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Introduction

A fundamental aim of statistics consists in the prediction of future outcomes of a sequence
(xi)i≥1, on the basis of a sample (xi)

n
i=1. In order to face this problem, the observations

x1, x2, . . . are required to satisfy some symmetry condition that permits us to treat them as
if they were analogous. In the Bayesian nonparametric setting, such symmetry corresponds
to exchangeability. A sequence of random variables (xi)i≥1, taking values on a Borel space X
endowed with its Borel σ-algebra X , is exchangeable if its finite-dimensional distributions
are invariant under finite permutations. This means that (xi)

n
i=1

d
=
(
xρ(i)

)n
i=1

for every
n ≥ 1 and any permutation ρ of {1, . . . , n}. Equivalently, exchangeable observations
are invariant with respect to the order in which they were recorded. Bruno de Finetti’s
representation theorem states that a sequence is exchangeable if and only if there exists a
probability measure Q that takes values on the space of all probability measures over X,
PX with its Borel σ-algebra PX, such that

P [x1 ∈ A1, . . . , xn ∈ An] =

∫
PX

n∏
i=1

p̃(Ai)Q(dp̃)

for any collection of measurable sets (Ai)
n
i=1. This can be stated as that the sequence

(xi)i≥1 is conditionally i.i.d. given the random probability measure p̃, whose distribution
is Q. If the support of Q is an infinite-dimensional subspace of PX, then Q is termed a
nonparametric prior, and prediction within an exchangeable setting with such priors has
been extensively studied.

In a large variety of applications, such as when data are generated from different though
related experiments or populations, exchangeability is not an appropriate assumption as
usually there exist some degree of heterogeneity within the samples. The experiments
identify m sequences (x1,j)j≥1 , . . . , (xm,j)j≥1 taking values on the same space (X,X ) such
that the homogeneity assumption of exchangeablity may hold within each experiment
(xi,j)j≥1, though not necessarily across different (xi,j)j≥1 and (xk,j)j≥1, where i 6= k. In this
case, a more general form of dependence is needed, such as partial exchangeability. Partial
exchangeability was introduced in de Finetti (1937) as a need to cover these situations, as
in the words of de Finetti himself

“To get from the case of exchangeability to other cases which are more general
but still tractable, we must take up the case where we still encounter ‘analogies’
among the events under consideration, but without attaining the limiting case
of exchangeability”
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An array x =
Ä
(xi,j)j≥1

äm
i=1

of m sequences of random variables is partially exchange-

able if the joint law of the vector
Ä
(x1,j)

n1

j=1 , . . . , (xm,j)
nm
j=1

ä
is invariant under permutations

ρi of the indices {1, . . . , ni} within each sample. This means thatÄ
(x1,j)

n1

j=1 , . . . , (xm,j)
nm
j=1

ä
d
=
Ä(

x1,ρ1(j)

)n1

j=1
, . . . ,

(
xm,ρm(j)

)nm
j=1

ä
.

A corresponding representation theorem for partially exchangeable arrays holds true, so
that we can characterize such arrays by the means of a probability measure Qm that takes
values on (PmX ,PmX ) and such that

P

[
m⋂
i=1

¶
x

(ni)
i ∈ Ai

©]
=

∫
PmX

m∏
i=1

p̃
(ni)
i (Ai)Qm(dp̃1, . . . ,dp̃m)

for any integers ni ≥ 1 and Ai ∈ X (ni). Qm dictates the dependence between the vector
of random probability measures (p̃1, . . . , p̃m) and since both exchangeability and complete
independence occur as a limiting case of partial exchangeability, it is desirable to have a
prior Qm that can cover the full range of possible dependence structures.

As aforementioned, a large amount of literature on Bayesian nonparametric statistics
has been developed under the assumption of exchangeability and this case is well under-
stood. However, models for partially exchangeable data are still the subject of current
literature. Nested models were studied in Camerlenghi et al. (2019a) and Camerlenghi
(2015), where the random probability measures p̃1, . . . , p̃m are exchangeable themselves,
and thus their dependence is dictated by p̃1, . . . , p̃m | q̃ ∼ q̃, where q̃ is a random probability
measure on (PX,PX). Additive structures such that p̃i := T (µ̃i + µ̃0), where µ̃0 is a com-
mon random probability measure and T is a suitable transformation such as normalization
have been studied back to Müller et al. (2004). Here we will study a construction for Qm

based on hierarchical processes, meaning that Qm will be expressed as

p̃i | p̃0 ∼ Qi(p̃0) with E[p̃i | p̃0] = p̃0 for i = 1, . . . ,m

p̃0 ∼ Q0.

This means that to enable the dependence across the m samples, each of the p̃i’s will share
the same random base measure p̃0. The choice of Qi(p̃0) will be based on completely random
measures, either it being through the normalization or a transformation of a completely
random measure.

Organization of the document

The outline of the thesis is as follows. In Chapter 1 we recall some basics and notation,
namely the concept of exchangeability and the representation theorem for exchangeable
sequences (Sections 1.1 and 1.2). In Section 1.3 we study Poisson processes on general
spaces and review some of their distributional properties, to the aim of constructing com-
pletely random measures based on these processes, as exposed in Section 1.4. In Chapter
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2, we study nonparametric priors constructed from transformations of completely random
measures and some of their key properties, such as the partition structure (2.1.2) and a
posterior representation (2.1.3). Examples of these priors are exposed in Section 2.2 and
2.3. The notion of partial exchangeability is discussed at the beginning of Chapter 3, and
its corresponding representation theorem. Hierarchical processes constructed from nor-
malized completely random measures are studied in Section 3.2. As in the exchangeable
framework, this construction implies that there will be ties within each sample and across
different samples as well, so the partition induced by partially exchangeable arrays whose
dependence structure is dictated by hierarchical NRMIs and the distribution of the number
of blocks is studied in Sections 3.2.2 and 3.2.3 respectively. Sections 3.3 and 3.4 exhibit
particular examples of hierarchical processes. In Chapter 4 we apply the theory developed
in Chapter 3 to density estimation of m partially exchangeable sequences of data by the
means of a Monte Carlo Markov Chain algorithm. We first make a brief review on mixture
models based on the nonparametric priors studied in Chapter 2 (Sections 4.1.1 and 4.2.1)
to then extend the methodology to partially exchangeable arrays (Section 4.2). Finally, we
designed two small experiments to test the performance of several hierarchical processes
on Section 4.3.
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Preliminaries

The aim of this preliminary chapter is to lay the foundations of the framework in which
we will be working throughout this thesis. Sections 1.1 and 1.2 explain the bases of
Bayesian statistics according to the concept of exchangeability and the representation
theorem for exchangeable sequences, a result that guarantees the existence of a random
probability measure and the need for an initial distribution. Section 1.3 gives a brief
introduction to Poisson processes and their properties, since they constitute a fundamental
tool for the construction of random probability measures. This Section relies mainly on
Kingman (1993). Finally, Section 1.4 deals with completely random measures, their atomic
decomposition and some examples.

1.1 Exchangeability and random measures

According to Goldstein (2013), uncertainty can be categorized as either aleatory or epis-
temic: epistemic uncertainty is that which relates to our lack of knowledge, whereas
aleatory uncertainty is inherent to the phenomenon under study. In statistical analysis,
given data {x1, . . . , xn}, aleatory and epistemic uncertainty are expressed through a para-
metric family of distributions {µθ : θ ∈ Θ} and the parameter θ respectively. The classical
or so called frequentist approach assumes that θ is an unknown but fixed quantity, in con-
trast with the Bayesian approach, that considers the parameter itself as a random variable
with an initial probability distribution, called the prior distribution. The reason behind
this assumption lies on the concept of exchangeability and the celebrated representation
theorem for exchangeable sequences.

Before moving on, let us state that we will be working on a Polish space X, meaning a
complete and separable metric space, endowed with its Borel σ-algebra X . We will denote
as MX the space of all of boundedly finite measures on (X,X ), that is m(A) < ∞ for
m ∈ MX and any bounded set A ∈ X . MX will be the smallest σ-algebra on MX such that
the evaluation mappings πA : µ → µ(A) are measurable for every A ∈ X . Similarly, PX

will be the space of all probability measures on X and PX its associated Borel σ-algebra.
Note that PX is a measurable subset of MX.
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Definition 1.1. Let X be a Polish space endowed with its Borel σ-algebra X . A finite
collection of random variables (xi)

n
i=1 defined on a probability space (Ω,F ,P) and taking

values on (X,X ) is said to be finitely exchangeable if

(x1, . . . , xn)
d
=
(
xρ(1), . . . , xρ(n)

)
,

for any permutation ρ of the indices {1, . . . , n}. An infinite sequence of random variables
(xi)i≥1 is exchangeable if every subcollection is finitely exchangeable.

Example 1.1. Let (xi)
n
i=1 be an exchangeable sequence and r the correlation coefficient.

If n < ∞, then r ≥ − 1
n−1 and if n = ∞, then r ≥ 0 (Aldous (1985)). This means that,

while independent and identically distributed random variables are clearly exchangeable,
exchangeability does not imply independence.

In a Bayesian context, exchangeability replaces the heavy assumption of i.i.d. observa-
tions needed in the classical approach for a minimal assumption, in the sense that it reflects
nothing more than symmetry (physical independence and sampling order invariance). Fur-
thermore, the representation theorem for exchangeable sequences, first proved by de Finetti
(1931) for dichotomic random variables and further extended to general spaces by Hewitt
and Savage (1955), characterizes exchangeable sequences by a unique distribution Q on
PX, hence why exchangeability is inherently related to random measures. For an extensive
account on exchangeable random elements see Gil-Leyva (2021).

Definition 1.2. Given two measurable spaces (S,S) and (T, T ), a kernel from S to T is
a function µ̃ : S × T → R+ such that

1. For any fixed s ∈ S, the mapping A→ µ̃(s,A) is a measure on (T, T ).

2. For any fixed A ∈ T , the mapping s→ µ̃(s,A) is a measurable function.

If µ̃(s, T ) = 1 ∀s ∈ S, then µ̃ is a probability kernel.

Definition 1.3. Let (Ω,F ,P) be a probability space and let (X,X ) be a measurable
space. A random measure over (X,X ) is a kernel µ̃ : Ω × X → R+. Alternatively, a
random measure can be thought as a random variable defined on (Ω,F ,P), taking values
on (MX,MX).

Definition 1.4. Let (Ω,F ,P) be a probability space and let (X,X ) be a measurable space.
A random probability measure over (X,X ) is a probability kernel µ̃ : Ω × X → R+, or a
random variable defined on (Ω,F ,P) that takes values on (PX,PX).

Theorem 1.1. Let X be a Polish space and X its Borel σ-algebra. A sequence (xi)i≥1 of
X-valued random variables is exchangeable if and only if there is a probability measure Q

on PX such that for every n ≥ 1 and (Ai)
n
i=1 ∈ X

P [x1 ∈ A1, . . . , xn ∈ An] =

∫
PX

n∏
i=1

p̃(Ai)Q(dp̃).

2



Moreover, the distribution of p̃ is unique and for every A ∈ X , the empirical distribution
satisfies

Pn(A) :=
1

n

n∑
i=1

δxi(A)
a.s.→ p̃(A)

whenever n → ∞. The random probability measure p̃ is known as the directing random
measure and its distribution Q is known as the de Finetti measure of (xi)i≥1.

The proof of Theorem 1.1 can be found at Appendix A. This theorem is better known
as de Finetti’s representation theorem, and an alternative way to rephrase it is as follows:
there exists a random probability measure p̃, with p̃ ∼ Q, such that

P [x1 ∈ A1, . . . , xn ∈ An | p̃] =

n∏
i=1

p̃(Ai).

This means that, given p̃, (xi)i≥1 are i.i.d. and distributed as p̃. Thus the representation
theorem provides an answer to the questions of why we should use parameters and why we
should put priors on them, since the product

∏n
i=1 p̃(Ai) is formed as if it were a likelihood

for {x1, . . . , xn} conditional on a quantity p̃, with Q being a prior on p̃. With this in
mind, we could think that an exchangeable sequence (xi)i≥1 can be generated as a two
step procedure:

1. Generate a random parameter value p̃ ∼ Q, i.e. draw a probability distribution at
random from the distribution Q.

2. Sample (xi)i≥1 according to x1, x2, . . . | p̃
i.i.d∼ p̃.

Alternatively, written in a hierarchical and somewhat more familiar way, exchangeability
can be expressed hierarchically as

xi |Θ
i.i.d.∼ Θ

Θ ∼ Q.

1.2 The Bayesian approach

Hereinafter we will adopt the notation used in a Bayesian context and denote as p(x) the
density or probability mass function of the random variable x and as p(x | y) the conditional
density or probability mass function of x given y.

Assume that (xi)i≥1 is a presumably exchangeable sequence and let x(n) = (x1, . . . , xn).
For the sake of exposition we assume the existence of a density for all of the necessary
distributions, so that the Bayesian procedure can be summarized as follows.

3



1. Suppose that we have chosen a specific prior distribution Q on PX for the unknown
parameter Θ. x(n) can then be modeled as i.i.d., sampled from the conditional joint
density of x(n) given Θ

p
Ä
x(n) |Θ

ä
=

n∏
i=1

p(xi |Θ).

2. The conditional distribution of Θ given x(n) is called the posterior distribution of Θ

and can be obtained by Bayes’ theorem as

p
Ä
Θ |x(n)

ä
∝ p
Ä
x(n) |Θ

ä
p(Θ).

3. From the posterior distribution we can make inferences about future data via the
posterior predictive distribution

p
Ä
xn+1 |x(n)

ä
=

∫
p (xn+1 |Θ) p

Ä
dΘ |x(n)

ä
,

or make inferences about Θ itself, such as the posterior mean

E
î
Θ |x(n)]

ó
=

∫
Θp(dΘ |x(n)).

Note that the above procedure would be pointless if instead of exchangeability we were to
assume complete independence, as in that case

P [xn+1 ∈ An+1 | x1 ∈ A1, . . . , xn ∈ An] = P [xn+1 ∈ An+1]

for any A1, . . . , An+1 ∈ X , and therefore previous observations would not provide any
information to update Θ. A more comprehensive study about the Bayesian procedure and
exchangeability can be consulted in Schervish (1996).

1.2.1 Why going nonparametric?

Let us denote as S(Q) ⊆ PX the support of the prior distribution Q for Θ, that is the set
on which Q concentrates all its mass. In a Bayesian model, S(Q) characterizes completely
the possible observation models because, as Θ takes values in S(Q), it is necessarily the
case that the sequence (xi)i≥1 is generated by a distribution in S(Q) a.s. When S(Q) is
a finite dimensional subspace of PX, the resulting Bayesian model is called parametric,
whereas whenever the support of Q is an infinite dimensional subspace of PX, the model
is nonparametric. In this setting, Q is referred to as a nonparametric prior.

There are some situations on which a parametric distribution does not suffice to cap-
ture accurately the uncertainty about Θ, let it be due to lack of information about the
phenomenon or due to wanting a model that reflects as much as possible the information
contained in the observations. In these cases it is more convenient to consider an infinitely-
supported prior Q. To illustrate this assertion, suppose that µθ is a family of parametric

4



distributions indexed by the elements θ of the parameter space Θ. The parametric model
x | θ ∼ µθ with θ ∼ µ for θ ∈ Θ can be considered within a nonparametric Bayesian frame-
work as x | p̃ ∼ p̃ with p̃ ∼ Q, where Q has property of Q({µθ : θ ∈ Θ}) = 1. Thus,
the parametric model may be translated as having a very strong prior opinion, as it uses
a prior that assigns probability one to a very small subset of all densities, as depicted in
Figure 1.1.

µθ

PX

Figure 1.1

The main motivation behind Bayesian nonparametric statistics is to avoid restrictive
parametric assumptions about the distribution that generates the data. The appellative
nonparametric might be misleading as it gives the impression that are no parameters in
the model when in fact, quite the opposite is true, as actually there are infinitely many.
Nonparametric should be interpreted as there is no need to predefine the dimensionality for
θ and might be more fittingly called hugely parametric. It is important to note that, while
using infinite (or at least very high)-dimensional priors brings high flexibility, there ain’t no
such thing as free lunch. Avoiding parametric assumptions about Θ inherently entails the
problem of studying and constructing random probability measures over this big parameter
spaces. This is a difficult demand mathematically speaking but also computationally, since
having such a large space on which inferences can be made requires that the posterior
computations are tractable. This is why the use of Bayesian nonparametric models was
slowed down during their early development, due to the lack of tools to manipulate the
posterior distribution.

There are several procedures for the construction of nonparametric priors: through
the specification of finite dimensional distributions (p̃(A1), . . . , p̃(An)) for {Ai}ni=1 ⊆ X for
n ≥ 1, or direct methods, such as the one described in Pitman (1996) for constructing a
large class of random probability measures called species sampling processes. Here we will
focus on priors for exchangeable sequences based on completely random measures, to then
extend the methodology to a more general setup.

1.3 Poisson processes

Poisson processes are a key to the probabilistic structure of completely random measures,
as Kingman (1967) presented a way to represent completely random measures as a three
component sum, one of them based on a Poisson process. In this section we will review
some of the most important properties of Poisson processes.

5



Definition 1.5. Let (X,X ) be a measurable space and let Υ be a random countable subset
of X. Let N be a random variable defined as

N(A) = |Υ ∩A| ∀A ∈ X .

Υ is Poisson process on X if

◦ For any disjoint measurable sets A1, . . . , Ad ∈ X , N(A1), . . . ,N(Ad) are independent.

◦ N(A) ∼ Poisson(µ(A)) where µ is called the mean measure and 0 ≤ µ(A) ≤ ∞.

For a measurable set A, N(A) is the count of the atoms of A that lie in Υ, as depicted
in Figure 1.2. Alternatively N can be seen as N( · ) =

∑
υ∈Υ δυ( · ).

A

N(A) = |Υ ∩A| ∼ Poisson(µ(A))

Figure 1.2: The dots are the Poisson process Υ with mean µ, and A is any measurable set.

N is a random measure, referred to as a Poisson random measure, since for a disjoint
sequence of measurable sets (Bj)j≥1

N

Ñ
∞⋃
j=1

Bj

é
=

∣∣∣∣∣Υ ∩
Ñ⋃
j≥1

Bj

é ∣∣∣∣∣ =

∣∣∣∣∣
∞⋃
j=1

(Υ ∩Bj)
∣∣∣∣∣ =

∞∑
j=1

|Υ ∩Bj | =
∞∑
j=1

N(Bj),

and clearly N(∅) = 0.

Example 1.2. Let X = [0,∞) and λ be the Lebesgue measure on X. The Poisson random
measure associated with the Poisson process Υ with mean measure λ is just the one-
dimensional time-homogeneous Poisson process (a pure-birth Markov chain with birth rate
one). Υ is the random set of the jump times of the process.

Remark. If µ is the mean measure of a Poisson process, then it is diffuse, i.e. µ({x}) = 0

for all x ∈ X. This is because for x ∈ X, by definition, P[N({x}) = 2] = µ({x})2

2 e−µ({x}) = 0,
which leads to the result.

A realization of a homogeneous Poisson process is shown in Figure 1.3.

1.3.1 Properties

There are a few operations under which the Poisson process is closed; these are summarized
in this section. For easier understanding we omit some of the proofs and refer to Kingman
(1993) for further details, whilst some other proofs are attached at Appendix A.
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Figure 1.3: Homogeneous Poisson process on [0, 2]× [0, 2] with rate 10.

Theorem 1.2. (Disjointness) Let Υ1 and Υ2 be independent Poisson processes with mean
measure µ1 and µ2 respectively. If A is a measurable set such that µ1(A) and µ2(A) are
finite, then Υ1 and Υ2 are a.s. disjoint on A, i.e. P[Υ1 ∩Υ2 ∩A = ∅] = 1.

This can be interpreted intuitively as follows: as the mean measure of a Poisson process
is diffuse, the probability of assigning mass two to a point (the two Poisson processes both
containing the same point) is zero.

Theorem 1.3. (Superposition and restriction)

(1) Let Υ1,Υ2, . . . be a countable collection of independent Poisson processes on X and let
Υj have mean measure µj for each j. Then

⋃
j≥1 Υj is a Poisson process with mean

measure µ =
∑∞

j=1 µj.

(2) Let Υ be a Poisson process on X with mean measure µ. For every B ∈ X , Υ ∩B is a
Poisson process on X with mean measure µB(·) = µ(· ∩ B). Equivalently, Υ ∩ B can
also be viewed as a Poisson process with state space B with mean measure given by the
restriction of µ on B.

The superposition theorem tells us that by joining a countable set of independent
Poisson process results in another Poisson process with an updated mean measure, while
the restriction theorem can be thought as an intersection operation.

Given a Poisson process, a natural question to ask is what happens if we take a trans-
formation h(υ) for each point υ ∈ Υ. Interestingly, under certain conditions, a functional
transformation of a Poisson process gives another Poisson process on the output space.

Theorem 1.4. (Mapping) Let Υ be a Poisson process with state space X and σ-finite
mean measure µ. Consider a measurable map h from X to another polish space S. If the
pushforward measure µ∗(·) = µ(h−1(·)) is diffuse, then h(Υ) = {h(υ) : υ ∈ Υ} is a Poisson
process on S with mean measure µ∗.
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All these properties are necessary to establish Campbell’s theorem, since with it we will
obtain the characteristic functional of the Poisson process, a very powerful tool for deriving
further properties. Although Campbell’s theorem contains a straightforward computation
of the mean and variance of sums over Poisson processes, here we provide a partial version,
which serves our purpose.

Theorem 1.5. (Campbell’s) Let Υ be a Poisson process on X with mean measure µ and
let f : X→ R be a measurable function. Let

Σ =
∑
υ∈Υ

f(υ).

Σ is absolutely convergent in probability if and only if
∫
X min(|f(x)|, 1)µ(dx) <∞. If such

condition holds, then

E[etΣ] = exp
Å∫

X

Ä
etf(x) − 1

ä
µ(dx)

ã
for every t ∈ R such that the integral converges.

See Appendix A for a proof. Restricting Campbell’s theorem to f : X → R+ and
setting t = −1 we obtain the characteristic functional

E
î
e−Σ
ó

= exp
ß
−
∫
X

Ä
1− e−f(x)

ä
µ(dx)

™
. (1.1)

Aptly named, the characteristic functional uniquely characterizes a Poisson process.
Now let Υ be a Poisson process on X and suppose that for each υ ∈ Υ, we assign

a random variable mυ ∈ T , where (T, T ) is some measurable space. Additionally, the
distribution of mυ may depend on υ but not on the other points of Υ, and the random
variables mυ are independent for different values of υ. Note that each pair (υ,mυ) can be
regarded as a random variable taking values in the product space X×T , and consequently
the whole set of pairs

Υ∗ := {(υ,mυ) : υ ∈ Υ} (1.2)

is random countable subset of X× T . We can think of the random variable mυ as a mark
on each atom υ, as shown Figure 1.4.

Definition 1.6. Let Υ be a Poisson process on X with mean measure µ and let p : X×T →
[0, 1] be a probability kernel. The random countable set Υ∗ as defined in (1.2) is called a
marking of Υ if its projection onto X is Υ and the conditional distribution of Υ∗ given Υ

makes the set of marks {mυ}υ∈Υ independent and distributed as p(υ, · ).

We will see next that Υ∗ is indeed another Poisson process on X× T .
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Xυ1 υ2υ4 υ3

T

mυ1

mυ4

mυ3

mυ2

Υ∗ = {(υi,mυi ) : i = 1, 2, 3, 4}

Figure 1.4: The green dots represent Υ∗ on the product space X× T .

Theorem 1.6. (Marking) The random subset Υ∗ is a Poisson process on X×T with mean
measure µ∗ given by

µ∗(A) =

∫∫
(x,m)∈A

µ(dx)p(x,dm).

A proof of Theorem 1.6 can be found at Appendix A. An immediate corollary is that
the mark random variables {mυ}υ∈Υ themselves form a Poisson process on T : this is true
because of the mapping theorem, as mυ is a projection of Υ∗ over T .

1.4 Completely random measures

As aforementioned, we will focus on choices of Q constructed from the transformation
or the normalization of completely random measures, and that have almost sure discrete
realizations. As these objects will be the building blocks of all nonparametric priors studied
in this document, before describing how construct such priors and describe how to use them
in Bayesian inference, we will dedicate this section to study of some of their most relevant
structural properties.

Definition 1.7. If µ̃ is a random measure such that, for any d ≥ 2 and collection of
pairwise disjoint sets A1, . . . , Ad ∈ X , the random variables µ̃(A1), . . . , µ̃(Ad) are mutually
independent, then µ̃ is called a completely random measure.

In words, completely random measures assign independent masses to disjoint subsets.
As we can think of a random probability measure µ̃ on (X,X ) as a stochastic process
{µ̃(A)}A∈X indexed by measurable sets, a completely random measure generalizes the
notion of independent increments that is familiar in the case in which X = R. We will dive
into this idea further on.

1.4.1 Decomposition of CRMs

Definition 1.8. A completely random measure µ̃ is said to be Σ-finite if there exist a
partition (Si)i≥1 ⊆ X such that P [µ̃(Si) <∞] > 0 ∀i.
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Σ-finite completely random measures can be constructed from Poisson processes and
admit a unique decomposition as the summation over three parts: a deterministic measure,
a purely atomic measure with fixed atom locations and a discrete measure with random
jumps and atoms.

Theorem 1.7. Let µ̃ be a Σ-finite completely random measure on (X,X ). µ̃ can be a.s.
decomposed as

µ̃ = µ̃d + µ̃f + µ̃r,

where

◦ µ̃d is a non-atomic, non-random measure.

◦ µ̃f is an atomic measure with M fixed atoms (zi)
M
i=1 and non-negative, random atom

masses (vi)
M
i=1 independent of each other

µ̃f =
M∑
i=1

viδzi ,

with M ∈ N0 ∪ {∞}.

◦ µ̃r is an atomic measure with random atom locations (ζi)i≥1 and random atom masses
(wi)i≥1

µ̃r =
∑
i≥1

wiδζi ,

where {(ζi,wi)}i≥1 come from a Poisson process Υ∗ with mean measure ν that satisfies∫
B

∫
(x ∧ 1) ν(dv,dx) for B ∈ X . We will refer to (ζi)i≥1 indistinctly as the atoms

or locations of µ̃ and to (wi)i≥1 as the masses, weights or jumps of µ̃.

Remark. Even though Υ∗ looks like a marked Poisson process, this is not necessarily true
because the projection of ν onto X need not be σ-finite.

Proof of Theorem 1.7 can be found at Appendix A. From now on we will assume that
µ̃ has no fixed points of discontinuity and no deterministic drift, i.e. we will be working
with completely random measures that adopt the form µ̃ = µ̃r so that its realizations are
discrete a.s. An illustration of the basic construction for a completely random measure is
given in Figure 1.5. The Poisson process on R+ × X consists of a countable, and usually
infinite, set of points in a product space, as shown in 1.5a. The resulting completely
random measure is constructed by dropping lines from each point (wi, ζi) down to (0, ζi),
as in 1.5b.

Instead of dealing with µ̃ itself, we will focus our attention on the measure ν, often called
the Lévy intensity measure. It regulates the intensity of the jumps and their locations, and
according to Kallenberg (2017), ν can be decomposed as

ν(dv,dx) = α(dx)ρx(dv),
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(a) (b)

Figure 1.5

where α is a σ-finite measure on (X,X ) and ρx is a kernel on X × R+. ρx controls the
jump intensity and α determines the location of the jumps. If ρx(dv) ≡ ρ(dv) for some
measure ρ on R+, then the masses are independent of the locations and both µ̃ and ν

are said to be homogeneous. If not, then the masses depend on the locations and µ̃ and
ν are non-homogeneous. We will write µ̃ ∼ CRM (ρx, α) to refer to the distribution of
a completely random measure whose Lévy intensity is ν(dv,dx) = α(dx)ρx(dv). If in
particular α is a finite measure with total mass θ, so that α(dx) = θP0(dx), we will write
µ̃ ∼ CRM(ρ, θ, P0).

The intensity ν encodes all the information needed to generate a sample from a CRM.
Ferguson and Klass (1972) provided a way of generating a realization of µ̃ by sampling from
the underlying Poisson process, specifically by sampling the weights in a decreasing order.
In here, the authors proved that the distribution of the ordered weights w(1) ≥ w(2) ≥ · · ·
depends only on w(1), namely the distribution of w(j) given

(
w(i)

)j−1

i=1
equals the distribution

of the largest weight w(1), truncated from above. Algorithm 1.1 describes this procedure.

Algorithm 1.1: Sample of a CRM µ̃ with Lévy intensity ν(dv,dx) =

α(dx)ρx(dv).

Sample the atoms ζi
i.i.d.∼ α(dx).

Sample the atom’s masses according to

P[w(1) ≤ w1] = exp
Å
−
∫ ∞
w1

ρζ1(dw)

ã
for 0 < w1

P[w(2) ≤ w2 |w(1) = w1] = exp
Å
−
∫ w1

w2

ρζ2(dw)

ã
for 0 < w2 < w1

...

P[w(j) = wj |w(1) = w1, . . . ,w(j−1) = wj−1] = exp
Ç
−
∫ w1

wj−1

ρζj (dw)

å
for 0 < wj < · · · < w1
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Just as random variables are characterized by their Laplace transform, completely
random measures are characterized by their Laplace functional.

Definition 1.9. The Laplace functional of the completely random measure µ̃ is given by

E
î
e−

∫
X f(x)µ̃(dx)

ó
= exp

ñ
−
∫
R+

∫
X

Ä
1− e−vf(x)

ä
ν(dv,dx)

ô
(1.3)

for any measurable function f : X → R+. In particular, choosing f = t1A with A ∈ X
and t > 0 yields the Laplace transform of the random variable µ̃(A). We will write
E
î
e−

∫
X f(x)µ̃(dx)

ó
= E[e−µ̃(f)].

Definition 1.10. The Laplace exponent of the CRM µ̃ is given by

ψ(f) =

∫
R+

∫
X

Ä
1− e−vf(x)

ä
ν(dv,dx). (1.4)

In particular, if µ̃ is homogeneous and θ = α(X) <∞

ψ(f) = θ

∫
R+

Ä
1− e−vf

ä
ρ(dv).

1.4.2 Increasing additive processes

Now a brief review on additive processes will be made to apply all the theory developed
above to the case where X = R.

Definition 1.11. A stochastic process (ξs)s≥0 on a probability space (Ω,F ,P) is an addi-
tive process if

◦ ξ0 = 0 a.s.

◦ For any choice of n ≥ 1 and 0 ≤ s1 < · · · < sn, the random variables {ξsj+1− ξsj}n−1
j=1

are independent (independent increments property).

◦ There is a measurable Ω0 such that P[Ω0] = 1 and for ω ∈ Ω0, ξs(ω) is right-
continuous in s ≥ 0 and has left limits in s > 0 (càdlàg trajectories).

◦ limh→0 P [|ξs+h − ξs| ≥ ε] = 0 for s ≥ 0 and ε > 0 (it is stochastically continuous).

It is called a Lévy process if, in addition, (ξs+t − ξs)
d
= ξt for all s, t ≥ 0 (stationary

increments property).

Definition 1.12. An additive process (ξs)s≥0 with a.s. increasing sample paths is named
an increasing additive process. If (ξs)s≥0 is also a Lévy process, then it is termed a subor-
dinator.

Completely random measures and subordinators relate to each other in the following
way: let µ̃ be a completely random measure on R, bounded on finite sets a.s. and let ξ be
its right continuous distribution function, defined as

ξ(s) =

µ̃((0, s]) if s ≥ 0

−µ̃((s, 0]) if s < 0

12



From the independence property of µ̃ over disjoint sets, for a strictly increasing set of
indexes (si)

n
i=1 the random variables

ξ(si+1)− ξ(si) = µ̃ ((si, si+1])

are independent. By construction ξ is increasing and right-continuous, meaning that the
process (ξs)s∈R defines an increasing additive process, where we adopted the notation
ξ(s) = ξs. Therefore an IAP can be seen as the càdlàg distribution function induced
by a completely random measure on R. From Theorem 1.7 we know that ξs can be
decomposed into the superposition of three independent processes, specifically an increasing
deterministic process, a random increasing function that jumps at fixed discontinuities
and a random component that can be described by a Poisson process on the half plane
Υ∗ = {(ζ,w) : w > 0}.

Now assume stationary increments so that (ξs)s∈R is a subordinator. Stationarity then
rules out the existence of fixed atoms, and the deterministic process is a constant multiple
of the Lebesgue measure. The Poisson process in the representation of Theorem 1.7 inherits
the stationary property from (ξs)s∈R. In the light of this, a subordinator has for s ∈ R the
representation

ξs =

βs+
∑

i≥1 wi1(0,s](ζi) for t ≥ 0

βs−
∑

i≥1 wi1[s,0)(ζi) for t < 0

where β ≥ 0 and Υ∗ is a Poisson process on X∗ that is invariant under translations on the
x-axis. The mean measure must have the form ν(dz)dx, where ν is a measure on R+ such
that

∫
(1− e−z) ν(dz) <∞. Consequently we’ve found a characterization of subordinators

based on the perspective of completely random measures. This result can be re-expressed
in the same way as it appears in Bertoin (1996), considering the restriction of ξ to R+.

Theorem 1.8. A subordinator (ξs)s≥0 can be written as

ξs = βs+
∑
i≥1

wi1{ζi≤s},

for some constant β ≥ 0 and where {(ζi,wi)}i≥1 is a countable set of points of a Poisson
process with intensity ν(dz)dx, where ν is a Lévy measure.

Subordinators can then be decomposed into two components: a deterministic drift
component and a Poisson point process. Figure 1.6 shows the trajectories of two subordi-
nators, one without drift and one with positive drift. Note that in both scenarios, if ξT is
finite at a time T , its jumps partition the interval [0, T ).

The atoms of µ̃ correspond to the jumps of ξ, and these occur at the projection Υ on the
x-axis of Υ∗. By the mapping theorem, Υ is again a Poisson process with constant mean
measure equal to ν(R+). Since for any A ∈ B(R) the random variable N(A) is Poisson
distributed and counts how many jumps occur on A, if ν(R+) = ∞, then N(A) = ∞ a.s.
and Υ is a dense set on R, i.e. ξ is an infinite activity process.
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(a) Subordinator without drift (β = 0). (b) Subordinator with positive drift (β > 0).

Figure 1.6

Finally, the Laplace transform (1.3) of subordinators has the form

E
î
e−tµ̃((0,s])

ó
= E
î
e−tξs

ó
= exp

ñ
−s
Ç
βt+

∫
R+

(1− etx)ν(dx)

åô
.

Note that the above reasoning can be reverted: if (ξs)s≥0 is a subordinator, µ̃ defined as

µ̃((s, t]) = ξt − ξs

is a completely random measure.

1.4.3 Further examples

Example 1.3. A gamma random measure µ̃ is a homogeneous CRM with Lévy intensity
given by

ν(dv,dx) =
e−v

v
dvα(dx).

For f : X→ R+ measurable, using the series representationÄ
1− e−vf(x)

ä
=
∑
i≥1

(−1)i+1(vf(x))i

i!
,

we can compute∫
R+

Ä
1− e−vf(x)

ä
e−vv−1dv =

∫
R+

∑
i≥1

(−1)i+1(vf(x))i

i!
e−vv−1dv
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=
∑
i≥1

(−1)i+1f(x)i

i!

∫
R+

vi−1e−vdv

=
∑
i≥1

(−1)i+1f(x)i

i!
Γ(i)

= log(1 + f(x)).

The Laplace functional of µ̃ is

E[e−µ̃(f)] = exp
ï
−
∫
X

log (1 + f(x))α(dx)

ò
,

as long as
∫

log(1 + f)α <∞. Taking f = t1A with A ∈ X and t > 0 yields

E
î
e−tµ̃(A)

ó
= (1 + t)−α(A) .

As a result µ̃(A) ∼ Ga(α(A), 1).

Example 1.4. For σ ∈ (0, 1), a σ-stable CRM is a random measure µ̃σ with Lévy intensity

ν(dv,dx) =
σv−1−σ

Γ(1− σ)
dvα(dx).

If f : X→ R+ is measurable, then∫
R+

Ä
1− e−vf(x)

ä
v−1−σdv = −

Ä
1− e−vf(x)

ä
v−σσ−1

∣∣∞
0

+

∫
R+

v−σf(x)e−vf(x)σ−1dv

= f(x)σσ−1

∫
R+

u−σe−udu

= Γ(1− σ)σ−1f(x)σ,

where the first equality follows by integrating by parts and the second one by the change
of variable u = vf(x). Therefore the Laplace functional of µ̃σ is

E[e−µ̃(f)] = exp
ï
−
∫
X
f(x)σα(dx)

ò
for f such that

∫
X f(x)σα <∞. Again considering f = t1A for any t > 0 and A ∈ X , the

Laplace transform of µ̃σ(A) is given by

E
î
e−tµ̃σ(A)

ó
= e−t

σα(A).

Consequently µ̃σ(A) follows a positive stable distribution.

Example 1.5. A CRM characterized by a Lévy intensity of the form

ρ(dv)α(dx) =
e−κvv−1−γ

Γ(1− γ)
dvθP0(dx)

where κ ≥ 0 and γ ∈ (0, 1), is known as a generalized Gamma CRM, see Brix (1999).
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Normalized random measures

Recall that from now on we will focus on choices of completely random measures µ̃ without
drift and without fixed atoms, that is µ̃( · ) =

∑
i≥1 wiδζi( · ) where (wi)i≥1 are positive

random jumps and (ζi)i≥1 random locations. Imposing certain conditions on the Lévy
intensity that characterizes µ̃ can ensure that the total mass, µ̃(X), is positive and finite
a.s. and in such cases, Regazzini et al. (2003) introduced a way to construct random
probability measures through the normalization of CRMs. In Section 2.1 we describe
such random probability measures, called normalized random measures with independent
increments (NRMI), an overview of their basic properties and definitions of important
quantities related to them. This Section is based on the work of Regazzini et al. (2003),
James et al. (2006) and James et al. (2009). Section 2.2 exposes concrete examples of
NRMIs while Section 2.3 describes the Pitman-Yor process, which is not a NRMI but can
be constructed as the normalization of a random measure that is not completely random.

2.1 Normalized random measures with independent incre-
ments

Definition 2.1. Let µ̃ be a completely random measure on (X,X ) with Lévy intensity ν
such that 0 < µ̃(X) <∞ a.s. A normalized random measure with independent increments
(NRMI) on (X,X ) is a random probability measure defined as

p̃(A) :=
µ̃(A)

µ̃(X)
, (2.1)

for any A ∈ X .

In terms of the Lévy intensity:

◦ µ̃(X) < ∞ a.s is equivalent to ask that the Laplace exponent ψ(u) is finite for any
u > 0. If ν is homogeneous then this is true whenever α(dx) is a finite measure.

◦ µ̃(X) > 0 a.s. if ν(R+ × X) = ∞. In the homogeneous setting ρ(R+) = ∞ ensures
this, meaning that the completely random measure must have infinite activity.
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The independent increment name comes from the fact that originally NRMIs were pre-
sented as reparameterized increasing additive procesess on X = R. Specifically, let α be
a non-null finite measure on R with total mass θ and let A be its distribution, that is
A(x) = α((−∞, x]) for x ∈ R. Let (ξt)t≥0 be an increasing additive process defined on
some probability space (Ω,F ,P) such that 0 < ξθ < ∞ a.s. As for an additive process,
the marginal distribution of each ξt is infinitely divisible for all t ≥ 0, the Lévy-Khintchine
formula holds (see Theorem A.1 on Appendix A). In terms of the triplet (aθ, σθ, νθ), the
condition 0 < ξθ < ∞ a.s. is satisfied if νθ (R+) = ∞. A NRMI is the random measure p̃
defined is terms of the time changed process

(
ξA(x)

)
x∈R as

p̃((−∞, x]) =
ξA(x)

ξθ
for x ∈ R.

If in particular (ξt)t≥0 is a subordinator without drift, ξθ > 0 a.s. if ξ is a infinite activity
process. From the subordinator decomposition of Theorem 1.8, we know that in this case
the process ξ jumps infinitely often in any finite interval; the time change ξA can be seen
as observing the process ξ over the finite interval (0, θ), with a time deformation governed
by the measure α.

(
ξA(x)

)
x∈R inherits all but the stationary property of ξ, i.e. it is

an increasing additive process and, accordingly, can be seen as the distribution function
induced by a CRM on R. Normalizing its jumps yields a monotone increasing stochastic
process on [0, 1]. In an abstract space, this procedure can be thought as to normalizing all
the lines from Figure 1.5b so their sum is one.

Strictly speaking we should term the random probability measure in (2.1) a normalized
CRM and it reduces to a NRMI when X = R, although we preserve the term NRMI on
abstract spaces. We will be working mostly in the homogeneous case and further on α will
be assumed to be a non-null finite measure of total mass θ. By defining

P0( · ) :=
α( · )
θ

,

we can set α(dx) = θP0(dx). We will write NRMI(ρ, θ, P0) to refer to the distribution of a
homogeneous NRMI whose associated CRM has intensity ρ(dv)θP0(dx) and we will refer
to P0 as the base measure.

2.1.1 Moments and covariance

When the base measure P0 is non-atomic, expressions for the moments of homogeneous
NRMIs exist.

Proposition 2.1. If p̃ ∼ NRMI(ρ, θ, P0) with P0 non-atomic and A,B ∈ X , then

E [p̃(A)] = P0(A)

var [p̃(A)] = P0(A) (1− P0(A)) Iθ
cov (p̃(A), p̃(B)) = [P0(A ∩B)− P0(A)P0(B)] Iθ,
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where Ψ(u) := ψ(u)
θ is the normalized Laplace exponent and Iθ := −θ

∫
R+
ue−ψ(u) d2

du2 Ψ(u)du.

Hence a homogeneous NRMI p̃ has a prior guess at the shape P0( · ) = E[p̃( · )] and the
quantity Iθ controls the dispersion around P0.

2.1.2 Partition structure

From now on we will suppose that (xi)i≥1 is a sequence of exchangeable random variables
such that for n ≥ 1

xi | p̃ ∼ p̃ i = 1, . . . , n

p̃ ∼ NRMI(ρ, θ, P0).
(2.2)

Consider x(n) = (x1, . . . , xn) a sample of size n from the model (2.2). The a.s. discrete-
ness of NRMIs implies that there will be duplicated values, also called ties, with positive
probability among the observations. In this section we will see how the ties that appear in
a sample of an NRMI generate a partition over the set {1, . . . , n}, and to this aim we will
first make a brief review on random partitions.

Definition 2.2. Given a finite set B, a partition of B into k blocks is an unordered
collection of k non-empty disjoint sets {Bi}ki=1 such that Bi ⊆ B for each i = 1, . . . , k and
∪ki=1Bi = B.

Let [n] := {1, 2, . . . , n}. Denote as Pk[n] the set of partitions of [n] into k blocks and
Pn :=

⋃n
k=1 Pk[n] the set of all possible partitions of [n]. Given a partition of B into k blocks,

the vector of the sizes of each block (|B1|, . . . , |Bk|) of the partition defines a composition
of n into k parts, i.e. it is a sequence of k positive integers such that their sum is equal to
n. Denote as Ckn the set of compositions of n into k parts and Cn :=

⋃n
k=1 Ckn the set of all

possible compositions of n. P[3] is presented below as an example.

P[3] = P1
[3] ∪ P

2
[3] ∪ P

3
[3]

P1
[3]=

{
{{1, 2, 3}}

}
P2

[3]=
{
{{1}, {2, 3}},{{2}, {1, 3}},{{3}, {1, 2}}

}
P3

[3]=
{
{{1},{2},{3}}

}
The number of different ways to partition the set [n] into k blocks equals to the Stirling

numbers of the second kind, which are defined in terms of the (n, k)-th incomplete Bell
polynomial Bn,k as follows

Bn,k(x) : =
n!

k!

∑
(n1,...,nk)∈Ck

[n]

k∏
i=1

xni

ni!
for x = (x1, x2, . . .)

Sn,k : =
∣∣Pk[n]

∣∣ = Bn,k(1̄) where 1̄ = (1, 1, . . .).
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Definition 2.3. A random partition Πn is a random variable that takes values on P[n].

A random object that is implicitly defined on a random partition is Kn, the number
of blocks of Πn. If we were to know P[Πn = π] for all partitions π ∈ P[n], the marginal
distribution of Kn could be computed summing over all possible partitions, that is

P[Kn = k] =
∑
π∈Pk

[n]

P[Πn = π],

for k = 1, . . . , n.

Definition 2.4. A random partition Πn is called exchangeable if for every permutation
ρ : [n]→ [n] and π ∈ P[n]

P [Πn = π] = P [Πn = ρ(π)] ,

where ρ(π) is the partition resulting from permuting each element according to ρ. A se-
quence of random partitions (Πn)n≥1, where Πn is a random partition of [n], is exchangeable
if Πn is exchangeable for every n ≥ 1.

The exchangeability assumption is equivalent to saying that the distribution of the
partition should depend only on the unordered sizes of the blocks. Therefore, there exists
a function Φ

(n)
k of compositions that is symmetric in its arguments such that, for any

specific partition assignment π = {B1, . . . , Bk} and ni := |Bi| for i = 1, . . . , k, we have
that

P [Πn = π] =: Φ
(n)
k (n1, . . . ,nk) .

The function Φ
(n)
k is called the exchangeable partition probability function (EPPF) (Pitman

(1995)).

Definition 2.5. The sequence of random partitions (Πn)n≥1 is consistent if the projection
of Πn to [m] is a.s. equal to Πm for every m < n and n > 1.

Consistency implies that each Πn is the partition resulting from Πn+1 by discarding,
from the latter, the integer n+1; we can think of this as if the indices arrive one at a time:
first 1, then 2 up to n or beyond.

A consistent sequence (Πn)n≥1 can be regarded as a random element of the set PN of
partitions of N, equipped with the σ-algebra generated by the restriction maps from PN to
P[n] for all n ≥ 1. On the other hand, an exchangeable sequence (Πn)n≥1 is consistent if
its EPPF satisfy the following addition rule

Φ
(n)
k (n1, . . . ,nk) = Φ

(n+1)
k+1 (n1, . . . ,nk, 1) +

k∑
j=1

Φ
(n)
k (n1, . . . ,nj−1,nj+1, . . . ,nk),

for each composition (n1, . . . ,nk) of n. Thus the distribution of a consistent exchangeable
random partition of N is determined by an EPPF, subject to the previous addition rule.
For an exhaustive account on random partitions see Gil-Leyva (2016) and Pitman (2006).
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In general, sampling from an exchangeable sequence with an a.s. discrete de Finetti
measure naturally leads to look at the induced partition structure. In this particular case,
for a given n ≥ 1, a sample x(n) from model (2.2) exhibits k unique values {x∗1, . . . , x∗k},
each with frequency nj such that (n1, . . . ,nk) is a composition of n. The appearance of
ties among x(n) induce an equivalence relation on [n] where

i ∼ j ⇐⇒ xi = xj .

This equivalence relation, in turn, induces a partition Πn of [n]. Due to the exchangeability
of (x1, x2, . . .), the distribution of the random partition Πn only depends on the number
of unique values displayed in the sample and their frequencies. Hence we can characterize
its distribution by an EPPF and moreover, the sequence of partitions are consistent, as
they are generated by consecutive sampling. An example is shown in Figure 2.1, where
the sample x(8) induces a partition over [8]. Different colors represent different values,
meaning that k = 4 and ni (i = 1, . . . , 4) is the frequency of each color. Πi is the partition
generated up to stage i for 1 ≤ i ≤ 8.

x1 x2 x3 x4

x5 x6 x7 x8

n1= 3 n2 = 2 n3 = 2 n4 = 1

Π1 =
{
{1}
}

Π2 =
{
{1}, {2}

}
Π3 =

{
{1, 3}, {2}

}
Π4 =

{
{1, 3}, {2}, {4}

}

Π5 =
{
{1, 3}, {2}, {4, 5}

}
Π6 =

{
{1, 3, 6}, {2}, {4, 5}

}
Π7 =

{
{1, 3, 6}, {2, 7}, {4, 5}

}
Π8 =

{
{1, 3, 6}, {2, 7}, {4, 5}, {8}

}
Figure 2.1: Partitions generated by consecutive sampling.

Although not always available in closed form, there is an expression for the EPPF of
homogeneous NRMIs.

Proposition 2.2. Let p̃ ∼ NRMI(ρ, θ, P0). The EPPF of the partition induced by the
sample x(n) that exihibts k unique values equals

Φ
(n)
k (n1, . . . ,nk) =

θk

Γ(n)

∫
R+

un−1e−θΨ(u)

 k∏
j=1

τnj (u)

du, (2.3)

where for every m ≥ 1

τm(u) :=

∫
R+

vme−uvρ(dv).
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A proof of Proposition 2.2 can be found at Appendix A. Having the EPPF gives in-
formation about the clustering behavior of the prior process and moreover, the predictive
distribution can be expressed in terms of the EPPF by noting that

P
î
xn+1 = new |x(n)

ó
= P
î
xn+1 6= x∗j ∀j ∈ {1, . . . , k} |x(n)

ó
=

Φ
(n+1)
k+1 (n1, . . . ,nk, 1)

Φ
(n)
k (n1, . . . ,nk)

(2.4)

P
î
xn+1 = old |x(n)

ó
= P
î
xn+1 = x∗j |x(n)

ó
=

Φ
(n+1)
k (n1, . . . ,nj + 1, . . . ,nk)

Φ
(n)
k (n1, . . . ,nk)

. (2.5)

Equation (2.4) means we would generate a new value xn+1 = x∗k+1 that will naturally have
frequency one. On the other hand, (2.5) just means that xn+1 equals a repeated value, so
we augment the frequency of that chosen value by 1.

2.1.3 Posterior characterization

Although NRMIs are not conjugate, there exists a posterior characterization in terms of
latent variable such that, conditional on that variable, the posterior of a NRMI coincides
with the posterior of another NRMI with fixed points of discontinuity. This can be a seen
as conditional conjugacy. Let x∗1, . . . , x

∗
k be the k unique values displayed on the sample

x(n) from model (2.2), with corresponding frequencies n1, . . . ,nk such that
∑k

j=1 nj = n.
Assume that µ̃(X) is absolutely continuous with respect to the Lebesgue measure so

that it admits a density g. Define the positive random variable Un as Un := Γn
µ̃(X) , where

Γn ∼ Ga(n, 1) independently of µ̃(X). For any n ≥ 1, the density of Un coincides with

f(u) =
un−1

Γ(n)

∫
R+

tne−utg(t)dt.

Furthermore, the conditional distribution of Un given x(n) admits a density function and
it is given by

fUn |x(n)(u) ∝ un−1e−ψ(u)
k∏
j=1

τnj (u),

where ψ(u) is the Laplace exponent and taum(u) : is as in Proposition 2.2. The random
variable Un is the one that will make the posterior distribution tractable.

Theorem 2.1. Consider x(n) a sample from model (2.2), with P0 non-atomic. The pos-
terior distribution of the unnormalized CRM µ̃ given x(n) and Un is

µ̃ |
Ä
x(n), Un

ä
d
= µ̃(Un) +

k∑
j=1

J
(Un)
j δx∗j

.
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The posterior distribution of p̃ given x(n) and Un is

p̃ |
Ä
x(n), Un

ä
d
= w

µ̃(Un)

µ̃(Un)(X)
+ (1− w)

∑k
j=1 J

(Un)
i δx∗j∑k

j=1 J
(Un)
j

,

where

◦ µ̃(Un) is a completely random measure with intensity ν(Un)(dv,dx) = e−Unsρ(dv)α(dx).

◦ The non-negative jump random variables
¶
J

(Un)
i

©k
i=1

are independent from each other
and from µ̃(Un), each with density w.r.t. the Lebesgue measure proportional to vnie−Unvρ(dv)

◦ w = µ̃(Un)(X)

µ̃(Un)(X)+
∑k
j=1 J

(U−n)
j

.

Given the latent variable Un, a posteriori µ̃ is again a completely random measure with
fixed points of discontinuity corresponding to the locations of the unique values {x∗j}kj=1

among the observations. The availability of the posterior distribution makes it then possible
to determine the predictive distribution, since this equals to

P
î
xn+1 ∈ · |x(n)

ó
= E
î
p̃( · ) |x(n)

ó
=

∫
R+

E
î
p̃( · ) |x(n), Un = u

ó
fUn |x(n)du.

Proposition 2.3. If x(n) is sampled according to model (2.2), the predictive distribution
of observation xn+1 given x(n) is given by

P
î
xn+1 ∈ · |x(n)

ó
= ω

(n)
0 P0( · ) +

1

n

k∑
j=1

ω
(n)
j δx∗j

( · ),

where

ω
(n)
0 =

1

n

∫
R+

uτ1(u)fUn |x(n)(u)du and ω
(n)
j =

∫
R+

u
τnj+1(u)

τnj (u)
fUn |x(n)(u)du.

This resulting predictive distribution takes an intuitive form: it is a linear combination
of the base measure P0 (the prior guess) and a weighted version of the empirical distribu-
tion. Note that if the EPPF of the prior process is known, then the weights ω(n)

0 and ω(n)
j

coincide with those at (2.4) and (2.5) respectively.

2.2 Examples

Now it is time to apply the theory developed above to specific instances of Lévy intensities,
as by now it is evident that this is the only thing needed to calculate all the expressions
described in the previous sections for particular cases of NRMIs.
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2.2.1 Dirichlet process

Nonparametric priors flourished after the pioneering paper of Ferguson (1973), in which
the Dirichlet Process was introduced. This is arguably one the most popular models and it
appears as a special case of a number of other more general models, as we shall see further
on.

Definition 2.6. Let (Zi)
n
i=1 be a finite sequence of independent random variables such

that Zi ∼ Gamma(ai, 1), where ai > 0 for i = 1, . . . , n and let Yj be

Yj =
Zj∑n
i=1 Zi

for j = 1, . . . , n. The distribution of the random probability vector Y := (Y1, . . . , Yn) is
called theDirichlet distribution of parameters (a1, . . . , an) and we write Y ∼ Dir(a1, . . . , an).
Its density with respect to the n− 1-dimensional Lebesgue measure is

f(y) =
Γ(
∑n

j=1 aj)∏
j=1 Γ(aj)

Ñ
n−1∏
j=1

y
aj−1
j

éÑ
1−

n−1∑
j=1

yj

éan−1

1∆n−1(y)

where ∆n−1 is the n− 1-dimensional simplex {(y1, . . . , yn−1) : yj ≥ 0,
∑n−1

j=1 yj ≤ 1}.

Ferguson proved that the Dirichlet distribution satisfies the Kolmogorov consistency
conditions, so that Daniel-Kolmogorov’s existence theorem ensures the existence of a ran-
dom process whose finite-dimensional distributions are Dirichlet-distributed.

Definition 2.7. Let α be a non-null finite measure on a Polish space with its Borel σ-
algebra (X,X ). A random variable p̃ on PX is said to be a Dirichlet process if for all
measurable partitions (Ai)

n
i=1 of X

(p̃(A1), . . . , p̃(An)) ∼ Dir (α(A1), . . . , α(An))

We write p̃ ∼ D(α).

Aside from the specification of the finite-dimensional distributions, Ferguson provided
an alternative way to construct the Dirichlet process based on the gamma CRM from
example 1.3, whose Lévy intensity given by

ν(dv,dx) =
e−v

v
dvα(dx) =

e−v

v
dvθP0(dx)

with 0 < θ < ∞ and P0 a probability measure over (X,X ). Clearly ρ(R+) = ∞, so
0 < µ̃(X) <∞ a.s. and hence we can consider the NRMI

p̃( · ) =
µ̃( · )
µ̃(X)
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If (Ai)
n
i=1 is a partition of X, we previously proved that {µ̃(Ai)}ni=1 are independent random

variables such that µ̃(Ai) ∼ Gamma(θP0(Ai), 1) for i = 1, . . . , n. Noting that

p̃(Aj) =
µ̃(Aj)

µ̃(X)
=

µ̃(Aj)∑n
i=1 µ̃(Ai)

,

we can conclude that this NRMI and the Dirichlet process of parameter θP0 are equal in
distribution, since clearly

(p̃(A1), . . . , p̃(An)) ∼ Dir (θP0(A1), . . . , θP0(An)) .

As ψ(u) = θ log(1 + u), Ψ(u) = log(1 + u), one has that Iθ = 1
1+θ and for A,B ∈ X

E [p̃(A)] = P0(A)

var [p̃(A)] =
P0(A) (1− P0(A))

1 + θ

cov(p̃(A), p̃(B)) =
P0(A ∩B)− P0(A)P0(B)

1 + θ
.

The parameter θ controls the variability of the realizations around the expected shape of
the random distribution, P0. This is why θ is called the precision parameter and its effect
is depicted in Figure 2.2. The baseline measure P0 is a standard normal distribution and
its cumulative distribution function is depicted as a thick black line. Each panel contains
12 realizations with a common value of θ. Note how θ controls both the variability around
the base measure and the size of the jumps.
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Figure 2.2: Empirical distribution functions generated from a Dirichlet process with varying
θ, using the Pólya Urn sampling scheme.
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Now assume that p̃ ∼ D(θP0) in (2.2) and that we have sampled x(n). In this case the
EPPF has a closed form, so we will recover the predictive distribution from it. First we
need to compute τnj (u)

τnj (u) =

∫
R+

vnje−uve−vv−1dv =

∫
R+

vnj−1e−(1+u)vdv =
Γ(nj)

(1 + u)nj
.

The EPPF is given by

Φ
(n)
k (n1, . . . ,nk) =

θk

Γ(n)

∫
R+

un−1e−ψ(u)

 k∏
j=1

τnj (u)

du

=
θk

Γ(n)

k∏
j=1

Γ(nj)

∫
R+

un−1

(1 + u)n+θ
du

=
θkΓ(θ)

Γ(n+ θ)

k∏
j=1

Γ(nj)

=
θk

(θ)n

k∏
j=1

(nj − 1)!,

where (θ)n = Γ(n+θ)
Γ(θ) is the Pochhammer symbol. This EPPF is known as Ewens’s sampling

formula. A straightforward computation yields

Φ
(n+1)
k+1 (n1, . . . ,nk, 1)

Φ
(n)
k (n1, . . . ,nk)

=
θ

n+ θ

Φ
(n+1)
k (n1, . . . ,nj + 1, . . . ,nk)

Φ
(n)
k (n1, . . . ,nk)

=
nj

n+ θ
.

It follows that

P
î
xn+1 ∈ · |x(n)

ó
=

θ

n+ θ
P0( · ) +

1

n+ θ

k∑
j=1

njδx∗j
( · ). (2.6)

The sequence of predictive distributions described by (2.6) are known as the Pólya urn
scheme and was studied in Blackwell and MacQueen (1973). Specifically, they observed
that a Dirichlet process can be characterized by its predictive distribution, in the sense
that as n→∞

θP0( · ) +
∑n

i=1 δxi( · )
θ + n

a.s.→ P where P ∼ D(θP0).

This provides an easy sampling scheme, as described in Algorithm 2.1.
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Algorithm 2.1: Sample x(n) from a Dirichlet process.
Sample x1 ∼ P0.
for i = 2, . . . , n do

Sample xi according to

xi =

®
x∗j with probability nj

θ+i−1 , j = 1, . . . , k

x∗k+1 ∼ P0 with probability θ
θ+i−1

Now lets look at the number of blocks of the partition generated by the sample x(n),
Kn (which we’ve called above k, for the sake of simplicity). By summing over all possible
partitions of [n] of size k, for k = 1, . . . , n, we can compute

P[Kn = k] =
∑
π∈Pk

[n]

P[Πn = π]
θk

(θ)n
=

∑
(n1,...,nk)

k∏
j=1

(nj − 1)! =
θk

(θ)n
|sn,k|,

where |sn,k| := Bn,k(x) with x = (x1, x2, . . .) and xi = (i − 1)! is the unsigned Stirling
number of the first kind. Alternatively, Kn can be expressed as a sum of indicator functions

Kn =

n∑
j=1

1Aj ,

where Aj is the event that observation xj falls into a new group. From the predictive
distribution we see that 1Aj ∼ Bernoulli

Ä
θ

θ+j−1

ä
, so that the expected number of blocks

displayed on the first n observations is

E[Kn] =
n∑
j=1

E[1Aj ] =
n∑
j=1

θ

θ + j − 1
.

Korwar and Hollander (1973) proved that the expected number of blocks grows loga-
rithmically in the number of observations n, that is

E[Kn]

log(n)
→ θ a.s. when n→∞.

This slow growth makes sense because the larger nj is, the higher the probability that the
block x∗j will grow. We would expect then to see large groups, which necessarily leads to
the number of these being much smaller than n. θ directly controls the number of groups,
as shown in Figure 2.3. Larger values of θ imply a larger number of groups a priori, as the
distribution of Kn places the mode at higher values of k as θ grows.

The distribution over partitions induced by the Dirichlet process is often called the
Chinese restaurant process due to the following metaphor. Imagine an initially empty
Chinese restaurant with an unlimited number of tables, each with unlimited space for
customers to seat. The first customer seats at table 1. The second customer decides either
to sit with the first customer, or by herself at a new table and, in general, the n + 1-th
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Figure 2.3: Distribution of K100 for the Dirichlet process, with varying values of θ.

customer either sits at an already occupied table j with probability nj
θ+n , or sits at a new

table with probability θ
nj+n

. Identifying customers with integers, once n customers have
sat down the tables define a partition over [n]. An example is depicted in Figure 2.4. The
white circles are tables and the blue dots represent customers seating at that table. If a
13-th customer were to arrive, she would choose a new table with probability θ

11+θ . If not,
the occupied table that is more likely to be chosen is the first one.

5
12+θ

1
12+θ

4
12+θ

2
12+θ

θ
12+θ

Figure 2.4: A possible seating arrangement after 12 customers enter the restaurant in the
CRP metaphor.

2.2.2 Normalized σ-stable process

Recall the σ-stable CRM from example 1.4, whose Lévy intensity is

ν(dv,dx) =
σv−1−σ

Γ(1− σ)
dvθP0(dx), (2.7)
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for σ ∈ (0, 1) and 0 < θ < ∞. As ρ(R+) = ∞, we can normalize this CRM to obtain
the normalized σ-stable process. This random probability measure was first studied in
Kingman. (1975). We previously showed that ψ(u) = θuσ, so Ψ(u) = uσ, Iθ = 1− σ and
for measurable sets A,B

E [p̃(A)] = P0(A)

var [p̃(A)] = P0(A) (1− P0(A)) (1− σ)

cov(p̃(A), p̃(B)) = (P0(A ∩B)− P0(A)P0(B)) (1− σ).

To compute the EPPF, note that τnj (u) equals

τnj (u) =

∫
R+

vnje−uv
σv−1−σ

Γ(1− σ)
dv

=
σ

Γ(1− σ)

∫
R+

vnj−σ−1e−uvdv

=
σΓ(nj − σ)

Γ(1− σ)unj−σ .

The EPPF is thus given by

Φ
(n)
k (n1, . . . ,nk) =

θk

Γ(n)

∫
R+

un−1e−ψ(u)

 k∏
j=1

τnj (u)

du

=
σkθk

Γ(n)Γ(1− σ)

k∏
j=1

Γ(nj − σ)

∫
R+

uσk−1e−θu
σ
du

=
σkθk

Γ(n)Γ(1− σ)

k∏
j=1

Γ(nj − σ)
Γ(k)

σθk

=
σk−1Γ(k)

Γ(n)

k∏
j=1

(1− σ)nj−1 .

A simple calculation leads to

Φ
(n+1)
k+1 (n1, . . . ,nk, 1)

Φ
(n)
k (n1, . . . ,nk)

=
kσ

n

Φ
(n+1)
k (n1, . . . ,nj + 1, . . . ,nk)

Φ
(n)
k (n1, . . . ,nk)

=
nj − σ
n

.

Hence

P
î
xn+1 ∈ · |x(n)

ó
=
kσ

n
P0( · ) +

1

n

k∑
j=1

(nj − σ) δx∗j
( · ).

Analogously to the Dirichlet process, this sequence of predictive distributions can be
used to generate a sampling scheme as follows.
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Algorithm 2.2: Sample x(n) from a σ-stable process.
Sample x1 ∼ P0.
for i = 2, . . . , n do

Sample xi according to

xi =

®
x∗j with probability nj−σ

i−1 , j = 1, . . . , k

x∗k+1 ∼ P0 with probability kσ
i−1

The distribution of the number of groups equals to

P[Kn = k] =
σk−1Γ(k)

Γ(n)

∑
π∈Pk

[n]

k∏
j=1

(1− σ)nj−1 =
σk−1Γ(k)

Γ(n)
Sσn,k,

where Sα,βn,k is the generalized Stirling number, defined as

Sαn,k := Bn,k(x),

with x = (x1, x2, . . .) and xj = (β − α)(j−1) for α, β ∈ R and we’ve adopted the notation
Sαn,k = Sα,1n,k . In this case, σ controls the flatness of the distribution of Kn instead of
the location of the mode, as shown in Figure 2.5. Larger values of σ translate into more
platykurtic distributions, meaning that the larger is σ, the flatter is the curve.
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Figure 2.5: Distribution of K100 for the normalized stable process, with varying values of
σ.

29



Finally, the expected number of distinct observations a priori is

E[Kn] =
n∑
k=1

kP[Kn = k]

=
n∑
k=1

k
σk−1Γ(k)

Γ(n)
Sσn,k

=
1

Γ(n)σ

n∑
k=1

Sσn,k

k∏
i=1

(σ + iσ),

where we’ve written kσk−1Γ(k) = σk−1k! = 1
σ

∏k
i=1 iσ = 1

σ

∏k−1
i=0 (σ + iσ). Using the fol-

lowing identity from Charalambides and Singh (1988) for the generalized Stirling numbers

(x)n =

n∑
k=1

Sαn,k

k−1∏
i=0

(x+ iα) (2.8)

leads to

E[Kn] =
(σ)n
σΓ(n)

=
(σ + 1)n−1

Γ(n)
.

Note that the total mass θ is not involved in either the EPPF or distribution or Kn,
meaning that we could assume that θ = 1.

2.3 Pitman-Yor process

Now it is time to cheat a little bit. The Pitman-Yor process, also known as the two parame-
ter Poisson-Dirichlet process, introduced in Pitman and Yor (1997), cannot be constructed
through the normalization of a CRM but it is derivable from a stable subordinator by a
change of measure. This process is part of a class of models called the Poisson-Kingman
models.

For σ ∈ (0, 1), let µ̃σ be a σ-stable CRM, with ρσ the jump part of the Lévy intensity
and let Tσ be the total mass of µ̃σ, that is

Tσ := µ̃σ(X) =
∑
i≥1

wiδζi(X) =
∑
i≥1

wi.

Up to this point we know that 0 < Tσ < ∞ a.s. and that Tσ follows a positive stable
distribution with density fσ with respect to the Lebesgue measure.

A σ-stable Poisson-Kingman model is a generalization of the stable NRMI, obtained
by suitably tilting (deforming) the distribution of the total mass Tσ. Let

(
w(i)

)
i≥1

be the
ranked jumps of µ̃σ, i.e. decreasing rearrangement of the jumps w(1) ≥ w(2) ≥ · · · and
define the normalized jumps Pi as

Pi :=
w(i)

Tσ
for i ≥ 1.
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Definition 2.8. Consider the σ-stable CRM and its ordered normalized jumps just as
above and let γ be a probability distribution over R+. Denote by PK(ρσ | t) the regular
conditional distribution of the normalized ordered jumps

(
P(i)

)
i≥1

given Tσ = t. The
distribution ∫

R+

PK(ρσ | t)γ(dt)

over the simplex {(P1, P2, . . .) : P1 ≥ P2 ≥ · · · ≥ 0 and
∑

i≥1 Pi = 1} is named a σ-stable
Poisson-Kingman distribution with mixing distribution γ.

A σ-stable Poisson-Kingman model with parameter γ is the almost surely discrete
random probability measure p̃σ,γ given by

p̃σ,γ( · ) =
∞∑
i=1

Piδxi( · ),

where Pi follow a σ-stable Poisson-Kingman distribution. We will write p̃σ,γ ∼ PK(ρσ, γ).

Intuitively, this class of random probability distributions are σ-stable NRMIs condi-
tional on the total mass Tσ and mixed with respect to some distribution γ on the positive
real line. Although we will only be using the σ-stable Poisson-Kingman model, in general
Poisson-Kingman models are defined just as above by substituting the σ-stable CRM with
any homogeneous CRM. This can be consulted in Pitman (2003).

If we take γ(dt) = h(t)fσ(t)dt with h : R+ ∪ {0} → R+ a nonnegative measurable
function, according to the definition of p̃σ,γ we can write

p̃σ,γ( · ) =
µ̃σ,γ( · )
Tσ,γ

,

where µ̃σ,γ( · ) is an a.s. discrete random measure on (MX,MX) with distribution Pσ,γ and
Tσ,γ := µ̃σ,γ(X) is its total mass. In particular Tσ,γ has density w.r.t. the Lebesgue measure
equal to fTσ,h = h(t)fσ(t) and furthermore, µ̃σ,γ is absolutely continuous with respect to
the distribution Pσ of µ̃σ and it satisfies

dPσ,γ(m)

dPσ
= h(m(X)) for m ∈ MX.

The aforementioned normalized σ-stable process can be recovered by choosing γ as the
distribution of T , that is by setting h(t) = 1.

Pitman (2003) provides an expression for the EPPF of a σ-stable Poisson Kingman
model conditioned on its total mass, stated in the next proposition.

Proposition 2.4. Let x(n) be a sample from an exchangeable sequence such that

xi | p̃ ∼ p̃, p̃ ∼ PK(ρσ, γ).
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The EPPF of the partition induced by x(n), conditioned on the total mass Tσ, is given by

Φ
(n)
k (n1, . . . ,nk |Tσ = t) =

σkt−n

Γ(n− kσ)fσ(t)

∫ t

0
sn−kσ−1fσ(t− s)ds

k∏
j=1

(1− σ)nj−1 .

Marginalizing over t yields the EPPF of the σ-stable PK model

Φ
(n)
k (n1, . . . ,nk) =

σk

Γ(n− kσ)

∫
R+

t−n

fσ(t)

∫ t

0
sn−kσ−1fσ(t− s)dsγ(dt)

k∏
j=1

(1− σ)nj−1 .

If the mixing distribution takes the form γ(dt) = h(t)fσ(t)dt, then∫
R+

t−n

fσ(t)

∫ t

0
sn−kσ−1fσ(t− s)dsγ(dt) =

∫
R+

∫ t

0
t−nsn−kσ−1fσ(t− s)h(t)dsdt

=

∫
R+

∫ ∞
s

t−nsn−kσ−1fσ(t− s)h(t)dtds

(by making u = t− s )

=

∫
R+

∫
R+

(u+ s)−nsn−kσ−1fσ(u)h(u+ s)dsdu.

For any σ ∈ (0, 1) and θ > −σ, the Pitman-Yor process is a σ-stable Poisson-Kingman
model with γ of the form

γ(dt) =
Γ(θ + 1)

Γ
(
θ
σ + 1

) t−θfσ(t)dt.

This means that∫
R+

t−n

fσ(t)

∫ t

0
sn−kσ−1fσ(t− s)dsγ(dt) ∝

∫
R+

∫ ∞
0

(u+ s)−n−θsn−kσ−1fσ(u)dsdu

=

∫
R+

fσ(u)

ï∫ ∞
0

(u+ s)−n−θsn−kσ−1ds

ò
du

=
Γ(n− kσ)Γ(θ + kσ)

Γ(n+ θ)

∫
R+

fσ(u)u−θ−kσdu

=
Γ(n− kσ)Γ(θ + kσ)

Γ(n+ θ)

Γ
(
θ
σ + k + 1

)
Γ(θ + kσ + 1)

,
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where we’ve used that the r-th moment of a σ-stable random variable exists and equals
Γ(1−r/σ)
Γ(1−r) for −∞ < r < σ. Therefore the EPPF is

Φ
(n)
k (n1, . . . ,nk) =

σk

Γ(n− kσ)

∫
R+

t−n

fσ(t)

∫ t

0
sn−kσ−1fσ(t− s)dsγ(dt)

k∏
j=1

(1− σ)nj−1

= σk
Γ(θ + 1)

Γ(θ + n)

Γ(θ + kσ)

Γ(θ + kσ + 1)

Γ
(
θ
σ + k + 1

)
Γ
(
θ
σ + 1

) k∏
j=1

(1− σ)nji−1

=
σk

(θ + 1)n−1

1

(θ + kσ)

k∏
i=1

Å
θ

σ
+ i

ã k∏
j=1

(1− σ)nj−1

=

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1 .

We will write PY(σ, θ) to refer to the distribution of a Pitman-Yor process with parameters
σ, θ. The evident similarities between this EPPF and the ones of the two previously studied
processes is no coincidence, as the Pitman-Yor process encompasses as particular cases both
the Dirichlet process and the normalized σ-stable process.

◦ The normalized σ-stable process is recovered by setting θ = 0.

◦ When σ ↓ 0 we recover the Dirichlet process.

Now computing the weights leads to the predictive distribution

Φ
(n+1)
k+1 (n1, . . . ,nk, 1)

Φ
(n)
k (n1, . . . ,nk)

=
θ + kσ

n+ θ

Φ
(n+1)
k (n1, . . . ,nj + 1, . . . ,nk)

Φ
(n)
k (n1, . . . ,nk)

=
nj − σ
n+ θ

P
î
xn+1 ∈ · |x(n)

ó
=
θ + kσ

n+ θ
P0( · ) +

1

n+ θ

k∑
j=1

(nj − σ) δx∗j
( · ).

Here the probability of obtaining new values is monotonically increasing in k and the
value of σ can be used to control strength of the dependence on k. If a new value enters the
sample at stage n+ 1 (with frequency 1), then it gets assigned in the empirical part of the
predictive distribution a mass proportional to 1−σ (less than its cluster size, unlike in the
Dirichlet process) and consequently, a mass proportional to σ is added to the probability
of generating a new value. That is, if xn+1 = x∗k+1 then at stage n+ 2 we would have

P
î
xn+2 ∈ · |x(n+1)

ó
=

ï
θ + kσ

n+ 1 + θ
+

σ

n+ 1 + θ

ò
P0( · ) +

k∑
j=1

(nj − σ)

n+ 1 + θ
δx∗j

( · )

+
1− σ

n+ 1 + θ
δx∗k+1

( · ).
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This means that if xn+1 is a new value, the probability of generating another new value
increases by σ

n+θ+1 even though it simultaneously decreases as a function of the sample
size. However, once a new value has been generated, subsequent re-observations increase
its mass by a factor proportional to 1. The tractability of the predictive distribution allows
a simple sampling scheme as described in the next algorithm.

Algorithm 2.3: Sample x(n) from PY(σ, θ).
Sample x1 ∼ P0.
for i = 2, . . . , n do

Sample xi according to

xi =

®
x∗j with probability nj−σ

θ+i−1 , j = 1, . . . , k

x∗k+1 ∼ P0 with probability θ+kσ
θ+i−1

Just as the Dirichlet process has the Chinese restaurant process as a metaphor for
the induced distribution over partitions, the Pitman-Yor process has a similar metaphor
which is called the (σ, θ)-seating plan, as described in Pitman (2006): given σ, θ such that
0 < σ < 1 and θ > −σ, again picture a Chinese restaurant with infinite capacity for both
customers and tables. If up to a certain point n customers have sat down across k different
tables, with nj customers at the j-th table, the next person that comes in either sits at
an occupied table with probability nj−σ

n+θ or sits at a new table with probability θ+kσ
n+θ . An

example is presented at Figure 2.6. Suppose that n = 12 customers have arrived and sat
down across k = 4 tables; if a 13-th customer were to arrive, he or she would choose a new
table with probability θ+4σ

12+θ or sit at an already occupied table with probability as marked
inside each circle.

4−σ
12+θ

2−σ
12+θ

5−σ
12+θ

1−σ
12+θ

θ+4σ
11+θ

Figure 2.6: A possible seating arrangement after 12 customers enter the restaurant in the
(σ, θ)-seating plan.

The distribution of the number of groups can be computed as follows.

P[Kn = k] =
∑
π∈Pk

[n]

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1

=

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

∑
π∈Pk

[n]

k∏
j=1

(1− σ)nj−1

=

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1
Sσn,k.
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Figure 2.7 shows the distribution of K100. From here it is evident that the Pitman-Yor
process allows more flexibility than the Dirichlet or Stable process, as the fine-tuning of
the parameters (σ, θ) can yield a wide variety of shapes and placements of the mode of the
a priori distribution of Kn.

(σ, θ)
(0.4,2)

(0.5,5)

(0.7, 10)

(0.9, 15)

(0.9, 1)

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

Figure 2.7: Distribution of K100 for the Pitman-Yor process, with varying values of (σ, θ).

The expected number of clusters a priori is

E[Kn] =
n∑
k=1

kP[Kn = k] =
n∑
k=1

kSσn,k

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

=
n∑
k=1

Sσn,k
kσ
∏k−1
i=1 (θ + iσ)

σ(θ + 1)n−1

=
n∑
k=1

Sσn,k
(θ + kσ)

∏k−1
i=1 (θ + iσ)

σ(θ + 1)n−1
−

n∑
k=1

Sσn,k
θ
∏k−1
i=1 (θ + iσ)

σ(θ + 1)n−1

=
n∑
k=1

Sσn,k

∏k−1
i=0 (θ + σ + iσ)

σ(θ + 1)n−1
−

n∑
k=1

Sσn,k

∏k−1
i=0 (θ + iσ)

σ(θ + 1)(n−1)
,

where we have written
∏k
i=1 (θ + iσ) =

∏k−1
i=0 (θ + σ + iσ). The identity presented in

equation (2.8) allows us to conclude

E[Kn] =
(θ + σ)n

σ(θ + 1)(n−1)
− (θ)n
σ(θ + 1)(n−1)

=
(θ + σ)n

σ(θ + 1)(n−1)
− θ

σ
.

Regarding to its asymptotic behavior, Pitman (2003) proved that

Kn

nσ
→ Y θ

σ
a.s.,

where Yq has a density given by f(y) = Γ(qσ+1)
σΓ(q+1)y

q−1− 1
σ fσ
Ä
y−

1
σ

ä
for q ≥ 0. This means

that the number of blocks under a Pitman-Yor process increases at a higher rate than in
the Dirichlet process.
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Hierarchical processes

In a large variety of applied problems where data is generated from different although
related studies, exchangeability is not an appropriate assumption as usually some degree
of heterogeneity is present. For instance, consider an experiment in which n subjects are
receiving a medical treatment and the sex of each participant is known. If we were to
assume exchangeability, this would translate into assuming that the covariate male/female
does not matter at all. Another example would be to consider multicenter trial studies,
where subjects in different centers undergo different treatments. More often than not,
these types of covariates are judged as potentially meaningful, so in situations in which
we wish to acknowledge differences between groups of observations, a more complex form
of symmetry is needed. In Section 3.1 we explain the concept of partial exchangeability,
derive the corresponding representation theorem for partially exchangeable arrays and
briefly describe some constructions for nonparametric priors for this setting. Section 3.2
is latter dedicated to the construction of such priors based on hierarchical structures of
NRMIs and the study of their basic properties. In Section 3.3 we present examples of
hierarchical processes based on a particular choice of the underlying CRM, and in Section
3.4 we extend the results for hierarchical NRMIs to hierarchies of Pitman-Yor processes.
Most of the results displayed in this Chapter are based on Camerlenghi (2015), Camerlenghi
et al. (2019b) and Bassetti et al. (2020).

3.1 Partial exchangeability

Whenever the data generating mechanism is such that there exist homogeneity within each
experiment and heterogeneity across different experiments, e.g. when observations come
in distinct groups with those in the same group being more similar than across groups,
we find ourselves with partial exchangeability. This type of dependence was introduced de
Finetti (1937).

Definition 3.1. Let {(xi,j)j≥1 : i = 1, . . . ,m} be m sequences of random variables defined
on a common probability space (Ω,F ,P) and taking values on a Polish space X endowed
with its Borel σ-algebra X . Let x(i) = (xi,j)j≥1. The array of X-valued random elementsÄ
x(1), . . . ,x(m)

ä
is partially exchangeable if for every ni ≥ 1 and for all permutations ρi of
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{1, . . . , ni}, where i = 1, . . . ,mÄ
(x1,j)

n1

j=1 , (x2,j)
n2

j=1 , . . . , (xm,j)
nm
j=1

ä
d
=
Ä(

x1,ρ1(j)

)n1

j=1
,
(
x2,ρ2(j)

)n2

j=1
, . . . ,

(
xm,ρm(j)

)nm
j=1

ä
This means that exchangeability holds true within each of the m separate groups but

not across them, as depicted in Figure 3.1.

(x1,1, x1,2, x1,3,x2,1, x2,2)
d
= (x1,2, x1,3, x1,1,x2,2, x2,1)

(x1,1, x1,2, x1,3,x2,1, x2,2)
d
6= (x1,1, x2,1, x1,2,x2,2, x1,3)

but

Figure 3.1

A reasonable symmetry assumption for the first example of the medical treatment
would be partial exchangeability, that is to consider all females as exchangeable with one
another but not with males. On multicenter trials, partial exchangeability just entails that
those that undergo treatments on the same facility are

Partial exchangeability was extensively studied in de Finetti (1937) and later in Di-
aconis and Freedman (1978) and Aldous (1981), and an analogue of Bruno de Finetti’s
representation theorem for partially exchangeable arrays is valid. Let us denote a sample
of size ni ≥ 1 of x(i) in a partially exchangeable array as

x
(ni)
i = (xi,j)

ni
j=1

where ni ≥ 1 for i = 1, . . . ,m.

Theorem 3.1. Let {(xi,j)j≥1 : i = 1, . . . ,m} be as in definition 3.1. The array
Ä
x(i)
äm
i=1

is partially exchangeable if and only if there exist a probability measure Qm on (PmX ,PmX )

such that

P

[
m⋂
i=1

¶
x

(ni)
i ∈ Ai

©]
=

∫
PmX

m∏
i=1

p̃
(ni)
i (Ai)Qm(dp̃1, . . . ,dp̃m) (3.1)

for any integers ni ≥ 1 and Ai ∈ X (ni), where p(q) = p× · · · × p denotes the q-fold product
measure on Xq for any q ≥ 1. Qm is called the de Finetti measure.

This could be expressed in terms of the random probability measure p̃ = p̃1 × · · · × p̃m
on (Xm,Xm) such that p̃ ∼ Qm. In this case, (3.1) reads as

P

[
m⋂
i=1

¶
x

(ni)
i ∈ Ai

© ∣∣∣ p̃1, . . . , p̃m

]
=

n1∏
i=1

p̃1(A1) · · ·
nm∏
i=1

p̃m(Am),
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so that, conditional on p̃, the random variables are i.i.d. within the same sequence and
independent across different sequences. Hierarchically

(x1,j1 , . . . , xm,jm)
∣∣ p̃1, . . . , p̃m

i.i.d.∼ p̃1 × · · · × p̃m (j1, . . . , jm) ∈ Nm

(p̃1, . . . , p̃m) ∼ Qm.
(3.2)

Qm plays the role of a prior distribution for the vector of random probability measures
(p̃1, . . . , p̃m), dictating the dependence across the different groups.

Maximal dependence among (p̃i)
m
i=1 occurs when when Qm degenerates onto the diago-

nal and p̃1 = · · · = p̃m = p̃ a.s. This corresponds to full exchangeability, as in this case the
whole collection {(xi,j)j≥1 : i = 1, . . . ,m} is exchangeable within each of the m groups but
also across them, so we might treat them as if they were part of a unique, bigger group. On
the other hand, independence occurs when the p̃i’s are (unconditionally) independent with
respect to Qm. In this case, there is complete heterogeneity between the m groups and
we might model each one of them separately. These two choices are extremes because the
first one implies maximum borrowing of strength while the latter implies no borrowing of
strength, as depicted in Figure 3.2. Going back to the example of the medical treatment,
the first choice would pool together male and female patients and the second one would
assume different effects of the treatment on males and females with independent priors. In
most cases, the desired level of borrowing of strength lies in-between these two extremes.
The specific structure of Qm will determine both the presence and the intensity of the
borrowing of strength between the m partially exchangeable sequences.

p̃

x(1) x(2) · · · x(m)

p̃1 p̃2 · · · p̃m

x(1) x(2) · · · x(m)

Figure 3.2: One common random probability measure p̃ for the m sequences versus m
distinct random probability measures, independent across studies.

Nonparametric proposals for Qm have been studied back to Cifarelli and Regazzini
(1978), where the authors assumed that the random probability measures p̃i all have a
hyperparameter α (with parametric form) that allows for some borrowing of strength even
in the extreme cases, as shown in Figure 3.3. A natural next step was to consider a more
complex hyperparameter, namely when α is itself a random probability measure, as it was
the case in MacEachern (1999), where the Dependent Dirichlet Process was introduced.

We will focus on hierarchical constructions of Qm and assume that the elements of the
collection {p̃1, . . . , p̃m} are conditionally i.i.d. given another discrete random probability
measure p̃0. This choice of Qm selects, with probability 1, vectors of discrete probability
measures. One of the most popular methods to specify Qm is the superposition of random
probability measures: consider (p̃i)

m
i=1 a collection of random probability measures, where

each p̃i corresponds to the sequence (xi,j)j≥1 for i = 1, . . . ,m and the base measure P0 of
each p̃i is no longer deterministic, but random. This would mean that the prior Qm now
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p̃

x(1) x(2) · · · x(m)

p̃1 p̃2 · · · p̃m

x(1) x(2) · · · x(m)

α α

Figure 3.3: The common hyperparameter α, shared by the random probability measures
(p̃i)

m
i=1, allows for borrowing of strength even in the limiting cases.

takes the form

p̃i | p̃0 ∼ Qi(p̃0) with E[p̃i | p̃0] = p̃0 for i = 1, . . . ,m

p̃0 ∼ Q0.

This type of constructions are known as hierarchical processes. General classes of vectors of
normalized random measures were proposed in Camerlenghi et al. (2019b) and Camerlenghi
(2015), in which a systematic investigation of the most relevant distributional properties
for this choices of Qm were studied.

Definition 3.2. Let µ̃ be a a.s. discrete random measure defined on some probability
space (Ω,F ,P) and taking values in (MX,MX). Furthermore, assume that 0 < µ̃(X) <∞
and consider the random probability measure

p̃( · ) :=
µ̃( · )
µ̃(X)

= NRM(P),

where E[p̃] = P is a probability distribution on (X,X ). With this in mind, consider
m partially exchangeable sequences

Ä
x(i)
äm
i=1

defined on some probability space (Ω,F ,P)

and taking values in (X,X ), whose partially exchangeable dependence structure is dictated
by

p̃i | p̃0
i.i.d.∼ NRM(p̃0) for i = 1, . . . ,m

p̃0 ∼ NRM(P0).
(3.3)

We will refer to the vector of random probability measures (p̃1, . . . , p̃m) as a vector of
hierarchical normalized random measures. If in particular µ̃i and µ̃0 are completely random,
then we will refer to (p̃1, . . . , p̃m) as a vector of hierarchical NRMIs, or HNRMI for short.

We will deal with two specifications of µ̃ and µ̃0: when µ̃ is a homogeneous completely
randommeasure and when the distribution of µ̃ is obtained by transforming the distribution
of a CRM.

39



3.2 Hierarchical NRMIs

3.2.1 Covariance structure

Theorem 3.2. Assume that

p̃i | p̃0
i.i.d.∼ NRMI(ρ, θ, p̃0), p̃0 ∼ NRMI(ρ0, θ0, P0)

for i = 1, . . . ,m, where P0 is non-atomic. Then, for any A ∈ X and i 6= j

corr (p̃i(A), p̃j(A)) =

{
1 + θ0θ

∫
R+
ue−θΨ(u)τ2(u)du

∫
R+
ue−θ0Ψ0(u)τ2

1,0(u)du∫
R+
ue−θ0Ψ0(u)τ2,0(u)du

}−1

where τm(u) =
∫
R+
vme−uvρ(dv) and τm,0(u) =

∫
R+
vme−uvρ0(dv) for m ≥ 1.

The proof can be found in Appendix B.

Remark. Note that the correlation coefficient does not depend on the choice of the set A,
and it is always positive.

3.2.2 Partition structure

As the choice of the prior distribution Qm in (3.3) selects a.s. vectors of discrete proba-
bility measures, there will be ties, with positive probability, within the same sample and
across different samples as well. In the exchangeable framework, the partition structure
is characterized by the EPPF; in a partially exchangeable context, an analogous object to
the EPPF, termed a partially exchangeable partition probability function (pEPPF), serves
the exact same purpose in this more general set up.

Suppose that ni ≥ 1 and that we have sampled x
(ni)
i from x(i) (i = 1, . . . ,m). Let us

denote as x =
Ä
x

(ni)
i : i = 1, . . . ,m

ä
the m samples and let N =

∑m
i=1 ni be its total size.

There will be ki distinct values specific to sample x
(ni)
i for i = 1, . . . ,m and, additionally,

k0 distinct values shared across the m samples. Let k =
∑m

i=0 ki denote the total number
of unique values across x, so that we can codify the corresponding frequencies of each value
as

ni := (ni,1, . . . , ni,k) for i = 1, . . . ,m,

with the constraint that
∑k

j=1 ni,j = ni. x induces a partition over [N ]. An example
is as depicted in Figure 3.4, where samples from two partially exchangeable sequences of
sizes n1 = 4 = n2 are presented. Different colors represent distinct values. If we were to
enumerate the elements of the sample in order of appearance, the partition of [8] induced
by the sample is π̃.

The pEPPF is defined as

Π
(N)
k (n1, . . . ,nm) = E

∫
Xk

k∏
j=1

p̃
n1,j

1 (dxj) · · · p̃
nm,j
m (dxj)

 .
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x1,1

x1,2

x1,3

x1,4

x2,1

x2,2

x2,3

x2,4

j = 1 j = 2

k1 = 1 k0 = 1 k2 = 2

π̃ =
{
{1, 3, 4}, {2, 6}, {5, 8}, {7}

}
Figure 3.4: Partition over [8] induced by a sample of 2 partially exchangeable sequences.

In the example of Figure 3.4, the pEPPF would be modelling the probability of the
joint partition as the one showed in Figure 3.5.

x1,1

x1,2

x1,3

x1,4

x2,1

x2,2

x2,3

x2,4

P(

j = 1 j = 2

= Π
(8)
4

Ü
n1 =


3
1
0
0

 , n2 =


0
1
2
1


ê

)

Figure 3.5

To study the partition generated by a sample of a partially exchangeable array, we
first introduce a useful metaphor that serves as a generalization of the Chinese restaurant
process, aptly named the Chinese restaurant franchise (CRF for short), introduced in Teh
et al. (2006). The hierarchical structure implies that we have two levels: an observable
level and a latent level, governed by p̃0. Suppose that there are m restaurants that share
an infinite global menu, whose dishes are generated by the top level base measure P0.
Each restaurant has an infinite capacity for both tables and customers. Each table serves
the same dish, chosen by the first customer that sits, and the same dish can be served at
different tables within the same restaurant or across different restaurants. The observable
level is the dish arrangement among customers and the tables that partition customers in
each restaurant i identify the latent level of the model.
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Let xi,j represent the label of the dish served in the i-th restaurant of the franchise
to the j-th customer for j = 1, . . . , ni and i = 1, . . . ,m, with ni,j being the number of
customers eating dish j at restaurant i. After N customers have arrived, there are k
distinct dishes being served across the m restaurants. Define

n̄•j =

m∑
i=1

ni,j j = 1, . . . , k,

the quantity n̄•j is the total number of people eating dish j across the franchise. The ni,j
customers eating dish j may be further partitioned into tables, so let `i,j be the number
of tables in restaurant i serving dish j, whose range is {1, . . . , ni,j} if dish j is served at
restaurant i and 0 otherwise, and is upper bounded by the number of customers eating
dish j in that restaurant. Let `̀̀i be

`̀̀i := (`i,1, . . . , `i,k),

and finally assume that the dot • represents marginal counts, so that

¯̀•j =
m∑
i=1

`i,j j = 1, . . . , k

¯̀
i• =

k∑
j=1

`i,j i = 1, . . . ,m

|̀`̀| =
m∑
i=1

k∑
j=1

`i,j .

The total number of tables across the franchise serving dish j is ¯̀•j , while ¯̀
i• is the total

number of tables in restaurant i and |̀`̀| is the total number of tables occupied across the m
restaurants. Now we are going to augment the structure by introducing the quantity qi,j,t
that represents the refined partition, and equals the frequency of customers at restaurant
i eating dish j and sitting at table t, for j = 1, . . . , k and t = 1, . . . , `i,j . If

qi,j = (qi,j,1, . . . , qi,j,`i,j ),

then qi,j is the frequency vector of customers in restaurant i eating dish j at each of the
`i,j tables. If ni,j = 0 for some i and j, then qi,j = (0, . . . , 0). Note that by marginalizing
over the tables we can recover the observed frequencies as ni,j = |qi,j | =

∑`i,j
t=1 qi,j,t, while

qi•t =
∑k

j=1 qi,j,t is the number of customers seated at table t in restaurant i. Figure 3.6
depicts two possible seating arrangements for the CRF metaphor based on the sample of
the example depicted in Figure 3.4.

Theorem 3.3. Suppose that the sequences
Ä
x(i)
äm
i=1

are partially exchangeable and gov-
erned by

p̃i | p̃0
i.i.d.∼ NRMI(ρ, θ, p̃0), p̃0 ∼ NRMI(ρ0, θ0, P0)
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x1,1 x1,3 x1,4x1,2

x2,1 x2,4
x2,3x2,2

(a)

x1,1 x1,3 x1,4x1,2

x2,1 x2,4x2,3x2,2

(b)

Figure 3.6: Two possible table configurations that could have yielded the sample from Figure
3.4.

with P0 non-atomic. If we have sampled x with ni ≥ 1 and k distinct values are displayed,
then the pEPPF of the partition induced over [N ] is

Π
(N)
k (n1, . . . ,nm) =

∑
`̀̀

∑
q

Φ
(|̀`̀|)
k,0 (¯̀•1, . . . , ¯̀•k)

×
m∏
i=1

k∏
j=1

1

`i,j !

Ç
ni,j

qi,j,1 · · · , qi,j,`i,j

å
Φ

(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k),

(3.4)

where Φ
(·)
·, 0 indicates the EPPF induced by an exchangeable sequence drawn from a NRMI

of parameters (ρ0, θ0, P0) and

Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k) =
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1eθΨ(u)
k∏
j=1

`i,j∏
t=1

τqi,j,t(u)du.

∑
q is a sum over all partitions and

∑
`̀̀ is a sum over all compatible table configurations,

i.e. over `i,j ∈ {1, . . . , ni,j} with `i,j = 0 if ni,j = 0.

Proof can be found at Appendix B. If ni,j = 0 for some i and j, since in this case
qi,j = (0, . . . , 0), one has that

Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k) = Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,j−1,qi,j+1, . . . ,qi,k).

The backbone of (3.4) is the product

Φ
(|̀`̀|)
k,0 (¯̀•1, . . . , ¯̀•k)

m∏
i=1

Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k),

which describes the random partition’s structure acting on the two levels of the hierarchy:
the samples (restaurants) and the whole collection of samples (the franchise).

∏m
i=1 Φ

(ni)
¯̀
i•,i

captures the former, by describing the probability that the ni customers in restaurant i
are partitioned into ¯̀

i• tables, each one occupied by qi,j,t clients. The latter is identified by
Φ

(|̀`̀|)
k,0 , that can be interpreted as the probability that the overall |̀`̀| tables are partitioned

43



into k groups according the dishes being served. The specific structure for the arrangement
of Figure 3.6b is shown in Figure 3.7. Φ

(8)
4,0 partitions the eight tables into four groups,

i.e. different colors, while each Φ
(4)
4,i partitions the four customers into 4 tables at each

restaurant, divided with the corresponding dish frequencies dictated by qi,j .

Φ
(8)
4,0(3, 2, 1, 1)

Φ
(4)
4,1

Ö
(1, 1,1)︸ ︷︷ ︸

q1,1

, (1)︸︷︷︸
q1,2

è
Φ

(4)
4,2

Ö
(1)︸︷︷︸
q2,2

, (1,1)︸︷︷︸
q2,3

, (1)︸︷︷︸
q2,4

è
Figure 3.7: Backbone of the pEPPF based on the configuration displayed on Figure 3.6b.

3.2.3 Distribution of the number of groups

A natural issue to address once the pEPPF is known, is the distribution of the number
KN of different values out of the N =

∑m
i=1 ni partially exchangeable observations. To

this aim let us introduce a collection of latent random variables {(ti,j)j≥1 : i = 1, . . . ,m}
such that

ti,j | q̃i
i.i.d.∼ q̃i

q̃i ∼ NRMI(θ, ρ,G),

with G a diffuse probability measure. In terms of the Chinese restaurant franchise, ti,j

is the label of the table where the j-th customer of the i-th restaurant is seated. The
distribution of KN can be described by considering:

◦ Independent random variables Ki,ni that equal, for each i = 1, . . . ,m, the number of
distinct values in t

(ni)
i = (ti,1, . . . , ti,ni).

◦ The random variable K0,t that represents the number of distinct values out of the t
exchangeable random elements generated from p̃0.

Theorem 3.4. Suppose that KN is the number of different values in the m partially
exchangeable samples

Ä
x

(ni)
i

äm
i=1

, governed by a vector of hierarchical NRMIs. For any
k = 1, . . . , N one has that

P[KN = k] =

N∑
t=k

P[K0,t = k]P

[
m∑
i=1

Ki,ni = t

]
. (3.5)

A proof of Theorem 3.4 can be found in Appendix B. The probability distributions of
K0,t and of Ki,ni are derived from their EPPFs and coincide with

P[K0,t = k] =
1

k!

∑
(r1,...,rk)∈Ck

[t]

Ç
t

r1 · · · rk

å
Φ

(t)
k,0(r1, . . . , rk) (3.6)
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for any k ∈ {1, . . . , t}, and

P[Ki,ni = ζ] =
1

ζ!

∑
(r1,...,rζ)∈Cζ

[ni]

Ç
ni

r1 · · · rζ

å
Φ

(ni)
ζ,i (r1, . . . , rζ) (3.7)

for ζ ∈ {1, . . . , ni}. In words, P [
∑m

i=1 Ki,ni = t] in (3.5) identifies the total number of
tables on which the customers were partitioned, whereas P[K0,t = k] identifies the number
of unique dishes assigned to these tables.

3.2.4 Posterior characterization

A similar characterization of the posterior distribution as the one in Proposition 2.1 is
available for partially exchangeable sequences. Namely, the posterior distribution will be
composed in two blocks, one concerning the root of the hierarchy (in terms of µ̃0) and
the second one concerning the vector of random probability measures. Let x∗1, . . . , x

∗
k be

the k unique values displayed across x and assume that U0 is a positive random variable
that, conditional on x and on the latent tables’ labels t = {t(ni)

i : i = 1, . . . ,m}, admits a
density with respect to the Lebesgue measure that satisfies

f0(u |x, t) ∝ u|̀`̀|−1e−θ0Ψ0(u)
k∏
j=1

τ¯̀•j ,0
(u).

Theorem 3.5. Suppose that a sample x has been obtained from a partially exchangeable
sequence, governed a vector of hierarchical NRMIs. Then

µ̃0 | (x, t, U0) ∼ η∗0 +
k∑
j=1

Ijδx∗j
,

where η∗0 and
∑k

j=1 Ijδx∗j
are independent and:

◦ η∗0 is a CRM with intensity ν0(dv,dx) = e−U0xρ0(v)dvθ0P0(dx).

◦ The jump random variables (Ij)
k
j=1 are independent and nonnegative, each with den-

sity fj(v |x, t) ∝ v ¯̀•je−vU0ρ0(v).

Let U = (U1, . . . , Um) be a vector of restaurant-specific r.v. whose components are
conditionally independent, given (x, t), with density w.r.t. the Lebesgue measure

fi(u |x, t) ∝ uni−1e−θΨ(u)
k∏
j=1

`i,j∏
t=1

τqi,j,t(u).

Theorem 3.6. Suppose that x is a sample of m partially exchangeable sequences, governed
a vector of hierarchical NRMIs. Then

(µ̃1, . . . , µ̃m) | (x, t,U, µ̃0) ∼ (µ̃∗1, . . . , µ̃
∗
m) +

Ñ
k∑
j=1

`1,j∑
t=1

J1,j,tδX∗j , . . . ,

k∑
j=1

`d,j∑
t=1

Jm,j,tδx∗j

é
,
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where the two summands on the right hand side are independent,
∑`i,j

t=1 Ji,j,t ≡ 0 if ni,j = 0

and:

◦ (µ̃∗1, . . . , µ̃
∗
m) is a vector of hierarchical CRMs such that, conditional on µ̃∗0 = η∗0 +∑k

j=1 Ijδx∗j
, each µ̃∗i has intensity νi(dv,dx) = e−Uivρ(v)dvθp̃∗0(dx), with p̃∗0( · ) =

µ̃∗0( · )
µ̃∗0(X) .

◦ The jump random variables {(Ji,j,t)
`i,j
t=1 : i ∈ {1, . . . ,m}, j ∈ {1, . . . ,m}} are inde-

pendent and nonnegative, each with density fi,j,t(v) ∝ e−Uivvqi,j,tρ(v) when ni,j ≥ 1,
whereas Ji,j,t = 0 a.s. if ni,j = 0.

The proofs of Theorems 3.5 and 3.6 can be found at Appendix B.

3.2.5 Sampling scheme

To construct a generative sampling scheme for hierarchical NRMIs, we will make use of a
posterior characterization of x that relies on two latent variables. In the Chinese restaurant
franchise metaphor, recall that the random variable ti,j from Theorem 3.4 is the label of
the table at which the j-th customer on restaurant i sits, and let di,t be the label of the
dish served at table t in restaurant i. Let the random variables φ1, . . . , φk denote the k
unique dishes. To illustrate these new quantities, Figure 3.8 exhibits the latent structure of
the arrangement of the example of Figure 3.6a: the dotted gray lines represent the indexes
ti,j that identify customers with tables at each restaurant i, whereas the dashed dark gray
lines represent the indexes di,t, which identify tables with dishes (colors) sampled from the
top level RPM’s base measure P0.

x1,1 x1,2 x1,3 x1,4 x2,1 x2,2 x2,3 x2,4

t1,1 = 1

1 2 3

t1,2 = 2 t1,4 = 3t1,3 = 3 t2,1 = 1

1 2 3

t2,2 = 2

t2,4 = 1 t2,3 = 3

φ1

d1,1 = 1

d1,2 = 2
d1,3 = 1 d2,1 = 3

d2,2 = 2

d2,3 = 4

φ2 φ3 φ4

Figure 3.8: Latent random variables ti,j and di,t for the sample of Figure 3.6a.

The random variables ti,j and di,t allow us to record the clustering behavior of the
hierarchical process at both levels of the hierarchy: ti,j indicates the local cluster member-
ship whereas di,t associates each of these clusters across the m groups with a global label
sampled from P0. More formally, given a random partition Π, let Cj(Π) be the random
index of the block containing element j, that is Cj(Π) = c if j belongs to the c-th block
of Π. Regarding a vector of hierarchical NRMIs, let Φ̃i indicate the EPPF induced by an
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exchangeable sequence drawn from the process p̃i | p̃0
i.i.d.∼ NRMI(ρ, θ, p̃0), for i = 1, . . . ,m,

and let Φ0 be the EPPF associated with p̃0 ∼ NRMI(ρ0, θ0, P0), just as in Theorem 3.3. Let
π̄1, . . . , π̄m denote independent random partitions of N, each with EPPF Φ̃i, and let π̄i,ni
be the restriction of π̄i to [ni], which has a probability distribution Φni

|π̃i|,i. Additionally,
π̃0 is a random partition of N such that, conditional on (π̃1,n1 , . . . , π̃m,nm), its restriction
π̃0,h to [h] has probability distribution Φ

(h)
k,0 , where h is the sum of the number of blocks

in each partition π̃i,ni , i.e. h =
∑m

i=1 |π̃i,ni |. In terms of these partitions, the labels ti,j and
di,t can be described as

d∗i,j := CD(i,ti,j) (π̃0,h) D(i, t) :=
i−1∑
r=1

|π̃k,nr |+ t ti,j := Cj(π̃i),

where d∗i,j = di,ti,j for di,t := CD(i,t)(π̃0,h). ti,j has a straightforward interpretation: it
merely indicates the block to which the j-th observation in the i-th partition belongs to.
The quantity D(i, t) scrolls the index to the current block t in group i by summing the
number of blocks |π̃i,ni | in the previous i− 1 partitions.

Consider again the example shown in Figure 3.6a. In Figure 3.9, we show the corre-
sponding partitions π̃i,ni of [ni] into ¯̀

i• blocks, generated by the labels of the table on which
each customer sits, and the partition π̃0,|̀`̀| of [|̀`̀|] generated by the four different dish labels.
The partitions π̃i,ni act at a restaurant level and the partition π̃0,6 acts within the 6 tables
across the franchise. As there are no tables previous to restaurant 1, D(1, c1,j) = t1,j and
therefore d∗1,j = Ct1,j (π̃0,6). On the other hand, when i = 2 we have to take into account
that there are |π̃1,4| = 3 tables in restaurant 1, so that the first table in restaurant two
actually corresponds to the fourth table served across the franchise and so on, meaning
that D(2, t2,j) = 3 + t2,j .

π̃1,4 =
{
{1}, {2}, {3, 4}

}
t1,1 = 1, t1,2 = 2, t1,3 = 3 = t1,4

π̃0,6 =
{
{1, 3}, {2, 5}, {4}, {6}

}

d∗1,j =


C1 (π̃0,6) = 1 j = 1

C2 (π̃0,6) = 2 j = 2

C3 (π̃0,6) = 1 j = 3, 4

d∗2,j =


C4 (π̃0,6) = 3 j = 1, 4

C5 (π̃0,6) = 2 j = 2

C6 (π̃0,6) = 4 j = 4

φ1 φ2 φ3 φ4

π̃2,4 =
{
{1, 4}, {2}, {3}

}
t2,1 = 1 = t2,4, t2,2 = 2, t2,3 = 3

Figure 3.9: Partitions generated by the sample of Figure 3.6a and their corresponding index
random variables ti,j and d∗i,j.

In the following proposition we will see that we can characterize the joint law of x

in terms of these latent variables, following along the same lines of reasoning as in the
example presented above.
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Proposition 3.1. Let x be m samples of a partially exchangeable sequence, governed by
a vector of hierarchical NRMIs and let (φn)n≥1 be a sequence of i.i.d. random variables

with distribution P0. Then x
d
=
î
φd∗i,j

: j = 1, . . . , ni, i ∈ {1, . . . ,m}
ó
.

This corresponds to Proposition 4 in Bassetti et al. (2020), and it holds true for a
broader class of hierarchical processes, hierarchical species sampling models, which include
both hierarchical NRMIs and the hierarchical Pitman-Yor process. This proposition tells
us that we can reconstruct the seating plan of Figure 3.6a by first sampling the dotted lines
(customer-table assignments), the dashed lines (table-dish assignments) in Figure 3.8 and
then assign each label (color) {φn}4n=1

i.i.d.∼ P0 to each table, and therefore to each customer.
To derive a sampling scheme, recall that if EPPF of an exchangeable sequence is known,
given a particular instance of a partition of [n] into k blocks, each of size nj (j = 1, . . . , k),
the probability of adding a new block containing n + 1 is given by ω(n)

0 (n1, . . . ,nk) as in
(2.4), while the probability of adding n + 1 to the j-th block is given by ω(n)

j (n1, . . . ,nk)

as in (2.5). We will omit the values (n1, . . . ,nk) unless it is necessary to make explicit the
composition on which each one of them is evaluated at. Let ω(n)

j and ω(n)
0 be the weights of

the predictive distribution of the random partitions π̃i with EPPF Φ̃i, for i = 1, . . . ,m and
let ω̃(n)

j and ω̃(n)
0 defined in an analogous way for π̃0 with EPPF Φ0. With these weights,

Proposition 3.1 allows us to generate samples from a HNRMI by the means of Algorithm
3.1, where x∗i,1, . . . , x

∗
i,¯̀i•

are the labels of the ¯̀
i• tables at restaurant i for i = 1, . . . ,m. A

graphical depiction is shown in Figure 3.10.

sits at new table?

yes

no

xi,j = x∗i,t

orders new dish?

xi,j

ω (t)c
(q
i•1 , . . . , q

i•
ì• )

ω
(t

)

0

(q i
•1
, .
. .
, q i
•` i

•
)

yesω̃
(|`|

)

0

(`•1
, . .
. , `•

k)

noω̃ (|`|)d
(`•1 , . . . ,

•̀k )

xi,j = φk ∼ P0

xi,j = φd

Figure 3.10: Diagram of the sampling scheme described in Algorithm 3.1.
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Algorithm 3.1: Sample
Ä
x

(ni)
i

äm
i=1

using the EPPFs.

for i = 1, 2, . . . ,m do
if i = 1 then

Sample φ1 ∼ P0 and assign x1,1 = x∗1,1 = φ1

Set k = 1, ¯̀
1• = 1, ¯̀•1 = 1, q1•1 = 1

else
Take xi,1 = x∗i,1, where x∗i,1 is sampled from Git
Set ¯̀

i• = 1 and qi•1 = 1
for j = 1, . . . , ni do

Sample xi,j | xi,1, . . . , xi,j−1 from G∗it( · ) + ω
(t)
0

(
qi•1, . . . qi•¯̀i•

)
Git( · ), where

G∗it( · ) =

¯̀
i•∑
t=1

ω
(t)
t

(
qi•1, . . . qi•¯̀i•

)
δx∗i,t

(·)

Git( · ) = G̃it( · ) + ω̃
(|̀`̀|)
0

(
¯̀•1, . . . , ¯̀•k

)
P0( · )

G̃it( · ) =
k∑
d=1

ω̃
(|̀`̀|)
d

(
¯̀•1, . . . , ¯̀•k

)
δφd(·)

if xi,j is sampled from G∗it then
// Sits at old table

Set xi,j = x∗i,t for the chosen t and set ti,j = t

Increment customer-table count qi•t = qi•t + 1

else if xi,j is sampled from Git then
// Sits at new table

Set xi,j = x∗
i,¯̀i•

and ti,j = ¯̀
i•

Increment table counts ¯̀
i• = ¯̀

i• + 1 and |̀`̀| = |̀`̀|+ 1

if xi,j is sampled from G̃it then
// Orders old dish

Set xi,¯̀i• = φd for the chosen d and di,¯̀i• = d
Increment customer-mish count ¯̀•d = ¯̀•d + 1

else if xi,j is sampled from P0 then
// Orders new dish

Set φk = xi,j , and di,¯̀i• = k

Increment the global dish count k = k + 1

49



Remark. The reason why we choose to derive Algorithm 3.1 in terms of the EPPFs Φ̃i

instead of using the partition probability functions Φi as defined in Theorem 3.3 is only for
the sake of simplicity. One could express the exact same posterior characterization using
solely Φi as follows:

P[xi,j = new dish, ti,j = new table | ...] = P[xi,j = φk+1, ti,j = tnew | ...]

= ω̃
(|̀`̀|)
0

Φ
(ni+1)
¯̀
i•+1,i

(qi,1, . . . ,qi,k, 1)

Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k)

P[xi,j = old dish, ti,j = new table | ...] = P[xi,j = φd, ti,j = tnew | ...]

= ω̃
(|̀`̀|)
d

Φ
(ni+1)
¯̀
i•+1,i

(qi,1, . . . , (qi,d, 1), . . .qi,k)

Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k)

P[xi,j = old dish, ti,j = old table | ...] = P[xi,j = φd
i,told

, ti,j = told | ...]

=
Φ

(ni)
¯̀
i•,i

Ä
qi,1, . . . ,qi,d

i,told
+ 1told , . . . ,qi,k

ä
Φ

(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k) ,

where 1told is a vector of zeros of length ¯̀
i,d

i,told
, with a one at position told. This scheme

is very similar to that of Algorithm 3.1, the main difference being in here that the dishes
are coupled within the frequency vectors qi,j , as these record the customer-table counts
but arranged by dish. Using Φ̃i instead of Φi allows us to de-couple these frequencies so
that we can use the actual customer-table counts qi•t, separately from the dish counts.

3.3 Examples

Now we will present some examples of hierarchical processes where p̃i and p̃0 are of the
same kind of process, although this is not necessary and one can construct any mixed case.

3.3.1 Hierarchies of Dirichlet processes

If ρ(v) = ρ0(v) = v−1e−v, then p̃0 is a Dirichlet process and p̃i’s are, conditional on p̃0,
independent and identically distributed Dirichlet processes, so that

p̃i | p̃0
i.i.d.∼ D(θp̃0) for i = 1, . . . ,m

p̃0 ∼ D(θ0P0).

Therefore, (p̃1 . . . , p̃m) is a vector of hierarchical Dirichlet processes (HDP for short) as
in Teh et al. (2006). We previously proved that τm,0(u) = Γ(m)

(1+u)m = τm(u), so that a
straightforward application of Theorem 3.2 yields that for A ∈ X and i 6= j ∈ {1, . . . ,m}

corr (p̃i(A), p̃j(A)) =
1 + θ

1 + θ + θ0
.
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The correlation is increasing as a function of θ and decreasing in θ0. We can distinguish
two limiting cases: as θ0 ↑ ∞, the distribution of p̃0 degenerates on its base measure P0

and the p̃i’s are independent, consequently corr(p̃i(A), p̃j(A)) converges to 0. On the other
hand, if θ ↑ ∞, the distribution of each p̃i, conditional on p̃0, degenerates on p̃0 and hence
the correlation coefficient between any pair p̃i(A) and p̃j(A) converges to 1.

To compute the pEPPF, note that Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k) can be determined easily as

Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k) =
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1(1 + u)−θ
k∏
j=1

`i,j∏
t=1

Γ(qi,j,t)

(1 + u)qi,j,t
du

=
θ

¯̀
i•

Γ(ni)

k∏
j=1

`i,j∏
t=1

Γ(qi,j,t)

∫
R+

uni−1

(1 + u)ni+θ
du

=
θ

¯̀
i•

(θ)ni

k∏
j=1

`i,j∏
t=1

Γ(qi,j,t).

As we previously proved that Φ
(|̀`̀|)
k,0 (¯̀•1, . . . , ¯̀•k) =

θk0
(θ0)|`̀̀|

∏k
j=1(¯̀•j − 1)!, a straightforward

application of Theorem 3.3 leads to the following pEPPF

Π
(N)
k (n1, . . . ,nm) =

∑
`̀̀

∑
q

θk0
(θ0)|̀`̀|

k∏
j=1

(¯̀•j − 1)!
m∏
i=1

1

`i,j !

Ç
ni,j

qi,j,1 · · · , qi,j,`i,j

å
θ

¯̀
i•

(θ)ni

×
`i,j∏
t=1

Γ(qi,j,t)

=
θk0∏m

i=1(θ)ni

∑
`̀̀

θ|̀`̀|

(θ0)|̀`̀|

k∏
j=1

(¯̀•j − 1)!

m∏
i=1

∑
q

ni,j !

`i,j !

1

qi,j,1 · · · qi,j,`i,j

=
θk0∏m

i=1(θ)ni

∑
`̀̀

θ|̀`̀|

(θ0)|̀`̀|

k∏
j=1

(¯̀•j − 1)!

m∏
i=1

|sni,j ,`i,j |,

where we have used that the unsigned Stirling numbers of the first kind can be written as
|sn,k| = n!

k!

∑
(r1,...,rk)∈Ck

[n]

1
r1···rk , see Charalambides (2002).

To analyze the distribution of the number of distinct values, KN , note that on one
hand we have that

P[K0,t = k] =
θk0

(θ0)t

1

k!

∑
(r1,...,rk)∈Ck

[N ]

Ç
t

r1 · · · rk

å k∏
j=1

(rj − 1)!

=
θk0

(θ0)t

t!

k!

∑
(r1,...,rk)∈Ck

[N ]

∏k
j=1(rj − 1)!∏k

j=1 rj !
=

θk0
(θ0)t

|st,k|,

for any k ∈ {1, . . . , t}, and analogously for i = 1, . . . ,m

P[Ki,ni = ζ] =
θζ

(θ)ni
|sni,ζ | for ζ ∈ {1, . . . , ni}.
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To illustrate the effect that the parameters θ0 and θ have on the distribution of KN ,
Figure 3.11 shows plots of the distribution of KN for two partially exchangeable sequences
governed by a vector a hierarchical Dirichlet processes, where n1 = 50 = n2. From here
we see that when both parameters grow, KN favors larger values and this happens only
when both (θ, θ0) grow simultaneously, as whenever only one of is large, the effect on the
location of the mode is diminished by the smaller parameter. Regardless of the placement
of the mode, the a priori distribution of KN is leptokurtic.
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(a) Distribution of K100 for the HDP with θ0 6= θ.
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(b) Distribution of K100 for the HDP with θ0 = θ.

Figure 3.11: Distribution of K100 for the HDP for different choices of θ0 and θ.

To complete the description of the hierarchical Dirichlet Process, note that

f0(u) ∝ u|̀`̀|−1

(1 + u)θ0+|̀`̀|

so that U0
U0+1 ∼ Be(|̀`̀|, θ0). The posterior distribution of µ̃0 is composed of the two sum-

mands:
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◦ η∗0 is a Gamma CRM with intensity ν0(dv,dx) = e−(1+U0)vv−1dvθ0P0(dx).

◦ The jumps (Ij)
k
j=1 have density fj(v |x, t) ∝ v

¯̀•j−1e−(1+U0)v, meaning that Ij
ind∼

Ga(¯̀•j , 1 + U0) for j = 1, . . . , k.

Therefore, p̃∗0 =
µ̃∗0

µ̃∗0(X) satisfies

p̃∗0 ∼ D

Ñ
θ0P0 +

k∑
j=1

¯̀•jδ
∗
Xj

é
as the normalizing constants of η∗0 and the jumps Ij do not depend on the scale U0. Now
concerning the vector (p̃1, . . . , p̃m), one has that

fi(u |x, t) ∝ uni−1

(1 + u)θ+ni

Hence Ui
Ui+1 ∼ Be(θ, ni) and, conditional on p̃∗0 and x, t,U, the CRMs µ̃1, . . . , µ̃m are

independent and distributed as µ̃∗i +
∑k

j=1

∑`i,j
t=1 Ji,j,tδ

∗
xi,j

, where

◦ µ̃∗i is a Gamma CRM with intensity e−(1+Ui)vv−1dvθp̃∗0(dx).

◦ The jumps Ji,j,t have density fi,j,t(v) ∝ e−(1+Ui)vvqi,j,t−1, meaning that Ji,j,t
ind∼

Ga(qi,j,t, 1 + Ui). This means that
∑`i,j

t=1 Ji,j,t ∼ Ga(ni,j , 1 + Ui) whenever ni,j ≥ 1

and Gi,j = 0 a.s. if ni,j = 0.

Again one has that

p̃i |x, t, p̃∗0 ∼ D

Ñ
θp̃∗0 +

k∑
j=1

ni,jδx∗i,j

é
for i = 1, . . .m.

The sampling scheme described in Algorithm 3.1 specifies as follows.

3.3.2 Hierarchies of normalized stable processes

The hierarchical stable NRMI arises by setting

ρ(v) =
σv−1−σ

Γ(1− σ)
and ρ0(v) =

σ0v
−1−σ0

Γ(1− σ0)

for some σ and σ0 in (0, 1). This means that p̃0 is a σ0-stable NRMI and, conditional on
p̃0, the p̃i’s are independent and identically distributed as a σ-stable NRMI. We will refer
to (p̃1, . . . , p̃m) as a vector of hierarchical stable NRMIs (HSP for short).

As we proved in the previous chapter, τm,0(u) = σ0Γ(m−σ0)
Γ(1−σ0)um−σ0

and τm(u) = σΓ(m−σ)
Γ(1−σ)um−σ .

A plain application of Theorem 3.2 leads to

corr(p̃i(A), p̃j(A)) =
1− σ0

1− σσ0
,
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Algorithm 3.2: Sample
Ä
x

(ni)
i

äm
i=1

from the HDP.

for i = 1, 2, . . . ,m do
if i = 1 then

Sample φ1 ∼ P0 and assign x1,1 = x∗1,1 = φ1

Set k = 1, ¯̀
1• = 1, ¯̀•1 = 1, q1•1 = 1

else
Take xi,1 = x∗i,1, where x∗i,1 is sampled from Git
Set ¯̀

i• = 1 and qi•1 = 1
for j = 1, . . . , ni do

Sample xi,j | xi,1, . . . , xi,j−1 according to

xi,j | xi,1, . . . , xi,j−1 ∼
¯̀
i•∑
t=1

qi•t
θ + t− 1

δx∗i,t
(·) +

θ

θ + t− 1
Git( · )

Git( · ) =

k∑
d=1

¯̀•d
θ0 + |̀`̀|

δφd(·) +
θ0

θ0 + |̀`̀|
P0( · )

for any measurable A and i 6= j. The correlation is increasing in σ and decreasing in σ0,
and the two limiting cases arise as follows: if σ ↑ 1 then corr(p̃i(A), p̃j(A)) ↑ 1, whereas
when σ0 ↑ 1 implies corr(p̃i(A), p̃j(A)) ↓ 0.

Recalling that Ψ0(u) = uσ0 and Ψ(u) = uσ, to determine the pEPPF note that

Φ
(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k) =
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1e−θu
σ

k∏
j=1

`i,j∏
t=1

σΓ(qi,j,t − σ)

Γ(1− σ)uqi,j,t−σ
du

=
θ

¯̀
i•

Γ(ni)
σ

¯̀
i•

k∏
j=1

`i,j∏
t=1

(1− σ)qi,j,t−1

∫
R+

uσ
¯̀
i•−1e−θu

σ
du

=
Γ(¯̀

i•)

Γ(ni)
σ

¯̀
i•−1

k∏
j=1

`i,j∏
t=1

(1− σ)qi,j,t−1.

Since Φ
(|̀`̀|)
k,0 (¯̀•1, . . . , ¯̀•k) =

σk−1
0 Γ(k)
Γ(|̀`̀|)

∏k
j=1 (1− σ0)¯̀•j−1, the pEPPF equals

Π
(N)
k (n1, . . . ,nm) =

σk−1
0 Γ(k)∏m
i=1 Γ(ni)

∑
`̀̀

σ |̀`̀|−m
∏m
i=1 Γ(¯̀

i•)

Γ(|̀`̀|)

k∏
j=1

(1− σ0)¯̀•j−1

×
k∏
j=1

m∏
i=1

1

`i,j !

Ç
ni,j

qi,j,1 · · · , qi,j,`i,j

å∑
q

`i,j∏
t=1

(1− σ)qi,j,t−1

Therefore

Π
(N)
k (n1, . . . ,nm) =

σk−1
0 Γ(k)∏m
i=1 Γ(ni)

∑
`̀̀

σ |̀`̀|−m
∏m
i=1 Γ(¯̀

i•)

Γ(|̀`̀|)

k∏
j=1

(1− σ0)¯̀•j−1

m∏
i=1

k∏
j=1

Sσni,j ,`i,j ,
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where Sσn,k denotes the generalized Stirling number. Unsurprisingly, due to the properties
of the stable CRM, neither the correlation coefficient nor the pEPPF depend on the total
masses θ0 and θ.

To study the distribution of KN , note that for k ∈ {1, . . . , t}

P[K0,t = k] =
1

k!

∑
(r1,...,rk)∈Ck

[t]

Ç
t

r1 · · · rk

å
σk−1

0 Γ(k)

Γ(t)

k∏
j=1

(1− σ0)rj−1

=
σk−1

0 Γ(k)

Γ(t)

∑
(r1,...,rk)∈Ck

[t]

Ç
t

r1 · · · rk

å
1

k!

k∏
j=1

(1− σ0)rj−1

=
σk−1

0 Γ(k)

Γ(t)
Sσ0
t,k,

and similarly for ζ ∈ {1, . . . , ni}, one has that P[Ki,ni = ζ] = σk−1Γ(ζ)
Γ(ni)

Sσni,ζ . Figure 3.12
shows the distribution of KN for two partially exchangeable sequences, with n1 = 50 = n2

and different choices of σ0, σ. It is easy to see from Figure 3.12a that the parameters control
the kurtosis: smaller values of either σ or σ0 correspond to leptokurtic distributions whereas
as either one of them grows, the curves become more platykurtic. The same behavior is
observed in Figure 3.12b, where σ0 = σ: larger parameters produce flatter curves as
opposed to small parameters.
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(a) Distribution of K100 for the HSP with σ0 6= σ.

For the posterior characterization, one has that

f0(u |x, t) ∝ u|̀`̀|−1e−θ0u
σ0

k∏
j=1

σ0(1− σ0)¯̀•j−1u
σ0−¯̀•j

= uσ0k−1σk0

k∏
j=1

(1− σ0)¯̀•j−1,
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(b) Distribution of K100 for the HSP with σ0 = σ.

Figure 3.12: Distribution of K100 for the HSP for different choices of σ0 and σ.

so that U0 ∼ Ga(k, θ0). Hence the distribution of U0 depends on the observations only
through the number of distinct values k. Moreover

◦ η∗0 is a generalized Gamma CRM as in Example 1.5, whose intensity is

σ0

Γ(1− σ0)

u−U0v

vσ0+1
dvθ0P0(dx)

◦ The jump random variables are independently distributed with density fj(v |x, t) ∝
v

¯̀•j−σ0−1e−vU0 , that is Ij
ind∼ Ga(¯̀•j − σ0, U0).

Thus p̃∗0 =
η∗0+

∑k
j=1 Ijδx∗j

η∗0(X)+
∑k
j=1 Ij

and, conditional on p̃∗0 and x, t,U, the completely random mea-

sures µ̃1, . . . , µ̃m are independent. Each µ̃i distributes as µ̃∗i +
∑ki

j=1

∑`i,j
t=1 Ji,j,tδx∗i,j

, where

◦ µ̃∗i is a generalized Gamma CRM whose intensity is

σ

Γ(1− σ)

e−Uiv

vσ+1
dvθp̃∗0(dx).

◦ The jump random variables Ji,j,t are independent and each with density fi,j,t(v) ∝
e−Uivvqi,j,t−σ−1, i.e. Ji,j,t

ind∼ Ga(qi,j,t − σ, Ui) for t = 1, . . . , `i,j . This implies that∑`i,j
t=1 Ji,j,t ∼ Ga(ni,j − σ`i,j , Ui) if ni,j ≥ 1 and

∑`i,j
t=1 Ji,j,t = 0 a.s. if ni,j = 0.

A sampling scheme is presented in Algorithm 3.3.
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Algorithm 3.3: Sample
Ä
x

(ni)
i

äm
i=1

from the HSP.

for iteration i = 1, 2, . . . ,m do
if i = 1 then

Sample φ1 ∼ P0 and assign x1,1 = x∗1,1 = φ1

Set k = 1, ¯̀
1• = 1, ¯̀•1 = 1, q1•1 = 1

else
Take xi,1 = x∗i,1, where x∗i,1 is sampled from Git
Set ¯̀

i• = 1 and qi•1 = 1
for j = 1, . . . , ni do

Sample xi,j | xi,1, . . . , xi,j−1 according to

xi,j | xi,1, . . . , xi,j−1 ∼
¯̀
i•∑
t=1

qi•t − σ
t− 1

δx∗i,t
(·) +

¯̀
i•σ

t− 1
Git( · )

Git( · ) =

k∑
d=1

¯̀•d − σ0

|̀`̀|+ θ0
δφd(·) +

kσ0

|̀`̀|+ θ0
P0( · )

3.4 Hierarchies of Pitman-Yor processes

Recall that the Pitman-Yor process is obtained by normalizing the random measure µ̃σ,θ,
whose distribution of Pσ,θ satisfies the relationship

dPσ,θ(m)

dPσ
=

Γ(θ + 1)

Γ
(
θ
σ + 1

)m(X)−θ for m ∈ MX, (3.8)

where Pσ is the distribution of a positive σ-stable random variable.
Suppose that xi,j are partially exchangeable as in (3.2), with Qm characterized by

p̃i | p̃0
i.i.d.∼ PY(σ, θ, p̃0) i = 1, . . . ,m

p̃0 ∼ PY(σ0, θ0, P0),
(3.9)

where σ, σ0 ∈ (0, 1), θ > −σ, θ0 > −σ0 and P0 nonatomic. Each p̃i is then the normaliza-
tion of a measure µ̃i that is not completely random, and whose law is absolutely continuous
with respect to the law of a σ-stable CRM. The above results presented for hierarchical
NRMIs can be extended to hierarchies of Pitman-Yor processes by taking into account the
change of measure (3.8) and working directly with the CRMs. We will refer to (p̃1, . . . , p̃m)

as a vector of hierarchical Pitman-Yor processes (HPYP).

Theorem 3.7. Suppose that p̃i | p̃0
i.i.d.∼ PY(σ, θ, p̃0), for i = 1, . . . ,m, and that p̃0 ∼

PY(σ0, θ0, P0) with P0 nonatomic, σ, σ0 ∈ (0, 1) and θ > −σ, θ0 > −σ0. Then, for any
A ∈ X and i 6= j ∈ {1, . . . ,m},

corr (p̃i(A), p̃j(A)) =

ß
1 +

1− σ
1− σ0

θ0 + σ0

θ + 1

™−1

.
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Theorem 3.8. Let {(xi,j)j≥1 : i = 1 . . . ,m} be partially exchangeable as in (3.9), and
suppose that we have sampled

Ä
x

(ni)
i

äm
i=1

. Then

Π
(N)
k (n1, . . . ,nm) =

∑
`̀̀

∏k−1
r=1(θ0 + rσ0)

(θ0 + 1)|̀`̀|−1

k∏
j=1

(1− σ0)¯̀•j−1

×
m∏
i=1

∏¯̀
i•−1
r=1 (θ + rσ)

(θ + 1)ni−1

k∏
j=1

Sσni,j ,`i,j .

(3.10)

A closed expression for the distribution of the number of blocks holds.

Theorem 3.9. Suppose that KN is the number of distinct values in the m partially ex-
changeable samples x, governed by a vector of hierarchical Pitman-Yor processes. Then

P[KN = k] =

N∑
t=k

∏k−1
r=1(θ0 + rσ0)

(θ0 + 1)t−1
Sσ0
t,k

×
∑

(ζ1,...,ζm)∈Cm
[t]

m∏
i=1

∏ζi−1
r=1 (θ + rσ)

(θ + 1)ni−1
Sσni,ζi .

Figure 3.13 shows plots of the distribution of KN for two partially exchangeable se-
quences with n1 = 100 = n2. As expected, the hierarchical Pitman-Yor process allows
more flexibility than the hierarchical Dirichlet and stable processes, even in the homoge-
neous case where (σ0, θ0) = (σ, θ), as the distribution of KN can take a variety of forms
depending on the choice of the parameters. Changes in the parameters σ and σ0 affect
mainly the dispersion.
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(a) Distribution of K100 for the HPYP with σ0 6= σ and θ 6= θ0.
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(b) Distribution of K100 for the HPYP with σ0 = σ and θ0 = θ.

Figure 3.13: Distribution of K100 for the HPYP for different choices of (σ0, θ0) and (σ, θ).

To characterize the posterior distribution, let U0 be a positive random variable with
density with respect to the Lebesgue measure such that, conditionally on x and on the
latent tables t, is given by

f0(u |x, t) =
σ0

Γ
Ä
k + θ0

σ0

äukσ0+θ0−1e−uσ0 .

Theorem 3.10. Assume that the data x are partially exchangeable and modeled as in
(3.9). Then

µ̃0 |x, t, U0 ∼ η∗0 +
k∑
j=1

Ijδx∗j
, (3.11)

where η∗0 and
∑k

j=1 Ijδx∗j
are independent and

◦ η∗0 is a generalized Gamma CRM with intensity

e−vU0
1

v1+σ0

σ0

Γ(1− σ0)
dvP0(dx).

◦ The jump random variables (Ij)
k
j=1 are independent, nonnegative and Ij ∼ Ga(`̄•j −

σ0, U0).

To characterize the posterior distribution of (µ̃1, . . . , µ̃m), let U = (U1, . . . , Um), where
the components are independent and admit, conditional on x, t, a density with respect to
the Lebesgue measure given by

fi(u |x, t) =
σ

Γ
(
ki + θ

σ

)uσki+θ−1e−u
σ

i = 1, . . . ,m.
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Theorem 3.11. Assume that we have sampled x from a partially exchangeable sequence
modeled as in (3.9). The posterior distribution of (µ̃1, . . . , µ̃m), given the observations, the
latent tables and p̃0 coincides with

(µ̃1, . . . , µ̃m) | (x, t,U, µ̃0) ∼ (µ̃∗1, . . . , µ̃
∗
m) +

Ñ
k∑
j=1

`1,j∑
t=1

J1,j,tδx∗j
, . . . ,

k∑
j=1

`d,j∑
t=1

Jd,j,tδx∗j

é
,

where the two summands on the right hand side are independent,
∑`i,j

t=1 Ji,j,t ≡ 0 if ni,j = 0

and

◦ (µ̃∗1, . . . , µ̃
∗
m) is a vector of hierarchical CRMs such that, conditional on µ̃∗0 = η∗0 +∑k

j=1 IjδX∗j as in (3.11), each µ̃∗i is generalized Gamma CRM with intensity

e−vUi
1

v1+σ

σ

Γ(1− σ)
dvp̃0(dx).

◦ The jump random variables {(Ji,j,t)} are independent and nonnegative, where each
Ji,j,t ∼ Ga(qi,j,t−σ, Ui) when ni,j ≥ 1, whereas Ji,j,t = 0 a.s. if ni,j = 0. In particular∑`i,j

t=1 Ji,j,t ∼ Ga(ni,j − `i,jσ, Ui).

Proofs of all of the above theorems are attached in Appendix B. Finally, the sampling
scheme of Algorithm 3.1 specializes as follows.

Algorithm 3.4: Sample
Ä
x

(ni)
i

äm
i=1

from the HPYP.

for i = 1, 2, . . . ,m do
if i = 1 then

Sample φ1 ∼ P0 and assign x1,1 = x∗1,1 = φ1

Set k = 1, ¯̀
1• = 1, ¯̀•1 = 1, q1•1 = 1

else
Take xi,1 = x∗i,1, where x∗i,1 is sampled from Git
Set ¯̀

i• = 1 and qi•1 = 1
for j = 1, . . . , ni do

Sample xi,j | xi,1, . . . , xi,j−1 according to

xi,j | xi,1, . . . , xi,j−1 ∼
¯̀
i•∑
t=1

qi•t − σ
θ + t− 1

δX∗i,c(·) +
θ + ¯̀

i•σ

θ + t− 1
Git( · )

Git( · ) =

k∑
d=1

¯̀•d − σ0

|̀`̀|+ θ0
δφd(·) +

θ0 + kσ0

|̀`̀|+ θ0
P0( · )

60



Algorithms

The purpose of this chapter is to illustrate the usefulness of Bayesian nonparametric meth-
ods based on hierarchical processes. As mentioned before, hierarchical processes are useful
in problems in which there are multiple groups of data somehow related; here this relation-
ship will take the form of mixture components that are shared across m sets of data. The
borrowing of strength phenomenon should then allow us to model these densities jointly
rather than as m separate mixtures. We rely mostly on the results displayed in Section
3.2.4 and, by means of Markov chain Monte Carlo methods, we describe an algorithm for
hierarchical mixtures models using some of the prior processes described in Chapter 3. The
first thing we do in Section 4.1 is a brief review on mixture and infinite mixture models.
In here we describe some MCMC methods for adjusting nonparametric mixture models
and define the log-pseudo marginal likelihood that will be used as a measure of the good-
ness of fit. In Section 4.2 we generalize this setting to adjust nonparametric mixtures to
partially exchangeable data. Finally, in Section 4.3 we will perform two small experiments
to compare the performance of several hierarchical prior processes. In order to avoid the
proliferation of the symbols, from now on we shall use the same letters to denote both the
random variables and their realizations.

4.1 Infinite mixtures

Suppose that we are interested in modelling data {y1, . . . , yn} that presents no repetitions.
The a.s. discrete nature of NRMIs makes them unsuitable to model continuous distri-
butions directly, however, it is possible to define nonparametric priors whose realizations
yield a.s. probability distributions that admit a density with respect to some reference
measure ν acting over the space X on which we are interested. Namely, for density estima-
tion purposes, it is custom in Bayesian nonparametric statistics the use of random mixture
modelling, oftentimes called infinite mixtures.

First let us recall that if {y1, . . . , yn} is modeled as independent draws from a mixture
distribution function with a fixed number of components M > 1, then the distribution of
each yi is a convex combination of components of the form

yi ∼
M∑
j=1

ηjK(· | xj), (4.1)
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where K(·, ·) : Θ × X → [0, 1] is a diffuse probability kernel and we have adopted the
notation K(x, ·) = K(· | x). The constants (η1, . . . , ηM ) are the mixture proportions, which
are constraint to satisfy

ηj ≥ 0 j = 1, . . . ,M and
M∑
j=1

ηj = 1.

Usually one considers {K(· | x) : x ∈ Θ} to be a parametric family, with Θ being its param-
eter space. Note that model (4.1) can be alternatively expressed in an integral form

yi ∼
∫
K(· | x)µ̃(dx), (4.2)

where µ̃ is a discrete measure that places probability mass ηj on the atom xj for j =

1, . . . ,M . In this setting, the measure µ̃ is referred to as the mixing measure or the mixing
distribution.

An alternative starting point for setting up a mixture model is to introduce a collec-
tion of latent allocation random variables (zi)

n
i=1 that record the information about which

component of the mixture was yi sampled from. This means that zi = j if yi is drawn
from K(· | xj). Suppose the population from which we are sampling consists of M differ-
ent groups, each present in the population in proportion ηj , j = 1, . . . ,M . Whenever we
are sampling from group j, observations are assumed drawn from K(· | xj), hence we can
imagine that a single observation yi arises in two steps: first, the mixture component zi is
drawn according to P[zi = j] = ηj and secondly, given zi, yi is drawn from K(· | xzi). Thus
the data-generating mechanism can be expressed as

zi |η ∼ Categorical(η), yi | zi
ind∼ K(· | xzi), (4.3)

where η = (η1, . . . , ηM ). Model (4.1) is obtained by marginalizing out the latent allocation
variables in (4.3). In a Bayesian setting, the formulation of a mixture model is completed
with a prior distribution on the mixing proportions p(η) and on the unknown parameters
(x1, . . . , xM ). Written in a hierarchical way, this entails

yi | zi
ind∼ K(· | xzi)

z1, . . . , zn |η
i.i.d.∼ Categorical(η)

(xj)
M
j=1

i.i.d.∼ P0

η1, . . . , ηM |M ∼ πM ,

where P0 is a diffuse probability measure and πM is a probability measure. In principle,
one could additionally assign a prior over the number of components M .
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Now let us assume that µ̃ =
∑∞

j=1 ηjδxj is a discrete random probability measure,
where (ηj)j≥1 is a sequence of nonnegative random weights such that

∑∞
j=1 ηj = 1 a.s.

and (xj)j≥1 is a sequence of X-valued random locations independent of (ηj)j≥1. In this
context, the mixture model at (4.2) becomes

yi | µ̃ ∼
∫
K(yi | x)dµ̃(x) =

∞∑
j=1

ηjK(yi | xj).

The above expression resembles model (4.1), the main difference being that the number
of mixture components M is set to infinity. Such models are termed infinite mixtures and
are often called nonparametric mixtures. Accordingly, in a Bayesian nonparametric setting
it becomes natural to consider a nonparametric prior for the unknown mixing measure µ̃,
so that the data generating mechanism of a sample {y1, . . . , yn} is modeled as

yi | xi
ind∼ K(· | xi), xi | µ̃

i.i.d.∼ µ̃, µ̃ ∼ Q, (4.4)

where Q is the law of the random probability measure µ̃. This means that now the
probabilities of the categorical distribution on η in (4.3) are replaced with (ηj)j≥1, which
is a sequence of random probabilities and the parameters (xj)j≥1 are i.i.d., distributed
according to the base measure of µ̃. Alternatively, the allocation variables zi are no longer
drawn from a categorical distribution, but from a random probability measure. Intuitively
this would translate onto assigning a prior distribution over M as an indicator function,
centered at {∞}. It is important to make the clarification that assuming that the number
of components present in the population model is unlimited in no way implies that infinitely
many components are occupied by a sample. Rather only a finite (but varying) number of
components will be used, as each data item is associated with exactly one component but
each component can be associated with multiple data items. In general there will be empty
components xr for which zi 6= r for all i = 1, . . . , n. Adopting these kinds of models avoids
difficulties related with choosing the number of components M , as inference in infinite
mixture models automatically recovers both the unknown number of components to use
and the parameters of the components. This provides flexibility in the sense that we can
freely introduce new mixture components as data arrives.

Example 4.1. Consider P0 a diffuse probability measure and θ the precision parameter
of a Dirichlet process. A Dirichlet process mixture with mixing kernel K, introduced by Lo
(1984), is defined as

yi | xi ∼ K(· | xi), xi | µ̃ ∼ µ̃, µ̃ ∼ D(θ, P0).

For a throughout account on methods and implementation on mixture models, refer to
Frühwirth-Schnatter et al. (2018).
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4.1.1 Gibbs samplers

A key question arising on infinite mixtures is how to conduct the posterior computation

p(x |y) ∝ p(x)p(y |x),

as this initially seems problematic in that the mixing measure is characterized by in-
finitely many parameters. However, one can recur to a Markov Chain Monte Carlo method
(MCMC), such as the Gibbs sampler, to draw samples from p(x |y). For a complete review
on MCMC methods for nonparametric mixtures, refer to Favaro and Teh (2013).

Definition 4.1. Let x ∈ Rn, with n > 1, with joint density function p(x). If we set
x−i = x \ {xi}, then the full conditional density of xi given x−i equals

p(xi |x−i) =
p(xi,x

−i)

p(x−i)
=

p(x)∫
p(x)dxi

.

If these full conditionals are easy to sample from, one can define a Markov Chain whose
transition kernel is based on {p(xi |x−i)}ni=1, that has p as the stationary distribution and
equals

K(x,w) = p(w1 | x1, . . . , xn)p(w2 |w1, x3, . . . , xn) · · · p(wn |w1, . . . , xn−1) (4.5)

for w,x ∈ Rn. The steps of the Gibbs sampler can be summarized follows.

◦ Initialize (x
(0)
1 , . . . , x

(0)
n ).

◦ For, t ≥ 1 sample (x
(t)
1 , . . . , x

(t)
n ) from y(t−1) according to the transition kernel (4.5)

x
(t)
i ∼ p(xi | x(t−1)

2 , x
(t−1)
3 , . . . , x(t−1)

n )

x
(t)
2 ∼ p(x2 | x(t)

i , x
(t−1)
3 , . . . , x(t−1)

n )

...

x
(t)
n−1 ∼ p(xn−1 | x(t)

i , x
(t)
2 , . . . , x(t−1)

n )

x(t)
n ∼ p(xn | x(t)

i , x
(t)
2 , . . . , x

(t)
n−1).

Going back to our case of interest, suppose that the EPPF of the partition induced by
the prior process is known. The exchangeability of (xi)i≥1 and the fact that the labels of
the components are completely arbitrary allow us to treat each xi as the last one being
sampled. Using the predictive distribution whose weights are given by ω(n)

0 and ω(n)
j as in

(2.4) and (2.5), one has that

xi |x−i ∼ ω(n)
0 (n−i1 , . . . ,n−ik )P0 +

k−i∑
j=1

ω
(n)
j (n−i1 , . . . ,n−ik )δx∗j

,
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where {x∗j}k
−i
j=1 are the k−i unique values displayed on x−i and n−ij its corresponding fre-

quencies. This prediction rule allows us to compute the full conditional needed in the
Gibbs sampler, by combining the previous expression with the sampling distribution

p(xi |y,x−i) ∝ p(y |x)p(xi |x−i)

∝ ω(n)
0 P0(xi)K(yi | xi) +

k−i∑
j=1

ω
(n)
j K(yi | x∗j )δx∗j

(xi)

∝ q0
P0(yi)K(yi | xi)∫
K(yi |x)P0(dx)

+
k−i∑
j=1

qjδx∗j
(xi), (4.6)

where

q0 = ω
(n)
0

∫
K(yi |x)P0(zx), qj = ω

(n)
j K(yi | x∗j )

This provides an easy algorithm for the first T iterations of the Gibbs sampler.

Algorithm 4.1: T iterations of a Gibbs sampler by direct assignment.

Initialize (x
(0)
1 , . . . , x

(0)
n ).

for iteration t = 1, . . . , T do
for i = 1, . . . , n do

Set x
(t)
i = xi, where xi is sampled from (4.6)

The simplest situation occurs when the base distribution P0 is conjugate to the mixture
kernel K, as in this case the integral

∫
K(yi |x)P0(dx) can be calculated analytically.

Example 4.2. Recall that for a Dirichlet process with precision parameter θ and base
measure P0, the weights of the predictive distribution coincide with ω

(n)
0 = θ

θ+n−1 and
ω

(n)
j =

nj
θ+n−1 . Escobar (1994) proposed the first posterior Gibbs sampler for the Dirich-

let Process mixture, based on transition probabilities that update xi by draws from the
complete conditional posterior p(xi |y,x−i) as in (4.6), where

qj =
nj

θ + n− 1
K(yi | x∗j ), q0 =

θ

θ + n− 1

∫
K(yi |x)P0(dx).

It is well known that the Gibbs sampler described in Algorithm 4.1 tends to mix slowly:
when the values of qj exceed by far q0, we may need many iterations before a new value
is generated. In order to avoid this problem, Maceachern (1994) proposed a variation that
can speed up the algorithm by re sampling the distinct values (x∗i )

k
i=1. If we let z = (zi)

n
i=1,

then the parameters of the mixture are generated from p(x∗j | z,y), and using the fact that
p(x∗j ) = P0(x∗j ), we obtain

p(x∗j | z,y) ∝ P0(x∗j )
∏
i∈Πj

K(yi | x∗j ) for j = 1, . . . , k, (4.7)
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where Πj = {i : xi = x∗j} is the j-th block of the partition induced by {x1, . . . , xn} or,
in terms of the mixture model, it is the set of the indexes of all observations assigned
to component j, so that Πj = {i : zi = j}. This transition essentially entails that the
posterior on x∗j is just that of a parametric model with prior distribution P0 and likelihood
p(yi | x∗j ), restricted to data within the same component j. This would mean that we have
to add an additional step to Algorithm 4.1, so that at each iteration t we additionally
sample x∗j from (4.7).

Regardless of the sampling scheme, given the output
Ä
x

(t)
1 , . . . , x

(t)
n

äT
t=1

, we can approx-
imate the random density induced by the integral mapping in (4.2) by the means of

f(y) ≈ 1

T

T∑
t=1

1

n

K
(t)
n∑

j=1

n
(t)
j K(y | x∗j

(t)),

where K
(t)
n is the number of distinct values among {x1, . . . , xn} at iteration t. Furthermore,

the posterior distribution of the number of distinct values Kn can be approximated as

P[Kn = k |y] ≈ 1

T

T∑
t=1

1{K(t)
n =k}.

If we were to disregard the first T0 iterations as a burn-in period, the starting point of
both sums is shifted to start at t = T − T0 and we substitute 1

T with 1
T−T0

.

4.1.2 Goodness of fit

Now suppose that there are J proposed mixture models M1, . . . ,MJ that could have gen-
erated the data y. The log-pseudo marginal likelihood, introduced in Gelman and Rubin
(1992), is a criterion that uses the conditional predictive densities under model j, defined
by (4.8), to compare alternative models in terms of their predictive abilities.

CPOij = K(yi |y−i, xj). (4.8)

Here K(yi |y−i, xj) indicates that we are considering the estimated parameters from model
j. Gelfand and Dey (1994) provide an easy method for approximating the conditional
predictive ordinates as

CPOij =

(
1

T

T∑
t=1

1

K(yi | x(t)
j ,Mj)

)−1

,

where T stands for the total number of iterations in the MCMC simulation and x
(t)
j is the

estimated model parameters on iteration t, belonging to model Mj . The product of CPOs
across all observations gives the pseudo marginal likelihood for model j, denoted as Lj

Lj =
n∏
i=1

CPOij .

66



Alternatively one can compute the logarithm of the marginal likelihood for model j, ab-
breviated as LPML

LPMLj =

n∑
i=1

log(CPOij). (4.9)

The model with the highest Lj indicates a better fit to the data, so Mj∗ is selected as the
most appropriate of the models being considered if the index j∗ maximizes (4.9).

4.2 Hierarchical processes mixtures

All mixture models described the previous sections are applied in settings where observa-
tions are assumed to be homogeneous or exchangeable and, as we discussed in the beginning
of Chapter 3, there are many situations on which this assumption is not the most appro-
priate. There has been efforts in Bayesian nonparametric statistics to develop extensions
of infinite mixtures that can handle this heterogeneous setting: in Bassetti et al. (2020),
a throughout analysis of several hierarchical species sampling models is performed, whilst
Argiento et al. (2020) explore mixtures with hierarchies of normalized generalized gamma
processes. In other contexts such as topic modelling, both the hierarchical Dirichlet and
Pitman-Yor process have been used by Teh (2006) successfully as the prior for the topic
distributions for documents, acting as a nonparametric extension of the LDA algorithm.

4.2.1 Chinese restaurant franchise sampler

In order to derive the full conditionals needed in the Gibbs sampler, we will make use of
the sampling scheme exposed in Algorithm 3.1. Suppose that we encounter m samples of
a partially exchangeable array {yi,j : j = 1, . . . , ni and i = 1, . . . ,m} and that, given an
unobserved parameter xi,j , the data generating mechanism is

yi,j | xi,j
ind∼ K( · | xi,j) j = 1, . . . , ni, i = 1, . . . ,m

xi,j | p̃0 ∼ NRMI(ρ, θ, p̃0)

p̃0 ∼ NRMI(ρ0, θ0, P0)

(4.10)

where K is a suitable kernel density. Let

ti = [ti,j : j = 1, . . . , ni]

t = [ti : i = 1, . . . ,m]

d =
[
di,t : i = 1, . . . ,m and t = 1, . . . , ¯̀

i•
]

φ =
[
φd : d = di,t for some i ∈ {1, . . . ,m} and t ∈ {1, . . . , ¯̀

i•
]

Let us assume that the base measure of the top level of the hierarchy, P0, admits a den-
sity h (with respect to the Lebesgue measure or any reference measure) and furthermore we
will assume that P0 and K constitute a conjugate pair, so that the atoms can be integrated
out analytically. In this scenario, instead of sampling directly over the parameters xi,j , one
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can sample the allocation variables t and d and then sample the corresponding posterior
parameters φ. The model thus becomes

yi,j |φ, t,d
ind∼ K

Ä
· |φdi,tij

ä
φ | t,d i.i.d.∼ h( · )

[t,d] ∼ HNRMI

(4.11)

Here [t,d] ∼ HNRMI means that the distribution of the labels t,d has been obtained as
in Proposition 3.1. Recalling that d∗i,j = di,ti,j and defining

d∗ := [d∗i,j : i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}]

it is easy to see that d∗ is a function of d and t, while d is a function of d∗ and t. Hence
both [t,d] and [t,d∗] contain the same information about the sample.

Now we describe a Gibbs sampler in which the table and dish assignment variables
t and d are sequentially sampled, conditioned on the state of all other variables. Let
y

(ni)
i = (yi,j)

ni
j=1 and y =

Ä
y

(ni)
i

äm
i=1

. It is clear from Algorithm 3.1 that we have three
types of output whenever we are sampling the full conditional of [ti,j ,d

∗
i,j ]: either we locate

yi,j in an old cluster in group i and it gets assigned the component associated with that
cluster, or at a new one. If the latter occurs, then two disjoint events are possible: either
this new clusters gets assigned a new mixture component or a new one.

Refer to ω
(n)
0 and ω

(n)
j as the weights of the predictive distribution of the random

partition with EPPF Φ̃i and analogously as ω̃(n)
0 and ω̃

(n)
j the weights of the predictive

distribution of the random partition with EPPF Φ0. The conjugacy assumption allows us to
integrate out analytically the mixture components φ at each step, and the full conditional
of [ti,j , d

∗
i,j ] is given by

p(ti,j = told,d∗i,j = d∗i,told | t
−ij ,d∗−ij) ∝ ω(ni−1)

told

(
ti
−ij) fd∗

i,told
(yi,j)

p(ti,j = tnew,d∗i,j = dold | t−ij ,d∗−ij) ∝ ω(ni−1)
0

(
ti
−ij) ω̃ |̀`̀|−ij

dold

(
d−ij

)
fdold(yi,j)

p(ti,j = tnew,d∗i,j = dnew | t−ij ,d∗−ij) ∝ ω(ni−1)
0

(
ti
−ij) ω̃ |̀`̀|−ij0

(
d−ij

)
fdnew(yi,j),

(4.12)

where

ω
(ni−1)

told

(
ti
−ij) = ω

(ni−1)

told

Å
q−iji•1 , . . . , q

−ij
i•¯̀−iji•

ã
ω

(ni−1)
0

(
ti
−ij) = ω

(ni−1)
0

Å
q−iji•1 , . . . , q

−ij
i•¯̀−iji•

ã
and for an arbitrary set of indexes S

fd({yi,t}i,t∈S) =

∫ ∏
i′t′∈Sd∪S K(yi′,t′ |φ)h(φ)dφ∫ ∏
i′t′∈Sd\S K(yi′,t′ |φ)h(φ)dφ

,
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where Sd denotes the d-th component of the mixture. The Gibbs update for the component
served at table c is derived similarly, as again we have two possibilities: either the table
gets assigned an old mixture component or a new one.

p(di,c = dnew | t,d−ic) = ω̃
|̀`̀|−ic
0

(
d−ic

)
p(di,ct = dold | t,d−ic) = ω̃

|̀`̀|−ic
dold

(
d−ic

)
for dold ∈ D−ic,

(4.13)

where

ω̃
|̀`̀|−ic
dold

(
d−ic

)
= ω̃

|̀`̀|−ic
dold

(¯̀−ic
•1 , . . . ,

¯̀−ic
•|D−ic|)

ω̃
|̀`̀|−ic
0

(
d−ic

)
= ω̃

|̀`̀|−ic
0 (¯̀−ic

•1 , . . . ,
¯̀−ic
•|D−ic|).

Finally, one can sample the values of φ given y, t,d by

p(φ |y, t,d) ∝
∏
d∈D

h(φd)
∏

(i,j):d∗i,j=d

K(yi,j |φd). (4.14)

Full details can be consulted on Appendix C. When sampling t one needs to sample jointly
[t,d∗] and since d is a function of [t,d∗], one implicitly obtains a sample for d. However,
re-sampling d given t in a second step improves the mixing of the Markov Chain. The
Gibbs sampler is described in Algorithm 4.2.

Algorithm 4.2: T iterations of the Chinese Restaurant Franchise Gibbs sampler.

Data: Observations
Ä
y

(ni)
i

äm
i=1

assumed as in model (4.10).

Initialize t(0) and d∗(0).
for iteration t = 1, . . . , T do

for i = 1, . . . ,m do
for j = 1, . . . , ni do

Sample
î
t
(t)
i,j ,d

∗
i,j

(t)
ó
from (4.12)

for c = 1, . . . ¯̀
i• do

Sample d
(t)
i,c from (4.13)

for d = 1, . . . ,K
(t)
N do

Sample φd according to (4.14).

The marginal density of each group will be approximated by the means of

f̂i(yi) ≈
1

T

T∑
t=1

1

ni

¯̀(t)
i•∑
j=1

q
(t)
i•jK
Ä
yi
∣∣φki,ti,j (t)

ä
,
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where ¯̀(t)
i• and q(t)

i•j are the number of groups and the frequency of each group on iteration
t respectively. The posterior distribution of the number of groups on each group i, Ki,ni ,
can be approximated by

P[Ki,ni = k |y] ≈ 1

T

T∑
t=1

1¶¯̀(t)
i• =k

©
for i = 1, . . . ,m, and the distribution of the global number of components can be approx-
imated by the means of

P[KN = k |y] ≈ 1

T

T∑
t=1

1¶
K

(t)
N =k

©,
where K

(t)
N is the number of unique global labels at iteration t.

4.3 Simulation study

We will assume a Gaussian kernel with random mean and variance and, to attain con-
jugacy, P0 will be a Normal Inverse Gamma distribution, so that φi,j =

Ä
mi,j , σ

2
i,j

ä
and

P0(dm, dτ2) = N
(

dm
∣∣∣m0,

σ2

τ0

)
InvGa

(
dσ2 | a, b

)
. To compare and asses each model’s

adequacy, we will use the LPML as a measure of the goodness of fit. We will compare
between the three hierarchical processes we studied in Chapter 3 and also mixed cases, e.g.
p̃i | p̃0 ∼ D(θp̃0), p̃0 ∼ PY(σ, θ,G).

4.3.1 One shared component

For the first experiment, we simulated 200 data points from the mixtures

y1,j ∼ 0.6N(−4, 1) + 0.2N(0, 0.5) + 0.2N(3.5, 1.25) j = 1, . . . , 100

y2,j ∼ 0.7N(0, 0.5) + 0.3N(−3.5, 1) j = 1, . . . , 100

The common mixture component is N(0, 0.5) but with significantly different weights. The
parameters of the prior processes were chosen in such a way that, marginally, E[Ki,100] = 5

for i = 1, 2 and, globally, E[K200] = 6. The hyperparameters of P0, (m0, τ0, a, b), were
chosen as the ones minimizing the LPML and correspond to assuming that the prior
moments of P0 satisfy E [m] = ȳ, E[σ2] = var(y)

2 , where ȳ and var(y) are the overall
mean and variance of the data, for all seven HNRMIs and var[m] = 7 = var[σ2] for the
hierarchical Pitman-Yor Dirichlet Process (HPYDP), the hierarchical Pitman-Yor Stable
Process (HPYSP) and the hierarchical Dirichlet Pitman-Yor Process (HDPYP). As for
the hierarchical Dirichlet Process (HDP) and the hierarchical Stable Pitman-Yor Process
(HSPYP), the hyperparameters are such that var[m0] = 7 and var[σ2] = 5. Finally, the
setting var[m] = 5 and var[σ2] = 7 correspond to the hyperparameters for the hierarchical
Stable Process (HSP) and the hierarchical Pitman-Yor Process. Details can be consulted
at Appendix C, where a thorough sensitivity analysis is attached.
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The estimated densities for (y1,j)
100
j=1 and (y2,j)

100
j=1 are shown in Figures 4.1 and 4.2,

taking into account 4000 iterations of the Gibbs sampler after a burn-in period of 5000

iterations. From here we see that all prior processes do a good job at estimating the density
and furthermore, all of them recover the three modes present in y

(100)
1 and the two modes

at y
(100)
2 . The fit is fairly similar at most points from model to model. In spite of that, if we

look closely to the left of the first histogram and at the center of the second histogram, we
see that the density estimated by the means of the HPYP differs slightly from the others.
On the other hand, on the right side of Figure 4.2 we see that the HSPYP and the HDP
differ in the size of this second mode, placing less mass than the other models.

Figure 4.1: Estimated density for (y1,j)
100
j=1.

Figure 4.2: Estimated density for (y2,j)
100
j=1.
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Figure 4.3 shows the posterior distribution of the global number of clusters, K200, and
Table 4.1 exhibits the modes and its corresponding masses. We see that all processes give
high probability to numbers close to four, which is the true number of global components
from which the data was sampled, however only the HPYP place the mode exactly at four.
The rest of the models tend to give higher probability to larger values of K200, meaning
that these models use more components to estimate the densities from Figures 4.1 and 4.2.
Particularly, the inclusion of a stable process at any level of the hierarchy leads to more
platykurtic distributions as opposed to the inclusion of a Dirichlet process, which produces
more leptokurtic distributions.

Figure 4.3: Posterior distribution of K200.

HDP HSP HPYP HDPYP HSPYP HPYDP HPYSP

Mode 5 5 4 5 5 5 5
Mass 0.3067 0.2135 0.2932 0.2847 0.2135 0.2937 0.22575

Table 4.1: Modes for the posterior distribution of K200 for different prior processes.

Figures 4.4 and 4.5 show the posterior distribution of K1,100 and K2,100. Most of the
prior processes place high probability to number significantly close to the true number of
components, that is three and two for group one and group two respectively. The behavior
of the HPYP resembles more to the one of the HSP process rather than the HDP, as in
both K1,100 and K2,100 it tends to use more components than any other model. In general
the same behavior as in the global posterior distribution of K200 is observed: models that
include the Dirichlet process place higher masses at smaller values while models that involve
a stable process produce posterior distributions of Ki,ni with a larger support. Clearly the
distribution of the global number of components involves smaller values than the sum of
the marginal number of components, indicating that all the hierarchical prior processes
considered allow for various degrees of information pooling across the two different groups.
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Figure 4.4: Posterior distribution of K1,100.

Figure 4.5: Posterior distribution of K2,100

Finally, Table 4.2 shows the LPML for each model.

HDP HSP HPYP HDPYP HSPYP HPYDP HPYSP
Global LPML -1.062 -1.062 -1.057 -1.061 -1.06 -1.069 -1.067

Table 4.2: LPML (103) for different prior processes.

In general the effect of the random probability measure or its parameters cannot be
distinguished speaking on the estimated densities. This can be due to the initial selection
of the parameters, as all of them were chosen under the same criteria and fairly close
to the true number of components, and due to the fact that Gaussian mixtures are very
flexible models. In terms of the number of clusters, the inclusion of the Dirichlet process at
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some point of the hierarchy produces models that tend to use fewer components, whereas
the inclusion of a stable process produces greater dispersion on the number of clusters
both globally and marginally. The LPML indicates a similar goodness of fit a across all
hierarchical processes, although the HPYP performs slightly better.

4.3.2 Two shared components and large heterogeneity

Now we will perform an experiment on which large heterogeneity exist among the data.
We will generate six samples from the mixtures

yi,j ∼ 0.4N(−3, 1) + 0.3N(−5− i, 1) + 0.3N(−2 + i, 1) for i = 1, 2

yi,j ∼ 0.4N(−3, 1) + 0.3N(−2− i, 1) + N(−4− i, 1) for i = 3, 4, 5, 6

with j ∈ {60, 70, 60, 50, 40, 50} respectively. In this setting, there is a larger number of
group specific components and the common component to all 6 samples N(−3, 1) has a rel-
atively smaller weight. y

(n2)
2 and y

(n5)
5 additionally share N(−7, 1). The hyperparameters

of P0 are going to remain fixed at the values that correspond to solving the system

E[m0] = ȳ, E[σ2] =
var(y)

6

var[m0] = 5, var[σ2] = 5

which are (m0, τ0, a, b) = (−3.114, 0.272, 2.37, 1.865). The underlying prior process pa-
rameters are selected such that E[K330] = 50, far from the true value to emphasize the
reinforcement. For the HDP, the HSP and the HPYP the parameters are chosen such that
E[Ki,40] = 15. For the other cases E[Ki,40] = 14, just to avoid having equal parameters.

The estimated densities are shown in Figure 4.6, taking into account 4000 iterations of
the Gibbs sampler after a burn-in period of 6000. Again we see that all models provide an
overall fairly good estimation of the densities, and the fit is quite similar across distinct
models. Most of the hierarchical processes are able to capture the three modes present in
each sample y

(ni)
i for i = 2, . . . , 6. For y

(n1)
1 , from Figure 4.6a we see that none of the

models was able to recover well the subtle changes in the histogram, as the two modes
at the left are barely distinguished from each other. This could be due to the fact that
the components N(−3, 1) and N(−1, 1) have means that are quite close to each other and
hence N(−3, 1) could produce samples that can easily be confused as if they come from
N(−1, 1) and vice-versa. The HDP is the one who struggles the most and completely fails
to differentiate the second and third modes, while the HPYDP differs slightly in the height
of the gap between the second and third mode.

In Figures 4.6d, 4.6e and 4.6f we see that the main differences between all fits occur
at the height of the modes, and the HDP is the one that differs the most from the other
processes.

74



(a) Estimated density for (y1,j)
60
j=1. (b) Estimated density for (y2,j)

70
j=1.

(c) Estimated density for (y3,j)
60
j=1. (d) Estimated density for (y4,j)

50
j=1.

(e) Estimated density for (y5,j)
40
j=1. (f) Estimated density for (y6,j)

50
j=1.

Figure 4.6

Figure 4.7 shows the posterior distribution of the global number of clusters K330. We
observe a behavior similar to that of the previous experiment: the HDP, the HPYDP and
the HDPYP have more leptokurtic posterior distributions for K330, and they tend to use
fewer components since the mode is placed on lower values. These three models put the
majority of their mass around 25, just as the HPYDP and the HPYSP, although they
have more dispersion. The HSP and the HPYP are the ones that have more platykurtic
distributions and a greater support, as they assign positive probability to numbers above
50. The true number of components is 12, so the placement of the mode is quite far from
the true value in most cases. Table 4.3 exhibits the modes and its corresponding mass.
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Figure 4.7: Posterior distribution of K330.

HDP HSP HPYP HPYDP HPYSP HSPYP HDPYP

Mode 25 36 35 25 35 30 25
Mass 0.090 0.0306 0.034 0.054 0.048 0.0405 0.076

Table 4.3: Modes for the posterior distribution of K330 for different prior processes.

Figure 4.8 shows the posterior distributions of the marginal number of groups, where
we see something consistent with the first experiment: the posteriors of Ki,ni for the HDP
and the HPYDP tend to have a smaller support and a leptokurtic shape. It is interesting
to note that in Figure 4.8f, the posterior distribution of K6,50 is not significantly different
between all prior processes, this could be due to the fact that this data set is the one on
which the modes are more separated from each other, whilst in Figure 4.8a we see that
the posterior of K1,60 is the one on which there exist more discrepancy between all prior
processes. Most processes place the mode between 10 and 15, which is quite far from the
true value (three) but close to the value k that we chose as the expected value a priori of
the number of cluster in each group.

(a) P[K1,60 | ...]. (b) P[K2,70 | ...].

76



(c) P[K3,60 | ...]. (d) P[K4,50 | ...].

(e) P[K5,40 | ...]. (f) P[K6,50 | ...].

Figure 4.8: Posterior distribution of Ki,ni .

Table 4.4 shows the LPML estimates, with the highest score highlighted in bold. From
here we see that again the HPYP gives a better fit than the other processes, but in general
the inclusion of a Pitman-Yor process at some point of the hierarchy improves the goodness
of fit, as the HSP and the HDP are the ones with the worst score.

HDP HSP HPYP HPYDP HPYSP HSPYP HDPYP
Global LPML -6.379 -6.339 -6.194 -6.261 -6.251 -6.262 -6.301

Table 4.4: LPML (102) for different prior processes.

It is clear that the a priori choice of the parameters such that E[KN ] = k, for a k close
to the true value of components, produces better results, as it was the case in the previous
experiment. In the two experiments, except for the HDP, the HPYDP and the HDPYP,
the prior processes produce platykurtic posterior distributions of KN and with much larger
support. It would seem that in the presence of larger heterogeneity, a Pitman-Yor process
at some point of the hierarchy improves the fit in terms of the LPML, although in general
the estimated densities are practically the same, regardless of the prior process choice.
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Concluding remarks

Extensions of Bayesian nonparametric models to partially exchangeable settings is analyt-
ically challenging, although not impossible. Having a closed form result for the pEPPF
allows us to study important quantities such as the distribution of the number of groups,
KN , which has an intuitive interpretation. This fact combined with having a closed ex-
pression for the correlation coefficient allows us to develop guidelines on the choice of the
processes’ parameters, as in the small experiments presented in Chapter 4.

Additionally, CRM–based dependent priors look promising as, conditionally on a suit-
able latent random variable or vector of random variables, they typically display distribu-
tional properties reminiscent of those available in the exchangeable case. These completely
explicit posterior representations allows us to device marginal and/or conditional sam-
plers. Moreover, most of the properties and posterior distributions concerning hierarchical
NRMIs are quite general, as they can easily be adapted to random probability measures
constructed from transformations of CRMs, as it was the case with the hierarchical Pitman-
Yor process. One only needs to take into account the proper adaptations depending on
the specific transformations of the CRMs.

A possible area of research is to study the dependence between these random probability
measures, i.e. to develop some kind of metric that allow us to understand how much the
model is far from an exchangeable situation.
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Appendix A

Proof of 1.1. For simplicity we will limit ourselves to the case where X = R, and the
proof will be based upon the theory of martingales and the work of Kingman (1978).

A random variable is n-symmetric if it is a function of an infinite sequence x = {xi}∞i=1

and it is invariant under permutations of the first n entries of x, for example x1x2 + x3

is 2-symmetric but not 3-symmetric. Let Fn be the smallest σ-algebra with respect to
which all n-symmetric functions are measurable. Note that Fn+1 ⊆ Fn, since a n + 1-
symmetric function f can be written as f(x1, . . . , xn+1) = g(h(x1, . . . , xn), xn+1) with h

being n-symmetric.
Let g : R→ R be a bounded measurable function and γ a bounded n-symmetric function.
Exchangeability of x implies that for 1 ≤ k ≤ n

E [g(xk)γ(x)] = E [g(x1)γ(xj , x2, . . . , xk−1, x1, xk+1, . . .)]

= E [g(x1)γ(x)] ,

so that

E

 1

n

n∑
j=1

g(xj)γ(x)

 = E [g(x1)γ(x)] .

Noting that γ(x) = 1A(x) is n-symmetric and bounded for any A ∈ Fn, and that
1
n

∑n
j=1 g(xj) is also n-symmetric, last equation can be rewritten as

E

 1

n

n∑
j=1

g(xj)1A

 = E [g(x1)1A] ,

meaning that 1
n

∑n
j=1 g(xj) is a version of the conditional expectation of g(x1) with respect

to Fn, i.e.

1

n

n∑
j=1

g(xj) = E [g(x1) | Fn] . (A.1)
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Thus
¶

1
n

∑n
j=1 g(xj)

©∞
n=1

defines a closed and backwards martingale w.r.t. {Fn}∞n=1, so by
the backwards martingale convergence theorem, as n→∞

1

n

n∑
j=1

g(xj)
a.s.→ E [g(x1) | F∞] , (A.2)

where F∞ =
⋂∞
n=1Fn. For the particular choice of g(x) = δx(A) for A ∈ Fn, (A.2)

becomes

Pn(A) =
1

n

n∑
j=1

δxj (A)
a.s.→ p̃(A), (A.3)

where

p̃(A) = P[x1 ∈ A | F∞].

Note that for A ∈ B(R) fixed, p̃(A) is a F∞-measurable random variable, and that this
proofs the second part of the representation theorem. The generalization of the argument
leading to (A.1) is as follows. Let us define for n ≥ 1 and 1 ≤ k < n the sets of indexes

In,k := {(j1, . . . , jk) : ji ∈ {1, . . . , n}, i = 1, . . . , k}

Jn,k := {(j1, . . . , jk) : ji ∈ In,k , ji 6= jl, i 6= l}.

Notice that | Jn,k | = (n)k. For g : Rk → R a bounded and measurable function, let

An(g) :=
1

(n)k

∑
(j1,...,jk)∈Jn,k

g(xj1 , . . . , xjk) =
1

(n)k

n∑
j1=1

· · ·
n∑

jk=1

g(xj1 , . . . , xjk).

Due to exchangeability, one has that

E [g(x1, . . . , xk) | Fn] = E [g(xj1 , . . . , xjk) | Fn] .

As An(g) is a n-symmetric function and hence Fn-measurable

An(g) = E [An(g) | Fn]

=
1

(n)k

∑
j∈Jn,k

E [g(xj1 , . . . , xjk) | Fn]

= E [g(x1, . . . , xk) | Fn] .
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By the backwards martingale convergence theorem, as n→∞,

E [g(x1, . . . , xk) | F∞] = lim
n→∞

An(g)

= lim
n→∞

1

(n)k

n∑
j1=1

· · ·
n∑

jk=1

g(xj1 , . . . , xjk)

= lim
n→∞

1

nk

n∑
j1=1

· · ·
n∑

jk=1

g(xj1 , . . . , xjk) (A.4)

almost surely. The last equality follows from the fact that, for a fixed k, there are | In,k | −
|Jn,k | = nk − (n)k combinations of k indexes out of {1, . . . , n} that have coincidences and

lim
n→∞

nk − (n)k
nk

= 0,

meaning that, as n grows larger, the proportion of vectors (j1, . . . , jk) with coincidences
vanishes. That is, there is no difference between considering index vectors within Jn,k or
the whole set In,k.
In particular, if gi : R→ R are bounded and measurable functions and

g(x1, . . . , xk) =
k∏
i=1

gi(xi),

then g is bounded and (A.4) implies that

1

nk

n∑
j1=1

· · ·
n∑

jk=1

g(xj1 , . . . , xjk)
a.s→ E [g(x1, . . . , xk) | F∞] = E

[
k∏
i=1

gi(xj)

∣∣∣∣∣F∞
]
.

Noting that 1
nk

∑n
j1=1 · · ·

∑n
jk=1 g(xj1 , . . . , xjk) =

∏k
i=1

Ä
1
n

∑n
ji=1 gi(xji)

ä
, A.1 leads to

1

nk

n∑
j1=1

· · ·
n∑

jk=1

g(xj1 , . . . , xjk)
a.s→

k∏
i=1

E [gi(xi) | F∞]

and thus, almost surely

E

[
k∏
i=1

gi(xi)

∣∣∣∣∣F∞
]

=
k∏
i=1

E [gi(xi) | F∞] . (A.5)
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This means that the sequence of random variables {g(xi)}ki=1 are i.i.d. given F∞. For the
particular choice of gi(x) = δx(Ai) for Ai ∈ Fn, (A.5) reads as

P [x1 ∈ A1, . . . , xk ∈ Ak | F∞] = E

[
k∏
i=1

δxi(Ai)

∣∣∣∣∣F∞
]

=
k∏
i=1

P [xi ∈ Ai | F∞]

=

k∏
i=1

p̃(Ai). (A.6)

Using the tower property of conditional expectation and (A.6)

P [x1 ∈ A1, . . . , xk ∈ Ak | p̃] = E [P [x1 ∈ A1, . . . , xk ∈ Ak | F∞] | p̃]

= E

[
k∏
i=1

p̃(Ai)

∣∣∣∣∣ p̃
]

=
k∏
i=1

p̃(Ai). (A.7)

Let Q be the distribution of p̃ over PR. Equation (A.7) implies that

P [x1 ∈ A1, . . . , xk ∈ Ak] =

∫
PR

k∏
i=1

p̃(Ai)Q(dp̃), (A.8)

which finishes the proof. Finally, note that if the integral representation of (A.8) holds,
then clearly the sequence is exchangeable as the product function is invariant under per-
mutations. �

Proof of 1.5. The idea is, as usual, to prove the statement for non-negative simple
functions and then to extend it to arbitrary measurable functions by integration theory.
Let {Ai}ni=1 be a measurable partition of X and {ai}ni=1 ⊆ R+, and consider the simple
function

f(x) =
n∑
i=1

ai1Ai(x).

By the definition of a Poisson process, the random variables {N(Ai)}ni=1 are independent
and N(Ai) ∼ Poisson(µ(Ai)) for i = 1, . . . , n. The moment-generating function of each
N(Ai) is given by

E
î
etN(Ai)

ó
= exp

[
(et − 1)µ(Ai)

]
,
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and thus

E
î
etΣ
ó

= E

[
exp

(
t
∑
υ∈Υ

n∑
i=1

ai1Ai(υ)

)]

= E

[
exp

(
n∑
i=1

taiN(Ai)

)]

=
n∏
i=1

E
î
etaiN(Ai)

ó
=

n∏
i=1

exp
[
(etai − 1)µ(Ai)

]
= exp

[
n∑
i=1

∫
X

(
etai − 1

)
1Ai(υ)µ(dx)

]

= exp
ï∫

X

Ä
et

∑n
i=1 ai1Ai (υ) − 1

ä
µ(dυ)

ò
= exp

ï∫
X

Ä
etf(υ) − 1

ä
µ(dυ)

ò
.

Now assume that f is a non-negative measurable function. Then f can be written as
the limit of an increasing sequence of non-negative simple functions {fn}∞n=1 and by the
Monotone Convergence Theorem

E
î
etΣ
ó

= lim
n→∞

E
î
et

∑
υ∈Υ fn(υ)

ó
= lim

n→∞
exp
ï
−
∫
X

Ä
1− etfn(υ)

ä
µ(dυ)

ò
= exp

ï
− lim
n→∞

∫
X

Ä
1− etfn(υ)

ä
µ(dυ)

ò
= exp

ï
−
∫
X

Ä
1− etf(υ)

ä
µ(dυ)

ò
.

If
∫
X min(|f(x)|, 1)µ(dx) < ∞ holds, then the right hand side of last equality converges

and Σ is finite a.s. If not, then E[etΣ] = 0 for t < 0 and thus Σ =∞ a.s.
Lastly, if f is any measurable function, f = f+ − f− where f+, f− are non-negative

measurable functions. Σ is absolutely convergent if and only if

Σ+ =
∑
υ∈Υ+

f+(υ) and Σ− =
∑
υ∈Υ−

f−(υ)

are convergent, where

Υ+ = {υ ∈ Υ : f(υ) > 0} and Υ− = {υ ∈ Υ : f(υ) < 0}.
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By the restriction theorem, Υ+ and Υ− are independent Poisson processes, as they are the
restriction of Υ to disjoint subsets and hence

E
î
etΣ
ó

= E
î
etΣ+−tΣ−

ó
= E
î
etΣ+
ó
E
î
e−tΣ−

ó
= exp

ï
−
∫
X

Ä
1− etf+(υ)

ä
µ(dυ)

ò
exp
ï
−
∫
X

Ä
1− e−tf−(υ)

ä
µ(dυ)

ò
= exp

− ∫
{υ:f(υ)>0}

Ä
1− etf+(υ)

ä
µ(dυ)−

∫
{υ:f(υ)<0}

Ä
1− etf−(υ)

ä
µ(dυ)


= exp

ï
−
∫
X

Ä
1− etf(υ)

ä
µ(dυ)

ò
.

This finishes the proof. �

Proof of 1.6. For any measurable function f on X× T , define

Σ∗ =
∑
υ∈Υ

f(υ,mυ)

and

f∗(υ) = − log

Å∫
T
e−f(υ,m)p(υ,dm)

ã
.

Given Υ, Σ∗ is a sum of independent random variables, hence using conditional expectation

E
î
e−Σ∗

ó
= E
î
E
î
e−Σ∗

∣∣Υóó
= E

[∏
υ∈Υ

E
î
e−f(υ,mυ)

∣∣Υó]
= E

[∏
υ∈Υ

∫
T
e−f(υ,m)p(υ,dm)

]

= E

[∏
υ∈Υ

∫
T
e−f(υ,m)p(υ,dm)

]
= E
î
e−

∑
υ∈Υ f∗(υ)

ó
.

By replacing f with f∗ on the characteristic functional of Υ given on (1.1) we obtain

E
î
e−Σ∗

ó
= exp

Å
−
∫
X

Ä
1− e−f∗(x)

ä
µ(dx)

ã
= exp

Å
−
∫
X

Å∫
T
p(υ,dm)−

∫
T
e−f(x,m)p(υ,dm)

ã
µ(dυ)

ã
= exp

Å
−
∫
X

∫
T

Ä
1− e−f(υ,m)

ä
p(υ,dm)µ(dυ)

ã
= exp

Å
−
∫
X

∫
T

Ä
1− e−f(x,m)

ä
µ∗(dυ,dm)

ã
,
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showing that Υ∗ follows a Poisson process with mean measure µ∗. �

Proof of 1.7. Before proving the main result, note that for any measurable collection of
sets (Bi)

n
i=1 (not necessarily disjoint), using the independence property of µ̃, we can write

each µ̃(Bj) as a sum of elements of the form µ̃(C1∩· · ·∩Cn), where the sets Ci are either Bi
or X\Bi for i, j = 1, . . . , n. Thus, we can recover the joint distribution (µ̃(B1), . . . , µ̃(Bn))

once we know the distribution of µ̃(A) for every A ∈ X . A way to characterize this
distribution for each A is given in the following proposition, due to Kingman (1967).

Proposition A.1. Let µ̃ be a completely random measure on (X,X ). For each measurable
A and t > 0 define the cumulant of µ̃(A) as the function

λt(A) = − log
Ä
E
î
e−tµ̃(A)

óä
.

Then

1. λt and µ̃ are mutually absolutely continuous, i.e. λt(A) = 0 ⇐⇒ µ̃(A) = 0.

2. λt and µ̃ are infinite or finite together.

Proof of A.1. Note that λt(∅) = − log(E[1]) = 0. For a disjoint sequence of measurable
sets (Ai)i≥1, the independence property of µ̃ implies that

Ä
e−tµ̃Ai)

ä
i≥1

are independent
random variables and hence

λt

( ∞⋃
i=1

Ai

)
= − log

(
E
[
e−tµ̃(

⋃∞
i=1 Ai)

])
= − log

Ä
E
î
e−t

∑∞
i=1 µ̃(Ai)

óä
= − log

(
E

[ ∞∏
i=1

e−tµ̃(Ai)

])

= − log

( ∞∏
i=1

E
î
e−tµ̃(Ai)

ó)
=
∞∑
i=1

λt(Ai),

so that λt( · ) is a measure on X and further on, by construction, 0 ≤ λt( · ) ≤ ∞.
To prove the first statement, note that if µ̃(A) = 0 then λt(A) = − log(1) = 0. On the

other hand, λt(A) = 0 implies that E
î
e−tµ̃(A)

ó
= 1 and therefore µ̃(A) = 0, since t > 0.

Moving on to the second statement, note that

λt(A) =∞ a.s. ⇐⇒ e−tµ̃(A) = 0 a.s. ⇐⇒ µ̃(A) =∞ a.s.

�
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As a first step, assume that λt is σ-finite for some t, which means that there exists
a countable partition {Si}∞i=1 ⊆ X such that λt(Si) < ∞ for all i. By the first part of
Proposition A.1, µ̃ is Σ-finite. An immediate consequence of the second part of Proposition
A.1 is that both λt and µ̃ share the same atoms, namely if A = {x ∈ X : λt ({x}) > 0} is
the set of atoms of λt, then

x ∈ B ⇐⇒ P [µ̃ ({x}) > 0] > 0.

λt being σ-finite leads to A being at most countable, hence the CRM µ̃ has at most
countable many fixed atoms. For any measurable set A, let

µ̃f (A) = µ̃ (A ∩ A) and µ̃1(A) = µ̃ (A ∩ (X \ A)) .

Both µ̃f and µ̃1 are completely random measures, as for pairwise disjoint measurable sets
{Ai}di=1, the sets {Ai ∩A}di=1 and {Ai ∩ (X \ A)}di=1 are disjoint. Additionally, µ̃f and µ̃1

are independent. We can now state the first decomposition for Σ-finite completely random
measures as

µ̃ = µ̃f + µ̃1.

Setting %(x) := µ̃ ({x}), the random variables {%(x)}x∈A are independent and we can
express µ̃f in terms of the independent masses %(x) as

µ̃f ( · ) =
∑
x∈A

%(x)δx( · ).

The measure µ̃1 has no fixed atoms since for y ∈ X, µ̃1 ({y}) is either µ̃ (∅) = 0 a.s. if
y ∈ A or µ̃ ({y}) if y /∈ A, but in this case µ̃ ({y}) = 0 a.s. as well. Attention will be
put on the non-fixed component µ̃1 of µ̃, as the fixed atoms of λt that define µ̃f can be
removed, meaning that from now on µ̃ = µ̃1 or equivalently λt( · ) is non-atomic. Before
moving on, for completeness, we will state a definition and a result that will be used in
what follows.

Definition A.1. A distribution µ is infinitely divisible if for each n ∈ N we can write µ
as the n-fold self-convolution µ(n) ∗ · · · ∗ µ(n) of some distribution µ(n).

The celebrated Lévy-Khintchine Theorem, whose proof can be found at Sato (1999), al-
lows us to characterize infinitely divisible random variables by their characteristic function.

Theorem A.1. (Lévy-Khintchine) A distribution µ on R is infinitely divisible if for any
u ∈ R its characteristic function ϕ(u) can be represented in the form

ϕ(u) = exp
ï
iau− σ2u2

2
−
∫
R

(
1− e−iux + iux1{|x|<1}

)
ν(dx)

ò
, (A.9)
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where a ∈ R, σ ≥ 0 and ν is a measure on R \ {0} such that
∫
R
(
1 ∧ x2

)
ν(dx) < ∞.

Conversely, if ν is a measure satisfying the last condition, a ∈ R and σ ≥ 0, there exists
an infinitely divisible distribution whose characteristic function is given by (A.9). We call
a the drift, σ2 the Gaussian variance, ν the Lévy measure and (a, σ2, ν) the generating
triplet.

Now let A ∈ X be such that λ1(A) = a <∞. λ1 being non-atomic and a special case of
Lyapunov’s Theorem 1 imply that for any n ∈ N there is a measurable partition {An,j}nj=1

of A such that λ1(An,j) = a
n and hence

E
î
e−µ̃(An,j)

ó
= e−tλ1(An,j) = e−

a
n .

This fact together with Markov’s inequality lead to

P [µ̃(An,j) ≥ c] ≤
1− e−

a
n

1− e−c

for c > 0, meaning that the array of random variables {µ̃(An,j)}nj=1 is uniformly asymp-
totically negligible. As we can express, for every n ∈ N, µ̃(A) as a sum of independent
random variables of the form

µ̃(A) =
n∑
j=1

µ̃(An,j),

the conclusion is that µ̃(A) is a infinitely divisible random variable. The Lévy-Khintchine
formula for non-negative random variables allows us to represent the characteristic function
of µ̃(A) as

E
î
e−tµ̃(A)

ó
= exp

ñ
−β(A)t+

∫
R+

(1− etx)ν(A,dx)

ô
(A.10)

for t > 0, where ν(A, · ) is a Lévy measure on R+. In other words, we must have

λt(A) = β(A)t+

∫
R+

(1− etx)ν(A,dx) (A.11)

and this relationship determines β(A) and ν(A, · ) uniquely. From the σ-additivity of λt( · )
it follows that for a disjoint sequence of measurable sets {Ai}i≥1

β

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

β (Ai) and ν

( ∞⋃
i=1

Ai, ·

)
=

∞∑
i=1

ν (Ai, · ) .

1Let λt : E → R t = 1, . . . , k be finite, σ-finite non-atomic measures on a measurable space (E, E). Given
any positive integer n there exists a measurable partition {An,j}nj=1 of E such that λj(Fj) = λj(E)/n,
j = 1, . . . , k.
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This means that the distribution of a Σ-finite completely random measure with no fixed
atoms can be characterized by λt(A) given in (A.11) and (A.10), where β is a measure on
X and ν is such that for A ⊆ X, ν(A, · ) is a measure on R+ and for B ⊆ R+, ν( · , B) is a
measure on X. Both β and ν are non-atomic as a consequence of λt being non-atomic.

The next step is to examine how to construct a completely random measure from β

and ν, for which the Poisson process will be useful. For now, emphasis will be placed on
analyzing the function ν. Define the measure µ over X as

µ(A) = ν(A,R+).

Additionally, suppose that µ is σ-finite. In this case, for s > 0 the measure

µs(A) = ν(A, (0, s])

is absolutely continuous with respect to µ and so has a Radon-Nikodym derivative F (x, s),
uniquely defined up to a µ-null set for each s, that satisfies

µs(A) =

∫
A
F (x, s)µ(dx).

We will now see that F (x, s) is the distribution function for some random variable. For
each s ∈ Q+ let F (x, s) be a version of the Radon-Nikodym derivative. If s1 < s2 are
rational, then µs1 ≤ µs2 , so that F (x, s1) ≤ F (x, s2) except on a µ-null set. Since Q+

is countable, F (x, · ) is a non decreasing function of s ∈ Q+, and for any s ∈ Q+ and
measurable A,

µs(A) = lim
n→∞

µs+ 1
n

(A) = lim
n→∞

∫
A
F

Å
x, s+

1

n

ã
µ(dx) =

∫
A
F
(
x, s+

)
µ(dx)

so that, for almost all x, F is right continuous. Lastly note that

µ(A) = lim
n→∞

µn(A) =

∫
A

lim
n→∞

F (x, n)µ(dx)

implies that limn→∞ F (x, n) = 1. We can extend this argument beyond Q+ to R+ by right
continuity and therefore, for each fixed x ∈ X, F (x, s) is the distribution function of some
random variable that takes values on R+.

Now consider the measure µ∗ defined over the product space X∗ = X× R+ given by

µ∗(A∗) =

∫∫
A∗

dF (x, z)µ(dx) ∀A∗ ⊆ X∗.

If A∗ = A×B with A ∈ X and B ∈ B(R+), µ∗ becomes

µ∗ (A×B) =

∫
A

∫
B

dF (x, z)µ(dx) =

∫
B

dν(A, (0, s]) = ν(A,B).
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Although we cannot ensure that µ is σ-finite, we do know that ν must satisfy∫ (
1− e−z

)
ν(Sj , dz) <∞

over a partition {Sj}j≥1, so that ν(Sj , (ε,∞]) <∞ for any ε > 0. As a result we can define
for k ∈ N the σ-finite measure

µ(k)(A) := ν

Å
A,

ï
1

k + 1
,

1

k

ãã
.

We can apply to each µ(k) the previous argument that was developed for µ under the
assumption of σ-finiteness. As we can express µ as µ( · ) =

∑∞
k=1 µ

(k)( · ), this proves that
there is a measure µ∗ on X∗ such that

µ∗(A×B) = ν(A,B) for A ∈ X , B ∈ B(R+).

Let Υ∗ be a Poisson process on X∗ with mean measure µ∗ and set

Ψ(A) =
∞∑
i=1

ziδA(xi) for (xi, zi) ∈ Υ∗.

Ψ is a purely atomic measure on X whose atoms correspond to the points of Υ∗ and each
atom xi has mass zi, distributed as F (xi, · ). From the definition of a Poisson process,
for disjoint sets (Ai)

d
i=1, the random variables (Ψ(Ai))

d
i=1 are independent and Poisson

distributed and therefore Ψ is a completely random measure. The distribution of Ψ can
be computed by Campbell’s Theorem for t > 0 and A ∈ X as

E
î
e−tΨ(A)

ó
= exp

ñ
−
∫
A

∫
R+

(
1− e−tx

)
µ∗(ds, dx)

ô
= exp

ñ
−
∫
R+

(
1− e−tx

)
ν(A, dx)

ô
.

The right-hand side of last equality was encountered on the expression E
î
e−tµ̃(A)

ó
, given

by (A.10). Therefore, µ̃(A) has the same distribution as β(A) + Ψ(A). By adding back
the fixed atoms the result follows. �

Proof of 2.2. The EPPF is given by

Φ
(n)
k (n1, . . . ,nk) = E

∫
Xk

k∏
j=1

p̃nj (dxj)

 =

∫
Xk

E

 k∏
j=1

p̃nj (dxj)


=

∫
Xk

E

[∏k
j=1 µ̃

nj (dxj)

µ̃n(X)

]
,
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where we’ve applied Fubini’s Theorem and the definition of p̃. By the Gamma identity
1
βα = 1

Γ(α)

∫
R+
uα−1e−uβdu, the integrand can be written as

E

[∏k
j=1 µ̃

nj (dxj)

µ̃n(X)

]
=

1

Γ(n)

∫
R+

E

e−uµ̃(X)
k∏
j=1

µ̃nj (dxj)

un−1du.

Let X∗ := X \ {dxj}kj=1, so that X equals the disjoint union X∗ ∪ {dxj}kj=1. Exploiting the
independence property of µ̃ and the definition of the Laplace transform we get

E

[∏k
j=1 µ̃

nj (dxj)

µ̃n(X)

]
=

1

Γ(n)

∫
R+

E

e−uµ̃(X)
k∏
j=1

µ̃nj (dxj)

un−1du

=
1

Γ(n)

∫
R+

E

e−uµ̃(X∗)
k∏
j=1

e−uµ̃(X∗C)µ̃nj (dxj)

un−1du

=
1

Γ(n)

∫
R+

E
î
e−uµ̃(X∗)

ó k∏
j=1

E
î
e−uµ̃(dxj)µ̃nj (dxj)

ó
un−1du

=
1

Γ(n)

∫
R+

e−P0(X∗)ψ(u)
k∏
j=1

E
î
e−uµ̃(dxj)µ̃nj (dxj)

ó
un−1du. (A.12)

But, for j = 1, . . . , k we have that

E
î
e−uµ̃(dxj)µ̃nj (dxj)

ó
= (−1)nj

dnj
Ä
E[e−uµ̃(dxj)]

ä
dunj

= (−1)nj
dnj
Ä
e−P0(dxj)θΨ(u)

ä
dunj

= (−1)nj P0(dxj)e
−P0(dxj)θΨ(u) dnj

dunj
(−θΨ(u) + o (P0(dxj))) .

The last equality comes from applying the Faa di Bruno’s formula for the nj-th derivative,
with f(u) = eu and g(u) = −P0(dxj)ψ(u). Computing the nj-th derivative of −ψ(u) yields

dnj (−θΨ(u))

dunj
= − dnj

dunj

Ç
θ

∫
R+

(
1− e−uv

)
ρ(dv)

å
= −θ

∫
R+

dnj (1− e−uv)
dunj

ρ(dv)

= θ (−1)nj τnj (u).

Therefore

E
î
e−uµ̃(dxj)µ̃nj (dxj)

ó
= θP0(dxj)e

−P0(dxj)θΨ(u)τnj (u) + o (P0(dxj)) .
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Substituting back these expressions at (A.12)

E
î
e−uµ̃(dxj)µ̃nj (dxj)

ó
=

θk

Γ(n)

∫
R+

e−θΨ(u){P0(A)+P0(AC)}
k∏
j=1

τnj (u)un−1du
k∏
j=1

P0(dxj)

+ o

Ñ
k∏
j=1

P0(dxj)

é
.

(A.13)

By integrating over Xk we obtain

Φ
(n)
k (n1, . . . ,nk) =

∫
Xk

E

[∏k
j=1 µ̃

nj (dxj)

µ̃n(X)

]
=

θk

Γ(n)

∫
R+

e−θΨ(u)
k∏
j=1

τnj (u)un−1du.

This finishes the proof. �
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Appendix B

Proof of Theorem 3.2. For any i 6= j, by the tower property of conditional expectation,
one has that

cov (p̃i(A), p̃j(A)) = EE [p̃i(A)p̃j(A) | p̃0]− (EE [p̃i(A) | p̃0]) (EE [p̃j(A) | p̃0])

= E [E [p̃i(A) | p̃0]E [p̃j(A) | p̃0]]− (E[p̃0(A)])2 .

To simplify notation, consider

Jm =

∫
R+

ue−θΨ(u)τm(u)du Jm,0 =

∫
R+

ue−θ0Ψ0(u)τm,0(u)du

for m ≥ 1. Proposition 2.1 states that, for any A ∈ X ,

var (p̃0(A)) = θ0P0(A)(1− P0(A))J2,0

var (p̃i(A) | p̃0) = θp̃0(A)(1− p̃0(A))J2.

Hence, for any i ∈ {1, . . . ,m},

var(p̃i(A)) = E [var(p̃i(A) | p̃0)] + var(p̃0(A))

= θJ2E [p̃0(A)(1− p̃0(A))] + var(p̃0(A))

= θ0P0(A)(1− P0(A)) {θθ0J2J1,0 + J2,0} .

Therefore

cov (p̃i(A), p̃j(A)) = E [E [p̃i(A) | p̃0]E [p̃j(A) | p̃0]]− (E[p̃0(A)])2

= E[p̃2
0(A)]− (E[p̃0(A)])2 = var(p̃0(A))

= θ0P0(A)(1− P0(A))J2,0.

It is now easy to see that

corr (p̃i(A), p̃j(A)) =
cov (p̃i(A), p̃j(A))√
var(p̃i(A))var(p̃j(A))

= 1 +
J2,0

θθ0J2J1,0
,

92



and the result follows. �

Proof of Theorem 3.3. First we need a technical lemma regarding the n-th derivative
of e−mΨ(u).

Lemma B.1. If τm(u) =
∫∞

0 vme−uvρ(dv) for m ≥ 1 and

%n,i(u) =
∑

(q1,...,qi)∈Ci[n]

1

i!

Ç
n

q1, · · · , qi

å i∏
t=1

τqt(u),

then the following relationship holds

(−1)n
dne−mΨ(u)

dun
= e−mΨ(u)

n∑
i=1

mi%n,i(u).

Proof of B.1. According to Faà di Bruno’s formula

dne−mΨ(u)

dun
=
∑
π∈P[n]

d|π|

du|π|
(
e−mx

) ∣∣
x=Ψ(u)

∏
A∈π

d|A|Ψ(u)

du|A|

=
n∑
i=1

(−m)ie−mΨ(u)
∑
π∈Pi

[n]

∏
A∈π

d|A|Ψ(u)

du|A|
.

As to each unordered partition π ∈ P i[n] there are i! ordered partitions, obtained by per-
muting the elements of π, last equality can be re written as

dne−mΨ(u)

dun
=

n∑
i=1

(−m)ie−mΨ(u) 1

i!

∑
(◦)

∏
A∈π

d|A|Ψ(u)

du|A|
,

where (◦) denotes that we are summing over ordered partitions of [n] into i blocks.
The derivative of Ψ(u) depends only on the cardinality of each of the elements of the

partition π, and the number of partitions π ∈ P i[n] that have an associated composition
(q1, . . . , qi) ∈ Ci[n] equals to n!

q1!q2!···qi! , that is, the multinomial coefficient
( n
q1,··· ,qi

)
. In the

proof of Proposition 2.2 we proved that (−1)mτm(u) = dmΨ(u)
dum , so that

∑
(◦)

∏
A∈π

d|A|Ψ(u)

du|A|
=

∑
(q1,...,qi)∈Ci[n]

1

i!

Ç
n

q1, · · · , qi

å
dq1Ψ(u)

duq1
· · · d

qiΨ(u)

duqi
= ϑn,i(u).

Finally

dne−mΨ(u)

dun
= e−mΨ(u)

n∑
i=1

(−m)iϑn,i(u).

�
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In view of this, for x1 6= · · · 6= xk ∈ X, define

Mn1,...,nm(dx1, . . . ,dxk) = E

 k∏
j=1

m∏
i=1

p̃
ni,j
i (dxj)

 ,
so that an application of Fubini’s theorem allows us to write the pEPPF as

Π
(N)
k (n1, . . . ,nm) = E

∫
Xk

k∏
j=1

m∏
i=1

p̃
ni,j
i (dxj)


=

∫
Xk
Mn1,...,nm(dx1, . . . ,dxk).

Let ε > 0 be such that the balls with center at xj and radius ε,

Aj,ε = {y ∈ X : dX(y, xj) < ε}, (B.1)

where dX is the distance in X, are pairwise disjoint. Using the tower property of conditional
expectation and the fact that p̃i are conditionally independent given p̃0, we can write

Mn1,...,nm(A1,ε × · · · ×Ak,ε) = E

 k∏
j=1

m∏
i=1

p̃
ni,j
i (Aj,ε)

 (B.2)

= E

E
 k∏
j=1

m∏
i=1

p̃
ni,j
i (Aj,ε)

∣∣∣∣∣ p̃0


= E

 m∏
i=1

E

 k∏
j=1

p̃
ni,j
i (Aj,ε)

∣∣∣∣∣ p̃0


= E

[
m∏
i=1

E

[∏k
j=1 µ̃

ni,j
i (Aj,ε)

µ̃nii (X)

∣∣∣∣∣ p̃0

]]
.

Let X∗ε = X \ {Aj,ε}kj=1, so that X = X∗ε ∪ {Aj,ε}
k
j=1 is a disjoint union. By the Gamma

identity and the independence property of each CRM µ̃i

E

[∏k
j=1 µ̃

ni,j
i (Aj,ε)

µ̃nii (X)

∣∣∣∣∣ p̃0

]
=

1

Γ(ni)

∫
R+

E

e−uµ̃i(X)
k∏
j=1

µ̃
ni,j
i (Aj,ε)

∣∣∣∣∣ p̃0

uni−1du

=
1

Γ(ni)

∫
R+

E

e−uµ̃i(X∗ε )
k∏
j=1

µ̃
ni,j
i (Aj,ε)e

−uµ̃i(Aj,ε)

∣∣∣∣∣ p̃0

uni−1du

=
1

Γ(ni)

∫
R+

E
î
e−uµ̃i(X

∗
ε )
∣∣ p̃0

ó
×

k∏
j=1

E

[
µ̃
ni,j
i (Aj,ε)e

−uµ̃i(Aj,ε)

∣∣∣∣∣ p̃0

]
uni−1du.
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The expressions inside the integral correspond to the Laplace transform of µ̃i(X∗ε ) and the
ni,j-th derivative of µ̃i(Aj,ε) respectively. By the virtue of Lemma B.1, Mn1,...,nm(A1,ε ×
· · · ×Ak,ε) can be expressed as

Mn1,...,nm = E
m∏
i=1

1

Γ(ni)

∫
R+

e−θΨ(u)p̃0(X∗ε )
k∏
j=1

ñ
(−1)ni,j

dni,je−θΨ(u)p̃0(Aj,ε)

duni,j

ô
uni−1du

= E

 m∏
i=1

1

Γ(ni)

∫
R+

e−θΨ(u)
k∏
j=1

ni,j∑
`i,j=1

θ`i,j p̃0(Aj,ε)
`i,j%ni,j ,`i,j (u)uni−1du


=
∑
`̀̀

E

 k∏
j=1

p̃
¯̀•j
0 (Aj,ε)

 m∏
i=1

Ñ
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1e−θΨ(u)
k∏
j=1

%ni,j ,`i,j (u)du

é
.

As ε ↓ 0, using equation (A.13) from the proof of Proposition 2.2 we can neglect the
superior order terms due to P0 being non-atomic, so that

E

 k∏
j=1

p̃
¯̀•j
0 (dxj)

 = E

∏k
j=1 µ̃

¯̀•j
0 (dxj)

µ̃
|̀`̀|
0 (X)


=

Ñ
k∏
j=1

P0(dxj)

é∫
R+

u|̀`̀|−1e−θ0Ψ0(u)
k∏
j=1

τ¯̀•j ,0
(u)du

=

Ñ
k∏
j=1

P0(dxj)

é
Φ

(|̀`̀|)
k, 0 (¯̀•1, . . . , ¯̀•k).

This means that

Mn1,...,nm(dx1, . . . ,dxk) =

Ñ
k∏
j=1

P0(dxj)

é∑
`̀̀

Φ
(|̀`̀|)
k, 0 (¯̀•1, . . . , ¯̀•k)

×
m∏
i=1

Ñ
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1e−θΨ(u)
k∏
j=1

%ni,j ,`i,j (u)du

é
︸ ︷︷ ︸

=Jni

.

By the definition of %ni,j ,`i,j (u), one has that

Jni =
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1e−θΨ(u)
k∏
j=1

∑
q

1

`i,j !

Ç
ni,j

qi,j,1, · · · , qi,j,`i,j

å `i,j∏
t=1

τqi,j,t(u)du

=
∑
q

k∏
j=1

1

`i,j !

Ç
ni,j

qi,j,1, · · · , qi,j,`i,j

å
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1e−θΨ(u)
k∏
j=1

`i,j∏
t=1

τqi,j,t(u)du

=
∑
q

k∏
j=1

1

`i,j !

Ç
ni,j

qi,j,1, · · · , qi,j,`i,j

å
Φ

(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k). (B.3)
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This reads as

Mn1,...,nm(dx1, . . . ,dxk) =

Ñ
k∏
j=1

P0(dxj)

é∑
`̀̀

∑
q

Φ
(|̀`̀|)
k, 0 (¯̀•1, . . . , ¯̀•k)

×
m∏
i=1

k∏
j=1

1

`i,j !

Ç
ni,j

qi,j,1, · · · , qi,j,`i,j

å
Φ

(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k).

Integrating over Xk yields the desired result. �

Proof of Theorem 3.4. Introduce the quantities n̄j , where

n̄0 ≡ 0 and n̄i =
i∑

j=1

nj .

Suppose that π̄1, . . . , π̄m denote independent random partitions of N such that the
restriction of π̄i to {n̄i−1 + 1, . . . , n̄i}, which will be written as π̄i,ni , has a probability
distribution Φni

ζi,i
as defined in equation (3.7). Additionally, π̃0 is a random partition of

N such that, conditional on (π̃1,n1 , . . . , π̃m,nm), its restriction π̃0,h to [h] has probability
distribution Φ

(h)
k,0 in (3.6), where h =

∑m
i=1 |π̃i,ni |, that is, the sum of the number of blocks

in each partition π̃i,ni . Considering the restriction of π̃i to {n̄i−1 + 1, . . . , n̄i} instead of
[ni] allows us to scroll the indexes of the elements of the blocks, by taking into account the
number of observations placed in the previous groups, i.e. the number of costumers that
have sat down in the previous i− 1 restaurants.

Expressing Theorem 3.3 in terms of partitions instead of compositions, one has that

Π
(N)
k (n1, . . . ,nm) =

N∑
h=k

m∏
i=1

P [π̃i,ni = {Bi,1, . . . , Bi,ζi}]

×
∑

P

[
π̃0,h = {C1, . . . , Ck}

∣∣∣ m⋂
i=1

{π̃i,ni = {Bi,1, . . . , Bi,ζi}}

]

where, for any h ∈ {k, . . . , N}, the sums are taken over all partitions such that
∑m

i=1 ζi = h,
and ∑

{t:ζ̄i−1+1∈Cj}∩{1,...,ζi}

|Bi,t| = ni,j ,

where ζ̄0 ≡ 0 and ζ̄i =
∑i

r=1 ζr, for each i = 1, . . . ,m. If {t : ζ̄i−1+1 ∈ Cj}∩{1, . . . , ζi} = ∅,
then ni,j = 0, meaning that in the Chinese restaurant franchise metaphor, the j-th dish
is not served at restaurant i. According to this, the number of distinct table labels at
each restaurant i is given by Ki,ni = |π̃i,ni |, whereas on the root level of the hierarchy
K0,h = |π̃0,h|. This implies that

P[KN = k] = P

 N⋃
t=k

⋃
(t1,...,td)∈Cmt

{K1,n1 = t1, . . .Km,nm = tm} ∩ {K0,t = k}

 .
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The conclusion follows from the fact that the random variables {Ki,ni}mi=1 are independent,
and that

P

[
K0,t = k

∣∣∣ m⋂
i=1

{Ki,ni = ti}

]
= P[K0,t = k]1Cm

[t]
(t1, . . . , tm).

�

Proof of Theorem 3.5. The goal is to determine the posterior Laplace functional of µ̃0

for any measurable function f : X → R+ via a limiting argument. Consider the sets Aj,ε
as in the proof of Theorem 3.3. The posterior Laplace functional equals

E
[
e−µ̃0(f)

∣∣∣x] = lim
ε↓0

E
î
e−µ̃0(f)

∏k
j=1

∏m
i=1 p̃

ni,j
i (Aj,ε)

ó
E
î∏k

j=1

∏m
i=1 p̃

ni,j
i (Aj,ε)

ó . (B.4)

The denominator is Mn1,...,nm(A1,ε × · · · ×Ak,ε), which we proved that, as ε ↓ 0, equals toÑ
k∏
j=1

P0(Aj,ε)

é∑
`̀̀,q

Φ
(|̀`̀|)
K, 0(¯̀•1, . . . , ¯̀•K)×

m∏
i=1

k∏
j=1

1

`i,j !

Ç
ni,j

qi,j,1, · · · , qi,j,`i,j

å
Φ

(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k)

plus λk,ε, where λk,ε = o
Ä∏k

j=1 P0(Aj,ε)
ä
.

The numerator of (B.4) can be determined by following along the same steps, that is
conditioning with respect to µ̃0, setting X∗ε = X \ {Aj,ε}kj=1 and recalling the expression
for Jni that we found in (B.3)

E

e−µ̃0(f)
k∏
j=1

m∏
i=1

p̃
ni,j
i (Aj,ε)

 = E

[
e−µ̃0(f)

m∏
i=1

E

[∏k
j=1 µ̃

ni,j
i (Aj,ε)

µ̃nii (X)

∣∣∣∣∣ µ̃0

]]

=
∑
`̀̀

m∏
i=1

Ñ
θ

¯̀
i•

Γ(ni)

∫
R+

uni−1e−θΨ(u)
k∏
j=1

%ni,j ,`i,j (u)du

é
︸ ︷︷ ︸

Jni

× E

e−µ̃0(f)
k∏
j=1

p̃
¯̀•j
0 (Aj,ε)


=
∑
`̀̀,q

m∏
i=1

k∏
j=1

1

`i,j !

Ç
ni,j

qi,j,1, · · · , qi,j,`i,j

å
Φ

(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k)

× E

e−µ̃0(f)
k∏
j=1

p̃
¯̀•j
0 (Aj,ε)

 . (B.5)

Now note that, as ε ↓ 0,
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E

e−µ̃0(f)
k∏
j=1

p̃
¯̀•j
0 (Aj,ε)

 = E

e−µ̃0(f)

∏k
j=1 µ̃

¯̀•j
0 (Aj,ε)

µ̃
|̀`̀|
0 (X)


=

1

Γ(|̀`̀|)

∫
R+

E

e− ∫
X(f(x)+u)µ̃0(dx)

k∏
j=1

µ̃
¯̀•j
0 (Aj,ε)

u|̀`̀|−1du

=
1

Γ(|̀`̀|)

∫
R+

Eu|̀`̀|−1e
−

∫
X∗ε

(f(x)+u)µ̃0(dx)

×
k∏
j=1

µ̃
¯̀•j
0 (Aj,ε)e

−
∫
Aj,ε

(f(x)+u)µ̃0(dx)
du

=
1

Γ(|̀`̀|)

∫
R+

u|̀`̀|−1E
[
e−µ̃0((f+u)1X∗ε )

]
×

k∏
j=1

E
[
µ̃

¯̀•j
0 (Aj,ε)e

−µ̃0

Ä
(f+u)1Aj,ε

ä]
du

=
θk0
∏k
j=1 P0(Aj,ε)

Γ(|̀`̀|)

∫
R+

u|̀`̀|−1e−θ0Ψ0(f+u)

×
k∏
j=1

τ¯̀•j

(
u+ f(x∗j )

)
du+ λk,ε. (B.6)

Combining (B.5) and (B.6) one has that

E

e−µ̃0(f)
k∏
j=1

m∏
i=1

p̃
ni,j
i (Aj,ε)

 =
k∏
j=1

P0(Aj,ε)

×
∑
`̀̀,q

m∏
i=1

k∏
j=1

1

`i,j !

Ç
ni,j

qi,j,1, · · · , qi,j,`i,j

å
Φ

(ni)
¯̀
i•,i

(qi,1, . . . ,qi,k)

× θk0
Γ(|̀`̀|)

∫
R+

u|̀`̀|−1e−θ0Ψ0(f+u)
k∏
j=1

τ¯̀•j

(
u+ f(x∗j )

)
du+ λk,ε.

Hence, by making ε ↓ 0 and further conditioning over t we can conclude that

E
[
e−µ̃0(f)

∣∣∣x, t]→ ∫
R+
u|̀`̀|−1e−θ0Ψ0(f+u)

∏k
j=1 τ¯̀•j

Ä
u+ f(x∗j )

ä
du

Φ
(|̀`̀|)
k, 0 (¯̀•1, . . . , ¯̀•k)

.

Finally, note that

Φ
(|̀`̀|)
K, 0(¯̀•1, . . . , ¯̀•k) =

∫
R+

u|̀`̀|−1e−θ0Ψ0(u)
k∏
j=1

τ¯̀•j ,0
(u)du =

∫
R+

f0(u |x, t)du.
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Hence the denominator of the posterior Laplace functional is the normalizing constant of
the density f0(u |x, t). The results follows from here by taking into account the definition
of τ¯̀•j

(u+ f(x∗j )). �

Proof of Theorem 3.6. By the tower property of conditional expectation, one has that

E
î
e−

∑m
i=1 µ̃i(fi)

∣∣x, tó = E
[
E
î
e−

∑m
i=1 µ̃i(fi)

∣∣x, t, µ̃0

ó ∣∣∣x, t] ,
for any collection of measurable functions f1, . . . , fm, where fi : X→ R+, for i = 1, . . . ,m.
Hence the proof consists on calculating the posterior Laplace functional

E
î
e−

∑m
i=1 µ̃i(fi)

∣∣x, t, µ̃0

ó
= lim

ε↓0

E
î
e−

∑m
i=1 µ̃i(fi)

∏m
i=1

∏k
j=1 p̃

ni,j
i (Aj,ε)

∣∣ t, µ̃0

ó
E
î∏m

i=1

∏k
j=1 p̃

ni,j
i (Aj,ε)

∣∣ t, µ̃0

ó , (B.7)

where the sets Aj,ε are as in (B.1). By following along the same steps as in the proof of
Theorem 3.3, the denominator E

[∏m
i=1

∏k
j=1 p̃

ni,j
i (Aj,ε)

∣∣∣ t, µ̃0

]
equals toÑ

k∏
j=1

m∏
i=1

p̃
¯̀
i,j

0 (Aj,ε)

é
m∏
i=1

θ
¯̀
i•

Γ(ni)

∫
R+

uni−1e−θΨ(u)
k∏
j=1

`i,j∏
t=1

τqi,j,t(u)du.

As far as the numerator is concerned, by following a similar reasoning as the one that led
to (B.6), one has that

E

e−∑m
i=1 µ̃i(fi)

m∏
i=1

k∏
j=1

p̃
ni,j
i (Aj,ε)

∣∣ t, µ̃0

 = E

 m∏
i=1

k∏
j=1

e−µ̃i(fi)p̃
ni,j
i (Aj,ε)

∣∣ t, µ̃0


=

m∏
i=1

E

e−µ̃i(fi) k∏
j=1

p̃
ni,j
i (Aj,ε)

∣∣ t, µ̃0


=

Ñ
k∏
j=1

m∏
i=1

p̃
`i,j
0 (Aj,ε)

é
×

m∏
i=1

θ
¯̀
i•

Γ(ni)
×
∫
R+

uni−1e−θΨ̃(u+fi)

×
k∏
j=1

m∏
i=1

τqi,j,t(u+ fi(x
∗
j ))du,

where

Ψ̃(f) =

∫
X

∫
R+

Ä
1− e−vf(x)

ä
ρ(v)dvp̃0(dx).

Thus, as ε ↓ 0

E
î
e−

∑m
i=1 µ̃i(fi)

∣∣x, t, µ̃0

ó
→

m∏
i=1

∫
R+
uni−1e−θΨ̃(u+fi)

∏k
j=1

∏m
i=1 τqi,j,t(u+ fi(x

∗
j ))du∫

R+
uni−1e−θΨ(u)

∏k
j=1

∏`i,j
t=1 τqi,j,t(u)du

.
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If we further condition over U, this entails

E
î
e−

∑m
i=1 µ̃i(fi)

∣∣x, t,U, µ̃0

ó
=

m∏
i=1

k∏
j=1

`i,j∏
t=1

τqi,j,t(Ui + fi(x
∗
j ))

τqi,j,t(Ui)

×
m∏
i=1

exp
®
−θ
∫
X

∫
R+

Ä
1− e−vfi(x)

ä
e−vUiρ(v)dvp̃0(dx)

´
.

�

Proof of Theorem 3.7. The same steps of the proof of Theorem 3.2 allows us to conclude
that for i 6= j and A ∈ X

cov (p̃i(A), p̃j(A)) = var(p̃0(A)).

By taking into account the polynomial tilting that defines the Pitman-Yor process, one
has that

var(p̃0(A)) = P0(A)(1− P0(A))
σ2

0(1− σ0)

θ0(θ0 + 1)Γ
Ä
θ0
σ0

ä ∫
R+

uθ0+σ0−1eu
σ0

du

=
1− σ0

θ0 + 1
P0(A)(1− P0(A)).

Furthermore, the equality var(p̃i(A)) = E [var(p̃i(A) | p̃0)] + var(p̃0(A)) holds true and
therefore

var(p̃i(A)) =
1− σ
θ + 1

E [p̃0(A)(1− p̃0(A))] +
1− σ0

θ0 + 1
P0(A)(1− P0(A))

=
P0(A)(1− P0(A))

θ0 + 1

ß
(1− σ0) + (θ0 + σ0)

1− σ
θ + 1

™
.

This entails

corr (p̃i(A), p̃j(A)) =
cov (p̃i(A), p̃j(A))√
var(p̃i(A))var(p̃j(A))

=
1− σ0

(1− σ0) + (θ0 + σ0)1−σ
θ+1

= 1 +
1− σ0

1− σ
θ + 1

θ0 + σ0
.

�

Proof of Theorem 3.8. Following the same notation as in the proof of Theorem 3.3, one
has that

Π
(N)
k (n1, . . . ,nm) =

∫
Xk
Mn1,...,nm(dx1, . . . ,dxk).
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Consider the sets Aj,ε as in equation (B.1). The change of measure (3.8) yields

E

 k∏
j=1

p̃
ni,j
i (Aj,ε)

 = E

E
 k∏
j=1

p̃
ni,j
i (Aj,ε)

∣∣∣ p̃0


=

Γ(θ + 1)

Γ
(
θ
σ + 1

) 1

Γ(θ + ni)

∫
R+

uθ+ni−1EE

e−uµ̃i(X)
k∏
j=1

µ̃
ni,j
i (Aj,ε)

∣∣∣ p̃0

du

where, conditional on p̃0, each µ̃i is a σ-stable CRM with E[p̃i | p̃0] = p̃0. Recalling that
for a σ-stable CRM, Ψ(u) = uσ, from here it follows that

Mn1,...,nm(A1,ε × · · · ×Ak,ε) = E

 m∏
i=1

E

 k∏
j=1

p̃
ni,j
i (Aj,ε)

∣∣∣ p̃0


=

Γm(θ + 1)

Γm
(
θ
σ + 1

)E m∏
i=1

1

Γ(θ + ni)

∫
R+

uθ+ni−1e−u
σ

×
k∏
j=1

ni,j∑
`i,j=1

p̃
`i,j
0 (Aj,ε)%ni,j ,`i,j (u)du

=
Γm(θ + 1)

Γm
(
θ
σ + 1

)∑
`̀̀

E k∏
j=1

p̃
¯̀•j
0 (Aj,ε)


×

m∏
i=1

Ñ
1

Γ(ni)

∫
R+

uni−1e−u
σ

k∏
j=1

%ni,j ,`i,j (u)du

é
,

where

%n,k(u) =
σk

un−kσ

∑
(q1,...,qk)∈Ck

[n]

1

k!

Ç
n

q1, · · · , qk

å k∏
t=1

(1− σ)qt−1 =
σk

un−kσ
Sσn,k. (B.8)

As P0 is assumed to be non-atomic,

E
k∏
j=1

p̃
¯̀•j
0 (Aj,ε) =

k∏
j=1

P0(Aj,ε)

∏k−1
i=1 (θ0 + iσ0)

(θ0 + 1)|̀`̀|−1

k∏
j=1

(1− σ0)¯̀•j−1 + λk,ε.
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Hence, as ε ↓ 0

Mn1,...,nm(A1,ε × · · · ×Ak,ε)→
Γm(θ + 1)

Γm
(
θ
σ + 1

)∑
`̀̀

k∏
j=1

P0(Aj,ε)

∏k−1
i=1 (θ0 + iσ0)

(θ0 + 1)|̀`̀|−1

×
k∏
j=1

(1− σ0)¯̀•j−1

m∏
i=1

Ñ
σ

¯`i•−1 Γ
(

¯̀
i• + θ

σ

)
Γ(ni + θ)

k∏
j=1

Sσni,j ,`i,j

é
=
∑
`̀̀

k∏
j=1

P0(Aj,ε)

∏k−1
i=1 (θ0 + iσ0)

(θ0 + 1)|̀`̀|−1

k∏
j=1

(1− σ0)¯̀•j−1

×
m∏
i=1

Ñ
Γ(θ + 1)

Γ(ni + θ)

σ
¯`i•−1Γ

(
θ
σ + 1 + ¯̀

i• − 1
)

Γ
(
θ
σ + 1

) k∏
j=1

Sσni,j ,`i,j

é
=
∑
`̀̀

k∏
j=1

P0(Aj,ε)

∏k−1
i=1 (θ0 + iσ0)

(θ0 + 1)|̀`̀|−1

k∏
j=1

(1− σ0)¯̀•j−1

×
m∏
i=1

Ñ∏¯̀
i•
r=1(θ + rσ)

(θ + 1)ni−1

k∏
j=1

Sσni,j ,`i,j

é
.

The result follows by integrating over Xk. �

Proof of Theorem 3.9. Following along the exact same steps as in 3.4 allows us to
conclude that

P[KN = k] = P

 N⋃
t=k

⋃
(t1,...,td)∈Cmt

{K1,n1 = t1, . . .Km,nm = td} ∩ {K0,t = k}

 ,
with the only difference being that the random variables Ki,ni are the number of distinct
values corresponding to independent random partitions generated from PY(σ, θ,G) for
some diffuse probability measureG, while K0,t is the number of blocks of a random partition
induced by PY(σ, θ, P0). Hence the result easily follows from the fact that

P[KN = k] =
N∑
t=k

P [K0,t = k]
∑

(ζ1,...,ζd)∈Cm
[t]

m∏
i=1

P [Ki,ni = ζi]

and that the probability of the number of blocks being equal to k on a random partition
generated by a Pitman-Yor process is given by

∏k−1
i=1 (θ+iσ)

(θ+1)n−1
Sσn,k. �

Proof of Theorem 3.10. The proof consists on computing the posterior Laplace func-
tional given in (B.4) for any measurable function f : X→ R+.
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Let ςi and ς0 denote stable CRMs with parameters σ and σ0 in (0, 1) respectively, where
the base measure of ς0 is a nonatomic measure P0 and ςi, conditional of ς0, are independent
and identically distributed CRMs with base measure ς0

ς0(X) . To compute the numerator,
first note that

E

[
m∏
i=1

∏k
j=1 µ̃

ni,j
i (Aj,ε)

µ̃nii (X)

∣∣∣∣∣ µ̃0

]
=

Γ(θ + 1)

Γ
(
θ
σ + 1

)E
 k∏
j=1

ςni,j (Aj,ε)

ςnii (X)

∣∣∣ µ̃0


=

Γ
(
θ
σ + 1

)−1

(θ + 1)ni−1

∫
R+

uθ+ni−1E

e−uςi(X)
k∏
j=1

ς
ni,j
i (Aj,ε)

∣∣∣ µ̃0

du

=
Γ
(
θ
σ + 1

)−1

(θ + 1)ni−1

∫
R+

uθ+ni−1e−u
σ

k∏
j=1

p̃
`i,j
0 (Aj,ε)%ni,j ,`i,j (u)du.

Therefore one has that the numerator equals

E

e−µ̃0(f)
k∏
j=1

m∏
i=1

p̃
ni,j
i (Aj,ε)

 = E

[
e−µ̃0(f)E

[
m∏
i=1

∏k
j=1 µ̃

ni,j
i (Aj,ε)

µ̃nii (X)

∣∣∣∣∣ µ̃0

]]

=
1

(θ + 1)ni−1

1

Γ
(
θ
σ + 1

)
×
∫
R+

uθ+ni−1e−u
σ

k∏
j=1

ni,j∑
`i,j=1

p̃
`i,j
0 (Aj,ε)%ni,j ,`i,j (u)du

× E

e−µ̃0(f)
k∏
j=1

p̃
¯̀•j
0 (Aj,ε)

 ,
where %n,k is as in (B.8). Now it remains only to compute

E

e−µ̃0(f)
k∏
j=1

p̃
¯̀•j
0 (Aj,ε)

 =
Γ(θ0 + 1)

Γ
Ä
θ0
σ0

+ 1
äE[ς0(X)−θ0e−ς0(f)

∏k
j=1 ς0(Aj,ε)

¯̀•j

ς0(X)|̀`̀|

]

=
σk0Γ
Ä
θ0
σ0

+ 1
ä−1

(θ0 + 1)|̀`̀|−1

Ñ
k∏
j=1

P0(Aj,ε)(1− σ0)¯̀•j−1

é
×
∫
R+

zθ0+|̀`̀|−1e
−

∫
R+

(z+f(x))σ0P0(dx)
k∏
j=1

(z + f(x∗j ))
−¯̀•j−σ0dz

+ λk,ε,

where λk,ε = o
Ä∏k

j=1 P0(Aj,ε
ä
.
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Conditioning over t we get

E

e−µ̃0(f)
k∏
j=1

m∏
i=1

p̃
ni,j
i (Aj,ε)

∣∣∣ t
 =

σk0Γ
Ä
θ0
σ0

+ 1
ä−1

(θ0 + 1)|̀`̀|−1

m∏
i=1

∏¯̀
i•−1
r=1 (θ + rσ)

(θ + 1)ni−1

×
k∏
j=1

P0(Aj,ε)(1− σ0)¯̀•j

m∏
i=1

Sσni,j ,`i,j

×
∫
R+

zθ0+kσ0−1e−z
σ0
e
−

∫
R+

(z+f(x))σ0P0(dx)

×

Ñ
k∏
j=1

E
î
e−Ijf(x∗j )

óé
dz

on the numerator. Noting that the denominator is Mn1,...,nm(A1,ε × · · · ×Ak,ε), which has
been identified in the proof of Theorem 3.8, leads to the result. �

Proof of Theorem 3.11. Again we aim at determining the posterior Laplace functional
given in (B.7) for any collection of measurable functions f1, . . . , fm on X. The numerator
E
î
e−

∑m
i=1 µ̃i(fi)

∏m
i=1

∏k
j=1 p̃

ni,j
i (Aj,ε)

∣∣ t, µ̃0

ó
coincides with

m∏
i=1

E

e−µ̃i(fi) k∏
j=1

p̃
ni,j
i (Aj,ε)

∣∣ t, µ̃0

 =
1

(θ + 1)ni−1

1

Γ
(
θ
σ + 1

)
×
∫
R+

vθ+ni−1E

e−ςi(v+fi)
k∏
j=1

ς
ni,j
i (Aj,ε)

∣∣∣ t, µ̃0

dv

=
1

(θ + 1)ni−1

1

Γ
(
θ
σ + 1

) k∏
j=1

p̃
`i,j
0 (Aj,ε)σ

`i,jSσni,j ,`i,j

×
∫
R+

vθ+ni−1e
−

∫
R+

(v+f(x))σ p̃0(dx)

×
k∏
j=1

(v + fi(x
∗
j ))
−(ni,j−`i,jσ)dv

=
1

(θ + 1)ni−1

1

Γ
(
θ
σ + 1

) k∏
j=1

p̃
`i,j
0 (Aj,ε)σ

`i,jSσni,j ,`i,j

×
∫
R+

vθ+
¯̀
i•σ−1e

−
∫
R+

(v+f(x))σ−vσ p̃0(dx)

×
k∏
j=1

Ç
1 +

fi(x
∗
j )

v

å−(ni,j−`i,jσ)

dv

=

∏¯̀
i•−1
r=1 (θ + rσ)

(θ + 1)ni−1

k∏
j=1

p̃
`i,j
0 (Aj,ε)S

σ
ni,j ,`i,j

×
∫
R+

hi(v)Ev
î
e−µ̃

∗
i (fi)
ó k∏
j=1

Ev
î
e−Hi,jfi(x

∗
j )
ó

dv,
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where hi is the density of a random variable Ui ∼ Ga
(
¯̀
i• + θ

σ , 1
)
, and µ̃∗i is, conditionally

on Ui and µ̃0, a generalized Gamma CRM with parameters (Ui, σ) and base measure
p̃0 = µ̃0

µ̃0(X) , for i = 1, . . . ,m. The random variables Hi,j are independent Gamma random
variables, each with parameters ni,j − `i,jσ, Ui. Concerning the denominator, one has that

E

 k∏
j=1

m∏
i=1

p̃
ni,j
i (Aj,ε)

∣∣∣ t, µ̃0

 =

∏¯̀
i•
r=1(θ + rσ)

(θ + 1)ni−1

k∏
j=1

p̃
`i,j
0 (Aj,ε)S

σ
ni,j ,`i,j

,

and thus the proof is completed. �
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Appendix C

Chinese restaurant franchise sampler

To device a sampler for the mixture model (4.11), let

Ti = {t : ti,j for some j = 1, . . . , ni}

D = {d : d = di,t for some i ∈ {1, . . . ,m} and t ∈ {1, . . . , ¯̀
i•}},

that is, D is the set of indexes of the served dishes across the d groups, i.e. the active
dishes displayed in the sample and Ti are the tables in restaurant i. Let the subscript −ij

denote either the counts or the sets in which the observation yi,j (customer j in restaurant
i) is removed and, analogously, with the subscript −ic we indicate the counts and sets in
which all the customers in table c of restaurant i are removed. That means that

y−ij = y \ {yi,j} t−ij = t \ {ti,j} T −iji = Ti \ {ti,j}

y−ic = y \ {yi,j : ti,j = c} d−ic = d \ {di,c}
¯̀−ij
•p =

∑
(i′,p)6=(i,j)

`i′,p ¯̀−ij
r• =

∑
(r,j′)6=(i,j)

`r,j′ |̀`̀|−ij =
∑

(i′,j′) 6=(i,j)

`i′,j

q−iji•c =
∑
p

qi,p,c

To determine the full conditionals, we start with

p(y,φ, t,d) = p(y |φ, t,d)p(φ | D)p(t,d),

where

p(y |φ, t,d) =
m∏
i=1

ni∏
j=1

K(yi,j |φdi,ti,j ), p(φ | D) =
∏
d∈D

h(φd).

Now note that the marginal distribution of [y, t,d] factorizes as follows

p(y, t,d) = p(y | t,d)p(t,d) = p(t,d)
∏
d∈D

∫ ∏
(i,j):di,ti,j=d

K(yi,j |φ)h(φ)dφ, (C.1)
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where the product runs over every observation yi,j that shares the same mixture component
φd (or equivalently every customer that sits on a table on which dish d is being served).
But recalling that di,ti,j = d∗i,j , we can write

p(y,φ, t,d∗) = p(y |φ,d∗)p(φ | D)p(t,d∗), (C.2)

where

p(y |φ, t,d∗) =

m∏
i=1

ni∏
j=1

K(yi,j |φd∗i,j
) (C.3)

and D = {d∗i,j : i ∈ I, j = 1, . . . , ni}. Now from (C.1) it is clear that, given [d∗,φ], y and

t are conditionally independent and since d∗
d
= d, we obtain

p(y, t,d∗) = p(t,d∗)p(y |d∗)

= p(t,d∗)
∏
d∈D

∫ ∏
(i,j):d∗i,j=d

K(yi,j |φ)h(φ)dφ. (C.4)

where again the indexes of the product indicate that we are iterating over observations
that share the same mixture component. Finally, let Sd denote the set of indexes of the
observations assigned to the d-th component of the mixture, that is

Sd = {(i, t) : d∗i,t = d}.

For an arbitrary index S, the marginal conditional density of {yi,t : i, t ∈ S} given all the
observations assigned to component d is

p({yi,t}i,t∈S | {yi′,t′ : (i′, t′) ∈ Sd \ S}, t,d) =

∫ ∏
i′t′∈Sd∪S K(yi′,t′ |φ)h(φ)dφ∫ ∏
i′t′∈Sd\S K(yi′,t′ |φ)h(φ)dφ

. (C.5)

We will refer to this density as fd({yi,t}i,t∈S).

Full conditionals for (ti,j, d
∗
i,j).

As described in Algorithm 3.1, the outcomes of the sampling are of three types. Observation
yi,j can be either located at an old cluster in group i and therefore it gets assigned the
mixture component corresponding to that cluster or it can be allocated at a new cluster.
If the latter occurs, then two disjoint events are possible: either this new cluster gets
assigned an old mixture component or a completely new one. This corresponds to the
customer either seating at an old table and sharing the same dish of that table, sitting at
a new table and either ordering an old dish or a new dish. In terms of the index random
variables, first scenario reads as ti,j = told, where told is a table already present in T −iji .
In this case, d∗i,j = d∗

i,told
∈ D−ij . In the second and third scenario, ti,j = tnew and either

d∗i,j = d for some d ∈ D−ij or d∗i,j = dnew.
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From (C.2), (C.3) and (C.4) one has that

p(y−ij , t,d∗) = p(t,d∗)p(y−ij | t,d∗) = p(t,d∗)p(y−ij |d∗−ij),

which implies that p(y−ij | t,d∗) = p(y−ij |d∗−ij). Using this fact, we obtain

p(y, ti,j , d
∗
i,j , t

−ij ,d∗−ij) = p(t−ij ,d∗−ij)p(ti,j , d
∗
i,j | t−ij ,d∗

−ij)p(y−ij | t,d∗)p(yi,j |y−ij , t,d∗)

= p(t−ij ,d∗−ij)p(ti,j , d
∗
i,j | t−ij ,d∗

−ij)p(y−ij |d∗−ij)p(yi,j |y−ij , t,d∗).

Hence

p(ti,j ,d
∗
i,j |y, t−ij ,d∗

−ij) ∝ p(y, ti,j ,d
∗
i,j , t

−ij ,d∗−ij)

= p(ti,j ,d
∗
i,j | t−ij ,d∗

−ij)p(yi,j |y−ij ,d∗−ij ,d∗i,j)

The three scenarios described in the beginning of this section are encoded within

p(ti,j , d
∗
i,j | t−ij ,d∗

−ij).

Note that the labels inherit the partial exchangeability assumption, hence labels within
the same group i can be treated as exchangeable and accordingly, can be re ordered so
that ti,j and d∗i,j are sampled at last. Let us denote as ω(n)

0 and ω
(n)
t the weights of the

predictive distributions of the random partition with EPPF Φ̃i, for i = 1, . . . ,m and let
ω̃

(n)
0 and ω̃

(n)
j denote the weights of the predictive distribution of the random partitions

with EPPF Φ0 defined analogously by using Φ0 in place of Φ̃i. Using the exchangeability
of the labels, we obtain

p(ti,j = told, d∗i,j = d∗i,told | t
−ij ,d∗−ij) = ω

(ni−1)

told

(
ti
−ij)

p(ti,j = tnew,d∗i,j = dold | t−ij ,d∗−ij) = ω
(ni−1)
0

(
ti
−ij) ω̃ |̀`̀|−ij

dold

(
d−ij

)
p(ti,j = tnew, d∗i,j = dnew | t−ij ,d∗−ij) = ω

(ni−1)
0

(
ti
−ij) ω̃ |̀`̀|−ij0

(
d−ij

)
,

(C.6)

where

ω
(ni−1)

told

(
ti
−ij) = ω

(ni−1)

told

Å
q−iji•1 , . . . , q

−ij
i•¯̀−iji•

ã
ω

(ni−1)
0

(
ti
−ij) = ω

(ni−1)
0

Å
q−iji•1 , . . . , q

−ij
i•¯̀−iji•

ã
.

These are the weights of the predictive distribution associated with the EPPF Φ̃i, evaluated
at the block sizes without taking into account observation yi,j , i.e. each q−iji•c represents
the number of observations sitting at table c without counting yij . Particularly, the last
entry q−ij

i•¯̀−iji•
represents the number of people sitting at the last table, without taking into
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account the table in which yi,j is sitting. Analogously,

ω̃
|̀`̀|−ij
dold

(
d−ij

)
= ω̃

|̀`̀|−ij
dold

(¯̀−ij
•1 , . . . , ¯̀−ij

•|D−ij |)

ω̃
|̀`̀|−ij
0

(
d−ij

)
= ω̃

|̀`̀|−ij
0 (¯̀−ij

•1 , . . . , ¯̀−ij
•|D−ij |),

where the weights of the predictive distribution associated with the EPPF Φ0 are evaluated
at the block sizes ¯̀−ij•m , which represent the number of tables that serve dish m without
taking into account the table on which yi,j is sitting. On the other hand, by the virtue of
equation (C.5) with S = {(i, j)}

p(yi,j |y−ij ,d∗−ij ,d∗i,j) = fd∗i,j
(yi,j). (C.7)

Putting together (C.6) and (C.7) in (C.6) yields

p(ti,j = told, d∗i,j = d∗i,told | t
−ij ,d∗−ij) ∝ ω(ni−1)

told

(
ti
−ij) fd∗

i,told
(yi,j)

p(ti,j = tnew,d∗i,j = dold | t−ij ,d∗−ij) ∝ ω(ni−1)
0

(
ti
−ij) ω̃ |̀`̀|−ij

dold

(
d−ij

)
fdold(yi,j)

p(ti,j = tnew,d∗i,j = dnew | t−ij ,d∗−ij) ∝ ω(ni−1)
0

(
ti
−ij) ω̃ |̀`̀|−ij0

(
d−ij

)
fdnew(yi,j).

(C.8)

Full conditionals for di,t.

To sample the dish labels of the ¯̀
i• tables in restaurant i, there are two scenarios: either

we re-sample an old dish label or sample a new one from P0. Analogously to the definition
of Sd, the set of indexes of observations seating at table c in restaurant equals

Sic = {(i, j) : ti,j = c} for i = 1, . . . ,m

that is, the only index that changes is j and i remains fixed. From (C.1) we get

p(di,t = d |y, t,d−ic) ∝ p(di,t = d | t,d−ic)p({yi,j : (i, j) ∈ Sic} | {yi′,j′ : (i′, j′) ∈ Sd \ Si,c}, t,d−ic, d)

The weights of the predictive distribution associated with the EPPF Φ0, leads to

p(di,t = dnew | t,d−ic) = ω̃
|̀`̀|−ic
0

(
d−ic

)
p(di,t = dold | t,d−ic) = ω̃

|̀`̀|−ic
dold

(
d−ic

)
for dold ∈ D−ic,

(C.9)

where

ω̃
|̀`̀|−ic
dold

(
d−ic

)
= ω̃

|̀`̀|−ic
dold

Ä
¯̀−ic
•1 , . . . ,

¯̀−ic
•|D−ic|

ä
ω̃
|̀`̀|−ic
0

(
d−ic

)
= ω̃

|̀`̀|−ic
0

Ä
¯̀−ic
•1 , . . . ,

¯̀−ic
•|D−ic|

ä
,
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that is, the weights are evaluated in on the block sizes `−ic•d that represent of the number
of tables that serve dish d without taking into account table c. Now note that

p({yi,j : (i, j) ∈ Sic} | {yi′,j′ : (i′, j′) ∈ Sd \ Si,c}, t,d−ic, d) = fd({yi,j : (i, j) ∈ Sic}).
(C.10)

By putting together (C.9) and (C.10) we obtain

p(di,t = dnew |y, t,d−ic) ∝ ω̃ |̀`̀|
−ic

0

(
d−ic

)
fdnew({yi,j : (i, j) ∈ Sic})

p(di,t = dold |y, t,d−ic) ∝ ω̃ |̀`̀|
−ic

dold

(
d−ic

)
fdold({yi,j : (i, j) ∈ Sic}).

Sensitivity analysis for the first experiment

The parameters of the prior processes were chosen is such a way that, marginally, E[Ki,ni ] =

5 for i = 1, 2 and E[KN ] = 6, where n1 = 100 = n2 and N = 200. The distribution of
Ki,100 and K200 were computed using (3.7) and (3.5) respectively.

Now we will perform a sensitivity analysis of the effect of the hyperparameters of P0

by imposing values of the a priori moments of m and σ2 in a data-driven way. Consider
the following systems of equations to solve for (τ0, a, b)

E [m] =m0 = ȳ

E[σ2] =
b

a− 1
=

var(y)

2

v[m] =
b

(a− 1)τ0
=

E[σ2]

τ0

v[σ2] =
b2

(a− 1)2(a− 2)
=
(
E[σ2]

)2 b

(a− 2)

where the variances of m and σ2 take values on {0.1, 1, 5, 7}, ȳ and var(y) are the overall
mean and variance of the data. The hyperparameters of P0 will be chosen as the ones that
minimize the LPML, while also taking into account the posterior moments of KN . The
results are displayed in the following pages, indicating the best LPML score in bold.

E[KN | . . .] var[KN | . . .]

var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7 var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 5.472 5.127 5.19 5.22 var(m0) = 0.1 2.18 2.28 2.25 2.15
var(m0) = 1 6.272 5.18 4.765 4.739 var(m0) = 1 2.53 1.95 1.5 1.55
var(m0) = 5 6.303 4.9 5.097 5.125 var(m0) = 5 2.31 1.8 1.72 1.67
var(m0) = 7 6.262 4.761 5.032 5.132 var(m0) = 7 2.25 1.65 1.58 1.66

Table C.1: Posterior moments of KN for the hierarchical Dirichlet Process.
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LPML
var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 -1.213 -1.206 -1.205 -1.205
var(m0) = 1 -1.177 -1.152 -1.115 -1.1
var(m0) = 5 -1.179 -1.121 -1.063 -1.063
var(m0) = 7 -1.171 -1.119 -1.061 -1.063

Table C.2: LPML (103) for the hierarchical Dirichlet Process.

E[KN | . . .] var[KN | . . .]

var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7 var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 4.927 4.896 4.912 4.595 var(m0) = 0.1 6.516 7.843 6.458 5.711
var(m0) = 1 7.523 5.871 5.232 5.195 var(m0) = 1 9.981 5.417 3.875 3.536
var(m0) = 5 7.589 5.37 5.716 5.848 var(m0) = 5 8.268 4.46 4.033 4.338
var(m0) = 7 7.418 5.244 5.548 5.988 var(m0) = 7 8.261 3.945 3.761 4.492

Table C.3: Posterior moments of KN for the hierarchical Stable process.

LPML
var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 -1.219 -1.205 -1.205 -1.205
var(m0) = 1 -1.177 -1.153 -1.113 -1.112
var(m0) = 5 -1.169 -1.12 -1.074 -1.061
var(m0) = 7 -1.168 -1.123 -1.071 -1.065

Table C.4: LPML (103) for the hierarchical Stable process.

E[KN | . . .] var[KN | . . .]

var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7 var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 3.507 3.496 3.478 3.563 var(m0) = 0.1 2.267 2.356 2.328 2.661
var(m0) = 1 3.244 2.213 1.394 1.539 var(m0) = 1 3.244 2.213 1.394 1.539
var(m0) = 5 5.466 4.341 4.484 4.598 var(m0) = 5 3.67 1.857 1.862 2.07
var(m0) = 7 5.49 4.231 4.508 4.766 var(m0) = 7 3.579 1.591 1.841 2.241

Table C.5: Posterior moments of KN for the hierarchical Pitman-Yor process.

LPML
var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 -1.22 -1.205 -1.205 -1.205
var(m0) = 1 -1.177 -1.148 -1.109 -1.101
var(m0) = 5 -1.168 -1.12 -1.074 -1.058
var(m0) = 7 -1.165 -1.125 -1.065 -1.06

Table C.6: LPML (103) for the hierarchical Pitman-Yor process.
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E[KN | . . .] var[KN | . . .]

var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7 var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 4.687 4.869 4.388 4.394 var(m0) = 0.1 3.967 4.47 3.698 3.461
var(m0) = 1 6.44 5.967 5.472 5.601 var(m0) = 1 4.076 3.442 2.736 2.851
var(m0) = 5 6.808 5.997 6.085 6.199 var(m0) = 5 3.993 3.386 3.04 3.177
var(m0) = 7 6.681 5.884 5.906 6.218 var(m0) = 7 4.163 3.288 2.79 3.188

Table C.7: Posterior moments of KN for the hierarchical Dirichlet-Pitman-Yor process.

LPML
var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 -1.216 -1.205 -1.204 -1.205
var(m0) = 1 -1.175 -1.154 -1.112 -1.114
var(m0) = 5 -1.169 -1.127 -1.068 -1.066
var(m0) = 7 -1.177 -1.119 -1.071 -1.065

Table C.8: LPML (103) for the hierarchical Dirichlet-Pitman-Yor process.

E[KN | . . .] var[KN | . . .]

var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7 var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 4.687 4.869 4.388 4.394 var(m0) = 0.1 6.436 7.951 5.598 5.859
var(m0) = 1 6.44 5.967 5.472 5.601 var(m0) = 1 8.761 5.426 4.014 3.873
var(m0) = 5 6.808 5.997 6.085 6.199 var(m0) = 5 9.644 5.734 4.684 4.894
var(m0) = 7 6.681 5.884 5.906 6.218 var(m0) = 7 8.834 5.183 4.369 4.806

Table C.9: Posterior moments of KN for the hierarchical Stable-Pitman-Yor process.

LPML
var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 -1.22 -1.205 -1.205 -1.205
var(m0) = 1 -1.175 -1.151 -1.113 -1.109
var(m0) = 5 -1.178 -1.133 -1.063 -1.066
var(m0) = 7 -1.17 -1.12 -1.06 -1.061

Table C.10: LPML (103) for the hierarchical Stable-Pitman-Yor process.

E[KN | . . .] var[KN | . . .]
v(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7 var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 5.374 5.195 5.241 5.235 var(m0) = 0.1 2.437 2.516 2.513 2.548
var(m0) = 1 6.405 5.217 4.628 4.639 var(m0) = 1 3.026 2.225 1.54 1.695
var(m0) = 5 6.48 4.715 4.973 5.065 var(m0) = 5 2.689 1.797 1.711 1.76
var(m0) = 7 6.304 4.696 5.004 5.139 var(m0) = 7 2.559 1.76 1.833 1.775

Table C.11: Posterior moments of KN for the hierarchical Pitman-Yor-Dirichlet process.

LPML
var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 -1.216 -1.206 -1.204 -1.205
var(m0) = 1 -1.178 -1.153 -1.119 -1.101
var(m0) = 5 -1.174 -1.124 -1.075 -1.076
var(m0) = 7 -1.167 -1.118 -1.064 -1.06

Table C.12: LPML (103) for the hierarchical Pitman-Yor-Dirichlet process.
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E[KN | . . .] var[KN | . . .]

v(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7 var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 5.267 4.768 4.392 4.2 var(m0) = 0.1 5.381 5.174 4.204 3.899
var(m0) = 1 6.844 5.91 5.258 5.421 var(m0) = 1 6.594 4.395 3.078 3.242
var(m0) = 5 7.25 5.696 5.869 5.933 var(m0) = 5 6.503 4.177 3.874 3.959
var(m0) = 7 7.332 5.485 5.67 5.992 var(m0) = 7 6.474 3.675 3.288 3.635

Table C.13: Posterior moments of KN for the hierarchical Pitman-Yor-Stable process.

LPML
var(σ2) = 0.1 var(σ2) = 1 var(σ2) = 5 var(σ2) = 7

var(m0) = 0.1 -1.213 -1.205 -1.205 -1.205
var(m0) = 1 -1.178 -1.155 -1.115 -1.111
var(m0) = 5 -1.167 -1.125 -1.072 -1.085
var(m0) = 7 -1.172 -1.127 -1.064 -1.058

Table C.14: LPML (103) for the hierarchical Pitman-Yor-Stable process.

It is clear from the LPML estimates that higher a priori variances for m0 and σ2 yield a
better fit. In particular, it can be seen how an increased variability in the a priori number
of clusters (i.e. higher values of the hyperparameter) is associated with a better fit in
terms of LPML values. In terms of the posterior moments of K200, smaller variances a
priori produce greater dispersion and also a greater posterior mean in most cases. Table
C.15 shows the final parameters and hyperparameters values used in the simulation for the
first experiment.

m0 τ0 a b θ θ0 σ σ0

HDP -1.3167 0.4776 4.2355 10.8177 0.9475 5.5837
HSP -1.3167 0.6686 3.5968 8.6821 0.3253 0.7406
HPYP -1.3167
HDPY -1.3167 0.4776 3.5968 8.6821 0.0024 6.4431 0.3243
HSPYP -1.3167 0.4776 4.2355 10.8177 0.0024 0.3243 0.7488
HPYDP -1.3167 0.4776 3.5968 8.6821 0.9475 3.3258 0.28869
HPYSP -1.3167 0.4776 3.5968 8.6821 1.7147 0.3253 0.5281

Table C.15: Final parameters used in the simulations.
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