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Introducción

Sea K un campo, Xmn = (xij)ij un matriz de variables, y R := K[X] un
anillo de polinomios en estas variables. Sea Ik(X) el ideal de k × k-menores
de X. Notamos que el conjunto de ceros de Ik(X) consiste en las matrices
con coe�cientes en K de rango menor a k.

El anillos cociente R/Ik(X) es llamado un anillo determinantal. Estos
anillos son dominios Cohen-Macaulay [HE71]. Estos son Gorenstein si y solo
si m = n [Sva74]. Diversas variaciones de anillos determinantales han sido
estudiadas, tomando, por ejemplo, ideales generados por menores de diversos
tamaños [dCEP80]. Hay otros tipos de variantes, por ejemplo tomando los
determinantales de escalera y los determinantales de escalera mezclados. En
ambos casos estos ideales son primos y tienen la propiedad de ser Cohen-
Macaulay. Adicionalmente, se conoce una caracterización para la propiedad
de ser Gorenstein [Con95, GM00].

Por otro lado, un k × k menor adyacente de Xmn es el determinante de
una submatriz que tiene indices de renglones r1, . . . , rk e indices de colum-
nas c1, . . . , ck donde estos índices son enteros consecutivos. Denotamos por
Imn(k) al ideal generado por todos los k × k menores adyacentes de Xmn.
El ideal ideal Imn(k) dista mucho de ser ideal primo. Este tipo de ideales
aparecieron por primera vez para el caso k = 2 donde se da la descomposición
primaria de I2n(2) y de I44(2). La motivación para estudiar Imn(2) viene del
área de estadística algebráica [PRW01, Stu02].

Nuestro objetivo principal es estudiar propiedades homológicas de los ide-
ales binomiales de aristas, este tipo de ideales es una generalización de los ide-
ales determinantales y de los ideales generados por los 2-menores adyacentes
de una 2 × n matriz genérica. Los ideales binomiales de aristas fueron in-
troducidos independientemente por Herzog, Hibi, Hreindóttir, Kahle y Rauh
[HHH+10] y por Ohtani [Oht11]. Los ideales binomiales de aristas son ide-
ales generados por una colección arbitraria de 2-menores de una 2×n matriz
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cuyas entradas son todas indeterminadas. Los generadores de este tipo de
ideales son de la forma fij = xiyj − xjyi con i < j. Es natural asociar a cada
ideal de esta forma una grá�ca G en el conjunto de vértices [n] := {1, 2, . . . n}
para la cual {i, j} es una arista si y solo si fij es un generador de el ideal.
Es por este motivo que este tipo de ideales llevan ese nombre. Denotamos el
ideal binomial de aristas de G por JG.

Sea G una grá�ca simple, esto es, G no tiene lazos ni aristas multiples,
en el conjunto de vértices V (G) = [n] = {1, . . . , n} con aristas E(G). Sea
S = K[x1, . . . , xn, y1, . . . , yn] el anillo de polinomios en 2n variables sobre un
campo K, y sea fij = xiyj − xjyi donde i < j. el ideal binomial de aristas
JG de G es:

JG := 〈fij|{i, j} ∈ E(G)〉. (1)

Clasicamente se estudian los ideales monomiales de aristas asociados a
una grá�ca G. Este tipo de ideales son generados por los monomios de la
forma xixj donde {i, j} es una arista de G. El ideal de aristas de una grá�ca
fue introducido por Villarreal [Vil90], donde se estudia la propiedad de ser
Cohen-Macaulay.

Las propiedades de los ideales binomiales de aristas han sido ampliamente
estudiadas por muchos investigadores, como por ejemplo:

� La propiedad de ser Cohen-Macaulay [BNnB17, BMS18, EHH11,
HHH+10, KSM15, MR18, RR14, Rin13, Rin19, Zaf12],

� Números de Betti y regularidad [Bas16, CDI16, dAH18, EZ15, KSM14,
KSM16, MM13, SMK12, SMK18, SZ14],

� La propiedad de ser álgebra de Koszul [BEI18, EHH14, EHH15, Kiv14],

� Bases de Gröbner [BBS17, CR11, HHH+10, Oht11],

� Generalizaciones de estos ideales [CDNG18, EHHQ14, Rau13, SMK13].

Una linea de investigación reciente se ha enfocado en la relación entre las
propiedades combinatorias de la grá�ca G, y las propiedades algebráicas del
anillo dado por el ideal binomial de aristas S/JG [BNnB17, EHH14].

Herzog, Hibi, Hreinsdóttir, Kahle y Rauh caracterizaron las grá�cas tales
que su ideal binomial de aristas tiene una base de Gröbner cuadrática.
Para una grá�ca G, los generadores fij de JG forman una base de Gröb-
ner cuadrática si y solo si para todas las aristas {i, j} y {k, l} con i < j y
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k < l, se tiene que {j, l} ∈ E(G) si i = k, y {i, k} ∈ E(G) si j = l [HHH+10].
Una grá�ca se denomina cerrada con respecto al etiquetado de sus vértices si
cumple con esta condición, y se denomina cerrada si existe un etiquetado de
sus vértices bajo la cual es cerrada con respecto a dicho etiquetado.

Ene, Herzog e Hibi probaron que si G es una grá�ca cerrada, entonces
S/JG es Gorenstein si y solo si G es un camino [EHH11]. Esto motivó el
principal resultado de esta tesis.

Teoremas 7.1.7 y 7.1.8. Sea S = K[x1, . . . , xn, y1, . . . , yn]. Sea G una
grá�ca conexa tal que S/JG es Gorenstein. Entonces G es un camino.

Esto se logra usando aplicaciones de métodos en característica prima. Un
resultado clave para obtener el teorema 7.1.7 es el hecho de que la acción de
Frobenius en la cohomología local de S/JG es siempre inyectiva. Esta es una
propiedad deseable que se relaciona con el tipo de singularidad de la variedad
asociada al anillo [Fed83, Sch09].

Teorema 7.1.6. Sea S = K[x1, . . . , xn] un anillo de polinomios sobre un
campo, K, de característica prima. Sea I un ideal y < un orden monomial
tal que In<(I) es libre de cuadrados. Entonces S/I es F -inyectivo.

El resultado anterior es de interés por sí mismo para singularidades en
característica prima. Hacemos mención de que este teorema fue obtenido de
manera independiente y simultanea por Varbaro y Koley [VK].

Otro ingrediente clave son los umbrales F -puros [TW04]. Vagamente
hablando, este invariante nos da el orden asintótico de la escisión de un anillo.
En este trabajo calculamos el umbral F -puro de los ideales binomiales de
aristas asociados a grá�cas cerradas. En particular mostramos que el umbral
F -puro de un ideal binomial de aristas coincide con el umbral F -puro del
ideal inicial del ideal binomial de aristas para grá�cas cerradas.

Corollary 6.2.3. Sean G una grá�ca cerrada y S = K[x1, . . . , xn, y1, . . . , yn].
Entonces, fpt(S/JG) = fpt(S/ In<(JG)) = 2.

Este último resultado sigue la linea de investigación que establece que
los ideales binomiales de aristas y us respectivos ideales iniciales, tienen
propiedades similares para grá�cas cerradas [dAH18, EHH11].
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Introduction

Let K be a �eld, Xmn = (xij)ij be a matrix of indeterminates, and R =
K[X] be a polynomial ring in these variables. Let Ik(X) denote the ideal
of k × k-minors of X. We note that the vanishing set of Ik(X) is the set of
matrices with coe�cients in K of rank less than k.

The quotient R/Ik(X) is called a determinantal ring. This rings are
Cohen-Macaulay domains [HE71]. They are Gorenstein if and only if m = n
[Sva74]. Variations of determinantal rings have been studied taking mixed
minors of di�erent sizes [dCEP80]. There are also many variations such as
ladder determinantal ideals and mixed ladder determinantal ideals. In both
cases these rings are prime and Cohen-Macaulay, and criteria for when they
are Gorenstein is characterized [Con95, GM00].

A k × k adjacent minor of Xmn is the determinant of a submatrix with
row indices r1, . . . , rk and column indices c1, . . . , ck, where this indices are
consecutive integers. Let Imn(k) be the ideal generated by all the k × k
adjacent minors of Xmn. This ideal is far from being prime. It �rst appeared
for the case k = 2 where primary decomposition of I2n(2) and I44(2) were
given. The motivation for studying Imn(2) comes from the �eld of algebraic
statistics [PRW01, Stu02].

The main goal of this work is to study homological properties of bino-
mial edge ideals. These kind of ideals are a generalization of determinantal
ideals and ideals generated by adjacent 2-minors in a 2 × n generic matrix.
These ideals were introduced by Herzog, Hibi, Hreindóttir, Kahle, and Rauh
[HHH+10], and by Ohtani [Oht11] independently and about the same time.
Binomial edge ideals are, in simple terms, ideals generated by an arbitrary
collection of 2-minors of a 2× n matrix whose entries are all indeterminates.
The generators of this ideals are of the form fij = xiyj − xjyi with i < j.
Then, it is natural to associate to every ideal of this form a graph G on the
vertex set [n] = {1, 2, . . . n} for which {i, j} is an edge if and only if fij be-
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longs to our ideal. Explaining the naming of this type of ideals. We denote
the binomial edge ideal of G by JG.

By a simple graph we mean an undirected graph with no loops, no weights,
and no multiple edges. Let G a simple graph on the vertex set V (G) =
[n] = {1, . . . , n} with edge set E(G). Let S = K[x1, . . . , xn, y1, . . . , yn] the
polynomial ring on 2n variables over a �eld K, and let fij = xiyj − xjyi for
i < j. The binomial edge ideal JG of G is

JG = (fij|{i, j} ∈ E(G)). (2)

Clasically, monomial edge ideals of a graph G have been studied. This
kind of ideals are generated by the monomials xixj where {i, j} is an edge of
G. The edge ideal of a graph was introduced by Villarreal [Vil90] where he
studied the Cohen-Macaulay property of such ideals.

Properties of binomial edge ideals that have been studied vastly by many
researchers include

� Cohen-Macaulayness [BNnB17, BMS18, EHH11, HHH+10, KSM15,
MR18, RR14, Rin13, Rin19, Zaf12],

� Betti numbers and regularity [Bas16, CDI16, dAH18, EZ15, KSM14,
KSM16, MM13, SMK12, SMK18, SZ14],

� Koszulness [BEI18, EHH14, EHH15, Kiv14],

� Gröbner basis [BBS17, CR11, HHH+10, Oht11],

� generalizations of the binomial edge ideals [CDNG18, EHHQ14, Rau13,
SMK13].

A line of research has focused on the relation between the the combinato-
rial properties of the graph G and the algebraic properties of the ring given
by the binomial edge ideal S/JG [BNnB17, EHH14].

Herzog, Hibi, Hreinsdóttir, Kahle and Rauh characterized the graphs
whose binomial edge ideal has quadratic Gröbner base. For a graph G, the
generators fij of JG form a quadratic Gröbner basis if and only if for all edges
{i, j} and {k, l} with i < j and k < l one has {j, l} ∈ E(G) if i = k, and
{i, k} ∈ E(G) if j = l [HHH+10, Theorem 1.1]. A graph G that satis�es the
aforementioned condition is called closed with respect to the given labelling
of the vertices. We say that a graph G is closed if there exists a labeling of
its vertices such that G is closed with respect to that labeling.
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Ene, Herzog and Hibi proved that if G is a closed graph, then S/JG is
Gorenstein if and only if G is a path [EHH11, Corollary 3.4]. This motivated
the main result of this thesis.

Theorems 7.1.7 y 7.1.8. Let S = K[x1, . . . , xn, y1, . . . , yn]. Let G be a
connected graph such that S/JG is Gorenstein. Then, G is a path.

This is achieved through the applications of methods in prime charac-
teristic. A key result to obtain Theorem 7.1.7 is the fact that the action
of Frobenius in the local cohomology of S/JG is always injective. This a
desirable property that relates to the singularity of the variety associated to
a ring [Fed83, Sch09].

Theorem 7.1.6. Let S = K[x1, . . . , xn] be a polynomial ring over a �eld,
K, of prime characteristic. Let I be an ideal and < a monomial order such
that In<(I) is square-free. Then, S/I is F -injective.

The previous result is of independent interest for singularities in prime
characteristic. We point out that this theorem was obtained independently
and simultaneously by Varbaro and Koley [VK].

Another key ingredient are the F -pure thresholds [TW04]. Roughly
speaking, this invariant gives the asymptotic splitting order of a ring. In
this work compute the F -pure threshold of binomial edge ideals associated
to closed graphs. In particular, we show that the F -pure threshold of the
binomial edge ideal coincide with the F -pure threshold of the initial ideal of
the binomial edge ideal for closed graphs.

Corollary 6.2.3. Let G be a closed graph, and S = K[x1, . . . , xn, y1, . . . , yn].
Then, fpt(S/JG) = fpt(S/ In<(JG)) = 2.

The previous result follows the line of research which establish that the
binomial edge ideal and its initial ideal have similar properties for closed
graphs [dAH18, EHH11].
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Chapter 1

Preliminaries

1.1 Graded rings

Through this document all the rings are commutative with 1 and all
homomorphisms take 1 to 1.

Let R be a ring. A gradation on R is a decomposition R = ⊕n≥0Rn, of
R as a direct sum of subgroups Rn of R, where n runs over the set of all
nonnegative integers, such that RnRm ⊆ Rn+m for all n, m ∈ N. A ring with
such gradation is called a graded ring.

The group Rn is called the homogeneous component of R of degree n, and
the elements of Rn are called homogeneous elements of degree n. Thus 0 is
homogeneous of every degree. Every r ∈ R has a unique expression

r =
∑
n≥0

rn

with rn ∈ Rn for every n and rn = 0 for almost all n. This expression is
called a homogeneous decomposition of r, and rn is called the homogeneous
component of r of degree n. We denote the R-submodule ⊕n≥1Rn of R by
R+

Let K be an arbitrary �eld. By a standard graded K-algebra (R,m, K)
we mean a graded ring such that R0 = K, m = ⊕n≥1Rn and R is �nitely
generated as K-algebra over R0 = K by R1. Since K ∼= R/m, m is a maximal
ideal, and it is called the maximal graded ideal of R.

Proposition 1.1.1. Let R be a graded ring. Then

i) R0 is a subring of R, and each Rn is an R0-submodule of R.
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ii) R+ is an ideal of R, and R0
∼= R/R+.

Let R and S graded rings. We say that a ring homomorphism f : R→ S
is graded if f(Rn) ⊆ Sn for all n. Some ideals of a graded ring preserve the
gradation as the next lemma shows.

Lemma 1.1.2. For an ideal a of a graded ring R, the following conditions
are equivalent:

i) For every a ∈ a, all homogeneous components of a belong to a.

ii) a = ⊕n≥0(a ∩Rn).

iii) a is generated as an ideal by homogeneous elements.

By a homogeneous ideal of R we mean an ideal that satis�es any of the
equivalent contditions of Lemma 1.1.2.

Graded rings share some properties with local rings, as the next two
lemmas shows.

Lemma 1.1.3 (Nakayama's Lemma). Let be (R,m, K) a local ring and a
an ideal of R, and let M be a �nitely generated R-module. If aM = M then
M = 0

Lemma 1.1.4 (Graded version of Nakayama's Lemma). Let be (R,m, K) a
standard graded ring and a an ideal contained in the maximal graded ideal m
of R, and let M be either a �nitely generated graded R-module or a graded
R-module such that M−n = 0 for n� 0. If aM = M then M = 0

If a is a graded ideal of R then the quotient ring R/a acquires a gradation
given by (R/a)n = Rn/an, called the quotient gradation. This is the unique
gradation on R/a for wich the natural surjection R → R/a is a graded
homomorphism.

For a graded ring R there are modules that behave well with the action
of graded elements of R. Let R be a graded ring, an M an R-module. A
gradation on M is a decomposition M = ⊕n∈ZMn of M as a direct sum
of subgroups Mn such that RnMm ⊆ Mm+n for all m, n. Such a module
is called graded module. Since R0Mn ⊆ Mn, each Mn can be seen as an
R0-module, and Mn is called the homogeneous component of M of degree
n, and its elements are called homogeneous elements of degree n. Thus
0 is homogeneous of every degree. Each x ∈ M has a unique expression
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x =
∑

n≥0 xn with xn ∈Mn for every n and xn = 0 for almost every n. This
expression is called the homogeneous decomposition of x, and xn is called the
homogeneous component of x of degree n.

Let M and N graded R-modules, and let d be an integer. A R-
homomorphism f : M → N is said to be a graded homomorphism of
degree d if f(Mn) ⊆ Nn+d for every n, or just a graded homomorphism if
d = 0.

As for ideals of graded rings, for a graded module M there are submodules
that preserves the gradation.

Lemma 1.1.5. For a submodule N of a graded submodule M , the following
are equivalent:

i) For every x ∈ N the homogeneous components of x belong to N .

ii) N = ⊕n∈Z(N ∩Mn).

iii) N is generated as a R-submodule by homogeneous elements

A submodule of a graded R-module is called a graded submodule if it
satis�es any of the equivalent conditions of Lemma 1.1.5.

If N is a graded submodule of a graded R-module M then the quotient
module M/N acquires a gradition given by (M/N)n = Mn/Nn for every n,
called the quotient gradation, and it is the unique gradation on M/N such
that the natural surjection M →M/N is a graded homomorphism.

In the de�nition of graded rings and modules the index set is the non
negative integers and the integers respectively but we can have gradations
by any monoid.

De�nition 1.1.6. Let G be a monoid. A G-graded ring R is a ring R with
a decomposition R = ⊕g∈GRg, of R as a direct sum of subgroups Rg of R,
such that RgRh ⊆ Rg+h for all g, h ∈ G.

We have similar results for G-grades rings for some of the statements in
this section. But we will not proceed further in that direction.

Let R be an arbitrary ring and a a proper ideal of R. Let Sn = an/an+1

where we put R0 = R, and let S = ⊕n≥0Sn. Each Sn is an R-module, so S
is an R-module. We de�ne multiplication in S as follows: Let ρn ∈ Sn and
ρm ∈ Sm. Choose rn and rm such that ρn and ρm are the images of rn and
rm under the natural projection modulo an+1 and am+1, respectively. Note
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that rnrm ∈ Sn+m. Then we de�ne ρnρm to be the natural image of rnrm in
Sm+n. It is checked that this independent of the representatives rn and rm
of ρn and ρm.

With this de�nition we say that S is the associated graded ring of R with
respect to a, and it is denoted by Gra(R).

Now, let M be a n R-module. The associated graded module of M
with respect to a, denoted by Gra(M) is de�ned in a similar way. Namely,
is the Gra(R)-module constructed as follows: Gra(M) = ⊕n∈ZNn, where
Nn = anM/an+1M . For ρ ∈ Sn and y ∈ Nm we choose r and x such that
ρ ∈ Sn and y ∈ Nm are the natural projections of r and x modulo an+1 and
am+1M respectively. Note that rx ∈ an+mM and de�ne ρy to be the natural
image of rx modulo an+m+1M . Again it is veri�ed that this choice is inde-
pendent of the representatives so it de�nes a well de�ned escalar product on
homogeneous elements wich extends by distributivity to all Gra(R).

14



Chapter 2

Cohen-Macaulay rings and

modules

2.1 Dimension

The most fundamental numerical invariant of a Noetherian ring R is
the dimension of the ring R, and depth, previously known as homological
dimension, is the second most fundamental invariant of R. For a chain of
prime ideals of R we mean a sequence of prime ideals

p = p0 ) p1 ) · · · ) pn.

Such a chain is said to have length n (the number of links).

De�nition 2.1.1. The dimension (also called Krull dimension) of a ring R,
written dim(R), is the supremum of the lengths of chains of prime ideals of
R.

2.2 Regular sequences

While depth is de�ned in terms of regular sequences, is measured by
certain Ext modules. With this connection we can use homological methods
to investigate commutative rings.

De�nition 2.2.1. Let M be a module over a ring R. We say that x ∈ R is
an M-regular element (or a regular element if M = R) if xz = 0 for z ∈ R
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implies z = 0, in other words, x is not a zero-divisor of M . We can compose
successively regular elements.

De�nition 2.2.2. Let R be a ring. A sequence x = x1, . . . , xn of elements
of R is called an M-regular sequence or M-sequence for short if the following
contidions are satis�ed:

i) x1 is an M -regular element

ii) xi is a M/(x1, . . . , xi−1)M -regular element for i = 2, . . . , n, and

iii) M/xM 6= 0.

We shall also say that M is an x-regular module. A regular sequence is
an R-regular sequence.

Remark 2.2.3. Suppose that R = (R,m, K) is a local ring or a standard
graded K-algebra, suppose that M 6= 0 is a �nite R-module and �nally
suppose that x ⊂ m. Then Condition iii is satis�ed automatically because of
the local and graded versions of Nakayama's lemma.

Remark 2.2.4. A permutation of a regular sequence need not to be a regular
sequence. As an example of this fact we take R = K[X, Y, Z], K a �eld. The
sequence X, Y (1−X), Z(1−X) is an R-sequence, but Y (1−X), Z(1−X), X
is not. There are conditions under which regular sequences can be permuted.

Proposition 2.2.5. Let x1, x2, . . . , xn be an M -regular sequence. If one of
the next two conditions hold

� R is a Noetherian local ring.

� R is a graded ring, M is a graded R-module and x1, x2, . . . , xn ∈ R+.

Then every permutation of x1, x2, . . . , xn is again M -regular.

Let R be a ring, M an �nite R-module, and X = X1, X2, . . . , Xn inde-
terminates over R. Then we write M [X] for M ⊗R[X] and call its elements
polynomials with coe�cients in M . If x = x1, x1, . . . , xn is a sequence of
elements of R, then there is an R-algebra homomorphism ϕ : R[X]→ R and
also an R-module homomorphism ψ : M [X]→M induced by the sustitution
Xi 7→ xi. We denote by F (x) the image of F ∈ R[X] (or F ∈ M [X]) under
this map.
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The classical example of a regular sequence is the sequence X =
X1, . . . , Xn of indeterminates in a polynomial ring R = S[X1, . . . , Xn].
Moreover, every M -sequence behaves in some sense like a sequence of in-
derteminates, as shown in the next theorem.

Theorem 2.2.6. Let R be a ring, M and R-module, x = x1, . . . , xn an
M -sequence, and I = (x). Then the map

(M/IM)[X1, . . . , Xn]→ GrI(M)

Xi 7→ x̄i ∈ I/I2

is an isomorphism.

This theorem says precisely how a regular sequence behaves like a se-
quence of indeterminates: the residue classes x̄i ∈ I/I2 operate on GrI(M)
exactly like indeterminates. A sequence x that satis�es the condition of The-
orem 2.2.6 is called M-quasi-regular sequence. Not every M -quasi-regular
sequence is a regular sequence, since a regular sequence may lose regularity
after a permutation as shown in Remark 2.2.4, but permutations does not
a�ect the conditions of the theorem.

2.3 Depth

Let R be a Noetherian ring, and M be a �nitely generated R-module. If
x = x1, . . . , xn is an M -sequence, then the sequence

(x1) ( (x1, x2) ( · · · ( (x1, · · · , xn)

ascends strictly. Therefore an M -sequence can be extended to a maximal
sequence. An M -sequence x = x1, . . . , xn contained in an ideal I is said to
be maximal in I, if x1, x2, . . . , xn, xn+1 is not anM -sequence for any xn+1 ∈ I.

Lemma 2.3.1. For an ideal I such that IM 6= M , the following two condi-
tions are equivalent:

i) homR(R/I,M) = 0.

ii) I contains an M -regular element.

Proposition 2.3.2. For an ideal I of R such that IM 6= M , and for an
integer r > 0, the following two conditions are equivalent:
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i) ExtiR(R/I,M) = 0 for every i, 0 ≤ i ≤ r − 1.

ii) I contains an M -regular sequence of length r.

Proposition 2.3.2, tell us precisely that every maximal M -sequence has
the same length. Which motivates the next de�nition.

De�nition 2.3.3. Let I be an ideal of R such that IM 6= M . The length of
any maximal M -sequence in I is called the I-depth of M and is denoted by
depthIM . This is well de�ned in view of the above proposition.

If (R,m) is a Noetherian local ring and M is a nonzero �nitely generated
R-module (so that mM 6= M by Nakayama 1.1.3) then the m-depth of M is
called the depth of M , and in this case is denoted by depthM .

2.4 Depth and dimension

Let (R,m) be a Noetherian local ring and M 6= 0 a �nite R-module.
All the minimal elements of SuppM belong to AssM . Therefore, if x ∈ m
is an M -regular element, then x /∈ p for all minimal elements of SuppM ,
and inductions yields dimM/xM = dimM − n if x = x1, . . . , xn is an M -
sequence. We just proved:

Proposition 2.4.1. Let (R,m) a Noetherian local ring and M 6= 0 a �nite
R-module. Then every M -sequence is part of a system of parameters of M .
In particular depthM ≤ dimM

The inequality of Proposition 2.4.1, can be re�ned:

Proposition 2.4.2. Let (R,m) a Noetherian local ring and M 6= 0 a �nite
R-module. Then depthM ≤ dimR/p for all p ∈ AssM .

A variant of Proposition 2.4.1 says that depth id bounded by height, more
precisely:

Proposition 2.4.3. Let R be a Noetherian ring and I ⊆ R and ideal. Then
depthIM ≤ height I.

We are now ready to present an invariant that re�nes the information
given by depth:
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De�nition 2.4.4. Let M be a module over a local ring (R,m, K), and x a
maximal M -sequence. Then

SocM = (0 : m)M ∼= homR(K,M)

is called the socle of M , and the number

r(M) = dimK Soc(M/xM)

is called the type of M .

2.5 Depth and projective dimension

Let R be a ring, and M an R-module; M has a projective resolution

P• : · · · → Pn
ϕn−→ Pn−1 → · · · → P1

ϕ1−→ P0 → 0.

Set M0 = M and Mi = Imϕi for i ≥ 1. We note that the modules
Mi depend on P•. However, M determines Mi up to projective equivalence,
therefore is justi�ed to call Mi the i-th syzygy of M . The projective dimen-
sion of M , denoted by Proj.DimM , is in�nity if none of the modules Mi

is projective. Otherwise Proj.DimM is the least integer n for which Mn is
projective; replacing Pn byMn one gets a projective resolution of M of lenght
n:

0→Mn → Pn−1 → · · · → P0 →M → 0.

For a �nite module M over a Noetherian local ring (R,m, K) there is a
very natural condition which, if satis�ed by P•, determines P• uniquely. It is
a consequence of Nakayama's lemma that x1, . . . , xm form a minimal system
of generators of M if and only if the residue classes x̄1, . . . , x̄m ∈ M/mM ∼=
M ⊗K are a K-basis of the K-vector space M ⊗K, and

µ(M) = dimKM ⊗K

is the minimal number of generators of M . Set β0 = µ(M). We choose a
minimal system x1, . . . , xβ0 of generators of M and specify an epimorphism

ϕ0 : Rβ0 →M

ei → xi
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where e1, . . . , eβ0 is the canonical basis of Rβ0 . now we set β1 = µ(kerϕ0)
and de�ne

ϕ1 : Rβ1 → kerϕ0

ei → xi

where now e1, . . . , eβ1 is the canonical basis of R
β1 , and x1, . . . , xβ1 are a min-

imal system of generators of kerϕ0. Proceeding in this manner, we construct
a minimal free resolution

F• : · · · → Rβn ϕn−→ Rβn−1 → · · · → Rβ1 ϕ1−→ β0 → 0.

Remark 2.5.1. F• is determined by M up to an isomorphism of complexes.

De�nition 2.5.2. The number βi(M) = βi is called the i-th betti number of
M .

The next proposition tell us exactly when a free resolution is minimal.

Proposition 2.5.3. Let (R,m, K) be a Noetherian loca ring, M a �nite
R-module, and

F• : · · · → Fn
ϕn−→ Fn−1 → · · · → F1

ϕ1−→ F0 → 0

a free resolution of M . Then the following are equivalent:

i) F• is minimal;

ii) ϕi(Fi) ⊆ mFi−1 for all i ≥ 1;

iii) rankFi = dimK TorRi (M,K) for all i ≥ 0;

iv) rankFi = dimK ExtiR(M,K) for all i ≥ 0.

Now we can characterize the projective dimension of a module.

Corollary 2.5.4. Let (R,m, K) be a Noetherian loca ring, M a �nite R-
module. Then βi(M) = dimK TorRi (M,K) for all i and

Proj.DimM = sup{i|TorRi (M,K) 6= 0}.
The following theorem known as the Auslander-Buchsbaum formula is an

e�ective instrument to compute the depth of a module.

Theorem 2.5.5 (Auslander-Bauchsbaum). Let (R,m, K) be a Noetherian
loca ring, M 6= 0 a �nite R-module. If Proj.DimM <∞, then

Proj.DimM + depthM = depthR

the proof of this theorem is by induction on depthR.
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2.6 Cohen-Maculay rings and modules

Let R be a Noetherian local ring, and M a �nite R-module. We have
presented two invariants ofM . A "geometric" invariant and an "homological"
invariant. We say that M is Cohen-Macaulay if both invariants coincide.

De�nition 2.6.1. Let R be a Noetherian local ring. A �nite R-module
M 6= 0 is a Cohen-Macaulay module if depthM = dimM . If R itself is a
Cohen-Macaulay module, then it is called a Cohen-Macaulay ring. A max-
imal Cohen-Macaulay module is a Cohen-Macaulay module M such that
dimM = dimR.

In general, if R is a Noetherian ring and M is a �nite R-module, Then
M is a Cohen-Macaulay module if Mm is a Cohen-Macaulay Rm-module for
all maximal ideals m ∈ SuppM . For a module M to be a maximal Cohen-
Macaulay R-module we require that Mm is a maximal Rm module for each
maximal ideal m of R. As in the local case, R is a Cohen-Macaulay ring if
it is a Cohen-Macaulay R-module.

De�nition 2.6.2 (Chain conditions in Cohen-Macaulay rings). A Noethe-
rian ring R is catenary if every saturated chain joining prime ideals p and q,
such that p ⊆ q, has maximal length and it is equal to height q/p. We say
that R is universally catenary if all the polynomial rings R[X1, . . . , Xn] are
catenary.

We show some properties of Cohen-Macaulay rings and Cohen-Macaulay
modules.

Theorem 2.6.3. Let (R,m) be a Noetherian local ring, and M 6= 0 a Cohen-
Macaulay R-module. Then

i) dimR/p = depthM for all p ∈ AssM ,

ii) depthIM = dimM − dimM/IM for all ideals I ⊆ m,

iii) x = x1, x2, . . . , xn is an M -sequence if and only if

dimM/xM = dimM − r, (2.1)

iv) x is an M -sequence if and only if it is part of a system of parameters of
M .
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Theorem 2.6.4. If R is Cohen-Macaulay then the polynomial ring

R[X1, . . . , Xn]

is also Cohen-Macaulay.

Corollary 2.6.5. A Cohen-Macaulay ring is universally catenarian.

An ideal a of R is said to be unmixed if height p = height a for every
p ∈ AssA/a. We say unmixedness holds for R if, for every r ≥ 0, every ideal
of R of height r and generated by r elements is unmixed.

Theorem 2.6.6. A ring R is Cohen-Macaulay if and only if unmixedness
holds for R.

2.7 Homogeneous case

Let (R,m, K) be a standard graded K-algebra with maximal homoge-
neous ideal m, and let M be a �nitely generated graded R-module not equal
to the zero module.

De�nition 2.7.1. An homogeneous element x of R is said to be M-regular
if x ∈ m and x is a nonzero divisor on M , that is, the map

M
x−→M

m 7→ x ·m

is an injection but not a surjection, the second condition is a consequence of
the graded version of Nakayama's lemma, wich states that if mM = M , then
M = 0. The de�nition of regular element can be extended to a sequence as
follows: A sequence x1, x2, . . . , xr of homogeneous elements of R is said to
be M -regular if xi is M/(x1, . . . , xi−1)M -regular for every i, 1 ≤ i ≤ r. For
i = 1, the condition means that x1 is M -regular.

If x1, . . . , xr is an M -regular sequence in a then the integer r is called the
lenght of the sequence.

If I is an homogeneous ideal of R we have that IM 6= M . It turns out
that there are maximal regular sequences on M contained on I, and every
maximal regular sequence have the same length, called the graded depth of
M on I.
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The graded Krull dimension of a graded ring R is de�ned as the supremum
of lengths of chains of homogeneous prime ideals of R, where the length of
the chain

p0 ) p1 ) · · · ) pn

is n.
By a homogenous system of parameters for R, we mean a sequence of

homogeneous elements F1, . . . , Fn of positive degree, in R such that n =
dim(R) and R/(F1, . . . , Fn)R has graded Krull dimension 0. A homogeneous
system of parameters always exist. Moreover, if F1, . . . , Fn is a sequence of
homogeneous elements of positive degree, then the following statements are
equivalent.

1. F1, . . . , Fn is a homogeneous system of parameters.

2. m is nilpontent modulo (F1, . . . , Fn)R.

3. R/(F1, . . . , Fn)R is �nite-dimensional as a K-vector space.

4. R is a �nite module over the subring K[F1, . . . , Fn].

When these conditions hold. F1, . . . , Fn are algebraically independent over
K, so that K[F1, . . . , Fn] is a polynomial ring.

A graded R ring is called Cohen-Macaulay if some homogeneous system
of parameters is a regular sequence on R. In our case, when R is a standard
graded algebra, the following conditions are equivalent.

i) Some homogeneous system of parameters is a regular sequence.

ii) Every homogeneous system of parameters is a regular sequence.

iii) Form every homogeneous system of parameters F1, . . . , Fn, R is a free-
module over K[F1, . . . , Fn].

iv) Form some homogeneous system of parameters F1, . . . , Fn, R is a free-
module over K[F1, . . . , Fn].

v) Rm is a local Cohen-Macaulay ring (in the usual sense).

vi) R is a graded Cohen-Macaulay ring.

vii) R is a Cohen-Macaulay ring.
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Chapter 3

Gorenstein modules and rings

3.1 Injective modules

De�nition 3.1.1. Let R be a ring. An R moduleM is injective if the functor
homR(_, R) is exact.

There are some useful characterizations of injective modules. Here we list
some of them.

Proposition 3.1.2 ([BH93, Proposition 3.1.2]). Let R be a ring and I, M
and N R-modules. The following conditions are equivalent:

(a) I is injective;

(b) for every ϕ : M → N monomorphism, and every α : M → I, there exists
a homomorphism β : N → I such that α = β ◦ ϕ;

(c) if N ⊆M , and α : N → I, there exists β : M → I such that β|N = α;

(d) for all J ⊆ R ideal, every R-homomorphism ϕ : J → I can be extended
to R;

(e) for all J ⊆ R ideal, Ext1
R(R/J, I) = 0;

(f) Ext1
R(M, I) = 0 for all M ;

(g) ExtiR(M, I) = 0 for all M and i > 0.
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De�nition 3.1.3. Let R be a ring and M an R-module. A complex

I• : 0→ I0 → I1 → I2 → · · ·

with injective modules I i is an injective resolution of M if H0(I•) ∼= M and
H i(I•) = 0 for i > 0.

It's not clear from this de�nition that injective resolutions do exist. The
next theorem indicates that injective resolutions always exist.

Theorem 3.1.4 ([BH93, Theorem 3.1.8]). Let R be a ring. Every R-module
can be embedded into an injective R-module. In fact, this embedding can be
achieved canonically, that is, without making arbitrary choices.

De�nition 3.1.5. Let R be a ring and M an R-module. The injective
dimension of M , denoted Inj.DimR(M) or Inj.Dim(M) when R is clear
in the context, is the smallest integer n for wich there exists an injective
resolution I• of M with Im = 0 for m > n. If there is no such n, we de�ne
the injective dimension of M to be in�nite.

Proposition 3.1.6 ([BH93, Proposition 3.1.10]). Let R be a ring and M an
R-module. The following are equivalent:

(a) Inj.Dim(M) ≤ n;

(b) Extn+1
R (N,M) = 0 for all R-modules N ;

(c) Extn+1
R (R/J,M) = 0 for all ideals j ⊆ R.

De�nition 3.1.7. A Noetherian local ring R is a Gorenstein ring if
Inj.DimRR < ∞. A Noetherian ring is a Gorenstein ring if its localization
al every maximal ideal is a Gorenstein local ring.

De�nition 3.1.8. The type of a (�nitely generated) Cohen-Macaulay mod-
ule M over a local ring (R,m, K) is the dimension as K-vector space of
Extdr(K,M), where d = dim(M).

Theorem 3.1.9 ([BH93, Theorem 3.2.10]). A local ring R is Gorenstein if
and only if R is a Cohen-Macaulay ring of type one.

The Gorenstein property is stable under standard ring operations. By
this we mean the following proposition.
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Proposition 3.1.10 ([BH93, Proposition 3.1.9.]). Let R be a Noetherian
ring:

1. Suppose R is Gorenstein. Then for every multiplicatively closed set
S in R the localized ring RS is also Gorenstein. In particular Rp is
Gorenstein for every p ∈ SpecR.

2. Suppose x1, . . . , xn is an R-regular sequence. If R is Gorestein, then so
is R/(x1, . . . , xn)R. The converse holds when R is local.

3. Suppose R is local. Then R is Gorenstein if and only if its completion
R̂ is Gorenstein.

For a Noetherian local ring we have the following implications:

R is regular⇒ R is a complete intersection

⇒ R is Gorenstein

⇒ R is Cohen-Macaulay,

where all the implications are strict.
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Chapter 4

The local cohomology functors

4.1 The torsion functor

De�nition 4.1.1. Let M be an R module, set

Γa(M) = {m ∈M |atm = 0 for some t ∈ N}.

We note that Γa(M) is a submodule of M . When Γa(M) = M , M is said
to be a-torsion, and when Γa(M) = 0, M is said to be a-torsion-free. For a
homomorphism of R-modules ϕ : M → N we have that ϕ(Γa(M)) ⊆ Γa(N),
and so there is an induced homomorphism of R-modules

Γa(ϕ) : Γa(M)→ Γa(N)

wich agrees with ϕ on every element of Γa(M).
If ψ : M → N and ϑ : N → L are further homomorphisms of R-modules

and r ∈ R, then Γa(ϑ ◦ ϕ) = Γa(ϑ) ◦ Γa(ϕ), Γa(ϕ + ψ) = Γa(ϕ) + Γa(ψ),
Γa(rϕ) = rΓa(ϕ) and Γa(IdM) = IdΓa(M). Thus, Γa(_) becomes a covariant,
R-linear functor from the category of R-modulos C(R) to itself, and it is
called the a-torsion functor (A functor T is called R-linear if it is additive
and T (rϕ) = rT (ϕ) for all r ∈ R and all homomorphisms ϕ of R-modules).
It extends to a functor in the category of complexes of R-modules.

Lemma 4.1.2 ([BS13, Lemma 1.1.6]). The functor Γa(_) is left exact.
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4.2 Local cohomology modules

De�nition 4.2.1. For i ∈ N0, the i-right derived functor of Γa(_) is denoted
by H i

a(_) and is referred to as the i-th local cohomology funtor with respect
to a.

For an R-module M , we shall refer to H i
a(M), the result of applying the

functor H i
a(_) to M , as the i-th local cohomology module of M with respect

to a.

Properties of local cohomology modules 4.2.2. Let M be an arbitrary
R-module.

(i) To calculate H i
a(M), one proceeds as follows. Take an injective resolu-

tion

I• : 0
d−1

−−→ I0 d0−→ I1 −→ · · · −→ I i
di−→ I i+1 −→ · · ·

of M , so that there si an R-homomorphism ϕ : M → I0 such that the
sequence

0 −→M
ϕ−→ I0 d0−→ I1 −→ · · · −→ I i

di−→ I i+1 −→ · · ·

is exact. Apply the functor Γa(_) to the complex I• to obtain

0 −→ Γa(I
0)

Γa(d0)−−−→ Γa(I
1) −→ · · · −→ Γa(I

i)
Γa(di)−−−→ Γa(I

i+1) −→ · · ·

and take the i-th cohomology module of this complex; the result

ker(Γ(di))/ Im(Γ(di−1)),

wich, by a standar fact of homological algebra, is independent of the
choice of injective resolution I• of M , is H i

a(M).

(ii) Since Γa(_) is covariant and R-linear, it is a consequence that each
H i

a(_) is again covariant and R-linear.

(iii) Since Γa(_) is left exact, there is a natural equivalence between H0
a (_)

and Γa(_). We use this equivalence to identify these two functors.

(iv) Let 0 → L
ϕ−→ M

ψ−→ N → 0 be an exact sequence of R-modules
and R-homomorphisms. Then, for each i ∈ N0, there is a connecting
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homomorphism H i
a(N)

δi−→ H i+1
a (L), and these homomorphisms make

the resulting long sequence

0→H0
a (L)

H0
a (ϕ)−−−→ H0

a (M)
H0

a (ψ)−−−→ H0
a (N)

δ0−→H1
a (L)

H1
a (ϕ)−−−→ H1

a (M)
H1

a (ψ)−−−→ H1
a (N)

δ1−→· · ·
δi−1−−→H i

a(L)
Hi

a(ϕ)−−−→ H i
a(M)

Hi
a(ψ)−−−→ H i

a(N)

δi−→H i+1
a (L)

Hi+1
a (ϕ)−−−−−→ · · ·

exact. These long exact sequences have `natural' properties. By natural
properties we mean the following: If

0 // L

λ
��

ϕ //M

µ
��

ψ // N

ν
��

// 0

0 // L′
ϕ′ //M ′ ψ′ // N ′ // 0

is a commutative diagram of R-modules and R-homomorphisms with
exact rows, then, for each i ∈ N0, we have the following commutative
diagram

H i
a(L)

Hi
a(λ)
��

Hi
a(ϕ) // H i

a(M)

Hi
a(µ)
��

Hi
a(ψ) // H i

a(N)

Hi
a(ν)
��

H i
a(L

′)
Hi

a(ϕ′)// H i
a(M

′)
Hi

a(ψ′)// H i
a(N

′)

simply because H i
a(_) is a functor, but we also have a commutative

diagram

H i
a(N)

Hi
a(ν)
��

δi // H i+1
a (L)

Hi
a(λ)
��

H i
a(N

′)
δ′i // H i+1

a (L′)

in which the horizontal homomorphisms are the appropiate connecting
homomorphisms.

(v) Let b be a second ideal of R such that
√
a =
√
b. Then H i

a(_) = H i
b(_)

for all i ∈ N0.
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Here we present a method for computing local cohomology as a direct
limit of some suitable Ext functors.

Theorem 4.2.3 ([ILL+07, Theorem 7.8]). For each R-module M , there are
natural isomorphisms

lim−→
t

ExtiR(R/at,M) ∼= H i
a(M) for each j ≥ 0.
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Chapter 5

Binomial Edge Ideals

5.1 Basic properties of binomial edge ideals

De�nition 5.1.1 ([HHH+10]). Let G be a simple graph on the vertex set
[n] = {1, 2, . . . , n}, This means that G has no loops and no multiple edges.
Let K be a �eld and S = K[x1, . . . , xn, y1, . . . , yn] the ring of polynomials in
2n variables. For i < j we set fij = xiyj − xjyi. We de�ne the binomial edge
ideal JG ⊆ S of G as the ideal generated by the binomials fij = xiyj − xjyi
such that i < j and {i, j} ∈ E(G)

The binomials fij satisfy a relation that is useful in our work.

Proposition 5.1.2 (Plücker relation). let G be a simple graph, for i < j <
k < l vertices of G the following equation hold:

fijfkl − fikfjl + filfjk = 0. (5.1)

We present a characterization of when JG has a quadratic Gröbner basis.

Theorem 5.1.3 ([HHH+10, Theorem 1.1]). Let G be a simple graph
on the vertex set [n], and let < be the lexicographic order on S =
K[x1, . . . , xn, y1, . . . , yn] induced by x1 > x2 > · · · > xn > y1 > y2 >
· · · > yn. Then the following conditions are equivalent:

1. The generators fij of JG form a quadratic Gröbner basis;

2. For all edges {i, j} and {k, l} with i < j and k < l one has {j, l} ∈ E(G)
if i = k, and {i, k} ∈ E(G) if j = l (Figure 5.1).
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Figure 5.1: Graphically, the Condition 2 of Theorem 5.1.3 says that if the
solid lines are edges of G then the dashed lines are also edges of G.

1 2 3

2 1 3

Figure 5.2: Two isomorphic graphs with di�erent labelings. The �rst one
satis�es the Condition 2 in Theorem 5.1.3 but the second not.

We note here that Condition 2 in Theorem 5.1.3 does not only depend on
the isomorphism type of the graph, but also on the labeling of its vertices.
In Figure 5.2 we show two isomorphic graphs. The �rst one satis�es the
Condition 2 of Theorem 5.1.3, but the second not.

We can associate to every graph G on the vertex set [n], a digraph G∗ on
the vertex set [n] de�ned as follows: the ordered pair (i, j) is an arrow of G∗

if {i, j} is an edge of G and i < j. The digraph G∗ is acyclic, that is, it has
no directed cycles. We call G∗ the associated acyclic directed graph G∗ of G.
In this case, Condition 2 of Theorem 5.1.3 is a condition of the associated
directed graph G∗ of G.

We say that a graph G on [n] is closed with respect to the given labeling
of the vertices, if G satis�es Condition 2 of Theorem 5.1.3, and we say that a
graph G on [n] is closed, if G admits a labeling of its vertices such that G is
closed with respect to this labeling. When we say that a graph G is closed,
we assume that G is closed with respect to the given labeling of its vertices.

A graph G is chordal, if all cycles of more than four vertices has a chord.
A graph with three diferent edges e1, e2, e3 such that e1 ∩ e2 ∩ e3 6= ∅ is

called a claw.

Proposition 5.1.4 ([HHH+10, Proposition 1.2]). If a graph G is closed, then
G is chordal and claw-free.
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x a b y

c

z

Figure 5.3: An example of a graph that is chordal without a claw, but is not
closed.

1 2

34

Figure 5.4: A graph that is not closed because is not chordal. The path
2, 3, 4 is directed, while 2, 1, 4 is not directed. But both paths are shortest
paths between 2 and 4.

Corollary 5.1.5 ([HHH+10, Corollary 1.3]). A bipartite graph is closed if
and only if it is a line.

The conditions for being a closed graph stated in Proposition 5.1.4 are
necessary but not su�cient as shown in Figure 5.3.

Now we present a caracterization of graphs wich are closed with respect
to a given labeling. Let G be a graph, and let u and v be vertices of G. A
path π from u to v is a sequence of vertices u = v0, v1, . . . , v` = v such that
each {vi, vi+1} is an edge of the underlying graph. If G is a digraph, then the
path π is called directed, if either (vi, vi+1) is an arrow for all i, or (vi+1, vi)
is an arrow for all i.

Proposition 5.1.6 ([HHH+10, Proposition 1.4]). A graph G on [n] is closed
with respect to the given labeling, if and only if for any two vertices i 6= j of
the associated directed graph G∗, all paths of shortest length from i to j are
directed.

In Proposition 5.1.6 is required that all paths of shortest length from i to
j are directed in order to conclude that G is closed as shown in Figure 5.4.

Let G be a graph. Since the set of graphs on [n] containing G and that are
closed with respect the given labeling is not empty. And since the intersection
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of two closed graphs containing G is again a closed graph containing G. This
yields the next proposition.

Proposition 5.1.7. Let G be a simple graph on [n]. Then there exists a
unique minimal graph Ḡ on [n] with respect to inclusion of edges, that is
closed with respect to the given labeling and such that G is a subgraph of Ḡ.

5.2 The reduced Gröbner basis of a binomial

edge ideal

Let G be a simple graph on [n], and let i and j be two vertices of G with
i < j. A path i = i0, i1, . . . , ir = j is called admissible, if

i) ik 6= i` for k 6= `;

ii) for each k = 1, . . . , r − 1 one has either ik < i or ik > j;

iii) for any proper subset

{j1, . . . , js} ( {i1, . . . , ir−1},

the sequence i, j1, . . . , js, j is not a path.

Given an admissible path

π : i = i0, i1, . . . , ir = j

from i to j, where i < j, we associate the monomial

uπ =

(∏
ik>j

xik

)(∏
i`<i

yi`

)

Theorem 5.2.1 ([HHH+10, Theorem 2.1]). Let G a simple graph on [n].
Let < the monomial order introduced in Theorem 5.1.3. Then, the set of
binomials

G =
⋃
i<j

{uπfij : π is an admissible path from i to j}

is a reduced Gröbner basis of JG.
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1

2 3

4

Figure 5.5: {2, 4} belongs to Ḡ, but there is not admissible path from 2 to 4

Corollary 5.2.2 ([HHH+10, Corollary 2.2]). JG is a radical ideal.

As a consequence of Theorem 5.2.1 we see that all admissible paths of a
graph G can be determined computing the reduced Gröbner basis of JG.

It is not the case that if the edge {i, j} belongs to Ḡ, there must exist an
admissible path from i to j, as shown in Figure 5.5.

5.3 The minimal prime ideals of a binomial

edge ideal

Let G be a simple graph on [n]. For each subset S ⊆ [n] we de�ne a prime
ideal PS . Let T = [n]\S, and let G1, . . . , Gc(S) be the connected components
of GT . By GT we mean the restriction of G to T , whose edges are exactly
those edges {i, j} of G for which i, j ∈ T . We denote by G̃i the complete
graph on the vertex set V (Gi). We set

PS(G) =

(⋃
i∈S

{xi, yi}, JG̃1
, . . . , J ˜Gc(S)

)
.

Each JG̃i
is the ideal of 2-minors of a generic 2 × nj-matrix with nj =

|V (Gj)|. Since all the ideals JG̃j
, as well the ideal

⋃
i∈S{xi, yi} are prime in

pairwise di�erent set of variables, PS(G) is a prime ideal too.

Lemma 5.3.1 ([HHH+10, Lemma 3.1]). Let G be a simple graph on [n],
and let be S ⊆ [n]. Then heightPS(G) = |S|+ (n− c(S)).

Theorem 5.3.2 ([HHH+10, Theorem 3.2]). Let G be a simple graph on the
vertex set [n]. Then JG =

⋂
S⊆[n] PS(G).

Lemma 5.3.1 and Theorem 5.3.2 yield the following result.
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Corollary 5.3.3 ([HHH+10, Corollary 3.3]). Let G be a simple graph on
[n]. Then

dimS/JG = max{(n− |S|) + c(S) : S ∈ [n]}
Since P∅(G) does not contain monomials, it follows that PS(G) * P∅(G).

Theorem 5.3.2 implies that P∅(G) is a minimal prime ideal of JG. From this
observation follows:

Corollary 5.3.4 ([HHH+10, Corollary 3.4]). Let G be a simple graph
on [n] with c connected components, If S/JG is Cohen-Macaulay, then
dim(S/JG) = n+ c.

We want to know which of the ideals PS(G) are minimal prime ideals of
JG. The next result is helpful to �nd them.

Proposition 5.3.5 ([HHH+10, Proposition 3.8]). Let G be a simple graph
on [n], and let S and T be subsets of [n]. Let G1, . . . , Gr be the connected
components of G[n]\S, and H1, . . . , Ht the connected components of G[n]\T .
Then PT (G) ⊆ PS(G) if and only if T ⊆ S and for all i = 1, . . . , t one has
V (Hi)\S ⊆ V (Gj) for some j.

Let G1, . . . , Gr be the connected components of G. If we know the mini-
mal prime ideals of JGi

, then we can know the minimal prime ideals of JG.
Since the ideals JGi

are ideals in di�erent sets of variables, it follows that
the minimal prime ideals of JG are exactly the ideals

∑r
i=1 Pi, where Pi is a

minimal prime ideal of JGi
.

The next result detects the minimal prime ideal of connected graphs.

Corollary 5.3.6 ([HHH+10, Corollary 3.9]). Let G be a connected simple
graph on the vertex set [n], and S ⊆ [n]. Then PS(G) is a minimal prime
ideal of JG if and only if S = ∅, or S 6= ∅ and for each i ∈ S one has
c(S\{i}) < c(S).

In graph theory terminology, Corollary 5.3.6 says that if G is a connected
graph, then PS(G) is a minimal prime of JG if and only if each i ∈ S is a
cut-point of the graph G([n]\S)∪{i}.

Lemma 5.3.7 ([HHH+10, Lemma 3.1]). Let G be a simple graph on the set
[n], and S ⊆ [n]. Then

heightPS(G)) = n+ |S| − c(S).

As a consequence

dimS/JG = max{(n− |S|) + c(S) : S ⊆ [n]}.
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5.4 Classes of chordal graphs with

Cohen-Macaulay binomial edge ideal

Now we want investigate when the binomial edge ideal of a graph is
Cohen-Macaulay. We say that a graph G is Cohen-Macaulay if S/JG is a
Cohen-Macaulay ring. For a graph G, this is the case if and only if the
binomial edge ideal of each of its components is Cohen-Macaulay. Thus, we
consider only connected graphs.

We denote by NG(j) the set of neighbours of j on G. Recall that, by a
result of Dirac [Dir61], a graph is chordal if and only if it admits a perfect
elimination order. That is, its vertices can be labeled 1, 2, . . . , n such that
for all j ∈ [n], Cj = {i| i ≤ j} ∩ NG(j) is a clique of G. A clique is a set of
vertices such that the subgraph induced by this set is a complete subgraph
of G.

A simplicial complex ∆ on the set [n] is a collection of non-empty subsets
of [n] such that F ∈ ∆ whenever F ⊆ G for some G ∈ ∆. The elements of
∆ are called faces. Faces containing only one element are called vertices and
maximal faces are called facets. For each face F ∈ ∆, we de�ne dim(F ) =
|F |−1 to be the dimension of the face F. We de�ne dim(∆) = max{dim(F ) :
F ∈ ∆} to be the dimension of the simplicial complex ∆. If ∆ is a simplicial
complex with only one facet and n vertices we call ∆ an n-simplex.

From the de�nition follows that a simplicial complex can be described
completely by its facets, since every face is a subset of a facet and every
subset of every facet is in a simplicial complex. So, if ∆ has facets F0, . . . , F q,
we use the notation 〈F0, . . . , Fq〉 to describe ∆.

There is a characterization of chordal graphs in terms of its maximal
cliques. This characterization is used to prove Theorem 5.4.1. Let ∆ be a
simplicial complex. A facet F of ∆ is called a leaf, if either F is the only
facet, or else there exist a facet G, called a branch of F , wich intersects F
maximally. In other words, for each facet H of ∆ with H 6= F one has
H ∩F ⊆ G∩F . Each leaf has at least one free vertex, that is, a vertex wich
belongs only to F .

The simplicial complex ∆ is called a quasi-forest if its facets can be or-
dered F1, . . . , Fr sucha that for all i > 1 Fi is a leaf of the simplicial complex
〈F1, . . . , Fi〉. Such an order of the facets is called a leaf order. A connected
quasi-forest is called a quasi-tree.

Now we can associate to every graph G a simplicial complex wich has
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faces the cliques of G. This complex is denoted by ∆(G), and its called the
clique complex of G. The equivalent statement to Dirac's Theorem now says
that G is chordal if and only if ∆(G) is a quasi-forest.

Ene, Herzog and Hibi [EHH11] computed the depth of S/JG for a class of
chordal graphs, all forests included. As a consequence, we show that a forest
has Cohen-Macaulay binomial edge ideal if and only if all of its components
are path graphs.

The next theorem shows a bridge between the homological properties of
JG and the combinatorics of chordal graphs.

Theorem 5.4.1 ([EHH11, Theorem 1.1]). Let G be a chordal graph on [n]
such that any two distinct maximal cliques intersect in at most one vertex.
Then depthS/JG = n + c, where c is the number of connected components
of G.

Moreover, the following conditions are equivalent:

i) JG is unmixed.

ii) JG is Cohen-Macaulay.

iii) Each vertex of G is the intersection of at most two facets of ∆(G).

Corollary 5.4.2 ([EHH11, Corollary 1.2]). Let G be a forest on the vertex
set [n]. Then

depthS/JG = n+ c,

where c is the number of connected components of G. Moreover, the following
conditions are equivalent:

i) JG is unmixed.

ii) JG is Cohen-Macaulay.

iii) JG is a complete intersection.

iv) Each component of G is a path graph.

The formula for depth in Theorem 5.4.1 is not valid for arbitrary chordal
graphs. For G as in Figure 5.6 we have that depthS/JG = 5 and not 6 as
one would expect from Theorem 5.4.1. It is also an example of a graph such
that JG is unmixed but not Cohen-Macaulay.
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1 2 3

4
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Figure 5.6: The maximal cliques {1, 2, 4} and {2, 3, 4} intersect at {2, 4}, so
the hypothesis of Theorem 5.4.1 is not satis�ed.

5.5 Closed graphs with Cohen-Macaulay bino-

mial edge ideal

Theorem 5.5.1 ([EHH11, Theorem 2.2]). Let be G a simple graph on [n].
The following conditions are equivalent:

i) G is closed;

ii) there exists a labeling of G such that all facets of ∆(G) are intervals
[a, b] ⊆ [n].

Moreover, if the equivalent conditions hold and the facets F1, . . . , Fr of ∆(G)
are labeled such that min{F1} < min{F2} < . . . < min{Fr}, then F1, . . . , Fr
is a leaf order of ∆(G).

With the description given in Theorem 5.5.1 we can now classify all closed
graphs with Cohen-Macaulay binomial edge ideal.

Theorem 5.5.2 ([EHH11, Theorem 3.1]). Let G be a connected graph on
[n] wich is closed with respect to the given labeling. Then the following
conditions are equivalent.

i) JG is unmixed;

ii) JG is Cohen-Macaulay;

iii) In(JG) is Cohen-Macaulay;
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iv) G satis�es the condition that whenever {i, j+1} with i < j and {j, k+1}
with j < k are edges of G, then {i, k + 1} is an edge of G;

v) there exist integers 1 = a1 < a2 < . . . < ar < ar+1 = n and a leaf order
of the facets F1, F2, . . . , Fr of ∆(G) such that Fi = [ai, ai+1] are intervals
for every i = 1, . . . , r.

For a closed graph G, JG share a lot of properties with his initial ideal
In(JG), as Theorem 5.5.2 shows one of them. We also have the following nice
property.

Proposition 5.5.3 ([EHH11, Proposition 3.2]). Let G be a closed graph
with Cohen-Macaulay binomial edge ideal. Then βi,j(JG) = βi,j(InJG).

Corollary 5.5.4 ([EHH11, Corollary 3.4]). Let G be a closed graph with
Cohen-Macaulay binomial edge ideal, and assume that F1, . . . , Fr are the
facets of ∆(G) with ki = |Fi| for i = 1, . . . , r. Then the Cohen-Macaulay
type of S/JG is equal to

∏r
i=1(ki − 1). In particular , S/JG is Gorenstein if

and only if G is a path graph.

Based on Corollary 5.5.4 Matsuda and Murai [MM13] conjectured that
S/JG is Gorenstein if and only if G is a path graph, wich is proved later in
this work.

Let G de a closed graph with Cohen-Macaulay binomial edge ideal, and
assume that F1 = [a1, a2], . . . , Fr = [ar, ar+1], where 1 = a1 < a2 < . . . <
ar < ar+1 = n, are the facets of ∆(G) and ki = |Fi| for i = 1, . . . , r. It is a
well known fact that S/JG and S/ In(JG) have the same hilbert series, one
easily gets the Hilbert series of S/JG,

HS/JG(t) =

∏r
i=1[(ki − 1)t+ 1]

(1− t)n+1
.

In particular, the multiplicity of S/JG is e(S/JG) = k1 · · · kr and the
a-invariant is a(S/JG) = r − n− 1.

By using the associativity formula for multiplicities we obtain a di�erent
expression for the multiplicity as the one given above.

Proposition 5.5.5. PS(G) is minimal prime of JG if and only if S is empty
or of the form S = {aj1 , . . . , ajs} for some 2 ≤ j1 < j2 < · · · < js ≤ r such
that ajq+1 − ajq ≥ 2 for all 1 ≤ q ≤ s− 1.

In this case, the multiplicity of S/PS(G) is

e(S/PS(G)) = (aj1 − 1)(aj2 − aj1 − 1) · · · (ajs − ajs−1 − 1)(n− ajs).
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Figure 5.7: A graph with 7 vertices and with length of its longest induced
path 4. However, the regularity of the polynomial ring modulo the binomial
edge ideal of this graph is 5.

5.6 Regularity of binomial edge ideals

There are sharp bounds for the regularity of binomial edge ideals. The
binomial edge ideal of a path Pn with n vertices is a complete intersection
having n − 1 generators of degree 2 and reg(S/JPn) = n − 1 [EZ15]. The
following results state that regularity n− 1 implies that the graph is a path.

Theorem 5.6.1 ([MM13, Theorem 1.1]). Let G be a simple graph on [n]
and let ` be the length of the longest induced path of G. Then

` ≤ reg(S/JG) ≤ n− 1.

Both inequalities in Theorem 5.6.1 could be strict. Figure 5.7 is an ex-
ample of this a�rmation.

Theorem 5.6.2 ([KSM16, Theorem 3.4]). Let G be a graph which is not a
path. Then regS/JG ≤ n− 2.

The formula in Theorem 5.6.2 is used in our main result. In Chapter 7
we prove that if R/JG is Gorenstein then the regularity of R/JG must be
n− 1.
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Chapter 6

F-pure thresholds of graded rings

6.1 Frobenius endomorphism

In this section we introduce the basic de�nitions and properties for the
F -pure threshold of standard graded rings.

De�nition 6.1.1. Let R be a Noetherian ring of positive characteristic p.
We say that R is F -�nite if it is �nitely generated R-module via the action
induced by the Frobenius endomorphism

F : R→ R

r 7→ rp.

For e ∈ N, let F e : R→ R the e-th iteration of the Frobenius endomorphism
on R. If R is reduced, R1/pe denotes the ring of pe-th roots of R. We
can identify F e with the inclusion R ⊆ R1/pe . In this case R is F -�nite is
equivalent to R1/p is a �nitely generated R-module. For a standard graded
K-algebra (R,m, K), R is F -�nite if and only if K is F -�nite. That is, if and
only if [K : Kp] <∞. We say that R is F -pure if F is a pure homomorphism
of R-modules. That is R is F -pure if F ⊗1 : R⊗M → R⊗M is injective for
all R-modulles M . A ring R is called F -split if F is a split monomorphism.
Let I be and ideal of R, we denote by J [p] = (xp|x ∈ J).

Lemma 6.1.2 (Fedder's criterion for graded rings [Fed83, Theorem 1.12]).
Let K be a perfect �eld of characteristic p > 0 and R = K[x1, . . . , xn] the
polynomial ring over K. Let m = (x1, . . . , xn) be the irrelevant maximal
ideal of R and let I ⊆ m be a homogeneous ideal of R. Then R/I is F -pure
if I [p] : I * m[p].
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De�nition 6.1.3. Let (R,m, K) be a standard graded K-algebra wich is F -
�nite and F -pure, and let I ⊆ R be a homogeneous ideal. For a real number
λ ≥ 0, we say that (R, Iλ) is F -pure if for every e � 0, there exists an
element f ∈ Ib(pe−1)λc such that the inclusion of R-modules f 1/peR ⊆ R1/pe

splits.

De�nition 6.1.4 ([TW04, De�nition 2.1]). Let (R,m, K) be a standard
graded K-algebra wich is F -�nite and F -pure. Let I ⊆ R be a homogeneous
ideal. The F -pure threshold of I is de�ned by

fpt(I) = sup{λ ∈ R≥0|(R, Iλ) is F pure}.

If I = m, we denote the F -pure threshold by fpt(R).

De�nition 6.1.5. Let (R,m, K) be a standard graded K-algebra wich is
F -�nite and F -pure. We de�ne

Ie(R) = {r ∈ R|ϕ(r1/pe) ∈ m fore every ϕ ∈ Hom(R1/pe , R)}. (6.1)

De�nition 6.1.6. Let (R,m, K) be a standard graded K-algebra. Let J ⊆ R
be a homogeneous ideal. Then we de�ne

bJ(pe) = max{r|Jr * Ie(R)}. (6.2)

Lemma 6.1.7 ([DSNnB18, Lemma 3.9]). Let (R,m, K) be a standard graded
K-algebra wich is F -�nite and F -pure. Let J ⊆ R be a homogeneous ideal.
Then p · bJ(pe) ≤ bJ(pe+1).

Proposition 6.1.8 ([DSNnB18, Proposition 3.10]). Let (R,m, K) be a stan-
dard graded K-algebra wich is F -�nite and F -pure. Let J ⊆ R be a homo-
geneous ideal. Then

fpt(J) = lim
e→∞

bJ(pe)

pe
. (6.3)

Lemma 6.1.9 ([DSNnB18, Lemma 4.2]). Let S = K[x1, . . . , xn] be a poly-
nomial ring over an F -�nite �eld K. Let n = (x1, . . . , xn) denote the maximal
homogeneus ideal. Let I ⊆ S be an homogeneous ideal such that R = S/I
is an F -pure ring, and let m = nR. Then,

min

{
s ∈ N

∣∣∣∣[I [pe] : I + n[pe]

n[pe]

]
s

6= 0

}
= n(pe − 1)− bm(pe). (6.4)

43



Proposition 6.1.10 ([DSNnB18, Theorem 7.3]). Let S = K[x1, . . . , xn] be
a polynomial ring over an F -�nite �eld K of positive characteristic p. Let I
be a homogeneous ideal such that R = S/I is F -pure and Gorenstein. Then,

regS(R) = dim(R)− fpt(R). (6.5)

Theorem 6.1.11. Let R = K[x1, . . . , xn, y1, . . . , ym] the ring of polynomials
in n + m variables over a �eld K, and let J = a + b ⊆ R an ideal such that
a is an ideal in the variables {x1, . . . , xn} and b is an ideal in the variables
{y1, . . . , ym}. Then

R/J ∼= K[x1, . . . , xn]/a⊗K[y1, . . . , ym]/b, (6.6)

and
fpt(R/J) = fpt(K[x1, . . . , xn]/a) + fpt(K[y1, . . . , ym]/b). (6.7)

Proof. The �rst part follows from the properties of tensor product. For the
second part it su�ces to prove that bJ(pe) = ba(p

e) + bb(p
e).

Set b = bJ(pe). By the de�nition of bJ(pe) we have that J b * Ie(R).
This means that there exists r ∈ J b a generator of this ideal that can be
written as r = ai1ai2 , . . . , aisbj1 , . . . , bjt for some generators {ai1ai2 , . . . , ais}
of a and some generators {bj1 , . . . , bjt} of b with b = s+j and also a morphism
ϕ ∈ Hom(R1/pe , R) such that ϕ(r1/pe) /∈ m. This element correspond by

R ∼= K[x1, . . . , xn]⊗K[y1, . . . , ym] (6.8)

to a element α ⊗ β in the tensor product with α ∈ as and β ∈ bt. Then we
have the next composition of morphisms:

K[x1, . . . , xn]1/p
e−→R1/pe ϕ−→R �K[x1, . . . , xn]

α1/pe 7−→ r1/pe 7−→ϕ(r1/pe)7→ϕ(r1/pe)

where the leftmost morphism send x1/pe 7→ x1/pe ⊗ β1/pe and the rightmost
is the natural projection. We have an element α ∈ as and a morphism
ϕ∗ ∈ Hom(K[x1, . . . , xn]1/p

e
, K[x1, . . . , xn]) (the composition of the mor-

phisms above), which sends α1/pe to ϕ(r1/pe) which is not in the maximal
ideal of K[x1, . . . , xn], because ϕ(r1/pe) /∈ m. Then

ba(p
e) = max(k|ak * Ie(K[x1, . . . , xn])) ≥ s.
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By symmetric argument, we obtain

bb(p
e) = max(k|bk * Ie(K[y1, . . . , ym])) ≥ t.

Proving that bJ(pe) ≤ ba(p
e) + bb(p

e).
For the reverse inequality let s = ba(p

e), t = bb(p
e), α ∈ as, β ∈ bt

ϕ ∈ Hom(K[x1, . . . , xn]1/p
e

, K[x1, . . . , xn])

and
ψ ∈ Hom(K[y1, . . . , ym]1/p

e

, K[y1, . . . , ym]),

such that ϕ(α1/pe) and ψ(β1/pe) are not in their respective maximal ideals.
Then by the isomorphism 6.8 α ⊗ β corresponds to an element αβ ∈ J t+s

but
(ϕ⊗ ψ)(α1/pe ⊗ β1/pe) = ϕ(α1/pe)ψ(β1/pe) /∈ m.

Then bJ(pe) ≥ t+ s.

Theorem 6.1.12 ([DSNnB18, Theorem 4.7]). Let (R,m, K) a standard
graded K-algebra wich is F -�nite and F -pure, and let J ⊆ R a compati-
ble ideal. Then

fpt(R) ≤ fpt(R/J).

In particular
fpt(R) ≤ fpt(R/p)

for every minimal prime ideal p of R.

6.2 F-pure thresholds of binomial edge ideals

For a sequence v1, . . . , vs of natural numbers, we set

fv1,...,vs = fp−1
v1v2
· · · fp−1

vn−1vn
.

De�ning fji = −fij for j >i.

Proposition 6.2.1. If {a, b} ∈ E(G), then

fv1,...,c,a,b,d,...,vs ≡ fv1,...,c,b,a,d,...,vs mod JG.
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Proof. By the Plücker relation stated above

fp−1
ca fp−1

ab fp−1
bd = fp−1

ab (fcbfad − fcdfab)p−1

= fp−1
ab

p−1∑
i=0

(
p− 1

i

)
(−1)ifp−i−1

cb fp−i−1
ad f icdf

i
ab

=

p−1∑
i=0

(−1)i
(
p− 1

i

)
fp−i−1
cb fp−i−1

ad f icdf
p+i−1
ab .

By assumption fab ∈ JG, so all the terms of the sum with i > 0 are contained
in J [p]

G . This gives

fv1,...,c,a,b,d,...,vs = fp−1
v1v2
· · · fp−1

ca fp−1
ab fp−1

bd · · · f
p−1
vn−1vn

≡ fp−1
v1v2
· · · fp−1

cb fp−1
ad fp−1

ab · · · f
p−1
vn−1vn

mod JG
= fv1,...,c,b,a,d,...,vs .

Theorem 6.2.2 ([GM20, Theorem 3.2]). Let G a simple connected closed
graph which is not the complete graph and let S = K[x1, . . . , xn, y1, . . . , yn]
and m the maximal homogeneous ideal. Then, S/JG is F -pure and

min

{
s ∈ N

∣∣∣∣∣
[
J [p]

G : JG + m[p]

m[p]

]
s

6= 0

}
≤ 2(n− 1)(p− 1).

Proof. By the Fedder's criterion 6.1.2, it su�ces to show that

f1,2,...,n ∈ (J [p]
G : JG)\m[p].

First we prove that f1,...,n /∈ m. Let < the lexicographic order on S induced
by x1 > · · · > xn > y1 > · · · > yn. Then

In f1,...,n = xp−1
1 · · · xp−1

n−1y
p−1
2 · · · yp−1

n /∈ m[p].

Next we show that f1,...,n ∈ J [p]
G : JG, it is enough to show that f1,...,nfij ∈

J [p]
G for all {i, j} ∈ E(G). Assume that {i, j} ∈ E(G), if j = i + 1. Then,

f1,...,nfij ∈ J [p]
G . We can assume that j > i + 1. If j 6= n. Then, for all
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k ∈ {i+ 1, . . . , j − 1}, we have that {k, j} ∈ E(G) [Mat18]. Hence, by using
repeatedly Proposition 6.2.1, we obtain

f1,2,...,i,i+1,...,j−1,j,j+1,...,n

≡ f1,2,...,i,j,i+1,...,j−1,j+1,...,n mod J [p]
G .

Since fp−1
ij is a factor of the last expression, we have that f1,...,n ∈ J [p]

G : JG.
If j = n, then i 6= 1 because if {1, n} ∈ E(G), then G is complete [Mat18].

By iterating Proposition 6.2.1,

f1,2,...,i,i+1,...,j−1,j,j+1,...,n

≡ f1,2,...,i−1,i+1,...,i,n mod J [p]
G .

Then, fp−1
in is a factor of the last expression and f1,...,n ∈ J [p]

G : JG.

Corollary 6.2.3 ([GM20, Corollary 3.3]). Let G be a closed graph, and
S = K[x1, . . . , xn, y1, . . . , yn]. Then, fpt(S/JG) = fpt(S/ In<(JG)) = 2.

Proof. If G is complete, S/JG is determinantal, and fpt(S/JG) = 2 [MSV14,
Proposition 4.3]. First we prove by induction on e that if fp−1 ∈ (I [p] :
I)\m[p], then fp

e−1 ∈ (I [pe] : I)\m[pe]. The base step follows from our initial
assumption.

For fp
e−1 /∈ m[pe] we have that

(m[pe] : fp
e−1) ⊆ m

⇒(m[pe+1] : fp
e+1−p) ⊆ m[p]

⇒((m[pe+1] : fp
e+1−p) : fp−1) ⊆ (m[p] : fp−1) ⊆ m

⇒(m[pe+1] : fp
e+1−1) ⊆ m.

This means that fp
e+1−1 /∈ m[pe+1]. If fp

e−1 ∈ I [pe] : I, then

fp−1I ⊆ I [p]

⇒(fp−1I)[pe] ⊆ I [pe+1]

⇒fpe+1−peI [pe] ⊆ I [pe+1]

⇒fpe+1−pe(fp
e−1I) ⊆ fp

e+1−pe(I [pe]) ⊆ I [pe+1]

⇒fpe+1−1I ⊆ I [pe+1].
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Then fp
e+1−1 ∈ I [pe+1] : I. This means in that

(x1x2 · · ·xn−1y2 · · · yn)p
e−1 ∈ (J [pe]

G : JG)\m[pe].

Using Lemma 6.1.9 we deduce that

2n(pe − 1)− bm(pe) ≤ 2(n− 1)(pe − 1)

−bm(pe) ≤ −2(pe − 1)

bm(pe)

pe
≥ 2(pe − 1)

pe

fpt(S/JG) = lim
e→∞

bm(pe)

pe
≥ lim

e→∞

2(pe − 1)

pe
= 2.

Since JKn is a minimal prime over JG, the reverse inequality is a consequence
of Theorem 6.1.12 and the fact that fptJkn = 2.
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Chapter 7

Main result

7.1 Gorenstein binomial edge ideals

Theorem 7.1.1. Let I be a monomial square-free ideal of K[x1, . . . , xn].
Then fpt(R/I) is equal to the number of variables that do not appear in its
minimal set of generators.

Proof. Let {xi1 , . . . , xit} be the set of variables that appear in I. Then,

xp
e−1
i1
· · ·xp

e−1
it
∈ (I [pe] : I)\m[pe].

Set

d = deg xp
e−1
i1
· · ·xp

e−1
it

.

For every monomialm of degree less than d, we have thatm /∈ (I [pe] : I)\m[pe].
By Lemma 6.1.9 bm(pe) = (n−t)(pe−1). Dividing both sides by pe and taking
the limit as e go to in�nity yields the desired result.

Theorem 7.1.2. Let G be a connected graph on [n]. Then xn and y1 are the
only variables that do not appear in the minimal generating set of In(JG).

Proof. The set of binomials

G =
⋃
i<j

{uπfij : π is an admisible path from i to j }

is a reduced Gröbner basis of JG (Theorem 5.2.1). Hence, the set

H =
⋃
i<j

{uπxiyj : π is an admisible path from i to j }
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generates In(JG). We claim that this set is a minimal generating set of
In(JG). If xiyjuπ and xiyjuπ′ are distinct elements of H then by the def-
inition of admisible paths, the vertices of the path π can't be a subset of
the vertices of the path π′ In this case xiyjuπ do not divide xiyjuπ′ . Now,
if xiyjuπ and xky`uπ′ are distinct elements of H with {i, j} 6= {k, `}. Then,
by the de�nition of admisible path, xiyj can't be a factor of xky`uπ′ . In this
case xiyjuπ do not divide xiyjuπ′ neither. In every of these monomials, the
variables xn and y1 do not appear. We show now that they are the only
variables with this property. Let i ∈ {1, . . . , n − 1}. Then, there exists a
path from i to i + 1, a path of minimal lenght, say π, is admisible. Then xi
and yi + 1 appear in H for i ∈ {1, . . . , n− 1}.

Corollary 7.1.3. Let G be a connected graph on [n]. Then,

fpt(R/ In(JG)) = 2.

Proof. This follows form Theorem 7.1.1 and Theorem 7.1.2.

In this section we prove our main result. First we start with a preparation
theorem regarding F -injectivity of square Gröbner deformations. We �rst
need to introduce notation.

Notation 7.1.4. Let S = K[x1, . . . , xn] be a polynomial ring over a �eld
with maximal homogeneous ideal m. Let I be an ideal and < a monomial
order such that In(I) is square-free. There exists a vector w ∈ Nn such that
In<(I) = Inw(I) [Stu96, Proposition 1.11]. Let A = K[t] be a polynomial
ring, L = frac(A), and T = A ⊗K S. We set J = Homw(I) ⊆ T the
homogenization of I, and R = T/J .

Remark 7.1.5. Under Notation 7.1.4, it is well known that

1. A→ R is �at;

2. R/tR = S/ In<(I);

3. R/(t− a)R = S/I for every a ∈ K \ {0};

4. R⊗A L = S/I ⊗K L;

The following result was obtained independently and simultaneously by
Varbaro and Koley [VK].
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Theorem 7.1.6. Let S = K[x1, . . . , xn] be a polynomial ring over a �eld,
K, of prime characteristic. Let I be an ideal and < a monomial order such
that In<(I) is square-free. Then S/I is F -injective.

Proof. We use Notation 7.1.4 and the facts in Remark 7.1.5 in this proof.
We have that R/tR is an Stanley-Reisner ring, and so, F -pure. Since F -
pure rings are F -full and F -injective, R/tR satis�es these properties. Since
t is a nonzero divisor, we have that R is also F -full and F -injective [MQ18,
Theorem 1.1]. Then, R ⊗A L = S/I ⊗K L are both F -injective and F -full,
because these properties are preserved under localization. We note that S/I
is a direct summand of S/I ⊗K L. We note that m expands the maximal
homogeneous ideal in S/I ⊗K L. Then, we have a commutative diagram

H i
m(S/I)

FS/I

��

α // H i
m(S/I ⊗K L)

FS/I⊗KL

��
H i

m(S/I) α // H i
m(S/I ⊗K L)

,

where α denotes the maps induced by the inclusion S/I → S/I ⊗K L. Since
the horizontal maps split, they are injective. Since S/I ⊗K L is F -injective,
we have that FS/I⊗KL ◦α = α◦FS/I is injective. Hence, FS/I is injective, and
the result follows.

We are now ready to show our main result in prime characteristic.

Theorem 7.1.7 ([GM20, Theorem 4.4]). Let S = K[x1, . . . , xn, y1, . . . , yn].
Suppose that char(K) = p > 0. Let G be a connected graph such that S/JG
is Gorenstein. Then G is a path.

Proof. By Theorem 7.1.6, we have that S/JG is F -injective. Since S/JG is
Gorenstein, we have that S/JG is F -pure [Fed83, Lemma 3.3].

Since G is connected, Jkn is a minimal prime over JG [HHH+10] and its
dimension is n+ 1. Then

reg(R/JG) = dim(R/JG)− fpt(R/JG) ≥ (n+ 1)− 2 = n− 1 (7.1)

where the inequality comes from the fact that if I ⊆ J then fpt(I) ≤ fpt(J).
In this case fpt(JG) ≤ fpt(JKn) = 2. Hence, G is a path by Theorem 5.6.2.

In the previous result we estimate the regularity of R/JG using F -
pure thresholds. We point out that the extremal Betti numbers of R/JG
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and R/ In(JG) coincide, in particular, reg(R/JG) = reg(R/ In(JG)) [CV18,
Corollary 2.7].

We are now ready to prove the main result in this thesis in characteristic
zero.

Theorem 7.1.8 ([GM20, Theorem 4.5]). Let S = K[x1, . . . , xn, y1, . . . , yn].
Suppose that char(K) = 0. Let G be a connected graph such that S/JG is
Gorenstein. Then G is a path.

Proof. Since �eld extensions do not a�ect whether a ring is Gorenstein, with-
out loss of generality we can assume that K = Q.

Let A = Z[x1, . . . , xn, y1, . . . , yn] and

J = (xiyj − xjyi : {i, j} ∈ G and i < j)A.

Then,

regS(S/JG) = regA⊗ZQ(A⊗Z Q/J ⊗Z Q) = regA⊗ZFp
(A/J ⊗Z Fp)

and A/J ⊗Z Fp is Gorenstein for p � 0 [HH, Theorem 2.3.5]. Then,
regS(S/JG) ≥ n− 1 from the proof of Theorem 7.1.7. Hence, G is a path by
Theorem 5.6.2.
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