η̇2 = Aη
2 η2 + Aξ

2ξ + Bη
d,2d2 +ϕ

η
2(η1, η2) +ϕ

ξ
2(η1, η2, ξ)ξ, η2(0) = η20, (4.28b)

ξ̇ = Am,m
2 x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, x2,m) + Bm

u,2u, ξ(0) = ξ0, (4.28c)

y = ξ, z = Cz,1η1. (4.28d)

In the above dynamics the matrices Aη
2 and Am,m

2 are Hurwitz with dominant eigen-
values λAη

2

∗ and λAm,m
2

∗, respectively, and the nonlinearities are defined as

ϕ
η
1(η1) = ψ

η
1(η1, 0, 0), ϕ

η
2(η1, η2) = ψ

η
2(η1, η2, 0),

ϕ
η
12(η1, η2) = ψ

η
1(η1, η2, 0)−ψ

η
1(η1, 0, 0),

ϕ
ξ
j (η1, η2, ξ)ξ = ψ

η
j (η1, η2, ξ)−ψ

η
j (η1, η2, 0) =

∫ 1

0
∂ξψ

η
1(η1, η2, νξ)dνξ, j = 1, 2.

In the last cases the mean value theorem has been used to rewrite the nonlinearities
in a convenient form. In particular, since φ

η
1(η1) = φ(x1), it satisfies the same sector

condition (4.15). Additionally, the rest of the nonlinearities satisfy the bounds∥∥φ
η
2(η1, η2)

∥∥ ≤ Lϕ
η
2

η1 ‖η1‖+ Lϕ
η
2

η2 ‖η2‖ ,
∥∥ϕη

i (η1, η2, ξ)ξ
∥∥ ≤ Lϕi

ξ ‖ξ‖ , i = 1, 2. (4.29)

In compact vector notation, the normal form is written as

η̇ = Aηη+ Bη
dd +ϕη(η) + F(η, ξ)ξ, η(0) = η0, (4.30a)

ξ̇ = Am,m
2 x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, x2,m) + Bm

u,2u, ξ(0) = ξ0 (4.30b)

y = ξ, z = Cz,1η1, (4.30c)

where η = [η1 η2]
T. The involved matrices and functions are

Aη =

[
A1 0

0 Aη
2

]
, ϕη(η) =

[
−ϕ

η
1(η1)−ϕ

η
1,2(η1, η2)

φ
η
2(η1, η2)

]
,

Bη
d =

[
Bd,1

Bη
d,2

]
, F(η, ξ) =

[
−ϕ

ξ
1(η1, η2, ξ)

Aξ
2 +ϕ

ξ
2(η1, η2, ξ)

]
.

The zero dynamics, when ξ = 0, are given by

η̇ = Aηη+ Bη
dd +ϕη(η), η(0) = η0, (4.31)

with state η = [ηT
1 ηT

2 ]
T ∈ Xη = Xη1 × Xη2, bounded exogenous input d that satisfy

(3.2b), and zero dynamics controller µz : Xz → Uz ⊂ R,

µz(x1, x2,n, d2) = −Bm
u
−1 (Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, 0)

)
. (4.32)
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Xz is the state set in which the internal dynamics evolves and Uz is the control set
spanned by the zero dynamics control, and

Xη1 = {η1 ∈ RN | ‖η1‖ ≤ εη1}, Xη2 = {η2 ∈ RN−q | ‖η2‖ ≤ εη2},

In (4.31) considering ξ, defined in a finite domain ‖ξ‖ ≤ εξ , as input, the state
η1 ∈ Xη1 is equivalent to the concentration dynamics in (4.13) with a different repre-
sentation of the nonlinear reaction rate function, thus, it satisfy a similar condition
as the one (4.17a). For the state η2 ∈ Xη2, since matrix Aη

2 is assumed to be Hurwitz
(with λ∗

Aη
2
, aAη

2
, see (3.10), there exists a matrix Pη = PT

η > 0 with associated parame-
ters ζη , aPη that satisfy a Lyapunov inequality of the form (3.8c). The application of
Corollary 3.2 or Corollary 3.3 establishes that if the following condition is met

νη = ζη − aPη Lϕ
η
2

η2 > 0 ( or νη = |λAη
2

∗| − aAη
2
Lϕ

η
2

η2 > 0), (4.33)

then the second internal state of the zero dynamics is robustly stable. Then, the
robust stability of the zero dynamics (4.31) can be ensured with the application of
Proposition 3.1.

Proposition 4.2. Robust stability of the zero dynamics. Proof in Section d.1.
Consider the system (4.30) subjected to bounded inputs d(t) and ξ(t) that satisfies ‖ξ‖ ≤ εξ .
Assume that the involved nonlinearities in (4.30) satisfy (4.29) locally in Xη . If the origin is
the unique steady-state and the following condition is met (ν1 given in (4.17b) (or (4.19)))

νη −
a1aη Lϕ12

η2 Lϕ
η
2

η1

ν1
> 0. (4.34)

Then, the zero dynamics (4.31) are nonlocally robustly stable in Xη .

The previous results implies that the origin of the zero dynamics is: (i) exponentially
stable when ξ = 0 or ξ → 0, and ultimately bounded when ‖ξ‖ ≤ εξ .

4.3.2 Original coordinate

In original coordinate, the zero dynamics is defined in the set (µη is defined in (4.32)):

Xz =
{

x1,×x2 ∈ X | y = 0, µη(x1, x2, d2) ∈ Uz

}
, Xz ⊂ X,

where the state evolves according to the dynamic system

ẋ1 = A1x1 + Bd,1d1 −ψn,m(x1, x2,n, 0), x1(0) = x10, (4.35a)

ẋ2,n = An,n
2 x2,n + Bn

d,2d2 + ψn(x1, x2,n) + Bn
uµz(x1, x2,n, d2), x2,n(0) = x2n0, (4.35b)
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where (4.14a) has been substituted in the concentration dynamics. For vanishing x2,m,
the related system approaches the zero dynamics as x2,m → 0. Accordingly, consider
the following dynamic system

ẋ1 = A1x1 + Bd,1d1 −ψn,m(x1, x2,n, x2,m), x1(0) = x10, (4.36a)

ẋ2,n = Am,m
2 x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, x2,m)+

+ Bn
u,2µz(x1, x2,n, x2,m, d2), x2,n(0) = x2n0, (4.36b)

where

µz(x1, x2,n, x2,m, d2) = −Bm
u,2
−1 (Am,m

2 x2,m + Am,n
2 x2,n + Bm

d,2d2 + ψm(x1, x2,m)
)

.

The above system is equivalent to:

ẋ1 = A1x1 + Bd,1d1 −ϕ1(x1)−ϕn,m(x1, x2,n, x2,m), x1(0) = x10, (4.37a)

ẋ2,n = Az
2x2,n + Az,m

2 x2,m + Bz
d,2d2 + ψz(x1, x2,n, x2,m), x2,n(0) = x2,n,0, (4.37b)

where the involved matrices and nonlinearity are defined as

Az
2 = An,n

2 − FAm,n
2 , Az,m

2 = An,m
2 − FAm,m

2 , Bz
d,2 = Bn

d,2 − FBm
d,2,

ψz(x1, x2,n, x2,m) = ψn(x1, x2,n)− Fψm(x1, x2,m).

In this case, the concentration remains the same as in (4.35), while the unmeasured
temperature dynamics is composed by new dynamic elements constructed as combi-
nations of unmeasured and measured matrices and functions through the feedback
matrix I − F, where F is a diagonal block matrix defined as

F = Bn
u(Bm

u )
−1 =


1 if sk = ςi and sk ∈ Ri

0 else sk 6= ςi and sk ∈ Ri

0 else

, k = 1, . . . , Ne− 1, i = 1, . . . , q. (4.38)

The structure of matrix Az
2 and the nonlinearities ϕn,m, ψz is modified by the

internal state feedback imposed by the MIMO zero dynamics controller (4.32), thus,
the actuator-sensor configuration manifests its structure on matrix F: the temperature
dynamics are influenced by the corresponding control input depending on the jacket
section and the corresponding sensor location.

The eigenvalues of zero dynamics matrix Az
2 are sensible to the considered number

of jacket sections and sensors and their locations. Actually, matrix Az
2 is block diagonal,

each block is of dimension N
q−1 , and on each block matrix −F injects, on the columns
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mi − 1 and mi, the entries related to the unmeasured states on the zero dynamics
control law (4.32). Each block has the following structure

Az
2,i =



−dj cj −bj −cj

bj −aj cj −bj −cj

bj
. . . . . . −bj −cj
. . . . . . cj − bj −cj

bj −aj − bj −cj

−bj −aj − cj cj

−bj bj − cj
. . . . . .

−bj −cj
. . . . . . cj

−bj −cj bj −aj cj

−bj −cj bj −dj



, (4.39)

for i = 1, . . . q and j = 1, 2 with

a1 = −1 + Pem∆s
Pem∆s2 , b1 =

1 + Pem∆s

Pem∆s2 , c1 =
1

Pem∆s2 , d1 = a1 + c1,

a2 = −2 + Peh∆s + Pehυ∆s2

Peh∆s2 , b2 =
1 + Peh∆s

Peh∆s2 , c2 =
1

Peh∆s2 , d2 = a2 + c2.

Matrix Az
2 is assumed to be Hurwitz with constants (λAz

2

∗, aAz
2
) as in (3.10). Thus,

there exist a symmetric matrix Pz = PT
z > 0 that satisfy (3.8c) with (ζz, aPz).

The nonlinear reaction rate function ϕn,m is almost the same as ψ but its entries are
identified as unmeasured or unmeasured ones, this variation may change the related
Lipschitz constants. The nonlinearity is given as

ϕn,m(x1, x2,n, x2,m) =



ψ1(x1,1, x2,1)− ψ1,1(0, x2,1)
...

ψi(x1,k, x2,k)− ψ1,k(0, x2,k)
...

ψN(x1,Ne , x2,Ne)− ψ1,Ne(0, x2,Ne)


,

k = mi measured state

k 6= mi unmeasured state
,

where k = 2, . . . , Ne − 1, i = 1, . . . , q. Note that ϕn,m can be also written as

ϕn,m(x1, x2,n, x2,m) = CT
nϕn(x1, x2,n) + CT

yϕm(x1, x2,m),

where

ϕj(x1, x2,j) = ψj(x1, x2,j)−ψj(x1, 0), j = n, m,
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and the functions ψn and ψm are defined after (4.4). Accordingly, the Lipschitz condi-
tion of ϕn,m with respect to the unmeasured-measured temperature states (uniformly
in x1) can be computed with the Lipschitz constants of ψj, j = n, m:∥∥∥ϕn,m(x1, x2,n, x2,m)

∥∥∥ ≤ Lϕn,m
x2,n ‖x2,n‖+ Lϕn,m

x2,m ‖x2,m‖ , Lϕn,m
x2,n = Lψn

x2,n , Lϕn,m
x2,m = Lψm

x2,m .

The effect of F on ψz is depends on the sensor-actuator configuration: for the i-th
jacket section, the reaction rate of the unmeasured temperature states is subtracted by
the reaction rate function of the i-th measured temperature state

ψz(x1, x2,n, x2,m) =



ψn,1(x1,n,1, x2,n,1)− ψm,1(x1,m,1, x2,m,1)
...

ψn, Ne
q
(x1,n, Ne

q
, x2,n, Ne

q
)− ψm,1(x1,m,1, x2,m,1)

ψn, Ne
q +1(x1,n, Ne

q +1, x2,n, Ne
q +1)− ψm,i(x1,m,i, x2,m,i)

...

ψn, iNe
q
(x1,n, iNe

q
, x2,n, iNe

q
)− ψm,i(x1,m,i, x2,m,i)

ψn, iNe
q +1(x1,n, iNe

q +1, x2,n, iNe
q +1)− ψm,q(x1,m,q, x2,m,q)

...

ψn,Ne(x1,n,Ne , x2,n,Ne)− ψm,q(x1,m,q, x2,m,q)



(4.40)

Since the nonlinearity ψ is Lipschitz bounded with respect to its arguments, it is
expected that the zero dynamics Lipschitz constants of the bounding condition

‖ψz(x1, x2,n, x2,m)‖ ≤ Lψz
x1 ‖x1‖+ Lψz

x2,n ‖x2,n‖+ Lψz
x2,m ‖x2,m‖ ,

are lower than the open-loop ones (4.5).
From the previous analysis it can be seen that both, the maximum real part of the

eigenvalues of matrix Az
2 and the Lipschitz constants of the nonlinear function ψz are

sensor location dependent, this fact will be exploited later for the construction of a
criterion for the selection of the sensor locations.

Accordingly, considering that the measured temperature state is bounded as

‖x2,m‖sup ≤ ε2m, (4.41)

from the application of Corollary 3.2 (or Corollary 3.3), the unmeasured temperature
dynamics are robustly stable if

νz = ζz − aPz Lψz
x2,n > 0 ( or νz = |λAz

2

∗| − aAz
2
Lψz

x2,n > 0). (4.42)

If the above condition is met, then the application of 3.1 yields to the following
result on the robust stability of the zero dynamics in original coordinate.
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Proposition 4.3. Robust stability of the zero dynamics (4.35). Proof in Section d.2.
Consider the system (4.37) subjected to bounded inputs d(t) and x2,m(t) that satisfies (3.2b)
and (4.41). Assume that the Lipschitz bounds (4.5) and (4.42) are satisfied in Xz. If the origin
is unique and the next condition is met, (ν1 is given in (4.17b) (or (4.19))),

lz := νz −
a1Lϕn,m

x2,n azLψz
x1

ν1
> 0. (4.43)

Then, the zero dynamics (4.37) are nonlocally robustly stable in Xz.

Proposition 4.2 and Proposition 4.3 require the zero dynamics origin to be unique.
Since the zero dynamics multiplicity varies with the sensor location set ς, a bifurcation
analysis can be used to determine the feasible sensor set that ensures uniqueness of
the origin and that. In a second step, the sensor locations must be chosen to maximize
condition (4.43). These ideas will be used next to draw a sensor location criterion.

4.3.3 Sensor location criterion

Here, the zero dynamics static and dynamic properties will be analyzed to get a
sensor location criterion. First, based on a bifurcation analysis the zero dynamics
static multiplicity is characterized to identify the spatial subset in which the zero
dynamics origin is unique. Then, the sensor location set is determined as the spatial
positions in which the zero dynamics stability condition (4.43) is maximal.

4.3.3.1 Multiplicity

The dependency of the zero dynamic steady-state multiplicity on the sensor loca-
tion set can be established using a variant of the bifurcation analysis presented in
Section 4.2.1.2. For this aim, consider the statics of the zero dynamics in original-
partitioned coordinate, nominal conditions and explicit representation of the nominal
value of the related controller (ū = µz(x̄1, x̄2,n)):

0 = A1 x̄1 −ϕ1(x̄1)−ϕn,m(x̄1, x̄2,n, 0), (4.44)

0 = An,n
2 x̄2,n + ψn(x̄1, x̄2,n) + Bn

u,2ū. (4.45)

Imposing the zero dynamics condition ȳ = 0 on the input-multiplicity analysis in
(4.12), the statics of the zero dynamics are given by the input multiplicity map

ūi = fy(0), x̄2,n,i = f2,n(x̄2,m,i, ūi), x̄1 = f1(x̄2,n,i, x̄2,m,i), i = 1, . . . , ns. (4.46)

The solution for ū = 0Ne×1 will be always present but its uniqueness may change as
the sensor location set ς varies. In the case of multiple solutions all of them satisfy
the restriction of the zero output with different values of the static control input and
static state solutions. Accordingly, the aim is to select ς so that the origin is unique.
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For q = 1, a unique sensor with location ς1 ∈ R1 = (0, 1) and a unique homo-
geneous coolant jacket with domain R1, if the uniqueness of the origin is ensured,
then it is inherited to the MIMO case since the additional sensors do not modify the
statics. Accordingly, for the SISO case, the IOBM (4.46) becomes a scalar one fy that
gives directly the values of ul , l = 1, . . . , ns. In case ȳ = 0, then the input multiplicity,
and the corresponding steady-states, can be geometrically characterized easily in a
plane and the steady-states can be computed using the expressions in (4.46).

The above procedure can be performed sequentially for each possible sensor
location ς1 = sm1 ∈ S =

[ 1
∆s , N

∆s

]
, and can be represented in a bifurcation map that

presents the steady-state multiplicity for each sensor location. This bifurcation analysis
involves two continuation steps and is summarized in the following procedure that
can be executed with a suitable software package such as MATCONT [43]:

Step 1: For q = 1, set k = 1 and sm1 = sk.

Step 2: Construct the IOBM (4.46) for sm1 .

Step 3: Collect the steady-states related to the nominal case ū = 0.

Step 4: Plot the first steady-state value x̄1,1 ∈ X1,1 of the temperature sequence x̄1 versus
the sensor location ς1 = sm1 in the plane S × X1,1.

Step 5: Set k = k + 1 and proceed again from Step 2, if k = N
∆s the procedure ends.

From this numerical analysis, the region Sm ∈ S in which a single sensor ensures
the zero dynamics origin uniqueness is identified:

Sm = {sm1 ∈ S | (x1, x2,n) = (0N , 0N−1) Is the unique steady-state}. (4.47)

For q = 2, 3, the above condition must be fulfilled to ensure the uniqueness of the
zero dynamics, and the specific location for ς1 ∈ Sm and ςi = smi , i = 2, 3 must be
established so that the dynamic condition (4.43) is maximized.

4.3.3.2 Sensor locations determination

To find a sensor location set that satisfies (4.47) and maximize lz, define the hypersur-
face Γz(ς) as the geometric loci spanned by lz for ςi ∈ Ri subjected to (4.47):

Γz(ς) = lz(ς), s.t. ςsiso ∈ Sm, (4.48a)

and denote as Γ+
z (ς) the maximum value of the hypersurface Γz(ς), i. e.,

Γ+
z (ς) = max Λ+

z (ς). (4.48b)

Thus, the sensor location set is defined as

ς =
{

ςmi ∈ Ri ⊂ S |Γz(ς) = Γ+
z (ς)

}
. (4.48c)
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The above condition ensures the selection of the sensor location set which produce the
most robust and fastest zero dynamics which will benefit the closed-loop response of
the controllers constructed in Section 4.4.2.

While condition (4.48) establishes a formal criterion to select the sensor location,
it must be evaluated for the particular class of reactors and specific reaction rate
function and parameters, i. e., it is needed to compute the maximum eigenvalues of
the matrices A1 (see Appendix c) and Az

2, defined in (4.39), the sector condition (4.15)
of the nonlinearity ϕ1 (4.14a) and the Lipschitz constants of the nonlinearities ψn,m,
given by ϕ2 ∈ (4.14a) in unmeasured-measured coordinate, and ψz, defined in (4.40).

From a geometric interpretation, for, q = 1, Γz(ς) is a curve, while for q = 2, 3
it corresponds to a surface and a hypersurface, respectively. Nevertheless, since in
the MIMO cases the sensor ς ∈ Sm must be fixed, the geometric representations can
be replaced for a curve, for q = 2, and a surface, for q = 3. The application of the
presented sensor location criterion is performed next for the case study.

4.3.3.3 Application to the case example

The application of the proposed sensor location procedure to the case study of
Section 2.5: model (3.22) with parameters presented in Table 2.1, and efficient model
order ne = 2Ne = 40 (discretized over a mesh (3.16) with Ne = 20 equidistant,
∆s = 1

21 , interior points) determined in (3.31) yields the sensor location bifurcation
diagram of Figure 4.3.

Three main regions of behavior can be identified: (i) Sm =
[ 1

21 , 6
21

]
≈ [0.48, 0.29]

where the origin is unique, (ii) the bifurcation position ς1 = s7 = 7
21 ≈ 0.33 , and (iii)

Sb =
[ 8

21 , 20
21

]
≈ [0.38, 0.95] of steady-state multiplicity. Thus, from the SISO case the

restriction (4.47) is sm1 ∈ Sm =
[ 1

21 , 6
21

]
≈ [0.48, 0.29].

The next step is to compute the specific locations for the sensor set according to the
geometric procedure in (4.48). The case study considers a first order Arrhenius tem-
perature dependency reaction rate function given by (2.12). The alternative definition
for νz = |λAz

2

∗ − aAz
2
Lψz

x2,n | is used in the definition of lz (in (4.43)):

lz = |λAz
2

∗ − aAz
2
Lψz

x2,n | −
a1Lϕn,m

x2,n azLψz
x1

ν1
> 0. (4.49)

The matrices Aj, j = 1, 2 are defined after (3.19). The decaying rate ν1 = ζ1 + c and
the constant aP1 of matrix A1 are characterized in (4.25). The rest of the parameters
involved in the definition of (4.49) change with the number of jacket sections and
sensors and their locations and thus are computed for each required case q = 1, 2, 3.

First, for q = 1, the evaluation of the sensor location-based stability condition for the
SISO case with a unique jacket with domain R1 = S and a unique sensor at location
ς1 is shown in Figure 4.4a. It can be seen that lz is positive in the region s ∈ [0, 0.52]
and contains the region of robust monostability Sm (see Figure 4.3). Furthermore,
lz reaches its maximum at s5 ≈ 0.24, thus, the sensor location must be placed at
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Figure 4.3: Dependency of the zero dynamics multiplicity on the sensor location ς1 of the case
study with efficient discretization order Ne = 20. The region of robust uniqueness of the origin

is Sm =
[

1
21 , 6

21

]
≈ [0.48, 0.29], while the region of bistability is Sb =

[ 8
21 , 20

21
]
≈ [0.38, 0.95].

ς1 = sm1 = s5 ≈ 0.24, which ensures the fastest convergence of zero dynamics to the
origin, the unique steady-state. The obtained sensor location match the one that is get
with the industrial sensitivity criterion, before the hot spot where the temperature
gradient is maximum [68; 100; 108], thus formalizes this heuristic recommendation.

For q = 2, 3, the sensor location s1 = sm1 ≈ 0.24 is retained. For the case q = 2, with
jacket sections domains R1 ≈ [0.05, 0.48] and R2 ≈ [0.52, 0.95], the evaluation of lz

in R2 is presented in Figure 4.4b, where it can be concluded that the second sensor
location must be selected as ς2 = sm2 ≈ 0.95. Finally, for q = 3 with jacket section
domains R1 ≈ [0.05, 0.29], R2 = [0.33, 0.62], and R3 = [0.67, 0.95], the evaluation of
lz in R2 ×R3, shown in Figure 4.4c, leads to ς2 = sm2 ≈ 0.62 and ς3 = sm3 ≈ 0.95.

Note that, in the 1-sensor case, the stability condition lz > 0 is only ensured by
locating the sensor at ς1 ∈ [0, 0.52] ∈ Sm, and there are some regions in which the
zero dynamics origin is non-unique and unstable in some cases. In the 2 and 3-sensor
cases, the stability of the origin is ensured by the first sensor location, and condition
lz is enlarged, accordingly, it can be concluded that using a larger number of sensors
the stability of the zero dynamics convergence is accelerated.

4.4 state feedback control

Passivity-based control [126; 31], originated in control of electrical and mechanical
systems [103], where state variables are naturally connected with energy, is a well-
known control technique that exploits the natural dissipativity of systems with the
same number of inputs and outputs, to ensure robust stability in the presence of
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(a) One sensor location at ς ≈ 0.24. (b) Two sensor locations: {ς1 ≈ 0.24, ς2 ≈ 0.95}.

(c) Three sensor locations: {ς1 ≈ 0.24, ς2 ≈ 0.62, ς2 ≈ 0.95}.

Figure 4.4: Sensor location criterion: evaluation of the surface Γz(ς) (4.48).

parameter uncertainty and bounded disturbances. When a system is not passive in
the open-loop, it can be passivated via feedback.

In the context of chemical processes, the direct generalization of passivity-based
control within an energetic framework is not a straightforward task when irreversible
chemical reactions are considered since the usual state variables are not directly
connected with the energy of the system. Efforts have been made to combine a
thermodynamics representation of chemical variables and Port-Hamiltonian modeling
to link passivity-based control with thermodynamics [110; 9]. Nevertheless, in a more
abstract framework it is possible to design passive controllers by feedback passivation.

In what follows, a passivity-based control design is constructed and interpreted
with physical insight: the understanding of the stabilizing and destabilizing effects of
the open-loop dynamic components enables the possibility to renders the closed-loop
system robustly stable via passivity-based feedback control.
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4.4.1 Feedback passivation

The required conditions for a system to be feedback equivalent to a passive system
are [32]: (i) relative degree one, and (ii) weakly minimum phase, i. e., the origin of
the zero dynamics must be stable in the sense of Lyapunov. In this study, the latter
condition is replaced for robust stability of the zero dynamics origin.

In Section 4.3 it was shown that: (i) the vector of relative degrees (4.26) has only
one-entries since by construction the matrix Bm

u is nonsingular (because i. e., υ > 0, see
(4.4e)) and (ii) the zero dynamics has the origin as unique robustly stable steady-state
provided that the sensor location set ς is selected as in (4.48), and Proposition 4.2 (or
equivalently Proposition 4.3). These results are enables the following statement.

Proposition 4.4. Feedback equivalence to a passive system. Proof in Section d.3
The reactor model (4.4) is feedback passive if the following conditions are met

(i) υ > 0

(ii) ς =
{

ςmi ∈ Ri ⊂ S | ςsiso ∈ Sm, and Λz(ς) = Λ+
z (ς)

}
.

The definitions of Sm and Λz(ς) are given in (4.47) and (4.48), respectively. From
the proof of this Proposition 4.4, the feedback control law that renders (4.4) passive is

u = Bm
u
−1
(
− Bm

u,2
−1 (Am,m

2 x2,m + Am,n
2 x2,n + Bm

d,2d2 + ψm(x1, x2,m)
)
+

+
(
∂ηVη(η)F(η, ξ)

)T
(ηT ,ξT)T=T−1(x) − yTκ1(y)− yTκ2(y)

)
. (4.50)

where κ1 and κ2 are static passive nonlinearities.
Note that the above nonlinear control law: (i) needs the explicit functionality of

F(η, ξ) and the zero dynamics Lyapunov function, and (ii) is highly dependent on
the system parameters. Accordingly, Proposition 4.4 only establishes the feedback
passivity of system (3.22), but it is not used for implementation purposes. Next, a
saturated state feedback control, that use some terms of (4.50), will be constructed.

4.4.2 Saturated control

The enforcement, on the reactor model (4.4), of the linear output regulation dynamics

ẏ = −Kcy, Kc = KT
c > 0, (4.51)

where K is a diagonal gain matrix, yields the output linearizing control law

u = µ(x1, x2,n, x2,m, d2), (4.52a)

where

µ(x1, x2,n, x2,m, d2) = −Bm
u,2
−1 (Am,m

2 x2,m + Am,n
2 x2,n + Bm

d,2d2 + ψm(x1, x2,m) + Kcy
)

.
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The preceding state feedback control law is a particular case of the passivating law
(4.50) with κ1(y) + κ2(y) = Kcy, and the term related to the zero dynamics neglected.

The application of the above controller to the open-loop dynamics in the normal
form (4.30) yields the cascaded closed-loop dynamics

η̇ = Aηη+ Bη
dd +ϕη(η) + F(η, ξ)ξ, η(0) = η0, (4.53a)

ξ̇ = −K1ξ, ξ(0) = ξ0. (4.53b)

By design the external dynamics converges exponentially to zero, and as a conse-
quence of the robust stability of the internal dynamics with respect to ξ, stated in
Proposition 4.2, the closed-loop dynamics are robustly stable.

The control law (4.52) cancels out the stabilizing effects of heat convection and
diffusion transport as well as heat conduction, Am,m

2 x2,m and the destabilizing effect of
the reaction rate function ψm, to impose a linear output regulation dynamics. To do
so, the controller must know precisely the matrix Am,m

2 and the functionality of ψm.
While the compensation of the reaction rate function is beneficial, the compensation

of the stabilizing linear term is not a must and may be preferable to keep this
stabilizing mechanism. Accordingly, an alternative control law is given by

u = µ2(x1, x2,n, x2,m, d2), (4.54a)

where

µ2(x1, x2,n, x2,m, d2) = −Bm
u,2
−1 (Bm

d,2d2 + ψm(x1, x2,m) + Kcy
)

, Kc = KT
c > 0,

which will be considered with late (or early) lumping in Chapter 5 (or Chapter 6).
Due to physical and actuator limitations, constrained control must be considered,

accordingly, controller (4.52) is restricted to the set Uc,0 ⊂ U, where Uc,0 = [u−,u+]

is a design degree of freedom and must be chosen so that the closed-loop dynamics
have a unique steady-state at the origin. The saturated control laws are

u = µs(x1, x2,n, x2,m, d2) := satu
+

u− [µ(x1, x2,n, x2,m, d2)] (4.54b)

where µ is given in (4.52). The closed-loop robust stability is assured next.

4.4.3 Closed-loop stability

To ensure the stability of the closed-loop system and select the control limits, the
effect of control saturation on: (i) the zero dynamics, (ii) the closed-loop system, and
(iii) its steady-state multiplicity will be characterized to find stability conditions and
a criterion to select the control limits so that uniqueness of the origin is attained to
preclude additional undesired closed-loop steady-states (a possible phenomenon due
to open-loop steady-state multiplicity and control saturation [35; 12]).
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4.4.3.1 Zero dynamics under saturated control

Consider the constrained version of the zero dynamics controller (4.32):

u = µs,z(x1, x2,n, d2) := satu
+

u−µz(x1, x2,n, d2)

where µs,z : Xz ⊂ Xz → Us ⊂ Uz ⊂ U . The restricted zero dynamics results from the
application of the above control to system (3.22) and is defined over the set

Xz =
{

x1 × x2 ∈ X | y = 0, µz,s(x1, x2,n) ∈ Uc,0

}
(4.55)

From a geometric perspective, the unconstrained zero dynamics, with control set Uz,
has the origin as unique steady-state, then, all trajectories that begin in the set Xz ⊂ X
remain on it and exponentially converge to the origin. Contrary, for the constrained
the zero dynamics, with Uc,0 ⊂ Uz, the set Xz shrinks to Xz, and there are three type
of trajectories: (i) the ones born in Xz and that remain on it, (ii) the ones that born
outside Xz, and evolve in open-loop mode (with saturated control action) and after
some transient enter the zero dynamics set and converge to the origin, and (iii) the
ones that stay in an induced limit cycle due to saturation.

Accordingly, to rule out zero dynamics limit cycles, the control set Uc,0 must be
chosen as close as possible to the zero dynamics control set Uz. This is stated next.

Lemma 4.1. The open-loop system (3.22) is feedback equivalent to a passive system over the
state-space Xz if and only if conditions of Proposition 4.4 are fulfilled, the closed-loop origin is
unique and the control set Uc,0 is robustly included in its maximal one Uz, i. e., Uc,0 ⊆ Uz.

4.4.3.2 Closed-loop stability

The closed-loop dynamics are given by

ẋ1 = A1x1 + Bd,1d1 −φ(x1)−ϕn,m(x1, x2,n, x2,m), x1(0) = x1,0 (4.56a)

ẋ2,n = An,n
2 x2,n + Am,n

2 x2,m + Bn
d,2d2 + ψn(x1, x2,n) + Bn

u,2µs(x1, x2,n, x2,m, d2),

x2,n(0) = x2,n,0 (4.56b)

ẋ2,m = Am,m
2 x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm(x1, x2,m) + Bm

u,2µs(x1, x2,n, x2,m, d2),

x2,m(0) = x2,m,0. (4.56c)

Assuming control limits that assure the origin is the unique steady-state, robust
stability can be established by the robust stability of the zero dynamics and the
Seibert’s Reduction Principle [117].

When the control set Uc,0 = Uz is the maximal one, by the Seibert’s Reduction
Principle, the state trajectories converge to the zero dynamics set Xz in which the
origin is the unique attractor, accordingly, due to the invariance of the state-space set X,
all the trajectories converges to the origin. Closed-loop limit cycling is ruled out when
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the control set is the maximal one, meaning that the closed-loop reactor is robustly
globally stable over X. This in turn implies that closed-loop robust stability can be
attained by choosing the control set Uc,0 ⊆ Uz as established in Lemma 4.1. Next,
a practical criterion to select the control limits based on open-loop and closed-loop
stability properties will be established.

4.4.3.3 Closed-loop multiplicity and control limits selection criterion

For the purpose at hand, consider the nominal closed-loop statics:

0 = A1x1 −φ(x1)−ϕn,m(x1, x2,n, x2,m), (4.57a)

0 = An,n
2 x2,n + Am,n

2 x2,m + ψn(x1, x2,n) + Bn
u,2u, (4.57b)

0 = Am,m
2 x2,m + Am,n

2 x2,n + ψm(x1, x2,m) + Bm
u,2u, (4.57c)

ū = µs(x̄1, x̄2,n, x2,m). (4.57d)

Note that, by construction, the static control law µs is a restricted modification of the
static equation (4.57c), accordingly, rewrite the control law µs in explicit form:

0 = Am,m
2 x2,m + Am,n

2 x2,n + ψm(x1, x2,m) + Bn
uu + Kcx2,m, ui ∈ [u−,u+], (4.58)

In the static equations (4.57), the triplet (4.57a)-(4.57b)-(4.57c) coincide with the
open-loop statics (4.6), and the application of (4.11) leads to the IOBM hypersurface

O = {(ū, ȳ) ∈ U ×Y | ȳ = fu(u)}. (4.59a)

The combination of (4.57a)-(4.57b)-(4.58), the closed-loop statics, by applying again
the procedure in Section 4.2.1.2 yields the closed-loop control hypersurface

C = {(ū, ȳ) ∈ Uc,0 ×Y | ȳ = fc
u(u)}. (4.59b)

The intersection of both curves

(ū, ȳ) = O ∩ C , O ∈ U ×Y , C ∈ Uc,0 ×Y , (4.59c)

gives the input-output static pair while the rest of the steady-states can be computed
from (4.11). According to Lemma 4.1, the closed-loop origin must be the unique
steady-state, which is ensured if the unique intersection in (4.59c) is the origin, i. e.,

O ∩ C = (0q, 0q) ⇒ Sc = {02Ne}. (4.59d)

This result is stated in the following lemma.

Lemma 4.2. The closed-loop statics (4.57), related to the dynamics (4.56), has the origin as
unique steady-state if and only if the unique point of intersection of the open and closed-loop
bifurcation surfaces O and C is zero: if (4.59d) is satisfied.
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In the unconstrained version of static problem (5.39), the procedure described
above leads to two hypersurfaces that intersects only at the origin. While in the
constrained statics, the control limits may produce extra intersections leading to
additional undesired closed-loop steady-states. To avoid that, the control limits must
be selected to get a unique intersection at the origin. Since the open-loop IOBM is a
rotated version of a bifurcation curve, the control bifurcation values can be identified
to draw a control limits selection criterion as it was previously done in [112; 114; 113].

4.4.3.4 Control limit selection criterion

Here, a procedure to select the control limits, on the basis of the SISO case of controller
(4.52), is drawn. The determined control limits can be inherited to each controller in
the MIMO case. The procedure is based on bifurcation and continuation analyses and
it can be performed with a suitable software package such as MATCONT [43].

Step 1 Use the open-loop static equations (4.57a)-(4.57b)-(4.57c) to get (4.11) and solve
with continuation to draw the open-loop IOBM (4.59a).

Step 2 Identify the control values u∗ and u∗ where saddle-node bifurcation occurs.

Step 3 To ensure uniqueness of the closed-loop origin, select the control limits as

u− < u∗, u+ > u∗, (4.60)

Step 4 Use the closed-loop static equations (4.57a)-(4.57b)-(4.58) and repeat the proce-
dure in Section 4.2.1.2 to draw the closed-loop IOBM (4.59b).

Step 5 Verify that with the selected control limits, zero is the unique intersection (4.59c).

Accordingly, the closed-loop dynamics (4.56) are robustly stable if the control limits
are selected so that the set Uc,0 contains the bifurcation set U∗ = [u∗, u∗] of the
open-loop IOBM, and by virtue ofLemma 4.1. This is stated next.

Proposition 4.5. Closed-loop stability with saturated state feedback control.
The closed-loop system (4.56) with saturated control (4.52), is robustly stable with the origin
as unique steady-state if Lemma 4.1 and Uc,0 and U∗ ⊂ Us ⊆ Uz(Xz) is met.

4.4.3.5 Application to the case example

Following the previous procedure, in Figure 4.5 shows the open-loop IOBM (with
output at location ς1 ≈ 0.24) of the model (4.1) with Ne. The identification of the bifur-
cation values, where the case study undergoes saddle-node bifurcation phenomenon,
gives: u∗ = −0.38, and u∗ = 0.28. From Proposition 4.5, the control limits that assure
the origin is the unique robustly stable steady-state are

u− = −0.42 < u∗ = −0.38 < ū = 0 < u∗ = 0.28 < u+ = 0.35. (4.61)
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Figure 4.5: Open-loop IOBM (with output at location sy ≈ 0.24) of the open-loop Ne-stage
model (4.1). The identified bifurcation set is U∗ = [u∗, u∗] = [−0.38, 0.28].

(a) Open-loop O and closed-loop C bifurcation
curves. The control limits are appropriately se-
lected as (u−,u+) = (−0.42, 0.20) so that the
origin is the unique steady-state.

(b) Open-loop O and closed-loop C bifurcation
curves. The control limits are inappropriately
selected as (u−,u+) = (−0.42, 0.20) so that there
is closed-loop steady-state multiplicity.

Figure 4.6: Illustration of the control limit selection criterion for the case example.

In Figure 4.6a, it is illustrated how with these control limits, the curve C and the
open-loop IOBM O have zero as unique intersection.

In case the upper limit is not selected appropriately, for instance u+ = 0.20 < u∗ =
0.28, it can be seen, in Figure 4.6b, that the curves have three intersections: one at
the zero and two additional ones that imply closed-loop steady-state multiplicity,
an undesired condition. These results corroborate the effectiveness of the proposed
criterion for the selection of control limits.
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4.5 control-estimation system

The proposed CES is made by the state feedback control (4.52) and an estimator
which has two purposes: (i) output feedback control, and (ii) state monitoring. In this
section, using the efficient early-lumping model (4.1)-(3.29d), such state estimator is
constructed, on the basis of a closed-loop detectability property, and combined with
(4.52) to obtain an advanced CES. Robust closed-loop stability is assured.

4.5.1 Estimation model

Recall the actual reactor dynamics (4.2b), use the partition form (4.4), and apply the
state feedback control law (4.52) to get the actual closed-loop dynamics

ẋ1 = f 1(x1, x2, d1) + ec
1(x1, x2,n, x2,m, d2, π, p̃), x1(0) = x10, (4.62a)

ẋ2,n = f c
2,n(x1, x2,n, x2,m, d2) + ec

2,n(x1, x2,n, x2,m, d2, π, p̃), x2,n(0) = x2n0, (4.62b)

ẋ2,m = f c
2,m(x1, x2,n, x2,m, d2) + ec

2,m(x1, x2,n, x2,m, d2, π, p̃), x2,m(0) = x2m0, (4.62c)

π̇ = Πc(x1, x2,n, x2,m, d; π, ν), π(0) = π0, (4.62d)

y = x2,m + h̃y(π), z = Cz,1x1 + h̃z(π), (4.62e)

where the closed-loop functions are defined in Section e.1. The functions (ec
1, ec

2,n) (or
ec

2,m) manifest modeling errors in the unmeasured (or measured) state dynamics, and
(4.62d) is the parasitic exosystem in closed-loop mode that satisfies (4.3). System (4.62)
is robustly stable and has the origin as unique steady-state provided the separation
of scales between fast and slow dynamics is largely enough [76].

To get an estimation model for observer design, neglect the parasitic dynamics and
their coupling with the states of the reactor and the measured and controlled output,
i. e.,

ec
1(x1, x2,n, x2,m, d2, π, p̃) ≈ 0, ec

2,n(x1, x2,n, x2,m, d2, π, p̃) ≈ 0, h̃y(π) ≈ 0, h̃z(π) ≈ 0,

retain the effect of model uncertainty on the output dynamics trough coupling
function ec

2,m, and define the exogenous input ιy

ιy = ec
2,m(x1, x2,n, x2,m, d2, 0, p̃). (4.63)

Thus, the closed-loop model for output-feedback design is

ẋ1 = f 1(x1, x2, d1), x1(0) = x10,

ẋ2,n = f c
2,n(x1, x2,n, x2,m, d2), x2,n(0) = x2n0,

ẋ2,m = f c
2,m(x1, x2,n, x2,m, d2) + ιy, x2,m(0) = x2m0,

y = x2,m, z = Cz,1x1.
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The enforcement of the convergent measured output signal y(t), solution to (4.51) on
the preceding model yields the n− q-dimensional dynamic inverse

˙̂x1 = f 1(x̂1, x̂2,n, x̂2,m, d1), x1(0) = x̂10, (4.64a)
˙̂x2,n = f c

2,n(x̂1, x̂2,n, x̂2,m, d2), x2,n(0) = x̂2n0, (4.64b)

ι̂y = ẏ− ec
2,m(x̂1, x̂2,n, y, d2), y(0) = y0, (4.64c)

x̂y = y, ẑ = Cz,1 x̂1. (4.64d)

Which is robustly stable and coincides with the zero dynamics (4.35) when y = 0.
Since y→ 0, the systems approaches exponentially to the stable zero dynamics.

The related estimation errors of model (4.64) are defined as

x̃1 = x̂1 − x1, x̃2,n = x̂2,n − x2,n,

and the related estimation error dynamics, driven by the convergent signal y(t), are:

˙̃x1 = f̃ 1(x1, x2,n, y, d1; x̃1, x̃2,n), x̃1(0) = x̃10, (4.65a)

˙̃x2,n = f̃ c
2,n(x1, x2,n, y, d2; x̃1, x̃2,n), x̃2,n(0) = x̃2n0, (4.65b)

where

f̃ 1(x1, x2,n, y, d1; x̃1, x̃2,m) = f 1(x1 + x̃1, x2,n + x̃2,n, y, d1)− f 1(x1, x2,m, y, d1),

f̃ c
2,n(x1, x2,n, y, d1; x̃1, x̃2,m) = f c

2,n(x1 + x̃1, x2,n + x̃2,n, y, d2)− f c
2,n(x1, x2,m, y, d2).

By the robust stability of the zero dynamics, the trajectories of the estimation model
(4.64) converge to the real ones, with fixed convergence time λz, and due to the robust
stability of the closed-loop system, the reactor trajectories converges to the origin:

(x̂1, x̂2,n, ι̂y)
λz−→ (x1, x2,n, ιy)

λc−→ (0, 0, 0).

Three important implications for estimation purposes can be established: (i) the
inverse model (4.64) acts as a robustly convergent input-state estimator of the closed-
loop system (4.56), with asymptotic error size proportional to the model errors
(ec

1, ec
2,n), (ii) the closed-loop state motions (x1, x2,n) of system (4.64) are robustly

detectable in the sense that the infinity (one per data perturbation) of indistinguishable
perturbations (x̂1, x̂2,n, ι̂y) robustly converge (with fixed rate λz and up to bounded
offset) to the actual state-input signal (x1, x2,n, ιy) [96], and (iii) the state (x̃1, x̃2,n) of
the estimation error dynamics (4.65) converge to zero. This is formally stated next.

Proposition 4.6. The robust stability of the zero dynamics (4.36) related to the closed-loop
system (4.56), the state motions (x̂1(t), x̂2,n(t)) of the dynamical inverse (4.64) are robustly
stable, meaning that these trajectories are detectable.

This detectability property is exploited next to construct a CES for output feedback
control and state estimation.
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4.5.2 Control-estimation system construction

Here, a CES is constructed as the combination of a geometric estimator, drawn with
the estimation model (4.64), and the state feedback control (4.52), the resulting system
is enhanced with an output mismatch compensation term.

The estimation structure for the estimation model (4.64) is (see [52]):

o = (κ, (x2,m − x1, x2,n)) : κ = (κ1, . . . , κq), κi = 1, κι = q.

for i = 1, . . . , q. The o-estimation structure has (i) q measured outputs of estimation
order κi = 1, implying that the overall estimation order is κι = q, (ii) the measured
temperatures x2,m as innovated states, (iii) and the concentration and unmeasured
temperature vectors pair (xT

1 , xT
2,n)

T as noninnovated states.
Following [52], the corresponding geometric estimator is

˙̂ιy = Kι(y− ŷ), ι̂y(0) = ι̂y0, (4.66a)
˙̂x1 = f 1(x̂1, x̂2,n, x̂2,m, d1), x1(0) = x̂10, (4.66b)

˙̂x2,n = f c
2,n(x̂1, x̂2,n, x̂2,m, d2), x2,n(0) = x̂2n0, (4.66c)

˙̂x2,m = f c
2,m(x̂1, x̂2,n, x̂2,m, d2) + ι̂y + Ky(y− ŷ), x2,m(0) = x̂2m0, (4.66d)

ŷ = x̂2,m, ẑ = Cz,1 x̂1, (4.66e)

where ιy is an integral action for uncertainty output mismatch compensation. The
diagonal gain matrices (Kι, Ky) are given as

Ky = 2diag[ζω,1ω1 . . . ζω,qωq], Kι = diag(ω2
1 . . . ω2

q)
T

and set with the pole placement scheme

(ζω, ωy) : ζω = [ζω,1 . . . ζω,q]
T, ωy = [ω1 . . . ωq]

T,

set with the second order responses, one per output, of the characteristic polynomials

λ2
y,i + 2ζω,iωiλy,i + ω2

i = 0, i = 1, . . . , q,

of the prescribed linear, noninteractive, pole assignable output error dynamics

¨̃yi + 2ζω,iωi ˙̃yi + ω2
i ỹi = 0, ỹi = ŷi − yi, ŷi = x̂2,m,i, i = 1, . . . , q.

Typically, based on industrial application of geometric estimators with noisy measure-
ments and parameter uncertainty [51; 52; 106], the frequencies are set from 5 to 50

times faster than the nominal output settling time, which in closed-loop is given by
the i-th entry of the diagonal matrix K1, and the damping factor between 1.5-3, i. e.,

ωi = nωki, nω ∈ [5, 50], ζi ∈ [1.5, 3].
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The integral action of the geometric estimator (4.66) can be used to provide distur-
bance rejection capabilities to the state feedback controller (4.52). For this purpose,
since the input ιy has bounded entries, the following bound can be established

ι−y ≤ ιy ≈ ec
2,m(x1, x2,n, x2,m, d2, π, p̃) ≤ ι+y .

Set the corresponding control set enlargement

Uc = [u−, u+] ⊇ Uc,0, u− = u− − ι−y /υ, u+ = u+ + ι+y /υ (4.67)

of the control set Uc,0, and enforce the output regulation dynamics (4.51) on model
(4.1) with the control set Uc to obtain the saturated controller

u = µe,s(x1, x2,n, x2,m, ιy, d2) ∈ Uc, µe,s(·) = satu+

u− [µe,i(·)], Uc = [u−, u+], (4.68)

where (µ is defined in (4.52))

µe(x1, x2,n, x2,m, ιy, d2) = µe(x1, x2,n, x2,m, d2)− Bm
u
−1ιy.

The combination of controller (4.68) with the estimator (4.66), yields the CES

ι̂y = Kι(y− ŷ), ι̂y(0) = ι̂y0, (4.69a)
˙̂x1 = f 1(x̂1, x̂2,n, x̂2,m, d1), x1(0) = x̂10, (4.69b)

˙̂x2,n = f c
2,n(x̂1, x̂2,n, x̂2,m, d2), x2,n(0) = x̂2n0, (4.69c)

˙̂x2,m = f c
2,m(x̂1, x̂2,n, x̂2,m, d2) + ι̂y + Ky(y− ŷ), x2,m(0) = x̂2m0, (4.69d)

ŷ = x̂2,m, ẑ = Cz,1 x̂1 (4.69e)

x̂ = [xT
1 (CT

n x̂2,n + CT
y,2 x̂2,m)

T]T, χ̂N = I(x̂), (4.69f)

u = µe,s(x̂1, x̂2,n, x̂2,m, ι̂y, d2). (4.69g)

The robust stability of the related closed-loop system is established next.

4.5.3 Closed-loop stability

The closed-loop stability with the controller (4.69) is established by analyzing the
closed-loop dynamics as interconnections of robustly stable subsystems. First, condi-
tions for stability of the interconnection of the fast (parasitic and innovated) and slow
(unmeasured and closed-loop reactor state) subsystems are drawn. Then, conditions
for the robust stability of the fast-slow interconnection are established.

The application of the control estimation system (4.69) to the actual open-loop
dynamics (4.2) yields the following closed-loop system:

π̇ = Πc
2(x, d; π, ν, x̃ιe, x̃n), π(0) = π0, (4.70a)

˙̃xe = Ae x̃e + f̃ e(x; π, p̃, d2, x̃e, x̃n), x̃ιe = x̃e0, (4.70b)
˙̃xn = f n(x̃ιe, x̃n, d) + en

c (x, d; π, p̃, x̃e, x̃n, l), x̃n(0) = x̃n0, (4.70c)

ẋ = f c(x, d) + ec(x, d; π, p̃, d, x̃e, x̃n, l), x(0) = x0, (4.70d)
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where

x̃e = x̂e − xe, xe = (x2,m, ιy)
T, x̃n = x̂n − xn, xn = (xT

1 xT
2,n)

T. (4.70e)

x̃e is the fast estimation error, x̃n is the slow estimation error, and x is the state of the
plant in closed-loop. The involved functions are defined in Section e.2

Note that by construction the matrix Ae is Hurwitz and generates a matrix expo-
nential that satisfies the following bound∥∥∥eAet

∥∥∥ ≤ aee−λet, −λe = max
λj∈σ(Ae)

{Re(λj)}.

The closed-loop system (4.70) is made by four robustly stable subsystem, ordered
from fast to slow dynamics: (i) the parasitic (4.70a), (ii) the fast (or slow) state esti-
mation error dynamics (4.70b) (or (4.70c)), and (iii) the closed-loop dynamics (4.70d)
with decaying rates λπ > 0, λe > 0, λz > 0, λc > 0, respectively, and interconnected
via the Lipschitz bounded disturbance maps ( f̃ ιe, e

n
c , ec).

The following two lemmas ensure the stability of slow and fast subsystems.

Lemma 4.3. Consider the fast dynamics interconnection (4.70a)-(4.70b), assume the other
states as exogenous inputs, and that the matrix Ae is Hurwitz with dominant eigenvalue
λe. Given that the parasitic dynamics is robustly stable with decaying rate λπ and that the
interconnection function f̃ e is Lipschitz bounded with respect to its arguments. Then, the fast
subsystem is robustly stable if the matrix gain pair (Ky, Kι) is set so that

νe = λe − aeL f̃e
xe > 0, νeλπ > 0.

This ensures the stability of the fast dynamics if the matrix gain pair (Ky, Kι) are
selected so that the dominant eigenvalue of Ae dominates the destabilizing effect of

the interconnection, measured by the Lipschitz constant L f̃e
xe .

Lemma 4.4. Consider the slow dynamics interconnection (4.70c)-(4.70d), assume the other
states as exogenous inputs. Given that the nominal dynamics are exponentially stable with
decaying parameters (az, λz) and (ac, λc), and that the interconnection functions in ec

n-ec are
Lipschitz bounded with respect to its arguments, then the slow subsystem is robustly stable by
construction because the following conditions are met:

νz = λz − anLen
c

xn > 0, νc = λc − acLec
x , νzνc > azaxLen

c
x Lec

xn
.

The next proposition gives conditions for the stability of the closed-loop system
(4.70) by considering the interconnection of the fast and slow subsystems.

Proposition 4.7. Robust stability of the closed-loop system (4.70). Proof in Section e.3.
Assume that Lemma 4.3 and Lemma 4.4 are met. The closed-loop system (4.70) with the CES

(4.69) is robustly stable if the estimator gains (Ky, Kι) are chosen so that

λe(Ky, Kι)− L f̃e
xe(Ky, Kι) +

a f as
∥∥B f (Ky, Kι)

∥∥ ‖Bs‖
λs

> 0. (4.71)
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In the above expression, the stabilizing term λιe depends linearly on the estimator
gains Ky, Kι, while the second term, which resumes the self and interconnection
destabilizing effects, grows at least quadratically on the estimator gains. Accordingly,
the gains must be selected large enough to dominate destabilizing effects but no so
far that the quadratic destabilizing effects dominates the linear stabilizing one.

Since ιy = ec
2,m reflects the combined effect of parameter error (p̃) and parasitic

dynamics, the quickly convergent estimate ι̂y of ιy has feedforward-like disturbance
rejection capability which enhance the performance of the controller.

From an advanced nonlinear control perspective, the CES (4.70) has: (i) systematic
construction-tuning procedures, (ii) solvability in terms passivity and detetectability
with constrained control, and (iii) assurance of robust closed-loop stability coupled
with sensor location, control limits and control-estimator gains selection criteria.
However, with respect its industrial PI control-based counterparts, the application of
observer-based control should rise complexity and reliability concerns among practi-
tioners, because the execution of the key stabilizing task requires the computation of
a saturated output feedback control element driven by the on-line solution of 2N − 1
ODEs. The overcoming of this applicability obstacle is the subject of the next section.

4.6 redesigned control-monitoring system

Here, the CES (4.69) is realized in a simplified and more robust form made by two
components: (i) a saturated linear robust stabilizing Proportional-Integral control
with Anti Windup scheme (PIAW), and (ii) a decoupled robust state estimator.

4.6.1 Simplified model

Along inseparability principle [122], PI control studies [13], and model free-based
control [53] ideas employed in previous studies on polymerization [58] and biological
[112; 114; 113] reactors as well as staged distillation columns [33; 34], the simplified
realization of the CES (4.69) is based on a simplified model.

For this aim recall the actual open-loop model (4.4) in concentration-partitioned-
temperature coordinate and rewrite it as follows

ẋ1 = f 1(x1, x2,n, x2,m, d1) + e1(x1, x2,n, x2,m, u, π, p̃), x1(0) = x10,

ẋ2,n = f 2,n(x1, x2,n, x2,m, d2) + Bn
uu + e2,n(x1, x2,n, x2,m, u, π, p̃), x2,n(0) = x2n0,

ẋ2,m = Bm
u,2u + ι, x2,m(0) = x2m0,

π̇ = Π(xy, xz, d, u; π, ν), π(0) = π0,

y = x2,m + h̃y(π), z = Cz,1x1 + h̃z(π),

where a new exogenous input is defined:

ι = e2,m(x1, x2,n, x2,m, u, π, p̃) + f 2,m(x1, x2,n, x2,m, d2), (4.72)
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which is the exogenous input (4.63) considered in the control-estimation system (4.69)
plus the nominal dynamics of the measured state:

ιy = e2,m(x1, x2,n, x2,m, u, π, p̃) ⇒ ι = ιy + f y(xy, xz, dm).

In the previous model, drop the parasitic dynamics π and the coupling error
functions to get the passive-detectable model for output feedback-estimator design:

ẋ1 = f 1(x1, x2,n, x2,m, d1), x1(0) = x10, (4.73a)

ẋ2,n = f 2,n(x1, x2,n, x2,m, d2) + Bn
uu, x2,n(0) = x2n0, (4.73b)

ẋ2,m = Bm
u u + ι, x2,m(0) = x2m0, (4.73c)

y = x2,m, z = Cz,1x1, (4.73d)

with input-measured output and exogenous input-measured output that have relative
degree one for each pair of their entries, i. e.,

rd(u, y) = rd(ι, y) =
[
1 . . . 1

]
meaning that: (i) the model (4.73) is passive with respect to the pair (u, y) with null
zero dynamics, and (ii) the control-exogenous input pair (u, ι) satisfy a matching
condition that can be exploited for disturbance rejection [58; 113] based on the
instantaneous observability property of the exogenous input: (4.73c) with y = x2,m

has a unique solution for the unknown exogenous input ι

ι = ẏ− Bm
u u (4.74)

implying that ι can be quickly (up to measurement noise) on-line reconstructed with
a reduced order observer [58; 113] driven by the know signals (u, y).

For monitoring purposes, note that the model (4.73a)-(4.73b) driven by the stabi-
lizing control law and a convergent input coincides with the estimation model (4.64)
established in Section 4.5.1. Thus, model (4.73a)-(4.73b) can be used as the basis for
the construction of an state estimator, or even used as an open-loop observer.

4.6.2 Construction

The enforcement of the output regulation dynamics (4.51) and control set Uc (4.57d):

ẏ = −Kcy, Kc > 0, Uc = [u−, u+] (4.75)

on the reduced model (4.73), with ι is known, yield the saturated linear controller

u = µr,s(y, ι), µs,r(·) = satu+

u−µr,i(·), i = 1, . . . , q, (4.76a)

where

µr(y, ι) = −Bm
u
−1(Kcy + ι). (4.76b)
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When there is no parasitic dynamics then ι = ιy(x, d2, 0, 0) + f 2,m(x1, x2,n, x2,m, d2),
and controller (4.76) coincides with the state feedback controller µs,e (4.68). Fur-
thermore, when there is no parasitic dynamics nor disturbance input effects, the
exogenous input ιy vanishes and ι = f 2,m(x1, x2,n, x2,m, d2) and the controller (4.76)
becomes the state feedback controller µ in (4.52). This is:

(π, v) = (0, 0) ⇒ ι = ιy(x, d2, 0, 0) + f 2,m(x1, x2,n, x2,m, d2) ⇒ µs,r = µs,e,

(π, v, d) = (0, 0, 0) ⇒ ι = f 2,m(x1, x2,n, x2,m, d2) ⇒ µs,r = µs.

This establishes and equivalence of the controller (4.76) with the state feedback
controllers (4.52) and (4.58), which implies that the sensor location and control limits
selection criteria of the previous controllers can be inherited to the present one.

From the instantaneously observability property (4.74), the unknown input ι can
be quickly on-line reconstructed with the linear observer [113]:

Λ̇ = −KωΛ− Kω(Kωy + Bm
u u), Λ(0) = Λ0, (4.77a)

ι̂ = Λ + KωBm
u y, (4.77b)

with adjustable gain matrix Kω = diag(ω1, . . . , ωq), and estimation error dynamics

˙̃ι = −Kω ι̃, ι̃ = ι̂− ι, ωi > ‖ι̇i/ιi‖ ≈ λx. (4.77c)

The combination of the saturated controller (4.76), the input observer (4.77) and the
open-loop estimation model (4.73a)-(4.73b) discussed in Section 4.6.1, yield the CES

˙̂x1 = f 1(x̂1, x̂2,n, y, d1), x̂1(0) = x̂10,
(4.78a)

˙̂x2,n = f 2,n(x̂1, x̂2,n, y, d2) + Bn
uµo

s(y, ξ), x2,n(0) = x2n0,
(4.78b)

x̂2,m = y, (4.78c)

Λ̇ = −KωΛ− Kω(Kωy + Bm
u µo

s(y, Λ)), Λ(0) = Λ0,
(4.78d)

ẑ = Cz,1 x̂1, x̂ = (x̂T
1 , CT

n x̂2,n + CT
y,2y)T, x̂N = I(x̂), (4.78e)

u = µo,s(y, Λ), (4.78f)

where

µs,o(y, ξ) = satu+

u− [µo,i(y, Λ)], µo(y, ξ) = −Bm
u
−1((Kc + Kω)y + Λ). (4.78g)

The structure Sq of the CES is composed by 2Ne + 1 ODEs: 2Ne for the estimation task,
and q ODEs for the control task. It has a sensor location set, number of sensors and
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their locations, and suitable control limits, both determined with robust criteria. The
set of gains is composed by matrices Kc and Kω, two gains for each measured output:

Sq = (2Ne, ς, Uc = [u−, u+]), Kθ = (Kc, Kω). (4.78h)

Differently from its detailed model-based counterpart (4.69), in the preceding CES

the control stabilizing task is executed without needing the state estimate, and the
output feedback controller does not depend on the detailed efficient model (4.73a)-
(4.73b), but instead just on the knowledge of matrix Bm

u,2, which depends on the heat
transfer parameter υ. This providing the CES (4.78) with a fastest and more robust
performance compared with (4.69). Closed-loop stability conditions are drawn next.

4.6.3 Closed-loop state stability and convergence

Apply (4.78) to the actual open-loop dynamics (4.2b) to get the closed-loop system

π̇ = Π3
c(x, d; π, ν, d, ι̃), π(0) = π0, (4.79a)

˙̃ι = −Kω ι̃ + f̃ ι(x, d; π, p̃, ι̃), ι̃(0) = ι̃0, (4.79b)
˙̃xz = f n(y, x̃n, d) + eo

n(x, d; π, p̃, d, ι̃, x̃n, l), x̃n(0) = x̃n0, (4.79c)

ẋ = f c(x, d) + eo
c(x, d; π, p̃, d, ι̃, x̃n, l), x(0) = x0, (4.79d)

with parasitic state π, states estimation error states ι̃ = ι̂− ι and x̃z = x̂z − xz, and
closed-loop system state x. The interconnecting Lipschitz bounded functions ρ3

c , f̃ ι,
eo

n, and eo
c are given in Section f.1.

System (4.79) is made of four individual robustly stable subsystems in fast to slow
dynamics ordering: (i) the parasitic dynamics (4.79a), (ii) the input estimation error
dynamics (4.79b), (iii) the unmeasured state error dynamics (4.79c), and (iv) the state
dynamics (4.79d). Each individual subsystem is robustly stable: the parasitic dynamics
by assumption, the exogenous input estimation error dynamics and the closed-loop
state by construction, and the unmeasured state dynamics by the related detectability
property. The decaying parameter of each subsystem are λπ, ωm, λz, λc > 0.

The stability analysis is similar to the one performed in Section 4.5.3 and is per-
formed first establishing the robust stability of the fast (4.79a)-(4.79b), and slow
(4.79c)-(4.79d) interconnections. Then, the stability of the fast and slow subsystems is
established. This result is summarized in the next.

Proposition 4.8. Robust stability of the closed-loop system (4.78). Proof in Section f.2.
Consider the closed-loop dynamics (4.79). Assume that the sensor location set and the control
limits are selected according to conditions in Proposition 4.4 and Proposition 4.5. If the
following condition is fulfilled

lo := ω− L f
ι (ωι)−

a f as
∥∥B f (ωι, ω2

ι )
∥∥ ‖Bs‖

νc
> 0 (4.80)
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where B f , Bs, and νc are defined in Section f.2, and ωι is the maximum entry of Kω. Then,
the closed-loop system is robustly stable in a nonlocal sense in X.

Condition (4.80) indicates that the stabilizing, linear-in-ωι, term dominates the
potentially destabilizing term (that grows linearly and quadratically with ωι). The
above result can be translated into a threshold condition for industrial-like tuning
purposes. Denote by ω−ι and ω+

ι the two solutions of the equality case in (4.80), i.e.

lo(ω
−
ι ) = lo(ω

+
ι ) = 0, 0 < ω−ι < ω+

ι . (4.81)

The gain ωι of Kω must be chosen above a lower threshold to ensure estimation error
convergence, and below an upper threshold condition to avoid instability due to the
excitation of the parasitic dynamics. This is stated next.

Corollary 4.1. Consider the closed-loop dynamics (4.79). Assume that the sensor location
set and the control limits are selected according to conditions in Proposition 4.4 and Propo-
sition 4.5. The closed-loop system is robustly stable if the maximal estimator gain ωι is set
sufficiently above (or below) its lower (or upper) limit ω−ι (or ω+

ι ):

ω− < ω < ω+ − . (4.82)

In industrial practice, the upper bound ω+ is called ultimate gain (where inadmis-
sible oscillatory behavior by error-noise propagation starts with ω increase).

With the preceding CES (4.78): (i) the critical regulation-state stabilization task is
performed with a considerably simpler, less model dependent and more reliable
dynamic data processor than its detailed model-based realization (4.69) (where the
regulating-stabilizing output feedback control component requires the detailed model-
based on-line estimator), and (ii) the decoupled efficient model-based estimator can
be used for setpoint adjustment and gain retuning in an optimizing control layer [90].

4.6.4 Control component in PI form

In industry most of the control loops are PIAW controllers. Accordingly, for implemen-
tation, the saturated linear dynamic output feedback control component (4.78d)-(4.78f)
of the CES (4.78) is transformed into a saturated linear PIAW.

Recall the control component (4.78d)-(4.78f) of the CES (4.78) and rewrite it as

Λ̇ = −KωΛ− K2
ωy− KωBm

u µo(y, ξ)− KωBm
u (µo,s(y, Λ)− µo(y, Λ)), Λ(0) = Λ0,

u = µo,s(y, Λ),

substitute µo, given in (4.78g), in the second term of the right hand-side of the first
equation to get

Λ̇ = KωKy− KωBm
u (µo,s(y, Λ)− µo(y, Λ)), Λ(0) = Λ0,

u = µo,s(y, ξ).
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Integrate with Λ0 = 0, substitute the resulting Λ in µo,s(y, ξ), and rearrange to obtain
the saturated linear PIAW of back-calculation type

u = µpi,s(y) = satu+

u− [µpi,i(yi, Λi)], (4.83a)

where the control maps are given as

µpi,s(y) = −kp,i

(
y + t−1

I,i

∫ t

0
ydt
)
+ t−1

a,i

∫ t

0
(µpi,s(y)− µs(y))dt, (4.83b)

with gains

Kp = (Bm
u )
−1(K + Kω) =

1
υ

diag(k1 + ω1, . . . , kq + ωq) = diag(kp,1, . . . , kp,q),

(4.83c)

T−1
I = K−1 + K−1

ω = diag(k−1
1 + ω−1

1 , . . . , k−1
q + ω−1

q ) = diag(tI,1, . . . , tI,q),
(4.83d)

Ta = K−1
ω = diag(ω−1

1 , . . . , ω−1
q ) = diag(ta,1, . . . , ta,q). (4.83e)

Kp (or T I) is the proportional gain (or integral time) matrix and Ta is the integral time
of its AW component. All matrices are diagonal and contain the gains of the corre-
sponding PIAW controller. The MIMO controller (4.83) is actually a set of decentralized
PIAW controllers, each one operating independently of the others.

The replacement of (4.78d)-(4.78f) by (4.83) in (4.78) yields the industrial-type
realization of the simplified model-based CES (4.78) as a saturated robust stabilizing
PIAW, and a decoupled efficient model-based robustly convergent state estimator:

˙̂x1 = f 1(x̂1, x̂2,n, x̂2,m, d1), x̂1(0) = x̂10, (4.84a)
˙̂x2,n = f 2,n(x̂1, x̂2,n, y, d2) + Bn

uµpi,s(y), x2,n(0) = x2n0, (4.84b)

x̂2,m = y, (4.84c)

ẑ = Cz,1 x̂1, x̂ = (x̂T
1 , CT

n x̂2,n + CT
y,2y)T, x̂N = I(x̂), (4.84d)

u = µpi,s(y), (4.84e)

with two components in cascade interconnection: (i) the temperature PIAW (4.84e),
and (ii) a pointwise-like robustly convergent state estimator (4.84a)-(4.84d), similar to
the early-lumping implementation of the pointwise observer introduced in [111].

From an advanced control perspective, the PI control with AW scheme-Pointwise
Observer (PIAW-PWO) system (4.84): (i) is a simplified-robustified realization of the
estimator-based saturated stabilizing control (4.69), and (ii) has a comprehensive
design with solvability in terms of passivity and detectability, as well as criteria to
choose the model order, sensor location, and control limits and gains. Two funda-
mental conclusions are: (i) the critical joint temperature regulation-state stabilization
task must be executed with the saturated linear PIAW instead of the nonlinear output
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feedback controller of the control-estimation system (4.69), and (ii) the estimation
task can be performed independently of the control one with an estimator that can be
used to perform setpoint adjustment in an optimizing control layer.

From and industrial control perspective, the theoretical developments associated
to the proposed MIMO PIAW-PWO CES design (4.84) explain with formal advanced
control arguments the effective functioning of the industrial saturated PI with back-
calculation AW for exothermic tubular reactors [89; 121; 100; 14; 42]. Furthermore, the
proposed CES (4.84) is an upgrade of the saturated PI temperature control employed
in industrial reactors, with the upgrade consisting in an all-embracing design with:
(i) criteria to choose the sensor location, control limits, and kind of AW protector for
the saturated PI control, and (ii) the model order and control gain of a decoupled
state estimator that should be used for monitoring and setpoint adjustment purposes.
These considerations and conclusions are along current industrial control trends [90].

4.6.5 Implementation and tuning

Here, implementation guidelines and a tuning procedure are developed for the
proposed MIMO PIAW-PWO CES (4.84).

Rewrite model (4.4) in original coordinate to obtain the lumped

χ̇1 = A1χ1 + Bd,1χ1,e − r(χ1, χ2), χ1(0) = χ10, (4.85a)

χ̇2 = A2χ2 + Bd,2χ2,e + r(χ1, χ2) + Bu,2τc, χ2(0) = χ20, (4.85b)

τm = Cy,2x2, co = Cz,1χ1, (4.85c)

where (χ1, χ2) are the concentration and temperature states. Using the previous
model in partitioned coordinate (4.4), the proposed CES (4.84) is implemented as

˙̂χ1 = A1χ̂1 + Bd,1χ̄1,e − r(χ̂1, χ̂2), χ̂1(0) = χ̂10, (4.86a)
˙̂χ2,n = An,n

2 χ̂2,n + An,m
2 χ̂2,m + Bn

d,2χ2,e + rn(χ̂1, χ̂2,n) + Bn
u,2τc, χ̂2,n(0) = χ̂2,n0,

(4.86b)

χ̂2,m = τm, (4.86c)

ĉo = Cz,1χ̂1, χ̂2 = CT
n χ̂2,n + CT

y,2χ̂2,m, χ̂N = I(χ̂), (4.86d)

τc = µpi,s(τm) =
[
satτ+

c
τ−c

µpi,1(τm,1) . . . satτ+
c

τ−c
µpi,q(τm,q)

]T
, (4.86e)

where the control inputs are

µi,pi(τm,i) = τ̄c,i − kp,i

(
(τm,i − τ̄m,i)− t−1

i

∫ t

0
(τm,i − τ̄m,i)dt

)
+

+ t−1
a

∫ t

0

(
satτ+

c
τ−c

µpi,i(τm,i)− µpi,i(τm,i)
)

dt, i = 1, . . . , q, (4.86f)
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with control limits and gains

τ−c = u− − τ̄c, τ+
c = u+ − τ̄c, kp,i =

ki + ωi

υ
, ti = k−1

i + ω−1
i , ta = ω−1

i . (4.86g)

The above CES has the following structure Sq and gains Kθ that must be selected
appropriately to ensure good closed-loop performance:

Sq = (2Ne, q, ς, (τ−c , τ+
c )), Kθ = (Kc, Kω), (4.87)

where nθ2Ne is the dimension of the CES: 2Ne− q is the dimension of the estimator and
the controller has q integral actions, Ne is the efficient discretization order Section 3.2,
q is the number of actuator-sensor pairs. The sensor location set ς is determined in
Section 4.3.3, and the control limits (τ−c , τ+

c ) are determined in Section 4.4.3.4. The
gain matrices (K, Kω) contains parameters from which the proportional gain, integral
time, and AW time matrices of the decentralized PIAW controllers are computed.

The theoretical developments of the previous sections are summarized next in
a structure-gain tuning procedure. The first step, of structure tuning, include the
determination of: (i) the efficient discretization order Ne, (ii) the sensor set ς, and (iii)
the control limit pair (τ−c , τ+

c ). The second step, for gain tuning and structure cali-
bration, is set in the light of simulation-based conventional-like tuning guidelines for
robust functioning meaning with realistic initial condition, input step and fluctuating
disturbance, parameter uncertainty, and reference setpoint change).

Step I: Off-line structural tuning:

I.1 Use the efficient modeling approach of Section 3.2 to draw the efficient dis-
cretization order Ne of the lumped model (3.19). This low dimensional model
should be used for the remaining off-line structure and on-line gain tuning and
structure calibration.

I.2 On the basis of the zero dynamics multiplicity analysis and maximal control set
Uc,0 = Uz, of Section 4.3.3.2, determine the admissible sensor set Sm for q = 1,
and then choose the sensor locations with the best compromise between speed,
robustness, and control effort, according the sensor location criterion (4.48).

I.3 Use the control limit criterion of Section 4.4.3.4 to choose (u−,u+) above and
below the bifurcation values (u∗, u∗) of the IOBM O : u− < u∗, u+ > u∗.

I.4 Set the closed-loop system with the proposed CES (4.86) in robust testing mode
with appropriate: (i) parameter errors and measurement noise, load input, and
setpoint changes, (ii) initial state and estimate errors, (iii) fluctuating modeling
errors generated by a suitable parasitic dynamics model (4.79a) (typically, 50

times faster than the reactor natural dynamics i. e., λπ ≈ 50λx), and (iv) perform
the corresponding control set Uc,0-to-Uc enlargement (4.67), and compute the
control limits (τ−c , τ+

c ) as τ−c = u− + τ̄c, τ+
c = u+ + τ̄c.



86 control-estimation system design : early lumping approach

Step II: On-line gain tuning and structural-gain fine adjustment:

II.1 Set the control (or estimator) gain, conservatively, nk times (or nω) faster than
the natural (or closed-loop) dynamics λx (or λc)

(K, Kω) ≈ (nk, nω)λx I, nk ∈ [1, 3], nω ∈ [15, 30].

II.2 For the i-th output, i = 1, . . . , q, gradually increase the i-th control kc,i or
estimator ωi gain, with the other gains fixed, up to its ultimate value k+c,i or ω+

i
(where excessive oscillatory behavior occurs) and back off to

ki,c ≈ k+c,i/nb, ωi ≈ ω+
i /nb, nb ∈ [2, 3].

II.3 Perform fine calibration: adjust the model order ne = 2Ne, the sensor location
set ς, the control limit pair (τ−c , τ+

c ), and the gain pair (K, Kω) to improve
behavior.

II.4 The number q of actuator-sensor pairs can be incremented up to 2 or 3 to explore
if there is some behavior improvement.

4.7 control-estimation system functioning

In this section, the on-line functioning of the proposed CES (4.86) is illustrated and
tested with numerical simulation for the case example presented in Section 2.5.

CES functioning of nominal and robust type will be assessed. Nominal (or robust)
functioning means in the absence (or presence) of modeling error, for verification of
theoretical developments (or implementation-tuning and behavior comparison).

The application of the off-line Step I (Section 4.7.2) to the tubular reactor case study
of Section 2.5, was performed in Section 3.2.3 for the model order, in Section 4.3.3.3 for
the sensor location for q = 1, 2, 3, and in Section 4.4.3.5 for the control limits (u−,u+)

with suitable enlargement (4.67), in the light of the size of the exogenous inputs in
Table 2.1. Accordingly, the initial (before calibration) CES structures for q = 1, 2, 3 are:

S1,0 = {40, 1, ς1 ≈ 0.24, (1.1, 1.9)},
S2,0 = {40, 2, {ς1 ≈ 0.24 ς2 ≈ 0.95}, (1.1, 1.9)},
S3,0 = {40, 3, {ς1 ≈ 0.24 ς2 ≈ 0.65, ς3 ≈ 0.95}, (1.1, 1.9)}.

The design of the proposed CES suggest the initial gain values (before on-line tuning)

K0 ≈ 1.2λx Iq, Kω,0 = 20K0.

The results on the conclusive structural and gain tuning resulting is done on-line
with Step II of Section 4.7.2. As it is done in the implementation of PDE model-based
control studies [42; 36; 22], the reactor dynamics model (4.85) will be simulated with
a standard FD-based numerical PDE solver with Npde = 200 internal nodes, meaning
that the reactor model is composed by of 400 ODEs.
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4.7.1 Robust testing scheme

The tubular reactor is simulated with model (4.85) and Npde = 200. The initial
concentration (or temperature) vector χ1 (or χ2) is set with 10 % (or -5 %) deviation
with respect to nominal value χ̄1 (or χ̄2):

χ1,0 = 1.1χ̄1, χ2,0 = 0.95χ̄2.

The fluctuating error e of the actual closed-loop dynamics (4.2) was generated with
the linear (2nd-order oscillator) parasitic dynamics driven by low-amplitude and
high-frequency (close to resonant one) sinusoidal inputs wj, j = 1, 2:

π̇1,j = π2,j, π1,j(0) = 0,

π̇2,j = −λ2
π,jπj,1 + wj(t), π2,j(0) = 0,

ej = bππj,2,

w1(t) = 0.01 sin(50t + 12.57), w2(t) = 0.02 sin(25t + .35).

where λπ,j ≈ 50νj, j = 1, 2, with νj are determined in Section 4.2.3, and bπ = [1 . . . 1]T.
In the testing scheme the tubular reactor is operated over the dimensionless time

interval [0,30]. The closed-loop system (4.85)-(4.86) is subjected to the following flow
feed temperature χ2,e load input disturbance, feed (we) and output (wm) temperature
measurement sinusoidal noises, and setpoint change (∆τ̄m):

t ∈ [0, 30] : χ2 = χ2,e + w2, χ1,e = χ̄1,e, τm = χ2,m + wm, τ̄m = χ̄2,m + ∆τ̄m,

where wj(t) = 0.02 sin(2.9t + π/18), j = 2, m. In addition: (i) over the time subinter-
val [5, 25) the feed temperature χ2,e undergoes step changes sequences (H: Heaviside’s
function)

t ∈ [4, 25) : χ2,e(t) = χ̄2,e + 0.02[H(t, 5)− H(t, 10)]− 0.05[H(t, 15) + H(t, 20)],

and (ii) over the interval [26, 30] a control setpoint change was applied

t ∈ [25, 30] : ∆τ̄m = 0.2τ̄mH(t− 25), χ2,e = χ̄2,e.

The CES (4.86a)-(4.86d) is build with the deviated transport-kinetics parameters

(P̂em, P̂eh) = (0.91Pem, 1.11Peh), υ̂ = 0.95υ, (âr, b̂r) = (1.035ar, 1.03br),

and initial unmeasured state estimate:

(χ̂1, χ̂2,n) = (χ̄1, χ̄2,n).
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4.7.2 Gain tuning and structure calibration

The application of Steps II.1 to II.3 of the gain-structure procedure of Section 4.6.5
yields the CE gains (K, Kω):

Kc = 1Iq×q, Kω = 25Iq×q. (4.88)

The corresponding standard PIAW gain triplets are

(kp,i, tI,i, ta,i) = (27.37, 0.96, 0.04), i = 1, . . . , q

with AW integral times ta,i: (i) about twenty time smaller than the integral ones tI,i,
and (ii) equal or thirty times smaller than the obtained with standard tuning [21; 132].

The advanced control-estimation system (4.69) is used for comparison purposes in
the case q = 1 with the initial state estimates

χ2,m = y0, (χ̂1, χ̂2,n) = (χ̄1, χ̄2,n), ι̂y0 = 0

and the triplet gain

(K, Kω, ζω) = (1, 225, 1.5),

drawn from the application of the tuning procedure (Steps II.1 to II.3) of Section 4.6.5.
While the control gain K is the one the proposed CES with PIAW control, the observer
gain Kω is ten times faster. This is so because Kω = 225 was needed to attain similar
disturbance rejection capability by overcoming, at the cost of some noise propagation,
the dependency of the state feedback control on the slowly convergent unmeasured
state. This agrees with the comparative robust stability assessments of Proposition 4.7
and Proposition 4.8 of the advanced and proposed CESs, respectively.

4.7.3 SISO case

The closed-loop functioning comparison, under nominal and robust testing conditions,
of the proposed SISO PIAW-PWO (4.86), against its advanced Output Feedback control
with Geometric Observer (OF-GO) CES counterpart (4.69), and the State Feedback
controller (SF) (4.52), is performed next with two objectives: (i) corroborate theoretical
results on sensor sensor location, control limits, and attainable behavior under nomi-
nal conditions, and (ii) to show how, as predicted in the theoretical developments,
PIAW-PWO produce the best performance under robust conditions.

4.7.3.1 Nominal functioning

The nominal functioning is performed with the gains and structure obtained with
the robust testing scheme. While the step changes in the inlet temperature and the
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Figure 4.7: Nominal closed-loop functioning with SF. Top left: concentration profile c(s, t). Top
center: temperature profile τ(s, t). Top right: control effort β1(s)τc,1(t). Bottom left: deviated
concentration profile x1(s, t). Bottom center: deviated temperature profile x2(s, t). Bottom
right: measured τm,1 (continuous blue) and regulated co(t) (continuous red) outputs and their
setpoints (dashed-dotted cyan or dotted magenta, respectively).

output setpoint are present, the fluctuating disturbances, the parasitic dynamics
and the sinusoidal noise-like signals are not at play. For state feedback control, the
output setpoint change is accompanied with the related value of the control input
that corresponds with the new steady-state. The other controllers, since have integral
actions do not need this actualized data.

In Figure 4.7, Figure 4.8a and Figure 4.9a, the nominal closed-loop control function-
ing with the SF (4.52), the advanced OF-GO CES (4.69), and the PIAW-PWO CES (4.86),
respectively, are shown. The closed-loop estimation functioning of the estimators of
the proposed control-estimation system (4.86) and the geometric one in (4.69) are
shown in Figure 4.8b and Figure 4.9, respectively. The norms of the distributed state
and estimation error and control input profiles are presented in Figure 4.10a.

Regarding control functioning, on one hand, with respect to regulation task, in
terms of settling time, disturbance rejection, control saturation and effort, the SF

yields the best behavior, closely followed by the PIAW-PWO and the OF-GO CESs; on the
other hand, for the setpoint change tracking, while the PIAW-PWO and OF-GO perform
adequately with accurate regulation to the new target steady-state, the SF, which do
not have integral action, lacks behind with large asymptotic deviation.

Specifically, (i) for t ∈ [0, 5) (where only response to initial condition is at play) the
PIAW-PWO and OF-GO CESs yield larger overshoots and control effort (due to estimator
error dynamics), (ii) for t ∈ [5, 25) (where step disturbances occur) the OF-GO produce
slightly more oscillatory response, and (iii) for t ∈ [25, 30] (where control setpoint
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t).
Top right: control effort β1(s)τc,1(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,1 (continuous blue) and regulated co(t)
(continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta, respectively).

0

0

0.2

0.4

0.6

0.8

1

0
0.5

10

20

1 30

-0.2

-0.15

0

-0.1

-0.05

0

0.05

0.1

0
0.5

10

20

1 30

2

0

2.1

2.2

2.3

2.4

2.5

0
0.5

10

20

1 30

-0.1

0

-0.05

0

0.05

0.1

0.15

0.2

0
0.5

10

20

1 30

0 5 10 15 20 25 30

-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30

2.05

2.1

2.15

2.2

2.25

2.3

0

0.05

0.1

0.15

0.2

0.25

(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Top right: estimated exogenous input ι(t). Bottom left: concentration estimation
error profile c̃1(s, t). Bottom center: temperature estimation error profile τ̃2(s, t). Bottom right: real mea-
sured (τm,1(t)) (dashed-dotted cyan) an regulated co(t) (dotted magenta) outputs and their estimates
(τ̂m,1(t), ĉo(t)) (continuous blue and red, respectively).

Figure 4.8: Nominal closed-loop CE functioning with the advanced OF-GO CES.

change happens) the PIAW-PWO and OF-GO CESs produce adequate responses while
the SF cannot reach the new operating conditions.

Regarding estimation functioning, in terms of settling time and offset, the estimators
of the proposed PIAW-PWO and OF-GO CESs perform almost equally well, both present
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t).
Top right: control effort β1(s)τc,1(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,1 (continuous blue) and regulated co(t)
(continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta, respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Top right: estimated exogenous input ι(t). Bottom left: estimation error of the
concentration profile c̃1(s, t). Bottom center: estimation error of the temperature profile τ̃2(s, t). Bottom
right: real measured τm,1(t) (continuous blue) and regulated co(t) (dotted magenta) and their estimates
(τ̂m,1(t), ĉo(t)) (continuous blue and red, respectively).

Figure 4.9: Nominal closed-loop CE functioning with the PIAW-PWO CES.

some expected and allowed persistent estimation error due to the number of ODEs

used for the estimators: 41 for the geometric observer and 40 for the pointwise-like
one, which are the 10 % of the 400 used to simulate the tubular reactor dynamics.
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Figure 4.10: Norms of distributed states in deviation, estimation errors and control input.

As expected, in the regulation task the SF (driven, and benefited, by the exact state
and inputs) has the best overall behavior, with smaller transients and less control
effort, closely followed by the PIAW-PWO and OF-GO CESs, the latter two recover the
closed-loop behavior obtained with the first one after the corresponding transients
(up to observer convergence). In the setpoint change scenario the behavior of the SF

degrades while the PIAW-PWO and OF-GO CESs perform adequately.
To test the sensor location and control limit necessary conditions for robust closed-

loop stability of Proposition 4.5 and Proposition 4.4, on purpose those conditions are
violated. First, the control limit pair condition is met, and the sensor location condition
is violated by placing the temperature measurement at the following location

ς1 = 0.57, τm,1 = χ2,11,

after the hotspot, with bistable zero dynamics. The corresponding norms of the
distributed profiles in closed-loop behavior are presented in Figure 4.11a, showing
that, as expected, the reactor, with the three CES, do not reach the prescribed steady-
state profile pair, and instead it reaches an undesired ignition stable steady-state. The
estimation task is fulfilled showing the efficiency of the estimators in this unfavorable
scenario and confirming their use for monitoring purposes.
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(a) Nominal case where the sensor location condi-
tion is not met.
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(b) Nominal case with upper control limit not se-
lected appropriately.

Figure 4.11: Norms of distributed states in deviation, estimation errors and control input for
violated conditions in the sensor location and control limits criteria.

Then, the sensor location condition is met with ς1 ≈ 0.24, and the upper control
limit condition violated with

τ+
c = 0.2 < u∗ = 0.28. (4.89)

The corresponding norms of the distributed profiles in closed-loop behavior are pre-
sented in Figure 4.11b, showing that, as predicted, with the three CES the concentration-
temperature profile pair reaches an undesired extinction steady-state, induced by
control saturation. The estimators, again, function adequately.

4.7.3.2 Robust functioning

In Figure 4.12, Figure 4.13a and Figure 4.14a, the robust closed-loop control func-
tioning with the SF (4.52), the advanced OF-GO (4.69), and the proposed PIAW-PWO

(4.86) CESs, respectively, are shown. The robust closed-loop estimation functioning
of the estimators of the OF-GO and the PIAW-PWO CES are shown in Figure 4.13b and
Figure 4.14b, respectively. The norms of the distributed state and estimation error and
control input profiles are presented in Figure 4.10b.
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Figure 4.12: Robust closed-loop functioning with SF.Top left: concentration profile c(s, t). Top
center: temperature profile τ(s, t). Top right: control effort β1(s)τc,1(t). Bottom left: deviated
concentration profile x1(s, t). Bottom center: deviated temperature profile x2(s, t). Bottom
right: measured τm,1 (continuous blue) and regulated co(t) (continuous red) outputs and their
setpoints (dashed-dotted cyan or dotted magenta, respectively).

Accordingly, with respect to the regulation task and in terms of settling time,
disturbance rejection, control saturation and effort, and setpoint regulation: the
PIAW-PWO outperforms its OF-GO and SF counterparts. Regarding the estimation task,
in terms of convergence settling time and offset, the estimator of the proposed
PIAW-PWO performs slightly better than the one of the OF-GO. Thus, in agreement
with theoretical developments, the proposed PIAW-PWO CES outperforms the detailed
observer-based OF-GO CES, and the SF, substantially degraded due to its dependency
on the parameters and in spite of using the current state of the tubular reactor.

Specifically, for t ∈ [0, 5) (with response to initial condition deviation), with respect
to the PIAW-PWO: (i) the OF-GO has larger settling times with oscillatory response
and large control action, and (ii) the SF has comparatively larger overshoot as well
as asymptotic offset, accompanied by wasteful control action. For t ∈ [5, 25) (with
persistent periodic and step disturbances as well as setpoint change) the OF-GO

regulate almost equally well the temperature output as well as the outlet concentration
and the state profiles with larger transients. For t ∈ [25, 30] (with setpoint change)
the SF produces large asymptotic offsets on the measured temperature and effluent
concentration, with wasteful control action.

Following the previous results, it is confirmed that the proposed PIAW-PWO CES

(4.86) is the one with the best closed-loop performance in both tasks: control and
estimation. What is left is to assess is there is some benefit of considering the MIMO

cases in comparison with the SISO one. This is evaluated next.
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t).
Top right: control effort β1(s)τc,1(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,1 (continuous blue) and regulated co(t)
(continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta, respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Top right: estimated exogenous input ι(t). Bottom left: concentration estimation
error profile c̃1(s, t). Bottom center: temperature estimation error profile τ̃2(s, t). Bottom right: real mea-
sured (τm,1(t)) (dashed-dotted cyan) an regulated co(t) (dotted magenta) outputs and their estimates
(τ̂m,1(t), ĉo(t)) (continuous blue and red, respectively).

Figure 4.13: Robust closed-loop CE functioning with the SISO-OF-GO CES.

4.7.4 MIMO case

The SISO and MIMO for q = 2, 3, versions of the proposed PIAW-PWO CES (4.86) are
set with the structures and parameters obtained in Section 4.7.2. The closed-loop CE
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t).
Top right: control effort β1(s)τc,1(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,1 (continuous blue) and regulated co(t)
(continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta, respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Top right: estimated exogenous input ι(t). Bottom left: estimation error of the
concentration profile c̃1(s, t). Bottom center: estimation error of the temperature profile τ̃2(s, t). Bottom
right: real measured τm,1(t) (continuous blue) and regulated co(t) (dotted magenta) and their estimates
(τ̂m,1(t), ĉo(t)) (continuous blue and red, respectively).

Figure 4.14: Robust closed-loop CE functioning SISO-PIAW-PWO CES.

performances under robust testing conditions are presented in Figure 4.14, Figure 4.15,
and Figure 4.16, for the SISO and 2-MIMO and 3-MIMO cases, respectively.

From the simulation results, it can be seen that the proposed PIAW-PWO CES benefits
from the use of a MIMO sensor-actuator configuration: the CES dispose of more infor-
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mation and produce more robust closed-loop behavior in both control and estimation
tasks. Specifically, for t ∈ [5, 25) (when inlet temperature step disturbances arise),
regarding control functioning, PIAW-PWO produce precise and coordinated control
actions that have the effect of ensuring the accurate rejection of the disturbances in
the steady-state profiles. Regarding estimation, it is appreciated that the PIAW-PWO

improve their performance since the estimation error at steady-state, in the presence
of exogenous disturbances, decreases as q increases, this in despite of the use a low
dimensional estimation model. Note that this is produced, with an overall control
action that has a similar norm as in the two MIMO and the SISO cases.

Thus, it is concluded that the proposed PIAW-PWO CES (4.86), clearly benefits with
the use of more sensors and actuators and the 3-MIMO configuration produces the
best closed-loop performance, in terms of measured disturbance rejection capabilities
with adequate control effort.

4.7.5 Concluding remarks on control-estimation functioning

The preceding assessment of CES functioning results corroborate and illustrate the the-
oretical developments of Chapter 4, under realistic industrial-like testing conditions:
(i) the proposed PIAW-PWO CES (4.86) outperformed its estimator-based saturated
OF-GO (4.69) counterpart, and (ii) the theoretical-based claim that the proposed CES is
a simplified-robustified application-oriented realization of its and advanced counter-
part has been confirmed with on-line functioning assessment.

It was corroborated: (i) the effectiveness of the proposed passivity-based sensor
location and bifurcation-based control limits selection criteria (Proposition 4.4 and
Proposition 4.5, respectively), and (ii) that the proposed two-gain PIAW tuning is
simpler and more efficient than the conventional three-gain one [21; 132]. With respect
to industrial reactor control, the proposed PIAW-PWO CES design: (i) is simpler, more
systematic and has robust functioning conditions in terms of sensor location, control
limits and CE gains, (ii) has passivity-based sensor location criterion that corresponds
to the industrial one (at the slope inflection before the hotspot) for exothermic tubular
reactors [68; 100; 108], (iii) has simple control limit selection criterion, and (iv) a
two-gain parameterization that enables a simpler and more efficient tuning than the
conventional one.

Finally, it was also concluded that the decentralized MIMO versions of the proposed
PIAW-PWO CES enhance their performance on both CE tasks.

4.8 summary of the early lumping approach

The joint problem of robustly stabilizing, through saturated output feedback control,
and estimating the state of a (possibly open-loop unstable) spatially distributed
continuous exothermic tubular reactor was solved by constructing a CES within an
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t).
Top right: control effort ∑2

i=1 βi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom
center: deviated temperature profile x2(s, t). Bottom right: measured τm,i, i = 1, 2 (continuous blue)
and regulated co(t) (continuous red) outputs and their setpoints (dashed-doted cyan or dotes magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Top right: estimated exogenous input ι(t). Bottom left: estimation error of the
concentration profile c̃1(s, t). Bottom center: estimation error of the temperature profile τ̃2(s, t). Bottom
right: real measured τm,i(t), i = 1, 2 (continuous blue) and regulated co(t) (dotted magenta) and their
estimates (τ̂m,i(t), ĉo(t)) (continuous blue and red, respectively).

Figure 4.15: Nominal closed-loop CE functioning with the 2-MIMO-PIAW-PWO CES.

early lumping-based constructive approach. The solution consists in: (i) a set of
decentralized saturated linear temperature PIAW decoupled from a pointwise-like
state estimator, and (ii) assurance of robust functioning accompanied by a systematic
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t). Top
right: control effort ∑3

i=1 βi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,i, i = 1, 2, 3 (continuous blue) and
regulated co(t) (continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Top right: estimated exogenous input ι(t). Bottom left: estimation error of the
concentration profile c̃1(s, t). Bottom center: estimation error of the temperature profile τ̃2(s, t). Bottom
right: real measured τm,i(t), i = 1, 2, 3 (continuous blue) and regulated co(t) (dotted magenta) and their
estimates (τ̂m,i(t), ĉo(t)) (continuous blue and red, respectively).

Figure 4.16: Robust closed-loop CE functioning with the 3-MIMO-PIAW-PWO CES.

procedure to choose and tune sensor-actuator configuration, control limits and control-
estimator gains. In terms of a compromise between simplicity, robustness, control
effort and on-line computational load the proposed cCES design outperforms its
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Figure 4.17: Norms of distributed states in deviation, estimation errors and control input for
decentralized SISO, 2-MIMO, and 3-MIMO PIAW-PWO CESs.

advanced counterpart. The robust functioning of the proposed CES was illustrated
and tested with a representative case example through numerical simulation.

Methodologically speaking, the proposed design: (i) is based on a series of (PDE and
ODE) models along off and on-line development steps, (ii) is underlain by feedback
passivity and closed-loop detectability properties, (iii) connects industrial saturated
PIAW with passive control, and (iv) has reduced on-line computational load, attained
with efficient modeling approach for tubular reactors.

The methodology consisted in the use of an efficiently lumped ODE model that is
used fro model-based design of a saturated state feedback controller and a robust
estimator, drawn from sensor dependent passivity and closed-loop detectability
properties. The combination of these algorithms leads to an advanced CES which
assurance of robust stability, and criteria for the selection of sensor locations and
control limits. For reliable functioning and implementation purposes, using model
redesign, the advanced CES was realized as a set of decoupled PIAW and a decoupled
pointwise-like estimator.

The efficiency of the proposed CES was corroborated with an extensive simulation
study leading to conclude that the decentralized MIMO version has better closed-loop
performance in comparison with the SISO case.



Part III

L AT E L U M P I N G A P P R O A C H

This part of the present study regards the solution of the control-estimation
problem at hand within a late lumping approach. The control-monitoring
design methodology is traversed by a constructive spirit. The unstable
steady-state of the tubular reactor is stabilized by an output linearizing
controller, its stabilizing capabilities are characterized in terms of the num-
ber of sensors and their locations. Then, an additional control term, drawn
with inventory control ideas and feedback passivation by output selection,
is added to the control design to improve closed-loop performance. A
pointwise innovation observer is introduced for output feedback control
and estimation purposes. Exponential stability of the related closed-loop
dynamics are established by using small gain arguments in terms of the
sensor locations and gains. The implementation of the control-estimation
system is done with the employment of the efficient modeling approach to
get an efficient late lumping implementable algorithm. The effectiveness
of the approach is illustrated with closed-loop simulations on the case
study.
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5
C O N T R O L - E S T I M AT I O N S Y S T E M D E S I G N W I T H L AT E
L U M P I N G A P P R O A C H

In this chapter, within the late lumping approach, a Control-Estimation System (CES)
will be designed by combining feedback passivity, industrial inventory control ideas,
and nonlinear estimation theory. All this within an application-oriented framework
and exploiting the natural stabilizing mechanisms of the tubular reactor dynamics.

The CES is composed by a state feedback controller and a distributed observer.
The state feedback controller is a partial linearizing control that keeps the open-loop
stabilizing linear terms on the output dynamics. The closed-loop system with this
controller is passivated be choosing a virtual output that produce an inventory-like
control component. Finally, for implementation and monitoring purposes, a pointwise
observer is added to the design. The observer has as unique degree of freedom the
number of temperature measurements and their locations. The Single Input-Single
Output (SISO) and the Multiple Input Multiple Output (MIMO) cases are considered.
The closed-loop stability is ensured and the efficient modeling approach recalled (see
Section 3.2) for the late lumping implementation of the proposed CES.

5.1 late lumping control-estimation problem setting

The control problem treated in this chapter, consist in designing, on the basis of
the tubular reactor distributed Partial Differential Equation (PDE) model (2.7), a dis-
tributed CES, to perform the stabilization task of the concentration-temperature profile
pair on an open-loop unstable steady-state of the tubular reactor, and to estimate the
related state of the system. The distributed CES must assure closed-loop stability on
the PDE model (2.7) in a suitable norm and have an efficient implementation.

Specifically, the distributed CES has the form

θ̇ = G(θ, τm, χe, p,S, Kθ), θ(0) = θ0, (5.1a)

χ̂ = E(θ,S), (5.1b)

τc = µ(θ, τm, χe, p, Kθ ,S), (5.1c)

where θ is the infinite dimensional internal state, G and E are the infinite dimensional
functions that determines the internal dynamics of the controller and the estimated
state, and µ is the finite dimensional control output map that determines the jacket
temperatures. The CES structure Sq (the number of sensor/actuators and their lo-
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cations, design degrees of freedom, and the control set) and gains Kθ are given as

Sq = (n∞, q, ς,⊂ R), Kθ = (Kc, Ke), (5.1d)

where Ke (or Kc) contains controller (or estimator) gains, n∞ = ∞ indicates the infinite
dimension of the control-estimation system, q is the number of coolant jacket sections
and sensors, ς is the sensor set (2.5b), and Tc ⊂ R, indicate that the control action
is unconstrained. The consideration of constrained control action may be explored.
Again, as in the early lumping case and according to [67], only the cases for q = 1, 2, 3
will be considered. The late lumping approximation, obtained with the application
of efficient modeling approach of Section 3.2, to the CES (5.1a) yields to a finite
dimensional system of the form (2.11).

Throughout this chapter, the notion of stability that will be used is similar to the
one of robust stability employed in Chapter 4, but using the concept exponential
stability in the L2 norm. This property of stability can be used to establish similar
results on Input-to-State Stability (ISS) as the ones employed in Chapter 4.

The remaining of this chapter is structured as follows. First, the PDE model (2.7) is
described in a Hilbert product space in which its open-loop dynamics are character-
ized. Secondly, a state feedback controller with three components, two stabilizing ones
and a third one for performance enhancement is constructed. Finally, this controller
is coupled with a pointwise observer for implementation purposes. The efficient
modeling approach is used to get a late lumping approximation of the controller for
on-line functioning which is assessed in a simulation study.

5.2 open-loop dynamics

Here, the tubular reactor PDE dynamic model (2.7) is redefined as an abstract system
in the product space of two Hilbert spaces, one for each distributed state. An integrat-
ing factor is used to get a system with selfadjoint operators, and the related operators
and functions are described in the corresponding Hilbert space. Then, using this
abstract model and within a physical perspective, the interplay between stabilizing
and destabilizing mechanisms of the reactor model are discussed on the basis of: (i)
the characterization of the spectra of the heat and mass transport operators, and (ii)
the dynamic interaction between stabilization by heat transport and destabilization
by heat generation due to chemical reaction.

For the purpose at hand, recall the tubular reactor model (2.7). From standard
modeling assumptions [129], bounded feed temperature, concentration, and coolant
temperature exogenous inputs

τ−e ≤ τe(t) ≤ τ+
e , 0 ≤ ce(t) ≤ 1, 0 < τ−c ≤ τc,i(t) ≤ τ+

c ,

produce a bounded temperature–concentration state profile [c(s, t) τ(s, t)]T, over the
spatial s ∈ [0, 1] and temporal t ∈ R+ domains.
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Introduce the deviated weighted state, control, and outputs coordinate change

x1 = wm(s)(c(s, t)− c̄(s)), x2 = wh(s)(τ(s, t)− τ̄(s)),

u =


τc,1 − τ̄c

...

τc,q − τ̄c

 , y = lh(s)


τm,1(t)− τ̄m,1

...

τm,q(t)− τ̄m,q

 , z = wm(s)(cz − c̄z),

where the weighting functions

wm(s) = e−
Pem

2 s, wh(s) = e−
Peh

2 s,

are integrating factors that produce selfadjoint spatial operators. The corresponding
inverses are

w−1
m (s) = e

Pem
2 s, w−1

h (s) = e
Peh

2 s.

The application of the above coordinate change to the PDE reactor model (2.7) yields
to the abstract system

ẋ1 = A1x1 − ρ1(x1, x2), x1(0) = x10, (5.2a)

ẋ2 = A2x2 + ρ2(x1, x2) +Buu, x2(0) = x20, (5.2b)

y = Cyx2, z = Czx1, (5.2c)

where xj(s, t) : (0, 1)×R+ → Hj are the states, each one evolving in the Hilbert space
Hj. The initial conditions xj0(s) ∈ H2

j (0, 1), j = 1, 2, are defined in the Sobolev spaces
H2

j (0, 1) of functions with second derivative in L2(0, 1), u is the vector of control
inputs, y is the vector of measured outputs, and z is the controlled output. A1 (or A2),
with domain D(Aj) ⊂ H → H, j = 1, 2, is the selfadjoint heat (or mass) Riesz spectral
operator [38], Bu is the input operator, Cy and Cz are the measured and controlled
output operators, and ρ is a weighted version of the reaction rate function. All the
definitions are given below

A1x1 =
1

Pem
∂2

s x1 −
Pem

4
x1, D(A1) =

{
x1 ∈ H2 | A1x1 ∈ H, B1x1 = 0

}
,

A2x2 =
1

Peh
∂2

s x2 −
(

Peh

4
+ υ

)
x2, D(A2) = {x2 ∈ H |A2x2 ∈ H, (B2x2) = 0} ,

B jxj =

[
1

Pea
∂sxj(0, t)− 1

2 xj(0, t)
1

Pea
∂sxj(1, t) + 1

2 xj(1, t),

]
, j = 1, 2, a = m, h,

Buu = υwhβu = υwh

q

∑
i=1

βiui, β =
[

β1(s) . . . βq(s)
]

,

Cyx2 =


〈

δ(s− ς1),w−1
h x2

〉
...〈

δ(s− ςq),w−1
h x2

〉
 , Czx1 =

〈
δ(s− 1),w−1

m x1

〉
,
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ρ1(x1, x2) = wm

(
r(w−1

m x1 + c̄,w−1
h x2 + τ̄)− r(c̄, τ̄)

)
,

ρ2(x1, x2) = wh

(
r(w−1

m x1 + c̄,w−1
h x2 + τ̄)− r(c̄, τ̄)

)
.

The state x = [x1 x2]T evolves in the product space

X = {[x1 x2]
T ∈ H2 | [x1(s), x2(s)]T ∈ [x−1 , x+1 ]× [x−2 , x+2 ] ∀ s ∈ [0, 1]}

where

x−1 = − max
s∈[0,1]

c̄(s), x+1 = 1− max
s∈[0,1]

c̄(s), x−2 = τ−− max
s∈[0,1]

τ̄(s), x+2 = τ+− max
s∈[0,1]

τ̄(s).

where τ− = min{τ−e , τ−c }, τ+ = τa + max{τ+
e , τ+

c }, and τa is the adiabatic tempera-
ture rise. H = L2(0, 1) is the product Hilbert space of real-valued square integrable
vector functions with inner product 〈(·)1, (·)2〉 and induced norm ‖(·)‖

〈x1, x2〉 =
∫ 1

0
x1x2ds, ‖x‖ =

√
〈x, x〉, x, x1, x2 ∈ H.

H2 is the related product space with inner product and induced norm defined as

〈x1, x2〉X =
∫ 1

0
xT

1 x2ds, ‖x‖X =

√
‖x1‖2 + ‖x2‖2, x = [x1 x2]T ∈ X .

From the Lipschitz boundedness of the function r(c, τ) in model (2.7), the following
assumptions on the functions ρ1(x1, x2) and ρ2(x1, x2) can be established.

Assumption 5.1. For any admissible state [x1(s, t), x2(s, t)]T ∈ X , the reaction rate func-
tions ρj(x2, x2) ∈ H, j = 1, 2, are Lipschitz bounded, i.e.,∥∥ρj(x1, x2)

∥∥ ≤ L
ρj
x1 ‖x1‖+ L

ρj
x2 ‖x2‖ , L

ρj
xl = max

xl∈[x−l ,x+l ]

∣∣∂xl ρj
∣∣ , j, l = 1, 2, (5.3)

where L
ρj
xl are the Lipschitz constants, and vanishes only at the origin ρj(0, 0) = 0.

Assumption 5.2. The reaction rate function r(c, τ) is strictly monotonically increasing in
the concentration state c, i.e., ∂cr(τ, c) > 0.

5.2.1 Stability analysis of the open-loop dynamics

As it was done in Section 4.2.2 of Chapter 4, the concentration (or temperature) dynam-
ics can be studied as a Lur’e system: a linear component in term (or positive) feedback
with a nonlinearity. This enables to analyze the stability of each individual state by
first characterizing the properties of the linear part and then its interconnection in
negative (or positive) feedback with the nonlinear reaction rate function.
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For the purpose at hand, recall system (2.7) with u = 0q

ẋ1 = A1x1 − ρ1(x1, x2), x1(0) = x10, (5.4a)

ẋ2 = A2x2 + ρ2(x1, x2), x2(0) = x20. (5.4b)

The concentration (or temperature) dynamics are composed by the stabilizing linear
mass (or heat) transport operator A1 (or A2) in negative (or positive) feedback with
the nonlinearity ρ1 (or ρ2), which reflects the stabilizing (or destabilizing) capability
of the sync (or source) effect of the consumption of reactant (or heat generation) by
the chemical reaction. The nonlinearity ρ1 (or ρ2) interconnects the concentration (or
temperature) with temperature (or concentration) states dynamics.

The spectrum of the operators Aj, j = 1, 2, denoted as σ(Aj) has real eigenvalues,
for which the algebraic and geometric multiplicities are the same, λj,n ∈ σ(Aj) ⊂
R, n ∈N given by

λ1,n = − ω2
n

Pem
− Pem

4
, λ2,n = − ω2

n
Peh
− Peh

4
− υ, (5.5a)

where the eigenfrequencies ωj,n 6= 0 are the solutions to the transcendental equations

tan(ω1,n) =
Pemω1,n

ω2
1,n −

(
Pem

2

)2 , tan(ω2,n) =
Pehω2,n

ω2
2,n −

(
Peh
2

)2 .

The eigenvalues of both operators have the following ordering property

0 > λj,1 ≥ λj,2 ≥ · · · , lim
n→∞

λj,n = −∞, j = 1, 2. (5.5b)

The associated eigenfunctions, which form a Riesz basis of the state space X , are

φ1,n = B1,n

[
sin(ω1,ns) +

2ω1,n

Pem
cos(ω1,ns)

]
, 〈φ1,n, φ1,m〉 = δn,m, (5.5c)

φ2,n = B2,n

[
sin(ω2,ns) +

2ω2,n

Peh
cos(ω2,ns)

]
, 〈φ2,n, φ2,m〉 = δn,m, (5.5d)

where Bj,n are normalization constants, δn,m is the Kronecker delta, and n, m ∈N.
As a consequence of the previous result, the operators Aj are infinitesimal gener-

ators of C0-semigroups of contractions Sj(t) = eAjt that satisfy the spectrum deter-
mined growth assumption [38], i.e.,∥∥Sj(t)

∥∥
O
≤ e−λj

∗t, j = 1, 2, −λj
∗ = sup

λi∈σ(Aj)

λi, (5.5e)

with growth bound −λj
∗, where

∥∥Sj
∥∥
O
= sup‖x‖=1

∥∥Sjx
∥∥ is the operator norm of Sj.

Accordingly, the concentration (or temperature) state of the system (5.4) with ρ1 = 0
(or ρ2 = 0), has the origin as exponentially stable steady-state due to the stabilizing
properties of the mass (or heat) transport operator. What follows is to analyze the
effect of the negative (or positive) interconnection, of the reaction rate function ρ1

(or ρ2) with the mass (ore heat) transport operator A1 (or A2), and the effect of the
concentration and temperature interconnection through the reaction rate functions.
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5.2.1.1 Concentration dynamics

The reaction rate function ρ(x1, x2) ∈ H can be rewritten as

ρ1(x1, x2) = $1(x1) + $12(x1, x2), (5.6a)

where

$(x1) = ρ1(x1, 0), $12(x1, x2) = ρ1(x1, x2)− ρ1(x1, 0). (5.6b)

By virtue of Assumption 5.1, the function $ satisfies the sector condition

〈$1 − ax1, $1 − bx1〉 ≤ 0,

which es equivalent to

c 〈x1, $1〉+ d 〈$1, $〉 ≤ 〈x1, $1〉 , c =
ab

a + b
, d =

1
a + b

, (5.7)

and the function $12(x1, x2) is Lipschitz bounded with respect to x2, uniformly in x1:

‖$12(x1, x2)‖ ≤ L$12
x2 ‖x2‖ , ∀x1. (5.8)

Using the above stated properties, and following a similar procedure as in Sec-
tion 4.2.2.1, the stability of the concentration dynamics is established next considering
the temperature profile as exogenous input and using the direct Lyapunov method.

Consider the Lyapunov functional

V1 = 〈x1, x1〉 , (5.9)

compute its time derivative along the concentration trajectories of the distributed
temperature dynamics and use (5.6) and (5.7) to obtain

V̇1 = 〈ẋ1, x1〉+ 〈x1, ẋ1〉 ,

= 〈A1x1 − ρ1(x1, x2), x1〉+ 〈x1,A1x1 − ρ1(x1, x2)〉 ,

= 〈A1x1, x1〉+ 〈x1,A1x1〉 − 2 〈ρ1(x1, x2), x1〉 ,

= 〈A1x1, x1〉+ 〈x1,A1x1〉 − 2 〈$1(x1), x1〉 − 2 〈$12(x1, x2), x1〉 ,

≤ 〈A1x1, x1〉+ 〈x1,A1x1〉 − 2c 〈x1, x1〉 − 2d 〈$(x1), $(x1)〉 − 2 〈$12(x1, x2), x1〉 ,

using the fact that

〈A1x1, x1〉+ 〈x1,A1x1〉 ≤ −2λ∗1 ‖x1‖2 , (5.10)

considering that 〈$1, $1〉 = ‖$1‖2 > 0 and using (5.8), it follows

V̇1 ≤ −2λ∗1 ‖x1‖2 − 2c 〈x1, x1〉 − 2 〈$12(x1, x2), x1〉 ,

≤ −2λ∗1 ‖x1‖2 − 2c 〈x1, x1〉+ 2 ‖$12(x1, x2)‖ ‖x1‖ ,

≤ −2(λ∗1 + c) ‖x1‖2 + 2L$12
x2 ‖x1‖ ‖x2‖ ,

= −2(λ∗1 + c)V1 + 2L$12
x2 ‖x2‖V

1
2

1 .



5.2 open-loop dynamics 109

Using the comparison lemma [76], the estimate

‖x1(t)‖ ≤ ‖x10‖ e−ν1t + L$12
x2

∫ t

0
e−ν1(t−t) ‖x2(t)‖dt, ν1 = |λ∗1 |+>0, (5.11)

is obtained for the concentration state. For bounded input ‖x2(t)‖ ≤ ε2(t) ≤ ε+2 and
bounded initial condition ‖x10‖ ≤ δ10, the state is bounded as

‖x1(t)‖ ≤ δ10e−ν1t +
L$12

x2

ν1
ε+2 ≤ δ10 +

L$12
x2

ν1
. (5.12)

Thus, the above estimate, shows that the zero solution is exponentially stable when
there is no interconnection with the temperature dynamics, and that the system is
robustly stable with respect to small enough temperature profile trajectories. For
tubular reactors with open-loop multiplicity, the estimate (5.11) holds locally.

Note the the stabilizing effect of reactant conversion by reaction as well as the mass
transport contribute to the convergence to zero of the concentration state as measured
by the two components of ν1.

5.2.1.2 Temperature dynamics

Consider the temperature dynamics (5.4b), compute its solution to obtain

x2(t) = x20eA2t +
∫ t

0
eA2(t−t)ρ2(x1, x2)dt,

take norms on both sides of the above expression and use the triangle inequality and
the Lipschitz boundedness of ρ to obtain the estimate

‖x2(t)‖ ≤ ‖x20‖ e−ν2t + Lρ2
x1

∫ t

0
‖x1(t)‖dt, ν2 = |λ∗2 | − Lρ

x2 (5.13)

For bounded input ‖x1(t)‖ ≤ ε1(t) ≤ ε+1 and bounded initial conditions ‖x20‖ ≤ δ20,
the state is bounded as

‖x2(t)‖ ≤ δ20e−ν2t +
Lρ2

x2

ν1
ε+2 ≤ δ20 +

Lρ2
x1

ν2
. (5.14)

This above stability conditions is satisfied if

ν2 = |λ2
∗| − Lρ2

x2 > 0, (5.15)

is fulfilled. Is this is so, (5.14) ensures the local exponential stability of the zero profile
when the concentration dynamics are not present or decay to zero, and local robust
stability when the concentration remains bounded. If the origin is unique, then the
result is valid in the nonlocal sense.

In this case, while the transport operator has an stabilizing effect on the temperature
dynamics, quantified by −λ∗2 , the heat generation by reaction has a destabilizing one
measured by the Lipschitz constant Lρ2

x2 .
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5.2.1.3 Interconnected dynamics

Recall model (5.4), in the previous two subsections, it has been shown that each indi-
vidual state dynamics, are robustly stable, considering the other state as exogenous
input, in the L2-norm. The stability of the interconnected system can be assessed
with a small gain argument, as in Proposition 3.1, but using the L2-norm and the
corresponding product space norm ‖·‖X . Accordingly, the next result follows.

Proposition 5.1. Open-loop stability of the distributed dynamics
Consider the tubular reactor abstract model (5.4), assume that (5.11) and (5.13) are satisfied

with ν1, ν2 > 0. If the following condition is met

ν2 −
Lρ2

x1 L$12
x2

ν1
> 0, (5.16)

then, the zero solution [x1 x2]T = 0 of (5.4) is locally exponentially stable and satisfy

‖x(t)‖X ≤ ‖x0‖X e−λ∗t, −λ∗ = max
λ∈σ(Ax)

λj, j = 1, 2, Ax =

[
−ν1 L$12

x2

Lρ2
x1 −ν2

]
. (5.17)

If the origin is unique, then the result is valid in the nonlocal sense.

Proof. Starting with (5.11) and (5.14), apply Proposition 3.1 to obtain that the zero
solution of the system (5.4) is exponentially stable if condition (5.16) is met.

A physical interpretation of the previous stability result is as follows: the PDE model
(5.2) is made by two transport–reaction subsystems: each one with a linear transport
operator (Aj, j = 1, 2) and a mass (or heat) sink (or source) nonlinear term (ρ1 or ρ2)
that interconnects both subsystems and have: (i) a positive-feedback destabilizing
effect for the temperature dynamics, and (ii) a negative feedback stabilizing mecha-
nism for the concentration dynamics. From a control perspective, the control aim is
to enhance the heat transport stabilizing mechanism: (i) directly on the temperature
dynamics (5.2a), and (ii) indirectly – trough the temperature profile – on the concen-
tration dynamics (5.2b). In other words, the source of open-loop instability resides in
the impossibility of dominating, through heat transport-exchange stabilization, the
destabilizing contribution due to heat generation by reaction.

Following the previous discussion, the control task is to choose the sensor-actuator
structure and adjust the heat exchange rate so that the positive-feedback due to
heat generation by reaction is dominated with an admissible compromise between
regulation speed, robustness and control effort.
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5.2.1.4 Stability analysis of the case example

To assess if ν1, ν2 > 0, assumption of required in Proposition 5.1, the maximum
eigenvalues of (5.5), for the parameters of the case study (see Table 2.1 in Section 2.5)
the following values are obtained

|λ1
∗| ≈ 1.94, |λ2

∗| ≈ 2.94.

The computation of c and the Lipschitz constants in (5.16) cannot be performed
analytically, following a similar approach as the one used in Section 4.2.3, the following
values for the lumped and weighted approximations of the reaction rate functions ρ1

and ρ2 were found

c ≈ 0.45, Lρ2
x2 ≈ 2.54, Lρ2

x2 ≈ 8.12, L$12
x1 ≈ 5.46. (5.18)

Accordingly, the concentration dynamics are stable since

ν1 = |λ1
∗|+ c ≈ 1.94 + 0.45 ≈ 2.39 > 0, (5.19)

for the temperature dynamics the condition ν2 > 0 is not fulfilled

ν2 = |λ1
∗| − Lρ2

x2 ≈ 2.94− 8.12 ≯ 0, (5.20)

which does not imply the instability of the origin, because ν2 > 0 in (5.13) is only
a condition of sufficiency, the instability can be corroborated by evaluating the
eigenvalues of linear operator of the distributed linearized model obtained from (5.4).

5.3 state feedback control

As first step for the CES design, in this section a state feedback controller is build.
Following a constructive approach, a controller with two components is designed: the
first component, with two terms, is a feedback linearaizing control that deals with the
stabilization task, the second components is an inventory-like one, obtained through
feedback passivity, for performance enhancement.

The output measurements of the tubular reactor model (5.2) are given in terms
of the output operator Cy which use has Dirac delta distributions as characteristic
functions (see (2.5a)) of the point temperature measurements y. Nevertheless, it is
well-known that for technical purposes is useful to use an approximation of the delta
functions so that the related output operator is bounded in an induced norm [38].
Accordingly, introduce the synthetic averaged pointlike output

y = Cyx2 :=


〈

γ1,w−1
h x2

〉
...〈

γq,w−1
h x2

〉
 , γi(s) =

 1
2ε if s ∈ [ςi − ε, ςi + ε]

0 else,
(5.21)
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where γi(s), i = 1, . . . , q, is the i-th characteristic function, ςi are the sensor locations
of the sensor set ς and 2ε is the length of the spatial domain in which the temperature
is averaged.

The proposed state feedback controller is decentralized, this is, each jacket temper-
ature depends only on the measurement of the corresponding section. The control
has the form

u = µl(x1, x2) + µp(x1, x2). (5.22)

with output linearizing component µl , driven by temperature point-like measure-
ments, to ensure closed-loop robust stability through favorable modification of the
interplay between stabilizing transport and destabilizing reaction mechanisms, and
component µp, driven by the temperature profile deviation on each jacket section,
to improve transient versus control effort behavior by compensating in inventory
control-like manner [119] the heat excess in the corresponding jacket section.

5.3.1 State feedback stabilizing controller

In the following developments, the state feedback stabilizing control component µl
of (5.22) is built. For this purpose, the following lemma ensures the existence of
a well defined characteristic index equal to one for each sensor-actuator pair. This
result is a consequence of the heat exchange wall diathermicity (υ > 0). The notion
of characteristic index is the extension of the concept of relative degree for SISO and
MIMO finite dimensional systems [36].

Lemma 5.1. The reactor model (5.2) has characteristic index equal to one with respect to the
input–output pairs (u,y), because the heat exchange number υ > 0 is positive.

Proof. Take the time derivative of the synthetic output (5.21) to get

ẏ = Cy ẋ2

= CyA2x2 + Gyρ2(x1, x2) + CyBuu.

Accordingly, the characteristic index of the each entry pair of the input–output pair
(u,y) is one if the term CyBuu is well-defined. Considering the specific structure of
the input Bu and the synthetic output Cy operators it follows that

Gy,Buu =


〈

γ1,w−1
h Buu

〉
,

...〈
γq,w−1

h Buu
〉

,

 =


〈

γ1,w−1
h υwhβu

〉
,

...〈
γq,w−1

h υwhβu
〉

,

 = υ


〈
γ1, ∑

q
i=1 βiui

〉
,

...〈
γq, ∑

q
i=1 βiui

〉
,

 ,

=
υ

2ε


∫ 1

0 γ1 ∑
q
i=1 βiuids,
...∫ 1

0 γq ∑
q
i=1 u1ds,

 =
υ

2ε


∫ ζ1+ε

ζ1−ε u1ds,
...∫ ζq+ε

ζq−ε uqds,

 ,
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the last expression in the previous developments is well-defined given that υ, ε > 0
and for all i = 1, . . . , q, γi is contained in the support of βi, i.e., [ςi− ε, ςi + ε] ⊂ Ri.

Accordingly, for the considered tubular reactor class and the particular sensor-
actuator configuration, the fact that the characteristic index one conditions is always
met manifests a connection with joint process–control design [116]: in the collocated
sensor and actuator configuration, the characteristic index is always well-defined,
while in the case of noncollocated configurations the characteristic index may be
infinite [36]. In the present particular noncollocated sensor–actuator configuration the
characteristic index is well defined (as stated in Lemma 5.1).

Consider the decentralized linearizing MIMO state feedback controller

ul = µl(y, x1, x2), (5.23a)

where

µl(y, x1, x2) = −Bm
−1 (Kyy+ Cyρ2(x1, x2)) , (5.23b)

Bm
−1 = (CyBu,2)

−1 =
1
υ

Iq×q, Ky = KT
y > 0. (5.23c)

The controller gain matrix Ky is diagonal, one entry for each jacket temperature
controller, with gains ky,i, i = 1, . . . , q. The two components of the above controller,
that ensure closed-loop stability with output regulation, are: (i) a nonlinear feedback,
driven by pointlike information of the reaction rate function, to compensate its
destabilizing effect on the temperature dynamics by performing partial linarization,
and (ii) a linear proportional feedback, driven by the pointlike temperature output y,
to improve stabilization by heat transport phenomena.

Note that, on one hand, controller (5.23) is the distributed version of the early
lumping controller (4.54): an output linearizing state feedback law that cancels out the
destabilizing effect of the projection of the nonlinear term ρ2 on the output dynamics
while kept the stabilizing effect of the projected transport operator on the output
dynamics. On the other hand, the distributed version of the controller (4.52) is

ul = µl,2(y, x1, x2), (5.24a)

where

µl(y, x1, x2) = −Bm
−1 (Kcy+ CyA2x2 + Cyρ(x1, x2)) , (5.24b)

Bm
−1 = (CyBu)

−1 =
1
υ

Iq×q, Kc = KT
c > 0, (5.24c)

where Ky is a diagonal matrix with diagonal elements ky,i, i = 1, . . . , q. The properties
of this control law, within a late lumping perspective will be explored in Chapter 6.
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The application of the MIMO state feedback control (5.23) to the reactor model (5.2)
yields the closed-loop dynamics

ẋ1 = A1x1 − $1(x1)− $12(x1, x2), x1(0) = x10, (5.25a)

ẋ2 = Ac
2x2 + ∆ρ2(x1, x2), x2(0) = x20. (5.25b)

where Ac
2 (with domain ) is the heat transport closed-loop operator defined as

Ac
2x2 = A2x2 −BuBm

−1KyCyx2, D(Ac
2) = D(A2). (5.25c)

The function ∆ρ2 is the closed-loop reaction rate, that depends on the considered
configuration of sensor and actuators (number of actuator-sensor pairs and the sensor
locations which manifests through the input and output operators) and is Lipschitz
bounded with respect to its arguments:

∆ρ(x1, x2) = ρ2(x1, x2)−ByBm
−1Cyρ2(x1, x2), (5.25d)

‖∆ρ(x1, x2)‖ ≤ L∆ρ
x1 (ς)‖x1‖+ L∆ρ

x2 (ς)‖x2‖. (5.25e)

Each component of the decentralized controller (5.23) is driven by pointlike in-
formation at each sensor location ςi, and acts on the i-th jacket domain Ri (2.4).
Thus, each controller have the following effects on the temperature dynamics at each
subdomain Ri: (i) the stabilizing capability of the heat transport operator is enhanced
by the linear injections −ByBm

−1KyCy that favorably modifies the spectra of the heat
transport operator A2, and (ii) the destabilizing effect of heat generation by reaction
(measured by the sensor dependent Lipschitz constants L∆ρ2

xj (ς), L∆$12
xj (ς) (5.25e)) is

attenuated by the injection term −ByBm
−1Cyρ2.

The effectiveness of the heat removal exchange mechanism associated with the
MIMO state feedback controller (5.23) depends on the choice of the sensor location set
ς: (i) the linear injection must maximize its effect on the the spectrum of the open-loop
operator, and (ii) the compensation of destabilization by heat generation requires
sensor locations at sensitive regions – where the axial slope temperature change is
maximum [101].

The fact that the Lur’e structure of the temperature dynamics (5.2a) is preserved
in the open to closed-loop passage, motivates the subsequent closed-loop stability
analysis: first (in 5.2) conditions for the favorable modification of the spectrum of the
closed-loop heat transport operator Ac

2 are identified, and then (in 5.2) conditions for
the domination of enhanced heat transport-based stabilization over reaction-based
destabilization are presented.

Lemma 5.2. Set bi,1 = 〈whβi, φ2,1〉 and ci,1 =
〈

γi,w−1
h φ2,1

〉
, where φ2,1 is the first eigen-

function of the selfadjoint transport operator A2 (5.5c). If the sensor location set ς and the
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controller gain Ky are selected so that the stabilizability–detectability (5.26a) and diagonal
dominance (5.26b) conditions hold true:

q

∑
i=1

bi,1ci,1 > 0, (5.26a)

ly :=

(
∑

q
i=1 ky,i ‖whβi‖2 ∑

q
i=1 ky,i

∥∥∥w−1
h γi

∥∥∥2
) 1

2

∣∣λ2,1 −∑
q
i=1 ky,ibi,2ci,2

∣∣ < 1. (5.26b)

Then the eigenvalues λc
2,n, n ∈N of the operator Ac

2 are bounded as

λc
2,n ≤ λc

2
∗ = λ2,1 −

 q

∑
i=1

ky,ibi,2ci,2 −
(

q

∑
i=1

ky,i ‖whβi‖2
q

∑
i=1

ky,i

∥∥∥w−1
h γi

∥∥∥2
) 1

2
 .

(5.26c)

Thus, the closed-loop operator Ac
2 generates a C0-semigroup of contractions, with growth

bound −λc
2
∗(Ky, ς), that satisfies

‖Sc
2(t)‖O ≤ e−λc

2
∗t. (5.26d)

The proof of the above Lemma is given in Appendix g. This result, indicates the
output injection in (5.23) affects the whole spectrum of the open-loop operator A2, in
contrast with modal control, where if a certain stabilizability-detectability condition
is met, an output feedback control that affects only a finite number of slow modes
can be constructed [38; 1]. The left shifting of the entire spectrum requires that for all
n, m ∈N it holds that bi,nci,m > 0 for i = 1, . . . , q. This condition is only valid in the
collocated case where bi,n = ci,m for n, m ∈N.

Accordingly, Lemma 5.2 gives sufficient conditions to assure the left shifting of the
maximum eigenvalue of the closed-loop transport operator Ac

2 (ensured by (5.26a)).
For the remaining spectra, it is assured, by the diagonal dominance condition (5.26b)
that restricts the gains ky,i, that the eigenvalues, shifted to the left or to the right,
remain inside bounded regions. Thus, the ordering (5.5b) of the eigenvalues (5.5) is
preserved and enables the estimation of the eigenvalues within prescribed bounds by
using modal analysis for infinite dimensional matrices [6] (see Appendix g).

Once the stability of the linear component of the closed-loop heat balance (5.25b)
has been established, it remains to assure the the closed-loop stability of the dynamic
heat balance (5.25b) and its interconnection with the mass balance. This is done
exploiting the Lur’e system property of the heat balance and the bounding condition
for the mass balance established in (5.11).

Proposition 5.2. Stability of the closed-loop system (5.25)
Consider the closed-loop system (5.25) with the MIMO state feedback control (5.23) with
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diagonal gain matrix Ky and sensor location set ς has the origin as unique steady-state.
Furthermore, the concentration state satisfy (5.11), and let the conditions of 5.2 be met. If the
matrix Ky, and the sensor location set ς are chosen so that νc(k1, ς) in (5.26d) and L∆ρ

x2 (ς) in
(5.25e) meet the inequality

lc := |λc
2
∗(Ky, ς)| − L∆ρ

x2 (ς)−
L∆ρ

x1 (ς)L$12
x2

ν1
> 0 (5.27)

with Lipschitz constant L$12
x2 (5.8). Then, there exists Mc ≥ 1, and −λc so that

‖x(t)‖X ≤ Mc‖x0‖X e−λct. (5.28)

Accordingly, the origin of (5.25) is exponentially stable in a nonlocal sense.

Proof. The formal solution of the closed-loop temperature dynamics (5.25) is

x2(t) = Sc
2(t)x20 +

∫ t

0
Sc

2(t− t)∆ρ(x1, x2)dt.

From the application of norms on both sides, substitution of (5.26d), use of the triangle
inequality, enforcement of (5.25e), and employment of inequality (5.11) it follows that

‖x1‖ ≤ ‖x10‖ e−(ν1+γ1)t + L$12
x2

∫ t

0
e−(ν1+γ1)(t−t) ‖x2‖dt,

‖x2‖ ≤ a2‖x20‖e−νct + a2

∫ t

0
e−νc(t−t)(L∆ρ2

x1 ‖x1‖+ L∆ρ
x2 ‖x2‖)dt.

Apply Proposition 3.1 to obtain that if condition (5.27) is met, then the estimate

‖x‖X ≤ ac ‖x0‖X e−λct, (5.29)

where ac = a2 ≥ 1 and

−λc = sup
λj∈σ(Ac)

λj, Ac =

[
−ν1 L$12

x2

L∆ρ
x1 −ν2,c

]
, ν2,c = |λc

2
∗(Ky, ς)| − L∆ρ

x2 (ς). (5.30)

holds true.

The stability measure lc is composed by: (i) νc(ky,i, ς) which reflects enhanced
stability by the artificial heat dissipation induced by the control law (5.23), and
increases linearly with the entries of the gain matrix Ky according to (5.26c)–(5.26d),
(ii) L∆ρ

x2 which reflects selfdestabilization of the dynamic heat balance due to the

positive feedback of heat generation by reaction, and (iii)
L∆ρ

x1 (ς)L$12
x2

ν1
which measures

the destabilizing potential of the interconnected dynamic mass and heat balances
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5.3.2 Inventory control component

Following inventory control ideas [119], the state feedback control component µp
(5.22) is constructed to improve the behavior of the closed-loop system with the
decentralized MIMO state feedback control (5.23) driven by pointlike measurements.

For this aim, set the inventory control component

up = Bm
−1µp(x2), Bm

−1 =
1
υ

Iq×q, (5.31)

Thus, the closed-loop dynamics with the controller (5.22) with (5.23) and (5.31) are

ẋ1 = A1x1 − $1(x1)− $12(x1, x2), x1(0) = x10, (5.32a)

ẋ2 = Ac
2x2 + ∆ρ2(x1, x2) +Buup, x2(0) = x20. (5.32b)

Consider the control (5.33) with the control map

µp(x2) = −KzCzx2, Cz = B∗u, Kz = KT
z > 0, (5.33a)

where Kz is a diagonal gain matrix and B∗2 , the adjoint of the input operator B2, is

B∗2 x2 = υ


〈whβ1, x2〉

...〈
whβq, x2

〉
 . (5.33b)

Note that the above control law considers averaged section-wise temperatures and
works as an inventory component that compensates the excess or shortage of sensible
heat on the corresponding section of the heat balance.

It can be shown, with a standard passivity argument, that the closed-loop sys-
tem (5.32) is passive with a quadratic storage function and the input-output pair
conformed by up and a new synthetic output z given as

z = Czx2. (5.34)

This result is established next.

Proposition 5.3. Let the conditions of Proposition 5.2 be met. Then, the closed-loop system
(5.32) with the two-component (point (5.23) plus section-wise (5.33) driven) control is: (i)
passive with the storage function

V(x) =
1
2
‖x‖2

X , (5.35)

with respect to the input–output pair (up, z), and (ii) there are constants ap ≥ 1, and λp > 0
so that for all x0 ∈ X

‖x‖X ≤ ap ‖x0‖X e−λpt. (5.36)
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Proof. Note that the storage function V(x) is equivalent to

V(x) =
1
2
‖x1‖2 +

1
2
‖x2‖2 ,

=
1
2
〈x1, x1〉+

1
2
〈x2, x2〉 .

The time derivation followed by substitution of the closed-loop dynamics (5.32) yields

V̇(x) ≤ 1
2
(〈x1,A1x1〉+ 〈A1x1, x1〉+ 〈x2,Ac

2x2〉+ 〈Ac
2x2, x2〉)−

− 〈x1, $(x1)〉+ 〈x1, $12(x1, x2)〉+ 〈x2, ∆ρ2(x1, x2)〉+
〈

x2,Buup
〉

,

using (5.10) for A1 and Ac
2 it follows

V̇(x) ≤ λ∗1 ‖x1‖2 − λc
2
∗ ‖x2‖2 − 〈x1, $(x1)〉+ 〈x1, $12(x1, x2)〉+ 〈x2, ∆ρ2(x1, x2)〉+

+
〈

x2,Buup
〉

,

Proceeding as in Section 5.2.1.1 and using (5.25e) yields to

V̇(x) ≤ −ν1 ‖x1‖2 − ν2,c ‖x2‖2 + (Lρ2
x1 + L$

x2) ‖x1‖ ‖x2‖+
〈

x2,Buup
〉

,

or equivalently

V̇(x) ≤ −νp ‖x‖2
X +

〈
x2,Buup

〉
, νp = max{ν1, ν2,c|} − (Lρ2

x1 + L$
x2) > 0,

which by construction is positive, (ν1, ν2,c) are defined in (5.11) and (5.30), respectively.
Rewriting the last expression for the time derivative of the storage function with

the control map (5.33) yields to

V̇(x) ≤ −νp ‖x‖2
X +

〈
x2,BuBm

−1µp(x2)
〉

,

≤ −νp ‖x‖2
X + Bm

−1
〈

x2,Buµp(x2)
〉

.

Substituting Bm
−1 and employing the adjoint representation of Bu gives

V̇(x) ≤ −νp ‖x‖2
X +

1
υ

〈
µT

p (x2),B∗ux2

〉
.

The substitution of the synthetic output z = Bu
∗x2 yields

V̇(x) ≤ −νp‖x‖2
X +

1
υ

〈
µp(x2)

T, z
〉

, (5.37)

ensuring the strict passivity of system (5.32) for the input–output pair (up, z), with

dissipation rate νp, supply rate 1
υ

〈
µT

p , z
〉

, and storage function (5.35) [38].
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Considering µp = −Kzz the exponential stability follows from the dissipation
inequality

V̇(x) ≤ −νp‖x‖2
X −

1
υ

〈
zTKz, z

〉
,

≤ −νp‖x‖2
X −

Kz

υ

∥∥B∗u,2x2
∥∥2 ,

≤ −νp‖x‖2
X −

Kz

υ

∥∥B∗u,2
∥∥2 ‖x2‖2 ,

≤ −νp‖x‖2
X −

Kz

υ

∥∥B∗u,2
∥∥2 ‖x‖2

X ,

≤ −νp‖x‖2
X ,

and application of the comparison lemma [76].

According to the proof of Proposition 5.3, the inventory control component (5.33)
improves the exponential convergence rate with respect to the control (5.23).

The combination of (5.33) and (5.23) yields the proposed MIMO state feedback
Linear-Inventory-like control (LIOF) (5.22) in the form

u = µlp(x1, x2), (5.38a)

where

µlp(x1, x2) = −Bm
−1 (KyCyx2 + Cyρ(x1, x2)KzCzx2) , (5.38b)

Bm
−1 =

1
υ

Iq×q, Ky = KT
y > 0, Kz = KT

z > 0. (5.38c)

Proposition 5.2 and Proposition 5.3 ensure the closed-loop stability with the pro-
posed controller (5.23) assuming that the sensor locations set ς has been chosen
adequately. Nevertheless, these existence-type results does not give guidelines for the
selection of the number of sensors and their locations and the corresponding number
of jacket sections. Accordingly, in what follows, along constructive ideas, a procedure
to determine the sensor location set ς and the gain matrices Ky, Kz, is drawn.

5.3.3 Sensor location and gain selection criteria

Proceeding in a similar manner as in Section 4.3.3, two conditions must be assessed
to construct the sensor location criterion associated to controller (5.38), a static one
and a dynamic one: (i) in the single sensor case, the sensor location must ensures
the uniqueness of the closed-loop origin solution, and (ii) with a single or multiple
sensors the stability measure lc is maximized. These conditions are characterized
next and then a simple procedure for the determination of the sensor location set is
proposed.
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5.3.3.1 Closed-loop steady-state multiplicity

Consider the closed-loop statics associated to (5.32) with controller (5.38) for the SISO

case q = 1:

0 = A1x1 − ρ(x1, x2), (5.39a)

0 = A2x2 + ∆ρ(x1, x2), (5.39b)

y = 0, y = 0, zc = 0. (5.39c)

It is needed to ensure that no undesired steady-states are present in the closed-loop
statics: the zero solution of (5.39) must be unique.

The statics (5.39) are a constrained boundary value problem that must satisfy the
additional condition y = 0. The solution may be drawn by splitting the heat balance
in two pieces by using the null output restriction as an additional boundary condition:
the right one for the first piece and the left one for the second piece.

According to the previous discussion, since the unique degree of freedom is the
sensor location ς1 ∈ (0, 1), it must me swept in its domain to find out the location that
ensure the uniqueness of the zero solution. This can be done with a bifurcation analysis
constructed with the related late lumping model obtained with the application of the
efficient modeling approach (see Section 3.2) to the static system (5.39).

The above procedure, that parallels the zero dynamics multiplicity analysis per-
formed in the early lumping approach (see Section 4.3.3.1), can be elaborated within
an efficient late lumping procedure by using an auxiliary bifurcation analysis and
with the use of a continuation software package such as MATCONT [43]:

Step 0: Perform and a late lumping procedure by employing FD or a finite element
approximation and use Npde (or instead use the algorithm presented in Sec-
tion 3.2 to obtain Ne) to obtain a large (or efficiently) lumped version of the
static problem (5.39) and rewrite it in partitioned coordinates (4.4).

Step 1: Set k = 1 and ςm1 = sk.

Step 2: Use the actual partitioned closed-loop dynamics to construct the Input-Output
Bifurcation Map (IOBM) (4.11) for q = 1.

Step 3: Collect the steady-states related to the nominal case ū = 0.

Step 4: Plot the first steady-state value x̄2,1 ∈ X2,1 ⊂ X of the temperature sequence x̄2

versus the sensor location ς1 in the plane S × X2,1.

Step 5: Set k = k + 1 and proceed again from Step 2, if k = N
∆s the procedure stops.

From the previous algorithm, the suitable sensor location region Sm, a subset of the
spatial domain S = (0, 1), in which the the closed-loop zero solution uniqueness can
be identified. Accordingly, this region is characterized as

Sm = {ς1 ∈ S | (x1, x2) = (0, 0) Is the unique steady-state}. (5.40)
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As long as this sensor location is fixes, in the MIMO cases the uniqueness of the zero
solution for the corresponding closed-loop statics will not change. This, the restriction
ς1 ∈ Sm can be inherited to the MIMO scenarios (q = 2, 3). The exact location of ς1

together with the locations of the remaining sensors must be established so that the
dynamic condition lc > 0 given in (5.27) is maximized.

5.3.3.2 Sensor locations determination and gain selection

Having characterized the region in which the single sensor case ensure the uniqueness
of the closed-loop zero solution, next the sensor locations can be identified as the
locations that maximize the stability measure lc given in (5.27). An elegant option
would be to maximize lc by setting a mixed-integer optimization problem. Instead,
in what follows, a constructive procedure to choose the control gain-sensor set pair
(Ky, ς), and as a byproduct the number of jacket sections, is introduced.

The stability measure lc > 0 must be characterized for each possible sensor location
set ς restricted with ς1 ∈ Sm of the single sensor case, in which the closed-loop origin
of (5.39) is unique, so that the maximum value for lc (5.27) is obtained. Accordingly,
define the hypersurface Γc,0(Ky = 0q×q, ς) as the geometric loci spanned by lc with
null gain and all possible combinations of sensor locations ς with the restriction (5.40)
of the SISO case as well as (5.26a) in Lemma 5.2:

Γc,0(ς) = lc,0(Ky = 0q×q, ς), s.t.

{
ςsiso ∈ Sm, ly =

q

∑
i=1

bi,1c1,i 6= 0

}
, (5.41a)

and denote as Γ+
c,0(ς) the maximum value of the hypersurface Λc,0(ς), i. e.,

Γ+
c,0(ς) = max Γ+

c,0(ς). (5.41b)

Thus, the sensor location set is defined as

ς =
{

ςi ∈ Ri ⊂ S | Γc,0(ς) = Γ+
c (ς)

}
. (5.41c)

Finally, define Γc(ς) as

Γc(Ky, ς) = Γc,0(Ky, ς), s.t. ly < 1 (5.42)

and select the initial gain matrix Ky, before fine tuning, that ensure the last condition
in the above expression, the gain-restricting condition ly < 1 is given in (5.26c)

Within a geometric perspective, for the SISO case, q = 1, Λc(ς) is a curve, while for
q = 2, 3 Λc(ς) is a surface and a hypersurface, respectively. Nevertheless, since in the
MIMO cases the sensor ς1 ∈ Sm must be fixed, the geometric loci can be replaced for
a curve, for q = 2, and a surface, for q = 3. The application of the proposed sensor
location criterion the case study of Section 2.5 is performed next.
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(a) One sensor location at ς1 ≈ 0.25. (b) Two sensor locations: ς1 ≈ 0.25, ς2 ≈ 0.98.

(c) Three sensor locations: ς1 ≈ 0.25, ς2 ≈ 0.65,
ς3 ≈ 0.98.

Figure 5.1: Sensor location criterion: evaluation of the surface Γc,0(ς) (5.41)

5.3.3.3 Application to the case example

The execution of the procedure in Section 5.3.3.2, produces Figure 5.1 which shows
the surfaces Γc,0(ς) given in (5.41) for q = 1, 2, 3. Thus, the sensors, for each case, must
be placed according to: (i) for the single-sensor case, the sensor location region that
ensures robust stability is (0, 0.5), and the sensor is placed at ς1 ≈ 0.25, where Γc,0(ς)

(5.41) is maximum, (ii) for the two-sensor case, with ς1 ≈ 0.25 fixed, the best region for
the second sensor is are ς2 ∈ [0.9, 1], thus ς2 ≈ 0.98 is chosen, finally (iii) in the three-
sensor case, with ς1 ≈ 0.25 fixed, the best regions are {ς2 ∈ [0.6, 0.67], ς3 ∈ [0.9, 1]},
consequently, the positions ς2 ≈ 0.65 and ς3 ≈ 0.98 are selected.

It must be pointed out that the preceding sensor location, in the single-sensor case
q = 1, coincides with the industrial criteria [25; 100; 108]: at the convexity–concavity
inflection point before the hotspot of the steady-state temperature profile (where
heat transport diffusion vanishes and stabilization by convective heat transport is
not sufficient to compensate the heat generation by reaction. Similar sensor location



5.4 control-estimation system 123

results have been drawn with different theoretical tools (see [100; 108]). The two-
sensor (or three-sensor) location result of the proposed criterion is also in agreement
with industrial configurations: one sensor before and one after the hotspot.

5.4 control-estimation system

In this section, a CES is constructed by combining the state feedback controller (5.23)
and a pointwise innovation based observer introduced in [111]. The closed-loop
stability is assured and tuning and implementation guidelines are given

5.4.1 Point-wise observer

The pointwise observer constructed in [111] is considered because it has a simple
structure since the unique parameter to be tunes is the sensor location set for which
there is an a priori selection given in Section 5.3.3. The observer is briefly described
and the main idea behind its functioning and convergence conditions are given.

Consider the following observer

˙̂x1 = A1 x̂1 − ρ1(x̂1, x̂2), x̂2(0) = x̂10, (5.43a)
˙̂x2 = A2 x̂2 + ρ2(x̂1, x̂2) +Buu, x̂2(0) = x̂20, (5.43b)

Cy,2 x̂2 = y, (5.43c)

ẑc = Cz x̂1, (5.43d)

composed by a copy of the tubular reactor model (5.43a)-(5.43b) and a pointwise
innovation scheme (5.43c) which directly injects the measured output information
on the dynamic model of the observer, or in other words, the real state of the
tubular reactor model at locations ςi is imposed as the estimated temperature at the
measurement points ςi i = 1, . . . , q. These output injections enforce the exponential
convergence of the distributed estimation error dynamics to zero. Note that observer
(5.43) is the distributed version of the pointwise-like observer (4.84a)-(4.84d), obtained
by decoupling the CE components of (4.73a) through model redesign (see Section 4.6).

As it is done in [111], to facilitate the stability proof, the pointwise observer (5.43)
is written in enthalpy-temperature coordinate (up to a linear transformation and
assuming that the mas and heat Peclet numbers are equals, i. e.Pem = Peh = Pe):

˙̂xh = A1 x̂h − υx̂2 +Buu, x̂h(0) = x̂h0, (5.44a)
˙̂x2 = A2 x̂2 + ρ(x̂1, x̂2) +Buu, x̂2(0) = x̂20, (5.44b)

Cy,2 x̂2 = y, (5.44c)

x̂1 = x̂h − x̂2, ẑc = Cz x̂1, (5.44d)

where xh = x1 + x2 is the enthalpy, and the pointwise observer (5.47b)–(5.47c) is
driven by the point injections of the measured temperatures y at locations ς.
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Following [111, Theorem 1], the q sensor locations on model (5.44) divide the
temperature estimation error dynamics in q + 1 intervals

J0 = [0, ς1), Ji = [ςi−1, ςi), i = 1, . . . , q, Jq+1 = [ςq−1, 1].

On each interval, the heat transport operator A2 and the related reaction rate function
in error estimation coordinate

ρh(x̃h, x̃2) = ρ2(x̂2 − x̂h, x̂2)− ρ2(x̂2 − x̂h, x2), (5.45)

manifest their effects by the section-wise operators Ai
2 and reaction rates ρh,i(x̃h, x̃2).

Exploiting the Lur’e structure of the dynamics on each interval, the exponential
convergence of the estimation error dynamics can be drawn in terms of the eigenvalues
of the transport operators (sensor locations dependent), the Lipschitz constants of the
function (5.45), and the system parameters. This is summarized next (see [111]).

Theorem 5.1 ([111]). Consider the tubular reactor (5.2) with sensor set ς. Let Lρh
x2,i , Lρh

xh,i ,
i = 0 . . . , q + 1 denote the Lipschitz constant of the function (5.45). The estimation errors
x̃2 = x̂2 − x2, and x̃h = x̂h − xh vanish exponentially if: (i) the local temperature dissipation
inequalities are met (with ω2,1, ω2,q+1 being the smallest solutions for ω2,n in (5.5c)):

v1 =
ω2

2,1

Peς1
+

Pe
4

+ η − Lρh
x2,1 > 0,

vi =
π2

Pe(ςi − ςi−1)
+

Pe
4

+ υ− Lρh
x2,i > 0, ∀i = 1, . . . , q,

vq+1 =
ω2

2,q+1

Pe(1− ςq)
+

Pe
4

+ υ− Lρh
x2,q > 0,

and (ii) the following global dissipation condition holds

|λ1
∗| ≤ υ

q+1

∑
i=1

Lρh
xh,i

vi
, (5.46)

with λ1
∗ the growth bound of the C0-semigroup of contractions generated by A1.

5.4.2 Control-estimation system and closed-loop stability

The implementation of the proposed MIMO state feedback control (5.38) with the
pointwise observer (5.43) yields the Linear-Inventory-like control-Pointwise Observer
(LIOF-PWO) CES:

˙̂x1 = A1 x̂1 − ρ1(x̂1, x̂2), x̂2(0) = x̂10, (5.47a)
˙̂x2 = A2 x̂2 + ρ2(x̂1, x̂2) +Buu, x̂2(0) = x̂20, (5.47b)

C2 x̂2 = y, (5.47c)

ẑc = Cz x̂1, (5.47d)

u = µlp(x̂1, x̂2). (5.47e)
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where

µlp(x̂1, x̂2) = −Bm
−1 (KyCy x̂2 + Cyρ2(x̂1, x̂2) + KzCz x̂2) . (5.47f)

The corresponding closed-loop system, considering the enthalpy-temperature coor-
dinate for the pointwise observer, is given as

˙̃xh = A1 x̃h − υx̃2, x̃h(0) = x̃h0, (5.48a)
˙̃x2 = A2 x̃2 + ρh(x̃h, x̃2), x̃2(0) = x̃20, (5.48b)

Cy,2 x̃2 = 0q, (5.48c)

ẋ1 = A1x1 − $(x1)− $12(x1, x2), x1(0) = x10, (5.48d)

ẋ2 = Ac
2x2 + ∆ρ(x1, x2) + Ex2 +Bu, µe(x̃1, x̃2), x2(0) = x20. (5.48e)

where ρh, defined in (5.45), is Lipschitz bounded in the estimated states uniformly in
the actual ones, with constants Lρ2

x̃j
, j = h, 2, and

µe(x̃1, x̃2) = µlp(x1 + x̃1, x2 + x̃2)− µlp(x1, x2), Ex2 = BuBm
−1KzB∗ux2.

Sufficient conditions for the stability of the zero solution (x̃T, xT) = (02, 02)T,
x̃ = [x̃h x̃2]T, x = [x1 x2]T, of the preceding closed-loop system (5.48) are given next.

Proposition 5.4. Closed-loop stability of system (5.48)
Consider the closed-loop system (5.48) with the MIMO CES (5.47) and let Ky, Kz, ς be chosen
so that the conditions of 5.2, 5.3 (closed-loop stability with MIMO state feedback control (5.38))
and 5.1 (pointwise observer convergence) are met. Then, the steady-state (x̃, x) = (0, 0) of the
closed-loop system (5.48) is exponentially stable.

Proof. Proposition 5.1 ensures the existence of constants ae ≥ 1 and νe > 0 so that the
estimation error dynamics (5.48a)-(5.48b)-(5.48c) are exponentially bounded as

‖x̃(t)‖X ≤ ae ‖x̃0‖X e−λet.

By construction, from Proposition 5.2 and Proposition 5.3, subsystem (5.48d)–(5.48e)
without interconnection is exponentially stable and satisfy (5.36). Consequently, the
solution of (5.48d)–(5.48e) is bounded as

‖x(t)‖X ≤ ‖x0‖X e−λct + ‖Bu‖ (Lµe
x̃h
+ Lµe

x̃2
)
∫ t

0
e−λc(t−t) ‖x̃‖X dt.

Note that the above estimates compose a cascaded system, thus, from the application
of Proposition 3.1, it can be concluded that, if λe, λc > 0, or equivalently the conditions
stated in Proposition 5.4 are met, each state of the cascaded interconnected system
converges to the zero solution exponentially with decaying rate −λxe given by

−λxe = max
λj∈σ(Axe)

{Reλj}, Axe =

[
−λc 0

‖Bu‖ (Lµe
x̃h
+ Lµe

x̃2
) −λe.

]
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The preceding results establish nonlocal exponential stability in the domain of
interest X . In the presence of additive disturbances and parameter uncertainty, Propo-
sition 5.4 ensures roust stability in the sense of Input-to-State Stability (ISS) for
parabolic systems (see [80; 75]) of the nonlinear closed-loop system (5.48). This estab-
lishes a compromise between stabilizing capabilities and selection of suitable gains
such that the LIOF-PWO CES ensures good performance.

5.5 efficient late-lumping implementation and tuning

Here, as final application-oriented step, the efficient modeling approach of Section 3.2
is applied to obtain an efficient late lumping implementation of the proposed LIOF-PWO

CES. Note that differently from what is done in Section 4.6, the implementation of the
proposed CES in done with the use of the advanced observer (4.86a)-(4.86d) coupled
with the control law (5.23) since it is not possible to realize the tubular reactor model
(4.13) as a simplified model with am instantaneously observable load input.

The proposed MIMO LIOF-PWO CES (5.47) in explicit original coordinates (2.9) is

∂tχ̂1 =
1

Pem
∂2

s χ̂1 − ∂sχ̂1 − r(χ̂1, χ̂2)

∂tχ̂2 =
1

Peh
∂2

s χ̂2 − ∂sχ̂2 − υχ̂2 + r(χ̂1, χ̂2)− υβτc

1
Pem

∂sχ̂1(0, t) = χ̂1(0, t)− χ1,e(t), ∂sχ̂1(1, t) = 0

1
Peh

∂sχ̂2(0, t) = χ̂2(0, t)− χ2,e(t), ∂sχ̂2(1, t) = 0

χ̂1(s, 0) = χ̂10(s)

χ̂2(s, 0) = χ̂20(s),

χ̂2(ςi, t) = τm,i(t), i = 1, . . . , q,

χ̂z = χ̂1(1, t),

τc = µm(χ̂1, χ̂2),

where the entries of the control map µm are

µi(χ̂1, χ̂2) = τ̄c −
1
υ

(
1
2ε

∫ ςi+ε

ςi−ε

(
ky,i(χ̂2 − χ̄2) + (r(χ̂1, χ̂1)− r(χ̄1, χ̄1))

)
ds+

+ kz,i

∫ i
q

(i−1)
q

e−Pehs (χ̂2 − χ̄2)ds
)

, i = 1, . . . , q. (5.49)

Recalling the FD-based spatially discretized version of model (2.7) with efficient
discretization order (3.31), to construct the efficient late lumping version of the above
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controller (see Section 3.2.1). The application of the measured-unmeasured partition
(4.4) (see Section 4.2.1) yields the implementable LIOF-PWO CES :

˙̂χ1 = A1χ̂1 + Bd,1χ̄1,e − r(χ̂1, χ̂2), χ̂1(0) = χ̂10, (5.50a)
˙̂χ2,n = An,n

2 χ̂2,n + An,m
2 χ̂2,m + Bn

d,2χ2,e + rn(χ̂1, χ̂2,n) + Bn
u,2τc, χ̂2,n(0) = χ̂2,n0, (5.50b)

χ̂2,m = τm, (5.50c)

ĉo = C1χ̂1, χ̂2 = CT
n χ̂2,n + CT

y,2χ̂2,m, χ̂N = I(χ̂), (5.50d)

τc = µm(χ̂1, χ̂2), (5.50e)

where the state of the finite dimensional observer are given by the sequences χ̂i =

[χ̂j,1 . . . χ̂j,Ne ]
T, j = 1, 2. The entries of the control map µm, with the parameter ε

chosen small enough, are

µi(χ̂1, χ̂2) = τ̄c −
1
υ

(
1
2ε

(
ky,i(τm,i − τ̄m,i) + (rm,i(χ̂1,mi , τm,i)− rm,i(χ̄1,mi , τ̄m,i))

)
+

+ kz,i
1

Ne

iNe
q

∑
k= (i−1)Ne

q

e−Pehsk (χ̂2,k − χ̄2,k)

)
. (5.50f)

The spatial integrals in controller (5.49) have been approximated with the Gaussian
quadrature rule, but other approximations might be used, i. e., the trapezoidal rule.

The MIMO LIOF-PWO CES implementation (5.50) has the following structure Sq and
gains Kθ , that must be chosen to ensure good closed-loop performance:

ς = {2Ne − q, q, ς, U}, Kθ = Kc = (Ky, Kz), (5.51)

where the dimension of the CES is nθ = Ne, where Ne is the efficient discretization
order, determined in Section 3.2, 2Ne − q is the dimension of the pointwise observer,
q is the number of actuator-sensor pairs, each one paired with a controller. The sensor
location set ς includes the number of sensors q and their locations, determined in
Section 5.3.3. The control is unconstrained and the gains matrices (Ky,0, Kz,0) must be
chosen with to the procedure given in Section 5.3.3.2.

The theoretical developments of the previous sections are summarized next in
a structure-gain tuning procedure. The first step, of off-line structural tuning, in-
clude the determination of the: (i) efficient model order ne = 2Ne, (ii) the sensor set
ς, and (iii) a priori (before implementation) gain values (Ky, Kz). The second step,
for on-line gain tuning and structure calibration, is set in the light of simulation-
based conventional-like tuning guidelines for robust functioning: with realistic initial
condition, input step and fluctuating disturbance, and parameter and actuation-
measurement errors).

Step I: Off-line structural tuning:
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I.1 Use the efficient modeling approach of Section 3.2 to draw the late efficient
discretization order Ne use the model order ne = 2Ne for the remaining off-line
structural and on-line gain tuning and structure calibration.

I.2 Use the bifurcation-based procedure of Section 5.3.3.2 to characterize the closed-
loop multiplicity of (5.39), to determine the admissible sensor set Sm for q = 1

Sm = {ς1 ∈ S | (x1, x2) = (0, 0) is the unique steady-state}, (5.52)

and choose the location which maximize the stability measure lc according to
and the sensor location criterion (5.41).

I.3 From the procedure inSection 5.3.3.2, choose the initial gain matrix Ky,0, before
fine tuning, that ensures the fulfillment of conditions in Lemma 5.2.

I.4 Set the closed-loop system with the proposed control-estimation system (5.50) in
the robust testing mode with appropriate: (i) parameter errors and measurement
noise, as well as load input and setpoint changes, (ii) initial state and estimate
errors, (iv) measurement noise.

Step II: On-line gain tuning and structural-gain fine adjustment:

II.1 Set the control gain matrix Ky as in step I.3 and Kz five times faster than the
natural output response of the system. Repeat the procedure for each output.

II.2 Perform fine calibration: adjust the stage number Ne, sensor locations ς, and the
control gain matrices to improve behavior.

II.3 The number q of actuator-sensor pairs can be incremented up to 2 or 3 to explore
if there is some behavior improvement.

For the case study of Section 2.5, the execution of step I.1 of the above procedure
was done in Section 3.2: the efficient model order for on-line implementation of the
MIMO LIOF-PWO CES (5.50) is ne = 2Ne = 40.

5.6 control-estimation system functioning

In this section, the proposedthe MIMO LIOF-PWO CES design is: (i) illustrated and
tested with the case study described in Section 2.5 with open-loop multiplicity and
closed-loop operation about an unstable steady-state, and (ii) compared with a recent
adaptive control design that has been applied to multi-jacket reactors [26; 27; 28].
Closed-loop behavior under nominal testing (without measurement noise, distur-
bances and model parameter errors) is employed to corroborate theoretical results
and assess attainable control functioning. Closed-loop behavior under robust testing
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(with measurement noise, disturbances and model parameter errors) is employed to
assess control functioning under realistic industrial conditions.

The application of the off-line Step I of the tuning procedure given in Section 5.5 to
the case study (see Section 2.5), was performed in Section 3.2.3 for the model order,
and in Section 5.3.3 for the sensor location in the three cases q = 1, 2, 3. Accordingly,
the initial (before fine adjustment) control structures for q = 1, 2, 3 are:

ς1,0 = {40, 1, ς1 ≈ 0.24, U}, (5.53a)

ς2,0 = {40, 2, {ς1 ≈ 0.24 ς2 ≈ 0.95}, U}, (5.53b)

ς3,0 = {40, 3, {ς1 ≈ 0.24 ς2 ≈ 0.65, ς3 ≈ 0.95}, U}, (5.53c)

where the sensor locations have been fitted to the closets discretization grid points.
The procedure in Section 5.5 suggests the gains

Kc,0 = (Ky,0, Kz,0) = (0.7, 15), (5.53d)

Kc,0 = (Ky,0, Kz,0), Ky,0 =

[
0.2 0

0 0.5

]
, Kz,0 =

[
1 0

0 5

]
, (5.53e)

Kq,0 = (Ky,0, Kz,0, Ky,0 =

0.2 0 0

0 0.5 0

0 0 0.5

 , Kz,0) =

0.2 0 0

0 5 0

0 0 5

 . (5.53f)

The results on the conclusive structural and gain tuning resulting on the on-line
Step II is the subject of the subsequent developments.

5.6.1 Robust testing scheme

The tubular reactor is simulated with (4.85) with Npde = 200 internal nodes, meaning
that the reactor model (4.1) consists of 400 ODEs. The testing scheme for the robust
functioning assessment of the proposed MIMO LIOF-PWO CES (5.50) with order nθ =

2Ne − q = 37 is set as follow.
The initial concentration (or temperature) vector χ1 (or χ2) is set with 10 % (or -5

%) deviation with respect to nominal value χ̄1 (or χ̄2):

χ1,0 = 1.1χ̄1, χ2,0 = 0.95χ̄2.

The fluctuating error e of the actual closed-loop dynamics (4.2) was generated with
the linear (2nd-order oscillator) parasitic dynamics driven by low-amplitude and
high-frequency (close to resonant one) sinusoidal inputs wj, j = 1, 2:

π̇1,j = π2,j, π1,j(0) = 0,

π̇2,j = −λ2
π,jπj,1 + wj(t), π2,j(0) = 0,

ej = bππj,2,

w1(t) = 0.01 sin(50t + 12.57), w2(t) = 0.02 sin(25t + .35).
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where λπ,j ≈ 50νj, j = 1, 2, with νj are determined in Section 4.2.3, and bπ = [1 . . . 1]T.
In the testing scheme the tubular reactor is operated over the dimensionless time

interval [0,25]. The closed-loop system (4.85)-(4.86) is subjected to the following flow
feed temperature χ2,e load input disturbance, feed (we) and output (wm) temperature
measurement sinusoidal noises

t ∈ [0, 30] : χ2 = χ2,e + w2, χ1,e = χ̄1,e, τm = χ2,m + wm,

where wj(t) = 0.00 sin(2.9t + π/18), j = 2, m. In addition, over the time subinterval
[5, 25) the feed temperature χ2,e suffers step changes sequences (H: Heaviside’s
function)

t ∈ [4, 25) : χ2,e(t) = χ̄2,e + 0.02[H(t, 5)− H(t, 10)]− 0.05[H(t, 15) + H(t, 20)]

The CES (4.86a)-(4.86d) is build with the deviated transport-kinetics parameters

(P̂em, P̂eh) = (0.91Pem, 1.11Peh), υ̂ = 0.95υ, (âr, b̂r) = (1.035ar, 1.03br),

and initial unmeasured state estimate:

(χ̂1, χ̂2,n) = (χ̄1, χ̄2,n).

5.6.2 Gain tuning and structure calibration

The application of Steps II of the gain-structure procedure of Section 5.5 yields the
adjusted structures

ς1,0 = {40, 1, ς1 ≈ 0.24, U}, (5.54a)

ς2,0 = {40, 2, {ς1 ≈ 0.24 ς2 ≈ 0.95}, U}, (5.54b)

ς3,0 = {40, 3, {ς1 ≈ 0.24 ς2 ≈ 0.65, ς3 ≈ 0.95}, U}, (5.54c)

and the final gain tuning

Kq,0 = (Ky,0, Kz,0) = (0.7, 15), (5.54d)

Kq,0 = (Ky,0, Kz,0), Ky,0 =

[
0.2 0

0 0.5

]
, Kz,0 =

[
0.2 0

0 15

]
, (5.54e)

Kq,0 = (Ky,0, Kz,0, Ky,0 =

0.2 0 0

0 0.5 0

0 0 0.5

 , Kz,0 =

0.2 0 0

0 15 0

0 0 15

 . (5.54f)

In all cases, the initial sensor locations produce nice performance and are kept as
the initial setting (5.53d).
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Figure 5.2: Nominal closed-loop functioning with SF. Top left: concentration profile c(s, t). Top
center: temperature profile τ(s, t). Top right: control effort β1(s)τc,1(t). Bottom left: deviated
concentration profile x1(s, t). Bottom center: deviated temperature profile x2(s, t). Bottom
right: measured τm,1 (continuous blue) and regulated co(t) (continuous red) outputs and their
setpoints (dashed-dotted cyan or dotted magenta, respectively).

5.6.3 SISO case

The closed-loop functioning comparison, under nominal and robust testing condi-
tions, of the SISO version of the proposed LIOF-PWO CES (5.50), against its detailed
model-based state State Feedback controller (SF) counterpart (5.23), is performed
next with two objectives: (i) corroborate theoretical results on sensor location and
attainable closed-loop functioning (under nominal conditions), and (ii) to show how
the controllers perform under realistic unfavorable operating conditions.

5.6.3.1 Nominal functioning

The nominal functioning is performed with the gains and structure obtained with
the robust testing scheme. Step changes in the inlet temperature, the fluctuating
disturbances, and parasitic dynamics are not at play.

In Figure 5.2 and Figure 5.3a, the nominal closed-loop control functioning with
the SF (5.23) and the LIOF-PWO CES (5.50) are shown. The corresponding estimation
functioning is shown in Figure 5.3b. The norms of the distributed state and estimation
error and control input profiles are presented in Figure 5.4a.

Regarding control functioning, on one hand, with respect to regulation task, in
terms of settling time, disturbance rejection, and control effort, the SF yields the best
behavior, closely followed by the LIOF-PWO CES.
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t).
Top right: control effort β1(s)τc,1(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,1 (continuous blue) and regulated co(t)
(continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta, respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tempera-
ture profile τ̂(s, t). Bottom left: concentration estimation error profile c̃1(s, t). Bottom center: temperature
estimation error profile τ̃2(s, t). Bottom right: real measured τm,1(t) (continuous blue) and regulated
co(t) (dotted magenta) and their estimates (τ̂m,1(t), ĉo(t)) (continuous blue and red, respectively).

Figure 5.3: Nominal closed-loop control functioning with the SISO LIOF-PWO CES.

Specifically, the LIOF-PWO: (i) for t ∈ [0, 5) (response to initial condition) yields
larger overshoots and control effort (due to estimator error dynamics), and (ii) for
t ∈ [5, 25) (where step disturbances occur) produce slightly more oscillatory response.

With respect to estimation functioning, in terms of convergence settling time and
offset, the estimator of the proposed LIOF-PWO performs well and present some
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(a) Nominal case. (b) Robust case.

Figure 5.4: Norms of distributed states in deviation, estimation errors and control input.

expected and allowed persistent estimation error due to parameter uncertainty and
modeling errors.

As expected, in the nominal setting, the SF, benefited from full state knowledge,
presents the best behavior and corroborates the efficiency of the proposed control law.
The LIOF-PWO produce acceptable performance driven by a pointwise observer.

To test the sensor location condition needed for the adequate closed-loop func-
tioning, given in Section 5.3.3.2, on purpose the sensor location condition (5.40) is
violated,i. e.., the sensor is placed at the following location

ς1 = 0.57, τm,1 = χ2,11,

after the hotspot, where Γk,0(ς) < 0. The corresponding norms of the distributed
profiles in closed-loop behavior are presented in Figure 5.5, showing that, as expected,
the reactor, with all the controllers, does not reach the prescribed steady-state profile
pair, and instead it reaches an undesired ignition stable steady-state. The estimation
task is fulfilled showing the efficiency of the estimator in this unfavorable scenario
and confirming their use for monitoring purposes.
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Figure 5.5: Nominal case where the sensor location condition is not met: norms of distributed
states in deviation, estimation errors and control input.

5.6.3.2 Robust functioning

In Figure 5.6 and Figure 5.7a, the robust closed-loop control functioning with the
SF (5.23) and the advanced SISO LIOF-PWO CES (5.50), respectively, are shown. The
robust closed-loop estimation functioning of the estimator of the proposed CES (5.50)
is shown in Figure 4.13b. The norms of the distributed state and estimation error and
control input profiles are presented in Figure 5.4b.

From these simulation results, with respect to the regulation task and in terms of
settling time, disturbance rejection, and control effort: the LIOF-PWO CES outperforms
its SF counterpart. Regarding the estimation task, in terms of convergence settling time
and offset, the estimator of the proposed CES efficiently executes the estimation task.
Thus, in agreement with theoretical developments, the proposed CES outperforms
the SF which is substantially degraded due to its dependency on exact knowledge of
parameters and in spite of knowing the real state of the tubular reactor.

Specifically, for t ∈ [0, 5) (with response to initial condition deviation): (i) the CES

produces slower measured-regulated outputs and state settling times with small
oscillations and adequate control action, and (ii) the SF has comparatively larger
output and state overshoot as well as asymptotic offset, with wasteful control action.
For t ∈ [5, 25) (with persistent periodic and step disturbances as well as setpoint
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Figure 5.6: Robust closed-loop functioning with SF. Top left: concentration profile c(s, t). Top
center: temperature profile τ(s, t). Top right: control effort β1(s)τc,1(t). Bottom left: deviated
concentration profile x1(s, t). Bottom center: deviated temperature profile x2(s, t). Bottom
right: measured τm,1 (continuous blue) and regulated co(t) (continuous red) outputs and their
setpoints (dashed-dotted cyan or dotted magenta, respectively).

change) the CES presents enhanced attenuation of the inlet temperature disturbances
on the measured and regulated output as well as on the distributed profiles.

Following the previous results, it is confirmed that the proposed LIOF-PWO CES

(5.50) is the one with the best closed-loop performance in both control and estimation
tasks. What is left is to assess is there is some benefit of considering the MIMO cases
in comparison with the SISO one. This is evaluated next in robust testing conditions.

5.6.4 MIMO case

The SISO and MIMO, for q = 2, 3, versions of the proposed LIOF-PWO CES (5.50) are set
with the structures and parameters given in (5.54). The closed-loop CE functioning
under robust testing conditions are presented in Figure 5.7, Figure 5.8, and Figure 5.9,
for the SISO, 2-MIMO, and 3-MIMO cases, respectively.

From the simulation results, it can be seen that the MIMO cases benefits from the
use of additional information of the system and produce more robust closed-loop
behavior in both control and estimation tasks. Specifically, for t ∈ [5, 25) (when inlet
temperature step disturbances arise), regarding control functioning, the decentralized
controllers produce precise control actions that coordinate and attenuate the effect of
the disturbances in the steady-state profiles. Regarding estimation, it is appreciated
that the pointwise-like observers improve their performance since the estimation
error, in the presence of exogenous disturbances, decreases as the number of sensors
increase. Thus, this rejection capability is enhanced as the number of actuator-sensor
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t).
Top right: control effort β1(s)τc,1(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,1 (continuous blue) and regulated co(t)
(continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta, respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tempera-
ture profile τ̂(s, t). Bottom left: concentration estimation error profile c̃1(s, t). Bottom center: temperature
estimation error profile τ̃2(s, t). Bottom right: real measured τm,1(t) (continuous blue) and regulated
co(t) (dotted magenta) and their estimates (τ̂m,1(t), ĉo(t)) (continuous blue and red, respectively).

Figure 5.7: Nominal closed-loop control functioning with the SISO LIOF-PWO CES.

pair increase. No that this is produced, with an overall control action that has a similar
norm as in the two MIMO cases and SISO one.

Thus, it is concluded that the proposed LIOF-PWO CES (5.50), clearly benefits with the
MIMO with q = 3 as the one that produces the best performance. Further enhancement
can be achieved if the efficient model order ne = 2Ne is increased up to ne = 160.
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t). Top
right: control effort ∑2

i=1 βi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,i(t), i = 1, 2 (blue continuous) and
regulated co(t) (red continuous) outputs and their setpoints (dashed-dotted cyan and dotted magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Bottom left: estimation error of the concentration profile c̃1(s, t). Bottom center:
estimation error of the temperature profile τ̃2(s, t). Bottom right: real measured τm,i(t), i = 1, 2 (continu-
ous blue) and regulated co(t) (dotted magenta) and their estimates (τ̂m,i(t), ĉo(t)) (continuous blue and
red, respectively).

Figure 5.8: Robust closed-loop control functioning with the 2-MIMO-LIOF-PWO CES.
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t). Top
right: control effort ∑3

i=1 βi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,i(t), i = 1, 2, 3 (blue continuous) and
regulated co(t) (red continuous) outputs and their setpoints (dashed-dotted cyan and dotted magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Bottom left: estimation error of the concentration profile c̃1(s, t). Bottom center:
estimation error of the temperature profile τ̃2(s, t). Bottom right: real measured τm,i(t), i = 1, 2, 3 (con-
tinuous blue) and regulated co(t) (dotted magenta) and their estimates (τ̂m,i(t), ĉo(t)) (continuous blue
and red, respectively).

Figure 5.9: Robust closed-loop control functioning with the 3-MIMO-LIOF-PWO CES.

5.7 summary of the late lumping approach

A MIMO CES, build as an observer-based output feedback controller with linearizing
and inventory-like control components has been drawn for a multi-jacket exothermic
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Figure 5.10: Norms of distributed states in deviation, estimation errors and control input for
decentralized SISO, 2-MIMO, and 3-MIMO LIOF-PWO CESs.

tubular (possibly open-loop unstable) reactor. The problem has been solved within
a constructive framework, by fruitfully combining concepts from chemical reactor
engineering, PDE control systems theory, and efficient late lumping. The methodologi-
cal solution is a pointwise observer-based state feedback stabilizing controller with:
(i) the multi-jacket structure as design degree of freedom, (ii) closed-loop stability
condition in terms of control gain and MIMO structure, (iii) gain-structure tuning
guidelines, and (iv) an efficient late lumping on-line implementation.

The control component of the CES has three components: (i) the first two, that ensure
closed-loop stability, are a pointwise driven linearizing controller that compensates
nonlinear destabilization by reaction and retains stabilizing effects of heat transport,
and (ii) the third one, which underlain by passivity improves functioning versus
control effort, resembles a calorimetric industrial control. The proposed approach: (i)
systematizes and improves existing designs for single or multi-jacket reactors, and (ii)
includes, as key application-oriented ingredient, formal closed-loop stability proofs
and efficient late lumping. The design was applied to stabilize the open-loop unstable
steady-state of the reactor example of Section 2.5 through numerical simulation.





Part IV

F R O M E A R LY T O L AT E L U M P I N G A N D V I C E V E R S A

This is an exploratory chapter in which the proposed control-estimation
systems, either designed within a early or late lumping approach, are
put in perspective between them. This is done by, first, performing a
simulation-based comparative study, including comparisons with an ad-
ditional control-estimation scheme composed by an existing adaptive
controller (which produce distributed control action) and a pointwise ob-
server. Then, the extension of the early and late lumping design strategies
to their opposites, late or early, is explored in an informal manner. At last,
the benefits and advantageous characteristics of the control component of
each control-estimation systems are combined to produce an algorithm
that have nice characteristics of both approaches.
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6
G O I N G F R O M E A R LY T O L AT E L U M P I N G A N D V I C E V E R S A

As solutions to the control-estimation problem for a distributed tubular reactor,
established in Section 2.3, two different decentralized Multiple Input Multiple Output
(MIMO) Control-Estimation System (CES) have been designed: (i) the PI control with
AW scheme-Pointwise Observer (PIAW-PWO), and (ii) an the Linear-Inventory-like
control-Pointwise Observer (LIOF-PWO). The first system constructed within a early
lumping approach and the latter one within a late lumping approach and both
employing an efficient lumped model for implantation.

In this chapter, the advantages of each design are highlighted by performing a
simulation study where the proposed 3-MIMO CESs with constrained control action
are compared with a MIMO CES build as the combination of an existing adaptive
constrained controller and the pointwise observer proposed in [111]. Then, the con-
struction of each control-estimation system starting in the opposite lumping approach
is explored, i. e., a try to mimic each methodology starting in the opposite, late or
early lumping, is studied without establishing formal proofs. Furthermore, alternative
methodologies to perform this methodological extension are delineated. At the end
of the chapter, both proposed CESs are combined to obtain a new scheme that have
the benefits from both approaches, its performance is shown through simulations.

6.1 comparisons with adaptive control-estimation system

The closed-loop performance of the two proposed 3-MIMO CESs, the early (4.86) and
the late (5.50) lumped ones, with constrained control are compared with a 3-MIMO

adaptive output feedback controller with constrained distributed control, composed
by an adaptive proportional controller [28] and the pointwise observer (5.43).

While the PIAW-PWO is implemented as in (4.86), the control map of the LIOF-PWO

is saturated to account for limited control action, i. e., (5.50e) is replaced by

τc = µm,s(χ̂1, χ̂2), µm,s =


satτ+

c
τ−c

µm,1(χ̂1, χ̂2)
...

satτ+
c

τ−c
µm,q(χ̂1, χ̂2)

 ,

where each entry µm,i, i = 1, . . . , q is given in (5.50f). The control limits obtained for
the PIAW-PWO (4.86) are inherited to the LIOF-PWO (5.50). No formal proof is given to
show that with this control limits avoidance of undesired closed-loop steady-states
due to saturation is ensured. Both control-estimation systems are implemented with
the efficient model order ne = 2Ne = 40.
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144 going from early to late lumping and vice versa

The adaptive CES used for comparison purposes is composed by the saturated
adaptive controller proposed in [28], a distributed linear proportional state feedback
proportional, with nonlinear adaptive gain, driven by an estimate of the distributed
temperature obtained from the pointwise observer (5.43) with point temperature
measurements. It is worth noting that this adaptive CES requires a jacket with section
that can produce distributed control actions, differently from the ones employed in
the both proposed CESs that operates with a jacket that produce constant constant
control action along space. This may give some advantages to the adaptive scheme.

The Adaptive Output Feedback controller-Pointwise Observer (AOF-PWO) CES is
explicit original coordinate (2.9) is given as

∂tχ̂1 =
1

Pem
∂ssχ̂1 − ∂sχ̂1 − r(χ̂1, χ̂2) (6.1a)

∂tχ̂2 =
1

Peh
∂ssχ̂2 − ∂sχ̂2 − υχ̂2 + r(χ̂1, χ̂2)− υβτc (6.1b)

1
Pem

∂sχ̂1(0, t) = χ̂1(0, t)− χ1,e(t), ∂sχ̂1(1, t) = 0 (6.1c)

1
Peh

∂sχ̂2(0, t) = χ̂2(0, t)− χ2,e(t), ∂sχ̂2(1, t) = 0 (6.1d)

χ̂1(s, 0) = χ̂10(s) (6.1e)

χ̂2(s, 0) = χ̂20(s), (6.1f)

χ̂2(ςi, t) = τi,q(t), i = 1, . . . , q, (6.1g)

χ̂z = χ̂1(1, t), (6.1h)

τc = µa,s(χ̂2), (6.1i)

where µa,s = [satτ+
c

τ−c
µa,1 . . . satτ+

c
τ−c

µa,q]T and

µa,i(χ̂2) = τ̄c − k(t)ϑi(s)(χ̂2 − χ̄2), ϑi(s) =

1 if s ∈ Ωi ⊂ Ri

0 else
, (6.1j)

k̇(t) = Ka


(∥∥∥∑2

i=1 ϑi(χ̂2 − χ̄2)
∥∥∥− g

)l
if
∥∥∥∑2

i=1 ϑi(χ̂2 − χ̄2)
∥∥∥ > g

0 if
∥∥∥∑2

i=1 ϑi(χ̂2 − χ̄2)
∥∥∥ ≤ g

. (6.1k)

where ϑi are the actuator characteristic functions, i. e., the spatial domains Ωi con-
tained in the total domain Ri of the i-th jacket section, k is an adaptive gain with
initial condition k(0) = k0, and g and l are tuning parameters.
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Using Finite Differences (FD) approximation and the efficient modeling approach
(see Chapter 3), the efficient late lumping implementation of the above controller is

˙̂χ1 = A1χ̂1 + Bd,1χ̄1,e − r(χ̂1, χ̂2), χ̂1(0) = χ̂10, (6.2a)
˙̂χ2,n = An,n

2 χ̂2,n + An,m
2 χ̂2,m + Bn

d,2χ2,e + rn(χ̂1, χ̂2,n) + Bn
u,2τc, χ̂2,n(0) = χ̂2,n0, (6.2b)

χ̂2,m = τm, (6.2c)

ĉz = C1χ̂1, χ̂2 = CT
n χ̂2,n + CT

y,2χ̂2,m, χ̂N = I(χ̂), (6.2d)

τc = µa,s(χ̂1, χ̂2) (6.2e)

where the state of the finite dimensional observer are given by the sequences χ̂i =

[χ̂j,1 . . . χ̂j,Ne ]
T, j = 1, 2. The entries of the control map µa are

µa,i(χ̂2) = τ̄c − k(t)Θi(sk)(χ̂2 − χ2), Θi(sk) =

1 if sk ∈ oi ⊂ Ri

0 else
, (6.2f)

k̇(t) = Ka


(∥∥∥∑2

i=1 ϑi(χ̂2 − χ̄2)
∥∥∥− g

)l
if
∥∥∥∑2

i=1 ϑi(χ̂2 − χ̄2)
∥∥∥ > g

0 if
∥∥∥∑2

i=1 ϑi(χ̂2 − χ̄2)
∥∥∥ ≤ g

. (6.2g)

where Θi is the discrete spatial actuator characteristic function, oi the related discrete
domain of influence of each actuator, and lumped observer use Ne = 20 (37 ODEs).

The AOF-PWO is set with the following actuation domains

Ω1 = [0.05, 0.3], Ω2 = [0.36, 0.6], Ω3 = [0.68, 0.9],

an the same sensor locations as the proposed PIAW-PWO and LIOF-PWO: {ς1 ≈
0.24, ς2 ≈ 0.62, ς3 ≈ 0.95}. The AOF-PWO, PIAW-PWO and LIOF-PWO CESs are tuned
and tested with the same robust testing conditions established in Section 5.6.1. The
tuning of the AOF-PWO yields the following control parameters and limits

Ka = 2, g = 1, l = 10, k0 = 5, τ−c = 0.5, τ+
c = 2.2.

Note that the control set, delimited by the above control limits, is wider than the
control limits (4.88) used in the two proposed CES. The proposed CES are simulated
with the tuning in Section 4.7.2 and Section 5.6.2.

In this comparative study, there are two control objectives: (i) regulation from
deviated initial profiles to the target steady-states, and (ii) disturbance rejection for
step changes in the inlet temperature. The closed-loop functioning of the three CESs,
under robust testing conditions, is presented in Figure 6.1, Figure 6.2 and Figure 6.3,
for the PIAW-PWO, LIOF-PWO, and AOF-PWO, respectively. The norms of the distributed
controlled and estimated profiles, and the control action are shown in Figure 6.4.

Regarding regulation, it is appreciated that while the LIOF-PWO and AOF-PWO

produce faster responses with aggressive control profiles that reach both saturation
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t). Top
right: control effort ∑3

i=1 βi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,i, i = 1, 2, 3 (continuous blue) and
regulated co(t) (continuous red) outputs and their setpoints (dashed-dotted cyan or dotted magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Top right: estimated exogenous input ι(t). Bottom left: estimation error of the
concentration profile c̃1(s, t). Bottom center: estimation error of the temperature profile τ̃2(s, t). Bottom
right: real measured τm,i(t), i = 1, 2, 3 (continuous blue) and regulated co(t) (dotted magenta) and their
estimates (τ̂m,i(t), ĉo(t)) (continuous blue and red, respectively).

Figure 6.1: Robust closed-loop control functioning with the 3-MIMO PIAW-PWO CES.

limits in the transient behavior, the PIAW-PWO controller produce a smoother and
slower control profile that only reaches its upper control limit. In the disturbance
rejection task, it can be seen that the three CESs perform well, but the PIAW-PWO
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t). Top
right: control effort ∑3

i=1 βi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,i(t), i = 1, 2, 3 (blue continuous) and
regulated co(t) (red continuous) outputs and their setpoints (dashed-dotted cyan and dotted magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Bottom left: estimation error of the concentration profile c̃1(s, t). Bottom center:
estimation error of the temperature profile τ̃2(s, t). Bottom right: real measured τm,i(t), i = 1, 2, 3 (con-
tinuous blue) and regulated co(t) (dotted magenta) and their estimates (τ̂m,i(t), ĉo(t)) (continuous blue
and red, respectively).

Figure 6.2: Robust closed-loop control functioning with the 3-MIMO LIOF-PWO CES

has the best disturbance rejection capability with a more aggressive control effort
that keeps the entire concentration and temperature profiles almost insensible to
step disturbances in the inlet concentrations in despite of the presence of noise
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t). Top
right: control effort ∑3

i=1 ϑi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,i(t), i = 1, 2, 3 (blue continuous) and
regulated co(t) (red continuous) outputs and their setpoints (dashed-dotted cyan and dotted magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Bottom left: estimation error of the concentration profile c̃1(s, t). Bottom center:
estimation error of the temperature profile τ̃2(s, t). Bottom right: real measured τm,i(t), i = 1, 2, 3 (con-
tinuous blue) and regulated co(t) (dotted magenta) and their estimates (τ̂m,i(t), ĉo(t)) (continuous blue
and red, respectively).

Figure 6.3: Robust closed-loop control functioning with the 3-MIMO AOF-PWO CES

and parameter errors; followed by the AOF-PWO and LIOF-PWO CESs. The estimation
performance is almost the same for the three CESs.
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Figure 6.4: Norms of distributed states in deviation, estimation errors and control input for
the closed-loop system with the 3-MIMO: PIAW-PWO, LIOF-PWO and AOF-PWO CESs.

Note that the AOF-PWO requires a larger control set to achieve the regulation task,
in comparison with the PIAW-PWO and the LIOF-PWO which handle better control
constraints. Furthermore, the AOF-PWO CES produce distributed control that have an
enhanced stabilizing effect on the temperature dynamics. Also, both PIAW-PWO and
LIOF-PWO CESs have an adapting mechanism (the integral action or the adaptive gain)
that provide each controller with a better way to confront disturbances, this explains
that the LIOF-PWO present some problems in the disturbance rejection task.

In an overall balance, the PIAW-PWO CES has the best performance: adequate regu-
lation from initial profiles, almost perfect disturbance rejection, and good handling
of control constraints. All this with a simple industrial control structure: a set of
decentralized PI controllers with a decoupled pointwise-like observer for monitoring.

6.2 late lumping piaw-pwo control-estimation system

Here, two issues related to the PIAW-PWO CES (4.86) are explored: (i) how it looks
like going from its FD representation to the infinite one, i. e., in the limit when the
discretization order goes to infinity and the spatial differences becomes derivatives,
and (ii) its design with a similar methodology but within a late lumping approach.
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Regarding the first issue, from numerical methods [85], it is known that the solution
of a PDE solved by FD approximations, converges to the actual solution of the PDE

in the L2-norm as the discretization mesh becomes infinitesimal. It will be explored,
without rigorous mathematical proofs, how this extends to the solution of the CE

problem drawn in Chapter 4: the spatial differences in the early lumping model (3.19),
in the limit, converges to continuous spatial derivatives.

For the second issue, the methodological ingredients used in the early lumping
approach of Chapter 4 (passivity, closed-loop detectability and realization theory)
will be used to draw the PIAW-PWO CES (4.86), within a late lumping approach.

6.2.1 PIAW-PWO control-estimation system from lumped to distributed

Recall the FD based implementation PIAW-PWO (4.86) over the finite dimensional
spatial mesh (3.16), where the distributed state profiles are approximated by the
sequences χj,k, j = 1, 2, k = 1, . . . , N given in (3.17a). The first and second spatial
derivatives are approximated with FD as in (3.17b). In the limit, when N → ∞ and
∆s→ 0, the discretization mesh becomes the spatial domain (0, 1), this is

N → ∞ ⇒ ∆s → 0 ⇒ S =

[
1

∆s
,

N
∆s

]
→ (0, 1), χk,j(t) = χj(sj, t)→ χj(s, t).

Following the same reasoning, it follows that

N → ∞ ⇒ ∆s → 0 ⇒
χj,k(t)− χj,k−1(t)

∆s
→ ∂sχj(s, t),

χj,k+1(t)− 2χj,k(t) + χj,k−1(t)
∆s2 → ∂2

s χj(s, t).

Thus, when N → ∞, the lumped model (3.22) becomes the PDE one (2.7). Conse-
quently, the distributed version of the CES (4.86) becomes

∂tχ̂1 =
1

Pem
∂ssχ̂1 − ∂sχ̂1 − r(χ̂1, χ̂2) (6.3a)

∂tχ̂2 =
1

Peh
∂ssχ̂2 − ∂sχ̂2 − υχ̂2 + r(χ̂1, χ̂2)− υβτc (6.3b)

1
Pem

∂sχ̂1(0, t) = χ̂1(0, t)− χ1,e(t), ∂sχ̂1(1, t) = 0 (6.3c)

1
Peh

∂sχ̂2(0, t) = χ̂2(0, t)− χ2,e(t), ∂sχ̂2(1, t) = 0 (6.3d)

χ̂1(s, 0) = χ̂10(s) (6.3e)

χ̂2(s, 0) = χ̂20(s), (6.3f)

χ̂2(ςi, t) = τm,i(t), i = 1 . . . , q, (6.3g)

χ̂z = χ̂1(1, t), (6.3h)

τc = µs,pi(τm), (6.3i)
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where the entries of the control map (6.3i) are given in (4.86f).
The above distributed PIAW-PWO CES is composed by a set of decentralized PIAWs

that use the measurements of the distributed tubular model, and the distributed
pointwise observer (5.43). In what follows, it will be explored if the methodology
employed in Chapter 4 translated into a late lumping approach, yields a similar CES

as (6.3) and a similar implementation as the one in (4.86).

6.2.2 PIAW-PWO control-estimation system in distributed form: a late lumping approach

The tree methodological steps of the early lumping approach in Chapter 4 were: (i)
set a passive state feedback control based on a minimum phase property, (ii) build an
observer-based output feedback control driven by a closed-loop detectability property,
and (iii) the PIAW-PWO implementation enabled by model redesign. The extension to
a late lumping setting of these methodological steps is explored next.

For the purpose at hand, on the basis of the PDE model (5.2), the requirements for
the construction of a passive state feedback controller are: (i) that the characteristic
index is a vector with one entries, and (ii) the related zero dynamics is exponentially
stable. The first requirement was established in Lemma 5.1, and it is always satisfied
for the tubular reactor class since the heat exchange between the jacket and the reactor
is enabled by design. The stability of the zero dynamics is briefly analyzed next.

6.2.2.1 Distributed partitioned dynamics

The partition of the state into unmeasured-measured temperature shown to be useful
in Chapter 4, a similar partition in the distributed model (5.2) is given next.

Recall that for technical purposes the output operators Cy, defined with Dirac
delta functions, is replaced with its approximation Cy. Accordingly, the measurement
locations ςi, i = 1, . . . , q split the reactor into q + q + 1 consecutive intervals: the q + 1
intervals In,j where the temperature is not measured, and the q intervals Im,i where
the averaged temperature is measured,:

In,1 = [0, ς1 − ε], . . . , In,j = (ς j−1 + ε, ς j + ε], In,q+1 = (ςq + ε, 1], (6.4a)

Im,i = [ςi − ε, ςi + ε], j = 1, . . . , q, i = 1, . . . , q. (6.4b)

Each interval has the following characteristic function

Ωn,j(s) =

1, s ∈ In,j

0, else
, Ωm,i(s) =

1, s ∈ Im,i

0, else
, (6.4c)

for j = 1, . . . , q + 1 and i = 1, . . . , q. Imposing an inhomogenous Dirichlet type
boundary condition at each measurement location, the dynamics of the tubular reactor
can be split into q + 1 unmeasured temperatures x2,n,j(s, t) for s ∈ In,j, j = 1 . . . , q + 1,
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and q measured ones x2,n,j(s, t) for s ∈ Im,i, i = 1 . . . , q. Accordingly, the actual
temperature state at a given location s ∈ [0, 1] can be determined by means of the
characteristic functions (6.4):

x2 = Ωnx2,n + Ωmx2,m =
q+1

∑
j=1

Ωn,jx2,j +
q

∑
i=1

Ωm,ix2,i

where Ωn = [Ωn,1 . . . Ωn,q+1], Ωm = [Ωm,1 . . . Ωm,q], and

x2,n =
[

x2,n,1 . . . x2,n,q+1

]T
, x2,n =

[
x2,m,1 . . . x2,m,q

]T
.

where x2,n is the unmeasured temperature profile state, and the measured one is x2,m.
With this representation, the tubular reactor model can be written as

ẋ1 = A1x1 − ρ1(x1, x2), x1(0) = x10, (6.5a)

ẋ2,n = A2,nx2,n + ρ2,n(x1, x2,n) +Bn
uu, x2,n(0) = x2,n0, (6.5b)

ẋ2,m = A2,mx2,m + ρ2,m(x1, x2,m) +Bm
u u, x2,m(0) = x2,m0, (6.5c)

x2 = Ωnx2,n + Ωmx2,m, (6.5d)

y = Cm
y x2,m, y = Cm

y x2,m, z = Czx1, (6.5e)

where the operators A2,n, A2,m, Bn
u, Bm

u , Cm
y and Cm

y are defined as follows:

A2,nx2,n =


An,1x2,n,1

. . .

An,q+1x2,n,q+1

 , A2,mx2,m =


Am,1x2,m,1

. . .

Am,qx2,m,q


where each unmeasured or measured temperature operator is given as

An,jx2,n,j = ∂2
s x2,n,j −

(
Peh

4
+ υ

)
x2,n,j, Dn,j(A2,j) = { f ∈ H2 |Bm,jx2,n,j = 0},

Am,ix2,m,i = ∂2
s x2,m,i −

(
Peh

4
+ υ

)
x2,m,i, Dm,i(A2,i) = { f ∈ H2 |Bn,ix2,m,i = 0},

for j = 1, . . . , q + 1 and i = 1, . . . , q. The domains Dn,j of the unmeasured temperature
intervals are given in terms the following boundary conditions:

Bn,1x2,n,1 =

[
1

Peh
∂sx2,n,1(0, t)− 1

2 x2,n,1(0, t)

x2,n,1(ς1 − ε, t)− x2,m,1(ς1 − ε, t)

]
,

Bn,jx2,n,j =

[
x2,n,j(ς j−1 + ε, t)− x2,m,i(ςi + ε, t)

x2,n,j(ς j − ε, t)− x2,m,i(ςi+1 − ε, t)

]
, j = 2 . . . q,

Bn,q+1x2,n,q+1 =

[
x2,n,q(ςq + ε, t)− x2,m,q(ςq + ε, t),

1
Peh

∂sx2,n,q+1(1, t) + 1
2 x2,n,q+1(1, t)

]
.



6.2 late lumping piaw-pwo control-estimation system 153

The domains Dm,i of the measured temperature intervals are given in terms the
following boundary conditions:

Bm,ix2,m,i =

[
x2,n,1(ςi − ε, t),

x2,n,1(ςi + ε, t)

]
, i = 1, . . . , q.

Note that the above boundary conditions are the measured temperatures at the ex-
tremes of the intervals Im (6.4b). The input operators for the unmeasured temperature
are defined as

Bn
uu =



υΩn,1whβu
...

υΩn,jwhβu
...

υΩn,q+1whβu


=



υΩn,1wh ∑
q
i=1 βiui

...

υΩn,jwh ∑
q
i=1 βiui

...

υΩn,q+wh ∑
q
i=1 βiui


= υ



whΩn,1β1u1
...

wh ∑
j
i=j−1 Ωn,1βiui

...

whΩq+1,1βquq


.

While the input operators for the measured temperature are

Bm
u u =


υΩm,1whβu

...

υΩm,qwhβu

 =


υΩm,1wh ∑

q
i=1 βiui

...

υΩm,qwh ∑
q
i=1 βiui

 = υ


υwhΩm,1β1u1

...

υwhΩm,qβquq

 .

The output operators are

Cm
y x2,m =


〈

γ1(s),w−1
h x2,m,1

〉
...〈

γ1(s),w−1
h x2,m,q

〉
 , Cm

y x2,m =


〈

δ(s− ς1),w−1
h x2,m,1

〉
...〈

δ(s− ςq),w−1
h x2,m,q

〉
 .

Finally, the nonlinear reaction rate functions are

ρ2,n =


ρ2(x1, x2,n,1)

...

ρ2(x1, x2,n,q+1)

 , ρ2,m =


ρ2(x1, x2,m,1)

...

ρ2(x1, x2,m,q)

 .

Note that in the above model, when ε → 0, the point-like output y becomes the
point measurement y, and the measured state dynamics becomes pointwise also.

6.2.2.2 Distributed zero dynamics

The first time-derivative of the point or point-like output is given by

ẏ = Cy ẋ2,m,

= Cy

(
A2,mx2,m + ρ2,m(x1, x2,m) +Bm

u u
)

,

= CyA2,mx2,m + Cyρ2,m(x1, x2,m) + CyBm
u u.



154 going from early to late lumping and vice versa

As a consequence of Lemma 5.1, it is known that

CyBm
u := Bm = υIq×q,

and thus, a control law that impose the zero dynamics condition y = 0 is given by

u = µz,2(x1), (6.6a)

where

µz,2(x1, 0), µz,2(x1, x2,m) = −Bm
−1
(
CyA2,mx2,m + Cyρ2,m(x1, x2,m)

)
. (6.6b)

The application of the above controller to (6.5) yields the zero dynamics

ẋ1 = A1x1 − ρ1(x1, x2), x1(0) = x10, (6.7a)

ẋ2,n = Az
2,nx2,n + ρ2,z(x1, x2,n), x2,n(0) = x2,n0, (6.7b)

x2 = Ωnx2,n + Ωm0, (6.7c)

y = 0, y = 0, z = Czx1, (6.7d)

where the zero dynamics operator A2,z is given by

A2,nx2,n =


Az

n,1x2,n,1
. . .

Az
n,q+1x2,n,q+1

 , (6.7e)

with entries defined as

Az
n,jx2,n,j = ∂2

s x2,n,j −
(

Peh

4
+ υ

)
x2,n,j, Dz,j(Az

n,j) = { f ∈ H2 |Bz
n,jx2,j = 0},

(6.7f)

for j = 1, . . . , q + 1. The domains Dz,j of the unmeasured temperature intervals are
given in terms the following boundary conditions:

Bz
n,1x2,n,1 =

[
1

Peh
∂sx2,n,1(0, t)− 1

2 x2,n,1(0, t)

x2,n,1(ς1 − ε, t)

]
, (6.8)

Bz
n,jx2,n,j =

[
x2,n,j(ς j−1 + ε, t),

x2,n,j(ς j − ε, t)

]
, j = 2 . . . q, (6.9)

Bz
n,q+1x2,n,q+1 =

[
x2,n,q+1(ςq + ε, t),

1
Peh

∂sx2,n,q+1(1, t) + 1
2 x2,n,q+1(1, t)

]
. (6.10)
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The zero dynamics nonlinearity is ρ2,z is

ρ2,z(x1, x2,n) = ρ2,n(x1, x2,n)−Bn
2,u

1
υ

Iq×qCyρ2,m(x1, 0),

=



ρ2(x1, x2,n,1)
...

ρ2(x1, x2,n,j)
...

ρ2(x1, x2,n,q+1)


− 1

υ



whΩn,1β1

〈
γ1,w−1

h ρ2,m,1(x1, 0)
〉

...

wh ∑
j
i=j−1 Ωn,jβi

〈
γi,w−1

h ρ2,m,i(x1, 0)
〉

...

whΩn,q+1βq

〈
γq,w−1

h ρ2,m,q(x1, 0)
〉


.

This modified nonlinearity may have a smaller Lipschitz constant with respect to x1,
and this may enhance the stability of the zero dynamics, as it will be seen later.

For control design purposes, it is required that the zero dynamics (6.7) has the
origin as unique exponentially stable steady-state. The related statics are

0 = A1x1 − $(x1)− $12(x1, x2), (6.11a)

0 = Az
2,nx2,n + ρ2,z(x1, x2,n), (6.11b)

x2 = Ωnx2,n + Ωm0, (6.11c)

y = 0, y = 0, 0 = Czx1. (6.11d)

The above static equations is a boundary value problem that depends on the sensor
location set ς. A similar procedure as in Section 4.3.3 can be used: the case of a
unique sensor location may be considered to find out which is the set in which the
zero dynamics statics has the origin as unique steady-state. From Section 4.3.3.2 and
Section 5.3.3.2, the recommended location for the first sensor is ς1 ≈ 0.24.

To characterize the exponential stability, the Lur’e structure of the zero dynamics is
exploited: first stability of the linear part is studied, then the interconnection between
linear and nonlinear components are studied and finally the interconnection of mass
and heat balances is analyzed to find conditions for exponential stability.

Lemma 6.1. Characterization of the zero dynamics operators Az
n,j. Proof in Section h.1

Consider the distributed zero dynamics (6.7), if ε→ 0, then Cy → Cy and y = y. Further-
more, the boundary conditions (6.8) shift to the sensor locations ςi, i. e.,

Bz
n,1x2,n,1 =

[
1

Peh
∂sx2,n,1(0, t)− 1

2 x2,n,1(0, t)

x2,n,1(ς1, t)

]
, (6.12a)

Bz
n,jx2,n,j =

[
x2,n,j(ς j−1, t),

x2,n,j(ς j, t)

]
, j = 2 . . . q, (6.12b)

Bz
n,q+1x2,n,q+1 =

[
x2,n,q+1(ςq, t),

1
Peh

∂sx2,n,q+1(1, t) + 1
2 x2,n,q+1(1, t)

]
. (6.12c)
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Thus, the zero dynamics operators Az
n,j in (6.7e) have the following eigenvalues and eigen-

functions

φ2,1,n(s) = B2,1,n

(
2ω2,1,1n

Pehς1
cos

(
ω2,1,n

s
ς1

)
+ sin

(
ω2,1,n

s
ς1

))
, (6.13a)

φ2,j,l(s) = B2,j,n sin
(

ω2,j,n
s− ς j−1

ς j − ς j−1

)
, j = 2, . . . , q, (6.13b)

φ2,q+1,n(s) = B2,q+1,n sin
(

ω2,j+1,n
s− ςq

1− ςq

)
, (6.13c)

for n ∈N with normalization constants B2,j,n and eigenfrequencies ω2,j,n given as the solution
of the implicit algebraic equations

tan(ω2,1,n) = −
2ω2,1,n

Pehς1
, ω2,1,l 6= 0, s ∈ [0, ς1], (6.13d)

tan(ω2,j,n) = jπ, j = 2, . . . , q, s ∈ [σj−1 − ς j], (6.13e)

tan(ω2,q+1,n) = −
2ω2,q+1,n

Peh(1− ςq)
, ω2,1,n 6= 0, s ∈ [ςq, 1], (6.13f)

for n ∈ N . The associated eigenvalues are given by

λ2,j,n = −Peh

4
− υ−

ω2
2,j,n

(ςi − ςi−1)2 , j = 1 . . . , q + 1, n ∈N. (6.13g)

As a consequence of the above lemma, since the operators Az
2,n are infinitesimal

generators of C0-semigroups of contractions Sj, j = 1, . . . , q + 1, and given that the
determined growth assumption [38] holds, the following expression is satisfied for
each temperature component∥∥Sj(t)

∥∥
O
≤ e−λ∗2,jt, −λ∗2,j = sup

λ2,j,n∈σ(Az
n,j)

{λ2,j,n}, j = 1, . . . , q + 1, n ∈N. (6.14)

Furthermore, note that the spectrum of the operators Az
2,n can be shifted to the left in

the complex plane by selecting an adequate number of sensors and their locations.
This having the effect of accelerating the convergence to zero of the above defined
C0-semigroups.

Using the previous fact, together with the entry wise Lipschitz constants related to
the bounding condition∥∥ρ2,z,j

∥∥ ≤ L
ρ2,z,j
x1 ‖x1‖+ L

ρ2,z,j
x2,n,j

∥∥x2,n,j
∥∥ , j = 1, . . . q + 1 (6.15)

and the consideration of the concentration bound (5.11), the exponential stability of
the zero dynamics can be assured. This is established in the following proposition.
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Proposition 6.1. Exponential stability of the zero dynamics (6.6). Proof in Section h.2
Consider the distributed zero dynamics (6.7), assume that the sensor location set ς has been
chosen so that the origin is the unique steady-state. Furthermore, assume Lemma 6.1 is satisfied
together with the spectrum determined growth assumption for the operators Az

2,n, and the
Lipschitz bounding conditions in (6.15). Thus, if the following conditions are met

ν2,1 =
Peh

4
+ υ +

ω2,1,1

ς1
− Lρ2,z,1

x2,n,1 > 0, (6.16a)

ν2,j =
Peh

4
+ υ +

π2

(ςi − ςi−1)
− L

ρ2,z,j
x2,n,j > 0, j = 2, . . . , q, (6.16b)

ν2,q+1 =
Peh

4
+ υ +

ω2,q+1,1

1− ςq
− L

ρ2,z,q+1
x2,n,q+1 > 0, (6.16c)

lz,1 :=|λ1
∗|+ c−

q+1

∑
j=1

L
ρ2,z,j
x1 L

ρ2,z,j
x2,n,j

ν2,j
> 0. (6.16d)

then the zero dynamics origin is exponentially stable.

An alternative way to study the zero dynamics stability in original coordinates,
which is only stated and not developed, is to characterize the stabilizing properties of
the zero dynamics operator employing modal analysis as it is done in [Fra+19]. For
this aim, consider the first time derivative of the synthetic output

ẏ = Cy ẋ2,

= Cy (A2x2 + ρ2(x1, x2) +Buu) ,

= CyA2x2 + Cyρ2(x1, x2) + CyBuu,

knowing that CyBu = υIq×q, the zero dynamics is imposed by the control law

u = −1
υ
(CyA2x2 + Cyρ2(x1, x2)) . (6.17a)

The application of the above controller yields the zero dynamics in original coordinate

ẋ1 = A1x1 − $1(x1)− r(x1, x2), x1(0) = x10, (6.18a)

ẋ2 = Az
2x2 + ρ2,z(x1, x2), x2(0) = x20, (6.18b)

0 = Cyx2, (6.18c)

where

Az
2x2 = A2x2 −Bu

1
υ

Iq×qCyA2x2, D(A2,z) = D(A2), (6.18d)

is the zero dynamics operator in original coordinate. The zero dynamics nonlinearity
is defined as

ρ2,z(x1, x2) = ρ2(x1, x2)−Bu
1
υ

Iq×qCyρ2(x1, x2). (6.18e)
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As before, it is required that the zero dynamics has the origin as unique steady-state,
this can be assessed as by performing a sensor location-based bifurcation analysis
for the SISO case (as in Section 4.3.3.2). The exponential stability of the origin can be
established by performing a combination of Lyapunov and modal analyses as it was
done in Section 5.3.

6.2.2.3 Advanced control-estimation system

Once the stability of the zero dynamics is ensured, a saturated passive state feedback
controller, that is the distributed version of (4.52), is given as

u = µp,s(x1, x2,n,y), (6.19a)

where

µp(x1, x2,y) = −Bm
−1 (Kmy + CyA2x2 + Cyρ2(x1, x2)) , Kc = KT

c > 0. (6.19b)

where Kc is a diagonal gain matrix.
The saturation limits may be chosen to equals the ones of the (4.86) developed

in Chapter 4. The closed-loop exponential stability may be established by using the
Seibert’s reduction principle [117]. The rationale is as follows: when the closed-loop
dynamics are in normal operation mode, the state feedback controller (6.19) force the
output converge to zero, thus, the system dynamics approach exponentially to the zero
dynamics. There, the origin is the unique attractor and by Seibert’s reduction principle
the exponential stability of the origin follows. When the controller is saturated, if the
control limits are appropriately chosen, the state will present some transient behavior
to eventually enter the region of no saturation and settle down at the origin.

The direct combination of the state feedback controller (6.19) with a pointwise
observer gives the distributed version of the CES (4.69):

˙̂x1 = A1 x̂1 − ρ1(x̂1, x̂2), x̂2(0) = x̂10, (6.20a)
˙̂x2 = A2 x̂2 + ρ2(x̂1, x̂2) +Buu, x̂2(0) = x̂20, (6.20b)

Cy x̂2 = y, (6.20c)

ŷ = Cy x̂2, ẑc = Cz x̂1, (6.20d)

u = µp,s(x̂1, x̂2, y). (6.20e)

The closed-loop stability can be established following a similar procedure as in
Section 5.4.2, i. e., the closed-loop dynamics are a cascaded interconnection. Thus, the
direct application of Proposition 3.1 establish conditions for exponential stability.

The direct application of FD to controller (6.19) (or (6.20)) leads to its discrete ver-
sion (4.52) (or (4.69) without innovated dynamics). This fact suggests the equivalence
between the early and late lumping version controllers. Consequently, the realization
of (6.19) (or (6.20)) as a PIAW (with decouples observer) can be done in the lumped ver-
sion. However, in what follows the realization, the PIAW-PWO equivalence is explored
next in the late lumping setting.
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6.2.2.4 Realization as PIAW-PWO control-estimation system

Recall the open-loop distributed dynamics in partitioned form with pointwise output

ẋ1 = A1x1 − ρ1(x1, x2), x1(0) = x10,

ẋ2,n = A2,nx2,n + ρ2,n(x1, x2,n) +Bn
u,2u, x2,n(0) = x2,n0,

ẋ2,m = A2,mx2,m + ρ2,m(x1, x2,m) +Bm
u,2u, x2,m(0) = x2,m0,

x2 = Ωnx2,n + Ωmx2,m,

y = Cyx2,m, z = Czx1.

As it was done in Section 4.6.1, an exogenous load input is defined as

ι = A2,mx2,m + ρ2,m(x1, x2,m). (6.21)

Note that in the pointwise output representation, the measured output and the
measured state are the same, i. e., y = x2,m. Putting all this consideration together, the
model for CE redesign is then the reactor dynamics are

ẋ1 = A1x1 − ρ1(x1, x2), x1(0) = x10,

ẋ2,n = A2,nx2,n + ρ2,n(x1, x2,n) +Bn
uu, x2,n(0) = x2,n0,

ẋ2,m = ι +Bm
u u, x2,m(0) = x2,m0,

x2 = Ωnx2,n + Ωmx2,m,

y = x2,m, z = Czx1,

The above model is composed by the decoupled concentration, and unmeasured-
measured temperature components. An instantaneous observability property can be
established since the measured temperature dynamics can be used to solve for the
load exogenous input in terms of measured variables:

ι = ẏ−Bm
u u,

thus a simple observer may be used to reconstruct this load input signal. On the other
hand, the concentration and unmeasured temperature dynamics coincide with the
model used for the employment of a pointwise observer.

Furthermore, the simplified measured dynamics has characteristic index vector
with one entries only and it has no zero dynamics. Following the same procedure as
in Section 4.6, the following CES can be constructed, in partitioned coordinate,

˙̂x1 = A1 x̂1 − ρ1(x̂1, x̂2), x̂2(0) = x̂10,
˙̂x2,n = A2,n x̂2,n + ρ2,n(x̂1, x̂2,n) +Bn

uu, x̂2,n(0) = x̂2,n0,

Cy,2 x̂2 = y,

Λ̇ = −KωΛ− Kω(Kωy +Bm
u µs,s(y, Λ)), Λ(0) = Λ0,

ẑc = Cz x̂1,

u = µs,s(y, Λ).
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where Kω = KT
ω is a diagonal estimator gain matrix, and

µs,s(y, Λ) = Bm
u
−1((Kc + Kω)y + Λ).

Rewriting the above controller in original coordinates, with the control component
in PI from, as is is done in Section 4.6.4, the above CES takes the form of (6.3). Finally,
after the application of the late lumping scheme of Section 5.5 the CES is obtained (4.86).
This fact suggest, in an informal manner, that there is a one-to-one correspondence in
designing the proposed PIAW-PWO CES within the early or late lumping approach. In
other words, the controller can be constructed from an early or late lumping approach
and the resulting algorithm (4.86) (ready for implementation) is exactly the same.

6.3 early lumping liof-pwo control-estimation system

Here, again in an informal manner, is explored how the CES (5.50) can be constructed
within an early lumping approach and following a similar methodological procedure
as the late lumping-based approach of Chapter 5.

6.3.1 LIOF-PWO control-estimation system from distributed to lumped

In Section 5.3, the control component of the LIOF-PWO was designed as a distributed
state feedback controller with two components: a linearizing one, for stabilization
purposes, and a inventory-like for performance enhancement purposes. The lineariz-
ing term of this controller was first considered in Section 4.4.2, given in (4.54) as an
alternative to (4.52) since it is less dependent on the model and it retains the stabiliz-
ing effects of the projection of the heat transport operator on the output dynamics.
Here, on the basis of (4.54), a early lumping version of (5.24a) is constructed and then
its late lumping implementation leads to (5.50).

6.3.1.1 Linearizing stabilizing control component

Recall the unconstrained version of controller (4.54):

u = µ2(x1, x2,n, x2,m, d2),

where

µ2(x1, x2,n, x2,m, d2) = −Bm
u,2
−1 (Bm

d,2d2 + ψm(x1, x2,m) + Kcy
)

, Kc = KT
c > 0.

The corresponding closed-loop dynamics are given as

ẋ1 = A1x1 + Bd,1d1 −ϕ1(x1)−ϕn,m(x1, x2,n, x2,m), x1(0) = x1,0 (6.22a)

ẋ2,n = An,n
2 x2,n + An,m

2,c x2,m + Bn
d,2d2 + ψn,c(x1, x2,n), x2,n(0) = x2,n,0 (6.22b)

ẋ2,m = Am,m
2,c x2,m + Am,n

2 x2,n + Bm
d,2d2 + ψm,c(x1, x2,m), x2,m(0) = x2,m,0, (6.22c)
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where

An,m
2,c = Am,n

2 − Bn
u,2Bm

u,2
−1Kc, Am,m

2,c = Am,m
2 − Bn

u,2Bm
u,2
−1Kc,

ψn,c(x1, x2,n, x2,m) = ψn(x1, x2,n, x2,m)− Bn
u,2Bm

u,2
−1ψn(x1, x2,m),

ψm,c(x1, x2,m) = ψm(x1, x2,m)− Bn
u,2Bm

u,2
−1ψm(x1, x2,m).

Thus, the matrix Kc must be chosen so that the matrix Am,m
2,c is Hurwitz. Furthermore,

it is expected that the nonlinear term ψm,c has smaller Lipschitz constants with respect
to its open-loop counterpart. The stability of the above closed-loop system can be
established with the recursive application of Proposition 3.1. Accordingly, the next
result follows.

Proposition 6.2. Closed-loop stability of the system (6.22).
Consider the closed-loop dynamics (6.22). Assume that the sensor locations have been selected
so that the origin is the unique closed-loop steady-state. Furthermore, assume that there exist
two positive definite matrices P2,n and P2,m that satisfy the Lyapunov inequalities

An,n
2

TP2,n + P2,n An,n
2 + 2ζn < 0, Am,m

2
TP2,m + P2,m Am,m

2 + 2ζm < 0.

If the gain matrix K2 is selected so that Am,m
2,c is Hurwitz, then the system is robustly stable if

the following condition holds

νm −
a2,na2,m ‖Am,n

2 ‖
(∥∥∥An,m

2,c

∥∥∥+ Lψn,c
x2,m

)
νn

> 0, (6.23a)

λ∗2,c −
a1a2 ‖B2‖ Lψn,m

x2

ν1
> 0, (6.23b)

where

νm = ζm − Lψm,c
x2,n , νn = ζn − Lψm,c

x2,m , λ2,c = max
λj∈σ(A2,c)

<λj,

A2,c =

 −νn a2,m

(∥∥∥An,m
2,c

∥∥∥+ Lψn,c
x2,m

)
a2,n

∥∥∥Am,n
2,n

∥∥∥ −νn

 , B2 =

[
Lψn,c

x1

Lψm,c
x1

]
,

and a2, a2,n, a2,m are positive constants.

Next, the inventory-like control component is constructed in the early lumping
setting.

6.3.1.2 Passivity of the closed-loop dynamics

In attempt to parallel the methodology employed in Section 5.3.2, consider the closed-
loop system (6.22) with the control law

u = µl(x1, x2,m) + µp(x2,m),
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and the exogenous input vector at zero. Use the Lyapunov function

V(x1, x2,n, x2,m) =
1
2

xT
1 P1x1 +

1
2

xT
2,nP2,nx2,n + xT

2,mP2,mx2,m,

where P1 = PT
1 > 0, P2,n = PT

2,n > 0, and P2,m = PT
2,m > 0. Taking the time derivative

of the proposed candidate Lyapunov function along the trajectories of the closed-loop
dynamics (6.22). Employing inequalities as in (3.8c) and the definition of Bn

u,2 and
Bm

u,2, and after algebraic manipulations it can be shown that the next expression hold

V̇ ≤ −ν∗ ‖x‖2 + uT
p BT

u,2P2x2,

where −ν∗ is a function of Lipschitz constants and eigenvalues of matrices P1, P2,n,
and P2,m, the state is defined as x = [x1 x2]T with x2 = CT

n x2,n + CT
mx2,m, and matrix

P2 = PT
2 > 0 is a positive definite matrix, according to the following expressions:

ν∗ = max{ν1, ν2,n, ν2,m} − Lψn,c
x2,n − Lψm,c

x2,m −
λP1
∗

λP1∗

(
Lψn,m

x2,n

λP2,n∗
+

Lψn,m
x2,m

λP2,n∗

)
−

−
λP2,n

∗

λP2,n∗

(
Lψn,c

x1

λP1∗
+

Lψn,m
x2,m

λP2,m∗

)
−

λP2,m
∗

λP2,m∗

(
Lψm,c

x1

λP1∗
+

Lψm,c
x2,n

λP2,n∗

)
,

P2 =

[
CT

n P2,nCn 0N−q×q

0q×N−q CT
y,2P2,mCy,2

]
.

Defining the new output
y = BT

2,uP2x2,

then the closed-loop dynamics are strictly state passive with respect to the input-
output pair (µp,y). Accordingly, the output feedback of a passive function can be
used to accelerate the output convergence. For instance,

µp = −Kpy, Kp = KT
p > 0,

yields to

V̇ ≤ −ν∗ ‖x‖2 − yTKpy,

which indicates that the closed-loop system is exponentially stable.
In connection with its late lumping counterpart, the above control law is constructed

by considering a new output for passivity, and the matrix P2 must be chosen solving
a Kalman-Yakubovich-Popov equation [76]. Its equivalence in the late lumping setting
is the integrating factor wh used to make the heat transport operator selfadjoint.
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6.3.1.3 Control estimation system and its implementation

For implementation, the combination with a pointwise-like observer yields the early
lumped-based LIOF-PWO CES given as

˙̂x1 = f 1(x̂1, x̂2,n, x̂2,m, d1), x̂1(0) = x̂10, (6.24)
˙̂x2,n = f 2,n(x̂1, x̂2,n, y, d2) + Bn

uµPI
s (y), x2,n(0) = x2n0, (6.25)

x̂2,m = y, (6.26)

ẑ = Cz x̂1, x̂ = (x̂T
1 , CT

n x̂2,n + CTy)T, x̂N = J (x̂), (6.27)

u = µlp(x1, x2,m, x2,n), (6.28)

where

µlp(x1, x2,m, x2,n) = −Bm
u,2
−1
(

ψm(x̂1, x̂2,m) + Kcy + KpBT
2,uP2 x̂2

)
.

The stability proof of the related nominal closed-loop dynamics as well as the
interconnection with parasitic dynamics can be established by using small gain argu-
ments. In original coordinates and considering P2 = wk(sk), the LIOF-PWO CES (5.50)
is obtained. Again, this fact suggests that there is no difference in the construction
process: the same algorithm is obtained following a late or an early lumping approach.

6.4 combining both designs

Making a balance from the two proposed CES, in terms of simplicity, closed-loop
performance and robustness, the PIAW-PWO results in a more efficient final product.
Nevertheless, the LIOF-PWO has the appealing inventory control term, that accelerates
profile convergence by compensating the excess or defect of sensible heat in the
distributed heat balance (as industrial inventory control does). Thus, this term is
transferred to the PIAW-PWO, to combine the advantages of both designs. In original
coordinates an ready for implementation, the Proportional-Integral-Inventory control
with Anti Windup scheme-Pointwise Observer (PIIAW-PWO) is:

˙̂χ1 = A1χ̂1 + Bd,1χ̄1,e − r(χ̂1, χ̂2), χ̂1(0) = χ̂10,
˙̂χ2,n = An,n

2 χ̂2,n + An,m
2 χ̂2,m + Bn

d,2χ2,e + rn(χ̂1, χ̂2,n) + Bn
u,2τc, χ̂2,n(0) = χ̂2,n,0,

χ̂2,m = τm,

ĉz = C1χ̂1, χ̂2 = CT
n χ̂2,n + CT

y,2χ̂2,m, χ̂N = I(χ̂),

τc = µs,pi(τm) =
[
satτ+

c
τ−c

µpii,1(τm,1) . . . satτ+
c

τ−c
µpii, q(τm,q)

]T
,
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where the entries of the control map µs,pi are

µpii,i(τm,i) = τ̄c,i − kp,i

(
(τm,i − τ̄m,i)− t−1

i

∫ t

0
(τm,i − τ̄m,i)dt

)
−

− kz,i
1

Ne

iNe
q

∑
k= (i−1)Ne

q

e−Pehsk (χ̂2,k − χ̄2,k) +

+ t−1
a

∫ t

0

(
satτ+

c
τ−c

µpii,i(τm,i)− µpii,i(τm,i)
)

dt,

for i = 1, . . . , q. The PIAW control parameters are given in (4.86g).
To confirm the above mentioned characteristics, the present 3-MIMO PIIAW-PWO is

applied to the multi–jacket tubular reactor case study of Section 2.5. The same sensor
locations and PIAW parameters determined in Section 4.7.2 are used while Kz = 3Iq×q

is used for the additional control term. Simulation results under the robust testing
conditions established in Section 5.6.1, are shown in Figure 6.5a and Figure 6.5b for
control and estimation performance. Figure 6.6 shows the related norms which are
compared with the 3-MIMO PIAW-PWO CES.

It can be observed that the PIIAW-PWO perform fastest profile regulation compared
with the PIAW-PWO. However, the disturbance rejection capability is slightly degraded.
The estimation performance is almost the same for both schemes. Thus, the inventory
control term accelerates convergence and is more sensible to inlet step disturbances.
Thus it might be used in scenarios in which fast profile regulation is mandatory.

6.5 summary

Methodologically speaking, this chapter closes the theoretical and application-oriented
developments of previous chapters by putting the proposed the PIAW-PWO and the
LIOF-PWO CES in perspective between them. This is done by first comparing the
functioning performance of both schemes, including additional comparisons with an
adaptive CES. Then, the extensions and implications of both designs, coming from
early or late lumping, are explored in the opposite setting, late or early. Finally, the
advantages of both CESs are put together to obtain a new CES which combined both
designs.

The simulation-based comparative study done in this chapter compared the two
proposed CESs, in robust testing conditions, within them and against another CES com-
posed by an adaptive controller and a pointwise observer was done. It was concluded
that the proposed algorithms present better (the PI-based control-estimation system)
or similar (the LIOF-PWO CES) than the adaptive counterpart.

After that, an exploratory attempt to: (i) extend the early lumping CE construction
methodology of Chapter 4 to its late lumping counterpart, and (ii) vice versa, to
translate the late lumping CE methodology used in Chapter 5 to an early lumping
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(a) Control functioning. Top left: concentration profile c(s, t). Top center: temperature profile τ(s, t). Top
right: control effort ∑3

i=1 βi(s)τc,i(t). Bottom left: deviated concentration profile x1(s, t). Bottom center:
deviated temperature profile x2(s, t). Bottom right: measured τm,i(t), i = 1, 2, 3 (blue continuous) and
regulated co(t) (red continuous) outputs and their setpoints (dashed-dotted cyan and dotted magenta,
respectively).
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(b) Estimator functioning. Top left: estimated concentration profile ĉ(s, t). Top center: estimated tem-
perature profile τ̂(s, t). Bottom left: estimation error of the concentration profile c̃1(s, t). Bottom center:
estimation error of the temperature profile τ̃2(s, t). Bottom right: real measured τm,i(t), i = 1, 2, 3 (con-
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Figure 6.5: Robust closed-loop functioning with the 3-MIMO PIIAW-PWO and PIAW-PWO CESs.

setting. The obtained results suggest that, no matter which approach is followed, early
or late, in both cases the final CES is the same. Obviously, depending on the employed
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Figure 6.6: Norms of distributed states in deviation, estimation errors and control input for
decentralized the 3-MIMO PIIAW-PWO (brown lines) and PIAW-PWO (blue lines) CESs.

setting, early or late, the formal stability proofs may be suited for each case, finite or
infinite dimensional.

Finally, as an attempt to take the advantages of the both proposed CES, an additional
CE scheme, with the control component constructed as the combination of the PIAW, of
the proposed early lumping-based methodology Chapter 4, and an inventory control
term, as the one employed in the proposed late lumping-based approach Chapter 5.
The resulting PIIAW-PWO has proven to produce, in a simulation-based comparative
study, fastest profile regulation in comparison with the PIAW-PWO counterpart.



Part V

C O N C L U S I O N S

The closing part of the study is composed by a final summary of the whole
work, the conclusions and future work.
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7
C O N C L U S I O N S

7.1 general summary

The present study tackled the problem of designing Control-Estimation System (CES)
for a class of tubular reactors. The designed algorithms must be accompanied with
guidelines for the determination of the related actuator and sensor configuration,
sensor location criteria and gain tuning guidelines and must ensure robust functioning
in the presence of exogenous disturbances and parameter uncertainty.

In the study, two different solution methodologies, within the early and late lumping
approaches, are used to construct two different CES: the PI control with AW scheme-
Pointwise Observer (PIAW-PWO) and the LIOF-PWO. In both cases, the key cornerstones
of the whole theoretical and implantation results are the employment of a constructive
control design phylosophy and the efficient modeling approach, all this with an
application-oriented aim: improve existent CE algorithms encountered in industry
(Proportional-Integral (PI) control and data-driven estimation techniques).

In the first part of the study, within an efficient early lumping approach, a MIMO CES,
composed by a set of decentralized PI controllers with Anti-Windup (AW) protection
and a pointwise-like observer, was constructed. First, passivity and closed-loop
detectability solvability properties, in terms of sensor location and control limits, were
identified yielding an advanced CES. Then, with realization theory, the latter scheme is
implemented as a set of decentralized PIAW and pointwise-like estimator. Assurance
of robust stability is drawn in terms of control gains and limits and sensor locations.

In the second part of the study, within a late lumping approach, an advanced CES

composed by the combination of linearizing and inventory-like control terms coupled
with pointwise observer was done. This scheme was designed by analyzing the the
interplay between the stabilizing and destabilizing properties of the heat transport
and generation (sue to reaction) mechanisms, and identifying how could this interplay
be modified with feedback control at the appropriate spatial locations. This was done
using modal analysis and exploiting the Lur’e structure of the system dynamics. The
implementation is done by performing an efficient late lumping based on the efficient
modeling approach.

The final part of the study puts both proposed CES in perspective which each other
and an adaptive controller coupled with a pointwise estimator. In an exploratory
step, the possibilities of extending the results of the proposed early and late lumping
approaches to the opposite ones, late or early, are briefly considered.

169



170 conclusions

7.2 main contributions and future work

The present study contributed with important results on the Control-Estimation (CE)
problem for a class of distributed tubular reactors. The particular tackled problem has
been the design of CESs suited for a class of non-isothermal tubular reactors. Criteria
and guidelines to select the related sensor and actuator configuration, in terms of
number of jacket sections and sensors and their locations, have been developed for
each designed control-estimation system. The proposed designs may have constrained
control action and thus are accompanied with a criterion for the selection of control
limits. Furthermore, the designs have simple implementation and tuning guidelines,
and are constructed on the basis of low computational load models. The main
contributions of the study are

• The design of MIMO CES in an integral framework that considers early and
late lumping approaches within an application oriented perspective: advanced
control and estimation theory for finite and infinite dimensional systems is put
together to obtain CES of industrial interest.

• The development of different sensor location criteria from early and late lumping
methodologies for the proposed CES.

• Structural and gain tuning guidelines for the selection of actuator and sensor
configurations and control gains.

• Efficient implementation with low computational load by employing the efficient
modeling approach for tubular reactors.

• An exploratory attempt to assess the implications of the employed, early or late,
methodologies in their opposite side, late or early, to conclude, in an informal
manner, despite the employed approach, the final implementable algorithm is
the same.

As future work, several paths can be followed. A first natural step is the enhance-
ment of the proposed CES with: (i) the addition of a setpoint compensation scheme for
disturbance rejection in the inlet concentration, (ii) the addition of derivative control
action, and (iii) the consideration of limit rate in the control action.

Other veins that could be taken are: (i) the extension of the approach to more com-
plex transport-reaction processes with different sensor and actuator configurations,
such as packed bed and gasification tubular reactors and experimental validation, (ii)
the generalization to spatially distributed systems with complex geometries, and (iii)
the formalization of the informal results explored in Chapter 6.
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A P P E N D I X
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a
P R O O F S O F R O B U S T S TA B I L I T Y R E S U LT S

Here, the proofs of the theorems and lemmas presented in Section 3.1 are given.

a.1 proof of lemma 3 .1

To prove the robust stability of system (3.1a), an estimate of the solution of the
perturbed system can be obtained by computing the time derivative of the Lyapunov
function, associated to the nominal dynamics, along the trajectories of (3.1a) to get

V̇ = ∂xV(x) [ f (x) + g(x, p̃, d, u)] ,

≤ −c3 ‖x‖2 + ∂xV(x)g(x, p̃, d, u),

≤ −c3 ‖x‖2 + c4 ‖x‖ (Lg
x ‖x‖+ Lg

p ‖p̃‖+ Lg
d ‖d‖+ Lg

u ‖u‖),

where the triangle inequality, and the last two inequalities in (3.5a), as well as the
Lipschitz condition (3.4c) have been used. Use of the first inequality in (3.5a) and the
bounds in (3.2) yield an upper bound for V̇(x):

V̇(x) ≤ −
(

c3

c2
− c4Lg

x

c1

)
V

1
2 (x) +

c4√
c1

V(x)
(

Lg
pδp + Lg

dεd(t) + Lg
uεu(t)

)
.

Using the change of variable v = V
1
2 it follows that

v̇ ≤ −1
2

(
c3

c2
− c4Lg

x

c1

)
v +

c4

2
√

c1

(
Lg

pδp + Lg
dεd(t) + Lg

uεu(t)
)

,

by the comparison lemma [76], v(t) satisfies the inequality

v(t) ≤ e
− 1

2

(
c3
c2
− c4 Lg

x
c1

)
t
v0 +

c4

2
√

c1

∫ t

0
e
− 1

2

(
c3
c2
− c4 Lg

x
c1

)
(t−t) [

Lg
pδp + Lg

dεd(t) + Lg
uεu(t)

]
dt.

The employment of the first inequality in (3.5a) in the above expression yields

‖x(t)‖ ≤ axe−νxt ‖x0‖+ ax

∫ t

0
e−νx(t−t) [Lg

pδp + Lg
dεd(t) + Lg

uεu(t)
]

dt, (a.2a)

where

νx =
1
2

(
c3

c2
−

c4Lg
1

c1

)
, ax = max

{√
c2

c1
,

c4

2c1

}
,

ax

νx

(
Lg

p, Lg
d, Lg

u
)

:=
(
bp, bd, bu

)
.
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(a.2b)

Using (3.2) one arrives to (3.3). Assuming that condition (3.6a) is satisfied, then the
motion of the perturbed system (3.4) is estimated as

‖x(t)‖ ≤ max
{

ax ‖x0‖ , bpδp + bdε+d + buε+u
}

.

If the above conditions are satisfied in X = {x ∈ X | ‖x‖ ≤ rx}, then the domain of
attraction or the size of the disturbances need to satisfy (3.6b). Otherwise, if the above
conditions are valid for the whole set X , then

‖x0‖ ≤ δx0 → εx := axδx + bpδp + bdε+d + buε+u ,

where εx is the size of the state excursions with respect to the origin.

a.2 proofs of Corollary 3 .2 and Corollary 3 .3

Use the Lyapunov function of the nominal system and the Lipschitz bounds of g to
get

V̇ = xT(ATP + PA)x + 2xTPg(p̃, x, d, u),

≤ −2ζxTPx +
∥∥∥PA)x + 2xTPg(p̃, x, d, u)

∥∥∥ ,

≤ −2ζV + 2λP
∗Lg

x ‖x‖2 + 2λP
∗ ‖x‖

(
Lg

p ‖p̃‖+ Lg
d ‖d‖+ Lg

u ‖u‖
)

,

≤ −2ζV + 2
λP
∗

λP∗
Lg

xV + 2
λP
∗

√
λP∗

V
1
2
(

Lg
p ‖p̃‖+ Lg

d ‖d‖+ Lg
u ‖u‖

)
,

= −2
(

ζ − λP
∗

λP∗
Lg

x

)
V + 2

λP
∗

√
λP∗

V
1
2
(

Lg
p ‖p̃‖+ Lg

d ‖d‖+ Lg
u ‖u‖

)
.

Proceeding as in the previous proof, the following estimate is obtained

‖x(t)‖ ≤ axe−νxt ‖x0‖+ ax

∫ t

0
e−νx(t−t) [Lg

pδp + Lg
dεd(t) + Lg

uεu(t)
]

dt, (a.4)

where νx is defined in (3.9). Considering (3.2b), if νx > 0 and (3.6b) are met, then the
state trajectories are bounded as in (3.3) which implies the local robust stability of
the origin. If the preceding conditions are satisfied in the set X , then the result is
nonlocal.

The proof of Corollary 3.3 is established by estimating bounds for the solution of
the dynamic system in (3.8a). Consider its solution

x(t) = eAtx0 +
∫ t

0
eA(t−t)g(x, p̃, d, u)dt,
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take norms on both sides of the equation, use the triangle inequality, substitute (3.4c),
apply the Gronwall lemma [76] and integrate by parts to obtain

‖x(t)‖ ≤ ax ‖x0‖ e−νxt + ax

∫ t

0
e−νx(t−t) [Lg

pδp + Lg
dεd(t) + Lg

uεu(t)
]

dt,

with νx given in (3.11). Proceeding as in the previous proof it can be shown that the
the state trajectories are bounded as in (3.3) which implies the robust stability of the
origin in the local sense in X. If preceding conditions are satisfied in the set X , then
the result is nonlocal.

a.3 proof of Lemma 3 .2 and proposition 3 .1

a.3.1 Proof of Lemma 3.2

For the proof of Lemma 3.2, consider (a.2) and define Ξ0 = a ‖x0‖ and the variable
Ξ(t) as

Ξ(t) = e−νxts0 + ax

∫ t

0
e−νx(t−t) [Lg

pδp + Lg
dεd(t) + Lg

uεu(t)
]

dt,

which is written in differential form as

Ξ̇ = −νxΞ + ax
(

Lg
pδp + Lg

dεd(t) + Lg
uεu(t)

)
, Ξ(0) = ax ‖x0‖

by the definition of Ξ(t) then (3.14a) is implied, using (3.2b) one obtains (3.14b).

a.3.2 Proof of Proposition 3.1

Apply Lemma 3.1 to each subsystem to obtain

‖x1(t)‖ ≤ ax1 ‖x10‖ e−νx1t + ax1

∫ t

0
e−νx1(t−t)

[
Lg1

x2 ‖x2(t)‖+ Lg1
p1 δp1 + Lg1

d1
εd1(t) + Lg1

u1 εu1(t)
]

dt,

‖x2(t)‖ ≤ ax2 ‖x20‖ e−νx2t + ax2

∫ t

0
e−νx2(t−t)

[
Lg2

x1 ‖x1(t)‖+ Lg2
p2 δp2 + Lg2

d2
εd2(t) + Lg2

u2 εu2(t)
]

dt,

apply Lemma 3.2 to obtain

‖x1(t)‖ ≤ Ξ1(t), Ξ̇1(t) = −νx1Ξ1 + ax1

(
Lg1

x2 ‖x2(t)‖+ Lg1
p1δp1 + Lg1

d1
εd1(t) + Lg1

u1 εu1(t)
)

,

‖x2(t)‖ ≤ Ξ2(t), Ξ̇2(t) = −νx2Ξ2 + ax2

(
Lg2

x1 ‖x1(t)‖+ Lg2
p2 δp2 + Lg2

d2
εd2(t) + Lg2

u2 εu2(t)
)

,

with initial conditions Ξj(0) = axj
∥∥xj0

∥∥. Use of the fact that
∥∥xj(t)

∥∥ ≤ Ξj(t) for
j = 1, 2 to rewrite the above expression as

‖x1(t)‖ ≤ Ξ1(t), Ξ̇1 ≤ −νx1Ξ1 + ax1
(

Lg1
x2 Ξ2(t) + Lg1

p1 δp1 + Lg1
d εd(t) + Lg1

u εu(t)
)

,

‖x2(t)‖ ≤ Ξ2(t), Ξ̇2 ≤ −νx2Ξ2 + ax2

(
Lg2

x1 Ξ1(t) + Lg2
p2 δp2 + Lg2

d2
εd(t) + Lg2

u2 εu2(t)
)

,
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in compact form the inequality in the Ξi variables is

Ξ̇(t) ≤ AsΞ(t) + Bpδp + Bdεd(t) + Buεu(t), s(0) = Ξ0, (a.5)

where Ξ(t) =
[
Ξ1(t) Ξ2(t)

]T
, δp =

[
δp1 δp2

]T
, εd(t) =

[
εd1(t) εd2t

]T
, εu(t) =[

εu1(t) εu2(t)
]T

, and

As =

[
−νx1 ax1Lg1

x2

ax2Lg2
x1 −νx2

]
, Bp =

[
ax1Lg1

p1 0

0 ax2Lg2
p2

]
,

Bd =

ax1Lg1
d1

0

0 ax2Lg2
d2

 , Bu =

[
ax1Lg1

u1 0

0 ax2Lg2
u2

]
,

The matrix As is Hurwitz if conditions (3.15), which implies that the related matrix
exponential satisfies∥∥eAs t

∥∥ ≤ ase−λst, −λs = max
λj∈σ(As)

{
Re(λj)

}
. (a.6)

Using the comparison lemma, the variable Ξ(t) is bounded by the solution of the
Ordinary Differential Equation (ODE) defined by the equality case in (a.5), i. e.,

Ξ(t) ≤ eAstΞ0 +
∫ t

0
eAs(t−t) (Bpδp + Bdεd(t) + Buεu(t)

)
dt,

taking norms, applying the triangle inequality, using (a.6), and taking the supremums
of the exogenous inputs it follows that

‖Ξ(t)‖ ≤ as ‖Ξ0‖ e−|λs|t + bp12δp12 + bsdε+d12 + bsuε+d12,

where δp12 =
√

δ2
p1 + δ2

p2, εd12 =
√

ε2
d1 + ε2

d2, and εu12 =
√

ε2
u1 + ε2

u2. Finally, using the

definition of Ξi(t), i = 1, 2 it can be concluded that the state x(t) of the interconnected
system (3.12) satisfy (3.3) with

νx = λs, ax = as(a1x + a2x),
(
bp, bd, bu

)
=

as

νs

(∥∥Bp
∥∥ , ‖Bd‖ , ‖Bu‖

)
.

If condition (3.15) holds locally in X then te result is local, otherwise if the result is
valid in the nonlocal sense in X . This completes the proof.



b
PA R A M E T R I C A N D I S C R E T I Z AT I O N E R R O R N O R M S

The set norm used to assess limit set convergence in (3.24) is given by means of the
static parametric error norm defined as

εs
d(Npde, N) =

ns

∑
k=1

vk

np=2

∑
j=1

wj

∫ 1

0

∣∣∣χNpde,k,j(s, p)− χNpde,k,j(s, p)
∣∣∣ds, (b.1a)

where ns is the number of steady-states, np is the number of state profiles, and vk and
wj are weights. If the limit set includes limit cycles, then the following norm must be
used

εt
d(Npde, N) =

np=2

∑
j=1

wj

∫ t f

0

[∫ 1

0

∣∣∣χN,j(s, t, p)− χNpde,j(s, t, p)
∣∣∣ds
]

dt. (b.1b)

The computation of the discretization error in (3.29a) must be computed with (b.1b)
when the limit sets contains limit cycles, or with (b.1a) when the limit set is composed
only with steady-states.

The parametric error for static (or transient) regime are defined as

εs
p(Npde, p̃) =

ns

∑
k=1

vk

2

∑
j=1

wj

∫ 1

0

∣∣∣χN,k,j(s, t, p + p̃)− χNpde,k,j(s, t, p)
∣∣∣ds, (b.2a)

εt
p(Npde, p̃) =

2

∑
j=1

wj

∫ t f

0

[∫ 1

0

∣∣∣χNpde,j(s, t, p + p̃)− χNpde,j(s, t, p̃)
∣∣∣ds
]

dt. (b.2b)

The computation of the parametric error in (3.29b) must be computed with (b.2b)
when the limit sets contains limit cycles, or with (b.2a) when the limit is composed
only by steady-states.

In all the above definitions: χN,k,j(s) and χN,j(s, t) (or χNpde,k,j(s) and χNpde,j(s, t))
are the interpolated solutions of the concentration and temperature profiles of the
discretized reactor model (3.22) with discretization order N (or Npde), and t f is
the time window in which a sufficiently rich dynamic transient behavior occur for
approximation purposes.
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c
H U RW I T Z M AT R I C E S A j , j = 1 , 2

Note that both matrices Aj, j = 1, 2 in (4.13) are the Finite Differences (FD)-based
discretization of the mass and heat transport effects of the Partial Differential Equation
(PDE) model (2.7), including the boundary conditions, i. e.,

Aj = Aj,d + Bj,b

where Aj,d is the discretization of in-domain mass transport, and Bj,b together with
Bd,jdj accounts for boundary conditions on the mass and heat balances. These matrices
are given after (3.19). Note that matrices Aj,d are Toeplitz and thus their eigenvalues
can be computed as (i = 1, . . . , Ne)

λi(A1,d) = −
2 + Pem∆s

Pems2 − 2

√
1

Pem∆s2
1 + Pem∆s

Pem∆s2 cos(iπ∆s),

λi(A2,d) = −
2 + Peh∆s + υPeh∆s2

Peh∆s2 − 2

√
1

Peh∆s2
1 + Peh∆s

Peh∆s2 cos(iπ∆s).

From the above formulae, the minimum and maximum eigenvalues are given for the
indexes i = 1 and i = Ne, respectively. Thus, the minimum eigenvalues are given as

λ1(A1,d) = −
2 + Pem∆s

Pem∆s2 − 2

√
1

Pem∆s2
1 + Pem∆s

Pem∆s2 cos(π∆s),

λ1(A2,d) = −
2 + Peh∆s + υPeh∆s2

Peh∆s2 − 2

√
1

Peh∆s2
1 + Peh∆s

Peh∆s2 cos(π∆s),

while the maximums are

λNe(A1,d) = −
2 + Pem∆s

Pem∆s2 − 2

√
1

Pem∆s2
1 + Pem∆s

Pem∆s2 cos(Neπ∆s),

λNe(A2,d) = −
2 + Peh∆s + υPeh∆s2

Peh∆s2 − 2

√
1

Peh∆s2
1 + Peh∆s

Peh∆s2 cos(Neπ∆s).

Consequently, taking the limits as ∆s → 0 it is possible to characterize the set in
which the whole spectrum of both matrices is contained. Accordingly, it can be seen
the minimum eigenvalue goes to infinity, i. e.,

lim
∆s→0

λ1(A1,d) = −∞, lim
∆s→0

λ1(A2,d) = −∞.
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180 hurwitz matrices A j , j = 1, 2

The maximum eigenvalues can be computed using the change of variable Ne =
1

∆s − 1
and applying the L’Hopital rule twice to obtain

lim
∆s→0

λN(A1,d) = −
(

π2

Pem
+

Pem

4

)
, lim

∆s→0
λN(A2,d) = −

(
π2

Peh
+

Peh

4
+ υ

)
.

It can be concluded that all the eigenvalues of the Toeplitz matrices lay in the left of
the complex plane, i. e.,

λi(A1,d) ∈
(
−∞,−

(
π2

Pem
+

Pem

4

) ]
, λi(A2,d) ∈

(
−∞,−

(
π2

Peh
+

Peh

4
+ υ

) ]
Applying the Gerschgorin theorem [128], their eigenvalues can be bounded as follows∣∣∣∣λ1(A1,d) +

2 + Pem∆s
Pem∆s2

∣∣∣∣ ≤ 1
Pem∆s2 ,

∣∣∣∣∣λ1(A2,d) +
2 + Peh∆s + υPeh∆s2

Peh∆s2

∣∣∣∣∣ ≤ 1
Peh∆s2

∣∣∣∣λi(A1,d) +
2 + Pem∆s

Pem∆s2

∣∣∣∣ ≤ 2 + Pem∆s
Pem∆s2 ,

∣∣∣∣∣λi(A2,d) +
2 + Peh∆s + υPeh∆s2

Peh∆s2

∣∣∣∣∣ ≤ 2 + Peh∆s
Peh∆s2

(c.1)∣∣∣∣λN(A1,d) +
2 + Pem∆s

Pem∆s2

∣∣∣∣ ≤ 1 + Pem∆s
Pem∆s2 ,

∣∣∣∣∣λN(A2,d) +
2 + Peh∆s + υPeh∆s2

Peh∆s2

∣∣∣∣∣ ≤ 1 + Peh∆s
Peh∆s2 ,

for 2 ≤ i ≤ N − 1
Since the eigenvalues are continuous functions of the entries of a matrix, a small

change on the entries may produce a small change on the eigenvalues. This means
that the matrices Bj,b, that incorporates the boundary conditions into matrices Aj,d,
move a little the eigenvalues of Aj,d. As a consequence, the eigenvalues of Aj are
located near the eigenvalues of Aj,d. These eigenvalues can be bounded employing
again the Gerschgorin circles theorem [128], which shows that the eigenvalues for
2 ≤ i ≤ N − 1 are bounded equally as the ones of Aj,d (see (c.1)). For the minimum
λAj∗ and maximum λAj

∗ eigenvalues of Aj it follows that

∣∣∣∣λA1∗ +
1 + Pem∆s

Pem∆s2

∣∣∣∣ ≤ 1
Pem∆s2 ,

∣∣∣∣∣λA2∗ +
1 + Peh∆s + υPeh∆s2

Peh∆s2

∣∣∣∣∣ ≤ 1
Peh∆s2 ,

∣∣∣∣λA1
∗ +

1 + Peh∆s
Pem∆s2

∣∣∣∣ ≤ 1 + Pem∆s
Pem∆s2 ,

∣∣∣∣∣λA2
∗ +

1 + Peh∆s + υPeh∆s2

Peh∆s2

∣∣∣∣∣ ≤ 1 + Peh∆s
Peh∆s2 ,

which implies that all the eigenvalues of the matrices Aj lay in the left half of the
complex plane, i. e., matrices Aj, j = 1, 2 are Hurwitz matrices



d
Z E R O D Y N A M I C S S TA B I L I T Y P R O O F S

d.1 proof of Proposition 4 .2

Following a similar procedure as in Section 4.2.2.1, it can be established that the first
internal state η1 satisfy the following expression

‖η1(t)‖ ≤ ax1 ‖η10‖ e−ν1η t + ax1

∫ t

0
e−ν1η(t−t)

(
‖Bd,1‖ |d1|+ Lφ

η
12

η2 ‖η2‖+ Lϕ
ξ
1

ξ ‖ξ‖
)

dt.

locally in Xη1 and for the bounded inputs d and ‖ξ‖ ≤ εξ . Thus, it can be concluded
that the dynamics of η1 are robustly stable locally in Xη1 and that satisfies (3.3) with pa-

rameters νη1 = ζ1 + c, ax1 given in (4.17b), and (bd, bη2, bξ1) =
aη1
νη1

(
‖Bd,1‖ , Lϕ

η
12

η2 , Lϕ
ξ
1

ξ

)
.

For the second state, defined in the finite domain Xη2, apply Lemma 3.1 to obtain

‖η2(t)‖ ≤ aη2 ‖η20‖ e−νη2t+

+ aη2

∫ t

0
e−νη2(t−t)

(∥∥∥Bη
2,d

∥∥∥ |d2|+ Lφ
η
2

η1 ‖η1‖+ (
∥∥Aη

2

∥∥+ Lϕ
ξ
2

ξ ‖ξ‖
)

dt.

and is robustly stable with parameters νη2 = (λ∗η2− aη2Lφ
η
2

η2 , ax = aη2 and (bd, bη1, bξ2) =

aη2
νη2

(
‖Bd,2‖ , Lφ

η
2

eta1
,
∥∥∥Aξ

2

∥∥∥+ Lϕ
ξ
2

ξ

)
.

From the application of Proposition 3.1, it follows that the state trajectories of the
zero dynamics are bounded as

‖η(t)‖ ≤ aη ‖η0‖ e−νη t + aη

∫ t

0
e−νη(t−t) (∥∥Bη

d

∥∥ ‖d‖+ ∥∥Bξ

∥∥ ‖ξ‖)dt,

if condition (4.34) is met. This implies the robust stability of the zero dynamics with
parameters νx = λη , ax = aη(aη1 + aη2), and (bd, bξ) =

aη

νη

(∥∥Bη
d

∥∥ ,
∥∥Bξ

∥∥), where λη
∗ is

the maximum real part of the eigenvalues of matrix Aη :

Aη =

[
−νη1 aη1Lϕ

η
1

η2

aη2Lφ
η
2

η1 −νη2

]
,
∥∥A

∥∥ ≤ aηe−λη t, −λη = max
λj∈σ(Aη)

{Re(λj)},

Bη
d =

[
aη1 ‖B1,e‖ 0

0 aη2 ‖B2,e‖

]
, Bξ =

 aη1Lϕ
ξ
1

ξ

aη2(
∥∥∥Aξ

2

∥∥∥+ Lϕ
ξ
2

ξ )

 .

This completes the proof.
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d.2 proof of Proposition 4 .3

Performing a similar procedure as in Section 4.2.2.1, on the stability analysis of the
concentration dynamics, it is easy to compute that the state x1 satisfy

‖x1‖ ≤ a1 ‖x10‖ e−ν1t + a1

∫ t

0
e−ν1(t−t)(Lϕn,m

x2,n ‖x2,n‖+ Lϕn,m
x2,m ‖x2,m‖+ ‖Bd,1‖ |d1|)dt,

where ν1 = ζ + c. For the unmeasured temperature state the application of Lemma 3.1
gives the estimate

‖x2,n‖ ≤ a2z ‖x2,n,0‖ e−ν2zt+

+ a2z

∫ t

0
e−ν2z(t−t)

(
Lψz

x1 ‖x1‖+ ‖Az,m
2 ‖ ‖x2,m‖+

∥∥Bz
d,2

∥∥ |d2|
)

dt,

with ν2z = |λAz
2

∗| − a2zLψz
x2,n . The application of Proposition 3.1, establishes that if

condition (4.43) is met, then the unmeasured state xn = [xT
1 xT

2,n]
T is robustly stable

and satisfies

‖xn(t)‖ ≤ an ‖xn,0‖ e−νzt + bdε+d + b2mε2m, (d.2)

where

an = as(a1 + a2z), νz = max
λj∈σ(Az)

{
Re(λj)

}
, j = 1, 2, bd =

an ‖Bd‖
νz

, b2m =
an ‖Bm‖

νz
,

An =

[
−(ζ + γ) a1Lϕn,m

x2,n

a2zLψz
x1 −(|λAz

2

∗| − a2zLψz
x2,n)

]
, Bd =

[
‖Bd,1‖ 0

0
∥∥Bz

d,2

∥∥
]

,

Bz
m =

[
Lϕn,m

x2,m

‖Az,m
2 ‖+ Lψz

x2,m

]
.

d.3 proof of Proposition 4 .4

Recall the reactor model in the normal form (4.30), assume that the conditions of
Proposition 4.4 are satisfied. Then the zero dynamics origin is exponentially stable
with a Lyapunov function that satisfies (3.5a). The control law

u = (Bm
u )
−1
(
− f m(x1, x2,n, x2,m, d2) +

(
∂ηVη(η)F(η, ξ)

)T
+ v

)
and the storage function V(η, y) defined as

V = Vη(η) +
1
2

yTy
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ensure the passivity of the system passive with respect to the new input v. This can
be proven substituting the above control law in (4.30) and taking the time derivative
of V along the trajectories of the system, i. e.,

V̇ = ∂ηVη(η)η̇+
1
2

ẏTy +
1
2

yT ẏ,

= ∂ηVη(η)
(

f η(η) + F(η, ξ)ξ
)
+

1
2

((
∂ηVη(η)F(η, ξ)

)T
+ v

)T
y+

+
1
2

yT
((

∂ηVη(η)F(η, ξ)
)T

+ v
)

= ∂ηVη(η) f η(η) + ∂ηVη(η)F(η, ξ)y + yT
((

∂ηVη(η)F(η, ξ)
)T

+ v
)

,

= ∂ηVη(η) f η(η) + yTv

using

v = −κ1(ξ) + w

where κ1 is a passive static nonlinearity, and the fact that the zero dynamics origin is
exponentially stable and its Lyapunov function satisfies (3.5a), then it can be ensured
that the system is strictly state passive, i. e.,

V̇ = −cη ‖η‖2 − ξTκ1(ξ) + yTw.

The employment of an additional output feedback of a passive static nonlinearity,
such as

w = −κ2(y),

assigns the output convergence. Finally, the feedback control law that renders the
system passive is given in (4.50).





e
C L O S E D - L O O P S TA B I L I T Y O F T H E C O N T R O L - E S T I M AT I O N
S Y S T E M

e.1 functions of the actual closed-loop dynamics (4 .62)

The functions involved in (4.62) are given as

f 1(x1, x2,n, x2,m, d1) = A1x1 −ϕ1(x1)−ψn,m(x1, x2,n, x2,m),

f c
2,n(x1, x2,n, x2,m, d2) = An,n

2 x2,n + Am,n
2 x2,m + ψn(x1, x2,n) + Bn

u,2µs(x̄1, x̄2,n, x2,m),

f c
2,m(x1, x2,n, x2,m, d2) = Am,m

2 x2,m + Am,n
2 x2,n + ψm(x1, x2,m) + Bm

u,2µs(x̄1, x̄2,n, x2,m),

ec
1(x1, x2,n, x2,m, d2, π, p̃) = e1(x1, x2,n, x2,m, µs(x1, x2,n, x2,m, d2), π, p̃),

ec
2,n(x1, x2,n, x2,m, d2, π, p̃) = e2,n(x1, x2,n, x2,m, µs(x1, x2,n, x2,m, d2), π, p̃),

ec
2,m(x1, x2,n, x2,m, d2, π, p̃) = e2,m(x1, x2,n, x2,m, µs(x1, x2,n, x2,m, d2), π, p̃),

$c
1(x1, x2,n, x2,m, d; π, ν) = $(x1, x2,n, x2,m, d, µs(x1, x2,n, x2,m, d2); π, ν).

e.2 closed-loop functions of the actual closed-loop dynamics (4 .70)

The involved functions in the closes-loop system (4.70) are given as

Πc
2(x, d, x̃e, x̃n; π, ν) = Π(x1, x2,n, x2,m, d, µs,e(x1 + x̃1, x2,n + x̃2,n, x2 + x̃2,m, ιy + ι̃y, d2); π, ν),

f̃ e(x; π, p̃, d2, x̃e, x̃n) =

[
f̃ y(x; π, p̃, d2, x̃e, x̃n)

f̃ ι(x; π, p̃, d2, x̃e, x̃n)

]
, Ae =

[
Ky I

Kι 0

]
,

f̃ y(x; π, p̃, d2, x̃e, x̃n) = f c
2,m(x1 + x̃1 + x2,n + x̃2,n, x2,m + x̃2,m, d2)− f c

2,m(x1, x2,n, x2,m, d2)+

+ Bm
u,2µ̃s(x1, x2,n, x2,m, ιy, d2, x̃1, x̃2,n, x̃2,m, ι̃y, l) + Kyh̃(x2,m),

f̃ ι(x; π, p̃, d2, x̃e, x̃n) = Kιh̃(x2,m)−
∂tec

2,m(x1, x2,n, x2,m, µs,e(x1 + x̃1, x2,n + x̃2,n, x2 + x̃2,m, ιy + ι̃y, d2), π, p̃),

f n(x̃e, x̃n, d) =

[
f̃ 1(x1, x2,n, x2,m, d1; x̃1, x̃2,n, x̃2,m)

f̃ 2,n(x1, x2,n, x2,m, d2; x̃1, x̃2,n, x̃2,m)

]
,

f̃ 1(x1, x2,n, x2,m, d1; x̃1, x̃2,n, x̃2,m) = f 1(x1 + x̃1, x2,n + x̃2,n, x2,m + x̃2,m, d1)− f 1(x1, x2,n, x2,m, d1),

f̃ 2,n(x1, x2,n, x2,m, d2; x̃1, x̃2,n, x̃2,m) = f 2,n(x1 + x̃1, x2,n + x̃2,n, x2,m + x̃2,m, d2)− f 2,n(x1, x2,n, x2,m, d2),
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186 closed-loop stability of the control-estimation system

ec
n(x, d; π, p̃, x̃e, x̃n, l) =

[
−ec

1(x1, x2,n, x2,m; d1π, p̃, l)

−ec
2,n(x1, x2,n, x2,m; d2, π, p̃, l)

]
,

f c(x, d) =

 f 1(x1, x2,n, x2,m, d1)

f c
2,n(x1, x2,n, x2,m, d2)

f c
2,m(x1, x2,n, x2,m, d2)

 ,

ec(x, d; π, p̃, d, x̃e, x̃n, l) =

 ec
1(x1, x2,n, x2,m; d1π, p̃, l)

ec
2,n(x1, x2,n, x2,m; d2, π, p̃, l)

ec
2,m(x1, x2,n, x2,m; d2, π, p̃, l)

 ,

ec
1(x1, x2,n, x2,m, d2, π, p̃) = e1 (x1, x2,n, x2,m, µ(x1, x2,n, x2,m, d2)+

+µ̃s(x1, x2,n, x2,m, ιy, d2, x̃1, x̃2,n, x̃2,m, ι̃y, l)
)

,

ec
2,n(x1, x2,n, x2,m, d2, π, p̃) = e2,n (x1, x2,n, x2,m, µ(x1, x2,n, x2,m, d2) +

+ µ̃s(x1, x2,n, x2,m, ιy, d2, x̃1, x̃2,n, x̃2,m, ι̃y, l)
)

,

ec
2,m(x1, x2,n, x2,m, d2, π, p̃) = e2,m (x1, x2,n, x2,m, µ(x1, x2,n, x2,m, d2) +

+ µ̃s(x1, x2,n, x2,m, ιy, d2, x̃1, x̃2,n, x̃2,m, ι̃y, l)
)

,

µ̃s(x1, x2,n, x2,m, ιy, d2, x̃1, x̃2,n, x̃2,m, ι̃y, l) = µs,e(x1 + x̃1, x2,n + x̃2,n, x2 + x̃2,m, ιy + ι̃y, d2)−
− µs(x1, x2,n, x2,m, d2),

l = [u−, u+]T − [u−,u+]T.

e.3 proof of proposition 4 .7

From the per-subsystem application of Lemma 3.2 , to the fast (4.70a)-(4.70b) and slow
(4.70c)-(4.70d) dynamics, it can be established that their closed-loop state motions are
bounded as

‖π‖ ≤ Ξπ, Ξ̇π = −λπ + aπεν(t), Ξπ(0) = aπ ‖π0‖ ,

‖x̃e‖ ≤ Ξe, Ξ̇e = −λeΞe + aψ[L
f̃e
π Ξπ + L f̃e

xn Ξn + L f̃e
x Ξx] + εe(t), Ξe(0) = ae ‖xe0‖ ,

‖x̃n‖ ≤ Ξn, Ξ̇n = −λzΞn + an[L
en

c
π Ξπ + Len

c
e Ξe + Len

c
x Ξx] + εn(t), Ξz(0) = az ‖xn0‖ ,

‖x‖ ≤ Ξx, Ξ̇x = −λcΞx + ax[Lec
π Ξπ + Lec

e Ξe + Lec
x Ξn] + εx(t), Ξx(0) = ax ‖x0‖

‖ν(t)‖ ≤ εν(t), εp = ‖p̃‖ , ‖d(t)‖ ≤ εd(t), εe(t) = ae[L
f̃e
p εp + L f̃e

d εd(t)],

εn(t) = an[L
en

c
p εp + Lec

d εd(t)], εx(t) = ax[Lec
p εp + Le

dεd(t)],

Considering the interconnection between the fast subsystems and applying Propo-
sition 3.1, it is found that:

(‖π‖ , ‖x̃e‖) ≤ Ξ f (t) : Ξ̇ f = A f Ξ f + B f Ξs + d f (t), Ξ f (0) = Ξ f 0, (e.1)

(‖x̃n‖ , ‖x‖) ≤ Ξs(t) : Ξ̇s = BsΞ f + AsΞs + ds(t), sΞ(0) = Ξs0, (e.2)
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where

Ξ f =

[
Ξπ

Ξψ

]
, A f =

[
−λπ 0

aeL f̃e
π −νe

]
, B f =

[
0 0

aeL f̃e
xn aeL f̃e

x

]
, d f =

[
εν

εe

]
,

Ξs =

[
Ξn

Ξx

]
, As =

[
−νz azLen

c
x

axLec
xn −νc

]
, Bs =

[
anLen

c
π anLen

c
xn

axLec
π axLec

e

]
, d f =

[
εn

εx

]
,

Ξ f 0 =

[
aπΞπ0

aψΞe0

]
, Ξx0 =

[
anΞn0

axΞx0

]
.

The above subsystems are robustly stable if: (i) the slow subsystem satisfy conditions
in Lemma 4.4, and that the fast subsystem is robustly stable if conditions in Lemma 4.3
are met.

By the application of Proposition 3.1, the state motions of the above system are
bounded as∥∥s f

∥∥ ≤ Ξ f : Ξ̇ f = −λ f Ξ f + a f [
∥∥B f

∥∥Ξs +
∥∥d f (t)

∥∥], Ξ f (0) = a f
∥∥s f 0

∥∥ , (e.3)

‖ss‖ ≤ Ξs : Ξ̇s = −λsΞs + as[‖Bs‖Ξ f + ‖ds(t)‖], Ξs(0) = as ‖ss0‖ , (e.4)

where λ f is the real part of the dominant eigenvalue of the matrix A f , and λs is
the real part of the dominant eigenvalue of the matrix of the slow matrix As. Note
that due to the triangular structure of the matrix A f , the dominant eigenvalue is

λ f = νe − λe(Ky, Kι)− L f̃e
xe .

Applying again Proposition 3.1, the following condition for closed-loop stability is
obtained

λe(Ky, Kι) > L f̃e
xe(Ky, Kι) +

a f as
∥∥B f (Ky, Kι)

∥∥ ‖Bs‖
λs

. (e.5)





f
C L O S E D - L O O P S TA B I L I T Y O F T H E P I AW- P W O
C O N T R O L - E S T I M AT I O N S Y S T E M

f.1 closed-loop functions of the actual closed-loop dynamics

The involved functions in the closes-loop system (4.79) are given as

Πc
3(x, d, ι̃, x̃n; π, ν) = Π(x1, x2,n, x2,m, d, µs,o(y, ι̃, d2); π, ν),

f̃ o
ι (x; π, p̃, d2, ι̃, x̃n) = −∂tec

2,m(x1, x2,n, y, µp
s (y, ι̃), π, p̃),

f n(x̃ιe, x̃n, d) =

[
f̃ 1(x1, x2,n, y, d1; x̃1, x̃2,n)

f̃ 2,n(x1, x2,n, y, d2; x̃1, x̃2,n)

]
,

f̃ 1(x1, x2,n, y, d1; x̃1, x̃2,n) = f 1(x1 + x̃1, x2,n + x̃2,n, y, d1)− f 1(x1, x2,n, y, d1),

f̃ 2,n(x1, x2,n, y, d2; x̃1, x̃2,n) = f 2,n(x1 + x̃1, x2,n + x̃2,n, y, d2)− f 2,n(x1, x2,n, y, d2),

eo
n(x, d; π, p̃, x̃ιe, x̃n, l) =

[
−eo

1(x1, x2,n, x2,m; d1π, p̃, l)

−eo
2,n(x1, x2,n, x2,m; d2, π, p̃, l)

]
,

f c(x, d) =

 f 1(x1, x2,n, x2,m, d1)

f c
2,n(x1, x2,n, x2,m, d2)

f c
2,m(x1, x2,n, x2,m, d2)

 ,

eo(x, d; π, p̃, d, x̃ιe, x̃n, l) =

 eo
1(x1, x2,n, x2,m; d1π, p̃, l)

eo
2,n(x1, x2,n, x2,m; d2, π, p̃, l)

eo
2,m(x1, x2,n, x2,m; d2, π, p̃, l)

 ,

eo
1(x1, x2,n, x2,m, d2, π, p̃) = e1 (x1, x2,n, x2,m, µo(x1, x2,n, x2,m, d2)+

+µ̃s,o(x1, x2,n, x2,m, ιy, d2, x̃1, x̃2,n, ι̃y, l)
)

,

eo
2,n(x1, x2,n, x2,m, d2, π, p̃) = e2,n (x1, x2,n, x2,m, µo(x1, x2,n, x2,m, d2) +

+ µ̃s,o(x1, x2,n, x2,m, ι, d2, x̃1, x̃2,n, ι̃, l)
)

,

eo
2,m(x1, x2,n, x2,m, d2, π, p̃) = e2,m (x1, x2,n, x2,m, µo(x1, x2,n, x2,m, d2) +

+ µ̃s,o(x1, x2,n, x2,m, ι, d2, x̃1, x̃2,n, ι̃, l)
)

,

µ̃s,o(x1, x2,n, x2,m, ι, d2, x̃1, x̃2,n, ι̃, l) = µs,o(y, ι + ι̃)− µo(x1, x2,n, x2,m, d2),

l = [u−, u+]T − [u−,u+]T.

189
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f.2 proof of proposition 4 .8

From the of Lemma 3.2 to (4.79), its state motions are bounded as

(‖π‖ , ‖ι̃‖ , ‖x̃n‖ , ‖x‖) ≤ (Ξπ, Ξι, Ξz, Ξx) :

Ξ̇π = −νπΞπ + dπ(t), Ξπ(0) = aπδπ0,

Ξ̇ψ = −ωιΞι + aι[Lvι
z Ξz + Lvι

x Ξx] + dι(t), Ξι(0) = aιδι0,

Ξ̇z = −λzΞz + az[Lvz
π Ξπ + Lvι

ι Ξι + Lvz
x Ξx] + dz(t), Ξz(0) = azδz0,

Ξ̇x = −λcΞx + ax[Lεx
π Ξπ + Lεx

ι Ξι] + dx(t), Ξx(0) = axδx0

where

νπ > 0, νι = ωι − Lvι
ι > 0, νz = λz − Lvz

z > 0, νx = λx − Lvx
x .

Each individual subsystem establish stability of the corresponding majorized dynam-
ics. In vector-matrix form, the above system is written as

(‖π‖ , ‖ι‖) ≤ Ξ f (t), (‖x̃z‖ , ‖x‖) ≤ Ξ f (t),

Ξ̇ f = A f Ξ f +B f Ξs + d f (t), Ξ f (0) = Ξ f 0,

Ξ̇s = BsΞ f +A sΞs + ds(t), Ξs(0) = Ξs0,

where

Ξ f =

[
Ξπ

Ξι

]
, A f =

[
−νπ 0

Lvι
π −νι

]
, B f =

[
0 0

aιLvι
z aιLvι

x

]
, d f =

[
dπ

dι

]
,

Ξs =

[
Ξz

Ξx

]
, A s =

[
−νz azLvz

x

0 −νx

]
, Bs =

[
azLvz

π azLvz
ι

axLvx
π axLvx

ι

]
, ds =

[
dz

dx

]
,

Ξ f 0 =

[
aπδπ0

aιδι0

]
, Ξx0 =

[
axδx0

axδx0

]
,

and, by Proposition 3.1: (i) the slow subsystem is robustly stable because

νz + νx > 0, νzνx > 0 ⇒
∥∥∥eAst

∥∥∥ ≤ ase−νxt,

and (ii) the fast subsystem is robustly stable if ωι is chosen so that condition

νπ + νι > 0, νπνι > 0 ⇒
∥∥∥eA f t

∥∥∥ ≤ a f e−νιt,

From the per-subsystem application of Lemma 3.2 to the slow a fast interconnec-
tions, its state motions are bounded as

(
∥∥s f
∥∥ , ‖ss‖) ≤ (Ξ f , Ξs)(t) :

Ξ̇ f = −νιΞ f + a f [
∥∥B f

∥∥Ξs +
∥∥d f (t)

∥∥], Ξ f (0) = a f
∥∥s f 0

∥∥ ,

Ξ̇s = −νcΞs + as[‖Bs‖Ξ f + ‖ds(t)‖], Ξs(0) = as ‖ss0‖ .

The application of Proposition 3.1 ensures the robust stability of the above dynamics
if the condition (4.80) is satisfied.
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C L O S E D - L O O P S TA B I L I T Y O F T H E L I N E A R C O M P O N E N T O F
T H E D Y N A M I C H E AT B A L A N C E

g.1 proof of Lemma 5 .2

The proof is given in three steps: first, a modal representation for the closed-loop
operator Ac

2, in terms of its modal decomposition and the sensor-actuator characteris-
tic functions, then, the eigenvalues of the resulting infinite dimensional matrix are
characterized, including the identification of an approximate value of the dominant
eigenvalue. Finally, the associated C0-semigroup is characterized.

g.1.1 Infinite matrix representation

Consider the linear system

ẋ2 = Ac
2, x2 x2(0) = x20.

where Ac
2x2 is defined in (5.25c). Since the eigenfunctions (5.5c) for the operators

Aj, j = 1, 2 form an orthogonal basis of the Hilbert space H, the states can be
expanded as xj = ∑m aj,mφj,m, aj,m = 〈xj, φj,m〉, j = 1, 2, m ∈ 1, 2, . . ., where
∑m = ∑m∈N. Thus, the effect of the closed-loop operator on the first state is given by

Ac
2x2 = A2x2 −By,2Bm

−1KyCy,2x2,

Ac
2x2 = A2 ∑

m
a2,mφ2,m −BuBm

−1KyCy ∑
m

a2,mφ2,m.

Considering the definitions of the input and output operators, the restriction on the
matrix gain, and the definition of the matrix Bm

−1, it follows

Ac
2x2 = ∑

m
λ2,ma2,mφ2,m − υwh

[
β1 . . . βq

] 1
υ

Iq×qky,i Iq×q


〈

γ1,w−1
h ∑m a2,mφ2,m

〉
...〈

γq,w−1
h ∑m a2,mφ2,m

〉
 ,

= ∑
m

λ2,ma2,mφ2,m −wh

[
β1 . . . βq

]
ky,i Iq×q


∑m a2,m

〈
γ1,w−1

h φ2,m

〉
...

∑m a2,m

〈
γq,w−1

h φ2,m

〉
 ,
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= ∑
m

λ2,ma2,mφ2,m −wh

[
β1 . . . βq

]
ky,i Iq×q

∑m a2,mc1,m
...

∑m a2,mcq,m

 ,

= ∑
m

λ2,ma2,mφ2,m −wh

q

∑
i=1

βiky,i ∑
m

a2,mc1,m,

where

ci,m =
〈

γi,w−1
h φ2,m

〉
, i = 1, . . . , q, m ∈N.

With sensor dependent coefficients ci,m(ςi). Projecting Ac
2x2 onto the n-th eigenfunc-

tion gives

ȧ1,n = 〈ẋ2, φ2,n〉 = 〈Ac
2x2, φ2,n〉 ,

=

〈
∑
m

λ2,ma2,mφ2,m −wh

q

∑
i=1

βiky,i ∑
m

a2,mc1,m, φ1
n

〉
,

= ∑
m

λ2,ma2,m 〈φ2,m, φ2,n〉 −
q

∑
i=1

∑
m

a1
mci,m

〈
whky,iβi, φ2,n

〉
,

= λ2,na2,n −
q

∑
i=1

ky,i ∑
m

a2,mbi,nci,m,

with

bi,n = 〈whβi, φ2,n〉 , i = 1, . . . , q, n ∈N.

In matrix form the above can be rewritten as

ȧ2 = A c
2 a2, a2(0) = a20, (g.1.1)

where a2 = [a2,n]n∈N is an infinite dimensional vector and the infinite dimensional
matrix

A c
2 = [an,m(ky,1, . . . , ky,q, ς1, . . . , ςq)]n,m∈N

is defined as

an,m =

λ2,n −∑
q
i=1 ky,ibi,nci,m(ςi) if n = m

−∑
q
i=1 ky,ibi,nci,m(ςi) if n 6= m

, i = 1, . . . , q (g.1.2)

If the conditions in 5.2 are met, then the eigenvalues of A c
2 are bounded as stated in

(5.26c). The proof of this is given below in g.1.2.
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g.1.2 Eigenvalues of infinite matrices

The infinite dimensional matrix A c
2 given in (5.25c) is analyzed as the operator

A c
2 : D(A c

2 ) ⊂ l2 → l2 as A(a) = A c
2 a, a ∈ D(A c

2 ), where l2 is the Banach space of

sequences with norm ‖a‖2 =
(
∑n∈N |an|2

) 1
2 . The diagonal dominance property of an

infinite matrix is defined in [6, Definition 3] and is adapted here to A c
2 given in (g.1.2).

Denote by an = (an,m)m∈N the n-th row of matrix A c
2 and by an,n the n-th diagonal

entry.
The infinite matrix A c

2 is strictly diagonal dominant if and only if the following
condition holds[

∑
n

(
rn(A c

2 )

‖an,n‖

)2
] 1

2

< 1. (g.1.3)

According to [6, Theorem 16(c)] if A c
2 has pure point spectrum and is diagonally

dominant, then the eigenvalues λc
2,n, n ∈N of A c

2 are bounded according to

λc
2,n ≤ λc

2,n
∗ = sup

n∈N

(
an,n + RA c

2

)
, RA c

2
=

(
∑
n

r2
n

) 1
2

(g.1.4)

Note that this is a direct generalization of the classical result of Geršgorin [128].
Applying the above results, from (g.1.2) the spectral radi are given by

rn =

 ∑
m 6=n

∣∣∣∣∣ q

∑
i=1

ky,ibi,nci,m

∣∣∣∣∣
2
 1

2

.

The diagonal sequence {an,n} has no accumulation points so the spectrum of A c
2

coincides with the point spectrum. Accordingly, the condition (g.1.3) for diagonal
dominance is equivalent to[

∑
n∈N

∑
m 6=n∈N

∣∣∣∣an,m

an,n

∣∣∣∣2
] 1

2

< 1.

Given that a1,1 = supn∈N{an,n} and thus 1
|a1,1| ≥

1
|an,n| for all n ∈ N, the above

expression is equivalent to[
∑

n∈N

∑
m 6=n∈N

∣∣∣∣an,m

an,n

∣∣∣∣2
] 1

2

=

[
∑

n∈N

1
|an,n| ∑

m 6=n∈N

|an,m|2
] 1

2

,

≤ 1
|a1,1|

[
∑

n∈N

∑
m 6=n∈N

|an,m|2
] 1

2

=
RA c

2

|a1,1|
< 1,
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with

R2
A c

2
= ∑

n
r2

n(A
c

2 ) = ∑
n

∑
m 6=n

∣∣∣∣∣ q

∑
i=1

ky,ibi,nci,m

∣∣∣∣∣
2

.

Since ∑
q
i=1 bi,nci,m is equivalent to the standard inner product in Rq, the application of

the Cauchy–Swartz inequality yields

R2
A c

2
= ∑

n
∑

m 6=n

∣∣∣∣∣ q

∑
i=1

ky,ibi,nci,m

∣∣∣∣∣
2

≤∑
n

[
∑

m 6=n

q

∑
i=1

ky,ib
2
i,n

q

∑
i=1

ky,ic
2
i,m

]
,

≤∑
n

q

∑
i=1

ky,ib
2
i,n ∑

m 6=n

q

∑
i=1

ky,ic
2
i,m,

≤∑
n

q

∑
i=1

ky,ib
2
i,n ∑

m

q

∑
i=1

ky,ic
2
i,m,

=
q

∑
i=1

ky,i ∑
n
b2

i,n

q

∑
i=1

ky,i ∑
m

c2
i,m.

Using the Parseval identity it follows that

∑
n
b2

i,n = ∑
n

〈
whβi,n, φ2,n〉2

= ‖whβi‖2 ,

∑
m

c2
i,m = ∑

m

〈
γi,m,w−1

h φ2,m

〉2
=
∥∥∥w−1

h γi

∥∥∥2
,

and

R2
A c

2
≤

q

∑
i=1

ky,i ‖whβi‖2
q

∑
i=1

ky,i

∥∥∥w−1
h γi

∥∥∥2
.

Thus, the diagonal dominance is ensured if(
∑

q
i=1 ky,i ‖whβi‖2 ∑

q
i=1 ky,i

∥∥∥w−1
h γi

∥∥∥2
)1/2

|a1,1|
< 1,

or equivalently (5.26b) holds true. It follows from (g.1.4) that the eigenvalues are
bounded as stated in (5.26c).
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g.1.3 Contraction semigroup property

Define the Lyapunov function

V(a2) = aT
2 a2 = ‖a2‖2

2 , (g.1.5)

where ‖·‖2 =
(
∑n∈N |a1,n|2

) 1
2 denotes the l2-norm. Evaluating the time derivative of

(g.1.5) along the trajectories of (g.1.1) it follows that

V̇(a2) = aT
2

(
A c

2
T +A c

2

)
a2,

≤ 2Re
{

λc
2
∗} aT

2 a2,

= −2νcV(a2).

This implies that V(a2) ≤ V(a2(0))e−2νct, which in view of (g.1.5) is equivalent to

‖a2(t)‖2 ≤ ‖a2(0)‖2 e−νct ⇒ ‖x2(t)‖ ≤ ‖x20‖ e−νct,

given that the l2-norm of a2 is equivalent to the L2-norm of x2 [38]. Accordingly, the
operator Ac

2 generates a C0-semigroup such that x2(t) = Sc
2(t)x20. Taking norms and

using the previous result yields

‖x2(t)‖ = ‖Sc
2(t)‖ ‖x20‖ ≤ ‖x20‖ e−νct,

implying (5.26d).





h
S TA B I L I T Y P R O O F S O F T H E D I S T R I B U T E D Z E R O D Y N A M I C S

h.1 proof of Lemma 6 .1

Proceed as in [111, Appendix A] an introduce the local coordinate change

sj =
s− ς j−1 − ε

ς j − ς j−1 − 2ε
, j = 1, . . . , q + 1,

considering that ε is a small number, it can be neglected in the previous expressions
to obtain

sj =
s− ς j−1

ς j − ς j−1
, j = 1, . . . , q + 1.

In this coordinates, the spatial derivatives of the local eigenfunctions ψ2,j,l(sj), j =
1, . . . , q + 1 are given by

∂sψ2,j,n = (∂sj ψ2,j,n(sj))(∂ssi) =
1

ςi − ςi−1
∂si ψ2,j,n(si). (h.1.1)

Thus, the related eigenvalue problems are

0 =
1

(ςi − ςi−1)2 ∂2
si

ψ2,j,n(si)−
(

Pe
4

+ υ

)
− λ2,j,nψ2,j,n(si), (h.1.2)

0 = Bz
n,jψ2,j,n, j = 1, . . . , q + 1, n ∈N. (h.1.3)

The solution to these problems are the set of eigenfunctions, eigenfrquencies and
eigenvalues given in (6.13a), (6.13d), and (6.13g), respectively.

h.2 proof of Proposition 6 .1

The proof follows the same procedure as [111]. Since the dynamics of the temperature
components x2,n is diagonal, its solutions are given by

x2,n,j(t) = Si(t)x2,n,j0 +
∫ t

0
Si(t− t)ρ2,z,j(x1(t), x2,n,j(t))dt,

for j = 1, . . . , q + 1. Taking norm on both sides of the above expression and using
(6.14) and applying the triangle inequality, the temperature components satisfy∥∥x2,n,j(t)

∥∥ ≤ e−λ∗j t ∥∥x2,n,j0
∥∥+ ∫ t

0
e−λ∗j (t−t)

(
L

ρ2,z,j
x1 ‖x1(t)‖+ L

ρ2,z,j
x2,n,j

∥∥x2,n,j(t)
∥∥)dt. (h.2.1)
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198 stability proofs of the distributed zero dynamics

Recall (5.11) and the above expression and, proceeding as in the proof of Theorem
3.1, define the right-hand side of the implicated inequalities as

Ξ(t) ≤ ‖x1(t)‖ ≤ e−ν1t ‖x10‖+
∫ t

0
e−ν1(t−t)Lr

x2
‖x2(t)‖ ,

Ξ2,j(t) ≤
∥∥x2,n,j(t)

∥∥ ≤ e−λ∗2,jt
∥∥x2,n,j0

∥∥+ ∫ t

0
e−λ∗2,j(t−t)

(
L

ρ2,z,j
x1 ‖x1‖+ L

ρ2,z,j
x2,n,j

∥∥x2,n,j
∥∥)dt,

for j = 1, . . . , 1 + 1. In differential, the above expressions are written as

Ξ̇1(t) ≤ −ν1Ξ1(t) + Lr
x2

q+1

∑
j=1

L
ρ2,z,j
x2,n,j Ξ2,j(t),

Ξ̇2,j(t) ≤ −ν2,jΞ2,j(t) + L
ρ2,z,j
x1 Ξ1(t),

where

ν2,j = |λ∗2,j| − L
ρ2,z,j
x2,n,j .

In compact form, the previous expressions are given as

Ξ̇1(t)

Ξ̇2,1(t)
...
...

Ξ̇2,q+1(t)


≤



−ν1 Lr
x1

Lρ2,z,1
x2,n,1 · · · · · · Lr

x1
L

ρ2,z,q+1
x2,n,q+1

Lρ2,z,1
x1 −ν2,1 0 · · · 0
... 0

. . . . . . . . .
...

...
. . . . . . 0

L
ρ2,z,q+1
x1 0 · · · 0 −νq+1





Ξ1(t)

Ξ2,1(t)
...
...

Ξ2,q+1(t)


.

Application of Schur complement gives the following condition that ensures that the
matrix of the above dynamics is Hurwitz

ν2,j > 0, j = 1, . . . , q + 1, ν1 −
q+1

∑
j=1

L
ρ2,z,j
x1 L

ρ2,z,j
x2,n,j

ν2,j
> 0.

With the substitution of the maximum eigenvalues λ∗2,j, according to (6.13g) and the
Lipschitz conditions on each ν2,j, and recalling the definition of ν1 given in (5.12), the
expression in (6.16) are obtained. If these conditions are met, then the convergence
to zero of Ξ1(t) and Ξ2,j(t) is ensured and employing their definitions, the following
bounds are satisfied

‖x1(t)‖ ≤ Ξ1(t),∥∥x2,n,j(t)
∥∥ ≤ Ξ2,j(t), j = 1, . . . , q + 1,

which implies the exponential stability of the zero dynamics origin.
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