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Abstract

In this work the analysis of passive and active polarimeters with spectral
channeling, referred to as Stokes and Mueller matrix channeled spectropo-
larimeters, respectively, is presented. The main advantage of the polarimeters
reviewed is their independence on temporal resolution, as they can be used
as snapshot polarimeters. The simulation of these polarimeters and some ex-
traction methods for both Stokes vector and Mueller matrix inputs are also
presented.

The Stokes Channeled Spectropolarimeter (SCS) setup is composed of
two thick birefringent retarders followed by a horizontal linear polarizer. The
Mueller matrix Channeled Spectropolarimeter (MMCS) setup is composed
of a mirrored SCS as the polarization states generator (PSG) and a SCS as
the polarization states analyzer (PSA).

The effects of the retarders thickness ratio and global retardance factor are
studied to optimize the channeled spectropolarimeters (CS) setups. Because
it is also true that, given these instruments are sensitive to various error
sources, a calibration procedure is needed. However, this topic is out of the
scope of this thesis. Instead, the sensitivity of the polarimeters to these
error sources, including retardance and alignment error, as well as additive
Gaussian noise, is discussed.

14



Introduction

Motivation

When we refer to the polarization of light, we refer to one of the basic proper-
ties of a light wave; that is, the polarization is defined to be the description of
the vibration of the electric field [1]. Currently, man-made optical detectors
do not have a strong enough polarization-dependent response to effectively
capture polarization information [2]. For this reason many methods have
been developed to determine the polarization of light from observables such
as light intensity [3, 4, 5]. These methods comprise the field of polarimetry.

One of the difficulties of polarimetric measurements is the dependence
on temporal resolution, but some methods can work around this. Chan-
neled polarimeters with spatial or spectral channeling have independence
from temporal resolution through snapshot polarimetry [2, 6].

Spectroscopic analysis of the state of polarization (SOP) of light plays a
major role in polarimetric and ellipsometric studies of dispersive materials [7],
as cited by Oka [8]. Spectropolarimetry has been widely applied in various
application fields, such as remote sensing [9, 10], material characterization
[11, 12], and synthesis of novel materials [13, 14], as cited by Ju [15].

Objectives

The main objective of this work is to simulate the extraction process of a
source’s Stokes vector using channeled spectropolarimetry methods.

The secondary objectives include the simulation of the extraction of the
Mueller matrix of an optical component using channeled spectropolarime-
try methods, and the study of the effects of multiple error sources (added
independently).

15



Chapter 1

Theory of Polarization
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In this chapter, we present some fundamental concepts about polariza-
tion, including a simplified deduction of the polarization ellipse, the concepts
of Stokes vector and Mueller matrix, and some polarizing elements of interest
for this work.

1.1 Polarization

When we refer to the polarization of light, we refer to one of the basic prop-
erties of a light wave; that is, the polarization is defined to be the description
of the vibration of the electric field [1]. Light, understood as an electromag-
netic wave, has no component of electric field in its direction of propagation.
Therefore, the field E is, exclusively transversal. Furthermore, to completely
define the wave, we have to determine the direction of E at each moment
[16].

Linear polarization is then a vibration along one direction in three-dimen-
sional space with the propagation along a second direction, where the curve
traces the location of the tip of the electric field vector as the light propagates
through space. Linear polarization is one extreme of a continuum of possible
polarizations, called states, where circular polarization is the other extreme.
In this case, the plot of the tip of the electric field vector results in a helix.
Elliptical polarization is a general term that can be used to describe any
state in the continuum from linear to circular [1].

At any instant of time, the locus of points described by the optical field as
it propagates is an ellipse. This behaviour is spoken of as optical polarization
and is described by Eq. (1.1). The polarization ellipse is inscribed within a
rectangle whose sides are parallel to the coordinate axes and their lengths are
2E0x and 2E0y, that is, twice the maximum amplitudes of the correspondent
transverse components Ex and Ey when the propagation is in the z direction
(see Fig. 1.1) [1]

E2
x

E2
0x

�
E2
y

E2
0y

� 2
Ex
E0x

Ey
E0y

cosδ � sin2δ (1.1)

where δ is the difference between the arbitrary phases δx and δx, of the
transverse components Ex and Ey.

δ � δy � δx (1.2)
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From Eq. (1.1) and Fig. 1.1, the angle of rotation ψ of the polarization
ellipse is given by

tan2ψ �
2E0xE0ycosδ

E2
0x � E2

0y

(1.3)

We note that, for nonzero values of E0x and E0y, ψ is equal to zero only for
phases of δ � 90� or 270�. Similarly, for nonzero values of δ, ψ is equal to
zero only if E0x or E0y is equal to zero [1].

Figure 1.1: Elliptically polarized wave and the polarization ellipse.

Light is classified by its state of polarization (SOP ) as:

• Natural light or randomly polarized. When there are two orthogonal
components with equal magnitude, but with no correlation between
their oscillations (frequency) or phase difference.

• Partially polarized light. When there are two orthogonal components
of different magnitude, that is, light has a predominant state of polar-
ization.

• Completely polarized light, which is described by the polarization el-
lipse (Eq. (1.1)). As mentioned before, polarized light has two special-
ized (degenerate) forms for certain values of E0x, E0y and δ.

1. Linear polarized light

2. Circular polarized light

18



1.2 The Stokes vector and the Mueller ma-

trix

In 1852, Sir George Gabriel Stokes (1819–1903) discovered that the polariza-
tion behaviour could be represented in terms of observables. He found that
any state of polarized light could be completely described by four measur-
able quantities now known as the Stokes polarization parameters. The first
parameter expresses the total intensity of the optical field. The remaining
three parameters describe the polarization state [1].

In order to represent Eq. (1.1) in terms of the observables of the optical
field (Stokes parameters), we must take an average over the time of observa-
tion. The time average is represented by the symbol x...y, and so we write
Eq. (1.1) as [1]

xE2
xptqy

E2
0x

�
xE2

yptqy

E2
0y

� 2
xExptqy

E0x

xEyptqy

E0y

cosδ � sin2δ (1.4)

Solving the average values and substituting them into Eq. (1.4) yields

S0 �E
2
0x � E2

0y (1.5)

S1 �E
2
0x � E2

0y (1.6)

S2 �2E0xE0ycosδ (1.7)

S3 �2E0xE0ysinδ (1.8)

where the first Stokes parameter S0 is the total intensity of the light. The pa-
rameter S1 describes the amount of linear horizontal or vertical polarization,
the parameter S2 describes the amount of linear �45� or �45� polarization,
and the parameter S3 describes the amount of right or left circular polariza-
tion contained within the beam. We note that the four Stokes parameters
are expressed in terms of intensities, and we again emphasize that the Stokes
parameters are real quantities [1].

The Stokes parameters are arranged in a column vector known as the
Stokes vector. This step, while simple, provides a formal method for treating
numerous complicated problems involving polarized light using well estab-
lished linear algebra techniques [1].

S � pS0, S1, S2, S3q
T (1.9)
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If we now have partially polarized light, one can show that for any state
of polarized light the Stokes parameters always satisfy the relation

S2
0 ¥ S2

1 � S2
2 � S2

3 (1.10)

This is an equality when we have completely polarized light, and an inequality
when we have partially polarized light or unpolarized light. Therefore, the
Stokes vector is a mathematical tool for representing the state of polarization
of a field [1].

When an optical beam interacts with matter, its polarization state is al-
most always changed, as expressed by Eq. (1.11). In fact, this appears to be
the rule rather than the exception. The polarization state can be changed by
(1) changing the amplitudes of the components of the light (diattenuation),
(2) changing the relative phase between orthogonal components (retardance),
(3) changing the direction of the orthogonal field components (rotation), or
(4) transferring energy from polarized states to the unpolarized state (de-
polarization). These fundamental properties of a polarization element are
encoded within the Mueller matrix M, see Eq. (1.12); although, rotation es-
sentially results in a coordinate transformation. The Mueller matrix is a very
powerful mathematical tool for treating the interaction of light with matter
[1].

Si�1 �MSi (1.11)

M �

�
���
m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

�
��
 (1.12)

An optical element that changes the orthogonal amplitudes unequally
is called a polarizer or, more correctly, a diattenuator. Similarly, an opti-
cal device that introduces a phase shift between the orthogonal components
is called a retarder; other names used for the same device are wave plate,
compensator, or phase shifter. If the optical device rotates the orthogonal
components of the beam through an angle θ as it propagates through the
element, it is called a rotator. Finally, if energy in polarized states goes to
unpolarized states, the element is a depolarizer [1].
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1.3 Polarizing elements

A diattenuator (polarizer) is an optical element that attenuates the orthog-
onal components of an optical beam unequally; that is, a diattenuator is an
anisotropic attenuator; the two orthogonal transmission axes are designated
px and py. This element is commonly known as a polarizer; the more recent,
accurate, and descriptive term is diattenuator. Because of its historical and
embedded use, we will make concessions to convention, and make free use of
the term polarizer. For this work, we considered rotated ideal linear hori-
zontal polarizers (px � 1 and py � 0), Eq. (1.13) presents the corresponding
Mueller matrix [1].

M
P
p2θq �

1

2

�
���

1 cos 2θ sin 2θ 0
cos 2θ cos2 2θ sin2θcos2θ 0
sin 2θ sin2θcos2θ sin2 2θ 0

0 0 0 0

�
��
 (1.13)

where θ is the rotation angle of the polarizer with respect to the horizontal
reference.

A retarder is a polarizing element that changes the phase of the optical
beam. Strictly speaking, its correct name is phase shifter. However, historical
usage has led to the alternative names retarder, wave plate, and compensator.
Retarders introduce a phase shift of φ between the orthogonal components
of the incident field. The Mueller matrix of a rotated retarder is given by [1]

M
R
pφ, 2θq �

�
���

1 0 0 0
0 cos22θ � cosφsin22θ p1� cosφqsin2θcos2θ �sinφsin2θ
0 p1� cosφqsin2θcos2θ sin22θ � cosφcos22θ sinφcos2θ
0 sinφsin2θ �sinφcos2θ cosφ

�
��


(1.14)
where θ is the rotation angle of the retarder with respect to the horizontal
reference.
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1.4 Channeled polarimetry

The science of measuring polarization is known as polarimetry. We can
measure the Stokes parameters; that is, determine the polarization state of
light, and we can measure the Mueller matrix, that is, the characteristics of
polarizing elements. Both techniques can be partial or complete, if we can
measure all the Stokes parameters or the entire Mueller matrix [1].

There are also “null” techniques where the observer’s eye is the detection
device and which rely on the determination of the absence of light. Neverthe-
less, we will focus on automated polarimetry techniques with the assumption
that measurements are to be done using modern detectors, electronics, and
computer automation available to today’s experimental researcher [1].

Temporal misregistration, or intensity differences between time-sequential
measurements not induced by polarization, can be a significant source of error
in certain applications. Such misregistration can be caused by motion of the
platform or scene, and is therefore a particular concern in the field of remote
sensing [17], as cited by Goldstein [1].

If temporal scanning (e.g., a rotating retarder polarimeter) is used to
measure the Stokes parameters of a changing scene, then motion-based mis-
registration can occur between the measurements. Consequently, both po-
larimetric and motion-based intensity differences will appear as a signal after
data reduction. An example of a motion-induced artifact from a rotating
retarder polarimeter can be a moving sailboat; creating the appearance of
multiple targets [1].

One method that avoids temporal misregistration is referred to as chan-
neled polarimetry (CP). CP techniques make use of polarization interference
in order to amplitude modulate the Stokes parameters onto either spectral
or spatial carrier frequencies. The use of interference can be beneficial in
several respects when compared to a conventional polarimeter. For instance,
in a conventional polarimeter, four intensity measurements must be taken
(e.g., I0, I90, I135, and IR) for the calculation of a complete Stokes vector.
Doing so requires these values be manipulated (added and subtracted from
one another) within a computer during post processing. Conversely, CP en-
ables the direct measurement of all four Stokes parameters simultaneously,
by performing the addition and subtraction optically, through interference
between four coherent beams [1]. That is, CP enables snapshot polarimetry
[6].
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This is feasible because interference maintains the phase of each com-
ponent within the complex amplitude, before the detector measures the in-
tensity. Consequently, the amplitude and phase of the Stokes parameters
are encoded within the amplitude and phase of the carrier frequency, en-
abling the magnitude and sign (or handedness) of the Stokes parameters to
be extracted [1].

Another benefit of CP is realized through spectral or spatial registra-
tion. In a conventional polarimeter, image registration between the intensity
measurements must be accomplished to within 1/20th of a pixel to achieve
an accurate Stokes parameter reconstruction [18], as cited by Goldstein [1].
Otherwise, false polarization signatures can occur in the spectrum or scene.
Again, CP resolves these concerns by its use of interference. Since a given
Stokes parameter is calculated interferometrically and measured directly, im-
age registration between several intensity measurements is unnecessary. Fur-
thermore, since each Stokes parameter is modulated on coincident carrier
frequencies, spatial or spectral registration between all the Stokes parame-
ters is inherent. This significantly reduces the complexity of the Stokes vector
calculation over conventional polarimeters. However, these benefits come at
a tradeoff, typically to the spatial and spectral resolution of the sensor [1].

The fundamental concept of CP can be considered an analog to conven-
tional amplitude modulation (AM) [19], as cited by Goldstein [1]. In AM, a
time-dependent signal is mixed with a high frequency carrier U given by

Iptq � A�Dptq cosp2πUt� φq (1.15)

It should be noted that such a cosinusoidally modulated spectrum is gen-
erally called a channelled spectrum and is frequently used in the field of
frequency-domain interferometry [8]. Each of the these harmonic modula-
tions will split the information in the corresponding Fourier domains, creat-
ing weighted copies of the Fourier transform of the data at the modulations
carrier frequencies. These multiplexed copies are called channels [6].
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Chapter 2

Channeled Spectropolarimetry
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In this chapter, the fundamental concepts of channeled spectropolarime-
try (CS) are introduced. The CS setup of interest is also described for a
Stokes channeled spectropolarimeter (SCS) and a Mueller matrix channeled
spectropolarimeter (MMCS), including the parameter extraction techniques.

2.1 SCS Setup

Channeled spectropolarimetry (CS) is often implemented with a spectrome-
ter that uses some form of dispersion, such as a diffraction grating or prism
[1]. Furthermore, the spectrometer must have sufficient wavenumber resolu-
tion ∆σ to acquire the fine structure of the channelled spectrum. This implies
that smaller wavelength resolution ∆λ is needed for shorter wavelength λ [8].

The CS configuration of interest is capable of measuring the complete
Stokes vector and was proposed by Oka and Kato [8], see Fig. 2.1. The
CS consists of two thick birefringent retarders, R1 and R2, with fast axes
orientations at 0� and 45�, respectively; following comes an analyzer, with its
transmission axis defining the 0� reference, and the dispersive spectrometer.
Equations (2.1), (2.2), and (2.3) show the Mueller matrices for the polarizer
and the two retarders at 0� and 45�, respectively.

Figure 2.1: Stokes channeled spectropolarimeter setup.
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The Mueller matrices of these components are

M
P
p2p0�qq �

1

2

�
���

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
��
 (2.1)

M
R1
pφ1, 2p0

�qq �

�
���

1 0 0 0
0 1 0 0
0 0 cosφ1 sinφ1

0 0 �sinφ1 cosφ1

�
��
 (2.2)

M
R2
pφ2, 2p45�qq �

�
���

1 0 0 0
0 cosφ2 0 �sinφ2

0 0 1 0
0 sinφ2 0 cosφ2

�
��
 (2.3)

The retardance φi of the birefringent plate is given by Eq. (2.7)

φi �
2π

λ
τi (2.4)

�2πστi (2.5)

τi �d0diB (2.6)

φi �2πσd0diB (2.7)

where (2πστi) signify that retardances are linear with wavenumber [2], d0
and di are the global and local retardance factors, respectively of the i-th
retarder. The product d0di is the retarder’s thickness. The concept of the
present method is based primarily on the fact that the phase retardation of
a thick birefringent plate changes appreciably with wave number σ. This
implies that the birefringent plate can serve as a variable retarder when it is
combined with a spectroscopic device [8]. Although, Eq. (2.7) is a function
of σ, this dependence will not be written explicitly in the rest of this work
to simplify the further developments.

From Fig. 2.1 and Eq. (2.1), (2.2), and (2.3), the matrix for the SCS is
given by

W �M
P
p0qM

R2
pφ2, π{2qMR1

pφ1, 0q (2.8)

Considering a light source of unknown SOP Spσq and a detector insensitive
to polarization, the measured irradiance is given by

Ipσq �
�
1 0 0 0

�
WSpσq (2.9)
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Substituting the corresponding matrices

Ipσq �
�
1 0 0 0

�
M

P
p0qM

R2
pφ2, π{2qMR1

pφ1, 0qSpσq (2.10)

Ipσq �
1

2

�
���

1
0
0
0

�
��


T �
���

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

�
��


�
���

1 0 0 0
0 cosφ2 0 �sinφ2

0 0 1 0
0 sinφ2 0 cosφ2

�
��
�

�

�
���

1 0 0 0
0 1 0 0
0 0 cosφ1 sinφ1

0 0 �sinφ1 cosφ1

�
��


�
���
S0pσq
S1pσq
S2pσq
S3pσq

�
��
 (2.11)

Ipσq �
1

2

�
���

1
0
0
0

�
��


T �
���

1 cosφ2 sinφ1sinφ2 �cosφ1sinφ2

1 cosφ2 sinφ1sinφ2 �cosφ1sinφ2

0 0 0 0
0 0 0 0

�
��


�
���
S0pσq
S1pσq
S2pσq
S3pσq

�
��
 (2.12)

This product defines the intensity profile Ipσq as a sum of sines and cosines
with arguments that are the combinations of different modulations from the
system. The intensity spectrum recorded by the detector is given by

Ipσq �
1

2
S0pσq �

1

2
S1pσqcosφ2 �

1

2
S2pσqsinφ1sinφ2 �

1

2
S3pσqcosφ1sinφ2

(2.13)
From Eq. (2.7) and (2.13), the effective carrier frequencies of the recorded

spectrum are Ui � d0diB. Therefore, the carrier frequencies increase with
both the thickness and the birefringence of the retarders [1]. Furthermore, we
consider that the polarizer behaves the same independently of wavenumber
and the retarders’ behaviour depends on wavenumber.

From the trigonometric identities

cospa� bq �cospaqcospbq 	 sinpaqsinpbq (2.14)

sinpa� bq �sinpaqcospbq � cospaqsinpbq (2.15)

we have

sinpaqsinpbq �
1

2
p�cospa� bq � cospa� bqq (2.16)

cospaqsinpbq �
1

2
psinpa� bq � sinpa� bqq (2.17)
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Substituting in Eq. (2.13)

Ipσq �
1

2
S0pσq �

1

2
S1pσqcosφ2

�
1

4
S2pσqr�cospφ1 � φ2q � cospφ1 � φ2qs

�
1

4
S3pσqrsinpφ1 � φ2q � sinpφ1 � φ2qs (2.18)

The inverse Fourier transform of Ipσq gives the autocorrelation function
Cpτq [8], see Eq. (2.22), which describes the modulation channels in the τ -
domain (optical path difference, OPD-space) of the spectrum of the SOP
we want to know. The Fourier transforms of the three modulations are

1pσq ÐÑ δpτq (2.19)

cosp2πστiq ÐÑ
1

2
rδpτ � τiq � δpτ � τiqs (2.20)

sinp2πστiq ÐÑ


2
rδpτ � τiq � δpτ � τiqs (2.21)

where δ, with no subscript, is the Dirac delta function, τ is the Fourier
transform variable of σ [1, 2, 6].

Cpτq �F�1tIpσqu (2.22)

�
1

2
F�1tS0pσqu �

1

4
F�1tS1pσqu
 rδpτ � τ2q � δpτ � τ2qs

�
1

8
F�1tS2pσqu
 r�δpτ � τ1 � τ2q � δpτ � τ1 � τ2q

� δpτ � τ1 � τ2q � δpτ � τ1 � τ2qs

� 
1

8
F�1tS3pσqu
 rδpτ � τ1 � τ2q � δpτ � τ1 � τ2q

� δpτ � τ1 � τ2q � δpτ � τ1 � τ2qs (2.23)

Each successive modulation in the σ-domain is equivalent to a convolution
of those δ-functions in the τ -domain, which all have potentially different
OPD τi [2]. This is observed in Eq. (2.23). Therefore, the channels, Hpτ�τiq,
can be isolated using a frequency filtering technique [15].

We observe that the autocorrelation function (Eq. (2.23)) considers six
possible modulations (additional channels to the central channel C0) centred
in positions given by

τ � 0,�τ2,�pτ1 � τ2q,�pτ1 � τ2q (2.24)
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Although, we do not expect modulations at τ � �τ1, we consider it as
a reference. Therefore, the autocorrelation function has nine modulation
channels in total for our approach to the SCS method.

From Eq. (2.7), retardance is a function of the retarder’s thickness and
the field’s wavenumber that passes through the retarder. Nevertheless, as
both retarders are made of the same material and are exposed to the same
spectrum range, it is considered that the retardances are mainly dependent
on the thicknesses (d0d1, d0d2). Therefore, we propose a classification of the
SCS of interest based on the thickness’ ratio (d1 : d2) for retarders R1 y R2

(see Table 2.1).
For certain thickness’ ratios, the number of channels is decreased by

means of crosstalk, that is, two or more channels overlap to some extent
where they are not distinguishable. The level of reduction of channels is
greater for the Mueller matrix polarimeter which uses four retarders, com-
pared with the Stokes polarimeter.

When φ1 � φ2, we expect six different cases with up to nine channels
(NC � 9), see Table 2.1. It is also noticed that for φ1 � 2φ2 and φ1 � φ2{2,
channel Hpτ 	 pτ1� τ2qq is combined (crosstalk) with channel Hpτ 	 τ2q and
Hpτ � τ1q, respectively. For these cases, the number of channels (NC) is
reduced to seven.

Table 2.1: Thickness ratio pd1 : d2q classification of SCS
Case Channel relative position

d1 pd1 : d2q τ1 τ2 τ1 � τ2 τ1 � τ2 NC

1   d2{2 (1, 3) 1 3 4 -2 9
2 � d2{2 (1, 2) 1 2 3 -1 7
3 ¡ d2{2 (1, 1.5) 2 3 4 -1 9
4 ¡ 2d2 (3, 1) 3 1 4 2 9
5 � 2d2 (2, 1) 2 1 3 1 7
6   2d2 (1.5, 1) 3 2 4 1 9

To extract the Stokes vector, three methods were considered: 1) Mueller
analysis, 2) Channel Splitting as described by Oka and Kato [8], and 3)
Analytical Channel Splitting as described by Alenin and Tyo [2, 6]. For the
last two cases, we calculate the autocorrelation function and we try to recover
the SOP .
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2.1.1 Mueller analysis

Supposing we know the real Mueller matrix W of the SCS (Eq. (2.8)) along
the wavenumber range, we can solve the Stokes vector Spσq with the irradi-
ance measured by the spectrometer (Eq. (2.9)).

I �Ipσq (2.25)

�
�
1 0 0 0

�
WpσqSpσq (2.26)

�
�
w00pσq w01pσq w02pσq w03pσq

�
Spσq (2.27)

Spσq �
�
w00pσq w01pσq w02pσq w03pσq

��1
I (2.28)

We have to solve this for each σn where (n � 0, 1, 2, . . . , N � 1)

Spσnq �
�
w00pσnq w01pσnq w02pσnq w03pσnq

��1
Ipσnq (2.29)

or

Spσq �W1�I (2.30)

where

W1 �

�
����

w00pσ1q w01pσ1q w02pσ1q w03pσ1q
w00pσ2q w01pσ2q w02pσ2q w03pσ2q

...
...

...
...

w00pσNq w01pσNq w02pσNq w03pσNq

�
���
 (2.31)

and W1� is the pseudo-inverse, given by the Moore-Penrose generalized in-
verse

W1� � pW1TW1q�1W1T (2.32)

Nevertheless, this method considers Spσq to be invariant with wavenumber.
Therefore it is only used as a control method.
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2.1.2 Channel Splitting

From the autocorrelation function (Eq. (2.23)), each channel is isolated us-
ing a window filter and applying Fourier analysis we can solve the Stokes
parameters [8]. The filters applied can be fitted to specific configurations or
designed to benefit the filtering of certain channels of interest.

From Eq. (2.18), using the Euler identities

Ipσq �
1

2
S0pσq �

1

4
S1pσqpe

�φ2 � e�φ2q

�
1

8
S2pσqpe

�pφ1�φ2q � e�pφ1�φ2qq �
1

8
S2pσqpe

�pφ1�φ2q � e�pφ1�φ2qq

� 
1

8
S3pσqpe

�pφ1�φ2q � e�pφ1�φ2qq � 
1

8
S3pσqpe

�pφ1�φ2q � e�pφ1�φ2qq

(2.33)

We rewrite the autocorrelation function (Eq. (2.23)) as

Cpτq �
1

2
A0pτq �

1

4
A1pτ � τ2q �

1

4
A�

1pτ � τ2q

�
1

8
A2pτ � pτ1 � τ2qq �

1

8
A�

2pτ � pτ1 � τ2qq

�
1

8
A3pτ � pτ1 � τ2qq �

1

8
A�

3pτ � pτ1 � τ2qq (2.34)

where

A0pτq �F�1tS0pσqu (2.35)

A1pτ � τ2q �F�1tS1pσqe
�φ2u (2.36)

A2pτ � pτ1 � τ2qq �F�1tS23pσqe
�pφ1�φ2qu (2.37)

A3pτ � pτ1 � τ2qq �F�1tS23pσqe
�pφ1�φ2qu (2.38)

S23pσq �S2pσq � S3pσq (2.39)

The Stokes parameters are obtained using Fourier analysis and the Chan-
nel Splitting method [2, 6, 8].

S0pσq �FtA0pτqu (2.40)

S1pσq �FtA1pτ � τ2que
�φ2 (2.41)

S23pσq �FtA3pτ � pτ1 � τ2qque
�pφ1�φ2q (2.42)

S2pσq �RetS23u (2.43)

S3pσq �ImtS23u (2.44)
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We ignore channel A2pτ � pτ1 � τ2qq because of the crosstalk between
channels Hpτ � pτ1 � τ2qq and Hpτ � τ2q, when φ1 � 2φ2. For this case, a
correction is needed. From Eq. (2.33)

Ipσq �
1

2
S0pσq �

1

4
S1pσqpe

�φ2 � e�φ2q

�
1

8
S2pσqpe

�pφ1�φ2q � e�pφ1�φ2qq �
1

8
S2pσqpe

�pφ2q � e�pφ2qq

� 
1

8
S3pσqpe

�pφ1�φ2q � e�pφ1�φ2qq � 
1

8
S3pσqpe

�pφ2q � e�pφ2qq

(2.45)

�
1

2
S0pσq �

1

4

�
S1pσq �

1

2
S23pσq

	
e�φ2 �

1

4

�
S1pσq �

1

2
S�
23pσq

	
e�φ2

�
1

8
S23pσqe

�pφ1�φ2q �
1

8
S�
23pσqe

�pφ1�φ2q (2.46)

The autocorrelation function is given by

Cpτq �
1

2
F�1tS0pσqu

�
1

4
F�1t

�
S1pσq �

1

2
S23pσq

	
e�φ2u �

1

4
F�1t

�
S1pσq �

1

2
S�
23pσq

	
e�φ2u

�
1

8
F�1tS23pσqe

�pφ1�φ2qu �
1

8
F�1tS�

23pσqe
�pφ1�φ2qu (2.47)

The Stokes parameters S0, S2, and S3 are still solved using Eq. (2.40),
(2.43), and (2.44). But the channels with information of S1 and S2 have
crosstalk, as stated by Eq. (2.48).

A1pτ � τ2q �F�1t
�
S1pσq �

1

2
S23pσq

	
e�φ2u (2.48)

S1pσq �FtA1pτ � τ2que
�φ2 �

1

2
S23pσq (2.49)

2.1.3 Analytical Channel Splitting

In order to have an analytical form for the channel splitting method, a con-
struct is needed to recreate the modulations in the Fourier domain. This is
obtained through a Frequency Phase Matrix (FPM), which determines the
functional form of the modulation and makes Fourier transforms a matter of
looking up the correct row of a precalculated matrix (see Table 2.2) [2, 6].
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Table 2.2: Frequency Phase Matrix (FPM) for M � 1, 2, 3, 4 sinusoidal mod-
ulations. Each FPM has an omitted weight of 2�M .
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sscc �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 b1100
ccsc � � � � � � � � � � � � � � � � b0010
scsc �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 b1010
cssc �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 b0110
sssc � � � � � � � � � � � � � � � � b1110
cccs � � � � � � � � � � � � � � � � b0001
sccs �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 b1001
cscs �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 b0101
sscs � � � � � � � � � � � � � � � � b1101
ccss �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 b0011
scss � � � � � � � � � � � � � � � � b1011
csss � � � � � � � � � � � � � � � � b0111
ssss �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 b1111

Using the FPM, b-vectors are defined as a representation of the modu-
lations of each Stokes parameter (or Mueller matrix element). For example,
the modulation cosφ2 of S1pσq (see Eq. (2.13)) is defined as bS1 � 1{2p1, 1q
(see Table 2.2). By concatenating the appropriate b-vectors, we obtain a
map for each Stokes vector (or Mueller matrix) element’s splitting, called
the Q-matrix [2], which maps an input Stokes vector (or vectorized Mueller

matrix) into a channel vector C [6],

C � QF�1tSpσqu (2.50)

where C is a matrix formed by concatenating the filtered channels of the
autocorrelation function Cpτq.

From the setup given by Oka and Kato [8], (see Fig. 2.1), all θ’s are
forced to be in steps of 45�, which collapses cosp2θq and sinp2θq to either �1
or 0. As a result, retardance is the only potential source of modulation [2].
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From the autocorrelation function for an ideal SCS (Eq. (2.23)), we propose
a template (see Table 2.3) for the Q-matrix based on the local retardance

factors, the elements of the thickness vector d � pd1, d2q elements. We
construct the Q-matrix by rearranging the rows of the template following

the relative positions of the channels, given by the local retardance factors
comparison (see Table 2.1).

Table 2.3: SCS Q-matrix template
Index OPD S0 S1 S2 S3

4 �τ1 � τ2 �1{8 �1{8
3 �τ1 � τ2 �1{8 �1{8
2 �τ2 �1{4
1 �τ1 0
0 0 �1{2
�1 �τ1 0
�2 �τ2 �1{4
�3 �τ1 � τ2 �1{8 �1{8
�4 �τ1 � τ2 �1{8 �1{8

The Q-matrix has a cardinality rNC �M s where NC is the number of

channels or modulations, given by the birefringent plates thicknesses (di)
and Eq. (2.51), and M � 4 for the number of Stokes parameters (or M � 16
for the Mueller matrix elements) [2, 6].

NC � 1� 2
¸
i

di (2.51)

Nevertheless, the Eq. (2.51) of NC given by Alenin and Tyo [2, 6] considers
empty channels for some d-vectors and requires it to be an integer vector. To
reduce the SCS Q-matrix size, we consider NC to be the number of different

modulations obtained from Eq. (2.18) and shown in Table 2.1. This also
helps us to avoid the analysis of empty channels or without information of
interest.

What we need to extract the input Stokes vector is an inverse map, a
matrix that tells which channels have to be combined in order to extract the
Stokes vector [2]. That inverse map corresponds to the pseudo-inverse Q�,

given by the Moore-Penrose generalized inverse (Eq. (2.32)).

Spσq � Q�FtCu (2.52)
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It is important to note that a phase shift must be corrected when applying
the Fourier transform to the filtered channels, as in the channel splitting
method. For this matter, we analyse each possible channel and multiply it by
a phase cancellation term corresponding to the retardance φi to each channel
Cipτq. This approach is mostly helpful for cases with crosstalk between
channels (e.g., τ1 � τ2 � τ2).
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2.2 MMCS Setup

The MMCS consists of a polarization states generator (PSG) and a polar-
ization states analyzer (PSA), with the sample placed in between, followed
by a spectrometer. The MMCS setup studied is given by Eq. (2.53), whose
PSA is the same studied for the SCS in Section 2.1 and the PSG is a mirror
image of the PSA (see Fig. 2.2). It is observed that where the SCS generally
works with 7 encoding channels, the MMCS works with up to 49 channels,
so that spectrometer resolution requirements are more stringent [20].

W �M
P2
p0qM

R4
pφ4, π{2qMR3

pφ3, 0qM�

�M
R2
pφ2, 0qMR1

pφ1, π{2qMP1
p0q (2.53)

Figure 2.2: Mueller matrix channeled spectropolarimeter setup.

For this setup, an unpolarized light source with intensity I0pσq and a
detector unsensitive to polarization is considered. The irradiance measured
by the detector is given by

Ipσq �
�
1 0 0 0

�
W
�
I0 0 0 0

�T
(2.54)

Substituting the system matrix and developing the equation.

Ipσq �
�
1 0 0 0

�
M

P2
p0qM

R4
pφ4, π{2qMR3

pφ3, 0qM�

�M
R2
pφ2, 0qMR1

pφ1, π{2qMP1
p0q
�
I0 0 0 0

�T
(2.55)
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Ipσq �
1

4
I0

�
���

1
0
0
0

�
��


T �
���

1 cosφ4 sinφ3sinφ4 �cosφ3sinφ4

1 cosφ4 sinφ3sinφ4 �cosφ3sinφ4

0 0 0 0
0 0 0 0

�
��
�

�

�
���
m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

�
��
�

�

�
���

1 1 0 0
cosφ1 cosφ1 0 0

sinφ1sinφ2 sinφ1sinφ2 0 0
sinφ1cosφ2 sinφ1cosφ2 0 0

�
��


�
���

1
0
0
0

�
��
 (2.56)

Ipσq �
1

4
I0pσqXpσq (2.57)

where

Xpσq �
�
1 cosφ4 sinφ3sinφ4 �cosφ3sinφ4

�
M

�
���

1
cosφ1

sinφ1sinφ2

sinφ1cosφ2

�
��
 (2.58)

Therefore, the expected modulations of the MMCS are given by

Xpσq � �m00 �m01cosφ1

�m02sinφ1sinφ2 �m03sinφ1cosφ2

�m10cosφ4 �m11cosφ1cosφ4

�m12sinφ1sinφ2cosφ4 �m13sinφ1cosφ2cosφ4

�m20sinφ3sinφ4 �m21cosφ1sinφ3sinφ4

�m22sinφ1sinφ2sinφ3sinφ4 �m23sinφ1cosφ2sinφ3sinφ4

�m30cosφ3sinφ4 �m31cosφ1cosφ3sinφ4

�m32sinφ1sinφ2cosφ3sinφ4 �m33sinφ1cosφ2cosφ3sinφ4 (2.59)

For the MMCS, we studied two methods: 1) the Measurement matrix
method [21] and 2) the Analytical Channel Splitting method proposed by
Alenin and Tyo [2, 6]. A Channel splitting method, similar to the one re-
viewed in Section 2.1.2, was developed by Hagen, Oka, and Dereniak [22] for
a specific MMCS configuration, but is out of the scope of this thesis.
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2.2.1 Measurement matrix

A similar procedure to the Mueller analysis of the SCS is followed. For this
method, a series of analyzing polarization states (vectors) and generating
vectors are predetermined

An �
�
a0 a1 a2 a3

�T
n

(2.60)

Gn �
�
g0 g1 g2 g3

�T
n

(2.61)

so the irradiance measured is given by

Ipσnq � AT
n MGn (2.62)

which can be shown is equivalent to

Ipσnq � D1T
n M

1 (2.63)

where D1
n is the dyad product D

n
� AnG

T
n reshaped into a vector

D1
n �An bGn (2.64)

�
�
a0g0 . . . a0g3 . . . a3g0 . . . a3g3

�T
n

(2.65)

and M1 is the Mueller matrix reshaped into a Mueller vector [6],

M1 � pm00m01m02m03m10m11m12m13m20m21m22m23m30m31m32m33q
T

(2.66)
Developing and rearranging Eq. (2.63) yields

I �W1M1 (2.67)

where

W1 �
�
D1

0 D1
1 . . . D1

N�1

�T
(2.68)

Therefore, W1 is a matrix containing the states of analysis-generation defined
by the combination of the PSA and PSG of the MMCS [2, 6].

The extraction of the Mueller matrix elements is achieved by inverting
the process:

M1 �W1�I (2.69)

where W1� is the pseudo-inverse of W1, given by the Moore-Penrose gener-
alized inverse (Eq. (2.32)). However, this method considers the M-matrix
invariant with wavenumber, therefore, it is used only as a reference.
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2.2.2 Analytical Channel Splitting

This method corresponds to the Generalized Channeled Polarimetry method-
ology [6] and follows the same process described in Section 2.1.3. We propose
a template (see Table 2.4) for the Q-matrix of the MMCS with four retarders.

It is important to mention that for the MMCS analysis the number of chan-
nels NC is given by Eq. (2.51).

C �QF�1tM1u (2.70)

M1 �Q�FtCu (2.71)

Summarizing, the Measurement matrix method is used as a reference.
This research is focused on the Generalized Channeled Polarimetry method-
ology proposed by Alenin and Tyo [2, 6].
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Table 2.4: MMCS Q-matrix template.

Index OPD m
0
0

m
0
1

m
0
2

m
0
3

m
1
0

m
1
1

m
1
2

m
1
3

m
2
0

m
2
1

m
2
2

m
2
3

m
3
0

m
3
1

m
3
2

m
3
3

Factor
24 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
23 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
22 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
21 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
20 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
19 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
18 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
17 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
16 �τ1 � τ3 � τ4 �1 � 1{8
15 �τ1 � τ3 � τ4 �1 � 1{8
14 �τ1 � τ3 � τ4 �1 � 1{8
13 �τ1 � τ3 � τ4 �1 � 1{8
12 �τ1 � τ2 � τ4 �1 � 1{8
11 �τ1 � τ2 � τ4 �1 � 1{8
10 �τ1 � τ2 � τ4 �1 � 1{8
9 �τ1 � τ2 � τ4 �1 � 1{8
8 �τ3 � τ4 �1 � 1{4
7 �τ3 � τ4 �1 � 1{4
6 �τ1 � τ4 �1 1{4
5 �τ1 � τ4 �1 1{4
4 �τ1 � τ2 �1 � 1{4
3 �τ1 � τ2 �1 � 1{4
2 �τ4 �1 1{2
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Continuation of Table 2.4

Index OPD m
0
0

m
0
1

m
0
2

m
0
3

m
1
0

m
1
1

m
1
2

m
1
3

m
2
0

m
2
1

m
2
2

m
2
3

m
3
0

m
3
1

m
3
2

m
3
3

Factor
1 �τ1 �1 1{2
0 0 �1 1

-1 �τ1 �1 1{2
-2 �τ4 �1 1{2
-3 �τ1 � τ2 �1 � 1{4
-4 �τ1 � τ2 �1 � 1{4
-5 �τ1 � τ4 �1 1{4
-6 �τ1 � τ4 �1 1{4
-7 �τ3 � τ4 �1 � 1{4
-8 �τ3 � τ4 �1 � 1{4
-9 �τ1 � τ2 � τ4 �1 � 1{8

-10 �τ1 � τ2 � τ4 �1 � 1{8
-11 �τ1 � τ2 � τ4 �1 � 1{8
-12 �τ1 � τ2 � τ4 �1 � 1{8
-13 �τ1 � τ3 � τ4 �1 � 1{8
-14 �τ1 � τ3 � τ4 �1 � 1{8
-15 �τ1 � τ3 � τ4 �1 � 1{8
-16 �τ1 � τ3 � τ4 �1 � 1{8
-17 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
-18 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
-19 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
-20 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
-21 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
-22 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
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Continuation of Table 2.4

Index OPD m
0
0

m
0
1

m
0
2

m
0
3

m
1
0

m
1
1

m
1
2

m
1
3

m
2
0

m
2
1

m
2
2

m
2
3

m
3
0

m
3
1

m
3
2

m
3
3

Factor
-23 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
-24 �τ1 � τ2 � τ3 � τ4 �1 � � �1 1{16
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Chapter 3

Simulations, results, and
discussion of CS systems
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In this chapter, the methodology for the simulation of the SCS and the
MMCS is described, as well as the sources of error that might be encountered.
The results of some simulated configurations are reported as well, along a
discussion on the effects of the sources of error on SCS and MMCS systems.

3.1 Methodology for the CS simulation

The general methodology for both the SCS and the MMCS simulations is as
follows:

1. Select a sample (either a Stokes vector or a Mueller matrix).

2. Define the CS configuration, including the spectral range rσmin, σmaxs,
the spectral resolution ∆σ, the number of pixels N in the irradiance
curve, the nominal global retardance factor, the nominal local retar-
dance factors (thickness’ ratio), and the sources of error

• Retardance errors (∆di)

• Alignment errors (εi)

• Gaussian noise amplitude

3. Run the methods reviewed to simulate the irradiance to be measured.

4. Run the inverse methods to extract the samples (the Stokes vector or
the Mueller matrix) from the irradiance measured, for this purpose con-
sider the irradiance obtained with Eq. (2.9) for the SCS and Eq. (2.54)
for the MMCS.

3.1.1 Experiment setup

For the SCS we have two thick birefringent plates followed by a linear po-
larizer. The transmission axis of the linear polarizer is horizontal and is the
system’s reference (0�). The retarders are then aligned with the polarizer
at 0� (M

R1
) and at 45� (M

R2
), see Fig. 2.1. For the MMCS, the system

is mirrored as discussed in Section 2.2, see Fig. 2.2. For the spectrome-
ter, a σ-wavenumber range from 1.4954 � 104rcm�1s to 1.8408 � 104rcm�1s
(λ � 543 � 668rnms), with a sampling number N of 1024 and 2048 for the
SCS and MMCS, respectively, and a corresponding wavenumber resolution
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of pσmax � σminq{N were considered. The high-order retarders are assumed
to be made of quartz, and the birefringence was calculated using a model
proposed by Ghosh [23].

3.2 Reconstruction artifacts

Reconstruction artifacts, associated with the Fast Fourier Transform (FFT)
method applied, appear when extracting the Stokes vector or the Mueller ma-
trix due to a lack of periodicity in the irradiance measured, which contradicts
the FFT supposition of a periodic function.

Therefore, before computing the FFT, to prevent discontinuities in the
periodic continuation, apodization has to be applied to the raw data [15, 24,
25]. Apodization refers to multiplication by a window function which falls to
zero at the edges of the system’s spectral range [24]. In this work, a Hann
window was applied [26],

ω �
1

2

�
1� cos

2πn

N

	
, n � 0, 1, 2, ..., N � 1 (3.1)

where N is the number of pixels of the spectrum. However this step may
aggravate the discrepancies at the edges of the spectrum, where the division
is nearly by zero [24].

For some SCS simulations, we were able to solve the parameter S0 with
high precision without applying the Hann window. Because of this, two
parallel processes were considered: 1) apply the FFT just to recover S0 and 2)
apply the Hann window and the FFT to solve the parameters S1, S2, and S3.
Nevertheless, for other cases it was observed that S0 also had reconstruction
artifacts, with increased error in the centre band. For this reason, we decided
to apply the Hann window for all the Stokes parameters, and consequently
to all Mueller matrix elements.

Other methods have been proposed, e.g. Lee proposed an iterative method
to reduce the secondary frequencies by which N measurements are performed
to analyse the Stokes vectors in N frequencies of interest [27]. It is worth
mentioning that, at first, these reconstruction artifacts were attributed to
the non-linearity of birefringence Bpσq, because this behaviour was less pro-
nounced for smaller wavenumber ranges. Nevertheless, it was later proved
this was not the case. We simulated the birefringence as the linear function
Bpσq � mσ � b and the error persisted.
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3.3 Sources of error

Several sources of error can interfere in channeled polarimetry systems:

• Reconstruction artifacts due to crosstalk

Crosstalk between adjacent channels occurs when the spectral or spatial
features of the scene have high frequency content. Since the modulated
Stokes parameters are not band-limited, this high frequency content
is distributed across the Fourier domain, and consequently aliases into
the neighbouring channels. These aliasing effects appear as false po-
larimetric signatures after reconstruction [1].

• Temperature variations

When a uniaxial crystal experiences a temperature change, the crystal
will expand or contract based on its coefficient of thermal expansion
(CTE). Consequently, the thickness of the retarder can increase or de-
crease depending on the environmental conditions [28].

• Dichroism

Another error source for CS comes from dichroism. In a crystal, dif-
fering amounts of absorption between the ordinary and extraordinary
axes can result in diattenuation [29, 30].

• Dispersion

Birefringence dispersion in the crystal is an additional source of error
in CS, because the higher order nonlinear dispersion terms produce a
small continuum of carrier frequencies (i.e., a chirped carrier frequency)
[24].

The sources of error considered in this work are:

• Retardance error

Owing to the manufacture tolerance, the thickness of high-order re-
tarders may deviate from theoretical values, causing the retardations
to change [15]. Therefore, a fabrication error ∆di was considered. It
was assumed that the plates have completely flat and parallel faces.
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• Alignment error

The assembly process of an instrument is not perfect; therefore, the
alignment errors (εi) of high-order retarders are unavoidable [15].

• Gaussian noise

The measured Mueller matrices are a mixture of pure (nondepolarizing)
states, depolarization, and certainly noise (optical and electronic) [1,
31]. In this work, a Gaussian white noise source was considered. That
is, a signal-independent additive zero-mean Gaussian distribution with
variance σ2 modelled for sensor noise, assuming that the fluctuations
are statistically independent from one intensity measurement to the
other [32]. Another main noise source mentioned in the literature is
signal-dependent Poisson shot noise [31, 32, 33]. Although this type of
noise was not considered in this work.

3.4 Evaluation metrics

To evaluate the performance of the SCS and MMCS setups of interest, we
consider three figures of merit: (1) the root mean square error (RMS) of the
extracted elements against their corresponding inputs, given by

RMSa �

gffe 1

N

Ņ

i�1

a2i (3.2)

(2) the condition number (CN) of the W-Mueller matrix and the Q-matrix

of the nominal setup, and 3) the equally weighted variance (EWV ) [34] for
the same matrices given by

EWV pAq � TrrpA�qTA�s (3.3)

where A� is the pseudo-inverse of A, given by the Moore-Penrose generalized
inverse (Eq. (2.32)).

These evaluation metrics are used to evaluate the noise immunity of the
CS setups, considering that the goal of noise immunity is to minimize noise
variance on the measured Stokes vector and to equalize noise variances on the
last three Stokes parameters pS1, S2, S3q with the least measurement channels
[31]. For this work, an extracted parameter is considered immune to an error
source when RMS-values are below 0.01.
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3.5 SCS simulation, results and discussion

It was observed that channels get closer to each other for a greater number
of pixels N . For the SCS simulations reported, a diffractive spectrometer
with 1024 pixels and a Tungsten Halogen light source [35] were considered.
The sample selected for the results reported is a completely polarized light
source with equal energy energy in each of the Stokes parameters S1, S2, S3 :
S � p1, 0.577, 0.577, 0.577qT .

3.5.1 Thickness ratio

Different Stokes vectors were tested to understand the performance of the
SCS using the six configurations based on the thickness ratio d1 : d2 configu-
rations reviewed in Chapter 2 (see Table 2.1), considering a global retardance
factor d0 � 13rmms for the thick birefringent retarders.

As expected, the configuration (d1 : d2 � p2, 1q) presents crosstalk, as
shown in Fig. 3.1. This affects heavily the figures EWV and CN , compared
to the other five configurations (see Fig. 3.2). Nevertheless, the Stokes vector
extraction was similarly acceptable for all six configurations, as shown in
Fig. 3.3. It seems the EWV and the CN are not representative of the SCS
performance, based on the thickness ratio.

From Fig. 3.1, it is observed that the configurations p3, 1q, p1, 3q, and
p1, 2q provide a better distribution of the channels. The configuration p2, 1q
also provides a good distribution of channels, but presents crosstalk. For
further tests, we decided to focus on the configuration p3, 1q (d1 ¡ 2d2),
which was also used by Oka and Kato [8]. By changing the ratio d1 : d2 it is
observed that (1) for d1 ¡ d2 the channels at �τ2 remain stationary relative
to d2 and the channels �pτ1 � τ2q and �pτ1 � τ2q depart from the center as
d1 increases, maintaining a separation of 2τ2, and (2) for d1   d2 all channels
(�τ2, �pτ1� τ2q, and �pτ1� τ2q) move in direct proportion to d2 and with a
separation of τ1. Although, it should be mentioned that, for the second case,
the channels �pτ1 � τ2q are inverted along the center channel.

Another figure of merit used in this work is the RMS of the extracted
Stokes parameters using the Channel Splitting and the Analytical Chan-
nel Splitting methods, see Fig. 3.4. The RMS provides a better picture
of the performance of the SCS for different thickness ratios. To avoid the
discrepancies at the edges, a consequence of apodization, of the Stokes pa-
rameters curves, the RMS was calculated for a reduced wavenumber range
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from 1.5� 104rcm�1s to 1.83� 104rcm�1s. It is worth mentioning that, even
though it presents crosstalk, the configuration p2, 1q had the lowest RMS-
scores for S2 and S3. This is attributed to channels being tightly packed
and uniformly spaced, resulting in the effective separation of the expected
channels.

Figure 3.1: Autocorrelation function |Cpτq| for the SCS with different thick-
ness ratios and a global retardance factor d0 � 13rmms.
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Figure 3.2: EWV and CN against the thickness ratio of the SCS.

Figure 3.3: Normalized Stokes parameters for the Channel Splitting and the
Analytical Channel Splitting methods (labeled as Oka and Tyo, respectively).
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Figure 3.4: RMSpSiq against the thickness ratio of the SCS, for i � 1, 2, 3.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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3.5.2 Global retardance factor

To study the global retardance factor d0, values from 5 to 20rmms were
considered. In Fig. 3.5 and 3.6 are shown the EWV pW q and CNpW q plots,
respectively, against the global retardance factor d0. It is observed that the
lowest values were obtained for d0 � 14, 15rmms. However it is important
to note that the input Stokes vector was acceptably extracted for all the
d0-values considered, as shown in Fig. 3.7.

In Fig. 3.8 are shown the RMS plots for the Stokes parameters S1, S2,
and S3, respectively, for the Channel Splitting and the Analytical Channel
Splitting methods (labeled as Oka and Tyo, respectively). In general terms, it
is also observed that the SCS performance improved as the global retardance
factor increased. This is expected, as the separation between channels is di-
rectly proportional to d0 (see Fig. 3.9), which allows a better filtering process
(using the same window, in this work a window of 20 pixels in the τ -domain
was considered). The performance for small values of d0 could be improved by
analysing the window width parameter for each d0-value. Sabatke et al. [24]
suggest a τ bandwidth equal to the OPD of the thinner retarder (Bd), but
this was not tested in this work. It is considered that d0 � 17rmms offered
the best performance overall, comparing the RMS plots for the three Stokes
parameters. In other tests, where a light source with constant intensity was
considered, the lowest RMSpSiq scores were obtained with d0 � 17rmms.
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Figure 3.5: EWV against the global retardance factor d0.

Figure 3.6: CN against the global retardance factor d0.
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Figure 3.7: Normalized Stokes parameters for different global retardance fac-
tors d0. The Channel Splitting and the Analytical Channel Splitting methods
are labeled as Oka and Tyo, respectively.
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Figure 3.8: RMSpSiq against the global retardance factor of the SCS, for
i � 1, 2, 3. The Channel Splitting and the Analytical Channel Splitting
methods are labeled as Oka and Tyo, respectively.
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Figure 3.9: Autocorrelation function |Cpτq| of the SCS output for different
global retardance factors d0.
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3.5.3 Retardance error

For the retarders a fabrication tolerance of �5rµms was considered. This
value was taken from manufacturers tolerances offered for custom thick bire-
fringent quartz plates. Three global retardance factors were considered: (1)
13rmms, value reported in a literature example [8], (2) 14rmms, the value
with the lowest EWV pWq, see Fig. 3.5, and (3) 17rmms, the global retar-
dance factor which was considered to offer the best performance overall, see
Fig. 3.8. The thickness ratio considered from this test forward was p3, 1q. The
errors in retardance are perceived as the lateral displacement of the channels
in the τ -domain, because the OPD is directly proportional to the retardance
values.

In Fig. 3.10, 3.11, and 3.12 are shown the normalized Stokes parameters
S1{S0, S2{S0, and S3{S0, respectively, for the Channel Splitting and the
Analytical Channel Splitting methods (labeled as Oka and Tyo, respectively)
when the retardance error occurs in the first retarder. It is observed that
S1 is immune to the retardance error, whereas, on the contrary, S2 and S3

are very sensitive to this error source. The RMSpSiq plots are shown in
Fig. 3.13.
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Figure 3.10: Normalized Stokes parameter S1{S0 against thickness error ∆d1.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.11: Normalized Stokes parameter S2{S0 against thickness error ∆d1.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.12: Normalized Stokes parameter S3{S0 against thickness error ∆d1.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.13: RMSpSiq against thickness error ∆d1, for i � 1, 2, 3. The
Channel Splitting and the Analytical Channel Splitting methods are labeled
as Oka and Tyo, respectively.
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In Fig. 3.14, 3.15, and 3.16 are shown the normalized Stokes parameters
S1{S0, S2{S0, and S3{S0, respectively, when the retardance error occurs in the
second retarder. It is observed that S1 is acceptably extracted, but it is not
immune. For S2 and S3, the Analytical Channel Splitting method achieved a
good performance, near to immunity, whereas the Channel Splitting method
is highly sensitive to the error source. The RMSpSiq plots are shown in
Fig. 3.17.

Figure 3.14: Normalized Stokes parameter S1{S0 against thickness error ∆d2.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.15: Normalized Stokes parameter S2{S0 against thickness error ∆d2.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.16: Normalized Stokes parameter S3{S0 against thickness error ∆d2.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.17: RMSpSiq against thickness error ∆d2, for i � 1, 2, 3. The
Channel Splitting and the Analytical Channel Splitting methods are labeled
as Oka and Tyo, respectively.
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3.5.4 Alignment error

A tolerance of �5 degrees was considered for the retarders alignment. In
Fig. 3.18, 3.19, and 3.20 are shown the normalized Stokes parameters S1{S0,
S2{S0, and S3{S0, respectively, when the alignment error occurs in the first
retarder. S1 is very sensitive to the alignment error. For S2, the Channel
Splitting method offers acceptable results, but not immunity to the error
source, whereas the Analytical Channel Splitting method is very sensitive to
it. S3 is very sensitive when applying the Channel Splitting method, but it
is immune when the Analytical Channel Splitting method is applied. The
RMSpSiq plots are shown in Fig. 3.21.

Figure 3.18: Normalized Stokes parameter S1{S0 against alignment error ε1.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.19: Normalized Stokes parameter S2{S0 against alignment error ε1.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.20: Normalized Stokes parameter S3{S0 against alignment error ε1.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.21: RMSpSiq against alignment error ε1, for i � 1, 2, 3. The Channel
Splitting and the Analytical Channel Splitting methods are labeled as Oka
and Tyo, respectively.
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In Fig. 3.22, 3.23, and 3.24 are shown the normalized Stokes parameters
S1{S0, S2{S0, and S3{S0, respectively, when the alignment error occurs in the
second retarder. It is observed that S1 is immune to the error source. When
the Analytical Channel Splitting method is used, S2 and S3 are immune as
well. The RMSpSiq plots are shown in Fig. 3.25.

Figure 3.22: Normalized Stokes parameter S1{S0 against alignment error ε2.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.23: Normalized Stokes parameter S2{S0 against alignment error ε2.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.24: Normalized Stokes parameter S3{S0 against alignment error ε2.
The Channel Splitting and the Analytical Channel Splitting methods are
labeled as Oka and Tyo, respectively.
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Figure 3.25: RMSpSiq against alignment error ε2, for i � 1, 2, 3. The Channel
Splitting and the Analytical Channel Splitting methods are labeled as Oka
and Tyo, respectively.
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3.5.5 Gaussian noise

A random Gaussian noise distribution was added to the spectrum leav-
ing the SCS before entering the spectrometer. The amplitudes considered
ranged from 1E� 6ra.us to 1E1ra.us, including a reference without noise. In
Fig. 3.26, 3.27, and 3.28 are shown the normalized Stokes parameters S1{S0,
S2{S0, and S3{S0, respectively. It is observed that a signal-to-noise ratio
(SNR) of 10 : 1 is acceptable, but immunity is achieved for SNR greater or
equal to 100 : 1, see the RMSpSiq plots in Fig. 3.29. This SNR requirement
is achievable with commercially available spectrometers.

In Fig. 3.30 are shown the effects of the Gaussian noise on the autocor-
relation function |Cpτq|, and in Fig. 3.31 are shown the detected peaks and
valleys, which are crucial for the channels detection algorithm.

Figure 3.26: Normalized Stokes parameter S1{S0 against the Gaussian noise
distribution amplitude. The Channel Splitting and the Analytical Channel
Splitting methods are labeled as Oka and Tyo, respectively.
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Figure 3.27: Normalized Stokes parameter S2{S0 against the Gaussian noise
distribution amplitude. The Channel Splitting and the Analytical Channel
Splitting methods are labeled as Oka and Tyo, respectively.
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Figure 3.28: Normalized Stokes parameter S3{S0 against the Gaussian noise
distribution amplitude. The Channel Splitting and the Analytical Channel
Splitting methods are labeled as Oka and Tyo, respectively.
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Figure 3.29: log10pRMSpSiqq against the Gaussian noise distribution am-
plitude, for i � 1, 2, 3. The Channel Splitting and the Analytical Channel
Splitting methods are labeled as Oka and Tyo, respectively.
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Figure 3.30: Autocorrelation function |Cpτq| against the Gaussian noise dis-
tribution amplitude.

Figure 3.31: Autocorrelation function max
min |Cpτq| against the Gaussian noise

distribution amplitude.
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Notes on the analysis of two or more simultaneous error
sources

The SCS was also simulated under the influence of two sources of error:
thickness error ∆d1 and additive Gaussian noise. The values considered
are the same as reported in the previous sections. In Fig. 3.32, 3.33, and
3.34 are shown the normalized Stokes parameters S1{S0, S2{S0, and S3{S0,
respectively. The Gaussian noise amplitude is represented in eight main rows
and the thickness error in 100 subrows per main row.

In Fig. 3.32, it is observed that S1 is immune to thickness error ∆d1 and
most of the Gaussian noise amplitudes, except for AGauss Á 1E � 1. The
parameters S2 and S3 are highly sensitive to ∆d1, and to the Gaussian noise
amplitude AGauss Á 1E � 1. This is better observed in the RMS plots in
Fig. 3.35, 3.36, and 3.37. This agrees with the results from the previous
sections.

Figure 3.32: Normalized Stokes parameter S1{S0 against the Gaussian noise
distribution amplitude (8 main rows) and the thickness error ∆d1 (100 sub-
rows per main row). The Channel Splitting and the Analytical Channel
Splitting methods are labeled as Oka and Tyo, respectively.
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Figure 3.33: Normalized Stokes parameter S2{S0 against the Gaussian noise
distribution amplitude (8 main rows) and the thickness error ∆d1 (100 sub-
rows per main row). The Channel Splitting and the Analytical Channel
Splitting methods are labeled as Oka and Tyo, respectively.
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Figure 3.34: Normalized Stokes parameter S3{S0 against the Gaussian noise
distribution amplitude (8 main rows) and the thickness error ∆d1 (100 sub-
rows per main row). The Channel Splitting and the Analytical Channel
Splitting methods are labeled as Oka and Tyo, respectively.
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Figure 3.35: log10pRMSpS1qq against the Gaussian noise distribution am-
plitude (8 main rows) and the thickness error ∆d1 (100 subrows per main
row). The Channel Splitting and the Analytical Channel Splitting methods
are labeled as Oka and Tyo, respectively.
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Figure 3.36: log10pRMSpS2qq against the Gaussian noise distribution am-
plitude (8 main rows) and the thickness error ∆d1 (100 subrows per main
row). The Channel Splitting and the Analytical Channel Splitting methods
are labeled as Oka and Tyo, respectively.
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Figure 3.37: log10pRMSpS3qq against the Gaussian noise distribution am-
plitude (8 main rows) and the thickness error ∆d1 (100 subrows per main
row). The Channel Splitting and the Analytical Channel Splitting methods
are labeled as Oka and Tyo, respectively.
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3.6 MMCS simulation, results and discussion

For the MMCS simulations reported, a value of N � 2048 pixels was con-
sidered to achieve a good distribution of channels in the τ -domain. In the
simulation, the system was illuminated with a Tungsten Halogen light source
[35]. The sample selected for the results reported is air (considered invariant
with wavelength).

3.6.1 Thickness ratio

Six thickness ratios were considered: (1,2,3,5), (1,2,4,8), (1,2,5,10), (1,4,2,9),
(2,1,4,11), and (2,1,5,12), with a global retardance factor d0 � 10rmms. In
Fig. 3.38 is shown the autocorrelation function |Cpτq|. It is observed that the
channels occupy a wider bandwidth, compared to the SCS configurations.

Figure 3.38: Autocorrelation function |Cpτq| for the MMCS with different
thickness ratios and a global retardance factor d0 � 10rmms.
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In Fig. 3.39 are shown the EWV and CN plots for the thickness ratios of
interest. The configurations p1, 4, 2, 9q, p2, 1, 4, 11q, and p2, 1, 5, 12q have the
lowest EWV and CN values. In Fig. 3.40 are shown the normalized Mueller
matrix elements (mij{m00) for air and the RMS-values for the extracted
Mueller matrix M and its elements mij are shown in Table. 3.1.

Figure 3.39: EWV and CN of the W - and Q-matrix for the MMCS
configurations p1, 2, 3, 5q, p1, 2, 4, 8q, p1, 2, 5, 10q, p1, 4, 2, 9q, p2, 1, 4, 11q, and
p2, 1, 5, 12q.
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Figure 3.40: Normalized Mueller matrix elements (mij{m00) of the sam-
ple (air) for the MMCS configurations p1, 2, 3, 5q, p1, 2, 4, 8q, p1, 2, 5, 10q,
p1, 4, 2, 9q, p2, 1, 4, 11q, and p2, 1, 5, 12q.
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Table 3.1: RMS of extracted Mueller matrix M and its elements mij (air sample) using different thickness
ratio configurations.

Configuration (thickness ratio)
p1, 2, 3, 5q p1, 2, 4, 8q p1, 2, 5, 10q p1, 4, 2, 9q p2, 1, 4, 11q p2, 1, 5, 12q

M 3.63E-03 4.46E-03 3.03E-03 3.05E-03 3.02E-03 2.96E-03
m00 7.45E-03 7.47E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03
m01 1.45E-03 2.30E-03 2.01E-04 1.22E-04 4.32E-05 5.38E-05
m02 3.65E-04 4.42E-03 2.10E-04 1.62E-04 1.18E-04 3.32E-04
m03 1.38E-03 4.84E-03 1.98E-04 2.05E-04 4.37E-04 4.28E-04
m10 1.56E-04 2.87E-04 4.49E-04 2.53E-04 3.05E-05 2.70E-05
m11 1.23E-03 3.09E-03 1.22E-03 1.29E-03 4.73E-03 3.05E-03
m12 9.37E-05 1.16E-04 3.66E-05 9.13E-04 1.85E-03 2.27E-04
m13 3.48E-03 3.65E-03 3.34E-03 2.90E-03 3.59E-03 3.64E-04
m20 8.39E-05 3.48E-04 3.30E-04 1.14E-04 1.17E-04 2.89E-04
m21 5.76E-03 5.08E-03 2.32E-03 3.61E-03 1.99E-03 2.60E-04
m22 8.65E-03 7.85E-03 3.24E-03 5.34E-03 2.95E-03 1.76E-03
m23 2.54E-03 1.95E-03 2.23E-03 3.91E-03 2.97E-03 6.33E-03
m30 5.17E-05 8.45E-05 1.35E-04 3.62E-04 1.02E-04 4.28E-04
m31 2.57E-03 4.82E-03 4.48E-03 3.12E-03 3.44E-03 2.61E-04
m32 2.50E-03 8.42E-03 5.92E-03 3.08E-03 3.02E-03 4.35E-03
m33 3.15E-03 2.50E-03 1.54E-03 2.49E-03 2.99E-03 3.53E-03
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3.6.2 Global retardance factor

The MMCS configuration p1, 2, 5, 10q was used from this test forward, as
it has been studied before [2, 22]. Inspired by the dual-rotating-retarder
Mueller matrix polarimeter [3], Hagen et al. chose a 5 : 1 ratio of thickness
for the pair of analysing retarders to the generating pair to give a compact
result. Furthermore, Hagen et al. selected a 2 : 1 ratio of thicknesses for
the retarders within each pair giving a set of thicknesses designated as a
p1, 2, 5, 10q configuration [22].

In Fig. 3.41 are shown the normalized Mueller matrix elements (mij{m00)
using a global retardance factor d0 � 1� 10rmms. It is observed that many
artifacts arise when d0   5rmms. Because of this, the global retardance factor
range was increased to d0 � 5 � 14rmms. The extracted Mueller matrix for
this range is shown in Fig. 3.42.

From the RMS-values (see Table 3.2), it is observed that the MMCS per-
formance generally improves when the global retardance factor is increased.
Although, the availability in the market of bigger thick birefringent retarders
must be considered. The lowest EWV pWq is obtained with d0 � 14rmms
and the lowest CNpWq, with d0 � 8rmms (see Fig. 3.43).
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Figure 3.41: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q and d0 � 1� 10rmms.
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Figure 3.42: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q and d0 � 5� 14rmms.
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Table 3.2: RMS of extracted Mueller matrix M and its elements mij (air sample) for different global
retardance factors.

Global retardance factor d0rmms
5 6 7 8 9 10 11 12 13 14

M 6.11E-03 4.44E-03 3.73E-03 3.53E-03 3.12E-03 3.14E-03 2.47E-03 2.79E-03 3.03E-03 2.78E-03
m00 7.42E-03 7.38E-03 7.40E-03 7.42E-03 7.43E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.46E-03
m01 1.61E-02 4.57E-03 2.30E-03 2.76E-03 1.77E-03 5.20E-04 9.88E-04 2.61E-04 2.01E-04 3.77E-04
m02 2.53E-03 2.83E-03 3.21E-04 1.66E-03 1.78E-04 6.65E-04 1.60E-04 2.32E-04 2.10E-04 2.05E-04
m03 1.15E-02 2.70E-03 3.91E-03 1.07E-03 5.58E-04 4.39E-04 1.17E-03 1.84E-04 1.98E-04 1.61E-04
m10 5.39E-03 5.22E-03 1.37E-03 7.55E-04 6.06E-04 7.34E-04 3.63E-04 1.87E-04 4.49E-04 1.24E-04
m11 1.83E-03 8.29E-03 2.32E-03 1.19E-03 2.22E-03 4.00E-03 2.29E-03 3.88E-03 1.22E-03 1.70E-03
m12 1.23E-03 1.73E-04 3.16E-04 8.90E-05 9.86E-05 1.59E-04 5.24E-05 8.53E-05 3.66E-05 3.91E-05
m13 4.44E-03 1.45E-03 3.67E-03 3.09E-03 1.74E-03 1.79E-03 6.91E-04 2.33E-03 3.34E-03 2.97E-03
m20 1.46E-03 5.23E-04 1.15E-03 9.41E-04 3.79E-04 7.54E-04 5.10E-04 2.72E-04 3.30E-04 6.50E-05
m21 3.44E-03 1.33E-03 2.90E-03 3.81E-03 1.84E-03 2.68E-03 1.99E-03 3.05E-03 2.32E-03 3.57E-03
m22 6.05E-03 2.60E-03 5.11E-03 5.56E-03 5.75E-03 5.45E-03 1.77E-03 3.65E-03 3.24E-03 5.21E-03
m23 2.47E-03 2.15E-03 2.18E-03 1.30E-03 3.14E-03 3.00E-03 2.67E-03 1.44E-03 2.23E-03 1.88E-03
m30 1.68E-03 1.13E-03 1.89E-03 7.69E-04 4.78E-04 1.94E-04 4.27E-04 3.99E-04 1.35E-04 6.46E-05
m31 1.49E-03 2.63E-03 4.47E-03 3.87E-03 2.60E-03 2.13E-03 7.32E-04 2.99E-03 4.48E-03 2.03E-03
m32 3.11E-03 9.39E-03 6.81E-03 7.32E-03 4.27E-03 4.51E-03 2.28E-03 3.40E-03 5.92E-03 1.85E-03
m33 4.34E-03 4.10E-03 3.89E-03 1.95E-03 4.10E-03 3.19E-03 3.69E-03 1.75E-03 1.54E-03 2.34E-03
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Figure 3.43: EWV and CN of the W - and Q-matrix against the global
retardance factor d0.
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3.6.3 Retardance error

The same fabrication tolerance of �5rµms was considered. In Fig. 3.44 is
shown the extracted Mueller matrix, considering the thickness error ∆d1 of
the first retarder. The elements m11,m13,m22,m31,m32,m33 are sensitive to
this error; m01 is considered not-immune, but acceptably extracted; and the
rest of the elements are immune.

Figure 3.44: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against thickness error ∆d1.
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In Fig. 3.45 is shown the extracted Mueller matrix, considering the thick-
ness error ∆d2 of the second retarder. The elements m22,m23,m32,m33 are
sensitive to ∆d2; m01,m03 are not-immune, but acceptably extracted; and
the rest of the elements are immune.

Figure 3.45: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against thickness error ∆d2.
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In Fig. 3.46 is shown the extracted Mueller matrix, considering the thick-
ness error ∆d3 of the third retarder. Most of the matrix elements are immune
to the fabrication error in the third retarder. The elements m22,m23,m32,m33

are sensitive to this error; m01,m03 are not-immune, but acceptably ex-
tracted.

Figure 3.46: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against thickness error ∆d3.
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In Fig. 3.47 is shown the extracted Mueller matrix, considering the thick-
ness error ∆d4 from the fourth retarder. Most of the matrix elements are
immune to ∆d4. The elements m11,m22,m33 are sensitive to the error source;
m01,m03,m33 are not-immune, but acceptably extracted.

Figure 3.47: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against thickness error ∆d4.
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In Fig. 3.48 are shown the RMS plots for the extracted Mueller matrix,
considering the thickness error from the four retarders. It is observed that
the extraction process is sensitive to the thickness error of the first, second
and third retarders; it is at least four times less sensitive to the thickness
error of the fourth retarder, and immunity is achieved within a fabrication
tolerance of �2rµms for the fourth retarder.

Figure 3.48: RMSpMq against the thickness error ∆di, for i � 1, 2, 3, 4.
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3.6.4 Alignment error

The same alignment tolerance was considered for the optical elements. In
Fig. 3.49 is shown the extracted Mueller matrix, considering the alignment
error ε1 from the first retarder. Most of the matrix elements are immune to
the alignment error in the first retarder. The elements m01,m02,m21,m22 are
sensitive to the error source; m03,m10,m11,m23,m31,m32,m33 are acceptably
extracted, if not immune.

Figure 3.49: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against the alignment error ε1.
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In Fig. 3.50 is shown the extracted Mueller matrix, considering the align-
ment error ε2 from the second retarder. Most of the matrix elements are
immune to ε2, but m12,m22 are sensitive to the error source. Furthermore,
m01,m03 are not-immune, but acceptably extracted.

Figure 3.50: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against the alignment error ε2.
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In Fig. 3.51 is shown the extracted Mueller matrix, considering the align-
ment error ε3 from the third retarder. Most of the matrix elements are
immune to ε3. The elements m12,m21 are sensitive to the error source, and
m01,m03,m11,m22 are mostly immune.

Figure 3.51: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against the alignment error ε3.
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In Fig. 3.52 is shown the extracted Mueller matrix, considering the align-
ment error ε4 from the fourth retarder. Most of the matrix elements are
immune to ε4. The elements m22,m33 are sensitive to the error source, and
m01,m03,m11 are mostly immune.

Figure 3.52: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against the alignment error ε4.
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In Fig. 3.53 is shown the extracted Mueller matrix, considering the align-
ment error ε5 from the second polarizer. Most of the matrix elements are
immune to ε5. The elements m22,m33 are sensitive to the error source, and
m01,m03,m11 are mostly immune.

Figure 3.53: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against the alignment error ε5.
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In Fig. 3.54 are shown the RMS plots for the extracted Mueller matrix,
considering the alignment error of the four retarders and the second polar-
izer. The extraction is acceptable within the tolerance of �5 degrees. It is
observed that the extraction process is more sensitive to the alignment error
on the first retarder, for this retarder immunity is achieved between �0.3 and
0.4 degrees. The performance for the other three retarders and the second
polarizer is similar between them, for these elements immunity is achieved
within a tolerance of �0.6 degrees.

Figure 3.54: RMSpMq against the alignment error εi for i � 1, 2, ..., 5 (first,
second, third and fourth retarder, and second polarizer, respectively) within
a tolerance of �1 degrees.
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3.6.5 Gaussian noise

Similar to the SCS performance tests, a random noise distribution was added
to the spectrum leaving the MMCS before entering the spectrometer. The
amplitudes considered also range from 1E � 6ra.us to 1E1ra.us, including a
reference without noise. In Fig. 3.55 is shown the extracted Mueller matrix,
considering additive Gaussian noise. It is easily observed that the MMCS is
immune to the noise distribution added, except for SNR higher than 100 : 1,
see the RMSpmijq plots in Fig. 3.56. In Fig. 3.57 is shown the autocorrelation
function for all the Gaussian noise distribution amplitudes considered.

Figure 3.55: Normalized Mueller matrix elements (mij{m00) of the sample
(air) with a configuration p1, 2, 5, 10q against the Gaussian noise distribution
amplitude AGauss.
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Figure 3.56: log10pRMSpmijqq against the Gaussian noise distribution am-
plitude AGauss.
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Figure 3.57: Autocorrelation function |Cpτq| of the MMCS against the Gaus-
sian noise distribution amplitude AGauss.
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Discussion and Conclusions

In this thesis, the results of analysis and simulations regarding passive and
active channeled polarimeters, specifically with spectral channeling, were pre-
sented. Some extraction methods were also described, analysed and com-
pared. Two figures of merit, the equally weighted variance (EWV ) and the
condition number (CN), were studied along their influence in the polarime-
ters performance and noise immunity. Although the main metric to evaluate
the performance of the polarimeters was the root mean square error (RMS).

Stokes Channeled Spectropolarimeter

Overall, the parameter S1 was extracted with better results than S2 and
S3, with similar results for the two methods used, the Channel Splitting
and the Analytical Channel Splitting methods. Although, to achieve an
acceptable extraction, S1 requires a tolerance of �1r�s for the alignment error
of the first retarder. The extraction of the parameters S2 and S3 is more
sensitive to the error sources studied. Interestingly, they tend to present
a mirrored behaviour when comparing the results of the channel splitting
and the analytical channel splitting methods. For example, for some global
retardance factors reviewed, when the channel splitting method had a better
performance for S2, the analytical channel splitting method worked better for
S3. For most of the rest of the factors, the opposite behaviour was observed.

Although, the configuration p2, 1q had the highest EWV and CN val-
ues due to the overlapping of two pairs of channels, all six configurations
studied allowed the extraction of the Stokes parameters within the immu-
nity condition. Furthermore, the configuration p2, 1q achieved the lowest
RMS-values for the parameters S2 and S3. This is attributed to the in-
formation being packed in fewer channels, leading to a lower probability of
crosstalk, and to the analytical development of the specific model of this
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configuration. The best configurations to extract the parameters S1, S2, S3

were p1, 3q, p2, 1q, p2, 1q, respectively.
The global retardance factor has to be greater than 5rmms, it was ob-

served that the performance of the SCS improved with this condition. This
is at least considering the current algorithm implemented for the automatic
channel detection and filtering process. Nevertheless, as this factor is directly
related to the channel distribution, the number of pixels and the spectrometer
spectral range have to be modified in accordance to optimize the distribu-
tion of channels in the autocorrelation function, in order to avoid crosstalk
around the DC channel (C0).

When error sources (retardance error, alignment error, and additive Gaus-
sian noise) were introduced, some Stokes parameters showed immunity or
acceptable extraction ranges (considering RMS   0.01 or RMS � 0.01,
respectively) for one or both of the methods considered (Channel Splitting
and Analytical Channel Splitting). This presents an opportunity to develop
a mixed extraction method using both methods to increase the overall im-
munity of the SCS to certain error sources.

Mueller matrix Channeled Spectropolarimeter

Six configurations were compared, three of them are known to have the min-
imum EWV scores [6], that is the highest immunity to additive noise. Al-
though all six configurations have RMS scores within the immunity con-
dition, it was observed that configurations p1, 4, 2, 9q, p2, 1, 4, 11q, p2, 1, 5, 12q
offered the lowest RMS-scores, between 1E � 4 and 1E � 5 for most of the
sample’s Mueller matrix elements.

Similar to the SCS, it was concluded that the MMCS requires a global
retardance factor greater than 5rmms. This is considering the algorithms
implemented.

Overall, the extraction of the Mueller matrix elements was achieved within
immunity or acceptable extraction, but further analysis is needed using sam-
ples with higher variance between all sixteen elements of the matrix.
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Future work

A wider understanding of channeled polarimetry systems was achieved by
way of the simulations of SCS and MMCS systems, the next step is the design
and assembly of such a system in an experiment under real conditions. In
order to confirm the influence of the parameters reviewed on the polarimeters
performance.

A research proposal for future projects on the field could focus on the opti-
mization metrics and noise immunity of different configurations with respect
to configuration parameters of the polarimeter. Although, this topic has been
addressed in the literature [6], a deeper understanding of the methodology
is still needed. Other error sources, such as dichroism, should be further
studied as well; temperature has already been addressed in the literature, as
it is a crucial condition for the system’s performance [15, 20, 36, 37].

Another necessary field to develop comprises the calibration methods for
such spectral channeling systems, including a review of self-calibration ap-
proaches [20, 36] and their limitations.

Other fields that could benefit from the polarimeters reviewed are image
polarimetry and snapshot polarimetry, in which parameters such as integra-
tion time must be determined, as the literature is not clear on the required
range for this parameter.
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