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Resumen

Esta tesis cubre una gran variedad de temas, aunque de alguna manera todos ellos orbitan

alrededor de física electrodébil de precisión. La estructura de la tesis sigue una lógica muy es-

pecífica, trata de ir de lo general a lo particular. Primero, empiezo discutiendo cómo mejorar

la combinación de resultados de varios experimentos y doy como ejemplo aplicado el tiempo

de vida media del neutrón. La combinación de varios experimentos es estudiada usando

un modelo Bayesiano jerárquico. Uno de los resultados principales es una justificación más

formal del escalamiento que el Particle Data Group (PDG) aplica cuando combina errores

para un número grande de experimentos, pero al mismo tiempo mejora la forma en la que se

combinan los datos cuando tenemos pocos experimentos. Estos resultados fueron publicados

en el año 2020. El modelo Bayesiano usado para mejorar el escalamiento del PDG también

fue usado para estimar un error en una restricción a las funciones de distribución partónica,

esto es parte de una publicación más amplia que fue publicada en los promedios de la co-

munidad PDFLattice. Después de analizar estos temas, discuto uno de los resultados más

importantes de mi doctorado, que involucró cálculos teóricos dentro del Modelo Estándar.

Este cálculo fue el corrimiento del ángulo de mezcla débil desde el polo del bosón Z hasta

bajas energías, donde se consiguió una reducción en la incertidumbre por casi un factor de

cuatro. Esta reducción es muy importante cuando se desea comparar experimentos y teoría.

Los resultados fueron publicados en 2018 y la gráfica más representativa de este trabajo fue

mostrada en la version 2018 de la sección de física electrodébil del PDG. Al final de la tesis,

discuto modelos específicos mas allá del Modelo Estándar, en particular, se estudian dos

modelos de masa de neutrinos usando simetrías discretas. Los modelos fueron publicados



en dos artículos independientes en 2019 y 2020, con resultados compatibles con los datos

experimentales de oscilaciones de neutrinos.
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Abstract

This thesis covers a wide variety of topics, but all of them orbit around electroweak preci-

sion physics. The structure follows a specific logic, first, I start discussing how to improve the

combination of results of several experiments, and I give an applied example to the neutron

lifetime. The combination of experiments is studied using a Bayesian hierarchical model.

One of the main results is a formal justification of the Particle Data Group (PDG) scaling of

errors, but at the same time, we get a way to improve the combination of measurements for

a small number of experiments. These results where published in 2020. I also used a similar

hierarchical model to estimate the error on a bound to parton distribution functions, which

was part of broader work that was published in the averages of the PDFLattice community.

Then I move to theoretical calculations inside the Standard Model. I compute the running

of the weak mixing angle to low energies, where I achieved a reduction of the uncertainty

by almost a factor of four. This reduction is important when comparing future experiments

and theory. The results were published in 2018 and the main plot of this work was shown

in the 2018 version of the PDG.

At the end of the thesis I discuss specific models beyond the Standard Model, particu-

larly neutrino mass models. Two models of neutrino masses were published from this work,

and both involved discrete flavor symmetries. The resulting correlations between the oscil-

lation parameters were consistent with the experimental data. These works turned into two

publications one in 2019 and the other one in 2020.

In this thesis I will give a detailed explanation and background of three of the mentioned

papers: the Bayesian average, the running of the weak mixing angle to low energies, and one



of the models of neutrino masses with discrete symmetries. Although a brief introduction of

the content of the other two is also shown.

7



Table of Contents

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Particle physics: Historical perspective . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Particle physics: The beginning . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Particle Physics: The Standard Model . . . . . . . . . . . . . . . . . . 4

1.2 Modern Particle Physics: The search for new physics . . . . . . . . . . . . . 4

2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 A simple introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Binomial model, the coin toss example. . . . . . . . . . . . . . . . . . . . . . 12
2.3 Gaussian Case: Single parameter . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Known Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Known central value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Unknown variance and central value . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Gaussian Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 PDG scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Hierarchical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Election of the prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.2 Equal errors case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.3 Gaussian Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.4 Errors of different size. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Applied example: Neutron Lifetime . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Comparation with other models . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Other applications of the Hierarchical model . . . . . . . . . . . . . . . . . . 38

3 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

i



TABLE OF CONTENTS

3.2 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Interaction with Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Vacuum Polarization Function . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Renormalization group equation in QED . . . . . . . . . . . . . . . . 52
3.4.3 Matching relations at one loop . . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Running of α̂s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.5 QCD contribution to the running of α̂ . . . . . . . . . . . . . . . . . . 61
3.4.6 Breaking of perturbation theory, dispersion relations . . . . . . . . . . 63

3.5 The running of the weak mixing angle . . . . . . . . . . . . . . . . . . . . . . 67

4 The Weak Mixing Angle at Low Energies . . . . . . . . . . . . . . . . . . . 75
4.1 Renormalization group evolution . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Matching conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Implementation of experimental input . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Singlet contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Flavor separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 Lattice data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.3 Threshold masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Theoretical uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 BSM physics and other topics . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1 Neutrino physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Origin of neutrino mass . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Seesaw Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.3 Neutrino Oscillations: Theory . . . . . . . . . . . . . . . . . . . . . . 104
5.1.4 Neutrino Oscillations: Experiments . . . . . . . . . . . . . . . . . . . 108
5.1.5 The road map to construct neutrino models. . . . . . . . . . . . . . . 110

5.2 Previous works on the topic . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.1 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.3 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.4 Other textures: B1 and B2 . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.5 Other works in the same direction. . . . . . . . . . . . . . . . . . . . . 121

ii



6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendices

A Fisher’s Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B Coefficients of the RGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.1 Calculations of α(M2

Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.2 Calculation of ∆discα̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

iii



List of Figures

1.1 Plot of the year vs the mass of the particle discovered. . . . . . . . . . . . . 2

1.2 Plot of the costs of super conducting magnets as the center of mass energy is

increased. This plot was taken from [6]. . . . . . . . . . . . . . . . . . . . . . 3

2.1 Plot of the reduced χ2 distribution as the number of degrees of freedom increase. 23

2.2 Ordinary averaging. We assume that the yi are random outcomes of measure-

ments of the same parameter θ. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Hierarchical model. Each experimental parameter θi arises from a random

draw from a parent distribution with hyper-parameters µ and τ , and each

experimental central value yi is then considered to be the result of a random

draw from a Gaussian distribution with central value θi and error σi. . . . . 26

2.4 Plot of the scale factor as a function of the reduced χ2 for different values of

N and α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Comparison of the exact result with the approximate formula for α = 0. . . . 32

2.6 The measurement points with small error are shown in blue, the usual averages

with the PDG scaling in red, and the hierarchical averages in black. The labels

at the horizontal axis show by how many σM the blue points deviate from the

gray point. The gray band represents the ordinary weighted averages of the

bulk of measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



2.7 Neutron Lifetime. The blue points are beam experiments, while the green

points are bottle experiments. The black points are the Bayesian averages, and

the red points are the average with the PDG scaling. We did this averaging

for the case when all experiments are included and also when only bottle

experiments are taking into account. . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Diagrams that contribute the the photon two point Green function. . . . . . 50

3.2 Quark diagrams that contribute to the photon two-point Green’s function. . 61

3.3 Contour to obtain α from experimental results . . . . . . . . . . . . . . . . 64

3.4 R(s) for different center of mass energy s. . . . . . . . . . . . . . . . . . . . 64

4.1 Examples of a connected (top) and a disconnected (bottom) Feynman diagram. 81

4.2 Scale dependence of the singlet contribution to ∆α (solid line) and its step

function approximation (dashed line). . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Scale dependence of the weak mixing angle in the MS renormalization scheme.

The dots indicate the scales where a particle is integrated out. The total un-

certainty corresponds to the thickness of the line. The β-function of SU(2)L

changes sign at µ = MW , where the fermionic screening effects of the effec-

tively Abelian gauge theory are being overcompensated by the anti-screening

effects of the full non-Abelian electroweak theory. . . . . . . . . . . . . . . . 98

5.1 Fermions mass scales. The values of the neutrino masses are just shown for

illustrative purpose taking into account the neutrino mass differences, the real

value is still not known exactly. . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Process that contributes to the neutrino-less double beta decay. . . . . . . . 102

5.3 Loop diagram which generates a non-zeromee and consequently a small double

beta decay rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

v



List of Tables

2.1 Binomial simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Standard Model charge assignments. . . . . . . . . . . . . . . . . . . . . . . 46

4.1 RGE contributions of different particle types, where the minus sign is indica-

tive for the asymptotic freedom in non-Abelian gauge theories. . . . . . . . . 78

4.2 Coefficients entering the higher order RGE for the weak mixing angle. . . . . 79

4.3 Channels associated with the strange quark external current (top) and possible

further channels originating from it (bottom). . . . . . . . . . . . . . . . . . 88

4.4 Theoretical uncertainties in the low energy mixing angle. . . . . . . . . . . . 96

5.1 Texture zero matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 A4 generators for the irreducible representations in the S diagonal basis, ω =

ei2/3π is the cubic root of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Summary of the particle content and quantum numbers. α, β, γ, δ and ε can

be any of the singlet representations 1,1′,1′′. . . . . . . . . . . . . . . . . . . 113

vi



5.4 Particle transformation under A4 that gives rise to texture zeros in the neu-

trino mass matrices. We get the same texture matrix if we exchange 1′ ↔ 1′′

in each line. In the same way we get the same texture if we exchange the rep-

resentations of N4 and N5. The last column gives the matrix type according

to [173]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vii



Chapter One

Introduction

This introduction gives a brief historical perspective of particle physics, the Standard Model,

and the search for new physics. A more detailed introduction to concepts is given in each

chapter.

1.1 Particle physics: Historical perspective

1.1.1 Particle physics: The beginning

There has been an incredible amount of progress in our understanding of nature during the

last centuries. In particular, the comprehension of the behavior of things at small scales

improved dramatically. The idea of a particle is a very old one (since the ancient Greeks).

Nevertheless, a modern version of it was incorporated in the last centuries. The modern idea

of fundamental particle has its roots in 1897 [1] when it was found that the cathode rays were

particles instead of waves. The particles discovered were much lighter than any known atom

or molecule, and they have a negative charge. This new particle was the electron 1. The mass
1The idea of the experiment is very simple, the first step is to separate the electrons from the atoms in a

gas by applying an intense electric field with two charged plates. Once the ions are formed, the electrons will
try to move to the positive charged plate and will pass through a small hole in it. After this step, an array
of perpendicular electric and magnetic fields is placed in, and when the particles pass through them their
path will change, so the idea is to tune the values of the electric and magnetic field in such a way that their
effects cancel. Once the equations of motion are solved, the charge mass ratio can be written as a function
of these fields.
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Figure 1.1: Plot of the year vs the mass of the particle discovered.

of the electron is very small: 0.51 MeV . A few years later, in 1919, E. Rutherford directed

alpha particles into nitrogen [2]. The result of the collision was oxygen and some positive

charged particles, with a much heavier mass than the electron. This was the discovery of the

proton, which has a mass of 938.3 MeV. Later, in 1932, J. Chadwick studied the scattering

of protons off from a paraffin wax target, when this was bombarded with an unknown source

of radiation2. He found that the unknown radiation was made of charge-less particles of

nearly the same mass as the proton: 939.6 MeV. This new particle was the neutron [3]. In

the same year the positron was discovered [4], which is the antiparticle of the electron and

has exactly the same mass. The discovery of the positron is a very interesting one. This

is because the positron was already proposed theoretically by Paul Dirac in 1928 [5], i.e.,

before the discovery. He was trying to construct an equation which incorporates quantum

mechanics and special relativity, and in the process he found some negative energy states

which he associate with antiparticles, or in other words the positrons.

Many more particles were found since then. In Fig. [1.1] each point in the plane represents

a particle discovery. It is clear that we have been able to produce heavier and heavier particles

as the technology increases. It is expected that new physics (as we call these new particles

or interactions) should be somewhere in this plot. But two questions remain open: what

kind of new physics are we going to find? and at what energy?.
2The unknown source of radiation was produced from the collision of alpha particles sent to a beryllium

target.
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Figure 1.2: Plot of the costs of super conducting magnets as the center of mass energy is
increased. This plot was taken from [6].

From the theoretical point of view there has also been amazing progress. In the early

1900s quantummechanics was born and formalized, trough works done by Einstein, Shroedinger,

Pauli, Heisenberg [7–10] among many others. In the mid century, with the contribution of

another generation of great physicists (Fermi, Feynman, Tomonaga, Schwinger, Gell-mann,

Weinberg among others) a formal theory that included relativistic phenomena and quantum

mechanics in the same framework was written, a framework known as Quantum Field The-

ory (QFT). A particular case of QFT is Quantum Electrodynamics (QED) which explains

the interaction between light and matter. One of the earliest triumphs of QED was the com-

putation of the correction to the magnetic moment of the electron. Dirac theory predicted

it to be equal to two, but experimentally it was slightly different. Schwinger [11] computed

the next order correction in perturbation theory of the anomalous magnetic moment in the

QED framework. With this computation, theory and experiment agreed perfectly [12].

In parallel to the development of QED, Fermi [13] proposed a four fermion interaction

for beta decay, which is the decay of a neutron into a proton, an electron, and an electron

anti-neutrino. This model also had great success. This particular type of interaction (four

fermion) is one of the simple examples of interactions that emerge as effective operators of

a more complete theory. In this case the “complete theory” is the Standard Model (SM),

and the four fermion interaction is the effective interaction of a W boson exchange between

3
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a pair of fermions (nucleons and leptons).

1.1.2 Particle Physics: The Standard Model

The SM was constructed in the last century. It assumes that there is an SU(3)c×SU(2)L×

U(1)Y symmetry, where the index correspond to color, left-handed fields and hyper-charge.

The SU(2)L×U(1)Y symmetry was proposed by Weinberg and Salam [14, 15]. This part of

the SM allowed to explain parity violating effects seen in partity violating experiments like

the famous 60CoWu experiment [16], which did not have an explanation under the non-chiral

model given by Fermi. It also incorporated the Higgs mechanism [17], which gives mass to the

gauge bosons through a spontaneous breaking of the SM symmetry SU(2)L×U(1)Y → U(1)Q

(where Qmeans the charge). The SU(3)C symmetry part, called Quantum Chromodynamics

(QCD), concerns a symmetry that explains the interaction between quarks and gluons. Here

spontaneous gauge symmetry breaking does not occur, which is why the 8 gluons are massless.

The final pieces that entered the SM are the neutrino oscillations and masses. The idea of

oscillations was suggewsted in 1967 by Pontecorvo [18]. The idea is that the states that

interact with the gauge bosons (flavor eigenestates) are not the same as the states with

definite mass. Therefore there is a non-zero superposition between the flavor eigenstates and

the mass eigenstates. This, in turn, implies that neutrinos can oscillate. Even though the

effect was predicted a long time ago it was not proven experimentally until the 90’s [19].

1.2 Modern Particle Physics: The search for new physics

Even with all the theoretical comprehension that we have of the universe, there are still

many open questions that need to be answered. One of them is the stability of the Higgs

mass [20]. If there is any scale of new physics, then the quantum corrections to the Higgs

mass would be proportional to this new physics scale. This implies that there should be a

large tuning between the parameters and the scale of new physics to get just exactly the

4
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Higgs mass. It is then more appealing that there exists an underlaying mechanism that

protects the mass in a natural way. Another open question is the nature of the dark matter.

From astronomical observations it is clear that there should be some type of matter that

interacts very weakly with the charged particles [21]. But we don’t know exactly what is

that particle(s) or the type of interactions that it has with the ordinary matter. Another

question is the origin of the neutrino masses. There is a large difference between the scale of

the neutrino masses and the scale of the rest of the SM particles. The question is whether

there is an explanation to this atypical scale difference without using fine tuning. Another

intriguing phenomena is the unification of the gauge couplings. It is interesting to see that

as we run the three couplings of the SM up to high energies, they almost converge to the

same vale at some particular energy (around 1016 GeV). Other open questions are: are there

more sources of charge-parity (CP) violation?, why θQCD is small?3, what is the nature of

dark energy?.

There is a long list of models of new physics4 trying to explain some of the questions men-

tioned before, for example Supersymmetry [22, 23], String Theory [24], Grand Unification,

discrete symmetries, WIMPS (Weakly interacting massive particle) or axions, among many

others5. Each of them have their own well motivated theoretical or experimental support.

It is also true that the community expected to find the new physics before (at not so high

energies), but nature has been elusive.

A natural solution to the problem mentioned before is to create colliders which produce

collisions at higher and higher energies. Nevertheless, as the energy is increased, experi-

ments become more complicated and expensive as shown in Fig. [1.2] taken from [6]. It is

here where a different and complementary approach can be taken, which is the precision ap-

proach: instead of looking for new interactions at high energy, the effects of new interactions
3θQCD gives the size of boundary term that respects the QCD symmetry. This term is important because

it contributes to physical quantities.
4These are generically called Beyond Standard Model models (BSM models).
5The references that I give here are not the original papers on these topics but reviews or books with a

pedagogical perspective. More detailed references can be found in them.

5



Introduction

are extracted from extremely precise low energy experiments. Thus we have two fronts to

find new physics: the energy frontier (high energy colliders for example), and the precision

frontier.

For example, a very well known experiment at the precision frontier is the measurement

of the anomalous magnetic moment of the muon (denoted by aµ), which (as in the case of

the electron) measures the interaction of the muon with a magnetic field. Theoretically it

is possible to predict very precisely aµ. Nevertheless, the calculation is rather complicated,

due to several reasons. The main one is that at low energies it is not possible to use a

perturbative approach to compute physical quantities in QCD. This is because the QCD

coupling α̂s increases at low energies, so perturbation theory breaks down. To overcome

these complications different approaches need to be used, such as chiral perturbation theory,

dispersion relations (which exploit the optical theorem) or Lattice QCD. The largest source

of relative uncertainty in a comes from the so called Light-by-Light diagrams, while the

largest total uncertainty comes from the hadronic vacuum polarization.

One of the things that will be discussed in this thesis are the radiative corrections and

hadronic contributions to the weak mixing angle sin2 θW at low energies in the MS scheme,

which is a combination of the gauge couplings of the SU(2)L × U(1)Y part of the SM. But,

why is it important to get a precise value of the weak angle at low energies? Well, many

experiments have and will measure parity violation at low energies. The physical quantities

that these experiments measure can usually be related to the weak charge, and ultimately

to the weak mixing angle. If there are some new interactions beyond the Standard Model

that violate parity, it might possible to see them through these low energy experiments.

In some cases, new physics models can be parametrized as four fermion operators. There

the deviation of the experimental result from the Standard Model value can be mapped to

this new physics scale [25, 26]. In other models such as a dark Z with kinetic mixing and

extended mass matrix, there will be a strong shift of the weak mixing angle at low energies,

which might not be seen at higher ones [27, 28].
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In these low energy observables, the weak mixing angle is usually redefined as an effective

running weak mixing angle. This weak mixing angle absorbs the contribution from the

γZ mixing bubble. It is usually written as sin2 θW (Q2) = κ(Q2,M2
Z) sin2 θ̂W (M2

Z). Where

sin2 θ̂W (M2
Z) is the weak mixing angle at the Z scale in the MS scheme. The "problem" with

this formula is that κ(Q2,M2
Z) will contain large logs when Q2 ≈ 0. If we want to reduce

the uncertainty in sin2 θW (Q2) we should properly sum these logs. To re-sum them we can

use the relation sin2 θW (Q2) = κ(Q2, µ2) sin2 θ̂W (µ2) where µ is the renormalization scale in

the MS scheme6, and set µ2 ≈ Q2. Then we would have to compute sin2 θ̂W (0) through the

renormalization group equations. This is what I do in this thesis.

In a different context, we should mention that a key point in the search for new physics is

the combination of results from several experiments that measure a quantity that we will call

θ. For example, the Particle Data Group (PDG) [29] uses results from different experiments

and returns the combined value. Usually a simple weighted average is enough to get the

combined value of the parameter of interest θ. Under the Gaussian approximation, with N

experiments that have errors σi, the combined result will have an error (on θ) of

σcom =

(
N∑
i=1

1

σ2
i

)− 1
2

, (1.1)

(when σi = σ for all i, the combined error is σcom = σ√
N
). Thus adding more and more

experiments will increase our knowledge about the parameter θ. Nevertheless, if there is

tension between the central values of the experiments (and we suspect that there might be

an unknown systematic shift), this naive combination will underestimate the final errors.

The PDG mitigates this problem multiplying the final error by a scale factor defined as

6The MS scheme is just a specific prescription to absorb the infinities in the parameters of the Lagrangian.
We will discuss the proper definition later in the text.
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SPDG ≡
√
χ2
red for χ2

red > 1 and non scaling for χ2
red < 1, where

χ2
red ≡

χ2
min

N − 1
=

1

N − 1

N∑
i=1

(yi − ȳ)2

σ2
i

(1.2)

is the minimum of the reduced χ2 function. ȳ is the result of the average of the experimental

values yi. But even in this prescription there are some problems. For example, it shows an

un-natural discontinuity in the derivative of the scale factor with respect to the reduced χ2.

This creates an unnecessary dichotomy. The second problem is a bit more subtle. As shown in

[30], the PDG scaling of the error is not a sufficient statistic to describe the entire probability

distribution. As a consequence, the PDG scaling changes the final result depending on how

the scale factor is computed. For example, suppose a subset of the experiments (points) is

averaged and scaled with the PDG method. Now take this subset (now just a point) and

combine it with the rest of the experiments, and apply the PDG scaling again. This process

will give a different result compared to analyzing and scaling the whole set of points at the

same time.

There have been several works trying to take into account the possibility of an underes-

timation of the error of the experiments.

In this thesis we present a method inspired by Bayesian meta-analysis studies. Meta-

analysis is a statistical analysis that emerged in biological sciences, and tries to combine the

results of multiple scientific studies. To understand this better take for example the study of

the effects of some drug in human beings. There might be different experiments, in different

parts of the world trying to estimate the effect of the same drug. The overall effect can in

principle be obtained from the combination of all the experiments. But, we should accept

that each lab might be measuring a different parameter, due to the differences in populations

and laboratories. A way to take this into account is to assume that the parameters that each

lab is estimating came from a random sample of a common hyper-population. This is the

heart of the hierarchical model.
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In the physics context, we used the same kind of model to take into account systematic

shifts that could have not been taken into account by the experimental collaborations. We

obtained the PDG scaling as a particular limit of this model and solved the problem of the

averaging order.

Finally in this thesis I also discuss two models to generate neutrino mass. These models

try to solve two of the problems that I mentioned before, the neutrino mass values and the

origin of dark matter. The idea is two use a discrete flavor symmetry which is spontaneously

broken. This symmetry will leave some patterns in the neutrino mass matrix (texture zeros),

which can be used to find correlations between the oscillation parameters. At the same time

the remaining symmetry protects some new particles to decay, making them a possible source

of dark matter.

The structure of the thesis will go from the general knowledge to specific cases. In chapter

2, I discuss Bayesian statistics. I re-derived, within the Bayesian framework, some widely

used formulas by the physics community. Then I explain the Bayesian Hierarchical Model,

and show its results and consequences. In chapter 3, I review some basic concepts about

the Standard Model and renormalization. Chapter 4 is about the weak mixing angle and

its running to low energies. Chapter 5 contains Beyond Standard Model (BSM) models for

neutrino oscillations and mass hierarchy. Chapter 6 contains my conclusions and outlook.
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Chapter Two

Bayesian Inference

2.1 A simple introduction

The Bayesian1 approach was probably born long ago in 1763, when the paper “An Essay

towards solving a Problem in the Doctrine of Chances” written by Thomas Bayes was pub-

lished posthumously [32]. There Bayes gave the first detailed description of the well known

basic theorem of probability that has his name: “Bayes’ Theorem”. In its discrete form

Bayes’ Theorem reads:

P (Bi|A) =
P (A|Bi)P (Bi)∑
i P (A|Bi)P (Bi)

. (2.1)

Explained in words, this equation tells that the probability that the event Bi occurs given A

is proportional to the probability that A occurs given Bi multiplied by the “prior” probability

of Bi. This simple and easy to understand formula has had a tremendous impact2 in the

scientific community [33–35] and in the technology sector [36, 37]. A simple frequentist proof

can be given as follows. Suppose you have two types of objects, spheres and cubes, {s, c}.

These objects might be red or blue, and the total number of objects is nred + nblue = n

where nred is the number of red objects and nblue is the number of blue objects. Similarly,
1The origin of the word “Bayesian” used as way to identify a complete branch of statistics has a long

history, for details see [31].
2The references given here are just examples of applications and general books on the subject, the bibli-

ography is vast and the reader is invited to look up those references to find more applications and detailed
explanations.
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the number of spheres (cubes) with a specific color can be labeled as ns(c)red . If an object is

chosen at random, the probability of choosing a sphere will be P (s) = ns

n
. Now, given that

a sphere is chosen, the probability of choosing a red sphere is P (r|s) =
nsred
ns

. On the other

hand, if we do not care about the shape of the object, then the probability of choosing a red

object is P (r) = nred
n

. Finally, the probability of choosing a red object that also is a sphere

must be P (r, s) =
nsred
n

. Thus we have

P (r, s) =
nsred
n

=
nsred
ns

ns

n
= P (r|s)P (s), (2.2)

this argument can be done again but now changing r ↔ s. Comparing this results, we easily

get

P (r|s) =
P (s|r)P (r)

P (s)
=

P (s|r)P (r)

P (s|r)P (r) + P (s|b)P (b)
, (2.3)

which is Bayes’ theorem. This theorem can be generalized to continuous variables, where

sums get replaced by integrals,

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. (2.4)

This is a good point to start with our notation. In the following, y will represent a measure-

ment i.e., the result of a coin flip, the value of a card, the neutron lifetime measured by a

experimental collaboration etc. θ is a parameter that we want to infer, for example the prob-

ability that a flip coin will return head or tail, or the true underlying value of the neutron

lifetime. p(y|θ) is known as the likelihood, p(θ) the prior and p(θ|y) is called the posterior

distribution. The factor
∫
p(y|θ)p(θ)dθ is a normalization factor that does not depend on θ,

and is usually omitted, so we write

p(θ|y) ∝ p(y|θ)p(θ), (2.5)
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keeping in mind that to find the normalized distribution an integral over θ must be done. In

the next section I will present some typical examples on parameter inference. The first one

is one of the oldest applications of Bayesian inference. It consists on making a prediction

of the probability that a coin is biased given some measurements. Then I will move to the

Gaussian case, which is one of the most important cases in scientific research. This Gaussian

case will be analyzed in the single parameter (known variance) model and also when both

variance and central value are unknown. Later I will introduce hierarchical modeling and

the results that we obtained compared to the PDG. Many of the basic concepts and notation

are borrowed from [35]. Since my intention here is to be as brief and clear as possible, I

might omit some proofs and profound discussions that can be found in the literature. If the

reader is interested, further references and details can be found in [35].

2.2 Binomial model, the coin toss example.

This is one of the oldest applications of Bayesian inference [32]. Suppose we flip a coin n

times and save the number of head and tails that appear. Let us save this in a variable y

which is equal to the number of tails that appear. If n = 1 then the probability of having a

tail given θ is

p (tail|θ, n = 1) = θ, (2.6)

if we flip it two times, then the probability of having one tail will be

p (tail|θ, n = 2) = θ (1− θ) + (1− θ) θ = 2 (1− θ) θ, (2.7)

the factor of two appears because the tail could have appeared in the first flip of the coin or

in the second one. On the other hand, the probability of having two tails in two coin flips

is p (tail, tail|θ, n = 2) = θ2. This can be easily generalized to an arbitrary n number of coin
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flips and tail results y. The probability distribution is then

p(y|θ) =

 n

y

 θy (1− θ)n−y , (2.8)

which is the binomial distribution. In this derivation we have used an important concept

of probability theory, the notion of independent measurements. That is to say that the

occurrence of one experiment does not affect the probability of occurrence of the other. This

means that the true value of θ does not change after one experiment is done3. Using Bayes

theorem the posterior distribution of θ given the data is

p (θ|y) ∝ θy (1− θ)n−y p (θ) . (2.9)

If the prior is assumed to be uniform p (θ) = 1, the normalization factor can be obtained

analytically. Thus we get

p (θ|y) = (n+ 1)

 n

y

 θy (1− θ)n−y . (2.10)

Suppose that we want to know if our coin is biased. I will define a coin as biased if the

probability of θ being larger or smaller than 0.5, is more than 95%. To make this example

more real let us simulate some random flips with known θ. Then we will pretend that we do

not know its value and try to infer it from those measurements (flips). We summarize the

results in Tab. [2.1]. The first three rows of the table show the simulations from θtrue = 0.8.

We see that as the number of experiments n becomes larger, the posterior 95% confidence

interval for θ shrinks around 0.8. Already at n=20 we can say that the coin is biased. In a

similar way the posterior shrinks around θ = 0.5, for θtrue = 0.5, and we can not conclude
3It is interesting though that our knowledge about the parameter θ does change after one experiment is

done, this is the heart of Bayesian statistics.
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θtrue n y max({P (θ > 0.5|y), P (θ < 0.5|y)}) θmean 95% confidence

0.8 5 3 0.656 0.571 [0.243,0.899]
0.8 10 7 0.887 0.667 [0.417,0.917]
0.8 20 16 0.996 0.772 [0.607,0.939]
0.8 100 82 0.999 0.814 [0.739,0.889]
0.5 5 3 0.656 0.571 [0.243,0.899]
0.5 10 3 0.887 0.333 [0.083,0.583]
0.5 20 13 0.905 0.636 [0.441,0.831]
0.5 100 52 0.655 0.52 [0.422,0.617]

Table 2.1: Binomial simulation

that the coin is biased.

An interesting and common question that frequently emerges is: what happens if we

change our prior? what prior should we use? Well, it depends on our knowledge about the

problem. Frequently a conjugate prior is used. This is defined as a prior such that, when

combined with the likelihood, will give a posterior with the same form as the likelihood itself.

In this case, the conjugate prior is

p(θ|α, β) ∝ θα−1(1− θ)β−1, (2.11)

note that the flat prior is just a special case where α = β = 1. The posterior distribution of

θ using this prior will be

p (θ|y, n, α, β) ∝ θy+α−1(1− θ)n−y+β−1. (2.12)

Changing the value of α and β modifies our prior believe about the true distribution of θ.

Nevertheless, it is important to mention that if enough data is included i.e., if y � α and

n� β, then data will dominate over the prior used beforehand. Although this is an obvious

result from this example, it is a general statement for other distributions4 [38, 39]. When

the number of experiments is small, the prior will have more and more weight. It is here
4This is closely related to the central limit theorem, for a pedagogical derivation see Appendix B of [35].
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where a smart election of prior can give powerful inferences. Sometimes, we do not have any

previous knowledge of the problem, so we want to be as agnostic as possible about the prior

that we choose, in order to avoid an unwanted bias in the posterior distribution. One might

argue that a flat distribution always gives a non-informative prior distribution. Nevertheless,

there is an ambiguity here, because under a change of variables a flat prior distribution will

not be flat. To overcome this issue, a formal definition of a non informative prior can be

constructed. Jeffrey [40, 41] defined a prior in terms of Fisher’s information I (θ), which in

turn is defined as

I (θ) ≡
∫
p (y|θ)

(
d ln p (y|θ)

dθ

)2

dy. (2.13)

Jeffrey’s prior is then p(θ) ≡
√

I (θ). It is straightforward to show that Jeffrey’s prior is

invariant under a change of variables,

p (φ) = p (θ)
dθ

dφ

=

√√√√∫ p (y|θ)
(
d ln p (y|θ)

dθ

)2

dy
dθ

dφ

=

√√√√∫ p (y|φ)

(
d ln p (y|θ)

dφ

)2

dy

=
√

I (φ).

In the particular case of the binomial distribution, we can use an alternative form of Fisher’s

information to obtain Jeffrey’s prior. This alternative form is5

I (θ) ≡ −
∫
p (y|θ)

(
d2 ln p (y|θ)

dθ2

)
dy. (2.14)

5The proof is shown in appendix A
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So we get

I (θ) =
n∑
y=0

 n

y

 yθy−2 (1− θ)n−y dy +
n∑
y=0

 n

y

 (n− y)θy (1− θ)n−y−2 dy. (2.15)

With a few algebraic steps we arrive to

p(θ) =
√

I ∝ θ−
1
2 (1− θ)−

1
2 , (2.16)

which in our previous notation can be mapped to α = 1/2 and β = 1/2. The analysis

that we did with the flat prior can be done using this prior too. After doing so, one can

easily see that as the number of data point increases, the prior become less and less relevant.

For example, for the case of θtrue = 0.8 and n = 5, y = 3 we get [0.237, 0.929] as the 95%

confidence interval, while for the mean we get 0.583. On the other hand, for n = 100 and

y = 82 we get [0.742, 0.892] as the 95% confidence interval, while for the mean we get 0.817.

If we compare this results with Tab. 2.1 we see that the effect of the prior is smaller when

the amount of data is larger.

2.3 Gaussian Case: Single parameter

2.3.1 Known Variance

We can now move to the Gaussian case. This is by far one of the most important distributions

in science. One of the reasons for this is that it emerges naturally due to the Central limit

theorem [42, 43]. The distribution is usually labeled as N (y|θ, σ2) where

N (y|θ, σ2) =
1√

2πσ2
exp

[
−1

2

(y − θ)2

σ2

]
. (2.17)

16



Bayesian Inference

In the most general case (which we will analyse in the next section) both σ2 and θ are un-

known. Here, we assume that σ is known, so we make an inference on θ. From the definitions

and procedure mentioned in previous sections, we know that the posterior distribution for θ

is

p(θ|y) ∝ N (y|θ, σ2)p(θ). (2.18)

The conjugate prior for this posterior is N (θ|µ, τ 2). With simple algebraic steps, and nor-

malizing the posterior distribution, it can be shown that the posterior is N (θ|θ̂, σ̂2) where

1

σ̂2
=

1

σ2
+

1

τ 2
, (2.19)

and

θ̂ =
(

1

σ2
+

1

τ 2

)−1 ( y
σ2

+
µ

τ 2

)
. (2.20)

Thus we see that the precision (defined as the inverse of the variance) increases after new

data is included. Now suppose that we have n independent measurements {y1, y2, ..., yn}.

Due to the independence of the experiments, the posterior distribution can be written as

p(θ|yi) ∝

 n∏
j=1

N (yj|θ, σ2)

N (θ|µ, τ 2), (2.21)

and the posterior distribution in this case will also be a Gaussian N (θ|θ̂, σ̂2) where

1

σ̂2
=

n∑
j=1

1

σ2
i

+
1

τ 2
, (2.22)

and

θ̂ =

 n∑
j=1

1

σ2
i

+
1

τ 2

−1 n∑
j=1

yi
σ2
i

+
µ

τ 2

 . (2.23)
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In this case we have used a conjugate prior to obtain the posterior distribution. It is intuitive

that as we make τ 2 larger and larger, the prior would give less and less information6 to the

system. In the limit when τ 2 → ∞ the prior distribution is completely flat, and is non-

informative. Usually, in parameter inference this is implicitly assumed. This is why the

combined precision of a set of experiments is just the sum of experimental precisions and

the posterior central value is the precision weighted average. We can also show that the flat

(τ 2 →∞) is a non-informative prior through Jeffrey’s method, because:

d2 ln p (y|θ)
dθ2

= − 1

σ2
, (2.24)

and

I (θ) = −
∫
p (y|θ)

(
d2 ln p (y|θ)

dθ2

)
dy =

1

σ2

∫
p (y|θ) dy =

1

σ2
, (2.25)

so p(θ) =
√

I (θ) = constant. An important property of the Gaussian distribution is that

the likelihood can be written as

p(yi|θ) =

 n∏
i=1

1√
2πσ2

i

 exp
[
−1

2
χ2(θ)

]
, (2.26)

where

χ2(θ) =
n∑
i=1

(θ − yi)2

σ2
i

= χ2
min(θ̂) +

(
θ − θ̂

)2
σ̂2

(2.27)

is the χ2 function. This quadratic form of the χ2 shows the idea behind the minimization

of the χ2 in a typical problem of parameter inference. The central value θ̂ of the posterior

distribution can be obtained minimizing the χ2 function with respect to θ.
6This statement can actually be formalized in terms of information theory. We do not discuss this any

further, but the interested reader is invited to see [44].
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2.3.2 Known central value

Previously we were discussing the case of several experiments measuring the same parameter

θ. Now we will compute the case of known central value but unknown variance. For this case,

we will restrict to a single experiment. In this hypothetical experiment, the central value θ

is known but not σ2. Now suppose that we have n observations from the same experiment

and that these observations follow a Gaussian distribution. Thus, given both σ and θ, the

likelihood is

p(y|σ2) ∝ exp

[
− 1

2σ2

n∑
i=1

(yi − θ)2
]

= (σ2)−
n
2 exp

[
− n

2σ2
v
]

(2.28)

where

v ≡ 1

n

n∑
i=1

(yi − θ)2 (2.29)

A conjugate prior on σ2, will be7

p(σ2) ∝
(
σ2
0

σ2

) ν0
2
+1

e−
ν0σ

2
0

2σ2 , (2.30)

Using this prior, the posterior distribution for σ2 reads

p(σ2|y) ∝
(
σ2
)− (n+ν0)

2
+1

exp
[
− 1

2σ2

(
ν0σ

2
0 + nv

)]
, (2.31)

this is just an Inv-χ2 distribution with ν0 +n degrees of freedom and scale given by ν0,σ2
0+nv

ν0+n
,

namely

p(σ2|y) = Inv-χ2

(
ν0 + n,

ν0, σ
2
0 + nv

ν0 + n

)
. (2.32)

7A non informative prior has ν0 = 0.
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2.4 Unknown variance and central value

Now let us jump to the next case: a single experiment where both σ2 and θ are unknown. This

is an example of a multi-parameter problem. We use the likelihood for a set of n Gaussian

i.i.d points, a flat prior for θ, and a prior with ν0 = 0 for σ2. After some straightforward

algebraic steps, it can be shown that the likelihood has the form

p(θ, σ2|y) ∝ σ−n−2 exp
[
− 1

2σ2

(
(n− 1) s2 + n(ȳ − θ)

)]
, (2.33)

where

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 , (2.34)

is the sample variance, and ȳ is the sample mean. Marginalizing over σ2 a posterior distri-

bution for µ given the data can be obtained. The result is:

p(µ|y) =
∫
p(µ, σ2|y)dσ2 ∝

[
1 +

n (µ− ȳ)2

(n− 1) s2

]−n
2

, (2.35)

this is just the tn−1 (ȳ, s2/n) density. In the very same way a posterior distribution for the

parameter σ2 can be found, the result is

p(σ2|y) ∝
(
σ2
)− (n+1)

2
+1

exp

[
−(n− 1)s2

2σ2

]
, (2.36)

which is scaled inverse-χ2 density. By definition this distribution is the distribution of the

inverse of a variable that has a χ2 distribution. Then, (n−1)s2
σ2 has a χ2

n−1, which is a χ2

distribution with n-1 degrees of freedom.
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2.5 Gaussian Approximation

In the last sections we have seen that it is easy to manipulate Gaussian distributions. In

particular, it is an incredible useful property that when new experiments are included, the

final precision of the combination of this experiment with another set of experiments can be

obtained adding the precisions in quadrature. As I mentioned before, Gaussian distributions

emerge naturally from the central limit theorem. Nevertheless, sometimes the distributions

are not exactly a Gaussian. In this cases the formal methodology is to perform the integrals

over the posterior distributions to find confidence intervals for the parameters. This formal

process can be computationally demanding, so if the distributions have a shape similar to a

Gaussian (like for example a t-student for a large number of degrees of freedom) it is better

to approximate the distribution to a Gaussian. In this section we show how this is done.

Suppose we have the probability distribution of a random variable x. Then a Gaussian

approximation can be obtained by expanding the logarithm of the distribution to second

order around the maximum of the likelihood. Explicitly

ln p(x) = ln p(x0)+
d ln p(x)

dx
(x−x0)+

1

2!

d2 ln p(x)

dx2
(x−x0)2+

1

3!

d3 ln p(x)

dx3
(x−x0)2+... (2.37)

The first term is just a constant, the first derivative vanishes when we expand around the

peak, so the quadratic term is the one that gives the Gaussian distribution. Comparing

this to the logarithm of a Gaussian distribution we immediately deduce that p(x) can be

approximated as N
(
x|x0,−

[
d2 ln p(x)
dx2

]−1)
.

As an example, let us take the Student-t distribution for n degrees of freedom. The

logarithm of this distribution is

ln p(x|x0, σ2) = C − n+ 1

2
ln

[
1 +

(x− x0)2

σ2

]
, (2.38)

where C is the normalization constant. The maximum of this distribution is easily obtained
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and corresponds to x = x0. The second derivative at this point is then

d2 ln p(x|x0, σ2)

dx2
= −(1 + n)

n

1

σ2
. (2.39)

Then we can approximate tn(x|x0, σ2) ∼ N (x|x0, n
n+1

σ2). The error on this approximation

can be obtained computing the next term in the series. The third derivative vanishes, so the

next term would be the fourth derivative which goes as 1/n so it is clearly suppressed for

large n. In general, the power expansion of this distribution has vanishing odd derivatives.

So only even derivatives contribute, and go as n1−l/2 where l is the order of the derivative.

Then we conclude that for large n we get closer and closer to a Gaussian distribution.

2.6 Model evaluation

There is still an important part that is missing: the evaluation of the model. After computing

the parameters, it is a good practice to estimate how likely it is that the sample distribution

came from the proposed parent distribution. To do so, the next step is to define a a test

statistic which is a scalar function of the measured values yi. Then the p-value is computed,

which is defined as the probability that the test statistic is larger than the measured one.

For the Gaussian case, a typical test statistic is the χ2 function. Using Cochran’s theorem,

it can easily be shown that the χ2 function for n experiments with known central value

follow a χ2 distribution with n degrees of freedom. On the other hand, the χ2 function

for n measurements with central value approximated by the weighted average follows a χ2

distribution function with n-1 degrees of freedom. The change of n to n−1 is called Bessel’s

correction and it comes from the use of a function of the measurements to infer the central

value. This effect also shows up in the bayesian case, compare for example the posterior

distribution of σ2 for the case of known and unknown central values.

It is sometimes convenient to use the distribution of the variable χ2
n ≡ χ2/(n−1) instead
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Figure 2.1: Plot of the reduced χ2 distribution as the number of degrees of freedom increase.

of χ2. The variable χ2
n is called the reduced χ2. In Fig. 2.1 the χ2

n distribution is shown

for different values of n. Note that as the number of degrees of freedom increases, the

distribution becomes more and more peaked around one. Thus, if a set of measurements

returns a reduced χ2 that is greater than one for a large number of experiments, we might

suspect that data can not be described by the model. The PDG knows about this issue and

proposes a solution: scale the errors of all experiments by the same amount, in such a way

that the reduced χ2 is one. In the next subsection we describe the PDG methodology.

2.6.1 PDG scaling

The PDG [29] methodology to compute the average of several experiments is the following:

"...To average data, we use a standard weighted least-squares procedure and in some

cases, discussed below, increase the errors with a “scale factor.” We begin by assuming that

measurements of a given quantity are uncorrelated, and calculate a weighted average and

error as

x̄+ δx̄ =

∑n
i=1wixi∑n
i=1wi

±
(∑

i

)− 1
2

(2.40)

where

wi =
1

(δxi)2
(2.41)

Here xi and δxi are the value and error reported by the i-th experiment, and the sums run
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over the N experiments. We then calculate χ2 =
∑
i=1wi(x̄ − xi) and compare it with N-1,

which is the expectation value of χ2 if the measurements are from a Gaussian distribution.

If χ2/(N − 1) is less than or equal to 1, and there are no known problems with the data, we

accept the results. If χ2/(N − 1) is very large, we may choose not to use the average at all.

Alternatively, we may quote the calculated average, but then make an educated guess of the

error, a conservative estimate designed to take into account known problems with the data.

Finally, if χ2/(N −1) is greater than 1, but not greatly so, we still average the data, but then

also do the following:

We increase our quoted error, x in Eq. (1), by a scale factor S defined as S =
√
χ2/(N − 1)

Our reasoning is as follows. The large value of the χ2 is likely to be due to underesti-

mation of errors in at least one of the experiments. Not knowing which of the errors are

underestimated, we assume they are all underestimated by the same factor S. If we scale up

all the input errors by this factor, the χ2 becomes N-1, and of course the output error δx

scales up by the same factor. When combining data with widely varying errors, we modify

this procedure slightly. We evaluate S using only the experiments with smaller errors. Our

cutoff or ceiling on δxi is arbitrarily chosen to be δ0 = 3N
1
2 δx̄, where δx̄ is the unscaled error

of the mean of all the experiments. Our reasoning is that although the low-precision exper-

iments have little influence on the values x̄ and δx̄, they can make significant contributions

to the χ2, and the contribution of the high-precision experiments thus tends to be obscured.

Note that if each experiment has the same error δxi, then δx̄ is δxi/N
1
2 , so each δxi is well

below the cutoff. (More often, however, we simply exclude measurements with relatively large

errors from averages and fits: new, precise data chase out old, imprecise data.) Our scaling

procedure has the property that if there are two values with comparable errors separated by

much more than their stated errors (with or without a number of other values of lower ac-

curacy), the scaled-up error δx̄ is approximately half the interval between the two discrepant

values. We emphasize that our scaling procedure for errors in no way affects central values.

And if you wish to recover the unscaled error x, simply divide the quoted error by S..."
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Figure 2.2: Ordinary averaging. We assume that the yi are random outcomes of measure-
ments of the same parameter θ.

Although this method provides a way to include cases where the χ2 is large, it has several

drawbacks. First of all it creates an unnecessary dichotomy around
√
χ2/(N − 1) ≈ 1, i.e.,

the derivative of the scale factor is discontinuous around this value. Another issue, as

is pointed out by [30], is that the final central value and final errors depend on how the

experiments are combined. For example, imagine that there is a sub-set of experiments that

are combined with the PDG methodology and converted to a single point(experiment). If

we now combine this result with the rest of experiments (under the PDG methodology) we

would get a different result than if we combine the full set of experiments with the PDG

methodology from the beginning.

In the next section I will explain the results of our publication. I will put particular atten-

tion to those steps that are omitted in the original publication, while things that are clearly

explained and computed there will not be shown here. For further details, the publication

is included at the end of this chapter.

2.7 Hierarchical Modelling

The following sections of this chapter are a modified version of the paper that we published

in [45]. We proposed a Bayesian Hierarchical Model to solve the issues that the PDG

methodology has. Bayesian Hierarchical Models had been used previously in other areas,

particularly in biological sciences [46–48]. The idea is to assume that the the experimental
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Figure 2.3: Hierarchical model. Each experimental parameter θi arises from a random draw
from a parent distribution with hyper-parameters µ and τ , and each experimental central
value yi is then considered to be the result of a random draw from a Gaussian distribution
with central value θi and error σi.

values yi are not random samples from the same parameter θ as shown in Fig.2.2. But

instead that each experiment is measuring a different parameter θi, which in turn comes

from a random sample of a common hyper-distribution among all the experiments as can be

seen in Fig. 2.3. Mathematically, this is equivalent to using as a prior

p(θ1, θ2, ...) =
∫ [

p(θ1|µ, τ 2)p(θ2|µ, τ 2)...
]
p(µ, τ)dµdτ 2, (2.42)

the posterior distribution is

p(~θ|~y, ~σ) ∝
[
N∏
i=1

p(yi|θi)
]
p(θ1, θ2, ...). (2.43)

Basic probability theory8 allows us to write,

p(µ, τ 2, ~θ|~y, ~σ) ∝
[
N∏
i=1

p(yi|θi)p(θi|µ, τ 2θi)
]
p(µ, τ 2). (2.44)

8Here we just used p(a) =
∑
b p(a|b)p(b) and p(a, b) = p(a|b)p(b).
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For the Gaussian case we have (assuming a flat prior for µ)

p(µ, τ 2, ~θ|~y, ~σ) ∝
[
N∏
i=1

N (yi|θi)N (θi|µ, τ 2)
]
p(τ 2). (2.45)

We take µ as the overall common effect of the experiments, and it is indeed our quantity of

interest. i.e., the real parameter that we want to infer. The idea is that there is a possibility

that the experimental collaborations did not take into account possible systematic shifts

in their measurements, not because they were not careful, but because there is always a

possibility of an unaccounted systematic shift. These shifts have the net effect of making

each experiment to measure a different parameter θi. On the other hand, we know that they

are indeed trying to measure a common quantity µ. It is important to point out that the

spread of µ, has two contributions, one which comes from the experimental errors σi, and

another one which measures the difference among the experimental collaborations given by

τ 2. In other words, if we increase the value of σi for each experiment, then the error on µ

will also increase. Similarly, if we increase the discrepancy between the experiments leaving

σi constant, the error on µ will also increase. To see this, look to the marginalized posterior

distribution of µ and τ 2 after integrating over each θi, this is

p(µ, τ 2|~y) ∝
N∏
i=1

N (µ|yi, σ2
i + τ 2)p(τ 2). (2.46)

So we have a sum of two terms, the usual σ2
i contribution and the τ 2 that is common to

all experiments. The posterior distribution of τ is highly controlled by the discrepancy

of the experiments, so a higher discrepancy between experiments will imply a probability

distribution that allows large values of τ , and in consequence a larger error on µ.

Integrating over τ 2, would give the posterior distribution of µ given the data. It is

clear that if p(τ 2) is sharply peaked around zero, then the posterior distribution for the non
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hierarchical case is recovered,

p(µ|~y) ∝
∫ N∏

i=1

N (µ|yi, σ2
i + τ 2)δ(τ 2)dτ 2 =

N∏
i=1

N (µ|yi, σ2
i ). (2.47)

Thus, the distribution of τ 2 encodes the χ2 value of the usual non-hierarchical fit, and turns

it back as a source of uncertainty. To compare our results with the PDG prescription we

define the scale factor (Sb) as the ratio of the sizes of the 68% highest confidence intervals

of the hierarchical and non-hierarchical models.

2.7.1 Election of the prior

The next step is to choose a prior that is convenient for our problem. We could use Jeffrey’s

method to get a non informative prior, but in this case we would like to have something that

is weakly informative and also simplifies the computations. Another interesting property

would be to have a prior that can naturally be peaked around zero, due to the arguments of

the previous paragraphs. We found that a plausible option is

p(τ 2) ∝
N∏
i=1

1

(σ2
i + τ 2)

α
2N
. (2.48)

If we want the prior to have a defined variance, (i.e., the variance to be finite) then α > 6,

which is a reasonable supposition. We computed the posteriors using different values of α.

We will analyse its effects in the next subsections.

2.7.2 Equal errors case

Suppose that all the experiments have similar errors σi ∼ σ. Then the posterior distribution

using the prior mentioned before reads

p(µ, τ 2|~y) ∝ 1

(σ2 + τ 2)
N+α

2

exp

[
−1

2

N∑
i=1

(µ− yi)2

σ2 + τ 2

]
, (2.49)
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Figure 2.4: Plot of the scale factor as a function of the reduced χ2 for different values of N
and α.

this can easily be rewritten as

p(µ, τ 2|~y) ∝ 1

(σ2 + τ 2)
N+α

2

exp

[
−1

2

σ2

σ2 + τ 2
χ2(µ)

]
, (2.50)

where we have used Eq. 2.27. The form of this equation has strong implications. First of

all, let us compute the peak of the posterior distribution of µ given the data, p(µ|~y), this is

obtained by solving
dp(µ|~y)

dµ
=
dp(µ|~y)

dχ2(µ)

dχ2(µ)

dµ
= 0. (2.51)

Remember that the value of θ that minimizes the χ2 is just the weighted average of the

experimental results. Then this equation makes explicit the fact that the central value of the

posterior distribution in the Hierarchical model is the same as in the non-hierarchical model

when the errors of all experiments are of the same size. This result obviously breaks down

for the case of different errors, because then it is not possible to rewrite the distribution as

a function of the χ2 only. Thus we get a similar result than what the PDG assumes: the

central value after scaling, does not get modified when the experimental errors are of similar

size. In Fig. 2.4 I show the Bayesian scale factor as a function of χ2
min for different values

of N and α. The PDG scale factor is also shown there as a solid black line. It is under

one’s nose that the Bayesian scaling approximates to the PDG prescription as the number

of degrees of freedom increases. Let us now prove this observation.
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Asymptotic limit

Let us make the following change of variables

r =
σ2

τ 2 + σ2
, (2.52)

in the posterior distribution of µ given the data. The result is

p(µ|~y) ∝
∫ 1

0
exp

[
−ν − 2

2
(rχ2

ν−1(µ)− ln r)
]
dr, (2.53)

where ν ≡ N + α − 2. Now, in the limit of large ν this integral can be approximated using

Laplace method [49]. Since ν is very large, the dominant contribution to the integral will

come from the minimum of the exponential. Thus is r0 =
[
χ2
ν−1(µ)

]−1
. So the position

of the minimum depends on the value of χ2
ν−1(µ). There are two cases, χ2

ν−1(µ) > 1 and

χ2
ν−1(µ) < 1.

Case 1: χ2
ν−1(µ) > 1 In this case then the minimum is inside the integration limits. So

we can approximate

rχ2
ν−1(µ)− ln r ≈ 1 + ln

[
χ2
ν−1(µ)

]
+

1

2
[χ2
ν−1(µ)]2(r − r0)2 + O

[
(r − r0)3)

]
, (2.54)

this implies

p(µ|~y) ∝ e−
ν−2

2
ln[χ2

ν−1(µ)]
∫ ∞
−∞

exp
[
−ν − 2

4
[χ2
ν−1(µ)]2(r − r0)2

]
dr, (2.55)

this is just a Gaussian integral which gives something proportional to [χ2
ν−1(µ)]−1, then

p(µ|~y) ∝
[
χ2
ν−1(µ)

]− ν
2 , (2.56)
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expanding the χ2 around its minimum (Eq. 2.27) allows to write this as

p(µ|~y) ∝
[
χ2
ν−1(µ̂) +

1

ν − 2

(µ− µ̂)2

σ̂2

]− ν
2

, (2.57)

this is

p(µ|~y) ∝
[
1 +

2

ν − 2

(µ− µ̂)2

2χ2
ν−1(µ̂)σ̂2

]− ν
2

, (2.58)

which is proptional to a Student-t distribution fo ν − 1 degrees of freedom. We can now use

the well known relation

ex = limn→∞

(
1 +

x

n

)n
(2.59)

to get

p(µ|~y) ∝ exp

[
− (µ− µ̂)2

2χ2
ν−1(µ̂)σ̂2

]
, (2.60)

and the final error becomes σ̂bay =
√
χ2
ν−1(µ̂)σ̂ this is just the prescription that the PDG

suggest to scale the errors.

Case 2: χ2
ν−1(µ) < 1 In this case the minimum is outside of the integration limits. Then

we must approximate around r = 1. This implies

p(µ|~y) ∝ exp
[
−ν − 2

2
(χ2

ν−1(µ))
]
, (2.61)

if we replace χ2
ν−1(µ) by its expansion around the minimum we get

p(µ|~y) ∝ exp

[
−(µ− µ̂)2

2σ̂2

]
, (2.62)

then there is no scaling, in accordance with the PDG prescription.
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Figure 2.5: Comparison of the exact result with the approximate formula for α = 0.

2.7.3 Gaussian Approximation

As we have shown before, the second derivative of ln p can be compared to the corresponding

term of the expansion of a Gaussian distribution, which gives

1

σ2
Bayes

≈ − d2 ln p

dµ2

∣∣∣∣∣
µ0

= −2N

σ2

d ln p

dχ2

∣∣∣∣∣
χ2

0

. (2.63)

Using Eq. (2.53) we have,

−2
d ln p

dχ2

∣∣∣∣∣
χ2

0

=
ν

χ2
− (χ2/2)(

ν
2
−1) e−χ

2/2

γ (ν/2, χ2/2)
, (2.64)

where γ is the incomplete Gamma function, defined by

γ(s, x) ≡
x∫

0

ts−1e−tdt. (2.65)

As we mentioned before, the scale factor SBayes is defined as the ratio of the sizes of the 68%

highest confidence intervals of the hierarchical and non-hierarchical models. In the Gaussian
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approximation we find,

SBayes ≈
√
N
σBayes

σ
≈
√
χ2

ν

1 +
1∑∞

k=1
(χ2)kν!!
(ν+2k)!!

 1
2

(2.66)

where we have used the power series expansion of the incomplete Gamma function,

γ(s, x) = xsΓ(s)e−x
∞∑
k=0

xk

Γ(s+ k + 1)
. (2.67)

In Fig. 2.5 we compare the approximate formula with the exact result. As expected, the

approximation improves for larger values of ν.

2.7.4 Errors of different size.

We are now ready to discuss the general case of unequal errors, σi 6= σj.

To understand this case, we fix the value of τ in Eq. (2.46). The distribution of µ is then

Gaussian, with total error,
1

σ2
t

=
N∑
i=1

1

σ2
i + τ 2

, (2.68)

and central value,

µ0 =

(
N∑
i=1

1

σ2
i + τ 2

)−1 N∑
i=1

yi
σ2
i + τ 2

. (2.69)

Thus, experiments with smaller errors are more sensitive to τ than less precise ones. Suppose

that M of the experiments have an error σM , and that σM is much smaller than the error

σ of the rest of the experiments. Then, for σM ' τ � σ the scaling will mainly affect the

experiments with small errors. This resembles the PDG prescription reviewed before, but

we avoid reference to a hard and ad hoc cutoff. Since we were unable to find an analytical

formula for the peak or mean of τ , we proceed with a numerical analysis.

As a first example, we randomly generated eleven fictitious measurement points from a

Gaussian with standard deviation σ = 1 centered at the value of 10. The last point is from
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Figure 2.6: The measurement points with small error are shown in blue, the usual averages
with the PDG scaling in red, and the hierarchical averages in black. The labels at the
horizontal axis show by how many σM the blue points deviate from the gray point. The gray
band represents the ordinary weighted averages of the bulk of measurements.

a Gaussian centered at 10 + 5/
√

10 with σM = 1/
√

10, which is chosen so that its precision

is the same as the combined precision of the other ten.

In Fig. 2.6 we show how the two kind of averages change when we move the central value

of the 11th measurement (in blue) while leaving the other 10 unchanged. The red point

denotes the ordinary weighted average with PDG scaling applied. The black point, on the

other hand, is the average obtained as the result of our Bayesian hierarchical model (α = 10).

Just for orientation, the gray band represents the ordinary average (non-hierarchical) of the

bulk of measurements with the same error. Clearly, as we approach the bulk the combined

error shrinks.

2.8 Applied example: Neutron Lifetime

As I mentioned in the previous section, when the errors are not of the same size the full

distribution needs to be used and integrated numerically. We applied this method to a case

of particular interest in the physics community: the lifetime of the neutron. The process is

n→ p+ e− + ν̄ (2.70)
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Figure 2.7: Neutron Lifetime. The blue points are beam experiments, while the green points
are bottle experiments. The black points are the Bayesian averages, and the red points are
the average with the PDG scaling. We did this averaging for the case when all experiments
are included and also when only bottle experiments are taking into account.

with the amplitude given by

M = [GV p̄γµn−GAp̄γ5γµn] [ēγµ(1 + γ5)ν] . (2.71)

Using first order perturbation theory and integrating over the electron and neutrino energies,

the neutron lifetime can be calculated from this amplitude. The result is

τn =
2π3h̄7

(G2
V + 3G2

A)m5
ec

4fR
, (2.72)

where me is the electron mass, and fR is the result of the integral over the energy spectrum.

The neutron lifetime plus the angular dependence of the decay rate can be used to estimate

the two coupling constants GV and GA. Furthermore, the determination of GV allows to

calculate the first element Vud of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [50, 51]

through the relation9 GV = VudGF , where GF is the Fermi constant which is measured in
9This relation assumes a conserved vector current hypothesis [52, 53], see [54] for a quick and pedagogical

explanation.
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muon decays. The CKM by construction is unitary, and a violation of this property would

imply the presence of new physics, so this is an important test for the Standard Model. I

would like to emphasize that the most precise measurements of GV are super-allowed beta

decays 0+ → 0+ [55–57]. Nevertheless, due to the nature of this processes, only GV can

be constrained. The neutron lifetime is then relevant for two reasons: to complement the

measurements of GV and to get GV /GA which can also put constraint on new physics [58,

59].

There are two types of experiments that measure the lifetime of the neutron: beam and

bottle experiments. A state of art review of them can be found in Ref. [60].

In the so called beam experiments [61–63], a neutron beam is targeted to the decay

volume. The decay volume is a physical space where the neutrons decay. The decay products

(like p+) produced in this region are detected through different methods. After leaving this

region, the neutron beam passes through another detector, which measures the neutron rate.

The neutron lifetime will be then proportional to the neutron rate and inversely proportional

to the rate of products detected.

On the other hand, bottle experiments [64–69], consist on ultra cold neutrons (UCN)

confined inside a bottle. First neutrons at a temperature lower than 1mK are placed in

a container. After waiting some specific time, the number of neutrons inside the bottle

are counted. From here, the neutron lifetime can be calculated. The neutrons are confined

trough several forces, like gravitational, magnetic and Fermi effective potential from coherent

scattering of the neutron from atomic nuclei.

We now apply our method with α = 6 to the results of these experiments. The averaging

and experiments are shown in Fig. 2.7. PDG χ2 scaling (shown in red) yields the lifetime

τn = 879.71 ± 0.78 s, while the Bayesian method (black point to the left) gives τBayes
n =

880.51+0.98
−0.83 s. We find that our Bayesian hierarchical method increases the central value when

the beam experiments are included. We also observe that even when only bottle experiments

are considered, our method still gives a slightly larger average value (τBayes
n = 879.53+0.64

−0.63 s)
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than the PDGmethod (τn = 879.35±0.64 s). This is due to the bulk of the bottle experiments

that prefer lifetimes longer than 880 s. It is important to recall that the tails of the Bayesian

hierarchical model do not fall as fast as a Gaussian, so that there is still a non-negligible

probability for τn to be lower.

2.9 Comparation with other models

There are a couple of papers in the same direction than our work. The first one [70] discusses

the kaon mass in the context of a skeptical combination of experiments, scaling each experi-

mental error independently but correlated. The second one [30] studies the discrepancy that

arises when the PDG scaling is applied to sub-sets of experiments and then to the combi-

nation of the sets, vs. (for example) applying it to the whole data at the same time. The

conclusion is that the χ2/ν prescription used to enlarge the standard deviation does not hold

sufficiency. This means that the scaling is not enough to properly describe the full proba-

bility distribution. Our model would have the same problem had we used the marginalized

(over τ 2) distribution of µ. This is because the “correlations" that emerge through τ 2 would

be absent. Nevertheless, it is clear from Eq. (2.46) that if we use the posterior distribution of

µ and τ 2 of a subset of experiments as the prior for the remaining subset, then the updated

posterior will be the same as combining the whole data set simultaneously.

Another interesting point discussed in Ref. [30] is the fact that the PDG scaling treats

any value of N equally, while for fixed χ2/N the p-value decreases with N . Our model with

α chosen close to zero would aggravate this problem, as there is more scaling for low N as

can be seen in the left plot of Fig. 2.4. However, we can use the freedom to choose a value

of α to improve on this issue, by demanding that the variance of the τ distribution be finite,

which corresponds to α = 6. Indeed, the right plot of Fig. 2.4 shows how for N fixed, our

scaling will intersect the PDG scaling for moderate α.

We have seen that in the case of equal errors, our method is very similar to the PDG.
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On the other hand, for different errors, we have seen that in the Hierarchical Model the

central value of the combined data will in general move towards the experiments with lower

precision, this is because the shift induced by τ 2 affects more the high precision experiments,

so gives more relative weight to the experiments with low precision. This is the previously

mentioned effect that the bulk weights more than a single experiment.

We have shown that our methodology resembles the recommendation of the Particle Data

Group whenever the number of degrees of freedom (data points) is large. Our approach

connects smoothly to cases with fewer degrees of freedom, though. Another important

advantage is that it makes the underlying assumptions in the averaging process transparent.

E.g., a large value of the parameter α appearing in our proposed form of the prior, implies

a strong believe that the experiments do not have an unknown systematic error, while a

small value corresponds to a more agnostic point of view. Our method can be extended to

experiments with correlated errors, but we leave this generalization for the future.

2.10 Other applications of the Hierarchical model

Here I briefly explain how the hierarchical model can be used in other contexts. For example,

in [71] we used a Hierarchical approach to estimate the error on a bound to parton distribution

functions. Let us ignore the physics for the moment, and suppose that some quantity must

lie between a certain region. In other words, given a value of "x" in a (x,y) plane, the value

of y must be between two functions, f1(x) and f2(x). Now, assume that we have experiments

that measure y for several values of x. Since experiments have a finite precision, there is not

full certainty if the true value is inside or outside the mentioned region. The idea is then to

compute the "common" probability that the true value can be outside the region. This is

where the Hierarchichal Model enters. First let us introduce θi, which will be understood as

the probability that true value of one experiment is inside the region. Suppose that the true

value Ai is known, then it is obvious that θi = 1 if Ai is inside the region, while θi = 0 if it
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is not. Mathematically this can be written as:

p (θj|Aj) =

{
δ (θj − 1) for Aj ∈ region

δ (θj) for Aj /∈ region
(2.73)

We can give a prior weight to each of these two cases, trough a prior distribution of the form

p (θj|t) = (1− t) δ (θj − 1) + tδ (θj) , (2.74)

The idea is then to use the data to obtain the values of the hyperparameter t, which measures

the weight between both cases. This is just a Hierarchical Model. The next step is to write

p(θi|data). This can easily be obtained through the well known probability rule

p (θj|data) =
∫
p (θj|Aj) p (Aj|data) dAj , (2.75)

here, p(Aj|data) is just a Gaussian distribution given by the experimental collaborations for

each experiment. Then through Bayes theorem we have

p(t|data) ∝ p(t)
∑
j

∫
p(θj|t)p(θj|data)dθj. (2.76)

This probability distribution can be understood as the distribution of the weight for the two

options: θj = 0 and θj = 1. As τ becomes smaller, there is a larger probability that the true

value is inside the region. In the paper we get

t̄ =
∫ 1

0
t F (t) dt = 0.049± 0.040 , (2.77)

which is actually compatible with zero10.

If the reader is interested and wants more detail on how this result was used I recommend
10The error here is defined as the symmetric error around the mean that contains the 68% probability

mass.
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to check [71]. But now let us jump to a different topic: The Standard Model.
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Chapter Three

Standard Model

In this chapter I will introduce the Standard Model (SM), which unifies the weak, strong

and electric forces into a single model. This introduction will be useful for the next two

chapters, where some of the concepts studied here will be used in detail. A key ingredient

in the Standard Model is the concept of gauge symmetries. Gauge symmetries allow us

to understand forces as the interchange of a particle called the "mediator". Examples of

mediators are the photon, the Z boson, the W boson, the gluon and hypothetically the

graviton. The concept of non Abelian gauge symmetries was introduced in 1954 by C. N.

Yang and R. L. Mills [72] in the context of isotopic spin gauge invariance. The final part of

the paper had a discussion about the mass of the mediator: the conclusion was that they

were not able to explain its origin or size. A few years later in 1961, Sheldon Glashow

combined the weak and electromagnetic interactions under the same gauge theory [73]. But

the mass of the gauge bosons was still a problem of the theory1. The main problem is that an

explicit mass term for the gauge boson would imply breaking of the gauge symmetry. This

was solved later in 1964 via the Higgs mechanism [74, 75], where the mass of the mediator

is acquired when a scalar field (the Higgs boson) acquires a non zero vacuum expectation

value (vev). This mechanism was incorporated later in the Electroweak Standard Model

introduced by Weinberg and Salam [14, 15] in 1967 .
1He introduced the term partial symmetry to avoid this issue.
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3.1 Definitions

The full Lagrangian of the Standard Model is:

LSM = LGauge + LFermion + LHiggs + LY ukawa + LGF + Lghost. (3.1)

The first term (LGauge) contains the kinetic terms and self interactions of the Gauge Bosons

namely,

LGauge = −1

4
Ga
µνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (3.2)

here Ga
µν is the gluon field strength tensor given by

Ga
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbAc (3.3)

and fabc are the structure constants of SU(3) which are defined through the Lie algebra:

[T a, T b] = ifabcT c, (3.4)

where T a are the SU(3) generators of the Lie algebra and gs is the QCD coupling constant.

W a
µν is defined in an analogous way to Ga

µν , except that we change the symmetry group to

SU(2) and also gs → g . This implies that the structure constants are fabc = εabc where ε

is the completely antysimmetric Levi-Civita tensor. After spontaneous symmetry breaking,

we will see that the bosons W 1 and W 2 are linear combinations of the physical charged W±

bosons, and W 3 is a linear combination of the photon and the Z boson. Finally, Bµν is

also defined in the same way as Ga
µν but using U(1) as the symmetry group. This implies

that the structure constants are equal to zero, so the non-Abelian terms vanish and self

interactions for the gauge bosons disappear as in QED. The B boson can be split as a linear

combination of the photon and the Z boson. This linear combination is orthogonal to the

one of the W 3. The second term on the right hand side, LFermion, contains the kinetic terms
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of the fermions. But when the partial derivatives are replaced by the covariant derivatives

∂µ → ∂µ− igW a
µT

a− ig′Y Bµ, this term will also contain the interactions of the gauge bosons

with the the fermion currents.

The third term, LHiggs, contains the kinetic term and potential of the Higgs field. In

a similar way to the kinetic term of the fermions, the partial derivative is replaced by the

covariant derivative, giving rise to the interactions between the Higgs boson (and Goldstone

bosons) and the gauge bosons. After the Higgs acquires a vacuum expectation value, the

gauge fields acquire masses through the Higgs mechanism.

The fourth term, LY ukawa, contains the interactions of the Higgs field with the fermions.

After spontaneous symmetry breaking the fermions acquire a mass. The wide difference

in the mass of the neutrinos is an open question. This is because if they all acquire their

mass from the Higgs vev, then the difference between the yukawa couplings among the

fermions must be huge to explain the measured masses for the neutrinos. A possible solution

to this issue is to include a dimension 5 operator, the so called Weinberg operator. This

will naturally suppress the mass of the neutrinos with the new physics scale. There are

specific UV completions that are very appealing, like the see-saw mechanism, where right-

handed neutrinos are introduced, with large Majorana masses. The mass of this right-handed

neutrinos will then suppress the mass of the light left-handed neutrinos. We will talk more

about this in chapter 5.

The fifth and sixth terms are, as far as I understand, a consequence of our lack of a better

mathematical tool (Quantum Field Theory) to describe relativistic and quantum phenomena

together. LGF is a term that fixes the gauge in which we are working. The gauge freedom

emerges as a consequence of embedding our mass-less particle with two degrees of freedom

in a polarization vector εµ with four d.o.f . The result is that we have to fix the gauge in

our Lagrangian to eliminate the redundancy originated from this embedding. In the case

of non-Abelian gauge theories, this gauge fixing induces a change in the measure of the

path integral. After some algebraic tricks, this change of measure can be rewritten as an
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extra term in the Lagrangian: Lghost. This term contains non physical fields called ghosts,

which have one degree of freedom and obey fermion statistics. These ghosts are key in the

cancellation of the gauge dependence in physical quantities. We will not discuss in detail

how these cancellations occur but if the reader is interested I recommend to revise [76–78]

for further information.

3.2 Higgs Mechanism

The Higgs Mechanism is closely connected to spontaneous symmetry breaking. Spontaneous

symmetry breaking states the following: "If a continuous global symmetry of the Lagrangian

is broken by the ground state of a scalar field, Qi |Ω〉 6= 0, then there are as many mass-

less Goldstone bosons as generators were broken". When this continuous global symmetry

is upgraded to a gauge symmetry, the Higgs Mechanism says: "The degrees of freedom of

the Goldstone Bosons are absorbed by the Gauge bosons, giving them a mass". To see

this explicitly, the unitary gauge [79] is frequently used, in this gauge the Goldstone boson

fields are completely eliminated from the Lagrangian, and only physical degrees of freedom

propagate. Let us now study the Higgs mechanism in the Standard Model. The first thing

that is required is a scalar field that will acquire a vev. Thus, let us introduce scalar field

(the Higgs) H that transforms as a doublet under SU(2), and with hypercharge Y = 1
2
under

the U(1) symmetry of the B bosons. Just as usual, to get the interaction of this field with

the gauge bosons, the partial derivative is promoted to a covariant derivative. The covariant

derivative is then

DµH = ∂µH − igW a
µ τ

aH − 1

2
ig′BµH, (3.5)

and the Lagrangian is

LHiggs = (DµH)†(DµH) + µ2H†H − λ(H†H)2. (3.6)
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Now, we expand the Higgs field around the minimum. To do so we use the Kibble parametriza-

tion,

H(x) = e−2
iτaπa(x)

v

 0

v√
2

+ h(x)√
2

 , (3.7)

where the unitary gauge is defined as the gauge such that the πa fields are not present in

the Lagrangian. Given the form of the breaking, the unbroken generator will be

Q̂ = T̂ 3 + Ŷ (3.8)

which we should identify with the electric charge, since we know that this is the remaining

symmetry after the breaking. The relation between these three generators is known as the

Gell-Mann–Nishijima formula [80]. It is obvious then, that the field h must be neutral, since

T 3 = −1
2
and Y = 1

2
for this field. Inserting this expression in the kinetic term of the Higgs

Lagrangian, and leaving only the terms that are proportional to v2 we get,

L mass
Higgs =

1

8

g2W µaW a
µv

2 + 2gg′BµW b
µ

(
0 v

)
τ b

 0

v

+ g′2BµB
µv2

 . (3.9)

If we define

W+
µ =

1√
2

[
W 1
µ − iW 2

µ

]
W−
µ =

1√
2

[
W 1
µ + iW 2

µ

]
, (3.10)

then

L mass
Higgs =

1

2

g2v2W µ+W−
µ + v2

(
g2 + g′2

)( g√
g2 + g′2

W µ3 − g′√
g2 + g′2

Bµ

)2
 . (3.11)

We can now make another definition,

Zµ =
g√

g2 + g′2
W µ3 − g′√

g2 + g′2
Bµ, (3.12)
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eiL νiL eiR νiR qiL,u qiL,d qiR,u qiR,d h

T3 −1
2

1
2

0 0 1
2

−1
2

0 0 −1
2

Q -1 0 -1 0 2
3

−1
3

2
3

−1
3

0
Y -1

2
−1

2
-1 0 1

6
1
6

2
3

-1
3

1
2

Table 3.1: Standard Model charge assignments.

which leaves the orthogonal linear combination

Aµ =
g√

g2 + g′2
W µ3 +

g′√
g2 + g′2

Bµ, (3.13)

as a mass less particle which we identify as the photon. We define

sin θW ≡
g′√

g2 + g′2
, (3.14)

as the weak mixing angle or Weinberg angle. The study of the running of this quantity with

energy is one of the main topics of this thesis and will be described in the next chapter.

At tree level the weak mixing angle is related in a simple way to other parameters of the

Standard Model. For example, we can identify

M2
W =

g2v2

2
, M2

Z = v2
g2 + g′2

2
, (3.15)

so

sin2 θW = 1− M2
W

M2
Z

, (3.16)

We are now ready to review the interactions of the gauge bosons with fermions.

3.3 Interaction with Fermions

The hypercharge of the fermions can easily be obtained from the Gell-Mann–Nishijima for-

mula. First we embed the left-handed charged leptons and left-handed neutrinos in a doublet
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with quantum numbers T ν3 = 1
2
and T l3 = −1

2
under the SU(2) mentioned previously. Then,

the right-handed leptons are defined to transform as singlets under this symmetry. We also

arrange the left-handed quarks as doublets, and the right-handed quarks as singlets. Because

this symmetry only interacts with left-handed fields, we call this an SU(2)L symmetry. To

compute the hypercharge we simply use

Y = (Q− T3), (3.17)

for example, for a left-handed charged fermion we have Y = (−1 + 1
2
) = −1

2
. In the same

way, for a right-handed charged lepton we would have Y = −1. Table 3.3 shows the SM

particles with their SU(2)L ⊗ U(1)Y quantum numbers. With the hypercharge known, we

can write the kinetic Lagrangian for the fermions,

Lfermion = iΨ̄i
Lγ

µDµΨi
L+iēiRγ

µDµe
i
R+iQ̄i

Lγ
µDµQ

i
L+iq̄iu,Rγ

µDµq
i
u,R+iq̄id,Rγ

µDµq
i
d,R (3.18)

where i runs over all the families. Here ΨL and QL are the left-handed lepton and quark

doublets respectively. eR is a right-handed charged lepton and qu,R and qd,R are right-handed

quarks. For a general field ψ the covariant derivative is

Dµψ = ∂µψ − igW a
µ τ

aψ − ig′Y Bµψ, (3.19)

where the term proportional to the τa is zero for all the right-handed fields. To study the

running of the weak mixing angle, we will need the coupling of the fermions to the Z and

the photon. Thus we rewrite the covariant derivative in terms of those fields. After doing

so, it is straightforward to find that the interaction between the Z and the photon with the
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fermions is given by (ignoring the strong force),

L fermions
int = i

∑
j

ψ̄jγ
µ

[
Aµ

gg′√
g2 + g′2

Qj + Zµ
gg′

sin θW cos θW
√
g2 + g′2

(
t3j − sin2 θWQj

)]
ψj,

(3.20)

where we are summing over all chiralities, families and fermion type. Due to the form of this

equation, we can easily see that we must have

e =
gg′√
g2 + g′2

, (3.21)

and,

L fermions
int = i

∑
j

ψ̄jγ
µ
[
AµeQj + Zµ

e

sin θW cos θW

(
t3j − sin2 θWQj

)]
ψj. (3.22)

Since the charge Qj is the same for left and right-handed fields, the interaction with the

photon is of vector type. On the other hand, for the interactions with the Z bosons, only the

left ones will contribute to t3. Thus if we want to consider only the vector interaction, we

should divide by two this contribution due to the form of the projector PL. Thus the vector

interaction between the fermions and the Z and photon is given by

L fermions
int = i

∑
i

ψ̄iγ
µ
[
AµeQi + Zµ

e

2 sin θW cos θW

(
t3i − 2 sin2 θWQi

)]
ψi, (3.23)

where now the sum is over each Dirac field, taking t3 to be the eigenvalue of the corresponding

left-handed field. We define the vector coupling as giV = t3i − 2Qi sin
2 θW .
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3.4 Renormalization

One of the most interesting and intriguing topics in Quantum Field theory is renormalization.

The idea behind it is that the "bare" parameters such as masses or couplings that appear

in the Lagrangian are not necessarily the same as the ones measured in experiments. To

refresh our minds about this concepts, let us start with the QED Lagrangian.

The QED Lagrangian (ψ is the field of the charged fermion) is

LQED = −1

4
F (0)
µν F

(0)µν + i ¯ψ(0)γµ
(
∂µ + ie0A0

µ

)
ψ(0) +m(0) ¯ψ(0)ψ(0). (3.24)

But interesting things happen when interactions are included. For example, the residue and

pole of the propagators change. In a similar way, the effective values of the couplings also

change. To take into account these effects, it is a useful and common practice to re-scale the

fields and parameters. In this way we can actually force these parameters to be equal to the

physical values (like masses in the on shell-scheme). First, let us assume that we are in a

space of 4− d dimensions. Now, let us rewrite the parameters and fields as

ψ(0) = Z
1
2
2 ψ e(0) = Zeeµ

4−d
2 A(0)

µ = Z
1
2
3 Aµ m(0) = Zmm, (3.25)

where the renormalization scale µ appears because we would like e to be dimensionless, and

e(0) is only dimensionless in 4 dimensions. Thus we have,

LQED = −1

4
Z3FµνF

µν + iZ2ψ̄γ
µ
(
∂µ + iZeZ

1
2
3 3eAµ

)
ψ + ZmZ2mψ̄ψ. (3.26)

After particle loops are included in physical processes, infinities will appear. An inter-

mediate step in the renormalization procedure is regularization, which is the method that

we use to handle these infinities. The regularization of our integrals (the way we extract

the infinities in them) will be done in dimensional regularization, were we set the dimension
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Figure 3.1: Diagrams that contribute the the photon two point Green function.

equal to d = 4 − ε. The infinities in the loops will be absorbed in the parameter ε in such

way that when ε→ 0 the relations between bare and physical quantities become divergent,

or in other words, the relation between the bare parameters and the renormalized ones will

contain a power expansion of the form ε−n where n is the number of loops that are to be

computed. This implies that if we rewrite Zi = 1 + δZi, then at one loop, we should have

something of the form δZi = α ≡ e2

4π
( 1
c1ε

+ c2), where c1 is a constant to be computed, and

c2 depends on the renormalization scheme. The δZi are usually called counter terms.

3.4.1 Vacuum Polarization Function

Let us compute the quantum corrections to the two-point Green function for the photon in

momentum space. This will lead us to obtain Z3. I will only sketch the steps, since this

is done in any standard book of Quantum Field Theory [76, 77, 81]. Here I will follow the

notation of [76]. At tree level in an class of gauges we have for the photon propagator

iDtree
µν (p) =

−i
p2 + iε

[
gµν − (1− ξ)pµpν

p2

]
. (3.27)

To get this propagator, an extra term must be included in the Lagrangian, (which is the

result of performing a path integral over the gauge configurations), which is

Lfix = − 1

2ξ(0)
(∂µA(0)

µ ). (3.28)
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Note that we have also used bare quantities here. We rewrite ξ0 = Zξξ to have everything

written in terms of the renormalized quantities. At one loop, the diagrams that contribute to

the running are given by Fig. 3.1. The first element is just the bare propagator, the second

one contains a fermion loop, and the third diagram corresponds to the counter terms. The

counter terms have two contributions, one that comes from scaling the kinetic term of the

photon field in the Lagrangian, and another one that comes from the gauge fixing term in

the Lagrangian,

iDµν = iDtree
µν + iDtree

µα

(
Παβ(p)− iδ3(p2gαβ − pαpβ) + i

δξ − δ3
ξ

pαpβ
)
iDtree

βν + ... (3.29)

where Παβ(p) comes from the fermion loop. Due to Ward Identity [82], this fermion loop must

be proportional to p2P µν ≡ p2gµν−pµpν . Then we can write Πµν(p) = −ie2 (p2gµν − pµpν) Π(p2)

so

iDµν = iDtree
µν + iDtree

µα

[
−i(p2gαβ − pαpβ)

(
e2Π(p) + δ3

)
+ i

δξ − δ3
ξ

pαpβ
]
iDtree

βν + ... (3.30)

the propagator contains two terms: a transverse part and a longitudinal one. This is clearly

stated if we write

iDtree
µν (p) =

−i
p2 + iε

[
Pµν + ξ

pµpν
p2

]
. (3.31)

The projector Pµν gives Pµνpµ = 0 and PµνP να = Pα
µ so the power expansion of the propa-

gator can be written as

iDµν(p) =
−i

p2 + iε

[
Pµν(1− e2Π(p)− δ3) + ξ

pµpν
p2

]
+iDtree

µα

[
i
δξ − δ3
ξ

pαpβ
]
iDtree

βν + ... (3.32)
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Since the computation of the vacuum polarization function is done in any standard book of

quantum field theory, here I will just quote the one loop result, which is

Π(p2, µ2) =
1

2π2

1∫
0

dxx(1− x)

[
2

ε
+ ln

(
µ2

m2 − p2x(1− x)

)]
, (3.33)

It is clear that δ3 is related to the transverse polarization and hence to the physical degrees

of freedom. On the other hand δξ is related to the longitudinal part which is not physical.

Let us focus then on the transverse part. If we force the residue of this part to be equal to

one, then we must have δ3 = −e2Π(0), where we may define e as the value of the charge at

zero momentum. This is the on-shell renormalization scheme. On the other hand, the MS

scheme is defined as that one where δ3 absorbs only the divergent terms2 contained in Π(p).

Then we must have

δ3 = −e(µ)2

2π2

1∫
0

dxx(1− x)
2

ε
= −e

2(µ)

6π2ε
. (3.34)

This implies that the pole of the transverse part is still at zero, with residue −i(1 −

e2(µ)Π̄(0, µ)) where Π̄ is the fermion vacuum polarization function with the infinity part

removed.

3.4.2 Renormalization group equation in QED

If we want the propagator (including charge at the external legs) to be a µ independent quan-

tity, then the µ dependence that appears in e(µ) must necessarily cancel the µ dependence

in Π̄. Then we must have

d

d lnµ2

[
e2(µ)

(
1− e2(µ)Π̄(0, µ)

)]
= 0, (3.35)

using e2 = 4πα we get (to order α2)

2To be more specific, it is the MS scheme the one that only absorbs the infinities. The MS scheme also
absorbs some well defined finite terms.
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dα

d lnµ2
= 4πα2 (µ)

[
dΠ̄ (0, µ)

d lnµ2

]
(3.36)

so the one loop solution is given by

1

α(µ)
− 1

α (µ0)
= 4π

[
Π̄ (0, µ)− Π̄ (0, µ0)

]
(3.37)

or

α(µ) =
α (µ0)

1− α (µ0) 4π
[
Π̄ (0, µ)− Π̄ (0, µ0)

] (3.38)

If we had explicitly computed the derivative of the vacuum polarization function we

would have obtained,
dα(µ)

d lnµ2
=
α2(µ)

3π
, (3.39)

which is known as the RGE equation for the electric charge. In this derivation we have

assumed that in a physical process, the µ dependence of the external legs in some scattering

amplitude is cancelled, i.e., that the µ dependence of the fermion legs is cancelled by the µ

dependence of the vertex. This cancellation turns out to happen in QED, and it is closely

related to the Ward-Takashi identity [82, 83].

The RGE equation can easily be generalized to higher orders. Once more loops are

included in the theory, the RGE will become a power series in α̂, so we can rewrite it as

dα̂(µ)

d lnµ2
= β(α̂) = −π

(
α̂

π

)2 L−1∑
n=0

βn

(
α̂

π

)n
, (3.40)

Where L is the number of loops up to which the RGE has been computed. β is known as

the beta function.

There is a more formal way to derive the RGE equation trough the counter terms. The
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idea is that the bare charge is related to the renormalized charge, by

e(0) = Zeeµ
4−d

2 . (3.41)

On the other hand, the correction to the vertex interaction between the photon and a pair

of fermions should be absorbed in Z1 ≡ ZeZ
1
2
3 Z2 as can be seen from Eq. (3.26). Z1 is a

counter term that absorbs the infinities that come from the vertex correction to the fermion

photon interaction. The remaining counter terms are Z2, Z3 and Ze. We have just computed

the value of Z3 through the vacuum polarization function. Z2 can be computed from the

correction to the external leg of a fermion i.e., the emission and absorption of a photon on

the same fermion leg. After computing Z1, Z2 and Z3 it is straightforward to solve for Ze,

Ze =
Z1

Z
1
2
3 Z2

. (3.42)

Here is where the Ward identity enters. In its original form, the Ward identity tells us that

Z1 = Z2. Then

e(0) = Z
− 1

2
3 e(µ)µ

ε
2 , (3.43)

taking the log

ln e(0) = −1

2
lnZ3 + ln e(µ) +

ε

2
lnµ, (3.44)

multiplying by two

2 ln e(0) = − lnZ3 + 2 ln e(µ) +
ε

2
2 lnµ, (3.45)

or

ln e(0)2 = − lnZ3 + ln e(µ)2 +
ε

2
lnµ2, (3.46)

since the left hand side is independent of µ we must have

d

d lnµ2

[
− lnZ3 + ln e(µ)2 +

ε

2
lnµ2

]
= 0. (3.47)
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On the other hand, since Z3 = 1− 2α
3πε

then

lnZ3 = − 2α

3πε
→ d

d lnµ2
lnZ3 =

d lnZ3

dα

dα

d lnµ2
= − 2

3πε

dα

d lnµ2
. (3.48)

Plugging in this result back into Eq. (3.47) we must have (we have used e2 = 4πα)

2

3πε

dα

d lnµ2
+
d lnα

d lnµ2
+
ε

2
= 0, (3.49)

or equivalently
2α

3πε

dα

d lnµ2
+

dα

d lnµ2
+
εα

2
= 0. (3.50)

Now we can solve this equation perturbatively. First suppose that

dα

d lnµ2
= Aα +Bα2 + ... , (3.51)

then
2α

3πε

(
Aα +Bα2

)
+ Aα +Bα2 +

εα

2
= 0 , (3.52)

grouping by powers of α

(
2

3πε
A+B

)
α2 +

(
A+

ε

2

)
α +

2α3

3πε
B = 0 , (3.53)

we arrive to

A = − ε
2

B = − 2

3πε
A =

1

3π
, (3.54)

then, Eq. (3.51) turns out to be

dα

d lnµ2
= −εα

2
+
α2

3π
+ ... , (3.55)
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which, in the limit when ε→ 0 gives

dα

d lnµ2
=
α2

3π
+ ... (3.56)

the fact that the divergences originated by ε vanished is a consequence of the renormalizability

of the theory. This result is exactly the same result that we got before, and it is the RGE

equation for α in the MS scheme. To be consistent with the notation of our paper, I will

denote any quantity in this scheme by a caret. For example I will replace α→ α̂.

To conclude this subsection, I would like to talk about the running of the charge in the

on-shell scheme. In this case the renormalized charge is the same as the charge measured

at p2 = 0. Then the Z3 term absorbs all the µ dependence. Technically speaking there

is no running of the charge in terms of µ. Nevertheless, one can define an effective charge

where the "running" is given explicitly by the physical momenta p2. The dependence of this

effective charge on the physical momenta can easily be obtained performing a geometric sum

of an arbitrary number of insertions of one-particle irreducible diagrams. To one loop this

re summation is given by

α(p) =
α0

1 + 4πα0 (Π(p, µ)− Π(0, µ))
. (3.57)

3.4.3 Matching relations at one loop

In this thesis, we will use an effective field theory framework. This is a wide topic that has

had a tremendous impact and applications in recent years. A list of lectures on the topic

can be found in [84, 85]. Here I will base the analysis of this section on the lectures given

by Grozin [85].

Suppose that we have QED with two types of particles, electrons and muons. If the energy

of the process is small, the effects of the muons should be suppressed by a power expansion
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of the form E
mµ

. The full Lagrangian includes both particles: electrons and muons,

LQED = −1

4
F (0)
µν F

(0)µν + i
∑
j

¯
ψ

(0)
j γµ

(
∂µ + ie0A0

µ

)
ψ

(0)
j +

∑
j

m
(0)
j

¯
ψ

(0)
j ψ

(0)
j , (3.58)

where m2 = M is the mass of the muon. The effective Lagranginan must respect the U(1)

symmetry and it is a power expansion in 1
mµ

with no muon fields present in the theory. It is

clear then, that we must have something of the form

L ′
QED = −1

4
F ′(0)µν F

′(0)µν + i ¯ψ′(0)eγ
µD′µψ

′(0)
e +m′(0)e

¯ψ′(0)eψ
′(0)
e +

c

mµ

ψ̄′eF
′(0)µνσµνψ

′
e + O(

1

m2
µ

),

(3.59)

The effective theory should give the same physical results as the full theory. To ensure this,

matching conditions between fields and couplings must be computed. Here we will only

worry about the matching condition of the photon field3. Thus we define

A = (ζA)
1
2 A

′
. (3.60)

The factor ζA will scale the pole of the propagator. The next step in the matching procedure

is to require the photon propagator to have the same residue for the pole at p2 = 0. The MS

scheme is defined as the one where the counter terms absorb only the UV infinities. Then

the residue of the propagator for the full theory is given by

Rfull = 1− e2Π̄(0, µ2,m2
e)− e2Π̄(0, µ2,m2

µ) (3.61)

while the residue for the effective theory is given only by the electron contribution

Reff = 1− e2Π̄(0, µ2,m2
e) (3.62)

3This is enough to compute the matching of α due to the Ward-Takashi identity.
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If we want both theories to have the same residue we must have

ζA = 1− e2Π̄(0, µ2,m2
µ) (3.63)

up to high order corrections. From the Ward identity, it can be shown that the decoupling

constant for the electric charge is ζe = ζ
− 1

2
A , which implies that the decoupling constant for

α is equal to ζα = ζ−1A . Then we must have

α(µ) = α′(µ)

[
1− 2α(µ)

3π
ln

(
µ

mµ

)]
. (3.64)

From here it is clear that if we match at mµ there is no discontinuity in the fine structure

constant α at the one loop level.

Now, what is the next order correction? Well, for leptons it would be the two-loop QED

diagrams, like the one with a photon inside the one loop bubble. But for quarks we can have

a gluon inside the quark loop. This gives mixed QED-QCD corrections. This is the topic of

the next subsections.

3.4.4 Running of α̂s

Before taking into account the effect of QCD in the running of α̂ we must understand the

running of the strong coupling constant. As we have mentioned before, QCD is the quantum

field theory that emerges from the SU(3)c gauge symmetry among quarks. As consequence

of this non Abelian gauge theory there will be interactions among the gauge bosons. This is

different to the Abelian case (like QED) where the photon does not have an electric charge

and cannot couple to itself. This difference has an important implication on the running

of the gauge coupling gs. Due to the different statistics between bosons and fermions, the

vacuum bubbles originated from bosons and fermions will have opposite sign, so if there are

not enough fermions in the theory, the boson bubbles will dominate and the sign of the beta
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function will be opposite to the one in the Abelian case (β > 0). A positive β function

implies that as we increase the scale, the coupling also increases. On the other hand, if the

beta function is negative the coupling constant increases as we decrease the energy scale4.

At some point the coupling is so large that the theory becomes strongly coupled and non

perturbative. The one loop RGE for the strong coupling constant is derived in any standard

QFT book. The result is
dα̂s(µ)

d lnµ2
=
α̂2
s

π

(
nf
6
− 11

4

)
(3.65)

where we defined α̂s ≡ g2
s

4π
. If nf < 33/2 the beta function is negative and α̂s becomes large

at low scales. The solution to this equation is

α̂s(µ) =
α̂s(µ0)

1− α̂s(µ0)
π

(
nf
6
− 11

4

)
ln µ2

µ2
0

. (3.66)

Due to this non perturbative behavior it is necesary to compute many loops to get

accurate results. The five loop QCD running constant has already been computed in 2016

[87]:

µ2 d

dµ2
α̂s(µ) = −π

(
α̂s
π

)2∑
i=0

βQCDi

(
α̂s
π

)i
, (3.67)

where

βQCD0 =
1

4

{
11− 2

3
nf ,

}
, β1 =

1

42

{
102− 38

3
nf

}
, (3.68)

βQCD2 =
1

43

{
2857

2
− 5033

18
nf +

325

54
n2
f

}
, (3.69)

βQCD3 =
1

44

{
149753

6
+ 3564ζ3 −

[
1078361

162
+

6508

27
ζ3

]
nf (3.70)

+
[
50065

162
+

6472

81
ζ3

]
n2
f +

1093

729
n3
f

}
,

4This is the idea behind asymptotic freedom [86]: non Abelian gauge theories become weakly coupled as
the energy becomes larger.
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(3.71)

βQCD4 =
1

45

{
8157455

16
+

621885

2
ζ3 −

88209

2
ζ4 − 288090ζ5

+ nf

[
−336460813

1944
− 4811164

81
ζ3 (3.72)

+
33935

6
ζ4 +

1358995

27
ζ5

]
+ n2

f

[
25960913

1944
+

698531

81
ζ3 −

10526

9
ζ4 −

381760

81
ζ5

]
+ n3

f

[
−630559

5832
− 48722

243
ζ3 +

1618

27
ζ4 +

460

9
ζ5

]
+ n4

f

[
1205

2916
− 152

81
ζ3

]}
, (3.73)

and nf denotes the number of active quark flavors.

In the same way as for QED one can compute the matching conditions for QCD. This

has already been computed to four loops in [88, 89], and their result is

α̂′s(µ)

α̂s(µ)
= 1 +

α̂s(µ)

π

(
−1

6
ln
µ2

m̂2

)
+

(
α̂s(µ)

π

)2 (
11

72
− 11

24
ln
µ2

m̂2
+

1

36
ln2 µ

2

m̂2

)

+

(
α̂s(µ)

π

)3 [
564731

124416
− 82043

27648
ζ(3)− 955

576
ln
µ2

m̂2
+

53

576
ln2 µ

2

m̂2
− 1

216
ln3 µ

2

m̂2

+ nl

(
− 2633

31104
+

67

576
ln
µ2

m̂2
− 1

36
ln2 µ

2

m̂2

)]
+

(
α̂s(µ)

π

)4 [
291716893

6123600

+
3031309

1306368
ln4 2− 121

4320
ln5 2− 3031309

217728
ζ(2) ln2 2 +

121

432
ζ(2) ln3 2− 2362581983

87091200
ζ(3)

−76940219

2177280
ζ(4) +

2057

576
ζ(4) ln 2 +

1389

256
ζ(5) +

3031309

54432
a4 +

121

36
a5 −

151369

2177280
X0

+
(

7391699

746496
− 2529743

165888
ζ(3)

)
ln
µ2

m2
h

+
2177

3456
ln2 µ

2

m̂2
− 1883

10368
ln3 µ

2

m̂2
+

1

1296
ln4 µ

2

m̂2

+nl

(
−4770941

2239488
+

685

124416
ln4 2− 685

20736
ζ(2) ln2 2 +

3645913

995328
ζ(3)

− 541549

165888
ζ(4) +

115

576
ζ(5) +

685

5184
a4 +

(
−110341

373248
+

110779

82944
ζ(3)

)
ln
µ2

m̂2

− 1483

10368
ln2 µ

2

m̂2
− 127

5184
ln3 µ

2

m̂2

)
+ n2

l

(
− 271883

4478976
+

167

5184
ζ(3) +

6865

186624
ln
µ2

m̂2

− 77

20736
ln2 µ

2

m̂2
+

1

324
ln3 µ

2

m̂2

)]
+ O

( α̂s(µ)

π

)5
 , (3.74)
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Figure 3.2: Quark diagrams that contribute to the photon two-point Green’s function.

where ζ(n) is Riemann’s zeta function, an = Lin(1/2) =
∑∞
k=1 1/(2kkn) and X0 is a constant

with value given in [88, 89]. With an input value at some scale µ0 for α̂s(µ0) (typically

µ0 = Mz) we can obtain the full running of the strong coupling constant using the RGE

and the matching conditions. The running can be solved numerically by explicit integration

or approximated, being careful of re-summing all the logarithms to the respective order.

A compendium of methods and algorithms to re-sum the logs can be found in [90]. As

we increase the number of loops we get more and more accurate approximations in the

perturbative region of the theory. Unfortunately it gives us no useful results for the non-

perturbative limit. To get useful results in that region, one usually has to rely on other

methods, such as dispersion relations.

3.4.5 QCD contribution to the running of α̂

The type of diagrams that give a contribution to the running of α at two loops in QCD are

shown in Fig. 3.2. These diagrams will contribute in two ways, in the RGE running and in

the matching condition. The RGE running can be obtained in the usual way: computing ZA

and using it in the relation between the bare charge and the renormalized charge. Another

way is to extract the logs from the high energy expansion of the vacuum polarization function,

or from the logs of Π̄(0, µ). The one-loop QED and two loop QCD RGE for the fine structure

constant is [91]

µ2 dα̂

dµ2
=

α̂

3π

[∑
i

KiQ
2
i

]
, (3.75)
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where Qi is the charge of the fermion in the loop (it appears in the vertices in the one loop

bubble diagram), Ki is equal to one for charged leptons, and Ki = NC
i

(
1 + α̂s

π

)
for quarks

(where NC
i = 3 is the number of colors). These contributions come from diagrams like the

one shown in Fig. 3.2 where a gluon can be interchanged by the quarks in the loop.

For the RGE matching we must also include the constant terms in Π̄(0, µ). These terms

can be obtained from the low energy expansion5 of this vacuum polarization function in

[92–95]. In the case of quarks, we have [93]

Π̄(0, µ,m) =
Q2
i

4π2

[
ln
µ2

m2
+
α̂s(µ)

π

(
15

4
+ ln

µ2

m2

)]
, (3.76)

where m is the QCD pole mass and Qi is the charge of the corresponding quark. Note the

that the coefficient of the log in the α̂s/π term is the same as the coefficient of the first order

logarithm. This is equivalent to our statement that for quarks Ki = NC
i (1 + α̂s/π).

In our work we use the MS mass, denoted as m̂(µ). Thus we need to change m by m̂.

The relation between both masses is given in [93]. To order α̂s the relation is

m̂(µ)

m
= 1 +

α̂s
π

(
−4

3
− ln

(
µ2

m2

))
, (3.77)

and we have

Π̄(0, µ, m̂) =
Q2

4π2

[
ln

µ2

m̂2(µ)
+
α̂s(µ)

π

(
13

12
− ln

µ2

m̂2(µ)

)]
. (3.78)

With this results and Eq. (3.63) we get that the decoupling relation of the fine structure for

a quark of charge Qi at one loop in QCD at µ = m̂(µ) is

α̂(m̂)

π
=
α̂′(m̂)

π

[
1 +

α̂′(m̂)

π
Q2
i

α̂s(m̂)

π

13

12

]
. (3.79)

In an ideal world, where QCD would be perturbative, we would have everything to
5[92] already computed the decoupling relation for the QED fine structure constant at order α3

s
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compute the running of the fine structure constant. The only inputs required would be the

value of the fine structure constant at zero, the masses and charges of the particles involved

in the loops, and the value of α̂s at some scale. Then, we can solve the RGE numerically or

re-sum the logs with an approximate analytical formula [96]. Nevertheless, due to the non

perturbative nature of QCD, one more ingredient needs to be added to this formula: the

quark contributions at low energies. This is the topic of the next section.

3.4.6 Breaking of perturbation theory, dispersion relations

As we have mentioned before, if QCD would be perturbative, this is all we would need here.

Once we have the RGE formula we get the full running. Nevertheless, there is a problem

that emerges once QCD is included in the theory: at low energies the theory becomes

non perturbative. Then we must change our method to compute the vacuum polarization

function and rely on experimental results. The vacuum polarization from quarks (which are

the ones affected by QCD) is an analytic function, with a branch-cut along the real positive

axis. This branch cut starts at s = 4m2
π, which is the energy required to produce a pion

pair. Using Cauchy theorem, we can find the value of the vacuum polarization function at

any scale,

Π̄(p, µ) =
1

2πi

∮ Π̄(p′, µ)

p′2 − p2
dp′2 (3.80)

where we use the contour shown in Fig. 3.3. At low energies, we do not have an equation for

this vacuum polarization function, due to the non perturbativity of the series. Nevertheless,

let us continue with the computation. The path integral is (I will rewrite Π̄(p, µ) as Π̄(p2, µ)

since we know that it is really a function of p2)

Π̄(p2, µ) =
1

2πi

4m2
π∫

R

Π̄(t− iε, µ)

t− iε− p2
dt+

1

2πi

R∫
4m2

π

Π̄(t+ iε, µ)

t+ iε− p2
dt+

1

2πi

∫
C

Π̄(p′2, µ)

p′2 − p2
dp′2, (3.81)
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Figure 3.3: Contour to obtain α from experimental results

Figure 3.4: R(s) for different center of mass energy s.

where C denotes an integral along the circle. Now we use the fact that for an analytical

function, f(z∗) = f(z)∗, and with a bit of algebra we get,

Π̄(p2, µ) =
1

π

R∫
4m2

π

ImΠ̄(t, µ)

t− p2 − iε
dt+

1

2πi

∫
C

Π̄(p′, µ)

p′2 − p2
dp′2. (3.82)

The next step is to use the optical theorem, which relates the imaginary part of the

vacuum polarization function to the square of the amplitude, or in other words to a cross

section. In this case we are taking into account only the contributions of hadrons, since
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for leptons we can compute everything in a perturbative way. Experimental collaborations

usually quote R(s) (shown in Fig. 3.4 ) which is defined as the ratio

R(s) ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (3.83)

It is straightforward to relate this quantity to ImΠ̄(p2, µ) with the help of the optical theorem,

with the result R(s) = 12πImΠ̄(s, µ). Note that the left-hand side of this equation must not

depend on the renormalization scale µ, so it might seem that there is something odd going

on here, but if the computation is explicitly done, it turns out that the imaginary part of

the vacuum polarization function is µ independent as it should be. Now, let us compute the

contribution to the running of α̂ of the light quarks. To compute this running, we need to

calculate Π̄(0, µ/µ0). Consider the following trick [96]: set the radius R of the circle to be

equal to µ2 (the renormalization scale), and p2 equal to 0. Thus we get

Π̄(0, µ) =
1

12π2

µ2∫
4m2

π

R(t)

t− iε
dt+

1

2πi

∫
C

Π̄(p′2, µ)

p′2
dp′2. (3.84)

we see that if µ = 4m2
π then the contribution from the first term in the right-hand side is

equal to zero. The second term will be later understood as a matching condition from a

theory without light quarks to a theory which contains them.

The idea of splitting Π̄(0, µ) in this way is to choose a µ such that the circle integral can be

performed perturbatively while the integral over the line is computed using the experimental

data. It is a smart idea to choose a µ to reduce the error, taking the most advantage of both,

the experimental and the theoretical estimations. A common value of such µ is 2 GeV [97].

If we write the RGE running as

α̂(µ) =
α

1−∆hadα̂(µ)−∆lepα̂(µ)
, (3.85)
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where α is the fine structure constant at zero momentum and compare with Eq. (3.38) we

get

∆hadα̂
(3)(2.0 GeV) =

α

3π

4.0GeV2∫
4m2

π

R(t)

t− iε
dt− 2iα

∫
C

Π̄(p′2, 2.0 GeV)

p′2
dp′2. (3.86)

Here, the superscript (3) means that we are only considering the three light quarks. We

can follow a similar approach to compute the hadronic contribution to the running of the

effective fine structure constant. Except that in this case, the running is given by the

"physical" momenta p2. Then in the on-shell scheme ∆α(p2) = −4πα
(
Π̄(p2, µ)− Π̄(0, µ)

)
(see Eq.(3.57)). So we need to compute the difference Π̄(p2, µ) − Π̄(0, µ). To do so, we use

Eq. 3.82 with R→∞. After a bit of algebra, it is easy to obtain

Π̄(p2, µ)− Π̄(0, µ) =
p2

12π2

∞∫
4m2

π

R(s)

s(s− p2 − iε)
ds. (3.87)

There is another consideration that we have to take into account here. When p2 < 0 (t-

channel), the vacuum polarization function is real. On the other hand, when p2 > 4mπ2 , like

in the s-channel, the vacuum polarization function can acquire an imaginary part. To get

a real α in the s channel, we define ∆α as the real part of this difference. Actually, we are

formally not allowed to take explicitly the value of p2 in the real axis above the threshold

4m2
π, due to branch cut on this axis. Nevertheless, we can take the limit when we include

a small imaginary part for p2 and taking the limit when this imaginary term goes to zero.

With all this in mind we can take

∆α(M2
Z)had = −αM

2
Z

3π

∞∫
4m2

π

R(s)

s(s−M2
Z − iε)

ds. (3.88)

The real part is picked up for this integral if it is computed as the Cauchy principal value

[98].
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3.5 The running of the weak mixing angle

In previous sections I have highlighted how the renormalization procedure takes place in

QCD and QED. Now it is time to explain how this procedure takes place in the Standard

Model. This is a wide and complex topic and it is not the intention of this thesis to explain

it in full detail. In this section I follow and compress the results explained in [99–104]

First, let me recall that at tree level the following relations of the Standard Model hold,

sin2 θW = 1− M2
W

M2
Z

=
g′2

g2 + g′2
=

πα√
2GFM2

Z cos2 θW
. (3.89)

Nevertheless, when loops appear things start to get messy. Different collaborations use differ-

ent definitions of the weak angle, depending on the quantities measured by the experimental

collaborations. There has been discussions and papers that tackle these different definitions

of the weak mixing angle [99, 101]. A common definition is the on-shell weak mixing angle,

which imposes the relation

sin2 θW = 1−
M2

poleW

M2
poleZ

, (3.90)

to all orders in perturbation theory. This definition is easy to understand, but it has the

drawback that some observables have an enhanced dependence onmt [105], leading to a weak

mixing angle with larger uncertainty. On the other hand, we have the MS scheme where the

weak mixing angle is defined as

sin2 θ̂ =
ĝ′2

ĝ′2 + ĝ2
, (3.91)

which is a theoretician definition, and sometimes its physical meaning is somewhat more ob-

scure. The advantage is that it is easy to implement, and it has a straightforward connection

and applications to BSM models like Grand Unification. It also has the advantage that the

inclusion of hadrons corrections can be implemented in a systematic way, which is the main

topic of the next chapter. Now let us give a brief explanation of the renormalization of the
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Standard Model. The scalings of the couplings and fields are the following6

W a
µ →

(
ZW

3

)
W a
µ , Qi

L →
(
Zi
qL

)
Qi
L,

Bµ →
(
ZB

3

)
Bµ, qiu,R →

(
Zi
qu,R

)
qiu,R,

Ψi
L →

(
Zi
ψL

)
Ψi
L, H → (ZH)

1
2 H,

ψiR →
(
Zi
ψR

)
ψiR, g → ZW

g

(
ZW

3

)− 3
2 g,

v → (ZH)
1
2 (v − δv) , g′ → ZB

g′

(
ZB

3

)− 3
2 g′,

µ2 → (ZH)−1 (µ2 − δµ2) , yju → (ZH)−
1
2 Zj

yy
j
u,

λ→ (ZH)−2 Zλλ,

(3.93)

To compute the running of the weak angle it is easier to go to the basis of W,Z and γ. The

counter terms of the W3 and A, are related to the ones of the Wand B by 7

 δZγ
e(3)

δZZ
gz(3)

 =

 sin2 θ cos2 θ

cos2 θ sin2 θ


 δZW

g(3)

δZB
g′(3)

 . (3.94)

A nice and reassuring feature of the weak angle, is that we do not need to compute the value

of all the counter terms in the MS scheme to get its running. Actually, the only thing that

we need are the counter terms related to the masses of the gauge bosons, or the γZ mixing.

The mass counter terms can be obtained from the pole of the Z and W propagators. Due to

the symmetries and structure of the Lagrangian, these counter terms will be functions of the

ones defined in Eq. (3.94), and in consequence functions of the original counter terms from

Eq. (3.93). The first step to get the renormalization constants for the masses is to compute

the one loop correction to the propagator of the Z gauge boson. In this section I will only
6One can choose the counter term for the Higgs vaccum in such a way that it cancels the linear term in

the Higgs potential induced by tadpole diagrams, to keep the relation

v =
2µ√
λ

(3.92)

remains valid for the renormalized pararameters.
7Zi = 1 + δZi
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consider the contribution that comes from a diagram with a fermion running in an internal

bubble just like the one in Fig. 3.1 but with external Z bosons. This one loop diagram can

be split in a term proportional to gµν and another one proportional to pµpν . To compute

the pole of the Green’s function, we only need the part proportional to gµν . Furthermore,

the pµpν term is suppressed in physical amplitudes by a factor of m2
i /M

2
V . Thus we get

iDZ
µν(p) =

−igµν

p2 −M2
Z

(
1 + (ΠZZ (p) + δM2

Z − δZZ
3 (p2 −M2

Z))
1

p2 −M2
Z

)
+ pµpν terms,

(3.95)

where ΠZZ (p) is the term proportional to gµν in the one loop diagram, δM2
Z is the counter

term that relates the mass in the corresponding scheme to the bare mass and δZZ
3 is the wave

function renormalization counter term. The next step is to re-sum this expression including

insertions of one particle irreducible diagrams, in a similar way as how we did it for QED.

The result is

iDZ
µν(p) =

−igµν

p2 −M2
Z − δM2

Z + δZZ
3 (p2 −M2

Z)− ΠZZ (p2)
+ pµpνterms. (3.96)

The mass is related to the real part of the pole of this propagator (the complex part of the

pole is related to the decay width of the Z boson). Then, the pole mass is at

M2
Z(pole) −M2

Z − δM2
Z + δZZ

3 (M2
Z(pole) −M2

Z)−<
[
ΠZZ

(
M2

Z(pole)

)]
= 0, (3.97)

where the term (M2
Z(pole) −M2

Z) is of one loop order. This implies that δZZ
3 (M2

Z(pole) −M2
Z)

is higher order, and we can deduce

M2
Z(pole) −M2

Z − δM2
Z −<

[
ΠZZ

(
M2

Z(pole)

)]
= 0. (3.98)

If we are to set MZ = Mpole , or in other words if we make the parameter MZ of the
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Lagrangian equal to the pole mass, then we have

δM2
Z = −<

[
ΠZZ

(
M2

Z(pole)

)]
. (3.99)

If, on the other hand, we set M2
Z to be equal to the MS mass, then only the divergent terms

are absorbed in δM2
Z . In a similar way we get for the W boson

δM2
W = −<

[
ΠWW

(
M2

W (pole)

)]
. (3.100)

To obtain the running of sin2 θ̂W we can make use of a useful property in the MS scheme,

which is the fact that in this scheme, the relation between the MS masses of the gauge bosons

and the weak mixing angle is the same as the one at three level8. Then we have

sin2 θ0W = 1− M
(0)2
W

M
(0)2
Z

= 1− M̂2
W + δM2

W

M̂2
Z + δM2

Z

= sin2 θ̂W + cos2 θ̂W

(
δM2

Z

M̂2
Z

− δM2
W

M̂2
W

)
. (3.102)

The next step is to calculate the bubble contributions to the gauge boson propagators.

Here I will quote the results for the fermion bubbles. I do not compute these bubbles here,

but the interested reader can look up chapter 31 of [76], or if a more complete treatment is

desired [102]. For a fermion doublet we have9 with sin2 θ̂ ≡ ŝ2:

ΠWW

(
p2, µ2

)
=

N c

sin2 θ̂W

1

2
ΠLL

(
p2,∆ud, µ

2
)
, (3.103)

8If instead of using the MS masses for the gauge bosons, one uses the on-shell definition for them, then
the tree level relation gets modified to

M2
W = ρ̂M2

Z(1− sin2 θ̂W ). (3.101)

9Here the index u and d refer not only to the up and down quarks, but the up and down elements of any
fermion doublet.

70



Standard Model

ΠZZ

(
p2, µ2

)
=

1

ŝ2ĉ2
∑
f=u,d

N c
f

((
t3f
)2

ΠLL

(
p2,∆ff

)
− ŝ2Qf (t

3
f − ŝ2Qf )ΠV V

(
p2,mf

))
,

(3.104)

ΠγZ

(
p2, µ2

)
=

1

ŝĉ

∑
f=u,d

N c
f

(
t3fQf

1

2
− ŝ2Q2

f

)
ΠV V

(
p2,mf

)
, (3.105)

where

ΠLL

(
p2,∆ud, µ

2
)

=
α̂

π

m
2
u +m2

d − 2
3
p2

2ε
− 1

2

1∫
0

dx
[
x (1− x) p2∆ud

]
ln

µ2

∆ud

 , (3.106)

ΠV V

(
p2,m2

f , µ
2
)

= −2α

π
p2

 1

3ε
+

1∫
0

dx [x (1− x)] ln
µ2

mf − p2x (1− x)

 , (3.107)

and

∆ij = xm2
i + (1− x)m2

j − x (1− x) p2, (3.108)

and NC
f is the number of colors. After some algebraic steps and the relation Qu − Qd = 1

one can show that the divergent part satisfies

cos2 θ̂W

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
= −

∑
f=u,d

N c
f

(
t3fQf

1

2
− sin2 θ̂WQ

2
f

){
α

π

2

3ε

}
. (3.109)

Notice that the coefficient is just proportional to the γ−Z mixing bubble, and in consequence,

to the vector vacuum polarization bubble. Substituting this result into Eq. (3.102) we get

sin2 θ0W = sin2 θ̂W −
∑
f=u,d

N c
f

(
t3fQf

1

2
− sin2 θ̂WQ

2
f

){
α

π

2

3ε

}
. (3.110)

Taking the derivative with respect to lnµ2, we obtain
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d sin2 θ̂W
d lnµ2

=
dα

d lnµ2

1

π

2

3ε

∑
f=u,d

N c
f

(
t3fQf

1

2
− sin2 θ̂WQ

2
f

)
, (3.111)

but recalling that to zeroth order
dα̂

d lnµ2
= − α̂

2
ε, (3.112)

one finds
d sin2 θ̂W
d lnµ2

= − α̂
π

1

6

∑
f=u,d

N c
fQf

(
t3f − 2 sin2 θ̂WQf

)
. (3.113)

This can easily be rewritten as

d sin2 θ̂W
d lnµ2

= − α̂ (µ)

π

1

(2)24

∑
i

N c
i γiQiv̂i (µ) , (3.114)

where v̂i ≡ Ti−Qi sin
2 θ̂ is the vector coupling of the Z boson with the fermions, and γi is a

numerical factor with value 4.

There is another way to get the running of the weak mixing angle in a more heuristic but

intuitive way. In the MS Lagrangian, the Z boson and photon couple to fermions through

the interaction given in Eq. (3.22). Let us now take the measurement of a physical quantity,

like for example the Z-boson production asymmetry, defined as

Ae ≡
σ(e−Le

+
L → Z)− σ(e−Re

+
R → Z)

σ(e−Le
+
L → Z) + σ(e−Re

+
R → Z)

. (3.115)

The corresponding part of the Lagrangian given in Eq. (3.22) that contributes to this asym-

metry is

LγZ = − ê

ŝĉ
Zµ

[(
1

2
− ŝ2

)
ēLγ

µeL − ŝ2ēRγµeR
]
− êAµ [ēLγ

µeL + ēRγ
µeR] . (3.116)
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At tree level, the asymmetry can then be written as

Ae =
(1
2
− s2)2 − s4

(1
2

+ s2)2 + s4
, (3.117)

where I have used s2 instead of ŝ2 because this is a tree level relation. At one loop level

the largest contribution to this asymmetry comes from corrections affecting the gauge boson

propagators10. In this case, the contributions come from corrections to the Z boson propa-

gator and the γZ mixing bubble. The contribution of the Z boson propagator can be taken

into account if the mass in the propagator is taken to be the pole Z boson mass. On the other

hand, the contribution of the mixing can be taken into account with an effective Z-boson

coupling, and as a consequence an effective weak mixing angle defined as

s2eff = ŝ2 − ŝĉΠ̄γZ (M2
Z , µ

2)

M2
Z

, (3.118)

using this definition, the asymmetry has the same form as Eq. (3.117) but with the replace-

ment s→ seff . Since Ae is a physical quantity, it should not depend on the renormalization

scale. Furthermore, the asymmetry only depends on s2eff , so s2eff should not depend on the

renormalization scale neither. This implies that the µ dependence of the weak mixing angle

in the MS scheme should cancel the µ dependence in the γZ vacuum polarization function.

This is how we can deduce that

d sin2 θ̂

d lnµ2
=
∑
f

N c
f

(
t3fQf

1

2
− ŝ2Q2

f

)
1

M2
Z

d

d lnµ2
ΠV V

(
M2

Z ,mf , µ
2
)
, (3.119)

which can easily be written as Eq. (3.114). As it is pointed out at the end of Ref. [106], for
10Sometimes these are called oblique corrections. For more details at an introductory level see chapter 31

of [76].
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processes at low energy we would have an equation of the form (similarly to Eq. (3.118))

sin2 θ(q2)eff = κ̂(q2, µ2 = M2
Z) sin2 θ̂(µ = MZ), (3.120)

where the q2 dependence comes from the γZ vacuum polarization function. To properly sum

all the logs in this equation it is more convenient to set µ2 = q2 in this equation, and move

the large logs in κ̂ from the bubble to the running of the weak mixing angle. To do so, we

need to solve the RGE for sin2 θ̂(µ). This is done in Ref. [106] and improved in the work of

this thesis. That is the topic of the next chapter.
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The Weak Mixing Angle at Low Energies

This chapter is a slightly modified version of the paper [107]. Due structure of the Standard

Model, parity violation experiments can be usually mapped into a measurement of the weak

mixing angle, as we have shown with one example in the previous chapter. There are several

experiments that measure parity violation at very low energies. Due to their usually clean

environments and different range of energies, these experiments are important and comple-

mentary to the high energy experiments. For example, the Qweak experiment [108] at Jeffer-

son Laboratory (JLab) has measured the weak charge of the proton, QW (p) ∼ 1− 4 sin2 θW ,

in polarized electron scattering from a fixed liquid hydrogen target at Q2 ≈ 0.026 GeV2. The

same observable, but at an even lower Q2 ≈ 0.0045 GeV2, will also be targeted by the P2 ex-

periment [109] at the MESA facility which is currently under construction at the University

of Mainz in Germany. In a very similar setup, the MOLLER Collaboration [110] at JLab

will build and improve on the completed E158 experiment [111] at SLAC (that occurred

at almost the same Q2 as Qweak) and measure the analogous weak charge of the electron,

QW (e), in polarized Møller scattering at Q2 ≈ 0.0056 GeV2. The PVDIS Collaboration [112]

at the 6 GeV CEBAF complex at JLab scattered polarized electrons deep-inelastically from

deuterium, and the SoLID Collaboration [113] will increase the PVDIS precision in the fu-

ture by benefiting from the energy upgraded CEBAF and a correspondingly higher and

broader Q2 range. Other approaches include neutrino and anti-neutrino deep inelastic scat-
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tering [114], ν̄-e scattering near nuclear reactors [115], and parity violation in atoms [116]

and ions [117]. For more details, see the recent reviews on low energy measurements of the

weak mixing angle [26], on the weak neutral current [118], and on weak polarized electron

scattering [119].

When physical quantities are computed at low momentum transfers, there will be large

logarithms of the form ln(
M2
Z

m2
i

) where mi is the mass of a fermion coming from the vacuum

polarization function. The logs will appear explicitly in κ̂(q2,M2
Z). These large logs have

an important contribution to physical quantities like parity violating asymmetries at low

energy. For example, it has been shown in Ref. [120, 121] that the one loop contributions

from the γZ mixing reduce the Møller asymmetry by 40% with respect to its tree level value.

This is why it is important to properly re-sum this logarithms. The re-summation can be

done by setting µ2 ≈ q2 instead of µ2 ≈ M2
Z in κ̂, this, in turn, will move the logs to the

weak mixing angle in the MS scheme, which is solved through the RGE and in consequence

will re-sum them automatically.

As it is natural from this discussion and the results of the previous chapter, the weak

mixing angle running is controlled by the vector part of the Z coupling to fermions. This

is because the mixing bubble only gets contribution from this vector coupling. Ref. [106]

exploited this idea and used it to compute the running of sin2 θ̂. In the work presented here,

we follow the same approach, updating and improving the uncertainty of the weak mixing

angle at low energies.

Since QCD at low energies does not allow for reliable perturbative calculations, the

theoretical uncertainty of the RGE running from the Z-pole to low energies arises dominantly

from the hadronic region. A phenomenological approach to address this region was developed

in Ref. [106]. Working in the MS scheme1, the main idea was to relate the case of the weak

mixing angle to that of the electromagnetic coupling, α̂, as far as possible, and then to

consider both maximal and minimal SU(3) flavor symmetry breaking to constrain the flavor

1Quantities defined in the MS scheme will be denoted by a caret.

76



The Weak Mixing Angle at Low Energies

separation of the three light quarks (u, d, s). In the present work, we extend the analysis to

the next order in the strong coupling constant, α̂s, and introduce a number of new elements.

We employ the most recent values and uncertainties of the input parameters, such as α̂s and

the heavy quark masses. The hadronic vacuum polarization contribution to the RGE running

of α̂ is obtained dispersively from e+e− annihilation data for hadronic final states, which are

supplemented by isospin rotated τ decay spectral functions corrected for isospin breaking

effects [122, 123]. We tie experimental data [122] and lattice gauge theory calculations [124,

125] together to obtain the individual contributions of strange and first generation quarks.

This flavor separation at the quark level to high accuracy is consistent with and almost an

order of magnitude more precise than previous calculations [106, 121]. It is also necessary to

constrain OZI-rule [126–128] violating effects, for which we utilize the recent lattice gauge

theory calculation of disconnected contributions to the anomalous magnetic moment of the

muon [129]. These refinements allow for significant reduction of the theoretical uncertainty

of the RGE evolution. As a by-product, our method sheds light on the dual description of

quarks and hadrons in the non-perturbative regime and may open new ways to extract the

strange quark mass from the electro-production of hadrons.

4.1 Renormalization group evolution

In an approximation in which all fermions are either massless and active or infinitely heavy

and decoupled, the RGE for the electromagnetic coupling in the MS scheme [96], α̂, can be

written in the form [106],

µ2 dα̂

dµ2
=
α̂2

π

 1

24

∑
i

KiγiQ
2
i + σ

(∑
q

Qq

)2
 , (4.1)

where the sum is over all active particles in the relevant energy range. This equation is the

generalization of Eq. (3.75) to higher order in QCD. Just as before, the Qi are the electric
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boson γi fermion γi
real scalar 1 chiral fermion 4
complex scalar 2 Majorana fermion 4
massless gauge boson −22 Dirac fermion 8

Table 4.1: RGE contributions of different particle types, where the minus sign is indicative
for the asymptotic freedom in non-Abelian gauge theories.

charges, while the γi are constants depending on the field type and shown in Table 4.1. The

Ki and σ contain higher-order corrections and are given by [91],

Ki = N c
i

{
1 +

3

4
Q2
i

α̂

π
+
α̂s
π

+
α̂2
s

π2

[
125

48
− 11

72
nq

]

+
α̂3
s

π3

[
10487

1728
+

55

18
ζ3 − nq

(
707

864
+

55

54
ζ3

)
− 77

3888
n2
q

]

+
α̂4
s

4π4

[
2665349

41472
+

182335

864
ζ3 −

605

16
ζ4 −

31375

288
ζ5

− nq

(
11785

648
+

58625

864
ζ3 −

715

48
ζ4 −

13325

432
ζ5

)

− n2
q

(
4729

31104
− 3163

1296
ζ3 +

55

72
ζ4

)
+ n3

q

(
107

15552
+

1

108
ζ3

)]}
, (4.2)

and,

σ =
α̂3
s

π3

[
55

216
− 5

9
ζ3

]
+
α̂4
s

π4

[
11065

3456
− 34775

3456
ζ3 +

55

32
ζ4 +

3875

864
ζ5

− nq
(

275

1728
− 205

576
ζ3 +

5

48
ζ4 +

25

144
ζ5

)]
, (4.3)

with nq the number of active quarks and N c
i = 3 the color factor for quarks. For leptons one

substitutes N c
i = 1 and α̂s = 0, while Ki = 1 for bosons.

We can relate the RGE of α̂ to that of sin2 θ̂W since both, the γZ mixing tensor Π̄γZ and

the photon vacuum polarization function Π̄γγ are pure vector-current correlators. Including

higher order corrections, the RGE for the Z boson vector coupling to fermion f , v̂f =
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Energy range λ1 λ2 λ3 λ4

m̄t ≤ µ 9
20

289
80

14
55

9
20

MW ≤ µ < m̄t
21
44

625
176

6
11

3
22

m̄b ≤ µ < MW
21
44

15
22

51
440

3
22

mτ ≤ µ < m̄b
9
20

3
5

2
19

1
5

m̄c ≤ µ < mτ
9
20

2
5

7
80

1
5

m̄s ≤ µ < m̄c
1
2

1
2

5
36

0

m̄d ≤ µ < m̄s
9
20

2
5

13
110

1
20

m̄u ≤ µ < m̄d
3
8

1
4

3
40

0

mµ ≤ µ < m̄u
1
4

0 0 0

me ≤ µ < mµ
1
4

0 0 0

Table 4.2: Coefficients entering the higher order RGE for the weak mixing angle.

Tf − 2Qf sin2 θ̂W , where Tf is the third component of weak isospin of fermion f , is then

µ2 dv̂f
dµ2

=
α̂Qf

24π

[∑
i

Kiγiv̂iQi + 12σ

(∑
q

Qq

)(∑
q

v̂q

)]
. (4.4)

Eqs. (4.1) and (4.4) can be used [106] to obtain

ŝ2(µ) = ŝ2(µ0)
α̂(µ)

α̂(µ0)
+ λ1

[
1− α̂(µ)

α̂(µ0)

]
+

α̂(µ)

π

[
λ2
3

ln
µ2

µ2
0

+
3λ3
4

ln
α̂(µ)

α̂(µ0)
+ σ̃(µ0)− σ̃(µ)

]
, (4.5)

where the λi are known [106] constants2 given in Table 4.2 and the explicit Ki dependence

has disappeared. The σ̃ terms,

σ̃(µ) =
λ4

33− 2nq

5

36

[
(11− 24ζ3)

α̂2
s(µ)

π2
+ b

α̂3
s(µ)

π3

]
, (4.6)

2See Appendix B.1 for mote details.
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with,

b ≡ 2213

24
− 6955

24
ζ3 +

99

2
ζ4 +

775

6
ζ5 − nq

(
55

12
− 41

4
ζ3 + 3ζ4 + 5ζ5

)

− (153− 19nq)(11− 24ζ3)

99− 6nq
, (4.7)

represent the singlet contributions to the RGE evolution of the weak mixing angle at four

and five loop order. These terms arise from quark-antiquark annihilation (disconnected)

diagrams (see Figure 4.1) and are suppressed in perturbative QCD (PQCD). In the non-

perturbative domain these give rise to so-called OZI-rule [126–128] violations.

Eq. (4.5) together with the solution of the four-loop QCD β-function [130, 131] represents

a complete solution, as long as all matching scales µ at which an active particle decouples

are known, because there the λi change their values. The matching scales of all bosons [132],

charged leptons, and heavy (t, b, and c) quarks [92, 94, 95] can be calculated as what we

call threshold masses m̄q, where the QCD corrections to the matching relations vanish by

definition.

4.1.1 Matching conditions

At each particle threshold the RGE coefficients need to be modified to reflect the particle

content of the associated effective field theory (EFT), and in the MS scheme it is also conve-

nient to change the definitions of α̂ and ŝ to correspond to this same EFT. This is analogous

to the usual treatment of α̂s and leads to very small matching discontinuities in the RGE

running of the couplings.

Denoting the electromagnetic coupling with and without the fermion near the threshold

by α̂(mf )
+ and α̂(mf )

−, respectively3, the matching condition for α̂ which was introduced

3We assume mf is an MS mass with respect to QCD, but a pole mass for both leptons and quarks with
respect to QED.
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Figure 4.1: Examples of a connected (top) and a disconnected (bottom) Feynman diagram.

in the last chapter4, reads [92, 94, 95],

π

α̂(mf )+
=

π

α̂(mf )−
− 15

16
N c
f

α̂(mf )

π
Q4
f

−
N c
f − 1

2

[
13

12

α̂+
s

π
+
(

655

144
ζ3 −

3847

864
+

361

1296
nq

)
α̂+2
s

π2

+
(
−0.55739− 0.92807nq + 0.01928n2

q

) α̂+3
s

π3

]
Q2
f

−
N c
f − 1

2

[
295

1296

α̂+2
s

π2
+ (K1 + K2nq)

α̂+3
s

π3

]∑
`

Q2
` . (4.8)

The first three lines derive from heavy quark vector-current correlators. The last line involves

a sum over all quarks ` with m` � mq, and arises from the decoupling of the heavy quark q

propagating in inner loops of multi-bubble type diagrams in which the outer loop (the one

coupled to the currents) is occupied by a light quark `. The corresponding contribution at

order α̂3
s is parametrized by the coefficients Ki and is unknown at present. The known α̂2

s

term for the charm and bottom quarks, and the α̂3
s terms from the charm and bottom quark

vector-current correlators amount to about 9 × 10−6 and −9 × 10−6, respectively. Taking

these as conservative bounds on the unknown higher-order terms and combining them in

quadrature results in an estimated truncation error of ±1.3× 10−5 in α̂.
4See sections 3.4.3 and 3.4.5.
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The matching conditions of ŝ2 and α̂ can also be related [106],

sin2 θ̂W (m̂f )
− =

α̂(m̂f )
−

α̂(m̂f )+
sin2 θ̂W (m̂f )

+ +
QiTi
2Q2

i

[
1− α̂(m̂f )

−

α̂(m̂f )+

]
. (4.9)

Applying the numerical analysis of the previous paragraph to Eq. (4.9), we find 2.4 × 10−6

and −1.4× 10−6, respectively, and we estimate a truncation error related to the matching of

about ±3× 10−6 in ŝ2.

For completeness we recall that integrating out the W± bosons induces the one-loop

matching condition [106, 132],
1

α̂+
=

1

α̂−
+

1

6π
. (4.10)

For ŝ2 this implies

sin2 θ̂W (MW )+ = 1− α̂(MW )+

α̂(MW )−
cos2 θ̂W (MW )−. (4.11)

4.2 Implementation of experimental input

The perturbative treatment of the previous section cannot be applied at hadronic energy

scales and experimental input is required. This is usually taken from R(s), i.e., the cross

section σ(e+e− → hadrons) normalized to σ(e+e− → µ+µ−). Additional information on

R(s) is encoded in hadronic τ decay spectral functions [133]. The traditional method to

implement the R(s) measurements is through a subtracted dispersion integral,

∆α
(5)
had(M2

Z) =
α

3π

∫ ∞
4m2

π

ds
R(s)M2

Z

s(M2
Z − s)− iε

, (4.12)

which gives the hadronic contribution (with the top quark removed) to the Z scale value of

the electromagnetic coupling in the on-shell scheme. One supplements the input data with

the theoretical (perturbative) prediction for R(s) at s ≥ s0, with s0 large enough to be able
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to trust QCD perturbation theory. A variant [134] of this approach evaluates Eq. (4.12) in

the space-like region, ∆α
(5)
had.(−M2

Z), and obtains ∆α
(5)
had.(M

2
Z) in a second step. More details

about how different groups get the running of alpha are given in Appendix B.1.

In the MS scheme it is more natural to use the unsubstracted dispersion relation [96],

∆α̂(3)(µ0) =
α

3π

∫ µ2
0

4m2
π

ds
R(s)

s− iε
+ 4πI(3), (4.13)

this equation is the same as Eq. (3.86), where, as we have said before, the superscript

indicates that we focus here on the currents produced by the three light quarks (bosons,

leptons, charm and bottom quarks are included following Sec. 4.1). The upper integration

limit can in principle be chosen as an arbitrary perturbative scale µ0, but in practice we take

µ2
0 to coincide with the cut-off value s0 used in the traditional method, since this allows us

to recycle results obtained there. Indeed [96],

α

3π

µ2
0∫

4m2
π

ds

[
R(s)

s− iε
− R(s)M2

Z

s(M2
Z − s)− iε

]
< 10−6, (4.14)

for µ0 ≈ 2 GeV. Using the results of Ref. [122] including inputs from τ decays which we

correct for γ-ρ mixing [123], we obtain,

α

3π

4 GeV2∫
4m2

π

ds
R(s)M2

Z

s(M2
Z − s)

= (58.71± 0.45)× 10−4 . (4.15)

We compute the second term in Eq. (4.13) at the scale µ = 2 GeV perturbatively,

extending the O(α̂2
s) result of Ref. [96] to O(α̂3

s),

4πI(3) = 2α
∫ 2π

0
dθ Π̂(3)(µ2eiθ)

=
2α

3π

[
5

3
+

(
55

12
− 4ζ(3) + 2

m̂2
s

µ2

)(
α̂s
π

+
α̂

4π

)
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+

(
34525

864
− 9

4
ζ(2)− 715

18
ζ(3) +

25

3
ζ(5) +

125

12

m̂2
s

µ2
+ F2(m̂c, m̂b)

)
α̂2
s

π2

+
(

7012579

13824
− 961

16
ζ(2)− 76681

144
ζ(3) +

12515

288
ζ(5)

−665

36
ζ(7) +

81

2
ζ(2)ζ(3) +

155

2
ζ(3)2 + F3(m̂c, m̂b)

)
α̂3
s

π3

]

= (24.85± 0.18− 43 ∆α̂s)× 10−4, (4.16)

where the Fi(m̂c, m̂b) are correction terms from the charm and bottom quarks, with values

F2(m̂c, m̂b) ' −0.2348 and F3(m̂c, m̂b) ' −0.390. The numerical evaluation in the last line

of Eq. (4.16) is for α̂s(MZ) = 0.1182, α̂s(2 GeV ) = 0.303 and m̂s(2 GeV) = 98±6 MeV [135].

The uncertainty is the size of the O(α̂3
s) term, and we have defined

∆α̂s ≡ α̂s(MZ)− 0.1182, (4.17)

to display the dependence on α̂s. Thus, from Eqs. (4.13)–(4.16) we obtain,

∆α̂(3)(2 GeV ) = (83.56± 0.45± 0.18)× 10−4 . (4.18)

4.3 Singlet contribution

We recall that Eq. (4.6) exhibits an explicit dependence on αs, which in the non-perturbative

domain gives rise to the QCD induced OZI-rule [126–128] violations. These have to be

known independently, since they affect α̂ and ŝ2 differently. Thus, in addition to a quark

flavor separation, one also needs a singlet piece separation, even though the singlet piece is

expected to be small. To do so, we first relate ∆discα̂, the disconnected part in ∆α̂(3)(2 GeV),

to the one entering the low energy weak mixing angle, ∆discŝ
2. Non-singlet and singlet

contributions are separately gauge-invariant, and to gain information on ∆discα̂, we will
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adopt a lattice QCD calculation [129] of the disconnected quark line contributions to the

anomalous magnetic moment of the muon, aµ.

By construction, the σ̃ terms in Eq. (4.5) are related to the σ terms in Eq. (4.1),

µ2 dσ̃

dµ2
= −λ4σ. (4.19)

On the other hand, isolating the ∆discα̂ term in Eq. (4.1) we obtain (working here in lowest

order in α),

µ2 d∆discα̂

dµ2
=
α

π

(∑
q

Qq

)2

σ, (4.20)

so that,
dσ̃

dµ2
= −π

α
λ4

(∑
q

Qq

)−2
d∆discα̂

dµ2
= −λ1

π

α

d∆discα̂

dµ2
, (4.21)

where the last step applies for µ < m̄c (we are assuming approximate isospin symmetry

which eliminates the interval m̄u < µ < m̄d). Then,

σ̃(µ)− σ̃(µ0) = −λ1
π

α
[∆discα̂(µ)−∆discα̂(µ0)]. (4.22)

These relations are general, but there is a subtle point. In general, the singlet pieces effec-

tively decouple at renormalization scales m̄disc
q that may differ from the scales m̄q at which

the non-singlet pieces decouple. This would generate various energy intervals with generally

different values for λ1. Implementing strong isospin symmetry in the form m̄u = m̄d and

m̄disc
u = m̄disc

d , as well as accepting the physical mass orderings m̄s ≥ m̄u and m̄disc
s ≥ m̄disc

u ,

there remain a total of six different orderings.

As an example, consider the case,

m̄disc
s > m̄s > m̄u > m̄disc

u . (4.23)

For scales µ > m̄disc
s there are three active quarks with Qu + Qd + Qs = 0 and the singlet
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contributions vanish. For scales in the range m̄disc
s > µ > m̄s we obtain the value λ1 = 1/2.

Similarly, for m̄s > µ > m̄u and for m̄u > m̄disc
u we find λ1 = 9/20 and 1/4, respectively. Be-

low m̄disc
u all singlet contributions vanish by definition. Inserting these results into Eq. (4.22)

and summing the contributions from all intervals, we find the constraint,

−∆discα̂

4
<
α

π

[
σ̃(m̄disc

s )− σ̃(m̄disc
u )

]
< −∆discα̂

2
, (4.24)

where we have anticipated that ∆discα̂ < 0 (see below).

The other five cases are dealt with in the same way, and one can check that the inequal-

ity (4.24) is never violated. For the three mass orderings satisfying m̄disc
u ≥ m̄u, or generally

if we can neglect the presumably small range m̄u > µ > m̂disc
u , we find the much stronger

constraint,

−9∆discα̂

20
<
α

π

[
σ̃(m̄disc

s )− σ̃(m̄disc
u )

]
< −∆discα̂

2
. (4.25)

Since we do not expect the m̄disc
q to be numerically very different from the m̄q we choose

our central value to correspond to m̄disc
q = m̄q, and we include twice the range in Eq. (4.25)

as the uncertainty due to possible m̄disc
q 6= m̄q effects. Thus,

α

π

[
σ̃(m̄disc

s )− σ̃(m̄disc
u )

]
= −

[
9

20
± 1

20

]
∆discα̂, (4.26)

which can be inserted into Eq. (4.5). Notice, however, that Eq. (4.5) also contains an implicit

singlet contribution from each of the two terms in the first line. Taken together, the λ1 term

cancels exactly the central value in Eq. (4.26) and we finally arrive at

∆discŝ
2 =

[
ŝ2 ± 1

20

]
∆discα̂. (4.27)

In Appendix B.2 we compute ∆discα in the on-shell scheme by exploiting the lattice gauge
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Figure 4.2: Scale dependence of the singlet contribution to ∆α (solid line) and its step
function approximation (dashed line).

theory calculation [129] of the corresponding contribution to aµ with the result,

∆discα(2.0 GeV) = −2.6× 10−5. (4.28)

Note that because the sum of the charges of the three light quarks vanishes, and we enter the

perturbative domain where the singlet piece is known to be tiny, we expect an asymptotically

stable value at higher energies for ∆discα(q). This is supported by Figure 4.2, showing that

∆discα(q) is nearly q-independent for q ∼ 1.2 GeV. We also remark that the dominance of

low scales notwithstanding, the sign in Eq. (4.28) coincides with that of the singlet piece

in the perturbative regime. Also shown in Figure 4.2 is the step function approximation

of ∆discα(q), with the step defined as the value of q where it reaches half of its asymptotic

value in Eq. (4.28). We interpret this as the value where the strange quark decouples from

singlet diagrams, so that m̄disc
s ∼ 350 MeV. Our central value of m̄s to be derived in the next

section, m̄s = 342 MeV, is numerically very close to this providing evidence for m̄disc
s ≈ m̄s.

Eq. (4.27) and Eq. (4.28) refer to quantities in the MS and on-shell schemes, respectively,
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channel aµ × 1010 ∆α× 104

φ 38.43 5.13
KK̄π 2.45 0.78
ηφ 0.36 0.13
PQCD [136] (> 1.8GeV ) 7.30 —

Total 48.54 6.04

KK̄ (non− φ) 3.62 0.76
KK̄2π 0.85 0.30
KK̄3π -0.03 -0.01
KK̄η 0.01 0.00
KK̄ω 0.01 0.00

Total 4.46 1.05

Table 4.3: Channels associated with the strange quark external current (top) and possible
further channels originating from it (bottom).

and in general these may differ. However, since we are working here in the three quark

theory and the sum of the charges of three light quarks vanishes, the change of schemes is

trivial. We can therefore use Eq. (4.28) in Eq. (4.27) and obtain,

∆discŝ
2 = (−0.6± 0.3)× 10−5, (4.29)

where the uncertainty combines the errors from Eq. (4.27) and the one induced by the lattice

calculation [129].

4.4 Flavor separation

In this section we perform a flavor separation of the contributions of up-type from down-type

quarks, or — given that up and down quarks are linked by the approximate strong isospin

symmetry — a separation of s from u and d quarks. Our strategy consists of first using

exclusively the experimental electro-production data as tabulated in Ref. [122] to constrain

the contribution ∆sα of the strange quark to ∆α. We then exploit the lattice gauge theory
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results in Refs. [124, 125] to confirm and refine the purely data driven analysis. Then we

introduce the threshold mass m̄q of a quark q as the value of the ’t Hooft scale where the

QCD contribution to the corresponding decoupling relation becomes trivial. m̄c and m̄b

are treated in perturbation theory, while for u, d, and s quarks we derive bounds using

phenomenological and theoretical constraints.

4.4.1 Experimental data

To obtain ∆sα we use Ref. [122] where the contribution of each hadronic channel to aµ and

∆α for energies up to 1.8GeV is given. The main idea is to determine for each channel

whether it was produced by an s̄s or a first generation quark current. For reasons that

will become clear later, we consider both, ∆sα, and the strange quark contribution to the

anomalous magnetic moment, asµ.

We begin by listing in the upper part of Table 4.3 the experimental channels [122] which

we associate with an ss̄ current. Up to OZI-rule violating φ-ω and φ-ρ mixing effects, the

φ meson can be identified with strange quarks. We calculate its contribution using a Breit-

Wigner shape with s-dependent total and partial widths, adopting the PDG values [135]

for the φ meson branching ratios and applying a small correction for φ-ω mixing. As for

the φ(1680), the main decay channel is KK̄∗ with K∗ mesons decaying almost entirely

into Kπ. As can be seen from data [122], the KK̄π channel is indeed virtually saturated

by φ(1680) decays. The η-φ channel also arises dominantly from the strange quark current

since the contribution to this channel from light quarks is Zweig rule suppressed. Conversely,

we expect channels involving an η meson accompanied by non-strange states to be mainly

due to light quark currents. For asµ we need to add the contribution from energies above

1.8 GeV. It can be computed within PQCD and taken as one sixth of the corresponding

light quark contribution [136] of 43.8 × 10−10. The lower part of Table 4.3 shows further

channels involving strange quarks to which first generation quark currents could conceivably
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contribute, and we conservatively assign (50 ± 50)% of these to the ss̄ current. The table

also shows the corresponding contributions to aµ. Adding the totals in this way we find,

asµ = (50.77± 0.60± 0.83± 2.23)× 10−10 = (50.77± 2.45)× 10−10, (4.30)

and,

∆sα(1.8 GeV) = (6.56± 0.11± 0.19± 0.53)× 10−4 = (6.56± 0.57)× 10−4. (4.31)

The first errors are experimental [122] where we accounted for correlations. The second

errors allow for differences in parametrizations when decay parameters are extracted from

experimental data by different groups. The last errors are half of the totals in Table 4.3, but

we expect the ss̄ current to virtually saturate the kaon channels in Table 4.3 because the

larger strange quark mass should suppress the probability amplitude to produce an ss̄ sea

quark pair relative to first generation quark pairs.

The uncertainty in Eq. (4.31) is already about three times smaller than in the past [106].

We can reduce it further by quantifying our expectation that the strange quark current

actually saturates the kaon channels listed in the bottom part of Table 4.3. For this, we

re-write Eqs. (4.30) and (4.31) in the form,

asµ = (53.00− 4.46κ± 0.60± 0.83)× 10−10, (4.32)

∆sα(1.8 GeV) = (7.09− 1.05κ± 0.11± 0.19)× 10−4, (4.33)

with a parameter 0 ≤ κ ≤ 1, where κ = 0 (κ = 1) corresponds to the case where all kaon

contributions in Table 4.3 arise from the strange (first generation) quark current. In order

to confirm that indeed κ ≈ 0 and to compute an uncertainty for possible κ 6= 0 effects, we

can use results on asµ from lattice gauge theory, as we show next.
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4.4.2 Lattice data

Two groups [124, 125] calculated the contribution of the strange quark to the vacuum polar-

ization function within lattice gauge theory with a focus on asµ. The two results agree and

average to

asµ = (53.32± 0.49)× 10−10 [lattice], (4.34)

which is in perfect agreement with Eq. (4.32) and our expectation κ ≈ 0. Since the anal-

ogous result for ∆sα(1.8 GeV) has not been provided by either of the groups, we follow a

Bayesian procedure to quantify the parameter κ in Eq. (4.33), using as prior information

the comparison of Eq. (4.32) with Eq. (4.34). The 68.3% highest probability interval of κ,

namely 0 ≤ κ ≤ κ1σ, can be obtained from

N

κ1σ∫
0

exp

[
−(53.00− 4.46κ− 53.32)2

2(0.602 + 0.832 + 0.492)

]
dκ = 0.683, (4.35)

where N is the normalization of the distribution. This yields κ1σ = 0.22, and Eq. (4.33) now

provides us with the desired result,

∆sα(1.8 GeV) = (7.09± 0.11± 0.19± 0.23)× 10−4 = (7.09± 0.32)× 10−4, (4.36)

which is consistent with, but more precise than Eq. (4.31). We assigned the uncertainty from

κ1σ symmetrically around κ = 0, which is both the physically favored and most probable

value (the peak of the distribution). This rather conservative treatment effectively doubles

the error from κ1σ, and is meant to account for the fact that the kernels of ∆α and aµ differ.

The experimental values of aµ and ∆α are correlated, possibly impacting Eq. (4.36).

However, we found that even assuming them to be fully correlated changes the central value

only very slightly and reduces the uncertainty modestly. Thus, we keep Eq. (4.36) as our

final result on ∆sα(1.8 GeV). As an additional cross-check we used the vacuum polarization
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function of another lattice calculation [125] of asµ (expressed as a Padé approximant which

is the source of the largest uncertainty [125]) to first reproduce their results, and then we

computed ∆sα which yields,

∆sα(1.8 GeV) ≈ (6.9± 0.5)× 10−4 [lattice], (4.37)

in excellent agreement with Eq. (4.36).

4.4.3 Threshold masses

Heavy quarks

We can compute m̄c and m̄b in perturbation theory by reincorporating the RGE summable

logarithms of the form ln m̂q/m̄q into Eq. (4.8), and then solving for m̄q by setting the

contribution from quark q equal to zero. Since m̄q → m̂q for α̂s → 0, these logarithms are

at most of order α̂s and can be ignored in the α̂3
s coefficient. Thus, we can use a previous

analysis [96] where the logarithms up to order α̂2
s are given. We find,

m̄ = m̂

{
1− 13

24

α̂s
π

+
(

10073

3456
− 655

288
ζ3 −

361

2592
nq

)
α̂2
s

π2

+
(
1.61024 + 0.59599nq − 0.00964n2

q

) α̂3
s

π3

+

[
− 295

2592

α̂2
s

π2
+

(
5767

62208
− K1 + K2nq

2

)
α̂3
s

π3

] ∑
Q2
`

Q2
h

}
. (4.38)

Using the input values for the Z boson mass [135], MZ = 91.1876 GeV, the charm quark

mass [137], m̂c(m̂c) = 1.272 GeV, and the bottom quark mass [135], m̂b(m̂b) = 4.18 GeV,

together with the 4-loop RGE [130] for α̂s with nq = 4 and nq = 5, respectively, we find

m̄c = 1.185 GeV, (4.39)
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m̄b = 3.990 GeV. (4.40)

It will be useful for later to define quantities ξq [106] as ratios between the threshold mass

of quark q and the 1S q̄q bound state mass,

ξq ≡
2m̄q

M1S

. (4.41)

This definition implies that ξq → 1 for m̄q → ∞ and ξq → 0 for m̄q → 0. We expect ξq to

be a monotonically increasing in the sense that ξ1 > ξ2 if m̄1 > m̄2. Using the PDG values

for the bound state masses [135] we find ξc = 0.766 and ξb = 0.844, and thus ξb > ξc as

expected.

Light quarks

Next we constrain the individual contributions of the light quarks to ∆α̂, evaluated at m̄c.

Using the RGE and the starting value given in Eq. (4.18) we obtain,

∆α̂(3)(m̄c) = (65.10± 0.45± 0.18)× 10−4. (4.42)

From Eq. (4.36) we can also calculate ∆sα̂ at m̄c. To do so, we first invoke experimental

data to obtain the shift,

∆sα(2 GeV) = ∆sα(1.8 GeV) + (0.55± 0.04)× 10−4, (4.43)

given by one sixth of the continuum contribution [122] of (3.31 ± 0.26) × 10−4 between the

two scales. The uncertainty is the difference to using PQCD instead of data and accounts

for quark-hadron duality violations. Changing to the MS scheme and employing again the

RGE gives,

∆sα̂(m̄c) = (8.71± 0.32)× 10−4. (4.44)
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Since the threshold mass is the value of the ’t Hooft scale corresponding to trivial matching

conditions regarding the QCD contribution, we can write,

∆sα̂(m̄c) = Q2
s

α

π
Ks

QCD(m̄c) ln
m̄2
c

m̄2
s

, (4.45)

where we defined a scale dependent factor Kq
QCD(µ) as the average QCD correction to the

β function between m̄q and the scale µ. Eq. (4.45) has two unknowns, Ks
QCD(m̄c) and m̄s,

and it shows that increasing Ks
QCD(m̄c) forces the logarithm to decrease and in turn m̄s to

increase. Thus, smaller (larger) values of Ks
QCD(m̄c) correspond to a smaller (larger) values

of m̄s. On the other hand, if we have two quarks with masses m̄1 > m̄2, we expect the

average QCD contribution between m̄2 and µ to be larger than that between m̄1 and µ,

since αs is larger at lower scales. Thus,

m̄1 > m̄2 K1
QCD(µ) < K2

QCD(µ), (4.46)

and we must have,

Kc
QCD(m̄c) < Ks

QCD(m̄c). (4.47)

Kc
QCD(m̄c) can be computed from Eq. (4.2). Using nq = 3 and αs(m̄c) = 0.413 yields

Kc
QCD(m̄c) = 1.178, and implies the lower bound,

m̄s > m̄c exp

[
− π∆sα̂(m̄c)

2Q2
sαK

c
QCD(m̄c)

]
= 289 MeV, (4.48)

where we used α = α(m̄s) ≈ 1/135. We can also obtain an upper bound on m̄s,

2m̄s

Mφ

= ξs < ξc = 0.766 m̄s < 390 MeV, (4.49)
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implying Ks
QCD(m̄c) < 1.50. We can summarize these results by writing,

Ks
QCD(m̄c) = 1.34± 0.16, m̄s = 342+48

−53 MeV. (4.50)

m̄u and m̄d can be obtained in a similar way. We have,

∆connα̂
(3)(m̄c) = ∆sα̂(m̄c) +

2α

π

[
(Q2

u +Q2
d)K

u,d
QCD ln

m̄c

m̄u,d

]
, (4.51)

where the quark connected contribution to ∆α̂(3)(m̄c) is given by,

∆connα̂
(3)(m̄c) ≡ ∆α̂(3)(m̄c)−∆discα̂

(3)(m̄c) = 65.36× 10−4. (4.52)

Following the same steps as for m̄s we find,

Ku,d
QCD(m̄c) = 1.38± 0.20, m̄u,d = 246+54

−57 MeV, (4.53)

where the errors in Eqs. (4.50) and (4.53) are strongly correlated. The light quark threshold

masses are convenient for implementing the RGE and serve an illustrative purpose, but their

precise values affect ŝ(0) only at order O(α2) and beyond, as long as the central value in

Eq. (4.44) remains fixed (the uncertainty there will give rise to the flavor separation error).

Notice, that for the central values we have m̄s − m̄u ≈ 96 MeV, which is of typical size for

hadronic mass splittings within SU(3) flavor multiplets.

Finally, accounting for the squares of the electric charges we obtain the contributions

from the first generation quarks at the scale m̄s,

∆α̂(2)(m̄s) = ∆α̂(3)(m̄c)− 6∆sα̂(m̄c) = (12.9∓ 1.9)× 10−4, (4.54)

where we only quote the uncertainty from the flavor separation in Eq. (4.44).
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source δ sin2 θ̂W (0)× 105

∆α̂(3)(2 GeV) 1.2
flavor separation 1.0
isospin breaking 0.7
singlet contribution 0.3
PQCD 0.6
Total 1.8

Table 4.4: Theoretical uncertainties in the low energy mixing angle.

4.5 Theoretical uncertainties

In addition to parametric uncertainties, there are five sources of theoretical uncertainties for

the weak mixing angle at low energies affecting our calculation. They are summarized in

Table 4.4 and discussed in the following.

The first uncertainty is induced by the experimental error in the determination of ∆α̂(3)(2.0 GeV).

Eq. (4.5) propagates this uncertainty to the weak mixing angle [106],

δŝ2(0) =
[
1

2
− ŝ2

]
δ∆α̂(3)(2 GeV) = ∓1.2× 10−5, (4.55)

where we have used δ∆α̂(3)(2 GeV) = ±0.45× 10−4 from Eq. (4.15).

The three light quarks enter with different electroweak weights into ŝ2(0) and ∆α(3)(m̄c).

The flavor separation uncertainty is due to the imperfect knowledge of how much s quarks

relative to u and d quarks contribute to ∆α(3)(m̄c). It is given by [106],

δŝ2(0) ' 1

20
δ∆α̂(2)(m̄c) = ±1.0× 10−5, (4.56)

where we used δ∆α̂(2)(m̄s) = ±1.9× 10−4 from Eq. (4.54).

The flavor separation assumed isospin symmetry in the form m̄u = m̄d. To estimate the

uncertainty associated with isospin breaking, we first consider the idealized case in which

SU(2) isospin violation was as large as SU(3) breaking. This would occur for m̄d = m̄s, so
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that from Eq. (4.54) the u quark current could at most contribute

∆α(1)(m̄d) < 14.8× 10−4. (4.57)

To propagate this uncertainty to ŝ2(0) we can use [106],

δŝ2(0) = − 3

40
∆α(1)(m̄d) > −1.1× 10−4. (4.58)

A measure of the breaking of SU(2) relative to SU(3) is given by the ratio,

∣∣∣∣∣M2
K∗± −M2

K∗0

M2
K∗± −M2

ρ0

∣∣∣∣∣ ≈ 0.06, (4.59)

so that,

δŝ2(0) =+0
−7 ×10−6. (4.60)

This error is asymmetric because we assume m̄d ≥ m̄u, but it is convenient and conservative

to treat it symmetrically in Table 4.4.

The uncertainty arising from the singlet contribution is given in Eq. (4.29). The last

entry in Table 4.4 combines the truncation error from the perturbative matching conditions

with the scheme conversion error shown as the second uncertainty in Eq. (4.18).

4.6 Results

Eq. (4.5) together with the Z pole value of the weak mixing angle from a global fit to the

SM [135], sin2 θ̂W (MZ) = 0.23129(5), can now be used to compute the weak mixing angle at

zero momentum transfer,

sin2 θ̂W (0) = 0.23868± 0.00005± 0.00002, (4.61)
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Figure 4.3: Scale dependence of the weak mixing angle in the MS renormalization scheme.
The dots indicate the scales where a particle is integrated out. The total uncertainty cor-
responds to the thickness of the line. The β-function of SU(2)L changes sign at µ = MW ,
where the fermionic screening effects of the effectively Abelian gauge theory are being over-
compensated by the anti-screening effects of the full non-Abelian electroweak theory.

where the second error is the total theoretical uncertainty from Table 4.4.

To facilitate the update of our results in the future, we also present a linearized formula

of the form factor κ(0),

sin2 θ̂W (0) ≡ κ̂(0) sin2 θ̂W (MZ), (4.62)

in terms of variations of the input parameters, using ∆α̂s(MZ) in Eq. (4.17), as well as,

∆̃α ≡ ∆α(2.0 GeV)− 0.005871, (4.63)

and,

∆m̂c ≡
m̂c(m̂c)

1.272 GeV
− 1, ∆m̂b ≡

m̂b(m̂b)

4.180 GeV
− 1. (4.64)
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We obtain,

κ̂(0) = 1.03196± 0.00006 + 1.14 ∆̃α + 0.025 ∆α̂s − 0.0016 ∆m̂c − 0.0012 ∆m̂b , (4.65)

which shows that the current experimental uncertainties of ±0.45×10−4 in ∆α(2 GeV) from

Eq. (4.27) and of ±0.0016 in α̂s(MZ) induce errors of ±5 × 10−5 and ±4 × 10−5 in κ̂(0),

respectively. Variations of ±8 MeV [137] in m̂c(m̂c) and ±30 MeV in m̂b(m̂b) both imply

∓2× 10−6 in ŝ(0) which is negligible. The resulting scale evolution of the weak mixing angle

is illustrated in Figure 4.3.

When our result for the weak mixing angle in the Thomson limit or some other low

momentum scale is used for the calculation of physical observables, there will generally be

further process-dependent radiative corrections which need to be addressed. We expect this

to be possible with theoretical uncertainties well below those in sin2 θ̂W (0) summarized in

Table 4.4. Thus, we reduced the total theoretical uncertainty in the weak mixing angle at

low energies from 7× 10−5 [106] to less than 2× 10−5 which can safely be neglected for any

current or planned experiment.

In summary, we developed a new way of calculating the flavor separation which involved

both e+e− → hadrons data and results from lattice gauge theory. We also better control now

the uncertainty in the contribution of disconnected diagrams where we exploited results of

Ref. [129] on the anomalous magnetic moment. Furthermore, we extended various formulas

to the next order in perturbation theory, reducing the perturbative uncertainty. There has

also been significant progress in the evaluations of ∆α [97, 122] and ∆m̂c(m̂c) [137]. The

theoretical uncertainty in sin2 θ̂W (0) is now at a negligible level.
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Chapter Five

BSM physics and other topics

In the last chapters I have talked about physics within the Standard Model. Now I will talk

about physics beyond the Standard Model. In general, this chapter contains research that I

have done in collaborations with my colleagues at the Instituto de Física, of the Universidad

Nacional Autónoma de Mexico.

5.1 Neutrino physics

5.1.1 Origin of neutrino mass

In chapter four I gave an introduction to the Standard Model, but there is a sector that I

did not mentioned explicitly: the Yukawa sector. This sector is responsible of generating the

masses of the SM fermions. Of particular interest is the mechanism that produces the masses

of neutrinos since their masses are too small compared to the masses of the other particles,

as can be seen in Figure 5.1. A simple possibility is that there are mass terms of the same

form as the ones of the quarks, but with right handed neutrinos and Yukawa couplings that

are very small by coincidence. Nevertheless, it is believed that physics beyond the SM is

responsible of such small masses. In the SMEFT (Standard Model Effective Field Theory)

framework, this small masses can be produced through a dimension 5 operator, the so called
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Figure 5.1: Fermions mass scales. The values of the neutrino masses are just shown for
illustrative purpose taking into account the neutrino mass differences, the real value is still
not known exactly.

Weinberg operator [138]. The idea is the following: Weinberg’s operator has the form

O(5)
W =

1

2

Cij
Λ

(
Ψci
LH̃

∗
) (
H̃†Ψj

L

)
+ h.c. , (5.1)

where ΨL = (νL, ψL)T is the left-handed lepton doublet of the SM, with ν the neutrino field,

H = (H+, H0)T the Higgs doublet, H̃ = iσ2H
∗, Cαβ the dimensionless Wilson coefficient

and Λ is the new physics scale. The indices i, j denote the families of the fermion fields.

After spontaneous symmetry breaking, the dimension 5 operator will lead to terms of the

form

O(5)
Wmass =

1

2
Cijv

(
v

Λ

)
νciL ν

j
L + h.c. (5.2)

Using a Wilson coefficient of "natural" size Cαβ ≈ 0.1 and v = 246 GeV, we can explain

neutrino masses of order ∼ 10−11 GeV if we set Λ ≈ 1014 GeV. Then, this is the natural

scale where we expect new physics in the neutrino sector to emerge. 1 After a bit of algebra
1Nevertheless, some models can reduce this scale, for example if the dimension 5 Weinberg operator is

produced through loops.
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Figure 5.2: Process that contributes to the neutrino-less double beta decay.

and some rearrangements, it can be shown that the presence of a mass term with this form

implies that the neutrinos are of Majorana nature, i.e that they are their own antiparticles,

so we call this term in the Lagrangian a Majorana mass term. A Majorana mass term,

(just as the Weinberg operator) violates lepton number by two units. This can be easily

seen from the Lagrangian itself: the conjugated of the charge conjugated field has the same

lepton number as the field itself, implying the non conservation of this global symmetry.

There is a well known theorem known as the "Black-Box" theorem [139–142] which states

that there is a one to one correspondence between having lepton number violating processes

and a Majorana mass term in the Lagrangian. This implies that the measurement of a

process that violates lepton number will elucidate the nature of the neutrino masses. The

most common one is neutrino-less double beta decay, the Feynman diagram of this process

is shown in Fig. 5.2. By the arguments mentioned before, neutrino-less double beta deacay

imposes constraints on the values of neutrino masses, see for example the PDG review [29].

5.1.2 Seesaw Formula

Now that we know that it is possible to understand neutrino masses as a consequence of

new physics, we should ask ourselves: What kind of specific UV completions can induce
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dimension 5 Weinberg operators? There are many possible models, for a detailed review

see Ref. [143]. One of the simplest, earliest and most common set of models are the seesaw

models [144–148]. These are generally divided in three types: type I, where heavy Majorana

fermion singlets are included, type II, where a scalar triplet is included, and type III, with

fermion triplets, although many models now include combinations of these mechanisms. Let

us review the seesaw formula for the type I seesaw. Quite generally, the BSM Lagrangian of

neutrino masses can be written as follows2

LM = −1

2

(
ν̄L N̄ c

) m mD

mT
D M


 νcL

N

+ h.c. (5.3)

This is actually a very compact notation, since here we define νL as the three left handed

neutrino fields i.e νL = (νeL, ν
µ
L, ν

τ
L)T and N as the set of right handed neutrino fields in the

model. Thus, the matrix elements m, mD and M are matrices themselves. To be specific,

m is 3× 3 matrix, mD is a 3× n matrix (where n is the number of right handed fields) and

M is a n× n matrix. Now let us integrate out the right handed heavy fields. The classical

equations of motion are 3

∂LM

∂N
= −1

2
ν̄LmD −

1

2
N̄ cM = 0, (5.4)

∂LM

∂N c
= −1

2
mT
Dν

c
L −

1

2
MN = 0, (5.5)

using this equations, we can replace

N̄ c = −ν̄LmDM
−1, (5.6)

2We could have done the decoupling with the Higgs field included, but for our purposes it is just simpler
to go to the broken phase from scratch.

3Since we are going to integrate out the heavy degrees of freedom, we neglect the kinetic term (this term
is suppressed by factors of size p

M ).
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N = −M−1mT
Dν

c
L, (5.7)

in the Lagrangian, and we arrive to

LM = −1

2

[
ν̄Lmν

c
L − ν̄LmDM

−1mT
Dν

c
L

]
+ h.c, (5.8)

then, the neutrino mass matrix for the light degrees of freedom can be written as

ml = m−mDM
−1mT

D. (5.9)

This is the seesaw formula for light neutrino masses. This formula can also be obtained via

a diagonalization of the neutrino mass matrix.

5.1.3 Neutrino Oscillations: Theory

I guess that anyone who would read this thesis knows that an important consequence of a

massive neutrino is the phenomena of flavor oscillations. The idea of neutrino oscillations was

predicted many years ago by Bruno Pontecorvo [149]. Although Pontercorvo first proposed

an oscillation of the type ν → ν̄, his pioneer work planted the idea of neutrino oscillations

in the physics community. A few years later, Maki, Nakagawa, and Sakata [150] developed

the formalism of neutrino flavor oscillation. This work was complemented in a second pa-

per by Pontecorvo [18]. In this second paper, he mentioned possible ways to measure the

phenomena, and estimated the fraction of electron neutrinos coming from the sun. But how

do neutrino oscillations arise? This phenomena occurs because the flavor states are not the

same as the mass eigenstates. In electroweak processes, flavor eigenstates are produced. This

states will later travel trough vacuum4. But in vacuum, the Hamiltonian eigenestates are

the mass eigenstates and not the flavor ones. This implies that the flavor eigenstates will
4Not always the vacuum.
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oscillate between each other. Let us review the formalism very quickly in a non formal way5.

A flavor eigenstate can be written as a linear combination of the mass eigenstates,

|να〉 = U∗αi |νi〉 , (5.10)

where the latin indices indicate a mass state and the Greek indices a flavor state, the matrix

Uαi is called the PMNS matrix6 and us a unitary 3×3 matrix. Now suppose a flavor neutrino

is created with momentum p at t = 0. Then the wave function at time t = 0 is given by

|ψ(x, 0)〉 =

∞∫
−∞

d3 〈x|p̃〉U∗αi 〈p̃|νi, p〉 , (5.11)

since the neutrinos have momentum p we get

|ψ(x, 0)〉 = eipxU∗αi |νi〉 , (5.12)

the time evolution of this wave function is given by the Hamiltonian, whose eigenvalues can

be written as Ei +
m2
i

2E
. Then after a time t, the wave function is given by

|ψ(x, t)〉 = ei(px−Eit)U∗αi |νi〉 , (5.13)

since the neutrinos almost move at the speed of light, we can approximate t ≈ x so the wave

function at t is at position x = t7, then

|ψ(t, t)〉 = e−i
m2
i

2E
xU∗αi |νi〉 , (5.14)

5There are many references that solve this (for me) non trivial problem. For example, [151] uses a wave
packet to describe the oscillations. Using this method gives a proper definition of localization of the wave
function, and as a consequence, a clear definition of the propagation of it. On the other hand, [152] uses the
QFT formalism, and computes the full amplitude of a neutrino process (from production to detection).

6The name comes from Maki, Nakagawa, Sakata and Pontecorvo.
7This is much more clearer in the wavepacket approach, there, the wave packet is approximately located

at x = t.
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and the probability of finding a neutrino of flavor β at this point will be given by

P (α→ β) = |〈νβ |ψ(t, t)〉|2 =

∣∣∣∣∣e−im
2
i

2E
xU∗αi〈νβ |νi〉

∣∣∣∣∣
2

=

∣∣∣∣∣e−im
2
i

2E
xU∗αiUβi

∣∣∣∣∣
2

. (5.15)

We can extract an overall phase to the element inside the absolute value. Let us extract the

phase that corresponds to m3. Then, we get

P (α→ β) =

∣∣∣∣∣e−i∆m2
13

2E
xU∗α1Uβ1 + e−i

∆m2
23

2E
xU∗α2Uβ2 + U∗α3Uβ3

∣∣∣∣∣
2

. (5.16)

where ∆mij ≡ m2
i −m2

j . This implies that neutrino oscillation experiments can only measure

differences of neutrino masses. The next step is to find out how many parameters do neutrino

oscillation experiments should measure to get a full description of the unitary matrix U. First,

let us do the counting of degrees of freedom of a 3× 3 unitary matrix. An arbitrary complex

squared matrix of dimension n has 2n2 free parameters. The orthogonality conditions of a

unitary matrix will impose many constraints on this parameters. The orthogonality condition

of the first column with the remaining n − 1 columns imposes 2(n − 1) constraints. The

constraint of the second column with the remaining n − 2 columns will impose 2(n − 2)

constraints, the third with the remaining ones gives 2(n− 3) and so on and so forth. Thus

from orthogonality between columns we get 2
∑n−1
i=1 (n − i) = n2 − n constraints. Now, the

normalization condition will add another n constraints (it is not 2n because these constraints

are by construction always real). Then the number of free parameters for a unitary n × n

matrix will be 2n2− (n2−n)−n = n2. This imply that for our 3×3 PMNS matrix we would

have 9 parameters to determine from experiments. But this is not the whole story, since we

can make re-definitions of our fields. First let us study the nature of this parameters. We

can divide them in two types: angles and phases. To count the number of angles we should

count the number of degrees of freedom in an orthogonal real matrix of dimension n. The

counting is quite similar to the one of the unitary matrix and the result is that the number

106



BSM physics and other topics

of parameters is n(n − 1)/2. For the particular case n = 3, we have 3 angles. Then for a

unitary matrix of dimension 3 we would have 9 parameters: 3 angles and 6 phases. Some of

these phases might be removed by a redefinition of the fields.

To understand this properly, let us review how do the PMNS matrix shows up in the

Lagrangian. To simplify the analysis, I will change my notation slightly. Instead of using Ψα
L

to denote a Standard Model doublet of fermions of flavor α, I will write it as Lα. Furthermore,

instead of using eαR to denote a right handed charged fermion, I will use lα. Suppose that

we are in a basis where the charged lepton mass matrix is diagonal and the neutrino mass

matrix is not. To get a diagonal neutrino mass matrix, we must transform the states using

Eq. (5.10). At the Lagrangian level, this shows up as a transformation on the fields itself8.

This unitary transformation will cancel out in all the terms of the Lagrangian, except in

two places, the charged current and in the mass term itself (since it sends it to its diagonal

form). It does not cancel out in the charged current because the charge current has the

form l̄αγµ(1 − γ5)]να, so a transformation of the neutrino field would give something like

l̄αγµ(1− γ5)]Uαiνi.

Now, suppose that we have Dirac neutrinos. Then we can rotate each of the neutrino

fields by a phase without changing the Lagrangian at all, except for the charged current

term, this phase transformation can be assigned to the U matrix. The same can be done for

the charged lepton fields. So we have three phases from the neutrinos and three from the

charged fermions. That is 6 phases in total. But there is one redefinition that does nothing

to the neutrino mass matrix: transforming each field by the same phase. In this case, the

phase in l̄ will be cancelled by the phase in ν. Then the number of field phase redefinitions

available for us is only 5. This would imply that the number of parameters in our PMNS

matrix is 9-5=4, three angles and one phase.

For Majorana neutrinos we cannot make a phase rotation to the neutrino fields since the

Lagrangian is not invariant under this transformation (this is the same reason why lepton
8The transformation of the fields is the inverse of Eq. (5.10).
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number is not conserved). Then we would only have the three phases of the charged leptons,

and that is all. So in the case of Majorana neutrinos we would have 9-3=6 free parameters,

that is three angles and three phases. These two extra phases that emerge for Majorana

neutrinos are called Majorana phases.

5.1.4 Neutrino Oscillations: Experiments

There are several ways to measure neutrino oscillations. This subsection is just a review of

the literature about this measurements, and by no means has the intent to be a complete

reference of experimental neutrino physics. If the reader is interested in understanding this

topics in more detail, it is invited to look through the bibliography [29, 153, 154]. To start

talking about measurements, let us settle down the notation. A 3-tuple of flavor neutrinos

will be ordered as (νe, νµ, ντ ), while for the PMNS matrix I will use the PDG parametrization

U =


s12c13 c13s12 e−iδs13

−c23s12 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23

s12s23 − eiδc12c23s13 −eiδc23s12s13 − c12s23 c13c23

 × diag
(
1, ei

α21
2 , ei

α31
2

)
,

(5.17)

where cij = cos θij and sij = sin θij. Let us review how each element of this matrix and the

neutrino mass differences can be experimentally measured.

Measurements of θ12 and ∆m21. This are one of the first parameters ever measured.

The pioneering work was done by Homestake [155] in 1968. This experiment measured the

neutrino flux coming from the sun. In the sun, neutrinos are mainly produced through the

pp chain, the result of these process can be summarized as 4p→4 He+2e++2νe. Homestake

measured the amount of these neutrinos through the reaction νe+37Cl→ e−+37Ar, the 37Ar

was counted later observing their decay in a miniature gas-filled proportional counter. They

found a deficiency of electron neutrinos, compared to what was expected from the Standard

Solar Model [156, 157]. Several more radiochemical detectors were used to detect solar
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neutrinos in different processes and energy ranges [158–160]. They all detected a deficiency

of electron neutrinos with respect to the Solar Model. A different type of experiment started

a few years later, Kamiokande [161]. It was set up to detect ν − e elastic scattering in the

reaction νx+e− → νx+e−. This process is particularly sensitive to electron neutrinos due to

the higher cross section. They detected the Cherenkov radiation produced by the outgoing

electron moving at high speeds in water. The difference with respect to the radiochemical

experiments is that the detection was done in real time and that it was also possible to

measure the directionallity of the incoming and outgoing neutrinos. They also measured a

deficiency of electron neutrinos. Later, another experiment (SNO)[162] used heavy water to

measure the neutrino flux from the sun through two different reactions, the charged current

one νe + d→ e− + p+ p and the neutral current νx + d→ νx + p+ n. The charged current

reaction is only sensitive to electron neutrinos, while the neutral current is sensitive to all

neutrinos in the same way, i.e they all have the same cross section. This last process was

crucial to solve the neutrino solar problem (the deficiency of electron neutrinos). This is

because these experiment confirmed that the total flux of the three types of neutrinos was

equal to the electron neutrino flux expected from the Solar Model. It is obvious that this

experiment must be sensitive to θ12, θ13,∆m12. It will turn out, that given the smallness of

θ13 and the value of ∆m2
23, solar neutrino experiments are mainly sensitive to θ12 and in less

degree to ∆m2
12.

A more precise measurement of ∆m2
12 can be obtained from long baseline neutrino exper-

iments from reactors. This experiments measure electron antineutrinos emitted from nuclear

reactors. One of such experiments is KamLand in Japan [163]. The detector is located in

the Kamiokande cavern, and the average distance to the reactors around it is 180 Km until

2011. The detection process is ν̄e + p→ e+ + n.

Measurements of θ13. The experiments that measure more precisely θ13 are short baseline

reactor experiments. The detection reaction is the same as in Kamland, but the average

distance to the detector is much smaller (around 1 Km). One of the first experiments of
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this kind was CHOOZ [164] which showed that the parameter θ13 must be very small. After

this experiments, many more came such as Double Chooz [165], Daya Bay [166] and RENO

[167].

Measurements of θ23, ∆m2
23 and δCP . The first two parameters can be obtained via

atmospheric neutrinos. Atmospheric neutrinos are produced in a process that starts when

the cosmic rays collide with the atmosphere. As a product of this collision, unstable particles

such as pions are produced. Then, pions will decay through charged current interaction into

muons and their corresponding antineutrino. The next step of this process is the decay of

the muon into an electron, an electron antineutrino, and a muon neutrino. Thus the overall

process will have the net result π− → e− + ν̄e + νµ + ν̄µ. This imply that the expected

ratio of muon type neutrinos over electron neutrinos must be roughly around two. One

of the most important experiments constructed to measure atmospheric neutrinos is Super

Kamiokande. To detect the neutrinos, they use the cherenkov radiation of the charged lepton

produced when the neutrinos interact with water through a charged current interaction. To

distinguish between an electron and a muon, the shape of the Cherenkov ring is observed,

since muons will produce a ring that is less diffuse than the electron ring. What they observe

is a disappearance of muon neutrinos with no excess of electron ones. This gave a way then

to measure the remaining parameters θ23 and ∆m2
23. The CP violation phase can be observed

via accelerator long baseline electron neutrinos appearance. For detailed references see the

PDG review [29].

5.1.5 The road map to construct neutrino models.

I have mentioned some of the pieces required to construct neutrino mass models. In partic-

ular, during my PhD I worked in extensions to the SM using discrete symmetries. Let us

pull together the pieces to understand these models. The idea is to set a UV theory where

the new and Standard Model fields transform in specific ways under this symmetry. This
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symmetry will be broken through spontaneous symmetry breaking to a smaller symmetry

group. After symmetry breaking, we can use the seesaw formula. But as a consequence of

the original symmetry, this seesaw will give a specific shape to the neutrino mass matrix.

Due to the specific form of this mass matrix, correlations between the oscillation parameters

will emerge. These correlations must be compatible with observed neutrino oscillation data

and neutrino-less double beta decay constraints. An interesting feature of our model is that

the remaining symmetry protects some of the BSM particles from decaying into standard

model particles, giving a possible source of dark matter. Now I present a slightly modified

version of our paper [168].

5.2 Previous works on the topic

The pattern of neutrino masses and mixing, which is very different to the quarks pattern,

has been extensively studied. Two main approaches for correlating neutrino oscillation ob-

servables have been used, one based on non-Abelian flavor symmetries, very useful to ex-

plain certain patterns in the mixing parameters such as the tri-bimaximal mixing [169],

bi-maximal mixing [170] or the golden ratio mixing [171, 172], and one based on the assump-

tion of zeros in the neutrino mass matrix and diagonal charged lepton mass matrix. The

Glashow-Frampton-Marfatia classification for the two-zero texture Majorana neutrino mass

matrices is given in Table 5.1 [173]. In this letter, we demonstrate how some of the two-zero

textures in the neutrino mass matrix can be obtained in a framework of the non-Abelian 9

flavor symmetry A4. In this framework the dark matter (DM) stability is due to a residual

Z2 symmetry of A4. For a model based on A4 where the Majorana neutrinos acquire masses

through type I and type II see-saw mechanism giving rise to texture zeros see10 [177]. In a
9It is also possible to obtain texture zeros using Abelian symmetries like in [174], or [175], where several

scalar fields are needed or also [176] where the symmetry group used is Z2 × Z8 in a left-right symmetric
model.

10In the model by Hirsch et. al [177], the texture zeros correspond to B1 and B2 in the classification of
[173].
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recent work [178], texture zeros were obtained corresponding to the B3 and B4 in Table 5.1.

In this model, the texture zeros are related with the flavor symmetry breaking, the same that

is responsible for the stability of DM. Following this approach, we obtain the two textures

predicting a vanishing neutrino-less double beta decay at tree-level, namely A1 and A2.

5.2.1 The framework

A4 is the alternating group of four objects. It is formed by the even permutations of the

larger permutation group S4. A4 is generated by S and T where S2 = T 3 = (ST )3 = I. The

dimensionality of A4 is twelve and the number of conjugacy classes is four. Then we have

four irreducible representations (irreps), three of them are one-dimensional 1, 1′, 1′′ and

one three-dimensional 3. Actually it is the smallest discrete group which contains a triplet

irreducible representation, this has been extensively used by model builders because it is

possible to accommodate the families in a triplet representation [179–181]. The generators

S and T in the S-diagonal basis are given in Table 5.2.1.

Case Texture zeros ((a,b),(c,d))
A1 (mν)ee = (mν)eµ = 0 ((1,1),(1,2))
A2 (mν)ee = (mν)eτ = 0 ((1,1),(1,3))
B1 (mν)µµ = (mν)eτ = 0 ((2,2),(1,3))
B2 (mν)ττ = (mν)eµ = 0 ((3,3),(1,2))
B3 (mν)µµ = (mν)eµ = 0 ((2,2),(1,2))
B4 (mν)ττ = (mν)eτ = 0 ((3,3),(1,3))
C (mν)µµ = (mν)ττ = 0 ((2,2),(3,3))

Table 5.1: Texture zero matrices.

To obtain singlets under the A4 symmetry, it will be necessary to compute direct products

of irreps. In particular, the product rule for two triplet representations [179] is

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3, (5.18)
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Irrep S T
1 1 1
1′ 1 ω
1′′ 1 ω2

3

 1 0 0
0 −1 0
0 0 −1


 0 1 0

1 0 1
1 0 0


Table 5.2: A4 generators for the irreducible representations in the S diagonal basis, ω = ei2/3π

is the cubic root of 1.

Le Lµ Lτ le lµ lτ NT N4 N5 H η φ
SU(2) 2 2 2 1 1 1 1 1 1 2 2 1
A4 α β γ α β γ 3 δ ε 1 3 3

Table 5.3: Summary of the particle content and quantum numbers. α, β, γ, δ and ε can be
any of the singlet representations 1,1′,1′′.

where the representations 1′ and 1′′ are complex conjugate to each other. The model we

considered here contains an extended Higgs sector with the SM Higgs H transforming as

a singlet 1, three copies of Higgses in a triplet representation of A4, η = (η1, η2, η3)
T , and

three scalar singlets of the SM also in a triplet of A4, φ = (φ1, φ2, φ3)
T . We also considered

five right-handed (RH) neutrinos, three of them in the triplet representation of A4, NT =

(N1, N2, N3)
T and two singlets N4 and N5. The complete assignment of the matter fields to

irreps of A4 is shown in Table 5.3.

The most general Lagrangian consistent with the symmetries of our theory is

LY = yeLeleH + yµLµlµH + yτLτ lτH (5.19)

+ yν1Le [NTη]α + yν2Lµ [NTη]β + yν3Lτ [NTη]γ

+ yν14 δαδLeN4H̃ + yν24 δβδLµN4H̃ + yν34 δγδLτN4H̃

+ yν15 δαεLeN5H̃ + yν25 δβεLµN5H̃ + yν35 δγεLτN5H̃

+ MN c
TNT +M4δδ1N c

4N4 +M5δε1N c
5N5

+ yN1
2 δ1δ

[
N c
Tφ
]
1
N4 + y

N1′′
2 δ1′′δ

[
N c
Tφ
]
1′
N4
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+ y
N1′
2 δ1′δ

[
N c
Tφ
]
1′′
N4 + yN1

3 δ1ε
[
N c
Tφ
]
1
N5

+ y
N1′′
3 δ1′′ε

[
N c
Tφ
]
1′
N5 + y

N1′′
3 δ1′ε

[
N c
Tφ
]
1′′
N5

+ yN1
[
N c
Tφ
]
31

NT + (yN1 )′
[
N c
Tφ
]
32

NT

+ M45δδε∗N c
4N5 + h.c ,

where α, β, γ, δ and ε can be any of the three singlet representations of A4. Notice that

charged leptons are diagonal since 1′∗ = 1′′ and 1′⊗1′′ = 1. The scalar fields η, H and φ get

a vacuum expectation value (vev). There are two possible configurations of the vev to get a

minimum of the potential, these are 〈φ〉Z2
= (vφ, 0, 0)T (S invariant) and 〈φ〉Z3

= (vφ, vφ, vφ)T

(T invariant). The first one leaves a Z2 symmetry after the breaking and the other one will

leave a Z3 symmetry, which can be easily seen from the generators in Table 5.2.1. The same

arguments apply for the vev of η.

Le Lµ Lτ N4 N5 Neutrino Matrix Type

1 1′′ 1′ 1 1′

 X 0 X
0 0 X
X X X

 B3

1 1′′ 1′ 1 1′′

 X X 0
X X X
0 X 0

 B4

1′′ 1 1′ 1 1′

 0 0 X
0 X X
X X X

 A1

1′′ 1′ 1 1 1′

 0 X 0
X X X
0 X X

 A2

Table 5.4: Particle transformation under A4 that gives rise to texture zeros in the neutrino
mass matrices. We get the same texture matrix if we exchange 1′ ↔ 1′′ in each line. In the
same way we get the same texture if we exchange the representations of N4 and N5. The
last column gives the matrix type according to [173].
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Figure 5.3: Loop diagram which generates a non-zero mee and consequently a small double
beta decay rate.

5.2.2 Results

With the matter content of our model we were able to get the type A1, A2, B3 and B4

texture zeros. This textures are only obtained when the flavor symmetry is broken into the

Z2 subgroup. The residual Z2 symmetry (corresponding to the S generator) is

η1 → η1, η2 → −η2, η3 → −η3,

φ1 → φ1, φ2 → −φ2, φ3 → −φ3,

N1 → N1, N2 → −N2, N3 → −N3.

(5.20)

The lightest and Z2 odd (and neutral) particle would play the role of DM since it will be

stable [178, 182]. In the active sector besides the SM fields, we have two scalars (η1, φ1) and

three right handed neutrinos (N1, N4, N5). While in the dark sector we have all the Z2 odd

fields in Eq. (5.20).

The models resulting from fixing the irreducible representations for the left handed fields

and the (RH) neutrinos in Eq. (5.19) are summarized in Tab. 5.4. Textures B3 and B4 were

already reported in [178]. The type A1 and A2 matrices have a zero tree level contribution

to the neutrinoless double beta decay effective mass parameter, mee,11 and also zero meµ

and meτ components respectively. These zeros are extremely powerful and predictive. To
11A direct consequence of a vanishingmee is that these textures are only compatible with normal hierarchy.
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see this, let us remark that, in general, neutrino oscillation experiments can only access to

two neutrino mass differences, three mixing angles and one CP violating phase i.e. to six

parameters of the theory. On the other hand, the theory has three masses, three mixing

angles and three CP violating phases. This is where the zeros play an important role, they

give four constraints (because the elements are in general complex) which give correlations

between the six parameters to which the experiments have access. We will see explicitly the

Lagrangians for models A1 and A2 by fixing the field irreps in Eq. (5.19).

Model for A1

In this case, the irreps for the lepton fields are as follows: Le, Lµ and Lτ transform as

1′′, 1 and 1′ respectively, while N4 and N5 are in 1 and 1′, or in the notation of Table 5.3

α = 1′′, β = 1, γ = 1′, δ = 1 and ε = 1′. The Lagrangian in eq. (5.19) is reduced to

LY = yeLeleH + yµLµlµH + yτLτ lτH (5.21)

+ yν1Le [NTη]1′′ + yν2Lµ [NTη]1 + yν3Lτ [NTη]1′

+ yν24 LµN4H̃ + yν35 LτN5H̃ +MN c
TNT

+ M4N c
4N4 + yN1

2

[
N c
Tφ
]
1
N4 + y

N1′
3

[
N c
Tφ
]
1′′
N5

+ yN1
[
N c
Tφ
]
3
NT + (yN1 )′

[
N c
Tφ
]
32

NT + h.c.

Once the flavor symmetry is broken by the scalar field φ, the mass matrix for the RH neutrino

fields takes the form12 [178]

MR =



M 0 0 vφy
N1
2 vφy

N1′
3

0 M Mφ 0 0

0 Mφ M 0 0

vφy
N1
2 0 0 M4 0

vφy
N1′
3 0 0 0 0


, (5.22)

12Note that the RH neutrino mass matrix is the same for case A2.
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where Mφ = vφ(yN1 + (yN1 )′), while the Dirac neutrino mass matrix is given by

mD =


vηy

ν
1 0 0 0 0

vηy
ν
2 0 0 vHy

ν2
4 0

vηy
ν
3 0 0 0 vHy

ν3
5

 . (5.23)

Using the type I seesaw formula for light neutrino masses mν = −mDM
−1
R mT

D, the light

left-handed neutrino mass matrix takes the form

mν =


0 0 w

0 x y

w y z

 , (5.24)

which corresponds to the A1 texture, where

w =
−vHvηyν1yν35

(vφy
N1′
3 )

x =
−v2H(yν24 )2

M4

, (5.25)

y =
y
N1′
3 vH(vHvφy

ν2
4 y

N1
2 − vηM4y

ν
2 )

M4vφy
N1′
3

,

z =
y
N1′
3 vH(MM4y

N1′
3 vH − 2M4y

ν
3y

N1′
3 vφvη − vHv2φ(yN1

2 )2y
N1′
3 )

M4v2φ(y
N1′
3 )2

.

Model for A2

In this case, the irreps for the lepton fields are as follows: Le, Lµ and Lτ transform as

1′′, 1′ and 1 respectively, while N4 and N5 are in 1 and 1′, or in the notation of Table 5.3

α = 1′′, β = 1′, γ = 1, δ = 1 and ε = 1′. The resulting Lagrangian is

LY = yeLeleH + yµLµlµH + yτLτ lτH (5.26)

+ yν1Le [NTη]1′′ + yν2Lµ [NTη]1′ + yν3Lτ [NTη]1
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+ yν34 LτN4H̃ + yν2
5 LµN5H̃ +MN c

TNT

+ M4N c
4N4 + yN1

2

[
N c
Tφ
]
1
N4 + y

N1′′
3

[
N c
Tφ
]
1′′
N5

+ yN1
[
N c
Tφ
]
31

NT + (yN1 )′
[
N c
Tφ
]
32

NT + h.c.

After the breaking of the flavor and electroweak symmetries the Dirac neutrino mass matrix

is

mD =


vηy

ν
1 0 0 0 0

vηy
ν
2 0 0 0 vHy

ν2
5

vηy
ν
3 0 0 vHy

ν3
4 0

 , (5.27)

and the light left-handed neutrino mass matrix takes the form

mν =


0 w′ 0

w′ x′ y′

0 y′ z′

 , (5.28)

which corresponds to the A2 texture, where

w′ =
−vHvηyν25 yν1
vφy

N1′
3

, (5.29)

x′ =
vHy

ν2
5 (−2M4vηvφy

ν
2y

N1′
3 +MM4vHy

ν2
5 − vHv2φ(yN1

2 )2yν25 )

M4v2φ(y
N1′
3 )2

,

y′ =
vH(−M4vηy

ν
3 + vHvφy

N1
2 yν34 )yν25

M4vφy
N1′
3

,

z′ =
−v2h(yν34 )2

M4

.
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5.2.3 Phenomenology

These textures have been extensively studied [173, 183–198]. Here for completeness we

present some results and give an estimate of the radiative correction for the neutrinoless

double beta decay effective mass parameter. In order to do this, the first step is to notice

that the neutrino mass in the flavor basis is related to the mass matrix in the mass basis

by a unitary transformation U , i.e. mν = UDUT , where D = diag(m1,m2,m3) is the

diagonal neutrino mass matrix. We use the PDG parametrization given in Eq. 5.17 and

define the masses including the corresponding Majorana phases as µ1 ≡ m1, µ2 ≡ eiα21m2,

µ3 ≡ eiα31m3. Using the texture zeros we solve for the masses µ2 and µ3 in terms of

(µ1, sin
2 θ12, sin

2 θ23, sin
2 θ13, δ), see for instance [183, 184]. Then we compute the differences

∆m2
12 and ∆m2

23, both will be proportional to µ1. Taking the ratio will give us something

that is independent of µ1 and is only a function of the parameters measured by experiments.

The next step is to draw random points for (sin2 θ12, sin
2 θ23, sin

2 θ13) and predict the CP

oscillation phase at each draw. Once we get the CP violating phase we can subsitute its value

in the functions ∆m2
12 or ∆m2

23 and solve for the mass µ1. Finally we check if our predictions

are consistent with the neutrino allowed regions given by global neutrino oscillation fits

[199, 200]. For the type A1 and A2, the lightest neutrino mass we get is between m1 =

[0.004, 0.008]eV and m1 = [0.003, 0.008]eV respectively. At leading order in θ13 one can

easily extract the Majorana phases

µ2 ' −µ1 cot2 θ12 µ3 ' ±µ1e
iδ cot θ12 cot θ23

sin θ13
, (5.30)

where the + is for A1 and the − for A2, then the Majorana phases are simply α21 = π and

α31 = δ (α31 = δ + π). An interesting property of the A1 and A2 matrices obtained here is

that the neutrinoless double beta decay effective mass parameter is predicted to be zero at

tree level. In any case, it should be pointed out that loop corrections like the one shown in

Fig. 5.3 give a non-zero (but small) contribution to mee. The one loop contribution is not

119



BSM physics and other topics

computed exactly, instead of it, we estimate the bound with a few assumptions. We assume

that the Yukawa couplings in the theory are of the same order of magnitude. The one loop

diagram that contributes to mee is just the one shown in Fig. 5.3 (which depends on the

coupling yν1 ). Other possible diagrams such as one with external Higgs singlet of A4 are

forbidden by the flavor symmetry. Thus to estimate it, we use the neutrino matrix element13

which has vevs and Yukawas similar to the ones that appear in the one loop contribution

in Fig. 5.3. We have performed the scan in our parameter space, and taken the maximal

value for the neutrino matrix element in the three sigma scan and this value is divided by

the usual one loop suppression factor (4π)2. For A1 we have meτ < 0.012eV , thus we get

mee(0.012× ( 1
4π

)2 = 8× 10−5) eV, which is well below current experimental limits [201]. For

A2 we get exactly the same constraint.

5.2.4 Other textures: B1 and B2

Finally, it is important to mention that if we break A4 to Z3, in many cases the RH neu-

trino mass matrices are non invertible while some of them give only two non-vanishing light

neutrino mass elements and therefore the phenomenology for masses and mixings are trivial

and non compatible with the observations. Nevertheless, if we include another scalar field ∆

which is triplet under SU(2)L and a singlet under A4, just as in [177] we are able to obtain

two more texture zeros, namely B1 and B2. For example, B2 can be obtained if we use the

irrep assignment Le = 1, Lµ = 1′′, Lτ = 1′, N4 = 1′, N5 = 1′′ and ∆ = 1′. Thus a simple

extension of our model allows to obtain six of the seven texture zeros. In these scenarios the

DM stability is lost since the charged leptons transform also non-trivially under the residual

Z3 symmetry.
13meτ (meµ) for A1 (A2) texture.
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5.2.5 Other works in the same direction.

I also worked with a left right symmetric model [202]. I will not show the details of the model

or the theory behind it in this text since I want to keep it as compact as possible, and my

contribution was a bit less than for the other three papers. I will explain the idea, but the

interested reader is invited to look through the references. In left right symmetric models,

the Standard Model is extended from SU(2)L×U(1)Y to SU(2)L×SU(2)R×U(1)B−L. In our

model, we extended this, and included two discrete symmetries, D4 and Z2. After successive

spontaneous symmetry breaking, neutrino masses will emerge. At this level, an important

difference with the respect to the A4 model that I have just presented in this chapter, is the

fact that in this case the charged leptons mass matrix has to be diagonalized to. When this

is done, the measured PMNS matrix is not only the matrix that diagonalizes the neutrino

mass matrix but a multiplication of both, the one that diagonalizes the charged leptons

and the one that diagonalizes the neutrinos. The orthogonal matrix that diagonalizes the

lepton mass matrix will not be unique in this model. This freedom leads to four solutions for

the PMNS matrix. We found that two of these solutions return phenomenological available

values for the neutrino oscillation parameters, the neutrino-less double beta decay and the

process µ→ e+ γ.
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Conclusions

It is clear that even though the electroweak sector of the standard model was formulated

many years ago, it is still an exciting and incredibly interesting subject to do research. The

study of this subject made the work of this thesis to cover many topics, which (at first sight)

might look disconnected. From Bayesian statistics, to the weak mixing angle at low energies,

to models beyond the Standard Model. A total of five papers where published from this work

[45, 71, 107, 168, 202].

In [45] we proposed a different way to compute the PDG scaling. The methodology

is based on methods used in meta analysis. Essentially, a Bayesian Hierarchical method

is used. In this way, we can be agnostic about each of the measurements. After that, a

posterior distribution for the hyper-parameters of the model is obtained. The asymptotic

behavior of this distribution is also studied. We have shown that in the large N limit, the

Bayesian hierarchical model replicates the PDG scaling, while for low N more scaling is

obtained. This method does not suffer from other problems of the PDG methodology such

as the effects of the order of averaging in the final result. We also applied the methodology

to the neutron lifetime, where there is a well known difference between the bottle and beam

experiments. Due to the number of experiments we get a similar value to the weighted

average suggested by the PDG. The model can be easily extended to experiments that are

correlated. Another possible future line of research is to use a hierarchical model to impose
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bounds on the Standard Model Effective Field theory. This should be possible, given that

some families of Wilson coefficients might be similar and could have common origins. This

was actually how we started this project, but at some point we realized out the possibility

to use it for the PDG averages.

In [107] we computed the uncertainty in the running of the weak mixing angle in the

MS scheme from the Z pole to low energies. In this work, an experimental separation of

the stange quark contribution was used, instead of the the rougher theoretical estimate used

in previous works. We also included results from lattice QCD for both, the strange quark

contribution and the disconnected diagrams that appear at three loop order. The formulas

for the running and matching were updated to the next loop order. We also updated the

formula that gives the relationship between the experimental cross section for the process

e+ + e− → hadrons and the fine structure constant in the MS scheme. The combination

of these improvements reduced the uncertainty of the weak mixing angle at low energies by

almost a factor of four. This reduction will allow a better comparison between theory and

experiment, which can help in the search of physics beyond the Standard Model. This will

be particularly important for several new experiments such as MOLLER, since the predicted

sensitivity of δ(sin2 θW ) = ±0.00028 will be close to LEP and LHC, and with our work,

the theoretical error is an order of magnitude below the experimental one. We also made

significant progress in the computation of the running of the fine structure constant α in the

MS scheme. The plot of the running of the weak mixing angle was published in the 2018

version of the PDG.

In [168] we show how to generate neutrino mass texture zeroes from a discrete symmetry,

A1 and A2. We computed the experimental constraints that these matrices induce for the

neutrino oscillation parameters, i.e the masses, the mixings, and the CP phases (Dirac and

Majorana). The model, due to the residual Z2, gives a possible way to relate neutrino

phenomenology with dark matter stability. The dark matter phenomenological constraints

can be seen in one of my collaborators previous work [178]. In [202], we used a left right model
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with discrete symmetries on the top of it. After going to the mass basis for all particles, we get

four different solutions for the correlations and values of the neutrino oscillation parameters.

Two of them require no tuning to be compatible with neutrino oscillations constraints. We

also obtain non zero neutrino-less double beta decay which is compatible with experimental

constraints. Our results are also compatible with the constraints from the process µ→ e+γ.

There are many possible future lines of research that can follow the work presented here.

For example, it might be interesting to study with detail all the relations and differences

between the different schemes used for α̂. The same applies for the weak mixing angle.

Another future line of research is to apply the statistical methods used here to perform

global analysis of electroweak precision physics.

With respect to neutrino physics, there is an ongoing project where we have an extra

U(1) with kinetic mixing and discrete symmetries. The idea is to perform an analysis that

includes the SMEFT formalism to put constraints on the model in a global way.

To conclude, I would like to say electroweak physics turned out to be a delightful topic.

I certainly learned a lot, but I also learned that there is still much more to be done.
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Appendix A

Fisher’s Information

The proof is fairly easy and involves only basic calculus. First we use

∫
p(y|θ)dy = 1, (A.1)

and we derive this equation by θ, thus

∫ dp(y|θ)
dθ

dy = 0, (A.2)

with a bit of rearrangement we get

∫ dp(y|θ)/p(y|θ)
dθ

p(y|θ)dy = 0, (A.3)

or ∫ d ln(p(y|θ) )

dθ
p(y|θ)dy = 0. (A.4)

Taking the derivative of this equation

∫ d2 ln(p(y|θ) )

dθ2
p(y|θ)dy +

∫ d ln(p(y|θ) )

dθ

dp(y|θ)
dθ

dy = 0. (A.5)

or ∫ d2 ln(p(y|θ) )

dθ2
p(y|θ)dy +

∫ (
d ln(p(y|θ) )

dθ

)2

p(y|θ)dy = 0. (A.6)
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The second term on the left hand side is the Fisher’s information. So we have proved that

I (θ) = −
∫ d2 ln(p(y|θ) )

dθ2
p(y|θ)dy. (A.7)
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Appendix B

Coefficients of the RGE

The running of the weak mixing angle is

µ2 dŝ
2

dµ2
=
α̂

π

 1

24

∑
i

Kiγi
(
Q2
i ŝ

2 − TiQi

)
+ σŝ2

(∑
q

Qq

)2

− σ

2

(∑
q

Tq

)(∑
q

Qq

) , (B.1)

on the other hand the running of the fine structure constant is

µ2dα̂
2

dµ2
=
α̂2

π

 1

24

∑
i

KiγiQ
2
i + σ

(∑
q

Qq

)2
 , (B.2)

combining both equations we obtain

µ2 d

dµ2

(
ŝ2

α̂

)
= − 1

24π

∑
i

KiγiTiQi −
σ

2π

(∑
q

Tq

)(∑
q

Qq

)
, (B.3)

this is an equation that measures the difference between the running of the weak angle and

the fine structure constant. This equation can be integrated, if one proposes the following

solution,

µ2 d

dµ2

(
ŝ2

α̂

)
=
λ2
3π

+ λ1µ
2 d

dµ2

(
1

α̂

)
+

3λ3
4π

µ2d ln α̂

dµ2
+ µ2 d

dµ2

(
σ̃

π

)
, (B.4)

for unknnown constants λ1, λ2 and λ3 that depend on the number of particles in the theory.

We can use again the RGE for α̂ to get values of these constants, then we must have
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− 1

24π

∑
i

KiγiTiQi −
σ

2π

(∑
q

Tq

)(∑
q

Qq

)
=
λ2
3π
− λ1
α̂2
µ2 dα̂

dµ2
+

3λ3
4π

1

α̂
µ2 dα̂

dµ2
+ µ2 d

dµ2

(
σ̃

π

)
,

(B.5)

inserting the RGE of α̂ we get

− 1

24π

∑
i

KiγiTiQi −
σ

2π

(∑
q

Tq

)(∑
q

Qq

)
=
λ2
3π
− λ1

π

 1

24

∑
i

KiγiQ
2
i + σ

(∑
q

Qq

)2


+
3λ3
4π2

α̂

 1

24

∑
i

KiγiQ
2
i + σ

(∑
q

Qq

)2
+ µ2 d

dµ2

(
σ̃

π

)
, (B.6)

we fix λ1 in such a way that it absorbs all the α̂s connected dependence in the RGE. Thus

− 1

24π

∑
i

TiQq
1

2
= −λ1

π

[
1

24

∑
q

Q2
q

]
, (B.7)

this reduces to

λ1 =

∑
i TiQq

2
∑
qQ2

q

, (B.8)

there will remain terms that are constants, other ones that thepend on α̂ and some others

proportional to α̂3
s and come from the singlet. The constant terms can be easily obtained,

λ2 =
1

8

∑
i 6=q

γi
(
λ1Q

2
i − TiQi

)
, (B.9)

for the terms proportional to α̂ we would have

− 1

32π

α̂

π

∑
i 6=W

N c
i γiTiQ

3
i = −λ1

π

 1

24

3

4

α̂

π

∑
i 6=W

N c
i γiQ

4
i

+
3λ3
4π

α̂

π

[
1

24

∑
i

N c
i γiQ

2
i

]
, (B.10)

λ3 =

∑
i 6=W N c

i γiQ
2
i [λ1Q

2
i − TiQi]∑

iN
c
i γiQ

2
i

, (B.11)

129



Coefficients of the RGE

B.1 Calculations of α(M 2
Z)

Three independent groups presented recent evaluations of the hadronic contribution to the

scale dependence of α. In this appendix we briefly compare their approaches and results.

In the Adler function approach [97, 134], one uses the relations,

D(Q2)

Q2
≡ 12π2dΠ(q2)

dq2
= −3π

α

d

dq2
∆had(q2) =

∫ ∞
4m2

R(s)

(s+Q2)2
ds , (B.12)

where Q2 = −q2, and where the dispersion integral in the latter expression can be used to

implement experimental data up to some cut-off M0. One can then write,

∆hadα
(5)(M2

Z) = ∆hadα
(5)(−M2

0 )data + [∆hadα
(5)(−M2

Z)−∆hadα
(5)(−M2

0 )]PQCD

+ [∆hadα
(5)(M2

Z)−∆hadα
(5)(−M2

Z)]PQCD , (B.13)

where the last two terms are computed using the operator product expansion (OPE) of R(s),

i.e., including the leading non-perturbative condensate corrections. Demanding consistency

with the OPE of the Adler function itself suggests that a value ofM0 as low as 2 GeV appears

to be a safe choice. Using this approach implies [97] for the on-shell definition,

α(M2
Z)−1 = 128.958± 0.016 . (B.14)

The approach of Ref. [203] is mostly data driven. Experimental data were used up to

11.09 GeV (except for the interval between 2.6 GeV and 3.73 GeV) and PQCD beyond that.

The dispersion relation (4.12) then implied,

α(M2
Z)−1 = 128.944± 0.019 . (B.15)

Similarly, Ref. [122] uses data up to only 5 GeV (except for the interval between 1.8 GeV
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and 3.7 GeV), with the result,

α(M2
Z)−1 = 128.947± 0.012 . (B.16)

Here, we rely on the data handling of this work as it includes much more recent data than

Ref. [203]. Moreover, the breakdown of individual channels and energy ranges is more explicit

compared to Ref. [97].

Finally, changing our own result, with α̂(M2
Z)−1 = 127.959 ± 0.010, based on the direct

application of the renormalization group and matching equations and including τ decay data,

from the MS scheme to the on-shell scheme including the top quark contribution, we find,

α(M2
Z)−1 = 128.949± 0.010 . (B.17)

The numerical difference of our result to Ref. [122] arises mostly from the different1 value

of αs and our treatment of the charm quark contribution [137]. Thus, in view of the rather

different approaches and differences in data sets, all numerical results are in good agreement

with each other.

B.2 Calculation of ∆discα̂

In the on-shell scheme one has [204],

∆discα(q) = 4παRe
[
Π(q2)− Π(0)

]
disc

, (B.18)

where, [
Π(q2)− Π(0)

]
disc

=
T∑
t=0

[
cos(qt)− 1

q2
+
t2

2

]
C(t). (B.19)

1The three groups use slightly different values for αs, but this amounts to difference below the level of
0.004 in α(MZ)

−1.
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C(t) has been computed [129] in units set by the lattice cut-off scale a−1 = 1.73 GeV. To

obtain Eq. (4.28), we plotted ∆discα(q) as a function of T and observe a plateau near T = 20,

which closely mirrors the result for the case of aµ. The value of the plateau is interpreted

as the physical value [129]. As an independent check we compute the ratio ρ(aµ) of the

disconnected contribution to the anomalous magnetic moment [129], adiscµ = −9.6×10−10, to

the total hadronic contribution [122] for energies up to 1.8 GeV, obtaining ρ(aµ) = −0.015.

The integration kernel of aµ enhances contributions from low q2 momenta, and recalling that

Qu+Qd+Qs = 0, the disconnected piece also predominantly arises from such momenta. On

the other hand, the integration kernel for ∆α has greater support at higher scales compared

to aµ, so that ρ(aµ) should imply an upper bound on the disconnected contribution to ∆α.

Numerically,

|∆discα (1.8GeV )| < |ρ (aµ)×∆hadα (1.8GeV )| = 8.3× 10−5, (B.20)

where ∆hadα(1.8 GeV) = 55.26 × 10−4. This confirms the finding in Eq. (4.28) that ∆discα

is very small.
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