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Abstract

A new method for the prediction of the spatial distribution of petrophysical properties using the
elastic seismic attributes as secondary variables is presented. This method basically consists of
two stages: first the dependency relationship between the variables is established by means of
the joint probability distribution function using copulas and later a global optimization method
(such as simulated annealing or differential evolution) is applied using a variogram model and
previously obtained joint probability distribution as objective functions. The proposed method
is very flexible because unlike traditional methods, which assume linear dependencies, it allows
modeling more general dependency relationships between variables. Depending on the approach
in the construction of the dependency model, the method can be: parametric, semiparametric and
nonparametric.

The proposed method is first validated in one-dimensional cases at a well log scale and then is
applied in two-dimensional cases in a seismic section for a marine hydrocarbon reservoir located
in the Gulf of Mexico that belongs to the province of the Mexican Cordilleras. The reservoir is
siliciclastic and it is formed mainly of alternative marine sequences of sands and shales.

A bivariate case comparison between two simulation methods: traditional Sequential Gaussian
CoSimulation (SGCS) and Bernstein Copula-based Spatial CoSimulation (BCSCS) is done. The
results show that the BCSCS method significantly reduces the uncertainty compared to the tra-
ditional SGCS method in terms of its univariate, bivariate and spatial distributions, respectively.

The method is extended to multivariate joint distributions by applying Vine copulas or bi-
variate copula blocks, and is applied to bivariate and multivariate cases using simulation and
estimation approaches, respectively. The results show that the simulation approach has the ad-
vantage of reproducing with high precision the univariate and bivariate behaviors, and the spatial
variability of the petrophysical properties, and its main disadvantage is a higher computational
cost. In contrast, the estimation approach underestimates the spatial variability of petrophysical
properties but at a lower computational cost.
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Resumen

Se presenta un nuevo método para la predicción de distribución espacial de propiedades petrofísicas
utilizando los atributos sísmicos elásticos como variables secundarias. Este método, básicamente
consta de dos etapas: primero se establece la relación de dependencia entre las variables mediante
la función de distribución de probabilidad conjunta usando cópulas y posteriormente se aplica un
método de optimización global (como recocido simulado o evolución diferencial) usando un modelo
de variograma y la distribución de probabilidad conjunta previamente obtenida como funciones
objetivo. El método propuesto es muy flexible porque a diferencia de los métodos tradicionales,
que suponen dependencias lineales, éste permite modelar relaciones más generales de dependencia
entre variables. Dependiendo del enfoque en la construcción del modelo de dependencia el método
puede ser: paramétrico, semiparamétrico y no paramétrico.

El método propuesto se valida primero en casos unidimensionales a escala de registro de pozo
y luego se aplica en casos bidimensionales en una sección sísmica para un yacimiento de hidrocar-
buros marino ubicado el Golfo de México que pertenece a la provincia de las Cordilleras Mexicanas.
El yacimiento es siliciclástico y está formado principalmente por secuencias marinas alternativas
de arenas y lutitas.

Se realiza una comparación de un caso bivariado entre dos métodos de simulación: la cosimu-
lación secuencial Gaussiana tradicional (SGCS: por sus siglas en inglés) y la cosimulación espacial
basada en cópula de Bernstein (BCSCS: por sus siglas en inglés). Los resultados muestran que el
método BCSCS reduce significativamente la incertidumbre en comparación con el método tradi-
cional SGCS en cuanto a sus distribuciones univariada, bivariada y espacial, respectivamente.

El método se extiende a distribuciones conjuntas multivariadas aplicando cópulas de Vine o
bloques de cópulas bivariadas y se aplica a casos bivariados y multivariados utilizando los enfoques
de simulación y estimación, respectivamente. Los resultados muestran que el enfoque de simulación
tiene la ventaja de reproducir con alta precisión los comportamientos univariados y bivariados,
y la variabilidad espacial de las propiedades petrofísicas, y su desventaja principal es un mayor
costo computacional. Por el contrario, el enfoque de estimación subestima la variabilidad espacial
de las propiedades petrofísicas pero a un menor costo computacional.
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Chapter 1
Introduction

Petrophysical modeling in reservoir characterization consists of predicting petrophysical proper-
ties and their spatial configuration within the reservoir model (Cosentino, 2001). These properties
cannot be measured directly in the reservoir, and they are usually inferred from other measure-
ments (e.g. elastic seismic attributes). Petrophysical property modeling in hydrocarbon reservoirs
is challenging because of the limited amount of data available and the uncertainty in the mea-
surements. For this reason, in recent years, stochastic simulation approaches have been adopted
for the spatial distribution of petrophysical properties (Caers, 2005; Coburn et al., 2006; Deutsch,
2002; Doyen, 2007; Dubrule, 2003; Yarus and Chambers, 1994).

Seismic attributes are commonly used as secondary variables for predicting rock and fluid
properties. Among the estimation approach, the most common methods are regression models
(Chatterjee et al., 2016; Yenwongfai et al., 2017), neural networks (Alfarraj and AlRegib, 2018;
Gogoi and Chatterjee, 2019; Iturrarán-Viveros, 2012; Iturrarán-Viveros and Parra, 2014; Mau-
rya and Singh, 2019), and cokriging (Babak and Deutsch, 2009; Doyen et al., 1996; Moon et al.,
2016; Xu et al., 2016). The advantage of these estimation methods is the low computational cost.
Therefore, they can work with large data sets and give a quick result. But they have several dis-
advantages, since they require a large amount of data, produce smoothed results underestimating
the variability due to natural heterogeneities, do not reproduce statistical properties, and do not
give a systematic way to quantifying the uncertainty.

To overcome these challenges, spatial simulation approach has been proposed (Caers, 2005;
Chilès and Delfiner, 2012; Coburn et al., 2006; Deutsch, 2002; Doyen, 2007; Dubrule, 2003; Horta
and Soares, 2010; Yarus and Chambers, 1994). The most common simulation methods are Se-
quential Gaussian CoSimulation (SGCS) (Afshari and Shadizadeh, 2015; Almeida and Frykman,
1994; Almeida and Journel, 1994; Cao et al., 2014; Emery and Parra, 2013; Gómez-Hernández and
Journel, 1993; Parra and Emery, 2013; Verly, 1993), direct sequential cosimulation (Azevedo and
Soares, 2017; Horta and Soares, 2010; Soares, 2001, 2005; Soares et al., 2017), simulated annealing
cosimulation (Dafflon and Barrash, 2012; Deutsch and Cockerham, 1994a,b; Vejbæk and Kris-
tensen, 2000), Gaussian mixture cosimulation (Figueiredo et al., 2019; Grana et al., 2017, 2012;
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2 Chapter 1. Introduction

Grana and Rossa, 2010; Lang and Grana, 2017), and nonparametric mixture approach using ker-
nel smoothing (Corina and Hovda, 2018; Grana, 2018). Spatial simulation methods reproduce the
spatial variability and statistical properties; as they are often used for uncertainty quantification
and do not depend on large dataset availability (Doyen, 2007).

The SGCS method assumes stationary random functions and it is generally applied with a
linear co-regionalization model (Chilès and Delfiner, 2012). These assumptions imply a linear
dependence between the primary and secondary variables. An extension of the SGCS method is
the GauMix method where the model distribution is assumed to be a linear combination of multiple
Gaussian pdfs. However, Gaussian distributions and the linear assumption do not correctly capture
the dependency relationships between the variables in the real dataset.

For those reasons, this thesis presents copula-based spatial distribution prediction method that
can correctly model and reproduce complex relationships between variables without any assump-
tion of linearity or Gaussian distribution. Copulas have become popular in the financial sector to
model complex data relationships and have been recently applied in geosciences (Bárdossy, 2006;
Bevacqua et al., 2017; Bárdossy and Li, 2008; Díaz-Viera and Casar-González, 2005; Erdely and
Díaz-Viera, 2010, 2015; Gräler, 2014; Gräler and Pebesma, 2011; Haslauer et al., 2010; Hernández-
Maldonado et al., 2012, 2014; Kazianka and Pilz, 2010; Krupskii and Genton, 2019; Stien and
Kolbjørnsen, 2008). There are two approaches to estimate the joint dependence: parametric and
nonparametric copula.

In the published literature, there are examples of parametric copula approach by several
authors. Díaz-Viera et al. (2006); Díaz-Viera and Casar-González (2005) applied copula using
dependency measures such as Kendall and Spearman to simulate permeability using porosity
as secondary variable; Bárdossy and Li (2008) applied a Gaussian copula for spatial interpola-
tion of nitrate concentration; Kazianka and Pilz (2010) applied a Gaussian copula for spatial
interpolation of benchmark geostatistical dataset; Erdely and Díaz-Viera (2015) applied a Vine
trivariate parametric copula to predict permeability conditioned to porosity and P wave veloc-
ity. The nonparametric approach has been developed primarily by Erdely and Díaz-Viera (2010)
and Hernández-Maldonado et al. (2012), who applied the bivariate Bernstein copula to predict
permeability conditioned to porosity; Hernández-Maldonado et al. (2014) applied the trivariate
Bernstein copula to predict permeability conditioned to porosity and S-wave velocity; Díaz-Viera
et al. (2017) applied Bernstein copula to predict total porosity conditioned to P-impedance in 2D
applications.

This research work is a natural extension of the bivariate case by Díaz-Viera et al. (2017) to
the multivariate case of more than two variables base on Vine copula and shows the application of
proposed method to reservoir properties modeling conditioned to elastic attributes. The method
is based on realizations (sample the values) obtained using the simulated annealing or differential
evolution where the joint probability distribution is estimated by copulas. The novelty of this
research work is in the use of copula-based method for geophysical inverse problems. It combines
the inference of joint cumulative distribution function with the optimization method (simulation
annealing, differential evolution) to predict geostatistical realizations of reservoir properties.

A bivariate case comparison at well log scale was done between the simulation methods: BCSCS
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and traditional SGCS. The uncertainty quantification analysis in all terms the univariate and
joint distribution function and the spatial distribution function shows that the BCSCS method
significantly reduces the uncertainty compared to the traditional SGCS method. The two copula-
based spatial distribution estimation and simulation approaches were performed and compared
in the bivariate and multivariate cases at the well log scale. Furthermore, these approaches are
extended to multidimensional problems with applications to 2D sections of seismic attributes.

Brief reviews of State-of-the-Art is presented in chapter 2 where the prediction methods devel-
oped so far from two estimation and simulation approaches are shown. Then, the the antecedent,
the assumptions, mathematical formulation, algorithm, computational implementation and val-
idation of proposed method based on copula is described in chapter 3. The methodology is
presented in chapter 4 where the workflow is shown within the context of the reservoirs geological-
petrophysical modeling such as exploratory data analysis, variographic analysis, copula-based
dependency modeling, method validation and application, and uncertainty quantification. The
conceptual geological model of the study area is presented in chapter 5. The application of the
methodology to the bivariate case is shown in chapter 6 and to the multivariate case in chapter 7.
Finally, the conclusions and future work are described in chapter 8.





Chapter 2
Brief review of State-of-the-Art

There are two approaches in the literature to predict petrophysical properties using seismic at-
tributes as secondary variables: estimation and simulation. The advantage of estimation methods
is the fast execution time. Therefore, they can be applied with large data sets and give a fast
result. But they have several disadvantages, since they produce smoothed results underestimat-
ing the spatial variability due to natural heterogeneities, do not reproduce statistical properties
such as the mean, median, variance, maximum, minimum, etc., and do not give a systematic way
to quantifying the uncertainty. On the other hand, the simulation methods reproduce both the
statistical properties or behavior of univariate and joint, and the spatial variability of the random
variable, but with a high computational cost.

2.1 Estimation approach
In the literature there are many methods of the estimation approach, the following is a brief
description of the most used methods: multiple linear regression, neural networks, and cokriging.

2.1.1 Multiple linear regression

In statistics, linear regression is a linear approach to model the relationship between a scalar re-
sponse (or dependent variable) and one or more explanatory variables (or independent variables).
The case of one explanatory variable is called simple linear regression. For more than one explana-
tory variable, the process is called multiple linear regression (Freedman, 2009). The following are
the major assumptions made by standard linear regression models: linearity, constant variance,
independence of errors (more detail in Poole and O’farrell (1971)). The general linear regression
model can be expressed in the following equation

Y = a+
n∑
i=1

bi.Xi + u (2.1)

5
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where Y is the dependent variable; X1, X2, ...Xi...Xn are n independent variables; a and bi are
the regression coefficients, representing the parameters of the model for a specific population; and
u is a stochastic disturbance-term.

The limitations of this model are in the assumptions, such as the assumption of linearity be-
tween the variables, the constant variance, etc. The advantage of this model is a simple and
efficient model when assumptions are fulfilled. In the literature, there are works that applied the
linear regression model (Equation 2.1) to establish the dependency relationship between petro-
physical properties and seismic attributes, and then predict petrophysical properties using seismic
attributes as secondary variables, e.g. Chatterjee et al. (2016); Jalalalhosseini et al. (2015); Vernik
and Nur (1992); Yenwongfai et al. (2017).

2.1.2 Neural networks

Neural networks can be programmed to recognize patterns, to store and retrieve database entries,
to solve optimization problems, to filter noise from experimental data and to estimate sampled
functions when the analytical form of the function is unknown. An artificial neural network is
basically a system of several simple processing units known as nodes or neurons associated with
each other by simple connections. The strength of these connections may be changed by varying
the weight attached to them. The process of adjusting the weight values is known as the training
process. The training process is the fundamental procedure through which the neural network is
calibrated to the particular estimation problem. Therefore, in order to apply this technique, a
good data set of reference information is needed.

In contrast to any other estimation method, neural networks do not make use of a pre-defined
relationship, since the estimation function is built through experience during the training phase.
In this respect, neural networks are model-free estimators. Another interesting point is that the
predicted distribution does not obey any statistical rule, e.g., the preservation of the mean value.
In fact, one of the drawbacks of the predictions made through regressions, i.e., the smoothing
effect and the loss of the extreme values, is not a concern in the case of neural networks. In fact,
the technique allows the actual variability of the data to be preserved.

Neural networks have some disadvantages, too. Firstly, the training process has to be done
with caution and can be a lengthy process, which requires a good calibration data set. On the other
hand, failing in correctly calibrating the network may result in aberrant results. Another point to
take into consideration is that the methodology not yet an off the shelf application and requires
expertise by the geoscientist (Cosentino, 2001). In the literature, there are works that applied the
neural networks to predict petrophysical properties such as Alfarraj and AlRegib (2018); Gogoi
and Chatterjee (2019); Iturrarán-Viveros (2012); Iturrarán-Viveros and Parra (2014); Maurya and
Singh (2019).
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2.1.3 Cokriging

The basic principle in this case is to estimate the variable of interest by means of a correlation
function defined by well data (the variogram), plus a cross-correlation function (linear corregion-
alization model) that quantifies the relationship with another, related variable, i.e., the seismic
information. This procedure is called cokriging. From a theoretical viewpoint, the correct way
to operate is to solve the full cokriging system of the 2 variables, porosity and seismic attribute.
However, from a practical standpoint, cokriging is a cumbersome procedure and moreover, when
applied to the dense population of seismic data, often gives problems of matrix instability in the
solution. Therefore, simplified forms of cokriging, called collocated cokriging. Th advantage in
this case is that tile implementation of collocated cokriging does not requier the construction of
the cross-variograms, but only the knowledge of the correlation coeficient between the 2 variables
(Cosentino, 2001).

The advantage of the method is that the spatial variability of the random variables is repro-
duced. The disadvantage is in its assumptions of the linear corregionalization model or the linear
correlation coefficient, which require high linear dependence between the random variables, more
detail see Díaz-Viera (2002). In the literature, there are works that applied cokriging to predict
petrophysical properties such as Babak and Deutsch (2009); Doyen et al. (1996); Moon et al.
(2016); Xu et al. (2016).

2.2 Simulation approach

2.2.1 Sequential Gaussian cosimulation

The Gaussian sequential Co-simulation method is a well-known method in the Geostatistical
literature, so here we will only mention the details of its application. The first assumption is to
assume that each random function is strictly stationary. It is also assumed that the univariate
probability distribution functions and the joint probability distribution function are Gaussian
(Normal) (Verly, 1992). Ussually this method is applied with a linear coregionalization model
(Chilès and Delfiner, 2012) that is mostly unnatural, forced, very complicated and difficult to
establish. The method assumes the existence of a very strong linear dependence between the
primary and secondary variables, which is its main assumption and, at the same time, its main
drawback (Díaz-Viera et al., 2017). This method was implemented by (Remy et al., 2009) in
SGeMS with different variants. There are some methods related to this method such as Sequential
Gaussian mixture cosimulation and Direct Sequential Cosimulation.

In the literature, there are works that applied these methods to predict petrophysical properties
such as, sequential Gaussian cosimulation (SGCS) (Afshari and Shadizadeh, 2015; Almeida and
Frykman, 1994; Almeida and Journel, 1994; Cao et al., 2014; Emery and Parra, 2013; Gómez-
Hernández and Journel, 1993; Parra and Emery, 2013; Verly, 1993), direct sequential cosimulation
(Azevedo and Soares, 2017; Horta and Soares, 2010; Soares, 2001, 2005; Soares et al., 2017), and
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Gaussian mixture cosimulation (Figueiredo et al., 2019; Grana et al., 2017, 2012; Grana and Rossa,
2010; Lang and Grana, 2017).

2.2.2 Annealing cosimulation

This review is primarily based on Deutsch and Cockerham (1994a), and Deutsch and Journel
(1998).

Applying the numerical technique known as “simulated annealing” to geostatistical simulation
is relatively new. The name Annealing Cosimulation (ACS) is derived from: 1) through common
usage simulated annealing has been shortened to “annealing”, and 2) stochastic simulation of one
attribute conditioned to others may be referred to as “cosimulation” (compare with cokriging).
Interest in the annealing methodology is based on its ability to honor a wide variety of input
data. The technique of simulated annealing is based on an analogy with the physical process of
annealing and is typically applied to global optimization problems. Annealing is the process by
which a material undergoes extended heating and is slowly cooled. Thermal vibrations permit
a reordering of the atoms/molecules to a highly ordered lattice, i.e., a low energy state. In the
context of 3-D numerical modeling, the annealing process may be simulated by the following steps:

1. Create an initial 3-D numerical model (analogous to the initial alloy in true annealing) by
assigning a permeability value to each grid node at random from the population distribution.

2. Define an energy or objective function (analogous to the Gibbs free energy in true anneal-
ing) as a measure of difference between desired features and those of the realization, e.g.,
the objective function could include the squared difference between the variogram of the
realization and a model variogram derived from core data.

3. Perturb the model (analogous to the thermal vibrations in true annealing) by visiting a
random location in the 3-D numerical model and assigning a new permeability value. The
new value is a random drawing from the conditional distribution of permeability given the
collocated porosity value.

4. Accept the perturbation (thermal vibration) if the objective function is decreased; reject it
if the energy has increased (the Boltzmann probability distribution of true annealing).

5. Continue the perturbation procedure until the low energy state is achieved. Low energy
states correspond to plausible 3-D numerical models of the reservoir.

In general, the objective function is made up of the weighted sum of Nc components:

O =
Nc∑
c=1

wc.Oc (2.2)

where O is the total objective function, Wc and Oc are weights and component objective func-
tions respectively. Each component is designed to account for a source of data. The weights are
calculated such that all components of the objective function are lowered to zero at the end of the
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annealing process.

In addition to the definition of an objective function, a critical aspect of simulated annealing-
based simulation algorithms is a prescription for when to accept or reject a given perturbation.
The acceptance probability distribution is given by the Boltzmann distribution:

P (accept) =


1 if Onew ≤ Oold

e
Onew−Oold

t otherwise
(2.3)

All favorable perturbations (Onew ≤ Oold) are accepted and unfavorable perturbations are
accepted with an exponential probability distribution. The parameter t of the exponential dis-
tribution is analogous to the "temperature" in annealing. The higher the temperature, the more
likely an unfavorable perturbation will be accepted.

The temperature t must not be lowered too fast or else the image may get trapped in a
suboptimal situation and never converge. However, if lowered too slowly, then convergence may
be unnecessarily slow. The specification of how to lower the temperature t is known as the
"annealing schedule". The following empirical annealing schedule is one practical alternative.

The idea is to start with an initially high temperature t0 and lower it by some multiplicative
factor λ whenever enough perturbations have been accepted (Kaccept) or too many have been tried
(Kmax). The algorithm is stopped when efforts to lower the objective function become sufficiently
discouraging. The following parameters describe this annealing schedule:

• t0: the initial temperature.
• λ: the reduction factor 0 < λ < 1.
• Kmax: the maximum number of attempted perturbations at any one temperature (on the

order of 100 times the number of nodes). The temperature is multiplied by λ whenever Kmax

is reached.
• Kaccept: the acceptance target. After Kaccept perturbations are accepted, the temperature is

multiplied by λ (on the order of 10 times the number of nodes).
• S: the stopping number. If Kmax is reached S times then the algorithm is stopped (usually

set at 2 or 3).
• ∆O: a low objective function indicating convergence.

The advantage of this method is if it reproduces the behaviors of univariate and bivariate
distribution and also the spatial variability of the random variables. The only drawback of this
method is that the conditional distribution function is based on a discretized bivariate probability
distribution. In the literature, there are works that applied this method to predict petrophysical
properties such as Dafflon and Barrash (2012); Deutsch and Cockerham (1994a,b); Vejbæk and
Kristensen (2000).





Chapter 3
Copula-based dependency modeling

3.1 Brief introduction to Copula

A copula is a multivariate cumulative distribution function for which the marginal probability
distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe the
dependence between random variables. Sklar’s theorem states that any multivariate joint distri-
bution can be written in terms of univariate marginal distribution functions and a copula which
describes the dependence structure between the variables. Copulas are popular in high-dimensional
statistical applications as they allow one to easily model and estimate the joint distribution of
random vectors by estimating marginals and copula separately.

In order to apply the copula-based model for predicting petrophysical properties using seis-
mic attributes as secondary variables, it is required that the petrophysical properties (total and
effective porosity, permeability, water saturation, and clay volume) and elastic seismic attributes
(P-velocity, S-velocity, density, P-impedance, S-impedance, etc.) are random variables and its
univariate distributions are continuous. Then, the joint distribution of these random variables
is constructed by modeling the univariate distributions and the copula. Finally, with the joint
distribution it is possible to predict the petrophysical properties conditioned to the elastic seismic
attributes.

3.1.1 Bivariate copula

According to Sklar’s theorem in Sklar (1959): Let F12 be a bivariate joint probability distribution
function and F1 and F2 be univariate (marginal) probability distribution functions. A copula is a
function C: [0, 1]2 7→ [0, 1] such that for all x1, x2 in R,

F12(x1, x2) = C12(F1(x1), F2(x2)) (3.1)

If F1 and F2 are continuous, then C12 is unique; otherwise, C12 is uniquely determined on

11



12 Chapter 3. Copula-based dependency modeling

RanF1 ×RanF2. Copula associated to a bivariate random vector (X1, X2) describes the relation-
ship between X1 and X2, and independently from their univariate probabilistic behavior.

Let F1(x1) = u, F2(x2) = v. According to Nelsen (2006) and Joe (2014), the properties of
copulas are:

1. C12(0, v) = 0 = C12(v, 0).

2. u = C12(u, 1).

3. v = C12(1, v).

4. For each u1, u2, v1, v2 in I = [0, 1] such that u1 ≤ u2 and v1 ≤ v2 then:
C12(u2, v2)− C12(u1, v2)− C12(u2, v1) + C12(u1, v1) ≥ 0.

5. C12 is uniformly continuous on its domain [0, 1]2.

6. A convex linear combination of copula functions is also a copula function.

7. The horizontal, vertical, and diagonal sections of a copula C12 are all nondecreasing and
uniformly continuous on [0, 1].

8. The random variables u y v are independent if and only if C12(u, v) = Π(u, v) = uv.

9. W (u, v) ≤ C12(u, v) ≤M(u, v) where W (u, v) = max(u+ v− 1, 0) and M(u, v) = min(u, v)
are also copulas known as the lower and upper Fréchet-Hoeffding bounds.

10. If α and β are strictly increasing on RanX1 and RanX2, respectively, then Cα(X1)β(X2) = C12.
Thus C12 is invariant under strictly increasing transformations of X1 and X2.

11. 0 ≤ ∂C12(u, v)

∂u
≤ 1 and 0 ≤ ∂C12(u, v)

∂v
≤ 1.

12. u 7−→ ∂C12(u, v)

∂v
and v 7−→ ∂C(u, v)

∂u
are nondecreasing.

13. The copula density function: c12(u, v) =
∂2C12(u, v)

∂u∂v
exists when C is absolutely continuous.

14. The conditional copula function:

cu(v) = FV |U(v|u) = P [V ≤ v | U = u] = lim
∆u→0

C12(u+ ∆u, v)− C12(u, v)

∆u
=
∂C12(u, v)

∂u
.

The graphical representation of copula functions is presented below:
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Figure 3.1: Graphs of the copulas M , Π y W (Nelsen, 2006).

Figure 3.2: Contour diagrams of the copulas M , Π y W (Nelsen, 2006).

3.1.2 Multivariate copula: Vine copula

The trivariate probability distribution function can be written as a trivariate copula function of
the univariate distributions in Equation 3.2 and the trivariate density function can be written
as a function of the univariate distributions and the density copula function in Equation 3.3 by
deriving the Equation 3.2.

F123(x1, x2, x3) = C123{F1(x1), F2(x2), F3(x3)}. (3.2)

f123(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c123{F1(x1), F2(x2), F3(x3)} (3.3)

According to Aas et al. (2009), the trivariate density function can be decomposed into the
marginal functions and blocks of the bivariate copulas in Equation 3.4. The decomposition of
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the high-dimensional copula to the bivariate copula blocks is called vine copula. This is very
significant when constructing the multivariate copula function. It is very laborious to build the
multivariate copula. But it is usually easier by means of the blocks of the bivariate copulas.

f123(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c12{F1(x1), F2(x2)}
· c23{F2(x2), F3(x3)} · c13|2{F1|2(x1|x2), F3|2(x3|x2)} (3.4)

Similarly, the distribution function and the density function of n variables can be written in
Equation 3.5 and Equation 3.6.

F1...n(x1, ..., xn) = C1...n{F1(x1), ..., Fn(xn)} (3.5)

f1...n(x1, ..., xn) = f1(x1) · · · fn(xn) · c1...n{F1(x1), ..., Fn(xn)}· (3.6)

The density function in Equation 3.6 can be rewritten by D-vine copula in Equation 3.7 or by
C-vine (canonical vine) copula in Equation 3.8, see more detail in Aas et al. (2009).

f1...n(x1, ..., xn) =
n∏
k=1

fk(xk) ·
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1

{F (xi|xi+1, ..., xi+j−1), F (xi+j|xi+1, ..., xi+j−1)} (3.7)

f1...n(x1, ..., xn) =
n∏
k=1

fk(xk) ·
n−1∏
j=1

n−j∏
i=1

cj,j+1|1,...,j−1

{F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1)} (3.8)

The conditional distribution function and conditional density function can be written in Equa-
tion 3.9 and Equation 3.10.

FX|V (x|v) =
∂Cxvj |v−j

(F (x|v−j), F (vj|v−j))
∂F (vj|v−j)

(3.9)

fX|V (x|v) = cxvj |v−j
(F (x|v−j), F (vj|v−j)) · f(x|v−j) (3.10)
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3.2 Data-driven copula-based dependency modeling

Copula-based dependency modeling for petrophysical property prediction using elastic seismic
attributes as secondary variables are presented below. Data for both petrophysical properties
and elastic seismic attributes are assumed to be available at the well log scale. Then, those data
are used to model the dependency between them based on copula. Note that the copula-based
dependency model can be applied to any data. This section gives an example of the application
for petrophysical properties and elastic seismic attributes.

3.2.1 Reference data

Given the data of n observations of the random vector (X, Y ): (xi, yi) where i = {1, 2, ..., n} at
the well log scale. Where X is an elastic seismic attribute and Y is a petrophysical property. Note
that each observation i is associated with a spatial position.

3.2.2 Univariate distribution function modeling

It is necessary to know the univariate probability distribution function of the random variables
of the petrophysical property (Y) and the elastic seismic attribute (X) to fully understand the
univariate behavior of these variables. Its univariate (marginal) probability distribution function
can be inferred using the data for these variables using the empirical cumulative distribution
functions (ecdf) of these variables in Equation 3.11. But those functions are step functions and
the variables X and Y are continuous, so it is necessary to fit a continuous univariate probability
distribution function. There are two approaches to fitting a univariate probability distribution
function to empirical functions that are parametric and nonparametric approaches.

Fn(x) =
1

n

n∑
i=1

I{xi ≤ x}, Gn(y) =
1

n

n∑
i=1

I{yi ≤ y} (3.11)

where I represents an indicator function equal to 1 when its argument is true, and 0 otherwise.
Figure 3.3 show that the ecdfs are discontinuous for the data set of the P-impedance and the

effective porosity: (X, Y ) = {(11000, 0.14), (8000, 0.15), (10000, 0.18), (5000, 0.21), (6000, 0.22)}.
In Figure 3.3 for the values y < 0.14 the value of the cumulative probability distribution function
v = Gn(y) = 0, for the values of y ≥ 0.14 or y < 0.15 then the value of v = Gn(y) = 0.2,
thus for all values of and a corresponding value of v can be calculated. But for all the values
v ∈ [0, 1] the value of y cannot be known, for example for v = 0.3, it is not known which value
of y corresponding. Therefore, as mentioned above, it is necessary to fit a univariate probability
distribution function to the data of the random variables.
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Figure 3.3: Examples of the ecdf of (X, Y ).

The parametric approach is not chosen because of its limitation, the model parameters are
usually two parameters that are the mean and the variance, which does not fit the data well.
Therefore the non-parametric approach is chosen because of its good fit to the data. Within the
nonparametric approach, several smoothing methods are available, such as B-spline (Shen et al.,
2008), Kernel density (Nagler and Czado, 2016), Bernstein polynomial (Erdely and Díaz-Viera,
2010), etc. In this work, Bernstein polynomial is used because of its analytical tractability.

The univariate quantile function Q(u) of the random variable X:

Q(u) = F−1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1 (3.12)

can be approximated using Bernstein polynomials as (Perez and Palacín, 1987):

Q̃(u) =
n∑
k=0

1

2
(x(k) + x(k+1)) (nk)uk(1− u)n−k (3.13)

Similarly the univariate quantile function of the random variable Y can be derived:

R(v) = G−1(v) = inf{y : G(y) ≥ u}, 0 ≤ v ≤ 1 (3.14)

can be approximated using Bernstein polynomials:
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R̃(v) =
n∑
j=0

1

2
(y(j) + y(j+1))

(
n
j

)
vj(1− v)n−j (3.15)

Some important characteristics of the Bernstein polynomial are continuous, invertible and
differentiable. Those characteristics are necessary for a probability distribution function. Once
the cumulative probability distribution function is continuous, then for any value of the random
variable both X and Y , it can always get a corresponding u and v value using the function F (x)
and G(y) (Figure 3.4).

Figure 3.4: Flow diagram to obtain the values of the univariate probability distribution function
of the random variables X and Y . In this case it can be an elastic seismic attribute (X) and a
petrophysical property (Y ).

Figure 3.5: Flow diagram to obtain a non-conditional simulation of the random variables X and
Y .

In the opposite direction, given any value of u and v, it can always simulate the corresponding
x and y values of the random variables using the function Q̃(u) and R̃(v) (Figure 3.5).
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Figure 3.6 shows illustrative examples of the flow diagrams of Figure 3.4 and Figure 3.5 where
for a given value ui a corresponding value of xi can be obtained and also for a given value xj a
corresponding value of uj can be obtained, in a similar way for v and y.

Figure 3.6: Illustrative examples of the flow diagram in Figure 3.4 and Figure 3.5.

3.2.3 Copula function modeling

Similarly, the copula function has similar behavior to the cumulative univariate probability dis-
tribution function such as, its ranges are in [0, 1], they are monotone increasing or bi-increasing
functions. The difference is that the copula function is two-dimensional and the univariate dis-
tribution function is one-dimensional. Therefore, as we have the empirical cumulative probability
distribution function, then we also have the empirical bivariate copula function. The empirical
copula is a function Cn with domain { i

n
; i = 0, 1, ..., n}2 defined as:

Cn(x, y) = Cn(F (x), G(y)) = Cn(u, v) =
1

n

n∑
i=1

I(ui ≤ u, vi ≤ v) (3.16)

where I represents an indicator function equal to 1 when its argument is true, and 0 otherwise.

Now we look at an example to better understand the empirical copula function in equation
3.16. Same data (X, Y ) = {(11000, 0.14), (8000, 0.15), (10000, 0.18), (5000, 0.21), (6000, 0.22)} of
P-impedance and effective porosity, and {(1.0, 0.2), (0.6, 0.4), (0.8, 0.6), (0.2, 0.8), (0.4, 1.0) are the
corresponding values (U, V ). Now to calculate the empirical copula function:
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• Cn(0.0, 0.0) = 1
5

∑5
i=1 I(ui ≤ 0.0, vi ≤ 0.0) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.0, 0.2) = 1
5

∑5
i=1 I(ui ≤ 0.0, vi ≤ 0.2) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.0, 0.4) = 1
5

∑5
i=1 I(ui ≤ 0.0, vi ≤ 0.4) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.0, 0.6) = 1
5

∑5
i=1 I(ui ≤ 0.0, vi ≤ 0.6) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.0, 0.8) = 1
5

∑5
i=1 I(ui ≤ 0.0, vi ≤ 0.8) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.0, 1.0) = 1
5

∑5
i=1 I(ui ≤ 0.0, vi ≤ 1.0) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.2, 0.0) = 1
5

∑5
i=1 I(ui ≤ 0.2, vi ≤ 0.0) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.4, 0.0) = 1
5

∑5
i=1 I(ui ≤ 0.4, vi ≤ 0.0) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.6, 0.0) = 1
5

∑5
i=1 I(ui ≤ 0.6, vi ≤ 0.0) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(0.8, 0.0) = 1
5

∑5
i=1 I(ui ≤ 0.8, vi ≤ 0.0) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• Cn(1.0, 0.0) = 1
5

∑5
i=1 I(ui ≤ 1.0, vi ≤ 0.0) = 1

5
(0 + 0 + 0 + 0 + 0) = 0

5
= 0

• ...
• Cn(1.0, 1.0) = 1

5

∑5
i=1 I(ui ≤ 1.0, vi ≤ 1.0) = 1

5
(1 + 1 + 1 + 1 + 1) = 5

5
= 1.0

A matrix of the empirical values of the empirical copula function is obtained and its graphical
representation can be seen in Figure 3.7. It can be seen that its value range is always within zero
and one.

Figure 3.7: The matrix of the empirical copula and its graphic representation.
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A univariate variable has two functions that are characterized as the cumulative probability
distribution function and the distribution density function, which is the derivative of the cumu-
lative distribution function. Similarly, the copula also has two functions, which are the copula
function and the density copula function. Figure 3.7 shows the copula function and the copula
density function is calculated as follows:

cXY (u, v) =
∂2CXY (u, v)

∂u∂v
(3.17)

The histogram is usually like the graphical representation of the univariate distribution density
function. Similarly, there are also several ways to represent the copula density function such as, the
Pseudo-observation plot, bivariate histogram. Next, it is presented how the Pseudo-observation
plot is obtained. Using the same values of (X, Y ) and corresponding values of (U, V ). The
scatterplot is used to plot the values of U vs V (see Figure 3.8).

Figure 3.8: Pseudo-observation of the random variables X and Y.

Similarly, the empirical copula function is also a step function like the empirical univariate
probability distribution function. But the random variables X and Y are continuous. Therefore,
it is necessary to fit a continuous copula function to the empirical copula function. There are
two approaches to fitting the continuous copula to the empirical copula which are parametric and
nonparametric. The methods for fitting a continuous copula to the empirical copula are presented
below.
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3.2.3.1 The parametric approach

Parametric copula functions are usually characterized by finite parameter values: δ = {δ1, δ2, ..., δn}.
There are many methods to estimate these parameters from the data such as, maximum pseudo-
likelihood estimator, inversion of Kendall’s tau estimator, and inversion of Spearman’s rho esti-
mator. A brief explanation of the most common method, maximum pseudo likelihood estimator,
is explained below.

• Maximum pseudo likelihood estimator

According to Joe (2014) the copula parameters can be estimated from the data (X, Y) and
corresponding data (U,V) using maximum pseudo likelihood estimator in Equation 3.18 and
Equation 3.19.

Lpseudo(δ) =
N∑
i=1

log cXY (ui, vi; δ) (3.18)

δ = argmax
N∑
i=1

log cXY (ui, vi; δ) (3.19)

3.2.3.2 The nonparametric approach

In literature, there are some methods such as, transformation estimator based on the classical
bivariate kernel estimation (eg, Geenens et al. (2014)), a transformation estimator with local log-
linear likelihood estimation (Geenens et al., 2014), transformation estimator with log-quadratic
local likelihood estimate (Geenens et al., 2014), transformation estimator with local log-linear
likelihood estimate and nearest neighbor bandwidths (Geenens et al., 2014) , transformation esti-
mator with local log-quadratic likelihood estimation and nearest neighbor bandwidths (Geenens
et al., 2014), tapered transformation estimator with plug-in bandwidths (Wen and Wu, 2020),
conic transformation estimator with cross-validation bandwidths of profiles (Wen and Wu, 2020),
mirror reflection estimator (Gijbels and Mielniczuk, 1990), beta nucleus estimator (Charpentier
et al., 2007), Bernstein copula estimator (Díaz-Viera et al., 2017; Erdely and Díaz-Viera, 2010;
Hernández-Maldonado et al., 2012, 2014; Le et al., 2020; Mendoza-Torres et al., 2017; Sancetta,
2007; Sancetta and Satchell, 2004). In the following, only the method based on the Bernstein
copula estimator will be explained as an example.

• Bernstein copula estimator

The empirical copula function can be approximated and smoothed by the Bernstein copula
function:

C̃n(u, v) =
n∑
i=0

n∑
j=0

Cn(u, v)

(
n

i

)
ui(1− u)n−i

(
n

j

)
vj(1− v)n−j (3.20)
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for each (u, v) in the unit square [0, 1]2, and where Cn is as defined in (3.16) (Sancetta and
Satchell, 2004) and (Sancetta, 2007).

3.2.4 Copula-based conditional simulation algorithm

Once both the univariate probability distribution function and the copula function are modeled.
The multivariate joint distribution function can now be fully modeled. Then, simulations and
estimates of the variables of interest will be carried out using the following algorithms:

3.2.4.1 Copula-based bivariate conditional simulation algorithm

To simulate realizations Y using the random variables X as secondary variable, according to the
measured data (X, Y ) = {(x1, y1), ..., (xn, yn)}, we follow the algorithm in Nelsen (2006):

1. Generate one independent and continuous Uniform (0,1) random variates t.
2. Calculate u = F (x) where F (x) is the modeled cumulative distribution function of the

variable X.
3. Set v = c−1

u (t) where

cu(v) =
∂C̃n(u, v)

∂u
(3.21)

and C̃n is computed as in Equation 3.20.
4. The couple is (x, y) = (Q̃n(u), R̃n(v)), where Q̃n y R̃n are the smoothed quantile functions

of X, Y, in Equation 3.13 and Equation 3.15.

3.2.4.2 Copula-based multivariate conditional simulation algorithm

This algorithm is quite similar to the bivariate conditional simulation algorithm, only the number
of univariate and copula functions are increased.

1. Generate one independent and continuous Uniform (0,1) random variates t.
2. Calculate ui = Fi(xi), where Fi are the estimated univariate cumulative distribution func-

tions of the secondary variables Xi, para i = 1, ..., n, respectively.
3. Set v = c−1

u(i)
(v) = F−1

V |U1,...,n
(t) where

cu(i)(v) = FV |U1,...,n(v|u1, ..., un) =
∂C̃vuj |u−j

(F (v|u−j), F (uj|u−j))
∂F (uj|u−j)

(3.22)

y C̃ is the bivariate copula function estimated by the random vector (V, Uj) : j = 1, ..., n,
which can be modeled by the Equation 3.20.
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4. The conditional simulated value y = R̃n(v), where R̃n is the estimated univariate quantile
function of the random variable Y in Equation 3.15.

3.2.4.3 Spatial dependency modeling

The conditional simulation algorithms above are only guaranteed to reproduce the univariate
distributions of the petrophysical properties and the dependency relationships between the petro-
physical properties and the elastic seismic attributes. To reproduce the spatial dependence of
petrophysical properties, a global optimization method is used (eg: simulated annealing, differ-
ential evolution). More details on these methods can be found in (Deutsch and Journel, 1998)
and (Ardia et al., 2020). The results of the copula-based conditional simulations are used for the
parameters of the global optimization methods. For each spatial position i, m simulated values of
the petrophysical property are obtained. So each position i has a maximum value and a minimum
value, or a range of possible values associated with the position i. These values are like the limits
or boundary condition associated with each spatial position. Then from this boundary condition
and the simulated values, the global optimization methods optimize the objective function, in
this case, this function is the variogram function, which represents the spatial dependence of the
petrophysical property. This step ensures the spatial dependency structure of the random variable
is reproduced.

3.2.5 Copula-based conditional estimation algorithm

3.2.5.1 Copula-based bivariate conditional quantile regression algorithm

. For a value x of the random variable X and 0 < α < 1 let y = ϕα(x) be the solution of

P (Y ≤ y|X = x) = α. (3.23)

Then the graph of y = ϕα(x) is the α-quantile regression curve of Y conditioned to X = x.
Nelsen (2006), shows that

P (Y ≤ y|X = x) = cu(v)|u=F (x),v=G(y) (3.24)

The results of Equation 3.21, Equation 3.23, and Equation 3.24 leads to the algorithm for the
α-quantile regression curve of Y conditioned to X = x :

1. Set cu(v) = α.
2. Solve for v = gα(u).
3. Substitute u by Q̃−1

n (x) and v by R̃−1
n (y).

4. Solve for y = ϕα(x).
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3.2.5.2 Copula-based multivariate conditional quantile regression algorithm

The algorithm to obtain the quantile regression curve α of the random variable Y using the random
variables Xi = x(i), i = 1, ..., n as secondary variables:

1. Set cu(i)(v) = α where cu(i)(v) is defined in Equation 3.22.
2. Solve for v = gα(u(i)).
3. Substitute u(i) by (Q̃−1

n )(i)(x(i)) and v by R̃−1
n (y) in the above equation.

4. Solve for the regression curve: y = ϕα(x(i)).

3.2.6 Computational implementation

The implementation of the algorithms was done in the R programming language (RCoreTeam,
2020). The empirical cumulative probability distribution function is calculated using the ecdf
function implemented in the stats package (RCoreTeam, 2020). Furthermore, this function can
be implemented using rank of each observation divided by observation number (n). It can be
easily implemented in R software using the following code rank(variable)/length(variable). The
univariate probability distribution function estimated by the Bernstein polynomial has been im-
plemented.

The empirical copula function and estimated by the Bernstein copula are implemented. The
copula (Hofert et al., 2020), vine copula (Nagler et al., 2020), rvinecopulib (Nagler and Vatter,
2020) packages are mainly used for modeling parametric copulas. The kdecopula (Nagler and Wen,
2018), kdevine (Nagler, 2018), rvinecopulib (Nagler and Vatter, 2020) packages are principally used
for modeling non-parametric copulas.

The conditional simulation algorithm based on the Bernstein copula is implemented. The
CDVineCopulaConditional (Bevacqua, 2017) package is used for the multivariate conditional sim-
ulation based on the parametric vine copula. The vinereg (Nagler and Kraus, 2020) package is
used for the quantile regression on both the parametric and non-parametric D-vine copulas.

Additionally, the GSLIB Geostatistical Software (Deutsch and Journel, 1998), the DEoptim
(Ardia et al., 2020) and GenSA (Xiang et al., 2018) packages in R are used, which are the global
optimization methods to reproduce the spatial variability of the random variables.

3.3 The simulation approach methods

3.3.1 Bernstein Copula-based Spatial CoSimulation (BCSCS)

This method basically consists of first modeling the bivariate probability distribution and second
optimizing the spatial dependency model (variogram function). To carry out the first step, the
univariate probability distribution functions and the copula function are modeled using Bernstein
polynomials in Equation 3.15 and Equation 3.20. The algorithm for this method is found in
subsubsection 3.2.4.1. To perform the second step, a global optimization method is used, which
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is simulated annealing (Deutsch and Journel, 1998). Note that this method is applied for the
bivariate case.

3.3.2 Vine Bernstein Copula-based Spatial CoSimulation (VBCSCS)

This method follows the same steps as the BCSCS method, but this can be applied for n variables
(n ≥ 3). The difference is that instead of modeling just one bivariate copula function, many bivari-
ate copula functions are modeled. Univariate probability functions and bivariate copula functions
are modeled by Bernstein polynomials in Equation 3.15 and Equation 3.20. The algorithm for
this method is found in subsubsection 3.2.4.2.

3.3.3 Vine Parametric Copula-based Spatial CoSimulation (VPCSCS)

The steps in this method are similar to the VBCSCS method. The only difference is that instead of
using the Bernstein polynomial to model the bivariate copula functions, the bivariate parametric
copulas are used. The algorithm for this method is found in subsubsection 3.2.4.2.

3.4 The estimation approach methods

3.4.1 Bernstein Copula-based Quantile Regression (BCQR)

This method basically consists of modeling the bivariate probability distribution function by con-
structing the univariate functions and the bivariate copula function using Bernstein polynomials
in Equation 3.15 and Equation 3.20. The difference with the BCSCS method is that it does
not perform the optimization step of the variogram function. The algorithm can be found in
subsubsection 3.2.5.1. Note that this method is applied for the bivariate case.

3.4.2 Vine Bernstein Copula-based Quantile Regression (VBCQR)

This method is very similar to the BCQR method, but this can be applied for n variables (n ≥ 3).
The difference with the BCQR method is that instead of modeling just one bivariate copula
function, many bivariate copula functions are modeled. Univariate probability functions and
bivariate copula functions are modeled by Bernstein polynomials in Equation 3.15 and Equation
3.20. The algorithm for this method is found in subsubsection 3.2.5.2.

3.4.3 Vine Parametric Copula-based Quantile Regression (VPCQR)

The steps in this method are similar to the VBCQR method. The only difference is that instead of
using the Bernstein polynomial to model the bivariate copula functions, the bivariate parametric
copulas are used. The algorithm for this method is found in subsubsection 3.2.5.2.





Chapter 4
Methodology

The static reservoirs characterization or it is also said reservoir geological-petrophysical model-
ing is based on the use of geostatistical techniques, which allow obtaining numerical models that
represent both the geological model and the petrophysical model of a reservoir (Figure 4.1). Geo-
statistical techniques facilitate combining different sources of both quantitative and descriptive
information in a integral way and analyzing the influence of the various parameters that intervene
in the model. The objective when applying geostatistical techniques is to obtain a reliable numer-
ical model of the reservoirs, in addition to the fact that, since they are probabilistic techniques, it
is feasible to perform an analysis of the degree of uncertainty associated with the models.

In the process of characterizing a reservoir, it is assumed that known data is never sufficient or
exhaustive to describe a reservoir in a complete and exact way. Under this approach, geostatistical
methods represent a practical tool through which it is possible to make distributions of facies and
petrophysical properties consistent with known data and with geological knowledge of the processes
that formed the reservoirs.

It is important to note that the reservoir geological-petrophysical modeling starts from a con-
ceptual geological model, which includes the environment in which the sediment deposition was
carried out and a stratigraphic framework product of the sedimentation and the subsequent for-
mation of the rocks that constitute the deposit. The work of formulating a geological model
involves disciplines such as: geology, sequential stratigraphy, sedimentology, interpretation of well
logs, biostratigraphy, geological studies of analogous outcrops and seismic interpretation. The
depositional sedimentological model of the reservoir should provide a semi-quantitative evaluation
of the geometric parameters in terms of the extension and distribution of the facies, as well as the
relationship between them. This information is basic to the stochastic reservoir modeling process.

Regarding the structural model, the structural characteristics of the reservoir must be identified
and defined, such as regional and local faults and fractures. This model is based mainly on
the interpretation of seismic information, well log data, the study of cores extracted from wells,
and field geology work on reservoir analogs that can provide useful information or corroborate
information that is interpreted from seismic.

27



28 Chapter 4. Methodology

The stratigraphic model is in charge of defining the framework or internal structure of the
reservoir, the process considers the identification and definition of the surfaces that delimit the
main flow units of the reservoir from the correlation of geological units between the wells. Another
important part is the definition and construction of the stratigraphic mesh, whose main objective
is to define the internal stratigraphic geometry, in a vertical sense, which must represent the
architecture of the units that compose the reservoir.

The facies model in the reservoir represents a powerful tool to guide the distribution of petro-
physical properties of the reservoir, since in most cases these two aspects are closely related. Thus,
the facies distribution model implies the definition of facies, which is based on the conceptual ge-
ological model and on the structural and stratigraphic model of the reservoir (Díaz-Viera et al.,
2013).

Figure 4.1: General workflow diagram for reservoir geological-petrophysical modeling (modified from
Díaz-Viera et al. (2013)).

Once the facies model has been obtained, the dependency relationship between the petro-
physical properties and the elastic seismic attributes is modeled for each facies using the copula
function. Finally, a representative model of the reservoir is obtained that represents both geological
and petrophysical models.

From the inversion point of view, Figure 4.2 shows the general scheme of the petrophysical
seismic inversion. The scheme begins from a forward model where given the petrophysical proper-
ties such as porosities (e.g., effective porosity), fluid saturations (e.g., water saturation), mineral
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fractions (e.g., clay volume), and between other assumptions such as the textures of rock, which
is the rock construction mode, describes the relationships between the components (e.g., the co-
ordination number), the environmental conditions such as temperature, pressure, etc. Then the
facies are defined, which are characterized by a combination of a lithology and a fluid (e.g, brine
sandstone). For each facies, a physical rock model is established and from this model, the elastic
seismic attributes can be obtained, which are mainly P-wave velocity, S-wave velocity and density.

From the elastic seismic attributes, one can calculate the impedances that are the density
multiplied by the velocities. Then, the reflection coefficient is calculated and multiplied to a
wavelet, this process is called the convolution. Finally, a synthetic seismic trace is obtained that is
characterized by amplitude, frequency, and phase. This process is called the forward model. Now,
the inversion model is that from the actual seismic trace obtained from the seismic acquisition,
then it is required to obtain the elastic seismic attributes by deconvolution which can be described
by the inverse operation to a convolution. This process is called seismic inversion.

A petrophysical inversion is the process of obtaining the petrophysical properties given the
elastic seismic attributes. To carry out this inversion, geostatistical methods are usually used,
which model the dependency relationships between the petrophysical properties and the elastic
seismic attributes in the places where both are known (e.g., well logs data). Then making use
of the dependency model to predict petrophysical properties in places where only elastic seismic
attributes are known (e.g., seismic data).

Figure 4.2: Petrophysical seismic inversion.

Figure 4.1 shows the general workflow for the reservoir geological-petrophysical modeling.
Below is the specific workflow of copula-based modeling for petrophysical property prediction
using the elastic seismic attributes as secondary variables applying for a given facies. The specific
workflow consists of 6 steps in Figure 4.3:

1. Exploratory data analysis
2. Spatial correlation analysis
3. Copula-based dependency modeling
4. Validation
5. Application
6. Uncertainty quantification
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Figure 4.3: Copula-based modeling workflow for petrophysical property prediction using seismic at-
tributes as secondary variables.

In the following, each steps will be explained in detail.

4.1 Exploratory data analysis

It is a set of statistical and graphical techniques that allow to establish a good basic understanding
of the behavior of the data and of the dependency relationships existing between the variables
that are studied. Exploratory data analysis (EDA) is a preliminary and indispensable step for the
successful application of any statistical method. In particular, it allows the detection of flaws in the
design and data collection, the treatment and/or evaluation of missing data, the identification of



4.1. Exploratory data analysis 31

outliers and the verification of the assumptions required by geostatistical techniques (Díaz-Viera,
2002).

4.1.1 Univariate analysis

The statistics of each random variable (petrophysical properties and elastic seimic attributes)
such as the minimum, the maximum, the rank, the mean, the median, the first quartile, the
third quartile, the interquartile rank, the variance, the standard deviation, the skewness, the
kurtosis and the atypical distributional values (outliers) are described using sets of tables and
figures combined to understand the univariate behavior of random variables. Note that outliers
and skewness strongly affect average-type statistics such as mean, variance, and semivariogram.

A univariate probability distribution function is fitted to the random variable data using non-
parametric approach (Bernstein polynomial) in subsection 3.2.2. Once this function is obtained,
then, the univariate behavior of the random variable is fully known. Therefore, the realizations
or simulations of the random variable can be easily performed through generating values of the
uniform distribution function and the quantile function of the random variable (see Figure 3.5).
If the random variable does not have the hard data but a conceptual prior distribution model
for that variable is known. So, based on that conceptual model, the realizations of the random
variables can also be done. This shows the versatility of this analysis that both conceptual and
hard data sources can be used.

4.1.2 Dependency analysis

In earth sciences, the scatterplot of random variables (petrophysical properties and elastic seimic
attributes) on their original scale and their Pearson’s linear correlation coefficient are often used
to analyze the dependency relationship. The univariate probability distribution of the original
random variables is commonly transformed into Gaussian distributions to facilitate the dependency
analysis between them. But Sklar’s theorem showed that the dependency relationship between the
random variables is independent of their univariate probabilistic behaviors and the copula function
that contains the dependency information between the variables. Therefore, the scatterplot is not
a suitable means for the analysis of dependency relationships because it is mixing the univariate
probabilistic behavior of the variables and their dependencies. The correct way to analyze the
dependency relationship is through the copula function and its representative graph is the Pseudo-
observation. The Pseudo-observation is the cross diagram of the univariate empirical distribution
functions of the variables (see more detail in subsection 3.2.3).

Pearson’s linear correlation coefficient is not as robust as the rank correlation coefficient like
Spearman and Kendall’s because it is only used to measure the linear dependence relationship be-
tween variables. If the variables do not present linear dependence, then it is not useful. Therefore,
in this work, in addition to Pearson, Spearman and Kendall are used. The definitions of these
coefficients as a function of the copula can be seen in Appendix A.
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4.2 Spatial correlation analysis
In this section, the spatial correlation of the random variables (petrophysical properties and elastic
seismic attributes) is analyzed using the semivariogram function. The experimental semivariogram
is first calculated and then a semivariogram model is fitted. To carry out this process, a stationarity
analysis is needed (more detail in Díaz-Viera (2002)). If perhaps there is no data to estimate
a semivariogram model but a conceptual geological model exists, then a semivariogram model
can also be inferred according to the conceptual geological model. Note that the semivariogram
estimator used in this work is an estimator of the average type. Therefore, outlier values and
skewness can affect the semivariogram model.

4.3 Copula-based dependency modeling
Once the Pseudo-observation and empirical copula are obtained, then, a copula function is mod-
eled, which can be parametric or non-parametric (see more detail in in subsection 3.2.3). Once
the copula function is modeled, simulations of dependency relationships between petrophysical
properties and elastic seismic attributes can easily be performed. Petrophysical properties can be
simulated and estimated by copula-based models using seismic attributes as secondary variables
by algorithms in subsection 3.2.4.

Figure 4.4: Schematic representation of copula-based conditional simulations.
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Figure 4.4 shows a schematic representation of copula-based conditional simulations for effec-
tive porosity prediction using P-impedance as a secondary variable. Each P-impedance value xi
is associated with a spatial position i. Therefore, for each spatial position i has one P-impedance
value and k effective porosity values (blue color). At each spatial position i, the quantiles are
calculated, then a quantile regression is obtained, e.g., the median regression in purple color in
Figure 4.4.

A simulation of the petrophysical properties is a realization of these variables when the univari-
ate and multivariate behaviors are reproduced, and also the spatial correlation of those variables.
With the algorithms in subsection 3.2.4, univariate and multivariate behaviors can be reproduced,
but spatial variability is not reproduced. Therefore, to reproduce the spatial correlation of the
petrophysical properties, the global optimization method such as simulated annealing or differen-
tial evolution is applied.

Figure 4.5: Schematic representation of a simulation (red color) after applying copula-based model and
global optimization method.

Figure 4.5 shows a schematic representation of an effective porosity simulation (red color)
after applying the copula-based model and the global optimization method. What the global
optimization method does, is to select the values within n simulated values of the effective porosity
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at all spatial positions until it reaches a spatial correlation model (semivariogram model).

4.4 Validation

This step is to validate the copula-based dependency relationship model by comparing the simu-
lated petrophysical properties using the seismic attributes as secondary variables at the well-log
scale. Furthermore, the uncertainty analysis will be performed on the results of this method with
a traditional simulation method (SGCS).

Figure 4.6: Schematic representation of k simulations (red color) after applying copula-based model and
global optimization method, and reference data (black color).

Figure 4.6 shows a schematic representation of a simulation (red color) after applying the
copula-based model and the global optimization method and comparing it with the reference
data (black color). With the simulation results, the errors or differences between the simulated
values and the original values can be analyzed. But with a simulation, you cannot perform an
uncertainty analysis or the accuracy and precision of the model results relative to the reference
data. Therefore, k simulations are needed to achieve this goal.
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4.5 Application
Once the dependency relationship model between the petrophysical properties and the elastic
seismic attributes at well log scale is validated, this model will be applied at the seismic scale with
the assumption that this model is the same in both scales of the well log and seismic. The spatial
dependence models of the petrophysical properties on the seismic scale can be inferred from the
spatial dependence models of the elastic seismic attributes at the seismic scale.

4.6 Uncertainty quantification

Figure 4.7: Schematic representation of k simulations (red color) after applying copula-based model and
global optimization method, k simulations (purple color) of traditional simulation method (SGCS), and
reference data (black color).

Given a value of the seismic attribute X = x, a range of possible values of the petrophysical
property Y = y ± ∆y at the spatial point of interest will be predicted. The k simulations of
the primary variable Y are obtained and then validated with the reference values of Y . The
simulations Y ∗ are conditioned to the secondary variable X applying two cosimulation methods:
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traditional SGCS and proposed BCSCS. The uncertainty ranges were compared to the reference Y
values. In addition, the descriptive statistics, the probability distribution functions and the spatial
distribution functions of the sets of k simulations Y ∗ were compared to the reference solution.

Figure 4.7 shows the schematic representation showing the simulations of the copula-based
method (red color), the SGCS method simulations (purple color), and the reference data (black
color) at well log scale. This figure and a descriptive statistical analysis of the simulations of both
methods allow a quantification analysis of the uncertainty such as the accuracy and precision of
the simulations with respect to the reference data. Figure 4.7 shows that the simulations in red
present better accuracy and precision than those simulated in purple.
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Conceptual geological model

The conceptual geological model in the study area is presented, showing the geographic location,
regional geological context, stratigraphic and structural framework, petroleum system, facies dis-
tribution.The geological description in this section is mainly taken from CNH (2005). Then, the
application of the methodology for well logs and seismic data.

5.1 Geographic location

The study area is the Lakach field reservations that geologically is located in the extreme south of
the Cordilleras Mexicanas Province (see in Figure 5.1). The available wells are four wells: Lakach
1, 2, 11, and 2DL that are aligned in the NNW-SSE direction with the approximate distance of
5.7 km. The 3D seismic data are from the Holok Alvarado seismic cube that are located within
the geological provinces: Mexican Ridges (Cordilleras Mexicanas), catemaco fold belt (Cinturón
Plegado de Catemaco), and isthmus saline basin (cuenca salina istmo).

5.2 Regional geological context

Mexican Ridges: it is a contraction system of elongated folds of NNW-SSE direction, which
stretches 500 km and covers nearly 70, 000 km2 in water depths between 1, 000 and 3, 000 m. It is
characterized by long and narrow asymmetric anticlines, usually with vergence to the East. The
dual system extension - compression had as main detachment takeoff plane of argillaceous horizons
of the upper Eocene and some other secondary detachment takeoff planes the Tertiary sequence.
It has been reported many emanations of oil and gas in the seafloor, showing the functioning of an
active petroleum system. These emanations are mainly concentrated in the area of the Perdido
Fold Belt, Subsalt Belt and the minibasins sector, also in relation to the salt diapirism, and the
distal face of the compression system front with a detachment level in the Eocene clays from
Mexican Ridges (CNH, 2005).

37



38 Chapter 5. Conceptual geological model

Figure 5.1: Location map of the work area: Holok Alvarado seismic cube, Lakack wells. Map
processed from data from the National Hydrocarbons Information Center (CNIH) of Mexico.

5.3 Stratigraphic framework
The stratigraphic characteristics are described below according to geological age:

• Miocene-Pliocene: Sedimentation in bathyal and neritic environments, facies mainly clay-
ley and silty related to turbiditic environments, sandstones packages associated to submarine
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fans and channels.

• Oligocene: Corresponds to fine-grained sands interbedded with clays, deposited in mean-
dering channels and distal lobes, contemporary to the first episodes of deformation caused
by the allochthonous salt movements. Therefore, at this epoch the structural configuration
modifies due to the plastic deformation of the salt bodies.

• Middle-Upper Eocene: Sedimentation was carried out in a lower bathyal environment,
forming a seal of good thickness in the Middle Eocene, composed of clays with thin interbed-
ded siltstones in hemipelagic environments. There are also thin layers of sandstones facies
related to lobes and crevasse splays from channels in the Upper Eocene.

• Lower Paleocene-Eocene: The Paleocene corresponds to a period of low sea level in
the Gulf of Mexico. Lower Paleocene is composed of basal sandstones bodies with a long
lateral extension called the “Whooper” sand (equivalent to Lower Wilcox Formation) in
channel facies and turbiditic layers, evolving to a sandy submarine fan system with lobes
and amalgamated channels to the Lower Eocene, with a high clay content corresponding to
a high sea level period. There are silt-clay intervals deposited in hemipelagic basin facies
interbedded with sandy Paleocene intervals (Midway Formation and “Big Shale” member).

• Cretaceous: Carbonate facies identified in deep basin environments with high cyclical
fluctuations of sea level. To the middle part, a of secondary source rock level is inferred of
Turonian age, with high content of organic matter deposited in anoxic basin environments.
In the Upper Cretaceous are identified calcareous-sandy bodies locally distributed, related
to turbiditic lobes.

• Upper Jurassic: Mainly carbonate sediments from inner to external ramp facies, with
lateral variations to dolomites and terrigenous sediments deposited in middle ramp envi-
ronments. Toward the top, a maximum transgression level represented by basin carbonates
rich in organic matter, particularly in the Tithonian, shows features of anoxic environments
deposition.

• Middle Jurassic: Formed by red beds overlaying igneous-metamorphic basement, evolving
to evaporitic rocks of great thickness related to the Gulf of Mexico opening.
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Figure 5.2: Stratigraphic column of geological provinces: Mexican Ridges, catemaco fold belt, and
isthmus saline basin (CNH, 2005).

5.4 Structural framework

Mexican Ridges located East from the continental shelf of the Gulf of Mexico, offshore Veracruz
and Tamaulipas states. In this area, a large and long folds were formed during the Neogene time
from the southern part of Salina de Bravo Province to the Southern Gulf of Mexico.

It covers over 500 km long in a surface area nearly of 70,000 km2, in water depths between
1,000 and 3,000 m, Mexican Ridges were generated in response to the gravitational extensional
processes developed from the south of Burgos and Tampico - Misantla Basins. It is composed by
long and tight eastward oriented symmetrical anticlines. The extensional-compressional combined
deformation system of this Province is extended through more than one detachment level within
the Paleogene interval, as well as other secondary detachment levels within the Tertiary sequence.
The structures are mainly present in the Tertiary sedimentary sequence, particularly deforming
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the Miocene to Recent rocks. The younger and broader folds are located towards the central part
of the Mexican Ridges.

Figure 5.3: Structural section in the SW-NE direction of the Mexican ridges. The Mexican ridges
contractional domain is characterized fault-related anticlines formed in the Neogene time. Showing
different structural styles: dipping folds, fault propagation and detachment folds (CNH, 2005).

5.5 Petroleum systems
Figure 5.4 shows the oil system for the southern zone of the Mexican ridges, where indicate that
the regional tectonics are faulting, rifting and passive margin; and traps formation are folding and
wedging.

In general, the migration controlling factors for the model of hydrocarbons saturation in the
area are:

• The lateral continuity of permeable facies of Paleocene / Upper Cretaceous age.
• The role of fault migration routes: the contribution of several compartments vs local migra-

tion compartment.
• The efficiency of the seals based on fracturing and thickness.
• The mobility of hydrocarbons according to the hydrocarbon phase (maturation or degrada-

tion grade).
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• Tilt angle and surface of drainage areas.

Tertiary gas is charged mostly by light hydrocarbons, condensed or gas with an RGA > 300
m3/m3 and an API grade > 30. For reasons of synchronization, this load occurs most likely in the
areas where the Tithonian is in condensed or dry gas generating window to present day. Similarly,
the structures charge will be more efficient in a larger drainage area.

Figure 5.4: The petroleum systems for the southern zone of Mexican ridges, where the geolog-
ical age, regional tectonics, trap formation, source rock, reservoir, seals, and accumulation and
preservation duration are described (CNH, 2005).

5.6 Facies distribution
Facies distribution classified by the delimitation of plays will be presented below:

• Lower Paleocene Wilcox: The lithologies distribution map in Figure 5.5 shows an in-
creased potential of reservoir rock to the north (Zone 2, Zone 1 north - the source of the
sediments were located to the north). To the south (Zones 4 and 5) is associated with
fans/smaller lobes. Abyssal plain area (south of Zone 1) unfavorable to Paleocene reservoir
lithology presence. The best sandstone facies would be located in Zone 2 (with few salt
intrusions) and at the north of Zone 1. The "Whopper" sandstone member, Lower Pale-
ocene Wilcox equivalent is located at a depth range between 5,000 and 14,000 m (in a water
depth > 600 m). In most of Zones 1-5, burial is included between 6,000 and 9,000 m. The
minimum depth (∼5000 m), which also corresponds to the minimum burial range (∼3500
m), is located at the south of Saline Basin and at the north of Perdido Fold Belt shows the
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largest salt structures (Zone 2). In addition, there are some locally wedged or stratigraphic
traps along the Southern Continental Shelf, at a depth range of 5,000-6,000 m (4,000-5,000
m burial).

Figure 5.5: Spatial distribution map of facies in the Lower Paleocene Wilcox and the symbology
Z1: zone 1, Z2: zone 2, Z3: zone 3, Z4: zone 4, Z5: zone 5 (CNH, 2005).

• Upper Paleocene Wilcox: The lithology distribution maps are very similar between the
Upper Wilcox play and the Lower Wilcox play (increased potential of reservoir rock to north
- Zone 2 and north of Zone 1). The difference in depth/burial between the Wilcox Lower
Paleocene play and the Wilcox Upper Paleocene play is in general less than 500 m (Figure
5.6).
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Figure 5.6: Spatial distribution map of facies in the Upper Paleocene Wilcox and the symbology
Z1: zone 1, Z2: zone 2, Z3: zone 3, Z4: zone 4, Z5: zone 5 (CNH, 2005).

• Lower Eocene Wilcox: The distribution of sand bodies in Lower Eocene Wilcox play in
Figure 5.7 shows that the best reservoirs are located in the north of Zone 2, and possibly in
Zones 3 and 4. The proportion of sediments that come directly from the Mexican platform
increases. In other areas, reservoirs are low quality and are deposits related to fans. The
Lower Eocene Wilcox is located at a depth range between 4,000 and 12,000 m. The minimum
depth, which also corresponds to the minimum burial, is located near the shoreline, outside
the deepwater zone. In most of the Zones 1-5, the burial is included between 4,500 and 8,500
m, except in areas with large amplitude structures (Zone 2, 2,500m locally burial - depth of
about 4,000 m minimum).
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Figure 5.7: Spatial distribution map of facies in the Lower Eocene Wilcox and the symbology Z1:
zone 1, Z2: zone 2, Z3: zone 3, Z4: zone 4, Z5: zone 5 (CNH, 2005).

• Oligocene: The lithology distribution map in deepwater Oligocene play area in Figure 5.8
shows that the sand bodies are found in almost all areas. It is mainly fans at the toe of the
slope with uncertain reservoir quality. Zones 2 and 3 are largely covered with salt intrusions.
The Oligocene is at a depth range between 3,000 and 7,000 m. The maximum values of depth
and burial are on the shoreline in the Burgos Basin and the transitional zone between shelf
and slope, where submarine slides are located. In most of the areas 1-5 burial is included
between 750 and 3,750 m with minimum values to the west of the Southern Continental
Platform and in the structural highs of Perdido Fold Belt (locally 1,500 m of burial to east
of Zone 2, 3,000-4,000 depth under the sea level).
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Figure 5.8: Spatial distribution map of facies in the Oligocene and the symbology Z1: zone 1, Z2:
zone 2, Z3: zone 3, Z4: zone 4, Z5: zone 5 (CNH, 2005).

• Middle Miocene: Figure 5.9 show that the best reservoir rocks may be found in the
northern part of the map (note: the reservoirs are interrupted by numerous salt intrusions).
In the southern part, the reservoir rock quality is lower (in the proposed geological model),
but the presence of large lobes are expected. The depth of the Middle Miocene play varies
from a few hundred meters at the southern Continental Shelf and of 5,000 m in the abyssal
zone. In most of the slope area (Zone 2-5), the Middle Miocene play is in between 3,000 and
4,500 m depth and compressive structures in zones 3-5 are well recognized. Throughout the
entire area, burial rate is the lesser (less than 1,500 m), except where slides occurred (up to
4,500 m). In most of the Salina del Bravo and the Perdido Fold Belt (Zone 2), the burial
rate is less than 750 m, which could limit the ability of preservation of hydrocarbon traps
(seals may not be efficient enough to maintain an hydrocarbon column in place, particularly
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if gas is expected).

Figure 5.9: Spatial distribution map of facies in the Middle Miocene and the symbology Z1: zone
1, Z2: zone 2, Z3: zone 3, Z4: zone 4, Z5: zone 5 (CNH, 2005).

• Upper Miocene: Figure 5.10 show that the best reservoir lithologies are inferred at the
northern part of the map, but reservoirs are small and are interrupted by the salt intrusions.
The southern part has not good quality reservoir properties in the proposed geological model.
The Upper Miocene play depth ranges from a few hundred meters on the southern Conti-
nental Shelf and about 5,000 m at the abyssal zone. In most of the slope area (Zone 2-5),
the Middle Miocene play is between 1,500 and 4,500 m depth. Throughout the entire area,
the depth is relatively shallow (less than 1,500 m), except where slides occur (up to 3,500
m). In the most part of the Salina del Bravo, in the Perdido Fold Belt (Zone 2), and in the
abyssal plain, the burial rate is less than 750 m, which could limit the ability of preservation
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of hydrocarbon traps (seals may not be efficient enough to maintain a hydrocarbon column
in place, particularly if gas is expected).

Figure 5.10: Spatial distribution map of facies in the Upper Miocene and the symbology Z1: zone
1, Z2: zone 2, Z3: zone 3, Z4: zone 4, Z5: zone 5 (CNH, 2005).



Chapter 6
Bivariate case study

In this section, the methodology is applied to bivariate data. The BCSCS method is validated and
compared with the SGCS method in a 1-dimensional case using well log data. The petrophysical
property, effective porosity, and the elastic attribute, P-impedance (Ip), come from the well logs
of Lakach-1 with a sampling interval of 1 m and a depth from 3035 m to 3380 m. P-impedance
is used as conditioning variable to simulate effective porosity. The simulated effective porosity is
validated with the reference data at the well log scale.

First, the bivariate joint probability distribution function of effective porosity and acoustic
impedance from the available data (well log) is inferred, then the effective porosity is simulated
using the P-impedance as secondary variable and compare with the results with the reference data
at the well location. Second, the prediction of the effective porosity in the inline section of seismic
data conditioned by the P-impedance available in this section. The results were published in the
journal of petroleum science and engineering.

6.1 Reference data at the well log scale

Figure 6.1 (a) and (b) show the spatial distribution, mean, and median of the reference data.
P-impedance shows a moderate depth trend. I assume that effective porosity is stationary since
the local mean and variance do not vary with the coordinates. In order to confirm the stationary
behavior, it is necessary to analyze the semivariogram (Díaz-Viera, 2002).
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Figure 6.1: Spatial distribution of P-impedance and the effective porosity at the well log scale
(black color), and its mean (red color), median (blue color).
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6.2 Exploratory data analysis

6.2.1 Univariate analysis

Table 6.1 shows the statistics of P-impedance and effective porosity. P-impedance has a high
positive skewness 1.5870, effective porosity has a low negative skewness -0.4323. Figure 6.2 (a),
(b), (c), and (d) show that the univariate probability distribution of P-impedance is skewed
whereas effective porosity is close to be unimodal and symmetric. Figure 6.2 (c) and (d) show
the existence of uni-distributional outliers. P-impedance has high outlier values and effective
porosity has both high and low outlier values. The further the skewness coefficient is from zero,
the more skewed the distribution will be. The uni-distributional outliers strongly affect average
estimators such as the mean, the semivariogram (Díaz-Viera, 2002). Therefore, when estimating
the semivariogram, it is recommended to eliminate the uni-distributional outliers.

Table 6.1: The statistics of P-impedance and effective porosity.

Statistics P-impedance Effective porosity

Observation number 346 346
Minimum 5324.4324 0.0493

1st. Quartile 6112.2847 0.1444
Median 6723.4581 0.1677
Mean 6953.9369 0.1654

3rd. Quartile 7347.0286 0.1896
Maximum 11612.4245 0.2857

Rank 6287.9922 0.2364
Interquartile Rank 1234.7439 0.0452

Variance 1395507.9379 0.0012
Standard Deviation 1181.3162 0.0351
Variation Coeff. 0.1699 0.2123

Skewness 1.5870 -0.4323
Kurtosis 5.6322 3.5427



52 Chapter 6. Bivariate case study

Figure 6.2: Empirical cumulative distribution function and histogram-boxplot of P-impedance
and effective porosity at the well log scale, and its mean (red color) and median (blue color).
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6.2.2 Dependency analysis

Figure 6.3 shows the scatterplot and pseudo-observation of P-impedance and effective poros-
ity. It is observed that P-impedance and effective porosity show an average negative correlation,
which means that, in general, as the P-impedance increases, effective porosity decreases. The
bi-distributional outliers (where the uni-distributional outliers match) are also shown in the lower
right of the scatterplot.

Figure 6.3: Scatterplot and Pseudo-observation of P-impedance versus effective porosity at the
well log scale, and its correlation coefficients and statistics.

Figure 6.3 also showed that the Pearson correlation coefficient changed from -0.7078 to -0.5603
when scatterplot was changed to pseudo-observation, but the Spearman and Kendall correlation
coefficients remained unchanged. Which indicated that Spearman and Kendall are more robust
than Pearson. Pearson is useful when the dependency is linear, Spearman and Kendall are use-
ful for any type of dependency. Pseudo-observation in Figure 6.3 showed that the marginal or
univariate functions are uniformly identically distributed, which showed that the copula function
is independent of the marginal behaviors, in other words, the copula does not depend on the
marginal behaviors of the variables.
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6.3 Spatial correlation analysis

Figure 6.4: (a) Scatterplot of P-impedance versus depth and its median regression and (b) Ex-
perimental semivariogram of P-impedance in the depth direction.

Figure 6.5: Semivariogram models and empirical semivariogram for P-impedance and effective
porosity in depth direction.
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When the semivariogram is bounded to the extent of the variance, then it is said that the variable
has at least intrinsic hypothesis stationarity (Díaz-Viera, 2002). Figure 6.4(a) and (b) show that
P-impedance has non-stationary behavior, because its semivariogram grows with the square of the
depth. In order to estimate a semivariogram model for P-impedance, it is necessary to remove the
trend. In Figure 6.5, the estimated semivariogram model for P-impedance and effective porosity
is presented. The spatial correlation range is approximately 50 m. This assumption complies with
the assumption of the linear co-regionalization model of the traditional SGCS method (Chilès and
Delfiner, 2012). The semivariogram model of the effective porosity γ(h) is a spherical model with
a nugget equal to 0.0006, a sill equal to 0.0012, and a scope equal to 50.0 m.

6.4 Copula-based dependency modeling
Figure 6.6 (a) and (b) show that empirical cdf of P-impedance and effective porosity are step func-
tions (in black), but P-impedance and the effective porosity are continuous variables. Therefore, a
smoothing technique is necessary for those functions. According to the methodology, the empirical
cdf of P-impedance and effective porosity are approximated by Bernstein polynomial. Figure 6.6
shows the results of the approximation and also illustrates that Bernstein polynomial fits well to
the empirical cdf of P-impedance and effective porosity. For comparison, the parametric Gaussian
cdf does not fit the P-impedance distribution (Figure 6.6 (a)).

Figure 6.6: Empirical cdf of P-impedance and effective porosity approximated using Bernstein
polynomial (in blue) compared to Gaussian cdf with mean and standard deviation of the variable
(in red).
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Figure 6.7 (a) shows the step function representing the empirical copula of P-impedance and
effective porosity (in black). The empirical copula of P-impedance and effective porosity is ap-
proximated by Bernstein copula (in blue) and it is shown in Figure 6.7 (a). Pseudo-observation
(empirical copula density) and Bernstein copula density are shown in Figure 6.7 (b). Figure 6.7
shows that the Bernstein copula function fitted the empirical copula function very well.

Figure 6.7: (a) Empirical copula and copula approximated by Bernstein copula of P-impedance
and effective porosity, (b) Pseudo-observation and copula density approximated by Bernstein
copula density.

6.5 Validation

Based on the previous results, 100 simulations of the effective porosity conditioned to P-impedance
are simulated using the conditional simulation algorithm proposed in the methodology section. To
reproduce the semivariogram model, we apply the simulated annealing method with the objective
function of variogram.

The proposed method is compared to sequential Gaussian cosimulation (SGCS) based on a
conditioning Markov model available in the open source code SGeMS (Remy et al., 2009). The
variable of interest is effective porosity and secondary variable is P-impedance without trend. 100
simulations of the effective porosity conditioned to P-impedance are simulated by SGCS using the
same semivariogram model (Figure 6.8).
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Figure 6.8: (a) Empirical cdf of effective porosity, (b) Scatterplot of P-impedance versus ef-
fective porosity; (c) Pseudo-observation of cdf(P-impedance) versus cdf(effective porosity), (d)
Variograma and (e) Well-log of effective porosity (reference in black, 100 simulations by BCSCS
in blue, 100 simulations by SGCS in red and variance in dashed red), and (f) Well-log of effective
porosity (reference in black, mean of 100 simulations by BCSCS in blue, mean of 100 simulations
by SGCS in red).
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6.6 Uncertainty quantification
The simulations of the effective porosity conditioned to P-impedance obtained with the two simu-
lation methods are compared and validated with the reference effective porosity. The univariate,
bivariate, spatial distribution, as well as the modeling error the reference and simulated effective
porosity are compared.

Table 6.2: Statistics of 100 simulations of effective porosity by SGCS and BCSCS, and reference
effective porosity.

Statistics BCSCS Reference data SGCS

Minimum 0.0493 0.0493 0.0492
Median 0.1688 0.1677 0.1673
Mean 0.1654 0.1654 0.1631

Maximum 0.2856 0.2857 0.2858
Variance 0.0012 0.0012 0.0020
Skewness -0.4691 -0.4323 -0.3331

In Figure 6.8(a), the empirical univariate cdf results of the BCSCS method (in blue) show
the smaller uncertainty compared to those of the SGCS method (in red). Table 6.2 shows the
statistics of results of 100 simulations of effective porosity by the two methods and the reference
effective porosity. In particular, the variance of the results of the SGCS method is almost the
double the variance of the results of the BCSCS method and the reference effective porosity.

Comparing the bivariate aspect through scatterplot and pseudo-observation, Figure 6.8(b)
and Figure 6.8(c) show that the results of the BCSCS method (in blue) reproduce the property
dependence better than the results of the SGCS method (in red), compared to the reference data
(in black). Table 6.3 shows that the dependency coefficients (Pearson, Kendall, Spearman) of the
BCSCS method are closer to the references than for the SGCS method. Therefore, the results of
the bivariate behavior of the SGCS method show greater uncertainty compared to those of the
BCSCS method.

Table 6.3: Correlation coefficients of P-impedance and effective porosity for BCSCS, reference
data and SGCS.

Coefficients BCSCS Reference data SGCS

Pearson -0.6966 -0.7078 -0.5720
Spearman -0.5491 -0.5603 -0.6275
Kendall -0.3937 -0.4051 -0.4409

In terms of the semivariogram model reproduction, Figure 6.8(d) and Figure 6.8(e) show that
the uncertainty of 100 simulated effective porosity by the BCSCS method (in blue) is smaller
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than the results of the SGCS method (in red) with respect to the reference semivariogram and
well-log data (in black). Moreover, Figure 6.8(f) shows that the expected value of 100 simulations
of effective porosity by BCSCS method matches the reference data. Therefore, the accuracy in
Figure 6.8(f) and precision in Figure 6.8(e) improve with the BCSCS method.

Table 6.4: Error statistics of BCSCS and SGCS.

Statistics BCSCS SGCS

Minimum -0.1351 -0.2183
Median 0.0002 -0.0005
Mean 0.0001 -0.0023

Maximum 0.1305 0.1771
Variance 0.0012 0.0021

Absolute Sum 908.1104 1267.168

Finally, the error between simulated values and reference data is analyzed. Table 6.4 and
Figure 6.9 show the histogram-boxplot and the statistics of the errors between the reference data
and 100 simulations of effective porosity and confirm that the BCSCS method provides better
results.

Figure 6.9: Histogram-boxplot of errors of 100 simulations of effective porosity by BCSCS and
SGCS.
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6.7 Application

The proposed method is finally applied to an in-line section of inverted P-impedance section (Fig-
ure 6.10(a)). The section shows a depth interval including sand and shale lithologies. P-impedance
has been obtained from seismic inversion of amplitudes and travel-times, using a traditional con-
volutional method where the seismic response is assumed to be approximated as a convolution of
the source wavelet and the reflection coefficients computed from P-wave velocity and density. The
results of seismic inversion have been converted from time to depth by using the predicted seismic
velocity. The low P-impedance in the upper part of the interval suggests a potential high-porosity
reservoir.

The goal of the application is to predict the effective porosity distribution along the 2D section.
The well log data in the previous section are used to model the rock physics relation between P-
impedance and effective porosity. Seismic data and seismic properties estimated from the data have
a lower resolution than well log data due to the limited bandwidth of the acquisition frequencies.
Therefore, the models obtained from seismic data are typically smoother, in the vertical direction,
compared to the corresponding well log data. The lateral continuity in the data is generally due
to the geological continuity of the geobodies in the subsurface. The semivariograms are estimated
from the P-impedance models.

Figure 6.11 shows the anisotropic behavior of the semivariograms of P-impedance in the vertical
and lateral directions. It is observed that the range in the horizontal direction (200 m) is much
greater than in the vertical direction (50 m), which indicates that the horizontal direction has
greater spatial continuity compared to the vertical direction, which is reflected in Figure 6.10(a).

The BCSCS method is applied to predict effective porosity conditioned to inverted P-impedance
at the seismic scale using their joint dependency model estimated at the well-log scale. This en-
sures that univariate and bivariate distributions of the effective porosity in the well-log scale will
be reproduced. The vertical and lateral semivariogram models of effective porosity are assumed to
be similar to the directional semivariogram models of P-impedance, due to the correlation between
the two properties shown in the well logs.

Figure 6.10(b) and Figure 6.10(c) show the median value and the standard deviation of 100
simulations of effective porosity conditioned to inverted P-impedance. The predicted model shows
a high-porosity region in the upper part of the interval, that corresponds to the potential reservoir
layer according to geological interpretation and nearby wells. The spatial structure of effective
porosity is not identically the same as the spatial structure of P-impedance because the joint
dependence between them is not linear. The semivariograms of the median value of 100 simulations
of effective porosity in the vertical and lateral directions are shown in Figure 6.12.
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Figure 6.10: (a) In-line section of inverted P-impedance of seismic data; (b) Median value and (c)
Standard deviation of 100 simulations of effective porosity.
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Figure 6.11: Semivariogram models and empirical semivariogram of P-impedance along the in-line
section.

Figure 6.12: Semivariogram models and empirical semivariogram of the median value of 100
simulations of effective porosity.
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In this section, the methodology is applied to data sets of petrophysical properties (total and
effective porosity, permeability, water saturation, and clay volume) and elastic seismic attributes
(P-wave and S-wave velocity, density, acoustic and elastic impedance, compressibility modulus
and the transverse elastic modulus, Lamé’s first parameter, and the Poisson’s ratio). It is not
intended to use all the variables of the elastic seismic attributes to predict petrophysical properties.
Therefore, before applying the methodology, a secondary variable selection analysis is required
where the secondary variables that have the highest dependence on the primary variable are
selected.

7.1 Reference data at the well log scale

The well being worked on in this section is the Lakach-1 well. The well log section used in this
section is within the Miocene geological age. The rocks are sandstones and shales in the channel
and the basin floor fans. The depth is from 3035 m to 3404 m. The data was originally sampled
at 0.1m, but it was subsampled at 1.0 m due to the amount of data.

Figure 7.1 and Figure 7.2 show the reference data in the well logs which are the petrophysical
properties: total and effective porosity (φt, φe), log (Permeability) (logKtimur), clay volume (Vcl),
water saturation (Sw); and the elastic seismic attributes: P-wave and S-wave velocity (Vp, Vs),
density (Rhob), P-wave and S-wave impedance (Ip, Is), Poisson’s ratio (Poisson), compressibility
and transverse elastic modulus (K, µ), and Lamé’s first parameter (λ). Figure 7.1 shows a trend
from high to low values of total and effective porosity and log(permeability); a trend from low to
high values of water saturation; and no trend in clay volume as depth increases. Figure 7.2 shows
a trend from low to high values for all elastic seismic attributes, except the Poisson’s ratio, which
appears to show no trend as depth increases.

63
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Figure 7.1: Spatial distribution of the petrophysical properties in the well log (black color), and
their means (red color) and medians (blue color).

There are 9 variables of the seismic attributes, it is not intended to use all these variables as
secondary variables to predict the petrophysical properties. Therefore a variable selection analysis
is required below. Based on the Figure 7.3 and the Table 7.1, the pair of variables between the
petrophysical properties and elastic seismic attributes that presents the highest dependence is the
effective porosity and the density with the Spearman correlation coefficient −0.98. Due to the
very high value of Spearman’s coefficient between effective porosity and density, therefore, it is not
necessary to add another secondary variable to predict effective porosity, just use density variable
as secondary variable.

The next pair of variables between the petrophysical and elastic properties that presents very
high dependence is the log(Permeability) and the density with the Spearman correlation coefficient
−0.92. Due to the very high coefficient value, therefore, it is decided that to predict the log
(Permeability) it is sufficient to use the density variable, that is, it is not necessary to add another
secondary variable. Note that predicted effective porosity can also be used as the secondary
variable due to its high dependence on log(Permeability). The density was chosen because it was
the original data.

The pair of variables that follows is the total porosity and density with the Spearman cor-
relation coefficient −0.81. Due to this not so very high value, therefore, it is necessary to look
for another secondary variable that presents high dependence on total porosity and low depen-
dence on density. The most suitable is the S-wave velocity that presents the Spearman correlation
coefficient with the total porosity −0.41 and with the density 0.10.
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Figure 7.2: Spatial distribution of the elastic seismic attributes in the well log (black color), and
their means (red color) and medians (blue color).
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Figure 7.3: Scatterplot matrix of petrophysical properties and elastic seismic attributes, and their
Spearman correlations.

The secondary variables that are selected to predict the clay volume are Poisson’s ratio and
density, because these two variables have a high dependence on clay volume and a low dependence
on each other. With the same reasoning, the two variables are selected: the Poisson’s ratio and
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the compressibility modulus as secondary variables to predict the water saturation.

Table 7.1: The Spearman correlation coefficient between the petrophysical properties and the
elastic seismic attributes.

φt LogKtimur φe Vcl Sw Vp Vs Rhob Ip Is Poisson K µ λ

φt 1.00 0.71 0.78 0.05 -0.20 -0.62 -0.41 -0.81 -0.72 -0.51 0.07 -0.71 -0.46 -0.66
LogKtimur - 1.00 0.95 -0.47 -0.35 -0.37 -0.02 -0.92 -0.51 -0.15 -0.27 -0.58 -0.09 -0.65

φe - - 1.00 -0.44 -0.26 -0.42 -0.05 -0.98 -0.57 -0.19 -0.27 -0.65 -0.12 -0.70
Vcl - - - 1.00 0.30 -0.26 -0.64 0.36 -0.14 -0.53 0.78 -0.01 -0.58 0.20
Sw - - - - 1.00 0.24 -0.01 0.23 0.27 0.09 0.36 0.30 0.05 0.38
Vp - - - - - 1.00 0.82 0.43 0.97 0.88 -0.27 0.92 0.86 0.77
Vs - - - - - - 1.00 0.10 0.75 0.98 -0.72 0.59 0.99 0.33

Rhob - - - - - - - 1.00 0.58 0.24 0.19 0.64 0.17 0.66
Ip - - - - - - - - 1.00 0.83 -0.18 0.96 0.79 0.83
Is - - - - - - - - - 1.00 -0.62 0.68 0.99 0.45

Poisson - - - - - - - - - - 1.00 0.01 -0.67 0.30
K - - - - - - - - - - - 1.00 0.64 0.92
µ - - - - - - - - - - - - 1.00 0.39
λ - - - - - - - - - - - - - 1.00

7.2 Exploratory data analysis

There are 5 case studies: two bivariate cases and three trivariate cases. A bivariate case was already
shown in chapter 6. Therefore, the bivariate case procedure is not presented. The procedure of a
trivariate representative case is shown to avoid repetitions of trivariate cases. But the results of
the five cases are showed in the end.

7.2.1 Univariate analysis

Figure 7.4 (a) to (f) show empirical cumulative distribution function and histogram-boxplot of
density, S-wave velocity and total porosity. Table 7.2 shows the statistics of the variables: density,
S-wave velocity, and total porosity. The density and S-wave velocity have positive skewness and
the total porosity present negative skewness. The asymmetry behavior of these variables can be
observed once again in Figure 7.4. It is possible due to the existence of the unidistributional
outliers that are presented in the histogram-box plot of these variables.

Figure 7.4 (a) to (c) show empirical cumulative distribution functions are discontinuous and the
variables are continuous, therefore it is necessary to fit a continuous function to these functions.
Figure 7.5 (a) to (c) show the empirical cumulative probability distribution functions for density,
S-wave velocity, and total porosity fitted by the Bernstein polynomial. This fitting approach is a
non-parametric approach. Kernel smoothing is another method of this approach. The advantage
of this approach is that it fits the empirical distribution function very well. The downside is that
when there is a lot of data, the execution time is high, and vice versa for the parametric approach.
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The specific advantage of the Bernstein polynomial is that this polynomial can be derived and
its inverse function can be calculated, which is needed for a probability distribution function. The
derivative of the cumulative probability distribution function is the distribution density function
and its inverse function is the quantile function of the random variable.

Once the univariate probability distribution function is modeled and known. Then, the uni-
variate behavior of the random variable can be fully known. Then, the simulations or realizations
of the values of the random variable can be performed by generating the values [0,1] of the uniform
distribution and then using the quantile function to obtain the values of the random variable.

Figure 7.4: Empirical cumulative distribution function and histogram-boxplot of density, S-wave
velocity and total porosity at the well log scale, and its mean (red color) and median (blue color).
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Table 7.2: The statistics of density, S-wave velocity, and total porosity.
Statistics Density S-wave velocity Total porosity

Observation number 370 370 370
Minimum 2.1260 1165.6275 0.1153

1st. Quartile 2.1932 1386.3900 0.2197
Median 2.2307 1500.8185 0.2311
Mean 2.2503 1580.4548 0.2225

3rd. Quartile 2.2978 1685.1024 0.2399
Maximum 2.4851 2403.9558 0.2611

Rank 0.3591 1238.3283 0.1458
Interquartile Rank 0.1047 298.7124 0.0202

Variance 0.0058 69867.6711 0.0008
Standard Deviation 0.0762 264.3249 0.0282
Variation Coeff. 0.0339 0.1672 0.1266

Skewness 0.9508 1.2642 -2.1490
Kurtosis 3.6300 4.4642 7.5972

Figure 7.5: The empirical cumulative probability distribution functions of the density, S-wave
velocity, and total porosity are fitted by the Bernstein polynomial.
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7.2.2 Dependency analysis

Figure 7.6: The scatterplots of the total porosity, density and S-wave velocity, and their correlation
coefficients.
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Figure 7.6 shows the scatterplot of the variables: total porosity, density, and the velocity of the S
wave; their correlation coefficients: Spearman, Kendall, and Pearson; and its boxplot histrogram
and its statistics. The advantage of the scatterplot is that the original units of the variables are
shown, but the disadvantage is that the dependency pattern between the variables can be distorted
by the different units, and by the existence of both uni and bi-distributional outlier values.

Figure 7.7: The pseudo-observations of the total porosity, density and S-wave velocity, and their
correlation coefficients.
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As explained in chapter 3 , the joint probability distribution function of more than two variables
can be estimated using bivariate copulas and marginal functions. In this case there are three
variables, therefore there are three bivariate copulas. Figure 7.7 shows the Pseudo-observations of
the variables: total porosity, density, and the S-wave volocity, where it can be observed that the
univariate distributions are now uniform. There are no uni and bi distributional outliers, and the
dependency pattern does not depend on univariate distributions because those distributions are
uniform.

Figure 7.6 and Figure 7.7 showed that the Spearman and Kendal correlation coefficients do
not change when they are changed from scatterplot to Pseudo-observation, but the Pearson linear
correlation coefficients changed, the abrupt change from 0.5 to 0.1 is observed in the case of density
vs S-wave velocity. Which indicates that the Spearman and Kendall coefficients are more robust
than Pearson. Figure 7.7 showed that the density and the velocity of the S wave have a low
dependence and these two variables have a high and medium dependence on the total porosity,
so the joint use of these two variables as secondary variable helps to predict the total porosity
variable.

7.3 Spatial correlation analysis

Figure 7.8 shows the empirical semivariogram of the total porosity in the depth direction and its
fitted semivariogram model, which is a spherical model with the nugget 0, the sill 0.00045 and the
range 8 meters. That means that the shape of the spatial correlation of the total porosity in the
depth direction is spherical with a spatial correlation range of 8 meters.

7.4 Copula-based dependency modeling

From the pseudo observations of total porosity, density, and S-wave velocity, the parametric cop-
ulas are adjusted and the copula BB8_270 is obtained for the pair of variables S-wave valocity
and total porosity, the copula BB8 for the pair of variables S-wave velocity and density, and the
copula t for the pair of variable density and total porosity (Figure 7.9).

Figure 7.10 showed the 3D representation and contour map of the bivariate copula density
functions of the variables total porosity, density, and S-wave velocity. Once the copula functions
and the univariate functions of the random variables are known, then the joint distribution function
of them can be known. Then, the simulations or realizations both conditional or unconditional
can be done easily. The algorithms of the simulations and estimates can be seen in chapter 3.

7.5 Validation

Petrophysical properties are predicted based on copulas constructed using elastic seismic attributes
as secondary variables. Then the predicted simulations and estimations will be compared with
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the petrophysical properties of references.

Figure 7.8: Empirical semivariograms of the total porosity and its fitted semivariogram model.

Figure 7.9: Summary of the vine parametric copula model fitted to the empirical values of the
cumulative distribution function of total porosity, density, and S-wave velocity.



74 Chapter 7. Multivariate case study

Figure 7.10: 3D representation and contour map of the bivariate copula density functions of the
empirical values of the cumulative distribution function of total porosity, density, and S-wave
velocity.

7.5.1 Simulations

For reproducing the joint and univariate probability distribution functions of the petrophysical
properties and the elastic seismic attributes, the algorithms of chapter 3 are applied. The global
optimization method (simulated annealing) is applied to reproduce the spatial correlation (the
semivariogram model) of the petrophysical properties.

Left figures of Figure 7.11, Figure 7.12, Figure 7.13, Figure 7.14, and Figure 7.15 show the
original data and the right figures show the simulations, where it was observed that the univariate
statistics of the petophysical properties, the dependency coefficients and the dependency pattern
between the properties petrophysical and elastic seismic attributes are very similar. Which indi-
cate that the univariate and dependency models are quite good and represent the distributional
behaviors of the random variables.

Figure 7.16, Figure 7.17, Figure 7.18, Figure 7.19, and Figure 7.20 show the spatial distribution
of the original and simulated petrophysical properties, the errors or differences between them,
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their experimental semivariograms, and their semivariogram models. Which indicate that the
semivariogram models are reproduced. Table 7.3 shows the statistics of the errors.

Figure 7.11: Left figure shows the scatterplot of effective porosity and density; Right figure presents
scatterplot of simulated effective porosity and density, and their dependency coefficients.

Figure 7.12: Left figures show the scatterplot of log(Permeability) and density; right figures present
scatterplot of simulated log(Permeability) and density, and their dependency coefficients.
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Figure 7.13: Left figures show the scatterplot of total porosity, S-wave velocity and density; right
figures present scatterplot of simulated total porosity, S-wave velocity and density, and their
dependency coefficients.
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Figure 7.14: Left figures show the scatterplot of clay volume, Poisson’s ratio and density; right fig-
ures present scatterplot of simulated clay volume, Poisson’s ratio and density, and their Spearman
correlation.
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Figure 7.15: Left figures show the scatterplot of water saturation, Poisson’s ratio and compress-
ibility modulus; right figures present scatterplot of simulated water saturation, Poisson’s ratio and
compressibility modulus, and their Spearman correlation.



7.5. Validation 79

Figure 7.16: Spatial distribution, empirical semivariograms, and the fitted semivariogram model
of the reference effective porosity (black color) and the corresponding simulated (green color).

Figure 7.17: Spatial distribution, empirical semivariograms, and the fitted semivariogram model
of the reference log(Permeability) (black color) and the corresponding simulated (green color).
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Figure 7.18: Spatial distribution, empirical semivariograms, and the fitted semivariogram model
of the reference total porosity (black color) and the corresponding simulated (green color).

Figure 7.19: Spatial distribution, empirical semivariograms, and the fitted semivariogram model
of the reference clay volume (black color) and the corresponding simulated (green color).
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Figure 7.20: Spatial distribution, empirical semivariograms, and the fitted semivariogram model
of the reference water saturation (black color) and the corresponding simulated (green color).

Table 7.3: Statistics of errors.

Statistics Total porosity log(Permeability) Effective porosity clay volume Water saturation

Observation number 370 370 370 370 370
Minimum -0.0447 -0.8158 -0.0202 -0.1590 -0.5639

1st. Quartile -0.0067 -0.1218 -0.0041 -0.0267 -0.1019
Median -0.0002 -0.0008 0.0004 -0.0002 0.0005
Mean -0.0003 0.0215 0.0006 -0.0033 -0.0219

3rd. Quartile 0.0063 0.1307 0.0052 0.0259 0.0503
Maximum 0.0450 1.5120 0.0295 0.1272 0.5869

Rank 0.0897 2.3278 0.0497 0.2762 1.1507
Interquartile Rank 0.0130 0.2525 0.0093 0.0526 0.1522

Variance 0.0001 0.0769 0.0001 0.0020 0.0297
Standard Deviation 0.0110 0.2773 0.0075 0.0444 0.1723
Variation Coeff. -32.2576 12.8913 12.1171 -13.2862 -7.8690

Skewness -0.0357 1.2952 0.3115 -0.4218 -0.1462
Kurtosis 4.8064 8.9487 3.9704 3.7263 4.3762
RMSE 0.0110 0.2778 0.0075 0.0444 0.1735
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7.5.2 Estimations

Estimation of petrophysical properties applying quantile regression method based on D-vine copula
using elastic seismic attributes as secondary variables is presented.

Figure 7.21: Upper figure show spatial distribution of the reference petrophysical properties (solid
black line) and the median (50th percentile) (dashed red line), the 10th percentile (dashed green
line), 90th percentile (dashed blue line) of the quantile regression, and grey regions represent the
90% confidence interval. Lower figure shows the difference between the reference and the median
or errors (black line), the mean (red line) and the median (blue line) of the errors.
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Figure 7.21 shows the quantile regression curves as the median, 10th percentile, 90th percentile,
and the differences between the originals and the median curve. Table 7.4 shows the error statistics
and Figure 7.22 shows the boxplot histograms of the errors. Figure 7.23 shows the semivariograms
of the estimated petrophysical properties that do not follow the semivariogram model. This is
logical because the estimation approach does not require reproducing the spatial variability of the
random variables.

Table 7.4: Statistics of errors.
Statistics Total porosity log(Permeability) Effective porosity Clay volume Water saturation

Observation number 370 370 370 370 370
Minimum -0.0297 -0.6006 -0.0165 -0.1369 -0.5155

1st. Quartile -0.0046 -0.1316 -0.0036 -0.0196 -0.0925
Median 0.0004 -0.0280 -0.0000 0.0000 0.0094
Mean -0.0007 0.0167 0.0004 0.0029 -0.0179

3rd. Quartile 0.0037 0.1130 0.0039 0.0186 0.0444
Maximum 0.0229 1.4016 0.0317 0.1030 0.4368

Rank 0.0527 2.0022 0.0481 0.2400 0.9523
Interquartile Rank 0.0083 0.2445 0.0075 0.0383 0.1370

Variance 0.0001 0.0619 0.0000 0.0013 0.0233
Standard Deviation 0.0074 0.2488 0.0059 0.0355 0.1528
Variation Coeff. -10.0550 14.9322 13.2447 -12.2270 -8.5217

Skewness -0.6676 2.0391 1.4488 -0.6597 -0.2558
Kurtosis 3.9927 10.4498 8.5187 4.5934 4.2991
RMSE 0.0074 0.2490 0.0059 0.0356 0.1536

Figure 7.21 upper gives a result of the prediction through the median and also allows an
analysis of uncertainty through the range of 10th and 90th quantile. That’s valuable because it
not only gives the most probable value, but also the range of uncertainty associated with that
value.

It is observed that the spatial distribution of the medians of the prediction and the references
are quite similar. As the dependencies between the petrophysical properties and the elastic seismic
attributes are greater, the similarity between the median of the prediction and the reference is
greater, e.g. the case of effective porosity, and vice versa, e.g. the case of water saturation in
Figure 7.21.

Table 7.4 shows that the errors of log(Permeability) and effective porosity present high asym-
metry, the errors of total porosity and clay volume present low asymmetry and the water saturation
error presents very low asymmetry. Figure 7.22 shows that the errors for all regressions have high
and low distributional outliers. Figure 7.23 shows that in general the medians of the regressions
present the spatial variability less than the original spatial variability, in other words the spatial
variability is underestimated. Which is once again confirming that the estimation approach does
not reproduce the spatial variability of the random variable and underestimating it.
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Figure 7.22: Histograms of the errors.
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Figure 7.23: The experimental semivariogram of petrophysical properties: original in black points,
estimated in red points, and its fitted semivariogram model (solid line).
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7.6 Application

The dependency model built at the well log scale between the petrophysical properties and the
elastic seismic attributes is applied to the seismic data in the 2D inline section that follows the
west-east direction. According to the conceptual geological model, this direction presents the folds
and symmetrical anticline. The elastic seismic attributes that are used as secondary variables are
the same secondary variables of the built dependency model at well log scale. Figure 7.24, Figure
7.25, Figure 7.26, and Figure 7.27 show the attributes which are the S-wave velocity, the density,
the Poisson’s ratio and the compressibility modulus. Each section contains 2,112 cells: 64 vertical
cells (384 meters) and 33 horizontal cells (412.5 meters). A cell represents approximately 6 meters
vertically and 12.5 meters horizontally.

Figure 7.24: 2D seismic section of S-wave velocity.
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Figure 7.25: 2D seismic section of density.
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Figure 7.26: 2D seismic section of Poisson’s ratio.
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Figure 7.27: 2D seismic section of compressibility modulus.

Figure 7.28 to Figure 7.47 show the simulation, the mean (the most likely value), the median,
and the uncertainty range of the predicted petrophysical properties. Which can answer questions
such as spatial variability, the most likely value and the associated uncertainty in each spatial
position in the section.

Figure 7.28 shows a simulation of the total porosity where the spatial variability of the variable
is reproduced. The upper zone shows the high values, the lower zone shows the low values, and
the middle zone shows a mixture of both. Figure 7.29 and Figure 7.30 show the most likely and
median values of the total porosity where it can be seen that there are two zones: an upper middle
zone with values between [0.225,0.245] and a lower zone with values between [0.165,0.225], and
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there are no very high values of [0.245,0.261] and very low [0.115,0.165] as in the simulation. This
confirms once again that the results of the estimation approach are smoothed out and do not
reproduce spatial variability. Figure 7.31 shows the uncertainty range that is calculated by the
difference between 10th and 90th percentile. It can be seen that the area that has high values of
total porosity presents less uncertainty (upper middle area), and the area that presents low values
of the same presents higher uncertainty (lower area). An interpretation from the four figures is
the upper middle zone can be a sandstone and the lower zone can be a shale.

Figure 7.28: 2D seismic sections of the simulated total porosity.
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Figure 7.29: 2D seismic sections of the predicted mean total porosity.
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Figure 7.30: 2D seismic sections of the predicted median (50th percentile) total porosity.
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Figure 7.31: 2D seismic sections of the predicted total porosity uncertainty range.

Figure 7.32 shows a simulation of the effective porosity where the spatial variability of the
variable is reproduced, and shows two areas of high values in the lower part of the intermediate
values (upper middle area) and an area of low values (lower zone). Figure 7.33 and Figure 7.34
show the most likely value and the median of the effective porosity, which does not show the
high values of [0.2,0.22] as in the simulation, but the areas of low and high values are agreed with
simulation. Figure 7.35 shows the uncertainty range, which indicates that the areas that have high
values of effective porosity present a range of uncertainty (0.15, 0.175] (upper mean area), and the
areas that have low values of the same present less uncertainty (lower zone). One interpretation
is that the high zone with high effective porosity values can be an area of interest to produce oil
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or gas, and to confirm this, the permeability and water saturation in this zone must be analyzed.
An interesting observation is that this zone or body of interest follows a shape of an anticline that
is consistent with the structural model in the W-E direction of the study area.

Figure 7.32: 2D seismic sections of the simulated effective porosity.
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Figure 7.33: 2D seismic sections of the predicted mean effective porosity.
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Figure 7.34: 2D seismic sections of the predicted median (50th percentile) effective porosity.
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Figure 7.35: 2D seismic sections of the predicted effective porosity uncertainty range.

Figure 7.36 shows the simulation of the log(permeability) where the spatial variability of the
variable is reproduced. And the areas of high and low values are quite similar with the areas of
high and low values of effective porosity. This is logical because these two variables are closely
related, that is, they present high dependence between them. Figure 7.37 and Figure 7.38 show
the most likely value and the median of the log(permeability), which indicate that they do not
present the very high [1.35,2.49] and very low [-0.302, -0.013] values as the simulation. It can
be seen that the areas of high and low values are consistent between the simulation and the
estimation. The upper zone of interest that presents high values of log(permeability) coincides
with the zone of high values of effective porosity, and the zones of low values also coincide. Figure
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7.39 shows the uncertainty range of the log(permeability) where it shows the area of high values
of log(permeability) is associated with higher uncertainty and the areas with low values of the
same are presenting less uncertainty. The results of the log(permeability) support the previous
interpretation that the zone of interest for hydrocarbon or gas production is associated with the
upper zone. But for the interpretation to be more reliable, the results for clay volume and water
saturation need to be analyzed.

Figure 7.36: 2D seismic sections of the simulated log(Permeability).
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Figure 7.37: 2D seismic sections of the predicted mean log(Permeability).
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Figure 7.38: 2D seismic sections of the predicted median (50th percentile) log(Permeability).
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Figure 7.39: 2D seismic sections of the predicted log(Permeability) uncertainty range.

Figure 7.40 shows the simulation of the clay volume where the spatial variability of this variable
occurs. Figure 7.41 and Figure 7.42 show a consistency of the high and low zones of the clay volume
values, but very high [0.35,0.373] and very low [0.04,0.16] values are not observed. This confirms
once again that the results of the estimation method are smoothed out and do not reproduce
spatial variability. In the high zone that presents low values of the clay volume coincides with the
high values of effective porosity and log (permeability). This leads to the interpretation that this
zone is a sandstone zone with high effective porosity and high permeability. Figure 7.43 shows the
range of uncertainty associated with the clay volume prediction where it shows that high values of
the volume of clay associated with less uncertainty and low or medium values of the clay volume
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associated with higher uncertainty.

Figure 7.40: 2D seismic sections of the simulated clay volume.
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Figure 7.41: 2D seismic sections of the predicted mean clay volume.



104 Chapter 7. Multivariate case study

Figure 7.42: 2D seismic sections of the predicted median (50th percentile) clay volume.



7.6. Application 105

Figure 7.43: 2D seismic sections of the predicted clay volume uncertainty range.

Figure 7.44 shows the simulation of water saturation where it shows that the spatial variability
of this variable is reproduced. Figure 7.45 and Figure 7.46 show the most likely value and the
median of the water saturation where the upper zone is observed presents low values of the water
saturation, and this zone coincides with the low values of the same in the simulation . But in this
zone, the values of the most likely value are [0.75,0.8] and the simulation values are [0.25,0.75].
This case is a critical case of the estimation because the estimation results soften so much that
it gives us an idea that this zone has enough water. But in reality, according to the simulation,
there is not so much water in this area. This is one of the advantages of simulation. This zone
that presents low values of water saturation is the same zone of low values of the volume of clay
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and high values of effective porosity and high values of permeability. Therefore, once again it is
confirmed that the upper zone is a zone of interest to produce hydrocarbon or gas with a sandstone
lithology with high effective porosity, high permeability, and low water saturation. Figure 7.47
shows the range of uncertainty associated with the results of the prediction of water saturation,
where it indicates that low values of water saturation associated with higher uncertainty and high
values of the same associated with less uncertainty.

Figure 7.44: 2D seismic sections of the simulated water saturation.



7.6. Application 107

Figure 7.45: 2D seismic sections of the predicted mean water saturation.
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Figure 7.46: 2D seismic sections of the predicted median (50th percentile) water saturation.
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Figure 7.47: 2D seismic sections of the predicted water saturation uncertainty range.





Chapter 8
Conclusions and future work

In the bivariate case study, uncertainty quantification analysis was used to validate and compare
the BCSCS and traditional SGCS method. Where it showed that the results of the BCSCS method
reduce uncertainty compared to the results of the SGCS method in aspects such as univariate and
bivariate distributions, and also spatial distribution. Indeed, the BCSCS method can model the
dependency relationship between the random variables of interest, without assuming a linear
dependence between variables nor parametric probability distribution functions. The application
showed an example of how the BCSCS method can be applied by combining the data from different
scales, such as well log and seismic scale.

In the multivariate case study, the proposed method was extended to multivariate problems ap-
plying vine copula with several elastic attributes to predict a set of reservoir properties of interest,
including porosity, mineralogy, and fluid saturations. Copula-based estimation and simulation
show the versatility of applying different approaches such as parametric, semi-parametric, and
non-parametric. Copula-based estimation and simulation approaches serve not only to predict,
but also allow a uncertainty quantification analysis. The simulation approach reproduces the spa-
tial variability of the petrophysical properties of interest with the high computational cost. On
the other hand, the estimation approach underestimates the spatial variability of petrophysical
properties with a low computational cost.

The proposed methodology was very valuable where different sources of information such as
quantitative data (well log and seismic data) and qualitative data (conceptual geological model)
can be integrated. Although the geological model is not integrated into the prediction, it is used
to measure the agreement between this model and the results of the predictions. The area of
interest is associated with the symmetric anticline structure in the E-W direction.

Other alternatives to select the secondary variables are through the principal component and
factor analysis methods. Instead of using the variables of the elastic seismic attributes, the main
components or the factors are used. The advantage of these methods is that the number of
secondary variables are reduced and independent, and collecting most of the variability of the
data.

111
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Future work could be the application of the Bayesian approach, which allows more systematic
uncertainty quantification. Then, a comparison will be made of the results of the proposed method
with the Bayesian approach.

Future work could be the application of the proposed methodology for each seismic facies
classified by rock physics. The joint petrophysics and seismic inversion could be carried out
through the proposed methodology using the real seismic traces.
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Appendix A
Copula-based dependence measures.

A.1 The linear or Pearson’s correlation coefficient

According to Erdely (2011) y Ingle-González (2016), the linear or Pearson’s correlation coefficient
between two random variables X1 and X2 is defined by

r(X1, X2) :=
Cov(X1, X2)√
V ar(X1)V ar(X2)

(A.1)

where Cov(X1, X2) = E(X1X2)−E(X1)E(X2) is the covariance of (X1, X2), and V ar(X1) and
V ar(X2) are the variances of X1 and X2.

Which is likewise expressible in terms of its underlying copula:

r(X, Y ) :=
1√

V ar(X)V ar(Y )

∫∫
I2

[C12(u, v)− uv]dF−1
1 (u)dF−1

2 (v). (A.2)

Embrechts et al. (1999) cited by Erdely (2011) states a set of elements to consider when using
linear correlation:

1. Linear correlation is simply a scalar measure of dependency. It cannot tell us everything we
would like to know regarding the risk dependency structure.

2. The possible values of the linear correlation depend on the marginal distributions of the
risks. All values between −1 and +1 are not necessarily achievable.

3. Risks with a perfect positive dependency do not necessarily have a linear correlation equal
to +1; Risks with a perfect negative dependency do not necessarily have a linear correlation
equal to −1.

4. Linear correlation equal to zero does not imply independence of risks.
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5. Linear correlation is not invariant under increasing risk transformations. For example, logX
and logY generally do not have the same linear correlation as X and Y .

6. Correlation is only defined when the risk variances are finite, so it is not a suitable depen-
dency measure for heavy-tailed risks where the variances are infinite.

A.2 The association or concordance measure

Informally, a pair of random variables are concordant if the large values of one tend to be associated
with large values of the other and the small values of one with small values of the other. To be
more precise, let (x1i, x2i) and (x1j, x2j) denote two observations of a continuous random vector
(X1, X2). We say that (x1i, x2i) and (x1j, x2j) are concordant if x1i < x1j and x2i < x2j, or if
x1i > x1j and x2i > x2j. Similarly, we say that (x1i, x2i) and (x1j, x2j) are discordant if x1i < x1j

and x2i > x2j, or if x1i > x1j and x2i < x2j. Note the alternative formulation: (x1i, x2i) and
(x1j, x2j) are concordant if (x1i − x1j)(x2i − x2j) > 0 and discordant if (x1i − x1j)(x2i − x2j) < 0
(Nelsen, 2006).

• Kendall’s tau

Let {(x11, x21), (x12, x22), ..., (x1n, x2n)} denotes a random sample of n observations of a con-
tinuous random vector (X1, X2). There are

(
n
2

)
distinct pairs (x1i, x2i) y (x1j, x2j) of obser-

vations in the sample and each pair is either concordant or discordant. Let c denote the
number of concordant pairs and d the number of discordant pairs. So Kendall’s tau for the
sample is defined as

t =
c− d
c+ d

=
(c− d)(

n
2

) (A.3)

Let (X1, X2) and (X̂1, X̂2) be independent ramdom vectors of continuous random variables
with joint distribution functions F12 and F̂12, respectively, with common margins F1 (of X1

and X̂1) and F2 (ofX2 and X̂2). Let C12 and Ĉ12 denote the copulas of (X1, X2) and (X̂1, X̂2),
respectively, so that F12(x1, x2) = C12(F1(x1), F2(x2)) and F̂12(x1, x2) = Ĉ12(F1(x1), F2(x2)).
Kendall’s tau is defined as the probability of concordance minus the probability of discor-
dance.

τ = τ12 = τX1X2 = P [(X1 − X̂1)(X2 − X̂2) > 0]− P [(X1 − X̂1)(X2 − X̂2) < 0] (A.4)

Let X1 and X2 be continuous random variables whose copula is C12. Then, Kendall’s tau
for X1 and X2 (which we will indicate with τ12 or τC12) is given by:

τ12 = τC12 = 4

∫∫
I2
C12(u, v)dC12(u, v)− 1 (A.5)
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• Spearman’s rho

As with Kendall’s tau, the measure of association known as Spearman’s rho is based on
concordance and discordance. Now let (X1, X2), (X̂1, X̂2) and (X̌1, X̌2) be three independent
random vectors with a common joint distribution function F12 (whose margins are again F1

and F2) and the copula C12. The rhoX1,X2 of Spearman’s rho is defined to be proportional
to the probability of concordance minus the probability of discordance for the two vectors
(X1, X2) and (X̂1, X̌2), that is, a pair of vectors with the same margins, but one vector has
the distribution function F12, while the components of the other are independent.

ρX1,X2 = 3(P [(X1 −X2)(X̂1 − X̌2) > 0]− P [(X1 −X2)(X̂1 − X̌2) < 0]) (A.6)

Let X1 and X2 be continuous random variables whose copula is C12. Then, Spearman’s rho
for X1 and X2 (denoted by ρX1,X2 or ρC12) is given by

ρX1,X2 = ρC12 = 12

∫∫
I2
uvdC12(u, v)− 3, (A.7)

= 12

∫∫
I2
C12(u, v)dudv − 3. (A.8)

Another interpretation of Spearman’s rho can be obtained from its representation in A.8.
The integral in that expression represents the volume under the graph of the copula and
over the unit square, and hence ρC is a scaled volume under the graph of the copula (scaled
to lie in the interval [−1, 1]). Indeed, A.8 can also be written as

ρC12 = 12

∫∫
I2

[C12(u, v)− uv]dudv (A.9)

so that ρC12 is proportional to the signed volume between the graphs of the copula ρC12 and
the product copula Π. Thus ρC12 is a measure of average distance between the distribution
of X1 and X2 (as represented by ρC12) and independence (as represented by the copula Π)
(Nelsen, 2006).
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