

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

"Evaluación experimental de un evaporador de un refrigerador solar intermitente"

TESIS

QUE PARA OBTENER EL TÍTULO DE

INGENIERO QUÍMICO

PRESENTA

THANIA QUIROZ HERNÁNDEZ

CIUDAD UNIVERSITARIA, CDMX 2022

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE: Juan Mario Morales Cabrera

VOCAL: Joaquín Rodríguez Torreblanca

SECRETARIO: Víctor Hugo Gómez Espinoza

1er. SUPLENTE: José Abraham Ortinez Álvarez

2do. SUPLENTE: Luis Ángel Moreno Avendaño

SITIO DONDE SE DESARROLLÓ EL TEMA:

El presente trabajo de tesis se realizó en la Coordinación de Refrigeración y Bombas de Calor, del Instituto de Energías Renovables, UNAM. Priv. Xochicalco S/N Temixco, Morelos, C.P. 62580, México, bajo la dirección del Dr. Víctor Hugo Gómez Espinoza.

ASESOR DE TESIS

SUSTENTANTE

Dr. Víctor Hugo Gómez Espinoza

Thania Quiroz Hernández

AGRADECIMIENTOS

Por el apoyo institucional:

A la Universidad Nacional Autónoma de México

A la Facultad de Química

Al Instituto de Energías Renovables

A DGAPA Proyecto PAPIME No. PE103917 por la beca otorgada para la realización de esta tesis.

Al Dr. Víctor Hugo Gómez Espinoza, por su gran paciencia, apoyo, enseñanzas y dirección. Por brindarme la oportunidad y la confianza de poder trabajar en este proyecto.

A los miembros del H. Jurado.

Al personal técnico, administrativo y de servicios de la UNAM por la ayuda brindada.

¡GRACIAS!

DEDICATORIA

A familiares y amigos.

Inserta tu nombre aquí:

Gracias por ser una estrella brillando en el cielo de mi vida.

¡MUCHAS GRACIAS!

Índice general

NOMENCLATURA:	12
RESUMEN	13
CAPÍTULO I INTRODUCCIÓN	15
1. INTRODUCCIÓN	16
1.1. TRABAJOS PREVIOS DE INVESTIGACIÓN DEL RSI DEL DR. RIVERA BLANG	CO21
1.2. JUSTIFICACIÓN	23
1.3. OBJETIVOS	24
CAPÍTULO II MARCO TEÓRICO	25
2.1. FUNDAMENTOS DE REFRIGERACIÓN	26
2.2. CICLO DE CARNOT	28
2.3. CICLO INVERSO DE CARNOT	29
2.4. COEFICIENTE DE OPERACIÓN	30
2.5. CICLO IDEAL DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR	31
2.6. CICLO REAL DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR	33
2.7. CICLO DE REFRIGERACIÓN POR ABSORCIÓN	35
2.7.1. CICLO DE REFRIGERACIÓN POR ABSORCIÓN CONTINUO	36
2.7.2. CICLO DE REFRIGERACIÓN POR ABSORCIÓN INTERMITENTE	38
2.8. COMPARACIÓN ENTRE LOS SISTEMAS DE REFRIGERACIÓN POR COMPRE	ESIÓN
MECÁNICA DE VAPOR Y LOS SISTEMAS DE REFRIGERACIÓN POR ABSORCIÓ	N42
2.9. CARACTERÍSTICAS DE LOS REFRIGERANTES.	43
2.10. CARACTERÍSTICAS DE LOS ABSORBENTES	45
2.11. MEZCLA ABSORBENTE-REFRIGERANTE	45
CAPÍTULO III DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN SOLAR	48
3.1. INTRODUCCIÓN	49
3.2. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN	49
3.2.1. CONCENTRADOR PARABÓLICO COMPUESTO	51
3.2.2. TUBO RECEPTOR: GENERADOR /ABSORBEDOR (GE/AB)	52
3.2.3. CONDENSADOR	54
3.2.4. TANQUE DE ALMACENAMIENTO PARA EL REFRIGERANTE LÍQUIDO	55
3.2.5. VÁLVULA DE EXPANSIÓN	56
3.2.6. EVAPORADOR	56
3.3. OPERACIÓN DEL REFRIGERADOR SOLAR INTERMITENTE (RSI)	58
3.3.1. ETAPA DE GENERACIÓN-CONDENSACIÓN (ALTA PRESIÓN)	59
3.3.2. ETAPA DE EVAPORACIÓN-ABSORCIÓN (BAJA PRESIÓN)	59
3.4. MEZCLA DE TRABAJO	60

3.4.1.	. REFRIGERANTE: AMONIACO [NH3]	60
3.4.2.	. ABSORBENTE: NITRATO DE LITIO [LiNO3]	61
CAPÍTU	JLO IV ARMADO Y PUESTA EN OPERACIÓN DEL REFRIGERADOR SOLAR	
INTERN	MITENTE	62
4.1. ARI	MADO Y PUESTA EN OPERACIÓN DEL REFRIGERADOR SOLAR INTERMITENTE	63
CAPÍTU	JLO V EVALUACIÓN EXPERIMENTAL DEL SISTEMA DE REFRIGERACIÓN	70
5. EVAI	LUACIÓN DEL SISTEMA DE REFRIGERACIÓN	71
PERI	FILES DE IRRADIANCIA	71
PERI	FILES DE TEMPERATURA: 1ª y 2ª prueba de generación condensación	72
PERI	FILES DE PRESIÓN: 1ª y 2ª prueba de generación condensación	73
PERI	FILES DE TEMPERATURA: prueba de evaporación - absorción	74
PERI	FILES DE PRESIÓN: prueba de evaporación - absorción	75
	IEBAS EXPERIMENTALES A TRES DIFERENTES TEMPERATURAS DE CONDENSACIÓN $(20^{\circ}, 25^{\circ} \text{ y } 30^{\circ})$	ŕ
	ANCE DE ENERGÍA DEL RSI: ETAPA DE EVAPORACIÓN	
5.3. BAL	ANCE DE ENERGÍA DEL RSI: ETAPA DE GENERACIÓN, CONDENSACIÓN, EVAPORACIÓN Y ABSORC	IÓN.
		79
CAPÍTU	JLO VI. CONCLUSIONES Y RECOMENDACIONES	83
6.1 Con	CLUSIONES	83
6.2.	RECOMENDACIONES	85
ANEXO	os	86
ANEX	XO A. CARACTERÍSTICAS DEL EQUIPO PRINCIPAL:	88
Anex	o B. Características del equipo auxiliar	94
ANEX	XO C. CARACTERÍSTICAS DEL EQUIPO AUXILIAR	94
ANEX	XO D. PROPIEDADES DEL REFRIGERANTE Y EL ABSORBENTE UTILIZADOS EN EL	
SISTI	EMA DE REFRIGERACIÓN	102
ANEX	XO E. DIAGRAMA DE INSTRUMENTACIÓN DEL REFRIGERADOR SOLAR INTERMITENT	E.
		.105
ANEX	XO F. DESCRIPCIÓN DE LAS ACTIVIDADES REALIZADAS PARA PONER PUESTA A PUN	/TO
ALSI	ISTEMA DE REFRIGERACIÓN	.109
ANEX	XO G. PROPIEDADES DE LA SOLUCIÓN	.132
Anex	O H. CALCULO DE PARÁMETROS DEL REFRIGERADOR SOLAR INTERMITENTE (NH ₃ -	
LiNO	93)	.139
Anex	o I. BALANCE DE ENERGÍA (B.E.) DEL REFRIGERADOR SOLAR INTERMITENTE (NH_3 -	
LiNO	93)	.146
ANEX	XO J. BALANCE DE EXERGÍA DEL REFRIGERADOR SOLAR INTERMITENTE (NH3-LiNO	3)
		156

ANEXO K- DISEÑO DEL CONDENSADOR DEL REFRIGERADOR SOLAF	DEL REFRIGERADOR SOLAR INTERMITENTE (NH3-	
LiNO3)	159	
ANEXO L -FORMATOS DE REGISTRO	161	
ANEXO M- NIVEL DE MADUREZ TECNOLÓGICA	166	
BIBLIOGRAFÍA	169	

Índice de figuras

FIGURA 2.8. DIAGRAMA P-H PARA UN CICLO REAL DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR 34
FIGURA 2.9. CLASIFICACIÓN DE LOS SISTEMAS DE REFRIGERACIÓN POR ABSORCIÓN36
FIGURA 2.10. ESQUEMA DEL CICLO DE REFRIGERACIÓN POR ABSORCIÓN CONTINÚO (MORENO QUINTANAR, 2010)37
FIGURA 2.11. CICLO INTERMITENTE DE REFRIGERACIÓN POR ABSORCIÓN 39
(SOLORIO QUINTANA, 2012)
FIGURA 2.12. DIAGRAMA P-T-X PARA UN SISTEMA DE REFRIGERACIÓN POR ABSORCIÓN INTERMITENTE, DIAGRAMA DE DÜHRING. BASADO EN VARGAS LIRA (LIRA, 2015)41
FIGURA 3.1. DIFERENTES VISTAS DEL REFRIGERADOR SOLAR INTERMITENTE (A) LATERAL, (B) FRONTAL Y (C) SUPERIOR50
FIGURA 3.2. CONCENTRADOR PARABÓLICO COMPUESTO (CPC)51
FIGURA 3.3. (A) TUBO RECEPTOR (B) ACERCAMIENTO A MIRILLA DEL RECEPTOR53
FIGURA 3.4. RAYOS INCIDENTES SOBRE EL TUBO RECEPTOR A DIFERENTES VISTAS (A) DE FRENTE, (B) LATERAL Y (C) SUPERIOR; DURANTE LA ETAPA DE GENERACIÓN54
FIGURA 3.5. (A) MÓDULO DEL CONDENSADOR SIN ACOPLAR (B) INSTALACIÓN DE LOS MÓDULOS 1 Y 2 DENTRO DEL TANQUE PARA AGUA DE ENFRIAMIENTO55
FIGURA 3.6. ESCARCHA FORMADA A LA SALIDA DE LA VÁLVULA DE EXPANSIÓN
FIGURA 3.7. (A) EVAPORADOR INSTALADO EN LA CÁMARA FRIGORÍFICA DE REFRIGERADOR SOLAR (B) VARILLA DE ACERO57
FIGURA 3.8. DIAGRAMA ESQUEMÁTICO DEL REFRIGERADOR SOLAR INTERMITENTE58

FIGURA 4.1. ACTIVIDADES REALIZADAS PARA PONER PUESTA A PUNTO AL REFRIGERADOR SOLAR63
FIGURA 5.1 PERFIL DE IRRADIANCIA DURANTE PRUEBAS DE GENERACIÓN- CONDENSACIÓN72
FIGURA 5.2 PERFIL DE TEMPERATURA DURANTE LAS PRUEBAS DE GENERACIÓN- CONDENSACIÓN
FIGURA 5.3. PERFILES DE PRESIÓN DURANTE LA PRIMER Y SEGUNDO DÍA DE GENERACIÓN-CONDENSACIÓN A DIFERENTES TEMPERATURAS DE AGUA DE CONDENSACIÓN
FIGURA 5.4. PERFILES DE TEMPERATURA DURANTE LA ETAPA DE EVAPORACIÓN-ABSORCIÓN75
FIGURA 5.5. PERFILES DE PRESIÓN DURANTE LA ETAPA DE EVAPORACIÓN- ABSORCIÓN UTILIZANDO EL REFRIGERANTE CONDENSADO A DIFERENTES TEMPERATURAS DE AGUA DE CONDENSACIÓN
FIGURA 5.6. MASA DE AMONIACO GENERADA DURANTE LA ETAPA DE GENERACIÓN-CONDENSACIÓN77
FIGURA 5.7. FLUJO DE REFRIGERANTE CONTRA TIEMPO, DURANTE ETAPA DE EVAPORACIÓN. (A), (B), (C) UTILIZANDO EL REFRIGERANTE CONDENSADO EN LA ETAPA DE CONDENSACIÓN A 20°C, 25°C Y 30°C, RESPECTIVAMENTE
FIGURA 5.8. ARREGLO DE AISLANTE EN EL EVAPORADOR79
Índice de tablas
TABLA 1.1 COMPARACIÓN DE MÁQUINAS POR ABSORCIÓN20
TABLA 1.2 TRABAJOS INVOLUCRADOS CON EL RSI DISEÑADO POR RIVERA BLANCO22

TABLA 2.1. COMPARACIÓN ENTRE LOS SISTEMAS REFRIGERANTES POR	
COMPRESIÓN DE VAPOR Y LOS SISTEMAS POR ABSORCIÓN	42
TABLA 2.2 REFRIGERANTES CONVENCIONALES Y ALGUNAS DE SUS	
CARACTERÍSTICAS	44
TABLA 2.3. VENTAJAS E INCONVENIENTES DE LAS PRINCIPALES MEZCLAS	
EMPLEADAS EN LOS SISTEMAS DE ABSORCIÓN	46
TABLA 2.4. BREVE DESCRIPCIÓN DE LOS EVAPORADORES QUE SIRVIERON	
COMO BASE PARA EL DISEÑO DEL EVAPORADOR UTILIZADO EN EL	
REFRIGERADOR SOLAR INTERMITENTE.	47
TABLA3.1 CARACTERÍSTICAS GENERALES DEL RECEPTOR Y CPC	52
TABLA 4.1 DESCRIPCIÓN DE LAS ACTIVIDADES REALIZADAS PARA PONER	
EN OPERACIÓN AL SISTEMA DE REFRIGERACIÓN.	64
TABLA 4.2. FILOSOFÍA DE OPERACIÓN: REFRIGERADOR SOLAR	
INTERMITENTE	68
TABLA 5.1. MASA DE AMONIACO GENERADO	77
TABLA5.2. BALANCE DE ENERGÍA: ETAPA DE EVAPORACIÓN	78
TABLA 5.3. BALANCE DE ENERGÍA DE LAS DIFERENTES ETAPAS DEL RSI	80
TABLA 5.4. COP Y N _{EV} DEL REFRIGERADOR	81

NOMENCLATURA:

COP	Coeficiente de operación de un sistema	R600a	Isobutano
rev,absorción	reversible (ideal) de refrigeración por absorción	R717	Amoniaco, NH ₃
COP _{absorción}	Coeficiente de operación de un sistema de absorción	RSI	Refrigerador solar intermitente
COP_{BC}	Coeficiente de operación de una bomba de	S	Entropía
COD	calor	T	Temperatura
COP _{int}	Coeficiente de operación para un refrigerador por absorción intermitente	T0	Temperatura ambiente
COP_R	Coeficiente de operación de un refrigerador	T_{ABS}	Temperatura de absorción
$COP_{R,rev}$	Coeficiente de operación de un refrigerador	T_{CO}	Temperatura de condensación
CPC	reversible (ideal) Concentrador parabólico compuesto	T_{EV}	Temperatura de evaporación
		T_{GE}	Temperatura de generación
GE/AB	Tubo receptor Generador/Absorbedor	T_H	Temperatura alta
LiNO ₃	Nitrato de litio, absorbente	T_L	Temperatura baja, temperatura del espacio
NH ₃	Amoniaco, refrigerante		refrigerado Condiciones de temperatura y presión
P_{ABS}	Presión en el absorbedor	TPN	normales
PAO	Potencial de agotamiento de ozono	Ts	Temperatura de la fuente de calor
PCG	Potencial de Calentamiento Global	T12	Temperatura del agua a congelar en el evaporador
P_{CO}	Presión en el condensador	V1	Válvula a la salida del GEN/ABS (lado Este)
P_{EV}	Presión en el evaporador	V2	Válvula a la entrada del tanque de almacenamiento de refrigerante
P_{GE}	Presión en el generador	V3	Válvula a la salida del tanque de
PN	Presión normal		almacenamiento de refrigerante Válvula a la salida del coriolis (entrada a la
Qabsorción, QAB	Calor de absorción	V4	válvula de expansión)
Qcondensación,		V5	Válvula a la entrada al evaporador
Q_{CO}	Calor de condensación	V6	Válvula a la salida del evaporador
Qevaporación, QEV	Calor de evaporación	V8	Válvula a la entrada del GEN/ABS (lado Oeste)
Qgeneración, Q GE	Calor de generación	V13	Válvula a la salida del tanque de agua de enfriamiento y la succión de la bomba
Q_H	Calor a alta temperatura, T _H	$W_{bomba,entrada}$	Trabajo de bomba suministrado a un
Q_L	Calor a baja temperatura, T _L	$W_{entrada}$	sistema Trabajo de entrada
R11	Tricloromonofluorometano, CCl ₃ F	W_{neto}	Trabajo neto
R12	Diclorodifluorometano, CCl ₂ F ₂	x	Concentración, kg de refrigerante /kg
R134a	1,1,1,2-tetrafluoroetano, H ₂ FC-CF ₃		mezcla
R22	Clorodifluorometano, CHClF ₂	χ_s	Concentración de la solución
N22	Ciorodinuorometano, CHCIF2	ηter	Eficiencia térmica de cualquier máquina térmica, reversible o irreversible,

RESUMEN

Uno de los objetivos principales del presente tema de tesis fue la puesta en marcha y la evaluación experimental de un evaporador de un refrigerador solar intermitente. Este prototipo de refrigeración solar intermitente (RSI) por absorción, se encuentra instalado en el Instituto de Energías Renovables de la UNAM, Morelos, donde fue diseñado, construido y actualmente sigue en proceso de investigación y mejora.

Funcionamiento del refrigerador solar intermitente (RSI)

Este sistema de refrigeración aprovecha la energía térmica del sol, para llevar a cabo su principal función, que es enfriar; esto lo logra bajo el principio de absorción. Originalmente fue diseñado para producir 8 kg de hielo y opera con la mezcla NH₃-LiNO₃, donde el NH₃ cumple la función de refrigerante y el LiNO₃ de absorbente.

Las partes que integran al RSI son: un colector parabólico compuesto (CPC), cuyo receptor es un cilindro de acero el cual cumple la función de generador/absorbedor, un condensador, un taque de almacenamiento del refrigerante, un sistema de expansión y un evaporador, como se muestra en la **Figura A.**

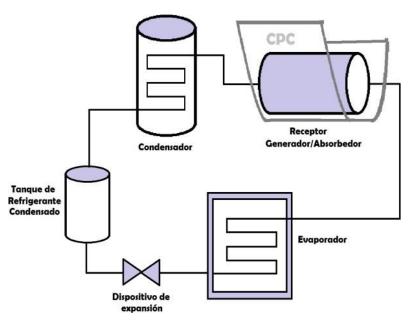


Figura A. Diagrama esquemático de un refrigerador solar intermitente

Este sistema lleva a cabo un ciclo de refrigeración de dos etapas: generación y evaporación del refrigerante.

GENERACIÓN (*Alta presión*). La energía solar que incide en el receptor por medio del concentrador parabólico compuesto (CPC), provoca que el fluido que se encuentra dentro del receptor (mezcla refrigerante- absorbente) aumente su temperatura y su presión, provocando que el refrigerante se evaporé de la mezcla (ya que éste es más volátil que el absorbente) y fluya hacia el condensador por diferencia de presiones. El refrigerante entra al condensador, donde cambia de fase, de vapor a líquido; después, éste es almacenado en un tanque.

Para que se pueda iniciar la segunda etapa, es necesario disminuir la temperatura y la presión en el receptor.

<u>EVAPORACIÓN</u> (*Baja presión*). El refrigerante líquido que se encuentra en el tanque se hace pasar por un dispositivo de expansión, provocando una disminución súbita de su presión. El fluido (mezcla líquido-vapor que se ha formado) entra al evaporador, donde absorbe la energía del medio que lo rodea (agua), provocándole una disminución de temperatura. El refrigerante se evapora casi en su totalidad. Finalmente, éste fluye por diferencia de presión hacia el receptor donde es absorbido por el absorbente. Regenerándose así, la mezcla refrigerante-absorbedor.

CAPÍTULO I INTRODUCCIÓN

1. INTRODUCCIÓN

La refrigeración es un proceso de transferencia de calor de un cuerpo o sustancia hacia otra, con el fin de disminuir su temperatura. En la mayoría de las aplicaciones, la refrigeración persigue mantener un cuerpo o espacio determinado a una temperatura inferior a la temperatura ambiente.

La generación de temperaturas bajas abarca dos grandes áreas: aire acondicionado y refrigeración.

Aire acondicionado. Para confort, en viviendas, hoteles, comercios, oficinas e industria, como laboratorios, fábricas, e incluso transporte, entre otros.

En la *refrigeración*, se consideran principalmente dos campos de aplicación: alimentación e industria.

<u>Alimentación</u>. Elaboración, conservación y distribución de alimentos, tales como frutas, verduras, bebidas, carne, huevos, derivados lácteos, entre otros, con el fin de disminuir el riesgo de enfermedades al conservar la calidad de los alimentos.

<u>Industria.</u> Producción de frío para procesos industriales, por ejemplo, en la industria química, se utiliza en procesos de enfriamiento, separación de gases, almacenamiento de gases licuados, cristalización, etc. En medicina y la industria farmacéutica, para criocirugía, para la fabricación y conservación de drogas, antibióticos, muestras clínicas, órganos, etc. Además, en otros procesos, como tratamiento en frío de metales, en construcción para el enfriamiento de hormigón, entre otros.

El impacto de la refrigeración y el aire acondicionado en la sociedad tiene básicamente dos vertientes: social y medioambiental.

En el ámbito social, genera puestos de trabajo, a nivel industrial y comercial, por ende, mejora el nivel socioeconómico de los trabajadores. Además, permite la conservación de productos perecederos, lo que se traduce en un mejor suministro de alimentos a la población y disminuye sus pérdidas; en el sector salud, posibilita la inmunización contra enfermedades infecciosas, entre otros.

Por otro lado, en el ámbito medioambiental, consideramos dos componentes fundamentales, la emisión a la atmósfera de los gases refrigerantes utilizados en las plantas y máquinas frigoríficas, y la emisión de toneladas de CO₂ producido por la generación de energía para operar las plantas y

máquinas frigoríficas, lo que se traduce en un daño a la capa de ozono por estas emisiones (Jaén González, Oliva , et al. 2016).

La refrigeración se puede efectuar principalmente por dos métodos compresión mecánica y por absorción. La refrigeración por absorción utiliza energía térmica, es decir, aprovecha la capacidad de ciertas sustancias de absorber el calor al cambiar de estado, de líquido a gaseoso, para la circulación del refrigerante. En cambio, la refrigeración por compresión utiliza energía mecánica, en consecuencia, se realiza una circulación mecánica del refrigerante.

Tanto el sistema de enfriamiento por absorción como el de compresión, están basados en los cambios de estado del agente frigorífico. Ambos sistemas tienen condensador, vaporizador y el medio adecuado para crear la presión necesaria que motive la condensación, tal como un compresor o una fuente que produzca calor.

La utilización de equipos de refrigeración por ciclo de absorción permite ahorrar, en primer lugar, la energía primaria requerida para producir la energía eléctrica necesaria para hacer funcionar los equipos convencionales que sustituye. Cuando el calor utilizado por la máquina de absorción es de origen renovable o residual, el ahorro es considerable mientras que en los casos de aplicación de llama directa este dependerá de la energía primaria y las características de producción de la electricidad sustituida. Este aspecto es particularmente importante, tanto económica como estratégicamente, en países en los que la producción eléctrica depende principalmente de la importación de combustibles de origen fósil. Además, esto también permite la reducción de las emisiones de CO₂ a la atmósfera. En cuanto a los fluidos utilizados en los ciclos de absorción, la mayoría son inocuos para el medio ambiente, lo que afianza el carácter ecológico de los equipos de absorción.

De acuerdo con el balance nacional de energía del 2015 de la SENER (SENER, 2015), el consumo nacional de energía disminuyó 1.4% respecto al año anterior, al totalizar 8, 528.87 PJ. Este flujo es el agregado de la energía que se envía a las distintas actividades o procesos para su utilización y principalmente comprende dos divisiones: consumo del sector energético y consumo final total.

Consumo del sector energético.

Las actividades propias del sector energético representaron el 30.8% del consumo nacional. Esto indica una disminución del 11.5% con relación al consumo del año 2014. Este consumo se integra por la energía requerida en la transformación (55.1%); es decir, el volumen energético requerido en los procesos para obtener energía secundaria a partir de primaria. Así mismo, considera el consumo propio (38.3%), que es el que absorben los equipos que dan soporte o seguridad a los procesos de transformación. Por último, se consideran las pérdidas por transmisión, transporte y distribución (6.6%) (SENER, 2015).

El consumo de energía eléctrica se clasifica en cinco sectores: industrial, residencial, comercial y servicios, municipal y bombeo agrícola; el sector industrial es el principal consumidor de energía eléctrica, debido a la gran cantidad de sistemas y procesos de producción que requieren energía. Sin embargo, en orden de participación, el sector residencial cuenta con el mayor número de usuarios, y es posible que, a mediano plazo, el consumo de energía eléctrica en edificios de uso residencial y comercial supere al industrial (SENER, 2011).

En el rubro de consumo final energético, el sector transporte representó el 46.4% del consumo, el cual creció 5.1% respecto a 2014, al ubicarse en 2,361.75 PJ. El sector industrial representó el 31.4% con 1,601.84 PJ. Finalmente, el consumo en los sectores residencial, comercial y público creció 1.4% y representó el 18.7% del consumo final energético. Los sectores en que se desagrega el consumo final total son: el transporte, que es el sector más intensivo en uso de energía, representando el 46.4%; el industrial, que consumió 31.4%; el residencial, comercial y público con 18.7%; y el agropecuario, con 3.5%. En México, la mayor demanda de energía para uso final en 2014 fue el calentamiento de agua, con 47.0% del consumo total energético. Le siguieron la cocción de alimentos y la refrigeración con participaciones respectivas de 27.5% y 9.9% de la energía total utilizada (SENER, 2015).

Para hacer funcionar los equipos de refrigeración por ciclo de absorción, se utiliza calor que puede proceder de diversas fuentes. Hay unidades conocidas como llama directa, que consumen combustibles gaseosos o líquidos, mientras que otras utilizan el calor aportado por agua caliente, sobrecalentada o vapor. Esta agua caliente o vapor puede ser residual de procesos industriales, de equipos de cogeneración (motores térmicos o turbinas), de pilas de combustible, de calderas de

biomasa o, incluso, calentadas con energía renovable como la solar. En todo caso, el hecho de utilizar energía primaria en lugar de energía eléctrica que ya ha sufrido pérdidas por producción y transporte hace que la eficiencia energética o coeficiente de operación (COP) no pueda compararse directamente. En los procesos a más alta temperatura que utilizan el ciclo de doble efecto con la mezcla de agua y bromuro de litio, se consiguen eficiencias de hasta 1.2 con respecto a la energía consumida, mientras que con baja temperatura y en el ciclo de amoníaco/agua es del orden del 0.7.

En la *Tabla1.1.* se observa que la mayoría de los fabricantes y máquinas trabajan con LiBr/H₂O. Igualmente se puede observar que las máquinas Thermax y Broad presentan un mayor rango de potencia.

En la *Figura 1.1.* se puede observar que los modelos THERMAX ProChill B4K (DE), TRANE ABTF y YORK YPC – ST, presentan los mayores valores COP cercanos a 1.2 utilizando el par de trabajo LiBr/H₂O.

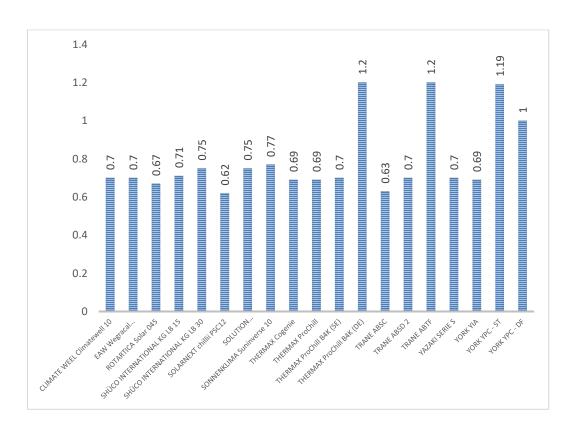


Figura 1.1. Comparación de COP entre fabricantes.

Tabla 1.1 Comparación de máquinas por absorción.

Fabricante	Producto	Potencia refrigeración (kW)	Par absorbente/ refrigerante.	СОР
	BDS	174 - 23260	LiBr / H2O	0.78
BROAD	BS	174 - 23260	LiBr / H2O	1.34
DKOAD	BDH	151 -20469	LiBr / H2O	0.75
	ВН	174 - 23260	LiBr / H2O	1.34
	16LJ	264 - 1846	LiBr / H2O	0.7
CARRIER	16TJ	352 - 2461	LiBr / H2O	0.65
	16NK	345 - 4652	LiBr / H2O	*
CLIMATE WEEL	Climatewell 10	10	LiCl/H2O	0.7
EAW	Wegracal SE15	15	LiBr / H2O	0.7
ROTARTICA	Solar 045	4.5	LiBr / H2O	0.67
SHÜCO	LB 15	15	LiBr / H2O	0.71
INTERNATIONAL KG	LB 30	30	LiBr / H2O	0.75
SOLARNEXT	chillii PSC12	12	H2O/NH3	0.62
SOLUTION SLARTECHNIK GMBH	EAW SE 50	54	LiBr / H2O	0.75
SONNENKLIMA	Suninverse 10	10	LiBr / H2O	0.77
	Cogenie	35 -739	LiBr / H2O	0.69
THERMAX	ProChill	844 - 4044	LiBr / H2O	0.69
ITEKWAA	ProChill B4K (SE)	345 - 6492	LiBr / H2O	0.7
	ProChill B4K (DE)	390 - 5926	LiBr / H2O	1.2
	ABSC	394 - 1635	LiBr / H2O	0.63
TRANE	ABSD 2	2008 - 482	LiBr / H2O	0.7
	ABTF	1266 - 6053	LiBr / H2O	1.2
YAZAKI	SERIE S	35 - 105	LiBr / H2O	0.7
	YIA	420 - 4842	LiBr / H2O	0.69
YORK	YPC - ST	1050 - 2373	LiBr / H2O	1.19
	YPC - DF	703 - 2372	LiBr / H2O	1

1.1. TRABAJOS PREVIOS DE INVESTIGACIÓN DEL RSI DEL DR. RIVERA BLANCO

En el año 2006 el doctor en Energía Solar Fototérmica, Carlos Octavio Rivera Blanco diseñó y construyó un prototipo de refrigerador solar intermitente por absorción (*Figura 1.2.*), en el Centro de Investigación en Energía (ahora Instituto de Energías Renovables) perteneciente a la Universidad Nacional Autónoma de México. Posteriormente otros investigadores continuaron trabajando sobre él, realizando modificaciones al sistema para optimizar su funcionamiento.

Figura 1.2. Refrigerador solar intermitente diseñado por Rivera Blanco.

	Tabla 1.2 Trabajos involucrados con el RSI diseñado por Rivera Blanco.
	Nombre y descripción del trabajo
Carlos Octavio Rivera Blanco (2006)	"Simulación, diseño y evaluación de un refrigerador solar intermitente usando un CPC como generador-absorbedor." En este trabajo se propuso diseñar, construir y evaluar experimentalmente un sistema de refrigeración intermitente usando un CPC truncado con una relación de concentración de 3.3 para producir 8 Kg de hielo utilizando la mezcla BaCl ₂ -NH ₃ y LiNO ₃ -NH ₃ .El sistema operó satisfactoriamente, y se obtuvo hielo bajo las condiciones de diseño planteadas, pero no se produjo el volumen esperado de amoniaco, esto debido a pérdidas térmicas y problemas en el proceso de condensación (Rivera Blanco, 2006).
José Francisco Martínez Ortega (2007)	"Optimización de un sistema de refrigeración solar para la producción de hielo. Se optimizó y evalúo un refrigerador solar intermitente con la mezcla LiNO ₃ -NH ₃ ". Se optimizó y evalúo un refrigerador solar intermitente con la mezcla LiNO ₃ -NH ₃ . Se planteó y resolvió un modelo matemático correspondiente a la fase de generación, en el cual se calcula el calor que se suministra a la solución, las temperaturas de generación y el amoniaco que se genera en cada instante. También se realizaron pruebas experimentales utilizando la mezcla binaria NH ₃ -LiNO ₃ en un rango de concentración de 44% a 47% (Martínez Ortega, 2007).
Guadalupe Moreno Quintanar (2010)	"Comparación del funcionamiento de un refrigerador solar para producción de hielo operando con las mezclas NH ₃ -LiNO ₃ y NH ₃ -LiNO ₃ -H ₂ O". En este trabajo se realizaron pruebas experimentales para evaluar el RSI operando con la mezcla binaria NH ₃ -LiNO ₃ a concentraciones de entre 47% a 50% y con la mezcla ternaria NH ₃ -LiNO ₃ -H ₂ O a concentraciones entre 10% a 25% de agua sobre el absorbente. Se encontró que la solución a 50% es la mezcla binaria más recomendable para operar el refrigerador y con la mezcla ternaria fue la de 25% de agua/absorbente (Moreno Quintanar, 2010).
Carlos Solorio Quintana (2012)	"Evaluación de un refrigerador solar intermitente para producción de hielo, usando diversos evaporadores". Se diseñaron dos evaporadores para el RSI utilizando el par NH ₃ /LiNO ₃ a una relación de concentración 50%-50%, de los cuales solamente uno se construyó y evaluó. Éste se comparó con el evaporador que ya tenía el refrigerador y resultó ser ligeramente más eficiente que su predecesor (10% mayor) (Solorio Quintana, 2012).
Ángel Uriel Cervantes Contreras (2012)	"Diseño y Construcción de un Evaporador para la Evaluación de un Refrigerador Solar". Se diseñó y construyó un evaporador de tubos para evaluar el sistema de refrigeración por absorción intermitente solar, se comparó su eficiencia con la eficiencia del evaporador de serpentín que ya se tenía, resultando ser 40% más eficiente. En este trabajo se utilizó la mezcla NH ₃ -LiNO ₃ (Cervantes Contreras, 2012).

1.2. JUSTIFICACIÓN

En México la creciente demanda de equipos de refrigeración y aire acondicionado para el bienestar y confort de la población ha ocasionado un incremento sustancial en la demanda nacional de energía, por lo cual se requiere de la investigación y desarrollo de tecnologías que permitan satisfacer esta demanda y a la vez reducir la demanda de energía eléctrica producida mediante combustibles fósiles. En el presente trabajo de tesis, se presenta un refrigerador solar intermitente como una opción viable para contribuir a mitigar la problemática mencionada y a la vez promover el uso de energías renovables como lo es la energía solar.

Los sistemas solares para la producción de frío que operan bajo el principio de absorción pueden además cubrir las necesidades de comunidades aisladas que no cuentan con redes de suministro eléctrico y que carecen de sistemas para la conservación de sus alimentos y medicamentos, cuando se presenta una mayor incidencia solar (aumento de temperatura en el ambiente). Una posible opción para ellos es el uso de sistemas térmicos de refrigeración autónoma, de bajo costo y sencilla operación, para cubrir sus necesidades mencionadas. Utilizar este tipo de sistemas tienen ventajas como:

- ✓ Permiten el ahorro energético, mediante la utilización de energía térmica proveniente de calor residual o por energía solar, lo cual minimiza la emisión de CO₂ y otros gases de efecto invernadero al ambiente.
- ✓ Independencia de la red eléctrica para su funcionamiento, por lo que es posible instalarlos en cualquier zona con incidencia solar.
- ✓ Utilización de refrigerantes inocuos al medio ambiente y que no dañan la capa de ozono.
- ✓ Ausencia del uso de aceites lubricantes, lo que economiza los trabajos de mantenimiento.

En estos sistemas el evaporador es un componente esencial, por lo que este trabajo se enfoca en evaluar el desempeño de un nuevo diseño de evaporador.

1.3. OBJETIVOS

Objetivo general.

Evaluar experimentalmente un refrigerador solar intermitente (RSI), y analizar el desempeño térmico del evaporador.

Objetivos específicos.

- ❖ Concluir el armado del refrigerador solar intermitente (RSI) del IER-UNAM.
- ❖ Instalar el evaporador de prueba, para el RSI.
- Instalar el condensador tipo serpentín diseñado.
- ❖ Instrumentar el RSI.
- * Evaluar experimentalmente el RSI.
- ❖ Desarrollar programa de monitoreo y control del refrigerador solar intermitente.

CAPÍTULO II MARCO TEÓRICO

2.1. FUNDAMENTOS DE REFRIGERACIÓN

El término refrigeración, significa tener un sistema a una temperatura menor que la de sus alrededores (Bernhardt, 1984). Este fenómeno se puede generar por métodos naturales o artificiales. Entre los métodos naturales se encuentran enfriamiento por radiación, convección, conducción o una combinación de ellos. En los métodos artificiales se encuentra el enfriamiento por fusión, sublimación, vaporización, efecto termo acústico, compresión de vapor, absorción, entre otros. (Pilatowsky Isaac, 2011). Gran parte de este capítulo de basó en el libro de termodinámica de Cengel (Yunes A Cengel, 2010).

Los sistemas para producir el fenómeno de enfriamiento de manera artificial son conocidos como bombas de calor. Una bomba de calor es una máquina térmica invertida cuyo objetivo es 'bombear' calor de un medio de baja temperatura (T_L) a uno de alta temperatura (T_H); es un proceso no espontáneo por lo tanto requiere un suministro de energía en forma de calor o trabajo. En la *Figura* 2.1. y en la *Figura* 2.2. se muestran las características de una máquina térmica invertida y una máquina térmica, respectivamente.

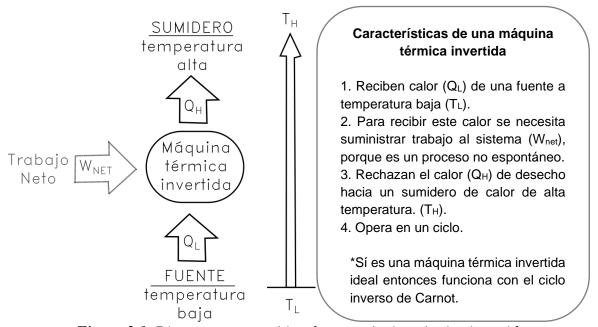


Figura 2.1. Diagrama esquemático de una máquina térmica invertida.

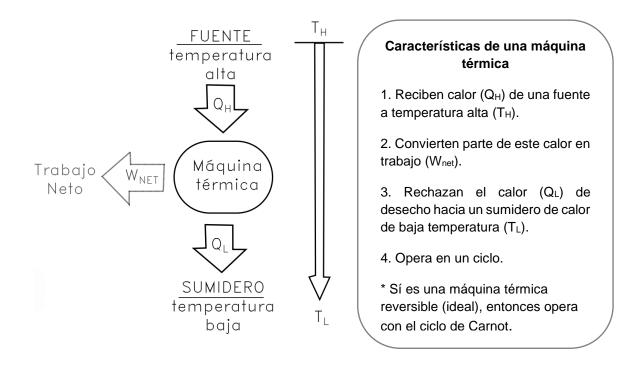


Figura 2.2. Diagrama esquemático de una máquina térmica.

Los principios de la bomba de calor datan de 1824, a raíz de la publicación de los estudios de Carnot y al establecerse dos leyes fundamentales de la Termodinámica. La primera ley de la termodinámica¹ no puede determinar por sí sola, si un proceso es espontáneo o no, esto lo explica la segunda ley de la termodinámica.

La Segunda Ley de la Termodinámica se ha enunciado de distintas formas a través del tiempo; uno de los enunciados más significativos es el de Kelvin y Plank (Jiménez Bernal José, 2014): "No es posible que un dispositivo que funcione cíclicamente reciba energía mediante transferencia de calor solo desde una fuente térmica y entregue una cantidad equivalente de energía en forma de trabajo al entorno".

Este enunciado expresa que no es posible convertir todo el calor suministrado a una máquina térmica cíclica en trabajo. Es decir, sólo una parte de éste puede transformarse en trabajo.

27

¹ La primera ley de la termodinámica enuncia que la energía no se crea ni se destruye, sólo se transforma,

2.2. CICLO DE CARNOT

En 1824, Carnot sentó las bases para establecer la 2ª ley de la termodinámica, e introdujo por vez primera los conceptos de ciclo y de proceso reversible, también propuso un ciclo que ahora lleva su mismo nombre: "Ciclo de Carnot" (Francis Weston Sears, 1978).

El Ciclo de Carnot, es un ciclo reversible que opera entre dos niveles de temperatura $(T_H y T_L) y$ se compone de cuatro procesos reversibles:

a. **Expansión isotérmica** – del punto 1 al 2.

A temperatura alta T_H , donde se suministra una cantidad de calor Q_H .

b. $\underline{\textit{Expansión adiabática}}$ – del punto $\mathbf{2}$ al $\mathbf{3}$. Desde una temperatura alta T_H hasta la temperatura baja T_L .

c. <u>Compresión isotérmica</u> – del punto3 al 4.

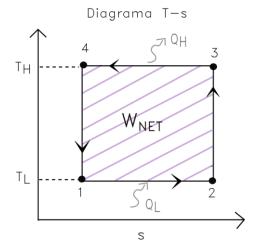
A la temperatura T_L , donde se libera una cantidad de calor Q_L .

d. Compresión adiabática del punto 4 al 1.

Desde una temperatura baja T_L hasta una temperatura alta T_H .

Este ciclo se ilustra en la *Figura 2.3*. El área dentro del rectángulo representa el trabajo neto realizado por el sistema.

Figura 2.3. Diagrama T-s para un ciclo de Carnot.


2.3. CICLO INVERSO DE CARNOT

El ciclo de Carnot está formado por cuatro procesos reversibles, por lo que es posible invertir su dirección; al hacerlo también se invertirán las direcciones de los flujos de calor y de trabajo. El resultado es un ciclo que opera en dirección contraria a las manecillas del reloj en el diagrama T-s, que se llama "Ciclo inverso de Carnot" (*Figura 2.4*) (Yunes A Cengel, 2010). Este ciclo consta de cuatro procesos reversibles:

a. <u>Expansión isotérmica</u> – del punto 1 al 2.

Absorbe calor Q_L , isotermicamente de una fuente de baja temperatura T_L .

- b. <u>Compresión isentrópica</u>. del punto $\bf 2$ al $\bf 3$. Pasa de una temperatura T_L a una temperatura más alta, T_H , con la necesidad de un suministro de trabajo, W_{ent} .
- c. $\underline{\textit{Compresión isotérmica.}}$ del punto $\mathbf{3}$ al $\mathbf{4}$. Rechaza calor Q_H isotérmicamente en un sumidero de alta temperatura a T_H .

CICLO INVERSO DE CARNOT

Figura 2.4. Diagrama T-s para un ciclo inverso de Carnot.

d. Expansión isentrópica. - del punto 4 al 1.

Se expande isentrópicamente del estado 4 al 1, la temperatura desciende de T_H hasta T_L.

El objetivo del ciclo inverso de Carnot es transferir calor de un medio de baja temperatura (T_L) a uno de alta (T_H), puede utilizarse como refrigerador o como bomba de calor, dependiendo cual sea su objetivo (Yunes A Cengel, 2010).

2.4. COEFICIENTE DE OPERACIÓN

El rendimiento de estas máquinas se expresa por el llamado "coeficiente de operación" COP (del inglés "coefficient of performance"), y están definidos como (Bernhardt, 1984):

Refrigerador:

$$COP_R = \frac{Salida\ deseada}{Entrada\ requerida} = \frac{Efecto\ de\ enframiento}{Entrada\ de\ trabajo} = \frac{Q_L}{W_{neto}}$$
 (2.1)

Bomba de calor:

$$COP_{BC} = \frac{Salida\ deseada}{Entrada\ requerida} = \frac{Efecto\ de\ calentamiento}{Entrada\ de\ trabajo} = \frac{Q_H}{W_{neto}}$$
 (2.2)

La eficiencia térmica de cualquier máquina térmica, reversible o irreversible se determina por:

$$\eta_{ter} = 1 - \frac{Q_L}{Q_H} \tag{2.3}$$

Un refrigerador que opera en un ciclo inverso de Carnot es definido como un refrigerador de Carnot. Este ciclo es el más eficiente que puede tenerse cuando se opera entre dos niveles de temperatura (T_H y T_L). Sirve como un estándar contra el que se comparan los ciclos reales de refrigeración (Yunes A Cengel, 2010).

Los procesos de compresión (1-2) y expansión (3-4) isotérmico que se muestran en la *figura 2.4*. se pueden aproximar en la vida real por condensadores y evaporadores. Sin embargo, los procesos de compresión y expansión isentrópico (proceso 2-3 y 4-1) no. Para llevar a cabo el proceso de compresión isentrópico (proceso 2-3) se necesitaría un compresor capaz de operar con una mezcla líquido-vapor, lo que resultaría inconveniente; debido a que en estas condiciones el compresor sufriría daños mecánicos.

Lo mismo ocurre con el proceso de expansión isentrópica (proceso 4-1); para llevarlo a cabo se requeriría de una turbina capaz de manejar un alto contenido de humedad. Al manejar dos fases, las gotas de líquido se impactarían contra los alabes de la turbina provocando erosión y cavitación.

Estos aspectos imprácticos que presenta el ciclo inverso de Carnot pueden eliminarse. Para proceso compresión, con la completa evaporación del refrigerante antes de entrar al compresor y en el caso del proceso de expansión, la turbina se sustituye por un dispositivo de estrangulamiento como una válvula de expansión o un tubo capilar. Este nuevo ciclo se denomina ciclo ideal de refrigeración por compresión de vapor, el diagrama de los componentes que constituyen este ciclo se muestra en la *Figura 2.5.* (Yunes A Cengel, 2010).

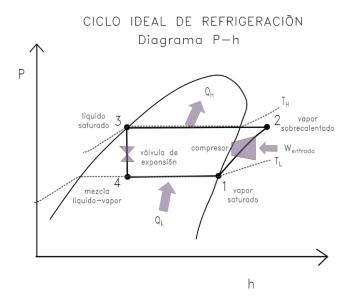


Figura 2.5. Diagrama P-h para un ciclo ideal de refrigeración por compresión mecánica de vapor. Diagrama modificado de Cengel (Yunes A Cengel, 2010)

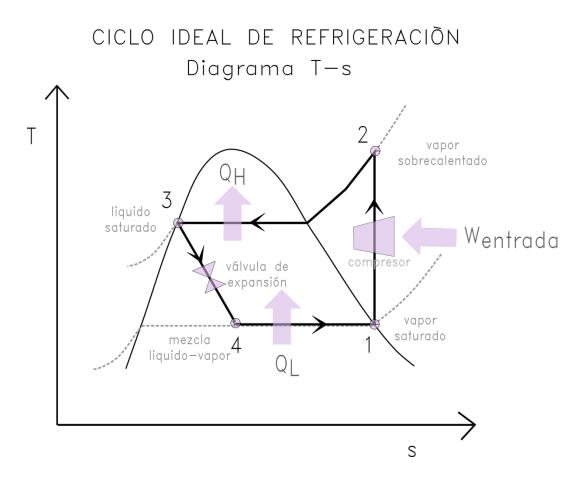
2.5. CICLO IDEAL DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR

El ciclo ideal de refrigeración por compresión mecánica de vapor (*Figura 2.6. y 2.7.*), se compone de cuatro procesos fundamentales, los cuales se describen a continuación:

Proceso 1-2

Compresión (isentrópico). El refrigerante pasa de vapor saturado a baja presión y temperatura, a vapor sobrecalentado a alta presión y temperatura, por medio de un proceso isentrópico.

Proceso 2-3


Condensación (isobárico) El refrigerante pasa de vapor sobrecalentado a líquido saturado, por medio de un proceso isobárico.

Proceso 3-4

Estrangulación o expansión (isentálpico). El refrigerante disminuye de presión al pasar por el dispositivo de control (válvula de estrangulamiento) y pasa de líquido saturado de alta presión y temperatura, a vapor húmedo de baja presión y temperatura.

Proceso 4-1

Evaporación (isobárico). El refrigerante pasa de la fase de vapor húmedo (mezcla líquido-vapor) a vapor saturado, por medio de un proceso isobárico (Jiménez García, 2014).

Figura 2.6. Diagrama T-s para un ciclo ideal de refrigeración por compresión mecánica de vapor.

DIAGRAMA DE UN SISTEMA DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR, IDEAL



Figura 2.7. Diagrama de un sistema de compresión mecánica de vapor ideal.

2.6. CICLO REAL DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR.

Un ciclo ideal de refrigeración por compresión de vapor (*Figura 2.8.*) difiere de uno real en varios aspectos, principalmente, debido a las irreversibilidades (fricción, pérdidas de calor, entre otros) que ocurren en varios componentes.

En el ciclo ideal, el refrigerante sale del evaporador y entra al compresor como vapor saturado, en la práctica no es posible lograrlo con precisión, y resulta más sencillo sobrecalentar el refrigerante; esto asegura que se evapore completamente antes de entrar al compresor, evitando que sufra daños por trabajar con un fluido bifásico. Al ser un proceso real implica efectos de fricción, los cuales incrementan la entropía y la transferencia de calor.

En el caso ideal, el refrigerante sale del condensador como líquido saturado a la presión de salida del compresor.

No es posible ejecutar este proceso con la precisión requerida para que a la salida del condensador el refrigerante sea un líquido saturado y es perjudicial para el equipo enviar el refrigerante a la válvula de estrangulamiento sin que se encuentre completamente condensado, debido a que reduce la capacidad de absorción de calor, por lo que se considera el subenfriamiento como alternativa para disminuir la entalpía de entrada a la válvula de estrangulamiento y en consecuencia aumentar la capacidad de absorción de calor (efecto refrigerante) (Yunes A Cengel, 2010).

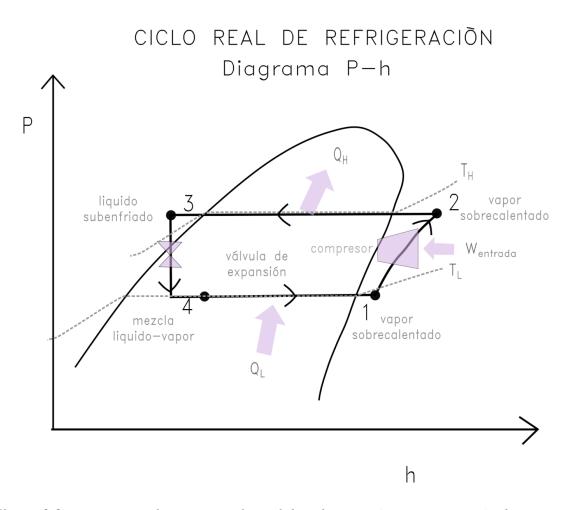


Figura 2.8. Diagrama P-h para un ciclo real de refrigeración por compresión de vapor.

2.7. CICLO DE REFRIGERACIÓN POR ABSORCIÓN.

La absorción es un fenómeno físico o químico en el cual átomos, moléculas o iones se incorporan en el seno de otra sustancia (gas, líquido o sólido).

Este principio es utilizado en los sistemas de refrigeración por absorción, donde el refrigerante es absorbido por otra sustancia llamada absorbente.

En términos generales este tipo de refrigeración es similar al método de refrigeración por compresión de vapor, con la excepción de que en estos sistemas no se cuenta con un compresor mecánico eléctrico, en su lugar, se tiene un conjunto de elementos que son considerados un **compresor térmico**.

Un compresor térmico suele estar integrado por los siguientes elementos:

- Absorbedor
- Generador
- ❖ Bomba para mezcla de trabajo, refrigerante-absorbente
- Válvula de expansión

Con el propósito de aumentar la eficiencia del sistema de refrigeración por absorción, se recomienda incluir un intercambiador de calor entre el generador y el absorbedor llamado economizador que aprovecha el gradiente de temperatura que existe entre las distintas corrientes del proceso.

Cuando el absorbente es relativamente volátil, parte de éste escapa del generador junto con el refrigerante², lo cual afecta la eficiencia del sistema. Para evitar este fenómeno se utiliza un equipo llamado rectificador cuya función es eliminar el vapor del absorbente contenido en el refrigerante que sale generador (Martinez Tejeda, 2012).

El método de refrigeración por absorción es atractivo económicamente cuando se dispone de una fuente de energía térmica barata a una temperatura por arriba de los 100 °C. Las fuentes de energía

-

² Un ejemplo de mezcla refrigerante-absorbente es agua-amoniaco.

térmica barata incluyen la energía geotérmica, solar, biogás, calor de desecho en centrales de cogeneración, e incluso el gas natural cuando se dispone de él, a un precio relativamente bajo.

Los ciclos de refrigeración por absorción pueden ser clasificados por el número de efectos, el número de etapas, por la mezcla de trabajo utilizada en el sistema de acuerdo con su régimen de operación (Jiménez García, 2014), en la *Figura 2.9*. se presenta la clasificación más común de los sistemas de refrigeración por absorción.

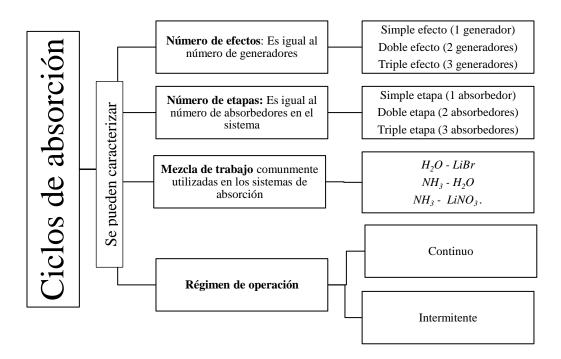


Figura 2.9. Clasificación de los sistemas de refrigeración por absorción.

2.7.1. CICLO DE REFRIGERACIÓN POR ABSORCIÓN CONTINUO.

Estos sistemas se caracterizan porque los procesos de generación, condensación, absorción y evaporación se realizan de manera continua y simultánea.

En el generador se envía una solución refrigerante-absorbente concentrada (solución rica) a la cual se le suministra calor (Q_{GE}) hasta una temperatura T_{GE} y una presión P_{GE} , separando de ella el refrigerante en forma de vapor, este ingresa al condensador y sale como líquido a una temperatura T_{CO} y una presión P_{CO} el calor generado durante esta parte es rechazado al ambiente (Q_{CO}) , el refrigerante líquido atraviesa la válvula de expansión saliendo como mezcla liquido-vapor que

absorbe calor en el evaporador del medio que lo rodea (Q_{EV}) a una temperatura T_{EV} y a una presión P_{EV}, posteriormente cambia a fase vapor que ingresa al absorbedor donde se encuentra la solución pobre en refrigerante, que es la solución proveniente del generador después de haberse generado el refrigerante; para que el absorbedor tenga las condiciones adecuadas para llevar a cabo su función, la solución atraviesa por un dispositivo de estrangulamiento, logrando que tenga temperatura (T_{ABS}) y presión baja (P_{ABS}), una vez absorbido el refrigerante en la solución pobre, ésta pasa a ser una solución rica en refrigerante, la cual bombeada hacia el generador para ingresar a presiones altas (P_{GE}), que favorecen la generación de refrigerante, en la *Figura 2.10*. se muestra el sistema de refrigeración por absorción continuo.

DIAGRAMA DE UN SISTEMA DE REFRIGERACIÓN POR ABSORCIÓN, CONTINUO

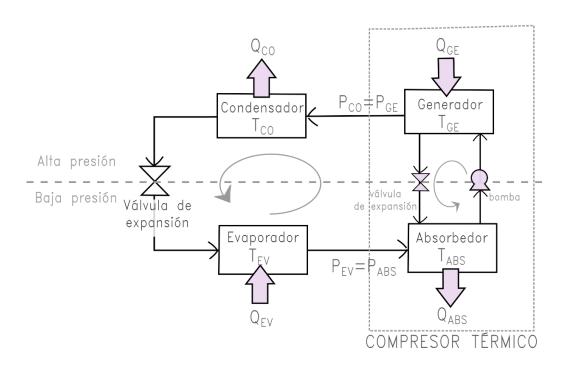


Figura 2.10. Esquema del ciclo de refrigeración por absorción continúo (Moreno Quintanar, 2010).

El coeficiente de operación (COP) para un sistema de absorción se define de la siguiente forma (Moreno Quintanar, 2010):

$$COP_{absorción} = \frac{Q_{evapotación}}{Q_{generación} + W_{bomba}}$$
 (2.4)

En los sistemas de absorción continuos se tienen dos niveles de presión: $P_{CO} = P_{GE} > P_{EV} = P_{ABS}$ y tres o cuatro niveles de temperatura $T_{GE} > T_{CO} \ge T_{ABS} > T_{EV}$, dependiendo si el condensador y el absorbedor operan o no a la misma temperatura (Martínez Ortega, 2008)-

El COP máximo de los sistemas de refrigeración por absorción se determina suponiendo que el ciclo es totalmente reversible. Para ello se puede suponer que el calor suministrado al sistema es el calor que entraría a una máquina térmica de Carnot y el trabajo obtenido de esta máquina, se suministrara a un refrigerador de Carnot, cuyo objetivo es poder extraer calor del espacio que se desea enfriar.

Despreciando la energía suministrada por la bomba, el COP total del refrigerador por absorción en condiciones reversible es (Solorio Quintana, 2012; Jiménez García, 2014) :

$$COP_{rev,absorción} = \eta_{t\acute{e}r,rev} \cdot COP_{R,rev} = \left(1 - \frac{T_0}{T_S}\right) \cdot \left(\frac{T_L}{T_0 - T_L}\right) \tag{2.5}$$

Dónde:

T_s, temperatura de la fuente de calor

T₀, temperatura ambiente

T_L, temperatura del espacio refrigerado

2.7.2. CICLO DE REFRIGERACIÓN POR ABSORCIÓN INTERMITENTE.

Los ciclos de refrigeración por absorción intermitentes (*Figura 2.11*.) operan en dos etapas o periodos, el de generación-condensación y el de evaporación-absorción. En estos sistemas el efecto de enfriamiento no resulta continuo porque las etapas no se efectúan de manera simultánea. Los

sistemas intermitentes suelen estar integrados por los siguientes equipos: generador/absorbedor³, evaporador, condensador, válvula de expansión y un tanque de almacenamiento de refrigerante líquido.

DIAGRAMA DE UN SISTEMA DE REFRIGERACIÓN POR ABSORCIÓN INTERMITENTE

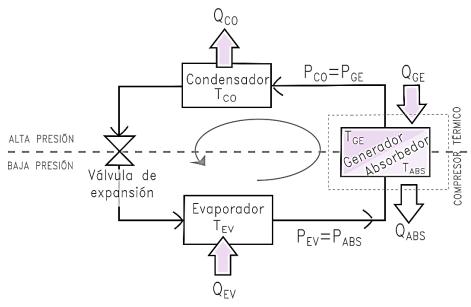


Figura 2.10. Ciclo intermitente de refrigeración por absorción (Solorio Quintana, 2012).

El funcionamiento de los refrigeradores por absorción intermitente es sencillo. Para la etapa de generación-condensación, la solución concentrada (rica en refrigerante) que se encuentra contenida en el generador, se calienta llevando a cabo la separación de los vapores del refrigerante, este vapor entra al condensador a alta presión, donde cambia de fase de vapor a líquido y se almacena en el tanque. Para la etapa de evaporación-absorción, se deja enfriar la solución diluida (pobre en refrigerante) en el generador hasta disminuir la presión y la temperatura para que el refrigerante pueda ser absorbido.

válvula no es la que ejerce el efecto frigorífico en el sistema).

39

³ En los ciclos de refrigeración por absorción intermitentes, el absorbedor y el generador son el mismo elemento y puede intercambiar su función de forma periódica dependiendo en qué etapa del ciclo se encuentre (generación-condensación o el de evaporación-absorción), esta bifuncionalidad permite eliminar dos componentes que interconectaban el generador con absorbedor del sistema continuo que son , bomba y válvula de expansión (esta

El refrigerante líquido sale del tanque a alta presión atravesando la válvula de expansión; sale como una mezcla líquido-vapor a temperatura y presión bajas; esta ingresa al evaporador, absorbe calor transformándose en vapor que retorna al generador que ahora tiene la función de absorber (Cervantes Contreras, 2012).

En la *Figura 2.12*. se describe un ciclo de refrigeración por absorción intermitente en un diagrama P-T-x (Presión⁴-Temperatura-Concentración). El cual se describe en los siguientes puntos:

- **P 1-2.** Se suministra calor al generador-absorbedor aumentando la presión de $P_{EV} \approx P_{ABS}$ hasta la presión de saturación de la solución $P_{CO} \approx P_{GE}$, teniendo una misma concentración en la solución de x_{1-2} (solución rica). La temperatura se incrementa de T_{1ABS} a T_{2GE} .
- **P 2-3. GENERACIÓN/ CONDENSACIÓN**. El refrigerante comienza a evaporarse de la solución rica (concentración x₁₋₂), quedando una solución pobre en refrigerante pero rica en absorbente (concentración x₃₋₄) a presión constante, P_{CO}≈P_{GE}.
- P 3-4. Desciende la temperatura T_{3GE} hasta T_{4ABS}; también desciende la presión de la solución, P_{CO}≈P_{GE} hasta P_{EV}≈P_{ABS} a temperatura T_{4ABS}, teniendo una misma concentración de la solución, X₂₋₁.
- **P 4-1. ABSORCIÓN/ EVAPORACIÓN.** El refrigerante vapor generado durante la evaporación (proceso de refrigeración) ingresa al generador que ahora funciona como absorbedor, enriqueciéndose la solución en refrigerante cuya concentración es x₃₋₄ hasta alcanzar la concentración rica en refrigerante X₃₋₄.

40

⁴ Las líneas de presión se encuentran en función de la temperatura y concentración de la solución (kg de refrigerante/kg mezcla).

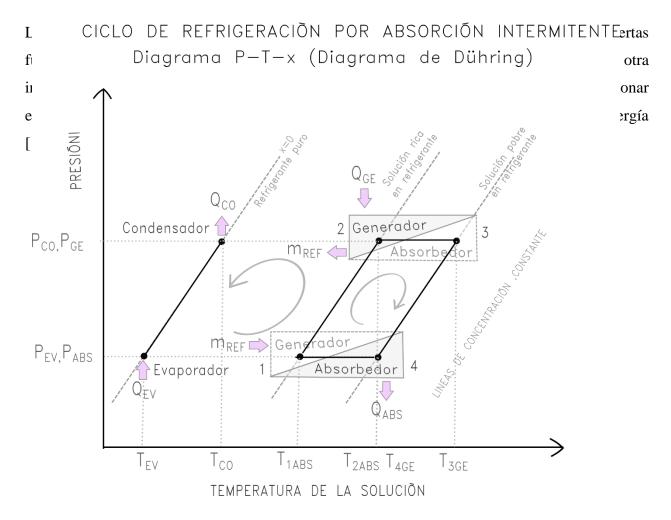


Figura 2.11. Diagrama P-T-x para un sistema de refrigeración por absorción intermitente, diagrama de Dühring.

El COP de estos sistemas de absorción se obtiene para un ciclo completo (generación y evaporación) con la siguiente ecuación (Cervantes Contreras, 2012):

$$COP_{int} = \frac{Q_{evaporación}}{Q_{generación}}$$
 (2.5)

2.8. COMPARACIÓN ENTRE LOS SISTEMAS DE REFRIGERACIÓN POR COMPRESIÓN MECÁNICA DE VAPOR Y LOS SISTEMAS DE REFRIGERACIÓN POR ABSORCIÓN.

Se pueden observar similitudes entre ambos sistemas: la presencia del evaporador, el condensador e incluso la válvula de expansión. En los sistemas por compresión de vapor, el compresor mantiene una baja presión en el evaporador y una alta presión en el condensador; en cambio, en los sistemas por absorción de vapor, el absorbedor mantiene una presión baja en el evaporador y el generador mantiene una presión alta en el condensador.

Existe una gran variedad de refrigerantes disponibles para los sistemas por compresión de vapor y se pueden diseñar refrigeradores con una amplia gama de temperaturas de trabajo. Para el caso de los sistemas por absorción de vapor, no existen tantas opciones y el rango de temperaturas que se pueden alcanzar con estos refrigeradores no es muy amplia. La *Tabla 2.1*. muestra una comparación entre las características de ambos sistemas.

Tabla 2.1. Comparación entre los sistemas refrigerantes por compresión de vapor y los sistemas por absorción (Castro Gutiérrez, Hernández Zapata, & Álvarez Macías, 2010).

SISTEMAS REFRIGERANTES POR	SISTEMAS POR ABSORCIÓN DE		
COMPRESIÓN DE VAPOR	VAPOR		
Se alimentan con trabajo.	Se alimentan de calor.		
COP alto (~3), pero sensible a las temperaturas del	COP bajo (~1.4), poco sensible a las		
evaporador.	temperaturas del evaporador.		
El COP se reduce en las zonas de recarga.	COP no se ve afectado con las recargas.		
Se debe de evitar tener líquido a la salida del	No hay problema si no se evapora todo el		
evaporador ya que puede dañar el compresor.	líquido.		
COP sensible al sobrecalentamiento en el evaporador.	El sobrecalentamiento del evaporador no es		
	relevante.		
El motor del compresor requiere de mantenimiento	Requieren poco mantenimiento.		
constante.			
Económicos cuando hay energía eléctrica disponible.	Económicos cuando existe calor residual.		

2.9. CARACTERÍSTICAS DE LOS REFRIGERANTES.

Existe una gran variedad de refrigerantes, sus características y propiedades físicas y químicas son muy diversas. A continuación, se enlistan las propiedades que idealmente debe tener un refrigerante; sin embargo, es muy difícil encontrar una sustancia que cumpla con todas ellas (Pilatowsky Figueroa, y otros, 1999).

- ➤ Bajo punto de congelación: El punto de congelación del refrigerante debe ser inferior a cualquier temperatura que exista en el sistema para evitar su congelación en el evaporador.
- ➤ Elevado calor latente de evaporación: ⁵El calor latente de evaporación debe ser lo más alto posible para que una pequeña cantidad de refrigerante liquido absorba una gran cantidad de calor del espacio que lo rodea provocando en este, un descenso en su temperatura (efecto refrigerante), mientras que al mismo tiempo el refrigerante va cambiando de la fase líquida a la fase gaseosa.
- ➤ Bajo punto de ebullición: El punto de ebullición del refrigerante debe de estar por debajo de la temperatura ambiente y presión atmosférica, esto para que tenga la capacidad de absorber calor de este medio.
- ➤ Temperatura y presión de condensación bajos: Deberán de ser bajos para condensar rápidamente a las presiones de trabajo normales y a las temperaturas normales del medio enfriador que se use en el condensador (ejemplo, aire o agua).
- **Densidad alta:** La densidad debe ser elevada para usar líneas de líquidos pequeñas.
- > Conductividad térmica alta: Si la conductividad térmica del refrigerante es alta, la transferencia de calor se verá favorecida.
- Viscosidad y tensión superficial bajas: Si estas son bajas, entonces las pérdidas de presión disminuirán.
- **Compatibilidad:** Con materiales de construcción y con otros materiales del sistema.
- ➤ No deben ser inflamables, corrosivos, tóxicos o explosivos.
- Fácil detección en caso de fuga.
- ➤ **Bajo ODP**⁶. Este parámetro da una medida del daño provocado a la capa de ozono por la sustancia y debe ser lo más bajo posible.

⁵ Calor latente de evaporación: Cantidad de energía absorbida durante la evaporación y equivale a la energía liberada durante la condensación.

⁶ Potencial de agotamiento de ozono, ODP por sus siglas en inglés

➤ **Bajo GWP**⁷. Este parámetro mide la contribución que tienen los refrigerantes al calentamiento global. Debe ser lo más bajo posible.

Tabla 2.2 Refrigerantes convencionales y algunas de sus características.

Tabla 2.2 Refrigerantes convencionales y algunas de sus características.						
Tipo	Características	Nombre Formula química	Punto de ebullición (TPN)°C	Calor latente de evaporación (PN)KJ/Kg	вЧОО	$\mathrm{GWP}^{\mathrm{p}}$
CFC	[Clorofluorocarbono] No contienen hidrógeno en su molécula, lo que hace que tenga una alta estabilidad permaneciendo mucho tiempo en la atmosfera afectando seriamente la capa de ozono. Son una causa del efecto invernadero. Está prohibida su fabricación desde 1995.	R11 [CCl ₃ F]	23.71	181.358	1.0	4750
		R12 [CCl ₂ F ₂]	-29.75	166.172	1.0	10900
		R502 [CHC1F2, CC1F2CF3]	-45.42	172.48	0.334	4590
HCFC	[Hidroclorofluorcarbono] Es similar al anterior, pero con átomos de hidrógeno en su molécula. Posee un potencial reducido de destrucción de la capa de ozono. Está regulado por el Protocolo de Montreal y se espera que esté completamente erradicado para el 2020.	R22 [CHCIF ₂]	-40.81	233.75	0.055	1810
HFC	[Hidrofluorcarbono] Es un fluorocarbono sin cloro, con átomos de hidrógeno, muy inestable y sin potencial destructor del ozono dado que no contiene cloro.	R134a [H ₂ FC-CF ₃]	-26.55	215.9	0.0	1430
		R404A [CHF ₂ CF ₃ /CH ₃ CF ₃ /CH ₂ FCF ₃] (44/52/4 % peso)	-46.45	200	0.0	3922°
		R407C [CH ₂ F ₂ /CHF ₂ CF ₃ /CH ₂ FCF ₃] (23/25/52 % peso)	-43.56	249.9	0.0	1650
		R410A [CH ₂ F ₂]	-51-5	275	0.0	2088
era	Existentes en la naturaleza y tienen excelentes propiedades termodinámicas en sus respectivos límites de temperatura, que permiten la máxima COP sistema cuando se utiliza en material de diseño adecuado	R717 [NH3]	-33.33	1369	0.0	>1
		R744 [CO2]	-78.4	571.5	0.0	1
* ODE		R600a [isobutano]	-11.75	365.101	0.0	4

a ODP (por sus siglas en inglés) o PAO (por sus siglas en español.) es el Potencial de agotamiento del ozono y es un número que se refiere a la cantidad de destrucción de ozono estratosférico causado por una sustancia. Es la razón entre el impacto sobre el ozono causado por una sustancia determinada y el impacto causado por una masa similar de CFC-11 (el potencial de agotamiento del CFC-11 está definido como 1)

Fuente: (SIG, 2016; encyclopedia, 2016)

b GWP por sus siglas en inglés o PCG por sus siglas en español, es el Potencial de Calentamiento Global define el efecto de calentamiento integrado a lo largo del tiempo que produce hoy una liberación instantánea de 1kg de un gas de efecto invernadero, en comparación con el causado por el CO2. De esta forma, se pueden tener en cuenta los efectos radiactivos de cada gas, así como sus diferentes periodos de permanencia en la atmósfera.

^CEspecificado como gas de efecto invernadero en el Protocolo de Kioto.

⁷ *Potencial de calentamiento global, GWP por sus siglas en inglés.

2.10. CARACTERÍSTICAS DE LOS ABSORBENTES

Al igual que los refrigerantes, el absorbente debe contar con ciertas características, como son (Pilatowsky Figueroa, y otros, 1999; Moreno Quintanar, 2010):

- ➤ Alta afinidad por el refrigerante: El absorbente debe tener una gran afinidad por el refrigerante. Entre mayor sea esta afinidad, se requerirá una menor cantidad del mismo. Sin embargo, si es demasiado grande será necesario suministrar una gran cantidad de energía para separar el refrigerante de la mezcla.
- **Estabilidad térmica:** Debe de ser estable a las temperaturas de trabajo.
- ➤ Punto de ebullición superior al del refrigerante: Esto para facilitar su separación, se recomienda que la diferencia entre sus puntos de ebullición sea 200 °C.
- ➤ El punto de cristalización: se recomienda que esté por debajo de la temperatura de operación del absorbedor y preferiblemente por debajo de la temperatura de ambiente, para su mezcla con el refrigerante.
- ➤ Otras características: La temperatura de cristalización del eutéctico formado con el refrigerante ha de ser lo suficientemente baja como para evitar la formación de cristales.
- **Bajo calor específico:** Evitar pérdidas de calor.
- **Conductividad térmica alta:** Favorecer la trasferencia de calor.
- > Baja tensión superficial y viscosidad
- ➤ Los absorbentes con moléculas grandes o polaridad alta, serán mejores para los sistemas de absorción.

2.11. MEZCLA ABSORBENTE-REFRIGERANTE

Las características más deseables que ha de presentar la mezcla absorbente-refrigerante son (Pilatowsky Figueroa, y otros, 1999; Moreno Quintanar, 2010):

- > Solubilidad total en las condiciones de trabajo
- > Fácil absorción y desorción
- **Baja viscosidad,** para promover la transferencia de calor.
- > Tendencia rápida al equilibrio
- > Estabilidad térmica y química

- > No ser tóxicos, inflamables ni explosivos
- > Ser de bajo costo y de fácil obtención
- > No causar daños al medio ambiente
- > Estabilidad química en el rango de operación.

Algunas mezclas de refrigerante y absorbente con sus ventajas y desventajas se muestran en la *Tabla 2.3*.

Tabla 2.3. Ventajas e inconvenientes de las principales mezclas empleadas en los sistemas de absorción (Gómez Espinoza, 2007; Moreno Quintanar, 2010).

Refrigerante/ Absorbente	Ventajas	Inconvenientes			
Agua (H ₂ O) / Bromuro de litio (LiBr)	 El refrigerante tiene una alta capacidad calorífica. El LiBr no es volátil, no requiere rectificación. Las sustancias no son tóxicas ni inflamables. 	 El sistema no puede enfriar a temperaturas menores del punto de congelación del refrigerante. El LiBr es solvente en agua sólo limitadamente. El vacío demanda una alta impermeabilidad del sistema. 			
Amoniaco(NH ₃) / Agua (H ₂ O)	 El refrigerante amoniaco tiene una alta capacidad calorífica. Aplicaciones de temperaturas muy bajas, de hasta -60 °C. Propiedades óptimas para la transferencia de calor y masa Refrigerante de bajo costo. 	 Presión de trabajo relativamente alta, demanda tuberías de mayor espesor. Volatilidad del absorbente, se necesita una rectificación. El amoniaco es irritante a altas concentraciones. La temperatura para separar el amoniaco es mayor que con las otras mezclas. 			
Amoniaco(NH ₃) / Nitrato de litio (LiNO ₃)	 El refrigerante amoniaco tiene una alta capacidad calorífica. Aplicaciones de temperatura muy bajas, de hasta -60 °C. Propiedades óptimas para la transferencia de calor y masa Es posible comenzar a generar a bajas temperaturas. 	 Presión relativamente alta del refrigerante, requiriendo tuberías de mayor espesor. La mezcla puede llegar a cristalizar a bajas concentraciones. La mezcla es un tanto corrosiva al entrar en contacto con el aire Costo del nitrato de litio elevado. 			

Tabla 2.4. Breve descripción de los evaporadores que sirvieron como base para el diseño del evaporador utilizado en el refrigerador solar intermitente.

Intercambiadores de tubo y coraza.

Estos intercambiadores son los más utilizados en la industria. Están conformados por una coraza y por una multitud de tubos. Se clasifican por el número de veces que pasa un fluido por la coraza y por el número de veces que pasa el fluido por los tubos (Barcelonatech, 2017).

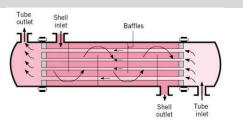


Figura 3.2a. Intercambiador de tubos y coraza.

Evaporador inundado

Siempre está completamente lleno de líquido refrigerante; el nivel se mantiene con una válvula de flotador o con algún otro control. El vapor acumulado por la ebullición se extrae de la parte superior por la acción del compresor.

La principal ventaja del evaporador inundado es que la superficie inferior del evaporador siempre está mojada por el líquido, condición que produce un alto coeficiente de transmisión de calor. La principal desventaja es que usualmente son voluminosos, ocupando mucho espacio y requiriendo una carga grande de refrigerante (Hernández Goribar, 1997).

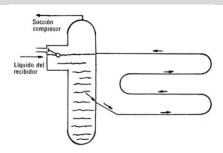
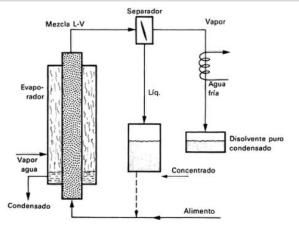


Figura 3.2b. Evaporador inundado (Sei-Contreras, 2017)


Evaporador de película ascendente (Rising Film)

Los evaporadores de película ascendente o "Rising film" son del tipo carcasa y tubos, en los que el producto circula por el interior de los tubos y el vapor por la carcasa, calentando las paredes externas de los mismos.

El principio del funcionamiento de los evaporadores rising film es mediante termosifón, en el que el líquido asciende por las paredes de los tubos impulsado por la propia fuerza ascensional producida por la diferencia de densidad del líquido caliente y el vapor que se genera al entrar en contacto con las paredes calientes de los tubos.

Sus características principales son:

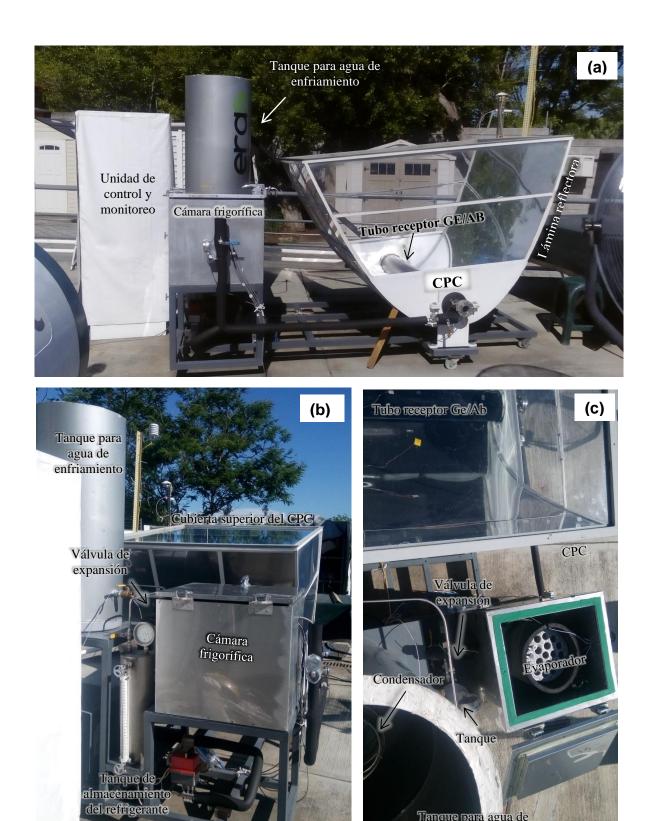
- ✓ No requieren la instalación de bombas
- ✓ Operación con altas diferencias de temperatura
- ✓ Tubos cortos (Sei-Contreras, 2017)

Figura 3.2c. Evaporador de película ascendente (Acosta López, 1984).

CAPÍTULO III DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN SOLAR

3.1. INTRODUCCIÓN

La necesidad de proporcionar enfriamiento para la conservación de alimentos y medicamentos en comunidades alejadas de la red de energía eléctrica ha proporcionado el desarrollo de equipos que operen con otras fuentes de energía. Si se considera que la demanda más grande de enfriamiento se ubica en los lugares donde se cuenta con una abundante radiación solar, resulta atractivo estudiar la aplicación de este recurso para satisfacer esta demanda (Blanco Félix, 1999).


3.2. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN

El sistema experimental es un refrigerador solar intermitente (**RSI**). Se localiza en la plataforma solar ubicada en el Instituto de Energías Renovables, de la UNAM, en el municipio de Temixco, en el estado de Morelos. Este sistema opera bajo un ciclo de refrigeración por absorción intermitente; funciona con energía solar y utiliza como mezcla de trabajo NH₃-LiNO₃ (LiNO₃ como absorbente y NH₃ como refrigerante). El sistema está diseñado para generar 8 kg de hielo.

Los componentes principales que integran al refrigerador solar intermitente son:

- Concentrador Parabólico Compuesto (CPC).
- ❖ Tubo receptor Generador /Absorbedor (GE/AB).
- Condensador (CO).
- * Tanque de almacenamiento para el refrigerante líquido (TA).
- ❖ Válvula de expansión (VE).
- Evaporador (EV).

A continuación, se describen las características de los equipos principales del sistema de refrigeración solar intermitente por absorción y en la *Figura 3.1.* se muestra el estado actual del RSI.

Figura 3.1. Diferentes vistas del Refrigerador solar intermitente (a) lateral, (b) frontal y (c) superior.

Tanque para agua de enfriamiento

3.2.1. CONCENTRADOR PARABÓLICO COMPUESTO.

Encargado de suministrar calor al generador. Consiste en un concentrador del tipo parabólico compuesto (CPC) que concentra y refleja los rayos solares incidentes sobre su superficie reflectora hacia el foco, donde se localiza el tubo receptor que contiene la mezcla de trabajo, que, en consecuencia, tiene una ganancia térmica (*Figura 3.2.*).

Para maximizar la energía que pueda incidir en él, se debe de orientar hacia el sur geográfico, ya que la mayor parte del año, el sol 'sale' de este lado, a excepción de los meses de junio y julio, que 'sale' por el lado norte⁸ (esto es para el municipio de Temixco, Morelos). Además, puede ajustarse cada cierto periodo según la declinación solar (seguimiento del CPC, en dirección Norte-Sur), para mayor información revisar *Anexo F-2* y la literatura (Rivera Blanco, 2006).

Figura 3.2. Concentrador parabólico compuesto (CPC).

En la parte superior tiene una cubierta de vidrio transparente y en los costados tiene dos tapas móviles de acrílico, en su conjunto, estás cubiertas evitan el asentamiento del polvo sobre la superficie reflectora y sobre el receptor, evitando que puedan alterarse sus propiedades ópticas, además de que si las tapas móviles, se encuentran cerradas, se crea un efecto invernadero, debido a que el aire acumulado en el

interior comienza a calentarse, favoreciendo las condiciones de generación de refrigerante. Cuando las tapas laterales son abiertas, el aire comienza a circular favoreciendo el enfriamiento del tubo receptor con la solución, con ello se logra tener condiciones adecuadas de presión y temperatura (para que pueda funcionar como absorbedor), lo que propicia la absorción del refrigerante en la mezcla, durante la etapa de evaporación.

⁸ En el hemisferio norte en verano el sol sale al norte del este y en invierno al sur. Cabe notar que en el hemisferio sur sucede lo contrario, en verano el sol sale al sur del este y en invierno el norte del este.

Sus dimensiones fueron calculadas por el maestro José Francisco Martínez, en su trabajo optimizó y evalúo un refrigerador solar intermitente con la mezcla LiNO₃-NH₃. Las características del CPC son mostradas en la *Tabla 3.1* Sus características se enlistan en la *Tabla A-1* del *Anexo A*.

Tabla3.1 Características generales del receptor y CPC (Martínez Ortega, 2008).

Parámetro	Unidad	Valor
Longitud del receptor	m	1.42
Diámetro interior del tubo	m	0.1524
Diámetro exterior del tubo	m	0.1685
Área del receptor	m^2	0.71
Área de la cubierta	m^2	2.41
Relación de concentración	adim	3.3
Ángulo de aceptación	grados	11.54
Transmitancia de la cubierta debida a la radiación directa	adim	0.9
Transmitancia de la cubierta debido a la radiación difusa	adim	0.8
Reflectancia especular del aluminio	adim	0.85
Número promedio de reflexiones *	adim	1.285
Absortancia del receptor	adim	0.87
Absortancia de la cubierta debida a la radiación directa	adim	0.1
Absortancia de la cubierta debida a la radiación difusa	adim	0.1
Reflectancia del receptor	adim	0.13
Reflectancia de la cubierta	adim	0.08
Emitancia del receptor	adim	0.13
Emitancia de la cubierta	adim	0.94
Emitancia del receptor debida al intercambio radiativo	adim	0.13

^{*}Véase Kreith, F. & Kreider, Jan F. (1978). Principles of Solar Engineering McGraw-Hill

3.2.2. TUBO RECEPTOR: GENERADOR /ABSORBEDOR (GE/AB)

Consiste en un tubo de metal que contiene la mezcla de trabajo 9 .

 9 En este trabajo de investigación se utilizó la mezcla de NH $_3$ -LiNO $_3$ al 50% masa, ocupando el 80% de su capacidad, dejando un 20% disponible para el vapor de refrigerante.

En uno de sus extremos está soldada una mirilla por donde puede observarse el nivel de la solución que en él contiene (*Figura 3.3.*).

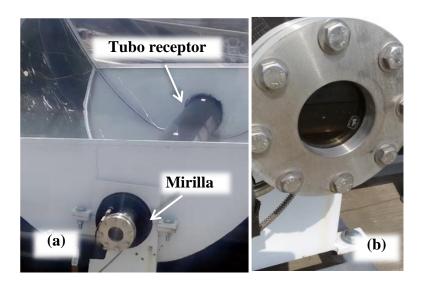


Figura 3.3. (a) Tubo receptor (b) acercamiento a mirilla del receptor.

Este equipo puede desempeñar dos funciones:

GENERADOR, sí se encuentra en la etapa de generación/condensación.

El tubo receptor recibe sobre su superficie¹⁰ la energía concentrada por el CPC y la transfiere a la mezcla con alta concentración de amoniaco (mezcla concentrada), que contiene, aumentando su temperatura y su presión hasta alcanzar la temperatura de saturación de la mezcla, donde el refrigerante comienza a evaporarse de la mezcla. En la *Figura 3.4* se muestra la incidencia de los rayos solares sobre la superficie del tubo receptor.

❖ ABSORBEDOR, sí se encuentra en la etapa de evaporación/absorción. Para que el tubo receptor funcione como absorbedor, la temperatura y la presión en su interior deben ser bajas (presión cercana a 1 bar) para favorecer la absorción del refrigerante vapor (proveniente del evaporador) en la mezcla con baja concentración de amoniaco (mezcla diluida).

_

¹⁰ Cubierta con pintura selectiva que mejora su absorbancia y disminuye su emitancia.

Con el objetivo de ayudar a mejorar la absorción del refrigerante en la mezcla diluida durante la etapa de evaporación/absorción; el receptor contiene un tubo difusor que consiste en un tubo metálico con orificios en su superficie que se encuentra sumergido en la solución. Su función es distribuir a lo largo del tubo receptor el vapor de refrigerante que proviene del evaporador (Moreno Quintanar, 2010). Sus características se enlistan en la *Tabla A-2* del *Anexo A*.

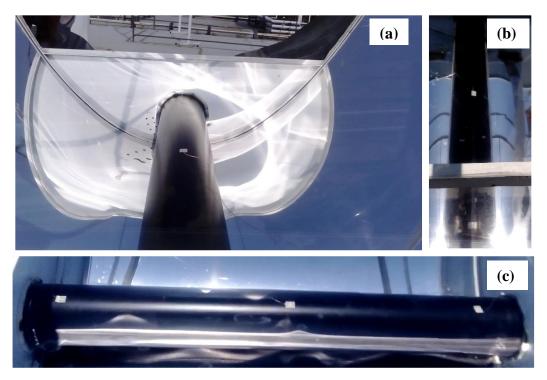


Figura 3.4. Rayos incidentes sobre el tubo receptor a diferentes vistas (a) de frente, (b) lateral y (c) superior; durante la etapa de generación.

3.2.3. CONDENSADOR

Consiste en un tubo de acero inoxidable en forma de serpentín que funciona como un intercambiador de calor con cambio de fase. Por el extremo superior y por la parte interna, ingresa refrigerante vapor que proviene del tubo receptor (GE/AB), éste cede calor al medio que lo rodea (agua a temperatura constante), provocando que condense por convección natural. El líquido refrigerante generado, desciende por las paredes del tubo hasta salir por el extremo inferior hacia un tanque de almacenamiento.

Está compuesto por dos módulos como se muestran en la *Figura 3.5*. Sé decidió diseñarlo modular para facilitar su instalación y mantenimiento.

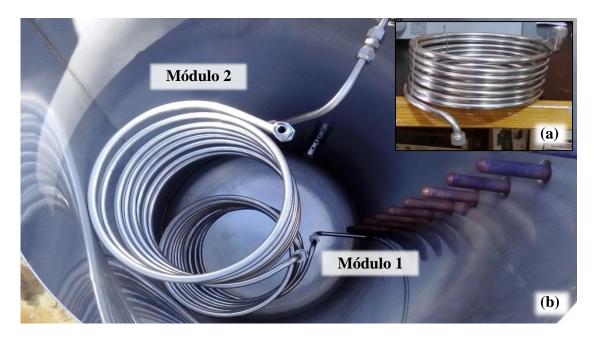


Figura 3.5. (a) Módulo del condensador sin acoplar (b) Instalación de los módulos 1 y 2 dentro del tanque para agua de enfriamiento.

En este trabajo se utilizó agua como medio de enfriamiento a temperaturas cercanas a las del ambiente (~ 30 °C). Con esto se busca que el condensador funcione con agua proveniente de la red municipal y en un futuro incluso con aire a temperatura ambiente.

Sus características se enlistan en la *Tabla A-3* del *Anexo A*.

3.2.4. TANQUE DE ALMACENAMIENTO PARA EL REFRIGERANTE LÍQUIDO

Es un tanque de acero inoxidable cuya función es recibir y almacenar el refrigerante líquido proveniente del condensador durante la etapa de generación, hasta su posterior uso en la etapa de evaporación donde el refrigerante sale por la parte inferior hacia la válvula de expansión.


En la parte frontal tiene instalado un tubo de nivel graduado que sirve para medir y conocer el volumen del refrigerante líquido. Sus características se enlistan en la *Tabla A-4* del *Anexo A*.

3.2.5. VÁLVULA DE EXPANSIÓN

Este dispositivo separa las zonas de baja y alta presión en el sistema de refrigeración y es el responsable de que se lleve a cabo el fenómeno de refrigeración.

Se eligió como dispositivo de expansión, una válvula de aguja (*Figura 3.6.*) por la versatilidad que ofrece frente al tubo capilar, ya que con este dispositivo se puede manipular el flujo que circula a través de ella, en lugar de mantenerlo constante, además si se llegará a obstruir por partículas indeseadas como óxidos ferrosos, es más fácil volverla a habilitar que los tubos capilares.

La función de la válvula de expansión es abatir abruptamente la presión del refrigerante líquido que sale del tanque a alta presión y temperatura, hasta una presión y temperatura más baja; cuando esto sucede, el líquido

Figura 3.6. Escarcha formada a la salida de la válvula de expansión.

experimenta una expansión (a menor presión), evaporándose parcialmente reduciéndose su temperatura (menor a la del medio que lo rodea, lo cual es deseable) al absorber calor latente de sí mismo, formándose una mezcla liquido-vapor. Las válvulas de expansión son dispositivos isentálpicos, porque la entalpía de entrada y salida de la válvula, se consideran las mismas (Yunes A Cengel, 2010).

Sus características se enlistan en la *Tabla A-5* del *Anexo A*.

3.2.6. EVAPORADOR

El evaporador es un intercambiador de calor con cambio de fase, donde se lleva a cabo el proceso de evaporación de refrigerante a baja presión y temperatura, para producir el efecto refrigerante.

El diseño utilizado en este trabajo es una modificación al diseño propuesto por Uriel Cervantes en su tesis de maestría (Cervantes Contreras, 2012), donde combinó el concepto de un **evaporador inundado** con un **intercambiador de tubos y coraza** con **características de película ascendente** por el exterior de los tubos, con la variante de que los tubos del intercambiador de calor funcionan como recipientes para contener el agua a congelar y están fijos a la tapa superior del recipiente (Solorio Quintana, 2012).

Los tubos donde se coloca el agua a congelar no llegan al fondo del evaporador, con el propósito de que toda su superficie sea rodeada por el refrigerante (Cervantes & Rivera Gómez, 2016)

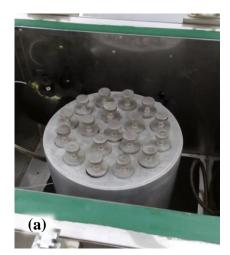


Figura 3.7. (a) Evaporador instalado en la cámara frigorífica de refrigerador solar (b) Varilla de acero. para extraer hielo (c) Hielo formado en el evaporador, durante etapa de evaporación.

El proceso de enfriamiento en este dispositivo se da de la siguiente manera: Por la parte inferior del evaporador ingresa refrigerante liquido-vapor a una temperatura menor que la del agua a congelar que se encuentra dentro del interior de los tubos, el refrigerante absorbe calor ocasionando una disminución en la temperatura del agua que se encuentra dentro de los tubos (Cervantes Contreras, 2012), el refrigerante cambia a fase vapor; abandona el evaporador por la parte superior hacia el tubo generador/absorbedor, donde será absorbido por la mezcla pobre en refrigerante.

Para desalojar el hielo formado dentro de los tubos, se coloca una varilla de metal como la que se muestra en la *Figura 3.7*. Sus características se enlistan en la *Tabla*

A-6 del Anexo A.

El sistema de refrigeración solar intermitente cuenta con equipos auxiliares que le ayudan a tener condiciones controladas, automatizadas y seguras, además de que cuenta con una serie de instrumentos que permiten conocer su funcionamiento en tiempo real. Para mayor información revisar los *Apéndices B y C*.

En el *Apéndice E* se encuentra el diagrama de instrumentación del RSI que incluye válvulas e instrumentos de medición.

3.3. OPERACIÓN DEL REFRIGERADOR SOLAR INTERMITENTE (RSI)

El RSI funciona de forma intermitente, por lo cual su modo de operación es en dos etapas, una de generación-condensación de refrigerante a alta presión y una de evaporación-absorción de refrigerante a baja presión, las cuales en su conjunto completan el ciclo de refrigeración por absorción. En la *Figura 3.8.* se muestra un diagrama esquemático del refrigerador solar intermitente.

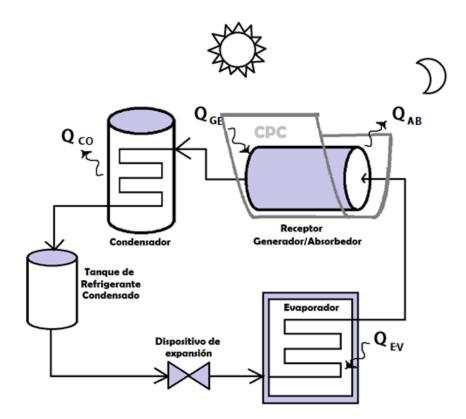


Figura 3.8. Diagrama esquemático del refrigerador solar intermitente.

A continuación, se describen cada una de las etapas que lleva a cabo el refrigerador solar.

3.3.1. ETAPA DE GENERACIÓN-CONDENSACIÓN (ALTA PRESIÓN).

Esta etapa se realiza durante el día. La energía solar que incide (**Q**GE) en el tubo receptor Generador-Absorbedor por medio del concentrador parabólico compuesto (**CPC**), aporta el calor de generación necesario (**Q**GE), provocando que la mezcla binaria NH₃-LiNO₃ (rica en refrigerante) que se encuentra en su interior, aumente su temperatura y su presión, provocando que el refrigerante NH₃ se separé de la mezcla en forma de vapor (ya que este compuesto es más volátil que el LiNO₃). El NH₃ vapor fluye hacia el condensador por diferencia de presiones. El NH₃ en forma de vapor entra al condensador saliendo de este en fase líquida, disipando calor (**Q**co) y almacenándose en el **tanque.**

La segunda etapa del proceso se puede iniciar cuando se desciende la temperatura y la presión de la mezcla que se encuentra dentro del tubo receptor (Generador-Absorbedor).

3.3.2. ETAPA DE EVAPORACIÓN-ABSORCIÓN (BAJA PRESIÓN).

Esta etapa se recomienda realizarla durante la noche, antes de amanecer. El amoniaco líquido que se generó en la primera etapa se encuentra en el **tanque** de almacenamiento del refrigerante, este se hace pasar por la **válvula de expansión** lo que provoca una disminución súbita en su presión, formando una mezcla líquido-vapor de refrigerante a baja presión y baja temperatura que entra al **evaporado**r, donde absorbe la energía (**Q**EV) del medio que lo rodea (agua) haciendo que su temperatura disminuya, esto provoca que el refrigerante se evapore casi en su totalidad. Finalmente, éste fluye por diferencia de presión hacia el tubo receptor (**Generador/Absorbedor**), donde es absorbido por la mezcla pobre en refrigerante que había quedado de la primera etapa (etapa de generación/ condensación), disipando calor al ambiente (**Q**AB) durante el proceso de absorción, regenerándose la mezcla rica en refrigerante que se tenía al principio, después de esto, el sistema estará listo para repetir nuevamente el ciclo de refrigeración por absorción en dos etapas.

3.4. MEZCLA DE TRABAJO

El sistema de refrigeración solar intermitente está diseñado para operar con la mezcla NH₃-LiNO₃,

- ✓ Amoniaco como refrigerante.
- ✓ Nitrato de litio, como absorbente.

En las pruebas experimentales realizadas para este trabajo se utilizó la mezcla binaria de NH₃-LiNO₃ con una concentración al 50% en masa de refrigerante, esto basado en estudios desarrollados previamente (Moreno Quintanar, 2010), para la operación del refrigerador intermitente¹¹.

3.4.1. REFRIGERANTE: AMONIACO [NH₃]

El amoniaco se trata de un compuesto químico incoloro, de olor penetrante, bastante soluble en agua. Se caracteriza por ser una base fuerte, corrosiva y por reaccionar violentamente con ácidos, oxidantes fuertes y halógenos (PRTR, 2016).

El 80% del amoníaco que se manufactura, se usa como abono¹², también se utiliza para fabricar fibras sintéticas, plásticos y explosivos, es utilizado en productos de limpieza (contienen amoníaco en la forma de iones de amonio) y como refrigerante. Menos del 2 % del amoníaco producido en el mundo, se utiliza como refrigerante (PRTR, 2016).

Tiene un punto de ebullición bajo (-33.3 °C a 1.013 bar), un potencial de agotamiento de ozono (ODP) de 0.00 y un alto calor latente de vaporización (ocho veces mayor que el R-12 y seis veces mayor que R-134a a -33.3 °C) (ASHRAE, 2016). Debido a que el amoniaco tiene una corta vida útil en la atmósfera (aproximadamente 7 días), se considera biodegradable. Por estas características

¹² Un tercio de la cantidad de amoniaco que se produce para abonos se aplica directamente al suelo en forma de amoníaco puro. El resto se usa para producir otros abonos que contienen compuestos de amonio, generalmente sales de amonio. Estos abonos se usan para suministrar nitrógeno a las plantas [16].

¹¹ Para establecer las condiciones de operación que se necesitarían en el refrigerador solar, Rivera Blanco [3], en su trabajo doctoral, realizó pruebas con los pares NH₃-LiNO₃ y NH₃-BaCl₂ en un equipo de refrigeración por absorción (donde el amoniaco (NH₃) funciona como refrigerante). Concluyó que cuando se utiliza la mezcla NH₃-BaCl₂ puede extraerse todo el amoniaco en la etapa de generación a una temperatura menor que la del par NH₃-LiNO₃, además esta mezcla puede llegar a cristalizar a bajas concentraciones de refrigerante (menores a 35%). El absorbente LiNO₃ presenta una mayor rapidez de absorción frente al BaCl₂. Por estas razones se optó por utilizar al LiNO₃ como absorbente, en el sistema de refrigeración intermitente.

el amoníaco es considerado como un refrigerante alternativo para los sistemas de refrigeración y aire acondicionado.

Ha sido identificado por la EPA como una alternativa viable a los refrigerantes usados actualmente, ya que no agota la capa de ozono ni contribuye al calentamiento global. Además, el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) ha identificado el amoníaco como un excelente refrigerante para reemplazar en muchas de las aplicaciones actuales a los CFC como parte de la reevaluación del Protocolo de Montreal ¹³[17]

Según la EPA¹⁴de los Estados Unidos, se clasifica como una sustancia extremadamente peligrosa, y la OSHA¹⁵ lo define como un material peligroso e impone ciertas regulaciones sobre su utilización, almacenamiento, manipulación y exposición ocupacional. Sin embargo, la EPA y la OSHA también clasifican a todos los CFC y HCFC, como sustancias peligrosas y, por tanto, el uso de estos refrigerantes requiere prácticas específicas comparables con las del amoníaco. Existen normas, códigos y guías para la aplicación y el uso de refrigerantes, así como para el amoniaco, para más información revisar la literatura [17]. Algunas de sus propiedades se pueden encontrar en el *Apéndice D-1*. Su hoja de seguridad se puede consultar en la literatura [18]

3.4.2. ABSORBENTE: NITRATO DE LITIO [LiNO₃]

El nitrato de litio es una sal inorgánica de cristales o polvos cristalinos blancos a amarillo claro. Es un agente reductor fuerte, es soluble en agua, amoniaco líquido y en muchos otros disolventes orgánicos como el etanol, la acetona o la piridina [19]. Se utiliza como estabilizador del amoniaco acuoso en instalaciones de refrigeración, propulsor de cohetes, oxidante para fuegos artificiales, agente de ataque químico para el vidrio, y como componente de las sales fundidas en la industria metalúrgica [20]. Algunas de sus propiedades se pueden encontrar en el *Apéndice D-2*. Su hoja de seguridad se puede consultar en la literatura [21].

¹³ Otras organizaciones internacionales han emitido posiciones o declaraciones de apoyo para el uso de amoníaco como refrigerante: Australian Institute of Refrigeration, Air-Conditioning and Heating, The International Institute of Refrigeration, the German Institute of Refrigeration, etc. [17].
¹⁴ Environmental Protection Agency, por sus siglas en inglés

¹⁵ Occupational Safety and Health Administration, por sus siglas en inglés

CAPÍTULO IV ARMADO Y PUESTA EN OPERACIÓN DEL REFRIGERADOR SOLAR INTERMITENTE

4.1. ARMADO Y PUESTA EN OPERACIÓN DEL REFRIGERADOR SOLAR INTERMITENTE

Uno de los objetivos del presente trabajo fue rediseñar parcialmente un refrigerador solar intermitente (RSI), objeto de estudio de trabajos previos ((Rivera Blanco, 2006; Martínez Ortega, 2008; Moreno Quintanar, 2010; Solorio Quintana, 2012; Cervantes Contreras, 2012) con la finalidad de darle continuidad a su investigación.

Con el propósito de mejorar el rendimiento y facilitar la evaluación del refrigerador algunos de sus componentes tuvieron que ser reemplazados, como son: tuberías, accesorios (válvulas, reducciones, tes, entre otros), instrumentos de medición, inclusive algunos equipos (tanque de almacenamiento de refrigerante líquido, evaporador, condensador). En la *Figura 4.1.* se describe la serie de actividades que se realizaron de forma consecutiva, con el objetivo de poner a punto al refrigerador solar intermitente.

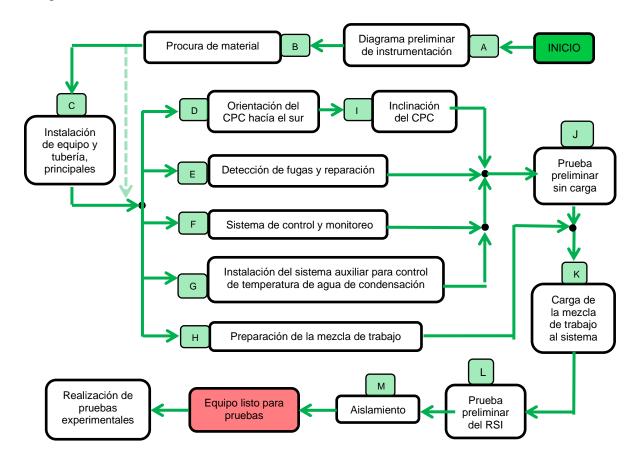


Figura 4.1. Actividades realizadas para poner puesta a punto al refrigerador solar.

Se inició con la actividad A, seguida de la actividad ByC, una vez finalizada esta última se pudieron realizar de forma simultánea las actividades D, E, F, G, y H. Para realizar la actividad J, se debieron haber finalizado las actividades descritas anteriormente, a excepción de la actividad H; después de realizar las actividades H y J se pudieron realizar las actividades, K, L y M de forma consecutiva y de esta forma lograr poner a punto al refrigerador solar.

Tabla 4.1 Descripción de las actividades realizadas para poner en operación al sistema de refrigeración.

Clave	Nombre y descripción de la actividad			
А	Diagrama preliminar de instrumentación: Se elaboró un diagrama preliminar o			
	la instrumentación que tendrá el refrigerador solar como son sensores de medición,			
	válvulas, conexiones, entre otros.			
В	Suministro de Material: Se deben tener los materiales y herramientas adecuados			
	para la instalación de equipos y tuberías, de acuerdo con el diagrama preliminar de			
	instrumentación que se elaboró.			
С	Instalación de los equipos y tuberías: Se utilizaron conexiones rápidas de acero			
	inoxidable marca Swagelook®. También se utilizaron conexiones NPT (tees,			
	coples, niples, cruces) de acero inoxidable, en su mayoría de 1/4"; utilizando cinta			
	teflón para sellar. Para interconectar los equipos se utilizó tubing de acero			
	inoxidable tipo 316 de 3/8".			
D	Orientación del CPC hacía el sur: El CPC se orientó hacia el sur con la finalidad			
	de captar la mayor cantidad de energía solar durante el año (sección 3.2.1 y Anexo			
	F-2).			
E	Detección de fugas y reparación. Previo a la operación del sistema de refrigeración,			
	se examinó que no existiesen fugas en el equipo. Para ello se realizaron una serie			
	de pruebas:			

- Prueba neumática (aire y nitrógeno).
- Prueba con mechas de azufre
- Prueba de vacío.

Prueba neumática: Esta prueba consistió en inyectar al sistema aire comprimido y nitrógeno. La presión se incrementó gradualmente con el nitrógeno hasta alcanzar la presión para la prueba para la zona de baja presión ,1.25*P.max.trabajo(10 bar) ≈12.5 bar, se aplicó un líquido detector de fugas comercial (snoop) en todos los equipos y conexiones; se corrigieron las fugas existentes. Se aisló la zona de alta presión, igualmente se aumentó gradualmente la presión hasta el valor de 1.25*P.max.trabajo(15.8 bar) ≈ 20 bar. Sí la presión se conservaba por un intervalo de tiempo, se daba por terminada la prueba y se purgaba el sistema paulatinamente.

<u>Prueba con mechas de azufre</u>: Se utilizaron mechas de azufre para detectar fugas de amoniaco; para ello se inyecta una pequeña dosis de amoniaco al sistema, se encienden las mechas y se pasan por todas las conexiones, el humo que desprende es transparente y se torna blanco en presencia de amoniaco, indicando la existencia de fugas; posteriormente estas fugas se corrigen. Finalmente se purga el sistema para proseguir con la siguiente prueba.

<u>Prueba de vacío para fugas</u>. Esta prueba se realiza con la finalidad de extraer los gases no condensables y la humedad que pudiera existir dentro del sistema. Con esta prueba se demuestra que el aire de la atmósfera no entrará al sistema. Cuando el valor de presión no varía con el tiempo, se da por terminada la prueba.

NOTA:

Para realizar estas pruebas es necesario utilizar equipo de protección personal y tomar las precauciones necesarias.

F

Sistema de monitoreo y control: Se elaboró un programa de adquisición, monitoreo y control, con el software Agilent VEE Pro 9.3.

Este programa:

• Mantiene la temperatura del agua de condensación constante dentro de un rango de tolerancia.

- Controla la apertura y cierre de la válvula que da pauta para el inicio de la etapa de evaporación/absorción.
- Monitorea los parámetros registrados por los instrumentos instalados en el sistema experimental, además de que los almacena en una base de datos.
- Instalación del sistema auxiliar para control de temperatura de agua de condensación: Con el propósito de mantener constante la temperatura del agua de condensación se montó un circuito, compuesto por un tanque, una bomba, un enfriador (chiller) y sensores de temperatura (acoplados al sistema de adquisición de datos). Para su construcción se utilizó tubería y accesorios tuboplus.
- Preparación de la mezcla de trabajo: En este sistema se utilizó una mezcla binaria de LiNO₃-NH₃ al 50% masa/masa. La cantidad de solución necesaria para llenar el tubo receptor (GEN/ABS) al 80% de su capacidad es de 22.48 kg (utilizando 11.24 Kg de NH₃ líquido y 11.24 Kg de la sal LiNO₃).

El LiNO₃ es una sal altamente higroscópica, por lo que fue necesario deshidratarla en un horno. La cantidad necesaria de esta sal (previamente deshidratada) se colocó en un tanque limpio y seco, se le añadió la cantidad de amoniaco líquido necesario para preparar una mezcla de concentración 50% m/m.

Inclinación del CPC: El CPC se orientó hacia el sur, para maximizar la energía que puede incidir en él a lo largo del año, el concentrador se orienta de acuerdo con la "declinación" del sol (seguimiento del CPC, en dirección Norte-Sur).

Durante la experimentación se tuvieron -5° hacia el norte, debido a que las pruebas se realizaron entre los meses de mayo y junio.

- Prueba preliminar sin carga: Se llevó a cabo una prueba de simulación de operación sin carga, con el fin de comprobar la correcta operación del sistema antes de proseguir con la carga de la mezcla al sistema. En esta prueba se verifica que los instrumentos de medición proporcionen mediciones congruentes, que los controles de temperatura de agua de condensación y de apertura de válvula funcionen adecuadamente, etc.
- Carga de la mezcla de trabajo al sistema: El vacío que se generó durante la prueba de fugas a vacío, se aprovecha para cargar la mezcla de trabajo al tubo receptor (el cual está aislado del resto del sistema). El tanque que contiene la mezcla se conecta

al tubo receptor; al existir una diferencia de presión, la mezcla (que se encuentra a mayor presión) es succionada hacia el tubo receptor que se encuentra a menor presión; cuando sus presiones se igualan, se inyecta una pequeña dosis de amoniaco en el tanque de suministro de la mezcla, de esta forma se incrementa su presión sin modificar significativamente su concentración y de esta forma se termina de transferir toda la mezcla de trabajo al sistema experimental. Prueba preliminar del RSI: Después de que se ha cargado el sistema con la mezcla L de trabajo, se procede a hacer una prueba preliminar de generación-condensación y evaporación-absorción, para verificar que todo funcione adecuadamente. Aislamiento: Finalmente se colocó el aislante en el evaporador y en las tuberías que М van del tubo receptor hacia el condensador y del evaporador hacia el tubo receptor, también se aisló la válvula de estrangulamiento. Se utilizó aislamiento comercial armaflex con espesor de 3/4". Además, este aislamiento fue recubierto por una pintura especial color blanco que evita la degradación por exposición a los rayos ultravioleta.

Para la información detallada de las actividades realzadas, revisar el Apéndice F.

Después de realizada esta serie de actividades, el equipo está listo para realizar las pruebas experimentales.

En la *Tabla 4.2.* se muestra la filosofía de operación del refrigerador solar intermitente.

Tabla 4.2. Filosofía de operación: refrigerador solar intermitente.

	ARRANQUE	PROCESO	PARO		
Prueba de Evaporación/Absorción	a) Pasos a) y b) del arranque en la prueba de generación/condensación. b) Conectar actuador eléctrico al tomacorriente al igual que la caja de relevadores. c) Abrir tapas laterales del CPC para hacer descender temperatura y presión (≈ 1 bar) dentro del Gen/Abs. d) Ajustar previamente la válvula de expansión (V5). e) Purgar el refrigerante remanente en el evaporador. Abrir paulatinamente válvulas que interconectan Gen/Abs y evaporador (V6 y V8). f) Ajustar en el programa de adquisición la hora de apertura y cierre de la válvula automática. g) Todas las válvulas que se encuentran subsecuentes a la válvula con actuador (V3) hasta la entrada del GEN/ABS deben estar abiertas (V4, V5, V6, V8). h) Colocar 250 ml de agua en cada uno de los tubos contenedores del evaporador. i) Colocar el sensor de temperatura (T12), dentro de alguno de estos contenedores.	 a) El NH₃ líquido comenzará a fluir desde el tanque hacia el Gen/Abs una vez que se alcanza la hora indicada en el programa. b) Monitorear continuamente el flujo de refrigerante. Si se tienen valores incongruentes (ej. negativos) entonces modificar la apertura de la válvula hasta obtener valores congruentes y volver a ajustar el flujo. 	a) Una vez agotado el refrigerante liquido del tanque, cerrar todas las válvulas. b) Retirar y pesar el hielo formado en cada uno de los tubos del evaporador. c) Limpiar los tubos y varillas metálicas del evaporador y colocarlas nuevamente en el evaporador. d) Apagar y desconectar sistema de control y monitoreo. e) Cerrar tapas laterales del CPC. f) Cubrir refrigerador solar.		
	Operación en caso de emergenci				
	✓ En caso de que la presión en el sistem				
	lona y se deben abrir las tapas later aumentando, evacuar la zona. El sister		a bajar, si la presión sigue		
	✓ En caso de fuga, si esta es pequeña, a	aislar la fuga, utilizar trapos húmedos	para absorber el amoniaco		
	que se está liberando y reparar.				
	✓ Si la fuga es mayor, evacuar la zona y si es posible controlar la fuga rociando agua con mangueras.				
	Descarga del sistema [5]				
	 a) Preparar un recipiente para recuperar la solución. Limpiarlo, pesarlo y conectar al Gen/Abs. b) Precalentar el Gen/Abs hasta alcanzar una presión entre 9 y 10 bar, que garantice que la solución de trabajo salga del Gen/Abs. c) Abrir lentamente la válvula para permitir el ingreso de la solución, hasta que se escuche un burbujeo que indica que la solución se ha vaciado por completo. d) Desconectar tanque y almacenar la solución en un sitio seguro. 				

CAPÍTULO V EVALUACIÓN EXPERIMENTAL DEL SISTEMA DE REFRIGERACIÓN

5. EVALUACIÓN DEL SISTEMA DE REFRIGERACIÓN

En este capítulo se presentan los resultados obtenidos de la experimentación con el refrigerador solar intermitente. Las pruebas experimentales comenzaron el 27 de mayo del 2016 y terminaron el 23 de junio del 2016. De las 15 pruebas realizadas se obtuvieron 7 pruebas útiles (el resto de las pruebas, se presentaron fallas técnicas, como bloqueo de la válvula de expansión, fallas en el sistema eléctrico provocando pérdida de datos experimentales, entre otras causas) operando con la mezcla binaria NH₃-LiNO₃ trabajando con la concentración del 50% masa de refrigerante. Las temperaturas de agua del agua de condensación fueron: 20°, 25° y 30 °C. Las pruebas se realizaron siguiendo la metodología descrita en el capítulo 4. Lo cual consiste en dos días de generación de refrigerante (etapa de generación-condensación) y una noche para producir hielo (etapa de evaporación-absorción). Para realizar los balances de energía. tanto el consumo eléctrico del chiller o del ventilador, no fueron tomados en cuenta en los experimentos, esto con la finalidad de mantener variables fijas.

Para la evaluación del sistemas se calcularon los siguientes parámetros: el coeficiente de operación (COP), y la eficiencia del evaporador (η_{ev}).

PERFILES DE IRRADIANCIA

La producción de refrigerante se realizó en dos días. En el gráfico 5.1 se muestra los perfiles de Irradiancia para todas las pruebas. Se observa un comportamiento parabólico, de ascenso y descenso donde existe un máximo que corresponde al medio día solar, mayor a 1000 W/m². Se observan anomalías o puntos que se salen de la tendencia, esto significa que hubo nubosidad parcial.

Etapa de generación-condensación.

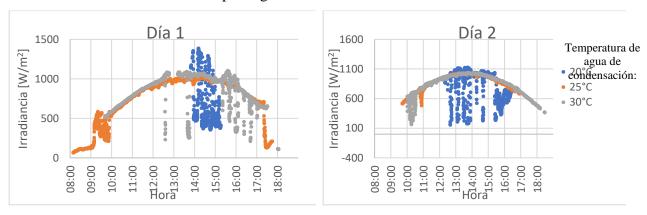
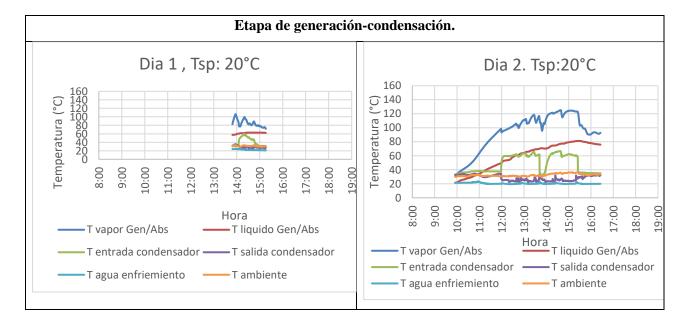
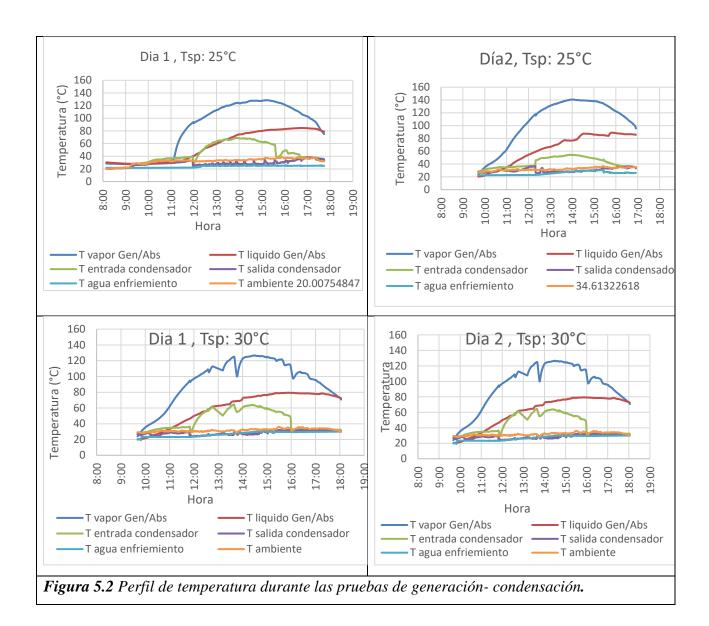
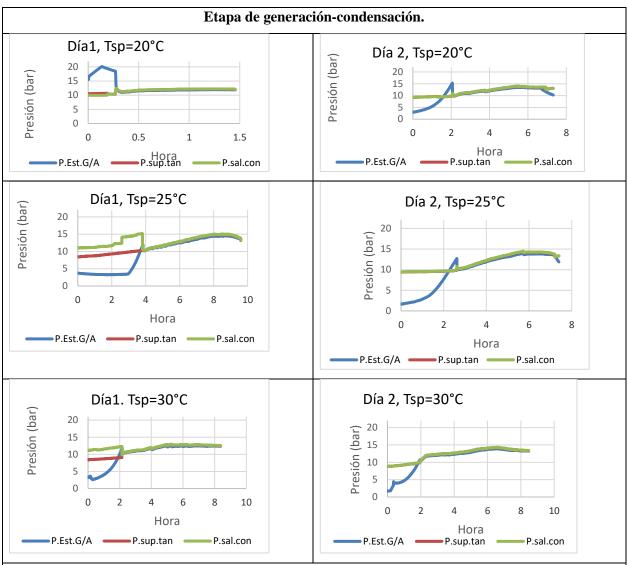




Figura 5.1 Perfil de irradiancia durante pruebas de generación-condensación.

PERFILES DE TEMPERATURA: 1ª y 2ª prueba de generación condensación.


En la **Figura 5.2,** se puede observar que es en el tubo receptor donde se presentan mayores temperaturas, esto debido que es el receptor directo de la energía solar, concentrada por el CPC. La temperatura a la salida del condensador es baja con respecto a la temperatura de entrada, esto debido a que se encuentra rodeado por agua a una temperatura deseada (T.sp= 20°C, 25°C y 30°C).

PERFILES DE PRESIÓN: 1ª y 2ª prueba de generación condensación.

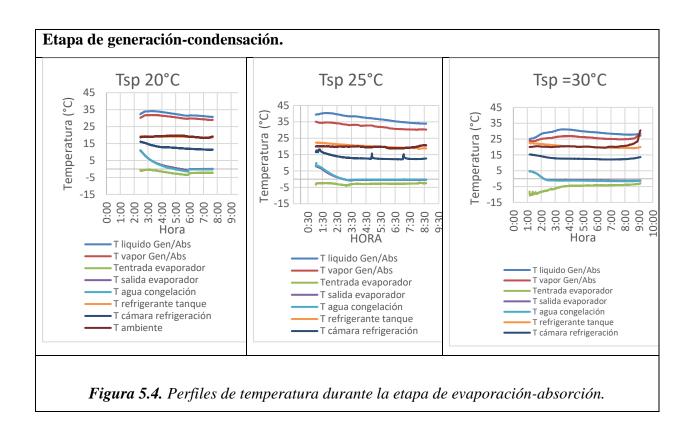
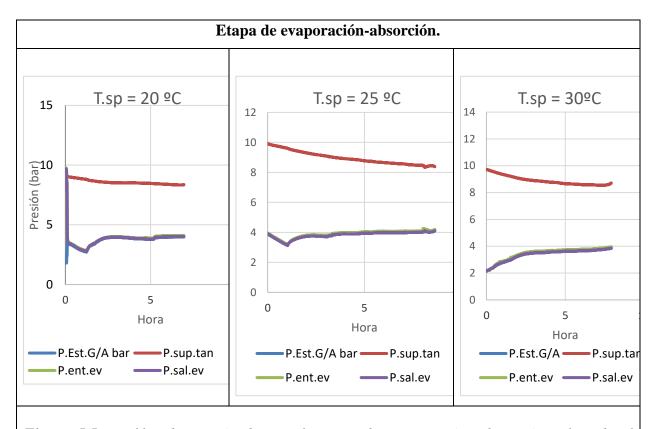

Se puede observar que la presión dentro del generador-absorbedor va aumentando conforme la energía solar va incidiendo en él, hasta al momento de apertura de la válvula entre el generador-absorbedor, es cuando la presión del generador/absorbedor se comporta de manera similar a la presión del tanque. La presión dentro del tanque de almacenamiento de amoniaco, prácticamente tienen el mismo comportamiento que la presión a la salida del condensador, esto porque prácticamente no hay una caída de presión considerable. El picó corresponde a la presión máxima que se alcanza en el generador.

Figura 5.3. Perfiles de presión durante la primer y segundo día de generación-condensación a diferentes temperaturas de agua de condensación.


PERFILES DE TEMPERATURA: prueba de evaporación - absorción.

En la **Figura 5.4,** se puede observar que es en el tubo receptor donde se presentan mayores temperaturas, esto debido a que la absorción del NH₃ en la mezcla LiNO₃-NH₃ es un proceso exotérmico. Se puede apreciar que la temperatura dentro del tanque de almacenamiento de NH₃, se encuentra a condiciones ambientales. La temperatura a la salida del evaporador se comporta similar a la del agua a enfriar como consecuencia de un intercambio de energía entre ellos. Y la temperatura más baja es la temperatura de evaporación.

PERFILES DE PRESIÓN: prueba de evaporación - absorción.

En la **Figura 5.5** Se puede observar que en esta etapa la presión del tanque de almacenamiento de amoníaco es mayor que la del resto. Esto debido a que se encuentra en la parte anterior de la válvula de expansión. Tanto la presión del generador-absorbedor como en la salida y entrada del evaporador se comportan similar. Teniendo un valor cercano a los 4 bar.

Figura 5.5. Perfiles de presión durante la etapa de evaporación- absorción utilizando el refrigerante condensado a diferentes temperaturas de agua de condensación.

5.1. PRUEBAS EXPERIMENTALES A TRES DIFERENTES TEMPERATURAS DE CONDENSACIÓN (20°, 25° Y 30 °C)

La tasa de producción de refrigerante durante la etapa de generación está ligada a la temperatura del medio que rodea al serpentín condensador, en este caso agua. En dicho trabajo se controló a: 20°C, 25°C y 30°C. Entre menor sea la temperatura de agua de condensación mayor es la tasa de producción de refrigerante. Para ello se calculó la pendiente para el primer día de generación, utilizando 5 puntos, para todas las mediciones, de ahí se tomó el promedio de las pendientes calculadas **Figura 5.6.** Cabe mencionar que el valor de la pendiente eran variables.

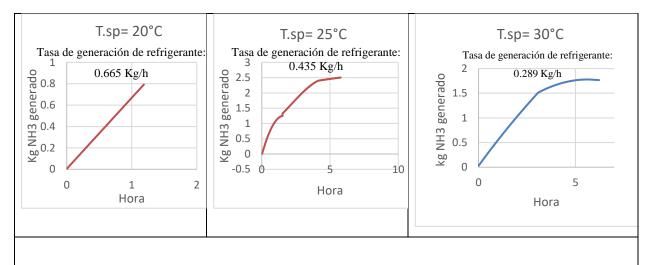
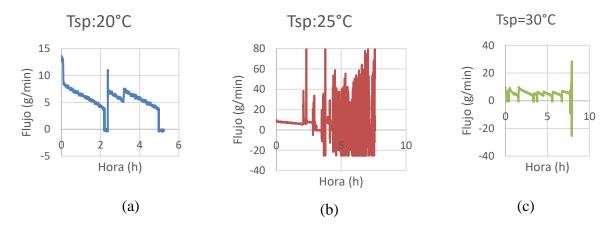


Figura 5.6. Masa de amoniaco generada durante la etapa de generación-condensación.

En la tabla 5.1 se muestra el valor de masa generada, así como el tiempo de generación de refrigerante.

Tabla 5.1. Masa de amoniaco generado.					
Dia de	Dia de Temperatura del		Duración de	Duración	
generación	agua de	generado	tiempo de	total de	
	condensación:		generación(h):	prueba (h):	
DIA 1	20°C	0.79	1.19	1.39	
DIA 2	20°C	1.81	4.45	6.68	
DIA 1	25°C	2.64	5.78	9.52	
DIA 2	25°C	0.63	4.61	6.98	
DIA 1	30°C	1.84	6.22	8.79	
DIA 2	30°C	0.95	6.53	8.46	

5.2. BALANCE DE ENERGÍA DEL RSI: ETAPA DE EVAPORACIÓN


Partes del RSI fueron aisladas con espuma aislante (armaflex), entre ellos tuberías y equipos del circuito principal, para minimizar pérdidas al ambiente.

La energía transferida por el refrigerante durante la etapa de evaporación se muestra en la **Tabla 5.2**.; esta depende de la cantidad de amoniaco con la cual comienza esta etapa.

Tabla5.2. Balance de energía: Etapa de evaporación.

Refrigerante	Duración de	Refrigera	nte (NH3)				
condensado	prueba de				Agua		
		Masa		T.inicial		Hielo	% Hielo
a:	Evaporación	inicial	Energía	Agua	Energía	Formado	formado
°C	h	Kg	KJ	°C	KJ	[Kg]	
20.00	5.24	2.60	3322.57	11.15	0.00	0.01	0.22
25.00	7.60	3.27	4177.72	8.08	1271.80	1.81	40.22
30.00	7.96	2.79	3588.16	4.83	0.00	4.50	100.00

La duración de la etapa fue variable, ya que el flujo se manipulaba de manera manual. Como se muestra en la **figura 5.7** donde se observan las fluctuaciones que tenía el flujo de refrigerante, estas fluctuaciones podrían deberse a la obstrucción en la válvula de expansión, válvula responsable del efecto frigorífico.

Figura 5.7. Flujo de refrigerante contra tiempo, durante etapa de evaporación. (a), (b), (c) utilizando el refrigerante condensado en la etapa de condensación a 20°C, 25°C y 30°C, respectivamente.

Se tuvieron diferentes temperaturas iniciales del agua a congelar (**Tabla 5.2**), debido a que se purgaron las tuberías, provocando el enfriamiento del refrigerante contenido en el evaporador, y esto provocando a su vez, el enfriamiento del agua contenida en la parte externa del evaporador.

Esto indica que el refrigerante encerrado en el evaporador cumple con la función de enfriar, a pesar de no existir un flujo de refrigerante atravesando por este.

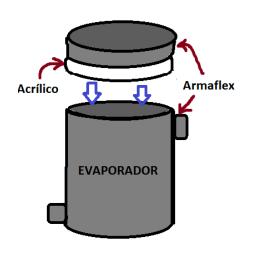


Figura 5.8. Arreglo de aislante en el evaporador.

Cabe mencionar que la mejor prueba de evaporación fue la tercera prueba (utilizando el refrigerante condensado a 30°C), porque el agua a congelar ya tenía una temperatura cercana a los 5°C, además en esta etapa se procuró manejar un flujo de refrigerante constante cercano a 5 g/min. También se mejoró el aislamiento del evaporador; se colocó una tapa de acrílico, como se muestra en la **Figura 5.8**.

También se colocó un ventilador para bajar la temperatura dentro del tubo generador/absorbedor.

Es por eso que en esta prueba se consiguió obtener el 100% de hielo, a diferencia de las otras pruebas que no tuvieron estás ventajas.

5.3. BALANCE DE ENERGÍA DEL RSI: ETAPA DE GENERACIÓN, CONDENSACIÓN, EVAPORACIÓN Y ABSORCIÓN.

Los balances de energía en cada etapa se muestran en la **Tabla 5.4**. Donde la energía de absorción es la de menor magnitud respecto a las demás etapas. El resto de información de cada balance se puede consultar en el anexo I.

Tabla 5.3. Balance de energía de las diferentes etapas del RSI.

	Evaporación	Absorción	Generación	Condensación
Refrigerante				
condensado	Refrigerante	Mezcla	Mezcla	Refrigerante
a:	Energía	Energía	Energía	Energía
°C	KJ	KJ	KJ	KJ
20	3322.57	173.17	2773.16	3125.15
25	4177.72	331.23	6436.93	3898.10
30	3588.16	543.36	5763.34	3308.42

Para el cálculo del COP se utilizó la siguiente formula:

$$COP = \frac{E_W}{E_R}$$

 E_W : Energía para el congelamiento del agua.

 E_R : Energía de generación de refrigerante

Se obtuvo un COP de 0.24 para el mejor caso, para el ciclo de refrigeración con refrigerante condensado a 30°C. Su valor es mayor al de las otras dos pruebas, debido a lo antes ya mencionado, que tuvo mejoras de aislamiento y se disminuyó la presión dentro el tubo generador/absorbedor por medio de convención forzada.

La eficiencia del evaporador se calculó con la siguiente formula:

$$n_{ev} = \frac{E_w}{E_{ev}}$$

 E_w : Energía de congelamiento de agua.

 E_{EV} : Energía de evaporación de refrigerante.

Donde se observa que la mejor eficiencia corresponde al caso de la evaporación del refrigerante utilizando refrigerante generado a 30°C de temperatura de agua de condensación.

La relación de hielo formado con respecto al amoniaco utilizado.

$$R_{CW} = \frac{m_{hielo}}{m_{NH_3}}$$

 m_{hielo} : Masa de hielo formado.

 m_{NH_3} : Masa de amoníaco utilizado.

Comparado con los evaporadores analizados por Carlos Solorio (Solorio Quintana, 2012) **evaporador 1** (serpentín de aluminio de diámetro de ¼".y longitud de 3m) y **evaporador2** (serpentín de aluminio de diámetro de ¼".y longitud de 4.3 m), cuyas eficiencias son 0.422 y 0.478, respectivamente; tienen eficiencias mayores al estudiado en esta tesis, al igual que los COP. Se tiene un Rcw mayor durante la prueba de evaporación utilizando el refrigerante generado a 30°C de agua de condensación.

Tabla 5.4. COP, n_{ev. Rcw} del refrigerador

= 110 111 0 0 = 1, 110, New 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Refrigerante condensado				
a:				
°C	COP	n_{ev}	Rcw	
20	0.08	0.06	0.75	
25	0.20	0.30	1.5	
30	0.24	0.39	1.625	
Evaporador 1	0.032	0.422	0.66	
Evaporador 2	0.03	0.478	0.85	

CAPÍTULO VI Conclusiones y recomendaciones

CAPÍTULO VI. CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

A partir de los resultados obtenidos del proyecto de tesis, se puede concluir que los objetivos se cumplieron de manera satisfactoria. A continuación, se presentan las principales conclusiones técnicas:

- ✓ Se reacondiciono y se concluyó el armado general del refrigerador solar intermitente (RSI) que opera con la mezcla amoniaco- nitrato de litio como se muestra en el Anexo F.
 - Se remplazaron las tuberías y accesorios de acero al carbón por acero inoxidable para evitar problemas de corrosión de las líneas de flujo y ensuciamiento de la mezcla de trabajo.
 - Se instaló un nuevo tanque de condensado de acero inoxidable para el almacenamiento del refrigerante generado, aumentando su capacidad volumétrica de 4 a 7 litros, e implementando mirillas para visualización del nivel de refrigerante producido.
 - Se instaló el nuevo evaporador fabricado completamente en aluminio, con la finalidad de aumentar el coeficiente global de transferencia de calor y mejorar la efectividad de este equipo, siendo esto fundamental, debido a que en este equipo es donde se lleva a cabo el proceso de enfriamiento y producción de hielo.
 - Se diseñó, construyó e instaló un nuevo condensador tipo serpentín fabricado en acero inoxidable, para evitar corrosión y ensuciamiento al estar en contacto con el agua de la red.
- ✓ Se instrumentó y automatizó el Refrigerador Solar Intermitente, con sensores electrónicos de alta precisión y exactitud, mostrando un correcto funcionamiento al momento del arranque, estabilización y paro del sistema.

A partir del capítulo 4 se pude concluir:

- ✓ Se realizaron pruebas experimentales a tres diferentes temperaturas de condensación (20°, 25° y 30 °C) con la finalidad de evaluar el desempeño del evaporador al momento de llevarse a
- ✓ cabo la producción de hielo, mostrando que es posible generar un máximo 1.8 kg. de refrigerante en un periodo de 6.2 horas de operación. Abriendo la posibilidad de utilizar agua para el proceso de condensación.
- ✓ La máxima capacidad de enfriamiento del sistema fue de 4177.7 kJ con una temperatura de evaporación de -5°C, obteniendo una producción máxima de 5 kg de hielo.
- ✓ El máximo coeficiente de operación COP obtenido en el sistema fue de 0.24, con una temperatura de condensación de 30°C, una temperatura de generación cercana a los 80°C y una presión de 13 bar.
- ✓ El sistema de refrigeración solar (SRS) mostro estabilidad y funcionalidad al operar durante las etapas generación/condensación y evaporación/absorción, mostrando ser una aceptable opción para satisfacer la demanda de producción de frío en zonas del país donde no se cuenta con suministro eléctrico o comunidades alejadas de las ciudades, pero se requiere realizar un análisis de costos.

6.2. RECOMENDACIONES

De acuerdo con los resultados observados durante la realización del proyecto de tesis se proponen las siguientes recomendaciones técnicas, con las cuales se le pueda dar continuidad al proyecto.

- ❖ Colocar el tubo de nivel a la altura de la boquilla de la salida del tanque de almacenamiento de refrigerante líquido, con el fin de poder medir volúmenes pequeños de NH₃ durante la etapa de generación.
- * Cambiar los anillos de naylamid, por unos de algún material resistente a la radiación solar.
- ❖ Automatizar la apertura de la válvula V1 (salida del generador/absorbedor) para que se abra cuando la presión en el Gen/Abs (P1) sea mayor que la que se tiene en el tanque (P3).
- Colocar sensores de temperatura en el evaporador, en los diferentes tubos a distintas profundidades.
- Mejorar el diseño del evaporador; colocar mamparas para guiar al flujo de refrigerante e incrementar el tiempo de residencia.
- Mejorar el diseño de aperturas de tapas de acrílico del concentrador parabólico compuesto CPC.

Respecto al sistema de adquisición de datos, se recomienda:

- Mejorar la interfaz gráfica del programa automático de registro y almacenamiento de datos del SRS.
- ❖ Mejorar el programa en la parte del control de apertura de la válvula que da pauta al inicio de la prueba de evaporación para que funcione no importunando si las horas de apertura y cierre se encuentran en distintos días.

ANEXOS

	Características del equipo principal.	Anexo A
>	Características del equipo auxiliar.	Anexo B
>	Equipo de control y monitoreo.	Anexo C
	Propiedades del refrigerante y el absorbente utilizados en el sistema	Anexo D
	de refrigeración.	
	Diagrama de instrumentación del refrigerador solar intermitente.	Anexo E
>	Descripción de las actividades realizadas para poner puesta a punto	Anexo F
	al sistema de refrigeración.	
>	Propiedades de la mezcla NH ₃ -LiNO ₃	Anexo G
>	Cálculo de parámetros del refrigerador solar intermitente	Anexo H
>	Balance de energía del refrigerador solar intermitente (NH3-	Anexo I
	LiNO3)	
	Balance de exergía del refrigerador solar intermitente (NH3-	Anexo J
	LiNO3)	
	Diseño del condensador del refrigerador solar intermitente (NH3-	Anexo K
	LiNO3)	
	Formatos de registro	Anexo L
	Nivel de madurez tecnológica	Anexo M

Anexo A

Características del equipo principal:

	Concentrador parabólico compuesto:	Tabla A-1
>	Tubo receptor Generador/Absorbedor:	Tabla A-2
>	Condensador:	Tabla A-3
>	Tanque de almacenamiento para el refrigerante liquido:	Tabla A-4
>	Válvula de expansión:	Tabla A-5
>	Evaporador:	Tabla A-6

ANEXO A. CARACTERÍSTICAS DEL EQUIPO PRINCIPAL:

Tabla A- 1. Características del Concentrador Parabólico Compuesto (CPC).

Fuente: Cervantes Contreras Ángel Uriel, "Diseño y construcción de un evaporador para la evaluación de un refrigerador solar", Universidad Veracruzana, Tesis de maestría, 2012.

Tabla A- 2. Características del tubo receptor Generador/Absorbedor.

Material	nerador /Absorbedor (GEN/ABS) Acero inoxidable			
Diámetro nominal	6 "			
Diámetro externo	168.3 mm			
Espesor	4.6 o 5.6 mm			
Cédula	40			
Presión de operación	15 bar			
Capacidad	27.36 L			
Longitud	1.5 m			
Carga (80% capacidad)	22.48 Kg mezcla LiNO3-NH3 al 50% masa			
Características de la pintura del recubrim				
Marca	SOLKOTE HI SORB-II			
Absorbidad	0.88- 0.94			
Emisividad	0.25-0.49			
Tolerancia a altas temperaturas	Hasta 537 °C			
Características del tubo aletado dentro del				
Material	Tubo aletado de acero inoxidable 316			
Longitud	≈1.56 m			
Diámetro	12.7 mm			
Diámetro de perforaciones	4.7 mm			
Espacio entre cada perforación	10 cm			

*Una característica necesaria del receptor es que éste debe contar con una alta absorbancia para la radiación solar y al mismo tiempo, debe conducir efectivamente el calor absorbido hacia el fluido de trabajo, sin embargo, debido que la mayoría de los materiales utilizados no cuentan con esta característica, tienen que ser revestidos con una superficie selectiva. Las superficies selectivas son recubrimientos que combinan una alta absortancia para la radiación solar y una baja emitancia para la radiación en el infrarrojo térmico. Fuente: Santos González Iris, "Evaluación experimental de un concentrador parabólico compuesto para aplicaciones de mediana temperatura", Tesis de Maestría, UNAM, 2010.Fuente: Cervantes Contreras Ángel Uriel, "Diseño y construcción de un evaporador para la evaluación de un refrigerador solar", Universidad Veracruzana, Tesis de maestría, 2012.

Tabla A- 3. Características del condensador.

Condensador helicoidal		
Forma	Helicoidal	
Numero de módulos	2	
Material	Acero inoxidat	ole
Diámetro interno	0.755 cm	
Diámetro externo	0.96 cm	
Espesor	0.2 cm	
Cédula	40	
Presión de operación	20 bar	
No. de modulo	Módulo 1	Módulo 2
Diámetro de espira	20 cm	20 cm
No. de espiras	10	8
Longitud total aprox.	6.38 m	5.13 m
Longitud total de condenador	11.51 m	

Tabla A- 4. Características del tanque de almacenamiento para el refrigerante líquido...

Tubia A- 4. Caracteri	abia A-4. Caracteristicas dei tanque de atmacenamiento para et refrigerante tiquido				
	Tanque de almacenamiento para el refrigerante líquido				
	Material	Acero inoxidable			
	Cédula	40			
	Presión de diseño	20 bar			
	Presión de operación	12 bar (etapa generación)			
	Espesor	5 mm			
	Altura externa	50 cm			
	Radio externo	8.48 cm			
	Altura interna	49 cm			
	Radio interno	7.98 cm			
	Capacidad	9.81 L			
	Propiedades del tubo de nivel				
	Material	Vidrio termo templado			
	Soporta temperaturas cercanas a los 200 °C	С			
	Soporta presiones cercanas a los 50 bar.				
	Diámetro interior	3 mm			
	Diámetro exterior	1.55 cm			
	Espesor	5 mm			

Tabla A-5. Características de la válvula de expansión.

	Válvula de expansión		
	Marca	Swagelok®	
	Modelo	SS-4MG2-NEMHL	
0 2/0/900 0 0	Tipo	Tipo aguja con vástago de acero inoxidable con obturador cónico.	
	Material	Acero inoxidable 316	
	Tipo de conexión	NPT macho	
	Tamaño de conexión	1/4"	
	Tamaño del orificio	1.42 mm	
	Rango de temperatura	-23 a 204 ℃	
	Presión máxima	68.9 bar	
	Coeficiente de caudal	0.03	

Fuente: https://www.swagelok.com/downloads/webcatalogs/EN/MS-01-142.PDF, Fecha de consulta: 25 de octubre del 2016

Tabla A- 6. Características del evaporador.

Evaporador (Lado Coraza)			
Material	Aluminio		
Cédula	40		NA.
		660	
Presión de operación	12 bar	666	23
Espesor	5 mm		
Altura (parte externa)	32.75 cm		MARIE MAIN DE
Diámetro (parte externa)	26.3 cm		** ** ** ** ** ** ** **
Volumen (externo)	17.79L		
Volumen (interno)	6.8 L		
Masa	15.18 Kg		
Fluido de trabajo	R-717 (amoniaco)	7	
Evaporador (LadoTubos)	•		
Material	Aluminio		
No. tubos	18		
Diámetro	3.46 cm		
Profundidad	32.12 cm		
Vol. por tubo	0.30 L		
Volumen total	5.4 L		
Fluido por la parte interna de los tubos	Agua	Varillas	
Volumen de todos los tubos	5.4 L	No. de varillas	18
Área externa de transferencia (Amoniaco)	0.047 m ²	Material	Acero inox 3
Área interna de transferencia (Agua)	0.036 m^2	Masa promedio	0.3 Kg

Anexo B

CARACTERÍSTICAS DEL EQUIPO AUXILIAR:

Tanque para agua de enfriamiento:	Tabla B-1
Enfriador:	Tabla B-2
Bomba:	Tabla B-3
Cámara frigorífica del evaporador:	Tabla B-4
Válvula de alivio:	Tabla B-5
Actuador eléctrico:	Tabla B-6

Anexo B. Características del equipo auxiliar

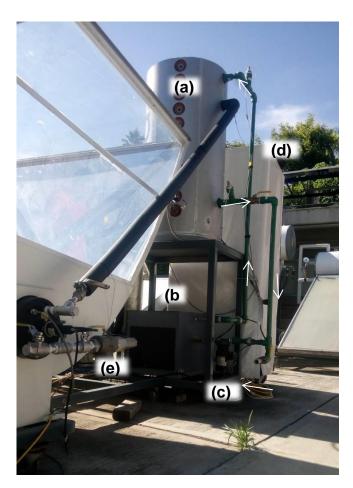
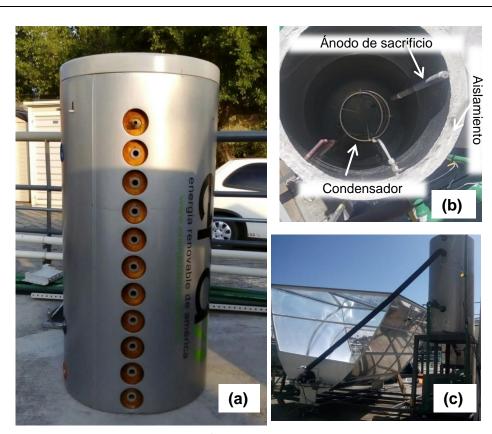


Figura B-1. Equipo auxiliar, (a) tanque de agua de enfriamiento o condensación, (b) enfriador, (c) bomba, (d) unidad de control y monitoreo y (e) válvula de alivio.

ANEXO C. CARACTERÍSTICAS DEL EQUIPO AUXILIAR.


El refrigerador solar intermitente (RSI) tiene distintos elementos que le ayudan a tener condiciones controladas, automatizadas y seguras.

El sistema de control de temperatura del agua de condensación tiene como objetivo mantener fija la temperatura de agua de enfriamiento durante la etapa de generación-condensación, con fines de manejar condiciones controladas de operación durante la experimentación y está integrado por:

- ➤ Tanque para agua de enfriamiento con volumen constante
- ➤Bomba de recirculación de agua
- ➤ Enfriador (chiller)
- ➤ Sensores de temperatura, un ordenador y un conjunto de elementos electrónicos.

Sus características se encuentran descritas en las *Tablas B-1*, *B-2 y B-3*.

Tabla B- 1. Tanque para agua de enfriamiento.

a) Tanque para agua de enfriamiento, **b**) parte interna del tanque, **c**) tanque acoplado al sistema de refrigeración

Tanque para agua de enfriamiento		
Volumen total	124 L	
Volumen de operación	72 L	
Material de la pared interna		
(se encuentra en contacto con el agua)	Acero inox 316	
Aislante	Espuma de poliuretano	
Espesor de aislante	1 1/2 "	
Material de la pared externa	Acero inox pintado	

Tabla B- 2. Características del enfriador.

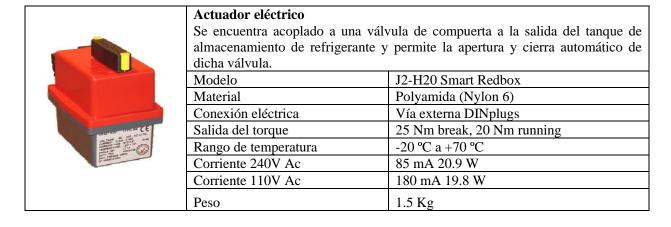

Enfriador Su función en el sistema es enfriar el flujo de agua recirculada que proviene del tanque de agua de enfriamiento.		
Modelo	KR60A	
Serie	823102	
Marca	MFD BY Polyscience corp. Niles. ill. 6064805	
Potencia de enfriamiento	1.8 kW	

Tabla B- 3. Características de la bomba.

	Marca	MARCH MFG., INC
	Modelo	809HS
	Temperatura máxima	121 °C
	de agua	121 0
	Presión interna	10.34 bar
Tell 4	máxima	10.5 1 541
	RPM	3400
Bomba	НР	1/25
Su función es recircular el agua almacenada dentro		
del tanque de almacenamiento y hacerla pasar por	GPM máximo	5.3
el enfriador en la etapa de condensación.		

Fuente: Especificaciones de la bomba, Documento: Instructions.pdf Disponible: http://powersbrewery.com/wp-content/uploads/2013/02/Instructions.pdf Fecha de consulta: 26 de octubre del 2016.

Tabla B- 4. Características del actuador eléctrico.

Tabla B- 5. Características de la cámara frigorífica del evaporador.

A L

Cámara frigorífica

Dentro de esta cámara, se instala el evaporador, con el fin de evitar pérdidas de calor al ambiente y producir las barras de hielo.

Características de la cámara frigorífica			
Material	Acero inoxidable ASTM 304		
Espesor	1/16 "		
Volumen	0.0735 m^3		
Característica de	l aislante utilizado		
Material	Espuma elastomérica a base de		
Material	caucho sintético flexible.		
Espesor	2 1/4"		
Marca	Armaflex		
Conductividad térmica	0.038 W/m-K a 0°C		
Rango de temperatura a los que trabaja	-40 a 105°C		

Fuente: Cervantes Contreras Ángel Uriel, "Diseño y construcción de un evaporador para la evaluación de un refrigerador solar", Universidad Veracruzana, Tesis de maestría, 2012.

Tabla B- 6. Características de la válvula de alivio.

Válvula de alivio

Durante la etapa de generación/condensación, se trabaja a presiones cercanas a los 12 bar. Si por alguna circunstancia llegara a superar los 25 bar, la válvula de alivio instalada a la salida del generador se abre para liberar la presión, dejando salir una pequeña cantidad vapor amoniaco, hasta que alcance una presión segura.

Marca	Vasesa
	8000F0- MDG-
Modelo	S41
Material	Acero
Orifico	D
Pres. calib.	25 bar
Pres. prueba	25 bar
Sobre presión	10%
Contra pres.	Atm
Cap	878 kg/h
Tamaño	1 ½ " x 1

Anexo C

EQUIPO DE CONTROL Y MONITOREO

ANEXO C. EQUIPO DE CONTROL Y MONITOREO

Para evaluar el desempeño y conocer el comportamiento del refrigerador solar intermitente, se utilizó equipo de instrumentación para determinar cuantitativamente parámetros relevantes: temperatura, presion, flujo másico, densidad e irradiancia.¹⁶

Los instrumentos que se utilizaron en el sistema de refrigeración se mencionan en la *Tabla C-1*.

Tabla C-1. Instrumentación del Refrigerador Solar intermitente.

Instrumentos de medición	Cantidad y tipo de instrumento		Rango de operación	Exactitud	
	3	RTD PT100	-180 a 520 °C	± 0.2 °C	
Temperatura	13	RTD PT1000	-180 a 520 °C	± 0.2 °C	
Temperatura	1	Termistor	-40 a 150 °C	± 0.1 °C	
	5	Termopares tipo K	-200 a 1250 °C	± 1%	
Presión	5	Transductores de presión piezoeléctrico ***	0 a 16 bar	± 1.0 %	
2 Manómetros		0 a 21 bar	± 0.5 %		
Densidad	1	Sensor tipo coriolis	0 a 5000 kg/m ³	± 0.1 %	
Flujo	1	bensor upo corrons	0 a 2 kg/m	± 0.1 %	
Radiación solar global **	1	Piranómetro espectral clase II *	0 a 2000 W/m ²	± 2 %	

^{*} Para conocer con mayor precisión la cantidad de energía que incide en el colector (CPC) el pirómetro se coloca a la misma inclinación que este.

Fuente:Santos González Iris, "Evaluación experimental de un concentrador parabólico compuesto para aplicaciones de mediana temperatura", Tesis de Maestría, UNAM, 2010.

http://mx.omega.com/temperature/Z/pdf/z204-206.pdf, Fecha de consulta: 29 de octubre del 2016.

http://www.dewit-mexico.com/pdf/manometros/2000SS_115mm.pdf, Fecha de consulta: 29 de octubre del 2016.

http://www.kippzonen.com/Product/11/CMP3-Pyranometer#.WBU63i0rLIU Fecha de consulta: 29 de octubre del 2016

Inzunza Dominguez Luis Alberto, "Montaje, puesta en operación y evaluación preliminar de un sistema de aire acondicionado solar tipo horizontal operando la mezcla LiNO3-NH3", Tesis de Maestría, UNAM, 2013.

^{**}El piranometro tiene salida de voltaje; para calcular la irradiancia se usa la siguiente formula: Irradiancia = Voltaje salida/k, donde k es la contante de cada de calibración del piranómetro (calibración k= 13.07x10-6 V/Wm-2).

^{***}Los sensores utilizados en este sistema operan bajo el efecto piezoeléctrico (o efecto eléctrico por presión), descubierto por Pierre Curie en 1880. Estos sensores de presión también llamados transductores de estado sólido, funcionan basados en el principio de que un potencial eléctrico se genera en una sustancia cristalina cuando esta se somete a una presión mecánica.

NOTA: Cada uno de los sensores fueron calibrados para asegurar objetividad de los datos obtenidos, a excepción de los manómetros y del piranómetro. Sus ecuaciones de calibración se muestran en Anexo 3.

¹⁶ Fuente: Jiménez García José Camilo, "Evaluación experimental de un sistema vertical de aire acondicionado por absorción operando con la mezcla nitrato de litio-amoniaco", Tesis de Maestría, UNAM ,2014.

Para **registrar**, **almacenar** y **monitorear** en tiempo real la información proporcionada por los sensores se usaron los siguientes elementos:

- ➤ Instrumentos de medición (*Tabla C-1*).
- > Adquisidor (con tarjetas multiplexoras o digitales).
- > Computadora con el software VEE Pro 9.3 instalado.

Tabla C- 2. Elementos utilizados para el sistema de control y monitoreo de la instrumentación del Refrigerador Solar intermitente.

Tarjeta multiplexora y	Tarjeta multiplexora: Cuenta con 20 canales de medición de voltaje y 2 de corriente. En estas tarjetas se conectan los instrumentos de medición que envían señales analógicas, que después adecuan para transformarlo en un dato que pueda ser reconocido y registrado por un sistema digital.	Marca Agilent Technologies, modelo módulo multifunción 34907A
Tarjeta 1	<i>Tarjeta digital:</i> Tiene canales para entrada y salida digital, un totalizador de 100 kHz y dos salidas analógicas de ±12 V. Esta tarjeta sirve para automatizar y controlar, algunos procesos del sistema de refrigeración.	
Adquisidor de datos	Es un equipo electrónico que permite capturar y almacenar datos. En el, se introducen las tarjetas multiplexoras o digitales (con capacidad para tres tarjetas). También puede conectarse a una computadora con un software especial que permite el tratamiento de datos, registrados por el adquisidor.	Marca Hewlett Packard, modelo Agilent 34970A
Software	En este software se puede elaborar el programa de adquisición de datos, crear bases de datos con esta información, además de que permite crear una interfaz para visualizar en tiempo real los registros de las variables y sus tendencias de forma gráfica (tiene más funciones, pero sólo se mencionan, las que se utilizaron en este trabajo de investigación)	Keysight VEE Pro Software: Agilent VEE Pro 9.3

Fuente: https://www.jmi.com.mx/tarjetas-de-adquisicion-de-datos.html ,Fecha de consulta: 25 de enero del 2017, Moreno Quintanar Guadalupe, "Comparación del funcionamiento de un refrigerador solar para producción de hielo operando las mezclas NH₃-LiNO₃ y NH₃-LiNO₃-H₂O". Tesis de Maestría, UNAM (2010).

Anexo D

PROPIEDADES DEL REFRIGERANTE Y EL ABSORBENTE UTILIZADOS EN EL SISTEMA DE REFRIGERACIÓN

Características del refrigerante: Amoniaco [NH3]. D-1

Características del absorbente: Nitrato de litio [LiNO₃]. D-2

ANEXO D. PROPIEDADES DEL REFRIGERANTE Y EL ABSORBENTE UTILIZADOS EN EL SISTEMA DE REFRIGERACIÓN

D-1 Características del refrigerante: Amoniaco [NH₃]

Tabla D- 1. Propiedades de amoniaco.

Peso molecular		17.02 g/mol	
Gravedad específica *		0.59	
Volumen específico *		$1.43 \text{ m}^3/\text{kg}$	
Densidad de líquido a presión atmosfe	érica	686 kg/m^3	
Presión de vapor a 25 C		10.03 bar	
Viscosidad absoluta*		6.72 10 ⁻⁶ 1b _m / ft. s	
Velocidad del sonido en el gas*		415 m/s	
Calor específico *		2175 J/kg-K	
Relación calorífica específica [c p / c	v] *	1.3	
Conductividad térmica *		0.026 W/m °C	
Punto de ebullición a presión de satur	ación de 760 mm Hg	-33. 3 ℃	
Calor latente de evaporación en el punto de ebullición		1.373 MJ/Kg	
Punto de congelación o punto de fusión a 1 atm		-77. 7 ℃	
Calor de Fusión Latente *		332300 J/kg	
Temperatura crítica		132.5 ℃	
Presión Crítica		113.76 bar	
Volumen crítico		$0.00424 \text{ m}^3/\text{kg}$	
Temperatura de autoignición del NH3	3 gas	360 °C	
Potencial de agotamiento del ozono (C	ODP por sus siglas en inglés)	0	
Potencial de Calentamiento Global (GWP, pos sus siglas en		0	
ingles)		U	
Compatibilidad con otros materiales	Ataca materiales como son cobre, zinc, latón, hierro		
galvanizado, aluminio, cauch		ho y algunos plásticos **	
Facilidad de detección	El olor fuerte, irritante y penetrante del amoniaco		
1 actitude de detección	permite su fácil detección		
El amoníaco en altas concentraciones puede formar mezclas inflamables con el aire.			

^{*} Valores a 25°C y a presión atmosférica

Fuente: Propiedades del NH3, http://www.engineeringtoolbox.com/ammonia-d_971.html, Fecha de consulta: 31 de octubre del 2016., Compatibilidad del NH3 con otros materiales,

http://www.habonim.com/pdf/engineering/CORROSION_TABLE.pdf, Fecha de consulta: 31 de octubre del 2016, Propiedades del NH3, http://www.engineeringtoolbox.com/ammonia-d-1413.html, Fecha de consulta: 16 de enero del 2016

^{**}http://www.habonim.com/pdf/engineering/CORROSION_TABLE.pdf

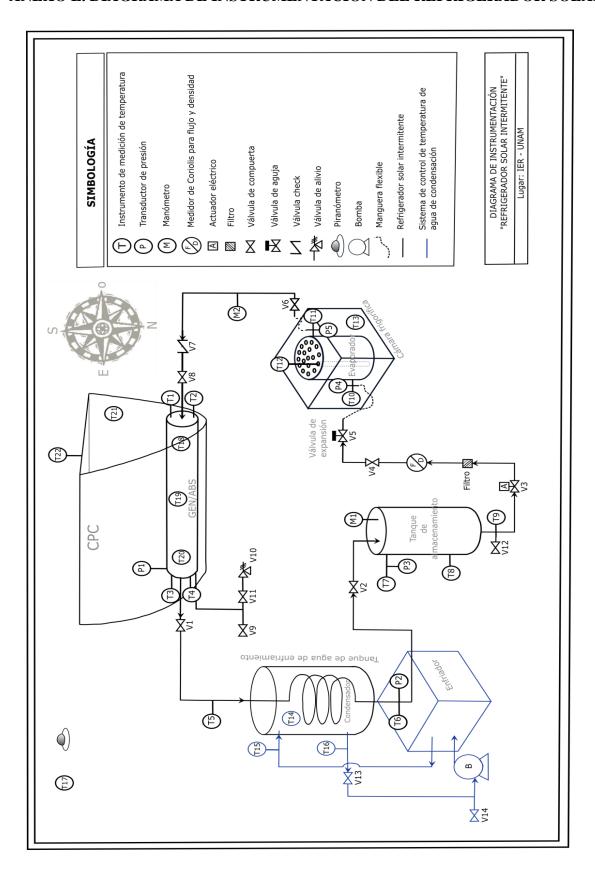
D-2 Características del absorbente: Nitrato de litio [LiNO₃]

Tabla D- 2. Propiedades del nitrato de litio.

Fórmula molecular	LiNO ₃
Estado de agregación	Sólido
Masa molecular	68.94 g/mol
Temperatura de ebullición	600 °C (se descompone)
Temperatura de fusión	261 °C
Densidad a 20 °C	2.38 kg/l
Solubilidad en agua a 20 °C	70 g /100 ml
Calor específico a 210 °C	1620.292 J/kg °C
Calor de formación estándar	-7 kJ/kg
Capacidad calorífica especifica	64 J/mol-K
Entropía molar estándar a 298 K	105 J/mol-K
Entalpía de formación estándar a 298 K	-7.007 kJ/g ó -482.3 kJ/mol
Entalpía molar de fusión	25.5 kJ/mol
	5.85 mPa·s a 277 °C
Viscosidad dinámica	2.95 mPa·s a 377 °C
	2.03 mPa·s a 427 °C
	113 mN / m a 300 °C
Tensión superficial	108 mN / m a 400 °C
	102 mN / m a 500 °C

Fuente: Propiedades del LiNO3, http://periodic-table-of-elements.org/SOLUBILITY/lithium_nitrate, Fecha de consulta: 07 de Diciembre del 2016. Inzunza Dominguez Luis Alberto, "Montaje, puesta en operación y evaluación preliminar de un sistema de aire acondicionado solar tipo horizontal operando la mezcla LiNO3-NH3", Tesis de Maestría, UNAM, 2013.

En cuanto a los riesgos para la salud, puede causar irritación en el tracto respiratorio por inhalación, enrojecimiento, comezón y dolor por contacto con la piel y es nocivo si se llega a ingerir¹⁷.


103

¹⁷ Inzunza Dominguez Luis Alberto, "Montaje, puesta en operación y evaluación preliminar de un sistema de aire acondicionado solar tipo horizontal operando la mezcla LiNO3-NH3", Tesis de Maestría, UNAM, 2013.

Anexo E

DIAGRAMA DE INSTRUMENTACIÓN DEL REFRIGERADOR SOLAR INTERMITENTE.

ANEXO E. DIAGRAMA DE INSTRUMENTACIÓN DEL REFRIGERADOR SOLAR

INTERMITENTE.

Tabla E- 1. Ecuaciones de calibración de los sensores instalados en el RSI.

Clave	Descripción	Ecuación de calibración	Unidad	Tipo de salida
T1, T.vap.Oes	Temperatura de vapor, Lado Oeste (Generador/absorbedor).	T = 1.0381 *R - 3.9724	°C	Ω
T2, T.liq.Oes	Temperatura de líquido, lado Oeste (Generador/absorbedor).	T = 2.6056*R - 263.74	°C	Ω
T3, T.vap.Est	Temperatura de vapor, lado Este (Generador/absorbedor).	T = 2.6948 *R - 263.61	°C	Ω
T4, T.liq.Est.	Temperatura de líquido, lado Este (Generador/absorbedor).	T = 2.608 *R - 264.04	°C	Ω
T5, T.ent.con	Temperatura a la entrada del condensador.	T = 0.2599*R - 260.35	°C	Ω
T6, T.sal.con	Temperatura a la salida del condensador.	T = 0.2624 *R - 262.81	°C	Ω
T7, T.sup.tan	Temperatura en la parte superior del tanque de NH3 líquido.	T = 0.2620*R - 261.05	°C	Ω
T8, T.inf.tan	Temperatura en la parte inferior del tanque de NH3 líquido.	T = 0.2605*R - 260.55	°C	Ω
T9, T.sal.tan	Temperatura a la salida del tanque de NH3 líquido.	T = 0.2617*R - 261.89	°C	Ω
T10, T.ent.ev	Temperatura a la entrada del evaporador.	T = 0.2629*R - 263.36	°C	Ω
T11, T.sal.ev.	Temperatura a la salida del evaporador.	T = 0.2615*R - 261.77	°C	Ω
T12, T.agua.ev	Temperatura del agua a congelar en el evaporador.	T = 0.2611*R - 261.69	°C	Ω
T13, T.cam.ev	Temperatura de la cámara frigorífica donde se encuentra el evaporador.	T = 0.2617*R - 261.87	°C	Ω
T14, T.agua.enfr	Temperatura de agua de enfriamiento.	T = 0.2596*R - 259.76	°C	Ω
T15, T.ent.agua.E nfr	Temperatura de salida del agua de enfriamiento al tanque donde se encuentra sumergido el condensador.	T = 0.2606*R - 260.69	°C	Ω
T16, T.sal.agua.E nfr	Temperatura de entrada del agua de enfriamiento al tanque donde se encuentra sumergido el condensador.	T = 0.2605*R - 260.56	°C	Ω
T17, T.amb	Temperatura ambiente.	T = 0.2609*R - 260.95	°C	Ω
T18, T.rec.Oest	Temperatura en la superficie del tubo receptor, entrada, lado Oeste(Generador/absorbedor).	Se mide directamente con el adquisidor	°C	V
T19, T.rec.mit	Temperatura en la superficie del tubo receptor, parte media (Generador/absorbedor).	Se mide directamente con el adquisidor	°C	V
T20, T.rec.Est	Temperatura en la superficie del tubo receptor, salida, lado Este (Generador/absorbedor).	Se mide directamente con el adquisidor	°C	V
T21, T.lam.cpc	Temperatura de la lámina reflectora del CPC.	Se mide directamente con el adquisidor	°C	V
T22, T.cub.cpc	Temperatura de la cubierta de vidrio del CPC.	Se mide directamente con el adquisidor	°C	V
P1, P.Est.G/A	Presión dentro del tubo receptor (Generador/Absorbedor).	P = 2158.2 * (V/ 216.53) - 8.7084	bar	V

P2, P.sal.con	Presión a la salida del condensador.	P = 2161.3 * (V/216.19) - 8.6163	bar	V
P3, P.sup.tan	Presión en la parte superior del tanque de almacenamiento del refrigerante líquido.	P = 2169.7 * (V/216.35) - 8.6256	bar	V
P4, P.ent.ev	Presión a la entrada del evaporador.	P = 2180.8 * (V/216.07) - 8.6292	bar	V
P5, P.sal.ev.	Presión a la salida del evaporador.	P = 2175.3 * (V/216.6) - 8.6557	bar	V
F, F.refr	Sensor de flujo a la salida del tanque de almacenamiento de refrigerante líquido hacia la válvula de expansión.	F = (125 * (V/216.1) - 0.5) * 1000	g/min	A
D, D.refr.liq	Sensor de densidad a la salida del tanque de almacenamiento de refrigerante líquido hacia la válvula de expansión.	D = 312500 * (V/215.4) - 1250	Kg/m3	A
Piranometro, R.sol.G	Radiación solar global medida con un piranómetro colocado a un lado del CPC, a la misma inclinación que este.	R.sol.G = V/0.00001307	W/m2	V

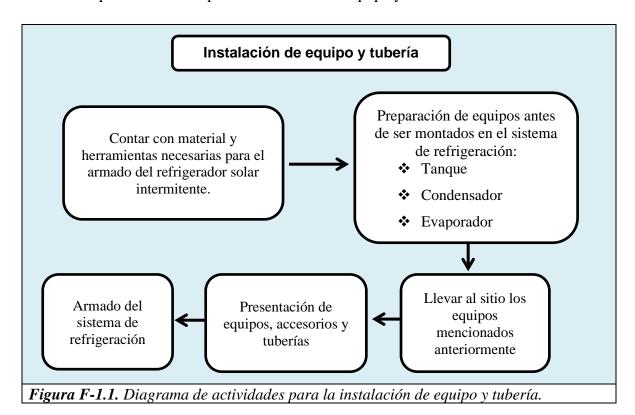
Tabla E- 2 Índice de válvulas.

TAG	Ubicación	Tipo	Material	Θ*
			Acero	
V1	Salida del GE/AB (lado Este).	Compuerta.	inoxidable.	1/4"
	Entrada del tanque de almacenamiento de		Acero	
V2	refrigerante.	Compuerta.	inoxidable.	1/4"
	Salida del tanque de almacenamiento de	Válvula de compuerta acoplada		
V3	refrigerante.	a actuador eléctrico.	inoxidable.	1/4
	Salida del coriolis - entrada a la válvula de		Acero	
V4	expansión.	Compuerta.	inoxidable.	1/4
			Acero	
			inoxidable	
V5	Entrada al evaporador.	Aguja.	(316).	1/4
			Acero	
V6	Salida del evaporador.	Compuerta.	inoxidable.	1/4
		_	Acero	
V7	Entre V6 y V8.	Check.	inoxidable.	1/2
			Acero	
V8	Entrada del GE/ABS (lado Oeste).	Compuerta.	inoxidable.	1/4
			Acero	
V9	Salida del GE/AB (lado Este).	Compuerta.	inoxidable.	1/2
			Acero	
V10	Salida del GE/AB (lado Este).	Alivio.	inoxidable.	1/2
		Compuerta.	Acero	
V11	Entre salida del GE/AB y V10.	_	inoxidable.	1/2
	Parte inferior del tanque de almacenamiento	Compuerta.	Acero	
V12	del refrigerante.	_	inoxidable.	1/4
	Salida del tanque de agua de enfriamiento -	Compuerta.		
V13	Succión de la bomba.	-	Bronce.	3/4
		Compuerta.		
V14	Entre V13 y Succión de la bomba.	•	Bronce.	3/4
		Compuerta.		
V15	Entre V13 y Succión de la bomba.		Bronce.	3/5

^{*} θ es Diámetro nominal (in).

Anexo F

DESCRIPCIÓN DE LAS ACTIVIDADES REALIZADAS PARA PONER PUESTA A PUNTO AL SISTEMA DE REFRIGERACIÓN


	ACTIVIDAD C: Instalación de equipo y tubería.	F-1
>	ACTIVIDAD D I: Orientación del CPC hacía el sur e Inclinación del CPC.	F-2
>	ACTIVIDAD E: Detección de fugas y reparación.	F-3
>	ACTIVIDAD F: Sistema de control y monitoreo.	F-4
>	ACTIVIDAD H y K: Preparación de la mezcla de trabajo y carga de la	F-5
	mezcla de trabajo al sistema.	
>	ACTIVIDAD J y L: Prueba preliminar sin carga y prueba preliminar del RSI.	F-6

ANEXO F. DESCRIPCIÓN DE LAS ACTIVIDADES REALIZADAS PARA PONER PUESTA A PUNTO AL SISTEMA DE REFRIGERACIÓN

ANEXO F-1. ACTIVIDAD C: Instalación de equipo y tubería.

Se elaboró un diagrama preliminar de instrumentación para adquirir el material necesario para su construcción. Al ser amoniaco y nitrato de litio las sustancias utilizadas en este equipo, se buscó usar materiales resistentes a los efectos corrosivos de estas sustancias. El amoniaco puede atacar materiales como cobre, zinc, latón, hierro galvanizado, aluminio, caucho y algunos plásticos. Por esta razón, que se decidió utilizar tuberías, conectores y accesorios de acero inoxidable. Para este proyecto se utilizaron en su mayoría de la marca Swagelok®, esto por la versatilidad que ofrecen para realizar conexiones.

Para interconectar todo el sistema se utilizó tubing 3/8" de acero inoxidable 316; para las conexiones roscadas NPT, tees, coples, niples, cruces, se usaron en su mayoria de ¼" de acero inoxidable. Entre cada equipo se colocó una válvula, con la finalidad de poder aislar cada componente cuando se requiera. En la *Figura F-1.1*. se muestra un diagrama con las distintas actividadeas que se realizaron para la instalación de equipo y tubería.

Se prepararon los siguientes equipos antes de ser montados en el sistema de refrigeración:

- Tanque
- Condensador
- Evaporador

F- 1.1. Tanque de almacenamiento de refrigerante

El antiguo tanque fabricado en acero al carbón se reemplazó por uno de acero inoxidable para evitar la formación de óxidos ferrosos que pudiesen dañar u obstruir alguna tubería o dispositivo. También se le instaló un tubo de nivel para medir la cantidad de refrigerante líquido generado.

Antes de acoplarse al sistema de refrigeración se sometió a una prueba neumática (*Figura 1.2*) para verificar que no existiesen fugas. Dicha prueba consistió en suministrar al tanque aire comprimido hasta cerca de los 8 bar, después se inyectó nitrógeno gas hasta los 20 bar; se aplica una mezcla jabonosa para detectar fugas, en caso de presentarse, el equipo se despresuriza lentamente, se corrige la anomalía y vuelve a presurizarse de la forma previamente mencionada. La presión en el tanque debe conservarse durante un tiempo para verificar que ya no existan fugas. Para conocer de manera visual el volumen de refrigerante contenido en el tanque, se graduó el tubo nivel utilizando un matraz aforado.

Figura F-1.2. Prueba neumática del tanque de almacenamiento, con aire comprimido.

F- 1.1.2 Instalación del tubo de nivel

Para visualizar y medir la cantidad de refrigerante liquido contenido en el tanque de condensados, se colocó un tubo de nivel.

Para saber la longitud que tendrá el tubo de nivel, se colocan las válvulas del tubo de nivel en las boquillas del tanque.

Nota: Colocar las válvulas del tubo de nivel a partir de donde se desee visualizar el nivel del líquido, dejando una con cierta inclinación; se mide la longitud como se muestra en la **Figura F-1.4.** Dentro de cada rosca se colocan unos sellos, dos de teflón y en medio de estos, uno de neopreno (**Figura F-1.3.**), se untan con grasa de silicón para vacío para sellar. Se introducen con

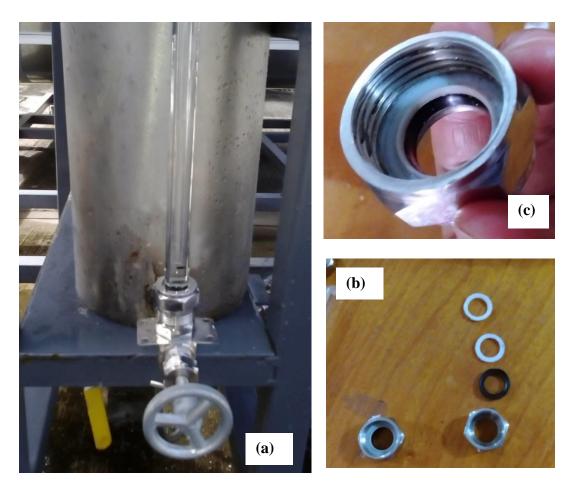


Figura F-1.3. (a) Señalamiento de los componentes para la instalación del tubo de nivel, (b) Rosca con sellos, (c) Sellos de teflón (blancos), de neopreno (negro) y roscas. cuidado las roscas en los extremos del tubo de nivel. Se conectan y ajustan las válvulas del tubo

del nivel en las boquillas del tanque, quedando una sin alinear; se coloca el tubo, se gira la válvula inclinada y se alinea con la otra. El tubo se distribuye equitativamente entre ambas roscas y se giran hasta que el tubo ya no se pueda girar con la mano. En la *Figura F-1.4*. se ilustra el procedimiento para su instalación.

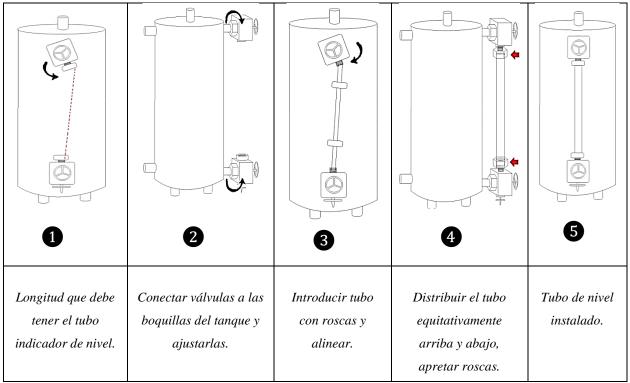


Figura F-1.4. Instalación de un tubo de nivel.

F- 1.2 Condensador

El condensador original, fabricado en aluminio se pretendía reutilizar, pero presentó fugas que no fue posible correguir. Se diseñó y mandó a construir un nuevo condensador de acero inoxidable, en los talleres del IER-UNAM.

El condensador original, se llenó con aire comprimido y se sumergió en agua. Se detectaron fugas en poros que no pudieron arreglarse porque la superficie del serpentín estaba contaminada con amoniaco y esto no permito que los puntos de soldadura se pudieran adherir. (*Figura F-1.5.*).

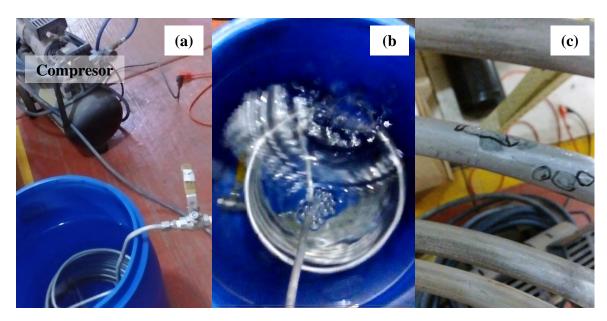


Figura F-1.5. (a) Compresor de aire, conectado a serpentín (b) burbujas generadas por fuga en poros (c) señalamiento de fugas detectadas.

F-1.3 Evaporador

El evaporador original se desacopló del refrigerador solar intermitente para instalar el nuevo (*Figura F-1.6.*), para ello se utilizaron mangueras de teflon revestidas con mallas de acero, para acoplarlo o desacoplarlo con facilidad, por si en un futuro se pretende evaluar otros diseños. Al igual que el condensador, se le realizarón pruebas neumaticas de fugas; localizandose

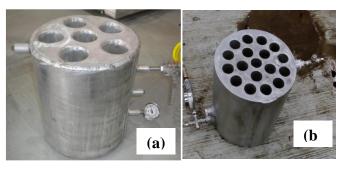
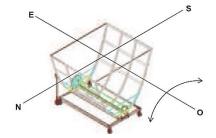


Figura F-1.6.(a) Antiguo evaporador, (b) Nuevo evaporador.

Fuente: Cervantes Contreras Ángel Uriel, "Diseño y construcción de un evaporador para la evaluación de un refrigerador solar", Universidad Veracruzana, Tesis de maestría, 2012.

algunas de ellas sobre la superficie de este. Fueron reparadas en los talleres del IER-UNAM utilizando barras de aluminio durafix, tapando los poros por medio de soldadura, procurando mantener el área cercana del evaporador durante la reparación a temperaturas moderadas para evitar la aparición de posibles fugas.


F- 1.4. Ensamble del sistema de refrigeración

Una vez que los equipos estaban en el sitio de instalación; se procedió a ensamblar adecuadamente el sistema. Para la instalación de tuberia, se utilizaron conexiones; estas no necesitan utilizar teflón porque sellan mecánicamente, cuando las tuercas de estas conexiones se giran 1/4 de vuelta, haciendo que la férula selle mecánicamente con el tubo. En las conexiones roscadas NPT fue aplicada cinta teflón y silicón de vacío para reducir las probabilidades de fuga.

ANEXO F-2 ACTIVIDAD D e I: Orientación del CPC hacía el sur e Inclinación del CPC.

La ventaja de un concentrador parabolico compuesto (CPC) es que puede funcionar sin

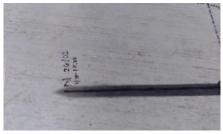
seguimiento continuo y alcanzar una buena concentración, sin embargo, debe ser orientado adecuadamente, para maximizar la radiación que pueda absorber. El CPC debe estar alineado de este a oeste con relación a la posición del sol con la finalidad de captar la mayor cantidad de rayos solares durante el dia, lo que contribuirá a una ganancia térmica del sistema para que el proceso de generación se lleve a cabo.

Figura F-2.1. Inclinación del *CPC*.

El CPC está diseñado para girarse cuantas veces sea necesario

Figura F-2.1. En la *Tabla F-2.1.* se muestra la inclinación (θ) que debe tener el CPC, de acuerdo al día del año en que se esté.

Tabla F-2. 1 Ángulos de inclinación del CPC durante el año.


	14-							19-										
4	nov	ene	feb	feb	mar	mar	abr	abr	may	may	jul	ago	ago	sep	sep	sep	oct	oct
Д	25-	11-	26-	11-	23-	05-	18-	03-	24-	17-	06-	22-	04-	17-	29-	12-	26-	13-
	ene	feb	feb	mar	mar	abr	abr	may	may	jul	ago	ago	sep	sep	sep	oct	oct	nov
θ	40	35	30	25	20	15	10	2	0	-5	0	5	10	15	20	25	30	35

F-2.1. Alineación del CPC con el sur geográfico

Para ubicar el sur terrestre se utilizó un tripié con un mastil que termina en punta como el que se muestra en la *Figura F-2.2*.

Se marcó con un punto, la sombra proyectada por la punta en ciertas horas (9 am, 10 am, 11 am, 12 pm, 13 pm, 14 pm y 15 pm en hora solar). Al final del dia se unieron los puntos de 9am con 15 pm, 10 am con 14 pm y 11 am con 13 pm, formando lineas. Se trazó la perpendicular perpendicular a cada linea obteniendose la ubicación del sur. El refrigerador solar se alineo con el sur para captar la mayor cantidad de energia solar.

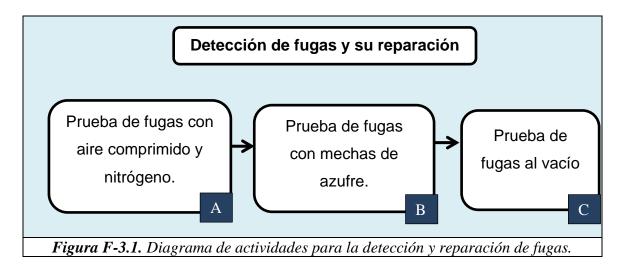


Figura F-2.2 Ubicación del sur geográfico (sombra proyectada).

ANEXO F-3. ACTIVIDAD E: Detección de fugas y reparación

Una vez instalado el refrigerador solar fue necesario examinar que no existieran fugas, para ello se realizaron una serie de pruebas que se muestran en la *figura F-3.1*.

Tabla F-3. 1 Descripción de la prueba de fugas con aire comprimido y nitrógeno.

- ❖ Se abrieron todas las válvulas que se encuentran entre los equipos principales del sistema (V1, V2, V3, V4, V5, V6 y V8 de acuerdo con el diagrama de tuberías e instrumentación).
- ❖ Por medio de la válvula que se encuentra al lado este del generador absorbedor (V9), se inyectó aire comprimido por medio de un compresor hasta alcanzar su presión máxima, que oscila entre los 7 y 8 bar.
- ❖ En cada una de las uniones se aplicó una mezcla jabonosa con la finalidad de detectar fugas; si se detectaba alguna, se despresurizaba paulatinamente (hasta cero bar) únicamente la sección donde se localizaba la falla para corregirla.
- ❖ En el ciclo de refrigeración hay dos etapas, la etapa de generación-condensación de alta presión (12 bar aprox.) y la etapa de evaporación-absorción de baja presión (4 bar aprox.). Por tanto, la presión que da el compresor (8 bar) no es suficiente para probar fugas en las condiciones máximas a las que opera el sistema.

Detección de fugas de la etapa de baja presión, etapa de Evaporación-Absorción

- ✓ Para alcanzar una mayor presión, se cerró la válvula por donde se conecta el compresor (V9) y en su lugar se conectó un tanque de nitrógeno gas.
- ✓ Se abrió la válvula V9 para permitir el paso de nitrógeno al sistema y elevar la presión hasta los 12.5 bar; esto para probar el sistema a una presión más alta de la que se trabaja durante la etapa de evaporación-absorción (baja presión).
- ✓ Se cerró la válvula que permite el ingreso de nitrógeno al sistema (V9), se dejó el sistema a esta presión para observar que no hubiera alguna variación en su presión (detectar fugas y corregir) si no lo había se seguía con la siguiente prueba.

Detección de fugas de la etapa de alta presión, etapa de Generación-Condensación

✓ Se aísla la sección que trabaja a baja presión, porque está ya pasó la prueba a condiciones mayores a las condiciones que usualmente trabaja. Se cierra la válvula de expansión, ubicada a la entrada del evaporador (V5) y la válvula que se encuentra ubicada a la entrada del generador/absorbedor (V8).

- ✓ Se abre nuevamente la válvula que permite el paso de nitrógeno al sistema (V9) y la presión se incrementa a 20 bar que es 1.6 veces mayor que a la presión que opera (12 bar).
- ✓ Se detectan las fugas por medio de una mezcla jabonosa y se corrigen. Una vez corregidas las fugas; el sistema se deja presurizado con nitrógeno durante 12 horas para asegurar que no se presenten fugas posteriores.

Algunas de las fugas detectadas con esta prueba fueron:

<u>Fugas en conexiones</u>: Se corrigió el problema aplicando un torque adicional en la conexión, si esto no era suficiente, se desacoplaba la pieza y se le ponía más teflón o incluso grasa de silicón para vacío. Si la conexión estaba en malas condiciones, se sustituía por una nueva.

<u>Fugas en vástagos de las válvulas</u>: Para corregir este percance se colocó teflón y grasa de silicón en el cabezal de la válvula, apretándolo y si era necesario, se sustituía por otra.

<u>Fugas en el evaporador</u>: Se detectaron fugas en la superficie del evaporador, se llevó a los talleres el IER-UNAM, donde le aplicaron puntos de soldadura para su corrección.

F-3.2. Prueba de fugas con mechas de azufre B

Después de la prueba de fugas con aire comprimido y nitrógeno, se purga el sistema. Se inyecta una dosis pequeña de amoniaco (con ayuda de una ampolleta de baja capacidad, 0.2 kg) Después se inyectó nitrógeno al sistema para incrementar su presión.

Las mechas de azufre se pasaron por todas las conexiones alrededor del sistema; el humo de la mecha es transparente y se torna blanco cuando está en presencia de amoniaco, indicando que existe una fuga.

En la *Figura F-3.2*. se muestra la forma en que se elaboraron las mechas de azufre.

Figura F-3.3. Elaboración de mechas de azufre.

Material:

- ❖ Azufre en polvo.
- Parrilla de calentamiento.
- Alambre.
- * Recipiente de vidrio.
- **Stambre o hilo grueso.**

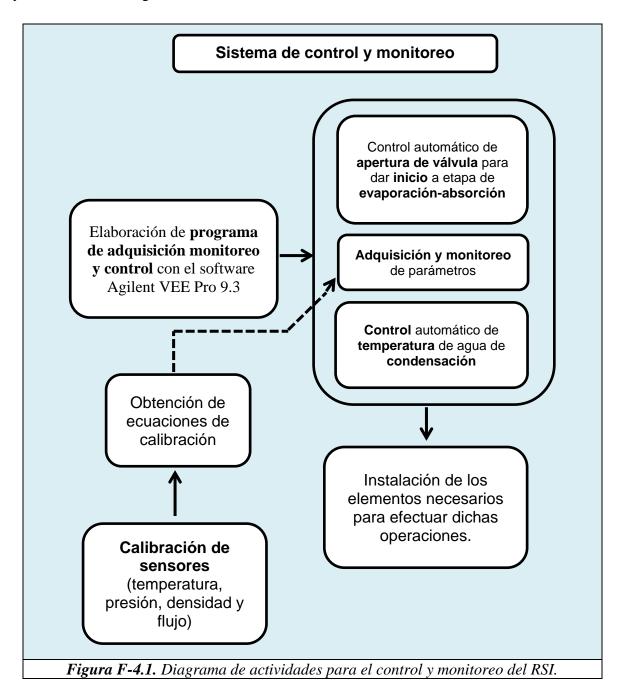
Figura F-3.3. Elaboración de mechas de azufre.

Procedimiento:

Usar equipo de protección personal (guantes, mascarilla y bata).

- ➤ Se cortan varios pedazos de hilo con la longitud que se desea que tengan las mechas de azufre.
- ➤ Se conecta y enciende la parrilla de calentamiento; sobre esta se coloca el recipiente de vidrio con azufre en polvo hasta que se funda, cuidando que este no llegue a su temperatura de ignición.
- ➤ Cuando el azufre esté en estado líquido, se debe retirar de la parrilla; se sumerge el hilo y se presiona con el alambre mientras este se estira para que se impregne mejor de azufre como se muestra en la *Figura F-3.3*.
- La cuerda se retira y se deja secar.
- > Esto se repite para el número de cuerdas que se requieran.

F-3.1 Prueba de fugas al vacío


Esta prueba se realiza con el fin de que el sistema se encuentre libre de aire y humedad antes de introducir la mezcla de trabajo; además al tener una presión baja, facilita la carga de solución al sistema.

Procedimiento

Se purgó el sistema. Como se tenía una dosis pequeña de amoniaco dentro del sistema, se conectó una manguera la cual se sumergió en agua, para que el amoniaco fuera absorbido en ella. Una vez purgado el sistema, se conectó una bomba de vacío, con lo cual se extrajo la mayor cantidad posible de aire contenido en el refrigerador solar, si el sistema conservaba la misma presión de vacío en un lapso de 12 horas entonces el equipo estaba listo para poderle suministrar la mezcla de trabajo.

ANEXO F-4. ACTIVIDAD F: Sistema de control y monitoreo.

En la *Figura F-4.1*. se muestra un cuadro con las actividades que se llevaron a cabo para controlar y monitorear el refrigerador solar intermitente.

F-4.1 Calibración de sensores de temperatura

A continuación, se describe la calibración de los sensores de temperatura RTD.

Para su calibración se utilizó como patrón de referencia marca JOFRA, modelo ptc -155, con un rango de medición de -25°C a 155°C. Es un termpozo tiene un compartimento donde se pueden colocar hasta nueve sensores. Por medio de una pantalla se fija la temperatura a la que se desee que esté la cámara donde se encuentran los sensores. Las terminales de los sensores se conectan a una tarjeta multiplexora, que se introduce a un adquisidor, el cual se conecta a una computadora que contiene un programa elaborado en el software Agilent VEE Pro 9.3, que permite medir y registrar los valores de resistencia que presentan cuando se encuentran a una determinada temperatura.

La temperatura del termpozo se varió en 10 °C, desde 0 hasta 100 °C, se medió 30 veces el valor de resistencia que presentaban a una determinada temperatura; se obtuvo el promedio de cada temperatura, con estos datos se construyó una gráfica y se obtuvo una ecuación que relaciona resistencia con temperatura.

NOTA: Los termistores y los termopares no fueron calibrados, porque se pueden medir la temperatura directamente por medio del adquisidor de datos.

F-4.2 Calibración de los sensores de presión

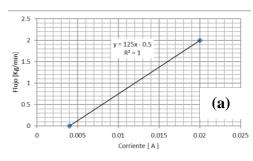

Para su calibración se utilizó como patrón de referencia un sensor de presión marca Endress+Hauser, (con un rango de operación de 0-40 bar) que está conectado a un sistema como el que se muestra en la *Figura F-4.2*. donde además se pueden conectar hasta 8 transductores de presión y calibrarlos simultáneamente. El sistema se presuriza con nitrógeno gas, por lo cual se puede fijar distintos valores de presión que se miden con el dispositivo patrón y de esta forma obtener el valor que arrojan los sensores a calibrar cuando están sujetos a determinada presión, pueden ser corriente o voltaje, dependiendo del funcionamiento de cada sensor.

Figura F-4. 2 Banco de calibración con los sensores montados, junto con el tanque de nitrógeno y el adquisidor de datos.

FUENTE: Luis Alberto Domínguez Inzunza, "Montaje, puesta en operación y evaluación preliminar de un sistema de aire acondicionado solar tipo horizontal operando con la mezcla nitrato de litio – amoniaco", Tesis de maestría, UNAM,2013.

F-4.3. Sensores tipo Coriolis

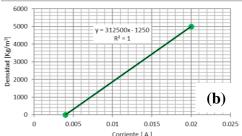
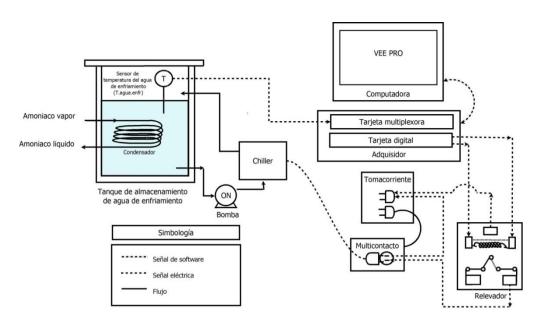
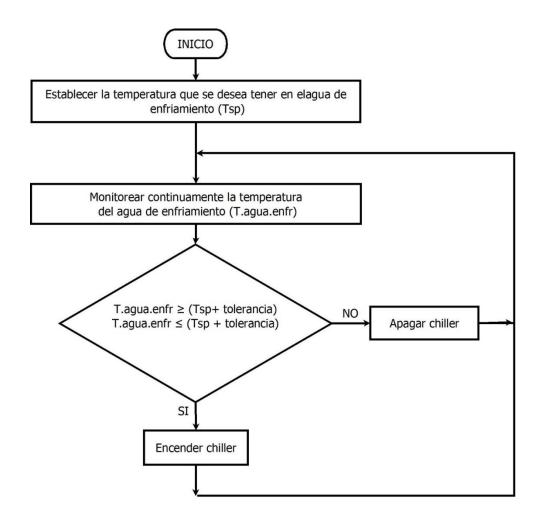
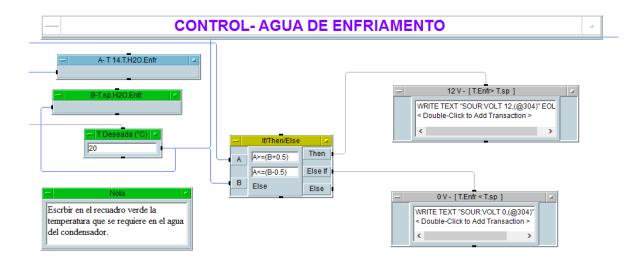



Figura F-4. 3 Curvas de ajuste para flujo(a) y densidad (b).

Estos sensores vienen calibrados de fábrica y solo se ajustan al rango de medición que se desea. Para ajustar los rangos, se relaciona el cambio de amperaje con el flujo o la densidad, de esta forma obtener dichas ecuaciones que relacionan estas dos variables.

Donde el rango para medir flujo fue de 0 a 2 Kg/min y para la densidad de 0 a 5000 Kg/m³, donde un amperaje de 4 mA equivale a 0Kg/min para flujo y 0Kg/m³ para densidad; y un amperaje de 20 mA corresponde a de 2Kg/min para flujo y 5000 Kg/m³ para densidad. En la *Figura F-4.3.* se muestran las curvas de ajuste para flujo y densidad.

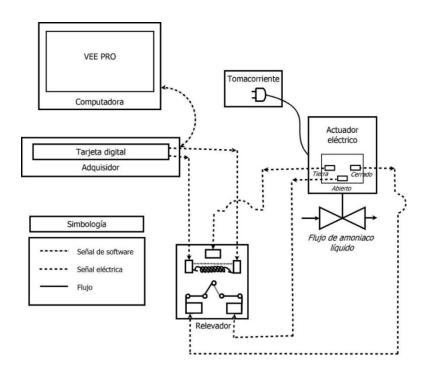

F-4.4. Control de temperatura de condensación


Figura F-4. 4 Lazo de control para control de temperatura de agua de enfriamiento, para mantener constante la temperatura de condensación.

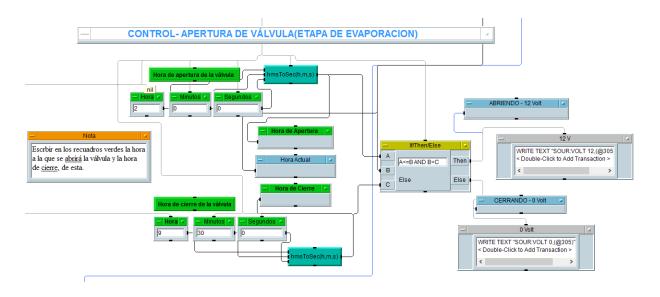
La temperatura de agua de condensación o de enfriamiento se mantiene constante, con fines de experimentación. Para lograrlo se hizo un lazo de control como se muestra en la *Figura F-4.4*. Por medio del programa realizado con VEE PRO 9.3 se establece la temperatura que se desea que tenga el agua de enfriamiento (Tsp) con un rango de tolerancia, para llevar a cabo el proceso de condensación a una temperatura constante, mientras que continuamente se está midiendo la temperatura que tiene el agua de enfriamiento (T.agua.enfr). El programa se encarga de comparar continuamente el valor de Tsp con T.agua.enfr , si la T.agua.enfr es mayor que Tsp, entonces se envía una señal para encender el chiller por medio de un relevador, por donde circula el agua de enfriamiento que es recirculada por una bomba, esto con la finalidad de evitar la estratificación dentro del tanque. El chiller permanece encendido, enfriando el flujo de agua que pasa a través de él, la cual se mezcla con el agua dentro del tanque hasta alcanzar una temperatura dentro del rango que se quiere. Cuando la temperatura del agua de enfriamiento desciende por abajo del rango que se desea, se deja de enviar voltaje al relevador, apagando el chiller. La temperatura comienza a incrementarse por el calor liberado durante la condensación del NH₃, hasta alcanzar el rango de temperatura deseado.

NOTA: Al no contar con una fuente de calor alterna, se recomienda precalentar el agua de enfriamiento, cuando se desea llevar pruebas de generación- condensación, con temperaturas mayores a la temperatura ambiente.

Figura F-4. 5 Diagrama de flujo para control de temperatura de agua de enfriamiento, para mantener constante la temperatura de condensación.


Figura F-4. 6 Interfaz en VeePro para control de temperatura de agua de enfriamiento, para mantener constante la temperatura de condensación.

F-4.5 Control apertura y cierre de válvula para dar inicio a la etapa de evaporación


Controlar el paso de refrigerante líquido a alta presión hacia la válvula de estrangulamiento para dar comienzo a la etapa de evaporación, permite establecer el lapso que tardara en llevarse a cabo el proceso de evaporación-absorción sin que el personal se encuentre presente para abrir o cerrar la válvula, debido a que esta etapa se lleva a cabo durante la noche o la madrugada, que es la parte del día donde se tienen mejores condiciones para llevarse a cabo dicha etapa.

Para la apertura de la válvula por medio del actuador (marca J2-H20 Smart Redbox), es necesario establecer el rango de tiempo que estará abierta, cuando esto está ocurriendo es porque el adquisidor está enviando voltaje al relevador para mantener el circuito eléctrico cerrado, permitiendo así, que la válvula se encuentre abierta, de lo contrario, mientras esta no reciba voltaje, esta permanecerá cerrada.

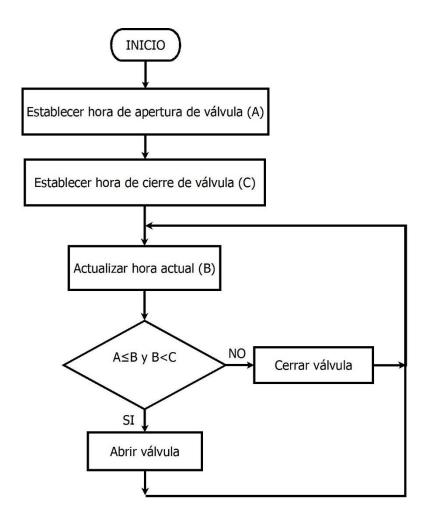

Para lograrlo se utilizó un lazo de control como se muestra en la *Figura F-4.7.* y en la *Figura F-4.7.* En la *Figura F-4.8.* se muestra la interfaz en VeePro para este control.

Figura F-4.7. Lazo de control para apertura y cierre de válvula para dar inicio a la etapa de evaporación.

Figura F-4.8. Interfaz en VeePro para control de apertura y cierre de válvula para dar inicio a la etapa de evaporación.

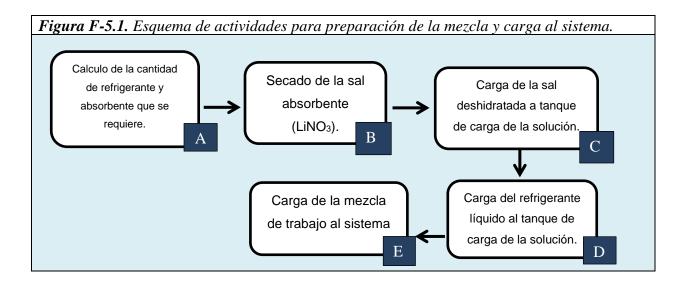


Figura F-4.9. Diagrama de flujo para control de apertura y cierre de válvula para dar inicio a la etapa de evaporación.

ANEXO F-5. ACTIVIDAD H y K: Preparación de la mezcla de trabajo y carga de la mezcla de trabajo al sistema.

En este sistema se utilizó una mezcla binaria de LiNO₃-NH₃ al 50% masa/masa. La cantidad de solución necesaria para llenar el receptor (GEN/ABS) al 80% de su capacidad es de 22.48 kg, usando 11.24 Kg de NH₃ y 11.24 Kg de LiNO₃. El nitrato de litio es altamente higroscópico, por lo tanto, se requiere deshidratarlo antes de usarlo.

La serie de actividades que se llevaron a cabo para esta actividad se muestra en la *Figura F-5.1*.

A Cálculo de cantidad de absorbente y refrigerante que se requieren para preparar la mezcla de trabajo.

Datos:

- Volumen interno del tubo generador/absorbedor (Gen/Abs): 0.027m3
- Volumen de la solución de trabajo: 80% del volumen interno del Gen/Abs

Para saber el **volumen de la solución de trabajo** que se necesita para ocupar el 80% del volumen del Gen/Abs

$$Vol_{sln} = 0.8 \cdot 0.027m^3 = 0.022 m^3$$

La densidad de la solución ($\rho_{.sln}$) a 30°C a una fracción masa del refrigerante de 0.5 es de 1027.04 Kg/m³. Por lo tanto, para calcular la masa de la solución:

$$m_{.sln} = \rho_{.sln} \cdot Vol_{.sln}$$

$$m_{.sln} = \left(1027.04 \frac{Kg}{m^3}\right) \cdot (0.022 m^3)$$

$$m_{.sln} = 22.48 Kg$$

La **concentración de la solución** o fracción masa (x) se calcula de la siguiente manera:

$$x = \frac{Masa \ del \ NH_3}{Masa \ de \ la \ solución}$$

Despejando le masa de NH₃, queda:

Masa del
$$NH_3 = x \cdot M$$
asa de la solución
= $0.5 * 22.48Kg$

$$Masa\ del\ NH_3=11.24\ Kg$$

Para conocer la masa de LiNO3 que se necesita se calcula utilizando la siguiente formula:

Masa del LiNO₃

= Masa de la solución

- Masa del NH₃

 $Masa\ del\ LiNO_3 = 22.48\ Kg - 11.24Kg$

$$Masa\ del\ LiNO_3 = 11.24Kg$$

Proceso de deshidratación del LiNO3

El secado se realiza en un horno a 160 °C durante un tiempo aproximado de 2 horas. Para la deshidratación de la sal se utiliza el siguiente equipo: horno de secado con control de temperatura, balanza, ventilador, tanque de carga de la solución, embudo, papel aluminio, charolas de aluminio, mortero, báscula y el equipo de seguridad apropiado.

Procedimiento:

Durante este proceso utilizar equipo de seguridad.

- El tanque de carga debe tener las conexiones adecuadas para permitir la carga de la mezcla al refrigerador solar, además de que debe estar perfectamente seco.
- 2. Se monta el tanque sobre la báscula, junto con el embudo, para conocer su peso.
- 3. Se precalienta el horno a 180° C (se incrementa unos grados la temperatura, porque cuando se abra la puerta del horno para introducir la sal desciende la temperatura; de esta forma la temperatura en el horno quedará cercana a los 160°C, que es la temperatura que se desea).
- 4. Antes de pesar la sal se recomienda pulverizarla con un mortero, porque tiende a formar grandes grumos, que no permiten un secado adecuado, además de que se dificulta introducir la sal al tanque de carga de solución.

- Una vez pulverizada la sal, se comienza a pesar en las charolas de aluminio. <u>Nota</u>: Se recomienda introducir sólo dos charolas en el horno, por cada charola pesar aproximadamente 600 g de sal.
- 6. Una vez transcurridas las dos horas, sacar la sal, pesarla e introducirla en el tanque de carga por medio del embudo. Para ello el tanque debe estar colocado sobre la balanza, de esta forma se conocerá la cantidad de sal que se tiene dentro del tanque.

Nota:

*Tener precaución cuando se saqué la sal del horno y cuando se esté manipulando, ya que se encuentra a una temperatura elevada.

*Al terminar de introducir la sal al tanque, cerrar la válvula por donde se añadió para evitar que se humedezca.

7. Repetir los pasos adecuados, hasta tener 11.24 kg de sal dentro del tanque de almacenamiento de la mezcla de trabajo.

C D

Proceso de preparación de la mezcla LiNO3-NH3 al 50% en masa

Este procedimiento se debe realizar con el equipo de seguridad requerido (guantes, mascara, bata, googles, zapato cerrado) sobre todo al momento de cargar al tanque de carga el amoniaco líquido. También se recomienda tener un balde de agua y trapos cerca, por si se tiene una fuga o alguna anomalía que implique presencia de amoniaco no deseada en el ambiente. En caso de que ocurra, se debe humedecer el trapo con agua y colocarlo en donde se tenga la anomalía y corregir, siempre utilizando el equipo de seguridad.

Procedimiento:

- El tanque de suministro de amoniaco se puso de manera horizontal, de tal forma que, al extraer amoniaco, este estuviera en estado líquido.
- Se conectó el tanque de suministro de amoniaco (con todas las conexiones necesarias) al tanque de carga de la solución por medio de una manguera flexible de acero inoxidable.
- Se coloca el tanque de carga de solución previamente cargado con los 11.24 kg de nitrato de litio sobre una báscula y se pesa.
 - <u>Nota:</u> Cuando se pese el tanque de carga de la solución con la sal de LiNO₃, debe contar ya con las conexiones adecuadas entre el tanque de suministro de amoniaco y el tanque de carga de solución.
- 4. Una vez conectado el tanque de suministro de amoniaco al tanque de carga de solución, y esté último se encuentre sobre la balanza, pesar y tarar. Abrir la válvula que los conecta para permitir el paso de amoniaco líquido hacia el tanque de carga de la solución.

- 5. Introducir 11.24 Kg de amoniaco al tanque de carga de solución.
 - Nota: Para este paso se recomienda alimentar en dosis moderadas el amoniaco, porque ocurre una reacción exotérmica entre la sal de LiNO₃ y el NH₃, que conlleva a un aumento en la temperatura y presión dentro del tanque de carga de solución. Además, se recomienda esperar a que descienda la temperatura en el tanque, y así poder alimentar más amoniaco.
 - *Entre más baja sea la temperatura de la mezcla dentro del tanque, mejor absorción de amoniaco habrá.
- 6. Una vez introducida la cantidad de amoniaco necesarios para preparar una mezcla binaria de LiNO₃-NH₃ al 50% masa/masa, se procede a cerrar la válvula que los interconecta y se desacoplan las conexiones propias para esta operación.

<u>Nota:</u> En este paso es de sumo cuidado tener precaución con el amoniaco remanente en las tuberías.

Carga de la mezcla de trabajo al sistema

Ε

Después de que el sistema haya pasado la prueba de vacío y se tenga preparada la mezcla de trabajo. Se conecta el tanque de carga de solución al sistema de refrigeración; se abre la válvula que se encuentra entre el tanque solución y el refrigerador (V9); como el refrigerador solar se encuentra a una presión mucho menor que la del tanque, la mezcla es succionada hacia el sistema de refrigeración, cuando se igualan las presiones se inyecta una dosis pequeña de amoniaco vapor; se conecta la ampolleta portátil, la cual contiene amoniaco vapor; el ingreso de vapor hacia el tanque de solución permite que se incrementa la presión. Sin alterar significativamente la concentración de la solución. Cuando se escucha un sonido proveniente del tanque es porque está terminando de succionar la solución, una vez hecho esto se cierra la válvula que conecta el tanque de carga de solución con el refrigerador solar.

<u>NOTA:</u> Para este proceso es necesario aislar el generador/absorbedor del resto del sistema, porque en este equipo se tendrá contenida la mezcla de trabajo. Para ello se cierra la válvula que interconecta generador/absorbedor con el condensador (V1) y la válvula por donde ingresa amoniaco vapor generado durante la evaporación al generador/absorbedor (V8).

Anexo G

PROPIEDADES DE LA MEZCLA NH₃-LiNO₃

	Densidad de la solución	G-1
	Capacidad calorífica	G-2
>	Entalpia especifica de la solución	G-3
>	Entropía especifica de la solución	G-4
>	Presión de equilibrio de la solución	G-5
	Viscosidad dinámica de la solución	G-6

ANEXO G. PROPIEDADES DE LA SOLUCIÓN

G-1. Densidad de la solución (Kg/m³)

$$\rho_{sln}(T, x) = [(A + B \cdot (T + 273.15))] * 1000$$

Dónde:

 ρ_{sln} es la densidad de la solución LiNO₃-NH₃ [Kg/m3]

T es la temperatura de la solución LiNO₃-NH₃ [°C]

x es la fracción masa del amoniaco en la solución

$$A = \sum_{i=0}^{1} (x^{i} \cdot a_{i})$$
$$B = \sum_{i=0}^{1} (x^{i} \cdot b_{i})$$

$$B = \sum_{i=0}^{1} (x^i \cdot b_i)$$

Tabla G-1. Coeficientes para el cálculo de A y B, para la densidad de la mezcla NH3-LiNO3

Coeficiente	Valor
a_0	1.521*10°
a_1	-4.528*10 ⁻¹
b_0	-1.961*10 ⁻⁵
b_1	-1.726*10 ⁻³

Fuente: Simona Libotean, Andreu Martin, Daniel Salavera, Manuel Valles, Xavier Esteve And Alberto Corona, "Densities, viscosities, and heat Capacities of Ammonia + Lithium Nitrate and Ammonia + Lithium Nitrate+Water Solutions between (293.25 and 353.15)K", J. Chem. Eng, Vol 53, pag 2383-2388, 2008.

G-2. Capacidad calorífica (KJ/Kg.K)

$$Cp_{sln}(T, x) = A + B \cdot (T + 273.15)$$

Dónde:

Cp_{sln} es la densidad de la solución LiNO₃-NH₃ [KJ/Kg.K]

T es la temperatura de la solución LiNO₃-NH₃ [°C]

x es la fracción masa del amoniaco en la solución

$$A = \sum_{i=0}^{1} (x^i \cdot a_i)$$

$$B = \sum_{i=0}^{1} (x^i \cdot b_i)$$

Tabla G-2. Coeficientes para el cálculo de A y B, para calcular la capacidad calorífica del NH₃-LiNO₃.

Coeficiente	Valor
a_0	5.593*10 ⁻¹
a_1	$3.241*10^{0}$
b_0	2.078*10 ⁻³
b_1	1.847*10 ⁻³

Fuente: Simona Libotean, Andreu Martin, Daniel Salavera, Manuel Valles, Xavier Esteve And Alberto Corona, "Densities, viscosities, and heat Capacities of Ammonia + Lithium Nitrate and Ammonia + Lithium Nitrate+Water Solutions between (293.25 and 353.15)K", J. Chem. Eng, Vol 53, pag 2383-2388, 2008.

G-3. Entalpia especifica de la solución (KJ/Kg)

Si $x \le 0.54$, se utiliza la siguiente ecuación:

$$h_{sln}(T,x) = (a \cdot x - b) + c \cdot (d - x)^2 + (e + f \cdot x) \cdot T + (g + h \cdot x)$$
$$\cdot ((T + 273.16)^2 - 273.16^2)$$

 $Si \ x > 0.54$, se utiliza la siguiente ecuación:

$$h_{sln}(T,x) = (a \cdot x - b) + c \cdot (x - d)^{1.5} + (e + f \cdot x) \cdot T + (g + h \cdot x)$$
$$\cdot ((T + 273.16)^2 - 273.16^2)$$

Dónde:

 h_{sln} es la entalpía especifica de la solución LiNO₃-NH₃ [KJ/Kg]

T es la temperatura de la solución LiNO₃-NH₃ [°C]

x es la fracción masa del amoniaco en la solución

Tabla G-3. Coeficientes para el cálculo de la entalpía especifica de la solución NH ₃ -LiNO ₃ .					
	Si x≤0.54	Si x>0.54			
Coeficiente	Valor	Valor			
а	200	200			
b	215	215			
С	1570	689			
d	0.54	0.54			
e	5.593*10 ⁻¹	5.593*10 ⁻¹			
f	3.241	3.241			
g	1.039*10 ⁻³	1.039*10 ⁻³			
h	0.934*10 ⁻³	0.934*10 ⁻³			

Fuente: L.Garousi Farshi, C.A Infante Ferreira, S.M.S. Mahmoundi, M.A. Rosen "First and second law analysis of ammonia/salt absortion refrigeration systems", International Journal of Refrigeration, Vol. 40, pág111-121, 2014.

G-4. Entropía especifica de la solución (KJ/Kg.K)

$$s_{sln} = \frac{(a+b\cdot x + c\cdot x^2 + d\cdot x^3 + e\cdot T)}{(1+f\cdot x + g\cdot x^2 + h\cdot x^3 + i\cdot T + j\cdot T^2)}$$

Dónde:

 $s_{sln}\,$ es la entropia especifica de la solución LiNO_3-NH_3 [KJ/Kg.K]

T es la temperatura de la solución LiNO₃-NH₃ [°C]

x es la fracción masa del amoniaco en la solución

Tabla G-4. Coeficientes para el cálculo de la entropía					
especifica de la soluc	especifica de la solución NH ₃ -LiNO _{3.}				
Coeficiente	Valor				
а	8.70310*10-1				
b	-3.98268				
С	6.42203				
d	-3.21434				
e	4.19479*10 ⁻³				
f	-2.90321				
g	4.13376				
h	-2.19727				
i	8.8621162*10 ⁻⁴				
j	-1.62347*10 ⁻⁶				

Fuente: L.Garousi Farshi, C.A Infante Ferreira, S.M.S. Mahmoundi, M.A. Rosen "First and second law analysis of ammonia/salt absortion refrigeration systems", International Journal of Refrigeration, Vol. 40, pág111-121, 2014.

G-5. Presión de equilibrio de la solución (bar)

$$P_{sln} = \left[Exp \cdot \left(A + \frac{B}{T + 273.15} \right) \right] \cdot 0.01$$

$$A = \sum_{i=0}^{3} a_i \cdot x^i$$
, $B = \sum_{i=0}^{3} b_i \cdot x^i$

Dónde:

 P_{sln} es la presión de equilibrio de la solución LiNO₃-NH₃ [bar]

T es la temperatura de la solución LiNO₃-NH₃ [°C]

x es la fracción masa del amoniaco en la solución

A y B son coeficientes

Tabla G-5. Constantes para el cálculo de los coeficientes para el cálculo de la presión de equilibrio de la solución NH₃-LiNO_{3.}

a ₀	4.99 * 10 0
a_1	8.85 * 10 1
a_2	-1.98 * 10 ²
a ₃	1.35 * 10 ²
b_0	-1.79 * 10 ³
b_1	-2.23 * 10 ⁴
b_2	6.13 * 10 4
b_3	-4.52 * 10 ⁴

Fuente: Simona Libotean, Daniel Salavera, Manuel Valles, Xavier Esteve And Alberto Corona, "Vapor -Liquid Equilibrium of Ammonia + Lithium Nitrate +Water and Ammonia +Lithium Nitrate Solutions from (293.15 to 353.15K), J. Chem. Eng, Vol 52, pag. 1050-1055, 2007.

G-6. Viscosidad dinámica de la solución (Pa.s)

$$\mu_{sln} = EXP\left(\frac{1000 \cdot A}{T + 273.15} + B\right) * 0.001$$

$$A = \sum_{i=1}^{2} a_i \cdot x^i + a_0 \quad , \qquad B = \sum_{i=1}^{2} b_i \cdot x^i + b_0$$

Dónde:

 μ_{sln} es la viscosidad dinámica de la solución LiNO₃-NH₃ [Pa.s]

T es la temperatura de la solución LiNO₃-NH₃ [°C]

x es la fracción masa del amoniaco en la solución

A y B son coeficientes

Tabla G-6. Constantes para el cálculo de los coeficientes para el cálculo de la presión de equilibrio de la solución NH ₃ -LiNO ₃				
a_0	1.918			
a ₁₁	10.094			
a ₁₂	-18.394			
b_0	-1.205			
b ₁₁	-35.627			
b ₁₂	51.529			

Fuente: Simona Libotean, Andreu Martin, Daniel Salavera, Manuel Valles, Xavier Esteve And Alberto Corona, "Densities, viscosities, and heat Capacities of Ammonia + Lithium Nitrate and Ammonia + Lithium Nitrate+Water Solutions between (293.25 and 353.15)K", J. Chem. Eng, Vol 53, pag 2383-2388, 2008.

Anexo H

CALCULO DE PARÁMETROS DEL REFRIGERADOR SOLAR INTERMITENTE (NH₃-LiNO₃)

	Capacidad frigorífica necesaria para	H-1
	producir 4.5 Kg de hielo.	
>	Cantidad de amoniaco necesaria	H-2
	para producir 4.5 Kg de hielo.	
	Masa y concentración de NH3 en el	H-3
	generador/absorbedor	

Anexo H. CALCULO DE PARÁMETROS DEL REFRIGERADOR SOLAR INTERMITENTE (NH3-LinO3)

H-1. Capacidad frigorífica necesaria para producir 4.5 Kg de hielo.

El calor de formación de hielo queda descrito por la siguiente formula:

$$Q_{hielo} = m_{agua} \cdot Cp_{agua} \cdot (T_{i,agua} - T_{f,agua}) + m_{agua} \cdot \Delta H_{fus}$$
 [A]

Donde

 Q_{hielo} , calor removido del producto

 m_{agua} , $masa\ de\ agua: 4.5\ Kg$

 $T_{i,agua}$, temperatura inicial del agua:

$$30^{\circ}C + 273.15 = 303.15 K$$

 $T_{f,agua}$, temperatura de cambio de fase :

$$0^{\circ}C + 273.15 = 273.15 K$$

 Cp_{agua} , calor especifico del agua:

$$4.19 \frac{KJ}{Kg \cdot K}$$

 ΔH_{fus} , entalpía de fusión del agua a presion atmosferica y $0^{\circ}C:335 rac{KJ}{Ka}$

Sustituyendo los valores anteriores en la ecuación [A]:

$$Q_{hielo} = 4.5 \, Kg \cdot 4.19 \frac{KJ}{Kg \cdot K} \cdot (303.15 \, K - 273.15 K) + 4.5 \, Kg \cdot 335 \frac{KJ}{Kg}$$

$$Q_{hielo} = 2073.15 \, KJ$$

El agua necesita liberar 2073.15 KJ para transformar 4.5 Kg de agua de una temperatura de 30°C a 0°C a presión atmosférica.

H-2. Cantidad de amoniaco necesaria para producir 4.5 Kg de hielo.

Se hace la suposición de que no existen pérdidas al ambiente. Por lo que el calor que gana el amoniaco es cedido por el agua.

$$Q_{hielo} = Q_{NH_3}$$
 [B]

 Q_{hielo} , es el calor removido del agua:

El calor ganado por al amoniaco se puede escribir como

$$Q_{NH_3} = m_{NH_3} \cdot (h_v - h_l) \qquad [C]$$

 m_{NH_3} , masa de amoniaco

Para una temperatura de saturación del amoniaco de -5°C (268.15 K) corresponden las entalpías siguientes

 h_v , entalpía del amoniaco vapor: 320.09 KJ/K

 h_l , entalpia del amoniaco líquido:1599.8 KJ/K

Sustituyendo la ecuación [C] en la [B]

.
$$Q_{hielo} = m_{NH_3} \cdot (h_v - h_l)$$
 [D]

Despejando la masa del amoniaco

$$m_{NH_3} = \frac{Q_{hielo}}{(h_v - h_l)}$$
 [D]

Suponiendo que las condiciones que se tiene el amoniaco en el tanque de almacenamiento son 30°C y 11.67 bar (presión de saturación) se tiene una densidad para la fase liquida de 595.17 Kg/m3.

Para conocer el volumen de amoniaco necesario para la producción de hielo, se utiliza la siguiente ecuación:

$$V_{NH_3} = \frac{m_{NH_3}}{\rho_{NH_3}} \quad [E]$$

Sustituyendo los valores queda

$$V_{NH_3} = \frac{1.62 \, Kg}{595.17 \, \frac{\text{Kg}}{m^3}}$$
$$= 0.00272 m^3 \cdot \left(\frac{100L}{1m^3}\right)$$
$$= 2.72L$$

Para producir 4.5 Kg de hielo se deben producir 2.72 L, suponiendo que no se tienen pérdidas al ambiente.

Teniendo una relación de hielo formado, por amoniaco consumido de 2.77.

$$Relación = \frac{m_{hielo}}{m_{NH_3}} = \frac{4.5Kg}{1.62 Kg} = 2.77$$

Sustituyendo los valores, queda

$$m_{NH_3} := \frac{Q_{hielo}}{h_v - h_l} = \frac{2073.15KJ}{1599.8 \frac{KJ}{K} - 1599.8 \frac{KJ}{K}}$$

$$= 1.62 Kg$$

Es decir, que por cada kg de amoniaco se producen 2.77 kg de hielo a 30°C y 11.67 bar.

H-3. Masa y concentración de NH3 en el generador/absorbedor

Hora	Volumen generado	
	L	+ mm
11:49		
14:02	2	-4
14:16	2	5
14:27	2.25	1
14:46	2.5	-1
15:01	2.5	2
15:06	2.5	2 5
15:16	2.75	-6
15:31	2.75	-1
15:46	2.75	2 5
16:01	2.75	5
16:16	3	-6
16:43	3	-3
17:02	3	-3
17:15	3	-1
18:04	3	-3 -3 -1 -2 -2
18:11	3	-2
18:48	3	4

Figura H1. Registro de lecturas del volumen de amoniaco generado durante una prueba a temperatura de condensación de 30°C.

Masa de NH₃ en el tanque de almacenamiento

Para conocer la cantidad de NH₃ que tiene el tanque durante la etapa de generación, fue necesario medir la cantidad de refrigerante cada 15 min aproximadamente. En la *Figura H1* se muestra una tabla con las lecturas de volumen de amoniaco generado durante la prueba del día 22 de junio del 2016, a temperatura de condensación de 30°C.

La lectura de la cantidad de refrigerante generado se leía en el tubo de nivel. Como la graduación no era muy fina también se leía con una regla (mm), la equivalencia utilizada es la siguiente:

$$1mm = 0.019205L$$

Sumando la cantidad de refrigerante generado en litros y mililitros se calculó la **cantidad de refrigerante**

generado.

Para transformar estos valores de volumen a masa fue necesario calcular la **densidad del amoniaco líquido** a condiciones promedio de temperatura y presión promedio dentro del tanque durante la etapa de Generación-Condensación utilizando REFPROP 9.1.Se multiplicó el volumen del refrigerante liquido (m³) por la densidad calculada (Kg/m³) a la presión del tanque de almacenamiento.

$$m_{NH_3} = \rho_{NH_3} \cdot V_{NH_3} [=] \left[\frac{Kg}{m^3} \right] \cdot [m^3]$$

Masa de amoniaco en el Generador/Absorbedor

Para el cálculo de la **masa de amoniaco en el generador**, se resta la cantidad de amoniaco que había inicialmente en él, menos la cantidad que se va generando de amoniaco.

Masa de NH₃en el Gen/Abs

- = Masa inicial de NH3en el Gen/Abs
- Masa de NH3almacenada en el tanque

Masa de la solución

Masa de la solución en el Gen/Abs

= Masa del NH₃ en el Gen/Abs + Masa del LiNO₃ en el Gen/Abs

La masa del LiNO3 siempre permanece constante.

Concentración de la solución en el Gen/Abs

$$x_{Sln} = \frac{Masa\ del\ NH_3}{Masa\ de\ la\ solución}$$

Para conocer la **masa de NH**₃ que se tiene en el tanque **a través del tiempo**, se realiza un gráfico (masa de NH₃ vs tiempo) y se ajusta una curva. Usualmente la cuerva se divide en tres secciones, y por cada sección se tiene una ecuación que describe su comportamiento.

Para saber el intervalo exacto de aplicación para cada una, se igualan dichas ecuaciones.

En la *Figura H3* se muestra una curva característica de generación de amoniaco.

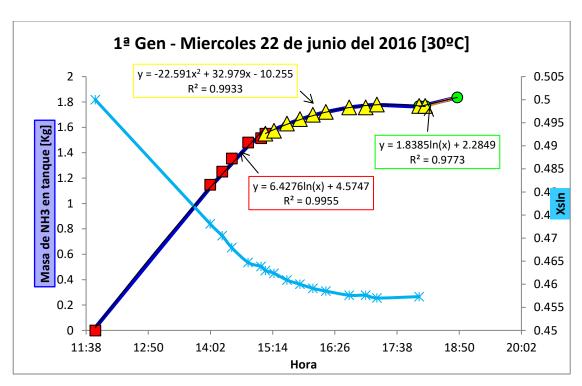


Figura H3 Curva característica de generación de amoniaco.

Anexo I

BALANCE DE ENERGÍA (B.E.) DEL REFRIGERADOR SOLAR INTERMITENTE (NH₃-LiNO₃)

	B.E. de etapa de evaporación con el refrigerante condensado a 20°C, 25°C, 30°C.	I-1
>	B.E. de etapa de absorción con el refrigerante condensado a 20°C, 25°C, 30°C.	I-2
>	B.E. para la etapa de condensación del refrigerante condensado a 20°C, 25°C y 30°C	I-3
>	B.E. para la etapa de generación del refrigerante condensado a 20°C 25°C v 30°C	I-4

Anexo I. BALANCE DE ENERGÍA (B.E.) DEL REFRIGERADOR SOLAR INTERMITENTE (NH3-

I-1. Balance de energía para la etapa de evaporación con el refrigerante condensado a 20°C

		Refrigerante		Agua		Hielo		Aire (cámara de enfirmiento)		Ambient e
					Final/Sal	Inicial/Entr	Final/Sal	Inicial/Entr	Final/Sal	Promedi
		Inicial/Entrada	Final/Salida	Inicial/Entrada	ida	ada	ida	ada	ida	0
Flujo másico	[Kg/h]	0.496	0.496							
Masa	[Kg]	2.600	0.000	4.500	4.500	0.000	0.010	0.067	0.068	
Temperatura	[°C]	-2.353	0.518	11.153*	0.010*	-0.013	-0.308	16.133	11.457	19.121
Temperatura	[K]	270.797	273.668	284.303	273.160	273.137	272.842	289.283	284.607	292.271
Presión Absoluta	[bar]	4.012	3.943	3.476	3.863	3.880	4.019	0.866 / 1 **	0.867/1	0.877 / 1**
Entalpía específica	[KJ/K g]	332.290	1610.200	47.194	0.000			289.662	284.949	292.674
Entropía específica	KJ/Kg .K	1.432	6.149	0.168	0.393			6.835	6.818	6.845
Densidad	Kg/m3	641.790	3.146	999.710	999.990			1.206	1.226	1.193
Volumen	m3/Kg	0.002	0.318	0.001	,,,,,,			1.200	1,220	11170
Energía Interna	KJ/Kg	331.670	1484.900	46.846	0.007					
Cv	KJ/Kg .K	2.804	1.880	4.186	4.218					
Ср	KJ/Kg .K	4.604	2.609	4.193	4.216			1.007	1.006	1.007
Fase		Liquido subenfriado	Vapor sobrecalentado	Liquido subenfriado						
λ hielo	KJ/Kg					334.000	334.000			
Duración de										
Prueba	h	0.000	5.240	0.000	3.580		1.660	0.000	5.240	
Energía (E)	KJ		3322.566		-212.373		3.340		-0.317	

- Para los valores temperatura y presión a la entrada y salida del evaporador, se toman como valores ponderados.
- Suposición: la masa inicial de refrigerante para esta etapa fue la medida durante la condensación. Este mismo refrigerante se consume de manera total durante la evaporación de este mismo, ya que, al realizar la integración de los datos registrados por el sensor de flujo de masa, es mucho menor. Para valores de T,P,h,s se utilizaran promedios ponderados.
- (*) Para la temperatura inicial y final del agua de congelación, se consideró un promedio de los datos iniciales y finales en cada etapa (calor sensible y calor latente). Se sacó un promedio de 5 datos cerca de la periferia o tiempo de interés.
- Se colocó el agua en los tubos del evaporador, antes de iniciar la prueba, también se purgaron las válvulas a la salida del evaporador y la temperatura del amoniaco dentro del evaporador descendió, es por eso por lo que la temperatura del agua es menor a la temperatura ambiente.
- (**) Para el cálculo del aire ambiental se consideró la presión de un bar .Presión real/teórica. Se utilizó la siguiente página: URL:http://www.peacesoftware.de/einigewerte/calc_luft.php7 . Fecha: 04/08/2021 20:50
- Dichas propiedades termodinámicas, se utilizaron las siguientes fuentes:
 - *URL: https://irc.wisc.edu/properties/ Fecha: 04/08/2021 19:51
 - REFPROP

I-1. Balance de energía para la etapa de evaporación con el refrigerante condensado a $25^{\circ}\mathrm{C}$

		Refrigerante		Agua		Hielo		Aire (cámara de	enfirmiento)	Ambiente
		Inicial/Entrad a	Final/Salid a	Inicial/Entrad a	Final/Salida	Inicial/Entrada	Final/Salida	Inicial/Entrad a	Final/Salid a	Promedio
Flujo másico	[Kg/h]	0.430	0.430	<u>I</u>						
Masa	[Kg]	3.270	0.000	4.500	4.500	0.000	1.810	0.067	0.068	
Temperatura	[°C]	-2.740	-0.246	(*) 8.080	-0.437	-0.418	-0.303	16.562	12.624	19.629
Temperatura	[K]	270.410	272.904	281.230	272.713	272.732	272.847	289.712	285.774	292.779
Presión Absoluta	[bar]	4.047	3.953	3.243	3.835	3.914	4.096	(**) 0.877/1	(**)0.877/1	(**)0.877/1
Entalpía específica	[KJ/Kg]	330.510	1608.100	34.281	-114.000	-114.000	-114.000	290.094	286.125	293.186
Entropía específica	KJ/Kg. K	1.425	6.140	0.123	-0.455	-0.455	-0.453	6.836	6.822	6.847
Densidad	Kg/m3	642.320	3.166	999.950	1000.000	1000.000	1000.000	1.204	1.221	1.191
Volumen	m3/Kg	0.002	0.316	0.001	0.001	0.001	0.001			
Energía Interna	KJ/Kg	329.880	1483.300	33.956	-115.000	-114.000	-114.000			
Cv	KJ/Kg. K	2.805	1.886	4.195	4.220	4.220	4.220			
Ср	KJ/Kg. K	4.601	2.621	4.198	4.220	4.220	4.220	1.007	1.007	1.007
Fase		Liquido	Vapor	Liquid	Subcooled Liquid	Subcooled Liquid	Subcooled Liquid			
λ hielo	KJ/Kg					334.000	334.000			
Duración de Prueba	h	0.000	7.600	0.000	2.316		5.281	0.000	7.600	
Energía (E)	KJ		4177.719		-667.265		604.540		-0.266	

- Para los valores temperatura y presión a la entrada y salida del evaporador, se toman como valores ponderados.
- Suposición: la masa inicial de refrigerante para esta etapa fue la medida durante la condensación. Este mismo refrigerante se consume de manera total durante la evaporación de este mismo, ya que, al realizar la integración de los datos registrados por el sensor de flujo de masa, es mucho menor. Para valores de T,P,h,s se utilizaran promedios ponderados.
- (*) Para la temperatura inicial y final del agua de congelación, se consideró un promedio de los datos iniciales y finales en cada etapa (calor sensible y calor latente). Se sacó un promedio de 5 datos cerca de la periferia o tiempo de interés.
- Se colocó el agua en los tubos del evaporador, antes de iniciar la prueba, también se purgaron las válvulas a la salida del evaporador y la temperatura del amoniaco dentro del evaporador descendió, es por eso por lo que la temperatura del agua es menor a la temperatura ambiente.
- (**) Para el cálculo del aire ambiental se consideró la presión de un bar .Presión real/teórica. Se utilizó la siguiente página: URL:http://www.peacesoftware.de/einigewerte/calc_luft.php7 . Fecha: 04/08/2021 20:50
- Dichas propiedades termodinámicas, se utilizaron las siguientes fuentes:
 - o *URL: https://irc.wisc.edu/properties/ Fecha: 04/08/2021 19:51
 - o REFPROP

I-1. Balance de energía para la etapa de evaporación con el refrigerante condensado a 30°C

		Refrigerante		Agua		Hielo		Agua		Aire (cámara de enfirmiento)		Ambiente
		Inicial/Entrad a	Final/Salida	Inicial/Entrad a	Final/Salida	Inicial/En trada	Final/Sa lida	Inicial/En trada	Final/Sa lida	Inicial/Entrada	Final/Sal ida	Promedio
Flujo másico	[Kg/h]	0.350	0.000									
Masa	[Kg]	2.790	0.000	4.500	4.500	4.500	4.500	4.500	4.500	0.067	0.068	
Temperatura	[°C]	-4.255	-1.021	(*) 4.825	(*) 0.035	-0.779	-1.491	-1.488	-1.362	15.287	13.624	20.89
Temperatura	[K]	268.895	272.129	277.975	273.185	272.371	271.659	271.662	271.788	288.437	286.774	292.78
Presión Absoluta	[bar]	3.696	3.596	0.867	0.866593 /1	0.866593 /1	0.86659 3 /1	0.866593 /1	0.86659 3 /1	(**) 0.866/ 1	(**) 0.866/1	(**) 0.877 / 1
Entalpía específica	[KJ/K g]	323.520	1609.600	20.370	0.108					288.809	287.133	294.46
Entropía específica	KJ/K g.K	1.400	6.189	0.074	0.000					6.832	6.826	6.85
Densidad	Kg/m 3	644.360	2.872	999.960	999.800					1.210	1.217	1.19
Volumen	m3/K g	0.002	0.348	0.001	0.001							
Energía Interna	KJ/K g	322.950	1484.400	20.284	0.105							
Cv	KJ/K g.K	2.807	1.858	4.205	4.217							
Ср	KJ/K g.K	4.593	2.567	4.206	4.220			2.090	2.090	1.007	1.007	1.01
Fase		Liquido subenfriado	Vapor sobrecalentado	Liquido subenfriado	Liquido subenfriado							
λ hielo	KJ/K g					334.000	334.000					
Duración de Prueba	h	0.000	7.962		1.242		6.481		0.240			
Energía (E)	KJ		3588.163		-91.178		1503.00 0		- 294.866		-0.113	

- Para los valores temperatura y presión a la entrada y salida del evaporador, se toman como valores ponderados.
- Suposición: la masa inicial de refrigerante para esta etapa fue la medida durante la condensación. Este mismo refrigerante se consume de manera total durante la evaporación de este mismo, ya que, al realizar la integración de los datos registrados por el sensor de flujo de masa, es mucho menor. Para valores de T,P,h,s se utilizaran promedios ponderados.
- (*) Para la temperatura inicial y final del agua de congelación, se consideró un promedio de los datos iniciales y finales en cada etapa (calor sensible y calor latente). Se sacó un promedio de 5 datos cerca de la periferia o tiempo de interés.
- Se colocó el agua en los tubos del evaporador, antes de iniciar la prueba, también se purgaron las válvulas a la salida del evaporador y la temperatura del amoniaco dentro del evaporador descendió, es por eso por lo que la temperatura del agua es menor a la temperatura ambiente.
- (**) Para el cálculo del aire ambiental se consideró la presión de un bar .Presión real/teórica. Se utilizó la siguiente página: URL:http://www.peacesoftware.de/einigewerte/calc_luft.php7 . Fecha: 04/08/2021 20:50
- Dichas propiedades termodinámicas, se utilizaron las siguientes fuentes:
 - o *URL: https://irc.wisc.edu/properties/ Fecha: 04/08/2021 19:51
 - o REFPROP

I-2. Balance de energía para la etapa de absorción con el refrigerante condensado a 20°C, 25°C y 30°C

Temperatura a la cual s	e condensó el									
refrigerante		20°C			25°C			30°C		
		Mezcla A	Mezcla Absorbedor-		Mezcla Absorbedor-		Ambient	Mezcla Absorbedor-		Ambient
		refrig	gerante	e	refrig	erante	e	refrigerante		e
				Promedi			Promedi			Promedi
		Inicial	Final	0	Inicial	Final	0	Inicial	Final	0
Masa	[Kg]	20.39	22.13		19.26	23.11		19.71	22.23	
X		0.45	0.49		0.42	0.51		0.43	0.49	
Temperatura	[°C]	32.31	30.76	19.12	37.22	32.08	19.63	24.38	27.79	20.89
Temperatura	[K]	305.46	303.91	292.27	310.37	305.23	292.78	297.53	300.94	292.78
Presión Absoluta	[bar]	3.39	3.98	(*)0.877 / 1	3.20	4.10	(*)0.877 / 1	2.07	3.87	(*)0.877 / 1
Entalpía específica	[KJ/Kg]	-19.95	-20.20	292.67	-5.77	-11.77	293.19	-42.40	-28.91	294.46
Entropía específica	KJ/Kg.K	0.62	0.63	6.85	0.66	0.66	6.85	0.53	0.60	6.85
Densidad	Kg/m3	1075.25	1034.05	1.19	1103.26	1011.88	1.19			1.19
Cv	KJ/Kg.K									
Ср	KJ/Kg.K	2.90	3.06	1.01	2.79	3.15	1.01	2.81	3.06	
Duración de Prueba	h		5.24			7.60			7.96	
Duración de Prueba	S		18864.00			27360.00			28663. 00	1.01
Energía (Q)	KJ		-173.17			-331.23			543.36	
Potencia (P)	KJ/S		-0.009			-0.012			-0.019	

o Para el caso de temperaturas y presiones, al inicio y final de la prueba, se tomaron promedio de los primeros o ultimas datos de la prueba, respectivamente.

o (*) Para el cálculo del aire ambiental se consideró la presión de un bar .Presión real/teórica. Se utilizó la siguiente página: URL:http://www.peacesoftware.de/einigewerte/calc_luft.php7 . Fecha: 04/08/2021 20:50

I-3. Balance de energía para la etapa de condensación del refrigerante condensado a 20°C , 25°C y 30°C

		Primera Condensación		Segunda Condensación		Primera Condensación		Segunda Condensación	
		Refrigerante	20°C	Refrigerante	20°C	Refrigerante	25°C	Refrigerante	25°C
		Inicial/Entrada	Final/Salida	Inicial/Entrada	Final/Salida	Inicial/Entrada	Final/Salida	Inicial/Entrada	Final/Salida
Masa	[Kg]	0.000	0.790)	1.810		2.640		0.630
Temperatura	[°C]	39.746	28.196	49.765	27.396	48.786	30.927	43.728	31.362
Temperatura	[K]	312.896	301.346	322.915	300.546	321.936	304.077	316.878	304.512
Presión Absoluta	[bar]	11.956	12.040	12.146	12.707	11.913	13.557	11.930	12.713
Entalpía específica	[KJ/Kg]	1657.800	476.230	1686.300	475.410	1684.800	489.450	1669.900	491.530
Entropía específica	KJ/Kg.K	5.817	1.931	5.900	1.918	5.904	1.974	5.856	1.981
Densidad	Kg/m3	8.835	598.030	8.568	599.330	8.421	593.900	8.640	593.130
Volumen	m3/Kg	0.113	0.002	0.117	0.002	0.119	0.002	0.116	0.002
Energía Interna	KJ/Kg	1522.500	474.220	1544.500	470.290	1543.300	487.170	1531.900	489.390
Cv	KJ/Kg.K	2.082	2.761	2.009	2.762	2.007	2.758	2.045	2.045
Ср	KJ/Kg.K	3.040	4.811	2.881	4.802	2.875	4.835	2.960	2.757
Fase		Vapor sobrecalentado	Liquido subenfriado	Vapor sobrecalentado	Liquido subenfriado				
λ hielo	KJ/Kg								
Duración de Prueba	h		1.460		6.510		9.600)	7.220
Duración de Prueba	s		5256.000		23436.000		34560.000)	25992.000
Energía (Q)	KJ		-933.440		-2191.711		-3155.724		-742.373
Potencia (P)	KJ/s		-0.178		-0.094		-0.091		-0.029
Energía total	KJ		-3125.151				-3898.097	1	

[•] Promedios ponderados para presiones y temperaturas.

I-3. Balance de energía para la etapa de condensación del refrigerante condensado a 20°C, 25°C y 30°C

		Primera Condensación		Segunda Condensación	
		Refrigerante	30°C	Refrigerante	30°C
		Inicial/Entrada	Final/Salida	Inicial/Entrada	Final/Salida
Masa	[Kg]		1.840		0.950
Temperatura	[°C]	45.978	29.570	43.681	32.624
Temperatura	[K]	319.128	302.720	316.831	305.774
Presión Absoluta	[bar]	11.659	12.389	12.690	13.171
Entalpía específica	[KJ/Kg]	1678.200	482.860	1665.000	497.640
Entropía específica	KJ/Kg.K	5.892	1.953	5.814	2.001
Densidad	Kg/m3	8.328	595.920	9.273	591.180
Volumen	m3/Kg	0.120	0.002	0.108	0.002
Energía Interna	KJ/Kg	1538.200	480.780	1528.100	495.410
Cv	KJ/Kg.K	2.016	2.759	2.080	2.756
Ср	KJ/Kg.K	2.896	4.823	3.039	4.852
Fase		Vapor sobrecalentado	Liquido subenfriado	Vapor sobrecalentado	Liquido subenfriado
Duración de Prueba	h		8.370		8.470
Duración de Prueba	s		30132.000		30492.000
Energía (Q)	KJ		-2199.426		-1108.992
Potencia (P)	KJ/s		-0.073		-0.036
Energía total	KJ		-3308.418		

[•] Promedios ponderados para presiones y temperaturas.

I-4. Balance de energía para la etapa de generación del refrigerante condensado a 20°C , 25°C y 30°C

Calentam		Segunda		Primera		Segunda	
iento		Condensación		Condensación		Condensación	
Refrigera							
nte	20°C	Refrigerante	20°C	Refrigerante	25°C	Refrigerante	25°C
Inicial/En	Final/S		Final/S		Final/S		Final/S
trada	alida	Inicial/Entrada	alida	Inicial/Entrada	alida	Inicial/Entrada	alida
22.480	21.690	21.690	19.910	22.480	19.980	19.980	19.210
0.500	0.482	0.482	0.435	0.500	0.437	0.437	0.415
					77.027		
70.600	67.300	26.536	84.229	29.399	2724	22.236	90.969
	340.45		286.32		350.17		364.11
343.750	0	299.686	3	302.549	7	295.386	9
16.410	11.920	2.957	13.173	3.69640743	13.538	1.66517801	13.412
			131.79		110.56		148.21
106.781	90.673	-34.494	1	-23.000	5	-48.788	6
1.048	0.994	0.575	1.101	0.621	1.039	0.509	1.139
	1013.1		1048.1		1051.7		1065.2
991.203	55	1047.846	76	1027.568	77	1094.211	28
3.212	3.131	3.010	3.001	3.088	2.987	2.829	2.940
	1.460		6.510		9.600		7.220
	5256.0		23436.		34560.		25992.
	00		000		000		000
			-		-		=.
	526.83		3299.9		2556.6		3880.2
-	0		87		41		93
	0.100		-0.141		-0.074		-0.149
	-				-		
	2773.1				6436.9		
	57				34		

^{*}Para el caso de temperaturas y presiones, al inicio y final de la prueba, se tomaron promedio de los primero prueba, respectivamente.

I-4. Balance de energía para la etapa de generación del refrigerante condensado a 20°C , 25°C y 30°C

		Primera Condensación		Segunda Condensación	
		Refrigerante	30°C	Refrigerante	30°C
		Inicial/Entrada	Final/Salida	Inicial/Entrada	Final/Salida
Masa	[Kg]	22.480	20.720	20.640	19.690
X		0.500	0.457	0.455	0.429
Temperatura	[°C]	22.2335891	71.7219696	22.286	70.838
Temperatura	[K]	295.384	344.872	295.436	343.988
Presión Absoluta	[bar]	3.31901038	12.4032919	1.985	12.8485726
Entalpía específica	[KJ/Kg]	-45.049	98.417	-48.828	91.013
Entropía específica	KJ/Kg.K	0.540	1.009	0.515	0.976
Densidad	Kg/m3	1033.891	1034.869	1076.754	1065.265
Ср	KJ/Kg.K	3.066	3.050	2.898	2.937
Duración de Prueba	h		8.370		8.470
Duración de					
Prueba	S		30132.000		30492.000
Energía (Q)	KJ		-2999.474		-2763.867
Potencia (P)	KJ/s		-0.100		-0.091
Energía total	KJ		-5763.341		

^{*}Para el caso de temperaturas y presiones, al inicio y final de la prueba, se tomaron promedio de los primeros o ultimas 5 datos de la prueba, respectivamente.

Anexo J

BALANCE DE EXERGÍA DEL REFRIGERADOR SOLAR INTERMITENTE (NH₃-LiNO₃)

➢ DIFERENCIA DE EXERGIA DE LOS COMPONENTES DEL REFRIGERADOR SOLAR POR EL LADO INTERNO UTILIZANDO AGUA PARA LA CONDENSACIÓN DEL REFRIGERANTE A 20°C, 25°C, 30°C. J-1

ANEXO J. BALANCE DE EXERGÍA DEL REFRIGERADOR SOLAR INTERMITENTE (NH3-LiNO3)

J-1 DIFERENCIA DE EXERGIA DE LOS COMPONENTES DEL REFRIGERADOR SOLAR POR EL LADO INTERNO UTILIZANDO AGUA PARA LA CONDENSACIÓN DEL REFRIGERANTE A 20°C, 25°C, 30°C.

Exergía. La exergía representa el trabajo máximo que se pude obtener de un sistema.

<u>Trabajo máximo</u>. Un sistema entrega un trabajo máximo cuando el proceso es reversible desde un estado inicial hasta un estado muerto.

Irreversibilidad. Es la diferencia entre el trabajo ideal menos el trabajo real. Irr=Wi -Wr

Exergía en el estado 1. Ex1=(he-ho)-To(se-so)

Exergía en el estado 2. Ex2=(hs-ho)-To(ss-so)

 $\Delta Ex = Ex2-Ex1$

 Δ Ex=(hs-ho)-To(ss-so)-[(he-ho)-To(se-so)]

ΔEx=hs -ho -Toss+To so-he+ho-Tose-Toso

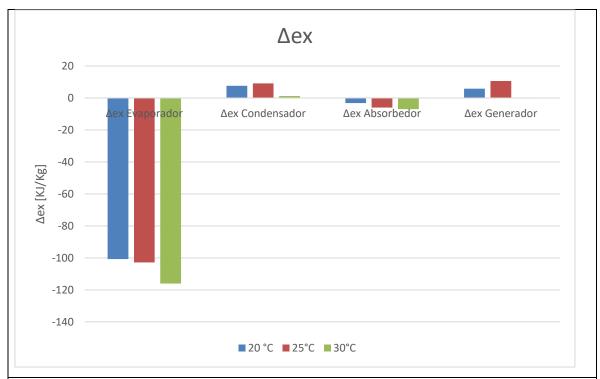
 Δ Ex=hs-Toss-he+Tose

 Δ Ex=(hs-he)+To(se-ss)

Con las propiedades del Anexo I, se realizó los cálculos de diferencia de exergía (ΔEx) interna en cada equipo, teniendo como temperatura de estado muerto (To) a la temperatura ambiente.

$$\Delta Ex = (hs-he) + To(se-ss)$$

La graficas de la diferencia de exergía (ΔEx) se muestran en la **Figura J-1** donde se puede observar que en el evaporador presenta las mayores diferencias de exergía en comparación a los otros equipos; esto significa que se tuvo un mayor potencial de trabajo máximo, siendo la evaporación con 30°C la que obtuvo una mayor diferencia que la de 25°C y 20°C, esto se


puede explicar porque se mejoró el aislamiento en esta etapa además que el agua a congelar tenía una temperatura menor.

En el condensador se pude observar que se tiene una mayor diferencia de exergía en la prueba con agua de condensación a 25°C, seguido del de 20°C y en último lugar el de 30°C. La prueba a 30°C de agua de condensación fue mucho menor, esta tendencia tal vez se explique porque sólo se tienen pocos grados de temperatura de diferencia entre el agua de condensación de(30°C) y la temperatura ambiente que aproximadamente fue de 32°C.

En el absorbedor se observa una mayor diferencia de exergía, en la prueba donde se utilizó el refrigerante generado con agua de condensación a 30°C, seguido del de 25°C y luego el de 20°C.

Esto talvez se explique porque se tuvieron presiones iniciales de 3.4bar,3.2 bar y 2 bar a 20°C,25°C ,30°C temperatura de agua de condensación respectivamente.

En el caso del generador, se observan las mismas tendencias que en el generador, tal vez se deban a las mismas causas.

Figura J-1. Δex. Diferencia de exergía interna del evaporador, condensador, absorbedor y generador del refrigerador solar intermitente.

Anexo K

DISEÑO DEL CONDENSADOR DEL REFRIGERADOR SOLAR INTERMITENTE (NH₃-LiNO₃)

> DISEÑO DEL CONDENSADOR

K-1

ANEXO K- DISEÑO DEL CONDENSADOR DEL REFRIGERADOR SOLAR INTERMITENTE (NH3-Lino3)

K-1 DISEÑO DEL CONDENSADOR

	Fluido caliente	Fluido frío		
	Amoniaco	Agua	Acero	
.m	0.00049	2		kg/s
Ср	2.788	4.18		KJ kg ⁻¹ K ⁻¹
T entrada	68	25		°C
T salida	32	30.882		°C
ΔΤ	36	5.882		°C
ΔΤΒ	37.117			°C
ΔΤΑ	7			°C
DMLT		18.054		°C
q	49.180	49.180		W
Di	0.007			
Espesor	0.002			m
Conductividad térmica	0.029	0.61	45	W m ⁻¹ K ⁻
coeficiente de	0.029	0.01	43	
transferencia				
de calor por				
convección	11	300		
1/U	0.094			m2.K/W
U	10.605			W/m2.K
Α	0.256	m2		
L	10.828	m		

Los coeficientes de transferencia de calor fueron tomados de las siguientes fuentes:

Experimental Data for Ammonia Condensation on vertical and inclined fluted tubes. Fecha: 18/05/2022. URL: https://www.osti.gov/servlets/purl/6446321 pp.41

Coeficiente de transferencia de calor por convección. Fecha: 18/05/2022. URL: https://help.solidworks.com/2011/spanish/SolidWorks/cworks/LegacyHelp/Simulation/AnalysisBackground/ThermalAnalysis/Convection_Topics/Convection_Heat_Coefficient.htm

Anexo L

FORMATOS DE REGISTRO

FORMATOS DE REGISTRO PARA LA ESTAPA	L-1
DE GENERACION-CONDENSACIÓN.	
FORMATOS DE REGISTRO PARA LA ESTAPA	L-2
DE EVAPORACIÓN-ABSORCIÓN.	

ANEXO L -FORMATOS DE REGISTRO

L-1 FORMATOS DE REGISTRO PARA LA ESTAPA DE GENERACION-CONDENSACIÓN.

PRUEBA DE GENERACIÓN

FECHA:	
NOMBRE DEL ARCHIVO EXCEL (.CSV) :	
DÍA DE GENERACIÓN:	
TEMPERATURA (Tsp)DEL AGUA QUE RODEA AL CONDENSADOR:	
AREA DE APERTURA DEL CPC:	
INCLINACION:	
MASADE LiNO₃ EN EL GEN/ABS:	
MASA TOTAL DEL NH₃ EN EL GEN/ABS:	
MASA INICIAL EN EL TANQUE DEL NH₃ EN EL GEN/ABS:	
MASA FINAL EN EL TANQUE DEL NH ₃ EN EL GEN/ABS:	
VOLUMEN INICIAL DE REFRIGERANRTE EN EL TANQUE:	
HORA EN QUE SE DESCUBRE EL CPC:	
HORA EN QUE SE CUBRE EL CPC:	
HORA DE APERTURA DE LA VÁLVULA ENTRE CPC Y CONDENSADOR:	
HORA DE CIERRE DE LA VÁLVULA ENTRE CPC Y CONDENSADOR:	

REGISTRO DEL VOLUMEN DE AMONIACO GENERADO

	VOLUMEN GENERADO		VOLUMEN TOTAL GENERADO		DENSIDAD DEL NH3 EN EL TANQUE	MASA DE NH₃ EN EL TANQUE	MASA DE NH₃ EN EL GENERADOR	MASA DE LA SOLUCIÓN	Xsol	
HORA	[L]	[mm]	mm->L	[L]	[m3]	[Kg/m3]	[Kg]	[Kg]	[Kg]	Adim.

L-2 FORMATOS DE REGISTRO PARA LA ESTAPA DE EVAPORACIÓN-

ABSORCIÓN

PRUEBA DE EVAPORACION-ABSORCIÓN

FECHA:	
LUGAR:	
NOMBRE DEL ARCHIVO EXCEL (.CSV) :	
MASA DE LINO ₃ EN EL GEN/ABS:	
MASA TOTAL DEL NH₃ EN EL GEN/ABS:	
MASA INICIAL EN EL TANQUE DEL NH₃ EN EL GEN/ABS:	
MASA FIANL EN EL TANQUE DEL NH₃ EN EL GEN/ABS:	
VOLUMEN INICIAL DE REFRIGERANRTE EN EL TANQUE:	
VOLUMEN FINAL DE REFRIGERANRTE EN EL TANQUE:	
HORA DE APERTURA DE LA VÁLVULA ENTRE TANQUE Y VALVULA DE	
EXPANSIÓN:	
HORA DE CIERRE DE LA VÁLVULA ENTRE TANQUE Y VALVULA DE EXPANSIÓN:	
PRESIÓN EN ELABSORBEDOR POCO ANTES DE LA APERTURA:	
PRESIÓN EN EL TANQUE POCO ANTES DE LA APERTURA:	
PRESIÓN ATOMSEFERICA:	
CANTIDAD DE HIELO GENERADA:	

MASA DE HIELO GENERADA

		MASA DE	
	MASA DEL	TUBO+	MASA DE
	TUBO	HIELO	HIELO
NO. TUBO	[Kg]	[Kg]	[Kg]
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
TOTAL			

Anexo M

NIVEL DE MADUREZ TECNÓLOGICA

> NIVEL DE MADUREZ. TECNOLÓGICA

M-1

ANEXO M- NIVEL DE MADUREZ TECNOLÓGICA

M-1 NIVEL DE MADUREZ. TECNOLÓGICA

Evaluación TRL (Technology Readiness Levels). Para este Proyecto el nivel de maduración tecnológica TRL es un TRL2.

NMT	Top - Pregunta de nivel	Sí/No
9	¿El equipo/proceso ha operado sin problemas en el ambiente real para el cual fue diseñado?	NO
8	¿El equipo/proceso ha operado adecuadamente bajo condiciones de operación controladas?	NO
7	¿El equipo/proceso ha operado exitosamente en un ambiente operacional relevante (cold commissioning)?	NO
6	¿El equipo/proceso ha sido probado a escala de prototipo ingenieril en un ambiente adecuado para incluir pruebas de seguridad?	NO
5	¿El equipo/proceso ha sido probado a escala de laboratorio en un ambiente relevante / bajo condiciones o parámetros importantes?	NO
4	¿Se han realizado pruebas de laboratorio de procesos/equipos similares bajo condiciones controladas / de simulación?	NO
3	¿Se han realizado análisis de prueba de concepto del equipo/proceso bajo condiciones simuladas?	NO
2	¿El concepto del proceso/equipo/servicio ha sido formulado?	SI
1	¿Han sido reportados u observados los principios básicos del proceso/equipo/servicio?	SI

A continuación, se muestra el cuestionario aplicado para este proyecto en un nivel TRL2.

T/P/M P	Sí/No NO	1	Criterio Cliente identificado
1	NO	1	Cheme identificado
T	SI	2	Sistemas o componentes potenciales identificados
Т	NO	3	Estudios (artículos, modelos o teorías científicos) demuestran que la aplicación de la idea en un área tecnológica es factible
P	SI	4	Se conocen qué programas apoyarían el desarrollo de la tecnología
T	SI	5	Solución teórica o empírica identificada
T	SI	6	Elementos básicos de la tecnología identificados
T	SI	7	Existen publicaciones científicas al respecto
T	SI	8	Componentes de la tecnología caracterizados parcialmente
T	NO	9	Predicciones de desempeño realizadas para cada elemento
P	NO	10	Cliente(s) han expresado interés en la aplicación
T	SI	11	Análisis iniciales indican principales funciones a realizar
T	SI	12	Modelos y simulaciones utilizados únicamente para verificar principios físicos
P	SI	13	Arquitectura del sistema definida en términos de las funciones principales a realizar
T	SI	14	Estudios analíticos rigurosos confirman principios básicos
P	NO	15	Estudios analíticos reportados en <i>journals</i> /memorias de congresos/reportes técnicos científicos
Т	SI	16	Componentes de la tecnología funcionan de manera individual, no se ha probado el funcionamiento integrado de estos
T	SI	17	Se conocen los dispositivos de visualización de resultados disponibles
P	NO	18	Estrategia preliminar para obtener el NMT 6 desarrollada en conformidad con la normatividad vigente

P	NO	19	Se conocen las capacidades y limitaciones de investigadores e infraestructura (instalaciones) de investigación
T	NO	20	Se ha determinado el alcance y escala de la producción de desechos
T	SI	21	Se conocen las pruebas y experimentos requeridos desde un punto de vista académico
P	NO	22	Se han identificado cualitativamente las áreas de riesgo (costos, rendimiento, cumplimiento del cronograma de actividades)

Bibliografía

- Acosta López, J. (1984). Curso de ingeniería química: Introducción a los procesos, las operaciones unitarias y los fenómenos de transporte. Reverte.
- ASHRAE. (06 de Diciembre de 2016). Obtenido de https://www.ashrae.org/File Library/docLib/About Us/PositionDocuments/Ammonia-as-a-Refrigerant-PD-2014.pdf
- Barcelonatech, U. P. (25 de Enero de 2017). *Escola Politècnica Superior d'Enginyeria de Manresa*.

 Obtenido de http://www.epsem.upc.edu/intercanviadorsdecalor/castella/carcassa_i_tubs.html.
- Bernhardt, D. (1984). Ingeniería Termodinámica (2a ed.). Editorial Harla.
- Blanco Félix, L. A. (1999). *Modelación, simulación y evaluación de la eficiencia térmica de una hielera solar tipo ISAAC*. Tesis de Licenciatura, Universidad de Sonora.
- Capítulo 3 Máquinas de absorción , «ANÁLISIS DE LOS SISTEMAS DE REFRIGERACIÓN SOLAR POR ABSORCIÓN». (2016).
- Castro Gutiérrez, J., Hernández Zapata, S., & Álvarez Macías, C. (2010). *La refrigeración* en la enseñanza de la física. Lat. Am. J. Phys. Educ. Vol. 4, Suppl. 1.
- Cervantes Contreras, Á. U. (2012). *Diseño y construcción de un evaporador para la evaluación de un refrigerador solar*. Tesis de Maestría, Universidad Veracruzana.
- Cervantes, Á. U., & Rivera Gómez, W. (2016). Diseño y Simulación en CFD de un Evaporador para la Evaluación de un Sistema de Refrigeración Solar Intermitente para producción de hielo, operando con la mezcla NH3/LiNO3. Sociedad Mexicana de Ingeniería Mecánica.
- encyclopedia, G. (18 de Octubre de 2016). *Gas encyclopedia by air liquide*. Obtenido de http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=38
- Francis Weston Sears, G. L. (1978). Termodinámica, teoría cinética y termodinámica estadística. Reverté.

- Gómez Espinoza, V. H. (2007). Simulación numérica y validación experimental de intercambiadores de calor de tubos alertados y placas, y su integración a un ciclo de refrigeración por absorción. Tesis de doctorado, CIE, UNAM.
- Hernández Goribar, E. (1997). *Fundamentos de aire acondicionado y refrigeración*. Editorial Limusa.
- Jaén González, A., Oliva Llena, A. C., Montserrat Ribas, S. ,., Casals Casanova, M. ,., & Roca Ramon, X. (2016). *Tecnología energética y medio ambiente I*. Catalunya: Iniciativa Digital Politécnica.
- Jiménez Bernal José, G. T. (2014). Termodinámica. Patria.
- Jiménez García, J. C. (2014). Evaluación experimental de un sistema vertical de aire acondicionado por absorción operando con la mezcla nitrato de litio-amoniaco. Tesis de Maestría, UNAM.
- Lira, P. V. (2015). Estudio teórico-experimental de la solubilidad y la presión de vapor de disoluciones acuosas de nitratos y nitritos alcalinos para sistemas de absorción de alta temperatura. Tarragona: Universitat Rovira I Virgili.
- Martínez Ortega, J. F. (2007). *Optimización de un sistema de refrigeración solar para la producción de hielo*. Tesis de maestría, UNAM.
- Martínez Ortega, J. F. (2008). Optimización de un sistema de refrigeración solar para producción de hielo. Tesis de Maestría, UNAM.
- Martinez Tejeda, F. C. (2012). "Diseño, construcción, instrumentación y control de un refrigerador solar termoquímico". Tesis de maestría, CIE, UNAM.
- Moreno Quintanar, G. (2010). Comparación del funcionamiento de un refrigerador solar para producción de hielo operando las mezclas NH3-LiNO3 y NH3-LiNO3-H2O. Tesis de maestría,UNAM.

- Pilatowsky Figueroa, I., Best Brown, R., Valiente Barderas, A., Lage Soto, J. C., Gutiérrez Martínez, F., Hernández Aguirre, J. I., & Martínez Sánchez, E. (1999). "Métodos de producción de frio". UNAM.
- Pilatowsky Isaac, R. W. (2011). Refrigeración Solar. México.
- PRTR. (14 de Diciembre de 2016). *Registro Estatal de Emisiones y Fuentes Contaminantes*. Obtenido de http://www.prtr-es.es/NH3-amoniaco,15593,11,2007.html
- Rivera Blanco, C. O. (2006). Simulación, diseño y evaluación de un refrigerador solar intermitente usando un CPC. Tesis docotoral, UNAM.
- Sei-Contreras. (25 de Enero de 2017).
- SENER. (2011). *Indicadores de eficiencia energética: 5 sectores,5 retos*. Obtenido de https://www.gob.mx/cms/uploads/attachment/file/85305/Bibliograf_a_6.pdf
- SENER. (2015). *Balance nacional de energía 2015*. Obtenido de https://www.gob.mx/cms/uploads/attachment/file/177621/Balance_Nacional_de_En erg_a_2015.pdf
- SIG. (18 de Octubre de 2016). *SIG an air liquide company*. Obtenido de http://www.siggases.com/refrigerant-refrigeration-product.php
- Solorio Quintana, C. (2012). Evaluación de un refrigerador solar intermitente para la producción de hielo, usando diversos evaporadores. Tesis de Maestría, UNAM.
- Yunes A Cengel, M. A. (2010). *Termodinámica* (7a ed.). Mc Graw Hill.