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Objective

The aim of this thesis is to introduce a new species sampling process, study its

properties, and show with a practical example and a package implementation, its

usefulness for density estimation and clustering. We will begin by defining a random

probability measure, a species sampling process, their construction, and some useful

results to prove when a species sampling process has full support in the space of

target probability measures. A brief introduction to exchangeable random variables

and de Finetti’s theorem are given as the ground for density estimation by means of

species sampling mixtures. We also introduce the Dirichlet process, the Geometric

Process and the Dirichlet Geometric Process (DGP). Then we describe the steps

and properties of density estimation and clustering with the DGP mixture. Finally

we conclude with numerical illustrations and comparison against commonly used

methods.
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Chapter 1

Introduction

Density estimation and clustering have become very useful statistical tools for data

science and machine learning thanks to their usefulness to make predictions, establish

boundaries, segregate groups with similar traits, among others.

On its basics, performing density estimation for a population means to give a

proposal for the probability density function of the population using the information

already available, namely, the observed sample.

Given an observed sample (Y1, . . . , Yn), there are many ways to make inference

about a future observation Yn+1, all of them with their respective biases and as-

sumptions. A straightforward approach would be to use the empirical distribution

function of the observed sample

FY (y) = n−1
n∑
i=1

1(Yi ≤ y)

as the population density from which Yn+1 will be sampled. Here, although it seems

like we are not making any assumption at all, there is actually a very strong assump-

tion: the discreteness of the next observation.

So what if we know that the data source draws continuous variables? We can make

the empirical distribution function continuous by joining the discontinuity points
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CHAPTER 1. INTRODUCTION

with a straight line, but then we are modeling the next variable as being uniform

between observations, and giving zero probability to a new minimum or maximum

value.

Among other methods are taking an histogram of the data and scaling it to be

a probability density function (this density will depend greatly on how we bin the

data), or do a Kernel Density Estimation (KDE) in which the estimate is given by

ρK(x;h) = n−1
∑n

i=1K(x− Yi;h). The variable h is called the bandwidth parameter

and controls the density “thickness” that each observation contributes, and the func-

tion K(x;h) is the kernel, a positive function that integrates to one. Examples of

kernels are (Bonaccorso, 2019) the Tophat Kernel defined as K(x;h) = 1
2h

1(|x| < h)

or the Gaussian Kernel defined as K(x;h) = 1√
2πh

exp
(
− x2

2h2

)
.

This model can be enhanced in a couple of ways. To begin with, the KDE of n

observations is an equal weighted mixture of n densities. This is improved with a

Dirichlet Process Mixture (DPM) which is a Species Sampling Mixture where each

weight is drawn from a Dirichlet Process. Other improvement is that each kernel

in a KDE is homogeneous, whereas in a DPM, the parameter of the i’th kernel ξi

is drawn from a priori distribution g. There is another density estimation method

based on a Species Sampling Mixture with the Geometric Process as a driver, called

the Geometric Process Mixture (GPM). It was introduced in Fuentes-Garćıa, Mena,

and Walker (2009). In this article they concluded that the Geometric Process “is

sufficient for mixture modeling and that the current trend of further elaborating

on Dirichlet process mixture models must be compromised with an application that

potentially would require more complicated weights specifications”.

One of the main reasons for choosing the GPM over the DPM is that the process

of training the models for a particular data set can be computationally faster with

the former. But having as a disadvantage that the number of fitted groups might

get greatly overestimated due to lack of a flexible weighting structure such as the

7



CHAPTER 1. INTRODUCTION

Figure 1.1: The Tophat Kernel to the top left and the Gaussian Kernel at the top

right, both with bandwidth parameter h = 1
2
. At the bottom the respective KDE

for a sample of ten data points.

one showcased in the DPM.

Following with our introduction, clustering is the process of partitioning a set of

observations (Y1, . . . , Yn) into groups, usually so that elements in a same group share

more similarities with that group than with any other.

One common method for clustering is the k-means algorithm. It is an iterative

method to cluster a set of n observations into a previously known number, k, of

groups via a centroid distance minimization step. The algorithm goes as follows

(Han, Kamber, and Pei, 2012):

8



CHAPTER 1. INTRODUCTION

1. arbitrarily choose k distinct elements from (Y1, . . . , Yn) as the initial cluster

centers.

2. repeat:

(a) (re)assign each element to the cluster with nearest center.

(b) update the cluster centers, that is, calculate the mean value of the elements

of each cluster.

3. until no change.

Again, there are some drawbacks. This algorithm can vary drastically the final

clusters depending on the initial choice of elements, it is sensitive to outliers and

heteroscedasticity between groups, furthermore the number of groups to cluster is

needed as a parameter. Some of this points are illustrated in Figure 1.2 from the

scikit-learn project (Pedregosa et al., 2011). “This example is meant to illustrate

situations where k-means will produce unintuitive and possibly unexpected clusters.

In the first three plots, the input data does not conform to some implicit assumption

that k-means makes and undesirable clusters are produced as a result. In the last

plot, k-means returns intuitive clusters despite unevenly sized blobs”.

Clustering with the DPM improves over the k-means algorithm in all the problems

illustrated in Figure 1.2 since the number of clusters needed is inferred from the data

so an arbitrary number of groups can be assigned, and the distribution of each cluster

is independently fitted. This improvements can be seen empirically in Figure 1.3.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Plots of k-means examples from scikit-learn project site.

10



CHAPTER 1. INTRODUCTION

Figure 1.3: Plots of DPM examples from scikit-learn project site.

11



Chapter 2

Preliminaries

2.1 Random Probability Measures

A random probability measure is a random object whose values are probability mea-

sures themselves.

Definition. A random probability measure Q is a measurable mapping from a prob-

ability space (Ω,F ,P) into a measurable space (P ,G ), where P is the set of all

probability measures on a common measurable space (X,X ) and G is a σ-field on

P .

As a brief example, let the probability space be the toss of a fair coin and Q

defined as a Normal(0, 1) if heads and Normal(0, 2) if tails.

In general the space of random probability measures can be too broad so it is

customary to ask X to be a Polish space to make it more manageable. Then, P is also

Polish under the induced Prokhorov metric (Appendix, Definition 11). Moreover, a

sequence in P converges in metric if and only if it converges weakly and to the same

limit. Then we can take G = B (P), the Borel σ-field of P .

An open base of neighborhoods for µ ∈ P in the topology of weak convergence
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CHAPTER 2. PRELIMINARIES 2.2. SPECIES SAMPLING PROCESS

(hereafter called weak topology) is the class of sets

Uε1,...,εk(µ,A1, . . . , Ak) := ∩kj=1{ν ∈ P : |ν(Aj)− µ(Aj)| < εj},

where k is a positive integer, (ε1, . . . , εk) ∈ (0,∞)k and (A1, . . . , Ak) is a k-tuple of

µ-continuity sets in X . Also µ belongs to the support (in the weak topology) of a

random probability measure Q if and only if

P(Q ∈ Uε1,...,εk(µ,A1, . . . , Ak)) > 0,

for every k ≤ 1 and every k-tuple (A1, . . . , Ak) in the µ-continuity subsets of X .

Proposition 1. Let Q be a random probability measure on (X,X ), such that g(·) =

E(Q(·)), for every A ∈X . If µ is a probability measure on (X,X ) belonging to the

support (in the weak topology) of the distribution of Q, then Sµ ⊆ Sg where Sν stands

for the support of the deterministic measure ν.

This results can be found in Parthasarathy (2005). Even under these constrains

the space of random probability measures can get too broad to be tractable for density

estimation purposes. For this reason it is useful to narrow down the aforementioned

space. That can be done by means of the species sampling process, which we will

introduce next.

2.2 Species Sampling Process

Definition. A species sampling process is a random probability measure that can

be decomposed as

Q =
∞∑
j=1

wjδξj +

(
1−

∞∑
j=1

wj

)
g,

where g is a probability measure on X which is diffuse (that is g{x} = 0 for every

x in X), and (wj)j≥1 and (ξj)j≥1 are two independent sequences of random variables
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called weights and locations respectively such that wj ≥ 0 for every j ≥ 1 and∑∞
j=1wj ≤ 1, P-a.s. and (ξj)j≥1 is an i.i.d. sequence whose common distribution is

g, called the base measure of Q. If
∑∞

j=1wj = 1, P -a.s. then Q is called a proper

sampling process.

Some random probability measures have a property called full support. It is an

attribute of interest since it give us insight about which measures are attainable

by the random probability measure. Roughly speaking and taking into account

Proposition 1, a species sampling process has full support if the support of the random

probability measure is as large as possible.

Definition 2. Let Q be a random probability measure with prior distribution Π

and define the measure g (·) := E (Q (·)). Then Π (or equivalently Q) is said to have

full support if and only if the support (in the weak topology) of Π is the set of all

measures µ ∈ P such that Sµ ⊆ Sg.

We can easily see if any given species sampling process has full support thanks

to the following proposition.

Proposition 3. Consider the distribution Π for Q on P to be the distribution of a

species sampling process. The following statements are equivalent:

1. The prior distribution Π has full support.

2. For every ε > 0, P
(
maxj≥1wj < ε,

∑
l≥1wl > 1− ε

)
> 0, where

wj = wj/
∑
l≥1

wl.

3. For every ε > 0 there is an integer m ≥ 1 such that

P ({wj < ε : j = 1, . . . ,m} ,
∑m

l=1wl > 1− ε) > 0.

The proof of this proposition can be found in Bissiri and Ongaro (2014).

14
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2.3 Species Sampling Mixture

In a classical arrangement, a mixture is a probabilistic combination of two or more

probability distributions. This combination can be done by choosing randomly, with

distribution P , the parameter, ξ, from the domain of parameters of a parametric

distribution Kξ, and then computing the expected distribution Q =
∫
KξdP . The

case is analogous if P is a random probability measure, and when P is a proper

species sampling process, we have a species sampling mixture.

Definition. A Species Sampling Mixture is a random probability measure that can

be decomposed as

Q =
∞∑
j=1

wjKξj ,

where Kξ is a member of a parametric family on X , and (wj)j≥1 and (ξj)j≥1 are the

weights and location sequences of a proper species sampling process.

2.4 Stick-Breaking

Since the weights and atoms in a species sampling process are mutually independent,

we can focus in ways to generate a collection of random variables in [0, 1] whose sum

is less than one. That is, in the space

∆∞ :=

{
s = (s1, s2, . . . ) : sj ≥ 0, j ∈ N,

∞∑
j=1

sj ≤ 1

}
.

One method is via the “stick-breaking” construction, described in Ishwaran and

James (2001), where we picture a stick of length 1 and start breaking the stick

randomly at a point according to the realization of a random variable 0 ≤ v1 ≤ 1

and assign this stick length v1 to the first weight w1. We then break the remaining

stick 1− v1 according to the realization of another random variable 0 ≤ v2 ≤ 1, and
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2.4. STICK-BREAKING CHAPTER 2. PRELIMINARIES

assign this length to the following weight w2 = (1 − v1)v2. Continuing in this way,

the broken stick length after j steps is

wj = [

j−1∏
l=1

(1− vl)]vj,

and the leftover length is

1−
j∑
l=1

wj =

j∏
l=1

(1− vj).

We will call V = (vj)j≥1 the sequence of sticks and W = (wj)j≥1 the sequence

of weights. We will also call the function acting on V the “stick-breaking function”

defined by SB(V) = (v1, (1− v1)v2, . . . ) = W.

2.4.1 Dirichlet Process

Now, we will give the definition of a Dirichlet Process (DP) and its construction via

stick-breaking which is called the Sethuraman representation.

Definition. A random measure Q on (P ,G ) is said to follow a Dirichlet Process dis-

tribution Dα with base measure α if for every finite measurable partition A1, . . . , Ak

of X ,

(Q(A1), . . . , Q(An)) ∼ Dirichlet(k;α(A1), . . . , α(Ak)),

where α(·) is a finite positive Borel measure on X .

Given the base measure of a Dirichlet Process, α(·), we can construct a species

sampling process by doing the following steps.

• Sample each element of Θ = (ξj)j≥1 independently from g(·), the normalized

base measure. This is possible since α is finite so g(·) = α(·)/θ, where θ =

α(X ) is called the scale or total mass.
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• Sample each element of V independently from the distribution Beta(1, θ) and

transform it via the “stick-breaking process” to W = SB(V).

Obtaining with this a species sampling process.

Sethuraman proved that this is a proper species sampling process and a Dirichlet

Process with base measure α (Sethuraman, 1994). Thus we can give a represen-

tation of the Dirichlet Process via a proper species sampling process by giving the

distribution g, and the scale θ > 0, and denote it by DP(g, θ).

The Dirichlet Process has the following characteristics demonstrated in Ghosal

and van der Vaart (2017),

Proposition 4. If Q ∼ DP(g, θ), then for any measurable sets A and B,

E(Q(A)) = g(A),

Var(Q(A)) =
g(A)g(Ac)

1 + θ
,

Cov(Q(A), Q(B)) =
g (A ∩B)− g (A) g (B)

1 + θ
,

E(Q(A)Q(B)) =
g (A ∩B) + g (A) g (B) θ

1 + θ
.

Another useful characteristic of the Dirichlet Process is the conjugacy also demon-

strated in Ghosal and van der Vaart (2017).

Theorem 5. If X1, . . . , Xn|Q
iid∼ Q and Q ∼ DP(g, θ), then the posterior distribution

of Q is given by Q|X1, . . . , Xn ∼ DP (g∗, θ+ n) where g∗ = (θg +
∑n

i=1 δXi
)/(θ+ n).

The species sampling representation of the DP shows that it is discrete almost

surely.

One of the simplest ways to draw samples from a DP(g, θ), is through the con-

struction of a Polya urn scheme, proven and discussed in Ghosal and van der Vaart

(2017) which goes as follows. To sample {X1, . . . , Xn} from a DP(g, θ), first draw

X1 ∼ g and recursively draw Xn+1|X1, . . . , Xn ∼ gn := (θg +
∑n

i=1 δXi
)/(θ + n).
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2.4.2 Geometric Process

The Geometric Process is another species sampling process introduced by Fuentes-

Garćıa, Mena, and Walker (2009) and is very useful for density estimation since it is

easier to implement than the DP.

Definition. A GP (g, α, β) (Geometric Process) is a species sampling process charac-

terized by an i.i.d. sequence of locations (ξj)j≥1 from a distribution g, and a sequence

of weights (wj)j≥1 via stick-breaking from the sequence (vj)j≥1 where all vj = p and

p ∼ Beta(α, β).

It has been shown by Bissiri and Ongaro (2014) that both the Dirichlet Process

and the Geometric Process have full support, introduced in Definition 2.

2.5 Introduction to de Finetti’s Theorem

It is often easier to handle i.i.d. observations than it is to handle observations from

an infinite exchangeable sequence. A common approach to alleviate the numerical

problems arising from exchangeable sequences, or even avoiding them completely, is

applying de Finetti’s theorem.

Theorem (de Finetti). For any infinite random sequence Y = (y1, y2, . . . ) in a Borel

space S, the following conditions are equivalent:

1. Y is exchangeable.

2. P [Y ∈ ·|Q] = Q∞ a.s. for some random distribution Q on S. Where Q∞ is

the infinite product measure defined over S∞.

Moreover, Q is a.s. unique and given by

Q(A) = lim
n→∞

1

n

n∑
i=1

1A(yi).

18
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The proof of this theorem can be found in Kallenberg (2002). This is a strong

result that links exchangeable sequences of random variables to conditionally in-

dependent sequences, made independent by conditioning to Q, which is called the

directing random measure. The distribution of this random probability measure is

called the “de Finetti’s measure”.

As a brief example lets think of an exchangeable sequence of {0, 1}-valued vari-

ables {Bi}i≥1 so that the directing random measure η is defined over the set {0, 1}.
If we name p = η({1}) = limn→∞

1
n

∑n
i=1 1{1}(Bi), then η is completely character-

ized by p and even more, the random variables {Bi|p}i≥1 are an i.i.d. sequence of

Bernoulli random variables.

2.6 Density Estimation

An interesting application of a species sampling mixture in statistics is density esti-

mation. One can estimate the underlying density of a finite collection of observations

(Y1, . . . , Yn) if its assumed that they come from an infinite sequence of exchangeable

variables. Indeed we can loosen the usual hypothesis of pairwise independent obser-

vations thanks to de Finetti’s theorem and try to estimate a realization of Q, the

common random distribution from which the observations are independent.

Thus when we have the observations (Y1, . . . , Yn) drawn from a random probability

measure Q, our goal is to compute

fYn+1|Y1,...,Yn(·) = E[Q(·)|Y1, . . . , Yn],

which for an arbitrary random probability measure is a very hard endeavor. However,

one can make things easier by modeling Q as a species sampling mixture. We will

give an algorithm for density estimation using a particular species sampling mixture

in the third chapter.
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2.7 Clustering with Species Sampling Mixtures

Following the same idea as above, if the task at hand is to cluster a finite collection

of observations (Y1, . . . , Yn) and a species sampling mixture model is assumed for

the underlying common random distribution Q, then we can cluster the observations

by finding both W = (wj)j≥1 and ξ = (ξj)j≥1 for which E[Q(Y1, . . . , Yn)|W, ξ] is

maximized. Then Yi will belong to the same cluster as Yk if it shares the same index

j for which wjKξj(Yi) is maximized, it is

Yi ∈ [k] ⇐⇒ argmaxj{wjKξj(Yi)} = k,

where [k] is an equivalence class and argmaxj{fj} is the index for which fj is max-

imized. In order to remove ambiguity and have a real equivalence relation, if two

indexes j, j′ hold the maximum property for fj, the smallest will be drawn.

In the next chapter a brief introduction to sampling algorithms needed for the

implementation of the numerical illustrations will be given.

2.8 Sampling Algorithms

In the numerical illustrations chapter we will need to make use of the following

sampling algorithms.

2.8.1 Inverse Transform Sampling

The inverse transform is a sampling method to sample a random observation from

an arbitrary continuous probability distribution function on R.

Theorem. Let F be a continuous distribution function on R with inverse F−1 defined

by

F−1(u) = inf{x : F (x) = u, 0 < u < 1}.

20
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If U is a Unif(0, 1) random variable, then F−1(U) has distribution function F . Also,

if X has distribution function F , then F (X) is uniformly distributed on [0, 1].

The following proof can be found in Devroye (2006) as Theorem 2.1.

Proof. The first statement follows after noting that for all x ∈ R,

P (F−1(U) ≤ x) = P (inf{y : F (y) = U} = x)

= P (U ≤ F (x)) = F (x).

The second statement follows from the fact that for all 0 < u < 1,

P (F (X) ≤ u) = P (X ≤ F−1(u))

= F (F−1(u)) = u.

2.8.2 Gumbel-Max Trick

The Gumbel-Max trick is an algorithm that allows to sample from a finite categorical

distribution over classes i ∈ {1, . . . , n} with probability proportional to exp(fi).

Theorem (Gumbel-Max trick). Given a finite unnormalized categorical distribution

{exp(fi)}ni=1, if {Gi}ni=1 are i.i.d. Gumbel(0) then,

argmaxi{Gi + fi} ∼
exp(fi)∑
i exp(fi)

and for any A ⊆ {1, . . . , n} ,

max
i∈A
{Gi + fi} ∼ Gumbel

(
log
∑
i∈A

exp(fi)

)

argmax
i∈A

{Gi + fi} ∼
exp(fi)∑
i∈A exp(fi)

A proof can be found in the appendix of Maddison, Tarlow, and Minka (2014).

We can see that the inverse transform sampling is already paying off since now it

suffices to have U ∼ Unif(0, 1) and transform it to get − log(− log(U)) ∼ Gumbel(0).
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2.8.3 Gibbs Sampling

Gibbs sampling is a Monte Carlo simulation tool for obtaining samples from multi-

dimensional random variables. The algorithm goes as follows (Robert and Casella,

2013). If for n > 1, the random variable X ∈ X can be written as X = (X1, . . . , Xn),

where the Xi’s are either uni- or multidimensional; and we can simulate from the

corresponding full conditional densities f1, . . . , fn given by

Xi|x1, x2 . . . , xi−1, xi+1, . . . , xn ∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xn)

for i = 1, 2, . . . , n; then the associated Gibbs sampling algorithm is the iterative

transition from X(t) to X(t+1) given by:

1. simulate X
(t+1)
1 from f1(x

(t+1)
1 |x(t)2 , . . . , x

(t)
n ),

2. simulate X
(t+1)
2 from f2(x

(t+1)
2 |x(t+1)

1 , x
(t)
3 , . . . , x

(t)
n ),

...

n. simulate X
(t+1)
n from fn(x

(t+1)
n |x(t+1)

1 , . . . , x
(t+1)
n−1 ).

In this way, sampling the multi-dimensional vector X can been replaced by sam-

pling the lower dimensional components Xi for i = 1, 2, . . . , n.

The idea behind the Gibbs sampler is to have a way to draw samples from X

when there is no direct way of sampling or when finding the marginal densities is too

expensive computationally. Since samples X(t) approximate the distribution of X

but have dependency to the starting point, it is customary to have a burn-in period

of samples to be discarded.
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Chapter 3

Dirichlet Geometric Process

The main focus of this chapter is to introduce the Dirichlet Geometric Process.

3.1 Definition and Properties

Definition (DGP). The DGP(g, x, θ, α, β) or Dirichlet Geometric Process is a species

sampling process where the sequence of locations are sampled independently from a

common distribution g, and the sequence of weights are drawn via stick breaking the

sequence (v
(x)
j )j≥1, where v

(x)
j |p ∼ Beta

(
1 + x

1−xp, θ + x
1−x(1− p)

)
for x ∈ [0, 1), they

are mutually independent conditioned on p, and for x = 1, v
(1)
j = p for all j ≥ 1,

where p ∼ Beta(α, β).

The location parameter x allows us to construct a continuous transition from a

DP to a GP as seen in the following two propositions.

Proposition 6. The sticks V(x) = (v
(x)
j )j≥1 from a DGP(g, x, θ, α, β) are continuous

in distribution with respect to x in the whole interval [0, 1]. It is,

lim
x→x0

(
v
(x)
j

)
j≥1

d
=
(
v
(x0)
j

)
j≥1

for x0 ∈ [0, 1].

23



3.1. DEFINITION AND PROPERTIES CHAPTER 3. DGP

Proof. For x0 ∈ [0, 1), the continuity follows directly from the definition. For the

limiting case x0 = 1, we have that if x < 1,

E
(
v
(x)
j

∣∣∣ p) =
1 + x

1−xp

1 + θ + x
1−x

,

Var
(
v
(x)
j

∣∣∣ p) =
(1 + x

1−xp)(θ + x
1−x(1− p))(

1 + θ + x
1−x

)2 (
2 + θ + x

1−x

) .
Taking the limit on both sides of each equation we get,

lim
x→1

E
(
v
(x)
j

∣∣∣ p) = p,

lim
x→1

Var
(
v
(x)
j

∣∣∣ p) = 0.

We also have that

lim
x→1

Var
(
v
(x)
j − p

)
= lim

x→1
Var

(
E
(
v
(x)
j − p

∣∣∣ p))
+ lim

x→1
E
(

Var
(
v
(x)
j − p

∣∣∣ p))
= Var

(
lim
x→1

E
(
v
(x)
j − p

∣∣∣ p))
+ E

(
lim
x→1

Var
(
v
(x)
j − p

∣∣∣ p))
= 0.

Here we can swap the limits thanks to the bounded and dominated convergence

theorems respectively since |E(v
(x)
j − p|p)| ≤ 1 and Var(v

(x)
j − p|p) is a positive and

decreasing function with respect to x. This implies that limx→1 v
(x)
j − p = 0 a.s., and

also defines the limiting finite joint distribution limx→1(v
(x)
1 , . . . , v

(x)
j ) = (p . . . , p)

a.s.. Finally since the finite-dimensional distributions of lim
x→1

(v
(x)
j )j≥1 and (v

(1)
j )j≥1

are the same, using the finite-dimensional distributions proposition, also their full

distribution is the same.

To get some intuition, as x tends to one, the density of vj tends to the Dirac’s

delta at p, it is, f
v
(x)
j

(v)→ δp(v) as x→ 1 as can be seen in Figure 3.1.
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Figure 3.1: Conditional densities of vj given p = 0.4 for distinct values of x. The

value for θ is fixed to 10.

Proposition 7. For a DGP(g, x, θ, α, β), the following properties hold:

1. A DGP(g, 0, θ, α, β) is a DP(g, θ).

2. A DGP(g, 1, θ, α, β) is a GP(g, α, β).

3. A DGP(g, x, θ, α, β) is continuous in distribution with respect to x in the whole

interval [0, 1]. It is,

lim
x→x0

DGP(g, x, θ, α, β)
d
= DGP(g, x0, θ, α, β) for x0 ∈ [0, 1].

Proof. Properties one and two are only a restatement of the DGP process defini-

tion for x = 0 and x = 1 respectively. For the third property, since the stick-
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breaking function SB : (x1, x2, . . . )→ (x1, (1−x1)x2, . . . ) is continuous, we have that

lim
x→x0

W(x) d
= W(x0) and then lim

x→x0
(W(x), ξ)

d
= (W(x0), ξ) where W(x) = SB(V(x)) is

the random sequence of weights from stick-breaking V(x), and ξ is the random se-

quence of locations.

We are only left to show that the function (W,µ) →
∑

j≥1wjµj is continuous

since it follows that the composition is also continuous.

Let (Wn)n≥1,W be elements of ∆∞ and (µn)n≥1,µ be elements of P(X)∞, such

that wn,j → wj and µn,j
w→ µj as n → ∞ for every j ≥ 1. Fix a continuous and

bounded function f : X → R. Then for j ≥ 1, wn,jµn,j(f) → wnµn(f). Since f is

bounded, there exists M such that |f | ≤ M , hence |wn,jµn,j(f)| ≤ wn,jµn,j(|f |) ≤
wj,nM , for every n ≥ 1 and j ≥ 1. Evidently, wn,jM → wjM , and

∑
j≥1wn,jM =

M =
∑

j≥1wjM . Hence by general Lebesgue dominated convergence theorem, we

obtain ∑
j≥1

wn,jµn,j(f)→
∑
j≥1

wjµj(f).

Finally, using Portmanteau theorem it follows that the mapping is continuous.

This leads us to the next corollary regarding ordering.

Corolary 8. Let W(x) be the sequence of weights from a DGP(g, x, θ, α, β). Then

1. The sequence W(0) is invariant under size-biased permutations.

2. For every j ≥ 1,

lim
x→1

P
(
w

(x)
j+1 < w

(x)
j

)
= 1.

Proof. For the first point, the weights W(0) arise from stick-breaking the sequence

V(0) of independent variables, each one distributed Beta(1, θ), which is proven to be

invariant under size-biased permutations in Theorem 1 of Pitman (1996). For the sec-

ond point, using the Portmanteau theorem, since W(x) is continuous in distribution
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and P (p ∈ {0, 1}) = 0, we have that

lim
x→1

P
(
w

(x)
j+1 < w

(x)
j

)
= P

(
w

(1)
j+1 < w

(1)
j

)
= P

(
p(1− p)j < p(1− p)j−1

)
= P (0 < p < 1)

= 1.

We can notice in Figure 3.2 that the variance of vj decreases as x approaches one.

Figure 3.2: Simulations of (vj)
25
j=1 and their respective (wj)

25
j=1 where p = 0.4 and

θ = 10. Note: the scale for wj is logarithmic.
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In order to consider that this model is feasible for density estimation we need to

prove two things. That it is a proper species sampling process so that we can model

the analogous species sampling mixture, and that any distribution for the parameters

in P can be drawn. It is, that a DGP has full support.

Proposition 9. The DGP(g, x, θ, α, β) is a proper species sampling process.

Proof. In order to show that the DGP is a proper species sampling process we need to

show that its weights sequence W(x) satisfies
∑∞

j=1w
(x)
j = 1 a.s. which is equivalent

to proving that
∏k

j=1(1 − v
(x)
j )

a.s.→ 0 as j → ∞, and since each of these r.v.’s are

non-negative and bounded by 1 it suffices to show that

lim
k→∞

E

(
k∏
j=1

(
1− v(x)j

))
= 0.

We have that

E

(
k∏
j=1

(
1− v(x)j

))
= E

(
E

(
k∏
j=1

(
1− v(x)j

)∣∣∣∣∣ p
))

= E

(
k∏
j=1

E
(

1− v(x)j

∣∣∣ p))

= E

(
E
(

1− v(x)1

∣∣∣ p)k) ,
which tends to zero as k →∞ since E

(
1− v(x)1

∣∣∣ p) < 1 a.s..

Proposition 10. The DGP(g, x, θ, α, β) has full support.

Proof. For x ∈ {0, 1}, since it is either a DP or a GP, it has full support. For

x ∈ (0, 1), using Theorem 3 and following the same line as in Bissiri and Ongaro
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(2014)[Proposition 7], let ε > 0 and ε > δ > 0, we have that

0 < E [
∏m

l=1 P (δ < vl < ε| p)]

= E[P ({δ < vj < ε : j = 1, . . . ,m} |p)]

= P ({δ < vj < ε : j = 1, . . . ,m})

≤ P (w1 < ε, . . . , wm < ε(1− δ)m−1,
∑m

l=1wl > 1− (1− δ)m)

≤ P (w1 < ε, . . . , wm < ε,
∑m

l=1wl > 1− (1− δ)m),

for every integer m ≥ 1. In particular if m > log(ε)/ log(1 − δ), then Theorem 3

condition 3 is satisfied.

Other topic of interest is the distribution of the number of different values drawn

from n samples of a realization of the DGP. We will denote the number of unique val-

ues in (Y1, Y2, . . . ) (or number of clusters) up to the n-th draw by Kn. It is possible to

compute the distribution of Kn for some species sampling processes (Pitman, 2006),

but not in general. In particular, the distribution of Kn for the DP (Watterson, 1974)

and E(Kn|p) for the GP (Mena and Walker, S. G., 2012) can be computed. This

means that, for x ∈ {0, 1}, the expected number of clusters for the DGP(g, x, θ, α, β)

is computable.

For x ∈ (0, 1) we can obtain samples of Kn via pseudoinverse transform sampling

(Devroye, 2006), by generating n independent Unif(0, 1), {ui}ni=1 and for each ui,

sample wj progressively until the first integer di such that
∑di

j=1wj > ui. Then Kn

equals the number of distinct values in {d1, . . . , dn}. We can see a histogram over

Kn values for different parameters of the GDP in Figure 3.3.

3.2 Mixture Conditional Distributions

Having the conditional distributions for the Dirichlet Geometric Mixture (DGM)

will enable us to use a variety of numerical methods for computing fYn+1|Y1,...,Yn(·) =
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Figure 3.3: Histograms over 10,000 draws from Kn with different parameters.

E[Q(·)|Y1, . . . , Yn]. In particular we will explore the Gibbs sampler algorithm. Lets

recall the representation for a species sampling mixture Q =
∑

j≥1wjKξj , where

the weights and parameters are random, so, using the notation f(y) = fY (y) and

f(y|x) = fY |X=x(y) we have our first conditional distribution

f(y|W, ξ) =
∑
j≥1

wjKξj(y),

sampling from this mixture can be intimidating since there are infinitely many terms,

but it is relatively simple if we follow the method from Kalli, M., Griffin, J. E., and
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Walker, S. G. (2009) based on Gibbs sampling ideas. We introduce a latent variable

u such that the joint density of (y, u) given (W, ξ) is

f(y, u|W, ξ) =
∑
j≥1

1(u < wj)Kξj(y).

And if we let

A(W, u) = {j : wj > u},

then we can write the previous joint density as

f(y, u|W, ξ) =
∑

j∈A(W,u)

Kξj(y),

with the added benefit that, since A(W, u) is a finite set for all u > 0, then

f(y|W, ξ, u) is also a finite mixture given by

f(y|W, ξ, u) =
1

|A(W, u)|
∑

j∈A(W,u)

Kξj(y).

Furthermore, this finite mixture is equally weighted. A simple approach to sample an

equally weighted finite mixture is to introduce another latent variable d with uniform

distribution in A(W, u) which will be the index of the distribution from which to

sample Y , so that

f(d|W, ξ, u) =
1

|A(W, u)|
1(d ∈ A(W, u)),

and

f(y, d, u|W, ξ) = Kξd(y)1 (d ∈ A(W, u))

= Kξd(y)1 (u < wd) ,

since the events {d ∈ A(W, u)} and {u < wd} are the same. We have that the

conditioned and full likelihood functions based on a sample of size n, and with
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m ≥ max{di|i ∈ {1..n}}, are

` ({yi, di, ui}ni=1|W, ξ) =
n∏
i=1

Kξdi
(yi)1(ui < wdi),

`
(
{yi, di, ui}ni=1, {vj, ξj}mj=1, p

)
=

n∏
i=1

Kξdi
(yi)1(ui < wdi)

×
m∏
j=1

Beta

(
vj; 1 +

x

1− x
p, θ +

x

1− x
(1− p)

)

×
m∏
j=1

g (ξj)× Beta (p;α, β) . (3.1)

3.3 Posterior Inference

With the previous likelihood functions we can calculate the full conditional distribu-

tions and make posterior inference via a Gibbs sampler algorithm. The conditional

distributions are in the following list which can also be seen as the sampling steps.

A. Update {ui}ni=1. We have that

f(ui| . . . ) ∝ 1(ui < wdi),

so we only need to sample uniform distributions in (0, wdi).

B. Update W. Lets first notice that we only need to sample a finite number of

elements m such that
∑m

j=1wj ≥ maxk(1− uk). If this condition is met, when

updating di none will be greater than m. The conditional density of vj is

f(vj|v−j, . . . ) ∝ Beta

(
vj; 1 +

x

1− x
p, θ +

x

1− x
(1− p)

)
×

n∏
i=1

1

(
ui < vdi

∏
l<di

(1− vl)

)
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with v−j = {v1, . . . , vj−1, vj+1, . . . , vm}. Merging the product of indicator func-

tions, the conditional density is proportional to

f(vj|v−j, . . . ) ∝ Beta

(
vj; 1 +

x

1− x
p, θ +

x

1− x
(1− p)

)
1 (αj < vj < βj)

where

αj = max
di=j

{
ui∏

l<j(1− vl)

}
and

βj = 1−max
di>j

{
ui(1− vj)

vdi
∏

l<di
(1− vl)

}
,

so we only need to sample from a truncated beta.

C. Update ξ. Here it suffices to sample as many elements as we sampled in the

previous step with conditional density function

f(ξj| . . . ) ∝ g(ξj)
∏
di=j

Kξj(yi).

This can be done easily if g and K form a conjugate pair, for example, if K is

a member of the normal family and g is the normal-gamma distribution.

D. Update {di}ni=1. This are finite discrete random variables with full conditional

f(di| . . . ) ∝ Kξdi
(yi)1(ui < wdi),

for numerical reasons it may be better to work with the log-probabilities and

sample with the Gumbel-Max trick.

E. Update p. The density function is

f(p| . . . ) ∝

(
m∏
j=1

Beta

(
vj; 1 +

x

1− x
p, θ +

x

1− x
(1− p)

))
Beta(p;α, β)

∝Γ

(
1 +

x

1− x
p

)m
Γ

(
c+

x

1− x
(1− p)

)m
× exp

(
xp

m∑
j=1

log

(
vj

1− vj

))
pα−1(1− p)β−11(0 < p < 1),
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from which we can sample using inverse transform sampling by numerically

normalizing and inverting, or by numerically getting the maximum and doing

an acceptance rejection sampling.

3.3.1 Posterior Distribution Analysis

We can estimate the posterior distribution of the data with the Expected A Posteriori

(EAP) of the random distribution {Q|{yi}ni=1}, by running T iterations of the Gibbs

sampler to get the samples {ξt,Wt, {ut,i}ni=1}Tt=1 and then calculate

E[Q(·)|{yi}ni=1] ≈
1

T

T∑
t=1

E[Q(·)|ξt,Wt, {ut,i}ni=1]

=
1

T

T∑
t=1

1

n

n∑
i=1

E[Q(·)|ξt,Wt, ut,i]

=
1

T

T∑
t=1

1

n

n∑
i=1

1

|A(Wt, ut,i)|
∑

j∈A(Wt,ut,i)

Kξt,j(·),

where A(Wt, ut,i) = {j : wt,j > ut,i}, and the dependence to {yi}ni=1 is implicit from

the variables {ξt,Wt, {ut,i}ni=1}Tt=1.

3.3.2 Posterior Cluster Analysis

To cluster the data points {yi}ni=1, we can store the likelihood value for each step of

the Gibbs sampler and find t∗, the step with maximum likelihood (3.1) within the

sample,

t∗ = argmaxt
{
`
(
{yi, dt,i, ut,i}ni=1, {vt,j, ξt,j}mt

j=1, pt
)}
,

to approximate the Maximum A Posteriori (MAP) estimate of the clusters via the

mixture components {
1

n

n∑
i=1

1j∈A(Wt∗ ,ut∗,i)

|A(Wt∗ , ut∗,i)|
Kξt,j(·)

}mt∗

j=1

,
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so that a data point y will belong to the cluster index ky given by

ky = argmaxj

{∣∣∣∣∣ 1n
n∑
i=1

1j∈A(Wt∗ ,ut∗,i)

|A(Wt∗ , ut∗,i)|
Kξt,j(y)

∣∣∣∣∣
}
.

Then, two observations {y1, y2} belong to the same cluster if their respective cluster

index is the same, ky1 = ky2 , where the common index value is unimportant, it is,

the index does not denotes ordering of the groups nor any other property.

We can also estimate the posterior distribution of the number of groups {Kn|{yi}ni=1}
with the EAP:

P [Kn|{yi}ni=1] ≈
1

T

T∑
t=1

1{m}(K
t
n).

where Kt
n is the number of distinct elements of {dt,i}ni=1.
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Chapter 4

Numerical Illustrations

In this chapter we will do some analysis on a couple of practical examples regarding

density estimation and clustering with the DGP and do a comparison against other

methods. For both sections lets assume that ξ = (µ, τ), Kξ(y) = Normal(y;µ, 1/τ)

and g(ξ) = NormalGamma(ξ; m, λ, a, b). This choice of distributions form a conju-

gate pair and so we have that

f(ξj| . . . ) = NormalGamma

(
ξj;

λm + njmj

λ+ nj
, λ+ nj,

a +
nj
2
, b +

1

2

(
sj +

λnj(mj −m)2

2

))
,

where

nj :=
∑
di=j

1, mj := n−1j
∑
di=j

yi, sj :=
∑
di=j

(yi −mj)
2 ,

and for the multidimensional case which will be introduced in the clustering section

lets suppose that ξ = (µ,Σ), Kξ(y) = Normal(y;µ,Σ) and the prior for ξ is the

NIW (Normal-inverse-Wishart) distribution, it is g(ξ) = NIW(ξ;µ, λ,Ψ, ν). This

two distributions also form a conjugate pair and the posterior distribution is given

by

f(ξj| . . . ) = NIW
(
ξ;µj, λj,Ψj, νj

)
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where

nj :=
∑
di=j

1,

mj := n−1j
∑
di=j

yi,

Sj :=
∑
di=j

(yi −mj) (yj −mj)
T ,

µj :=
λµ+ njmj

λ+ nj
,

λj := λ+ nj,

νj := ν + nj,

Ψj := Ψ + S +
λnj
λ+ nj

(mj − µ) (mj − µ)T .

4.1 Density Estimation with the DGP

We will begin with a straightforward example generating 200 independent data

points {yi}200i=1 from a Normal(0, 1) distribution and fitting the density with the

DGM, KDE, DPM and GPM models. The hyperparameters for the DGM were

(x, θ, α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 1, 1

2
, 1
2

)
, for the KDE the bandwidth was h = 1,

for the DPM (θ,m, λ, a, b) =
(
1, 0, 1, 1

2
, 1
2

)
and for the GPM (α, β,m, λ, a, b) =(

1, 1, 0, 1, 1
2
, 1
2

)
. We used 10, 000 steps of the Gibbs sampler as the burn-in period

and 40, 000 iterations for the estimates.

The fitted densities are shown in Figure 4.1, where we can see that the DGM,

DPM and GPM did find close estimates to the true density, while KDE overestimated

the variance, tough this behavior can be tuned with the bandwidth parameter.

Figure 4.2 shows the evolution over time of the rolling mean number of groups

Kt,n, in which we can see that it stabilizes over time.

For the second example we simulated 240 independent data points {yi}240i=1 from
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a normal mean-variance mixture of six normal distributions with weights (0.17, 0.08,

0.125, 0.29, 0.125, 0.21) and mean-variance parameters given by (−18, 2), (−5, 1),

(0, 1), (6, 1), (14, 1), and (23, 1.25). The hyperparameters for the DGM were (x, θ,

α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 0.01, 1

2
, 1
2

)
, for the KDE the bandwidth was h = 1,

for the DPM (θ,m, λ, a, b) =
(
1, 0, 0.01, 1

2
, 1
2

)
and for the GPM (α, β,m, λ, a, b) =(

1, 1, 0, 0.01, 1
2
, 1
2

)
. We used 10, 000 steps of the Gibbs sampler as the burn-in period

and 40, 000 iterations for the estimates.

Figure 4.3 shows the fitted densities for the second example. Here we can see

that KDE did a better job than in the previous example but the variance in all

but the first mixture component is still overestimated. In this example, decreasing

the bandwidth to fit the variance of other components also reduces the variance of

the first one so there is no right solution with KDE. The DGM, DPM and GPM

models can estimate the variance for each component separately. Figure 4.4 shows

the evolution over time of the rolling mean number of groups Kt,n, after which we

can see that it has stabilized. This time the GPM mean number of groups is greater

than that of the DGM and DPM.

For the second example we also show the rolling mean number of weights wt,j

that are greater than 0.5 in Figure 4.5, and the evolution of the density estimates

over several runs of the Gibbs sampler in Figure 4.6.

As a third and last example of density estimation we use the “galaxy” data

set: the observed velocities in km/s of 82 galaxies in the Corona Borealis region.

For this database we used the following hyperparameters. For the DGM (x, θ,

α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 0.01, 1

2
, 1
2

)
, for the KDE the bandwidth was h = 1,

for the DPM (θ,m, λ, a, b) =
(
1, 0, 0.01, 1

2
, 1
2

)
and for the GPM (α, β,m, λ, a, b) =(

1, 1, 0, 0.01, 1
2
, 1
2

)
. We used 10, 000 steps of the Gibbs sampler as the burn-in period

and 40, 000 iterations for the estimates.
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Figure 4.1: Density estimation of 200 i.i.d observations from a Normal(0, 1) distri-

bution using DGM, KDE, DPM and GPM models with a burn-in period of 10,000

iterations and 40,000 iterations for the estimates in the Gibbs sampler. The hyper-

parameters for the DGM were (x, θ, α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 1, 1

2
, 1
2

)
, for the

KDE the bandwidth was h = 1, for the DPM (θ,m, λ, a, b) =
(
1, 0, 1, 1

2
, 1
2

)
and for

the GPM (α, β,m, λ, a, b) =
(
1, 1, 0, 1, 1

2
, 1
2

)
.
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Figure 4.2: Cumulative mean number of groups (Kt,n) in a database of 200 i.i.d.

observations from a Normal (0, 1) distribution after t iterations of the Gibbs sampler.
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Figure 4.3: Density estimation of 240 independent data points from a normal mean-

variance mixture of six normal distributions using DGM, KDE, DPM and GPM

models with a burn-in period of 10,000 iterations and 40,000 iterations for the

estimates in the Gibbs sampler. The hyperparameters for the DGM were (x, θ,

α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 0.01, 1

2
, 1
2

)
, for the KDE the bandwidth was h = 1,

for the DPM (θ,m, λ, a, b) =
(
1, 0, 0.01, 1

2
, 1
2

)
and for the GPM (α, β,m, λ, a, b) =(

1, 1, 0, 0.01, 1
2
, 1
2

)
.
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Figure 4.4: Cumulative mean number of groups (Kt,n) in a database of 240 indepen-

dent data points from a normal mean-variance mixture of six normal distributions

after t iterations of the Gibbs sampler.

Figure 4.5: Cumulative mean number of weights wt,j greater than 0.05 in a database

of 240 independent data points from a normal mean-variance mixture of six normal

distributions after t iterations of the Gibbs sampler.
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Figure 4.6: Evolution of the density estimates of 240 independent data points from a

normal mean-variance mixture of six normal distributions using the DGM model with

up to 50,000 iterations of the Gibbs sampler. The hyperparameters for the DGM were

(x, θ, α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 0.01, 1

2
, 1
2

)
, for the KDE the bandwidth was h =

1, for the DPM (θ,m, λ, a, b) =
(
1, 0, 0.01, 1

2
, 1
2

)
and for the GPM (α, β,m, λ, a, b) =(

1, 1, 0, 0.01, 1
2
, 1
2

)
.
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Figure 4.7: Density estimation for the velocity of galaxies in the Corona Borealis

region using DGM, KDE, DPM and GPM models with a burn-in period of 10,000

iterations and 40,000 iterations for the estimates in the Gibbs sampler. The hyper-

parameters for the DGM were (x, θ, α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 0.01, 1

2
, 1
2

)
, for the

KDE the bandwidth was h = 1, for the DPM (θ,m, λ, a, b) =
(
1, 0, 0.01, 1

2
, 1
2

)
and

for the GPM (α, β,m, λ, a, b) =
(
1, 1, 0, 0.01, 1

2
, 1
2

)
.
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4.2 Clustering with the DGP

In this section we will use and compare several methods for clustering three data

sets.

As our first example we use the same database from the previous section given by

240 independent data points {yi}240i=1 from a normal mean-variance mixture of six nor-

mal distributions with weights (0.17, 0.08, 0.125, 0.29, 0.125, 0.21) and mean-variance

parameters given by (−18, 2), (−5, 1), (0, 1), (6, 1), (14, 1), and (23, 1.25). The

hyperparameters for the DGM were (x, θ, α, β,m, λ, a, b) =
(
1
2
, 1, 1, 1, 0, 0.01, 1

2
, 1
2

)
,

for the DPM (θ,m, λ, a, b) =
(
1, 0, 0.01, 1

2
, 1
2

)
and for the GPM (α, β,m, λ, a, b) =(

1, 1, 0, 0.01, 1
2
, 1
2

)
. We used 10, 000 steps of the Gibbs sampler as the burn-in period

and 40, 000 iterations for the estimates.

Figure 4.8 shows an histogram of our database, the scaled densities of each clus-

ter and the data points. We can appreciate visually the way a GPM approximates

densities without the need of a flexible weighting structure: by assigning many com-

ponents with similar parameters as can be seen in the left- and rightmost components.

The DGM and DPM get to very similar clusters thanks to a more flexible weighting

structure.

In Figure 4.9 we show the histogram over Kn, the number of groups for this

example. The DGM and DPM show a similar distribution in the number of clusters,

while in the GPM case more groups are needed.

For our second example we simulated 300 independent data points {yi}240i=1 from a

multivariate normal mean-variance mixture of three multivariate normal

distributions with weights (0.4, 0.3, 0.3), means ((0,−4), (3, 3), (−3, 2)), and

variance-covariance matrices
(
( 1 0.7
0.7 1 ) ,

(
1 −0.6
−0.6 1

)
, ( 1 0

0 1 )
)
.

The hyperparameters used for the DGM were (x, θ, α, β,µ, λ,Ψ, ν) = (1
2
, 1,

1, 1, (0, 0), 1, ( 1 0
0 1 ) , 2), for the DPM (x, θ,µ, λ,Ψ, ν) =

(
1
2
, 1, 1, 1, (0, 0), 1, ( 1 0

0 1 ) , 2
)

and for the GPM (x, α, β,µ, λ,Ψ, ν) =
(
1
2
, 1, 1, 1, (0, 0), 1, ( 1 0

0 1 ) , 2
)
. We used 50, 000
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steps of the Gibbs sampler.

Figure 4.10 shows the fitted clusters, and Figure 4.11 the histogram over the

number of groups for this example. Both the DGM and DPM agree on the number

of clusters while the GPM assigns a different group to distant points, and, even

though k-means seems to have done a better job in finding the original mixture

components, the number of clusters was given as an input.

As our last example we chose to use the “faithful” data set, which registers 272

observations of the waiting time between eruptions and the duration of the eruption

for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

The hyperparameters used for the DGM were (x, θ, α, β,µ, λ,Ψ, ν) = (1
2
, 1,

1, 1, ȳ, 1, ( 1 0
0 1 ) , 2), for the DPM (x, θ,µ, λ,Ψ, ν) =

(
1
2
, 1, 1, 1, ȳ, 1, ( 1 0

0 1 ) , 2
)

and for

the GPM (x, α, β,µ, λ,Ψ, ν) =
(
1
2
, 1, 1, 1, ȳ, 1, ( 1 0

0 1 ) , 2
)
; where ȳ = n−1

∑n
i=1 yi. We

used 50, 000 steps of the Gibbs sampler.

Figure 4.12 shows the fitted clusters and Figure 4.13 the histogram over the

number of groups. In this example the DPM and k-means agree on the number of

clusters, but the groups in k-means are skewed in an unintuitive aggregation. The

DGM differs from the DPM for the group at the center due to a less flexible weighting

structure, meanwhile the GPM struggles with its more rigid weighting structure and

ends finding elongated groups in the upper right region to accommodate a bigger

number of components.

46



CHAPTER 4. NUMERICAL ILLUSTRATIONS 4.2. CLUSTERING

Figure 4.8: Histogram, density of the fitted components to scale, and arising clusters,

of a database given by 240 independent data points from a normal mean-variance

mixture of six normal distributions using DGM, DPM and GPM models.
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Figure 4.9: Histogram on the number of groups Kn of a database given by 240 inde-

pendent data points from a normal mean-variance mixture of six normal distributions

using DGM, DPM and GPM models.
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Figure 4.10: Fitted clusters in a database given by 300 independent data points

from a multivariate normal mean-variance mixture of three multivariate normal dis-

tributions using DGM, DPM and GPM models after 50, 000 steps of the Gibbs

sampler. The hyperparameters used for the DGM were (x, θ, α, β,µ, λ,Ψ, ν) = (1
2
, 1,

1, 1, (0, 0), 1, ( 1 0
0 1 ) , 2), for the DPM (x, θ,µ, λ,Ψ, ν) =

(
1
2
, 1, 1, 1, (0, 0), 1, ( 1 0

0 1 ) , 2
)

and for the GPM (x, α, β,µ, λ,Ψ, ν) =
(
1
2
, 1, 1, 1, (0, 0), 1, ( 1 0

0 1 ) , 2
)
.
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Figure 4.11: Histogram on the number of groups Kn of a database given by 300

independent data points from a multivariate normal mean-variance mixture of three

multivariate normal distributions using DGM, DPM and GPM models.
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Figure 4.12: Fitted clusters for the “faithful” data set using DGM,

DPM and GPM models after 50, 000 steps of the Gibbs sampler. The

hyperparameters used for the DGM were (x, θ, α, β,µ, λ,Ψ, ν) = (1
2
, 1,

1, 1, (0, 0), 1, ( 1 0
0 1 ) , 2), for the DPM (x, θ,µ, λ,Ψ, ν) =

(
1
2
, 1, 1, 1, (0, 0), 1, ( 1 0

0 1 ) , 2
)

and for the GPM (x, α, β,µ, λ,Ψ, ν) =
(
1
2
, 1, 1, 1, (0, 0), 1, ( 1 0

0 1 ) , 2
)
.
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Figure 4.13: Histogram on the number of groups Kn in the “faithful” data set using

DGM, DPM and GPM models.
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4.3 Discussion

In this chapter we showed that the Dirichlet Geometric Mixture is a useful tool for

doing both density estimation and clustering.

Empirically the Dirichlet Geometric Mixture showed a slightly faster stabilization

than the competitors on the number of clusters for all the examples.

One of the main advantages of the Geometric Process is that fitting a density

mixture is faster compared to the Dirichlet and, as shown in Fuentes-Garćıa, Mena,

and Walker (2009), it can arbitrarily approximate the Dirichlet model. A direct

consequence is that the number of groups that the Geometric Process Mixture needs

to estimate a density is greater that what the Dirichlet Process Mixture needs. This

translate to poor cluster fitting from the GPM as shown by Figure 4.12.

A disadvantage of the DGM against DPM and GPM is that, since there are

additional calculations in the Gibbs sampler, the fitting is slower.

We implemented a free source library (Selva, 2020) in Python under the MIT

license to do density estimation and clustering with the DGP using Dirichlet Geo-

metric Mixture models via a Gibbs sampler.

The most computing intensive task was fitting the second example in section

4.1, which averaged 86 iterations per second for the DGM, 120 iterations per second

for the DPM and 263 iterations per second for the GPM on an Intel(R) Core(TM)

i5-9300H CPU.
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Conclusions

We found a process that can interpolate continuously the Dirichlet and Geometric

Processes, namely, the Dirichlet Geometric Process. Also, since the weights in the

weighting structure are conditionally independent, they are (without conditioning)

exchangeable.

This process can be useful in applications that require an insight in how to tran-

sition continuously from a result yielded by the Dirichlet Process to one given by the

Geometric Process.

Some topics open to further research are the sensitivity of the posteriori model to

the model parameters, an analysis of the assignation probabilities in order to extract

information about the possible overestimation of groups for values of x close to 1,

and methods to enable this process to fit streaming data.
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Appendix

Definition 11 (Lévy-Prokhorov metric). Let P be the space of probability measures

on the Borel σ-field S of a metric space s. The Prokhorov metric π(P,Q) between

elements P and Q of P is defined as the infimum of those positive ε for which the

two inequalities

P (A) ≤ Q(Aε) + ε, Q(A) ≤ P (Aε) + ε

hold for all Borel sets A; where the set Aε = {s ∈ S : d(s, A) < ε} and the distance

d(s, A) = inf{d(s, a) : a ∈ A}. Billingsley, 2013

Definition 12 (Borel measure). A Borel measure is a measure defined on the Borel

sets of a topological space. Aliprantis, 1999

Definition 13 (Support of a measure). The topological support of a finite Borel

measure µ on a completely separable space is defined as the intersection of all closed

sets F such that µ (F c) = 0. Bissiri and Ongaro, 2014

Definition 14 (Exchangeable sequences). A finite or infinite random sequence Y =

(Y1, Y2, . . . ) with index set I is said to be exchangeable if

(Yk1 , Yk2 , . . . )
d
= (Y1, Y2, . . . )

for any finite permutation (k1, k2, . . . ) of I.
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Proposition 15 (finite-dimensional distributions). Fix a measurable space (S,S),

an index set T , and a subset U ⊂ ST , and let X and Y be processes on T with paths

in U . Then X
d
= Y iff

(Xt1 , . . . , Xtn)
d
= (Yt1 , . . . , Ytn) , t1, . . . , tn ∈ T, n ∈ N

The demonstration of this can be found as Proposition 3.2 in Kallenberg, 2002.

Theorem 16 (Portmanteau). For any random elements ξ, ξ1, ξ2, . . . in a metric

space S, these conditions are equivalent:

1. ξn
d→ ξ.

2. lim infn P (ξn ∈ G) ≥ P (ξ ∈ G) for any open set G ⊂ S.

3. lim supn P (ξn ∈ F ) ≥ P (ξ ∈ F ) for any closed set F ⊂ S.

4. P (ξn ∈ B)→ P (ξ ∈ B) for any B ∈ B(S) with ξ /∈ ∂B almost surely

A proof of this can be found in Kallenberg, 2002 as Theorem 4.25
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Python code

Code of the library

1 import mpmath

2 import scipy.stats

3 import numpy as np

4 from tqdm import trange

5 from itertools import repeat

6 from collections import namedtuple

7

8 np.seterr(divide=’ignore ’)

9

10 normal_invw_params = namedtuple("normal_invw_params",

11 [’mu’, ’lam’, ’psi’, ’nu’])

12 normal_params = namedtuple("normal_invw_params",

13 [’mu’, ’Sigma ’])

14

15 class dgp_mixture:

16 def __init__(self , y, c, xp , a, b, mu0 , lam0 , psi0 , nu0 ,

↪→ fit_var=True , *,

17 p_method=0, max_iter =10, rng = None):

18 if rng is None:

19 self.rng = np.random.default_rng ()
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20 else:

21 self.rng = rng

22

23 self.y = y

24 self.fit_var = fit_var

25 self.p_method = p_method

26

27 self.c = c

28 self.xp = xp

29 self.a = a

30 self.b = b

31

32 self.init_params = normal_invw_params(mu0 , lam0 , psi0 , nu0)

33

34 self.max_iter = max_iter

35

36 self.sim_params = []

37 self.n_groups = []

38 self.n_theta = []

39

40 self.p = self.rng.beta(self.a, self.b)

41 self.u = self.rng.uniform(0, 1, len(self.y))

42

43 if self.xp==1:

44 self.v = np.array([self.p])

45 else:

46 self.v = self.rng.beta(1 + self.xp / (1 - self.xp) *

↪→ self.p,

47 self.c + self.xp / (1 -

↪→ self.xp) * (1 - self.p), 1)

48 self.w = self.v

49 while (sum(self.w) < 1 - min(self.u)):

50 if self.xp==1:
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51 self.v = np.concatenate ((self.v,

↪→ np.array ([self.p])))

52 else:

53 self.v = np.concatenate ((self.v,

54 self.rng.beta(1 + self.xp

↪→ / (1 - self.xp) * self.p,

55 self.c +

↪→ self.xp / (1 - self.xp) * (1 - self.p), 1)))

56 self.w = self.v * np.cumprod(np.concatenate (([1], 1 -

↪→ self.v[:-1])))

57

58 self.k = len(self.w)

59

60 self.mu , self.Sigma = random_normal_invw (*self.init_params)

61 self.mu = np.array([self.mu])

62 self.Sigma = np.array([self.Sigma])

63 self.complete_theta ()

64

65 self.d = self.rng.integers(len(self.y)/5, size=len(self.y))

66

67 def gibbs_step(self):

68 self.update_theta ()

69 self.update_v_w_u ()

70 self.complete_theta ()

71

72 self.update_p ()

73 self.update_d ()

74

75 self.sim_params.append ((self.w, self.mu , self.Sigma ,

↪→ self.u, self.d, self.p))

76 self.n_groups.append(len(np.unique(self.d)))

77 self.n_theta.append(len(self.mu))

78
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79 def train(self , n_iter):

80 for i in trange(n_iter):

81 self.gibbs_step ()

82

83 def density(self , x, periods=None):

84 y_sim = []

85 if periods ==None:

86 for ip in self.sim_params:

87 y_sim.append(mixture_density(x, ip[0], ip[1],

↪→ ip[2], ip[3]))

88 else:

89 periods = min(periods , len(self.sim_params))

90 for ip in self.sim_params[-periods :]:

91 y_sim.append(mixture_density(x, ip[0], ip[1],

↪→ ip[2], ip[3]))

92 return np.array(y_sim).mean(axis =0)

93

94 def density_ix(self , x, ix):

95 return mixture_density(x,

96 self.sim_params[ix][0],

97 self.sim_params[ix][1],

98 self.sim_params[ix][2],

99 self.sim_params[ix ][3])

100

101 def likelikood(self , x, periods=None):

102 ret_likelihood = []

103 if periods ==None:

104 for ip in self.sim_params:

105 ret_likelihood.append(full_log_likelihood(x, ip[0],

↪→ ip[1], ip[2], ip[3]))

106 else:

107 periods = min(periods , len(self.sim_params))

108 for ip in self.sim_params[-periods :]:
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109 ret_likelihood.append(full_log_likelihood(x, ip[0],

↪→ ip[1], ip[2], ip[3]))

110 return np.array(ret_likelihood)

111

112 def update_d(self):

113 logproba =

↪→ np.log([scipy.stats.multivariate_normal.pdf(self.y,

114

↪→ self.mu[j],

115

↪→ self.Sigma[j],

116

↪→ 1)*(self.w[j] > self.u)

117 for j in range(self.k)])

118

119 samp = sample(logproba , rng = self.rng)

120 self.d = samp

121

122 def update_theta(self):

123 assert len(self.mu)==len(self.Sigma)

124 self.d = np.unique(self.d, return_inverse=True)[1]

125 self.mu = []

126 self.Sigma = []

127 for j in range(max(self.d)+1):

128 inj = (self.d == j).nonzero ()[0]

129

130 posteriori_params =

↪→ posterior_norm_invw_params(self.y[inj],

131 *self.init_params)

132 temp_mu , temp_Sigma =

↪→ random_normal_invw (* posteriori_params , rand = self.rng)

133 self.mu.append(temp_mu)

134 self.Sigma.append(temp_Sigma)
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135

136 self.mu = np.array(self.mu)

137 self.Sigma = np.array(self.Sigma)

138

139

140 def complete_theta(self):

141 missing_len = self.k-len(self.mu)

142 for _ in range(missing_len):

143 temp_mu , temp_Sigma =

↪→ random_normal_invw (*self.init_params)

144 self.mu = np.concatenate ((self.mu , [temp_mu ]))

145 self.Sigma = np.concatenate ((self.Sigma , [temp_Sigma ]))

146

147

148 def update_v_w_u(self):

149 if self.xp == 1:

150 self.v = np.repeat(self.p, max(self.d)+1)

151 self.w = self.v * np.cumprod(np.concatenate (([1], 1 -

↪→ self.v[:-1])))

152 self.u = self.rng.uniform(0, self.w[self.d])

153 n_p = int(np.log(min(self.u))/np.log(1-self.p))+1

154 self.v = np.repeat(self.p, n_p)

155 self.w = self.v * np.cumprod(np.concatenate (([1], 1 -

↪→ self.v[:-1])))

156 self.k = len(self.v)

157 return

158

159 a_c = np.bincount(self.d)

160 b_c = np.concatenate ((np.cumsum(a_c [:: -1]) [:: -1][1:] , [0]))

161

162 self.v = self.rng.beta(1 + self.xp/(1-self.xp)*self.p + a_c ,

163 self.c + self.xp/(1-self.xp)*self.p

↪→ + b_c)
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164 self.w = self.v * np.cumprod(np.concatenate (([1], 1 -

↪→ self.v[:-1])))

165 self.u = self.rng.uniform(0, self.w[self.d])

166 w_sum = sum(self.w)

167 while (w_sum < 1 - min(self.u)):

168 self.v = np.concatenate ((self.v, [self.p] if self.xp ==

↪→ 1 else self.rng.beta(1 + self.xp / (1 - self.xp) * self.p,

169

↪→ self.c + self.xp / (1 - self.xp) *

↪→ self.p, 1)))

170 self.w = np.concatenate ((self.w, [(1 - sum(self.w)) *

↪→ self.v[-1]]))

171 w_sum += self.w[-1]

172 self.k = len(self.v)

173

174

175

176 def update_p(self):

177 if self.xp==0:

178 return

179 if self.xp==1:

180 self.p = self.rng.beta(self.a+len(self.d),

↪→ self.b+self.d.sum())

181 return

182 if self.p_method ==0:

183 prev_logp = l_x(self.xp, self.p, self.c, self.v,

↪→ self.a, self.b)

184 curr_iter = 0

185 pass_condition = 0

186 while curr_iter <self.max_iter:

187 pass_var = self.rng.uniform ()

188 temp_p = self.rng.uniform ()
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189 temp_logp = l_x(self.xp, temp_p , self.c, self.v,

↪→ self.a, self.b)

190 pass_condition += np.exp(temp_logp -prev_logp) >

↪→ pass_var

191 curr_iter += 1

192 if pass_condition >3:

193 break

194 self.p = temp_p if pass_condition else self.p

195 elif self.p_method ==1:

196 max_param = scipy.optimize.minimize(lambda p:

↪→ -l_x(self.xp , p,self.c,self.v, self.a, self.b), self.p,

197 bounds =[(0 ,1)],

198

↪→ options ={’maxiter ’:self.max_iter })

199 if -max_param.fun [0] == np.inf:

200 self.p = rejection_sample(lambda p: -l_x(self.xp ,

↪→ p,self.c,self.v, self.a, self.b),

201 1e2)

202 else:

203 self.p = rejection_sample(lambda p: -l_x(self.xp ,

↪→ p,self.c,self.v, self.a, self.b),

204 -max_param.fun [0])

205 else:

206 max_param = scipy.optimize.minimize(lambda p:

↪→ -l_x(self.xp , p,self.c,self.v, self.a, self.b), self.p,

207 bounds =[(0 ,1)],

208

↪→ options ={’maxiter ’:self.max_iter })

209 if max_param.success:

210 self.p = max_param.x[0]

211 else:

212 return

213
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214 def get_n_groups(self):

215 return self.n_groups

216

217 def get_n_theta(self):

218 return self.n_theta

219

220 def get_sim_params(self):

221 return self.sim_params

222

223

224 def sample(logp , size=None , *, rng = None):

225 if size is None:

226 ret = np.argmax(logp -

↪→ np.log(-np.log(rng.uniform(size=logp.shape))),axis =0)

227 else:

228 ret = []

229 for i in range(size):

230 ret.append(np.argmax(logp -

↪→ np.log(-np.log(rng.uniform(size=len(logp))))))

231 ret = np.array(ret)

232 return ret

233

234 def rejection_sample(f, max_y , a=0, b=1, size=None , *, rng = None):

235 if size is None:

236 x = rng.uniform(a, b)

237 y = rng.uniform(0, max_y)

238 while y > f(x):

239 x = rng.uniform(a, b)

240 y = rng.uniform(0, max_y)

241 return x

242 else:

243 x = rng.uniform(a, b, size)

244 y = rng.uniform(0, max_y , size)
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245 while (y > f(x)).any():

246 x[y > f(x)] = rng.uniform(a, b, (y > f(x)).sum())

247 y[y > f(x)] = rng.uniform(0, max_y , (y > f(x)).sum())

248 return x

249

250 def l_x(x, p, c, v, a, b):

251 s = 0

252 for vi in v:

253 s += np.log(scipy.stats.beta.pdf(vi, 1 + x / (1 - x) * p, c

↪→ + x / (1 - x) * (1 - p)))

254 s += np.log(scipy.stats.beta.pdf(p, a, b))

255 return s

256

257 def full_log_likelihood(y, w, mu , lam , u):

258 return np.log(mixture_density(y, w, mu , lam , u)).sum()

259

260 def mixture_density(x, w, mu , Sigma , u):

261 k = len(w)

262

263 ret = []

264 for j in range(k):

265 ret.append(scipy.stats.multivariate_normal.pdf(x,

266 mu[j],

267 Sigma[j],

268 1))

269

270 ret = np.array(ret).T

271 mask = (np.array(list(repeat(u, k))) <

272 np.array(list(repeat(w, len(u)))).transpose ())

273

274 ret = ret.dot(mask/mask.sum(0)).mean (1)

275 return ret

276
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277 def mixture_density_pre(x, w, mu , lam):

278 k = len(w)

279 ret = scipy.stats.norm.pdf(np.array(list(repeat(x, k))).T,

↪→ loc=list(repeat(mu[:k], len(x))),

280 scale=list(repeat(np.sqrt(1 /

↪→ lam[:k]), len(x))))

281 ret = (w * ret).sum(1)

282 ret /= sum(w)

283

284 return ret

285

286 def cluster(x, w, mu , Sigma , u):

287 k = len(w)

288 ret = []

289 for j in range(k):

290 ret.append(scipy.stats.multivariate_normal.pdf(x,

291 mu[j],

292 Sigma[j],

293 1))

294 ret = np.array(ret).T

295 weights = (np.array(list(repeat(u, k))) <

296 np.array(list(repeat(w, len(u)))).transpose ())

297

298 weights = (weights/weights.sum (0)).sum (1)/len(u)

299 ret = ret*weights

300 grp = np.argmax(ret , axis =1)

301 u_grp , ret = np.unique(grp , return_inverse=True)

302 return (ret , weights[u_grp], mu[u_grp], Sigma[u_grp])

303

304 def random_normal_invw(mu , lam , psi , nu , rand=None):

305 ret_Sigma = scipy.stats.invwishart.rvs(nu, psi ,

306 random_state=rand)

307 ret_mu = scipy.stats.multivariate_normal.rvs(mu , ret_Sigma/lam ,
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308 random_state=rand)

309 return normal_params(ret_mu , ret_Sigma)

310

311 def posterior_norm_invw_params(y, mu , lam , psi , nu):

312 n = y.shape [0]

313 ret_mu = (lam*mu+n*y.mean(axis =0))/(lam+n)

314 ret_lam = lam+n

315 ret_psi = psi + n*np.cov(y.T, bias=True) +

↪→ (lam*n)/(lam+n)*((y.mean(axis =0)-mu)@(y.mean(axis =0)-mu))

316 ret_nu = nu+n

317 return normal_invw_params(ret_mu , ret_lam , ret_psi , ret_nu)

Code used to fit the data and generate the density plots in Figure 4.7.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import statsmodels.api as sm

4 from dgp_multidim import dgp_mixture as dgm_mixture

5

6 # Load dataset

7 galaxy = sm.datasets.get_rdataset("galaxies", "MASS")

8 y = galaxy.data["dat"]. to_numpy ()/1000

9

10 #Set seed

11 seed=0

12 rand = np.random.default_rng(seed)

13

14 #Set parameters

15 n_burn = int(1e3)

16 n_train = int(4e3)

17 n_dim = 1

18 mu0 = np.repeat(0, n_dim)

19 lam0 = 1

20 psi0 = np.identity(n_dim)
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21 nu0 = n_dim

22

23 #Fit the data

24 my_dgm0 = dgm_mixture(y, 1, 0, 1, 1, mu0 , lam0 , psi0 , nu0 , rng =

↪→ rand)

25 my_dgm05 = dgm_mixture(y, 1, 0.5, 1, 1, mu0 , lam0 , psi0 , nu0 ,

↪→ p_method=0, rng = rand)

26 my_dgm1 = dgm_mixture(y, 1, 1, 1, 1, mu0 , lam0 , psi0 , nu0 , rng =

↪→ rand)

27 my_dgm0.train(n_burn+n_train)

28 my_dgm05.train(n_burn+n_train)

29 my_dgm1.train(n_burn+n_train)

30

31 #Get fitted density

32 x = np.linspace(min(y) -1, max(y)+1, 200)

33 dgm0_y = my_dgm0.density(x,n_train)

34 dgm05_y = my_dgm05.density(x,n_train)

35 dgm1_y = my_dgm1.density(x,n_train)

36

37 #Plot

38 from sklearn.neighbors import KernelDensity

39 fig = plt.figure(figsize =(7,7))

40 n_bins = 40

41

42 ax = fig.add_subplot (2,2,1)

43 ax.hist(y, n_bins , density=True , histtype=’step’)

44 ax.plot(x, dgm05_y , label="DGM")

45 ax.set_xlabel(’y’)

46 ax.set_ylabel(’$\hat{f(y)}$’)

47 ax.legend ()

48

49 ax = fig.add_subplot (2,2,2,sharey=ax)

50 kde = KernelDensity(kernel=’gaussian ’, bandwidth =1)
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51 kde.fit(y.reshape(-1, 1))

52 ax.hist(y, n_bins , density=True , histtype=’step’)

53 ax.plot(x,np.exp(kde.score_samples(x.reshape (-1,1))),label=’KDE’)

54 ax.set_xlabel(’y’)

55 ax.set_ylabel(’$\hat{f(y)}$’)

56 ax.legend ()

57

58 ax = fig.add_subplot (2,2,3,sharey=ax)

59 ax.hist(y, n_bins , density=True , histtype=’step’)

60 ax.plot(x, dgm0_y , label="DPM")

61 ax.set_xlabel(’y’)

62 ax.set_ylabel(’$\hat{f(y)}$’)

63 ax.legend ()

64

65 ax = fig.add_subplot (2,2,4,sharey=ax)

66 ax.hist(y, n_bins , density=True , histtype=’step’)

67 ax.plot(x, dgm1_y , label="GPM")

68 ax.set_xlabel(’y’)

69 ax.set_ylabel(’$\hat{f(y)}$’)

70 ax.legend ()

71

72 plt.tight_layout ()

73 plt.savefig(’../ images/galaxy_fit.png’, dpi =300)

Code used to fit the data and generate the cluster plots in Figure 4.12

1 import scipy.stats

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import statsmodels.api as sm

5 from dgp_multidim import cluster

6 from sklearn.cluster import KMeans

7 import dgp_multidim

8
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9 #Load dataset

10 y = sm.datasets.get_rdataset("faithful").data.to_numpy ()

11

12 #Set seed

13 seed = 0

14 rand = np.random.default_rng(seed)

15

16 #Set parameters

17 n_burn = int(1e4)

18 n_train = int(4e4)

19 n_dim = 2

20 mu0 = y.mean (0)

21 lam0 = 0.1

22 psi0 = np.identity (2)

23 nu0 = n_dim

24

25 #Fit the data

26 my_dgm0 = dgp_multidim.dgp_mixture(y, 1, 0, 1, 1, mu0 , lam0 ,

↪→ psi0 , nu0 , rng = rand)

27 my_dgm05 = dgp_multidim.dgp_mixture(y, 1, 0.5, 1, 1, mu0 , lam0 ,

↪→ psi0 , nu0 , p_method=0, rng = rand)

28 my_dgm1 = dgp_multidim.dgp_mixture(y, 1, 1, 1, 1, mu0 , lam0 ,

↪→ psi0 , nu0 , rng = rand)

29 my_dgm0.train(n_burn+n_train)

30 my_dgm05.train(n_burn+n_train)

31 my_dgm1.train(n_burn+n_train)

32

33 #Plot

34 fig = plt.figure(figsize =(7,7))

35

36 ax = fig.add_subplot (2,2,1)

37 ret , w, mu , lam = cluster(y,*( dgm05_max_params [0:4]))

38 col = plt.cm.get_cmap(’viridis ’, max(ret)+1)
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39 ax.scatter(y[:,0], y[:,1], c=ret , s=50, zorder =1)

40 ax.set_xlabel(’duration ’)

41 ax.set_ylabel(’wating time’)

42 ax.set_title(’DGM’)

43

44 ax = fig.add_subplot (2,2,2,sharey=ax)

45 ret , w, mu , lam = cluster(y,*( dgm0_max_params [0:4]))

46 col = plt.cm.get_cmap(’viridis ’, max(ret)+1)

47 ax.scatter(y[:,0], y[:,1], c=ret , s=50, zorder =1)

48 ax.set_xlabel(’duration ’)

49 ax.set_ylabel(’wating time’)

50 ax.set_title(’DPM’)

51

52 ax = fig.add_subplot (2,2,3,sharey=ax)

53 ret , w, mu , lam = cluster(y,*( dgm1_max_params [0:4]))

54 col = plt.cm.get_cmap(’viridis ’, max(ret)+1)

55 ax.scatter(y[:,0], y[:,1], c=ret , s=50, zorder =1)

56 ax.set_xlabel(’duration ’)

57 ax.set_ylabel(’wating time’)

58 ax.set_title(’GPM’)

59

60 ax = fig.add_subplot (2,2,4,sharey=ax)

61 kmeans = KMeans(n_clusters =2, random_state =0).fit(y)

62 ret , w, mu , lam = cluster(y,*( dgm1_max_params [0:4]))

63 col = plt.cm.get_cmap(’viridis ’, max(ret)+1)

64 ax.scatter(y[:,0], y[:,1], c=kmeans.labels_ , s=50, zorder =1)

65 ax.set_xlabel(’duration ’)

66 ax.set_ylabel(’wating time’)

67 ax.set_title(’$k$ -means ’)

68

69 plt.savefig(’../ images/faithful_cluster.png’, dpi =300)
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