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Dr. Boris Escalante Raḿırez, Facultad de Ingenieŕıa
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2do. Vocal: DRA. JIMENA OLVERES MONTIEL

3er. Vocal: DR. ERNESTO MOYA ALBOR
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personas, el contenido de esta tesis es original y no se ha presentado total o parcialmente
para su consideración para cualquier otro t́ıtulo o grado en esta o cualquier otra Universidad.
Esta tesis es resultado de mi propio trabajo y no incluye nada que sea el resultado de algún
trabajo realizado en colaboración, salvo que se indique espećıficamente en el texto.
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Resumen

A través de los años, el estudio del movimiento card́ıaco se ha llevado a cabo princi-
palmente en dos dimensiones, sin embargo, es importante considerar que los cambios de
forma debidos al movimiento del corazón ocurren en un espacio tridimensional. Adicional-
mente a esto, las enfermedades card́ıacas son las principales causas de muerte en el Mundo
Occidental. Es entonces importante implementar algoritmos que permitan ayudar a los es-
pecialistas a analizar el movimiento del corazón. Proponemos una nueva estrategia para
estimar el movimiento card́ıaco a través de una técnica diferencial de flujo óptico tridimen-
sional que utiliza la transformada rotada de Hermite (SHT: Steered Hermite Transform).
La SHT es una herramienta que permite la descomposición de imágenes con base en un
modelo de patrones visuales usados por el sistema de visión humana (HSV: Human System
Visión) para procesar la información. El análisis 3D + t nos permitiŕıa describir mejor los
movimientos del corazón, por ejemplo, el movimiento de torsión que ocurre en cada ciclo
card́ıaco y esto también nos ayudaŕıa a identificar anormalidades en las paredes del corazón.
Nuestra propuesta fue primero probada en 2D + t, con flujos ground truth, posteriormente
en 3D+ t con tres phantoms diseñados para ello, aśı como en secuencias de ciclos card́ıacos
completos en imágenes CT y por último, en la correspondiente segmentación del ventŕıculo
izquierdo. Evaluamos nuestro método usando un esquema de reconstrucción, para esto, el
flujo óptico 3D resultante fue aplicado al volumen en el tiempo t para obtener el volumen
estimado al tiempo t + 1. Realizamos una optimización de los parámetros involucrados y
comparamos nuestra propuesta de flujo óptico 3D con el algoritmo mejorado de Horn y
Schunck 3D multirresolución y diferentes niveles de ruido.
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Abstract

Over the years, the study of cardiac movement has been carried out mainly in two
dimensions, however, it is important to consider that the deformations due to the movement
of the heart occur into three-dimensional space. Added to this, heart diseases are the most
important causes of death in the Western world. Therefore, is important to implement
algorithms to aid the specialist in analyzing the heart motion. We propose a new strategy
to estimate the cardiac motion through a 3D optical flow differential technique that uses
the steered Hermite transform (SHT). SHT is a tool that performs a decomposition of the
images in a base that model the visual patterns used by the human vision system (HVS) for
processing the information. The 3D + t analysis allows us to describe most of the motions
of the heart, for example, the twisting motion that takes place on every beat cycle and
to identify abnormalities of the heart walls. Our proposal was tested on three phantoms
designed specifically for it and on several sequences of whole cardiac CT images as well as
its respective left ventricular segmentation. We evaluate our method using a reconstruction
schema, for this, the resulting 3D optical flow was applied over the volume at time t to
obtain an estimated volume at time t + 1. We compared our 3D optical flow approach to
an improved multi-resolution version of Horn and Shunck’s 3D method for different levels
of noise.
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Chapter 1

Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) take
the lives of 17.9 million people every year, 31% of all global deaths, this represents the
number one cause of death globally, more people die annually from CVDs than from any
other cause [1]. Heart diseases as myocardial infarction, ischemia or hypertrophy can be
characterized by analyzing the dynamics of the heart. During the cardiac cycle (contraction
“systole” and relaxation “diastole” of the heart), the motion wall estimation can be used to
recognize those pathologies. The acquisition of cardiac volumes has allowed quantifying rele-
vant left ventricular (LV) parameters such as its volume, strain, twist, and desynchrony [2].
Nowadays, there are diagnostic imaging techniques to characterize cardiac anatomy and
function, as such echocardiography, cardiac Magnetic Resonance Imaging (MRI), cardiac
Computed Tomography (CT), cardiac Positron Emission Tomography (PET), and coronary
angiography [3]. Where the cardiac CT technique has certain advantages with respect other:
a higher resolution than ultrasound, it is more accessible than MRI and it is a non-invasive
a fast imaging option [4]. Cardiac CT allows acquiring three-dimensional morphological
images, with motion artifacts minimizes, and showing the heart chambers and the coronary
arteries at different planes [5]. It is then possible to acquire good quality cardiac CT data
of the heartbeats. Images are acquired overall cardiac cycles to produce the final volume
image. Due to the complexity of the heart motion, it is still hard for the physician to
estimate the 3D motion during the exam, thus, it is necessary to develop computational
analysis tools to aid in the diagnosis process.

The human heart is a complex organ in terms of anatomy and physiology, the estima-
tion of its movement is an important task to understand its mechanism and to assist in the
medical diagnosis. Different image processing techniques can be applied to calculate and to
observe the motion of the heart, for example, the optical flow (OF) estimation is a method
used in those situations where the correspondence between the pixels, within an image se-
quence, is required. The optical flow methods compute an approximation to the 2D motion
in an image sequence from spatiotemporal patterns of image intensity [6]. Over the years,
state-of-the-art algorithms for optical flow can be summarized in Nagel [7] who identified
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1. INTRODUCTION

the common rigorous restrictions [8, 9, 10], as well as smoothing restrictions for the optical
flow solution [7, 11, 12]. On the other hand, Barron et al. [6], classified the methods for cal-
culating the optical flow into four groups: differential techniques [7, 8, 9, 11, 13, 14], region-
based matching [15, 16], energy-based methods [17, 18] and phase-based techniques [19].
Sun et al. [20] suggested that there have been few changes in the typical formulation given
by Horn and Schunck (HS) [11]. Most of the optical flow methods investigated here have
been carried out in two dimensions (2D + t). Although this trend cannot be firmly stated,
it must be taken into account and could be because, in 3D + t, optical flow estimations in-
crease the need to perform more calculations at the same time, which significantly increases
the processing resources, memory, and execution time of the methods involved. It is also
necessary to mention that some publications use the term of 3D optical flow calculation to
refer to the calculation of optical flow in 2D+ t. Some of them, use 2D projections to obtain
a 3D representation, in applications such as tracking traffic [21], in methods used for quan-
titative motion estimation of biological structures in light microscope [22], estimation of 3D
geometry and 3D motion using spatiotemporal gradients [23] or emotion recognition from
3D videos [24]. 2D optical flow estimation has been used in the heart analysis to identify
patients with some diseases, recent works using 2D optical flow cover topics such as motion
estimation in cardiac fluorescence imaging [25], and as the automatic localization of the
heart from cine MRI [26]. Some optical flow methods have used image models inspired by
nature, for example Gabor filters [18, 19, 27, 28, 29, 30]. The optical flow is fundamentally
different than tracking because a complete set of correspondences between the pixel levels
in an image (or volume) is obtained. The optical flow is used to calculate dense trajectories,
provides more freedom and information about the data in which the movement is being
estimated, a priori models are not needed and even more, it can also be used to develop
deformable based-model tracking algorithms.

The Hermite transform (HT) has been an image model used to describe the local con-
straints of the Horn and Schunck approach. Liu et al. [27] derived a six-parameter non-affine
optical flow model, which is solved with high-order Hermite polynomial filtered data. In [28],
Silvan et al. showed that through a linear mapping of 3D Hermite coefficients by specific
projection functions, we could obtain the Hermite transform coefficients of local projec-
tions. Furthermore, Moya et al. [29] used the steered Hermite coefficients like local motion
restrictions, found in current methods, to define a differential estimation method.

One disadvantage of the 2D cardiac movement analysis is that it is constrained by
geometry-dependent reference directions of deformation (i.e., radial, circumferential, and lon-
gitudinal). In this sense, a 3D cardiac movement analysis may overcome such limitations
by referencing the intrinsic directions of deformation [31]. Thus, to identify altered ven-
tricular function in patients with CVD, a 3D left ventricular deformation analysis is more
suitable since it represents contributions from counter-directional, helically arranged fibers
shortening and thickening throughout the cardiac cycle [32]. Research on the measurement
of cardiac motion has been commonly made in 2D+ t [33] but this analysis should be done
in 3D + t to enable us to describe the true motions of the heart, for example, the twisting
motion that takes place on every beat cycle. Compared to the 2D analysis, the 3D analysis
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has not received much attention, although there are currently working groups analyzing
optical flow in 3D mainly using ultrasound images.

About the estimation of 3D optical flow in general, some works have similarities with
at least one of the aspects of this work, thereby, in [34] they use a 3D model of the human
body and motion-captured data to synthesize flow fields and train a convolutional neural
network (CNN) to estimate human flow fields from pairs of images. In [35] a steerable filter-
based algorithm is formulated, in its simplest form, for estimating 3D flow in sequences of
volumetric or point-cloud data.

In [36] they present an approach for real-time respiratory motion estimation in image-
guided interventions by employing contrast-invariant feature descriptors. Yoon et al. [37]
presented a method for motion estimation applied to cone-beam CT, their work uses an
energy functional, which includes as terms: a data fidelity, a regularization term, and the
optical flow restriction. On the other hands, Jungwon et al. [38] used the optical flow
estimation to calculate the local motion, allowing a 3D segmentation extension. Their
model includes a shape distortion over time term, allowing segmenting and tracking the lung
nodules. In [39], an implementation based on the optical flow algorithm from Farnebäck
(2003) is used to create 3D freehand ultrasound but with reconstructions from 2D without
external tracking, using deep learning.

Several methods have been used to estimate the optical flow of the endocardial wall
motion [40]. In [41], a global anatomically constrained affine optical flow tracking was
used to track the end-diastole left ventricle surface throughout the cardiac cycle. For [42],
this approach first performs 3D segmentation at the end-diastolic frame and then performs
tracking over the cardiac cycle using both global (optical flow) and local (block matching)
methods. In [43] they claim to have a method for detecting cardiac flow in echocardiogra-
phy where the sampling planes representing the mitral inflow tract and the left ventricle
outflow tract are traced by fusing information from multiple cues, including optical flow,
boundary detection, and motion prior. Duan et al. [44], evaluate a correlation-based optical
flow algorithm for tracking endocardial surfaces on three-dimensional ultrasound data, also
in [45] they built a truly 3D mathematical phantom of cardiac tissue and blood to validate
the optical flow for quantification of myocardial deformations. Leung et al. [46] track left
ventricular borders in 3D echocardiographic sequences by combining differential optical flow
with statistical modelling. Zhiang et al. [47] developed an optical flow algorithm based on
Thirion’s diffusing model [48], also known as the “demons” algorithm and also described
an atlas-based geometry pipeline for constructing three-dimensional cubic Hermite finite
element meshes of the human heart.

In Table 1.1 we summarized some of the most recent optical flow motion methods used
to extract the motion estimation, either using a 2D+ t or 3D+ t model, and the differences
with the proposed method. In some cases, a 2D optical flow is initially estimated to map it
onto a 3D optical flow.

3



1. INTRODUCTION

Table 1.1: 2D/3D + t optical flow estimation approaches.

Paper

OF model

2D/

3D + t

Method Application
Evaluation

Metric

Proposed method 3D
Using the 3D Steered

Hermite Transform

Left ventricle

CT sequences

Interpolation

errors in 3D

Ranjan et al. [34] 3D
A 3D model human

body and a CNN

Estimate human

flow fields
End point error

Alexiadis et al. [35] 2D
Minimizing

a cost functional

3D flow

estimation

Mean angular error

on synthetic images

Queiros et al. [41] 3D
Anatomically affine

optical flow

Left ventricle

tracking

Distance and

Dice metrics

Patil et al. [24] 2D Farnebäck
Emotion

recognition

Accuracy

of 6 emotions

Saleh et al. [26] 2D Lucas-Kanade
Heart

Localization

Accuracy

on localizing

Baghaie et al. [30] 2D
Gabor, Schmid and

steerable filters

2D flow

estimation

Angular and

interpolation

errors

Rodriguez

et al. [25]
2D Horn & Schunck

Cardiac motion

estimation

Mean square

error

In this work, we propose a differential method for estimating the three-dimensional
optical flow, in cardiac CT images, using the 3D steered Hermite transform (SHT). The
proposed method uses a three-dimensional (3D + t) approach, that is, it uses the data of
the cardiac volumes in a three-dimensional space (x, y, z), which change over time during
the entire cardiac cycle; and a modified version of Sun [20], which, in contradistinction
of Horn and Schunck’s approach [11], uses an incremental multi-resolution technique to
estimate large displacements, where the optical flow at a coarse level is extrapolated to
warp the second image at a finer level, combined with the optical flow based on the Hermite
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transform proposed by Moya et al. [29], which uses the several constraints found in the
more accurate optical flow methods in 2D [49, 50, 51]. We use local image constraints as
mentioned in [11, 51] and assume that the flow is piecewise smooth as in [49, 50]. The
proposed optimization function is robust for outliers [52] and a multiple-resolution strategy
was implemented to manage large displacements as discussed in [15, 52, 53]. The results
obtained were published in the proceedings of the conference in [54], and in the article of
journal [55].
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1. INTRODUCTION

1.1 Structure of the thesis

This thesis is structured as follows:
In Chapter 2 we present the general concepts of the Hermite transform, as well as the

main mathematical representations and interpretations related to the human vision system
(HVS). Subsequently, the development is extended to 3D.

Chapter 3 defines the general concepts of optical flow estimation. We define the main
aspects that allow us to calculate the estimation of the movement using this methodology,
we review a brief taxonomy of the optical flow and then focus on the differential methods,
both in 2D and 3D, which represent the basis of this project.

Chapter 4 describes the proposed model and method for conducting this investigation.
The main hypothesis of 3D motion estimation with a modified differential method is pre-
sented, using the Hermite steered transform. In Appendix C, we see an example of the
step-by-step calculation of one of the 2D differential methods described, to numerically
express a simple but specific result.

Chapter 5 shows the main experiments and results obtained with the proposed method.
The materials and evaluation metrics used in both 2D and 3D are presented. The results
are contrasted with other methodologies and results reported in the literature to confirm the
effectiveness of the proposed model. Subsequently, a brief discussion of the results obtained is
developed. As additional topics of this chapter, a brief description of the sections of interest
regarding the acquisition of images using computed tomography are given in Appendix A. In
Appendix B, we increase visualizations to those shown previously, to accommodate different
ways of representing the results obtained. In Appendix D, we include the registered article
journal that is related to this investigation.

Finally, Chapter 6 provides the conclusions of the development and results of the research
carried out.
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Chapter 2

The Hermite transform

The Hermite transform, introduced by Martens [56], is a model that represents the basis of
the human vision system (HVS). The Hermite transform allows modeling the receptive fields
of the human eye in its early stages in a similar manner by the derivative of Gaussian. In the
analysis stage, it separates the contained visual information from low and high frequencies,
which makes the Hermite transform a good descriptor of the characteristic patterns that
can consist of edges and textures.

Various research groups around the world have reported papers where they use the Her-
mite transform mainly for image processing. The LIRIS (Laboratoire d’InfoRmatique en
Image et Systèmes d’information) Group of Lyon Francia, reported a writer identification
model [57], a texture feature extraction [58], and the evaluation of handwriting similarities
[59]. The Institute of Mathematics and Computing Science of the University of Gronin-
gen in the Netherlands and Universita’ degli Studi of Roma, Italy have published a closed
form of the steered elongated Hermite-Gauss wavelets [60]. Members of the Faculty of
Computational Mathematics Cybernetics at Moscow State University reported a texture
parameterization [61]. The department of Electronics Engineering Madras Institute of Tech-
nology in India, have analyzed of schizophrenia disorder in magnetic resonance brain images
[62]. The University ”Campus Bio-medico” of Rome, Italy described a local orientation es-
timation by tomographic slices [63]. The department of Mathematical Analysis, Ghent
University at Belgium published a paper about the higher dimensional Hermite transform
[64]. The Mathematics department of the University of California at San Diego, USA re-
ported an accurate image rotation algorithm [65]. All of them using the Hermite transform
as a mathematical tool for their researches.
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2. THE HERMITE TRANSFORM

2.1 The Hermite transform as a model of image representa-

tion

The Hermite transform is an image description model [56, 66] and a special case of polyno-
mial transform.

An interesting special case of 2-D polynomial transforms arises when we have a window
function which is separable i.e., v(x, y) = v(x)v(y)

For a perceptual standpoint and according to the scale-space theory [67, 68, 69], we
would use a Gaussian window (Fig. 2.1):

v(x, y) =
1

σ
√
π

exp

(
−
(
x2 + y2

)

2σ2

)
(2.1)

Figure 2.1: Gaussian window v(x, y).

Gaussian windows in two dimensions have the property of being rotationally symmetric
and spatially separable. Gaussian windows separated by twice the standard deviation, are a
good model found for the receptive fields of perception found in psychological experiments
[69]. According to the psychophysical model of HVS [70, 71], through Gaussian windows,
we can decompose an image into several orthogonal polynomials. In the human eye, the
retina (Fig. 2.2) is made up of several layers of different kinds of cells. The sensitive rods
and cones are found in the back of the retina, in the opposite direction to the light. The
light must first travel through blood vessels, nerve bers, and then several layers of retinal
nerve cells in order to reach them.
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2.1 The Hermite transform as a model of image representation

Figure 2.2: Chambers of the Eye [72].

If we look at the retina carefully (Fig. 2.3(a)), we can see the rods and cones. Three
kinds of nerve cells are in front of them: bipolar cells, horizontal cells, and amacrine cells.
Bipolar cells receive input from the cones and feed many into the cells of the retinal ganglion.
Horizontal cells, in turn, connect bipolar cells and bipolar cells with amacrine cells. The eye
has approximately 1 million ganglion cells [73].

Ganglion cells’ aim is not completely understood, but color vision involves them. Gan-
glion cells from the receptive field (Fig. 2.3(b)), compare signals from many distinct cones.
They seem to perceive the second local Gaussian derivative discovered in the HVS psy-
chophysical modeling (Fig. 2.4).

(a) Rodes and cones (b) Receptive field

Figure 2.3: Detail of the retina [73].
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2. THE HERMITE TRANSFORM

(a) Red-green receptive field (b) Blue-yellow receptive field

Figure 2.4: The second Gaussian derivative in the HVS model.

2.2 The Hermite Transform in 2D

The polynomial coefficients of the Hermite transform are obtained by performing a convolu-
tion of the image L(x, y) with the filter functions Dm,n−m(x, y), followed by a subsampling
(T ) at position (x0, y0) of the sampling laticce S:

Lm,n−m(x0, y0) = L(x, y)⊗Dm,n−m(x, y) (2.2)

where Lm,n−m(x, y) are the Hermite coefficients, m and (n −m) denote the analysis order
in x and y direction respectively with n = 0, 1, . . . ,∞, m = 0, 1, · · · , n and Dm,n−m(x, y)
are the Hermite filters which are determined by an analysis window v2(x, y) that expands
the local information in terms of a family of polynomials Gm,n−m(x, y). In Figure 2.5 we
can see the block diagram of the direct polynomial Hermite transform, and in the Figure
2.6 we can see the typical graphical distribution of the Hermite coeffcients.
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2.2 The Hermite Transform in 2D

D00

D01

D10

DNN

  T

  T

  T

  T

L00

L01

L10

LNN

L(x,y)

Figure 2.5: Block diagram of the direct polynomial transform.

L00

L01

L0N

L10

L11

L1N

LND

LN1

LNN

Figure 2.6: Graphical distribution of the Hermite coeffcients.

In order to calculate the Hermite transform, the original image L(x, y) is located at
various positions multiplying it by the window function v2(x − x0, y − y0) at positions
(x0, y0) within the sampling lattice S

Physiological experiments suggest using overlapping Gaussian windows separated by
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2. THE HERMITE TRANSFORM

twice the standard deviation σ, in agreement with the overlapping receptive fields of the
human visual system [69].The polynomials that are orthogonal with respect to the Gaussian
window function are defined by:

Gm,n−m(x, y) =
1√

2nm!(n−m)!
Hm

(x
σ

)
Hn−m

( y
σ

)
(2.3)

where Hn represents the generalized Hermite polynomials given by Rodrigues’s formula [74]

Hn(x) = (−1)n exp(x2)
dn

dxn
exp

(
−x2

)
(2.4)

The polynomials Gm,n−m (x, y) used to approximate the information within the window
are determined by the analysis window and satisfy the orthogonality condition:

∫ ∞

−∞

∫ ∞

−∞
v2 (x, y)Gm,n−m (x, y)Gl,k−l (x, y) dxdy = Cnkδnkδml (2.5)

for n, k = 0, ...,∞, m = 0, ..., n and l = 0, ..., k; where δnk denotes the Kronecker function
(δnk = 1 for n = k and δnk = 0 for n 6= k). When polynomials are orthonormal, we have
that Cnk = 1.

The analysis functions (the Hermite filters) determine what information is made explicit
in the coefficients of the Hermite transform, so the main properties of this transform are
determined by these functions.

The bidimensionals Hermite filters can be represented by:

Dm,n−m(x, y) = Gm,n−m (−x,−y) v2 (−x,−y) (2.6)

The Hermite filters are separable because the Gaussian window is rotationally symmetric:

Dm,n−m(x, y) = Dm(x)Dn−m(y) (2.7)

and those can be computed by:

Dm(x) =
(−1)m√

2mm!

1

σ
√
π
Hm

(x
σ

)
exp

(
−x

2

σ2

)
(2.8)

Figure 2.7 shows a test image (a house) and Figure 2.8 presents its respective cartesian
Hermite coefficients for N = 3 (n = 0, 1, 2, 3).
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2.2 The Hermite Transform in 2D

Figure 2.7: Test image for evaluating the cartesian Hermite coefficients.

In the same way, in figure 2.10, we can see the Cartesian Hermite coefficients for figure
2.9, which is a reformatted short-axis CT image corresponding to the left ventricle in this
test.

Figure 2.9: Reformatted short-axis image corresponding to the left ventricle.

The recovery process of the original image (inverse Hermite transform - IHT) consists
of interpolating the Hermite coefficients through the proper synthesis filters:

L̂(x, y) =
∞∑

n=0

n∑

m=0

∑

x0,y0∈S
Lm,n−m(x0, y0)Pm,n−m(x− x0, y − y0) (2.9)

where Pm,n−m(x, y) can be determined by:

Pm,n−m(x, y) =
Gm,n−m(x, y)v2(x, y)∑

(x0,y0)∈S v
2(x− x0, y − y0)

(2.10)

for m = 0, ..., n and n = 0, ...,∞.
In Figure 2.11 we show the synthesis process of the Hermite transform.
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2. THE HERMITE TRANSFORM

(a) L0,0(x, y) (b) L1,0(x, y) (c) L2,0(x, y) (d) L3,0(x, y)

(e) L0,1(x, y) (f) L1,1(x, y) (g) L2,1(x, y)

(h) L0,2(x, y) (i) L1,2(x, y)

(j) L0,3(x, y)

Figure 2.8: Cartesian Hermite coefficients of a house image.
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2.2 The Hermite Transform in 2D

(a) L0,0(x, y) (b) L1,0(x, y) (c) L2,0(x, y) (d) L3,0(x, y)

(e) L0,1(x, y) (f) L1,1(x, y) (g) L2,1(x, y)

(h) L0,2(x, y) (i) L1,2(x, y)

(j) L0,3(x, y)

Figure 2.10: Cartesian Hermite coefficients of a reformatted short-axis CT image of a left

ventricle.
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Figure 2.11: Synthesis process of the Hermite transform.

2.2.1 Steered Hermite Transform

Steered Hermite filters belong to a class of filters that are rotated copies of each filter,
constructed as a linear combination of a set of basis filters [75]. Hermite filters, being
the result of polynomials of a Gaussian function, radially symmetrical, have an orientation
characteristic. So that from Hermite filters, they can be adapted to local content [76], which
results in filters that can be seen as the directional derivatives of a Gaussian function. Thus,
the N + 1 Hermite filters of order n, form a steerable base of each filter of order n.

A steered version of the Hermite transform is obtained by projecting the Hermite coeffi-
cients towards an orientation angle θ. The Hermite filters at each position in the image are
projected to an angle given by the orientation of the local image feature [76]:

lm,n−m,θ(x0, y0) =

n∑

k=0

Lk,n−k(x0, y0)gk,n−k(θ) (2.11)

where

gk,n−k(θ) =

√(n
k

)(
cosk (θ)

)(
sinn−k (θ)

)
(2.12)

are the cartesian angular functions of order n that express the directional selectivity of the
filter and lm,n−m,θ(x0, y0) are the steered Hermite coefficients.

To obtain the steered Hermite coefficients, the cartesian Hermite coefficients are rotated
toward the estimated local orientation, according to the maximum oriented energy criterion
for each window position. For local 1D patterns, the steered Hermite transform is an efficient
way to compactly describe image features into a smaller number of coefficients (l0,n,θ(x, y) =
ln,θ(x, y)) that represent the profile of the pattern perpendicular to its orientation (θ) [76].
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2.2 The Hermite Transform in 2D

The two-dimensional polynomial coefficients are projected in coefficients of one dimen-
sion on an axis that makes an angle theta with the x-axis. The first-order polynomial
coefficients resemble an optimal edge detector.

According to the Hermite coefficients, the energy content can be expressed through
Parseval’s theorem as:

EN =
N∑

n=0

n∑

m=0

[Lm,n−m (x, y)]2 (2.13)

The steered Hermite transform allows us to describe 1D patterns and for that, it is useful
to find 1D energy in terms of 2D energy in the case of images. So for each local signal:

E1D
N =

N∑

n=1

[l0,n,θ (x, y)]2 (2.14)

E2D
N =

N∑

n=0

n∑

m=0

[lm,n−m,θ (x, y)]2 (2.15)

So another way to calculate the energy content represented by Eq. (2.13), is:

EN = [L0,0 (x, y)]2 + E1D
N + E2D

N (2.16)

The angle that represents the maximum energy direction is estimated according to:

θ (x, y) = arctan
L01 (x, y)

L10 (x, y)
(2.17)

which is a good indicator of the direction of the edges, being L01 and L10 the cartesian
coefficients in the horizontal and vertical directions respectively.

In Figure 2.12 we show the steered Hermite coefficients corresponding to the Figure 2.7
and its cartesian Hermite coefficients, presented in Figure 2.8

In Figure 2.13 we show the steered Hermite coefficients corresponding to the Figure 2.9,
a reformatted short-axis CT image of a left ventricle.

2.2.2 The 3D Hermite Transform

The direct Hermite transform in 3D (HT3D), is a particular case of the proposal of Martens [56,
66], where a signal is localized by an analysis window and this information is expanded using
polynomials orthogonal to the window. Polynomials that are orthogonal with respect to the
Gaussian window function are defined by [77], so we would use the window:

v(x, y, z) =
1√
σ
√
π

exp

(
−
(
x2 + y2 + z2

)

2σ2

)
(2.18)
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2. THE HERMITE TRANSFORM

(a) L0,0(x, y) (b) l1,0(x, y, θ) (c) l2,0(x, y, θ) (d) l3,0(x, y, θ)

(e) l0,1(x, y, θ) (f) l1,1(x, y, θ) (g) l2,1(x, y, θ)

(h) l0,2(x, y, θ) (i) l1,2(x, y, θ)

(j) l0,3(x, y, θ)

Figure 2.12: Steered Hermite coefficients of a test image.
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2.2 The Hermite Transform in 2D

(a) L0,0(x, y) (b) l1,0(x, y, θ) (c) l2,0(x, y, θ) (d) l3,0(x, y, θ)

(e) l0,1(x, y, θ) (f) l1,1(x, y, θ) (g) l2,1(x, y, θ)

(h) l0,2(x, y, θ) (i) l1,2(x, y, θ)

(j) l0,3(x, y, θ)

Figure 2.13: Steered Hermite coefficients of a reformatted short-axis CT image of a left ven-

tricle.
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2. THE HERMITE TRANSFORM

Physiological experiments consider using overlapping Gaussian windows separated by
twice the standard deviation σ which are isotropic and that’s why we can establish that
σ = σx = σy = σz following the overlapping receptive fields of the human visual system [69].

The Hermite cartesian coefficients, Ll,m−l,n−m, are obtained by convolution of the origi-
nal signal L(x, y, z) with the analysis filters Dl,m−l,n−m(x, y, z) followed by subsampling on
a three-dimensional mesh S using Equation (2.19):

Ll,m−l,n−m(x0, y0, z0) = L(x, y, z)⊗Dl,m−l,n−m(x, y, z), (2.19)

where l, (m− l) and (n−m) denote the analysis order in x, y and z directions, respectively;
l = 0, 1, . . . ,m; m = 0, 1, . . . , n; n = 0, 1, . . . , N ; N is the maximum order of the expansion
that is related to the size of a cubic window of M×M×M, where N ≤ 2∗(M−1). For large
values of M the discrete cubic kernel reduces to the 3D Gaussian window.

The three-dimensional Hermite filters can be represented by:

Dl,m−l,n−m(x, y, z) = Gl.m−l,n−m (−x,−y,−z) v2 (−x,−y,−z) (2.20)

wich are separable because the Gaussian window is rotationally symmetric

Dl,m−l,n−m(x, y, z) = Dl(x)Dm−l(y)Dn−m(z) (2.21)

and those can be computed by:

Dl(x) =
(−1)l√

2ll!

1

σ
√
π
Hl

(
x

σ

)
exp

(
−x

2

σ2

)
(2.22)

Gl,m−l,n−m(x, y, z) are a family of polynomials defined as:

Gl,m−l,n−m(x, y, z) =
1√

2nl!(m− l)!(n−m)!
Hl

(x
σ

)
Hm−l

( y
σ

)
Hn−m

( z
σ

)
(2.23)

where Hl represents the generalized Hermite polynomials given by Rodrigues’ formula [74]

Hl(x) = (−1)l exp(x2)
dl

dxl
exp

(
−x2

)
(2.24)

The recovery process of the original image (inverse Hermite transform in 3D - IHT3D)
consists of interpolating the Hermite coefficients through the proper synthesis filters:

L̂(x, y, z) =

N∑

n=0

n∑

m=0

m∑

l=0

∑

(x0,y0,z0)∈S

Ll,m−l,n−m (x0, y0, z0)Pl,m−l,n−m(x− x0, y − y0, z − z0)

(2.25)
where Pl,m−l,n−m(x, y, z) can be determined by:

Pl,m−l,n−m(x, y, z) =
Gl,m−l,n−m(x, y, z)v2(x, y, z)∑

(x0,y0,z0)∈S
v2(x− x0, y − y0, z − z0)

(2.26)
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2.2 The Hermite Transform in 2D

for l = 0, ...,m; m = 0, ..., n and n = 0, ..., N .
From Equation (2.25), instead of to recover the original volume we obtain an approxi-

mation of the original signal L̂(x, y, z), where the quality of this reconstruction improves by
increasing the maximum order of the expansion N , i.e., the size of the cubic window M [66].
In terms of the artifacts in the approximated volume L̂(x, y, z), small values of the cubic
windows causes “speckles”, while high values result in Gibbs-phenomenon-like artifacts such
as ringing and blur [76].

Thus, to determined the maximum order or the expansion N and in consequence the size
of the cubic window M, in [76] van Dijk and Martens determined that using an expansion of
the Hermite transform equal to 3, the reconstructed 2D image will contain the most quantity
of AC energy (84%) according to Parseval’s theorem. In general, with N ≥ 3 we can obtain
a good reconstruction and with much greater values we will obtain a perfect reconstruction
of the image.

3D Steered Hermite Transform

The Steered Hermite transform (SHT) is a variant of the HT that adapts to the local orien-
tation of the image [76], it uses rotated filters which are represented as a linear combination
of basis filters [75]. The orientation property of these steered Hermite filters is due to
the symmetric-radial form of the Gaussian window, thus they can saw as the response of
directional derivatives of the Gaussian function.

On the other hand, the SHT describes local 1D patterns in images into a smaller number
of coefficients that represent the profile of the pattern perpendicular to its orientation [76].

By projecting the 3D Cartesian Hermite coefficients towards the local orientation angles
θ and φ (Figure 2.14), we obtain the Steered Hermite transform in 3D (SHT3D) as shown
in Equation (2.27):

ll,m−l,n−m,θ,φ(x0, y0, z0) =
n∑

m=0

m∑

l=0

(
Ll,m−l,n−m (x0, y0, z0) · gl,m−l (θ) · gm,n−m (φ)

)
(2.27)

where ll,m−l,n−m,θ,φ(x0, y0, z0) are the 3D steered Hermite coefficients. And

gj,k−j(ϕ) =

√(
k
j

)(
cosj (ϕ) sink−j (ϕ)

)
(2.28)

is the cartesian angular function that expresses the directional selectivity of the filter.
To calculate the direction of maximum energy we used the coefficients from Equa-

tion (2.19) and the phase of the gradient given by Equations (2.29) and (2.30):

θ = arctan

(
L010

L100

)
(2.29)
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2. THE HERMITE TRANSFORM

φ = arctan




√
(L100)2 + (L010)2

L001


 (2.30)

where [L1,0,0, L0,1,0, L0,0,1] (x, y, z)> are a good approximation of the 3D gradient through
the Cartesian Hermite coefficients.

x

y

z

x´
y´

z´

q

f

x

y

z

Figure 2.14: Cartesian coordinates (continuous line), steered coordinates (dotted line), and

the angles θ and φ.

To graphically represent the indexes of the 3D Cartesian Hermite coefficients, Figure 2.15
shows the distribution of order two (N = 2) in each direction, in this case 27 coefficients are
obtained for each voxel of a volume.

Figure 2.15: Distribution of the index of Cartesian Hermite coefficients of a second-order voxel.

Figure 2.16 shows an example of some 3D Steered Hermite coefficients for the left ven-
tricle of a cardiac CT volume, according to Equation (2.27) , where we can see the steered
coefficients l000, l100, l010 and l001.
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2.2 The Hermite Transform in 2D

Figure 2.16: Ensemble of some Steered Hermite coefficients of a cardiac CT volume.
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Chapter 3

Optical Flow Estimation

One of the fundamental issues in the processing of a sequence of images is the estimation of
the optical flow, which is a useful and convenient representation of the movement observable
in the sequence of the images to be considered.

Motion estimation can be used, for example, to evaluate the properties in a 3D scene,
obtain the parameters of movement of a visual sensor, carry out the segmentation of some
object within the images, warn about the movement dynamics (i.e., collisions or distance)
between objects, calculate the disparity in the stereo images, apply it to video compres-
sion, measure the blood flow or estimate the movement of the heart walls, among other
applications.

Optical flow is the pattern of the apparent movement of objects, surfaces, and edges in
a scene, caused by the relative movement between an observer (an eye or a camera) and the
scene. The concept of optical flow was first studied in the 1940s and, finally, was published
by the American psychologist James J. Gibson [78] as part of his theory of affordance (an
action that an individual can potentially perform in your environment).

The detection of the optical flow between two images taken at different times may be
due to the movement of an object within the scene, the relative movement between the
observer, and the scene or variations of brightness in the scene.

A problem encountered in the detection of optical flow is the so-called aperture effect. It
is related to the problem of finding the same point in two consecutive images of a sequence.
This problem can be found in objects that deform over time, objects with a periodic shape
or simply in an image that has several identical objects that can not be distinguished, and
therefore, it is impossible to know the correspondence of objects between different images
of a sequence.

The analysis of the movement from a sequence of images involves the estimation of
the relative movement between the objects of the scene and the images. One of the most
important methods for estimating movement is based on the gradient. That is, in observing
the change of intensity levels into the image. The optical flow reflects the changes in the
image due to the movement during a time interval of dt. Thus, the optical flow field (velocity
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3. OPTICAL FLOW ESTIMATION

field) represents the three-dimensional movement of points of the objects through the two-
dimensional movement that represents the image. In the case of medical images, it represents
the three-dimensional movement in the volume.

Observing a temporal change in the intensity of the image in a local area δS, a constraint
equation can be obtained, analogous to the continuity equation [79]:

∂

∂t

∫

δS
L(x, y, t)dS =

∮
L(x, y, t)w · ndC +

∫

δS
φdS (3.1)

where L(x, y, t) is a spatio-temporal distribution of the intensity of the image sequence,
δC is the contour enveloping δS, w = (u, v) is a velocity vector to be determined, n is a unit
vector normal pointing to out of the δC contour, and φ is the ratio of intensity generation
over a pixel in dS (Fig. 3.1). The intensity generation means a decrease or increase in
the intensity of an image under non-uniform illumination. In Eq. (3.1), the calculation of
the integral along the contour δC is transformed into the integral calculation on δS by the
Gaussian divergence theorem, therefore the differential formula of Eq. (3.1) is as follows:

∂L(x, y, t)

∂t
= −L(x, y, t)div(w)−w · grad(L(x, y, t)) + φ (3.2)

w

dC

dS

n

Figure 3.1: Optical flow constraint.

To solve the Eq. (3.2), the following constraints are usually formulated:

a) The divergence of w is zero (div(w) = 0) [79].

b) The intensity observed for any point of an object is constant in time under the specific
conditions of movement of the cameras (if so), or movement of the objects in the scene,
which means that the ratio of intensity generation of a pixel φ is null [80].
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The constraint b) is perhaps somewhat demanding and would only be valid for example,
for Lambertian surfaces, which move under homogeneous illumination invariant in time, for
example, without light sources moving in the environment.

With these constraints, Eq. (3.2) becomes:

∂L(x, y, t)

∂t
+ w · grad(L(x, y, t)) = 0 (3.3)

where grad refers to the spatial gradient of a two-dimensional image at the location (x, y)
and is a fundamental equation for optical flow calculations. It is important to note that,
although this equation is accurate under the previous assumptions when the derivatives are
implemented as finite differences between the intensities of adjacent pixels, the equation can
be expressed as a first-order Taylor series development for the temporal space variation of
the intensity of the image [80]. Let’s look at this statement in a little more detail. Suppose
we have a continuous image; L(x, y, t) refers to the intensity level of the pixel (x, y) at time
t. Representing a dynamic image as a function of position and time, it is possible to express
it as a Taylor series development:

L(x+ dx, y + dy, t+ dt) =L(x, y, t) +
∂L

∂x
dx+

∂L

∂y
dy +

∂L

∂t
dt+O(∂2)

=L(x, y, t) + Lxdx+ Lydy + Ltdt+O(∂2) (3.4)

where O(∂2) are the higher order terms in Taylor’s development that are neglected.
It can be assumed that the immediate neighborhood of (x, y) moves some small distance
(dx, dy) during the interval dt, that is, we can find dx, dy, dt such that:

L(x+ dx, y + dy, t+ dt) = L(x, y, t) (3.5)

If dx, dy, dt are very small. The higher order terms in Eq. (3.4) can be neglected and
therefore:

− Lt = Lx
dx

dt
+ Ly

dy

dt
(3.6)

The objective is to obtain the velocity w =
(
dx
dy ,

dy
dt

)
= (u, v) knowing that Lx,Ly and

Lt are all measurable quantities or at least an approximate measure can be obtained from
L(x, y, t).

It can be observed that Eq. (3.6) is identical to Eq. (3.3), where the difference of the
identity Lt in the same location (x, y) of the image, in the instants t and t+ dt, is the result
of the difference in the level of spatial intensity and the velocity in said location according
to the observer.

In Eq. (3.6) it is conjectured that during the movement the intensity of the image
remains constant along the trajectory S of the movement, resulting dL

dS = 0. This implies
the following assumptions: any change in the intensity of the image is due to movement,
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3. OPTICAL FLOW ESTIMATION

the illumination of the scene remains constant or the surfaces of the objects are opaque
(Lambertian surfaces). Sometimes the assumption that the intensity remains constant is
not true, particularly if the lighting changes, to avoid this possibility the constant gradient
constraint is applied along the path of the movement, therefore, it is considered that and
although the constant intensity constraint can be violated, what will remain constant along
said trajectory is the gradient, that is d∇L

dS = 0.

3.1 Optical Flow Constraint

If we rewrite Eq. (3.6), we obtain the optical flow constraint as follows:

(Lx, Ly) · (u, v) = −Lt (3.7)

or
∇L ·w = −Lt (3.8)

where ∇L = (Lx, Ly) is the spatial intensity gradient and w =
(
dx
dt ,

dy
dt

)
= (u, v) is the

velocity of the image or the optical flow in the pixel (x, y) at time t.

3.2 Aperture Effect

Due to the optical flow constraint (Eq. 3.8), where we have two unknowns and only one equa-
tion, the aperture problem holds that there is usually insufficient local intensity structure to
measure the full velocity of the image, but sufficient to measure the normal component to
the local intensity structure. Figure 3.2 shows an example of the aperture problem, where
a line moving up and to the right is seen through a circular aperture. In this case, it is
impossible to recover the full velocity of the image correctly, but only the normal velocity
to the line. The problem of calculating the full velocity of the image becomes finding an
additional constraint that gives us a second equation for the same number of unknowns.
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3.2 Aperture Effect

w

wnwtg

Figure 3.2: The aperture problem, we can only recover the normal velocity, the tangential

does not.

Normal flow is a phenomenon that occurs when there is not enough local information of
the local intensity structure to allow recovery of the full flow of the image. In this case, only
the component of the normal flow to the local intensity structure (for example, an edge),
wn, can be recovered. The tangential component of the flow (wtg) can not be recovered.

3.2.1 Aperture Effect in 3D

The problem of the aperture effect has to do with two types of normal velocity: normal
velocity to the plane (the normal velocity to a local flat structure) and the normal velocity
to a line (the normal velocity to a line caused by the intersection of two blueprints). The
normal velocities to the plane and a line are shown in Figure 3.3 and can be briefly explained
as follows:

• If the space-time derivative fits better to a simple plane, we have the normal velocity
to the plane. The point in the plane closest to the origin (0, 0, 0) is its magnitude and
the normal of the surface of the plane is its direction.

• If the spatio-temporal derivative is better adjusted to the point of intersection of two
separate planes, we have a normal velocity to the line.
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3. OPTICAL FLOW ESTIMATION

(a) Normal Velocity to Line (b) Normal Velocity to Plane

Figure 3.3: Illustration of normal velocities to a line and a plane.

3.3 Optical Flow Estimation Methods

Despite the great variety of approaches, the algorithms for calculating optical flow can be
divided into three categories [6]:

• Differential techniques. They are also known as “gradient” techniques, which estimate
the optical flow vectors from those derives from the intensity of the image in space and
time. These are usually obtained directly by considering the total temporal derivative
of a ”conserved” quantity, such as brightness.

• Correspondence techniques. These techniques operate by matching small regions of
image intensity or specific “features” from one frame to the next. The match criterion
is generally the least-squares or standardized correlation measures.

• Filter-based or frequency-based techniques. They rely on space-time oriented filters
(that is, speed-sensitive), and are usually analyzed considering the motion problem in
the Fourier domain. They are divided into two categories, phase-based, and energy-
based.

Each previous technique has its advantages and disadvantages. Numerical differentia-
tion is sometimes impractical due to the small temporary support or poor signal-to-noise
ratio. In these cases, it is natural to consider correlation techniques. Among the advantages
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3.4 Classification of Constraints for the Estimation of the Optical Flow

provided by frequency-based methods, it is found that motion-sensitive mechanisms oper-
ating in space-time oriented energy in the Fourier domain can estimate the movement in
image signals for which the correspondence techniques they would fail. An example is the
movement of random dot patterns.

Beyond the differences between the different techniques, three common transformation
phases can be determined:

1. Pre-filtered or smoothed with low pass filters, to extract the structure of the signal of
interest and to improve the signal-to-noise ratio.

2. The extraction of some basic measurements, such as spatio-temporal derivatives (to
measure the normal components of velocity) or local correlation surfaces.

3. The integration of these measurements to produce a flow field, which often involves
assumptions about the smoothness of the underlying flow field.

Differential techniques calculate the speed from spatio-temporal derivatives of the inten-
sity of the image or of filtered versions of the image (using low pass or bandpass filters). Their
point in common is the hypothesis of the consistent intensity of a point during its move-
ment, where it can be assumed that the intensity of a point remains constant throughout
its trajectory. The hypothesis is known as the constraint of optical flow. The displacements
can be considered small in which the changes of the light sources are small.

3.4 Classification of Constraints for the Estimation of the

Optical Flow

Most of the constraints of the methods that estimate the optical flow can be derived from
the continuity equation. Based on [81], Figure 3.4 shows the assumptions and tools used
to derive constraints and their direct or indirect linkage with the continuity equation (Eq.
3.3), which establishes the conservation of L an amount under the flow w. Thus, we define:

L.- gray-value function
φ.- local image phase
h.- scalar function
α, β.- indices

u = (u, v); ∇xy = (∂x, ∂y)
t

v = (u, v, 1); ∇xyt = (∂x, ∂y, ∂t)
t

w = (u, v, w); HL =

(
∂xxL ∂xyL
∂yxL ∂yyL

)
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3. OPTICAL FLOW ESTIMATION

Figure 3.4: Classification of constraints for the estimation of optical flow

Here h it is supposed to be the grayscale version of L and the flow w = (u, v, w) is
the optical flow for which ∇xyw = 0 . It can be seen that ∇xy = (∂x, ∂y)

t denotes the
divergence operator applied to the two spatial dimensions x, y, while v = (u, v, 1), and
∇xyt = (∂x, ∂y, ∂t)

t denotes the divergence operator applied to the two spatial dimensions
x, y to the temporal dimension. The superscript t denotes the transpose. The constraint
∇xyw = 0 means that in the regions of constant gray values there is no change in the flow,
in other words, said gray values do not “accumulate flow”, as for example, the mass does
in a fluid. Then, the optical flow constraint equation is transformed into the optical flow
constraint equation:

(∇xytL)t (ẋ, ẏ, 1) = 0 (3.9)
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3.4 Classification of Constraints for the Estimation of the Optical Flow

If the same continuity constraint applies to motions, this brings us to the generalized
structure tensor:

Jn =

∫
l(x)tl (x)α (x) dx (3.10)

The components of motions are calculated through those minors Jn [82]. This tensor is
calculated by means of the nth space-time derivatives of the image l (x) = L (x) ∗ ∂αg (x),
where g is a kernel function, α denotes a multi-index and α (x) is a weight.

The optical flow constrain equation has a single equation for two unknowns, which is
an undetermined system [68]. This is what the aperture problem is about. For a limited
aperture size and an edge structure, movement along the normal of an edge can only be
estimated, which is denoted here by ∇xyL/ ‖∇xyL‖. The normal flow is defined by u/ ‖u‖ =
∇xyL/ ‖∇xyL‖. If we use the optical flow constrain equation, the speed of this normal flow
is:

s = − Lt
‖∇xyL‖

(3.11)

The other constrains are intended to provide alternatives to the descriptions of the op-
tical flow constrain equation. Most of them also aim to overcome the ambiguity of that
equation and make additional assumptions. The Bayesian constraint uses a movement be-
fore resolving ambiguity. The sampling conditions assume a constant optical flow within
the neighborhoods from which the samples are taken. In this way, these conditions provide
additional constraint equations to solve and obtain a velocity vector. The rigorous condi-
tion assumes that all terms of Taylor’s series expansion of L and w are evaluated to zero
independently.

The Fourier transform of the entire sequence of an image results in energy in a plane
whose orientation is determined by movement. If the entire image is composed of a moving
edge, the energy is concentrated around a single line, which in turn results in an ambiguous
2D motion vector. If the image sequence contains several moving objects, then the energy
exists in multiple planes. Another constraint calculates the spatial partial derivatives of
the optical flow equation, which produces two equations due to the two spatial dimensions.
This also resolves the ambiguity. Another option is to determine the Hessian matrix and
thus obtain the partial second-order derivatives of the multi-dimensional function.

There are methods where the optical flow equation is involved from a probabilistic point
of view [83]. These methods, known as Bayesian constraint, assume that the deviations
from the optical flow equation lead us to a normal distribution:

P (f(z)|u(z)) =
1√

2πσ2
exp


− 1

2σ2

∫

Ωz

(
∇xytL

(
z′
)

(u1 )

)2

dz′


 (3.12)

Using the posterior probability P (u (z)) for the movement and the probability for a
certain gray-value:
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P (u (z) |L (z)) =
P (L (z) |u (z))P (u (z))

P (L (z))
(3.13)

Another scheme to solve the aperture problem is to integrate over a large region within
the image, hoping that it could contain corners in addition to the edges. If a Taylor series
expansion of L is used, of order m and for the movement vector v = (u, v, 1) of order n in
the argument of z = (x, y, t)t and this is placed in the optical flow equation, the polynomial
equation is obtained:

∑

0≤|α|≤n

∑

0≤|β|≤m

1

α!β!
∂1+αL (z) ∂βv (z)(∂z)α+β = 0 (3.14)

where α and β are the so-called multi-indexes. A simplification of the polynomial equa-
tion in (3.14), gives us another way to solve the optical flow:

∑

|α|+|β|=r

1

α!β!
∂1+αL (z) ∂βv (z) = 0 (3.15)

Another way to use the optical flow equation is to transform it to the Fourier domain:

ω = ktu (3.16)

The movement, observed in the Fourier domain, constraints the spectral power to the
plane given by Eq. (3.16), where k = (kxky)

t denotes the angular frequencies, which cor-
respond to spatial coordinates (x, y) and ω denotes the angular frequency associated with
time t [18, 84].

To deal with the indeterminate system of the optical flow equation we can use another
input for the equation. In [14], the authors assume that a quantity g of the continuity
equation can be expressed by the spatial derivatives of the gray-scale function determined by
the image, that is, g = ∇xyL. Additionally, assuming, ∇xyu = 0, the “Hessian” constraint
can be derived:

∇∂tL+HLu = 0 (3.17)

Its name is because of HL is the Hessian matrix of the function that represents the
gray-scale image concerning spatial components (x, y).

Another way of using the input of the optical flow equation is through the local phase
φ, which can be calculated, for example, by means of Gabor filters [85]. Therefore h = φ .
Given the above, we obtain the constraint:

(∇xytφ)t (ẋ, ẏ, 1) = 0 (3.18)
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3.5 Regularization for Optical Flow Estimation

Another methodology to solve the aperture problem is to add regularization constraints.
This can be done by minimizing a functional given by:

min
x,y

∫

Ω

(
ψ1 (∂xL · u+ ∂yL · v + ∂tL) + ψ2 (L, u, v)

)
dx (3.19)

where the solution is restricted to the second regularization term of Eq. (3.19), which
penalizes the variations of the optical flow. The functions ψ1 and ψ2 are robust estimators
for the term of the data and the term of the regularization respectively and Ω denotes an
area of 2D integration usually given by the plane of the same image.

To solve the Eq. (3.19), the generalized method is to calculate the equation of Euler-
Lagrange and then discretize the partial differential equation to be able to find a numerical
solution. The functions ψ1 will characterize the smoothness of the solutions [86, 87]. The
term ψ2 is general and is related to grayscale function information and optical flow. Some
of them are described below:

Homogeneous regularizer. This regularizer is defined by:

min
u,v

∫

Ω

(
‖∇u‖2 + ‖∇v‖2

)
dx (3.20)

which was introduced by [11]. The partial derivatives of each flow component must
be small. In [87], called this homogeneous restriction because the smoothing is global and
equally spaced. Combining with the optical flow equation, a solution can be obtained using
variational calculation.

Isotropic regulator through the image. This regulator uses the square of the mag-
nitude of the image gradient to control smoothing [88]:

min
u,v

∫

Ω

(
ψ
(
‖∇xyL‖2

)
·
(
‖∇u‖2 + ‖∇v‖2

))
dx (3.21)

with: ψ
(
s2
)

= 1√
1+

s2

η2

where η denotes a parameter that controls the smoothness. For a large gradient of the
image, such as a border, the smoothing of the flow is reduced. In Eq. (3.21) it is impossible
to smooth the edges, for homogeneous surfaces, where the gradients of the image are small,
the smoothness is carried out in a better way.

Anisotropic regulator through the image. This regulator integrates the direction
and the magnitude provided by the information of the grayscale image [87]. Smoothing
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only appears along the edge and not through it. Also, it is attenuated in the presence of an
edge and unattended into homogeneous regions. With this in mind [7] proposed:

min
u,v

∫

Ω

(
(∇u)SNE(∇u)t + (∇v)SNE(∇v)t

)
dx (3.22)

with

SNE = 1
‖∇xy‖2+k2

[
(∂yL)2 + k2 − (∂xL) (∂yL)

− (∂xL) (∂yL) (∂xL)2 + k2

]
(3.23)

where k is a parameter that controls the smoothness.

Isotropic regulator through flow. This approximation uses a robust estimator for the
square of the magnitudes of each derivative and the flow components as an argument.

min
u,v

∫

Ω
ψS

(
‖∇u‖2 + ‖∇v‖2

)
dx (3.24)

with ψ
(
s2
)

=
√
s2 + λ2

λ is a parameter that controls smoothing. The function is used in [87], however many other
similar functions have been proposed in [89, 90, 91, 92].

Anisotropic regulator through flow. Unlike the anisotropic case through image, which
includes information about the magnitude of the flow only. This regulator includes infor-
mation about the flow direction. In [86], the following restriction was proposed:

min
u,v

∫

Ω
tr
{
ψs
(
(∇u)t (∇u) + (∇v)t (∇v)

)}
dx (3.25)

with ψs
(
s2
)

=
√
s2 + λ2

Here λ also controls the smoothing. ψs it is the robustness function that is applied to
each input, the operator tr {} is the trace of the matrix. Several authors propose using the
divergence and rotational of the vector field u = (u, v) as a regularizer:

min
u,v

∫

Ω
ψDC

(
div (u) , rot (u)

)
dx (3.26)

with ψDC as a generic robust function.
Most contours are formed by rigid objects in the scene, which move locally consistently.

This observation can be used to define a contour-based smoothing:

∫

C

∥∥∥∥
∂un (s)

∂s

∥∥∥∥ ds = 0 (3.27)

with un (s) as a normal flow along the contour C [12], where s is a parameter of the curve.
This integral calculates the curvature of each flow component along the curve, which is
minimized in combination with the input data to determine the normal flow.
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3.6 Differential Methods

It is convenient to describe the two most important methods that exist in the literature
because our proposal is based on differential methods.

Differential techniques calculate the speed of the image from time-space derivatives of the
intensities of the images. Therefore, the assumption is made that the image is continuous or
differentiable in space and time. There are global and local methods of first and second-order,
all based on the optical flow constraint (Eq. 3.8). The global methods use that equation and
some additional global constraint, usually a smoothing regularization term to calculate the
optical flow density over large regions of the image. Local methods usually use the normal
velocity information in local neighborhoods to perform a least-squares approximation to
find the best fit for w. The size of the neighborhoods to obtain an estimate of the flow is
determined by each technique, either local or global [6].

3.7 Lucas-Kanade in 2D

In 1981, Lucas and Kanade [13] proposed a local differential method defined by:

[
∂2L
∂x2

∂2L
∂x∂y

∂2L
∂x∂y

∂2L
∂y2

] [
u
v

]
= −

∂
(
~∇L
)

∂t
(3.28)

Considering a neighborhood environment Ω around each point on which the summation
extends, Eq. (3.28) can be expressed as follows:

[ ∑
Ω L

2
x

∑
Ω LxLy∑

Ω LxLy
∑

Ω L
2
y

] [
u
v

]
= −

[ ∑
Ω LtLx∑
Ω LtLy

]
≡ Aw = b (3.29)

Whose solution can be established like this:

w = (ATA)−1ATb (3.30)

Following the algorithm implemented with least-squares adjustment to first-order con-
straints (Eq. 3.8), for a constant model of w in each spatial neighborhood (Ω), and mini-
mizing we get: ∑

x,y∈ Ω

W 2 (x, y) [∇L (x, y, t) ·w + Lt (x, y, t)]
2

(3.31)

where W (x, y) denotes a window function that gives more influence to the constraints in the
center of the neighborhood than in the periphery. They are typically Gaussian coefficients.
The solution of Eq. (3.31) is given by:

w = (ATW2A)−1ATW2b (3.32)
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Where, for N pixels (for n× n neighbors N = n2), (xi, yi) ∈ Ω at each time t:

A = [∇L (x1, y1) , . . . ,∇L (xN , yN )] ,
W = diag [W (x1, y1) , . . . ,W (xN , yN )] ,

b = − (Lt (x1, y1) , . . . , Lt (xN , yN ))
(3.33)

In Appendix C, we can see a step-by-step example of this method for two synthetic
forms, whose results is shown in the Figure 3.5:

(a) Synthetic rectangle 1 (b) Synthetic rectangle 2

(c) Optical Flow

Figure 3.5: Synthetic forms and Optical Flow for the Lucas and Kanade algorithm in 2D.

3.8 Lucas-Kanade in 3D

Using the equation of movement in 3D:

Lxu+ Lyv + Lzw = −Lt (3.34)
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3.9 Horn and Schunck in 2D

where Lx, Ly and Lz are the derivatives of intensity in 3D, in a neighborhood of n× n× n,
centered on the voxel (x, y, z), we assume a constant velocity u, v and w in the region and
minimizing:

∑

x,y,z∈ Ω

W 2 (x, y, z) [∇L (x, y, z, t) ·w + Lt (x, y, z, t)]
2

(3.35)

where W (x, y, z) denotes a Gaussian windowing function. Eq. (3.35) can be solved by
means of the same expression than in Eq. (3.32) and the following system of equations:

A = [∇L (x1, y1, z1) , . . . ,∇L (xN , yN , zN )] ,
W = diag [W (x1, y1, z1) , . . . ,W (xN , yN , zN )] ,

b = − (Lt (x1, y1, z1) , . . . , Lt (xN , yN , zN ))
(3.36)

ATW2A it is calculated like this:

ATW2A =
∑
W 2 (x, y, z)L2

x (x, y, z)
∑
W 2 (x, y, z)Lx (x, y, z)Ly (x, y, z)

∑
W 2 (x, y, z)Lx (x, y, z)Lz (x, y, z)∑

W 2 (x, y, z)Ly (x, y, z)Lx (x, y, z)
∑
W 2 (x, y, z)L2

y (x, y, z)
∑
W 2 (x, y, z)Ly (x, y, z)Lz (x, y, z)∑

W 2 (x, y, z)Lz (x, y, z)Lx (x, y, z)
∑
W 2 (x, y, z)Lz (x, y, z)Ly (x, y, z)

∑
W 2 (x, y, z)L2

z (x, y, z)


(3.37)

3.9 Horn and Schunck in 2D

Following, we show the Horn and Schunck method [11], which combined the optical flow
constraint (Eq. 3.8), with a global smoothing term to restrict the estimated velocity field.
Thus, the energy functional to be minimized is given by:

∫

D

{
(∇L ·w + Lt)

2 + α2

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
]}

dxdy (3.38)

it is defined on a domain D (the image), where the magnitude of α, reflects the relative
influence of the smoothing term. A value of α = 10 is recommended [11], but the value
depends on the application in question. The iterative equations are used to minimize the
Eq. (3.38) and the velocity of the image can be obtained from the Gauss-Seidel equations
that appropriately solve the Euler-Lagrange equations:

uk+1 = uk − Lx[Lxuk+Lyvk+Lt]
α2+L2

x+L2
y

,

vk+1 = vk − Ly[Lxuk+Lyvk+Lt]
α2+L2

x+L2
y

,
(3.39)

where k denotes the iteration number, u0 and v0 denote the initial velocity that is typically
selected to zero but may come from an earlier iteration even from some other algorithm. uk
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3. OPTICAL FLOW ESTIMATION

and vk denote the averages of the neighbors of uk and vk. A typical number of iterations
is set to 100, but we can determine some criteria to automatically stop the iterations. For
example, let w2DOF be a vector of N ×M × 2 constructed from the vectors calculated for
the optical flow of size N × M for an image of size N × M , whose components are the
consecutive components of the velocity in 2D. A test to stop iterations is when the optical
flow field converge [93], i.e. when:

∥∥∥wk
2DOF −wk−1

2DOF

∥∥∥
2
≤ TOL (3.40)

for k iterations, where TOL is some tolerance level previously selected. On the other hand,
if the size of the consecutive flows increases, it means that the procedure diverges.

3.10 Horn and Schunck in 3D

If we extend the Horn and Schunck energy functional (Eq. 3.38) to 3D, we should minimize:

∑
R

(Lxu+ Lyv + Lzw + Lt) + α2

[(
∂u
∂x

)2
+
(
∂u
∂y

)2
+
(
∂u
∂z

)2
+

+
(
∂v
∂x

)2
+
(
∂v
∂y

)2
+
(
∂v
∂z

)2
+
(
∂w
∂x

)2
+
(
∂w
∂y

)2
+
(
∂w
∂z

)2
] (3.41)

Thus, the Gauss-Seidel equations that minimize the expression are given by:

uk+1 = uk − Lx[Lxuk+Lyvk+Lzwk+Lt]
α2+L2

x+L2
y+L2

z
,

vk+1 = vk − Ly[Lxuk+Lyvk+Lzwk+Lt]
α2+L2

x+L2
y+L2

z
,

wk+1 = wk − Lz[Lxuk+Lyvk+Lzwk+Lt]
α2+L2

x+L2
y+L2

z

(3.42)

where uk, vk and wk are vicinity velocities of size n× n× n in the iteration k.
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Chapter 4

3D Optical Flow Using The Hermite

Transform

4.1 Optical Flow using the Hermite Transform

In this chapter, we present a modified version of the Horn and Schunck method [11]. It uses
the Hermite transform as a biological visual model to avoid the main disadvantage of the
Horn and Schunck proposal, i.e, its low accuracy. In this sense, the local constraints found
in the Horn and Schunck approach are defined using the zero-order and steered Hermite
coefficients and as local descriptors of visual features of the volumes.

4.1.1 Model

The modified and multiresolution version of Horn and Schunck approach that allows in-
creasing the accuracy of the optical flow is based on the work of Sun et al. [20]. It uses the
Hermite transform, that involves an expansion of the Constant Intensity Constraint, with
the incorporation of the Steered Hermite Coefficient Constraint of the Hermite Transform,
is defined as follows:

[L0 (x + w)− L0 (x)] + γ

[
N∑

n=1

ln,θ,φ (x + w)−
N∑

n=1

ln,θ,φ (x)

]
= 0 (4.1)

where L (x) is a volume sequence, with x = (x, y, z, t)T representing the voxel location within
a cubic volume domain V ; w := (u, v, w, 1)T is a vector that defines the displacement u, v
and w of each a voxel at position (x, y, z) within the sequence of volumes at a time t to a
time (t+ 1) in the directions x, y and z respectively; and γ is a weight parameter.
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4. 3D OPTICAL FLOW USING THE HERMITE TRANSFORM

Therefore, the energy functional using the Hermite transform can be expressed as:

E =

∫

V

[L0(x)0 − L0(x + w + dw)1
]2

+ γ

[
N∑
n=1

{
ln,θ,φ(x)0 − ln,θ,φ(x + w + dw)1

}]2
+ α|∇ (w + dw)|2

 dx

(4.2)

To simplify the notation L000 (x) = L0 (x), L∗(x)∗ is the Cartesian Hermite coefficient
∗ at time t, and L∗(x)1 is the Cartesian Hermite coefficient ∗ at time t+ 1.

Considering linear displacements in Eq. (4.1) and performing an expansion by Taylor

series we obtain:

L0(x)0−L0(x + w + dw)1 ≈ L0(x)0−L0(x + w)1−du
∂L0(x + w)1

∂x
−dv ∂L0(x + w)1

∂y
−dw∂L0(x + w)1

∂z
(4.3)

In the 1D case, the Hermite coefficients are achieved by the inner product between the
signal located by the Gaussian window and the Hermite polynomials, so the one-dimensional
spatial derivatives can be reduced:

Lk =
〈
L(x), Hk

(x
σ

)〉
(4.4)

In [29] was demonstrated, that the spatial derivatives of the Hermite coefficients, can be
expressed as:

Lk =
∂kL(x)

∂kx
(4.5)

Thereby, an expression with a partial derivative of the Hermite coefficients, in the spatial
coordinates, can be reduced using a higher-order Hermite coefficient of the corresponding
variable. For example, we can replace the following derivatives of x of the Hermite coeffi-
cients with themselves, but increasing its corresponding order index:

L100 (x + w) = L100(x)w =
∂L000(x + w)1

∂x
(4.6)

ln,θ,φ,(m+1)(x)w =
∂ln,θ,φ(x + w)1

∂x
(4.7)

On the other hand, the temporal derivatives can be approximated using the following
relations:

L0(x)t = L0(x + w)1 − L0(x)0 (4.8)

ln,θ,φ(x)t = ln,θ,φ(x)1 − ln,θ,φ(x + w)0 (4.9)

Thus, using Eq. (4.5) and the temporal-derivative approximation shown in Eq. (4.8)
and Eq. (4.9), we can rewrite Eq. (4.3) as follows:

L0(x)0−L0(x + w + dw)1 ≈ − [L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w] (4.10)
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4.1 Optical Flow using the Hermite Transform

Replacing Eq. 4.10 in Eq. 4.2 we can define the Horn-Hermite optical flow in 3D

(HOF3D), obtaining:

E (w) =

∫

V

(
−[L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w]

2

− γ
N∑

n=1

[
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

]2

+α|∇ (w + dw)|2
)
dx (4.11)

Next, we can minimize Eq. (4.11) for u, v and w obtaining the following system of

equations:

∂E (w)

∂du
=− 2

(
L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L100(x)w

− 2γ

N∑
n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(m+1)(x)w

+ 2α |∇ (u+ du)| (4.12)

∂E (w)

∂dv
=− 2

(
L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L010(x)w

− 2γ

N∑
n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(n+1)(x)w

+ 2α |∇ (v + dv)| (4.13)

∂E (w)

∂dw
=− 2

(
L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L001(x)w

− 2γ

N∑
n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(l+1)(x)w

+ 2α |∇ (w + dw)| (4.14)

Rewriting the equation system of Equations (4.12, 4.13, 4.14) in matrix form:



A1 A2 A3

A4 A5 A6

A7 A8 A9





du
dv
dw


 =



b1
b2
b3


 (4.15)
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4. 3D OPTICAL FLOW USING THE HERMITE TRANSFORM

where from Eq. (4.12):

A1 = L2
100(x)w + γ

N∑

n=1

l2n,θ,φ,(m+1)(x)w

A2 = L100(x)wL010(x)w + γ
N∑

n=1

ln,θ,φ,(m+1)(x)w · ln,θ,φ,(n+1)(x)w

A3 = L100(x)wL001(x)w + γ
N∑

n=1

ln,θ,φ,(n+1)(x)w · ln,θ,φ,(l+1)(x)w

b1 = L0(x)tL100(x)w + γ
N∑

n=1

ln,θ,φ(x)t · ln,θ,φ,(m+1)(x)w − α |∇ (u+ du)|

and from Eq.(4.13):

A4 = L010(x)wL100(x)w + γ
N∑

n=1

ln,θ,φ,(n+1)(x)w · ln,θ,φ,(m+1)(x)w

A5 = L2
010(x)w + γ

N∑

n=1

l2n,θ,φ,(n+1)(x)w

A6 = L010(x)wL001(x)w + γ
N∑

n=1

ln,θ,φ,(m+1)(x)w · ln,θ,φ,(l+1)(x)w

b2 = L0(x)tL010(x)w + γ
N∑

n=1

ln,θ,φ(x)t · ln,θ,φ,(n+1)(x)w − α |∇ (v + dv)|

and from Eq.(4.14):

A7 = L001(x)wL100(x)w + γ
N∑

n=1

ln,θ,φ,(l+1)(x)w · ln,θ,φ,(m+1)(x)w

A8 = L001(x)wL010(x)w + γ
N∑

n=1

ln,θ,φ,(l+1)(x)w · ln,θ,φ,(n+1)(x)w

A9 = L2
001(x)w + γ

N∑

n=1

l2n,θ,φ,(l+1)(x)w

b3 = L0(x)tL001(x)w + γ
N∑

n=1

ln,θ,φ(x)t · ln,θ,φ,(l+1)(x)w − α |∇ (w + dw)|

Finally, the functional of Eq. (4.11) was implemented within a multiresolution approach
to calculate the small displacements du, dv, dw and to update w, then the solution is
propagated to higher resolution levels. For each resolution level, an iterative method for
solving linear equations was carried out.
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Chapter 5

Experiments and Results

In this chapter, we present the results of the estimation of the optical flow with the proposed
method. Dozens of cardiac volumes corresponding to medical CT images were used for
this purpose. In general, the Chapter is divided into three stages, a validation stage for
two-dimensional images, a validation stage for three-dimensional volumes, and a stage of
3D optical flow results of the cardiac volumes and their left ventricle. In the first stage,
the optical flow results, using the 2D implementation of our proposal, were compared with
a set of images ground-truth and a pair of algorithms of optical flow. In the second stage,
we performed a validation of our approach in 3D, where the optimal parameters both in
the Hermite transform and the 3D optical flow proposal were determined. The optical
flow results in 3D were compared with the modified and multiresolution method of Horn
and Schunck [20]. Next, an analysis of robustness to noise was performed. In the third
stage, the 3D optical flow results of our method in the left ventricle, which was previously
segmented, are shown and the corresponding errors of interpolation are evaluated.

The results obtained on a PC Intel(R) Core(TM) i7-4710HQ CPU running at 2.50 GHz
with 16 GB of RAM have an algorithm time-consuming of 4.8 h on 4 cores, nevertheless,
this can be reduced to an average of 4.5 min with parallel computing and additional cores.
The optical flow in our method has good scalability, close to linear speedup, which allows us
to significantly reduce processing time. The results concerning processing time are consistent
with those reported in [94]. They tested two differential algorithms, Lucas-Kanade and
Horn-Schunck in 3D + t, as we have also done.

5.1 Description of the Proposed Method

The present work is an extension of our previous papers published in [54] and [55] (Appendix
D). In [54], we proposed the three-dimensional optical flow estimation using the 3D steered
Hermite transform and we compared our approach with the 3D Horn-Schunck method. In
[55], we compared our proposal with a multiresolution Horn and Schunck approach reported
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5. EXPERIMENTS AND RESULTS

by Sun et al. [20], moreover, we perform a depth analysis about the optimal parameters of the
method proposed and we focused the Section 5.8 to analyzed the 3D optical flow estimation
of the left ventricle. First, we show its 3D segmentation and the advantages of our approach
compared with the 3D version of the method of Sun et al. [20]. Then, we show the 3D motion
of the left ventricle in the different cardiac cycle and a whole cardiac cycle, highlighting the
corresponding contraction and relaxation movements present in each phase of the cardiac
cycle. It should be mentioned that similar 2D algorithms using the Hermite transform have
already been presented in [29, 33] but with the main disadvantage of consuming a lot of
computing time.

Figure 5.1 shows an overview of the proposed method according to the method explained
in Chapter 4 and the next sections.
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Figure 5.1: Overview of the proposed method.

5.2 2D Optical Flow Validation

In this section, we present the performance of our multiresolution 2D Horn-Hermite optical
flow approach (HOF2D) to have common comparison elements with similar algorithms,
through metrics and a known workbench [95].
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5.2 2D Optical Flow Validation

5.2.1 2D Angular Errors

Because we do not have a set of 3D optical flow to compare our results, we evaluate the
performance of our 2D proposal, through a collection of well-known images. These images
and their respective ground-truth optical flows can be found through [95], which still have
great use and relevance today. They defined sequences with non-rigid movements where the
optical flow was determined following a hidden fluorescent texture.

As a performance measure, we calculate the angular error (AE) proposed in [6]. The
angular error between a flow vector (u, v) and a ground-truth reference flow (uGT , vGT ) can
be calculated by taking the scalar product of the vectors, dividing by the product of their
magnitudes and then taking the inverse of cosine:

AE = cos−1


 1.0 + u× uGT + v × vGT
√

1.0 + u2 + v2
√

1.0 + u2
GT + v2

GT


 (5.1)

In Table 5.1, the angular error calculation is shown for five reference 2D flows (ground
truth flows), obtained by means of Eq. (5.1). We choose a set of five data. HOF2D
is our multiresolution 2D Horn-Hermite optical flow approach. We compare our HOF2D
algorithm, along with the 2D Horn and Schunck and Farneback implementations found in
[96] and the ground-truth flows provided in [95]. The parameters used for HOF2D are
the same as those described in Sections 5.4.1 and 5.4.2, N = 4, 5 levels of multiresolution
decomposition for the SHT in 2D, α ≥ 10 and γ ≥ 100, except that the necessary iterations,
which can range from 20, to provide the best results. The best results are highlighted in
bold and, although our approach is not always the best, it is close to the best results in each
case.

Table 5.1: 2D Angular Error Calculation.

Ground

Truth Images
Horn-Schunck [96] Farneback [96] HOF2D

groove2 71.400 12.254 14.733

groove3 67.939 15.316 11.577

urban2 70.839 26.425 18.283

urban3 79.299 39.963 17.299

venus 70.727 28.385 8.929

5.2.2 2D Endpoint Error

Another of the most common performance measure for optical flow is the Endpoint Error
(EE) proposed in [97]. The error between a flow vector (u, v) and a ground-truth reference
flow (uGT , vGT ) can be useful in this case:
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EE =

√
(u− uGT )2 + (v − vGT )2 (5.2)

Table 5.2 shows the absolute error 2D or error of the endpoint flow (error in flow endpoint,
EE), used by [97], defined in Eq. (5.2).

Table 5.2: 2D Endpoint Error Calculation.

Ground

Truth Images
Horn-Schunck [96] Farneback [96] HOF2D

groove2 3.053 0.900 0.718

groove3 3.537 1.305 1.122

urban2 8.414 6.692 5.139

urban3 7.440 4.924 3.807

venus 3.607 1.836 0.694

In Fig. 5.2 we can observe a comparison between the flows obtained with the 2D imple-
mentations of the Horn and Schunck algorithm [96] and our method (HOF2D).

Figure 5.2: Comparison between the flow of Horn and Schunck method obtained with [96] and

our HOF2D method

5.2.3 2D Interpolation Error

Another useful performance measure is the interpolation error (IE). It is defined as the
mean square value of the difference between the ground-truth image and the estimated
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5.2 2D Optical Flow Validation

interpolated image [98]:

IE =


 1

N

∑

(x,y)

(L(x, y)− LGT (x, y))2




1
2

(5.3)

where N is the number of pixels.
Table 5.3 shows the calculation of the interpolation error (Eq. 5.3), for the set of data

and algorithms already indicated. The best results are highlighted in bold and, although our
approach is not always the best, it is close to the best results in each case.

Table 5.3: 2D Interpolation Error Calculation.

Ground

Truth Images
Ground Truth Flow Horn-Schunck [96] Farnebäck [96] HOF2D

dimetrodon 2.641 8.589 3.127 2.865

groove2 10.439 23.492 8.831 10.353

groove3 19.401 32.351 15.703 17.460

urban3 9.870 17.727 9.489 8.122

venus 8.813 20.659 5.847 8.835

5.2.4 2D Normalized Interpolation Error

Another interpolation error can be calculated, the mean square value of a normalized gra-
dient inspired by [98]. The normalized interpolation error (NE) between an interpolated
image L (x, y) and a ground-truth image LGT (x, y) is given by:

NE =


 1

N

∑

(x,y)

(L(x, y)− LGT (x, y))2

‖∇LGT (x, y)‖2 + ε




1
2

(5.4)

where the scaling constant is selected at one (ε = 1.0).
With the same set of data and algorithms as Table 5.3, Table 5.4 presents the calculation

of the normalized interpolation error in 2D based on (Eq. 5.4) . The best performances
are highlighted in bold and most of them are in the HOF2D column. We must say that
the normalized interpolation error is a weighted RMS average of the pixels, which use the
image gradient as a weight factor. The normalized interpolation error compensates for the
difference between the interpolation errors and the flow obtained because it gives less weight
to the discontinuous regions and more weight to the regions without texture.
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Table 5.4: 2D Normal Interpolation Error Calculation.

Ground

Truth Images
Ground Truth Flow Horn-Schunck [96] Farnebäck [96] HOF2D

dimetrodon 0.207 0.546 0.382 0.270

groove2 0.418 0.860 0.385 0.329

groove3 0.990 1.622 0.626 0.532

urban3 2.325 2.452 1.342 0.700

venus 0.801 1.376 0.434 0.348

In Fig. 5.3 we can see one of the images ground truth compared with the interpolated
image and the error between both

(a) Ground Truth Image (b) Interpolated Image (c) Difference between both

Images

Figure 5.3: Comparisson between a Ground Truth Image and the Interpolated Image

5.3 Materials and Overview of the 3D Method

In this section, we present a series of materials related to the development and tuned of
our multiresolution 3D Horn-Hermite optical flow approach (HOF3D) and to the data cor-
responding to the cardiac images of which we wish to estimate its movement. Likewise, we
present an overview of the implementation of the HOF3D method.

5.3.1 Dataset Description

To conduct the experiments, two types of data sets were used in this project, the first
one consists of three synthetic volumes generated. A hexahedron (Fig. 5.4) with a lateral
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displacement, another one, a sphere with a deformation (5.5(b)) and the last of them, a
simulation of a tornado (Fig. 5.6)1. In these synthetic volumes, we have the certainty of
the direction, magnitude, and direction of the displacements of the voxels. In such a way
that when evaluating the optical flow this helped to better calibrate the algorithms in terms
of the number of iterations, smoothing factors, and weighting of the Hermite coefficients
used. The sizing of such parameters was also carried out for the CT volumes used, which
is described in a subsequent subsection. In all the subsequent images, the flow vectors are
magnified to be better observed.

(a) Hexahedron (b) New position of the hexahedron

Figure 5.4: A hexahedron displaced.

1The technique used to create these data is as-yet unpublished but was first described in an informal

presentation by Roger Crawfis of Ohio State University at a talk held in Salt Lake City in May, 1999
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(a) Sphere (b) Flattened Sphere

Figure 5.5: A synthetic sphere with a posterior deformation.

(a) Tornado - step1 (b) Tornado - step2

Figure 5.6: A synthetic tornado with a posterior twisting.

The second dataset used in this project, consists of two cardiac computed tomography
studies (3D + t). The CT volumes were obtained in a 16-slice tomograph (at 120 kVp @
900 mA) built with 128 detectors. The dimensions of each volume are 512× 512× 10 at 12
bits per pixel. The clinical protocol starts by injected a contrast agent to the patient and
the study is carried out in synchrony with the electrocardiogram (ECG) signal. A cardiac
CT volume used is shown in Figure 5.7.
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It should be noted that the acquisition of cardiac images are performed in connection with
the electrocardiogram and are acquired with the patient in respiratory apnea to avoid artifice
by movement. In Appendix A, a brief description of the most important characteristics of
CT cardiac images related to this project is presented.

Figure 5.7: Cardiac CT images, slices and volume.

5.3.2 Overview of the Method in 3D

In Figure 5.8 we show an overview of our proposal. First, we have the cardiac volume slices,
belonging to two consecutive steps of the cardiac cycle considered, which make up volume 1
and volume 2 respectively; for each volume, we obtain a multiresolution expansion related
to the coefficients of the steered Hermite transform. Such coefficients are used to carry out
the calculation of the optical flow within the mentioned HOF3D approach. Once the vector
field belonging to the optical flow over the whole cardiac volume was obtained, we used
the portion of the volume related to the segmented left ventricle to finally obtain only the
masked vectors with this part of the cardiac volume.
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OPTICAL FLOW APPROACH

SLICES OF VOLUME 1

SLICES OF VOLUME 2

VOLUME 1

VOLUME 2

OPTICAL FLOW OVER THE 
ENTIRE HEART

OPTICAL FLOW OF THE LEFT 
VENTRICLE

STEERED HERMITE 
COEFFICIENTS  VOLUME 1

STEERED HERMITE 
COEFFICIENTS VOLUME 2

MULTI-RESOLUTION 
EXPANSION

MULTI-RESOLUTION 
EXPANSION

LEFT VENTRICLE 
SEGMENTATION

Figure 5.8: Procedure to implement the HOF3D approach.

In absence of a 3D motion ground-truth in CT images, which is used to evaluate the accu-
racy of the optical flow estimation, we validate our proposal by calculating the interpolation
error, which is defined as the root mean-square (RMS) difference between the known volume
L (x, t+ 1) at time t + 1 and the reconstructed volume LGT (x, t+ 1), is calculated [6, 19]
as we showed in the Equation (5.5):

IE3D =

[
1

M

∑

x

(
L(x, t+ 1)− LGT (x, t+ 1)

)2
] 1

2

(5.5)

where M is the number of voxels.
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We also computed a second measure of interpolation performance, the normalized in-
terpolation error between an interpolated volume L(x, t + 1) and a ground-truth volume
LGT (x, t+ 1), which is given as in [97]:

NE3D =


 1

M

∑

x

(
L(x, t+ 1)− LGT (x, t+ 1)

)2

∥∥∥∇LGT (x, t+ 1)
∥∥∥

2
+ ε




1
2

(5.6)

that represents a gradient-normalized RMS error, where ε is a scaling constant (e.g., ε = 1).
The interpolation errors are useful to know how good the calculation of the optical flow

is when there is no available ground truth flow, the normalized interpolation error has the
additional advantage of being normalized concerning the magnitudes of the intensity changes
that the volume of the reference.

5.4 Parameter Tuning and Sensitivity Analysis

In this section, we present first, the parameter tuning of the Hermite transform: cubic win-
dow size, maximum order of decomposition, and multiresolution levels. Then, we perform
a sensitivity analysis of the parameters used in the optical flow proposal: smoothing term
and weight parameter.

5.4.1 3D Hermite Transform Parameter Tuning

Although the constants, values and weight parameters are difficult to select, in Section 2.2.2,
we present which are the suitable values to the cubic window and in consequence, the max-
imum expansion order N of the Hermite transform, thus, experimentally found that we
achieved a good estimation of optical flow results (NE3D < 0.1) and avoiding blur artifacts
for our dataset with: a cubic window of 5× 5× 5 pixels, i.e., a maximum expansion order of
N = 4 for the SHT and 5 levels of multiresolution decomposition for the SHT. Below these
values, we would obtain errors 2.5 to 3 times larger than those reported. It should be noted
that this strategy allows us to handle large displacements, which occur from one step to
another in a cardiac cycle.

5.4.2 Optical Flow Parameter Sensitivity Analysis

We performed a parameter sensitivity analysis to find the best values. Weight parameter
γ of the HOF3D functional Equation (4.2) is used to weigh the contribution of the high
order Hermite coefficients in those regions where the intensity does not remain constant
from one volume to another. On the other hand, the softness parameter α can help recover
the motion information from their neighbors in those regions where the gradient is zero,
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e.g., intensity homogeneous regions. It is carried out through averages from structures with
high frequencies, e.g., edges and textures. Large values of α give us a smoother flow but
this is relatively less important at locations with high image gradients than elsewhere.

For determining the values of the smoothness weight α and the weight parameter γ ,
first, we compute the 3D optical flow over the cardiac CT sequences and then we analyze the
behavior of the Interpolation Error (IE) and Normalized Interpolation Error (NE) metrics.

From Figure 5.9, the curves show that the best results for IE and NE are for α ≥ 10 and
γ ≥ 100 (bottom of the mesh).

(a) (b)

Figure 5.9: Interpolation Error (a) and Normalized Interpolation Error (b), for parameter

sensitivity analysis.

Concerning the number of iterations of the method, it was set to 50 because a number
greater than 50 was the one that gives us the required numerical convergence according to
our tests.

5.5 3D Interpolation Errors

5.5.1 Interpolation Errors in Synthetic Volumes

In Table 5.5 we can see the results of the Calculation of 3D Interpolation Errors for the
synthetic volumes. The best results are highlighted with bold.
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Table 5.5: 3D Interpolation Errors for the synthetic volumes

Volumes 3D Horn-Schunck[20] HOF3D Method

Deformed hexahedron 0.32430 0.15441

Tornado 0.34580 0.04982

Flattened sphere 0.36807 0.02007

In Table 5.6 we can see the results of the Calculation of 3D Normalized Interpolation
Errors.

Table 5.6: 3D Normalized Interpolation Errors for the synthetic volumes

Volumes 3D Horn-Schunck[20] HOF3D Method

Deformed hexahedron 0.26167 0.05751

Tornado 0.30274 0.00755

Flattened sphere 0.21575 0.00695

5.5.2 Interpolation Errors in Cardiac Volumes

To evaluate the accuracy of the HOF3D method, we compared it with the 3D variant of
the method of Sun et al. [20] We calculated the corresponding interpolation errors (IE and
NE) using both proposals. Figure 5.10 presents a diagram of the steps to calculate the
interpolation errors.
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VOLUME AT TIME t+1

VOLUME AT TIME t

OPTICAL FLOW INTERPOLATED VOLUME

OPTICAL FLOW 
METHOD

INTERPOLATION

INTERPOLATION ERROR

INTERPOLATION ERROR 
DISPLAY

Figure 5.10: Steps to calculate and visualize the Interpolation Error.

Figure 5.11 shows a cardiac CT volume where we can observe the original volume (Figure
5.11a), the interpolated volume (Figure 5.11b), the difference between the original volume
and its interpolated result (Figure 5.11c) using the 3D variant of the method of Sun et al. [20].
The results were compared with a modified version of the Sun method in 3D and for different
noise levels. Both algorithms used were optimized and the evaluation of the results was
carried out through a forward reconstruction, from the volume at time t to time t + 1,
through the 3D optical flow obtained. The interpolation error display is a visualization of
the terms within the summation in Equation (5.6).
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5.5 3D Interpolation Errors

(a) Original Volume (b) Volume Interpolated using

the Horn and Schunck method

(c) Error between Original and Interpolated

Volumes using the Horn and Schunck method

Figure 5.11: A cardiac CT volume showing the original volume, the interpolated volume using

the 3D variant of the method of Sun et al. [20] and the error between the original volume and

its interpolated result.

On the other hand, in order to compare our method, in Figure 5.12 we show the same
cardiac CT volume as in Figure 5.11 where, again, we can observe the original volume
(Figure 5.12a), the interpolated volume (Figure 5.12b), the difference between the original
volume and its interpolated result (Figure 5.12c) using our HOF3D method.

In Figure 5.13, we show the interpolation errors obtained using the Sun et al. [20] and
the HOF3D methods through the whole cardiac cycle (0% to 90%) for two CT sequences.
In both sequences, we can observe the beginning of the increase in the interpolation error
from 20% to 30%, when the contraction movement occurs and from 50% to 60% of the cardiac
cycle, in full dilation movement. This is where we have a couple of cardiac movements of
greater magnitude.

We can observe in the plots of Figure 5.13, both for the interpolation error and the
normalized interpolation error, that even in each of the stages of the complete cardiac cycle,
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the HOF3D method gives better results and lower errors are obtained.

(a) Original Volume (b) Volume Interpolated us-

ing the HOF3D method

(c) Error between Original and Interpo-

lated Volumes using HOF3D method

Figure 5.12: A cardiac CT volume showing the original volume, the Interpolated Volume using

the HOF3D method and the error between the original volume and its interpolated result.
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Figure 5.13: Interpolation Error and Normalized Interpolation Error. For the 3D Horn-

Schunck (red dashed line) and Hermite Optical Flow in 3D (blue solid line) methods. From se-

quences of cardiac CT volumes.

5.6 Robustness to Noise

In another experiment, we carried out an analysis of robustness to noise of the proposed
method. For this, we added Gaussian noise, with different standard deviations (σn =
0, 5, 10, 15, 20, 30) and zero mean, to the cardiac volumes. In Figure 5.14 we can see one of
the volumes used for the test, with three different values of σn.
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(a) Volume without noise (b) Volume with noise,

(σn = 10)

(c) Volume with noise,

(σn = 30)

Figure 5.14: Volume with pseudo-random noise.

Table 5.7 shows the interpolation error and the normalized interpolation error for the
noise levels given for the HOF3D method, using optimized parameters α = 10, γ = 100 and
N = 4. We can observe that although the standard deviation of the introduced noise grows,
the interpolation error and the normalized interpolation error remain small, this is because
the coefficient of order 0 of the Hermite transform L000 (x) (Equations 2.19, 2.27 and 4.2),
contains a smoothed version of the original volume and this DC coefficient allows to reduce
any component of high-frequency noise, additionally, in our approach, the steered Hermite
coefficients use Gaussian derivatives, which incorporate information from neighboring voxels
in the structure of cardiac volumes, which makes the proposed algorithm more robust to
this type of noise [13, 99]. By the another hand, it should be noted that although the errors
are low, the addition of noise represents an increase in the interpolation error of 71.4% and
for the normalized interpolation error of 80%, comparing one test without noise and the
other test with noise of σn = 30.
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5.7 3D Optical Flow Results

Table 5.7: Interpolation Error and Normalized Interpolation Error computed for a cardiac

volume with several standard deviations σn of Gaussian noise.

Gaussian Noise

(σn)

Interpolation

Error

Normalized Interpolation

Error

0 0.03190 0.01696

5 0.03499 0.01954

10 0.03778 0.02168

15 0.04295 0.02563

20 0.04597 0.02779

30 0.05468 0.03387

5.7 3D Optical Flow Results

5.7.1 Three-dimensional Optical Flow Results in Synthetic Volumes

To test our method in a controlled manner, we used three synthetic volumes that were
subjected to displacement in the case of a hexahedron, a deformation, in the case of a
sphere, and twisting in the case of a tornado. Later we tested our method with the whole
cardiac volumes.

Fig. 5.15 shows a synthetic hexahedron which it’s being displaced laterally and upwards.
In Fig. 5.15(a) the hexahedron is set in the first position and Fig. 5.15(b) the hexahedron
is displaced laterally and upwards, in Fig. 5.15(c) the resulting flow is shown as well as
the displaced hexahedron which coincides with the hexahedron extrapolated from the first
volume and flow obtained. Fig. 5.15(d) displays only the resulting vector field of movement.
In Fig. 5.15(e) and Fig. 5.15(f) we can visualize the 3D vector field using streamlines. This
technique was first presented on [100] by computing a large number of field lines, integrating
the vector field starting from random seed points. The lines are displayed to give a much
better spatial understanding of the field’s structure.
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(a) Hexahedron (b) New position of the hexa-

hedron

(c) The hexahedron and its

flow

(d) Only flow (e) The hexahedron and its

streamlines

(f) Only streamlines

Figure 5.15: A hexahedron displaced, its flow and streamlines

In Fig. 5.16 we have a synthetic sphere. For Fig. 5.16(a) the sphere is in its first stage,
Fig. 5.16(b) represents the sphere being expanded and in Fig. 5.16(c), the resulting flow is
shown along with the interpolated sphere through the flow. Fig. 5.16(d) displays only the
resulting vector field of movement. Fig. 5.16(e) and Fig. 5.16(f) we can visualize the 3D
vector field using stream lines.
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(a) Sphere (b) Expanded sphere (c) The sphere and its flow

(d) Only flow (e) The sphere and its stream-

lines

(f) Only streamlines

Figure 5.16: An expanded sphere, its flow and streamlines

Fig. 5.17 shows a synthetic tornado. For Fig. 5.17(a) the tornado is in its first stage,
Fig. 5.17(b) represents the tornado twisting and in Fig. 5.17(c), the resulting flow is
shown along with the interpolated tornado through the flow. Fig. 5.17(d) displays only the
resulting vector field of movement. Fig. 5.17(e) and Fig. 5.17(f) we can visualize the 3D
vector field using stream lines.
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(a) Tornado - step1 (b) Tornado - step2 (c) The tornado and its flow

(d) Only flow (e) The tornado and its

streamlines

(f) Only streamlines

Figure 5.17: A tornado twisting, its flow and streamlines

5.7.2 Three-dimensional Optical Flow Results in Cardiac Volumes

In this section, we show the 3D optical flow estimation computed on CT volumes for a whole
cardiac cycle. For descriptive purposes, only some representative parts of such a cardiac
cycle are shown. In most cases, the display of the magnitudes of the optical flows was
exaggerated to observe the qualitative characteristics of the movements.

Figure 5.18 shows the results of a 3D Optical flow of two cardiac CT volumes computed
at phases 20-30% (when a contraction movement occurs) using the HOF3D method. Fig-
ure 5.18(a,b) show two phases of the cardiac cycle of volume (for better viewing a cut of
that volume was made). Figure 5.18(c,d) show the same phases of volume along with the
three-dimensional optical flow field. Finally, Figure 5.18(e,f) illustrate only the optical flow.
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(a) Volume - 20% (b) Volume - 30%

(c) Volume and Optical Flow - 20% (d) Volume and Optical Flow - 30%

(e) Only Optical Flow - 20% (f) Only Optical Flow - 30%

Figure 5.18: Results of 3D Optical Flow of a segmented cardiac CT volume computed at

phases 20–30%.

Figure 5.19 presents the results of a 3D Optical flow of two cardiac CT volumes com-
puted at phases 50–60% (when a dilation movement occurs) using the HOF3D method.
Figure 5.19(a,b) show two phases of the cardiac cycle of volume (for better viewing a cut
that volume was made). Figure 5.19(c,d) show the same phases of volume along with the
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three-dimensional optical flow field. Also, Figure 5.19(e,f) present only the optical flow.

(a) Volume - 50% (b) Volume - 60%

(c) Volume and Optical Flow - 50% (d) Volume and Optical Flow - 60%

(e) Only Optical Flow - 50% (f) Only Optical Flow - 60%

Figure 5.19: Results of 3D Optical Flow of a segmented cardiac CT volume computed at

phases 50–60%.
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5.8 3D Optical Flow Estimation of the Left Ventricle

The importance of the study of the left ventricle has been established extensively. The left
ventricle adapts, for example, to arterial hypertension, and this leads to the development of
different geometric patterns [101]. For a better understanding of some diseases, the move-
ment of the left ventricle has been studied during the cardiac cycle in normal subjects and
patients with coronary arterial disease, mitral stenosis or atrial septal defect [102]. Works
describing the global and local movement have been presented, focusing mainly on the left
ventricle [103]. To present the optical flow estimation of the left ventricle, first, a segmenta-
tion of it is required. We use the level sets method of Osher and Sethian [104]. This method
is a powerful, suitable, and flexible approach to the segmentation of CT volumes where there
aren’t well-defined boundaries. The level sets method was applied to the CT volumes using
the Seg3D tool [105]. For this tool, a seed volume is used to find similar regions to the origi-
nal one. Then, the segmented region will be expanded to surrounding pixels that match the
statistics of the original seeded area. The spread may also be retracted in some instances if
the seeded areas do not match certain criteria (edge weight and threshold range). Until the
convergence, the algorithm will be expanded (or contracted) to the segmented region.

Figure 5.20 shows an example of the segmentations obtained (colored region) in the
context of their location within the whole cardiac volume.

Figure 5.20: A whole cardiac volume and its left ventricle segmented.

Similarly to the work done in Section 5.5, and if we focus on the phase where a contraction
movement occurs for the left ventricle, we can observe the interpolation error for a left
ventricle segmented showing the original volume in Figure 5.21(a), the interpolated volume
using the 3D variant of the method of Sun et al. [20] is shown in Figure 5.21(b), the error
between the original volume and this interpolated result, in Figure 5.21(d). Also, the optical
flow is calculated by the HOF3D method. Then, the interpolation of the left ventricle is
obtained, which is shown in Figure 5.21(c). The difference between the original volume and
that interpolated volume can be observed in Figure 5.21(e).
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(a) Original LV- 30%

(b) LV Interpolated us-

ing the 3D method of Sun et al. [20]

(c) LV Interpolated us-

ing the HOF3D method

(d) Error us-

ing the 3D method of Sun et al. [20]

(e) Error using the HOF3D

method

Figure 5.21: Interpolation Errors for the left ventricle at 30%.

Another example of interest, where there is more interpolation error, is the 60% of cardiac
phase, it is also when a dilatation movement occurs for the left ventricle. We can observe the
interpolation error for a left ventricle segmented for the original volume in Figure 5.22(a),
the interpolated volume using the 3D method of Sun et al. [20] in Figure 5.22(b), the error

70



5.8 3D Optical Flow Estimation of the Left Ventricle

between the original volume and this interpolated result in Figure 5.22(d). Also, the optical
flow is calculated by the HOF3D method. Then, the interpolation of the left ventricle is
obtained and shown in Figure 5.22(c). The difference between the original volume and that
interpolated volume can be observed in Figure 5.22(e).

(a) Original LV- 60%

(b) LV Interpolated us-

ing the 3D method of Sun et al. [20]

(c) LV Interpolated using

the HOF3D method

(d) Error us-

ing the 3D method of Sun et al. [20]

(e) Error using the HOF3D

method

Figure 5.22: Interpolation Errors for the left ventricle at 60%.
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Figure 5.23 contains the results of the normalized interpolation error with the Sun et al.
[20] method. In Figure 5.23(a) we present a set of volumes from 30% to 70% of the cardiac
cycle, in Figure 5.23(b), the interpolated volumes corresponding to each stage of the cardiac
cycle are shown. Figure 5.23(c) graphically displays the normalized interpolation error for
the volumes of sections a and b respectively.

Figure 5.24 contains the results of the normalized interpolation error with the HOF3D
method. Figure 5.24(a) presents a set of volumes from 30% to 70% of the cardiac cycle,
Figure 5.24(b) shows the interpolated volumes corresponding to each stage of the cardiac
cycle. Figure 5.24(c) graphically displays the normalized interpolation error for the volumes
of sections a and b respectively.

(a) Original Volumes

(b) Interpolated Volumes

(c) Normalized Interpolation Error

Figure 5.23: Left Ventricle from 30% to 70% of the cardiac cycle and the results with 3D

method of Sun et al. [20].
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(a) Original Volumes

(b) Interpolated Volumes

(c) Normalized Interpolation Error (HOF3D method)

Figure 5.24: Left Ventricle from 30% to 70% of the cardiac cycle and the results with HOF3D

method.

Figures 5.25 and 5.26 present the results of a 3D Optical flow of two segmented cardiac
CT volumes, showing a contraction and relaxation movement respectively using the HOF3D
method. Figure 5.25(a,c) are two phases of the segmented cardiac cycle of volume computed
at phases 20–30%, the same way as Figure 5.26(a,c) but in phases 40–50%. Figure 5.25(b,d),
Figure 5.26(b,d) show only their respective optical flows.
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(a) volume - 20% (b) Only flow - 20%

(c) volume - 30% (d) Only flow - 30%

Figure 5.25: Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle)

computed at phases 20–30% (contraction movement).
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(a) volume - 40% (b) Only flow - 40%

(c) volume - 50% (d) Only flow - 50%

Figure 5.26: Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle)

computed at phases 40–50% (relaxation movement).

Figure 5.27 contains the results corresponding to the optical flow calculated with the
HOF3D method. We can observe a set of left ventricle volumes from 10% to 100% of the
cardiac cycle.
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(a) 10–20% (b) 20–30% (c) 30–40% (d) 40–50%

(e) 50–60%

(f) 60–70% (g) 70–80% (h) 80–90% (i) 90–100%

Figure 5.27: Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle–short

axis).

In Appendix B, some additional figures to the outcomes presented in this section are
shown along with alternate representations of the results that can be obtained through the
3D optical flow.

5.9 Discussion

In the first group of results (Figures 5.18 and 5.19), the entire cardiac volume and its re-
spective calculated optical flows can be observed in context. The best way to display this
3D flow has been attempted. Despite a large number of 3D arrows of different sizes, it is
possible to observe either the contraction pattern (Figure 5.18) or the expansion pattern
(Figure 5.19). The optical flow is shown using of Paraview [106, 107] whose style of repre-
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senting the vectors of the optical flow is similar to the previous works in [108] and recently
in [109].

We focused on estimating the movement in one of the most important structural parts
of the heart, the left ventricle. To achieve this goal we have segmented that heart region,
which is shown in Figure 5.20. We can see examples in [110, 111] of the deployment of the
three-dimensional vectors of the obtained optical flow. However, in all the remaining figures
within the set of results obtained, rather than deploying the obtained optical flow vectors,
we decided to show graphically, a measure of the performance achieved in the estimation
of cardiac movement, specifically in the left ventricle. The relevance of the figures thus
represented is that the errors obtained can be observed graphically, first in the interpolated
volumes (Figures 5.21 and 5.22, items b and c), where we can compare a similar and known
method with the proposed one. In the same figures mentioned, the interpolation error is
observed through a three-dimensional representation that matches the analyzed volumes
(Figures 5.21 and 5.22, items d and e). In those figures, the biggest errors are the ones
represented in red, and the smallest tend to blue.

We observe a more extensive sequence of the cardiac cycle (five phases) in order to
provide greater clarity. In this selection of phases of the cardiac cycle we can observe the
movement of contraction and dilatation in the left ventricle. In Figures 5.23 and 5.24 in part
a, we observe the original volumes. In Figures 5.23 and 5.24 part b, we see the interpolated
volumes with a comparison between the two methods. In Figures 5.23 and 5.24 item c, we
see a graphical representation of the normalized interpolation error.

Finally, Figures 5.25 and 5.26 present more explicitly the segmented left ventricle and
their respective optical flows during the contraction and relaxation movements. Figure 5.27
shows the segmented volumes from the short view concerning all phases of the cardiac cycle
(from 10% to 100%). Motion vectors were exaggerated for clarity. In the field of medical
images, and in addition to the cardiac movement, this approach can be used with benefit
in pulmonary movement. In general, in applications where we have three-dimensional data,
such as cardiac and pulmonary medical images, stereoscopic images and video, 3D meteoro-
logical data, volumes formed by point clouds in general. Where we want to characterize how
they evolve over time. For future work, there is a great margin of opportunity to improve
the times in the calculations of the Hermite transform, for which a faster version was not
used. For the energy functional used, some other local and global characteristics can be
incorporated that allow us to further reduce the uncertainties obtained.
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Chapter 6

Conclusions

In this project, we have proposed a method to estimate the optical flow completely in
3D+ t, that is, in a three-dimensional space (x, y, z) plus time, because the analysis of two-
dimensional motion restricts all possible deformations in the different directions of reference
(i.e., radial, circumferential and longitudinal).Therefore, three-dimensional motion analysis
can overcome such limitations by better describing, in all directions, the deformations.

Our approximation of motion estimation has included the well-known differential method
of Horn and Schunck with the additional information provided by the coefficients of the
Steered Hermite transform used within the restriction terms of the function to be minimized.
The Steered Hermite transform is a model that incorporates some important properties of
the first stages of the human visual system, such as the overlapping Gaussian receptive fields,
the Gaussian derivative model of early vision [70], and a multiresolution analysis [112, 113].
This proposed algorithm is more robust to noise due to the advantage represented by the
analysis of the spatial scale provided by the Hermite transform itself that can be determined
for objects at different spatial dimensions. Additionally, and due to the calculation of high
order Gaussian derivatives, the estimation of the movement can be improved by including
structures related to them.

Although representative results were shown for a particular volume, the method was
tested with 3 different full cardiac volumes and 45 partial cardiac volumes, with similar
results for the estimation of the optical flow. These volumes were not previously tested with
any other 3D optical flow method. We evaluated the results obtained using two measure-
ments on the interpolation errors, with these errors we also adjusted the most appropriate
parameters in the different cardiac sets considered. We observed that interpolation errors
increased around the phases where movements occur most rapidly (the contraction phase).
We were able to verify that the proposed method (HOF3D) has lower interpolation errors
compared to the modified 3D method of Sun et al. [20].

For the algorithm, one of the main contributions in this research is to have obtained an
estimate of the optical flow with improved precision, together with the use of the Hermite
transform in 3D images that made it possible to increase said precision.
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We isolated the three-dimensional flow vectors corresponding to the left ventricle, over the
entire cardiac cycle. We calculated the interpolation errors obtained with our method, com-
paring the results with the other method already mentioned.

Our proposal also aims to contribute to a better understanding of cardiac movements
and, with this, to make feasible the detection of some possible diseases. We consider that
because the cardiac organ is immersed in a three-dimensional space, the best way to represent
its movements should be in the same three-dimensional space. Future work may focus on
recognizing the cardiac movement patterns related to the vectors obtained in our three-
dimensional optical flow approximation.
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Appendix A

Cardiac CT Images

Computed tomography (CT) is a modality of the acquisition of medical images routinely
used in medical practice. In this modality, a set of two-dimensional images are generated that
are sliced with information about the internal anatomy of a patient, the three-dimensional
images are obtained through projections at different angles and measurements of the degree
of absorption of the beam that crosses the body. The application of this technology and its
advances in cardiology are presented in [114].

CT is the oldest of all modalities for the acquisition of three-dimensional medical images.
In the 70s, it had a great impact because of its ability to examine internal structures of the
human body in a non-invasive way very accurately. Additionally, the problems associated
with the loss of details that involve the superimposition of a two-dimensional detector to
form 3D images are eliminated.

The objective of CT is to represent in two dimensions, the attenuation coefficient of X-
rays along a thin transverse region in the human body. Each tissue in the different structures
of the body, having a different composition, exhibits different responses concerning X-rays.
Thus, it can describe the structures of the body and their respective anatomical relation-
ships. When a monochromatic X-ray beam passes through the body, said beam is absorbed
or scattered throughout the structures through which the beam passes. The absorption will
depend on both the physical density and the composition of the structures, in addition to
the energy that the beam has. The interactions represent the molecular ionization generated
by scattering and photoelectric spreading [115].

The X-ray source and the detector are collimated for a good definition of the beam that
passes through the transverse plane and that when rotated around the body, records the
absorption patterns of X-rays from different directions on the plane cross. The detectors can
detect different intensities with 0.1% error and the attenuation coefficients of the individual
structures can be determined with 0.5% discrepancy. The distribution of the attenuation
coefficients is determined by the Lambert-Beer Law, which indicates that when a monoen-
ergetic X-ray beam passes through an object of variable density, the beam is attenuated
according to a type of relationship exponential.
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A. CARDIAC CT IMAGES

A.1 CT Acquisition Techniques

A.1.1 Conventional Computed Tomography

This technique produces a simple two-dimensional image of a cross-section of the body
from the X-rays provided, which are registered from an angle around the body. To obtain
three-dimensional images, the procedure is repeated in adjacent sections. This procedure
has some drawbacks, such as the occasional movement of the patient and the width of each
section that occurs during the scan time in all cuts [116].

Respecto to images of the heart in this type of technique, they are not useful because
the acquisition time is 1 to 3 seconds and normal contractions of the heart occur in a
time slightly longer than a second. Due to this, blurred representations of the cardiac
cavities are generated in this technique. To improve this technique, synchronization with
the electrocardiogram (ECG) is used. The ECG is obtained simultaneously to order the CT
projection data in a time window that corresponds to the phases of the cardiac cycle.

A.1.2 High-Resolution Temporary Computed Tomography

Ultrafast Computed Tomography systems, allow measuring changes in the shape and di-
mension of the heart as well as the spatial distribution of blood flow in the myocardium
[117]. For this purpose, the volume is explored using a set of multiple cross-sections, parallel
and fine in a sufficiently short period such that we have sufficient resolution. The spatial
resolution is 1 mm in the heart. The observation speed is based on the speed of the en-
docardial surface movement in the transverse plane during the maximum systolic ejection
phase. This facilitates the assessment of the exact location, magnitude, and nature of car-
diovascular abnormalities and pathologies, such as coronary artery damage and myocardial
ischemia [118].

A.1.3 Electron Beam Computed Tomography

Here the magnetic deflection of an electron beam is used instead of the mechanical movement
of the X-ray tubes (see Fig. A.1). This is known as Electron Beam Computed Tomography
(ECBT) [119]. The source of the X-rays consists of semicircular tungsten rings. The electron
beams are swept along each of the rings in different instances which generates a fan-shaped
rotating beam. On the other side, multiple detectors record the intensity of the incident
beam.
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A.1 CT Acquisition Techniques

Figure A.1: Electron Beam Computed Tomography system.

The EBCT operates in three modes, in which the acquisition time and spatial resolution
vary. In cinema mode, acquire each scan in 50 ms at a frequency of 17 scans per second for
each anatomical level. In the flow mode, a single specific phase of the cardiac cycle is used.
In volume mode, eight transaxial cuts are scanned by storing the intensity of the X radiation,
using approximately 224 ms to complete this operation. With this technique, images can
be obtained from the apex to the base of the heart. Although the spatial resolution in the
transaxial direction is much lower than in the plane direction. EBCT has been widely used
for the assessment of coronary artery damage [120, 121].

A.1.4 Helical Computed Tomography.

Helical CT is an alternative to the detection and quantification of coronary artery damage.
It is considered a modality of volumetric acquisition in which the translation of the patient
occurs at a constant speed through the equipment during the continuous rotation of the
system consisting of the source and the detector as shown in Figure A.2.
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A. CARDIAC CT IMAGES

Figure A.2: Helical Detector System [122].

In the scanning process, the X-ray lamp describes a spiral path around the patient [123].
The reconstruction of the sequence of the transaxial sections from the data set gives us
the volume that can be visualized as images of conventional transaxial sections or three-
dimensional methods. Although this technique is sometimes considered devoid of important
characteristics such as sensitivity, accuracy, and reproducibility, there are works in which
the calcification of the coronary arteries has been quantified using this technique activated
by the ECG [124].

Although there is a wide variety of medical image acquisition, CT acquisition has high
quality and can compete widely with the quality shown on magnetic resonance imaging
[125].

A.1.5 MultiSlice Computed Tomography (MSCT)

It is part of the most recent developments in helical CT. It is based on the simultaneous
acquisition of more than a single tomographic plane and uses acquisition systems with
multiple detectors (Fig. A.3).

Figure A.3: MSCT Detector System [126]
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A.2 CT Image Reconstruction

In this mode, high spatial resolution can be obtained, that is, sub-millimeter, which
provides a spatial resolution of 20 phases per cardiac cycle for the representation of 3D + t
cardiac images. It can be used for the evaluation of the arterial coronary tree and is of
interest for cardiac quantification and ventricular mass.

In general, achieving the analysis of cardiac images is a difficult task due to several
factors, such as reconstruction artifacts due to rapid movements and the variation in heart
rate. The variation of the gray levels of the images during the cardiac cycle, due to the
propagation of the contrast product and the reconstruction from several cycles. As well
as the same variability that exists among patients. On the other hand, the location and
orientation of the heart in the thorax, the variation of the field of view (FOV) as well as the
variation of the craniocaudal coverage, can introduce difficulties in the analysis [127].

A.2 CT Image Reconstruction

Conventional reconstruction algorithms require that during exploration, the source of light-
ning X and the detector are in the same plane of the cut to be rebuilt. The goal of the
reconstruction algorithm is determine the path of the ray beam geometrically X that passes
through the body. A great variety of mathematical solutions to the reconstruction problem
have been developed, which can be classified in [128]: summation methods, series expansion
methods, transform-based methods, and analytical methods direct.

The most used method for image reconstruction CT is called convolution method or
filtered back projection, which is essentially considered as a method of direct analytical
solution of the equation integral derived from the basic projection formula. In this method,
the blur produced when the projections overlap, it is corrected by filtering them, applying a
convolution process with a function or filter appropriate, before performing back projection
or sum of projections [129]. On the other hand, the algebraic reconstruction technique
(ART) [130] is the most widely used iterative algebraic algorithm, due to its simplicity and
efficiency [131].

A.3 CT Image Display

A convention in CT is to replace the attenuation value calculated for each voxel in the
reconstruction matrix with an integer called CT number, which is expressed in Hounsfield
units (HU). The Hounsfield unit is a relative scale that allows intensities values are linearly
related to the coefficient of water attenuation. In this scale the maximum attenuation it
is represented with white and the minimum attenuation with black. Table A.1 shows the
Hounsfield values in different organs of the human body.
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A. CARDIAC CT IMAGES

Table A.1: Hounsfield unit (HU) for various organs of human body (Adults) [132].

Predefined threshold value Minimum Maximum

Bone 226 3071

Soft Tissue -700 225

Enamel 1553 2850

Compact Bone 662 1988

Spongial Bone 148 661

Muscle Tissue -5 135

Fat Tissue -205 -51

Skin Tissue -718 -177

Table 2 shows the various factors that affect the quality of the CT images. The first
five problems have been solved with the advances achieved in the design of new based
equipment technologies. The last two are basically related to the problem of reconstruction,
which is a highly studied problem. The factors indicated, introduce distortion or error in the
image. Such distortions are called artifacts [133]. Wolbarst describes artifacts as aberrations
that arise at the interface of the structures that are explored with radiological properties
significantly different [134].
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A.3 CT Image Display

Table A.2: Factors that affect the quality of the CT image [114]

Factor Affectation

1) Characteristics of

the initial beam.

When the radiation is small, few photons will affect

the detectors and consequently, the variance of the CT

number between neighboring voxels will be quite large.

2) Energy levels. The increase in technical factors such as mA or kV

reduces image noise, but there is an increase in the

dose of radiation applied to the patient.

3) Number of projec-

tions used.

Increasing the total number of projections improves the

resolution of the projected image in the Radon domain

but increases the radiation dose, which should be kept

as low as possible.

4) Thickness of the

scanned section.

The reduction of the thickness of the cut supposes an

increase of the spatial resolution, thus, when the thick-

ness of the cut is thinner, the image has more definition.

5) X-ray beam scatter-

ing.

Because the photons emitted by the X-ray tube cover

a wide range in the z-direction, the collimators restrict

the flow of radiation to a narrow region. Approximately

99% of the photons emitted are blocked by the collima-

tor.

6) Size of the voxel in

reconstruction.

Reducing the voxel size (to increase the detail) increases

the noise because fewer photons are absorbed in each

voxel.

7) Reconstruction al-

gorithm used.

Image reconstruction is the phase in which the set of

scanned data is processed to produce an image. The

quality of the digital image depends on the algorithm

used in the reconstruction process.

87





Appendix B

3D Optical Flow (Additional

Visualizations)

In this work, we mostly use Paraview software [106, 107, 135] to display the results of
the optical flow obtained. ParaView is an open-source, multi-platform data analysis and
visualization application built on top of VTK with much of the capability of VTK without
requiring them to write programs. We were able to build visualizations to analyze their
data using qualitative and quantitative techniques.

To extend the results of the optical flow obtained, this appendix complements the way
to display them, being able to observe the same result from another perspective. For that
purpose, we used CT volumes computed from 0 to 90% in whole cardiac volumes. For
descriptive purposes, only some representative parts of the said cardiac cycle are shown.
Then, results are displayed for a part of the structure of the cardiac volume, which is the
left ventricle.

In Fig. B.1 we can see the results of a 3D optical flow of two segmented cardiac CT
volumes computed at phases 0-10% (when a contraction movement occurs) using the HOF3D
method. Fig. B.1(a) and Fig. B.1(b) show two phases of the segmented cardiac cycle of the
volume, and Fig. B.1(c) shows the volume and the respective optical flow. In Fig. B.1(e) and
Fig. B.1(f) we appreciate the difference between different ways of displaying flow vectors,
with smaller and larger sampling, respectively. Meanwhile, Fig. B.1(h) only display the
vectors and the corresponding streamlines that occur in the contraction movement for the
cardiac volume used.
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B. 3D OPTICAL FLOW (ADDITIONAL VISUALIZATIONS)

(a) First stage volume (0%) (b) Contraction volume (10%)

(c) Volume and OF (d) Volume, OF streamlines (e) OF less dense

(f) OF more dense (g) OF streamlines (h) Streamlines

Figure B.1: A CT volume showing cardiac contraction movement (0-10%), its optical flow,

and its streamlines.

On the other hand, Fig. B.2 shows the results of the 3D optical flow of two segmented
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cardiac CT volumes computed at phases 40-50% (when a dilation movement occurs) using
the HOF3D method. Fig. B.2(a) and Fig.B.2(b) show two phases of the segmented cardiac
cycle of the volume, and Fig.B.2(c) shows the respective optical flow. In Fig. B.2(e) and
Fig. B.2(f) we appreciate the difference between different ways of displaying flow vectors,
with smaller and larger sampling, respectively. Meanwhile, Fig. B.1(h) only display the
vectors and the corresponding streamlines that occur in the dilation movement for the
cardiac volume used.

Another characteristic that we should not ignore are the different ways in which we can
represent the optical flow vectors of the HOF3D method. In all representations the same
color map was used (blue for smaller magnitude, red for larger magnitude). Again, in Fig.
B.3 and Fig. B.4 we compare, in different ways, the contraction and dilation movement in
the segmented LV. First, in Figures B.3(c) and B.4(c) the optical flow result is represented
using two-bidimensional arrows. Figures B.3(c) and B.4(c) show the field of velocities using
three-dimensional arrows. Meanwhile, the optical flow is shown through boxes in Figures
B.3(e) and B.4(e). Also, we can represent the OF using cones (Figures B.3(f) and B.4(f)),
cylinders (Figures B.3(g) and B.4(g)) and using spheres as it is shown in Figures B.3(h) and
B.4(h).
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B. 3D OPTICAL FLOW (ADDITIONAL VISUALIZATIONS)

(a) First stage volume (40%) (b) Dilation volume (50%)

(c) Volume and OF (d) Volume, OF/streamlines (e) OF less dense

(f) OF more dense (g) OF/streamlines (h) Streamlines

Figure B.2: A CT volume showing cardiac dilatation movement (40-50%), its optical flow,

and its streamlines.
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(a) First stage LV (0%) (b) LV contraction (10%)

(c) 2D Arrows (d) 3D Arrows

(e) Boxes (f) Cones

(g) Cylinders (h) Spheres

Figure B.3: The resulting optical flow estimation, of the cardiac contraction movement in the

LV, represented in different ways.
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B. 3D OPTICAL FLOW (ADDITIONAL VISUALIZATIONS)

(a) First stage LV (40%) (b) LV dilation (50%)

(c) 2D Arrows (d) 3D Arrows

(e) Boxes (f) Cones

(g) Cylinders (h) Spheres

Figure B.4: The resulting optical flow estimation, of the cardiac dilation movement in the LV,

represented in different ways.
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Appendix C

Example of the calculation of Optical Flow

using Lucas and Kanade Method

Below we show the step-by-step example of a result obtained using the Lucas & Kanade
method.

Consider two synthetic images Lt at time t and Lt+1 at time t+1 to determine the optical
flow using the Lucas-Kanade method of a supposed object characterized by the intensity
values 180. Let us use a neighborhood Ω = 3 × 3. Note that the region has moved one
horizontal pixel to the right.

Lt =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 180 180 180 0 0
0 0 180 180 180 0 0
0 0 180 180 180 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




Lt+1 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 180 180 180 0
0 0 0 180 180 180 0
0 0 0 180 180 180 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




According to the Eq. 3.29 it is necessary to calculate the directional derivatives Lx, Ly
and Lt. Directional derivatives Lx and Ly are obtained by filtering the image L with the
following kernel:

Hx =
[
−1 0 1

]
Hy =

[
−1 0 1

] T

The filtering is carried out proceeding row by row with the kernel Hx and column by
column with the kernel Hy. Below is the result of filtering the third row of the image L, for
this, we express both this row and the kernel in the form of a polynomial (p1):

Third row:
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C. EXAMPLE OF OPTICAL FLOW USING LUCAS AND KANADE METHOD

p1 = 0`6 + 0`5 + 180`4 + 180`3 + 180`2 + 0`+ 0

Kernel:

Hx = `2 + 0`− 1

Multiplication:

p1Hs = 0`8 + 0`7 + 180`6 + 180`5 + 0`4 − 180`3 − 180`2 + 0`+ 0

Due to the manipulation of the polynomials, the dimension of the resulting polynomial
has been increased by two. If we want to keep the size of the original image we must remove
the terms of the extreme powers, that is, 0`8 and 0. In this way, the result is the one that
appears in the third row of the resulting derived image Lx shown then.

Lx =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 180 180 0 −180 −180 0
0 180 180 0 −180 −180 0
0 180 180 0 −180 −180 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




;Ly =




0 0 0 0 0 0 0
0 0 180 180 180 0 0
0 0 180 180 180 0 0
0 0 0 0 0 0 0
0 0 −180 −180 −180 0 0
0 0 −180 −180 −180 0 0
0 0 0 0 0 0 0




The time derivative Lt, is calculated by the difference between Lt+1 and Lt, that is,
Lt = Lt+1 − Lt

Lt =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −180 0 0 180 0
0 0 −180 0 0 180 0
0 0 −180 0 0 180 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




After calculating the matrices L2
x, L2

y, LxLy, LtLx, LtLy, the results are shown below:

L2
x = 104




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 3.24 3.24 0 3.24 3.24 0
0 3.24 3.24 0 3.24 3.24 0
0 3.24 3.24 0 3.24 3.24 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




L2
y = 104




0 0 0 0 0 0 0
0 0 3.24 3.24 3.24 0 0
0 0 3.24 3.24 3.24 0 0
0 0 0 0 0 0 0
0 0 3.24 3.24 3.24 0 0
0 0 3.24 3.24 3.24 0 0
0 0 0 0 0 0 0



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LxLy = 104




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 3.24 0 −3.24 0 0
0 0 0 0 0 0 0
0 0 −3.24 0 3.24 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




LtLx = 104




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −3.24 0 0 −3.24 0
0 0 −3.24 0 0 −3.24 0
0 0 −3.24 0 0 −3.24 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




;LtLy = 104




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −3.24 0 0 0 0
0 0 0 0 0 0 0
0 0 3.24 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




Taking each of the previous matrices as a reference and considering the neighborhood
environment Ω = 3 × 3, we will proceed as follows. For each element the eight neighbors
that surround it are considered:

except in the elements of the first and last row and first and last column where only its five
neighbors will be considered:

Now, if the elements are corners, only their three neighbors are considered:

Finishing to illustrate the above, and according to the previous figures where we take as
reference the matrix L2

x. So to obtain the sum associated with the element of the third row
and second column we would have the following submatrix a, whose sum turns out to be
12.96, this value appearing in the same position of the resulting sum matrix. If we want to
obtain the sum of the element of the third row first column we will have the submatrix b,
whose sum turns out to be 6.48. Finally, to obtain the value of the element of the first row
first column we would have the submatrix c with result of the sum 0.
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C. EXAMPLE OF OPTICAL FLOW USING LUCAS AND KANADE METHOD

a = 104




0 0 0
0 3.24 3.24
0 3.24 3.24


 b = 104




0 0
0 3.24
0 3.24


 c = 104

[
0 0
0 0

]

The resulting sum matrices are as follows:

∑
Ω L

2
x = 104




0 0 0 0 0 0 0
3.24 6.48 6.48 6.48 6.48 6.48 3.24
6.48 12.96 12.96 12.96 12.96 12.96 6.48
9.72 19.44 19.44 19.44 19.44 19.44 9.72
6.48 12.96 12.96 12.96 12.96 12.96 6.48
3.24 6.48 6.48 6.48 6.48 6.48 3.24

0 0 0 0 0 0 0




∑
Ω L

2
y = 104




0 3.24 6.48 9.72 6.48 3.24 0
0 6.48 12.96 19.44 12.96 6.48 0
0 6.48 12.96 19.44 12.96 6.48 0
0 6.48 12.96 19.44 12.96 6.48 0
0 6.48 12.96 19.44 12.96 6.48 0
0 6.48 12.96 19.44 12.96 6.48 0
0 3.24 6.48 9.72 6.48 3.24 0




∑
Ω LxLy = 104




0 0 0 0 0 0 0
0 3.24 3.24 0 −3.24 −3.24 0
0 3.24 3.24 0 −3.24 −3.24 0
0 0 0 0 0 0 0
0 −3.24 −3.24 0 3.24 3.24 0
0 −3.24 −3.24 0 3.24 3.24 0
0 0 0 0 0 0 0




∑
Ω LtLx = −104




0 0 0 0 0 0 0
0 3.24 3.24 3.24 3.24 3.24 3.24
0 6.48 6.48 6.48 6.48 6.48 6.48
0 9.72 9.72 9.72 9.72 9.72 9.72
0 6.48 6.48 6.48 6.48 6.48 6.48
0 3.24 3.24 3.24 3.24 3.24 3.24
0 0 0 0 0 0 0




∑
Ω LtLy = 104




0 0 0 0 0 0 0
0 −3.24 −3.24 −3.24 0 0 0
0 −3.24 −3.24 −3.24 0 0 0
0 0 0 0 0 0 0
0 3.24 3.24 3.24 0 0 0
0 3.24 3.24 3.24 0 0 0
0 0 0 0 0 0 0



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With the above matrices, we can solve the Eq. (3.29) for each of the pixels of the
original reference image. The matrices corresponding to the horizontal (U) and vertical (V)
components of the optical flow turn out to be the following:

U = −




0 0 0 0 0 0 0
0 0.33 0.43 0.50 0.57 0.67 1
0 0.43 0.47 0.50 0.53 0.57 1
0 0.50 0.50 0.50 0.50 0.50 1
0 0.43 0.47 0.50 0.53 0.57 1
0 0.33 0.43 0.50 0.57 0.67 1
0 0 0 0 0 0 0




V = −




0 0 0 0 0 0 0
0 0.33 0.14 0.17 0.14 0.33 0
0 0.29 0.13 0.17 0.13 0.29 0
0 0 0 0 0 0 0
0 −0.29 −0.13 −0.17 −0.13 −0.29 0
0 −0.33 −0.14 −0.17 −0.14 −0.33 0
0 0 0 0 0 0 0




These last two matrices are shown in figure 3.5 as the resulting optical flow (fig. 3.5(c))
of the synthetic figures 3.5(a) and 3.5(b).
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Appendix D

Article: 3D Hermite Transform Optical

Flow Estimation in Left Ventricle CT

Sequences

On the next page, we attach the accepted and registered article [55] that relates to this
research.
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Abstract: Heart diseases are the most important causes of death in the world and over the
years, the study of cardiac movement has been carried out mainly in two dimensions, however,
it is important to consider that the deformations due to the movement of the heart occur in a
three-dimensional space. The 3D + t analysis allows to describe most of the motions of the heart,
for example, the twisting motion that takes place on every beat cycle that allows us identifying
abnormalities of the heart walls. Therefore, it is necessary to develop algorithms that help specialists
understand the cardiac movement. In this work, we developed a new approach to determine the
cardiac movement in three dimensions using a differential optical flow approach in which we use the
steered Hermite transform (SHT) which allows us to decompose cardiac volumes taking advantage
of it as a model of the human vision system (HVS). Our proposal was tested in complete cardiac
computed tomography (CT) volumes ( 3D + t), as well as its respective left ventricular segmentation.
The robustness to noise was tested with good results. The evaluation of the results was carried out
through errors in forwarding reconstruction, from the volume at time t to time t + 1 using the optical
flow obtained (interpolation errors). The parameters were tuned extensively. In the case of the 2D
algorithm, the interpolation errors and normalized interpolation errors are very close and below the
values reported in ground truth flows. In the case of the 3D algorithm, the results were compared
with another similar method in 3D and the interpolation errors remained below 0.1. These results of
interpolation errors for complete cardiac volumes and the left ventricle are shown graphically for
clarity. Finally, a series of graphs are observed where the characteristic of contraction and dilation of
the left ventricle is evident through the representation of the 3D optical flow.

Keywords: bio-inspired computing; motion estimation; optical flow; differential method; steered
hermite transform; cardiac CT imaging; algorithms

1. Introduction

Cardiovascular diseases (CVDs) take the lives of 17.9 million people every year, 31% of all
global deaths, this represents the number one cause of death globally, more people die annually
from CVDs than from any other cause [1]. Heart diseases as myocardial infarction, ischemia or
hypertrophy can be characterized by analyzing the dynamics of the heart. During the cardiac cycle
(contraction “systole” and relaxation “diastole” of the heart), the motion wall estimation can be used to
recognize those pathologies. The acquisition of cardiac volumes has allowed quantifying relevant left
ventricular (LV) parameters such as its volume, strain, twist, and desynchrony [2]. Nowadays, there are
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diagnostic imaging techniques to characterize cardiac anatomy and function, as such echocardiography,
cardiac Magnetic Resonance Imaging (MRI), cardiac Computed Tomography (CT), cardiac Positron
Emission Tomography (PET), and coronary angiography [3]. Where the cardiac CT technique has
certain advantages with respect other: a higher resolution that ultrasound, it is more accessible than
MRI and it is a non-invasive a fast imaging option [4]. Cardiac CT allows acquiring three-dimensional
morphological images, with motion artifacts minimizes, and showing the heart chambers and the
coronary arteries at different planes [5]. It is then possible to acquire good quality cardiac CT data of
the heartbeats. Images are acquired overall cardiac cycles to produce the final volume image. Due to
the complexity of the heart motion, it is still hard for the physician to estimate the 3D motion during
the exam, thus, it is necessary to develop computational analysis tools to aid in the diagnosis process.

The human heart is a complex organ in terms of anatomy and physiology, the estimation of its
movement is an important task to understand its mechanism and to assist in the medical diagnosis.
Different image processing techniques can be applied to calculate and to observe the motion of
the heart, for example, the optical flow estimation is a method used in those situations where the
correspondence between the pixels, within an image sequence, is required. The optical flow methods
compute an approximation to the 2D motion in an image sequence from spatiotemporal patterns of
image intensity [6]. Over the years, state-of-the-art algorithms for optical flow can be summarized in
Nagel [7] who identified the common rigorous restrictions [8–10], as well as smoothing restrictions for
the optical flow solution [7,11,12]. On the other hand, Barron et al. [6], categorized the optical flow
in four groups: differential techniques [7–9,11,13,14], region-based matching [15,16], energy-based
methods [17,18] and phase-based techniques [19]. Sun et al. [20] suggested that there have been
few changes in the typical formulation given by Horn and Schunck [11]. Most of research work
on optical flow has been carried out in 2D + t. Many of them claim to be 3D, but they really are
2D + t. Some of them, use 2D projections to obtain a 3D representation, in applications such as
tracking traffic [21], in methods used for quantitative motion estimation of biological structures in
light microscope [22], estimation of 3D geometry and 3D motion using spatiotemporal gradients [23]
or emotion recognition from 3D videos [24]. 2D optical flow estimation has been used in the heart
analysis to identify patients with some diseases, recent works using 2D optical flow cover topics such
as motion estimation in cardiac fluorescence imaging [25], and as the automatic localization of the
heart from cine MRI [26]. Some optical flow methods have used image models inspired by nature,
for example Gabor filters [18,19,27–30]. The optical flow is fundamentally different than tracking
because a complete set of correspondences between the pixel levels in an image (or volume) is obtained.
The optical flow is used to calculate dense trajectories, provides more freedom and information about
the data in which the movement is being estimated, a priori models are not needed and even more,
it can also be used to develop deformable based-model tracking algorithms.

The Hermite transform (HT) has been an image model used to describe the local constraints of
the Horn and Schunck approach. Liu et al. [27] derived a six-parameter non-affine optical flow model,
which is solved with high-order Hermite polynomial filtered data. In [28], Silvan et al. showed that
through a linear mapping of 3D Hermite coefficients by specific projection functions, we could obtain
the Hermite transform coefficients of local projections. Furthermore, Moya et al. [29] used the steered
Hermite coefficients like local motion restrictions, found in current methods, to define a differential
estimation method.

One disadvantage of the 2D cardiac movement analysis is that it is constrained by
geometry-dependent reference directions of deformation (i.e., radial, circumferential, and longitudinal).
In this sense, a 3D cardiac movement analysis may overcome such limitations by referencing the
intrinsic directions of deformation [31]. Thus, to identify altered ventricular function in patients with
CVD, a 3D left ventricular (LV) deformation analysis is more suitable since it represents contributions
from counter-directional, helically arranged fibers shortening and thickening throughout the cardiac
cycle [32]. Research on the measurement of cardiac motion has been commonly made in 2D + t [33] but
this analysis should be done in 3D+ t to enable us to describe the true motions of the heart, for example,

D. ARTICLE: 3D HERMITE TRANSFORM OPTICAL FLOW ESTIMATION IN LEFT
VENTRICLE CT SEQUENCES

104



Sensors 2020, 20, 595 3 of 31

the twisting motion that takes place on every beat cycle. Compared to the 2D analysis, the 3D analysis
has not received much attention, although there are currently working groups analyzing optical flow
in 3D mainly using ultrasound images.

About the estimation of 3D optical flow in general, some works have similarities with at least
one of the aspects of this article, thereby, in [34] they use a 3D model of the human body and motion
captured data to synthesize flow fields and train a convolutional neural network (CNN) to estimate
human flow fields from pairs of images. In [35] a steerable filter-based algorithm is formulated, in its
simplest form, for estimating 3D flow in sequences of volumetric or point-cloud data.

In [36] they present an approach for real-time respiratory motion estimation in image-guided
interventions by employing contrast-invariant feature descriptors. Yoon et al. [37] presented a method
for motion estimation applied to cone-beam CT, their work uses an energy functional, which includes
as terms: a data fidelity, a regularization term, and the optical flow restriction. On the other hand,
Jungwon et al. [38] used the optical flow estimation to calculate the local motion, allowing a 3D
segmentation extension. Their model includes a shape distortion over time term, allowing segmenting
and tracking the lung nodules. In [39], an implementation based on the optical flow algorithm from
Farnebäck (2003) is used to create 3D freehand ultrasound but with reconstructions from 2D without
external tracking, using deep learning.

Several methods have been used to estimate the optical flow of the endocardial wall motion [40].
In [41], a global anatomically constrained affine optical flow tracking was used to track the end-diastole
left ventricle surface throughout the cardiac cycle. For [42], this approach first performs 3D
segmentation at the end-diastolic frame and then performs tracking over the cardiac cycle using
both global (optical flow) and local (block matching) methods. In [43] they claim to have a method for
detecting cardiac flow in echocardiography where the sampling planes representing the mitral inflow
tract and the left ventricle outflow tract are traced by fusing information from multiple cues, including
optical flow, boundary detection, and motion prior. Duan et al. [44], evaluate a correlation-based optical
flow algorithm for tracking endocardial surfaces on three-dimensional ultrasound data, also in [45]
they built a truly 3D mathematical phantom of cardiac tissue and blood in order to validate the optical
flow for quantification of myocardial deformations. Leung et al. [46] track left ventricular borders
in 3D echocardiographic sequences by combining differential optical flow with statistical modeling.
Zhiang et al. [47] developed an optical flow algorithm based on Thirion’s diffusing model [48], also
known as the “demons” algorithm and also described an atlas-based geometry pipeline for constructing
three-dimensional cubic Hermite finite element meshes of the human heart.

In Table 1 we summarized some of the most recent optical flow motion methods used to extract
the motion estimation, either using a 2D + t or 3D + t model, and the differences with the proposed
method. In some cases, a 2D optical flow is initially estimated to map it onto a 3D optical flow.

The present article is an extension of our previous work published in [49]. In that work,
we proposed the three-dimensional optical flow estimation using the 3D steered Hermite transform
and we compared our approach with the 3D Horn-Schunck method. In contrast, the current work is
compared with a multiresolution Horn and Schunck approach reported by Sun et al. [20], moreover,
in this work, we perform a depth analysis about the optimal parameters of the method proposed
and we focused the Section 5.2.1 to analyzed the 3D optical flow estimation of the left ventricle, first,
showing its 3D segmentation and showing the advantages of our approach compared with the 3D
version of the method of Sun et al. [20], and then, showing the 3D motion of the left ventricle in
different cardiac cycle and a whole cardiac cycle, highlighting the corresponding contraction and
relaxation movements present in each phase of the cardiac cycle. It should be mentioned that similar
2D algorithms using the Hermite transform have already been presented in [29,33] but with the main
disadvantage of consuming a lot of computing time.
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Table 1. 2D/3D + t optical flow estimation approaches.

Paper OF Model
(2D/ 3D + t ) Method Application Evaluation Metric

Proposed method 3D
Using the 3D Steered
Hermite Transform

Left ventricle
CT sequences

Interpolation
errors in 3D

Ranjan et al. [34] 3D
A 3D model human

body and a CNN
Estimate human

flow fields End point error

Alexiadis et al. [35] 2D
Minimizing

a cost functional
3D flow

estimation
Mean angular error
on synthetic images

Queiros et al. [41] 3D
Anatomically affine

optical flow
Left ventricle

tracking
Distance and
Dice metrics

Patil et al. [24] 2D Farnebäck
Emotion

recognition
Accuracy

of 6 emotions

Saleh et al. [26] 2D Lucas-Kanade
Heart

Localization
Accuracy

on localizing

Baghaie et al. [30] 2D
Gabor, Schmid and

steerable filters
2D flow

estimation

Angular and
interpolation

errors

Rodriguez et al. [25] 2D Horn & Schunck
Cardiac motion

estimation
Mean square

error

Revising the algorithm from 2D to 3D is not a trivial problem, on top of the additional and
necessary computational complexity, and the importance of describing the 3D cardiac movement.
We have to describe (based on [50]) and calculate a second local orientation angle from the 3D cartesian
coefficients of Hermite to obtain the 3D steered coefficients of Hermite (SHT3D). The data used in this
work require a sensitivity analysis of its parameters and a way to validate the results because there
aren’t annotated volumes. Robust noise tests and calculation of interpolation errors of the volumes
used had been carried out. Left ventricular analysis has been of great importance for this article. In this
way, the results of the optical flow and the segmentation of such cardiac structure were evaluated.

Figure 1 shows an overview of the proposed method according to the procedures explained in
the next sections.

Our approach uses a three-dimensional (3D + t), that is, it uses the data of the cardiac volumes in
a three-dimensional space (x, y, z), which change over time during the entire cardiac cycle; a modified
version of Sun et al. [20], which, in contradistinction of Horn and Schunck’s approach [11], uses an
incremental multiresolution technique to estimate large displacements, where the optical flow at a
coarse level is extrapolated to warp the second image at a finer level, combined with the optical flow
based on the Hermite transform proposed by Moya et al. [29], that uses the several constraints found
in the more accurate optical flow methods. The rest of the paper is organized as follows: Section 2
describes the 3D Hermite transform, Section 3 develops the proposal to obtain 3D optical flow, Section 5
presents the experimental results and discussion of this work, Section 6 is about the results obtained,
and finally, Section 7 concludes the paper and presents future work.
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Figure 1. Overview of the proposed method.

2. The 3D Hermite Transform

The Hermite transform is a bio-inspired image model, it simulates some of the more relevant
properties of the early vision of the human vision system (HVS): the local processing [51] and the
Gaussian derivative model of the receptive fields [50,52,53]. The SHT provides a very efficient
representation of oriented patterns which enables an adaptation to local orientation content at each
window position over the image, indicating the direction of the two-dimensional pattern. The Hermite
transform uses functions that are derivatives of Gaussians, which have wide applications in the field of
computer vision and are a bio-inspired model of the human vision system. In this work, the Hermite
transform serves as a theoretical framework to carry out the estimation of cardiac movement in
our approach.

Gaussian windows in two dimensions have the property of being rotationally symmetric and
spatially separable. Gaussian windows separated by twice the standard deviation, are a good model
found for the receptive fields of perception found in psychological experiments [51]. According to the
psychophysical model of HVS [52,54], through Gaussian windows, we can decompose an image into
several orthogonal polynomials.

An interesting special case of 2D polynomial transforms arises when we have a window function
which is separable i.e., v(x, y) = v(x)v(y)

For a perceptual standpoint and according to the scale-space theory, we will use a Gaussian
window (Figure 2)

v(x, y) =
1

σ
√

π
exp

(
−
(
x2 + y2)

2σ2

)
(1)

The direct Hermite transform in 3D (HT3D), is a particular case of the proposal of Martens [50,53],
where a signal is localized by an analysis window and this information is expanded using polynomials
orthogonal to the window. Polynomials that are orthogonal with respect to the Gaussian window
function are defined by [55], so we would use the window:

v(x, y, z) =
1√

σ
√

π
exp

(
−
(
x2 + y2 + z2)

2σ2

)
(2)
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Figure 2. Gaussian window v(x, y).

Physiological experiments consider using overlapping Gaussian windows separated by twice the
standard deviation σ which are isotropic and that’s why we can establish that σ = σx = σy = σz in
accordance with the overlapping receptive fields of the human visual system [51].

The Hermite cartesian coefficients, Ll,m−l,n−m, are obtained by convolution of the original signal
L(x, y, z) with the analysis filters Dl,m−l,n−m(x, y, z) followed by subsampling on a three-dimensional
mesh S using Equation (3):

Ll,m−l,n−m(x0, y0, z0) = L(x, y, z)⊗ Dl,m−l,n−m(x, y, z), (3)

where l, (m − l) and (n − m) denote the analysis order in x, y and z directions, respectively;
l = 0, 1, . . . , m; m = 0, 1, . . . , n; n = 0, 1, . . . , N; N is the maximum order of the expansion that is
related to the size of a cubic window ofM×M×M, where N ≤ 2 ∗ (M− 1). For large values ofM
the discrete cubic kernel reduces to the 3D Gaussian window.

The three-dimensional Hermite filters can be represented by:

Dl,m−l,n−m(x, y, z) = Gl.m−l,n−m (−x,−y,−z) v2 (−x,−y,−z) (4)

wich are separable because the Gaussian window is rotationally symmetric

Dl,m−l,n−m(x, y, z) = Dl(x)Dm−l(y)Dn−m(z) (5)

and those can be computed by:

Dl(x) =
(−1)l
√

2l l!

1
σ
√

π
Hl

(
x
σ

)
exp

(
− x2

σ2

)
(6)

Gl,m−l,n−m(x, y, z) are a family of polynomials defined as:

Gl,m−l,n−m(x, y, z) =
1√

2nl!(m− l)!(n−m)!
Hl

( x
σ

)
Hm−l

( y
σ

)
Hn−m

( z
σ

)
(7)

where Hl represents the generalized Hermite polynomials given by Rodrigues’ formula [56]

Hl(x) = (−1)l exp(x2)
dl

dxl exp
(
−x2

)
(8)

The recovery process of the original image (inverse Hermite transform in 3D - IHT3D) consists of
interpolating the Hermite coefficients through the proper synthesis filters:

L̂(x, y, z) =
N

∑
n=0

n

∑
m=0

m

∑
l=0

∑
(x0,y0,z0)∈S

Ll,m−l,n−m (x0, y0, z0) Pl,m−l,n−m(x− x0, y− y0, z− z0) (9)

D. ARTICLE: 3D HERMITE TRANSFORM OPTICAL FLOW ESTIMATION IN LEFT
VENTRICLE CT SEQUENCES

108



Sensors 2020, 20, 595 7 of 31

where Pl,m−l,n−m(x, y, z) can be determined by:

Pl,m−l,n−m(x, y, z) =
Gl,m−l,n−m(x, y, z)v2(x, y, z)
∑

(x0,y0,z0)∈S
v2(x− x0, y− y0, z− z0)

(10)

for l = 0, ..., m; m = 0, ..., n and n = 0, ..., N.
From Equation (9), instead of to recover the original volume we obtain an approximation of the

original signal L̂(x, y, z), where the quality of this reconstruction improves by increasing the maximum
order of the expansion N, i.e., the size of the cubic windowM [50]. In terms of the artifacts in the
approximated volume L̂(x, y, z), small values of the cubic windows causes “speckles”, while high
values result in Gibbs-phenomenon-like artifacts such as ringing and blur [57].

Thus, to determined the maximum order or the expansion N and in consequence the size of the
cubic windowM, in [57] van Dijk and Martens determined that using an expansion of the Hermite
transform equal to 3, the reconstructed 2D image will contain the most quantity of AC energy (84%)
according to Parseval’s theorem. In general, with N ≥ 3 we can obtain a good reconstruction and with
much greater values we will obtain a perfect reconstruction of the image.

3D Steered Hermite Transform

The Steered Hermite transform (SHT) is a variant of the HT that adapts to the local orientation
of the image [57], it uses rotated filters which are represented as a linear combination of basis
filters [58]. The orientation property of these steered Hermite filters is due to the symmetric-radial
form of the Gaussian window, thus they can saw as the response of directional derivatives of the
Gaussian function.

On the other hand, the SHT describes local 1D patterns in images into a smaller number of
coefficients that represent the profile of the pattern perpendicular to its orientation [57].

By projecting the 3D Cartesian Hermite coefficients towards the local orientation angles θ and φ

(Figure 3), we obtain the Steered Hermite transform in 3D (SHT3D) as shown in Equation (11):

ll,m−l,n−m,θ,φ(x0, y0, z0) =
n

∑
m=0

m

∑
l=0

(
Ll,m−l,n−m (x0, y0, z0) · gl,m−l (θ) · gm,n−m (φ)

)
(11)

where ll,m−l,n−m,θ,φ(x0, y0, z0) are the 3D steered Hermite coefficients. And

gj,k−j(ϕ) =

√√√√
(

k
j

)(
cosj (ϕ) sink−j (ϕ)

)
(12)

is the cartesian angular function that expresses the directional selectivity of the filter.
To calculate the direction of maximum energy we used the coefficients from Equation (3) and the

phase of the gradient given by Equations (13) and (14):

θ = arctan
(

L010

L100

)
(13)

φ = arctan




√
(L100)

2 + (L010)
2

L001


 (14)

where [L1,0,0, L0,1,0, L0,0,1] (x, y, z)> are a good approximation of the 3D gradient through the Cartesian
Hermite coefficients.
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Figure 3. Cartesian coordinates (continuous line), steered coordinates (dotted line) and the angles θ

and φ.

In order to graphically represent the indexes of the 3D Cartesian Hermite coefficients, Figure 4
shows the distribution of order two (N = 2) in each direction, in this case 27 coefficients are obtained
for each voxel of a volume.

Figure 4. Distribution of the index of Cartesian Hermite coefficients of a second-order voxel.

Figure 5 shows an example of some 3D Steered Hermite coefficients for the left ventricle of a
cardiac CT volume, according to Equation (11), where we can see the steered coefficients l000, l100, l010

and l001.

Figure 5. Ensemble of some Steered Hermite coefficients of a cardiac CT volume.
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3. Optical Flow using the Hermite Transform

One of the main disadvantages of the classic method of Horn and Schunck [11] is its low accuracy,
and because of this, we use a modified version of the method proposed by Sun et al. [20], that
solves such obstacle using a multiresolution approach to estimate large displacements. In addition,
this modified version is combined using the Hermite Transform with the advantage that it is based on
a visual biological model of the images. Consequently, the local constraints of Horn and Schunck are
defined using the zero order Hermite coefficient, and the Steered Hermite coefficients are used as high
order local descriptors of the visual characteristics of the volumes.

Model

Our approach is based on the multiresolution Horn and Schunck approach reported by
Sun et al. [20], it uses the SHT3D to expand the constant intensity constraint and adds the Steered
Hermite coefficients constraint as shown in Equation (15):

[
L0 (x + w)− L0 (x)

]
+ γ

[
N

∑
n=1

ln,θ,φ (x + w)−
N

∑
n=1

ln,θ,φ (x)

]
= 0 (15)

where L (x) is a volume sequence, with x = (x, y, z, t)T representing the voxel location within a domain
V; w := (u, v, w, 1)T is a vector that defines the displacement u, v and w of each voxel at position
(x, y, z) from time t to time (t + 1) in the directions x, y and z respectively; and γ is a weight parameter
that controls the contribution of the high order descriptors. Using the HT optical flow restriction of
Equation (15) we defined an energy functional that includes a smooth term to overcome the aperture
problem [11] as follows:

E =

∫

V



[

L0(x)0 − L0(x + w + dw)1

]2

+

γ

[
N

∑
n=1

{
ln,θ,φ(x)0 − ln,θ,φ(x + w + dw)1

}]2

+

α

∣∣∣∣∣∇ (w + dw)

∣∣∣∣∣

2

 dx

(16)

where α is the weight value of the smoothness term that can get information from neighbors in regions
where the intensity gradient is zero (uniform regions of flow).

To simplify the notation L000 (x) = L0 (x), L∗(x)∗ is the Cartesian Hermite coefficient ∗ at time t
and L∗(x)1 is the Cartesian Hermite coefficient ∗ at time t + 1.

Considering linear displacements, the constant intensity term of Equation (15) can be expanded
by a Taylor series as shown:

L0(x)0 − L0(x + w + dw)1 ≈L0(x)0 − L0(x + w)1−

du
∂L0(x + w)1

∂x
− dv

∂L0(x + w)1
∂y

− dw
∂L0(x + w)1

∂z

(17)

A particular 1D cartesian Hermite coefficient can be obtained with the inner product between the
signal located by the Gaussian window and the corresponding Hermite polynomial as follows [29]:

Lk =
〈

L(x), Hk

( x
σ

)〉
(18)

Therefore, the spatial derivatives of the Hermite coefficients can be expressed as:

Lk =
∂kL(x)

∂kx
(19)
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for example, we can get the following simplified derivatives for x:

L100 (x + w) = L100(x)w =
∂L000(x + w)1

∂x
(20)

ln,θ,φ,(m+1)(x)w =
∂ln,θ,φ(x + w)1

∂x
(21)

also, we can define the temporal differences as:

L0(x)t = L0(x + w)1 − L0(x)0 (22)

ln,θ,φ(x)t = ln,θ,φ(x)1 − ln,θ,φ(x + w)0 (23)

then (17) can be written as

L0(x)0 − L0(x + w + dw)1 ≈ −
[

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

]
(24)

Finally, we can redefine the 3D Horn-Hermite optical flow (HOF3D) functional from Equation (16)
as:

E (w) =
∫

V

(
−
[

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

]2

−γ
N
∑

n=1

[
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

]2

+ α
∣∣∣∇ (w + dw)

∣∣∣
2
)

dx

(25)

Minimizing E (w) with respect to u, v and w we obtain the following equation system:

−2
(

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L100(x)w

−2γ
N
∑

n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(m+1)(x)w

+2α
∣∣∣∇ (u + du)

∣∣∣ = 0

(26)

−2
(

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L010(x)w

−2γ
N
∑

n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(n+1)(x)w

+2α
∣∣∣∇ (v + dv)

∣∣∣ = 0

(27)

−2
(

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L001(x)w

−2γ
N
∑

n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(l+1)(x)w

+2α
∣∣∣∇ (w + dw)

∣∣∣ = 0

(28)

Rewriting the equation system of (26), (27) and (28) in matrix form we get:




A1 A2 A3

A4 A5 A6

A7 A8 A9







du
dv
dw


 =




b1

b2

b3


 (29)

where

A1 = L2
100(x)w + γ

N
∑

n=1
l2
n,θ,φ,(m+1)(x)w

A2 = L100(x)wL010(x)w + γ
N
∑

n=1
ln,θ,φ,(m+1)(x)w · ln,θ,φ,(n+1)(x)w
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A3 = L100(x)wL001(x)w + γ
N
∑

n=1
ln,θ,φ,(n+1)(x)w · ln,θ,φ,(l+1)(x)w

b1 = L0(x)tL100(x)w + γ
N
∑

n=1
ln,θ,φ(x)t · ln,θ,φ,(m+1)(x)w − α

∣∣∣∇ (u + du)
∣∣∣

A4 = L010(x)wL100(x)w + γ
N
∑

n=1
ln,θ,φ,(n+1)(x)w · ln,θ,φ,(m+1)(x)w

A5 = L2
010(x)w + γ

N
∑

n=1
l2
n,θ,φ,(n+1)(x)w

A6 = L010(x)wL001(x)w + γ
N
∑

n=1
ln,θ,φ,(m+1)(x)w · ln,θ,φ,(l+1)(x)w

b2 = L0(x)tL010(x)w + γ
N
∑

n=1
ln,θ,φ(x)t · ln,θ,φ,(n+1)(x)w − α

∣∣∣∇ (v + dv)
∣∣∣

A7 = L001(x)wL100(x)w + γ
N
∑

n=1
ln,θ,φ,(l+1)(x)w · ln,θ,φ,(m+1)(x)w

A8 = L001(x)wL010(x)w + γ
N
∑

n=1
ln,θ,φ,(l+1)(x)w · ln,θ,φ,(n+1)(x)w

A9 = L2
001(x)w + γ

N
∑

n=1
l2
n,θ,φ,(l+1)(x)w

b3 = L0(x)tL001(x)w + γ
N
∑

n=1
ln,θ,φ(x)t · ln,θ,φ,(l+1)(x)w − α

∣∣∣∇ (w + dw)
∣∣∣

Finally, in each lower-resolution level, the increment dw is estimated and, w is updated in the
next high-resolution level.

In this work, we take advantage of the characteristics of the Hermite multiresolution transform,
which makes it possible to improve spatial frequency locations and facilitate the analysis of local
orientations at different scales [59,60]. Likewise, the HOF3D functional of Equation (25) can calculate
small displacements du, dv, dw and propagate the solution to higher resolution levels. For each
resolution level, an iterative method for solving linear equations was carried out.

4. Materials and Overview of the Method

4.1. Dataset Description

The dataset used in this work consists of two cardiac computed tomography studies (3D + t).
The CT volumes were obtained in a 16-slice tomograph (at 120 kVp @ 900 mA) built with 128 detectors.
The dimensions of each volume are 512× 512× 10 at 12 bits per pixel. The clinical protocol starts
by injected a contrast agent to the patient and the study is carried out in synchrony with the
electrocardiogram (ECG) signal. A cardiac CT volume used is shown in Figure 6.

It should be noted that the acquisition of cardiac images are performed in connection with the
electrocardiogram and are acquired with the patient in respiratory apnea to avoid artifice by movement.

4.2. Ethical Approval

The Research Committee of Engineering Faculty of Universidad Nacional Autonóma de México
approved this research protocol. This study was conducted in accordance with the Declaration of
Helsinki.
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Figure 6. Cardiac CT images, slices and volume.

4.3. Overview of the Method

In Figure 7 we show an overview of our proposal. First, we have the cardiac volume slices,
belonging to two consecutive steps of the cardiac cycle considered, which make up volume 1 and
volume 2 respectively; for each volume, we obtain a multiresolution expansion related to the coefficients
of the steered Hermite transform. Such coefficients are used to carry out the calculation of the optical
fl ow within the mentioned HOF3D approach. Once the vector field belonging to the optical fl ow over
the whole cardiac volume was obtained, we used the portion of the volume related to the segmented
left ventricle to finally obtain only the masked vectors with this part of the cardiac volume.

OPTICAL FLOW APPROACH

SLICES OF VOLUME 1

SLICES OF VOLUME 2

VOLUME 1

VOLUME 2

OPTICAL FLOW OVER THE 
ENTIRE HEART

OPTICAL FLOW OF THE LEFT 
VENTRICLE

STEERED HERMITE 
COEFFICIENTS  VOLUME 1

STEERED HERMITE 
COEFFICIENTS VOLUME 2

MULTI-RESOLUTION 
EXPANSION

MULTI-RESOLUTION 
EXPANSION

LEFT VENTRICLE 
SEGMENTATION

Figure 7. Procedure to implement the HOF3D approach.
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5. Experiments and Results

This section presents the results of the estimation of the optical flow with the proposed method.
In our previous work [49], we use some synthetic volumes to check the expected results, in this
work, dozens of cardiac volumes corresponding to medical CT images, as well as their respective
segmentation of the left ventricle, were used.

The section is divided into two stages, a validation stage and a stage of 3D optical flow results
of the left ventricle. In the first stage, we performed a validation of our approach, where the
optimal parameters both in the Hermite transform and the 3D optical flow proposal were determined.
Then, the optical flow results in 2D were compared with a set of images ground-truth and a pair
of algorithms of optical flow. The optical flow results in 3D were compared with the modified and
multiresolution method of Horn and Schunck [20]. Next, an analysis of robustness to noise was
performed. In the second stage, the 3D optical flow results in the left ventricle, which was previously
segmented, are shown and the corresponding errors of interpolation are evaluated.

The results obtained on a PC Intel(R) Core(TM) i7-4710HQ CPU running at 2.50 GHz with 16 GB
of RAM have an algorithm time-consuming of 4.8 h on 4 cores, nevertheless, this can be reduced to
an average of 4.5 min with parallel computing and additional cores. The optical flow in our method
has good scalability, close to linear speedup, which allows us to significantly reduce processing time.
The results concerning processing time are consistent with those reported in [61]. They tested two
differential algorithms, Lucas-Kanade and Horn-Schunck in 3D + t, as we have also done.

5.1. Validation

In absence of a 3D motion ground-truth in CT images, which is used to evaluate the accuracy
of the optical flow estimation, we validate our proposal in two different ways, first, by calculating a
forward reconstruction using the volume L (x, t) at time t and the 3D optical flow obtained and
second, comparing our 2D approach with other methods and using a 2D dataset with known
ground-truth. In both cases, we used the interpolation error, which is defined as the root mean-square
(RMS) difference between the known volume L (x, t + 1) at time t + 1 and the reconstructed volume
LGT (x, t + 1), is calculated [6,19] as we showed in the Equation (30):

IE3D =

[
1
M ∑

x

(
L(x, t + 1)− LGT (x, t + 1)

)2
] 1

2

(30)

where M is the number of voxels.
We also computed a second measure of interpolation performance, the normalized interpolation

error between an interpolated volume L(x, t + 1) and a ground-truth volume LGT (x, t + 1), which is
given as in [62]:

NE3D =


 1

M ∑
x

(
L(x, t + 1)− LGT (x, t + 1)

)2

∥∥∥∇LGT (x, t + 1)
∥∥∥

2
+ ε




1
2

(31)

that represents a gradient-normalized RMS error, where ε is a scaling constant (e.g., ε = 1).
The interpolation errors are useful to know how good the calculation of the optical flow is

when there is no available ground truth flow, the normalized interpolation error has the additional
advantage of being normalized with respect to the magnitudes of the intensity changes that the volume
of the reference.

5.1.1. Hermite Transform Parameter Tuning

Although the constants, values and weight parameters are difficult to select, in Section 2,
we present which are the suitable values to the cubic window and in consequence, the maximum
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expansion order N of the Hermite transform, thus, experimentally found that we achieved a good
estimation of optical flow results (NE3D < 0.1) and avoiding blur artifacts for our dataset with: a
cubic window of 5× 5× 5 pixels, i.e., a maximum expansion order of N = 4 for the SHT and 5 levels
of multiresolution decomposition for the SHT. Below these values, we would obtain errors 2.5 to
3 times larger than those reported. It should be noted that this strategy allows us to handle large
displacements, which occur from one step to another in a cardiac cycle. On the other hand, the number
of iterations greater than 50 is the one that gives us the required numerical convergence according to
our tests.

5.1.2. Optical Flow Parameter Sensitivity Analysis

As a first experiment, we perform a parameter sensitivity analysis to find the best values.
Weight parameter γ of the HOF3D functional Equation (16) is used to weigh the contribution of
the high order Hermite coefficients in those regions where the intensity does not remain constant
from one volume to another. On the other hand, the softness parameter α can help recover the
motion information from their neighbors in those regions where the gradient is zero, e.g., intensity
homogeneous regions. It is carried out through averages from structures with high frequencies,
e.g., edges and textures. Large values of α give us a smoother flow but this is relatively less important
at locations with high image gradients than elsewhere.

For determining the values of the smoothness weight α and the weight parameter γ, first we
compute the 3D optical flow over the cardiac CT sequences and then we analyze the behavior of the
Interpolation Error (IE) and Normalized Interpolation Error (NE) metrics.

From Figure 8, the curves show that the best results for IE and NE are for α ≥ 10 and γ ≥ 100
(bottom of the mesh).

(a) (b)

Figure 8. Interpolation Error (a) and Normalized Interpolation Error (b), for parameter
sensitivity analysis.

5.1.3. 2D Interpolation Errors

As we mentioned before, because we do not have a set of 3D optical flow to compare our results,
as second experiment, we evaluate the performance of our 2D proposal, through a collection of
well-known images. These images and their respective ground-truth optical flows can be found
through [63], which still have great use and relevance today. They defined sequences with non-rigid
movements where the optical flow was determined following a hidden fluorescent texture.

Table 2 shows the calculation of the interpolation error (Equation (30)) but in 2D. We choose a set of
five data. HOF2D is the Horn-Hermite optical flow in 2D approach. We compare our HOF2D algorithm,
along with another pair of algorithms and the ground-truth flows provided in [63]. The parameters
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used for HOF2D are the same as those described in Sections 5.1.1 and 5.1.2, N = 4, 5 levels of
multiresolution decomposition for the SHT in 2D, α ≥ 10 and γ ≥ 100, except that the necessary
iterations, which can range from 20, to provide the best results. The best results are highlighted in bold
and, although our approach is not always the best, it is close to the best results in each case.

Table 2. Interpolation Error Calculation.

Ground Truth Images Ground Truth Flow Horn-Schunck [64] Farnebäck [64] HOF2D

dimetrodon 2.641 8.589 3.127 2.865
groove2 10.439 23.492 8.831 10.353
groove3 19.401 32.351 15.703 17.460
urban3 9.870 17.727 9.489 8.122
venus 8.813 20.659 5.847 8.835

With the same set of data and algorithms as Table 2, Table 3 presents the calculation of the
normalized interpolation error in 2D based on (Equation (31)). The best performances are highlighted in
bold and most of them are in the HOF2D column. We must remember that the normalized interpolation
error is is a weighted RMS average of the pixels, wich use the image gradient as a weight factor.
The normalized interpolation error compensates for the difference between the interpolation errors
and the flow obtained because it gives less weight to the discontinuous regions and more weight to
the regions without texture.

Table 3. Normal Interpolation Error Calculation.

Ground Truth Images Ground Truth Flow Horn-Schunck [64] Farnebäck [64] HOF2D

dimetrodon 0.207 0.546 0.382 0.270
groove2 0.418 0.860 0.385 0.329
groove3 0.990 1.622 0.626 0.532
urban3 2.325 2.452 1.342 0.700
venus 0.801 1.376 0.434 0.348

5.1.4. 3D Interpolation Errors

To evaluate the accuracy of the HOF3D method, we compared it with the 3D variant of the
method of Sun et al. [20] We calculated the corresponding interpolation errors (IE and NE) using both
proposals. Figure 9 presents a diagram of the steps to calculate the interpolation errors.

VOLUME AT TIME t+1

VOLUME AT TIME t

OPTICAL FLOW INTERPOLATED VOLUME

OPTICAL FLOW 
METHOD

INTERPOLATION

INTERPOLATION ERROR

INTERPOLATION ERROR 
DISPLAY

Figure 9. Steps to calculate and visualize the Interpolation Error.
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Figure 10 shows a cardiac CT volume where we can observe the original volume (Figure 10a),
the interpolated volume (Figure 10b), the difference between the original volume and its interpolated
result (Figure 10c) using the 3D variant of the method of Sun et al. [20]. The results were compared
with a modified version of the Sun method in 3D and for different noise levels. Both algorithms used
were optimized and the evaluation of the results was carried out by means of a forward reconstruction,
from the volume at time t to time t + 1, through the 3D optical flow obtained. The interpolation error
display is a visualization of the terms within the summation in Equation (31).

(a) Original Volume (b) Volume Interpolated using the Horn
and Schunck method

(c) Error between Original and Interpolated Volumes using
the Horn and Schunck method

Figure 10. A cardiac CT volume showing the original volume, the interpolated volume using the
3D variant of the method of Sun et al. [20] and the error between the original volume and its
interpolated result.

On the other hand, in order to compare our method, in Figure 11 we show the same cardiac CT
volume as in Figure 10 where, again, we can observe the original volume (Figure 11a), the interpolated
volume (Figure 11b), the difference between the original volume and its interpolated result (Figure 11c)
using our HOF3D method.

In Figure 12, we show the interpolation errors obtained using the Sun et al. [20] and the HOF3D
methods through the whole cardiac cycle (0% to 90%) for two CT sequences. In both sequences, we can
observe the beginning of the increase in the interpolation error from 20% to 30%, when the contraction
movement occurs and from 50% to 60% of the cardiac cycle, in full dilation movement. This is where
we have a couple of cardiac movements of greater magnitude.

We can observe in the plots of Figure 12, both for the interpolation error and the normalized
interpolation error, that even in each of the stages of the complete cardiac cycle, the HOF3D method
gives better results and lower errors are obtained.
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(a) Original Volume (b) Volume Interpolated using the
HOF3D method

(c) Error between Original and Interpolated Volumes
using HOF3D method

Figure 11. A cardiac CT volume showing the original volume, the Interpolated Volume using the
HOF3D method and the error between the original volume and its interpolated result.
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(a) Interpolation Error
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(b) Normalized Interpolation Error

Figure 12. Interpolation Error and Normalized Interpolation Error. For the 3D Horn-Schunck
(red dashed line) and Hermite Optical Flow in 3D (blue solid line) methods. From sequences of
cardiac CT volumes.
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5.1.5. Robustness to Noise

As final experiment, we carried out an analysis of robustness to noise of the proposed method.
For this, we added Gaussian noise, with different standard deviations (σn = 0, 5, 10, 15, 20, 30) and zero
mean, to the cardiac volumes. In Figure 13 we can see one of the volumes used for the test, with three
different values of σn.

(a) Volume without noise (b) Volume with noise, (σn = 10) (c) Volume with noise, (σn = 30)

Figure 13. Volume with pseudo-random noise.

Table 4 shows the interpolation error and the normalized interpolation error for the noise levels
given for the HOF3D method, using optimized parameters α = 10, γ = 100 and N = 4. We can observe
that although the standard deviation of the introduced noise grows, the interpolation error and the
normalized interpolation error remain small, this is because the coefficient of order 0 of the Hermite
transform L000 (x) (Equations (3), (11) and (16)), contains a smoothed version of the original volume
and this DC coefficient allows to reduce any component of high-frequency noise, additionally, in our
approach, the steered Hermite coefficients use Gaussian derivatives, which incorporate information
from neighboring voxels in the structure of cardiac volumes, which makes the proposed algorithm
more robust to this type of noise [13,65]. By the other hand, it should be noted that although the errors
are low, the addition of noise represents an increase in the interpolation error of 71.4% and for the
normalized interpolation error of 80%, comparing one test without noise and the other test with noise
of σn = 30.

Table 4. Interpolation Error and Normalized Interpolation Error computed for a cardiac volume with
several standard deviations σn of Gaussian noise.

Gaussian Noise (σn) Interpolation Error Normalized Interpolation Error

0 0.03190 0.01696
5 0.03499 0.01954
10 0.03778 0.02168
15 0.04295 0.02563
20 0.04597 0.02779
30 0.05468 0.03387

5.2. 3D Optical Flow Results

In this section, we show the 3D optical flow estimation computed on CT volumes for a whole
cardiac cycle. For descriptive purposes, only some representative parts of such a cardiac cycle are
shown. In most cases, the display of the magnitudes of the optical flows was exaggerated in order to
observe the qualitative characteristics of the movements.

Figure 14 shows the results of a 3D Optical flow of two cardiac CT volumes computed at
phases 20-30% (when a contraction movement occurs) using the HOF3D method. Figure 14a,b
show two phases of the cardiac cycle of volume (for better viewing a cut of that volume was made).
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Figure 14c,d show the same phases of volume along with the three-dimensional optical flow field.
Finally, Figure 14e,f illustrate only the optical flow.

(a) Volume - 20% (b) Volume - 30%

(c) Volume and Optical Flow - 20% (d) Volume and Optical Flow - 30%

(e) Only Optical Flow - 20% (f) Only Optical Flow - 30%

Figure 14. Results of 3D Optical Flow of a segmented cardiac CT volume computed at phases 20–30%.

Figure 15 presents the results of a 3D Optical flow of two cardiac CT volumes computed at phases
50–60% (when a dilation movement occurs) using the HOF3D method. Figure 15a,b show two phases
of the cardiac cycle of volume (for better viewing a cut that volume was made). Figure 15c,d show the
same phases of volume along with the three-dimensional optical flow field. Also, Figure 15e,f present
only the optical flow.
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(a) Volume - 50% (b) Volume - 60%

(c) Volume and Optical Flow - 50% (d) Volume and Optical Flow - 60%

(e) Only Optical Flow - 50% (f) Only Optical Flow - 60%

Figure 15. Results of 3D Optical Flow of a segmented cardiac CT volume computed at phases 50–60%.

5.2.1. 3D Optical Flow Estimation of the Left Ventricle

The importance of the study of the left ventricle has been established extensively. The left ventricle
adapts, for example, to arterial hypertension and this leads to the development of different geometric
patterns [66]. For a better understanding of some diseases, the movement of the left ventricle has
been studied during the cardiac cycle in normal subjects and patients with coronary arterial disease,
mitral stenosis or atrial septal defect [67]. Works describing the global and local movement have
been presented, focusing mainly on the left ventricle [68]. To present the optical flow estimation of
the left ventricle, first, a segmentation of it is required. We use the level sets method of Osher and
Sethian [69]. This method is a powerful, suitable and flexible approach to segmentation of CT volumes
where there aren’t well-defined boundaries. The level sets method was applied to the CT volumes
using the Seg3D tool [70]. For this tool, a seed volume is used to find similar regions to the original
one. Then, the segmented region will be expanded to surrounding pixels that match the statistics of
the original seeded area. The spread may also be retracted in some instances if the seeded areas do not
match certain criteria (edge weight and threshold range). Until the convergence, the algorithm will be
expanded (or contracted) to the segmented region.

Figure 16 shows an example of the segmentations obtained (colored region) in the context of their
location within the whole cardiac volume.
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Figure 16. A whole cardiac volume and its left ventricle segmented.

Similarly to the work done in Section 5.1.4, and if we focus on the phase where a contraction
movement occurs for the left ventricle, we can observe the interpolation error for a left ventricle
segmented showing the original volume in Figure 17a, the interpolated volume using the 3D variant of
the method of Sun et al. [20] are in Figure 17b, the error between the original volume and this
interpolated result, in Figure 17d. Also, the optical flow is calculated by the HOF3D method.
Then, the interpolation of the left ventricle is obtained, which is shown in Figure 17c. The difference
between the original volume and that interpolated volume can be observed in Figure 17e.

(a) Original LV- 30%

(b) LV Interpolated using the 3D method of Sun et al. [20] (c) LV Interpolated using the HOF3D method

(d) Error using the 3D method of Sun et al. [20] (e) Error using the HOF3D method

Figure 17. Interpolation Errors for the left ventricle at 30%.
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Another example of interest, where there is more interpolation error, is the 60% of cardiac phase,
it is also when a dilatation movement occurs for the left ventricle. We can observe the interpolation
error for a left ventricle segmented for the original volume in Figure 18a, the interpolated volume
using the 3D method of Sun et al. [20] in Figure 18b, the error between the original volume and
this interpolated result in Figure 18d. Also, the optical flow is calculated by the HOF3D method.
Then, the interpolation of the left ventricle is obtained and shown in Figure 18c. The difference
between the original volume and that interpolated volume can be observed in Figure 18e.

(a) Original LV- 60%

(b)LV Interpolated using the 3D method of Sun et al. [20] (c) LV Interpolated using the HOF3D
method

(d) Error using the 3D method of Sun et al. [20] (e) Error using the HOF3D method

Figure 18. Interpolation Errors for the left ventricle at 60%.

Figure 19 contains the results of the normalized interpolation error with the Sun et al. [20]
method. In Figure 19a we present a set of volumes from 30% to 70% of the cardiac cycle, in Figure 19b,
the interpolated volumes corresponding to each stage of the cardiac cycle are shown. Figure 19c
graphically displays the normalized interpolation error for the volumes of sections a and b respectively.

Figure 20 contains the results of the normalized interpolation error with the HOF3D method.
Figure 20a presents a set of volumes from 30% to 70% of the cardiac cycle, Figure 20b shows the
interpolated volumes corresponding to each stage of the cardiac cycle. Figure 20c graphically displays
the normalized interpolation error for the volumes of sections a and b respectively.
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(a) Original Volumes

(b) Interpolated Volumes

(c) Normalized Interpolation Error

Figure 19. Left Ventricle from 30% to 70% of the cardiac cycle and the results with 3D method of
Sun et al. [20].

(a) Original Volumes

(b) Interpolated Volumes

(c) Normalized Interpolation Error (HOF3D method)

Figure 20. Left Ventricle from 30% to 70% of the cardiac cycle and the results with HOF3D method.
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Figures 21 and 22 present the results of a 3D Optical flow of two segmented cardiac CT volumes,
showing a contraction and relaxation movement respectively using the HOF3D method. Figure 21a,c
are two phases of the segmented cardiac cycle of volume computed at phases 20–30%, the same way as
Figure 22a,c but in phases 40–50%. Figure 21b,d, Figure 22b,d show only their respective optical flows.

(a) volume - 20% (b) Only flow - 20%

(c) volume - 30% (d) Only flow - 30%

Figure 21. Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle) computed at
phases 20–30% (contraction movement).

(a) volume - 40% (b) Only flow - 40%

(c) volume - 50% (d) Only flow - 50%

Figure 22. Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle) computed at
phases 40–50% (relaxation movement).
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Figure 23 contains the results corresponding to the optical flow calculated with the HOF3D
method. We can observe a set of left ventricle volumes from 10% to 100% of the cardiac cycle.

(a) 10–20% (b) 20–30% (c) 30–40% (d) 40–50% (e) 50–60%

(f) 60–70% (g) 70–80% (h) 80–90% (i) 90–100%

Figure 23. Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle–short axis).

6. Discussion

In this section we will talk about the results obtained, their interpretation and the level of
relevance reached.

In the first group of results (Figures 14 and 15), the entire cardiac volume and its respective
calculated optical flows can be observed in context. The best way to display this 3D flow has been
attempted. Despite a large number of 3D arrows of different sizes, it is possible to observe either the
contraction pattern (Figure 14) or the expansion pattern (Figure 15). The optical flow is shown using of
Paraview [71,72] whose style of representing the vectors of the optical flow is similar to the previous
works in [73] and recently in [74].

We focused on estimating the movement in one of the most important structural parts of
the heart, the left ventricle. To achieve this goal we have segmented that heart region, which is
shown in Figure 16. We can see examples in [75,76] of the deployment of the three-dimensional
vectors of the obtained optical flow. However, in all the remaining figures within the set of results
obtained, rather than deploying the obtained optical flow vectors, we decided to show graphically,
a measure of the performance achieved in the estimation of cardiac movement, specifically in the left
ventricle. The relevance of the figures thus represented is that the errors obtained can be observed
graphically, first in the interpolated volumes (Figures 17 and 18, items b and c), where we can compare
a similar and known method with the proposed one. In the same figures mentioned, the interpolation
error is observed through of a three-dimensional representation that matches the analyzed volumes
(Figures 17 and 18, items d and e). In those figures, the biggest errors are the ones represented in red
and the smallest tend to blue.

We observe a more extensive sequence of of the cardiac cycle (five phases) in order to provide
greater clarity. In this selection of phases of the cardiac cycle we can observe the movement of
contraction and dilatation in the left ventricle. In Figures 19 and 20 in part a, we observe the original
volumes. In Figures 19 and 20 part b, we see the interpolated volumes with a comparison between
the two methods. In Figures 19 and 20 item c, we see a graphical representation of the normalized
interpolation error.

Finally, Figures 21 and 22 present more explicitly the segmented left ventricle and their respective
optical flows during the contraction and relaxation movements. Figure 23 shows the segmented
volumes from the short view concerning all phases of the cardiac cycle (from 10% to 100%).
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Motion vectors were exaggerated for clarity. In the field of medical images, and in addition to
the cardiac movement, this approach can be used with benefit in pulmonary movement. In general,
in applications where we have three-dimensional data, such as cardiac and pulmonary medical images,
stereoscopic images and video, 3D meteorological data, volumes formed by point clouds in general.
Where we want to characterize how they evolve over time. For future work, there is a great margin
of opportunity to improve the times in the calculations of the Hermite transform, for which a faster
version was not used. For the energy functional used, some other local and global characteristics can
be incorporated that allow us to further reduce the uncertainties obtained.

7. Conclusions

In this paper, we have proposed a method to estimate the optical flow completely in 3D + t,
that is, in a three-dimensional space (x, y, z) plus time, because the analysis of two-dimensional motion
restricts all possible deformations in the different directions of reference (i.e., radial, circumferential
and longitudinal). Therefore, the three-dimensional motion analysis can overcome such limitations by
describing better all directions of deformations.

Our approximation of motion estimation has included the well-known differential method of
Horn and Schunck with the additional information provided by the coefficients of the Steered Hermite
transform used within the restriction terms of the function to be minimized. The Steered Hermite
transform is a model that incorporates some important properties of the first stages of the human visual
system, such as the overlapping Gaussian receptive fields, the Gaussian derivative model of early
vision [52], and a multiresolution analysis [60,77]. This proposed algorithm is more robust to noise due
to the advantage represented by the analysis of the spatial scale provided by the Hermite transform
itself that can be determined for objects at different spatial dimensions. Additionally, and due to the
calculation of high order Gaussian derivatives, the estimation of the movement can be improved by
including structures related to them.

We evaluated the results obtained using two measurements on the interpolation errors, with these
errors we also adjusted the most appropriate parameters in the different cardiac sets considered.
We observed that interpolation errors increased around the phases where movements occur most
rapidly (the contraction phase). We were able to verify that the proposed method (HOF3D) has lower
interpolation errors compared to the modified 3D method of Sun et al. [20].

We isolated the three-dimensional flow vectors corresponding to the left ventricle, over the
entire cardiac cycle. We calculated the interpolation errors obtained with our method, comparing
the results with the other method already mentioned. The results were plotted graphically, showing
that the largest errors were colored in red, as shown in the figures. Again, our method has minor
interpolation errors.

Our proposal also aims to contribute to a better understanding of cardiac movements and,
with this, to make feasible the detection of some possible diseases. We consider that because the cardiac
organ is immersed in a three-dimensional space, the best way to represent its movements should be
in the same three-dimensional space. Future work may focus on recognizing the cardiac movement
patterns related to the vectors obtained in our three-dimensional optical flow approximation.
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Abbreviations

The following abbreviations are used in this manuscript:

3D + t Three-dimensional space plus time
2D + t Two-dimensional space plus time
HT Hermite transform
SHT Steered Hermite transform
HVS Human vision system
CT Computed tomography
CVD Cardiovascular diseases
LV Left ventricular
MRI Magnetic resonance imaging
HT3D Hermite transform in 3D
IHT3D Inverse Hermite transform in 3D
SHT3D Steered Hermite transform in 3D
HOF3D Horn-Hermite optical flow in 3D
ECG Electrocardiography
IE Interpolation error
NE Normalized interpolation error
CNN Convolutional Neural Network
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