

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA CIVIL – HIDRAULICA

OPTIMIZACIÓN DE LAS POLÍTICAS DE EXTRACCIÓN PARA RIEGO Y SUMINISTRO DE AGUA POTABLE, UTILIZANDO CÓMPUTO EVOLUTIVO PARA EL EMBALSE DE LA PRESA COINTZIO, MICHOACÁN, MÉXICO

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: LUIS DANIEL PADILLA MORALES

TUTOR PRINCIPAL DRA. MARITZA LILIANA ARGANIS JUÁREZ INSTITUTO DE INGENIERÍA

CIUDAD UNIVERSITARIA, CDMX, ABRIL 2020

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente: DR. DOMÍNGUEZ MORA RAMÓN

Secretario: DR. FUENTES MARILES OSCAR ARTURO

1er. Vocal: DRA. ARGANIS JUÁREZ MARITZA LILIANA

2do. Vocal: DR. POZOS ESTRADA ÓSCAR

3er. Vocal: DR. MENDOZA RESÉNDIZ ALEJANDRO.

INSTITUTO DE INGENIERÍA, UNAM, CAMPUS C.U.

TUTOR DE TESIS:

DRA. MARITZA LILIANA ARGANIS JUÁREZ

FIRMA

A mí madre, María Luísa, que síempre ha creído en mí, gracías por tu apoyo durante todos estos años, por tus consejos y tu ínfínito amor. Te amo.

A mí hermana, Yessíca, que nunca me ha dejado solo, gracías por creer en mí, por apoyarme y porqué síempre me has hecho reír.

Lucha por tus sueños, te amo.

A mí abuelita, Irene, que siempre ha formado parte importante de mí vida, gracías por todo el apoyo que me has dado. Te quiero mucho.

A todos mís amigos, que siempre me han ayudado, gracías por su amistad.

Agradecimientos

A la Universidad Nacional Autónoma de México por permitirme realizar el posgrado en ingeniería civil y por haberme dado educación de calidad para alcanzar mis metas e ir creciendo técnica y profesionalmente.

Al Instituto de Ingeniería por ser parte importante de mi formación profesional y por todo el apoyo técnico y económico proporcionado.

A la Dra. Maritza Liliana Arganis Juárez por su orientación y guía en esta etapa de mi vida, por su paciencia, tiempo y dedicación que hicieron posible la realización de esta tesis, y por todo el apoyo brindado desde que llegue al Instituto de Ingeniería, infinitas gracias.

Al Dr. Ramón Domínguez Mora, por darme la oportunidad de colaborar con el Instituto de Ingeniería, por su tiempo y conocimiento compartido, y por apoyarme con las dudas que surgieron durante la realización de esta tesis.

Al Dr. Oscar Arturo Fuentes Mariles, Dr. Alejandro Mendoza Reséndiz y Dr. Oscar Pozos Estrada por su apoyo, revisión y aportaciones a esta tesis.

A mis compañeros y amigos del Instituto de Ingeniería, porque de ustedes aprendí una infinidad de cosas, porque siempre me apoyaron y porque con ustedes pase muy buenos momentos dentro y fuera del cubículo.

Finalmente e igual de importante, al CONACYT, por la financiación del proyecto con número 2615: REGLAS DE OPERACIÓN DEL EMBALSE CON USOS RIEGO-SUMINISTRO DE AGUA POTABLE ANTE EL CAMBIO CLIMATICO: CASO DE ESTUDIO PRESA COINTZIO MICHOACÁN, de la convocatoria 2016 de atención a problemas nacionales

Resumen

El agua es un recurso natural renovable esencial para la vida, debido a su estrecha relación que guarda con los procesos vitales y con el desarrollo de cualquier actividad humana; el riego, el abastecimiento de agua potable, su utilización como medio de transporte y su aprovechamiento para la generación de energía eléctrica son solo algunos ejemplos de la utilización del agua.

La irregularidad distribución espacio-temporal de las lluvias y los escurrimientos ha propiciado que se construyan obras para el control y el mejor aprovechamiento hidráulico, sin embargo su manejo siempre ha sido un problema para los tomadores de decisiones de las dependencias encargadas de la administración de dichas obras.

Este trabajo comienza con el análisis de la operación de la presa Cointzio a través del reporte de funcionamiento diario de la Comisión Nacional del Agua (CONAGUA), organismo encargado de la operación del embalse.

La información recabada de la unidad administrativa CONAGUA Dirección local de Michoacán se usó para establecer una política de operación histórica, en forma de una gráfica que indica la extracción total anual a partir del estado de llenado del embalse al primero de octubre de cada año. La información también permite conocer los porcentajes de extracción de agua mensuales promedio y los respectivos valores máximos y mínimos que se han utilizado.

Posteriormente se realiza la optimización del funcionamiento de vaso de la presa para obtener políticas de operación utilizado en primera instancia un algoritmo Gradiente Reducido Generalizado No Lineal (GRG) y luego un algoritmo genético (AG) simple (Holland, 1975, Goldberg, 1989) en combinación con la simulación de funcionamiento de vaso del embalse; aplicando dos propuestas de función objetivo. La primera de ellas únicamente busca reducir los volúmenes de derrame y déficit totales que se presentaron durante el funcionamiento de vaso y la segunda maximiza las extracciones de agua por obra toma para su uso en riego al tiempo que aplica castigos cada que se presentan derrames o déficit.

Finalmente se revisan las políticas obtenidas mediante la simulación del funcionamiento del embalse con series de volúmenes de ingreso sintéticos con 100 años de registro, que se generaron con el método de Svanidze (Svanidze, 1980). Esto permite averiguar el comportamiento del embalse a largo plazo si se utilizan las políticas encontradas.

Palabras clave: políticas de operación, presa Cointzio, algoritmo AG, algoritmo GRG, funcionamiento de vaso.

Abstract

Water is a renewable natural resource essential for life, due to its close relationship with vital processes and the development of any human activity; irrigation, drinking water supply, its use as a means of transport and its use for generating electricity are just some examples of the use of water.

The irregular space-time distribution of rainfall and runoff has led to the construction of works for the control and better use of water, but its management has always been a problem for decision makers in the dependence for managing these works.

This work begins with the analysis of the operation of the Cointzio dam trough the daily operation report of the National Water Commission (CONAGUA), the agency in charge of the operation of the reservoir.

The information gathered from the administrative unit CONAGUA Local Management of Michoacán was used to establish a historical operation rule, in the form of a graph what indicating the total annual extraction from the state of filling of the reservoir as October 1st each year. The information also allows us to know the monthly average water extraction percentages and the respective maximum and minimum values that we have been using.

Subsequently, the optimization of the operation of the dam basin is carried out to obtain operation rules using firstly a Non-Linear Generalized Gradient (GRG) algorithm and then a simple Genetic Algorithm (AG) (Holland, 1975, Goldberg, 1989) in combination with the simulation of the operation of the reservoir basin; applying two proposals of objective function. The first one only pursues to reduce the total volumes of spills and deficits that occurred during the operation of the reservoir and the second one maximizes water extractions for irrigation while applying penalizations each time spills or deficits occur.

Finally, the obtained rules were examined by simulating the reservoir operation with synthetic series of inflows for 100 years, which were generated by the Svanidze method (Svanidze, 1980). This allowed us to characterize the long term behavior of the reservoir under the operation of the optimal rules found here.

Keywords: operating rules, Cointzio dam, GA algorithm, GRG algorithm, reservoir operation.

Índice

1.	Pla	anteamiento del problema	1
	1.1. 1.2. 1.3.	Hipótesis Objetivo Metas	2
2.	Es	tado del arte	3
3.	Ма	arco teórico	6
	3.1. 3.2.	Gradiente Reducido Generalizado No Lineal	
4.	Re	ecopilación y análisis de la información	16
	4.1. 4.2. 4.3. 4.4.	Zona de estudio. Infraestructura de la presa Cointzio. Análisis de los volúmenes de ingreso al embalse. Análisis de la demanda del recurso del agua.	17 20
5.	Me	etodología	30
	5.1. 5.2. 5.3. 5.4.	Curva Z Función objetivo Funcionamiento del vaso de almacenamiento Gradiente Reducido Generalizado (GRG) no lineal	32 34
	5.5. 5.6.	Algoritmo Genético (AG) Simple	42
6.	An	álisis de resultados	56
	6.1. 6.2. 6.3.	Políticas anuales. Algoritmo GRG. Políticas anuales y distribución mensual. Algoritmo AG. Análisis a largo plazo.	58
7.	Co	nclusiones	70
8.	Bibli	ografía	73
a	Anas	200	70

Índice de figuras

Figura 3.1.1 Ventana de parámetros de Solver	7
Figura 3.1.2 Diagrama de flujo del algoritmo GRG	9
Figura 3.1.3 Óptimos locales vs óptimos globales	10
Figura 3.2.1 Codificación de los cromosomas y tipos de genes	11
Figura 3.2.2 Método elitista y selección por torneo	12
Figura 3.2.3 Método de selección por ruleta	
Figura 3.2.4 Mutación de un gen binario	13
Figura 3.2.5 Cruza en un punto.	
Figura 3.2.6 Cruza en dos puntos.	
Figura 3.2.7 Cruza punto a punto.	14
Figura 4.1.1 Cuenca del lago de Cuitzeo	
Figura 4.1.2 Hidrografía de la presa Cointzio	
Figura 4.2.1 Plano General de la Presa Cointzio	
Figura 4.2.2 Curva de elevaciones-capacidades-áreas	
Figura 4.3.1 Escurrimientos por cuenca propia deducidos	
Figura 4.3.2 Escurrimientos por cuenca propia corregidos	23
Figura 4.3.3 Lámina de evaporación neta promedio mensual	
Figura 4.4.1 Colonias afectadas por labores de mantenimiento	
Figura 4.4.2 Extracciones totales anuales, uso público urbano.	
Figura 4.4.3 Volúmenes mensuales promedios, uso público urbano	
Figura 4.4.4 Localización y módulos del DR 020	
Figura 4.4.5 Volumen promedio mensual destinado a riego	
Figura 4.4.6 Distribución mensual porcentual, uso riego.	
Figura 5.1.1 Curva Z histórica	
Figura 5.1.2 Curva Z histórica corregida	
Figura 5.2.1 Condiciones a evitar en una presa	
Figura 5.3.1 Principales componentes de un vaso.	
Figura 5.3.2 Serie mensual de Ingresos por cuenca propia	
Figura 5.3.3 Diagrama de flujo de funcionamiento de vaso	
Figura 5.5.1 Diagrama de flujo del algoritmo AG acoplado con la simulación del vaso	
Figura 5.6.1 Volumen total anual registro histórico y curva de ajuste Gumbel	
Figura 5.6.2 Comparación de la media de las series sintéticas y serie histórica	
Figura 5.6.3 Comparación de la desviación estándar de las series sintéticas y serie hist	
	51
Figura 5.6.4 Comparación del coeficiente de asimetría de las series sintéticas y serie hist	
	52
Figura 5.6.5 Comparación del coeficiente de variación de las series sintéticas y serie hist	
Figura 5.6.6 Comparación del coeficiente de auto correlación de las series sintéticas y	
histórica.	53
Figura 5.6.7 Comparación de la media de los volúmenes totales anuales	
Figura 5.6.8 Comparación de la desviación estándar de los volúmenes totales anuales	
Figura 5.6.9 Comparación del coeficiente de asimetría de los volúmenes totales anuales	54

Figura 5.6.10 Comparación del coeficiente de variación de los volúmenes totales anuales	55
Figura 6.1.1 Comparación de derrames contra déficits. Método GRG	57
Figura 6.1.2 Comparación de extracciones contra déficits. Método GRG	58
Figura 6.1.3 Comparación de extracciones contra derrames. Método GRG	58
Figura 6.2.1 Comparación de derrames contra déficits. Método AG	60
Figura 6.2.2 Comparación de extracciones contra déficits. Método AG	60
Figura 6.2.3 Comparación de extracciones contra derrames. Método AG	61
Figura 6.2.4 Comparación de derrames y déficits. Método AG	61
Figura 6.2.5 Porcentajes de asignación máximos y mínimos	62
Figura 6.2.6 Distribución mensual de agua para riego. AG-4	64
Figura 6.2.7 Distribución mensual de agua para riego. AG-5	64
Figura 6.2.8 Distribución mensual de agua para riego. AG-6	65
Figura 6.2.9 Curva Z de la política AG-5 (16V)	66
Figura 6.3.1 Comparación de derrames promedio anuales. Política AG-E5 (16V)	69
Figura 6.3.2 Comparación de déficit promedio anual. Política AG-E5 (16V)	69
Figura 6.3.3 Comparación de extracción promedio anual. Política AG-E5 (16V)	69

Índice de tablas

Tabla 4.2.1 Política de gastos de extracción ante una avenida Tr 10,000 años	18
Tabla 4.2.2 Capacidades-áreas de la presa Cointzio	
Tabla 4.3.1 Reporte de funcionamiento diario.	
Tabla 4.3.2 Evaporación neta promedio mensual, en mm	23
Tabla 4.4.1 Estadísticos de volúmenes extraídos, uso público urbano (miles m³)	
Tabla 4.4.2 Gastos promedios mensuales, uso público urbano	27
Tabla 4.4.3 Módulos del DR 020 que usan agua de la presa Cointzio	28
Tabla 4.4.4 Estadísticos de volúmenes extraídos para riego (miles m³)	
Tabla 4.4.5 Distribución mensual porcentual, uso riego (%)	
Tabla 5.1.1 Volúmenes aprobados para riego 2014-2015 a 2018-2019	31
Tabla 5.4.1 Simulación mensual de funcionamiento de vaso.	40
Tabla 5.4.2 Resumen histórico de la simulación fun. vaso. Ejemplo	41
Tabla 5.6.1 Estadísticos del registro histórico	49
Tabla 5.6.2 Media de las 10 serie sintéticas generadas	50
Tabla 5.6.3 Desviación estándar de las 10 serie sintéticas generadas	51
Tabla 5.6.4 Coeficiente de asimetría de las 10 serie sintéticas generadas	51
Tabla 5.6.5 Coeficiente de variación de las 10 serie sintéticas generadas	52
Tabla 5.6.6 Coeficiente de auto correlación de las 10 serie sintéticas generadas	53
Tabla 5.6.7 Estadísticos de los volúmenes totales anuales	
Tabla 6.1.1 Resultados de las simulaciones usando algoritmo GRG	56
Tabla 6.2.1 Resultados de las simulaciones usando algoritmo AG	59
Tabla 6.2.2 Coeficientes de penalización	
Tabla 6.2.3 Volúmenes resultantes de aplicar dos metodologías diferentes	63
Tabla 6.2.4 Coordenadas de las curvas Z encontradas bajo dos procedimientos diferente	es .63
Tabla 6.2.5 Asignación mensual óptima. Política AG-5 (16V)	
Tabla 6.2.6 Resumen de extracciones, ejemplo. Política AG-5 (16V)	66
Tabla 6.3.1 Política AG-5 (16V) aplicada a series sintéticas	
Tabla 6.3.2 Volúmenes promedio anuales. Política AG-5 (16V)	68

1. Planteamiento del problema.

El manejo del agua del embalse de la presa Cointzio es multipropósito por lo que resulta importante contar con una política de operación óptima para tener una administración eficiente del agua.

La Comisión Nacional del Agua (CONAGUA) es el organismo encargado a nivel mensual y anual del manejo de la presa Cointzio, desde su construcción en 1952. Actualmente, el funcionamiento del embalse se ha vuelto vital para el sostenimiento socioeconómico de la Ciudad de Morelia, debido a que la presa abastece con agua potable a la capital del estado y al mismo tiempo posibilita el riego de más de 200 hectáreas del Distrito de Riego 020 Morelia-Queréndaro (DR 020).

Sin embargo, el aprovechamiento del agua siempre ha sido un problema crítico en esta región debido a la irregularidad en la distribución espacio temporal de la lluvia y el escurrimiento, aunado a la creciente demanda de la población por cobertura de servicios básicos.

Los retos a atender para el funcionamiento óptimo del embalse de la presa Cointzio son:

- Variación en los ingresos de agua por cuenca propia al embalse
- Cambios a nivel mensual en las demandas de agua

1.1. **Hipótesis**

El análisis de las extracciones históricas de agua que ha realizado la CONAGUA y la información proporcionada por la CONAGUA Dirección local de Michoacán, servirán para establecer una curva tipo Z histórica, que muestre la extracción del volumen total anual que debe realizarse, dependiendo del estado de llenado del embalse al primero de octubre de cada año; el análisis también permitirá conocer los porcentajes de asignación mensual promedio así como los volúmenes máximos y mínimos que se han extraído.

La información recabada permitirá optimizar el funcionamiento de vaso de la presa, para lo cual se utilizará un algoritmo Gradiente Reducido Generalizado No Lineal (GRG No Lineal) y un Algoritmo Genético Simple (Holland, 1975, Goldberg, 1989) en combinación con la simulación del funcionamiento de vaso; se obtendrán políticas de operación a nivel anual en forma de curvas tipo Z y políticas mensuales en forma de porcentajes que asignación mensual de volumen de aqua destinada a riego, ambas buscan reducir los estados no deseados en los niveles de almacenamiento de la presa: posibles déficit y derrames, presentados durante la simulación del registro histórico de ingresos por cuenca propia.

Finalmente, se elegirá una o varias políticas de operación de acuerdo a los volúmenes extraídos, derramados y faltantes por déficits que se obtengan; los resultados se revisarán al implementar series de volúmenes de ingreso mensual sintéticos con 100 años de registro,

generados con el método de Svanidze (Svanidze, 1980) en la simulación del funcionamiento de vaso de la presa.

1.2. Objetivo

El trabajo tiene como objetivo optimizar el funcionamiento de vaso de la Presa Cointzio, a través de minimizar los volúmenes derramados y los déficits que se presenten. Para ello se utilizará un algoritmo tipo GRG No Lineal y un AG Simple, que permitirán establecer una política de extracción anual y una asignación mensual eficiente del volumen total anual para satisfacer las necesidades de abastecimiento.

1.3. Metas

- Revisar los registros históricos de ingresos de agua al embalse por cuenca propia.
- Recopilar información de las extracciones de agua que se realizan en la presa y del uso que tiene el recurso del agua.
- Realizar un tratamiento estadístico de la información para generar curvas tipo Z y obtener los porcentajes de asignación mensuales.
- Plantear una función de optimización acorde a las necesidades del lugar y las aplicaciones que tiene el agua del embalse.
- Obtener políticas de operación anuales, mediante el uso de un algoritmo Gradiente Reducido Generalizado No Lineal y un Algoritmo Genético Simple
- Obtener políticas de operación mensuales en forma de porcentajes de asignación que distribuyan de manera óptima la extracción tota anual del agua destinada a riego.
- Generar y aplicar series sintéticas de ingresos al embalse por el método de Svanidze para la simulación del funcionamiento de vaso.

2. Estado del arte

Este escrito empieza con una revisión de la tesina: "Revisión y optimización de la operación histórica de las presas Cutzamala", presentada por el especialista en hidráulica urbana el Ingeniero Gerardo Acuña Soto, 2014; en su trabajo se realiza una revisión histórica de los ingresos con el objetivo de generar una curva tipo "Z" definida por los almacenamientos mínimos/extracciones mínimas y los almacenamientos máximos/extracciones máximas; posteriormente utilizando un algoritmo genético simple ajusta los cuatro parámetros de la curva Z, con el objetivo de optimizar las extracciones, disminuyendo los derrames y evitando que los déficits se lleguen a presentar.

"Los algoritmos genéticos son métodos adaptativos, generalmente usados en problemas de búsqueda y de optimización de parámetros, basados en la reproducción sexual y en el principio de supervivencia del más apto.

Mas formalmente, y siguiendo la definición dada por Goldberg, "Los algoritmos genéticos son algoritmos de búsqueda basados en la mecánica de la selección natural y de la genética natural. Combinan la supervivencia del más apto entre estructuras de secuencias con un intercambio de información estructurado, aunque aleatorizado, para constituir así un algoritmo de búsqueda que tenga algo de las genialidades de las búsquedas humanas"

Para alcanzar la solución a un problema, se parte de un conjunto inicial de individuos y llamada población generando de manera aleatoria. Cada uno de los individuos representa una posible solución al problema. Estos individuos evolucionaron tomando como base los esquemas propuestos por Darwin sobre la selección natural, y se adaptaron en mayor medida tras el paso de cada generación a la solución requerida"

(Gestal, M., et al. 2010).

Sin embargo, los algoritmos genéticos (AG) no son los únicos métodos utilizados para dar solución a problemas de optimización, en las últimas décadas y en distintos países se han aplicado diferentes algoritmos de optimización en búsqueda de políticas de operación eficientes; revisando la literatura se encontró:

Cancelliere et al., 2002, aplicó tanto programación dinámica como redes neuronales para obtener políticas de operación con propósito de riego, que simuló con éxito en periodos de escurrimientos normales y de sequía en el embalse Pozzillo alojado en el río Salso de Sicilia.

Moghaddasi et al, 2010 utilizo métodos de multiplicadores de Lagrange para optimizar variables de decisión aplicados a modelos de operación de largo plazo en el embalse de Zayandeh-rud de Irán, considerando variables hidroclimatológicas y las demandas de uso de riego, los autores utilizaron el software LINGO para análisis no lineal y obtuvieron políticas óptimas para el embalse.

Wu y Chen, 2014, utilizaron un modelo que combina un método de optimización Nelder Med con un algoritmo evolutivo de búsqueda aleatoria acoplado con simulaciones hidrológicas para obtener políticas de operación flexibles que concilian los objetivos de generación de hidroelectricidad, riego y suministro de agua potable en el embalse Xinfengjiang de China.

Senthil, A. et al, 2013, aplicaron diferentes herramientas de cómputo para optimizar las reglas de operación de presas y encontraron que las de tipo Fuzzy Logic son las que mejor funcionan para las necesidades de la presa Bhakra en la cuenca del río Satluj, India. El estudio considera los volúmenes de sedimento (obtenidos mediante las formulas empíricas de Swamee) para los próximos 25 años.

Goo, M. et al., 2014 utilizaron un modelo determinista de pronóstico de flujos y demandas de agua a través de datos meteorológicos (los datos de entrada son medidos y generados mediante la simulación hidrológica SSARR) y emplearon el método Shuffled Complex Evolution – University of Arizona (SCE-UA), guiado por una función objetivo que busca la extracción óptima del agua en diferentes periodos para obtener nuevas reglas de operación que permitan dar soluciones más razonables a las históricamente usadas. Además, desarrollaron un modelo de predicción de demanda de agua cuya función es maximizar la energía generada por la hidroeléctrica y alcanzar un nivel objetivo en el embalse para cada periodo de operación. Los modelos que se obtuvieron, se aplicaron al embalse de Balam y al de Seomjingang; Ndiritu, J. et al., 2016 evaluaron las reglas de operación de la presa Hluhluwe, Sudáfrica encontrando decisiones basadas en la experiencia y mejorándolas considerando optimización no lineal y simulación de series sintéticas grandes, para obtuvieron curvas mensuales de asignación de agua municipal y para riego.

El cómputo evolutivo aplicado para obtener políticas de operación aparece en los trabajos de: Minjares et al, 2008, que utilizaron algoritmos genéticos sobre un modelo anual hidrológico-agronómico-económico para optimizar el sistema de yacimientos de río Yaqui, seleccionando un patrón de cultivos óptimos de acuerdo a su máximo rendimiento económico y a las extracciones mensuales óptimas de agua para riego.

Malekmohammadi et al, 2009 aplicó redes bayesianas para desarrollar políticas de operación óptima en forma mensual para un sistema de embalses en cascada, en el río Dez de Irán, considerando los propósitos de suministro de agua para riego (objetivo a largo plazo) y el control de las inundaciones (objetivo a corto plazo). En la optimización del sistema contra posibles inundaciones se utilizó un algoritmo genético con el que se obtuvieron modelos de optimización y la función del daño por inundación para cada mes y distintos periodos de retorno; estos resultados junto con la ley de demandas por riego alimentaron un segundo algoritmo genético de cromosoma variable y de optimización mensual que finalmente ingresaría los datos a la red bayesiana que a través de un proceso de entrenamiento, se podría obtener una extracción mensual óptima mejorada.

Chang et al, 2010, utiliza algoritmos genéticos restringidos por los requerimientos de gasto ecológico sobre una función objetivo que integra un conjunto de funciones de penalización diseñados para diferentes restricciones con el fin de optimizar las extracciones del embalse Shih-Men, Taiwan.

Falllah-Mehdipour, E. et al, 2013, aplicaron un conjunto de algoritmos evolutivos: algoritmos genéticos, algoritmos de optimización de enjambre de partículas y algoritmos de optimización de salto de rana para determinar la planificación óptima multipropósito de salidas para una serie de tiempo específica de forma lineal y no lineal. Al considerar restricciones en el balance de masa del embalse, en la limitación del área asignada a los cultivos y a la capacidad del embalse, los mejores resultados se obtuvieron utilizando los algoritmos de optimización de salto de rana no lineales, sin embargo, su probabilidad de ocurrencia fue menor.

3. Marco teórico

En este apartado se aborda la teoría referente a los algoritmos utilizados para la resolución de problemas, que forman un pilar fundamental sobre la cual se sustenta este trabajo.

3.1. Gradiente Reducido Generalizado No Lineal.

La relevancia de problemas de optimización en el mundo ha generado la introducción de herramientas de optimización cada vez más sofisticadas en las hojas de cálculo. Microsoft Excel© es una hoja de cálculo que ofrece una aplicación-complemento, desarrollada por Frontline Systems Inc y denominada Solver©.

La herramienta Solver©, es capaz de determinar un valor óptimo (máximo, mínimo o exacto) para una fórmula en una celda, denominada celda objetivo, la cual se encuentra sujeta a distintas restricciones o limitantes en los valores de otras celdas de la hoja de cálculo. También, existen otras celdas llamadas celdas de variables de decisión, que se ajustan para cumplir con las celdas de restricción y producir el resultado deseado en la celda objetivo. (González, 2015).

La ventana de parámetros de Solver© (Figura 3.1.1) se utiliza para describir el problema de optimización a la hoja de Microsoft Excel© (González, 2015). En el cuadro "Establecer objetivo" se escribe la referencia a la celda objetivo que contiene el valor de la ecuación que se desee optimizar, luego se especifica si el valor será máximo, mínimo o un valor exacto.

Las variables de decisión que resuelven el problema se introducen en el cuadro "Cambiando las celdas de variables" que permite referenciar hasta un máximo de 200 celdas; mientras que las restricciones propias del problema se deben escribir mediante diferencias e igualdades dentro del cuadro "Sujeto a las restricciones", cabe aclarar que Solver© no asume la no negatividad en las variables de decisión, por lo que habrá que aclarar que el valor de las celdas no sea negativo.

La ventana de solver también permite elegir el método de solución de entre diferentes opciones que se muestran al desplegar el cuadro "Método de resolución", aunque, de manera predeterminada Microsoft Excel© selecciona: "GRG Nonlinear", cuya forma de operar se describe más adelante.

Los otros algoritmos de resolución con los que cuenta la herramienta de Solver, son:

- Método "Simplex LP": utilizado para problemas lineales.
- Método "Evolutionary": implantado por John Watson y Dan Fylstra de Frontline Systems, utiliza un algoritmo de ramificación y límite para resolver problemas lineales con enteros.

Es muy importante tener en cuenta las opciones de Solver al resolver un problema, debido a que la resolución de un problema lineal y de uno no lineal difiere bastante, los primeros son por mucho, más fáciles de resolver. (González Gómez).

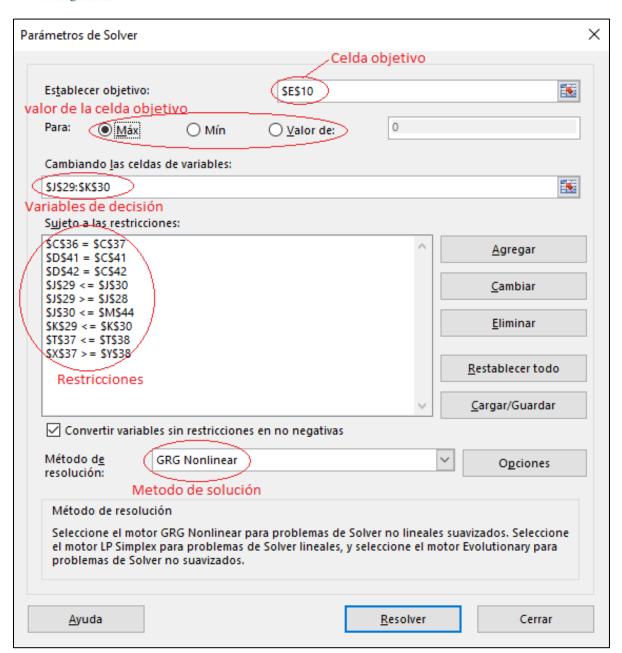


Figura 3.1.1 Ventana de parámetros de Solver (Microsoft Excel© 2013)

El algoritmo de optimización no lineal: Gradiente Reducido Generalizado (GRG) en su versión GRG2 (López y Sánchez, 1998) es el método de solución preferido de manera general, fue desarrollado por la Universidad Leon Lasdon de Austin (Texas) y la Universidad Allan Waren (Cleveland), (Gonzales, 2015); sus fundamentos se describen a detalle en Abadie (1978); Lasdon, Waren, Jain y Ratner(1978); Lasdon y Waren (1978); y Ríos (1988).

Un algoritmo GRG típico con restricciones no lineales (Caballero, 2011) resuelve el problema:

$$Min g_{m+1}(X) \tag{a}$$

Sujeto a:

$$h(x^i) + \nabla h(x^i)\Delta x = 0, \qquad g = 1, neq.$$
 (b)

$$0 \le g_i(X) \le ub(n+1) = 0, i = neq + 1, m, \tag{c}$$

$$lb_i \le X_i \le ub(i)$$
 $i = 1, n$ (d)

Donde X es un vector de n variables y el número de restricciones de igualdad g puede ser cero, además la matriz jacobina de las restricciones: $\nabla h(x^i)$ se puede dividir en dos partes: una asociada a las variables dependientes y la otra asociada a las variables independientes:

$$\nabla h(x^i) = [J_D(x), J_i(x)] \tag{e}$$

El algoritmo GRG es un proceso de resolución de igualdades y/o desigualdades sujetas a un conjunto de restricciones sobre un conjunto de variables reales desconocidas, con una función objetivo a maximizar o minimizar. El método busca de forma sistemática entre todos los posibles valores una solución óptima. (Caballero, 2011)

A continuación se describe de manera general el procedimiento que emplea el algoritmo GRG para la búsqueda de soluciones óptimas:

- El algoritmo inicia desde un punto factible (en la etapa k) donde se calcula el gradiente reducido; al mismo tiempo se designan las variables independientes seleccionando valores controlables, cuyas componentes de dirección de búsqueda se establecen a partir de los elementos del gradiente reducido.
- Posteriormente se calculan las variables dependientes y los componentes de dirección de búsqueda de dichas variable.
- Los componentes de dirección forman una región dentro de la cual se escogen algunos valores, las nuevas variables dependientes e independientes se calculan como la suma de los valores originales más un gradiente de avance en la dirección de búsqueda.
- Luego se evalúan todos los nuevos valores utilizando la función objetivo; si se cumple el número de generaciones fijada, se selecciona el valor óptimo y el algoritmo finaliza, de lo contrario dado que no todos los nuevos valores satisfacen la función objetivo se utiliza el método de Newton para volver a la región factible.
- Si los nuevos valores son factibles, pero no mejoran la función objetivo, se calculan nuevas variables dependientes e independientes; si los valores son factibles y también mejoran la función objetivo, esos valores se convierten en el nuevo punto de partida; por el contrario, si los valores no son factibles, se realiza un cambio de base para iniciar el proceso desde un punto de partida completamente nuevo.

El algoritmo puede describirse como un movimiento o salto hacia una dirección de la región factible, de tal forma que el valor de la función objetivo mejore; el proceso es iterativo hasta que no exista una región factible para mejorar la función objetivo o sí el potencial para tal mejora es arbitrariamente pequeño.

La Figura 3.1.2 muestra el algoritmo básico que sigue Solver© (Caballero, 2011).

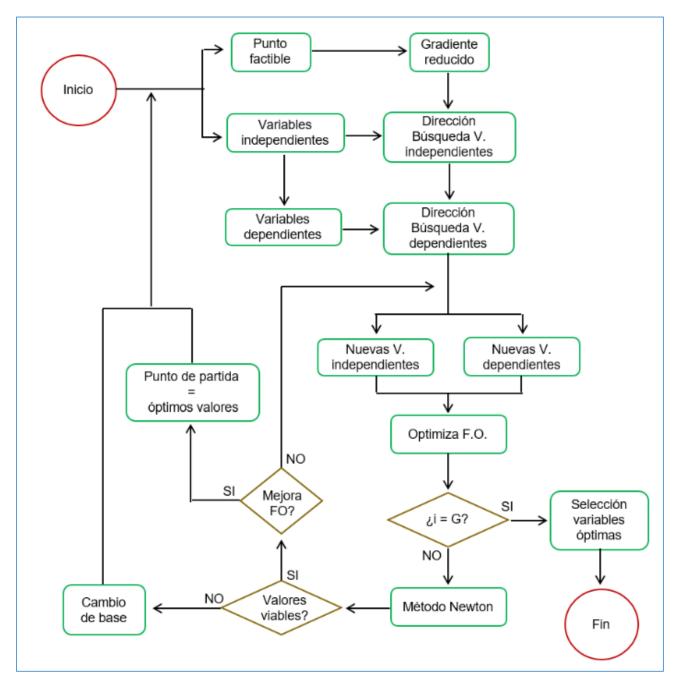


Figura 3.1.2 Diagrama de flujo del algoritmo GRG (Elaboración propia, basado en Caballero, 2011)

Es preciso tener en cuenta que las soluciones encontradas por el algoritmo pueden tratarse de óptimos locales que no necesariamente pueden ser el óptimo global (Figura 3.1.3), además los valores de los óptimos locales dependerán del punto de partida, esto significa que las soluciones pueden cambiar según varíen los valores iniciales.

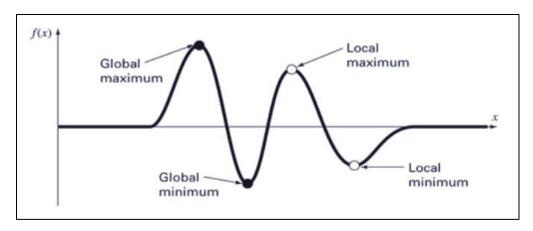


Figura 3.1.3 Óptimos locales vs óptimos globales (Basado en Caballero, 2011 https://slideplayer.es/slide/3415795/)

3.2. Algoritmo Genético (AG) Simple.

Un algoritmo genético (AG) es una técnica que imita a la evolución biológica para la resolución de problemas; su funcionamiento a detalle se describe en Goldberg (1989), Davis (1991) y Michalewicz (1996).

Los AG forma parte de la computación bioinspirada (Medina, 2014), al igual que otros métodos de resolución y búsqueda como los algoritmos de inteligencia colectiva (enjambres de partículas, colonias de hormigas), los sistemas inmunológicos artificiales y las redes neuronales, entre otros.

Los primeros ejemplos de lo que hoy podríamos llamar algoritmos genéticos aparecieron a finales de los años 50's y principios de los 60's, programados en computadoras por biólogos evolutivos que buscaban realizar modelos de aspectos de la evolución natural, aunque a ninguno de ellos se le ocurrió que la estrategia se podía aplicar a la resolución de problemas artificiales (Sancho, 2018); en años posteriores numerosos investigadores desarrollaron de manera independiente algoritmos inspirados en la evolución pero basados únicamente en operadores de mutación para la optimización de funciones y el aprendizaje automático; sin embargo fue John Holland el primero en establecer las bases para los sistemas adaptativos al proponer explícitamente el cruzamiento y otros operadores de recombinación, su trabajo se publicaría en "Adaptación en sistemas naturales y artificiales", (Holland, 1975).

Los algoritmos AG están basados en la teoría de la selección natural de Charles Darwin y en su principio de supervivencia del más apto, donde sólo aquellos individuos con las características más adecuadas pueden sobrevivir en un entorno lo suficiente para reproducirse y dejar una descendencia en la que los caracteres positivos perduren y puedan mutar para adaptarse aún mejor al medio. Tras varias generaciones, los individuos que queden reflejaran en sus características la solución óptima a un problema (entorno).

En términos biológicos, los organismos (fenotipo) están constituidos por células, cada una de ellas contiene uno o más cromosomas (genotipo) con la información necesaria para construir al organismo. Los cromosomas pueden ser conceptualmente divididos en genes, cada uno de los cuales codifica un rasgo, como el color de los ojos.

Análogamente en un algoritmo genético, los individuos son las soluciones potenciales al problema, pero para poder aplicar las operaciones propias de la evolución es necesario que exista su representación o codificación en un genotipo más simple, por lo que, las soluciones suelen tener forma de vector al que se le denominara "cromosoma" (Medina, 2014), siendo los "genes" los parámetros que la conforman; mientras que los genes reales tienen una estructura muy compleja, en los AG están representados por números primitivos (Kruse et al, 2013).

La Figura 3.2.1 muestra las representaciones (codificaciones) básicas de los cromosomas, diferenciados por el tipo de genes que los conforman: números binarios, enteros o reales.

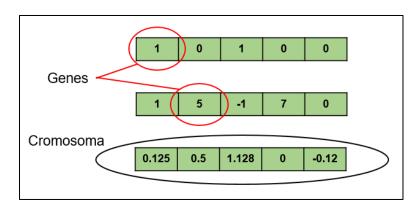


Figura 3.2.1 Codificación de los cromosomas y tipos de genes (Elaboración propia)

En la práctica, la codificación más común de las soluciones es mediante cadenas binarias, método propuesto originalmente por John Holland y ampliamente popularizado porque resulta más fácil aplicar los operadores propios de la evolución (reproducción, cruza y mutación) sobre cadenas de 0´s y 1´s.

El proceso de evolución parte de una población inicial de individuos que bien pueden ser generados aleatoriamente, ser soluciones previamente encontradas o ser valores generados mediante alguna función predeterminada. Al conjunto de soluciones candidato de cada iteración se le denominará generación.

En cada generación, el algoritmo AG debe evaluar el desempeño de cada individuo mediante una función de aptitud (fitness) que asigne un valor cuantitativo a cada solución, generalmente la función de evaluación es realmente la función que se desea optimizar; cabe aclarar que los primeros candidatos tendrán una eficiencia mínima con respecto a la solución final o bien no funcionaran en absoluto, sin embargo, unas pocas pueden ser prometedoras.

Tras conocer el desempeño (aptitud) de cada solución se puede calcular la aptitud relativa que indica que tan bueno es un individuo con respecto a la población; con ello se pretende seleccionar a los mejores individuos para crear una nueva generación.

La selección de candidatos (progenitores) se puede hacer por el método de la ruleta, el estocástico universal o el de torneo (Goldberg, 1989), aunque también existen otras técnicas menos populares. A continuación, se muestra una breve explicación de los más habituales, a partir de los cuales han surgido variantes.

- Método elitista: garantiza la selección de los miembros más aptos de cada generación; sin embargo, la mayoría de los algoritmos utilizan alguna forma modificada del método.
- Método por torneo: consiste en generar subgrupos aleatorios entre los individuos de una población, luego los miembros de cada subgrupo compiten entre ellos y se selecciona solo al ganador de cada torneo. El procedimiento asegura un mínimo de diversidad, ya que no siempre se selecciona al mejor individuo para tener descendencia, pero existen grandes probabilidades de que este sea elegido en algún torneo. (Figura 3.2.2).

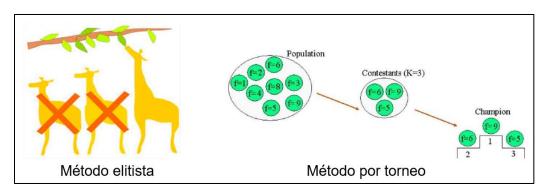


Figura 3.2.2 Método elitista y selección por torneo (Recuperado de: https://es.slideshare.net/camilorene/inteligencia-artificial-clase-5)

- Método jerárquico: permite reducir el tiempo total de cálculo al implementar múltiples rondas de selección; las evaluaciones en los primeros niveles son más rápidas y eliminan a los individuos poco prometedores, pero conforme los niveles aumentan la evaluación se vuelve más rigurosa y computacionalmente más compleja.
- Método de la ruleta: donde la aptitud relativa de cada individuo se traduce en su probabilidad de ser seleccionado, esto no garantiza la selección de los mejores individuos, pero lo hace más probable. El método consiste en generar números aleatorios entre 0 y 1, que se comparan con la aptitud relativa acumulada. (Figura 3.2.3).

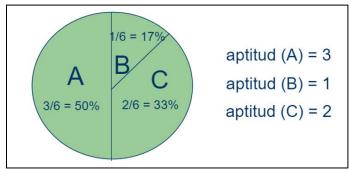


Figura 3.2.3 Método de selección por ruleta (Garduño, 2015. https://slideplayer.es/slide/1721532/)

El inconveniente de varios métodos es que los individuos con más aptitud tienden a dominar la población, por lo que suele haber una incorporación constante de nuevos individuos aleatorios en cada generación para asegurar la diversidad genética.

Una vez que se han seleccionado a los progenitores, el algoritmo crea su descendencia aplicando los operadores de reproducción, cruce y mutación.

La reproducción consiste en "clonar" a un individuo dentro de la siguiente generación sin que sufra ninguna modificación, con el objetivo de mantener a los mejores organismos y que no se pierda su información genética; el concepto es similar al método de selección elitista. El operador de la reproducción es completamente opuesto a los de cruce y mutación, cuyos cambios pueden darse a nivel binario o en la representación real, sumando la media, la desviación estándar de los valores o bien aplicando algún otro método. (Goldberg, 1989).

La mutación es un operador básico, introducido desde la creación de los primeros algoritmos genéticos, el cual consta de un cambio aleatorio en los genes de un organismo con una probabilidad de ocurrencia dada (Figura 3.2.4). La mutación permite que aparezcan nuevos individuos, con el objetivo de no quedar atrapado dentro de un óptimo local. (Kruse et al, 2013).

Figura 3.2.4 Mutación de un gen binario (Elaboración apropia)

El porcentaje de genes totales a mutar dentro de una población puede seleccionarse usando una probabilidad fija con el mismo porcentaje de mutación en todas las generaciones, o bien con una probabilidad variable que cambie de acuerdo a las características de la población.

La cruza es otro método de cambio de genes que pretende emular a la recombinación que existe entre cromosomas durante la reproducción sexual.

El proceso de cruza consiste en mezclar los genes de dos individuos seleccionados previamente, para generar nuevos descendientes que conserven las características de ambos progenitores. Algunos de los métodos más comunes para aplicar el operador son:

• Cruza en un punto (Figura 3.2.5): en el que se establece un punto de intercambio en los cromosomas de dos individuos para posteriormente intercambiar los genes que se encuentran a la derecha de dicho punto.

Figura 3.2.5 Cruza en un punto. (Elaboración propia)

• Cruza en dos puntos (Figura 3.2.6): en donde se intercambian los genes comprendidos entre dos puntos de cruce indicados en los cromosomas de los progenitores.

Figura 3.2.6 Cruza en dos puntos. (Elaboración propia)

• Cruza punto a punto (Figura 3.2.7), en el cual se intercambia cada uno de los genes:

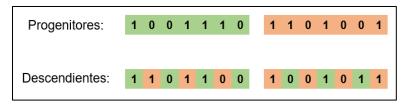


Figura 3.2.7 Cruza punto a punto. (Elaboración propia)

El punto de cruce de cada método puede ser aleatorio o estar predeterminado. Otros métodos de cruza menos utilizados son aplicables a codificaciones no binarias, lo que permite introducir otras técnicas de cambio; tales como modificar un gen en un individuo de la descendencia con el valor medio de los genes de los padres (media) o bien con el valor de la raíz cuadrada del producto de los genes de los padres (media geométrica).

El proceso de búsqueda y resolución del algoritmo es iterativo y continúa hasta que se alcance el número de generaciones fijado.

El pseudocódigo general asociado al algoritmo puede ser (Kruse et al, 2013):

AG:

Crea población inicial.

Evalúa cromosomas de la población.

Repite hasta que se cumpla la condición de parada

Selecciona de los cromosomas.

Cruzamiento de los cromosomas de los progenitores

Mutación de los cromosomas de los organismos

Devuelve mejor solución de la población.

El avance de la tecnología y el aumento de la velocidad en las computadoras personales, ha vuelto a los AG una herramienta muy socorrida; aunque su aplicación en el caso de la hidrología y la hidráulica se hizo más notable a partir de la primera década del presente siglo, por citar solo algunos ejemplos: Aldana (2004); Rincón (2006); Minjares et al (2008); Guzmán (2009); Fuentes et al (2011); Becerra (2011); Mora Melia (2012); Mehdipour et al (2013); Acuña (2014); Di Nardo et al (2014); Fuentes y Palma (2014); Arganis et al (2015); Pereyra et al (2016); Hao et al (2018); Godoy (2018); García Flores (2019).

En los últimos años, la aplicación de los AG se ha diversificado en diversas variantes y métodos híbridos que los utilizan: Rodríguez (2006); Chang et al (2010); Magahaes et al (2010); Gonzales Piñeros (2013); Sotelo et al (2015); Pino et al (2016); Gonzales et al (2016); Xiaoru et al (2016).

4. Recopilación y análisis de la información.

4.1. Zona de estudio.

La cuenca de lago de Cuitzeo (Figura 4.1.1) en la que se encuentra la subcuenca de Cointzio, se ubica entre los límites de los estados de Michoacán y Guanajuato, correspondiendo la mayor parte de su área al estado de Michoacán de Ocampo, México (Cram, et al, 2010). La cuenca pertenece a la región hidrológico-administrativa VIII (Lerma-Santiago-Pacifico), específicamente a la región hidrológica RH-020, denominada "Lerma-Santiago" y tiene una extensión de 3657 km^2 (CONAGUA-CEAC, 2009), de los cuales 643 km^2 (un 17%) corresponden a la subcuenca de la presa Cointzio (Susperregui, et al., 2007).

La cuenca recibe su nombre debido al lago de Cuitzeo, el segundo más grande de México, con una extensión promedio incluyendo zonas de inundación de $400 \, \mathrm{k} m^2$ (Bravo, et al 2008). Dentro de la cuenca también existen varios aprovechamientos superficiales, entre los que destacan las presas: Umecuaro, Malpaís y Cointzio, este último es el más importante por su capacidad de regulación; su embalse se localiza a la entrada del cañón de Cointzio a unos $13 \, km$ al suroeste de la Ciudad de Morelia.

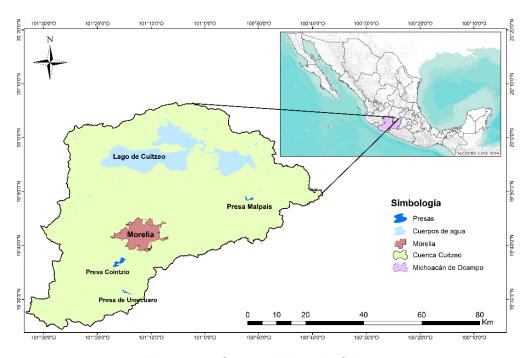


Figura 4.1.1 Cuenca del lago de Cuitzeo (Elaboración propia)

Al tratarse de una cuenca de tipo endorreica, las aguas del Río Grande (que alimenta a la presa Cointzio), el Río Queréndaro y el río San Marcos, así como otras corrientes superficiales de menor caudal, confluyen paulatinamente en el lago de Cuitzeo (*Valencia García*, 2013).

La Presa Cointzio, recibe agua del río Tiripetío cuyo nacimiento se origina en el cerro de Agua Fría a una altura de 2800.00 msnm, unos kilómetros más adelante se le une el río Tirio; a la unión de ambos caudales se le conoce como Río Grande, cuyo cauce pasa cerca de la localidad de Santiago Undameo que se encuentra en la parte alta del vaso de almacenamiento. La hidrografía de la subcuenca de Cointzio se muestra en la Figura 4.1.2.

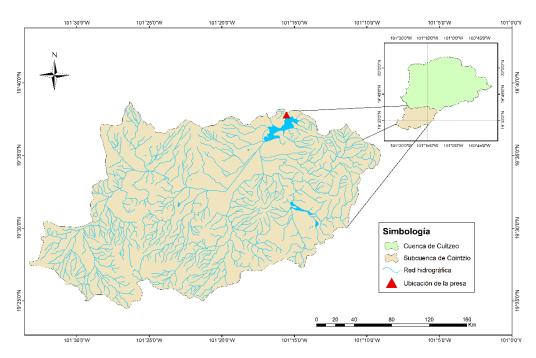


Figura 4.1.2 Hidrografía de la presa Cointzio (Elaboración propia)

4.2. Infraestructura de la presa Cointzio.

La presa Cointzio se construyó entre los años de 1936 y 1940; su cortina, dadas las características de la zona (alta sismicidad), es de tierra con una protección de enrocamiento aguas arriba; su altura es de 37 m medidos sobre el cauce, alcanzando una elevación de 2002.82 msnm con una corona de 300 m de longitud y 8 m de ancho en la parte superior. Las coordenadas geográficas en donde se ubica la cortina de acuerdo al Banco Nacional de Aguas Superficiales (BANDAS) del Instituto Mexicano de la Tecnología del Agua (IMTA) son: $19^{\circ}37'44"$ latitud norte y $101^{\circ}15'32"$ longitud oeste respecto al meridiano de Greenwich.

En la ladera izquierda de la cortina se encuentra la obra de excedencias constituida por un vertedor de tipo cimacio cuya platilla tiene un ancho de 29.9 m, que le permiten desalojar un gasto máximo de $600 \ m^3/s$ con una carga de $5.35 \ m$. La descarga se controla mediante cinco compuertas radiales de $5.5 \ m$ de ancho y $3.5 \ m$ de altura, que son operadas a distancia mediante controles eléctricos. La estructura disipadora de energía se trata de un deflector conocido como salto de esquí.

La política de operación del vertedor se lleva a cabo considerando el ingreso más desfavorable a la cuenca (periodo de retorno (Tr) igual a 10,000 años), cuando los niveles del embalse superen los 1,999.47 msnm, en temporadas de lluvia o exista una probable incidencia de algún fenómeno meteorológico, pero siempre bajo consenso del Comité Técnico de Operación de Obras Hidráulicas (CTOOH).

La política de operación (Tabla 4.2.1) considera gastos por vertedor y obra toma, tales que al transitar la avenida, la elevación máxima no supere al NAME (2001.32 *msnm*).

Tabla 4.2.1 Política de gastos de extracción ante una avenida Tr 10,000 años.

Política de gastos ante avenida máxima.									
Elevación (msnm)	Vertedor + Obra toma (m^3/s)								
1995.97	5.00								
1996.50	5.00								
1996.51	12.00								
1997.50	12.00								
1997.51	22.00								
1998.00	22.00								
1998.01	42.00								
1998.50	42.00								
1998.51	62.00								
1999.00	62.00								
1999.01	112.00								
1999.50	112.00								
1999.51	162.00								
2000.00	162.00								
2000.01	212.00								
2000.50	212.00								
2000.51	242.00								
2001.00	242.00								
2001.01	282.00								
2001.32	282.00								

La obra toma consta esencialmente de un túnel perforado en la ladera de la margen derecha, a la mitad de la longitud se conectan 2 tuberías de acero con diámetro de 1.37 m y 1.58 cm (5/8") de espesor que se prolongan hasta la salida aguas abajo; ambas tuberías cuentan con dos válvulas de mariposa cada una, la primera de 1.20 m de diámetro se usa para emergencias y la segunda, con un diámetro de 0.76 m se usa para el servicio de extracciones normales. El gasto máximo de diseño es de 12 m^3/s . (Inventario Nacional de Presas, 2012).

A la salida de la toma, la compañía eléctrica de Morelia construyó una planta hidroeléctrica equipada con una turbina de eje horizontal marca *Leffel*, de 780 HP y un generador de *Electric Machinery* de 600 KVA. La planta operó desde julio de 1942 hasta 1982 y actualmente se encuentra en desuso.

La Figura 4.2.1 muestra el plano general de la Presa Cointzio vista en planta.

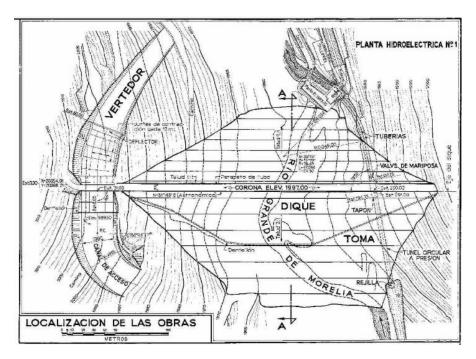


Figura 4.2.1 Plano General de la Presa Cointzio (Inventario Nacional de Presas, 2012)

El espejo de agua que se forma en el embalse alcanza un área máxima de 604.21 ha con un volumen de 79.23 hm^3 al nivel del NAME y un área mínima de 47.48 ha con 0.91 hm^3 al NAMINO; La Tabla 4.2.2 resume los niveles, capacidades y áreas del vaso más importantes.

Tabla 4.2.2 Capacidades-áreas de la presa Cointzio (CONAGUA Dirección local de Michoacán 2009)

Nivel	Altura (msnm)	Volumen (hm³)	Área (ha)
Corona	2002.82	88.57	640.21
NAME	2001.32	79.23	604.74
NAMO	1999.47	68.51	551.28
Cresta vertedora	1995.97	50.83	463.28
NAMINO	1972.31	0.90	47.48

La curva de elevaciones-capacidades-áreas se muestra en la Figura 4.2.2, para graficarla se utilizaron los valores del Anexo A, cuyos datos fueron reportados por la CONAGUA dirección local de Michoacán. Las ecuaciones 1 y 2 representan los ajustes a las curvas.

$$Elev = 1968.36 \, Cap^{0.0025} \tag{1}$$

$$\hat{A} = 38.707 \, Cap^{0.6217} \tag{2}$$

Donde:

Elev: Elevación del espejo de agua de la presa. (msnm).

Á: Área del espejo del agua del embalse. (ha).

Cap: Capacidad de almacenamiento del embalse. (hm^3) .

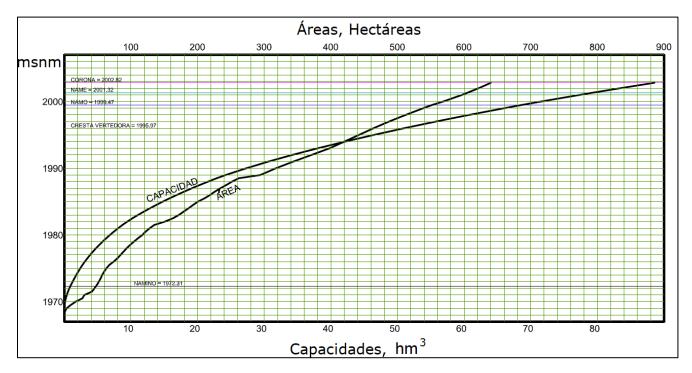


Figura 4.2.2 Curva de elevaciones-capacidades-áreas (CONAGUA, dirección local de Michoacán 2009)

4.3. Análisis de los volúmenes de ingreso al embalse.

Los volúmenes de ingreso al embalse que se consideran fueron los escurrimientos por cuenca propia y las precipitaciones promedio mensuales; ambos valores fueron deducidos por el Instituto de Ingeniería de la UNAM, a partir del reporte de funcionamiento diario del embalse de la CONAGUA del periodo de 1940 a 2016, esto equivale a tener 74 años de registro.

La Tabla 4.3.1 muestra un extracto del reporte de funcionamiento diario de la presa Cointzio.

Tabla 4.3.1 Reporte de funcionamiento diario. (CONAGUA, extracto)

CO)N∕	\G U	JA	Comisión Nacional del Agua							
				Subdirección General Técnica							
COMIS	SION NACI	ONAL DEL	AGUA	Gerencia de Aguas Superficiales e Ingeniería de Ríos							
Nombre Cointzio, Mich.					Contr	rolado					
Fecha	Area	Nivel	Volumen	Obra Toma	Vertedor	Derrame	Precipitación	Evaporación			
aaaa/mm/dd	ha	msnm	hm ³	m³/s	m³/s	m³/s	mm	mm			
1940/08/01	261.91	1976.89	17.63	0.00	-	-	13.1	4.5			
1940/08/02	264.54	1977.03	17.98	0.00	-	-	6.7	6.0			
1940/08/03	267.24	1977.18	18.39	0.00	-	-	1.0	5.1			
1940/08/04	269.76	1977.32	18.76	0.00	-	-	0.0	7.0			
1940/08/05	271.56	1977.42	19.03	0.00	-	-	0.0	2.9			
1940/08/06	273.18	1977.51	19.28	0.00	-	-	1.8	1.8			
1940/08/07	275.16	1977.62	19.57	0.00	-	-	0.0	7.6			
1940/08/08	276.60	1977.70	19.79	0.00	-	-	0.0	6.0			
1940/08/09	278.22	1977.79	20.03	0.00	-	-	1.4	3.4			
1940/08/10	280.20	1977.90	20.33	0.00	-	-	0.0	7.0			
1940/08/11	281.82	1977.99	20.57	0.00	-	-	0.8	6.1			
1940/08/12	282.84	1978.06	20.77	0.00	-	-	1.4	2.5			
1940/08/13	283.96	1978.14	21.01	0.00		•	0.3	5.9			
1940/08/14	285.08	1978.22	21.24	0.00		-	6.8	2.6			
1940/08/15	287.04	1978.36	21.64	0.00		-	8.8	5.8			
1940/08/16	288.86	1978.49	22.02	0.00	-	•	3.5	5.1			
1940/08/17	290.12	1978.58	22.28	0.00	-	-	14.9	3.8			
1940/08/18	291.66	1978.69	22.60	0.00	-	-	1.2	3.6			
1940/08/19	293.06	1978.79	22.89	0.00	-	•	0.0	4.6			
1940/08/20	294.32	1978.88	23.15	0.00	-	-	1.4	5.7			
1940/08/21	295.44	1978.96	23.38	0.00	-	-	0.8	4.1			

Para calcular los escurrimientos por cuenca propia, se utiliza la ecuación de continuidad aplicada a embalses, que para un intervalo de tiempo Δt se puede escribir como:

0.00

0.00

0.00

$$E - S = \Delta V \tag{3}$$

6.2

5.0

11.4

Donde:

1940/08/22

1940/08/23

1940/08/24

296.56

297.96

299.36

1979.04

1979.14

1979.24

E: Volumen de agua que entra al vaso durante el intervalo de tiempo considerado, (hm^3) .

S: Volumen de agua que sale del vaso durante el mismo intervalo, (hm^3) .

23.61

23.88

24.15

 ΔV : Variación de volumen almacenado, (hm^3) .

1.8

2.4

2.9

Al sustituir todos los términos y despejar los escurrimientos, se llega a la ecuación 4:

$$E_{cp} = \left(V_f - V_i\right) + \left(\frac{A}{10,000}\right) (0.7Evap - Prep) + \left(S_{O.toma} + S_{Ver} + S_{Derr}\right) \left(\frac{86,400}{1,000,000}\right) \tag{4}$$

Donde:

 E_{cp} : Entrada por cuenca propia (escurrimientos). (hm^3).

 V_f : Volumen almacenado en la presa al final del intervalo considerado. (hm^3) .

 V_i : Volumen almacenado en la presa al inicio del intervalo considerado. (hm^3) .

A: Área del espejo del agua del embalse. (ha).

Evap: Lamina de evaporación (mm).

Prep: Lamina de precipitación (mm).

 $S_{O.toma}$: Extracciones de agua por obra toma. (m^3/s) .

 S_{Ver} : Extracciones de agua por vertedor. (m^3/s) .

 S_{Derr} : Derrames presentados durante el intervalo considerado. (m^3/s) .

Los escurrimientos deducidos se muestran ordenados en series anuales en la Figura 4.3.1, donde se puede observar que en algunos años, se presentan volúmenes mensuales negativos o que no siguen la tendencia general.

Los volúmenes negativos se deben a que dichos valores son inferidos matemáticamente; esto no significa que existan escurrimientos negativos sino que la falta de información o la existencia de errores humanos en los reportes de funcionamiento diario, provocan que para cumplir con la ecuación de continuidad los volúmenes deban ser negativos.

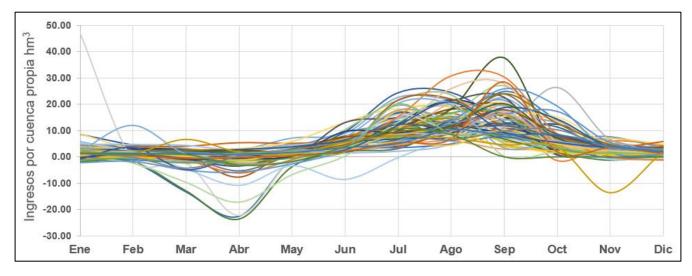


Figura 4.3.1 Escurrimientos por cuenca propia deducidos (CONAGUA)

Los valores extremos negativos y aquellos que no siguen la tendencia general se corrigieron, sustituyéndolos con datos obtenidos de la estación hidrométrica 12347 Santiago Undameo.

La estación hidrométrica Santiago Undameo tiene registros de volúmenes de escurrimiento desde 1940 y hasta 2002, por lo que para corregir valores posteriores a ese año o cuando no existían en algún otro año, se utilizaron promedios históricos de las series mensuales de la hidrométrica. En la Figura 4.3.2 aparecen las series anuales de escurrimientos corregidos.

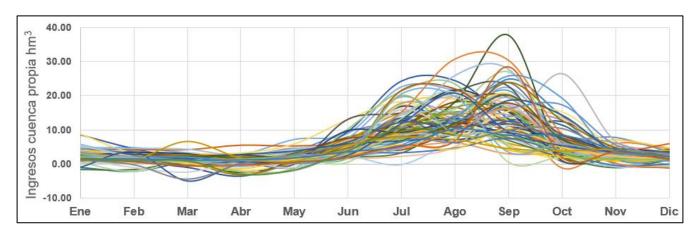


Figura 4.3.2 Escurrimientos por cuenca propia corregidos (CONAGUA y datos de la hidrométrica 12347 Santiago Undameo)

En el Anexo B se muestran los volúmenes de escurrimientos deducidos por la CONAGUA y se enfatizan los valores corregidos; en azul aparecen aquellas cifras que completan las series originales cuando no existían datos, en rojo los que sustituyen algunos valores existentes y resaltados en amarillo aquellos en los que se utilizaron promedios de los volúmenes reportados por la estación hidrométrica.

La precipitación ocurrida sobre el embalse se consideró para estimar la evaporación neta promedio del espejo de agua de la presa, calculada como la suma algebraica de las evaporaciones (salidas) y la cantidad de lluvia ocurrida (entradas); Los valores se obtuvieron directamente a partir del reporte de funcionamiento histórico del embalse (CONAGUA) y se muestran en la Tabla 4.3.2 y Figura 4.3.3.

Tabla 4.3.2 Evaporación neta promedio mensual, en mm. (CONAGUA, 2019 b)

Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Evap. Neta (mm)	45.97	62.08	93.71	93.66	68.79	-16.29	-56.43	-46.02	-37.69	15.97	37.72	39.46

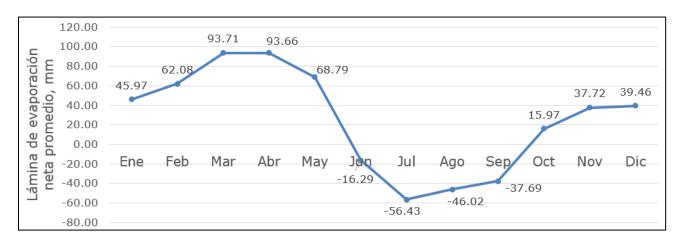


Figura 4.3.3 Lámina de evaporación neta promedio mensual (Funcionamiento diario histórico CONAGUA)

4.4. Análisis de la demanda del recurso del agua.

El aprovechamiento de las aguas de la presa Cointzio data de fines de los años 30 del siglo pasado. El embalse se construyó originalmente con el fin de proporcionar agua al distrito de riego (DR) 020 Morelia-Queréndaro y para la generación de energía eléctrica, aunque desde 1982 la hidroeléctrica ha dejado de operar. A partir de 1950, el embalse empezó a suministrar agua potable a cerca del 35% la ciudad de Morelia, gracias a la construcción de la planta potabilizadora Santa María en la colonia Vista Bella.

La distribución de agua potable depende del Organismo Operador de Agua Potable, Alcantarillado y Saneamiento (OOAPAS) de Morelia; quienes reportan que el suministro es ininterrumpido durante las 24 horas, los 365 días del año; sin embargo ocasionalmente se realiza un mantenimiento al canal que une a la presa Cointzio con la planta potabilizadora, lo que conlleva a un corte de agua en poco más de 40 colonias por algún par de días.

Los trabajos de mantenimiento consisten en el retiro de raíces y arcilla a lo largo de $13.6\ km$ de longitud que conforman el canal. En la Figura 4.4.1 se muestran las colonias que generalmente sufren del corte de agua cada que se realizan labores de mantenimiento, se observa que dichas colonias no constituyen la totalidad de la red de abastecimiento a la que suministra la planta de Vista Bella.

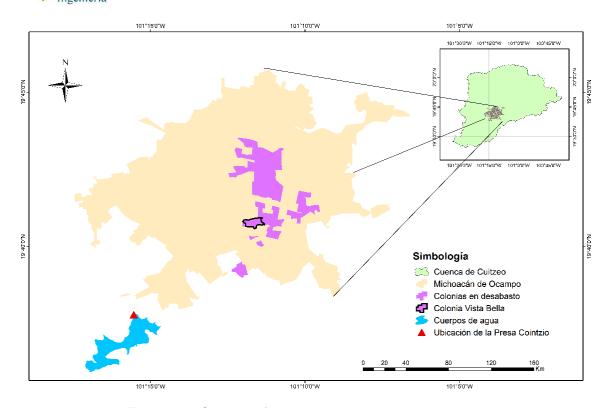


Figura 4.4.1 Colonias afectadas por labores de mantenimiento (Boletín electrónico Mi Morelia, OOAPAS)

En el Anexo C se muestran los datos de los volúmenes entregados por la CONAGUA durante el periodo de 1998 a 2018 para el suministro de agua potable. (CONAGUA, 2019 b). Los valores estadísticos de los volúmenes se observan en la Tabla 4.4.1.

Tabla 4.4.1 Estadísticos de volúmenes extraídos, uso público urbano (miles m^3) (CONAGUA 2019 b)

MES	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Anual
Máximo	2279.5	2093.4	2228.8	2347.2	2281.7	2115.2	2227.4	2240.5	2126.9	2245.5	2142.7	2223.8	25610.1
Mínimo	1521.0	1499.9	1660.6	1553.5	1422.0	1488.8	1658.0	1582.8	1155.2	1585.4	1553.5	1607.0	19445.0
Promedio	1769.7	1614.1	1747.9	1710.2	1740.9	1696.0	1774.5	1740.3	1683.7	1755.5	1715.7	1766.7	20811.2
Mediana	1729.9	1557.5	1687.4	1636.4	1687.4	1633.0	1704.1	1660.6	1650.0	1661.6	1630.5	1741.0	20019.0
Desv. Est.	187.7	153.4	152.4	193.6	185.4	157.2	168.5	156.0	213.6	190.6	171.6	158.8	187.7

La Figura 4.4.2 muestra que las extracciones totales anuales para su uso público urbano oscilan entre los 19 y los 22 hm^3 ; solo en los años 2004, 2005 y 2006, los volúmenes suministrados superaron los 22 hm^3 .

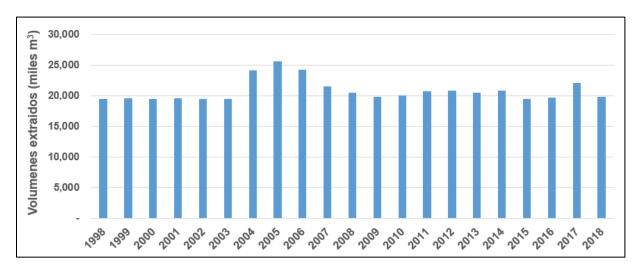


Figura 4.4.2 Extracciones totales anuales, uso público urbano. (CONAGUA 2019, b)

A nivel promedio mensual (Figura 4.4.3), las extracciones muestran una distribución más o menos homogénea con excepción de febrero cuyo volumen promedio extraído es de apenas 1609.6 $miles\ m^3$, valor que parece incongruente si se supone un suministro ininterrumpido; bajo esa premisa, para futuros cálculos se puede utilizar el volumen promedio anual de 20811.2 $miles\ m^3$ (ver valor en la Tabla 4.4.1) y al considerar una dotación mensual invariable, se tiene un volumen promedio mensual de 1734.27 $miles\ m^3$.

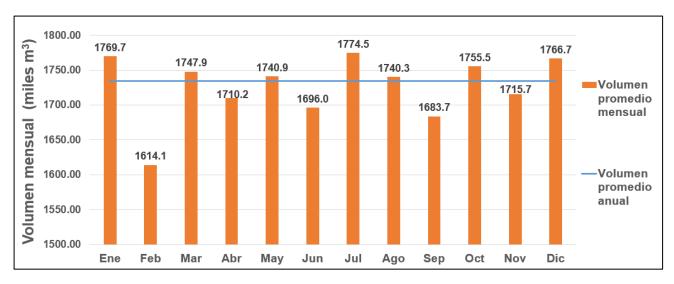


Figura 4.4.3 Volúmenes mensuales promedios, uso público urbano. (CONAGUA 2019, b)

El volumen promedio anual calculado de 20811.2 $miles\ m^3$ es equivalente a un gasto de 0.6599 m^3/s , que es similar a otros gastos reportados por diferentes organismos para el mismo uso (Tabla 4.4.2).

Tabla 4.4.2 Gastos promedios mensuales, uso público urbano.

Gasto m ³ /s	Organismo
0.6628	OOAPAS, reporte anual
0.6599	Promedio anual (calculado)
0.6200	CONAGUA, Sistema de seguridad de presas

Los titulares de OOAPAS trabajan en conjunto con el distrito de Riego DR 020, para llevar a cargo los controles de seguridad y operar los programas preventivos ante inundaciones.

El DR 020 inicio sus operaciones en 1939; reconociéndose y delimitándose en su superficie mediante decretos presidenciales publicados en el Diario de la Federación, el 1 de agosto de 1940 y el 15 de mayo de 1941, respectivamente (CONAGUA-CEAC, 2009). Cuenta con cinco Asociaciones de riego o Módulos de riego (Figura 4.4.4), que en conjunto tienen 19,765 *ha*.

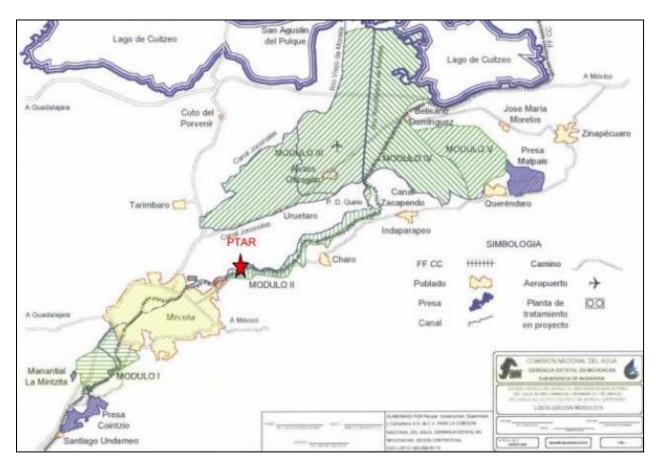


Figura 4.4.4 Localización y módulos del DR 020. (Pluvyal, Construcción, Supervisión y Consultoría S.A. de C.V. para la CONAGUA)

Los módulos del DR 020 reciben agua de diferentes fuentes (Tabla 4.4.3): los módulos I, II, III y IV utilizan agua de la presa Cointzio, pero solo el primero se abastece completamente de ella; los otros tres módulos complementan su gasto con agua de pozos particulares y de un conjunto de presas derivadoras que intervienen al río Grande de Morelia. El módulo V usa agua proveniente de la presa Malpaís.

Tabla 4.4.3 Módulos del DR 020 que usan agua de la presa Cointzio (CONAGUA, 2019, b)

Módulo	Superficie (ha)	Fuente de abastecimiento	Vol. Presa Cointzio (10³ m³)
Módulo I	1394	Presa Cointzio	5470
Módulo II	1139	Presa Cointzio y río Grande de Morelia	1602
Módulo III	8498	Presa Cointzio, río Grande de Morelia y pozos particulares	18077
Módulo IV	3641	Presa Cointzio, río Grande de Morelia y pozos particulares	8179
Módulo V	5093	Presa Malpaís	0

En el Anexo D se muestran los volúmenes entregados por la CONAGUA durante el periodo de 1998 a 2018 para el riego del DR 020. (CONAGUA, 2019 b). Se sabe que la temporada de riego inicia en octubre del año i y finaliza en junio del año i+1; en los meses de julio, agosto y septiembre no se realizan extracciones de la presa, pues se usan para almacenar agua y preparar el nuevo año agrícola. Los valores estadísticos de los volúmenes extraídos para riego se observan en la Tabla 4.4.4.

Tabla 4.4.4 Estadísticos de volúmenes extraídos para riego (miles m³) (CONAGUA, 2019, b)

MES	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Anual
máximo	5724.2	6491.1	16279.1	15947.8	5738.9	2930.1	0.0	0.0	0.0	358.6	978.9	2262.9	41048.5
mínimo	247.1	25.3	1223.9	5280.0	131.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15589.0
Promedio	2080.4	2734.6	10229.9	11429.4	2700.2	546.6	0.0	0.0	0.0	59.5	250.9	792.5	30824.0
Mediana	1820.4	2557.1	10088.4	12015.8	2719.2	138.2	0.0	0.0	0.0	0.0	112.1	689.1	31700.8
Desv. Est	1399.1	1637.2	4505.2	2728.9	1571.8	816.1	0.0	0.0	0.0	115.8	290.0	544.4	6357.4

La Figura 4.4.5 muestra las extracciones promedio mensuales; se observa que los meses con menor demanda son octubre y noviembre (59.49 y 250.95 $miles\ m^3$, respectivamente), mientras que los de mayor demanda son marzo y abril (10229.95 y 11429.44 $miles\ m^3$) que corresponden al ciclo primavera-verano.

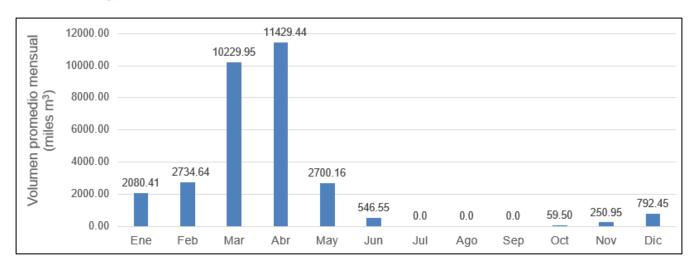


Figura 4.4.5 Volumen promedio mensual destinado a riego (CONAGUA 2019, b)

La asignación de volumen destinado a riego expresado en porcentaje se calcula al dividir cada valor promedio mensual entre la suma de todos los volúmenes promedios mensuales, en la Tabla 4.4.5 se pueden leer los valores obtenidos, mismos que se utilizaron en las primeras simulaciones del funcionamiento del vaso de la presa.

Tabla 4.4.5 Distribución mensual porcentual, uso riego (%)

Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
%	0.067	0.089	0.332	0.371	0.088	0.018	0.000	0.000	0.000	0.002	0.008	0.026

La Figura 4.4.6 muestra gráficamente la asignación porcentual histórica.

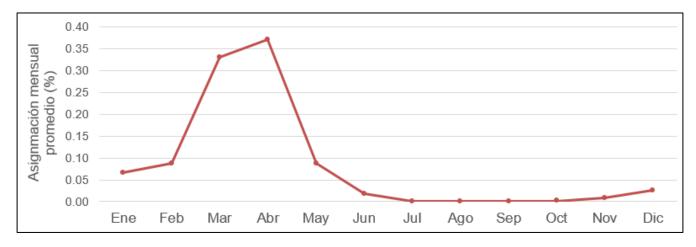


Figura 4.4.6 Distribución mensual porcentual, uso riego. (CONAGUA 2019, b)

5. Metodología

En este apartado se describe el proceso seguido para la búsqueda de políticas de operación óptimas; empieza por el cálculo de curvas Z históricas, continúa con la definición de la función objetivo, descripción del funcionamiento del vaso de la presa y termina con la explicación detallada del uso de los algoritmos GRG y AG simple, así como la generación y simulación de registros sintéticos.

5.1. Curva Z

La CONAGUA es el organismo responsable de establecer el volumen total anual de agua (volumen para dotación de agua potable más el volumen para uso de riego) de agua que puede ser extraída del embalse a partir del estado de llenado al primero de octubre; el volumen de extracción, se infiere a partir de una gráfica, denominada aquí curva "Z".

Pare tener conocimiento de la forma de la curva Z (Acuña, 2014), se analizan las extracciones históricas totales que tiene la presa para cada año, lo mismo ocurre para los almacenamientos iniciales, considerando que el año hidrológico comienza el primero de octubre.

Posteriormente se seleccionan los valores máximos y mínimos de cada variable, obteniendo las parejas de puntos que conforman la curva Z: (almacenamiento inicial mínimo, extracción mínima) y (almacenamiento inicial máximo, extracción máxima).

La serie de volúmenes correspondientes a la presa Cointzio se muestran en el Anexo E, cabe destacar que en el reporte de funcionamiento diario de la CONAGUA no se tienen los registros completos, faltando los volúmenes de 1986 a 1993. La Figura 5.1.1 muestra la curva Z generada a partir de la información proporcionada por la CONAGUA.

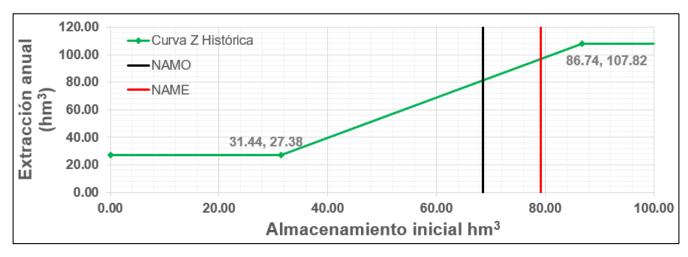


Figura 5.1.1 Curva Z histórica (Funcionamiento diario del embalse CONAGUA)

Las coordenadas que definen a la curva Z histórica son: (31.44, 27.38) y (86.74, 107.82) hm^3 , por lo que se puede concluir que el almacenamiento máximo histórico, rebasó a la capacidad de la presa al NAME (79.23 hm^3) y se acerca peligrosamente al volumen que se tiene al nivel de la corona de la cortina (88.57 hm^3); de esta manera se considera el posible uso de una curva batimétrica distinta a la oficialmente reportada por la CONAGUA.

Lo anterior condujo a generar una nueva curva Z, a partir de la cual se iniciaría la optimización del sistema. La nueva curva Z se creó con la información proporcionada por la CONAGUA Dirección Local de Michoacán con los últimos cinco ciclos de riego (2014-2015 a 2018-2019); para determinar los volúmenes totales de extracción anual máximos y mínimos, se utilizó la suma de los volúmenes extraídos y aprobados para su uso agrícola más el volumen promedio anual de 20.811 hm^3 para la dotación de agua potable (Tabla 5.1.1).

El volumen de almacenamiento inicial máximo se igualó a la capacidad del embalse al NAMO (Tabla 4.2.2), mientras que para el almacenamiento inicial mínimo se utilizó el valor histórico del almacenamiento al primero de octubre de 2016 igual a 54.585 hm^3 , que corresponden al año con el volumen mínimo extraído durante los periodos 2014-2015 y 2018-2019.

Tabla 5.1.1 Volúmenes aprobados para riego 2014-2015 a 2018-2019 (CONAGUA Dirección Local de Michoacán, DR 020)

Ciclo	Vol. riego	Vol. A. Potable	Vol. total
	(hm^3)	(hm^3)	(hm^3)
2014-2015	51.30	20.811	72.111
2015-2016	52.80	20.811	73.611
2016-2017	45.50	20.811	66.311
2017-2018	53.10	20.811	73.911
2018-2019	52.94	20.811	73.751

Las coordenadas que resultan al usar las consideraciones antes descritas son: (54.58, 66.31) y (68.52, 73.91) hm^3 . La Figura 5.1.2 muestra la curva Z corregida.

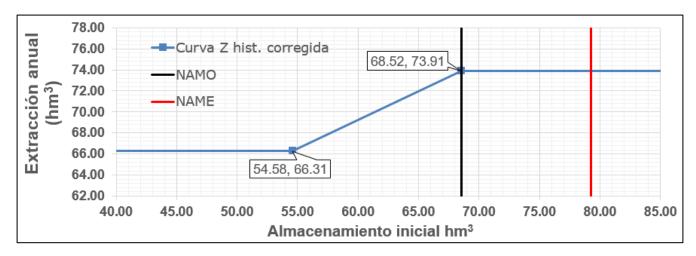


Figura 5.1.2 Curva Z histórica corregida (CONAGUA Dirección local de Michoacán)

La pendiente de la curva (Acuña, 2014), determina la extracción que corresponde a cada almacenamiento inicial y con ella se puede comenzar a hacer simulaciones para optimizar las extracciones, obteniendo una nueva curva Z que cumpla con las restricciones del embalse y que optimice la función objetivo propuesta.

5.2. Función objetivo

El problema que se presenta consiste en identificar el volumen de agua que debe extraerse para satisfacer todas las demandas y obtener el máximo beneficio durante la operación. (Arallely, 2010); la decisión de que volumen extraer depende del almacenamiento inicial, pero dado que el funcionamiento de una presa se rige por la ecuación de continuidad, se debe cumplir que el almacenamiento final sea mayor o igual al volumen al NAMINO (Figura 5.2.1), pero que al mismo tiempo que sea menor o igual al volumen al NAMO. (Arallely, 2010).

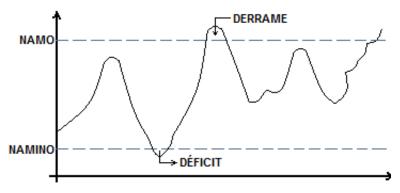


Figura 5.2.1 Condiciones a evitar en una presa (Alegría, 2010)

Las 2 condiciones a evitar que se consideran durante la simulación son:

- Derrame: se presenta cuando la extracción es poca y los ingresos son mayores a los estimados, por lo que el nivel de agua puede sobrepasar el NAMO.
- Déficit: se presenta cuando la extracción es demasiada y los ingresos son menores a los estimados, entonces el nivel de agua puede ser menor al NAMINO.

En primeras aproximaciones, las optimizaciones del funcionamiento del embalse consistían en reducir los volúmenes derramados y los déficits durante la operación simulada con los registros históricos de ingreso. Para ello se utilizaba la ecuación 5 que maximiza la reducción de volúmenes derramados y los déficits, ambos valores expresados en porcentaje respecto a los valores históricos reportados en el funcionamiento diario de la CONAGUA, mismos que únicamente se consideraron como referencia y punto de partida.

$$FO1 = Max \left[\left(1 - \frac{Derr_{sim}}{Derr_{his}} \right) + \left(1 - \frac{Def_{sim}}{Def_{his}} \right) \right]$$
 (5)

Donde:

 $Derr_{sim}$: son los volúmenes totales derramados durante la simulación (hm^3) .

 $Derr_{his}$: son los volúmenes totales derramados extraídos del reporte de funcionamiento diario de la CONAGUA (hm^3) .

 Def_{sim} : son los volúmenes totales que faltan por déficit durante la simulación (hm^3) .

 Def_{his} : son los volúmenes totales que faltan por déficit calculados a partir del reporte de funcionamiento diario de la CONAGUA (hm^3) .

Al tratarse de una presa que aporta parte de los volúmenes extraídos para el riego del DR 020, es conveniente maximizar estos volúmenes para obtener un beneficio óptimo durante la operación del embalse. Para lograrlo se utilizó la ecuación 6 que maximiza las extracciones por obra toma, al mismo tiempo que se penalizan los volúmenes derramados o los volúmenes faltantes por déficit.

La ecuación 6 permite dar mayor importancia ya sea a los volúmenes derramados o a los volúmenes de déficit, de acuerdo a las necesidades que se tengan y tan solo variando los coeficientes de penalización que los afectan.

$$FO = Max \left(CrVol_{riego} - CderrVol_{derramado} - CdéfVol_{déficit} - C_{ajuste} \left[1 - \sum_{m=1}^{12} P_m \right] \right)$$

$$\tag{6}$$

Donde:

 $Vol_{derramado}$: son los volúmenes derramados por obra de excedencia (hm^3) .

 $Vol_{déficit}$: son los volúmenes que faltan por déficit (hm^3) .

 Vol_{riego} : son los volúmenes extraídos para riego por obra toma (hm^3) .

 P_m : son los porcentajes de la asignación mensual, cuyos valores se multiplica por el volumen anual de agua destinada a riego para obtener el respectivo volumen mensual (adimencional). Cr: es el coeficiente que afecta al volumen de riego (adimensional).

Cderr: es el coeficiente de penalización por derrame (*adimensional*).

 $Cd\acute{e}f$: es el coeficiente de penalización por déficit (adimensional).

 C_{ajuste} : es el coeficiente de penalización que asegura que la suma de los porcentajes de asignación de agua destinada a riego sea igual a 1. (adimensional).

La optimización del funcionamiento del embalse se realizó utilizando en primera instancia un algoritmo Gradiente Reducido Generalizado No Lineal (GRG) para la búsqueda de cuatro incógnitas que consisten en los valores que definen a las curvas Z (políticas anuales).

Posteriormente se usó un Algoritmo Genético Simple (AG) con el que además se buscaron políticas mensuales, por lo que se tuvo un total de dieciséis incógnitas (cuatro de la curva Z y doce de los porcentajes de distribución de agua para riego).

5.3. Funcionamiento del vaso de almacenamiento.

Un vaso de almacenamiento se forma cuando se coloca de manera perpendicular al paso de corriente un obstáculo, comúnmente llamado cortina, provocando un remanso que limita el escurrimiento del agua. La función del vaso de almacenamiento según Francisco J. Aparicio en su libro "Fundamentos de Hidrología de Superficie" (Aparicio, 1992) se puede citar:

"Un vaso de almacenamiento sirve para regular los escurrimientos de un río, es decir, para almacenar el volumen de agua que escurre en exceso en las temporadas de lluvia para posteriormente usarlo en épocas de sequía, cuando los escurrimientos son escasos. Es necesario, entonces, almacenar el volumen sobrante para poder satisfacer la demanda cuando el escurrimiento en el río no es suficiente, para lo cual se requiere un vaso de almacenamiento"

Los principales componentes de un vaso de almacenamiento son:

- NAMINO, Nivel de Aguas Mínimas de Operación, es el nivel más bajo con el que puede operar una presa. El nivel coincide con la entrada de la obra de toma, que en presas dedicadas a la generación eléctrica, representa la mínima carga necesaria para que las turbinas operen adecuadamente. Si el embalse se utiliza para irrigación, suele llamársele NAMIN (Nivel de aguas mínimas).
- NAMO, Nivel de Aguas Máximas de Operación. Es el nivel máximo con el que puede operar una presa para satisfacer las demandas; si el vertedor no está controlado por compuertas, el nivel coincide con la cresta vertedora; sin embargo, el NAMO suele estar por arriba de la cresta o variar según la política de operación.
- NAME, Nivel de Aguas Máximas Extraordinaria. Es el nivel más alto que debe alcanzar el agua de la presa, en cualquier condición de operación.

Entre los niveles característicos del embalse existen diferentes volúmenes de agua, que a continuación se enlistan:

- Volumen muerto: volumen que no se puede usar porque existe por debajo del NAMINO.
- Volumen de azolve: volumen que se encuentra por debajo de la obra toma y que se utiliza para recibir todos los sólidos que sean depositados.
- Volumen útil: es aquel que se encuentra entre los niveles de NAMO y NAMINO.
- Volumen de súper almacenamiento: es el volumen que se encuentra entre los niveles de NAME y NAMO, y se utiliza para el control de avenidas.

Adicionalmente, el espacio libre entre el NAME y la corona de la presa se denomina Bordo libre y está destinado a contener el oleaje y las mareas producidas por viento.

La Figura 5.3.1 muestra el esquema general de un vaso de almacenamiento.

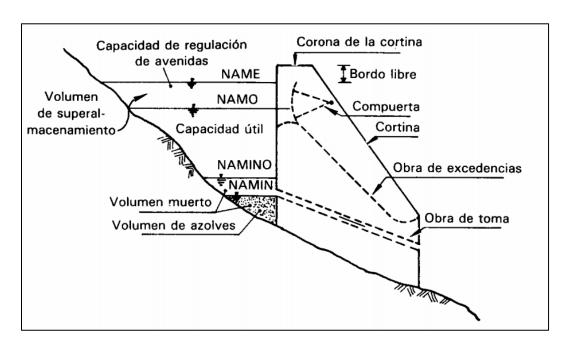


Figura 5.3.1 Principales componentes de un vaso. (Fundamentos de hidrología de Superficie)

Para simular el funcionamiento de un vaso (Caballero, 1997), se utiliza la ecuación de continuidad, que para un intervalo de tiempo Δt se puede escribir como (7):

$$E - S = \Delta V \tag{7}$$

Donde:

E: Volumen de agua que entra al vaso durante el intervalo de tiempo considerado, ($\hbar m^3$).

S: Volumen de agua que sale del vaso durante el mismo intervalo, (hm^3) .

 ΔV : Variación de volumen almacenado, ($\hbar m^3$).

Para los volúmenes de entrada al embalse de Cointzio, se consideró únicamente a los escurrimientos que se presentaron por cuenca propia, deducidos por la Comisión Nacional del Agua (CONAGUA) en su reporte histórico de 1940 a 2016, pero corregidos con datos de la hidrométrica 12347 Santiago Undameo (Figura 5.3.2); mientras que para los volúmenes de salida se consideraron extracciones de volumen de agua para riego y para dotación de agua potable, calculadas a partir de la curva Z , así como una evaporación promedio neta que considera los volúmenes de entrada por lluvia y de salidas por evaporación media mensual.

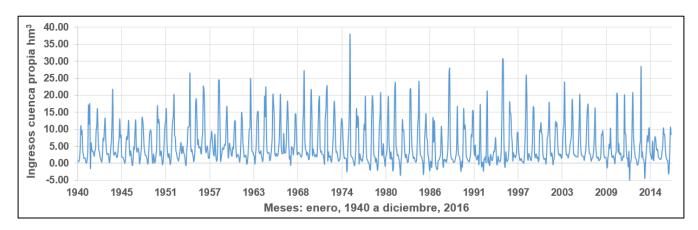


Figura 5.3.2 Serie mensual de Ingresos por cuenca propia (CONAGUA y datos de la hidrométrica 12347 Santiago Undameo)

El intervalo de tiempo Δt que se use depende del tamaño del vaso; generalmente $\Delta t = 1 \ mes$, pero en vasos muy grandes Δt puede ser de varios meses aunque nunca mayor a un año y por el contrario, en vasos de poca capacidad, el intervalo de regulación puede reducirse a una semanas o hasta un día (Aparicio, 1992); para simular el funcionamiento de vaso de la presa Cointzio, se utilizó $\Delta t = 1 \ mes$.

Tomando en cuenta las consideraciones anteriores se llega a la ecuación 8:

$$V_f = V_i + E_{cp} - \left(S_{riego} + S_{potable}\right) - Evap_{neta} \tag{8}$$

Donde:

 V_f : Volumen almacenado en la presa al final del intervalo considerado. (hm^3) .

 V_i : Volumen almacenado en la presa al inicio del intervalo considerado. (hm^3) .

 E_{cp} : Entrada por cuenca propia (escurrimientos). (hm^3) .

 $Evap_{neta}$: Volumen calculado como la suma algebraica de la lámina de evaporación más la de lluvia. $(h\ m^3)$.

 $S_{potable}$: Extracción para satisfacer dotación de agua potable. (hm^3) .

 S_{riego} : Extracción de agua destinada para riego. (hm^3) .

La Figura 5.3.3 muestra el diagrama de flujo del funcionamiento de vaso a nivel anual que se utilizó en las simulaciones de este trabajo.

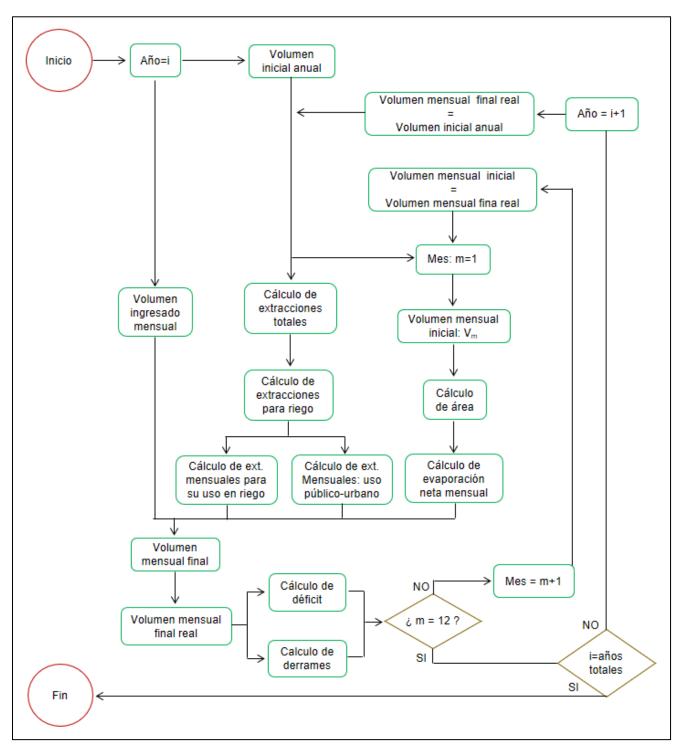


Figura 5.3.3 Diagrama de flujo de funcionamiento de vaso. (Elaboración propia)

A continuación, se explica el diagrama de flujo:

La simulación del funcionamiento de vaso inicia en el año i=0, que corresponde al año de 1940, al igualar el volumen del almacenamiento inicial al primero de octubre con el volumen que se tiene a la elevación del NAMO (68.51 hm^3); para los años i+1 posteriores, se ocupará el volumen final real calculado para el año anterior inmediato.

Todos los volúmenes mensuales de ingreso por cuenca propia se conocen desde el inicio de la simulación del funcionamiento de vaso (Figura 5.3.2), ya que los valores se obtienen del registro de volúmenes deducidos por la CONAGUA y corregidos con datos de la hidrométrica 12347 Santiago Undameo; por el contrario los volúmenes extraídos deben calcularse.

A partir del volumen al inicio del año se obtiene la extracción total anual por obra toma utilizando la curva tipo Z; luego sí se considera que la dotación de agua potable es una extracción que debe garantizarse, se puede calcular la extracción de volumen destinado para riego con la ecuación 9.

$$S_{riego} = S_{total\ anual} - S_{potable} \tag{9}$$

Donde:

 $S_{total\ anual}$: es la extracción de agua total anual (hm^3) .

 S_{riego} : es la extracción de agua anua destinada para riego (hm^3) .

 $S_{potable}$: es la extracción de agua anual promedio usada para satisfacer la dotación de agua potable, del apartado 4.4 resulta igual a 20.811 hm^3 .

Después de conocer los volúmenes anuales que deben extraerse para satisfacer las demandas, se calcula su distribución temporal a lo largo de los 12 meses correspondientes.

Para calcular el volumen mensual de agua destinado a riego se utiliza la ecuación 10; mientras que la distribución de agua para uso público urbano se considera invariable (de acuerdo a las consideraciones de la sección 4.4), por lo que, si consideramos una extracción anual de 20.811 hm^3 , se tendrá una dotación mensual de 1.734 hm^3 para agua potable.

$$S_{riego}_{m} = S_{riego} P_{m} \tag{10}$$

Donde:

 S_{riego} $_m$: es la extracción de agua destinada para riego que debe realizarse en el mes m (hm^3) . P_m : es la asignación promedio mensual expresada en porcentaje y cuyos valores se muestran en la Tabla 4.4.5.

De manera similar, se debe calcular la evaporación neta promedio mensual utilizando la ecuación 11 y la curva de elevaciones-capacidades-áreas (Figura 4.2.2.) de la sección 4.2.

$$Evap_{neta_m} = 0.00001L_{evap_m}A \tag{11}$$

Donde:

 $Evap_{neta_m}$: es el volumen evaporado neto en el mes m (hm^3) .

 L_{evap} : es la lámina de evaporación neta promedio en el mes m (mm); los valores se pueden encontrar en la Tabla 4.3.2.

A: es el área del espejo de agua del embalse en km^2 , que se calcula usando la ecuación 2 de la sección 4.2.

Una vez que se tienen presentes todas las salidas de agua, así como los volúmenes de ingreso al embalse, se calcula el almacenamiento al final de cada mes con la ecuación 12.

$$V_{m+1} = V_m + E_{cp_m} - \left(S_{riego_m} + S_{potable_m}\right) - Evap_{neta_m}$$
 (12)

Donde:

 V_m : es el volumen de almacenamiento inicial, en el mes m (hm^3).

 V_{m+1} : es el volumen de almacenamiento final, en el mes m+1 (hm^3) .

 E_{cp_m} : es el volumen de entrada por cuenca propia (Anexo B) en el mes m (hm^3).

 S_{riego_m} : es el volumen extraído para satisfacer la dotación de agua potable, de las consideraciones anteriores es igual a 1.734 (hm^3).

 $S_{potable_m}$: es la extracción de agua destinada a riego que debe realizarse en el mes m (hm^3). $Evap_{neta_m}$: es el volumen evaporado neto en el mes m (hm^3).

Posteriormente, debido a que el volumen almacenado a final de mes calculado puede no ser posible físicamente, se realiza un ajuste utilizando la ecuación 13.

$$if\{(V_{m+1} > V_{NAMO}), V_{NAMO}, else \ if[(V_{m+1} < V_{NAMINO}), V_{NAMINO}, else \ V_{m+1}]\}$$
 (13)

Donde:

 V_{NAMO} : es el volumen a la elevación del NAMO, igual a 68.51 (hm^3) . V_{NAMINO} : es el volumen a la elevación del NAMINO, igual a 0.90 (hm^3) .

Finalmente, para cada mes, se calculan los volúmenes derramados y por déficit que se presentan, utilizando la ecuación 14 y 15, respectivamente.

$$if\{(V_{m+1} > V_{NAMO}), V_{derr_m}, else 0\}$$

$$(14)$$

$$if\left\{ (V_{m+1} < V_{NAMINO}), V_{def_m}, else \ 0 \right\}$$
 (15)

Donde:

 V_{derr_m} : es el volumen derramado en el mes i, calculado como: $V_{i+1} - V_{NAMO} \ (hm^3)$. V_{def_m} : es el volumen de déficit en el mes i, calculado como: $V_{NAMINO} - V_{i+1} \ (hm^3)$.

El proceso de cálculo se repite hasta completar los 12 meses del año hidrológico, considerando que el volumen real al final de un mes se convierte en el volumen inicial del mes siguiente; de la misma manera, el volumen final real del último mes (septiembre) se convierte en el volumen inicial de almacenamiento al 1 de octubre del año posterior inmediato. La simulación del funcionamiento de vaso continúa hasta completar todos los años en los que existan registros.

5.4. Gradiente Reducido Generalizado (GRG) no lineal.

El algoritmo GRG en su versión GRG2 (López y Sánchez, 1998) de Microsoft Excel© se utilizó en un comienzo para buscar políticas de extracción anuales usando la ecuación 6 como función objetivo para maximizar las extracciones y penalizar los volúmenes de derrames y déficits. El archivo que se utilizó contiene varias hojas de cálculo, siendo la más importante aquella que simula el funcionamiento de vaso de la presa Cointzio.

La Tabla 5.4.1 muestra la simulación del funcionamiento de vaso que se programó en una de las hojas de cálculo siguiendo el diagrama de flujo indicado en la Figura 5.3.3.

PR	ESA: COINTZ	10				PRUEBA DE	POLÍTICA DE	OPERACIÓN U	JN AÑO DE S	IMULACIÓN			
MES	Almac. Inicial	Almac. Final calculado	Almac. Final real	Ingreso	Extracción riego	Extracción agua potable	Extracción total	Evaporación neta	% Evap. Neta	Derrame	Déficit	Elevación inicial	Área
d/mm/aaa	hm³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	%	hm³	hm³	msnm	ha
01/10/1940	68.520	70.472	68.520	3.878	0.106	1.734	1.841	0.086	0.001	1.952	0.000	1997.698	535.940
01/11/1940	68.520	68.578	68.520	2.444	0.449	1.734	2.183	0.202	0.003	0.058	0.000	1997.698	535.940
01/12/1940	68.520	66.607	66.607	1.451	1.418	1.734	3.152	0.211	0.003	0.000	0.000	1997.698	535.940
01/01/1941	66.607	62.516	62.516	1.608	3.723	1.734	5.457	0.242	0.004	0.000	0.000	1997.500	526.588
01/02/1941	62.516	57.061	57.061	1.487	4.893	1.734	6.628	0.314	0.005	0.000	0.000	1997.057	506.240
01/03/1941	57.061	36.792	36.792	0.218	18.305	1.734	20.040	0.448	0.008	0.000	0.000	1996.419	478.306
01/04/1941	36.792	14.399	14.399	0.134	20.452	1.734	22.186	0.341	0.009	0.000	0.000	1993.355	364.095
01/05/1941	14.399	8.833	8.833	1.140	4.832	1.734	6.566	0.140	0.010	0.000	0.000	1986.821	203.199
01/06/1941	8.833	10.302	10.302	4.157	0.978	1.734	2.712	-0.024	-0.003	0.000	0.000	1983.426	149.968
01/07/1941	10.302	25.697	25.697	17.036	0.000	1.734	1.734	-0.093	-0.009	0.000	0.000	1984.494	165.019
01/08/1941	25.697	35.656	35.656	11.559	0.000	1.734	1.734	-0.134	-0.005	0.000	0.000	1990.853	291.281
01/09/1991	35.656	51.253	51.253	17.197	0.000	1.734	1.734	-0.135	-0.004	0.000	0.000	1993.136	357.067
TOTAL ANUA	523.422		506.155	62.309	55.156	20.811	75.967	1.598		2.010	0.000		

Tabla 5.4.1 Simulación mensual de funcionamiento de vaso.

A continuación, se describen las otras pestañas del archivo de Microsoft Excel©, que sirven como soporte a la primera, aportando valores para las simulaciones:

- Ingresos (hm³): contiene los volúmenes de escurrimiento deducidos por la CONAGUA y corregidos usando los valores de la hidrométrica Santiago Undameo (Anexo B).
- Curva de elevaciones-capacidades-áreas: contiene los valores del Anexo A, a partir de los cuales se graficaron las curvas y utilizando las herramientas de Microsoft Excel© se obtuvieron las ecuaciones 1 y 2 del apartado 4.2
- %Evaporación neta: contiene los valores resultantes de sumar algebraicamente las evaporaciones (salidas) y la cantidad de lluvia (entradas). (Tabla 4.3.2)

- %Asignación mensual riego: en donde se encuentran los volúmenes extraídos para el riego (Anexo D) que se utilizaron para calcular la asignación porcentual histórica de extracciones de volúmenes para su uso en riego.
- Extracciones (hm^3) : que calcula la extracción total anual por obra toma a partir del almacenamiento inicial al primero de octubre de cada año, con ayuda de la curva Z.

Para lograr el símil en la hoja de cálculo de Microsoft Excel©, la extracción total anual se obtiene con la triple condicional 16.

$$if\{(V_m < V_{min}), Ext_{min}, else\ if[(V_m > V_{max}), Ext_{max}, else\ (a * V_m + b)]\}$$
 (16)

Donde:

 V_m : es el volumen de almacenamiento inicial a primero de octubre de cada año (hm^3) .

 V_{min} : es el volumen de almacenamiento mínimo de la curva Z (hm^3) .

 V_{max} : es el volumen de almacenamiento máximo de la curva Z (hm^3) .

 Ext_{min} : es el volumen extraíble mínimo de la curva Z (hm^3) .

 Ext_{max} : es el volumen extraíble máximo de la curva Z (hm^3) .

a : es la pendiente de la recta que se forma al prolongar una línea entre las coordenadas que definen a la curva Z (adimensional).

b: es la ordenada al origen de la recta que se forma al prolongar una línea entre los puntos que definen a la curva Z (hm^3) .

Adicionalmente, existe una pestaña que contiene los valores de las coordenadas que definen a la curva Z y que se modifican según la herramienta de Solver; en la misma hoja se encuentra el resumen histórico de la simulación (Tabla 5.4.2), cuyos valores se sustituyen en la función objetivo de la ecuación 6.

Ingreso Ext. Riego Ext. Potable Ext. Total Evap. Neta Derrame Déficit (hm^3) Unidades (hm^3) (hm^3) (hm^3) (hm^3) (hm^3) (hm^3) 3129.73 1602.46 4732.20 104.59 124.37 GRG-E5 4867.80 8.64

Tabla 5.4.2 Resumen histórico de la simulación fun. vaso. Ejemplo.

En la ventana de parámetros de Solver (Figura 3.1.1), se escriben las restricciones propias del funcionamiento del embalse, mientras que en las celdas de decisiones se referencian a las coordenadas de la curva Z, cuyos valores modifican la simulación histórica obteniéndose nuevos volúmenes que se evalúan en la función objetivo; con ello se decide el próximo movimiento o salto dentro de la región factible.

5.5. Algoritmo Genético (AG) Simple.

El algoritmo genético utilizado se encuentra codificado en Matlab, fue escrito originalmente por Andrew Chipperfield en marzo de 1994 y cuenta con diversas modificaciones hechas por el Instituto de Ingeniería desde enero del 2004. El algoritmo trabaja en combinación con la simulación del funcionamiento de vaso programado en Fortran© y compilado con la versión de Microsoft Developer Studio del paquete Fortran PowerStation 4.0 versión 1994-1995, bajo el nombre RIEGOYPO.exe.

El algoritmo AG funciona gracias a un acoplamiento de catorce subrutinas, cada uno de los cuales realiza una función diferente; a continuación, se describe cada uno de ellos:

- SGAOBJcointz.m: es el controlador principal del Algoritmo Genético Simple, su código fuente se muestra en el Anexo F. Aquí se define: el número de individuos que conforman a la población; el número de generaciones (iteraciones); la brecha generacional, es decir, el número de individuos nuevos que se crean; el número de variables (incógnitas) y la precisión de la representación binaria; en seguida se escriben los valores máximos y mínimos que pueden tomar las variables a buscar. Luego el script llama a las siguientes subrutinas, que se ejecutan en orden descendente:
 - o rep.m: replica una matriz en dos dimensiones, con una fila y "ene" columnas, cada una de las cuales corresponde a una variable incógnita.
 - crtbp.m: crea una población de vectores binarios (cromosomas), cuyo tamaño y estructura está determinada por el número de variables y la precisión de la representación binaria, la función llama a crtbase.m.
 - crtbase.m: crea un vector fila cuyos elementos son la base de los bits asociados a un cromosoma (concatenación de cadenas binarias)
 - bs2rv.m: decodifica los cromosomas en números reales utilizando decodificación binaria o decodificación "Gray".
 - Objcointz.m (Anexo G): evalúa los resultados de la simulación utilizando la función objetivo. El script crea/guarda los archivos: "CURVA.txt" y "FACTORIEGO.txt", luego llama al programa de simulación RIEGOYPO.exe y finalmente abre los archivos de resultados para evaluar la función objetivo; aquí mismo se define tanto la función objetivo, como los coeficientes de penalización.
 - ranking.m: clasifica a los individuos de acuerdo a su "fitness" asociado y devuelve un vector columna; para múltiples poblaciones se realizan diferentes clasificaciones por separado.
 - select.m: organiza a las múltiples poblaciones y llama a la función de bajo nivel: rws.m para realizar la selección real.
 - rws.m: selecciona un número dado de individuos de cada población con el método de la ruleta y devuelve un vector columna con los índices de la nueva

generación de cromosomas. La nueva población está lista para los operadores de cruza.

- recombin.m: combina los cromosomas entre dos pares de individuos; la función maneja múltiples poblaciones y llama a la función de bajo nivel: xovsp.m para realizar el proceso de recombinación real.
 - xovsp.m: utiliza las matrices que contienen la representación binaria de los individuos para aplicar el cruce de pares consecutivos de cromosomas en un punto con una probabilidad dada; al final devuelve la población resultante.
- o mut.m: llama a la representación binaria de la población actual y muta a cada elemento de acuerdo a una probabilidad dada, para obtener una nueva población.
- reins.m: reinserta la descendencia creada en la nueva población que reemplazara a los padres.

El algoritmo AG es un proceso iterativo y solo se detiene cuando se cumple el número de generaciones fijado al principio. Los primeros ensayos que se realizaron con el algoritmo AG buscan optimizar la función objetivo de la ecuación 6, siendo los individuos de cada generación el conjunto de puntos que conforman la curva Z: (almacenamiento inicial mínimo, extracción mínima) y (almacenamiento inicial máximo, extracción máxima); esto se traduce en cuatro incógnitas. En análisis posteriores también se busca una distribución óptima de los porcentajes de extracción mensual de agua destinada al riego, por lo que se tendrán dieciséis variables de búsqueda: cuatro de la curva Z y doce de los porcentajes mensuales.

En cada iteración, el algoritmo AG guarda los resultados del mejor individuo en el archivo de salida: solución.txt, que contiene a las dieciséis variables que se buscaron (las primeras cuatro definen a la curva Z, mientras que los doce restantes corresponden a los valores porcentuales de la distribución de agua destinada a riego).

El programa RIEGOYPO.exe simula el funcionamiento de vaso de la presa siguiendo el diagrama de flujo de la Figura 5.3.3. El programa funciona al ser llamado por la función Objcointz.m, aunque también se puede ejecutar de forma independiente proporcionando los archivos de entrada necesarios para su funcionamiento.

El programa principal se encarga de la ejecución de la secuencia del algoritmo de funcionamiento de vaso y de tres subrutinas:

- Subrutina LEE_DATOS: se encarga de leer los archivos de entrada que contienen los datos específicos de la presa.
- Subrutina MESBUENO: ajusta el índice del inicio del mes en el proceso de simulación (se inicia en octubre) a la secuencia que se tiene normalmente.
- Subrutina INTERLIN: se realiza la interpolación lineal de los valores de la curva elevaciones capacidades áreas.

Los archivos de datos de entrada necesarios para la simulación del funcionamiento de vaso, se describen a continuación:

CURVAEX.txt

Archivo tipo .txt

El archivo solo tiene un renglón con 4 valores que corresponden al almacenamiento mínimo (hm^3) , la extracción mínima anual (hm^3) , el almacenamiento máximo (hm^3) y la extracción máxima anual (hm^3) .

El archivo puede ser creado manualmente para la simulación del vaso, introduciendo valores conocidos; o bien, se puede esperar a que el algoritmo AG creé el archivo y converja a los valores de la curva Z óptimos.

Valores que corresponden a los calculados al corregir la curva Z histórica (Figura 5.1.2):

54.58 66.31 68.52 73.91

datosge

Archivo tipo: archivo de sistema.

El archivo contiene las características de la presa:

o En el primer renglón se tiene el nombre que llevara la simulación:

SIMULACION DE LA PRESA COINTZIO

o En el segundo renglón aparece el nombre de la presa:

PRESA: COINTZIO

 En el tercer renglón se encuentran dos números, el primero de ellos indica el número de años que se simularan, luego se indica el año desde el cual inicia la simulación:

76 1940

o En el cuarto renglón aparecen tres valores, las capacidades de la presa al NAMO, NAMINO y NAMO nuevamente, todos los valores en hm^3 :

68.52 0.91 68.52

o En el guinto renglón se indica el grado de aproximación:

1.0e20

 En sexto renglón un único valor indica el número de puntos que define la curva de elevaciones-capacidades-áreas:

50

 \circ En el séptimo, octavo y noveno renglón, se colocan los valores de la curva de elevaciones capacidades áreas; primero aparecen las elevaciones en msnm, luego

aparecen las áreas del espejo del agua que se tienen para cada elevación en ha y finalmente aparecen las elevaciones en hm^3 .

Para cada renglón (siete, ocho y nueve) se tienen tantos valores como se indica en el renglón seis del mismo archivo:

```
1972.31 1972.51973 1973.51974 1974.51975 1975.51976 1976.51977 1977.5
1978 1978.51979 1979.51980 1980.51981 1981.51982 1982.51983 1983.5
1984 1984.51985 1985.51986 1986.51987 1987.51988 1988.51988.99
1990 1991 1992 1993 1994 1995 1995.97 1996 1997 1998 1999
1999.47 2000 2001 2001.32
```

47.489 48.813 51.715 54.547 56.724 59.796 63.097 67.454 73.948 79.584 84.163 88.853 93.478 98.531 104.400 110.483 117.088 122.034 128.026 135.061 150.763 162.987 171.962 179.158 186.369 193.304 200.472 210.631 218.642 226.015 234.047 243.245 251.733 261.652 294.246 317.453 343.543 370.861 398.188 420.243 442.155 463.284 463.938 487.036 512.119 538.476 551.287 568.306 596.701 604.745

 En el último renglón se escriben 12 datos que corresponden a los porcentajes de evaporación neta promedio mensuales en mm y en orden cronológico: enero, febrero, marzo, abril, mayo, junio, julio, agosto, septiembre, octubre, noviembre y diciembre:

45.96 62.08 93.71 93.66 68.78 -16.29 -56.43 -46.02 -37.69 15.97 37.72 39.46

FACTOPOT.txt

Archivo de tipo .txt

El archivo indica los porcentajes en los que se divide la asignación anual de agua potable para los doce meses en orden cronológico: enero, febrero, marzo, abril, mayo, junio, julio, agosto, septiembre, octubre, noviembre y diciembre. (Abajo se pone el ejemplo, considerando todos los meses iguales).

 $0.0833\ 0.0833\ 0.0833\ 0.0833\ 0.0833\ 0.0833\ 0.0833\ 0.0833\ 0.0833\ 0.0833$

FACTORIEGO.txt

Archivo de tipo .txt

El archivo indica los porcentajes en los que se divide la asignación anual de agua para su uso en riego (asignación total anual menos asignación anual de agua potable) para los doce meses en orden cronológico: enero, febrero, marzo, abril, mayo, junio, julio, agosto, septiembre, octubre, noviembre y diciembre.

El archivo puede ser creado manualmente para la simulación del vaso, introduciendo valores conocidos; o bien, se puede esperar a que el algoritmo AG genere el archivo y converja a los valores óptimos:

0.061 0.072 0.215 0.091 0.083 0.063 0.066 0.076 0.063 0.091 0.060 0.060

volpre1

Archivo tipo: archivo de sistema.

El archivo tiene un renglón por cada año del que se tengan registros, cada renglón cuenta con los volúmenes de ingreso en Mm^3 por cuenca propia a la presa (Anexo B), ordenados de la siguiente manera:

Por ejemplo en el renglón 1, año i:

Enero, febrero, marzo, abril, mayo, junio, julio, agosto, septiembre, octubre, noviembre y diciembre del año i.

Los archivos de salida, se generan una vez que el programa termina de simular el funcionamiento de vaso de todos los años especificados. Existen cuatro archivos de salida:

• DEF01

Archivo tipo: archivo de sistema.

El archivo contiene un único valor que indica el volumen total de déficit que se presenta en la presa, durante toda la simulación. (hm^3) .

DER01

Archivo tipo: archivo de sistema.

El archivo contiene un único valor que indica el volumen total de derrames que existe en la presa, durante toda la simulación. (hm^3) .

• EXT01

Archivo tipo: archivo de sistema.

El archivo contiene un único valor que indica el volumen total de extracciones que existe en la presa, durante toda la simulación. (hm^3) .

SIMPRE1

Archivo tipo: archivo de sistema.

El archivo contiene el resumen mensual para cada año de la simulación histórica, se muestran valores de:

- \circ Almacenamiento inicial (hm^3)
- o Ingreso (hm^3)
- \circ Volumen evaporado(hm^3)
- Extracción (hm³)
- Volumen derramado (hm³)
- o Déficit (hm³)

Luego se muestra un resumen anual donde se indica:

- \circ El Derrame (hm^3)
- El déficit (hm³)
- El ingreso histórico (hm³)
- La extracción anual (hm³)
- \circ El almacenamiento promedio (hm^3)
- La elevación promedio (*msnm*)

Al final también se muestran los promedios históricos de almacenamientos en hm^3 y las elevaciones en msnm para cada mes.

De manera general la Figura 5.5.1 muestra la forma en la que opera el algoritmo genético para llegar a la solución óptima.

El algoritmo empieza con la generación aleatoria de una población inicial con una cantidad "ene" de individuos asignada, con ellos se construyen algunos de los archivos de entrada para el programa que simula el funcionamiento del vaso; otros archivos de entrada están definidos previamente.

La simulación del funcionamiento de vaso se realiza para cada individuo y los resultados se guardan en archivos de salida, cuyos valores se evalúan mediante la función objetivo. Mientras el número de generaciones fijada no se cumpla, el algoritmo selecciona los mejores individuos (Método de ruleta), a los que se les aplican los operadores de cruza y mutación para formar una nueva generación de individuos.

La nueva población ingresa al algoritmo y el proceso se repite hasta cumplir con las generaciones fijadas, solo entonces se selecciona el mejor individuo que optimice la función objetivo y con él se construyen los archivos de solución.

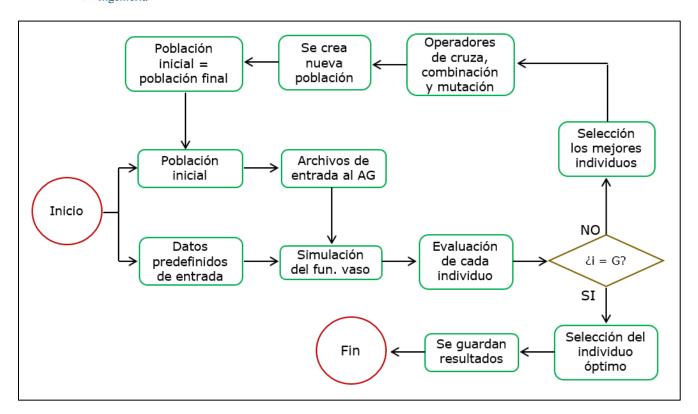


Figura 5.5.1 Diagrama de flujo del algoritmo AG acoplado con la simulación del vaso. (Elaboración propia)

5.6. Generación de muestras sintéticas.

Con el fin de revisar el comportamiento del sistema en el largo plazo de utilizarse las políticas seleccionadas, se simularon series de volúmenes de ingreso mensual sintéticos con 100 años de registro. Existen numerosas metodologías para la generación de series sintéticas a partir de un registro histórico anual o periódico (semestral, mensual, diario). El método de Svanidze modificado permite generar series sintéticas periódicas, con la ventaja de que no se requiere que los datos tengan una distribución normal (Domínguez et al., 2001, Arganis et al 2008).

El método de Svanidze (Svanidze, 1980) consta de un doble procedimiento; el primero consiste en un análisis estadístico para determinar la función de distribución de probabilidades de mejor ajuste a la serie anual, donde cada valor es igual a la suma de los volúmenes mensuales de entrada por cuenca propia que ocurren durante el año hidrológico, esto es de octubre del año i a septiembre del año i+1.

En la Figura 5.6.1 se muestra que los volúmenes totales anuales del registro histórico tuvieron el comportamiento de una función Gumbel con los parámetros: α =0.081 y β =56.6254; y a partir de la cual se generaron diferentes series de volúmenes anuales sintéticos

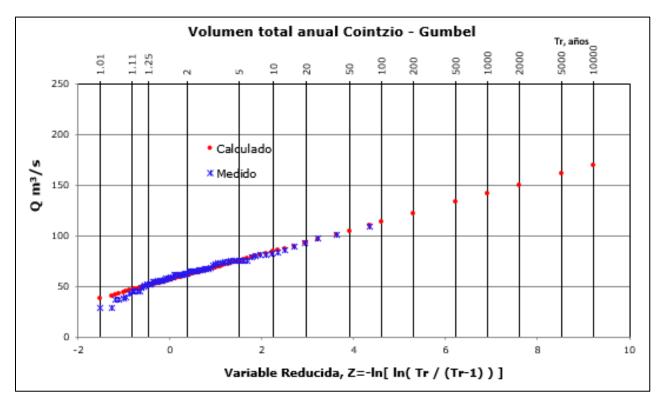


Figura 5.6.1 Volumen total anual registro histórico y curva de ajuste Gumbel.

El segundo procedimiento radica en generar fracciones sintéticas del periodo considerado, que son porcentajes mensuales respecto a los totales anuales de años aleatorios.

Por último se crean datos sintéticos mensuales multiplicando las fracciones sintéticas de los años aleatorios por los volúmenes anuales generados con la función probabilística.

La Tabla 5.6.1 muestra los valores estadísticos para los datos históricos: la media, desviación estándar, coeficiente de asimetría, coeficiente de variación (homogeneidad) y coeficiente de auto correlación (o de dependencia secuencial).

Históricos	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Sep.
Media	6.621	2.876	2.169	2.628	1.789	1.067	0.627	1.950	5.114	11.139	13.442	14.324
Desv. Est.	4.585	1.681	1.283	1.680	1.323	1.600	1.403	1.516	2.446	5.155	5.431	7.152
Coef. Asim.	1.687	0.256	-0.226	0.935	-0.536	-0.584	-0.249	0.553	1.035	0.432	0.772	0.678
Coef. Var.	0.693	0.585	0.591	0.639	0.739	1.499	2.237	0.778	0.478	0.463	0.404	0.499
C. Auto Corr.	0.341	0.607	0.404	0.687	0.406	0.488	0.599	0.246	0.428	0.567	0.220	0.201

Tabla 5.6.1 Estadísticos del registro histórico

El método de Svanidze no pueden reproducir exactamente la correlación del último mes de un año con el primer mes del año siguiente, por lo que para aprovechar la natural baja correlación que existe entre los meses de septiembre y octubre (ri,j+1=201), se han generado las muestras considerando el año hidrológico de octubre del año i a septiembre del año i + 1.

En el Anexo H, Anexo I, Anexo J, Anexo K, Anexo L, Anexo M, Anexo N, Anexo O, Anexo P y Anexo Q se encuentran las 10 series sintéticas generadas.

La Tabla 5.6.2 y Figura 5.6.2 muestra la comparación de la media de las diez series sintéticas generadas, la Tabla 5.6.3 y Figura 5.6.3 muestran las desviaciones estándar, en tanto que la Tabla 5.6.4 y Figura 5.6.4 contiene a los coeficientes de asimetría; la Tabla 5.6.5 y Figura 5.6.5 hacen lo propio con los coeficientes de variación y finalmente en la Tabla 5.6.6 y Figura 5.6.6 aparecen los coeficientes de auto correlación.

Muestra	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Sep.
Svanidze1	6.195	2.755	2.096	2.416	1.576	1.150	0.562	2.033	4.818	10.782	13.337	14.034
Svanidze2	6.620	2.968	1.990	2.340	1.512	0.909	0.413	1.685	4.952	10.722	12.787	14.590
Svanidze3	5.726	2.740	2.143	2.570	1.665	0.940	0.493	1.964	5.582	11.388	12.928	13.076
Svanidze4	6.591	3.081	2.301	2.677	1.710	0.849	0.475	2.000	5.113	11.289	12.514	15.140
Svanidze5	7.068	3.072	2.180	2.769	1.820	1.152	0.611	2.305	5.548	10.574	13.327	15.179
Svanidze6	6.303	2.924	2.122	2.674	1.777	1.175	0.638	2.110	5.549	11.752	13.879	13.358
Svanidze7	7.535	2.944	2.284	2.580	1.752	0.972	0.489	2.024	5.113	10.926	14.356	13.765
Svanidze8	6.208	2.953	2.266	2.654	1.852	0.981	0.284	1.732	5.081	11.391	12.723	16.185
Svanidze9	6.929	2.969	2.232	2.788	1.846	0.951	0.604	2.089	4.812	11.407	14.655	14.351
Svanidze10	7.359	2.894	2.173	2.948	2.011	1.182	0.684	2.079	5.108	10.396	12.775	14.584

Tabla 5.6.2 Media de las 10 serie sintéticas generadas

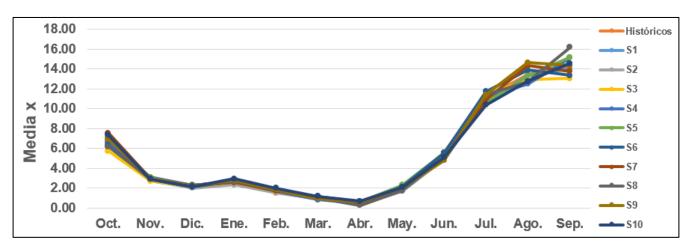


Figura 5.6.2 Comparación de la media de las series sintéticas y serie histórica.

Tabla 5.6.3 Desviación estándar de las 10 serie sintéticas generadas

Muestra	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.
Svanidze1	4.297	1.986	1.404	1.559	1.423	1.364	1.538	1.309	2.087	4.507	5.606
Svanidze2	4.077	2.317	1.533	1.751	1.356	1.107	1.443	1.498	2.180	4.845	4.309
Svanidze3	3.737	1.601	1.146	1.343	1.161	1.693	1.581	1.568	2.651	5.512	5.078
Svanidze4	4.068	1.552	1.119	1.475	1.227	1.783	1.442	1.397	2.373	5.890	4.589
Svanidze5	4.577	2.214	1.580	1.654	1.384	1.193	1.621	1.629	2.591	4.879	5.749
Svanidze6	4.696	2.160	1.502	1.612	1.588	2.427	1.525	1.427	2.812	5.332	5.996
Svanidze7	4.884	2.257	1.411	1.924	1.618	2.140	1.396	1.414	2.958	4.990	5.961
Svanidze8	3.875	1.451	1.413	1.530	1.220	1.525	1.732	1.611	2.472	5.349	4.883
Svanidze9	4.324	2.120	1.271	1.575	1.739	1.909	1.404	1.397	2.256	6.395	7.719
Svanidze10	4.708	2.031	1.603	1.650	1.189	1.106	1.162	1.473	2.521	5.282	4.674

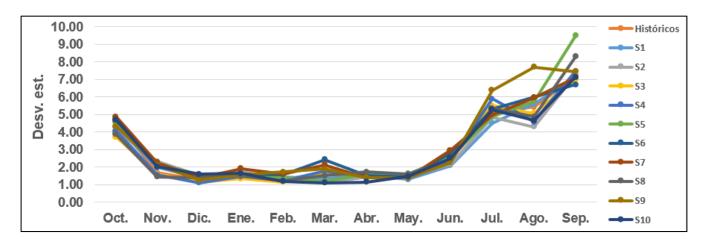


Figura 5.6.3 Comparación de la desviación estándar de las series sintéticas y serie histórica.

Tabla 5.6.4 Coeficiente de asimetría de las 10 serie sintéticas generadas

Muestra	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.
Svanidze1	1.226	0.701	-0.400	-0.677	-2.031	1.018	-1.738	-0.485	0.797	1.160	2.583
Svanidze2	1.029	2.566	-0.082	-0.394	-1.647	-0.668	-0.583	-0.239	0.717	1.030	0.778
Svanidze3	0.762	0.359	-0.360	0.252	-0.987	-3.195	-1.419	-0.194	0.696	1.466	1.343
Svanidze4	0.749	0.112	-0.127	0.403	-1.433	-1.068	-1.539	-0.197	0.891	1.136	1.524
Svanidze5	0.877	1.227	0.372	-0.203	-0.311	0.120	-0.674	0.483	0.629	0.932	2.146
Svanidze6	1.185	1.266	-0.378	0.137	-1.225	0.076	-2.012	-0.244	1.511	1.215	1.611
Svanidze7	0.746	0.964	0.160	0.773	-0.971	-1.430	-1.062	-0.469	1.268	0.479	1.540
Svanidze8	0.957	0.313	1.001	1.921	1.088	0.286	-1.699	0.413	1.116	1.051	1.231
Svanidze9	0.666	0.768	0.188	-0.053	-1.910	-3.174	-1.221	-0.085	0.725	1.090	2.746
Svanidze10	1.042	2.134	0.840	2.161	1.304	0.875	-0.195	1.286	1.329	0.684	1.049

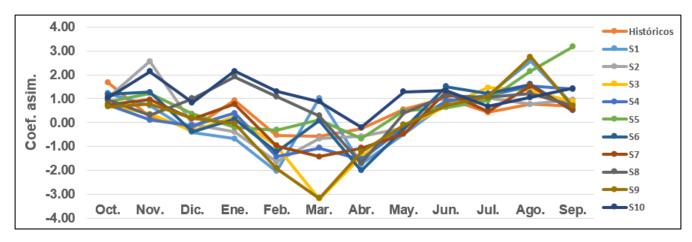


Figura 5.6.4 Comparación del coeficiente de asimetría de las series sintéticas y serie histórica.

Muestra	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.
Svanidze1	0.694	0.721	0.670	0.645	0.903	1.186	2.737	0.644	0.433	0.418	0.420
Svanidze2	0.616	0.781	0.771	0.748	0.897	1.218	3.491	0.890	0.440	0.452	0.337
Svanidze3	0.653	0.584	0.535	0.522	0.697	1.802	3.204	0.798	0.475	0.484	0.393
Svanidze4	0.617	0.504	0.486	0.551	0.718	2.101	3.037	0.698	0.464	0.522	0.367
Svanidze5	0.648	0.721	0.725	0.597	0.760	1.036	2.652	0.707	0.467	0.461	0.431
Svanidze6	0.745	0.739	0.708	0.603	0.894	2.066	2.391	0.676	0.507	0.454	0.432
Svanidze7	0.648	0.767	0.618	0.746	0.923	2.201	2.856	0.699	0.579	0.457	0.415
Svanidze8	0.624	0.491	0.624	0.576	0.659	1.554	6.091	0.930	0.487	0.470	0.384
Svanidze9	0.624	0.714	0.569	0.565	0.942	2.009	2.325	0.669	0.469	0.561	0.527
Svanidze10	0.640	0.702	0.738	0.560	0.592	0.936	1.700	0.709	0.494	0.508	0.366

Tabla 5.6.5 Coeficiente de variación de las 10 serie sintéticas generadas

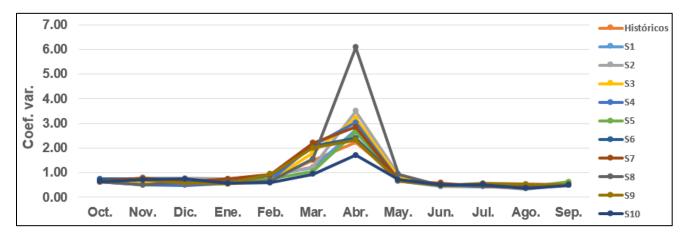


Figura 5.6.5 Comparación del coeficiente de variación de las series sintéticas y serie histórica.

Tabla 5.6.6 Coeficiente de auto correlación de las 10 serie sintéticas generadas

Muestra	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.
Svanidze1	0.226	0.566	0.626	0.772	0.259	0.635	0.523	0.291	0.033	0.415	0.139
Svanidze2	0.432	0.608	0.638	0.840	0.468	0.460	0.530	0.130	0.440	0.474	0.120
Svanidze3	0.323	0.607	0.123	0.708	0.491	0.395	0.413	0.213	0.375	0.671	0.217
Svanidze4	0.359	0.525	0.393	0.704	0.387	0.439	0.283	0.318	0.408	0.515	0.111
Svanidze5	0.512	0.543	0.491	0.830	0.640	0.567	0.539	0.327	0.398	0.514	0.479
Svanidze6	0.408	0.788	0.280	0.692	0.232	0.393	0.350	0.258	0.263	0.551	0.153
Svanidze7	0.495	0.659	0.619	0.544	-0.035	0.411	0.446	0.382	0.329	0.592	0.033
Svanidze8	0.319	0.643	0.363	0.699	0.681	0.594	0.424	0.296	0.484	0.595	0.244
Svanidze9	0.329	0.606	0.372	0.464	-0.092	0.389	0.533	0.076	0.221	0.734	-0.250
Svanidze10	0.385	0.670	0.406	0.777	0.746	0.652	0.557	0.418	0.500	0.633	0.145

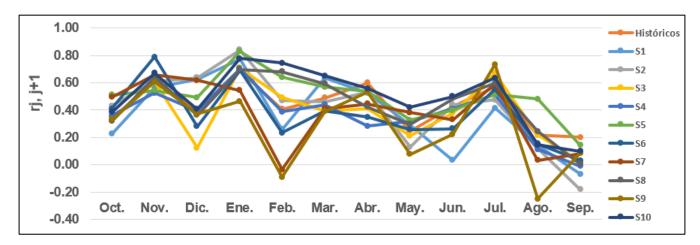


Figura 5.6.6 Comparación del coeficiente de auto correlación de las series sintéticas y serie histórica.

La Tabla 5.6.7 muestra los valores estadísticos de los volúmenes totales anuales de las diez series sintéticas y del registro histórico.

Tabla 5.6.7 Estadísticos de los volúmenes totales anuales.

Estadístico	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	Histórico
Media	61.767	61.269	61.112	63.502	65.597	64.263	64.707	64.433	65.709	64.359	63.747
Desv. Est.	11.778	13.990	15.167	14.594	19.168	16.723	16.203	15.179	14.043	17.408	15.827
Coef. Asim.	0.286	0.885	1.039	0.998	1.735	1.169	0.996	0.740	0.803	1.342	0.257
Coef. Var.	0.191	0.228	0.248	0.230	0.292	0.260	0.250	0.236	0.214	0.270	0.248

En la Figura 5.6.7, Figura 5.6.8, Figura 5.6.9 y Figura 5.6.10 se encuentran respectivamente la comparación grafica de los estadísticos: media, desviación estándar, coeficiente de asimetría, coeficiente de variación y coeficiente de auto correlación promedio de las 10 series sintéticas y del registro histórico.

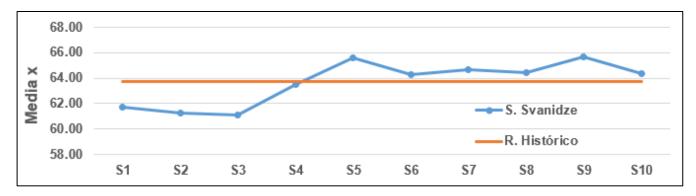


Figura 5.6.7 Comparación de la media de los volúmenes totales anuales

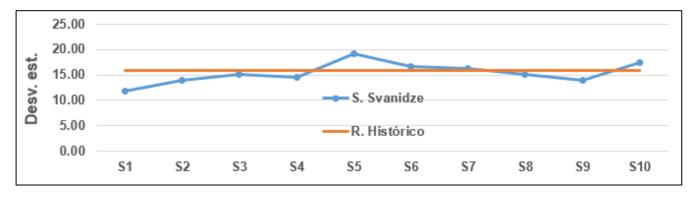


Figura 5.6.8 Comparación de la desviación estándar de los volúmenes totales anuales

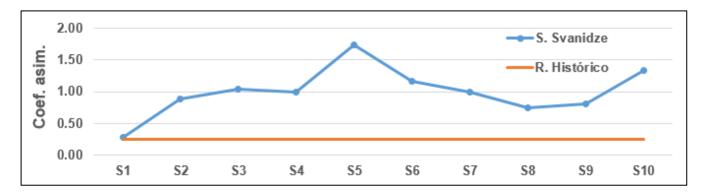


Figura 5.6.9 Comparación del coeficiente de asimetría de los volúmenes totales anuales

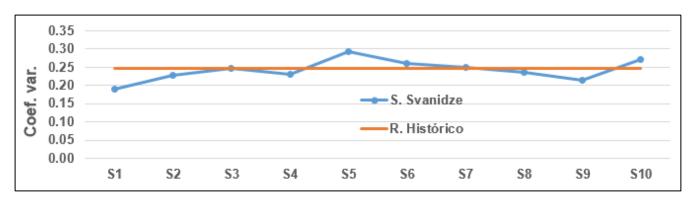


Figura 5.6.10 Comparación del coeficiente de variación de los volúmenes totales anuales

6. Análisis de resultados

En este capítulo se analizan las políticas de operación encontradas al utilizar los algoritmos GRG y AG, simulando el funcionamiento de vaso con el registro de volúmenes de ingresos deducidos por la CONAGUA (Anexo B); posteriormente se revisan las políticas óptimas usando muestras sintéticas para probar su efectividad a largo plazo.

Las coordenadas que definen a todas las curvas Z encontradas se muestran en el Anexo R.

6.1. Políticas anuales. Algoritmo GRG.

La Tabla 6.1.1 muestra los volúmenes extraídos para dotación de agua potable, uso en riego y la suma de ambos, así como los derrames y déficits que se obtuvieron en cada simulación en la que se ocupó el algoritmo GRG No Lineal para optimizar la función objetivo fijando como variables de búsqueda a las coordenadas de los puntos "a" (Almacenamiento inicial mínimo, Extracción mínima) y "b" (Almacenamiento inicial máximo, Extracción máxima) de la curva Z.

Tabla 6.1.1 Resultados de las simulaciones usando algoritmo GRG.

	Ext. Riego	Ext. Potable	Derrame	Déficit	cder	cdef	F.O.
Simulación	(hm^3)	(hm^3)	(hm^3)	(hm^3)	(1)	(1)	(hm^3)
A: históricos	2,898.89	1,539.55	140.98	208.69	ı	-	-
В	3,011.70	1,602.46	236.53	3.66	-	-	-
С	3,536.19	1,602.46	129.09	428.14	-	-	-
GRG-D	3,226.86	1,602.46	81.30	49.57	-	-	-
GRG-E1	3,459.94	1,602.46	35.02	246.75	1000	100	-56,230.6
GRG-E2	3,445.92	1,602.46	36.61	231.89	1000	200	-79,547.4
GRG-E3	3,223.54	1,602.46	81.78	54.66	1000	500	-105,889.5
GRG-E4	3,192.74	1,602.46	93.36	33.45	1000	1000	-123,617.3
GRG-E5	3,129.73	1,602.46	124.37	8.64	500	1000	-67,697.4
GRG-E6	3,110.33	1,602.46	137.04	4.03	200	1000	-28,324.3
GRG-E7	2,939.19	1,602.46	299.59	0.00	100	1000	-27,019.4
GRG-F1	3,454.77	1,602.46	53.85	243.95	1000	100	-74,788.8
GRG-F2	3,287.14	1,602.46	67.08	89.78	1000	200	-81,750.7
GRG-F3	3,237.81	1,602.46	77.70	55.65	1000	500	-102,285.4
GRG-F4	3,204.23	1,602.46	89.88	38.62	1000	1000	-125,295.8
GRG-F5	3,168.68	1,602.46	112.54	28.40	500	1000	-81,498.7
GRG-F6	3,078.95	1,602.46	174.68	8.46	100	1000	-22,850.9
GRG-F7	2,948.34	1,602.46	277.22	0.88	0	1000	2,063.8

En el renglón "A-históricos" se presentan los volúmenes obtenidos del funcionamiento diario del embalse reportado por la CONAGUA, mismos que se tomaron sólo como referencia. Los valores de la simulación "B", se obtuvieron utilizando la curva Z histórica calculada originalmente (Figura 5.1.1); mientras que en la simulación "C" se usó la curva Z creada a partir de los datos de los últimos cinco ciclos de riego proporcionados por la CONAGUA Dirección Local de Michoacán (Figura 5.1.2).

La simulación "GRG-D" utilizó la función objetivo de la ecuación 5, que solo busca reducir los volúmenes de derrames y déficits; en tanto que para las simulaciones "GRG-E" y "GRG-F" se usó la ecuación 6 que maximiza las extracciones por obra toma al tiempo que castiga los derrames y déficits, los coeficientes de penalización utilizados: Cderr y Cdéf se indican en la tabla de acuerdo a la simulación, en todos los casos el coeficiente Cr se igualo a uno.

Las simulaciones GRG-D y GRG-E parten de la curva Z propuesta en la Figura 5.1.2, mientras que las simulaciones GRG-F parten de la curva Z obtenida de la simulación GRG-D; Al iniciar la búsqueda de soluciones desde diferentes puntos de partida, a pesar de que las simulaciones tengan las mismas características, se puede llegar a resultados diferentes.

La Figura 6.1.1, Figura 6.1.2 y Figura 6.1.3 muestra la comparación entre los volúmenes derramados, de déficit y extraídos por obra de toma que se obtuvieron en las simulaciones GRG-E# y GRG-F#; se puede notar que se presentó una relación inversa entre el volumen de déficit total y el volumen derramado total, ya que a medida que uno aumenta, el otro disminuye; al mismo tiempo existe una relación proporcional entre el déficit y las extracciones realizadas para riego, es decir que uno aumenta en la medida de que el otro lo hace; adicionalmente se puede comprobar una relación inversa entre las extracciones y los derrames.

Las simulaciones GRG-E y GRG-F tienen los mismos coeficientes de penalización en cada caso y solo varían en los valores con los que inicia el algoritmo GRG.

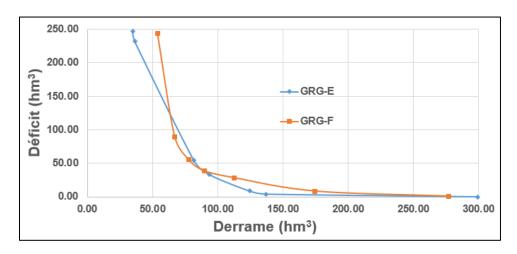


Figura 6.1.1 Comparación de derrames contra déficits. Método GRG.

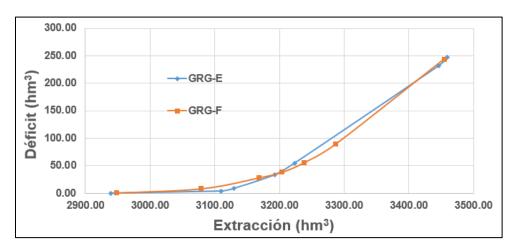


Figura 6.1.2 Comparación de extracciones contra déficits. Método GRG.

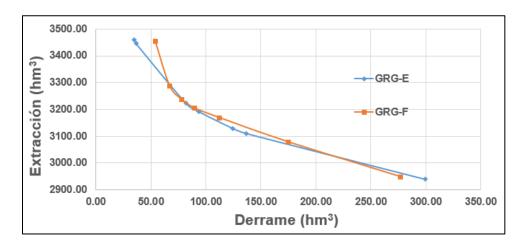


Figura 6.1.3 Comparación de extracciones contra derrames. Método GRG.

6.2. Políticas anuales y distribución mensual. Algoritmo AG.

La combinación de coeficientes de penalización (Cderr, Cdéf) que se usan en la función objetivo de la ecuación 6 son los responsables de orientar las políticas de operación ya sea para priorizar los volúmenes de agua derramada o el volumen faltante por déficit; sin embargo existen un sin número de combinaciones que se pueden formar con los coeficientes de penalización y por ende también una amplia gama de diferentes políticas de operación.

Los primeros ensayos que se realizaron con el algoritmo AG buscan reducir la combinación de coeficientes de penalización, por lo que con el fin de aprovechar mejor los recursos computacionales únicamente se indican para las variables de búsqueda a las coordenadas de los puntos que definen la curva Z, esto se traduce en solo 4 incógnitas de las 16 disponibles; las variables restantes, que corresponden a los porcentajes de asignación mensual de agua para riego se iguala a los valores históricos promedio de la Tabla 4.4.5 y Figura 4.4.6.

La Tabla 6.2.1 muestra los volúmenes extraídos para dotación de agua potable, uso en riego y la suma de ambos (totales), así como los derrames y déficits que se obtuvieron en los primeros ensayos con el algoritmo AG simple, fijando los coeficientes Cr y C_{ajuste} con los valores uno y diez mil, respectivamente, mientras que los coeficientes Cderr y Cdéf se varían tal como se indica en la tabla.

En todas las simulaciones se utilizaron los ingresos por cuenca propia deducidos por la CONAGUA en su reporte de funcionamiento diario del embalse en el periodo 1940 a 2016, corregidos con los valores de la estación hidrométrica.

	Ext. Riego	Ext. Potable	Derrame	Déficit	cder	cdef	F.O.
Simulación	(hm^3)	$(\boldsymbol{h}m^3)$	(hm^3)	(hm^3)	(1)	(1)	$(\boldsymbol{h}m^3)$
AG-1	3,609.54	1,602.46	55.21	262.95	1000	100	-77,898.14
AG-2	3,321.54	1,602.46	66.71	184.97	1000	200	-100,382.46
AG-3	3,301.39	1,602.46	71.23	170.50	1000	500	-153,178.61
AG-4	3,260.19	1,602.46	88.56	148.07	1000	1000	-233,369.81
AG-5	3,211.91	1,602.46	116.46	129.86	500	1000	-184,878.09
AG-6	2,999.29	1,602.46	286.55	93.96	100	1000	-119,615.71
AG-7	2,999.29	1,602.46	286.55	93.96	0	1000	-90 960 71

Tabla 6.2.1 Resultados de las simulaciones usando algoritmo AG.

Tal como sucedió con las simulaciones realizadas usando el algoritmo GRG, en las simulaciones utilizando AG se puede observar una relación inversa entre el volumen de déficit total y el volumen derramado total (Figura 6.2.1), también existe una relación proporcional entre el déficit y las extracciones realizadas para riego (Figura 6.2.2) y una relación inversa entre las extracciones para riego y los derrames totales (Figura 6.2.3).

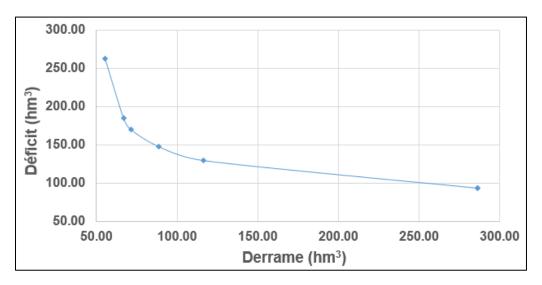


Figura 6.2.1 Comparación de derrames contra déficits. Método AG.

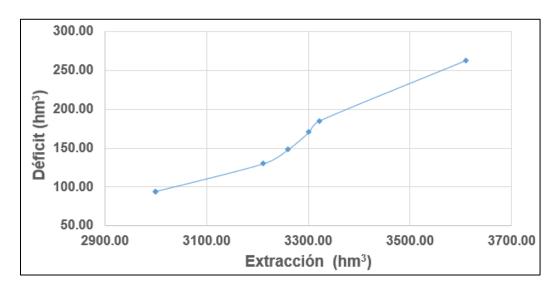


Figura 6.2.2 Comparación de extracciones contra déficits. Método AG.

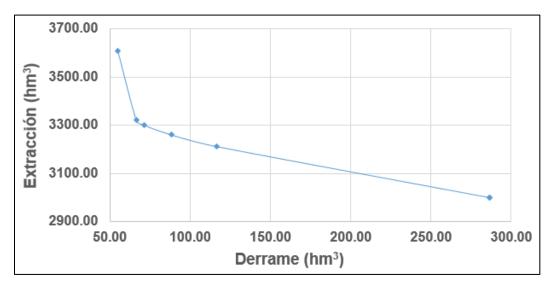


Figura 6.2.3 Comparación de extracciones contra derrames. Método AG

La Figura 6.2.4 muestra los volúmenes derramados y faltantes por déficit que se obtuvieron en los primeros ensayos; el análisis de los resultados de aplicar las políticas de operación encontradas (curvas Z) sirve como medio para elegir las combinaciones de coeficientes de penalización que mejor se ajustan al caso de la presa Cointzio.

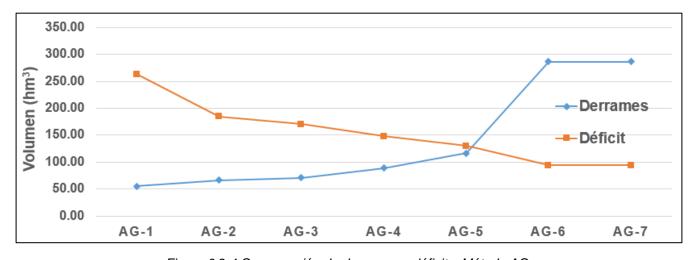


Figura 6.2.4 Comparación de derrames y déficits. Método AG

En primera instancia se eligieron las combinaciones de coeficientes de penalización que se utilizaron en los ensayos AG-4, AG-5 y AG-6; siendo el primero y el último los que priorizan derrame y déficit, respectivamente, pero sin llegar a valores extremos como sucede en las otras simulaciones; mientras que el ensayo AG-5 mantiene los volúmenes derramados y de déficit muy aproximados entre sí.

La Figura 6.2.5 muestra los valores máximos y mínimos que puede tomar cada uno de los porcentajes de asignación mensual de agua destinada a riego, siempre que la suma de todos ellos sea igual a la unidad. Los valores se obtienen al hacer un análisis estadístico de los volúmenes reportados por la CONAGUA Dirección local de Michoacán (Anexo D).

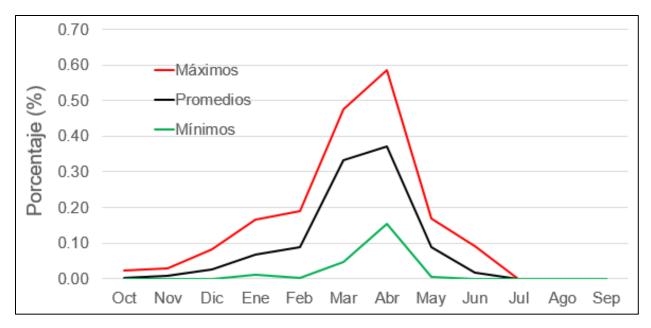


Figura 6.2.5 Porcentajes de asignación máximos y mínimos (CONAGUA 2019, b)

La Tabla 6.2.2 muestra los coeficientes de penalización que se eligieron para usarlos en los ensayos para optimizar la asignación mensual de volumen de agua para riego.

Simulación	C_r [adimencional]	C_{derr} [adimencional]	C_{def} [adimencional]
AG-4	1	1000	1000
AG-5	1	500	1000
AG-6	1	100	1000

Tabla 6.2.2 Coeficientes de penalización

La búsqueda de las dieciséis incógnitas de interés (cuatro de las coordenadas de la curva Z y doce de los porcentajes mensuales de extracción de agua para riego) se obtuvo desde dos perspectivas diferentes: fijando los cuatro valores de las curvas Z previamente encontradas para cada ensayo y buscando solamente los doce porcentajes mensuales de asignación de agua al riego o bien, dejando como variables de búsqueda tanto a los cuatro valores de la curva Z como a los doce de la distribución mensual de agua para riego.

Trabajar con menos incógnitas no garantiza que los resultados sean satisfactorios, por lo que se utilizan los dos procedimientos para identificar cuál de ellos se adapta mejor a las necesidades que se tienen.

La Tabla 6.2.3 muestra los volúmenes extraídos para riego, para dotación de agua potable, los derramados y faltantes por déficit que se presentaron en cada simulación de funcionamiento de vaso; los marcadores (4 y 12V), indican que se usaron 4 valores fijos y 12 variables de búsqueda, mientras que los ensayos (16V) indican que se tienen 16 variables de búsqueda.

	Ext. Riego	Ext. Potable	Derrame	Déficit	F.O.
Ensayo	(hm^3)	(hm^3)	(hm^3)	(hm^3)	(hm^3)
AG-4 (4 y 12 V.)	3,281.84	1,602.46	64.15	135.45	-196,318.16
AG-4 (16 V.)	3,276.37	1,602.46	67.00	131.64	-195,363.63
AG-5 (4 y 12 V.)	3,247.23	1,602.46	82.97	119.57	-157,807.77
AG-5 (16 V.)	3,309.40	1,602.46	106.35	88.13	-137,995.60
AG-6 (4 y 12 V.)	3,072.65	1,602.46	220.16	89.19	-108,133.35
AG-6 (16 V)	3,038.70	1,602.46	244.28	87.46	-108,849.30

Tabla 6.2.3 Volúmenes resultantes de aplicar dos metodologías diferentes

La Tabla 6.2.4 muestra las coordenadas que definen a las curvas Z obtenidas en cada optimización; se puede observar que para cada combinación de coeficientes de penalización, los valores mínimos de las curvas se mantienen en un punto fijo, mientras que los máximos son muy similares entre ellos.

Tabla 6.2.4 Coordenadas de l	las curvas Z encontradas b	ajo dos proced	limientos diferentes

	Almac. Mín.	Ext. Mín.	Almac. Máx.	Ext. Máx.
Simulación	(hm^3)	(hm^3)	(hm^3)	(hm^3)
AG-4 (4 y 12 V.)	37.728	53.049	67.471	84.955
AG-4 (16 V.)	37.728	53.049	68.514	84.998
AG-5 (4 y 12 V.)	37.728	53.049	68.519	81.237
AG-5 (16 V.)	37.728	53.049	68.519	82.692
AG-6 (4 y 12 V.)	37.727	53.049	68.516	69.065
AG-6 (16 V)	37.728	53.049	68.520	69.719

La Figura 6.2.6 muestra la distribución mensual de agua para riego que se obtuvo para la combinación de coeficientes de penalización AG-4, la Figura 6.2.7 y Figura 6.2.8 hacen lo

propio para la combinación de coeficientes AG-5 y AG-6, respectivamente; cada figura compara los resultados obtenidos con ambos procedimientos contra los valores históricos promedios del apartado 4.4.

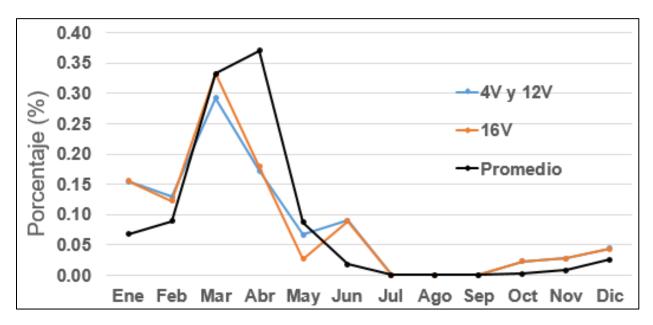


Figura 6.2.6 Distribución mensual de agua para riego. AG-4

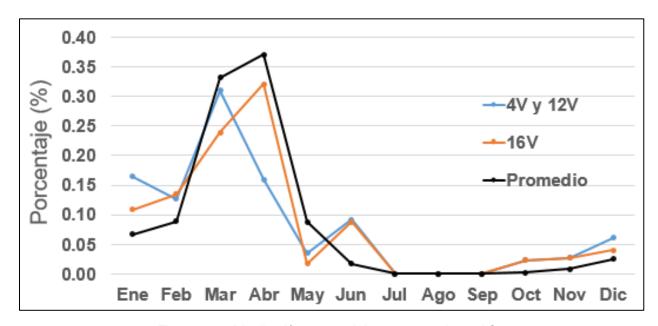


Figura 6.2.7 Distribución mensual de agua para riego. AG-5

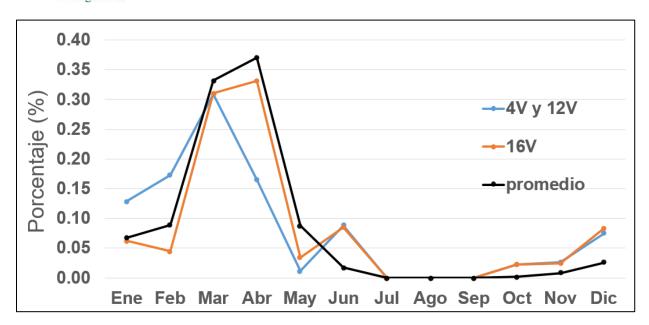


Figura 6.2.8 Distribución mensual de agua para riego. AG-6

Las políticas mensuales (porcentajes de asignación) identificadas con el marcador (4 y 12V) mostraron para todas las combinaciones de coeficientes (AG-4, AG-5 y AG-6) un patrón similar, sin embargo su uso queda descartado debido a que el porcentaje de extracción de abril debe ser el mayor para coincidir con los ciclos de siembra; bajo el mismo análisis también se puede descartar la política AG-4 (16V).

Finalmente se ha seleccionado sólo la política AG-5 (16V) debido a que los volúmenes derramados y de déficit son muy similares entre ellos, mientras que la política AG-6 (16V) presenta volúmenes derramados que sobrepasan en más de tres veces a los volúmenes de déficit.

La Tabla 6.2.5 muestra los porcentajes de asignación mensual óptima de volumen de agua para riego que resultaron en el ensayo AG-5 (16V).

Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
%	%	%	%	%	%	%	%	%	%	%	%
0.109	0.135	0.240	0.321	0.017	0.088	0	0	0	0.023	0.027	0.040

Tabla 6.2.5 Asignación mensual óptima. Política AG-5 (16V)

La Figura 6.2.9 muestra la curva Z de la política AG-5 (16V) comparada con la curva Z histórica corregida del apartado 5.1.

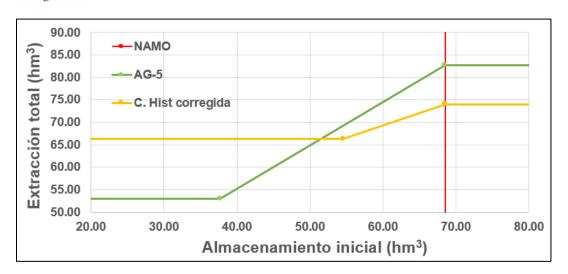


Figura 6.2.9 Curva Z de la política AG-5 (16V)

La Tabla 6.2.6 muestra un ejemplo del resumen de extracciones calculadas para los años 1950 a 1953, utilizando las políticas de operación AG-5 (16V). Primero aparece el almacenamiento inicial y la extracción total anual que le corresponde de acuerdo a la curva Z; después se le resta el volumen total destinado para la dotación de agua potable (20.80 hm^3) y se obtiene el volumen total anual de agua para riego, que finalmente se distribuye en los doce meses usando la asignación mensual óptima de la Tabla 6.2.5.

Tabla 6.2.6 Resumen de extracciones, ejemplo. Política AG-5 (16V)

	Año	1950	1951	1952	1953
	_				
Almacenamie	nto inicial (hm³)	45.07	57.8	61.17	28.19
Extracciór	n total (hm^3)	60.12	72.37	75.61	53.05
Maa	Ext. Agua pot.	Ext. Riego	Ext. Riego	Ext. Riego	Ext. Riego
Mes	(hm^3)	(hm^3)	(hm^3)	(hm^3)	(hm^3)
Octubre	1.73	0.9	1.19	1.26	0.74
Noviembre	1.73	1.08	1.41	1.5	0.88
Diciembre	1.73	1.56	2.05	2.18	1.28
Enero	1.73	4.29	5.63	5.98	3.52
Febrero	1.74	5.31	6.97	7.41	4.36
Marzo	1.74	9.42	12.35	13.13	7.72
Abril	1.74	12.62	16.55	17.59	10.35
Mayo	1.74	0.67	0.88	0.93	0.55
Junio	1.73	3.46	4.53	4.82	2.83
Julio	1.73	0	0	0	0
Agosto	1.73	0	0	0	0
Septiembre	1.73	0	0	0	0
Total (hm ³)	20.80	39.31	51.56	54.80	32.23

En la Figura 6.2.10 se observa la variación de volúmenes extraídos mensualmente para los años 1950 a 1954, siguiendo la asignación mensual optima del ensayo AG-5 (16V).

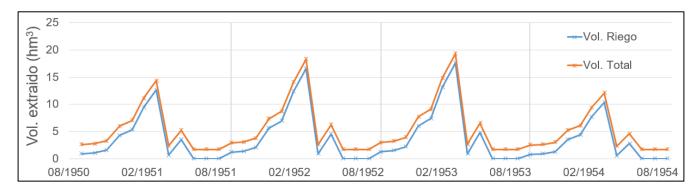


Figura 6.2.10 Extracciones de agua para riego. Política AG-5 (16V)

6.3. Análisis a largo plazo.

Para analizar la operación del embalse en el largo plazo de utilizarse la política de operación AG-5 (16V), se simuló el funcionamiento del vaso de la presa utilizando las diez series sintéticas generadas con el método de Svanidze (ver Anexo H a Anexo Q).

La Tabla 6.3.1 muestra los volúmenes extraídos para dotación de agua potable, uso en riego y la suma de ambos (totales), así como los derrames y déficits que se presentaron.

	Ext. Riego	Ext. Potable	Ext. Total	Derrame	Déficit
Simulación	$(10^6 m^3)$				
Svanidze1	3977.52	2081.12	6058.64	48.76	76.43
Svanidze2	3884.73	2081.12	5965.85	101.03	89.62
Svanidze3	3924.52	2081.12	6005.64	121.50	121.80
Svanidze4	3994.92	2081.12	6076.04	167.32	56.85
Svanidze5	4173.98	2081.12	6255.10	254.52	84.68
Svanidze6	4090.31	2081.12	6171.43	186.69	54.40
Svanidze7	4109.96	2081.12	6191.08	223.77	101.68
Svanidze8	4146.75	2081.12	6227.87	147.86	72.33
Svanidze9	4243.66	2081.12	6324.78	162.2	53.45
Svanidze10	4063.68	2081.12	6144.80	227.95	73.72

Tabla 6.3.1 Política AG-5 (16V) aplicada a series sintéticas

Debido a que las series sintéticas generadas con el método de Svanidze cuentan con cien años de valores mensuales, es decir, treinta y tres años más que el registro histórico de ingresos deducidos por la CONAGUA, se deben estandarizar los volúmenes obtenidos en cada simulación para poder comparar los resultados.

La Tabla 6.3.2 muestra los volúmenes promedio anuales para las diferentes series de ingresos por cuenca propia, calculados como el cociente de los resultados de cada funcionamiento de vaso entre los años simulados: setenta y siete para el registro histórico y cien para las series sintéticas. En el renglón "A-históricos" se presentan los volúmenes promedio anuales obtenidos del funcionamiento diario del embalse reportado por la CONAGUA, mismos que se tomaron sólo como referencia. Los valores de la simulación "B", se obtuvieron utilizando la curva Z histórica (Figura 5.1.1), mientras que en la simulación "C" se usó la curva Z histórica corregida (Figura 5.1.2); en ambas simulaciones se utilizó el registro histórico de ingresos.

Ext. Potable Ext. Riego Ext. Total Derrame Déficit $(10^6 m^3)$ $(10^6 m^3)$ $(10^6 m^3)$ $(10^6 m^3)$ $(10^6 m^3)$ Simulación A: históricos 37.65 19.99 57.64 1.83 2.71 В 39.11 20.81 59.92 3.07 0.05 С 45.92 20.81 66.74 1.68 5.56 0.49 Svanidze1 39.78 20.81 60.59 0.76 Svanidze2 38.85 20.81 59.66 1.01 0.90 Svanidze3 39.25 20.81 60.06 1.22 1.22 Svanidze4 39.95 20.81 60.76 1.67 0.57 Svanidze5 41.74 20.81 62.55 2.55 0.85 61.71 Svanidze6 40.90 20.81 1.87 0.54 Svanidze7 41.10 20.81 61.91 2.24 1.02 Svanidze8 41.47 20.81 62.28 1.48 0.72 42.44 Svanidze9 20.81 63.25 1.62 0.53 20.81 61.45 0.74 Svanidze10 40.64 2.28

Tabla 6.3.2 Volúmenes promedio anuales. Política AG-5 (16V)

La Figura 6.3.1, Figura 6.3.2 y Figura 6.3.3 hacen la comparación de los volúmenes estandarizados de derrames, déficit y extracciones para riego, respectivamente, que resultaron al simular la política AG-E5 (16V) con las diferentes series sintéticas de Svanidze contra los volúmenes de las simulaciones A, B y C con el registro histórico y la asignación promedio de volumen de agua para riego (Figura 4.4.6 y Tabla 4.4.5)

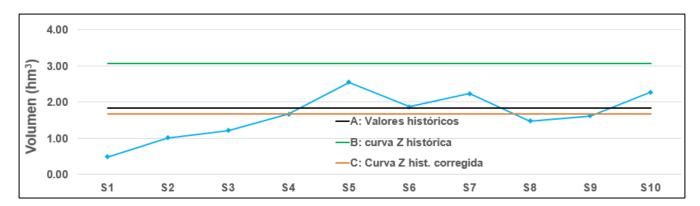


Figura 6.3.1 Comparación de derrames promedio anuales. Política AG-E5 (16V)

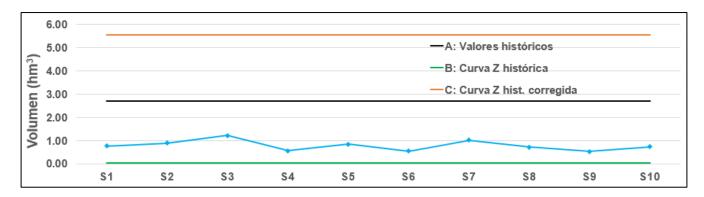


Figura 6.3.2 Comparación de déficit promedio anual. Política AG-E5 (16V)

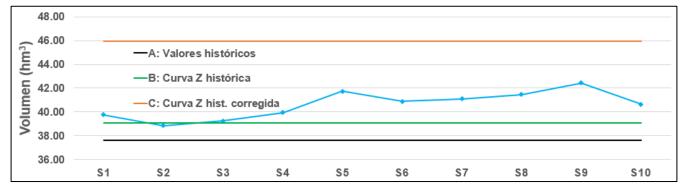


Figura 6.3.3 Comparación de extracción promedio anual. Política AG-E5 (16V)

7. Conclusiones

El uso de un algoritmo GRG tiene múltiples ventajas, las principales son su facilidad de utilizar y la rapidez en la que se encuentran resultados, siempre que no se indiquen demasiadas iteraciones.

Se aprecia en las Figuras 6.1.1 y 6.1.2 que el algoritmo GRG no converge a un óptimo global, sino que se llega a óptimos locales según los valores de inicio (coordenadas de la curva Z) de la cual parte la optimización; si en las figuras se hubiera graficado una sola curva, en lugar de dos, ello hubiera indicado que el algoritmo converge a una solución única (óptimo global) para cada pareja de coeficientes de la función objetivo, pero debido a que eso no ocurrió, se puede dar por hecho que se trata de óptimos locales.

Tener diferentes soluciones óptimas locales no asegura encontrar el máximo global.

Por otro lado, las simulaciones hechas con el algoritmo AG convergen a óptimos globales para cada ensayo (parejas de coeficientes de penalización); debido a que el proceso de optimización no está influenciado por valores predefinidos al inicio, si no que por la naturaleza del algoritmo, cientos de valores se generan aleatoriamente en cada generación y cada individuo de la población (política de operación) es probado en la función objetivo.

En contraparte, los algoritmos AG requieren de mayores recursos computacionales y de más tiempo para llegar a la solución final, por lo que no fue sino hasta hace poco que los avances tecnológicos permitieron su proliferación en distintos campos de la ciencia.

No se utilizó el valor de la función objetivo como primer indicador, para elegir alguna política sobre otra, debido a que en los primeros ensayos se utilizaron diferentes coeficientes de penalización cuyos valores afectan al resultado de la función objetivo, en cambio se optó por comparar directamente los volúmenes derramados y déficits, dando preferencia a obtener una máxima extracción para riego y a menores condiciones de déficit. Para los ensayos con los mismos coeficientes de penalización si se pude ocupar el valor de la función objetivo (véase Tabla 6.2.3), aunque se siguen utilizando los volúmenes resultantes como principal factor de comparación.

En los ensayos con ambos métodos (GRG y AG) se identificó una relación inversa entre el volumen de déficit total y el volumen derramado total (Figura 6.1.1 y Figura 6.2.1), ya que a medida que uno aumenta, el otro disminuye, la misma relación se puede encontrar entre las extracciones y los derrames (Figura 6.1.3 y Figura 6.2.3). Además se encontró una relación proporcional entre el déficit y las extracciones realizadas (Figura 6.1.2 y Figura 6.2.2).

Las relaciones anteriores son coherentes debido a que al realizarse menos extracciones, los volúmenes pueden sobrepasar el volumen al NAMO y conducir a derrames; mientras que si se realizan muchas extracciones para algunos meses, los volúmenes almacenados calculados pueden ser menores a la elevación al NAMINO y conducir a déficit en los meses posteriores.

El hecho de que se hayan identificado estas relaciones indica que no existe una simulación mejor que otra en términos relativos y que siempre que se priorice alguna condición a evitar (derrame o déficit) se agravará la otra, por ello es importante elegir los coeficientes de penalización de la función objetivo de acuerdo a las necesidades que se tengan.

Los primeros ensayos que se realizaron con el algoritmo AG buscaban reducir la combinación de coeficientes de penalización, por lo que con el fin de aprovechar mejor los recursos computacionales únicamente se indicaron para las variables de búsqueda a las coordenadas de los puntos que definen la curva Z, esto se traduce en sólo 4 incógnitas de las 16 disponibles; las variables restantes, que corresponden a los porcentajes de asignación mensual de agua para riego se igualaron a los valores históricos promedio de la Tabla 4.4.5 y Figura 4.4.6

Debido a que el embalse de la presa Cointzio, suministra agua para riego del DR-020, se puede dar mayor importancia a reducir el déficit dentro de un rango considerable siempre que las máximas extracciones mensuales no tengan un potencial efecto devastador; se sabe que en el pasado, la ciudad de Morelia ha sido afectada por inundaciones, la mayor ocurrió en el 2002 como consecuencia de una precipitación de 900 mm/anuales, que dejaron 4 millones de dólares en pérdidas, mientras que el segundo evento de mayor proporción ocurrió en 2003 como consecuencia combinada de una precipitación de 75 mm en unas cuantas horas y el desazolve de la presa Cointzio.

Lo anterior, llevó a elegir tres políticas anuales (curvas Z) cada una asociada a diferentes combinaciones de coeficientes de penalización, usando la Figura 6.2.4 se eligieron los ensayos AG-4, AG-5 y AG-6; siendo el primero y el último los que priorizan derrame y déficit, respectivamente, pero sin llegar a valores extremos como sucede en las otras simulaciones; mientras que la simulación AG-5 mantiene los volúmenes derramados y de déficit muy próximos entre sí.

Al buscar la distribución mensual de agua para riego óptima, se observó que al fijar los valores de las curvas Z previamente encontradas y buscar solo las doce incógnitas correspondientes (ensayos: "4 y 12V"), existen incongruencias en los porcentajes hallados; ya que en todas las políticas (AG-4, AG-5 y AG-6) la extracción de abril es menor a la de marzo por lo que el patrón de extracciones no coincide con los ciclos de siembra.

Si bien trabajar con menos incógnitas se traduce en menos tiempo y recursos de cómputo, esto no garantizo que los resultados sean satisfactorios, por el contrario al trabajar con las dieciséis incógnitas al mismo tiempo (ensayos: "16V") se consiguieron políticas mensuales más congruentes.

Finalmente se seleccionó sólo la política AG-5 (16V) debido a que los volúmenes derramados y de déficit no son tan diferentes además que los volúmenes de extracción por riego son los más altos, mientras que la política AG-6 (16V) presenta menor volumen de extracción por riego, derrames más grandes que los que se obtienen con AG-5 (16V). (Tabla 6.2.3).

Para comprobar los resultados a largo plazo (100 años) se simuló la política AG-5 (16V) bajo diferentes escenarios creados con las series sintéticas generadas con el método de Svanidze.

A nivel mensual, las diez series sintéticas de escurrimientos por cuenca propia creadas con el método de Svanidze modificado lograron reproducir el patrón de comportamiento de los estadísticos media (Figura 5.6.2), desviación estándar (Figura 5.6.3) y coeficiente de variación (Figura 5.6.5); mientras que el coeficiente de asimetría (Figura 5.6.4) y coeficiente de auto correlación (Figura 5.6.6), si bien no logran reproducir exactamente el patrón, si conservan cierta tendencia histórica. A nivel anual (volúmenes totales anuales), la media (Figura 5.6.7), desviación estándar (Figura 5.6.8) y coeficiente de variación (Figura 5.6.10) de las series sintéticas tienen valores muy cercanos a los estadísticos del registro histórico; sin embargo eso no ocurre con el coeficiente de asimetría (Figura 5.6.9), a pesar de ello, los aciertos son mayores por lo que se puede afirmar que las series sintéticas reproducen satisfactoriamente el comportamiento estadístico del registro histórico.

Finalmente, al simular la política AG-5 (16V) con las series sintéticas y luego de estandarizar los valores se observó que:

- Los volúmenes derramados (Figura 6.3.1) son en su mayoría (7 de 10 casos) menores a los valores que se tienen tanto al simular el funcionamiento de vaso con la curva Z histórica corregida como con los valores históricos reportados por la CONAGUA, al mismo tiempo, todos los casos tienen menos derrame si se comparan con la simulación de vaso usando la curva Z histórica.
- Los volúmenes de déficit (Figura 6.3.2) son en todos los casos menores a los que se tienen tanto al simular con la curva Z histórica corregida como con los valores históricos reportados por la CONAGUA, pero todos son mayores a los volúmenes estandarizados que resultan al simular con la curva Z histórica.
- Los volúmenes extraídos para riego (Figura 6.3.3) son en su mayoría (9 de 10 casos) mayores a los valores que se tienen al simular el vaso con la curva Z histórica, mayores en todos los casos a los volúmenes históricos reportados por la CONAGUA, pero menores a los valores que resultan con la curva Z histórica corregida.

Cabe destacar que al graficar la curva Z histórica (Figura 5.1.1) se encontró un error (ya que el volumen de almacenamiento inicial máximo es mayor a la capacidad del vaso al NAMO) posiblemente debido al uso de una curva batimétrica distinta a la reportada, por lo que los volúmenes simulados con ella, solo se usan como referencia; bajo esta premisa se puede concluir que la política AG-5 (16V) es factible ya que mejora ampliamente los volúmenes de extracción, derrame y déficit reportados por la CONAGUA.

También es importante mencionar que al simular el funcionamiento de vaso con la curva Z histórica corregida se utilizó la asignación promedio de agua para riego (Figura 4.4.6) por lo que a pesar de que la política AG-5 (16V) tiene menos volúmenes de extracción para riego lo compensa con una mejor distribución por lo que se presenta un menor déficit.

8. Bibliografía

- Abadie, J.(1978). "The GRG Method for Nonlinear Programming en Greenberg", H.J.(Ed), Design and Implementation of Optimization Software, Sijthoff and Noordhoof, pp. 325-363.
- Acuña Soto, Gerardo. 2014. "Revisión y optimización de la operación histórica de las presas del sistema del río Cutzamala". Tesina de Especialidad. Dirección de posgrado. Universidad Nacional Autónoma de México. Ciudad de México, México.
- Agua.org.mx. (18 de enero de 2013). "Más de 40 colonias de Morelia se verán afectadas este viernes por mantenimiento a la Presa de Cointzio", recuperado el 20 de octubre de 2019, website:
 - https://agua.org.mx/mas-de-40-colonias-de-morelia-se-veran-afectadas-este-viernespor-mantenimiento-a-la-presa-de-cointzio/
- Aldana Valverde Angel Luis, 2004. "Aplicación de la computación evolutiva en la hidrología operacional", Il Jornadas sobre los Sistemas de ayuda a la decisión ante problemas hidráulicos e hidrológicos en tiempo real.
- Arallely Díaz, Alegría, 2010. "Política de operación óptima del Sistema de presas del río Grijalva. Efectos de la curva Guía". Tesis de Maestría. Universidad Nacional Autónoma de México, México.
- Aparicio Mijares, Francisco J. 1992. "Fundamentos de Hidrología de superficie", México.
- Arganis, J. M. L., Domínguez, M. R., Cisneros, I.H.L., Fuentes, M. G. E. 2008. "Génération d'échantillons synthétiques des volumes mensuels écoulés de deux barrages utilisant la Méthode de Svanidze Modifiée". Hydrological Sciences-Journal-des Sciences Hydrologiques, 53(1) Février 2008. 130-141 pp. Fl 1.447 ISSN: 0262-6667 http://dx.doi.org/10.1623/hysj.53.1.130
- Arganis Juárez, M. L., Preciado Jiménez, M., Rodríguez Katya., 2015. "Daily rainfall interpolation models obtained genetic programming" by means of Facultad Revista de Ingeniería, Universidad Antioquia. V1. DOI: 10.17533/udea.redin.n75a18.
- Becerra Moreno, Israel. 2011 "Calendarización óptima de bombeo en un Sistema de distribución hidráulica". Tesis de maestría en Ciencias en Automatización. Instituto Tecnológico y de Estudios Superiores Monterrey. Campus Monterrey.
- Bravo, E. M. y otros, 2008. "La cuenca del lago de Cuitzeo: Problemática, Perspectivas y Retos Hacia su desarrollo Sostenible". Morelia, Mich.: CONSEJO ESTATAL DE CIENCIA Y TECNOLOGÍA DE MICHOACÁN. Primera edición.
- Caballero Díaz, Sergio. "Simulación del funcionamiento de un vaso. Ejemplo de aplicación". Tesis de licenciatura. Universidad Nacional Autónoma de México. Ciudad de México, México.
- Caballero J.A. 2011. "Simulación y optimización de los procesos químicos. Tema 10: Métodos numéricos para la optimización de problemas no lineales con restricciones", repositorio Institucional de la Universidad de Alicante.

- Cancelliere A., G. Giuliano, A. Ancarani and G. Rossi., 2002. "A Neural Networks Approach for Deriving Irrigation Reservoir Operating Rules". Water Resources Management 16: 71–88, 2002.
- Chang, Li-Chiu, Fi-John Chang, Kuo-Wei Wang b, Shin-Yi Dai b. 2010. "Constrained genetic algorithms for optimizing multi-use reservoir operation". Journal of hydrology 390(2010) 66-74
- CONAGUA-CEAC. 2009. "Plan de gestión integral de los recursos naturales de la cuenca del lago de Cuitzeo". CONAGUA-CEAC-Gerencia Operativa de la Comisión de Cuenca del Lago de Cuitzeo. Morelia, Michoacán, México.
- CONAGUA, 2019 b. "Información del distrito de riego 020 y de la presa Cointzio. Morelia (Michoacán)". s.n.
- CONAGUA, 2015. "Actualización de la disponibilidad media anual de agua en el acuífero Morelia-Queréndaro (1602) Estado de Michoacán" D.O.F. 20 abril 2015.
- Cram, S., Galicia, L. & Israde, I., 2010. "Atlas de la cuenca del lago de Cuitzeo: análisis de su geografía y entorno socio ambiental". Ciudad de México: Universidad Nacional Autónoma de México.
- Cruz Gutiérrez F.V., Magaña Zamora J. D., Celis, Rodríguez, F., Lambarri, Belendez, J. 2017 "Proyecto: Valoración económica del agua para su uso eficiente en la agricultura e industria DP1716.1" Informe Final. Coordinación de desarrollo profesional e institucional subcoordinación de planeación, económica y finanzas del agua. IMTA.
- Di Nardo, Armando., Di Natale, Michele., Gisonni, Corrado., Lervolino, Michele., 2014.
 "A genetic algorithm for demand pattern and leakage estimation in a water distribution network", Journal of water Supply: Research and technology AQUA 64 (1). DOI: 10.2166/aqua.2012.004
- Domínguez, M. R., Fuentes M. G., Arganis, J. M. L. 2001. "Procedimiento Para Generar Muestras Sintéticas de Series Periódicas Mensuales a través del Método de Svanidze Modificado Aplicado a los Datos de las Presas La Angostura y Malpaso". Series Instituto de Ingeniería C1-19. Agosto del 2001. Series Blanca.
- Fallah-Mehdipour, E., Bozorg, O., Mariño, M., 2013. "Extration of Multicrop Planning Rules in a Reservoir System: Application of Evolutionary Algorithms". Journal of Irrigation and Drainage Engineering, Volume 139 Issue 6 June 2013
- Fuentes Mariles O.A., Palma Nava, Rodríguez Vázquez, 2011 "Estimación y localización de fugas en una red de tuberías de agua potable usando algoritmos genéticos", Ingeniería, Investigación y tecnología, Vol. XII Num. 2, 2011, 235 -242 ISNN 1405-7743 FI-UNAM
- Fuentes, Mariles, Óscar A.; Nava, Adriana Palma. 2014. "Leak detection and estimation of its expenses in a network of potable water pipes using a simple genetic algorithm" 4ta. Conferencia Iberoamericana en sistemas, Cibernética e Informática, CISCI 2005, Memorias, v2, 150-155.
- García, A. R., 2011. "Simulación numérica del transporte de contaminantes, en el río Grande de Morelia". Ciudad de México: s.n.

- García Flores Alejandro Israel, 2019. "Aplicación del algoritmo genético para el cálculo del diámetro de las tuberías de una red de distribución de agua potable en el distrito de Tarapoto 2018". Tesis de licenciatura para Ingeniería en Sistemas Informáticos. Facultad de ingeniería en Sistemas e informática. Universidad Nacional de San Martin-Tarapoto, Tarapoto, Perú.
- Godoy Álvarez, A. F., Cifuentes Cifuentes, G. 2018. "Mejoramiento de la red de distribución del sistema de acueducto Auacact en la localidad de la ciudad bolívar mediante modelación en Epanet-Bogota D.C." Programa de especialización en recursos hidráulicos. Facultad de Ingeniería. Universidad católica de Colombia. Bogotá, D.C.
- Goldberg, D.E. (1989). "Genetic algorithms in search, optimization and machine learning", Boston, MA. Addison-Wesley.
- Gonzales Gómez, J. Ignacio, 2015. "Toma de decisiones. Excel y Solver, una introducción". Anexo. Curso-taller ASEBOR-2015 (Asociación Empresarial de Bodegas Acogidas a la DO Ribera de Duero)
- Gonzales Perea, R; Camacho Poyato, E; Montesinos, P; Rodríguez Díaz, J. A. 2016, "Optimización de la predicción de agua mediante algoritmos neuro-genéticos para un conjunto de datos reducidos". XXXIV Congreso Nacional de riegos, Sevilla. Escuela técnica Superior de Ingeniería Agronómica
- Gonzales Piñeros, Marlon Alexis, 2013. "Optimización de redes hidráulicas mediante aplicación de algoritmos genéticos y de recorrido simulado utilizados en programas comerciales". Trabajo de grado para el título de especialista en Recursos Hidráulicos y Medio Ambiente. Ingeniería Civil. Escuela colombiana de Ingeniería "Julio Gravito"
- Goo, M., A.M.ASCE, A., Woo, S., 2014. "Combined Simulation-Optimization Model for Assessing Irrigation Water Supply Capacities of Reservoirs". ASCE. Journal of Irrigation and Drainage Engineering, Volume 140 Issue 5 – may 2010
- Guzmán Hurtado, Víctor Hugo, 2009. "Algoritmos genéticos y Epanet 2.0 para la localización optima de válvulas reductoras de presión en redes de distribución de agua potable" Tesis de licenciatura para Ingeniería en computación. Universidad Nacional Autónoma de México.
- Hao, Qichen; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Huang, Linxian. 2018, "Optimization of grountwater artificial recharge systems using a genetic algorithm: a case study in Beijing, China". Hydrogeology Journal, v26, n 5, 1749-1761. DOI: 10.1007/S10040-018-1781-7
- Holland, J. (1975). "Adaptation in Natural and Artificial Systems". MIT Press.
- Holzinger A., Blanchard D., Bloice M., Holzinger K., Palade V., Rabadan R., 2014 "Darwin, Lamarck, or Baldwin: Applying Evolutionary Algorithms to Machine Learning Techniques" IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)
- Huerta Loera Sadoth Fabián. 2010. "Funcionamiento de vasos". Tesis de Maestría. Dirección de posgrado. Universidad Nacional Autónoma de México. Ciudad de México, México.

- Inventario nacional de presas (2012): https://presas.conagua.gob.mx/inventario/
- Kruse Rudolf, Borgelt C., Braune C., Mostaghim S., Steinbrecher M. 2013. "Computational Intelligence: A Methodological Introduction". Springer.
- Lasdon, L.S., A.D. Waren, A. Jain y M. Ratner (1978). "Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Constrained Programming", ACM Transactions on Mathematical Software, vol. 4, pp. 34-50.
- Lasdon, L.S. y A.D. Waren (1978). "Generalized Reduced Gradient Software for Linearly and Nonlinearly Constrained Problems" en Greenberg, H.J.(Ed), Design and Implementation of Optimization Software, Sijthoff and Noordhoof, pp. 363-397.
- López Ares, S y Sánchez Álvarez, I. (1998). Optimización con Solver. Rect@. Actas_6.1-10
- López, J. C. (7 de octubre de 2010) "Introducción a los algoritmos genéticos: como implementar un algoritmo genético en JAVA" recuperado el 11 de enero de 2020 del Blog: "Adictos al trabajo", website: https://www.adictosaltrabajo.com/2010/10/07/jgap/
- Magahaes Costa, L. H., Holanda de Castro, M. A., Ramos, H. 2010, "Utilización de un algoritmo genético hibrido para la operación optima de sistemas de abastecimiento de agua: Uso de algoritmos genéticos híbridos para la operación optimizada de los sistemas de suministro de agua." Eng. Saint Ambient v.15 n.2 187-196
- Malekmohammadia B., Kerachian, R., Zahraieb, B. 2009. "Developing monthly operating rules for a cascade system of reservoirs: Application of Bayesian Networks" Environmental Modelling & Software 24 1420–1432.
- Mapa interactivo de Morelia: https://www.sigemorelia.mx/
- Mapa Michoacán de Ocampo. (2016). Secretaria de Comunicaciones y Transportes: http://antares.inegi.org.mx/analisis/red_hidro/documentosSeg/ATLAS_SCT_16.pdf
- Medina Riquelme, Ignacio. 2014. "Revisión de los algoritmos Bioinspirados" tesis licenciatura en Biología. Universidad de Manchester
- Mi Morelia.com (21 de marzo de 2019), "Este viernes inicia Primera Etapa de Mantenimiento al Canal de Cointzio", recuperado el 20 de octubre de 2019, website: https://www.mimorelia.com/este-viernes-inicia-primera-etapa-de-mantenimiento-al-canal-de-cointzio
- Michalewicz Z. 1996. "Genetic Algorithms + Data structures = Evolution Program" Springer Verlag.
- Minjares Lugo, J. L., Salmón Castelo, R. F., Orozco Ramos, L. A., Cruz Medina, I. R., 2008. "Hydrologic-agronomic-economic model for the optimal operation of the Yaqui River reservoir system using genetic algorithms". Ingeniería Hidráulica en México, v 23, n3, 37-48
- Moghaddasi, M., Araghinejad, S., Morid, S., 2010. "Long-Term Operation of Irrigation Dams Considering Variable Demands: Case Study of Zayandeh-rud Reservoir, Iran".
 Journal of Irrigation and Drainage Engineering, Volume 136 Issue 5 – may 2010

- Mora Melia, Daniel, 2012. "Diseño de redes de distribución de agua mediante algoritmos evolutivos. Análisis de eficiencia." Tesis doctoral. Departamento de Ingeniería Hidráulica y Medio Ambiente. Universidad politécnica de Valencia.
- Ndiritu, J., Odiyo, J., Makungo, R., Mwaka, B., Mthethwa, N., Ntuli, C. y Andanje, A. (2016). "Development of probabilistic operating rules for Hluhluwe Dam, South Africa". Physics and Chemistry of the Earth (100). 343-352.
- Padilla M. L.D,. Arganis J. M.L., Mendoza R.R, Domínguez M.R. y Carrizosa E.E. (2019)
 Optimización de las políticas de extracción para riego y suministro de agua potable para el embalse de la presa Cointzio, Michoacán, México. Memorias de las VI Jornadas de Ingeniería del Agua. Toledo, España. 23-24 de octubre
- Pereyra, G., Pandolfi, D., Villagra, A., 2016, "Diseño y optimización de redes de distribución de agua utilizando algoritmos genéticos". Informe Científico Técnico UNPA, v 9, n1, 37-73.
- Pino V. Edwin, Valle C. Angely, Condori et al 2016, "Diseño óptimo de redes de distribución de agua usando un software basado en micro algoritmos genéticos multiobjetivos". Ribagua, 4:1, 6-23, DOI: 10.1080/23863781.2017.1317087
- QUADRATIN Michoacán (28 de junio de 2017). "Realizará OOAPAS mantenimiento en presa Cointzio este viertes", recuperado el 20 de octubre de 2019, website: https://www.quadratin.com.mx/municipios/morelia/realizara-ooapas-mantenimiento-en-presa-cointzio-este-viernes/
 - QUADRATIN Michoacán (5 de abril de 2018). "Este viernes, OOAPAS dará mantenimiento al canal de presa de Cointzio", recuperado el 20 de octubre de 2019, website:
 - https://www.quadratin.com.mx/municipios/morelia/este-viernes-ooapas-dara-mantenimiento-al-canal-de-presa-de-cointzio-2/
- Rincón O, Jean Carlos, 2006. "Aplicación de algoritmo genéticos en la optimización del sistema de abastecimiento de agua de Barquesimeto-Caburade" Avances en Recursos Hidráulicos, (S.I.) n. 14, julio 2006. ISSN 0121-5701.
- Ríos, S. (1988). "Investigación operativa. Centro de Estudios Ramón Areces". Madrid.
- Río Fernández, R. (2016). "TEMA 3 OPTIMIZACIÓN". Recuperado el 14 de enero de 2019 de "Slide Player", website: https://slideplayer.es/slide/3415795/
- Rodríguez Vázquez, K., Fuentes Mariles, O.A., 2006, "Diseño óptimo de redes de distribución de agua potable utilizando un algoritmo genético multiobjetivo". VI SEREA – Seminario Iberoamericano sobre Sistemas de Abastecimiento Urbano de Agua. Joao Pessoa (Brasil).
- Rojas, F. J., 2019. "Análisis de precipitaciones y de escurrimientos máximos anuales para estimar avenidas de diseño para la presa Cointzio, Mich.", Tesis de licenciatura para Ingeniería civil. Facultad de Ingeniería. Universidad Nacional Autónoma de México.

- Sancho Caparrini, F. 2019. "Algoritmos genéticos". Recuperado el 11 de enero de 2019, de Blog: "Fernando Sánchez Caparrini", website: http://www.cs.us.es/~fsancho/?e=65
- Senthil, A., Kumar, M., Ojha, C., Singh, R., Swamee, P. and Nema, R. (2013). "Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the Development of Reservoir Operating Rules". Water Resource Manage. 27(3) · 911–925
- Sotelo Aldo, Baran Benjamín, 2015, "Optimización de los costos de bombeo en sistemas de suministro de agua mediante un algoritmo evolutivo multiobjetivo combinado". XV Congreso Chileno de Ingeniería Hidráulica. Sociedad Chilena de Ingeniería Hidráulica.
- Susperregui, A. S. y otros, 2007. "El funcionamiento hidrosedimentario de la presa de Cointzio". s.l., s.n.
- Svanidze G. G., 1980. "Mathematical Modeling of Hydrologic Series". Water Resources Publications, USA
- The Mathworks. (2020). https://www.mathworks.com/
- Wua, Yiping. y Chen, Ji,. 2014. "Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: A case study of the Xinfengjiang reservoir in southern China". Agricultural Water Management 116 (2013) 110–121
- Xiaoru, Su., Longcang, Shu., Xunhong, Che., Chengpeng, Lu., Zhonghui, Wen., 2016. "Interpreting the cross-sectional flow fiel in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)" Hydrogeology Journal, v4, n 8, 2035-2047.

9. Anexos

Anexo A Elevaciones- capacidades-áreas

	Elevaciones	Capacidades	Áreas
	msnm	(hm³)	ha
	1967	0.000	0.017
	1967.5	0.000	0.061
	1968	0.001	0.182
	1968.5	0.003	0.712
	1969	0.013	3.374
	1969.5	0.046	9.658
	1970	0.112	16.958
	1970.5	0.223	27.122
	1971	0.366	30.065
	1971.5	0.544	41.295
	1972	0.761	45.328
NAMINO	1972.31	0.907	47.489
	1972.5	0.996	48.814
	1973	1.247	51.716
	1973.5	1.513	54.548
	1974	1.791	56.725
	1974.5	2.082	59.796
	1975	2.390	63.098
	1975.5	2.716	67.454
	1976	3.069	73.949
	1976.5	3.453	79.585
	1977	3.863	84.164
	1977.5	4.295	88.854
	1978	4.751	93.478
	1978.5	5.231	98.531
	1979	5.738	104.401
	1979.5	6.276	110.484
	1980	6.845	117.088
	1980.5	7.442	122.034
	1981	8.068	128.027
	1981.5	8.725	135.061
	1982	9.440	150.763

	Elevaciones	Capacidades	Áreas
	msnm	(hm³)	ha
	1982.5	10.224	162.987
	1983	11.062	171.962
	1983.5	11.939	179.159
	1984	12.853	186.370
	1984.5	13.802	193.305
	1985	14.787	200.473
	1985.5	15.815	210.631
	1986	16.888	218.643
	1986.5	17.999	226.015
	1987	19.150	234.047
	1987.5	20.343	243.245
	1988	21.580	251.733
	1988.5	22.864	261.652
	1988.99	24.226	294.246
	1990	27.315	317.453
	1991	30.620	343.543
	1992	34.192	370.861
	1993	38.037	398.189
	1994	42.129	420.243
	1995	46.441	442.155
Cresta vertedora	1995.97	50.836	463.285
	1996	50.972	463.938
	1997	55.726	487.036
	1998	60.722	512.120
	1999	65.975	538.476
NAMO	1999.47	68.520	551.287
	2000	71.504	568.306
	2001	77.329	596.701
NAME	2001.32	79.233	604.745
	2002	83.421	621.793
Corona	2002.82	88.577	640.209

Anexo B Escurrimientos por cuenca propia (hm³)

(Valores deducidos por la CONAGUA y corregidos con datos de la hidrométrica 12347 Santiago Undameo)

En azul aparecen los valores de la hidrométrica que completan las series originales cuando no existen datos; en rojo los que sustituyen algunos valores existentes pero identificados como erróneos y resaltados en amarillo aquellos en los que se utilizaron promedios de los volúmenes de la estación hidrométrica para corregir o completar las series de volúmenes deducidos originalmente por la CONAGUA.

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1940	0.842	0.880	0.596	0.571	1.421	4.559	11.002	8.425	9.562	3.878	2.444	1.451
1941	1.608	1.487	0.218	0.134	1.140	4.157	17.036	11.559	17.197	-1.279	5.930	4.487
1942	3.490	3.544	2.998	2.094	3.631	4.005	9.452	11.157	16.101	8.839	3.976	3.544
1943	2.106	1.347	0.797	0.419	2.841	7.351	6.684	10.161	13.294	7.970	4.039	2.634
1944	2.745	2.889	1.449	0.157	2.161	4.871	6.645	13.159	21.626	3.812	2.443	2.781
1945	3.319	2.815	1.896	1.766	2.906	5.809	7.397	13.056	7.611	8.261	1.928	1.797
1946	1.787	1.208	0.800	0.039	1.179	6.523	7.932	7.080	9.759	12.498	4.553	2.221
1947	3.670	2.220	0.501	-0.650	1.404	4.921	4.125	9.543	12.642	5.130	3.296	4.230
1948	4.444	2.991	-0.036	0.884	2.865	5.050	13.511	12.600	10.106	5.451	3.468	2.362
1949	2.352	1.855	0.894	-0.194	1.734	5.723	8.861	9.784	9.399	4.873	1.021	-0.002
1950	2.764	1.169	0.129	1.112	2.682	5.761	16.849	11.980	12.973	11.443	2.250	2.907
1951	3.586	1.389	-0.385	0.498	3.313	7.975	11.365	12.563	15.943	6.457	2.704	1.702
1952	2.939	1.767	-0.304	0.563	3.735	9.492	12.538	13.964	20.184	8.202	7.797	3.617
1953	3.122	1.610	1.431	0.687	1.740	3.134	4.642	6.149	2.926	3.349	5.072	3.381
1954	2.674	1.713	-0.002	-0.590	3.654	6.047	10.628	10.661	11.070	26.543	6.682	3.512
1955	4.097	2.732	2.076	0.461	1.718	4.482	17.492	19.012	12.687	5.622	7.006	4.625
1956	4.578	4.851	3.301	2.816	7.233	8.978	22.610	21.542	15.790	4.911	3.200	3.934
1957	5.127	3.699	1.567	1.497	2.692	5.687	7.294	9.499	7.288	4.672	2.636	2.248
1958	8.549	4.423	1.581	0.633	1.774	9.498	24.398	24.520	13.172	0.649	1.657	2.832
1959	4.530	4.181	4.126	5.477	5.240	6.472	12.713	16.718	8.883	1.748	3.101	5.917
1960	4.555	3.941	2.288	2.171	4.711	4.178	7.908	12.345	12.524	4.836	1.813	2.159
1961	2.625	2.316	1.572	0.409	2.480	7.252	14.896	12.759	6.052	4.151	1.849	1.955
1962	2.451	2.019	-0.198	0.188	2.427	5.896	10.025	10.265	24.930	14.219	3.740	3.495
1963	3.080	2.356	2.164	-0.196	2.694	5.790	12.944	15.158	15.279	3.713	2.885	3.125
1964	3.695	2.205	1.436	0.539	2.198	7.636	19.646	13.705	22.421	7.444	3.257	2.940
1965	3.146	3.121	0.859	1.120	2.559	4.934	8.153	20.126	17.833	13.692	3.522	2.121
1966	2.917	2.553	2.123	2.480	4.444	6.918	14.379	20.040	5.733	3.010	2.807	3.058
1967	8.844	3.202	2.999	3.204	5.941	13.127	18.328	12.587	5.467	1.309	2.075	-0.569
1968	4.829	4.642	4.360	2.472	4.410	6.061	14.469	14.538	7.917	2.643	2.617	3.267
1969	3.027	2.862	2.250	2.007	1.877	3.444	11.393	16.137	27.124	7.557	4.130	3.846

1970	2.403	3.193	2.890	1.104	1.290	4.026	13.147	21.722	15.251	2.393	4.290	3.313
1971	2.379	1.959	2.341	2.631	1.922	5.212	11.237	18.270	19.579	4.907	3.285	3.663
1972	2.744	2.672	2.487	1.070	-0.150	13.046	15.000	21.327	22.715	0.931	3.401	2.245
1973	1.746	2.197	0.780	0.473	2.496	5.774	10.778	18.185	15.505	7.621	3.287	3.534
1974	2.591	1.405	0.652	0.992	1.157	5.239	11.495	13.229	11.192	6.732	2.798	1.429
1975	1.610	1.602	1.386	-2.480	0.658	6.553	10.082	18.168	37.731	2.941	1.951	1.817
1976	1.544	0.698	0.033	-0.688	1.190	5.197	16.043	10.527	13.936	12.881	0.088	2.751
1977	2.128	0.974	1.157	0.603	1.631	4.303	11.421	9.902	19.742	6.725	1.521	1.120
1978	0.554	0.161	-0.340	-1.865	-1.939	4.540	14.888	19.916	16.283	3.418	1.901	1.876
1979	0.403	1.429	-0.045	-2.060	0.108	5.088	11.455	13.825	20.654	5.181	2.281	2.860
1980	5.796	2.188	0.983	-0.818	2.027	2.416	4.752	14.543	19.408	5.912	3.411	1.301
1981	3.380	1.263	1.689	-2.222	-1.127	10.332	21.495	23.580	5.148	4.173	2.343	2.607
1982	1.662	0.733	-0.962	-3.556	0.870	2.959	12.685	9.573	9.777	5.726	2.672	1.702
1983	2.669	1.299	0.339	0.414	2.715	3.122	21.545	21.974	11.389	4.683	3.164	1.461
1984	1.816	1.602	0.665	0.405	0.644	4.692	11.077	14.018	24.021	7.769	2.788	2.170
1985	1.978	1.016	0.352	-3.296	0.585	7.496	11.013	14.598	7.656	7.035	2.588	1.726
1986	-0.995	-2.154	0.585	0.444	-1.070	4.722	13.516	6.260	12.576	7.128	0.115	-1.142
1987	-1.742	-1.731	0.695	0.924	1.307	1.972	3.193	10.860	6.882	1.737	-1.203	1.026
1988	1.207	0.648	1.046	0.389	1.823	3.849	10.811	25.952	27.790	5.783	2.067	1.344
1989	1.352	0.896	0.399	0.369	0.550	1.576	2.281	5.075	16.796	5.449	2.406	2.178
1990	1.403	-0.965	-2.295	0.665	-0.973	5.023	16.064	10.208	11.358	8.724	2.115	1.553
1991	1.145	0.795	0.623	0.482	1.759	3.530	8.515	7.811	15.565	15.367	4.939	2.352
1992	5.382	2.042	1.476	1.017	2.414	2.351	-0.263	7.576	17.338	3.331	-0.943	0.013
1993	0.327	-2.298	1.309	1.101	2.020	0.419	13.274	20.854	0.417	1.877	-0.289	-0.579
1994	2.575	1.868	1.020	0.826	2.128	3.546	3.372	4.749	7.586	3.302	-0.384	0.021
1995	2.115	0.813	0.644	0.548	1.013	4.567	15.212	30.766	30.379	8.729	0.154	-1.167
1996	3.392	1.122	0.565	0.793	1.835	4.951	17.821	14.917	14.368	8.425	6.183	0.741
1997	3.111	2.017	2.249	1.623	2.391	3.419	9.134	9.121	4.132	2.288	0.924	0.985
1998	1.484	0.730	0.598	0.544	0.000	1.702	5.570	13.405	25.880	19.334	1.846	0.880
1999	2.856	2.080	1.967	1.059	0.837	3.232	8.286	16.642	16.336	3.386	1.623	2.619
2000	2.748	1.460	1.913	0.560	1.134	9.732	9.167	11.994	9.116	8.298	3.270	1.624
2001	1.198	1.438	1.424	-0.199	2.580	7.558	7.954	11.204	17.992	8.689	3.155	2.075
2002	3.106	2.012	-0.392	0.890	1.610	6.459	12.227	10.882	11.845	7.624	3.689	2.562
2003	2.797	2.126	2.712	1.492	1.656	4.732	9.712	11.734	23.933	12.825	4.835	2.502
2004	2.666	2.017	1.607	2.771	3.799	5.910	6.808	8.818	18.721	14.387	3.658	2.460
2005	2.539	2.044	2.166	1.999	1.933	1.895	6.832	11.950	20.234	7.246	3.328	2.302
2006	2.261	1.989	1.974	0.902	2.318	3.440	6.397	12.576	16.300	17.345	5.558	2.932
2007	2.900	1.970	0.669	1.420	1.650	2.590	4.816	9.601	16.282	5.656	2.540	1.612
2008	1.558	1.840	0.784	1.076	1.176	2.588	8.565	8.335	9.555	5.558	2.146	1.681
2009	1.785	1.621	0.268	-1.336	1.477	2.917	5.659	4.470	10.400	4.840	2.366	1.714

2010	2.279	1.935	1.163	-0.050	2.735	3.539	20.554	19.843	3.498	5.893	2.820	2.620
2011	3.072	1.381	0.776	1.423	2.257	1.859	20.111	8.765	8.628	3.672	1.415	1.520
2012	-0.964	3.511	-4.977	0.166	0.528	2.569	11.876	20.807	9.398	5.382	3.415	1.534
2013	1.387	0.689	-0.483	-0.234	0.494	2.116	5.532	6.853	28.465	2.018	3.447	1.365
2014	1.208	-0.197	-4.435	0.116	2.719	5.652	8.161	6.403	9.990	10.440	3.570	2.523
2015	1.966	1.293	6.568	1.763	0.878	5.454	7.816	7.067	4.519	3.794	4.125	1.868
2016	1.575	1.508	1.205	1.210	1.770	3.662	5.153	10.358	8.436	8.512	4.284	2.097

Anexo C Volumen extraído para uso público urbano (miles m³) (CONAGUA, 2019 b)

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Anual
1998	1660.6	1499.9	1660.6	1553.5	1660.6	1607.0	1660.6	1660.6	1607.0	1660.6	1607.0	1660.6	19,498.60
1999	1660.6	1499.9	1660.6	1607.0	1660.6	1607.0	1660.6	1660.6	1607.0	1660.6	1607.0	1660.6	19,552.10
2000	1660.6	1553.5	1660.6	1607.0	1660.6	1607.0	1660.6	1660.6	1446.3	1660.6	1607.0	1660.6	19,445.00
2001	1660.6	1499.9	1660.6	1607.0	1660.6	1607.0	1660.6	1660.6	1607.0	1660.6	1607.0	1660.6	19,552.10
2002	1660.6	1499.9	1660.6	1607.0	1607.0	1607.0	1660.6	1660.6	1607.0	1661.6	1608.0	1661.6	19,501.50
2003	1661.6	1500.8	1660.6	1607.0	1660.6	1607.0	1660.6	1660.6	1607.0	1660.6	1607.0	1607.0	19,500.40
2004	1607.0	1553.5	1687.4	2347.2	2281.7	2115.2	2078.2	2049.8	2051.9	2084.6	2106.3	2162.8	24,125.60
2005	2131.8	1938.0	2121.6	2077.7	2140.3	2053.1	2227.4	2240.5	2097.5	2215.7	2142.7	2223.8	25,610.10
2006	2279.5	2093.4	2228.8	1977.8	1961.5	1836.7	2113.2	1582.8	2126.9	2245.5	2003.2	1859.4	24,308.70
2007	1884.0	1691.8	1675.3	1776.1	1721.0	1796.0	1881.9	1880.0	1748.3	1825.1	1813.6	1875.0	21,568.10
2008	2114.0	1693.4	1694.8	1635.2	1707.9	1602.1	1668.5	1750.6	1709.9	1626.8	1630.1	1684.5	20,517.75
2009	1521.0	1524.1	1687.4	1652.4	1652.0	1697.0	1819.8	1655.0	1650.0	1694.2	1574.7	1696.9	19,824.50
2010	1713.3	1524.1	1687.4	1649.0	1422.0	1488.8	1704.1	1781.3	1684.8	1723.5	1814.4	1826.2	20,018.97
2011	1824.2	1634.1	1682.2	1698.0	1734.3	1807.6	1759.2	1670.8	1738.7	1727.9	1704.6	1742.9	20,724.47
2012	1740.0	1753.6	1838.1	1687.3	1765.1	1683.4	1658.0	1643.0	1733.0	1817.9	1769.1	1801.8	20,890.39
2013	1729.9	1620.4	1838.9	1703.0	1771.5	1713.7	1761.8	1702.6	1625.2	1626.4	1630.5	1743.6	20,467.59
2014	1743.6	1574.9	1743.6	1655.3	1792.8	1762.5	1845.5	1874.9	1734.7	1741.8	1684.8	1689.1	20,843.66
2015	1768.6	1584.6	1745.3	1636.4	1714.2	1658.9	1714.2	1690.0	1155.2	1637.1	1553.5	1660.6	19,518.45
2016	1660.6	1557.5	1687.4	1633.0	1687.4	1633.0	1666.7	1660.6	1581.1	1585.4	1594.1	1741.0	19,687.70
2017	1741.0	1525.8	1682.2	1633.0	1636.1	1519.6	1741.0	1741.0	1684.8	1741.0	1684.8	1741.0	22,088.15
2018	1741.0	1572.5	1741.0	1565.1	1660.6	1607.0	1660.6	1660.6	1555.2	1607.0	1680.5	1741.0	19,792.08

Anexo D Volumen extraído para riego DR 020 (miles m³) (CONAGUA, 2019 b)

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Anual
1998	4130.2	4165.0	11496.7	11100.7	131.3	0.0	0.0	0.0	0.0	0.0	0.0	235.8	31259.7
1999	3894.9	3677.0	12658.9	13685.0	2672.4	466.6	0.0	0.0	0.0	0.0	557.8	871.3	38483.9
2000	1683.3	3882.5	14226.5	15947.8	2420.8	0.0	0.0	0.0	0.0	0.0	624.7	2262.9	41048.5
2001	2325.4	5740.2	16279.1	11517.4	705.0	0.0	0.0	0.0	0.0	0.0	0.0	1654.2	38221.3
2002	1451.0	2129.1	15234.4	9164.2	4122.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32101.4
2003	1458.1	3219.5	15761.7	7098.5	5738.9	0.0	0.0	0.0	0.0	0.0	0.0	689.1	33965.8
2004	640.1	2557.1	14330.7	11402.8	1832.6	152.4	0.0	0.0	0.0	0.0	0.0	785.1	31700.8
2005	746.8	1268.3	13357.6	12455.9	4896.3	1809.9	0.0	0.0	0.0	0.0	978.9	1223.6	36737.3
2006	4134.1	3374.5	15668.9	12981.7	331.8	0.0	0.0	0.0	0.0	0.0	0.0	573.6	37064.6
2007	2222.4	2793.1	1223.9	14634.0	3332.0	138.2	0.0	0.0	0.0	288.0	546.5	535.7	25713.8
2008	5724.2	6491.1	12444.0	5280.0	1475.4	1716.3	0.0	0.0	0.0	0.0	547.2	591.8	34270.0
2009	600.0	662.7	8405.3	13232.7	791.0	179.7	0.0	0.0	0.0	0.0	47.5	432.6	24351.5
2010	247.1	25.3	2460.1	12015.8	3010.5	934.8	0.0	0.0	0.0	0.0	149.6	1705.9	20549.1
2011	2743.8	3705.5	10088.4	12397.2	4301.4	837.2	0.0	0.0	0.0	280.3	393.7	663.7	35411.1
2012	2217.3	96.0	8972.3	12048.3	5014.8	705.2	0.0	0.0	0.0	149.76	93.67	669.6	29966.9
2013	2005.6	2405.92	7837.43	12766.9	2957.7	2930.1	0.0	0.0	0.0	0.0	112.1	762.3	31778.2
2014	595.6	2329.34	8192.56	13425	1446.2	0.0	0.0	0.0	0.0	0.0	0.0	690.3	26678.9
2015	1820.4	1343.52	3470.69	5457.7	2153.1	0.0	0.0	0.0	0.0	358.6	432.0	553.0	15589.0
2016	1121.5	3386.87	8669.38	11552.0	3442.2	0.0	0.0	0.0	0.0	172.8	235.0	976.3	29556.1
2017	2125.4	2153.1	5578.9	10213.3	3208.1	51.9	0.0	0.0	0.0	0.0	551.2	764.6	24646.5
2018	1801.5	2021.8	8471.5	11641.2	2719.2	1555.3	0.0	0.0	0.0	0.0	0.0	0.0	28210.6

Anexo E Extracciones anuales y almacenamientos iniciales (hm³) (Funcionamiento diario CONAGUA)

AÑO	MES	ALMAC. INICIAL	EXTRACCIÓN
		hm³	hm³
1941	OCT	68.096	27.379
1942	OCT	41.610	90.615
1943	OCT	51.848	48.318
1944	OCT	64.984	54.229
1945	OCT	43.941	72.023
1946	OCT	31.444	57.680
1947	OCT	36.814	49.337
1948	OCT	51.772	47.950
1949	OCT	35.980	65.639
1950	OCT	47.800	48.758
1951	OCT	55.358	62.850
1952	OCT	65.984	63.586
1953	OCT	40.082	66.568
1954	OCT	43.164	54.559
1955	OCT	70.208	71.914
1956	OCT	69.632	107.816
1957	OCT	34.180	89.714
1958	OCT	70.568	62.321
1959	OCT	70.904	73.553
1960	OCT	55.772	77.421
1961	OCT	40.870	72.757
1962	OCT	53.288	53.074
1963	OCT	67.808	65.302
1964	OCT	79.910	70.519
1965	OCT	79.910	74.330
1966	OCT	83.928	74.534
1967	OCT	84.440	80.503
1968	OCT	84.440	64.951
1969	OCT	84.504	75.845
1970	OCT	85.208	75.728
1971	OCT	83.608	74.995
1972	OCT	86.744	86.320
1973	OCT	79.818	68.304
1974	OCT	71.296	68.741

~		ALMAC.	
AÑO	MES	INICIAL	EXTRACCIÓN
		hm ³	hm ³
1975	OCT	85.272	69.929
1976	OCT	73.480	63.777
1977	OCT	80.508	59.198
1978	OCT	83.224	56.893
1979	OCT	76.874	62.106
1980	OCT	77.748	59.082
1981	OCT	83.224	66.647
1982	OCT	50.974	71.998
1983	OCT	67.472	49.286
1984	OCT	62.696	64.863
1985	OCT	57.244	57.889
1994	OCT	63.004	35.495
1995	OCT	85.510	51.109
1996	OCT	77.950	60.157
1997	OCT	73.200	44.437
1998	OCT	73.750	31.713
1999	OCT	83.890	47.446
2000	OCT	76.610	58.742
2001	OCT	76.610	58.742
2002	OCT	78.848	59.314
2003	OCT	80.864	71.324
2004	OCT	82.376	71.301
2005	OCT	80.864	73.279
2006	OCT	72.000	70.051
2007	OCT	74.300	63.763
2008	OCT	63.448	54.456
2009	OCT	54.004	44.555
2010	OCT	80.360	48.439
2011	OCT	81.200	56.999
2012	OCT	80.864	49.159
2013	OCT	84.616	50.755
2014	OCT	80.024	41.455
2015	OCT	77.504	55.014
2016	OCT	54.585	48.943

Anexo F. Codigo fuente, programa SGAOBJcointz.m

```
% sgaPTA.m
% This script implements the Simple Genetic Algorithm described
% in the examples section of the GA Toolbox manual.
             Andrew Chipperfield
% Author:
            23-Mar-94 file created
% History:
% Modificado por Instituto de Ingenieria enero 2004
                    % Number of individuals per subpopulations
NIND = 200;
MAXGEN = 5000;
                   %maximum Number of generations
GGAP=0.9;
                    % Generation gap, how many new individuals are created3NOV04/
NVAR = 16;
                    % Generation gap, how many new individuals are created %5jun19
                    %4 datos de curva z y 12 porcentajes mensual en decimales
PRECI = 15;
                    % Precision of binary representation
% Build field descriptor
     %rpol Cointzio alm inic min, extrac min, alm inic max , extrac max
     %(anual) porcentajes de extracción de enero a dic (por riego)
     FieldD = [rep([PRECI],[1, NVAR]); 37.7272 53.0490 68.5163 69.0654 0.1670
0.1894 0.4745 0.5847 0.1689 0.0922 0.000 0.000 0.000 0.0230 0.0277 0.0830;...
         37.7272 53.0490 68.5163 69.0654 0.0120 0.0012 0.0475 0.1540 0.0042 0.000
0.000 0.000 0.000 0.000 0.000 0.000;...
            rep([1; 0; 1;1], [1, NVAR])];
% Initialise population
   Chrom = crtbp(NIND, NVAR*PRECI);
% Reset counters
   Best = NaN*ones(MAXGEN,1); % best in current population
             % generational counter
   qen = 0;
% Evaluate initial population
   ObjV = Objcointz(bs2rv(Chrom, FieldD));
   ObjV=ObjV';
% Track best individual and display convergence
   Best(gen+1) = min(ObjV);
   plot((Best),'ro');xlabel('generation'); ylabel('(f(x))');
   text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized');
   drawnow;
% Generational loop
   while gen < MAXGEN,
    % Assign fitness-value to entire population
       FitnV = ranking(ObjV);
```

% End of GA

```
% Select individuals for breeding
    SelCh = select('rws', Chrom, FitnV, GGAP);
 % Recombine selected individuals (crossover)
    SelCh = recombin('xovsp', SelCh, 0.7);
 % Perform mutation on offspring
    SelCh = mut(SelCh);
 % Evaluate offspring, call objective function
    ObjVSel = Objcointz(bs2rv(SelCh,FieldD));
    ObjVSel=ObjVSel';
 % Reinsert offspring into current population
    [Chrom ObjV] = reins (Chrom, SelCh, 1, 1, ObjV, ObjVSel);
 % Increment generational counter
    gen = gen+1;
    gen
 % Update display and record current best individual
   Best(gen+1) = min(ObjV);
  %impresion 3 feb 04
 % ObjVSel
 % Best (gen+1)
  % termina prueba impresion 3 feb 04
    plot((Best),'ro'); xlabel('qeneration'); ylabel('(f(x))');
    text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized');
    drawnow;
     [a b]=min(ObjV);
     Best=bs2rv(Chrom(b,:),FieldD);
     Best=Best;
     save solucion.txt Best -ascii;
end
```

Anexo G. Codigo fuente, función Objcointz.m

```
function ObjVal= Objrieg(Chrom)
[Nind, NVAR] = size (Chrom);
k=1e9;
for j=1:Nind
 ele1=Chrom(j,1);
 ele2=Chrom(j,2);
 ele3=Chrom(j,3);
 ele4=Chrom(j,4);
 %cuidado de que aquí se puso almac min, extrac min, almac max, extrac max
 %máximo se puede cambiar luego para que sí quede abscisa y ordenada de cada
punto.. 5 jun 19
    CURVAEX=[ ele1 ele2 ele3 ele4];
% Factor mensual agua potable
% FACTAP=[0.047854129 0.063242897 0.062468904 0.053840968
                                                            0.078932807 0.078932807
0.078932807 \ 0.078932807 \ 0.032130699 \ 0.035813474 \ 0.031274509 \ 0.040075158]
% S=sum(FACTAP);
 % Factor mensual riego
fri1=Chrom(j,5);
 fri2=Chrom(j,6);
fri3=Chrom(j,7);
 fri4=Chrom(j,8);
 fri5=Chrom(j,9);
 fri6=Chrom(j,10);
 fri7=Chrom(j,11);
 fri8=Chrom(j,12);
fri9=Chrom(j,13);
 fri10=Chrom(j,14);
 fri11=Chrom(j,15);
 fri12=Chrom(j,16);
FACTRI=[fri1 fri2 fri3 fri4 fri5 fri6 fri7 fri8 fri9 fri10 fri11 fri12];
save CURVAEX.TXT CURVAEX -ASCII
save FACTORIEGO.TXT FACTRI -ASCII
% llama al programa de simulacion
%dos('RIEGOYPO.exe');
system('RIEGOYPO.exe');
% abre archivos de resultados de la simulacion para evaluar funcion objetivo
```



```
EXT01=load('EXT01');
DER01=load('DER01');
DEF01=load('DEF01');
RESP11=EXT01;
RESP12=DER01;
RESP13=DEF01;
 %presa1
 cr1=1.0;
 cderr1=500.0;
cdef1=1000.0;
 %error
p=1-
 (Chrom(j,5)+Chrom(j,6)+Chrom(j,7)+Chrom(j,8)+Chrom(j,9)+Chrom(j,10)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,11)+Chrom(j,
om(j,12) + Chrom(j,13) + Chrom(j,14) + Chrom(j,15) + Chrom(j,16));
 %penalización del error
 cerr=10000;
 %evalua a la funcion objetivo
ObjVal(j) = (-0.01*(cr1*RESP11-cderr1*RESP12-cdef1*RESP13)) + (cerr*(abs(p)));
 %ObjVal(j)=-0.01*(cr*(RESP11+RESP21+RESP31)-cderr*(RESP12+RESP22+RESP32)-
 cdef*(RESP13+RESP23+RESP33));
end
```


Anexo H Muestra sintetica 1. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	0.606	0.176	-0.372	-2.043	-2.123	4.973	16.307	21.815	17.835	3.537	1.967	1.942
2	0.416	1.479	-0.046	-2.132	0.112	5.267	11.857	14.309	21.378	4.167	2.671	3.040
3	3.628	3.077	2.073	1.931	3.177	6.351	8.086	14.274	8.321	8.813	2.319	2.166
4	1.909	1.460	1.341	-0.122	1.670	3.589	8.022	9.395	9.470	13.682	3.479	2.340
5	2.415	1.944	2.060	1.901	1.838	1.802	6.497	11.364	19.243	13.694	0.221	-2.193
6	-3.346	-3.324	1.335	1.775	2.511	3.788	6.134	20.863	13.220	6.536	2.878	3.608
7	7.312	2.760	1.241	-1.031	2.556	3.047	5.994	18.345	24.482	13.489	5.085	2.632
8	2.805	2.121	1.690	2.914	3.995	6.217	7.160	9.275	19.690	1.598	-0.186	0.010
9	1.024	0.394	0.311	0.265	0.490	2.211	7.364	14.893	14.706	12.606	4.752	2.460
10	2.621	1.982	1.580	2.723	3.734	5.810	6.691	8.668	18.400	1.345	-0.932	0.795
11	0.935	0.502	0.810	0.302	1.411	2.980	8.371	20.095	21.518	6.102	3.425	3.813
12	2.431	1.072	-1.407	-5.199	1.272	4.327	18.549	13.998	14.297	4.074	1.971	1.369
13	1.495	1.136	1.449	0.797	0.885	2.529	5.189	6.270	12.788	8.083	5.141	3.501
14	3.487	2.750	1.325	-0.287	2.570	8.484	13.138	14.506	13.936	4.250	1.859	1.678
15	1.796	1.782	0.490	0.639	1.461	2.817	4.655	11.490	10.181	5.733	3.684	4.728
16	4.967	3.343	-0.040	0.988	3.202	5.644	15.100	14.082	11.294	0.885	3.234	2.135
17	1.660	2.089	0.742	0.450	2.373	5.490	10.248	17.290	14.743	6.166	2.722	2.464
18	1.587	-1.092	-2.597	0.753	-1.101	5.683	18.175	11.549	12.850	6.717	3.251	2.257
19	2.465	1.874	2.390	1.314	1.459	4.170	8.557	10.339	21.087	5.198	2.160	1.104
20	1.243	1.237	1.070	-1.915	0.508	5.060	7.786	14.029	29.137	4.156	2.664	3.032
21	3.619	3.069	2.068	1.926	3.168	6.334	8.065	14.236	8.299	9.932	3.396	2.400
22	1.871	1.230	6.249	1.677	0.835	5.188	7.435	6.723	4.299	0.882	1.399	-0.384
23	3.256	3.130	2.939	1.667	2.973	4.086	9.755	9.801	5.338	16.774	0.115	3.583
24	2.771	1.268	1.507	0.786	2.125	5.604	14.873	12.895	25.709	2.145	2.001	2.179
25	6.304	2.282	2.138	2.284	4.235	9.356	13.063	8.971	3.897	10.879	2.862	2.674
26	2.356	1.803	1.655	-0.150	2.062	4.430	9.903	11.598	11.690	3.440	5.209	3.473
27	2.747	1.759	-0.002	-0.606	3.753	6.211	10.916	10.950	11.371	5.169	5.620	2.545
28	2.146	2.054	1.642	1.649	2.411	4.988	7.021	14.112	11.493	5.425	2.271	1.430
29	2.469	1.485	-0.256	0.473	3.137	7.973	10.532	11.730	16.955	-1.211	5.616	4.249
30	3.305	3.357	2.840	1.983	3.439	3.793	8.951	10.566	15.249	7.954	2.888	1.900
31	2.843	1.842	-0.359	0.815	1.474	5.913	11.193	9.962	10.843	6.700	3.207	2.979
32	3.493	1.570	0.882	1.618	2.566	2.114	22.867	9.965	9.811	-1.108	5.139	3.889
33	3.024	3.072	2.599	1.815	3.147	3.471	8.191	9.669	13.954	1.488	-1.031	0.879
34	1.034	0.555	0.897	0.334	1.562	3.297	9.261	22.232	23.806	1.543	-1.069	0.912
35	1.072	0.575	0.930	0.346	1.619	3.418	9.603	23.052	24.684	8.997	3.545	1.761
36	1.299	1.558	1.544	-0.216	2.797	8.194	8.623	12.148	19.506	10.846	7.959	0.954

	4 00 4			0.000	0.070						4.0=0	
37	4.004	2.597	2.895	2.089	3.078	4.401	11.758	11.741	5.319	3.111	1.256	1.340
38	2.017	0.993	0.813	0.740	0.000	2.315	7.574	18.228	35.191	3.400	1.586	1.010
39	1.585	0.771	0.201	0.246	1.611	1.853	12.791	13.046	6.762	1.905	1.777	1.935
40	5.597	2.026	1.898	2.027	3.760	8.307	11.598	7.965	3.460	9.984	2.569	1.547
41	2.127	1.862	1.548	1.808	3.240	5.045	10.485	14.613	4.180	6.040	1.366	1.006
42	0.497	0.144	-0.305	-1.675	-1.741	4.077	13.370	17.885	14.622	7.311	4.651	3.167
43	3.154	2.487	1.199	-0.260	2.325	7.675	11.885	13.122	12.606	18.489	0.299	-2.961
44	-4.518	-4.489	1.803	2.396	3.390	5.115	8.282	28.168	17.849	10.360	2.418	2.253
45	2.241	1.515	1.003	0.050	1.478	8.181	9.947	8.878	12.238	3.801	2.395	1.422
46	1.576	1.458	0.214	0.131	1.117	4.074	16.695	11.328	16.853	10.309	2.500	1.836
47	1.353	0.940	0.737	0.569	2.079	4.172	10.063	9.230	18.394	5.123	5.569	2.522
48	2.126	2.036	1.627	1.634	2.389	4.943	6.957	13.984	11.389	5.920	6.436	2.915
49	2.457	2.352	1.880	1.888	2.761	5.713	8.040	16.160	13.161	5.687	2.533	2.679
50	3.358	2.767	-0.271	0.258	3.325	8.078	13.736	14.065	34.159	11.196	3.829	2.706
51	2.109	1.387	7.044	1.890	0.941	5.848	8.382	7.579	4.846	3.608	1.746	1.212
52	1.324	1.006	1.284	0.706	0.784	2.240	4.597	5.553	11.327	7.985	3.444	3.703
53	2.714	1.472	0.684	1.040	1.212	5.489	12.045	13.861	11.727	7.162	3.133	2.828
54	3.027	3.003	0.827	1.077	2.462	4.747	7.844	19.364	17.158	5.076	2.429	2.256
55	2.646	1.190	0.668	1.226	1.944	1.601	17.322	7.549	7.432	3.536	2.228	1.323
56	1.466	1.356	0.199	0.122	1.039	3.789	15.529	10.537	15.676	-0.885	4.105	3.107
57	2.416	2.454	2.076	1.450	2.514	2.773	6.544	7.724	11.148	2.804	2.776	3.464
58	3.210	3.036	2.387	2.129	1.991	3.652	12.083	17.117	28.770	5.102	2.381	1.516
59	2.378	1.157	0.302	0.369	2.418	2.781	19.197	19.578	10.148	5.543	6.026	2.729
60	2.301	2.203	1.760	1.768	2.585	5.349	7.528	15.132	12.323	7.783	0.137	-1.041
61	3.024	1.001	0.504	0.707	1.636	4.414	15.889	13.300	12.810	3.916	2.646	1.221
62	1.519	1.340	0.556	0.339	0.539	3.924	9.263	11.723	20.089	5.291	2.315	2.089
63	2.236	2.218	0.611	0.796	1.819	3.507	5.795	14.305	12.676	5.730	3.635	1.633
64	1.477	0.734	-0.514	-0.249	0.526	2.253	5.890	7.296	30.307	3.787	2.942	3.187
65	3.768	2.248	1.464	0.550	2.241	7.786	20.033	13.975	22.863	7.563	-2.142	0.029
66	0.742	-5.217	2.972	2.501	4.585	0.950	30.140	47.352	0.947	1.375	-0.952	0.812
67	0.955	0.513	0.828	0.308	1.443	3.045	8.555	20.537	21.992	3.508	1.562	1.652
68	2.071	1.707	-0.167	0.159	2.051	4.982	8.472	8.675	21.069	4.166	2.036	1.475
69	1.961	1.666	1.001	-0.043	2.354	3.046	17.690	17.078	3.011	7.130	1.834	1.104
70	1.519	1.329	1.106	1.291	2.314	3.602	7.488	10.435	2.985	5.972	3.353	3.732
71	2.379	1.049	-1.377	-5.089	1.245	4.235	18.155	13.701	13.994	1.966	3.488	6.657
72	5.124	4.434	2.574	2.442	5.300	4.701	8.897	13.888	14.090	6.987	3.143	2.802
73	1.665	1.065	0.630	0.331	2.246	5.812	5.284	8.033	10.510	4.405	1.844	1.161
74	2.004	1.206	-0.208	0.384	2.547	6.474	8.552	9.524	13.768	10.176	3.929	3.078
75	3.268	2.967	0.490	-2.446	2.704	5.340	10.360	8.185	19.040	-1.165	5.400	4.086
76	3.178	3.228	2.731	1.907	3.307	3.647	8.608	10.160	14.663	4.824	2.708	3.014

77	1.922	0.847	-1.112	-4.110	1.006	3.421	14.664	11.067	11.303	4.768	1.078	0.794
78	0.392	0.114	-0.240	-1.322	-1.374	3.219	10.554	14.118	11.543	9.154	0.063	1.955
79	1.513	0.692	0.822	0.429	1.159	3.058	8.117	7.038	14.031	10.727	7.872	0.944
80	3.960	2.568	2.863	2.066	3.044	4.353	11.629	11.612	5.260	3.145	3.919	2.587
81	2.561	2.714	1.847	1.576	4.046	5.022	12.648	12.051	8.833	12.343	3.107	1.633
82	1.905	1.271	0.965	0.214	0.799	2.084	8.134	8.841	5.900	4.788	2.234	1.423
83	2.231	1.086	0.283	0.346	2.269	2.610	18.014	18.372	9.522	2.622	1.098	0.691
84	1.193	0.718	-0.124	0.228	1.516	3.854	5.091	5.669	8.195	2.521	1.422	1.213
85	4.613	2.386	0.853	0.342	0.957	5.125	13.164	13.230	7.107	14.683	4.719	2.247
86	5.142	1.951	1.410	0.972	2.306	2.246	-0.252	7.238	16.565	2.722	-0.316	0.017
87	1.743	0.671	0.530	0.451	0.835	3.765	12.540	25.362	25.044	8.085	1.589	2.054
88	2.534	0.981	-0.272	0.352	2.341	5.634	8.030	8.876	11.264	24.671	6.211	3.264
89	3.807	2.540	1.929	0.428	1.596	4.166	16.259	17.671	11.792	5.496	2.060	2.453
90	2.983	2.631	1.786	0.465	2.818	8.241	16.926	14.498	6.877	2.788	1.126	1.201
91	1.808	0.890	0.729	0.663	0.000	2.075	6.789	16.338	31.542	3.622	1.737	2.802
92	2.939	1.562	2.046	0.599	1.213	10.411	9.806	12.830	9.751	11.084	10.536	4.888
93	4.219	2.175	1.934	0.929	2.351	4.235	6.272	8.308	3.954	3.944	1.891	3.051
94	3.201	1.701	2.228	0.652	1.321	11.338	10.679	13.972	10.619	4.917	3.151	3.587
95	4.281	3.631	2.446	2.278	3.748	7.493	9.541	16.842	9.818	5.647	3.170	3.528
96	2.249	0.992	-1.302	-4.811	1.177	4.004	17.165	12.954	13.231	6.066	2.540	1.599
97	2.760	1.661	-0.286	0.529	3.508	8.916	11.777	13.116	18.959	1.114	1.766	-0.485
98	4.110	3.950	3.710	2.104	3.753	5.158	12.314	12.372	6.738	5.963	3.822	4.351
99	5.192	4.404	2.967	2.763	4.546	9.088	11.570	20.425	11.907	10.038	2.434	1.787
100	1.317	0.915	0.717	0.554	2.024	4.062	9.798	8.987	17.910	7.366	1.666	1.227

Anexo I Muestra sintetica 2. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	2.473	1.203	0.314	0.384	2.515	2.892	19.961	20.358	10.552	3.320	2.092	1.242
2	1.377	1.273	0.187	0.115	0.976	3.558	14.583	9.895	14.722	2.475	1.642	1.529
3	1.299	0.587	0.028	-0.579	1.002	4.374	13.501	8.859	11.728	1.940	3.479	2.686
4	1.929	1.588	1.898	2.133	1.558	4.226	9.111	14.813	15.874	3.885	1.813	1.155
5	1.811	0.881	0.230	0.281	1.842	2.118	14.617	14.908	7.727	0.648	2.366	1.562
6	1.214	1.528	0.543	0.329	1.736	4.017	7.498	12.650	10.786	0.557	1.420	2.428
7	3.884	3.585	3.538	4.696	4.493	5.549	10.900	14.333	7.616	2.726	1.022	1.217
8	1.480	1.305	0.886	0.230	1.398	4.087	8.395	7.191	3.411	9.935	2.409	1.769
9	1.304	0.905	0.710	0.548	2.003	4.020	9.697	8.894	17.725	3.119	3.887	2.566
10	2.540	2.692	1.832	1.563	4.013	4.981	12.544	11.952	8.760	10.480	3.358	1.772
11	1.752	1.190	0.404	0.858	0.997	1.565	2.910	5.801	9.838	19.031	0.308	-3.048
12	-4.651	-4.620	1.856	2.467	3.489	5.265	8.525	28.995	18.373	3.670	0.769	-0.001
13	2.081	0.880	0.097	0.838	2.020	4.339	12.689	9.022	9.770	1.195	-0.827	0.706
14	0.830	0.445	0.720	0.268	1.253	2.646	7.433	17.844	19.108	3.875	2.594	2.892
15	2.167	2.110	1.964	0.845	-0.119	10.303	11.847	16.843	17.939	6.448	2.895	1.838
16	1.777	2.098	0.894	1.227	1.341	2.951	9.764	9.503	10.893	7.111	3.441	2.389
17	2.609	1.983	2.530	1.391	1.545	4.414	9.058	10.944	22.322	3.795	5.748	3.832
18	3.031	1.941	-0.002	-0.668	4.141	6.853	12.045	12.083	12.547	4.601	0.964	-0.002
19	2.609	1.103	0.122	1.050	2.532	5.440	15.908	11.311	12.248	13.610	4.361	2.301
20	2.276	1.546	0.525	1.114	1.295	2.032	3.779	7.533	12.776	10.775	4.245	2.109
21	1.555	1.866	1.849	-0.258	3.349	9.813	10.327	14.548	23.360	1.812	-0.211	0.011
22	1.160	0.446	0.353	0.300	0.556	2.507	8.349	16.885	16.673	12.345	3.248	3.035
23	2.674	2.046	1.878	-0.170	2.340	5.027	11.238	13.161	13.265	1.535	2.723	5.197
24	4.000	3.462	2.009	1.907	4.138	3.670	6.945	10.842	11.000	1.522	2.700	5.152
25	3.966	3.432	1.992	1.890	4.102	3.638	6.886	10.749	10.905	10.163	7.458	0.894
26	3.752	2.433	2.713	1.957	2.884	4.124	11.018	11.002	4.984	2.230	1.258	1.072
27	4.079	2.110	0.755	0.302	0.846	4.532	11.641	11.700	6.285	9.683	2.348	1.724
28	1.271	0.882	0.692	0.534	1.952	3.918	9.451	8.669	17.277	8.172	3.607	3.266
29	2.103	-1.447	-3.442	0.998	-1.459	7.532	24.088	15.307	17.031	5.148	5.597	2.535
30	2.137	2.046	1.635	1.642	2.401	4.968	6.992	14.054	11.446	4.530	2.614	0.997
31	2.590	0.968	1.295	-1.703	-0.863	7.917	16.471	18.069	3.944	18.490	4.702	3.163
32	3.264	2.627	2.785	2.570	2.484	2.435	8.781	15.358	26.006	6.080	3.081	2.009
33	2.094	2.204	1.105	0.120	1.649	3.715	5.069	10.038	16.496	1.226	2.174	4.149
34	3.194	2.764	1.604	1.522	3.303	2.930	5.545	8.656	8.782	8.231	2.942	1.913
35	1.924	1.275	0.568	0.526	0.783	2.243	3.247	7.223	23.907	7.578	4.820	3.283
36	3.269	2.578	1.242	-0.269	2.410	7.955	12.318	13.601	13.066	5.851	2.831	1.966

27	2.147	1.632	2.082	1.145	1.271	3.632	7.454	9.005	18.368	10.922	0.075	2.333
37	1.805	0.826	0.981	0.512	1.383	3.649	9.684	8.397	16.740	7.051	3.104	3.893
39	7.888	2.978	1.338	-1.113	2.758	3.287	6.467	19.792	26.412	10.113	4.549	4.055
40	2.410	1.541	0.912	0.479	3.251	8.411	7.647	11.626	15.211	4.652	2.684	1.024
	2.659	0.994	1.329		-0.886	8.130	16.914	18.555	4.050	7.046	1.644	1.533
41				-1.748								
42	1.524	1.031	0.682	0.034	1.006	5.564	6.765	6.039	8.324	13.867	1.324	0.631
43	2.048	1.492	1.411	0.759	0.600	2.318	5.943	11.936	11.717	6.138	2.551	1.303
44	1.468	1.461	1.263	-2.262	0.600	5.975	9.193	16.566	34.404	3.785	2.426	2.762
45	3.296	2.795	1.883	1.754	2.885	5.768	7.344	12.965	7.558	5.641	1.276	0.939
46	0.464	0.135	-0.285	-1.564	-1.626	3.808	12.487	16.705	13.657	6.920	3.349	2.325
47	2.539	1.930	2.462	1.354	1.503	4.296	8.816	10.651	21.724	7.232	2.596	2.020
48	1.842	0.946	0.328	-3.068	0.545	6.978	10.252	13.589	7.127	5.006	3.176	1.427
49	1.290	0.641	-0.449	-0.218	0.459	1.968	5.146	6.374	26.477	7.784	1.817	1.693
50	1.684	1.139	0.754	0.037	1.111	6.147	7.474	6.671	9.196	5.933	1.342	0.988
51	0.488	0.142	-0.299	-1.645	-1.710	4.005	13.133	17.569	14.364	11.407	4.094	3.187
52	2.905	1.492	0.517	-4.840	0.859	11.007	16.170	21.434	11.240	11.733	11.153	5.174
53	4.466	2.303	2.047	0.984	2.489	4.483	6.640	8.796	4.186	4.671	3.002	3.852
54	4.047	2.724	-0.033	0.805	2.609	4.599	12.303	11.474	9.202	14.562	10.687	1.281
55	5.377	3.487	3.887	2.805	4.132	5.910	15.787	15.765	7.141	16.625	15.803	7.331
56	6.328	3.263	2.900	1.394	3.527	6.352	9.408	12.462	5.931	8.210	3.095	1.602
57	1.707	1.291	1.029	1.774	2.432	3.784	4.358	5.645	11.985	6.230	2.609	1.643
58	2.835	1.706	-0.294	0.543	3.603	9.158	12.097	13.472	19.473	14.227	5.086	3.307
59	3.325	2.204	0.982	0.909	1.354	3.877	5.612	12.485	41.322	4.291	2.002	1.275
60	2.000	0.973	0.254	0.310	2.034	2.339	16.146	16.467	8.535	4.273	1.881	2.359
61	4.780	1.804	0.811	-0.674	1.671	1.992	3.919	11.993	16.004	7.626	2.726	1.772
62	1.783	1.182	0.526	0.487	0.726	2.078	3.008	6.692	22.150	7.886	0.139	-1.055
63	3.064	1.014	0.510	0.716	1.658	4.473	16.099	13.476	12.979	9.800	3.861	1.918
64	1.415	1.697	1.681	-0.235	3.046	8.925	9.392	13.231	21.246	4.444	2.563	0.978
65	2.540	0.949	1.270	-1.670	-0.847	7.766	16.156	17.723	3.869	3.135	-0.482	-0.967
66	4.300	3.119	1.703	1.379	3.554	5.922	5.632	7.932	12.670	4.148	2.752	2.562
67	2.177	0.984	0.047	-0.970	1.679	7.331	22.627	14.847	19.656	3.453	2.213	2.520
68	3.007	2.551	1.718	1.600	2.633	5.263	6.701	11.830	6.896	11.161	0.180	-1.788
69	-2.727	-2.710	1.088	1.447	2.046	3.088	5.000	17.005	10.775	4.232	2.388	2.036
70	7.743	4.006	1.432	0.574	1.607	8.603	22.099	22.210	11.930	3.044	1.918	1.139
71	1.262	1.167	0.171	0.105	0.895	3.262	13.369	9.071	13.496	8.022	3.460	3.720
72	2.727	1.479	0.687	1.045	1.218	5.514	12.100	13.925	11.781	2.150	0.868	0.926
73	1.394	0.686	0.562	0.511	0.000	1.599	5.234	12.595	24.317	4.219	6.389	4.260
74	3.369	2.157	-0.002	-0.743	4.604	7.618	13.389	13.431	13.947	4.779	3.114	3.829
75	4.990	3.600	1.525	1.457	2.620	5.535	7.099	9.244	7.093	7.595	3.410	2.165
76	2.093	2.471	1.053	1.445	1.579	3.475	11.501	11.194	12.831	4.477	1.861	0.951

77	1.071	1.066	0.922	-1.650	0.438	4.359	6.706	12.084	25.096	4.040	2.633	3.237
78	4.218	3.043	1.289	1.231	2.215	4.679	6.001	7.815	5.996	6.259	3.971	1.784
79	1.613	0.802	-0.561	-0.272	0.574	2.461	6.434	7.969	33.103	2.482	4.451	3.437
80	2.468	2.032	2.428	2.729	1.994	5.406	11.657	18.951	20.309	6.492	4.090	2.429
81	2.692	2.489	0.365	0.224	1.908	6.957	28.512	19.346	28.782	6.211	1.405	1.034
82	0.511	0.148	-0.313	-1.722	-1.791	4.193	13.750	18.394	15.038	4.144	1.934	1.232
83	1.931	0.940	0.245	0.300	1.964	2.259	15.592	15.902	8.242	5.834	1.320	0.971
84	0.480	0.139	-0.294	-1.618	-1.682	3.939	12.915	17.277	14.125	11.259	2.835	1.490
85	1.738	1.159	0.880	0.195	0.728	1.901	7.420	8.064	5.381	10.077	7.395	0.887
86	3.721	2.413	2.690	1.941	2.860	4.090	10.925	10.909	4.942	7.971	3.519	3.186
87	2.051	-1.411	-3.358	0.973	-1.423	7.346	23.496	14.931	16.613	11.342	4.379	3.430
88	3.643	3.308	0.546	-2.727	3.015	5.952	11.548	9.123	21.223	8.594	1.689	2.183
89	2.693	1.043	-0.289	0.374	2.488	5.989	8.535	9.435	11.973	15.022	0.243	-2.406
90	-3.671	-3.647	1.465	1.947	2.754	4.156	6.729	22.887	14.502	3.780	0.792	-0.001
91	2.144	0.907	0.100	0.863	2.080	4.469	13.070	9.293	10.063	3.791	2.109	2.081
92	0.446	1.586	-0.050	-2.285	0.120	5.645	12.708	15.337	22.913	4.702	2.615	2.581
93	0.553	1.966	-0.061	-2.834	0.149	7.000	15.760	19.019	28.415	5.156	3.360	4.131
94	5.383	3.884	1.645	1.571	2.826	5.971	7.658	9.973	7.652	3.256	2.180	2.430
95	1.821	1.773	1.650	0.710	-0.100	8.657	9.954	14.152	15.073	3.047	2.058	0.950
96	1.181	1.042	0.433	0.264	0.419	3.052	7.206	9.119	15.627	17.129	6.457	3.342
97	3.561	2.693	2.146	3.700	5.074	7.894	9.092	11.777	25.002	3.445	2.171	1.289
98	1.428	1.321	0.194	0.119	1.013	3.692	15.131	10.267	15.274	2.962	1.866	1.108
99	1.228	1.136	0.167	0.102	0.871	3.174	13.010	8.828	13.133	7.119	2.981	1.877
100	3.240	1.949	-0.336	0.620	4.117	10.464	13.822	15.393	22.251	5.305	2.476	1.577

Anexo J Muestra sintetica 3. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	4.698	1.773	0.797	-0.663	1.643	1.958	3.851	11.787	15.729	1.056	1.673	-0.459
2	3.894	3.743	3.516	1.994	3.556	4.887	11.667	11.723	6.385	1.243	-0.861	0.734
3	0.864	0.464	0.749	0.279	1.304	2.754	7.736	18.571	19.886	4.866	7.369	4.913
4	3.885	2.488	-0.003	-0.857	5.310	8.786	15.442	15.491	16.086	6.355	1.437	1.058
5	0.523	0.152	-0.321	-1.762	-1.832	4.290	14.068	18.818	15.385	5.652	2.596	1.795
6	1.763	1.551	1.539	0.704	1.808	2.683	4.990	9.809	12.714	4.965	2.079	1.309
7	2.259	1.359	-0.234	0.433	2.871	7.298	9.640	10.736	15.518	3.141	1.506	2.429
8	2.549	1.354	1.774	0.519	1.052	9.027	8.502	11.125	8.455	2.500	2.475	3.089
9	2.862	2.707	2.128	1.898	1.776	3.257	10.774	15.263	25.653	10.450	2.749	2.569
10	2.263	1.732	1.590	-0.144	1.980	4.256	9.513	11.141	11.229	5.803	2.665	1.843
11	1.810	1.593	1.580	0.722	1.856	2.755	5.123	10.071	13.054	4.245	2.075	1.503
12	1.998	1.698	1.020	-0.044	2.399	3.104	18.028	17.404	3.068	9.381	4.046	4.350
13	3.189	1.730	0.803	1.222	1.424	6.449	14.150	16.285	13.778	6.739	3.293	2.386
14	3.172	2.695	1.619	-0.070	3.808	4.927	28.619	27.629	4.871	3.289	1.577	2.544
15	2.669	1.418	1.858	0.544	1.102	9.455	8.905	11.651	8.856	8.606	2.008	1.872
16	1.862	1.259	0.833	0.041	1.228	6.796	8.263	7.376	10.167	7.811	4.385	4.881
17	3.112	1.372	-1.801	-6.656	1.629	5.539	23.745	17.920	18.302	0.530	1.351	2.310
18	3.696	3.411	3.367	4.468	4.275	5.280	10.372	13.639	7.248	3.456	5.234	3.490
19	2.760	1.767	-0.002	-0.609	3.771	6.241	10.969	11.003	11.426	3.464	5.917	2.344
20	2.073	-0.338	-7.614	0.199	4.668	9.704	14.009	10.992	17.150	3.214	1.297	1.384
21	2.084	1.025	0.840	0.765	0.000	2.391	7.824	18.830	36.353	6.010	1.259	-0.002
22	3.409	1.441	0.160	1.372	3.307	7.105	20.778	14.774	15.998	2.167	2.022	2.202
23	6.368	2.305	2.159	2.307	4.278	9.452	13.197	9.063	3.937	2.208	2.059	2.243
24	6.488	2.348	2.200	2.350	4.358	9.629	13.445	9.233	4.011	0.483	1.232	2.106
25	3.369	3.109	3.069	4.073	3.897	4.813	9.455	12.433	6.607	12.251	6.208	4.048
26	4.219	4.441	2.227	0.241	3.323	7.487	10.214	20.227	33.241	9.971	3.668	2.446
27	-1.410	-3.053	0.829	0.630	-1.516	6.693	19.156	8.872	17.823	12.035	4.370	2.874
28	4.302	2.787	-0.542	1.233	2.230	8.946	16.935	15.072	16.406	8.807	0.061	1.881
29	1.455	0.666	0.791	0.413	1.115	2.942	7.809	6.770	13.498	8.604	6.314	0.757
30	3.177	2.060	2.297	1.657	2.441	3.492	9.328	9.314	4.219	6.891	3.975	1.517
31	3.939	1.472	1.969	-2.590	-1.313	12.042	25.053	27.483	6.000	4.048	2.601	3.338
32	3.507	2.361	-0.028	0.697	2.261	3.985	10.662	9.943	7.975	5.853	3.376	1.288
33	3.346	1.250	1.672	-2.200	-1.115	10.228	21.279	23.343	5.096	7.849	3.531	3.147
34	1.871	1.196	0.708	0.372	2.523	6.528	5.936	9.024	11.806	4.022	2.717	1.254
35	1.560	1.376	0.572	0.348	0.553	4.030	9.513	12.039	20.631	3.423	1.975	0.754
36	1.957	0.731	0.978	-1.287	-0.652	5.983	12.447	13.654	2.981	3.346	1.604	2.588

37	2.715	1.443	1.890	0.553	1.120	9.616	9.058	11.851	9.007	11.435	4.311	2.231
38	2.378	1.798	1.433	2.470	3.387	5.270	6.070	7.862	16.691	2.904	-0.337	0.018
39	1.860	0.716	0.566	0.481	0.891	4.018	13.381	27.063	26.723	3.711	-0.571	-1.145
40	5.091	3.693	2.016	1.632	4.207	7.011	6.667	9.390	14.999	4.266	2.045	3.299
41	3.461	1.839	2.409	0.705	1.429	12.261	11.548	15.110	11.484	3.271	2.210	1.020
42	1.269	1.119	0.465	0.703	0.450	3.277	7.737	9.791	16.779	3.231	1.864	0.711
43	1.847	0.690	0.403	-1.214	-0.616	5.646	11.746	12.886	2.813	2.126	1.423	1.587
44	1.189	1.158	1.078	0.464	-0.065	5.652	6.499	9.240	9.841	1.949	3.495	2.699
-	1.938	1.596		2.143		4.245		14.881	15.947	4.124		
45	5.656	4.103	1.906 2.240	1.814	1.566	7.790	9.153 7.408	10.434		5.001	-0.634 3.317	-1.273 3.089
46	2.625	1.186	0.056	-1.169	4.675 2.024	8.838	27.278	17.899	16.666 23.696	4.581	2.239	1.622
47												
48	2.157	1.832	1.101	-0.048	2.589	3.350	19.456	18.783	3.311	4.394	2.863	3.520
49	4.587	3.310	1.402	1.339	2.408	5.088	6.526	8.499	6.521	6.479	3.637	4.048
50	2.581	1.138	-1.493	-5.520	1.351	4.594	19.694	14.863	15.180	9.254	2.381	1.433
51	1.971	1.726	1.435	1.676	3.003	4.676	9.718	13.544	3.874	1.963	1.831	1.994
52	5.769	2.088	1.956	2.090	3.875	8.562	11.955	8.210	3.566	13.604	2.674	3.456
53	4.263	1.651	-0.458	0.592	3.938	9.480	13.510	14.935	18.952	1.504	2.697	2.082
54	1.495	1.231	1.471	1.653	1.208	3.276	7.063	11.482	12.305	10.918	2.548	2.375
55	2.361	1.597	1.057	0.052	1.558	8.621	10.482	9.357	12.897	2.438	4.373	3.377
56	2.425	1.997	2.385	2.681	1.959	5.312	11.452	18.619	19.953	1.643	1.532	1.669
57	4.827	1.747	1.637	1.748	3.242	7.163	10.002	6.869	2.984	10.216	2.598	1.747
58	1.803	1.451	1.538	1.420	1.373	1.345	4.851	8.485	14.368	8.759	3.451	1.715
59	1.264	1.517	1.503	-0.210	2.722	7.977	8.395	11.826	18.989	0.961	1.524	-0.418
60	3.546	3.408	3.201	1.815	3.237	4.449	10.623	10.673	5.813	5.597	3.059	2.849
61	1.780	2.365	2.141	0.818	0.955	2.982	9.739	16.090	11.297	9.301	2.447	2.287
62	2.015	1.541	1.415	-0.128	1.763	3.788	8.467	9.916	9.995	-1.214	5.629	4.259
63	3.313	3.364	2.846	1.988	3.447	3.802	8.972	10.591	15.285	3.648	4.545	3.001
64	2.970	3.148	2.142	1.827	4.693	5.825	14.669	13.977	10.244	8.438	3.937	2.508
65	3.933	1.914	0.499	0.610	4.000	4.600	31.747	32.379	16.782	11.205	5.031	3.194
66	3.087	3.646	1.553	2.132	2.330	5.127	16.967	16.513	18.928	14.706	3.702	1.946
67	2.270	1.514	1.150	0.255	0.951	2.483	9.692	10.534	7.029	8.970	1.763	2.279
68	2.811	1.088	-0.302	0.391	2.597	6.251	8.908	9.847	12.496	10.301	3.789	2.527
69	-1.456	-3.154	0.856	0.650	-1.566	6.914	19.790	9.166	18.413	8.689	0.060	1.856
70	1.436	0.657	0.781	0.407	1.101	2.903	7.705	6.680	13.318	8.978	0.062	1.918
71	1.483	0.679	0.806	0.421	1.137	2.999	7.961	6.902	13.761	1.101	1.954	3.729
72	2.870	2.484	1.442	1.368	2.969	2.633	4.983	7.779	7.892	4.245	2.449	0.934
73	2.426	0.907	1.213	-1.595	-0.809	7.418	15.433	16.930	3.696	17.333	4.045	3.770
74	3.749	2.535	1.678	0.083	2.473	13.688	16.642	14.855	20.477	3.355	1.355	1.445
75	2.176	1.070	0.877	0.798	0.000	2.496	8.169	19.659	37.954	3.199	1.779	1.756
76	0.377	1.338	-0.042	-1.928	0.102	4.763	10.722	12.940	19.332	11.975	4.515	2.337

77	2.490	1.883	1.501	2.587	3.547	5.519	6.356	8.234	17.480	7.647	3.346	3.020
78	3.232	3.206	0.883	1.150	2.629	5.069	8.376	20.676	18.320	15.055	4.824	2.545
79	2.517	1.710	0.581	1.232	1.432	2.248	4.180	8.333	14.132	6.593	2.960	1.879
80	1.816	2.145	0.914	1.254	1.371	3.017	9.983	9.716	11.137	7.823	3.082	1.531
81	1.129	1.355	1.342	-0.187	2.431	7.124	7.497	10.561	16.959	1.284	1.272	1.587
82	1.470	1.391	1.093	0.975	0.912	1.673	5.535	7.841	13.179	6.816	6.479	3.006
83	2.594	1.338	1.189	0.571	1.446	2.604	3.857	5.109	2.432	5.477	2.676	1.939
84	2.578	2.190	1.316	-0.057	3.095	4.004	23.258	22.453	3.959	2.957	3.684	2.432
85	2.408	2.551	1.736	1.481	3.804	4.721	11.890	11.329	8.304	4.124	2.616	1.175
86	1.063	0.528	-0.370	-0.179	0.378	1.622	4.239	5.251	21.813	4.803	1.800	2.144
87	2.607	2.300	1.561	0.406	2.463	7.202	14.791	12.670	6.010	2.630	2.043	2.214
88	2.617	1.562	1.017	0.382	1.556	5.408	13.916	9.708	15.881	10.635	2.677	1.407
89	1.641	1.095	0.832	0.185	0.688	1.796	7.009	7.618	5.083	1.888	-0.219	0.012
90	1.209	0.465	0.368	0.313	0.579	2.611	8.697	17.588	17.368	4.314	2.765	3.148
91	3.756	3.186	2.146	1.999	3.289	6.575	8.371	14.777	8.614	3.604	6.156	2.438
92	2.157	-0.352	-7.921	0.207	4.856	10.095	14.575	11.436	17.842	2.245	4.027	3.109
93	2.233	1.839	2.196	2.469	1.804	4.891	10.546	17.145	18.374	3.747	1.797	2.899
94	3.041	1.616	2.117	0.619	1.255	10.772	10.146	13.274	10.089	2.400	4.099	1.624
95	1.437	-0.235	-5.275	0.138	3.234	6.723	9.706	7.616	11.882	10.815	2.126	2.748
96	3.389	1.312	-0.364	0.471	3.131	7.537	10.741	11.873	15.067	5.328	2.912	2.712
97	1.694	2.252	2.038	0.778	0.909	2.838	9.270	15.316	10.753	5.649	2.028	1.578
98	1.438	0.739	0.256	-2.397	0.425	5.451	8.008	10.615	5.567	2.769	1.540	1.520
99	0.326	1.158	-0.036	-1.669	0.088	4.123	9.281	11.201	16.734	10.856	4.192	3.283
100	3.487	3.166	0.523	-2.610	2.885	5.697	11.053	8.732	20.313	4.199	1.849	2.318

Anexo K Muestra sintetica 4. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	1.911	1.574	1.880	2.113	1.544	4.187	9.027	14.677	15.728	13.073	4.471	3.160
2	2.462	1.619	8.225	2.207	1.099	6.829	9.787	8.850	5.659	-1.009	4.680	3.542
3	2.754	2.797	2.367	1.653	2.866	3.161	7.460	8.806	12.708	2.562	1.446	1.233
4	4.688	2.425	0.867	0.348	0.973	5.208	13.379	13.447	7.223	5.719	3.211	3.574
5	2.278	1.005	-1.318	-4.873	1.193	4.056	17.386	13.121	13.401	6.248	3.964	1.781
6	1.610	0.800	-0.560	-0.271	0.573	2.457	6.422	7.955	33.046	5.373	1.125	-0.002
7	3.047	1.288	0.143	1.226	2.957	6.352	18.576	13.208	14.303	4.230	2.719	3.489
8	3.665	2.467	-0.030	0.729	2.363	4.165	11.142	10.391	8.334	10.661	3.427	1.632
9	3.734	1.417	1.024	0.706	1.675	1.631	-0.183	5.256	12.028	15.046	4.836	2.303
10	5.269	1.999	1.445	0.996	2.363	2.302	-0.258	7.417	16.975	9.082	3.106	2.195
11	1.711	1.125	5.714	1.533	0.764	4.744	6.799	6.148	3.931	7.775	2.823	1.857
12	2.779	1.801	-0.350	0.797	1.441	5.780	10.941	9.738	10.599	10.184	4.581	4.084
13	2.427	1.552	0.918	0.482	3.273	8.470	7.701	11.708	15.318	7.286	3.982	3.708
14	2.317	3.079	2.787	1.064	1.244	3.881	12.676	20.944	14.705	12.906	4.747	3.166
15	-1.825	-3.951	1.073	0.815	-1.962	8.663	24.795	11.483	23.070	12.542	4.728	2.447
16	2.608	1.972	1.572	2.710	3.715	5.780	6.657	8.624	18.308	3.096	1.722	1.700
17	0.364	1.295	-0.040	-1.866	0.098	4.610	10.379	12.525	18.713	1.729	-1.198	1.021
18	1.201	0.645	1.041	0.388	1.814	3.830	10.758	25.826	27.655	6.279	2.354	2.803
19	3.408	3.006	2.040	0.531	3.220	9.415	19.338	16.564	7.857	5.675	2.716	2.523
20	2.958	1.330	0.747	1.371	2.173	1.790	19.367	8.440	8.309	4.712	0.987	-0.002
21	2.672	1.130	0.125	1.075	2.593	5.571	16.291	11.583	12.543	2.698	1.522	1.298
22	4.935	2.553	0.913	0.366	1.024	5.483	14.085	14.155	7.604	3.418	1.522	1.610
23	2.018	1.663	-0.163	0.155	1.998	4.855	8.255	8.453	20.529	5.948	2.160	1.421
24	2.126	1.378	-0.268	0.609	1.102	4.422	8.370	7.450	8.109	8.231	5.236	3.566
25	3.551	2.800	1.349	-0.293	2.618	8.640	13.380	14.773	14.192	13.454	4.325	2.059
26	4.712	1.788	1.292	0.891	2.113	2.058	-0.231	6.633	15.179	7.878	3.771	3.502
27	4.107	1.846	1.038	1.903	3.017	2.485	26.886	11.717	11.535	12.422	4.525	2.208
28	3.648	2.206	0.498	-0.646	1.396	4.891	4.100	9.484	12.564	13.267	5.122	4.012
29	4.261	3.869	0.639	-3.189	3.526	6.962	13.508	10.671	24.824	7.472	0.132	-0.999
30	2.904	0.961	0.483	0.679	1.571	4.238	15.255	12.769	12.299	6.678	3.231	2.244
31	2.450	1.863	2.376	1.307	1.451	4.145	8.507	10.278	20.963	3.712	2.065	2.038
32	0.437	1.553	-0.049	-2.237	0.118	5.527	12.444	15.017	22.436	3.072	2.076	0.958
33	1.191	1.051	0.437	0.266	0.423	3.078	7.266	9.196	15.758	4.121	6.242	4.162
34	3.291	2.108	-0.002	-0.726	4.498	7.442	13.080	13.122	13.625	2.105	2.085	2.602
35	2.410	2.280	1.792	1.599	1.495	2.742	9.074	12.854	21.604	5.363	2.931	2.729
36	1.705	2.266	2.051	0.783	0.915	2.857	9.330	15.416	10.824	7.479	1.692	1.245

37	0.615	0.179	-0.377	-2.074	-2.156	5.049	16.557	22.148	18.107	8.556	5.428	2.438
38	2.205	1.096	-0.767	-0.372	0.785	3.364	8.794	10.893	45.248	8.693	3.198	2.133
39	-1.229	-2.662	0.723	0.549	-1.322	5.835	16.701	7.735	15.539	2.344	1.821	1.973
40	2.332	1.392	0.906	0.340	1.387	4.820	12.401	8.651	14.152	0.549	1.399	2.392
41	3.826	3.531	3.485	4.626	4.426	5.466	10.738	14.120	7.503	12.217	0.084	2.609
42	2.018	0.924	1.097	0.572	1.547	4.081	10.832	9.392	18.725	5.587	3.581	4.076
43	4.864	4.126	2.779	2.589	4.259	8.514	10.841	19.136	11.156	16.509	6.014	2.934
44	4.848	2.932	0.662	-0.858	1.855	6.500	5.449	12.605	16.698	5.670	2.503	2.266
45	1.459	-1.004	-2.389	0.692	-1.012	5.226	16.714	10.621	11.818	2.955	3.682	2.431
46	2.406	2.550	1.735	1.480	3.802	4.719	11.885	11.323	8.300	2.161	2.693	1.778
47	1.760	1.865	1.269	1.083	2.781	3.451	8.692	8.281	6.070	3.321	5.671	2.247
48	1.987	-0.324	-7.298	0.191	4.474	9.301	13.428	10.536	16.438	5.250	2.297	2.073
49	2.219	2.201	0.606	0.790	1.805	3.480	5.751	14.196	12.579	3.626	2.405	2.240
50	1.903	0.860	0.041	-0.848	1.468	6.408	19.780	12.979	17.183	8.073	3.043	1.575
51	1.679	1.269	1.012	1.744	2.391	3.721	4.285	5.551	11.784	15.359	5.595	2.730
52	4.511	2.728	0.616	-0.798	1.726	6.047	5.070	11.727	15.535	4.024	6.094	4.063
53	3.213	2.058	-0.002	-0.709	4.391	7.266	12.770	12.810	13.302	7.376	4.141	4.609
54	2.938	1.296	-1.700	-6.285	1.538	5.230	22.422	16.921	17.283	8.378	4.094	2.966
55	3.944	3.350	2.012	-0.087	4.734	6.125	35.576	34.346	6.055	4.686	1.962	1.235
56	2.132	1.283	-0.221	0.408	2.710	6.887	9.098	10.132	14.645	1.910	1.892	2.361
57	2.187	2.068	1.626	1.451	1.357	2.488	8.233	11.663	19.603	-0.911	4.224	3.196
58	2.486	2.525	2.136	1.492	2.587	2.853	6.732	7.947	11.469	5.826	2.565	3.216
59	6.518	2.460	1.106	-0.919	2.279	2.716	5.344	16.354	21.824	5.174	3.464	3.862
60	2.894	2.817	2.623	1.129	-0.158	13.758	15.819	22.491	23.955	2.457	1.630	1.518
61	1.290	0.583	0.028	-0.575	0.995	4.342	13.403	8.795	11.643	5.741	2.512	2.267
62	2.426	2.407	0.663	0.863	1.974	3.805	6.288	15.522	13.754	3.425	4.268	2.817
63	2.789	2.956	2.011	1.716	4.406	5.469	13.773	13.123	9.619	8.023	3.602	2.287
64	2.210	2.611	1.112	1.526	1.668	3.671	12.149	11.824	13.554	2.859	1.154	1.231
65	1.854	0.912	0.747	0.680	0.000	2.127	6.960	16.750	32.338	3.785	1.766	1.125
66	1.764	0.859	0.224	0.274	1.794	2.063	14.242	14.525	7.528	1.608	2.883	2.226
67	1.599	1.316	1.573	1.768	1.292	3.502	7.551	12.276	13.155	14.099	1.346	0.642
68	2.083	1.517	1.434	0.772	0.611	2.357	6.043	12.136	11.913	3.373	5.762	2.282
69	2.019	-0.330	-7.414	0.194	4.545	9.449	13.642	10.704	16.699	7.910	2.828	1.838
70	1.849	1.226	0.546	0.505	0.753	2.156	3.120	6.942	22.976	4.913	1.842	2.193
71	2.667	2.353	1.596	0.415	2.520	7.368	15.132	12.962	6.149	10.120	1.989	2.571
72	3.171	1.228	-0.341	0.441	2.930	7.052	10.050	11.110	14.098	11.857	2.331	3.012
73	3.716	1.439	-0.399	0.516	3.433	8.263	11.776	13.017	16.519	3.824	1.684	2.111
74	4.278	1.615	0.726	-0.604	1.496	1.783	3.507	10.734	14.325	2.773	-0.785	0.011
75	0.272	-1.913	1.090	0.917	1.681	0.348	11.052	17.363	0.347	8.304	5.268	2.366
76	2.140	1.064	-0.745	-0.361	0.762	3.265	8.535	10.572	43.917	9.824	7.209	0.864

77	3.627	2.352	2.622	1.892	2.788	3.987	10.650	10.635	4.818	8.051	3.698	2.557
78	2.512	2.210	2.193	1.002	2.576	3.822	7.109	13.974	18.112	3.550	1.975	1.949
79	0.418	1.485	-0.046	-2.140	0.113	5.286	11.901	14.362	21.457	5.731	3.734	4.591
80	5.983	4.317	1.829	1.747	3.141	6.637	8.512	11.085	8.505	6.321	4.051	4.612
81	5.504	4.668	3.145	2.929	4.819	9.634	12.266	21.652	12.623	6.875	3.327	2.310
82	2.523	1.918	2.446	1.345	1.494	4.268	8.759	10.582	21.583	9.417	2.198	2.048
83	2.037	1.377	0.912	0.045	1.344	7.436	9.042	8.070	11.125	0.978	3.573	2.359
84	1.834	2.308	0.820	0.497	2.622	6.067	11.324	19.105	16.290	4.566	1.763	1.381
85	1.467	1.332	0.220	-1.098	1.214	2.396	4.649	3.673	8.544	5.587	1.170	-0.002
86	3.169	1.340	0.148	1.275	3.075	6.606	19.319	13.737	14.875	6.397	4.030	2.393
87	2.652	2.453	0.360	0.221	1.880	6.855	28.094	19.063	28.360	9.683	2.491	1.500
88	2.062	1.805	1.502	1.753	3.142	4.892	10.168	14.172	4.054	1.884	1.866	2.328
89	2.157	2.040	1.604	1.431	1.338	2.454	8.121	11.503	19.335	0.791	2.888	1.907
90	1.482	1.865	0.663	0.402	2.120	4.904	9.153	15.443	13.168	17.953	4.520	2.375
91	2.771	1.848	1.404	0.312	1.162	3.031	11.831	12.859	8.581	6.527	2.572	1.278
92	0.942	1.131	1.120	-0.156	2.029	5.945	6.256	8.812	14.151	18.056	3.549	4.587
93	5.659	2.191	-0.608	0.786	5.228	12.583	17.932	19.823	25.155	9.956	3.753	1.943
94	2.070	1.565	1.247	2.151	2.949	4.588	5.285	6.845	14.532	11.438	2.669	2.488
95	2.474	1.673	1.107	0.055	1.632	9.032	10.982	9.802	13.512	5.147	3.308	4.244
96	4.459	3.001	-0.036	0.887	2.875	5.067	13.556	12.643	10.139	8.500	6.238	0.748
97	3.138	2.035	2.269	1.637	2.412	3.449	9.215	9.201	4.168	7.314	2.882	1.432
98	1.056	1.267	1.255	-0.175	2.273	6.661	7.010	9.875	15.857	5.536	1.160	-0.002
99	3.140	1.328	0.147	1.264	3.047	6.545	19.142	13.611	14.738	3.907	3.035	3.288
100	3.887	2.320	1.511	0.567	2.312	8.033	20.668	14.418	23.587	1.922	3.447	2.662

Anexo L Muestra sintetica 5. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	3.386	2.196	2.448	1.766	2.603	3.722	9.943	9.929	4.498	3.856	2.558	2.382
2	2.024	0.915	0.043	-0.902	1.561	6.814	21.033	13.801	18.271	8.265	3.718	3.314
3	1.970	1.259	0.745	0.391	2.657	6.874	6.250	9.502	12.432	12.122	3.082	2.073
4	2.140	1.722	1.826	1.685	1.629	1.596	5.757	10.069	17.049	5.784	2.100	1.381
5	2.068	1.340	-0.261	0.593	1.072	4.300	8.139	7.244	7.885	6.012	3.814	1.713
6	1.549	0.770	-0.539	-0.261	0.551	2.364	6.180	7.655	31.799	10.406	3.923	2.030
7	2.164	1.636	1.304	2.248	3.082	4.796	5.523	7.155	15.189	14.616	3.717	2.500
8	2.580	2.077	2.201	2.031	1.964	1.925	6.941	12.140	20.557	6.894	5.059	0.607
9	2.545	1.651	1.840	1.328	1.956	2.798	7.474	7.463	3.381	3.932	1.634	0.835
10	0.940	0.936	0.809	-1.449	0.385	3.828	5.890	10.613	22.040	8.387	3.010	2.343
11	2.136	1.097	0.380	-3.558	0.632	8.093	11.889	15.759	8.264	4.718	0.988	-0.002
12	2.676	1.131	0.125	1.077	2.596	5.578	16.313	11.599	12.560	7.921	1.921	1.410
13	1.040	0.722	0.566	0.437	1.597	3.205	7.731	7.092	14.133	9.682	3.815	1.895
14	1.398	1.677	1.661	-0.232	3.010	8.818	9.280	13.072	20.991	10.394	0.168	-1.665
15	-2.540	-2.523	1.014	1.347	1.906	2.875	4.656	15.836	10.035	2.936	3.659	2.415
16	2.391	2.534	1.724	1.471	3.778	4.689	11.808	11.250	8.246	6.597	8.221	5.427
17	5.372	5.693	3.874	3.305	8.488	10.535	26.532	25.279	18.529	7.697	3.900	2.544
18	2.651	2.790	1.400	0.152	2.088	4.704	6.417	12.709	20.886	7.272	1.645	1.211
19	0.598	0.174	-0.367	-2.016	-2.096	4.909	16.098	21.535	17.606	5.927	2.897	2.098
20	2.790	2.370	1.424	-0.062	3.349	4.334	25.171	24.300	4.284	2.026	3.595	6.860
21	5.281	4.570	2.653	2.517	5.462	4.844	9.169	14.313	14.521	15.876	0.257	-2.543
22	-3.880	-3.854	1.548	2.058	2.911	4.392	7.112	24.189	15.327	16.134	6.082	3.148
23	3.355	2.537	2.022	3.485	4.779	7.436	8.564	11.093	23.550	3.913	2.466	1.464
24	1.623	1.501	0.220	0.135	1.150	4.194	17.188	11.662	17.351	11.673	4.400	2.278
25	2.427	1.835	1.463	2.522	3.457	5.380	6.196	8.026	17.038	4.191	2.353	2.619
26	1.670	0.736	-0.966	-3.571	0.874	2.972	12.741	9.616	9.821	6.491	2.433	2.898
27	3.523	3.108	2.109	0.549	3.329	9.733	19.992	17.124	8.123	2.973	4.503	3.003
28	2.374	1.520	-0.002	-0.524	3.245	5.369	9.437	9.466	9.830	2.307	3.495	2.330
29	1.843	1.180	-0.001	-0.406	2.518	4.167	7.323	7.346	7.628	2.997	4.539	3.027
30	2.394	1.533	-0.002	-0.528	3.271	5.413	9.513	9.543	9.909	4.883	-0.751	-1.507
31	6.698	4.859	2.652	2.148	5.536	9.225	8.773	12.356	19.736	0.751	1.915	3.274
32	5.237	4.834	4.771	6.332	6.058	7.482	14.698	19.327	10.270	18.134	4.565	2.399
33	2.799	1.867	1.418	0.315	1.173	3.062	11.951	12.989	8.668	11.998	4.523	2.341
34	2.495	1.887	1.503	2.592	3.554	5.529	6.368	8.249	17.513	8.883	4.080	2.822
35	2.771	2.438	2.419	1.106	2.842	4.217	7.843	15.417	19.983	4.278	1.996	1.271
36	1.994	0.970	0.253	0.309	2.028	2.332	16.097	16.417	8.509	4.696	3.010	3.426

							1	ı		1		1
37	4.089	3.468	2.336	2.176	3.580	7.157	9.112	16.085	9.377	11.155	5.018	4.473
38	2.659	1.700	1.006	0.528	3.586	9.278	8.436	12.824	16.779	12.305	2.872	2.677
39	2.662	1.800	1.191	0.059	1.756	9.717	11.814	10.546	14.536	10.251	0.978	0.467
40	1.514	1.103	1.043	0.561	0.444	1.714	4.393	8.823	8.661	6.036	2.527	1.592
41	2.747	1.652	-0.285	0.526	3.491	8.872	11.720	13.052	18.867	11.642	8.544	1.024
42	4.298	2.787	3.108	2.242	3.304	4.724	12.621	12.603	5.709	2.273	2.833	1.870
43	1.851	1.962	1.335	1.139	2.925	3.630	9.142	8.710	6.384	3.833	1.838	2.965
44	3.111	1.653	2.165	0.633	1.284	11.019	10.378	13.579	10.321	5.350	2.240	1.410
45	2.434	1.464	-0.252	0.466	3.094	7.863	10.387	11.568	16.721	6.728	7.315	3.313
46	2.793	2.674	2.137	2.146	3.138	6.493	9.139	18.368	14.959	7.051	3.172	2.827
47	1.680	1.074	0.636	0.334	2.266	5.864	5.332	8.106	10.606	21.093	6.759	3.566
48	3.527	2.395	0.814	1.726	2.006	3.150	5.856	11.675	19.800	0.869	3.174	2.096
49	1.629	2.050	0.728	0.442	2.329	5.389	10.058	16.970	14.470	14.013	4.504	2.145
50	4.908	1.862	1.346	0.928	2.201	2.144	-0.240	6.908	15.810	4.271	1.885	1.707
51	1.099	-0.756	-1.799	0.521	-0.763	3.936	12.589	8.000	8.901	2.446	4.338	8.279
52	6.373	5.515	3.201	3.037	6.592	5.846	11.065	17.272	17.524	13.832	10.151	1.217
53	5.107	3.312	3.692	2.664	3.925	5.613	14.996	14.974	6.783	0.889	-0.616	0.525
54	0.618	0.332	0.536	0.199	0.933	1.969	5.532	13.280	14.220	1.690	1.576	1.717
55	4.965	1.797	1.684	1.799	3.335	7.369	10.290	7.066	3.069	2.831	-0.436	-0.874
56	3.884	2.817	1.538	1.245	3.210	5.348	5.086	7.164	11.442	5.488	3.517	4.004
57	4.778	4.053	2.730	2.543	4.183	8.364	10.649	18.798	10.959	3.940	2.482	1.474
58	1.634	1.511	0.222	0.136	1.158	4.222	17.303	11.741	17.467	5.643	3.255	1.242
59	3.226	1.205	1.613	-2.121	-1.075	9.862	20.517	22.507	4.913	4.376	1.926	2.416
60	4.895	1.848	0.831	-0.691	1.712	2.040	4.013	12.282	16.391	6.933	0.122	-0.927
61	2.694	0.891	0.449	0.630	1.458	3.932	14.153	11.847	11.411	3.035	1.455	2.347
62	2.463	1.309	1.714	0.501	1.016	8.723	8.216	10.750	8.170	10.729	4.826	4.302
63	2.557	1.635	0.968	0.508	3.448	8.923	8.113	12.334	16.138	3.744	1.796	2.896
64	3.039	1.615	2.115	0.619	1.254	10.763	10.137	13.264	10.081	10.068	3.887	3.045
65	3.233	2.936	0.485	-2.420	2.676	5.283	10.250	8.098	18.838	10.149	3.628	2.359
66	2.372	1.572	0.700	0.648	0.966	2.766	4.003	8.906	29.477	2.551	-1.767	1.507
67	1.773	0.951	1.537	0.572	2.677	5.651	15.875	38.109	40.808	6.864	2.771	2.956
68	4.451	2.190	1.794	1.633	0.000	5.107	16.711	40.217	77.643	16.885	6.151	3.001
69	4.959	2.999	0.677	-0.878	1.897	6.648	5.573	12.892	17.079	9.483	4.805	3.134
70	3.266	3.438	1.724	0.187	2.572	5.795	7.906	15.658	25.732	2.493	1.007	1.074
71	1.617	0.795	0.652	0.593	0.000	1.855	6.070	14.608	28.202	7.041	2.527	1.967
72	1.793	0.921	0.319	-2.987	0.530	6.794	9.981	13.231	6.938	4.051	1.696	1.068
73	1.843	1.109	-0.191	0.353	2.343	5.954	7.865	8.759	12.661	5.684	2.502	3.138
74	6.359	2.400	1.079	-0.897	2.223	2.650	5.213	15.954	21.291	1.287	-0.892	0.761
75	0.895	0.480	0.776	0.289	1.351	2.852	8.012	19.233	20.595	3.631	1.617	1.710
76	2.144	1.767	-0.173	0.164	2.123	5.157	8.769	8.979	21.806	2.511	2.342	2.551

77	7.378	2.670	2.502	2.673	4.956	10.950	15.288	10.499	4.561	18.600	4.893	4.572
78	4.029	3.082	2.830	-0.257	3.525	7.574	16.931	19.829	19.986	3.069	2.055	2.291
79	1.717	1.671	1.556	0.670	-0.094	8.161	9.384	13.342	14.210	14.009	5.409	4.237
80	4.499	4.085	0.674	-3.368	3.723	7.351	14.263	11.268	26.213	5.532	2.677	1.859
81	2.030	1.543	1.968	1.082	1.202	3.434	7.047	8.514	17.365	14.119	3.295	3.071
82	3.054	2.065	1.367	0.068	2.015	11.149	13.556	12.100	16.680	3.302	1.333	1.422
83	2.142	1.054	0.863	0.786	0.000	2.457	8.040	19.349	37.356	7.882	3.994	2.604
84	2.714	2.857	1.433	0.155	2.138	4.817	6.571	13.013	21.386	6.762	1.329	1.718
85	2.119	0.820	-0.228	0.294	1.958	4.712	6.715	7.423	9.420	13.302	12.645	5.866
86	5.063	2.611	2.321	1.115	2.822	5.082	7.528	9.972	4.745	13.790	4.950	3.852
87	3.511	1.803	0.624	-5.851	1.039	13.306	19.547	25.911	13.588	12.427	0.085	2.654
88	2.053	0.940	1.116	0.582	1.574	4.152	11.019	9.554	19.048	3.654	1.370	1.631
89	1.984	1.750	1.187	0.309	1.874	5.479	11.254	9.640	4.573	1.663	0.671	0.716
90	1.078	0.530	0.435	0.396	0.000	1.237	4.048	9.742	18.807	3.212	0.673	-0.001
91	1.822	0.770	0.085	0.733	1.768	3.798	11.107	7.897	8.552	6.148	2.574	1.621
92	2.798	1.683	-0.290	0.536	3.556	9.037	11.938	13.295	19.217	6.953	3.069	2.779
93	1.789	-1.231	-2.929	0.849	-1.241	6.408	20.496	13.024	14.491	3.854	1.799	1.145
94	1.796	0.874	0.228	0.279	1.827	2.101	14.502	14.790	7.666	4.995	3.210	4.119
95	4.327	2.913	-0.035	0.860	2.790	4.917	13.155	12.269	9.840	1.912	3.429	2.648
96	1.901	1.566	1.871	2.102	1.536	4.165	8.981	14.601	15.647	13.684	3.318	2.436
97	1.796	1.247	0.978	0.755	2.759	5.537	13.357	12.252	24.416	5.678	2.649	1.687
98	2.646	1.288	0.336	0.411	2.691	3.095	21.363	21.788	11.293	6.131	2.682	2.421
99	2.591	2.570	0.708	0.922	2.108	4.064	6.715	16.577	14.688	1.309	2.075	-0.569
100	4.828	4.640	4.359	2.471	4.408	6.059	14.465	14.533	7.915	9.171	6.731	0.807

Anexo M Muestra sintetica 6. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	2.529	1.509	0.983	0.369	1.504	5.226	13.447	9.381	15.347	11.878	2.990	1.572
2	1.833	1.223	0.929	0.206	0.769	2.006	7.828	8.508	5.678	17.068	6.126	4.768
3	4.346	2.232	0.773	-7.242	1.285	16.469	24.194	32.071	16.819	11.918	4.076	2.880
4	2.245	1.476	7.498	2.012	1.002	6.226	8.922	8.068	5.159	-1.287	5.970	4.517
5	3.513	3.568	3.018	2.108	3.656	4.032	9.515	11.232	16.209	7.077	1.601	1.178
6	0.582	0.169	-0.357	-1.962	-2.040	4.778	15.666	20.957	17.134	2.479	-0.288	0.015
7	1.588	0.611	0.483	0.411	0.761	3.430	11.424	23.104	22.814	2.984	1.431	2.308
8	2.421	1.287	1.685	0.493	0.999	8.577	8.078	10.569	8.033	2.767	2.149	2.328
9	2.753	1.643	1.070	0.402	1.637	5.689	14.637	10.211	16.705	5.428	-0.835	-1.675
10	7.446	5.401	2.948	2.388	6.153	10.254	9.751	13.734	21.938	20.571	4.801	4.475
11	4.449	3.009	1.991	0.099	2.935	16.244	19.750	17.629	24.301	11.879	4.062	2.871
12	2.237	1.471	7.474	2.006	0.999	6.205	8.893	8.041	5.142	1.892	2.357	1.556
13	1.540	1.633	1.111	0.948	2.434	3.021	7.608	7.249	5.313	16.998	4.322	2.907
14	3.000	2.415	2.560	2.362	2.284	2.239	8.072	14.119	23.907	1.256	4.587	3.029
15	2.354	2.963	1.053	0.639	3.366	7.788	14.537	24.526	20.913	9.025	3.556	1.767
16	1.303	1.563	1.548	-0.216	2.805	8.219	8.650	12.184	19.565	8.983	2.363	2.208
17	1.946	1.489	1.367	-0.124	1.702	3.658	8.177	9.576	9.652	2.700	4.089	2.726
18	2.156	1.381	-0.001	-0.476	2.946	4.875	8.568	8.595	8.925	6.546	3.168	2.200
19	2.402	1.826	2.329	1.281	1.422	4.063	8.339	10.075	20.550	4.817	0.085	-0.644
20	1.872	0.619	0.312	0.438	1.013	2.732	9.834	8.232	7.929	1.100	4.018	2.653
21	2.062	2.595	0.922	0.559	2.949	6.821	12.732	21.482	18.317	3.998	1.781	1.883
22	2.361	1.945	-0.191	0.181	2.337	5.678	9.656	9.887	24.012	2.555	1.138	1.203
23	1.509	1.243	-0.122	0.116	1.494	3.629	6.170	6.318	15.344	2.496	1.408	1.200
24	4.566	2.362	0.845	0.338	0.947	5.073	13.031	13.096	7.035	4.363	1.921	2.409
25	4.881	1.842	0.828	-0.689	1.707	2.034	4.001	12.246	16.342	0.777	2.839	1.874
26	1.457	1.833	0.652	0.395	2.083	4.820	8.996	15.178	12.941	8.627	3.962	2.740
27	2.692	2.368	2.349	1.074	2.760	4.095	7.617	14.973	19.407	5.914	-1.675	0.023
28	0.581	-4.080	2.324	1.956	3.586	0.743	23.568	37.027	0.740	3.329	1.344	1.434
29	2.159	1.062	0.870	0.792	0.000	2.477	8.105	19.506	37.659	13.777	5.019	2.448
30	4.046	2.447	0.552	-0.716	1.548	5.424	4.547	10.519	13.935	4.908	2.349	2.182
31	2.559	1.150	0.646	1.185	1.879	1.548	16.749	7.299	7.186	7.010	2.516	1.958
32	1.785	0.917	0.317	-2.974	0.528	6.763	9.936	13.171	6.907	3.228	2.033	1.208
33	1.338	1.238	0.181	0.111	0.949	3.459	14.175	9.618	14.310	12.021	4.365	2.871
34	4.297	2.784	-0.542	1.232	2.228	8.937	16.917	15.056	16.388	6.038	2.666	2.413
35	1.554	-1.069	-2.544	0.737	-1.078	5.565	17.799	11.311	12.585	7.493	8.147	3.690
36	3.110	2.978	2.380	2.390	3.495	7.231	10.177	20.456	16.659	0.975	1.545	-0.424

37	3.596	3.456	3.246	1.841	3.283	4.512	10.773	10.824	5.895	10.703	2.816	2.631
38	2.318	1.774	1.628	-0.148	2.028	4.359	9.743	11.410	11.501	16.765	1.600	0.763
39	2.477	1.803	1.705	0.918	0.726	2.803	7.185	14.431	14.166	2.364	1.333	1.137
40	4.324	2.237	0.800	0.321	0.897	4.804	12.341	12.403	6.663	7.741	3.241	2.041
41	3.523	2.119	-0.365	0.675	4.477	11.378	15.030	16.739	24.196	5.184	-1.468	0.020
42	0.509	-3.577	2.037	1.715	3.143	0.651	20.661	32.460	0.649	13.533	0.219	-2.167
43	-3.307	-3.285	1.320	1.754	2.481	3.744	6.062	20.618	13.065	21.215	6.798	3.586
44	3.547	2.409	0.819	1.736	2.018	3.168	5.890	11.743	19.914	2.709	4.627	1.833
45	1.622	-0.265	-5.954	0.156	3.650	7.589	10.956	8.597	13.412	5.545	3.613	4.442
46	5.789	4.177	1.770	1.690	3.040	6.422	8.237	10.726	8.230	0.830	1.315	-0.361
47	3.061	2.942	2.763	1.567	2.795	3.841	9.170	9.213	5.018	6.895	3.301	3.065
-		1.616										
48	3.595		0.908	1.666	2.641	2.175	23.533	10.256	10.097	4.932	2.065	1.300
49	2.244	1.350	-0.233	0.430	2.852	7.249	9.575	10.664	15.414	5.024	1.936	2.079
50	-1.319	4.803	-6.809	0.227	0.723	3.514	16.247	28.465	12.857	9.530	3.505	2.338
51	-1.347	-2.918	0.792	0.602	-1.449	6.397	18.309	8.480	17.035	0.363	0.925	1.582
52	2.530	2.335	2.305	3.059	2.927	3.615	7.101	9.338	4.962	2.602	2.576	3.215
53	2.978	2.817	2.215	1.975	1.848	3.389	11.212	15.882	26.695	3.470	1.696	1.228
54	1.633	1.388	0.833	-0.036	1.961	2.537	14.735	14.225	2.508	4.988	5.423	2.456
55	2.070	1.982	1.584	1.591	2.326	4.814	6.775	13.617	11.090	8.345	3.651	3.296
56	3.527	3.499	0.963	1.255	2.869	5.532	9.141	22.564	19.994	7.001	3.930	4.375
57	2.789	1.230	-1.614	-5.965	1.460	4.964	21.282	16.061	16.404	4.240	1.762	0.900
58	1.014	1.009	0.873	-1.562	0.415	4.127	6.350	11.442	23.763	0.774	2.829	1.868
59	1.452	1.827	0.649	0.394	2.076	4.804	8.967	15.128	12.899	4.933	2.065	1.301
60	2.245	1.350	-0.233	0.430	2.853	7.250	9.577	10.666	15.418	20.194	6.906	4.881
61	3.804	2.501	12.706	3.410	1.698	10.549	15.119	13.671	8.742	13.973	0.246	-1.869
62	5.430	1.796	0.904	1.269	2.938	7.925	28.527	23.879	23.000	8.857	3.708	2.335
63	4.030	2.425	-0.418	0.772	5.122	13.018	17.196	19.151	27.683	2.897	1.922	1.790
64	1.521	0.687	0.033	-0.677	1.173	5.121	15.805	10.371	13.730	3.441	-0.529	-1.062
65	4.720	3.424	1.869	1.514	3.901	6.500	6.181	8.707	13.907	1.266	-0.877	0.748
66	0.880	0.472	0.763	0.284	1.328	2.804	7.878	18.911	20.250	6.414	3.505	3.264
67	2.040	2.710	2.453	0.937	1.095	3.417	11.159	18.437	12.945	0.519	1.323	2.262
68	3.618	3.339	3.295	4.374	4.185	5.168	10.153	13.351	7.094	3.811	2.150	1.833
69	6.972	3.607	1.290	0.517	1.447	7.746	19.898	19.998	10.742	4.173	2.001	3.228
70	3.386	1.799	2.357	0.690	1.397	11.994	11.297	14.780	11.234	8.110	3.648	3.252
71	1.933	1.236	0.731	0.384	2.607	6.746	6.133	9.324	12.199	3.026	2.350	2.546
72	3.011	1.796	1.170	0.439	1.790	6.221	16.007	11.167	18.268	5.808	2.541	2.294
73	2.455	2.435	0.670	0.874	1.997	3.850	6.362	15.705	13.916	5.149	2.516	1.823
74	2.424	2.059	1.237	-0.053	2.909	3.764	21.864	21.108	3.721	3.290	-0.506	-1.016
75	4.513	3.274	1.787	1.447	3.730	6.216	5.911	8.326	13.299	0.919	1.457	-0.400
76	3.391	3.260	3.062	1.736	3.097	4.256	10.161	10.209	5.560	2.501	3.116	2.057

77	2.037	2.158	1.469	1.253	3.218	3.994	10.058	9.583	7.024	1.250	4.565	3.014
78	2.343	2.949	1.048	0.636	3.350	7.751	14.468	24.410	20.814	3.299	2.078	1.234
79	1.368	1.265	0.185	0.114	0.970	3.535	14.487	9.830	14.625	11.388	10.825	5.022
80	4.335	2.235	1.987	0.955	2.416	4.351	6.445	8.537	4.062	7.109	3.474	2.516
81	3.346	2.843	1.708	-0.074	4.017	5.198	30.188	29.143	5.138	7.351	4.790	5.889
82	7.675	5.537	2.346	2.241	4.029	8.513	10.919	14.219	10.910	7.142	3.619	2.360
83	2.460	2.589	1.298	0.141	1.937	4.364	5.954	11.792	19.378	4.077	6.964	2.758
84	2.440	-0.398	-8.961	0.234	5.493	11.420	16.488	12.937	20.184	10.248	3.505	2.477
85	1.930	1.269	6.448	1.730	0.862	5.353	7.672	6.937	4.436	8.458	3.333	1.656
86	1.221	1.465	1.451	-0.203	2.629	7.703	8.106	11.419	18.337	3.366	5.098	3.399
87	2.688	1.721	-0.002	-0.593	3.673	6.079	10.683	10.717	11.128	0.472	1.203	2.057
88	3.290	3.037	2.997	3.978	3.806	4.700	9.233	12.142	6.452	2.965	2.303	2.495
89	2.950	1.760	1.147	0.430	1.754	6.097	15.686	10.943	17.902	3.853	2.223	0.848
90	2.202	0.823	1.101	-1.448	-0.734	6.733	14.008	15.367	3.355	5.176	3.317	3.776
91	4.507	3.822	2.575	2.398	3.945	7.888	10.043	17.729	10.335	6.431	2.839	2.570
92	1.655	-1.139	-2.709	0.785	-1.148	5.928	18.958	12.047	13.404	9.113	2.397	2.240
93	1.974	1.510	1.386	-0.126	1.727	3.711	8.295	9.715	9.792	10.028	2.638	2.465
94	2.172	1.662	1.526	-0.138	1.900	4.084	9.128	10.690	10.775	7.742	3.556	2.459
95	2.416	2.125	2.108	0.964	2.477	3.675	6.836	13.437	17.417	12.926	12.287	5.700
96	4.920	2.537	2.255	1.084	2.742	4.938	7.315	9.689	4.611	5.106	3.327	4.090
97	5.330	3.846	1.629	1.556	2.799	5.913	7.584	9.876	7.577	12.096	3.182	2.974
98	2.620	2.005	1.840	-0.167	2.292	4.926	11.011	12.896	12.998	4.963	2.402	1.668
99	1.821	1.384	1.766	0.971	1.078	3.081	6.323	7.639	15.581	6.910	3.050	2.761
100	1.778	-1.223	-2.911	0.844	-1.234	6.369	20.368	12.943	14.401	2.542	1.974	2.139

Anexo N Muestra sintetica 7. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	3.32	3.519	2.394	2.043	5.246	6.511	16.397	15.623	11.451	14.298	13.591	6.305
2	5.442	2.806	2.494	1.199	3.033	5.463	8.091	10.718	5.101	2.56	-0.297	0.016
3	1.64	0.631	0.499	0.424	0.785	3.541	11.795	23.856	23.556	8.423	0.058	1.799
4	1.392	0.637	0.757	0.395	1.067	2.814	7.468	6.475	12.909	14.974	1.429	0.682
5	2.212	1.611	1.523	0.82	0.648	2.503	6.417	12.889	12.652	5.53	3.022	2.814
6	1.759	2.337	2.115	0.808	0.944	2.946	9.621	15.896	11.161	5.186	2.911	3.241
7	2.066	0.911	-1.195	-4.419	1.081	3.677	15.765	11.898	12.152	5.883	-1.666	0.023
8	0.577	-4.059	2.312	1.946	3.567	0.739	23.445	36.835	0.736	4.538	2.48	2.309
9	1.443	1.918	1.736	0.663	0.774	2.417	7.895	13.044	9.158	11.591	7.373	5.021
10	5.001	3.943	1.9	-0.412	3.686	12.167	18.842	20.803	19.986	10.7	4.131	3.236
11	3.437	3.12	0.515	-2.572	2.844	5.615	10.894	8.606	20.022	1.642	2.944	2.273
12	1.632	1.344	1.606	1.805	1.319	3.576	7.71	12.534	13.432	6.134	3.997	4.914
13	6.404	4.62	1.958	1.87	3.362	7.103	9.111	11.865	9.103	2.844	1.096	1.177
14	-0.747	2.718	-3.854	0.128	0.409	1.989	9.196	16.112	7.277	12.119	2.938	2.158
15	1.591	1.104	0.866	0.669	2.444	4.904	11.829	10.85	21.623	5.531	1.251	0.921
16	0.455	0.132	-0.279	-1.534	-1.594	3.734	12.243	16.378	13.39	11.038	3.775	2.668
17	2.079	1.367	6.945	1.864	0.928	5.766	8.264	7.472	4.778	9.443	3.721	1.849
18	1.363	1.636	1.62	-0.226	2.935	8.6	9.05	12.749	20.472	3.741	2.357	1.4
19	1.551	1.435	0.21	0.129	1.1	4.009	16.431	11.149	16.587	18.234	6.643	3.241
20	5.355	3.239	0.731	-0.948	2.049	7.179	6.019	13.922	18.444	13.701	0.222	-2.194
21	-3.348	-3.326	1.336	1.776	2.512	3.79	6.138	20.874	13.227	5.699	2.617	1.81
22	1.778	1.564	1.552	0.709	1.823	2.705	5.031	9.89	12.819	16.636	3.882	3.619
23	3.598	2.433	1.61	0.08	2.374	13.136	15.972	14.257	19.652	3.764	1.411	1.68
24	2.043	1.803	1.223	0.318	1.931	5.645	11.594	9.931	4.711	16.576	4.173	2.193
25	2.558	1.706	1.296	0.288	1.072	2.799	10.924	11.873	7.923	6.48	3.283	2.141
26	2.232	2.349	1.178	0.128	1.758	3.96	5.402	10.699	17.583	4.024	2.579	2.936
27	3.504	2.972	2.002	1.864	3.067	6.132	7.808	13.783	8.035	10.35	4.656	4.15
28	2.467	1.577	0.933	0.49	3.327	8.609	7.827	11.899	15.568	13.771	6.195	5.522
29	3.282	2.098	1.242	0.652	4.426	11.453	10.413	15.831	20.713	0.978	3.573	2.359
30	1.834	2.308	0.82	0.497	2.622	6.067	11.323	19.105	16.29	7.28	3.14	3.376
31	2.475	1.342	0.623	0.948	1.105	5.004	10.98	12.636	10.691	15.492	0.106	3.309
32	2.56	1.171	1.392	0.726	1.962	5.175	13.736	11.91	23.745	17.256	6.286	3.067
33	5.068	3.065	0.692	-0.897	1.939	6.794	5.696	13.175	17.454	3.143	3.917	2.586
34	2.56	2.712	1.846	1.575	4.044	5.019	12.641	12.044	8.828	3.022	1.681	1.659
35	0.356	1.264	-0.04	-1.821	0.096	4.499	10.129	12.224	18.263	9.483	2.44	1.469
36	2.02	1.768	1.471	1.717	3.078	4.792	9.959	13.88	3.97	1.667	-1.154	0.985

38 5.377 2.04 1.475 1.016 2.412 2.348 -0.263 7.569 17.321 12.686 2 39 3.976 1.539 -0.427 0.552 3.673 8.84 12.598 13.927 17.673 9.811 4 40 10.976 4.143 1.862 -1.548 3.837 4.574 8.998 27.538 36.749 5.551 2 41 1.912 2.012 1.009 0.109 1.506 3.393 4.628 9.166 15.063 7.995 2 42 1.869 1.239 0.552 0.511 0.761 2.179 3.154 7.016 23.221 4.31 2 43 3.498 1.859 2.435 0.712 1.444 12.39 11.67 15.269 11.605 1.698 3 44 4.425 3.829 2.223 2.109 4.577 4.059 7.682 11.992 12.167 6.588 4	4.935 2.494 4.319 2.813 2.858 2.067 3.012 4.191	2.35 3.223 5.416 1.834 1.858 3.334 5.748
39 3.976 1.539 -0.427 0.552 3.673 8.84 12.598 13.927 17.673 9.811 4 40 10.976 4.143 1.862 -1.548 3.837 4.574 8.998 27.538 36.749 5.551 2 41 1.912 2.012 1.009 0.109 1.506 3.393 4.628 9.166 15.063 7.995 2 42 1.869 1.239 0.552 0.511 0.761 2.179 3.154 7.016 23.221 4.31 2 43 3.498 1.859 2.435 0.712 1.444 12.39 11.67 15.269 11.605 1.698 3 44 4.425 3.829 2.223 2.109 4.577 4.059 7.682 11.992 12.167 6.588 4 45 2.842 2.241 1.08 -0.234 2.095 6.916 10.709 11.824 11.36 5.314 2 46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.9	4.319 2.813 2.858 2.067 3.012	5.416 1.834 1.858 3.334
40 10.976 4.143 1.862 -1.548 3.837 4.574 8.998 27.538 36.749 5.551 2 41 1.912 2.012 1.009 0.109 1.506 3.393 4.628 9.166 15.063 7.995 2 42 1.869 1.239 0.552 0.511 0.761 2.179 3.154 7.016 23.221 4.31 2 43 3.498 1.859 2.435 0.712 1.444 12.39 11.67 15.269 11.605 1.698 3 44 4.425 3.829 2.223 2.109 4.577 4.059 7.682 11.992 12.167 6.588 4 45 2.842 2.241 1.08 -0.234 2.095 6.916 10.709 11.824 11.36 5.314 2 46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.985 <	2.813 2.858 2.067 3.012	1.834 1.858 3.334
41 1.912 2.012 1.009 0.109 1.506 3.393 4.628 9.166 15.063 7.995 2 42 1.869 1.239 0.552 0.511 0.761 2.179 3.154 7.016 23.221 4.31 2 43 3.498 1.859 2.435 0.712 1.444 12.39 11.67 15.269 11.605 1.698 3 44 4.425 3.829 2.223 2.109 4.577 4.059 7.682 11.992 12.167 6.588 4 45 2.842 2.241 1.08 -0.234 2.095 6.916 10.709 11.824 11.36 5.314 2 46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.985 14.403 27.807 12.225 2 48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141	2.858 2.067 3.012	1.858 3.334
42 1.869 1.239 0.552 0.511 0.761 2.179 3.154 7.016 23.221 4.31 2 43 3.498 1.859 2.435 0.712 1.444 12.39 11.67 15.269 11.605 1.698 3 44 4.425 3.829 2.223 2.109 4.577 4.059 7.682 11.992 12.167 6.588 4 45 2.842 2.241 1.08 -0.234 2.095 6.916 10.709 11.824 11.36 5.314 2 46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.985 14.403 27.807 12.225 2 48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141 13.421 17.032 8.58 3	2.067 3.012	3.334
43 3.498 1.859 2.435 0.712 1.444 12.39 11.67 15.269 11.605 1.698 3 44 4.425 3.829 2.223 2.109 4.577 4.059 7.682 11.992 12.167 6.588 4 45 2.842 2.241 1.08 -0.234 2.095 6.916 10.709 11.824 11.36 5.314 2 46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.985 14.403 27.807 12.225 2 48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141 13.421 17.032 8.58 3	3.012	
44 4.425 3.829 2.223 2.109 4.577 4.059 7.682 11.992 12.167 6.588 4 45 2.842 2.241 1.08 -0.234 2.095 6.916 10.709 11.824 11.36 5.314 2 46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.985 14.403 27.807 12.225 2 48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141 13.421 17.032 8.58 3		5.748
45 2.842 2.241 1.08 -0.234 2.095 6.916 10.709 11.824 11.36 5.314 2 46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.985 14.403 27.807 12.225 2 48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141 13.421 17.032 8.58 3	4.191	
46 2.77 1.245 0.7 1.284 2.035 1.676 18.135 7.903 7.781 2.458 0 47 1.594 0.784 0.642 0.585 0 1.829 5.985 14.403 27.807 12.225 2 48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141 13.421 17.032 8.58 3		2.854
47 1.594 0.784 0.642 0.585 0 1.829 5.985 14.403 27.807 12.225 2 48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141 13.421 17.032 8.58 3	2.543	2.362
48 3.831 1.483 -0.412 0.532 3.539 8.519 12.141 13.421 17.032 8.58 3	0.992	1.059
	2.403	3.106
49 4.657 4.108 2.788 0.725 4.4 12.866 26.426 22.635 10.737 4.08 2	3.216	3.83
	2.302	1.963
50 7.465 3.862 1.381 0.553 1.549 8.294 21.305 21.412 11.502 11.553 8	8.478	1.017
51 4.266 2.766 3.084 2.225 3.278 4.688 12.525 12.507 5.666 4.031 -	-1.142	0.015
52 0.396 -2.781 1.584 1.333 2.444 0.507 16.064 25.237 0.505 5.492 2	2.403	2.169
53 2.321 2.303 0.634 0.826 1.888 3.641 6.016 14.85 13.159 2.918	1.646	1.403
54 5.338 2.762 0.987 0.396 1.108 5.93 15.234 15.311 8.225 3.546 2	2.396	1.106
55 1.375 1.213 0.504 0.307 0.488 3.553 8.387 10.614 18.189 4.138 4	4.499	2.038
56 1.718 1.645 1.314 1.32 1.93 3.993 5.62 11.297 9.2 8.777 2	2.309	2.158
57 1.901 1.454 1.335 -0.121 1.663 3.574 7.989 9.357 9.431 8.718 4	4.004	2.769
58 2.72 2.393 2.374 1.085 2.789 4.139 7.697 15.131 19.612 6.507	4.24	5.213
59 6.794 4.901 2.077 1.983 3.567 7.536 9.665 12.587 9.657 4.088 -	-1.158	0.016
60 0.401 -2.82 1.606 1.352 2.478 0.514 16.29 25.593 0.512 1.175 -	-0.814	0.694
61 0.817 0.438 0.708 0.264 1.233 2.604 7.314 17.558 18.801 5.577 2	2.149	2.308
62 -1.464 5.332 -7.559 0.252 0.802 3.901 18.037 31.6 14.273 20.327 4	4.744	4.422
63 4.397 2.973 1.968 0.097 2.901 16.052 19.517 17.421 24.013 8.965	1.762	2.278
64 2.81 1.088 -0.302 0.39 2.595 6.247 8.903 9.842 12.49 5.365	1.214	0.893
65 0.442 0.128 -0.271 -1.488 -1.546 3.622 11.876 15.887 12.989 7.065	4.482	2.013
66 1.821 0.905 -0.633 -0.307 0.648 2.778 7.262 8.995 37.363 2.183	1.448	1.348
67	1.704	1.235
68 1.642 1.395 0.838 -0.036 1.971 2.55 14.809 14.297 2.521 8.82	1.995	1.469
69 0.726 0.211 -0.445 -2.446 -2.543 5.955 19.526 26.121 21.355 4.41	1.847	1.163
	2.591	2.785
	1.807	1.33
	3.486	3.88
	2.187	1.584
	0.166	-1.261
	4.328	2.858
	5.223	3.692

77												
77	2.877	1.892	9.61	2.579	1.284	7.979	11.435	10.339	6.612	0.466	1.188	2.03
78	3.248	2.998	2.959	3.927	3.758	4.641	9.116	11.987	6.37	3.574	2.291	2.608
79	3.112	2.64	1.778	1.656	2.725	5.447	6.936	12.243	7.137	1.959	3.514	2.713
80	1.948	1.604	1.917	2.154	1.574	4.268	9.203	14.962	16.034	3.713	6.341	2.512
81	2.222	-0.363	-8.16	0.213	5.002	10.4	15.014	11.781	18.38	4.326	-1.225	0.017
82	0.425	-2.985	1.7	1.431	2.623	0.544	17.241	27.087	0.542	10.021	3.221	1.534
83	3.51	1.332	0.963	0.663	1.574	1.533	-0.172	4.94	11.306	3.121	3.394	1.537
84	1.296	1.24	0.991	0.996	1.456	3.012	4.239	8.521	6.94	17.763	4.472	2.35
85	2.741	1.828	1.389	0.308	1.149	2.999	11.707	12.723	8.49	1.89	1.763	1.92
86	5.553	2.01	1.883	2.012	3.73	8.242	11.508	7.903	3.433	8.564	4.34	2.83
87	2.95	3.104	1.557	0.169	2.323	5.234	7.14	14.141	23.239	14.263	3.329	3.103
88	3.085	2.086	1.381	0.068	2.035	11.263	13.695	12.224	16.85	0.843	-0.584	0.498
89	0.586	0.314	0.508	0.189	0.885	1.867	5.246	12.593	13.485	0.547	1.395	2.385
90	3.815	3.521	3.475	4.612	4.413	5.45	10.706	14.078	7.481	6.016	2.318	2.49
91	-1.579	5.75	-8.153	0.272	0.866	4.208	19.454	34.084	15.395	10.254	3.959	3.101
92	3.293	2.99	0.494	-2.465	2.725	5.381	10.439	8.247	19.185	6.413	3.103	2.155
93	2.353	1.789	2.282	1.255	1.393	3.981	8.17	9.87	20.132	19.527	6.257	3.301
94	3.265	2.217	0.753	1.598	1.858	2.916	5.422	10.808	18.33	15.502	4.983	2.373
95	5.429	2.06	1.489	1.026	2.435	2.371	-0.266	7.642	17.49	8.861	5.636	3.839
96	3.823	3.014	1.453	-0.315	2.818	9.301	14.403	15.903	15.278	14.979	3.771	1.982
97	2.312	1.542	1.171	0.26	0.969	2.529	9.871	10.729	7.159	8.179	4.144	2.703
98	2.817	2.965	1.487	0.161	2.218	4.998	6.819	13.505	22.193	1.435	-0.994	0.848
99	0.997	0.535	0.865	0.322	1.506	3.18	8.932	21.442	22.96	5.798	2.428	1.529
100	2.639	1.587	-0.273	0.505	3.354	8.523	11.258	12.538	18.124	4.077	5.081	3.354

Anexo O Muestra sintetica 8. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	2.772	2.018	1.909	1.027	0.812	3.137	8.041	16.151	15.854	1.776	1.759	2.195
2	2.034	1.923	1.512	1.349	1.262	2.314	7.656	10.845	18.229	0.942	1.493	-0.410
3	3.475	3.340	3.137	1.779	3.173	4.361	10.412	10.461	5.698	7.019	0.124	-0.939
4	2.728	0.902	0.454	0.638	1.476	3.981	14.329	11.994	11.553	3.507	2.369	1.094
5	1.360	1.199	0.498	0.304	0.482	3.514	8.295	10.497	17.988	1.527	2.738	2.114
6	1.518	1.250	1.494	1.679	1.227	3.326	7.171	11.659	12.494	9.916	2.609	2.438
7	2.148	1.643	1.509	-0.137	1.879	4.038	9.027	10.571	10.655	17.495	6.373	3.109
8	5.138	3.108	0.701	-0.909	1.966	6.888	5.775	13.358	17.696	8.635	5.627	6.918
9	9.015	6.504	2.756	2.632	4.733	10.000	12.826	16.702	12.815	5.992	3.364	3.744
10	2.387	1.053	-1.381	-5.106	1.250	4.249	18.215	13.747	14.040	6.127	2.814	1.946
11	1.912	1.682	1.669	0.763	1.960	2.909	5.410	10.634	13.783	11.404	2.765	2.030
12	1.497	1.039	0.815	0.629	2.299	4.614	11.131	10.210	20.346	11.208	3.833	2.709
13	2.111	1.388	7.052	1.893	0.942	5.855	8.391	7.587	4.852	9.154	2.136	1.991
14	1.980	1.339	0.886	0.044	1.306	7.229	8.789	7.845	10.814	7.546	1.761	1.642
15	1.632	1.104	0.731	0.036	1.077	5.959	7.245	6.467	8.915	5.069	2.427	2.254
16	2.643	1.188	0.668	1.225	1.941	1.599	17.301	7.540	7.423	3.597	-0.418	0.022
17	2.304	0.886	0.701	0.596	1.103	4.976	16.575	33.521	33.101	6.096	1.379	1.015
18	0.502	0.146	-0.307	-1.690	-1.757	4.115	13.494	18.051	14.758	3.887	4.843	3.197
19	3.165	3.354	2.282	1.947	5.001	6.207	15.631	14.893	10.916	8.296	2.966	1.928
20	1.939	1.285	0.573	0.530	0.790	2.261	3.273	7.280	24.096	6.542	1.480	1.089
21	0.538	0.156	-0.330	-1.814	-1.886	4.416	14.482	19.372	15.838	9.008	3.220	2.093
22	2.105	1.396	0.622	0.576	0.857	2.455	3.553	7.905	26.163	8.786	4.932	5.490
23	3.500	1.543	-2.025	-7.486	1.832	6.230	26.707	20.155	20.586	5.276	2.934	2.896
24	0.621	2.206	-0.069	-3.180	0.168	7.855	17.684	21.342	31.884	4.998	2.779	2.744
25	0.588	2.090	-0.065	-3.012	0.159	7.441	16.752	20.217	30.204	-1.093	5.069	3.836
26	2.983	3.030	2.563	1.790	3.104	3.423	8.079	9.537	13.763	2.784	4.993	3.855
27	2.768	2.280	2.723	3.061	2.237	6.065	13.076	21.259	22.782	8.537	3.574	2.251
28	3.885	2.337	-0.402	0.744	4.937	12.548	16.575	18.459	26.682	16.653	4.192	2.203
29	2.570	1.714	1.302	0.289	1.077	2.812	10.975	11.928	7.960	2.655	2.629	3.280
30	3.040	2.874	2.260	2.016	1.886	3.458	11.442	16.208	27.242	1.496	1.481	1.849
31	1.713	1.620	1.274	1.136	1.063	1.949	6.448	9.134	15.353	5.939	2.598	2.345
32	2.510	2.490	0.685	0.893	2.042	3.937	6.505	16.057	14.228	1.486	-1.030	0.878
33	1.033	0.554	0.895	0.333	1.560	3.293	9.250	22.204	23.777	5.133	2.854	2.818
34	0.604	2.146	-0.067	-3.093	0.163	7.642	17.204	20.762	31.018	11.080	4.278	3.351
35	3.558	3.231	0.533	-2.664	2.945	5.814	11.281	8.912	20.732	3.212	2.495	2.703
36	3.196	1.907	1.242	0.466	1.900	6.604	16.991	11.853	19.391	2.895	3.608	2.382

37	2.358	2.498	1.700	1.450	3.725	4.623	11.643	11.093	8.131	8.860	2.279	1.372
38	1.887	1.652	1.374	1.604	2.875	4.477	9.305	12.968	3.709	6.873	4.360	1.959
39	1.771	0.880	-0.616	-0.299	0.630	2.702	7.064	8.750	36.349	8.150	0.144	-1.090
40	3.167	1.048	0.527	0.740	1.714	4.623	16.638	13.927	13.415	4.000	2.653	2.471
41	2.099	0.949	0.045	-0.935	1.619	7.068	21.817	14.315	18.952	5.066	2.256	2.386
42	2.991	2.465	-0.241	0.229	2.961	7.195	12.235	12.528	30.425	3.199	0.670	-0.001
43	1.814	0.767	0.085	0.730	1.760	3.782	11.061	7.865	8.516	1.901	1.882	2.349
44	2.176	2.058	1.618	1.443	1.350	2.476	8.192	11.604	19.505	3.615	1.610	1.703
45	2.176	1.759	-0.172	0.164	2.113	5.134	8.731	8.940	21.712	4.907	2.375	1.649
46	1.800	1.759	1.746	0.104	1.066	3.046	6.251	7.552	15.404	4.931	2.265	1.566
47	1.538	1.354	1.740	0.900	1.578	2.341	4.354	8.558	11.093	5.702	1.290	0.950
48	0.469					3.850				2.440		
	4.464	0.136	-0.288	-1.581	-1.644		12.624	16.887	13.806		1.377	1.174
49		2.310	0.826	0.331	0.926	4.960	12.741	12.805	6.878	2.565	4.551	8.684
50	6.685	5.785	3.358	3.186	6.915	6.133	11.607	18.118	18.382	6.029	3.825	1.718
51	1.554	0.772	-0.541	-0.262	0.553	2.370	6.197	7.676	31.885	2.489	1.404	1.197
52	4.554	2.356	0.842	0.338	0.945	5.059	12.997	13.062	7.016	2.818	1.590	1.355
53	5.156	2.667	0.954	0.382	1.070	5.728	14.714	14.788	7.944	7.666	3.442	2.185
54	2.112	2.494	1.062	1.458	1.594	3.508	11.608	11.298	12.950	0.975	1.546	-0.424
55	3.597	3.458	3.247	1.841	3.285	4.514	10.777	10.828	5.897	15.270	4.017	3.754
56	3.307	2.531	2.323	-0.211	2.894	6.218	13.900	16.279	16.408	4.434	1.843	0.942
57	1.060	1.055	0.913	-1.634	0.434	4.317	6.642	11.968	24.855	11.902	3.131	2.926
58	2.578	1.972	1.811	-0.164	2.256	4.847	10.835	12.689	12.789	13.918	3.504	1.841
59	2.148	1.433	1.088	0.242	0.900	2.350	9.172	9.969	6.652	4.923	2.356	2.189
60	2.567	1.154	0.648	1.189	1.885	1.553	16.802	7.322	7.209	7.781	3.356	3.608
61	2.645	1.435	0.666	1.014	1.181	5.349	11.736	13.507	11.427	7.878	3.042	2.383
62	2.530	2.297	0.379	-1.894	2.094	4.134	8.021	6.337	14.741	7.097	4.502	2.022
63	1.829	0.909	-0.636	-0.308	0.651	2.790	7.294	9.035	37.532	4.007	1.678	1.057
64	1.824	1.097	-0.189	0.349	2.318	5.890	7.780	8.665	12.525	8.780	1.986	1.462
65	0.723	0.210	-0.443	-2.434	-2.531	5.927	19.436	25.999	21.256	5.699	2.758	1.915
66	2.091	1.590	2.028	1.115	1.238	3.538	7.261	8.772	17.892	8.651	5.503	3.748
67	3.732	2.943	1.418	-0.308	2.751	9.081	14.062	15.526	14.916	8.354	1.642	2.122
68	2.618	1.014	-0.281	0.364	2.419	5.822	8.297	9.172	11.639	1.877	2.975	-0.816
69	6.924	6.656	6.251	3.545	6.323	8.690	20.746	20.844	11.352	7.032	4.461	2.004
70	1.812	0.901	-0.630	-0.306	0.645	2.765	7.228	8.953	37.188	7.208	3.488	2.422
71	2.645	2.011	2.565	1.410	1.566	4.474	9.183	11.094	22.628	3.923	2.472	1.468
72	1.627	1.504	0.221	0.135	1.153	4.204	17.230	11.691	17.393	3.959	2.537	2.888
73	3.447	2.924	1.969	1.834	3.018	6.033	7.681	13.560	7.905	4.344	1.628	1.939
74	2.358	2.080	1.411	0.367	2.228	6.513	13.378	11.459	5.436	6.926	4.394	1.974
75	1.785	0.887	-0.621	-0.301	0.635	2.723	7.119	8.818	36.629	16.981	5.458	2.599
76	5.947	2.256	1.631	1.124	2.667	2.598	-0.291	8.372	19.158	5.986	3.836	4.367

77	5.212	4.421	2.978	2.774	4.563	9.122	11.615	20.503	11.953	4.351	2.913	3.248
78	2.433	2.369	2.205	0.949	-0.133	11.568	13.301	18.912	20.142	3.008	2.806	3.056
79	8.839	3.200	2.997	3.202	5.938	13.119	18.317	12.579	5.464	4.370	6.618	4.413
80	3.490	2.235	-0.002	-0.770	4.769	7.892	13.870	13.913	14.448	6.926	3.058	2.768
81	1.783	-1.226	-2.918	0.846	-1.237	6.384	20.417	12.975	14.436	6.708	3.766	4.191
82	2.672	1.178	-1.546	-5.716	1.399	4.756	20.391	15.388	15.717	5.469	2.989	2.784
83	1.739	2.311	2.092	0.799	0.933	2.914	9.516	15.722	11.039	-0.814	3.772	2.855
84	2.220	2.255	1.908	1.332	2.310	2.548	6.013	7.098	10.243	8.917	3.187	2.072
85	2.084	1.382	0.615	0.570	0.849	2.430	3.517	7.825	25.898	3.185	2.132	2.378
86	1.781	1.734	1.615	0.695	-0.098	8.469	9.738	13.845	14.746	11.521	5.086	4.604
87	2.965	-2.040	-4.853	1.407	-2.057	10.618	33.960	21.581	24.011	4.395	2.148	1.556
88	2.069	1.758	1.056	-0.046	2.484	3.214	18.666	18.020	3.177	10.779	2.119	2.738
89	3.378	1.308	-0.363	0.469	3.121	7.511	10.705	11.833	15.016	8.397	3.002	1.952
90	1.963	1.301	0.580	0.537	0.799	2.289	3.312	7.369	24.389	8.965	4.543	2.962
91	3.087	3.250	1.630	0.176	2.431	5.479	7.474	14.802	24.325	7.892	5.792	0.695
92	2.914	1.890	2.107	1.520	2.240	3.203	8.556	8.544	3.870	8.068	3.179	1.580
93	1.165	1.397	1.384	-0.193	2.508	7.348	7.733	10.893	17.492	1.966	1.834	1.997
94	5.777	2.091	1.959	2.093	3.881	8.574	11.972	8.222	3.571	3.153	1.987	1.180
95	1.307	1.209	0.177	0.109	0.927	3.379	13.848	9.396	13.979	3.978	1.908	3.077
96	3.228	1.716	2.247	0.657	1.332	11.435	10.771	14.093	10.711	7.396	7.031	3.262
97	2.815	1.452	1.290	0.620	1.569	2.826	4.186	5.544	2.638	4.380	2.760	1.639
98	1.816	1.680	0.246	0.151	1.288	4.694	19.238	13.053	19.420	-0.980	4.543	3.438
99	2.674	2.715	2.297	1.604	2.782	3.068	7.241	8.547	12.335	5.478	3.485	2.373
100	2.363	1.864	0.898	-0.195	1.742	5.750	8.904	9.831	9.445	18.763	1.791	0.854

Anexo P Muestra sintetica 9. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	2.514	0.940	1.257	-1.653	-0.838	7.687	15.992	17.544	3.830	7.988	4.048	2.640
2	2.751	2.896	1.452	0.157	2.167	4.882	6.660	13.190	21.676	13.085	0.090	2.795
3	2.162	0.989	1.175	0.613	1.657	4.371	11.602	10.060	20.056	8.096	5.136	2.307
4	2.086	1.037	-0.726	-0.352	0.742	3.183	8.322	10.308	42.817	5.616	2.352	1.481
5	2.556	1.537	-0.265	0.489	3.248	8.255	10.905	12.144	17.555	10.758	4.941	3.417
6	3.356	2.953	2.930	1.339	3.442	5.107	9.498	18.671	24.201	9.823	2.584	2.415
7	2.127	1.628	1.495	-0.136	1.861	4.000	8.941	10.472	10.555	5.463	2.669	1.934
8	2.571	2.185	1.312	-0.057	3.087	3.994	23.197	22.395	3.948	1.619	2.872	5.481
9	4.220	3.651	2.119	2.011	4.364	3.871	7.326	11.436	11.602	6.194	2.845	1.967
10	1.932	1.700	1.687	0.771	1.981	2.940	5.468	10.750	13.933	7.270	4.081	4.543
11	2.896	1.277	-1.676	-6.195	1.516	5.155	22.100	16.678	17.034	13.397	4.306	2.050
12	4.692	1.780	1.287	0.887	2.104	2.049	-0.230	6.605	15.115	5.630	-1.595	0.022
13	0.553	-3.884	2.212	1.862	3.413	0.707	22.436	35.248	0.705	1.185	-0.821	0.700
14	0.823	0.442	0.714	0.266	1.243	2.625	7.374	17.702	18.955	2.936	2.281	2.471
15	2.921	1.743	1.135	0.426	1.737	6.036	15.531	10.835	17.725	4.436	2.490	2.772
16	1.767	0.779	-1.023	-3.780	0.925	3.146	13.485	10.177	10.394	13.364	4.282	2.259
17	2.235	1.518	0.516	1.094	1.271	1.996	3.710	7.397	12.545	3.817	6.520	2.583
18	2.285	-0.373	-8.389	0.219	5.143	10.692	15.437	12.112	18.897	6.714	3.281	2.377
19	3.160	2.685	1.613	-0.070	3.794	4.909	28.511	27.525	4.853	14.363	5.232	2.553
20	4.218	2.551	0.576	-0.747	1.614	5.655	4.741	10.966	14.528	0.721	2.634	1.739
21	1.352	1.702	0.605	0.367	1.933	4.473	8.349	14.086	12.011	10.135	5.136	3.349
22	3.491	3.674	1.843	0.199	2.749	6.194	8.450	16.735	27.502	2.662	-0.309	0.017
23	1.705	0.656	0.519	0.441	0.817	3.682	12.265	24.805	24.494	9.311	3.381	2.224
24	3.328	2.157	-0.420	0.954	1.726	6.922	13.103	11.661	12.693	4.422	2.842	3.647
25	3.831	2.579	-0.031	0.762	2.470	4.353	11.646	10.862	8.711	14.308	4.599	2.190
26	5.011	1.901	1.374	0.947	2.247	2.189	-0.245	7.054	16.142	13.618	4.961	2.420
27	3.999	2.419	0.546	-0.708	1.530	5.362	4.495	10.398	13.774	13.267	12.611	5.851
28	5.050	2.604	2.315	1.112	2.815	5.069	7.508	9.945	4.733	4.017	1.963	1.422
29	1.891	1.607	0.965	-0.042	2.270	2.937	17.059	16.469	2.903	10.200	3.938	3.085
30	3.276	2.975	0.491	-2.452	2.711	5.353	10.385	8.204	19.085	7.623	-2.159	0.029
31	0.748	-5.259	2.996	2.521	4.622	0.958	30.379	47.727	0.954	3.424	-0.527	-1.057
32	4.697	3.408	1.860	1.506	3.882	6.469	6.152	8.665	13.841	6.566	1.485	1.093
33	0.540	0.157	-0.331	-1.821	-1.893	4.433	14.535	19.444	15.896	13.577	3.452	2.322
34	2.396	1.929	2.045	1.887	1.824	1.788	6.448	11.277	19.096	-1.335	6.191	4.685
35	3.644	3.701	3.131	2.187	3.792	4.181	9.869	11.649	16.811	6.265	3.614	1.379
36	3.581	1.338	1.790	-2.355	-1.194	10.949	22.779	24.989	5.455	10.742	4.233	2.103

27	1.551	1.861	1.843	-0.257	3.339	9.784	10.296	14.504	23.289	8.415	6.176	0.741
37												
38	3.107	2.015	2.246	1.621	2.388	3.415	9.123	9.110	4.127	4.923	3.131	2.133
39	2.124	1.675	0.807	-0.175	1.566	5.167	8.002	8.835	8.488	8.923	2.082	1.941
40	1.930	1.305	0.864	0.043	1.273	7.046	8.567	7.647	10.541	5.315	2.048	2.200
41	-1.395	5.081	-7.204	0.240	0.765	3.718	17.188	30.113	13.601	10.029	2.580	1.553
42	2.136	1.870	1.555	1.816	3.255	5.067	10.532	14.678	4.199	8.415	3.008	1.956
43	1.967	1.304	0.581	0.538	0.801	2.294	3.320	7.385	24.442	6.446	2.484	2.668
44	-1.692	6.162	-8.736	0.291	0.927	4.509	20.845	36.521	16.496	7.813	2.010	1.210
45	1.664	1.457	1.212	1.415	2.536	3.948	8.205	11.436	3.271	2.042	2.022	2.523
46	2.338	2.211	1.738	1.550	1.450	2.660	8.800	12.465	20.951	5.155	3.304	3.761
47	4.488	3.807	2.565	2.389	3.930	7.856	10.003	17.657	10.294	4.543	5.662	3.738
48	3.700	3.921	2.668	2.276	5.846	7.255	18.272	17.409	12.760	5.308	1.112	-0.002
49	3.011	1.273	0.141	1.211	2.921	6.276	18.353	13.050	14.131	4.146	1.825	2.289
50	4.638	1.751	0.787	-0.654	1.622	1.933	3.803	11.638	15.531	8.767	2.306	2.155
51	1.899	1.453	1.334	-0.121	1.661	3.570	7.980	9.346	9.420	7.737	3.048	1.515
52	1.117	1.340	1.327	-0.185	2.405	7.046	7.415	10.446	16.773	10.258	3.725	2.450
53	3.667	2.376	-0.462	1.051	1.901	7.626	14.436	12.848	13.984	2.030	2.010	2.508
54	2.324	2.198	1.728	1.541	1.442	2.644	8.749	12.394	20.831	5.065	2.216	2.000
55	2.141	2.124	0.585	0.762	1.741	3.358	5.548	13.696	12.135	0.443	1.129	1.930
56	3.087	2.849	2.812	3.733	3.571	4.411	8.664	11.393	6.054	3.731	2.398	3.077
57	3.233	2.176	-0.026	0.643	2.084	3.673	9.828	9.165	7.351	11.726	4.258	2.801
58	4.192	2.716	-0.529	1.201	2.173	8.717	16.502	14.686	15.986	4.970	3.861	4.183
59	4.945	2.951	1.922	0.722	2.941	10.219	26.294	18.343	30.007	1.437	-0.996	0.849
60	0.999	0.536	0.866	0.322	1.508	3.184	8.946	21.474	22.995	5.397	3.433	2.338
61	2.328	1.836	0.885	-0.192	1.716	5.665	8.772	9.685	9.305	3.198	1.492	0.950
62	1.491	0.726	0.189	0.231	1.516	1.744	12.034	12.273	6.361	6.663	3.060	2.116
63	2.079	1.829	1.814	0.830	2.132	3.163	5.883	11.564	14.989	11.994	8.802	1.056
64	4.429	2.872	3.202	2.310	3.404	4.868	13.004	12.985	5.882	8.326	0.147	-1.113
65	3.236	1.070	0.539	0.756	1.751	4.722	16.998	14.228	13.704	18.867	6.873	3.353
66	5.541	3.351	0.756	-0.981	2.120	7.428	6.227	14.405	19.084	15.711	0.108	3.356
67	2.596	1.188	1.411	0.736	1.990	5.249	13.931	12.079	24.081	7.407	2.724	1.817
68	-1.047	-2.268	0.616	0.468	-1.126	4.972	14.230	6.590	13.240	3.791	2.139	1.823
69	6.936	3.588	1.283	0.514	1.439	7.705	19.794	19.893	10.686	6.072	2.833	1.804
70	2.830	1.377	0.359	0.439	2.878	3.310	22.844	23.299	12.076	9.495	5.189	4.832
71	3.020	4.013	3.632	1.387	1.621	5.058	16.520	27.294	19.164	4.504	0.944	-0.002
72	2.555	1.080	0.120	1.028	2.479	5.325	15.573	11.073	11.990	3.394	4.230	2.793
73	2.764	2.929	1.993	1.701	4.367	5.421	13.651	13.007	9.533	4.824	2.149	2.272
74	2.848	2.347	-0.230	0.218	2.820	6.851	11.650	11.929	28.972	6.186	2.723	3.415
75	6.920	2.612	1.174	-0.976	2.420	2.884	5.673	17.362	23.170	5.662	3.629	4.131
76	4.930	4.182	2.817	2.624	4.316	8.630	10.987	19.396	11.307	17.547	5.640	2.686

77	6.146	2.332	1.685	1.162	2.756	2.684	-0.301	8.651	19.797	2.462	1.389	1.184
78	4.504	2.330	0.833	0.334	0.934	5.003	12.853	12.918	6.939	3.853	1.848	2.980
79	3.127	1.662	2.176	0.637	1.290	11.075	10.432	13.649	10.374	2.762	1.558	1.329
80	5.054	2.614	0.935	0.375	1.049	5.614	14.423	14.495	7.786	4.429	2.555	0.975
81	2.532	0.946	1.266	-1.665	-0.844	7.741	16.104	17.666	3.856	6.877	3.159	2.184
82	2.146	1.888	1.873	0.856	2.200	3.265	6.072	11.936	15.470	7.970	2.932	1.956
83	-1.127	-2.440	0.663	0.503	-1.212	5.350	15.313	7.092	14.248	5.675	3.600	1.617
84	1.462	0.727	-0.509	-0.247	0.520	2.231	5.833	7.225	30.011	5.700	3.663	4.701
85	4.939	3.324	-0.040	0.982	3.184	5.612	15.013	14.002	11.230	5.440	3.544	4.358
86	5.679	4.097	1.736	1.658	2.982	6.299	8.080	10.522	8.073	10.374	3.708	2.411
87	2.425	1.607	0.716	0.663	0.987	2.827	4.092	9.103	30.130	20.319	1.940	0.925
88	3.002	2.186	2.067	1.113	0.880	3.397	8.708	17.491	17.169	11.640	4.240	2.069
89	3.418	2.068	0.467	-0.605	1.308	4.583	3.842	8.887	11.774	0.578	1.473	2.519
90	4.030	3.719	3.671	4.873	4.662	5.758	11.310	14.873	7.903	8.918	4.096	2.833
91	2.782	2.448	2.429	1.110	2.853	4.234	7.874	15.478	20.062	1.798	1.780	2.222
92	2.058	1.947	1.530	1.365	1.277	2.342	7.748	10.976	18.448	8.710	-2.467	0.033
93	0.855	-6.009	3.423	2.880	5.281	1.094	34.710	54.532	1.090	1.560	2.797	2.160
94	1.551	1.277	1.526	1.715	1.253	3.398	7.326	11.910	12.763	2.453	0.990	1.056
95	1.591	0.783	0.641	0.584	0.000	1.825	5.971	14.371	27.744	11.968	3.043	2.047
96	2.113	1.700	1.802	1.663	1.608	1.576	5.684	9.941	16.833	-1.393	6.459	4.888
97	3.801	3.861	3.266	2.281	3.956	4.362	10.296	12.153	17.539	0.827	3.020	1.994
98	1.550	1.951	0.693	0.421	2.217	5.128	9.572	16.150	13.770	9.362	4.203	2.668
99	2.579	3.046	1.297	1.781	1.947	4.284	14.176	13.797	15.814	9.930	2.317	2.160
100	2.148	1.452	0.961	0.048	1.417	7.841	9.534	8.510	11.730	4.399	2.538	0.968

Anexo Q Muestra sintetica 10. Metodo de Svanidze. Escurrimientos por cuenca propia (hm³)

2 6.069 3.140 1.123 0.450 1.259 6.743 17.321 17.408 9.351 6.873 8.565 5.63 3 5.597 5.931 4.036 3.443 8.843 10.976 27.642 26.336 19.303 11.619 5.887 3.8 4 4.001 4.212 2.113 0.229 3.151 7.101 9.687 19.184 31.527 8.838 1.737 2.2 5 2.770 1.072 -0.298 0.385 2.559 6.159 8.777 9.702 12.312 4.326 0.096 -0.0 6 2.454 1.037 0.115 0.987 2.381 5.115 14.959 10.636 11.517 5.576 2.674 4.3 7 4.525 2.405 3.150 0.921 1.868 16.029 15.097 19.753 15.013 8.192 0.144 -1.0 1.0 2.341 1.705 1.612 0.888 0.686 2.649	hm³	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
3 5.597 5.931 4.036 3.443 8.843 10.976 27.642 26.336 19.303 11.619 5.887 3.8 4 4.001 4.212 2.113 0.229 3.151 7.101 9.687 19.184 31.527 8.838 1.737 2.2 5 2.770 1.072 -0.298 0.385 2.559 6.159 8.777 9.702 12.312 4.326 0.906 -0.0 6 2.454 1.037 0.115 0.9821 1.868 16.029 15.097 19.753 15.013 8.192 0.144 4.1 8 3.183 1.053 0.530 0.744 1.723 4.646 16.724 13.999 13.484 7.219 3.658 2.3 9 2.486 2.617 1.312 0.142 1.958 4.411 6.018 11.919 19.587 15.848 1.513 0.7 10 2.341 1.705 1.612 0.868 0.686		2.524	1.228	0.320	0.392	2.567	2.952	20.376	20.781	10.771	3.317	1.871	1.596
4 4.001 4.212 2.113 0.229 3.151 7.101 9.687 19.184 31.527 8.838 1.737 2.2 5 2.770 1.072 -0.298 0.385 2.559 6.159 8.777 9.702 12.312 4.326 0.906 -0.1 6 2.454 1.037 0.115 0.987 2.381 5.115 14.959 10.636 11.517 5.576 2.674 4.3 7 4.525 2.405 3.150 0.921 1.868 16.029 15.097 19.753 15.013 8.192 0.144 -1.0 8 3.183 1.053 0.530 0.744 1.723 4.646 16.724 13.99 13.484 7.219 3.658 2.684 6.862 2.649 6.792 13.642 13.391 19.990 7.282 3.5 10 2.341 1.705 1.612 0.868 2.646 6.792 13.642 13.391 19.990 7.282 3.5	2	6.069	3.140	1.123	0.450	1.259	6.743	17.321	17.408	9.351	6.873	8.565	5.654
5 2.770 1.072 -0.298 0.385 2.559 6.159 8.777 9.702 12.312 4.326 0.906 -0.0 6 2.454 1.037 0.115 0.987 2.381 5.115 14.959 10.636 11.517 5.576 2.674 4.32 7 4.525 2.405 3.150 0.921 1.868 16.029 15.097 19.753 15.013 8.192 0.144 -1.1 8 3.183 1.053 0.530 0.744 1.723 4.646 16.724 13.999 13.484 7.219 3.658 2.3 9 2.486 2.617 1.312 0.142 1.958 4.411 6.018 11.919 19.587 15.848 1.513 0.7 10 2.341 1.705 1.612 0.868 2.649 6.792 13.642 13.391 19.90 7.222 11 5.871 3.551 0.801 -1.039 2.2466 7.871 6.598	3	5.597	5.931	4.036	3.443	8.843	10.976	27.642	26.336	19.303	11.619	5.887	3.839
6 2.454 1.037 0.115 0.987 2.381 5.115 14.959 10.636 11.517 5.576 2.674 4.525 2.405 3.150 0.921 1.868 16.029 15.097 19.753 15.013 8.192 0.144 -1.18 8 3.183 1.053 0.530 0.744 1.723 4.646 16.724 13.999 13.484 7.219 3.658 2.3 9 2.486 2.617 1.312 0.142 1.958 4.411 6.018 11.919 19.587 15.848 1.513 0.7 10 2.341 1.705 1.612 0.868 0.686 2.649 6.792 13.642 13.391 1.990 7.282 3.5 11 5.871 3.551 0.801 -1.392 2.246 7.871 6.598 15.263 20.219 11.164 2.937 1.5 12 2.418 1.850 1.699 -0.154 2.116 4.546 10.162 11.9	4	4.001	4.212	2.113	0.229	3.151	7.101	9.687	19.184	31.527	8.838	1.737	2.245
7 4.525 2.405 3.150 0.921 1.868 16.029 15.097 19.753 15.013 8.192 0.144 -1.18 8 3.183 1.053 0.530 0.744 1.723 4.646 16.724 13.999 13.484 7.219 3.658 2.3 9 2.486 2.617 1.312 0.142 1.958 4.411 6.018 11.919 19.587 15.848 1.513 0.7 10 2.341 1.705 1.612 0.868 0.686 2.649 6.792 13.642 13.391 19.990 7.282 3.5 11 5.871 3.551 0.801 -1.039 2.246 7.871 6.598 15.263 20.219 11.164 2.937 2.7 12 2.418 1.850 1.699 -0.154 2.116 4.546 10.162 11.901 11.996 14.250 3.326 3.1 13 3.082 2.084 1.380 0.068 2.033	5	2.770	1.072	-0.298	0.385	2.559	6.159	8.777	9.702	12.312	4.326	0.906	-0.002
8 3.183 1.053 0.530 0.744 1.723 4.646 16.724 13.999 13.484 7.219 3.658 2.5 9 2.486 2.617 1.312 0.142 1.958 4.411 6.018 11.919 19.587 15.848 1.513 0.7 10 2.341 1.705 1.612 0.868 0.686 2.649 6.792 13.642 13.391 19.990 7.282 3.5 11 5.871 3.551 0.801 -1.039 2.246 7.871 6.598 15.263 20.219 11.164 2.937 2.7 12 2.418 1.850 1.6699 -0.154 2.116 4.546 10.162 11.901 11.996 14.250 3.326 3.1 13 3.082 2.084 1.380 0.068 2.033 11.253 13.682 12.213 16.6334 9.798 0.173 -1.3 14 3.807 1.260 0.634 0.890 2.060	6	2.454	1.037	0.115	0.987	2.381	5.115	14.959	10.636	11.517	5.576	2.674	4.313
9 2.486 2.617 1.312 0.142 1.958 4.411 6.018 11.919 19.587 15.848 1.513 0.7 10 2.341 1.705 1.612 0.868 0.686 2.649 6.792 13.642 13.391 19.990 7.282 3.5 11 5.871 3.551 0.801 -1.039 2.246 7.871 6.598 15.263 20.219 11.164 2.937 2.7 12 2.418 1.850 1.699 -0.154 2.116 4.546 10.162 11.901 11.996 14.250 3.326 3.1 13 3.082 2.084 1.380 0.668 2.033 11.253 13.682 12.213 16.834 9.798 0.173 -1.3 14 3.807 1.260 0.634 0.890 2.060 5.557 20.002 16.743 16.127 3.959 2.233 1.8 15 7.243 3.747 1.340 0.537 1.503	7	4.525	2.405	3.150	0.921	1.868	16.029	15.097	19.753	15.013	8.192	0.144	-1.096
10 2.341 1.705 1.612 0.868 0.686 2.649 6.792 13.642 13.391 19.990 7.282 3.5 11 5.871 3.551 0.801 -1.039 2.246 7.871 6.598 15.263 20.219 11.164 2.937 2.7 12 2.418 1.850 1.699 -0.154 2.116 4.546 10.162 11.901 11.996 14.250 3.326 3.1 13 3.082 2.084 1.380 0.068 2.033 11.253 13.682 12.213 16.834 9.798 0.173 -1.3 14 3.807 1.260 0.634 0.890 2.060 5.557 20.002 16.743 16.127 3.959 2.233 1.5 15 7.243 3.747 1.340 0.537 1.503 8.047 20.671 20.774 11.159 8.087 3.638 3.2 16 1.927 1.232 0.729 0.383 2.599	8	3.183	1.053	0.530	0.744	1.723	4.646	16.724	13.999	13.484	7.219	3.658	2.385
11 5.871 3.551 0.801 -1.039 2.246 7.871 6.598 15.263 20.219 11.164 2.937 2.7 12 2.418 1.850 1.699 -0.154 2.116 4.546 10.162 11.901 11.996 14.250 3.326 3.1 13 3.082 2.084 1.380 0.068 2.033 11.253 13.682 12.213 16.834 9.798 0.173 -1.3 14 3.807 1.260 0.634 0.890 2.060 5.557 20.002 16.743 16.127 3.959 2.233 1.5 15 7.243 3.747 1.340 0.537 1.503 8.047 20.671 20.774 11.159 8.087 3.638 3.2 16 1.927 1.232 0.729 0.383 2.599 6.726 6.115 9.297 12.164 8.177 1.983 1.4 17 1.073 0.745 0.584 0.451 1.649	9	2.486	2.617	1.312	0.142	1.958	4.411	6.018	11.919	19.587	15.848	1.513	0.721
12 2.418 1.850 1.699 -0.154 2.116 4.546 10.162 11.901 11.996 14.250 3.326 3.1 13 3.082 2.084 1.380 0.068 2.033 11.253 13.682 12.213 16.834 9.798 0.173 -1.3 14 3.807 1.260 0.634 0.890 2.060 5.557 20.002 16.743 16.127 3.959 2.233 1.5 15 7.243 3.747 1.340 0.537 1.503 8.047 20.671 20.774 11.159 8.087 3.638 3.2 16 1.927 1.232 0.729 0.383 2.599 6.726 6.115 9.297 12.164 8.177 1.983 1.4 17 1.073 0.745 0.584 0.451 1.649 3.309 7.981 7.321 14.589 10.238 2.603 1.7 18 1.807 1.455 1.542 1.423 1.376	10	2.341	1.705	1.612	0.868	0.686	2.649	6.792	13.642	13.391	19.990	7.282	3.553
13 3.082 2.084 1.380 0.068 2.033 11.253 13.682 12.213 16.834 9.798 0.173 -1.34 14 3.807 1.260 0.634 0.890 2.060 5.557 20.002 16.743 16.127 3.959 2.233 1.5 15 7.243 3.747 1.340 0.537 1.503 8.047 20.671 20.774 11.159 8.087 3.638 3.2 16 1.927 1.232 0.729 0.383 2.599 6.726 6.115 9.297 12.164 8.177 1.983 1.4 17 1.073 0.745 0.584 0.451 1.649 3.309 7.981 7.321 14.589 10.238 2.603 1.7 18 1.807 1.455 1.542 1.423 1.376 1.348 4.862 8.504 14.400 4.027 2.323 0.8 19 2.302 0.860 1.151 -1.513 -0.767	11	5.871	3.551	0.801	-1.039	2.246	7.871	6.598	15.263	20.219	11.164	2.937	2.744
14 3.807 1.260 0.634 0.890 2.060 5.557 20.002 16.743 16.127 3.959 2.233 1.5 15 7.243 3.747 1.340 0.537 1.503 8.047 20.671 20.774 11.159 8.087 3.638 3.2 16 1.927 1.232 0.729 0.383 2.599 6.726 6.115 9.297 12.164 8.177 1.983 1.4 17 1.073 0.745 0.584 0.451 1.649 3.309 7.981 7.321 14.589 10.238 2.603 1.7 18 1.807 1.455 1.542 1.423 1.376 1.348 4.862 8.504 14.400 4.027 2.323 0.8 19 2.302 0.860 1.151 -1.513 -0.767 7.037 14.639 16.060 3.506 6.814 1.541 1.1 20 0.561 0.163 0.344 -1.889 -1.964	12	2.418	1.850	1.699	-0.154	2.116	4.546	10.162	11.901	11.996	14.250	3.326	3.100
15 7.243 3.747 1.340 0.537 1.503 8.047 20.671 20.774 11.159 8.087 3.638 3.2 16 1.927 1.232 0.729 0.383 2.599 6.726 6.115 9.297 12.164 8.177 1.983 1.4 17 1.073 0.745 0.584 0.451 1.649 3.309 7.981 7.321 14.589 10.238 2.603 1.7 18 1.807 1.455 1.542 1.423 1.376 1.348 4.862 8.504 14.400 4.027 2.323 0.8 19 2.302 0.860 1.151 -1.513 -0.767 7.037 14.639 16.060 3.506 6.814 1.541 1.1 20 0.561 0.163 -0.344 -1.889 -1.964 4.600 15.084 20.178 16.497 6.578 2.837 3.0 21 2.236 1.213 0.563 0.857 0.999	13	3.082	2.084	1.380	0.068	2.033	11.253	13.682	12.213	16.834	9.798	0.173	-1.310
16 1.927 1.232 0.729 0.383 2.599 6.726 6.115 9.297 12.164 8.177 1.983 1.4 17 1.073 0.745 0.584 0.451 1.649 3.309 7.981 7.321 14.589 10.238 2.603 1.7 18 1.807 1.455 1.542 1.423 1.376 1.348 4.862 8.504 14.400 4.027 2.323 0.8 19 2.302 0.860 1.151 -1.513 -0.767 7.037 14.639 16.060 3.506 6.814 1.541 1.1 20 0.561 0.163 -0.344 -1.889 -1.964 4.600 15.084 20.178 16.497 6.578 2.837 3.0 21 2.236 1.213 0.563 0.857 0.999 4.522 9.923 11.419 9.661 1.498 2.657 5.0 22 3.903 3.377 1.960 1.860 4.037	14	3.807	1.260	0.634	0.890	2.060	5.557	20.002	16.743	16.127	3.959	2.233	1.904
17 1.073 0.745 0.584 0.451 1.649 3.309 7.981 7.321 14.589 10.238 2.603 1.7 18 1.807 1.455 1.542 1.423 1.376 1.348 4.862 8.504 14.400 4.027 2.323 0.8 19 2.302 0.860 1.151 -1.513 -0.767 7.037 14.639 16.060 3.506 6.814 1.541 1.1 20 0.561 0.163 -0.344 -1.889 -1.964 4.600 15.084 20.178 16.497 6.578 2.837 3.0 21 2.236 1.213 0.563 0.857 0.999 4.522 9.923 11.419 9.661 1.498 2.657 5.0 22 3.993 3.377 1.960 1.860 4.037 3.580 6.776 10.578 10.732 9.144 2.353 1.4 23 1.948 1.705 1.418 1.656 2.968	15	7.243	3.747	1.340	0.537	1.503	8.047	20.671	20.774	11.159	8.087	3.638	3.243
18 1.807 1.455 1.542 1.423 1.376 1.348 4.862 8.504 14.400 4.027 2.323 0.8 19 2.302 0.860 1.151 -1.513 -0.767 7.037 14.639 16.060 3.506 6.814 1.541 1.1 20 0.561 0.163 -0.344 -1.889 -1.964 4.600 15.084 20.178 16.497 6.578 2.837 3.6 21 2.236 1.213 0.563 0.857 0.999 4.522 9.923 11.419 9.661 1.498 2.657 5.0 22 3.903 3.377 1.960 1.860 4.037 3.580 6.776 10.578 10.732 9.144 2.353 1.4 23 1.948 1.705 1.418 1.656 2.968 4.620 9.603 13.384 3.828 5.461 3.558 4.3 24 5.701 4.113 1.743 1.664 2.993	16	1.927	1.232	0.729	0.383	2.599	6.726	6.115	9.297	12.164	8.177	1.983	1.456
19 2.302 0.860 1.151 -1.513 -0.767 7.037 14.639 16.060 3.506 6.814 1.541 1.1 20 0.561 0.163 -0.344 -1.889 -1.964 4.600 15.084 20.178 16.497 6.578 2.837 3.0 21 2.236 1.213 0.563 0.857 0.999 4.522 9.923 11.419 9.661 1.498 2.657 5.0 22 3.903 3.377 1.960 1.860 4.037 3.580 6.776 10.578 10.732 9.144 2.353 1.4 23 1.948 1.705 1.418 1.656 2.968 4.620 9.603 13.384 3.828 5.461 3.558 4.3 24 5.701 4.113 1.743 1.664 2.993 6.324 8.111 10.562 8.104 6.297 2.637 1.6 25 2.866 1.724 -0.297 0.549 3.642	17	1.073	0.745	0.584	0.451	1.649	3.309	7.981	7.321	14.589	10.238	2.603	1.751
20 0.561 0.163 -0.344 -1.889 -1.964 4.600 15.084 20.178 16.497 6.578 2.837 3.0 21 2.236 1.213 0.563 0.857 0.999 4.522 9.923 11.419 9.661 1.498 2.657 5.0 22 3.903 3.377 1.960 1.860 4.037 3.580 6.776 10.578 10.732 9.144 2.353 1.4 23 1.948 1.705 1.418 1.656 2.968 4.620 9.603 13.384 3.828 5.461 3.558 4.3 24 5.701 4.113 1.743 1.664 2.993 6.324 8.111 10.562 8.104 6.297 2.637 1.6 25 2.866 1.724 -0.297 0.549 3.642 9.256 12.227 13.617 19.683 2.967 1.423 2.2 26 2.408 1.280 1.676 0.490 0.994	18	1.807	1.455	1.542	1.423	1.376	1.348	4.862	8.504	14.400	4.027	2.323	0.886
21 2.236 1.213 0.563 0.857 0.999 4.522 9.923 11.419 9.661 1.498 2.657 5.0 22 3.903 3.377 1.960 1.860 4.037 3.580 6.776 10.578 10.732 9.144 2.353 1.4 23 1.948 1.705 1.418 1.656 2.968 4.620 9.603 13.384 3.828 5.461 3.558 4.3 24 5.701 4.113 1.743 1.664 2.993 6.324 8.111 10.562 8.104 6.297 2.637 1.6 25 2.866 1.724 -0.297 0.549 3.642 9.256 12.227 13.617 19.683 2.967 1.423 2.2 26 2.408 1.280 1.676 0.490 0.994 8.529 8.033 10.511 7.989 -1.149 5.326 4.0 27 3.135 3.184 2.693 1.881 3.262 <td< td=""><td>19</td><td>2.302</td><td>0.860</td><td>1.151</td><td>-1.513</td><td>-0.767</td><td>7.037</td><td>14.639</td><td>16.060</td><td>3.506</td><td>6.814</td><td>1.541</td><td>1.135</td></td<>	19	2.302	0.860	1.151	-1.513	-0.767	7.037	14.639	16.060	3.506	6.814	1.541	1.135
22 3.903 3.377 1.960 1.860 4.037 3.580 6.776 10.578 10.732 9.144 2.353 1.4 23 1.948 1.705 1.418 1.656 2.968 4.620 9.603 13.384 3.828 5.461 3.558 4.3 24 5.701 4.113 1.743 1.664 2.993 6.324 8.111 10.562 8.104 6.297 2.637 1.6 25 2.866 1.724 -0.297 0.549 3.642 9.256 12.227 13.617 19.683 2.967 1.423 2.2 26 2.408 1.280 1.676 0.490 0.994 8.529 8.033 10.511 7.989 -1.149 5.326 4.0 27 3.135 3.184 2.693 1.881 3.262 3.597 8.490 10.021 14.463 1.153 -0.798 0.6 28 0.801 0.430 0.694 0.259 1.209 <	20	0.561	0.163	-0.344	-1.889	-1.964	4.600	15.084	20.178	16.497	6.578	2.837	3.051
23 1.948 1.705 1.418 1.656 2.968 4.620 9.603 13.384 3.828 5.461 3.558 4.3 24 5.701 4.113 1.743 1.664 2.993 6.324 8.111 10.562 8.104 6.297 2.637 1.6 25 2.866 1.724 -0.297 0.549 3.642 9.256 12.227 13.617 19.683 2.967 1.423 2.2 26 2.408 1.280 1.676 0.490 0.994 8.529 8.033 10.511 7.989 -1.149 5.326 4.0 27 3.135 3.184 2.693 1.881 3.262 3.597 8.490 10.021 14.463 1.153 -0.798 0.6 28 0.801 0.430 0.694 0.259 1.209 2.553 7.172 17.218 18.437 9.670 3.511 2.3 29 3.457 2.240 -0.436 0.991 1.792	21	2.236	1.213	0.563	0.857	0.999	4.522	9.923	11.419	9.661	1.498	2.657	5.070
24 5.701 4.113 1.743 1.664 2.993 6.324 8.111 10.562 8.104 6.297 2.637 1.6 25 2.866 1.724 -0.297 0.549 3.642 9.256 12.227 13.617 19.683 2.967 1.423 2.2 26 2.408 1.280 1.676 0.490 0.994 8.529 8.033 10.511 7.989 -1.149 5.326 4.0 27 3.135 3.184 2.693 1.881 3.262 3.597 8.490 10.021 14.463 1.153 -0.798 0.6 28 0.801 0.430 0.694 0.259 1.209 2.553 7.172 17.218 18.437 9.670 3.511 2.3 29 3.457 2.240 -0.436 0.991 1.792 7.188 13.607 12.111 13.182 3.234 2.145 1.8 30 1.697 0.767 0.036 -0.756 1.309	22	3.903	3.377	1.960	1.860	4.037	3.580	6.776	10.578	10.732	9.144	2.353	1.416
25 2.866 1.724 -0.297 0.549 3.642 9.256 12.227 13.617 19.683 2.967 1.423 2.2 26 2.408 1.280 1.676 0.490 0.994 8.529 8.033 10.511 7.989 -1.149 5.326 4.0 27 3.135 3.184 2.693 1.881 3.262 3.597 8.490 10.021 14.463 1.153 -0.798 0.6 28 0.801 0.430 0.694 0.259 1.209 2.553 7.172 17.218 18.437 9.670 3.511 2.3 29 3.457 2.240 -0.436 0.991 1.792 7.188 13.607 12.111 13.182 3.234 2.145 1.5 30 1.697 0.767 0.036 -0.756 1.309 5.715 17.639 11.574 15.323 2.695 4.780 9.1 31 7.022 6.077 3.527 3.347 7.263	23	1.948	1.705	1.418	1.656	2.968	4.620	9.603	13.384	3.828	5.461	3.558	4.375
26 2.408 1.280 1.676 0.490 0.994 8.529 8.033 10.511 7.989 -1.149 5.326 4.0 27 3.135 3.184 2.693 1.881 3.262 3.597 8.490 10.021 14.463 1.153 -0.798 0.6 28 0.801 0.430 0.694 0.259 1.209 2.553 7.172 17.218 18.437 9.670 3.511 2.3 29 3.457 2.240 -0.436 0.991 1.792 7.188 13.607 12.111 13.182 3.234 2.145 1.5 30 1.697 0.767 0.036 -0.756 1.309 5.715 17.639 11.574 15.323 2.695 4.780 9.1 31 7.022 6.077 3.527 3.347 7.263 6.442 12.192 19.032 19.309 4.177 1.566 1.8 32 2.267 2.000 1.357 0.353 2.142	24	5.701	4.113	1.743	1.664	2.993	6.324	8.111	10.562	8.104	6.297	2.637	1.660
27 3.135 3.184 2.693 1.881 3.262 3.597 8.490 10.021 14.463 1.153 -0.798 0.6 28 0.801 0.430 0.694 0.259 1.209 2.553 7.172 17.218 18.437 9.670 3.511 2.3 29 3.457 2.240 -0.436 0.991 1.792 7.188 13.607 12.111 13.182 3.234 2.145 1.5 30 1.697 0.767 0.036 -0.756 1.309 5.715 17.639 11.574 15.323 2.695 4.780 9.1 31 7.022 6.077 3.527 3.347 7.263 6.442 12.192 19.032 19.309 4.177 1.566 1.8 32 2.267 2.000 1.357 0.353 2.142 6.263 12.865 11.019 5.227 3.858 2.473 2.8 33 3.359 2.849 1.920 1.788 2.941 5.880 7.487 13.216 7.704 0.638 2.332 1.5	25	2.866	1.724	-0.297	0.549	3.642	9.256	12.227	13.617	19.683	2.967	1.423	2.295
28 0.801 0.430 0.694 0.259 1.209 2.553 7.172 17.218 18.437 9.670 3.511 2.3 29 3.457 2.240 -0.436 0.991 1.792 7.188 13.607 12.111 13.182 3.234 2.145 1.5 30 1.697 0.767 0.036 -0.756 1.309 5.715 17.639 11.574 15.323 2.695 4.780 9.1 31 7.022 6.077 3.527 3.347 7.263 6.442 12.192 19.032 19.309 4.177 1.566 1.8 32 2.267 2.000 1.357 0.353 2.142 6.263 12.865 11.019 5.227 3.858 2.473 2.8 33 3.359 2.849 1.920 1.788 2.941 5.880 7.487 13.216 7.704 0.638 2.332 1.5	26	2.408	1.280	1.676	0.490	0.994	8.529	8.033	10.511	7.989	-1.149	5.326	4.030
29 3.457 2.240 -0.436 0.991 1.792 7.188 13.607 12.111 13.182 3.234 2.145 1.8 30 1.697 0.767 0.036 -0.756 1.309 5.715 17.639 11.574 15.323 2.695 4.780 9.1 31 7.022 6.077 3.527 3.347 7.263 6.442 12.192 19.032 19.309 4.177 1.566 1.8 32 2.267 2.000 1.357 0.353 2.142 6.263 12.865 11.019 5.227 3.858 2.473 2.8 33 3.359 2.849 1.920 1.788 2.941 5.880 7.487 13.216 7.704 0.638 2.332 1.5	27	3.135	3.184	2.693	1.881	3.262	3.597	8.490	10.021	14.463	1.153	-0.798	0.681
30 1.697 0.767 0.036 -0.756 1.309 5.715 17.639 11.574 15.323 2.695 4.780 9.1 31 7.022 6.077 3.527 3.347 7.263 6.442 12.192 19.032 19.309 4.177 1.566 1.8 32 2.267 2.000 1.357 0.353 2.142 6.263 12.865 11.019 5.227 3.858 2.473 2.8 33 3.359 2.849 1.920 1.788 2.941 5.880 7.487 13.216 7.704 0.638 2.332 1.5	28	0.801	0.430	0.694	0.259	1.209	2.553	7.172	17.218	18.437	9.670	3.511	2.309
31 7.022 6.077 3.527 3.347 7.263 6.442 12.192 19.032 19.309 4.177 1.566 1.8 32 2.267 2.000 1.357 0.353 2.142 6.263 12.865 11.019 5.227 3.858 2.473 2.8 33 3.359 2.849 1.920 1.788 2.941 5.880 7.487 13.216 7.704 0.638 2.332 1.5	29	3.457	2.240	-0.436	0.991	1.792	7.188	13.607	12.111	13.182	3.234	2.145	1.998
32 2.267 2.000 1.357 0.353 2.142 6.263 12.865 11.019 5.227 3.858 2.473 2.8 33 3.359 2.849 1.920 1.788 2.941 5.880 7.487 13.216 7.704 0.638 2.332 1.5	30	1.697	0.767	0.036	-0.756	1.309	5.715	17.639	11.574	15.323	2.695	4.780	9.122
33 3.359 2.849 1.920 1.788 2.941 5.880 7.487 13.216 7.704 0.638 2.332 1.5	31	7.022	6.077	3.527	3.347	7.263	6.442	12.192	19.032	19.309	4.177	1.566	1.865
	32	2.267	2.000	1.357	0.353	2.142	6.263	12.865	11.019	5.227	3.858	2.473	2.815
04 4 407 4 500 0 505 0 005 4 744 0 050 7 000 40 407 40 004 40 540 4 004 5	33	3.359	2.849	1.920	1.788	2.941	5.880	7.487	13.216	7.704	0.638	2.332	1.540
34 1.197 1.506 0.535 0.325 1.711 3.959 7.389 12.467 10.631 10.518 4.631 5.8	34	1.197	1.506	0.535	0.325	1.711	3.959	7.389	12.467	10.631	10.518	4.631	5.806
35 11.767 4.442 1.996 -1.660 4.114 4.903 9.647 29.523 39.398 6.229 2.335 2.7	35	11.767	4.442	1.996	-1.660	4.114	4.903	9.647	29.523	39.398	6.229	2.335	2.781
36 3.381 2.983 2.024 0.527 3.195 9.341 19.186 16.434 7.795 12.062 4.547 2.3	36	3.381	2.983	2.024	0.527	3.195	9.341	19.186	16.434	7.795	12.062	4.547	2.353

27	2 500	1 007	1 511	2 606	2 572	E EEO	6.400	0.202	17 606	6.000	2.022	2 124
37	2.508	1.897	1.511	2.606	3.573	5.559	6.402	8.293 24.598	17.606	6.000	2.932	2.124
38	2.824	2.399	1.441	-0.062	3.390	4.387	25.479		4.337	14.776	4.735	2.498
39	2.471	1.678	0.570	1.209	1.406	2.206	4.102	8.178	13.870	3.302	2.116	2.409
40	2.875	2.439	1.643	1.530	2.517	5.032	6.407	11.310	6.593	0.648	1.652	2.825
41	4.518	4.170	4.116	5.463	5.227	6.455	12.680	16.675	8.861	8.677	3.102	2.017
42	2.028	1.344	0.599	0.554	0.826	2.365	3.423	7.614	25.203	5.731	3.636	1.633
43	1.477	0.734	-0.514	-0.249	0.526	2.253	5.891	7.297	30.310	2.372	1.338	1.141
44	4.340	2.245	0.803	0.322	0.901	4.822	12.387	12.449	6.687	8.675	6.366	0.763
45	3.203	2.077	2.316	1.671	2.462	3.521	9.405	9.391	4.254	1.585	2.842	2.194
46	1.576	1.298	1.550	1.742	1.273	3.452	7.443	12.100	12.967	6.505	2.439	2.904
47	3.531	3.115	2.114	0.550	3.336	9.755	20.036	17.162	8.141	11.626	2.956	1.988
48	2.052	1.652	1.751	1.616	1.562	1.531	5.521	9.656	16.351	6.655	2.870	3.086
49	2.262	1.227	0.570	0.867	1.010	4.575	10.038	11.552	9.774	7.599	2.759	1.815
50	2.716	1.760	-0.343	0.779	1.408	5.649	10.694	9.517	10.359	14.189	4.560	2.171
51	4.969	1.885	1.363	0.939	2.229	2.170	-0.243	6.995	16.007	7.773	3.570	2.469
52	2.425	2.134	2.117	0.968	2.487	3.690	6.863	13.491	17.487	11.601	2.950	1.984
53	2.048	1.648	1.747	1.612	1.559	1.528	5.509	9.636	16.317	6.400	1.448	1.066
54	0.527	0.153	-0.323	-1.775	-1.845	4.321	14.168	18.953	15.495	3.335	2.173	2.672
55	3.482	2.512	1.064	1.016	1.828	3.862	4.953	6.451	4.949	12.720	5.012	2.490
56	1.836	2.203	2.182	-0.305	3.954	11.584	12.191	17.173	27.576	12.489	4.014	1.911
57	4.374	1.660	1.200	0.827	1.962	1.910	-0.214	6.157	14.090	8.333	3.646	3.291
58	3.522	3.494	0.962	1.253	2.865	5.524	9.128	22.532	19.965	9.729	4.376	3.901
59	2.319	1.482	0.877	0.461	3.127	8.092	7.357	11.184	14.633	5.866	0.103	-0.784
60	2.279	0.754	0.380	0.533	1.233	3.327	11.975	10.024	9.655	7.833	3.969	2.588
61	2.698	2.839	1.424	0.154	2.125	4.787	6.531	12.933	21.254	7.366	3.314	2.954
62	1.756	1.122	0.664	0.349	2.368	6.127	5.570	8.468	11.080	4.048	-0.623	-1.249
63	5.553	4.028	2.199	1.781	4.589	7.647	7.272	10.243	16.361	3.361	2.230	2.077
64	1.764	0.797	0.038	-0.786	1.361	5.941	18.336	12.031	15.928	8.696	4.208	2.922
65	3.191	2.426	3.094	1.702	1.889	5.398	11.079	13.385	27.300	13.048	3.045	2.838
66	2.822	1.908	1.263	0.063	1.862	10.304	12.528	11.182	15.414	19.689	1.879	0.896
67	2.908	2.118	2.003	1.078	0.853	3.291	8.438	16.948	16.636	3.719	2.343	1.391
68	1.542	1.426	0.209	0.128	1.093	3.986	16.335	11.083	16.489	4.146	1.847	1.953
69	2.448	2.017	-0.198	0.188	2.424	5.889	10.014	10.253	24.902	6.664	2.382	1.549
70	1.558	1.033	0.460	0.426	0.634	1.816	2.629	5.848	19.356	0.570	2.084	1.376
71	1.069	1.346	0.478	0.290	1.529	3.538	6.603	11.141	9.499	1.313	2.329	4.444
72	3.421	2.961	1.719	1.631	3.539	3.138	5.940	9.272	9.407	4.594	2.328	1.518
73	1.582	1.665	0.835	0.090	1.246	2.807	3.830	7.584	12.464	3.207	2.020	1.200
74	1.330	1.230	0.180	0.111	0.943	3.436	14.083	9.556	14.217	1.417	-0.982	0.837
75	0.985	0.528	0.854	0.318	1.487	3.139	8.818	21.168	22.667	4.731	5.144	2.330
76	1.964	1.880	1.503	1.509	2.207	4.566	6.426	12.917	10.519	3.600	0.754	-0.001

77	2.042	0.863	0.096	0.822	1.981	4.256	12.447	8.850	9.584	4.594	1.924	1.211
	2.091	1.258						9.934			2.227	
78			-0.217	0.400	2.657	6.752	8.919		14.359	5.940		2.652
79	3.225	2.844	1.930	0.502	3.047	8.908	18.296	15.672	7.434	7.292	3.280	2.924
80	1.738	1.111	0.658	0.345	2.344	6.065	5.514	8.383	10.968	6.513	3.559	3.315
81	2.071	2.752	2.491	0.951	1.112	3.470	11.332	18.723	13.145	5.370	3.014	3.355
82	2.139	0.943	-1.238	-4.575	1.120	3.808	16.323	12.318	12.582	16.551	1.580	0.753
83	2.445	1.780	1.684	0.906	0.717	2.767	7.094	14.247	13.985	9.696	3.117	1.484
84	3.396	1.288	0.931	0.642	1.523	1.483	-0.166	4.780	10.939	3.386	5.127	3.419
85	2.704	1.731	-0.002	-0.596	3.695	6.114	10.745	10.779	11.193	3.299	1.861	1.587
86	6.036	3.123	1.117	0.447	1.252	6.706	17.227	17.314	9.301	4.954	2.398	1.665
87	1.818	1.382	1.763	0.969	1.076	3.075	6.312	7.625	15.553	12.524	0.086	2.675
88	2.069	0.947	1.125	0.587	1.586	4.184	11.105	9.628	19.196	24.597	6.193	3.254
89	3.796	2.532	1.923	0.427	1.591	4.153	16.210	17.618	11.757	15.409	14.647	6.795
90	5.865	3.024	2.688	1.292	3.269	5.887	8.720	11.551	5.497	1.683	2.669	-0.732
91	6.211	5.970	5.607	3.179	5.671	7.794	18.607	18.696	10.182	7.842	1.542	1.992
92	2.458	0.951	-0.264	0.341	2.270	5.465	7.788	8.609	10.925	8.525	3.047	1.981
93	1.993	1.321	0.588	0.545	0.811	2.323	3.363	7.481	24.761	18.416	1.758	0.838
94	2.720	1.981	1.873	1.008	0.797	3.079	7.893	15.852	15.561	10.049	4.512	2.864
95	2.769	3.270	1.393	1.912	2.090	4.598	15.217	14.810	16.976	5.720	0.101	-0.765
96	2.223	0.735	0.370	0.520	1.203	3.244	11.678	9.775	9.415	14.325	5.121	3.329
97	3.348	2.219	0.989	0.915	1.363	3.904	5.651	12.570	41.606	7.479	3.619	2.513
98	2.744	2.086	2.661	1.463	1.625	4.642	9.528	11.511	23.478	6.761	4.289	1.927
99	1.742	0.866	-0.606	-0.294	0.620	2.658	6.949	8.607	35.755	3.758	0.787	-0.001
100	2.132	0.901	0.100	0.858	2.068	4.443	12.994	9.239	10.005	5.416	2.527	1.609

Anexo R Coordenadas de las curvas Z encontradas.

	Vol. Min.	Ext. Min.	Vol. Max.	Ext. Max.
Simulación	hm³	hm³	hm ³	hm³
Z histórica	31.44400	27.37929	86.74400	107.81596
Z hist. corregida	54.58499	66.31120	68.51970	73.91120
GRG-D	21.56620	29.50992	56.76837	79.77218
GRG-E1	43.41315	51.97062	67.42420	103.67718
GRG-E2	43.69655	51.65372	67.54357	102.33082
GRG-E3	15.45235	27.02479	63.93229	84.18457
GRG-E4	22.21459	30.40769	62.28899	82.23122
GRG-E5	21.36165	29.63585	66.70846	81.42716
GRG-E6	24.26452	31.10970	68.51970	82.22847
GRG-E7	50.95075	39.71236	53.62913	72.52977
GRG-F1	10.91656	23.66290	56.76837	89.23722
GRG-F2	18.53362	26.82095	55.07679	82.27628
GRG-F3	20.96698	28.94446	55.50152	79.26973
GRG-F4	21.28728	29.17534	58.49505	79.78653
GRG-F5	22.24807	28.92639	56.76837	75.96706
GRG-F6	28.03050	32.49527	56.76837	71.80518
GRG-F7	23.77658	31.38034	56.76837	65.95434
AG-1	25.69239	53.04896	61.73415	84.99765
AG-2	33.85315	53.04896	63.53643	84.99765
AG-3	37.71994	53.04896	63.72397	84.99652
AG-4	37.72800	53.04896	67.47057	84.95479
AG-5	37.72800	53.04896	68.51928	81.23691
AG-6	37.72723	53.04896	68.51630	69.06541
AG-7	37.72647	53.04896	68.51800	66.52272