

Universidad Nacional Autónoma de México

Facultad de Ciencias

Poder de Frenado de Colisión para Electrones de Baja Energía en LiF, CaF_2 , Al_2O_3 y H_2O usando la Aproximación Completa de Penn

T E S I S QUE PARA OBTENER EL TÍTULO DE: Físico

 $P \quad R \quad E \quad S \quad E \quad N \quad T \quad A \quad :$

LUIS RAFAEL CASTILLO RICO

TUTORA Dra. Guerda Massillon Jacques Louis

Ciudad de México, Agosto, 2021

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Hoja de datos del jurado

- Datos del alumno Castillo
 Rico
 Luis Rafael
 55 29 22 53 47
 Universidad Nacional Autónoma de México
 Facultad de Ciencias
 Física
 309014344
- 2. Datos del tutor Dra. Guerda Massillon Jacques-Louis
- Datos del sinodal 1 Dra. María Ester Brandan Siqués
- 4. Datos del sinodal 2 Dr. Alejandro Reyes Coronado
- Datos del sinodal 3 Dra. Olga Leticia Ávila Aguirre
- Datos del sinodal 4 Dra. Gabriela Murguía Romero
- 7. Datos del trabajo escrito Colisión para Electrones de Baja Energía en LiF, CaF_2 , Al_2O_3 y H_2O usando la Aproximación Completa de Penn Sin subtítulo 75 páginas 2021

Para Alma

Agradecimientos

A la Dra. Guerda Massillon tengo demasiado que agradecerle, empezando por su apoyo, la confianza que depositó en mí, el interés que le puso a mi persona y a este trabajo, las enseñanzas tanto académicas como personales y su alentadora actitud. Sin duda no pude caer en mejores manos.

Al M. en C. Miguel Ángel Flores Mancera, por abrirme camino en esta línea de investigación, por la guía, el apoyo, por esos consejos prácticos y por no reírte cuando me regañaban. Y sobre todo gracias por esa útil tesis que hiciste, gran trabajo.

A mis sinodales, la Dra. María Ester Brandan Siqués, el Dr. Alejandro Reyes Coronado, la Dra. Olga Leticia Ávila Aguirre y la Dra. Gabriela Murguía Romero. Por incrementar enormemente la calidad de este trabajo con sus acertadas correcciones.

A los profesores y ayudantes de la Facultad de Ciencias, esos que le sacan todo el jugo al gis, tanto en clase como en las sesiones extra.

Al primer profesor que me mostró lo bella que puede ser la física cuando te la enseñan con pasión y paciencia, el Dr. Ángel Sánchez Cecilio.

A la Universidad Nacional Autónoma de México, por proveer gratuitamente un espacio donde aprendí ciencia, idiomas, deportes, e incluso a manifestarme sin miedo para exigir mis derechos y los de los demás.

A Alexandra Elbakyan y a los creadores y comunidades de sitios web como Sci-Hub y LibGen, que otorgan libros, artículos científicos y conocimiento gratuito para todos.

A la banda de la fac, con grandes elementos como Luis, Oscar, Marco, Claudia, Daniela, Tania, Ulises¹ y Hugo, por esos buenos ratos en la bellísima Facultad de Ciencias.

A Diego, por estar siempre ahí y por tu amistad, tan surrealista como valiosa. También a Moy, a Debs y a Richie, más gente así en el mundo por favor.

A mi familia, a los Castillo, a los Rico, a los Narváez y a Pepita, por su cariño, sus ánimos, por creer en mi y por ser siempre un soporte firme y unido.

A Elsa Rico y a Rafael Castillo no sé ni por donde comenzar a agradecerles. Gracias por formarme como lo hicieron, por su apoyo, por su cariño, por aguantar los malos ratos y festejar los buenos. Se me queda corto el margen para expresarles mi gratitud, que en estas páginas sólo quede grabado que les agradezco por ser los mejores padres que hubiera podido pedir.

Al proyecto PAPIIT-IN118120 por las becas recibida durante el desarrollo de este trabajo.

 $^{1}\mathrm{sobrio}$

Resumen

En este trabajo se calcularon el poder de frenado y el camino libre medio inelástico de electrones incidentes con energías que van desde el ancho de la banda prohibida hasta 433 keV en agua líquida, óxido de aluminio, fluoruro de litio y fluoruro de calcio. Esto se logró mediante el desarrollo de un código en *Wolfram Mathematica*. Para ello, se usó el modelo completo de Penn, el cual consiste en la construcción de una función de pérdida de energía dependiente de la transferencia de momento, de la transferencia de energía y de la frecuencia plasmónica. Además, a partir de los datos calculados del poder de frenado, se obtuvieron los alcances de los electrones en dichos materiales. Se evaluaron los efectos de los excitones en el poder de frenado, encontrando un efecto de 48 %, 39 %, 32 % y 15 % para agua líquida, *LiF*, *CaF*₂ y Al_2O_3 respectivamente a energía por debajo de 100 eV. Se observó también una relación entre la energía mínima de excitación y la energía en la que el poder de frenado es máximo.

Índice general

1.1. Objetivos generales 1.1.1. Objetivos particulares 1.2. Hipótesis 1.2. 2. Conceptos Básicos 2.1. 2.1. Interacción de electrones con la materia 2.1.1. 2.1.1. Colisiones entre partículas cargadas 2.1.1.1. 2.1.1.2. Colisión radiativa 2.1.1.2. 2.1.1.3. Colisión suave 2.1.1.3. 2.1.2.1. Poder de frenado 2.1.2.1. 2.1.2.2. Poder de frenado radiativo 2.1.2.2. 2.1.3. Alcance 2.1.4. 2.2. Función de pérdida de energía 2.1.1.4.	1										
1.1.1. Objetivos particulares 1.2. Hipótesis 2. Conceptos Básicos 2.1. Interacción de electrones con la materia 2.1.1. Colisiones entre partículas cargadas 2.1.1.1. Colisión radiativa 2.1.1.2. Colisión dura 2.1.1.3. Colisión suave 2.1.2. Poder de frenado 2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico 2.2. Función de pérdida de energía	2										
1.2. Hipótesis 2. Conceptos Básicos 2.1. Interacción de electrones con la materia 2.1.1. Colisiones entre partículas cargadas 2.1.1.1. Colisión radiativa 2.1.1.2. Colisión dura 2.1.1.3. Colisión suave 2.1.2. Poder de frenado 2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico	2										
2. Conceptos Básicos 2.1. Interacción de electrones con la materia 2.1.1. Colisiones entre partículas cargadas 2.1.1.1. Colisión radiativa 2.1.1.2. Colisión dura 2.1.1.3. Colisión suave 2.1.2. Poder de frenado 2.1.2.1. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico	2										
2.1. Interacción de electrones con la materia	Conceptos Básicos 3										
2.1.1. Colisiones entre partículas cargadas 2.1.1.1. Colisión radiativa 2.1.1.2. Colisión dura 2.1.1.3. Colisión suave 2.1.2. Poder de frenado 2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico 2.2. Función de pérdida de energía	3										
2.1.1.1. Colisión radiativa 2.1.1.2. Colisión dura 2.1.1.3. Colisión suave 2.1.2. Poder de frenado 2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico 2.2. Función de pérdida de energía	3										
2.1.1.2. Colisión dura 2.1.1.3. Colisión suave 2.1.2. Poder de frenado 2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico 2.2. Función de pérdida de energía	3										
2.1.1.3. Colisión suave 2.1.2. Poder de frenado 2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico 2.2. Función de pérdida de energía	4										
2.1.2. Poder de frenado 2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico 2.2. Función de pérdida de energía	4										
2.1.2.1. Poder de frenado radiativo 2.1.2.2. Poder de frenado de colisión 2.1.3. Alcance 2.1.4. Camino libre medio inelástico 2.2. Función de pérdida de energía	4										
2.1.2.2. Poder de frenado de colisión 2.1.3. 2.1.3. Alcance 2.1.4. 2.1.4. Camino libre medio inelástico 2.1.4. 2.2. Función de pérdida de energía 2.1.4.	4										
2.1.3. Alcance	5										
2.1.4. Camino libre medio inelástico 2.1.4. 2.2. Función de pérdida de energía 2.1.4.	6										
2.2. Función de pérdida de energía	6										
	7										
2.2.1. Función dieléctrica compleja	7										
2.2.2. Función de pérdida de energía experimental	7										
2.2.2.1. Factor de dispersión atómica	8										
2.2.2.2. KK-sum	9										
2.2.2.3. f-sum	9										
2.3. La aproximación completa de Penn	10										
2.3.1. Función de pérdida de energía dependiente de q	10										
2.3.2. Función dieléctrica compleja de Linhard	11										
2.3.3. Camino libre medio inelástico y poder de frenado	12										
2.4. Descripción de los materiales dosimétricos	13										
2.4.1. LiF	13										
2.4.2. CaF_2	13										
2.4.3. H_2O	13										
2.4.4. $A\overline{l_2O_3}$	13										
3. Metodología	15										
3.1 Función de pérdida de energía	15										
3.1.1 Función de pérdida de energía aproximada	15										
3.1.2 Función de pérdida de energía dependiente de <i>a</i>	$16 \\ 16$										
3121 Valores $\omega \neq q$	17										
3.1.2.2. Componente de plasmón	18										
3123 Componente de un solo electrón	19										
3.2. Poder de frenado	$\frac{19}{19}$										
3.3. Camino libre medio	19										

	3.4. 3.5.	Alcance	20 20					
4.	Res 4.1.	ultados Función de pérdida de energía	22 22					
	 4.2. 4.3. 4.4. 	Poder de frenado	25 26 27					
5.	Disc 5 1	c usión Función de pérdida de energía	28 28					
	5.2. 5.3.	Poder de frenado	20 30 33 25					
6.	Con	nclusiones	38					
Bibliografía								
Apéndice A. Tablas de cálculos A.1. Camino libre medio inelástico A.2. Poder de frenado A.3. Alcance								
Apéndice B. Código								
Apéndice C. Publicación derivada de este trabajo								

Capítulo 1

Introducción

La dosimetría de radiación es un tema de estudio de vital importancia en la física de la salud y la protección radiológica. Consiste en la medición, el cálculo y la evaluación de la dosis de radiación ionizante absorbida por un objeto¹. Dicha dosis es la concentración de energía depositada en un medio por radiación ionizante, este trabajo se centra en la concentración de energía depositada particularmente por partículas cargadas mediante interacciones elásticas e inelásticas.

Cuando una partícula cargada ingresa a un medio², ésta interactúa con los núcleos y con los electrones orbitales debido al campo eléctrico que la rodea. Como resultado de estas interacciones, la partícula irá cediendo su energía al medio. Existe un parámetro que se utiliza para describir dicha pérdida de energía gradual: el poder de frenado, que se define como la cantidad de energía que la partícula pierde por unidad de longitud recorrida. El poder de frenado depende de distintos factores involucrados en la interacción, tales como la carga de la partícula, su masa, la energía cinética con la cual ingresa al medio y propiedades del medio en sí, como su densidad o su número atómico.

Además del poder de frenado, existen otros parámetros promedios que son útiles para describir las interacciones de las partículas cargadas con la materia. El alcance, por ejemplo, es la penetración máxima de una partícula con una energía cinética determinada que penetra en un medio absorbente. Otro ejemplo es el camino libre medio inelástico, que es la distancia recorrida por una de estas partículas incidentes entre dos colisiones inelásticas.

Debido a la falta de un modelo estándar para obtener los valores de estos parámetros a bajas energías³, se han realizado una amplia cantidad de estudios con distintos modelos para calcularlos. Algunos de estos modelos se basan en la función dieléctrica [2–9], dónde Penn [2] fue el primero en calcular valores para el camino libre medio inelástico en un rango de energías medias, que abarcan desde los cientos hasta unos cuantos miles de electronvoltios. Desde entonces, diversos grupos han calculado valores para el camino libre medio inelástico y poder de frenado para electrones en rangos de energía cada vez mayores, y para distintos medios absorbentes. Entre estos trabajos destacan las aportaciones de Tanuma et al. [3,4], que han calculado el camino libre medio inelía de Penn. Esta aproximación se basa en una triple integral sobre la transferencia de momento q, la energía perdida $\hbar \omega$ y la frecuencia del plasmón ω_p . Para emplear la aproximación completa de Penn es necesaria una función que se relaciona con la probabilidad de interacción inelástica: la función de pérdida de energía. Dada la dificultad de determinar experimentalmente la función de pérdida de energía aproximada, que se deriva de datos ópticos que pueden recolectarse experimentalmente. Para dicha función experimental, la transferencia de momento es nula (q = 0).

¹Pudiendo este objeto ser el mismo cuerpo humano.

 $^{^2 \}rm Que$ se denominará medio absorbente.

³El modelo de Bethe [10] se utiliza como referencia para energías superiores a 1 keV.

1.1. OBJETIVOS GENERALES

En cuanto a estudios en torno al poder de frenado, el modelo de Bethe [10] es uno de los modelos más utilizados. El modelo considera dos componentes del poder de frenado, una de ellas describe la pérdida de energía debida a las interacciones con el núcleo y la otra describe la pérdida de energía debida a las interacciones con los electrones orbitales. El programa ESTAR del NIST [11], se basa también en este modelo, haciendo una corrección por densidad propuesta por Sternheimer [12], y tomando en consideración los efectos relativistas en altas energías.

Luo et al. [13] proponen un modelo con un potencial de excitación que varía en función de la energía del electrón incidente. Esto presenta una ventaja sobre el modelo original de Bethe, donde el potencial de excitación depende sólo del número atómico del material absorbente y permanece constante para distintas energías. De esta forma, con el modelo de Luo es posible ampliar el rango energético a energías menores, tan bajas como el valor de la banda prohibida del material.

Por otra parte, Emfieztoglou et al. [6,7] realizaron cálculos del poder de frenado y del camino libre medio inelástico para electrones en agua líquida. Dichos cálculos se basan en un modelo teórico de la función dieléctrica, obtenida a partir de datos experimentales en un intervalo energético desde los 100 eV hasta los 100 keV. Igualmente, bajo un modelo basado en la función dieléctrica obtenida a partir de datos experimentales, Akkerman et al. [8] calcularon el camino libre medio inelástico y el poder de frenado para distintos compuestos en un rango energético de 50 eV a 10 keV. Por otro lado, Gümüs [14] obtuvo valores del poder de frenado para electrones incidentes en agua líquida y otros compuestos mediante el modelo de Bethe-Bloch modificado para electrones con energías cinéticas desde 5 eV hasta 1 MeV.

Debido a las diferencias que se reportan al utilizar distintos modelos para obtener valores del poder de frenado y del camino libre medio inelástico a energías bajas, los modelos siguen adaptándose. Siendo la aproximación completa de Penn, uno de los más confiables.

1.1. Objetivos generales

El objetivo de este trabajo es calcular la función de pérdida de energía dependiente de la transferencia de momento, para así obtener los valores de camino libre medio inelástico, poder de frenado y alcance para electrones en cualquier medio a partir de la aproximación completa de Penn.

1.1.1. Objetivos particulares

- Obtener la función de pérdida de energía dependiente de la transferencia de momento para H_2O (agua líquida), LiF, CaF_2 y Al_2O_3 desde energías tan bajas como el ancho de la banda prohibida del material hasta los 433 keV mediante el desarrollo de un programa en *Wolfram Mathematica*.
- Calcular el camino libre medio inelástico, el poder de frenado y el alcance usando el algoritmo completo de Penn para cada compuesto a partir de la función de pérdida de energía obtenida.

1.2. Hipótesis

Partiendo de la función de pérdida de energía aproximada, es posible obtener la función de pérdida de energía dependiente de la transferencia de momento, con la cual se puede calcular el camino libre medio inelástico, el poder de frenado y el alcance de electrones en distintos compuestos a energías tan bajas como el ancho de la banda prohibida.

Capítulo 2

Conceptos Básicos

2.1. Interacción de electrones con la materia

2.1.1. Colisiones entre partículas cargadas

Conforme una partícula cargada viaja a través de un medio absorbente, ésta experimenta una fuerza debida a la interacción electromagnética con los núcleos y con los electrones orbitales de los átomos con los que se va encontrando. Estas interacciones pueden dividirse en 3 categorías diferentes, dependiendo de la relación entre el parámetro de impacto b y el radio atómico a del átomo absorbente con el cual la partícula interactúa:

Figura 2.1: Tipos de interacciones de un electrón con un átomo [16].

2.1.1.1. Colisión radiativa

Cuando el parámetro de impacto es mucho más pequeño que el radio del átomo absorbente, la partícula cargada interactúa principalmente con el núcleo. En la mayoría de las ocasiones, estas interacciones son elásticas, por lo que la partícula es dispersada por el núcleo y pierde sólo una parte insignificante de su energía cinética. Sin embargo, cuando la interacción es inelástica, la pérdida de energía de la partícula es considerable y puede resultar en una emisión de rayos X [16].

2.1.1.2. Colisión dura

Cuando el parámetro de impacto es del orden del radio del átomo absorbente, la partícula cargada puede interactuar directamente con un electrón orbital y transferirle una cantidad significativa de energía. Esta transferencia de energía hace que el electrón abandone su orbital con la energía suficiente como para interactuar con otros átomos del medio. Debido a la gran pérdida de energía que sufre la partícula cargada en esta colisión, el número de colisiones duras experimentadas por una partícula cargada en un medio es generalmente pequeño.

2.1.1.3. Colisión suave

Cuando el parámetro de impacto es mucho más grande que el radio del átomo absorbente, la partícula cargada interactúa con el átomo completo, incluido el núcleo y los electrones orbitales. La energía que la partícula transfiere en cada interacción es pequeña, sin embargo, el número de colisiones suaves con los átomos suele ser elevado, por lo que, en total, la partícula termina cediendo una parte considerable de su energía. Dichas interacciones pueden generar excitación, ionización o polarización en los átomos del medio.

2.1.2. Poder de frenado

Debido a las múltiples interacciones descritas, el electrón cede su energía cinética al penetrar en un medio absorbente. En cada interacción, el electrón puede cambiar su trayectoria y parte de la energía que éste cede se transferirá a los átomos del medio (pérdidas por colisión) o a fotones (pérdidas radiativas) [17].

La energía perdida E por unidad de camino recorrido x de una partícula cargada en un medio absorbente es llamada poder de frenadoS

$$S = -\frac{dE}{dx},\tag{2.1}$$

en el caso de los electrones, existen dos tipos de poder de frenado:

- Poder de frenado radiativo S_{rad} : Resultante de la interacción coulombiana del electrón con un núcleo del medio absorbente.
- Poder de frenado de colisión S_{col} : Resultante de la interacción coulombiana del electrón con los electrones orbitales de un átomo del medio absorbente.

El poder de frenado total S_{tot} de un electrón es la suma de estos dos tipos de poderes de frenado

$$S_{tot} = S_{rad} + S_{col}.$$
(2.2)

2.1.2.1. Poder de frenado radiativo

Cuando una partícula cargada es acelerada, parte de su energía cinética puede ser emitida en forma de fotones. Estos fotones son llamados bremsstrahlung o radiación de frenado¹, y son producidos a través de interacciones entre la partícula cargada y el núcleo.

En 1930 Hans Bethe mostró que la sección transversal σ_{rad} para la radiación de frenado tiene la misma forma tanto en la teoría clásica como en la cuántica [10, 18] y es proporcional a Z

$$\sigma_{rad} \propto \alpha r_e^2 Z^2 \left(\frac{cm^2}{\text{núcleos}}\right),$$
(2.3)

 $^{^1\}mathrm{Por}$ su traducción del alemán.

donde r_e es el radio clásico del electrón (2.818 fm) [19], Z es el número atómico del núcleo y α es la contante de estructura fina $\alpha = 1/137$.

La cantidad de radiación de frenado generada por electrones viajando en un medio absorbente es generalmente expresada por el poder de frenado radiativo, dado por la ec. (2.4), que fue derivada por Bethe de forma teórica [16]:

$$S_{rad} = N_a \sigma_{rad} E_i \rho = \alpha \rho r_e^2 Z^2 \frac{N_A}{A} E_i B_{rad}, \qquad (2.4)$$

donde ρ es la densidad del medio, E_i es la energía total del electrón incidente al inicio de la interacción², N_a es la densidad atómica, N_A es el número de Avogadro y B_{rad} es un parámetro que se relaciona con σ_{rad} y su valor depende de E_k , que es la energía cinética del electrón incidente. En el cuadro 2.1 se muestra los valores de B_{rad} para energías clásicas y relativistas, donde m_e la masa del electrón y c la velocidad de la luz.

$$\begin{array}{ccc} \text{Rango Energético} & B_{rad} = \sigma_{rad} / (\alpha r_e^2 Z^2) \\ \hline E_k \ll m_e c^2 & 16/3 \\ m_e c^2 \ll E_k \ll \frac{m_e c^2}{\alpha Z^{1/3}} & 8 \left[\ln \left(\frac{E_i}{m_e c^2} \right) - \frac{1}{6} \right] \\ E_k \gg \frac{m_e c^2}{\alpha Z^{1/3}} & 4 \left[\ln \left(\frac{183}{Z^{1/3}} \right) + \frac{1}{18} \right] \end{array}$$

Cuadro 2.1: Parámetro B_{rad} para distintos rangos de energía cinética del electrón [16].

2.1.2.2. Poder de frenado de colisión

Las interacciones de un electrón incidente con otros electrones orbitales de un medio absorbente tienen dos aspectos importantes:

- 1. Los efectos relativistas se vuelven considerables a energías relativamente bajas.³
- 2. Las colisiones con electrones orbitales resultan en grandes transferencias de energía (hasta el 50% de la energía cinética del electrón incidente). Estas colisiones también pueden resultar en dispersión elástica o inelástica con desviaciones angulares grandes.

Por otra parte, el poder de frenado de colisión tiene dos componentes: el poder de frenado debido a las colisiones suaves S_{col}^s y el poder de frenado debido a las colisiones duras S_{col}^d

$$S_{col} = S^s_{col} + S^d_{col}.$$
(2.5)

Así, al combinar el término para colisiones suaves derivado por Bethe [10] con el término para colisiones duras, que está basado en la sección transversal de Møller⁴ [20], la relación resultante para electrones es [17]:

$$S_{col} = \rho k \left[\ln \left(\frac{\tau^2(\tau+2)}{2(I/m_e c^2)} \right) + F^-(\tau) - \delta - \frac{2C}{Z} \right],$$
(2.6)

donde m_e es la masa del electrón y $\tau = E_k/m_ec^2$. I es el potencial de excitación promedio, que se obtiene al promediar la energía de excitación/ionización de cada capa que compone al átomo del medio absorbente [21], y se calcula por medio de la ecuación [16]:

$$I = 9.1Z + 17.292Z^{1/3}, (2.7)$$

 $^{^{2}}E_{i} = E_{k} + m_{e}c^{2}.$

³Si se compara con la energía requerida para que los efectos relativistas se vuelvan considerables cuando la partícula incidente es más pesada, como una partícula α .

⁴Que toma en cuenta efectos de espín, de intercambio y velocidades relativistas.

donde δ es la corrección por densidad, que tiene valores distintos de cero siempre que la energía sea mayor que la energía del electrón en reposo (511 keV). C/Z es la corrección por capas, que considera la subestimación del poder de frenado de colisión para partículas cargadas con energías cinéticas bajas, donde la velocidad del electrón incidente es próxima o menor que la del electrón orbital. Finalmente $F^$ es de la forma [16]:

$$F^{-}(\tau) = 1 - \beta^{2} + \frac{\tau^{2}/8 - (2\tau + 1)\ln 2}{(\tau + 1)^{2}}.$$
(2.8)

2.1.3. Alcance

El alcance R de un electrón, con una cierta energía en un medio absorbente, es el valor esperado de la trayectoria que éste sigue hasta que llega al reposo [17]. Dicha cantidad es obtenida mediante la ecuación:

$$R = \int_0^{E_k} \frac{dE}{S},\tag{2.9}$$

donde S es el poder de frenado total, que está en función de E, S = S(E) y E_k es la energía cinética del electrón incidente.

2.1.4. Camino libre medio inelástico

Es imposible predecir qué tanto penetrará un solo electrón en un medio absorbente. Sin embargo, un grupo de electrones pueden caracterizarse por una trayectoria común, que es trazada por su energía en un medio específico y tiende a aproximarse a un valor promedio [17]. Así, si un electrón viaja a través de un material, la distancia promedio que éste alcanza antes de encontrarse con un obstáculo es conocida como el camino libre medio [15]. Dicho obstáculo puede ser un hueco en los orbitales atómicos, una impureza en el material u otra partícula cargada, que puede ser el núcleo de uno de los átomos o alguno de los electrones orbitales. Si se trata de un electrón orbital, cuando éste interacciona con el electrón incidente, se pueden producir una excitación o una ionización, generando que el electrón incidente pierda gran parte de su energía cinética, por lo que se trata de interacciones inelásticas.

Para que un electrón incidente logre ionizar un átomo interaccionando con uno de los electrones orbitales de la última capa⁵, es necesario que le transfiera energía, de modo que la energía del electrón orbital E sea mayor que la energía que lo mantiene en la banda de valencia (véase figura 2.2). Claramente, dicha energía es distinta para diferentes materiales absorbentes. De esta forma, el electrón incidente produce pares electrón-hueco, denominados pares excitados.

Posteriormente, el electrón termina moviéndose a través de un mar de plasma⁶ y lo perturba al mover un par excitado de su posición inicial. En consecuencia, dicho par experimenta una fuerza restitutiva debido a los pares a su alrededor, por lo que el electrón arrancado vuelve a su posición inicial.

Así, se define como camino libre medio inelástico o IMFP⁷ a la distancia promedio recorrida por el electrón incidente entre colisiones inelásticas y su valor para distintas energías puede calcularse de forma teórica a partir de la función de pérdida de energía, como se mostrará más adelante.

 $^{{}^{5}}$ Se consideran estos electrones debido a que se encuentran más alejados del núcleo, así experimentan una fuerza de atracción coulombiana menor, por lo que requieren menos energía que los electrones de las capas más internas para salir de la capa de valencia.

⁶Sistema con igual densidad de electrones libres y vacancias en los orbitales atómicos. Los electrones incidentes interactúan con dichas vacancias debido a las fuerzas electromagnéticas.

⁷Por sus siglas en inglés, Ineslastic Mean Free Path.

Figura 2.2: Bandas de energía para diferentes materiales, E es la energía del electrón orbital.

2.2. Función de pérdida de energía

Las interacciones inelásticas entre el electrón y el medio están relacionadas con la función de pérdida de energía, la cual determina la probabilidad de dispersiones inelásticas, la distribución de pérdida de energía y la distribución de dispersión angular [22]. Por ende es útil para calcular la energía cinética que pierde el electrón al interaccionar de forma inelástica con los átomos del medio absorbente. Dicha función está dada por la expresión [23]:

$$Im\left[-\frac{1}{\epsilon(q,\omega)}\right],\tag{2.10}$$

donde q representa la transferencia de momento, $\hbar\omega$ la pérdida de energía, $\epsilon(q,\omega)$ a la función dieléctrica, que refleja la respuesta de un sólido ante una perturbación electromagnética externa y la función Im toma la parte imaginaria de su argumento.

2.2.1. Función dieléctrica compleja

Cuando una onda electromagnética de frecuencia ω y con vector de onda \vec{q} interacciona con un medio, la respuesta del medio ante dicha onda es descrita por la función dieléctrica compleja, que consta de dos componentes, una real y una imaginaria

$$\epsilon(\vec{q},\omega) = \epsilon_1(\vec{q},\omega) + i\epsilon_2(\vec{q},\omega). \tag{2.11}$$

La componente real describe la polarización del medio como consecuencia de la interacción entre el material y la onda electromagnética [24]. La componente imaginaria está relacionada con la pérdida de energía [ec. (2.10)]. Ambas componentes pueden describirse en términos de los coeficientes reales de refracción (n) y extinción (k) cuando se considera que la longitud de onda es grande (en comparación con las dimensiones atómicas), en dicho caso $\vec{q} \rightarrow 0$ [25] y se tiene:

$$\epsilon_1(\omega) = n^2(\omega) - k^2(\omega) \quad y \quad \epsilon_2(\omega) = 2n(\omega)k(\omega). \tag{2.12}$$

2.2.2. Función de pérdida de energía experimental

Como se describe en la sección 2.2.1, es posible determinar a la función dieléctrica compleja con los coeficientes $n \ge k$ [ec. (2.12)]. Estos pueden obtenerse a través de interferometría, medición de refracción o de transmitancia en películas de diferentes grosores. La referencia [25] contiene una colección de dichos

coeficientes, obtenidos a partir de mediciones experimentales para diversos compuestos en rangos de energía variables.

Así, dada la dificultad que representa determinar la función de pérdida de energía dependiente de q de forma experimental, y existiendo datos ópticos experimentales que permiten derivar a la función dieléctrica compleja, es posible y práctico derivar una función de pérdida de energía aproximada, para la cual, la transferencia de momento es nula (q = 0). La función de pérdida de energía aproximada tiene la forma:

$$Im\left[-\frac{1}{\epsilon(0,\omega)}\right] = Im\left[-\frac{1}{\epsilon(\omega)}\right].$$
(2.13)

2.2.2.1. Factor de dispersión atómica

Además de los coeficientes $n \ge k$, también puede utilizarse el factor de dispersión atómica f para derivar a la función de pérdida de energía aproximada. Dicho factor es útil para determinar la amplitud total de la onda dispersada por el átomo [26]:

$$f = f_1 + if_2. (2.14)$$

Este factor es el parámetro que multiplica la amplitud de la onda electromagnética dispersada por un solo electrón orbital. Su componente real está relacionada con la amplitud de la onda dispersada por un electrón atómico A_i como si éste fuera libre, y su componente imaginaria está asociada con la absorción del fotón incidente [27]. Así, la amplitud de la onda dispersada por el átomo A es de la forma [24]:

$$A = \frac{A_i r_e P(\phi) f}{R},\tag{2.15}$$

donde r_e es el radio clásico del electrón, R es la distancia del átomo al punto de observación y $P(\phi)$ es el factor de polarización [27].

Cuando la longitud de onda es mucho mayor que el radio atómico, o el ángulo de dispersión es muy pequeño, la interacción entre los fotones y la materia se puede describir por medio del índice de refracción complejo N_r [27]

$$N_r = 1 - \delta + i\beta, \tag{2.16}$$

donde δ es el índice de decremento de refracción y está asociado al índice de refracción n, β está asociado con el índice de extinción k [27]:

$$\delta = 1 - n \qquad y \qquad \beta = k. \tag{2.17}$$

En la ec. (2.17), δ se relaciona con la componente real del factor de dispersión atómica f_1 , que representa la interacción dispersiva entre la onda y el material. Por otro lado, β se relaciona con la componente imaginaria f_2 , que explica la absorción del fotón. En el límite, cuando $\delta \ll 1$ y $\beta \ll 1$ (por ejemplo, energías por encima de 100-200 eV, dependiendo del material), δ y β están dadas por la aproximación:

$$\delta = \frac{N_A r_e \lambda^2 f_1(\omega)}{2\pi} \qquad y \qquad \beta = \frac{N_A r_e \lambda^2 f_2(\omega)}{2\pi}, \tag{2.18}$$

de otra forma:

$$\epsilon_1(\omega) = 1 - \frac{N_A r_e \lambda^2 f_1(\omega)}{\pi} \quad y \quad \epsilon_2(\omega) = \frac{N_A r_e \lambda^2 f_2(\omega)}{\pi}, \tag{2.19}$$

donde N_A es el número de Avogadro, r_e es el radio clásico del electrón y λ es la longitud de la onda incidente. Las componentes f_1 y f_2 de un compuesto son la suma del número de composición de átomos en la fórmula molecular del compuesto [26].

2.2.2.2. KK-sum

Habiendo construido a la función de pérdida de energía aproximada a partir de los datos ópticos experimentales, es posible hacer una validación de los datos recabados. Para esto, existen útiles herramientas matemáticas que modelan la interacción entre la radiación electromagnética y la respuesta del medio.

La función aproximada que se utilizó en este trabajo fue validada a partir de dos reglas matemáticas: la suma de Kramers-Kronig (KK-sum) y la suma de Bethe (f-sum) [28, 29].

La suma de Kramers-Kronig está dada por la ecuación [30]:

$$P_{\text{eff}} = \frac{2}{\pi} \int_0^{\omega_{\text{max}}} \frac{1}{\omega} Im \left[-\frac{1}{\epsilon(\omega)} \right] d\omega + Re \left[\frac{1}{\epsilon(0)} \right], \qquad (2.20)$$

donde la función Re toma a la parte real de su argumento, P_{eff} es el valor pincipal de Cauchy [28] y ω_{max} es la máxima frecuencia de oscilación transferida a la onda incidente. La suma suma de Kramers-Kronig es útil para validar si la dispersión de la onda incidente a bajas frecuencias es modelada adecuadamente. Si se analiza el límite de muy bajas frecuencias se tiene que [31]:

$$\lim_{\omega \to 0} k(\omega) = 0, \tag{2.21}$$

haciendo uso de la ec. (2.12) se tiene

$$\lim_{\omega \to 0} Re\left[\frac{1}{\epsilon(\omega)}\right] = \frac{1}{n^2(0)}.$$
(2.22)

Así, la ec. (2.20) puede reescribirse como:

$$P_{\text{eff}} = \frac{2}{\pi} \int_0^{\omega_{\text{max}}} \frac{1}{\omega} Im \left[-\frac{1}{\epsilon(\omega)} \right] d\omega + \frac{1}{n^2(0)}, \qquad (2.23)$$

donde n(0) fue evaluada como la raíz cuadrada de la constante dieléctrica para cada material en este trabajo [26].

De los datos experimentales, se ha observado que la suma de Kramers-Kronig es influenciada por los datos ópticos obtenidos en un rango de 2 a 50 eV [3].

2.2.2.3. f-sum

La suma de Bethe está dada por [31, 32]:

$$Z_{\rm eff} = -\frac{2m_e\epsilon_o}{\pi Ne^2} \int_0^{\omega_{\rm max}} \omega Im \left[-\frac{1}{\epsilon(\omega)} \right] d\omega, \qquad (2.24)$$

donde N es la densidad molecular, m_e y e son la masa y la carga del electrón, respectivamente y ϵ_o es la permitividad eléctrica en el vacío. La suma de Bethe evalúa el número de electrones por molécula que participan en el proceso de dispersión inelástica [13]. Esto, ya que está relacionada con la probabilidad de transición de niveles energéticos de una molécula y, por lo tanto, con la emisión o absorción electromagnética generada por dicha transición [33].

Si la energía de la onda incidente aumenta, se espera que la cantidad de electrones participantes incremente también y tienda a su valor teórico (Z), el cual es usado como referencia. Así, en contraste con la suma de Kramers-Kronig, la suma de Bethe es influenciada por los datos ópticos en un rango de energías mayores, de 50 eV en adelante [3]. Por lo que ambas sumas actúan de forma complementaria para este trabajo. En el límite $\omega_{\text{max}} \to \infty$, se cumple que $P_{\text{eff}} \to 1$ y $Z_{\text{eff}} \to Z$.

2.3. La aproximación completa de Penn

2.3.1. Función de pérdida de energía dependiente de q

La aproximación completa de Penn o FPA⁸ permite derivar a la función de pérdida de energía dependiente de la transferencia de momento [ec. (2.10)], a partir de la función de pérdida de energía aproximada [ec. (2.13)]. Para esto, la función de pérdida de energía debe ser descrita como la suma de dos contribuciones: una asociada a las excitaciones del plasmón $Im\left[-\frac{1}{\epsilon(q,\omega)}\right]_{nl}$ y otra a las excitaciones

de un solo electrón $Im\left[-\frac{1}{\epsilon(q,\omega)}\right]_{se}$ [5, 34, 35]: $Im\left[-\frac{1}{\epsilon(q,\omega)}\right] = Im\left[-\frac{1}{\epsilon(q,\omega)}\right]_{pl} + Im\left[-\frac{1}{\epsilon(q,\omega)}\right]_{se}.$ (2.25)

La componente de plasmón tiene la forma⁹:

$$Im\left[-\frac{1}{\epsilon(q,\omega)}\right]_{pl} = \pi g(\omega_o)\Theta(q^-(\omega,\omega_o)-q) \left|\frac{\partial\epsilon_1^L(q,\omega,\omega_p)}{\partial\omega_p}\right|_{\omega_p=\omega_o}^{-1},$$
(2.26)

donde g es denominado el coeficiente de expansión y se relaciona con la función de pérdida de energía aproximada por medio de:

$$g(\omega) = \frac{2}{\pi\omega} Im \left[-\frac{1}{\epsilon(\omega)} \right], \qquad (2.27)$$

 ω_o es una variable que corresponde a la solución numérica de la ecuación:

$$\epsilon_1^L(q,\omega,\omega_o) = 0, \tag{2.28}$$

donde ϵ_1^L corresponde a la componente real de la función dieléctrica de Linhard, que será descrita más adelante. Así, a cada pareja (q, ω) le corresponde un valor de ω_o . Por su parte, la función Θ es la función de paso, que está definida de la forma:

$$\Theta(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases},$$
 (2.29)

actuando como un filtro, desechando valores donde la transferencia de momento q sea mayor que el factor q^- :

$$q^{\pm}(\omega,\omega_p) = \sqrt{k_F^2(\omega_p) + 2\omega} \pm k_F(\omega_p).$$
(2.30)

Los factores q^{\pm} representan a las transferencias máximas y mínimas de momento [35]. k_F es el vector de onda de Fermi dependiente de la frecuencia de plasma (ω_p)

$$k_F(\omega_p) = \left(\frac{3\pi}{4}\right)^{1/3} \omega_p^{2/3}.$$
 (2.31)

La derivada parcial de la componente real de la función dieléctrica de Linhard con respecto a la frecuencia de plasma está dada por:

$$\frac{\partial \epsilon_1^L(q,\omega,\omega_p)}{\partial \omega_p} = \frac{1}{3\pi\omega_p q z^2} \left\{ \ln\left[\frac{Y_- + 1}{Y_- - 1}\right] + \ln\left[\frac{Y_+ + 1}{Y_+ - 1}\right] \right\},\tag{2.32}$$

donde

⁹A partir de ahora, se utilizará el sistema de unidades Hartree ($\hbar = e = m_e = 1$).

⁸Por sus siglas en inglés, Full Penn Approximation.

$$Y_{\pm} = z \pm \frac{x}{4z}, \qquad x = \frac{\omega}{E_F}, \qquad z = \frac{q}{2k_F} \quad y \quad E_F = \frac{k_F^2}{2}$$

Para reducir los errores en el cálculo se utilizan dos casos límites: el primer caso se presenta cuando se cumple la condición a = z/x < 0.01 [5]:

$$\ln\left[\frac{Y_{-}+1}{Y_{-}-1}\right] + \ln\left[\frac{Y_{+}+1}{Y_{+}-1}\right] \approx -\frac{64}{3}za^{2}[3+48(1+z^{2})a^{2}+256(3+z^{2})(1+3z^{2})a^{4}],$$
(2.33)

el segundo es dado cuando se cumple z/x > 100:

$$\ln\left[\frac{Y_{-}+1}{Y_{-}-1}\right] + \ln\left[\frac{Y_{+}+1}{Y_{+}-1}\right] \approx \ln\left(\frac{z+1}{z-1}\right)^{2} + 4zb^{2}\left[1 + (1+z^{2})b^{2} + \frac{1}{3}(3+z^{2})(1+3z^{2})b^{4}\right], \quad (2.34)$$

donde

$$b = \frac{x}{z(z^2 - 1)}.$$
(2.35)

La segunda componente de la ec. (2.25), que corresponde a la contribución de excitaciones de un electrón solitario, es de la forma:

$$Im\left[-\frac{1}{\epsilon(q,\omega)}\right]_{se} = \int_0^\infty g(\omega_p)Im\left[-\frac{1}{\epsilon^L(q,\omega,\omega_p)}\right]\Theta(q^+(\omega,\omega_p)-q)\Theta(q-q^-(\omega,\omega_p))d\omega_p, \qquad (2.36)$$

donde la función de pérdida de energía de Linhard está dada por la función dieléctrica compleja de Linhard

$$Im\left[-\frac{1}{\epsilon^L(q,\omega,\omega_p)}\right] = \frac{\epsilon_2^L}{(\epsilon_1^L)^2 + (\epsilon_2^L)^2}.$$
(2.37)

2.3.2. Función dieléctrica compleja de Linhard

La teoría funcional dieléctrica se emplea para describir la interacción inelástica de electrones en un medio, usando la función dieléctrica compleja de Linhard

$$\epsilon^L(q,\omega) = \epsilon^L_1(q,\omega) + i\epsilon^L_2(q,\omega), \qquad (2.38)$$

donde la componente real es de la forma:

$$\epsilon_1^L(q,\omega) = 1 + \frac{1}{\pi k_F z^2} \left[\frac{1}{2} + \frac{1}{8z} \left\{ F\left[z - \frac{x}{4z} \right] + F\left[z + \frac{x}{4z} \right] \right\} \right], \tag{2.39}$$

donde

$$F(t) = (1 - t^2) \ln\left[\frac{t+1}{t-1}\right].$$
(2.40)

Por su parte, la componente imaginaria es de la forma:

$$\epsilon_2^L(q,\omega) = \frac{1}{8k_F z^3} \cdot \begin{cases} x & 0 < x < 4z(1-z) \\ 1 - \left(z - \frac{x}{4z}\right)^2 & |4z(1-z)| < x < 4z(1+z) \\ 0 & \text{de otra forma} \end{cases}$$
(2.41)

Para reducir errores numéricos en los cálculos, se define el parámetro u:

$$u = \frac{\omega}{qk_F}.$$
(2.42)

Así, existen dos condiciones límites: la primera se cumple cuando u < 0.01, en dicho caso la corrección de la función dieléctrica de Linhard está dada por:

$$\epsilon_1^L(q,\omega) = 1 + \frac{2}{\pi q z} \left(\frac{1}{2} + \frac{1}{4} \left[(1 - z^2 - u^2) \ln \left| \frac{z + 1}{z - 1} \right| + (z^2 - u^2 - 1) \frac{z u^2 z}{(z^2 - 1)^2} \right] \right)$$
(2.43)

у

$$\epsilon_2^L(q,\omega) = \frac{u}{qz}.\tag{2.44}$$

La segunda condición está dada cuando u/(z+1) > 100 por las ecuaciones:

$$\epsilon_1^L(q,\omega) = 1 - \left(\frac{\omega_p}{\omega}\right)^2 \left[1 + \left(z^2 + \frac{3}{5}\right)\frac{1}{u^2}\right]$$
(2.45)

у

$$\epsilon_2^L(q,\omega) = 0. \tag{2.46}$$

En la ec. (2.36) la función Θ también actúa como un filtro, en este caso no anula a los valores donde q esta en el intervalo $q^- < q < q^+$.

2.3.3. Camino libre medio inelástico y poder de frenado

La probabilidad p de pérdida de energía por unidad de distancia recorrida por un electrón con energía cinética T está dada por:

$$p(T,\omega) = \frac{\left(1 + \frac{T'}{c^2}\right)^2}{1 + \frac{T'}{2c^2}} \frac{1}{\pi T'} \int_{q_-}^{q_+} \frac{1}{q} Im \left[-\frac{1}{\epsilon(q,\omega)}\right] dq, \qquad (2.47)$$

con $T' = T - A_{BP}$ y A_{BP} el ancho de la banda prohibida (véase figura 2.2). Los límites de integración están dados por:

$$q_{\pm} = \sqrt{T'\left(2 + \frac{T'}{c^2}\right)} \pm \sqrt{\left(T' - \omega\right)\left(2 + \frac{T' - \omega}{c^2}\right)}.$$
(2.48)

Así, a pesar de tener una función de pérdida de energía que depende de la variable q [ec. (2.25)], la aproximación completa de Penn permite obtener una función que no depende de la transferencia de momento pero que sí contiene información sobre ella [ec. (2.47)]. Definiendo al poder de frenado con la ecuación [26, 36]:

$$S(T) = \int_{\omega_{\min}}^{T' - A_{BV}} \omega p(T, \omega) d\omega$$
(2.49)

y al IMFP:

$$\lambda(T) = \left[\int_{\omega_{\min}}^{T' - A_{BV}} p(T, \omega) d\omega \right]^{-1}, \qquad (2.50)$$

donde A_{BV} es el máximo valor de energía en la banda de valencia (véase figura 2.2) y ω_{\min} es el primer valor de ω que tal que $Im\left[-\frac{1}{\epsilon(\omega=\omega_{\min})}\right]$ es un máximo local. Fue calculado por Flores-Mancera et al. [26] para Al_2O_3 , CaF_2 , LiF y H_2O .

2.4. Descripción de los materiales dosimétricos

Una herramienta comúnmente usada para realizar mediciones de la dosis absorbida en un medio son los dosímetros termoluminiscentes ¹⁰. Los TLDs son materiales cristalinos termoluminiscentes. Cuando éstos son expuestos a radiación ionizante absorben la energía de la radiación y la liberan en forma de luz visible cuando son calentados. La intensidad de dicha luz es proporcional a la intensidad de radiación ionizante a la cual el cristal estuvo expuesto y es medida con un detector especial. A partir de esta medida se puede calcular la dosis de radiación ionizante a la cual se expuso el dosímetro termoluminiscente [37].

De los materiales utilizados para este trabajo, dos se utilizan comúnmente en los TLDs actuales: el LiF y el CaF_2 [37]. El Al_2O_3 fue uno de los primeros materiales utilizados para el estudio de la dosimetría termoluminiscente [38] y presenta ventajas como su bajo costo, fácil manejo y resistencia mecánica.

El agua líquida H_2O es utilizada como referencia para calibraciones y diversos procedimientos dosimétricos [39]. A continuación se describen las características principales de cada uno de estos materiales.

2.4.1. *LiF*

El fluoruro de litio es una sustancia sólida y tóxica por ingestión. Es el material termoluminiscente contenido en los dosímetros TLD-100, TLD-100H, TLD-600 y TLD-700 [40]. Es uno de los materiales más utilizados para aplicaciones dosimétricas, su número atómico es Z = 12.

2.4.2. CaF_2

El fluoruro de calcio es un sólido que presenta una toxicidad menor al LiF [41]. Es el material termoluminiscente contenido en los dosímetros TLD-200 y TLD-300 [40]. Su número atómico es Z = 38.

2.4.3. *H*₂*O*

El agua líquida es utilizada ya que aproximadamente el 70 % de la composición del cuerpo de un mamífero es agua, donde el 47 % se encuentra dentro de la células y el 23 % fuera de ellas, ya sea en la sangre u otros fluidos [42]. El agua también es utilizada para calibrar dispositivos que suministran dosis de radiación con fines terapéuticos en humanos. Su número atómico es Z = 10

2.4.4. Al_2O_3

El óxido de aluminio es un sólido relativamente duro. Aunque ya no es comúnmente utilizado como material dosimétrico, fue de los primeros materiales utilizados para estudiar la dosimetría termoluminiscente [38]. Al doparse con materiales como el hierro o el cromo presenta propiedades adecuadas para ser utilizado como dosímetro. Su número atómico es Z = 50.

En el cuadro 2.2, se muestran los valores utilizados para obtener los límites de integración en las ecs. (2.49) y (2.50), para cada material en eV, donde:

- A_{BP} : Ancho de la banda prohibida, es la energía requerida para pasar de la banda de valencia a la banda de conducción (véase figura 2.2).
- A_{BV} : Ancho de la banda de valencia, es el valor máximo de la energía que puede tener un electrón para permanecer en la banda de valencia (véase figura 2.2).

¹⁰por sus siglas en inglés, thermoluminescent dosimeter

• ω_{\min} : primer valor de ω tal que $Im\left[-\frac{1}{\epsilon(\omega=\omega_{\min})}\right]$ es un máximo local. Los valores de ω_{min} utilizados en este trabajo fueron calculados por Flores-Mancera et al. [26].

Compuesto	A_{BP} [eV]	A_{BV} [eV]	ω_{\min} [eV]
H_2O	8.4	11.8	6.24
LiF	14.2	3.9	11.7
CaF_2	12.1	5.84	10.33
Al_2O_3	8.8	8.3	8.63

Cuadro 2.2: Anchos de banda y ω_{min} de los materiales [26].

Capítulo 3

Metodología

3.1. Función de pérdida de energía

3.1.1. Función de pérdida de energía aproximada

El cálculo de la función de pérdida de energía aproximada [ec. (2.13)] fue realizado por Flores-Mancera et al. para electrones en LiF, CaF_2 , Al_2O_3 y H_2O [26]. Los valores obtenidos de la función de pérdida de energía aproximada, junto con la interpolación calculada por los autores, se muestran en la figura 3.1:

(c) Función de pérdida de energía aproximada del LiF (d) Función de pérdida de energía aproximada del H_2O Figura 3.1: Función de pérdida de energía aproximada para electrones en los compuestos [26].

La evaluación para verificar si los datos ópticos experimentales modelan correctamente la interacción entre la onda incidente y el medio, fue realizada por Flores-Mancera et al. [26] mediante la suma de Bethe [ec. (2.24)] y la suma de Kramers-Kronig [ec. (2.23)]:

Compuesto	n(0)	Z	$Z_{\rm eff}$	suma de Bethe ($\%)$	$P_{\rm eff}$	suma de K-K ($\%$)
H_2O	8.97	10	10.021	0.21	1.027	2.7
LiF	3	12	13.16	9.69	1.132	13.2
CaF_2	2.6	38	38.91	2.4	1.058	5.8
Al_2O_3	3.13	50	51.58	3.16	1.038	3.8

Cuadro 3.1: Errores porcentuales y valores de referencia para la función de pérdida de energía experimental [26].

Para el cálculo del error en la *f-sum*, Flores-Mancera et al. [26] tomaron como referencia el número atómico del compuesto Z, para la *KK-sum* consideraron que la evaluación debe tender a 1 (sección 2.2.2.3) y tomaron el límite $\omega_{\text{max}} \to \infty$.

Los errores mostrados en el cuadro 3.1 contribuyen a la incertidumbre de los cálculos para el IMFP, el poder de frenado y el alcance realizados en este trabajo.

3.1.2. Función de pérdida de energía dependiente de q

En este trabajo se desarrolló un código en *Wolfram Mathematica* (versión 11.3.0.0) basado en la aproximación completa de Penn (sección 2.3) para calcular la función de pérdida de energía, poder de frenado, camino libre medio inelástico y alcance. Para realizar dicho código se utilizó el sistema de unidades atómicas de Hartree.¹

Con los datos calculados por Flores-Mancera et al. [26] de la función de pérdida de energía aproximada, en este trabajo se obtuvo al coeficiente de expansión g [ec. (2.27)] por medio de una interpolación. A partir de dicho coeficiente es posible calcular la componente de plasmón [ec. (2.26)] y a la del electrón solitario [ec. (2.36)].

En general, la aproximación completa de Penn (sección 2.3) presenta ecuaciones que son fáciles de transcribir a un código en *Wolfram Mathematica*. Sin embargo, las ecuaciones para calcular el poder de frenado [ec. (2.49)] y el camino libre medio inelástico [ec. (2.50)] presentan una complicación importante. Para ilustrarla, resulta útil reescribir dichas ecuaciones de forma expandida:

$$\lambda(T) = \left[\frac{\left(1 + \frac{T'}{c^2}\right)^2}{1 + \frac{T'}{2c^2}} \frac{1}{\pi T'} \int_{\omega_{\min}}^{T' - A_{BV}} \int_{q_-}^{q_+} \frac{1}{q} Im \left[-\frac{1}{\epsilon(q,\omega)} \right] dq d\omega \right]^{-1}$$
(3.1)

$$S(T) = \frac{\left(1 + \frac{T'}{c^2}\right)^2}{1 + \frac{T'}{2c^2}} \frac{1}{\pi T'} \int_{\omega_{\min}}^{T' - A_{BV}} \int_{q_-}^{q_+} \frac{\omega}{q} Im \left[-\frac{1}{\epsilon(q,\omega)}\right] dq d\omega$$
(3.2)

En ambas ecuaciones se elimina la dependencia explícita de las variables ω y q por medio de las integraciones. Sin embargo, la función de pérdida de energía está generada a partir de una interpolación: el coeficiente de expansión g. Por lo que la única forma de realizar las integraciones es de forma numérica. Esto es un inconveniente, ya que, si se transcribieran directamente las ecs. (3.1) y (3.2) en *Wolfram Mathematica*, el programa necesitaría evaluar a la función de pérdida de energía de la siguiente forma:

¹El código se encuentra en el apéndice B.

- 1. Fijar a ω , comenzando por $\omega_1 = \omega_{\min}$ y evaluar a $Im\left[-\frac{1}{\epsilon(q,\omega_1)}\right]$ a lo largo de toda la región de integración sobre q.
- 2. Fijar ω con los siguientes valores, tales que: $\omega_{i+1} = \omega_i + \delta \omega$ y evaluar a $Im\left[-\frac{1}{\epsilon(q,\omega_i)}\right]$ desde q_- hasta q_+ para cada valor *i*.
- 3. Habiendo repetido este proceso N veces tal que $\omega_N = T' A_{BV}$ se tendría a los valores de λ y S para un único valor de T, por lo que habría que repetir el proceso para cada valor nuevo de T. Si se tienen M valores de T, habría que repetir los pasos 1 y 2 M veces.

A pesar de que dicho proceso es posible de realizar para el programa, resulta muy ineficiente y sumamente tardado, ya que se debe calcular la función de pérdida de energía M veces. Sin embargo es posible calcularla una sola vez y guardar sus valores. Para esto, es necesario generar una lista de los valores que toman ω y q en la región de integración que comprenden ambas integrales.

3.1.2.1. Valores $\omega \mathbf{y} q$

Se denominará S_{ω} al límite superior para la región de integración de ω para las ecs. (3.1) y (3.2). Nótese que S_{ω} es dependiente de T, por lo que la región de integración es variable para distintas energías cinéticas de electrones incidentes:

$$S_{\omega}(T) = T' - A_{BV} = T - A_{BP} - A_{BV}.$$
(3.3)

De esta forma, al dividir la región de integración sobre ω en $N_{\omega} + 1$ secciones, se obtienen valores de ω tales que:

$$\omega_i(T) = \omega_{\min} + \frac{S_\omega(T) - \omega_{\min}}{N_\omega}i, \qquad (3.4)$$

con $\omega_0(T) = \omega_{\min}$ y $\omega_{N_{\omega}}(T) = S_{\omega}(T)$. Los límites de integración sobre q también son variables, éstos son dependientes tanto de T como de ω [ec. (2.48)], por lo que para cada valor de ω_i se tendrán límites de integración distintos.

Es también posible dividir la región de integración sobre q en $N_q + 1$ secciones de modo que:

$$q_j(T,\omega_i) = q_-(T,\omega_i) + \frac{q_+(T,\omega_i) - q_-(T,\omega_i)}{N_q}j,$$
(3.5)

con $q_0(T, \omega_i) = q_-(T, \omega_i)$ y $q_{N_q}(T, \omega_i) = q_+(T, \omega_i)$. Es claro que los valores q_j dependen únicamente de T, ya que los valores ω_i son en sí mismos una función de T. De esta forma, para cada valor ω_i , existen $N_q + 1$ valores q_j , todos dentro de la región de integración.

De esta forma se tiene una lista con $N_q \times N_\omega$ valores, a partir de los cuales, es posible evaluar a la función de pérdida de energía (FPE_{*i*,*j*}) para cada valor de T^{-2} :

$$FPE_{i,j}(T) = Im\left[-\frac{1}{\epsilon(q_j(T,\omega_i),\omega_i(T))}\right].$$
(3.6)

Si se tienen N_T valores de T, denominados T_k entonces puede generarse una lista con $N_T \times N_q \times N_\omega$ valores. Resulta útil representar las variables con subíndices en lugar de verlas como funciones [ec. (3.7)], ya que los valores de T_k , ω_i y q_j son todos discretos, así es útil renombrar a las variables como:

$$\omega_i(T_k) = \omega_{i,k}, \qquad q_j(T_k, \omega_i) = q_{i,j,k} \quad y \quad \text{FPE}_{i,j}(T_k) = \text{FPE}_{i,j,k}. \tag{3.7}$$

 $^{^{2}}$ Este método es aplicable siempre y cuando los valores de pérdida de energía estén contenidos en la función de pérdida de energía aproximada.

Con la lista completa de valores $(\omega_{i,k}, q_{i,j,k}, \text{FPE}_{i,j,k})$ es posible obtener una interpolación³ que regrese los valores de la función de pérdida de energía dada una pareja de valores (ω, q) dentro de la región de integración. Dicha interpolación se vuelve más precisa al incrementar los valores N_{ω} y N_q , aumentando también el tiempo del cálculo. En la figura 3.2 se muestra un ejemplo de la región de integración variando N_q y N_{ω} . A la izquierda con $N_q = N_{\omega} = 10$ y a la derecha con $N_q = N_{\omega} = 50$.

Figura 3.2: Región de integración sobre ω y q con distintos valores de N_{ω} y N_q

La densidad de puntos aumenta al incrementar N_{ω} y N_q , por lo que se obtienen más valores de $\text{FPE}_{i,j,k}^4$ y esto se refleja en un cálculo más rápido al momento de hacer la integral numérica en las ecs. (3.1) y (3.2).

Es posible así obtener una interpolación I de la fomra

$$I = I(\omega, q) = Im\left[-\frac{1}{\epsilon(q, \omega)}\right],\tag{3.8}$$

que represente a la función de pérdida de energía dentro de la región de integración. Para esto, es necesario obtener primero las componentes de la función de pérdida de energía.

3.1.2.2. Componente de plasmón

Para la componente del plasmón de la función de pérdida de energía [ec. (2.26)] se tiene una variable que está determinada por valores fijos de ω y q: la variable ω_o , que es el valor de ω_p cuando se cumple la ec. (2.28).

Teniendo una lista de los valores $(\omega_{i,k}, q_{i,j,k})$, es posible obtener a ω_o al resolver de forma numérica la ec. (2.28):

$$\epsilon_1^L(q_{i,j,k}, \omega_{i,k}, \omega_o) = 0.$$
 (3.9)

Así, para valores fijos de $i, j \ge k$ se obtiene un valor $\omega_{o_{i,j,k}}$, de modo que se tiene una lista de $N_T \times N_q \times N_\omega$ valores de ω_o , a partir de la cual, puede generarse una interpolación $I_{\omega_o} = I_{\omega_o}(w,q)$ que representa a ω_o dentro de la región de integración. De modo que los valores de la ec. (2.26) están dados para *Mathematica* como:

³Para interpolar funciones que dependen de 2 variables, la versión 11.3.0.0 de *Mathematica* realiza interpolaciones de orden 1.

⁴Para cada punto en las gráficas de la figura 3.2 existe un valor $FPE_{i,j,k}$.

$$FPE_{pl_{i,j,k}} = Im \left[-\frac{1}{\epsilon(q_{i,j,k}, \omega_{i,k})} \right]_{pl}, \qquad (3.10)$$

con $I_{pl} = I_{pl}(w, q)$ la interpolación dada por la lista $(\omega_{i,k}, q_{i,j,k}, \text{FPE}_{pl_{i,j,k}})$ que representa a la componente de plasmón de la función de pérdida de energía dentro de la región de integración, es decir:

$$I_{pl}(\omega,q) = Im \left[-\frac{1}{\epsilon(q,\omega)} \right]_{pl}.$$
(3.11)

3.1.2.3. Componente de un solo electrón

Igual que para la componente del plasmón, es posible generar una interpolación $I_{se} = I_{se}(\omega, q)$ con los valores que se obtienen de la ec. (2.36):

$$FPE_{se_{i,j,k}} = Im \left[-\frac{1}{\epsilon(q_{i,j,k}, \omega_{i,k})} \right]_{se}.$$
(3.12)

Para esta componente, ω_p se integra desde 0 hasta ∞ , lo cuál puede hacerse de forma numérica, tardando un tiempo considerablemente mayor que para obtener los valores FPE_{pl} . Así, es posible obtener a la interpolación de la ec. (3.8):

$$I(\omega, q) = I_{se}(\omega, q) + I_{pl}(\omega, q), \qquad (3.13)$$

que está construida a partir de los valores de la función de pérdida de energía dentro de la región de integración. De esta forma, no es necesario que el programa repita el cálculo para cada valor T_k . Y se tiene una representación aproximada a la función de pérdida de energía⁵.

3.2. Poder de frenado

Obteniendo la Interpolación I, el poder de frenado en este trabajo se calculó por medio de la ecuación:

$$S(T) = \frac{\left(1 + \frac{T'}{c^2}\right)^2}{1 + \frac{T'}{2c^2}} \frac{1}{\pi T'} \int_{\omega_{\min}}^{T' - A_{BV}} \int_{q_-}^{q_+} \frac{\omega}{q} I(\omega, q) dq d\omega$$
(3.14)

3.3. Camino libre medio

El camino libre medio inelástico se obtuvo por medio de la siguiente ecuación (resuelta también de forma numérica):

$$\lambda(T) = \left[\frac{\left(1 + \frac{T'}{c^2}\right)^2}{1 + \frac{T'}{2c^2}} \frac{1}{\pi T'} \int_{\omega_{\min}}^{T' - A_{BV}} \int_{q_-}^{q_+} \frac{1}{q} I(\omega, q) dq d\omega\right]^{-1},$$
(3.15)

donde ambas integrales se realizaron de forma numérica para cada valor de T.

 $^{^5\}mathrm{V\acute{e}ase}$ la sección 4.1.

3.4. Alcance

Para obtener el alcance es necesario tener una función del poder de frenado. Dado que sólo se cuentan con valores discretos de éste, para distintos valores T_k , resulta útil generar una nueva interpolación partir de los valores:

$$S(T_k) = S_k, \tag{3.16}$$

de modo que la interpolación $I_S = I_S(T)$ es generada a partir de la lista (T_k, S_k) . Sin embargo, para ninguno de los compuestos se tiene una función de pérdida de energía aproximada que abarque energías cinéticas cercanas a 0. Por lo que hacer la integral con el límite de integración de la ec. (2.9) implicaría realizar una extrapolación de los datos. Esto incrementaría el error del cálculo considerablemente para energías próximas a 0, sin importar que el cálculo se afinara⁶. Por esta razón, la ec. (2.9) fue utilizada para este trabajo con una modificación en el límite de integración inferior:

$$R(T) = \int_{\omega_{\min}}^{T} \frac{dE}{I_S(E)}.$$
(3.17)

Esto significa que los valores obtenidos en este trabajo para el alcance no representan la trayectoria que sigue el electrón incidente hasta que se detiene (energía cinética = 0) sino hasta que llega a una energía cinética igual a ω_{\min} ⁷.

3.5. Incertidumbres

Para calcular las incertidumbres de los cálculos del poder de frenado, se utilizó el valor medio cuadrático porcentual o RMS ⁸ porcentual. A través del RMS porcentual, se evalúa la diferencia promedio entre los valores calculados y los valores de referencia [43] por medio de la siguiente relación [36]:

$$RMS_{\%} = 100 \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{y_i - \overline{y}_i}{\overline{y}_i}\right)^2}{n}}.$$
(3.18)

Esta incertidumbre se relaciona con la recopilación experimental de los datos con el modelo teórico, en el cual se basa el código empleado y con los parámetros del mismo ⁹. Cabe destacar que la evaluación a través de las sumas de Kramers-Kronig y de Bethe ya están consideradas en el valor del RMS.

Para comparar los resultados calculados con los de un modelo teórico, se obtiene el valor del $RMS_{\%}$ [ec. (3.18)] en función de T:

$$RMS_{\%}(T) = 100\sqrt{\frac{\sum_{i=1}^{4} \left(\frac{F_i(T) - \overline{F}_i(T)}{\overline{F}_i(T)}\right)^2}{4}},$$
(3.19)

donde $F_i(T)$ puede tratarse del valor del poder de frenado, IMFP o alcance en función de la energía, calculado en este trabajo y $\overline{F}(T)$ el valor obtenido por un modelo de referencia. La suma va de 1 a 4 debido a que se compara el valor de los cuatro compuestos: Agua líquida, Al_2O_3 , LiF y CaF_2 , si se comparase solamente uno o dos de ellos, el límite superior de la suma cambiaría. Cabe destacar que el valor del RMS porcentual es útil para comparar las diferencias generales entre dos modelos diferentes. Sin embargo, el valor del RMS no da información puntual acerca de las diferencias para un material en específico, es por eso que en la sección 5, además del valor del RMS porcentual, también se graficó

⁶Incrementando los valores N_{ω} y N_q .

⁷Este valor es distinto para cada compuesto, véase el cuadro 2.2.

⁸Por sus siglas en inglés, Root Mean Square.

⁹Como los valores de N_q y N_{ω} .

el valor de la diferencia porcentual en función de la energía cinética del electrón incidente $D_{\%}(T)$ para cada modelo y material

$$D_{\%}(T) = 100 \left(\frac{F_i(T) - \overline{F}_i(T)}{\overline{F}_i(T)} \right).$$
(3.20)

Capítulo 4

Resultados

4.1. Función de pérdida de energía

La función de pérdida de energía en función de la transferencia de momento q y la energía perdida ω se muestran en las figuras , 4.2, 4.3, 4.4 y 4.6 para Al_2O_3 , CaF_2 , LiF y agua líquida, respectivamente. Las subfiguras (a) y (b) muestran las componentes de un solo electrón y del plasmón respectivamente. La subfigura (c) muestra la suma de ambas, que es la función de pérdida de energía completa [ec. (3.13)].

La región $\omega - q$ graficada en las figuras 4.2, 4.3, 4.4 y 4.6, no comprende en su totalidad a la región de integración para los compuestos. Esto se debe a que la mayoría de los valores de la función de pérdida de energía en la región de integración son cero. Esta cuestión será analizada con mayor detalle en el siguiente capítulo, en esta sección se muestran las regiones $\omega - q$ donde la función de pérdida de energía tiene valores distintos de 0.

Al comparar la componente de un solo electrón con la componente del plasmón, es notorio que en todos los compuestos la componente de un solo electrón decrece más lentamente y tiene siempre un máximo más pequeño. Por otra parte, la componente del plasmón decrece rápidamente, y se vuelve nula en un intervalo más cercano al origen.

Los máximos que se perciben en las subfiguras c) indican un incremento en la probabilidad de dispersión inelástica entre el electrón incidente y el medio.

(a) Suma de las componentes

Figura 4.3: Función de pérdida de energía para CaF_2 .

(c) Suma de las componentes

Figura 4.4: Función de pérdida de energía para LiF.

Figura 4.6: Función de pérdida de energía para H_2O .

4.2. Poder de frenado

Los valores calculados del poder de frenado en función de la energía cinética del electrón incidente se muestran en las figuras 4.7 (a), 4.7 (b), 4.7 (c) y 4.7 (d) para Al_2O_3 , CaF_2 , LiF y agua líquida, respectivamente. Dichos valores se reportan en el apéndice A.2. También se muestran en las figuras resultados reportados en la literatura. Es notorio un comportamiento creciente en la región de bajas energías, el valor del poder de frenado se incrementa hasta llegar a un máximo en energías al rededor de 150 eV para todos los compuestos. Posteriormente, el valor del poder de frenado comienza a decrecer, en el siguiente capítulo (sección 5.2) se discutirá la razón física de este comportamiento.

Figura 4.7: Valores del poder de frenado para electrones en los compuestos.

Figura 4.8: Valores del poder de frenado para electrones en los compuestos.

Modelo	ESTAR, NIST	Luo et al.	Boutboul et al.	Emfietzoglou et al.	Gümüs
Trabajo	Referencia [11]	Referencia [13]	Referencia [44]	Referencia [7]	Referencia [14]

Cuadro 4.1: Referencias de los modelos con los que se comparó el poder de frenado.

4.3. Camino libre medio inelástico

Los valores calculados del IMFP en función de la energía cinética del electrón incidente se muestran en las figuras 4.9 (a), 4.9 (b), 4.9 (c) y 4.9 (d) para el Al_2O_3 , CaF_2 , LiF y el agua líquida, respectivamente. Dichos valores se reportan en el apéndice A.1. También se muestran en las figuras resultados reportados disponibles en la literatura. El valor del IMFP, inversamente al poder de frenado, se muestra decreciente en la región de bajas energías hasta llegar a un mínimo cerca de los 100 eV. Posteriormente, comienza a incrementar.

Figura 4.9: Valores del IMFP para electrones en los compuestos.

Modelo	Akkerman et al.	Pandya y col	TPP-2M	Tanuma et al.	Emfietzoglou et al.
Trabajo	Referencia [8]	Referencia [47]	Referencia [9]	Referencia [3]	Referencia [7]

Cuadro 4.2: Referencias de los modelos con los que se comparó el poder de frenado.

Figura 4.10: Valores del IMFP para electrones en los compuestos.

4.4. Alcance

Los valores calculados del alcance en función de la energía cinética del electrón incidente se muestran en las figuras 4.11 (a), 4.11 (b), 4.11 (c) y 4.11 (d) para el Al_2O_3 , CaF_2 , LiF y el agua líquida, respectivamente. Dichos valores se reportan en el apéndice A.3. Se muestran también resultados obtenidos por el programa ESTAR del NIST [11]. Es notoria y esperada una conducta siempre creciente, ya que a mayor energía cinética, la penetración del electrón en el medio es mayor.

Figura 4.11: Valores del alcance para electrones en los compuestos.

Capítulo 5

Discusión

5.1. Función de pérdida de energía

Como se mencionó en el capítulo anterior (sección 4.1), las gráficas mostradas en las figuras 4.2, 4.3, 4.4 y 4.6, no comprenden en su totalidad la región de integración sobre ω y q descrita en la sección 3.1.2.1, sobre la cual se calculó la función de pérdida de energía. Esto se debe a que los valores $ELF_{i,j,k}$ son cero en casi toda la región de integración, como se muestra en la figura 5.1:

Figura 5.1: Función de pérdida de energía para el Al_2O_3 en la región de integración completa.

En general, el Al_2O_3 , CaF_2 , LiF y el H_2O muestran una conducta similar, es decir, si se grafica la función de pérdida de energía en toda la región de integración, para cualquiera de los cuatro compuestos, la gráfica obtenida es como la mostrada en la figura 5.1, donde se aprecia que solo en una región cercana al origen los valores de la función de pérdida de energía son distintos a cero.

Es posible visualizar a toda la lista de puntos $(\omega_{i,k}, q_{i,j,k}, ELF_{i,j,k})$ como se muestra en la figura 5.2. Esta figura ilustra los valores sin interpolar de la función de pérdida de energía en la región de integración completa sobre ω y q (véase figura 3.2). Tanto la figura 5.1 como la figura 5.2 representan los valores de la función de pérdida de energía, en la figura 5.1 se muestra la interpolación de los puntos graficados en la figura 5.2.

Figura 5.2: Valores $ELF_{i,j,k}$ en la región de integración completa.

El hecho de que la función de pérdida de energía sea 0 en casí toda la región de integración, se debe

a las funciones Θ de las ecs. (2.36) y (2.26). Dichas funciones anulan los valores donde la transferencia de momento está fuera del intervalo $q^- < q < q^+$ para la componente de un solo electrón y los que están fuera del intervalo $q < q^-$ para la componente del plasmón. Por este motivo, la componente de plasmón considera transferencias de momento en un intervalo menor que la componente de excitaciones de un solo electrón. Es por eso que la región en la cual es apreciable la componente del plasmón se encuentra aún más cerca del origen.

Al hacer un acercamiento al origen, como se ve en la figura 5.3, puede observarse una región de puntos, que al interpolarse dan lugar a una superficie. Dicha superficie es la graficada en el capítulo anterior, en las figuras 4.2, 4.3, 4.4 y 4.6. Por lo que una mayor cantidad de puntos se refleja en una mayor precisión en el cálculo.

5.2. Poder de frenado

En las figuras 4.7 y 4.8 se muestran los valores calculados del poder de frenado para electrones en Al_2O_3 , CaF_2 , LiF y agua líquida con una energía que va desde el ancho de la banda prohibida hasta 433 keV. Independiente del compuesto, conforme disminuye la energía, el poder de frenado incrementa hasta llegar a un valor máximo, después cae rápidamente conforme la energía disminuye. La caída rápida es debida a que la energía del electrón se aproxima a la energía de excitación mínima requerida para promover un electrón desde el nivel máximo de energía de la banda de valencia hasta el nivel mínimo de energía de la banda de conducción. Esto significa que el electrón no tiene suficiente energía para ionizar al medio. Existe una relación que ilustra este hecho: mientras más grande sea el valor ω_{min} , el valor de la energía cinética donde se alcanza el máximo del poder de frenado también será mayor. Dicha relación se ilustra en la tabla 5.1.

Compuesto	H_2O	Al_2O_3	CaF_2	LiF
Energía mínima de excitación $\omega_{min} \ [eV]$	6.24	8.63	10.33	11.7
Energía del electrón donde el poder de frenado es máximo $[eV]$	121	140	164	170

Cuadro 5.1: Va	alores máximos	para el	poder	de	frenado
----------------	----------------	---------	-------	---------------	---------

Independiente del compuesto, los valores del poder de frenado obtenidos en este trabajo son sistemáticamente mayores a los obtenidos por el programa ESTAR del NIST [11], donde se utiliza la aproximación de Bethe. Lo cual es consistente con los resultados reportados para elementos sólidos obtenidos mediante la aproximación completa de Penn [36].

El método propuesto por Luo et al. [13] puede ser usado para calcular el poder de frenado en cualquier material. Para esto, se requiere de la función dieléctrica compleja para obtener los valores efectivos del potencial de ionización promedio, y el número de electrones de la molécula que participa en el proceso a la energía dada. En este trabajo se utilizaron los datos experimentales de la función de pérdida de energía, obtenidos por Flores-Mancera et al. [26], para obtener el valor del poder de frenado utilizando la aproximación de Luo et al. [13] para Al_2O_3 , CaF_2 , LiF y agua líquida, como se muestra en las figuras 4.7 y 4.8.

Considerando que el modelo de Luo et al. [13] se basa en resultados experimentales, el valor del RMS porcentual [ec. (3.19)] se calculó para describir las diferencias entre el poder de frenado obtenido mediante la aproximación completa de Penn y el obtenido mediante la aproximación del modelo de Luo et al. [13], como se muestra en la figura 5.4. El valor del RMS porcentual es siempre positivo y su valor disminuye en las regiones donde los modelos comparados muestren mejores acuerdos.

Figura 5.4: RMS porcentual para del poder de frenado obtenido por la aproximación completa de Penn con respecto al modelo de Luo et al. [13], y con respecto al modelo de Bethe, utilizado por el programa ESTAR [11].

En la figura 5.4 se aprecia un buen acuerdo en un intervalo energético que abarca de los ~ 100 eV a los ~ 20 keV con el modelo de Luo et al. [13]. En dicho intervalo se obtuvieron diferencias RMS porcentuales que van desde 6 % hasta 15 %. Cabe destacar que la aproximación de Luo et al. no toma en cuenta los efectos relativistas, por lo tanto en altas energías se aprecian diferencias RMS porcentuales superiores al 80 % entre dicha aproximación y la utilizada en este trabajo (FPA). A pesar de haber usado la misma función de pérdida de energía experimental para calcular los valores del poder de frenado mediante ambas aproximaciones, existe una diferencia notable a bajas energías. Esta diferencia podría estar asociada a que el modelo de Luo et al. [13] no toma en cuenta la transferencia de momento q.

En la figura 5.4 se aprecia una conducta decreciente de la incertidumbre RMS con respecto al modelo de Bethe que utiliza el programa ESTAR, del NIST [11]. Cabe destacar que el modelo utilizado por el programa ESTAR, no toma en consideración la corrección por capas [11], esta corrección es relevante en bajas energías, cuando la velocidad del electrón incidente es mejor que la velocidad de los electrones orbitales. La incertidumbre RMS muestra un valor promedio de 14 % en todo el intervalo energético y de 9 % a partir de los 10 keV¹. A diferencia del modelo de Luo et al. [13], el modelo de Bethe utilizado por el NIST toma en consideración los efectos relativistas a altas energías.

Como se mencionó en la sección 3.5, los valores del RMS porcentual en función de la energía cinética resultan útiles para comparar las diferencias de los valores obtenidos del poder de frenado entre dos modelos diferentes. Sin embargo, para hacer un análisis más detallado sobre dichas diferencias, es conveniente graficar las diferencias porcentuales en función de la energía cinética [ec. (3.20)]. Esto permite observar las diferencias entre los modelos para cada uno de los cuatro compuestos. Dichas gráficas se

 $^{^{1}}$ Que es el valor mínimo de la energía cinética en los resultados reportados oficialmente por el NIST.

presentan en la figura 5.5 tomando los resultados de este trabajo como referencia.

Figura 5.5: Diferencias porcentuales para el poder de frenado.

En su modelo, Gümüs [14] se basó en la expresión analítica de Bethe-Bloch para calcular el número atómico efectivo y la energía de excitación media efectiva, y así obtener el poder de frenado en agua líquida. En general, para energías sobre los 50 eV, se muestra un buen acuerdo con los resultados obtenidos en este trabajo. Las diferencias porcentuales toman valores desde el 0% hasta el 8%. Para energías menores a 50 eV la diferencia llega a ser mayor que 20%. Esta notable diferencia en bajas energías puede deberse a que el modelo de Bethe-Bloch suele ser utilizado para obtener a la energía media efectiva en rangos de energía altos.

Los resultados obtenidos en este trabajo son superiores a los reportados por Akkerman et al. [8] hasta por un 60%. Estas diferencias se relacionan a diversos factores:

- La fiabilidad de los datos experimentales de la función de pérdida de energía, ya que los errores de la *f-sum* y la *KK-sum* son 9.69% y 13.2% respectivamente para este trabajo, siendo considerablemente menores a los obtenidos por Akkerman et al. [8] (34.7% y 24.3% respectivamente).
- El dominio de integración sobre ω y la inclusión de la interacción de excitones, dado que el límite inferior en el estudio de Akkerman et al. [8] fue determinado como 0.

Resulta útil, para comprender la forma de la curva del poder de frenado y del IMFP, considerar la producción de pares excitados en bajas energías, por lo que los electrones de la banda de valencia pasan a la banda de conducción, dejando un hueco con carga positiva. Dicho hueco interactúa con los electrones incidentes, por lo que al aumentar la energía cinética los electrones colisionarán continuamente, por lo

que la probabilidad de interacción aumenta, esto genera que la distancia entre colisiones inelásticas sea menor, i.e. el valor del camino libre medio inelástico decrece [ec. (2.50)] y el electrón va perdiendo más energía mientras avanza, por lo que el poder de frenado aumenta.

Conforme incrementa la energía, las capas más internas de los átomos del medio absorbente también se involucran en el proceso de ionización y excitación. En esta etapa de transición se alcanza el mínimo de los valores del IMFP y el máximo de los valores del poder de frenado. Posteriormente, conforme los pares excitados se generan en las capas más internas, la probabilidad de que el electrón interactúe con ellos disminuye, por lo que el camino libre medio inelástico aumenta y los electrones pierden menos energía por unidad de camino recorrido, por lo que el valor del poder de frenado disminuye.

5.3. Camino libre medio inelástico

En la figura 4.10 se muestran los valores calculados del IMFP de electrones en Al_2O_3 , CaF_2 , LiF y agua líquida, con una energía que va desde el ancho de la banda prohibida hasta 433 keV. Independiente del compuesto, a bajas energías, el valor del IMFP decrece rápidamente conforme la energía incrementa hasta llegar a un mínimo, a partir de ahí el IMFP muestra una conducta creciente.

La fórmula Tanuma-Powell-Penn (TPP-2M) [9] está basada en la aplicación de la aproximación completa de Penn y se ha utilizado para calcular el IMFP en diversos compuestos, utilizando la FPA en energías por debajo de 300 eV y la aproximación simple de Penn [2] para energías mayores. En este trabajo se calculó el IMFP por medio de la fórmula relativista TPP-2M [9] para electrones en Al_2O_3 , LiF y CaF_2 . Para describir las diferencias entre el método TPP-2M y el utilizado en este trabajo (FPA), se calculó el RMS porcentual en función de la energía cinética por medio de la ec. (3.19). Dichos valores se muestran graficados en la figura 5.6.

Dado que se utilizó la misma función de pérdida de energía para calcular el IMFP en Al_2O_3 , se aprecia un buen acuerdo con el modelo TPP-2M [9] (figura 4.9 (a)). Dicho acuerdo puede corroborarse en la figura 5.7 (a), donde se grafican las diferencias porcentuales en función de la energía cinética, tomando como referencia los resultados obtenidos en este trabajo. Para el LiF y el CaF_2 se obtuvieron diferencias porcentuales siempre menores que 10%.

Por otro lado, se muestra un buen acuerdo entre los valores del IMFP en agua líquida con respecto a los obtenidos por Tanuma et al. [3], que utiliza la fórmula TPP-2M. Dicho acuerdo se aprecia en la figura 5.7 (d), donde es notorio que la diferencia porcentual siempre es menor que 10 %.

Independiente del compuesto, las diferencias entre los cálculos del IMFP realizados con el modelo TPP-2M [9] se vuelven cada vez menores conforme la energía cinética del electrón incrementa, lo que se observa en las figuras 5.7 (a), (b), (c) y (d) y en la gráfica de la incertidumbre RMS porcentual (figura 5.6). Al promediar los valores del RMS en todo el dominio energético que comprende el modelo TPP-2M (1150 eV - 433 keV), se obtiene una incertidumbre RMS del 11%.

En la figura 5.7 se aprecia una diferencia porcentual mucho menor en altas energías con respecto al modelo no relativista de Tanuma [4]. En un intervalo de 1,150 eV a 433 keV, la diferencia porcentual del modelo TPP-2M [9] tiene un promedio de 4.73 %, mientras que la diferencia porcentual del modelo de Tanuma tiene un promedio de 13.69 % en el mismo rango.

Con respecto al modelo de Emfietzoglou et al. [7], los valores calculados del IMFP en agua muestran diferencias porcentuales de más del 50 % en altas energías. Como se observa en la figura 5.7 (d) energías menores a 100 eV las diferencias porcentuales llegan al 40 %. Sin embargo, en un rango de energías intermedio se muestra un buen acuerdo. Estas diferencias pueden ser explicadas como una consecuencia

de la inclusión de los efectos de correlación e intercambio, que no se consideran en la aproximación completa de Penn. Dicha corrección reduce la probabilidad de interacción del electrón incidente con las partículas cargadas del medio ya que considera que éstas se redistribuyen en un volumen mayor [45]. Es por esto que los valores obtenidos del camino libre medio inelástico en dicho modelo son mayores a bajas energías. Las diferencias porcentuales también pueden deberse al uso de un ajuste de $\epsilon_2(\omega)$ en lugar de usar una función de pérdida de energía para obtener el IMFP [9,26].

Figura 5.6: RMS para el IMFP con respecto al modelo TPP-2M.

Al comparar los resultados obtenidos del IMFP en Al_2O_3 con los resultados obtenidos por Pandya et al. [47] y por Akkerman et al. [8] se observan diferencias porcentuales de 23 % y 14 %, respectivamente, a energías menores que 300 eV. Para energías mayores, la diferencia porcentual disminuye al incrementar la energía cinética. Estas diferencias pueden deberse a que en su modelo, consideran una combinación de teoría dieléctrica con una aproximación clásica de encuentro binario² (binary-encounter). Las diferencias con respecto al modelo de Pandya et al. [47] pueden ser mayores debido al método semi empírico que se utilizó para obtener la sección transversal molecular en su trabajo [26].

Flores-Mancera et al. [26] ya han reportado cálculos del IMFP haciendo uso de la aproximación completa de Penn. En este trabajo el cálculo del IMFP resulta útil para corroborar la validez del método utilizado, ya que los valores obtenidos por Flores-Mancera et al. [26] del IMFP lograron reproducirse satisfactoriamente.

Cabe destacar que los resultados obtenidos previamente por Flores-Mancera [48] se calcularon mediante la aproximación simple de Penn [2] y no consideran a la función de pérdida de energía dependiente de la transferencia de momento. Dichos resultados [48] no se comparan con los obtenidos en el presente

 $^{^{2}}$ La idea básica de la toría de encuentro binario es que las ionizaciones y excitaciones de los átomos debidas a electrones pueden ser descritas como una colisión entre dos electrones libres [46].

trabajo ya que sus resultados publicados posteriormente (Flores-Mancera et al. [26] y Castillo-Rico et al. [1]) cuentan con una mayor precisión.

Figura 5.7: Diferencias porcentuales para el IMFP.

5.4. Alcance

En la figura 4.11 se muestran los valores calculados para el alcance. El valor del RMS porcentual en función de la energía cinética, que se obtuvo al comparar los resultados con los obtenidos por el programa ESTAR, del NIST [11], se muestra en la figura 5.9. También es apreciable una conducta decreciente de la incertidumbre RMS con respecto a dicho modelo, que muestra un valor promedio de 9.43 % en todo el intervalo energético comparado. De manera similar que con los valores del poder de frenado, es claro un buen acuerdo a altas energías, independiente del compuesto.

Para bajas energías, el valor del alcance crece rápidamente conforme la energía incrementa. Cuando el valor de la energía supera los 10 eV aproximadamente, la pendiente de la curva se vuelve menor. Posteriormente, cuando la energía cinética llega a un valor próximo a los 1,000 eV, se observa un comportamiento linealmente creciente.

Los datos compilados para comparar los valores obtenidos del alcance fueron obtenidos directamente de la página del NIST [11], a diferencia de los datos del poder de frenado, que fueron calculados con su modelo (modelo de Bethe), por lo que comprenden un rango de energías incidentes más altas.

Figura 5.8: RMS para el alcance con respecto al modelo utilizado por el NIST

Figura 5.9: Diferencias porcentuales para el alcance con respecto al modelo utilizado por el NIST.

Al observar la figura 5.9 se observa que a altas energías los modelos van mostrando un mejor acuerdo, reduciéndose siempre el valor del RMS mientras la energía del electrón incidente aumenta.

El modelo utilizado por el programa ESTAR para obtener a los valores del alcance se basa en integrar el inverso del poder de frenado con respecto a la energía, desde 0 hasta la energía del electrón incidente, a diferencia del método utilizado en este trabajo que integra desde el valor ω_{\min} . Por lo anterior, es de esperarse que los valores del NIST sean ligeramente mayores.

Capítulo 6

Conclusiones

En este trabajo se calculó la función de pérdida de energía dependiente de la transferencia de momento a partir de la función de pérdida de energía aproximada. Con dicha función se obtuvieron los valores del camino libre medio inelástico, el poder de frenado y el alcance para electrones en agua líquida, Al_2O_3 , CaF_2 y LiF, en un rango de energía que abarcó desde el ancho de la banda prohibida hasta los 433 keV.

Se obtuvo el valor de la incertidumbre RMS porcentual tomando como referencia a dos modelos para el poder de frenado: El modelo de Luo et al. [13] y el modelo de Bethe relativista, utilizado por el programa ESTAR del NIST [11].

Al comparar los valores obtenidos del poder de frenado con el modelo del NIST, se obtuvo un valor promedio de la incertidumbre RMS de 14 % a lo largo de todo el rango energético, y de 9 % desde los 10 keV hasta los 433 keV. En ese mismo rango energético, los errores porcentuales fueron de 0.14 % - 8 %para el agua líquida, 8 % - 16 % para el LiF, 4 % - 10 % para el CaF_2 y de 6 % - 10 % para el Al_2O_3 . Para todos los compuestos, se observó que al incrementar la energía, la diferencia se volvía menor. Las diferencias RMS porcentuales reflejan un buen acuerdo a altas energías con el modelo del NIST, que toma el modelo relativista de Bethe.

Comparando con el modelo de Luo et al. [13], el valor promedio del RMS para el poder de frenado a lo largo de todo el intervalo energético fue de 25 %, mientras que en un intervalo de energías medias, que abarca desde 200 eV hasta 10 keV, se obtuvo una incertidumbre RMS promedio de 15 %.

La incertidumbre RMS del camino libre medio inelástico se obtuvo con respecto al modelo TPP-2M [9], al comparar los resultados obtenidos para el Al_2O_2 , CaF_2 y el LiF. Al promediar los valores obtenidos del RMS porcentual se obtuvo un valor de 11 %. Los valores del RMS muestran una conducta decreciente respecto al aumento de energía, por lo que a altas energías también se tiene un mejor acuerdo entre los modelos. El modelo TPP-2M se construye mediante datos experimentales y toma en consideración los efectos relativistas. Por lo que, en general, los resultados obtenidos del IMFP en este trabajo, presentan un buen acuerdo al compararse con los del modelo TPP-2M en energías medias y altas (1,150 eV - 433 keV).

La incertidumbre RMS del alcance se obtuvo con respecto al modelo utilizado por el programa ESTAR del NIST [11]. Al promediar los valores de la incertidumbre RMS se obtiene un valor de 9% y ésta también muestra una conducta decreciente con respecto al aumento de energía cinética del electrón incidente.

Al observar las gráficas de los valores del RMS y las de diferencias porcentuales, se aprecia que al incrementar el valor de la energía cinética del electrón incidente, los modelos muestran cada vez un

acuerdo mayor. Por lo tanto el modelo demuestra ser confiable a altas energías para obtener los valores del poder de frenado, camino libre medio y alcance.

La función de pérdida de energía obtenida en este trabajo no se comparó con las obtenidas en otros modelos debido a que, hasta nuestro conocimiento, no se han publicado valores de la función de pérdida de energía dependiente del momento para Al_2O_3 , CaF_2 , LiF y agua líquida.

Se concluye que la aproximación completa de Penn puede considerarse como un método confiable, incluso cuando se compara con modelos que toman en cuenta los efectos relativistas a altas energías, o con modelos que no se basan en la función dieléctrica. La construcción de la función de pérdida de energía dependiente del momento se realizó de manera satisfactoria. A pesar de no comparar los valores de la función de pérdida de energía directamente con otros datos, mostró ser una base confiable para calcular los valores del camino libre medio inelástico, alcance y poder de frenado para cualquier compuesto.

Se desarrolló un programa en *Wolfram Mathematica* disponible en el Instituto de Física de la UNAM, capaz de calcular la función de pérdida de energía dependiente del momento, el poder de frenado, el camino libre medio inelástico y el alcance para electrones incidentes en cualquier material.

El artículo publicado [1], derivado de los resultados obtenidos en el presente trabajo, se encuentra en el apéndice C.

Bibliografía

- L. R. Castillo-Rico, M. A. Flores-Mancera, G. Massillon-JL. (2021). Stopping power and CSDA range of electrons in liquid water, LiF, CaF2, and Al2O3 from the energy gap up to 433 keV. Nuclear Instruments and Methods in Physics Research B. 189-197 https://doi.org/10.1016/j.nimb.2021.07.002 35, 39
- [2] D. R. Penn. (1976). Electron mean free paths for free-electron-like materials. Physical Review B, 13(12):5248-5254. 1, 33, 34
- S. Tanuma, C. J. Powell, and D. R. Penn. (1991). Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50-2000 eV range. Surface and Interface Analysis, 17(13):927-939. 1, 9, 26, 33
- [4] S. Tanuma, C. J. Powell, and D. R. Penn. (1993). Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. Surface and Interface Analysis, 21(3):165-176. 1, 33
- [5] H. Shinotsuka, S. Tanuma, C. J. Powell and D. R. Penn. (2015). Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50eV to 200keV range with the relativistic full Penn algorithm. Wiley, 23, 871-888. 1, 10, 11
- [6] D. Emfetzoglou, I. Kyriakou, R. Garcia-molina, and I. Abril. (2017). Inelastic mean free path of lowenergy electrons in condensed media : beyond the standard models. Surface and Interface Analysis, 49:4-10. 1, 2
- [7] D. Emfietzoglou and H. Nikjoo. (2007). Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface. Radiation Research, 167(1):110-120. 1, 2, 26, 33
- [8] A. Akkerman, T. Boutboul, A. Breskin, R. Chechik, A. Gibrekhterman, and Y. Lifshitz. (1996). Inelastic Electron Interactions in the Energy Range 50 eV to 10 keV in Insulators: Alkali Halides and Metal Oxides. Physica Status Solidi (B), 198(2):769-784. 1, 2, 26, 32, 34
- [9] Shinotsuka, H. Tanuma, S. Powell, C. J. and Penn, D. R. (2019). Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 eV to 200 keV range with the full Penn algorithm. Surf. Interface Anal. 51, 427457. 1, 26, 33, 34, 38
- [10] H. A. Bethe. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Annalen der Physik, 3, 325-400. 1, 2, 4, 5
- [11] M. J. Berger, J. S Coursey, M. A. Zucker, and J. Chang. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions. NIST, https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html 2, 26, 27, 30, 31, 35, 38
- [12] R. M. Sternheimer. (1952). The density effect for the ionization loss in various materials, Phys. Rev. 88, 851. 2

- [13] S. Luo, X. Zhang, and D. C. Joy. (1991) Experimental determinations of electron stopping power at low energies. Radiation Eects and Defects in Solids, 117(1-3):235-242. 2, 9, 26, 30, 31, 38
- [14] H. Gümüs, (2008). New stopping power formula for intermediate energy electrons. Applied Radiation and Isotopes 66: 1886–1890 2, 26, 32
- [15] S. A. Holgate. (2010). Understanding Solid State Physics. USA: CRC Press. 6
- [16] E. B. Podgorsak. (2010). Radiation Physics for Medical Physicists. Quebec, Canada: Springer. 3, 5, 6
- [17] F. H. Attix. (2004). Introduction to Radiological Physics and Radiation Dosimetry. Madison, Wisconsin: Wiley-VCH. 4, 5, 6
- [18] J. Ashkin, H. A. Bethe, K. T. Baindridge, and H. H. Ramsey. (1953). Experimental nuclear physics. New York. John Wiley and Sons. 4
- [19] NIST Reference on Constants, Units and Uncertainty. (2018). CODATA recommended values. https://physics.nist.gov/cgi-bin/cuu/Value?re 5
- [20] H. O. Wycko. (1984) Stopping Powers for Electrons and Positrons. Technical report, International Commission on Radiation Units and Measurements. 5
- [21] R. Hsu. (1979) Mean excitation energy of the elements for proton penetration in matter. Technical report, Departamento de física, National Taiwan Normal University, Taiwan. 5
- [22] Z. J. Ding and R. Shimizu. (1996). A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning, 18, 92-113.
- [23] Y. Sun, H. Xu, B. Da, S. Mao, Z. Ding. (2016). Calculations of Energy-Loss Function for 26 Materials. Chinese Journal of Chemical Physics. Vol. 29-6. 663-670 7
- [24] B. L. Henke, E. M. Gullikson, and J. C. Davis. (1993). x-ray interactions: photoabsortion, scattering, transmission and reflection at E= 50-30,000 eV, Z=1-92 eV. Atomic data and nuclear data tables, 54(2):181-342. 7, 8
- [25] E. D. Palik.(1985). Chapter 1. Introductory Remarks. In Handbook of Optical Constants of Solids, pages 36-64. Academic Press. 7
- [26] M. Á. Flores-Mancera, J. S. Villarrubia, and G. Massillon-JL. (2020). Electron Inelastic Mean Free Paths for LiF, CaF2, Al2O3, and Liquid Water from 433 keV down to the Energy Gap. ACS OMEGA, 5, 4139-4147. 8, 9, 12, 14, 15, 16, 30, 34, 35
- [27] A. Piegary, F. Flory, (2013) Optical thin films and coatings. 1st ed.; Woodhead Publishing Limited: pp 1845. 8
- [28] F. Wooten. (1972). Optical Properties of Solids. 1st ed. Academic Press: California, pp 1255. 9
- [29] K. Fisher, J. Daniels, S. Hess. (1970). Tracts in modern physics. 1st ed.; Springer- Verlag: Alemania, pp 172. 9
- [30] D. Tanner. (2004). Kramers-Kronig Relations and Sum Rules. In Optical Effects in Solids, 1, 150-172. 9
- [31] E. D. Palik.(1985). Chapter 3. Dispersion Theory , Sum Rules , and Their Application to the Analysis of Optical Data. In Handbook of Optical Constants of Solids, pages 35-68. 9
- [32] Bethe, H. A. Morrison, P. Ford, K. W. (1947). Elementary Nuclear Theory, 1st ed.; John Wiley and Sons: New York, 1141 9

- [33] J. W. Robinson. (1996). Atomic Spectroscopy. Marcel Dekker, 2nd edition. 9
- [34] S. F. Mao, Y. G. Li, R. G. Zeng, and Z. J. Ding. (2008). Electron inelastic scattering and secondary electron emission calculated without the single pole approximation. Journal of Applied Physics, 104, 114907-1,114907-10. 10
- [35] K. O. Jensen and A. B. Walker. (1993). Monte Carlo simulation of the transport of fast electrons and positrons in solids Surface Science 292:83-97 10
- [36] H. Shinotsuka, S. Tanuma, C. J. Powell and D. R. Penn. (2012). Calculations of electron stopping powers for 41 elemental solids over the 50 eV to 30 keV range with the full Penn algorithm. Nuclear Instruments and Methods in Physics Research B 270, 75-92. 12, 20, 30
- [37] J. Cameron. (1991). Radiation Dosimetry. Environmental Health Perspectives Vol. 91 13
- [38] Margit Osav, Tamás Biro. (1980). Aluminium oxide in TL dosimetry. Nuclear Instruments and Methods 175, 60-61 13
- [39] J. Seuntjens, M. Olivares, M. Evans, and E. Podgorsak. (2005). Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols. Medical physics, 32(9):2945-2953. 13
- [40] V. Kortov. (2007). Materials for thermoluminescent dosimetry: Current status and future trends. Radiation Measurements, 42(4-5):576-581. 13
- [41] J. Aigueperse, P. Mollard, D. Devilliers, M. Chemla, R. Faron, R. Romano, J. P. Cuer, (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 13
- Society [42] British Cell Biology. (2020).Water and Cells. 15/02/2020, The for de https://bscb.org/learning-resources/softcell-e-learning/water-and-Company of Biologists cells/:~:text=Water%20is%20present%20both%20inside.and%20about%2023%25%20 13
- [43] M. Mitacc. (1989). Tópicos de estadística descriptiva y probabilidad. Perú. 20
- [44] T. Boutboul, A. Akkerman, A. Breskin, and R. Chechik. (1996). Electron inelastic mean free path and stopping power modelling in alkali halides in the 50 eV-10 keV energy range. Journal of Applied Physics, 79(9):6714-6721. 26
- [45] A. Jablonski. (2000). Determination of the IMFP from electron elastic backscattering probability. Surface and Interface Analysis, 595(March):582-595. 34
- [46] Y. T. Lee. (1966), Binary-Encounter Electron-Atom Collision Theory. Phys. Rev. 141, 88-34
- [47] S. H. Pandya, B. G. Vaishnav, and K. N. Joshipura. (2012). Electron inelastic mean free paths in solids: A theoretical approach. Chinese Physics B, 21(9):093402. 26, 34
- [48] M. Á. Flores-Mancera. (2018). Tesis de Licenciatura, Camino libre medio inelástico y poder de frenado lineal de colisión para electrones de bajas energías en distintos compuestos de interés dosimétrico. México: UNAM. 34

Apéndice A

Tablas de cálculos

A.1. Camino libre medio inelástico

Energía	Camno libre medio inelástico [nm]					
[eV]	Al_2O_3	CaF_2	LiF	H_2O		
9.699	23.258			11.17		
9.791	22.0161			10.85		
9.913	20.4752			10.4447		
12.9	6.17294	12.5541		5.22297		
15.0456	4.09267	6.82484	8.22432	3.85567		
17.3446	3.01102	4.62645	4.90362	3.0352		
19.8081	2.35938	3.41907	3.51007	2.49351		
22.4477	1.92052	2.70384	2.72231	2.10858		
25.2761	1.60843	2.2302	2.18571	1.8265		
28.3068	1.38076	1.88724	1.77588	1.6155		
31.5543	1.21169	1.62432	1.4979	1.4545		
35.034	1.08303	1.42166	1.3032	1.32937		
38.7626	0.980343	1.27122	1.16604	1.23166		
42.7579	0.894593	1.16346	1.06288	1.15655		
47.0389	0.816499	1.08353	0.981098	1.09986		
51.626	0.744022	1.02126	0.895209	1.05789		
56.5413	0.683745	0.971494	0.805974	1.02776		
61.808	0.641079	0.930738	0.744977	1.00736		
67.4515	0.615022	0.897218	0.709693	0.994989		
73.4986	0.598951	0.871152	0.690274	0.989318		
79.9781	0.589081	0.851652	0.679318	0.989419		
86.9211	0.584109	0.834917	0.67447	0.994713		
94.3606	0.58323	0.819264	0.67433	1.0048		
102.332	0.585915	0.805546	0.678063	1.01938		
110.874	0.591758	0.796142	0.685126	1.03828		
120.027	0.600445	0.793131	0.695224	1.06166		
129.834	0.611793	0.796269	0.708081	1.08954		
140.342	0.62566	0.804933	0.723433	1.12163		
151.602	0.641913	0.818362	0.740834	1.1577		
163.668	0.660433	0.835886	0.759855	1.1977		
176.596	0.681149	0.857057	0.780753	1.24162		

Cuadro A.1: Valores calculados para el camino libre medio inelástico I.

Energía	Al_2O_3	CaF_2	LiF	H_2O
190.449	0.703877	0.881621	0.803865	1.28949
205.293	0.728472	0.909398	0.829416	1.3414
221.198	0.754875	0.9403	0.857519	1.39745
238.241	0.783194	0.974271	0.888181	1.45773
256.503	0.813511	1.01135	0.921514	1.52242
276.071	0.845917	1.05158	0.957655	1.5917
297.039	0.880519	1.09504	0.996755	1.66577
319.506	0.917426	1.14181	1.03893	1.74487
343.579	0.956754	1.19202	1.0843	1.82923
369.375	0.998633	1.24581	1.13301	1.91914
397.015	1.04322	1.30332	1.18518	2.01486
426.633	1.09069	1.36472	1.24096	2.11672
458.368	1.14122	1.4302	1.30052	2.22504
492.373	1.195	1.49996	1.36404	2.3402
528.81	1.25222	1.57422	1.43172	2.46257
567.853	1.31307	1.65323	1.50378	2.59255
609.689	1.3778	1.73724	1.58045	2.7306
654.516	1.44664	1.8265	1.66199	2.87719
702.55	1.51984	1.92133	1.74866	3.03281
754.019	1.59766	2.02204	1.84077	3.19799
809.169	1.68036	2.12893	1.93862	3.3733
868.263	1.76821	2.24237	2.04255	3.55934
931.583	1.86152	2.36273	2.15289	3.75675
999.432	1.9606	2.49042	2.27001	3.96622
1072.13	2.0658	2.62584	2.39434	4.18848
1150.04	2.17748	2.76946	2.52627	4.42428
1233.51	2.29602	2.92169	2.66627	4.67443
1322.95	2.42181	3.08294	2.8148	4.93979
1418.79	2.55529	3.25368	2.97239	5.2213
1521.48	2.69691	3.43456	3.13957	5.51992
1631.52	2.84714	3.62631	3.31691	5.83667
1749.43	3.0065	3.82959	3.505	6.17267
1875.77	3.17552	4.04511	3.70452	6.52908
2011.15	3.35479	4.27363	3.91615	6.90711
2156.21	3.54488	4.51596	4.14058	7.30804
2311.64	3.74637	4.77294	4.3786	7.73309
2478.19	3.95997	5.04544	4.63102	8.18376
2656.65	4.18648	5.33441	4.8987	8.66173
2847.88	4.4267	5.64086	5.18257	9.16871
3052.78	4.68145	5.96575	5.48352	9.70646
3272.33	4.9516	6.31015	5.80253	10.2769
3507.59	5.23811	6.6753	6.14074	10.882
3759.68	5.54192	7.06245	6.49933	11.524
4029.79	5.86405	7.47294	6.87953	12.2051
4319.22	6.20558	7.90813	7.28273	12.9271
4629.35	6.56773	8.3694	7.71009	13.6929
4961.66	6.9518	8.85843	8.16308	14.5051
5317.74	7.35918	9.37714	8.64351	15.3662
5699.28	7.79089	9.92701	9.15287	16.2794

Cuadro A.2: Valores calculados para el camino libre medio inelástico II.

Energía	Al_2O_3	CaF_2	LiF	H_2O
6108.11	8.24835	10.5098	9.6928	17.2479
6546.18	8.73318	11.1275	10.2651	18.2747
7015.59	9.24695	11.7821	10.8716	19.3632
7518.56	9.79133	12.4758	11.5143	20.5169
8057.5	10.3681	13.2107	12.1953	21.7397
8634.99	10.979	13.9893	12.9168	23.0355
9253.79	11.6261	14.8139	13.681	24.4084
9916.83	12.3113	15.6871	14.4903	25.8628
10627.3	13.0367	16.6117	15.3473	27.4032
11015.	13.429	17.1117	15.8107	28.2364
11776.2	14.1921	18.0843	16.7122	29.858
12590.	14.9981	19.1115	17.6645	31.571
13459.9	15.8491	20.1961	18.6701	33.38
14389.8	16.7475	21.3411	19.7317	35.2903
15383.9	17.6957	22.5495	20.8521	37.3069
16446.5	18.696	23.8243	22.0342	39.4351
17582.5	19.751	25.1688	23.2811	41.6803
18796.9	20.8633	26.5864	24.5957	44.0483
20095.1	22.0356	28.0804	25.9814	46.5447
21482.8	23.2706	29.6543	27.4413	49.1756
22966.3	24.5712	31.3118	28.9788	51.9467
24552.1	25.94	33.0563	30.5972	54.8642
26247.4	27.3801	34.8916	32.3	57.9346
28059.7	28.8944	36.8214	34.0906	61.164
29997.	30.4857	38.8493	35.9723	64.5587
32067.9	32.1571	40.9792	37.9489	68.1252
34281.8	33.9113	43.2148	40.0234	71.8694
36648.4	35.7512	45.5596	42.1995	75.7975
39178.3	37.6796	48.0173	44.4805	79.9155
41882.8	39.6991	50.5912	46.8694	84.2293
44773.9	41.8124	53.2845	49.3692	88.7443
47864.5	44.0218	56.1003	51.9832	93.4659
51168.3	46.3297	59.0414	54.7138	98.3985
54700.1	48.7381	62.1104	57.5634	103.546
58475.6	51.2483	65.3095	60.534	108.914
62511.6	53.8621	68.6406	63.6273	114.505
66826.1	56.5807	72.1049	66.8444	120.32
71438.3	59.4047	75.7033	70.1863	126.362
76368.7	62.3343	79.4364	73.6531	132.631
81639.3	65.3691	83.3039	77.2448	139.126
87273.6	68.5085	87.3047	80.9605	145.847
93296.6	71.7511	91.437	84.7985	152.79
99735.3	75.0948	95.6981	88.7565	159.951
106618.	78.537	100.085	92.8314	167.325
113976.	82.075	104.593	97.0194	174.904
121842.	85.7044	109.217	101.315	182.68
130250.	89.4199	113.952	105.714	190.642
139238.	93.216	118.789	110.208	198.779
148847.	97.0865	123.721	114.791	207.077

Cuadro A.3: Valores calculados para el camino libre medio inelástico III.

Energía	Al_2O_3	CaF_2	LiF	H_2O
159119.	101.025	128.74	119.454	215.522
170099.	105.023	133.835	124.188	224.095
181837.	109.072	138.994	128.982	232.778
194385.	113.163	144.207	133.826	241.552
207799.	117.286	149.461	138.708	250.397
222138.	121.429	154.741	143.616	259.288
237466.	125.584	160.035	148.535	268.203
253853.	129.738	165.328	153.454	277.118
271370.	133.879	170.605	158.358	286.005
290095.	137.996	175.851	163.234	294.843
310113.	142.077	181.051	168.068	303.603
331512.	146.11	186.19	172.844	312.262
354388.	150.083	191.253	177.551	320.796
378842.	153.987	196.227	182.174	329.178
404983.	157.808	201.096	186.699	337.381
432928.	161.537	205.848	191.117	345.391

Cuadro A.4: Valores calculados para el camino libre medio inelástico **IV**.

A.2.	Poder	de	frenado

Energía	Poder de frenado $[eV/nm]$					
[eV]	Al_2O_3	CaF_2	LiF	H_2O		
9.699	0.367115			0.770522		
9.791	0.398791			0.798547		
9.913	0.441491			0.836258		
12.9	1.72338	0.995539		1.94238		
15.0456	2.90423	1.96053	1.6318	2.92964		
17.3446	4.3842	3.13973	2.94016	4.13479		
19.8081	6.18801	4.59829	4.47807	5.56156		
22.4477	8.33613	6.26538	6.26649	7.20198		
25.2761	10.842	8.16865	8.49021	9.04454		
28.3068	13.7085	10.3639	11.1754	11.0674		
31.5543	16.9231	12.886	14.186	13.2431		
35.034	20.4516	15.6895	17.3347	15.5225		
38.7626	24.2304	18.6103	20.579	17.8493		
42.7579	28.8152	21.5001	23.9241	20.1756		
47.0389	33.8136	24.366	27.458	22.3862		
51.626	39.1128	27.2463	31.8512	24.453		
56.5413	44.5354	30.1381	37.3811	26.3343		
61.808	49.0629	33.0485	42.2482	28.0134		
67.4515	53.2414	36.0244	46.0743	29.5043		
73.4986	57.0018	38.9013	49.0337	30.7984		
79.9781	60.2763	41.609	51.3864	31.8875		
86.9211	62.9561	44.3585	53.2966	32.7697		
94.3606	65.0462	47.3262	54.9314	33.4578		
102.332	66.5408	50.2792	56.2673	33.9589		
110.874	67.4746	52.8767	57.2853	34.2635		
120.027	68.4021	55.0743	57.9946	34.376		
129.834	68.9284	56.7076	58.4677	34.3001		
140.342	69.0528	57.7169	58.7609	34.0547		
151.602	68.8014	58.248	58.9409	33.6754		
163.668	68.5216	58.4068	59.0544	33.2032		
176.596	67.982	58.2542	59.0675	32.631		
190.449	67.1972	57.8483	58.9303	31.977		
205.293	66.2039	57.2339	58.6353	31.2506		
221.198	65.3329	56.4465	58.1322	30.4723		
238.241	64.3689	55.4989	57.4281	29.65		
256.503	63.3148	54.3945	56.5729	28.8022		
276.071	62.1785	53.175	55.5881	27.9294		
297.039	61.0278	51.8732	54.4819	27.0409		
319.506	59.8208	50.506	53.2673	26.1397		
343.579	58.5604	49.0891	51.9592	25.2325		
369.375	57.2516	47.6329	50.571	24.3243		
397.015	55.9228	46.1485	49.1281	23.4214		
426.633	54.5593	44.6502	47.647	22.5267		
458.368	53.1637	43.1474	46.1245	21.6438		

Cuadro A.5: Valores calculados para el poder de frenado ${\bf I}.$

A.2. PODER DE FRENADO

Energía	Al_2O_3	CaF_2	LiF	H_2O
492.373	51.7383	41.643	44.5755	20.7763
528.81	50.2764	40.1457	43.017	19.9265
567.853	48.7904	38.6632	41.4583	19.0962
609.689	47.2862	37.2003	39.9073	18.2849
654.516	45.7703	35.762	38.3713	17.4956
702.55	44.2488	34.3536	36.8554	16.7273
754.019	42.7293	32.9782	35.3641	15.983
809.169	41.2189	31.6382	33.9015	15.2617
868.263	39.7238	30.3362	32.4705	14.5657
931.583	38.2355	29.0754	31.0766	13.8929
999.432	36.7728	27.8576	29.7215	13.2459
1072.13	35.3424	26.6813	28.4057	12.6225
1150.04	33.9488	25.5495	27.1314	12.0248
1233.51	32.5632	24.4623	25.8988	11.4506
1322.95	31.2176	23.4212	24.7078	10.9016
1418.79	29.9182	22.4254	23.5599	10.375
1521.48	28.6677	21.469	22.4541	9.87248
1631.52	27.4239	20.5501	21.3919	9.39157
1749.43	26.2271	19.669	20.3716	8.93379
1875.77	25.0827	18.8238	19.3937	8.49691
2011.15	23.9926	18.0095	18.4573	8.08197
2156.21	22.9117	17.2237	17.5623	7.68665
2311.64	21.8801	16.4657	16.7067	7.31224
2478.19	20.9017	15.7349	15.8903	6.95665
2656.65	19.976	15.0316	15.1114	6.61949
2847.88	19.0473	14.3566	14.3698	6.29763
3052.78	18.1613	13.7093	13.6634	5.99113
3272.33	17.3215	13.0888	12.992	5.69725
3507.59	16.5279	12.4926	12.3526	5.41699
3759.68	15.7342	11.9192	11.7425	5.14877
4029.79	14.9791	11.3679	11.1609	4.89293
4319.22	14.2654	10.8373	10.6063	4.64801
4629.35	13.5933	10.3285	10.0781	4.41471
4961.66	12.9231	9.8395	9.57432	4.19197
5317.74	12.2879	9.37069	9.09395	3.9799
5699.28	11.6903	8.92065	8.63638	3.77728
6108.11	11.1301	8.48976	8.19965	3.58411
6546.18	10.5717	8.07722	7.78298	3.3993
7015.59	10.0444	7.68232	7.38673	3.22348
7518.56	9.54996	7.30465	7.01012	3.05612
8057.5	9.08801	6.94447	6.65113	2.89754
8634.99	8.626	6.60074	6.31052	2.74712
9253.79	8.1898	6.27243	5.98663	2.60492
9916.83	7.78072	5.95861	5.67894	2.4694
10627.3	7.39793	5.66004	5.38625	2.33954
11015.	7.19876	5.51152	5.24044	2.27559
11776.2	6.84297	5.24324	4.97836	2.16017
12590.	6.50862	4.98815	4.72864	2.04763
13459.9	6.19568	4.74455	4.49195	1.94457

Cuadro A.6: Valores calculados para el poder de frenado II.

Energía	Al_2O_3	CaF_2	LiF	H_2O
14389.8	5.88698	4.51214	4.26667	1.84727
15383.9	5.59582	4.29068	4.05234	1.75395
16446.5	5.32312	4.07903	3.84848	1.66153
17582.5	5.0685	3.87813	3.6553	1.58052
18796.9	4.82975	3.68591	3.47148	1.50369
20095.1	4.60206	3.50467	3.29656	1.42821
21482.8	4.37711	3.33168	3.13058	1.34967
22966.3	4.14179	3.16826	2.97263	1.2799
24552.1	3.93509	3.01393	2.82233	1.21438
26247.4	3.74127	2.86771	2.67974	1.15333
28059.7	3.56093	2.72935	2.54473	1.09664
29997.	3.39372	2.59842	2.41674	1.04021
32067.9	3.22704	2.47475	2.29557	0.987318
34281.8	3.0708	2.35806	2.1806	0.938125
36648.4	2.92544	2.24689	2.07207	0.892548
39178.3	2.79064	2.14152	1.9693	0.847184
41882.8	2.65588	2.03987	1.87203	0.804732
44773.9	2.52939	1.94304	1.78007	0.765323
47864.5	2.41158	1.85107	1.6931	0.728883
51168.3	2.30223	1.76404	1.61103	0.692657
54700.1	2.19314	1.68179	1.53399	0.658789
58475.6	2.09083	1.60373	1.46143	0.627346
62511.6	1.99567	1.5308	1.3931	0.598207
66826.1	1.90756	1.46312	1.32991	0.568699
71438.3	1.82022	1.3992	1.27148	0.540902
76368.7	1.73871	1.33834	1.21745	0.514945
81639.3	1.66334	1.28074	1.16869	0.490856
87273.6	1.594	1.22568	1.12232	0.467229
93296.6	1.52557	1.17402	1.07361	0.445291
99735.3	1.46205	1.12485	1.02819	0.425158
106618.	1.40354	1.07813	0.985294	0.406849
113976.	1.34975	1.03469	0.943943	0.389308
121842.	1.2949	0.993477	0.905525	0.373359
130250.	1.24344	0.955088	0.868021	0.358959
139238.	1.19566	0.919119	0.8327	0.345919
148847.	1.15167	0.884224	0.800254	0.331935
159119.	1.10945	0.851611	0.769508	0.318677
170099.	1.07074	0.821634	0.740065	0.306232
181837.	1.03554	0.794437	0.712955	0.294651
194385.	1.00361	0.769501	0.68817	0.283551
207799.	0.970722	0.745232	0.666618	0.273328
222138.	0.940023	0.721437	0.646906	0.264031
237466.	0.911662	0.69864	0.628544	0.255651
253853.	0.88566	0.677145	0.608184	0.247553
271370.	0.860447	0.658115	0.589366	0.24022
290095.	0.837307	0.640006	0.570951	0.233637
310113.	0.816271	0.625893	0.554251	0.227722
331512.	0.797207	0.611558	0.538855	0.222297
354388.	0.779754	0.59605	0.525752	0.217055

Cuadro A.7: Valores calculados para el poder de frenado III.

A.2. PODER DE FRENADO

Energía	Al_2O_3	CaF_2	LiF	H_2O
378842.	0.763243	0.581731	0.514865	0.211518
404983.	0.746574	0.569409	0.502892	0.204976
432928.	0.728086	0.556878	0.494161	0.196417

Cuadro A.8: Valores calculados para el poder de frenado **IV**.

A.3. Alcance

Energía	Alcance [nm]			
[eV]	Al_2O_3	CaF_2	LiF	H_2O
9.699	0.009608			5.02594
9.791	0.240473			5.14399
9.913	0.531414			5.29241
12.9	3.84017	0.34963		7.60067
15.0456	4.79637	1.36390	4.37661	8.49858
17.3446	5.43926	2.28792	5.41610	9.16604
19.8081	5.91147	2.93392	6.09204	9.67351
22.4477	6.27851	3.42456	6.58907	10.088
25.2761	6.57566	3.81932	6.97734	10.4379
28.3068	6.82395	4.14843	7.28793	10.7404
31.5543	7.0369	4.42918	7.54536	11.0083
35.034	7.22371	4.67356	7.76668	11.2506
38.7626	7.39097	4.89129	7.96376	11.4743
42.7579	7.54204	5.09064	8.14357	11.6845
47.0389	7.67905	5.27742	8.31057	11.8856
51.626	7.80504	5.45526	8.46587	12.0814
56.5413	7.92264	5.62662	8.60813	12.2748
61.808	8.03514	5.79337	8.74024	12.4685
67.4515	8.14541	5.9568	8.86781	12.6646
73.4986	8.25504	6.11815	8.99481	12.865
79.9781	8.36545	6.27908	9.12373	13.0716
86.9211	8.47803	6.44065	9.2563	13.2863
94.3606	8.59417	6.60298	9.39371	13.5108
102.332	8.71523	6.76625	9.53701	13.7472
110.874	8.84261	6.93174	9.68736	13.9975
120.027	8.97726	7.10118	9.84608	14.264
129.834	9.12001	7.27646	10.0144	14.5495
140.342	9.27225	7.45998	10.1937	14.8569
151.602	9.43555	7.65406	10.385	15.1893
163.668	9.61122	7.86081	10.5895	15.5501
176.596	9.80059	8.08237	10.8083	15.9428
190.449	10.0055	8.32093	11.0431	16.3716
205.293	10.228	8.57885	11.2956	16.8412
221.198	10.4699	8.85864	11.5679	17.3566
238.241	10.7327	9.16309	11.8628	17.9236
256.503	11.0187	9.49542	12.1832	18.5485
276.071	11.3306	9.85925	12.5321	19.2385
297.039	11.671	10.2585	12.9131	20.0015
319.506	12.0428	10.6974	13.3301	20.8467
343.579	12.4496	11.1809	13.7877	21.7842
369.375	12.8951	11.7144	14.2909	22.8256
397.015	13.3836	12.304	14.8455	23.9838
426.633	13.9198	12.9566	15.4577	25.2735
458.368	14.5091	13.6797	16.1347	26.711

Cuadro A.9: Valores calculados para el alcance ${\bf I}.$

Energía	Al_2O_3	CaF_2	LiF	H_2O
492.373	15.1575	14.4821	16.8847	28.315
528.81	15.872	15.3734	17.7169	30.1063
567.853	16.6604	16.3646	18.6416	32.1082
609.689	17.5315	17.4679	19.6703	34.3477
654.516	18.4952	18.6972	20.8161	36.8547
702.55	19.5627	20.0679	22.0937	39.6633
754.019	20.7466	21.5975	23.5196	42.812
809.169	22.0609	23.3053	25.1128	46.3442
868.263	23.5216	25.2133	26.8944	50.3089
931.583	25.1467	27.346	28.8883	54.7616
999.432	26.9565	29.7307	31.1214	59.7648
1072.13	28.9737	32.3982	33.6242	65.3893
1150.04	31.2232	35.3828	36.4312	71.7146
1233.51	33.7344	38.7228	39.5811	78.8308
1322.95	36.5405	42.4608	43.1181	86.8391
1418.79	39.6775	46.6439	47.0917	95.8542
1521.48	43.1851	51.3257	51.5581	106.005
1631.52	47.1108	56.5662	56.5805	117.437
1749.43	51.5087	62.4329	62.2307	130.314
1875.77	56.4363	69.0009	68.5892	144.821
2011.15	61.9568	76.3558	75.7472	161.163
2156.21	68.1458	84.5945	83.8071	179.575
2311.64	75.0905	93.8271	92.8846	200.316
2478.19	82.8815	104.177	103.11	223.677
2656.65	91.6186	115.785	114.631	249.986
2847.88	101.425	128.807	127.613	279.615
3052.78	112.446	143.417	142.242	312.984
3272.33	124.83	159.813	158.728	350.579
3507.59	138.74	178.217	177.305	392.942
3759.68	154.377	198.882	198.244	440.694
4029.79	171.979	222.095	221.848	494.528
4319.22	191.787	248.181	248.46	555.244
4629.35	214.068	277.505	278.469	623.733
4961.66	239.15	310.48	312.312	701.012
5317.74	267.419	347.576	350.487	788.221
5699.28	299.267	389.321	393.557	886.666
6108.11	335.125	436.316	442.158	997.819
6546.18	375.526	489.237	497.017	1123.38
7015.59	421.099	548.85	558.95	1265.23
7518.56	472.478	616.018	628.875	1425.55
8057.5	530.355	691.716	707.836	1606.74
8634.99	595.606	777.046	797.011	1811.51
9253.79	669.261	873.256	897.728	2042.93
9916.83	752.361	981.759	1011.49	2304.45
10627.3	846.048	1104.14	1140.	2600.19
11015.	899.183	1173.57	1212.99	2768.24
11776.2	1007.69	1315.24	1362.08	3111.7
12590.	1129.67	1474.42	1529.86	3498.7
13459.9	1266.72	1653.3	1718.68	3934.83

Cuadro A.10: Valores calculados para el alcance II.

Energía	Al_2O_3	CaF_2	LiF	H_2O
14389.8	1420.76	1854.36	1931.18	4425.67
15383.9	1594.03	2080.36	2170.34	4978.1
16446.5	1788.83	2334.47	2439.54	5600.67
17582.5	2007.63	2620.2	2742.54	6301.98
18796.9	2253.17	2941.52	3083.58	7089.96
20095.1	2528.61	3302.86	3467.48	7975.94
21482.8	2837.84	3709.13	3899.63	8975.29
22966.3	3186.2	4165.93	4386.12	10104.5
24552.1	3579.18	4679.34	4933.85	11377.1
26247.4	4021.21	5256.21	5550.54	12810.3
28059.7	4517.96	5904.25	6244.81	14422.5
29997.	5075.51	6632.01	7026.33	16237.2
32067.9	5701.57	7449.03	7905.95	18281.7
34281.8	6405.17	8365.84	8895.86	20583.2
36648.4	7195.15	9394.39	10009.7	23170.8
39178.3	8081.	10548.1	11262.6	26081.4
41882.8	9074.82	11842.5	12671.8	29358.5
44773.9	10190.8	13295.3	14256.2	33044.2
47864.5	11442.7	14925.5	16037.2	37184.3
51168.3	12845.5	16754.6	18038.4	41836.1
54700.1	14417.9	18805.9	20286.	47066.9
58475.6	16181.8	21105.7	22808.7	52942.5
62511.6	18158.5	23682.7	25638.5	59533.9
66826.1	20370.8	26566.9	28809.8	66934.
71438.3	22847.	29791.5	32358.3	75253.5
76368.7	25619.7	33395.8	36323.	84600.
81639.3	28720.4	37423.	40743.6	95088.4
87273.6	32182.3	41921.6	45664.1	106859.
93296.6	36046.3	46944.5	51152.1	120070.
99735.3	40359.4	52549.3	57282.7	134876.
106618.	45166.3	58801.8	64123.4	151434.
113976.	50514.3	65770.8	71755.5	169930.
121842.	56466.1	73531.6	80266.1	190572.
130250.	63095.	82166.8	89752.9	213551.
139238.	70469.7	91763.3	100330.	239070.
148847.	78661.5	102425.	112105.	267435.
159119.	87752.1	114266.	125199.	299028.
170099.	97830.7	127399.	139754.	334191.
181837.	108983.	141933.	155920.	373283.
194385.	121296.	157987.	173843.	416711.
207799.	134890.	175704.	193656.	464914.
222138.	149906.	195264.	215499.	518315.
237466.	166470.	216861.	239541.	577340.
253853.	184713.	240694.	266046.	642502.
271370.	204785.	266943.	295313.	714362.
290095.	226854.	295808.	327603.	793435.
310113.	251075.	327449.	363200.	880248.
331512.	277610.	362038.	402372.	975381.
354388.	306631.	399930.	445370.	1.07953×10^{6}

Cuadro A.11: Valores calculados para el alcance **III**.

Energía	Al_2O_3	CaF_2	LiF	H_2O
378842.	338334.	441472.	492382.	1.19365×10^{6}
404983.	372965.	486904.	543768.	1.31914×10^{6}
432928.	410860.	536524.	599887.	1.45828×10^{6}

Cuadro A.12: Valores calculados para el alcance ${\bf IV}.$

Apéndice B

Código

A continuación se presenta el código desarrollado en *Wolfram Mathematica*, para obtener a la función de pérdida de energía dependiente de la transferencia de momento. Aunque para este trabajo solo se calculó dicha función para cuatro compuestos, el código podría ser útil para más materiales, el único requisito es contar con su función de pérdida de energía aproximada.

Cabe destacar que el tiempo del cálculo es largo, aproximadamente 32 horas continuas para cada compuesto. Dicho tiempo puede ser reducido, sacrificando precisión en el cálculo, o aumentado al incrementar la precisión. Un equipo de cómputo de alta gama podría resultar conveniente si se requiere un cálculo extremadamente preciso en el menor tiempo posible.

Las primeras dos secciones cumplen funciones técnicas, tales como compilar los datos de la función de pérdida de energía aproximada, asignar el valor del ancho de banda prohibida, activar funciones requeridas, etc.

A partir de la sección **Ecuaciones**, comienzan a desarrollarse las ecuaciones necesarias para aplicar la aproximación completa de Penn y en la sección **Método Numérico** se desarrolla la metodología para llevar a cabo las interpolaciones de la función de pérdida de energía.

Las últimas tres secciones se desarrollaron para obtener los resultados ya expuestos del camino libre medio, poder de frenado y alcance.

Aproximación completa de Penn

Preámbulos y función dieléctrica de Linhard

Valores

```
Se importan los datos de la función de pérdida de energía aproximada.
     Needs["DifferentialEquations`InterpolatingFunctionAnatomy`"]
     necesita
     LaunchKernels[];
     lanza kernels
     ParallelEvaluate[Needs["DifferentialEquations`InterpolatingFunctionAnatomy`"]];
                         necesita
     evalúa en paralelo
     kIDnums = ParallelEvaluate[$KernelID];
                 evalúa en paralelo
                                     identificador de kernel
In[*]:= NombreELF1 = "Al203 ELF.dat";
     NombreELF<sub>2</sub> = "CaF2 ELF.dat";
     NombreELF<sub>3</sub> = "LiF ELF.dat";
     NombreELF<sub>4</sub> = "H2O ELF.dat";
     NombreC<sub>1</sub> = "Al2O3 Cond.dat";
     NombreC<sub>2</sub> = "CaF2 Cond.dat";
     NombreC<sub>3</sub> = "LiF Cond.dat";
     NombreC<sub>4</sub> = "H2O Cond.dat";
     Compuesto = ChoiceDialog["Escoge el compuesto", \{Al_2 0_3 \rightarrow 1, CaF_2 \rightarrow 2, LiF \rightarrow 3, Agua \rightarrow 4\}];
                  diálogo de elección
     Do[If[i == Compuesto, {temporal = Import[NombreELF<sub>i</sub>], Cond = Import[NombreC<sub>i</sub>]}], {i, 4}];
     r… si
                                                                            limporta
     {bandgap,wmin,BVal,densidad,elfinicial} =
        Table[Cond[[i]][[1]], {i, 1, Length[Cond]}];
                                          longitud
     ELFData = temporal[[elfinicial ;; All]];
                                            todo
     Do[temporal[[i, 1]] = temporal[[i, 1]] * QuantityMagnitude[UnitConvert["eV", "Hartrees"]],
     repite
                                                    magnitud de cantidad convierte unidad
       {i, 1, Length[temporal]}]
             longitud
     ELFData = temporal[[1;; All]];
```

A contunuación, se definen las constantes físicas requeridas para hacer los cálculos en el sistema de unidades Hartree.

Interpolaciones

Se genera y grafica la función de pérdida de energía aproximada

 $\begin{aligned} & \left[(q_{j}, w_{j}) - (1/4) (x[w, wp] / z[q, wp]) \right] \\ & \left[(q_{j}, w_{j}, wp_{j}) = z[q, wp] - (1/4) (x[w, wp] / z[q, wp]) \right] \\ & \left[\logsm[q_{j}, w_{j}, wp_{j}] = z[q, wp] + (1/4) (x[w, wp] / z[q, wp]) \right] \\ & \left[\logsm[q_{j}, w_{j}, wp_{j}] = Log[Abs[(Ym[q, w, wp] + 1) / (Ym[q, w, wp] - 1)]] + \left[\log[Abs[(Yp[q, w, wp] + 1) / (Yp[q, w, wp] - 1)]] \right] \\ & \left[\log [Abs[(Yp[q, w, wp] + 1) / (Yp[q, w, wp] - 1)]] \right] \end{aligned}$

Printed by Wolfram Mathematica Student Edition

$$\begin{split} & \text{Im}[*]:= a[q_, w_, wp_] := z[q, wp] / x[w, wp] \\ & A[q_, w_, wp_] := \\ & - (64/3) z[q, wp] * ((a[q, w, wp])^2) (3 + 48 (1 + (z[q, wp])^2) ((a[q, w, wp])^2) + \\ & 256 (3 + (z[q, wp])^2) (1 + 3 * (z[q, wp])^2) (a[q, w, wp])^4) \\ & b[q_, w_, wp_] := x[w, wp] / (z[q, wp] (((z[q, wp])^2) - 1)) \\ & B[q_, w_, wp_] := Log[((z[q, wp] + 1) / (z[q, wp] - 1))^2] + \\ & \log ((b[q, w, wp])^2) (1 + 3 (z[q, wp])^2) ((b[q, w, wp])^2) + \\ & (1/3) (3 + (z[q, wp])^2) (1 + 3 (z[q, wp])^2) ((b[q, w, wp])^4)) \end{split}$$

Regiones

logs[q_, w_, wp_] := Piecewise[{{A[q, w, wp], z[q, wp] / x[w, wp] < 0.01},</pre> función a trozos $\{B[q, w, wp], z[q, wp] / x[w, wp] > 100\}\}, logsm[q, w, wp]]$ pel[q_, w_, wp_] := (1 / (3 * Pi * wp * q * ((z[q, wp])^2))) (logs[q, w, wp]) número pi $ln[*]:= F[t_] := (1 - t^2) Log[Abs[(t + 1) / (t - 1)]]$ lo… valor absoluto $el1m[q_, w_, wp_] := 1 + (1/(Pi * kf[wp] * (z[q, wp])^2)) (1/2 + (1/(8 * z[q, wp]))$ número pi (F[z[q, wp] - x[w, wp] / (4 z[q, wp])] + F[z[q, wp] + x[w, wp] / (4 z[q, wp])])) $el2m[q_, w_, wp_] := (1/(8 * kf[wp] * (z[q, wp])^3)) *$ Piecewise[{{x[w, wp], 0 < x[w, wp] < 4 * z[q, wp] (1 - z[q, wp])}, función a trozos $\{1 - (z[q, wp] - x[w, wp] / (4 * z[q, wp]))^2,$ Abs $[4 * z[q, wp] (1 - z[q, wp])] < x[w, wp] < 4 * z[q, wp] (1 + z[q, wp]) \}$, 0 valor absoluto

Correcciones para casos límite

```
ln[*]:= u[q_, w_, wp_] := (w / (kf[wp] * q))
    elles[q_, w_, wp_] := 1 - ((wp / w)^2) (1 + (((z[q, wp])^2) + 3/5) (1/((u[q, w, wp])^2)))
    el1ei[q_, w_, wp_] :=
      1 + (2/(Pi * q * z[q, wp])) (1/2 + 1/(4 * z[q, wp]) ((1 - (z[q, wp])^2 - (u[q, w, wp])^2))
              número pi
               Log[Abs[(z[q, wp] + 1) / (z[q, wp] - 1)]] + ((z[q, wp])^2 - (u[q, w, wp])^2 - 1)
               lo… valor absoluto
                (2 * (u[q, w, wp])^2 * z[q, wp] / ((((z[q, wp])^2) - 1)^2)))
    el2es[q_,w_,wp_] := 0
    el2ei[q_, w_, wp_] := u[q, w, wp] / (q * z[q, wp])
ln[*]:= el1[q_, w_, wp_] := Piecewise[{{el1ei[q, w, wp], u[q, w, wp] < 0.01},</pre>
                         función a trozos
        {elles[q, w, wp], u[q, w, wp] / (z[q, wp] + 1) > 100}}, ellm[q, w, wp]]
    el2[q_, w_, wp_] := Piecewise[{{el2ei[q, w, wp], u[q, w, wp] < 0.01},
                         función a trozos
        {el2es[q, w, wp], u[q, w, wp] / (z[q, wp] + 1) > 100}}, el2m[q, w, wp]
```

Printed by Wolfram Mathematica Student Edition

Componente de plasmon y de single electron para la función de pérdida de energía

Preámbulos

Valores de energía incidente

 $In[*]_{E} = coords1 = First[InterpolatingFunctionCoordinates[ELF]]; [primero]$ final = Length[coords1]; [longitudLímites de integración para la transferencia de momento $<math display="block">In[*]_{E} = T[Ei_{-}] := Ei; Tp[Ei_{-}] := T[Ei] - bandgap; qm[T_{-}, w_{-}] := Sqrt[Tp[T] (2 + Tp[T] / (c^{2}))] - Sqrt[(Tp[T] - w) (2 + (Tp[T] - w) / (c^{2}))] [raiz cuadrada$ $qp[T_{-}, w_{-}] := Sqrt[Tp[T] (2 + Tp[T] / (c^{2}))] + Sqrt[(Tp[T] - w) (2 + (Tp[T] - w) / (c^{2}))] [raiz cuadrada$ $qp[T_{-}, w_{-}] := Sqrt[Tp[T] (2 + Tp[T] / (c^{2}))] + Sqrt[(Tp[T] - w) (2 + (Tp[T] - w) / (c^{2}))] [raiz cuadrada$ $In[*]_{E} = Fac[T_{-}] := (((1 + Tp[T] / (c^{2}))^{2}) / (1 + Tp[T] / (2 c^{2}))) (1 / (Pi * Tp[T])) [número pi$ $qm1[w_{-}, wp_{-}] := -kf[wp] + Sqrt[(kf[wp])^{2} + 2 * w] [raiz cuadrada$ $qp1[w_{-}, wp_{-}] := kf[wp] + Sqrt[(kf[wp])^{2} + 2 * w] [raiz cuadrada$

$Imel[q_, w_, wp_] := ((el2[q, w, wp])) / ((el1[q, w, wp])^2 + (el2[q, w, wp])^2)$

Plasmón

Single Electron

Printed by Wolfram Mathematica Student Edition
Método Numérico

Variables ω y q

```
sq = 100;
sw = 200;
s[v_] := 1/v
kw = 0;
kq = 0;
cs = 0;
ccs = 1;
Do[{pw = Tp[coords1[[kT]]] - BVal - wmin ,
repite
  While[wmin + s[sw] * kw * pw ≤ Tp[coords1[[kT]]] - BVal,
  mientras
     \{vw_{kT,kw} = wmin + s[sw] * kw * pw, pq = qp[coords1[[kT]], vw_{kT,kw}] - qm[coords1[[kT]], vw_{kT,kw}], ww_{kT,kw}\} 
     \label{eq:while_m_coords1[[kT]], vw_{kT,kw}] + s[sq] * kq * pq \leq qp[coords1[[kT]], vw_{kT,kw}],
     mientras
       vq<sub>kT,kw,kq</sub> = qm[coords1[[kT]], vw<sub>kT,kw</sub>] + s[sq] * kq * pq;
       kq++], qfin<sub>kT,kw</sub> = kq - 1, kq = 0};
    kw + + ], wfin<sub>kT</sub> = kw - 1, kw = 0, If[cs == 370,
                                        si
    {sq = sq + 1, sw = sw + 2, ccs = ccs + 1, cs = 350 + ccs}, cs = cs + 1]}, {kT, inicial, final}]
```

ELF SE

```
{kT, inicial, final}, {kw, 0, wfin_{kT}}, {kq, 0, qfin_{kT,kw}}], 2], InterpolationOrder \rightarrow 1]
```

orden de interpolación

IMESE[w_, q_] := IMESES1[w, q]

out[]*= InterpolatingFunction [Domain: {{0.317, 1.59×10⁴}, {0.00275, 426.}} Output: scalar {q, InterpolatingFunctionDomain[IMESES1][[2, 1]], 5}, PlotRange \rightarrow All,

_rango de rep… _todo

LabelStyle \rightarrow Directive[18], PlotRange \rightarrow All, Mesh \rightarrow 70,

estilo de etiqueta directiva rango de rep… todo malla

 $\label{eq:meshFunctions} \rightarrow \{ \#3 \& \}, \ \texttt{Boxed} \rightarrow \texttt{False}, \ \texttt{AxesEdge} \rightarrow \{ \{\texttt{1}, -\texttt{1}\}, \ \{\texttt{1}, -\texttt{1}\}, \ \{\texttt{-1}, \texttt{1}\} \}, \\$

 funciones de divisiones de malla [rodead… [falso]
 borde de ejes

 ColorFunction → (Directive[Opacity[#3 &]]), PlotStyle → Gray,

 función de color
 directiva | opacidad

ImageSize \rightarrow 1000, TicksStyle \rightarrow Directive[Black]

tamaño de imagen estilo de marcas directiva negro

ω_{0}

Obtención numérica del valor ω_o

{i, inicial, final}, {w, 0, wfin_i}, {q, 0, qfin_{i,w}}]

Intw01 = Interpolation[Flatten[Table[{{vw_{i,w}, vq_{i,w,q}}, w0_{i,w,q}}, interpolación [aplana [tabla]

{i, inicial, final}, {w, 0, wfin_i}, {q, 0, qfin_{i,w}}], 2], InterpolationOrder \rightarrow 1]

orden de interpolación

Intw0[w_, q_, kT_] := Intw01[w, q]

ELF PL

```
In[*]:= Do[\{vPL_{kT,kw,kq} = Imepl[vq_{kT,kw,kq}, vw_{kT,kw}, kT], If[kw == wfin_{kT} \& kq == qfin_{kT,kw}, Print[kT]]\},
      repite
                                                                 si
                                                                                                           escribe
         {kT, inicial, final}, {kw, 0, wfin<sub>kT</sub>}, {kq, 0, qfin<sub>kT,kw</sub>}]
\label{eq:infermi} \textit{IMEPLS} = \texttt{Interpolation[Flatten[Table[{{vw_{kT,kw}, vq_{kT,kw,kq}}, vPL_{kT,kw,kq}}, vPL_{kT,kw,kq}], \textit{VPL}_{kT,kw,kq}}
                  interpolación
                                     aplana tabla
             {kT, inicial, final}, {kw, 0, wfin<sub>kT</sub>}, {kq, 0, qfin<sub>kT,kw</sub>}], 2], InterpolationOrder \rightarrow 1]
                                                                                               orden de interpolación
      IMEPL[w_, q_] := IMEPLS[
         w,
          q]
                                            Domain: {{0.317, 1.59 × 10<sup>4</sup>}, {0.00275, 426.}}
out[*]= InterpolatingFunction
                                                  Output: scalar
ln[*]:= Plot3D[IMEPL[w, q], {w, 0, 3.7}, {q, 0.05, 1.5},
      representación gráfica 3D
        PlotRange \rightarrow {0, 3}, Mesh \rightarrow 70, MeshFunctions -> {#3 &}, Boxed \rightarrow False,
        rango de representación malla
                                             funciones de divisiones de malla rodead… falso
        AxesEdge \rightarrow {{1, -1}, {1, -1}, {-1, 1}}, ColorFunction \rightarrow (Directive[Opacity[#3 &]]),
                                                              función de color
        borde de ejes
                                                                                     directiva
                                                                                                   opacidad
        PlotStyle → Gray, ImageSize → 1000, TicksStyle → Directive[Black]]
        estilo de repr··· gris tamaño de imagen estilo de marcas directiva
                                                                                       negro
                                                                                                                 3
Out[ = ]=
                                                                                                                2
          0.0
         0.5
                                                                                                               1
        1.0
                                                                                                               0
                                                                                                           0
       1.5
                                                                                  1
                                                        2
                              3
```

Printed by Wolfram Mathematica Student Edition

Camino libre medio

Printed by Wolfram Mathematica Student Edition

```
Do[{PdF<sub>kT</sub> = PF[kT], Print[kT]}, {kT, inicial, final}]
     repite
                           escribe
     PodFr = Table[
              tabla
         {(coords1[[kT]] - bandgap - BVal) * QuantityMagnitude[UnitConvert["Hartrees", "eV"]],
                                                 magnitud de cantidad convierte unidad
           ((PdF<sub>kT</sub> * QuantityMagnitude[UnitConvert["Hartrees", "eV"]]) /
                     magnitud de cantidad convierte unidad
             QuantityMagnitude[UnitConvert["BohrRadius", "nanometers"]])}, {kT, 430, final}];
             magnitud de cantidad convierte unidad
In[*]:= ListLogLogPlot[PodFr, PlotStyle \rightarrow {Blue, Thick}, Frame \rightarrow True,
     representación log log de lista estilo de repre… azul grueso marco verdadero
       FrameLabel \rightarrow {"Energía (eV)", " Poder de frenado lineal de colisión (eV/nm)"},
      etiqueta de marco
       PlotRange → All, PlotLegends → Placed[{"Este trabajo"}, {Right, Top}]]
      rango de rep… todo leyendas de rep… colocado
                                                                          derecha arriba

    Este trabajo

      oder de frenado lineal de colisión (eV/nm)
Out[ = ]=
                                 Energía (eV)
  Alcance
In[*]:= Needs["FunctionApproximations`"]
     necesita
In[*]:= PDFA = Table[{PodFr[[i, 1]], PodFr[[i, 2]]}, {i, 1, Length[PodFr]}];
            tabla
                                                                 longitud
     PDFAI = Interpolation[Join[PDFA]];
                              junta
              interpolación
     Al[kT_?NumericQ] := NIntegrateInterpolatingFunction[
              ¿expresión numérica?
        1/PDFAI[EE], {EE, wmin * QuantityMagnitude[UnitConvert["Hartrees", "eV"]],
                                     magnitud de cantidad convierte unidad
          (coords1[[kT]] - bandgap - BVal) * QuantityMagnitude[UnitConvert["Hartrees", "eV"]]}]
                                                _magnitud de cantidad __convierte unidad
     Do[Alc<sub>kT</sub> = Al[kT], {kT, inicial, final}]
     repite
```


Apéndice C

Publicación derivada de este trabajo

Trabajo publicado por la revista Nuclear Instruments and Methods in Physics Research B titulado "Stopping power and CSDA range of electrons in liquid water, LiF, CaF_2 , and Al_2O_3 from the energy gap up to 433 keV" realizado en colaboración con la Dra. Guerda Massillon Jacques-Louis y el M. en C. Miguel Ángel Flores Mancera. Donde se exponen los resultados de la función de pérdida de energía dependiente de la transferencia de momento, poder de frenado y alcance obtenidos en este trabajo.

Nombre	Stopping power and CSDA range of electrons in liquid water,
	LiF , CaF_2 , and Al_2O_3 from the energy gap up to 433 keV.
Autores	L. R. Castillo-Rico, M. A. Flores-Mancera, G. Massillon-JL
Revista	Nuclear Instruments and Methods in Physics Research Section B:
	Beam Interactions with Materials and Atoms
Volumen	502
Páginas	189-197
ISSN	0168-583X
Link	https://doi.org/10.1016/j.nimb.2021.07.002

Cuadro C.1: Ficha técnica del artículo

Nuclear Instruments and Methods in Physics Research B 502 (2021) 189-197

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, B

journal homepage: www.elsevier.com/locate/nimb

Stopping power and CSDA range of electrons in liquid water, LiF, CaF₂, and Al_2O_3 from the energy gap up to 433 keV

Check fo

BEAM INTERACTIONS WITH MATERIALS AND ATOMS

L.R. Castillo-Rico, M.A. Flores-Mancera, G. Massillon-JL

Instituto de Física, Universidad Nacional Autónoma de México, 04510 Coyoacán México City, Mexico

ARTICLE INFO

Keywords: Electronic stopping power Low-energy electrons Full Penn algorithm CSDA range LiF CaF₂ Liquid water Al₂O₃

ABSTRACT

Stopping powers (SP) for electrons with energies greater than 10 keV are well described through the Bethe approximation. However, for energies below, such an approach is inadequate. SP in LiF, CaF₂ and Al₂O₃ as the luminescent materials commonly used for dosimetry study and liquid-water are scarce at energies below 10 keV. This work investigated SP and CSDA-range of electrons in in these compounds from the energy gap up to 433 keV using the full Penn algorithm. In particular, the influence of the exciton states was evaluated. The experimental optical data were selected after a rigorous evaluation process. The results indicate that the exciton states affect the SP mainly at energies below 100 eV by up to 48%, 39%, 32% and 15% for liquid-water, LiF, CaF₂ and Al₂O₃, respectively. Furthermore, we observed a certain relationship between the minimum excitation-energy (exciton state) and the energy at which the SP is maximum.

1. Introduction

Electron stopping power (SP) is the most important parameter to describe the quality of an ionizing radiation beam, to determine the range of an electron with a given incident kinetic energy and to calculate secondary electron yields. Consequently, for accurate radiation dosimetry, the knowledge of the stopping power is fundamental. For electron with energy greater than 10 keV, the SP is well described through the use of the concept of mean excitation energy which is sensitive to the valence electron arrangement and depends on the electronic structure details of the medium [1]. The mean excitation energy is valid only for particles with energies higher than the binding energy of the deepest inner shell of the atom. Based on that, for electrons with energy below 10 keV, such an approach is considered inadequate. Several methods have been proposed to calculate SP for electrons with initial energy below 10 keV due to the interest not only in dosimetry but also in other fields of research, for instance, scanning electron microscopy (SEM), electron lithography and critical dimensional metrology.

Luo and colleagues [2] have developed an approach to derive SP for any material by straightforward experimental techniques. Their approach is based on electron energy loss spectroscopy (EELS) and sum rules to obtain the dielectric response of the specimen in question and therefore the stopping power [2]. This method, which is a modified form of the Bethe equation, considers the effective mean excitation energy and the

https://doi.org/10.1016/j.nimb.2021.07.002

Received 18 May 2021; Received in revised form 2 July 2021; Accepted 2 July 2021 Available online 10 July 2021 0168-583X/© 2021 Elsevier B.V. All rights reserved.

effective number of electrons which decrease with the energy in the low energy range (\sim <1 keV). They have concluded that for any energy below about 5 keV, it could be an error the use of the mean excitation energy derived from Berger and Seltzer expression [2]. Others have used a modified version of Rohrlich and Carlson's formula to calculate SP for electrons of intermediate energies (below 10 keV) by taking into account the shell corrections [3–5]. Such modification included the effective charge of the electron, the effective number of electrons and the effective mean excitation energy in the target [3–5]. It has been concluded that the collision stopping power is very sensitive to the charge-state or effective charge of the electrons and target atoms [4].

The complex dielectric function describes the response of a medium to a given energy transfer ω and momentum transfer q and contains contributions from both valence and core electrons. The dielectric function model has been used to calculate electronic stopping power in compounds like LiF in the energy range between 50 eV and 10 keV [6] and liquid water at energies between 100 eV and 10 keV [7]. Penn has developed an algorithm based on the dielectric function model called the full Penn algorithm (FPA) [8]. This Algorithm contemplates the extension of the optical data (q = 0) to nonzero momentum transfer ($q \neq 0$) and requires triple integrations over the momentum transfer (q), the plasmon energy (ω_p), and the energy loss (ω). FPA is considered as the most advanced approach based on complex dielectric function's response to calculate the SP in the rest of electron in matter. The FPA has been used to calculate SP in

^{*} Corresponding author. *E-mail address*: massillon@fisica.unam.mx (G. Massillon-JL).

several elemental solids [9] but not in compounds like those used in dosimetry. From an experimental standpoint, secondary electron yields versus beam position (image) for a given sample shape and composition have been obtained using FPA to interpret data for SEM dimensional measurements [10,11]. In that study, agreement at the subnanometer level has been achieved compared to measurements made with transmission electron microscopy and small-angle X-ray scattering [11].

When use the dielectric function model, the integration domain has an important role in the stopping power calculation, mainly in the low energy interval. For insulators, some groups have used an approximation based on the indistinguishability of the electrons [7] while others consider the effect or not of the bandgap energy [6,12]. Recently, we have proposed an integration domain that takes into account the exciton interaction on the inelastic mean free path (IMFP) calculation using the FPA [13]. The results of such a study suggested that the exciton interaction cannot be ignored since they might contribute up to \sim 30% on the IMFP at electron energy below 100 eV.

Due to its role in radiobiological research, liquid water is the most studied compound at energies below 10 keV [5,7]. But the reported SP results diverge substantially at energies below 200 eV between research groups. LiF and CaF2 are amid the thermoluminescent detectors most widely used in environmental monitoring and in routine personal, medical, and space dosimetry. However, SP data at energies below 10 keV for these compounds are limited. To the best of our knowledge, the only published data about SP in LiF at this energy interval are those published by Boutboul and colleagues [6]. But in their study, the lower integration limit was set to zero and they reported large error in their energy loss function with f-sum and KK-sum errors of 34.7 and 24.3%, respectively. While for CaF2, SP data at low energy are not available. Concerning the optically stimulated luminescent dosimeter, Al2O3, which begun replacing LiF for personnel monitoring due to its high sensitivity, only inelastic mean free path data are reported but not stopping power.

In this work, we presented new stopping power calculations based on the full Penn Algorithm for liquid water, LiF, CaF_2 and Al_2O_3 at energies down to the gap by using an integration domain that considers the exciton interactions. We also provided continuous slowing down approximation (CSDA) ranges for electrons in these compounds.

2. Calculation method

2.1. The full Penn Algorithm (FPA)

From a quantum theory standpoint, the relativistic differential cross section (DCS) for inelastic scattering has a longitudinal component and a transverse one [14]. However, it has been demonstrated that the contribution from the transverse interaction cannot be neglected at energies above \sim 1 MeV, which yield to an increase of the stopping power (SP) with energy [15]. Nevertheless, for the maximum energy limit of 0.433 MeV used in this work, the transverse component of DCS can be ignored and only the longitudinal excitation is considered as previously done [9,12].

According to the full Penn Algorithm (FPA), the stopping power can be calculated from the probability for an electron with relativistic kinetic energy, T, to loss energy per unit distance travelled as

$$SP = \frac{(1+T'/c^2)^2}{1+T'/2c^2} \frac{1}{\pi T'} \int_{\omega_{\min}}^{T'-w_{VB}} \int_{q_-}^{q_+} \mathbf{Im} \left[\frac{-1}{\epsilon(q,\omega)} \right] \frac{dq}{q} \omega d\omega, \tag{1}$$

with q_{\pm} , the kinematic limits of momentum transfer, q, from the incident electron consistent with energy loss, ω , are given by:

$$q_{\pm} = \sqrt{T'(2+T'/c^2)} \pm \sqrt{(T'-\omega)(2+(T'-\omega)/c^2)}$$
(2)

where $T = T - E_g$, E_g the bandgap energy, c the speed of light, w_{VB} the valence band width. The upper integration limit $T - w_{VB}$ is set to assure

that the incident electron preserves enough energy to stay in the conduction band. ω_{\min} is the minimum energy required to promote an electron from the top of the valence band to the bottom of the conduction band and associated with the minimum excitation energy of electrons in the material. In this work, ω_{\min} was chosen as the state corresponding to the first optical (q = 0) energy loss function value above mid-gap assigned to bulk excitons in each compound [13]. More details about the selection of ω_{\min} can be found in Flores-Mancera *et al.* 2020 [13]. The bandgap energy, E_g , the valence band width, w_{VB} and ω_{\min} , values used for each compound studied in the work are listed in Table 1 [13]. Eq. (1) is expressed in Hartree atomic units, wherein the electron mass and charge, the reduced Planck constant, and the electric constant satisfy $m_c = e = \hbar = 4\pi\varepsilon_0 = 1$. To convert in eV/nm multiply Eq. (1) by a = 514.2207.

Note that the FPA doesn't include neither the density effect correction nor exchange correlation effect. However, according to the SP data published by ICRU 37 [16], the density effect tends to zero for energy below 1 MeV.

 $\epsilon(\mathbf{q}, \omega)$ is the momentum and energy-dependent dielectric function, while $\operatorname{Im}\left[\frac{-1}{\epsilon(q,\omega)}\right]$ is the energy loss function (ELF) defined as [17]:

$$\mathbf{Im}\left[\frac{-1}{\boldsymbol{\epsilon}(q,\omega)}\right] = \int_0^\infty d\omega_p G(\omega_p) \mathbf{Im}\left[\frac{-1}{\boldsymbol{\epsilon}_L(q,\omega;\omega_p)}\right],\tag{3}$$

$$G(\omega_p) = \frac{2}{\pi \omega_p} \operatorname{Im}\left[\frac{-1}{\epsilon(\omega_p)}\right],\tag{4}$$

where $\epsilon_L(q, \omega; \omega_p)$ is the Lindhard free-electron dielectric function, $\omega_p = \sqrt{4\pi n}$ is the plasmon energy with electron density, n, and $\epsilon(\omega_p)$ is the optical dielectric function (i.e., q = 0).

According to Jensen and Walker [18], by putting $\epsilon_L(q, \omega; \omega_p)$ in equation 3, two physical contributions correspond to a different area of the (q, ω) -plane. In the region where the imaginary part of the Lindhard dielectric function, $\epsilon_L^i(q, \omega; \omega_p) \neq 0$ only single-electron excitations (electron-hole pair creation) is allowed, while when $\epsilon_L^i(q, \omega; \omega_p) = 0$ there is a contribution to equation 3 different to zero only on the plasmon dispersion line defined by the real part, $\epsilon_L^r(q, \omega; \omega_p) = 0$. Thus, the ELF in equation 3 can be portrayed as a combination of the plasmon pole [i.e. $\epsilon_L^r(q, \omega; \omega_p) = 0$]and the single-electron excitation [i.e. $\epsilon_L^i(q, \omega; \omega_p) \neq 0$] such as:

$$\mathbf{Im}\left[\frac{-1}{\boldsymbol{\epsilon}(q,\omega)}\right] = \mathbf{Im}\left[\frac{-1}{\boldsymbol{\epsilon}(q,\omega)}\right]_{\rm pl} + \mathbf{Im}\left[\frac{-1}{\boldsymbol{\epsilon}(q,\omega)}\right]_{\rm se},\tag{5}$$

where pl and se refer to the plasmon pole and the single-electron, respectively [17] with

$$\operatorname{Im}\left[\frac{-1}{\epsilon(q,\omega)}\right]_{\operatorname{pl}} = G(\omega_0) \frac{\pi}{\left[\partial \epsilon_L^r(q,\omega;\omega_p)/\partial \omega_p\right]_{\omega_p=\omega_0}} \theta(q^-(\omega;\omega_0)-q), \quad (6)$$

and

Table 1	
Bandgap, E_g , valence band width, w_{VB} and ω_{\min}	values used in this work in (eV)
[13].	

Compound	E_g	WVB	$\omega_{ m min}$
Liquid water	8.4	11.8	6.24
LiF	14.2	3.9	11.7
CaF ₂	12.1	5.84	10.33
Al_2O_3	8.8	8.3	8.63

In this work, we used the optical data reported in Flores-Mancera *et al.* 2020 [13]. Such data have been selected after a thorough and rigorous evaluation process. Only optical data combination where the Kramers-Kronig sum (*KK-sum*) and the Bethe sum (*f-sum*) errors were smallest has been considered. This is because the lower the *f-sum* and *KK-sum* errors are, the better the internal consistency of the data. The *f-sum* errors were found to be 0.21%, 9.69%, 2.4% and 3.16% for liquid water, LiF, CaF₂ and Al₂O₃, respectively (Flores-Mancera *et al.* 2020). Whereas the *KK-sum* errors were 2.7%, 13.2%, 5.8% and 3.8% for liquid water, LiF, CaF₂ and Al₂O₃, respectively [13].

3. Results

Figs. 1a, 1b, 1c and 1d display the numerical solution of equation 5 for Liquid water, LiF, CaF₂ and Al₂O₃, respectively. These figures represent a perspective view of the ELF calculated by the SPA and the FPA as a function of momentum transfer and energy loss in the limit of small ω and q values. As it can be seen, each compound has a different ELF distribution.

The stopping power (SP) calculated using the FPA are shown in Figs. 2a, 2b, 2c and 2d for liquid water, LiF, CaF_2 and Al_2O_3 , respectively. Table 2 displays the data for each compound. Also displayed in the figures are data for the SPA and those reported in the literature when available. As seen, independent of the compound, the SP increases with energy, reaches a maximum and after steadily decreases as the energy increases. Fig. 3 presents the CSDA range for each compound studied in this work while Table 3 shows the data.

4. Discussion

Comparing the perspective view of the energy loss function (ELF) obtained through FPA and SPA displayed in Figs. 1a, 1b, 1c and 1d, a notable difference is observed independent of the compound. However, for energies loss and momentum transfer greater than those depicted in Figs. 1a–1d, the ELF obtained by FPA, and SPA are very similar. That is, independent of the compound, for large ω and q values, the ELF intensity

Fig. 1a. Perspective view of ELF as a function of momentum transfer and energy loss calculated by the FPA compared with the SPA for liquid water.

where

$$q^{\pm}(\omega;\omega_0) = \pm k_F(\omega_p) + \sqrt{k_F^2(\omega_p) + 2\omega},$$
(8)

 $\mathrm{Im}\left[\frac{-1}{\epsilon(q,\omega)}\right]_{\omega} = \int_{0}^{\infty} d\omega_{p} G(\omega_{p}) \mathrm{Im}\left[\frac{-1}{\epsilon_{L}(q,\omega;\omega_{p})}\right] \theta(q^{+}(\omega;\omega_{p})-q) \theta(q-q^{-}(\omega;\omega_{p})),$

$$k_F = \left(\frac{3\pi}{4}\right)^{1/3} \left(\omega_p\right)^{2/3},$$
(9)

where ω_0 is the numerical solution of the relation $\epsilon_{\rm L}^{\rm r}(q,\omega;\omega_{\rm p}) = 0$ when $\omega_p = \omega_0$, and $\theta(X)$ a step function. Note that for a given ω value, q cannot exceed the Bethe ridge such as $q_{max} = \sqrt{2\omega}$ (in Hartree units). The first term of equation 8 corresponds to the incident wave vector of the particle before a collision. Details about the solution of equations 6 and 7 as well as the Lindhard dielectric functions can be found in ref. [17].

For comparison, we calculated the SP using the simple Penn approximation (SPA) which is a simplified approach of the FPA. In the SPA the single electron excitation is ignored, and the Lindhard energy loss function is replaced by a single-pole approximation as [19]:

$$\operatorname{Im}\left[\frac{-1}{\boldsymbol{\epsilon}_{L}(q,\omega;\omega_{p})}\right] \approx \frac{\pi}{2} \frac{\omega_{p}^{2}}{\omega_{p}(q)} \delta(\omega - \omega_{p}(q)), \qquad (10)$$

with the plasmon dispersion, ω_p , defined by:

$$\omega_p^2(\omega_p) = \omega_p^2 + \frac{1}{3} v_F^2(\omega_p) q^2 + \left(\frac{q^2}{2}\right)^2,$$
(11)

where, $v_F(\omega_p)$ is the Fermi velocity of a free-electron gas with a plasmon frequency ω_p .

The SP has been then used to calculate the continuous slowing down approximation (CSDA) range as:

$$R_{CSDA} = \int_{\omega_{\min}}^{T} \frac{dT}{SP(T)}$$
(11)

T and ω_{\min} have the same meaning as above. This signifies that the electron slows down continuously from its initial energy *T* to the final energy ω_{\min} . For the lower integration limit, Ashley and colleagues have proposed that the electron slows down to 10 eV [20]. But in this work, we have chosen ω_{\min} instead to include the exciton interactions.

L.R. Castillo-Rico et al. SPA Nuclear Inst. and Methods in Physics Research, B 502 (2021) 189–197

Fig. 1b. Perspective view of SLF as a function of momentum transfer and energy loss calculated by the FPA compared with the SPA for LiF.

Fig. 1c. Perspective view of ELF as a function of momentum transfer and energy loss calculated by the FPA compared with the SPA for CaF_2 .

Fig. 1d. Perspective view of ELF as a function of momentum transfer and energy loss calculated by the FPA compared with the SPA for Al₂O₃.

tends to zero, regardless the approximation considered. At very small ω and q values, ELF for single-electron excitation in the FPA is more important than the contribution from the plasmon pole. Regardless the compound, the plasmon dispersion line with a slow falloff of the ridge height for SPA prolongs up to ω and q values larger than for FPA. This is due to the compensation of the plasmon excitation intensity caused by the missing contribution of the single electron excitation.

Independent of the compound, the SP increases with the energy, reaches a maximum and after decreases as the energy increases. The SP from FPA reaches a maximum of 34.4 eV/nm, 59 eV/nm, 58.4 eV/nm and 69 eV/nm at energy of 121 eV, 170 eV, 164 eV and 140 eV for liquid water, LiF, CaF₂ and Al₂O₃, respectively. Note that the SP rapidly falls and tends to zero after reaching the maximum as the electron energy decreases. This is due to the fact that the energy of the incident electron is getting very close to the minimum excitation energy required to promote an electron from the top of the valence band to the bottom of the conduction band. That means, the incident electron doesn't have enough energy to ionize the medium. This can be explained by the relationship shown between the energy at which SP is maximum and the

minimum excitation energy (exciton state) of each compound, ω_{min} , i.e., the larger is the ω_{min} (see Table 1), the greater is the energy where the SP is maximum. The SPs for liquid water are around 44%–152%, 49%–183% and 50%–270% smaller than those for LiF, CaF₂ and Al₂O₃, respectively. Note that these differences vary with the electron kinetic energy, being smaller at low energy. This implies that compound with smaller atomic number has a smaller probability to loss energy than one with large atomic number caused by the electronic density.

To study the impact of the exciton interaction on the SP, we have used the band gap energy, E_g , as the minimum integration limit as proposed by Shinotsuka and colleagues [12] instead of ω_{\min} in equation 1. The results (not shown) indicate no significant differences (variations of 0.35% 0.31%, 0.13% and 0.02% for liquid water, LiF, CaF₂ and Al₂O₃, respectively) between the inclusion or not of the exciton interaction on the SP for energies above 100 eV. Whereas, for energies below 100 eV, the impact can be up to 48%, 39%, 32% and 15% for liquid water, LiF, CaF₂ and Al₂O₃, respectively. Note that the smaller is the atomic number of the compound, the greater is the impact. This suggests that the exciton interaction is more important in low-Z material.

Fig. 2a. Electronic stopping power in Liquid water calculated in this work compared with data published in the literature.

Fig. 2b. Electronic stopping power in LiF calculated in this work compared with data published in the literature.

The SP obtained by the SPA are also included in Figs. 2a–2d for all compounds. As observed at energies above 200 eV, the SP obtained by SPA agree with FPA within 2.4%, 3.5%, 5.5% and 5.4% for liquid water, LiF, CaF₂ and Al₂O₃, respectively. This agreement is consistent with the literature where it has been concluded that there is a loss of accuracy in the computed inelastic mean free path of less than 3% when using the SPA at energies greater than 200 eV [19]. Nonetheless, remarkable differences are seen at energies below. At energies below 200 eV, the SPs obtained by SPA are smaller than those from FPA by up to 68%, 100%, 90% and 99% for liquid water, LiF, CaF₂ and Al₂O₃, respectively. These results are not surprising as the SPA is considered not reliable at electron energies smaller than 200 eV. The large difference observed between SPA and FPA can possibly be related to the omitted part of the ELF for SPA associated to the single electron excitation.

As shown, independent of the compound, the SPs obtained in this work are systematically greater than those of ESTAR code from NIST [21] where the Bethe approximation is used. For energy above 10 keV, our results are greater than those from the Bethe approximation by

Fig. 2c. Electronic stopping power in CaF_2 calculated in this work compared with data published in the literature.

Electron energy (eV)

 10^{2}

 10^{3}

 10^{4}

10

 10^{e}

10

10

 10^{1}

Fig. 2d. Electronic stopping power in ${\rm Al}_2{\rm O}_3$ calculated in this work compared with data published in the literature.

0.14%–8%, 8%–16%, 4%–10% and 6%–10% for liquid water, LiF, CaF₂ and Al₂O₃, respectively. The greater is the energy, the smallest is the difference. This discrepancy level is not surprising since it has been reported that the NIST data at low energy are not accurate due to the lack of shell corrections required when the velocity of the incident electron is no longer large compared to the velocities of the atomic electrons, especially those in the inner shells [21]. Furthermore, this difference is also consistent with previous results reported for elemental solids where the FPA [9] or other method was used [15]. The data published by Shinotsuka *et al* were found to be greater than the NIST data by 9% [9] while those reported by Fernández-Varea *et al* were 8% greater [15].

The method proposed by Luo and colleagues [2] can be used to calculate SP in any material. To do that, the optical dielectric function is needed to calculate the effective values of the mean ionization potential, and the number of electrons from the atom or molecule participating in the process, at a given energy. In this work, we have used our experimental ELF data to compute SP for each compound using the approach from Luo et al. The results are shown in Figs. 2a, 2b, 2c and 2d for liquid

Table 2

Nuclear Inst. and Methods in Physics Research, B 502 (2021) 189-197

CaF₂

11.919 11.368 10.837

10.329

9.840 9.371

8.921

8.490

8.077

7.682 7.305

6.944

6.601

6.272 5.959

5.660

5.512

5.243 4.988

4.745

4.512

4.291 4.079

3.878

3.686

3.505

3.332 3.168

3.014

2.868

2.729 2.598

2.475

2.358

2.247 2.142 2.040

1.943

1.851

1.764 1.682

1.604

1.531

1.463 1.399

1.338

1.281

1.226

1.174 1.125

1.078

1.035 0.993

0.955

0.919

0.884

0.852 0.822

0.794

0.770

0.745 0.721

0.699

0.677

0.658 0.640

0.626

0.612

0.596 0.582

0.569

0.557

 Al_2O_3 15.734 14.979

14.265

13.593

12.923 12.288

11.690

11.130

10.572

10.044 9.550

9.088

8.626

8.190 7.781

7.398

7.199

6.843 6.509

6.196

5.887

5.596 5.323

5.068

4.830

4.602

4.377 4.142

3.935

3.741

3.561 3.394

3.227

3.071 2.925 2.791

2.656

2.529

2.412

2.302 2.193

2.091

1.996

1.908 1.820

1.739

1.663

1.594 1.526

1.462

1.404

1.350 1.295

1.243

1.196

1.152

1.109 1.071

1.036

1.004

0.971 0.940

0.912

0.886

0.860 0.837

0.816

0.797 0.780

0.763

0.747

0.728

Table 2 (continued)

SP (eV/nm)

Energy (eV)

Electronic stopping power (SP) for electrons in liquid water, LiF, CaF_2 and Al_2O_3 .

Energy (eV)	SP (eV/nm)					Liquid water	LiF
	Liquid water	LiF	CaF ₂	Al ₂ O ₃	3759.68	5 149	11 743
9.70	0.771	_	_	0.367	4029.79	4.893	11.161
9.79	0.799	-	-	0.399	4319.22	4.648	10.606
9.91	0.836	-		0.441	4629.35	4.415	10.078
12.90	1.942	-	0.996	1.723	4961.66	4.192	9.574
15.05	2.930	1.632	1.961	2.904	5317.74	3.980	9.094
17.34	4.135	2.940	3.140	4.384	5699.28	3.777	8.636
19.81	5.562	4.478	4.598	6.188	6108.11	3.584	8.200
22.45	7.202	6.266	6.265	8.336	6546.18	3.399	7.783
25.28	9.045	8.490	8.169	10.842	7015.59	3.223	7.387
28.31	11.067	11.175	10.364	13.708	/518.50	3.050	7.010
31.55	13.243	14.186	12.886	16.923	8634.00	2.090	6 311
35.03	15.522	20 579	15.089	20.452	9253 79	2.605	5 987
42.76	20 176	23 924	21 500	28.815	9916.83	2.469	5.679
47.04	22.386	27.458	24.366	33.814	10627.30	2.340	5.386
51.63	24.453	31.851	27.246	39.113	11015.02	2.276	5.240
56.54	26.334	37.381	30.138	44.535	11776.24	2.160	4.978
61.81	28.013	42.248	33.048	49.063	12589.98	2.048	4.729
67.45	29.504	46.074	36.024	53.241	13459.87	1.945	4.492
73.50	30.798	49.034	38.901	57.002	14389.78	1.847	4.267
79.98	31.888	51.386	41.609	60.276	15383.85	1.754	4.052
86.92	32.770	53.297	44.358	62.956	16446.52	1.662	3.848
94.36	33.458	54.931	47.326	65.046	17582.51	1.581	3.655
102.33	33.959	56.267	50.279	66.541	18796.88	1.504	3.471
110.87	34.263	57.285	52.877	67.475	20095.05	1.428	3.297
120.03	34.376	57.995	55.074	68.402	21482.78	1.350	3.131
129.83	34.300	58.468	56.708	68.928	22900.28	1.280	2.973
140.34	34.055	58.761	57.717	69.053	24332.13	1.214	2.622
151.60	33.0/5	58.941	58.248	68.801	28059.66	1.133	2.000
105.07	32 631	59.054	58 254	67.082	29996 95	1.037	2.313
190.45	31 977	58 930	57 848	67 197	32067.92	0.987	2.296
205 29	31.251	58 635	57 234	66 204	34281.79	0.938	2.181
221.20	30.472	58.132	56.446	65.333	36648.41	0.893	2.072
238.24	29.650	57.428	55.499	64.369	39178.33	0.847	1.969
256.50	28.802	56.573	54.394	63.315	41882.82	0.805	1.872
276.07	27.929	55.588	53.175	62.178	44773.91	0.765	1.780
297.04	27.041	54.482	51.873	61.028	47864.49	0.729	1.693
319.51	26.140	53.267	50.506	59.821	51168.32	0.693	1.611
343.58	25.232	51.959	49.089	58.560	54700.11	0.659	1.534
369.37	24.324	50.571	47.633	57.252	58475.60	0.627	1.461
397.02	23.421	49.128	46.149	55.923	62511.60	0.598	1.393
426.63	22.527	47.647	44.650	54.559	00820.08	0.569	1.330
458.37	21.644	46.124	43.147	53.164	76268 68	0.541	1.2/1
492.37	20.776	44.575	41.643	51.738	/0306.06	0.515	1.21/
528.81	19.926	43.017	40.146	50.276	87273 59	0.491	1.109
507.85	19.096	41.458	38.003	48.790	93296.64	0.445	1.122
654 52	17.496	39.907	37.200	47.280	99735.29	0.425	1.028
702 55	16 727	36.855	34 354	43.770	106618.20	0.407	0.985
754.02	15 983	35.364	32.978	42,729	113976.00	0.389	0.944
809.17	15.262	33.901	31.638	41.219	121841.60	0.373	0.906
868.26	14.566	32.471	30.336	39.724	130249.80	0.359	0.868
931.58	13.893	31.077	29.075	38.236	139238.20	0.346	0.833
999.43	13.246	29.722	27.858	36.773	148846.90	0.332	0.800
1072.13	12.622	28.406	26.681	35.342	159118.50	0.319	0.770
1150.04	12.025	27.131	25.549	33.949	170098.80	0.306	0.740
1233.51	11.451	25.899	24.462	32.563	181836.80	0.295	0.713
1322.95	10.902	24.708	23.421	31.218	194384.70	0.284	0.688
1418.79	10.375	23.560	22.425	29.918	207798.50	0.273	0.667
1521.48	9.872	22.454	21.469	28.668	222137.70	0.264	0.647
1631.52	9.392	21.392	20.550	27.424	237466.40	0.256	0.629
1749.43	8.934	20.372	19.669	26.227	253852.80	0.248	0.608
1875.77	8.497	19.394	18.824	25.083	271369.80	0.240	0.589
2011.15	8.082	18.457	18.009	23.993	290095.50	0.234	0.571
2156.21	7.687	17.562	17.224	22.912	310113.30	0.228	0.554
2311.64	7.312	16.707	16.466	21.880	351312.30	0.222	0.539
24/8.19	6.957	15.890	15.735	20.902	3780/1 70	0.217	0.520
2030.05	0.019	13.111	15.032	19.976	2/0041./0	0.212	0.515
2847.88	0.298 5.001	14.370	14.357	19.047	432928 00	0.205	0.303
3032./8	5.991	13.003	13./09	10.101	102920.00	0.1.70	0.121
32/2.33	5.09/	12.992	13.089	17.322			
3307.37	3.71/	12.333	12.470	10.340			

16.528

Fig. 3. CSDA range of electron in liquid water, LiF, $\rm CaF_2$ and $\rm Al_2O_3$ calculated in this work compared with NIST data.

water, LiF, CaF₂ and Al₂O₃, respectively. Considering that such a method is based on experimental results, the root-mean-square (RMS) deviation was computed to describe the variability of the SPs obtained through the FPA comparing to Luo's method for the group of four compounds. Besides, we computed the RMS to evaluate the uncertainty comparing to the data published by Gümüs for liquid water. The relative percentage RMS difference as a function of electron energy was calculated as:

$$RMS = 100. \left[\sum_{i=1}^{4} \left(\frac{SP(T)_i - SP_{FPA}(T)_i}{SP_{FPA}(T)_i} \right)^2 / 4 \right]^{0.5}$$
(12)

SP(T) represents the stopping power obtained by other authors's approach, while $SP_{FPA}(T)$ the FPA.

Fig. 4 presents the RMS results. The maximum and minimum observed in the RMS shown in Fig. 4 are related to the different energy positions of maxima and structure of the SP-versus energy curves from the FPA and the other methods as a function of energy.

Note that Luo's method is a non-relativistic approach, so as expected at energies above 20 keV, remarkable RMS differences up to 100% are observed between the FPA and Luo's approach. At energies between 100 eV and 20 keV, the RMS relative differences vary between 6% and 15% while at energies below 100 eV, the RMS relative differences are up to 90%. Despite using the same experimental ELF data to calculate the SPs from both approaches, a notable difference is still observed at low electron energy. Such differences could be associated with the use of the experimental ELF data by Luo and Colleagues without consideration of any q-dependence. Gümüs used a modified Bethe-Bloch and analytical expressions for the effective atomic number and mean excitation energy to calculate SP in compound [5]. Fig. 2a shows his SP together with ours for liquid water. In general, for energies above 50 eV, good agreement with our result from FPA is observed. The RMS relative differences are about 8% over a broad electron energy range. While at electron energies below 50 eV, a steep decrease of the RMS from 60% down to less than 1% is observed. The remarkable difference observed at energies below 50 eV could be interpreted as a possible effective low-energy limit for his approach since the modified Bethe formula is commonly used for high energy. Comparing our SP with that published by Emfietzoglou and Nikjoo for liquid water, it can be seen that their result reproduce quite well the ESTAR NIST data. Consequently, the method used by Emfietzoglou and Nikjoo to obtain the SP has a similar limitation to the Bethe approximation at electron energies below 1 keV. Concerning the data published by Boutboul and colleagues for LiF, our result is greater than theirs by up to 60%. These differences can possibly be related to several

Table 3

CSDA range for electrons in liquid water, LiF, CaF2 and Al2O3.

Energy (eV)	CSDA range (nm)			
	Liquid water	LiF	CaF ₂	Al_2O_3
9.70	5.026	-	-	0.010
9.79	5.144	-	-	0.240
9.91	5.292	-	0.350	0.531
15.05	8.499	4.377	1.364	4.796
17.34	9.166	5.416	2.288	5.439
19.81	9.674	6.092	2.934	5.911
22.45	10.088	6.589	3.425	6.279
25.28	10.438	6.977 7.288	3.819	6.576
31.55	11.008	7.545	4.429	7.037
35.03	11.251	7.767	4.674	7.224
38.76	11.474	7.964	4.891	7.391
42.76	11.684	8.144	5.091	7.542
47.04 51.63	11.886	8.311	5.455	7.805
56.54	12.275	8.608	5.627	7.923
61.81	12.469	8.740	5.793	8.035
67.45	12.665	8.868	5.957	8.145
73.50	12.865	8.995	6.118	8.255
86.92	13.286	9.256	6.441	8.478
94.36	13.511	9.394	6.603	8.594
102.33	13.747	9.537	6.766	8.715
110.87	13.997	9.687	6.932	8.843
120.03	14.264	9.846	7.101	8.977
140.34	14.857	10.194	7.460	9.272
151.60	15.189	10.385	7.654	9.436
163.67	15.550	10.589	7.861	9.611
176.60	15.943	10.808	8.082	9.801
205.29	16.372	11.043	8.321	10.006
221.20	17.357	11.568	8.859	10.470
238.24	17.924	11.863	9.163	10.733
256.50	18.549	12.183	9.495	11.019
276.07	19.239	12.532	9.859	11.331
319.51	20.847	13.330	10.238	12.043
343.58	21.784	13.788	11.181	12.450
369.37	22.826	14.291	11.714	12.895
397.02	23.984	14.845	12.304	13.384
420.03	25.273	15.458	12.957	13.920
492.37	28.315	16.885	14.482	15.158
528.81	30.106	17.717	15.373	15.872
567.85	32.108	18.642	16.365	16.660
609.69	34.348	19.670	17.468	17.532
702.55	39.663	22.094	20.068	19.563
754.02	42.812	23.520	21.597	20.747
809.17	46.344	25.113	23.305	22.061
868.26	50.309	26.894	25.213	23.522
999.43	59.765	20.000	29.731	26.957
1072.13	65.389	33.624	32.398	28.974
1150.04	71.715	36.431	35.383	31.223
1233.51	78.831	39.581	38.723	33.734
1322.95	86.839	43.118	42.461	36.541
1521.48	106.005	51.558	51.326	43.185
1631.52	117.437	56.581	56.566	47.111
1749.43	130.314	62.231	62.433	51.509
1875.77	144.821	68.589	69.001	56.436
2011.15	101.103	75.747 83.807	76.356 84 594	61.957 68.146
2311.64	200.316	92.885	93.827	75.090
2478.19	223.677	103.110	104.177	82.882
2656.65	249.986	114.631	115.785	91.619
2847.88	279.615	127.613	128.807	101.425
3272.33	312.984	142.242	143.417	124 830
3507.59	392.942	177.305	178.217	138.740

(continued on next page)

L.R. Castillo-Rico et al.

Table 3 (continued)

Energy (eV)	CSDA range (nm)			
	Liquid water	LiF	CaF_2	Al ₂ O ₃
3759.68	440.694	198.244	198.882	154.377
4029.79	494.528	221.848	222.095	171.979
4319.22	555.244	248.460	248.181	191.787
4629.35	623.733	278.469	277.505	214.068
4961.66	701.012	312.312	310.480	239.150
5317.74	788.221	350.487	347.576	267.419
6108 11	997.819	442 158	436 316	299.207
6546.18	1123.376	497.017	489.237	375.526
7015.59	1265.234	558.950	548.850	421.099
7518.56	1425.553	628.875	616.018	472.478
8057.50	1606.737	707.836	691.716	530.355
8634.99	1811.515	797.011	777.046	595.606
9253.79	2042.931	897.728	873.250 081 750	752 361
10627.30	2600.188	1140.002	1104.144	846.048
11015.02	2768.244	1212.988	1173.571	899.183
11776.24	3111.696	1362.079	1315.244	1007.687
12589.98	3498.699	1529.861	1474.421	1129.673
13459.87	3934.832	1718.684	1653.300	1266.720
14389.78	4425.669	1931.179	1854.355	1420.758
15383.85	4978.095	2170.340	2080.364	1594.030
17582.51	6301.978	2742.541	2620.202	2007.627
18796.88	7089.964	3083.579	2941.522	2253.169
20095.05	7975.938	3467.479	3302.858	2528.609
21482.78	8975.291	3899.630	3709.133	2837.843
22966.28	10104.500	4386.123	4165.933	3186.195
24552.13	11377.124	4933.847	4679.342	3579.182
26247.40	12810.294	6244 814	5256.215	4021.214
29996.95	16237.159	7026.331	6632.008	5075.510
32067.92	18281.679	7905.946	7449.026	5701.574
34281.79	20583.169	8895.863	8365.838	6405.170
36648.41	23170.757	10009.697	9394.385	7195.145
39178.33	26081.443	11262.631	10548.134	8080.997
41882.82	29358.463	12671.766	11842.542	9074.823
47864.49	37184.257	16037.156	14925.527	11442.706
51168.32	41836.066	18038.444	16754.573	12845.487
54700.11	47066.859	20286.038	18805.859	14417.896
58475.60	52942.521	22808.672	21105.704	16181.793
62511.60	59533.867	25638.529	23682.735	18158.525
66826.08	66933.967	28809.805	26566.860	20370.820
76368.68	75253.462	36323 018	33395 809	22647.029
81639.30	95088.387	40743.598	37423.004	28720.442
87273.59	106858.856	45664.110	41921.610	32182.263
93296.64	120070.084	51152.050	46944.497	36046.276
99735.29	134875.579	57282.735	52549.290	40359.369
106618.20	151433.554	64123.402	58801.790	45166.333
121841 60	109930.439	80266.095	73531 631	56466 083
130249.80	213551.031	89752.858	82166.770	63095.007
139238.20	239069.897	100329.531	91763.272	70469.729
148846.90	267435.497	112105.056	102425.032	78661.492
159118.50	299028.469	125198.565	114266.467	87752.108
170098.80	334190.927	139753.971	127398.616	97830.679
181836.80	3/3282.838	155920.270	141933.179	108982.538
207798.50	464914.458	193656.429	175703.611	134890.079
222137.70	518314.636	215499.470	195263.860	149906.058
237466.40	577339.833	239541.274	216861.025	166470.207
253852.80	642501.675	266046.422	240693.532	184712.570
271369.80	714362.288	295313.022	266943.035	204785.125
290095.50	/93434.80/ 8802/0 102	32/002.855	295808.270	220853.794
331512.30	975381.123	402372.192	362037.622	277610.147
354387.80	1079532.026	445370.178	399929.944	306631.148
378841.70	1193645.599	492382.328	441472.124	338334.396
404983.00	1319135.060	543768.429	486904.404	372965.154
432928.00	1458276.476	599886.546	536523.831	410860.360

Fig. 4. RMS relative differences of SP calculated through the FPA from SP calculated with Luo's method as a function of the electron energy. Also included RMS of SP calculated using the FPA from SP published by Gümüs for liquid water.

factors such as a) the reliability of the experimental ELF data, since both *f-sum* and *KK-sum* errors of 9.69% and 13.2% found in this work for LiF are substantially smaller than the 34.7% and 24.3%, respectively reported by Boutboul and colleagues; b) the integration domain plus the inclusion of the exciton interaction since the lower limit in the Boutboul *et al.* study was set to zero.

Fig. 3 displays the CSDA range obtained by the FPA. Independent of the compound, the CSDA rapidly increases as the energy increase up to \sim 20 eV, reaches a certain plateau at energies between 20 eV and 200 eV then after steadily rises with the energy. One can argue that the shape observed at energies below 200 eV is a reflect of the rapid decrease and the maximum depicted in the SP at energy below 200 eV. That is, the rapid increase with energy and the plateau of the CSDA range could be due to the fact the velocity of the incident electron is approaching to the medium to be ionized. The CSDA range shown in Fig. 3 using the FPA is in good agreement with the data from NIST in the energy range where the Bethe approximation is valid, independent of the compound.

5. Conclusion

This work investigated new stopping power (SP) and CSDA range in liquid water, LiF, CaF2 and Al2O3 for low energy electrons down to the energy gap through an electron beam-solid-state interaction model. For that, the Full Penn algorithm (FPA) was used and the effect of the exciton interaction has been considered. We observed small variations of 0.35% 0.31%, 0.13% and 0.02% for liquid water, LiF, CaF_2 and Al_2O_3, respectively between the inclusion or not of the exciton interaction on the SP for energies above 100 eV. While, for energies below, the impact can be up to 48%, 39%, 32% and 15% for liquid water, LiF, CaF2 and Al₂O₃, respectively and the degree of that impact depends on the compound. The impact of the exciton interaction on the SP is the same order of magnitude to that observed for the inelastic mean free path using the same optical data. The results also suggest a certain relationship between the minimum excitation energy (exciton energy level) and the energy at which the SP is maximum. The greater is the minimum excitation energy, ω_{\min} , the larger is the energy at which the SP is maximum.

CRediT authorship contribution statement

Castillo-Rico: Conceptualization, Investigation, Methodology, Software, Formal analysis, Writing – review & editing. **Flores-Mancera:** Conceptualization, Investigation, Formal analysis, Writing – review & editing. **Massillon-JL:** Conceptualization, Funding acquisition, Supervision, Writing – original draft, Writing – review & editing, Investigation, Formal analysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was partially supported by DGAPA-UNAM grant IN118120.

References

- S.M. Seltzer, M.J. Berger, Evaluation of the collision stopping power of elements and compounds for electrons and positrons, Int. J. Appl. Radiat. Isot. 33 (11) (1982) 1189–1218.
- [2] S. Luo, X. Zhang, D.C. Joy, Experimental determinations of electron stopping power at low energies, Radiat. Eff. Defects Solids 117 (1-3) (1991) 235–242.
 [3] H. Sugiyama, Stopping power formula for intermediate energy electrons, Phys.
- [3] H. Sugiyama, Stopping power formula for intermediate energy electrons, Phys. Med. Biol. 30 (4) (1985) 331–335.
- [4] H. Gümüş, Simple stopping power formula for low and intermediate energy electrons, Radiat. Phys. Chem. 72 (1) (2005) 7–12.
- [5] H. Gümüş, New stopping power formula for intermediate energy electrons, Appl. Radiat. Isot. 66 (12) (2008) 1886–1890.
- [6] T. Boutboul, A. Akkerman, A. Breskin, R. Chechik, Electron inelastic mean free path and stopping power modelling in alkali halides in the 50 eV–10 keV energy range, J. Appl. Phys. 79 (1996) 6714–6721.

Nuclear Inst. and Methods in Physics Research, B 502 (2021) 189-197

- [7] D. Emfietzoglou, H. Nikjoo, Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bathe. Surf. Padiat. Pae. 167 (2007) 110, 120.
- description of the Bethe, Surf. Radiat. Res. 167 (2007) 110-120.
 [8] D.R. Penn, Electron mean-free-path calculations using a model dielectric function, Phys. Rev. B 35 (1987) 482-486.
- Phys. Rev. B 35 (1987) 482–486.
 [9] H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron stopping powers for 41 elemental solids over the 50 eV to 30 keV range with the full Penn algorithm. Nucl. Lectrum. Meth. Phys. Res. B 720 (2012) 75–92.
- algorithm, Nucl. Instrum. Meth. Phys. Res. B 270 (2012) 75–92.
 J.S. Villarrubia, Z.J. Ding, Sensitivity of scanning electron microscope width measurements to model assumptions, J. Micro/ Nanolithogr. MEMS MOEMS 8 (2009), 033003.
- [11] J.S. Villarrubia, A. Vladaŕ, B. Ming, R.J. Kline, D.F. Sunday, J.S. Chawla, S. List, Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL- modeled library, Ultramicroscopy 154 (2015) 15–28.
- [12] H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 eV to 200 keV meane with the full Dame aleasticher. Synt. Interf. Annu. 51 (2012) 407, 457.
- range with the full Penn algorithm, Surf. Interf. Anal. 51 (2019) 427–457.
 [13] M.A. Flores-Mancera, J.S. Villarrubia, G. Massillon-JL, Electron inelastic mean free paths for LiF, CaF₂, Al₂O₃, and liquid water from 433 keV down to the energy gap, ACS Omega 5 (2020) 4139–4147.
- [14] U Fano, Penetration of protons, alpha particles, and mesons, Ann. Rev. Nucl. Sci. 13 (1) (1963) 1–66.
- [15] José M. Fernández-Varea, Francesc Salvat, Michael Dingfelder, David Liljequist, A relativistic optical-data model for inelastic scattering of electrons and positrons in condensed matter, Nucl. Instrum. Meth. Phys. Res. B 229 (2) (2005) 187–218.
- [16] M.J. Berger, M. Inokuti, H.H. Anderson, H. Bichsel, J.A. Dennis, D. Power, S. M. Seltzer, J.E. Turner, Stopping Powers for Electrons and Positrons, ICRU Report 37, International Commission on Radiation Units and Measurements, Bethesda, 1984.
- [17] H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm, Surf. Interface Anal. 47 (2015) 871–888.
- [18] Kjeld O. Jensen, Alison B. Walker, Monte Carlo simulation of the transport of fast electrons and positrons in solids, Surf. Sci. 292 (1-2) (1993) 83–97.
- [19] S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths for 31 materials, Surf. Interface Anal. 11 (1988) 577–589.
- [20] J.C. Ashley, C.J. Tung, R.H. Ritchie, Inelastic interactions of electrons with polystyrene: calculations of mean free paths, stopping powers, and CSDA ranges IEEE Trans. Nucl. Sci. 25 (1978) 1566–1570.
- [21] M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, ESTAR in Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NIST Standard Reference Database 124 (2017). https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.