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Abstract

In this work we study the effect of optical aberrations on the spatial and tempo-
ral femtosecond pulse intensity distributions around the focal region for several
optical systems without neglecting the pulse bandwidth and assuming disper-
sive effects like Group Velocity Dispersion and Propagation Time Difference are
pre-compensated before propagation. We calculate the optical aberrations of a
given system for each pulse constituent frequencies via finite raytracing, obtain-
ing the Optical Path Difference surface and its Zernike polynomial coefficients,
which can determine how the emerging wavefront deviates from an ideal spher-
ical wavefront, and use this information to calculate the intensity distributions
using the scalar diffraction theory. We measure the resulting intensity distribu-
tions to find the position of the shortest pulse duration and the smallest spot
diameter along the focal region of a given system, and simulated two common
experimental techniques for pulse characterization: the knife-edge test and the
intensity autocorrelation for space and time measurement, respectively. We use
two measurement criteria, the Full-Width Half-Maximum and the standard de-
viation, to compare the results obtained from the diffraction patterns and the
indirect measurement techniques, finding that the standard deviation provides
consistent results when applied to the theoretical intensity distributions and the
experimental simulation results. We also implemented interferometric wavefront
techniques based on Phase Shifting interferometry and developed a femtosecond
pulse spectral intensity filtering algorithm using the research done in this work.
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Resumen

En este trabajo estudiamos el efecto de las aberraciones opticas en las distribu-
ciones espaciales y temporales de intensidad de pulsos de femtosegundos alrede-
dor de la región focal para varios sistemas ópticos, esto sin descartar el ancho
de banda del pulso y asumiendo que efectos dispersivos como la Dispersión de
Velocidad de Grupo y la Diferencia de Tiempo de Propagación son compensados
antes de la propagación. Calculamos las aberraciones de un sistema óptico para
cada frecuencia que conforma a un pulso de femtosegundos por medio de trazo
de rayos finito, obteniendo la superficie de Diferencia de Camino Óptico y los
coeficientes de los polinomios de Zernike correspondientes, los cuales indican en
que medida se desvía el frente de onda emergente con respecto a un frente de
onda esférico ideal, y usamos esta información para calcular las distribuciones
de intensidad por medio de la teoría de difracción escalar. Medimos las distribu-
ciones de intensidad resultantes para encontrar la posición en la región focal de
un sistema óptico dado del spot más pequeño y la duración de pulso más corta,
y simulamos dos tecnicas experimentales para la caracterización de pulsos: la
prueba de la navaja y la autocorrelación de intensidad para las mediciones en
espacio y en tiempo, respectivamente. Usamos dos criterios de medición, la
anchura a media altura y la desviación estándar, para comparar las mediciones
obtenidas a partir de los patrones de difracción y las técnicas de medición in-
directas, encontrando que la desviación estándar provee resultados consistentes
cuando se utiliza para medir en las distribuciones de intensidad teóricas así como
en los resultados de las simulaciones de experimentos. Además implementamos
técnicas de medición interferométricas derivadas de la Interferometría por Cor-
rimiento de Fase y desarrollamos un algoritmo para filtrar la intensidad espectral
de un pulso de femtosegundos usando la investigación realizada en este trabajo.
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Introduction

Ultrashort laser pulses are electromagnetic wave packets that last several fem-
toseconds, 1 × 10−15 [s], and when focused, are able to deliver extreme peak
power [1]. Some applications for ultrashort laser pulses are nonlinear microscopy [2–
4], micromachining [5], medicine [6] and fundamental science [7–9].

The focusing of femtosecond pulses has been extensively studied theoretically
and experimentally [10–22]. Techniques have been developed to measure the
spatio-temporal coupling of ultrashort pulses around the focal region of optical
systems [1, 23–29].

The effect of aberrations in the spatio-temporal coupling of femtosecond
pulses around the focal plane has also been studied by calculating the aberra-
tion for the carrier-frequency and neglecting its variation with the frequencies
of the pulse [13–15, 17–20]. In the present thesis, this approximation has been
removed and the model takes into account that the aberration changes for dif-
ferent frequencies of the pulse.

A tool for the simulation of ultrashort pulse propagation through an opti-
cal system based on a combination of ray-tracing and wave optical propagation
methods, including the variation of the aberration with pulse frequencies, was
published by Fuchs, et.al. [16]. In the simulation in reference [16], the disper-
sive effects, namely: Group Velocity Dispersion [13, 14] and Propagation Time
Difference [10–14] were also added to calculate the pulse front distortion in the
focal region of different lenses.

The dispersion of the lens material is the major responsible for temporal
pulse broadening, which limits the performance of the pulse once it is focused
by an optical system. In a laboratory setting the group velocity can be pre-
compensated by using a pulse compressor and the propagation time difference
can be reduced by using achromatic optics. We neglect these two dispersion
effects, while preserving the chromatic spherical aberration found in a given op-
tical system in order to study the impact of the frequency-dependent aberration
on the spatial and temporal intensity distributions around the focal plane.

To achieve this, on Chapter 1 we study the propagation of light through
optical systems using geometrical optics without the paraxial approximation in
order to evaluate the exact wavefront at the exit pupil of the optical system. We
present the needed equations for ray translation and refraction or reflection on
an optical surface. We follow Chapter 1 by discussing what are wave aberrations
and a useful concept named Optical Path Difference, OPD, on Chapter 2, which
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will allow us to determine the optical aberrations of a given system, while on
Chapter 3 we study and apply Zernike polynomials to generate and measure
the Optical Path Difference surfaces we obtain from the presented raytracing
algorithms.

We present an application of Zernike polynomial fitting in Chapter 4 where
we discuss how to retrieve the optical aberrations of a given system through
the Phase Shifting Interferometry algorithm family. A Fizeau interferometer
is being constructed at the Laboratorio Universitario de Fabricación de Equipo
Óptico - LUFABEO (University Laboratory for Optical Equipment Fabrication)
in the Institute of Applied Science and Technology at UNAM to obtain inter-
ferograms for measuring the shape of a surface. So, the algorithms described in
this chapter will be tested with real interferograms.

On Chapter 5 we study femtosecond pulse propagation using a combina-
tion of geometrical optics and the scalar diffraction theory. We do not include
the effects of Group Velocity Dispersion and Propagation Time Difference but
consider frequency-dependent spherical aberration on the simulation in order to
study its impact on the focusing of femtosecond pulses. We analyse three optical
components: a concave spherical mirror, an achromatic doublet and a double-
convex lens for different input pulse durations. We discuss two different criteria
to measure the temporal and spatial intensity pulse profiles and the differences
between approximating the aberration content to the aberration of the carrier
or by taking into account that the aberration changes with the frequencies of
the pulse.

And, lastly, on Chapter 6 we present an algorithm to filter noise in the
spectral intensity for ultrashort laser pulses that requires little user intervention.

The research presented in this work resulted in two peer-reviewed publica-
tions [30,31].

2 RESUMEN



Chapter 1

Finite raytracing

We assume an optical system formed by rotationally symmetric surfaces. The
optical system is described by the radius of curvature of the surfaces, the sepa-
ration along the optical axis between each surface and the refractive indices of
the media before and after each surface. Geometrical optics is used to describe
the propagation of light through the optical system where the rays indicate the
direction of the energy propagation. The paraxial geometrical theory, albeit
useful to determinate how a given system forms an image, is only valid when
the rays propagate close to the optical axis , and the angle of incidence is very
small, so sin[θ] ≈ θ, where θ is the angle between a ray and the optical axis.
In the paraxial approximation, the image of an object point is a point, i.e., all
the rays that diverge from (or converge to) an object point will converge to (or
diverge from) an image point. For rays that do not satisfy the paraxial approx-
imation, the image will not be a point anymore, but a blur which will produce
an aberrated image. [32]

To analyse light propagating through the system for non-paraxial rays and
to assess the system aberration content, the optical designer traces the rays by
using the Snell’s law with no approximation of the sin function, i.e. it is an
exact raytrace and it is called finite raytracing.

A finite raytracing requires two basic steps: ray transfer and ray refrac-
tion. Both processes are discussed in this chapter based on a raytracing method
developed by J.L. Rayces [33].

1.1 Quadric surfaces and the rectangular coordi-
nate system

Quadric surfaces are commonly used to describe the surfaces of lenses. Examples
of such surfaces are spheres, paraboloids and ellipsoids, among others.

Any quadric can be expressed in a three-dimensional rectangular space by
Equation (1.1):
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1.1. QUADRIC SURFACES AND THE RECTANGULAR COORDINATE
SYSTEM

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0. (1.1)

Although it is possible to describe a complete optical system using a single
spatial reference system, the use of quadric surfaces is simplified greatly if each
surface has its own local spatial reference system. For this work we use a right-
handed rectangular coordinate system where the z axis is the optical axis, i. e.,
the reference axis for light propagation, and the origin of each coordinate system
are coincident with the vertex of its associated quadric surface. A diagram is
shown in Figure 1.1.

-10
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ax
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-5 0
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Figure 1.1: Sphere constructed with Equation (1.1). We use a right-handed
rectangular coordinate and the vertex of the sphere coincides with the origin of
the coordinate system.

Finally, suppose two orthogonal systems (xi−1, yi−1, zi−1) and (xi, yi, zi) as
shown in Figure 1.2, that are separated by a distance d. These systems are
related by Equations (1.2a), (1.2b) and (1.2c):

xi = xi−1, (1.2a)
yi = yi−1, (1.2b)

zi = zi−1 + d. (1.2c)
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1.2. RAY REPRESENTATION IN A THREE-DIMENSIONAL
RECTANGULAR SPACE

Orthogonal system i− 1

Orthogonal system i

d

(xi, yi, zi)

(xi−1, yi−1, zi−1)

Figure 1.2: Separation between two collinear orthogonal reference systems.

1.2 Ray representation in a three-dimensional rect-
angular space

In Geometrical Optics, a ray represents the direction of the energy flow. A ray
is generated by tracing a line perpendicular to the wavefront, which direction
matches the direction of energy propagation in dielectric isotropic materials.
The ray is described by a known point in the line and by its direction cosines,
as shown in Equations (1.3a), (1.3b) and (1.3c):

x = X + t cosα, (1.3a)
y = Y + t cosβ, (1.3b)
z = Z + t cos γ, (1.3c)

where

x, y, z are the coordinates of any point in the line;

X,Y, Z are the coordinates of the known point in the line;

α, β, γ are the line direction angles, and

t is the distance between the known point to a new point.

1.3 Intersection of a ray with an optical surface
To model the ray propagation from one surface to another, it is needed to find
the incidence point of the ray upon the surface. It is required to know a point
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1.3. INTERSECTION OF A RAY WITH AN OPTICAL SURFACE

in the ray referred to the optical surface coordinate system and search the point
where the ray and the surface intersect.

The foot of the perpendicular from the local reference system origin O to
the ray is chosen as known point. Traditionally, the plane that contains point
O and its perpendicular to the optical axis-z is used as the surface for ray
intersection, however, if a ray makes 90 deg with the optical axis, this ray will
not intersect this plane, thus, it will be undefined. This is an issue for wide
angle field systems. The foot of the perpendicular prevents this situation.

1.3.1 Foot of the perpendicular from the origin to the line
calculation

Given a known point P in the ray, of coordinates X,Y, Z. It is desired to locate
the point P⊥ of the foot of the perpendicular from the origin O of the reference
system to the ray, of coordinates X⊥, Y⊥, Z⊥, as presented in Figure 1.3 [34].

P

P⊥

y

zO

~d

Figure 1.3: Moving from known point P to the point of the foot of the perpen-
dicular from the origin P⊥, seen from the y, z plane.

A vector ~d = ~P⊥ − ~P is defined, where

~P⊥ = ~P + t′(cosα+ cosβ + cos γ) (1.4)

Since the desired point is at the foot of the perpendicular, ~P⊥ is perpendic-
ular to ~d, hence

~P⊥ · ~d = 0. (1.5)
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1.3. INTERSECTION OF A RAY WITH AN OPTICAL SURFACE

Substituting (1.4) in (1.5), and isolating t′:

t′ = X cosα+ Y cosβ + Z cos γ. (1.6)

The coordinates of the foot of the perpendicular from the origin to the ray
are

X⊥ = X + t′ cosα, (1.7a)
Y⊥ = Y + t′ cosβ, (1.7b)
Z⊥ = Z + t′ cos γ; (1.7c)

thus, the new ray parametric equations are

x = X⊥ + t cosα, (1.8a)
y = Y⊥ + t cosβ, (1.8b)
z = Z⊥ + t cos γ. (1.8c)

1.3.2 Search for the intersection of the ray and the optical
surface

The optical surface is described by Equation (1.1). The quadric equation origin
must be displaced in a way such that the surface vertex is coincident with origin
of the reference system.

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0. (1.1)

An implicit equation that depends on t is obtained by substituting Equations
(1.8a), (1.8b) and (1.8c) in Equation (1.1):

Ω(t) = 0 (1.9)

Spherical surface

If the optical surface to be described is an sphere of radius R, centered in (0, 0, h)
then the plane (x, y) is tangent to the sphere, the Equation (1.1) is

1

R2
x2 +

1

R2
y2 +

1

R2
z2 +

2h

R2
z +

h2

R2
− 1 = 0. (1.10)

Equation (1.11) is obtained by substituting Equations (1.8a), (1.8b) and
(1.8c) in Equation (1.10), and factorizing for t:
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1.3. INTERSECTION OF A RAY WITH AN OPTICAL SURFACE

t2

R2
[cos2 α+ cos2 β + cos2 γ]+

+
2t

R2
[(1 + h) cosα+ cosβ + cos γ]+

+
1

R2
[x2 + y2 + z2 + 2hz + h2 −R2], (1.11)

which is an equation in the form at2i +bti+c = 0, where the smallest absolute
value for ti will be used to find the ray intersection point with the sphere.

Any quadric surface

To find the intersection point without knowing the optical surface equation
beforehand a successive approximation method based on Newthon-Raphson al-
gorithm is used. The algorithm is described in the following steps:

• The coordinates are computed with Equations (1.8a), (1.8b) and (1.8c)
using a initial t value. In this work the computation uses t = 0.

• Equations (1.9) and (1.12) are evaluated with the previously computed
coordinates.

dΩ

dt
=
dx

dt
(2Ax+Dy + Ez +G) +

+
dy

dt
(2By +Dx+ Fz +H) +

+
dz

dt
(2Cz + Ex+ Fy + I) . (1.12)

Differentiating Equations (1.8a), (1.8b) and (1.8c) with respect to t reveals
that the derivatives are equal to the direction cosines of the incident ray.

• The new value for t is calculated by Equation (1.13):

ti = ti−1 −
Ω
dΩ
dt

. (1.13)

The iterative process stops when Ω is negligible or when a maximum number
of iterations is done. If the maximum number of allowed iterations is reached
without Ω being small enough, it is considered that the ray does not intersect
the surface.

Evaluation of the line equation

Being ti the solution obtained from the search methods previously described,
the coordinates Xi, Yi, Zi that belong to the point where the ray intersects the
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1.4. RAY REFRACTION AND REFLECTION

optical surface are:

Xi = X⊥ + ti cosα, (1.14a)
Yi = Y⊥ + ti cosβ, (1.14b)
Zi = Z⊥ + ti cos γ. (1.14c)

1.4 Ray refraction and reflection
Once the point where the ray intersects the optical surface is found, it is required
to calculate the normal line to the surface. The direction cosines of the normal
line can be found by normalizing the partial derivatives of Equation (1.9):

cosλ =
1

k

∂Ω

∂x
, cosµ =

1

k

∂Ω

∂y
, cos ν =

1

k

∂Ω

∂z
; (1.15a)

k =

√
∂Ω

∂x

2

+
∂Ω

∂y

2

+
∂Ω

∂z

2

(1.15b)

In order to refract or reflect a ray in a three-dimensional space, two concentric
spheres of radii n1 and n2 are considered. The former corresponds to the object
space and the latter to the image space. The coordinate system to be used is
independent and parallel to the reference system used by the surface where the
ray intersects.

A parallel line to the incident ray is traced from the center of the spheres,
crossing the sphere of radius n1 in a point N . From this point, a parallel line
to the surface normal line is traced. This line crosses the sphere of radius n2

at two points, N1 and N2. The direction of the refracted ray is obtained by
tracing a line from one either N1 or N2, whichever is closer to N , to the local
coordinate system origin. The process is displayed in Figure 1.4

Let cosα, cosβ, cos γ be the direction cosines of a line parallel to the inci-
dent ray. This line contains the origin of the coordinate reference system and
intersects the sphere of radius n1 at the point N of coordinates

X = n1 cosα, (1.16a)

Y = n1 cosβ, (1.16b)

Z = n1 cos γ. (1.16c)

From N a line normal to the surface is traced from the ray incidence point.
The parametric line equations are:

x = X + τ cosλ, (1.17a)
y = Y + τ cosµ, (1.17b)
z = Z + τ cos ν, (1.17c)
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1.4. RAY REFRACTION AND REFLECTION

N
orm

al

n1

n2

N1

N2

n1 n2

N

Figure 1.4: Graphic ray refraction process in two-dimensional presentation. Two
concentric circles of radii proportional to refractive indices n1 and n2. The blue
line is the incident and refracted ray; the magenta line, the reflected ray.

where τ is the distance parameter from point N to any point within the
line. Said line will cross the sphere of radius n2 at the points N1 and N2. The
coordinates x, y, z of these points are given by Equation (1.17). The equation
of the sphere of radius n2 is

n2
2 = x2 + y2 + z2. (1.18)

Substituting Equations (1.17a), (1.17b) and (1.17c) in Equation (1.18), Equa-
tion (1.19) is obtained by grouping terms:

τ2 + 2n1τ(cosα cosλ+ cosβ cosµ+ cos γ cos ν) + (n2
1 − n2

2) = 0, (1.19)

where (cosα cosλ+cosβ cosµ+cos γ cos ν) belongs to the cosine of the angle
formed between the line normal to the surface and the incident ray,

cos I = cosα cosλ+ cosβ cosµ+ cos γ cos ν, (1.20)

which allows to compact the quadric Equation (1.19) even further:

τ2 + 2n1 cos I + (n2
1 − n2

2) = 0, (1.21)
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1.4. RAY REFRACTION AND REFLECTION

which roots are:

τ1 = −n1 cos I +
√
n2

1 cos I2 + (n2
2 − n2

1), (1.22a)

τ2 = −n1 cos I −
√
n2

1 cos I2 + (n2
2 − n2

1). (1.22b)

As previously discussed, the line described by Equation (1.17) crosses the
point N located in the sphere of radius n1, and by the points N1 and N2; from
the last two points, the closest one to the first point is chosen to perform the
ray refraction; the farthest for the ray reflection.

By using a proper τ , the coordinates X,Y , Z are found:

X = n2 cosα′ = X + τj cosλ, (1.23a)

Y = n2 cosβ′ = Y + τj cosµ, (1.23b)

Z = n2 cos γ′ = Z + τj cos ν, (1.23c)

where j represents any of the possible values of τ . The emerging ray direction
cosines are calculated from Equations (1.23):

cosα′ = (X + τj cosλ)/n2, (1.24a)
cosβ′ = (Y + τj cosµ)/n2, (1.24b)
cos γ′ = (Z + τj cos ν)/n2, (1.24c)

The emerging ray parametric equations, which known point is the point
of intersection of the ray with the optical surface are presented in Equations
(1.25a), (1.25b) y (1.25c):

x = Xi + τ ′ cosα′, (1.25a)
y = Yi + τ ′ cosβ′, (1.25b)
z = Zi + τ ′ cos γ′, (1.25c)

Ray reflection considerations

In order to reflect the ray using the method previously described it is required
to:

• n2 to have the same absolute value than n1, but of opposite sign.

• Preserve n2 sign for refracting the ray in the following surfaces and using
negative axial separation distances until another reflection is performed.
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1.5. SUMMARY

1.5 Summary
In this chapter we laid down the fundamentals for finite raytracing as well as
the reference system for this work.

We studied how a ray of light is represented in a three-dimensional space
and how to transfer a ray from one surface to the next one and how to refract
the rays.
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Chapter 2

Optical Path Difference

The capacity of an optical system to form images as predicted by the paraxial
approximation is used to assess the system performance. The concepts related
to optical path and the equations used for its calculation from finite ray tracing
results are presented in this chapter.

2.1 Wave Aberrations and Optical Path

Consider the following optical system, as presented in Figure 2.1. The system
forms an image of the object P into the point P ′. It is said that there is perfect
imaging if the diverging spherical wave arriving to the system is transformed
into a converging spherical wave. In a real system, however, the exit wave, in
general, is not spherical [35].

The optical path length is defined as the geometrical path length the ray
travels within a medium, times said medium refractive index n. In an ideal
optical imaging system the optical path length is the same for any ray that
enters the system. Consider an object point emitting rays that pass through
the optical system until they reach the exit pupil in such a way they have travel
the same optical path. The ray that crosses the center of the pupil is called
the chief or principal ray which all rays are compared against. A wavefront is
defined as the surface that joins all the points that have the same phase and
have travelled the same time or the same optical path. If the exit wavefront is
a sphere with its center in the paraxial image plane, it is said that the system
is perfect [35].

For real systems, the wavefront at the exit pupil is not spherical anymore,
and the optical path difference, or OPD, between the real wavefront and the
ideal spherical wavefront is given by Equation (2.1)

OPD = [R]− [C], (2.1)
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2.2. HOPKINS’ OPD EQUATION AND TATIAN’S OPD CABOOSE
TERM

P

P ′

Optical System

Figure 2.1: An ideal optical system. Light emitted from a point source P
propagates through the optical system and is focused at the image point P ′ [35].

where [C] is the optical path length along the chief ray, and [R] is the optical
path length along a typical ray.

The OPD is negative if the ray needs to travel additional optical length to
reach the reference Gaussian sphere, positive otherwise [36]. In Figure 2.2, the
real wavefront is W , the reference Gaussian sphere is G, the Gaussian image is
formed at P ′. For a real, aberrated wavefront, there is no single point where
the rays will converge in the image plane. Following Equation (2.1), the optical
path difference is [QQ] and it is a function of the coordinates in the exit pupil.

It is a common practice to express the OPD in wavelength units. This is
achieved by dividing the OPD by the ray’s wavelength. If a designer desires to
analyse a system using multiple wavelengths, then OPD must be calculated as
a function of wavelength.

2.2 Hopkins’ OPD Equation and Tatian’s OPD
Caboose term

Each surface of an optical system contributes with a change in the OPD between
a common ray and the principal ray. The aberration caused by an interface of
two isotropic media is then defined in Equation (2.2):

∆(W ) = W ′ −W, (2.2)

where W and W ′ are the aberrations of a given ray compared to a reference
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2.2. HOPKINS’ OPD EQUATION AND TATIAN’S OPD CABOOSE
TERM

x
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Optical Axis

Figure 2.2: Aberrated wavefront at the system exit pupil [35].

ray, of the incident and emitted wave.
H. H. Hopkins [37] developed an equation that calculates the value of Equa-

tion (2.2) for each surface in the optical system, as presented in Equation (2.3)
in a convenient manner:

∆(Wj) = n2
(P − P ) · (U ′ + U ′)

1 + (U ′ · U ′)
− n1

(P − P ) · (U + U)

1 + (U · U)
, (2.3)

where

j is the jth interface being evaluated,

n1, n2 are the refractive indices of the media before and after refraction,

P , P are position vectors of the incidence rectangular coordinates of the com-
mon and principal ray on the interface,

U , U are vectors containing the direction cosines of the common and principal
ray before refraction or reflection.

U ′, U ′ are vectors containing the direction cosines of the common and principal
ray after refraction or reflection.

Hopkins names invariant focus of two skew rays any point between these
rays where the aberration content of the wavefront remains unchanged as the
wavefront propagates in space [37]. Remember that the aberration content W
is compared against a spherical wavefront. The system total OPD is the sum
of each surface OPD contribution computed with Equation (2.3). This number
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2.2. HOPKINS’ OPD EQUATION AND TATIAN’S OPD CABOOSE
TERM

is the wavefront deviation from a spherical wave centered in the last invariant
focii.

Usually the desired image plane is located in a different position than the
invariant focii so a focal shift, or caboose term, is introduced. The total OPD
change caused by the system and the focal shift is given by Equation (2.4),

W ′ =
k∑
j=1

∆Wj + δWk (2.4)

B. Tatian developed a caboose equation for finite image distances [38], shown
in Equation (2.5):

δWk = ni

{
I · (U − U) +

(U · U) · [U · P − U · P ] + (U · P )− (U · P )

1 + U · U

}
(2.5)

where

ni is the image medium refractive index,

I is the position vector of the desired image point,

P , P are position vectors of points belonging to the common and principal rays
at the image space; and

U , U are vectors of direction cosines of the common and principal rays in the
image space.

If one is to trace rays up to the image plane, then I = ~0.
To handle infinite image distances, Rayces [39] modified Tatian’s caboose

equation by introducing some new quantities.

1. The distance between the interception of the common and principal rays
with the exit pupil plane and the image plane. These quantities are given
by Equations (2.6a) and (2.6b), where UI are the direction cosines of the
line orthogonal to the image plane:

T = P · UI , (2.6a)

T = P . · UI (2.6b)

2. A vector defined by the intersection of the principal and common rays
with a plane perpendicular to the principal ray:

Rx = (T cosα− T cosα) + (X −X), (2.7a)

Ry = (T cosβ − T cosβ) + (Y − Y ), (2.7b)

Rz = (T cos γ − T cos γ) + (Z − Z). (2.7c)
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2.3. RAYTRACING AND OPTICAL PATH DIFFERENCE
CALCULATIONS

3. The difference of the unit vectors in the direction of the common ray and
principal ray:

Qx = cosα− cosα, (2.8a)

Qy = cosβ − cosβ, (2.8b)
Qz = cos γ − cos γ. (2.8c)

The caboose term for infinite image distance is presented in Equation (2.9):

δW = − RxQx +RyQy +RzQz

1 + cosα cosα+ cosβ cosβ + cos γ cos γ
(2.9)

2.3 Raytracing and Optical Path Difference cal-
culations

Raytracing and optical path calculation computer programs were developed
based on Chapters 1 and Section 2.2. We modelled an Edmund Optics N-
LAK22 / N-SF6 achromatic doublet like the one presented in Figure 2.3. This
doublet has a diameter D of 12.0 [mm]; the curvatures C1, C2 and C3 are 17.77,
-16.46 and -136.80 [mm], respectively. The axial separation d1 is 4.50 [mm] and
the axial separation d2 is 2.50 [mm]. Its design range is between 750 and 1550
[nm].

d1

C1

C2 C3

D

d2

Figure 2.3: N-LAK22 / N-SF6 achromatic doublet. The diameter D is 12.0
[mm]; the curvatures C1, C2 and C3 are 17.77, -16.46 and -136.80 [mm], respec-
tively. The axial separation d1 is 4.50 [mm] and the axial separation d2 is 2.50
[mm]. Its design range is between 750 and 1550 [nm]. Its back focal length BFL
for λ = 810 [nm] is 25.82 [mm].
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For the raytracing test we chose a designed wavelength of λ = 810 [nm],
hence, the refractive index for N-LAK22 is n1 = 1.642440 and for N-SF6 refrac-
tive index n2 = 1.783737. We decided to propagate two rays emanating from a
point object located at infinity, so the image plane will be located at the back
focal length BFL = 25.82 [mm]. The first one will be contained in the optical
axis, thus it will be referred as principal ray ; the second will intersect the first
surface at y = 6 [mm].

We then compared our results with those provided by the Eikonal computer
program by Juan Rayces [40].

The principal difference between our program and Eikonal’s is that Eikonal
uses the x axis as the optical axis while our software uses the z axis, as previously
discussed in Chapter 1. The same ray was traced in both programs, the results
are displayed in Tables 2.1 and 2.2.

Surface x [mm] y [mm] z [mm] cosα cosβ cos γ OPD [λ]
Object Plane 0.000000 6.000000 0.000000 0.000000 0.000000 1.000000 0.000000

1 0.000000 6.000000 1.043587 0.000000 -0.136932 0.990580 -9.208228
2 0.000000 5.661008 -1.004108 0.000000 -0.095571 0.995423 17.393330
3 0.000000 5.334566 -0.104051 0.000000 -0.201541 0.979480 -7.218082

Image Plane 0.000000 0.009426 0.000000 0.000000 -0.201541 0.979480 −0.076010∗

Table 2.1: Raytracing and OPD calculations made with our in-house software.
We use the z axis as the optical axis. (∗) The OPD shown at the image plane
was calculated with Equation (2.5).

Surface x [mm] y [mm] z [mm] cosα cosβ cos γ OPD [λ]
Object Plane 0.000000 6.000000 0.000000 1.000000 0.000000 0.000000 0.000000

1 1.043587 6.000000 0.000000 0.990580 -0.136932 0.000000 -9.208228
2 -1.004108 5.661008 0.000000 0.995423 -0.095571 0.000000 17.393328
3 -0.104051 5.334566 0.000000 0.979480 -0.201541 0.000000 -7.218082

Image Plane 0.000000 0.009426 0.000000 0.979480 -0.201541 0.000000 −0.076018∗

Table 2.2: Raytracing and OPD calculations obtained from Eikonal Optical De-
sign Software. Eikonal uses the x axis as the optical axis. (∗) Eikonal does report
∆W and W ′ but does not report δW as shown in Equations (2.4) and (2.5),
so it must be calculated from the reported total which is truncated to the first
three decimal places.

From Tables 2.1 and 2.2 we appreciate that the raytracing and OPD calcu-
lations are correct.

2.4 Summary

In this chapter we discussed the Optical Path Difference concept and how it can
help us to determine the performance of an optical system such as the one de-
picted in Figure 2.3. We reviewed the OPD equations used by Hopkins, Tatian
and Rayces and tested them in a simulation. We compared our simulation re-

18 CHAPTER 2. OPTICAL PATH DIFFERENCE



2.4. SUMMARY

sults against a professional optical design software verifying that our raytracing
software works correctly.
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Chapter 3

Zernike Polynomials and the
Wavefront Numerical
Analysis

To analyse the aberration content of an optical system Seidel terms or Zernike
polynomials are fitted to an OPD data set sampled in different parts of the
entrance pupil. The aberration content is described by a pupil function obtained
by tracing a grid of rays in the entrance pupil and calculating the associated
optical path difference for each ray that emerges from the exit pupil.

3.1 Infinite series expansion

The expression for Zernike circle polynomials as an infinite series expansion is
given by Equation (3.1),

W (ρ, θ) = A00 +
∞∑
n=2

An0R
0
n(ρ) +

∞∑
n=1

n∑
m=1

AnmR
m
n (ρ) cosmθ (3.1)

where Rmn are the radial polynomials, described by Equation (3.2):

Rmn (ρ) =

n−m
2∑
s=0

(−1)
s (n− s)!
s!
(
n+m

2 − s
)

!
(
n−m

2 − s
)

!
ρn−2s. (3.2)

If the optical system contains tilts, decenters or optical defects while main-
taining a circular aperture, the polynomial undergoes a relative rotation ex-
pressed by the phase angle φnm which is subtracted from mθ, yielding Equation
(3.3),
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3.2. ZERNIKE POLYNOMIAL INDICES AND CONCISE NOTATION FOR
DISCRETE DATA

W (ρ, θ) = A00 +
∞∑
n=2

An0R
0
n(ρ) +

∞∑
n=1

n∑
m=1

AnmR
m
n (ρ)(cos [mθ − φnm]), (3.3)

which can be rewritten as Equation (3.4),

W (ρ, θ) = A00+
∞∑
n=2

An0R
0
n(ρ)+

∞∑
n=1

n∑
m=1

Rmn (ρ)(anm cosmθ−bnm sinmθ), (3.4)

where

anm = Anm cosφnm, bnm = Anm sinφnm.

Zernike circle polynomials form an orthogonal set [35]. This implies that
the expansion coefficients can be calculated separated one from another by us-
ing an integral and fulfilling the least squares principle and that the wavefront
aberration variance is given by

var(W ) =
∞∑
n=2

A2
n0

n+ 1
+
∞∑
n=1

n∑
m=1

A2
nm

2(n+ 1)
. (3.5)

To simplify Equation (3.5) the renormalized coefficients Ânm proposed by
Chimera and Hufnagel are presented in the work of Rayces [41]:

Ânm =
Amn√
n+ 1

for m = 0, (3.6a)

Ânm =
Amn√

2(n+ 1)
for m > 0, (3.6b)

simplifying Equation (3.5) to

var(W ) =
∞∑
n=1

n∑
m=0

Â2
nm, (3.7)

which allows all the coefficients Anm to be interpreted as peak wave values
and all the coefficients Ânm as wavefront RMS errors.

In Eikonal the renormalized coefficients are used to describe the aberration
content of an optical system and they were adopted for this work for comparison
purposes.

3.2 Zernike polynomial indices and concise nota-
tion for discrete data

Since the Zernike circle polynomials form an orthogonal set [35], one can define
Equation (3.8)
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3.2. ZERNIKE POLYNOMIAL INDICES AND CONCISE NOTATION FOR
DISCRETE DATA

Cmn (ρ, θ) = Rmn (ρ) cosmθ (3.8)

as the even term and Equation (3.9)

Smn (ρ, θ) = Rmn (ρ) sinmθ (3.9)

as the odd term from Equation (3.4). An important property of orthogonal
sets of functions, such as the Zernike circle polynomials, is that the coefficients
can be computed independently from one another [41].

Although the radial polynomials use the notation Rmn (ρ), when writing a
computer program it may be convenient to represent them using a single in-
dex notation. Given that a finite number of terms are used for the wavefront
aberration expansion, in Figure 3.1 the algorithm to generate Z` data is pre-
sented. This algorithm is used to determine the order of Zernike polynomials
as described by Rayces [41].

Let

Z`(ρ, θ) denote either Cmn (ρ, θ) or Smn (ρ, θ)and (3.10a)
e` denote either anm or bnm (3.10b)

Then the Zernike polynomial can be written as

W (ρ, θ) =
L∑
`=0

e`Z`(ρ, θ) (3.11)

On Table 3.1 we present the first 25 elements of Equation (3.4) using the
double and single index notation. Implementing this analytical form of the
Zernike polynomials allows for faster computer simulations since the numerical
evaluation of Equation (3.2) is an expensive operation.
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3.2. ZERNIKE POLYNOMIAL INDICES AND CONCISE NOTATION FOR
DISCRETE DATA

Start

Get M and
vector Z`

m≤M Return filled
Z`(ρ, θ)

n=m
dummy = m

d6=0

Concatenate
Cdummyn (ρ, θ) and

Sdummyn (ρ, θ) to Z`(ρ, θ)
n++, dummy−−

Concatenate
C0
n(ρ, θ)

to Z`(ρ, θ)
m++

No

Yes

Yes
No

Figure 3.1: Algorithm to generate Zernike circle polynomial indices. The gen-
erated data is stored in a structure, which is used to evaluate the corresponding
circle polynomial when using the sequential numbering [41].
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3.3. LEAST SQUARES FITTING OF ZERNIKE POLYNOMIAL
COEFFICIENTS

Aberration name Double index Single index Expression

Piston C0
0 (ρ, θ) Z0(ρ, θ) 1

Vertical axis tilt C1
1 (ρ, θ) Z1(ρ, θ) ρ cos θ

Horizontal axis tilt S1
1(ρ, θ) Z2(ρ, θ) ρ sin θ

Defocus C0
2 (ρ, θ) Z3(ρ, θ) (2ρ2 − 1)

Astigmatism, even, 3rd order C2
2 (ρ, θ) Z4(ρ, θ) ρ2 cos 2θ

Astigmatism, odd, 3rd order S2
2(ρ, θ) Z5(ρ, θ) ρ2 sin 2θ

Coma, even, 3rd order C1
3 (ρ, θ) Z6(ρ, θ) (3ρ3 − 2ρ) cos θ

Coma, odd, 3rd order S1
3(ρ, θ) Z7(ρ, θ) (3ρ3 − 2ρ) sin θ

Spherical aberration, 3rd order C0
4 (ρ, θ) Z8(ρ, θ) (6ρ4 − 6ρ2 + 1)

Clover leaf, even, 5th order C3
3 (ρ, θ) Z9(ρ, θ) ρ3 cos 3θ

Clover leaf, odd, 5th order S3
3(ρ, θ) Z10(ρ, θ) ρ3 sin 3θ

Astigmatism, even, 5th order C2
4 (ρ, θ) Z11(ρ, θ) (4ρ4 − 3ρ2) cos 2θ

Astigmatism, odd, 5th order S2
4(ρ, θ) Z12(ρ, θ) (4ρ4 − 3ρ2) sin 2θ

Coma, even, 5th order C1
5 (ρ, θ) Z13(ρ, θ) (10ρ5 − 12ρ3 + 3ρ) cos θ

Coma, odd, 5th order S1
5(ρ, θ) Z14(ρ, θ) (10ρ5 − 12ρ3 + 3ρ) sin θ

Spherical aberration, 5th order C0
6 (ρ, θ) Z15(ρ, θ) (20ρ6 − 30ρ4 + 12ρ2 − 1)

Ashtray, even, 7th order C4
4 (ρ, θ) Z16(ρ, θ) ρ4 cos 4θ

Ashtray, odd, 7th order S4
4(ρ, θ) Z17(ρ, θ) ρ4 sin 4θ

Clover leaf, even, 7th order C3
5 (ρ, θ) Z18(ρ, θ) (5ρ5 − 4ρ3) cos 3θ

Clover leaf, odd, 7th order S3
5(ρ, θ) Z19(ρ, θ) (5ρ5 − 4ρ3) sin 3θ

Astigmatism, even, 7th order C2
6 (ρ, θ) Z20(ρ, θ) (15ρ6 − 20ρ4 + 6ρ2) cos 2θ

Astigmatism, odd, 7th order S2
6(ρ, θ) Z21(ρ, θ) (15ρ6 − 20ρ4 + 6ρ2) sin 2θ

Coma, even, 7th order C1
7 (ρ, θ) Z22(ρ, θ) (35ρ7 − 60ρ5 + 30ρ3 − 4ρ) cos θ

Coma, odd, 7th order S1
7(ρ, θ) Z23(ρ, θ) (35ρ7 − 60ρ5 + 30ρ3 − 4ρ) sin θ

Spherical aberration, 7th order C0
8 (ρ, θ) Z24(ρ, θ) (70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1)

Table 3.1: Zernike polynomials using the double and single index notation [35,
40,41].

3.3 Least Squares fitting of Zernike polynomial
coefficients

Equation (3.11) represents the wave aberration function in a given position
The ω wavefront aberration samples can be stored in a vector w; there are L
expansion coefficients e` stored in a vector e and finally, a matrix of size L× ω
Z can be formed with the circle polynomials Z`. Thus, Equation (3.11) can be
written in matrix notation:

w = Ze, (3.12)

where e is the variable to be found using a least squares fit.

CHAPTER 3. ZERNIKE POLYNOMIALS AND THE WAVEFRONT
NUMERICAL ANALYSIS

25



3.3. LEAST SQUARES FITTING OF ZERNIKE POLYNOMIAL
COEFFICIENTS

Since it is a least squares fit, it is desired to determine a vector ê such that
the error is minimum, as shown in Equation (3.13):

‖w − Zê‖ = minimum. (3.13)

Following the process to compute the least squares fit of data to a polyno-
mial [42], it is known that ê satisfies Equation (3.14)

ZTZê = ZTw, (3.14)

where ZTZ and ZTw can be computed directly by Equations (3.15) and
(3.16):

ZTZ =



∑ω
t=0 Z

2
0 (t)

∑ω
t=0 Z1(t)Z0(t) · · ·

∑ω
t=0 Z`(t)Z0(t) · · ·

∑ω
t=0 ZL(t)Z0(t)∑ω

t=0 Z0(t)Z1(t)
∑ω
t=0 Z

2
1 (t) · · ·

∑ω
t=0 Z`(t)Z1(t) · · ·

∑ω
t=0 ZL(t)Z1(t)

...
...

. . .
...

...
...∑ω

t=0 Z0(t)Z`(t)
∑ω
t=0 Z1(t)Z`(t) · · ·

∑ω
t=0 Z

2
` (t) · · ·

∑ω
t=0 ZL(t)Z`(t)

...
...

...
...

. . .
...∑ω

t=0 Z0(t)ZL(t)
∑ω
t=0 Z1(t)ZL(t) · · ·

∑ω
t=0 Z`(t)ZL(t) · · ·

∑ω
t=0 Z

2
L(t)


(3.15)

and

ZTw =



∑ω
t=0 Z0(t)W (t)∑ω
t=0 Z1(t)W (t)

...∑ω
t=0 Z`(t)W (t)

...∑ω
t=0 ZL(t)W (t)



, (3.16)

where t is used as a shorthand for (ρ, θ).
The solution for Equation (3.12) is denoted by Equation (3.17):

ê = (ZTZ)−1ZTw. (3.17)

Equation (3.12) can be solved as a system of linear equations. However, a
common issue of linear least squares problems are that they involve large quan-
tities of data, and they are ill-conditioned for numerical solution. Golub [43]
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3.4. ABERRATION CONTENT CALCULATION FOR AN ACHROMATIC
DOUBLET

proposed a matrix decomposition based on orthogonal Householder transforma-
tions [44].

3.4 Aberration content calculation for an achro-
matic doublet

The aberration content calculation for the achromatic doublet lens used as an
example in Section 2.3.

As presented in Figure 2.3, The diameter D is 12.0 [mm]; the curvatures C1,
C2 and C3 are 17.77, -16.46 and -136.80 [mm], respectively; the axial separation
d1 is 4.50 [mm] and the axial separation d2 is 2.50 [mm]. Its back focal length
BFL for λ = 810 [nm] is 25.818655 [mm].

In this example we draw a square grid of size of N ×N nodes with N = 128
over the first surface, tracing collimated rays that are inside the lens diameter.

In Table 3.2 we present the renormalized coefficients obtained from our in-
house least-squares Zernike polynomial fit and Eikonal’s results. After rounding
to the second decimal place we conclude that our implementation works prop-
erly.

Aberration name Renormalized
coefficients Eikonal [λ] In-house [λ]

Piston ê0 Not reported -0.44
Defocus ê3 -0.31 -0.31
Spherical aberration, 3rd order ê8 -0.01 -0.01
Spherical aberration, 5th order ê15 0.04 0.04

Table 3.2: Comparison of the renormalized aberration coefficients obtained from
Eikonal and from our least-squares Zernike polynomial fit using the first 25 ele-
ments for the propagation of a collimated beam through an achromatic doublet
. The obtained values were rounded to the second most-significant figure. All
omitted coefficients in this table are considered to be zero.

To further test our in-house software, we propagated a collimated beam
from an off-axis point source located at infinity in a way that the principal ray
forms a 2-degree angle with the optical axis through the previously discussed
achromatic doublet. In other words, the director cosines of the principal ray
are cosα = 0.999391, cosβ = −0.034899 and cos γ = 0.000000. We show
the renormalized Zernike coefficients obtained from our in-house software and
Eikonal on Table 3.3. There is a slight difference on the values of the recovered
coefficients and it is attributed to differences on the Zernike polynomial fitting
algorithms used by Eikonal.
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Aberration name Renormalized
coefficients Eikonal [λ] In-house [λ]

Piston ê0 Not reported -0.44
Vertical axis tilt ê1 Not reported 0.66
Defocus ê3 -0.75 -0.72
Astigmatism, even, 3rd order ê4 -0.26 -0.23
Coma, even, 3rd order ê6 0.24 0.22
Spherical aberration, 3rd order ê8 -0.01 -0.01
Coma, even, 5th order ê13 -0.02 -0.01
Spherical aberration, 5th order ê15 0.04 0.04

Table 3.3: Comparison of the renormalized aberration coefficients obtained from
Eikonal and from our least-squares Zernike polynomial fit using the first 25
elements for the propagation of a beam inciding on the achromatic doublet with
a 2-degree angle with respect to the optical axis. The obtained values were
rounded to the second most-significant figure. All omitted coefficients in this
table are considered to be zero.

3.5 Summary
In this chapter we reviewed the Zernike polynomials and their use to assess
the aberration content in a given optical system. The first 25 elements of the
Zernike polynomials expansion are presented in Table 3.1. We also studied how
to perform a linear least-squares fit to the Zernike polynomials and tested our
implementation with the achromatic doublet presented in Section 2.3, comparing
against the Eikonal Optical Design software achieving the same results up to
the second decimal place as shown in Table 3.2 for a collimated beam and with
slight variations for an off-axis beam as shown in Table 3.3.
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Chapter 4

Phase Shifting Interferometry

A direct application of this work is measuring aberrations in optical components
manufactured at the Laboratorio Universitario de Fabricación de Equipo Óptico
- LUFABEO (University Laboratory for Optical Equipment Fabrication) on the
Institute of Applied Science and Technology at UNAM.

In order to manufacture any mirror or lens at LUFABEO we require to assess
how the emerging wavefront deviates from a given reference. We can achieve this
by building an interferometer, a device that allows us to superimpose a known
wave and a wave affected by our test component, and by the phenomenon of
interference we can find useful information.

At the time this work was written (second half of 2020), a Fizeau interferom-
eter is being built at the LUFABEO. To extract information from interferomet-
ric measurements, we decided to use the Phase Shifting Interferometry family
of algorithms. We will discuss some algorithms and their performance using
experimental interferograms.

4.1 PSI principle of operation

Phase Shifting Interferometry (PSI) calculates the phase difference between a
test beam and a reference beam via the variations of intensity in the generated
interference pattern. This condition is fulfilled by the Fizeau interferometer.

This technique records a series of interferograms while the reference phase of
the interferometer is modified. The test wavefront is encoded within the inten-
sity pattern of the interferogram and for its recovery, point-to-point calculations
are required [45].

A phase shift is introduced between the reference and test wavefronts. A
time-varying signal is produced, where the phase difference is encoded in each
point where the interference was measured.

The phase shift introduced between the reference and test wavefronts is
known, so the phase can be determined with no ambiguity.
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The general expressions for the reference and test wavefronts in the interfer-
ometer are

wR(x, y, t) = aR(x, y) exp[i(ΘR(x, y)− δ(t))] (4.1a)
wT (x, y) = aT (x, y) exp[iΘT (x, y)] (4.1b)

The final intensity pattern is

I(x, y, t) = |wR(x, y, t) + wT (x, y)|2,

which can be rewritten as

I(x, y, t) = I ′(x, y) + I ′′(x, y) cos (Θ(x, y)− δ(t)), (4.2)

having

I ′(x, y) = a2
R(x, y) + a2

T (x, y), (4.3a)

I ′′(x, y) = 2a2
R(x, y)a2

T (x, y), (4.3b)
Θ(x, y) = ΘR −ΘT , (4.3c)

where Θ(x, y) is the phase difference between the reference and test wave-
fronts, I ′(x, y) is the average interferometer intensity, I ′′(x, y) is the half of the
peak-valley intensity modulation and δ is a variable phase displacement between
the interfering beams [46].

4.2 Sample interferograms
To implement PSI we require to capture a series of interferograms with different
phase shifts. These phase shifts can linearly vary in a range of T during the
imaging sensor integration time so that the sample interferogram at the phase
shift δ(n) is the integral of the interference pattern from (δ(n)−T/2) to (δ(n)+
T/2) as shown in Equation (4.4) [47]:

I(x, y, n) =
1

T

∫ (δ(n)+T/2)

(δ(n)−T/2)

I(x, y, δ(n))d(δ(n)). (4.4)

Integrating Equation (4.4) we obtain

I(x, y, n) =I ′(x, y)−
1

T
I ′′(x, y){sin [Θ(x, y)− δ(n)− T/2]−

sin [Θ(x, y)− δ(n) + T/2]},

(4.5)

which can be simplified to
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I(x, y, n) = I ′(x, y) + I ′′(x, y) sinc (T/2) cos [Θ(x, y)− δ(n)]. (4.6)

If the T term in Equation (4.6) tends to zero, means that the detected phase
does not change during the interference pattern acquisition, so Equation (4.6)
can further be reduced to

I(x, y, n) = I ′(x, y) + I ′′(x, y) cos [Θ(x, y)− δ(n)]. (4.7)

4.3 PSI linear least-squares fitting
To measure phase by PSI we require to acquire a series of sample interferograms
I(x, y, n) taken at different phase shifts δ(n). The intensity on an interferogram
point (x, y) will vary in a sinusoidal fashion with δ(n), hence, the phase Θ(x, y)
can be obtained by fitting the data from each (x, y) point to a sine curve of a
known period and unknown phase and amplitude [47].

A number N of sample interferograms using the same integration window T
is taken. The value of each interferogram is given by Equation (4.6), which can
be rewritten to be used in linear least-squares fitting:

I(x, y, n) =I ′(x, y)′+

I ′′(x, y) sinc (T/2) cos [Θ(x, y)] cos (δ(n)+

I ′′(x, y) sinc (T/2) sin [Θ(x, y)] sin (δ(n)),

(4.8)

which is of the form of

I(x, y, n) = a0(x, y) + a1(x, y)f1(δ(n)) + a2(x, y)f2(δ(n)), (4.9)

where

• a0(x, y) = I ′(x, y),

• a1(x, y) = I ′′(x, y) sinc (T/2) cos [Θ(x, y)] cos (δ(n),

• f1(δ(n)) = cos (δ(n)),

• a2(x, y) = I ′′(x, y) sinc (T/2) sin [Θ(x, y)] sin (δ(n)), y

• f2(δ(n)) = sin (δ(n)),

The a(x, y) terms are the unknown terms on this equation system, depicted
in matrix form in Equation (4.10) were we dropped the δ(n) dependency found
in f1(δ(n)) and f2(δ(n)) for the sake of clarity,∣∣∣∣∣∣

N
∑
f1

∑
f2∑

f1

∑
f2

1

∑
f1f2∑

f2

∑
f1f2

∑
f2

2

∣∣∣∣∣∣
∣∣∣∣∣∣
a0(x, y)
a1(x, y)
a2(x, y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
Ii(x, y)∑
Ii(x, y)fi∑
Ii(x, y)f2

∣∣∣∣∣∣ , (4.10)
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4.4. SSPCA

which is solved by Equation (4.11):∣∣∣∣∣∣
a0(x, y)
a1(x, y)
a2(x, y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N

∑
f1

∑
f2∑

f1

∑
f2

1

∑
f1f2∑

f2

∑
f1f2

∑
f2

2

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣

∑
Ii(x, y)∑
Ii(x, y)fi∑
Ii(x, y)f2

∣∣∣∣∣∣ . (4.11)

Equation (4.10) is solved for every interferogram point (x, y) in order to
obtain a1(x, y) and a2(x, y) terms. The phase map is given by

Θ(x, y) = arctan

[
a2(x, y)

a1(x, y)

]
, (4.12)

and the interferogram fringe contrast is obtained by

γ(x, y) =
I ′′(x, y)

I ′(x, y)
=

√
a1(x, y)2 + a2(x, y)2

a0(x, y) sinc (T/2)
. (4.13)

Since the phase calculated by Equation (4.12) is a phase map bounded be-
tween two values depending on the algorithm used, [−π, π] for MATLAB’s
atan2 function [48], we require to add and subtract 2π at each discontinuity
on the map. This process is called phase unwrapping. 2-D phase unwrapping
algorithms are available such as Goldstein’s algorithm [49] which were used to
process the retrieved phase.

4.4 SSPCA

An important limitation of Equation (4.7) is that it assumes that the phase shift
is constant across every interferogram (x, y) position. This means Equation (4.7)
does not consider tilts on the vertical and horizontal axis caused by vibrations,
uneven displacements, device calibration errors and other sources.

Equation (4.7) was modified to include vertical and horizontal tilts as seen
in Equation (4.14) [50],

I(x, y, n) = I ′(x, y) + I ′′(x, y) cos [Θ(x, y)−∆(x, y, n)], (4.14)

where ∆(x, y, n) represents the phase shift plane and its described by Equa-
tion (4.15),

∆(x, y, n) = α(n)x+ β(n)y + δ(n) (4.15)

where α(n) and β(n) are the vertical and horizontal tilt coefficients for a
given interferogram n on the PSI sequence.

Rewriting Equation (4.14) we find that

I(x, y, n)− I ′(x, y) = cos [∆(x, y, n)]Ic + sin [∆(x, y, n)]Is (4.16)
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where

Ic = I ′′(x, y) cos Θ(x, y), (4.17a)
Is = I ′′(x, y) sin Θ(x, y) (4.17b)

From the previous analysis we can deduce that methods like the one de-
scribed on Section 4.3 may not be accurate for the situation modelled by Equa-
tion (4.16).

We implemented an algorithm that applies a statistical tool called Princi-
pal Component Analysis (PCA) and linear least-squares regression to PSI to
calculate the different phase planes ∆(x, y, n) [50].

We will first discuss what is the Principal Component Analysis, then how it
is used to retrieve the phase from the PSI measurement.

4.4.1 Principal Component Analysis
The objective of Principal Component Analysis is to reduce the dimensional-
ity of a set of data which is comprised of a large number of interrelated vari-
ables, while preserving most of their variability as possible. This is achieved
by transforming the original variables into a new system, the principal compo-
nents system which are not correlated to each other and they are ordered that
the first few principal components retain most of the variability of the original
variables [51].

Vargas et al. developed the application of this technique in PSI [52] and it
comprises three steps. For this part, we assume that the interference fringes are
modelled by Equation (4.7), that is, with no tilted phase shift.

We start with N interferograms of Nx by Ny pixels and these pixels can be
arranged as

x = [x1, x2, ..., xn]T , (4.18)

where xn is a column vector made up with the pixels of an interferogram dis-
tributed based on the interferogram column order. Each column of x represents
a whole interferogram.

The first step on the PCA PSI process is to obtain the covariance matrix C
from x via Equation (4.19):

C = (x−mx)(x−mx)T , (4.19)

where mx has the same size than x and its members are the average value of
each x column. This can be understood as a background-suppressing operation.

The second step is to diagonalize the covariance matrix C to find is eigen-
values and eigenvectors, as seen in Equation (4.20):

D = ACAT , (4.20)

where D is a diagonal matrix and A is a transformation matrix.
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The third step is to calculate the principal components using the Hotelling
transform:

y = A(x−mx), (4.21)

We choose the first two columns of y with the biggest eigenvalues, whose vec-
tors we will associate with Ic and Is described in Equations (4.17a) and (4.17b).
The phase is recovered with Equation (4.22):

Θ(x, y) = arctan (−Is/Ic). (4.22)

The assignment of the first two principal components to Ic and Is is ar-
bitrary [52], however, in an experimental setting we have control of the piston
phase shift δ, so we can use that information to set the true sign of the measured
phase.

4.4.2 Self-adaptive selection of interferogram subblocks
and PCA (SSPCA)

The self-adaptive selection of interferogram subblocks and principal component
analysis, SSPCA algorithm is a method that promises to remove the tilt error
found in laboratory measurements [50].

This algorithm can be summarized in the following steps:

• Divide each interferogram frame in m subblocks and calculate the local
phase Θm(x, y) for every subblock using the PCA PSI algorithm. We
assume that there is an uniform phase shift δm for each subblock and we
calculate this quantity using Θm(x, y) and a linear least-squares fit.

• For each subblock we obtain a curve of δm(n) values bounded between
[−π, π]. Once unwrapped we check if the processed curve was unwrapped
properly by calculating the correlation coefficients between the processed
curve and the rest. If the correlation coefficients are above a user-set
threshold we consider the subblock to be valid. We correct the sign for
δm(n) using the known piston phase shift sign from the experimental setup.

• The δm(n) values of every valid subblock are used to calculate each ∆(x, y, n)
plane using a linear least-squares fit.

• The fitted ∆(x, y, n) are plugged as known values into Equation (4.16) for
another linear least-squares fit where we calculate Θ(x, y).

4.5 PSI simulations

To test the performance of the PSI algorithms previously discussed we generated
a test OPD surface using the Zernike polynomials, as shown as in Figure 4.1,
with even 3rd order coma Z6(ρ, θ) = −0.30[λ], 3rd order spherical aberration
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Figure 4.1: Test OPD surface for a unitary pupil of diameter D = 2ρ with even
3rd order coma Z6(ρ, θ) = −0.30[λ], 3rd order spherical aberration Z8(ρ, θ) =
0.50[λ] and 5th order odd astigmatism Z12(ρ, θ) = 1[λ].

Z8(ρ, θ) = 0.50[λ] and 5th order odd astigmatism Z12(ρ, θ) = 1[λ]. Keep in
mind that the OPD surface units are [λ].

For our simulated interference patterns we will encode our OPD using Equa-
tion (4.14) with the following parameters:

• Step size between interferograms d = 10 [µm] taking 10 interferograms
numbered from n = 0 to n = 9,

• carrier wavelength λ = 632.8 [nm],

• unit pupil sampled with a 128-by-128 grid,

• linear phase shift δ(n) = 2πdn
λ

• background intensity I ′(x, y) = 2 + sin [20π(x+ y)],

• modulation intensity I ′′(x, y) = 1,

• horizontal phase tilt coefficient α(n) = 2πn
λ ∗ 50× 10−9, and

• vertical phase tilt coefficient β(n) = −2πn
λ ∗ 25× 10−9.
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The first four simulated interferograms are displayed on Figure 4.2. The 10
interferogram frames were used as inputs for the least-squares and the SSPCA
algorithms discussed previously. For the SSPCA algorithm we used subblock
sizes of 16-by-16, 8-by-8 and 4-by-4 pixels in order to study their impact on
the retrieved phase results. We present the recovered and reconstructed OPD
maps using the least-squares and SSPCA algorithms on Figure 4.3 where row 1)
is the least-squares result; 2), 3), 4) depict the recovered OPD maps using the
SSPCA algorithm with subblocks of size 16-by-16, 8-by-8 and 4-by-4. Column a)
represents the recovered OPD map from every algorithm; column b) is the OPD
surface generated by the fitted Zernike polynomial coefficients and column c) is
the generated OPD surface when omitting piston, tilt and defocus coefficients.

a) b)

c) d)

Figure 4.2: First four simulated interferogram frames for a normalized pupil of
diameter D = 2ρ using the OPD shown in Figure 4.1. The following parameters
where used into Equation (4.14): d = 10 [µm], 10 interferograms, λ = 632.8
[nm], 128-by-128 pupil samples, δ(n) = 2πdn

λ , I ′(x, y) = 2 + sin [20π(x+ y)],
I ′′(x, y) = 1, α(n) = 2πn

λ ∗ 50× 10−9, and β(n) = −2πn
λ ∗ 25× 10−9.

We confirm that the subblock size does affect the accuracy of the OPD map.
This is also seen in Table 4.1 where the fitted Zernike polynomials coefficients
for each algorithm are presented.
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Aberration name Least-squares [λ] SSPCA
16-by-16 [λ] 8-by-8 [λ] 4-by-4 [λ]

Z0(ρ, θ) -0.23 -0.20 -0.20 -0.16
Z1(ρ, θ) 0.17 0.09 0.01 0.32
Z2(ρ, θ) -0.15 0.03 -0.02 -0.70
Z3(ρ, θ) 0.01 -0.01 -0.01 0.02
Z4(ρ, θ) 0.02 -0.01 -0.01 0.18
Z5(ρ, θ) -0.09 -0.06 -0.06 -0.28
Z6(ρ, θ) -0.27 -0.28 -0.28 -0.24
Z7(ρ, θ) -0.01 0.01 0.01 -0.19
Z8(ρ, θ) 0.50 0.48 0.48 0.46
Z9(ρ, θ) 0.03 0.04 0.05 -0.05
Z10(ρ, θ) -0.05 -0.02 -0.02 -0.26
Z11(ρ, θ) -0.02 0.00 0.00 -0.06
Z12(ρ, θ) 0.95 0.98 0.98 0.55
Z13(ρ, θ) 0.03 0.02 0.02 -0.02
Z14(ρ, θ) -0.01 0.01 0.01 -0.04
Z15(ρ, θ) 0.00 -0.02 -0.02 -0.08
Z16(ρ, θ) -0.06 -0.04 -0.04 -0.07
Z17(ρ, θ) -0.01 0.00 0.00 0.04
Z18(ρ, θ) -0.04 -0.01 -0.01 -0.14
Z19(ρ, θ) 0.01 0.02 0.02 -0.26
Z20(ρ, θ) -0.02 0.00 0.00 -0.05
Z21(ρ, θ) -0.04 -0.02 -0.02 -0.15
Z22(ρ, θ) 0.03 0.02 0.02 -0.02
Z23(ρ, θ) 0.00 0.01 0.01 0.04
Z24(ρ, θ) 0.00 -0.02 -0.02 -0.04

Table 4.1: Zernike polynomial coefficients recovered from a series of simulated
interferograms using different PSI algorithms. We notice that the SSPCA al-
gorithm does not always retrieves the correct phase sign due the arbitrary as-
sigment of sine and cosine properties to its principal components and that a
subblock size that yields the least error must be determined. Please refer to
Table 3.1 for aberration descriptions.
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Test name Least-squares [λ] SSPCA
16-by-16 [λ] 8-by-8 [λ] 4-by-4 [λ]

Recovered OPD
RMS error 0.1108 0.0513 0.0453 0.9713

Reconstructed
OPD RMS error 0.1000 0.0453 0.0384 0.9036

Recovered OPD
without first 4
Zernike coef-
ficients RMS
error

0.0190 0.0082 0.0083 0.4253

Table 4.2: RMS error between our test OPD and the recovered and recon-
structed OPD. the SSPCA algorithm can yield recovered OPD surfaces with an
RMS error against the original surface less than 0.01 [λ] if we disregard the first
four terms of the Zernike polynomial coefficients and select a suitable subblock
size.

From Table 4.1 we appreciate that there are non-zero horizontal and ver-
tical tilt coefficient values when fitting Zernike polynomial coefficients to the
recovered OPD maps using both algorithms; that a proper selection of subblock
size must be done to avoid under and oversampling of the interferogram frames
in order to reduce errors like the ones seen in the 4-by-4 subblock SSPCA test
and that there are slight deviations from our expected Zernike coefficient values
and the ones recovered from the PSI algorithms, no larger than 0.05 [λ]. The
recovered and reconstructed OPD maps are shown in Figure 4.3.

To analyse how well the least-squares and SSPCA algorithms perform we
calculated the Root Mean Square error between the retrieved OPD surfaces and
our original OPD surface. We calculate the Root Mean Square error between the
values of the original and retrieved OPD surfaces. We will refer as "recovered"
to the retrieved OPD surface from any of the algorithms and as "reconstructed"
the OPD surface generated from the fitted Zernike polynomials coefficients. The
results are presented in Table 4.2, from where we conclude that the SSPCA
algorithm can yield recovered OPD surfaces with an RMS error against the
original surface less than 0.01 [λ] if we disregard the first four terms of the
Zernike polynomial coefficients and select a suitable subblock size. The subblock
size should be calibrated for the usual operation conditions in the laboratory.
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1)

2)

3)

a) b) c)

4)

Figure 4.3: Recovered and reconstructed OPD maps using the least-squares and
SSPCA algorithms for a normalized pupil. Row 1) is the least-squares result;
rows 2), 3), 4) depict the recovered OPD maps using the SSPCA algorithm with
subblocks of size 16-by-16, 8-by-8 and 4-by-4. Column a) represents the recov-
ered OPD map from every algorithm; column b) is the OPD surface generated
by the fitted Zernike polynomial coefficients and column c) is the generated
OPD surface when omitting piston, tilt and defocus terms.
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4.6 Experimental measurements
Two interferogram series were obtained from the in-house Fizeau interferometer
located at the LUFABEO on the Institute of Applied Science and Technology
and we tested the phase retrieval repeatability of the linear least-squares and the
SSPCA algorithms. The analysed optical component was a spherical reflective
surface under the following test conditions:

• CW laser centered at λ0 = 632.8 [nm];

• 10 interferograms with 10.0 [µm] displacement between each interfero-
gram, 2 sequences, since the Fizeau interferometer reference surface is
moving towards the fixed test surface, we will consider the steps to have
a negative sign, i. e, [0.0, -10.0, -20.0, ..., -100.0] [µm]; and

• photography size of 1280-by-1024 pixels, downsampled to 128-by-128 pix-
els.

On Figure 4.4 we show the first four frames of both sequences. We notice that
there are fringes that are independent on the phase shift between each frame.
We applied the least-squares and SSPCA PSI algorithms to both sequences to
retrieve their phase Θ(x, y), fit a Zernike polynomial and rebuild their respective
OPD surfaces with and without the first four terms of the Zernike polynomial
expansion.

We calculated the RMS error between the recovered and reconstructed OPD
maps from Test a) and Test b) and these values are displayed on Table 4.3
were we appreciate that the SSPCA algorithm provides a RMS error less than
500×10−6 [λ] when we disregard the piston, tilt and defocus terms from the
fitted Zernike polynomial expansion; while the least-squares PSI algorithm has
an RMS error greater than 100×10−3 [λ] between tests. We conclude that the
SSPCA algorithm allows us to perform repeatable measurements.

On Figures 4.5 and 4.6 we show the recovered and reconstructed OPD sur-
faces using the least-squares and the SSPCA with 8-by-8 pixel subblocks algo-
rithms respectively.
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Test name Least-squares [λ] SSPCA
16-by-16 [λ] 8-by-8 [λ] 4-by-4 [λ]

Recovered ex-
perimental OPD
RMS error

0.4103 0.0219 0.0173 0.0093

Reconstructed
experimental
OPD RMS error

0.3887 0.0210 0.0164 0.0084

Recovered ex-
perimental OPD
without first 4
Zernike coef-
ficients RMS
error

0.0133 0.0003 0.0003 0.0005

Table 4.3: RMS error between the measured OPD surfaces of the two tests under
different comparison conditions. When removing the piston, tilt and defocus
terms from the fitted Zernike polynomial we find out that the SSPCA algorithm
yields a variation of 0.0005 [λ] after analysing two sets of interferograms of the
same test surface.
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1)

2)

3)

4)

a) b)
Figure 4.4: First four frames from the measured sequences a) and b). The
optical component analysed was a reflective spherical surface. We appreciate
that there are fringes that seems to be independent of the phase-shift between
snapshots.
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a)

1)

2)

3)

b)
Figure 4.5: Recovered and reconstructed OPD maps using the least-squares
PSI algorithm on test a) and b). Row 1) is the recovered OPD surface from
the PSI algorithm; row 2) is the reconstructed OPD surface from the fitted
Zernike polynomial coefficients and row 3) is the reconstructed OPD surface
when we omit the first four Zernike polynomial coefficients. We notice that
there are visual differences between the OPD surfaces from both tests. The
pupil dimensions where normalized against ρ = 64 [pixels].
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a)

1)

2)

3)

b)
Figure 4.6: Recovered and reconstructed OPD maps using the SSPCA PSI algo-
rithm with a 8-by-8 subblock size on test a) and b). Row 1) is the recovered OPD
surface from the PSI algorithm; row 2) is the reconstructed OPD surface from
the fitted Zernike polynomial coefficients and row 3) is the reconstructed OPD
surface when we omit the first four Zernike polynomial coefficients. We notice
that the OPD maps on row 3) are quite similar, in agreement with Table 4.3.
The pupil dimensions where normalized against ρ = 64 [pixels].
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To study how the results from test a) and test b) deviate from each other,
we present the fitted Zernike polynomial coefficients in Table 4.4, where we can
appreciate that the least-squares PSI algorithm has a large difference on the
third-order astigmatism coefficients which explains the visual difference on Fig-
ure 4.5’s 3a) and 3b) images, which are the reconstructed OPD surfaces from the
fitted Zernike polynomial coefficients when discarding the non-aberration terms.
This difference is not present when employing the SSPCA algorithm, hence, the
author recommends using this method for further experimental measurements.

4.7 Summary
We presented the principles of operation of Phase Shifting Interferometry, we
discussed the least-squares and the SSPCA algorithms and we studied their
performance with simulated and experimental interferograms.

We conclude that the SSPCA algorithm is best suitable for experimental
measurements given its ability to provide repeatable measurements, however its
main limitation is determining the true phase sign of the measurement.

CHAPTER 4. PHASE SHIFTING INTERFEROMETRY 45



4.7. SUMMARY

Aberration name Least-squares [λ] SSPCA 8-by-8 [λ]
Test a) Test b) Test a) Test b)

Z0(ρ, θ) -0.01 0.04 0.33 0.33
Z1(ρ, θ) -0.40 -1.04 -1.00 -1.11
Z2(ρ, θ) 0.39 0.60 0.53 0.62
Z3(ρ, θ) 0.01 0.14 0.14 0.14
Z4(ρ, θ) -0.23 -0.17 -0.22 -0.22
Z5(ρ, θ) 0.02 0.12 0.11 0.11
Z6(ρ, θ) 0.03 0.02 0.02 0.02
Z7(ρ, θ) 0.02 -0.01 0.00 0.00
Z8(ρ, θ) 0.03 -0.01 -0.01 -0.01
Z9(ρ, θ) -0.04 0.02 0.01 0.02
Z10(ρ, θ) -0.01 0.03 0.01 0.02
Z11(ρ, θ) 0.02 0.01 0.02 0.02
Z12(ρ, θ) 0.00 0.00 -0.01 -0.02
Z13(ρ, θ) 0.00 0.01 0.01 0.01
Z14(ρ, θ) 0.00 0.00 0.01 0.01
Z15(ρ, θ) -0.01 -0.05 -0.06 -0.06
Z16(ρ, θ) 0.00 0.00 0.01 0.01
Z17(ρ, θ) 0.01 0.01 0.00 0.01
Z18(ρ, θ) 0.01 -0.01 0.00 0.00
Z19(ρ, θ) 0.01 0.00 0.00 0.00
Z20(ρ, θ) 0.00 0.01 0.02 0.02
Z21(ρ, θ) -0.01 0.01 0.00 0.00
Z22(ρ, θ) -0.02 0.00 0.00 0.00
Z23(ρ, θ) -0.01 0.00 0.00 0.00
Z24(ρ, θ) -0.02 -0.03 -0.04 -0.04

Table 4.4: Experimental measurement Zernike coefficient comparison using the
least-squares and the SSPCA approach with a 8-by-8 subblock size. When
discarding the first four Zernike polynomial coefficients the largest differences
found are in the 3rd order astigmatism Z4(ρ, θ) and Z5(ρ, θ) when using the
least-squares PSI algorithm. This is not the case for the SSPCA algorithm.
Please refer to Table 3.1 for aberration descriptions.
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Chapter 5

Impact of
frequency-dependent
spherical aberrations in the
focusing of ultrashort pulses

The focusing of ultrashort laser pulses is of great interest for applications like
nonlinear microscopy [2–4], micromachining [5], medicine [6] and fundamental
science [7–9].

When propagating an ultrashort laser pulse through refractive media, it will
be subjected to dispersion. Dispersion is one of the phenomena that impacts
the pulse duration the most. The use of pulse compressors and achromatic
lenses reduce this phenomenon. These phenomena depends on pulse constituent
frequencies.

A simulation technique based on raytracing and wave optical propagation
was developed by Fuchs, et. al. [16], including dispersive effects such as Group
Velocity Dispersion [13, 14] and Propagation Time Difference [10–14]. How-
ever, in a laboratory setting these effects can be pre-compensated with pulse
compressors and achromatic doublets.

We simulate the focusing of ultrashort laser pulses with different initial pulse
durations and calculate the spatial and temporal intensity distributions around
the focal point of a given system. We will discuss the scalar diffraction theory
and how to integrate the OPD calculations reviewed in Chapter 2.

We will analyse the calculated intensity profiles and simulate pulse charac-
terization techniques used in the laboratory.
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5.1 Theory

An imaging system transforms a diverging spherical wavefront that emanates
from a point source in the entrance plane into a converging spherical wavefront
with center in the Gaussian image point. All the geometrical rays converge
in the optical system back focal point. The number of converging rays into
the image point is infinite, thus, the focused intensity is infinite in said point
while having zero intensity anywhere else, however this does not reflect reality,
meaning that the geometrical optics theory is invalid to calculate fields in the
vicinity of the focal region of the system [53]. Diffraction theory is used to
calculate the energy distribution around the image point.

Although an optical system can be analysed by using diffraction theory only,
it is not recommended to do so for complex systems since it would be an ineffi-
cient computation.

By combining raytracing and diffraction theories, the raytracing is used to
calculate the wavefront that propagates from the object plane through the op-
tical system up to the exit pupil of the optical system [53].

Raytracing and OPD calculations yield the deviation of the emerging wave-
front from a spherical wavefront centered at the system’s Gaussian image point,
afterwards, the scalar diffraction theory can be used to calculate the field from
the exit pupil to the desired observation plane.

5.1.1 Scalar diffraction theory

Scalar diffraction theory is used to study ultrashort pulse propagation in an
optical system where the pulse frequency modulation and phase changes caused
by dispersion, diffraction and aberrations are modelled. The aberration phase
change is determined by calculating the optical path difference contributed by
each optical surface in the system for each frequency component of the pulse. [16,
53]

To perform wave propagation in a dielectric medium under scalar diffraction
theory the following conditions are required:

• Field quantities from different sources can be added, or linear;

• the electric field is described as a scalar function, i.e., it is neglected the
vectorial nature of light.

• non-magnetic, i. e. the medium permeability is equal to the vacuum
magnetic permeability µ0.

Rayleigh-Sommerfeld diffraction integral

Consider the propagation of monochromatic light from a two-dimensional source
plane of coordinates (x1, y1). An area A defines the extent of the source or il-
luminated aperture. The source field distribution is given by U1(x1, y1) and
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the field distribution at a distant observation plane (U2(x2, y2) can be calcu-
lated by the first Rayleigh-Sommerfeld diffraction integral, which is displayed
in Equation (5.1):

U2(x2, y2) =
z

iλ

∫∫
A

U1(x1, y1) exp (ikr12)dx1dy1, (5.1)

where

• λ is the light wavelength;

• k is the wavenumber, defined as 2π/λ;

• z is the distance between the reference systems for the source and obser-
vation planes.

• r12 is the distance between the points (x1, y1) and (x2, y2), as shown in
Equation (5.2).

r12 =
√
z2 + (x2 − x1)2 + (y2 − y1)2 (5.2)

The system described by Equation (5.1) is presented in Figure 5.1.

Source
Plane

Observation
Plane

Distance from source plane to observation plane

x1

y1 y2

x2

z
(x1, y1)

(x2, y2)
r12A

Figure 5.1: Monochromatic light propagation from the source plane of area A
to the observation plane.
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Equation (5.1) is a representation of the Huygens-Fresnel principle. It is
assumed that the source acts as an infinite collection of punctual sources, each
one generating a spherical wavefront associated with the source field in the
(x1, y2) position. Each spherical wavefront contribution is summed as seen from
a (x2, y2) point in the observation plane allowing interference to occur.

Fresnel diffraction integral

The use of Equation (5.2) to calculate the field U2(x2, y2) will increase the
computation time for the diffraction calculation. In order to improve the com-
putation time consider the binomial expansion

√
1 + b = 1 +

1

2
b− 1

8
b2 + ... (5.3)

where b < 1. Expanding Equation (5.2) using Equation (5.3) and preserving
the first two terms only, we get

z

[
1 +

1

2

(
x2 − x1

z

)2

+
1

2

(
y2 − y1

z

)2
]
. (5.4)

Substituting Equation (5.4) in the exponential term in Equation (5.1) is akin
to assume parabolic radiation, instead of spherical, emerges from the punctual
sources [54]. If we consider that r12 ≈ z, we arrive to the Fresnel diffraction
integral, as presented in Equation 5.5:

U2(x2, y2) =

∫∫
A

U1(x1, y1) exp

{
− i k

2z

[
(x2 − x1)2 + (y2 − y1)2

]}
dx1dy1

(5.5)

5.1.2 Ultrashort pulse modelling
Ultrashort pulses are electromagnetic wave packets and they are described in its
enterety by its spatial and temporal dependent electrical field. The difference
between monochromatic light and pulsed light is that a pulse consists of a few
optical cycles of a sine wave. The pulse field in the frequency domain of an
ultrashort laser pulse can be described as [29]

Ẽ(ω − ω0) =
√
S(ω − ω0) exp [−iφ(ω − ω0)], (5.6)

where ω0 is the carrier angular frequency of the pulse, S(ω − ω0) is the
spectrum and φ(ω − ω0) is the spectral phase.

We calculate the Inverse Fourier Transform of the pulse field in the frequency
domain to obtain the complex field amplitude in time e(t):

e(t) = F−1{Ẽ(ω − ω0)}. (5.7)

Finally, the pulse intensity distribution in the time domain I(t) is given by
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I(t) = |e(t)|2. (5.8)

The pulse duration τp is defined as the Full Width at Half Maximum (FWHM)
of the pulse intensity I(t), and the spectral width ∆ωp as the FWHM of the
spectrum S(ω).

The bandwidth ∆ωp and pulse duration τp follow the minimum duration-
bandwidth product shown in Equation (5.9) since the pulse temporal and spatial
properties are related via the Fourier transform, where cB is a constant that
depends on the pulse shape [1].

∆ωpτp ≥ 2πcB , (5.9)

The equality in Equation (5.9) holds for pulses where its instantaneous fre-
quency is not dependent on time [1, 55] and we will reference it as a bandwidth
limited pulse. For a Gaussian modulated bandwidth limited pulse, the constant
in Equation (5.9) is cB = 0.441 [1].

Spectrum as a function of wavelength and frequency

Spectrometers measure the spectral intensity as a function of wavelength, S(λ),
so in order to calculate the pulse intensity in the time domain, I(t), the spectral
intensity S(λ) has to be transformed into the spectrum in frequency, S(ω). This
wavelength-frequency transform is given by [29]:

S(λ) = S(ω)
2πc

λ2
. (5.10)

where c is the speed of light in vacuum, λ is the wavelength and its related
to frequency via λ = 2πc/ω.

Gaussian pulse frequency modulation

As previously stated, an ultrashort pulse is constituted of several frequencies
around a carrier wavelength. A Gaussian-modulated, bandwidth limited pulse
will have its electric field in the frequency domain defined as shown in Equa-
tion (5.11):

A(ω) =
√
S(ω) = exp

[
−
(

τ0∆ω

2
√

2 ln 2

)2
]
, (5.11)

where

• τ0 is the FWHM pulse duration and

• ∆ω is the difference between the pulse frequencies and the carrier fre-
quency, ω −∆ω.

CHAPTER 5. IMPACT OF FREQUENCY-DEPENDENT SPHERICAL
ABERRATIONS IN THE FOCUSING OF ULTRASHORT PULSES

51



5.1. THEORY

Equation (5.11) considers that the pulse instantaneous frequency is not de-
pendent on time, in other words, it has no chirp at the moment it enters the
optical system to be analysed. The spectral intensity for 100 [fs], 50 [fs] and 5
[fs] pulses following Equation 5.11 are shown in Figure 5.2.

a) b) c)

Figure 5.2: Spectral intensity S(ω) for a) 100 [fs], b) 50 [fs], and c) 5 [fs] pulses
with a carrier wavelength λ0 = 810 [nm].

Pulse frequencies in terms of carrier frequency

The different frequencies of a pulse, ω, can be written in terms of the carrier
frequency ω0 as follows:

ω = ω0 + ∆ω. (5.12a)

Dividing by the speed of light in vaccuum c,

ω

c
=
ω0

c
+

∆ω

c
. (5.12b)

Since the wavenumber k is defined as

k =
ω

c
, (5.12c)

then

k = k0 +
∆ω

c
, (5.12d)

k = k0 +
∆ωω0

cω0
, (5.12e)

k = k0 + k0
∆ω

ω0
, (5.12f)

k = k0

(
1 +

∆ω

ω0

)
. (5.12g)

This notation will be helpful to calculate the electric field at the exit pupil
and the resulting field at the observation plane according to Equation (5.5).
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5.1.3 Propagation of a femtosecond pulse through a non-
dispersive system.

Equation (5.13) describes the electric field in the frequency domain of an unchirped,
Gaussian-modulated in frequency pulse around the focal plane of a non-dispersive,
aberrated optical system [56]:

U(x2, y2, z,∆ω) =

∫∫ ∞
−∞

dx1dy1U0(x1, y1)P (x1, y1)A(∆ω)(− i exp (ikz)

λz
)×

×exp [−iΘ(x1, y1,∆ω)] exp [−iφ(x1, y1,∆ω)] exp {−i k
2z

[(x2 − x1)2 + (y2 − y1)2]},
(5.13)

where

• (x1, y1) represents the Cartesian coordinates of the exit pupil;

• (x2, y2), the Cartesian coordinates of the observation plane as shown in
Figure 5.3;

• z, the distance between the exit pupil and the observation plane;

• U0, the input electrical plane wave which is uniform over the input plane;

• P (x1, y1) is the pupil function defined as one within the pupil radius and
zero elsewhere;

• A(∆ω) is the pulse Gaussian-modulation frequency defined in Equation (5.11);

• Θ(x1, y1,∆ω) is the phase change due to aberrations;

• φ(x1, y1,∆ω) is the phase change due to the transformation of a plane
wavefront into a converging spherical wave;

• k is the wavenumber of the pulse frequencies which can be expressed as
k = k0(1 + ∆ω/ω0);

• ∆ω is the difference between any of the pulse frequencies and the pulse
carrier frequency; and

• λ are the wavelengths in vacuum corresponding to each pulse frequency.

To obtain the pulse electric field in the time domain we calculate the Fourier
transform of Equation (5.13):

U(x2, y2, z, t) =

∫ ∞
−∞

U(x2, y2, z,∆ω) exp (−i∆ωt)d∆ω. (5.14)

Finally, the spatial and time intensity profiles are defined as:
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I(x2, y2) ∝
∫ ∞
−∞
|U(x2, y2, z, t)|2dt, (5.15)

and

I(t) ∝
∫ ∞
−∞

∫ ∞
−∞
|U(x2, y2, z, t)|2dx2dy2. (5.16)

The FFT method proposed by Anaya-Vera, et.al. [57] was used to compute
Equation (5.13) numerically, allowing us to do a fast and accurate calculation
of the pulse electric field.

Exit
Pupil

Observation
Plane

Distance z from exit pupil to observation plane

x1

y1 y2

x2

z

z

Figure 5.3: Optical system coordinates used for the exit pupil and the observa-
tion plane located around the system focal point.

Frequency-dependent aberration calculations

In order to compute Θ(x1, y1,∆ω) for Equation (5.13), we require to perform a
raytracing calculation for every pulse frequency.

The wavelengths λ that make up the pulse are calculated from the angular
frequency vector ∆ω as shown in Equation (5.17):

λ(∆ω) =
2π

k0

(
1 + ∆ω

ω0

) (5.17)
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To calculate the refractive index we use Sellmeier’s Equation shown in Equa-
tion (5.18) [58] for every wavelength that comprises the pulse:

n(λ) =

√
1 +

B1λ2

λ2 − C1
+

B2λ2

λ2 − C2
+

B3λ2

λ2 − C3
(5.18)

Once we calculate the OPD for every frequency, we evaluate Equation (5.19),

Θ(x1, y1,∆ω) = k0(1 +
∆ω

ω0
)λ(∆ω)OPD[x1, y1, λ(∆ω)], (5.19)

and use this result into Equation (5.13).

5.1.4 Intensity profile measurement

To locate the position of the smallest spot size and the shortest pulse duration
we require to measure width of the spatial and temporal intensity profiles. To
this date, there is no single standard criterion to estimate pulse duration and
spot sizes due the variablility of the measured spatial and temporal intensity
profiles. Another issue is that different widths can be achieved depending on
the measurement criteria, they can be dependent on the beam shape and there
is no universal conversion factors between these results [59].

In this work, we study two measurement criteria: the FWHM and the stan-
dard deviation of the intensity distributions. We measure the intensity profiles
calculated by Equations (5.15) and (5.16) using these criteria. Also, we mod-
elled two techniques used in the laboratory to perform pulse intensity distri-
bution measurements: the knife-edge tests which measures the spot size and
the intensity autocorrelation which estimates the pulse duration. The obtained
space and time intensity profiles recovered from these techniques are measured
using the FWHM and standard deviation criteria.

Standard deviation of a distribution

Since we consider that the optical system has rotational symmetry and the rays
propagate parallel to the optical axis, we only present results for the x-axis.

To calculate the standard deviation of a given distribution, the square-root
of the second order central moment is calculated [1]. The standard deviation
definition σx of a distribution f(x) along the x variable is presented in Eq. (5.20):

σx =

√√√√∫∞−∞ x2|f(x)|2dx∫∞
−∞|f(x)|2dx

(5.20)

If the measured distribution is a Gaussian distribution, we can estimate its
FWHM, τσx

, from the standard deviation with the following relation [1]:

τσx
= 2
√

2 ln 2 σx (5.21)
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Knife-edge test

The knife-edge test is simulated to estimate the spot size of the focused pulse
beam. By moving the knife-edge along the x2 axis, the power received by the
detector is given by Equation (5.22) [60]:

P (x2) =

∫ ∞
−∞

∫ x2

−∞
I(x, y2)dxdy2, (5.22)

where the opaque zone is in the semi-plane x > x2. By taking the derivative
of P (x2), we have a pulse spatial profile, IKE(x2), in other words,

IKE(x2) = dP (x2)/dx2. (5.23)

The width of the intensity distribution in space can be measured directly
from the spatial intensity profile, I(x2, y2), given by Equation (5.15) using the
FWHM criterion or by calculating its standard deviation, σx. Alternatively, the
width of the intensity distribution in space can also be measured from the inten-
sity profile, IKE(x2), given by Equation (5.23) and using the FWHM criterion
or by calculating its standard deviation σKE .

Intensity autocorrelation

The intensity autocorrelation, A(2)(τ), is defined as

A(2)(τ) ≡
∫ ∞
−∞

I(t)I(t− τ)dt. (5.24)

where I(t) is the time intensity distribution given by Equation (5.16) and τ is
the delay.

The width of the time intensity profile, I(t), given by Equation (5.16) can
be measured directly by calculating its standard deviation, σt. Alternatively,
the width of the time intensity profile can also be estimated from the intensity
autocorrelation, A(2)(τ) including the

√
2 deconvolution factor, and then evalu-

ating the standard deviation, σA2 , which already includes the
√

2 deconvolution
factor. To fully characterize a pulse, its intensity and phase must be measured.

5.2 Simulations

We simulated the focusing of femtosecond pulses through a concave mirror,
a commercial achromatic doublet and a commercial double-convex lens; the
commercial components are from Edmund Optics. We present the parameters of
these systems in Table 5.1. The three systems have the same diameter D = 12.0
[mm] and the same effective focal length EFL = 30.0 [mm], thus, all of them
have the same numerical aperture NA = 0.2.

The simulated input pulse duration τ0 ranges from 5 to 100 [fs] with a carrier
wavelength λ0 = 810 [nm], which corresponds to a Ti:Sapphire femtosecond
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System Material CT1 [mm] CT2 [mm] R1 [mm] R2 [mm] R3 [mm]
Concave mirror - - - -60.0 - -
Achromatic doublet N-LAK22 / N-SF6 4.5 2.5 17.77 -16.46 -136.8
single lens N-BK7 3.7 - 30.36 -30.36 -

Table 5.1: Optical system parameters used in the simulations. All components
have a diameter D = 12.0 [mm] and effective focal length EFL = 30.0 [mm]

laser. We will investigate the effect of aberrations, which are dependent on the
frequencies that comprise the pulse.

To visualize the aberrations for each optical system presented in Table 5.1
we calculate the OPD at the exit pupil of the system for the carrier wavelength
λ0 = 810 [nm], and then convert it into a fringe pattern If (x1, y1, λ0) using
Equation (5.25):

If (x1, y1, λ0) = 1 + cos [2πOPD(x1, y1, λ0)]. (5.25)

In Figure 5.4 the interference fringe patterns calculated with Equation (5.25)
are presented for the three optical systems in Table 5.1. We can see more
fringes in the interferogram for the single lens in Figure 5.4(c), fewer fringes
for the spherical concave mirror in Figure 5.4(a), and even fewer fringes for
the achromatic doublet in Figure 5.4(b). These results are expected since
the achromatic doublet is the only system with primary spherical aberration
correction.

b)a) c)

Figure 5.4: Fringe patterns calculated with Equation (5.25) for the systems
presented in Table 5.1. a) concave spherical mirror; b) achromatic doublet;
and c) single lens. All the systems have a numerical aperture of NA=0.2. The
wavelength is λ0 = 810 [nm] and a diameter D = 12.0[mm]. The pupil was
normalized against the system radius ρ = D/2.

In our simulation we considered the phase change due to aberrations Θ(x1, y1)
under the following three cases:

• Θ(x1, y1, ω) = 0, which corresponds to the aberration-free case;

• Θ(x1, y1, ω) = 2πck0
ω0

OPD(x1, y1, ω0), which evaluates the spherical aber-
ration introduced by the carrier frequency and it will be referred as the
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carrier frequency case and;

• Θ(x1, y1, ω) = 2πck
ω OPD(x1, y1, ω), where we evaluate the aberrations

for every pulse constituent frequency, hence, it will be referred as the
complete-aberration case.

5.2.1 Spatial and temporal intensity distributions for a 20
[fs] pulse

We generate spatial and temporal intensity distributions with Equations (5.15),
(5.16), (5.23) and (5.24) for several positions around their corresponding back
focal length (BFL) for a 20 [fs] pulse with a carrier wavelength λ0 = 810 [nm].
The plots are presented in Figures 5.5, 5.6 and 5.7 for the concave spherical
mirror, the achromatic doublet and the double-convex lens, respectively. We
define the quantity ∆z = 0 as the system BFL, for ∆z < 0 we will be closer to
the exit pupil of the system and if ∆z > 0, we will be farther than the system’s
focal point.

In Figure 5.5, the spatial intensity distribution obtained by evaluating I(x2, 0)
is different from the intensity distribution obtained by IKE(x2). This demon-
strates that variations in the quantities measured from these two intensity dis-
tributions are to be expected. When considering aberrations we find that the
maximum value of the spatial intensity distribution is shifted from the BFL
and is located closer to the mirror, while presenting a larger depth-of-focus. In
addition to this the spatial intensity distributions for the carrier frequency and
the complete-aberration cases are similar due to the fact that the phase due
aberrations in a concave mirror is the same for all frequencies since there is no
refraction during the raytracing. For the temporal intensity distribution under
the aberration-free case we find that there is no symmetry around the time
axis t, while having its maximum in the BFL region of the mirror. When con-
sidering aberrations, the maximum point of the temporal intensity distribution
shifts closer to the mirror and presents a ’smear’ in the region farther to the mir-
ror. This maximum shift and smearing causes that the intensity autocorrelation
A(2)(τ) distribution to deviate from the aberration-free case.

For the achromatic doublet normalized plots, shown in Figure 5.6, we find
that the spatial intensity distributions from I(x2, 0) are different from the ones
recovered from the knife-edge test IKE(x2) as seen in Figure 5.5. We also
appreciate that the intensity maxima are not located in the focal point, slightly
shifted towards the achromatic double and that there is a minor increase of the
depth-of-focus like the one seen for the concave mirror, effect we attribute to
the spherical aberration correction from the doublet. We show that there is
no symmetry on the temporal intensity distribution around the time axis t in
the aberration-free case while having its maximum in the BFL of the system;
for the carrier frequency and complete-aberration cases, however, we find the
maximum shifted beyond the doublet’s focal point, and the smearing is found
in the region closest to the doublet; the smearing being more pronounced in
the carrier frequency case. The intensity autocorrelation map for the carrier
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Figure 5.5: Normalized spatial and temporal intensity distributions with for
several positions around the BFL of a concave mirror of D = 12.0 [mm] and
EFL = 30.0 [mm] for a 20 [fs] pulse with a carrier wavelength λ0 = 810 [nm].

frequency and the complete-aberration cases are different than the aberration-
free case due the smearing effect.

For the double-convex lens, presented in Figure 5.7, we again find that
the spatial intensity distribution I(x2, 0) is different from the knife-edge test
IKE(x2). We also note that there is a small difference between the recovered spa-
tial intensity distributions for the carrier frequency and the complete-aberration
cases. The optical aberrations found in the double-convex lens are greater than
the ones found in the achromatic doublet and the concave mirror, hence, the
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Figure 5.6: Normalized spatial and temporal intensity distributions with for
several positions around the BFL of an achromatic doublet D = 12.0 [mm]
and EFL = 30.0 [mm], described in Table 5.1 for a 20 [fs] pulse with a carrier
wavelength λ0 = 810 [nm].

spatial intensity distributions for the double-convex lens do not resemble the
ones discussed in Figures 5.5 and 5.6. In this optical system there is a clear
difference in the temporal intensity distribution for the aberration-free, carrier
frequency and complete-aberration cases. When we consider aberrations we find
that the maximum intensity is found closer to the lens, like in the concave mir-
ror, However, the carrier frequency and complete-aberration cases are visually
different from each other. These differences influence the intensity autocorrela-
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tion distribution for this system.
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Figure 5.7: Normalized spatial and temporal intensity distributions with for
several positions around the BFL of a double-convex lens with D = 12.0 [mm]
and EFL = 30.0 [mm], described in Table 5.1 for a 20 [fs] pulse with a carrier
wavelength λ0 = 810 [nm].

From Figures 5.5, 5.6 and 5.7 we find that:

• The spatial intensity distributions obtained by Equation 5.15 are different
from those obtained by Equation (5.23);

• the spatial intensity distributions calculated under the carrier frequency
and the complete-aberration cases are similar;
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• there are differences on the temporal intensity distributions whenever we
use the carrier frequency or the complete-aberration case in our calcula-
tion;

• frequency-dependent aberrations will affect the ability of the optical sys-
tem to tightly focus a femtosecond pulse.

5.2.2 FWHM and standard deviation measurement com-
parison

We previously discussed the impact of frequency-dependent aberrations on the
spatial and temporal intensity distributions and the experimental measurement
simulations for a initial pulse duration of 20 [fs]. We proceed to estimate the
FWHM of the distributions calculated with Equations (5.15), (5.16), (5.23)
and (5.24), using the achromatic doublet, for different pulse durations τ0 ranging
from 5 [fs] to 100 [fs] around the focal point ∆z = 0 under the complete-
aberration case. The resulting 2D color maps are presented in Figure 5.8 We
normalized the measured values against its corresponding minimum value found
within the range between [-500, 500] [µm] for each pulse duration. We find that
the measured FWHM from I(x2, 0) are different from the measured FWHM
from IKE(x2) as seen in Figures 5.8a) and 5.8b), results that can be explained
by the differences found in I(x2, 0) and IKE(x2) shown in Figure 5.6 for the
complete-aberration case. The normalized FWHM measured from the intensity
distributions in time, I(t) and A(2)(τ) are presented in Figures 5.8c) and 5.8d),
respectively. The FWHM of A(2)(τ) includes the

√
2 deconvolution factor. We

note that the color maps of the normalized FWHM of the intensity distributions
in time, I(t) and A(2)(τ), are different since they have a different scale in the
color map. We conclude that the FWHM criterion is not a good metric since
different results are obtained when measuring from the modelled theoretical
intensity distributions or from the modelled experimental intensity distributions.

We measured the standard deviations in space σx and σKE from I(x2, 0)
and IKE(x2) respectively for the same input pulse durations and range along
the optical axis. We normalized the standard deviation values against their
corresponding minimum value found within the range for each pulse duration.
The standard deviations σx and σKE are displayed in a 2D color map found
in Figures 5.9a) and 5.9b). In a similar fashion, we measured and normalized
the standard deviations σt and σA2 from I(t) and A(2)(τ), displaying them in
Figures 5.9c) and 5.9d). We find that the standard deviations measured from
I(x2, 0), σx, are the same than the standard deviations measured from IKE(x2),
σKE , the same result being obtained when comparing σt and σA2 . We conclude
that the standard deviation is a better metric than the FWHM criterion to
analyse the impact of frequency-dependent spherical aberrations on the focusing
of femtosecond pulses. The presence of substructures or broad wings on the
spatial and temporal intensity distributions may provide a unreliable FWHM
measurement [1].
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a) FWHM of I(x2, 0) b) FWHM of IKE(x2)

c) FWHM of I(t) d) FWHM/
√
2 of A(2)(τ)

Figure 5.8: Normalized full-width at half-maximum measurements of intensity
distributions for the achromatic doublet in Table 5.1 for the complete-aberration
case for different input pulse durations ranging from 5 to 100 [fs] (horizontal axis)
in the range between [-500, 500] [µm] around the focal point ∆z = 0 (vertical
axis).

5.2.3 Normalized standard deviation of the spatial inten-
sity distributions around the paraxial focal point

We present the normalized standard deviation σx = σKE of the spatial inten-
sity distributions obtained from Equations (5.15) and (5.23) for the different
initial pulse durations τ0 around the paraxial focal point in 2D color maps on
Figure 5.10 for concave mirror, the achromatic doublet and the double-convex
lens described in Table 5.1 under our three aberration cases: the aberration-
free case in the first column, the carrier frequency case on the second column
and the complete-aberration on the last. The darkest areas on the color maps
represent the minima normalized standard deviation values, while the brightest
areas represent the maxima.

On the aberration-free case, i. e. Θ = 0, we find that the standard deviation
map is the same for all three optical systems. This is an expected result given
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a) σx of I(x2, 0) b) σKE of IKE(x2)

c) σt of I(t) d) σA2 of A(2)(τ)

Figure 5.9: Normalized standard deviation measurements of intensity distribu-
tions for the achromatic doublet in Table 5.1 for the complete-aberration case
for different input pulse durations ranging from 5 to 100 [fs] (horizontal axis)
in the range between [-500, 500] [µm] around the focal point ∆z = 0 (vertical
axis).

that they have the same diameter D = 12.0 [mm] and an EFL = 30.0 [mm].
The darkest areas on the color maps that represent the normalized standard
deviation minima are located around the paraxial focal point ∆z = 0 [µ m] and
the magnitude of the neighbouring points increases symmetrically around the
paraxial focal point. We also appreciate that the depth-of-focus decreases for
shorter initial pulse durations τ0.

The standard deviation maps for the carrier frequency and complete-aberration
cases for the mirror and achromatic doublet are the same while for the double-
convex lens they have slightly different peak values. The position of the minima
region is located outside of the paraxial focal point and the standard deviation
values increases non-symmetrically around the minima area. For the aberration-
free case, the variation of the normalized standard deviation in space σx is larger
than the normalized σx for the frequency carrier and complete-aberration cases,
in particular for the double-convex lens which has the largest spherical aberra-
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tion. The value of the largest normalized σx value for the double-convex lens in
the complete-aberration case is 1.6 while the σx on the aberration-free case is
over 10. The physical meaning of the reduction of the magnitude of normalized
σx along the optical axis for the complete-aberration case is an increase in the
focal depth.
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Figure 5.10: Normalized standard deviation σx = σKE of the spatial in-
tensity distributions obtained from Equations (5.15) and (5.23) for τ0 =
[5, 100] [fs] around the paraxial focal point for the concave mirror, the
achromatic doublet and the double-convex lens described in Table 5.1 for
Θ(x1, y1, ω) = 0, Θ(x1, y1, ω) = 2πck0/ω0OPD(x1, y1, ω0) and Θ(x1, y1, ω) =
2πck/ωOPD(x1, y1, ω).

5.2.4 Normalized standard deviation of the temporal in-
tensity distributions around the paraxial focal point

Like we showed in Figure 5.10, we present the normalized standard deviation
σt = σA2 of the spatial intensity distributions obtained from Equations (5.16)
and (5.24) for the different initial pulse durations τ0 around the paraxial focal
point in 2D color maps on Figure 5.11 for concave mirror, the achromatic doublet
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and the double-convex lens described in Table 5.1 for our three aberration cases.
The darkest areas, as in Figure 5.10, represent the minima normalized standard
deviation values, while the brightest areas represent the maxima.

On the aberration-free case, i. e. Θ = 0, we find that the time standard
deviation map is the same for all three optical systems The darkest areas on
the color maps that represent the normalized standard deviation minima are
located around the paraxial focal point ∆z = 0 [µ m] and the magnitude of the
neighbouring points increases symmetrically around the paraxial focal point. We
notice that in the [-500, 500] [µm] range we find that there is a lower increment
in the normalized standard deviation value for all initial pulse duration τ0,
surpassing σt = 1.3 for τ0 = 5 [fs]. When studying a broader range, e. g.: [-1500,
500] [µm] like we did for the double-convex lens, we find that the normalized σt
value is over 8. We also appreciate that the depth-of-focus decreases for shorter
initial pulse durations τ0.

The standard deviation maps for the carrier frequency and complete-aberration
cases for the mirror and achromatic doublet present similar distributions with
different upper values. We note for the mirror that the minimum values are
located in a position different than the paraxial focal point, making the map
non-symmetrical around the paraxial focal point, while the. For the achromatic
doublet we find that there are two regions where minimum values are located:
for pulse durations larger than 20 [fs] the minimum standard deviation values
tend to be farther from the focal point while for shorter pulse durations the min-
ima are located closer to the doublet. The standard deviation values measured
at the double-convex lens are significantly different between the frequency car-
rier and the complete aberration cases, and the normalized standard deviation
values are lower when compared to the aberration-free case. For the complete-
aberration case, the maximum σt is greater than 2.2. while in the aberration-free
the maximum σt is greater than 8.0. This reduction of magnitude of normalized
σt along the optical axis, as it was shown with the reduction of magnitude of
normalized σx is an increase in the focal length.

5.2.5 Normalized intensity autocorrelation magnitude dis-
tributions around the paraxial focal point

We calculated the intensity autocorrelations A(2)(τ) from the temporal intensity
distributions by Equation (5.24) and plotted the normalized amplitudes against
their maximum value for a given input pulse duration τ0 and the corresponding
maps are shown in Figure 5.12..

Under the aberration-free case we find that the intensity autocorrelation
magnitude maps have their maximum value located at the paraxial focal point
and that the normalized values decrease in a symmetrical fashion. For shorter
input pulse durations we appreciate that this value decreases at shorter dis-
tances; for longer pulse durations, the decrease occurs at farther distances from
the paraxial focal point.

In all three components we find that the intensity autocorrelation maps
for the carrier frequency and the complete-aberration cases are different from

66 CHAPTER 5. IMPACT OF FREQUENCY-DEPENDENT SPHERICAL
ABERRATIONS IN THE FOCUSING OF ULTRASHORT PULSES



5.3. SUMMARY
C

on
ca

ve
m

ir
ro

r
A

ch
ro

m
at

ic
do

ub
le

t
D

ou
bl

e-
co

n v
ex

le
ns

Aberration-free
case

Carrier frequency
case

Complete-aberration
case

Figure 5.11: Normalized standard deviation σx = σA2 of the temporal in-
tensity distributions obtained from Equations (5.16) and (5.24) for τ0 =
[5, 100] [fs] around the paraxial focal point for the concave mirror, the
achromatic doublet and the double-convex lens described in Table 5.1 for
Θ(x1, y1, ω) = 0, Θ(x1, y1, ω) = 2πck0/ω0OPD(x1, y1, ω0) and Θ(x1, y1, ω) =
2πck/ωOPD(x1, y1, ω).

each other. We note that the maximum normalized intensity autocorrelation
magnitude is no longer located at the paraxial focal point of the system and
that its falloff is non-symmetrical. Also, there is a reduction on the area where
there is a strong intensity autocorrelation magnitude, i. e. its relative value can
be considered the same as the maximum for a given input pulse duration τ0 if
there is a large amount of aberrations.

5.3 Summary

We studied the theoretical basis for ultrashort pulse modelling and propagation
using a combination of ray tracing and scalar diffraction theory and calculated
the spatial and temporal intensity distributions of a focused collimated beam of
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Figure 5.12: Normalized intensity autocorrelation A(2)(τ) magnitudes n σx =
σA2 of the temporal intensity distributions obtained from Equations (5.16)
and (5.24) for τ0 = [5, 100] [fs] around the paraxial focal point for the con-
cave mirror, the achromatic doublet and the double-convex lens described in
Table 5.1 for Θ(x1, y1, ω) = 0, Θ(x1, y1, ω) = 2πck0/ω0OPD(x1, y1, ω0) and
Θ(x1, y1, ω) = 2πck/ωOPD(x1, y1, ω).

ultrashort pulses, with a Gaussian spectral profile, propagating parallel to the
optical axis. We calculated the spherical aberrations for different optical systems
for every constituent frequency component of a given input femtosecond pulse.
We neglected the dispersive effects introduced by the system, Group Velocity
Dispersion and Propagation Time Difference, in order to study only the impact
of the frequency-dependent spherical aberrations on the focused pulse intensity
distributions.

Asides of the spatial and temporal intensity distributions obtained with
Equations (5.15) and (5.16) we simulated two experimental techniques used
in the laboratory to characterize the pulses in order to measure the pulse spot
size and pulse duration, namely the knife-edge test as seen in Equation (5.23)
and the intensity autocorrelation as seen in Equation (5.24), which are used to
measure the spot size and pulse duration respectively.
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To measure the width of the spatial and temporal intensity distributions from
the calculated diffraction patterns and the simulated experiments we studied two
measurement criteria: the FWHM and the standard deviation. We showed that
the FWHM is not a good criterion since different conclusions are obtained when
measuring from the direct intensity distributions and when measuring from the
simulated experiments.

Figures 5.5 and 5.6 show that the spatial intensity profiles are the same when
the system aberration content is calculated for the carrier frequency and the
complete-aberration cases for the spherical concave mirror and the achromatic
doublet; for the double-convex lens, as seen in Figure 5.7, there are slight dif-
ferences between the spatial intensity profiles obtained for the carrier frequency
and the complete-aberration cases. However, when comparing the temporal
intensity profiles for all three components, we found that there are differences
between the profiles calculated for the carrier frequency case and the complete-
aberration case. This result will impact the standard deviation measurements.

We found that the magnitude and location for the minimum standard devia-
tion in space is the same when the system aberration content is calculated for the
carrier frequency and the complete-aberration cases for all three optical systems.
However, we found a slight variation on the maximum standard deviation value
between the carrier frequency and the complete-aberration cases when study-
ing the double-convex lens. We conclude that the spatial intensity distribution
around the focal point does not depend on the frequency-dependent spherical
aberration. Nevertheless, since the frequency-dependent spherical aberration
affects the temporal intensity distribution, it must be taken into account for a
correct estimation of the pulse duration. Also, the location of the highest am-
plitude of the intensity autocorrelation changes when the frequency-dependent
spherical aberration is included in the analysis due a space-time coupling.

Finally we showed that the focal depth of the system increases as the spher-
ical aberration increases with a fixed pulse width, hence, the double-convex lens
analysed in this chapter, which has the largest spherical aberration of the three
systems, has a larger focal depth than the other two lenses, in agreement with
published experimental results [61].

The research done in this Chapter yielded one peer-reviewed publication [30].
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Chapter 6

Algorithm to filter the noise
in the spectral intensity of
ultrashort laser pulses

Fringe-resolved auto-correlation (FRAC) technique allows to estimate pulse du-
ration but not the spectral phase [1]. Techniques such as SPIDER [62] allow to
retrieve the spectral phase and the temporal intensity profile by using spectral
interferometry. Spectral interferometry, also known as Fourier-transform spec-
tral interferometry (FTSI), consists on interfering light in the frequency domain,
this allows the use of different light sources from white light, super-continuum
and broad-bandwidth laser pulses. Because of this, spectral interferometry
is applied in different areas ranging from ocular metrology [63], biomedical
imaging [64], subsurface OCT [65], spectroscopy [66, 67], laser-plasma interac-
tions [68], and well-known methods for measuring ultrashort laser pulses [69–72].

The effects of phase noise, spectral resolution, sampling issues and its accu-
racy, have been reported in the past [73–77]. These studies have considered the
calibration of the spectrometer [78], the spectral resolution and the frequency
sampling. Nevertheless, a careful manipulation of the experimental data and
the intrinsic noise that comes with the amplitude of the electrical field in the
spectral domain is required for a proper calibration. A proper measurement of
spectral phase does not guarantee a reliable pulse reconstruction if the spectral
intensity is not filtered correctly. The spectral intensity can also change during
the manipulation of the pulses, so to measure the spectral intensity is important
as a tool to improve the alignment process.

We developed an algorithm to filter the noise in the spectral intensity allow-
ing to estimate the carrier wavelength from the recorded pulse spectrum and
reconstruct the temporal intensity pulse profile from the noisy measured spec-
tral intensity for a plane phase to test the filtering of the spectral intensity with
limited user intervention.

We will describe how to model a noisy spectral intensity signal like the ones
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that can be found in a laboratory setting, how to measure the carrier wavelength
from a noisy spectral intensity signal and the implementation of our filtering
algorithm.

6.1 Measured spectrum properties and process-
ing

We will rely on the concepts studied in Chapter 5 to simulate bandwidth-limited,
Gaussian-modulated in frequency, femtosecond pulses. On top of these, we will
review some additional concepts required to implement our spectral intensity
filtering algorithm.

6.1.1 Spectral intensity modelling and Signal-to-Noise Ra-
tio

The measured spectral intensity Sm(λ) can be defined as

Sm(λ) = Sd(λ) + ν(λ) + b(λ), (6.1)

where Sd(λ) is the desired spectral intensity, ν(λ) is additive white Gaussian
noise (AWGN) and b(λ) is the baseline component found in the detected signal.
These are typical measurement conditions at the laboratory. Equation (6.1) can
be rewritten as

Sm(λ) = St(λ) + ν(λ), (6.2)

where we consider our target spectral intensity St(λ) = Sd(λ) + b(λ).
To calculate the measured average signal power, we assume that [79]:

• The noise was provided by an ergodic source, which means that we can de-
duce its statistical properties by measuring the process for a long-enough
period, having a statistical mean value of zero and a defined power spec-
trum.

• The noise signal ν(λ) is independent of Sd(λ)+ b(λ), in other words, there
is no correlation between these quantities.

The measured spectral power is calculated by averaging Sm(λ)2 = St(λ)2 +
2St(λ)ν(λ)+ν(λ)2, however, since the AWGN signal has a zero mean, that is, it
oscillates around zero, and that we are assuming that the noise is independent
from the spectral intensity, we can state that the average spectral power is [79]

Sm(λ)2 = St(λ)2 + ν(λ)2 (6.3)

The signal-to-noise ratio (SNR) is defined as the ratio of signal power to noise
power, and it is commonly expressed in decibels as shown in Equation (6.4) [79]:
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SNR = 10 log10

(
St(λ)2

ν(λ)2

)
. (6.4)

6.1.2 Spectrum expressions in function of wavelength and
frequency

The spectrometers used in experiments measure the spectral intensity as a func-
tion of wavelength, S(λ), so it has to be transformed into the spectrum in fre-
quency, S(ω). This wavelength-frequency transform is explained in reference [29]
and it is given by Equation (6.5):

Sm(λ) = Sm(ω)
2πc

λ2
. (6.5)

where c is the speed of light in vacuum and λ is the wavelength of the carrier
frequency.

A theoretical spectral intensity, Sm(ω), is generated by assuming a bandwidth
limited (BL) pulse with frequencies modulated by a Gaussian with a carrier
wavelength λ0 = 810 [nm] and a spectral phase equal to zero. For a Gaussian
modulated BL pulse, the constant in Equation (5.9) is cB = 0.441 [1]. The
spectral intensity as a function of wavelength, Sm(λ), is calculated by using
Equation (6.5). Assuming that Sm(λ) is now the measured spectral intensity,
we will transform it to the frequency domain by using Equation (6.5).

In practice, however, the measured spectral intensity as a function of wave-
length is transformed to frequency by assuming that the spectral intensity is
the same, that is, by approximating Equation (6.5) to

Sa(ω) = S(λ). (6.6)

Tables 6.1 and 6.2 presents the comparison of using (6.5) or S(λ) = S(ω),
while calculating the carrier wavelength via centroid from ideal pulse spectra
S(ω) and S(λ), The pulse intensity distribution was calculated by using Equa-
tions (6.11), (6.12) and (6.13) and the pulse duration at FWHM was measured.

The centroid x̄ of a set of n points weights wi located at positions xi is given
by Equation (6.7):

x̄ =

∑n
i=1 xiwi∑n
i=1 wi

(6.7)

From Table 6.1 we observe that the measured pulse duration estimated with
both methods is the same for all cases, and the calculated carrier wavelength
using the approximation S(λ) = S(ω) is close to the specified value except for
the 5.0 [fs] pulse.

However, in Table 6.2, the recovered carrier wavelength deviates from the
intended 810 [nm] value as the pulse duration is shorter. The recovered pulse
duration in both cases is similar.
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Initial pulse
duration τ0

[fs]

λ0 [nm] from
S(λ) =

S(ω)(2πc)/λ2

λ0 [nm] from
S(λ) = S(ω)

τp [fs] from
S(λ) =

S(ω)(2πc)/λ2

τp [fs] from
S(λ) = S(ω)

100.0 810.0 810.0 100.0 100.0
50.0 810.0 809.9 50.0 50.0
25.0 810.0 809.8 25.0 25.0
10.0 810.0 809.3 10.0 10.0
5.0 810.0 793.9 5.0 5.1

Table 6.1: Comparison of obtained carrier wavelength and pulse duration from
S(ω) when using Equation (6.5) or S(λ) = S(ω) from ideal pulses with a carrier
wavelength λ0 = 810 [nm]. For shorter ideal pulses, the conversion equation
does preserve the carrier wavelength.

An important difference between using the S(λ) = S(ω) approximation and
Equation (6.5) arises when AWGN and offset are added to the spectrum as
stated in Sm(λ). In Figure 6.1a) we present the spectrum intensity in wave-
length St(λ) = Sd(λ) + b(λ) of a BL Gaussian-modulated in frequency 20 [fs]
pulse with offset and free of noise; in Figure 6.1b), Sm(λ) = Sd(λ) + b(λ) + ν(λ)
of a noisy spectrum with a SNR = 20 [dB] obtained by using MATLAB’s
awgn(St(λ), 20,measured) function; and finally in Figure 6.1c) we show the
converted spectrum to the frequency domain using Equation (6.5).

We note that by applying Equation (6.5) on a noisy spectrum like the one
seen in Figure 6.1b) we may amplify the noise found in the signal thanks to the
conversion dependence on the wavelength. A proper wavelength range must be
selected in order avoid this issue.

Initial pulse
duration τ0

[fs]

λ0 [nm] from
S(λ) =

S(ω)(2πc)/λ2

λ0 [nm] from
S(λ) = S(ω)

τp [fs] from
S(λ) =

S(ω)(2πc)/λ2

τp [fs] from
S(λ) = S(ω)

100.0 810.0 810.0 100.0 100.0
50.0 810.0 810.0 50.0 50.0
25.0 809.7 809.7 25.0 25.0
10.0 807.9 807.9 10.0 10.0
5.0 801.8 801.8 5.0 5.1

Table 6.2: Comparison of obtained carrier wavelength and pulse duration from
S(λ) when using Equation (6.5) or S(λ) = S(ω) from ideal pulses with a carrier
wavelength λ0 = 810 [nm]. For shorter ideal pulses, the conversion equation
does preserve the carrier wavelength.
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a) b) c)

Figure 6.1: Spectral intensity of a BL Gaussian-modulated in frequency 20
[fs] pulse: a) represents Sd(λ) + b(λ), b) is Sm(λ) = Sd(λ) + b(λ) + ν(λ) with a
SNR = 20 [dB] and c) we show the converted spectrum to the frequency domain
using Equation (6.5). Care must be taken when deciding the wavelength range
for the spectrum conversion since an automatic FWHM measuring algorithm
may provide an erroneus measurement.

6.2 Digital Signal Processing

In this section we will describe the core concepts for our proposed filtering
algorithm.

We use a Savitsky-Golay filter to smooth the noise found in Sm(λ)), remove
the offset b(λ) from Sm(λ), transform the spectrum to the frequency domain,
and use a super-Gaussian window to truncate the frequencies of the spectrum.

The intensity spectrum, Sm(λ), measured with a spectrometer always has
noise and offset. Let Sd(ω) and Sd(λ) be the intensity spectra in frequency and
wavelength domains, respectively, with no offset and being noise free. Sd(ω) is
generated for a pulse assuming a BL pulse with Gaussian-modulated frequencies.
We transform Sd(ω) to Sd(λ) using Equation (6.5). To model an intensity
spectrum, Sm(λ), offset and AWGN are added to Sd(λ). This process was
followed to generate Figure 6.1.

The digital signal processing techniques to filter the noise in the simulated
and experimental spectral intensities are presented in the following subsections.

6.2.1 Savitzky-Golay smoothing

The Savitzky-Golay (SG) filter, also known as polynomial smoothing or least-
squares smoothing [80,81], is a filter that takes a fixed number of points around
a central abscissa, fits a polynomial that satisfies the least-squares criterion to
the ordinates of the group, evaluates the obtained polynomial at the central
abscissa, and substitutes the ordinate for that position. For the next abscissa,
the point at one end of the group is dropped, and the neighbouring point of the
other end is added to the group, taking a new central abscissa. This is repeated
until all the data are processed. The SG filter preserves the sharp changes in
the desired signal, at the expense of not removing as much noise as the finite
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impulse response averaging filter [81].

6.2.2 Baseline removal

We implemented the automatic iterative average (IA) baseline removal algo-
rithm provided by Shen [82] to remove the offset, b(λ), from Equation (6.1).
The advantage of using this particular algorithm lies in its robustness, requiring
only one parameter from the user and no additional supervision. Its implemen-
tation is presented in Algorithm 1.

Algorithm 1: Automatic Iterative Averaging for baseline removal.
Result: Spectrum with baseline removed
Provide Sm(λ), threshold.
Get the number of samples N from Sm(λ).
Copy Sm(λ) into b′(λ).
Set previous_s_abs = 0.
while True do

start_index = 1.
end_index = N − 2.
while start_index < floor(N/2) do

for index = [start_index, end_index] do
b′(index+ 1) = min(b’(index+1), (b’(index) + b’(index+2))
/ 2).

end
start_index = start_index+ 1.
end_index = end_index− 1.

end
s_abs =

∑N
index=1|Sm(index)− b′(index)|.

relative_error = |previous_s_abs− s_abs|/s_abs.
if relative_error ≤ threshold then

return b′(λ).
else

previous_s_abs = s_abs.
Sm = b′.

end
end

6.2.3 Super-Gauss as truncating window

.
A common digital signal processing technique to isolate the spectrum com-

ponents of interest from Sm(ω) is to use a truncating window. We propose using
a super-Gaussian window as described in Equation (6.8):
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W (x, x0, α, σ, P ) =

exp

{
−
[

(x−x0)2

2(ασ)2

]P}
, if |x− x0|≤ α/2;

0, otherwise,
(6.8)

where

• x is the abscissa for the window,

• x0 is the central abscissa,

• α is the window width,

• σ is the base standard deviation for the exponential function, and

• P is the power that the content of the exponent will be raised to.

In Equation (6.8) there are three variables: α, σ and P . By setting an
arbitrary window width given by α = 4 (shown as the bottom black line in
Figure 6.2) we analyze different combinations for P and σ that gives a value
close to zero when evaluated at the edge of the window. In Figure 6.2 we present
a comparison of different combinations for P and σ for the arbitrary window
width α = 4. It can be appreciated that by setting P equal to 6 or 8 and
σ = 0.3 the amplitude reaches a value close to zero when evaluated at the edge
of the window. On Table 6.3 we present the amplitude values when evaluating
Equation (6.8) at the window edge with σ = 0.3, confirming the observations
made in the Figure 6.2.

a) b)

Figure 6.2: Comparison of different combinations for P and σ for a given α.

To truncate the spectrum S(ω), we multiply it by the window W :

SW (ω, ω0, α, σ, P ) = W (ω, ω0, α, σ, P )S(ω) (6.9)
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P W (x, 0, α/2, σ, P )]
2 0.1453
4 0.0242
6 7.632 * 10−4

8 9.695 * 10−7

Table 6.3: Evaluation of Equation (6.8) for different values of P for σ = 0.3 and
α = 4.

To determine a suitable window width to truncate the spectrum, we define
the window width as

α = M∆ωFWHM , (6.10)

where ∆ωFWHM is the FWHM of the spectrum in frequency and M is a
constant. After truncating the spectrum S(ω) we calculate the corresponding
electric field in frequency Ẽ(ω) using Equation (6.11),

Ẽ(ω) =
√
S(ω), (6.11)

the electric field in time e(t) is obtained by Fourier-transforming Ẽ(ω) as seen
in Equation (6.12),

e(t) = F−1{Ẽ(ω − ω0)}, (6.12)

and the time intensity distribution I(t) is calculated with Equation (6.13),

I(t) = |e(t)|2, (6.13)

from which the pulse duration τp is estimated.
We developed the Algorithm 2 to search the optimal M given σ, P , an

initial value for M , step size µ, and an acceptable minimum error Emin as
a stop condition, by estimating τp from the truncated spectrum SW (ω) with
Equation (5.9), and by measuring τp from I(t) using Equations (6.11), (6.12),
and (6.13).

Calculating the relative percentage error

E =
τpI(t) − τpS(ω)

τpS(ω)

∗ 100[%] (6.14)

provides our stop criterion for the iterative search algorithm.

6.3 Proposed processing algorithm and testing
A combination of digital signal processing methods is required to successfully
filter the spectrum Sm(ω) in a wide range of noise conditions. We propose
an algorithm that first smooths Sm(ω) using the Savitzky-Golay filter, then
removes the baseline using the IA baseline removal algorithm and searches for
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Algorithm 2: Search for optimal window width parameter M .
Result: Window width parameter M to generate spectrum SW (ω)

that τpSm(ω)
≈ τpI(t) .

Provide Sm(ω), σ, P , Minitial, µ, Emin, max_steps.
Measure ω0, ∆ωP from S(ω), calculate τpS(ω)

.
M = Minitial.
step = 1.
while step ≤ max_steps do

Generate window W (ω, ω0,M∆ωFWHM , σ, P ) with Equation (6.8).
SW (ω) = WSm(ω)
Calculate I(t) and measure τpI(t) .
Calculate relative percentual error E.
if |E|≤ Emin then

return M .
else

if E < 0 then
M = M − µ.

else
M = M + µ.

end
end
step = step+ 1.

end
return Could not find M that satisfies desired parameters.

an optimal window with Algorithm 2. The complete process is described by
Algorithm 3.

We tested Algorithm 3 using several noisy, Gaussian-modulated in frequency
pulses with offset, and comparing the results with those obtained by not filtering
the spectra and by Algorithm 2. The offset in all presented cases was removed
by Shen’s IA algorithm. The carrier wavelength used was λ0 = 825 [nm] with
2048 points in the frequency and wavelength vectors.

We performed the filtering by a Savitzky-Golay filter of frame length of 101
points and a order 2 polynomial with the optimal super-Gauss window search al-
gorithm using an initial window parameterMinitial = 4, µ = 0.0005, Emin = 0.1
[%] and max_steps = 100000, for S(λ) = S(ω)(2πc)/λ2 and S(λ) = S(ω).
The carrier wavelength λ0 was calculated from the centroid of S(ω) after filter-
ing. We limited the wavelengths that compose the pulse from 2325 to 365 [nm],
which is the transmission range for optical glass.

On Table 6.4 we generated 20 noisy spectra for a 100 [fs] pulse with offset
and a SNR equal to infinity, i. e., free of noise, 30, 20 and 15 [dB], measuring the
average carrier wavelength λ0, the recovered pulse duration from removing the
offset and applying the optimal truncation window only τTW and the recovered
pulse duration obtained from following Algorithm 3. We notice that for high
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Algorithm 3: Proposed spectral filtering algorithm.
Result: Spectrum Sp(ω) that τpSSG,nobaseline

(ω) ≈ τpI(t) .
Provide Sm(λ), baseline_threshold, frame_length, poly_order, σ, P ,
Minit, µ, Emin, max_steps.
Calculate SSG(λ) using a Savitzky-Golay filter of frame_length points
and order poly_order.

Calculate SSG,nobaseline(λ) by removing the baseline with the IA
algorithm using baseline_threshold as stop parameter.
Convert SSG,nobaseline(λ) to SSG,nobaseline(ω) with Equation (5.10).
Measure ω0, ∆ωFWHM from SSG,nobaseline(ω), calculate
τpSSG,nobaseline(ω)

M = Minitial.
step = 1.
while step ≤ max_steps do

Generate window W (ω, ω0,M∆ωFWHM , σ, P ) with Equation (6.8).
Sp(ω) = WSSG,nobaseline(ω)
Calculate I(t) and measure its τpI(t) .
Calculate relative percentage error E.
if |E|≤ Emin then

return Sp(ω).
else

if E < 0 then
M = M − µ

else
M = M + µ

end
end
step = step+ 1

end
return Could not get spectrum Sp(ω) that satisfies desired parameters.

SNR our proposed algorithm yields a similar result than just using a truncating
window after removing the baseline component. However, for lower SNR, i.e.,
larger amount of noise, we find that our proposed algorithm provides a better
measurement of the pulse duration.

We tested our algorithm for different initial pulse durations τP with a SNR
= 20 [dB] obtaining the average results for 20 noisy spectra, which are shown in
Table 6.5. There is a considerable error when not using the SG filter to smooth
the input spectrum Sm(λ) for the 20, 10 and 5 [fs] pulses. This discrepancy
is due that the baseline removal algorithm fails to remove the offset when the
signal has a large amount of noise.

We plotted the noisy spectrum Sm(λ), the temporal intensity distribution
for when we use the truncating window and the one for the complete algorithm
in Figures 6.3a), 6.3b) and 6.3c), respectively.

80 CHAPTER 6. ALGORITHM TO FILTER THE NOISE IN THE
SPECTRAL INTENSITY OF ULTRASHORT LASER PULSES



6.3. PROPOSED PROCESSING ALGORITHM AND TESTING

SNR [dB] λ0 [nm] τTW [fs] τC [fs] Error |τp−τC |∗100
τp

[%]
∞ 825.0 100.2 101.9 1.9
30 825.3 98.9 98.2 1.8
20 825.7 92.2 97.9 2.1
15 826.4 85.6 97.5 2.5

Table 6.4: Average measurement results for 20 noisy 100 [fs] pulses spectra
degraded with different SNR. τTW is the FWHM pulse duration measured from
I(t) obtained from removing the offset and applying a truncating window. τC
is the FWHM pulse duration measured from I(t) obtained from filtering the
spectrum with Algorithm 3. This analysis considers that our bandwidth is
comprised from 365 to 2325 [nm].

τP [fs] λ0 [nm] τTW [fs] τC [fs] Error |τp−τC |∗100
τp

[%]
100 825.7 96.1 97.9 2.1
50 827.8 46.9 49.0 2.1
20 854.9 2.5 19.6 1.9
10 842.6 1.7 9.8 2.0
5 834.4 1.6 4.9 1.7

Table 6.5: Average measurement results for 20 noisy pulses with offset and a
SNR = 20 [dB]. The initial pulse durations τP are 100, 50, 20, 10 and 5 [fs].
τTW is the FWHM pulse duration measured from I(t) obtained from removing
the offset and applying a truncating window. τC is the FWHM pulse duration
measured from I(t) obtained from filtering the spectrum with Algorithm 3. This
analysis considers that our bandwidth is comprised from 365 to 2325 [nm].
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τP [fs] λ0 [nm] τTW [fs] τC [fs] Error |τp−τC |∗100
τp

[%]
100 825.7 97.1 97.7 2.3
50 828.8 48.8 48.9 2.2
20 827.8 19.3 19.5 2.4
10 816.3 9.8 9.8 1.7
5 816.4 4.7 5.0 0.1

Table 6.6: Average measurement results for 20 noisy pulses with offset and a
SNR = 20 [dB]. The initial pulse durations τP are 100, 50, 20, 10 and 5 [fs].
τTW is the FWHM pulse duration measured from I(t) obtained from removing
the offset and applying a truncating window. τC is the FWHM pulse duration
measured from I(t) obtained from filtering the spectrum with Algorithm 3. This
analysis considers that our bandwidth is comprised from 365 to 1300 [nm].

On Table 6.6 we performed a similar analysis like the one we did for Table 6.5,
however, we decided to restrict the bandwidth to [365, 1300] [nm]. We found
that by limiting the bandwidth the performance of removing the offset and
using a truncating window improves greatly for shorter pulses. Nevertheless,
by smoothing the input spectra Sm(λ) we achieve better results overall. We
present the plots for the noisy spectra Sm(λ) and the corresponding I(t) for
using the truncating window and complete algorithms on Figures 6.4a), 6.4b)
and 6.4c).

6.4 Summary
A spectrum filtering algorithm comprising an offset removal, a SG filter, and
a truncating super-Gaussian window has been developed to process the noisy
spectral intensity of ultrashort pulses measured by a spectrometer.

By assuming that the spectral phase is known, we analyse the effect that
noise in the measured intensity spectrum has on the reconstructed pulse in-
tensity distribution, and on the estimation of the carrier wavelength and pulse
duration. The algorithm was tested with simulated data with an error in the
estimated pulse duration below 2.5% for pulses between 5 [fs] and 100 [fs] at
λ0 = 825 [nm ] and a SNR between 30 [dB] and 15 [dB]

We have proved that the use of the SG filter to smooth the noise in the mea-
sured spectral intensity Sm(λ) allows for a correct measurement of the carrier
wavelength after the offset removal, and for the selection of a proper truncating
window.

This algorithm was published in a peer-reviewed journal [31].
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Figure 6.3: Spectra with offset and SNR = 20 [dB] and the recovered I(t) for
the discussed filtering techniques after the offset removal. Initial pulse durations
are 100, 50, 20, 10 and 5 [fs]. Column a) shows the noisy spectra Sm(λ);
column b), the recovered I(t) after removing the offset and applying a truncating
window; column c), the recovered I(t) after applying Algorithm 3. The spectral
bandwidth is comprised from 365 to 2325 [nm].
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Figure 6.4: Spectra with offset and SNR = 20 [dB] and the recovered I(t) for the
different filtering techniques, while restricting the spectral bandwidth to [365,
1300] [nm]. Initial pulse durations are 100, 50, 20, 10 and 5 [fs]. Column a)
shows the noisy spectra Sm(λ); column b), the recovered I(t) after removing
the offset and applying a truncating window; column c), the recovered I(t) after
applying Algorithm 3.
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Chapter 7

Conclusions

In this work we modelled wavefront aberrations, study their impact on the fo-
cusing of femtosecond laser pulses, and performed wavefront measurements that
will assist in the fabrication of optical components at the Institute of Applied
Sciences and Technology of UNAM.

On Chapter 1 we studied the fundamentals of finite raytracing: how to
describe light and optical surfaces in terms of analytic geometry, the reference
system used and the equations for translation and refraction or reflection.

We discussed the Optical Path Difference concept on Chapter 2, and how
it can help us determine, for an optical system, how the emerging wavefront
deviates from a ideal spherical wavefront. We presented the equations required
for the OPD calculation and developed a simulator whose performance was
validated against a professional optical design software.

On Chapter 3 we studied the Zernike polynomials, which are used in the
optical industry to assess the aberrations of a given optical system. We explain
how to fit an OPD surface to a Zernike polynomial expansion using a linear
least-squares fit and compared our results against a professional optical design
software.

We applied this knowledge to implement an interferometric wavefront mea-
surement technique based on Phase Shifting Interferometry. We simulated inter-
ferograms using a OPD surface generated by the Zernike polynomials previously
discussed and tested the least-squares and the SSPCA algorithms. We also stud-
ied their performance with experimental interferograms. We conclude that the
SSPCA algorithm is best suited for experimental measurements given its ability
to provide repeteable results for the current experimental setup.

On Chapter 5 we studied the theoretical basis for ultrashort pulse modelling
and propagation using a combination of ray tracing and scalar diffraction theory
and calculated the spatial and temporal intensity distributions of a focused col-
limated beam of ultrashort pulses, with a Gaussian spectral profile, propagating
parallel to the optical axis. We calculated the spherical aberrations for differ-
ent optical systems for every constituent frequency component of a sequence
of pulses τ0 = [5, 10, 15, ..., 95, 100] [fs]. We neglected the dispersive effects
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introduced by the system, Group Velocity Dispersion and Propagation Time
Difference, in order to study only the impact of the frequency-dependent spher-
ical aberrations on the focused pulse intensity distributions. We calculated the
spatial and temporal intensity distributions and simulated experimental tech-
niques used in the laboratory to characterize pulse properties like spot size and
pulse duration. We studied two measurement criteria: the FWHM and stan-
dard deviation, finding the standard deviation method to be a superior metric
since it yields similar conclusions when performing the measurement directly
from the intensity distributions and the simulated experiments as well. The
standard deviation is used as our metric of choice for this work. We showed
that, for well corrected systems, the spatial intensity profiles are the same when
the system aberration content is calculated for the carrier frequency and the
complete-aberration cases; and for the time intensity profiles there are differ-
ences between disregarding the pulse bandwidth or not. We found that the
magnitude and location for the minimum standard deviation in space is the
same when the system aberration content is calculated for the carrier frequency
and the complete-aberration cases for all three optical systems, while it is differ-
ent when evaluating the standard deviation in the time intensity distributions.
The spatial intensity distribution around the focal point does not depend on
the frequency-dependent spherical aberration, although the whole aberration
content must be considered since it affects the resulting temporal intensity dis-
tribution. This impacts the location of the highest amplitude of the intensity
autocorrelation changes when the frequency-dependent spherical aberration is
included in the analysis due a space-time coupling. We showed that the focal
depth of the system increases as the spherical aberration increases with a fixed
pulse width, hence, the double-convex lens analysed in this chapter, which has
the largest spherical aberration of the three systems, has a larger focal depth
than the other two lenses, in agreement with published experimental results.

On Chapter 6 we present an spectrum filtering algorithm comprised of an
offset removal algorithm, a SG filter, and a truncating super-Gaussian window;
developed to process the noisy spectral intensity of ultrashort pulses measured
by a spectrometer in a reliable fashion. By assuming that the spectral phase
is known, we analysed the effect that noise in the measured intensity spectrum
has on the reconstructed pulse intensity distribution, and on the estimation
of the carrier wavelength and pulse duration. The algorithm was tested with
simulated data with an error in the estimated pulse duration below 2.5% for
pulses between 5 [fs] and 100 [fs] at λ0 = 825 [nm ] and a SNR between 30
[dB] and 15 [dB]. We have proved that the use of the SG filter to smooth large
noise in the measured spectral intensity Sm(λ) improves the measurement of
the carrier wavelength after the offset removal, and allows for the selection of a
proper truncating window.

The research presented in this thesis was published in two peer-reviewed pub-
lications [30,31] and the collaboration in a third peer-reviewed publication [83]
where the spectrum filtering algorithm was implemented on another algorithm
for spectral interferometry filtering.
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Abstract: Standard deviation of spatial and time intensity profiles from direct and exper-
imental simulations when propagating a femtosecond pulse trough an achromatic doublet
were calculated. The position of minimum values in the optical axis coincides.
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1. Introduction

We propagate a plane wavefront into an optical system and calculate the spatial and temporal intensities at a
given observation plane, while simulating time-domain and spatial-domain measurements of ultrashort pulses, the
former based on intensity autocorrelation and the latter by the knife-edge technique. We propose estimating the
standard deviation of time and spatial intensity profiles and search for the position in the optical axis where these
amounts are minimal.

2. Theory

The electric field of a pulse focused by a non-dispersive imaging system, assuming a plane wavefront with a
propagation vector parallel to the optical axis is given by Equation (1) [1, 2],

U(x2,y2,z, t) =−
ieikz

λ z

∫∫∫
∞

−∞

dx1dy1U0(x1,y1)P(x1,y1)A(∆ω)×

× exp [−iΘ(x1,y1,∆ω]exp [−iφ(x1,y1,∆ω]exp{−i
k
2z

[(x2− x1)
2 +(y2− y1)

2]}exp(−i∆ωt)d(∆ω). (1)

where (x1,y1) are the rectangular coordinates in the exit pupil plane; (x2,y2) are the rectangular coordinates
in the observation plane; z is the position in the optical axis; U0 is the input electric field; P(x1,y1) is the pupil
function and it is defined as one inside the pupil radius and zero otherwise; A(∆ω) is the Gaussian frequency
modulation of the input field; Θ(x1,y1,∆ω) is the phase due the optical system aberrations; φ(x1,y1,∆ω) is the
phase associated with the transformation of a plane wavefront into a converging spherical wavefront; k is the
wavenumber of the pulse frequencies. It can be expressed as k = k0(1+∆ω/ω0) being k0 and ω0 the carrier
wavenumber and frequency, respectively; ∆ω = ω −ω0; and λ is the wavelenght for each frequency that forms
the pulse, λ = 2πc/ω , c being the speed of light in the vacuum.

Spatial and temporal intensity profiles are defined as

I(t,z) ∝

∫
∞

−∞

∫
∞

−∞

|U(x2,y2,z, t)|2dx2dy2 (2)

and
I(x2,y2,z) ∝

∫
∞

−∞

|U(x2,y2,z, t)|2dt, (3)

respectively.
To recreate the measuring methods that may be used at our laboratory, we implemented the knife-edge test [3]

and the intensity autocorrelation [4], and estimating the squared root of their second order central moments, or
standard deviation [5].
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In this paper, the temporal and spatial intensity pulse distributions are calculated around the focal region of an
optical system using a combination of ray tracing and a wave propagation method. We analyze how to measure the
width of the intensity pulse distributions to estimate pulse duration and spot size in order to study the impact of the
variation of spherical aberration with frequency in a pulse on the intensity distributions. Two experimental tech-
niques used in the laboratory are also modeled: the knife-edge test to measure spatial distribution and the intensity
autocorrelation technique to measure the temporal distribution. We use two measuring criteria, the full-width
half-maximum (FWHM) and standard deviation (σ ), to compare the spatial and temporal intensity distributions
of the calculated diffraction patterns and those obtained from the simulated experimental techniques. We show
that the FWHM is not a good criterion, since it gives different results in the measured intensity distributions in time
and space when they are measured directly from the theoretical modeling and when they are measured from the
modeled experimental techniques used in the laboratory. The standard deviation, however, is a consistent criterion,
giving the same results for the calculated intensity distributions and the modeled experiments. © 2020 Optical

Society of America

https://doi.org/10.1364/AO.394300

1. INTRODUCTION

The focusing of femtosecond pulses has been studied exten-
sively theoretically and experimentally [1–13]. Techniques
have been developed to measure the spatiotemporal coupling
of ultrashort pulses around the focal region of optical systems
[14–21]. The understanding of the spatiotemporal coupling of
ultrashort pulses and its metrology is important in applications
such as nonlinear microscopy [22–24], micromachining [25],
medicine [26], and fundamental science [27–29]. The effect
of aberrations in the spatiotemporal coupling of femtosecond
pulses around the focal plane has also been studied by calcu-
lating the aberration for the carrier frequency and neglecting
its variation with the frequencies of the pulse [4–6,8–11]. A
tool for the simulation of ultrashort pulse propagation through
an optical system based on a combination of ray tracing and
wave optical propagation methods, including the variation of
the aberration with pulse frequencies, was published by Fuchs,
et al. [7]. In the simulation in Ref. [7], the dispersive effects,
namely, group velocity dispersion (GVD) [4,5] and propagation
time difference (PTD) [1–5], were also added to calculate the
pulse front distortion in the focal region of different lenses.

It is well known that the dispersion of the lens material intro-
duces the largest temporal spreading of the focusing pulses,
which is a main concern if the shortest pulse duration should
be achieved at the focus of the optical system. In the laboratory,
GVD can be pre-compensated for by using a pulse compressor,
and PTD (propagation time difference) can be reduced by
using achromatic optics. PTD, is a delay in the arrival time of
pulses propagating at different heights on the aperture of the
system. PTD depends not only on the longitudinal chromatic
aberration but also on the numerical aperture of the lens, and
its effect on the spatial and temporal intensity distributions
increases for large apertures [30,31]. In this paper, we neglect
GVD and PTD; however, we consider the frequency-dependent
spherical aberration, which means that the variation of spherical
aberration with frequency is taken into account. In this paper,
instead of analyzing the pulse front distortion as in Ref. [7],
we focus our attention on how to measure the width of the
temporal and spatial intensity pulse distributions to estimate
pulse duration and spot size, to study only the impact of the
frequency-dependent spherical aberration on the spatial and
temporal intensity distributions around the focal plane. To the
best of our knowledge, this is the first time that this study has
been performed.

1559-128X/20/247247-11 Journal © 2020Optical Society of America
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We have developed an algorithm to filter the noise in the spectral intensity of ultrashort laser pulses. The filtering
procedure consists of smoothing the noise by using the Savitzky–Golay filter, removing the offset, and using a
super-Gaussian window to truncate the frequencies of the spectrum. We have modeled bandwidth-limited ultra-
short pulses with Gaussian modulated frequencies to show the estimation of the carrier wavelength, reconstruction
of the intensity pulse profile, and pulse duration after applying the algorithm. Theoretical results are presented for
pulse durations between 5 fs and 100 fs with a carrier wavelength of 825 nm and three different amounts of signal-
to-noise ratio (SNR): 30 dB, 20 dB, and 15 dB, normally found in experiments. The algorithm is also applied to an
experimental spectral intensity from a homemade Ti:sapphire laser that produces pulses of about 20 fs at 825 nm
at 100 MHz. We will show that using only a low-pass Fourier filter and removing offset is not enough to recover
the spectral intensity when a large SNR is present, which may be the case when the ultrashort laser beam has been
manipulated to compensate for the group velocity dispersion of an external optical system. In cases like this, the
use of the Savitzky–Golay filter prior to the super-Gaussian filter improves the recovery of the carrier wavelength
and the spectral intensity. We will also show that the algorithm presented in this paper is suitable for experimental
analysis and requires limited user intervention. ©2020Optical Society of America

https://doi.org/10.1364/AO.396247

1. INTRODUCTION

The fringe-resolved autocorrelation (FRAC) technique allows
the estimation of pulse duration but not the spectral phase [1].
Techniques such as spectral phase interferometry for direct
electric-field reconstruction (SPIDER) [2] allow retrieval of
the spectral phase and the temporal intensity profile by using
spectral interferometry. Spectral interferometry, also known as
Fourier transform spectral interferometry (FTSI), consists of
interfering light in the frequency domain, which allows the use
of different light sources such as white light, supercontinuum,
and broad-bandwidth laser pulses. Because of this, spectral
interferometry is applied in different areas ranging from ocu-
lar metrology [3], biomedical imaging [4], subsurface optical
coherence tomography (OCT) [5], spectroscopy [6,7], laser–
plasma interactions [8], and well-known methods for measuring
ultrashort laser pulses [9–12]. The effects of phase noise, spec-
tral resolution, and sampling issues and their accuracy have been
reported in the past [13–17]. These studies have considered the
calibration of the spectrometer [18], the spectral resolution, and
the frequency sampling. Nevertheless, a careful manipulation

of the experimental data and the intrinsic noise that comes
with the amplitude of the electrical field in the spectral domain is
required for a proper calibration. A proper measurement of spec-
tral phase does not guarantee a reliable pulse reconstruction if
the spectral intensity is not filtered correctly. The spectral inten-
sity can also change during the manipulation of the pulses, so to
measure the spectral intensity is important as a tool to improve
the alignment process. In this paper, an algorithm to filter the
noise in the spectral intensity is presented allowing to estimate
the carrier wavelength from the recorded pulse spectrum and
reconstruct the temporal intensity pulse profile from the noisy
measured spectral intensity for a plane phase to test the filtering
of the spectral intensity. We have modeled ultrashort pulses
with durations of 100 fs, 50 fs, 20 fs, 10 fs, and 5 fs at 825 nm
using four different levels of signal-to-noise ratio (SNR) in the
intensity spectrum: SNR=∞ (i.e., noise free), SNR= 30 dB,
SNR= 20 dB, and SNR= 15 dB. We will show that for the
noisy intensity spectra, only removing offset and using a low-
pass Fourier-filter, such as a super-Gaussian filter, is not enough
to recover the temporal intensity pulse profile properly for pulses
shorter than 50 fs at 825 nm and SNRs below 30 dB. However,

1559-128X/20/247233-09 Journal © 2020Optical Society of America
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