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Resumen

El problema de encontrar una teoŕıa cuántica de la gravedad es uno de los problemas abiertos
más importantes en la f́ısica teórica actual. Pese a la gran cantidad de pistas y al número de
incógnitas en f́ısica teórica que apuntan a una solución a través del marco de una teoŕıa que
combine los principios de la relatividad general y la mecánica cuántica, la formulación de una
tal teoŕıa que sea completa, consistente y que lleve a predicciones que puedan corroborarse
mediante la observación es aún una cuestión abierta.

La gravedad cuántica de lazos es una de varias propuestas actuales que trata de aventurarse
en el estudio de las propiedades cuánticas del campo gravitacional. En esta tesis pretendemos
esbozar las principales virtudes y defectos de esta propuesta teórica que aspira a convertirse
en una descripción cuántica del campo gravitacional. Después de esbozar una serie de motiva-
ciones generales en el caṕıtulo 1, en los caṕıtulos 2 y 3 se exponen las principales caracteŕısticas
y los problemas aún sin resolver del enfoque de gravedad cuántica de lazos, tanto en su versión
canónica como en su versión covariante. Se presentan algunos de los resultados que distinguen
a esta propuesta teórica (como la discretitud de los operadores de área y de volumen) y se habla
de algunos de los problemas abiertos que enfrenta. En el caṕıtulo 4 exponemos la construcción
teórica de un nuevo modelo discretizado de la relatividad general que pretender constituir un
modelo alternativo a la discretización usual usada en gravedad cuántica de lazos covariante.
En un trabajo de investigación futura esperamos que la cuantización de este modelo arroje luz
sobre problemas aún sin resolver en la teoŕıa covariante, en particular, en el ĺımite semiclásico.
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rollo de este trabajo. Las sesiones que tuvimos ayudaron mucho a aclarar algunos puntos que,
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1
Introduction:

The unfinished revolution

General relativity and quantum theory are the two fundamental pillars of contemporary physics.
Both offer descriptions of the world that are deeper from those offered by classical theories. Both
frameworks are the result of the hard work and the brilliance of some of the most prominent
minds of all time in theoretical and experimental physics .

On one hand, quantum theory is not only a description of microscopic objects, but it is our
currently more successful theory for the description of the evolution of dynamical systems. In
its most sophisticated version, quantum field theory, also incorporates the fundamentals of the
special theory of relativity. This allows describing most of the fundamental matter fields and
interactions of the universe. This framework actually provides some of the most impressive
agreements between theoretical predictions and experimental measurements [25].

On the other hand, general relativity is our modern theory of the gravitational interaction.
Driven, among other things, by the conceptual incompatibility between special relativity and the
Newtonian description of gravity, Albert Einstein formulated a new theory of the gravitational
interaction. In this framework, gravity is described using the language of semi-Riemannian ge-
ometry. General relativity has taught us that gravity is encoded in the geometry of space and
time. Spacetime is now a dynamical entity that reacts to the matter fields on it, and matter
fields are also influenced by the geometry of the spacetime surrounding them. 1

Quantum theory has helped to understand many before unknown aspects of nature, such as
nuclear and molecular physics, three of the fundamental forces in nature, and many aspects
and characteristics of the fundamental particles. All of this has led to most of the new techno-
logical developments of the modern era, including semiconductors, quantum information, and
quantum optics. For its part, general relativity has also unmasked very exotic aspects of nature
that involve the gravitational interaction. Among them are cosmology, black holes and, with
the help of very surprising technological milestones, the development a new way to observe the
universe out there through the gravitational observational astronomy using gravitational waves
[26].

In general relativity, the description of all the physical fields, including the the gravitational
field, is given over a C∞ differentiable manifold. This is the mathematical structure under-

1This is the origin of the John Archibald Wheeler’s quote: “Space tells matter how to move. Matter tells
spacetime how to curve”[55].

1



A new discrete model for Classical General Relativity

lying the physical world. In particular, the gravitational field determines the causal relations
and therefore the way in which the other fields interact with each other. The invariance under
Lorentz transformations, which is the cornerstone of the special theory of relativity, is restricted
to small spacetime regions. In general relativity, the dynamical evolution is completely deter-
ministic, and this is a reminiscent of the Newtonian formulation of dynamics [1, 4, 11].

In the quantum theory, the world is described using a differentiable manifold with a fixed
metric, usually a Minkowskian metric. Invariance under the Poincaré group is a global sym-
metry of the theory. Furthermore, the description of some physically measurable quantities is
probabilistic and is subject to the Heisenberg’s inequalities. This breaks with the old deter-
ministic classical framework of the description of the world.

Nevertheless, from the quantum theory we have learned that every physical field has quan-
tum properties. It is then reasonable to ask what the quantum properties of the gravitational
field are, as well as what are the properties, if any, that determine the quantum aspects of the
gravitational field.

Quantum theory and general relativity both emerged based on the need for descriptions of
new phenomena for which the classical theories of Newtonian mechanics and classical electro-
dynamics did not offer satisfactory, or even coherent, answers. Each one broke, in its own way,
the preconceptions that we had about the working of the cosmos. Both offered revolution-
ary ways of understanding the vast sea of physical phenomena that surround us. This hectic
physical and philosophical revolution, however, also brought a problem of colossal proportions:
both theories are incompatible. They describe the world with very different mathematical and
conceptual structures. It looks as if the world were made of two fragmented pieces that are
governed by contradictory laws. To solve this problem, we need a new theory: a theory of
quantum gravity.

Beyond these conceptual and motivational reasons, there are more precise arguments that
indicate the need to search for a quantum theory of gravitation.

� Singularities in general relativity
In the framework of general relativity, some physical situations may lead to the creation
of spacetimes with singularities: geodesically incomplete Lorentzian manifolds [4]. In this
situations, the concentration of matter is so high that some components of the gravi-
tational field actually diverge. The generic conditions for the occurrence of spacetimes
with singularities is given by the so called singularity theorems [4, 11]. The existence of
singularities, such as those of black holes and the initial singularity of the Big Bang, is
physically interpreted as an indication of the existence of situations where the classical
Einstein theory of gravity is no longer valid. It is expected that the quantum properties
of gravitational field play an important role in the correct description of singularities.
We hope that this will help to remove the divergences, providing a physically reasonable
description of these situations.

� The phenomenological motivation
The description of the initial cosmological singularity is also directly connected to the

2



1. The Unfinished Revolution

correct description of the early instants of the evolution of our universe. There are a
strikingly large number of arguments pointing to the Planck scale as the characteristic
scale of quantum-gravity effects [2, 24]. Although clearly these arguments are not all in-
dependent, their overall weight must certainly be judged as substantial [24]. It is believed
that the elementary particles of the early universe could have reached scattering energies
of the order of the Planck energy with respect of their center-of-momentum frame. If this
is true, then the correct description of such scattering processes must take into account
the quantum properties of the gravitational field. Different scenarios for the description
of the quantum gravity realm could be compared on the basis of their description of the
early universe. That could help us to establish different predictions for some manifesta-
tions of those early instants of the evolution of the universe in our present observations
[24].

� The need for coherence
More precisely, the incompatibility between quantum theory and general relativity shows
two different images of the world, as if theoretical physics were fragmented. In addition,
the argument that we do not need a quantum theory of gravity because the energies
needed to reach the quantum gravity realm are inaccessible for our present achievable
experimental capacities is something both simplistic and against the spirit of theoretical
physics itself. Moreover, the argument is unsustainable because of the situation described
in the previous point). The fragmented nature of our present descriptions of the world
becomes clear if we think of, for example, a way to describe the spacetime metric of an
atomic nucleus in a quantum superposition of two eigenstates of the position. To do this,
we need a mix between quantum theory and general relativity. Currently, however, we
do not have theoretical tools to describe such apparently simple situation [2, 5].

� Black holes thermodynamics
Classically, stationary black holes are characterized only by three parameters the mass, the
electric charge and the angular momentum. It is, however, very surprising that by using
only these quantities together with the surface gravity and the surface area of the event
horizon, it is possible to construct four laws of the black holes’ mechanics that are very
similar to the four laws of thermodynamics. It is then possible to associate a temperature
and a entropy with every black hole [2]. The physical meaning of these quantities is better
understood when we study the behavior of quantum fields on the background of an object
collapsing to form a black hole [2]. The dynamical background produces an initial vacuum
that does not remain as a vacuum. Conversely, it becomes a thermal state with respect
to late-time observers, and we can associate a temperature with the black hole, called the
“Hawking temperature” [2]. Once we have calculated the temperature, the entropy of a
black hole is also given. With this, however, a central problem arises: can the entropy
of a black hole be derived from quantum-statistical considerations? Furthermore, what
is the microscopical origin of such entropy? Does it correspond to microscopic degrees
of freedom? It is believed that this entropy comes from no-trivial degrees of freedom of
quantum gravity associated with the black hole configuration [2].

� Thermal evaporation of black holes and the information paradox
The thermal production of particles because of the dynamic background that is responsible

3
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for the Hawking temperature also produces the loss of mass and the subsequent evapo-
ration of the black hole. When the black hole reaches the Planck scale, it is assumed
that the semiclassical approximation where the non-gravitational fields are quantum but
the gravitational field remains classical is no longer valid. In this scenario, the possible
quantum properties of the gravitational field must be taken into account. The evapo-
ration of a black hole, however, causes another conceptual problem: if the black hole
evaporated completely and left only thermal radiation behind, it would mean that any
initial quantum state, in particular a pure state, would evolve into a mixed state. Such
evolution would violate the unitary evolution of the total closed system predicted by the
quantum theory. It is expected that a quantum theory of gravity gives a definite answer
to whether the unitarity is preserved or not [2].

There exist many other motivations and problems in theoretical physics with a possible solution
that points to a quantum theory of gravity [1, 2, 3, 5, 6]. Here we only mentioned some of
them to show that the search for quantum gravity is a truly important open problem in current
theoretical physics.

Even though much intellectual work has been done, a complete and consistent quantum theory
of gravity is still missing. The main problem [3] seems to be that we only know how to do
quantum physics using a fixed background metric. Ordinary quantum field theory relies on the
use of a fixed background metric, and the absence of a such structure leaves us with just a few
tools for constructing a consistent theoretical framework. All of the above, together with the
difficulty of experimentally testing the quantum properties of spacetime, leaves us with a serious
theoretical problem. The revolution that began with quantum theory and general relativity is
still unfinished.

There are very different approaches for trying to solve the problem of quantum gravity from
different perspectives. Loop quantum gravity, the main subject of the present work, is one of
those approaches that tries to adventure upon the research of the quantum properties of space
and time. Such an approach takes the central lesson of general relativity seriously: gravity
is geometry , and in a fundamental quantum gravity theory, there should be no background
metric. All the physical fields, matter and gravity, should born quantum mechanically, and the
smooth metric described by general relativity should arise in an appropriate limit.

Loop quantum gravity (LQG) is based on the implementation of the canonical quantization
method applied to general relativity [7]. The latter is reformulated in such a way that its phase
space closely resembles the phase space of a gauge theory [3]. The quantization is then based on
a non-perturbative and background-independent procedure, without postulating the existence
of a fixed background metric [27].

Among the most important successes of LQG are the mathematically rigorous framework,
its manifestly non-perturbative and background independent language, the existence of certain
clues about the ultraviolet finiteness for some theoretical results, and its inherent notion of a
quantum discreteness of spacetime that is derived rather than postulated [1, 3]. This discrete-
ness is associated with certain physical quantities related to the spacetime metric. Being more
specific, the theory predicts a discrete spectra of the area and volume operators [1, 2, 3].

4



1. The Unfinished Revolution

Some important issues that remain unsolved within the LQG framework are the following; the
loss of four-dimensional diffeomorphism covariance, the non-linear structure of the Wheeler-
DeWitt equation (the equation that governs the dynamics of the theory) and the subsequently
poor understanding of the physics underlying it. There is also the difficulty in finding a com-
plete set of gauge-invariant observables that determines the physically measurable quantities,
and a still missing classical limit showing that the LQG has general relativity as its classical
limit [1, 3, 6, 7].

The nonlinear structure of the Wheeler-Dewitt equation is strongly connected to the absence
of a definition of the dynamics of the theory and the calculation of transition amplitudes. The
spinfoam framework was introduced to remedy this problem and to express the quantum dy-
namics of spacetime in a clear and useful way.

The spinfoam framework intends to be, broadly speaking, an implementation of the func-
tional integral methods to the quantization of the gravitational field see it as a field theory,
but taking into account the discreteness of spacetime proposed in loop quantum gravity. The
spinfoam framework defines transition amplitudes between quantum states of the geometry in
loop quantum gravity [6, 7].

1.1 Main purpose of this work

The purpose of this written work is twofold. On one hand we intend to present a general
overview of the LQG framework, trying to emphasize their merits and difficulties. On the other
hand, we present the results of an original research program undertaken under the supervision
of José A. Zapata. In such a program, we introduce a new discretization for classical gen-
eral relativity. Our construction relies on the use of a cellular decomposition of the spacetime
that was previously introduced by M. Reisenberger in [17] and [18]. Such decomposition has
the advantage of leading to a clean separation of the boundary and bulk degrees of freedom.
We were able to construct two discrete models of the gravitational theory that are ultimately
equivalent. In the first model, we consider a tetrad and elements of the Lorentz group SO(3, 1)
associated with some special structures of the cellular decomposition. In the second model, we
consider variables that are natural for the discretization of a BF theory, and only after a set of
constraints are solved, it becomes equivalent to the first model. We hope that our discretization
will help us to study some issues of the covariant LQG models that are currently difficult to
explore. Particularly, we hope to be able to produce a quantum version of this discrete model
that makes the study of the semiclassical limit of the spin foam models more approachable.

In order to accomplish the two goals of this written work, we have organized it as follows.
The first two chapters introduce the main characteristics of canonical and covariant loop quan-
tum gravity frameworks.

Chapter one starts introducing the 3+1 formulation of general relativity. Next, we present
the canonical quantization program and the result of its application to general relativity. We
will see that it is possible to construct a more or less satisfactory kinematical states space. We

5
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will find several problems, however, when we try to define the dynamics of the theory. Moti-
vated by this, chapter three discusses the covariant LQG approach. Such approach, also called
the spin foam approach, tries to be an implementation of the path integral quantization method
for gravity. We will see that this framework allows on to recover some features of the canonical
framework. Nevertheless, we will find other important issues that this approach needs to solve.

Finally, in chapter four we introduce the results of our current research work. We introduce a
way to discretize general relativity using some structures that were already used in [17]. We
use such structures, however, to study a model that has not been considered yet. We discretize
the action of a BF theory with SO(3, 1) as its gauge group, and we introduce a constraint that
is intended to reduce this theory to general relativity in the continuum limit. This constraint
introduces an element that is not present in the original formulation given in [17]. Such new
element is a tetrad associated with each corner of a four-simplex. We introduce the main vari-
ables defining the model, and the classical dynamical equations that result from the variation
of the action. Finally, we describe the boundary variables and their interpretation. We hope
that the quantization of this model, as a project for future research, will allow keeping the main
features and advantages that characterize the new spin foam models. In addition, we entail the
hope that their use will allow us to study some currently unexplored situations.

6



2
Canonical loop quantum gravity

in a nutshell

In this chapter, we give a brief introduction to the canonical quantization of Einstein’s general
relativity and its main results. This chapter serves as a preamble for the introduction of the
spin foam models mainly because, as emphasized in [6], it is in the context of the canonical
quantization where the spin foam models find their more natural interpretation as tools for
understanding the dynamical content of quantum gravity [6].

The content of this chapter is mainly based on [1, 3, 6, 7] and is not exhaustive. There-
fore we will not present the detailed calculations for arriving to the different results presented
here, but refer the reader to the aforementioned references.

2.1 Canonical formulation of classical gravity

The procedure of canonical quantization is based on the hamiltonian formalism. For its im-
plementation in the theory of gravity, we need to define the configuration variables and their
corresponding canonical momenta and then write the Hamiltonian of the theory. We have
therefore to introduce a split in the spacetime manifold M into space and time. Although it
may initially appear that this breaks the diffeomorphism invariance of the theory, that is not the
case because such division is arbitrary, and this arbitrariness exhausts the full diffeomorphism
group [10].

Our starting point is a four-dimensional differentiable manifold M with a metric g with eu-
clidean or lorentzian signature (the lorentzian signature will be chosen as (−,+,+,+), so the
timelike vectors will have negative norm). The dynamics of the theory is given by the Einstein-
Hilbert action:

SEH =
1

κ

∫
M

RdV, (2.1)

where κ = 16πG/c3, R is the Ricci scalar and dV is the volume form in M. So as to rewrite
(2.1) into canonical form, we will suppose that M has the special topology R × σ, where
σ is a fixed three-dimensional manifold with arbitrary topology2 and without boundaries. A

2This assumption has some subtleties; see [3].

7



A new discrete model for Classical General Relativity

condition for this to be fulfilled is that (M, g) is globally hyperbolic, that is, it possesses a Cauchy
surface (an ‘instant of time’) on which initial data can be described to determine uniquely the
whole space–time[2, 11]. In such cases, the classical initial value formulation makes sense, and
the Hamiltonian form of GR can be constructed [11]. Thus, we establish a diffeomorphism
X : R× σ →M such that for every t0 ∈ R fixed the function Xt0 : σ →M defined by

Xt0(p) := X (t0, p) p ∈ σ,

is an embedding [10]. This defines a foliation of M into spacelike hypersurfaces Σt0 := Xt0(σ).

The ten independent components of the metric gµν are replaced by the six components of
the Riemanninan metric qab induced on Σt0 , plus the three components of the shift vector Na,
and the lapse function N . The lapse function is related to the separation between hypersur-
faces, and the components of the shift vector are related to the displacement of a point when
moving from one hypersurface to another.

In order to rewrite the gravitational action in terms of the new variables, we must to ex-
press the Ricci scalar R and the volume form dV =

√
−gd4x as functions of geometrical objects

in the hypersurface and on the new variables N and Na. To do this, it is important to consider
the extrinsic curvature Kab of the hypersurface Σ. With the help of this object, we can rewrite
the Riemann curvature tensor and, therefore ,also the Ricci scalar R, as functions of qab, q̇ab, N
and Na, where the upper dot q̇ab denotes the derivative with respect to the parameter t defined
by X . With all this, the action can be written in the form

S[qab, N,Na] =
1

κ

∫
dt

∫
Σ

d3x
√
qN
(
KabKab −K2 +R(3)

)
, (2.2)

where q is the determinant of qab, K := Ka
a , and R

(3) is the Ricci scalar corresponding to the
metric qab

3.

It is important to remark that written in this form the lagrangian density does not depend
on the derivatives of the shift and lapse functions with respect to t. This means that the canon-
ical momenta associated to N and Na are zero. This fact allows to consider such variables as
no-relevant dynamical variables. Variations with respect to lapse and shift will not produce dy-
namical equations but constraint equations, relating the dynamical variables (qab, πab) to each
other.

In order to construct the hamiltonian density, we must define the canonical momenta asso-
ciated to the dynamical variables qab in the form

πab =
∂L
∂q̇ab

and perform the corresponding Legendre transformation only over the relevant dynamical vari-
ables qab and its canonical momenta:

H = πabq̇ab − L.
3The indices a, b are raised and lowered with the three-dimensional metric qab.
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2. Canonical Loop Quantum Gravity

Using the Hamiltonian density, we can rewrite the lagrangian density and the Einstein-Hilbert
action in a form that the dynamical variables will be qab and the corresponding canonical
momenta πab. The action of General Relativity then becomes

SEH [qab, π
ab, Na, N ] =

1

κ

∫
dt

∫
Σ

d3x[
πabq̇ab + 2Na∇(3)

b (q−(1/2)πba) +N

(
q1/2

[
R(3) − q−1πabπ

ab +
1

2
q−1π2

])]
, (2.3)

where ∇(3)
b is the Levi-Civita connection over Σ with respect to the metric qab. The canonical

momenta πab are related to the extrinsic curvature Kab of Σ by

πab = q−1/2
(
Kab −Kqab

)
. (2.4)

Variation with respect to the shift vector produces the constraint equations

V a(qab, π
ab) = 2∇(3)

b

(
q−1/2πba

)
= 0, (2.5)

whereas variation with respect to the lapse function produces

S(qab, π
ab) =

(
q1/2

[
R(3) − q−1πabπ

ab + (1/2)q−1π2
])

= 0. (2.6)

V i(qab, π
ab) is called the vector constraint, and S(qab, π

ab) is called the scalar (or hamiltonian)
constraint. The action can then be written as

S[qab, π
ab, Ni, N ] =

1

κ

∫
dt

∫
Σ

d3x
[
πabq̇ab −NaV

a(qab, π
ab)−NS(qab, π

ab)
]
, (2.7)

where the hamiltonian density can be identified as

H(qab, π
ab, Na, N) = NaV

a(qab, π
ab) +NS(qab, π

ab).

We can see that the hamiltonian density is a linear combination of first class constraints, which
means that it vanishes on solutions of the dynamical equations[2, 3, 6]. The Poisson brackets
between the dynamical variables can be calculated using the previous equations, and we obtain
[2, 3, 6]:

{
πab(x), qcd(y)

}
= κδa(cδ

b
d)δ(x− y)

{
πab(x), πcd(y)

}
= {qab(x), qcd(y)} = 0. (2.8)

We then have six configuration variables qij(x) and four constraint equations (2.5) and (2.6),
which implies the two physical degrees of freedom of gravity.
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A new discrete model for Classical General Relativity

2.2 The new variables

The canonical formulation presented above has the three-dimensional metric qab and its canon-
ical momenta πab as dynamical variables. It is well known that the quantization of the theory
using such variables presents several issues [2, 29]. For this reason, we will make a change of
variables. The idea is to use a triad (also called “Repère Mobile” (see [30])) or moving frame.
The triad is a set of three one-forms in terms of which the metric qab can be obtained as

qab = eiae
j
bδij, (2.9)

where i, j = 1, 2, 3 are called “internal indices”. In terms of these new variables we can define
the densitized triad:

Ea
i :=

1

2
ϵabcϵijke

j
be

k
c . (2.10)

We also define:

Ki
a :=

1√
det(E)

KabE
b
jδ

ij. (2.11)

The set (Ea
i , K

i
a) represents a new set of phase space variables, and we can rewrite the con-

straints V a(qab, π
ab) and S(qab, π

ab) as functions of E and K as V a(Ea
i , K

i
a) and S(Ea

a , K
i
a).

The new variables, however, are redundant because we are using the nine components of Ea
i

to describe the six components of qab. The geometrical interpretation of such redundancy is
the following: the extra three degrees of freedom in the triad correspond to our freedom to
choose between different local frames eia. Such local frames are related to each other through
an SO(3) rotation acting in the internal indices a = 1, 2, 3. This means there must be a con-
straint between the new variables that expresses this redundancy. This new constraint actually
comes from equation (2.11) because we did not take into account that Kab = Kba. Inverting
the expressions (2.10) and (2.11) in order to write Kab in terms of Ea

i and Ki
a, it can be shown

that the condition Kab = Kba reduces to

Gi(E
a
j , K

j
a) := ϵijkE

ajKk
a = 0. (2.12)

This is called the “Gauss constraint”, and it is a direct consequence of the introduction of the
variables (Ei

a, K
a
i ) to parameterize the phase space of general relativity. Therefore, to use the

new variables we must to include this additional constraint in the action of the theory. With
all this, the action of General Relativity becomes

S[Ea
j , K

j
a, Na, N,N

j] =
1

κ

∫
dt

∫
Σ

d3x
[
Ea

i K̇
i
a −NbV

b(Ea
i , K

i
a)−NS(Ea

i , K
i
a)−N iGi(E

a
j , K

j
a)
]
,

(2.13)

10



2. Canonical Loop Quantum Gravity

where Nj := ebjNb and the internal indices i, j, k are raised and lowered using the three-
dimensional metric δij. The explicit form of the scalar and vector constraints in terms of
the new variables can be obtained using the definitions presented above, but such expressions
are not necessary for us and can be found in [31]. The Poisson brackets between the new
variables are

{
Ea

j (x), K
i
b(y)

}
= κδab δ

i
jδ(x− y)

{
Ea

j (x), E
b
i (y)

}
=
{
Kj

a(x), K
i
b(y)

}
= 0. (2.14)

2.2.1 The Ashtekar-Barbero connection variables

Both the densitized triad (2.10) and its conjugate momentum Ka
i transform in the vector

representation of SO(3). There exists a so(3)-connection that is compatible with the triad.
This connection is called the spin connection Γi

a and is characterized as the solution of Cartan’s
structure equations:

∂[ae
i
b] + ϵi jkΓ

j
[ae

k
b] = 0. (2.15)

We can write the solution to the previous equation in terms of the components of the triad as
follows:

Γi
a = −1

2
ϵ ij
k ebj

(
∂[ae

k
b] + δklδmse

c
l e

m
a ∂be

s
c

)
, (2.16)

where eai is the inverse triad (eai e
j
a = δji ). With the aim of quantization in mind, we introduce

another set of variables; we define a new connection Ai
a given by:

Ai
a := Γi

a + γKi
a, (2.17)

where γ ̸= 0 is a real number called the Immirzi parameter. The most important fact about this
variable is that it is canonically conjugate to Ei

a. The Poisson brackets between the variables
(Ei

a, A
i
a) (called the Ashtekar-Barbero variables) are

{
Ea

j (x), A
i
b(y)

}
= κγδab δ

i
jδ(x− y)

{
Ea

j (x), E
b
i (y)

}
=
{
Aj

a(x), A
i
b(y)

}
= 0, (2.18)

Using the connection variables, the action takes the form

S[Ea
j , A

j
a, Na, N,N

j] =
1

κ

∫
dt

∫
Σ

d3x
[
Ea

i Ȧ
i
a −N bVb(E

a
j , A

j
a)−NS(Ea

j , A
j
a)−N iGi(E

a
j , A

j
a)
]
,

(2.19)
and the constraints, in terms of the new variables, are explicitly given by

Vb(E
a
j , A

j
a) = Ea

jF
j
ab −

(
1 + γ2

)
Ki

bGi, (2.20)

S(Ea
j , A

j
a) =

Ea
i E

b
j√

det(E)

(
ϵijkF

k
ab − 2

(
1 + γ2

)
Ki

[aK
j
b]

)
, (2.21)
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Gi(E
a
j , A

j
a) = DaE

a
i , (2.22)

where F i
ab := ∂aA

i
b − ∂bA

i
a + ϵi jkA

j
aA

k
b is the curvature of the connection Ai

a, and DaE
a
i =

∂aE
a
i + ϵ k

ij A
j
aE

a
k is the covariant divergence of the densitized triad. These constraints are first

class constraints [32] that not only impose conditions among the canonical variables but also
generate infinitesimal gauge transformations. The phase space variables (Ai

a, E
b
j ) constitute a

set of 18 variables, but we also have seven constraints among them. Therefore we end up with
11 variables necessary to coordinatize the surface on the phase space where the above seven
conditions hold. On that surface, the above constraints generate a seven-parameter family of
gauge transformations, and this reduces the amount of independent canonical variables to only
four. Therefore the resulting number of physical degrees of freedom is two.

The constraint (2.22) is formally equal to the Gauss constraint of a Yang-Mills theory [1,
2, 6, 7, 29]. If we ignore the constraints (2.20) and (2.21), the phase space variables (Ai

a, E
b
j )

together with the Equation (2.22) characterize the physical phase space of a SU(2) Yang-Mills
theory [6, 7]. The gauge field is given by the connection Ai

a and its canonical momentum is
Eb

j . Standard Yang-Mills theory is defined over a fixed background metric, and its dynamics
is encoded in a non-vanishing hamiltonian density. On the other hand, General Relativity is
a background-independent field theory, and its hamiltonian density, according to the canonical
formalism sketched out here, is on-shell vanishing because is a linear combination of constraints.
The dynamics is encoded in the constraint equations (2.20) to (2.22). In this sense general rel-
ativity can be regarded in the new variables as a kind of background-independent close relative
of a SU(2) Yang-Mills theory [2, 6, 7]. This similarity will allow us the implementation of
quantization techniques that are natural in the context of Yang-Mills theories.

Before jumping to the geometric interpretation of the Ashtekar-Barbero variables, we will write
the gauge transformations generated by the constraints and the algebra that they satisfy. More
details can be found in [1, 2, 3, 6, 7].

The Gauss law (2.22) generates local SU(2) transformations over the fields Ai
a and Ea

i . To
see it, let us define the smeared version of (2.22) as [1, 3, 7]:

G(α) :=

∫
Σ

αi(x)Gi(E
a
j , A

j
a)d

3x, (2.23)

where αi are three arbitrary smooth smearing functions defined on Σ, such that the integral on
the right-hand side is well defined. Thus, we find that [1, 3, 6, 7]

δGA
i
a =

{
Ai

a, G(α)
}
= −Daα

i δGE
a
i = {Ea

i , G(α)} = [E,α]i , (2.24)

If we write Aa = Ai
aτi ∈ su(2) and Ea = Ea

i τ
i ∈ su(2) where τi are generators of SU(2), the

finite version of the previous transformations would be

Ãa = gAag
−1 + g∂ag

−1 Ẽa = gEag−1, (2.25)

which is how the connection and the electric field transform under gauge transformations in a
Yang-Mills theory.
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2. Canonical Loop Quantum Gravity

The vector constraint (2.20) generates three-dimensional diffeomorphisms on Σ. To prove it we
define the smeared vector constraint:

V (Na) :=

∫
Σ

NaVa(A
i
a, E

a
i )d

3x, (2.26)

where Na is a test vector field. The action of such smeared constraint on the canonical variables
is given by

δVA
i
a =

{
Ai

a, V (Na)
}
= LNA

i
a δVE

a
i = {Ea

i , V (Na)} = LNE
a
i , (2.27)

where LN denotes the Lie derivative in the Na direction. The finite version of these transfor-
mations becomes the action of finite diffeomorphisms acting on Σ [7].

Finally, the scalar constraint (2.21) generates coordinate time evolution. The total hamiltonian
H[α,Na, N ] of general relativity can be written as

H(α,Na, N) = G(α) + V (Na) + S(N), (2.28)

where

S(N) =

∫
Σ

NS(Ai
a, E

a
i )d

3x, (2.29)

and N ∈ C∞(Σ) is an arbitrary smooth real density defined on Σ.

With the help of the smeared constraints, we can find the constraint algebra of General Rela-
tivity in the new variables, that is given by [2, 3, 6, 7, 33]

{G(α), G(β)} = G([α, β]), (2.30)

where α = αiτi ∈ su(2), β = βiτi ∈ su(2) and [α, β] is the Lie bracket in su(2).

In addition, we have

{G(α), V (Na)} = −G(LNα), (2.31)

{G(α), S(N)} = 0, (2.32)

{V (Na, V (Ma))} = V ([N,M ]a), (2.33)

where [N,M ]a = N b∂bM
a −M b∂bN

a is the vector field commutator.

Additionally, we have

{S(N), V (Na)} = −S(LNN), (2.34)

and finally

13



A new discrete model for Classical General Relativity

{S(N), S(M)} = V (S)a + terms proportional to the Gauss constraint, (2.35)

where we are omitting terms proportional to the Gauss constraint (the complete expression can
be found in [33]), and

Sa :=
Ea

i E
b
jδ

ij

|det(E)|
(N∂bM −M∂bN) . (2.36)

2.2.2 The geometry of the three-surface Σ

Having defined a new set of variables to parametrize the phase space of General Relativity,
we can give a geometrical interpretation of such variables that will be very important in the
definition of the quantum theory. The connection Ai

a provides a definition for the parallel
transport of SU(2) spinors defined on the manifold Σ. If l : J → Σ, with J ⊆ R an interval, is
a curve on Σ, the holonomy of Ai

a along l is defined as [7, 29]

U [A, l] = Pexp

(∫
l

A

)
:=

∞∑
n=0

(−1)n

n!
P

(∫ t

0

A(l
′
(s))ds

)
. (2.37)

In this way, U [A, l] ∈ SU(2).

The densitized triad (also called the gravitational electric field because of its similarity with
the electric field of Yang-Mills theories [1, 7]) encodes the Riemannian geometry of Σ. That
means that any geometrical quantity in such hypersurface can be written as a functional of Ea

i .
For example, consider a two-dimensional surface S ⊂ Σ parametrized as xa = xa(σ1, σ2), where
(σ1, σ2) are local coordinates on S. The normal to such hypersurface is given by

na = ϵabc
∂xb

∂σ1

∂xc

∂σ2
. (2.38)

Hence, the area of S is given by

AS[E
a
i ] =

∫
S

√
Ea

i E
b
jδ

ijnanb dσ
1dσ2. (2.39)

Because of this, we can say that “the area of a surface is the flux of (the norm of) the gravita-
tional field across the surface”, see [1].

Analogously, the volume of a three-dimensional regionR on Σ parametrized as xa = xa(σ1, σ2, σ3),
where (σ1, σ2, σ3) are local coordinates on R, is given by

VR[E
a
i ] =

∫
R

√
|detE|dσ1dσ2dσ3. (2.40)

These formulas for the area and volume will be very important in the quantum theory.
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2. Canonical Loop Quantum Gravity

2.3 Canonical quantization of gravity

As we have seen, the Hamiltonian formulation of general relativity shows that gravity is a
totally constrained field theory and, with the help of the Ashtekar-Barbero variables, we could
write it as a constrained field theory of connections over a three-dimensional manifold. In
order to proceed with the quantization of the theory, we will use the standard quantization
methods employed in other constrained theories, such as those used to quantize Yang-Mills
theories [2, 3, 6, 29, 32] (even though Yang-Mills theories have nonzero Hamiltonians). This
way of working assumes that general relativity and quantum theory still remain valid in scales
that are beyond the scales where they have been tested and that a mix of both is what is
necessary for describing the quantum gravity regimes. In LQG is assumed that, as mentioned
in [34], extrapolation is the most effective tool in science. In this way, up to contrary empirical
indications, that are always possible, a good bet is that what we have learned so far may well
continue to hold. General relativity and quantum theory are therefore the well-established
physical ground of LQG [34].

2.3.1 Non-perturbative quantization strategy

The canonical quantization of a constrained field theory, written in the Hamiltonian formalism,
can be sketched as follows [2, 6, 7, 32]

a) Find a representation of the phase space variables of the theory as operators in an kine-
matical Hilbert space Hkin, satisfying the commutation relations that are obtained with the
replacement { , } → −i/ℏ[ , ].

b) Promote the constraints to self-adjoint operators acting in Hkin. In the case of gravity, we
must quantize the seven constraints Gi(A,E), Va(A,E), and S(A,E).

c) Characterize the space of solutions of all the quantized constraints, and define the inner
product that defines a notion of physical probability. This defines the physical Hilbert space
Hphys.

d) Find a complete set of gauge invariant observables, that is, a complete set of operators
commuting with all the constraints. They will represent the physical measurable quantities
of the theory.

2.3.2 The kinematical Hilbert space

In order to quantize the canonical formulation of General Relativity, we must first define the
kinematical Hilbert space. The canonical variables associated with the classical theory are
the connection Ai

a and the electric field Ea
i . We choose the connection A as the configuration

variables. This choice has important advantages as we will see. The kinematical Hilbert space
consists of a suitable set of functionals of the connection ψ[A], which are square integrable with
respect to a suitable measure µ[A].

In order to define the kinematical Hilbert space, we begin considering the space of smooth
three-dimensional su(2) connections A defined everywhere on Σ except possibly at isolated
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points. We will denote such space as G. Let {τi = −(i/2)σi} be a basis for su(2) with σi the
Pauli matrices. We will then write:

A(x) = Ai
a(x)τidx

a. (2.41)

Let γ be an oriented, piecewise smooth curve on Σ, and let U [A, γ] ∈ SU(2) be the holonomy
of A along γ. For a given γ, the holonomy is a functional defined on G. Consider an ordered
collection Γ of n smooth oriented curves {γk}nk=1 in Σ and a smooth real function

f : SU(2)× SU(2)× · · · × SU(2) → R

of n group elements. The couple (Γ, f) defines a functional on G given by

ΨΓ,f [A] := f (U(A, γ1), . . . , U(A, γn)) . (2.42)

We define S as the space of all functionals ΨΓ,f [A], for all Γ and f . This is called the space
of “cylindrical functions”. Changing the order or the orientation of a graph is the same as
changing the order of the arguments of the function f or replacing arguments with their inverse.

If two functionals ΨΓ,f [A] and ΨΓ,g[A] are defined in the same oriented graph Γ, we define

⟨ΨΓ,f |ΨΓ,g⟩ :=
∫
SU(2)

f(U1, . . . , Un)g(U1, . . . , Un)dU1 . . . dUn, (2.43)

where dU is the Haar measure on SU(2) [35].

We can extend the scalar product defined above to functionals defined on the same graph
but with different order or orientation [1, 3]. We can also extend it to functionals defined on
different graphs. If we have two couples (Γ, f) and (Γ̃, f̃), if Γ is the union of the ñ curves of
Γ̃ and other m curves, and if f(U1 . . . Uñ, Uñ+1, . . . Uñ+m) = f̃(U1, . . . , Uñ), then ΨΓ,f = ΨΓ̃,f̃ .
Using this fact, we can rewrite any two functionals ΨΓ1,f1 and ΨΓ1,f2 as functional ΨΓ,f , and
ΨΓ,g having the same graph, where Γ = Γ1 ∪ Γ2 [1]. Thus, (2.43) is a valid definition for any
two functionals in S

⟨ΨΓ1,f2|ΨΓ2,f2⟩ := ⟨ΨΓ,f |ΨΓ,g⟩. (2.44)

In this way, we define the kinematical Hilbert space Hkin of LQG as the completion of S [36]
in the norm defined by the scalar product (2.43)4.

The main reason for this definition is that the scalar product defined in (2.43) is invariant
under diffeomorphisms and local gauge transformations.

The kinematical Hilbert space Hkin can be seen as a space of square integrable functionals
[3]. As is shown in [3], Hkin ≃ L2[A, µo], where A is an extension of the space of smooth
connections on Σ that includes distributional connections [1]. The measure µo is defined in this
space and is called the Ashtekar-Lewandowski measure [3].

4It is, however, crucial that the space of cylindrical functions be invariant under diffeomorphisms on Σ, and
that it is closed under multiplication (for 2.43 to be defined). Generally, this is not true for the piecewise smooth
graphs. See [47], [48].
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The space Hkin has some special characteristics that are very important in Loop Quantum
Gravity. We will mention some of these characteristics below, and more details can be found
in [1, 3].

� The set of cylindrical functions with support in a given graph Γ is a subspace H̃Γ of Hkin.
In fact, we have that H̃Γ = L2[SU(2)n], where n is the number of paths in Γ. If Γ1 ⊆ Γ2,
then the Hilbert space H̃Γ1 is a proper subspace of H̃Γ2 [1, 3].

� We can find an orthonormal basis for Hkin with the help of the Peter-Weyl theorem. The
irreducible representations of SU(2) are labeled by a half-integer number j. We write the
matrix elements of the representation j as

R
(j)α

β(U) = ⟨U |j, α, β⟩. (2.45)

For each graph Γ, choose an ordering and an orientation of its edges. By the Peter
Weyl-theorem, if Γ has n paths, an orthonormal basis for H̃Γ

|Γ, jk, αk, βk⟩ := |Γ, j1, . . . , jn, α1, . . . , αn, β1, . . . , βn⟩ (2.46)

is given by

⟨A|Γ, jk, αk, βk⟩ = R
(j1)α1

β1
(U [A, γ1]) . . . R

(jn)αn

βn
(U [A, γn]), (2.47)

where U [A, γ] is the holonomy of the connection A along the path γ. Note that in the
definition of the basis we are assigning a SU(2) irreducible representation to each edge in
Γ.

An orthonormal basis for the space Hkin is given by the states |Γ, jk, αk, βk⟩, for all the
ordered and oriented paths Γ, where the spins jk are never zero.

� As we have already mentioned, Hkin can be seen as a space of square integrable functions,
as is usual for the Hilbert spaces in the quantum theory, because there exist a Hilbert
spaces isomorphism Hkin ≃ L2[A, µo].

Before presenting the action of the quantum constraints on the space Hkin, it is important
to emphasize here that the scalar product defined in (2.43) is invariant under the action of
SU(2) gauge transformations and three-dimensional diffeomorphisms acting on Σ. We define
an extended diffeomorphism f : Σ → Σ as a continuous invertible function that both it and
its inverse are everywhere C∞, except possibly at a finite number of isolated points on Σ. We
denote as Diff (∗Σ) the group of extended three-dimensional diffeomorphisms over Σ. Thus, as
is explicitly shown in [1, 3], Hkin carries a unitary representation of local SU(2) gauge trans-
formations and Diff (∗Σ). The action of the elements of Diff (∗Σ) on the members of the form
Ψ[A] is given by UϕΨ[A] = Ψ((ϕ∗)−1 A).

The set of functions ΨΓ,f [A] transforms under SU(2) gauge transformations and extended
diffeomorphisms in the following way.
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Let λ : Σ → SU(2) be a smooth local SU(2) gauge transformation defined on Σ. The connection
A then transforms inhomogeneously under such a transformation [1] as follows

A→ Aλ = λAλ−1 + λdλ−1.

For a couple (Γ, f), define

fλ(U1, . . . , UL) := f
(
λ(xγ1f )U1λ

−1(xγ1i ), . . . , λ(xγLf )ULλ
−1(xγLi )

)
where xγi and xγf are the initial and final points of γ, respectively. The transformation of the
quantum states is given by [1]

ΨΓ,f (A) → ΨΓ,f (Aλ−1) = ΨΓ,fλ−1 (A).

Under an extended diffeomorphism ϕ ∈ Diff ∗(Σ), a cylindrical function ΨΓ,f [A] is sent to
a cylindrical function ΨϕΓ,f [A], that is to say one that is based on the shifted graph.

2.3.3 Operators on Hkin

The next step to quantize the gravitational theory is to define the operators corresponding to
the canonical variables acting on Hkin. The two canonical variables in the classical theory are
the SU(2) connection Ai

a and its conjugate momenta Ea
i . These are the basic building blocks for

constructing the rest of the important quantities of the theory. We have chosen the connection
Ai

a as our generalized coordinate, so the conjugate momenta is (1/8πG)Ea
i , and the quantum

states on Hkin are functionals of A. We then define the two operators

Âi
a(x) (Ψ[A]) := Ai

a(x)Ψ[A],

1

8πG
Êa

i (Ψ[A]) := −iℏ δ

δAi
a(x)

Ψ[A]
(2.48)

acting on the elements of Hkin. We will choose units so that 8πG = 1. The first is a multiplica-
tive operator, and the second is a functional derivative. We must indicate that these operators
send the elements Ψ[A] out of the space Hkin. In particular, according to [1, 2], they are not
well defined onHkin. To fix these problems we will not take A and E but some functions of them.

First, let us consider the connection Ai
a(x). The holonomy U [A, γ] can be transformed into

a well-defined operator acting on S (the space of cylindrical functions). Let UA
B(A, γ) be the

matrix elements of U(A, γ). Thus, according to [1], we define Û(A, γ) as(
Û(A, γ)Ψ

)
[A] = UA

B(A, γ)Ψ[A]. (2.49)

If Ψ[A] ∈ S, then the right-hand side is also in S [1]. Moreover, as is mentioned in [1, 2], any
cylindrical function of the connection is immediately well-defined as a multiplicative operator
in Hkin.

Now, to define an operator corresponding to Ea
i , let us consider a two-dimensional surface

σ embedded on the three-dimensional manifold Σ. If σ⃗ = (σ1, σ2) are coordinates on the
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Figure 2.1: A curve that intersects the surface at a point P

surface σ, then the surface is defined by (σ1, σ2) → xa(σ1, σ2). Now consider the operator

Êi(σ) := −iℏ
∫
σ

dσ1dσ2na(σ⃗)
δ

δAi
a(x(σ⃗))

, (2.50)

where

na(σ⃗) = ϵabc
∂xb(σ⃗)

∂σ1

∂xc(σ⃗)

∂σ2
(2.51)

is the normal one-form on σ. To show how the operator Ei(σ) acts on the holonomy, U [A, γ]
let us first consider that the curve γ along which we calculate the holonomy has two end points
that do not lie on the surface σ. Let us also consider that the curve γ crosses the surface at
just one point, and let P be the intersection point (if any), see Figure 2.1. The curve is then
separated into two parts by P , and we can write γ = γ1 ∪ γ2.

The action of the operator Êi(σ) on U(A, γ) is, according to [1] and [2], given by

Êi(σ)U(A, γ) = ±iℏU(A, γ1)τiU(A, γ2). (2.52)

Therefore, the operator simply inserts the matrix ±iℏτi at the point of intersection. The sign
is dictated by the relative orientation of the surface with respect to the curve.

The previous results can be generalized to multiple intersections. Using P to label the in-
tersection points, we have [1]

Êi(σ)U(A, γ) =
∑

P∈(σ∩γ)

±iℏU(A, γP1 )τiU(A, γP2 ), (2.53)

and the action of the operator on the holonomy in an arbitrary SU(2) representation j is given
by

Êi(σ)R
j(U(A, γ)) = ±iℏRj(U(A, γ1))τ

(j)
i Rj(U(A, γ2)), (2.54)

where τ
(j)
i is the SU(2) generator in the spin-j representation.

The special case where the curve γ or part of it lies on the surface σ is discussed in [1].

In summary, instead of the operators given in (2.48), we consider the couple of operators
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Û(A, γ) and Êi(σ). Û(A, γ) corresponds to the holonomy of the connection A along the curve

γ. Êi(σ) corresponds, according to [1, 2], to the flux of Ea
i through a two-dimensional surface.

These operators, both defined on the kinematical Hilbert space Hkin, form a representation
(called the holonomy-flux representation) of the classical Poisson algebra defined by the holon-
omy of A and the flux of E [1, 2, 3]. A very important result in loop quantum gravity is the
proof of a unicity theorem for this representation; under some assumptions, this holonomy-flux
representation is unique. See [1, 2, 3].

2.3.4 Solutions of the kinematical constraints

Now that we have defined the kinematical Hilbert space Hkin and have found a representation
of the phase space variables as operators acting in Hkin, we must to promote the constraints to
self-adjoint operators in Hkin. Specifically, we must quantize the seven constraints Gi(A,E),
Va(A,E), and S(A,E), then characterize the space of solutions of all the quantized constraints,
and finally define the inner product that defines a notion of physical probability. This will
define the physical Hilbert space Hphys.

Let us first consider the set of kinematical constraints, which consist only of the Gauss and
the vector constraint. The kinematical state space is a space of functionals of the connection
Ψ[A], but the constraints generate transformations over Σ. Therefore we need a space of states
that are functionals invariant under these transformations. We need functionals invariant under
local SU(2) gauge transformations and three-dimensional extended diffeomorphisms.

Gauge invariant states

Let us start with the Gauss constraint. Call H0 the space of states in Hkin that are invariant
under local SU(2) transformations. In order to characterize the vector space H0, it is enough
to find a basis, in this case an orthonormal basis, of such a space [14]. A basis of H0 is given
by the spin network states.

Consider a graph Γ in Σ. We will call nodes to the end points of the oriented curves in Γ.
Let us assume that Γ is a set of curves that, if they intersect, do it only on their nodes. Thus
Γ can be considered a set of points in Σ joined by smooth curves γ, and these curves will be
called links. The outgoing multiplicity of a node, denoted as mout, will be the number of links
on Γ that begin in that node, and the ongoing multiplicity, denoted by min, will be the number
of links that end in that node. See [1]. The valence of the node will be the sum min +mout.

Given a graph Γ in Σ with an ordering and orientation, let jl be an assignment of an SU(2)
irreducible representation, different from the trivial one, to each link l, and let in be an as-
signment of an intertwiner to each node. The intertwiner in associated with a node is between
the representations associated with the links adjacent to the node. The triplet S= (Γ, jl, in) is
called a spin network in Σ. The choice of (jl, in) is called a coloring of the links and nodes.

In order to define the spin network states, let us consider a spin network S= (Γ, jl, in) with M
links and N nodes. The state |Γ, jk, αk, βk⟩ defined on (2.46) has M indices αk and M indices
βk. The N intertwiners vik have precisely a set of indices dual to these, so we can contract the
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indices of the state |Γ, jk, αk, βk⟩ with the indices of the intertwiners to obtain a gauge-invariant
state in the form

|S⟩ :=
∑
αk,βk

v
β1...βn1
i1 α1...αn1

v
βn1+1...βn2
i2 αn1+1...αn2

. . . v
βnN−1+1...βM

iN αnN−1+1...αM
|Γ, jk, αk, βk⟩. (2.55)

The expression (2.55) defines the spin network state corresponding to the spin network S=
(Γ, jl, in), and we denote it by |S⟩. The pattern of contraction for the indices is dictated by the
connectivity of the graph in the following way: the index αk of the link k is contracted with
the corresponding index of the intertwiner vis of the node s where the link k starts. Similarly,
the index βk of the link k is contracted with the corresponding index of the intertwiner vis of
the node s where the link k ends. The states defined in (2.55) are SU(2) gauge invariant. As
a functional of the connection A, the spin network state can be written in the following way:

ΨS[A] = ⟨A|S⟩ =

(⊗
k

R(jk) (U [A, γk])

)
·

(⊗
s

is

)
, (2.56)

where the dot on the right-hand side indicates contraction between dual spaces. Furthermore,
on the left of the dot, the tensor product has indices in the space ⊗k

(
H∗

jk
⊗Hjk

)
, and on the

right side of the dot, the tensor product of the intertwiner has indices on the dual of this space.

When we choose the intertwiner is as belonging to an orthonormal basis in the space of in-
tertwiners associated with a node, the set of spin network states |S⟩ is an orthonormal basis of
the space H0 with respect to the inner product defined in (2.43) (as is indicated in [1, 2, 3]).
This basis is labeled by spin networks S= (Γ, jl, in).

It is important to make some observations about the spin network states; the first is that
we have assumed that the spins jl assigned to the links of Γ are all different from zero. A spin
network containing a link with jl = 0 is identified with the spin network that does not contain
the link l. The second important observation is that the spin network basis is highly non-unique
because it depends on the (otherwise arbitrary) choice of a basis in the space of intertwiners at
each node. Finally, notice that, in the basis |S⟩ = |Γ, jl, in⟩, the label Γ runs over all unoriented
and unordered graphs, but in the definition of the coloring, Γ is an oriented and ordered graph
[1, 2].

The space S0 is generated by finite linear combinations of spin network states, and such
space, according to [1], is dense ([36]) in H0.

To be more, concrete we will give an example of a spin network state.
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Figure 2.2: A somewhat complicated spin network with four trivalent nodes.

Let us say that Γ has four nodes n1, n2, n3 and n4, as well as six links. Some of the links will be colored
by j = 1/2, and others will be colored by j = 1. The specific coloring, ordering and orientation of the spin
network can be seen in Figure 2.2. At each node we must consider the tensor product of two fundamental and
one adjoint representation of SU(2). As shown in [1], the tensor product of these representations contains a
single copy of the trivial representation; therefore there is only one intertwiner. That intertwiner is given by
the triple of Pauli matrices:

vi,AB =
1√
3
σi,AB

since these have precisely the invariance property

(R(U))i jU
A
DUB

Dσj,CD = σi,AB .

Here (R(U))i j is the adjoint representation, with i, j = 1, 2, 3 vector indices and UA
C the fundamental rep-

resentation, with A,B = 0, 1 spinor indices. Following the prescription given above, the corresponding spin
network state is

ΨS [A] =
1

6
σk,AC (U [A, γ1])

A
B (U [A, γ2])

C
D σj,BD

(
R(1)(U [A, γ3])

)i
j

σi,EG (U [A, γ4])
E
F (U [A, γ5])

G
H σl,FH

(
R1(U [A, γ6])

)k
l
.

Diffeomorphism invariance

Now we examine the invariance under three-dimensional diffeomorphisms. It is important to
observe that the spin network states, as defined, are not invariant under diffeomorphisms. A
diffeomorphism moves the graph around on the manifold but may also leave the graph Γ in-
variant and change the orientation and/or the ordering of the links.

An important point that must be considered is that, as indicated in [1] and [7], the diffeo-
morphism invariant states are not contained in the space Hkin (and consequently they are
not contained in the space H0). Instead, they belong to S∗

0 . This is the dual space of S0.
The elements of S0 are linear functionals Φ with domain on S0. The action of the extended
diffeomorphisms group is defined in the elements of S∗

0 by the following expression:

(UϕΦ) (Ψ) := Φ(Uϕ−1Ψ). (2.57)

This means that an element Φ of S∗
0 invariant under diffeomorphisms is a linear functional

defined on S0 such that
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Φ (UϕΨ) := Φ(Ψ). (2.58)

We will call Hdiff the space of such functionals.

Therefore, to characterize and understand the structure of Hdiff , we will follow the path indi-
cated in [1] and [7] and define a map PD : S0 → S∗

0 given by

(PDΨ) (Ψ
′
) :=

∑
Ψ′′=UϕΨ

⟨Ψ′′|Ψ′⟩, (2.59)

where the sum is performed over all the states Ψ
′′ ∈ S0 for which there exists an element

ϕ ∈ Diff∗ such that Ψ
′′
= UϕΨ. As is proved in [1], the sum in (2.59) is always finite, and PDΨ

is an element in S∗
0 invariant under extended diffeomorphisms. If we write

([Ψ]| := PDΨ =
∑

Ψ′′=UϕΨ

⟨Ψ′′ | =
∑

ϕ∈Diff∗

⟨UϕΨ|, (2.60)

it can be shown [1, 7] that this expression characterizes all the solutions of the equation (2.58).
Then, the closure in the norm of the image of PD is the space Hdiff . States in S0 that are
related by a diffeomorphism are sent by PD to the same element of Hdiff

PDΨ = PD(UϕΨ). (2.61)

The inner product needed to make the space of invariant states under diffeomorphisms a Hilbert
space is defined as

⟨PDΨ|PDΨ
′⟩diff := (PDΨ) (Ψ

′
). (2.62)

As mentioned in [1] and [7], the previous expression is well defined among diffeomorphism
equivalent classes of states under the action of extended diffeomorphisms.

We can find an orthonormal basis for the space Hdiff and, at the same time, understand
the role of the spin networks in all this, if we consider that a diffeomorphism sends a spin
network state |S⟩ to an orthogonal state or to a state obtained by a change in the order of the
orientation of the links, as is done in [1]. We denote gk|S⟩ as the states obtained from |S⟩ by
changes in the orientation or the ordering of the graph Γ that originally defines |S⟩ and that
can be obtained from a diffeomorphism. It can be shown [1] that the maps gk form a discrete
group, that we will be called GΓ, and therefore the range of the index k is finite. We then have

⟨S|PD|S
′⟩ =

{
0 if Γ ̸= ϕΓ

′
,∑

k⟨S|gk|S
′⟩ if Γ = ϕΓ

′
.

(2.63)

An equivalent class K of graphs Γ under diffeomorphisms is called a “knot class” [1, 6, 7, 13].
Expression (2.63) shows that two spin networks S and S

′
define orthogonal states in Hdiff ,

unless they are defined on graphs Γ and Γ
′
belonging to the same knot class K. Therefore,

the basis states in Hdiff are labeled by knot classes K. Let HK be the subspace of Hdiff

spanned by the basis elements labeled by the same knot classes K. The states in HK are
then distinguished by only the coloring of their links and nodes, but the colorings are not
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necessarily orthonormal [1]. Therefore, to find an orthonormal basis in HK , we must also di-
agonalize the quadratic form defined in the expression (2.63). Let |s⟩ = |K, c⟩ be the resulting
states. The label c is discrete and, except for certain complications with the discrete structure
of the group GΓ (as in [1, 2]), it corresponds to the coloring of the links and the nodes of Γ.
The states |s⟩ = |K, c⟩ are called spin knot states, or just s-knot states, and they represent an
orthonormal basis for the space Hdiff . They generate all the solutions for the vector constraint.

The set of s-knot states is a discrete (countable) orthonormal basis [1, 7], and therefore the
space Hdiff is a separable Hilbert space. The definition of separable Hilbert space can be found
for example in [36]. As mentioned in [1] The “excessive size” of the kinematical Hilbert space
Hkin (that was originally non-separable) turns out to be just a gauge artifact.

With the definition of the space Hdiff , we have finished with the formal characterization of
the solutions of all the quantum kinematical constraints.

2.4 Quantum geometry of spacetime

In the previous section, we showed how to define the kinematical Hilbert space Hkin by choosing
the connection Ai

a as our configuration variable. At the classical level, we replaced the algebra
generated by (Aa

i , E
a
i ) by another called the holonomy-flux algebra. We introduced suitable

operators acting on the elements of Hkin, which constitute a representation of such classical
algebra. In addition, we characterized the space of solutions of the Gauss and vector constraints.

We have not completely defined the quantum theory of the gravitational field because have
not quantized the Hamiltonian constraint (2.21). However we can extract some interesting
features of the theory already constructed at its kinematical level.

In this section, we will show how the quantization of the triad leads to the possibility of the
introduction of a set of geometrical operators that contain one of the main physical predictions
of loop quantum gravity: a discreteness of the spacetime geometry.

The area operator

The simplest geometric operator corresponds to the area of a two-dimensional surface S ⊂ Σ,
which classically depends on the triad Ea

i as shown in the expression (2.39). We can introduce
a decomposition of the surface S into two-cells and write the integral defining the area as the
limit of a Riemann sum5

AS = lim
N→∞

AN
S , (2.64)

where the Riemann sum can be expressed as

5As mentioned in [37]: The moral is that anything which looks like a good approximation to an integral really
is, provided that all the lengths ti − ti−1 of the intervals in the partition are small enough.
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AN
S :=

N∑
I=1

√
Ei(SI)Ei(SI), (2.65)

where N is the number of cells and Ei(SI) is the flux of the classical field Ea
i through the cell

SI . Equation (2.64) represents a “regularization” of the corresponding classical area operator.
In fact, as mentioned in [1] and [7], the previous limit defines the area of a surface in classical
geometry. The quantum area operator then becomes

ÂS := lim
N→

ÂN
S (2.66)

where, to define ÂN
S , we replace the classical quantity Ei(SI) in (2.65) with Êi(SI) given in

(2.50).

Figure 2.3: The regularization given in the expression (2.66) is defined so that in the limit
where N → ∞ each cell is punctured by at most one edge. The simplest eigenstate of the area
of S is shown.

To evaluate the action of (2.66) on a spin network state, we will choose the cellular decompo-
sition so that in the limit N → ∞ each SI is punctured at most at a single point by either an
edge or a node (see Figure 2.3). It is also important to consider that the action of Êi(SI)Ê

i(SI)
on R(j) (U [A, γ]) is given by [1, 2, 6, 7]

Êi(SI)Ê
i(SI)

(
Rj (U [A, e])

)m
n
=
(
8πl2pγ

)2
(j(j + 1))

(
Rj (U [A, e])

)m
n

(2.67)

where lp is the Planck length, γ is the Immirzi parameter, and the edge e is of an spin network
that punctures SI . In (2.67) it is considered that there is only one intersection P between the
surface S and the spin network and that the intersection is performed by the edge e that carries
a SU(2) representation j. It is also assumed that the intersection point does not coincide with a
node of the spin network. The remaining important case is when a spin network node is on SI .
As is explicitly shown in [2], the action of the operator Êi(SI)Ê

i(SI) is still diagonal in this case.

Thus, the action of the area operator can be diagonalized by the spin network states. Spin
network states are eigenvectors of the quantum area operator, and we have that

ÂS|S̃⟩ = 8πl2pγ
√
j(j + 1)|S̃⟩ (2.68)

for a single puncture, where |S̃⟩ denotes a spin network state. More generally, we have that
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ÂS|S̃⟩ = 8πl2pγ
∑
p

√
jp(jp + 1)|S̃⟩, (2.69)

where the sum is over the intersection points p of the given spin network state |S̃⟩ with the
surface S.

When some of the nodes lay on S the expression for the eigenvalues of ÂS is also known;
see for example [1] or [2]. It is important to notice that the spectrum of the area operator de-
pends on the value of the Immirzi parameter γ. This, in fact, is a general property of geometric
operators in loop quantum gravity.

The smallest non-vanishing eigenvalue in (2.69), considering that the Immirzi parameter is
equal to 1, is:

A0 = 4
√
3πℏGc−3 ∼ 10−66cm2 (2.70)

This is a sort of quanta of area, the elementary and smallest unit of area in space, of the order
of the Planck area. It is the quanta of area carried by a link in the fundamental representation
j = 1/2. This means that, in the loop quantum gravity framework, there is a sort of minimal
size of physical space at the Planck scale.

The volume operator

A second operator that plays a key role in the geometrical description of spacetime given in
loop quantum gravity is the operator V(R) corresponding to the volume of a region R. As
for the area operator, this quantity requires a bit of work to be defined in the quantum theory
because of the care that must be taken in the definition of the operator products involved in
the expression of detE and in the square root.

As was indicated in 2.2.2, the volume of a three-dimensional region R ⊂ Γ is classically given
by equation (2.40), that can be rewritten as

VR[E
a
i ] =

∫
R

√∣∣∣∣ 13!ϵabcEa
i E

b
jE

c
kϵ

ijk

∣∣∣∣ dσ1dσ2dσ3. (2.71)

Following a similar regularization technique as in the case of the area operator, we can write
the previous equation as the limit of Riemann sums defined in terms of a decomposition of
the region R using three-cells. Thus, we can quantize the regularizated version using the flux
operators given in (2.50) associated to infinitesimal cells

V̂R = lim
N→∞

V̂ N
R , (2.72)

where

V̂ N
R =

N∑
I=1

√∣∣∣∣ 13!ϵabcÊi(Sa
I )Êj(Sb

I)Êk(Sc
I)ϵ

ijk

∣∣∣∣. (2.73)
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The limit N → ∞ is taken by keeping spin network nodes inside a single three-cell. We will
not present the detailed process to arrive to the expression of the volume operator. Instead,
we will mention below some general properties of the volume operator that are important to
consider.

� There are at least two consistent quantizations of the volume operator; see [1, 2, 3, 7].
See also [38]. The differences are the following. i)The constants in front of each operator,
ii)the way the operator sums up the variables for each link, and iii)the absence of the sign
factor in one of the operators. The differences are the result of a different regularization
technique applied to each one, even when both start from the same classical quantity
(equation (2.71)).

� When the volume operator acts on spin network states, the operator does not change the
graph, nor the coloring of the links. The operator only acts on the intertwiners in each
node. In this way, only the nodes contribute to the volume of a region; the volume is
concentrated at the nodes of a spin network [1, 2, 7].

� Nodes with valence three or fewer do not contribute to the volume. A node must be at
least quadrivalent to have a non-vanishing volume [1, 2, 7].

� The volume operators are always well-defined self-adjoint operators with discrete spec-
trum. For each given graph and labeling, it is always possible to choose a basis in of
interwiners that diagonalize the volume operator [1].

With the construction of the area and volume operators in loop quantum gravity, we arrive
at an intrinsic discreteness of physical space at the Planck scale. Such discreteness was long
expected in the framework of quantum gravity. In the context of loop quantum gravity, the
discreteness is not imposed or postulated but is a direct consequence of a straightforward quan-
tization of General Relativity. As mentioned in [1]: “Space geometry is quantized in the same
manner in which the energy of an harmonic oscillator is quantized”. (Or in the same way as
the energy of an hydrogen atom).

As mentioned in [1] and [2], there is some degree of disagreement as to whether the area
and volume operators truly represent physically measurable quantities because they are not
invariant under three-dimensional diffeomorphisms [2]. Some people even mention (as is done
in [2]) that it is far from clear whether the area and volume spectrum are of any operational
significance in the sense of a measurement analysis with rods and clocks. On the other hand,
some people consider (as is done in [1]) the physical significance of the quantities represented
by the area and volume operators as truly measurable quantities. Moreover, they call them a
precise and quantitative prediction of loop quantum gravity that could have indirect effects or
even be verified. In some quantum gravity research works, these results are used as a guide in
the searching for experimental signals of a quantization of the gravitational field [24].

2.4.1 Quantum geometry

The area and volume operators lead to a geometric interpretation of the spin network states as
representing a quantization of the geometry of space.
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Figure 2.4: The graph of a spin network and the ensemble of chunks of space that represents.

We can interpret a spin network with N nodes as a set of N quanta of volume or N chunks of
space. The chunks of space are separated from each other by two-dimensional surfaces. The
area of those surfaces is given by the area operator, which has contributions from each link
that punctures the surface. Two chunks of space are contiguous if the corresponding nodes are
connected by a link of the spin network. If this is the case, then there is an elementary surface
separating them, and the area of such a surface is determinated by the coloring jl of the link l
through the formula (2.68). We obtain an image of the space at the Planck scale, represented
by a spin network, similar to Fig. 2.4.

The intertwiners associated with the nodes are the quantum numbers of the volume, and the
spins associated with the links are the quantum numbers of the area. The volume is concen-
trated in the nodes and the area in the links. The graph Γ establishes the adjacency relations
among the chunks of space. This exotic picture of the space at the Planck scale is in agree-
ment with the direction in which a background independent formulation would be set up. As
mentioned in [7], all the information about the degrees of freedom of the geometry (hence the
gravitational field) is contained in the combinatorial aspects of the graph and in the discrete
quantum numbers labeling area and volume quanta.

We can give a similar but more impressive interpretation of the s-knot states. Such inter-
pretation can be found greatly detailed in [1].

The discreteness of space described by the area and volume operators is compatible with the
smooth geometry picture of the classical theory. The spectrum of the operators grows very
rapidly when one gets to larger geometries because the spacing between eigenvalues decreases
exponentially for large eigenvalues [7].

2.5 Quantization of the Hamiltonian constraint

With the characterization of the solutions of the vector and Gauss constraint, the only remain-
ing constraint to be considered is the Hamiltonian constraint given by (2.21) or its smeared
version given by (2.29).
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In contrast to the Gauss and vector constraints, the Hamiltonian constraint does not have
a simple three-dimensional geometrical meaning, and this makes its quantization more compli-
cated. In the quantization of such a constraint, one needs the volume operator, which has a
quantization that presents some degree of ambiguity.

Even with this difficulties, it has been possible to define some versions of the quantum Hamil-
tonian constraints that are finite and well defined; see for example [1] or[3]. The successful
definition of the quantum Hamiltonian constraint including its coupling with matter fields is
a remarkable achievement of LQG [7]. There are, however, some issues that is important to
emphasize.

There is, in fact, a large degree of ambiguity in the definition of the quantum Hamiltonian
constraint. The nature of the solutions for this constraints and the dynamics critically depends
on these ambiguities [7]. There are factor ordering ambiguities as well. Therefore, instead of
a single theory, we have infinitely many theories that are mathematically consistent. Another
important unsolved issue is whether any of these theories can reproduce general relativity, our
modern theory of classical gravity, in the classical limit [7].

The issues and ambiguities in the definition of the Hamiltonian constraint are also related
with the definition of the observable quantities of the theory. The structure of the problem
suggests the possibility of defining a large variety of physical observables. There are actually
many physical observables that one can construct for a given quantization of the Hamiltonian
constraint [7]. At present, however, it is not clear what could be the physical interpretation of
these observables.

Different avenues of research are being explored to address the issues that arise in the quanti-
zation of the Hamiltonian constraint. The difficulties seem to arise because the 3+1 splitting
breaks the manifest four-dimensional covariance of the theory. Because of this, there has been
a growing interest in approaching the problem of the dynamics by defining a covariant formu-
lation of quantum gravity thorough a path integral quantization approach. The idea is that
one can keep manifest four-dimensional covariance in the path integral formulation. The spin
foam approach is an attempt to define the path integral quantization of gravity using what we
have learned from canonical loop quantum gravity. That will be the subject of the next chapter.

Before finishing this chapter, we should mention an important general characteristic of the
Hamiltonian constraint that will play an important role in the following. The scalar constraint
modifies spin networks by creating (or destroying) new links around nodes (as shown in Figure
2.5), with an that amplitude depends on the details of the action of the volume operator, the
local spin labels and other local features at the nodes [6, 7]
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Figure 2.5: A typical transition generated by the action of the Hamiltonian constraint. The
letters denote the spins of the links.

An important property of the definition of the quantum Hamiltonian constraint is that the
new edges added (or annihilated) are of a very special kind. Not only do the new nodes carry
zero volume, but also they are invisible to subsequent actions of the Hamiltonian constraint [7].
Hence these edges are called exceptional edges.
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Covariant loop quantum gravity

In the last chapter, we presented an attempt to implement the canonical quantization method
to general relativity. We found that, if we rewrite the theory as a theory of connections over
a three-dimensional submanifold, we can advance in the implementation of some steps of the
quantization method. We can define the kinematical Hilbert space and characterize the solu-
tions of two of three constraints that characterize general relativity. On the other hand, we
found several issues in the quantization and implementation of the Hamiltonian constraint and
the definition of the physical inner product.

In this chapter, we present an approach that tries to address the problem of the dynamics
of loop quantum gravity through a path integral formalism. Such approach is called the spin
foam formalism. Because the standard formulation of spin foam models is based on using the
Lorentz connection ω instead of the Ashtekar-Barbero connection A, and in this formalism we
can consider arbitrary regions of space-time surrounded by three-dimensional boundaries, the
formalism is also called covariant loop quantum gravity.

It is important to remark that, as mentioned in [28], the spin foam approach is not only
an attempt to derive the physical Hilbert space of loop quantum gravity; it is also an attempt
to derive a full quantum gravity theory from a path integral approach perspective.

As in the last chapter, the material that we present here is mainly based on [1, 3, 6, 7, 8,
9, 16, 19, 23] and is not exhaustive. Therefore, we will not show the detailed calculations for
arriving at the different results presented here, but we refer the reader to the aforementioned
references.

3.1 The path integral approach

in loop quantum gravity

The idea of using a sum-over-paths formalism in quantum gravity was previously introduced
by Charles Misner and Stephen Hawking [1]. The idea was to attempt defining a path integral
over four-dimensional metrics ∫

D[gµν(x)]e
iSGR[g], (3.1)

where SGR denotes the classical Einstein-Hilbert action. In particular, if we consider initial and
final three-dimensional metrics g and g

′
respectively, then the transition amplitude between

31



A new discrete model for Classical General Relativity

these metrics would be given by

W [g, g
′
] =

∫ g
′

g

D[gµν(x)]e
iSGR[g]. (3.2)

As mentioned in [1], however, it is very difficult to give a reasonable definition of the functional
integral in the context of gravity. There are some attempts that try to define the functional
integral in different ways, for example [49] and [50], which lead to important and interesting
results. Within the framework of loop quantum gravity, an attempt is made to define the path
integral by taking the spin network states as the kinematical quantum states of the gravita-
tional field.

The spin network states are the quantum states of the three-dimensional geometry in canon-
ical loop quantum gravity. They carry the geometrical information of the hypersurface Σ in a
diffeomorphism-invariant way. The remarkable characteristic of these states is that they consti-
tute a discrete set, and that suggests the possibility of constructing the path integral using sums
over spin network world sheet amplitudes. Speaking heuristically, four-dimensional geometries
are represented by histories of quantum states of three-dimensional geometries, and those quan-
tum states are given by spin network states. The corresponding transition amplitudes W will
be between quantum states of the three-dimensional geometry, or spin network states W (s, s′),
and will be given as a sum over discrete sequences, or histories, of the spin networks states.
We can then write the amplitude W (s, s

′
) as a sum over paths of spin networks. The paths are

generated by individual steps, and the amplitude of the history is the product of the individual
amplitudes of the steps.

A history of spin networks σ = (s, sN , . . . , s1, s
′
) is called a spin foam. We can imagine the

structure generated by the evolution of a spin network if we consider an initial three-dimensional
manifold Σi and an initial spin network si defined on Σi. This initial spin network state evolves
without intersections along a “time” coordinate until a final spin network sf . The final spin
network is defined in another three-dimensional manifold Σf . In each step, the spin network
changes under the action of the Hamiltonian constraint. We will call faces (f) the worldsurfaces
of the links of the graph and “edges” e the worldlines of the nodes of the graph.

Now it is time to consider the general property of the Hamiltonian constraint that was men-
tioned at the end of the last chapter. The Hamiltonian acts on nodes of the spin network, so at
each step there is a probability that a node will branch out and that would change the number
of nodes. We will call “vertices” v the points where the edges branch.

In this way, we obtain a collection of faces f , meeting at edges e, which in turn meet at
vertices v. The resulting structure, which we will denote as K, is characterized by its com-
binatorial properties and their adjacency relations. This structure is called a simplicial complex.

The spin networks are not only characterized by their graph but also by the coloring of their
links and nodes. The simplicial complex K corresponding to a sequence of spin networks will
inherit the characteristic of being colored. Its faces f will be colored by SU(2) irreducible
representations jf , and its edges will be colored by the intertwiners ie, that correspond to the
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tensor product among the representations of the faces that meet at the particular edge. A spin
foam σ = (K, jf , ie) is a simplicial complex K with colored faces and edges.

3.1.1 The spin foam framework

A sum over paths formulation of quantum gravity can then be defined as a sum over spin foams
of individual amplitudes associated with histories of spin networks, with such amplitudes given
by products of individual vertex amplitudes.

As we have constructed them, the boundary of a spin foam is a spin network. If the spin-
foam σ is bounded by the spin network s, we will write ∂σ = s.

Let us consider a given simplicial complex K with boundary ∂K, and a spin network state
Ψs that defines a boundary state on ∂K. The spinfoam amplitude associated to K and Ψs is
written as a sum over all possible representations and intertwiners living in the bulk and that
are consistent with the given boundary spin network [1, 28]:

A[K,Ψs] =
∑
jf ,ie

[∏
f

Af [jf ]
∏
e

Ae[jf , ie]
∏
v

Av[jf , ie]

]
, (3.3)

where the representations and intertwiners jf and ie for faces and edges on the boundary are
fixed and given by our choice of the boundary state Ψs. The expression (3.3) is called the local
ansatz for spinfoam amplitudes [28].

The functions Af and Ae are amplitudes associated to faces and edges . As mentioned in
[28], they are considered as kinematical and can be introduced in a redefinition of the vertex
amplitude Av. The face amplitude Af is usually chosen as the dimension of the representation
jf of the given face.

Finally, the transition amplitude for the given spin network Ψs is obtained eliminating the
discretization i.e summing over all possible simplicial complexes compatible with the boundary
data [28]:

W (s) =
∑

K|∂K=Γ

w[K]A[K,Ψs] (3.4)

where K|∂K = Γ indicates that we are summing over all the simplicial complexes with bound-
ary given by the graph Γ associated with the given spin network state and w[K] is a statistical
weight depending only on the simplicial complex K. Unfortunately, this sum is much less con-
trolled than the previous expression given in (3.3) [1, 28]. One way to define it is through a
formalism that is called group field theory. We will not touch this topic here, and we refer the
reader to the references cited at the beginning of the chapter for more details.

If we choose a connected boundary, the expression given in (3.4) can be interpreted as the
transition amplitude associated with the gravitational field represented be the spin network
Ψs in the connected boundary of a spacetime region. On the other hand, if we choose a dis-
connected boundary ∂K = Γin ∪ Γout, and consequently the boundary spin network state is
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composed of two connected components, then the amplitude is interpreted as a transition am-
plitude between the initial state ΨΓin

and the final state ΨΓout .

The current situation in the spinfoam framework is not that we can compute the transition
amplitude W (s). There is uncertainty in the definition of the model and the corresponding
definition of the vertex amplitude Av. In addition, the way to eliminate the discretization pro-
duces some important issues. Perhaps one of the most important open problems is the relation
between the spinfoam framework and the canonical approach. For more difficulties related to
the spinfoam framework, see [6].

3.2 Discretization theory

One way to define the path integral in quantum theory is to use some form of discretization of
the underlying structure and then take the limit when this discretization is refined. The same is
true when we try to define a spin foam model. In this section, we present the way to discretize a
differentiable manifold, which is the most commonly used in the definition of spinfoam models.
The presentation is based on [3, 19].

To discretize the differentiable manifold M, we will replace it with a collection of discrete
objects known as simplices, glued together properly. To this end, we give some general defini-
tions, which were taken from [3].

Definition 3.2.1. Let D ∈ N. If 0 ≤ p ≤ D is an integer, we define a p-simplex σp =
[v⃗0, . . . , v⃗p] ⊂ RD as the convex hull of p+ 1 vectors, that is

σp :=

{
p∑

k=0

akv⃗k ; ak ≥ 0,

p∑
k=0

ak = 1

}
. (3.5)

We call the vectors v⃗k the vertices of the p-simplex.

It is important to add some observations to the last definition:

� As mentioned in [2], we can solve the equation
∑p

k=0 ak = 1 and write 0 ≤ a0 = 1 −∑p
k=1 ak. Thus, we can describe equivalently a p-simplex as the convex hull of the p

vectors v⃗
′

k = v⃗k − v⃗0, k = 1, . . . , p, which are linearly independent.

� The orientation of the p-simplices is given by the order in which the vertices v⃗k appear in
the list [v⃗0, . . . , v⃗p].

� The boundary ∂σp of a p-simplex is defined as the set of points for which ak = 0 for
k = 0, . . . , p. In this way, we obtain p + 1 different (p − 1)-simplices given by σp−1

k =
[v⃗0, . . . , ṽk, . . . , v⃗p], where the tilde over a vertex denotes that such a vertex is omitted. We
say that these (p−1)-simplices are oriented equally relative to [v⃗0, . . . , v⃗p] if k is even and
that they have the opposite orientation if k is odd. This defines the induced orientation
of the faces σp. We then obtain that ∂σp = ∪kσ

p−1
k . By repeating this process, we obtain

all the subsimplices of σp.
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Figure 3.1: Simplices of different dimensions. The case of four dimensions is usually drawn as
a set of five points joined by ten lines. Remember that in this last case we are trying to draw
a four-dimensional object on a two-dimensional piece of paper.

More intuitively we can say that in RD a p-simplex is the set of points inside a convex hull
constructed with p + 1 points. Figure 3.1 shows some examples of simplices, going from zero
to four-simplices.

A zero-simplex is just a point. A one-simplex is a line, whereas a two-simplex looks like a
triangle, a three-simplex like a tetrahedron, and so on. Notice that a one-simplex is con-
structed using two zero-simplices joined by a straight line. In a similar way, a two-simplex is
constructed by three zero-simplices joined by three lines, that is, three one-simplices, and the
points inside the area that these lines surround, and so on.

Now we will give another important definition.

Definition 3.2.2. Given a p-simplex σp = [v⃗0, . . . , v⃗p], the barycenter of σp is defined as the
point:

Cσp :=

∑p
k=0 v⃗k
p+ 1

. (3.6)

The barycenter of a p-simplex is a point inside the simplex that is equidistant from the vertices,
with respect to the euclidean metric in RD. As an example, the barycenter of a one-simplex
σ1 = [v⃗0, v⃗1] is the midpoint of the line segment that joins the vertices v⃗0 and v⃗1.

To discretize a differentiable manifold using simplices, we must glue together simplices of differ-
ent dimensions appropriately. The way to achieve the latter is given by the concept of simplicial
complex.

Definition 3.2.3. A simplicial complex K of dimension D is a collection of simplices σp
i with

p = 0, . . . , D, i = 1, . . . , Np, of different dimensions, with the following properties:

a) All the subsimplices of each σp
i also belong to K.

b) Two simplices σp
i and σq

j intersect at most in a common subsimplex, which has the opposite
orientation in both.

35



A new discrete model for Classical General Relativity

Thus, a simplicial complex is defined as a set of simplices so that they intersect at most in a
common subsimplex. For example, two triangles joined along one of their edges form a two-
dimensional simplicial complex if we consider, in the list of simplices, all their edges and vertices.

It is important to remark that a simplicial complex K is not a topological space; it is only
a set of geometrical simplices [46].

Definition 3.2.4. Let K a simplicial complex of dimension D. The polyhedron |K| of K is
defined as the set of points of RD that lie in at least one of the simplices of K.

The polyhedron |K| of a simplicial complex is topologized as a topological subspace of RD.

Definition 3.2.5. Let M be a differentiable manifold. A triangulation of M is a pair (K, f),
where K is a simplicial complex and f : |K| → M is an homeomorphism between |K| and M.

We have the following important result [40, 41].

Theorem 3.2.1. Every differentiable manifold has a triangulation.

It is important to notice that the triangulation is highly no-unique. As emphasized in [3], a
triangulation need not be simplicial, and it can consist of other types of cells. For example
oriented cubes.

What is useful about triangulations is that they yield to a combinatorial description of dif-
ferentiable manifolds. In this way, M can be replaced by a simplicial complex K, which is
topologically equivalent to M, and can be described by a purely combinatorial structure.

Before defining our first spin foam model in the next section, we must to introduce a very
important concept that will be used in the rest of this work: the dual K∗ of a simplicial
complex K.

Definition 3.2.6. Let K = {σp
i ; p = 0, . . . , D, i = 1, . . . , Np} be a simplicial complex. Let

σp
j0
∈ K be any p-simplex on K, and consider all possible (D−p)-tuples of simplices σ

(p+k)
jk

∈ K
with k = 1, . . . , D − p and 1 ≤ jk ≤ Np+k subject to the following condition.

For all l = 0, . . . , D − p − 1, the simplex σ
(p+l)
jl

is a face of σ
(p+l+1)
jl+1

with the induced orien-
tation.

Therefore, for each such (D−p)-tuple of simplices, construct the (D−p)-simplex [C
σ
(p)
j0

, C
σ
(p+1)
j1

, . . . , C
σ
(D)
jD−p

]

constructed by using the barycenters of those simplices.

The cell dual to σp
j0

is defined as

∗K
[
σp
j0

]
:=

⋃
(σ

(p+1)
j1

,σ
(p+2)
j2

,...,σ
(D)
jD−p

); σ
(p+l)
jl

⊂∂σ
(p+l+1)
jl+1

: l=0,...,D−p−1

[C
σ
(p)
j0

, C
σ
(p+1)
j1

, . . . , C
σ
(D)
jD−p

] (3.7)

where the union is taken over all the (D − p) tuples of simplices σ
(p+k)
jk

∈ K subject to the
condition mentioned above.
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Figure 3.2: Construction of the cell dual to a one-simplex in three dimensions. In Figure a),
we show the one-simplex considered. Figure b) shows the simplex constructed by using the
barycenters of the triangle and the tetrahedron, as is dictated by Definition 3.2.6. In Figure c),
we show the cell dual to the line.

The complex K∗ dual to K is obtained by gluing all the dual cells along common subcells.

Behind this forbidding definition is hidden a very simple construction. To illustrate it, let us
consider the triangulation of a three-dimensional manifold using three-simplices (tetrahedra).
Let us pick only one line: the dotted line showed in Figure 3.2 a). Now, by following the
definition 3.2.6, let us consider one couple (triangle, tetrahedron) such that

a) the line considered is an edge of the triangle,

b) and the triangle is a face of the tetrahedron.

Next, we draw the two-simplex that results from taking the barycenter of the line, the triangle
and tetrahedron as the vertices of such a two-simplex. The resulting structure for a given couple
(triangle, tetrahedron) is shown in Figure 3.2 b). We now consider all the couples (triangle,
tetrahedron) that meet the two previous conditions and repeat the process. Finally, we take
the union of all the two-simplices constructed in this way. We obtain a two-dimensional object
that is punctured by the line initially considered with its vertices in the barycenter of the tetra-
hedron that surrounds the line. This object is the cell dual to the initially considered dotted line.

Generally, in a three-dimensional simplicial complex, the dual of a line is a two-cell called a face
f . The dual of a tetrahedron is just a point. Such point is the barycenter of the tetrahedron,
and is called a vertex ν. The cell dual to a triangle is the line joining the barycenters of the
two tetrahedra that meet at the triangle considered and is called an edge. Finally, the cell dual
to a point is a bubble constructed by gluing the faces that surround such point.

Now we have all the ingredients for presenting the first spin foam model constructed for one of
the most simple theories: the spin foam model for three-dimensional Euclidean general relativ-
ity.

3.3 The Ponzano-Regge model

The Ponzano-Regge model was the first spin foam model introduced in quantum gravity. It
appeared in the 1960’s, 30 years before the term “spin foam” was used for the first time, and
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almost 20 years before the first works about loop quantum gravity [22]. It is a model for
three-dimensional Euclidean General Relativity and illustrates how the path integral approach
in loop quantum gravity takes the form of a spin foam model.

In order to describe the Ponzano-Regge model, we need to take a small detour and to present
the corresponding classical theory in which the model is based, emphasizing its most important
features. That is what we will do in the next section.

3.3.1 Three-dimensional Euclidean general relativity

Although the real world is described by four-dimensional Lorentzian General Relativity , the
Euclidean model in three dimensions is simpler and useful for studying some general features
that a quantum theory of gravity may have. As we will also see, the path integral approach
is well defined in the three-dimensional case, as well as the relation between such an approach
and the canonical formulation.

Euclidean General Relativity in three dimensions can be defined in a very similar way to
four-dimensional gravity. In the three-dimensional case, instead of a tetrad, we have a triad
field:

ei(x) = eia(x)dx
a (3.8)

with values in R3. The indices a, b, · · · = 1, 2, 3 are spacetime indices, and i, j, k, · · · = 1, 2, 3
are internal indices. This triad field is similar to that defined in the last chapter, but the triad
field here is defined over all the spacetime M, not only over a hypersurface Σ; remember that
we are dealing here with a three dimensional spacetime M. Since the theory is Euclidean, this
triad field transforms as a vector under the group SO(3):

eia → U i
j(x)e

j
a(x), (3.9)

with U i
j(x) ∈ SO(3). The connection ω is a one-form with values in the Lie algebra so(3)

ωi
j(x) = ωi

aj(x)dx
a (3.10)

and the corresponding curvature two-form will be

Ri
j(x) = Ri

abj(x)dx
adxb = dωi

j + ωi
k ∧ ωk

j. (3.11)

The action defining the theory is a functional of the triad field and the connection ω and is
given by

S[e, ω] =
1

16πG

∫
ϵijke

i ∧Rjk[ω]. (3.12)

The variation of the action (3.12) with respect to the connection ω gives the Cartan structure
equation dei + ωi

j ∧ ej = 0. This implies that the connection ωi
j is the spin connection. The

variation with respect to the triad field ei gives the equation Ri
j = 0, which implies that the

spacetime is flat. The latter does not imply that the theory is completely trivial for two reasons:
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� If the spacetime has a nontrivial topology, it can have global degrees of freedom and
therefore a global dynamics, even though is locally flat. For example a three-dimensional
hyperplane that changes in size.

� If we consider a compact region with a boundary, there will be relations between boundary
partial observables [19].

Let us be a little more specific about the last point. If we consider a compact region of spacetime
R with a two-dimensional boundary ∂R = Σ, the action in metric variables is given by [19]

S[g] =
1

16πG

∫
R

√
g R dx3 +

1

8πG

∫
Σ

dσ2kabqab
√
q, (3.13)

where qab is the metric of Σ and kab is its extrinsic curvature. On-shell, the bulk term in the
action does not contribute because the Ricci tensor vanishes and the action takes the form

S[q] =
1

8πG

∫
Σ

dσ2kab[q]qab
√
q. (3.14)

In other words, it depends only on the metric qab on Σ. The extrinsic curvature kab is a func-
tion of qab and is what encodes the dynamics of the theory. The dependence of kab with qab is
non-local. Therefore the no-triviality of the theory is in the global dependence of the extrinsic
curvature of the boundary on its intrinsic metric.

As we can see, even though the vacuum solutions of the theory give us a flat spacetime, the
theory can be highly no-trivial.

3.3.2 Discretization

We have presented the most important characteristics of Euclidean General Relativity in three
dimensions, and we have shown that the theory can possess a non-trivial dynamics. Our next
task is to implement a path-integral formulation of the theory, taking into account the lessons
that we learned from canonical loop quantum gravity. In order to do this, we will begin dis-
cretizing the theory.

Let us consider a compact spacetime region R with boundary ∂R = Σ. We fix a triangu-
lation △ of R as defined in definition 3.2.5 using a three-dimensional simplicial complex K,
and we also consider the dual △∗ of the given triangulation (as given in definition. 3.2.6). Let
us call here vertices ν the points in △∗, edges l the lines of △∗ and faces f the 2-simplices in
△∗. It is important to remember that the vertices ν ∈ △∗ are dual to tetrahedra τ ∈ △, the
edges e ∈ △∗ are dual to triangles t ∈ △, and the faces f ∈ △∗ are dual to the segments (or
lines) s ∈ △.

The discretization of the bulk of R induces a discretization of the boundary Σ. With re-
spect to the original triangulation △, the boundary Σ is discretized by the boundary triangles
of △ separated by the boundary segments of △. The end points of the edges that are dual
to these triangles will be called nodes n. The nodes are actually just boundary vertices. The
boundary of the faces f ∈ △∗ that are dual to the boundary segments are called links l. The
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links are just boundary edges. The set of links and nodes forms the graph of the boundary,
which we denote as Γ; see Figure 3.3. It can be shown that the boundary graph is the boundary
of △∗ and also the dual of the boundary of △ [19]:

Γ = ∂(△∗) = (∂△)∗. (3.15)

We discretize general relativity discretizing the main variables that describe the theory, and
defining the discretized action that defines the dynamics of the model. This is done in such a
way that the discretized action converges to the continuum action when the simplicial complex
is refined.

The variables that we use to describe General Relativity are the connection ω, which is a
one form with values in the Lie algebra su(2) and the triad field e. Let us define

ωi =
1

2
ϵi jkω

jk

ω = ωiτi,
(3.16)

where τi = − i
2
σi are the generators of the Lie algebra su(2) and σi are the Pauli matrices.

We discretize the connection assigning a SU(2) group element Ue with each edge e ∈ △∗,
and we discretize the triad associating a su(2) Lie algebra element Lf with each face f ∈ △∗.
The associations are given in the following way: the discretization of the connection is given
by taking the holonomy of the connection along the edges of the triangulation:

Ue = Pexp

∫
e

ω. (3.17)

Thus, Ue is the matrix of the parallel transport generated by the connection along the edge e.

The discretization of the triad is a little different. Let

Li
s :=

∫
s

ei (3.18)

be the line integral of the triad ei along the segment s ∈ △. Defined in this way, Li
s are three

real numbers (one per value of the index i) associated with each segment s, but each segment
s ∈ △ is dual to a face f ∈ △∗. Therefore we can consider Li

s as associated with the face f
dual to s: Li

f = Li
sf
. If we define

Lf := Li
fτi, (3.19)

then Lf becomes an element of the su(2) Lie algebra. Therefore, the variables of the discretized
theory are

� An SU(2) group element Ue associated with each edge e ∈ △∗,

� An su(2) Lie algebra element Lf associated with each face f ∈ △∗
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Figure 3.3: Schematic diagram showing the discretization of a two-dimensional boundary. A
tetrahedron with a lower face on the boundary is shown in a). The end point of the edge dual to
that face is a node and is indicated with a cross. In b), we show a drawing of a two-dimensional
boundary and its corresponding discretization. Only some nodes and links are drawn, and the
rectangular shape is chosen for simplicity.

The discretized action of the model is given by

S△ =
1

8πG

∑
f

Tr(LfUf ), (3.20)

where the sum includes all the faces f ∈ △∗, and Uf is the holonomy of the connection around
the face f . This quantity is obtained by the product of the group elements Uek associated with
the edges e that surround f :

Uf := Ue1Ue2 . . . Uen . (3.21)

It is important to consider that if we have a compact region with a boundary in that boundary
we must close the perimeter of the faces to write the quantity Uf for the faces that end in the
boundary. This implies that we also have group quantities Ul associated with the links of the
boundary. If λ : Σ → SU(2) is a smooth local SU(2) gauge transformation, the holonomy
transforms as

Ue → λ(xef )Ueλ
−1(xei ). (3.22)

The boundary variables play an important role in the construction of the boundary Hilbert
space in the quantum theory, and for that reason we will study them in a little more detail.
There are two kinds of variables in the boundary: the group elements Ul associated with the
boundary edges (the links) and the algebra elements Ls associated with the boundary segments
s. Notice that there is one boundary segment s per each link l, and the two cross each other.
For this reason, we can rename Ls as Ll, where l is the link crossing the boundary segment s.
To have an idea of what is going on, we recommend checking Figure 3.3.

We have one couple (Ll, Ul) ∈ su(2) × SU(2) of variables per link l. The boundary phase
space of the discretized theory is T [SU(2)L]∗ [19], where L is the number of links of the bound-
ary graph. Finally, the Poisson brackets between the variables in the boundary are [19]
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{Ul, Ul′} = 0

{Ul′ , L
i
l} = (8πG)δll′Ulτ

i

{Li
l, L

j

l′
} = (8πG)δll′ ϵ

ij
kL

k
l .

(3.23)

3.3.3 Quantum kinematics

To quantize the theory, we start by considering a compact three-dimensional region with a
two-dimensional boundary Σ. We triangulate the region using a simplicial complex K and
its dual K∗. The corresponding triangulation and its dual are denoted again by △ and △∗,
respectively. The triangulation induces a discretization of Σ, and the dual simplicial complex
will be bounded by a graph Γ where the boundary variables are a group element and an algebra
element;

(Ul, Ll)

associated with each link l of the boundary graph Γ. Considering the Poisson brackets given in
(3.23), we search for operators Ûl and L̂l that meet the condition[

Ûl, L̂l′

]
= (8πGℏ)iδll′ Ûlτ

i (3.24)

on a given Hilbert space. Let us consider the group elements Ul as the configuration variables
and the algebra elements Ll as the canonical momenta. The Hilbert space is the space of square
integrable functions of the configuration variables

HΓ = L2
[
SU(2)L

]
. (3.25)

The quantum states are wavefunctions Ψ(Ul) = Ψ(U1, . . . , UL) of L group elements Ul associated
with the links of the graph Γ. The scalar product with respect to which HΓ = L2

[
SU(2)L

]
is

a Hilbert space is given by the Haar measure µ [35] on L copies of SU(2):

⟨Ψ|Φ⟩ =
∫
SU(2)L

¯Ψ(Ul)Φ(Ul)dUl. (3.26)

As is usual in the Schrödinger representation, the operator corresponding to the canonical
momentum must be a derivative operator with respect to the configuration variable. The
natural SU(2) derivative operator on the functions Ψ(Ul) is the left-invariant vector field, which
is defined as [19, 34]

(
J iΨ

)
(U) := −i d

dt

[
Ψ(Uetτi)

]∣∣∣
t=0
. (3.27)

To obtain an operator L̂l that satisfies (3.24), it is sufficient to scale the operator defined in
(3.27) with the appropriate factor:

L̂l := (8πGℏ)J⃗l, (3.28)

42



3. Covariant Loop Quantum Gravity

where J⃗l is the left-invariant vector field acting on the argument Ul. Now we have the two
operators that satisfy the commutation relation (3.24) :D.

As shown in [19], the length Ls of a segment s ∈ △ is given by the R3 norm Ls =∥ L⃗f ∥, where
f is the face dual to the segment s. In this way, the length of a boundary segment s is given
by the operator Ll = (L1

l )
2 + (L2

l ) + (L3
l ), where l is the link crossing s. Since J⃗ is a generator

of SU(2), its square J2 is the SU(2) Casimir operator. Its eigenvalues are given in exactly the
same way as the eigenvalues of the total angular momentum in quantum mechanics j(j + 1),
where j is a half-integer. Therefore, the spectrum of the length of a link l is

Ljl = 8πGℏ
√
jl(jl + 1). (3.29)

Thus, in the three-dimensional theory, the length is quantized.

The quantization of the length in the three-dimensional theory is analogous to the quanti-
zation of the area in the four-dimensional case6. Here the length has a discrete spectrum at
the Planck scale. In this way, the covariant theory starts to show similarities and contact
points with the canonical theory. Moreover, the granularity of space will reappear in the four-
dimensional spin-foam models in such a way that will match exactly to that predicted by the
four-dimensional canonical theory.

By paying attention to the definition of HΓ, we will see that this Hilbert space is very similar to
H̃Γ given in Section 2.3.2. The difference here is that all the nodes of the graph Γ are trivalent;
only three lines emerge and/or end on each node. In order to define the kinematical Hilbert
space of boundary states, we must consider that the theory must be invariant under the SU(2)
gauge transformations defined in (3.22). The gauge invariant states must satisfy

Ψ(Ul) = Ψ(ΛxilUlΛ
−1
xfl

), (3.30)

where Λn ∈ SU(2), and xil and xfl are the initial and final points of l, respectively.

By taking into account this last condition, we find that the kinematical Hilbert space of bound-
ary states has a basis given by the spin network states [19]. The basis is given by the same spin
network states defined in the canonical theory but now defined only over a two-dimensional
surface Σ and with the difference that all the nodes of the graph Γ are trivalent. The length
operators Ll are gauge invariant, and they form a complete commuting set [19]. The spin net-
work basis defined on the graph Γ diagonalizes those length operators.

It is important to observe that the boundary graph Γ only has three-valent nodes. By consid-
ering some facts about the representation theory of the SU(2) group and following the recipe
given in Section 2.3.4, we find that the boundary spin network states all have the same struc-
ture. If S = (Γ, jl, in) is a spin network defined on Σ with Γ as its graph and Γ as L links l and
N nodes n, then the corresponding spin network state is given by

Ψjl(Ul) = im1,m2,m3

1 . . . i
mL−2,mL−1,mL

N Dj1
m1,n1

(Ul1) . . . D
jL
mL,nL

(UlL), (3.31)

6A length operator with a discrete spectrum can also be constructed in the four-dimensional theory.
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where Djl
m,n(U) are the Wigner matrices in the representation jl and i

m1,m2,m3 are, in each case
1, . . . , N , the Wigner 3j symbol between the representations of the links that converge in each
node. The indices n of the Wigner matrices are not the same that the nodes n. Note that all
the indices are contracted between the intertwiners i and the Wigner D matrices in a way that
is determined by the connectivity of the graph Γ. Therefore, a gauge-invariant state must have
the form

Ψ(Ul) =
∑
j1,...jl

Cj1,...jli
m1,m2,m3

1 . . . i
mL−2,mL−1,mL

N Dj1
m1,n1

(Ul1) . . . D
jL
mL,nL

(UlL). (3.32)

These are the boundary states of three-dimensional covariant quantum gravity. They match
those that we would find if we quantize the three-dimensional theory presented in Section 3.3.1
following the canonical approach.

3.3.4 Quantum dynamics

To calculate quantum amplitudes, we consider a compact three-dimensional region R with two-
dimensional boundary ∂R = Σ. The boundary can be formed by two disconnected pieces, and
we can consider these pieces as the past and future boundaries. Conversely, we can consider
the boundary as one connected region and define the amplitude associated with any state on
this boundary. This last point of view is considered more covariant [34], and it will be used
here to describe the dynamics.

We fix a triangulation △ of R, and we construct the corresponding dual triangulation △∗.
The transition amplitude is a function of the states defined on the boundary graph Γ = (∂△)∗

and will be denoted as W△. Here the subscript △ indicates that the amplitude is computed
(and depends) on the discretization △.

To compute W△ for the theory discretized on the dual triangulation △∗, we use the path
integral approach. As is standard in quantum physics, the amplitude is given by the integral
over all classical configurations weighted by the exponential of the classical action

W△(Ul) = N
∫
dUe

∫
dLf exp

{
i

8πGℏ
∑
f

Tr[UfLf ]

}
, (3.33)

where we have an integral over SU(2) per edge e ∈ △∗ and an integral over the su(2) Lie algebra
per face f ∈ △∗. Furthermore, N is a constant where we absorb various constant contributions.

As shown in [1] and [19], the integral over the momenta can be performed since it is an integral
of an exponential, which gives a Dirac delta function over the SU(2) group. Thus, we obtain

W△(Ul) = N
∫
dUe

∏
f

δ(Uf ). (3.34)

Remember that Uf :=
∏⃗

e∈∂fUe is the oriented product of the elements Ue around the face
f . This defines the closed holonomy around f , or, equivalently, the product around the corre-
sponding dual edge of the triangulation.
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The last expression is actually a compact way to write spinfoam path integrals. This is called
the connection representation [28] of spin foam amplitudes. As mentioned in [28], it is dual to
the local spinfoam ansatz defined in (3.3) in the sense that the amplitude is expressed in terms
of the group elements in the connection representation (3.34), whereas the same amplitude is
expressed in terms of the group representations in the local ansatz (3.3). For the local spinfoam
ansatz, we can write W△(jl) = ⟨W△|jl⟩, and, for the connection representation, we can write
W△(Ul) = ⟨W△|Ul⟩.

It is important to consider that, as emphasized in [28], [19] (and somewhere in [6]), the path
integral (3.34) has some delta functions that are redundant, and the path integral formally
has some divergences caused by those redundancies. It has been shown [28], however, that the
redundancies can be removed and that the path integral can be defined with the minimally
necessary number of delta distributions.

To compute the remaining integral in equation (3.34), we expand the delta distribution as
a sum over the group representations in the form [1, 6, 19, 28]

δ(U) =
∑
j

djTr(D
j(U)), (3.35)

where dj := dim(j) = 2j + 1 is the dimension of the vector space of the carriers of the repre-
sentation j.

To perform the integrations over the SU(2) elements, let us consider one edge e and its corre-
sponding integral

∫
dUe. Note that each edge precisely bounds three faces because the edge is

dual to a triangle, which is bounded by three segments s, and each of those segments is dual
to a face. Therefore, each integral

∫
dUe is of the form [19, 28]∫

SU(2)

dU D
jl1
m1n1(U)D

jl2
m2n2(U)D

jl3
m3n3(U),

and each of these integrals has the value [1, 19, 28]∫
SU(2)

dU D
jl1
m1n1(U)D

jl2
m2n2(U)D

jl3
m3n3(U) = im1m2m3in1n2n3 , (3.36)

where im1m2m3 =

(
j1 j2 j3
m1 m2 m3

)
is the Wigner 3j symbol between the representations j1, j2, j3

of the faces bounded by the particular edge e.

Thus, the result of the integrals in (3.34) is a bunch of 3j symbols contracted among themselves.
We will not give the precise pattern of contraction but details can be found in [1], [19] and [28].
What is important to mention is that the contraction pattern produces a 6j symbol per vertex
[1, 19, 28]. The final result, carefully keeping track of the signs, is [19]

W△(jl) = N△
∑
jf

∏
f

(−1)jfdjf
∏
v

(−1)Jv{6j}v, (3.37)
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where the sum is over all the representations associated with each face f ∈ △∗, Jv =
∑6

k=1 jk
and jk are the spins of the faces adjacent to the vertex v. N△ is a normalization factor that
can depend on the triangulation △, and we have a 6j symbol per vertex v.

The expression (3.37) is the transition amplitude expressed in the form of the spinfoam ansatz
with the choices detailed below.

� The set of simplicial complexes summed over is formed by a single simplicial complex,
chosen as the skeleton of the dual of a three-dimensional triangulation.

� The representations are the unitary representations of SU(2) assigned to each face f of
the dual triangulation.

� The intertwiners are associated with each edge and are the 3j symbols between the rep-
resentation of the faces bounded by such edge.

� The vertex amplitude is given by the 6j symbol.

The expression (3.37) is the defining formula for the Ponzano-Regge model, and it has the
correct form for a local spinfoam amplitude. It was written by Ponzano and Regge in the 1960s
[42]. The model has some special characteristics that are important to mention.

� Consider a flat geometrical tetrahedron with sides of lengths L1, . . . , L6. We associate six
spins j1,...,j6 with these lengths so that Li = ji+

1
2
. Let V be the volume of the tetrahedron

and S the Regge action of the discretization given by this tetrahedron. Ponzano and Regge
[42] provided evidence that in the large spin limit j → ∞ the 6j symbol associated with
the vertex in the baricentre of the tetrahedron has the following behavior:

lim
j→∞

{6j} ∼ 1

2
√
−12iπV

eiS +
1

2
√
12iπV

e−iS. (3.38)

Such a result was proven in 1998 by Roberts [43], and in [1] it is called the miracle of
the dynamics of General Relativity in a symbol. As mentioned in [19], this shows that if
we consider only large spins we can disregard quantum discreteness, and the sum over
spins is approximated by an integral over the lengths in the Regge geometry represented
by the tetrahedron. In this way, the integrand is given by a function of exponentials
of the action. This represents a discretization of a path integral over geometries of the
exponential of the Einstein-Hilbert action, and therefore the expression (3.37) represents
an implementation of the formal expression:∫

D[g]e
i
ℏ
∫ √

−gR.

The watchful reader must have already seen that the expression (3.38) has two terms with
opposite signs. The reason for this is very interesting. It has to be with the fact that we
are actually quantizing the triad, not the metric, and at each vertex, there are two triad
configurations for each metric configuration. For more details, see [1] and [19].
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� The other remarkable result of the Ponzano and Regge theory is the triangulation inde-
pendence: the expression (3.37) depends on the global topology of the three-dimensional
region R but not on the triangulation △. Moreover, if we refine the triangulation △ while
keeping the boundary graph Γ fixed, the expression (3.37) does not change. On the other
hand, if we refine the boundary graph, the physical Hilbert space of the theory becomes
independent of the boundary graph.

As mentioned in [1], the triangulation independence of the Ponzano-Regge theory is a
consequence of the fact that three-dimensional Euclidean general relativity lacks local de-
grees of freedom. For this reason, the triangulation does not produce the loss of degrees
of freedom, and the triangulation independence is not expected to be a characteristic of
the four-dimensional Lorentzian general relativity, where we indeed have local degrees of
freedom.

� The Ponzano-Regge model suffers from infrared divergences. These divergences lead to
some behaviors that are called bubbles and spikes. We will not touch this interesting topic
here. For details see [1], [6] and [19].

3.4 BF theory and general relativity as a constrained

theory (again)

After having presented the quantization of Euclidean general relativity in three dimensions, we
next attempt to apply the same (or at least a similar) procedure to quantize General Relativity
in four dimensions. We hope to find some of the same surprises that we found in the Ponzano-
Regge model: that the area and volume are quantizing in exactly the same way that they are in
the canonical theory, that the boundary state space exactly matches the one of canonical loop
quantum gravity, and that the transition amplitude could be written using simple functions
from the group representation theory.

To the disappointment of many quantum gravity theorists, the project turned out to be much
more difficult that expected, and until now we do not have a satisfactory and complete formu-
lation of the path integral approach for quantum gravity. The reason is that general relativity
in four dimensions is a theory with local degrees of freedom, and that makes its quantization
much more difficult. Thus, an important question emerges: what could be the relation between
a theory without local degrees of freedom and a theory with local degrees of freedom?. The
answer is that classical general relativity can be written as a theory without local degrees of
freedom plus some constraints over one of its fields. These constraints allows recovering the
degrees of freedom of general relativity. We will see how to do this.

3.4.1 BF theory

BF theory is a field theory that lacks local degrees of freedom, and for this reason it can be
discretized without affecting its physical content. The theory can be defined using whatever
Lie group and in various spacetime dimensions.
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As our starting point, we will consider a differentiable manifold M of n-dimensions and a
Lie group G. BF theory is defined by two fields: a 2-form BIJ with values in the Lie algebra
g of G and a G connection ωIJ on a G principal bundle over M. The action is given by the
following expression:

S[B,ω] =

∫
M
BIJ ∧ F IJ [ω], (3.39)

where F [ω] is the curvature two-form of ω. The name of the theory comes from the fields B and
F. The dynamical equations impose that the connection is flat F [ω] = 0 and that the B-field has
a trivial parallel transport dB + ω ∧B = 0 [28]. The theory lacks local degrees of freedom and
constitutes an extension to four dimensions of three-dimensional Euclidean general relativity. In
fact, the latter is precisely a BF theory in three dimensions with G = SU(2) as the gauge group .

We can discretize BF theory and define a path integral corresponding to it following the same
steps we took in defining the Ponzano-Regge model. Let us consider an arbitrary Lie group G
as the gauge group. We consider a compact n-dimensional spacetime region M with (n − 1)-
dimensional boundary ∂M = Σ. By discretizing M using a simplicial complex K and its dual
K∗, we obtain a triangulation △, constructed by using n-simplices and its corresponding dual
triangulation △∗. The discretization of the connection is given by its holonomy along the edges
e ∈ △∗. The discretization of the B-field is, in this case, given by the integral of B over each
n− 2 simplex t ∈ △:

Bf :=

∫
t

B, (3.40)

where we use the subscript f because we consider the discretized field as a field defined on each
face f ∈ △∗ using the one-to-one correspondence between faces f ∈ △∗ and n − 2 simplices
t ∈ △.

Our aim is to give meaning to the formal expression [6, 28]

Z =

∫
[dB][dω]ei

∫
M BIJ∧F IJ

(3.41)

that corresponds to the BF path integral.

In the discrete setting, the discretized version of the path integral (3.41) is given by [6, 28]

Z(△) =

∫
G

∏
e∈△∗

dUe

∫
g

∏
f∈△∗

dBfe
iBfUf , (3.42)

where Uf :=
∏⃗

e∈∂fUe is again the oriented product of the elements Ue around f . Such a quan-
tity defines the holonomy around f or equivalently the product around the corresponding dual
edge of the triangulation. In this way, Uf is also a function of Ue.

We can integrate over the B field, and we obtain

Z(△) =

∫
G

∏
e∈△∗

dUe

∏
f∈△∗

δ(Uf ), (3.43)
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where we have an integral per edge e ∈ △∗ and the integration in the group variables is per-
formed in terms of the invariant measure in G.

As mentioned in [6], it is important to know that the integration over the B-field does not
give the group delta distribution. For example, when G = SU(2) and then B ∈ su(2) integra-
tion leads to the SO(3) delta distribution, which only contains integer spin representations in
the expansion given at (3.35) [6]. This fact is, unfortunately, usually ignored in the construction
of spin foam models.

Expression (3.43) is usually the starting point for the construction of spinfoam models of dif-
ferent BF theories. We illustrated the construction of one of such model in the last section,
where we constructed the spin foam model of three-dimensional Euclidean general relativity.
We can repeat the procedure in the four-dimensional case in a more or less similar way. Let us
consider that dim(M) = 4 and G = SU(2). We can again expand the delta distribution using
the expression (3.35). The difference with the three-dimensional case is that now △∗ is dual to
a four-dimensional cellular decomposition. Examining at the integration over the element Ue,
we can see that an edge e will be part of four different faces f , and the integral over Ue will
consist in the product of four representation matrices. Instead of (3.36) we now have∫

SU(2)

dU Dj1
m1n1

(U)Dj2
m2n2

(U)Dj3
m3n3

(U)Dj4
m4n4

(U) =
∑
i

vim1m2m3m4
vin1n2n3n4

, (3.44)

where the index i labels the orthonormal basis vin1n2n3n4
in the space of intertwiners between

the representations of spin j1, j2, j3 and j4 [1, 28]. We assign a representation jf to each
face or equivalently to each triangle. Thus, we have a sum over intertwiners for each edge in
addition to the sums over representations for each face. Notice that each vertex of △∗ bounds
10 faces f ∈ △∗, and because of this, we have now 10 representations and five intertwiners in
each vertex. The contraction of the five intertwiners defines a function called the 15j symbol
[1, 28] and is denoted as {15j}. In this way, we obtain the following expression for the partition
function of four-dimensional BF theory with gauge group G = SU(2)

Z(△) =
∑
jf ,ie

∏
f

dim(jf )
∏
v

{15j}v. (3.45)

This is all very good7, however we are looking for a quantum theory of gravity, not a quantization
a strange theory that does not describe any physical interaction.

3.4.2 Gravity as a constrained BF theory

In order to establish the connection between BF theory and general relativity, we must consider
the standard Palatini action, which can be written in terms of the tetrad field e and the sl(2,C)-
connection ω in the form

S[e, ω] :=
1

16πG

∫
ϵIJKLe

I ∧ eJ ∧ FKL[ω] (3.46)

7Well, not so good. The model suffers from infrared divergences, and there are subtitles in its construction.
See [6] and especially [3]
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where F [ω] is the curvature of ω. In terms of the metric g and the connection Γ, this expression
can be rewritten exactly as the expression for the Einstein-Hilbert action (2.1), except that
both the connection and metric are dynamical variables.

As has been indicated in many places (for example [1], [6], [7]. [8], [19], [28]), we can add
an additional term to the action given in (3.46) without affecting the dynamical equations. For
this reason added term is called a topological term. The new action that we will consider is
given by

S[e, ω] =
1

16πG

∫
ϵIJKLe

I ∧ eJ ∧ FKL[ω] +
1

16πGγ

∫
eI ∧ eJ ∧ FIJ [ω], (3.47)

where γ is the Immirzi parameter that we introduced in the canonical theory. The second term
has no effect on the dynamical equations. The variation with respect to the connection again
yields the torsion-less condition, and when this is used the second term takes the form∫

eI ∧ eJ ∧ FIJ [ω] =

∫
Rµνρσϵ

µνρσdx4 = 0, (3.48)

which is zero because of the identity Rµνρσ +Rµσνρ +Rµρσν = 0.

Expression (3.47) defines the Holst action. What is remarkable about this action is that its
canonical analysis leads directly to the connection variables that we previously defined Chapter
2 [6]. This fact shows that the topological term added to the Palatini action affects the quantum
theory, even though it does not affect the classical theory.

If we define

BIJ := ϵIJKLe
K ∧ eL, (3.49)

the Holst action takes the form

S[e, ω] =
1

16πG

∫ [
BIJ ∧ F IJ +

1

γ
(∗B)IJ ∧ F IJ

]
. (3.50)

If we consider a BF theory defined in four dimensions with the gauge group G = SL(2,C) and
with action given by (3.50), the condition (3.49) over the B field transforms such a BF theory
into general relativity.

There exists a way to enforce the B field to be, sometimes, of the form (3.49), and it is given
by the following theorem [1, 3, 6, 9].

Theorem 3.4.1. Suppose that BIJ is a 2-form with values in the lie algebra SL(2,C) that
meets the condition

BIJ ∧BKL = eϵIJKL, (3.51)

where

e :=
1

4!
ϵMNPQB

MN ∧BPQ ̸= 0. (3.52)
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Then, there exist a real co-tetrad field eI such that either

BIJ = ±eI ∧ eJ

or

BIJ = ±1

2
ϵIJKLe

K ∧ eL.
(3.53)

The proof of the theorem is given with much detail in [3].

The condition (3.51) is sometimes called the simplicity constraint. Here we will call it the
geometric constraint. This name is not standard but reflects the fact that the co-tetrad field
allows to construct a Lorentzian metric over the differentiable manifold.

Theorem 3.4.1 shows that if the B field satisfies the constraint equation (3.51), then there
exist four different possibilities for the form of B. These four possibilities can be joined into
two sets called sectors: sector I where B = ±e ∧ e and sector II where B = ±∗(e ∧ e). As
remarked in [16], if the Immirzi parameter has finite non-trivial values, then both sectors in
fact yield general relativity, but the value of the Newton constant and Immirzi parameter are
different in each sector. Therefore, it is important to distinguish between these two sectors,
especially in the possible physical applications of the theory.

Summarizing, general relativity can be considered a BF theory in four dimensions, with gauge
group G = SL(2,C) and with action principle given by equation (3.50), with the B field of the
form (3.49). A way to enforce the last is given by the equation (3.51).

Having constructed successful quantum theories for topological BF theories, the next chal-
lenge is to implement the constraint equation (3.51) into the quantum theory. The latter has
led to some new proposals for defining discretized path integrals in quantum gravity. The de-
scription of the currently most accepted model is the subject of the next section.

We must make two additional remarks in order to advance to the presentation of the new
spin foam models. The first is that when e := (1/4!)ϵMNPQB

MN ∧ BPQ ̸= 0 there is an
equivalent formulation of (3.51) that is given by

ϵIJKLB
IJ
µνB

KL
ρσ = ẽϵµνρσ, (3.54)

where

ẽ :=
1

4!
ϵMNPQϵ

αβγδBMN
αβ BPQ

γδ . (3.55)

The proof of the equivalence between (3.54) and (3.51) can be found for example in [3] and [9].
We will use this form of the geometric constraint in what follows.

The second remark is that there exists another solution for the B field that is called the de-
generate sector. When the tetrad field (or equivalently the B-field) is degenerate, the four
solutions given in (3.53) coincide. As indicated in [3], the degenerate sector does not have an
interpretation as a classical theory of gravity.
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3.5 Implementation of the geometric constraints: The

EPRL model

The formulation of General Relativity presented in the previous section is the starting point
of the new spin foam models. To implement the geometric constraints (3.51) or its equivalent
version (3.54) in the quantum framework, we need to find a way to discretize them in the clas-
sical theory and transform such discretized version into quantum operators acting as quantum
constraint equations.

3.5.1 Discretizing the geometric constraints

We consider a four-dimensional manifold and a Lie group G as the gauge group. For the
Riemannian theory G = SO(4), and for the Lorentzian theory G = SL(2,C). We discretize a
compact region M with three-dimensional boundary ∂M = Σ as in the previous section. The
field BIJ

µν that appears in (3.54) is replaced by the discrete quantities BIJ
f . The constraints (3.54)

are local constraints that are valid at every spacetime point. In the discrete setting, spacetime
points are represented by four-simplices or equivalently vertices v ∈ △∗. The discretized version
of the constraints (3.54) is given by the following expression [6, 9]:

ϵIJKLB
IJ
f BKL

f̃
= V (f, f̃), (3.56)

where V (f, f̃) =
∫
x∈f,x∈f̃ ẽϵµνρσdx

µ ∧ dxν ∧ dyρ ∧ dyσ is the four-volume spanned by f and f̃ .

The last equation can be translated into three different conditions as follows [6]:

Diagonal constraints ϵIJKLB
IJ
f BKL

f = 0, (3.57)

for all f ∈ v, that is to say, for each and every face of the 10 possible faces touching the vertex
v.

Off-diagonal constraints ϵIJKLB
IJ
f BKL

f̃
= 0, (3.58)

for all f, f̃ ∈ v such that they are dual to triangles sharing a one-simplex, that is to say,
belonging to the same tetrahedron out of the possible five. Remember that a four-simplex is
bounded by five tetrahedra. Finally,

4-simplex constraints ϵIJKLB
IJ
f BKL

f̃
= Vv, (3.59)

for any pair of faces f, f̃ ∈ v that are dual to triangles that share a single point. The constraint
(3.59) is actually taken as the definition of the four-volume Vv of the four-simplex. The true
constraint demands that the volume is equal when is calculated using different possible pairs
of f and f̃ in a four simplex, with the condition that their dual triangles share a single point
and that the pairs f − f̃ are ordered sharing the same orientation of the complex △∗ [6].

The implementation of the geometric constraints in the form given the equations (3.57)-(3.59)
is the basis of the definition of some of the most studied spinfoam models for quantum gravity.
In the case where G = SO(4), the implementation of the constraints in the quantum theory
leads to the well-known Barrett-Crane model (BC model) [1, 2, 6, 9, 60]. The interest in the
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model resides in its remarkable simplicity [6] and its finiteness properties [8]. Soon it as found,
however, that the BC-model suffered from serious limitations. First, its boundary state space
does not exactly match that of canonical loop quantum gravity [8]. Second, the volume opera-
tor is ill-defined in such a model. In addition, some studies indicated that may not yield to the
correct tensorial structure of the graviton propagator [8]. Finally, if we take into account The-
orem 3.4.1, the BC model is a quantization that mixes all the sectors involved in the solution
of the simplicity constraints [9], and, for that reason, the model seems not to be a quantization
of general relativity as such.

All the mentioned limitations of the BC model motivated the search for new ways to impose
the simplicity constraints at the quantum level. All these efforts led to a new spin foam model
that tries to ameliorate the properties of the BC model and is usually called the EPRL-model8.
We will proceed to roughly describe the construction of the model. For more details, the reader
can see the references cited at the beginning of the chapter.

As we mentioned at the beginning of this subsection, we start considering a four-dimensional
manifold and the Lie group G = SL(2,C) as the gauge group. We discretize a compact region
M with a three-dimensional boundary ∂M = Σ as we performed in the previous section. As
already mentioned in Theorem 3.4.1, the constraint (3.51), or its equivalent expression (3.54),
has two different sectors of solutions. As proven in [8], the corresponding discretized version
given in Equation (3.56) also has two different sectors as its solutions. To really quantize
general relativity, we somehow need to choose one of the sectors. As was proven in [22] and
subsequently applied in [8] and [16], if we replace the condition (3.56) with the requirement

� For each tetrahedron τ ∈ △, there exists a vector nI ∈ R4 such that for all the faces
f ∈ △∗ that are dual to the triangles t ∈ τ we have that

CJ
f := nI(

∗Bf )
IJ = 0, (3.60)

we correctly choose only the sector II that corresponds to general relativity. Thus, B is nec-
essarily of the form B = ±∗(e ∧ e). Geometrically nI represents the normal one-form to the
tetrahedron τ . This condition is called the linear simplicity constraint. We will call it the linear
geometric constraint. The discovery of the condition (3.60) as implying the choice of the right
sector prompted the development of the new spin foam models.

3.5.2 Quantum kinematics

As mentioned before, we consider the triangulation of a compact four-dimensional region M
with boundary Σ. The simplicial complex dual to the triangulation in the boundary Σ defines a
graph Γ, with vertices v dual to boundary tetrahedra τ and links l dual to boundary triangles.
A face that touches the boundary is dual to a boundary triangle and therefore corresponds to
a boundary link l. This link is the intersection of the face with the boundary. Therefore, a
boundary link l is a boundary edge, but it is also associated with a face f that touches the
boundary.

8The model has this name because of the initials of the surnames of four famous characters in the LQG
community.
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Since the variables Ue and Bf are associated with edges and faces, respectively, the bound-
ary variables are respectively associated with boundary edges: that is, the links l and the
boundary of the faces, which are also links. Therefore, the boundary variables are Bl ∈ sl(2,C)
and Ul ∈ SL(2,C) on each link of the boundary graph Γ. These variables will become operators
in the quantum theory.

Let us define

Jf :=
1

κ

(
Bf +

1

γ
∗Bf

)
. (3.61)

Inverting the equation gives

Bf :=

(
κγ2

γ2 + 1

)(
Jf −

1

γ
∗Jf

)
. (3.62)

The constraint (3.60) can be expressed in terms of Jf as follows:

CJ
f := nI

(
(∗Jf )

IJ − 1

γ
J IJ
f

)
= 0. (3.63)

Following [8], [16] and [23], let us fix nI = δ0I . This choice restricts all tetrahedra to be spacelike
[16]. With this choice, the linear geometric constraint takes the following form:

Cj
f =

1

2
ϵjklJ

kl
f − 1

γ
J0j
f = Lj

f −
1

γ
Kj

f = 0, (3.64)

where ϵjkl := ϵ0jkl, L
j
f := ϵjklJ

kl
f are the generators of the SU(2) subgroup that leaves nI

invariant andKj
f := J0j

f are the generators of the corresponding boosts. In the above expression,
f refers to a face f ∈ △∗, and the mentioned SU(2) subgroup is chosen arbitrarily at each
tetrahedron or, equivalently, on each edge e ∈ △. We will take (3.64) as our basic geometric
constraint. The commutation relations of the previous restrictions are [6][

Ci
f , C

j

f ′

]
= 2δe,e′ ϵ

ij
kC

k
f − δe,e′

γ2 + 1

γ2
ϵij kL

k
f . (3.65)

This relation implies that the constraint algebra is not closed. The latter means that the com-
mutator of two restrictions is not a restriction. For that reason, we cannot impose the closure
relation (3.64) as an operator equation of the states summed over in the BF partition function.
The EPRL model is obtained by restricting the representations appearing in the expression of
the BF partition function so that at each tetrahedron the linear geometric constraint (3.64) is
satisfied in the strongest way possible [6]. We will see how this is done.

The two Casimir operators of SL(2,C) are given by K⃗f · L⃗f and |K⃗f |2 − |L⃗f |2.

The variable Lj
f has an important geometric interpretation. Consider a triangle in the bound-

ary. If f is the face dual to such triangle, in the approximation in which the metric is constant
in the triangle, it can be proven that the norm of Lj

f is proportional to the area of the triangle
[19]:

|Lf | =
1

γ
Atf . (3.66)
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The quantization of the theory leads to states ψ(Ul), which are functions on SL(2,C)L, where
the operator Bl is realized as the generator of SL(2,C) transformations [19]. However, we
must impose the constraint (3.64) in order to obtain the boundary state space and define the
corresponding transition amplitudes.

Boundary state space

As emphasized in [19], functions in SL(2,C) can be expanded into irreducible representations
of the group SL(2,C). The unitary representations of SL(2,C) are of infinite dimension, and
they are labeled by two numbers: a positive real number p and a no-negative half-integer k.
The Hilbert space H(p,k) of the (p, k) representation can be written as a direct sum of spaces
of irreducible representations of the subgroup SU(2) ⊂ SL(2,C) in the form

H(p,k) =
∞⊕
j=k

Hj, (3.67)

where H| is the 2j+1–dimensional space of the carriers of the spin j irreducible representation
of SU(2). In the (p, k) representation, we can choose a basis |p, k, j,m⟩, with j = k, k + 1, . . .
and |m| ≤ j. The numbers (p, k) are related to the two Casimir operators of SL(2,C) by the
equations [19, 34]:

|K⃗|2 − |L⃗|2 = p2 − k2 + 1, (3.68)

K⃗ · L⃗ = pk, (3.69)

whereas the numbers j,m are the numbers indexing the basis of eigenstates of |L⃗|2 and Lz.

If we demand the equation (3.64) be satisfied in the limit of large (p, k), then the Casimir
must satisfy [19]

|K⃗|2 − |L⃗|2 = (γ2 − 1)|L⃗|2, (3.70)

K⃗ · L⃗ = γ|L⃗|2. (3.71)

By combining (3.68) and (3.69) with (3.70) and (3.71) and by taking the limit of large p, k, j,
we obtain the following equations: [19]

p2 − k2 = (γ2 − 1)j2, (3.72)

pk = γj2, (3.73)

which have the solutions

p = γk, (3.74)

k = j. (3.75)

The first relation establishes a restriction on the set of the unitary representations of SL(2,C).
The second one selects, from all the SU(2) subspaces involved in the sum (3.67), the subspace
with the lowest spin. The states that satisfy these relations have then the form

|p, k, j,m⟩ = |γj, j, j,m⟩. (3.76)
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The vector space formed by the states given in (3.76) is isomorphic to the space of SU(2) states
given by |j.m⟩. We can introduce an isomorphism Yγ : Hj → H(p=γj,k=j) between them in the
most obvious way:

Yγ|j.m⟩ := |γj, j, j,m⟩. (3.77)

All the vectors in the image of Yγ satisfy the linear geometric constraint in the weak sense:

⟨Yγψ1|L⃗− 1

γ
K⃗|ψ2⟩ = 0, (3.78)

in the limit of j large [19, 34].

The map Yγ can be extended to a map from functions over SU(2) to functions over SL(2,C)
in the following way:

Yγ(ψ)(U) = Yγ

(∑
jmn

cjmnD
(j)
mn( )

)
(U) :=

∑
jmn

cjmnD
(γj,j)
jmjn (U). (3.79)

Now consider a graph Γ and a function ψ(hl) of the SU(2) group elements associated to the
links. We can use the extension defined above to send ψ to a function Yγψ of SL(2,C) group
elements on the links of Γ. As emphasized in [34], this function is not SL(2,C) invariant at the
nodes, but we can make it gauge invariant by integrating over the gauge group. We define

(PSL(2,C)ϕ)(Ul) :=

∫
SL(2,C)

dU
′

nϕ
(
Uxl

i
UlUxl

f

)
, (3.80)

where the prime in dgn indicates that one of the edge integrals is dropped because it is redundant
[34] and xli, x

l
f are the initial and final points of l. We can then define the linear map

fγ := PSL(2,C) ◦ Yγ (3.81)

that sends SU(2) spin networks into SL(2,C) spin networks. This function allows connecting
the boundary state space of the EPRL model with the standard spin network states of canonical
loop quantum gravity.

The boundary Hilbert space of the EPRL model is given by the image of SU(2) spin net-
works under the map Yγ. The boundary states of the spin foam model defined by the EPRL
model are in correspondence to SU(2) spin network states. As emphasized in [6], this suggests
that the spin foam amplitudes can be interpreted as dynamical transition amplitudes of the
canonical theory described in Chapter 2.

Finally, recall that the norm of the variable Lj
f , that is |Lj

f |, is proportional to the area of
the triangle dual to the face f , as is given in the expression (3.66). Let us consider a face in
the boundary and the boundary triangle dual to that face. If we remember that a boundary
face corresponds to a boundary link l, and that the link l is normal to the corresponding dual
triangle in the boundary, and if we restore the units, then the area of the triangle normal to
the link l is given by [19]

Al = 8πγℏG|L⃗|. (3.82)
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This expression gives the eigenvalues of the area of a single triangle:

Al = 8πγℏG
√
j(j + 1). (3.83)

The eigenvalues of the area of an arbitrary surface punctured N times n1, n2, . . . , N are [19]

Aln = 8πγℏG
∑
n

√
jn(jn + 1), (3.84)

where j and jn are no-negative half integers and correspond to the representations of the links
that puncture the triangle or surface considered.

The above expression is the same expression that we found in the canonical theory for the
area of a two-dimensional surface punctured by the lines of a spin network graph. Therefore,
the area operator in the EPRL model exactly matches that of the canonical theory. The same
occurs with the volume operator, but the construction is more complicated. Details can be
found in [44].

The match, however, between the eigenstates of the area and volume operator in the canonical
and covariant theories and it is important to remember that in (3.64) we considered all the faces
as spacelike. The latter means that the model only considers spacelike faces. It is possible to
generalize the model, however, to include timelike faces, but timelike faces are not compatible
with the Hilbert space of the canonical theory. For more details see [52] and [53].

3.5.3 Quantum dynamics

In order to complete the construction of the model, we will write the expression for the transi-
tion. Instead of describing the detailed way to derive the form of the transition amplitude in the
EPRL model, we will give only the final result. More details can be found in [6, 8, 16, 19, 23, 34]

We know that the transition amplitude must be a function of SU(2) group elements living
on the boundary graph Γ, but it must involve the SL(2,C) group elements and be invariant
under SL(2,C) transformations. To obtain this kind of amplitude, we take SL(2,C) integrals
instead of SU(2) integrals. We must also map the SU(2) group elements into SL(2,C) ones.
For the latter, we use the map Yγ or more specifically the map fγ defined in (3.81). We then
define

Av(ψ) := (fγψ)(I), (3.85)

where ψ is a SU(2) spin network function and I represents the identity element in each link. It
is important to notice that (fγψ)(I) is a linear functional on the space of SU(2) spin networks
and is called the vertex amplitude [19]. If we draw a small sphere surrounding a vertex in △∗,
then the intersection between this sphere and the simplicial complex is a graph Γv. The vertex
amplitude corresponds to the transition amplitude of the boundary spin network states defined
over the sphere using Γv as their boundary graph. In the group representation, the vertex
amplitude can be written in the following way [34]:

Av(hl) =

∫
SL(2,C)

dg
′

n

∏
l

K
(
hl, gxl

i
g−1
xl
f

)
, (3.86)
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where l and n are, respectively, the links nodes of Γv and K is given by

K(h, g) =
∑
j

∫
SU(2)

dk d2j χ
j(hk) χγj,j(kg), (3.87)

where h, k ∈ SU(2), g ∈ SL(2,C) and χp,k(g) := Tr
[
Dpk(g)

]
is the SL(2,C) character in the

(p, k) unitary representation. See [34].

The transition amplitude in the connection representation, for SU(2) spin network states de-
fined on Σ with boundary graph Γ is given by

W (Ul) =

∫
SU(2)

dUvf

∏
f

δ(Uf )
∏
v

Av(Uvf ), (3.88)

where Uf is the holonomy of the connection around the face f and Uvf = UlvU
−1

l′v
, where l and

l
′
are the two links originating from the vertex v and bounding the face f .

The transition amplitude can also be written in the form of a spin foam expansion. Such
expression can be found in [34].

As mentioned in [34], the expression (3.88) defines truncations of the full transition ampli-
tude. The full physical transition amplitude is formally given by

W (Ul) := lim
△→∞

W△(Ul), (3.89)

where the limit means that we take a refining sequence of simplicial decompositions such that
we recover the continuous manifold when the simplicial complex is infinitely refined.

This completes the construction of the EPRL model for four-dimensional Lorentzian general
relativity. According to [19], it can be proven that the theory is ultraviolet finite and is re-
lated to general relativity in the classical limit. By adding the cosmological constant, it is also
infrared finite and leads to the n-point correlation functions for the gravitons of perturbative
general relativity, to the Friedmann equation of cosmology, and to the correct expression for
the Bekenstein-Hawking black hole entropy. As mentioned in [19], however, there are open
questions in the theory, and maybe it needs to be adjusted in order to describe nature. Here
we will mention some of the open questions concerning this model. A more detailed discussion
about it can be found in [19] and [34].

Some of the open issues and conceptual problems about this model are:

� There is still no way to connect the EPRL model with canonical loop quantum grav-
ity. There is still no Hamiltonian constraint defined in such a way that their transition
amplitudes coincide with those calculated using the EPRL model.

� The theory is defined on 2-complexes and graphs dual to a simplicial complex.More gen-
eral complexes, however, can be used, and these might be relevant. A generalization
considering arbitrary 2-complexes not necessarily dual to a simplicial complex, where
vertices and edges have an arbitrary valence, is presented in [54].
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� The issue of the coupling to matter remains as an unexplored territory [6].

� If we define the map Yγ by the equations p = γ(j + 1), k = j, it can be proven [19] that
the condition (3.78) is satisfied exactly and not just in the limit of large j. We still do
not know if there is something that favors one of the two theories over the other [19].

� It is still difficult to extract physically relevant results from the model. There are, however,
some calculations involving black holes and cosmology [19].
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4

A new discretization of four dimensional
general relativity

The EPRL model is the most widely accepted spin foam model in the loop quantum gravity
community. As emphasized in [6], the weak imposition of the linear geometric constraint allows
correcting some issues in the Barrett-Crane model. The EPRL model has been used with some
degree of success to study some aspects of the thermodynamics of black holes and in certain
studies of quantum cosmology [6, 19].

The EPRL model can be thought of as resulting from a quantization of a discretization of
classical general relativity. Such discretization considers general relativity as a field theory
whose dynamics is given by the BF action plus geometric constraints applied to the B field.
When the EPRL model is studied in the semiclassical regime, it is compared with Regge cal-
culus.

In this fourth and final chapter, we introduce the main topic that concerns our work. Broadly
speaking, we introduce a new way to discretize four dimensional general relativity. This new
discretization has three main advantages. First, it allows distinguishing between boundary de-
grees of freedom and degrees of freedom in the bulk. Such a distinction is, in some sense, obscure
in the classical discretization on which the EPRL model is based, even though the distinction
is important in constructing the quantum spin foam model. Second, in our discretization the
study of only one four-simplex already contains information about curvature. That does not
happen in the standard EPRL model, where the four simplices are flat. Third, the model has
as variables a gauge field and a variable that contains the information about the tetrad. This
helps to establish a closer analogy with the classical continuum theory than that of the Regge
discretizations, where the variables are directly related to the metric.

Our hope is that our construction allows the study of some aspects of the EPRL model that are
currently difficult to attack. Particularly, some calculations involving the semiclassical limit of
the new spin foam models have been performed in the EPRL model while only considering a
single four-simplex and in situations where the curvature is small. The introduction of a new
discretization to define a spin foam model could help to perform such computations considering
more than one four-simplex and in situations where the curvature is arbitrary.

Unlike the previous chapters, the material presented here is the product of original research
and calculations made in a collaboration between the author of this thesis and José A. Zapata,
who actively supervised the project. The basic structures used here to discretize the underlying
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differentiable manifold were previously used by M. Reisenberger in [17]. In [17], Reisenberger
discretized Euclidean general relativity formulated in terms of left-handed fields. In our exposi-
tion, we present a new model where we consider four-dimensional Lorentzian general relativity,
with the introduction of a tetrad field. The existence of the tetrad field is a consequence of
imposing the linear geometric constraint on the B-field in a suitable way, adapted to the special
characteristics of the discretization.

The material in the present chapter is organized as follows. Section one presents an intro-
duction about the recovering of the semiclassical limit in the EPRL model. We emphasize
the importance of the research of the behavior of the transition amplitude in this regime and
its connection with the calculation of correlation functions. In section two we define the dis-
cretization of the spacetime manifold in which the model is based and the dynamical variables
associated with it. In section three we adapt the linear geometric constraint (3.60) to our dis-
cretization, and we will mention that such a constraint implies the existence of a discrete tetrad
field associated with our model9. The action for the model is presented in section four, together
with the dynamical equations and their interpretation. Section five presents an analysis of the
boundary variables associated with the model. Finally, in section six we establish some possible
avenues for future work.

Throughout this chapter, we will denote the Minkowski space (R4, η) as M.

4.1 Motivation

The EPRL model presented in the last chapter is currently the most accepted spin foam model
in quantum gravity. Unlike the previous Barrett-Crane model, it imposes not the quadratic
geometric constraint given in (3.56) but the linear geometric constraint (3.60). Moreover, it
imposes such a constraint only weakly, in the limit of large quantum numbers. This produces a
model with very good characteristics, which were described in Chapter 3. This does not mean
that this new spin foam model is fully studied and is free of some defects. In particular in its
physical applications, in spite of the good agreement with some previously known results, there
are still open issues that need to be investigated. One of these issues is the semiclassical limit
of the model and its connection to classical general relativity. Strongly related is the issue of
computing correlation functions in the context of background independence.

In [56], Rovelli discussed the general framework for the definition of correlation functions in
the context of background-independent theories. The application of such a framework to the
Barrett-Crane model showed that two-point correlation functions did not yield the expected
results in the semiclassical limit. This was one of the main motivations for the construction of
the EPRL model[8] ,[16].

After the introduction of the EPRL model, the two-point correlation function was calculated
in [57] by using the new vertex amplitude (3.85) and (3.86). Such a calculation showed a result
that exactly matches that obtained from lorentzian Regge calculus in the limit γ → 0. This is

9The proof of such an affirmation is given in Appendix B.
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interpreted in [19] as an indication that the semiclassical limit of the EPRL model, defined by
using the limits γ → 0, j → ∞ with γj = constant, gives back the usual linearized theory of
gravity.

As emphasized in [6], however, all the calculations involved in arriving to such conclusions
have been performed using a simplicial complex with a single four-simplex. Some computations
have been performed involving more than one four-simplex for the case of the Barrett-Crane
model in [58]. Certain peculiar properties were found, and it is not clear if this same issues
remain in the EPRL model, or if other kind of peculiarities appear.

The lack of a clear definition between boundary and bulk degrees of freedom in the classi-
cal discretization is one of the reasons that makes the study of the semiclassical limit of the
EPRL model difficult to perform for more that only one four-simplex. One motivation for our
model is to try to correct this issue. We hope that the future quantization of this discrete
model will produce a spin foam model that preserves characteristics of the EPRL model that
make it particularly attractive. More specifically, we hope to be able to recover the SU(2) spin
networks states as boundary states of the theory. We also expect that the corresponding area
and volume operator will match those defined in the canonical theory. This apparently new spin
foam model tries to be quite similar to the EPRL model, or perhaps an alternative route for
constructing the EPRL model itself, but with the advantage of allowing a better investigation
of the semiclassical limit in cases involving a single four-simplex, because of the inclusion of
curvature.

4.2 Discretization

The discrete model presented here uses two structures that were already defined in [17]. Their
definitions can be given in any number of spacetime dimensions greater than one, but we will
give them in the special case of four dimensions. To introduce such structures, we will consider a
four-dimensional simplicial complex△ and its dual triangulation, as were defined in Section 3.2.

In the rest of this work, simplices will be denoted using Greek letters. We will denote a
four-simplex in △ as ν < △. Triangles will be denoted as σ, whereas tetrahedra will be de-
noted as τ . The notation ρ < △ will mean that ρ is a simplex of △, and λ < ρ will mean that
λ is a subsimplex of ρ.

Definition 4.2.1. Given a four-dimensional triangulation △ and its corresponding dual trian-
gulation △∗, let us consider one four-simplex ν < △ and one triangle σ of that four-simplex.
We define the wedge s(σν) associated with σ and ν as the intersection of the four-simplex ν
and the two-cell of △∗, which is dual to the triangle σ.

Each wedge is associated with a four-simplex ν and a two-simplex σ of ν. It is a piece of plane
formed by the barycenters of the triangle σ and the four-simplex ν, as well as the two tetrahedra
τ1, τ2 of ν that share σ.

Now we will subdivide each four-simplex of △ into new structures that are called corner cells ;
each of them is associated with a vertex of the simplex, as follows.
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Figure 4.1: This figure shows the structures introduced in Definitions 4.2.1 and 4.2.2 in a
three dimensional simplicial complex. Considering a tetrahedron, in a) it is shown the wedge
corresponding to the line l and the tetrahedra ν. In b), it is shown all the wedges in ν associated
with all the lines l in the tetrahedron. In c) the corner cell associated with the vertex p is shown.

Definition 4.2.2. Let us consider a four-simplex ν in △. Let p be a vertex in ν, and let us
consider all the triangles σ in ν that have p as one of their vertices. The set of points in ν
enclosed by the wedges dual to those triangles, the triangles themselves, and all the tetrahedra
in ν that have p as one of their vertex will be called the corner cell cp associated with p.

As emphasized in [17], cp is topologically a hypercube. It has one vertex in the interior of the
four-simplex ν, which is the barycenter of ν. The other vertices of cp are in the barycenter of the
subsimplices of ν incident on p. It can be shown that the intersection of cp with a subsimplex
µ < ν is the corner cell of p in µ. The new structures defined in 4.2.1 and 4.2.2 are illustrated
in Fig.4.1 in the three-dimensional case.

The wedges and the corner cells defined above have some properties that are important to
mention.

� Given a fixed four-simplex ν, the wedges s(σν) in ν are in one-to-one correspondence with
the triangles σ of ν.

� The boundary of the wedge s(σν) can be constructed by drawing four lines. Two such
lines travel from the barycenter of ν to the barycenters of the two tetrahedra τ1 and τ2 in
ν that share the triangle σ. We will denote such lines as l1 and l2, respectively. One such
line was indicated in panel a) of Fig.4.1. The other two lines travel from the barycenters
of these tetrahedra to the barycenter of σ. These lines will be denoted by r1 and r2. As
previously mentioned, one of these lines was indicated in panel a) of Fig.4.1. The lines
l1, l2, r1, r2 will be called the edges of the wedge s(σν).

� If we consider a fixed triangle σ < △, the union of all the wedges s(σν) for all the four
simplices ν that share σ is the face in △∗ dual to the triangle σ.

� A fixed corner cell in ν has six wedges. These wedges belong to the boundary of the
corner cell. This means that a fixed corner cell intersects with the six triangles of the
four-simplex ν.

� A fixed corner cell in ν intersects with four of the five tetrahedra in ν.
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� Two different corner cells cp and cq in the same four-simplex share three different wedges
that also belong to ν.

� Consider a fixed four-simplex ν < △ and a corner cell cp in ν. Any two tetrahedra in ν
that intersect cp share a triangle with dual wedge that also belongs to cp.

� Any two different corner cells cp and cq in ν share three different wedges. These wedges are
dual to three triangles in ν. Each couple of these triangles belongs to the same tetrahedra.

All these properties will be very important, particularly in the appendices of this thesis.

Now we will define the variables of the model. To do this, we will consider a four-dimensional
BF theory in the same way as in Section 3.4.1. The gauge group will be SO(3, 1). We discretize
the differentiable manifold using a four-dimensional simplicial complex △ and its dual △∗, and
we will also consider all the wedges and corner cells that can be constructed in △. Let us
consider a four-simplex ν < △ and a corner cell cp ∈ ν. If we take a wedge s ∈ cp, we associate
an element of the Lie algebra so(3, 1) to s. We will denote such an element as B(s). This
variable will represent the discretization of the B field.

The discretization of the connection will be given by its holonomy along the edges of each
wedge s(σν). More specifically, we associate an element hl ∈ SO(3, 1) to each edge l(ντ) that
goes from the barycenter of the four-simplex ν to the barycentre of the tetrahedron τ . In addi-
tion, we associate an element kr ∈ SO(3, 1) with each edge r(τσ) that goes from the barycenter
of the tetrahedron τ to the barycenter of the triangle σ. The elements hl here correspond to
those that were denoted as Vvt in[8], where v denotes a four-simplex and t is a tetrahedron in
the boundary of v.

The discretization of the connection deserves some important comments. In the EPRL model
introduced in Section 3.5, we considered a four-dimensional triangulation using as basis the
Regge calculus. Therefore, the four-simplices were considered flat, and the information about
the curvature was concentrated in the holonomy around the face f ∈ △∗ dual to a triangle
σ ∈ △. This means that to obtain information about the curvature we need to consider more
than one four-simplex. On the other hand, in the discretization that we are introducing here, a
single four-simplex already has information about the curvature. This will be one of the facts
that will help us to separate the bulk degrees of freedom from those in the boundary.

Regarding the last point, we associate to the boundary of each wedge an element g∂s ∈ SO(3, 1),
defined as

g∂s := h−1
l2
k−1
r2
kr1hl1 , (4.1)

which is the holonomy of the continuous connection around the boundary ∂s(σν) of the wedge.
Notice that the definition of g∂s requires the definition of an orientation for the wedge s. As
in [59], we will leave the orientation free and keep in mind that if we denote as s̄ the same
wedge but with opposite orientation, we will then have that g∂s̄ = g−1

∂s . The quantity defined
in equation 4.1 represents the discretization of the curvature.
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4.3 Constraint on the B field

The discrete field B(s) is an independent variable in our model. It is an element of the Lie alge-
bra so(3, 1) and can be considered an element attached to the barycenter of every four-simplex.
Thus, in the barycenter of every four-simplex we have three spaces: a tangent space TCνM that
is isometric to the Minkowski space (denoted as M), a copy of the Lie group SO(3, 1) and its
corresponding Lie algebra so(3, 1)10.

The discrete field B(s) represents approximately the discretization of the continuous field B(x).
As already mentioned in Subsection 3.4.2, in order to recover general relativity from a BF the-
ory with SO(3, 1) as the gauge group we must impose a restriction over B to reduce the action
to that of general relativity.

In Subsection 3.4.2, particularly in Theorem 3.4.1, we saw that a necessary and sufficient
condition that can be imposed over the field B to recover general relativity in some cases is
given by the geometric constraint (3.51). This constraint, however, has two different sectors
of solutions. Moreover, in the EPRL model, it is not the quadratic constraint but the linear
geometric constraint, equation (3.60), that is imposed. We repeat the statement that defines
how this constraint is imposed in the discretization used in the that model:

� For each tetrahedron τ ∈ △, there exists a vector nI ∈ R4 such that for all the faces
f ∈ △∗ that are dual to the triangles t ∈ τ we have

CJ
f := nI(

∗Bf )
IJ = 0. (4.2)

As was proven in [8], at the classical level the previous statement implies that for each tetrahe-
dron τ there exists a tetrad {ek(τ)} such that the quantities Bf associated with each face f ∈ △∗

with a dual triangle that belongs to that tetrahedron are of the form Bf = ∗(ei(f)(τ)∧ej(f)(τ)).
In a second step, it is asked these five tetrads to be identified by internal parallel transport.

In the model we are constructing here, we need to impose a constraint over the B field again.
It is clear that if we want to stay as close as possible to the standard EPRL model we need to
impose the linear constraint. We can not impose it, however, using the same statement given
above by the following reason.

If we impose equation (4.2) for every tetrahedron, as in the previous statement, we will again
obtain a basis for the Minkowski space M that generates, through the wedge product, six
elements of so(3, 1). The problem is that such elements are associated with wedges. In the dis-
cretization presented here, if we consider the entire discretization, we do not have a one-to-one
correspondence between wedges and triangles. There will be more than six wedges associated
with one triangle, and it will not possible to use just one tetrad to generate all of the B(s(σν))
associated with a tetrahedron.

10In order to perform the calculation of the dynamical equations, we will consider only the connected com-
ponent of the group.
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To solve this problem, we will impose equation (4.2), but by using a statement that adapts it
to the particular discretization that we are considering here. The whole statement will receive
the name of Adapted Linear Geometric Constraint, and it will be given in the following way:

Adapted Linear Geometric Constraint(ALGC): Let ν < △ be a four simplex, cp a corner cell
in ν, τ a tetrahedron in ν that intersects cp and l(ντ) the line that goes from the barycenter of
ν to the barycenter of τ . There exists a vector n⃗(τ, cp) ∈ M different from zero, such that for
all the wedges s < cp in cp such that l(ντ) ∈ ∂s, we have that

n(τ, cp)IB(s)IJ = 0.

This constraint intends to be analogous to such imposed in the standard EPRL model, in the
sense that we expect that it will allows to recover the correct action for general relativity in
the continuum limit.

Here it is important to mention that the term “linear” given to the restriction is given only to
follow the convention. The restriction is actually not linear, and the sum of two solutions is
not a solution. Despite this, we will follow the standard convention and we will call it linear.

We said that the linear geometric constraint, as imposed in the EPRL model, implies the exis-
tence of a tetrad for each tetrahedron and that these tetrads are identified by parallel transport.
In the model that we present here the ALGC is not enough to uniquely define a tetrad. In
order to fix this, we need to impose another condition over the quantities B(s) associated with
a corner cell. This additional constraint receives the name of the four-volume constraint, and
is given by the following statement:

Four-volume constraint :
Given a four-simplex ν and a corner cell cp < ν we have that

sgn(s, s′)ϵIJKLB(s)IJ ∧B(s′)KL = sgn(s′′, s′′′)ϵIJKLB(s′′)IJ ∧B(s′′′)KL, (4.3)

for every couple of wedges (s, s′) and (s′′, s′′′) in cp such that s and s′ only share the point Cν

(the barycenter of ν), and the same for s′′ and s′′′.

The quantity sgn(s, s′) := sgn(σ, σ′) is the sign of the oriented four-volume spanned by the
two-simplices σ, σ′ associated with s and s′ in cp. If σ and σ′ share only one vertex, then the
orientations of σ and σ′ define an orientation for ν. If this orientation matches that already
chosen for ν, then sgn(s, s′) = +1. If it is the opposite, sgn(s, s′) = −1. If σ and σ′ share more
than one point, then sgn(s, s′) = 0.

The name of the condition given above comes from the fact that the quantity:

V (ν) := sgn(s, s′)ϵIJKLB(s)IJ ∧B(s′)KL

is the four-volume of the four-simplex ν [8, 17]. In this way, the four-volume constraint essen-
tially says that the four-volume, calculated using different couples of wedges with the charac-
teristic that the two wedges of the couple share only one point, must be the same.
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Together, the ALGC and the four-volume constraint imply the existence of a tetrad, but instead
of a tetrad for each tetrahedron, we have a tetrad for each corner cell cp in a four-simplex ν.
This tetrad generates, through the wedge product, all the elements Bs(σν) ∈ so(3, 1) such that
s < cp. Moreover, we do not obtain 20 vectors, but instead we have only five vectors associated
with every four-simplex. This set of vectors, grouped into sets of four, are the five bases for each
of the corner cells associated with the four-simplex. More specifically, the volume constraint
and the ALGC imply the following two results.

Theorem 4.3.1. Let ν < △ be a four-simplex in △ and cp a corner cell in ν. Consider that the
six B(s) associated with cp are linearly independent. If the adapted linear geometric constraint
is true and the four-volume constraint is satisfied, then for each corner cell cp < ν there exist
four linearly independent vectors e⃗l0(cp), . . . , e⃗3(cp) ∈ M such that, for every B(s) ∈ so(3, 1)
associated with a wedge s belonging to cp we have that

B(s) =∗ (e⃗li(s)(cp) ∧ e⃗lj(s)(cp)) ,
where ∂s = li + ri − rj − lj.

Theorem 4.3.2. Let ν < △ be a fixed four simplex. If the conditions in theorem 4.3.1 hold,
then, for each four-simplex ν < △ there exist five vectors e⃗0, . . . , e⃗4 ∈ M such that the five
sets that can be constructed using four of such vectors, with all of them different, are the basis
associated with each corner cell mentioned in theorem 4.3.1.

These two affirmations are proven in Appendix B.

4.3.1 The tetrad for each corner cell

The five vectors associated with each four-simplex and the five bases that they produce deserve
some comments.

We have said that there are five vectors, e⃗1, . . . , e⃗5, associated with each four-simplex. These
vectors are elements of a copy of M attached at the barycenter of the four-simplex. It can
be seen that inside each four-simplex there are five lines starting at Cν and finishing at the
barycenters of the five tetrahedra in the boundary of ν. Those are the lines that we denoted
as lk. Thus, we can associate each of the five vectors e⃗k to one of the lines lk inside the four-
simplex. Considering this, given one four-simplex ν < △, we will write e⃗l1 , . . . , e⃗l5 to denote
the set of five vectors associated with ν. The base associated with a corner cell cp in ν is the
set {e⃗li , e⃗lj , e⃗lk , e⃗lm}, where li, . . . , lm are the four lines l that belong to cp.

The elements B(s) that are a solution of the ALGC and the four-volume constraint are given
in the form

B(s) =∗ (e⃗li(s) ∧ e⃗lj(s)) (4.4)

where ∂s = li+ si− sj − lj. In words, the element B(s) is the Hodge dual of the wedge product
of the two vectors associated with the lines li, lj in the boundary of s.
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There exists a way to understand the connection between the continuous and the discretized
tetrads. In the continuum theory, we have a tetrad field eI(x) and its corresponding cotetrad
field eI(x). The cotetrad field is a set of four one-forms valued in the real numbers. One one-
form per value of the index I. These four one-forms can be joined to form a single one-form
valued in the Minkowski space M. In this way, we can say that the cotetrad field is a one-form
with values in the Minkowski space, as defined in [1]. If we choose a basis {v⃗I}3I=0 for M, we
can write

e = v⃗Ie
I
µdx

µ.

In the discrete theory presented here, we have five elements of the Minkowski space associated
with each four-simplex. We can consider that to obtain such vectors we first take the continuous
cotetrad field e, and we evaluate it in the point of M (the spacetime manifold) correspoding to
the barycentre of the four-simplex. Thus, we obtain a linear function

e(Cν) : TCνM → R4.

This function, evaluated in the five vectors v⃗lk associated with the lines lk, give the five elements
e⃗k.

We can compare our tetrad with the tetrads defined in the standard EPRL model. In the
EPRL model, there is a tetrad associated with the barycenter of each tetrahedron. In a given
four-simplex, two of such tetrads are related through the parallel transport of the connection
along the lines that join the barycenters of such tetrahedra and the barycenter of the four-
simplex. Thus, we obtain a matrix belonging to the gauge group (SO(4) in the Euclidean
theory and SL(2,C) in the Lorentzian theory). In the model considered here, we have five
vectors e⃗k attached to the barycentre of every four-simplex. The point to which each tetrad is
attached is different. Here we do not associate a basis to each tetrahedron of a four-simplex.

4.4 Dynamics

4.4.1 Discrete action

The dynamics of the model is given by a discrete action. There are, however, two options that
we can consider here. On one hand, we can write the discrete action in terms of the variables
B(s), hl and kr. Thus, we define our model as given by such a dynamical action but with the
variables B(s) constrained by the adapted linear geometric constraint. On the other hand, we
can start considering, from the beginning the existence of the set of five vectors el1(ν), . . . , el5(ν)
for each four-simplex, as well as considering the action as a function of the variables eli , hl and
kr. The first would be a discrete BF theory with a restriction over B. The second intends to
be a direct discretization of the Holst action for general relativity. Theorems 4.3.1 and 4.3.2
ensure that these two models are indeed equivalent.

Here we choose the second option. We write the action in terms of B(s), hl and kr but
considering that B(s) is given by equation (4.4). The action for the model is given by the
following expression:
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S△ =
∑
ν<△

∑
cp∈ν

 ∑
s,s′∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

) , (4.5)

where γ ∈ R.

If the region of spacetime considered has a three-dimensional boundary, the addition of bound-
ary terms to the action must be considered in some cases. If the connection is kept fixed at the
boundary, no boundary terms are necessary. For a complete discussion, see [17].

It is important to add some comments.

a) The action given in (4.5) can be rewritten as

S△ =
∑
ν<△

∑
s,s′<ν

 ∑
cp∈ν

s,s′∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

)
 . (4.6)

The sum
∑

cp∈ν
s,s′∈cp

is interpreted as the sum over all the corner cells in ν such that the wedges

s, s′ belong to cp.

b) We can isolate the action that corresponds to a single corner cell, which is given by

Scp :=
∑

s,s′∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

)
. (4.7)

In the same way, we can easily isolate the action of a single four-simplex ν, which is given
as the sum of the actions of every corner cell in ν:

Sν :=
∑
cp<ν

Scp . (4.8)

The action of our model is similar to the action considered in [17]. There are some differences
that are worth mentioning, however.

The action of our model allows isolating the action corresponding to a single corner cell.

In [17], the gauge group is SU(2) because the discretization intends to be a discrete model
for a version of Euclidean general relativity where the dynamical fields can be represented
entirely by left-handed fields. In our model, we consider SO(3, 1) as the group defining the
theory. This means that in our case we are considering the construction of a discrete model for
Lorentzian general relativity.

In addition, in the action considered here we have introduced an extra term given by

∑
ν<△

∑
cp<ν

 ∑
s,s′∈cp

1

γ
sgn(s, s′)tr (∗B(s′)g∂s)

 .
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This tries to be a discrete version of the Holst term introduced in Subsection 3.4.2, specifically
in equation (3.47). We hope that the addition of this term allows establishing a closer contact
with canonical loop quantum gravity, once the model is quantized.

4.4.2 Field equations

To define the dynamics of the model, we will calculate the dynamical equations by taking the
variations of the action with respect to the independent variables.

To calculate the variation of the action, we will denote as {Ti}6i=1 the six generators of the
Lie algebra so(3, 1). The elements {Ti}3i=1 will be the generators of rotations and {Ti}6i=4 the
generators of boosts.

First, let us consider the variation of the action with respect to the variable hl. Let us consider
a single line l1 in △. This choice singles out one single four-simplex ν < △. Thus, we can
consider the action of only one four-simplex ν such that l1 ∈ ν. We parametrize the variation
of hl1 as h̃l1 := hl1exp(λα

i
l1
Ti), where λ ∈ R, and we consider a sum over i. Thus, this variation

on hl1 induces
g̃∂s(λ) := h−1

l2
k−1
r2
kr1h̃l1(λ) = g∂sexp(λα

i
l1
Ti). (4.9)

By substituting this quantity in the action, we obtain

S̃ν(λ) := Sν(g̃∂s(λ)) =
∑
cp∈ν
l1 /∈cp

 ∑
s,s′∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

)+

+
∑
cp∈ν
l1∈cp

 ∑
s,s′∈cp
l1 /∈s

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

)+

+
∑
cp∈ν
l1∈cp

 ∑
s,s′∈cp
l1∈s

sgn(s, s′)tr

(
B(s′)g∂sexp(λα

i
l1
Ti) +

1

γ
∗B(s′)g∂sexp(λα

i
l1
Ti)

) .
Let us define the variation of the action, denoted as δS△, as

δS△ :=
d

dλ

∣∣∣∣
λ=0

S̃ν(λ). (4.10)

If we consider that l(ν, τ) ∈ ∂s(σν) if and only if σ < τ , we obtain that the condition δS△ = 0
implies that ∑

cp∈ν
τ∩cp ̸=∅

 ∑
s(σν),s′∈cp

σ<τ

w̃(s(σν), s′)i

 = 0, (4.11)

where

w̃i(s(σν), s
′) := sgn(s, s′)tr

[
Ti

(
B(s′) +

1

γ
∗B(s′)

)
g∂s

]
. (4.12)
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The variation with respect to the variable kr proceeds in a similar way. Let us consider only
one line r1(τ, σ). Notice that this line belongs to the boundary of two wedges s1(σν1) and
s2(σν2), where ν1 and ν2 are the two four-simplices that share the tetrahedron τ . Let us define
k̃r1(λ) := exp(λαi

l1
Ti)kr1 . Considering that g̃∂s(λ) := g∂s(k̃r1), the substitution of k̃r1 in the

expression for the action gives

S̃△(λ) =
∑
ν<△
r1 /∈ν

∑
cp∈ν

 ∑
s,s′∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

)+

+
∑
ν<△
r1∈ν

∑
cp∈ν
r1 /∈cp

 ∑
s,s′∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

)
+

+
∑
ν<△
r1∈ν

∑
cp∈ν
r1∈cp

 ∑
s,s′∈cp
r1 /∈∂s

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

)
+

+
∑
ν<△
r1∈ν

∑
cp∈ν
r1∈cp

 ∑
s,s′∈cp
r1∈∂s

sgn(s, s′)tr

(
B(s′)g̃∂s(λ) +

1

γ
∗B(s′)g̃∂s(λ)

)
 .

Notice that we have g̃∂s(λ) = h−1
l2
k−1
r2
exp(λαi

l1
Ti)kr1hl1 . and

d

dλ
g̃∂s(λ) = αi

l1
h−1
l2
k−1
r2
Tiexp(λα

i
l1
Ti)kr1hl1 .

Now we need to take into account that r1(τ, σ) belongs to the boundary of two wedges s1(σν1)
and s2(σν2), where ν1 and ν2 are the two four-simplices that share the tetrahedron τ . Consid-
ering this and defining δS△ as in (4.10), we obtain

δS△ =
∑
ν<△
r1∈ν

∑
cp∈ν
r1∈cp

 ∑
s,s′∈cp
r1∈∂s

sgn(s, s′)tr

(
B(s′)αi

l1
h−1
l2
k−1
r2
Tikr1hl1 +

1

γ
∗B(s′)αi

l1
h−1
l2
k−1
r2
Tikr1hl1

)
 .

Let us define α̂i
r1

:= h−1
l1
k−1
r1
αi
r1
kr1hl1 . Therefore, we have that αi

l1
Ti = kr1hl1α̂

i
r1
Tih

−1
l1
k−1
r1

and

B(s′)αi
l1
h−1
l2
k−1
r2
Tikr1hl1 = B(s′)g∂sα̂

i
r1
Ti, where we have a sum over i. By using this, we obtain

tr

(
B(s′)αi

l1
h−1
l2
k−1
r2
Tikr1hl1 +

1

γ
∗B(s′)αi

l1
h−1
l2
k−1
r2
Tikr1hl1

)
= αi

r1
ũ(s(σν), s′)i,

with

ũi(s(σν), s
′) := h−1

l1
k−1
r1
w̃i(s(σν), s

′)kr1hl1 . (4.13)
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By using all of the above, the condition δS△ = 0 implies that

∑
ν<△
r∈ν

∑
cp∈ν
r∈cp

 ∑
s,s′∈cp
r∈∂s

ũi(s(σν), s
′)


 = 0. (4.12a)

In order to rewrite this equation, it is important to consider the following two facts.

� Given a line r, there exist two four-simplices ν1, ν2 < △ such that r ∈ ν1, ν2.

� Given a line r and a four-simplex ν < △ containing that line, there exists only one wedge
s ∈ ν such that r ∈ ∂s. This wedge belongs to three different corner cells in ν that we
will call cp1 , cp2 , cp3 .

Let us define
ũi(s(σν), cp) :=

∑
s′∈cp

ũi(s(σν), s
′),

and
ui(σν) := ũi(s(σν), cp1) + ũi(s(σν), cp2) + ũi(s(σν), cp3). (4.12b)

By considering the two facts previously mentioned, as well as the definition (4.12b), equation
(4.12a) can be written in the following way:

ui(σν1) = ui(σν2). (4.14)

The last dynamical equation can be obtained by taking variations of the action with respect
to the variable e⃗k. In order to calculate such a variation, we need to write B(s) explicitly as
given in equation (4.4). Let us consider just one vector e that we will denote as e⃗l1(s,cp). This
choice singles out only one four-simplex ν < △, only one corner cell cp in ν, and only one wedge
s ∈ cp. The action of the corresponding four-simplex can be written in the form

Sν =
∑
cp∈ν

 ∑
s,s′∈cp

(
sgn(s, s′)tr

(
∗ (e⃗li(s′) ∧ e⃗lj(s′)) g∂s − 1

γ

(
e⃗li(s′) ∧ e⃗lj(s′)

)
g∂s

)) .
In the last expression, we used that ∗ (∗ (e⃗li ∧ e⃗lj)) = −e⃗li ∧ e⃗lj .

The elements e⃗ belong to a vector space. This means that we can parametrize the varia-
tion of such quantities in the form ẽl = e⃗l + λv⃗l, where λ ∈ R and v⃗l is an element of M
different from zero. Notice that our choice of taking the variation with respect to e⃗l1(s) also
singles out one line l1(ν, τ), but l1(ν, τ) ∈ cp if and only if τ ∩ cp ̸= ∅. By substituting e⃗l1 by ẽli
and by defining δS△ as in equation (4.10), we obtain

δS△ = −
∑
cp∈ν

τ∩cp ̸=∅

 ∑
s,s′∈cp
lb∈∂s′

(
sgn(s, s′)tr

(
∗ (e⃗lb(s′) ∧ v⃗l1(s′)) g∂s − 1

γ

(
e⃗lb(s′) ∧ v⃗l1(s′)

)
g∂s

)) ,
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where
∑

cp∈ν
τ∩cp ̸=∅

indicates that we are considering the sum over all the corner cell cp in ν such

that τ ∩ cp ̸= ∅. We can expand the definition of the trace of a matrix to rewrite the last
expression. By doing this and by imposing δS△ = 0, we obtain that the sought field equation
is

∑
cp∈ν

τ∩cp ̸=∅

 ∑
s,s′∈cp
l∈∂s′

sgn(s, s′)

(
ϵIJKLe

K
l(s′) (g∂s)

J
I −

1

γ
eIl(s′)

(
ηLK (g∂s)

K
I − ηKI (g∂s)

K
L

)) = 0. (4.15)

In this last expression, ηLK are the components of the Minkowski metric η, (g∂s)
K
I are the

components of g∂s as a matrix of SO(3, 1) in the fundamental representation, and eKl is the
k-component of the vector e⃗l.

If e⃗l1 ̸= 0, equation (4.15) is equivalent to the following expression:

∑
cp∈ν

τ∩cp ̸=∅

∑
s∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

) = 0, (4.16)

which makes no reference to any particular representation for the elements B(s) and g∂s.

In summary, we have obtained three dynamical equations. They correspond to the variation
of the action S△ with respect to the independent variables hl, kr and e⃗l. They can be written
respectively as

∑
cp∈ν

cp∩τ ̸=∅

 ∑
s(σν),s′∈cp

σ<τ

sgn(s, s′)tr

(
TiB(s′)g∂s +

1

γ
Ti

∗B(s′)g∂s

) = 0, (4.17)

ui(σν1) = ui(σν2), (4.18)

with ui(σν) := ũi(s(σν), cp1)+ũi(s(σν), cp2)+ũi(s(σν), cp3), ũi(s(σν), cp) :=
∑

s′∈cp ũi(s(σν), s
′)

and ũi(s(σν), s
′) := h−1

l1
k−1
r1
w̃i(s(σν), s

′)kr1hl1 , and

∑
cp∈ν

τ∩cp ̸=∅

∑
s∈cp

sgn(s, s′)tr

(
B(s′)g∂s +

1

γ
∗B(s′)g∂s

) = 0. (4.19)

These equations must be supplemented with the requirement of B(s) given by expression (4.4).

Equations (4.17), (4.18) and (4.19) define the dynamics of our model.

4.4.3 Physical interpretation

The physical interpretation of the dynamical equations presented above is an important topic.
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Let us start with the equation generated through the variation of the variables hl: equation
(4.17). The expressions (4.11) and (4.17) are obviously two equivalent forms writing the same
expression.

The quantity w̃i(s, s
′) given in equation (4.12) represents an element of the Lie algebra so(3, 1)

attached to the barycenter of every four-simplex. It depends on two wedges s and s′. Moreover,
equation (4.11) can be rewritten in the following way:

∑
s(σν)∈ν
σ<τ


∑
cp∈ν
s∈cp

τ∩cp ̸=∅

∑
s′∈cp

w̃i(s, s
′)


 = 0. (4.20)

We can define another quantity wi(s(σν)) as

wi(s(σν)) :=
∑
cp∈ν
s∈cp

τ∩cp ̸=∅

∑
s′∈cp

w̃i(s, s
′)

 .

Thus, wi(s) is again an element of the Lie algebra but that depends only on the wedges s.
Therefore, equation (4.20) can be written as∑

s(σν)
σ<τ

wi(s) = 0 (4.21)

This expression says that the sum of the wi(s) associated with the wedges that are dual to the
triangles of a tetrahedron is zero. This condition is similar to the closure constraint found in the
standard discretized models, such as those in [8] and [16]. The main difference is that each wi(s)
is a sum of contributions of every corner cell cp in ν. Each quantity

∑
s′∈cp w̃i(s, s

′) represents
the contribution of a single corner cell in ν. The total contribution of the four-simplex ν is the
sum ∑

cp∈ν
s∈cp

τ∩cp ̸=∅

∑
s′∈cp

w̃i(s, s
′)


of the contributions of every corner cell in ν.

Let us define

J(s, s′) := sgn(s, s′)

[
B(s′) +

1

γ
∗B(s′)

]
. (4.22)

In this way, wi(s, s
′) are essentially, the components of J(s, s′) in the basis determined by the

generators Ti but multiplied by a factor that goes to one as g∂s approaches the identity I.
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Equation (4.17) represents the discretization of the equation of the continuous theory that
gives the condition of zero torsion: equation (4.17) is the discretized version of the equation

ϵKLIJT
K ∧ eL +

1

γ
TI ∧ eJ = 0, (4.23)

where T I := deI +ωI
J ∧ eJ is the torsion two-form of the continuous theory. Equation (4.23) is

obtained from the variation of the Holst action (equation (3.47)) with respect to the connection
ω. In the theory in the continuum, equation (4.20) implies that T I = 0, that is, torsion is
zero in the vacuum. On the other hand, its corresponding discretized version (4.17) does not
allow, at least in principle, isolating a quantity that permits to be interpreted as the discretized
version of the torsion T I so that such a quantity is also annulled in the discrete setting.

This result is not something disturbing. After all, as is strongly emphasized in the spin foam
framework, the discretization of the theory and the introduction of a triangulation of the space-
time manifold are only auxiliary structures. For example in [6], it is mentioned that the cellular
decomposition △ has no physical meaning. △ is only a subsidiary regulating structure that has
to be removed when computing physical quantities. Thus, the important thing is to be able to
recover equation (4.23) in the continuum limit of the classical theory.

There exist, however, some special cases in which we can define a quantity that resembles
something similar to torsion in the continuum theory. Let

gτ,i := ±1

2

∑
cp∈ν

cp∩τ ̸=∅

 ∑
s(σν),s′∈cp

σ<τ

sgn(s, s′)tr (Ti
∗B(s′)g∂s)

 ,
where we take the sign minus when i = 1, 2, 3, and the positive sign if i = 4, 5, 6. Now let us
define

Gτ :=
6∑

i=1

Tigτ,i.

When the simplices are flat or the holonomy around the boundary of the wedges is close to the
identity, equation (4.17) can be written in the following way:

Gτ +
1

γ
∗Gτ = 0. (4.24)

This expression implies that Gτ = 0. Notice that Gτ is an element of the Lie algebra so(3, 1)
associated with each tetrahedron τ < △. In the theory in the continuum, the quantity T I ∧ eJ
is a three-form with values in the lie algebra so(3, 1). This suggests that when the simplices
are flat or when the curvature is small the quantity Gτ represents a discretized version of T I∧eJ .

Notice that in the case in which γ → ∞ equation (4.17) directly implies that Gτ = 0. This case
corresponds to a discrete model of the Palatini action, where the Holst term is zero.

Now let us discuss the meaning of equation(4.18). This equation is in fact a constraint over

75



A new discrete model for Classical General Relativity

ui(σν), and tells that ui(σν) does not depend on the four-simplex ν but only on the triangle σ.

The quantity ũi(s(σν), s
′) is the variable w̃i(s, s

′) parallel transported along a couple of lines l
and r in ∂s, from the barycenter of the four-simplex ν to the barycenter of one of the triangles
σ in the boundary of ν. Thus, ũi(s(σν), s

′) is an element of the Lie algebra so(3, 1) attached
to the barycenter of one triangle σ < ν. Moreover, as emphasized in [17], ũi(s(σν), s

′) can be
seen, like w̃i(s, s

′), essentially as the components of the variable J(s(σν), s′) but multiplied by
a factor which goes to one as the group elements hl and kr approach the identity I. In this
way, when the simplices are flat, the quantities w̃i(s, s

′), ũi(s(σν), s
′) both define the compo-

nents of J(s, s′) in the basis given by Ti. The only difference is that J and w̃i are attached to
the barycenter of ν, whereas ũi is attached to the barycentre of one triangle in the boundary of ν.

Now let us analyze equation (4.19). Such an expression is produced by taking the variation of
the action with respect to the tetrad e⃗l associated with each four-simplex ν.

In the continuous theory, the dynamical equation that is produced when taking the variation
of the Holst action with respect to the tetrad field is given by

ϵIJKLe
I ∧ FKL +

1

γ
eI ∧ FIJ = 0, (4.25)

where FKL is the curvature two-form. The first term is in fact the Einstein’s field equation.
The term proportional to 1/γ cancels on-shell because of (4.20).

Therefore, equation (4.19) together with the condition given in (4.4) is the discretized ver-
sion of (4.25).

It is important to notice that as with equation (4.17) (4.19) has an additional term proportional
to 1/γ that is different from zero. In the discrete setting, none of the other dynamical equations
leads to the cancellation of this second term, as occurs in the continuum. As with what happens
with equation (4.17), we expect that the term proportional to 1/γ is canceled when we take
the continuum limit and we take into account the rest of the dynamical equations. From the
expression (4.15), however, we can see that such a second term is canceled in the special cases
in which the curvature of the wedges is small, when the four-simplices are flat or when the
constant γ becomes large.

4.5 Boundary variables

The boundary variables of the theory are of fundamental importance in the quantization of the
model. We will analyze them in more detail.

The three-dimensional boundary of △ is discretized by a three dimensional cellular decom-
position. That boundary cellular decomposition is formed by tetrahedra, triangles and points,
and their corresponding dual structures. Some wedges in the bulk intersect the boundary
through their lines r(τ, σ). Thus, for every boundary tetrahedron, we have four lines r(τ, σ)
corresponding to the four triangles in the boundary of the tetrahedron. In addition, every
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tetrahedron in the boundary belongs to only one four-simplex in the bulk, and every triangle
in the boundary belongs to only two boundary tetrahedra. All this means that the dual of the
boundary triangulation forms a boundary graph Γ∂△ with four-valent nodes. The nodes are
located in the barycenter of the boundary tetrahedra, and the links are the lines r(τσ) that
come from the intersection of a wedge in the bulk and the boundary.

The boundary variables are given by kr(τ,σ) ∈ SO(3, 1) and ui(σ). Such variables are asso-
ciated with the elements of the boundary graph Γ∂△. More specifically, both the quantities
kr(τ,σ) and ui(σ) are associated with the links of Γ∂△. Note that for a given link in Γ∂△ con-
necting two nodes there is one element ui(σ) and two elements kr1(τ1,σ), kr2(τ2,σ) associated with
it. These last two correspond to the two tetrahedra τ1 and τ2 that share the triangle σ.

All of the above means that we have a discrete theory with a phase space that is of a dis-
cretized SO(3, 1) Yang-Mills theory. The configuration space is C = SO(3, 1)L, where L is the
number of links of the boundary graph Γ∂△. The corresponding phase space is the cotangent

bundle [T ∗SO(3, 1)]L, with (kr1 , kr2 , ui(σ)) a point in such a space.

It is important to notice that in our model there is a clear distinction between boundary
and bulk degrees of freedom. Moreover, if we consider just one four-simplex, we can easily
isolate and separate both classes of variables and give a description of the theory defined only
in such four-simplex. Furthermore, equation (4.18), which is a condition on ui(σ), is a glu-
ing equation that allows gluing together two four-simplices. This condition requires that the
boundary variable ui(σ) of one four-simplex coincides with that of the adjacent four-simplex.
These characteristics are already present in the model given in [17].

There exists another description of the boundary graph Γ̃∂△. In this description, the nodes
and the links of Γ̃∂△ are the same as those of Γ∂△ however, the variables assigned to the dif-
ferent elements of the graph are different. In this description, the configuration variables are
defined as Mij := k−1

rj
kri , and they describe the parallel transport from Cτi to Cτj . The mo-

mentum variable is ui(σ) with the appropriate orientation, but parallel transported from Cσ to
either Cτi or to Cτj . In the first case, we obtain the variable Eij. In the second case we have Eij.
They are related by the expression Eij = −k−1

rj
kriEjik

−1
ri
krj . Which of the two descriptions,

either with Γ∂△ or Γ̃∂△, is more appropriate in order to quantize the model is still an open
issue.

4.6 Open issues and future research

The model that we presented intends to be a new way to discretize general relativity. It is a
model with a clear separation between boundary variables and variables belonging to the bulk.
This is a consequence of the use of the discretization originally introduced by Reisenberger in
[17]. The variables of he model are a gauge field and a variable that contains the information
about the tetrad. This helps to establish a closer analogy with the classical Holst formulation
of general relativity than that of Regge calculus. There are, however, some open issues and a
wide field for future research. Here we will mention some of them.
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We cannot be completely sure that we really have a discretization of general relativity without
an study of the continuum limit. The calculation of the continuum limit of the action to be
sure that we can recover the Holst action is an important open issue. It requires the use of
some tools previously used in [17].

Strongly connected with the last point is the issue of the role of the torsion in the discretized
model presented here. In our framework we did not find a discretized version of the torsion.
If there is a discrete analog of torsion, it does not seem to be a quantity that vanishes as a
consequence of the dynamical equations in vacuum. The crucial point is, however, to be able
to recover the correct dynamical equations in the continuum limit. This would make the non-
vanishing of the torsion in the discrete model only a discretization artifact, without physical
consequences.

The study of the multisymplectic structure and the Peierls brackets of the boundary variables
is an important topic for the quantization of the model. In the EPRL model, the simplectic
structure is calculated without imposing the geometric constraint [8]. We hope to be able to
study the effect of the geometric constraint on the multysimplectic structure and the dynamic
compatible with that structure.

The study of gauge symmetries in discrete quantum gravity, particularly in spin foam models,
is an important area that has been explored in some particular cases [61]. The discretization △
is seen only as a regulator introduced to define the spin foam model. Even when the regulator
(or the discretization dependence) eventually has to be removed, the theory is presumed to
remain discrete at the fundamental level. This raises the question of whether the discretization
procedures used in the derivation of the spin foams are compatible with the expectation that
one is approximating a diffeomorphism invariant theory [6]. This question is important and has
been one of the central concerns of some works in the last few years [62, 63]. We expect to be
able to study the role of the diffeomorphism-invariance and the gauge symmetries in the new
discretized model that we presented here.

Another important field for future work, and maybe the most obvious, is the quantization
of the model and the construction of the corresponding spin foam model. We hope that the
quantization of our model allows maintaining the characteristics that make the EPRL model
especially attractive and helps in the study of the semiclassical limit of spin foam models. We
expect to be able to study some scenarios that are problematic when the current spin foam
models are used, particularly those involving situations with more than one four-simplex and
regions with non-vanishing curvature.

Which of the boundary graphs, Γ∂△ or Γ̃∂△, is the most appropriate for the quantization
is another open issue.

The present model, which uses SO(3, 1) as its gauge group, allows the coupling to bosons.
It could be also very useful to have an SL(2,C) model that allows the coupling to fermions.
The definition of such a model seems to be straightforward.
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5

General review and conclusions

5.1 General review of this thesis

In this work, we tried to introduce the most important features and issues of loop quantum
gravity.

Chapter one introduced the problem of quantizing the gravitational interaction. We offered
some motivations, both theoretical and phenomenological, pointing toward a description of the
gravitational field involving the principles of quantum theory. The motivations range from
black holes and singularities to the Big Bang theory and the need to reconcile two contradic-
tory theories. All of this points to a quantum description of the gravitational field as being
something necessary for solving many open problems in theoretical physics11.

In chapter two, we introduced the canonical quantization of the gravitational field. The main
motivation for canonically quantizing gravity is that general relativity is a theory explicitly
formulated in a background-independent way. The canonical quantization is a method that
allows maintaining such background independence as a fundamental characteristic also in the
quantum framework.

In order to quantize the theory, it was necessary to isolate the dynamical content, writing
the theory as a Cauchy problem. To do this, we sketched the 3+1 formulation of general rela-
tivity. As a result, it is found that there exists a set of relations among the phase space variables
(defined on a spacelike Cauchy hypersurface) known as constraints. These constraints define
the Poisson algebra of infinitesimal generators of gauge transformations. The constraints are
usually called the vector constraint, the Gauss constraint, and the Hamiltonian constraint.

The vector constraint is responsible for generating three-dimensional diffeomorphisms on every
hypersurface. The Gauss constraint generates SU(2) gauge transformations. Finally, the Hamil-
tonian constraint is related to the remaining gauge symmetry related to the four-diffeomorphism
symmetry of the Lagrangian formulation of the theory.

Motivated by the objective to quantize the theory, we presented the way in which the the-
ory is written in terms of variables that are different from the standard metric variables. Such

11For a more complete overview of the reasons that motivate the quantization of the gravitational field, see
[2]. In this reference you will find another point of view that affirms that general relativity could not be able to
be quantized because gravity could not be a fundamental interaction.
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variables are called Ashtekar-Barbero variables. With them, it was possible to cast the gravita-
tional theory in the form of a background-independent SU(2) gauge theory with an extended
phase space that is that of a SU(2) Yang-Mills theory.

The canonical framework of loop quantum gravity is constructed by quantizing a phase space
formulation of general relativity in terms of SU(2) connection variables. It is possible to ad-
vance in some steps in the canonical quantization of the theory. The kinematical Hilbert
space satisfying the commutation relations that follow from the substitution { },→ −i/ℏ [ , ]
can successfully be defined. The algebra of phase space smeared variables is replaced by the
holonomy-flux algebra, which is represented by operators in a kinematical Hilbert space com-
posed of functionals of the generalized connection. These functionals are square-integrable with
respect to the Ashtekar-Lewandowski measure. We can also define suitable operators acting
in the kinematical Hilbert space for both the Gauss and vector constraint. The kernel of the
Gauss constraint allows introducing the famous spin network basis. The quantization of the
Hamiltonian constraint presents serious difficulties. Some concrete quantizations producing
well-defined operators have been encountered. The space of solutions of the quantum Hamilto-
nian constraint, however, remains as an open issue.

Already at the kinematical level, loop quantum gravity can produce some concrete predic-
tions. Some of them are the fundamental discreteness of spacetime at the level of the Planck
scale. This phenomena is produced by the discreteness of the spectrum of the area and volume
operators. This discreteness was used in some calculations involving black holes and cosmology.
The calculations have been able to reproduce some already known results but this time from a
more fundamental point of view.

The spin foam framework was initially considered as a means to tackle the question of the
dynamics and the definition of observable quantities in loop quantum gravity. It is, however,
a broader framework, which is intended to construct a quantum gravity theory from the path
integral perspective, while remaining compatible with the canonical approach.

In Chapter three we introduced the main characteristics of the spin foam framework. We
start by motivating the general form of the partition function in the spin foam framework.
Next, we introduce how to discretize differentiable manifolds. We do this to give meaning to
the path-integral in the context of gravity. After that, we introduced the spin foam model
for three-dimensional general relativity, which is called the Ponzano-Regge model. This model
recovers some characteristics of the quantum theory found in the canonical framework, such as
the spin network states and the discreteness of the length operator. Moreover ,such a model is
independent of the discretization introduced to define it.

As a second step, we introduced the concept of BF theory. Moreover, general relativity can
be considered a constrained BF theory through what we called the geometric constraints. We
presented a spin foam model for a four-dimensional BF theory. Next, we mentioned the in-
troduction a new geometric constraint that was called linear geometric constraint. This linear
constraint was better in the sense that it allows recovering general relativity by leaving aside
some ambiguities that were present with the quadratic constraints. The use of the linear ge-
ometric constraint allows the introduction of the currently most accepted spin foam model,
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which is called the EPRL model.

Finally, in Chapter four, we presented a new way to discretize general relativity with a quanti-
zation that is expected to provide a way to tackle some open issues of the EPRL model.

Our new discrete model has three main advantages. First, it allows distinguishing between
boundary degrees of freedom and degrees of freedom in the bulk. Such a distinction is in some
sense obscure in the discretization on which the EPRL model is based. Second, in our dis-
cretization the study of only one four-simplex already contains information about curvature.
That does not happen in the standard EPRL model, where the four-simplices are flat. Third,
the model has as variables a gauge field and a variable that contains the information about the
tetrad. This helps to establish a closer analogy with the classical continuum theory than that
of the Regge discretizations.

Our hope is that our construction allows the study of some aspects of the EPRL model that are
currently difficult to attack. Particularly, some calculations involving the semiclassical limit
of the new spin foam models, and computations of correlation functions, have been done in
the EPRL model by only considering a single four-simplex. Therefore, the introduction of a
new discretization for defining the EPRL model could help to perform such computations by
considering more than one four-simplex.

5.2 Conclusions

LQG is a prominent candidate for a satisfactory quantum theory of gravity. It allows consid-
ering the background independence of the theory from the beginning and has produced some
predictions that, unfortunately, have not been test experimentally yet. Contrary to what many
people think, the canonical quantization of gravity is still a rich and active area of research [64].

The covariant formulation of LQG emerges as an alternative route. It intends to shed light
into the dynamics of quantum gravity, trying to give a discretized and regularized version of
the path integral applied to gravity. The emergence of different spin foam models is a clear
indication that there is still very much to do if we can say that we really have a quantum theory
of the gravitational interaction.

The particular route taken by LQG, where we try to construct a quantum theory of gravity and
then try to extract physically experimental results and probe their physically and mathematical
consistency is sometimes called a “bottom up inquiry” perspective12.

Our current line of research intends to produce an alternative route towards the construc-
tion of spin foam models. We have defined a discrete classical theory that tries to be a new
discretization of general relativity. We still need to take the continuum limit to be sure that we
have a discretization of the gravitational theory. Based on the results given in [17], we hope to
find that we can recover the Holst action in the continuum limit of our model.

12See Daniel Sudarsky’s personal webpage.
http://epistemia.nucleares.unam.mx/web?name=Daniel+Sudarsky en

81



A new discrete model for Classical General Relativity

The clear separation between bulk and boundary degrees of freedom allows the construction
of regions with more than one four-simplex in a clear way. This is an important improvement
over the conventional classical discretization used to define the current spin foam models.

One important characteristic of our discretization is the way in what the action is written.
The action allows isolating the contribution of a single corner cell, being the contribution of
a four-simplex the sum of the contributions of its corner cells. In this way, the corner cells
act as a kind of “smaller” or more fundamental structures than the four-simplices themselves.
This is a novel shift over the conventional discretizations, and has the potential to introduce
interesting characteristics in the quantum theory.

The non-vanishing of the term proportional to the Immirzi parameter, both in the action
and in the dynamical equations, is an interesting surprise. In the theory in the continuum, this
second term vanishes in vacuum as a consequence of the dynamical equations themselves. In
the discretization presented here, this term vanishes only in certain special cases. The non-
vanishing in the general case seems to be only a consequence of the discretization, but we need
to do more research about this point.

Connected with the last point, the possible appearance of torsion in vacuum in our discretized
model is an interesting open issue. If we are able to recover the correct dynamical equations in
the continuum limit, we will be sure that the appearance of torsion at the discretized level is
only a consequence of the discretization without physical meaning.

We hope to be able to successfully quantize the classical model and obtain a model closely
related to the EPRL model. The research of the semiclassical limit of a quantum theory is
something that needs to be checked in order to ensure that we are proceeding correctly. In this
way, we hope to make some studies concerning the propagation of gravitational waves in dis-
cretized scenarios, and to perform the calculation of the graviton propagator using the quantum
theory emerging from our model. We expect that our research will help understanding some
issues that have not been properly understood in the spin foam framework, particularly in the
semiclassical limit of the theory [6, 28].
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A
Elementary results in linear algebra

In this seemingly innocent appendix we give some definitions and results in linear algebra that
are, however, of fundamental importance. In particular, the proof of the existence of a tetrad
field for each corner cell, which is given in the next appendix, uses the majority of the results
presented here. We will also introduce some definitions and results that can be considered
pretty elementary. We do this only for completeness, and with the aim of to be clear about our
notation (which is largely taken from [14])

In the rest of the appendix, V will denote a vector space of finite dimension. We will de-
note the dual space as V ∗. Also,

∧k V will denote to the set of alternating k tensors defined
on V ∗. In this way, T ∈

∧k V will denote an alternating tensor T : V ∗ × · · · × V ∗ → R. In
particular,

∧2 V is the space of the so called bivectors.

Two remarks are necessary:

� We will say that a bivector B ∈
∧2 V is simple if there exist two vectors v⃗, w⃗ ∈ V such

that B = v⃗ ∧ w⃗.

� If W is a vector subspace of V we will write W ≤ V .

� The Minkowski space (R4, η) will be denoted by M

Definition. Let V be a vector space, and X ⊆ V a subset of V . We define:

L(X) :=
⋂

{W ≤ V/X ⊆ W}.

L(X) is called the subspace of V generated by X.[14]

Definition. Let {Wα}α∈S be a family of subspaces of V . We define

∑
α∈S

Wα := L

(⋃
α∈S

{Wα}

)
.

That is, the sum of a family of vector subspaces is the subspace of V generated by the union of
the family of subspaces.

Proposition 1.
∑

α∈S Wα is the smallest subspace of V containing
⋃

α∈S{Wα}.

By the smallest we mean that, if there exist another subspace of V containing
⋃

α∈S{Wα}, Z for
example, then necessarily

∑
α∈S Wα ≤ Z. The proof of this proposition can be found in [14].
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Definition. Let W1, W2 ≤ V subspaces of V . It is said that V is the direct sum of W1 and W2

when:

a) W1 ∩W2 = {⃗0} and

b) W1 +W2 = V .

In this case we write V = W1 ⊕W2. When W1 ∩W2 = {⃗0}, but not necessarily V = W1 +W2,
we will write W1 +W2 = W1 ⊕W2.

Proposition 2. Let W1, W2 and W3 ≤ V subspaces of V . Then:

a) dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2),

b) dim(W1 +W2 +W2) ≤ dim(W1) + dim(W2) + dim(W3)− dim(W1 ∩W2)− dim(W2 ∩W3)−
dim(W1 ∩W3) + dim(W1 ∩W2 ∩W3).

The proof is given in [14].

Lemma 1. Let W1, W2 ≤ V . Then, dim(W1 ∩W2) = dim(W1) if and only if W1 ⊆ W2.

Proof. The result is clear from the fact that W1 ∩W2 = W1 if and only if W1 ⊆ W2.

Lemma 2. If W ≤ V and dim(W ) = dim(V ), then V = W .

Proof. It is enough to prove that V ≤ W . However, this last affirmation is clear from lemma 1
because W ∩ V = W and then dim(W ∩ V ) = dim(W ) = dim(V ).

Lemma 3. Let V be a vector space such that dim(V ) ≥ 3. Let U,W ≤ V subspaces of V such
that dim(U) = dim(W ) = n− 1, and U ̸= W . Then dim(U ∩W ) = n− 2.

Proof. We know that U,W ≤ U +W ≤ V , which means that n− 1 ≤ dim(U +W ) ≤ n. Then,
by lemma 2 we will have that, either U , or W = U +W , or U +W = V .

If U + W = U , then W ≤ U , and by lemma 2 we will have that W = U . This contra-
dicts the fact that W ̸= U . Then U ̸= U +W . Analogously we can prove that W ̸= U +W .

All of the above implies that U+W = V , but by Proposition 2 a) we will have that dim(U+W ) =
n = dim(U) + dim(W )− dim(U ∩W ) = 2n− 2− dim(U ∩W ). Then dim(U ∩W ) = n− 2.

Lemma 4. Let V a vector space such that dim(V ) ≥ 4. Let U,W,X ≤ V subspaces of V such
that dim(U) = dim(W ) = dim(X) = n− 1. Then dim(U ∩W ∩X) = n− 3.

Proof. Let k := n − 1. Then dim(U) = dim(W ) = dim(X) = k ≥ 3. Note that U ∩W ≤ W .
By lemma 3 we have that dim(U ∩ W ) = n − 2 = k − 1. In the same way we have that
dim(W ∩X) = k − 1. Then, applying lemma 3 again, we obtain that

dim(U ∩W ∩X) = k − 2 = (n− 1)− 2 = n− 3.

Proposition 3. Let V be a vector space. Let V1, V2, V3 ≤ V such that dim(V1) = dim(V2) =
dim(V3) = 2, and dim(Vi ∩ Vj) = 1 if i ̸= j. Let us define W1 := V2 ∩ V3, W2 := V1 ∩ V3, and
W3 := V1 ∩ V2. Then only one of the following two possibilities is fulfilled:
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a) dim(V ∩ V2 ∩ V3) = 1, which implies that dim(W1 +W2 +W3) = 1

b) dim(V ∩ V2 ∩ V3) = 0, which implies that dim(W1 +W2 +W3) =dim(V1 + V2 + V3) = 3.

Proof. By definition, ir follows that W1 +W2 +W3 = L(W1 ∪W2 ∪W3). Also, by proposition
2b), we have that

dim(W1 +W2 +W2) ≤ dim(W1) + dim(W2) + dim(W3)− dim(W1 ∩W2)− dim(W2 ∩W3)−
dim(W1 ∩W3) + dim(W1 ∩W2 ∩W3)

Particularly, in this case we have that dim(W1) = dim(W2) = dim(W3) = 1. Also, we have
that W1 ∩W2 = W2 ∩W3 = W1 ∩W3 = W1 ∩W2 ∩W3 = V1 ∩ V2 ∩ V3. All of this implies that
dim(W1 +W2 +W3) ≤ 3− 2dim(V1 ∩ V2 ∩ V3).

Let us note that V1 ∩ V2 ∩ V2 ≤ V1 ∩ V2, so that dim(V1 ∩ V2 ∩ V3) = 0, 1. Also, as W1 ⊆
W1 ∪W2 ∪W3 ⊆ W1 +W2 +W3, and dim(W1) = 1, then dim(W1 +W2 +W3) ̸= 0.

In short, we have that dim(W1 + W2 + W3) ̸= 0 and also or dim(V1 ∩ V2 ∩ V3) = 0, or
dim(V1 ∩ V2 ∩ V3) = 1.

If dim(V1 ∩ V2 ∩ V3) = 1, then 0 < dim(W1 +W2 +W3) ≤ 1, that is, dim(W1 +W2 +W3) = 1.

On the other hand, if dim(V1 ∩ V2 ∩ V3) = 0, using lemma 2, proposition 2 and the fact that
dim(Vj ∩Vj) = 1 if i ̸= j, we have that V1 = (V1∩V2)⊕ (V1∩V3), V2 = (V2∩V3)⊕ (V2∩V1), and
V3 = (V3∩V1)⊕(V3∩V2). In this way, we obtain that V1+V2+V3 = (V1∩V2)+(V1∩V3)+(V2∩V3) =
W1+W2+W3, and then dim(V1+V2+V3) = dim(W1+W2+W3) ≤ 3. However, by proposition
2 we have that dim(V1+V3) = 3. Using this and the fact that V1+V2 ≤ V1+V2+V3, we obtain
that 3 ≤ dim(V1+V2+V3). This implies that dim(V1+V2+V3) = dim(W1+W2+W3) = 3 ■

Proposition 4. Let V be a vector subspace such that dim(V ) ≥ 4. Let E1, E2, E3, E4 ≤ V
subspaces of V such that

a) dim(Ek) = 3 for k = 1, 2, 3, 4.

b) dim(Ei ∩ Ej) = 2 if i ̸= j,

c) dim(Ei ∩ Ej ∩ Ek) = 1 if i, j and k are all distinct

d) dim(E1 ∩ E2 ∩ E3 ∩ E4) = 0

Let us define:

S1 := E1 ∩ E2

S2 := E2 ∩ E3

S3 := E3 ∩ E4
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S4 := E4 ∩ E1

and:

W1 := S1 ∩ S2

W2 := S2 ∩ S3

W3 := S3 ∩ S4

W4 := S4 ∩ S1

Then dim(Wi+Wj+Wk) = 3 for any i, j, k distinct between them, and dim(W1+W2+W3+W4) =
4

Proof. First it is important to notice that S1 + S2 = (E1 ∩ E2) + (E3 ∩ E4) ≤ V . Then, by
proposition 2a) and the fact that dim(S1 ∩ S3) = 0, we have that dim(S1 + S3) = 4. In this
way, by lemma 2, we have that S1 + S3 = V . Analogously we can prove that S2 + S4 = V .

Let us define A := (S1 ∩ S2) + (S2 ∩ S3), and B := (S1 + S3) ∩ S2. Let us note that
A = L ((S1 ∩ S2) ∪ (S2 ∩ S3)) = L (S2 ∩ (S1 ∪ S3)). We know that, by definition, S2 + S3 =
L(S1∪S3). Then S2∩ (S1∪S3) ⊆ B, but by proposition 1 it follows that A ≤ B. Since B ⊆ S2,
then 0 ≤ dim(B) ≤ 2. However A ≤ B, and then dim(A) = dim(W1 +W2) = 2 ≤ dim(B) ≤ 2.
In this way, we have that dim(A) = dim(B), and A ≤ B. Then, by lemma 2 we obtain that
A = B, that is, (S1 ∩ S2) + (S2 ∩ S3) = (S1 + S3) ∩ S2.

In the same way it can be proved that (S3 ∩ S4) + (S4 ∩ S1) = (S1 + S3) ∩ S4.

Using all of the above we have that

W1 +W2 +W3 +W4 = (S1 ∩ S1) + (S2 ∩ S3) + (S3 ∩ S4) + (S4 ∩ S1) =

= [(S1 + S3) ∩ S2] + [(S1 + S3) ∩ S4] = [V ∩ S2] + [V ∩ S4] = S2 + S4 = V.

In a similar way, using all of the above, and proposition 2a), it can be proved that dim(Wi +
Wj +Wk) = 3 for any i, j, k distinct between them. ■

Now we present some facts involving the wedge product of two or more vectors. This results,
together with those the presented above will be of fundamental importance in the proof of the
proposition given in the next appendix.

Proposition 5. An element B ∈
∧2M is simple if and only if there exist a vector n⃗ ∈ M

such that nI(
∗B)IJ = 0, where (∗B)IJ := 1

2
ϵIJKLBKL

This is lemma II.3 of [22].

Proposition 6. Two simple elements B1, B2 ∈
∧2M span a three-dimensional subspace of

M if and only if there exist a vector n⃗ ∈ M such that nI(
∗B1)

IJ = nI(
∗B2)

IJ = 0
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This is lemma II.4 of [23]. The proof of proposition 5 and 6 can be found in this same article.

Proposition 7. An element B ∈
∧2M is simple if and only if ∗B is simple

The proof of this proposition can be found in [20].

Next two results demand elementary methods for their proofs. However, the proof itself is
a little difficult to find in the literature.

Lemma 5. Let V be a vector space. The elements v⃗1, . . . , v⃗m ∈ V are linearly independent if
and only if v⃗1 ∧ · · · ∧ v⃗m ̸= 0

Proof. Suppose that v⃗1, . . . , v⃗m are linearly dependent, and let us consider that v⃗m =
∑

i<m aiv⃗i.
Then:

v⃗1 ∧ · · · ∧ v⃗m =
∑
i<m

ai(v⃗1 ∧ · · · ∧ v⃗m−1 ∧ v⃗i) = 0.

If v⃗1, . . . , v⃗m are linearly independent, there exist a basis b := {w⃗k}nk=1 of V such that v⃗i ∈ b
for each i = 1, . . . ,m [14]. Then, v⃗1 ∧ · · · ∧ v⃗m is an elements of a basis of the space

∧m V
(proposition 3.23 in [10]), and therefore it is not zero.

Lemma 6. Let v⃗1, v⃗2, w⃗1, w⃗2 ∈ V . Suppose that that all of them are distinct from zero, and that
they are different from each other. If v⃗1 ∧ v⃗2 = w⃗1 ∧ w⃗2 ̸= 0, then L ({v⃗1, v⃗2}) = L ({w⃗1, w⃗2})

Proof. By hypothesis we know that v⃗1∧ v⃗2 ̸= 0 and w⃗1∧w⃗2 ̸= 0, which means, by lemma 5, that
{v⃗1, v⃗2} and {w⃗1, w⃗2} are linearly independent sets. But we also know that v⃗1 ∧ v⃗2 = w⃗1 ∧ w⃗2,
which means, by lemma 5, that {v⃗1, v⃗2, w⃗1} and {w⃗1, w⃗2 w⃗2} are linearly dependent sets.

The linear dependence of {w⃗1, w⃗2 w⃗2} implies that there exist a, b, c ∈ R with at least one
of them different from zero, such that av⃗1 + bv⃗2 + cw⃗2 = 0. Using the fact that v⃗1, v⃗2, w⃗2

are different from zero and that v⃗1, v⃗2 are linearly independent, it follows that or c ̸= 0, or
a ̸= 0 or b ̸= 0. In any case, we will have that w⃗2 ∈ L ({v⃗1, v⃗2}). From this also follows that
v⃗1, v⃗2 ∈ L ({w⃗1, w⃗2}).

All of the above means that L ({v⃗1, v⃗2}) = L ({w⃗1, w⃗2}).
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B
Existence of a tetrad for each corner cell

In this optional reading appendix13, we embark on the task of proving that the linear geometric
restriction given in chapter 4 implies the existence of a tetrad (a set of four linearly independent
vectors in M) for each corner cell of a four-simplex. Such assignment is done in such a way
that each tetrad generates all of the B(s) ∈ so(3, 1) associated with the wedges s that belong
to the corner cell cp.

For completeness, we start by stating the form of the linear geometric constraint adapted to
our model.

Adapted linear geometric constraint(ALGC): Let ν < △ be a four simplex, cp a corner cell
in ν, τ a tetrahedron in ν that intersects cp and l(ντ) the line that goes from the barycenter of
ν to the barycenter of τ . There exists a vector n⃗(τ, cp) ∈ M different from zero, such that for
all the wedges s < cp in cp such that l(ντ) ∈ ∂s, we have that

n(τ, cp)IB(s)IJ = 0.

As we mentioned in chapter four, this condition is used in conjunction with what we call the
four-volume constraint:

Four-volume constraint :
Given a corner cell cp < ν we have that

sgn(s, s′)ϵIJKLB(s)IJ ∧B(s′)KL = sgn(s′′, s′′′)ϵIJKLB(s′′)IJ ∧B(s′′′)KL, (B.1)

for every couple of wedges (s, s′) and (s′′, s′′′) in cp such that s and s′ only share the point Cν

(the barycenter of ν), and the same for s′′ and s′′′.

Now we enunciate and prove that, as mentioned in chapter 4, this two constraints together
imply the existence of a tetrad for each corner cell generating the B’s associated with the
wedges of it. In order to be able to follow the proof you need to have read appendix A. All the
propositions and lemmas mentioned in the proof refer to those of appendix A.

Theorem B.0.1. Let ν < △ be a four-simplex in △ and cp a corner cell in ν. Consider that the
six B(s) associated with cp are linearly independent. If the adapted linear geometric constraint
is true and the four-volume constraint is satisfied, then for each corner cell cp < ν there exist

13The style of this appendix is largely inspired by Chapter 20 of [37]
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four linearly independent vectors e⃗l0(cp), . . . , e⃗3(cp) ∈ M such that, for every B(s) ∈ so(3, 1)
associated with a wedge s belonging to cp we have that

B(s) =∗ (e⃗li(s)(cp) ∧ e⃗lj(s)(cp)) ,
where ∂s = li + ri − rj − lj.

Proof. Let ν < △ be a four simplex and cp < ν a corner cell in ν. Let {τ1, τ2, τ3, τ4} be the four
tetrahedra intersecting cp. Let us consider only one of such tetrahedron, τ1 for example. Then
τ1 has three triangles σ

1
1, σ

1
2, σ

1
3 intersecting cp, and whose wedges are s1, s2, s3 respectively. Let

B1, B2, B3 be the elements of so(3, 1) associated to those wedges in cp.

By proposition 5 for each Bk there exist two vectors a⃗k, b⃗k ∈ M such that Bk = a⃗k ∧ b⃗k,
and by proposition 7 there exist two vectors α⃗k, β⃗k ∈ M such that ∗Bk = α⃗k ∧ β⃗k.

By proposition 6, if i ̸= j then the sets {αi, βi, αj, βj} are linearly dependent. This means
that if we define Vi := L ({αi, βi}), then dim(Vi ∩ Vj) ̸= 0. But the three elements Bsk are
linearly independent, and that implies that dim(Vi ∩ Vj) = 1 if i ̸= j. Also we will have that
dim(Vi) = 2 for i = 1, 2, 3.

Let us define W1 := V2 ∩ V3, W2 := V1 ∩ V3, and W3 := V1 ∩ V2. Then by proposition 3 it
follows that only one of the following two possibilities is fulfilled:

a) dim(V ∩ V2 ∩ V3) = 1, which implies that dim(W1 +W2 +W3) = 1

b) dim(V ∩ V2 ∩ V3) = 0, which implies that dim(W1 +W2 +W3) =dim(V1 + V2 + V3) = 3.

Suppose that that dim(V1 ∩ V2 ∩ V3) = 0 and dim(W1 +W2 +W3) = 3. This last implies that
the sum W1 +W2 +W3 is a direct sum, that is:

W1 ⊕W2 ⊕W3 = (V2 ∩ V3)⊕ (V1 ∩ V3)⊕ (V1 ∩ V2).

Let us take f⃗1 ∈ W1, f⃗2 ∈ W2 and f⃗3 ∈ W3 such that the set {f⃗1, f⃗2, f⃗3} is linearly independent.

Notice that f⃗2, f⃗3 ∈ V1. This means that there exist a, b, c, d ∈ R such that α⃗1 = af⃗2 + bf⃗3 and
β⃗1 = cf⃗2 + df⃗3. Then,

∗B1 = q1f⃗2 ∧ f⃗2 with q1 =
∣∣ a b
c d

∣∣.
In the same way, there exist e, g, h, i ∈ R such that α⃗2 = hf⃗1 + if⃗3, and β⃗2 = ef⃗1 + gf⃗3.
Then ∗B2 = q2f⃗3 ∧ f⃗1 with q2 =

∣∣ e g
h i

∣∣.
Analogously, there exist j, k, l,m ∈ R such that α⃗3 = jf⃗1 + kf⃗2, and β⃗2 = lf⃗1 + mf⃗2. Then
∗B3 = q3f⃗1 ∧ f⃗2 with q3 =

∣∣ j k
l m

∣∣.
Let us define e⃗k := λkf⃗k for k = 1, 2, 3, with λk ∈ R − {0}. If we ask that ∗B1 = e⃗2 ∧ e⃗3,
∗B2 = e⃗3 ∧ e⃗1 and ∗B3 = e⃗1 ∧ e⃗2, we will obtain the system of equations:

λ2λ3 = k1

λ3λ1 = k2

λ1λ2 = k3,

90



B. A tetrad for each corner cell

with solution:

λ1 = ±

√∣∣∣∣k3k2k1

∣∣∣∣
λ2 = ±k3

√∣∣∣∣ k1k2k3

∣∣∣∣
λ3 = ±k2

√∣∣∣∣ k1k2k3

∣∣∣∣.
This proves that there exist three linearly independent vectors e⃗1, e⃗2, e⃗3 ∈ M such that ∗B1 =
e⃗2 ∧ e⃗3, ∗B2 = e⃗3 ∧ e⃗1 and ∗B3 = e⃗1 ∧ e⃗2. However this contradicts the ALGC. Then we have
that dim(V ∩ V2 ∩ V3) = 1 and dim(W1 +W2 +W3) = 1.

We can repeat the process given above for each tetrahedron intersecting cp. Let αk(τi), βk(τi)
be the vectors α and β associated with τi, V1(τi), V2(τi), V3(τi) be the three sets V correspond-
ing to the tetrahedron τi and W1(τi), . . . ,W3(τi) be the sets W corresponding to τi. We
know that dim(V1(τi) ∩ V2(τi) ∩ V3(τi)) = 1 for all τi in cp. Let us take a vector e⃗i(cp) ∈
(V1(τi)∩V2(τi)∩V3(τi)) for every τi. In this way we obtain a set of four vectors e⃗1(cp), . . . , e⃗4(cp).
Moreover, since we know that the six B(s) with s ∈ cp are linearly independent, and dim(V1(τi)∩
V2(τi) ∩ V3(τi)) = 1), then the set of vectors e⃗1(cp), . . . , e⃗4(cp) is linearly independent.

Let s ∈ cp be a wedge in cp and B(s) ∈ so(3, 1) its associated element B. The triangle
σ(s) in ν associated with s belongs to two different tetrahedra. Without lose of generality
suppose that σ(s) ∈ τ1 ∩ τ2. Then ∗B(s) = tα(τ1)∧ β(τ1) with α(τ1), β(τ1) ∈ Vk(τ1), t ∈ R, and
also ∗B(s) = α(τ2)∧ β(τ2) with α(τ2), β(τ2) ∈ Vk(τ2), for some k. However, e⃗1(cp) ∈ Vk(τ1) and
e⃗2(cp) ∈ Vk(τ2). Moreover, since σ(s) ∈ τ1 ∩ τ2 then, by lemma 6 of Appendix A we have that
Vk(τ1) = Vk(τ2). All this implies that e⃗1 = aα1(τ1) + bβ1(τ1) with a, b ∈ R with at least one of
them different from zero, and e⃗2 = cα1(τ1) + dβ1(τ1) with c, d ∈ R with at least one different
from zero. Then, we have that ∗B(s) = λe⃗1(cp) ∧ e⃗2(cp) with λ ̸= 0.

Let B1, . . . , B6 the six elements B associated with the six wedges s ∈ cp. Repeating the process
given above we find that

∗B1 = λ1 (e1 ∧ e2)
∗B2 = λ2 (e1 ∧ e3)
∗B3 = λ3 (e1 ∧ e4)
∗B4 = λ4 (e2 ∧ e3)
∗B5 = λ5 (e2 ∧ e4)
∗B6 = λ6 (e3 ∧ e4) .

with λk ∈ R − {0}, k = 1, . . . 6. Let us take λk > 0 for every k. Let us consider that the
four-volume constraint takes the form:

ϵIJKLB
IJ
1 ∧BKL

6 = ϵIJKLB
IJ
2 ∧BKL

5

ϵIJKLB
IJ
1 ∧BKL

6 = ϵIJKLB
IJ
3 ∧BKL

4

ϵIJKLB
IJ
2 ∧BKL

5 = ϵIJKLB
IJ
3 ∧BKL

4 .
(B.2)
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where we have supposed that the wedges 1, 6 in cp share only the point Cν and the same for
2, 5. The set of equations (B.2) implies the following set of relations between the numbers λk:

λ1λ6 = λ2λ5
λ1λ6 = λ3λ4
λ2λ5 = λ3λ4.

(B.3)

Using this system of equations we will find that

∗B1 =
λ3λ4
λ6

(e⃗1 ∧ e⃗2)

∗B2 =
λ3λ4
λ5

(e⃗1 ∧ e⃗3)
∗B3 = λ3 (e⃗1 ∧ e⃗4)
∗B4 = λ4 (e⃗2 ∧ e⃗3)
∗B5 = λ5 (e⃗2 ∧ e⃗4)
∗B6 = λ6 (e⃗3 ∧ e⃗4) .

(B.4)

Now, let us define four vectors ẽ1, . . . , ẽ4 such that e⃗1 = aẽ1, e⃗2 = bẽ2, e⃗3 = cẽ3 and e⃗4 = dẽ4
for some real numbers a, b, c, d different from zero. If we choose

a = λ3

√
λ4
λ5λ6

b =

√
λ4λ5
λ6

c =

√
λ4λ6
λ5

d =

√
λ5λ6
λ4

then we will have that
∗B1 =

λ1λ3λ4
λ6

(ẽ1 ∧ ẽ2)

∗B2 =
λ3λ4
λ5

(ẽ1 ∧ ẽ3)
∗B3 = ẽ1 ∧ ẽ4
∗B4 = ẽ2 ∧ ẽ3
∗B5 = ẽ2 ∧ ẽ4
∗B6 = ẽ3 ∧ ẽ4.

(B.5)

Let us define

k1 :=
λ1λ3λ4
λ6

k2 :=
λ3λ4
λ5

In this way, we can say that there exist two real numbers k1 and k2 different from zero, such
that ∗B1 = k1 (ẽ1 ∧ ẽ2) and ∗B2 = k2 (ẽ1 ∧ ẽ3).

Let us use the four-volume constraint again. Let us write ∗B1 = k1 (ẽ1 ∧ ẽ2) and ∗B2 =
k2 (ẽ1 ∧ ẽ3), and let us use for B3, B4, B5 y B6 the expressions given in (B.5). If we use
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the first of the equations given in (B.2) we obtain that k1 = k2. Using the second of the
equations given in (B.2) we obtain that k1 = 1. In this way we obtain that

∗B1 = ẽ1 ∧ ẽ2
∗B2 = ẽ1 ∧ ẽ3
∗B3 = ẽ1 ∧ ẽ4
∗B4 = ẽ2 ∧ ẽ3
∗B5 = ẽ2 ∧ ẽ4
∗B6 = ẽ3 ∧ ẽ4

(B.6)

■

In spite of everything, the previous proof only proves the existence of a tetrad associated with
each corner cell. That proof was already quite complicated. However, we actually have said
something more. In chapter four we said we don’t actually have 20 vectors associated with
a four simplex, but only five. And we said that those five vectors, grouped in sets of four,
produced the five tetrads associated with a four simplex.

This second affirmation requires an additional proof. Such proof is nothing more that a contin-
uation of the previous proof. We have decided to put it apart, otherwise the proof would have
become extremely large, and difficult to read. This second proof, as you will see, uses some of
the facts about corner cells and wedges mentioned in chapter 4. We will start from where we
left off, using the same notation, terminology and the same sets and subspaces that we have
already defined previously.

Theorem B.0.2. Let ν < △ be a fixed four simplex. If the conditions in theorem B.0.1 hold,
then, for each four-simplex ν < △ there exist five vectors e⃗0, . . . , e⃗4 ∈ M such that the five
sets that can be constructed using four of such vectors, with all of them different, are the basis
associated with each corner cell mentioned in theorem B.0.1.

Proof. Let us consider a corner cell cp < ν. If we use lemma 6 of appendix A we can easily find
that W1(τk) = W2(τk) = W3(τk) = V1(τk) ∩ V2(τk) ∩ V3(τk) for every tetrahedron τk in ν that
intersects cp. Also, if we use lemma 6 of Appendix A and the fact that every triangle belongs to
two tetrahedra, then we will find that there are only six different sets V1, . . . , V6 for cp. Taking
into account all this, and the proof of theorem B.0.1, we will denote as V p

i , i = 1, 2, 3, 4, 5, 6 to
the subspaces V p

k associated with cpand W
p
k , k = 1, 2, 3, 4 to the subspaces W .

Let us we take two wedges s1, s2 < cp such that their respective dual triangles σ1, σ2 belong to the
same tetrahedron. Then, we will have that ∗B(s1) = e⃗i(cp)∧ e⃗j(cp) and, ∗B(s2) = e⃗i(cp)∧ e⃗k(cp)
or ∗B(s2) = e⃗k(cp) ∧ e⃗i(cp). That is to say, ∗B(s1) and

∗B(s2) share one vector ei(cp).

It is also important to consider that, taking two corner cells cu, cv in the same four sim-
plex ν they share three different wedges. Such wedges have dual triangles that in groups of two
belong to the same tetrahedron.

Let us take another corner cell cq < ν different from cp. All of the above means that there exist
three subspaces V p

i , V
p
j , V

p
k associated with cp and three subspaces V q

l , V
q
m, V

q
n associated with

cq, such that V p
i = V q

l , V
p
j = V q

m V p
k = V q

n . Moreover, the intersections of such subspaces are
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different from the zero vector. This in turn implies that there exist three subspacesW p
i ,W

p
j ,W

p
k

associated with cp and three subspaces W q
l ,W

q
m,W

q
n associated with cq, such that W p

i = W q
l ,

W p
j = W q

m and W p
k = W q

n . That is to say, any two corner cell cp, cq < ν share three subspaces
W , and therefore three vectors e⃗i, e⃗j, e⃗k.

In this way, given two corner cells cp, cq < ν, instead of six we have five one-dimensional
subspaces associated with them. We will denote to such subspaces as W̃1, W̃2, W̃3, W̃4, W̃5.
Four of these subspaces are associated with cp. Of those four, three are associated with both
cp and cq. Remains a fifth set, let us say W5, that is associated with cq but not with cp.

Let us consider a third corner cell cr < ν such that cr ̸= cp and cr ̸= cq. We know that
cr shares three wedges with cp and three wedges with cq. However, there remains a wedge
s̃ < cr such that s̃ ≮ cp and s̃ ≮ cq. This means that five of the wedges of cr belong also, three
of them to cp and three of them to cq. This implies that, of the six two-dimensional subspaces
V r
k , k = 1, . . . , 6 associated with cr, only five of them are shared with cp and cq.

Considering the previous observations, we can see that, even with only five two dimensional-
subspaces Vk in a corner cell, it is possible to generate the four one-dimensional subspaces W̃k

associated with it. This means that the four one-dimensional subspaces W̃ r
k , k = 1, . . . , 4 asso-

ciated with cr coincide with four of the five subspaces Wi, i = 1, . . . , 5 associated with the set
of two corner cells cp and cq.

It follows that for any three different corner cells cp, cq, cr in ν, there exist five vectors
e⃗0, . . . , e⃗4 ∈ M such that three sets formed with four different of such vectors are the tetrads
associated with cp, cq and cr. But this affirmation is valid for any three corner cells in the same
four simplex ν. Then the theorem follows from this. ■
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de Ciencias, 2007)

[11] Wald R., General Relativity, (Chicago, illinois : University of Chicago Press, [1984])

[12] Misner Ch. Thorne K. and Wheeler J., Gravitation, (San Francisco : W. H.
Freeman, 1973)

[13] Baez J. and Muniain J., Gauge fields, knots, and gravity , (Singapore : World Sci-
entific, c1994)
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