
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

en Ciencias FísicasPosgrado

Entanglement Detection Using Neural Networks

T E S I S

que para optar por el grado de

Maestro en Ciencias

PRESENTA:
Diego Alberto Olvera Millán

Tutor Principal:
Dr. Pablo Barberis Blostein, Instituto de Investigaciones en Matemáticas Aplicadas

y Sistemas
Comité tutor:

Dr. Alejandro Pérez Riascos, Instituto de Física
Dr. Carlos Francisco Pineda Zorrilla, Instituto de Física

México,CDMX. (Septiembre) 2021

UNAM – Dirección General de Bibliotecas

Tesis Digitales

Restricciones de uso

DERECHOS RESERVADOS ©

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea
objeto de protección de los derechos de autor, será exclusivamente para
fines educativos e informativos y deberá citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproducción, edición o modificación, será perseguido y sancionado por el
respectivo titular de los Derechos de Autor.

ii

«Experience is simply the name we give our mistakes.»

Oscar Wilde

iii

Abstract

Entanglement is an important resource for quantum technologies, but its detection
and classification cannot be performed efficiently across different kinds of quantum
states. In particular, quantum mixed states require computationally demanding
methods, such as those of convex roof constructions. In this work, I train an ar-
tificial neural network (ANN) to perform the classification between entangled and
separable two qubit states(mixed and pure), using expectation values of products of
Pauli matrices as the entries of the feature vector, ~x. The training is performed using
only random pure states sampled from the invariant Haar measure. It is found that,
using the 15 linearly independent products of Pauli matrices, an accuracy of 98%
is achieved for states drawn from the same distribution, and the accuracy for states
drawn from the Bures distribution can reach up to 80% (after applying regularization
to the model). Using 4 non-orthogonal products of the Pauli matrices, an accuracy
of 91% is achieved for states sampled from the Haar distribution, and, when dealing
with states sampled from the Bures distribution with purity and concurrence higher
than 0.7, an accuracy of up to 84% is achieved.

iv

Acknowledgments

I would like to thank my mom, my dad, my sister, my wife, my friends, my collegues,
my teachers and my tutors, thanks to everyone. But seriously, first and foremost I
would like to thank my parents, Cristina and Alberto, for all of their support. My
wife, Rebeca, for being a source of inspiration and calm. My tutor, Pablo, for his
patience and all of the discussions that have enriched this work and my knowledge
in physics in general. I would also like to thank my tutoring committee, formed
by Alejandro Pérez and Carlos Pineda, for their input on my work. Many of their
suggestions made this a better work. Also, I would like to thank my jury for patiently
reading this thesis and giving me helpful comments. These helped me to better convey
the important facts. Finally, I would like to thank PAPIIT project IG101421 for the
financial support. Thank you all.

v

Contents

Abstract iv

Acknowledgments v

Motivation viii

Introduction ix

1 Quantum entanglement 1
1.1 Qubits and entanglement . 1
1.2 Density operator . 2
1.3 Mixed states . 3
1.4 Multipartite systems and entanglement 3
1.5 Entanglement detection . 4
1.6 Entanglement measures . 5

2 Machine Learning 7
2.1 Origins of neural networks . 7
2.2 Supervised learning algorithms . 8
2.3 Neural network architecture . 8
2.4 Activation functions . 9
2.5 Training . 11
2.6 Cost function . 11
2.7 Bias and variance . 12
2.8 Regularization . 14
2.9 Dropout . 14
2.10 Batch normalization . 14
2.11 Single number evaluation metric . 15

3 Data generation and visualization 17
3.1 State and operator sampling . 17
3.2 Visualizing the data . 18
3.3 The 15 linearly independent Oij operators 18
3.4 Sets of Nij operators . 21

vi

CONTENTS vii

4 Implementation 27
4.1 Main functions . 27
4.2 Training and test sets . 31

5 Results 32
5.1 Models trained with the 15 Oij inputs 32

5.1.1 Error analysis ofMr
15 andMnr

15 34
5.2 Models trained with 10 Nij inputs . 36

5.2.1 Error analysis ofMr
10 andMnr

10 36
5.3 Models trained with the 4 special Nij inputs 39

5.3.1 Error analysis ofMr
4 andMnr

4 40
5.4 Training with mixed states . 44
5.5 Testing with states sampled directly from Bures distribution 44

6 Conclusions 46

Appendix A Code 47

Bibliography 51

Motivation

In the field of quantum information, entanglement has been identified as an important
resource in quantum algorithms and other technologies. Small quantum processors are
now available and continuously evolving. Characterizing such processors efficiently so
one can say for certain that it works quantum mechanically has become an important
task. The question of whether the statistics of a given quantum state produced by the
processor arise from quantum entanglement or whether it can be explained classically
becomes central in this characterization. Performing full state tomography on these
quantum states is impractical, one has to perform many measurements in order to
get an estimation of the expectation values of a chosen basis of operators. Thus, the
search for efficient algorithms that use only partial information about a quantum state
in order to classify whether it’s entangled or not is important and has experimental
and practical relevance.

viii

Introduction

Entanglement is a hallmark feature of quantum mechanics. Correlations are mea-
sured between the local observables of multipartite quantum systems that cannot be
simulated using a local and real classical theory [1]. This feature has found many ap-
plications in quantum technologies [2–4], but its efficient detection and classification
(entangled/separable) remain an open problem in the field. The problem of cor-
rectly classifying a given state as entangled or separable is known as the separability
problem [5].

Research in entanglement detection has produced many useful results. The cel-
ebrated Positive Partial Transpose (PPT) criterion [6, 7], for instance, allows us to
correctly determine if there is entanglement for all states of low dimensional Hilbert
spaces, specifically those of two qubits, 2× 2, and of a qubit and a qutrit, 2× 3, but
it is only a necessary condition for separability in higher dimensions, there are PPT
entangled states. Also, to use such a criterion, the full density matrix of a quantum
state must be known [8]. This introduces an additional difficulty in entanglement
detection. There are a number of proposals to try to avoid this difficulty [9–12], but
only work when certain special conditions are met.

In general, it is impossible to completely isolate a qubit state from its surroundings,
thus, instead of having qubit pure states, mixed states are found in nature. It has
been shown that the correct classification of these states is an NP-hard problem [13].
There exist Hermitian operators called entanglement witness (EW) [14], which can
detect entanglement, but finding an EW that detects the entanglement of an arbitrary
state is equivalent to the separability problem [15,16].

Machine learning has been applied to physics problems in recent years, in partic-
ular in quantum information. Steerability detection [17], quantum topology identifi-
cation [18], fidelity estimation [19], among other applications [20] have been studied.
For the problem of entanglement detection, neural networks have been used to op-
timize parameters of a CHSH type inequality [21], and bootstrap aggregating was
used to aid in classification with a convex hull approximation [22]. Quantum neural
networks have been shown to detect entanglement [23].

In this thesis, I propose the use of an Artificial Neural Network (ANN) to perform
entanglement detection of two qubit states. Operators of the form

Oij := σi ⊗ σj, (1a)

Nij = σi ⊗
(
σj ± σi√

2

)
, (1b)

ix

x INTRODUCTION

where σ0 = 1, and the σi’s (i, j = 1, 2, 3) are the Pauli matrices, are used to calculate
the expectation values

〈Oij〉ρ = 〈σi ⊗ σj〉ρ, (2a)

〈Nij〉ρ =

〈
σi ⊗

(
σj ± σi√

2

)〉
ρ

. (2b)

These numbers are used as the elements of the feature vector, x = x(ρ), to be used
as input for an ANN. I show that using only 4 particular operators of type (2b) a
high accuracy classification is achieved. Also, when using the 15 linearly indepen-
dent operators of the form (2a) and only pure states in the training phase, we may
achieve partially correct classification of mixed states and high accuracy classification
for highly entangled mixed states. This is an interesting result, since it is a very com-
putationally demanding task to sample and classify mixed entangled states in higher
dimensions.

The thesis is organized as follows. Chapter 1 starts with a reminder of some con-
cepts in entanglement theory: The definition of entanglement, separability criteria,
entanglement witnesses, etc. Chapter 2 explores the basics of artificial neural net-
works. Next, in chapter 3, there is an explanation of how data is built and classified
to be used in training and testing of the different ANN models along with a visual-
ization of the data. How the inputs to the ANN’s are constructed, the different ANN
architectures that were trained and tested is treated in in chapter 4. The main results
are presented and discussed in chapter 5 . The thesis ends with a summary of the
main results and the conclusions in chapter 6.

1 Quantum entanglement

Let us recall some basic concepts of quantum mechanics [1]. First we state some
notation. We use H to denote a Hilbert space, where the state vectors, |ψ〉, of a
quantum system live. These vectors are also refered to as kets. The vector space of
operators that act on this Hilbert space is denoted by L(H).

1.1 Qubits and entanglement

A qubit is a state in any two-dimensional Hilbert space. A basis for this space is
{|0〉 , |1〉}, called the computational basis. Once the basis is fixed, vectors and opera-
tors acting on the Hilbert space may be represented with matrices. A general vector
has the form of a column vector

|ψ〉 = α |0〉+ β |1〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
. (1.1)

These vectors are known as kets, and represent pure states. The Hermitian con-
jugate of a ket is called a bra, represented by a row vector

|ψ〉† = 〈ψ| = α∗ 〈0|+ β∗ 〈1| = α∗
[
1 0

]
+ β∗

[
0 1

]
=
[
α∗ β∗

]
. (1.2)

The inner product of the Hilbert space is given by

〈ψ|φ〉 =
[
α∗ β∗

] [γ
δ

]
= α∗γ + β∗δ. (1.3)

For any two vectors in a Hilbert space, this results in a complex number. The norm
of a vector is a positive number defined as

‖|ψ〉‖ =
√
〈ψ|ψ〉. (1.4)

Vectors in the Hilbert state describing physical states must be normalized, that
is ‖|ψ〉‖ = 1. Two vectors are said to be orthogonal if 〈ψ|φ〉 = 0. A ket and a bra
can be brought together in a different way called a dyadic product. Given two vectors
|ψ〉 , |φ〉 ∈ H, their dyadic product, |ψ〉 〈φ|, is an operator in L(H) defined by its
action on another vector, |Ψ〉,

(|ψ〉 〈φ|) |Ψ〉 = 〈φ|Ψ〉 |ψ〉 . (1.5)

1

2 CHAPTER 1. QUANTUM ENTANGLEMENT

Given the Hilbert space of a qubit, H, the basis for the vector space L(H) is given
by {|0〉 〈0| , |0〉 〈1| , |1〉 〈0| , |1〉 〈1|}. A general operator in L(H) is represented by a 2
by 2 square matrix

O = a |0〉 〈0|+ b |1〉 〈0|+ c |0〉 〈1|+ d |1〉 〈1|

= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
=

[
a b
c d

]
.

(1.6)

The matrix elements of an operator, O, in a given basis {|ψi〉}di=1 are given by

Oij = 〈ψi|O |ψj〉 , (1.7)

with i, j = 1, 2, . . . , d. From equation (1.7) we see that the elements of the complex
conjugate of an operator, O, are [O†]ij = O∗ji. The expectation value of an operator
with respect to a given state |ψ〉 is defined as

〈O〉ψ = 〈ψ|O |ψ〉 (1.8)

Operators that are Hermitian, those such that H = H†, are called observables in
quantum mechanics. These operators represent quantities that may be measured in
a laboratory [24].

There is a set of very important operators in quantum information called Pauli
matrices (or Pauli operators). They are denoted by σx, σy and σz (sometimes we
replace x, y, z by 1, 2, 3, respectively). Their matrix elements are

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
.

(1.9)

It is common to use σ0 to denote the identity operator, 1. These four matrices
form an orthonormal basis for L(H) [24].

1.2 Density operator

There is an alternative description for quantum state. Given a pure state, |ψ〉, the
operator

ρ := |ψ〉 〈ψ| (1.10)

is called the density matrix of the state. This operator contains all the information
that the state vector does. Indeed, one can compute expectation values as

〈O〉ρ = Tr(Oρ). (1.11)

The normalization condition is given by

Tr(ρ) = 1. (1.12)

1.3. MIXED STATES 3

1.3 Mixed states

Quantum mixed states are defined as the convex sum of pure states

ρ =
N∑
i=1

pi |ψ〉i 〈ψ|i , (1.13)

where the p′is satisfy 0 ≤ pi ≤ 1 ∀i and
∑N

i=1 pi = 1. N can be any natural number.
The p′is are interpreted as the probability that the mixture is found to be in state
|ψi〉. The purity of a general state is defined as

P (ρ) = Tr(ρ2). (1.14)

It is a measure of how close a state is to being a pure state. For pure states P (ρ) = 1,
and for mixed states we have P (ρ) < 1. Mixed states arise naturally in physical
settings.

1.4 Multipartite systems and entanglement

It is an axiom of quantum mechanics [24] that composite systems can be described
by vectors in a Hilbert space that is the tensor product of the Hilbert spaces of its
constituents. For bipartite systems this reads HAB = HA⊗HB, where HA,B describe
the Hilbert space of part A and B of the system, respectively. In general, for n
subsystems we have H =

⊗n
I=1HI . Given a basis for a Hilbert space of dimension

dA, HA, {
∣∣iA〉}dAi=1 and a basis for a Hilbert space of dimension dB, HB, {

∣∣jB〉}dBj=1, a
basis for the product space is given by {

∣∣iA〉 ⊗ ∣∣jB〉}dA,dBi,j=1 , and thus, the space has
dimension dAdB. For qubits, we have dA = dB = 2 and the dimension of the product
space is 4. The most general 2 qubit pure state is given by

|ψ〉 =
2∑

i,j=1

cij|iA〉 ⊗ |jB〉 =
2∑

i,j=1

cij |i〉 |j〉 =
2∑

i,j=1

cij |ij〉 , (1.15)

with {|i〉}1i=0 the computational basis of HI (I = A,B). The super-indices A and
B are used to emphasise that the left state belongs to the first Hilbert space and
the right state to the second. It may be omitted when there is no risk of confusion,
keeping in mind that the position of the kets is what matters. A quantum pure state
is called a separable state if there are state vectors

∣∣φA〉 ∈ HA and
∣∣φB〉 ∈ HB such

that
|ψ〉 =

∣∣ψA〉⊗ ∣∣ψB〉 . (1.16)

If no such vectors exists, the state is called entangled. This means that it is not
possible to assign a single state vector to any of the subsystems. The description of
the dynamics of the quantum system cannot be separated into the dynamics of its
constituents; they are linked. This gives rise to many interesting and non-classical
phenomena [1].

4 CHAPTER 1. QUANTUM ENTANGLEMENT

A mixed 2-qubit state is written as

ρ =
N∑
i=1

pi|φi〉〈φi|, (1.17)

where |φi〉 ∈ HAB and 0 ≤ pi ≤ 1 such that
∑N

i=1 pi = 1. A mixed state, ρP , is called
a product state if there are ρA ∈ L(HA) and ρB ∈ L(HB) such that ρP = ρA ⊗ ρB. A
mixed state is called separable if it is a convex combination of such product states

ρ =
∑
i

piρ
A
i ⊗ ρBi , (1.18)

and it is called an entangled state if it may not be expressed in this way.

1.5 Entanglement detection

The problem then arises to determine whether a given state is entangled. Since the
definition of entanglement is negative, this is a hard problem. In fact it has been shown
to be NP-hard [13]. There are many criteria to determine if a state is entangled; in
this work we use the PPT criterion [6,7], since it’s easy to implement. Given the full
density matrix, it completely characterizes whether a 2 qubit state is entangled or
not. Given a general mixed state of any dimension

ρ =
N∑
i,j

M∑
k,l

ρij,kl|iA, kB〉 ⊗ 〈jA, lB| ≡
N∑
i,j

M∑
k,l

ρij,kl|i〉〈j| ⊗ |k〉〈l|, (1.19)

the partial transpose is given by

ρTB := (1A ⊗ TB)(ρ) =
N∑
i,j

M∑
k,l

ρji,kl|iA, kB〉 ⊗ 〈jA, lB| ≡
N∑
i,j

M∑
k,l

ρji,kl|i〉〈j| ⊗ |k〉〈l|.

(1.20)
The sign of the smallest eigenvalue of ρTA determines if a state is entangled [1].

If it is negative, then it is entangled, else it is separable. The usefulness of the
PPT criterion is limited by the fact that the full density matrix of the state must
be known. This means that measurements have to be performed on many identical
copies of the state of interest to recreate the density matrix, i.e., quantum tomography
must be performed [8]. It is convenient, then, to find methods that can distinguish
entanglement using only partial information. A commonly used technique is that
of entanglement witnesses, introduced by Terhal [25]. An entanglement witness is a
Hermitian operator, W , such that

Tr(Wρs) ≥ 0 for all separable states,
Tr(Wρe) < 0 for at least one entangled state.

(1.21)

The use of witnesses has the advantage that only partial information of the quan-
tum state is needed, namely the sign of the expected value for such state, but it is

1.6. ENTANGLEMENT MEASURES 5

difficult to construct an entanglement witness for a given arbitrary quantum state [26].
Also, any one witness is not enough to cover a large amount of the set of entangled
states, so most entangled states are not detected.

1.6 Entanglement measures

First we define local unitary transformations. An operator, U ∈ L(H) is called unitary
if UU † = 1. An operator U ∈ L(HAB) is called local unitary tranformation if there
are operators UA ∈ L(HA) and UB ∈ L(HB) such that

U = UA ⊗ UB (1.22)

Local operations and classical communication (LOCC) is a method in quantum
information theory where a local operation is performed on part of the system, and
where the result of that operation is communicated classically to another part.

An entanglement measure, E(ρ), is a function that quantifies the amount of en-
tanglement that a state has. There are many ways to quantify it, but there are some
desirable properties that these functions must have [1].

1. E(ρ) goes to zero when ρ is separable.

2. It should be invariant under a local operations

E(ρ) = E(UA ⊗ UBρU †A ⊗ U
†
B).

3. Entanglement may not be created under LOCC, so it is reasonable to demand
that E(ρ) does not increase under such operations. That is, if ΛLOCC is a
positive map that may be implemented by LOCC, then

E(ΛLOCC(ρ)) ≤ E(ρ).

4. An entanglement measure must be convex, that is, entanglement must be re-
duced when mixing states

E

(∑
k

pkρk

)
≤
∑
k

pkE(ρk).

In this work we use the entanglement measure of concurrence [5], defined for a 2
qubit pure states, |ψ〉 ∈ H, as

C(|ψ〉) =
√

2 (1− Tr [(ρTA)2]). (1.23)

The extension to mixed states is given by

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} , (1.24)

6 CHAPTER 1. QUANTUM ENTANGLEMENT

where the λi’s are the eigenvalues of the matrix X(ρ) =
√√

ρρ̃
√
ρ and

ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy), and ρ∗ is a matrix whose elements are the complex conju-
gate of the matrix ρ. This measure is used due to having a closed form extension for
mixed states which is easy to implement in code.

The set of all 2 qubit states is usually represented schematically as in figure 1.1.
This picture shows the convex nature of the set of all states and that of the set of
all separable states. Also, given an entanglement witness, W , the set of all states
such that Tr(Wρ) = 0 defines a hyperplane in this space. The hyperplane divides
the space in two areas, on one side we have all entangled states detected by W and
on the other we have all separable states and all entangled states not detected by the
witness. This is also shown on figure 1.1.

Separable states Entangled states

𝑾

Figure 1.1: Schematic representation of the space of quantum states. The set of separable
states is convex, as is the space of all states. An entanglement Witness defines a hyperplane
in this space.

2 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence with the goal of developing
algorithms capable of learning, finding patterns and being able to make a decision for
the output given an input, from data automatically. Artificial neural networks (ANN)
are ML algorithms that aimed to be a computational model of biological learning.
They are a nonlinear model for supervised learning, a type of learning in which the
user provides the program with many examples. Nowadays it is more common to
refer to ANN’s as deep learning algorithms, since any ANN with more than 3 layers
is considered to be a deep network. The treatment in this chapter follows [27] and [28].

2.1 Origins of neural networks

The earliest predecessors of modern learning were simple linear models designed to
take a set of n inputs, x1, . . . , xn and a set of weights w1, . . . , wn to compute the
output f(x,w) = x1w1 + · · · + xnwn = y. The McCulloch-Pitts neuron [29] was an
early model of brain function. This model could distinguish between to classes of
inputs using the sign of the output of f(x,w). The weights were set by a human
operator. Later, in the 50’s, the Rosenblatt perceptron [30] became the first model
that could learn the weights that defined the classes using examples provided by a
human operator. Learning in this context means that the program automatically
adjusts the weights in order to comply with the examples provided. The adaptive
linear element (ADALINE) [31] returned the value of f(x) to predict a real number
and could learn to predict these numbers from data.

These learning algorithms greatly influenced the modern approach of ML. The
training algorithm used to adapt the weights of the ADALINE was a special case
of an algorithm called stochastic gradient descent. Slightly modified versions of this
algorithm remain the dominant training algorithm for deep learning models today.
The neural networks used in this work are for binary classification, so the following
sections deal only with this particular case. In this case the labels of the data sets
are 0 and 1, which can represent anything. In this work 0 represents that the state is
entangled, while 1 represents a separable state.

7

8 CHAPTER 2. MACHINE LEARNING

2.2 Supervised learning algorithms

Supervised learning is a class of deep learning algorithms. The term supervised comes
from the fact that the algorithm is provided with a labeled dataset. The labelling may
be done by another program or human operators. The data consists of a feature vector,
~xi, an array of numbers that represent the data of interest, and its corresponding
labels, yi,

D = {(xi, yi)|i = 1, . . . , N}. (2.1)

Each vector of this set is referred to as an example. The features for the set of
examples is usually encoded with a feature matrix, X, that is made up of the feature
vectors as its columns,

X =
[
x1 x2 . . . xN

]
. (2.2)

The neural network (for binary classification) is a function that takes as its input
the feature vector of an example and outputs a number that is to be interpreted as the
probability that the particular training example belongs to a class. This is referred
to as the model, f(x; θ) ∈ [0, 1]. It is common to use the notation f(X; θ). This is to
be understood as

f(X; θ) =
[
f(x1; θ) f(x2; θ) . . . f(xN ; θ)

]
. (2.3)

This model’s parameters, θ, have to be adjusted in such a way that it produces the
correct predictions, y. This process is known as training, and is done automatically
by the program in some algorithmic manner. The performance of such a model is
measured using a function, C(y, f(X; θ)), called the cost function, that allows us to
judge how closely the model predicts the correct labels. The value of the parameters
that minimizes the cost function will be denoted by θ∗. There is a standard recipe
used to find the parameters that minimize the cost function. The first step is to
randomly divide the data set into two mutually exclusive groups, Dtrain and Dtest,
called training set and test set, with the test set typically having around 90% of the
data points. The model is then fit to the data using only the data from the training
set, done by minimizing the cost function. Finally, the performance of the model is
evaluated by computing the cost function using the test set. This gives a measure of
the predictive power of the model by testing it on previously unseen data.

2.3 Neural network architecture

The basic unit of an artificial neural network is called a neuron, which can be seen in
figure 2.1, and can be regarded as a function that takes a vector, a[0], of n0 entries as
input and outputs the number

a[1] = g[1](w[1] · a[0] + b[1]). (2.4)

The elements of the vector w[1] are the weights and b[1] is called the bias. The
function g[1] is called activation function and its argument is usually expressed as

2.4. ACTIVATION FUNCTIONS 9

z[1] = w[1] ·a[0]+b[1]. An ANN is made up of many neurons (also called units) arranged
in a layered network, such as in figure 2.2. In such an arrangement, equation (2.4)
changes to

a[l] = g[l](W[l]a[l−1] + b[l]), (2.5)

where W[l] is now a matrix of weights that connects neurons from layer l − 1 to
neurons in layer l, b[l] is now a vector and the superscripts represent the layer that
each element belongs to. The number of neurons in each layer is denoted by n[l]. The
input the model is the feature vector x = a[0]. For a binary classification problem,
there is one output neuron. The output is denoted as ỹ ∈ [0, 1]. As discussed in the
previous section, this number is meant to represent the probability that the input is
classified as 0 or 1. The weights and biases are the parameters (θ from the previous
section) that are to be optimized.

Now we introduce a little bit of new notation. Given that our data consists on
many examples (training examples from the train set and test examples from the test
set), it is common to add a superscript to clarify to which example one is referring
to. For instance, the activations in layer l of the i-th training example are written
as the vector z[l](i), while the k-th entry of the vector is written as z[l](i)k . Whenever
there is no risk of confusion, the notation of equation (2.2) may be used, where the
subscripts of each feature vector refers to the example the vector belongs to.

2.4 Activation functions

Activation functions are used to introduce a non-linearity to the model. If all activa-
tion functions were linear, the resulting model would always be equivalent to one with
a single hidden layer and many hidden units. There are many activation functions
used in modern ML, but in this work only two are used: The ReLU (Rectified Linear
Unit) activation and the sigmoid activation. The ReLU function is defined as

ReLU(x) = max(0, x), (2.6)

while the sigmoid is defined as

σ(x) =
1

1 + e−x
. (2.7)

These functions are defined on real numbers, so when a vector is used as argument,
it is to be understood as an element-wise operation. That is

g(z) =

g(z1)
g(z2)
...

g(zn).

 . (2.8)

10 CHAPTER 2. MACHINE LEARNING

 .

 .

 .

𝑎1
[𝑖]

𝑎2
[𝑖]

2

𝑎𝑛𝑖

[𝑖]

 𝑧[𝑖+1] 𝑎
[𝑖+1]

𝑤1
[𝑖]

𝑤𝑛𝑖

[𝑖]

𝑤2
[𝑖]

Figure 2.1: A neuron can be regarded as a function. Here, the superscript refers to the layer
where a neuron might be and the subscript refers to the j-th element of a vector.

.

Input layer Hidden layers Output layer

Figure 2.2: An artificial neural network is a collection of neurons. Each neuron is referred
to as a unit, units in the hidden layers are called hidden units.

.

2.5. TRAINING 11

2.5 Training

The process of training a neural network refers to the process of adjusting the weights
of the model, W, in order to minimize the cost function. There are many algorithms
used to perform this training process. One of the most popular is gradient descent.
This is an iterative algorithm, where the values of θ are varied in the direction opposite
to that of the gradient, see figure 2.3. The number of iterations is often called epochs.
The value of the parameters for the epoch t+ 1 is updated according to the rule

θt+1 = θt − ηt∇θC(y, f(X; θt)), (2.9)

where ∇θ is the gradient with respect to the parameters and the term ηt is called
the learning rate for epoch t. This method will converge to a local minimum of the
cost function if the learning rate is small enough; however, choosing a small learning
rate means that the number of steps required to reach the minimum increases. On
the other hand, choosing a large learning rate means you can overshoot the minimum
and the algorithm becomes unstable.

The problem then becomes how to compute gradients. In practice this is done with
an automatic differentiation algorithm called backpropagation. The reader is referred
to chapter 6.5 of [27] for a complete description of the algorithm. This algorithm is
implemented in most machine learning libraries, such as the one used in this work.

Start with a random value (𝜃0, 𝜃1)

Figure 2.3: The gradient descent algorithm. A small step is taken in the opposite direction
of the gradient in order to get to a local minimum. In this picture the cost function is
represented as having two parameters, in actual applications the number of parameters in
much larger than that.

2.6 Cost function

There are many functions that can be used as cost functions. A common choice,
and the one used in this work, is to use the binary cross entropy, defined for a single

12 CHAPTER 2. MACHINE LEARNING

training example, i ∈ {1, 2, .., N}, as

Hi(xi, yi) = −yi log (f(xi, θ))− (1− yi) log (1− f(xi, θ)). (2.10)

This function compares the predicted probability to the actual label (0 or 1). It
penalizes a bad prediction based on the distance from the correct value.

There are various options on how to define the cost function. One of them is to
define it as the average of (2.10) over all training examples

C(y, f(X, θ)) =
1

N

N∑
i=1

Hi(xi, yi). (2.11)

In practice, this is a very inefficient way to compute the cost. One can divide the
training set into mini-batches of a given size and then compute the cost at each step
of gradient descent as

Cmb(y, f(X, θ)) =
1

Nmb

(k+1)Nmb∑
i=kNmb

Hi(xi, yi), (2.12)

where k is a random positive number sampled such that (k + 1)Nmb < N . This is
called mini-batch gradient descent (as opposed to batch gradient descent, when the
whole batch of training examples is used to compute the cost function). Usual choices
for Nmb are 32, 64, 128, etc, but if Nmb = 1 the algorithm is called stochastic gradient
descent. Clearly, at each step of mini-batch gradient descent, a different function is
being minimized, but it reaches local minima of (2.11). Using mini-batch gradient
descent is like taking fast steps down a hill, even if each step is not in the direction
of greatest slope, while using batch gradient descent is like taking very slow, very
deliberate steps downhill (see figure 2.4).

There are many variations of the gradient descent algorithm. Chapter 4 of refer-
ence [28] explores the limitations and variations of this particular algorithm. In this
work, the ADAM [32] variation is used for training.

2.7 Bias and variance

The value of the cost function for the best fit model on the training set is called
the in-sample error, and the value of the cost function on the test set is called the
out-sample error

Ein = C (ytrain , f (Xtrain ; θ)) (2.13a)
Eout = C (ytest , f (Xtest ; θ)) . (2.13b)

It is always the case in ML that the model that best fits the training set is not
the model that best generalizes the test set. The difference between Ein and Eout is
called variance. The difference between the prediction of the values by the ML model

2.7. BIAS AND VARIANCE 13

Batch gradient descent

Mini-batch gradient descent

Stochastic gradient descent

Figure 2.4: Schematic comparison of the gradient descent algorithms. Batch gradient descent
always reaches a local minimum, but takes a lot of time. Batch gradient descent and
stochastic gradient descent are much faster, but may not reach the minimum.

and the correct value is called bias. This leads to the problem of overfitting and
underfitting. Overfitting occurs when the model performs very well on the training
set but the performance on the test set is much lower. In these cases we say that
there is high variance. Underfitting occurs when the model does not fit the train set
well. In this cases there is high bias. The challenge is to find a model with the right
complexity such that it reduces both bias and variance. A schematic representation
of bias and variance may be seen in figure 2.5.

Figure 2.5: The vertical axis represents the model’s prediction error. The red curve repre-
sents the average error on the test data. The middle line shows where the minimum of Eout
is.

14 CHAPTER 2. MACHINE LEARNING

2.8 Regularization

There are many strategies designed to reduce the test set error, even at the expense
of the training set error. These strategies are known as regularization, and there are
many forms available. Some put extra constraints on a ML model, such as adding
restrictions on the parameter values. Some add extra terms in the cost function that
make the parameter values tend to lower values. If chosen carefully, these extra con-
straints and penalties can lead to better performance on the test set. Other times,
these constraints and penalties are designed to express a generic preference for a sim-
pler model class that does better at generalization. In the context of neural networks,
most regularization methods aim to trade increased bias for reduced variance. In this
work two forms of regularization are used: Batch normalization and dropout.

2.9 Dropout

The basic idea of dropout is to prevent overfitting by reducing spurious correlations
between neurons of the network by temporarily removing some neurons and their con-
nections (along with the trainable parameters) in each layer at each step of training.
This is why it is called dropout, some neurons are dropped at each training step, see
figure 2.6.

In practice, one adds a dropout layer before each layer of the neural network. This
layer goes neuron by neuron and removes them with a probability p.

2.10 Batch normalization

Batch normalization is based on the observation that training in neural networks
works best when the inputs are centered around zero with respect to the bias. The
reason for this is that it prevents neurons from saturating and gradients from vanishing
in deep neural networks. In the absence of such centering, changes in the parameters
in lower layers can give rise to saturation effects in in higher layers. To avoid this,
one introduces additional layers called BatchNorm layers that standardize the inputs
by the mean and variance of the mini-batch.

Consider a layer, l, which has d units and whose inputs for the i-th example are
[z

[l](i)
1 , z

[l](i)
2 ,

[l](i)
d]. We standardize each dimension as

z
[l](i)
k → ẑ

[l](i)
k =

z
[l](i)
k − µ[l]

k

σ
[l]
k

, (2.14)

where µ[l]
k = 1

Nmb

∑n[l]

i=1 z
[l](i)
k is the mean of the k-th entry over all examples in the

mini-batch, and σ
[l]
k = 1

Nmb

∑n[l]

i=1(z
[l](i)
k − µ[l]

k)2 is the variance of the k-th entry over
all examples in the mini-batch. Then we compute the value

z̃
[l](i)
k = γ

[l]
k ẑ

[l](i)
k + β

[l]
k . (2.15)

2.11. SINGLE NUMBER EVALUATION METRIC 15

Standard neural

network

After dropout

Figure 2.6: Some neurons and its connections are removed during each step of the train-
ing procedure with some probability, p. This prevents overfitting by reducing correlations
between neurons.

We add a layer that computes the values (2.15) before calculating the activation
function. The parameters γ[l]k and β[l]

k become learnable parameters of the model which
can be updated when performing gradient descent. In practice, batch normalization
serves as a regularizer, although it is not fully understood why (see section 9.4 of [28]).
One plausible explanation is that in batch normalization, the gradient for a sample
depends not only on the sample itself but also on all the properties of the mini-batch.
Since a single sample can occur in different mini-batches, this introduces additional
randomness into the training procedure which seems to help regularize training.

2.11 Single number evaluation metric

Once a model is trained, we wish to have some performance metrics. For a binary
classifier there exists a number of single number evaluation metrics. First we define
the confusion matrix for a given ANN model. The confusion matrix is a 2 by 2 table
that reports the number of true positives(TP), false positives(FP), true negatives(TN)
and false negatives(FN) that a model outputs on a certain test set, see table 2.1. The
single number evaluation metrics used in this work are precision, recall and the F1

16 CHAPTER 2. MACHINE LEARNING

score, which are calculated from the confusion matrix. In this work, positive refers
to separable (1) and negative to entangled (0).

Actual class
Predicted class P N

P TP FN
N FP TN

Table 2.1: Confusion matrix. The diagonal contains the correctly labeled inputs of the
model.

Precision is defined as the fraction of positive predictions reported by the model
that were correct, and we denote it with a P . Recall is the fraction of positive
examples that were correctly classified, and we denote it with an R,

P =
TP

TP + FP
(2.16)

R =
TP

P
=

TP

TP + FN
. (2.17)

The F1 score is then defined as the harmonic mean of the precision and recall, and
it is a measure of the model’s accuracy.

F1 =
2TP

TP + TN + FP + FN
. (2.18)

Finally, the accuracy is defined as the ratio of correctly classified examples

A =
ncorrect

ntotal
=

TP + TN

TP + TN + FP + FN
. (2.19)

3 Data generation and visualization

The data of interest in this work consist of quantum states and a label that tells us
if the state is separable or not, so the data generating process is that of sampling 2
qubit states. These states should be spread out in all space, so that we may correctly
classify entangled states. A uniform sampling of pure states may be done, but such
a uniform sampling is not possible for mixed states [33].

3.1 State and operator sampling

To create random states, three sampling schemes are used. First, pure states are
sampled by generating two random unitary matrices [34], U1 and U2, according to the
Haar measure on U(2). The Harr measure is defined as a non zero measure over a
group, G, µ : G→ [0,∞], such that for all S ⊂ G and g ∈ G, µ(gS) = µ(Sg) = µ(g).
The state

|ψsep〉 = U1 ⊗ U2|0, 0〉 (3.1)

is a pure random separable state. A pure random state is then generated by making
a superposition of a random number of states of the form (3.1).

|ψ〉 =
M∑
i=1

|ψ(i)
sep〉, (3.2)

where M can be any natural number. In this work that number may be between 1
and 4, as it is found that the distribution in purity and concurrence of the sampled
states does not vary much for M > 4. These states are called Haar distributed.

For mixed states, the methods proposed in [33] are used, which result in the
Hilbert-Schmidt(HS) and Bures(B) induced distributions. A random state from the
HS distribution is given by

ρHS =
GG†

Tr(GG†)
, (3.3)

where G is a random 4 by 4 matrix pertaining to the Ginibre ensemble [35], which
are matrices with Gaussian a distribution for their elements. A random state from
the Bures distribution is given by

ρB =
(1 + U)GG†(1 + U)

Tr[(1 + U)GG†(1 + U)]
, (3.4)

17

18 CHAPTER 3. DATA GENERATION AND VISUALIZATION

where U is a random unitary matrix distributed according to the Haar measure on
U(4). Figure 3.1 shows a histogram of the purity of states generated through the
two latter methods. It is seen that the HS distribution results in a vast majority
of states with low purity and no pure states. In contrast, the Bures distribution
produces states with a higher average purity. The first method produces only states
with purity equal to 1. A histogram of the concurrence is presented in figure 3.2.
Here it is seen that the Haar distributed states are more uniform, the HS distribution
produces mostly weakly entangled states, and the Bures distribution produces states
with a higher concurrence on average.

Figure 3.1: Distribution of purity of the random states. Both of them, Bures and HS,
result in a majority of very mixed states and very few purer states. In particular, the H-S
distribution produces very few states with a higher purity. This figure uses 600,000 states
sampled from each distribution.

3.2 Visualizing the data

The task of the neural network is to classify a state given the inputs defined by (2a)
and (2b). In order to get a sense of what the neural networks are doing, images that
show the way that the data is distributed are presented.

3.3 The 15 linearly independent Oij operators

First consider the 15 linearly independent operators of the form (1a). The numbers
(2a) can be considered axes of a plot for the data points. The states used to calculate
the expected values (2a) may be pure or mixed. By taking pairs of these numbers as
axes for 2D plots, we get images like that of figure 3.3 for pure states.

3.3. THE 15 LINEARLY INDEPENDENT OIJ OPERATORS 19

Figure 3.2: Distribution of concurrence of the random states. This distribution is shown for
the three sampling schemes. The most uniform among them is the one induced by the Haar
measure, but this produces only pure random states. The HS distribution produces mostly
weakly entangled states and the Bures distribution produces very few strongly entangled
states. 600,000 states from each distribution were used.

Figure 3.3: Data visualization for pure states using the Pauli matrices products in the axes.
These are some of the figures that appear, many different axes produce similar images. All
figures were produced using 6,000 states.

Patterns are seen to emerge and there are some representative shapes. Separa-
ble states tend to cluster together and form shapes. For instance, for certain axes,
separable states form rhombi and cluster in its diagonals. In figure 3.4 only one of
the shapes is shown and a much richer structure is seen by showing the different
"layers" of concurrence in the image. As entanglement grows, the data spreads more
and moves away from the clustering of separable states. In figure 3.5 it is seen that

20 CHAPTER 3. DATA GENERATION AND VISUALIZATION

the states that most closely align with the separable states are those that are weakly
entangled, and as entanglement increases, the structure found for separable states is
lost. This suggests that weakly entangled states will be the most difficult to catego-
rize, since they may be confused for separable states. This is to be expected, since
these are the states closest to the border between separable and entangled states.

Figure 3.4: A closer look at the data visualization. Here the colors indicate a range of
possible values of the concurrence. The red states are separable while the blue ones are the
most entangled.

Figure 3.5: Layers of concurrence for pure states using Pauli operators products in the axes.
Strongly entangled states are more likely to be found outside of the cluster of separable
states, while weakly entangled states mostly overlap in this area with separable states.

Another interesting detail found in this images is the fact that there are some
zones where we may exclude separable states. Namely, in figure 3.4 there are 4 zones

3.4. SETS OF NIJ OPERATORS 21

in which no separable states may be found. It seems reasonable to speculate that the
ANN model learns to identify the areas where no entanglement is present by using
all the expected values as input.

Mixed states produce very different images. Using mixed states sampled from
the Bures ensemble to calculate the expected values results in figures such as in 3.6,
in which a similar structure is seen, but the decision boundaries are not as clearly
defined. In fact, there are axes that do not seem to show such a boundary. There are
more mixed separable states that spread out. At the same time, there aren’t many
highly entangled states produced in this sampling scheme.

Figure 3.6: Various data distributions using Pauli operators and mixed states sampled from
the Bures ensemble. The boundaries where separable states may be excluded are less clear,
and for some axes do not appear to exist. 6,000 states where sampled to make this figures.

Looking at figures in layers of concurrence (figure 3.7) it is found that the separable
states tend to cluster together, weakly entangled states distribute themselves quite
near the separable states and strongly entangled states spread out and lose structure,
as in the separable case, but in this case there appear to be much smaller decision
boundaries.

A 3D plot shows how the algorithm may find separable states. As seen in figure 3.8,
the zones where no separable states may be found are large. The exclusion zones in
the higher dimensional case may be large enough so that a very accurate classification
can be performed. Also, figure 3.9 suggests that a classification for mixed states is
possible, since there are many axes that show outlying separable states. Again, in a
higher dimensional space, better boundaries may be found.

3.4 Sets of Nij operators

The operators (1a) are orthogonal, but separability criteria based on Bell’s inequalities
use non orthogonal operators, such as those of the form (1b). In this work, these

22 CHAPTER 3. DATA GENERATION AND VISUALIZATION

Figure 3.7: Layers of concurrence for a particular set of axis using random mixed states. We
observe the loss of structure and spreading of states. A lower concurrence interval is used,
since there are very few strongly entangled states.

Figure 3.8: A 3D plot for pure states. Decision boundaries are quite clear and suggest that
they become more apparent in more dimensions. The axis used were chosen randomly from
the Oij operators.

operators are sampled randomly through the following procedure:

• Sample 3 numbers between 0 and 3 without replacement, call them i, j, k.

• Sample between +1 and -1, call it s.

• Add the operator σi ⊗ σj+sσk√
2

to the list.

• With probability 0.5, add the operator σi ⊗ σj−sσk√
2

to the list.

3.4. SETS OF NIJ OPERATORS 23

Figure 3.9: A 3D plot for mixed states sampled form the Bures ensemble. The decision
boundaries are not as clear, there appear to be separable states everywhere in space, but
most separable states cluster at the center and many entangled states are spread out. The
axis used are chosen randomly from the Oij operators.

• Repeat 10 times.

• Keep only the unique operators that result.

In this way, we may characterize an operator of the form (1b) with the numbers
[i, j, k, s], where s is the sign and may be + or −. One such realization of this
procedure yielded the numbers

[0, 1, 3,−1]

[3, 0, 2, 1]

[3, 0, 2,−1]

[1, 3, 0,−1]

[1, 3, 0, 1]

[1, 0, 2, 1]

[3, 2, 0, 1]

[3, 1, 0, 1]

[2, 0, 3, 1].

(3.5)

These numbers then determine the 10 operators used to construct the feature
vector (2b). Some 2d plots that arise from these axes are shown in figure 3.10. We
notice similar patterns as in the case of orthogonal operators, some exclusion zones,
where only entangled states are found, and clustering of the separable states. In figure
3.11 the layers of concurrence are shown for a particular set of axes. Again, highly
entangled states are found far from the central clustering of separable states.

24 CHAPTER 3. DATA GENERATION AND VISUALIZATION

Figure 3.10: Data visualization using non orthogonal products of Pauli matrices. The
boundaries are no longer lines, but rather curves, owing to the non orthogonality. Some
zones of where only entangled states may be found are apparent. 6000 states were used for
all plots.

Figure 3.11: Layers of concurrence for the Nij operators. We again observe de-clustering
with increasing concurrence.

There is a set of operators that results in a clear separation between pure entangled

3.4. SETS OF NIJ OPERATORS 25

and separable states. The operators

σ2 ⊗
(σ0 − σ1)√

2

σ2 ⊗
(σ0 + σ1)√

2

σ0 ⊗
(σ0 − σ1)√

2

σ0 ⊗
(σ0 + σ1)√

2

(3.6)

produce the plots seen in figure 3.12. These images do not show much, aside from
very large zones were only entangled states reside, but the 3D graph shown from two
perspectives in figures 3.13 and 3.14 reveals a drastic separation of the entangled and
separable states.

Figure 3.12: Data visualization for the set of operators (3.6). Some of the graphs show
exclusion zones, while in others, separable and entangled states seem to overlap.

In this 3D plot, a surface of separable states is formed. No separable states reside
outside of this surface. For this reason, the task of classifying a state as separable
or entangled amounts to determining if the state is in the surface of separable states
or not. This is a tractable task for a machine learning algorithm, and leads to an
algorithm for determining the separability of a state using only four expected values,
as opposed to the 15 needed for the PPT criterion.

An entanglement witness would require only 1 expected value, but would not
work with every state sampled from the Haar induced distribution. In contrast, this
method appears to work for any state sampled from this distribution.

26 CHAPTER 3. DATA GENERATION AND VISUALIZATION

Figure 3.13: 3D visualization for the first three operators in equation (3.6). A sharp sep-
aration in entangled and separable pure states can be seen, there is a surface where only
separable states are found. No separable states reside outside this surface.

Figure 3.14: Another angle of figure 3.13. Separable states form a surface where no entangled
states are found.

4 Implementation

The sets (2.1) were built by sampling 2 qubit states from the distributions using the
Julia programming language [36]. The random operators used for the construction
of the feature vector are sampled uniformly according to the Haar measure using the
Julia package QuantumInformation.jl [37]. The main functions can be found
in appendix A.

4.1 Main functions

Random unitary operators are sampled with the following parametrization of U(2).

U(α, φ, ψ, χ) := eiα
(

eiψcosφ eiχsenφ
−e−iχsenφ e−iψcosφ

)
. (4.1)

One samples α, ψ, χ ∈ [0, 2π) y ξ ∈ [0, 1) uniformly and then computes φ = arcsin√χ
and evaluates (4.1).

As discussed in the previous section, one can then sample random separable states
as in equation (3.1). Then pure random states are sampled by first sampling a ran-
dom number between 1 and 4. This number determines how many random pure
separable states are sampled and then the resulting random state is the normalized
superposition of these states. Mixed states are sampled in the two ways described in
the previous section (see appendix A for the code).

After sampling random states, the feature vectors must be built. This is done for
a given state, ρ, by calculating all expected values from the operators Oij or Nij and
forming the array

〈ρ〉O01

〈ρ〉O02

...
〈ρ〉O33 .

 (4.2)

The operators are changed as needed for each model.
The labels for each state are computed using the PPT criterion.
With these ingredients, the data sets are built using a function that takes the

following inputs,

� �
function create_set_noW(N,representatives,mixed,Bures)� �

27

28 CHAPTER 4. IMPLEMENTATION

N is the number of separable states that the dataset will have (so the dataset has 2N
states), representatives is the number of operators from the list are going to be
used (15, 10 or 4 are the numbers used), mixed is a boolean input. If false, then
pure random states are sampled, if true, then mixed random states from the Hilbert-
Schmidt ensamble are sampeld. Bures is another boolean input. If true, mixed
states from the Bures ensamble are sampled. States are sampled until N separable
states occur. Then, the Y vector is built, which is the vector with the entanglement
labels for each state. The function outputs X, the feature matrix, Y , the labels
vector, and an array of the corresponding states.

In this work various ANN architectures are used, with varying depths (number
of hidden layers) and number of hidden units. We also use input vectors of various
dimensions

• 15 numbers of (2a).

• 10 numbers of the form (2b).

• 4 expected values using the operators in (3.6).

All the models are built and trained using the Julia package Flux.jl [38]. The
hidden units have ReLU activation and the output layer is a single neuron with a
sigmoid activation (see equations (2.6) and (2.7)). Training is performed using mini-
batch gradient descent [27] with ADAM optimizer. For some models regularization
is used and for others it is not in order to test the impact of regularization on the
performance. The training is performed over different kinds of training sets and we
compare the performance between them. A schematic visualization of these networks
can be viewed in figure 4.1.

The number of layers of the models is defined as one of the following lines

� �
n_layers = [400,160,80,40,20]; # L = 5
n_layers = [500,400,160,80,40,20]; # L = 6� �

These arrays indicate the number of hidden units in each layer. These two archi-
tectures were chosen after trying a wide variety of larger and smaller models. It was
found that these number of layers and hidden units are enough to perform well and
be trained with low computing time. The Flux library allows one to easily define a
model and initialize its parameters randomly using the Chain, Dense, Dropout
and BatchNorm functions. The Chain(f,g) function performs the composition
f ◦ g, the Dense(n,m,act) function creates a layer from n neurons to m neu-
rons with activation function act and initializes the parameters randomly. The
Dropout(p) function creates a dropout layer that removes neurons with probabil-
ity p. The BatchNorm layer creates a batch normalization layer and initializes the
parameters given in (2.15). The models for the largest network are defined as follows

� �
#Normal model
model = Chain(

4.1. MAIN FUNCTIONS 29

𝑇𝑟(𝜌𝐴𝑂𝑖𝑗)

𝑇𝑟(𝜌𝑂𝑖𝑗)

𝑇𝑟(𝜌𝑂𝑖𝑗)

.

.

.

.

.

.

𝑧1
[1]

 𝑎1
[1]

𝑧𝑛1

[1]
 𝑎𝑛1

[1]

𝑧𝐿 𝑎𝐿

𝑧1
[2]

 𝑎1
[2]

𝑧𝑛2

[2]
 𝑎𝑛2

[2]

…

…

…

…

…

Figure 4.1: Neural network architecture. A variable number of hidden layers, L, is used
with varying number of hidden units, nl. The operators Oik may refer to the products in
(1a) or (1a).

Dense(rep1,n_layers[1],relu),
Dense(n_layers[1],n_layers[2],relu),
Dense(n_layers[2],n_layers[3],relu),
Dense(n_layers[3],n_layers[4],relu),
Dense(n_layers[4],n_layers[5],relu),
Dense(n_layers[5],n_layers[6],relu),
Dense(n_layers[6],1,sigmoid)

)
#Regularized model
model2 = Chain(

Dropout(0.1),
Dense(rep1,n_layers[1],relu),
BatchNorm(n_layers[1]),
Dropout(0.1),
Dense(n_layers[1],n_layers[2],relu),
BatchNorm(n_layers[2]),
Dropout(0.1),
Dense(n_layers[2],n_layers[3],relu),

30 CHAPTER 4. IMPLEMENTATION

BatchNorm(n_layers[3]),
Dropout(0.1),
Dense(n_layers[3],n_layers[4],relu),
BatchNorm(n_layers[4]),
Dropout(0.1),
Dense(n_layers[4],n_layers[5],relu),
BatchNorm(n_layers[5]),
Dropout(0.1),
Dense(n_layers[5],n_layers[6],relu),
BatchNorm(n_layers[6]),
Dense(n_layers[6],1,sigmoid)

)� �
Similar definitions are used for the smaller models by removing the last Dense,

Dropout and BatchNorm layers as needed. The model is then trained using the
built in function train!(J,params,D-train,opt) that performs one step of the
opt variation of gradient descent (in this work, the ADAM is used) by optimizing the
cost function J defined on the test set, D-train, and changes the model parameters,
params. One step of training is defined in the function

� �
function training_step!(model,loss,opt,X_train,Y_train)

Flux.Optimise.train!(loss,Flux.params(model),[(X_train,Y_train)],opt)
end;� �

So, full training in many epochs with mini batch ADAM optimization (and reg-
ularization, when the model has the regularization layers) is defined in the following
function

� �
#=X_train and Y_train must be arrays of mini-batches,
while X_complete and Y_complete is the full data set. =#
function full_training!(model,loss,X_train,Y_train,X_test,Y_test,
X_complete,Y_complete,epochs,interval=500,α0=0.01,decay_rate=0,α_decay_t=epochs)

α_N = α0

opt=ADAM(α0)
L=length(X_train)
costs=Vector{Real}(undef,epochs)
@showprogress for i in 1:epochs

trainmode!(model,true)
k=rand(1:L)
training_step!(model,loss,opt,X_train[k],Y_train[k])
if i%α_decay_t == 0

α_N = α_N/(1+decay_rate*floor(i/α_decay_t))
opt=ADAM(α_N)

end
testmode!(model,true)
l = loss(X_complete,Y_complete)
costs[i] = l
if i%interval == 0

println("The cost function is: \$l")
end

end

testmode!(model,true)
println("Accuracy on the training set is:
\$(100*accuracy(model,X_complete,Y_complete))")
println("Accuracy on the test set is:
\$(100*accuracy(model,X_test,Y_test))")

4.2. TRAINING AND TEST SETS 31

return costs
end;� �

Notice that the cost function that is computed at each step is the true cost function
evaluated over all training examples, while the optimization step is taking evaluating
the cost function on a mini-batch.

Auxiliary functions and the functions that implement performance metrics can be
consulted in appendix A.

4.2 Training and test sets

As mentioned, the labeled sets are constructed by sampling random states from the
three mentioned distributions and classifying them according to the PPT criterion
(1.20). All of these distributions produce far more entangled states than separable
states. If we use a training set constructed by direct sampling, we end up with more
entangled states than separable states, and after training we see that the model tends
to always predict that a state is entangled, so we must perform sampling until we
achieve a 50-50 ratio, such that no bias is introduced with the data. Models were
trained and tested using training sets of different dimensions, which are denoted
by M and m respectively. This results in various train and test sets according to
each distribution, dimension of the input, type of the input (equation (2a) or (2b)
and whether it is for training or testing, which may be labelled as D(M,N)

dtrain/test
, where

M denotes the number of separable (entangled) states, N denotes the dimension of
the feature vectors, which, as mentioned, may be 15, 10 or 4, and d denotes the
distribution used for sampling. We use HS for the HS distribution, H for the Haar
induced distribution and B for the Bures distribution. In order to perform a better
comparison between the models, the states used for testing are all the same; the
only thing that changes between the test sets are the operators used to calculate the
expected values.

5 Results

In this chapter the main results are presented. They are divided by the dimension
of the input vector. For each type of input vector two models were trained, one
without regularization and one with regularization. At the end of this section, the
performance of the models trained on mixed sets is presented.

5.1 Models trained with the 15 Oij inputs

The training set for the first two models was D(9984,15)
Htrain

and the architecture used
was nlayers = [500, 400, 160, 80, 40, 20]. These models will be referred to asMnr

15 and
Mr

15 (for non regularized and regularized respectively). The evolution of the cost
with each step can be seen in figure 5.1. As expected, using the full information of
the density matrix means that the model can drive the error down to almost zero.
The performance was tested on three different sets, namely D(80000,15)

Htest
, D

(80000,15)
HStest

and
D

(80000,15)
Btest

. The confusion matrices that arise for these models and their one number
evaluations are shown in tables 5.1-5.4.

Regularization No Yes

Distribution
Metric P R F1 P R F1

H 0.95 0.99 0.97 0.79 0.99 0.88
HS 0.93 0.04 0.08 0.89 0.40 0.56
B 0.93 0.07 0.14 0.88 0.56 0.69

Table 5.1: Performance metrics of the first models, Mnr
15 and Mr

15, both trained with the
set D(9984,15)

Htrain
. The model without regularization does not generalize to mixed states, while

the regularized model does better on the sets D(80000,15)
HStest

and D
(80000,15)
Btest

.

These models perform well for states from the H distribution. It is interesting
to note that regularization increases performance on mixed states, specially for those
form the B distribution. Also, regularization helps with recall at the expense of
precision. Now the question becomes, on which kinds of states does the model make
mistakes?

32

5.1. MODELS TRAINED WITH THE 15 OIJ INPUTS 33

Separable Entangled Separable Entangled
Separable 79563 437 79989 11
Entangled 4102 75898 21671 58329

Table 5.2: Confusion matrix for the test set D(80000,15)
Htest

of the not regularized (left) and reg-
ularized model (right). Regularization helps the model to not incorrectly classify separable
states at the cost of detecting less entangled states.

Separable Entangled Separable Entangled
Separable 3548 76452 32392 47608
Entangled 268 79732 4045 75955

Table 5.3: Confusion matrix for the test set D
(80000,15)
HStest

of the not regularized (left) and
regularized model (right). Regularization helps the model to classify mixed states, even
when training was performed on pure states.

Separable Entangled Separable Entangled
Separable 5941 74059 45103 34897
Entangled 454 79546 6418 73582

Table 5.4: Confusion matrix for the test set D
(80000,15)
Btest

of the not regularized (left) and
regularized model (right). States from the Bures distribution are classified better because
more of them are strongly entangled.

Figure 5.1: Evolution of true cost with each training step. The unregularized model is top
and the regularized one bottom. We can see that the cost function eventually goes very
close to zero for the unregularized model.

34 CHAPTER 5. RESULTS

5.1.1 Error analysis of Mr
15 and Mnr

15

We can read from table 5.2 that both models incorrectly classify some entangled states
(sampled from H) as separable states. It turns out that these states have low values
of concurrence. Indeed, the maximum concurrence of the mislabeled entangled states
is 0.17 for Mnr

15 and 0.39 for Mr
15. A histogram of the concurrence of mislabeled

states can be seen in figure 5.2, where it is seen that all entangled states with high
concurrence are correctly labeled.

Figure 5.2: Histogram of the predictions for entangled states. Top: Mnr
15 model. Bottom:

Mr
15 model. All highly entangled states are correctly classified.

The modelMnr
15 mislabels many separable states sampled from B, as can be seen

in table 5.4. These states have lower average purity than the correctly labeled ones.
The maximum purity of mislabeled states is .73, while the average purity is 0.43. For
the correctly labeled, the average purity is 0.49. This can be seen in figure 5.3. It
is known that ML models struggle to generalize to sets that are not drawn from the
same distribution as the test set. That is what is seen in this case, but if one restricts
the classification to highly entangled, high purity states, the performance on mixed
states is adequate, even when training is done only on pure states.

To see this, the performance of the model is studied in intervals of both purity and
concurrence. The results are presented in tables 5.5-5.6, where the accuracy (2.19) is
presented in intervals of purity and concurrence. This tables are studied for the test
set D(80000,15)

Btest
. It is worth noting that in table 5.6, the modelMnr

15 has close to 100%
accuracy in most concurrence intervals. This is because the model tends to classify
all mixed states as entangled, as may be seen in the confusion matrix 5.4, so this
result should not be confused as positive.

Finally, consider the sets M1 = {ρ ∈ D
(80000,15)
Btest

|P (ρ) < 0.7} and M2 = {ρ ∈

5.1. MODELS TRAINED WITH THE 15 OIJ INPUTS 35

Figure 5.3: Purity of separable states drawn form D
(80000,15)
Btest

. Most incorrectly labeled states
have low purity.

Purity
Interval # of states Accuracy (%)

forMnr
15

Accuracy (%)
forMr

15

0.3-0.4 13134 7.00 34.77
0.4-0.5 65894 33.90 63.99
0.5-0.6 49944 69.05 86.42
0.6-0.7 22094 86.48 92.81
0.7-0.8 7440 96.13 92.85
0.8-0.9 1416 99.44 91.88
0.9-1 77 100 94.81

Table 5.5: Accuracy in intervals of purity for the set D
(80000,15)
Btest

. The fraction of correctly
classified states increases with the purity of the states.

D
(80000,15)
Btest

|ρ is entangled and C(ρ) < 0.6}}. Then, for the set D(80000,15)
Btest

\(M1 ∪M2),
that is, one filters all states from D

(80000,15)
Btest

that have purity larger than 0.7 and
concurrence larger than 0.6 (but also keeping the separable states), one ends up
with 2245 states and the model Mr

15 has 99.73% accuracy. This means that this is
an acceptable model to classify mixed state entanglement when one knows that the
entangled states have high purity and one only cares about highly entangled states.
On the other hand,Mnr

15 achieves 87.97% accuracy.

36 CHAPTER 5. RESULTS

Concurrence
Interval # of states Accuracy (%)

forMnr
15

Accuracy (%)
forMr

15

0.0-0.1 94512 21.29 58.35
0.1-0.2 18843 99.39 90.70
0.2-0.3 17757 99.97 98.91
0.3-0.4 13662 100 99.97
0.4-0.5 8599 100 100
0.5-0.6 4435 100 100
0.6-0.7 1687 100 100
0.7-0.8 440 100 100
0.8-0.9 64 100 100

Table 5.6: Accuracy in intervals of concurrence for the set D
(80000,15)
Btest

. The model Mnr
15

tend to classify most states as entangled, while the regularized model can make more of a
distinction.

5.2 Models trained with 10 Nij inputs

The training set for the next two models is D(12800,10)
Htrain

and the architecture used was
nlayers = [400, 160, 80, 40, 20]. These models will be referred to asMnr

10 andMr
10. The

evolution of the cost with each step can be seen in figure 5.4. The performance was
tested on the sets D(80000,10)

Htest
, D

(80000,10)
HStest

and D(80000,10)
Btest

. The confusion matrices that
arise for these models and their one number evaluations are shown in tables 5.7-5.10.
It is found that the F1 score measured on states from the H distribution in not as
good as in last section. It seems like the missing information plays a role in classifying
pure states that the operators constructed from (3.5) cannot make up for.

Regularization No Yes

Distribution
Metric P R F1 P R F1

H 0.77 0.95 0.85 0.67 0.99 0.80
HS 0.71 0.27 0.39 0.68 0.38 0.49
B 0.72 0.35 0.47 0.69 0.48 0.57

Table 5.7: Performance metrics ofMnr
10 andMr

10. Neither of the models achieve an F1 score
as good as in the case of 15 inputs. Also, the models do not generalize well to D

(80000,10)
HStest

and D
(80000,10)
Btest

, but regularization does help.

5.2.1 Error analysis of Mr
10 and Mnr

10

The same method is applied to these models as in last section. Again, most incorrectly
classified entangled states from H have low concurrence, as can be seen in 5.5. This
time, though, there are some highly entangled states that are not correctly classified.

5.2. MODELS TRAINED WITH 10 NIJ INPUTS 37

Separable Entangled Separable Entangled
Separable 76220 3780 79144 856
Entangled 22989 57011 37964 42036

Table 5.8: Confusion matrix for the test set D
(80000,10)
Htest

of the not regularized (left) and
regularized model (right). As before, regularization makes the model make fewer mistakes
in labeling separable states.

Separable Entangled Separable Entangled
Separable 21755 58245 30473 49527
Entangled 8768 71232 14128 65872

Table 5.9: Confusion matrix for the test set D
(80000,10)
HStest

of the not regularized (left) and
regularized model (right). This models do not generalize as well as those from last section.

Separable Entangled Separable Entangled
Separable 28205 51795 38122 41878
Entangled 10456 69544 17142 62858

Table 5.10: Confusion matrix for the test set D
(80000,10)
Btest

of the not regularized (left) and
regularized model (right).

Figure 5.4: Evolution of true cost with each training step. These models do not approach 0
cost. Missing information prevents this.

The maximum concurrence of mislabeled states (from H) is 0.93 for Mr
10 and 0.94

forMr
10.

Meanwhile, as can be seen from figure 5.6, most incorrectly labeled separable states

38 CHAPTER 5. RESULTS

Figure 5.5: Histogram of the predictions for entangled states. Top: Mnr
10 model. Bottom:

Mr
10 model. This time there are some highly entangled states that are mislabeled.

from B have low purity, but there are some high purity states that are incorrectly
labeled.

Figure 5.6: Purity of separable states drawn form D
(80000,10)
Btest

. Most incorrectly labeled states
have low purity, as before.

The interval performance is seen in tables 5.11 and 5.12, where we see a similar

5.3. MODELS TRAINED WITH THE 4 SPECIAL NIJ INPUTS 39

behavior as in last section, but less pronounced.

Purity
Interval # of states Accuracy (%)

forMnr
10

Accuracy (%)
forMr

10

0.3-0.4 13134 20.71 26.96
0.4-0.5 65894 47.64 54.25
0.5-0.6 49944 74.92 75.16
0.6-0.7 22094 83.72 78.03
0.7-0.8 7440 86.65 77.75
0.8-0.9 1416 85.24 75.85
0.9-1 77 90.91 71.43

Table 5.11: Accuracy in intervals of purity for the set D(80000,10)
Btest

. The fraction of correctly
classified states increases with the purity of the states.

Concurrence
Interval # of states Accuracy (%)

forMnr
10

Accuracy (%)
forMr

10

0.0-0.1 94512 40.84 49.27
0.1-0.2 18843 81.19 69.34
0.2-0.3 17757 90.00 81.69
0.3-0.4 13662 94.93 89.78
0.4-0.5 8599 97.18 94.29
0.5-0.6 4435 98.46 97.23
0.6-0.7 1687 98.93 98.10
0.7-0.8 440 100 99.54
0.8-0.9 64 100 100

Table 5.12: Accuracy in intervals of concurrence for the set D
(80000,10)
Btest

. The higher the
concurrence the better the accuracy.

Finally, consider the same filtered set as in last section (the test set minus low
purity and low concurrence entangled states). Since the states are the same, 2245
such states are again found, and the accuracy of Mr

10 on this set is 97.15%. This
means this is still a valid model for high purity states and high concurrence states.
It is also interesting to note that the modelMnr

10 has an accuracy of 94.92% on this
filtered set.

5.3 Models trained with the 4 special Nij inputs

The training set for the next two models is D(12800,4)
Htrain

and the architecture used was
nlayers = [400, 160, 80, 40, 20]. These models will be referred to asMnr

4 andMr
4. The

evolution of the cost with each step can be seen in figure 5.7. The performance was
tested on the sets D(80000,4)

Htest
, D

(80000,4)
HStest

and D(80000,4)
Btest

. The confusion matrices that arise

40 CHAPTER 5. RESULTS

for these models and their one number evaluations are shown in tables 5.13-5.16. It
is interesting to note in table 5.13 that the performance on states drawn from H is
very good, even if there is very little information about the state available. This was
to be expected, as a clear distinction is seen in figures 3.13 and 3.14.

Regularization No Yes

Distribution
Metric P R F1 P R F1

H 0.85 0.97 0.91 0.63 0.99 0.78
HS 0.61 0.08 0.14 0.59 0.53 0.56
B 0.65 0.11 0.17 0.60 0.56 0.58

Table 5.13: Performance metrics of the first models,Mnr
4 andMr

4. Performance for the H
set is very good for both models.

Separable Entangled Separable Entangled
Separable 77532 2468 79867 133
Entangled 13336 66664 46161 33839

Table 5.14: Confusion matrix for the test set D
(80000,4)
Htest

of the not regularized (left) and
regularized model (right). Good performance is found in both models, but the regularized
one misses on a lot of entangled states.

Separable Entangled Separable Entangled
Separable 6134 73866 42553 37447
Entangled 3856 76144 29695 50305

Table 5.15: Confusion matrix for the test set D
(80000,4)
HStest

of the not regularized (left) and
regularized model (right). We can see a trend, models trained with pure states and without
regularization tend to classify most mixed states as entangled.

Separable Entangled Separable Entangled
Separable 7478 72522 44846 35154
Entangled 4176 75824 29650 50350

Table 5.16: Confusion matrix for the test set D
(80000,4)
Btest

of the not regularized (left) and
regularized model (right).

5.3.1 Error analysis of Mr
4 and Mnr

4

Focusing on mislabeled entangled states from H, it can be seen in figure 5.8 that most
highly entangled states are correctly classified and most incorrectly classified states

5.3. MODELS TRAINED WITH THE 4 SPECIAL NIJ INPUTS 41

Figure 5.7: Evolution of true cost with each training step. The unregularized model is top
and the regularized one bottom. Notice how the final cost function is below that of the 10
input model.

Figure 5.8: Histogram of the predictions for entangled states. Top: Mnr
4 model. Bottom:

Mr
4 model.

have little entanglement, but again there are a few highly entangled states that are
mislabeled in both models.

Also, in the case of separable states from B, it is seen in figure 5.9 that purity

42 CHAPTER 5. RESULTS

does not play such an important role in mislabeling from modelMr
4. Both histograms

are very alike, only slightly shifted. Indeed, table 5.17 shows that accuracy does not
dramatically increase with purity.

Figure 5.9: Purity of separable states drawn form D
(80000,4)
Btest

. This time both histograms are
very alike.

To see this, the performance of the model is studied in intervals of both purity
and concurrence.

Purity
Interval # of states Accuracy (%)

forMnr
4

Accuracy (%)
forMr

4

0.3-0.4 13134 10.14 48.24
0.4-0.5 65894 34.12 55.51
0.5-0.6 49944 66.83 64.09
0.6-0.7 22094 81.68 65.58
0.7-0.8 7440 89.78 64.73
0.8-0.9 1416 92.37 64.48
0.9-1 77 94.81 59.74

Table 5.17: Accuracy in intervals of purity for the set D
(80000,4)
Btest

. The fraction of correctly
classified states does not increase much for the regularized model, the unregularized one
does better.

This makes it so that the performance on the filtered set (which has 2245 elements)
has an accuracy of only 82.36% for Mr

4 and 84.32% for Mnr
4 . It seems this model

does not benefit as much from regularization.

5.3. MODELS TRAINED WITH THE 4 SPECIAL NIJ INPUTS 43

Concurrence
Interval # of states Accuracy (%)

forMnr
4

Accuracy (%)
forMr

4

0.0-0.1 94512 21.98 54.92
0.1-0.2 18843 93.83 55.60
0.2-0.3 17757 95.37 64.41
0.3-0.4 13662 96.12 70.58
0.4-0.5 8599 96.87 74.90
0.5-0.6 4435 97.27 78.85
0.6-0.7 1687 97.21 80.38
0.7-0.8 440 98.63 85.91
0.8-0.9 64 98.87 81.25

Table 5.18: Accuracy in intervals of concurrence for the set D
(80000,4)
Btest

. In this case the
regularized model does not do as well with these states, while the unregularized one tends
to classify most states as entangled.

To get a sense of the shortcoming for mixed states in this models, one can look
at figure 5.10. Mixed separable states are spread out in all space, so a model that
correctly classifies pure separable states and pure entangled states will be confused
by the mixed separable states.

Figure 5.10: Pure and mixed separable states. A model trained to classify the orange states
as separable will struggle to classify the pink ones as separable too, since they are outside
the orange separable surface.

44 CHAPTER 5. RESULTS

5.4 Training with mixed states

The models from past sections were trained using pure states because, for higher
dimensions, it becomes very computationally demanding to sample and classify mixed
states. In the case of two qubits, we have the PPT criterion, so training with mixed
states is possible and efficient. If training is performed with D(N,4)

Btrain
for a model with

4 inputs, the performance increases with mixed states (as is to be expected) but is
severely impacted for pure states. The metrics for this models, which we may call
Mnr/r

m4 , are shown in table 5.19

Regularization No Yes

Distribution
Metric P R F1 P R F1

H 0.60 0.72 0.65 0.59 0.81 0.68
HS 0.57 0.75 0.65 0.57 0.77 0.65
B 0.59 0.73 0.65 0.58 0.76 0.66

Table 5.19: Performance metrics for models trained with mixed states. The F1 across all
distributions and both models becomes almost the same.

For both these models there are a lot of separable states from H that are classified
as entangled. This is a problem because there is no way to characterize the states
that are incorrectly classified as was done in past sections. These states are pure and
separable, that is they have P = 1 and C = 0, so this is not a useful model in an
experimental setup that produces pure states. On the other hand, there are many
mixed states that are incorrectly classified, but when characterized as in past sections,
it is found that there are many highly entangled states and high purity states that are
not correctly classified. In fact, the histograms of purity of correctly and incorrectly
classified states overlap, as can be seen in figure 5.11.

The same things occur for models with 10 inputs.

5.5 Testing with states sampled directly from Bures
distribution

So far, the test phase has been performed with sets that have a 50-50 ratio of separable
and entangled states, since that is how training was performed. The question arises
then, how does a model trained like this perform with states sampled directly from
the Bures distribution? When states are sampled like this, only around 7.8% of them
are separable. The test set of states sampled directly from the Bures distributions
will be referred to as D(100000,4)

Bures , and was built using 100000 states in total, of which
7316 are separable states. Model Mr

4 has an acuracy of 74.97% for this set. The
confusion matrix is

After performing the same filtering process with this test set, it is found that 1984
states remain and accuracy rises to 83% forMr

4 and to 96.32% forMnr
4 . So results

5.5. TESTING WITH STATES SAMPLED DIRECTLY FROM BURES DISTRIBUTION45

Figure 5.11: Purity of separable states drawn form D
(7000)
Btest

. As is to be expected, both
histograms overlap, the only difference being in the number of counts and not in the distri-
bution. This histogram was done with predictions fromMr

m4.

Separable Entangled
Separable 3944 3372
Entangled 37112 55572

Table 5.20: Confusion matrix for the test set D
(100000,4)
Bures for the regularized model. Most

states are entangled.

remain similar even when the test set does not have a 50-50 ratio.

6 Conclusions

Our results indicate that a universal classifier is not possible using this method.
The main source of error comes form the similarity of weakly entangled states and
separable states. This is to be expected, since weakly entangled states are the closest
to the set of separable states and machine learning models usually struggle near the
borders of different classes.

Other works that have used ML have encountered similar problems. For instance,
reference [21] uses a similar approach, but training is performed on mixed states
sampled from the Hilbert-Schmidt distribution and tests within the same distribution.
The best accuracy reported is for a restricted subset from this distribution, focusing
on highly entangled states or highly separable states (as measured by the value of the
lowest eigenvalue of the partial transpose of a density matrix). Also, the performance
for pure states is not reported. In our work we found that, if training is performed
with mixed states, the performance for pure states is rather poor. Reference [22]
reports good results on mixed states and has the advantage of only sampling pure
states while performing well for mixed states, but full information of the quantum
state is required in the algorithm proposed in that work. Finally, reference [39] also
trains the model with mixed states and tests within those states; this makes scaling
the method difficult.

Still, the neural network approach to the separability problem for two qubits
shows promise. Classification of pure states may be achieved using as little as four
observables, and the method has proven to be useful in classifying high purity and
high concurrence mixed states. This is encouraging, since one is usually interested in
these kinds of quantum states for quantum computation tasks.

The task of very accurately classifying all mixed states remains unsolved. Some
possible avenues to explore are performing dimensional reduction (using principal
component analysis, for instance) when studying mixed states using many operators of
the form (1) to find which operators are the most important to classify entanglement.
This could lead to a reliable method to classify low purity and low concurrence states
using less than the fifteen operators needed for the PPT criterion.

Also, the method proposed in this thesis could be extended to higher dimensional
Hilbert spaces, where the PPT criterion is no longer available, since the classification
of pure states is known for many Hilbert spaces, and it was shown that training with
only pure states yields fair results with high purity and highly entangled mixed states.

46

A Code

Sampling of random unitary matrices:

� �
#= Parametrización de U(2) =#
function U(alpha,psi,chi,xi)

phi = asin(xi)
return exp(im*alpha) * [exp(im*psi)*cos(phi) exp(im*chi)sin(phi);

-exp(-im*chi)sin(phi) exp(-im*psi)cos(phi)]
end;� �

The functions used to sample random states are the following

� �
#= Function to sample M 2 qubit separable states =#
function estados_separables(M::Integer)

separables = Array{Array{Complex{Float64},1}}(undef,M)
for i in 1:M

α1=rand(0:0.01:2*pi);ψ1=rand(0:0.01:2*pi);χ1=rand(0:0.01:2*pi)
α2=rand(0:0.01:2*pi);ψ2=rand(0:0.01:2*pi);χ2=rand(0:0.01:2*pi)

ξ1=rand() ;ξ2=rand()

separables[i] = kron(U(α1,ψ1,χ1,ξ1)*[1,0],U(α2,ψ2,χ2,ξ2)*[1,0])
end

return separables
end

#Function to sample pure random states
function estados_puros_aleatorios(M::Integer)

aleatorios = Array{Array{Complex{Float64},1}}(undef,M)
for i in 1:M

n = rand(1:4)
psis = estados_separables(n)
pesos = normalize(rand(n))
aleatorios[i] = normalize(sum(pesos.*psis))

end
return aleatorios

end

#= Function to sample random mixed states form
the HS distribution =#
function estados_aleatorios(M::Integer)

g = HilbertSchmidtStates(4)
aleatorios = Array{Array{Complex{Float64},2}}(undef,M)
for i in 1:M

aleatorios[i] = rand(g)
end
return aleatorios

end;

47

48 APPENDIX A. CODE

#= Function to sample random mixed states from
the Bures distribution =#
function estados_aleatorios_Bures(M::Integer)

g = GinibreEnsemble(4)
u = CircularEnsemble{2}(4)
aleatorios = Array{Array{Complex{Float64},2}}(undef,M)
for i in 1:M

A = rand(g)
U = rand(u)
Id = Diagonal([1,1,1,1])
matriz = (Id + U)*A*A' *(Id +U')
aleatorios[i] = Hermitian(matriz / tr(matriz))

end
return aleatorios

end� �
The feature vectors are built with the function

� �
function feature(state,representatives::Integer)

f = Array{Float64}(undef,representatives)
for i in 1:representatives

f[i] = expected_value(operators[i],state)
end
return normalize(f)

end� �
Here, the function expected_value(O, ρ) computes the expected value 〈O〉ρ, and
operators is an array that contains the operators to be used, that is, operators of
the form (1a) or (1b), which is defined before the training of the ANN.

The PPt criterion is , implemented with the following functions

� �
function PPT(ρ::Matrix)

ρTB = partial_transpose(ρ)
e_vals = eigvals(ρTB)
positives = real.(e_vals) .>= -0.0000001
#sum(positives) is the number of positive eigenvalues
if sum(positives) != 4 #=If there is a negative
eigenvalue => state entangled =#

0 #entangled
else

1 #separable
end

end

function PPT(ψ::Vector)
ρ = ψ*ψ'
PPT(ρ)

end;� �
The data sets are built with the following function

� �
#= Function that creates the data sets (train or test) for
2 qubits. It consists of N entangled and N separable states.
If mixed!=true, Bures!=true, then random pure states from H
are used.If mixed=true, mixed random states from HS are used.
If Bures=true, mixed random states from B are used. It returns
X(matrix of feature vectors) and Y (labels) along with an
array of the states that are used.=#

49

function create_set_noW(N,representatives,mixed,Bures)
if mixed == false

states=[estados_puros_aleatorios(1)[1]]
Y=[PPT(states[1])]
#= A counter is set up to track how many separable states have been
produced.
Since all distributions produce many more entangled states, m
any states have to be sampled in order to get a 50-50 ratio. =#.
separable_counter=Y[]
entangled_counter=1-separable_counter
set = feature_noW(states[1],representatives)
while separable_counter<N
#Stop adding entangled states once you get to N.

if entangled_counter<N
state = estados_puros_aleatorios(1)[1]
ppt_actual = PPT(state)
push!(Y,ppt_actual)
push!(states,state)
separable_counter += ppt_actual
entangled_counter += (1-ppt_actual)
nuevo=feature_noW(state,representatives)
set=hcat(set,nuevo)

else
state = estados_puros_aleatorios(1)[1]
ppt_actual = PPT(state)
if ppt_actual == 1

push!(Y,ppt_actual)
push!(states,state)
separable_counter += ppt_actual
nuevo=feature_noW(state,representatives)
set=hcat(set,nuevo)

end
end

end
return set,transpose(Y),states

elseif (mixed == true && Bures == false)
states=[estados_aleatorios(1)[1]]
Y=[PPT(states[1])]
separable_counter=Y[]
entangled_counter=1-separable_counter
set = feature_noW(states[1],representatives)
while separable_counter<N

if entangled_counter<N
state = states_aleatorios(1)[1]
ppt_actual = PPT(state)
push!(Y,ppt_actual)
push!(states,state)
separable_counter += ppt_actual
entangled_counter += (1-ppt_actual)
nuevo=feature_noW(state,representatives)
set=hcat(set,nuevo)

else
state = states_aleatorios(1)[1]
ppt_actual = PPT(state)
if ppt_actual == 1

push!(Y,ppt_actual)
push!(states,state)
separable_counter += ppt_actual
nuevo=feature_noW(state,representatives)
set=hcat(set,nuevo)

end
end

end
return set,transpose(Y),states

elseif mixed == true && Bures == true
states=[estados_aleatorios_Bures(1)[1]]
Y=[PPT(states[1])]
separable_counter=Y[]

50 APPENDIX A. CODE

entangled_counter=1-separable_counter
set = feature_noW(states[1],representatives)
while separable_counter<N

if entangled_counter<N
state = states_aleatorios_Bures(1)[1]
ppt_actual = PPT(state)
push!(Y,ppt_actual)
push!(states,state)
separable_counter += ppt_actual
entangled_counter += (1-ppt_actual)
nuevo=feature_noW(state,representatives)
set=hcat(set,nuevo)

else
state = estados_aleatorios_Bures(1)[1]
ppt_actual = PPT(state)
if ppt_actual == 1

push!(Y,ppt_actual)
push!(states,state)
separable_counter += ppt_actual
nuevo=feature_noW(state,representatives)
set=hcat(set,nuevo)

end
end

end
return set,transpose(Y),states

end
end� �

Performance metrics are defined in the following functions

� �
function accuracy(Modelo,X,Y)

hits = round.(Modelo(X)) .== Y
return sum(hits)/length(Y)

end;

#= Here "positive" means being separable
and "negative" means being entangled =#
function confusion_table(tp,fp,tn,fn)

df = DataFrame(Separable = [tp,fp],Entangled = [fn,tn])
return df

end

function confusion_matrix(labels,predictions)
zeros = findall(x->x==0,labels')
ones = findall(x->x==1,labels')
ln=length(zeros) ; lp=length(ones)
positives = predictions[ones] .== labels[ones]
negatives = predictions[zeros] .== labels[zeros]
tp = sum(positives) ; fn = lp - tp
tn = sum(negatives) ; fp = ln - tn
return confusion_table(tp,fp,tn,fn)

end

function false_negative_rate(confusion)
tp = confusion[1,1]
fp = confusion[2,1]
tn = confusion[2,2]
fn = confusion[1,2]
return fn/(fn+tp)

end

function false_positive_rate(confusion)
tp = confusion[1,1]
fp = confusion[2,1]
tn = confusion[2,2]

51

fn = confusion[1,2]
return fp/(fp+tn)

end

function mismatch_rate(confusion)
return false_negative_rate(confusion) + false_positive_rate(confusion)

end

function confusion_accuracy(confusion)
tp = confusion[1,1]
fp = confusion[2,1]
tn = confusion[2,2]
fn = confusion[1,2]
return (tp+tn)/(tp+tn+fp+fn)

end;

function precision(confusion)
tp = confusion[1,1]
fp = confusion[2,1]
tn = confusion[2,2]
fn = confusion[1,2]
return tp/(tp+fp)

end;

function recall(confusion)
tp = confusion[1,1]
fp = confusion[2,1]
tn = confusion[2,2]
fn = confusion[1,2]
return tp/(tp+fn)

end;

function F1score(confusion)
tp = confusion[1,1]
fp = confusion[2,1]
tn = confusion[2,2]
fn = confusion[1,2]
return 2*tp/(2*tp + fp + fn)

end;� �

Bibliography

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entan-
glement,” Reviews of Modern Physics, vol. 81, pp. 865–942, 6 2009.

[2] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett.,
vol. 67, pp. 661–663, Aug 1991.

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
“Teleporting an unknown quantum state via dual classical and einstein-podolsky-
rosen channels,” Phys. Rev. Lett., vol. 70, pp. 1895–1899, Mar 1993.

[4] C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle
operators on einstein-podolsky-rosen states,” Phys. Rev. Lett., vol. 69, pp. 2881–
2884, Nov 1992.

[5] O. Gühne and G. Tóth, “Entanglement detection,” 4 2009.

[6] P. Horodecki, “Separability criterion and inseparable mixed states with positive
partial transposition,” Physics Letters A, vol. 232, no. 5, pp. 333–339, 1997.

[7] A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett., vol. 77,
pp. 1413–1415, Aug 1996.

[8] D. F. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of
qubits,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 64,
p. 15, 2001.

[9] S. P. Walborn, P. H. S. Ribeiro, L. Davidovich, F. Mintert, and A. Buchleit-
ner, “Experimental determination of entanglement with a single measurement,”
Nature, vol. 440, pp. 1022–1024, 4 2006.

[10] O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, and
A. Sanpera, “Detection of entanglement with few local measurements,” Physical
Review A - Atomic, Molecular, and Optical Physics, vol. 66, p. 5, 2002.

[11] O. Gühne, P. Hyllus, D. Bruss, A. Ekert, M. Lewenstein, C. Macchiavello, and
A. Sanpera, “Experimental detection of entanglement via witness operators and
local measurements,” Journal of Modern Optics, vol. 50-6, pp. 1079–1102, 2003.

52

BIBLIOGRAPHY 53

[12] G. Tóth and O. Gühne, “Detecting genuine multipartite entanglement with two
local measurements,” Physical Review Letters, vol. 94, 2 2005.

[13] S. Gharibian, “Strong np-hardness of the quantum separability problem,” 10
2008.

[14] B. M. Terhal, “Bell inequalities and the separability criterion,” Physics Letters
A, vol. 271, pp. 319–326, 2000.

[15] M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, “Optimization of entan-
glement witnesses,” Phys. Rev. A, vol. 62, p. 052310, Oct 2000.

[16] H. S. Park, S. S. B. Lee, H. Kim, S. K. Choi, and H. S. Sim, “Construction of
optimal witness for unknown two-qubit entanglement,” 6 2010.

[17] C. Ren and C. Chen, “Steerability detection of an arbitrary two-qubit state via
machine learning,” Physical Review A, vol. 100, 8 2019.

[18] Y. Ming, C. T. Lin, S. D. Bartlett, and W. W. Zhang, “Quantum topology
identification with deep neural networks and quantum walks,” npj Computational
Materials, vol. 5, 12 2019.

[19] X. Zhang, M. Luo, Z. Wen, Q. Feng, S. Pang, W. Luo, and X. Zhou, “Direct
fidelity estimation of quantum states using machine learning,” 2 2021.

[20] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” 9 2017.

[21] Y. C. Ma and M. H. Yung, “Transforming bell’s inequalities into state classifiers
with machine learning,” npj Quantum Information, vol. 4, 12 2018.

[22] S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen, D. Zhou, and
B. Zeng, “Separability-entanglement classifier via machine learning,” Physical
Review A, vol. 98, 7 2018.

[23] P. H. Qiu, X. G. Chen, and Y. W. Shi, “Detecting entanglement with deep
quantum neural networks,” IEEE Access, vol. 7, pp. 94310–94320, 2019.

[24] D. J. Griffiths, Introduction to Quantum Mechanics (2nd Edition). Pearson Pren-
tice Hall, 2nd ed., Apr. 2004.

[25] B. M. Terhal, “Detecting quantum entanglement,” Theoretical Computer Science,
vol. 287, pp. 313–335, 2002.

[26] D. Chruściński and G. Sarbicki, “Entanglement witnesses: construction, analysis
and classification,” 2 2014.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

http://www.deeplearningbook.org

54 BIBLIOGRAPHY

[28] P. Mehta, M. Bukov, C. H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and
D. J. Schwab, “A high-bias, low-variance introduction to machine learning for
physicists,” Physics Reports, vol. 810, pp. 1–124, 5 2019.

[29] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133,
Dec 1943.

[30] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.,” Psychological Review, vol. 65, no. 6, pp. 386–408,
1958.

[31] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON
Convention Record, pp. 96–104, 1960. Reprinted in Neurocomputing MIT Press,
1988 .

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 12
2014.

[33] K. Zyczkowski, K. A. Penson, I. Nechita, and B. Collins, “Generating random
density matrices,” Journal of Mathematical Physics, vol. 52, 6 2011.

[34] K. Zyczkowskit and M. Kust, “Random unitary matrices,” J. Phys. A Math. Gen,
vol. 27, pp. 4235–4245, 1994.

[35] J. Ginibre, “Statistical ensembles of complex, quaternion, and real matrices,”
Journal of Mathematical Physics, vol. 6, no. 3, pp. 440–449, 1965.

[36] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach
to numerical computing,” SIAM Review, vol. 59, pp. 65–98, 2017.

[37] P. Gawron, D. Kurzyk, and Łukasz Pawela, “Quantuminformation.jl—a julia
package for numerical computation in quantum information theory,” PLoS ONE,
vol. 13, 12 2018.

[38] M. Innes, “Flux: Elegant machine learning with julia,” Journal of Open Source
Software, vol. 3, p. 602, 5 2018.

[39] J. Roik, K. Bartkiewicz, A. Černoch, and K. Lemr, “Accuracy of entanglement
detection via artificial neural networks and human-designed entanglement wit-
nesses,” Phys. Rev. Applied, vol. 15, p. 054006, May 2021.

	Portada
	Abstract
	Contents
	Motivation
	Introduction
	1. Quantum Entanglement
	2. Machine Learning
	3. Data Generation and Visualization
	4. Implementation
	5. Results
	6. Conclusions
	Code
	Bibliography

