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iv



v

This work was developed at Instituto de Astronomı́a,
Universidad Nacional Autónoma de México,
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Resumen

Los destellos de rayos gamma largos son fenómenos de altas enerǵıas y transitorios relacionados
con chorros (jets) colimados que se mueven a velocidades relativistas cuyo posible origen son
estrellas masivas evolucionadas que poseen un mecanismo central (agujero negro) que acreta
y colima el material generando un jet. En este modelo conocido como colapsar, el jet se ve
sometido a la dinámica de su progenitor, lo cual puede alterar su propagación y su subsecuente
interacción con el medio interestelar. Una de las principales caracteŕısticas de estos progenitores
es su rápida rotación, que puede modificar tanto la morfoloǵıa del propio progenitor aśı como
la del jet. En este trabajo se presentan una serie de modelos tridimensionales de progenitores
con diferentes distribuciones de momento angular realizados a partir de simulaciones numéricas.
Asimismo, mostramos un análisis del cambio en las morfoloǵıas de los progenitores a un tiempo
posterior en el cual alcanzaron su deformación máxima. Tomando en cuenta éstos resultados, se
seleccionaron dos modelos representativos como progenitores del jet relativista a ser comparados
con un modelo sin rotación. Nuestras simulaciones exhiben una relación entre la distribución del
momento angular del progenitor con ciertas propiedades del jet tales como el factor de Lorentz
máximo que alcanza el jet, el tiempo que le lleva alcanzar la superficie del progenitor (break
out time) y el ancho de su envolvente (o cocoon). Los resultados indican que al considerar un
momento angular con una distribución angular, el jet se propaga más fácilmente, comparándolo
con una distribución lineal, alcanzando factores de Lorentz mayores (Γbo ∼ 16) y conlleva a una
disminución del break out time a comparación de un progenitor sin rotación. La rotación tiene
otras implicaciones de gran importancia sobre la evolución del jet derivado del comportamiento
de los parámetros antes mencionados. Uno de ellos es el tamaño del radio fotosférico, pues al
incluir rotación, se alcanzan velocidades mayores en el jet, lo cual implica una diminución en la
densidad, y con ello la disminución de la profundidad óptica a una distancia menor a diferencia
de un modelo sin rotación (suponiendo una opacidad constante). Debido a que el momento
angular afecta la fase pronta del jet, se discuten futuras implementaciones que complementaŕıan
el marco teórico de este modelo.

xvii
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Abstract

Long gamma-ray bursts are transient high energy phenomena related to relativistic jets whose
possible origin are massive evolved stars with a central mechanism (black hole), which accretes
and collimates the material and produces a jet. In this model known as the collapsar, the jet
is subject to the dynamics of its progenitor and this leads to changes in its propagation and
its subsequent interaction with the interstellar medium. One of the main features about these
progenitors is the rapid rotation, it can modify the structure of the progenitor itself as well as
that of the jet. We present a series of three-dimensional progenitor models with different angular
momentum distributions performed through numerical simulations. Likewise, we show an
analysis on the alteration of progenitor’s morphology at a later time (t=10 s). By considering the
previous results, we selected two representative models to be the progenitors of the relativistic jet
and they were compared against a non-rotating model. Our simulations show a relation between
the angular momentum distribution and some of the jet’s properties, such as de maximum
Lorentz factor, the break out time, and the width of the cocoon. Also, this results indicate that
an angular distribution of angular momentum allows an easier propagation of the jet, compared
with a linear distribution, reaching higher Lorentz factor values (Γbo ∼ 16) and leading to a
decrease of the break out time when comparing with a non-rotating progenitor. The inclusion
of rotation has additional important implications derived from the previous parameters such as
the photospheric length. As the velocities became higher in our models, the density dropped,
which will lead to a decrease of the optical depth (assuming a constant opacity), compared with
a non-rotating model. With this results, we concluded that the angular momentum affects the
jet’s prompt emission (and possibly its following stages), some improvements to the theoretical
framework that could be implemented to the model are also discussed.
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Motivation and Goals

Our motivation to perform this study comes from the desire to improve some of the previous
studies concerning angular momentum by taking different angular momentum distributions
and proposing long gamma-ray bursts rotating progenitors based on these angular momentum
settings. By building a three-dimensional model of a rotating progenitor, we can approach a
more realistic model and we can study the effects of the stellar rotation on the propagation of
the jet.

Also, by comparing the final models against the non-rotating progenitor model, we expect to
find some differences in the features of the jet such as the break out time (the time at which the
jet reaches the surface of the progenitor), the maximum Lorentz factor attained by the material
in the jet, the morphology of the stellar cocoon surrounding the jet, among others.

Finally, the main goals of this study were the following;

� Study the effects of rotation on the morphology of the progenitors.

� Find possible differences in the Lorentz factor, break out time and morphology of a
relativistic jet drilling the rotating progenitor in comparison with a non-rotating model.

� Infer some implications for the jet evolution using the physical properties obtained from
the models and relate them to possible observational data.
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1 — Introduction

Throughout this chapter, we will introduce the astrophysical phenomena of long Gamma-Ray
Bursts (lGRBs) within a general framework. Next, we will frame this phenomena within the
so-called collapsar model, which is the main basis of our simulations and additionally, we will
discuss some previous studies that have analyzed the angular momentum implementation in
their models and we will summarize their results.

1.1 Gamma-Ray Bursts

Gamma-Ray Bursts are one of the most energetic events catalogued in transient astrophysics.
Their own name has two important features that describe these phenomena: A sudden release
of high energy photons ranging from keV to several MeV and the typical isotropic luminosity
in γ-rays is about 1051 − 1053 erg s−1.

Figure 1.1: Light curve of the first GRB detected in 1967. (Image credit: Klebesadel et al., 1973)

The discovery was a serendipitous finding. It was on July 2nd, 1967, when the Vela military

1



2 Introduction

satellites (specifically, the Vela IVa,b satellites) detected a GRB for the first time ever. Because
of the need to monitor x-ray flashes after a nuclear blast, these satellites possessed x-ray and
gamma-ray detectors. Despite the very poor temporal resolution, their results shown some
important features about this event: A light curve with two asymmetric peak fluxes, one of
them peaking around MeVs and a 10 s duration.

A few years later, in 1973, Klebesadel and his colleagues published the first light curve of
this GRB, which was called 670702 (Figure 1.1). After this discovery, the GRB phenomenon
became a growing field where the observational data was crucial in its understanding.

One of the most relevant missions was the Compton Gamma Ray Observatory spacecraft
(CGRO)1 which carried the instrument called BATSE. BATSE was meant to detect high energy
transitory phenomena with gamma and X-ray emission and, during its lifetime, it detected
around 2700 GRBs, averaging one per day. BATSE released valuable information about GBRs’
extragalactic origins and distribution. For instance, Figure 1.2 exhibits a clearly isotropical sky
distribution (in Galactic coordinates) of 2074 GRBs, together with their respective intensities
(color bar). Also, the GRBs found by BATSE showed that their spectra are non-thermal and
variability was evident. Finally, by studying the duration of the GRBs, two families of GRBs
were identified (Kouveliotou et al., 1993); long-duration GRBs (lGRBs) and short-duration
GRBs (sGRBs).

Figure 1.2: GRB map found by BATSE (CGRO). (Image credit: NASA)

By the end of the BATSE era, an improvement in observational data was necessary. This

1https://heasarc.gsfc.nasa.gov/docs/cgro/cgro/
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need was fulfilled with the satellites BeppoSAX2 and HETE3 whose goal was to find GRB
counterparts in different wavelengths such as the optical window or X-rays. Together, these
satellites were capable of both, finding the first GRB afterglows and measuring its redshift
(z=0.835) (Metzger et al., 1997) for the first time. Furthermore, the first evidence of the
lGRBs’ origin via the GRB-SN association was also provided by these satellites (Stanek et al.,
2003; Hjorth et al., 2003).

The GRB exploration continued with the Swift observatory4 that consisted of the Burst
Alert Telescope (BAT), the X-Ray Telescope and the UV-Optical Telescope. These instruments
covered a wide range of wavelengths which led to other discoveries concerning the GRBs’
afterglows: Swift showed that short and long GRBs have different origins, and was able to
identify host galaxies for some sGRBs. Additionally, it found the so-called X-ray flares and
broadened the GRB’s redshift range by contributing with the measurement of more bursts
(Cusumano et al., 2006; Totani et al., 2006; Tanvir et al., 2009 among others).

The next GRB mission is the Fermi Gamma-Ray Space Telescope5. Fermi enable the
broad-band spectral study of the prompt emission and the discovery of the different components
in the spectrum, up to high energy (>10 GeV). It is mainly composed by the Large Area
Telescope and the Gamma-ray Burst Monitor. Its main purpose is to study the GRB prompt
emission spectra. Its detections of high energy photons has given us information about the
physical mechanisms that produce the GRBs and these can further constrain the theoretical
framework.

A new era is approaching with the launch of other missions such as SVOM (Space-based
multi-band astronomical Variable Objects Monitor, http://www.svom.fr/en/), which is intended
to increase the location accuracy of GRBs and enable follow-up with ground-based instruments
to obtain substantial spectral data.

Now, we would like to introduce some concepts related with observable features of GRBs
that might be useful for the following sections of this work. There are two essential regions which
describe two phases of a GRB; these are the prompt emission and the afterglow. The prompt
emission is defined as the emission of gamma-ray photons and is related with the duration
of the burst. On the other hand, the afterglow of a GRB comes after this sudden release of
energy. The ejecta emitted from the central engine of the GRB (Section 1.2) interacts with
the surrounding medium and, eventually, decelerates. This interaction creates a forward shock
(that propagates into the medium) and a reverse shock (that propagates towards the ejecta)
(Section 2.2). Charged particles are accelerated in this shocks creating non-thermal emission
(via synchrotron radiation). The ejecta slows down and results in a softer emission known as
the afterglow.

With this description we can now characterize some other properties of the GRBs based on
their observational features.

2https://heasarc.gsfc.nasa.gov/docs/sax/sax.html
3https://heasarc.gsfc.nasa.gov/docs/hete2/hete2.html
4https://www.nasa.gov/mission pages/swift/main
5https://fermi.gsfc.nasa. gov/
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As we mentioned before, there are two categories of GRBs distinguished by their duration
(Figure 1.3); the duration is related to the parameter T90, interval of time at which the detector
collects from 5% to 95% of the total fluence. lGRBs have a T90 distribution that peaks around
20-30 s while the short-duration GRBs T90 peaks in 0.2-0.3 s (Zhang, 2018). Nevertheless,
lGRBs possess other important features that distinguish them from sGRBs, some are described
below.

Figure 1.3: T90 distribution. (Image credit: NASA)

The prompt emission from a lGRB is softer than that of a sGRB by a few orders of magnitude.
This property can be quantified by a hardness ratio (photon counts ratio between two energy
bands). In addition to T90, this can also lead to a bimodal separation between the two classes
of GRBs, although the distinction is not as clear in this case (Horváth et al., 2006).

Another important feature is the type of host galaxies where lGRBs can be found. Many of
them are located in irregular, star-forming galaxies, including some spiral galaxies (Fruchter et
al., 2006), whereas sGRB are typically associated with all types of galaxies. Furthermore, it has
been identified that lGRBs more likely occur in regions of low metallicity (Fruchter et al., 2006).

lGRB type is associated with supernovae Type Ibc (SN Ibc, no hydrogen or helium lines in
their spectra) (an example is the SN 1998bw associated with GRB 980425, from Hjorth et al.,
2003); these SNe have been associated to the final explosion of massive stars that, during their
evolution, have lost their hydrogen envelope, which is a relevant ingredient for lGRBs’ model:
a core-collapsing massive star progenitor (Woosley and Bloom, 2006).
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With this brief GRBs observational background, now, we are now ready to focus solely on
the type of GRBs that concerns our study: lGRBs.

1.2 Long Gamma-Ray Burst Progenitors

In the previous section we mentioned that the main ingredient for an acceptable lGRB model
is the presence of a massive star progenitor. On the other hand, there are many additional
physical ingredients that must be taken into account in order to build a solid model. In the
following lines we will discuss some of these features and the progenitors proposed for lGRBs.

Figure 1.4: Collapsar progenitor scheme. (Image credit: Schanne et al., 2006)

One of the main candidates is a Wolf-Rayet (WR) star (Woosley, 1993), which is a rapidly
rotating massive star with a large Zero-Age Main Sequence (ZAMS) mass (∼ 20M�). lGRBs
are thought to be the result of the death of a massive star in which the star core collapses and
produces a black hole (known as the central engine of the GRB) with a surrounding accretion
disk (Woosley and Bloom, 2006). By means of the information inferred from the observation of
these events, we are able to recognize the main characteristics of the progenitor star and one
of them is the angular momentum. Angular momentum becomes then an important aspect to
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study, since it must be present in the progenitor in order to create an accretion disk that will
collect the surrounding material from the stellar envelope.

We need to point out that the star has lost its hydrogen envelope by this stage, which will
facilitate the forming jet to break out from the star. Some authors have studied the effects
of rotation rate and mass loss during the star’s life and their link to metallicity (Woosley and
Heger, 2006).

Because of the mass loss and the rotation rate play an important role in the initial mechanism
of a lGRB, the WR stars are considered to be the most likely progenitor. In a nutshell, the
currently preferred picture of lGRB progenitors goes as follows: A massive WR-star whose core
rotates rapidly dies and eventually forms a black hole along with an accretion disk. An overview
of this model, known as collapsar (Woosley, 1993), is displayed on Figure 1.4, where we can
appreciate the central engine and its accretion disk, embedded within the massive envelope, and
the relativistic jet breaking out from said envelope.

In terms of the collimation of the jet, there have been proposed some theoretical mechanisms
to explain the formation of the stream towards the poles of the black hole. One of these
mechanisms is the system introduced by Blandford & Znajek (1977) where a Kerr black hole,
with a differentially rotating disk, holds a large magnetic field (B ∼ 1015 G) attached to its
event horizon. Because of the previous conditions, in the Blandford-Znajek scheme appears the
magnetorotational instability. This is also related to the disk viscosity (Shakura & Sunyaev,
1973); the friction due to viscosity leads to an energy loss and creates a turbulent environment
in the disk.

Another important mechanism is the one proposed by Blandford & Payne (1982) where an
inner black hole is also considered but instead, the magnetic field is attached to the differentially
rotating disk and is smaller by several orders of magnitude (B ∼ 102 − 104 G).

Besides the collapsar model, there have been several studies proposing alternative
progenitors. Some of them incorporate combinations of binary systems that include black holes,
neutron stars or white dwarfs (Ruffini et al., 2016, 2018). Some others study blue supergiants
(Mészáros and Rees, 2001) and specific mergers, for instance, a helium star with a black hole
(Fryer and Woosley, 1998). All of the above found interesting results which account for different
lGRB properties; nevertheless, some of them were discarded because of the improvement of
observational data, which provided new information about the lGRBs structure and physical
parameters (energy, time-scales) which eventually lead to constrain its localization and, thus, the
most likely progenitors. A full table with all possible progenitor candidates can be consulted
in Nemiroff (1994). The collapsar model is the most accepted lGRBs progenitor because it
gathers important observational features of this phenomena as we described before: SN Type Ic
association, massive progenitor with low-metallicity that may be found in star-forming galaxies
(short-lived stars) and the prompt emission duration.

Within the models introduced to study the lGRBs emissions, an important case to remark
is the photospheric model (e.g., Mészáros et al., 2002; Daigne and Mochkovitch, 2002) proposed
to study prompt phase. The basis of this model is related to the value of the photons optical
depth, τ , which is much larger than unity bellow the photospheric radius, Rph, so there is no
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energy loss due to photons.

Inside the region where τ ≥1, there can be several emission processes, such as synchrotron,
Bremsstrahlung and Compton scattering but, since the medium is optically thick, the emission
is thermalized and black body spectrum emerges. Beyond the photospheric radius, the observed
spectrum may cease to be thermal (e.g., Rees & Mészáros 2005; Beloborodov 2010). In addition,
the spectrum coming from the prompt phase is usually fitted by using a broken power law known
as the Band function (Band et al. 1993).

From now on, we will consider the collapsar as the progenitor for our model and we will
discuss further details in Chapter 4, where we explain the features of the pre-SN progenitor
that we have chosen to perform our numerical simulations called the 16TI model (Woosley and
Heger, 2006).

1.3 Previous Studies Concerning Angular Momentum

and 3D Simulations

Angular momentum and the way it affects the evolution of the burst is the foremost point of
this work. Several authors have done different approaches to study the progenitor’s rotation
via numerical simulations. In this section, we will summarize some works that constituted our
project’s starting point.

Figure 1.5: Density distribution (g cm−3) of the rotating star found by Geng et al. (2016). The unit scale per
dimension is 4×108 cm (Geng et al. (2016)).

Geng et al. (2016) performed 2.5D axisymmetric simulations (which are 2D simulations
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where the rotation is followed) of a collapsing and rapidly rotating star with the emission of
an intermittent jet of constant-luminosity. Here, they considered the 16TI model (Woosley &
Heger, 2006) with an approximation on the rotation (Hachisu’s Self-Consistent Field method6;
Hachisu 1986a, 1986b) to obtain a 2D rotating star configuration. They focused on the inner
region of the progenitor; their paper studied how the jet pierced and broke out from the star,
so they assumed rigid rotation (Ω =5.3×−3 rad s−1, which corresponds to an specific angular
momentum J0 ∼ 1018 cm2 s−1). In this work, the authors defined a critical rotation configuration
q = Rpol/Req (where Rpol is the polar radius and Req, the equatorial radius) which corresponds
to the maximum ratio reached at equilibrium between centrifugal force and gravity and it equals
0.7. In Figure 1.5, the initial condition implemented by Geng et al. (2016) is displayed. Here,
the envelope of the progenitor is already modified into an oblate shape as a consequence of its
angular momentum.

A revealing result found in Geng’s study is that the envelope’s oblate configuration is the
main reason why the breakout time tbo varies if the model does not include rotation. This result
goes hand in hand with the objectives that were initially set in our project.

Nevertheless, a more complete study would involve different rotation distributions along
the progenitor. Also, due to potentially high rotation rates, the star shape will be modified
and different configurations can tell us a relation between the breakout time and progenitor’s
morphology.

To quantify the changes in the morphology of the star due to angular momentum, we
considered the study developed by Maeder and Meynet (2012), where they stated a critical
rotation value for the ratio between the polar radius and the equatorial radius (Rpol/Req). This
critical rotation configuration is reached when the centrifugal force compensates central gravity.
We take the value of this ratio (∼ 0.7) as a reference for the maximum deformation of the
progenitor, so we could inject the jet at this point of the evolution.

Also, López-Cámara et al. (2013) carried out relativistic hydrodynamic (RHD) simulations
with adaptive mesh refinement (AMR) using 2D and 3D models to compare the jet and
progenitor features, using 16TI pre-SN progenitor. Some common problems in 2D simulations
will appear when the jet is launched and dense material accumulates in front of it. Figure 1.6
shows one of the main results from López-Cámara et al. (2013): the jet’s evolution from a 3D
low resolution model, which eventually breaks out from the star. In these simulations, Cartesian
coordinates were used and the jet was solved with a resolution of, at least, ∆ =2.5×108 cm. The
injection radius of the jet was at Ri = 109 cm with an opening angle of θ0=10º, a luminosity of
L =5.33×1050 erg s−1 and a Lorentz factor of Γ0 = 5.

One of the results of López-Cámara et al. was that, even though the general properties of
the jet will not be affected by dimensionality, the jet can break out from the star and propagate
faster in 3D models than 2D ones because, unlike for the 2D models, the 3D jet can move around
the vertical axis where there is less resistance.

6The Hachisu’s Self-Consistent Field method is applied to generate equilibrium rotating initial configurations
assuming a barotropic equation of state, self-gravitation via the Poisson equation and a rotation law (generally,
rigid body rotation).
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Figure 1.6: Density contours (g cm−3) of a 3D jet model of low resolution images taken from López-Cámara
et al. (2013). (Image credit: López-Cámara et al. (2013)).

Moreover, in another work made by López-Cámara et al. (2010), they studied angular
momentum distribution by separating it into a radial and polar angle components J = J(R)Θ(θ)
with R the spherical radius and θ, the polar angle. They fixed Θ(θ) = sin2θ and varied the
radial distribution (constant, linear and the one proposed in Woosley and Heger (2006) with a
normalization factor).

Considering the settings applied in the previous studies, we came up with the following
approach in order to improve the model of the progenitor with angular momentum: we recalled
the angular momentum decomposition proposed by López-Cámara et al. (2010) which is
J = J1(R)J2(θ) or, alternatively, J = J1(R)J2(z). With this functional form, we now can
propose different J2(θ), distributions and study their effect on the morphology of the progenitor.
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Also, we will implement the same angular velocity value found by Geng et al. (2016) so we
could compare against their progenitor’s initial condition where the jet is injected. Finally, we
applied similar features for the values of the jet like López-Cámara et al. (2013), which are the
most common jet conditions and it would help to establish control settings for the simulations.

On the whole, we will apply important ingredients, summarized from all these previous
studies: 16TI model as the basis of the jet progenitor (which gathers important features
associated with the collapsar model), 3D RHD simulations, AMR and a set of angular
momentum distributions to study their effects in the progenitor and the jet’s propagation.



2 — Theoretical Framework

In this chapter, we will discuss the basis of hydrodynamics, focused on a numerical relativistic
implementation and how we introduced the angular momentum within the initial conditions.

Also, this chapter is devoted to explain the functioning of the code FLASH in its 4.3 version,
which was used to perform our simulations.

2.1 Relativistic Hydrodynamics

Numerical simulations have been implemented over the years to study the behaviour of many
astrophysical phenomena. The evolution of the jets coming from GRBs can be followed by
applying the physics of hydrodynamics, assuming the jet can be described as a fluid (for instance
that the mean free path of the particles is much smaller than the length of the spatial variations
of the macroscopic variables).

Given that the jet is, basically, material coming from the center of a star which is moving
rapidly through the stellar envelope with velocities close to the speed of light, we need to have
a description of this phenomenon in the relativistic regime.

Recalling the non-relativistic Euler equations for a perfect fluid (disregarding viscous effects)
in three dimensions (3D) in a fixed volume element, we have the following governing equations:

� Mass conservation

∂ρ

∂t
+∇·(ρu) = 0, (2.1)

where ρ is the fluid density and u=(vx, vy, vz) is the velocity field.

� Momentum conservation

∂ρu

∂t
+∇·ρuu +∇P = fext, (2.2)

where P is the pressure and fext =(fx, fy, fz) are the external forces per unit volume.

� Energy conservation

∂E

∂t
+∇ · [u(E + P )] = G− L+ fext · u. (2.3)

11
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where E is the energy density and G,L represent the energy gain and loss respectively.

Note that the bold letters represent 3-dimensional vectors. These equations can be rewritten
in vectorial form, considering a Cartesian coordinate system; we get:

U =


ρ
ρvx

ρvy

ρvz

E

 , F =


ρvx

ρv2
x + P
ρvxvy

ρvxvz

vx(E + P )

 , G =


ρvy

ρvyvx

ρv2
y + P
ρvyvz

vy(E + P )

 , (2.4)

H =


ρvz

ρvzvx

ρvzvy

ρv2
z + P

vz(E + P )

 , S =


0
fx

fy

fz

G− L+ f · vx

 ,

where the double letters represent a 5-dimensional vector. Simplifying into one expression, we
obtain:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= S, (2.5)

where the vector U represents the so called conserved variables of the system; F, G and H are
the fluxes in x, y and z directions and S gathers source terms.

For relativistic hydrodynamics (RHD), we have to change the conserved variables vector
U = U(ρ,u, P ) into a new vector of relativistic conserved variables V = V (D,m, ε):

D = Γρ m = ρhΓ2u ε = ρhΓ2 − P , (2.6)

where D is the fluid density, m is the momentum density, ε is the total energy density and
Γ is the Lorentz factor given by Γ = (1−u2)−1/2. Natural units are considered in this equations
(c = 1, where c is the speed of light). Neglecting the source terms S and using the functional
form shown in (2.9), we obtain the RHD equations:

∂

∂t

Dm
ε

+∇ ·

 Dv
mv + P I

m

 = 0. (2.7)

This description is very convenient to translate the RHD equations into an RHD code.

The equation of state (EOS) will close the system of conservation laws, since we have a set
of 5 differential equations and 6 unknown variables (E, P , u, ρ); the selection of the EOS must
represent the behaviour of the macroscopic variables of our system.

Generally, to simplify the solution of the equations and to give a first approach for
characterize the system, the EOS is taken as an ideal gas approximation in the Newtonian
regime, where the pressure is written as,
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P = (γ − 1)ρε (2.8)

where γ is the adiabatic index and ε is the specific internal energy. A more complex EOS would
content several species of ideal gases with different values for γ. Also is common to take a
polytropic equation of state with a general form of

P = κργ (2.9)

where κ is a constant which depends on the kind of regime we are working on and the pressure
has a power-law dependence on density; the values adopted by γ can be either 4/3 or 5/3 for
the relativistic and no-relativistic description, respectively.

Particularly, FLASH 4.3 (Section 2.4) supports only one ideal relativistic equation of state,
with the following expression for the specific enthalpy:

h = 1 +
γ

γ − 1

P

ρ
, (2.10)

where P is the pressure, ρ is the density and γ is the specific heat ratio (do not confuse with
Lorentz factor Γ). In our case, we applied a γ value of 4/3 since our gas belongs to a relativistic
regime.

2.2 Relativistic Rankine-Hugoniot Jump Conditions

So far, we have introduced the hydrodynamic treatment for a perfect gas, which is the first
approach to study a GRB as a fluid, and as said before, it is necessary to invoke the relativistic
regime if bulk velocities are close to the speed of light (Zhang, 2018).

Using the equations described above, we can find a group of conditions that relates the fluid
properties to shock variables and they are implemented in semi-analytic and numerical blast
waves studies. These are called the shock jump conditions or Rankine-Hugoniot conditions.
Throughout this section, we will obtain the form of jump conditions in a relativistic scheme.

Recalling the description made by Uhm (2011), we consider the scheme of a blast wave
moving through an ambient medium (Figure 2.1). In the following expressions we will denote
the pre-shock region with a (1) sub-index and the post-shock region with a (2) sub-index.

Writing the conservation equations in a simplified form in the shock frame, we obtain:

γ2β2ρ2 = γ1β1ρ1, (2.11)

γ2
2β2(e2 + p2) = γ2

1β1ρ1c
2, (2.12)

γ2
2β2(e2 + p2) + p2 = γ2

1β1ρ1c
2, (2.13)

where c is the speed of light, ρ is the rest-mass density, e the energy density, p the pressure,
γ is the gas Lorentz factor for each region and β = (1− 1/γ2)1/2. Assuming that the pre-shock
region is cold (p1 = 0, e1 = ρ1c

2) and writing the relativistic EOS as p2 = k2(e2− ρ2c
2) in terms

the parameter k2 whose value varies between 1/3 and 2/3, we can solve the system of Equations
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Figure 2.1: Representation of two fluids colliding. The region between the forward shock (FS) and reverse
shock (RS) is called the blast wave. The shocked medium and shocked ejecta regions are separated
by a contact discontinuity. (Image credit: Zhang, 2018)

(2.11)-(2.13).

Introducing the compression ratio a = ρ2/ρ1 and simplifying, we found the expressions for
γ2

2 , γ2
1 and p2/ρ1c

2 in terms of k2:

γ2
2 =

(a+ 1)

a(1− k2
2) + (1 + k2)2

, γ2
1 =

(a+ 1)[ak2 − (1 + k2)]2

a(1− k2
2) + (1 + k2)2

, (2.14)

p2/ρ1c
2 =

(ak2)2 − (ak2)(2 + k2)

(1 + k2)
. (2.15)

The next step is to define two more parameters. These are the relative velocity β12 =
(β1 − β2)/(1− β1β2) and the relative Lorentz factor γ12,

γ12 = (1− β2
12)−1/2 = (1− β1β2)γ1γ2 = γ1γ2 − [(γ2

1 − 1)(γ2
2 − 1)]1/2, (2.16)

and, by using Equation (2.14), we can write γ12 in terms of k2,

γ12 =
(ak2 − 1)

(1 + k2)
; (2.17)

then, we obtain the equation for the compression ratio, as,

a =
ρ2

ρ1

=
(1 + k2)γ12 + 1

k2

. (2.18)

Substituing Equation (2.18) in Equations (2.14) and (2.15), we have,

γ2
1 =

(γ12 + 1)[(1 + k2)γ12 − k2]2

(1− k2
2)γ12 + (1 + k2

2)
, (2.19)

γ2
2 =

(γ12 + 1)

(1− k2
2)γ12 + (1 + k2

2)
(2.20)
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p2 = (γ12 − 1)[(1 + k2)γ12 + 1]ρ1c
2. (2.21)

Finally, taking k2 = 1/3 and the limit when γ12 →∞ (ultra-relativistic case), we get,

γ2
1 = 2γ2

12, γ2
2 =

9

8
(2.22)

p2 =
4

3
γ2

12ρ1c
2, a = 4γ12; (2.23)

noting that γ12 = γ1/
√

2 from Equation (2.22), we rewrite the expressions and we obtain the
shock conditions,

γ2
2 =

3

2
√

2
, a =

4√
2
γ1, (2.24)

p2 =
2

3
γ2

1ρ1c
2. (2.25)

where the only free parameter is the Lorentz factor for region 1, γ12.

The description above has been built by assuming a blast wave with two components: the
shocked regions between the forward shock (FS) and reverse shock (RS). However, we can work
it out differently assuming that the blast moves with a common Lorentz factor Γ (based on a
result from Kobayashi and Sari (2000), which shows that Γ ≈ constant in the blast wave). We
can find similar expressions for the density of the ejecting material by imposing radial symmetry
in the conservative equations.

Obtaining the initial profile of ejecta density ρej,

ρej(τ, r) =
Lej

4πr2vejΓ2
ejc

2
(2.26)

which depends on the ejection time τ and cylindrical radius r. If we consider an opening angle
θ0, we can rewrite r = Ri tan θ0, where Ri is the injection radius and θ0 is the half-opening
angle. Here, vej = c(1− 1/Γ2

ej)
1/2 is the velocity of the ejecta, Γej represents the Lorentz factor

of the ejecta and Lej is the luminosity, which depends on the mass flow rate Ṁ(τ),

Lej = ΓejṀc2. (2.27)

All calculations are valid even if we assume a small opening angle θ0, as long as Γej �
θ−1. Finally, by assuming a pressure balance in the blast wave and Γej � 1 (relativistic
approximation), one can find a relation between the instantaneous Lorentz factor Γ and Γej,

Γ = Γej

[
1 + 2Γej

(
ρl

ρej

)1/2
]−1/2

(2.28)

where ρl is the ambient medium ahead the FS.
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2.3 Specific Angular Momentum Implementation

In this section, we discuss briefly a mathematical procedure to include an angular momentum
distribution in Cartesian coordinates.

First, we recall a simple expression for the specific angular momentum:

J = R× v, (2.29)

where J is the angular momentum, R is the spherical radius and v is the velocity (Figure 3.2).
If we assume that the vectors R and v satisfy that R ⊥ v, then we come across with a relation
between J and the tangential velocity vϕ; that is:

R ⊥ v ⇒ J = Rvϕ (2.30)

On the other hand, the tangential velocity can be written using the angular velocity Ω:

vϕ = Ω× r, (2.31)

Figure 2.2: Angular velocity scheme.

with r the cylindrical radius. Again, assuming that the angular velocity is perpendicular to the
cylindrical radius,

Ω ⊥ r ⇒ vϕ = Ωr = Ω
√
R2 − z2; (2.32)

substituting equation (2.32) in equation (2.30), we obtain

J = ΩRr = ΩR
√
R2 − z2. (2.33)

This expression allows us to write the specific angular momentum in terms of a constant
angular velocity, which implies rigid rotation. If we simplify the expression (2.33) by setting
z = 0, we obtain that

J(r, z = 0) = Ωr2 (2.34)

so the specific angular momentum increases as the square of cylindrical radius r in the equator.
Now, using equation (2.30), we can take the tangential velocity in terms of J , that is vϕ = J/R.
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For Cartesian coordinates, we need to transform the tangential velocity into the Cartesian
components of velocity vx and vy. A relation between the velocity components in polar and
Cartesian coordinates can be found with a simple transformation:{

u = vx = vr cosϕ− vϕ sinϕ

v = vy = vr sinϕ+ vϕ cosϕ,
(2.35)

where vr is the radial velocity. In this case, this kind of motion is irrelevant within the GRB
progenitor, so we set vr = 0 and rewrite (2.35) using J as follows:{

vx = −J sinϕ/R

vy = J cosϕ/R.
(2.36)

By substituting equation (2.33) in (2.36), we obtain the expressions for the velocity
components in terms of constant angular velocity. Using that sinϕ = y/r and cosϕ = x/r,
we have {

u = vx = −Ωy

v = vy = Ωx.
(2.37)

However, we also wanted to include the effects of the angular momentum distribution in
the vertical direction. In Chapter 4 we will explain the angular momentum decomposition into
J(R, z) = J(R)J(z) applied in the stellar rotation.
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3 — The Code: FLASH 4.3

FLASH (http://flash.uchicago.edu/site/flashcode/; Fryxell et al., 2000) is a publicly available
modular code that, within its capabilities, solves hydrodynamic (HD), magnetohydrodynamics
(MHD) and relativistic hydrodynamic (RHD) problems. Its architecture allows the user to
apply different modules in each simulation such as adaptive mesh refinement (AMR), different
Riemann solvers (HLL, HLLC, etc.), parallelization processes, etc. In this work, we used the
4.3 version of this code.

In this section, we will talk about these modules and their main features. Also, some
verification tests are studied to assess the functioning of the code.

3.1 Setting Up a New Problem with the RHD Module

As mentioned before, one of FLASH capabilities is to solve RHD problems; this is the main
implementation used to carry out our simulations. Here, we explain how to set up a new problem
using the FLASH RHD module.

When FLASH is installed on a computer or cluster, it generates a set of different directories,
each containing information about the executables and the simulation parameters. We are going
to focus on the source directory.

Figure 3.1: FLASH basic structure to configure a new simulation

19
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The source directory contains modules that have modifiable scripts for both physical or
numerical tools. The numerical tools consist of the grid parameters, drivers, file formats, among
others. The physical tools establish the relevant physical problem within the code; for instance
the inclusion of relativity, equation of state (EOS), self-gravity, physical constants, etc.

To initialize a new problem, we have to work with the source directory, in order to add
the modified scripts with our specifications. After we gather these files, we need to place
this information inside a directory called Simulation Main, which is located inside the source
directory. Then, we can compile the code using the object directory, where the executable is
generated. A flowchart of this sequence is shown in Figure 3.1.

The files required in the Simulation Main directory are listed below:

� Config

In the Config file we specify the route of the physical and numerical tools to be applied
in our simulations. This way, the executable becomes more efficient. An example of the
Config file can be seen in Appendix A.

Also, in this file we can add some values used to build up the initial condition for the
problem. For example, in our case, we can define the density, pressure and velocity of
the interstellar medium (ISM). If we do not specify these parameters in flash.par file, the
code will take this values as default values for every simulation.

� flash.par

The flash.par file contains the runtime and initial parameters for the model (e.g. jet
specifications, ISM and stellar values for density, pressure and velocity). Also, here
we must specify the gas ratio of specific heats γ, the boundary conditions (which
can be user defined, depending on the type of problem), the checkpoint and plot files
parameters, the Riemann solver, size of the computational volume, the plot variables, the
Courant-Friedrichs-Lewy value (or CFL, which is a parameter used to find stable time
steps for the simulation), the maximum time to run the simulation and the adaptive mesh
refinement values and variables (if necessary). All variables are in the cgs system.

This file can be modified without recompiling the code, this means that we can modify
some of the initial values to run a new simulation with the same executable. See Appendix
B for more details.

� Simulation data.f90

In Simulation data.f90 the local data for the simulation setup are stored. The code gets
the values from the flash.par file needed to run the simulation. Also, here are included
the headers used to call the constants for the simulation. In Appendix C, an example for
this script is included.

� Simulation init.f90
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Simulation init.f90 script initializes all the data specified previously in Simulation data.f90.
Another important feature for this script is to rename the variables defined in the flash.par
file, if the user needs to. An example of this script can be found in Appendix D.

� Simulacion initBlock.f90

Simulacion initBlock.f90 allows us to create the initial condition for the simulation with
the data stored in the previous files. The size of each coordinate is defined and it iterates
all over the domain to assign the parameter values to the domain cells. See Appendix E
for more details.

In our case, two additional scripts were implemented. The first one is used to
apply specific boundary conditions, so we can enable the jet injection. This script is
Grid bcApplyToRegionSpecialized.f90 and it is applied when the problem requires an specific
type of condition in certain domain cells (in other words, when there is not a general condition
such as outflow, periodic or reflect). The details about the boundary conditions are explained
in Chapter 4.

The second additional script is called Grid markRefineDerefine.f90. The purpose of this file
is to set up an adaptive mesh which will refine in the zones specified by the user; this way, we
can apply the refinement where needed and reduce it in unnecessary zones. In our case, we
needed the highest refinement on the jet’s evolution path, along the z axis. The specifications
of this implementation are discussed in Chapter 4.

3.2 Adaptive Mesh Refinement

Adaptive mesh refinement is a technique applied in simulations to improve the solution at certain
grid regions where a variable gradient is important. Given an initial number of grid divisions
(or blocks), the code is able to refine each one of them hierarchically so that we get a better
resolution where needed. The number of refinement levels is defined by the user.

In FLASH 4.3, the AMR grid is implemented with the PARAMESH library (MacNeice et
al. 1999), which is the default package in this code. The data structure of this kind of AMR
consists of an arrangement of blocks of cells that are indexed, this means each cell has a block
identifier with its processor number and local block number.

The grid defined in this scheme has a set of these blocks that are related with each other
with a tree data structure, where the blocks at the root have the largest cells and their children
have smaller cells.

In the setup file flash.par, we can choose the variables with respect to which to refine (i.e
density, pressure, velocities and/or energy) and also the refinement levels.

In Figure 3.2, we show an example of an AMR mesh applied to the RHD Riemann problem
in 2D. Here, we have a comparison of a fixed mesh with a low refinement value (∆ = 0.12 cm
resolution), a higher one (4 = 0.02 cm resolution) and the AMR mesh. It is noticeable that the
AMR is applying the highest refinement along the diagonal, where the oblique shocks appear
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Figure 3.2: Density profiles (g cm−3) of a 2D Riemann problem in 2D. The low resolution plots have a mesh
with 32×32 blocks (4 = 0.12 cm resolution), the high resolution plots consist of a mesh with
64×64 blocks (4 = 0.02 cm resolution) and the AMR mesh has these values as the lowest and
highest resolution limits, respectively. The plots show (a) the initial configuration at t = 0 and (b)
the evolution at t = 0.4.
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after the evolution of the initial conditions (see Section 3.2). The limits taken in the AMR
example are the values from the fixed meshes mentioned previously.

As we can see, one of the main advantages of the AMR is the ability to obtain accurate
results, comparable with those obtained from a high-resolution mesh, in a more effective and
faster manner. In this example, the fixed mesh spent about 50% more execution time than the
AMR mesh.

3.3 Parallelization

Parallelization is an important feature we have to take into consideration when working with
every computational task. Generally, the running time of common serial processing simulations
is high because of aspects such as high resolution, number of iterations, etc. This is why, a
well-programmed parallelization method can be used in order to take advantage of modern
computers and, thus, to reduce the running time.

Figure 3.3: Differences between serial and parallel processing.

FLASH 4.3 implements different ways to apply parallelization using Message-Passing
Interface (MPI), OpenMP or a hybrid application between these libraries (MPI+OpenMP).
For this task, we consider MPI. In the following lines, we will show further information about
this implementation.

MPI is a library which can be used in different programming languages (C, FORTRAN,
C++) and is intended to distribute the computational workload using all available processors
via message-passing (as its name implies).

The bases of message-passing are the point-to-point communications. That is to say, using
this feature, a group of processes classified by rank are able to establish communication with
one another. They can exchange information by sending and receiving operations; the messages
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that contain the operations are distinguishable because they have a tag. So, using the rank and
the tag, the processes are able to handle the data properly.

If now we need to share information with every process, it is necessary to write a code
capable of managing optimally all the information received and sent by all processes. This is
the application of MPI libraries, to control effectively communications.

In our case, we worked with Miztli supercomputer to perform the simulations. The
parallelization was implemented with a special script where we have to specify the necessary
number of processors. An example can be found in Appendix H.

3.4 Miztli Supercomputer

We ran all simulations on Miztli, which is the UNAM supercomputer. It is capable of executing
118 trillions arithmetic operations per second (118, TFlop/s). Some of its specifications are the
following:

� 8 440 processing cores (contained in 664 Intel E5-2670v1 processors, 116 Intel E52660v3
processors, 116 Intel E5-2683v4 processors and 8 Intel E7 8860v4 processors).

� 16 NVIDIA M2090 video cards.

� RAM total memory of 47,232 GB.

� Massive storage of 216 TB.

Also, Miztli works with a queuing system for users; depending on the resources assigned to
each user, they can send their works to one of the queues.

For our simulations, a set of 32-64 processors were used (depending on the model).
Depending on the maximum level of refinement, the run time varied between 1 to 9 hours
approximately (visually that the highest refinement level implies longer execution times). This
running times are reachable if the adequate configuration is implemented, for example, by
reducing the high refinement zones with the adaptive mesh and a suitable Courant number.
Many tests were performed to find the adequate parameters.

3.5 Verification tests

Some tests to assess the proper functioning of the FLASH code are shown in this section. We
select these tests based on their repeatability and the possibility of apply a rotated system on
them. First, we will show the results from the extrapolation of a 1D blast wave problem into
a 3D domain and we will compare the outcome against with the original results from the 1D
test. Next, a 3D treatment and comparison of a 2D Riemann test is discussed. Finally, we
will present a 2D jet-based test which will also be compared with previous results and a 3D
treatment of this jet test will be described.
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Figure 3.4: Density profiles (g cm−3) for the 3D blast wave test for (a) t=0, (b) t=0.176 and (c) t=0.35.

3.5.1 3D Blast Wave

The initial setup for this cartesian 1D shock tube establishes a discontinuity at x = 0.5 as
follows:

(ρ, vx, P ) =

{
(1, 0, 103), x < 0.5

(1, 0, 10−2), x > 0.5
(3.1)

Results based on this test can be found at Del Zanna and Bucciantini (2002), Mignone and
Bodo (2005), etc. This test is appropriate to assess the solvers for RHD problems, as the blast
reaches a Lorentz factor of Γ ∼ 6. We expect with this test to follow the shock evolution, as
created by the pressure gradient.

Now, since we want to extend this problem into a three dimensional test, we apply a 45◦

rotation around the y-axis and, then, another 45◦ rotation with respect to the z-axis so that
the discontinuity is oblique to the grill. The runtime parameters used for the simulation are
a CFL=0.2 and it was performed over a grid with 64 cells per axis. Figure 3.4 shows the
evolution of the shock with density maps for t=0, t=0.176 and t=0.35. The rotation in the
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initial condition sets a tetrahedron in the 3D domain, density and velocities have equal values
in each zone as we expressed in Equation 3.1.

To compare our results with the known 1D profiles, we took, first of all, a slice in the y=0
plane as seen in Figure 3.5. After that, we project again along the diagonal and obtain the 1D
curves for each variable.

Figure 3.5: Density profiles (g cm−3) for the blast wave in y=0 plane for (a) t=0, (b) t=0.176 and (c) t=0.35.

In Figure 3.6, we show the 1D graphs obtained from the 3D results at t=0.35. The 1D
results from Del Zanna and Bucciantini (2002) are displayed in Figure 3.7.

Now, we compare the results from Figure 3.6 and Figure 3.7. For each case, different
resolution and CFL values were applied. Furthermore, the geometry of the 3D setup certainly
affects the resulting curves. However, the behaviour of each variable is quite similar comparing
with Del Zanna and Bucciantini’s results.

3.5.2 Rotated RHD Riemann Test

Moving on to the next test, we took the RHD Riemann 2D test and we make an a similar setup
as in the previous case of the rotated 1D blast wave. With this test, we were able to study the
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Figure 3.6: 1D profiles of pressure, velocity and density at t=0.35.

Figure 3.7: Results from Del Zanna and Bucciantini (2002) for the 1D relativistic blast wave at t=0.35. P,ρ
and v are scaled with different factors. (Image credit: Del Zanna and Bucciantini (2002).

interactions of curved shocks and contact discontinuities. Specifically, we run a Riemann 2D
test simulation with the following initial conditions:

(ρ, vx, vy, P ) =


(0.1, 0, 0, 0.01), x, y > 0,

(0.1, 0.99, 0, 1), x < 0 < y,

(0.5, 0, 0, 0.1), x, y < 0,

(0.1, 0, 0.99, 1), y < 0 < x,

(3.2)
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using Cartesian coordinates (Del Zanna and Bucciantini, 2002). The integration was carried
out up to t=0.4 with a CFL=0.4. The computational domain was set with 125 equidistant cells
per dimension, giving a mesh of 125×125 cells.

Figure 3.8: Density isosurfaces (g cm−3) in a 3D grid using an extended region for (a) t=0, (b) t=0.2 and (c)
t=0.4.

The 3D setup involved the rotation of this plane around the y-axis by a 45◦ angle. The
maximum integration time was also t=0.4 and the simulation had a Courant number CFL=0.4
with a grid of 64 cells per dimension. Figure 3.8 shows the evolution of the density iso-surfaces
in a 3D map.

We can compare first our result in Figure 3.9 (which is a 2D cut of the results in Figure 3.8
onto the y=0 plane) for t=0.4 with Del Zanna and Bucciantini’s plot in Figure 3.10. The main
difference between these tests are the lines that appear in the lower left quadrant. These are due
to the type of solver (method applied to computed numerical fluxes across a discontinuity) used
in the integration (Del Zanna and Bucciantini, 2002). Del Zanna and Bucciantini report their
results using a LLF solver and they recommend to use a Roe-type solver to avoid the spurious
waves that lead to these errors, so we did as suggested.
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Figure 3.9: Density profile (g cm−3) in the y=0 plane.

Figure 3.10: Density iso-contours (g cm−3) in logarithmic scale at t=0.4 from Del Zanna and Bucciantini
(2002). (Image credit: Del Zanna and Bucciantini (2002).

It is noticeable that, across the domain, the structure conserves the curved shock fronts in
the lower left quadrant and the initial discontinuities in the upper right quadrant.
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3.5.3 Jet-based Test

Figure 3.11: Jet evolution using density shades and density isocontours in logarithmic scale (g cm−3) for (a)
t=20, (b) t=30 and (c) t=40 in 2D cylindrical coordinates.

A relativistic jet was added as astrophysical test in this section so we can study specifically
an outflow interacting with with its surrounding medium. The initial conditions were taken
from Del Zanna and Bucciantini (2002). They proposed an axisymmetric jet in 2D cylindrical
coordinates:

(ρ, vz, vr, P ) =

{
(0.1, 0.99, 0, 0.01), r ≤ 1, z ≤ 1,

(10, 0, 0, 0.01), otherwise.
(3.3)

We reproduced this test with the following runtime parameters: A CFL=0.3 and a resolution
of 512 cells along the z direction and 256 cells along the cylindrical radius r direction, the jet
was injected within 26 cells; also, we applied the HLL solver. The material was injected with
Γ = 7.089. In Figure 3.11, the jet evolution is displayed using isodensity contours at three
instants of time: t=20, 30 and 40.

In Figure 3.12, the same test is shown from Del Zanna and Bucciantini (2002). In their
study, the jet’s launching region corresponds to 20 computational cells (that implies 400 cells
in the z direction and 160 cells in the radial direction) and they employed the same solver, but
instead, a Courant number of CFL=0.25 is used. The material is injected similarly with Γ ∼
7.1. The plots in Figure 3.12 follow the jet evolution for the same times as in Figure 3.11.

In both cases, the jet goes forward consistently and in Del Zanna and Bucciantini’s test,
its trajectory matches our results at each time step. An important feature to notice is the low
turbulence found in our density maps; these vortices, due to Kelvin-Helmoltz instabilities, is
expected to appear by increasing the refinement level in our simulations. Overall, a qualitatively
similar jet morphology is obtained in this test.



3.5. Verification tests 31

Figure 3.12: From top to bottom, jet evolution for t=20, t=30 and t=40 with logarithmic density contours
and shades. (Image credit: Del Zanna and Bucciantini (2002)).

We extended this study to a three-dimensional test so we can compare the evolution of a jet
with similar properties as Del Zanna and Bucciantini’s test. The initial conditions applied are
as follows:

(ρ, vz, vr, vθ, P ) =

{
(0.1, 0.99, 0, 0, 0.01), r ≤ 1, z ≤ 1,

(10, 0, 0, 0, 0.01), otherwise,
(3.4)

in such a way that the jet is still injected inside a radius r = 1 with vz = 0.99; we established
a Cartesian coordinate system for this test, so r =

√
x2 + y2. The domain consists of from 250

cells in the z direction and 260 cells in each of the other two directions. The Courant number is
set to CFL=0.3 and the same solver was used as in the previous tests. In Figure 3.13, the 3D
density contours are shown for the same times as in the 2D tests and also, in Figure 3.14, a 2D
cut of the 3D results is displayed.

An important difference between the 3D test and 2D test is the path travelled by the jet
for the same time span. In the 3D simulation, the outflow can travel a longer distance because
there are not an imposition of symmetry like in 2D simulations (López-Cámara et al., 2013).
However, the evolution of the inflow’s density and Lorentz factor were similar for both tests (2D
and 3D).
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Figure 3.13: Density contours in a 3D extended domain in logarithmic scale (g cm−3) for (a) t=20, (b) t=30
and (c) t=40 in Cartesian coordinates.

Figure 3.14: Density shades and contours in logarithmic scale (g cm−3) for (a) t=20, (b) t=30 and (c) t=40
in the xz mid plane.



4 — Numerical Setup

In this chapter we will discuss the numerical setup used to perform our simulations, which
involves the initial and boundary conditions.

We will introduce the progenitor density and pressure profile from the 16TI model of Woosley
& Heger (2006) and the incorporation of different angular momentum distributions.

4.1 Initial Condition

In order to accomplish our main goal, which is to study the evolution of a jet emitted from its
3D rotating progenitor core, we have to build an initial condition considering the progenitor’s
density and pressure initial profiles and, in this case, its initial rotation profile.

These conditions can be taken from Woosley and Heger (2006) where they show several
pre-SN progenitors with different features such as metallicity, initial mass and mass loss rate,
rotational velocity and magnetic field. It is important to say that all these profiles are built in
1D and this entails several approximations to compute the model properties.

In Table 4.1 are some model examples taken from the mentioned paper. In the first column
the model’s name tag is listed, the second column shows the metallicity in solar units, in the
third column it is pointed out if the model incorporates a magnetic field, in the fourth column
we can find the final mass for each model, and in the following column the initial rotational
velocity of the progenitor is shown, in the last column the Kerr parameter is also listed (which
is related to the spin of a Kerr black hole).

Model Metallicity [Z�] B-field Mfinal [M�] vrot [kms−1] aBH

16TI 1/100 yes 13.95 390 0.44
12TH 1/100 yes 9.23 380 0.17
12OE 1/10 no 11.83 245 2.2
16OF 1/10 no 8.97 325 1.1
12SI 1 yes 6.95 405 0.03

Table 4.1: Progenitor examples from Woosley & Heger (2006).

We can identify the properties of the models directly from their name tags: The first number
indicates the ZAMS, the first letter identifies the metallicity (which is T for 1% Z�, O for 10%
Z� and S for Z�) and the last letter includes the features for mass loss rate and magnetic torques.

33
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These stellar evolution models were built using the implicit hydrodynamics code KEPLER,
which solves the conservation equations shown in Section 2.1 by assuming spherical symmetry
(Weaver et al. 1978). Nevertheless, this code does not consider rotation nor magnetic fields
because of this assumption. In order to account for the effects of rotation, Woosley and Heger
use an approximate scheme for angular momentum transport which treats it as a diffusion
process (Heger et al. 2000).

Also, they included magnetic torques using a dynamo model (Spruit 2002). The basis of the
formalism are the assumption of magnetic fields within stratified layers of the star, which have
differential rotation, and a magnetic instability in the toroidal field (Tayler instability). This
process transports effectively angular momentum.

For our simulations, we use the 16TI model as initial condition because it is a model that
has been widely studied and it is known to be a likely progenitor for lGRBs. In the following
section we describe some other features and profiles from the 16TI model.

4.1.1 Woosley & Heger 16TI Progenitor

As mentioned before, the initial condition for our simulations was set up using the pre-SN
progenitor 16TI model proposed by Woosley & Heger (2006). This model assumes a Wolf-Rayet
star that initially has 16 M� and a 1% Z� metallicity. The final mass of this pre-SN star is found
to be 13.95 M� with a radius of 4.1×1010 R�. This model also includes the final state of elements
within the star, which are distributed as shells, going from Silicon, Sulfur, Calcium and Argon
at inner radii (108 − 109 cm) to Oxygen and Magnesium at external radii (109 − 4× 1010 cm);
this progenitor has lost completely its Hydrogen envelope through winds during its evolution.
However, the detailed chemical composition of the progenitor is neglected for the purposes of
this study; we assume a composition of a progenitor made of a single monatomic gas with an
adiabatic index value of γ =5/3.

The star assumed for this model rotated at approximately 400 km s−1 at the equator in the
main sequence stage and had low metallicity (1% Z�) and then became a Wolf-Rayet (WR).
Also, the iron core has a Kerr parameter aBH of 0.44 at 3 M�, which means it would form a
disk to carry extra angular momentum (if a progenitor reaches 0.3 . a is also a good candidate;
the angular momentum increases outwards) (Woosley & Heger, 2006). This feature makes this
model a good candidate to be a collapsar .

This model has 1D density and pressure profiles, which means that we have to map these
profiles into a 3D region for our simulations. The 1D profiles can be seen in Figure 4.1. Also,
we consider this pre-SN progenitor to be immersed in an ISM with fixed constant density and
pressure (ρism = 10−13 g cm−3, Pism = 10−16 dyn).

After an interpolation, we obtain 3D profiles as shown in Figure 4.2. The simulations were
performed for the top half of the pre-SN progenitor. Thus, the computational domain was set
as (12× 1010)× (12× 1010)× (6× 1010) cm assuming reflection symmetry across the xy-plane.

The 16TI model also provides a distribution of angular momentum as a function of the
spherical radius J(R). The third panel in Figure 4.1 displays the angular momentum distribution
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Figure 4.1: 16TI density (top panel), pressure (middle panel) and specific angular momentum (bottom panel)
profile.

versus the radius; here, we can notice the different layers where the curve has jumps. Also, the
green line establishes a limit of the specific angular momentum called the critical specific angular
momentum, Jcrit; this parameter is defined mathematically as Jcrit = 2rgc, where rg is the
gravitational radius. This parameter determines the threshold values (depending on the black
hole mass) at which the formation of a centrifugally support disk is feasible (López-Cámara et
al., 2010).

Following the collapsar model, is it assumed that a black hole is formed from the star iron
core due to gravitational collapse. This nucleus contains 3 M� of iron, so we will get a 3 M�
black hole with a massive surrounding envelope. The rotation can stop the material from falling
into the black hole if its angular momentum is higher than this Jcrit limit so an accretion disk
can be formed. For the 16TI model, above 108 cm, Jcrit has values up to ∼ 1017 cm2 s−1.
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Figure 4.2: Density contours (g cm−3) of 16TI model mapped into a 3D domain. The scale unit for each
spatial axis is 109 cm. An example of the velocity field due to angular momentum implementation
is also shown.

Modelling the discontinuities represents a challenge for the code and, in some cases,
impossible to solve them because the jump in these distribution of angular momentum is too
steep. For this reason, we consider a modification to the original angular momentum distribution
by using a smooth functional dependence with a qualitatively similar behaviour. In addition,
we also consider a configuration that involves the vertical coordinate (along the z-axis), which
means a J(z) distribution. In the next section we will explain in detail the angular momentum
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decomposition proposed for the progenitor motion.

4.1.2 Angular Momentum Decomposition

Let us recall the set of equations (2.36), where we concluded that by assuming a specific angular
momentum distribution, the velocity components in Cartesian coordinates can be established.
From the Woosley & Heger (2006), one can approximate a J(R) distribution that increases with
the radius but it was important to take into account the dependence on the polar angle θ. Thus,
we propose a decomposition into the radial and polar components of the angular momentum
distribution:

J = J(R, θ) = J1(R)J2(θ), (4.1)

and we can express a similar decomposition using cylindrical coordinates:

J = J(r, z) = J1(r)J2(z). (4.2)

A study concerning this kind of decomposition was performed by López-Cámara et al. (2010)
where they fixed a form for J2(θ) (Θ(θ) = sin2 θ) and varied the functional form of J1(R) to
explore the accretion rates in the disk. In our case, we propose different distributions for both,
J2(z), J2(θ) and the angular velocity. The functional form of these distributions are shown in
Table 4.2.

Ω=constant J(z), J(θ)

Ω0 =1.25×10−3 rad s−1 1− z/(5× 1010cm)
Ω1 =3.12×10−3 rad s−1 1− cos θ
Ω2 =5.3×10−3 rad s−1 1− cos2 θ

Table 4.2: Specific angular momentum distributions for radius dependency (J(r)) and polar angle dependency
(J(z), J(θ)).

In Figure 4.3, we show the 16TI radial angular momentum distribution and the
approximations proposed with different angular velocity values in 1D profiles, which concerns
the first set of models studied in Section 5.1. It is important to remark that our approximations
reach the threshold value of Jcrit for radius higher than 109, which is a valid assumption since
we are launching the jet in a region nearby this radius 2 × 109, so the rotation effects involve
the envelope where the jet is propagating. The angular velocity for the Jcrit value at 2× 109 is
∼ 2.5× 10−3rad s−1.

Next, the proposed 1D vertical angular momentum distribution profiles are plotted, which are
related with the progenitor models discussed in Section 5.2. In Figure 4.4, the J(θ) distributions
are shown and, in Figure 4.5, the J(z) distribution is also plotted. All of these distributions
where considered following the hypothesis that the rotation decreases towards the poles of the
progenitor. Here is important to say that the vertical angle, θ is measured from zero (the z
direction) to π/2 (the equatorial plane), so the specific angular momentum has a maximum at
π/2.
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For the angular momentum with dependency on the angle, we take the cosine function
with two power laws (in first and second grade) because the behaviour of the two functions
is different; the second-grade function has a smoother increase than the first-grade one. This
difference might be noticed in the morphology of the rotating progenitors.

Figure 4.3: 1D specific angular momentum profiles for the 16TI model (red), the model with
Ω2 =5.3×10−3 rad s−1 (vilet), the model with Ω2 =3.2×10−3 rad s−1 (green), the model with
Ω2 =1.25×10−3 rad s−1 (yellow) and the threshold established by the Jcrit value (black).

Finally, it is important to underline that gravitational force due to the central engine were
not considered for the initial condition. To support this assumption, we computed the free-fall
time at the iron core radius (innermost boundary for the jet injection) and we compared it
against the break out time of jet (time at which the jet reaches the surface of the envelope). If
tff < tbo, the jet will propagate before the gravitational effects, due to the central engine, affect
its evolution.

Taking the iron core radius RFe ∼ 108 cm and the average density at this shell
ρ̄ ∼6.65×107 g cm−3 (Woosley & Heger, 2006), we have

tff ∼ (Gρ̄)−1/2 ∼ 0.5s (4.3)

and by considering the typical break out time for lGRBs, tbo ∼10 s, we obtain

tff < tbo (4.4)

so the gravitational effects can thus be ignored.



4.1. Initial Condition 39

Figure 4.4: 1D vertical angular momentum distributions with angular dependency. The two models are
J(θ) = 1− cos θ (purple) and J(θ) = 1− cos2 θ (cherry).

Figure 4.5: 1D vertical angular momentum distributions with dependency on the z coordinate.
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4.2 Boundary Conditions

The injection of the relativistic jet was imposed as a boundary condition by considering a
constant inflow from a small, central region of the progenitor. The jet was launched at the
plane zmin = 2× 109 cm, and a half-opening angle of θ0 =5◦ (Geng et al., 2016; López-Cámara
et al., 2016). In the following lines we describe the parameters applied for the jet injection,
which are the Lorentz factor, density and luminosity.

Here we explain the 3D implementation of the jet’s opening angle and the criterion used to
assign the injection cells. A scheme of the 3D boundary conditions implementation is shown in
Figure 4.6 for the initial injection time (t = 0s) and a posterior time.

First of all, we have to apply the velocity conditions of the jet, for this, we imposevr = vr,0

(
r

Ri

)
, r < Ri

vz = vz,0

, (4.5)

where vr is the radial velocity, vz the vertical velocity, r the cylindrical radius, Ri is the radius
within the jet is injected and vr,0, vz,0 constants in each case. The distribution applied in the
radial component encodes the effect of the opening angle of the opening angle. Also, we consider
the relations between the velocities tan θ =

vr,0
vz,0

vr,0 = vz,0 tan θ
. (4.6)

Since we were working in Cartesian coordinates, we have to consider the following
transformation: {

vx = vr cosϕ− vϕ sinϕ

vy = vr sinϕ+ vϕ cosϕ
, (4.7)

where vx and vy are the velocities along the x and y-axis, respectively. Setting vϕ=0 and
substituting the values in Equation (4.5), we obtain

vx = vr,0

(
r

Ri

)
cosϕ

vy = vr,0

(
r

Ri

)
sinϕ

vz = vz,0

, (4.8)

Finally, the cells assigned for the jet launching are selected with the following criterion

tan θ0 =
r

zmin

(4.9)

where zmin is the lower boundary in z-direction. With equation (4.13) we impose that the cells
enclosed in the cylindrical radius r ≤ zmin tan θ0 are launching the jet.
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Figure 4.6: 3D scheme of boundary conditions at (a) t = 0 s (jet’s injection) and (b) t � 0 s (high
evolved stage). In (b), we state that the radius of the progenitor differs from the initial radius,
R = 4× 1010cm, due to the angular momentum.

The simulation domain is the top half of the pre-SN progenitor, whose boundaries are
xmax = −xmin = 2×1010 cm, ymax = −ymin = 2×1010 cm, zmin = 2×109 cm and zmax = 6×1010
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cm. Reflective conditions were set at the equatorial plane z = zmin and all the other boundaries
are set with outflow conditions.

On the other hand, to avoid the effects of symmetry along the jet’s propagation path (since
we make an interpolation from a 1D profile, we want to build a 3D model that has no perfect
symmetry), we impose small perturbations in the jet’s velocity (vx and vy components). This
kind of perturbation varies the ejection area of the jet as a function of a given amplitude, η,
and a frequency, ω.

Recalling the expressions for velocity components obtained in equation (4.8), we introduce
the perturbation as 

u = vx = vr,0

(
r

Ri

)
cosϕ(1 + η cosωt)

v = vy = vr,0

(
r

Ri

)
sinϕ(1 + η cosωt)

w = vz = vz,0

. (4.10)

For our simulations, we chose a perturbation with the values η = 2 and T = 0.01 s, which
imply that ω = 628.31 rad s−1. These values are applied to all out models (rotating and
non-rotating cases).

It is important for this implementation to choose a sufficiently small perturbation, this
means, that it should not affect the upper limit for the jet’s velocity (v/c < 1, where c is the
speed of light). By taking η = 2, vr,0=0.083c and vz,0=0.95c (velocity conditions for θ0=5◦),
from Equation (4.10) we can obtain the maximum velocity reached by the jet,

v =
√
v2
r + v2

z = 0.9820c, (4.11)

where v2
r = v2

x + v2
y; this velocity leads to a Lorentz factor of Γ0 = 5.3, if we set the jet’s density

as ρj = 0.3117 g cm3, the luminosity can be computed by applying the Rankine-Hugoniot
conditions from Section 2. Using equation (2.26), we get a luminosity of Ljet ∼ 9× 1049 erg s−1,
which is a typical jet luminosity.

These parameters are specified on the input file Grid bcApplyToRegionSpecialized.f90,
mentioned in Chapter 2, and an example of which can be consulted in Appendix F.

4.2.1 Refinement Along the Jet Direction

We use an adaptive grid with rectangular-shaped pixels for the jet injection. The purpose of
applying this mesh is to impose the highest refinement level on the jet axis as well as on the
boundary between the progenitor and the ISM.

The lower limits on the refinement are ∆x = ∆y =5.2×108 cm and ∆z=9.5×108 cm (which
is a minimum refinement level of 1 in the FLASH parameters) and the highest limits on the
refinement are ∆x = ∆y =1.52×108 cm and ∆z=2.4×108 cm (which is a maximum refinement
level of 6). The jet was injected within the highest refinement region with 28 cells. In Figure
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Figure 4.7: AMR configuration fixed for the jet’s injection in a 2D map. The scale unit for each spatial axis is
109 cm.

4.7, we show the mesh distribution across the domain projected onto a 2D map in the xz-plane.
This configuration is kept fixed throughout the simulation.

As we mentioned in Chapter 3, to set this mesh we need an additional file to specify the
limits on each refinement level. An example of this file can be consulted in Appendix G.
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5 — Results and Discussion

In this chapter, we will show the results of our simulations. First, a comparison between the
progenitors with different angular velocity (Ω) values using J(z) = const,, is illustrated. Also,
a comparison now varying the vertical dependence of the angular momentum distribution J(z)
using a selected value of Ω from the previous study is presented.

Moreover, the ratio between the equatorial and polar radii of the progenitor is analysed to
quantify the changes in the morphology due to the angular momentum.

Finally, two models are chosen as the jet’s progenitors. The breakout time (tbo), breakout
Lorentz factor (Γbo), cocoon radius rbo and final angular momentum distribution are obtained
to study the effects of the jet breaking through the progenitor.

5.1 Progenitors with Different Ω Values

In this first subsection of the results we will compare the changes in the morphology of the
progenitor, which was affected by the angular momentum imposed with J(z) =const and
different normalization values for J(R) (which is related to distinct Ω values).

For the first setups, we take three different values of angular velocity Ω:1.25×10−3 rad s−1,
3.12×10−3 rad s−1 and 5.3×10−3 rad s−1, so we have three initial models. These quantities
correspond to the following angular momentum values for R = 4× 1010cm: J= 2×1018 cm2 s−1,
J∼ 5×1018 cm2 s−1 and J= 8.48×1018 cm2 s−1, respectively. All of these models are above the
Jcrit value for the 16TI model from the study by Woosley and Heger (2006) described in Section
4.1.1 (Figure 4.1), which is about 1017 cm s−1.

For all of the models, we maintain the azimuthal angular momentum distribution J(z) as a
constant to highlight the variations on angular velocity. In Table 5.1, the label for each model
is shown: the first half of the label refers to the distribution applied for J(z) and, the second
half denotes the angular velocity, which is L for the lowest value (1.25×10−3 rad s−1), M for the
medium (3.12×10−3 rad s−1) and H for the highest value (5.3×10−3 rad s−1). We will refer to
the models by these labels in the following sections.

In Figure 5.1, we show the velocity field inside the progenitor considering J(z) = 1 cm2 s−1

with an Ω value at the initial time t=0 s. The velocity reaches its minimum value (zero) at the
polar axis, according to the derived equations (2.37) and (4.2); the maximum velocity, 0.216 c,
is reached at the external radius (4×1010 cm) in the equatorial plane, is to be expected since the
angular momentum increases with cylindrical radius. Also, in Figure 5.2, the initial condition
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Model J(z) (cm2 s−1) Ω (rad s−1)

J(z)cnt-ΩL 1 1.25×10−3

J(z)cnt-ΩM 1 3.12×10−3

J(z)cnt-ΩH 1 5.3×10−3

Table 5.1: Specific angular momentum models by label.

Figure 5.1: Velocity field inside the progenitor J(z)cnt-ΩH. The arrow length and its color show the magnitude
of the vector. We can clearly observe that the velocity increases towards external radii. The top
color palette corresponds to the velocity magnitude while the bottom one displays the density
values (g cm−3).

for the density profile is displayed with density contours onto the xz-plane (y=0). The initial
density profile, taken from Woosley and Heger’s (2006), was considered to be the same for each
model.
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Figure 5.2: Density contours (g cm−3) for t=0 s in the xz-mid plane (y=0). The scale unit for each spatial
axis is 109 cm.

We let the simulation run for 10 s in each model to enable the progenitor to reach the
extreme ratio of the polar to equatorial radii (Maeder & Meynet, 2012). In Figure 5.3 we show
the evolution for the J(z)cnt-ΩM model at t=0 s, t=5 s and t=10 s with the same density
contours as in Figure 5.2. With this representation, it is noticeable that the equatorial radius
Req suffers an elongation due to rotation causing all the progenitor’s shells to expand along this
direction.

Figure 5.3: Density contours (g cm−3) in the xz-plane for (a) t=0 s, (b) t=5 s and (c) t=10 s of the model
J(z)cnt-ΩM. The scale unit for each spatial axis is 109 cm.

Thus, when considering only the radial angular momentum settings, the progenitor suffers
an oblate deformation and it also affects, not only the external radii of the progenitor, but the
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inner regions where the jet begins its propagation.

Next, in Figure 5.4 we show the final 2D density distribution for the three models at t=10
s. This plot reveals the effects of the different values of angular velocity, the higher the value in
the velocity, the greater the widening of Req.

Figure 5.4: Density contours (g cm−3) projected onto xz-plane for the models (a) J(z)cnt-ΩL, (b) J(z)cnt-ΩM,
(c) J(z)cnt-ΩH at t=10 s. The scale unit for each spatial axis is 109 cm.

To quantify the deformation in the morphology of the three models, we take the ratio between
the polar radius Rpol and equatorial radius Req at five times: t=0 s, t=2 s, t=5 s, t=8 s and t=10
s using the external density contour of 1000 g cm3. The graph of the Rpol/Req ratio is shown in
Figure 5.5. Here, we can see that the ratio values become different from early times comparing
the three models. For the low angular velocity model, J(z)cnt-ΩL, the ratio decreased to 0.95
at the maximum time considered, the middle J(z)cnt-ΩM model reached a value just below 0.8
and the most notable decrement achieved corresponds to the J(z)cnt-ΩH model with a value of
0.6. Note that, even though the angular velocity values have the same order of magnitude, their
variation affects this ratio considerably. The percentage increase in Req for each model at t=10 s
is: 4.75% for J(z)cnt-ΩL model, 26.52% for J(z)cnt-ΩM model and 64.87% for J(z)cnt-ΩH model.

With these results, we have to remark that the behaviour of this ratio is mainly due to the
changes in Req; the contraction of Rpol in these models is less than 2%. We can observe the
evolution of Rpol percentage change in Figure 5.6. Here, we can see that the high and medium
angular velocity models experimented a similar contraction of Rpol up until t=2 s. After that,
J(z)cnt-ΩH model increases faster than the J(z)cnt-ΩM model. For the lower angular velocity
model, there are not large variations of Rpol. This is an important result to consider since the
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Figure 5.5: Time evolution of the ratio Rpol/Req for the models J(z)cnt-ΩL (purple), J(z)cnt-ΩM (blue) and
J(z)cnt-ΩH (black).

Figure 5.6: Percentage change of the polar radius Rpol compared with the initial radius of 4×1010 cm for the
models J(z)cnt-ΩL (purple), J(z)cnt-ΩM (blue) and J(z)cnt-ΩH (black).

jet evolution path is along the polar radius; then, although the changes in Req are important,
there are not significant variations in Rpol, so this could not affect the jet break out time.
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From the study performed by Maeder & Meynet (2012), they stated the ratio value
Rpol/Req ∼0.7 to be the critical rotation configuration (when the centrifugal force compensates
central gravity). This value was also reported by Geng et al. (2016) by applying the angular
velocity Ω =5.3×10−3 rad s−1. We obtained Rpol/Req=0.7 ratio with the same angular velocity
configuration at t∼ 8 s. A comparison of these results is displayed in Table 5.2.

The observed behaviour coincides with the results found by Maeder & Meynet (2012) since
we have critical rotation along the envelope, as they reported from previous structure models
that the polar radius decreases by a few percent even with extreme rotation (high angular
velocity values).

Author Rpol/Req

Maeder & Meynet (2012) 0.666
Geng et al. (2016) 0.70

Our result 0.70

Table 5.2: Comparison of Rpol/Req values between our results and previous studies.

Because our purpose is to study the geometry of the progenitor by taking different J(z)
distributions, we choose the intermediate value Ω =3.12×10−3 rad s−1, since this is not an
extreme limit on the angular velocity range but made an oblate morphology for the progenitor
and is slightly above the Jcrit value from the 16TI model.

5.2 Progenitors with Different Vertical Distributions

As mentioned before, we select the value Ω =3.12×10−3 rad s−1 (which remains constant) to
develop three new models, now taking into account the J(z) distributions. In Table 5.3, we
show list the three models considered.

Model Ω (rad s−1) J(z), J(θ)

J(z)lnr-ΩM 3.12×10−3 J(z) = 1− z/5× 1010

J(θ)cos-ΩM 3.12×10−3 J(θ) = 1− cosθ
J(θ)cos2-ΩM 3.12×10−3 J(θ) = 1− cos2θ

Table 5.3: Specific angular momentum models by nomenclature.

We choose these J(z) distributions in order to observe the effects of different functions in the
final morphology of the progenitor: the cosine squared has a steeper drop for angular velocity
along the polar axis in comparison with the cosine; similarly, the cosine distribution shows a
smoother change in contrast to the linear distribution.

In Figure 5.7 we show an example of the velocity field due to the J(z)lnr-ΩM distribution
at t=0 s. The maximum velocity differs from the previous models in Section 5.1; here, the
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maximum velocity was 0.127 c, which is the 60% of the velocity found in Figure 5.1. In this plot
we can notice how the rotation changes its magnitude along the z axis. In the equatorial plane
the velocity reaches a maximum and it diminishes towards the poles. For the three models, this
behaviour is preserved.

Figure 5.7: Velocity field inside the progenitor J(z)lnr-ΩM. The magnitude of the velocity field increases from
the poles towards the equatorial plane. The top color palette corresponds to the velocity magnitude
while the bottom one displays the density values (g cm−3).

As in the previous section, we let the simulation ran for 10 s in each model starting from
the same initial condition as we show in Figure 5.2. Now, in Figure 5.8 we used the same values
for density contours as in Figures 5.3 and 5.4 to show the evolution at three time steps (t=0,
5 s and 10 s) of one of our models: the J(θ)cos2-ΩM model. The evolution of this model has
some differences compared with the one shown in Figure 5.3; the morphology in the J(z)cnt-ΩM
model remains quite spherical and, in the J(θ)cos2-ΩM model, the rotation pushes the material
along the poles causing a notorious deformation in this region.

In this case, the shape of the progenitor might be analyzed as comprising two components
by two components: an oblate structure along equatorial plane and a prolate one along the z
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Figure 5.8: Density contours (g cm−3) projected onto xz-plane for (a) t=0 s, (b) t=5 s and (c) t=10 s of the
model J(z)cos2-ΩM. The scale unit for each spatial axis is 109 cm.

axis that might be the effects of both functional forms in the angular momentum distribution:
the radial component and the angular component. In Figure 5.9, a sketch of the decomposition
for the J(θ)cos2-ΩM model morphology is shown at t=10 s. Along the equatorial plane, we
have an oblate ellipsoid (green surface) and, along the z-axis, a prolate ellipsoid is displayed
(blue surface); both of them form a first approximation for the overall morphology (red surface).

Figure 5.9: 2D composition for the J(θ)cos2-ΩM model. The green shade represents the oblate component and
the blue shade shows the prolate component. The red shade is the actual final morphology for this
model at t=10 s.

We write the implicit equation for the 3D ellipsoid and find the values of the semi-axes of
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the two structures (oblate and prolate) that compose the J(θ)cos2-ΩM model, then, we compare
them with the semi-axes values of the J(z)cnt-ΩM model from the previous section, which had
the same angular velocity value (3.12×10−3 rad s−1) but no major contribution for the J(z)
distribution. The general equation is,

x2

a2
+
y2

b2
+
z2

c2
= 1. (5.1)

where, a is the semi-axis in the x direction, b is the semi-axis in y direction and c, the semi-axis
in z direction. In Table 5.4, we show the values of these semi-axes for the prolate and oblate
structures of J(θ)cos2-ΩM model (first two lines) and the values for J(z)cnt-ΩM model (third
line). The a and b semi-axes have the same value for the J(z)cnt-ΩM model and the oblate
substructure of J(θ)cos2-ΩM model, so the main deformation takes place along the z-axis, where
the prolate component becomes more important.

Model a
(×1010cm)

b
(×1010cm)

c
(×1010cm)

J(θ)cos2-ΩM (prolate) 3.2 3.2 4.005
J(θ)cos2-ΩM (oblate) 5.06 5.06 2.8

J(z)cnt-ΩM 5.06 5.06 3.97

Table 5.4: Semi-axes values for the two components of J(θ)cos2-ΩM model and the J(z)cnt-ΩM model.

For the comparison, we select the components in z-axis (from the prolate spheroid) and
x-axis (from the oblate spheroid) of the J(θ)cos2-ΩM model approximation. Taking the values
for the semi-axes along x direction and z direction (there is symmetry for x- and y-axes) from
both models and comparing them we get,

A =
acnt
acos

= 1, C =
ccnt
ccos

= 0.991; (5.2)

where acnt and acos are the semi-axes in x direction for the J(z)cnt-ΩM and J(θ)cos2-ΩM
models respectively, ccnt and ccos are the semi-axes in z direction for the same models. When
decomposing the geometry of the J(θ)cos2-ΩM model, we notice that the principal modification
of the morphology due to two types of rotation appears in the poles of the progenitor, so it may
affect the jet propagation.

Summarizing the J(z) distribution models, in Figure 5.10 are shown density contours for
each model at t=10 s. Here we have to highlight the different shapes reached at the final
evolution for the three models. When we take a linear distribution along the z axis (first panel
in Figure 5.10), the density distribution is not far from the results obtained in Section 5.1 for
a constant J(z) distribution; in fact, they are quite similar and the oblate shape is preserved.
Nevertheless, the next two models do not present this kind of shape.

If we take a look at the J(θ)cos-ΩM model, the structure is mainly modified along z axis, so
a prolate shape is formed. As we mentioned before, in the J(θ)cos2-ΩM model we find a similar
behaviour in the z-axis, however, the oblate distribution in this model made a softer boundary
in xy plane unlike J(θ)cos-ΩM model. This is an important feature to notice because, in the
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case of the model from panel (b) has a not physically correct behaviour in the equatorial plane,
so we can neglect this model.

Figure 5.10: Density contours (g cm−3) projected into xz-plane for the models (a) J(z)lnr-ΩM, (b) J(θ)cos-ΩM,
(c) J(θ)cos2-ΩM at t=10 s. The scale unit for each spatial axis is 109 cm.

In Figure 5.11, time evolution of the ratio Rpol/Req is also plotted. The changes in this ratio
is not as noticeable as in the models with different Ω values; for the vertical distributions this
ratio had a very similar behaviour.

Finally, in Figure 5.12, we show the percentage change for Rpol as in the previous section.
Here, the change for the J(θ)cos-ΩM and J(θ)cos2-ΩM models, in contrast to the previous cases,
adopted negative values because Rpol expands due to the contribution of the J(θ) distribution.
These distributions for the angular momentum (cosines) allow the material to accumulate along
the z direction, and, as a consequence, the polar radius increases. Contrary to these results, in
the linear model we find a contraction of Rpol, so the poles contracted. From this behaviour
we expect different values for the jet’s break out time since the polar radius increases for
J(θ)cos2-ΩM and J(θ)cos-ΩM models in comparison with the J(z)lnr-ΩM model.

Considering this analysis, we select two final models to apply the jet injection at Ri = 2×109

cm. These models are J(z)lnr-ΩM and J(θ)cos2-ΩM. Because of their final shapes and rotation
profiles, we expect to have variations in the jet break out properties in this cases. The results
involving the jet evolution through these progenitors are discussed in the next section.
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Figure 5.11: Time evolution of the ratio Rpol/Req for the models J(z)lnr-ΩM (orange), J(θ)cos-ΩM (purple)
and J(θ)cos2-ΩM (red).

Figure 5.12: Percentage change of the polar radius Rpol compared to the initial radius of 4×1010 cm for the
models J(z)lnr-ΩM (orange), J(θ)cos-ΩM (purple) and J(θ)cos2-ΩM (red). The negative values
indicate an expansion from the initial radius.
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5.3 Jet Injection in the J(z)lnr-ΩM and J(θ)cos2-ΩM

Models

In this final section, we present an analysis of the jet’s properties using the two selected
progenitor’s models, J(z)lnr-ΩM and J(θ)cos2-ΩM. We also show a comparison between these
models with a control test with a non-rotating progenitor.

To perform the simulations, we let the rotating progenitors evolve for 10 s until is reached
the deformation related to the extreme ratio of the polar radius to the equatorial radii (Maeder
& Meynet, 2012) that we studied in the previous section, and then we imposed the injection of
the jet. We stop the simulations once the jet reaches the progenitor’s surface (break out). We
expect the jet to break through the envelope in the two models considered here.

In Figure 5.13, the results from the simulation with the J(z)lnr-ΩM model are plotted for
two different times: t=2 s and t=3 s using Lorentz factor contours. The velocity field for this
distribution inside the progenitor is also shown as a vector field. From this figure, we can observe
the distribution for the jet’s Lorentz factor and its overall structure in 3D. In the upper panel,
which corresponds to t=2 s, the jet has travelled up to ∼ 1.7×1010 cm and at this point is has
reached a maximum Lorentz factor of Γ = 7.11, for the lower panel at t=3 s, the break out
of the jet is attained, so it crosses successfully the envelope of the progenitor. The maximum
Lorentz factor in this case is Γ = 17.4.

Next, we compare the density profiles for the J(z)lnr-ΩM and J(θ)cos2-ΩM models with the
non-rotating model in two different time steps, including the break out time for both models.
The comparison with the J(θ)cos2-ΩM model is shown in Figure 5.14; in Figure 5.15 we show
the comparison with the J(z)lnr-ΩM model at the same times. Both figures are obtained by
taking a slice of the 3D density plot (similar to Figure 5.13) comprising the xz-plane (y=0).

From these plots, we would like to highlight some important features. Firstly, the differences
between the distance travelled by the jet in the first two panels of Figure 5.15. As we can notice,
when a progenitor with a linear angular momentum distribution is chosen, the structure of the
progenitor is modified because of its elongation which causes the stellar matter to rearranged
and to drop along the polar region so it allows the jet to propagate along z direction more easily
(see Figure 5.3 and 5.4). However, as we can see in the case of the J(θ)cos2-ΩM model, the Rpol

has expanded as compared to the in comparison with the linear model, nonetheless, the angular
momentum implementation also allowed the jet from this model to travel more distance because
of the same reasoning as in the case of linear angular momentum distribution; the material in
the poles decrease, so the jet must travel a lower distance to reach the surface of the progenitor.

Another consequence of these changes in morphology is the decrease of the breakout time
when considering the rotation. For the J(θ)cos2-ΩM model, the jet reaches the break out time
at tbo=3.2 s, for the J(z)lnr-ΩM, the break out time occurs at tbo=3.0 s and for the non-rotating
model, tbo=3.6 s. It is particularly interesting that, although in both rotating models the value
of tbo decrease, in the J(z)lnr-ΩM model, we obtain the lowest value for the tbo. This is due to
the differences in the internal structure (density and pressure) of each progenitor caused by the
rotation implementation discussed before.
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Figure 5.13: Evolution of the relativistic jet with J(z)lnr-ΩM model. In this plot, we are showing the density
volume of the progenitor, the velocity field and the jet’s Lorentz factor contours at (a)t=2.0 s
and (b)t=3.0 s from the jet injection. The scale unit for each spatial axis is 109 cm.

As we observed in the previous section, after 10 s, the J(θ)cos2-ΩM progenitor reaches a
morphology were we can find two contributions: an oblate one caused by the constant angular
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velocity and a prolate one, due to the angular momentum distribution along the z-axis. This
last contribution made the material to accumulate along the jet axis (towards the poles of the
progenitor) and, as a consequence, the break out time is larger than in the J(z)lnr-ΩM case by
∼6.66%. Nevertheless, the differences of tbo between these models are not large.

Another important feature that we can see from these figures is the shocked jet structure.
From Figure 5.14, we can note a difference in the shocked jet morphology between the two last
panels, 1.(b) and 2.(b). In the non-rotating progenitor, the shocked jet density remains almost
constant along its evolution, unlike the jet from J(θ)cos2-ΩM model, where some turbulence
is shown under z=2.5×1010 cm, plotted in the green coloured region with ρ ∼ 10−3 − 10−4 g
cm−3. This feature is also apparent in the J(z)lnr-ΩM model from Figure 5.15, 1.(b) panel,
below z=2.5×1010 cm in the same density ranges.

By looking at Figure 5.15, we can notice a difference in the cocoon radius at the break out
time. In the non-rotating progenitor, the cocoon radius is smaller compared to the cocoon from
J(z)lnr-ΩM model. This is not so obvious in the J(θ)cos2-ΩM model but is also caused again
by the angular momentum distribution; the rearrangement of the material due to the rotation
allows the cocoon to spread in the perpendicular direction of its propagation. We will recall
this result later to make further analysis.

The next analysis concerns the behaviour of the Lorentz factor during the jet’s evolution
and how it is related to the break out time tbo. For the former, we show the Lorentz factor and
density contours in Figure 5.16, comparing the J(θ)cos2-ΩM model with the non-rotating case,
and in Figure 5.17, for the J(z)lnr-ΩM model.

In both figures we show the minimum and maximum values for the Lorentz factor at the
bottom of the color bar. From Figure 5.16, we observe that the jet’s Lorentz factor for the
rotating model (which is the J(θ)cos2-ΩM) is higher than the value obtained for the non-rotating
model by ∼ 11.2%. Considering the previous discussion, we can associate this results with the
morphology changes caused by the angular momentum. Because the internal structure of the
progenitor is restructured due to rotation, the density rearranges and allows the jet to propagate
more easily, reaching a higher Lorentz factor and breaking through the progenitor in less time.
A similar reasoning explains the Lorentz factor values shown in Figure 5.17, where in fact, the
Lorentz factor for the J(z)lnr-ΩM model is even higher than in the J(θ)cos2-ΩM case.

Since the rotation setup seems to have an impact on the evolution of the jet, if a progenitor
has a certain type of angular momentum distribution, this can be an important factor on the
break out time and, consequently on, the duration of the prompt phase.

In Table 5.5, we present a table with a summary of the jet features at break out from each
model. In the first column the models are listed, in the second column we show the break
out times (tbo), in the third column, the maximum Lorentz factor reached at break out time
is listed (Γbo,max) and finally, in the fourth column, we show the cocoon width at z=1.5×1010

cm (WC,1.5e10). The width of the cocoon was measured using a jump in density to distinguish
between the inner low-density region of the jet and the stellar material that forms the cocoon.

Going into a deeper analysis of the cocoon’s development throughout the simulation, we
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Figure 5.14: Comparison between density profiles (g cm−3) of (1)J(θ)cos2-ΩM model and (2)non-rotating
model. Here, we are plotting the jet evolution at (a) t=2 s and (b) t=tbo, the break out time
for each model. The break out time for the first model is tbo=3.2 s and for the second model is
tbo=3.6 s. The scale unit for each spatial axis is 109 cm.
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Figure 5.15: Comparison between density profiles (g cm−3) of (1) J(z)lnr-ΩM model and (2) non-rotating
model. Here, we are plotting the jet evolution at (a) t=2 s and (b) t=tbo, the break out time.
The break out time for the first model is tbo=3.0 s and for the second model is tbo=3.6 s. The
scale unit for each spatial axis is 109 cm.
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Figure 5.16: Lorentz factor (solid lines) and density (dotted lines) contours for (1) J(θ)cos2-ΩM model and (2)
non-rotating model. We are showing the results at the same times as in the previous figures; (a)
t=2 s and (b) the break out time. The scale unit for each spatial axis is 109 cm.
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Figure 5.17: Lorentz factor (solid lines) and density (dotted lines) contours for (1) J(z)lnr-ΩM model and (2)
non-rotating model. We are showing the results at the same times as in the previous figures; (a)
t=2 s and (b) t=tbo, the break out time. The scale unit for each spatial axis is 109 cm.



5.3. Jet Injection in the J(z)lnr-ΩM and J(θ)cos2-ΩM Models 63

Model tbo (s) Γbo,max WC,1.5e10 (cm)

J(z)lnr-ΩM 3.0 17.4 3.2×109

J(θ)cos2-ΩM 3.2 15.9 2.4×109

non-rotating 3.6 14.3 2.8×109

Table 5.5: Features from each model (first column) at the jet’s break out: in the second column, we show the
break out time (tbo); in the third column, the maximum Lorenz factor reached at tbo (Γbo) is listed
and in the fourth column we show the width of the cocoon .

perform now a study on the cocoon’s width which is measured at half of the total length of
the jet, WC,FWHM, (similarly as the Full Width at Half Maximum applied in the analysis of
some functions) and by examining the jump in pressure to distinguish it from the rest of the
progenitor’s structure. In Figure 5.18, the temporal evolution of WC,FWHM is plotted for each
model from t = 0 up to their break out times. We point out the behaviour of the two rotating
models up until t=1.5 s, where both of them have an equal cocoon’s width (above 2×109 cm),
after this time, the J(z)lnr-ΩM model width expands faster than in the J(θ)cos2-ΩM model.
The non-rotating model had smaller width values than the two rotating models at all times
(before t=1.5 s, it never exceeded 1.5×109 cm).

Figure 5.18: Cocoon width at half of the total length of the jet (WC,FWHM) at different times for the three
models. The final points in the curves show the value of WC,FWHM at the breakout time.

The cocoon spreads differently on the three models depending on the angular momentum
profile. With the distribution set for J(θ)cos2-ΩM, the jet and, consequently, its cocoon are
confined to a small region compared to the J(z)lnr-ΩM model. By assuming the J(z)lnr-ΩM
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model, this leads to a wider opening of the cocoon. Nevertheless, the spreading of the
cocoon becomes important when angular momentum is considered, regardless of what kind
of distribution is considered.

Next, we show the temporal evolution of Γmax for the three models. For the three models in
Figure 5.19. In this figure, we can observe that at early times (before t=1.5 s), the maximum
values reached by both rotating models are very similar (between Γmax=4 and Γmax=6) and,
as the jet evolves, the J(z)lnr-ΩM model reaches higher values. A possible explanation for
this behaviour maybe be given by recalling the previous discussion about the link between the
morphology and the angular momentum for these models. The values of Γmax in the non-rotating
model stay below the corresponding values of the rotating models ones (until t=1.5 s, these
values did not exceeded Γmax=4).

Figure 5.19: Maximum Lorentz factor at different times for the three models. The final points in the curves
show the value of Γmax at the break out.

Considering the maximum Lorentz factor evolution for the three models, we can conclude
that the break out times shown in Table 5.5 are consistent with the properties of each model.
When the jet reaches higher Lorentz factor values, it implies a lower break out time since the
flux has higher velocities and this is an important factor derived from the rotating settings.

We can use the previous results and carry the analysis further by following the prompt
emission physics. First of all, we can examine some properties from the simulations results such
as the velocities reached by the jet and its density.
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From linear momentum conservation, if we have a system in which p = ρv =constant
(momentum per volume unit) and the velocity increases (in this case, we can derive the velocity
from the Lorentz factor) then, the density must drop to conserve the momentum. From our
simulations, we can observe that this is actually obtained at the jet’s head (see Figure 5.14 and
Figure 5.15, at z∼ 3.7×1010 cm); in the rotating progenitors where the Lorentz factor is higher,
the density has lower values (∼ 10−4 g cm−3) than the non-rotating model (∼ 10−3 g cm−3).

Furthermore, the density distribution provides substantial information about the photospheric
radius, Rph. The prompt emission could be measured using the photospheric radius (when the
gamma photons are able to propagate since the medium is optically thin) and the synchrotron
emission (due to particle acceleration via magnetic fields). In this case, we will reduce the
analysis to the photospheric models (e.g. Mészáros et al., 2002; Daigne and Mochkovitch, 2002).

The optical depth τ has a dependency on the extinction coefficient α [cm−1], which can be
rewritten in terms of the mass density ρ [g cm−3] and the opacity κ [cm2 g−1], giving us

τ =

∫ z

z0

ρκdz′ (5.3)

where z is the depth of the medium. From this expression, we can see that the optical depth
is proportional to the density and inversely proportional to the velocity (by replacing ρ = p/v,
assuming momentum conservation) at the break out if we consider a constant opacity. In the
rotating models, the density drops as an consequence of the momentum conservation and this
directly affects the optical depth. If the optical depth is reduced because of the density, this
might imply that the jet reaches the photospheric radius earlier for a rotating progenitor than
for a non-rotating one. This result might be relevant in the lGRBs framework, the evidence
found in the simulations suggests that the rotation might affect the prompt emission time scales
as a result from the jet’s structure formed inside a rotating progenitor.

Figure 5.20: Lorentz factor (Γ) evolution during the first stage (acceleration phase) of the fireball model
(Zhang, 2018).

If we assume the Lorentz factor evolution from the so called fireball model at the accelerating
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phase(studied in detail by Mészáros et al., 1993b; Pirán et al., 1993 and Kobayashi et al.,
1999), we can write an expression for the Lorentz factor and the photospheric radius with some
approximations.

The first phase of this model, called the acceleration phase is delimited by the photospheric
radius, Rph, which traces the region where the photons within the fireball are optically thin
(or τph = 1). Here, the outflow is ejected from the central engine and accelerates (the fireball
expands), in such a way that the Lorentz factor scales as Γ ∼ R, with R the radius of the
explosion (Figure 5.20).

Next, at the end of the accelerating phase, we have the coasting radius, Rc, when the
maximum Lorentz factor is reached and the front shock enters a constant-velocity stage, since
the swept material accumulates on the shock front and slows down its propagation. Depending
on the regime, the shell reaches the coasting phase at the photosphere (the maximum Lorentz
factor is attained) or, in the opposite case, the photospheric radius is lower than the coasting
radius (many photons escape before the shell accelerates to its maximum Lorentz factor).

In our case, we are focused in the region associated with the first photons which are able to
escape the fireball and which consist of gamma and hard X-rays (and then produce the prompt
phase). This phase is delimited by Γ ∼constant. If we take that Rph ∼ Rc, then we can write
the energy at this location as (assuming an spherical explosion)

E ∼ ΓMac
2 ∼ ΓR3

phρac
2, (5.4)

where E is the energy of the explosion, Ma the accumulated mass, ρa the medium density and
Γ, the bulk Lorentz factor. Then, we get

Rph ∼
(

E

ρaΓc2

)1/3

. (5.5)

From this equation we can see that, when the Lorentz factor increases, the photospheric
(or coasting radius) will decrease. Nevertheless, we can improve this calculation by taking
an specific regime for the photospheric radius (Mészáros and Rees, 2000b): when the fireball
already reaches the coasting phase at the photosphere and when the fireball does not reach the
maximum Lorentz factor.

Finally, considering the jet’s variability would lead to a study of the internal shocks. These
ingredients would contribute to build a more complete model and they might give some other
implications about the jet’s morphology and propagation in rotating progenitors.
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In this work, we presented the results from 3D RHD numerical simulations applied to the study
of angular momentum distributions in pre-SN progenitors and the evolution of a relativistic and
collimated jet piercing through the envelope in the context of lGRBs.

The main goals of this project were to construct a set of lGRB rotating progenitors were we
could study the effects of different angular momentum distributions; and, the second objective
was to inject a relativistic jet to follow its evolution until its break out from the progenitor
were we could obtain information about the jet’s Lorentz factor, the break out time and its
cocoon. We used the FLASH code to perform our simulations. The numerical setup consisted in
relativistic hydrodynamics in three dimensions and, to improve the computational performance
and to decrease the runtime, we applied MPI paralellization and AMR.

We proposed three models with constant angular velocities, related to rigid body rotation,
and three additional models with different azimuthal angular momentum distributions. From
these models, we analysed the deformations due to the angular momentum (the expansion of the
equatorial radius Req and the shrinking of the polar radius Rpol) by taking the ratio Rpol/Req

and following the percentage change of Rpol with respect to the initial radius, R0 = 4×1010 cm.

From this study of the progenitors, we selected two representative models that could affect
the propagation of the jet. Specifically, we took the progenitor with linear angular momentum
distribution (J(z)lnr-ΩM) and the one with angular momentum distribution following a cosine
squared law (J(θ)cos2-ΩM) with an intermediate angular velocity value. These models had
different polar radius behaviour as we mention before but also, their final morphology after 10s
was more physically plausible (softer edges and symmetry with respect to the xy-plane).

The jet injected in the rotating progenitors revealed some differences in its features, compared
with the jet injected in the non-rotating model. First of all, we observed a decrease of the break
out time in rotating progenitors. Additionally, the rotating models reached higher Lorentz
factor values than the non-rotating one. The behaviour of both parameters is consistent; the
higher the Lorentz factor, the lower the break out time. The discussion lead to consider that,
due to the rotation settings, the density of the progenitor rearranges (the inner regions expand)
and the density decreases along the polar axis, so the jet finds less resistance in its propagation
to the surface of the progenitor.

From these results, we found some important implications concerning the prompt emission
physics. The velocities (or Lorentz factors) and densities obtained from the simulations are
consistent with linear momentum conservation. In addition, a discussion about the relation
between the optical depth and the density was examined; since the density varies proportionally
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to the optical depth, the latter would drop as the density does if we assume a constant opacity;
so in lower density regions, we will have a low optical depth and thus, the photospheric radius
Rph will be reached.

Another important result that arises from the values obtained for the Lorentz factor is
related to the fireball model during the accelerating phase (Mészáros et al., 1993b; Pirán et al.,
1993 and Kobayashi et al., 1999). By writing the energy of the explosion in terms of the bulk
Lorentz factor and the photospheric radius, we can find an expression for the latter. We found
that the photospheric radius Rph ∝ Γ−1/3; therefore, when we get higher values for the Lorentz
factor, the photospheric radius will be lower. This is a consistent implication if we consider the
previous analysis concerning the optical depth.

To conclude, the most outstanding inference is the behaviour of the photospheric radius
due to the variables of the jet achieved due to the rotating progenitor. This summarizes the
significance of the angular momentum in the lGRBs prompt emission scenario and also this
results give way to extend the study to the observable parameters beyond this phase (alterations
in the light curves due to time scales and readjustments in the physical lengths).



Bibliography

[1] Band, D., Matteson, J., Ford, L., et al. 1993. ApJ, 413, 281–292.

[2] Beloborodov, A. M. 2010. MNRAS, 407(Sept.), 1033–1047.

[3] Blandford R.D., Payne D.G., 1982, MNRAS, 199, 883. doi:10.1093/mnras/199.4.883.

[4] Blandford R.D., Znajek R.L., 1977, MNRAS, 179, 433. doi:10.1093/mnras/179.3.433.

[5] Bromberg, O., Nakar, E., Piran, T., y Sari, R. 2011, ApJ, 740, 100.

[6] Cusumano, G., Mangano, V., Chincarini, G., et al. 2006. Nature, 440, 164.

[7] Daigne, F., and Mochkovitch, R. 2002. MNRAS, 336, 1271–1280.

[8] Del Zanna L., Bucciantini N., A&A 390 (3) 1177-1186 (2002).
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A — Config Script Example

Figure A.1: Example of Config file. In the firsts lines we get the paths about the physical information required
for our simulation. Next, we set some important parameters and their values.
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B — flash.par Script Example

Figure B.1: First section of flash.par file. Here, we configure some physical parameters (density, pressure,
velocities for the jet an the ISM) and we establish the computational domain.
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Figure B.2: Second section of the flash.par file. We set the type of geometry applied in the simulation, the
boundary conditions and the number of output files obtained from the simulation.
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Figure B.3: Third section of the flash.par file. We establish the maximum integration time, the variables saved
in each output file, the type of Riemann solver, artificial viscosity and the AMR configuration
(maximum and minimum limits and the refined variables).
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C — Simulation data.f90 Script Example

Figure C.1: Example of Simulation data.f90 script. Here is necessary to write all the parameters involved in
the initial condition.
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D — Simulation init.f90 Script Example

Figure D.1: Example of Simulation init.f90 script. As we mention in Chapter 2, one of this script features is
to change the parameters name if necessary. Also, it initializes the given data.
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E — Simulation initBlock.f90 Script Example

Figure E.1: A section of Simulation initBlock.f90 script. The purpose of this file is to set the initial condition
all over the computational domain.
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F — Grid bcApplyToRegionSpecialized.f90 Script Example

Figure F.1: A section of Simulation initBlock.f90 script. The user boundary conditions for the simulation are
specified in this file. For our setup, we set the jet’s injection for some cells in xy-plane (z=min),
otherwise, we applied reflective conditions.
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G — Grid markRefineDerefine.f90 Script Example

Figure G.1: Example of Simulation initBlock.f90 script. To establish a fixed AMR along the jet axis, we
specified the ranges in each coordinate for the refinement to be applied. In this case, the volume
for the refinement is parallelepiped since we were working with Cartesian coordinates.

87



88 Grid markRefineDerefine.f90 Script Example



H — Miztli parallelization Script Example

Figure H.1: Example of the parallelization script. From top to bottom lines, we need to specify the queue
where we have the permissions to run the code, a script where the outcome information will be
written (about the MPI), another script where we can found the runtime errors, the number of
processors occupied and the executable name.
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