

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO F A C U L T A D D E A R Q U I T E C T U R A TALLER ARQ. JUAN ANTONIO GARCÍA GAYOU

CENTRO DE REHABILITACIÓN FÍSICA

EN PUEBLA DE ZARAGOZA, PUEBLA, MÉXICO.

TESIS QUE PARA OBTENER EL TITULO DE ARQUITECTOS PRESENTAN:

KARLA YVETTE HERNÁNDEZ MORQUECHO RODRIGO PICO RUIZ

SINODALES:

ARQ. ELODIA GÓMEZ MAQUEO.

ARQ. JOSÉ MIRANDA CRUZ.

ARQ. JORGE ARTURO SÁNCHEZ CARENZO.

Ciudad Universitaria, CDMX, marzo 2021

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CENTRO DE REHABILITACIÓN FÍSICA

EN PUEBLA DE ZARAGOZA, PUEBLA, MÉXICO.

AGRADECIMIENTOS Rodrigo Pico Ruiz

A mi madre Luz María Ruiz cruz que siempre a pesar de las circunstancias me apoyó incondicionalmente.

A mi padre Guadalupe Pico Hilario que sin importar que tan larga era la jornada de trabajo, siempre tuvo tiempo para apoyarme y brindarme su ayuda.

A mi hermano Arturo Pico Ruiz que estuvo conmigo a mi lado en esas noches de desvelos con quien compartí anécdotas y risas.

A mi amigo Sergio con quien compartí conocimiento, anécdotas, y siempre me brindó su amistad y apoyo incondicional en momentos donde todo parecía ir en contra.

A todos los que aportaron un granito de arena para desarrollar y terminar esta tesis. Es a ellos a quienes les agradezco y debo por su apoyo incondicional.

AGRADECIMIENTOS Karla Yvette Hernández Morquecho

"El futuro pertenece a aquellos que creen en la belleza de sus sueños" -Eleanor Roosevelt

"Las palabras nunca alcanzan cuando lo que hay que decir desborda el alma" -Julio Cortázar

Agradezco a la Universidad Nacional Autónoma de México por permitirme ser parte de su comunidad y formarme en sus aulas, brindandome todos los recursos necesarios para mi desarrollo académico, personal y profesional.

A la Facultad de Arquitectura y a su docencia por instruirme profesionalmente y por haberme brindado todos los conocimientos y experiencias que me ayudaron a crecer durante todos estos años.

A mis sinodales de tesis, Arq. Elodia Gómez Maqueo, Arq. José Miranda Cruz y al Arq. Jorge Arturo Sánchez Carenzo, por todo su tiempo y conocimiento brindado, porque gracias a su retroalimentación hicieron posible la ejecución de el presente trabajo, gracias.

A mi profesor, el Arq. Raúl Jacome, por brindarme sus conocimientos, ayuda y confianza para desarrollarme en la carrera, gracias.

A todas esas personas que con pequeñas acciones a lo largo de este tiempo me ayudaron y motivaron a llegar hasta aquí, gracias.

AGRADECIMIENTOS Karla Yvette Hernández Morquecho

A mi madre Guadalupe, por siempre creer en mi, apoyarme, ayudarme y motivarme con amor, ternura, sabiduría y dedicación; por enseñarme y darme todo lo mejor de ti, porque sin ti no sería todo lo que soy hoy, gracias mamá, te amo.

A mi padre Rubén, por siempre brindarme todas las herramientas necesarias para lograr mis metas y ser feliz, por creer en mi, darme tu amor y apoyo incondicional, gracias papá, te amo.

A mi hermano Rubén, por ser mi compañero de vida, mi soporte y motivación en todas las etapas de mi crecimiento, por compartir juegos, risas y experiencias, gracias hermano, te amo.

A mi madrina Consuelo, por siempre darme su cariño y amor, porque desde pequeña cultivaste mi amor por el dibujo, te quiero tía.

A mi compañera Mely, por siempre estar a mi lado en todas esas noches de desvelo, insomnio y trabajo; porque desde que llegaste a mi vida me has llenado de alegría, energía y amor; porque te volviste parte de la familia, gracias bonita, te amo.

A mis abuelos, que aunque ya no pudieron llegar a esta etapa de mi vida, siempre recordaré y agradeceré todas sus enseñanzas, cariño y amor, los amaré siempre.

A mi amiga Ana, por tantos años de amistad, consejos, experiencias, apoyo y amor; porque te has vuelto mi familia, gracias amiga.

A mis amigas Gema y Jenny, por hacer de la preparatoria una etapa llena de diversión y experiencias; por abrirme las puertas de su casa, apoyarme, aconsejarme y acompañarme en todo incondicionalmente; porque son como mis hermanas, gracias.

A mi amigo César, por tantos años de risas, experiencias, consejos y tu apoyo incodicional, gracias.

A mi amiga Wendy, por impulsarme a ser mejor persona; por apoyarme, brindarme tu compañía y amor incondicional, gracias amiga.

A mis amigos Daniel y Héctor, por hacer de la FES un lugar divertido, lleno de experiencias y risas; porque cada uno compartió conmigo sus conocimientos y experiencias; porque me apoyaron, motivaron y cuidaron siempre, gracias.

A mis amigos Rodrigo y Sergio, por hacer de la Facultad un lugar agradable; por escucharme y apoyarme; por ser mis compañeros de clases y experiencias, gracias.

			INTRODUCCIÓN	
Ш	CAPÍTULO 1 JUSTIFICACIÓN			
U		Tipos de e Principales	ica con discapacidad en Puebla nfermedades y causas s tipos de rehabilitación que se plantean en el proyecto.	12 14 15 16
			CAPÍTULO 2 OBJETIVOS	21
_	2.1. 2.2.	Generales. Particulare		22 23
		C	APÍTULO 3 LOCALIZACIÓN	25
	3.1. 3.2.	3.3.1.3. 3.3.1.4. 3.3.1.5.	Clima Flora Fauna Usos de suelo Carta urbana Vialidades Terreno Factibilidad Terreno actualmente	26 27 28 28 29 30 31 32 33 34
		3.3.1.6. 3.3.1.7.	Equipamiento Sedesol	35 37

	CAPÍTULO 4 ESTUDIO DE CASOS	39
4.3.	Instituto nacional de rehabilitación (ciudad de México) CRIT Teletón Puebla Puebla Universidad Estatal del Valle de Ecatepec Tabla comparativa de análogos.	40 42 44 46
CA	APÍTULO 5 DESARROLLO DE ANTEPROYECTO	48
5.5.	Programa Arquitectónico	49 52 58 60 61 62
(CAPÍTULO 6 PROYECTO ARQUITECTÓNICO	65
6.1. 6.2. 6.3. 6.4. EST 6.5.	QUITECTÓNICO Planta de conjunto Plantas arquitectónicas Cortes Fachadas RUCTURALES Planos estructurales planos de cimentación	

INSTALACIONES

- 6.7 Hidráulicos
- 6.8 Sanitaria
- 6.9 Pluvial
- 6.10 Sistema contra incendios
- 6.11 Eléctrica (lámparas)
- 6.12 Eléctrica (contactos)
- 6.13 Acabados
- 6.14 Acabados (tabla)

CONCLUSIONES

BIBLIOGRAFÍA

MEMORIAS DESCRIPTIVAS

MEMORIA ESTRUCTURAL MEMORIA DE INSTALACIONES

SIGLAS Y ACRONIMOS

INEGI: Instituto Nacional de Estadística y Geografía.

CONAPRED: Consejo Nacional para Prevenir la Discriminación.

CREE: Centro de Rehabilitación y Educación Especial.

CRIT: Centro de Rehabilitación Infantil Teletón.

ENADIS: Encuesta nacional sobre discriminación.

PCD: Personas con capacidades diferentes.

SEDESOL: Secretaría de Desarrollo Social.

INTRODUCCIÓN

Este trabajo es presentado para demostrar los conocimientos y criterios profesionales adquiridos en nuestra formación académica para obtener el título de arquitectos.

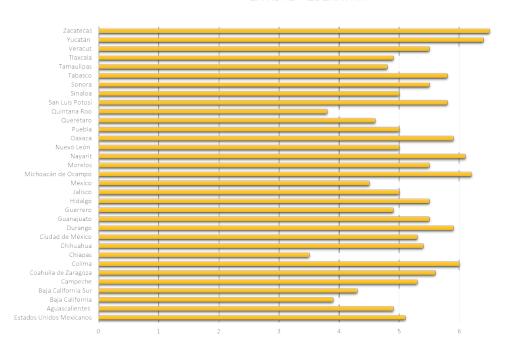
CAPÍTULO 1 JUSTIFICACIÓN

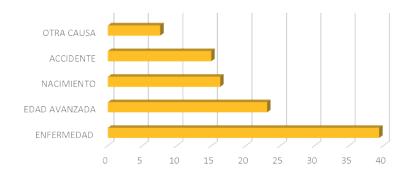
P R O B L E M Á T I C A

De acuerdo al censo y conteo de población y vivienda emitido por el INEGI en 2010, México cuenta con 4, 600,000 habitantes con una condición de limitación en la actividad, como lo es: caminar y moverse, ver, escuchar, mental, hablar o comunicarse, atender el cuidado personal, y poner atención o aprender; correspondiente al 4% de la población total del país, siendo predominante la dificultad de caminar y moverse con un mayor porcentaje de la población.

Según la estructura porcentual de la población con limitación en la actividad por grupo de edad, el de mayor número es de 30 a 84 años. Estas cifras de personas con discapacidad datan del censo hecho por el INEGI en el año de 2010. Al hablar de centros de rehabilitación en México resalta el nombre de TELETÓN y su conocido CRIT (centro de rehabilitación infantil teletón) son una empresa privada que se encarga específicamente de la rehabilitación en niños y que van desde los primeros meses de nacido hasta los 18 años, con el crecimiento de la población se ha presentado un problema a tal grado de tener una lista de espera y los niños no tienen un lugar al cual acudir, por si fuera poco las personas con más edad no son atendidas en esos CRITS por las políticas que manejan.

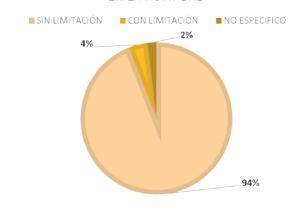
Por su parte el gobierno para contrarrestar la demanda ha creado los CREE (centro de rehabilitación y educación especial) estos centros son organismos públicos y la gente pude acudir de una forma gratuita, por recibir a pacientes de todas las edades las instalaciones han resultado ineficientes para dicha demanda y las personas se tienen que ver en la necesidad de salir de sus estados para llevar un tratamiento adecuado presentado muchos problemas tanto en movilidad y en gastos económicos, muchas veces por las carencias este tipo de pacientes no llevan una atención adecuada y su salud empeora con el paso del tiempo.


PREVALENCIA DE LA DISCAPACIDAD POR ENTIDAD FEDERATIVA, 2018

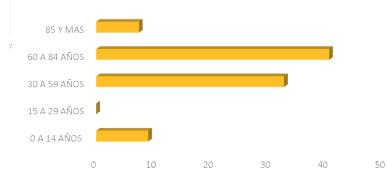

Nota: Una persona con discapacidad es aquella que declaró tener mucha dificultad o no poder realizar alguna de las siguientes actividades consideradas como básicas: caminar, subir o bajar usando sus piernas, ver (aunque use lentes), mover o usar brazos o manos, aprender, recordar o concentrarse, escuchar (aunque use aparato auditivo), bañarse, vestirse o comer; hablar o comunicarse y, realizar actividades diarias por problemas emocionales o mentales.

BASE DE DATOS REFERENTES A PERSONAS CON LIMITACIONES A NIVEL NACIONAL.

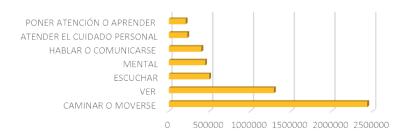
PORCENTAJE DE LA POBLACIÓN CON LIMITACIÓN EN LA ACTIVIDAD POR ENTIDAD FEDERATIVA



PORCENTAJE DE LA POBLACIÓN CON LIMITACIÓN EN LA ACTIVIDAD SEGÚN TIPO DE LIMITACIÓN



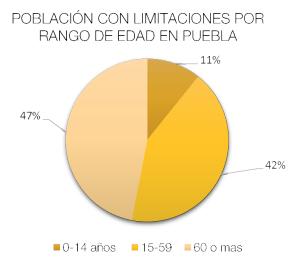
Gráficas realizadas por información de: Instituto Nacional de Estadística y Geografía. (2010). Discapacidad. Discapacidad. https://www.inegi.org.mx/temas/discapacidad/


POBLACIÓN TOTAL SEGÚN CONDICIÓN DE LIMITACIÓN EN LA ACTIVIDAD

ESTRUCTURA PORCENTUAL DE LA POBLACIÓN CON LIMITACIÓN EN LA ACTIVIDAD POR GRUPO DE EDAD

POBLACIÓN CON LIMITACIÓN EN LA ACTIVIDAD SEGÚN TIPO DE LIMITACIÓN

PERSONAS CON DISCAPACIDAD EN PUEBLA


De acuerdo al Censo de 2010, Puebla cuenta con 6, 183,320 habitantes, de los cuales se tiene 224 mil 90 personas con algún tipo de discapacidad parcial, total y/o permanente, lo cual representa el 4.9% a nivel nacional y que le otorga el sexto lugar con personas que presentan alguna discapacidad. El 50.8% de personas discapacitadas son mujeres, 113 mil 939 personas; y el 49.2% corresponde a la población masculina, 110 mil 151 personas.

La población con discapacidad en el estado de Puebla de acuerdo a su edad se distribuye de la siguiente forma: el 47% de la población (105 mil 175 personas) tiene 60 años o más; menores de 14 años representan el 10.8% en el estado de Puebla.

De acuerdo al tipo de discapacidad en la entidad de Puebla se concluye que el 43.9% de las personas tienen discapacidad para caminar, moverse, subir o bajar con sus piernas; el 23.4% tiene dificultad para ver aun usando lentes, y el 10.2% de la población con discapacidad tiene un problema auditivo.

Puebla, Puebla, cuenta con un centro de rehabilitación enfocado a menores de edad (TELETÓN), el Centro de Rehabilitación y Educación Especial (CREE), de acuerdo con el Directorio Nacional de Centros de Rehabilitación 2019, los cuales deben cubrir la necesidad de al menos 1,539,819 habitantes.

Gráficas realizadas por información de: Instituto Nacional de Estadística y Geografía. (2010). Discapacidad. Discapacidad. https://www.inegi.org.mx/temas/discapacidad/

TIPOS DE ENFERMEDADES Y CAUSAS

Los motivos que producen discapacidad en las personas pueden ser variados, pero se pueden clasificar en cuatro grupos de causas principales: nacimiento, enfermedad, accidente y edad avanzada.

Discapacidad física.

Recibe el nombre de discapacidad física o motora a todo aquel tipo de limitación generada por la presencia de una problemática vinculada a una disminución o eliminación de capacidades motoras o físicas, como por ejemplo la pérdida física de una extremidad o de su funcionalidad habitual.

Discapacidad sensorial.

La discapacidad sensorial hace referencia a la existencia de limitaciones derivadas de la existencia de deficiencias en alguno de los sentidos que nos permiten percibir el medio sea externo o interno. Existen alteraciones en todos los sentidos, si bien las más conocidas son la discapacidad visual y la auditiva.

Discapacidad intelectual.

La discapacidad intelectual se define como toda aquella limitación del funcionamiento intelectual que dificulta la participación social o el desarrollo de la autonomía o de ámbitos como el académico o el laboral, poseyendo un Cl inferior a 70 e influyendo en diferentes habilidades cognitivas y en la participación social. Existen diferentes grados de discapacidad intelectual, los cuales tienen diferentes implicaciones a nivel del tipo de dificultades que pueden presentar.

Discapacidad psíquica.

Hablamos de discapacidad psíquica cuando estamos ante una situación en que se presentan alteraciones de tipo conductual y del comportamiento adaptativo, generalmente derivadas del padecimiento de algún tipo de trastorno mental.

Discapacidad visceral.

Este poco conocido tipo de discapacidad aparece en aquellas personas que padecen algún tipo de deficiencia en alguno de sus órganos, la cual genera limitaciones en la vida y participación en comunidad del sujeto. Es el caso de las que pueden generar la diabetes o los problemas cardíacos.

Discapacidad múltiple.

Este tipo de discapacidad es la que se deriva de una combinación de limitaciones derivadas de algunas de las anteriores deficiencias. Por ejemplo, un sujeto ciego y con discapacidad intelectual, o de un sujeto parapléjico con sordera.

PRINCIPALES TIPOS DE REHABILITACIÓN QUE SE PLANTEAN EN EL PROYECTO

Estimulación múltiple temprana.

La estimulación temprana, fomenta principalmente el desarrollo psicomotor del bebé o niño, así como su desarrollo cognitivo; a través de actividades donde ellos se divierten para facilitar sus aprendizajes futuros. Esta técnica se realiza desde el nacimiento del bebé hasta los 6-7 años. Los objetivos de esta terapia irán cambiando de acuerdo al desarrollo y logros del niño, con el fin de estimular su desarrollo motriz, cognitivo, emocional y social.

Terapia de lenguaje.

Esta se basa en diferentes métodos y teorías como es la cognitiva (desarrollo de la memoria, la comprensión y la expresión), la conductista (mediante estímulos externos que ayudan a la recuperación del paciente) que se complementan para poder brindarle a los pacientes las estrategias necesarias que les permitan su recuperación.

Muchos adultos con problemas en la voz, problemas de memoria, secuelas de accidente vascular o derrame cerebral, enfermedades como el parkinson, ELA (Esclerosis Lateral Amiotrófica) y otras enfermedades que puedan alterar algún proceso de la comunicación, deben pasar una evaluación e iniciar sesiones de Terapia de Lenguaje.

Terapia ocupacional.

Está ligada a la geriatría desde sus inicios, analiza, evalúa, gradúa y adapta las actividades de la vida diaria para facilitar la autonomía de las personas. En el caso de las personas mayores así como para personas más jóvenes que hayan sufrido algún accidente o patología que haya limitado su autonomía se convierte, por tanto, en una herramienta esencial para su salud y calidad de vida. Consiste en llevar a cabo actividades básicas de la vida diaria. Como son las que tienen que ver con el ámbito más personal, de cuidado del cuerpo y de la calidad de vida de uno mismo, la interacción con el medio como es el mantenimiento del hogar, desplazarse por la comunidad, usar las nuevas tecnologías, entre otras cosas que se llegan a presentar.

Electroterapia.

Consiste en la aplicación de energía electromagnética al organismo (de diferentes formas), con el fin de producir sobre él reacciones biológicas y fisiológicas, las cuales se aprovecharan para mejorar distintos tejidos cuando se encuentran en enfermedad o con alteraciones metabólicas de las células que componen dichos tejido, que a su vez forman el cuerpo humano.

Mecanoterapia.

Es una disciplina que queda englobada dentro de la fisioterapia y que se define como el tratamiento de diferentes lesiones o enfermedades a través de instrumentos mecánicos, como ruedas, mesas de manos, tabla de pedales, jaulas de poleas y pesos y tracciones, entre otros. Destinados a provocar y dirigir movimientos corporales regulados en su fuerza, amplitud y trayectoria. La mecanoterapia es usada, sobre todo, para la rehabilitación de lesionados y enfermos.

Hidroterapia.

Consiste en la aplicación de tratamientos cuyo agente terapéutico es el agua ayudando a mantener o restaurar la movilidad, mejorar el equilibrio y la coordinación ya que el agua actúa como estímulo, potenciar el estado de ánimo del paciente ya que en el agua podrá realizar más ejercicios y con mayor facilidad que en seco, favorece la espiración, trabajando así los músculos respiratorios.

Psicología.

Como su nombre lo indica, este tipo de terapia se refiere a la atención psicológica que recibe el individuo y las personas más allegadas al sujeto, como lo es su familia. En esta terapia se busca identificar los problemas de comportamiento, así como incrementar la autoestima y ungiendo como apoyo en situaciones traumáticas.

FOTOS DE TERAPIAS

De izquierda a derecha de arriba abajo oEstimulación múltiple temprana. (Espacio opcional) Imagen recuperada de: https://www.colegiomigueldecervantes.mx/

oPaciente recibiendo su tratamiento de electroterapia Imagen tomada de: Gobierno de México Sistema Nacional DIF

oPaciente en su sesión de terapia de lenguaje Imagen recuperada de: http://cealhipoacusia.com/programa-adultos-perdida-auditiva/

oPaciente en mecanoterapia.

Imagen recuperada de: https://www.universidadlaconcordia.edu.mx/blog/index.php/tera-

pia-fisica-y-rehabilitacion-como-ayuda-a-pacientes-con-c ancer/

oPaciente en su sesión de terapia ocupacional Imagen recuperada de: http://cealhipoacusia.com/programa-adultos-perdida-auditiva/

oPacientes en sesión de hidroterapia: Imagen recuperada de: https://aus-peru.blogspot.com/2016/06/insn-aplica-hidroterapia-para.html H I P Ó T E S I S

Tras las cifras dadas por el INEGI 2010 y la ENADIS 2014 surge la inquietud de desarrollar un espacio con características que resuelvan las necesidades de este sector de la población mexicana.

Al ser Puebla una ciudad en crecimiento emergente registra un mayor ritmo de crecimiento en comparación con las mega-ciudades como Guadalajara o la Ciudad de México. Esto da como resultado una considerable cantidad de personas que sufren una condición de limitación en la actividad.

El contar con un centro de rehabilitación física cubriría parte de la necesidad que la población demanda así este espacio permitiría la atención a un mayor número de pacientes, por lo se buscaría ofrecer una calidad de servicios digna, mayor accesibilidad y mitigar la discriminación a través de la creación de programas enfocados a la difusión sobre la importancia de la inclusión.

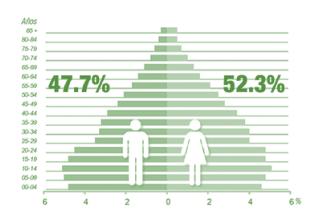
La idea de asentar el proyecto en el estado de Puebla, se tomó por su respectiva cercanía a la Ciudad de México en caso de tener algún consorcio con una institución de rehabilitación el paciente no viajaría mucho tiempo y su traslado sería más rápido, además de gozar de una locación geográfica privilegiada por ser unos de los estados que encuentran en el centro del país colindando con estados como son: Tlaxcala e Hidalgo, Veracruz, Oaxaca, Guerrero, Morelos y el estado de México.

CAPÍTULO 2 OBJETIVOS

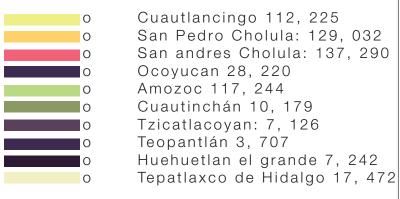
G E N E R A L E S

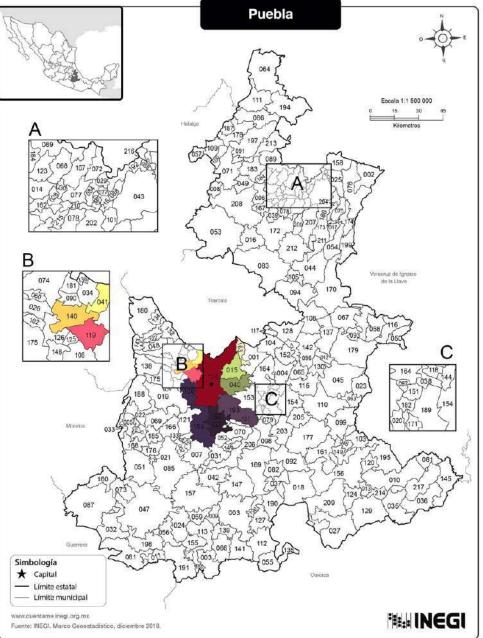
- Crear un espacio arquitectónico con el fin de dar solución a los problemas que aquejan a las personas con capacidades diferentes y mejorar así, su calidad de vida y su desempeño en la sociedad.
- Se pretende un espacio donde los pacientes se sientan motivados de superar sus limitaciones y enfermedades, por esta razón el proyecto debe ubicarse en un espacio abierto, ya que el ser humano tiende a elegir lugares que lo conecten con la naturaleza, además de que esto mejora las funciones cognitivas, la creatividad, sensación de bienestar y acelera la curación.
- Se busca que el proyecto sea lo más accesible para todo tipo de personas que requieran recibir de un tratamiento, principalmente a los pobladores del estado de Puebla y a los estados que rodean dicha entidad.
- El reto principal es lograr un espacio arquitectónico adecuado, para una convivencia limpia y tranquila, para que las personas que tengan de alguna enfermedad logren integrarse de forma satisfactoria a la sociedad.
- Pretendemos aplicar tecnologías sustentables para generar un nuevo estilo en edificios de salud y este sea tomado como un ejemplo para futuras construcciones.
- Generar soluciones a nivel urbano adaptándose a lo existente, llegando a crear un punto de flexibilidad tanto en lo espacial como en lo social.

PARTICULARES


- Contar con un protocolo de atención médica y atención psicológica en el mismo centro creando un ambiente incluyente (para todos).
- PROMOVER espacios adecuadamente equipados para los usuarios así como personas que acompañan al paciente y los trabajadores del mismo centro, cumpliendo con los requisitos de diseño universal.
- PROXIMIDAD en los espacios para que todas las personas puedan utilizarlo no importando edad.
- FLEXIBILIDAD en el diseño adaptándonos a las distintas capacidades del usuario.
- INTUITIVO de diseño simple y fácil de entender no importando conocimientos o idioma.
- ATMOSFERAS realizadas con una paleta de colores donde resaltan las funciones de los espacios, así como texturas que ayudan a los usuarios a identificar las áreas de tratamiento.
- ACCESIBILIDAD comprensible para no tener accidentes y que el uso de las instalaciones sea lo más confortable para los usuarios.
- Promover la experiencia espacial al tratarse de personas con capacidades diferentes debe de haber un tamaño adecuado en los espacios sin importar el volumen corporal, las instalaciones deben de ser amplias para tener un grado de movilidad factible.

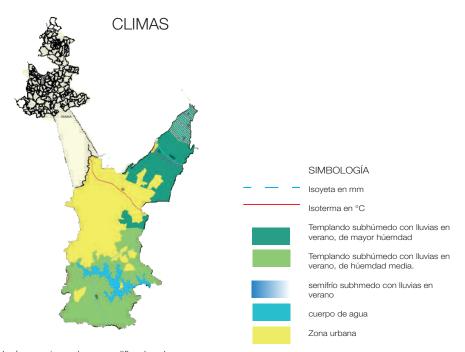
CAPÍTULO 3 LOCALIZACIÓN


POBLACIÓN EN PUEBLA DE ZARAGOZA


Tras el censo de 2015 se determinó que en el estado de puebla residen 3225206 muejres y 2943677 hombres.

Ocupando el lugar número 5 a nivel nacional por la densidad de sus habitantes.

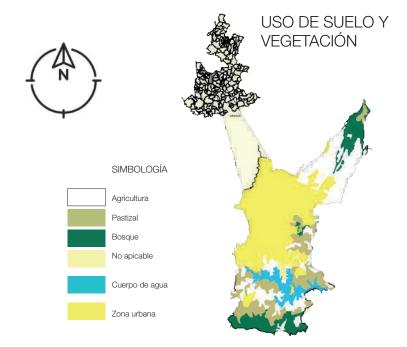
Tan solo en la capital residen 1, 576 259 habitantes y en los municipios aledaños que rodean a la capital las cifras son las siguientes:



CLIMA PUEBLA DE ZARAGOZA

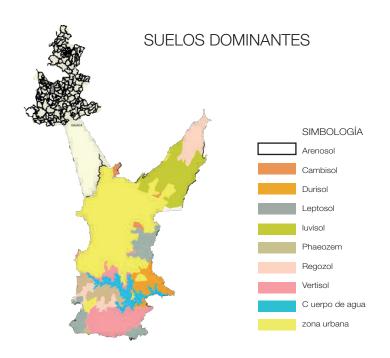
El municipio se localiza dentro de la zona de climas templados del valle de Puebla, sólo en la cumbre de la Malinche presenta un clima frío.

El clima predominante es Templado subhúmedo con lluvias en verano, de mayor humedad (49%), templado subhúmedo con lluvias en verano, de humedad media (47%) y semifrío subhúmedo con lluvias en verano (4%). Con una rango de temperatura de 10 – 16°C.



Imágenes tomadas y modificadas de: Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Puebla, Puebla

FLORA PUEBLA DE ZARAGOZA


La vegetación natural del municipio ha sufrido una grave y constante degradación, principalmente por la tala de bosques y pastoreo. Por regiones morfológicas la situación es la siguiente:

En el volcán de la Malinche las laderas han perdido la mayor parte de sus bosques para incorporarlas a la Agricultura de temporal. Sólo en las laderas altas se han conservado bosques de encino, de pino y asociaciones de pino-encino y encino-pino, así como mesólifo de montaña y de oyamel cerca de la cumbre, en estos bosques se encuentran especies tales como pino harweggi, ocote blanco, palo amarillo axóchitl, lupinus s.p., escobilla, guapinol, pino chino y oyamel.

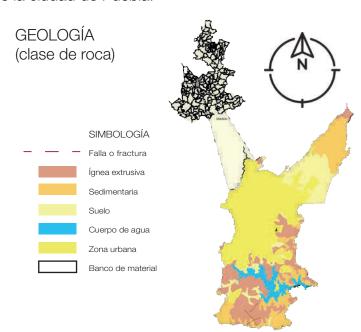
FAUNA PUEBLA DE ZARAGOZA

En el estado de puebla se pueden observar distintas especias de bosque pero por las deforestación han disminuido poco a poco entre los ejemplos más vistos en la zona se encuentran especies como: conejo, ardilla, zorrillo, liebre, onza o comadreja, tuzas, escorpión, paloma, urraca, zopilote, gavilán, búho, murciélago, tlacuaches, garza, pato silvestre, gallareta, víbora de cascabel, coralillo, zencoata, chirrionera y una gran variedad de aves silvestres.

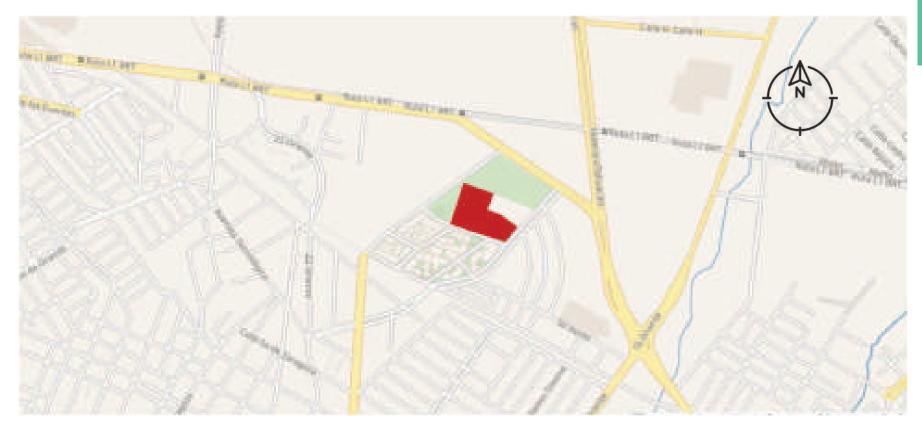
Imágenes tomadas y modificadas de: Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Puebla, Puebla

CARACTERÍSTICAS Y USOS DE SUELO PUEBLA DE ZARAGOZA

El municipio presenta gran diversidad edafológica; se identifican suelos pertenecientes a grupos que a continuación se describen: Litosol: se presenta en el suroeste del municipio, cubriendo parte de la sierra del Tentzo, y al centro este, en la sierra de Amozoc.


Regosol: cubre las estribaciones de la Malinche y zonas dispersas de la sierra del Tentzo.

Cambisol: ocupa grandes extensiones al norte de la ciudad, y al sureste del municipio.


Feozem: se localiza al poniente de la presa de Valsequillo y de la ciudad de Puebla.

Vertisol: ocupa grandes extensiones, entre la ciudad de Puebla y la Presa de Valsequillo, y al noroeste del municipio, en la Rivera del Atoyac.

Rendzina: Se localiza en el sur del municipio cubriendo la mayor parte de la sierra del Tentzo y zonas aisladas al noroeste y suroeste de la ciudad de Puebla.

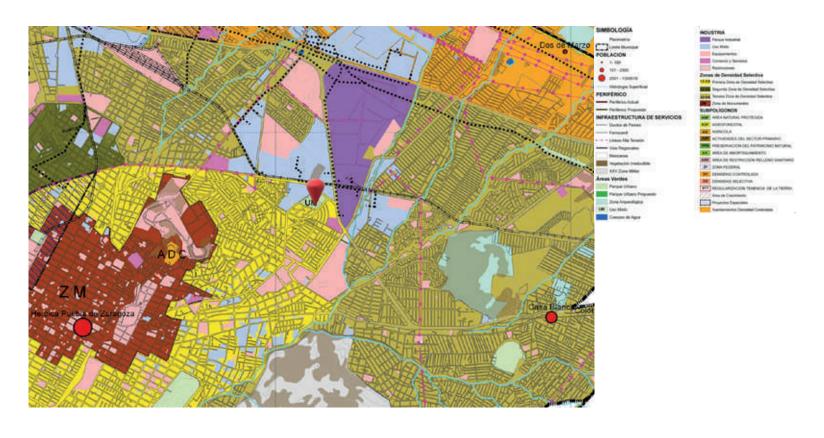
SITIO

Clasificación: Equipamiento

Sub-clasificación: Salud y Asistencia Social

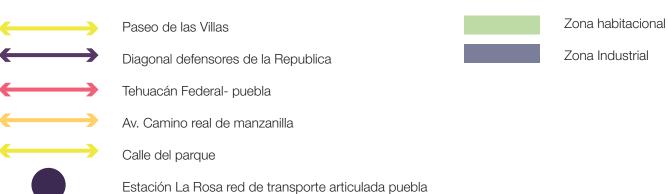
<u>Uso:</u> Centros para la atención de pacientes que no requieren hospitalización. <u>Zonificación/ uso de suelo:</u> Uso mixto densidad media- comercio Servicios.

Superficie: 22132.48m2


Uso de suelo: centros para la atención de pacientes que no requieren hospitalización.

Compatibilidad: PERMITIDO.

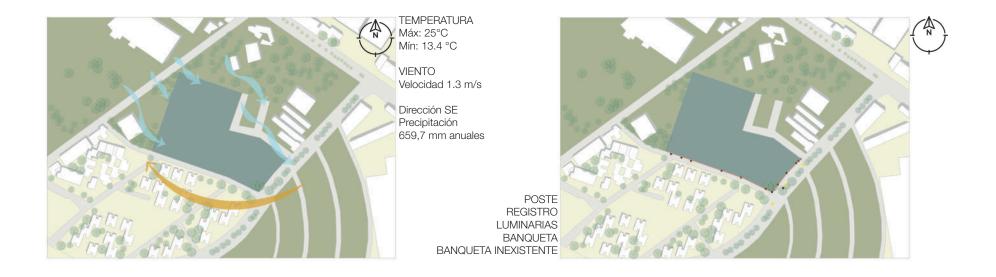
Restricciones: -


Influencia por corredor: la superficie no cuenta con influencia por corredor.

CARTAURBANA

VIALIDADES

T E R R E N O



COEFICIENTES DE USO DE SUELO.					
Coeficiente de Ocupación del suelo (COS 75%)	16599.36 m2				
Árca libre (25%)	5533.12 m2				
Coeficiente de utilización del suelo (CUS 1.50 vcs a.t.)	33198.72m2				
Coeficientes de aguas pluviales al subsuelo (cas 30%)	1659.94				
Niveles de edificación	4				

F A C T I B I L I D A D

Se encuentra a orillas de Puebla y cerca de la colindancia con Tlaxcala, haciéndolo accesible para la población de ambos. Según el Plan Municipal de Desarrollo Urbano de Puebla 2015-2018:

- o El terreno se ubica cercano a las zonas con nivel socioeconómico de menor ventaja, esto proporciona mayores oportunidades de atención a este sector.
- o Fácil acceso al predio por transporte público en estación "La Rosa" de la Red Urbana de Transporte Articulado (Ferrocarril).
- o Colinda con vialidad secundaria, conectando con una primaria.
- o Según la tabla de compatibilidad de usos y destinos de suelo, un Centro para la atención de pacientes que no requieren hospitalización está permitido.
- o Según la carta urbana el uso de suelo es mixto.

TERRENO ACTUALMENTE

EQUIPAMIENTO

Servicios e Infraestructura Públicos

o Agua potable

En la actualidad, el 92.8% de los residentes del Municipio tienen acceso a agua potable; sin embargo, el suministro del líquido en la ciudad proviene de algunos de los mantos acuíferos más explotados del país. En las últimas estimaciones del SOAPAP, se aproximaría a menos de 90 litros por persona al día efectivos, debido a las pérdidas del sistema. Los problemas identificados son: limitada capacidad de almacenamiento; existencia de tomas clandestinas; fugas de agua en la red; agua con problemas de dureza y servicio discontinuo en gran parte de la ciudad.

La sobreexplotación de las corrientes y cuerpos de agua ha provocado escasez y modificaciones en la calidad de este vital líquido, aumentado la presencia de sales minerales y partículas suspendidas que propician la utilización de aguas termales como posible solución. El volumen promedio de suministro actual del agua es de 5 m3/seg.

o Drenaje

La red de drenaje de la ciudad funciona por gravedad, pues en ella se combinan aguas pluviales y aguas negras; además, la infraestructura ha rebasado su vida útil. Cabe señalar que se cuenta con 90.1% de cobertura de saneamiento, aunque este número no indica la calidad resultante del agua tratada, por lo que a la fecha se sigue aportando una gran cantidad de contaminantes y agua tratada fuera de norma, al lago de Valsequillo.

Calidad del Aire

En cuanto a la calidad del aire, el Latin American Global Climate Index (LAGCI) en el 2009 clasifica a Puebla como "promedio", respecto a las demás grandes urbes latinoamericanas.

o Alumbrado Público

Las principales carencias de alumbrado público se tienen en vías primarias, espacios públicos, colonias populares y asentamientos irregulares en la periferia. Más que la cantidad, la tecnología es una de las principales carencias, debido al alto consumo de energía en el municipio.

o Residuos Sólidos

El servicio de recolección de residuos sólidos del municipio ha estado a cargo del Organismo Opera dor del Servicio de Limpia (OOSL), el cual ha concesionado a dos empresas esta labor que han utilizado el relleno sanitario "Chiltepeque" para la disposición final de los residuos sólidos; en el año 2010 se recibieron 546,073 toneladas; 60 % son residuos orgánicos y 40% inorgánicos. Dentro de los aspectos positivos, es contar con un programa de quema de biogás y su futuro aprovechamiento para generar energía. Son 54 pozos de extracción (26% del total requerido para la celda "A"), compresores de extracción y un quemador (Flare), así como un primer motor generador.

S E D E S O L

- o Sistema normativo de equipamiento urbano, Tomo II, Salud y Asistencia Social.
- o Subsistema: Asistencia Social.
- o CENTRO DE REHABILITACIÓN (DIF)

Unidad médica donde se proporcionan los servicios de rehabilitación integral no hospitalaria a la población de cualquier edad físicamente discapacitada y con procesos potencialmente invalidantes.

Cuenta con áreas para gobierno, valoración médica, evaluación de aptitudes y desarrollo de habilidades para el trabajo, tratamientos, servicios generales, salas de espera, estaciona miento, entre otros.

En estos elementos se proporcionan servicios de consulta médica especializada en rehabilitación, de la comunicación humana, neurología, ortopedia y otras; consulta paramédica en psicología y trabajo social; auxiliares en diagnóstico con electromiografía, rayos x y terapias (física, ocupacional y de lenguaje); así mismo, se facilitan prótesis, órtesis y ayudas funcionales; evaluación de aptitudes y desarrollo de habilidades múltiples para el trabajo, y gestoría ocupacional.

Su ubicación se recomienda en localidades mayores de 50,000 habitantes, para lo cual se plantean tres alternativas que pueden adoptarse como prototipos con capacidad para 10, 7 y 4 consultorios, con superficie de terreno de 10,000m2 en todos los casos.

CAPÍTULO 4 ANÁLISIS DE ESPACIOS ANÁLOGOS

Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR)

Principales Áreas de rehabilitación e Investigación.

- o Laboratorio de ortesis y protesis.
- o Radiología.
- o Especialidades en oftalmología.
- o Terapia física.
- o Bioterio.
- o Cirugía experimental.
- o Banco de sangre.
- o Ortopedia del deporte y Artroscopia.
- o Biotecnología.
- o Desarrollo tecnológico.
- o Neurofisiología.
- o Valoración y nutrición de deportistas.
- o Psicología de audiología, foniatría, y patología del lenguaje.
- o Tomografía computada y ultrasonido
- o Neurociencias
- o Foniatria
- o Rehabilitación cardiaca.
- Unidad de ingeniería de tejidos, Terapia celular y
 Medicina Regenerativa.

Centro de Rehabilitación Infantil Teletón (CRIT) Puebla, Puebla.

Principales terapias.

- Terapia física, donde se busca lograr el óptimo desarrollo de las actividades físicas y funcionales de los niños.
- Terapia de lenguaje, en donde se trabajan las habilidades de comunicación, lenguaje escrito y no escrito, verbal y no verbal.
- Terapia ocupacional, un área que busca lograr la independencia funcional en las actividades de la vida diaria, de acuerdo a sus capacidades.
- Psicología familiar, entre otras cosas esta área trabaja en pro de medir y limitar el impacto de la discapacidad y fomenta su apego al tratamiento, fortaleciendo las herramientas cognitivas para la integración social del niño.
- Integración social, aquí se promueve la integración familiar, escolar, laboral y social del paciente de acuerdo a sus capacidades.
- Proyectos especiales, este sector cuenta con un programas enfocados a la integración social de los niños y jóvenes con discapacidad neuromusculoesquelética, en donde se llevan a cabo talleres de deportes, computación, música, magia, cantos y juegos, manualidades, cerámica, pintura y arte, entre otros.

Universidad estatal del valle de Ecatepec Ecatepec de Morelos, Estado de México, México.

Principales terapias:

Esta clínica surge como un organismo que la misma universidad da a los habitantes del municipio, dando a sus alumnos la oportunidad de ejercer sus prácticas y ampliar sus conocimientos, los estudiantes son supervisados por un pasante, un maestro y los médicos de cabecera para tener un control más eficaz en el centro.

En la clínica se manejan cuatro especialidades las cuales son:

Acupuntura:

Es la introducción terapéutica de agujas filiformes en el organismo para producir respuestas en el cuerpo del paciente; tanto locales como regionales y generales.

Quiropráctica:

La atención quiropráctica es una forma de diagnosticar y tratar problemas de salud que afectan los nervios, los músculos, los huesos y las articulaciones del cuerpo. ... Los ajustes manuales de la columna vertebral, llamados manipulación de la columna, son la base del cuidado quiropráctico.

Geriatría:

La geriatría es la rama de la medicina que se preocupa de los problemas y enfermedades de los adultos mayores, cómo prevenirlas y manejarlas, y del proceso de envejecer. No sólo del aspecto médico, sino también de aspectos sicológicos y sociales que habitualmente acompañan este proceso.

Rehabilitación física:

La mecanoterapia es una disciplina que se engloba dentro de la fisioterapia y se define como el arte y la ciencia del tratamiento de distintas enfermedades y lesiones mediante la utilización terapéutica de aparatos mecánicos, y dispositivos destinados a provocar y dirigir movimientos corporales regulados en su fuerza, trayectoria y amplitud, sin riesgo de exceso por carga o rango de movimiento.

La atención es abierta a todo el público con un horario de 9 de la mañana a las 19:00 horas, por ser abierto para todas la edades se requiere de una valuación y un diagnóstico para ver si el paciente es candidato para su rehabilitación en el centro. Al ser un organismo gubernamental las tarifas son muy accesibles y se aceptan de todo tipo de derechohabientes que van desde el IMSS, ISSTE seguro popular o privado.

Han llegado casos en que los pacientes provienen de otros estados y para no retenerlos se trata de brindarles la mayor cantidad de terapias en un día para que puedan regresar a sus lugares de origen y así agilizar los tiempos y ser más eficaces.

	ESPACIOS	Instituto Nacional de Rehabilitación INR. CDMX	Universidad estatal del valle de Ecatepec. Estado de México, México.	CRIT Teletón Puebla.
	Lesiones deportivas	X	X	
ÓN Ó	Medicina del deporte (Atletas de alto rendimiento)	X	X	
ITACI	Valoraciones	X	X	X
ÁREAS DE REHABILITACIÓN	Enfermedades relacionadas con ortopedia y traumatología	X	X	PEDIÁTRICA
JE RE	Enfermedades neurológicas	X		PEDIÁTRICA
AS [Rehabilitación postoperatoria		X	
ÁRE	Rehabilitación del adulto mayor y enfermedades degenerativas.	X	X	
	Aplicación de vendajes neuromusculares y tapping funcional		X	
	Sala de espera Hidroterapia	X	X	X
JRA	Área de gimnasio		Χ	\(\frac{1}{2}\)
INFRAESTRUCTURA	Área de consulta y Auscultación	X	Χ	X
TRU	Área de terapia	X	X	X
VES.	Baños	X	Χ	X
FR/	Lockers	X	X	X
₹	Área de investigación	X		
	Biomédica	X		
	Comedor	X	X	X
	Terapia física	X	X	X
SC	Terapia ocupacional	X	X	X
SERVICIOS	Medicina del deporte	X	X	
SEF	Medicina de rehabilitación	X	X	
	Medicina de comunicación	X		X
	Terapia de lenguaje			X
	Apoyo quirúrgico Oftalmología	X		
SOIC	Otorrinolaringología Enfermería	X	v	
SERVICIOS	Reumatología Nutrición	^	X	X
0,	Psicología	Χ	X	
	Trabajo social	X	X	
	Odontología	v		
	Laboratorio de Ortesis y Prótesis Integración social	X		X X
ANZA	Pre grado	X		
ENSEÑANZA	Postgrado y Educación continua	X		
ш	Recursos financieros	Х	X	X
	Recursos humanos	X	X	X
	Recursos de planeación	X	X	X
TRA	Compras y suministros	X	X	X
ADMINISTR/ CIÓN	Servicios generales	X	X	X
AD	Conservación y mantenimiento	X	X	X

CAPÍTULO 5 DESARROLLO DE ANTEPROYECTO

CONCEPTO ARQUITECTÓNICO

El concepto de diseño es la esencia del diseño arquitectónico. Es convertir una idea subjetiva a su materialización, se puede decir que es una metáfora proyectada en un espacio arquitectónico.

Al tratarse de un centro de rehabilitación física el diseño que tomamos de referencia fue una articulación tanto en funcionamiento como en forma haciendo énfasis a los pacientes que están superando las limitaciones que la vida les presentó, el proyecto debe de estar regido por normas oficiales mexicanas e internacionales. Estas hacen que el funcionamiento de nuestro edificio sea eficaz.

La accesibilidad, los espacios grandes y el mobiliario juegan un papel muy importante en el desarrollo de nuestro edificio con un aproximado de 10, 000 m2 de construcción dependiendo del desarrollo del edificio.

Hospital Infantil Teletón de Oncología / Sordo Madaleno Arquitectos

Hospital Rocio / Manoel Coelho Arquitectura e Design Brasil.

En las áreas comunes como lo son salas de espera, comedores, auditorios se tienen que contemplar el acceso de personas con sillas de ruedas y contar con grandes claros para un fácil desalojo de las instalaciones.

La característica principal de la mayoría de los muros debe de ser de carga para prevenir alguna tragedia provocada por algún desastre natural.

Los sanitarios para pacientes y personal, deben contar al menos con un inodoro, un mingitorio y un lavabo para personas con discapacidad.

Todo espacio que esté dentro del edificio debe estar libre de obstáculos; los pisos deben estar sin sardineles y perfiles metálicos de mampara.

La funcionalidad de este tipo de edificios se da gracias a una adecuada señalización, esta debe de cubrir las características que la NOM-030-SSA3-2013 señala.

Todas las áreas deben de estar ventiladas e iluminadas naturalmente generando patios interiores y/o exteriores, la luz artificial que sea generada a través de paneles solares así reducir el consumo energético.

Hospital Rocio / Manoel Coelho Arquitectura e Design Brasil.

Hospital Infantil Teletón de Oncología / Sordo Madaleno Arquitectos

En cuanto a la forma del edificio la accesibilidad es un punto de partida para el diseño del mismo, nuestras circulaciones deben de ser el eje rector de nuestro diseño. Puebla a ser una ciudad en crecimiento permite este tipo de edificios y el sistema constructivo es el mismo que la Ciudad de México.

Hospital Infantil Teletón de Oncología / Sordo Madaleno

Centro hospitalario de la Universidad de Montreal. Canadá.

PROGRAMA ARQUITECTÓNICO

		COMPONENTE ESPACIAL	NO. COMP.	NO. USUARIOS <i>C/U (MAX.)</i>	MOBILIARIO	M ² POR UNIDAD	M ² TOTAL	ALTURA LIBRE
		Dirección	1	8	Sillas, escritorio, librero, archivero, sillones, mesa esquinera, bote de basura, credenza	45.00	45.00	3.50
		Sala de Juntas	1	11	Mesa de juntas, sillas, proyector, pizarrón, bote de basura, credenza	63.00	63.00	3.50
		Coordinación de enseñanza	1	3	Escritorio, sillas, sillón, bote de basura, archivero	24.00	24.00	3.50
		Aulas de enseñanza	4	88	Mesa de juntas, sillas, proyector	75.00	300.00	3.50
		Administración	1	3	Sillas, escritorio, sillón, bote de basura, estante, librero	24.00	24.00	3.50
		Recursos humanos	1	3	Sillas, escritorio, sillón, bote de basura, estante, librero	24.00	24.00	3.50
		Materiales	1	2	Estantería	25.00	25.00	3.50
Gobierno	ación	Contabilidad	1	3	Sillas, escritorio, sillón, bote de basura, estante, librero	24.00	24.00	3.50
Gob	Administración	Secretarial	1	4	Sillas, escritorio, sillón, bote de basura, estante, librero	24.00	24.00	3.50
		Archivo	1	2	Archiveros	20.00	20.00	3.50
	``	Vigilancia	1	1	Escritorio, silla	9.00	9.00	
		Caja	1	1	Silla, mesa	9.00	9.00	3.50
		Cocina y comedor empleados	1	25	Refrigerador, cocineta, mesas, sillas, sillones	76.00	76.00	4.00
		Sala de espera	1	12	Sillones	21.00	21.00	4.00
		Site	1	1	Estantes	6.00	6.00	3.50
		Aseo	1	1	Tarja, estantes	5.00	5.00	3.50
		Sanitarios	1	17	Lavabos, WC, Mingitorios, Secadora de manos, expendidora de papel, espejo, botes de basura	72.00	72.00	3.50
		Sala de Usos Múltiples	1	40	Proyector, mesas, sillas	103.00	103.00	3.50
es y ides	Jefatura	Jefatura EADHT	1	3	Sillas, escritorio, sillón, bote de basura, estante, librero	16.00	16.00	3.50
ación de aptitud rollo de habilida para el trabajo	_	Seguimiento	1	3	Sillas, escritorio, sillón, bote de basura, estante, librero	16.00	16.00	3.50
e al ha trat	ਜ਼ ਵ ਲ	Rehabilitación ocupacional	1	17	Mesas, sillas, estantería	63.00	63.00	3.50
= 8 g	Coordi nación técnica	Rehabilitación ocupacional Evaluación VALPAR/APTICOM Coordinación técnica EADHT	1	5	Sillas, mesa, escritorio, librero	26.00	26.00	3.50
ļ Š Š Š	Ç	Coordinación técnica EADHT	1	2	Sillas, escritorio, librero	33.00	33.00	3.50
Evaluación de aptitudes y desarrollo de habilidades para el trabajo		Talleres de adiestramiento laboral	2	58	Mesas, sillas, estantería	76.00	152.00	3.50
ú ф		Área de muestra	2	38	Mesas, sillas, estantería	18.00	36.00	3.50

Acceso		Vestíbulo/Recepción	1	10	Módulo, silla y máquinas expendedoras	125.00	125.00	3.50
Valoración	Consultorios Prevaloración y valoración	Fisiatría	2	4	Asiento, Banqueta de altura, Barras paralelas, Colchón para ejercicios terapéuticos, Colchoneta para gimnasio, Cortina plegable antibacteriana, Gancho, Mesa de exploración, Mesa de tratamiento, Toallero	34.00	68.00	4.20
		Ortopedia y traumatología	2	4	Mesa de trabajo con doble tarja y trampa de yeso, Esfigmomanómetro, Estetoscopio biauricular con doble campana, Negatoscopio de dos campos, Plantoscopio, Sistema de somatometría	34.00	68.00	4.20
		Neurología	2	4	Mesa de exploración neurológica, Mesa de Mayo, Carta para agudeza visual, Compás de Weber, Contenedor de olores fuertes, Dinamómetro de mano, Negatoscopio, Tubos de ensayo con agua fría y caliente	28.00	56.00	4.20
		Medicina General	2	4	Asiento, Banqueta de altura, Cortina plegable antibacteriana, Gancho, Mesa de exploración, Mesa de tratamiento, Toallero	28.00	56.00	4.20
		Psicología	2	4	Sillas, escritorio, sillones	33.00	66.00	4.20
		Geriatría	2	4	Asiento, Banqueta de altura, Cortina plegable antibacteriana, Gancho, Mesa de exploración, Mesa de tratamiento, Toallero	36.00	72.00	4.20

Valoración	Rayos X	Gabinete de Rayos X Vestidor	1	1	Alacena alta, Area de disparador, Bote para basura tipo municipal, Bote para RPBI, Riel portavenoclisis, Equipo de radiodiagnóstico de 300 mA o más; soporte de tubo; seriógrafo con intensificador de de imagen (para equipo con fluoroscopia); bucky vertical, soporte pediátrico para tórax, Lámpara de haz dirigible, Portavenoclisis rodable Banco y perchero	91.00	91.00	4.00
호	ğ	Vestidoi		<u>'</u>	Mesa con tarja, Asiento, Bote para basura	31.00	91.00	4.00
\ 		Cuarto oscuro		3	tipo municipal, Mesa alta para carga y descarga de placas o películas, Soporte portaplaca de pared			
		Control		1	Asiento, escritorio			
		Interpretación		2	Asiento, Bote para papeles, Mesa para interpretación de placas radiológicas, Lámpara de luz intensa, Negatoscopio de dos campos			
		Supervición de tratamientos	1	5	Sillas, escritorios, libreros	35.00	35.00	3.20
		Sala de espera	2	115	Sillones	295.00	590.00	3.50
		Estación de terapeutas	1	4	Escritorios, sillas, archiveros	40.00	40.00	3.50
		Signos vitales	1	3	Sillas, escritorios, bascula, mesa mayo, camilla, tarja	60.00	60.00	4.20
tos		Gabinete de electrodiagnóstico	1	3	Asiento, Banqueta de altura, Cortina plegable antibacteriana, Gancho, Mesa de exploración, Tarja, Toallero, gabinete electrodiagnóstico	23.00	23.00	4.20
<u> </u>		Farmacia	1	3	Anaqueles, cajoneras, escritorio, silla	47.00	47.00	4.20
Tratamientos	Estimulación múltiple temprana	Estimulación visual	1	2	Columna de burbujas, máquina de hacer burbujas, espejos, pecera, proyectores, reflectores y luces de colores, techo blanco, bola de espejos, bombillos de colores, móviles, techo con estrellas, cortinas de colores.	10.00	10.00	4.20
	Estimuk te	Estimulación auditiva	1	2	Sonajeros, timbres, juguetes y pelotas con sonidos o sonajeros, grabadora y CD de sonidos ambientales, instrumentos musicales, bastones con sonajeros.	19.00	19.00	4.20

	temprana	Estimulación táctil	1	2	Tablero táctil, muñecos con vibración, bolas de diferentes tamaños y texturas, tapetes, cepillos y esponjas, ventilador con cintas de colores.	8.00	8.00	4.20
	Estimulación múltiple temprana	Estimulación vestibular, propioceptiva y relajación	1	15	Colchonetas, tarima de madera para la percusión con manos y pies, piscina de pelotas, hamacas, herramientas para masajear. Paneles interactivos, punzón, sistemas y material en Braille, muñecos, títeres y peluches, bloques y legos, figuras geométricas, cuadros didácticos, pictogramas, "cocina"	58.00	58.00	4.20
		Terapia de lenguaje	1	25	Escritorio, sillas, estantes	103.00	103.00	4.20
		Actividades de la vida diaria	1	6	Sillas, mes, banca, cama, escritorio, cocineta, WC, regadera	80.00	80.00	4.20
ဖွ		Actividades de la vida diaria niños	1	6	Sillas, mes, banca, cama, escritorio, espejos	54.00	54.00	4.20
Tratamientos		Simulación laboral	1	25	Mesas, sillas, anaqueles, escritorios, bancos y botes de basura	77.00	77.00	4.20
tan	Electroterapia	Tracción cervical y lumbar	1	2	Tracción cefálica y pélvica.	8.00	8.00	4.20
Trai		Electroterapia	1	8	Mesa de tratamiento, Baño de parafina, Compresas frías, Compresas químicas, Diatermia, Neuroestimulador, Rayos Infrarrojos, Ultrasonido terapéutico.	47.00	47.00	4.20
		Gimnasio	1	30	Colchón terapéutico, Escaleras terapéuticas, Espalderas, Espejo para postura móvil, Mesa de tratamiento, Polea doble, Timón y escalerilla para hombro, bicicletas, caminadoras, escaladoras, canales de marcha, Asiento, Banqueta de altura, Colchoneta para gimnasio, Cortina plegable antibacteriana, Gancho, Mesa de exploración, Mesa de tratamiento, Toallero	124.00	124.00	4.20
		Área de marcha	1	10	Bancas, Barras paralelas	78.00	78.00	4.20
		Utilería	1	1	Estantería	10.00	10.00	4.20

		Tanque terapéutico	1	20	Tanques terapéuticos, bancas	244.00	244.00	4.20
		Tanque remolino horizontal	1	3	Sillas, tina horizontal, equipo de hidromasaje	12.00	12.00	4.20
		Mienbros superiores	1	3	Silla, tina, mesa, banco	12.00	12.00	4.20
	g	Miembros inferiores	1	3	Silla, tina, mesa, banco	37.00	37.00	4.20
	Área húmeda	Parafina	1	3	Sillas, tarja, mesa mayo, nevera, cajonera	11.00	11.00	4.20
tos	g B	Fluidoterapia	1	3	sillas, banco, estante	11.00	11.00	4.20
je j	∡ੋ	Lockers	1	12	Lockers y bancas			4.20
Tratamientos		Baños Vestidores	4	8	Lavabos, WC, Mingitorios, Secadora de manos, expendidora de papel, espejo, botes de basura, regaderas, bancas, lockers	15.00	60.00	4.20
	Gerontología	Consultorios	4	12	Asiento, Banqueta de altura, Cortina plegable antibacteriana, Gancho, Mesa de exploración, Mesa de tratamiento, Toallero	26.00	104.00	4.20
	g	Grupal	1	37	Mesas, sillas, estantería, bote de basura	120.00	120.00	4.20
		Taller de prótesis y órtesis	1	5	Tarja, estantes, barras paralelas, mesas, bote de basura	55.00	55.00	4.20
		Descanso de empleados	1	36	Refrigerador, cocineta, mesas, sillas, lockers	60.00	60.00	3.50
		Roperia	1	2	Guarda de ropa	12.00	12.00	3.50
		Ropa sucia	1	2	Almacenamiento de ropa sucia	10.00	10.00	3.50
Servicios Generales		Baños terapeutas	2	8	Lavabos, WC, Mingitorios, Secadora de manos, expendidora de papel, espejo, botes de basura, regaderas, bancas, lockers	17.00	34.00	4.20
		Sanitarios mixto familiar	2	4	Lavabos, WC, cambiador de pañales, secadora de manos, expendidora de papel, espejo, botes de basura	9.00	18.00	4.00
		Sanitarios	1	16	Lavabos, WC, Mingitorios, Secadora de manos, expendidora de papel, espejo, botes de basura	58.00	58.00	4.00
		Séptico	1	1	Tarja, estánte	5.00	5.00	3.50
		Aseo	1	1	Tarja, estantes	8.00	8.00	3.50
		Site	1	1	Estantes, Conmutadores, red de voz y datos	5.00	5.00	3.50
		Vigilancia	1	1	Silla, escritorio, estante	9.00	9.00	3.50

								•
	Cuarto de máquinas	Casa de máquinas	1		Cisterna con hidroneumático con sistema de bombeo para emergencias, Planta de			3.50
_	Cuarto máquin	Subestación		4	emergencia de energía eléctrica, Calderas,	190.00	190.00	3.50
Generales	3 8	Diesel			Subestación eléctrica y sistema para la			3.50
jē		Filtros Hidroterapia			acometida y distribución			3.50
Ger		Almacén de residuos RPBI	1	2	Contenedores RPBI	10.00	10.00	3.50
		Cuarto de basura	1	2	Botes de basura	25.00	25.00	3.50
<u> ថ្</u>		Bodegas de equipo e insumos	1	4	Estantes	60.00	60.00	3.50
Servicios		Taller de matenimiento	1	4	Estantería y mesas	50.00	50.00	3.50
်		Lavandería y bodega de blancos	1	4	Lavadoras, anaqueles , botes y mesas	45.00	45.00	3.50
		Caseta de conrol	3	1	Escritorio, silla, sanitario	18.00	54.00	3.50
		Estación de sillas	1	1	Sillas de ruedas	12.00	12.00	3.50
		Comensales	1		Mesas y sillas	177.00	177.00	3.50
Š	<u> </u>	Preparación de alimentos y caja	1		Parillas, refrigeradores, mesas, lavaplatos, estantes, mostradores, tarja	28.00	28.00	3.50
<u> </u>	<u> </u>	Bodega	1		Anaqueles	37.00	37.00	3.50
Cafetería	3	Sanitarios	1		Lavabos, WC, Mingitorios, Secadora de manos, expendidora de papel, espejo, botes de basura	34.00	34.00	4.20
		Estacionamiento	94			22.00	2068.00	
DISTOIL	BUTIVA				Circulaciones generales	0.20	979.20	
וואופוט	BUTIVA				Circulaciones servicio	0.15	734.40	
					Superficie de construcción (sin cira	culaciones)	4896.00	m2

Superficie de construcción (sin circulaciones) 4896.00 m2

SUPERFICIE DE CONSTRUCCIÓN TOTAL

6609.60 m2

RESUMEN de superficies (comparación de normatividad y proyecto)

Por normatividad:

Superficie del terreno
COS del terreno
Ó.75

Área libre permeable
No. de niveles

22132.48 m2
16599.36 m2
5533.12 m2
niveles

CUS *(según COS neto)* 16599.36 m2

Por proyecto:

Superficie de construcción 6609.60 m2
Niveles de construcción 1.00 niveles

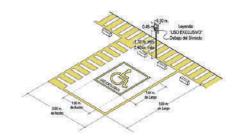
	RANGOS DE CONSTRUCCIÓN		
LÍMITE	Máximo a construir	16599.36	m2
SUPERIOR	Máximo de niveles	1.00	niveles
LÍMITE	Mínimo a construir	6609.60	m2
INFERIOR	Mínimo de niveles	1.00	niveles

NORMAS OFICIALES MEXICANAS

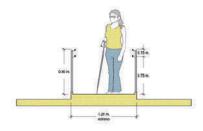
Normas Oficiales Mexicanas en materia de Discapacidad En México las Normas Oficiales Mexicanas (NOM) tienen como principal objetivo prevenir los riesgos a la salud, la vida y el patrimonio y por lo tanto son de observancia obligatoria.

PROYECTO de Norma Oficial Mexicana PROY-NOM-015-SSA3-2018, Para la atención integral a personas con discapacidad.

NORMA Oficial Mexicana NOM-030-SSA3-2013, Que establece las características arquitectónicas para facilitar el acceso, tránsito, uso y permanencia de las personas con discapacidad en establecimientos para la atención médica ambulatoria y hospitalaria del Sistema Nacional de Salud.

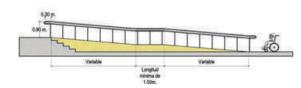

NORMA Oficial Mexicana NOM-016-SSA3-2012, Que establece las características mínimas de infraestructura y equipamiento de hospitales y consultorios de atención médica especializada.

Norma Oficial Mexicana NOM-035-SSA3-2012, En materia de información en salud.

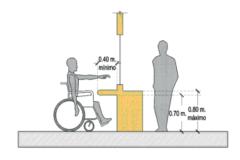

Norma Oficial Mexicana NOM-034-SSA2-2013, Para la prevención y control de los defectos al nacimiento.

Norma Oficial Mexicana NOM-024-SSA3-2012, Sistemas de información de registro electrónico para la salud. Intercambio de información en salud.

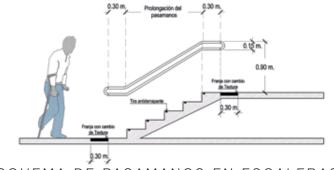
Norma Oficial Mexicana NOM-025-SSA2-2014, Para la prestación de servicios de salud en unidades de atención integral hospitalaria médico-psiquiátrica.

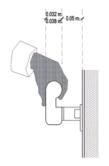


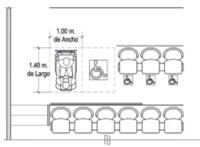
CAJÓN DE ESTACIONAMIENTO

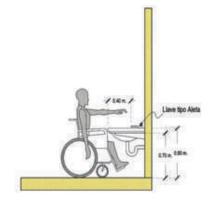


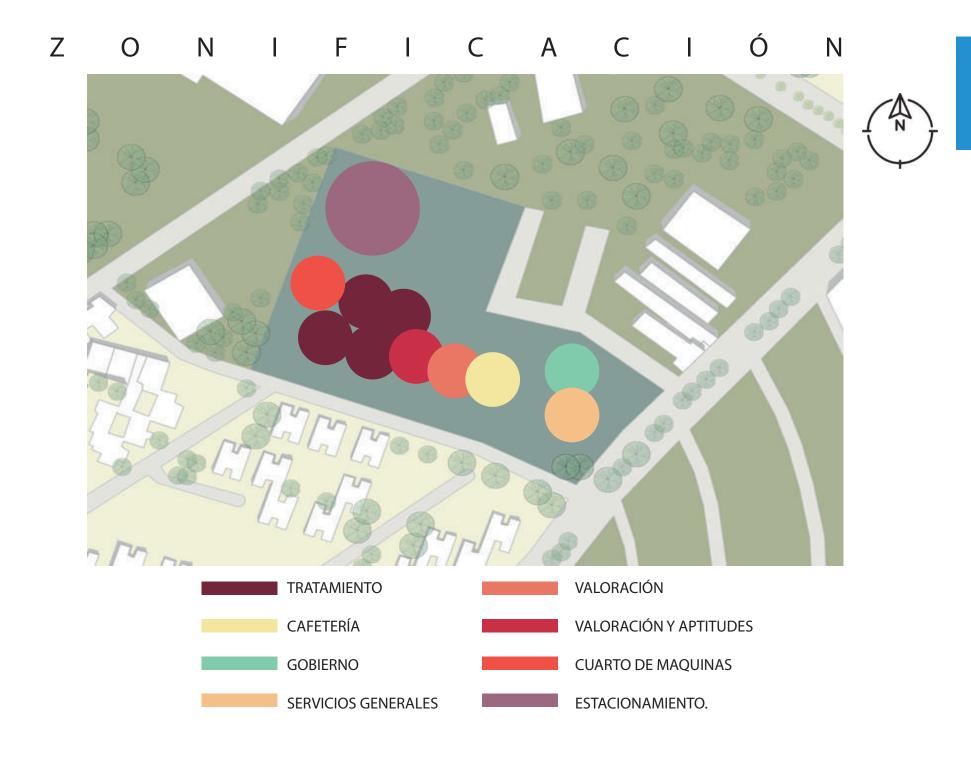
ESQUEMA DE COLOCACIÓN DE PASAMANOS EN RAMPAS Y ESCALERAS

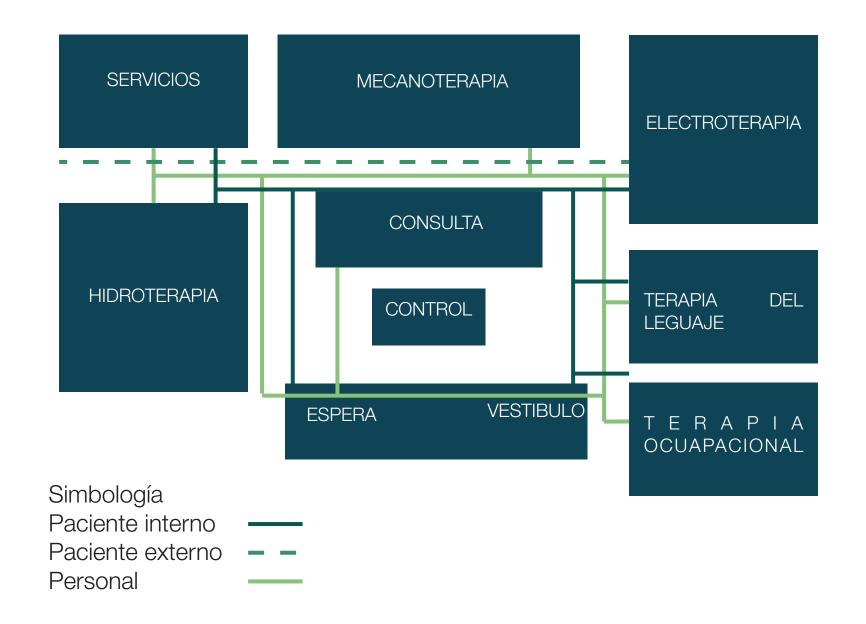

NORMAS OFICIALES MEXICANAS ESPECIFICACIONES BÁSICAS DE DISEÑO


ESQUEMA DE LOS DESCANSOS DE UNA RAMPA


ESQUEMA DEL MOBILIARIO DE ATENCIÓN AL PÚBLICO

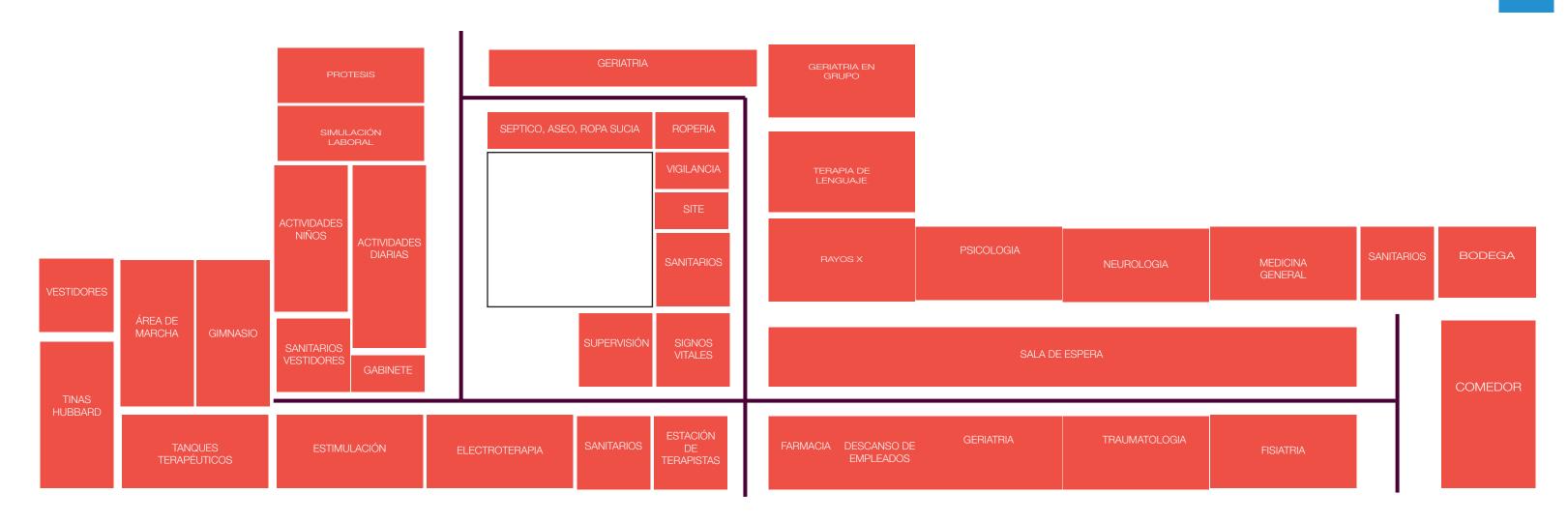

ESQUEMA DE PASAMANOS EN ESCALERAS


ESQUEMA DE PASAMANOS


ESQUEMA DE ESPACIOS EN AUDITO-RIOS Y SALAS DE ESPERA

ESQUEMA DE LAVABOS

DIAGRAMA DE FLUJO RECOMENDADO POR EL IMSS



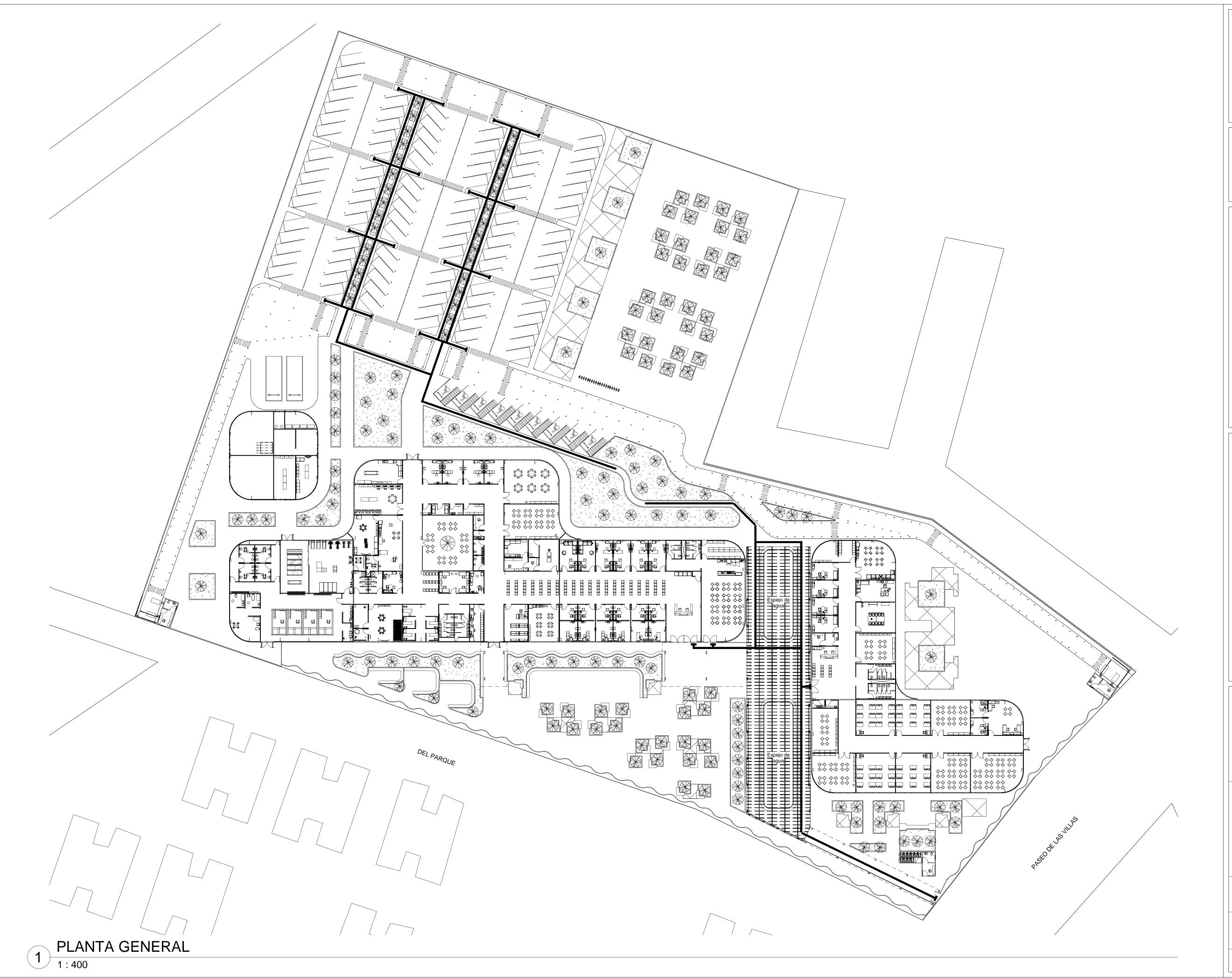

DIAGRAMA DE FLUJO PARA EDIFICIO DE TRATAMIENTOS

DIAGRAMA DE FLUJO PARA EDIFICIO DE VALORACIÓN

CAPÍTULO 6 PROYECTO ARQUITECTÓNICO

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

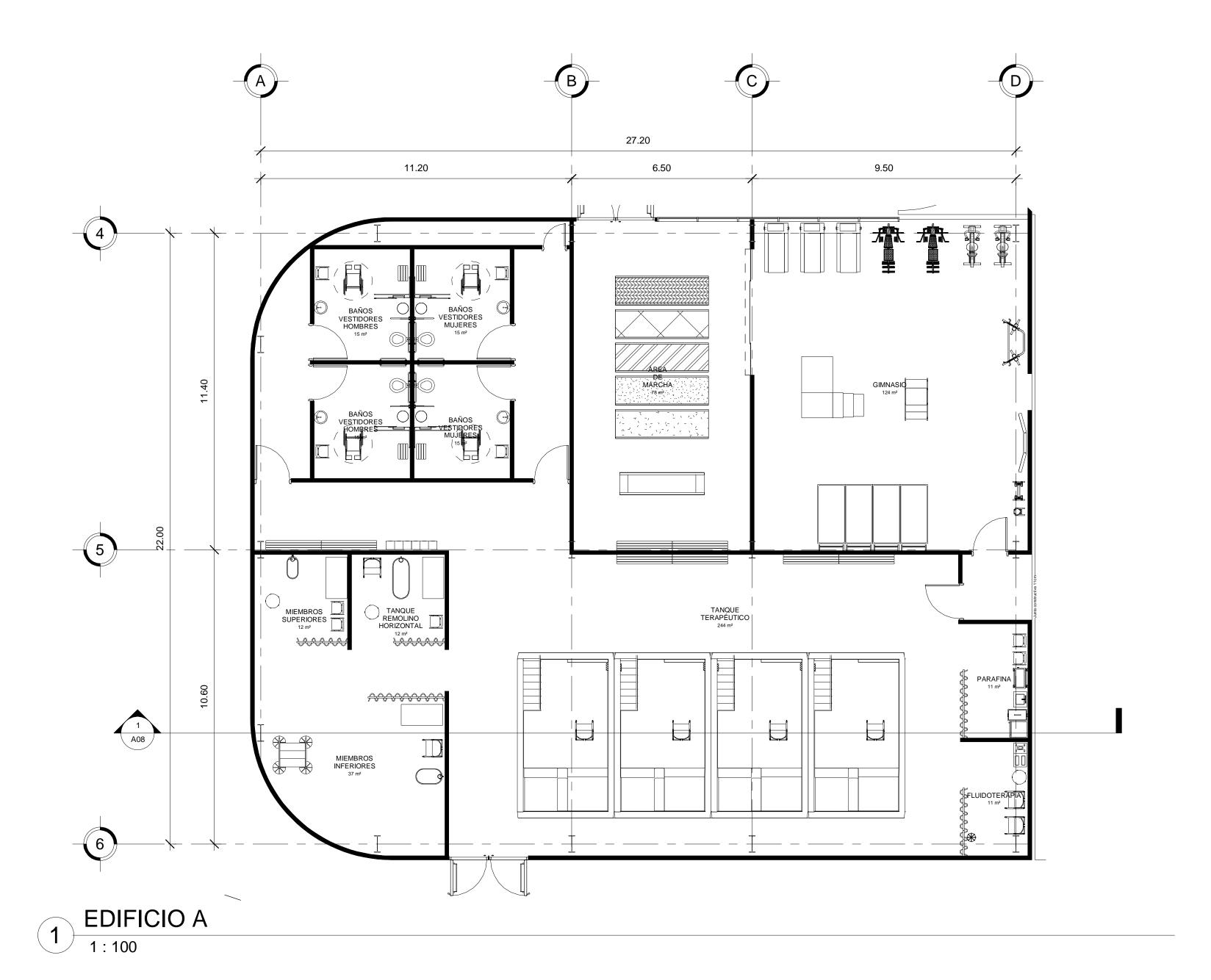
Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ARQUITECTÓNICOS-PLANTAS

Fecha


Fecha de emisión


Clave de plano

A01

Escala

1:400

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

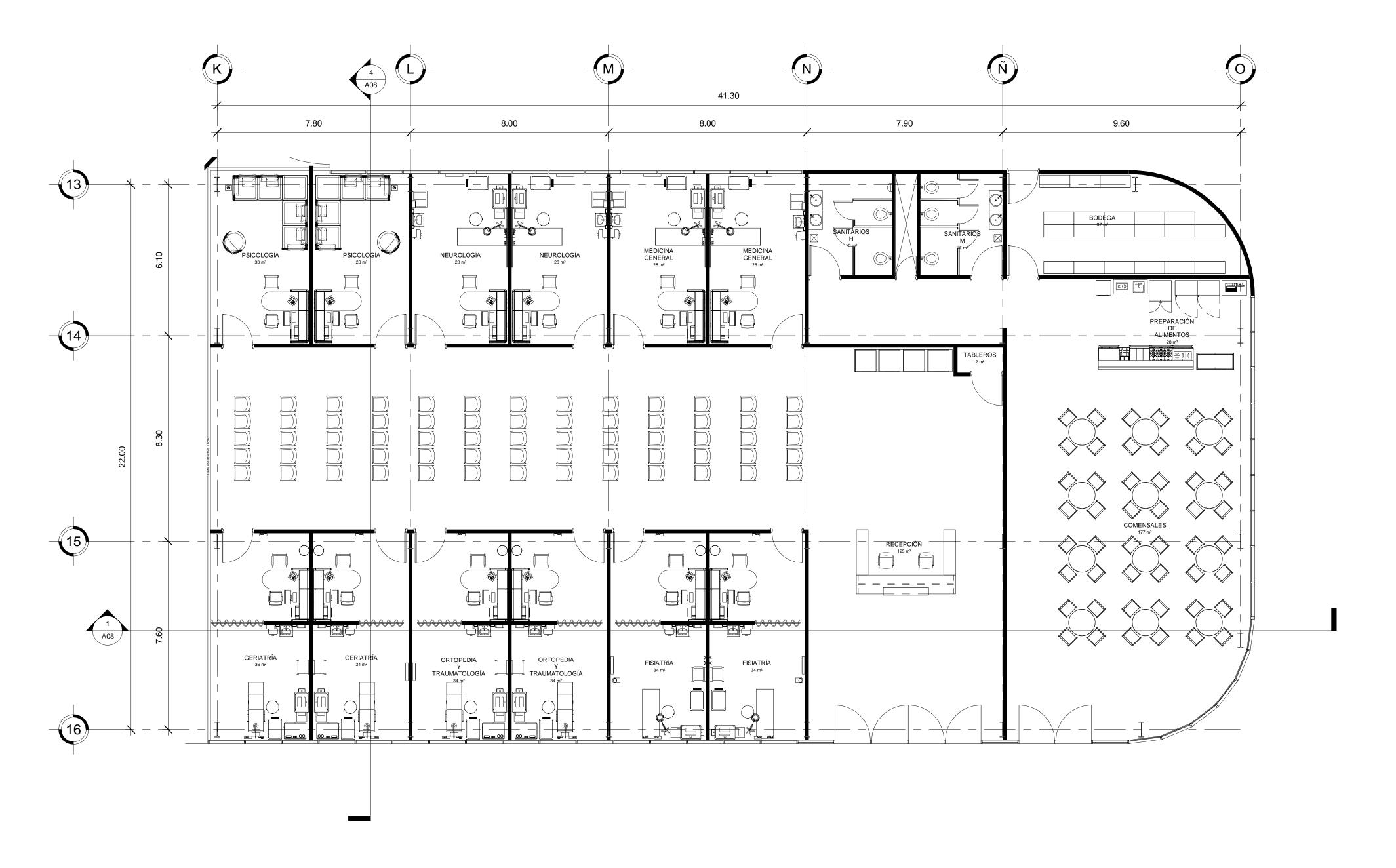
Título de plano

ARQUITECTÓNICOS-PLANTAS

Fecha

Fecha de emisión

Clave de plano


A02

a

Escala

1:100

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

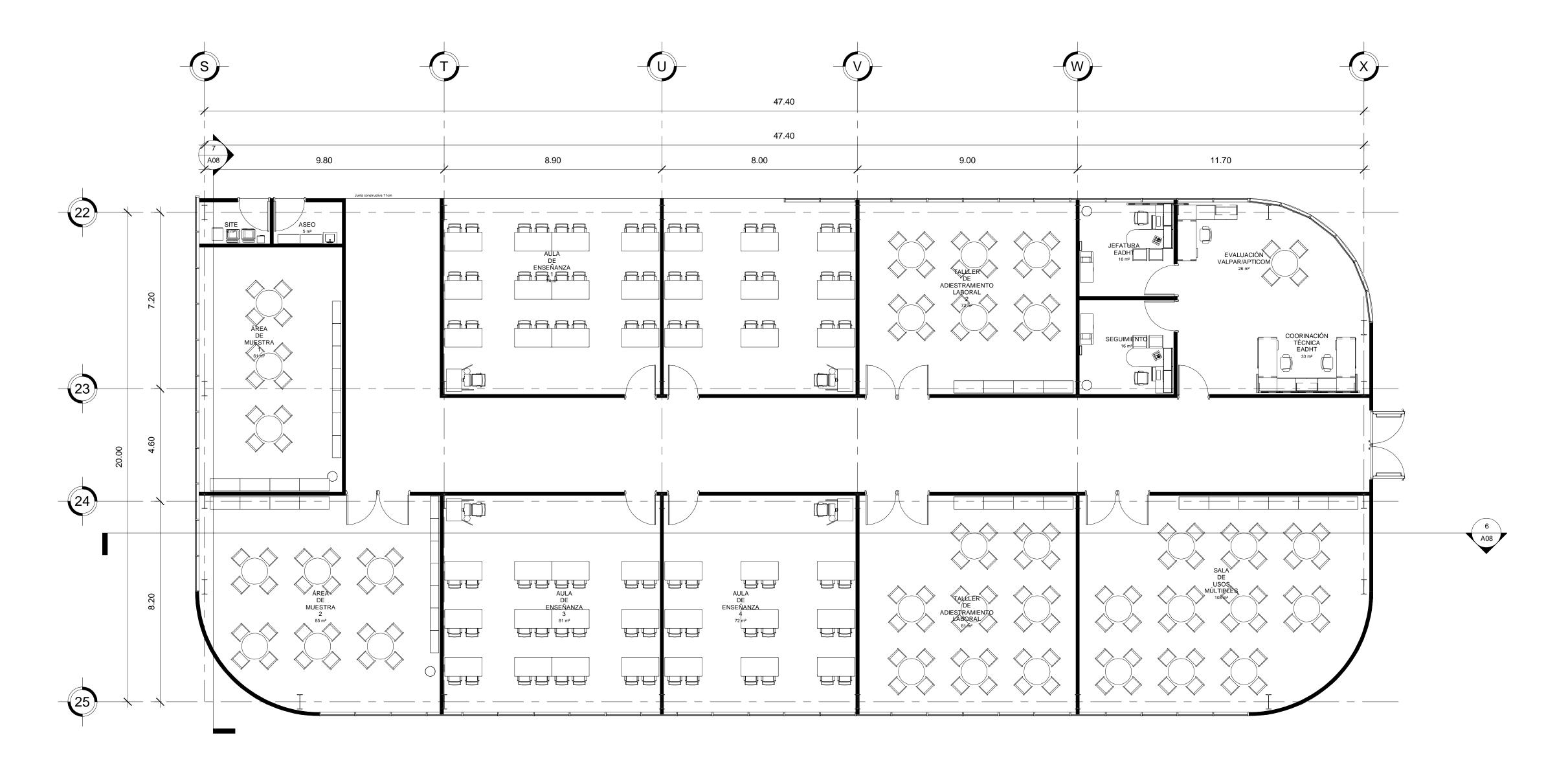
Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

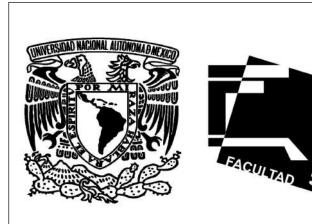
Título de plano

ARQUITECTÓNICOS-PLANTAS

Fecha


Fecha de emisión

Clave de plano


A04

Escala

1:100

EDIFICIO D

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación

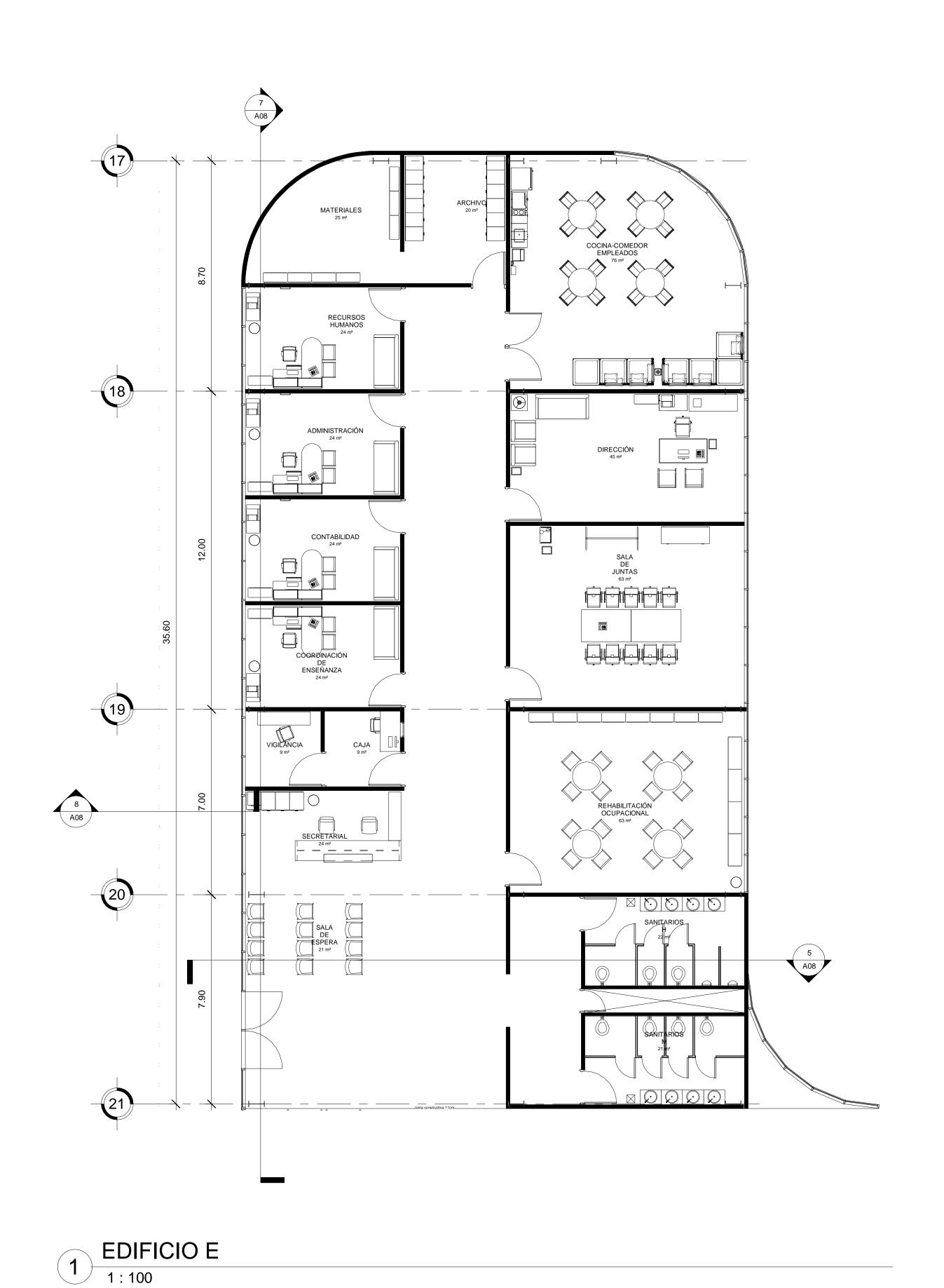
PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

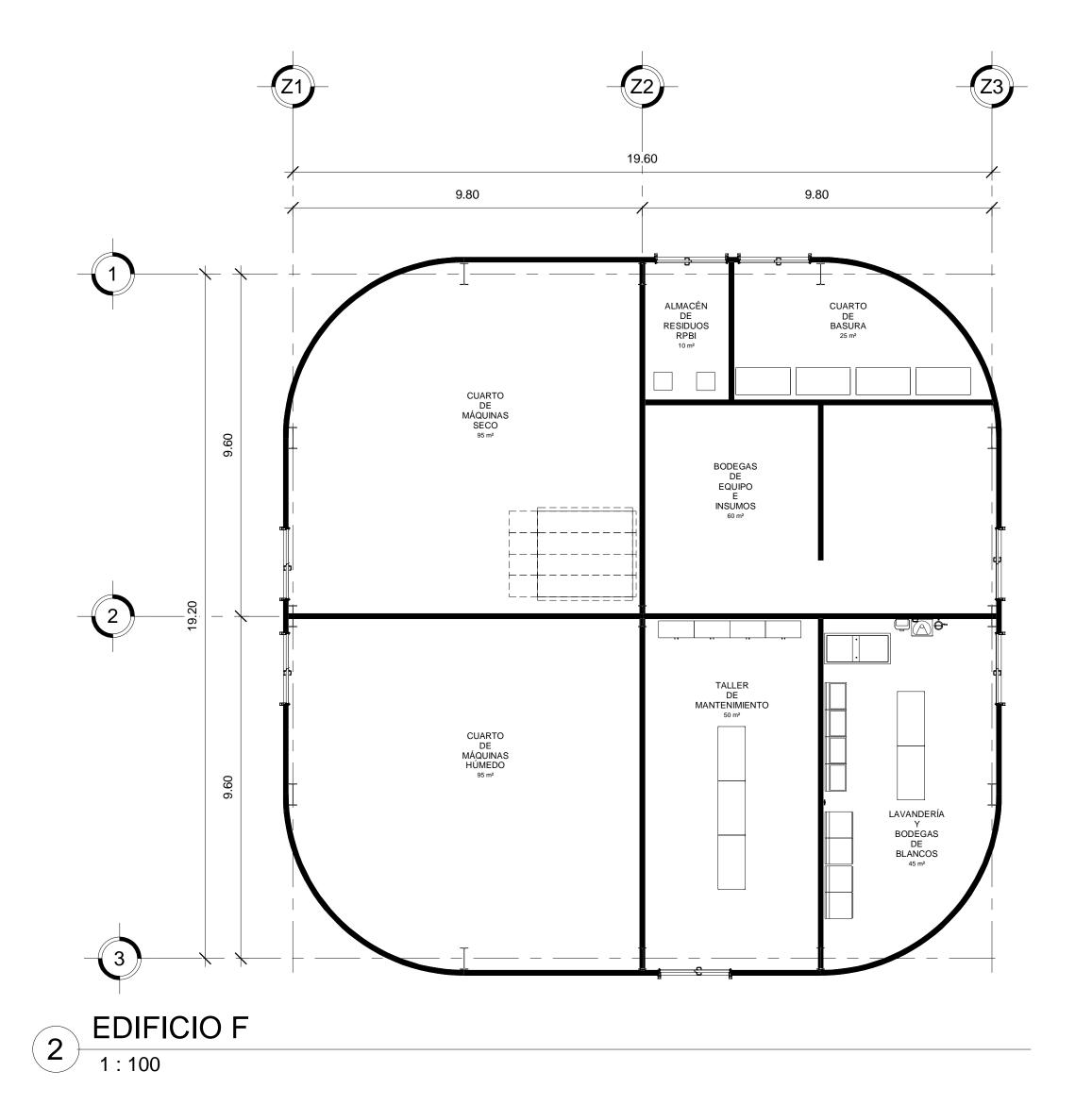
Diseñado por

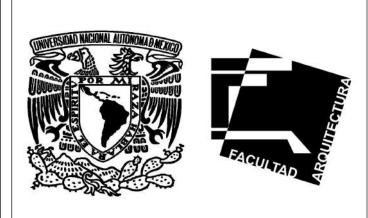
HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ARQUITECTÓNICOS-PLANTAS


Fecha de emisión

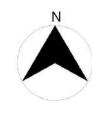

Clave de plano


A05

1:100

Escala

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA


Simbología

Croquis de localización

Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ARQUITECTÓNICOS-PLANTAS


Fecha de emisión Fecha

Clave de plano

A06

Escala

1:100

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

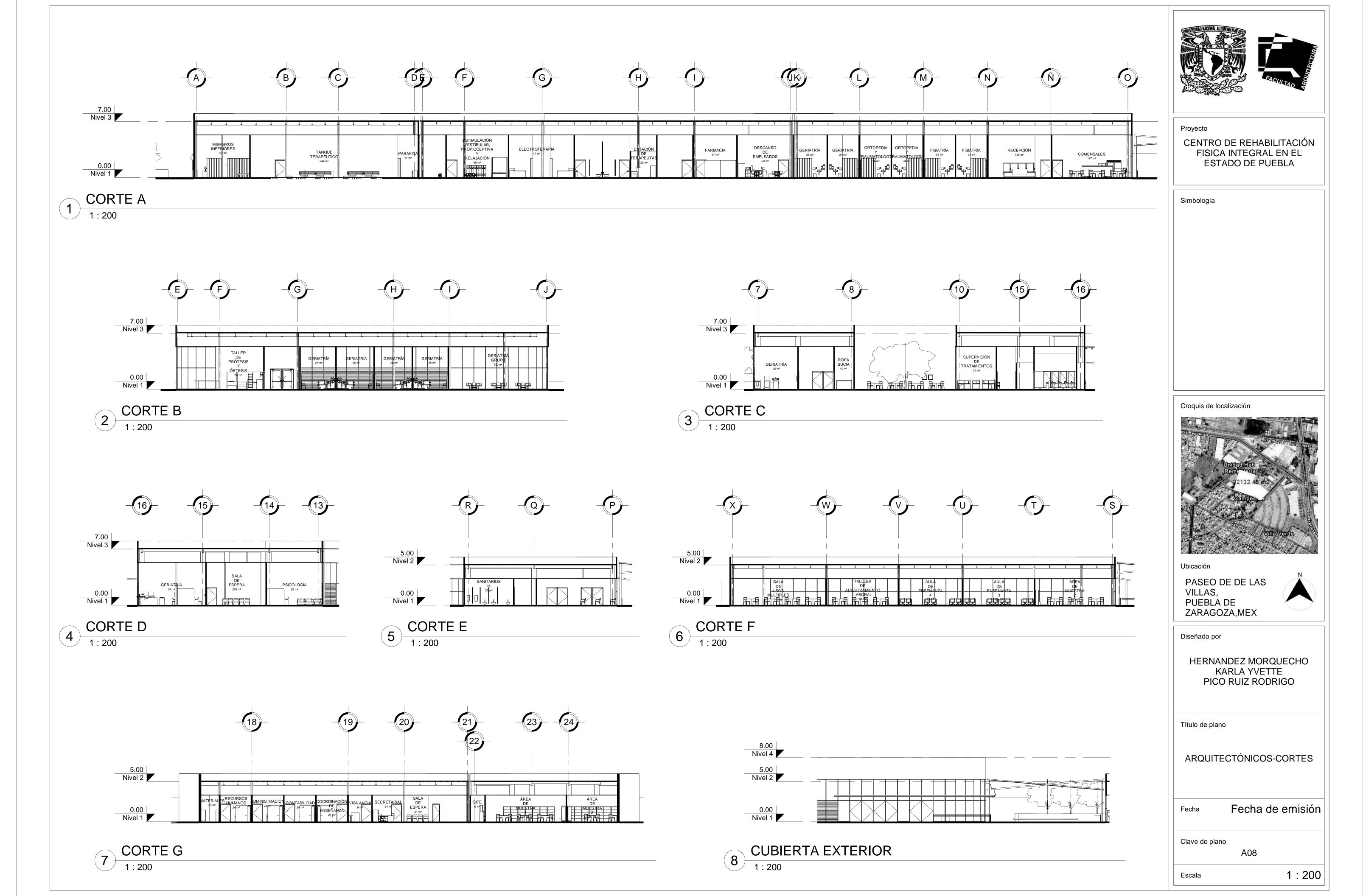
Diseñado por

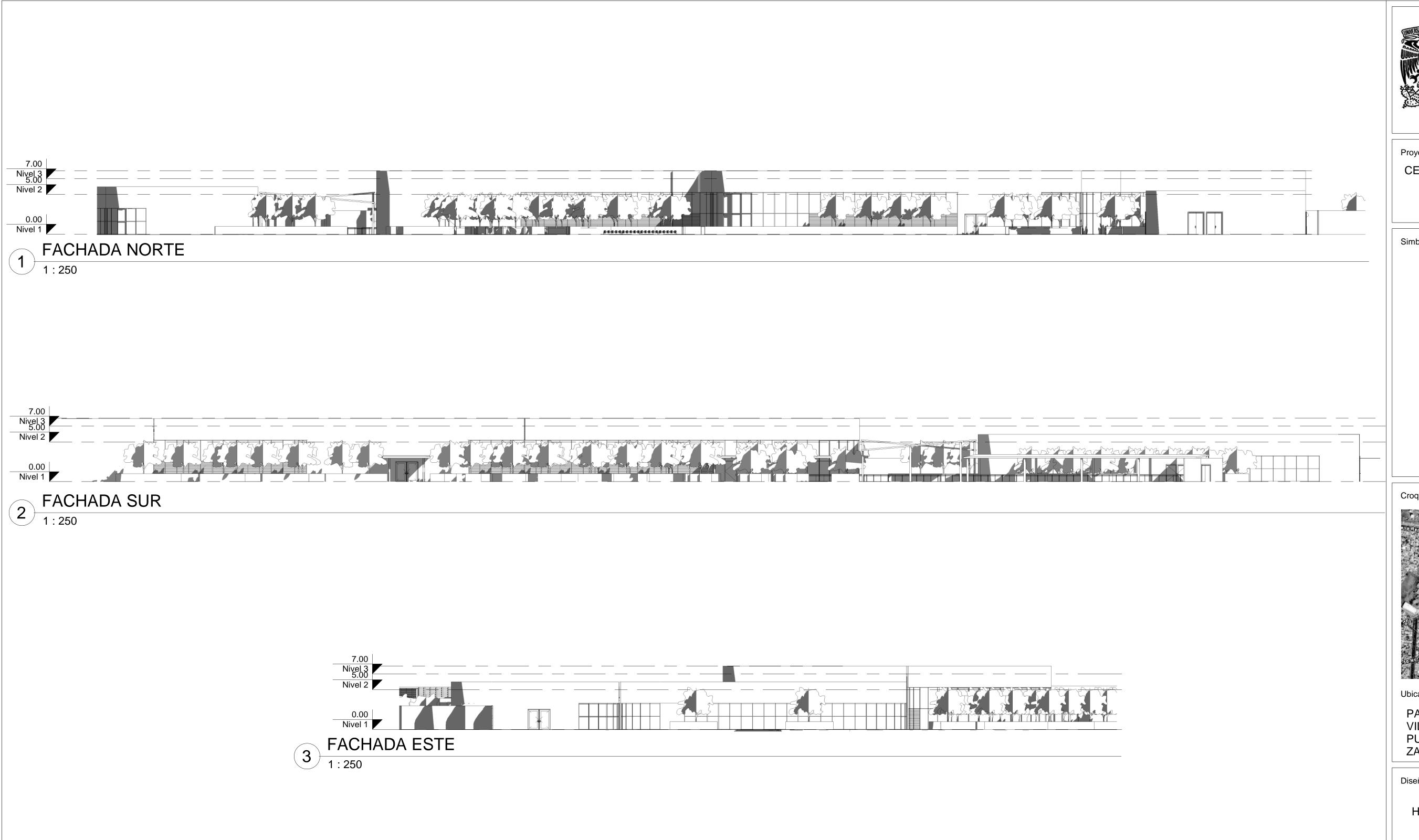
HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ARQUITECTÓNICOS-PLANTAS

Fecha


Fecha de emisión


Clave de plano

A07


1:500

PLANTA DE CONJUNTO
1:500

FACHADA OESTE
1:250

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA


Simbología

Croquis de localización

Ubicación

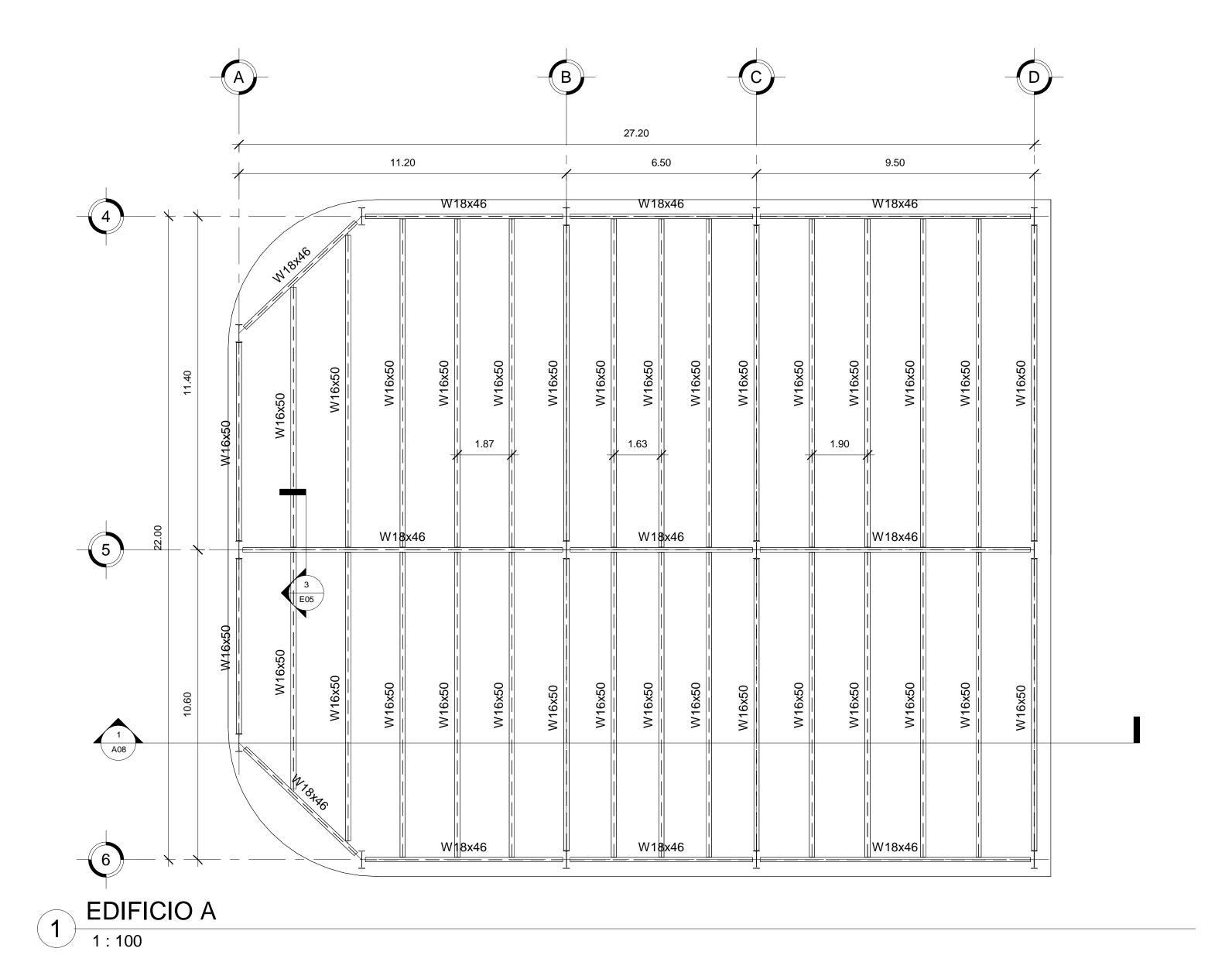
PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

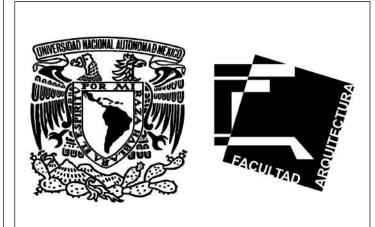
Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ARQUITECTÓNICOS-FACHADAS


Fecha


Fecha de emisión

1:250

Clave de plano

A09

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

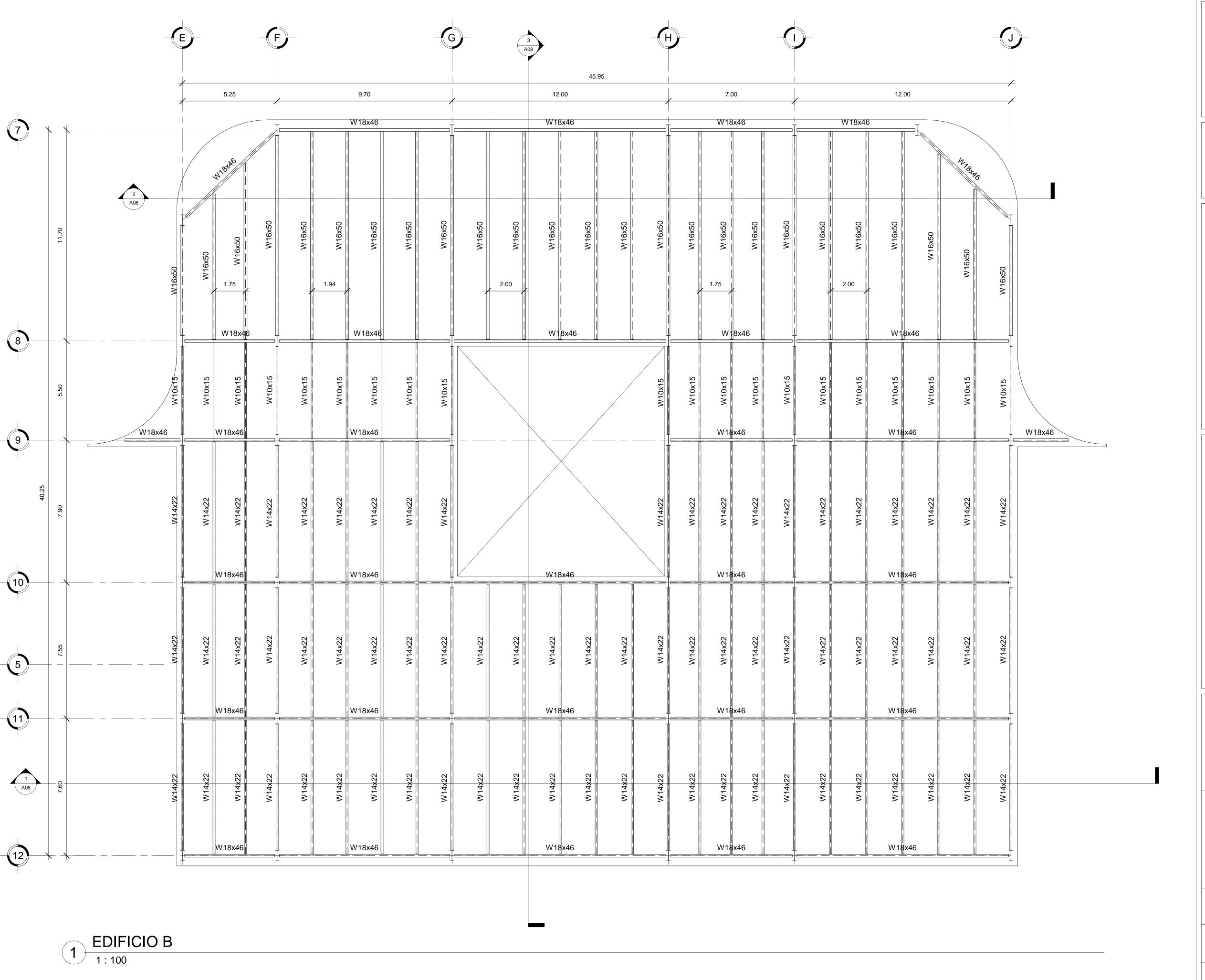
Ubicación

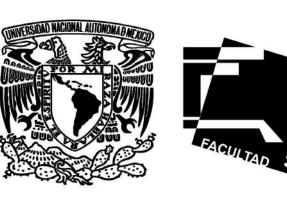
PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano


ESTRUCTURAL-LOSAS


Fecha de emisión

Clave de plano

E01

Escala 1:100

D......

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

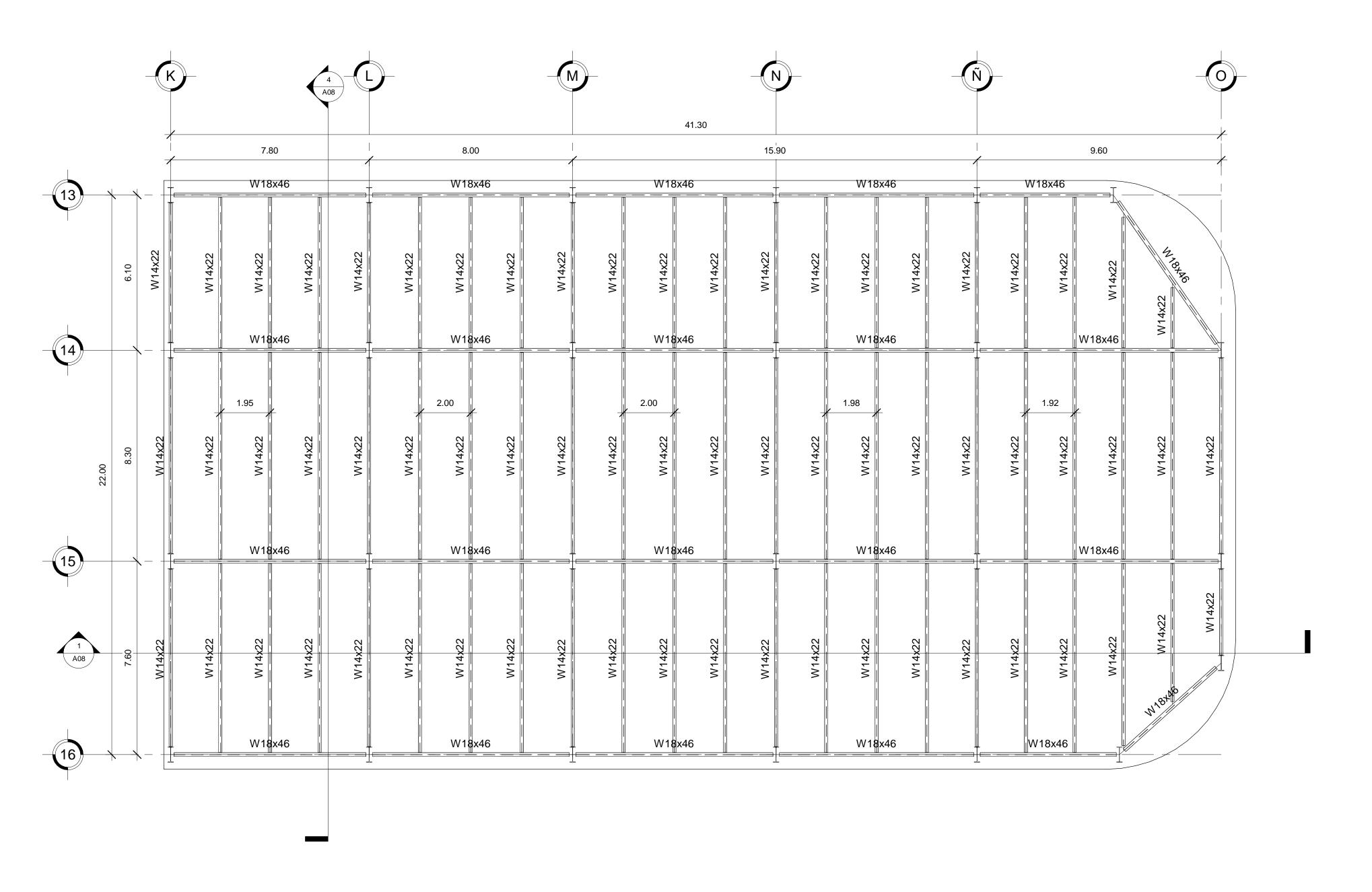
Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

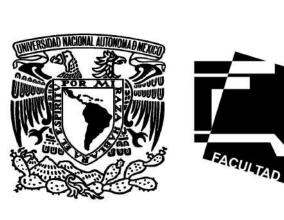
Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano


ESTRUCTURAL-LOSAS

Fecha de emisión


Clave de plano

E02

Escala 1:100

1 EDIFICIO C 1:100

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

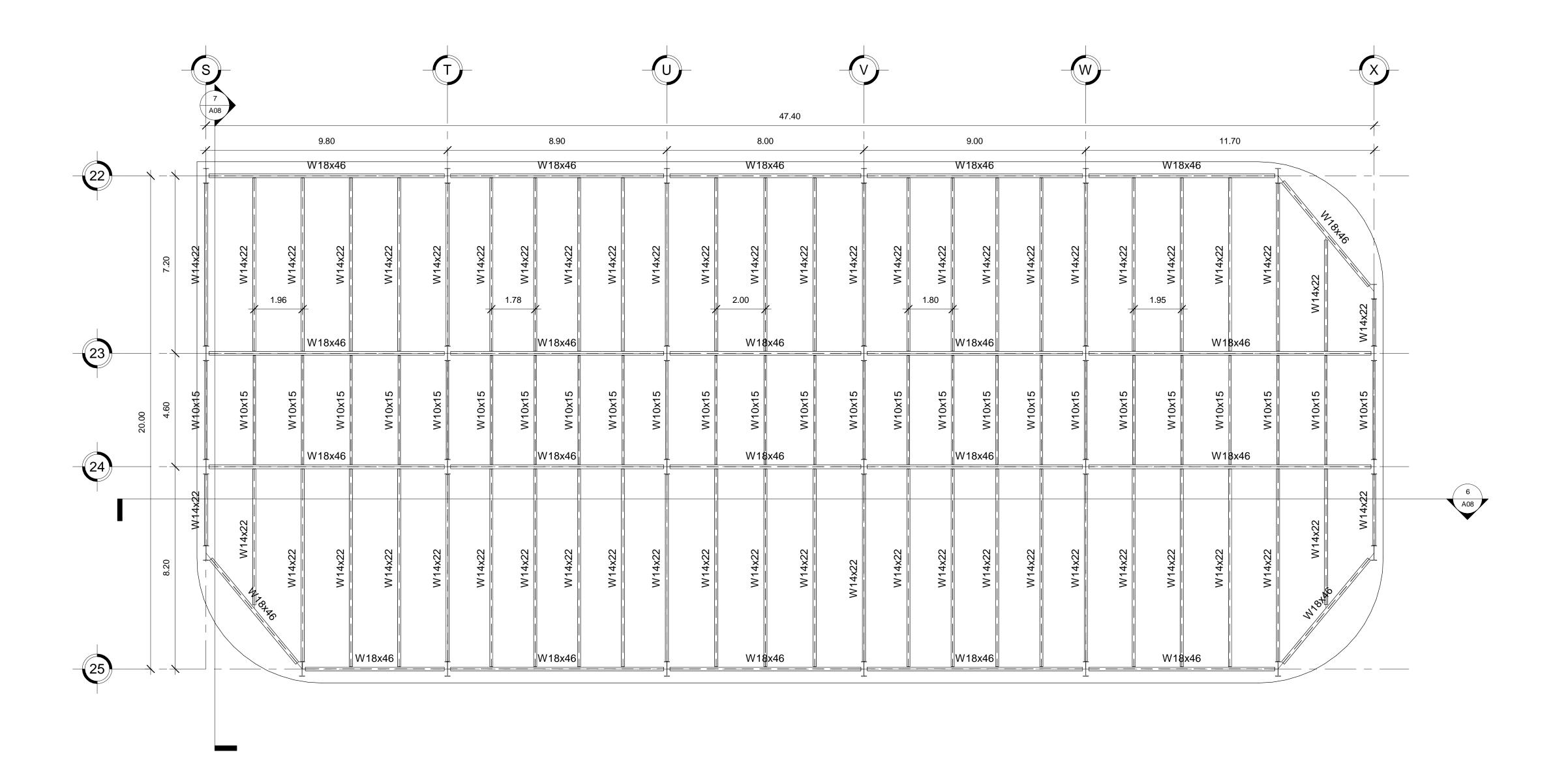
Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano


ESTRUCTURAL-LOSAS

Fecha de emisión

Clave de plano

E03

1:100

1 EDIFICIO D

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

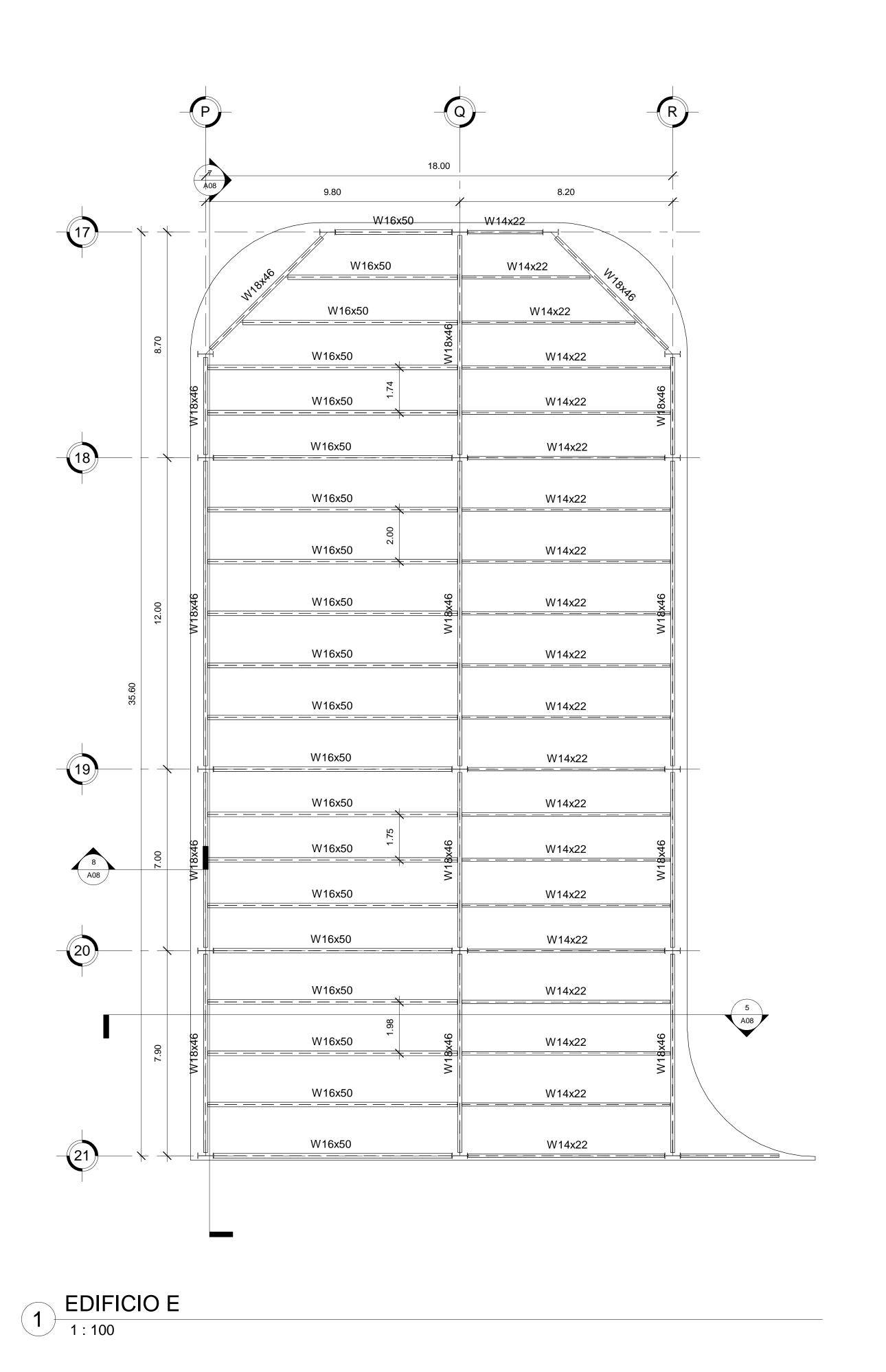
Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ESTRUCTURAL-LOSAS

Fecha de emisión

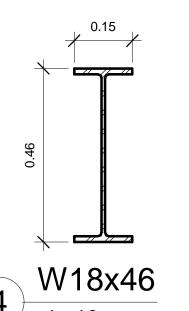

Clave de plano

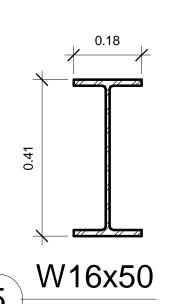
E04

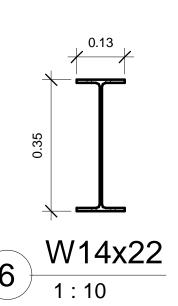
1:

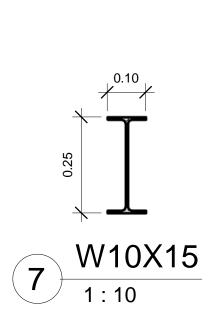
Escala

1:100

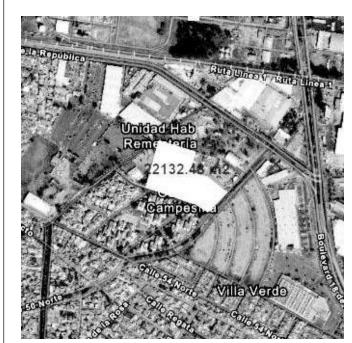





2 EDIFICIO F 1:100

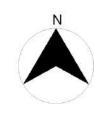

Malla electrosoldada de acero 6x6~10/10 Firme de concreto f'c=250 kg/cm2. Ternium Losacero 25, Calibre 22 con ancho efectivo de 91.5 cm y peralte de 63 mm. Viga secundaria de acero perfil W16x50 Viga principal de acero perfil W18x46 Columna de acero perfil W24x68 Plafón rejilla cuadricular 60x60cm

DETALLE LOSACERO



Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA


Simbología

Croquis de localización

Ubicación

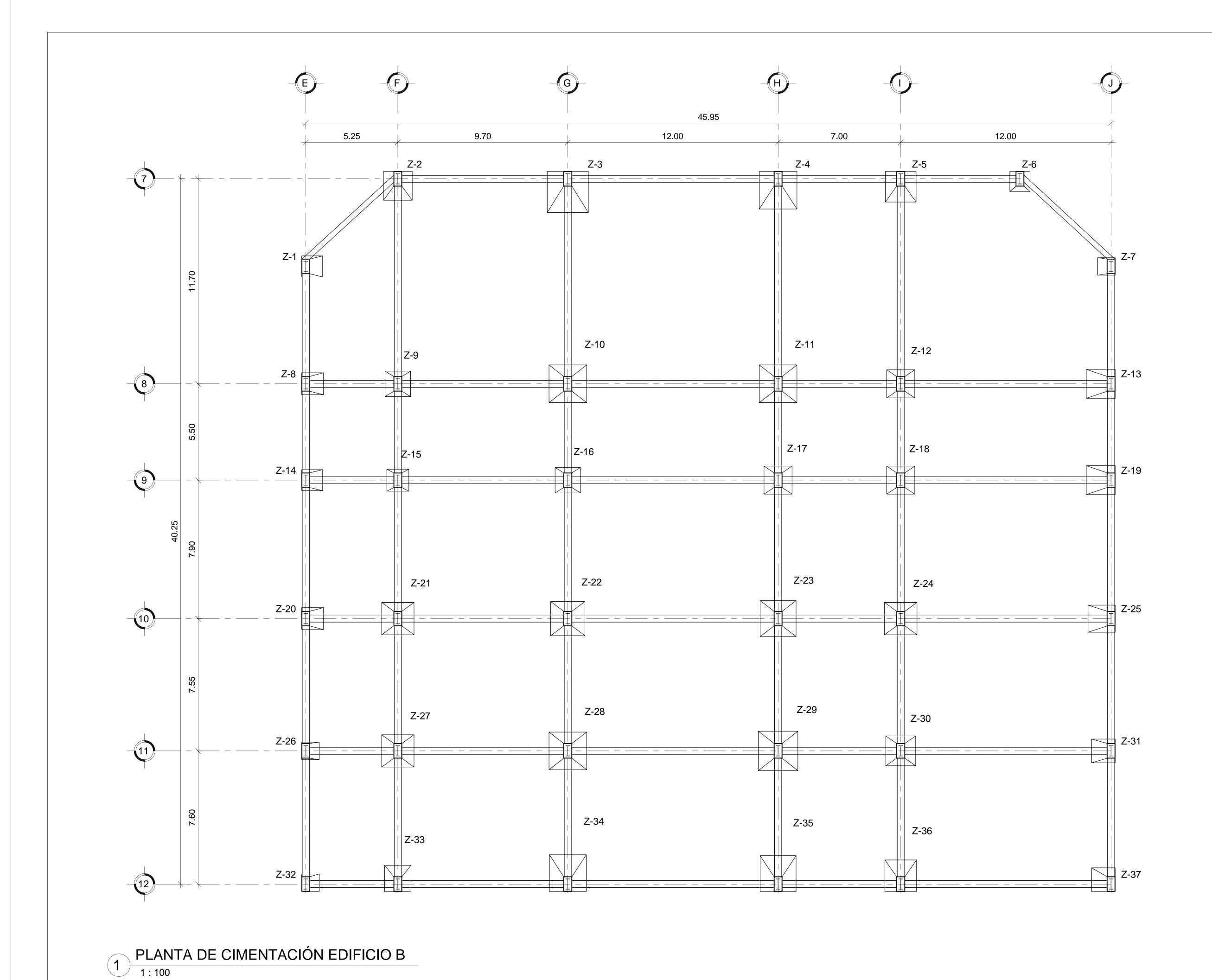
PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ESTRUCTURAL-LOSAS


Fecha de emisión Fecha

Clave de plano

Escala

E05

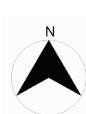
Como se indica

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA


Simbología

Nota

Acotaciones en metros
Rigen especificaciones del reglamento de construcción de la ciudad de México y N.T.C.
La calidad de materiales será:
Concreto F'c=200 kg/cm²
Acero de refuerzo F'c=4200 kg/cm²
Acero en estribos F'c=2520 kg/cm²


Concreto F'c=200 kg/cm²
Acero de refuerzo F'c=4200 kg/cm²
Acero en estribos F'c=2520 kg/cm²
Concreto de plantillas F'c=100 kg/cm²
La cimentación será mediante zapatas de concreto aisladas y se desplantarán sobre una plantilla de concreto de 5cm.
Rigen dimensiones de plano arquitectónico
Capacidad de carga del suelo: 6 Ton/m²

Croquis de localización

Ubicación

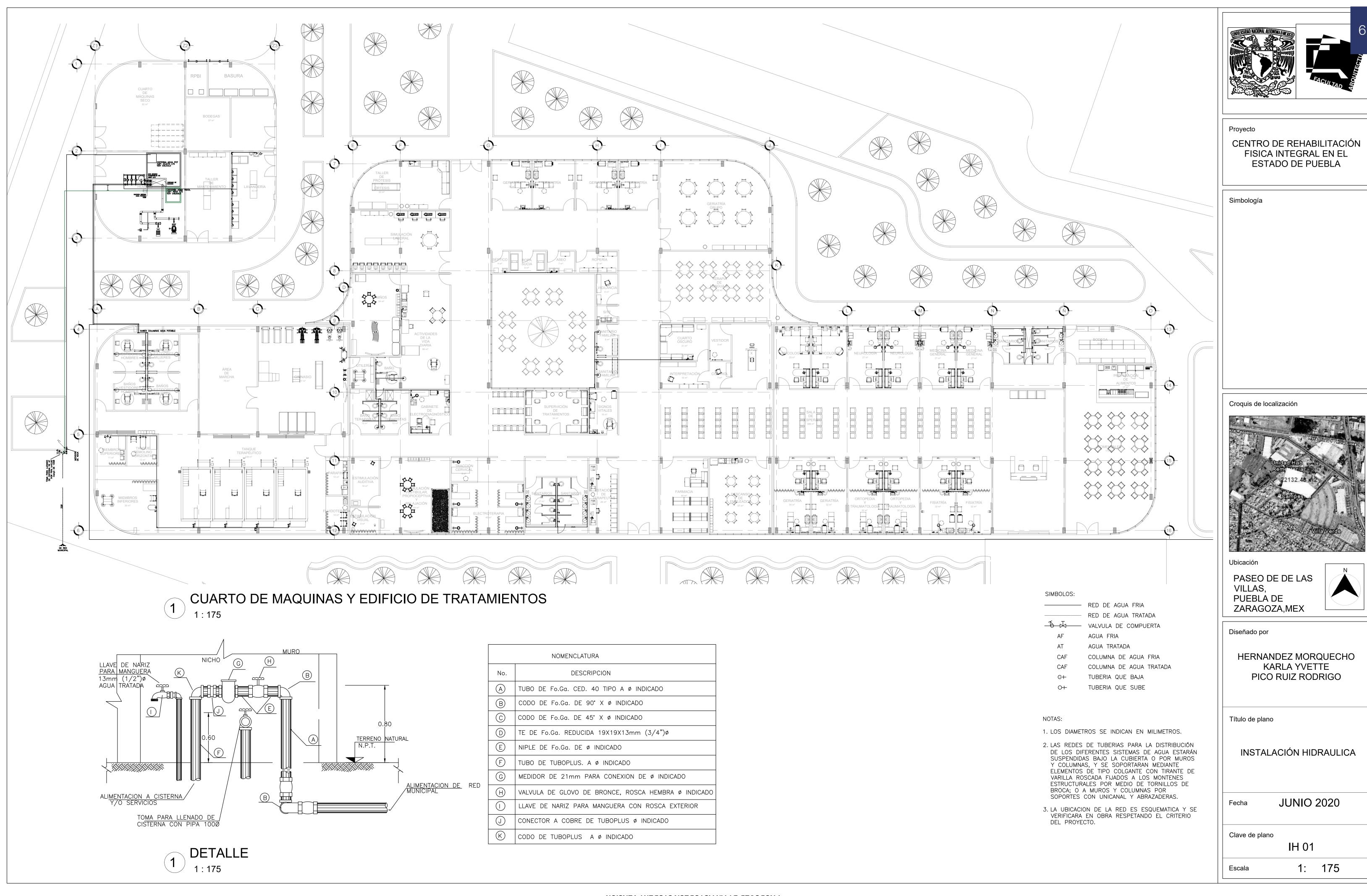
PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

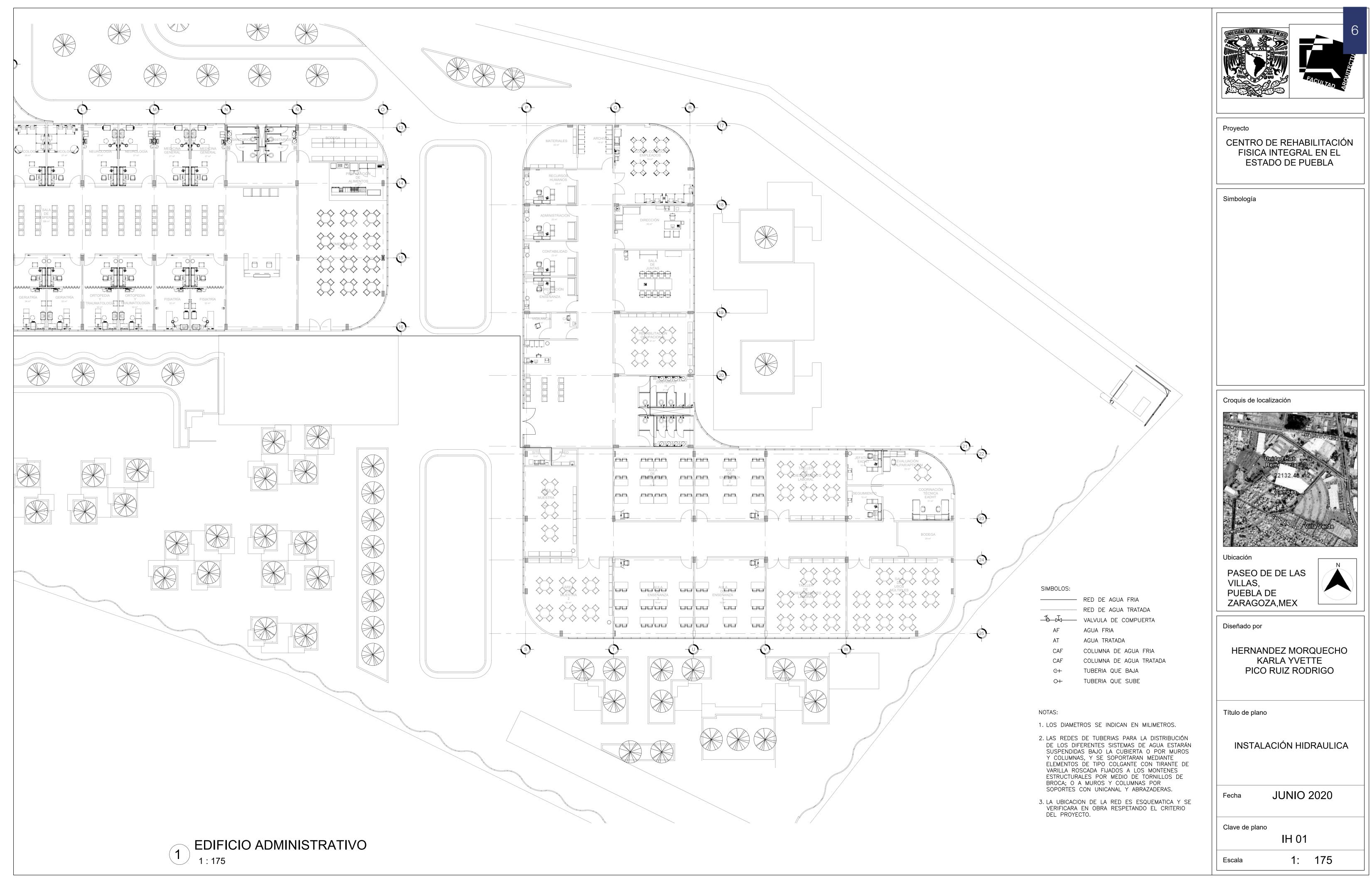
Diseñado por

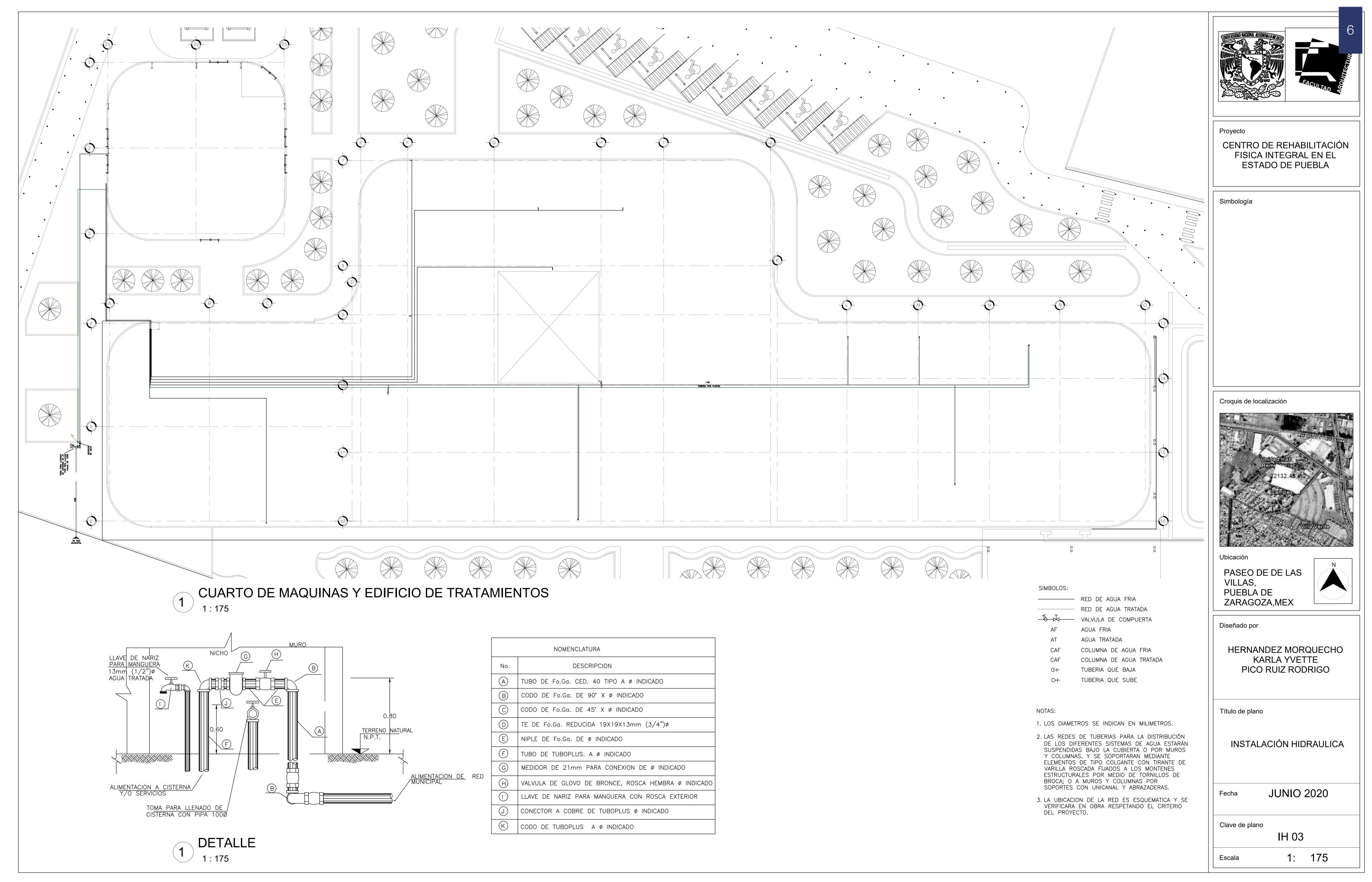
HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

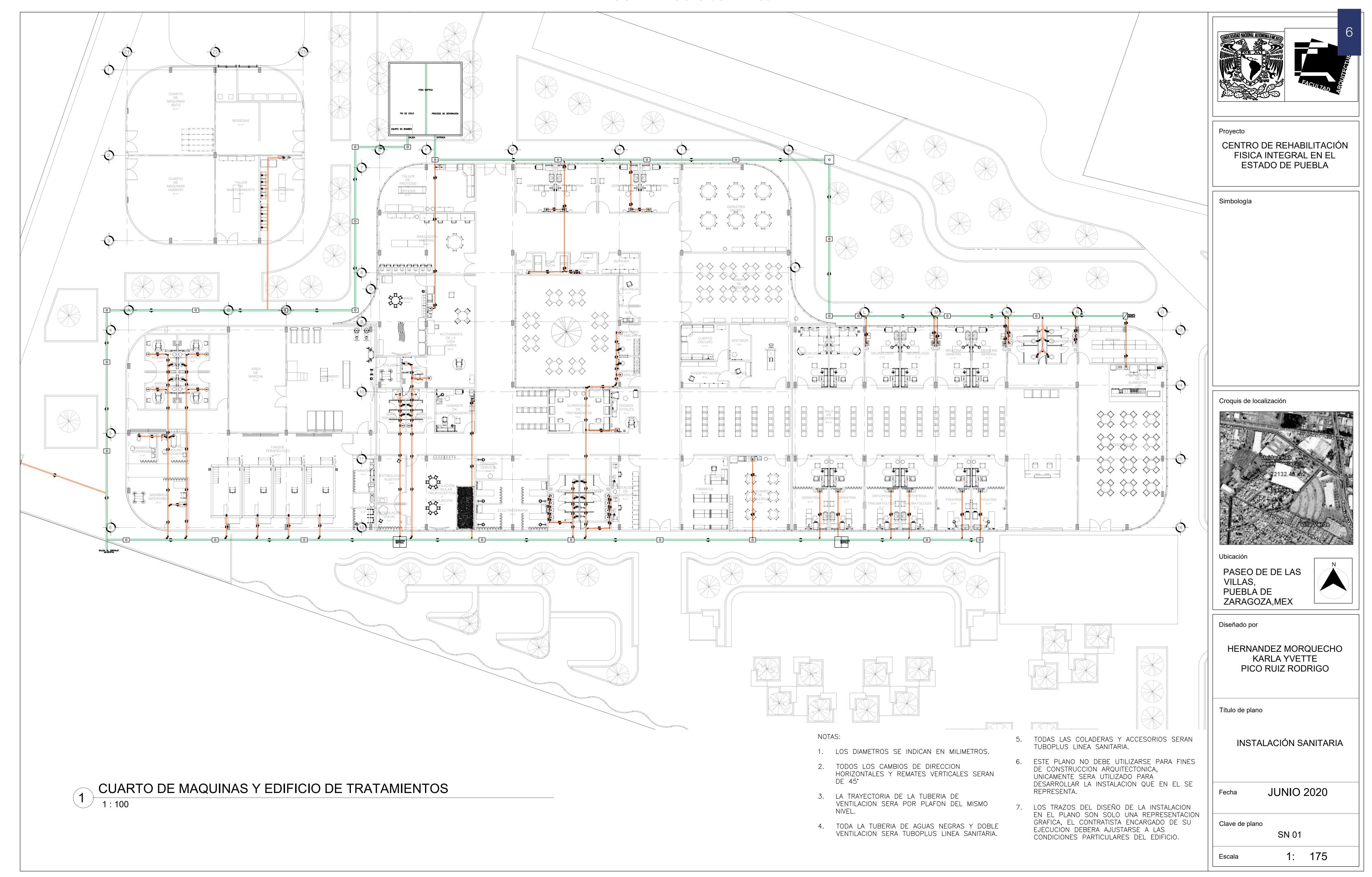
Título de plano

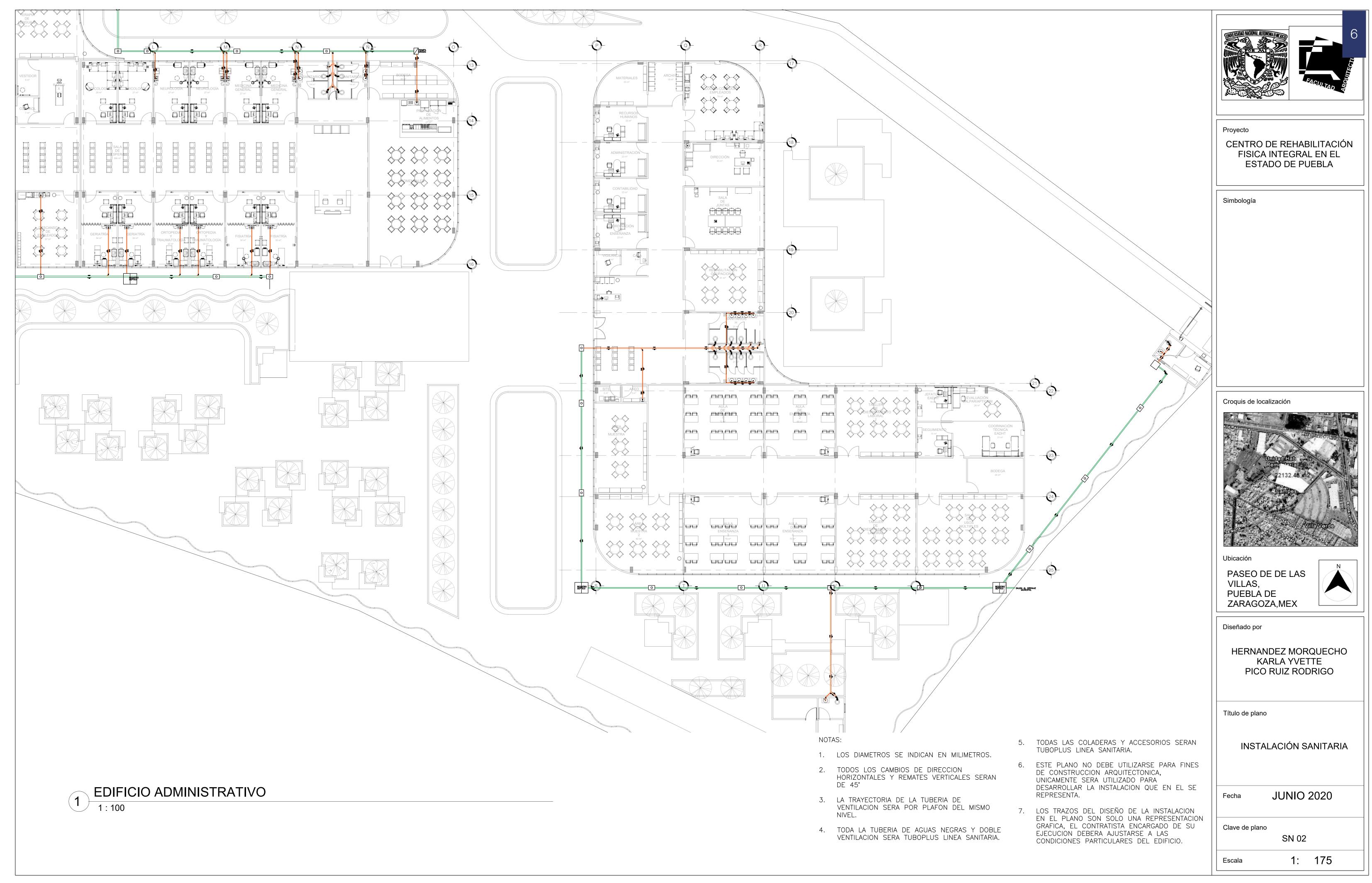
ESTRUCTURAL-CIMENTACIÓN

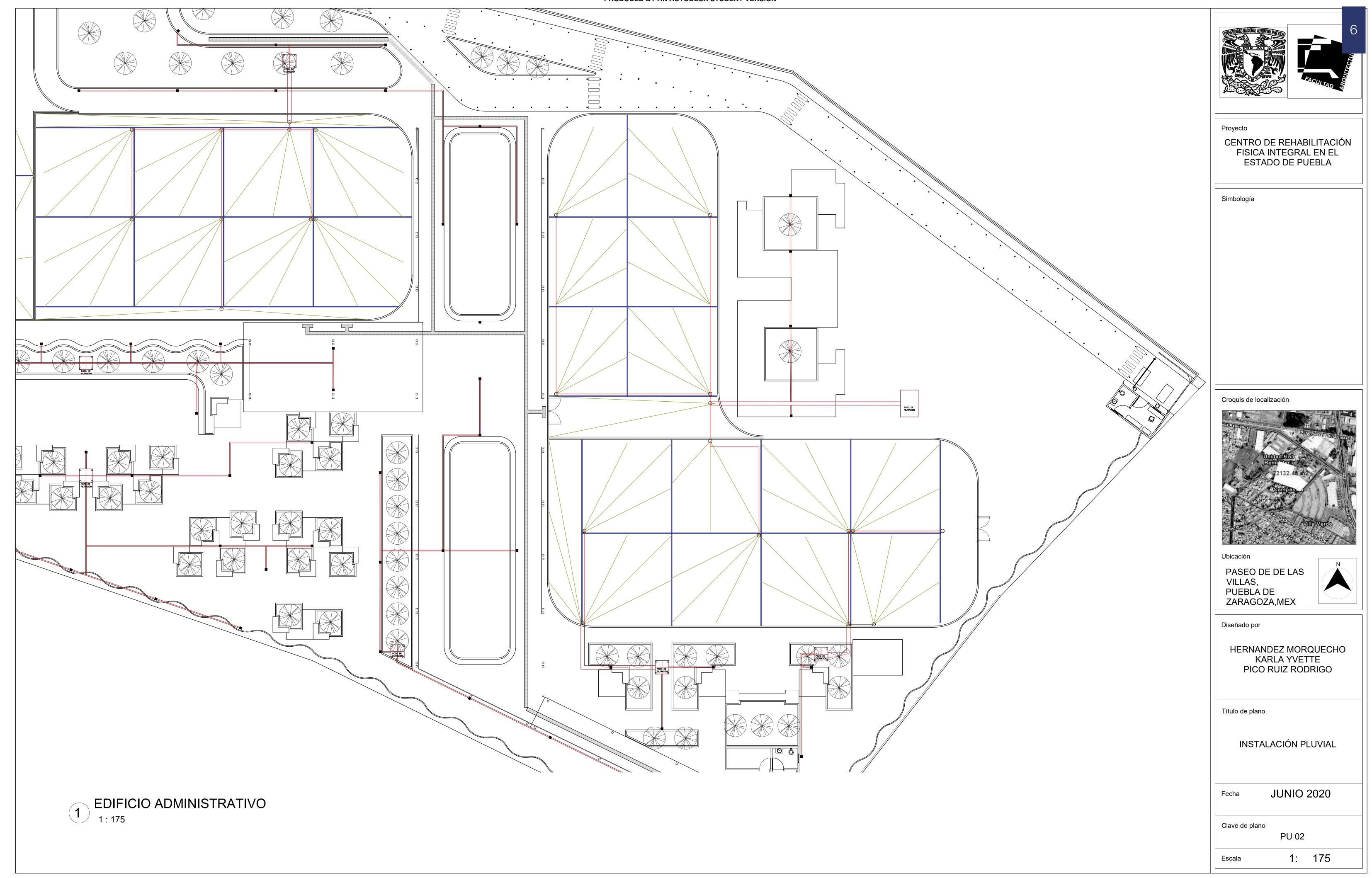

cha Junio 2020

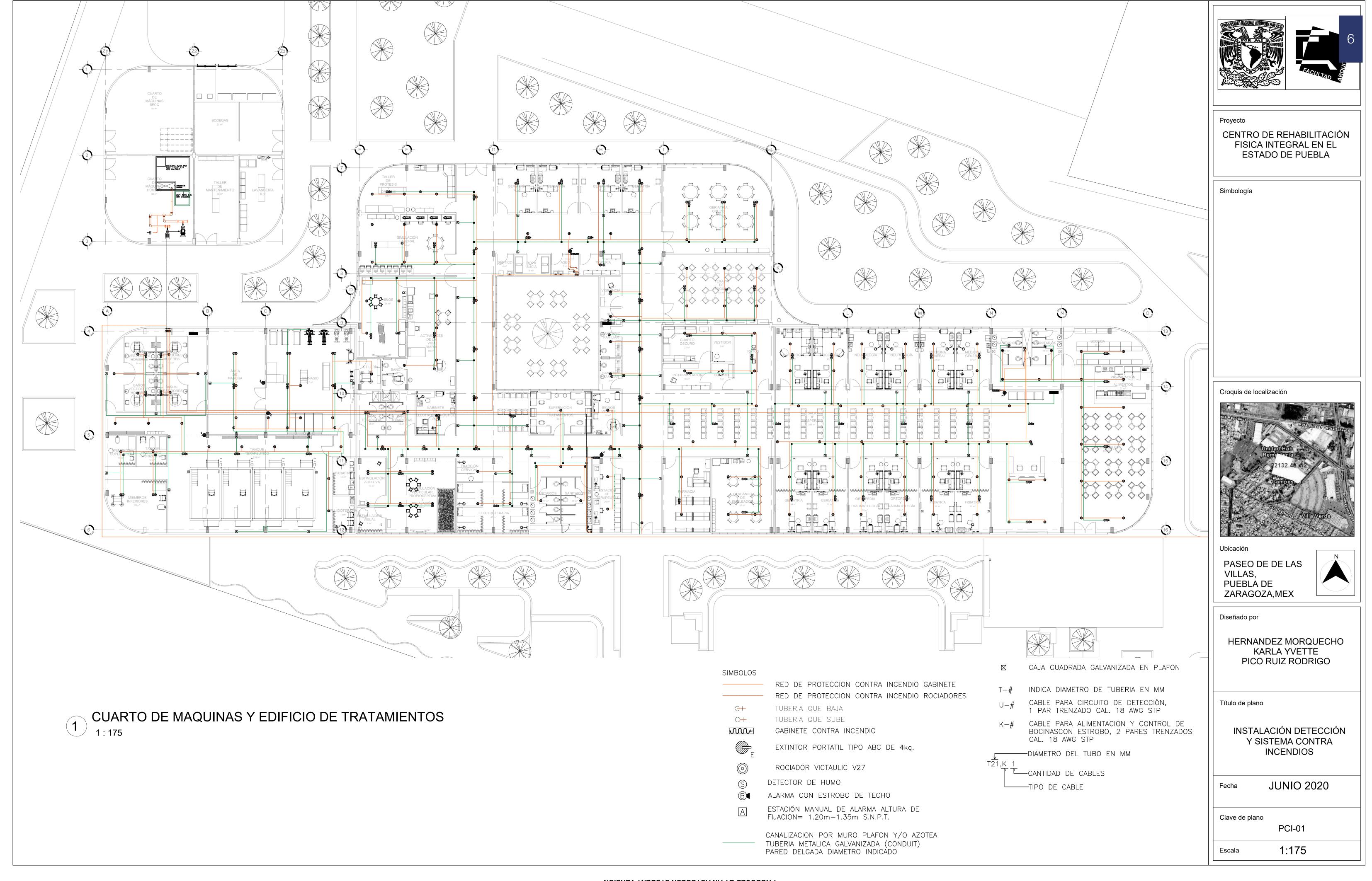

Clave de plano

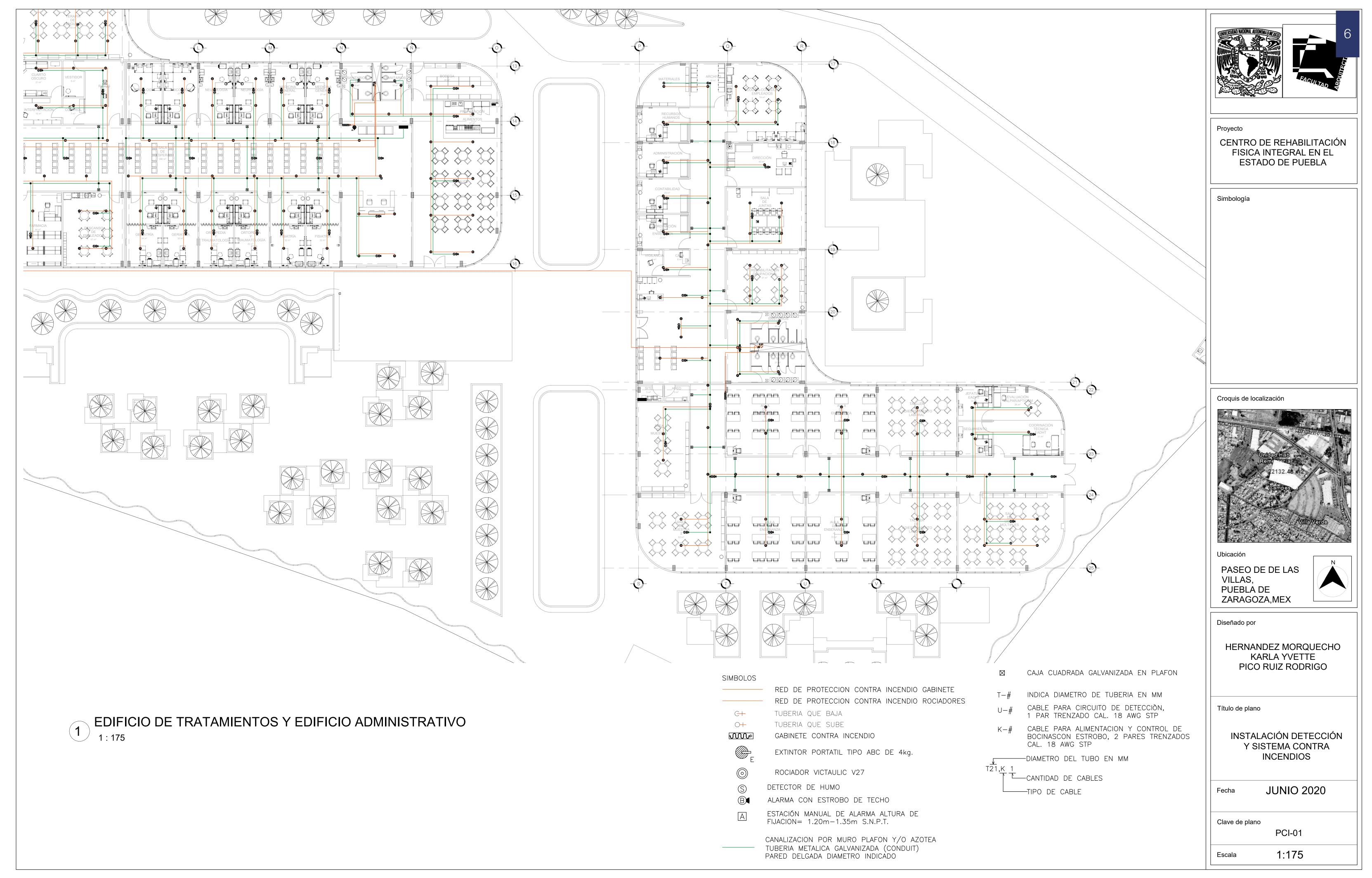

E06

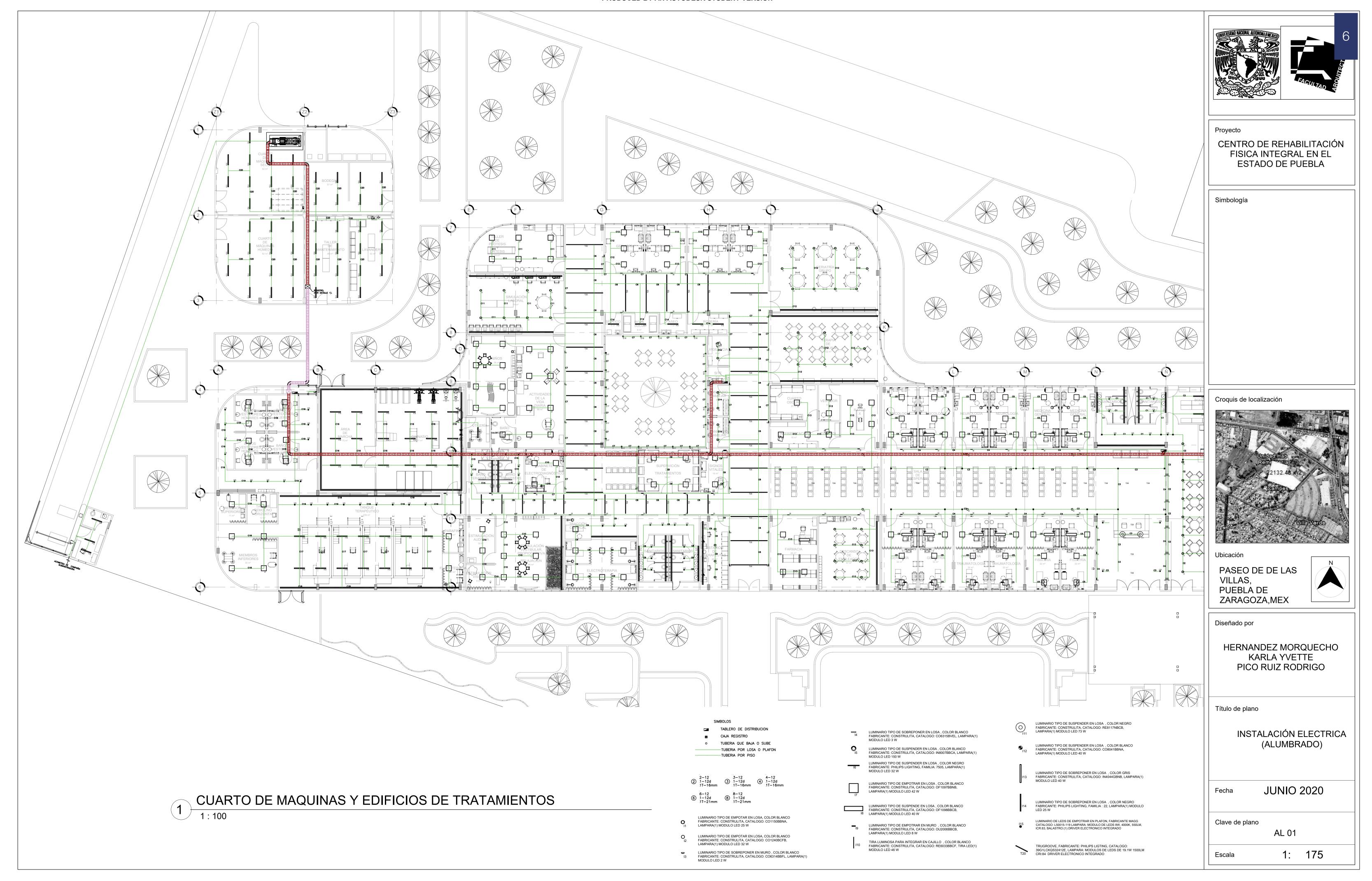

Escala 1:100

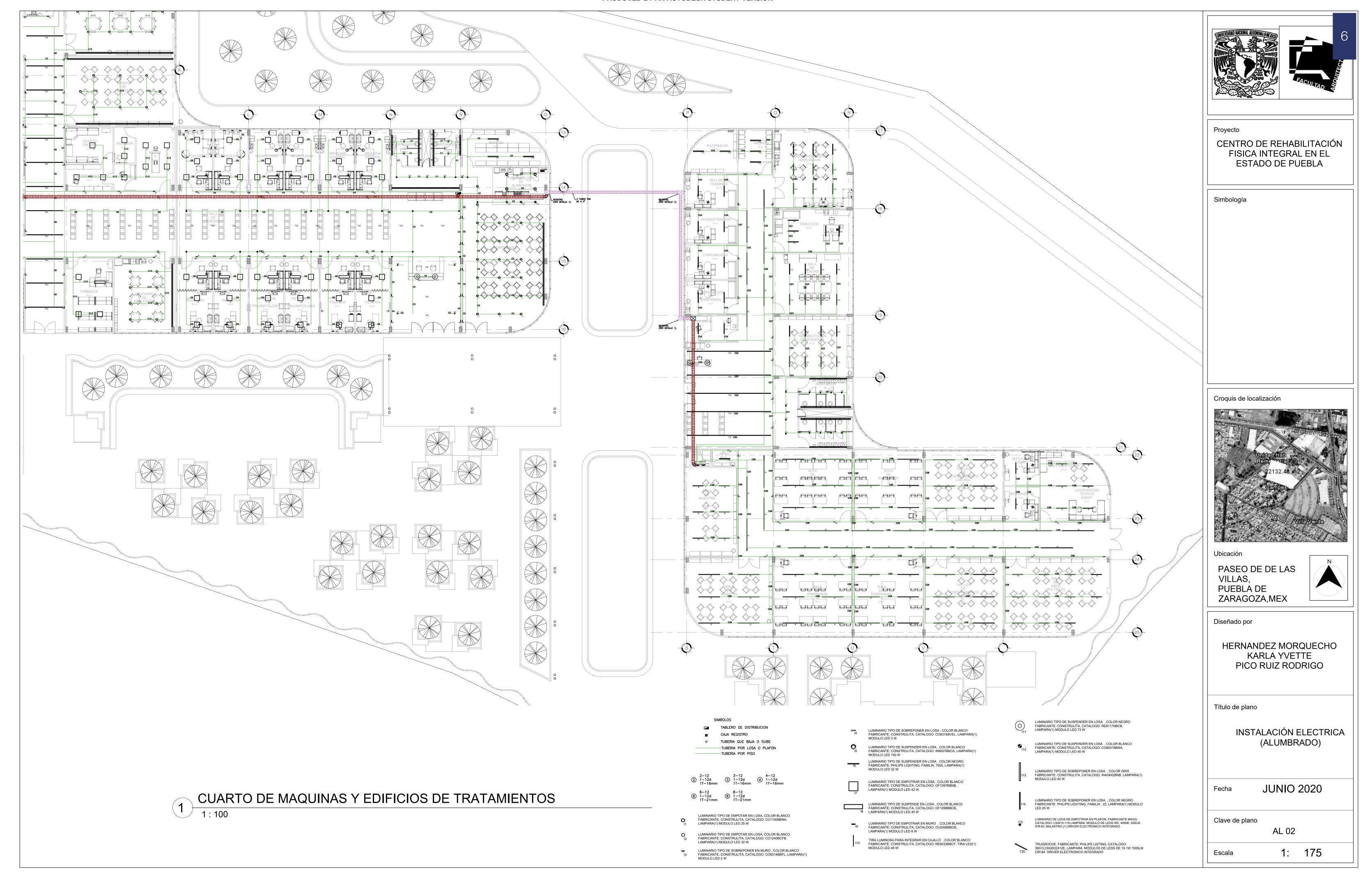


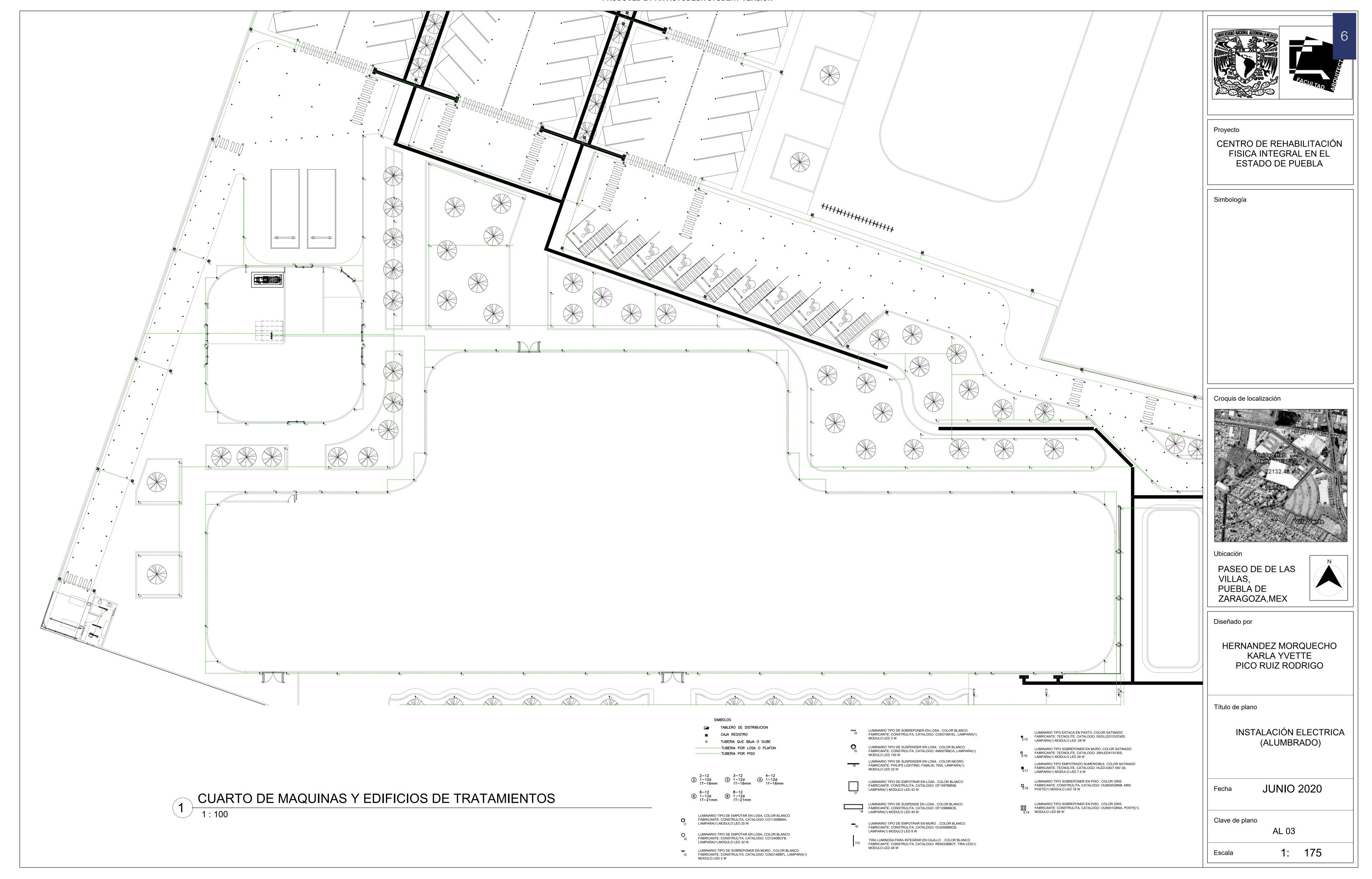


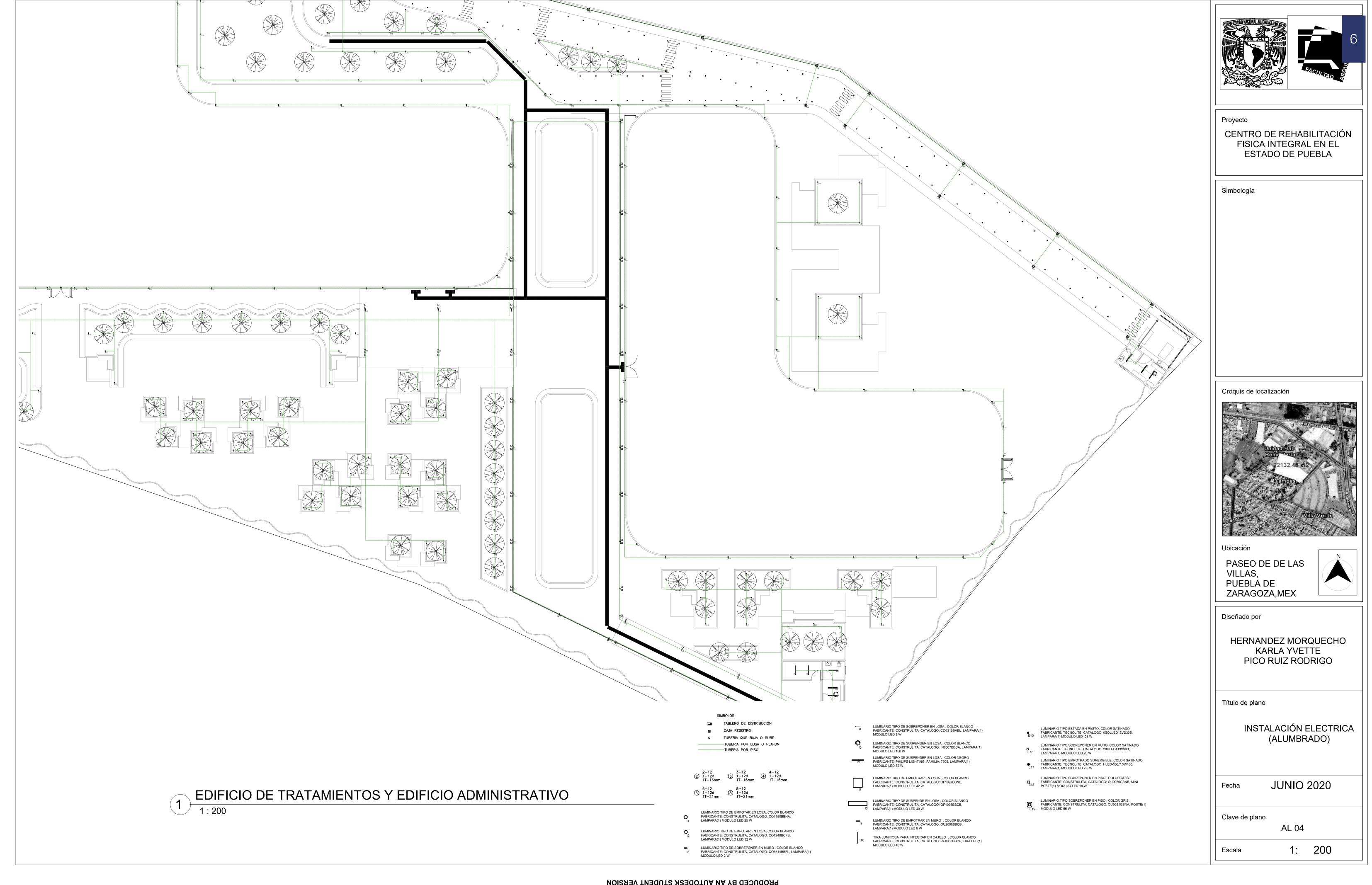


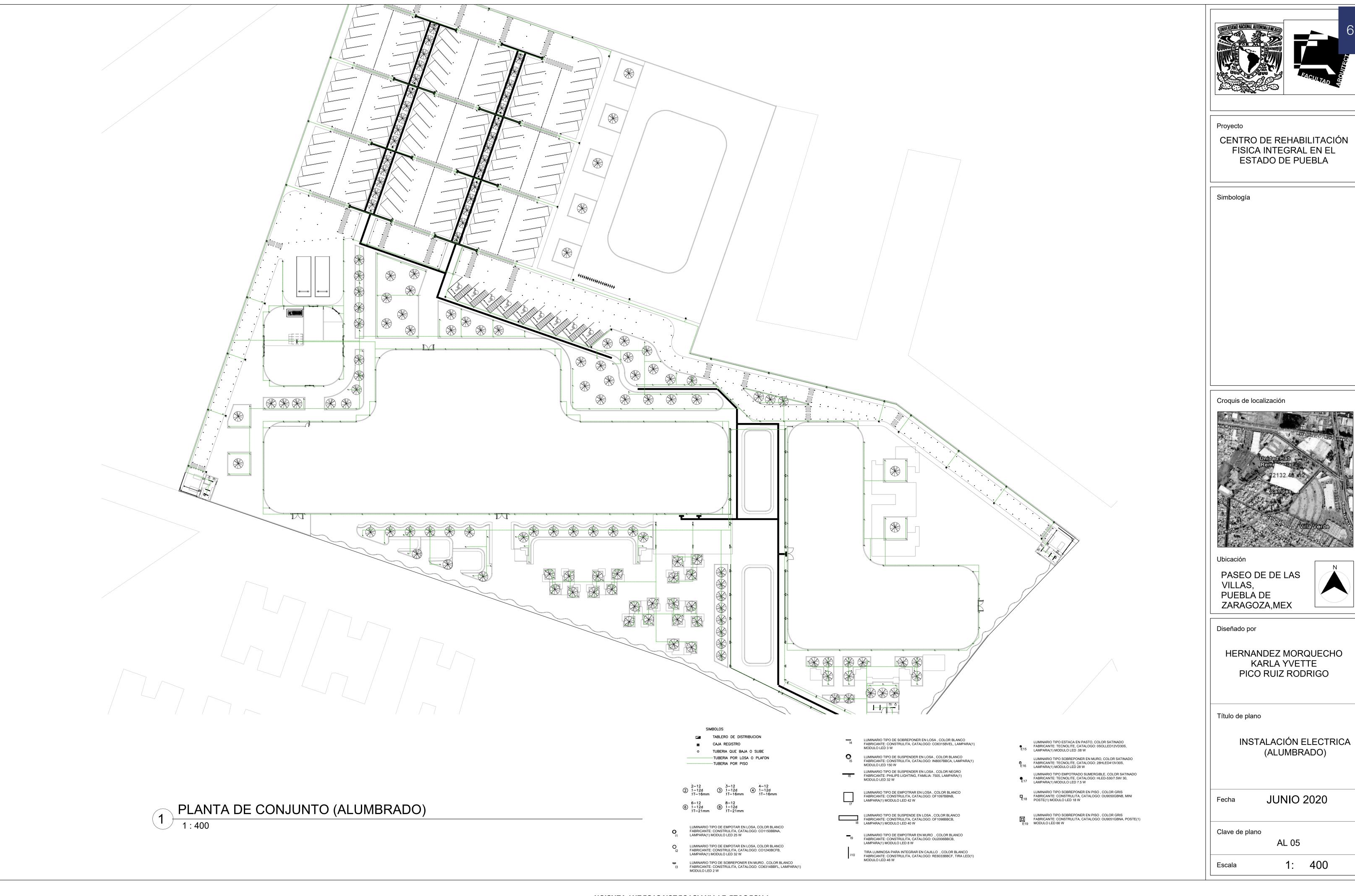


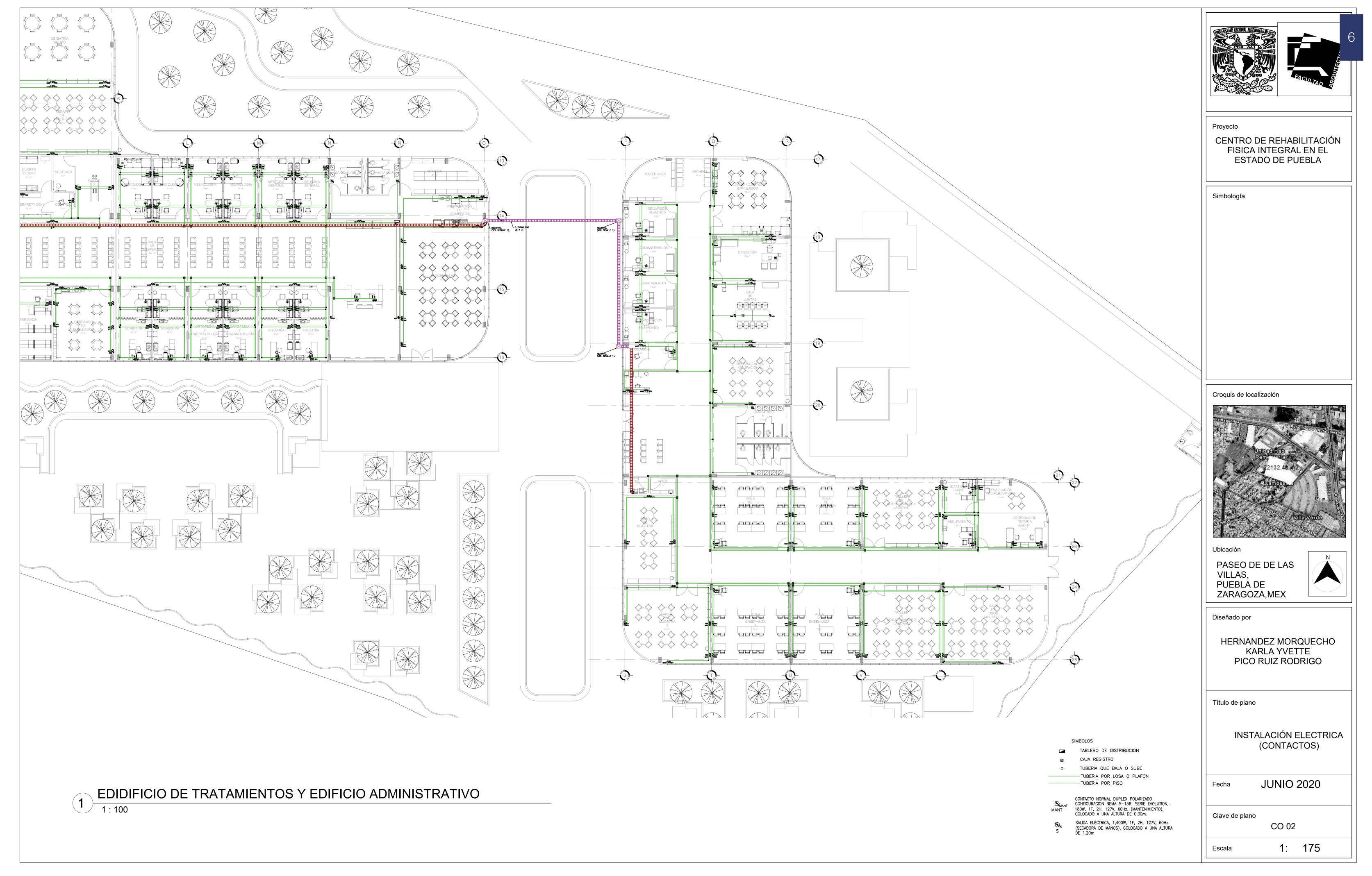


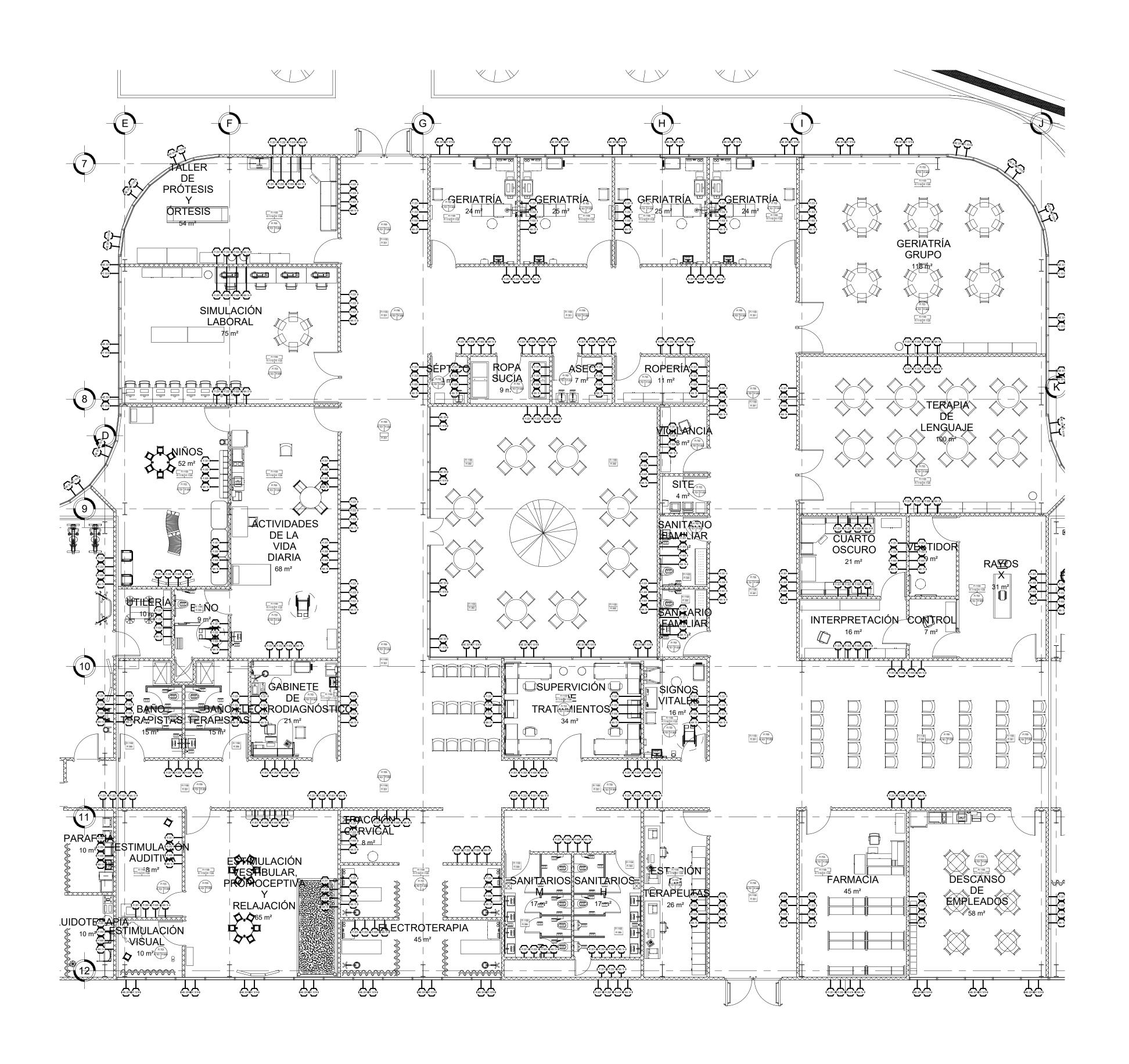


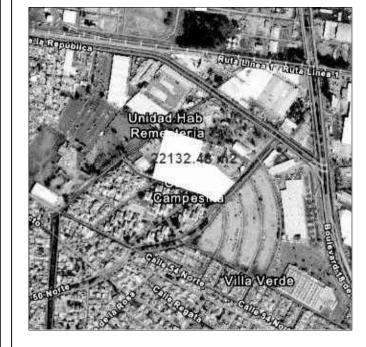











TOR AND HACIONAL AUTONOMAB MINICIPAL POR AND HACIONAL POR AND HA

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación

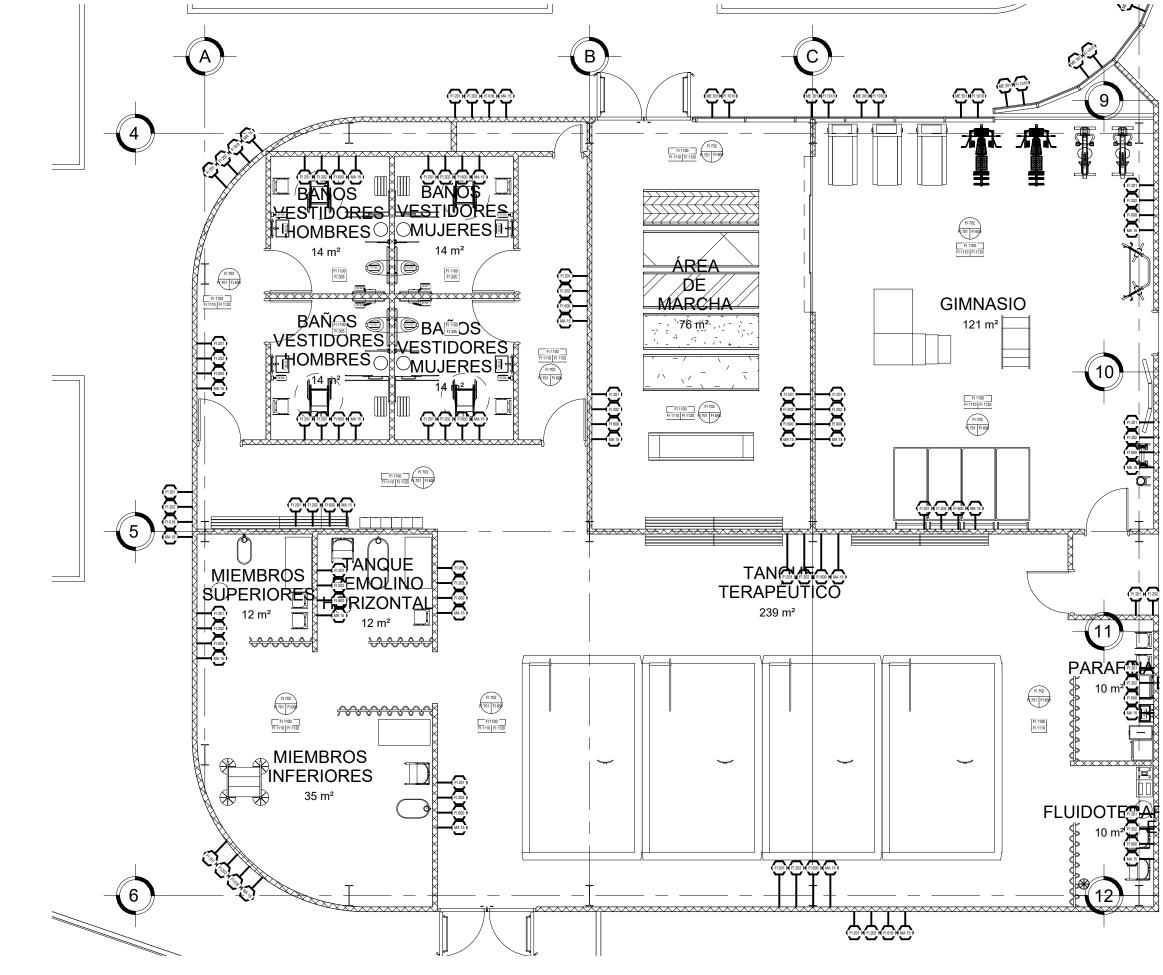
PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX N

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ACABADOS

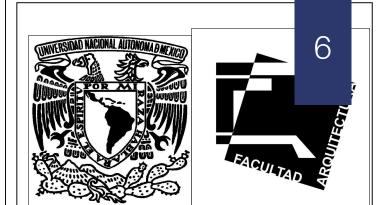

Fecha JUNIO 2020

Clave de plano

AC 01

Escala Como se indica

1:100



EDIFICIO DE TRATAMIENTOS SECCIÓN A

EDIFICIO DE TRATAMIENTOS SECCIÓN C

2 EDIFIC

STOCOGIA DESCOLOS PIEURO DE AL MEDICINA DE ENERGIA DE E

Proyect

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

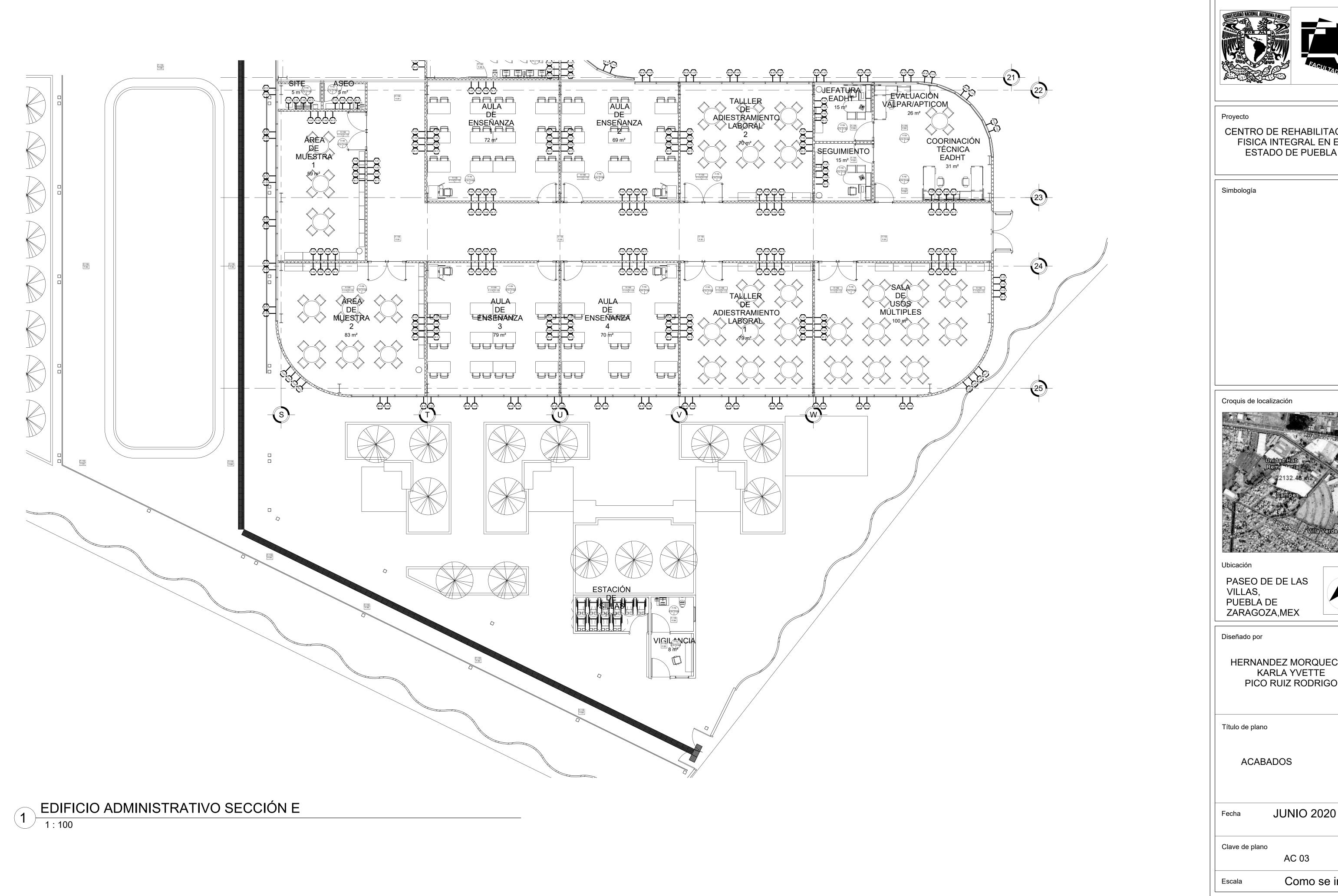
Ubicación

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

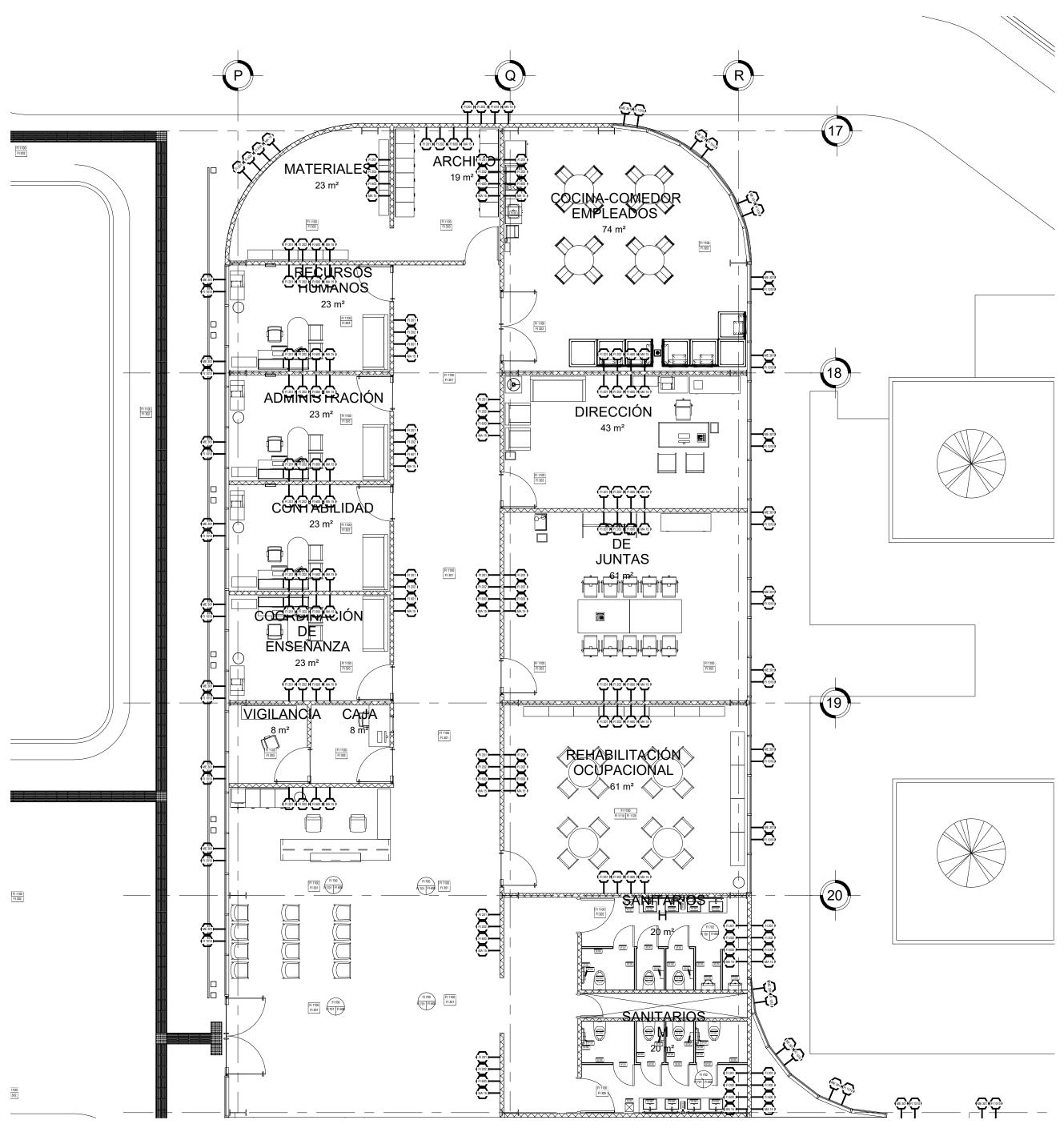

ACABADOS

Fecha JUNIO 2020

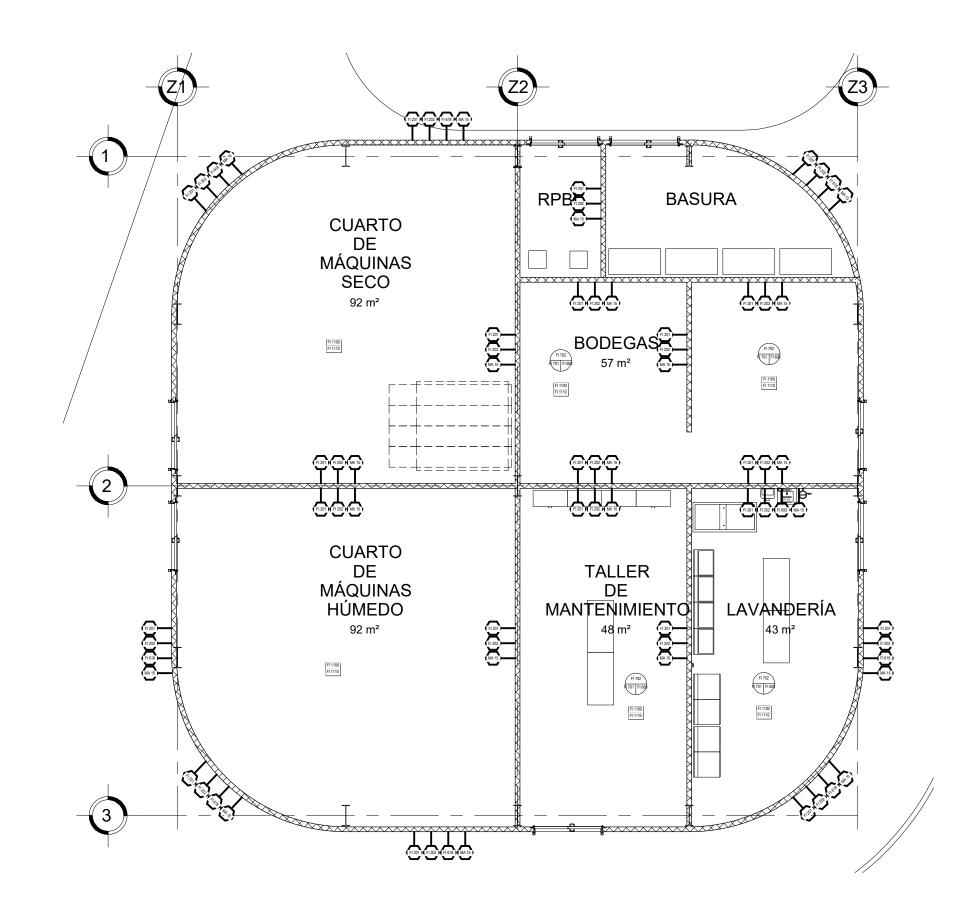
Clave de plano

AC 02

Escala Como se indica


CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO


JUNIO 2020

Como se indica

EDIFICIO ADMINISTRATIVO SECCIÓN E

1:100

CUARTO DE MAQUINAS SECCIÓN F

Proyecto

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicación
PASEO DE

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

ACABADOS

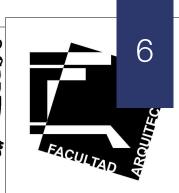
Fecha JUNIO 2020

Clave de plano

AC 04

Escala

Como se indica


				A 0 11 - TABLA DE ALBAÑILERIA	
CLAVE	MATERIAL	FABRICANTE			LOCALIZACION
MA 15	MURO DE BLOCK HUECO DE 15x20x40 CMS.	HECHO EN OBRA	BLOCK HUECO	DE CONCRETO, ASENTADO CON MORTERO-CEMENTO-ARENA Y JUNTA APARENTE DE 2 CMS. DE ESPESOR, VERIFICAR Y COORDINAR LAS ESPECIFICACIONES DE LOS REFUERZOS VERTICALES Y HORIZONTRALEES, CON LA INGENIERIA CORRESPONDIENTE.	MUROS DIVISORIOS TODOS LOS NIVELES
	MORE DE DECORPTICES DE TONZONTO ONIO.	THE STOP EN OBTO		CORRESPONDIENTE.	morros Bivisorilos Tobos

				A 0 12 - TABLA DE ACABADOS Y AREAS	
CLAVE	MATERIAL	FABRICANTE	MODELO	DESCRIPCION	LOCALIZACION
FI 201	APLANADO DE CEMENTO-ARENA	HECHO EN OBRA		MORTERO- ÁRENA 1:4 APLANADO EN MUROS INTERIORES Y EXTERIORES ESPESOR MÁXIMO 2CM INCLUYE REPELLADO Y ACABADO FINO, SE DEBERÁ REALIZAR MUESTRA EN OBRA PARA SU APROBACIÓN DEL ACABADO FINAL	TODOS LOS NIVELES EN GENERAL
FI 202	REPELLADO DE MEZCLA	HECHO EN OBRA		MORTERO-ARENA EN PROPORCION 1:4, EN MUROS INTERIORES Y EXTERIORES CON UN ESPESOR MAXIMO 2CM. PARA RECIBIR RECUBRIMIENTO.	TODOS LOS NIVELES EN GENERAL
FI 300	GRANITO GRISSAL ACABADO PULIDO	MARMEX	GRISSAL ACABADO PULIDO	GRANITO GRISSAL ACABADO PULIDO, DIMENSIONES SEGÚN DISEÑO, ESPESOR DE 2 CM. APLICAR SELLADOR SEGUN USO RECOMENDADO POR EL PROVEEDOR. PARA APLICACION VER RECOMENDACIONES Y ESPECIFICACIONES DEL PROVEEDOR	CUBIERTAS DE BAÑOS, TRATAMIENTOS Y OFICINAS
FI 301	PORCELANATO MODELO ANDRIA	PORCELANITE	RUSRICO, MATE, GRIS	PORCELANATO MODELO ANDRIA MARCA PORCELANITE, DE FORMATO 60 X 60 CM. PARA APLICACION REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	PASILLOS
FI 302	PORCELANATO HUESO MODELO MIXURI ACABADO MATE	PORCELANITE	HUESO ACABADO MATE	PORCELANATO HUESO MODELO MIXURY ACABADO MATE, MARCA PORCELANITE, FORMATO 45 X 90 CM. PARA APLICACION VER RECOMENDACION Y ESPECIFICACION DEL PROVEEDOR.	PISO EXTERIOR EN GENERAL
FI 303	PORCELANATO HUESO MODELO NATURAWOOD ACABADO MATE	PORCELANITE	NATURA ACABADO MATE	PORCELANATO NATURA MODELO NATURAWOOD ACABADO MATE, MARCA PORCELANITE, FORMATO 20 X 120 CM. PARA APLICACION VER RECOMENDACION Y ESPECIFICACION DEL PROVEEDOR.	INTERIOR OFICINAS
FI 304	PORCELANATO BEIGE MODELO SOFT ACABADO MATE	PORCELANITE	BEIGE ACABADO MATE	PORCELANATO BEIGE MODELO SOFT ACABADO MATE, MARCA PORCELANITE, FORMATO 60 X 60 CM. PARA APLICACION VER RECOMENDACION Y ESPECIFICACION DEL PROVEEDOR.	COMEDOR
FI 305	PORCELANATO GRIS MODELO BAVONI ACABADO MATE	PORCELANITE	GRIS ACABADO MATE	PORCELANATO GRIS MODELO BAVONI ACABADO MATE, MARCA PORCELANITE, FORMATO 45 X 90 CM. PARA APLICACION VER RECOMENDACION Y ESPECIFICACION DEL PROVEEDOR.	BAÑOS
FI 600	PINTURA VINIL-ACRILICA	COMEX	VINIMEX MATE	PINTURA VINIL-ACRILICA COLOR BLANCO APIO 736 ACABADO SATIN, APLICAR CON UNA CAPA DE SELLADOR 5X1 Y DOS CAPAS DE PINTURA, S.M.A.	AREAS EN GENERAL
I 601	PINTURA VINIL-ACRILICA	COMEX	VINIMEX MATE	PINTURA VINIL-ACRILICA COLOR INSTINTO 272-07 ACABADO SATIN, APLICAR CON UNA CAPA DE SELLADOR 5X1 Y DOS CAPAS DE PINTURA, S.M.A.	PASILLO
FI 602	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , NAVEGANTE 187-05, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 603	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR HELENICO 187-07, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 604	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR REFRESCANTE 187-03, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 605	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR ALMIBAR 069-05, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
=I 606	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR PLENITUD 069-03, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 607	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR CRAYÓN 085-07, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 608	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR INFANTA 085-06, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 609	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR HELADO 085-04, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 610	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR CHAPAS 085-05, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 611	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR ALMOHADA 085-03, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 612	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR SONORO 158-06, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 613	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR TEMPLANZA 158-05, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 614	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR LEPIDOLITA 158-04, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 615	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR CENIT 107-06, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 616	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR ESTAMPA 102-05, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 617	ESMALTE ALQUÍDALICO ANTICORROSIVO	COMEX	COMEX 100, ACABADO MATE	ESMALTE ALQUIDÁLICO ANTICORROSIVO ACABADO MATE MODELO COMEX 100, MARCA COMEX , COLOR GUMMY 102-04, S.M.A.; APLICAR PRIMARIO ALQUIDALICO ANTICORROSIVO MODELO COMEX 100, MARCA COMEX. PARA APLICACION REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	PUERTAS METALICAS VER PLANO DE ACABADOS
FI 618	PINTURA VINIL-ACRILICA	COMEX	VINIMEX MATE	PINTURA VINIL-ACRILICA COLOR IENJAMBRE 272-07 ACABADO SATIN, APLICAR CON UNA CAPA DE SELLADOR 5X1 Y DOS CAPAS DE PINTURA, S.M.A.	PASILLO
T 700	PANEL DE YESO ESTANDAR	USG	ESTANDAR DE 12.7mm	PANEL DE YESO MODELO ESTANDAR MARCA USG DE 12.7mm DE ESPESOR CON POSTES Y/O CANAL SEGUN SE REQUIERA, PARA APLICACIONES REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL PROVEEDOR.	CONSULTORIOS EN GENERAL
T 701	APLANADO DE PASTA ACABADO FINO	HECHO EN OBRA	TERMINADO FINO	APLANADO DE PASTA ACABDO FINO DE ESPESOR SEGUN SE REQUIERA, PARA APLICACIONES REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL PROVEEDOR.	CONSULTORIOS EN GENERAL
1 702	PANEL DE YESO RESISTENTE A LA HUMEDAD ANTI-MOHO	USG	ANTI-MOHO DE 12.7 mm	PANEL DE YESO RESISTENTE A LA HUMEDAD ANTI-MOHO ,ESP. (1/2") 12.7 MM, DIMENSIONES DE 1.22 X 2.44 M, PARA APLICACIONES REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL PROVEEDOR	PLAFONES EXTERIORES
TI 703	PANEL SUSTENTABLE ACUSTICO DE PERLITA VOLCANICA DE 610 x 610mm	EUROSTONE	TERRIC COLOR BLANCO	DEL FABRICANTE.	CONSULTORIOS EN GENERAL
I 1000	VIDRIO CLARO TEMPLADO DE 9MM DE ESPESOR			VIDRIO CLARO TEMPLADO DE 9MM DE ESPESOR. PARA CONSTRUCCIÓN Y ESPECIFICACIÓN REFERIRSE A SERIE FC	
TI 1010	UNIDAD DE DOBLE ACRISTALAMIENTO DE VISION (TIPO VA)			UNIDAD DE DOBLE ACRISTALAMIENTO COMPUESTA POR UN VIDRIO EXTERIOR CLARO TEMPLADO DE 6mm DE ESPESOR, UN ESPACIADOR DE 12mm DE ESPESOR, Y UN VIDRIO INTERIOR CLARO TEMPLADO DE 6mm DE ESPESOR. CANTOS PULIDOS. CONTIENE UNA CAPA DE BAJA EMISIVIDAD EN LA CARA #2, SAINT GOBAIN GLASS SKN144 II. PARA CONSTRUCCIÓN Y ESPECIFICACIÓN REFERIRSE A SERIE FC	
FI 1100	PISO DE CONCRETO SIMPLE F'c=150kg/cm2	HECHO EN OBRA	TERMINADO PULIDO	TERMINADO PULIDO, VERIFICAR Y COORDINAR ESPECIFICACION CON PLANOS ESTRUCTURALES CORRESPONDIENTES.	ESPACIOS EN GENERAL
FI 1110	SOBREFIRME DE CONCRETO PULIDO	HECHO EN OBRA	TERMINADO PULIDO	SOBREFIRME DE CONCRETO PULIDO	CONSULTORIOS EN GENERAL
FI 1120	PISO EPOXICO COLOR BOLERO 263 -01	HECHO EN OBRA	TERMINADO LISO	TERMINADO LISO COLOR BOLERO 263-01, VERIFICAR Y COORDINAR ESPECIFICACION CON PLANOS ESTRUCTURALES CORRESPONDIENTES.	CONSULTORIOS EN GENERAL
	•	•	•		

A 011 - CLAVES DE ESPECIALIDADES					
CLAVE	MATERIAL	FABRICANTE	MODELO		LOCALIZACION
SP 027	DESPACHADOR DE PAPEL HIGIENICO	BOBRICK	B-2890	DESPACHADOR DE PAPEL HIGIENICO DE PLASTICO Y CERRADURA DE SEGURIDAD COLOR TRANSPARENTE. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES
P 030	DOSIFICADOR DE JABÓN LIQUIDO EN ACABADO ALUMINIO ANODIZADO	HELVEX	DOSIFICADOR MB-1100	DOSIFICADOR DE JABÓN LIQUIDO EN ACABADO ALUMINIO ANODIZADO, ELECTRONICO DE BATERIAS CON SENSOR. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES
P 062	BARRA DE SEGURIDAD ANGULAR BOOMERANG SATINADA	HELVEX	BARRA B-066-S	BARRA DE SEGURIDAD ANGULAR BOOMERANG SATINADA., ACABADO ACERO INOXIDABLE, MODELO BARRA B-066-S, MARCA HELVEX. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES
SP 076	ESPEJO PARA SANITARIOS	POR CONTRATISTA	SEGÚN MUESTRA APROBADA	ESPEJO RECTANGULAR DE 0.50 x 1.00m, DE 9mm DE ESPESOR CON CANTOS PÚLIDOS Y BISELADOS, CON JUEGO DE INSERTOS CUADRADOS LINEA CUBICA ACABADO SATIN, SIN MARCO. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES
P 200	MAMPARA DIVISORIA SUPERIOR (FIJA A PISO), PILASTRAS DE0.24 X 1.80M, 0.19 X 1.80M Y 0.10 X 1.80M	MODUMEX	MODELO ESTANDAR PRESENTACION LEEDER COLOR GRIS METALIZADO	MAMPARA DIVISORIA SUPERIOR (FIJA A PISO), PILASTRAS DE0.24 X 1.80M, 0.19 X 1.80M Y 0.10 X 1.80M, ACABADO HPL DE 12.7mm COLOR GRIS METALIZADO ANTIGRAFITI, MODELO ESTANDAR PRESENTACION LEEDER COLOR. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES
SP 201	PUERTA PARA SANITARIOS MODELO COLGANTE ACABADO ANTIGRAFITI	MODUMEX	MODELO ESTANDAR PRESENTACION LEEDER COLOR GRIS METALIZADO	MAMPARA DIVISORIA SUPERIOR (FIJA A PISO), PUERTAS DE 0.60 M x 1.50 M.,ACABADO HPL DE 12.7mm COLOR GRIS METALIZADO ANTIGRAFITI, MODELO ESTANDAR PRESENTACION LEEDER. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES

				A 0 11 - CLAVES DE PLOMERIA.	A 0 11 - CLAVES DE PLOMERIA.	
CLAVE	MATERIAL	FABRICANTE	MODELO	DESCRIPCIÓN	LOCALIZACIÓN	
PU 203	TAZA NAO SUSPENDIDA A PARED	HELVEX	TZF - NAO - I - PARED, COLOR BLANCO	TAZA NAO SUSPENDIDA A PARED PARA FLUXOMETRO CON ANTIBAC, CON SOPORTE MODELO S-TZF-P Y CON FLUXOMETRO MODELO FB-110-WC-4.8; MARCA HELVEX. PARA INSTALACIÓN REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	SANITARIOS GENERALES	
PU 204	MINGITORIO MODELO FERRY CASCADA 1L B	HELVEX	MG-FERRY	MINGITORIO MODELO FERRY CASCADA 1L B, CON FLUXOMETRO MODELO FB-185-19-0.5, MARCA HELVEX. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES	
PU 300	LAVABO RECTANGULAR BAJO CUBIERTA	HELVEX	LV-MARCUS-BC	LAVABO RECTANGULAR BAJO CUBIERTA MODELO CREB MARCUS B, CON COTRA REJILLA MODELO TH-058 Y CESPOL MODELO TV-016, CON MONOMANDO MODELO NIMBUS TV190-1.9. MARCA HELVEX. PARA INSTALACIÓN REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	SANITARIOS GENERALES	
PU 301	LAVABO DE PEDESTAL PARA CONSULTORIO	HELVEX	LV LUCERNA 3	LAVABO CON PEDESTAL DE CERAMICA VITRIFICADA EN ACABADO SUAVE Y BRILLANTE, MODELO LV LUVERNA3 CON MONOMANDO INSTITUCIONAL DE SENSOR MODELO MB-82023-CP ACABADO CROMO PÚLIDO MARCA INTERCERAMIC. PARA INSTALACIÓN REFERIRSE A RECOMENDACIONES Y ESPECIFICACIONES DEL FABRICANTE.	CONSULTORIOS	
PU 302	TARJA DE ACERO INOXIDABLE	TEKA	DUAL MOUNT ZENIT 1C	IDEGUN DE REJUIERA.	COCINAS	
PU 303	TARJA DE ACERO INOXIDABLE	POR CONTRATISTA	ACABADO SATINADO	TARJA DE ACERO INOXIDABLE CALIBRE 18 EN ACABADO SATINADO, DE DIMENSIONES 0.46m x 0.46m, CON PERFORACIÓN PARA CESPOL ESTANDAR. SOPORTADA CON BASE DE PTR DE 1" x 1" FIJA A MURO, PREVEER REFUERZO EN MURO SEGÚN SE REQUIERA.	CUARTO DE ASEO	
PU 401	SECADOR DE MANOS TURBO	HELVEX	MB-1012-AI	SECADOR DE MANOS TURBO CON CUERPO DE ACERO INOXIDABLE 316 MODELO MB-1012-AL, MARCA HELVEX. PARA INSTALACIÓN REFERIRSE A ESPECIFICACIONES Y RECOMENDACIONES DEL FABRICANTE.	SANITARIOS GENERALES	

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN EL ESTADO DE PUEBLA

Simbología

Croquis de localización

Ubicaci

PASEO DE DE LAS VILLAS, PUEBLA DE ZARAGOZA,MEX

Diseñado por

HERNANDEZ MORQUECHO KARLA YVETTE PICO RUIZ RODRIGO

Título de plano

TABLA DE ACABADOS

Clave de plano

AC

JUNIO 2020

Escala SIN ESCALA

CONCLUSIONES

El desgaste físico a través de los años es inevitable y en algún punto de nuestra vida nuestras funciones motoras se verán afectadas, pero también están aquellas personas en donde a causa de algún evento traumático, se vieron modificadas las capacidades de su cuerpo. Es momento de ser más empáticos con aquellas personas que necesitan ayuda para la movilidad, estamos a tiempo de invertir en la inclusión ya que es un aspecto del sector de salud pública que en varios puntos del país está olvidado. Es necesario apoyar principalmente a personas de escasos recursos, para que todos tengan acceso a los servicios de los centros de rehabilitación.

Un centro de rehabilitación brinda las oportunidades que las demandas de la sociedad exigen y genera las pautas para mejorar tanto la infraestructura urbana como las de las edificaciones a construir. Hay que ser incluyentes en todos los aspectos, una manera clara esta en la arquitectura, creando espacios cómodos para cubrir las necesidades que el usuario requiere, así como el desenvolvimiento del mismo en actividades de vida diaria.

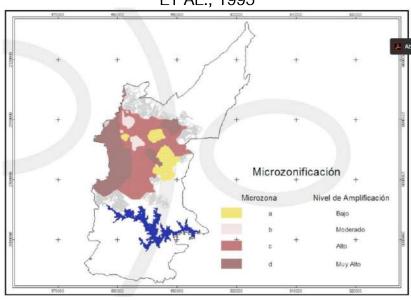
Esta claro que como sociedad nos hace falta crecer, por lo que hay que dar oportunidad a aquellos que han vivido limitados por las capacidades diferentes que han tenido o tienen, mejorar los servicios de salud pública del país y enfatizar en los hospitales de rehabilitación, ya que es un derecho recibir una adecuada protección social para vivir con calidad y dignidad.

BIBLIOGRAFÍA

- ArchDaily | Arquitectura de radiodifusión en todo el mundo. (s. f.). ArchDaily. https://www.archdaily.com/
- CHACARILLA. Medicina física y rehabilitación. (s. f.). TERAPIA DE LENGUAJE DE ADULTOS. Especialistas en Rehabilitación y Medicina Física. https://www.chacarilla.com.pe/especialidades/terapia-de-lenguaje-de-adultos/
- DIAU-BUAP. (s. f.). Condiciones meteorológicas en RAMM 12: DIAU. Red Automática de Monitoreo Meteorológico. http://urban.diau.buap.mx/estaciones/ramm/ramm.html
- Espinosa Brito, R. (2009, mayo). Revisión de consideraciones geotécnicas y estudio del diseño preliminar de zapatas aisladas en base a análisis de cargas gravitacionales del proyecto ejecutivo para el edificio CENTIA en la UDLAP. Universidad de las Américas Puebla. http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/espinosa_b_r/portada.html
- IMPLAN Puebla. (s. f.). Planeación. Carta Urbana. Mapa. gob.mx. http://planeacion.implanpuebla.gob.mx/CartaUrbana/Mapa/
- IMPLAN Puebla. (s. f.). Planeación. Carta Urbana. Zonas. gob.mx. http://planeacion.implanpuebla.gob.mx/CartaUrbana/zonas?z=Z2
- Instituto Mexicano del Seguro Social. Subdirección General de Obras y Patrimonio Inmobiliario. (1993). Normas de Proyecto de Arquitectura: Vol. I-II. Unidad de proyectos.
- Instituto Nacional de Estadística y Geografía. (2010). Discapacidad. Discapacidad. https://www.inegi.org.mx/temas/discapacidad/
- Instituto Nacional de Estadística y Geografía. (2010). Población. Discapacidad. Cuéntame de México. http://cuentame.inegi.org.mx/poblacion/discapacidad.aspx?tema=P
- Instituto Nacional de Estadística y Geografía. (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos (Puebla, Puebla). http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/21/21114.pdf
- Instituto Nacional de Estadística y Geografía. (s. f.). ¿Cuántos son como tú? Puebla. Cuéntame. http://cuentame.inegi.org.mx/monografias/informacion/pue/poblacion/comotu.aspx?tema=me&e=21
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. (2017, 10 agosto). Terapia Física. Gobierno de México. https://www.inr.gob.mx/r20.html
- Mimenza, O. C., & Castillero Mimenza, O. (s.f). Los 6 tipos de discapacidad y sus características. Psicología y Mente. https://psicologiaymente.com/salud/tipos-de-discapacidad
- Rodríguez, S. (s. f.). Qué es la mecanoterapia: concepto y aparatos utilizados. Hedasa Prosalud. https://www.hedasa.com/que-es-la-mecanoterapia-concepto-y-aparatos-utilizados/
- Secretaría de Gobernación. (s. f.). DOF- Diario Oficial de la Federación. SEGOB. https://www.dof.gob.mx/index.php
- Sistema Nacional DIF. (2019, 15 enero). El Sistema Nacional DIF, forma licenciados en forma licenciados en Terapia Física y Terapia Ocupacional.

 Gobierno de México.

 https://www.gob.mx/difnacional/articulos/el-sistema-nacional-dif-forma-licenciados-en-terapia-fisica-y-terapia-ocupacional-187067?idiom=es


MEMORIAS DESCRIPTIVAS

MEMORIA ESTRUCTURAL

Microzonificación sísmica del predio, Partiendo de los trabajos realizados por Chávez-García, et al., (1995), Ruiz et al., 1993, Asomoza, et al., y Auvinet, (1976), los cuales presentaron una microzonificación sísmica para la Cd de Puebla (figura siguiente). MICRO ZONA III C. Tiene mayor distribución que las demás, corresponde a los suelos blandos de origen aluvial o de tobas ande siticas, los periodos dominantes estimados son de 0.8 segundos. Cs=0.21

No. de colonia	No. Junta auxiliar	Nombre de junta auxiliar	Nombre de colonía	Zona sísmica	Micro zonificación	Periodo dominante	Tipo de suelo	Zona de peligro
525	0		REMENTERIA	III	С	0.8	Aluvión, Tobas	Alto

MICROZONIFICACIÓN SÍSMICA DE LA CIUDAD DE PUEBLA (MODIFICADO DE CHÁVEZ-GARCÍA, ET AL., 1995

ELABORACIÓN CUPREDER

Zona I: 17.3 a 18.69° N y 96° a 99.45 W, corresponde a la zona donde los movimientos son frecuentes.

Mapa de zonificación de la ciudad de puebla

Geomorfología

Fallas geológicas en el Estado de Puebla.

ΕI estado puebla presenta diferentes de afloramientos de rocas ígneas, sedimentarias y últimos acontecimientos metamórficas. Los geológicos han consistido en la formación de travertinos depositados por aguas termales, que afloraron a lo largo de una falla, y la sedimentación de depósitos aluviales a lo largo del rio Atoyac y sus afluentes.

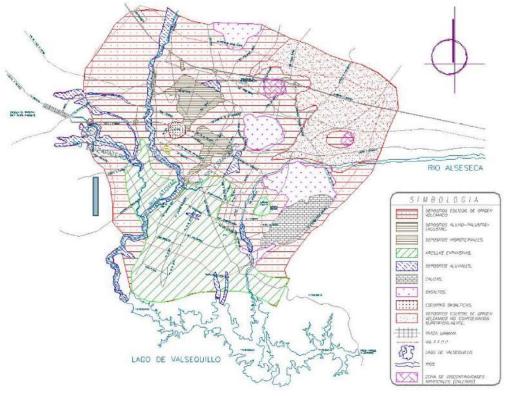
El valle de Puebla está situado entre los límites de las provincias fisiográficas del Eje Neovolcánico y la Sierra Madre del Sur y en la Subprovincia de Los Lagos y Volcanes Anáhuac.

En el área urbana se define una falla denominada la Malinche y se interfieren otras dos. La malinche es un plano de discontinuidad profundo con dirección suroeste a noroeste y una longitud aproximada de 300km.

La ciudad de puebla se ubica entre las fallas Zacamboxo y Clarión, ambas con dirección esteoeste.

Geología regional

Mapa geológico de la ciudad de Puebla (Chávez García, 1995)



La geología regional de la ciudad de Puebla, está constituida por rocas calizas del Cretácico. Sobrevaciendo estas а rocas, se tienen secuencias de depósitos volcánicos como tobas y sedimentos de origen aluvial. Como resultado de la actividad volcánica relacionado con la generación del eje Neovolcánico, se tiene un cono volcánico que constituye el cerro de San Juan o La Paz ubicado al oeste dentro de la ciudad, está constituido por escorias basálticas rojizas y otros piroclastos. Asimismo, hacia el ur y oeste de la ciudad se distinguen afloramientos basálticos tobáceos.

Las rocas que constituyen el subsuelo de la Ciudad de Puebla son predominantemente volcánicas (Chavez García, 1995). Diversos ríos cruzan la ciudad, dejando depósitos aluviales con

estratos de gravas y arenas limosas de compacidad variable. Debido a esto existen estratigrafías que alternan depósitos lacustres con aluviones y tobas volcánicas erráticamente distribuidas en la ciudad. El proyecto se encuentra dentro de la zona de toba intercalada con depósitos aluviales.

Zonificación Geotécnica

Conforme plano al geológico la región de elaborado por el Instituto Nacional de Estadística. Geografía Informática е (INEGI), la zona en estudio caracteriza por presencia de depósitos tobáceos resistentes (cenizas volcánicas), propios del valle de Puebla. según se presenta en la figura. El proyecto encuentra dentro de zona de depósitos eólicos de origen volcánico.

Zonificación Geotécnica de la Ciudad de Puebla.

FUENTE: INEGI

Depósitos eólicos de origen volcánico

La situación geográfica del Estado de Puebla evidencia la presencia de depósitos eólicos de origen volcánico, constituyendo incluso estos materiales la matriz de suelos de las otras formaciones existentes en la región. Las tobas arenosas y gravosas y los suelos tobáceos, son los últimos productos manifestados por la actividad volcánica regional. En las tobas existe generalmente un alto grado de cementación que les da la consistencia de una roca suave; en los suelos, esta consistencia es variable, dependiendo de su compacidad, cementación y grado de alteración. En la ciudad predominan los suelos tobáceos como una capa basal, con afloramientos importantes en extensión y espesores; regionalmente, estos materiales son conocidos como "tepetates". Se clasifican de acuerdo al Sistema Unificado de Clasificación del Suelo (SUCS), como limos o arcillas arenosas y arenas limosas o arcillosas, de colores café y café claro (amarillento), con contenido natural de agua de 15 a 40%. La fracción fina, limosa o arcillosa, es de baja plasticidad (LL<50%), con índice plástico (IP) variable entre 15 y 25% y porcentaje de partículas finas variable de 40 a 60%. La consistencia de estos suelos varia de firme a dura, con 15 a más de 50 golpes en la prueba de penetración estándar; su cohesión, medida como un medio de su resistencia a la compresión simple, es del orden de 6 a más de 15 t/m. Por sus propiedades, estos materiales son comúnmente empleados en toda la región para la conformación de rellenos estructurados.

Carga admisible

En el estudio de mecánica de suelos de Espinosa Brito (2009), para el edificio CENTIA en la UDLAP, señala que la capacidad de carga admisible del material a partir de 0.90m de profundidad, será de 18.20ton/m².

Dado que la ubicación donde se realizó este estudio se encuentra relativamente cerca del predio elegido para este ejercicio académico, tomaremos en cuenta una carga admisible de 18.00ton/m².

Coeficiente sísmico

Tabla 3.1 Valores de a_o, c, T_a, T_b y r, para estructuras del grupo A ** para distintas zonas sísmicas

Zona * sísmica	Tipo de suelo	a_o	с	Ta^1	Ть 1	r
	I	0.03	0.12	0.20	0.60	1/2
A	II	0.06	0.24	0.30	1.50	2/3
	III	0.08	0.30	0.60	2.90	1
	I	0.06	0.21	0.20	0.60	1/2
В	II	0.12	0.45	0.30	1.50	2/3
	III	0.15	0.54	0.60	2.90	1
	I	0.54	0.54	0.00	0.60	1/2
C	II	0.96	0.96	0.00	1.40	2/3
	III	0.96	0.96	0.00	1.90	1
D	I	0.75	0.75	0.00	0.60	1/2
	II	1.29	1.29	0.00	1.20	2/3
	III	1.29	1.29	0.00	1.70	1

¹ Periodos en segundos

CONCLUSIÓN

Región sísmica B, tipo de suelo I (Depósitos eólicos de tipo volcánico), Construcción Grupo A, C=0.21, Resistencia= 18t/m²

^(**) Los espectros de diseño especificados en la tabla, son aplicables a estructuras del Grupo A, ya toman en cuenta el destino de la construcción.

ANÁLISIS DE CARGAS

	AZOTEAS				
			Peso	Peso	
		Espesor	Volumétric	Unitario	
	Material	(m)	o (kg/m3)	(kg/m2)	
Impemeabilizante	Asfalto	0.01	1500	15	
Escobillado	Mor,Ce,Ar	0.007	2100	14.7	
Enladrillado	Tabique	0.02	1500	30	
Relleno	Tezontle	0.02	1150	23	
Ternium Iosacero 25 Calibre 22					
(Lámina + concreto 5cm)				205	
Falso plafón				40	
		Por mortero		20	
Carga muerta adicional (R.C.C.M)	F	or concreto		20	
			Total	367.7	
Carga de subdivisiones					
Carga Viva (R.C.C.M)					
	150				
			W total	707.7	

	MUROS			
			Peso	Peso
		Espesor	Volumétric	Unitario
	Material	(m)	o (kg/m3)	(kg/m2)
Recubrimiento exterior	Mortero	0.015	2000	30
Muro	Tabique	0.13	1600	208
Recubrimiento interior	Yeso	0.015	1400	21
			Total	259

SISTEMA	CARGAS		CARGA NETA	CARGA DE DISEÑO Fc=1.5; Fc=1.7	CARGA POR SISMO Fc=1.1
	C.M	417.7	668	1052	734
Azotea	C.V	250	000	1032	734
	C.M	-	259	389	285
Muro tabique	C.V	_	259	309	200

CÁLCULO DE VIGAS SECUNDARIAS. Sistema Losacero Ternium 25.

EDIFICIO B TABLERO 1

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	11.70	
Separación de vigas (m)=	1.75	
Lg (m)=	0.32	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Losa (kg/m)= 643.475 Subdivisiones (kg/m)= 87.5 Carga de construcción (kg/m)= 262.50 Carga viva (kg/m)= 175.00

wu (kg/m)= 1.2(C.M)+1.6(C.V)= 1157.17 Mu (kg-m)= $wL^2/8=$ 19800.63

Predimensionamiento

d = L/24 = 48.75 cm = 19.19 plg

Cálculo del peso estimado de la viga.

wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)= 1281.46 $Mu(kg-m)=wL^2/8=$ 21927.38

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Zx del perfil= 92.00 plg^3 = 1507.61 cm^3 ØbMn=Zx(ØbFy)= 3432827.71 kg-cm > 2192737.84 kg-cm

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

wD (kg/m)=wlosa+wsubdiv+wviga= 805.38 wu (kg/m)= 1.2 wD +1.6 C.V= 1246.46

Mu (kg-m)= wL^2/8= 21328.48

Ancho efectivo be del patín (cm)

be= 2(L/8)= 292.50 be= 2(s/2)= 175.00 be= 2(Lq) = 64.00 <- el menor

Por lo tanto be= Cálculo de la fuerza horizontal	64.00
As del perfil= AsFy (kg)= 2	14.70 plg^2 = 94.84 cm^2
	68000.00
	239941.46
a (cm)=C/0.85f'cbe=	17.64
La resistencia nominal Mn es igual:	
Mn=CyTy	
y = d/2 + ts - a/2	
Mn (kg-cm)= 5 La resistencia de diseño es:	55/3/49.55
ØbMn (kg-cm)= 0.85Mn= 4	737687.11 > 2132848.46 kg-cm
Revisión del cortante	2132040.40 kg-ciii
Vu (kg)= wuL/2=	7291.79
tw=	0.38 plg = 0.97 cm
Área del alma (Aw)= tw*d=	39.96 cm^2
ØvVn (kg)= Ø0.6FyAw=	· ·
	Por lo que la sección es satisfactoria.
B) Diseño de los conectores de cortante Como la viga tiene un exceso considerable de resisten comportamiento compuesto parcial.	ncia por momento, conviene considerar un
Por lo que se tiene que encontrar primero los requisito	os del conector de cortante de un comportamiento
compuesto total y luego reducir el número de conecto	·
C (kg)=Vh= 2	
Utilizando conectores de 3/4 de pulgada x	4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabe	eza redonda.
n C = N w	√ W ≤
Para un perno de	1.905 cm 3/4 de pulgada
Asc=	2.85 cm ²
Revisión del diámetro máximo del conector tf (plg)=	0.630
3/4 pulg ó 2.5tf=	1.58 Por lo que 3/4 pulg. gobierna.
Altura del conector por encima de la parte superior de	1 1 0 0
Cuando los nervios de la lámina son perpendiculares a Qn se multiplica por el coeficiente de reducción.	
0 C = c N A 1 0 A	1 0 A 8 E = C 1 E = C
Suponiendo que el número de conectores de un nervio	o en una intersección con la viga es
Nr=	1
1.22	> 1
Por lo que no se requiere reducir la resistencia del con	
Módulo de elasticidad del concreto Ec (kg/cm^2)=	14000 2 n221359.44 4220 (414 Mpa)
Resitencia a tensión mínima Fu (kg/cm^2)= Qn=	
AscFu (kg)=	12027
	10600.68 kg
Cálculo del número de conectores entre los puntos de	•
N1= Vh/Qn=	22.63 = <u>20</u> pernos

El número necesario de pernos para la viga compuesta es:

Cálculo del espaciado de los pernos en el claro de la viga:

Suponiendo un conector en cada costilla, la separación es de

$$2(N1) = 40$$
 pernos

Pulgadas

<

40

30.48 cm =

12

pernos

y el número máximo que puede acomodarse es:

Con un conector en cada costilla, la separación es = y el número de conectores es:

Separación longitudinal mínima (cm) = 6(d) = 11.43

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 19$$

 $\Sigma \text{On (kg)} = 201413.00 < 239941.46$

38

C (kg) = Vh = 201413.00

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$bf =$$
 $\begin{array}{c|cccc} 7.07 & plg = & 17.96 & cm \\ tf = & 0.630 & plg = & 1.60 & cm \\ \end{array}$

Cs (kg) =
$$bftfFy = 72702.26$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.42$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{y} = 22.49$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85f$$
 cbe = 14.81

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2 = 26.43 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 22.28 cm

Al tomar momentos respecto a la fuerza de tensión.

Mn (kg-cm)=
$$5753456.32$$

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 30.48 12 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD (kg/m)= Wlosa+Wviga=
$$717.88$$

Deflexión inmedita (losa y viga)

Módulo de elasticidad del acero Es (kg/cm^2)=	2040000	7	07400 45	
lx del perfil=		11 0	27429.65	cm^4
$\Delta 1 = 5 \text{wL}^4/384 \text{Esls} =$	3.13	cm		
Deflexión debida a la carga de construcción	4 4 4			
$\Delta 2= 5\text{WL}^4/384\text{Esls}=$	1.14	cm		
Deflexiones después de que el concreto se endurezc	a.			
Cálculo de las deflexiones a largo plazo.	0.00			
n= Es/Ec=	9.22			
Sin flujo plástico		/la a //a)		
Cálculo de la posición del eje neutro de la sección tra		(be/n).		
AT $(cm^2)=As+be(ts-hr)/n=$	129.56			
Yb (cm)=	28.62			
Cálculo del momento de inercia de la sección transfo				
,	49701.93			
Como se está usando una acción compuesta parcial reducido (momento de inercia reducido).	, debe usars	se un moment	o de inercia tr	ansformado
O ΣΦn/lVh) *ltr-lx= 4	47 0 35.55			
Deflexión debida a las subdivisiones				
Δ3= 5wL^4/384EsIs=	0.22	cm		
Deflexión debida a carga viva $\Delta 4=5\text{wL}^4/384\text{Esls}=$	0.44	cm		
Deflexión a largo plazo por flujo plástico	0.44	CIII		
Cálculo de la posición del eje neutro de la sección tra	insformada	(he/2n)		
AT (cm ²)=	112.20	(DC/211).		
Yb (cm)=	25.27			
Cálculo del momento de inercia de la sección transfo				
	40283.05			
0 ΣΦη/V h) *Itr-Ix=4				
•				
Deflexión por flujo plástico debida a las subdivisiones		om.		
$\Delta 5 = 5\text{WL}^4/384\text{Esls} = 0.00$	0.27	cm		
Deflexiones permisibles	3.25	0.00		0.44
L/360=	3.23	(Doflovián n	> or corgo vivol	0.44
1/240 0 Fam	F 20	•	or carga viva)	2.02
L/240+0.5cm=	5.38	(Doflovián d	>	3.83
	!		a largo plazo)	
Deflexión inmediata, antes de que alcance el compor		•		
$\Delta 1 + \Delta 2 =$	4.27	cm		
Deflexión a a corto plazo con subdivisiones	0.05			
$\Delta 1 + \Delta 3 =$	3.35	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	3.79	cm		
Deflexión a largo plazo sin carga viva				
$\Delta 1 + \Delta 5 =$	3.40	cm		
Deflexión a largo plazo con carga viva				
$\Delta 1 + \Delta 4 + \Delta 5 =$	3.83	cm	<	5.38

Datos

	_
11.35	
11.70	
1.94	
0.00	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	11.70 1.94 0.00 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

wu (kg/m)=
$$1.2(C.M)+1.6(C.V)=$$
 1282.8056
Mu (kg-m)= $wL^2/8=$ 21950.41

d = L/24 =

Predimensionamiento

Cálculo del peso estimado de la viga.
Ensayando con d =
$$16.3$$
 plg = 41.402 cm
 $w (kg/m) = 0.785 (Mu/\Phi bFy(d/2+ts-a/2)) = 27.11$ = 18.22 lb/pie
Ensayamos una W16x 50 = 74.41 kg/m

48.75

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

19.19

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 292.50
be= $2(s/2)$ = 194.00 <- el menor
be= $2(Lg)$ = 0.00
Por lo tanto be= 194.00

La resistencia nominal Mn es igual:

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 5943284.29 > 2347826.68 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 239941.46
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 22.63 = 20 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 40 pernos

Cálculo del espaciado de los pernos en el claro de la viga:

Suponiendo un conector en cada costilla, la separación es de

30.48 cm =

y el número máximo que puede acomodarse es: Con un conector en cada costilla, la separación es =

12 Pulgadas

38 pernos < 40

30.48 cm

38.39 =

<

40

y el número de conectores es:

 $\frac{38}{11.43}$

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

N1= 19

 $\Sigma Qn (kg) = 201413.00 < 239941.46$

pernos

C (kg) = Vh = 201413.00

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs (kg) = bftfFy = 72702.26

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.42$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 22.49$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.89

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 31.40 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 22.28 cm

Al tomar momentos respecto a la fuerza de tensión.

$$Mn (kg-cm) = 6752875.55$$

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 30.48 12 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 787.75

Deflexión inmedita (losa y viga)

Módulo de elasticidad del acero Es (kg/cm²)= 2040000

$\Delta 1 = 5 \text{wL}^4/384 \text{Esls} =$	3.43	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	1.27	cm		
Deflexiones después de que el concreto se endurezo	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	ansformada	(be/n).		
AT (cm^2)= As+be(ts-hr)/n=	200.09			
Yb (cm)=	36.25			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	71226.45			
Como se está usando una acción compuesta parcial			o de inercia tr	ansformado
reducido (momento de inercia reducido).	•			
$0 \qquad \qquad \Sigma \mathbb{Q} \text{n} \text{n} \mathbb{W} \text{h}) \text{ *Itr-Ix} = 2$	4 67056.36			
Deflexión debida a las subdivisiones				
Δ3= 5wL^4/384EsIs=	0.17	cm		
Deflexión debida a carga viva	01.7			
$\Delta 4=5\text{wL}^4/384\text{Esls}=$	0.34	cm		
Deflexión a largo plazo por flujo plástico	0.01	OTT		
Cálculo de la posición del eje neutro de la sección tra	nsformada	(he/2n)		
AT (cm ²)=	147.47	(80/211).		
Yb (cm)=	31.25			
Cálculo del momento de inercia de la sección transfo				
ltr (cm^4)=				
$0 \qquad \qquad$				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL^4/384EsIs=	0.21	cm		
Deflexiones permisibles	0.21	CITI		
L/360=	3.25	cm		0.34
L/300=	3.23	(Doflovión n	or carga viva)	0.34
1/240.0 Fam	F 20	•	or carga viva)	2.00
L/240+0.5cm=	5.38	CM /Deflections	>	3.99
	domaio mato o o	•	a largo plazo)	
Deflexión inmediata, antes de que alcance el compor		•		
$\Delta 1 + \Delta 2 =$	4.70	cm		
Deflexión a a corto plazo con subdivisiones				
$\Delta 1 + \Delta 3 =$	3.61	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	3.95	cm		
Deflexión a largo plazo sin carga viva				
$\Delta 1 + \Delta 5 =$	3.65	cm		
Deflexión a largo plazo con carga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

3.99

cm

5.38

<

Datos

11.35 11.70	
11 70	
11.70	
2.00	
0.00	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	0.00 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

Cálculo del peso estimado de la viga.
Ensayando con d =
$$16.3$$
 plg = 41.402 cm
 $w (kg/m) = 0.785 (Mu/\Phi bFy(d/2+ts-a/2)) = 27.95$ = 18.78 lb/pie
Ensayamos una W16x 50 = 74.41 kg/m

48.75

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

d = L/24 =

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

19.19

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 292.50
be= $2(s/2)$ = 200.00 <- el menor
be= $2(Lg)$ = 0.00
Por lo tanto be= 200.00

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 5961090.03 > 2415714.54 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 239941.46
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm 2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa) Qn= 10600.68 w \leq AscFu (kg)= 12027

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

$$N1 = Vh/Qn = 22.63 = 20$$
 pernos
El número necesario de pernos para la viga compuesta es: $2(N1) = 40$ pernos

Cálculo del espaciado de los pernos en el claro de la viga:

Suponiendo un conector en cada costilla, la separación es de

$$30.48$$
 cm =

y el número máximo que puede acomodarse es: Con un conector en cada costilla, la separación es = y el número de conectores es:

	12	Pulgadas	
38	pernos	<	40
	30.48	cm	
38.39	=		
38	pernos	<	40

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

ΣQn (kg)= 201413.00 < 239941.46

11.43

$$C (kg) = Vh = 201413.00$$

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$Cs (kg) = bftfFy = 72702.26$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.42$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 22.49$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.74

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 31.47 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 22.28 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 30.48 12 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	3.53	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	1.31	cm		
Deflexiones después de que el concreto se endurezc	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/n).		
AT (cm^2)= As+be(ts-hr)/n=	203.35			
Yb (cm)=	36.47			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	71862.02			
Como se está usando una acción compuesta parcial	, debe usars	se un momento d	e inercia tran	sformado
reducido (momento de inercia reducido).				
$0 \qquad \qquad \Sigma \mathbb{Q} \text{n} / \mathbb{N} \text{h}) \text{*Itr-Ix} = 4$	4 68 0 38.66			
Deflexión debida a las subdivisiones				
$\Delta 3 = 5$ wL $^4/384$ EsIs=	0.18	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL^4/384EsIs=	0.35	cm		
Deflexión a largo plazo por flujo plástico	0.00	5		
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/2n).		
AT (cm^2)=	149.09	(300, 21.1).		
Yb (cm)=	31.45			
Cálculo del momento de inercia de la sección transfo				
Itr (cm^4)=				
$0 \qquad \qquad \Sigma \mathbb{Q} \ln t \mathbb{V} \ln t = 2$				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5=5$ WL $^4/384$ EsIs=	0.22	cm		
Deflexiones permisibles	0.22	CIII		
L/360=	3.25	cm		0.35
L/300-	3.23	(Deflexión por c	> arga viva)	0.55
L/240+0.5cm=	5.38	•	arga viva)	4.10
L/240+0.3cm=	0.30	cm (Deflexión a lar	/ // / / / / / / / / / / / / / / / / /	4.10
Deflexión inmediata, antes de que alcance el compor	tamianta ca	•	go piazoj	
·		•		
$\Delta 1 + \Delta 2 =$	4.84	cm		
Deflexión a a corto plazo con subdivisiones	0.71			
$\Delta 1 + \Delta 3 =$	3.71	cm		
Deflexión a corto plazo con carga viva agregada	4.07			
$\Delta 1 + \Delta 3 + \Delta 4 =$ Deflevión a large plaza sin cargo viva	4.06	cm		
Deflexión a largo plazo sin carga viva	0.75			
$\Delta 1 + \Delta 5 =$	3.75	cm		
Deflexión a largo plazo con carga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

4.10

cm

5.38

<

Datos

		_,
Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	11.70	
Separación de vigas (m)=	1.75	
Lg (m)=	0.00	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

d = L/24 =

Predimensionamiento

Cálculo del peso estimado de la viga.
Ensayando con d =
$$\begin{bmatrix} 16.3 \\ \text{W (kg/m)} = 0.785 \text{(Mu/ΦbFy(d/2+ts-a/2))} = 24.46 \\ \text{Ensayamos una W16x} & 50 \\ \text{Ensa$$

48.75

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

19.19

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 292.50
be= $2(s/2)$ = 175.00 <- el menor
be= $2(Lg)$ = 0.00
Por lo tanto be= 175.00

La resistencia nominal Mn es igual:

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 5878844.46 > 2132848.46 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 239941.46
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm 2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa) Qn= 10600.68 w \leq AscFu (kg)= 12027

Por lo tanto Qn= 10600.68 kg

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 22.63 = 20 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 40 pernos

Cálculo del espaciado de los pernos en el claro de la viga:

Suponiendo un conector en cada costilla, la separación es de

30.48 cm =

y el número máximo que puede acomodarse es: Con un conector en cada costilla, la separación es = y el número de conectores es:

	12	Pulgadas	
38	pernos	<	40
	30.48	cm	
38.39	=		
38	pernos	<	40

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 19$$

 $\Sigma \text{On (kg)} = 201413.00 < 239941.46$

11.43

C (kg) = Vh = 201413.00

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

72702.26 Cs(kq) = bftfFy =

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.42$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{y} = 22.49$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 5.42

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 31.13 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 22.28 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 30.48 12 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 717.88

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{Esls} =$	3.13	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	1.14	cm		
Deflexiones después de que el concreto se endurezca	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/n).		
AT (cm^2) = As+be(ts-hr)/n=	189.78	(3371)		
Yb (cm)=	35.48			
Cálculo del momento de inercia de la sección transfo				
Itr (cm^4)=				
, ,			do inorgio tr	ancformada
Como se está usando una acción compuesta parcial, reducido (momento de inercia reducido).	, debe usan	se un momento	de mercia un	ansiormado
O $\Sigma \mathbb{Q} n / \mathbb{N} $ *Itr-Ix= 4	4 65 6 82.09			
Deflexión debida a las subdivisiones				
$\Delta 3 = 5 \text{wL}^4/384 \text{EsIs} =$	0.16	cm		
Deflexión debida a carga viva				
$\Delta 4=5\text{wL}^4/384\text{EsIs}=$	0.32	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/2n).		
AT (cm^2)=	142.31	,		
Yb (cm)=	30.56			
Cálculo del momento de inercia de la sección transfo				
Itr (cm^4)=				
0 ΣΦυη/V h) *Itr-Ix= 4				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL^4/384EsIs=	0.20	cm		
Deflexiones permisibles	0.20	CIII		
L/360=	3.25	cm		0.32
L/300=	3.23	(Defleyién no	> viva	0.32
1/240 0 5000	F 20	(Deflexión po	i Carya viva)	2 / 5
L/240+0.5cm=	5.38	cm	>	3.65
		(Deflexión a	iargo piazo)	
Deflexión inmediata, antes de que alcance el compor		•		
$\Delta 1 + \Delta 2 =$	4.27	cm		
Deflexión a a corto plazo con subdivisiones				
$\Delta 1 + \Delta 3 =$	3.29	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	3.61	cm		
Deflexión a largo plazo sin carga viva				
Δ1+Δ5=	3.33	cm		
Deflexión a largo plazo con carga viva				
· · · · · · · · · · · · · · · · · · ·				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

3.65

cm

5.38

<

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	11.70	
Separación de vigas (m)=	2.00	
Lg (m)=	0.00	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

wu (kg/m)=
$$1.2(C.M)+1.6(C.V)=$$
 1322.48
Mu (kg-m)= $wL^2/8=$ 22629.29

Predimensionamiento

$$d=L/24= \quad 48.75 \qquad cm = \quad 19.19 \quad plg$$
 Cálculo del peso estimado de la viga.
$$Ensayando \ con \ d = \boxed{ \quad 16.3 \quad } \quad plg = \qquad 41.402 \quad cm$$

$$w (kg/m) = 0.785(Mu/\Phi bFy(d/2+ts-a/2)) = 27.95 = 18.78 | b/pie$$

Ensayamos una W16x 50 = 74.41 kg/m

$$wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)=$$
 1451.77
 $wu(kg/m)=wL^2/8=$ 24841.60

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

19.19

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 292.50
be= $2(s/2)$ = 200.00 <- el menor
be= $2(Lg)$ = 0.00
Por lo tanto be= 200.00

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 5961090.03 > 2415714.54 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 239941.46
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm 2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa) Qn= 10600.68 w \leq AscFu (kg)= 12027

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

$$N1 = Vh/Qn = 22.63 = 20$$
 pernos
El número necesario de pernos para la viga compuesta es: $2(N1) = 40$ pernos

Cálculo del espaciado de los pernos en el claro de la viga:

Suponiendo un conector en cada costilla, la separación es de

$$30.48$$
 cm =

y el número máximo que puede acomodarse es: Con un conector en cada costilla, la separación es = y el número de conectores es:

	12	Pulgadas	
38	pernos	<	40
	30.48	cm	
38.39	=		
38	pernos	<	40

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

ΣQn (kg)= 201413.00 < 239941.46

11.43

$$C (kg) = Vh = 201413.00$$

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$Cs (kg) = bftfFy = 72702.26$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.42$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 22.49$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.74

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 31.47 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 22.28 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 30.48 12 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	3.53	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	1.31	cm		
Deflexiones después de que el concreto se endurezc	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/n).		
AT (cm^2)= As+be(ts-hr)/n=	203.35			
Yb (cm)=	36.47			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	71862.02			
Como se está usando una acción compuesta parcial	, debe usars	se un momento d	e inercia tran	sformado
reducido (momento de inercia reducido).				
$0 \qquad \qquad \Sigma \mathbb{Q} \text{n} / \mathbb{N} \text{h}) \text{*Itr-Ix} = 4$	4 68 0 38.66			
Deflexión debida a las subdivisiones				
$\Delta 3 = 5$ wL $^4/384$ EsIs=	0.18	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL^4/384EsIs=	0.35	cm		
Deflexión a largo plazo por flujo plástico	0.00	5		
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/2n).		
AT (cm^2)=	149.09	(300, 21.1).		
Yb (cm)=	31.45			
Cálculo del momento de inercia de la sección transfo				
Itr (cm^4)=				
$0 \qquad \qquad \Sigma \mathbb{Q} \ln t \mathbb{V} \ln t = 2$				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5=5$ WL $^4/384$ EsIs=	0.22	cm		
Deflexiones permisibles	0.22	CIII		
L/360=	3.25	cm		0.35
L/300-	3.23	(Deflexión por c	> arga viva)	0.55
L/240+0.5cm=	5.38	•	arga viva)	4.10
L/240+0.3cm=	0.30	cm (Deflexión a lar	/ // / / / / / / / / / / / / / / / / /	4.10
Deflexión inmediata, antes de que alcance el compor	tamianta ca	•	go piazoj	
·		•		
$\Delta 1 + \Delta 2 =$	4.84	cm		
Deflexión a a corto plazo con subdivisiones	0.71			
$\Delta 1 + \Delta 3 =$	3.71	cm		
Deflexión a corto plazo con carga viva agregada	4.07			
$\Delta 1 + \Delta 3 + \Delta 4 =$ Deflevión a large plaza sin cargo viva	4.06	cm		
Deflexión a largo plazo sin carga viva	0.75			
$\Delta 1 + \Delta 5 =$	3.75	cm		
Deflexión a largo plazo con carga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

4.10

cm

5.38

<

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	5.50	
Separación de vigas (m)=	1.75	
Lg (m)=	3.71	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm^2)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

$$d = L/24 = 22.92$$
 cm = 9.02 plg a viga.

Cálculo del peso estimado de la viga.

Ensayando con d =
$$9.99$$
 plg = 25.3746 cm w (kg/m)= 0.785 (Mu/ Φ bFy(d/2+ts-a/2))= 7.42 = 4.98 lb/pie Ensayamos una W10x 15 = 22.32 kg/m wu(kg/m)= 1.2 (C.M+Wviga)+ 1.6 (C.V+C.cons)= 1218.96

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 137.50 <- el menor
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 742.00
Por lo tanto be= 137.50

Vu (kg) = wuL/2 =3255.88 0.23 0.58 tw= plg = cm

Área del alma (Aw)= tw*d= 14.82 cm² \emptyset vVn (kg)= \emptyset 0.6FyAw= 20252.33 3255.88 kq

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C(kq)=Vh=71982.44 Utilizando conectores de 3/4 de pulgada x pulgadas Hs (cm)=10.16 Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente On se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm^2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm²)= 4220 (414 Mpa) Qn= 10600.68 W 12027 AscFu (kg)=

> Por lo tanto Qn= 10600.68 kq

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn =6.79 7 pernos El número necesario de pernos para la viga compuesta es: 14 2(N1) =pernos

Cálculo del espaciado de los pernos en el claro de la viga:

Suponiendo un conector en cada costilla, la separación es de

$$30.48$$
 cm =

12 Pulgadas y el número máximo que puede acomodarse es: 18 pernos 14 Con un conector a cada dos costilla, la separación es = 60.96 cm y el número de conectores es: 9.02 = 10 14 pernos < Separación longitudinal mínima (cm) = 6(d) = 11.43 Separación transversal mínima (cm) = 4(d) = 7.62 Separación longitudinal máxima (cm) = 8(ts) = 90.80 5 N1= 71982.44

$$\Sigma$$
Qn (kg)= 53003.42 < C (kg)= Vh = 53003.42

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$bf = 4.00 \text{ plg} = 10.16 \text{ cm}$$

 $tf = 0.270 \text{ plg} = 0.69 \text{ cm}$
 $tf = 0.270 \text{ plg} = 0.69 \text{ cm}$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.37$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 14.59$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2 = 25.03 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 14.40 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 665.80

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{WL}^4/384 \text{EsIs} =$	1.36	cm	
Deflexión debida a la carga de construcción			
$\Delta 2= 5\text{wL}^4/384\text{EsIs}=$	0.53	cm	
Deflexiones después de que el concreto se endurezca	a.		
Cálculo de las deflexiones a largo plazo.			
n= Es/Ec=	9.22		
Sin flujo plástico			
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/n).	
$AT (cm^2) = As + be(ts - hr)/n =$	103.05		
Yb (cm)=	28.28		
Cálculo del momento de inercia de la sección transfo	rmada		
Itr (cm^4)=	12585.89		
Como se está usando una acción compuesta parcial,	debe usar	se un momento de	inercia transformado
reducido (momento de inercia reducido).			
Ο ΣΦη <i>τ</i> Ιν h) *ltr-lx= 4	11006.91		
Deflexión debida a las subdivisiones			
$\Delta 3 = 5 \text{wL}^4/384 \text{Esls} =$	0.05	cm	
Deflexión debida a carga viva			
$\Delta 4=5$ wL^4/384EsIs=	0.09	cm	
Deflexión a largo plazo por flujo plástico	0.07	0111	
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/2n).	
AT (cm^2)=	65.75	(3 37 2).	
Yb (cm)=	24.91		
Cálculo del momento de inercia de la sección transfo			
	10436.72		
0 ΣΦη/IV h) *Itr-Ix= 4			
Deflexión por flujo plástico debida a las subdivisiones			
$\Delta 5$ = 5wL^4/384EsIs=	0.05	cm	
Deflexiones permisibles	0.03	CIII	
L/360=	1.53	cm	> 0.09
L/300-	1.00	(Deflexión por ca	
L/240+0.5cm=	2.79	•	> 1.50
L/240+0.5CIII=	2.19	cm (Deflexión a largo	
Deflexión inmediata, antes de que alcance el compor	tamionto co		ο ριαζο)
Definition infinediata, affices de que alcance el compoi $\Delta 1 + \Delta 2 =$	1.89	•	
	1.69	cm	
Deflexión a a corto plazo con subdivisiones	1 10	0.00	
$\Delta 1 + \Delta 3 =$	1.40	cm	
Deflexión a corto plazo con carga viva agregada	1 10	0.00	
$\Delta 1 + \Delta 3 + \Delta 4 =$ Deflevién a large plaze sin carga viva	1.49	cm	
Deflexión a largo plazo sin carga viva	1 11		
$\Delta 1 + \Delta 5 =$	1.41	cm	
Deflexión a largo plazo con carga viva			

 $\Delta 1 + \Delta 4 + \Delta 5 =$

1.50

cm

2.79

<

Datos

11.35	
5.50	
1.94	
0.30	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	5.50 1.94 0.30 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

wu (kg/m)=
$$1.2(C.M)+1.6(C.V)=$$
 1282.8056
Mu (kg-m)= $wL^2/8=$ 4850.61

Predimensionamiento

$$d=L/24=$$
 22.92 cm = 9.02 plg Cálculo del peso estimado de la viga.
Ensayando con d = 9.99 plg = 25.3746 cm

$$w (kg/m) = 0.785 (Mu/\Phi bFy(d/2+ts-a/2)) = 8.22 = 5.52 lb/pie$$

5098.61

Ensayamos una W10x
$$\boxed{15}$$
 = 22.32 kg/m wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)= 1348.39

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Mu (kg-m)= $wL^2/8=$

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 137.50
be= $2(s/2)$ = 194.00
be= $2(Lg)$ = 60.00 <- el menor
Por lo tanto be= 60.00

La resistencia nominal Mn es igual:

La resistencia de diseño es:

Revisión del cortante

 \emptyset bMn (kg-cm)= 0.85Mn= 1298008.21 495189.68 kg-cm Vu (kg) = wuL/2 =3601.38 0.23 0.58 tw= plg = cm

Área del alma (Aw)= tw*d= 14.82 cm² \emptyset vVn (kg)= \emptyset 0.6FyAw= 20252.33 3601.38 kq

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C(kq)=Vh=71982.44 Utilizando conectores de 3/4 de pulgada x pulgadas Hs (cm)=10.16 Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente On se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 0 A$ $1 0 A$ $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm^2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm²)= 4220 (414 Mpa) Qn= 10600.68 W 12027 AscFu (kg)=

10600.68 Por lo tanto Qn= kq

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn =6.79 pernos El número necesario de pernos para la viga compuesta es: 14 2(N1) =pernos

Cálculo del espaciado de los pernos en el claro de la viga:

Suponiendo un conector en cada costilla, la separación es de

$$30.48$$
 cm =

12 Pulgadas y el número máximo que puede acomodarse es: 18 pernos 14 Con un conector a cada dos costilla, la separación es = 60.96 cm y el número de conectores es: 9.02 = 10 14 pernos < Separación longitudinal mínima (cm) = 6(d) = 11.43 Separación transversal mínima (cm) = 4(d) = 7.62 Separación longitudinal máxima (cm) = 8(ts) = 90.80 5 N1=

$$\Sigma Qn (kg) = 53003.42 < 71982.44$$

C (kg)= Vh = 53003.42

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$bf = 4.00 \quad plg = 10.16 \quad cm$$

$$tf = 0.270 \quad plg = 0.69 \quad cm$$

$$Cs (kg) = bftfFy = 17628.35$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.37$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 14.59$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.16

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2 = 23.86 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 14.40 cm

Al tomar momentos respecto a la fuerza de tensión.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 735.66

Deflexión inmedita (losa y viga)

$$|x| = |x| = |x|$$

.4. 5. 1.4.4/00.45.1	4.50			
Δ1= 5wL^4/384EsIs=	1.50	cm		
Deflexión debida a la carga de construcción Δ2= 5wL^4/384EsIs=	0.59	cm		
Deflexiones después de que el concreto se endurezca		CIII		
Cálculo de las deflexiones a largo plazo.	•			
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/n).		
AT $(cm^2)=As+be(ts-hr)/n=$	61.00			
Yb (cm)=	24.18			
Cálculo del momento de inercia de la sección transfor				
ltr (cm^4)=	9981.87	oo uu maamaant	a da inarala trar	oform odo
Como se está usando una acción compuesta parcial, reducido (momento de inercia reducido).		se un moment	o de mercia trai	ISIOITIIauu
O ΣΦn/IVh) *Itr-Ix= 4	890/2.40			
Deflexión debida a las subdivisiones Δ3= 5wL^4/384EsIs=	0.06	cm		
Deflexión debida a carga viva	0.00	CIII		
$\Delta 4=5$ wL $^4/384$ EsIs=	0.13	cm		
Deflexión a largo plazo por flujo plástico	0.10	J		
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/2n).		
AT (cm^2)=	44.73			
Yb (cm)=	20.52			
Cálculo del momento de inercia de la sección transfor				
Itr (cm^4)=	7706.20			
$0 \qquad \Sigma \mathbb{Q} \text{nt/V} \text{h}) \text{ *Itr-Ix} = 4$	70019.64			
Deflexión por flujo plástico debida a las subdivisiones	0.00			
$\Delta 5 = 5 \text{WL}^4 / 384 \text{EsIs} =$	0.08	cm		
Deflexiones permisibles	1 50			0.10
L/360= L	1.53	CM (Deflevión n	or carga viva)	0.13
L/240+0.5cm=	2.79	cm	or carga viva)	1.71
L/240+0.36III=	2.17		a largo plazo)	1.71
Deflexión inmediata, antes de que alcance el comport	amiento co	•	a. 90 p.a.20,	
$\Delta 1 + \Delta 2 =$	2.09	cm		
Deflexión a a corto plazo con subdivisiones				
Δ1+Δ3=	1.56	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	1.69	cm		
Deflexión a largo plazo sin carga viva				
$\Delta 1 + \Delta 5 =$	1.58	cm		
Deflexión a largo plazo con carga viva	:			
$\Delta 1 + \Delta 4 + \Delta 5 =$	1.71	cm	<	2.79

Datos

11.35	
5.50	
1.75	
0.20	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	5.50 1.75 0.20 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

wu (kg/m)=
$$1.2(C.M)+1.6(C.V)=$$
 1157.17
Mu (kg-m)= $wL^2/8=$ 4375.55

Predimensionamiento

$$d=L/24=$$
 22.92 cm = 9.02 plg la viga.

Cálculo del peso estimado de la viga.

Ensayando con d =
$$9.99$$
 plg = 25.3746 cm w (kg/m)= 0.785 (Mu/ Φ bFy(d/2+ts-a/2))= 7.42 = 4.98 lb/pie Ensayamos una W10x 15 = 22.32 kg/m wu(kg/m)= 1.2 (C.M+Wviga)+ 1.6 (C.V+C.cons)= 1218.96

Mu (kg-m)= wL^2/8= 4609.18 Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 137.50
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 40.00 <- el menor
Por lo tanto be= 40.00

La resistencia de diseño es:

Revisión del cortante

447683.71 kg-cm ØbMn (kg-cm)= 0.85Mn= 1211650.35 Vu (kg) = wuL/2 =3255.88

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C(kq)=Vh=71982.44 Utilizando conectores de 3/4 de pulgada x pulgadas Hs (cm)=10.16 Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente On se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm^2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm²)= 4220 (414 Mpa) Qn= 10600.68 W 12027 AscFu (kg)=

> 10600.68 Por lo tanto Qn= kq

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn =6.79 7 pernos El número necesario de pernos para la viga compuesta es: 14 2(N1) =pernos

$$30.48$$
 cm =

12 Pulgadas y el número máximo que puede acomodarse es: 18 pernos 14 Con un conector a cada dos costilla, la separación es = 60.96 cm y el número de conectores es: 9.02 = 10 14 pernos < Separación longitudinal mínima (cm) = 6(d) = 11.43 Separación transversal mínima (cm) = 4(d) = 7.62 Separación longitudinal máxima (cm) = 8(ts) = 90.80 5 N1= 71982.44

$$\Sigma$$
Qn (kg)= 53003.42 < C (kg)= Vh = 53003.42

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$bf = 4.00 \quad plg = 10.16 \quad cm$$

$$tf = 0.270 \quad plg = 0.69 \quad cm$$

$$Cs (kg) = bftfFy = 17628.35$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.37$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 14.59$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 6.24

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2= 22.82 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 14.40 cm

Al tomar momentos respecto a la fuerza de tensión.

pulgadas

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 665.80

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4 / 384 \text{Esls} =$	1.36	cm
Deflexión debida a la carga de construcción		
$\Delta 2=5\text{wL}^4/384\text{Esls}=$	0.53	cm
Deflexiones después de que el concreto se endurezca	١.	
Cálculo de las deflexiones a largo plazo.		
n= Es/Ec=	9.22	
Sin flujo plástico		
Cálculo de la posición del eje neutro de la sección tran		(be/n).
AT (cm ²)= As+be(ts-hr)/n=	50.15	
Yb (cm)=	22.01	
Cálculo del momento de inercia de la sección transfor	mada	
Itr (cm^4)=	8626.29	
Como se está usando una acción compuesta parcial, reducido (momento de inercia reducido).	debe usar	se un momento de inercia transformado
$0 \qquad \qquad \Sigma \mathbb{Q} n / l \mathbf{V} \mathbf{h}) * l t r - l \mathbf{x} = 4$	78009.17	
Deflexión debida a las subdivisiones		
$\Delta 3 = 5 \text{WL}^4/384 \text{EsIs} =$	0.07	cm
Deflexión debida a carga viva		
$\Delta 4=5\text{wL}^4/384\text{Esls}=$	0.13	cm
Deflexión a largo plazo por flujo plástico		
Cálculo de la posición del eje neutro de la sección trar	nsformada	(be/2n).
AT (cm^2)=	39.30	
Yb (cm)=	18.63	
Cálculo del momento de inercia de la sección transfor	mada	
Itr (cm^4)=	6535.38	
$O \qquad \Sigma \mathbb{Q} n / V \mathbf{n}) * Itr - Ix = 4$	60014.96	
Deflexión por flujo plástico debida a las subdivisiones		
$\Delta 5=5 \text{wL}^4/384 \text{Esls}=$	0.08	cm
Deflexiones permisibles		
L/360=	1.53	cm > 0.13
_		(Deflexión por carga viva)
L/240+0.5cm=	2.79	cm > 1.57
_		(Deflexión a largo plazo)
Deflexión inmediata, antes de que alcance el comport	amiento co	ompuesto
$\Delta 1 + \Delta 2 =$	1.89	cm
Deflexión a a corto plazo con subdivisiones		
Δ1+Δ3=	1.42	cm
Deflexión a corto plazo con carga viva agregada		
$\Delta 1 + \Delta 3 + \Delta 4 =$	1.55	cm
Deflexión a largo plazo sin carga viva		
$\Delta 1 + \Delta 5 =$	1.44	cm
Deflexión a largo plazo con carga viva		
$\Delta 1 + \Delta 4 + \Delta 5 =$	1.57	cm < 2.79

Datos

11.35 5.50	
5 50	Ī
3.30	
2.00	
3.81	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	3.81 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

wu (kg/m)=
$$1.2(C.M)+1.6(C.V)=$$
 1322.48
Mu (kg-m)= $wL^2/8=$ 5000.63

d = L/24 =

Predimensionamiento

Cálculo del peso estimado de la viga.

Ensayando con d =
$$9.99$$
 plg = 25.3746 cm

 $(kg/m) = 0.785(Mu/\Phi bFy(d/2+ts-a/2)) = 8.48$ = 5.70 lb/pie

Ensayamos una W10x 15 = 22.32 kg/m

22.92

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

9.02

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 137.50 <- el menor
be= $2(s/2)$ = 200.00
be= $2(Lg)$ = 762.00
Por lo tanto be= 137.50

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C(kq)=Vh=71982.44 Utilizando conectores de 3/4 de pulgada x pulgadas Hs (cm)=10.16 Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente On se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm^2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm²)= 4220 (414 Mpa) Qn= 10600.68 W 12027 AscFu (kg)= Por lo tanto Qn= 10600.68 kq

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn =6.79 7 pernos El número necesario de pernos para la viga compuesta es: 14 2(N1) =pernos

30.48 cm =

Pulgadas

<

14

14

12

pernos

y el número máximo que puede acomodarse es:

Con un conector a cada dos costilla, la separación es =

y el número de conectores es:

9.02 =

= 6(d) = 11.43

Separación longitudinal mínima (cm) = 6(d) = 11.

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 5$$

 $\Sigma \text{On (kg)} = 53003.42 < 71982.44$

C (kg) = Vh = 53003.42

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs (kg) = bftfFy = 17628.35

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.37$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 14.59$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 25.03 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 14.40 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 757.72

Deflexión inmedita (losa y viga)

Módulo de elasticidad del acero Es (kg/cm²)= 2040000

$\Delta 1= 5\text{wL}^4/384\text{Esls}=$	1.54	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	0.61	cm		
Deflexiones después de que el concreto se endurezca.				
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tran		(be/n).		
AT $(cm^2)= As+be(ts-hr)/n=$	103.05			
Yb (cm)=	28.28			
Cálculo del momento de inercia de la sección transform	nada			
Itr (cm^4)=	12585.89			
Como se está usando una acción compuesta parcial, o reducido (momento de inercia reducido).	debe usars	se un moment	o de inercia tran	sformado
$0 \qquad \qquad \Sigma \mathbb{Q} n / l \mathbf{h}) * ltr - lx = 4$	11006.91			
Deflexión debida a las subdivisiones				
$\Delta 3 = 5 \text{wL}^4/384 \text{Esls} =$	0.05	cm		
Deflexión debida a carga viva				
$\Delta 4 = 5 \text{wL}^4/384 \text{EsIs} =$	0.10	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección tran	sformada	(be/2n).		
AT (cm^2)=	65.75			
Yb (cm)=	24.91			
Cálculo del momento de inercia de la sección transform	nada			
Itr (cm^4)=	10436.72			
O $\Sigma \mathbb{Q} n / \mathbb{N}$ *Itr-Ix= 4	93062.71			
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5=5\text{wL}^4/384\text{EsIs}=$	0.06	cm		
Deflexiones permisibles				
L/360=	1.53	cm	>	0.10
_		(Deflexión p	or carga viva)	
L/240+0.5cm=	2.79	cm	>	1.71
_		(Deflexión a	largo plazo)	
Deflexión inmediata, antes de que alcance el comporta	amiento co	mpuesto	0 1 ,	
$\Delta 1 + \Delta 2 =$	2.15	cm		
Deflexión a a corto plazo con subdivisiones				
Δ1+Δ3=	1.60	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	1.70	cm		
Deflexión a largo plazo sin carga viva				
Δ1+Δ5=	1.61	cm		
Deflexión a largo plazo con carga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 = 1.71$ cm

2.79

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.90	
Separación de vigas (m)=	1.75	
Lg (m)=	0.32	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Mu (kg-m)= $wL^2/8=$

Predimensionamiento

$$d = L/24 = 32.92$$
 cm = 12.96 plg

9027.37

Cálculo del peso estimado de la viga.

Wu(kg/HI) = 1.2(C.IVI+WVIIga) + 1.0(C.V+C.coHS) = 1231.40 $\text{Mu (kg-m)} = \text{WL}^2/8 = 9606.91$

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 197.50
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 64.00 <- el menor
Por lo tanto be= 64.00

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2237972.37 > 933386.40 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm 2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa) Qn= 10600.68 w \leq AscFu (kg)= 12027

Por lo tanto Qn= 10600.68 kg

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

30.48 cm =

y el número máximo que puede acomodarse es:

 12
 Pulgadas

 26
 pernos
 >
 20

 5 =
 60.96
 cm

Con un conector a cada dos costillas, la separación $\overline{es} = y$ el número de conectores es:

12.96 = 20 12 pernos < 20

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 6$$

 $\Sigma Qn (kg) = 63604.10 < 105933.34$

11.43

$$C (kg) = Vh = 63604.10$$

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs
$$(kg) = bftfFy = 27340.27$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.68

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 30.67 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Mn (kg-cm)=
$$2402368.66$$

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 676.21

Deflexión inmedita (losa y viga)

$\Delta 1= 5wL^4/384EsIs=$	2.03	cm	
Deflexión debida a la carga de construcción			
$\Delta 2$ = 5wL^4/384EsIs=	0.79	cm	
Deflexiones después de que el concreto se endurezca			
Cálculo de las deflexiones a largo plazo.			
n= Es/Ec=	9.22		
Sin flujo plástico			
Cálculo de la posición del eje neutro de la sección tran	sformada	(be/n).	
AT (cm^2)= As+be(ts-hr)/n=	76.59		
Yb (cm)=	29.30		
Cálculo del momento de inercia de la sección transformation de la sección de la sección transformation de la sección de	mada		
Itr (cm^4)=	21438.08		
Como se está usando una acción compuesta parcial,	debe usar:	se un momento de ir	nercia transformado
reducido (momento de inercia reducido).			
O ΣΦn/IV h) *Itr-Ix= 4	18@76.42		
Deflexión debida a las subdivisiones			
$\Delta 3 = 5 \text{wL}^4/384 \text{EsIs} =$	0.12	cm	
Deflexión debida a carga viva			
Δ4= 5wL^4/384EsIs=	0.24	cm	
Deflexión a largo plazo por flujo plástico			
Cálculo de la posición del eje neutro de la sección tran	sformada	(be/2n).	
AT (cm^2)=	59.23	,	
Yb (cm)=	25.09		
Cálculo del momento de inercia de la sección transform			
	16777.27		
O $\Sigma \Omega n / V h$ *Itr-Ix= 4			
Deflexión por flujo plástico debida a las subdivisiones			
$\Delta 5 = 5 \text{WL}^4/384 \text{Esls} =$	0.15	cm	
Deflexiones permisibles	00	· · · ·	
L/360=	2.19	cm	> 0.24
L/300-	2.17	(Deflexión por carç	· ·
L/240+0.5cm=	3.79	cm	> 2.41
L/240+0.3cm=	5.77	(Deflexión a largo	
Deflexión inmediata, antes de que alcance el comporta	amiento co		pidzoj
$\Delta 1 + \Delta 2 =$	2.82	cm	
Deflexión a a corto plazo con subdivisiones	2.02	CIII	
$\Delta 1 + \Delta 3 =$	2.15	cm	
Deflexión a corto plazo con carga viva agregada	2.13	cm	
Define xion a conto piazo con carga viva agregada $\Delta 1 + \Delta 3 + \Delta 4 =$	2 20	cm	
Deflexión a largo plazo sin carga viva	2.38	cm	
	ე 1 0	cm	
$\Delta 1 + \Delta 5 =$	2.18	cm	
Deflexión a largo plazo con carga viva			

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.41

cm

3.79

<

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.90	
Separación de vigas (m)=	1.94	
Lg (m)=	0.30	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

wu (kg/m)=
$$1.2(C.M)+1.6(C.V)=$$
 1282.8056
Mu (kg-m)= $wL^2/8=$ 10007.49

d = L/24 =

Predimensionamiento

Cálculo del peso estimado de la viga.
Ensayando con d =
$$13.7$$
 plg = 34.798 cm
 $w (kg/m) = 0.785 (Mu/\Phi bFy(d/2+ts-a/2)) = 13.92$ = 9.35 lb/pie
Ensayamos una W14x 22 = 32.74 kg/m

32.92

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

12.96

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 197.50
be= $2(s/2)$ = 194.00
be= $2(Lg)$ = 60.00 <- el menor
Por lo tanto be= 60.00

Mn=CyTy
y=
$$d/2 + ts - a/2$$

Mn (kg-cm)= 2605404.09

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2214593.47 > 1031397.88 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm^2)= $\begin{array}{c|c} 14000 & 2 & n221359.44 \\ \hline Resitencia a tensión mínima Fu (kg/cm^2)= & 4220 & (414 Mpa) \\ \hline Qn= & 10600.68 & w & \leq \\ \hline AscFu (kg)= & 12027 & \end{array}$

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

30.48 cm =

<

20

20

y el número máximo que puede acomodarse es:

Con un conector a cada dos costillas, la separación es =

y el número de conectores es:

12 Pulgadas

pernos >

60.96 cm

Separación longitudinal mínima (cm) = 6(d) = 11.43

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

N1= 6

$$\Sigma$$
Qn (kg)= 63604.10 < 105933.34
C (kg)= Vh = 63604.10

pernos

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs (kg) = bftfFy = 27340.27

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.99

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 30.52 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 746.08

Deflexión inmedita (losa y viga)

$\Delta 1$ = 5wL^4/384EsIs=	2.24	cm
Deflexión debida a la carga de construcción		
$\Delta 2$ = 5wL^4/384EsIs=	0.87	cm
Deflexiones después de que el concreto se endurezca.	·	
Cálculo de las deflexiones a largo plazo.		
n= Es/Ec=	9.22	
Sin flujo plástico		
Cálculo de la posición del eje neutro de la sección tran	sformada	(be/n).
AT (cm^2) = As+be(ts-hr)/n=	74.42	
Yb (cm)=	28.88	
Cálculo del momento de inercia de la sección transforr	nada	
Itr (cm^4)=	20973.43	
Como se está usando una acción compuesta parcial, o		
reducido (momento de inercia reducido).		
O $\Sigma \Omega n / V h$) *Itr-Ix= 4	18016.37	
Deflexión debida a las subdivisiones		
Δ3= 5wL^4/384EsIs=	0.13	cm
Deflexión debida a carga viva		
$\Delta 4$ = 5wL^4/384EsIs=	0.27	cm
Deflexión a largo plazo por flujo plástico	0.2.	5
Cálculo de la posición del eje neutro de la sección tran	sformada	(be/2n).
AT (cm ²)=	58.15	(00,2.1)
Yb (cm)=	24.75	
Cálculo del momento de inercia de la sección transforr		
Itr (cm^4)=		
O $\Sigma \Omega n / V h$) *Itr-Ix= 4		
Deflexión por flujo plástico debida a las subdivisiones	11000.10	
$\Delta 5 = 5 \text{WL}^4 / 384 \text{EsIs} =$	0.17	cm
Deflexiones permisibles	0.17	CITI
L/360=	2.19	cm > 0.27
L/300-	2.17	(Deflexión por carga viva)
L/240+0.5cm=	3.79	cm > 2.67
L/240+0.3CIII=	3.17	(Deflexión a largo plazo)
Deflexión inmediata, antes de que alcance el comporta	amianto co	
Deflexion infriediata, affices de que alcance el comporta $\Delta 1 + \Delta 2 =$	3.11	·
Deflexión a a corto plazo con subdivisiones	3.11	cm
Deflexion a a corto piazo con subdivisiones $\Delta 1 + \Delta 3 =$	2 27	om.
	2.37	cm
Deflexión a corto plazo con carga viva agregada	2/4	079
$\Delta 1 + \Delta 3 + \Delta 4 =$ Deflevién a large plaze sin carga vive	2.64	cm
Deflexión a largo plazo sin carga viva	2.40	
$\Delta 1 + \Delta 5 =$	2.40	cm
Deflexión a largo plazo con carga viva		

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.67

cm

3.79

<

Datos

		_
Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.90	
Separación de vigas (m)=	1.75	
Lg (m)=	0.20	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	-
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Mu (kg-m)= $wL^2/8=$

Predimensionamiento

$$d = L/24 = 32.92$$
 cm = 12.96 plg

9027.37

Cálculo del peso estimado de la viga.

Ensayando con d =
$$13.7$$
 plg = 34.798 cm w (kg/m)= 0.785 (Mu/ Φ bFy(d/2+ts-a/2))= 12.55 = 8.44 lb/pie Ensayamos una W14x 22 = 32.74 kg/m wu(kg/m)= 1.2 (C.M+Wviga)+ 1.6 (C.V+C.cons)= 1231.46 Mu (kg-m)= wL^2/8= 9606.91

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 197.50
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 40.00 <- el menor
Por lo tanto be= 40.00

La resistencia de diseño es:

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm^2)=
$$14000$$
 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm^2)= 4220 (414 Mpa) 2 on= 10600.68 w 4 AscFu (kg)= 12027

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

$$N1 = Vh/Qn = 9.99 = 10$$
 pernos El número necesario de pernos para la viga compuesta es: $2(N1) = 20$ pernos

30.48 cm =

_		12	Pulgadas	
y el número máximo que puede acomodarse es:	26	pernos	>	20
Con un conector a cada dos costillas, la separación	es =	60.96	cm	
y el número de conectores es:	12.96			
	12	pernos	<	20
Separación longitudinal mínima (cm) = 6(d) =	11.43			
Separación transversal mínima (cm) = 4(d) =	7.62			
Separación longitudinal máxima (cm) = 8(ts) =	90.80			

$$N1 = 6$$

$$\Sigma Qn (kg) = 63604.10 < 105933.34$$

C (kg) = Vh = 63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$bf = \begin{bmatrix} 5.00 & plg = \\ tf = \begin{bmatrix} 0.335 & plg = \\ 0.85 & cm \end{bmatrix}$$

Cs (kg) = bftfFy = 27340.27

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{y} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 7.48

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 29.27 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 676.21

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	2.03	cm	
Deflexión debida a la carga de construcción			
$\Delta 2$ = 5wL^4/384EsIs=	0.79	cm	
Deflexiones después de que el concreto se endurezca	•		
Cálculo de las deflexiones a largo plazo.			
n= Es/Ec=	9.22		
Sin flujo plástico			
Cálculo de la posición del eje neutro de la sección tran	sformada	(be/n).	
AT $(cm^2) = As + be(ts - hr)/n =$	63.57		
Yb (cm)=	26.36		
Cálculo del momento de inercia de la sección transforr	nada		
Itr (cm^4)=	18179.17		
Como se está usando una acción compuesta parcial, o reducido (momento de inercia reducido).	debe usar	se un momento de inercia trai	nsformado
$0 \qquad \qquad \Sigma \oplus n / l V \mathbf{h}) * l t r - l x = 4$	15 9 51.20		
Deflexión debida a las subdivisiones			
Δ3= 5wL^4/384EsIs=	0.14	cm	
Deflexión debida a carga viva			
Δ4= 5wL^4/384EsIs=	0.27	cm	
Deflexión a largo plazo por flujo plástico			
Cálculo de la posición del eje neutro de la sección tran	sformada	(be/2n).	
AT (cm^2)=	52.72	,	
Yb (cm)=	22.80		
Cálculo del momento de inercia de la sección transforr	nada		
Itr (cm^4)=	14244.56		
$O \qquad \Sigma \oplus n / V \hat{\mathbf{h}}) * I \operatorname{tr-I} \hat{\mathbf{x}} = 4$			
Deflexión por flujo plástico debida a las subdivisiones			
Δ5= 5wL^4/384EsIs=	0.17	cm	
Deflexiones permisibles			
L/360=	2.19	cm >	0.27
-		(Deflexión por carga viva)	
L/240+0.5cm=	3.79	cm >	2.47
		(Deflexión a largo plazo)	
Deflexión inmediata, antes de que alcance el comporta	amiento co		
$\Delta 1 + \Delta 2 =$	2.82	cm	
Deflexión a a corto plazo con subdivisiones	2.02	J	
$\Delta 1 + \Delta 3 =$	2.17	cm	
Deflexión a corto plazo con carga viva agregada	2.17	3111	
$\Delta 1 + \Delta 3 + \Delta 4 =$	2.44	cm	
Deflexión a largo plazo sin carga viva	۷. ۱ ۱	J	
$\Delta 1 + \Delta 5 =$	2.20	cm	
Deflexión a largo plazo con carga viva	2.20	0111	
Denombri a largo piazo con carga viva			

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.47 cm

3.79

Datos

_		_
Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.90	
Separación de vigas (m)=	2.00	
Lg (m)=	0.37	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	_
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

$$d=L/24= 32.92 \qquad cm = 12.96 \quad plg$$
 Cálculo del peso estimado de la viga.
$$Ensayando \ con \ d = \boxed{13.7} \qquad plg = 34.798 \quad cm$$

$$w (kg/m) = 0.785 (Mu/\Phi bFy(d/2+ts-a/2)) = 14.35 = 9.64$$
 Ib/pie
Ensayamos una W14x 22 = 32.74 kg/m

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 197.50
be= $2(s/2)$ = 200.00
be= $2(Lg)$ = 74.00 <- el menor
Por lo tanto be= 74.00

La resistencia de diseño es:

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada Asc= 2.85 cm^2

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

10600.68

kq

Por lo que no se requiere reducir la resistencia del conector.

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

Por lo tanto Qn=

$$N1 = Vh/Qn = 9.99 = 10$$
 pernos El número necesario de pernos para la viga compuesta es: $2(N1) = 20$ pernos

30.48 cm =

12

y el número máximo que puede acomodarse es:

26 pernos > 20 es = 60.96 cm

Pulgadas

Con un conector a cada dos costillas, la separación $\overline{es} = y$ el número de conectores es:

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 6$$

 $\Sigma Qn (kg) = 63604.10 < 105933.34$

11.43

C (kg) = Vh = 63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs (kg) = bftfFy = 27340.27

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.04

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2= 30.99 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Mn (kg-cm)=
$$2422467.44$$

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 768.14

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	2.31	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	0.90	cm		
Deflexiones después de que el concreto se endurezca				
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección trar	nsformada	(be/n).		
AT (cm^2) = As+be(ts-hr)/n=	82.02			
Yb (cm)=	30.25			
Cálculo del momento de inercia de la sección transfori	mada			
Itr (cm^4)=	22493.26			
Como se está usando una acción compuesta parcial,	debe usar	se un momento d	de inercia tra	nsformado
reducido (momento de inercia reducido).				
O $\Sigma \Omega n I V h$) *Itr-Ix= 4	19094.04			
Deflexión debida a las subdivisiones				
Δ3= 5wL^4/384EsIs=	0.13	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL^4/384EsIs=	0.26	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección trar	nsformada	(be/2n).		
AT (cm^2)=	61.95	(3 2).		
Yb (cm)=	25.91			
Cálculo del momento de inercia de la sección transfora				
Itr (cm^4)=				
0 ΣΦη/V h) *Itr-Ix= 4				
Deflexión por flujo plástico debida a las subdivisiones	10001100			
$\Delta 5 = 5 \text{WL}^4 / 384 \text{EsIs} =$	0.16	cm		
Deflexiones permisibles	0.10	OTT		
L/360=	2.19	cm	>	0.26
L/300-	2.17	(Deflexión por		0.20
L/240+0.5cm=	3.79	cm	carga viva)	2.72
L/240+0.3cm-	3.17	(Deflexión a la	rgo plazo)	2.12
Deflexión inmediata, antes de que alcance el comporta	amiento co	•	irgo piazo)	
Deflexion infriediata, affices de que alcance el comporte $\Delta 1 + \Delta 2 =$	3.21	•		
Deflexión a a corto plazo con subdivisiones	3.21	cm		
Deflexion a a corto piazo con subulvisiones $\Delta 1 + \Delta 3 =$	2.42	om		
	2.43	cm		
Deflexión a corto plazo con carga viva agregada	2.40	om		
$\Delta 1 + \Delta 3 + \Delta 4 =$ Deflevión a large plaze sin carga viva	2.69	cm		
Deflexión a largo plazo sin carga viva	2 47	om.		
$\Delta 1 + \Delta 5 =$	2.47	cm		
Deflexión a largo plazo con carga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.72

cm

3.79

<

Datos

	_
11.35	
7.55	
1.75	
0.32	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	7.55 1.75 0.32 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

Cálculo del peso estimado de la viga.

Ensayando con d =
$$\begin{bmatrix} 13.7 \\ w (kg/m) = 0.785(Mu/\Phi bFy(d/2+ts-a/2)) = & 11.47 \\ Ensayamos una W14x & 22 & = & 32.74 & kg/m \end{bmatrix}$$

wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)= $\begin{bmatrix} 1231.46 \\ 1231.46 \end{bmatrix}$

 $\text{Mu (kg-m)} = \text{VL}^2/8 = 8774.52$

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 188.75
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 64.00 <- el menor
Por lo tanto be= 64.00

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2237972.37 > 852513.36 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

30.48 cm =

y el número máximo que puede acomodarse es:

12 Pulgadas 25 pernos > 20 60.96 cm

20

Con un conector a cada dos costillas, la separación $\overline{es} = y$ el número de conectores es:

12.39 = 12 pernos <

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 6$$

 $\Sigma Qn (kg) = 63604.10 < 105933.34$

11.43

$$C (kg) = Vh = 63604.10$$

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs (kg) =
$$bftfFy = 27340.27$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.68

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 30.67 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 676.21

Deflexión inmedita (losa y viga)

Módulo de elasticidad del acero Es (kg/cm²)= 2040000

$\Delta 1 = 5 \text{wL}^4/384 \text{Esls} =$	1.69	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	0.66	cm		
Deflexiones después de que el concreto se endurezca	١.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección trai	nsformada	(be/n).		
AT $(cm^2) = As + be(ts - hr)/n =$	76.59			
Yb (cm)=	29.30			
Cálculo del momento de inercia de la sección transfor	mada			
Itr (cm^4)=				
Como se está usando una acción compuesta parcial,			de inercia tr	ansformado
reducido (momento de inercia reducido).				
$0 \qquad \Sigma \Omega n / V h) * Itr - Ix = 4$	18 4 76 42			
Deflexión debida a las subdivisiones	10070112			
$\Delta 3 = 5 \text{wL}^4/384 \text{Esls} =$	0.10	cm		
Deflexión debida a carga viva	0.10	OIII		
$\Delta 4 = 5 \text{wL}^4/384 \text{Esls} = 0.00$	0.20	cm		
Deflexión a largo plazo por flujo plástico	0.20	CITI		
Cálculo de la posición del eje neutro de la sección trai	nsformada	(he/2n)		
AT (cm ²)=	59.23	(60/211).		
Yb (cm)=	25.09			
Cálculo del momento de inercia de la sección transfor				
	16777.27			
$0 \qquad \qquad \Sigma \oplus n / \mathbb{N} $				
Deflexión por flujo plástico debida a las subdivisiones	14004.72			
$\Delta 5 = 5 \text{WL}^4/384 \text{Esls} =$	0.12	cm		
Deflexiones permisibles	0.12	cm		
	2.10	om		0.20
L/360= _	2.10	(Doflovión por	> viva	0.20
1/240 05	2 / 5	(Deflexión por	Carga viva)	2.01
L/240+0.5cm=	3.65	CM	>	2.01
		(Deflexión a l	argo piazo)	
Deflexión inmediata, antes de que alcance el comport		•		
$\Delta 1 + \Delta 2 =$	2.35	cm		
Deflexión a a corto plazo con subdivisiones				
$\Delta 1 + \Delta 3 =$	1.79	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	1.99	cm		
Deflexión a largo plazo sin carga viva				
$\Delta 1 + \Delta 5 =$	1.82	cm		
Deflexión a largo plazo con carga viva				
.4 .4 .5	0.01			0 / 5

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.01

cm

3.65

<

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.55	
Separación de vigas (m)=	1.94	
Lg (m)=	0.00	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Mu (kg-m)= $wL^2/8=$

Predimensionamiento

$$d = L/24 = 31.46$$
 cm = 12.39 plg

9140.39

Cálculo del peso estimado de la viga.

Ensayando con d =
$$\begin{bmatrix} 13.7 \\ \text{W (kg/m)} = 0.785 \text{(Mu/}\Phi\text{bFy(d/2+ts-a/2))} = 12.71 \\ \text{Ensayamos una W14x} & 22 \\ \text{Ensayamos una W14x} & 32.74 \\ \text{kg/m} & 32.74 \\ \text{kg/m}$$

Mu (kg-m)= wL^2/8= 9696.79 Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 188.75 <- el menor
be= $2(s/2)$ = 194.00
be= $2(Lg)$ = 0.00
Por lo tanto be= 188.75

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2469748.62 > 942032.65 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 0$ A $1 0$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm 2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa) $Qn = 10600.68 \qquad w \leq AscFu (kg)= 12027$

Por lo tanto Qn= 10600.68 kg

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

$$30.48$$
 cm =

12 Pulgadas y el número máximo que puede acomodarse es: 25 pernos 20 Con un conector a cada dos costillas, la separación es = 60.96 cm y el número de conectores es: 12.39 = 12 20 pernos < Separación longitudinal mínima (cm) = 6(d) = 11.43 Separación transversal mínima (cm) = 4(d) = 7.62 Separación longitudinal máxima (cm) = 8(ts) = 90.80 N1= 6 $\Sigma Qn (kg) =$ 63604.10 105933.34 <

$$C (kg) = Vh = 63604.10$$

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 1.59

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 32.22 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

pulgadas

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 746.08

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{Esls} =$	1.87	cm		
Deflexión debida a la carga de construcción				
$\Delta 2=5 \text{wL}^4/384 \text{EsIs}=$	0.73	cm		
Deflexiones después de que el concreto se endurezc	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	ınsformada	(be/n).		
AT (cm^2)= As+be(ts-hr)/n=	144.28			
Yb (cm)=	36.03			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	28985.56			
Como se está usando una acción compuesta parcial,	, debe usar:	se un momento	o de inercia tra	ansformado
reducido (momento de inercia reducido).				
0 ΣQ n <i>t</i> Vh) *ltr-lx= 4	1 24 0 24.70			
Deflexión debida a las subdivisiones				
Δ3= 5wL^4/384EsIs=	0.08	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL ⁴ /384EsIs=	0.17	cm		
Deflexión a largo plazo por flujo plástico	0			
Cálculo de la posición del eje neutro de la sección tra	insformada	(be/2n).		
AT (cm^2)=	93.07	(1-1-1-1)		
Yb (cm)=	31.84			
Cálculo del momento de inercia de la sección transfo				
Itr (cm^4)=				
$0 \qquad \qquad \Sigma \mathbb{Q} n / V \mathbf{h}) * I \text{tr-Ix} = 4$				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL^4/384EsIs=	0.10	cm		
Deflexiones permisibles	0.10	CITI		
L/360=	2.10	cm		0.17
L/300-	2.10	(Deflexión po	> or carga viva)	0.17
L/240+0.5cm=	3.65	•	carga viva)	2.13
L/240+0.5cm=	3.00	CM (Doflovión a	largo plazo)	2.13
Deflexión inmediata, antes de que alcance el compor	tamionto co	•	iargo piazo)	
·	2.60	•		
$\Delta 1 + \Delta 2 =$	2.00	cm		
Deflexión a a corto plazo con subdivisiones	1.05			
$\Delta 1 + \Delta 3 =$	1.95	cm		
Deflexión a corto plazo con carga viva agregada	0.10			
$\Delta 1 + \Delta 3 + \Delta 4 =$ Deflevión a large plaza sin cargo viva	2.12	cm		
Deflexión a largo plazo sin carga viva	4.07			
$\Delta 1 + \Delta 5 =$	1.97	cm		
Deflexión a largo plazo con carga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.13

cm

3.65

<

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.55	
Separación de vigas (m)=	2.00	
Lg (m)=	0.00	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm^2)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

Cálculo del peso estimado de la viga.
Ensayando con d =
$$\begin{bmatrix} 13.7 \\ \text{W (kg/m)} = 0.785(\text{Mu/}\Phi\text{bFy(d/2+ts-a/2)}) = 13.10 \\ \text{Ensayamos una W14x} & 22 \\ \text{Ensayamos una W14x} & 32.74 & kg/m \end{bmatrix}$$

wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)= 1401.77 $Mu(kg-m)=wL^2/8=$ 9988.03

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

12.39

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 188.75 <- el menor
be= $2(s/2)$ = 200.00
be= $2(Lg)$ = 0.00
Por lo tanto be= 188.75

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2469748.62 > 970301.90 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$
Para un perno de 1.905 cm 3/4 de pulgada
$$Asc = 2.85 \text{ cm}^2$$

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

30.48 cm =

		12	Pulgadas		
y el número máximo que puede acomodarse es:	25	pernos	>	20	
Con un conector a cada dos costillas, la separación	es =	60.96	cm		
y el número de conectores es:	12.39				
	12	pernos	<	20	
Separación longitudinal mínima (cm) = 6(d) =	11.43				
Separación transversal mínima (cm) = 4(d) =	7.62				

Separación longitudinal máxima (cm) = 8(ts) = 90.80
N1 = 6

$$\Sigma Qn (kg) = 63604.10 < 105933.34$$

C (kg) = Vh = 63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{y} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 1.59

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2 = 32.22 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 768.14

Deflexión inmedita (losa y viga)

Módulo de elasticidad del acero Es (kg/cm
2
)= 2040000
| Ix del perfil= 199.00 | plg 4 = 8283.01 cm 4

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	1.92	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	0.75	cm		
Deflexiones después de que el concreto se endurezc	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	insformada	(be/n).		
AT (cm^2) = As+be(ts-hr)/n=	144.28			
Yb (cm)=	36.03			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	28985.56			
Como se está usando una acción compuesta parcial, reducido (momento de inercia reducido).	, debe usar	se un moment	to de inercia tra	ansformado
0 Σ Φn <i>t</i> Vh) *ltr-lx= 4	1 24 0 24.70			
Deflexión debida a las subdivisiones				
$\Delta 3 = 5 \text{wL}^4/384 \text{EsIs} =$	0.09	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL ⁴ /384EsIs=	0.17	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	ınsformada	(be/2n).		
AT (cm^2)=	93.07			
Yb (cm)=	31.84			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	24266.81			
$O \qquad \Sigma \Phi n / V h) * Itr - Ix = 4$	1 20 6 68.30			
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL ⁴ /384EsIs=	0.10	cm		
Deflexiones permisibles				
L/360=	2.10	cm	>	0.17
•			or carga viva)	
L/240+0.5cm=	3.65	cm	>	2.19
			a largo plazo)	
Deflexión inmediata, antes de que alcance el compor	tamiento co	•	5 1 ,	
$\Delta 1 + \Delta 2 =$	2.67	cm		
Deflexión a a corto plazo con subdivisiones	2.07			
Δ1+Δ3=	2.01	cm		
Deflexión a corto plazo con carga viva agregada	2.0.			
$\Delta 1 + \Delta 3 + \Delta 4 =$	2.18	cm		
Deflexión a largo plazo sin carga viva	2.10	····		
$\Delta 1 + \Delta 5 =$	2.02	cm		
Deflexión a largo plazo con carga viva	2.02	J		
2 on on our dial go plazo our our gu viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.19

cm

3.65

<

Datos

		_
Espesor ts (cm)=	11.35]
Longitud de claro L(m)=	7.55	
Separación de vigas (m)=	1.75	
Lg (m)=	0.00	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

$$d = L/24 = 31.46$$
 cm = 12.39 plg e la viga.

Cálculo del peso estimado de la viga.

Ensayando con d =
$$\begin{bmatrix} 13.7 \\ \text{w (kg/m)} = 0.785 \text{(Mu/}\Phi\text{bFy(d/2+ts-a/2))} = 11.47 \\ \text{Ensayamos una W14x} \begin{bmatrix} 22 \\ \text{e} \end{bmatrix} = 32.74 \\ \text{kg/m} \end{bmatrix}$$
 wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)= 1231.46

Wu(kg/m) = 1.2(C.W+WVIga) + 1.6(C.V+C.CONS) = 1231.46 $Mu(kg-m) = WL^2/8 = 8774.52$

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 188.75 <- el menor
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 0.00
Por lo tanto be= 188.75

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2469748.62 > 852513.36 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

$$30.48$$
 cm =

<u>-</u>		12	Pulgadas	
y el número máximo que puede acomodarse es:	25	pernos	>	20
Con un conector a cada dos costillas, la separación e	es =	60.96	cm	
y el número de conectores es:	12.39	=		
	12	pernos	<	20
Separación longitudinal mínima (cm) = 6(d) =	11.43			
Separación transversal mínima (cm) = 4(d) =	7.62			
Separación longitudinal máxima (cm) = 8(ts) =	90.80			
N1=_	6			
ΣQn (kg)=	63604.10	<	105933.34	
C (kg) = Vh =	63604.10			

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{y} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 1.59

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 32.22 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 676.21

Deflexión inmedita (losa y viga)

Módulo de elasticidad del acero Es (kg/cm
2
)= 2040000
| Ix del perfil= 199.00 | plq 4 = 8283.01 cm 4

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	1.69	cm		
Deflexión debida a la carga de construcción				
$\Delta 2=5 \text{wL}^4/384 \text{EsIs}=$	0.66	cm		
Deflexiones después de que el concreto se endurezca	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	insformada	(be/n).		
AT (cm^2) = As+be(ts-hr)/n=	144.28			
Yb (cm)=	36.03			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	28985.56			
Como se está usando una acción compuesta parcial,	, debe usar:	se un momento	de inercia tra	ansformado
reducido (momento de inercia reducido).				
O $\Sigma \mathbb{Q} n / \mathbb{N}$) *Itr-Ix= 4	1 24 0 24.70			
Deflexión debida a las subdivisiones				
Δ3= 5wL^4/384EsIs=	0.07	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL ⁴ /384EsIs=	0.15	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	ınsformada	(be/2n).		
AT (cm^2)=	93.07	(
Yb (cm)=	31.84			
Cálculo del momento de inercia de la sección transfo				
Itr (cm^4)=				
0 ΣΦυη/V h) *Itr-Ix= 4				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL^4/384EsIs=	0.09	cm		
Deflexiones permisibles	0.07			
L/360=	2.10	cm	>	0.15
27000-	2.10	(Deflexión po		0.10
L/240+0.5cm=	3.65	cm	carga viva)	1.93
L/240+0.3cm=	3.03	(Deflexión a l	argo plazo)	1.75
Deflexión inmediata, antes de que alcance el compor	tamiento co	•	argo piazo,	
$\Delta 1 + \Delta 2 =$	2.35	cm		
Deflexión a a corto plazo con subdivisiones	2.33	CIII		
Deflexion a a corto piazo con subdivisiones $\Delta 1 + \Delta 3 =$	1.77	cm		
	1.77	cm		
Deflexión a corto plazo con carga viva agregada $\Delta 1 + \Delta 3 + \Delta 4 =$	1.02	cm		
Deflexión a largo plazo sin carga viva	1.92	cm		
	1 70	cm		
$\Delta 1 + \Delta 5 =$ Deflevién a large plaze con carga viva	1.78	cm		
Deflexión a largo plazo con carga viva	1.00			0.75

 $\Delta 1 + \Delta 4 + \Delta 5 =$

1.93

cm

3.65

<

EDIFICIO B TABLERO 18

Datos

11.35	
7.55	
2.00	
0.37	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	7.55 2.00 0.37 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Mu (kg-m)= $wL^2/8=$

Predimensionamiento

$$d = L/24 = 31.46$$
 cm = 12.39 plg

9423.08

Cálculo del peso estimado de la viga.

Ensayando con d =
$$13.7$$
 plg = 34.798 cm w (kg/m)= 0.785 (Mu/ Φ bFy(d/2+ts-a/2))= 13.10 = 8.81 lb/pie Ensayamos una W14x 22 = 32.74 kg/m wu(kg/m)= 1.2 (C.M+Wviga)+ 1.6 (C.V+C.cons)= 1401.77 Mu (kg-m)= wL^2/8= 9988.03

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 188.75
be= $2(s/2)$ = 200.00
be= $2(Lg)$ = 74.00 <- el menor
Por lo tanto be= 74.00

Cálculo de la fuerza horizontal

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2285362.04 > 970301.90 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 0$ A $1 0$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Por lo tanto Qn= 10600.68 kg

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

30.48 cm =

12

y el número máximo que puede acomodarse es:

25 pernos > 20 es = 60.96 cm

Pulgadas

Con un conector a cada dos costillas, la separación $\overline{es} = y$ el número de conectores es:

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 6$$

 $\Sigma Qn (kg) = 63604.10 < 105933.34$

C (kg) = Vh = 63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs (kg) = bftfFy = 27340.27

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.04

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 30.99 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Mn (kg-cm)=
$$2422467.44$$

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 768.14

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{Esls} =$	1.92	cm		
Deflexión debida a la carga de construcción				
$\Delta 2= 5wL^4/384EsIs=$	0.75	cm		
Deflexiones después de que el concreto se endurezca	۱.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tran		(be/n).		
AT $(cm^2) = As + be(ts - hr)/n =$	82.02			
Yb (cm)=	30.25			
Cálculo del momento de inercia de la sección transfor	mada			
Itr (cm^4)=	22493.26			
Como se está usando una acción compuesta parcial, reducido (momento de inercia reducido).	debe usar	se un moment	o de inercia tra	ansformado
O $\Sigma \mathbb{Q}$ n/IV h) *Itr-Ix= 4	19094.04			
Deflexión debida a las subdivisiones				
$\Delta 3 = 5 \text{wL}^4/384 \text{Esls} =$	0.11	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL^4/384EsIs=	0.21	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección tran	nsformada	(be/2n).		
AT (cm^2)=	61.95			
Yb (cm)=	25.91			
Cálculo del momento de inercia de la sección transfor	mada			
Itr (cm^4)=	17676.33			
$O \qquad \Sigma \mathbb{Q} n / V \mathbf{h}) * ltr - lx = 4$	15 0 61.56			
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5=5\text{wL}^4/384\text{Esls}=$	0.13	cm		
Deflexiones permisibles				
L/360=	2.10	cm	>	0.21
<u>-</u>			or carga viva)	
L/240+0.5cm=	3.65	cm	>	2.27
			a largo plazo)	
Deflexión inmediata, antes de que alcance el comport	amiento co	•	5 1 ,	
$\Delta 1 + \Delta 2 =$	2.67	cm		
Deflexión a a corto plazo con subdivisiones				
Δ1+Δ3=	2.03	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	2.25	cm		
Deflexión a largo plazo sin carga viva				
$\Delta 1 + \Delta 5 =$	2.06	cm		
Deflexión a largo plazo con carga viva		-		
_ : a .a. go p.a.zo oo., oa. ga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.27

cm

3.65

<

EDIFICIO B TABLERO 19

Datos

	_
11.35	
7.60	
1.75	
0.37	
6.35	
15.24	
30.48	
2530.00	
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	7.60 1.75 0.37 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Mu (kg-m)= $wL^2/8=$

Predimensionamiento

$$d = L/24 = 31.67$$
 cm = 12.47 plg

8354.77

Cálculo del peso estimado de la viga.

Ensayando con d =
$$\begin{bmatrix} 13.7 \\ \text{w (kg/m)} = 0.785 \text{(Mu/}\Phi\text{bFy(d/2+ts-a/2))} = & 11.62 \\ \text{Ensayamos una W14x} & 22 \\ \text{evu(kg/m)} = 1.2(\text{C.M+Wviga}) + 1.6(\text{C.V+C.cons}) = & 1231.46 \\ \end{bmatrix}$$

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 190.00
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 74.00 <- el menor
Por lo tanto be= 74.00

Cálculo de la fuerza horizontal

La resistencia de diseño es:

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada Asc= 2.85 cm^2

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

$$N1 = Vh/Qn = 9.99 = 10$$
 pernos El número necesario de pernos para la viga compuesta es: $2(N1) = 20$ pernos

30.48 cm =

		12	Pulgadas	
y el número máximo que puede acomodarse es:	25	pernos	>	20
Con un conector a cada dos costillas, la separación	es =	60.96	cm	
y el número de conectores es:	12.47			
	12	pernos	<	20
Separación longitudinal mínima (cm) = 6(d) =	11.43			
Separación transversal mínima (cm) = 4(d) =	7.62			
Separación longitudinal máxima (cm) = 8(ts) =	90.80			

N1= 6

$$\Sigma$$
Qn (kg)= 63604.10 < 105933.34
C (kg)= Vh = 63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{y} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.04

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2 = 30.99 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD (kg/m)= Wlosa+Wviga=
$$676.21$$

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	1.74	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	0.67	cm		
Deflexiones después de que el concreto se endurezca	١.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección trar	nsformada	(be/n).		
AT (cm^2) = As+be(ts-hr)/n=	82.02			
Yb (cm)=	30.25			
Cálculo del momento de inercia de la sección transfori	mada			
Itr (cm^4)=	22493.26			
Como se está usando una acción compuesta parcial,	debe usar	se un momento	de inercia tra	ansformado
reducido (momento de inercia reducido).	10004.04			
$0 \qquad \Sigma \mathbb{Q} \text{n/lV} \mathbf{h}) \text{ *Itr-Ix} = 4$	19094.04			
Deflexión debida a las subdivisiones	0.10			
$\Delta 3=5\text{wL}^4/384\text{Esls}=$	0.10	cm		
Deflexión debida a carga viva	0.40			
$\Delta 4=5\text{wL}^4/384\text{Esls}=$	0.19	cm		
Deflexión a largo plazo por flujo plástico		(1		
Cálculo de la posición del eje neutro de la sección trar		(be/2n).		
$AT (cm^2) =$	61.95			
Yb (cm)=	25.91			
Cálculo del momento de inercia de la sección transfori				
•	17676.33			
$O \qquad \Sigma \mathbb{Q} \text{n/l} \mathbf{N} \mathbf{h}) * \text{ltr-lx} = 4$	15 6 61.56			
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5= 5\text{wL}^4/384\text{EsIs}=$	0.12	cm		
Deflexiones permisibles				
L/360=	2.11	cm	>	0.19
<u> </u>		(Deflexión po	r carga viva)	
L/240+0.5cm=	3.67	cm	>	2.05
_		(Deflexión a	largo plazo)	
Deflexión inmediata, antes de que alcance el comporta	amiento co	ompuesto		
$\Delta 1 + \Delta 2 =$	2.41	cm		
Deflexión a a corto plazo con subdivisiones				
$\Delta 1 + \Delta 3 =$	1.84	cm		
Deflexión a corto plazo con carga viva agregada				
$\Delta 1 + \Delta 3 + \Delta 4 =$	2.03	cm		
Deflexión a largo plazo sin carga viva				
$\Delta 1 + \Delta 5 =$	1.86	cm		
Deflexión a largo plazo con carga viva				
· · · · · · · · · · · · · · · · · · ·				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.05

cm

3.67

<

EDIFICIO B TABLERO 20

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.60	
Separación de vigas (m)=	1.94	
Lg (m)=	0.00	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

wu (kg/m)=
$$1.2(C.M)+1.6(C.V)=$$
 1282.8056
Mu (kg-m)= $wL^2/8=$ 9261.86

d = L/24 =

Predimensionamiento

31.67

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

12.47

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 190.00 <- el menor
be= $2(s/2)$ = 194.00
be= $2(Lg)$ = 0.00
Por lo tanto be= 190.00

Cálculo de la fuerza horizontal

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2470530.90 > 954551.22 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm 2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa) Qn= 10600.68 w \leq AscFu (kg)= 12027

Por lo tanto Qn= 10600.68 kg

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

30.48 cm =

y el número máximo que puede acomodarse es:

12 Pulgadas 25 pernos 20 Con un conector a cada dos costillas, la separación es = 60.96 cm

y el número de conectores es:

12.47 = 12 20 pernos < 11.43

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 6$$

 $\Sigma \text{Qn (kg)} = 63604.10 < 105933.34$

C (kq) = Vh =63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

27340.27 Cs(kq) = bftfFy =

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85f$$
 cbe = 1.58

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 32.22 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Mn (kg-cm)=
$$2501000.77$$

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 746.08

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	1.92	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	0.75	cm		
Deflexiones después de que el concreto se endurezc	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	ınsformada	(be/n).		
AT $(cm^2)=As+be(ts-hr)/n=$	144.95			
Yb (cm)=	36.07			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	29026.23			
Como se está usando una acción compuesta parcial reducido (momento de inercia reducido).	, debe usar	se un moment	o de inercia tra	ansformado
O Σ Φn <i>t</i> /V h) *ltr-lx= 4	1 24056.21			
Deflexión debida a las subdivisiones				
$\Delta 3 = 5 \text{wL}^4/384 \text{Esls} =$	0.08	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL ⁴ /384EsIs=	0.17	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	ınsformada	(be/2n).		
AT (cm^2)=	93.41			
Yb (cm)=	31.88			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	24314.67			
0 Σ Φn <i>t</i> / vn) *ltr-lx= 4	1 200005.39			
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL^4/384EsIs=	0.10	cm		
Deflexiones permisibles				
L/360=	2.11	cm	>	0.17
•			or carga viva)	
L/240+0.5cm=	3.67	cm	>	2.19
			largo plazo)	
Deflexión inmediata, antes de que alcance el compor	tamiento co	•	3 1 ,	
$\Delta 1 + \Delta 2 =$	2.67	cm		
Deflexión a a corto plazo con subdivisiones	2.07	· · · ·		
Δ1+Δ3=	2.00	cm		
Deflexión a corto plazo con carga viva agregada	2.00	0111		
$\Delta 1 + \Delta 3 + \Delta 4 =$	2.17	cm		
Deflexión a largo plazo sin carga viva	,	J		
$\Delta 1 + \Delta 5 =$	2.02	cm		
Deflexión a largo plazo con carga viva	2.02	3		
2 3 3 a largo plazo don darga viva				

 $\Delta 1 + \Delta 4 + \Delta 5 =$

2.19 cm

3.67

EDIFICIO B TABLERO 21

Datos

		_,
Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.60	
Separación de vigas (m)=	2.00	
Lg (m)=	0.00	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

$$d=L/24=$$
 31.67 cm = 12.47 plg estimado de la viga.

9548.31

Cálculo del peso estimado de la viga.

Ensayando con d =
$$\begin{bmatrix} 13.7 \\ \text{W (kg/m)} = 0.785 \text{(Mu/}\Phi\text{bFy(d/2+ts-a/2))} = 13.28 \\ \text{Ensayamos una W14x} & 22 \\ \text{Ensayamos una W14x} & 32.74 \\ \text{kg/m} & 32.74 \\ \text{kg/m} & 32.74 \\ \text{Wu(kg/m)} = 1.2 \text{(C.M+Wviga)} + 1.6 \text{(C.V+C.cons)} = 1401.77 \\ \end{bmatrix}$$

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 190.00 <- el menor
be= $2(s/2)$ = 200.00
be= $2(Lg)$ = 0.00
Por lo tanto be= 190.00

Cálculo de la fuerza horizontal

La resistencia de diseño es:

ØbMn (kg-cm)= 0.85Mn= 2470530.90 > 983196.13 kg-cm

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

C (kg)=Vh= 105933.34
Utilizando conectores de 3/4 de pulgada x 4 pulgadas Hs (cm)= 10.16
Cálculo de la resistencia nominal de un perno de cabeza redonda.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 O$ A $1 O$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm 2)= 14000 2 n221359.44 Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa) Qn= 10600.68 w \leq AscFu (kg)= 12027

Por lo tanto Qn= 10600.68 kg

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

N1 = Vh/Qn = 9.99 = 10 pernos El número necesario de pernos para la viga compuesta es: 2(N1) = 20 pernos

30.48 cm =

12 Pulgadas y el número máximo que puede acomodarse es: 25 pernos 20 Con un conector a cada dos costillas, la separación es = 60.96 cm y el número de conectores es: 12.47 = 12 20 pernos <

Separación longitudinal mínima (cm) = 6(d) = 11.43

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

N1= 6

$$\Sigma$$
Qn (kg)= 63604.10 < 105933.34
C (kg)= Vh = 63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

$$bf = 5.00$$
 plg = 12.70 cm
 $tf = 0.335$ plg = 0.85 cm

27340.27 Cs(kq) = bftfFy =

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85f$$
 cbe = 1.58

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 32.22 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

24

pulgadas

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 768.14

Deflexión inmedita (losa y viga)

Módulo de elasticidad del acero Es (kg/cm^2)= 2040000

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	1.97	cm		
Deflexión debida a la carga de construcción				
$\Delta 2=5 \text{wL}^4/384 \text{Esls}=$	0.77	cm		
Deflexiones después de que el concreto se endurezc	a.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/n).		
AT (cm^2)= As+be(ts-hr)/n=	144.95			
Yb (cm)=	36.07			
Cálculo del momento de inercia de la sección transfo	rmada			
Itr (cm^4)=	29026.23			
Como se está usando una acción compuesta parcial	, debe usars	se un momento de	e inercia tran	sformado
reducido (momento de inercia reducido).				
0 Σ Q n <i>t</i> V h) *ltr-lx= 4	1 24056.21			
Deflexión debida a las subdivisiones				
Δ3= 5wL^4/384EsIs=	0.09	cm		
Deflexión debida a carga viva				
$\Delta 4$ = 5wL ⁴ /384Esls=	0.17	cm		
Deflexión a largo plazo por flujo plástico	0	5		
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/2n).		
AT (cm^2)=	93.41	(0 0, =, 1,		
Yb (cm)=	31.88			
Cálculo del momento de inercia de la sección transfo				
Itr (cm^4)=				
$0 \qquad \qquad \Sigma \mathbb{Q} \ln t \mathbb{V} \ln t = 2$				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL^4/384EsIs=	0.10	cm		
Deflexiones permisibles	0.10	CIII		
L/360=	2.11	cm		0.17
L/300-	۷.۱۱	(Deflexión por c	> arga viva)	0.17
L/240+0.5cm=	3.67	•	arga viva)	2.25
L/240+0.5cm=	3.07	cm (Deflexión a lar	ao plazo)	2.25
Deflexión inmediata, antes de que alcance el compor	tamionto co	•	go piazoj	
·		•		
$\Delta 1 + \Delta 2 =$	2.75	cm		
Deflexión a a corto plazo con subdivisiones	2.07			
$\Delta 1 + \Delta 3 =$	2.06	cm		
Deflexión a corto plazo con carga viva agregada	2.24			
$\Delta 1 + \Delta 3 + \Delta 4 =$	2.24	cm		
Deflexión a largo plazo sin carga viva	0.00			
$\Delta 1 + \Delta 5 =$	2.08	cm		
Deflexión a largo plazo con carga viva				

2.25

cm

3.67

<

 $\Delta 1 + \Delta 4 + \Delta 5 =$

EDIFICIO B TABLERO 22

Datos

	_
11.35	
7.60	
1.75	
0.00	
6.35	
15.24	
30.48	
2530.00	-
250.00	_
367.7	
100	Tabla 6.1 N.T.C.
50	
150	Art. 163 R.C.D.F
	7.60 1.75 0.00 6.35 15.24 30.48 2530.00 250.00 367.7 100 50

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

d = L/24 =

Predimensionamiento

Cálculo del peso estimado de la viga.
Ensayando con d =
$$13.7$$
 plg = 34.798 cm
 $w (kg/m) = 0.785 (Mu/\Phi bFy(d/2+ts-a/2)) = 11.62$ = 7.81 lb/pie
Ensayamos una W14x 22 = 32.74 kg/m

31.67

$$wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)=$$
 1231.46
 $Mu(kg-m)=wL^2/8=$
 8891.12

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

cm

Por lo que la viga de acero es satisfactoria.

12.47

plg

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 190.00 <- el menor
be= $2(s/2)$ = 175.00
be= $2(Lg)$ = 0.00
Por lo tanto be= 190.00

Cálculo de la fuerza horizontal

La resistencia de diseño es:

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada $Asc = 2.85$ cm²

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Módulo de elasticidad del concreto Ec (kg/cm
2
)= 14000 2 n221359.44
Resitencia a tensión mínima Fu (kg/cm 2)= 4220 (414 Mpa)
Qn= 10600.68 w \leq AscFu (kg)= 12027

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

$$N1 = Vh/Qn = 9.99 = 10$$
 pernos El número necesario de pernos para la viga compuesta es: $2(N1) = 20$ pernos

30.48 cm =

12

y el número máximo que puede acomodarse es:

Con un conector a cada dos costillas, la separación es =

25 pernos > 20 es = 60.96 cm

Pulgadas

y el número de conectores es:

12.47 = 12 pernos < 20 11.43

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

N1= 6

$$\Sigma$$
Qn (kg)= 63604.10 < 105933.34
C (kg)= Vh = 63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

Cs (kg) =
$$bftfFy = 27340.27$$

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{y} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 1.58

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{y}$$
 + ts - a/2 = 32.22 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 676.21

Deflexión inmedita (losa y viga)

$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	1.74	cm	
Deflexión debida a la carga de construcción			
$\Delta 2=5 \text{wL}^4/384 \text{Esls}=$	0.67	cm	
Deflexiones después de que el concreto se endurezc	a.		
Cálculo de las deflexiones a largo plazo.			
n= Es/Ec=	9.22		
Sin flujo plástico			
Cálculo de la posición del eje neutro de la sección tra	ınsformada	(be/n).	
AT (cm^2)= As+be(ts-hr)/n=	144.95		
Yb (cm)=	36.07		
Cálculo del momento de inercia de la sección transfo	rmada		
Itr (cm^4)=	29026.23		
Como se está usando una acción compuesta parcial	, debe usars	se un momento de	inercia transformado
reducido (momento de inercia reducido).			
0 Σ Q n <i>t</i> V h) *ltr-lx= 4	1 24056.21		
Deflexión debida a las subdivisiones			
Δ3= 5wL^4/384EsIs=	0.08	cm	
Deflexión debida a carga viva			
$\Delta 4$ = 5wL ⁴ /384Esls=	0.15	cm	
Deflexión a largo plazo por flujo plástico	00	5	
Cálculo de la posición del eje neutro de la sección tra	insformada	(be/2n).	
AT (cm ²)=	93.41	(3 37 2).	
Yb (cm)=	31.88		
Cálculo del momento de inercia de la sección transfo			
Itr (cm^4)=			
$0 \qquad \qquad \Sigma \mathbb{Q} \ln t \mathbb{V} \ln t = 2$			
Deflexión por flujo plástico debida a las subdivisiones			
$\Delta 5$ = 5wL^4/384EsIs=	0.09	cm	
Deflexiones permisibles	0.07	CIII	
L/360=	2.11	cm	> 0.15
L/300-	۷.۱۱	(Deflexión por ca	
L/240+0.5cm=	3.67	•	> 1.98
L/240+0.3cm=	3.07	cm (Deflexión a larg	
Deflexión inmediata, antes de que alcance el compor	tamionto co		υ μιαζυ)
·		•	
$\Delta 1 + \Delta 2 =$	2.41	cm	
Deflexión a a corto plazo con subdivisiones	1 01		
$\Delta 1 + \Delta 3 =$	1.81	cm	
Deflexión a corto plazo con carga viva agregada	1.07		
$\Delta 1 + \Delta 3 + \Delta 4 =$ Deflevión a large plaza sin cargo viva	1.97	cm	
Deflexión a largo plazo sin carga viva	4.00		
$\Delta 1 + \Delta 5 =$	1.83	cm	
Deflexión a largo plazo con carga viva			

1.98

cm

3.67

<

 $\Delta 1 + \Delta 4 + \Delta 5 =$

EDIFICIO B TABLERO 23

Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	7.60	
Separación de vigas (m)=	2.00	
Lg (m)=	0.37	
Alto de costillas lámina hr(cm)=	6.35	
Ancho de costillas lámina wr(cm)=	15.24	
Separación de costillas lámina (cm)=	30.48	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F

A) Selección del perfil

Selección de un perfil de prueba con base a un comportamiento total.

Predimensionamiento

$$d = L/24 = 31.67$$
 cm = 12.47 plg

9548.31

Cálculo del peso estimado de la viga.

Ensayando con d =
$$\begin{bmatrix} 13.7 \\ W (kg/m) = 0.785(Mu/\Phi bFy(d/2+ts-a/2)) = & 13.28 \\ Ensayamos una W14x & 22 & = & 32.74 & kg/m \end{bmatrix}$$

wu(kg/m)=1.2(C.M+Wviga)+1.6(C.V+C.cons)= $\begin{bmatrix} 1401.77 \\ 1401.77 \end{bmatrix}$

Mu (kg-m)= $wL^2/8=$ 10120.76

Como la sección es compacta y como la cubierta de acero proporciona el soporte lateral adecuado la resistencia nominal Mn es igual a la resistencia por momento plástico Mp.

Calculo de la resistencia por flexión del perfil

Por lo que la viga de acero es satisfactoria.

Después de que el concreto ha endurecido y se ha alcanzado la acción compuesta.

Ancho efectivo be del patín (cm)

be=
$$2(L/8)$$
= 190.00
be= $2(s/2)$ = 200.00
be= $2(Lg)$ = 74.00 <- el menor
Por lo tanto be= 74.00

Cálculo de la fuerza horizontal

La resistencia de diseño es:

Revisión del cortante

Por lo que la sección es satisfactoria.

B) Diseño de los conectores de cortante

Como la viga tiene un exceso considerable de resistencia por momento, conviene considerar un comportamiento compuesto parcial.

Por lo que se tiene que encontrar primero los requisitos del conector de cortante de un comportamiento compuesto total y luego reducir el número de conectores.

n
$$C = N w$$
 $\sqrt{}$ $w \le$ Para un perno de 1.905 cm 3/4 de pulgada Asc= 2.85 cm^2

Revisión del diámetro máximo del conector

Altura del conector por encima de la parte superior de la cubierta (cm) = 3.81 (mínimo) Cuando los nervios de la lámina son perpendiculares a la viga de acero, el valor calculado anteriormente Qn se multiplica por el coeficiente de reducción.

$$0 C = c N A$$
 $1 0$ A $1 0$ A $8 E = C 1$ $E = C$

Suponiendo que el número de conectores de un nervio en una intersección con la viga es

Por lo que no se requiere reducir la resistencia del conector.

Cálculo del número de conectores entre los puntos de momento nulo y momento máximo.

$$N1 = Vh/Qn = 9.99 = 10$$
 pernos El número necesario de pernos para la viga compuesta es: $2(N1) = 20$ pernos

30.48 cm =

y el número máximo que puede acomodarse es:

12 Pulgadas 25 pernos 20 Con un conector a cada dos costillas, la separación es = 60.96 cm

y el número de conectores es:

Separación longitudinal mínima (cm) = 6(d) =

Separación transversal mínima (cm) = 4(d) = 7.62

Separación longitudinal máxima (cm) = 8(ts) = 90.80

$$N1 = 6$$

 $\Sigma Qn (kg) = 63604.10 < 105933.34$

11.43

C (kq) = Vh =63604.10

Como C es menor que AsFy, parte de la sección de acero debe estar en compresión y el eje neutro plástico está en la sección de acero.

Cálculo de la psición del eje neutro plástico.

Suponiendo que el eje ENP está por debajo del patín de compresión

27340.27 Cs(kq) = bftfFy =

La fuerza neta por transmitirse en el interfaz de acero y el concreto es:

Por lo que el patín superior no tiene que estar en compresión en todo su espesor, ya que el eje neutro plástico está en el patín.

La fuerza cortante horizontal por transmitir es: T-Cs= (AsFy-bfYpFy)-(bfYpFy)=Vh Donde

$$Yp (cm) = 0.66$$

La fuerza de tensión resultante actuará en el centroide del área debajo del ENP.

Cálculo de la posición del centroide medido desde la parte superior del perfil de acero.

$$\bar{v} = 21.66$$
 cm

La profundidad del bloque de esfuerzos de compresión en el concreto es:

a (cm)=
$$C/0.85$$
f cbe = 4.04

El brazo de momento para la fuerza de compresión en el concreto es:

$$\bar{v}$$
 + ts - a/2 = 30.99 cm

El brazo de momento para la fuerza de compresión en el acero es:

$$\bar{y}$$
 - Yp/2= 21.33 cm

Al tomar momentos respecto a la fuerza de tensión.

Por lo que es satisfactoria.

Ya que la cubierta será unida al patín de la viga a intervalos de 60.96 24 pulgadas por lo que no se necesitará soldadura de puntos para resistir el levantamiento.

C) Cálculo de las deflexiones

Antes de que el concreto se haya endurecido

WD
$$(kg/m)$$
= Wlosa+Wviga= 768.14

Deflexión inmedita (losa y viga)

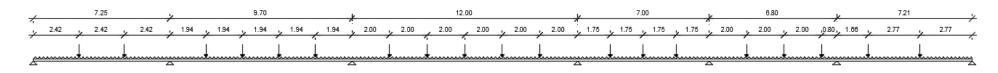
$\Delta 1 = 5 \text{wL}^4/384 \text{EsIs} =$	1.97	cm		
Deflexión debida a la carga de construcción				
$\Delta 2$ = 5wL^4/384EsIs=	0.77	cm		
Deflexiones después de que el concreto se endurezca	ì.			
Cálculo de las deflexiones a largo plazo.				
n= Es/Ec=	9.22			
Sin flujo plástico				
Cálculo de la posición del eje neutro de la sección tra	nsformada	(be/n).		
AT $(cm^2)=As+be(ts-hr)/n=$	82.02			
Yb (cm)=	30.25			
Cálculo del momento de inercia de la sección transfor	mada			
Itr (cm^4)=	22493.26			
Como se está usando una acción compuesta parcial,	debe usars	se un momento	de inercia tra	ansformado
reducido (momento de inercia reducido).				
$0 \qquad \qquad \Sigma \mathfrak{Q} n n N n) *Itr-Ix = 4$	19094.04			
Deflexión debida a las subdivisiones				
Δ3= 5wL^4/384EsIs=	0.11	cm		
Deflexión debida a carga viva				
Δ4= 5wL^4/384EsIs=	0.22	cm		
Deflexión a largo plazo por flujo plástico				
Cálculo de la posición del eje neutro de la sección trai	nsformada	(be/2n).		
AT (cm^2)=	61.95	,		
Yb (cm)=	25.91			
Cálculo del momento de inercia de la sección transfor				
Itr (cm^4)=	17676.33			
$0 \qquad \Sigma \mathbb{Q} \text{n/lV} \mathbf{h}) * \text{ltr-lx} = 4$				
Deflexión por flujo plástico debida a las subdivisiones				
$\Delta 5$ = 5wL^4/384EsIs=	0.14	cm		
Deflexiones permisibles				
L/360=	2.11	cm	>	0.22
2,000	2	(Deflexión po		0.22
L/240+0.5cm=	3.67	cm	>	2.33
E/2 10 10.00III-	0.07	(Deflexión a	largo plazo)	2.00
Deflexión inmediata, antes de que alcance el comport	amiento co	•	largo plazo,	
$\Delta 1 + \Delta 2 =$	2.75	cm		
Deflexión a a corto plazo con subdivisiones	2.75	CIII		
$\Delta 1 + \Delta 3 =$	2.09	cm		
Deflexión a corto plazo con carga viva agregada	2.07	CIII		
$\Delta 1 + \Delta 3 + \Delta 4 =$	2.31	cm		
Deflexión a largo plazo sin carga viva	۱ ۷.۷	CIII		
$\Delta 1 + \Delta 5 =$	2.11	cm		
Deflexión a largo plazo con carga viva	۷.۱۱	CIII		
Delievion a largo biazo con carga viva				

2.33

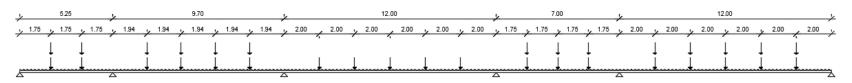
cm

3.67

<

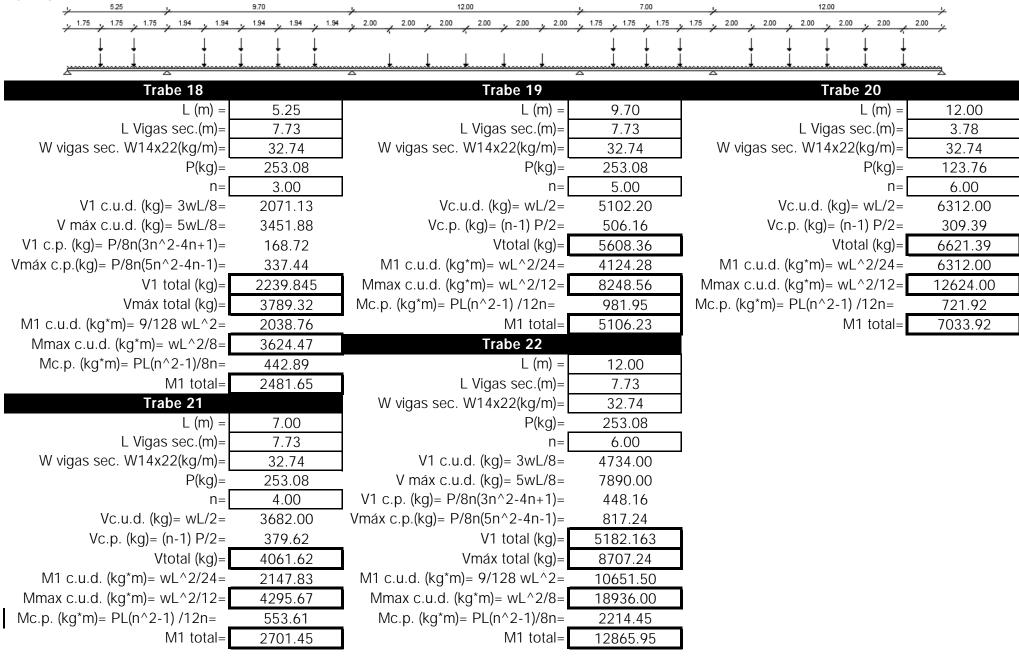

 $\Delta 1 + \Delta 4 + \Delta 5 =$

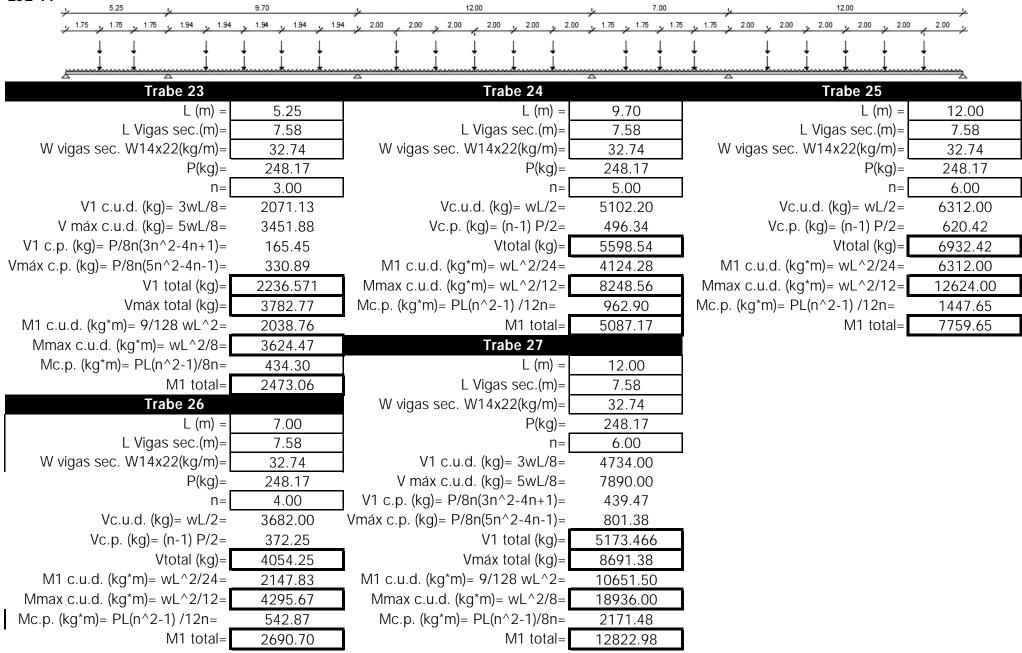
CÁLCULO DE VIGAS PRIMARIAS EJE 7

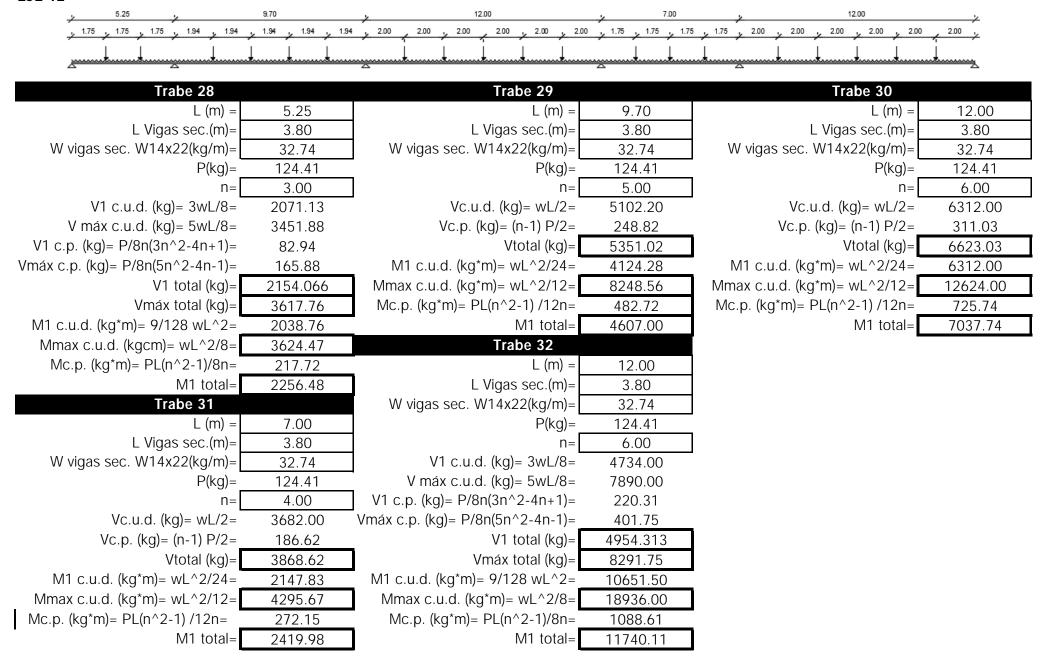

ACERO ASTM A-36

Fy (kg/cm²)= 2530

E (kg/cm²)= 2040000




Trabe 1		Trabe 2		Trabe 3	
L (m) =	7.25	L (m) =	9.70	L (m) =	12.00
L Vigas sec.(m)=	4.20	L Vigas sec.(m)=	5.85	L Vigas sec.(m)=	5.85
W vigas sec. W16x50(kg/m)=	74.41	W vigas sec. W16x50(kg/m)=	74.41	W vigas sec. W16x50(kg/m)=	74.41
P(kg)=	312.52	P(kg)=	435.30	P(kg)=	435.30
n=[3.00	1	5.00	7	6.00
 V1 c.u.d. (kg)= 3wL/8=	2860.13	Vc.u.d. (kg)= wL/2=	5102.20	Vc.u.d. (kg)= wL/2=	6312.00
V máx c.u.d. (kg)= 5wL/8=	4766.88	Vc.p. (kg)= (n-1) P/2=	870.60	Vc.p. (kg)= (n-1) P/2=	1088.25
V1 c.p. $(kq) = P/8n(3n^2-4n+1) =$	208.35	Vtotal (kg)=	5972.80	Vtotal (kg)=	7400.25
Vmáx c.p. (kg)= P/8n(5n^2-4n-1)=	416.70	M1 c.u.d. (kg)= $wL^2/24=$	4124.28	M1 c.u.d. (kg*m)= wL^2/24=	6312.00
V1 total (kg)=	3068.473	Mmax c.u.d. (kg*m)= wL^2/12=	8248.56	Mmax c.u.d. (kg*m)= wL^2/12=	12624.00
Vmáx total (kg)=	5183.57	Mc.p. (kg*m)= PL(n^2-1) /12n=	1688.96	Mc.p. (kg*m)= PL(n^2-1) /12n=	2539.24
M1 c.u.d. (kg*m)= 9/128 wL^2=	3887.98	M1 total=	5813.24	M1 total=	8851.24
Mmax c.u.d. (kg*m)= wL^2/8=	6911.97	1		Trabe 6	
Mc.p. (kg*m)= PL(n^2-1)/8n=	755.26	•		L (m) =	7.25
M1 total=	4643.24	1		L Vigas sec.(m)=	4.70
Trabe 4		Trabe 5		W vigas sec. W16x50(kg/m)=	74.41
L (m) =	7.00	L (m) =	7.25	P(kg)=	349.73
L Vigas sec.(m)=	5.85	L Vigas sec.(m)=	5.85	n=	3.00
W vigas sec. W16x50(kg/m)=	74.41	W vigas sec. W16x50(kg/m)=	74.41	V1 c.u.d. (kg)= 3wL/8=	2860.13
P(kg) =	435.30	P(kg)=	435.30	V máx c.u.d. (kg)= 5wL/8=	4766.88
n=	4.00	n=	4.00	V1 c.p. (kg)= P/8n(3n^2-4n+1)=	233.15
Vc.u.d. (kg)= wL/2=	3682.00	Vc.u.d. (kg)= wL/2=	3813.50	Vmáx c.p. (kg)= P/8n(5n^2-4n-1)=	466.30
Vc.p. (kg)= (n-1) P/2=	652.95	Vc.p. (kg)= (n-1) P/2=	652.95	V1 total (kg)=	3093.276
Vtotal (kg)=	4334.95	Vtotal (kg)=	4466.45	Vmáx total (kg)=	5233.18
M1 c.u.d. $(kg^*m)=wL^2/24=$	2147.83	M1 c.u.d. (kg*m)= wL^2/24=	2303.99	M1 c.u.d. (kg*m)= 9/128 wL^2=	3887.98
Mmax c.u.d. (kg*m)= wL^2/12=	4295.67	Mmax c.u.d. (kg*m)= wL^2/12=	4607.98	Mmax c.u.d. (kg*m)= wL^2/8=	6911.97
Mc.p. (kg*m)= PL(n^2-1) /12n=	952.22	Mc.p. (kg*m)= PL(n^2-1) /12n=	986.22	Mc.p. (kg*m)= PL(n^2-1)/8n=	845.17
M1 total=	3100.05	M1 total=	3290.21	M1 total=	4733.16



Trabe 7		Trabe 8		Trabe 9	
L (m) =	5.25	L (m) =	9.70	L (m) =	12.00
L Vigas sec.(m)=	5.85	L Vigas sec.(m)=	5.85	L Vigas sec.(m)=	5.85
W vigas sec. W16x50(kg/m)=	74.41	W vigas sec. W16x50(kg/m)=	74.41	W vigas sec. W16x50(kg/m)=	74.41
L Vigas sec.(m)=	2.75	L Vigas sec.(m)=	2.75	P(kg)= _	435.30
W vigas sec. W10x15(kg/m)=	22.32	W vigas sec. W10x15(kg/m)=	22.32	n=	6.00
P(kg)=	496.68	P(kg)=	496.68	Vc.u.d. (kg)= wL/2=	6312.00
n=	3.00	n=	5.00	Vc.p. (kg)= (n-1) P/2=	1088.25
V1 c.u.d. (kg)= 3wL/8=	2071.13	Vc.u.d. (kg)= wL/2=	5102.20	Vtotal (kg)=	7400.25
V máx c.u.d. (kg)= 5wL/8=	3451.88	Vc.p. (kg)= (n-1) P/2=	993.36	M1 c.u.d. (kg*m)= wL^2/24=	6312.00
V1 c.p. $(kg) = P/8n(3n^2-4n+1) =$	331.12	Vtotal (kg)=	6095.56	Mmax c.u.d. (kg*m)= wL^2/12=	12624.00
Vmáx c.p. (kg)= P/8n(5n^2-4n-1)=	662.24	M1 c.u.d. (kg*m)= wL^2/24=	4124.28	Mc.p. (kg*m)= PL(n^2-1) /12n=	2539.24
V1 total (kg)=	2402.244	Mmax c.u.d. (kg*m)= wL^2/12=	8248.56	M1 total=	8851.24
Vmáx total (kg)=	4114.11	Mc.p. (kg*m)= PL(n^2-1) /12n=	1927.11	Trabe 11	
M1 c.u.d. (kg*m)= 9/128 wL^2=	2038.76	M1 total=	6051.39	L (m) =	12.00
Mmax c.u.d. (kg*m)= wL^2/8=	3624.47	Trabe 10		L Vigas sec.(m)=	5.85
Mc.p. (kg*m)= $PL(n^2-1)/8n=$	869.19	L (m) =	7.00	W vigas sec. W16x50(kg/m)=	74.41
M1 total=	2907.95	L Vigas sec.(m)=	5.85	L Vigas sec.(m)=	2.75
_		W vigas sec. W16x50(kg/m)=	74.41	W vigas sec. W10x15(kg/m)=	22.32
		L Vigas sec.(m)=	2.75	P(kg)=	496.68
		W vigas sec. W10x15(kg/m)=	22.32	n=	6.00
		P(kg)=	496.68	V1 c.u.d. (kg)= 3wL/8=	4734.00
		n=	4.00	V máx c.u.d. (kg)= 5wL/8=	7890.00
		Vc.u.d. (kg)= wL/2=	3682.00	V1 c.p. (kg)= P/8n(3n^2-4n+1)=	879.53
		Vc.p. (kg)= (n-1) P/2=	745.02	Vmáx c.p. (kg)= P/8n(5n^2-4n-1)=	1603.86
		Vtotal (kg)=	4427.02	V1 total (kg)=	5613.535
		M1 c.u.d. $(kg*m)= wL^2/24=$	2147.83	Vmáx total (kg)=	9493.86
		Manager and (Laster) and A 2 /1 2	4295.67	M1 c.u.d. (kg*m)= 9/128 wL^2=	10651.50
		Mmax c.u.d. (kg*m)= wL^2/12=	4275.07		10001100
		Mc.p. $(kg^*m) = PL(n^2-1)/12n = $	1086.48	Mmax c.u.d. (kg*m)= wL^2/8=	18936.00

EJE 9	, 525 ,	9.70	12.00	7.00	12.00	·
3.20	y 1.75 y 1.75 y 1.75 y 1.94 y 1	1.94 , 1.94 , 1.94 ,	1.94	y 1.75 y 1.75 y 1.75	, 1.75 , 2.00 , 2.00 , 2.00 , 2.00 , 2.00 , 2.00	3.20
,			•			
000000000000000000000000000000000000000	<u> </u>	<u> </u>		<u> </u>	<u> </u>	***************************************
	Trobo 12		Trobo 14	Δ	Trobo 15	Δ
	Trabe 12	2.20	Trabe 14	0.70	Trabe 15	7.00
	L (m) = <u> </u>	3.20 3366.40	L (m) = L Vigas sec.(m)=	9.70 3.95	_ L (m) = L Vigas sec.(m)=	7.00 3.95
	$W(kg^*m) = WL^2/2 =$	5386.24	W vigas sec. W14x22(kg/m)=	32.74	W vigas sec. W14x22(kg/m)=	32.74
	Trabe 13	3300.24	L Vigas sec.(m)=	2.75	L Vigas sec.(m)=	2.75
	L (m) =	5.25	W vigas sec. W10x15(kg/m)=	22.32	W vigas sec. W10x15(kg/m)=	22.32
	L Vigas sec.(m)=	3.95	P(kg)=	190.70	P(kg)=	190.70
W viga	is sec. W14x22(kg/m)=	32.74		5.00	n=	4.00
· · · · · · · · · · · · · ·	L Vigas sec.(m)=	2.75	V1 c.u.d. (kg)= 3wL/8=	3826.65	 V1 c.u.d. (kg)= 3wL/8=	2761.50
W viga	is sec. W10x15(kg/m)=	22.32	V máx c.u.d. (kg)= 5wL/8=	6377.75	V máx c.u.d. (kg)= 5wL/8=	4602.50
9.	P(kg)=	190.70	V1 c.p. (kg)= P/8n(3n^2-4n+1)=	266.98	V1 c.p. $(kg) = P/8n(3n^2-4n+1) =$	196.66
	n=[3.00	Vmáx c.p. (kg)= P/8n(5n^2-4n-1)=	495.83	Vmáx c.p. (kg)= P/8n(5n^2-4n-1)=	375.45
	Vc.u.d. (kg)= wL/2=	2761.50	V1 total (kg)=	4093.634	V1 total (kg)=	2958.162
	Vc.p. (kg)= (n-1) P/2=	190.70	Vmáx total (kg)=	6873.58	Vmáx total (kg)=	4977.95
	Vtotal (kg)=	2952.20	M1 c.u.d. (kg*m)= 9/128 wL^2=	6959.72	M1 c.u.d. (kg*m)= 9/128 wL^2=	3624.47
М1 с.ц	u.d. (kg*m)= wL^2/24=	1208.16	Mmax c.u.d. (kg*m)= wL^2/8=	12372.84	Mmax c.u.d. (kg*m)= wL^2/8=	6443.50
Mmax c.u	u.d. (kg*m)= wL^2/12=	2416.31	Mc.p. (kg*m)= PL(n^2-1)/8n=	1109.89	Mc.p. (kg*m)= PL(n^2-1)/8n=	625.74
	m)= PL(n^2-1) /12n=	222.49	M1 total=	8069.61	M1 total=	4250.21
	M1 total=	1430.64	Trabe 16		Trabe 17	
	_		L (m) =	12.00	L (m) =	3.20
			L Vigas sec.(m)=	3.95	V (kg)= wL=	3366.40
			W vigas sec. W14x22(kg/m)=	32.74	$M(kg*m) = wL^2/2 =$	5386.24
			L Vigas sec.(m)=	2.75		
			W vigas sec. W10x15(kg/m)=	22.32		
			P(kg) =	190.70	_	
			n=L	6.00		
			Vc.u.d. (kg)= wL/2=	6312.00		
			Vc.p. (kg)= (n-1) P/2=	476.76	-	
			Vtotal (kg)=	6788.76	J	
			M1 c.u.d. (kg*m)= wL $^2/24=$	6312.00	_	
			Mmax c.u.d. (kg*m)= wL^2/12=	12624.00	J	
			Mc.p. (kg*m)= PL(n^2-1) /12n=	1112.43	_	
			M1 total=	7424.43	J	
				·		

EDIFICIO B EJE 7

	L (m)	Rigidez	Coefic	cientes de distril	oución		
Trabe 1	7.25	0.103448	0.00/541	0.50	1.00		
Trabe 2	9.70	0.103093	0.206541	0.50	1.00		
Trabe 2	9.70	0.103093	0.10/40/	0.55	1.00		
Trabe 3	12.00	0.083333	0.186426	0.45	1.00		
Trabe 3	12.00	0.083333	0.00/100	0.37	1.00		
Trabe 4	7.00	0.142857	0.226190	0.63	1.00		
Trabe 4	7.00	0.142857	0.289916	0.49	1.00		
Trabe 5	6.80	0.147059	0.289910	0.51	1.00		
Trabe 5	6.80	0.147059	0.251081	0.59	1.00		
Trabe 6	7.21	0.104022	0.251081	0.41	1.00		
	Momento	Diferencia de Mo		Equilibrio	(M-Eq)/2	M1 max	Mmax
Trabe 1	7667		1137.10	8804	568.55	4643	5212
Trabe 2	9938	2270	1133.19	8804	-566.59		5247
Trabe 2	9938		-2889.80	12827	1444.90	5813	6692
Trabe 3	15163	-5226	-2335.92	12827	-1167.96	0054	7683
Trabe 3	15163		3653.03	11510	-1826.51	8851	5857
Trabe 4	5248	9915	6262.33	11510	3131.17	0.1.0.0	6231
Trabe 4	5248	0.47	-170.65	5419	85.33	3100	6317
Trabe 5	5594	-346	-175.67	5419	-87.83	2000	3202
Trabe 5	5594	21/2	-1266.84	6861	633.42	3290	3836
Trabe 6	7757	-2163	-896.10	6861	-448.05	4733	4285
ACERO ASTM A-3	6						
Fy (kg/cm^2)=	2530		Mmax kg-cm=	1282731.75	=	9278.00	klb-pulg
Flexión:	fy= 0.6*Fy		fy (kg/cm^2)=	1518.00		72,0.00	ino paig
Cortante:	fv= 0.4*Fy		fv (kg/cm^2)=	1012.00			
E (kg/cm^2)=	2040000		Sx= Mmax/fy=	845.01	cm^3		
= (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_0.000		=	51.57	in^3		

Predimensionamiento

d(cm) = L/22 = 0.55

Selección de viga método LRDF

EDIFICIO B EJE 7 TRABE 3 Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	12.00	
Separación de vigas (m)=	2.00	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)= _	250.00	
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F
Peso perfiles (kg)=	435.30	
Número de perfiles=	5	
Número de subdivisiones=	6	
Estimar al naca da la viga	•	-

Estimar el peso de la viga

wu sin incluir el peso de la viga

Losa (kg/m)= 735.4 Subdivisiones (kg/m)= 600 Carga viva (kg/m)= 200.00 Carga P (kg)= 2176.49 wu (kg/m)= 1.2(C.M)+1.6(C.V)= 1922.48

Pu (kg)= 1.6(P)= 3482.39

 $Mu (kg-m)= wL^2/8 + PuL/4= 45051.80 = 325.86$ klb-pie

De la Tabla 3-2 del AISC y de la columna de momentos del LRFD (fbMpx), se requiere una **W18x46 ΦbMpx= 340 klb-pie**

Selección de la sección de viga

Ensayamos una W18x 46 68.46 kg/m wu (kg/m) = 1.2(C.M) + 1.6(C.V) =2004.63 Pu (kg) = 1.6(P) =3482.39 Mu (kg-m)= $wL^2/8 + PuL/4=$ 46530.44 336.55 klb-pie = De la tabla 3-2 del AISC se toma W18x46 ΦbMpx= 340 klb-pie klb-pie > 336.55 in^3 in^3 Sx= 78.8 51.57 >

EDIFICIO B EJE 8

Predimensionamiento d(cm)= L/22=

0.55

	L (m)	Rigidez	Coefic	cientes de distril	bución		
Trabe 7	5.25	0.142857	0.245950	0.58	1.00		
Trabe 8	9.70	0.103093	0.243730	0.42	1.00		
Trabe 8	9.70	0.103093	0.186426	0.55	1.00		
Trabe 9	12.00	0.083333	0.100420	0.45	1.00		
Trabe 9	12.00	0.083333	0.226190	0.37	1.00		
Trabe 10	7.00	0.142857	0.220190	0.63	1.00		
Trabe 10	7.00	0.142857	0.205357	0.70	1.00		
Trabe 11	12.00	0.062500	0.203337	0.30	1.00		
	Momento	Diferencia de Mo		Equilibrio	(M-Eq)/2	M1 max	Mmax
Trabe 7	4494	F / 00	3300.33	7794	1650.17	2908	4558
Trabe 8	10176	5682	2381.68	7794	-1190.84		4861
Trabe 8	10176	4000	-2758.10	12934	1379.05	6051	6240
Trabe 9	15163	-4988	-2229.47	12934	-1114.73	0051	7737
Trabe 9	15163	9781	3603.56	11560	-1801.78	8851	5935
Trabe 10	5382	9/01	6177.53	11560	3088.77	3234	6323
Trabe 10	5382	-17900	-12452.03	17834	6226.01	3234	12549
Trabe 11	23282	-17900	-5447.76	17834	-2723.88	14997	12274
ACERO ASTM A-3	6						
Fy (kg/cm^2)=	2530		Mmax kg-cm=	1783417.59	=	12899.46	klb-pulg
Flexión:	fy= 0.6*Fy		fy (kg/cm^2)=	1518.00			1 3
Cortante:	fv= 0.4*Fy		fv (kg/cm^2)=	1012.00			
E (kg/cm^2)=	2040000		Sx= Mmax/fy=	1174.85	cm^3		
			=	71.69	in^3		

Selección de viga método LRDF

EDIFICIO B EJE 8 TRABE 11 Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	12.00	
Separación de vigas (m)=	2.00	
Acero ASTM A-36 Fy (kg/cm ²)=	2530.00	
f'c (kg/cm^2)=	250.00	-
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F
Peso perfiles (kg)=	496.68	
Número de perfiles=	5	
Número de subdivisiones=	6	
Fallman al mass de la vissa		=

Estimar el peso de la viga

wu sin incluir el peso de la viga

Losa (kg/m)= 735.4 Subdivisiones (kg/m)= 600 Carga viva (kg/m)= 200.00 Carga P (kg)= 2483.39 wu (kg/m)= 1.2(C.M)+1.6(C.V)= 1922.48

Pu (kg)= 1.6(P)= 3973.43

 $Mu (kg-m)= wL^2/8 + PuL/4= 46524.92 = 336.51 klb-pie$

De la Tabla 3-2 del AISC y de la columna de momentos del LRFD (fbMpx), se requiere una **W18x46 ΦbMpx= 340 klb-pie**

Selección de la sección de viga

Ensayamos una W18x 46 68.46 kg/m wu (kg/m) = 1.2(C.M) + 1.6(C.V) =2004.63 Pu (kg) = 1.6(P) =3973.43 Mu (kg-m)= $wL^2/8 + PuL/4=$ 48003.56 347.21 klb-pie = De la tabla 3-2 del AISC se toma W18x46 ΦbMpx= 340 klb-pie 347.21 klb-pie > in^3 71.69 in^3 Sx= 78.8 >

EDIFICIO B EJE 9

	L (m)	Rigidez	Coefic	cientes de distri	bución		
Trabe 12	3.20	0.000000	0.190476	0.00	1.00		
Trabe 13	5.25	0.190476	0.190470	1.00	1.00		
Trabe 13	5.25	0.190476	0.293569	0.65	1.00		
Trabe 14	9.70	0.103093	0.293309	0.35	1.00		
Trabe 14	9.70	0.103093	0.245950	0.42	1.00		
Trabe 15	7.00	0.142857	0.245950	0.58	1.00		
Trabe 15	7.00	0.142857	0.226190	0.63	1.00		
Trabe 16	12.00	0.083333	0.220190	0.37	1.00		
Trabe 16	12.00	0.083333	0.083333	1.00	1.00		
Trabe 17	3.20	0.000000	0.063333	0.00	1.00		
	Momento	Diferencia de Mo		Equilibrio	(M-Eq)/2	M1 max	Mmax
Trabe 12	5386	-2747	0.00	5386	0.00	5386	5386
Trabe 13	2639	-2141	-2747.44	5386	1373.72	1431	2804
Trabe 13	2639	-10844	-7035.86	9675	3517.93	1431	6322
Trabe 14	13483	-10044	-3808.07	9675	-1904.03	8070	6166
Trabe 14	13483	6413	2688.29	10794	-1344.14	6070	4821
Trabe 15	7069	0413	3725.20	10794	1862.60	4250	6113
Trabe 15	7069	-6667	-4210.86	11280	2105.43	4230	8218
Trabe 16	13736	-0007	-2456.33	11280	-1228.17	7424	6196
Trabe 16	13736	8350	8350.19	5386	-4175.10	7424	2021
Trabe 17	5386	6330	0.00	5386	0.00	5386	5386
ACERO ASTM A-36	6						
Fy (kg/cm^2)=	2530		Mmax kg-cm=	1128010.10	=	8158.90	klb-pulg
Flexión:	fy= 0.6*Fy		fy (kg/cm^2)=	1518.00			
Cortante:	fv= 0.4*Fy		fv (kg/cm^2)=	1012.00			
E (kg/cm^2)=	2040000		Sx= Mmax/fy=	743.09 45.35	cm^3 in^3		
			=	40.30	111 3		

Predimensionamiento

d(cm) = L/22 = 0.55

Selección de viga método LRDF

EDIFICIO B EJE 9 TRABE 16 Datos

Espesor ts (cm)=	11.35]
Longitud de claro L(m)=	12.00	
Separación de vigas (m)=	2.00	
Acero ASTM A-36 Fy (kg/cm^2)=	2530.00	_
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F
Peso perfiles (kg)=	190.70	
Número de perfiles=	5	
Número de subdivisiones=	6	
Estimar of poso do la viga	_	=

Estimar el peso de la viga

wu sin incluir el peso de la viga

Losa (kg/m)= 735.4 Subdivisiones (kg/m)= 600 Carga viva (kg/m)= 200.00 Carga P (kg)= 953.52 wu (kg/m)= 1.2(C.M)+1.6(C.V)= 1922.48

Pu (kg)= 1.6(P)= 1525.62

 $Mu (kg-m)= wL^2/8 + PuL/4= 39181.51 = 283.40$ klb-pie

De la Tabla 3-2 del AISC y de la columna de momentos del LRFD (fbMpx), se requiere una **W18x46 ΦbMpx= 340 klb-pie**

Selección de la sección de viga

Ensayamos una W18x 46 68.46 kg/m wu (kg/m) = 1.2(C.M) + 1.6(C.V) =2004.63 Pu (kg) = 1.6(P) =1525.62 Mu (kg-m)= $wL^2/8 + PuL/4=$ 40660.15 294.09 klb-pie = De la tabla 3-2 del AISC se toma W18x46 ΦbMpx= 340 klb-pie 294.09 klb-pie > in^3 in^3 Sx= 78.8 45.35 >

EDIFICIO B EJE 10	0						
	L (m)	Rigidez	Coefic	cientes de distril	bución		
Trabe 18	5.25	0.142857	0.245950	0.58	1.00		
Trabe 19	9.70	0.103093	0.245950	0.42	1.00		
Trabe 19	9.70	0.103093	0.186426	0.55	1.00		
Trabe 20	12.00	0.083333	0.100420	0.45	1.00		
Trabe 20	12.00	0.083333	0.226190	0.37	1.00		
Trabe 21	7.00	0.142857	0.220170	0.63	1.00		
Trabe 21	7.00	0.142857	0.205357	0.70	1.00		
Trabe 22	12.00	0.062500	0.203337	0.30	1.00		
	Momento	Diferencia de Mo		Equilibrio	(M-Eq)/2	M1 max	Mmax
Trabe 18	4067	Г1/2	2998.95	7066	1499.48	2482	3981
Trabe 19	9231	5163	2164.19	7066	-1082.10	E104	4024
Trabe 19	9231	-4115	-2275.80	11506	1137.90	5106	5162
Trabe 20	13346	-4115	-1839.61	11506	-919.80	7034	6114
Trabe 20	13346	8497	3130.34	10216	-1565.17	7034	4549
Trabe 21	4849	0477	5366.30	10216	2683.15	2701	5385
Trabe 21	4849	-16301	-11339.95	16189	5669.97	2701	11055
Trabe 22	21150	-10301	-4961.23	16189	-2480.61	12866	10385
ACERO ASTM A-30	6						
Fy (kg/cm^2)=	2530		Mmax kg-cm=	1618922.54	=	11709.67	klb-pulg
Flexión:	fy= 0.6*Fy		fy (kg/cm^2)=	1518.00			
Cortante:	fv= 0.4*Fy		fv (kg/cm^2)=	1012.00			
E (kg/cm^2)=	2040000		Sx= Mmax/fy=	1066.48	cm^3		
•			•				

65.08

in^3

Predimensionamiento d(cm)= L/22=

0.55

Selección de viga método LRDF

EDIFICIO B EJE 10 TRABE 22 Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	12.00	
Separación de vigas (m)=	2.00	
Acero ASTM A-36 Fy (kg/cm^2)=	2530.00	
f'c (kg/cm^2)=	250.00	
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F
Peso perfiles (kg)=	253.08	
Número de perfiles=	5	
Número de subdivisiones=	6	
Estimar al pasa da la viga		-

Estimar el peso de la viga

wu sin incluir el peso de la viga

Losa (kg/m)= 735.4 Subdivisiones (kg/m)= 600 Carga viva (kg/m)= 200.00 Carga P (kg)= 1265.40 wu (kg/m)= 1.2(C.M)+1.6(C.V)= 1922.48

Pu (kg)= 1.6(P)= 2024.64

 $Mu (kg-m) = wL^2/8 + PuL/4 = 40678.56 = 294.23$ klb-pie

De la Tabla 3-2 del AISC y de la columna de momentos del LRFD (fbMpx), se requiere una **W18x46 ΦbMpx= 340 klb-pie**

Selección de la sección de viga

Ensayamos una W18x 46 68.46 kg/m wu (kg/m) = 1.2(C.M) + 1.6(C.V) =2004.63 Pu (kg) = 1.6(P) =2024.64 $Mu (kg-m) = wL^2/8 + PuL/4 =$ 42157.20 304.92 klb-pie = De la tabla 3-2 del AISC se toma W18x46 ΦbMpx= 340 klb-pie 304.92 klb-pie > in^3 in^3 Sx= 78.8 65.08 >

EDIFICIO B EJE 1	1						
	L (m)	Rigidez	Coefic	cientes de distribu	ıción		
Trabe 23	5.25	0.142857	0.245950	0.58	1.00		
Trabe 24	9.70	0.103093	0.243930	0.42	1.00		
Trabe 24	9.70	0.103093	0.186426	0.55	1.00		
Trabe 25	12.00	0.083333	0.100420	0.45	1.00		
Trabe 25	12.00	0.083333	0.226190	0.37	1.00		
Trabe 26	7.00	0.142857	0.220190	0.63	1.00		
Trabe 26	7.00	0.142857	0.205357	0.70	1.00		
Trabe 27	12.00	0.062500	0.205357	0.30	1.00		
	Momento	Diferencia de Mo		Equilibrio	(M-Eq)/2	M1 max	Mmax
Trabe 23	4059	5153	2992.88	7052	1496.44	2473	3969
Trabe 24	9211	3133	2159.81	7052	-1079.90	5087	4007
Trabe 24	9211	-4860	-2687.67	11899	1343.83	3067	5351
Trabe 25	14072	-4000	-2172.53	11899	-1086.27	7760	6673
Trabe 25	14072	9233	3401.67	10670	-1700.84	7700	4973
Trabe 26	4839	9233	5831.44	10670	2915.72	2691	5606
Trabe 26	4839	-16269	-11317.53	16156	5658.76	2091	11265
Trabe 27	21107	-10209	-4951.42	16156	-2475.71	12823	10347
ACERO ASTM A-36	6						
Fy (kg/cm^2)=	2530		Mmax kg-cm=	1615606.28	=	11685.68026	klb-pulg
Flexión:	fy= 0.6*Fy		fy (kg/cm^2)=	1518.00			. 1 3

ACERO ASTM A-3	6					
Fy (kg/cm^2)=	2530	Mmax kg-cm=	1615606.28	=	11685.68026	klb-pulg
Flexión:	fy= 0.6*Fy	fy (kg/cm^2)=	1518.00			
Cortante:	fv= 0.4*Fy	fv (kg/cm^2)=	1012.00			
E (kg/cm^2)=	2040000	Sx= Mmax/fy=	1064.30	cm^3		
		=	64.95	in^3		

Predimensionamiento

d(cm) = L/22 = 0.55

Selección de viga método LRDF

EDIFICIO B EJE 11 TRABE 27 Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	12.00	
Separación de vigas (m)=	2.00	
Acero ASTM A-36 Fy (kg/cm^2)=	2530.00	
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F
Peso perfiles (kg)=	248.17	
Número de perfiles=	5	
Número de subdivisiones=	6	
Estimar of poso do la viga	•	_

Estimar el peso de la viga

wu sin incluir el peso de la viga

Losa (kg/m)= 735.4 Subdivisiones (kg/m)= 600 Carga viva (kg/m)= 200.00 Carga P (kg)= 1240.85 wu (kg/m)= 1.2(C.M)+1.6(C.V)= 1922.48

Pu (kg)= 1.6(P)= 1985.35

 $Mu (kg-m) = wL^2/8 + PuL/4 = 40560.70 = 293.38$ klb-pie

De la Tabla 3-2 del AISC y de la columna de momentos del LRFD (fbMpx), se requiere una **W18x46 ΦbMpx= 340 klb-pie**

Selección de la sección de viga

Ensayamos una W18x 46 68.46 kg/m wu (kg/m) = 1.2(C.M) + 1.6(C.V) =2004.63 Pu (kg) = 1.6(P) =1985.35 $Mu (kg-m) = wL^2/8 + PuL/4 =$ 42039.34 304.07 klb-pie = De la tabla 3-2 del AISC se toma W18x46 ΦbMpx= 340 klb-pie 304.07 klb-pie > in^3 64.95 in^3 Sx= 78.8 >

EDIFICIO B EJE 1	2						
	L (m)	Rigidez	Coefic	cientes de distribu	ción		
Trabe 28	5.25	0.142857	0.245950	0.58	1.00		
Trabe 29	9.70	0.103093	0.243930	0.42	1.00		
Trabe 29	9.70	0.103093	0.186426	0.55	1.00		
Trabe 30	12.00	0.083333	0.100420	0.45	1.00		
Trabe 30	12.00	0.083333	0.226190	0.37	1.00		
Trabe 31	7.00	0.142857	0.220190	0.63	1.00		
Trabe 31	7.00	0.142857	0.205357	0.70	1.00		
Trabe 32	12.00	0.062500	0.203337	0.30	1.00		
	Momento	rencia de mome	ntos	Equilibrio	(M-Eq)/2	M1 max	Mmax
Trabe 28	3842	4000	2839.77	6682	1419.88	2256	3676
Trabe 29	8731	4889	2049.32	6682	-1024.66	4/07	3582
Trabe 29	8731	4410	-2553.99	11285	1276.99	4607	4859
Trabe 30	13350	-4618	-2064.47	11285	-1032.24	7020	6005
Trabe 30	13350	8782	3235.44	10114	-1617.72	7038	4388
Trabe 31	4568	0/02	5546.48	10114	2773.24	2420	5193
Trabe 31	4568	-15457	-10752.55	15320	5376.27	2420	10569
Trabe 32	20025	-15457	-4704.24	15320	-2352.12	11740	9388
ACERO ASTM A-3	6						
Fy (kg/cm^2)=	2530		Mmax kg-cm=	1532036.55	=	11081.22	klb-pulg
Flexión:	fy= 0.6*Fy		fy (kg/cm^2)=	1518.00			1 5
Cortonto	fy 0.4*Ey		fy (kg/om (2)	1012.00			

Predimensionamiento

d(cm) = L/22 = 0.55

Selección de viga método LRDF

EDIFICIO B EJE 12 TRABE 27 Datos

Espesor ts (cm)=	11.35	
Longitud de claro L(m)=	12.00	
Separación de vigas (m)=	2.00	
Acero ASTM A-36 Fy (kg/cm^2)=	2530.00	•
f'c (kg/cm^2)=	250.00	_
Carga muerta (kg/m2)=	367.7	
Carga viva (kg/m2)=	100	Tabla 6.1 N.T.C.
Carga de subdivisiones (kg/m^2)=	50	
Carga de construcción (kg/m^2)=	150	Art. 163 R.C.D.F
Peso perfiles (kg)=	124.41	
Número de perfiles=	5	
Número de subdivisiones=	6	
Estimar el neso de la viga		_

Estimar el peso de la viga

wu sin incluir el peso de la viga

Losa (kg/m)= 735.4 Subdivisiones (kg/m)= 600 Carga viva (kg/m)= 200.00 Carga P (kg)= 622.06 wu (kg/m) = 1.2(C.M) + 1.6(C.V) =1922.48

Pu (kg) = 1.6(P) =995.30

Mu (kg-m)= $wL^2/8 + PuL/4=$ 37590.53 271.89 klb-pie

De la Tabla 3-2 del AISC y de la columna de momentos del LRFD (fbMpx), se requiere una W18x46 ФbMpx= 340 klb-pie

Selección de la sección de viga

Ensayamos una W18x 46 68.46 kg/m wu (kg/m) = 1.2(C.M) + 1.6(C.V) =2004.63 Pu (kg) = 1.6(P) =995.30 $Mu (kg-m) = wL^2/8 + PuL/4 =$ 39069.17 282.59 klb-pie = De la tabla 3-2 del AISC se toma W18x46 ΦbMpx= 340 klb-pie 282.59 klb-pie > in^3 61.59 in^3 Sx= 78.8 >

				COLLINANIA			
Predimensionamien	to			COLUMNA	Añadir peso propio	do trabos	
L (cm)=	1200	\neg			Peso de Trabes		
d(cm)= L/18=	66.67				68.46 kg		
u(citi)- L/10- =	26.25	plg			00.40 Kg	L	P= L/2*W
Acero A-36	20.25	ρig			Trabe 1	7.25	248.15
Fy (kg/cm^2)=	2530				Trabe 2	9.70	332.01
E (kg/cm^2)=	2040000				Trabe 3	12.00	410.73
′ n F	126				Trabe 4	7.00	239.59
Si kL/r <	126	Columna corta			Trabe 5	6.80	232.75
Si kL/r >	126	Columna larga			Trabe 6	7.21	246.78
La relación de est		•			Trabe 7	5.25	179.70
Datos					Trabe 8	9.70	332.01
L altura (cm)=	700				Trabe 9	12.00	410.73
=	275.59	 plg			Trabe 10	7.00	239.59
k=	1				Trabe 11	12.00	410.73
Selección de perfil		_			Trabe 12	3.20	219.06
r (plg)= kL/200=	1.38				Trabe 13	5.25	179.70
Selección de pe	rfil W24X68				Trabe 14	9.70	332.01
P (lb)=	68	=	101.20	kg/m	Trabe 15	7.00	239.59
A (plg ^2)=	20.1	=	129.68	cm^2	Trabe 16	12.00	410.73
lx (plg^4)=	1830.00	=	76170.35	cm^4	Trabe 17	3.20	219.06
ly (plg^4)=	70.40	=	2930.27	cm^4	Trabe 18	5.25	179.70
Sx (plg^3)=	154.00	=	2523.61	cm^3	Trabe 19	9.70	332.01
Sy (plg^3)=	15.70	=	257.28	cm^3	Trabe 20	12.00	410.73
rx (plg)=	9.55	=	24.26	cm	Trabe 21	7.00	239.59
ry (plg)=	1.87	=	4.75	cm	Trabe 22	12.00	410.73
		kL/r=	147	> 128	Trabe 23	5.25	179.70
		* C	olumna larga		Trabe 24	9.70	332.01
Cálculo de esfuerzo	•				Trabe 25	12.00	410.73
		$-(kL/r)^3/8Cc^3 =$	1.91		Trabe 26	7.00	239.59
σperm (kg/cm		^2/2Cc^2]Fy / Fs =	421.83	_	Trabe 27	12.00	410.73
	σ	$=P/A \cdot P (kg) = \sigma^*A =$	54701.90		Trabe 28	5.25	179.70

Altura de columnas (m)=

Peso de columna (kg)=

708.37

9.70

12.00

7.00

12.00

332.01

410.73

239.59

410.73

Trabe 29

Trabe 30

Trabe 31

Trabe 32

Síntesis de carga	as P por columna (kg)		Carga de	muros en planta baja a	m lineal muro	m^2 de muros	P muros (ka)
Columna 1	3380.62		3	cimentación	8.67	45.92	17864.63
Columna 2	12171.83		Al	tura de muros=	15.02	79.61	30968.80
Columna 3	14551.08		5.3	m	35.05	185.77	72262.59
Columna 4	12820.82			de muro tabique=	30.29	160.54	62448.89
Columna 5	9709.04		389.0	•	19.30	102.26	39780.50
Columna 6	10179.16			Ü	5.27	27.95	10873.41
Columna 7	3403.31				5.27	27.95	10873.41
Columna 8	3078.62				10.39	55.07	21423.12
Columna 9	11218.05				10.00	52.97	20606.69
Columna 10	14735.22				28.52	151.16	58799.68
Columna 11	12974.27				29.56	156.67	60943.85
Columna 12	15067.88	< 5470	1.90		14.87	78.81	30657.48
Columna 13	10947.96	0	K		15.04	79.72	31012.09
Columna 14	6908.06				7.14	37.84	14720.54
Columna 15	10528.19				6.58	34.87	13565.99
Columna 16	4616.35				13.16	69.75	27131.97
Columna 17	3388.46				18.16	96.25	37440.47
Columna 18	5818.98				16.45	87.19	33914.97
Columna 19	10975.65				15.16	80.35	31255.37
Columna 20	2672.62				10.83	57.37	22317.90
Columna 21	10162.46				21.95	116.31	45244.01
Columna 22	13225.58				22.19	117.58	45738.81
Columna 23	11586.42				26.70	141.51	55047.39
Columna 24	13672.27				20.12	106.64	41481.40
Columna 25	5845.98				15.82	83.85	32616.09
Columna 26	2664.44				5.89	31.22	12143.41
Columna 27	10141.18				21.23	112.52	43769.89
Columna 28	13521.87				28.87	153.01	59521.28
Columna 29	11885.17				33.21	176.01	68467.00
Columna 30	13644.13				15.05	79.77	31028.59
Columna 31	5832.37				10.76	57.03	22183.89
Columna 32	2458.17				5.89	31.22	12143.41
Columna 33	9604.90				12.13	64.26	24998.11
Columna 34	12841.21				27.42	145.34	56538.00
Columna 35	11266.39				26.32	139.50	54263.94
Columna 36	12935.10				18.00	95.40	37110.60
Columna 37	5489.46				10.63	56.31	21905.56

CIMENTACIÓN ZAPATAS AISLADAS

Resistencia del terreno= 18 Ton/m2

	Pcolumnas (T)	Pmuros (T)	Ac(m2)=P(1.1)/Rt	w 0	1 Ancho (m)	Tipo
1	4.09	17.86	1.34	1.16	1.20	Colindancia
2	12.88	30.97	2.68	1.64	1.65	Colindancia
3	15.26	72.26	5.35	2.31	2.35	Colindancia
4	13.53	62.45	4.64	2.15	2.15	Colindancia
5	10.42	39.78	3.07	1.75	1.75	Colindancia
6	10.89	10.87	1.33	1.15	1.15	Colindancia
7	4.11	10.87	0.92	0.96	1.00	Colindancia
8	3.79	21.42	1.54	1.24	1.25	Colindancia
9	11.93	20.61	1.99	1.41	1.45	Intermedia
10	15.44	58.80	4.54	2.13	2.15	Intermedia
11	13.68	60.94	4.56	2.14	2.15	Intermedia
12	15.78	30.66	2.84	1.68	1.70	Intermedia
13	11.66	31.01	2.61	1.61	1.65	Colindancia
14	7.62	14.72	1.37	1.17	1.20	Colindancia
15	11.24	13.57	1.52	1.23	1.25	Intermedia
16	5.32	27.13	1.98	1.41	1.45	Intermedia
17	4.10	37.44	2.54	1.59	1.60	Intermedia
18	6.53	33.91	2.47	1.57	1.60	Intermedia
19	11.68	31.26	2.62	1.62	1.65	Colindancia
20	3.38	22.32	1.57	1.25	1.25	Colindancia
21	10.87	45.24	3.43	1.85	1.85	Intermedia
22	13.93	45.74	3.65	1.91	1.95	Intermedia
23	12.29	55.05	4.12	2.03	2.05	Intermedia
24	14.38	41.48	3.41	1.85	1.85	Intermedia
25	6.55	32.62	2.39	1.55	1.55	Colindancia
26	3.37	12.14	0.95	0.97	1.00	Colindancia
27	10.85	43.77	3.34	1.83	1.85	Intermedia
28	14.23	59.52	4.51	2.12	2.15	Intermedia
29	12.59	68.47	4.95	2.23	2.25	Intermedia
30	14.35	31.03	2.77	1.67	1.70	Intermedia
31	6.54	22.18	1.76	1.32	1.35	Colindancia
32	3.17	12.14	0.94	0.97	1.00	Colindancia
33	10.31	25.00	2.16	1.47	1.50	Colindancia
34	13.55	56.54	4.28	2.07	2.10	Colindancia
35	11.97	54.26	4.05	2.01	2.05	Colindancia
36	13.64	37.11	3.10	1.76	1.80	Colindancia
37	6.20	21.91	1.72	1.31	1.35	Colindancia

MEMORIA TÉCNICO- DESCRIPTIVA

PROYECTO: CENTRO DE REHABILITACIÓN FÍSICA INTEGRAL

UBICACIÓN: PUEBLA, MÉXICO.

ESPECIALIDADES:

- INSTALACIÓN HIDRAHULICA
- INSTALACIÓN SANITARIA.
- INSTALACIÓN PLUVIAL.
- INSTALACIÓN PROYECTO CONTRA INCENDIO
- INSTALACIÓN ELÉCTRICA.

ETAPA: EJECUTIVO.

LOCALIZACIÓN

Imagen sacada de google maps.

Imagen modificada para fines didácticos.

El inmueble se encuentra ubicado en: Paseo de las villas col. Rementeria Puebla, Puebla México.

Ubicación:

Latitud norte: 19°03'30.7"N

Latitud oeste: 98°09'45.1"O

Introducción:

El presente proyecto tiene como objetivo diseñar un sistema Hidrosanitario, para dotar de los servicios de agua, drenaje de aguas negras, drenaje de aguas pluviales, sistema de protección contra incendio e instalaciones eléctricas a los usuarios de "centro de rehabilitación física integral". Que en adelante se denomina como el Inmueble, por lo que se emplearan todos los elementos necesarios para su diseño así como para su correcta instalación.

El inmueble a diseñar son tres edificios de 1 nivel, con plaza de estacionamiento y plaza de acceso peatonal, distribuidos para uso de terapias de rehabilitación, al tratarse de tres edificios de un solo nivel estos se dividen en uno de tratamientos y terapias, el segundo para oficinas administrativas y talleres, el tercero es un cuarto de máquinas donde se encuentran las cisternas, bodegas, patios de servicio. El inmueble cuenta con una superficie de terreno de 22,132.48 m2 y el área total de construcción de m2.

Normas:

Para el desarrollo del proyecto se consideran las normas presentadas en la siguiente relación, para el diseño se tomaran como prioridad las legislaciones locales, en segundo término las nacionales, en tercer término las internacionales y en cuarto termino los manuales de diseño:

REGLAMENTO DE CONSTRUCCIONES PARA EL ESTADO DE PUEBLA

NTC - Normas Técnicas Complementarias.

NFPA - National Fire Protection Association.

UPC - Uniform Plumbing Code.

DESCRIPCIÓN DE SISTEMAS:

INSTALACIÓN HIDRÁULICA.

AGUA POTABLE.

SUMINISTRO Y ALMACENAMIENTO.

El suministro de agua potable se hará por medio de una toma domiciliaria la cual tendrá un diámetro de 25 mm, esta toma está calculada para suministrar en un tiempo de suministro diario de 24 horas. El almacenamiento de agua potable será en una cisterna localizada en el cuarto de máquinas, con capacidad de almacenamiento de 32.25 m3, esta contempla la dotación diaria y la reserva para 3 días más. La cisterna contara con una división física con la cual tendremos dos celdas, para su buen funcionamiento y facilidad de mantenimiento.

Distribución agua potable Para distribuir el agua potable a los servicios que lo requieran, se diseñó un sistema hidroneumático, compuesto por bombas centrífugas horizontales y tanques precargados. Los equipos de bombeo se alojarán en un cuarto de equipos localizado junto a la cisterna antes descrita, lo cual nos garantizará tener una succión positiva en el sistema.

INSTALACIÓN PROTECCIÓN CONTRA INCENDIO.

DISEÑO El diseño del sistema de protección contra incendio se realiza de acuerdo a los lineamientos indicados en el Reglamento de Construcciones del Distrito Federal (RCDF).

De acuerdo a lo anterior el RCDF indica el empleo de una red de hidrantes en cada nivel, el número de hidrantes a tener se calculó de acuerdo al radio de cobertura y a la distribución arquitectónica de cada nivel, estos hidrantes estarán dotados con conexiones para mangueras de 38mm de diámetro, que deberán tener la longitud necesaria para cubrir un área de 30 metros de radio.

Adicionalmente se deberá instalar extintores de polvo seco tipo ABC guardando la proporción de uno por cada 200 m2.

Con el fin de poder conectar el sistema de bombeo de la agrupación de bomberos, se instalarán una toma siamesa en la fachada del predio. Se instalara una red de rociadores automáticos ya que estos tienen el objeto de incrementar la seguridad que ofrece la red e hidrantes.

En el caso de cuartos eléctricos, se propone instalar un sistema de extinción local, compuesto por granadas con gas inerte como el Energen, FM-200 o similar, que no afecte los equipos instalados, ni la salud de los usuarios, estos sistemas deberán apoyarse del funcionamiento de detectores de humo y calor para su funcionamiento.

El sistema cuenta con un bombeo que está localizado en el cuarto de bombas de la cisterna de agua potable, este sistema está compuesto por un equipo de bombeo integrado por 3 bombas, una con motor eléctrico, otra con motor de combustión interna y una bomba Jockey la cual mantendrá presurizado el sistema, cada equipo es operado mediante un tablero de control totalmente automatizado.

Instalación sanitaria.

Aguas negras

El aporte de aguas negras de cada zona y de cada punto que requiera drenaje, se realizará por gravedad mediante bajadas de aguas negras y líneas horizontales hasta el drenaje municipal, el inmueble cuenta con una fosa séptica la cual recauda desechos de zonas donde el desalojo es más complejo para después conectarse a la tubería existente y desalojar en un mismo punto los residuos en el drenaje municipal.

El gasto medio diario del aporte de aguas negras a la planta de tratamiento será de 1.13 lsp.

Instalación pluvial.

Los aportes pluviales de azoteas se harán por medio de bajadas, para lo cual se dará pendientes a la azotea para conducir a coladeras que se conectaran a estas bajadas que serán conducidas al tanque de tormentas localizado en cuarto de máquinas para su retención y re-uso en inodoros de los sanitarios de servicios generales.

El drenaje pluvial se llevara por tuberías independientes al sanitario de acuerdo con lo estipulado en el Reglamento de construcciones del estado de Puebla. Cálculos preliminares.

Instalación hidráulica

Agua potable

Almacenamiento de agua potable.

El volumen de las cisternas de agua potable se determinó de acuerdo a las dotaciones mínimas establecidas por tipo de edificación indicado en las Reglamento de construcciones de Puebla, de instalaciones hidráulicas.

		CISTERNA				
SERVICIO	O TIPOLOGÍA DOTACIÓN CANTIDAD			VOLUMEN		
OFICINAS	Oficinas de cualquier tipo	50 L / PERSONA / DÍA	26	PERSONAS	1300	LTS
TRATAMIENTOS	Tratamientos terapéuticos de rehabilitación fisica	12 L / ASISTENTE / DÍA	280	ASISTENTES	3360	LTS
TALLERES	Talleres Terapéuticos	12 L / ASISTENTE / DÍA	150	ASISTENTES	1800	LTS
RESTAURANTE	Servicio de alimentos y Bebidas	12 L / ASISTENTE / DÍA	40	ASISTENTES	480	LTS
TERAPISTAS	Médicos especializados en las terapias impartidas.	50 L / PERSONA / DÍA	85	PERSONAS	4250	LTS
		Dota	ción diaria de a	igua potable.	11190	LTS
	Días de reserva 3 RESERVA 33570 LTS					
•	Reserva PCI	5 L / M2	13	M2	65	LTS
	Capacidad total de cisterna (en litros)					
	Capacidad total de cisterna (en m3)					m3

Agua tratada Almacenamiento y cálculo

A efecto de cumplir con el Artículo N° 35, de la Ley de Aguas del Distrito Federal, se deberá de utilizar Agua Tratada en aquellos servicios que no requieran del uso indispensable de Agua Potable.

		Dotación diaria en litros							
,			Agua potable		Agua de rehuso				
Årea de servicio	Tipo de servicio	Consumo de agua total	Subtotal	% de uso	Cantidad de personas	Numero de descargas	Volumen de descarga	Subtotal	% de uso
OFICINAS	Oficinas de cuaquier tipo	1300	923	71%	26	3	4.8	377	29%
TRATAMIENTOS	Tratamientos terapéuticos de rehabilitación fisica	3360	2016	60%	280	1	4.8	1344	40%
TALLERES	Talleres Terapéuticos	1800	1080	60%	150	1	4.8	720	40%
RESTAURANTE	Servicio de alimentos y Bebidas	480	288	60%	40	1	4.8	192	40%
TERAPISTAS	Médicos especializados en las terapias impartidas.	4250	3017.5	71%	85	3	4.8	1232.5	29%
	TOTAL	11190	7324.5		581			3865.5	

Instalación sanitaria.

Las tuberías de aguas negras, se dimensionaran de acuerdo a las normas establecidas por el "NA-TURAL PLUMBING CODE" y los diámetros están acorde a los aportaciones recibidos y a la pendiente de la tubería.

Para el cálculo de tuberías se utilizaron las siguientes tablas:

En ramales horizontales:

GASTO (UD)	DIAMETRO MM
6	50
100	100
600	200

En líneas principales:

GASTO (UD)	DIAMETRO MM
180	100
700	150
1600	200
2900	250
4600	300

Los gastos unidades de desagüé utilizados son los siguientes:

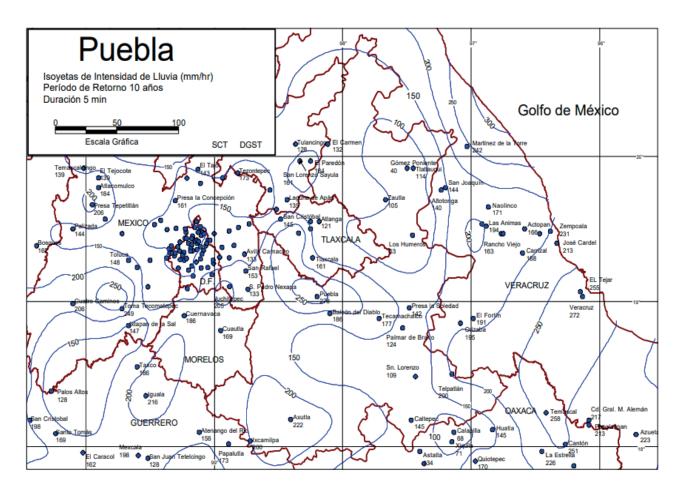
TIPO DEL MUEBLE	UD
FREGADERO DE COCINA	2
LAVABO	1
INODORO/ FLUXOMETRO	8
INGITORIO/FLUXOMETRO	6
DESAGUE DE PISO	1
VERTEDERO DE ASEO	3

INSTALACIÓN PLUVIAL.

Considerando la aportación pluvial de azoteas del inmueble la captación total pluvial será de 3407 m2 con un gasto máximo instantáneo de 203 lps.

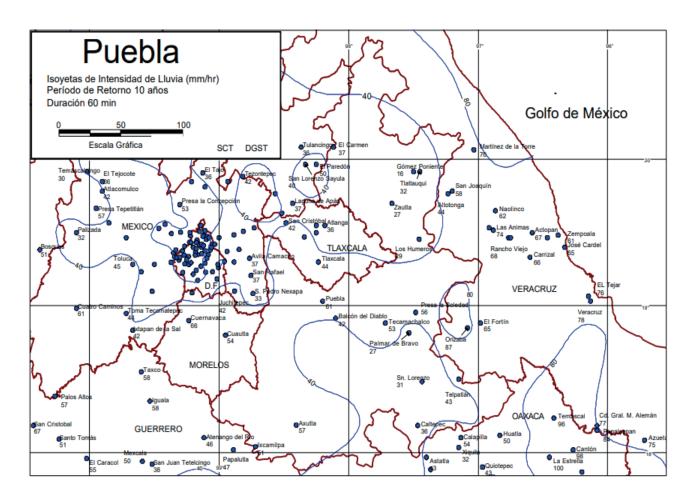
Para el cálculo de la captación del gasto en bajadas de agua pluvial se consideró una precipitación máxima de 278 mm/h, con una duración de 5 minutos y un periodo de retorno de 10 años de acuerdo a lo señalado en el Reglamento de Construcciones del Estado de Puebla.

Por lo tanto para el cálculo del gasto se emplea la siguiente ecuación:


Dónde:

Q = Gasto pluvial en l/s

A = Área tributaria a desalojar en m2


I = Intensidad de precipitación en mm/ h

Todas las bajadas tienen asignadas superficies de azotea proporcionales a su capacidad respectiva e inversamente proporcionales a la intensidad de la lluvia. Así por ejemplo una bajada de 100 mm de diámetro puede desaguar una superficie de 100 m2 con una intensidad de lluvia de 278 mm/h.

Sistemas de captación pluvial (tanque de tormentas)

Para determinar el gasto y volumen pluvial se considera una intensidad de 61 mm/h, que es comarcado en la Isoyeta, para una tormenta, de 1 hora con un periodo de retorno de 10 años, ver punto PUEBLA 61.

Cálculo tanque de tormentas

Por lo tanto el gasto pluvial será:

 $Q = A \times FE \times I/3600$

Q = gasto en litros por segundo

A = Área tributaria en m²

FE = Factor de escurrimiento

I = Intensidad pluvial en mm/hr

Sustituyendo los valores tenemos. $Q = 3407 \times 0.95 \times 61 / 3600 = 54.69 \text{ l/s}$ En una hora tenemos: V = 196917.7 lts. Por lo tanto el tanque tendrá un volumen de 197 m³.

EQUIPOS CONTRA INCENDIO

Gabinete

Gabinete contra incendio en lamina de acero al carbón cal. #18 de 80 cm de ancho por 70 cm de alto y manguera contra incendio de 38 mm. (1/2 pulgada) de diámetro y 30 metros de longitud (100 pies) que incluya soporte automático giratorio, marca eclipse modelo 15 m o similar.

Manguera servicio contra incendio.

Manguera de 1 1/2" de diámetro por 35 m (116 pies) de longitud, para servicio de agua contra incendio, con dos capas de fibra sintética, de tejido reforzado sin costura y tubo interior de neopreno, equipada con conexiones de bronce pulido en los extremos, hembra giratoria en uno y conexión fija en el otro extremo, cuerda nsht de 1 1/2" de diámetro con 7 1/2 hilos por pulgada, marca halprin supli co. O similar.

Boquilla contra incendio

En bronce pulido, para usarse en manguera de 1 1/2" de diámetro de 125 gpm de capacidad, regulable desde chorro hasta niebla fina, con una válvula de acción manual del tipo de paso completo de apertura y cierre rápido, marca halprin, akron, elkhart o similar, 7 1/2 hilos por pulgada, hembra.

Válvula de globo angular

Válvula de globo angular de 1 1/2" de diámetro clase 300 swp, roscada, cuerpo, vástago e interiores de bronce stm-b-61, bonete roscado, vástago ascendente similar a crane 384p, entrada hembra cuerda de 9 hilos por pulgada.

TUBERÍAS DE SISTEMA SANITARIO Y PLUVIAL.

Aguas negras.

Redes horizontales Tubo Sanitario con extremos lisos de PVC Mca. Duralon, serie metrica, que cumple con la Norma Mexicana NMX-E-199-SCFI.

Bajadas.

Tubería de PVC Duralon Serie Inglesa para cementar, que cumple con la Norma Mexicana NMX-E-145-SCFI, RD 26.0 para trabajar a una presión máxima de 11.2 kg/cm2

Bajadas pluviales expuestas Tubería de PP Marca Rotoplas línea sanitaria tuboplus.

LUMINARIAS ELECTRICAS (INTERIORES) Clave: I-1

FICHA TÉCNICA 03-04-2020 14:06:4

CO1150 B BN A 25W

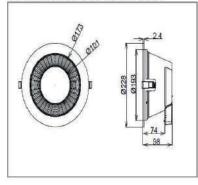
PRODUCTO ACTIVO

Luminario antideslumbrante con reflector de aluminio facetado, para empotar en plafón. Cuenta con un interruptor en su parte superior que permite modificar la temperatura de color (3 000 K, 4 000 K y 6 000 K).

ACCESORIO

DOWNLIGHT

Aluminio Acrilico
Acrilico
7.15111155
Empotrar
54
Blanco
5 años
25W
2068lm



Ik

FUENTE LUMINOSA		
Tecnología	LED	
Flujo luminoso	2,432.94117647059 lm	
Vida promedio	25,000 h	
Tipo de vida	L70	
IRC	80 Ra	
Temperatura de color	4000 K	
Ángulo de apertura	90 °	

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL		
Equipo	Driver electrónico	
Frecuencia de operación	50/60 Hz	
Factor de potencia	> 0,95	
Corriente de entrada	0.192-0.09 A	
Temperatura de operación	-10 a 45 °C	
Distorsiones armonicas (THD)	< 20 %	
Voltaje de entrada	127-277 Vca	

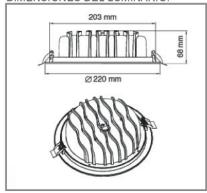
FICHA TÉCNICA 03-04-2020 14:11:57

CO1240 B CF B 32W

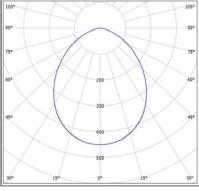
PRODUCTO EN AGOTAMIENTO

DOWNLIGHT Ambience es un luminario con selección de color de temperatura de luz desde 3000 a 6500K, para mejorar tus ambientes de trabajo. Con control inalámbrico ZigBee.

DOWNLIGHT AMBIENCE


ACCESORIO

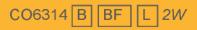
Material cuerpo	Aluminio
Material difusor	Acrílico
Instalación de producto	Empotrar
IP	40
Color	Blanco
Garantía	5 años
Consumo total	32W
Flujo de salida	2600lm
lk	4


DIMENSIONES DEL LUMINARIO:

FUEN ⁻	TE L	UMI	NOSA

Tecnología	LED
Flujo luminoso	2,990 lm
Vida promedio	25,000 h
Tipo de vida	L70
IRC	80 Ra
Temperatura de color	3000 K
Ángulo de apertura	100 °

CURVA FOTOMÉTRICA:



SISTEMA ELÉCTRICO Y CONTROL

Equipo	Driver electrónico
Frecuencia de operación	50/60 Hz
Factor de potencia	> 0,90
Corriente de entrada	0.248-0.153 A
Temperatura de operación	-10 a 50 °C
Distorsiones armonícas (THD)	< 20 %
Control de atenuación	Si
Método de control	Zigbee ®
Voltaje de entrada	127-220 Vca
Corriente de salida máxima	0,750 A

FICHA TÉCNICA 03-04-2020 14:15:02

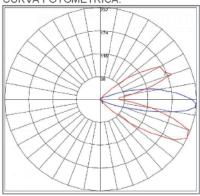
PRODUCTO ACTIVO

Luminario dirigible de emergencia, en termoplástico. Voltaje dual Incluye dos baterías Ni-Cd, 900 mAh 3.6 V

SAFELIGHT

ACCESORIO

Material cuerpo	Termoplástico
·	,
Material difusor	Poliestireno
Instalación de producto	Sobreponer
IP	20
Color	Blanco
Garantía	5 años
Direccionamiento vertical	120°
Rotación	120°
Consumo total	2W
Flujo de salida	150lm
lk	4


DIMENSIONES DEL LUMINARIO:

FUEN'		

Tecnología	LED
Flujo luminoso	173 lm
Vida promedio	35,000 h
Tipo de vida	L70
IRC	70 Ra
Temperatura de color	6500 K
Ángulo de apertura	30 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

Equipo	Driver electrónico
Frecuencia de operación	50/60 Hz
Factor de potencia	> 0,95
Corriente de entrada	0.061 A
Temperatura de operación	-10 a 40 °C
Distorsiones armonícas (THD)	< 20 %
Voltaje de entrada	127/277 Vca

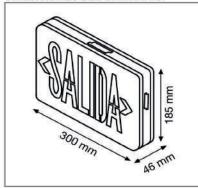
FICHA TÉCNICA 03-04-2020 14:14:28

CO6315 B VE L 3W

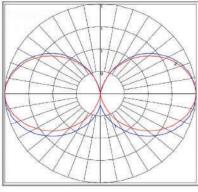
PRODUCTO ACTIVO

Señal de salida verde, doble vista, termoplástico. Voltaje dual. Incluye accesorio para montar en techos, muros en posición horizontal o perpendicular a ellos y tapa ciega.

SAFELIGHT


ACCESORIO

Material cuerpo	termoplástico	
Material difusor	Poliestireno	
Instalación de producto	Sobreponer	
IP	20	
Color	Blanco	
Garantía	5 años	
Consumo total	3W	
Flujo de salida	150lm	
lk	4	


DIMENSIONES DEL LUMINARIO:

FUENTE LUMINOSA

Tecnología	LED
Flujo luminoso	173 lm
Vida promedio	35,000 h
Tipo de vida	L70
IRC	80 Ra
Ángulo de apertura	360 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

Equipo	Driver electrónico	
Frecuencia de operación	50/60 Hz	
Factor de potencia	> 0,85	
Corriente de entrada	0.022/0.010 A	
Temperatura de operación	-10 a 40 °C	
Distorsiones armonicas (THD)	< 20 %	
Voltaje de entrada	127/277 Vca	

FICHA TÉCNICA 03-04-2020 14:08:29

IN8007 B BC A 150W

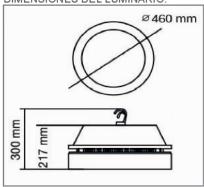
PRODUCTO ACTIVO

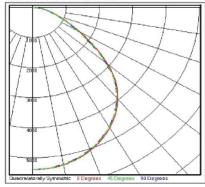
Luminario Wide Bay de Suspender , con Tecnología LED , 150W consumo total, 13400 lm, 3000 K, Driver Electrónico 127-277 V, Atenuación con control 0-10V, hecho en aluminio extruido, acabado en pintura electrostática color blanco, Difusor de acrílico y blanco ángulo de 105°

WIDEBAY

ACCESORIO

Material cuerpo	Aluminio Inyectado
Material reflector	Aluminio Pintado
Material difusor	Acrílico
Instalación de producto	Suspender
IP	40
Color	Blanco
Garantía	5 años
Consumo total	150W
Flujo de salida	15800lm
lk	4




DIMENSIONES DEL LUMINARIO:

FUENT	ΈL	LUMINOSA
_		

Tecnología	LED
Flujo luminoso	18,170 lm
Vida promedio	50,000 h
Tipo de vida	L70
IRC	80 Ra
Temperatura de color	3000 K
Ángulo de apertura	100 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

	•
Equipo	Driver electrónico
Frecuencia de operación	60 Hz
Factor de potencia	> 0,95
Corriente de entrada	1.21-0.56 A
Temperatura de operación	-10 a 40 °C
Distorsiones armonícas (THD)	< 20 %
Control de atenuación	Si
Método de control	0-10V
Atenuación mínima	10 %
Voltaje de entrada	127-277 Vca

FICHA TÉCNICA 03-04-2020 14:37:14

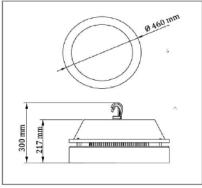
IN8007 B BN A 150W

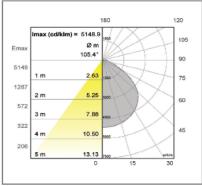
PRODUCTO ACTIVO

Luminario Wide Bay de Suspender , con Tecnología LED , 150W consumo total, 15100 lm, 4000 K, Driver Electrónico 127-277 V, dimmeable con control 0-10V, hecho en alumnio extruido, acabado en pintura electrostática color blanco, Difusor de acrílico y blanco ángulo de 105°

WIDEBAY

ACCESORIO


Material cuerpo	Aluminio inyectado
Material reflector	Con reflector
Material difusor	Acrílico
Instalación de producto	Suspender
IP	40
Color	Blanco
Garantía	5 años
Consumo total	150W
Flujo de salida	15800lm
lk	4


DIMENSIONES DEL LUMINARIO:

FUEN	IE	LUMINOSA	

Tecnología	LED
Flujo luminoso	18,170 lm
Vida promedio	50,000 h
Tipo de vida	L70
IRC	80 Ra
Temperatura de color	4000 K
Ángulo de apertura	100 °

CURVA FOTOMÉTRICA:

Equipo	Driver electrónico
Frecuencia de operación	60 Hz
Factor de potencia	> 0,95
Corriente de entrada	1.21-0.56 A
Temperatura de operación	-10 a 40 °C
Distorsiones armonícas (THD)	< 20 %
Control de atenuación	Si
Método de control	0-10V
Atenuación mínima	10 %
Voltaje de entrada	127-277 Vca

FICHA TÉCNICA 03-04-2020 14:16:37

OF1097 B BN B 42W

PRODUCTO ACTIVO

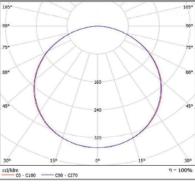
CONSTRULITA

Luminario Paneled, de empotrar o suspender de 2'x2' cuerpo en aluminio extruido, acabado con pintura homeada micropulverizada color blanco, difusor de acrílico, ángulo de apertura 120°, Tecnología Led 42W de consumo total, 3000 lm, 4 000K,

PANELED

ACCESORIO

Material cuerpo	Aluminio Extruido
Material reflector	Película de Aluminio
Material difusor	Acrílico Opalino
Instalación de producto	Empotrar
IP	40
Color	Blanco
Garantía	5 años
Consumo total	42W
Flujo de salida	3,000lm


DIMENSIONES DEL LUMINARIO:

FUEN	TE L	UMI	NC	SA

Tecnología	LED
Flujo luminoso	3,000 lm
Vida promedio	30,000 h
Tipo de vida	L70
IRC	80 Ra
Temperatura de color	4000 K
Ángulo de apertura	120 °

CURVA FOTOMÉTRICA

SISTEMA ELÉCTRICO Y CONTROL

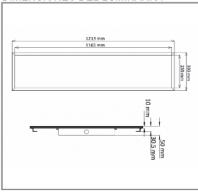
Frecuencia de operación	60 Hz
Factor de potencia	> 0,9
Corriente de entrada	0,312 - 0,170 A
Temperatura de operación	-20°C a 45°C °C
Distorsiones armonícas (THD)	< 15 %
Voltaje de entrada	127 - 220 Vca
Corriente de salida máxima	0,950

FICHA TÉCNICA 03-04-2020 14:17:12

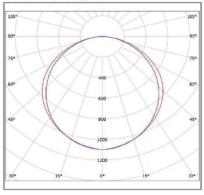
PRODUCTO ACTIVO

Luminario para empotrar ó suspender en aluminio extruido. difusor de acrílico opalino.

PANELED


ACCESORIO

Material cuerpo	Aluminio
Material difusor	PMMA
Instalación de producto	Suspender
IP	40
Color	Blanco
Garantía	5 años
Consumo total	40W
Flujo de salida	3250lm
lk	3


DIMENSIONES DEL LUMINARIO:

FUENTE LUMINOSA

Tecnología	LED
Flujo luminoso	3,738 lm
Vida promedio	30,000 h
Tipo de vida	L70
IRC	80 Ra
Temperatura de color	3000 K
Ángulo de apertura	120 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

Equipo	Driver electrónico
Frecuencia de operación	50/60 Hz
Factor de potencia	> 0,90
Corriente de entrada	0.305-0.175 A
Temperatura de operación	-10 a 50 °C
Distorsiones armonícas (THD)	< 20 %
Voltaje de entrada	127-220 Vca
Corriente de salida máxima	0.950 A

FICHA TÉCNICA 03-04-2020 14:13:10

OU2006 B BC B 8W

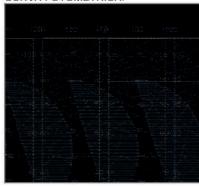
PRODUCTO ACTIVO

Luminario de empotrar en muro, cuerpo en inyección de aluminio, housing de termoplástico incluido, acabado pintura horneada micropulverizada color blanco. Con tecnología led, de 8W de consumo total 172 lm, blanco cálido, con Driver electrónico 127-220V, integrado.

WALKLIGHT

ACCESORIO

Material cuerpo	Aluminio Inyectado	
Material reflector	Aluminio Especular	
Material difusor	Aluminio pintado	
Instalación de producto	Empotrar	
IP	65	
Color	Blanco	
Garantía	5 años	
Consumo total	8W	
Flujo de salida	172lm	
lk	g	


DIMENSIONES DEL LUMINARIO:

FUENTE LUMINOSA

LED	
223.6 lm	
25,000 h	
L70	
70 Ra	
3000 K	
65 °	
	223.6 lm 25,000 h L70 70 Ra 3000 K

CURVA FOTOMÉTRICA:

SISTEMA ELECTRICO Y CONTROL

E	[B. 2	
Equipo	Driver electrónico	
Frecuencia de operación	60 Hz	
Factor de potencia	> 0.9	
Corriente de entrada	0.121-0.082 A	
Temperatura de operación	-10 a 40 °C	
Distorsiones armonícas (THD)	< 15 %	
Voltaje de entrada	127-220 Vca	

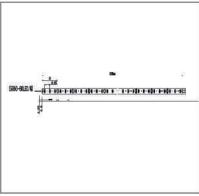
FICHA TÉCNICA 03-04-2020 14:12:32

RE6033 B BC F 46W

PRODUCTO EN AGOTAMIENTO

STRIP LED Flexible con tecnología LED con 60 chips SMD 5050 / metro sobre cinta de 10mm recubierto con manguera de silicon en rollo de 5m. de largo. Driver LED recomedado: AC7050B (no incluido).

STRIPLINE



ACCESORIO

Material cuerpo	Aluminio
Material difusor	Silicón
Instalación de producto	Sobreponer
IP	65
Color	Blanco
Garantía	5 años
Consumo total	46W
Flujo de salida	1200lm
Ik	5

DIMENSIONES DEL LUMINARIO:

FUENTE LUMINOSA

ED
,200 lm
5,000 h
70
0 Ra
700 K
20 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

Equipo	NA
Corriente de entrada	3.4 A
Temperatura de operación	-10 a 35 °C
Distorsiones armonícas (THD)	< 15 %
Control de atenuación	Si
Método de control	PWM
Voltaje de entrada	12 Vcd

La información técnica de los productos está sujeta a cambios sin previo aviso. www.construlitalighting.com

CONSTRULITA LIGHTING INTERNATIONAL S.A. DE C.V. Acceso IV No. 3, Fracc. Ind. Benito Juárez, C.P. 76130, Querétaro Qro., México Tel [442] 238 3900, Fax. [442] 238 3914

Clave: I-11

FICHA TÉCNICA 03-04-2020 14:35:55

RE8117 N BC

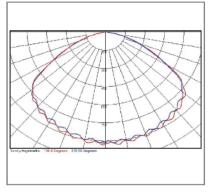
PRODUCTO ACTIVO

LAMPE es una luminaria decorativa para suspender con tecnología LED. Brinda un luz cálida uniforme de alto confort visual.

DISEÑO

ACCESORIO

Material cuerpo	Aluminio
Material difusor	Policarbonato
Instalación de producto	Suspender
IP	20
Color	Negro
Garantía	5 años
Consumo total	73W
Flujo de salida	3,000lm


DIMENSIONES DEL LUMINARIO:

FUENTE LUMINOSA	
Tecnología	

Tecnología	LED
Flujo luminoso	3,450 lm
Vida promedio	50,000 h
Tipo de vida	L70
IRC	85 Ra
Temperatura de color	3000 K
Ángulo de apertura	120 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

Frecuencia de operación	50/60 Hz
Corriente de entrada	0,655 - 0,390 A
Temperatura de operación	-20 °C a 50 °C °C

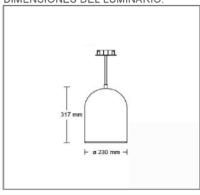
FICHA TÉCNICA 03-04-2020 14:09:03

CO8041 B BN A 40W

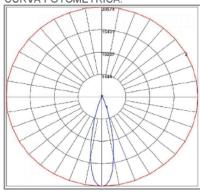
PRODUCTO ACTIVO

Candel Pro es una luminaria comercial de suspender en aluminio formado, reflector especular en aluminio, difusor de cristal esmerilado, pintura horneada micropulverizada.

CANDEL PRO


ACCESORIO

** / * *	
Material cuerpo	Aluminio Rechazado
Material reflector	Aluminio Rechazado
Material difusor	Acrílico
Instalación de producto	Suspender
IP	20
Color	Blanco
Garantía	5 años
Consumo total	40VV
Flujo de salida	4176lm
lk	4


DIMENSIONES DEL LUMINARIO:

FUENTE LUMINOSA	SA
-----------------	----

Tecnología	LED
Flujo luminoso	4,802.4 lm
Vida promedio	50,000 h
Tipo de vida	L70
IRC	90 Ra
Temperatura de color	4000 K
Ángulo de apertura	85 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

Equipo	Driver electrónico
Frecuencia de operación	60 Hz
Factor de potencia	> 0,9
Corriente de entrada	0.308-0.146 A
Temperatura de operación	-10 a 40 °C
Distorsiones armonícas (THD)	< 20 %
Control de atenuación	Si
Método de control	0-10V
Atenuación mínima	10 %
Voltaje de entrada	127-277 Vca

Clave: I-13

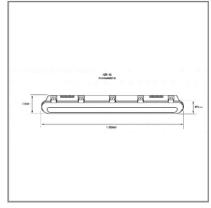
FICHA TÉCNICA 03-04-2020 14:15:53

IN4044 G BN B 40W

PRODUCTO ACTIVO

Luminario de Interior LED, Sobreponer en techo. Terminado Gris. Incluye Driver. Blanco Neutro 4000 K

OCEAN



ACCESORIO

Material cuerpo	ABS-PC
Material reflector	PC
Material difusor	PC
Instalación de producto	Sobreponer
IP	65
Color	Gris
Garantía	5 años
Peso	1.7kg
Consumo total	40W
Fluin de salida	4100lm

DIMENSIONES DEL LUMINARIO:

FUENTE LUMINOSA

Tecnología	LED
Base	NA
Flujo luminoso	4,100 lm
Tipo de vida	L70
IRC	80 Ra
Temperatura de color	4000 K
Ángulo de apertura	120°

CURVA FOTOMÉTRICA:

Frecuencia de operación	50/60 Hz
Factor de potencia	> 0.9
Corriente de entrada	0.40-0.14 A
Temperatura de operación	-25 40 °C
Voltaje de entrada	100
Voltaje de salida	277

La información técnica de los productos está sujeta a cambios sin previo aviso. www.construlitalighting.com

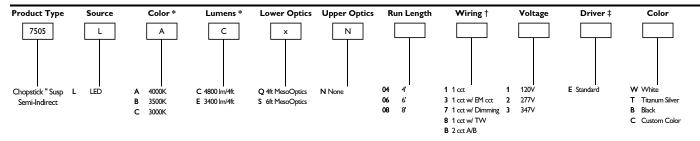
CONSTRULITA LIGHTING INTERNATIONAL S.A. DE C.V. Acceso IV No. 3, Fracc. Ind. Benito Juárez, C.P. 76130, Querétaro Qro., México Tel [442] 238 3900, Fax. [442] 238 3914

Minimalist scale, unequaled erformance that delivers

SEMI-INDIRECT, MESOOPTICS LENS 4000K, 4800 LM/4FT

Project: Spec Type: Catalog No: 7505LACxN Qty Line Notes:

SUSPENDED LED


CHOPSTICK

Ordering guide

* Nominal values † Consult website for complete list of standard wiring options ‡ Driver details on following pages

Mounting Hardware Mount Type Consult separate mounting spec sheet for mount type options Endcaps -Sculpted Flat 1/8" (2.5mm) ---3/16" (5.5mm)-1/16" (1.5mm) — Side View Side View End View End View

Integrated Controls Please indicate with check mark.

Distance from ceiling to top of luminaire in inches

Response Daylight Single Zone (DS)

Suspension Length

750 LED 45° FIJO

MAGG M.R. QUE BIEN SE VE

1. CARACTERÍSTICAS Y APLICACIONES

M 750 LED 45° ES UNA LUMINARIA PARA EMPOTRAR EN FALSO PLAFÓN. ES REEMPLAZO DE LUMINARIAS CON LÁMPARAS FLUORESCENTES COMPACTAS DE 13W Y HALÓGENAS TIPO BI-PIN DE HASTA 50W PARA USO EN INTERIORES.

LA CONSTRUCCIÓN ES SELLADA CON UN ÍNDICE DE PROTECCIÓN IP 60 RESISTENTE A POLVO. FABRICADA CON MATERIALES MUY RESISTENTES AL PASO DEL TIEMPO COMO RADIACIÓN UV.

LA ÓPTICA DE 45° ESTÁ ESPECIALMENTE DISEÑADA PARA ILUMINAR CON EXCELENTE NIVEL DE LUZ INSTALACIONES QUE REQUIERAN ILUMINACIÓN PUNTUAL MEDIA.

EQUIPADA CON LED DE ÚLTIMA GENERACIÓN Y UN DRIVER ELECTRÓNICO INTEGRADO MULTI VOLTAJE CON UN RANGO DE TENSIÓN DE 100-305V QUE LO PROTEGE DE VARIACIONES DE VOLTAJE.

IDEAL PARA:

- · COMERCIOS
- · OFICINAS EN GENERAL
- · PASILLOS
- · CORREDORES
- · VESTÍBULOS
- · NICHOS

2. DESCRIPCIÓN

- 2.1 DISIPADOR Y ARILLO INYECCIÓN DE ALUMINIO
 - ACABADO PINTURA POLIÉSTER EN POLVO
 DE APLICACIÓN ELECTROSTÁTICA COLOR
 - BLANCO
- 2.2 ÓPTICA INYECCIÓN DE ACRÍLICO TERMOPLÁSTICO (PMMA), ÁNGULO DE APERTURA DE 45°
- 2.3 MONTAJE O INSTALACIÓN EMPOTRAR
- 2.4 GRADO DE PROTECCIÓN IP 60
- 2.5 PESO 370 gr

3. CARACTERÍSTICAS ELÉCTRICAS

- 3.1 FUENTE (1) DRIVER TOTALMENTE INTEGRADO BFP,
 - REMOTO
- VIDA ÚTIL: 25.000 hrs
- 3.2 RANGO DE TENSIÓN 100 V \sim A 305 V \sim
- 3.3 CORRIENTE DE OPERACIÓN 0.11 A / 0.09 A / 0.08 A
- 3.4 FRECUENCIA DE OPERACION 50 / 60 Hz
- 3.5 FACTOR DE POTENCIA 0.5
- 3.6 POTENCIA 8 W
- 3.7 DISTORSIÓN ARMÓNICA > 120%
 - TOTAL (THD)

3A15

Clave: T-20

TruGroove

Luminario suspendido, de sobreponer o de pared para iluminación continua sin generar sombras con una excelente uniformidad y alto desempeño.

Características técnicas

Familia	29	
Voltaje	120 V, 277 V y 347 V	
Frecuencia	50/60Hz	
Potencia	hasta 35 W por cada 4 ft	
Flujo luminoso	hasta 3 000 lm por cada 4 ft	
Temperatura de color (TCC)	3 000 K, 3 500 K, 4 000 K	
Efcacia	hasta 85 lm/W	
Indice de reproducción de Color (IRC)	>80	
IP	20	
Vida útil	60 000 h @ Ta 25°C	
Acabado	En color blanco	
Optica	Meso Optics y Silk Lens	
Temperatura de operación	0°C hasta 40°C	
Dimensiones	Confgurable de acuerdo a la longitud que se requiera	
Control	0-10V	
Garantía	5 años	

LUMINARIAS (EXTERIORES) Clave: E-15

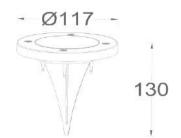
FICHA TÉCNICA

LUMINARIO DE EXTERIOR / LUMINARIO CON ESTACA

0SOLLED12VD30S

CAPH

CARACTERÍSTICAS


Modelo (s):	0SOLLED12VD30S
Nombre (s):	CAPH
Aplicación:	Luminario con Estaca
Material de la carcasa:	Lamina de acero
Terminado:	Satin
Pantalla:	PC
Índice de Protección [IP]:	65
Base (portalámpara):	NA
Tipo de lámpara	Integrado LED 0.08 W

00011 ED401/D200

PARAMETROS ELÉCTRICOS

Tensión Nominal [V~]:	1.2 Vcc
Consumo de potencia [W]:	0.08 W
Frecuencia Nominal [Hz]:	NA
Consumo de Corriente [A]:	0.07 A
Factor de Potencia [f.p.]:	NA
Flujo luminoso [lm]:	10 lm
Temperatura de color [K]:	3 000 K
Color de luz:	Blanco cálido
Ángulo de apertura [°]:	0
IRC:	80
Temperatura de Operación:	-20 - 50 °C

BENEFICIOS

DEITE TOTO	
Horas de vida [h]	15 000 h
Atenuable	No
Garantía:	5 AÑOS
Certificación:	NOM-003

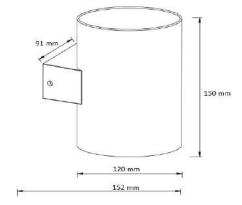
OBSERVACIONES:

Lada sin costo 01 800 777 LITE

Iluminación Especializada de Occidente S.A. de C.V. Av. Dr. Ángel Leaño No.401, Nave 2 Interior B, Fracc. Los Robles C.P. 45134 Zapopan Jal. México

FICHA TÉCNICA

LUMINARIO DE EXTERIOR / SOBREPONER EN MURO


28HLED413V30S

CARACTERÍSTICAS

Modelo (s):	28HLED413V30S
Nombre (s):	KAUS I
Aplicación:	Sobreponer en Muro
Material de la carcasa:	Aluminio
Terminado:	Satin
Pantalla:	Cristal
Índice de Protección [IP]:	65
Base (portalámpara):	NA
Tipo de lámpara	Integrado LED

PARAMETROS ELÉCTRICOS 100 V ~-127 V ~ Tensión Nominal [V~]: Consumo de potencia [W]: 28 W 60 Hz Frecuencia Nominal [Hz]: 0.28 A-0.22 A Consumo de Corriente [A]: Factor de Potencia [f.p.]: 0.9 Flujo luminoso [lm]: 2 185 lm Temperatura de color [K]: 3 000 K Color de luz: Blanco cálido Ángulo de apertura [°]: 282° 80 -10 - 40 °C Temperatura de Operación:

15 000 h
No
5 AÑOS
NOM-003

OBSERVACIONES:

Lada sin costo 01 800 777 LITE

Iluminación Especializada de Occidente S.A. de C.V. Av. Dr. Ángel Leaño No.401, Nave 2 Interior B, Fracc. Los Robles C.P. 45134 Zapopan Jal. México

FICHA TÉCNICA

LUMINARIO DE EXTERIOR / EMPOTRADO SUMERGIBLE LED

HLED-530/7.5W/30

CHICAGO I

CARACTERÍSTICAS

HLED-530/7.5W/30 Modelo (s): Nombre (s): CHICAGO I Aplicación: Empotrado Sumergible LED Material de la carcasa: Lamina de Acero Terminado: Satinado Pantalla: Cristal Transparente Índice de Protección [IP]: 68

Base (portalámpara): NA

Tipo de lámpara Integrado LED


PARAMETROS ELÉCTRICOS Tensión Nominal [V~]: 100-240 V ~ Consumo de potencia [W]: 7.5 W Frecuencia Nominal [Hz]: 50/60 Hz 0.08-0.03 A Consumo de Corriente [A]: 0.7 Factor de Potencia [f.p.]: Flujo luminoso [lm]: 350 lm

Temperatura de color [K]: 3 000 K Color de luz: Blanco Cálido 40° Ángulo de apertura [°]:

IRC: 80 Temperatura de Operación: 0 - 40 °C

-1-1	~		-	ۥ1
BEI	$N \subseteq I$	ГІС	IU	O

Horas de vida [h] 30 000 h Atenuable Nο Garantía: 5 AÑOS Certificación: NOM-003

OBSERVACIONES:

Lada sin costo 01 800 777 LITE

Iluminación Especializada de Occidente S.A. de C.V. Av. Dr. Ángel Leaño No.401, Nave 2 Interior B, Fracc. Los Robles C.P. 45134 Zapopan Jal. México

Clave: E-18

FICHA TÉCNICA 03-04-2020 14:20:45

OU9050 G BN B | 18W

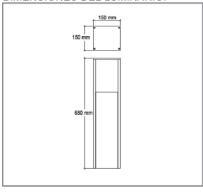
PRODUCTO ACTIVO

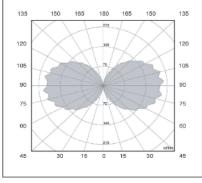
Cubic de Sobreponer en piso , con LED de 2x9 W (Si incluida) 4000 K. Equipo: Driver Electrónico 127-220 V~ (Si incluido), Color: Gris.

CUBIC MINIPOSTE

ACCESORIO

Material cuerpo	Aluminio Extruido
Material reflector	Lamina de aluminio pintada alta reflectancia
Material difusor	Acrílico
Instalación de producto	Sobreponer
IP	65
Color	Gris
Garantía	5 años
Consumo total	18W
Flujo de salida	1089lm
lk	5




DIMENSIONES DEL LUMINARIO:

LUMINOSA

Tecnología	LED
Flujo luminoso	1,252.35 lm
Vida promedio	25,000 h
Tipo de vida	L70
IRC	70 Ra
Temperatura de color	4000 K
Ángulo de apertura	180 °

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

ónico
A
1

La información técnica de los productos está sujeta a cambios sin previo aviso. www.construlitalighting.com

FICHA TÉCNICA 03-04-2020 14:19:43

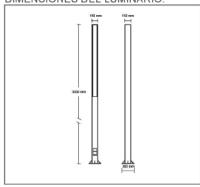
OU9051 G BN A 66W

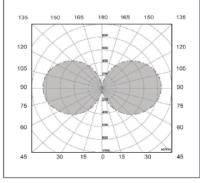
PRODUCTO ACTIVO

Poste de media altura luz difusa. Cuerpo en extruido de aluminio, difusor de acrílico opalino, acabado pintura horneada micropulverizada color gris metálico, hecho en tecnología Led de 65W de consumo total,en tono de luz Blanco Neutro. Driver electrónico multivoltaje 127-277V, integrado.

BOLLARD POSTE

ACCESORIO		


Material cuerpo	Aluminio Extruido
Material reflector	Lamina de aluminio blanco de alta reflectancia
Material difusor	Acrílico
Instalación de producto	Sobreponer
IP	65
Color	Gris
Garantía	5 años
Lámparas por equipo	4pzas
Consumo total	66W
Flujo de salida	4800lm
lk	4



FUENTE LUMINOSA		
Tecnología		
Base		

Base	G13
Flujo luminoso	5,520 lm
Vida promedio	25,000 h
Tipo de vida	L70
IRC	90 Ra
Temperatura de color	4000 K
Ángulo de apertura	180 °

LED

CURVA FOTOMÉTRICA:

SISTEMA ELÉCTRICO Y CONTROL

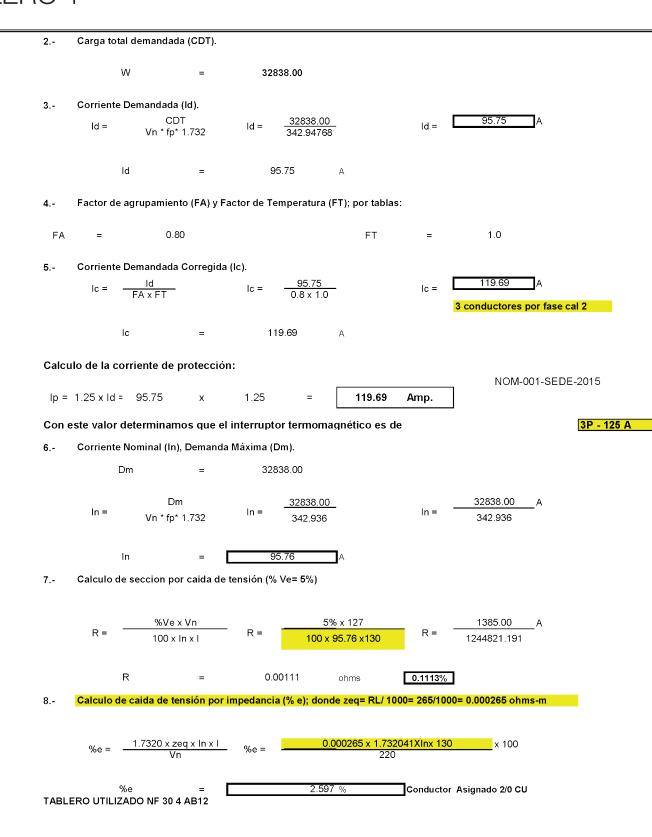
Equipo	Driver electrónico
Frecuencia de operación	60 Hz
Factor de potencia	> 0,95
Corriente de entrada	0.511-0.253 A
Temperatura de operación	-10 a 40 °C
Distorsiones armonícas (THD)	< 10 %
Método de control	0-10V
Atenuación mínima	10 %
Voltaje de entrada	127-277 Vca

La información técnica de los productos está sujeta a cambios sin previo aviso. www.construlitalighting.com

CALCULO DE TABLEROS CIRCUITOS TABLERO 1

CIRCUITOS ELECTRICOS ALUMBRADO					
CIRCUITO	RCUITO ÁREA				
C1	BAÑO	184			
C2	RESTAURANTE	1400			
C3	PASILLOS	1322			
C4	ALUMBRADO PARTE BAJA	160			
C5	LAMPARAS COSULTORIOS	1992			

CIRCUITOS ELE	CTRICOS CONTACTOS NORMALES	S Y REGULADOS
CIRCUITO	ÁREA	W
C1	REGULADOS COCINA	1620
C2	NORMALES COCINA	1620
C3	REGULADOS RESTAURANTE	900
C4	NORMALES RESTAURANTE	900
C5	REGULADOS ENTRADA	1800
C6	MEDICINA GENERAL (2 CONSULTORIOS) REG	1440
C7	MEDICINA GENERAL (2 CONSULTORIOS) NOR	1440
C8	NEUROLOGÍA (2 CONSULTORIOS) REG	1140
C9	NEUROLOGÍA (2 CONSULTORIOS) NOM	1440
C10	PSICOLOGÍA (2 CONSULTORIOS) REG	1440
C11	PSICOLOGÍA (2 CONSULTORIOS) NOM	1440
C12	FISIATRÍA (2 CONSULTORIOS) REG	1440
C13	FISIATRÍA (2 CONSULTORIOS) NOM	1440
C14	TRAUMATOLOGÍA (2 CONSULTORIOS) NOM	1440
C15	TRAUMATOLOGÍA (2 CONSULTORIOS) REG	1440
C16	GERIATRÍA (2 CONSULTORIOS) REG	1440
C17	GERIATRÍA (2 CONSULTORIOS) NOM	1440
C18	CONTACTOS PISO, LOBBY	1800
C19	PASILLO PARTE 1 REG	1080
C20	PASILLO PARTE 1 NOM	1080


OBRA:

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN PUEBLA, MEX

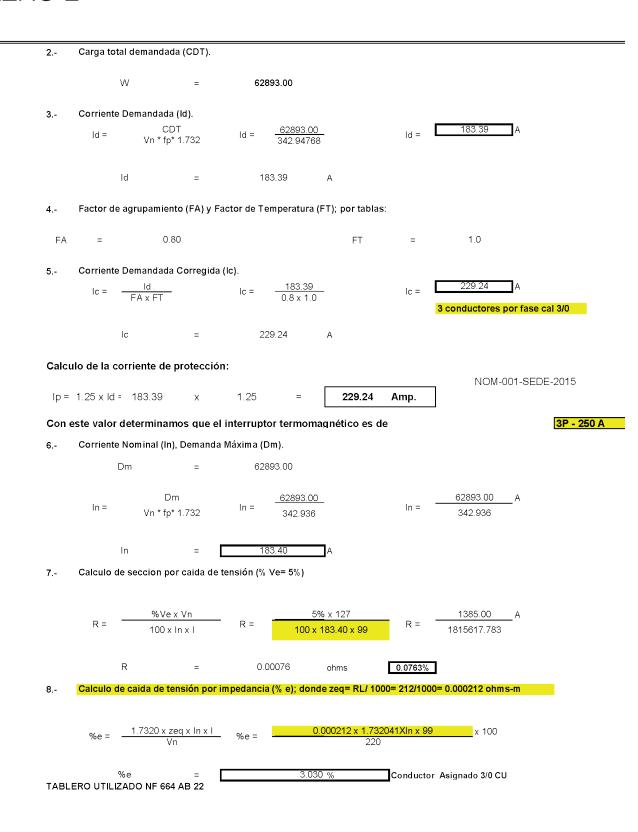
CALCULO DE ALIMENTACIÓN PRINCIPAL DE LOS TABLERO DE FUERZA

Longitud = 130 mts 3 fases 3 hilos 220 volts

ΓABLERO	CARGA CONECTADA va	х	FACTOR DE DEMANDA	=	DEMANDA MÁXIMA	х	FACTOR DE CONTINUIDAD	=	CAPACIDAD DEL CIRCUITO W
1	204.44	Х	0.9	=	184	х	1.00	=	184
2	1555.56	Х	0.9	=	1400	Х	1.00	=	1400
3	1468.89	Х	0.9	=	1322	Х	1.00	=	1322
4	177.78	Х	0.9	=	160	Х	1.00	=	160
5	2213.33	Х	0.9	=	1992	Х	1.00	=	1992
6	2025.00	Х	0.9	=	1620	Х	0.80	=	1296
7	1800.00	Х	0.9	=	1620	Х	0.80	=	1296
8	1000.00	Х	0.9	=	900	Х	0.80	=	720
9	1000.00	Х	0.9	=	900	Х	0.80	=	720
10	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
11	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
12	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
13	1266.67	Х	0.9	=	1140	Х	0.80	=	912
14	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
15	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
16	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
17	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
18	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
19	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
20	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
21	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
22	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
23	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
24	1200.00	Х	0.9	=	1080	Х	0.80	=	864
25	1200.00	Х	0.9	=	1080	Х	0.80	=	864
26	0.00	Х		=	0	Х		=	0
		Х		=		Х		=	
тот	36,711.67	Х		=	32838	Х		=	27282

CIRCUITOS ELECTRICOS ALUMBRADO					
C6	PASILLO	1232			
C7	ALUMBRADO PARTE BAJA Y PATIO EXTERIOR	755			
C8	BAÑO	1620			
C9	SIGNOS VITALES, SUPERVIISIÓN DE	1156			
C10	ESTIMULACIÓN TEMPRANA Y GABINTE	1218			
C11	SIMULACIÓN Y PROTESIS	572			
C12	GERIATRIA (CONSOLTORIOS), GERIATRIA GRUPAL, TERAPIA DE LENGUAJE	1334			
C13	RAYOS X, FARMACIA, DESCANSO TERAPEUTAS.	846			
C14	ROPERÍA, ASEO, ROPA SUCIA, SEPTICO	340			
C15	BAÑO TERAPSTAS	1560			

DESCANSO EMPLEADOS REG DESCANSO EMPLEADOS NOM RAYOS X REG RAYOS X NOM TERAPIA LENGUAJE REG TERAPIA LENGUAJE NOM GERIATRIA GRUPO NOM GERIATRIA (2 CONSULTORIOS) NOM VIGILANCIA, ROPERIA, ASEO.	1620 1980 1620 1620 1800 1800 1260 1260 1440
RAYOS X REG RAYOS X NOM TERAPIA LENGUAJE REG TERAPIA LENGUAJE NOM GERIATRIA GRUPO REG GERIATRIA GRUPO NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) NOM	1620 1620 1800 1800 1260 1260
RAYOS X NOM TERAPIA LENGUAJE REG TERAPIA LENGUAJE NOM GERIATRIA GRUPO REG GERIATRIA GRUPO NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	1620 1800 1800 1260 1260
TERAPIA LENGUAJE REG TERAPIA LENGUAJE NOM GERIATRIA GRUPO REG GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	1800 1800 1260 1260 1440
TERAPIA LENGUAJE NOM GERIATRIA GRUPO REG GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	1800 1260 1260 1440
GERIATRIA GRUPO REG GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	1260 1260 1440
GERIATRIA GRUPO NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	1260 1440
GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	1440
REG GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	
GERIATRIA (2 CONSULTORIOS) NOM GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	1440
GERIATRIA (2 CONSULTORIOS) REG GERIATRIA (2 CONSULTORIOS) NOM	
GERIATRIA (2 CONSULTORIOS) NOM	1440
	1440
	1800
ROPA SUCIA, REG VIGILANCIA , ROPERIA, ASEO,	1800
ROPA SUCIA, NOM PROTESIS, ORTESIS REG	1080
PROTESIS, ORTESIS NOM	
,	1080
SIMULACION LABORAL REG	1140
	1440
CONTACTOS PISO REG	1800
VIDA DIARIA, NIÑOS REG	1800
VIDA DIARIA, NIÑOS NOM	1800
VIDA DIARIA, NIÑOS REG	720
VIDA DIARIA, NIÑOS NOM	720
VISUAL Y RELAJACIÓN REG	1800
ESTIMULACIÓN AUDITIVA, VISUAL Y RELAJACIÓN NOM	1800
GABINETE Y RELAJACIÓN, BAÑOS, REG	1980
GABINETE Y RELAJACIÓN, NOM	1260
CONTACTOS PISOS REG	1440
CONTACTOS PISOS NOM	1440
CONTACTOS PISOS REG	1080
ELECTROTERAPIA REG	1800
ELECTROTERAPIA NOM	1800
SUPERVISIÓN	1440
TRATATMIENTOS, SIGNOS	1260
TRATATMIENTOS, SIGNOS VITALES REG ESTACION, SIGNOS VITALES, NOM	1260
	VIDA DIARIA, NIÑOS NOM VIDA DIARIA, NIÑOS REG VIDA DIARIA, NIÑOS NOM ESTIMULACIÓN AUDITIVA, VISUAL Y RELAJACIÓN REG ESTIMULACIÓN AUDITIVA, VISUAL Y RELAJACIÓN NOM GABINETE Y RELAJACIÓN, BAÑOS, REG GABINETE Y RELAJACIÓN, NOM CONTACTOS PISOS REG CONTACTOS PISOS REG ELECTROTERAPIA REG ELECTROTERAPIA NOM SUPERVISIÓN TRATATMIENTOS, BAÑOS NOM TRATATMIENTOS, BAÑOS NOM


OBRA:

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN PUEBLA, MEX

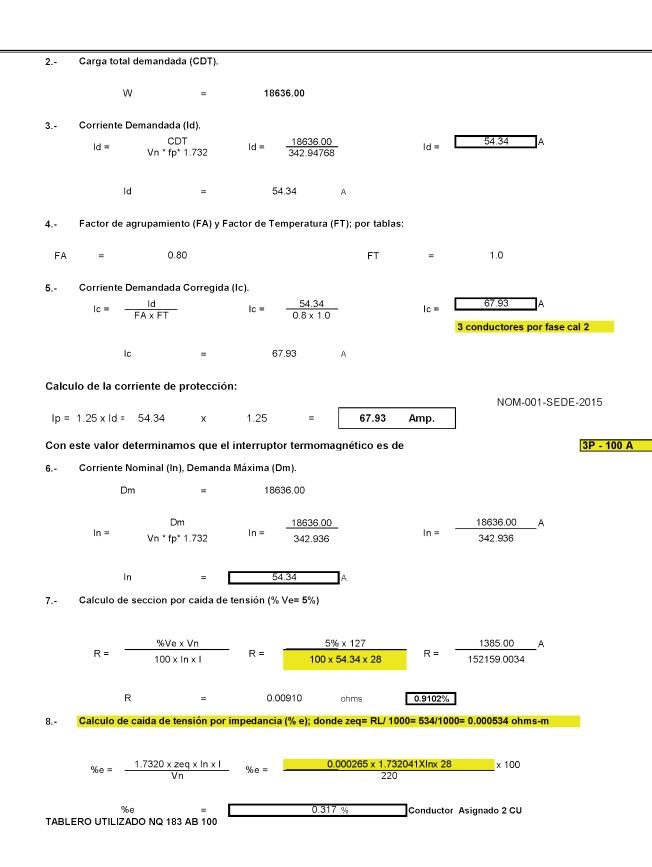
CALCULO DE ALIMENTACIÓN PRINCIPAL DE LOS TABLERO DE FUERZA

Longitud = 99 mts 3 fases 3 hilos 220 volts

	CAPACI						CAPACIDAD		
TABLERO	CARGA CONECTADA va	x	FACTOR DE DEMANDA	=	DEMANDA MÁXIMA	x	FACTOR DE CONTINUIDAD	=	DEL CIRCUITO W
1	1368.89	×	0.9	=	1232	×	1.00	=	1232
2	838.89	×	0.9	=	755	×	1.00	=	755
3	1800.00	X	0.9	=	1620	×	1.00	=	1620
4	1284.44	X	0.9	=	1156	×	1.00	=	1156
5	1353.33	×	0.9	=	1218	×	1.00	=	1218
6	715.00	X	0.8	=	572	×	1.00	=	572
7	1482.22	×	0.9	=	1334	×	1.00	=	1334
8	940.00	×	0.9	=	846	×	1.00	=	846
9	377.78	×	0.9	=	340	×	1.00	=	340
10	1733.33	Х	0.9	=	1560	×	1.00	=	1560
11	1800.00	Х	0.9	=	1620	Х	0.80	=	1296
12	2200.00	Х	0.9	=	1980	X	0.80	=	1584
13	1800.00	×	0.9	=	1620	×	0.80	=	1296
14	1800.00	X	0.9	=	1620	×	0.80	=	1296
15	2000.00	Х	0.9	=	1800	X	0.80	=	1440
16	2000.00	X	0.9	=	1800	×	0.80	=	1440
17	1400.00	X	0.9	=	1260	×	0.80	=	1008
18	1400.00	X	0.9	=	1260	×	0.80	=	1008
19	1600.00	Х	0.9	=	1440	×	0.80	=	1152
20	1600.00	×	0.9	=	1440	×	0.80	=	1152
21	1600.00	Х	0.9	=	1440	×	0.80	=	1152
22	1600.00	X	0.9	=	1440	×	0.80	=	1152
23	2000.00	X	0.9	=	1800	×	0.80	=	1440
24	2000.00	×	0.9	=	1800	×	0.80	=	1440
25	1200.00	Х	0.9	=	1080	×	0.80	=	864
26	1200.00	X	0.9	=	1080	×	0.80	=	864
27	1266.67	X	0.9	=	1140	×	0.80	=	912
28	1600.00	×	0.9	=	1440	×	0.80	=	1152
29	2000.00	×	0.9	=	1800	×	0.80	=	1440
30	2000.00	X	0.9	=	1800	×	0.80	=	1440
31	800.00	×	0.9	=	720	×	0.80	=	576
32	800.00	×	0.9	=	720	×	0.80	=	576
33	2000.00	Х	0.9	=	1800	×	0.80	=	1440
34	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
35	2200.00	×	0.9	=	1980	X	0.80	=	1584
36	1400.00	×	0.9	=	1260	×	0.80	=	1008
37	1600.00	X	0.9	=	1440	×	0.80	=	1152
38	1600.00	X	0.9	=	1440	×	0.80	=	1152
39	1200.00	×	0.9	=	1080	X	0.80	=	864
40	2000.00	×	0.9	=	1800	X	0.80	=	1440
41	2000.00	X	0.9	=	1800	X	0.80	=	1440
42	1600.00	X	0.9	=	1440	X	0.80	=	1152
43	1400.00	×	0.9	=	1260	X	0.80	=	1008
44	2200.00	×	0.9	=	1980	X	0.80	=	1584
45	1200.00	X	0.9	=	1080	X	0.80	=	864
тот	69,960.56	×		=	62893	×		=	52441

CIRCUITOS ELECTRICOS ALUMBRADO					
C16	GIMNASIO	1060			
C17	TANQUES TERAPEUTICOS	2038			
C18	TANQUES MIEMBROS INFERORES Y SUPERIORES	828			
C19	BAÑOS Y VESTIDORES	1950			
C20	CUARTO DE MAUINAS	1960			

CIRCUITOS ELEC	TRICOS CONTACTOS NORMALE	S Y REGULADOS
C57	VESTIDORES, MIEMBRO NOM	1800
C58	MIEMBROS , PASILLO (2) REG	1800
C59	MIEMBROS , PASILLO (2) NOM	1440
C60	PASILLO, PARAFINA, FLUIDOS, REG	1440
C61	PASILLO, PARAFINA, FLUIDOS, NOM	1440
C62	TANQUES REG	1440
C63	TANQUES NOM	1440


OBRA:

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN PUEBLA, MEX

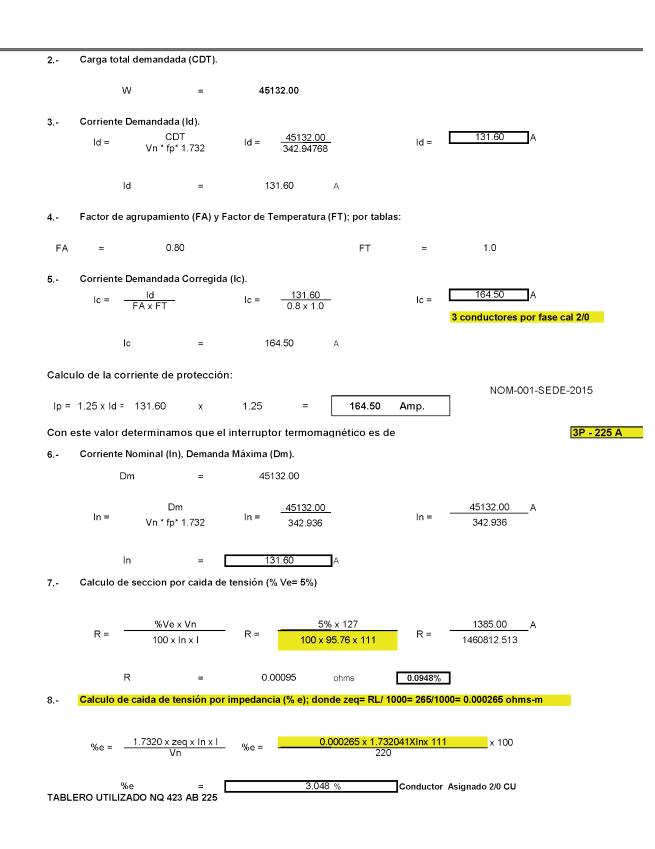
CALCULO DE ALIMENTACIÓN PRINCIPAL DE LOS TABLERO DE FUERZA

Longitud = 28 mts 3 fases 3 hilos 220 volts

TABLERO	CARGA CONECTADA va	x	FACTOR DE DEMANDA	=	DEMANDA MÁXIMA	x	FACTOR DE CONTINUIDAD	=	CAPACIDAD DEL CIRCUITO W
1	1177.78	Х	0.9	=	1060	Х	1.00	=	1060
2	2264.44	Х	0.9	=	2038	Х	1.00	=	2038
3	920.00	Х	0.9	=	828	Х	1.00	=	828
4	2166.67	Х	0.9	=	1950	Х	1.00	=	1950
5	2177.78	Х	0.9	=	1960	Х	1.00	=	1960
6	2250.00	Х	0.8	=	1800	Х	0.80	=	1440
7	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
8	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
9	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
10	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
11	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
12	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
		Х		=		Х		=	
тот	20,956.67	Х		=	18636	Х		=	16476

CIRCUITOS ELECTRICOS ALUMBRADO								
C21	C21 BAÑO							
C22	LOBBY, PASILLO DE OFICINAS	566						
C23	OFICINAS (PARTE DERECHA)	750						
C24	OFICINAS PARTE IZQUIERDA	450						
C25	PASILLO SALONES	828						
C26	ALUMBRADO PARTE BAJA	152						
C27	ALUMBRADO PARTE BAJA OFICINAS	88						
C28	SALONES SECCION NORTE	826						
C29	SALONES SECCION SUR	1392						

RCUITOS EL	ECTRICOS CONTACTOS NORMALES	S Y REGULADO
C67	RECURSOS HUMANOS, ADMINISTRACIÓN REG	1440
C68	RECURSOS HUMANOS, ADMINISTRACIÓN NOM	1440
C69	CONTABILIDAD, COOORDINACIÓN REG	1440
C70	CONTABILIDAD, COOORDINACIÓN NOM	1440
C71	CAJA, VIGILANCIA, LOBBY REG	1080
C72	CAJA, VIGILANCIA, LOBBY NOM	1080
C73	COCINA Y DIRECCIÓN REG	1080
C74	COCINA Y DIRECCIÓN NOM	1440
C75	SALA DE JUNTAS REG	1260
C76	SALA DE JUNTAS NOM	540
C77	REHABILITACIÓN OCUPACIONAL REG	900
C78	REHABILITACIÓN OCUPACIONAL NOM	1260
C79	COORDINACIÓN , EVALUACIÓN, JEFATURA REG	1440
C80	COORDINACIÓN , EVALUACIÓN, JEFATURA NOM	1440
C81	SALA UM Y ADIESTRAMIENTO REG	1620
C82	SALA UM Y ADIESTRAMIENTO NOM	1260
C83	SALA UM Y ADIESTRAMIENTO NOM	1440
C84	AULA ENSEÑANZA 4, 3 REG	1440
C85	AULA ENSEÑANZA 4, 3 NOM	1440
C86	AULA ENSEÑANZA 4, 3 NOM	1440
C87	AULA ENSEÑANZA 4, 3 REG	1800
C88	ÁREA DE MUESTRA 2 NOM	1440
C89	ADIESTRAMIENTO LABORAL REG	1260
C90	ADIESTRAMIENTO LABORAL NOM	1620
C91	ENSEÑANZA 1 , 2 REG	1800
C92	ENSEÑANZA 1,2 NOM	1800
C93	AULA 1, 2 NOM	720
C94	ÁREA DE MUESTRA 1 REG	900
C95	ÁREA DE MUESTRA 1 NOM	900


OBRA:

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN PUEBLA, MEX

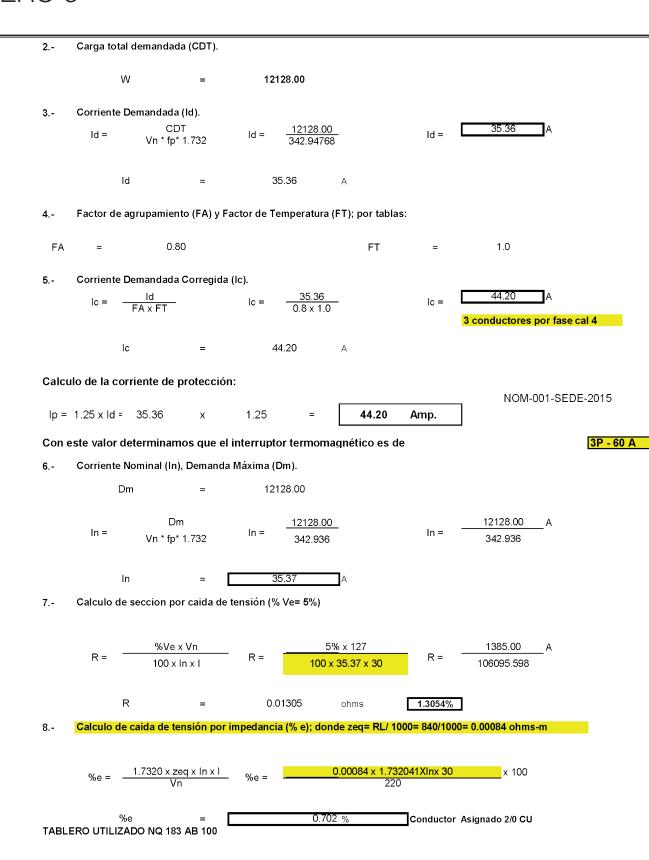
CALCULO DE ALIMENTACIÓN PRINCIPAL DE LOS TABLERO DE FUERZA

Longitud = 111 mts 3 fases 3 hilos 220 volts

TABLERO	CARGA CONECTADA va	х	FACTOR DE DEMANDA	=	DEMANDA MÁXIMA	х	FACTOR DE CONTINUIDAD	=	CAPACIDAD DEL CIRCUITO W
1	2133.33	Х	0.9	=	1920	Х	1.00	=	1920
2	628.89	Х	0.9	=	566	Х	1.00	=	566
3	833.33	Х	0.9	=	750	Х	1.00	=	750
4	500.00	Х	0.9	=	450	Х	1.00	=	450
5	920.00	Х	0.9	=	828	Х	1.00	=	828
6	190.00	Х	0.8	=	152	Х	1.00	=	152
7	97.78	Х	0.9	=	88	Х	1.00	=	88
8	917.78	Х	0.9	=	826	Х	1.00	=	826
9	1546.67	Х	0.9	=	1392	Х	1.00	=	1392
10	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
11	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
12	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
13	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
14	1200.00	Х	0.9	=	1080	Х	0.80	=	864
15	1200.00	Х	0.9	=	1080	Х	0.80	=	864
16	1200.00	Х	0.9	=	1080	Х	0.80	=	864
17	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
18	1400.00	Х	0.9	=	1260	Х	0.80	=	1008
19	600.00	Х	0.9	=	540	Х	0.80	=	432
20	1000.00	Х	0.9	=	900	Х	0.80	=	720
21	1400.00	Х	0.9	=	1260	Х	0.80	=	1008
22	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
23	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
24	1800.00	Х	0.9	=	1620	Х	0.80	=	1296
25	1400.00	Х	0.9	=	1260	Х	0.80	=	1008
26	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
27	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
28	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
29	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
30	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
31	1600.00	Х	0.9	=	1440	Х	0.80	=	1152
32	1400.00	Х	0.9	=	1260	Х	0.80	=	1008
33	1800.00	Х	0.9	=	1620	Х	0.80	=	1296
34	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
35	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
36	800.00	Х	0.9	=	720	Х	0.80	=	576
37	1000.00	Х	0.9	=	900	Х	0.80	=	720
38	1000.00	Х	0.9	=	900	Х	0.80	=	720
тот	50,167.78	Х		=	45132	Х		=	37500

CIRCUITOS ELECTRICOS ALUMBRADO								
C30	PLAZA CENTRAL	1312						
C31	EDIFICO PRINCIPAL (TRATAMIENTOS)	680						
C32	EDIFICO ADMINISTRATIVO	368						
C33	PLAZA ESATACIONAMIENTO	702						
C34	CUARTOS DE MAQUINAS	506						
C35	JARDIN TRASERO EDIFICIO ADMI	64						
C36	ESTACIONAMIENTO PARTE 1	1104						
C37	ESTACIONAMIENTO PARTE 2	1716						
C38	ESTACIONAMIENTO PARTE 3	1716						

CIRCUITOS ELECTRICOS CONTACTOS NORMALES Y REGULADOS									
C64	REGULAR	1080							
C65	NORMAL	1080							
C66	REGULAR	1800							


OBRA:

CENTRO DE REHABILITACIÓN FISICA INTEGRAL EN PUEBLA, MEX

CALCULO DE ALIMENTACIÓN PRINCIPAL DE LOS TABLERO DE FUERZA

Longitud = 30 mts 3 fases 3 hilos 220 volts

TABLERO	CARGA CONECTADA va	Х	FACTOR DE DEMANDA	=	DEMANDA MÁXIMA	Х	FACTOR DE CONTINUIDAD	=	CAPACIDAD DEL CIRCUITO W
1	1457.78	Х	0.9	=	1312	Х	1.00	=	1312
2	755.56	Х	0.9	=	680	Х	1.00	=	680
3	408.89	Х	0.9	=	368	Х	1.00	=	368
4	780.00	Х	0.9	=	702	Х	1.00	=	702
5	562.22	Χ	0.9	=	506	Χ	1.00	=	506
6	80.00	Х	0.8	=	64	Χ	1.00	=	64
7	1226.67	Х	0.9	=	1104	Х	1.00	=	1104
8	1906.67	Х	0.9	=	1716	Х	1.00	=	1716
9	1906.67	Х	0.9	=	1716	Х	1.00	=	1716
10	1200.00	Х	0.9	=	1080	Х	0.80	=	864
11	1200.00	Х	0.9	=	1080	Х	0.80	=	864
12	2000.00	Х	0.9	=	1800	Х	0.80	=	1440
		X		=		Х		=	
тот	13,484.44	Х		=	12128	Х		=	11336

