

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Maestría y Doctorado en Ciencias Bioquímicas

Transcriptoma y proteoma de la glándula venenosa del alacrán *Centruroides limpidus*: una aproximación a la composición peptídica del veneno

TESIS

QUE PARA OPTAR POR EL GRADO DE: Doctor en Ciencias

> PRESENTA M.C. Jimena Isaias Cid Uribe

TUTOR PRINCIPAL Dr. Lourival Domingos Possani Postay Instituto de Biotecnología

COMITÉ TUTORAL Dr. Miguel Ángel Cevallos Gaos Centro de Ciencias Genómicas

Dra. Rosa María Gutiérrez Rios Instituto de Biotecnología

Cuernavaca. Agosto, 2020

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Este trabajo se realizó en el laboratorio del Dr. Lourival D. Possani, del Departamento de Medicina Molecular y Bioprocesos del Instituto de Biotecnología- Universidad Nacional Autónoma de México, Cuernavaca Morelos.

Este trabajo fue parcialmente financiado por donativo de la Dirección General de Asuntos del Personal Académico de la UNAM número IN202619, Consejo Nacional de Ciencias y Tecnología proyecto SEP_CONACyT número 237864 concedido al laboratorio del Dr. Possani y el donativo del Consejo Nacional de Ciencias y Tecnología programa FORDECYT número 303045 concedido al consorcio (Alagon-Becerril.Corzo-Possani).

La pasante fue recipiendaria de la beca de formación de posgrado de excelencia del CONACYT, inscrita bajo el número 512560.

Al financiamiento otorgado por Programa de Apoyo a los Estudios del Posgrado para asistir al The 18th World Congress of the International Society on Toxinology, celebrado del 25-30 de septiembre del 2015 en Oxford, UK.

Agradecimientos

A Shirley Elizabeth Ainsworth Gore de la Unidad de Biblioteca y a Jesús Omar Arriaga Pérez por su apoyo.

Gracias a la Unidad de Secuenciación Masiva, Verónica Jiménez Jacinto, a Jérôme Jean Verleyen y al doctor Alejandro Sánchez por el apoyo bioinformático.

A Dr. Ricardo Alfredo Grande Cano y a Gloria Tanahiry Vazquez Castro por el apoyo en la secuenciación.

A Erika Patricia Meneses Romero, a Lorena Hernández Orihuela y al Dr. Cesar Ferreira Batista de la Unidad Universitaria de Proteómica por el apoyo en el análisis proteómico realizado en esta tesis.

A los sinodales evaluadores de la tesis Dra. Liliana Pardo, Dra. Adriana Valdez, Dr. Federico del Rio, Dra. Blanca Taboada y al Dr. Enrique Merino. Al Dr. Possani, por abrirme las puertas de su laboratorio, por enseñarme todo lo necesario para resolver problemas, por la libertad que me brindo y las llamadas de atención.

A mis colegas:

A todos los miembros del laboratorio que estuvieron acompañándome en estos años.

A mi familia:

A mis padres y mi hermano, mis tías (Juani, Conchi y Coquí) por apoyarme en todas mis decisiones por procurar mi salud y bienestar.

A mis amigos:

Erika, Tere, Nacho, Guille, Mary, Rodrigo, Ernesto que siempre estuvieron cerca procurando mi bienestar.

A Juan:

Por siempre apoyar todas mis decisiones y vigilar mi salud mental y física.

Índice

Agradecimientos
Índice5
Índice de figuras
Índice de tablas 10
Abreviaturas
Resumen14
Abstract:
1. Introducción
1.1. Biología de alacranes20
1.2 Transcriptómica de glándulas venenosas de alacranes
1.3 Proteómica de alto rendimiento para el análisis de venenos de alacranes.
2 - Antecedentes
2. Antecedentes
2.1.1 - Tovinas que afectan canales iónicos
2.1.1 = Toxinas que alectari canales ionicos.
2.1.2. ⁻ Elizinas
2.1.0 Teplidos de delensa del Tidesped
2.1.4. Otros componentos de veneno
2.1.5 Otros componentes de venerio
2.5 2- VF OF QUE EStudial a C. IIInpidus
4. Objetive general
4 Objetivos particularos:
4.1 Objetivos particulares
5 Material y metodos
5.1 Material biologico
5.2 Transcriptomica
5.2.1- Obtención de RNA y Secuenciación
5.2.2 Ensample, Anotacion y Mineria de datos
5.3 Proteomica
5.3.1 Determinacion de pesos moleculares del veneno de <i>C. limpidus</i> por LC- MS

5.3.2 Identificación de proteínas del veneno de C. limpidus por LC-MS/MS 42
5.4 Ensayos enzimáticos 43
6 Resultados y Discusión: 44
6.1 Obtención de RNA, Secuenciación y Ensamble de novo
6.2 Clasificación de transcritos codificantes para componentes de veneno 45
6.2.1 Toxinas que afectan canales iónicos 47
6.2.2 Enzimas
6.2.3 Péptidos de defensa del huésped (HDP)58
6.2.4 Inhibidores de proteasas (PIn)61
6.2.5 Otros componentes de veneno62
6.3 Cuantificación de transcritos
6.4 Análisis proteómico del veneno de <i>C. limpidus</i> 67
6.4.1 Perfil de pesos moleculares de componentes del veneno de <i>C. limpidus</i> determinados por LC-MS67
6.4.2 Identificación de proteínas por LC-MS/MS70
6.5 Datos adicionales73
7 Conclusiones75
8 Perspectivas76
9 Referencias
Anexo A. Clasificación de NDBP100
Anexo B Transcriptomas de glándulas venenosas de alacranes
Anexo C. Epidemiología de intoxicaciones por picadura de alacrán 103
Anexo D. Toxinas descritas de limpidus104
Anexo E. Análisis proteómicos de venenos de alacrán realizados por LC-MS/MS.
Anexo F. Estadísticas de ensamble por TrinityStats
Anexo G. Scripts
Anexo H. Proceso de selección de secuencias codificantes de componentes de
veneno
Anexo I. Estimación de abundancia de transcritos codificantes de componentes de veneno
Anexo J: Calidad de RNA, Calidad de secuenciación y clasificación por ontologías. 122
Anexo K. Transcritos codificantes de componentes de veneno

Anexo L. Análisis filogenético de las λ-KScTx encontradas en el transcriptoma o	de
C. limpidus	139
Anexo M. Actividades enzimáticas del veneno de <i>C. limpidus</i>	140
Anexo N. Datos proteómicos del veneno del alacrán C. limpidus	142
Anexo O. Datos adicionales	151
Anexo P. Artículos derivados de la tesis	164

Índice de figuras

Figura 1. Distribución de especies de alacranes de importancia médica en el territorio mexicano	. 20
Figura 2. Morfología de alacranes	. 21
Figura 3. Sitios reconocidos por NaScTx en canales humanos de sodio dependientes de voltaje	. 30
Figura 4. Sitios de unión de las KScTx en canales humanos de potasio dependientes de voltaje.	. 31
Figura 5. Estados con mayor incidencia de intoxicaciones por picadura de alacra	án. . 35
Figura 6. Distribución de C. limpidus.	. 36
Figura 7. Diversidad relativa de los transcritos relacionados con componentes d veneno	e . 45
Figura 8. Diversidad de transcritos de glándula venenosa de cada alacrán estudiado por NGS	. 46
Figura 9. NaScTx	. 49
Figura 10. α-KScTx	. 51
Figura 11. β-KScTx	. 52
Figura 12. γ-KScTx	. 53
Figura 13. δ-KScTx	. 53
Figura 14. λ-KScTx	. 55
Figura 15 HDP	. 60
Figura 16. Abundancia relativa de transcritos codificantes de componentes de veneno de <i>C. limpidus</i>	. 67
Figura 17. Distribución de los componentes de veneno de C. limpidus	. 68
Figura 18. Diversidad de proteínas identificadas en el veneno de <i>C. limpidus</i> po LC-MS/MS	r . 71
Figure 19. Diversidad de los péptidos identificados en los análisis proteómicos o veneno de diversos alacranes por LC-MS-MS	del . 72
Figura 20. Comparación de los perfiles transcriptómicos y proteómicos de la glándula venenosa y el veneno de <i>C. limpidus.</i>	. 73
Figura 1. Anexo D. Toxinas que afectan canales de sodio de mamíferos	104
Figura 2. Anexo D. Transcritos codificantes de posibles toxinas de sodio	104

Figura 1. Anexo J. Integridad de RNA total de obtenido de glándulas venenosas de hembras de <i>C. limpidus</i>
Figura 2. Anexo J. Integridad de RNA total de obtenido de glándulas venenosas de machos de <i>C. limpidus</i>
Figura 3. Anexo J. Calidad Phred de las lecturas de 72bp 123
Figura 4. Anexo J. Clasificación por ontologias de las secuencias anotadas en el transcriptoma de <i>C. limpidus.</i> 123
Figura 1. Anexo L. Análisis filogenético de las secuencias con estructura ICK 139
Figura 1. Anexo O. Expresión diferencial de componentes presentes en el veneno de hembra y machos del alacrán <i>C. limpidus</i> 151

Índice de tablas

Tabla 1Especies de alacranes tóxicas para humanos en el territorio Mexicano . 19
Tabla 2. Transcriptomas de glándulas venenosas de alacrán reportados hasta el2019.23
Tabla 3. Nomenclatura utilizada en los transcritos identificados en el transcriptomade C. limpidus
Tabla 4. Especies de alacranes de las cuales han sido realizados análisisproteómicos de veneno por LC-MS/MS del 2015 al 2019.27
Tabla 5. Transcritos codificantes de componentes de veneno de la categoría No definido
Tabla 6. Correspondencia de pesos moleculares experimentales y pesosmoleculares teóricos de los péptidos codificados por los transcritos generados eneste análisis
Tabla 1. Anexo A. Clasificación de NDBP por Almaayatah y Albalas (2014) 100
Tabla 1. Anexo B. Resultados generados por análisis transcriptómicos deglándulas venenosas de alacranes.101
Tabla 1. Anexo C. Epidemiología de las intoxicaciones por picadura de alacrán
Tabla 1. Anexo D. Toxina que afectan canales de sodio de crustáceos 104
Tabla 2. Anexo D. Toxinas que afectan canales de potasio identificadas en elveneno de C. limpidus.105
Tabla 1. Anexo E. Datos proteómicos de venenos de alacrán obtenidos por LC-MS/MS.106
Tabla 1. Anexo F. Estadísticas de ensamble. 108
Tabla 1. Anexo I. Cuantificación de los transcritos codificantes de componentes deveneno.119
Tabla 1. Anexo K. Secuencias traducidas de los 192 transcritos codificantes decomponentes de veneno obtenidos del análisis transcriptómico de la glándulavenenosa de C. limpidus.124
Tabla1.Anexo N. Actividades enzimáticos de los componentes de alto peso molecular de los venenos de machos y hembras de <i>C. limpidus.</i>
Tabla 1. Anexo N. Los 52 péptidos codificados por los transcritos que fueronidentificados in el veneno por LC-MS/MS.142
Tabla 2. Anexo N. Pesos moleculares identificados en el veneno de C. limpidus

Tabla 1. Anexo O. Intensidad de los iones de los componentes identificados en e)
veneno de C. limpidus1	52
Tabla 2. Anexo O. Componentes de alto peso molecular identificados en el venede C. limpidus	no 63

Abreviaturas

Ca ²⁺	Calcio
CAP	del inglés CRISP-Antigen 5-PR
CaScTx	del inglés Calcium Scorpion Toxins
CDD	Del inglés Conserved Domain Database
cDNA	del inglés complementary Deoxyribonucleic Acid
CRISP	Cystein-rich secretory proteins
Da	Dalton
DDH	del inglés disulfide-directed β-hairpin
ERG	del inglés Ether-à-go-go-Related Gene
EST	del inglés Expressed Sequence Tag
FC	del inglés Fold change
GO	del inglés Gene Ontology
HDP	del inglés Host Defense Peptide
ICK	del inglés Inhibitor Cystein Knot
IGF	del inglés Insuline growth factor
IGFBP	del inglés Insuline Growth Factor Binding Protein
IPPA	Intoxicaciones por picadura de alacrán}
K _{Ca}	Canales de potasio dependientes de calcio
KScTx	del inglés Potassium Scorpion Toxins
Kv	Canales de potasio dependientes de voltaje
LC-MS	del inglés Liquid Chromatography-Mass Spectrometry
LC- MS/MS	del inglés Liquid Chromatography-tandem Mass Spectrometry
mg	miligramos
min	minutos
mМ	milimolar
mRNA	del inglés Messenger Ribonucleic Acid
NaScTx	el inglés Sodium Scorpion Toxins
Nav	Canales de sodio dependientes de voltaje
NDBP	del inglés Non-disulfed-bridged Peptides
NGS	del inglés Next Generation Sequencing
nL/min	nanolitros por minutos
NOM	Norma Oficial Mexicana
ORF	Del inglés Open Reading Frame
PFAM	del inglés Protein Families
PIn	del inglés Protease Inhibitor
ppm	partes por millon
PK	Pathogenesis-Related proteins
KIN	del Ingles KNA Integrity Number
KNAseq	del Ingles RNA Sequencing

del inglés N-ethylmaleimide-sensitive factor attachment protein receptors
del inglés Serine Protease Inhibitor
del inglés Single domain Von Willebrand factor type C
del ingés Transcripts per million
del inglés Transient Receptor Potential
del inglés Universal Protein Resource
del inglés Voltage-gated potassium channel
del inglés Voltage-gated sodium channel
microgramos
microlitros

Resumen

Los alacranes son arácnidos cosmopolitas, los cuales han sido agrupados en 20 familias con 2231 especies. Hasta el momento, solo las familias Hemiscorpiidae y Buthidae son considerados de importancia médica. En México existen 281 especies de las cuales 44 corresponden al género Centruroides de la familia Buthidae. Sin embargo, solo 21 especies han demostrado ser un problema de salud pública. Por otra parte, C. limpidus es uno de los alacranes con mayor relevancia médica en México debido a que se encuentra ampliamente distribuido en el país y ha sido asociado a los estados con mayor incidencia de intoxicaciones. El veneno de C. *limpidus* es una mezcla compleja con más de 100 componentes, de los cuales solo 12 han sido identificados y fue determinada la función de algunos (5 toxinas de sodio, 6 de potasio, 1 defensina). Por lo que es necesario identificar una mayor cantidad de componentes proteícos para mejorar el entendimiento del veneno. Por esta razón, fueron realizados análisis transcriptómicos y proteómicos de alto rendimiento en la glándula venenosa y el veneno, respectivamente. La secuenciación de mRNA fue realizada en un Genome Analizer IIx de Illumina. Se obtuvieron alrededor de 80 millones de lecturas y estas fueron ensambladas en 198,662 posibles transcritos de los cuales 11,058 lograron ser anotados por similitud, usando las bases de datos disponibles. Un total de 192 secuencias codificantes de componentes de veneno fueron identificadas, éstas incluyen toxinas que afectan canales iónicos, enzimas, péptido de defensa del huésped (HDP), inhibidores de proteasas y otros componentes de veneno. En este estudio los transcritos con mayor diversidad fueron las secuencias codificantes de toxinas activas en canales de sodio, y esto también se vió reflejado en los análisis proteómicos. También fue realizada la estimación de la abundancia relativa de los transcritos, la cual mostró que el transcrito más abundante fue CliOthUnd03, el cual codifica a un péptido no definido, en segundo y tercer posición se encontraron CliHDPND402 y CliOthNaTBet33, que corresponden a un HDP y una β -toxina de sodio, respectivamente. En dichos análisis fueron develados algunos componentes que no habían sido reportados para alacranes del género Centruroides, tal es el caso de las toxinas que afectan canales de potasio de tipo β -KScTx y λ -KScTx, así como inhibidores de proteasas tipo áscaris y péptidos La1-like. La diversidad de antareasas encontradas en este estudio podrían explicar el fenómeno de liberación de enzimas pancreáticas, el cuál ocurre como consecuencia al envenenamiento causado por dicho alacrán.

Abstract:

Scorpions are arachnids distributed in almost the entire world. They have been grouped in 20 families with 2231 species, but mainly the Buthidae family is toxic for mammals. In México exists 281 species which 44 are from the genus *Centruroides* of the Buthidae family, but only 21 species are responsible for envenomation. On other hand, *C. limpidus* is one of the most medically important scorpions in Mexico due to its distribution. The venom of *C. limpidus* is a complex mixture with more than one hundred components, from which twelve are well known components, and thus it is necessary a deep analysis for a better venom understanding. For this reason, we used high-throughput transcriptomic and proteomic analysis from venom glands and soluble venom fraction, respectively.

RNA-seq was performed with the Illumina platform. Around 80 million reads were obtained, and they were assembled into 198,662 putative transcripts, which were annotated by similarity using available databases into 11,058 sequences. A total of 192 venom-related sequences were identified, including Na⁺ and K⁺ channel-acting toxins, enzymes, host defense peptide (HDP), and other venom components. In this study the most diverse and numerous transcripts were those potentially coding for ion channel-acting toxins, mainly those active on Na⁺ channels (NaScTx). However, CliOthUnd03 was the most abundant transcript which encodes for an undefined peptide. CliHDPND402 was the second most abundant which is an HDP and CliOthNaTBet33 is the third one corresponding to a NaScTx, which has similarity to arthropod toxins. Sequences corresponding to β -KScTx and λ -KScTx are reported here for the very first time for a scorpion of the genus *Centruroides*. Mass fingerprint analysis confirms that NaScTx were the most abundant components in this venom. LC-MS/MS allowed the identification of 46 peptides matching sequences encoded in the transcriptome, confirming their expression in the venom. This study corroborates that venoms of Centruroides scorpions, lack the HDP diversity previously demonstrated in non-buthid scorpions. Components as ascaris-type protease inhibitors and La1-like peptides were identified for the first time to be present in scorpions of the genus *Centruroides*. The highly abundant and diverse

16

antareases might explain the pancreatic secretagogue effect observed after envenomation by this species.

1. Introducción

Los alacranes son arácnidos quelicerados que han prevalecido por millones de años y están distribuidos mundialmente (Chippaux and Goyffon, 2008). Estos arácnidos están representados por 2231 especies, dicha cifra se incrementa cada año (González-Santillán et al., 2019; Ponce-Saavedra et al., 2016; Quijano-Ravell et al., 2019; Santibáñez-López et al., 2016b). Los alacranes han sido agrupados en 208 géneros que a su vez conforman 20 familias (Santibáñez-López et al., 2016b). Sin embargo, a pesar de la gran diversidad de alacranes existente, solo miembros de las familias Hemiscorpiidae y Buthidae son perjudiciales para los humanos. Esta última familia alberga una gran cantidad de especies que son letales o tóxicas para humanos y representan un problema de salud pública a nivel mundial. En el año 2012 fueron reportados 2600 decesos derivados de 1.5 millones de intoxicaciones por picadura de alacrán (Chippaux, 2012).

Particularmente, México representa el 12% de la diversidad mundial de alacranes con 281 especies (Santibáñez-López et al., 2016b), de las cuales 44 corresponden al género *Centruroides* de la familia Buthidae. Cabe mencionar, que de los 44 *Centruroides* identificados en el territorio mexicano (González-Santillán and Possani, 2018), se ha confirmado que 21 especies causan intoxicaciones en humanos (Riaño-Umbarila et al., 2013) (Tabla 1). Estas especies se encuentran distribuidas en la vertiente del pacífico (figura 1) y fueron las responsables de las 275,357 Intoxicaciones por Picadura de Alacrán (IPPA) ocurridas en el 2018.

La NOM-033-SSA2-2011 define el alacranismo como *"El problema de salud pública ocasionado por la picadura de alacranes, en un grupo de personas de determinada área*" simultáneamente se define a la IPPA, como *"el cuadro sindromático tóxico ocasionado por el veneno del alacrán, que afecta diferentes órganos y sistemas produciendo una amplia gama de signos y síntomas causados por estimulación simpática o parasimpática".*

18

Tabla 1.-Especies de alacranes tóxicas para humanos en el territorio Mexicano. La información depositada aquí fue tomada y modificada de (González-Santillán and Possani, 2018), (http://aracnidos.unam.mx/prin.html).

Alacrán	Ubicación			
Centruroides balsasensis	Edo. De México, Guerrero, Michoacán y Morelos			
Centruroides bonito	Guerrero			
Centruroides chamela	Jalisco			
Centruroides elegans	Jalisco			
Centruroides	Colima			
hirsutipalpus				
Centruroides huichol	Nayarit			
Centruroides infamatus	Aguascalientes, Guanajuato, Jalisco, Michoacán, Zacatecas			
Centruroides limpidus	Edo. De México, Guerrero, Michoacán, Morelos, Puebla,			
	Querétaro			
Centruroides mascota	Jalisco			
Centruroides meisei	Guerrero, Oaxaca			
Centruroides noxius	Nayarit			
Centruroides ornatus	Guanajuato, Jalisco, Michoacán			
Centruroides pallidiceps	Sinaloa, Sonora			
Centruroides poncei	Guerrero, Oaxaca			
Centruroides ruana	Michoacán			
Centruroides sculpturatus	Sonora			
Centruroides suffusus	Durango			
Centruroides tecomanus	Colima, Jalisco, Michoacán, Guerrero			
Centruroides villegasi	Guerrero			
Centruroides sp.nv.A	Sonora			
Centruroides sp nv.B	Oaxaca			

Figura 1. Distribución de especies de alacranes de importancia médica en el territorio mexicano. Tomado de aracnidos.unam.mx. (Colección Nacional de Arácnidos). En azul se muestran las zonas en las que se han reportado avistamientos de alacranes de importancia médica.

Los venenos de alacranes butidos tienen efecto neurotóxico debido a que contienen péptidos que actúan en canales de sodio y potasio dependientes de voltaje del sistema nervioso autónomo que prolongan la despolarización de las células, afectando las vías simpáticas y parasimpáticas. Adicionalmente ocurre una liberación masiva de norepinefrina, neuropéptido Y y endotelina-1. La liberación de norepinefrina produce los signos más severos, incluyendo falla cardiaca, edema pulmonar, shock cardiogénico, isquemia miocárdica, miocarditis (Isbister and Bawaskar, 2014). Cuando estas toxinas son neutralizadas, el efecto tóxico del veneno se reduce (Riaño-Umbarila et al., 2013).

1.1. Biología de alacranes

Los alacranes son artrópodos de la clase Arachnida, que pertenecen al orden Scorpiones. Estos son caracterizados por presentar pedipalpos quelados, un opistosoma, el cual se divide en mesosoma y metasoma. Este último presenta un segmento terminal especializado denominado telson, el cual alberga las glándulas venenosas encargadas de la producción del veneno; dicho segmento también cuenta con un aguijón que permite inyectar el veneno (Figura 2).

Figura 2. Morfología de alacranes. Generalidades de la morfología de los alacranes.

1.2.- Transcriptómica de glándulas venenosas de alacranes

El estudio de los transcritos codificantes de componentes de veneno obtenidos de las glándulas venenosas de los alacranes ha favorecido la identificación de componentes con baja abundancia que podrían ser omitidos durante la separación y purificación de componentes. Los transcriptomas de glándulas venenosas de alacranes iniciaron en 2007 con el estudio del alacrán *Hadrurus gertschi*. En este alacrán, de la familia Caraboctonidae, se recuperaron nueve secuencias únicas de componentes de veneno (Schwartz et al., 2007). Inicialmente, los estudios transcriptomas de glándulas venenosas de alacranes fueron realizados por secuenciación tipo Sanger de EST (del inglés Expressed Sequence Tag), obtenidos de los mRNA expresados en la glándula venenosa (Schwartz et al., 2007; Zhang et al., 2015). Actualmente, se utiliza secuenciación de alto rendimiento de los mRNA previamente fragmentados, con los cuales se realiza una reconstrucción de los

transcritos de interés. Este flujo de trabajo en alacranes ha utilizado principalmente dos plataformas de secuenciación Illumina y pirosecuenciación 454 (Luna-Ramírez et al., 2015; Rendón-Anaya et al., 2012). Gracias al uso de estas técnicas, se han enriquecido las secuencias codificantes de componentes de veneno (Tabla 1, Anexo B).

Tabla 2. Transcriptomas de glándulas venenosas de alacrán reportadoshasta el 2019. (EST = Expressed Sequence Tag, NGS= Next Generation

Sequencing)

Familia	Especie	Secuenciación	Transcritos totales	Trans relacio a veno	critos onados Referencias eno
	Androctonus bicolor	EST (Sanger)	921 7 250	106	(Zhang et al., 2015) [152]
			7,330	72	(Rendón-Anaya et al., 2012)
	Centruroides tecomanus	EST (Sanger)	77	48	[22] (Valdez-Velázquez et al.,
	Hottentotta conspersus	EST (Sanger)	63	21	2013) [153] (Mille et al., 2015) [154]
	Hottentotta judaicus	EST (Sanger)	144	 66	(Morgenstern et al., 2011)
	Isometrus maculatus	EST (Sanger)	743	60	[155] (Ma et al., 2015) [156]
	Lychas mucronatus	EST (Sanger)	551	56	(Ma et al., 2015) [156]
Buthidae	Mesobuthus eupeus	EST (Sanger)	76	60	(Baradaran et al., 2018)
	Mesobuthus martensii	NGS (Illumina)	79,804	108	(Luan et al, 2016) [95]
	Odontobuthus doriae	EST (Sanger)	49	38	(NaderiSoorki et al., 2016)
	Parabuthus stridulus	EST (Sanger)	89	16	(Mille et al., 2014) [159]
	Tityus bahiensis	NGS (454)	2,891	170	(De Oliveira et al., 2015)
	Tityus obscurus	NGS (454)	4,280	228	[140] (De Oliveira et al., 2018) [101]
	Tityus serrulatus	NGS (454)	5,282	233	(De Oliveira et al., 2018) [101]
	Hadrurus gertschi	EST (Sanger)	68	9	(Schwartz et al., 2007) [21]
Caraboctonidae	Hadrurus spadix	NGS (Illumina)	3,679	148	(Rokyta and Ward, 2017) [160]
Fuscorpiidae	Scorpiops jendeki Scorpiops margerisonae	EST (Sanger) EST (Sanger)	293 730	34 43	(Ma et al., 2009) [161] (Ma et al., 2015) [101]
Eusoorphiduo	Megacormus gertschi	NGS (Illumina)	110,528	182	(Santibáñez-López et al., 2017) [162]
Hemiscorpiidae	Hadogenes troglodytes Hemiscorpius lepturus	EST (Sanger) NGS (Illumina)	1,000 59,709	121 69	(Zhong et al., 2017) [163] (Torabi et al., 2017) [164]
Termoorplique	Opisthacanthus cavaporum	EST (Sanger)	61	33	(Silva et al., 2009) [165]
	Heterometrus petersii	EST (Sanger)	184	57	(Yibao et al., 2010) [166]
	Heterometrus spinifer	NGS (Illumina)	54,189	62	(Deng et al., 2018) [167] (Diogo Carcía et al., 2012)
Scorpionidae	Pandinus cavimanus	EST (Sanger)	52	46	[168]
Coorpionidae	Scorpio maurus palmatus	EST (Sanger)	45	11	(Abdel-Rahman et al., 2013) [169]
	Urodacus yaschenkoi	NGS (Illumina)	62,505	111	(Luna-Ramirez et al., 2015) [23]
Superstitionidae	Superstitionia donensis	NGS (Illumina)	219,073	135	(Santibáñez-López et al., 2016) [170]
	Vaejovis mexicanus	EST (Sanger)	97	22	(Quintero-Hernández et al., 2015) [171]
Vaejovidae	Thorellius cristmanus Synonym: Thorellius atrox, Vaejovis intrepidus	NGS (Illumina)	129,950	172	(Romero-Gutierrez et al., 2017) [28]
	<i>Thorellius cristmanus</i> Synonym: Thorellius atrox, Vaejovis intrepidus	EST (Sanger)	65	15	(Quintero-Hernández et al., 2015) [171]
	Vaejovis subcristatus	EST (Sanger)	30	8	(Quintero-Hernández et al., 2015) [171]
	Vaejovis punctatus	EST (Sanger)	54	14	(Quintero-Hernández et al., 2015) [171]
	Paravaejovis schwenkmeyeri	NGS (Illumina)	77,108	146	(Cid-Uribe et al., 2018) [172]
	Serradigitus gertschi	NGS (Illumina)	84,835	119	(Romero-Gutiérrez et al., 2018) [144]

Hasta el momento existen 36 transcriptomas de glándulas venenosas de alacranes, los cuales pertenecen a siete de las 20 familias existentes (Tabla 2), resultando en 3144 transcritos codificantes de posibles componentes de veneno (Tabla 1, Anexo B). Debido a la gran cantidad de datos obtenidos de los transcriptomas de glándula venenosa, Romero-Gutiérrez en el 2017 propuso la nomenclatura de dichos transcritos, la cual se compone de siete categorías principales: NaScTx, KScTx, CaScTx, HDP, enzimas, inhibidores de proteasas y otros componentes de veneno, y 29 subcategorías (Romero-Gutierrez et al., 2017). Dicha nomenclatura, se ha tomado como referencia y se la han adicionado nuevas categorías y subcategorías, como se muestra en la Tabla 3.

Tabla 3. Nomenclatura utilizada en los transcritos identificados en el

transcriptoma de *C. limpidus*.

Categoría	Subcategoría	Dominio PFAM	Descripción	Code (G= Genero, sp=especie)*
NaTx	α-NaTx β-NaTx	PF00537 PE00537	Toxin_3	GspNaTAlp01 GspNaTBet01
КТх	a-KTx	PF00451	Toxin_0	GspKTxAlp01
	β-ΚΤχ	PF14866	Toxin_2 Toxin_38	GspKTxBet01
		PE08086	Toxin_00	GspKTxGam01
		PE00014	Kunitz BPTI	GenKTyDel01
		-		GenKTyEne01
			Tovin 25	GenKTyKan01
		-	-	GspKTyl am01
СаТу	Calcinas	PEOROGO	Tovin 27	GenCaTClc01
Oarx	Liotovinas	-	-	GenCaTL in01
	Omegascorpina	PF02810	Tovin Q	GspCaTOme01
CITy		PE05294	Toxin_5	GspClTAlp01
		-	-	CenTRPAIn01
Enzima	Serina Proteasa	 PF00089	Trypsin	GenEnzSeP01
	Metaloproteasas	PE00200: PE13574:	Disintegrin	GenEnzMtP01
	Metaloproteasas	PE01421: PE00557:	Disinitegrin, Penrolysin 2:	GSPENZMII OT
		DE13582	Reprolysin_2,	
		1115562	Pontidaso M24.	
			Reprolysin 3	
	Cisteina Proteasa	PF03416	Pentidase C54	GspEnzCyP01
	Fosfolinasa A1	PE00151	l inaso	GspEnzPA101
	Fosfolinasa A2	PE05826	Phospholin A2 2	GspEnzPA201
	Fosfolinasa B	PE0/916	Phospholip_A2_2	GenEnzPI B01
	Fosfolipasa C	PE00388: PE00387:		GspEnzPLC01
		PF08703	Y PLC-beta C	Copenzi 2001
	Fosfolipasa D	-	-	GspEnzPLD01
	Hialuronidasa	PF01630	Glyco hidro 56	GspEnzHva01
	5´ nucleotidasa	PF02872	5 nucleotid C	GspEnz5Nu01
	Peptidilglicina g-	PF03712: PF01082	Cu2 monoox C:	GspEnzPHM01
	hidroxilante		Cu2 monooxvaen	
	monooxigenasa		<u>_</u>	
Inhibidores de	SPI Kunitz-type	PF00014	Kunitz_BPTI	GspPInKun01
proteasas				
	SPI Serpin-type	PF00079	Serpin	GspPInSer01
	SPI Ascaris-type	PF01826	TIL	GspPInTIL01
Péptidos de defensa del huésped (HDP)	NDBP-1	-	-	GspHDPND101
	NDBP-2	PF08102	-	GspHDPND201
	NDBP-3	-	-	GspHDPND301
	NDBP-4	-	-	GspHDPND401
	NDBP-5	-	-	GspHDPND501
	Defensina	PF01097	Defensin 2	GspHDPDef01
	Péptidos aniónicos	-	-	GspHDPAni01
	Waprin	PF00095	WAP	GspHDPWap01
Otros componentes	Péptidos La1-like	PF15430	SVWC	GspOthLa101
de veneno				
	Superfamilia CAP	PF00188; PF08562	CAP;Crisp	GspOthCAP01
	Proteínas de unión de	PF00219	IGFBP	GspOthIGF01
	factor de crecimiento a			
	insulina (IGFBP)			
	Péptidos no definidos	-	-	GspOthUnd01

* Nomenclatura propuesta y ampliada por (Cid-Uribe et al., 2020; Romero-Gutierrez et al., 2017).

1.3.- Proteómica de alto rendimiento para el análisis de venenos de alacranes.

Con la llegada de la secuenciación de alto rendimiento de transcritos de glándula venenosa de alacrán, han surgido estudios complementarios en los cuales se realiza la identificación de componentes mediante cromatografía liquida acoplada a masas/masas (LC-MS/MS). Esta técnica permite comparar los espectros experimentales obtenidos de los digeridos proteicos, con los espectros teóricos determinados de los traducidos de los transcritos o bien de las secuencias aminoacídicas de las bases de datos. Hasta el momento, se han analizado 13 proteomas por medio de LC-MS/MS (Tabla 4), así como su transcriptoma correspondiente, de los cuales seis pertenecen a la familia Buthidae, uno a Euscorpiidae, uno a Caraboctonidae, uno a Scorpionidae, uno a Superstitionidae y tres a Vaejovidae (Tabla 4, Tabla1, Anexo E).

Tabla 4. Especies de alacranes de las cuales han sido realizadosanálisis proteómicos de veneno por LC-MS/MS del 2015 al 2019.

Familia	Especie	Proteínas identificadas	Referencias	
Buthidae	Androctonus bicolor	16	(Zhang et al., 2015) [152]	
	Centruroides hentzi	59	(Ward et al., 2018) [117]	
	Centruroides limpidus	52	(Cid-Uribe et al., 2019) [16]	
	Tityus metuendus	84	(Batista et al., 2018) [173]	
	Tityus serrulatus	66	(De Oliveira et al., 2018) [101]	
	Tityus obscurus	80	(De Oliveira et al., 2018) [101]	
Caraboctonidae	Hadrurus spadix	79	(Rokyta and Ward, 2017) [160]	
Euscorpiidae	Megacormus gertschi	23	(Santibáñez-López et al., 2017) [162]	
Scorpionidae	Heterometrus petersii	40	(Yibao et al., 2010) [166]	
Superstitionidae	Superstitionia donensis	26	(Santibáñez-López et al., 2016) [170]	
Vaejovidae	Thorellius atrox	40	(Romero-Gutiérrez et al., 2017) [28]	
	Paravaejovis schwenkmeyeri	27	(Cid-Uribe et al., 2018) [172]	
	Serradigitus gertschi	24	(Romero-Gutiérrez et al., 2018) [144]	

2.- Antecedentes

Como se mencionó anteriormente, los análisis transcriptómicos y proteómicos han obtenido un panorama general de la composición del veneno de los alacranes. Estos incluyen, toxinas que afectan canales iónicos, enzimas, HDP, inhibidores de proteasas y otros componentes de veneno.

2.1. Componentes de veneno

Algunos autores definen el veneno como una secreción producida por una glándula especializada y liberada hacia un blanco animal (en el caso de alacranes por medio de una picadura). Está secreción es una mezcla compleja compuesta de enzimas, mucoproteínas, lípidos, aminoácidos libres, nucleótidos, aminas, compuestos heterocíclicos, sales inorgánicos y péptidos (Ortiz et al., 2015). Estos componentes alteran los procesos bioquímicos y fisiológicos del organismo blanco. El veneno puede fungir como parte de los mecanismos de defensa, competencia por territorios o bien para favorecer la alimentación del animal venenoso (Fry et al., 2009).

Entre los componentes de veneno, los péptidos que afectan a los canales iónicos son los más estudiados (Ortiz and Possani, 2018; Possani et al., 1999; Rodríguez de la Vega and Possani, 2005, 2004; Santibáñez-López and Possani, 2015). Sin embargo, también se han encontrado péptidos antimicrobianos, enzimas, inhibidores de proteasas y componentes denominados como "otros componentes de veneno"; a los cuales no se les ha encontrado una función (Animmal Toxin Annotation Project,UniProt, https://www.uniprot.org/program/Toxins).

2.1.1.- Toxinas que afectan canales iónicos.

Hasta el momento se han descrito cinco familias de toxinas de alacranes (ScTx, del inglés Scorpion Toxins) que afectan cinco tipos de canales iónicos: i) canales de sodio dependientes de voltaje (Rodríguez de la Vega and Possani, 2005), ii) canales de potasio dependientes de voltaje (Rodríguez de la Vega and Possani, 2004), iii) canales de calcio dependientes de ligando (Schwartz et al., 2009; Xiao et al., 2016), iv) canales de cloruro (DeBin et al., 1993) y v) canales TRP (del inglés Transient Receptor Potential channel) (Lin King et al., 2019).

2.1.1.1.- Toxinas que actúan en canales de sodio dependientes de voltaje

Las NaScTx son péptidos de 58-76 aminoácidos estabilizados por tres a cuatro puentes disulfuro; estructuralmente presentan un motivo CS- α/β (Gurevitz et al., 1998). Basados en el proyecto "Animal Toxin Annotation Project" de UniProt, de las 260 NaScTx con evidencia proteica, el 99 % se encuentra distribuido en alacranes de la familia Buthidae. Estas toxinas son clasificadas como α- NaScTx ó β-NaScTx dependiendo del efecto que producen en los canales de sodio dependientes de voltaje (Cestèle and Catterall, 2000; Rochat et al., 1967). Las toxinas α -NaScTx disminuyen el proceso de inactivación del canal debido a que las toxinas se unen el sitio 3 del canal de sodio, que evita el cambio conformacional del canal requerido para la inactivación rápida (Zilberberg et al., 1997). El sitio 3 está situado en el segmento extracelular S3-S4 del dominio IV de la subunidad alfa del canal de sodio dependiente de voltaje (Figura 3). Cabe destacar que este sitio ha sido identificado en canales de sodio de mamíferos y de insectos. Sin embargo, las toxinas que tienen reconocimiento al canal de sodio de insectos no requieren que el canal se encuentre activo, a diferencia de las toxinas para mamíferos que requieren que el canal se encuentre activo para interactuar con el sitio 3 (Cestèle et al., 1997). Las β NaScTx desplazan el umbral del voltaje requerido para la activación del canal y reducen la amplitud del pico de corriente de sodio. Dichas toxinas se unen al sitio 4, el cual está situado en las asas (loop) extracelulares que une las regiones S1-S2 y S3-S4 del dominio II (Figura 3).

Figura 3. Sitios reconocidos por NaScTx en canales humanos de sodio dependientes de voltaje. Figura tomada y modificada de (Catterall et al., 2007). En azul y rojo se muestran los sitios 3 y 4 con los cuales interactúan las α -NaScTx y β -NaScTx, respectivamente.

2.1.1.2.- Toxinas que actúan en canales de potasio

Las KScTx (Potassium Scorpion Toxin) son péptidos de 23-78 aminoácidos, estabilizados por 2-4 puentes disulfuro. Estos péptidos afectan canales de potasio dependientes de voltaje (Kv) (Carbone et al., 1982) y dependientes de ligando (K_{Ca})(Anderson et al., 1988). Las KScTx bloqueadoras se sitúan en el poro del canal impidiendo el paso de los iones, debido a que ocurre una interacción de la diada básica catalítica de las toxinas con los aminoácidos del poro del canal (Bajaj and Han, 2019; Stehling et al., 2012) (Figura 4). Son clasificados con base a su secuencia en siete familias (α , β , γ , δ , κ , ε y λ) (Cremonez et al., 2016; Kuzmenkov et al., 2016). Las familias α , β y γ presentan un arreglo estructural CS- α/β , la δ un arreglo tipo Kunitz, la κ un arreglo CS- α/α y las familias ε y λ comparten un motivo ICK (Inhibitor Cystein Knot).

Hasta el momento, se han depositado 193 secuencias de toxinas de tipo KScTx en la base de datos Kaliumdb, de las cuales 142 corresponden a la familia α-KScTx, convirtiéndola en la familia más estudiada (Kuzmenkov et al., 2016; Rodríguez de la Vega and Possani, 2004; Tytgat et al., 1999). El estudio de estas toxinas ha

facilitado la investigación del funcionamiento, estructura y localización de los canales de potasio (Bergeron and Bingham, 2012). Adicionalmente, las toxinas tipo KScTx tienen un potencial terapéutico debido a la especificidad que presentan a canales de potasio. Dichos canales se encuentran mayoritariamente expresados en algunas patologías como enfermedades autoinmunes, asma, afecciones cardiacas y cáncer. (Han et al., 2016; Oliveira et al., 2019; Tian et al., 2014).

Figura 4. Sitios de unión de las KScTx en canales humanos de potasio dependientes de voltaje. Figura tomada y modificada de (Banerjee et al., 2013). Las KScTx bloqueadoras se sitúan directamente en el poro del canal impidiendo el paso de los iones.

2.1.1.3.- Toxinas que actúan en canales de calcio

Otras toxinas presentes en el veneno de alacrán han mostrado la capacidad de bloquear canales de calcio dependientes de ligando; específicamente los receptores de rianodina, los cuales están involucrados en la liberación de Ca²⁺ del retículo sarcoplásmico o endoplásmico (Schwartz et al., 2009; Smith et al., 2013; Xiao et al., 2016). Hasta el momento han sido depositadas en UniProt las secuencias de nueve toxinas obtenidas del veneno de alacranes. Estas toxinas actúan en los receptores de rianodina. Estos péptidos son de 33 a 36 aminoácidos, estabilizados por 2-3 puentes disulfuro y pueden presentar dos motivos estructurales: ICK y DHH (disulfide-directed β-hairpin), que corresponden a calcinas y liotoxinas, respectivamente. Dado el alto grado de conservación de sus secuencias peptídicas, ha sido posible inferir homólogos en otros venenos.

2.1.1.4.- Toxinas que actúan en canales de cloruro

Por otra parte, en los venenos de alacrán se han encontrado péptidos capaces de actuar en canales de cloruro dependientes de voltaje, en los cuales la corriente de cloruro se ve reducida (DeBin et al., 1993). Estos péptidos son 34-37 aminoácidos y presentan una hoja- β antiparalela de tres cadenas y una α -hélice, estabilizadas por cuatro puentes disulfuro (Ojeda et al., 2014). Hasta el momento, se han descrito dos mecanismos de acción de estas toxinas. En el primero, la toxina interactúa directamente con el canal de cloruro de las células (Dalton et al., 2003; Fuller et al., 2007); mientras que en el segundo, interactúa con los canales y una metaloproteinasa. Esto produce que ambas proteínas sean internalizadas por endocitosis y por consecuencia, la corriente de cloruro se ve reducida (Deshane et al., 2003). Estas toxinas han resultado interesantes debido a que los gliomas expresan altos niveles de canales de cloruro (Fu et al., 2007; Olsen et al., 2003).

2.1.1.5.- Toxinas que actúan en canales TRP

Recientemente en el veneno de *Urodacus manicatus* se encontró un péptido capaz de penetrar las células y actuar en los canales TRP (Transient receptor potential). Este péptido es de 32 aminoácidos, consiste en dos α-hélice estabilizadas por dos puentes disulfuro, denominada como Wasabi-toxin. (Lin King et al., 2019). Los canales TRP son canales catiónicos no selectivos, los cuales pueden estar involucrados en los procesos de inflamación, dolor y sensaciones térmicas (McMahon and Wood, 2006).

2.1.2.- Enzimas

Al igual que otros venenos (Gmachl and Kreil, 1993; Price et al., 2009; Ramírez-Avila et al., 2004), el de alacrán también posee varios tipos de enzimas como: proteasas (serina proteasas; (Almeida et al., 2002), metaloproteasas (Ortiz et al., 2014), fosfolipasas (Valdez-Cruz et al., 2004), hialuronidasas (Morey et al., 2006) y nucleotidasas (Cid-Uribe et al., 2018; Romero-Gutierrez et al., 2017; Santibáñez-López et al., 2017). Hasta el momento, las enzimas mejor estudiadas en venenos de alacrán son las metaloproteasas denominadas como antareasas. Estas han sido identificadas en los venenos de alacranes del género *Tityus*, en los cuales se ha asociado con el desarrollo de pancreatitis aguda posteriores a las intoxicaciones por picadura de dichos alacranes (Fletcher et al., 2010). Por otra parte, también se han realizado caracterizaciones de fosfolipasas tipo A2 (Conde et al., 1999) y D. Estas últimas se han estudiado en el veneno de Hemiscorpius lepturus debido a que la picadura de este alacrán causa lesiones dermonecróticas (Borchani et al., 2011), asociadas a la presencia de la fosfolipasa D en dicho veneno. Recientemente, se realizó la caracterización de una hialuronidasa en el veneno de Tityus serrulatus, la cual está involucrada en la distribución del veneno en el organismo blanco (de Oliveira-Mendes et al., 2019). Con respecto a otras enzimas, se ha observado que los venenos presentan actividades enzimáticas que sugieren la presencia de serina proteasas (Brazón et al., 2014).

2.1.3.- Péptidos de defensa del Huésped

Por otra parte, los venenos de alacrán contienen péptidos no tóxicos, los cuales han sido denominados como HDP (Host Defense Peptide); siendo de longitud variable (13-76). En esta categoría se han descrito péptidos sin puentes disulfuro o NDBP (Non-disulfide-bridged peptides) y péptidos con puentes disulfuro. Los NDBP están clasificados en cinco familias NDBP1-NDBP5 (Tabla 1, Anexo A) (Almaaytah and Albalas, 2014). Estructuralmente, se denominan como "random coil". Este tipo de péptidos tienen diversas actividades como antimicrobiana (Junqueira-Kipnis et al., 2018; Torres-Larios et al., 2000), potenciadores de bradiquinina (Ferreira et al.,

1996), citotóxica (Guo et al., 2013) y quimiotácticos (Marques-Neto et al., 2018); Por otra parte, los péptidos con puentes disulfuro incluidos en la categoría HDP son defensinas, las cuales presentan actividad antimicrobiana (Rodríguez De La Vega et al., 2004). Finalmente las waprinas de las que solo se han identificado sus transcritos, no obstante sus homólogos tienen actividad antimicrobiana (Liu et al., 2013).

2.1.4.- Inhibidores de proteasas

Adicionalmente, en los venenos de alacrán también se han identificado inhibidores de proteasas (Chen et al., 2013; Zhao et al., 2011), los cuales podrían estar evitando la degradación de los componentes susceptibles a proteasas (Meekins et al., 2017). De éstos, se han descrito los tipo ascaris (Chen et al., 2013), tipo kunitz (Zhao et al., 2011) y las serpinas (Law et al., 2006). Todos ellos son inhibidores de serina proteasas, pero pertenecen a diferentes familias de proteínas y tienen diferentes mecanismos de acción (Chen et al., 2013; Meekins et al., 2017; Zhao et al., 2011).

2.1.5.- Otros componentes de veneno

Por otra parte, se han identificados otros componentes en el veneno, de los cuales se desconoce su función. Éstos incluyen a las proteínas de la superfamilia CAP (Cid-Uribe et al., 2018; Romero-Gutierrez et al., 2017; Santibáñez-López et al., 2017), los péptidos La1(Miyashita et al., 2007), péptidos IGFBP (Insuline Growth Factor Binding Protein), y péptidos sin dominio conocido y sin función asignada. Hasta el momento solo se ha obtenido información de los péptidos del tipo La1, los cuales favorecen la motilidad de los espermatozoides (Martinez et al., 2017).

2.2 Principales alacranes de importancia médica en México

Como se mencionó anteriormente, en México los alacranes de importancia médica pertenecen al género *Centruroides*. De acuerdo con la Dirección General de Epidemiología, los estados con mayor incidencia de intoxicaciones, en el 2018,

fueron Jalisco (47,370), Guerrero (40,672), Guanajuato (40,331), Michoacán (27,813) y Morelos (26,876) (SSA, 2018) (Tabla 1, Anexo C). En estos estados se han identificado ocho tipos de alacranes de los géneros *Centruroides*: *C. infamatus*, *C. ornatus*, *C. elegans*, *C. noxius*, *C. balsasensis*, *C. meisei*, *C. tecomanus* y *C. limpidus*.(González-Santillán and Possani, 2018) (Figura 5).

Figura 5. Estados con mayor incidencia de intoxicaciones por picadura de alacrán. La información para generar la figura fue tomada del boletín epidemiológico nacional 2018 y aracnidos.unam.mx (colección nacional de arácnidos) (Francke, Oscar; Santibáñez-López; SSA, 2018).

Debido a lo anterior los alacranes de la lista antes mencionada han sido objeto de estudios proteómicos para identificar las toxinas de sodio dirigidas hacia mamíferos (Alagón et al., 1988; Olamendi-Portugal et al., 2017; Ramírez et al., 1994; Zamudio et al., 1992). Asimismo, también se han realizado estudios transcriptómicos en tres especies de alacranes del género *Centruroides*, reportándose el transcriptoma global de: i) *C. noxius*, el alacrán más tóxico para mamíferos, ubicado en México. El cual fue realizado por secuenciación 454 y se obtuvieron 72 isogrupos anotados como componentes de veneno (Rendón-Anaya et al., 2012), ii) *C. tecomanus* realizado por secuenciación Sanger de EST, mostrando 51 secuencias codificantes de componentes de veneno (Valdez-
Velázquez et al., 2013) y iii). Finalmente, el transcriptoma de *C. hentzi,* un alacrán no tóxico para mamíferos, secuenciado por Illumina, el cual logró recuperar 121 transcritos codificantes de componentes de veneno (Ward et al., 2018).

2.3.- ¿Por qué estudiar a C. limpidus?

El alacrán *C. limpidus* es uno de los alacranes de importancia médica con un amplia distribución, la cual incluye los estados de Guerrero, Morelos, Michoacán, México, Puebla y Querétaro (Figura 6) (Ponce-Saavedra et al., 2009). En 2018 estos estados presentaron una alta incidencia de intoxicaciones por picadura de alacrán (Anexo C). Por estas razones se considera a *C. limpidus* como uno de los alacranes de mayor incidencia de picaduras de alacrán.

Figura 6. Distribución de *C. limpidus*. En rojo se muestran los avistamientos confirmados de alacranes *C. limpidus*. La zona amarilla en el mapa es una predicción de todas las zonas que puede estar ocupando *C. limpidus*, considerando vegetación, clima, humedad, temperatura. Estos datos fueron obtenidos de la colección nacional de arácnidos (Francke, Oscar; Santibáñez-López).

C. limpidus no ha pasado desapercibido. Se han realizado estudios focalizados en la identificación de péptidos tóxicos para humanos, debido a que los individuos intoxicados por este veneno desarrollan signos que han sido asociados

a la presencia de toxinas de sodio (Alagón et al., 1988). Derivado de estos estudios, se identificaron cinco toxinas que actúan en canales de sodio de mamíferos, desplazando el voltaje de activación del canal a potenciales más negativos. Estas toxinas son conocidas como Cll1m, Cll2, Cll2b, Cll9 y Cl13 (Figura 1, Anexo D) (Dehesa-Dávila et al., 1996; Lebreton et al., 1994; Olamendi-Portugal et al., 2017), las cuales cuando son neutralizadas, el veneno pierde su letalidad (Riaño-Umbarila et al., 2013). Adicionalmente, se han identificado en el veneno de C. limpidus siete toxinas que pueden reconocer y bloquear diferentes tipos de canales de potasio (Tabla 2, Anexo D). Estas son CllTx1, CllTx2, CllTx5 (Cid Uribe et al., 2017; Martin et al., 1994), Cllerg1 a Cllerg4 (Corona et al., 2002). Las dos primeras pertenecen a la familia α -KScTx y son capaces de inhibir la corriente transiente de potasio y reducirlo en ensayos In vitro, usando células cerebelares de rata (Martin et al., 1994). Con respecto a las toxinas Cllerg descritas para C. limpidus, sólo fueron identificadas por similitud de secuencias. Sin embargo, la Cllerg1 fue identificada también en el veneno de C. elegans, la cual al ser evaluada mostró la capacidad de bloquear los canales tipo ERG (Figura 3, Anexo D).

Por otra parte, se realizó un estudio comparativo entre el veneno de hembras y machos de *C. limpidus*, en el cual se demostró la presencia de una gran cantidad de componentes desconocidos (Cid-Uribe, 2016). A la par del estudio proteómico, se realizó la construcción de dos bibliotecas de cDNA-EST (uno de machos y uno de hembras) de los mRNA de glándulas venenosas. Ambos estudios demostraron que el veneno de C. *limpidus* contiene otro tipo de componentes diferentes a toxinas (Cid-Uribe, 2016).

37

3.- Hipótesis

Sí, los análisis transcriptómicos y proteómicos de alto rendimiento de alacranes han demostrado que la composición de los venenos contiene diversas familias proteícas. Entonces los análisis transcriptómicos y proteómicos de alto rendimiento realizados en la glándula venenosa y el veneno de *Centruroides limpidus*, permitirán la identificación de proteínas que no han sido identificadas como componentes de veneno en dicho alacrán. Así como, asociar la posible función de estos componentes a los efectos causados por el veneno durante las intoxicaciones.

4.- Objetivo general

Determinar las proteínas no descritas que componen el veneno de *Centruroides limpidus*, usando análisis transcriptómicos y proteómicos de alto rendimiento de la glándula venenosa y el veneno. Así como asociar dichos componentes a la función que desarrollan en el veneno.

4.1.- Objetivos particulares:

- Secuenciar y analizar el RNAseq de la glándula venenosa de C. limpidus.
- Seleccionar y analizar los transcritos codificantes de componentes de veneno.
- Analizar proteómicamente los componentes del veneno de *C. limpidus* mediante el uso de LC-MS/MS.

5.- Material y métodos

5.1.- Material biológico

Los alacranes utilizados en este estudio fueron colectados en el municipio de Miacatlan, Morelos (18°46'25.4"N 99°21'01.4"W) (con el permiso de colecta SGPA/GVS/004474/18). Los cuales fueron trasladados al Instituto de Biotecnología-UNAM, campus Morelos. Dichos especímenes fueron clasificados taxonómicamente y sexados por el Dr. Edmundo González Santillán. Los 60 animales fueron separados y ordeñados en dos grupos (hembras; machos). La ordeña fue realizada por estimulación eléctrica, manteniendo el veneno por separado y almacenándolo a -20°C hasta su uso.

Para la obtención del RNA se usaron dos grupos de cinco alacranes (un grupo de hembras y un grupo de machos) previamente ordeñados (siete días) por estimulación eléctrica. Los dos grupos de alacranes fueron sacrificados para la obtención del telson, el cual fue procesado para aislar el RNA total (Hembras; Machos) de las glándulas venenosas.

5.2.- Transcriptómica

5.2.1- Obtención de RNA y Secuenciación

Los dos grupos de cinco telsons antes mencionados fueron macerados por separado utilizando homogeneizadores para tubo eppendorf (Daigger Vernon Hills, IL, USA). El macerado fue procesado con el kit Isolation RNA total de Promega (Promega, Madison, WI, USA según las recomendaciones del fabricante. A partir de 1 mg de RNA total, la integridad del RNA fue realizada por la unidad de secuenciación masiva del Instituto de Biotecnología en un equipo Agilent RNA 2100 Bioanalyzer System con chip RNA. Posteriormente, se construyeron dos librerías con el kit Truseq strandet mRNA simple (Illumina), siguiendo las instrucciones del fabricante. La secuenciación pareada fue realizada en un equipo Genome Analyzer IIx en un formato 2x72pb.

5.2.2.- Ensamble, Anotación y Minería de datos.

La calidad de las secuencias fue evaluada con Fastqc para posteriormente ser concatenadas y ensambladas de novo con el software Trinity (Grabherr et al., 2011). Las estadísticas del ensamble fueron obtenidas con TrinityStats (Tabla 1, Anexo F). La predicción de los marcos de lectura abiertos (Open Reading Frame ORF) fue realizada con TransdecoderLongOrfs. La anotación de dicho ensamble fue realizada con Trinotate usando como base de datos UniProt/Uniref90. Para los análisis de minería de datos se diseñaron y utilizaron scripts realizados en Perl y R (Anexo G), considerando dominios PFAM (El-Gebali et al., 2019) y términos GO (Gene Ontology) (Ashburner et al., 2000). El enriquecimiento de secuencias se realizó con tblastn, usando como base de datos el Animal Toxin Annotation Project de UniProt, nr-ncbi y una base de datos de NDBP recuperada del análisis transcriptómicos de otras familias de alacranes realizados en el laboratorio. Adicionalmente, la Dra. María Teresa Romero-Gutiérrez y el Dr. Esteban Peguero diseñaron un programa para identificar secuencias codificantes de péptidos sin puentes disulfuro, el cual también fue utilizado para analizar a este transcriptoma. Para realizar la selección de transcritos codificantes de componentes de veneno fue implementado un flujo de trabajo (Anexo H), en el cual las secuencias fueron analizadas con signalP (Petersen et al., 2011), Pro P (Duckert et al., 2004) y SpiderP (Pineda et al., 2018) determinan péptido señal y propéptidos; Deeploc-1.0 (Almagro Armenteros et al., 2017) determina la localización subcelular; InterproScan (Mitchell et al., 2015) determina dominios conservados, modificaciones postraduccionales, péptido señal y términos GO asociados; Protparam (protparam) calcula parámetros fisicoquímicos de las secuencias aminoacídicas, PeptideMass (Wilkins et al., 1997) determina la masa molecular, predice sitios de corte enzimáticos, MAFFT (Katoh and Standley, 2013) fue usado para realizar los alineamientos de las secuencias durante los análisis, PFAM (Finn et al., 2016) determina dominios conservados de regiones familias de proteínas. Phobius determina péptido señal У transmembranales, TMHMM (CBS) determina regiones transmembranales y

BLAST+ fue utilizado para encontrar homólogos en las bases de datos nr-ncbi, UniProt (UniProt) y bases de datos locales del grupo de investigación del Dr. Possani.

Adicional a la caracterización de transcritos relacionados a veneno previamente descrita, se realizó una estimación de la abundancia relativa de los reads utilizando el software Salmon (Patro et al., 2017a). (Anexo I).

5.3.- Proteómica

5.3.1.- Determinación de pesos moleculares del veneno de *C. limpidus* por LC-MS

Las muestras de veneno previamente mencionadas fueron utilizadas para realizar un perfil de masas moleculares del veneno, en el cual se utilizaron 8 µg de fracción soluble de veneno, así como la identificación de componentes.

El perfil de masas moleculares fue realizado en un sistema nano-LC-MS compuesto por un cromatógrafo liquido de alta eficiencia (HPLC) Dionex 3000 RSLCnano System acoplado a un espectrómetro de masas LTQ-Orbitrap Velos (Thermo Scientific). La muestra fue aplicada en una columna C18 de 10 cm (Jupiter® 4 µm Proteo 90 Å resin, Phenomenex, Torrance, CA, USA), usando un gradiente lineal de 5 a 90% de solución B (0.1% de ácido fórmico en acetonitrilo) en 240 min a un flujo de 300 nL/min, la ionización se realizó por nano-electrospray. Las masas moleculares menores a 3000 Da corresponden a la masa monoisotópica, mientras que las masas moleculares superiores a 3001 Da corresponde a la masa molecular promedio. Las masas moleculares fueron obtenidas mediante el software Xcalibur (Thermo-Fisher Scientific); a la par se obtuvo la lista de los precursores iónicos con la intensidad correspondiente. Para realizar el análisis cuantitativo, se diseñó un programa en Perl que determinara la masa molecular por precursor iónico, para eliminar redundancias de pesos moleculares y para obtener la intensidad total de cada precursor. Esta sección del trabajo fue realizada por el Laboratorio Universitario de Proteómica del Instituto de Biotecnología (ver agradecimientos).

5.3.2.- Identificación de proteínas del veneno de *C. limpidus* por LC-MS/MS

Las muestras de 300 µg de fracción soluble de veneno fueron reducidas con ditiotreitol 10 mM, alquiladas con iodoacetamida 55 mM, digeridas con tripsina 1:50 (relación enzima: proteína) en una solución 50 mM de bicarbonato de amonio, acidificadas con 10% de ácido fórmico, desaladas en Sep-Pak tC18 y secadas en un equipo speedvac. De estas muestras se tomaron 4 µg del digerido tríptico y se diluyeron en en 10 µL de ácido fórmico al 0.1%. Posteriormente fueron aplicadas en una columna C18 preparada en el laboratorio del Instituto de Biotecnología, de 15 cm de longitud (matriz Jupiter® 4 µm Proteo 90 Å resin, Phenomenex, Torrance, CA, USA) usando un gradiente lineal de 5% a 75% de solución B en 270 min. Los espectros MS/MS fueron analizados usando el software Proteome Discoverer 1.4.1.14 con el motor de búsqueda Sequest HT, restringiendo la búsqueda con los siguientes parámetros:

- Dos sitios de corte perdidos
- Modificaciones dinámicas: oxidación de metioninas, deamidación de glutamina y asparagina.
- Modificaciones estáticas: carbamidometilación de cisteínas.
- Tolerancia de precursor de 20 ppm.
- Tolerancia de fragmento de 0.6 Da.
- Tasa de falsas asignaciones 1%.
- La base de datos utilizada para la identificación fueron los transcritos traducidos obtenidos de TransdecoderLongOrfs.pl

Para considerarlos como identificaciones positivas deben poseer mínimo dos péptidos identificados y al menos un score de 20 (determinado por Sequest HT). Para esté análisis fue utilizada como base de datos los CDS predichos de los transcritos obtenidos del ensamble, con el propósito de identificar componentes no descritos

5.4.- Ensayos enzimáticos

Para evaluar la actividad hialuronolítica se utilizó el método turbidimétrico de McCook (McCook et al., 2015). La curva turbidimétrica fue realizada con las siguientes concentraciones 0, 0.04, 0.08, 0.12, 0.16 y 0.2 mg/ml de ácido hialurónico en NaH₂PO₄ pH5.8 NaCl 0.15M. Usando cloruro de cetilpiridinio al 10% para precipitar el ácido hialurónico. Los ensayos fueron realizados con la fracción de componentes de alto peso molecular del veneno de hembras y machos por triplicado. Para ello, se evaluaron diferentes concentraciones de la fracción mencionada (0.1, 0.25, 0.5, 1, 1.5, 2.0, 2.5, 5 y 10 μg), estos fueron incubados con 0.2mg/ml de ácido hialurónico por 20 minutos a temperatura ambiente. El ácido hialurónico sin hidrolizar es precipitado con cetilpiridinio al 10% y evaluado a 595 nm.

Para evaluar la actividad fosfolipolítica fue utilizado el método en placa de Habermann y Hardt (Habermann and Hardt, 1972). Se colocó el sustrato (yema de huevo) en agarosa 0.6% en Tris 50 mM pH 7.8 con CaCl₂ 10 mM. La mezcla se coloca en placas Petri y se deja solidificar. Posteriormente, se realizan orificios en la agarosa para colocar la muestra. Se ensayaron 1, 10 y 100 μ g de la fracción de componentes de alto peso molecular del veneno de hembras y machos de *C. limpidus.* Se incuban a 37°C por una hora y se procede a realizar las mediciones de los halos.

Para determinar la actividad proteolítica se utilizó el método modificado de Chowdhury (MA Chowdhury, S Miyoshi, 1990). Para esté análisis fue usado como sustrato azocaseína 5 mg/mL. Fueron ensayados 100 µg de la fracción de componentes de alto peso molecular del veneno de hembras y machos de *C. limpidus* en Tris-HCl 50 mM pH 8.0, fue mezclada con el sustrato e incubada 30 min a 37°C. La reacción se detiene con ácido trifluoroácetico al 5% y se neutraliza con 0.5 M de NaOH. El grupo azo liberado de la hidrolisis de la azocaseína se detectó a 450 nm.

43

6.- Resultados y Discusión:

6.1.- Obtención de RNA, Secuenciación y Ensamble de novo.

Se obtuvieron 9 µg y 8 µg de RNA total de los telsons de cinco machos y cinco hembras, respectivamente. Ambas muestras fueron evaluadas en un chip Bioanalyzer Agilent mostrando la calidad adecuada para realizar la secuenciación (Figura 1, Anexo J, Figura 2, Anexo J). Al igual que otras muestras de artrópodos no fue posible determinar el RIN (RNA Integrity Number) debido a que durante la purificación del RNA ocurre una fractura en el RNA 28S ribosomal, que deriva en dos fragmentos del mismo tamaño que el 18S ribosomal. Este fenómeno ha sido observado durante el análisis de RNA de otros alacranes de diferentes familias (Figura 1, Anexo J, Figura 2, Anexo J) (Cid-Uribe et al., 2018; Romero-Gutierrez et al., 2017; Santibáñez-López et al., 2017, 2016a)

De las secuenciaciones independientes de las bibliotecas de telsons de machos y hembras se obtuvieron 38,364,311 y 41,366,601 lecturas pareadas, respectivamente. La calidad Phred 33 es indicador de la confiabilidad secuenciación de cada nucleótido de las lecturas, el cual está basado en código ASCII. La secuenciación de ambas bibliotecas presentó un Phred superior a 30 (Figura 3, Anexo J), lo cual representa el 99.9% de precisión de que la base nucleotídica fue asignada correctamente. Posteriormente, se procedió a realizar la concatenación de las dos bibliotecas para realizar el ensamble *de novo* usando el software Trinity. De dicho ensamble se obtuvieron 198,662 secuencias (a partir de aquí denominadas como transcritos) que corresponden al 95% de los reads con una mediana de la longitud de las secuencias (N50) de 1611pb. Dichos transcritos fueron anotados con Trinotate, de los cuales 11,058 transcritos o su ORF (Open Reading Frame) tuvieron anotación. La clasificación por términos de ontología (GO Gene Ontology), permitió la agrupación en componentes celulares, procesos

44

biológicos y funciones moleculares (Figura 4, Anexo J), WeGO (Web Gene Ontology Annotation Plotting) (Ye et al., 2018) fue utilizado para realizar los gráficos.

6.2.- Clasificación de transcritos codificantes para componentes de veneno.

En este análisis fueron identificadas 192 transcritos relacionados a componentes de veneno (Tabla 1, Anexo K), los cuales fueron categorizados y nombrados apegándonos a la Tabla 3 (Sección 1.3). De los 192 transcritos identificados 85 corresponden a la categoria toxinas, 49 a enzimas, 20 a inhibidores de proteasas, diez a HDP, 28 "otros componentes de veneno" y finalmente otros seis transcritos que no han sido descritos en ningún veneno animal, pero hay confirmación proteómica de estos componentes. No obstante, a pesar de que la categoria de toxinas es la más diversa cabe destacar que las toxinas de sodio, toxinas de potasio y las metaloproteasas son las que tienen mayor representación (Figura 7).

Hasta el momento, se han realizado 16 transcriptomas de glándulas venenosas de alacrán utilizando NGS, cubriendo siete familias (Tabla 2), . La familia Buthidae es la más estudiada con seis transcriptomas, que demuestran una amplia diversidad de NaScTx con respecto a los transcriptomas de otras familias. Entre los butidos estudiados los *Centruroides* mostraron del 30 al 50% de NaScTx (Figura 7). Los estudios proteómicos del veneno de *Centruroides* han demostrado que el 50% de sus componentes corresponden a NaScTx (Sección 6.4.2). Sin embargo, ha sido demostrado que solo unas cuantas toxinas que afecten canales de sodio son suficientes para causar una intoxicación (A. C. Alagón et al., 1988; Riaño-Umbarila et al., 2013).

Figura 8. Diversidad de transcritos de glándula venenosa de cada alacrán estudiado por NGS. Los alacranes fueron agrupados de acuerdo con su familia taxonómica. NaTx : Toxinas que afectan canales de sodio; KTx: toxinas que afectan canales de potasio; CaTx: toxinas que afectan canales de calcio, CITx: toxinas que afectan canales de cloruro, HDP: péptidos de defensa del huésped, Enz: Enzimas, PIN: inhibidores de proteasas, Oth: otros componentes de veneno. (Cid-Uribe et al., 2020)

El transcriptoma de C. limpidus (Illumina) es el tercer transcriptoma realizado en alacranes del género Centruroides por NGS, los otros fueron C. noxius (pirosecuenciación 454), C. hentzi (Illumina). Entre estos tres alacranes se encuentran el más tóxico de México (C. noxius), el de mayor incidencia de intoxicaciones (C. limpidus) y un alacrán inofensivo para mamíferos (C. hentzi). Los tres alacranes contienen una gran cantidad de NaScTx (31 NaScTx de C. noxius, 36 NaScTx de *C. hentzi* y 59 NaScTx de *C. limpidus*), las cuales son los agentes principales que participan en las intoxicaciones. Sin embargo, el alacrán C. hentzi es inofensivo para mamíferos y presentó 36 NaScTx. Dicho número de toxinas es similar al presentado por *C. noxius* que es el alacrán más toxico para mamíferos distribuido en México. Por lo que sugerimos que un veneno con un gran número de toxinas de sodio no necesariamente está relacionado a la toxicidad hacia mamíferos. Dado que estos venenos son utilizados para cazar y defenderse de predadores, es muy probable que esta diversidad de toxinas esté dirigidas hacia artrópodos, los cuales constituyen la base de su alimentación, o bien para predadores diferentes a mamíferos, como aves, lagartos y artrópodos (Polis et al., 1981).

6.2.1.- Toxinas que afectan canales iónicos

En esta Sección se describen los hallazgos específicos para cada tipo transcritos que codifican péptidos con posible actividad en diferentes canales iónicos

6.2.1.1.- Transcritos codificantes para toxinas que reconocen canales de sodio

Como se mencionó en la Sección **2.1.1.1**, las NaScTx que interactúan con canales iónicos de sodio dependientes de voltaje o VGSC (voltage-gated sodium channel) se encuentran presentes las células excitables de todos los organismos. En *C. limpidus* se encontraron 59 transcritos codificantes de NaScTx los cuales

representan el 30% de los transcritos codificantes de componentes de veneno de *C. limpidus*. De las 59 secuencias, 16 han sido asignadas como α-NaScTx y 43 como β-NaScTx por similitud de secuencia (con valores de e-value de 4E-07 a 8E-69) (Tabla 1, Anexo K). Sin embargo, es necesaria la confirmación del efecto electrofisiológico de estos péptidos sobre los canales, debido a que esta clasificación está dada por el efecto que tienen en los VGSC. Aquí solo mencionaremos unos ejemplos de las secuencias encontradas, En la Figura 9, se muestran los alineamientos de las secuencias del péptido maduro de algunas secuencias de NaScTx identificadas en *C. limpidus*. Estas corresponden a dos secuencias asignadas como α-NaScTx (A) y tres β-NaScTx (B).

Todas las secuencias identificadas como α-NaScTx muestran el patrón de cisteínas conservado y tres residuos conservados implicados en la interacción con los VGSC de mamíferos (Y47,G48 y N52) (Zilberberg et al., 1997). La pérdida del residuo Y47 resulta en la pérdida de la especificidad a los canales de sodio de mamíferos (Jablonsky et al., 2001). En este trabajo, se identificaron cinco secuencias de α-NaScTx putativas que conservan el residuo Y47 (con similitudes del 47 al 86% con respecto a CsE5), por lo que se propone que estas secuencias pudieran tener reconocimiento por los VGSC de mamíferos (Tabla 1, Anexo K). Dentro de los transcritos restantes existen algunos que conservan los otros residuos G48 y N52, pero carecen de la Y47; éstos podrían estar dirigidos para artrópodos u otros vertebrados diferentes a mamíferos (Zilberberg et al., 1997). En la Figura 9A se muestran dos ejemplos de secuencias la CliNaTAlp03 y CliNaTAlp08. La primera no presenta este residuo y la segunda es parte de las cinco secuencias que conservan el residuo Y47. Sin embargo, la CliNaTAlp08 presenta los residuos G48 y N52. Cabe mencionar, que los péptidos CliNaTAlp03, CliNaTAlp04, CliNaTAlp07, CliNaTAlp08, CliNaTAlp11, CliNaTAlp13 y CliNaTAlp15 fueron confirmados en el análisis proteómico del veneno por LC-MS/MS, esto es un indicativo de la diversidad de las toxinas de sodio presentes en el veneno. La integración de ambos análisis logró la identificación de siete nuevos potenciales α -NaScTx del veneno de C. limpidus.

48

Por otra parte, la mayoría de las secuencias β-NaScTx aquí encontradas, tuvieron similitud de secuencia con péptidos o transcritos previamente descritos en otros alacranes del género *Centruroides*, incluidas secuencias previamente reportadas para *C. limpidus* (Alagón et al., 1988; Olamendi-Portugal et al., 2017).

En la Figura 9B se muestran las secuencias CliNaTBet31, CliNaTBet32 y CliNaTBet33. La secuencia CliNaTBet31 codifica para el péptido Cll2b, el cual es toxico para ratones, y presentó actividad en VGSC en cultivo de células de ganglio dorsal de pollos (Alagón et al., 1988). Este péptido fue identificado en los venenos de *C. limpidus* y *C. infamatus* (denominada como Cii1)(Dehesa-Dávila et al., 1994). Cabe destacar que Cll2b presenta dos cambios Y17F y T49N con respecto a Cll2 de *C. limpidus*, que corresponde a una de las toxinas mayoritarias (1.5% del veneno), que son letales para mamíferos (Riaño-Umbarila et al., 2013). El precursor CliNaTBet32 codifica para péptido similar a Cll2b. Finalmente, la secuencia CliNatBet33 corresponde al péptido maduro del precursor de Cll5b identificado en *C. limpidus*. La presencia de CliNatBet33 (Cll5b) en el veneno, fue confirmada en el análisis proteómico mediante LC-MS/MS.

A	10	20	30	40	50	60	
		I I					%Identidad
CliNaTAlp03 C.limpidus	K-DGYPVDNKGCKIS	CVISGKFCDT	ECKMRKASSG	YCYSLSCY	EGLPENAKV	SGKATSTCGGK	100
CliNaTAlp08 C.limpidus	.KYE	L-RDDY.KD	M.LKDD.	FLGKF	.YD.SPI	TSGK.K	48
P46066 C. sculpturatus	.KSGNYE	L-KDDY.ND	L.LEDK.	WGKV	.YD.SPT	TSGK. NPA	48
XP_023242920 C. sculpturatus	.KSGNYE	L-KDDY.ND	L.LEDK.	WGKV	.YD.SPT	TSGK. NPARGK	48
XP_023210703 C. sculpturatus	SL.	ANNYN	QKG.	HAM		.DSNI	73
P58779 C. sculpturatus	L.	ANNYN	QKG.	HAM		.DSNI	71

В	10	20	30	40	50	60	
]	%Identidad
CliNaTBet31 C. limpidus	KEGYLVNHSTGCKYECYF	CLGDNDYCLI	RE <mark>C</mark> KQQYGKGA	GGY <mark>C</mark> YAFG <mark>C</mark> V	CTHLYEQAV	/WPLPKKTCNGK	100
CliNaTBet32 C. limpidus	F.					N.R.K	91
CliNaTBet33 C. limpidus			KAKNQG.S	YS.A.	.EG.PDSTP	TYN.S.SK.	54
P59899 C. limpidus							100
P59898 C. limpidus	F.				.N		97
Q7YT61 C. limpidus		I.K.EN.D	1 AKNQG.S	YS.A.	.EG.PDSTP	TYN.S.SK.	54
Q7Z1K7 C. limpidus	KG.FV	I.K.EN.DI	KAKNQG.S	YS.A.	.EG.PDSTP	TYN.S.SK.	54

Figura 9. NaScTx. Clasificadas como (A) α -NaScTx y (B) β -NaScTx. Se muestra el alineamiento del péptido maduro de las secuencias encontradas en este estudio presentan el código de 11 caracteres mencionado. Las secuencias adicionales corresponden a secuencias de péptidos previamente reportados (ID UniProt/Genbank seguido del alacrán en el que fue identificado).

Cabe señalar que, la gran mayoría de las toxinas de sodio de referencia que muestran similitud con las secuencias identificadas en este estudio corresponden a toxinas que afectan artrópodos (Tabla 1, Anexo K). Por consiguiente, muy probablemente el perfil de transcritos expresados que observamos en estas condiciones (7 días post ordeña) esté dirigido hacia la obtención de alimento y a la defensa de predadores. El estudio de Carcamo-Noriega et al., 2019, demostró que el veneno de *C. limpidus* recupera la toxicidad hacia insectos dos días posteriores a la ordeña. Por otra parte, dicho veneno es capaz de actuar en canales humanos de sodio dependientes de voltaje 13 días posteriores a la ordeña. Esto muestra evidencias que la síntesis de las toxinas ocurre en diferentes días.

Este fenómeno también ha sido observado en la síntesis de los mRNA de proteínas de veneno de serpientes, que tardan siete días en producir su veneno (Currier et al., 2012). Por lo que, es probable que estemos observando un evento similar. Sin embargo, esté comportamiento puede estar sujeto a diversos factores, entre ellos regulación génica, estabilidad y tasas de síntesis de los mRNA (Meyer et al., 2004; Zhu et al., 2001).

6.2.1.2.-Toxinas que reconocen canales de potasio

Las KScTx están distribuidas en todos los alacranes, además son péptidos activos en canales de potasio dependientes de voltaje o VGPC (Voltage-Gated Potassium Channels) y canales de potasio dependientes de ligando (Calcio) o CAPC (Calcium-activated Potassium channel) (Jiménez-Vargas et al., 2017).

En el transcriptoma de *C. limpidus*, fueron identificadas 26 transcritos codificantes para KScTx, las cuales fueron clasificados en cinco subfamilias. Estás corresponden a 15 de tipo α -KScTx, 2 de tipo β -KScTx, 3 de tipo γ -KScTx, 3 de tipo δ -KScTx, 2 de tipo λ -KScTx. Los transcritos codificantes de KScTx identificados en este estudio mostraron similitud con secuencias o péptidos descritos en alacranes del género Centruroides, incluido *C. limpidus* (Tabla 1, Anexo K). En la Figura 10 se muestra el alineamiento de las secuencias CliKTxAlp15 y CliKTxAlp07 con cuatro

péptidos previamente reportados como α -KScTx. Las secuencias identificadas en *C. limpidus* conservan los residuos reportados como la diada funcional K27/Y37 descrita en esta subfamilia de toxinas. Se ha demostrado que estos dos residuos son esenciales para inhibir los canales humanos de potasio (Goldstein et al., 1994; Naranjo and Miller, 1996; Ranganathan et al., 1996). Cabe mencionar que los péptidos codificados por dichos transcritos fueron identificados en el veneno de *C. limpidus*, por medio de LC-MS/MS. Dentro de las secuencias restantes de la subfamilia α -KScTx se encuentra el precursor CliKTxAlp10 que codifica para el péptido ClITx1, el cual fue identificado en el veneno de *C. limpidus* e inhibe los canales de potasio dependientes de voltaje (Martin et al., 1994).

	10	20	30	40	
				n l	%Identidad
CliKtxAlp15 C. limpidus	VFIDKKCSSSSECWP	A <mark>CK</mark> KAVGTFQ0	G- <mark>KCMNGGCKO</mark>	YP	100
CliKtxAlp07 C. limpidus	TI.NEFAT.Q.FT	PI.SL.S	SK	NIG	54
Q5G8B6 T. costatus	NVRG.PL.	K.E.I.KSA	к		65
A0A218QXG2 T serrulatus	$\dots NA \dots RG \dots PQ \dots L$	K.E.I.KAA	ĸ		62
Q9TXD1 C. noxius	TI.NEFAT.QT	PI.SL.S	SK	N -G	57
P08815 C. noxius	TI.NVT.PKQ.SK	P. ELY.SSA	.AK	N–N	49

Figura 10. α**-KScTx.** Se muestra el alineamiento del péptido maduro de dos secuencias encontradas en este estudio. Las secuencias adicionales corresponden a secuencias de péptidos previamente reportados (UniProt/Genbank seguido del animal en el que fue identificado). En azul se muestran las cisteínas que forman los puentes disulfuro y en verde el motivo conservado obtenido de PFAM (PF00451) y CDD (conserved domain database). En recuadros naranjas se muestran los aminoácidos que interactúan con el canal de potasio.

Las β -KScTx son toxinas de cadena larga las cuales han sido encontradas en las familias Euscorpidae, Scorpionidae, Caraboctonidae, Hemiscorpiidae y Buthidae. En esta última familia solo se han encontrado en los géneros *Androctonus*, *Mesobuthus* y *Tityus* (Kuzmenkov et al., 2016). Como mencionamos, las dos secuencias β -KScTx (CliKTxBet01 y CliKTxBet02) encontradas en este análisis, son mostradas en la Figura 11 y constituyen el primer reporte formal de este tipo de toxinas en alacranes del género *Centruroides*. Estas secuencias mostraron similitud con péptidos de alacranes *Tityus*. La presencia en el veneno de los péptidos codificados por los precursores CliKTxBet01 y CliKTxBet02 fueron confirmadas durante el análisis proteómico realizado por LC-MS/MS.

	10	20	30	40	50	60	70	
			.				.	%Identidad
CliKtxBet01 C. limpidus	GRGKEIMNKIKKKLA-	DAKVTVK	GAWDKLTSKSE	YACPVIEKF	CEDHCA-AKE	VGKCEDFKC	LCLKPE	100
CliKtxBet02 C. limpidus	. LREKHVQ . LLSLVVF	EGQLRKILQ	MVVH.−AA	FG.LY.GY	T.QDITNE	D.D.HGM.	K.E	27
XP_023220228 C. sculpturatus	s				– 8	SI		96
Q0GY43 T. discrepans	.KVLGNV-	EV.EKI.	AG		– NA	AID	QNS-	68
XP_023220230 C. sculpturatus	. LREKHVQ. LLSLVVF	EGQLRKILQ	MVVH.−AA	FG.LY.GY	T.QDISNE	D.D.HGT.	K.E	27
Q5G8A6 T. costatus	.LREKHVQ.LVAIF	NDQLRSIL.	AVVHVA.T(FG.AY.GY	.NNQDIER	D.E.HG	K.A.D-	27

Figura 11. β -KScTx. Se muestra el alineamiento del péptido maduro de las β -KScTx encontradas en este estudio. Las secuencias adicionales corresponden a secuencias de péptidos previamente reportados (UniProt/Genbank seguido del animal en el que fue identificado). En azul se muestran las cisteínas que forman los puentes disulfuro y en verde el motivo conservado obtenido de PFAM (PF14866) y CDD.

En este análisis fueron identificadas 3 γ-KScTx (Figura 12), la CliKTxGam01 codifica el péptido Cllerg1, el cual fue previamente identificado en el veneno de *C. limpidus* (Corona et al., 2002). Las dos siguientes son CliKTxGam02 con similitud a Cnerg1, la cual es capaz de bloquear los canales ERG K⁺ de mamíferos (Hill et al., 2007). Finalmente, y CliKTxGam03 tuvo similitud con una secuencia genómica "Potassium channel toxin gamma-KTx 1.1-like" de *C. sculpturatus*. Las tres secuencias aquí identificadas conservan la K13 que interactúa con el vestíbulo externo del canal (Torres et al., 2003). Por otra parte, se han descrito dos residuos de las γ-KScTx que son relevantes en la interacción con el canal (Q18 y M35) (Jimenez-Vargas et al., 2011) los cuales solo observamos conservados en la CliKTxGam01. Hasta el momento esta subfamilia de toxinas ha sido identificada en

alacranes de la familia Buthidae y más del 90% fueron identificadas en alacranes del género *Centruroides* (Kaliumdb).

	10	20	30	40	
			· · · · I · · · · m		%Identidad
CliKtxGam01 C. limpidus	DRDSCVDKSRCSKYG	CYQECQDCCK	KAGHNGGTC <mark>M</mark> I	FFKCKC-A	100
CliKtxGam02 C. limpidus	K	GQ.DE	DRA.N.V	YNP	71
CliKtxGam03 C. limpidus	AK THLKG	.KN.SE.R	EFEY. <mark>T</mark>	МКТ	52
Q86QV0 C. limpidus				· · · · · · - ·	100
POC893 C. elegans	I			· · · · · · - ·	98
Q86QT3 C. noxius	A	<mark>.</mark>	N	· · · · · · - ·	95
XP_023241648 C. sculpturatus	AKRHLKG	. KN.SE.R	EFEY. <mark>T</mark>	МКТ	52

Figura 12. γ-KScTx. Se muestra el alineamiento del péptido maduro de las γ-KScTx encontradas en este estudio. Las secuencias adicionales corresponden a secuencias de péptidos previamente reportados (UniProt/Genbank seguido del animal en el que fue identificado). En azul se muestran las cisteínas que forman los puentes disulfuro y en verde el motivo conservado obtenido de PFAM (PF08086) y CDD. En recuadros naranjas se muestran los aminoácidos que interactúan con el canal de potasio.

Los transcritos asociados con las subfamilia de las δ -KScTx han resultado interesantes, pues se ha demostrado que péptidos como Hg1 de *Hoffmanihadrurus gerstchi* inhiben la actividad de la tripsina y el canal hKv1.3(Chen et al., 2012). Este tipo de toxinas también han sido identificadas en otros animales venenosos (Peigneur et al., 2011; W. Yang et al., 2014). En alacranes se han encontrado en las familias Caraboctonidae (*Hoffmannihadrurus*) y Buthidae (*Mesobuthus* y *Lychas*). Sin embargo, no existen registros de este tipo de toxinas en alacranes del género *Centruroides*. Por lo que las tres secuencias mostradas en la Figura 13, corresponden a las primeras δ -KScTx encontradas en *Centruroides*.

	10	20	30	40	50	60	
			1				%Identidad
CliKtxDel01 C. limpidus	DDDVDCSLPPDSGLC	LALFPRYYY	NAKSGKCESFT	YGGCGGNSNN	ENKNECCKA	CGDDRC	100
CliKtxDel03 C. limpidus	-ERN.M.	Y.R	DP.FD.KV.I	FN	GSME	KGQ . KTG	63
CliKtxDel02 C. limpidus	-QEN.AET.P.H	K.A.RQH	.SGI.I	RR	SSLDSH	I.FAKN	53
XP_015905918 P. tepidariorum	EEAET.M.N	1HK.A.	D.DLKQ.V	G.K	NTEE.E.	K	58
PODJ50 M. martensii	-EGTS.T.R.H	K.Y.IF.	.Q.A.E.QK.V	E	LT.SD	SPGK	57
XP_023217495 C. sculpturatus	-QGNSET.P.H	K.A.RQH	.SEN.I.I	RR	VSLESH	. SAKN	52

Figura 13. δ-KScTx. Se muestra el alineamiento del péptido maduro de las δ-KScTx encontradas en este estudio. Las secuencias adicionales corresponden a secuencias de péptidos previamente reportados (UniProt/Genbank seguido del animal en el que fue identificado). En azul se muestran las cisteínas que forman los puentes disulfuro y en verde el motivo conservado obtenido de PFAM (PF00014) y CDD.

Finalmente, ha sido propuesto que las λ -KScTx están emparentadas filogenéticamente, con toxinas que afectan canales de calcio (calcinas) (Santibáñez-López et al., 2018). Las λ-KScTx y las calcinas comparten el motivo estructural ICK (inhibitor cystine Knot), por lo que las λ -KScTx podrían actuar en canales de calcio. Ha sido propuesto que las calcinas y las λ -KScTx son mutuamente excluyentes, debido a que las calcinas han sido únicamente identificadas en alacranes no butidos, mientras que las λ-KScTx solo se han encontrado en butidos (Santibáñez-López et al., 2018). Sin embargo, hasta el momento no hay evidencias experimentales que soporten está teoría. Este tipo de toxinas no han sido identificadas en alacranes del género Centruroides por lo que las dos secuencias identificadas aquí se convierten en el primer reporte de toxinas de esta subfamilia en el género Centruroides (Figura 14). La secuencia CliKTxLam01 tuvo similitud con el transcrito "phi-buthitoxin-Hj1a" (F1CIZ6) de Hottentotta judaicus, mientras que la CliKTxLam02 fue similar al transcrito "Potassium channel blocker pMeKTx30-1" (A0A088DAF5) de *M. eupeus*. Cabe mencionar que solo han sido ensayadas dos λ-KScTx la ImKTx1 de Isometrus maculatus (P0DJL0), la cual mostro actividad en los canales hKv1.1 (IC50 = $1.7 \pm 1.35 \mu$ M), hHv1.2 (10 μ M inhiben el 40% de la corriente) y Kv1.3 (10 µM inhiben el 42% de la corriente) (Chen et al., 2011). Por otra parte, la "Neurotoxin lambda-MeuTx" de M. eupeus (P86399) a una concentración de 10 µM reduce la corriente en 44.7 ± 10.2% del canal Shaker (Gao et al., 2013). El análisis filogenético realizado con estas secuencias mostró que se encuentran más relacionadas a las λ -KScTx identificadas en otros butidos y no así con las calcinas (Figura 1, Anexo L).

	10	20	30	40	
					%Identidad
CliKtxLam01 C. limpidus	CNRLGKSCDSD	SDCCRYGER	CLSS-GRKYV	CKMDQGP	100
CliKtxLam02 C. limpidus	NP	ΝΤ		.SV.P	72
F1CIZ6 H. judaicus	SK.N	G		P.F	78
P86399 L. mucronatus	GN.K.N	A	. I . T VN . Y	.RP.F.	67
PODJLO I. maculatus	SQPTEKY.RP.N	RWEY.	E.T	Q.P	62
A0A088DAF5 M. eupeus	GS.PSP.N.N	RH	A KG. F	Q.P	61

Figura 14. λ -**KScTx.** Se muestra el alineamiento del péptido maduro de las λ -KScTx encontradas en este estudio. Las secuencias adicionales corresponden a secuencias de péptidos previamente reportados (UniProt/Genbank seguido del animal en el que fue identificado). En azul se muestran las cisteínas que forman los puentes disulfuro y en verde los aminoácidos conservados en otras λ -KScTx .

Cabe destacar que las toxinas de potasio han sido descritas en los transcriptomas de 7 familias de alacranes y en la mayoría de ellos representa del 10 al 20 % de los transcritos codificantes de los componentes de veneno. Por lo que promueve la idea de que estas toxinas son ubicuas en todos los alacranes.

6.2.2.- Enzimas

Se ha demostrado que el veneno de alacranes presentan diversas actividades enzimáticas como son la actividad de proteasas (Almeida et al., 2002), fosfolipasas (Conde et al., 1999) y hialuronidasas (Morey et al., 2006). Sin embargo, los recientes análisis transcriptómicos han mostrado la presencia de transcritos codificantes para la enzima 5'nucleotidasa, la cual fue descrita en el veneno de serpientes (Dhananjaya and D'Souza, 2010). Las enzimas corresponden al segundo grupo mas diverso en el transcriptoma de *C. limpidus*, representando el 25% de los transcritos codificantes de componentes de veneno (Figura 7), con 49 transcritos. De las cuales, 38 secuencias corresponden a proteasas, siete a fosfolipasas, tres a 5'nucleotidasas y una hialuronidasa. Todas ellas tuvieron similitud con secuencias derivadas del genoma de *C. sculpturatus* (Tabla 1, Anexo K).

6.2.2.1.- Proteasas

La categoria proteasas fue dividida en dos subgrupos: Serina Proteasas (14 transcritos) y Metaloproteasas (24 transcritos), siendo esta última la más diversa. Dentro del grupo de las metaloproteasas, 14 de ellas corresponden a antareasas, cinco desintegrinas, tres reprolisinas, una astacina y una enzimas convertidoras de angiotensina. Las antareasas han sido asociadas con el desarrollo de pancreatitis aguda posterior al envenenamiento por la picadura de alacranes Tityus (Fletcher et al., 1994, Borges et al., 2004;). Esta patología es atribuida al tropismo de las antareasas por los receptores SNAREs (N-ethylmaleimide-sensitive factor attachment protein receptors), los cuales participan en el transporte de secreción pancreática. Por lo tanto, el transporte vesicular del pancreas se ve interrumpido y las enzimas son liberadas en el tejido pancreático, causando un efecto secretagogo y daño tisular (Fletcher et al., 1992, 2010; Possani et al., 1991). Por otra parte, hay indicios que el envenenamiento causado por C. limpidus presenta un efecto secretagogo de la amilasa pancreática en ratones (Jiménez-Ferrer et al., 2005). Esto podría estar asociado con la diversidad de antareasas presentes en el transcriptoma de C. limpidus, que podrían estar en el veneno. De los 14 transcritos codificantes para antareasas fueron confirmadas cuatro proteínas en el veneno por LC-MS/MS, las cuales corresponden a CliEnzMtp15, CliEnzMtp19, CliEnzMtp20 y CliEnzMtp21.

De las metaloprotesasa diferentes a antareasas fueron confirmadas en el veneno la astacina (CliEnzMtp23) y la enzima convertidora de angiotensina (CliEnzMtp24).

Los estudios transcriptómicos de glándulas venenosas de alacranes han identificado 155 transcritos codificantes de serina proteasas (Tabla 1-Anexo B), en conjunto con los estudios proteómicos fueron confirmadas 16 serina proteasas (Tabla 1-Anexo E). Sin embargo, solo existen dos reportes de actividad proteolítica por serina proteasas (Almeida et al., 2002; Brazón et al., 2014) en los venenos de *Tityus*. Por otra parte, en este análisis se encontraron 14 transcritos codificantes de

56

serina proteasas, de los cuales la proteína codificada por el transcrito CliEnzSep14 fue confirmada en el veneno por medio de LC-MS/MS.

6.2.2.2.- Fosfolipasas

Otro familia de enzimas reportadas en venenos de alacrán son las fosfolipasas, de las cuales solo se han identificado fosfolipasas A2 (Conde et al., 1999; Jridi et al., 2015; Ramanaiah M1, Parthasarathy PR, 1990; Valdez-Cruz et al., 2004) y fosfolipasas D (Borchani et al., 2013) en los venenos de alacranes. Sin embargo, mediante estudios transcriptómicos han sido recuperado 143 transcritos codificantes de fosfolipasas, de las culaes 18 han sido confirmadas en los venenos. En este transcriptoma fueron identificadas seis transcritos codificantes para fosfolipasas A2 y un transcrito para fosfolipasas D. El análisis proteómico realizado aquí no demostró la presencia de fosfolipasas en el veneno. No obstante, un análisis previo de los componentes de alto peso molecular del veneno identificó péptidos correspondientes a fosfolipasas A2 (Cid-Uribe, 2016). Por lo que, la ausencia de estas proteínas en el análisis proteómico aquí reportado, puede deberse a que no se encontraron en suficiente concentración para ser detectadas.

6.2.2.3.- Hialuronidasas

Recientemente, ha sido demostrado que las hialuronidasas juegan un papel relevante en la distribución del veneno en el organismo ya que, como su propio nombre indica, tienen la propiedad de degradar el ácido hialurónico para así destruir, la matriz extracelular e infiltrarse en tejidos vecinos (de Oliveira-Mendes et al., 2019). En el trabajo aquí realizado solo fue recuperado un transcrito codificante para hialuronidasa, el cual fue denominado como CliEnzHya01. La proteína codificada por CliEnzHya01 fue identificada en el veneno por medio de LC-MS/MS. Asimismo, el veneno de *C. limpidus* presenta actividad hialuronolítica (Tabla 1, Anexo M).

57

6.2.2.4.- Nucleotidasas

Finalmente, las 5´nucleotidasas han sido consideradas como enzimas de veneno de alacranes, debido a la evidencia encontrada en análisis integrales de veneno y glándulas venenosas (Tabla 1- Anexo B). De este tipo, se identificaron siete transcritos codificantes con la confirmación proteómica de cuatro de ellos (Tabla 1, Anexo E). Las 5'nucleotidasas fueron descritas en el veneno de serpientes (Caccin et al., 2013; Dhananjaya and D'Souza, 2010). Estas enzimas pueden tener un efecto sinérgico con otros componentes del veneno y favorecer los signos y sintomas de envenenamiento (Dhananjaya and D'Souza, 2010). En este análisis encontramos 3 transcritos codificantes de 5´nucleotidasas (Tabla 1, Anexo K). Hasta el momento, no ha sido ensayada la actividad nucleotidasa en los venenos de alacranes, pero el hecho de encontrar transcritos codificantes de la enzima y la confirmación proteómica de la enzima en algunos venenos (Tabla 1, Anexo E) abre la posibilidad que el veneno de alacrán presente actividad nucleotidasa.

6.2.3.- Péptidos de defensa del huésped (HDP)

Los HDPs se encuentran en todos los organismos y forman parte del sistema inmune innato. En los venenos de alacranes no butidos se ha encontrado una gran diversidad de HDP (Quintero-Hernández et al., 2015), los cuales han presentado diversas actividades como antimicrobianos (Gao et al., 2018; Hernández-Aponte et al., 2011), potenciadora de bradiquinina (Ferreira et al., 1996; Goudarzi et al., 2019), insecticida (Luna-Ramirez et al., 2017), actividad antitumoral (Crusca et al., 2018; Guo et al., 2013), quimiostáticos (Junqueira-Kipnis et al., 2018; Veloso Júnior et al., 2019) y hemolíticos (Zeng et al., 2013).

6.2.3.1.- Defensinas

En este análisis fueron identificados diez transcritos codificantes de HDP, entre ellos seis defensinas, tres NDBP y un péptido aniónico (Tabla 1, Anexo K, figura 15). El transcrito CliHDPDef01 codifica para la defensina ClI-dlp previamente identificada en la hemolinfa de *C. limpidus* (Rodríguez De La Vega et al., 2004). Con respecto a las cinco defensinas restantes, CliHDPDef02 a CliHDPDef06 presentan similitud con la "defensin-1" un transcrito identificado en el transcriptoma de *Androctonus bicolor*. En la Figura 15A se muestra un alineamiento de las secuencias de los transcritos CliHDPDef01 y CliHDPDef02 con las secuencias que presentan mayor similitud.

6.2.3.2.- Non-disulfed-bridged Peptides

Por otra parte, los NDBP (Non-disulfed-bridged Peptides) identificados en este estudio pertenecen a las subfamilias NDBP2 y NDBP4. El precursor CliHDPND201 presentó similitud con el péptido "venom toxin meuTx20" (A0A146CJE0) deducido del transcriptoma de *Mesobuthus eupeus* y con el péptido BmKpp (Q9Y0X4) el cual fue identificado en el veneno de *Mesobuthus martensii* que tiene múltiples actividades como antibacteriana, antifúngica, ,potenciador de bradiquinina, entre otras (Zeng et al., 2012) (Figura 15 B). Los transcritos CliHDPND401 y CliHDPND402 (Figura 15C) tuvieron similitud con ToAP2 (A0A1D3IXJ5) de *Tityus obscurus y* TsAP2 de *T. serrulatus*, respectivamente. ToAP2 tiene actividad antimicrobiana y quimiostática (Junqueira-Kipnis et al., 2018). Por otra parte, TsAP2 (S6D3A7) mostró diversas actividades como: la antifúngica, antibacterial, antitumoral y hemolítica (Guo et al., 2013).

6.2.3.3.- Péptidos aniónicos

Finalmente, los péptidos aniónicos que se han encontrado pertenecen a alacranes de las familias Scorpionidae, Bothriuridae y Buthidae. De esta última familia solo han sido identificados en los géneros *Tityus*, *Androctonus*, *Isometroides*, *Lychas* y *Mesobuthus*. Por lo que el transcrito denominado como CliHDPAni01se convierte en el primer posible péptido aniónico identificado en el género *Centruroides*, y que además presentó similitud con una secuencia derivada del genoma de *C. sculpturatus*, y el péptido TanP obtenido del veneno de *Tityus stigmurus* (Figura 15D) el cual es un quelante de iones de cobre (Melo et al., 2017).

A CliHDPDef01 C. limpidus CliHDPDef02 C. limpidus Q6GU94 C.limpidus A0A0K0LBV1 A. bicolor	10 20 30 40 50 60 MKAIVVLLILALILCLYAMTTVEGACQFWSCNSSCISRGYRQGYCWGIQYKYCQCQ 100 *Identidad VAFLFVF.TLEIAAGFG.P.NQGA.HKH.Q.IRK.GD.FLKHR.R.Y 39 39
B CliHDPND201 C. limpidus AOA146CIEO M. eupeus Q9YOX4 M. martensii	10 20 30 40 50 60 70
C CliHDPND401 C. limpidus CliHDPND402 C. limpidus A0A1D3IXJ5 T. obscurus S6D3A7 T. serrulatus	10 20 30 40 50 60 70
D CliHDPAniOl C. Limpidus XP_023227050 C. sculpturatus JK483720 T. stigmurus	10 20 30 40 50 60 70

Figura 15 HDP. Clasificadas como (A) Defensinas, (B) NDBP2 (C) NDBP4 y (D) Péptidos aniónicos. Se muestra el alineamiento de las secuencias encontradas en este estudio Las secuencias adicionales corresponden a secuencias de péptidos previamente reportados (UniProt/Genbank seguido del nombre del animal en el que fue identificado).

Hasta el momento ningún miembro de la familia HDP había sido descrito en el veneno o la glándula venenosa del alacrán *C. limpidus*. Sin embargo, este estudio se encontraron evidencias de que los HDP también son ubicuos en los alacranes, pero estos pueden variar en su diversidad y/o abundancia.

6.2.4.- Inhibidores de proteasas (PIn)

La función de los inhibidores de proteasas en venenos de alacrán no ha sido determinada aún. Sin embargo, éstos pueden brindar protección a los componentes del veneno de la degradación por proteasas propias del veneno (Lu et al., 2008). No obstante, también pueden inhibir enzimas involucradas en funciones sinápticas (Almonte and Sweatt, 2011). Los análisis integrales de glándulas venenosas y veneno de alacranes han recuperado 226 transcritos codificantes de inhibidores de proteasas (Tabla 1, Anexo B), de los cuales solo tres han sido confirmados proteómicamente (Tabla 1, Anexo E). En este análisis fueron encontrados 20 transcritos codificantes de inhibidores de proteasas, de los cuales 14 son de tipo ascaris, dos de tipo Kunitz y cuatro de tipo serpinas.

6.2.4.1.- Inhibidores tipo Ascaris

Los inhibidores tipo ascaris presentan un dominio conservado TIL (Trypsin-Inhibitor-like). Fueron encontrados 14 transcritos codificantes de inhibidores de proteasas tipo ascaris (CliPInTIL01 al CliPInTIL10), todos ellos presentan el dominio TIL, pero las longitudes (60 a 120 aminoácidos) y el número de cisteinas de los transcritos es variable (10 a 20 cisteínas) (Tabla 1, Anexo K). El análisis proteómico por LC-MS/MS del veneno de *C. limpidus* revelo la presencia de la proteína codificada por el transcrito CliPInTIL14. Particularmente, la proteína correspondiente al transcrito CliPInTIL14 es excepcionalmente grande (21KDa) con respecto a otros inhibidores de este tipo..

6.2.4.2.- Inhibidores tipo Kunitz

Los inhibidores tipo Kunitz son inhibidores de serina proteasas. Son cadenas largas de alrededor de 60 aminoácidos, pueden tener de cuatro a seis cisteinas. Algunos estudios transcriptómicos han reportado secuencias similares a inhibidores de proteasas tipo Kunitz (Cid-Uribe et al., 2018; Romero-Gutiérrez et al., 2018; Santibáñez-López et al., 2017). En el transcriptoma de *C. limpidus* fueron identificados dos transcritos (CliPInKun01 y CliPInKun02), que presentan el dominio conservado Kunitz. Los cuales tuvieron similitud con secuencias derivadas del genoma de *C. sculpturatus*.

6.2.4.3.- Inhibidores tipo serpinas

El grupo de inhibidores de serina proteasas denominados como serpinas ha sido estudiado como parte de la biología de los artrópodos (Meekins et al., 2017). En el transcriptoma de *C. limpidus* fueron identificados cuatro transcritos codificantes de inhibidores de proteasas tipo serpinas denominadas como CliPInSrp01 a CliPInSrp04. Todas ellas con similitud a secuencias predichas del genoma de *C. sculpturatus* (Tabla 1, Anexo K).

6.2.5.- Otros componentes de veneno

En esta categoría están incluidos todos los componentes que se han encontrado en veneno o en transcriptomas de glándulas venenosas, pero no está claramente descrita la función que pueden desarrollar como parte del veneno. Estos componentes incluyen proteínas de la superfamilia CAP, proteínas IGFBP, péptidos La1-like y péptidos no definidos.

6.2.5.1.- Proteínas de la superfamilia CAP

Las proteínas de la superfamilia CAP estan distribuidas en todos los organismos (Gibbs et al., 2008), éstas incluyen las CRISP (Cystein-rich secretory proteins), Antígeno/Alergeno 5 y PR (Pathogenesis-Related proteins) de plantas. En alacranes, se han identificado proteínas CRISP y Alérgenos/Antígenos 5 (Fry et al., 2009). Por su parte, en el transcriptoma de C. limpidus encontramos 6 transcritos codificantes de proteínas de la superfamilia CAP (CliOthCAP01 al CliOthCAP06), de las cuales las proteínas codificadas por los transcritos CliOthCAP02 y CliOthCAP05 fueron identificadas en el veneno de C. limpidus por medio de LC-MS/MS. La función de las proteínas CAP en los venenos de alacrán no ha sido estudiada. Sin embargo, su función ha sido estudiada en otros venenos, tal es el caso de los venenos de serpientes (Matsunaga et al., 2009) y reptiles (Mochca-Morales et al., 1990). En los cuales presentan diversas actividades como inhibidores del receptor de rianodina (Morrissette et al., 1995; Zhou et al., 2008), inhibidores de canales de potasio (Bernardes et al., 2019; Nobile et al., 1994; Wang et al., 2006) y calcio (Nobile et al., 1996), bloqueadores de los canales CNG (cyclic nucleotidegated ion channels) (Yamazaki et al., 2002), inhibidores de la angiogénesis (Lecht et al., 2015), inmunomoduladores (Lodovicho et al., 2017; Sun et al., 2020; Wang et al., 2010), inductores de apoptosis (Lu et al., 2019), anti-protozoarios (Adade et al., 2014), también existe evidencia de que actúan como miotoxinas (Peichoto et al., 2009) y neurotoxinas (Estrella et al., 2011).

6.2.5.2.- Péptidos tipo IGFBP

Los análisis transcriptomicos (Tabla 1, Anexo B) de glándulas venenosas de alacranes han encontrado 90 transcritos codificantes de proteinas con dominio IGFBP, de los cuales se han confirmado proteomicamente dos IGFBP en el veneno

(Tabla 1, Anexo E), uno de ellos en esta tesis. En este análisis encontramos diez transcritos codificantes de IGFBP (CliOthIGF01 a CliOthIGF10) (Tabla 1, Anexo K).

Hasta el momento, no se ha descrito cuál es el papel que desarrollan estas proteínas como componentes del veneno. Se propone que podrían estar desarrollando una función similar a la descrita en sus homólogos presentes en vertebrados (Bach, 2018). Esta función radica en incrementar la vida media de los IGF (Insuline growth factor) en circulación. Asimismo, al unirse a los IGF previene la interacción IGF-receptor de insulina y también actuán como reguladores de los IGF durante su desempeño como factores endócrinos, parácrinos y autócrinos que promueven el crecimiento, proliferación y diferenciación celular (revisado en Allard and Duan, 2018).

Sin embargo, una proteína recombinante derivada del cDNA de la glándula venenosa de *Androctonus bicolor* denominada como androcina, modifica el comportamiento de los ratones, causando akinesia y síntomas de ansiedad (Y. Yang et al., 2014).

6.2.5.3.- Péptidos tipo La1

Los péptidos La1 se caracterizan por tener un dominio conservado SVWC (Single domain Von Willebrand factor-type C). Estos péptidos fueron purificados de veneno (Miyashita et al., 2007). Actualmente, los análisis integrales de veneno y glándula venenosa han recuperado 119 transcritos codificantes de péptidos La1 (Tabla 1, Anexo B), de los cuales 17 han sido confirmados proteómicamente (Tabla 1, Anexo E). En el transcriptoma de *C. limpidus* se identificaron seis transcritos codificantes de péptidos La1(CliOthLa101 a CliOthLa106), de los cuales el péptido codificado por el transcrito CliOthLa106 fue confirmado en el análisis proteómico, ésto toma relevancia debido a que no existía evidencia proteómica de estos péptidos en alacranes de la familia Buthidae.

6.2.5.4.- Péptidos no definidos

La última categoría aquí analizada corresponde a los péptidos no definidos, los cuales no muestran dominios conservados y son de función desconocida. En este análisis fueron identificados cinco transcritos codificantes de péptidos no definidos (CliOthUnd01 a CliOthUnd05, Tabla 5), de los cuales CliOthUnd03, CliOthUnd04 y CliOthUnd05 fueron confirmados proteómicamente en el veneno (Tabla 1, Anexo N). Por otra parte, los análisis integrales mencionados (Tabla 1, Anexo B, Tabla 1, Anexo E) han encontrado transcritos codificantes para péptidos sin estructura y función desconocida (290 transcritos), de los cuales 90 péptidos han sido confirmado en los venenos por análisis proteómicos (Cid-Uribe et al., 2020).

Tabla 5. Transcritos codificantes de componentes de veneno de la categoría No definido. En esta tabla se muestra el Identificador asignado al transcrito, los TPM que presentan dichos transcritos, la longitud efectiva de los mismos, las secuencias aminoácidicas.

Transcrito	ТРМ	Longitud efectiva	Secuencia
CliOthUnd01	2,908. 59378	96.003	MFQVLTLSCLIFSYIYSCQGEDEEGRLFFNFIFSDEGRKLLRCFGTFGFSYSMKTD IRSKMEAQEKLCNCTSAAIKTT*
CliOthUnd02	7.9233 33	93.279	MFTTINIALRRIIIVTPILFLYLMAELYMPFVEAQFFHHHFNITACIVCDEGVNYSVR NFMCCLFSSKCCGEEKFKD*
CliOthUnd03	115,60 5.125	43.82	<u>MNKIVALLLLTVLVLTVVPISEVES</u> KYCYNDDDCKSECMVVKYCQYGTCYCKGNG <i>K</i> *
CliOthUnd04	2,336. 11948	341.791	MKTSMDMTPLLMLFIFAIVLSPTNSIGIPDIIPIDPNVIPIDPNVIPIDPNVIPLDPLKDL SKTMDMYCGLSCAEKRDFRFCLIENGLQTVLDFAKNCAQGLQFFPTTDEITEFV CKLTEASPEVFGKFLKCHSSAQKTFSITNPNVYLIIAKCLETSKTC*
CliOthUnd05	273.66 4412	212.796	MRLHRGSSLLTFIFFLFILTITFSMPHYSFRDKRSGISDQRLAELETLINLAKQKNR GRPPIAFGVIDPLKVGKRKRSNDVTEMDDLRELFDDPLKEKEYAENARFWDLMT DLRRYTN*

6.3.- Cuantificación de transcritos

Adicionalmente, se realizó una estimación de abundancia relativa de los transcritos presentes en las dos bibliotecas utilizando el software Salmon (Patro et al., 2017a) (Tabla 1, Anexo I). En la Figura 16, se encuentran representadas las abundancias relativas de los transcritos que codifican para componentes de veneno. En el eje de las abcisas se muestra el logaritmo base diez de la longitud effectiva del transcrito, la cuál es similar a la longitud normal del transcrito con la diferencia que considera los factores que podrían afectar la longitud del transcrito, es decir corresponde al área del transcrito que fue mapeada por los reads (Patro et al., 2017a, 2017b). El eje de las ordenadas corresponde a la estimacion de la abundancia relativa en TPM (transcritos por millón) que son un método de normalización para RNA-seq, el cuál se calcula considerando la longitud efectiva de cada transcrito expresandolo por cada millón de transcritos (Patro et al., 2017b). Los cinco transcritos más abundantes corresponden a un péptido no definido, dos HDP y dos toxinas de sodio, siendo el más abundante el transcrito CliOthUnd03 con 115,605 TPM y el transcrito codificante de toxinas de sodio más abundante fue CliNaTBet33 con 69 015 TPM. Este transcrito muestra similitudes con toxinas de sodio para insectos. A su vez, el veneno de C. limpidus muestra toxicidad en insectos después de dos días de ordeña, a diferencia de la inhibición de canales de mamíferos, la cual se presenta hasta 13 días post ordeña (Carcamo-Noriega et al., 2019). Esto podría explicar por que los transcritos codificantes de toxinas para mamíferos no se encontraron entre las más abundantes en este análisis. Cabe destacar que a pesar de que los transcritos codificantes de las enzimas son diversos sus abundancias oscilan entre 0.3 a 4017 TPM. Por otra parte, los HDP no presentan una amplia diversidad sin embargo, las abundancias de sus transcritos se encuentran entre 1.6 a 92,209 TPM.

Figura 16. Abundancia relativa de transcritos codificantes de componentes de veneno de *C. limpidus*. Este análisis fue realizado utilizando el cuantificador Salmon, en el eje de Y muestra los transcritos por millon (TPM) y el eje X se muestra el logaritmo base 10 de la longitud efectiva .

6.4.- Análisis proteómico del veneno de C. limpidus

Con la finalidad de realizar una aproximación proteómica de la composición del veneno, fue determinado el perfil de pesos moleculares de componentes del veneno de *C. limpidus* usando LC-MS. Asimismo, se realizó la identificación de proteínas usando un sistema en tándem LC-MS/MS.

6.4.1.- Perfil de pesos moleculares de componentes del veneno de *C. limpidus* determinados por LC-MS

El análisis realizado por LC-MS en el veneno del alacrán *C. limpidus* mostró un perfil de masas moleculares compuesto de 395 diferentes (Tabla 2, Anexo N), en el que los componentes con mayor diversidad se encuentran en el rango de 7000-8000 Da (Figura 17). En este rango de peso molecular están representadas las toxinas que afectan canales iónicos de sodio. Por lo que, asumiendo que estos componentes son NaScTx, se podria interpretar que las NaScTx son los componentes más diversos en el veneno de *C. limpidus*. Sin embargo, es necesario realizar la anotación de las proteínas que se encuentran en el veneno para confirmar esta teoría. Cabe destacar, que el análisis transcriptómico demostró que los transcritos codificantes de veneno más diversos, corresponden a NaScTx.

Figura 17. Distribución de los componentes de veneno de *C. limpidus***.** Los componentes de veneno identificados por espectrometría de masas están agrupados con relación a sus pesos moleculares.

Adicionalmente, se han identificado masas moleculares que corresponden a los masas teóricas de transcritos codificantes de toxinas de sodio. Para considerarlas como masas similares, se tomaron en cuenta aquellas que presentan diferencias menores a 20 ppm (Tabla 6).

Tabla 6. Correspondencia de pesos moleculares experimentales y pesos moleculares teóricos de los péptidos codificados por los transcritos generados en este análisis. (Tabla 2, Anexo N y Tabla 1, Anexo K)

Transcritos	Peso molecular teórico (Da)	Peso molecular experimental (Da)
CliNaTAlp13	7269.11648	7269.18
CliNaTAlp09	7273.14854	7273.22
CliNaTBet33	7316.17648	7316.15
CliNaTBet08	7384.37854	7384.3
CliNaTBet15	7436.36648	7436.35
CliNaTBet41	7082.07648	7082.1
CliNaTBet09	7154.95854	7154.95
CliNaTAlp07	7208.10648	7208.16
CliKtxBet01	7486.80236	7486.82
CliNaTBet29	7553.50854	7553.36
CliNaTBet31	7577.56854	7577.43
CliNaTBet32	7592.63854	7592.76
CliNaTAlp16	7743.66648	7743.55
CliNaTBet28	7849.71648	7849.56
CliOthLa103	10902.18648	10902.1

6.4.2.- Identificación de proteínas por LC-MS/MS

Por otra parte, se realizó una identificacion de péptidos utilizando un sistema LC-MS/MS. En este sistema fue aplicado el veneno de C. limpidus, previamente reducido, alguilado y digerido con tripsina. Por lo gue, los datos generados corresponden a espectros MS (Mass spectra), los cuales fueron identificados usando el motor de busqueda Sequest HT en el software Proteome Discoverer 1.4, usando como base de datos el transcriptoma de C. limpidus. Mediante este análisis, se confirmó la presencia de 52 proteínas/péptidos diferentes en el veneno, las cuales están codificados en el transcriptoma de C. limpidus (Tabla 1, Anexo K). De los 52 identificaciones solo 46 corresponden a componentes de veneno (26 NaScTx, tres KScTx, dos HDP, ocho enzimas, un Pln y seis péptidos de la categoria "otros componentes de veneno"), los cuales fueron mencionadas a lo largo de la descripción y discusión de los resultados transcriptómicos. El análisis proteómico mostró que las NaScTx son las proteínas más diversas en el veneno (Figura 18). El 53.9% de las identificaciones corresponde a toxinas, el 17.3% a enzimas, 3.8% a HDP, 1.9 % a inhibidores de proteasas y el 11.6 % a "otros componentes de veneno". Adicionalmente, fueron identificadas seis proteínas (11.5%) con anotación de proteínas implicadas en procesos celulares. Este análisis demostró que las cinco categorias utilizadas para la clasificación de los transcritos, tienen representación en el veneno.

Figura 18. Diversidad de proteínas identificadas en el veneno de *C. limpidus* por LC-MS/MS. Se muestra en porcentaje la distribución de los 52 proteínas identificadas el análisis proteómico del veneno por LC-MS/MS.

Los análisis proteómicos realizados por LC-MS/MS de otros venenos de alacranes mostraron que la mayoría de los análisis realizados en alacranes butidos presentan un alta proporción de toxinas que afectan canales de sodio, con respecto a los análisis realizados en alacranes no butidos (Figura 19, Tabla 1, Anexo E). Sin embargo, no se observa una relación clara entre la cantidad de toxinas y la letalidad del veneno.

Figure 19. Diversidad de los péptidos identificados en los análisis proteómicos del veneno de diversos alacranes por LC-MS-MS. Los alacranes fueron agrupados por su familia taxonómica.

Comparando los perfiles de diversidad de componentes de los análisis transcriptómicos y proteómicos de la glándula venenosa y el veneno de *C. limpidus*, se observa que en ambos análisis la categoria con mayor diversidad corresponde a las NaScTx, seguida por la categoría de enzimas (Figura 20). Sin embargo, los porcentajes observados en cada categoría en ambos análisis son distantes.

Figura 20. Comparación de los perfiles transcriptómicos y proteómicos de la glándula venenosa y el veneno de *C. limpidus.*

6.5.- Datos adicionales

Los análisis proteomicos cualitativos previos del veneno de hembras y machos de *C.limpidus* (Cid-Uribe, 2016), mostraron diferencias cualitativas en los venenos analizados. El péptido CIINTx se encontró en ambos venenos sin embargo, mostró evidencias que aparentemente la abundancia de esté componente era distinta en el veneno de machos y hembras (Cid-Uribe, 2016). Por otra parte,durante el análisis transcriptómico y proteómico de la glándula y el veneno de *C. limpidus*, se identifico el transcrito CliOthUnd03 que codifica para el péptido ClINTx. La longitud de dicho péptido es de 29 aminoácidos, es estabilizado por tres puentes disulfuro y presenta una amidación en el carboxilo terminal. No obstante, dicho péptido no presenta ningún dominio conservado y su función es desconocida. Cabe destacar que el transcrito codificante de este péptido es el de mayor abundancia relativa entre los transcritos codificantes de componentes de veneno.

Para su caracterización funcional, CIINTx fue evaluado en modelos *in vivo* e *in vitro*. Los modelos *in vivo* demostraron ausencia de toxicidad en mamíferos, insectos, arácnidos (alacranes) y ausencia de cambios etológicos. Por otra parte, los análisis *in vitro* demostraron que este péptido no tiene reconocimiento en los siguientes canales y receptores: Shaker, EAG, Nav 1.4, Erg, y receptor de acetilcolina. La estructura predicha de dicho péptido es similar al arreglo estructural de las toxinas y las defensinas de artrópodos por lo que fue evaluado en ensayos de actividad antibacteriana con las cepas *Escherichia coli* ATCC25922 y *Staphylococcus aureus* ATCC25923 en las que no presentó inhibición del crecimiento .

Adicionalmente, se realizó la estimación de la abundancia relativa de los componentes determinados por LC-MS utilizando la intensidad de los iones de los componentes identificados en el veneno de *Centruroides limpidus*. Ésto fue realizado por triplicado en el veneno de hembras y machos. Dicho análisis demostró que de los 395 componentes identificados solo 237 se encuentran en todas las muestras (Tabla 1, Anexo O). De las cuales, 70 componentes diferentes presentaron un p-value (prueba t) <0.05 y un log2FC >1 o <-1. En la Figura 1 del Anexo O se muestra el -log p-value vs log2FC y se muestran en rojo aquellos sobre-expresados para hembras y en azul sobre-expresados para machos, en gris aparecen todos aquellos que no cumplen con los criterios de selección, las líneas punteadas en el gráfico indican los valores de corte. Estas diferencias pueden estar relacionadas con el ciclo reproductivo de los alacranes, ya que no presentan las mismas estrategias de caceria a lo largo del ciclo reproductivo.

7.- Conclusiones

Los análisis realizados en el veneno y la glándula venenosa del alacrán C. limpidus, demostraron la complejidad del veneno de este animal. Hasta el momento, se identificaron 192 transcritos codificantes de componentes de veneno de los cuales 52 fueron confirmados en el veneno. Se encontraron componentes típicos de venenos de alacranes de la familia Buthidae (NaScTx). Sin embargo, estos análisis también demostraron que componentes de distintas subfamilias también se encuentran en dicho alacrán. Es importante notar, que la identificación de componentes de veneno sin precedente alguno ha sido gracias al uso complementario de los análisis proteómicos y transcriptómicos de veneno y glándula de C. limpidus. A partir de estos análisis fue posible recuperar información de tres componentes proteícos (CliOthUnd03 - CliOthUnd05). Estos no presentan ningún homólogo conocido. Entre ellos se encuentra el transcrito codificante de componentes de veneno más abundante (CliOthUnd03). La caracterización funcional de dicho componente demostró que no es tóxico para mamíferos o insectos, no inhibe los canales iónicos ensayados, no presenta actividad antibacteriana, por lo que el papel que desarrolla como componente del veneno sigue siendo desconocido. Adicionalmente, se corroboró que las NaScTx son los componentes más diversos en la glándula (59 transcritos) y el veneno (29 péptidos) de C. limpidus. Se espera que algunas de estas toxinas estén dirigidas hacia otros artrópodos, ya que constituyen parte de su alimentación. Sin embargo, desconocemos todos los organismos a los que posiblemente estén dirigidas las nuevas toxinas identificadas. Debido a que los alacranes son depredados por animales de diferentes clases. Por otra parte, la información analizada de las KScTx (26 transcritos) y la presencia de casi todas las subfamilias de KScTx en diversos transcriptomas y proteomas de alacranes sugiere que dichas toxinas son ubicuas para los mismos. Desde otro ángulo, nuestro análisis integral nos acercó al entendimiento de algunas patologías derivadas de las intoxicaciones por picadura de alacrán. Tal es el caso, de las metaloproteasas identificadas en el transcriptoma y proteoma de C. limpidus, las cuales en ambos análisis representan la segunda categoría más diversa de los componentes de veneno. Estas enzimas, posiblemente sean las responsables de liberación de enzimas pancreáticas que ocurre durante la intoxicación de

mamíferos por el veneno de *C. limpidus*. Desde otro punto de vista, el análisis integral de glándula y veneno de *C. limpidus* ha generado más cuestiones, tales como ¿por qué difiere el perfil transcriptómico del proteómico?, ¿qué funciones tienen los componentes nuevos?, ¿por qué hay tal diversidad de toxinas de sodio?, ¿cuáles son sus blancos?, ¿Cómo varían los perfiles transcriptómicos después de la depletación de la glándula?, entre otras.

8.- Perspectivas

- Realizar la caracterización bioquímica y funcional de los nuevos péptidos identificados en estos análisis.
- Realizar la descripción de las rutas metabólicas activas en el proceso de síntesis de veneno.
- Realizar los análisis proteómicos y transcriptómicos en diferentes tiempos para determinar los perfiles de expresión y transcripción de los componentes tóxicos. Así como determinar si estos componentes tóxicos son para vertebrados e invertebrados.

9.- Referencias

- Adade, C.M., Carvalho, A.L.O., Tomaz, M.A., Costa, T.F.R., Godinho, J.L., Melo, P.A., Lima, A.P.C.A., Rodrigues, J.C.F., Zingali, R.B., Souto-Padrón, T., 2014.
 Crovirin, a Snake Venom Cysteine-Rich Secretory Protein (CRISP) with Promising Activity against Trypanosomes and Leishmania. PLoS Negl. Trop. Dis. 8, e3252. https://doi.org/10.1371/journal.pntd.0003252
- Alagón, A.C., Guzmán, H.S., Martin, B.M., Ramírez, A.N., Carbone, E., Possani,
 L.D., 1988. Isolation and characterization of two toxins from the mexican scorpion centruroides limpidus limpidus karsch. Comp. Biochem. Physiol. -Part B Biochem. 89, 153–161. https://doi.org/10.1016/0305-0491(88)90277-5
- Alagón, A.C., Guzmán, H.S., Martin, B.M., Ramírez, A.N., Carbone, E., Possani, L.D., 1988. Isolation and characterization of two toxins from the mexican scorpion centruroides limpidus limpidus karsch. Comp. Biochem. Physiol. --Part B Biochem. https://doi.org/10.1016/0305-0491(88)90277-5
- Allard, J.B., Duan, C., 2018. IGF-binding proteins: Why do they exist and why are there so many? Front. Endocrinol. (Lausanne). 9, 117. https://doi.org/10.3389/fendo.2018.00117

Almaaytah, A., Albalas, Q., 2014. Scorpion venom peptides with no disulfide bridges: A review. Peptides 51, 35–45. https://doi.org/10.1016/j.peptides.2013.10.021

- Almagro Armenteros, J.J., Sønderby, C.K., Sønderby, S.K., Nielsen, H., Winther, O.,
 2017. DeepLoc: prediction of protein subcellular localization using deep
 learning. Bioinformatics 33, 3387–3395.
 https://doi.org/10.1093/bioinformatics/btx431
- Almeida, F.M., Pimenta, A.M.C., De Figueiredo, S.G., Santoro, M.M., Martin-Eauclaire, M.F., Diniz, C.R., De Lima, M.E., 2002. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon 40, 1041–1045. https://doi.org/10.1016/S0041-0101(02)00084-3
- Almonte, A.G., Sweatt, J.D., 2011. Serine proteases, serine protease inhibitors, and protease- activated receptors: roles in synaptic function and behavior. Brain

Res. 1407, 107–122. https://doi.org/10.1016/j.brainres.2011.06.042.Serine

- Anderson, C.S., MacKinnon, R., Smith, C., Miller, C., 1988. Charybdotoxin block of single Ca²⁺-activated K⁺ channels: Effects of channel gating, voltage, and ionic strength. J. Gen. Physiol. 91, 317–333. https://doi.org/10.1085/jgp.91.3.317
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis,
 A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver,
 L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
 Rubin, G.M., Sherlock, G., 2000. Gene ontology: Tool for the unification of
 biology. Nat. Genet. 25. https://doi.org/10.1038/75556
- Bach, L.A., 2018. What happened to the IGF binding proteins? Endocrinology 159, 570–578. https://doi.org/10.1210/en.2017-00908
- Bajaj, S., Han, J., 2019. Venom-derived peptide modulators of cation-selective channels: Friend, foe or frenemy. Front. Pharmacol. 10. https://doi.org/10.3389/fphar.2019.00058
- Banerjee, A., Lee, A., Campbell, E., MacKinnon, R., 2013. Structure of a poreblocking toxin in complex with a eukaryotic voltage-dependent K⁺ channel. Elife 2, e00594. https://doi.org/10.7554/eLife.00594
- Bergeron, Z.L., Bingham, J.P., 2012. Scorpion toxins specific for potassium (K⁺) channels: A historical overview of peptide bioengineering. Toxins (Basel). 4, 1082–1119. https://doi.org/10.3390/toxins4111082
- Bernardes, C.P., Menaldo, D.L., Zoccal, K.F., Boldrini-França, J., Peigneur, S., Arantes, E.C., Rosa, J.C., Faccioli, L.H., Tytgat, J., Sampaio, S.V., 2019. First report on BaltCRP, a cysteine-rich secretory protein (CRISP) from Bothrops alternatus venom: Effects on potassium channels and inflammatory processes.
 Int. J. Biol. Macromol. 140, 556–567. https://doi.org/10.1016/j.ijbiomac.2019.08.108
- Borchani, L., Sassi, A., Ben Gharsa, H., Safra, I., Shahbazzadeh, D., Ben Lasfar, Z., El Ayeb, M., 2013. The pathological effects of Heminecrolysin, a dermonecrotic toxin from Hemiscorpius lepturus scorpion venom are mediated through its lysophospholipase D activity. Toxicon 68, 30–9. https://doi.org/10.1016/j.toxicon.2013.03.012

78

- Borchani, L., Sassi, A., Shahbazzadeh, D., Strub, J.M., Tounsi-Guetteti, H.,
 Boubaker, M.S., Akbari, A., Van Dorsselaer, A., El Ayeb, M., 2011.
 Heminecrolysin, the first hemolytic dermonecrotic toxin purified from scorpion venom. Toxicon 58, 130–139. https://doi.org/10.1016/j.toxicon.2011.05.016
- Borges, A., Trejo, E., Vargas, A.M., Céspedes, G., Hernández, A., Alfonzo, M.J., 2004. Pancreatic toxicity in mice elicited by Tityus zulianus and Tityus discrepans scorpion venoms. Invest. Clin. 45, 269–276.
- Brazón, J., Guerrero, B., D'Suze, G., Sevcik, C., Arocha-Piñango, C.L., 2014.
 Fibrin(ogen)olytic enzymes in scorpion (Tityus discrepans) venom. Comp.
 Biochem. Physiol. B Biochem. Mol. Biol. 168, 9.
 https://doi.org/10.1016/j.cbpb.2013.11.007
- Caccin, P., Pellegatti, P., Fernandez, J., Vono, M., Cintra-Francischinelli, M., Lomonte, B., Gutiérrez, J.M., Di Virgilio, F., Montecucco, C., 2013. Why myotoxin-containing snake venoms possess powerful nucleotidases? Biochem. Biophys. Res. Commun. 430, 1289–1293. https://doi.org/10.1016/j.bbrc.2012.11.129
- Carbone, E., Wanke, E., Prestipino, G., Possani, L.D., Maelicke, A., 1982. Selective blockage of voltage-dependent K⁺ channels by a novel scorpion toxin. Nature 296, 90–91.
- Carcamo-Noriega, E.N., Possani, L.D., Ortiz, E., 2019. Venom content and toxicity regeneration after venom gland depletion by electrostimulation in the scorpion Centruroides limpidus. Toxicon 157, 87–92. https://doi.org/10.1016/j.toxicon.2018.11.305
- Catterall, W.A., Cestèle, S., Yarov-Yarovoy, V., Yu, F.H., Konoki, K., Scheuer, T., 2007. Voltage-gated ion channels and gating modifier toxins. Toxicon 49, 124–141. https://doi.org/10.1016/j.toxicon.2006.09.022
- CBS, n.d. TMHMM-CBS [WWW Document]. URL http://www.cbs.dtu.dk/services/TMHMM/
- Cestèle, S., Catterall, W.A., 2000. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883–92. https://doi.org/10.1016/S0300-9084(00)01174-3

79

- Cestèle, S., Gordon, D., Kopeyan, C., Rochat, H., 1997. Toxin III from Leiurus quinquestriatus quinquestriatus: A specific probe for receptor site 3 on insect sodium channels. Insect Biochem. Mol. Biol. 27, 523–8. https://doi.org/10.1016/S0965-1748(97)00027-1
- Chen, Z., Hu, Y., Han, S., Yin, S., He, Y., Wu, Y., Cao, Z., Li, W., 2011. ImKTx1, a new Kv1.3 channel blocker with a unique primary structure. J. Biochem. Mol. Toxicol. 25, 244–251. https://doi.org/10.1002/jbt.20382
- Chen, Z., Wang, B., Hu, J., Yang, W., Cao, Z., Zhuo, R., Li, W., Wu, Y., 2013. SjAPI, the First Functionally Characterized Ascaris-Type Protease Inhibitor from Animal Venoms. PLoS One 8. https://doi.org/10.1371/journal.pone.0057529
- Chen, Z.Y., Hu, Y.T., Yang, W.S., He, Y.W., Feng, J., Wang, B., Zhao, R.M., Ding, J.P., Cao, Z.J., Li, W.X., Wu, Y.L., 2012. Hg1, novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family. J. Biol. Chem. 287, 13813–13821. https://doi.org/10.1074/jbc.M112.343996
- Chippaux, J.P., 2012. Emerging options for the management of scorpion stings. Drug Des. Devel. Ther. https://doi.org/10.2147/DDDT.S24754
- Chippaux, J.P., Goyffon, M., 2008. Epidemiology of scorpionism: A global appraisal. Acta Trop. https://doi.org/10.1016/j.actatropica.2008.05.021
- Cid-Uribe, J.I., 2016. Caracterización proteómica del veneno y transcriptómica de la glándula venenosa de machos y hembras del alacrán centruroides limpidus. IBT-UNAM.
- Cid-Uribe, J.I., Santibáñez-López, C.E., Meneses, E.P., Batista, C.V.F., Jiménez-Vargas, J.M., Ortiz, E., Possani, L.D., 2018. The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon. https://doi.org/10.1016/j.toxicon.2018.06.085
- Cid-Uribe, J.I., Veytia-Bucheli, J.I., Romero-Gutierrez, T., Ortiz, E., Possani, L.D., 2020. Scorpion venomics: a 2019 overview. Expert Rev. Proteomics 17, 67–83. https://doi.org/10.1080/14789450.2020.1705158
- Cid Uribe, J.I., Jiménez Vargas, J.M., Ferreira Batista, C.V., Zamudio Zuñiga, F., Possani, L.D., 2017. Comparative proteomic analysis of female and male

venoms from the Mexican scorpion Centruroides limpidus: Novel components found. Toxicon. https://doi.org/10.1016/j.toxicon.2016.11.256

- Conde, R., Zamudio, F.Z., Becerril, B., Possani, L.D., 1999. Phospholipin, a novel heterodimeric phospholipase A2 from Pandinus imperator scorpion venom. FEBS Lett. 460, 447–450. https://doi.org/10.1016/S0014-5793(99)01392-7
- Corona, M., Gurrola, G.B., Merino, E., Cassulini, R.R., Valdez-Cruz, N.A., García, B., Ramírez-Domínguez, M.E., Coronas, F.I.V., Zamudio, F.Z., Wanke, E., Possani, L.D., 2002. A large number of novel Ergtoxin-like genes and ERG K⁺- channels blocking peptides from scorpions of the genus Centruroides. FEBS Lett. 532, 121–126. https://doi.org/10.1016/S0014-5793(02)03652-9
- Cremonez, C.M., Maiti, M., Peigneur, S., Cassoli, J.S., Dutra, A.A.A., Waelkens, E., Lescrinier, E., Herdewijn, P., de Lima, M.E., Pimenta, A.M.C., Arantes, E.C., Tytgat, J., 2016. Structural and functional elucidation of peptide TS11 shows evidence of a novel subfamily of scorpion venom toxins. Toxins (Basel). 8, 288. https://doi.org/10.3390/toxins8100288
- Crusca, E., Basso, L.G.M., Altei, W.F., Marchetto, R., 2018. Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion's venom. Biochim. Biophys. Acta - Biomembr. 1860, 2155–2165. https://doi.org/10.1016/j.bbamem.2018.08.012
- Currier, R.B., Calvete, J.J., Sanz, L., Harrison, R.A., Rowley, P.D., Wagstaff, S.C., 2012. Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment. PLoS One 7, e41888. https://doi.org/10.1371/journal.pone.0041888
- Dalton, S., Gerzanich, V., Chen, M., Dong, Y., Shuba, Y., Simard, J.M., 2003. Chlorotoxin-sensitive Ca²⁺-activated Cl? channel in type R2 reactive astrocytes from adult rat brain. Glia 42, 325–339. https://doi.org/10.1002/glia.10212
- de Oliveira-Mendes, B.B.R., Miranda, S.E.M., Sales-Medina, D.F., de Freitas Magalhães, B., Kalapothakis, Y., de Souza, R.P., Cardoso, V.N., Barros, A.L.B., Guerra-Duarte, C., Kalapothakis, E., Horta, C.C.R., 2019. Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl. Trop. Dis. 13, e0007048. https://doi.org/10.1371/journal.pntd.0007048

- DeBin, J.A., Maggio, J.E., Strichartz, G.R., 1993. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. Physiol. 264, c361-9. https://doi.org/10.1152/ajpcell.1993.264.2.c361
- Dehesa-Dávila, M., Martin, B.M., Nobile, M., Prestipino, G., Possani, L.D., 1994. Isolation of a toxin from Centruroides infamatus infamatus Koch scorpion venom that modifies Na⁺ permeability on chick dorsal root ganglion cells. Toxicon 32, 1487–1493. https://doi.org/10.1016/0041-0101(94)90307-7
- Dehesa-Dávila, M., Ramírez, A.N., Zamudio, F.Z., Gurrola-Briones, G., Liévano, A., Darszon, A., Possani, L.D., 1996. Structural and functional comparison of toxins from the venom of the scorpions Centruroides infamatus infamatus, Centruroides limpidus limpidus and Centruroides noxius. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113, 331–339. https://doi.org/10.1016/0305-0491(95)02031-4
- Deshane, J., Garner, C.C., Sontheimer, H., 2003. Chlorotoxin Inhibits Glioma Cell Invasion via Matrix Metalloproteinase-2. J. Biol. Chem. 278, 4135–4144. https://doi.org/10.1074/jbc.M205662200
- DGEDGAP, S., 2019. Dirección General de Epidemiología Dirección General Adjunta de Epidemiología [WWW Document]. Boletines epidemilógicos históricos. URL https://www.gob.mx/salud/acciones-y-programas/historicoboletin-epidemiologico
- Dhananjaya, B.L., D'Souza, C.J.M., 2010. The pharmacological role of nucleotidases in snake venoms. Cell Biochem. Funct. https://doi.org/10.1002/cbf.1637
- Duckert, P., Brunak, S., Blom, N., 2004. Prediction of proprotein convertase cleavage sites. Protein Eng. Des. Sel. 17, 107–112. https://doi.org/10.1093/protein/gzh013
- El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi,
 M., Richardson, L.J., Salazar, G.A., Smart, A., Sonnhammer, E.L.L., Hirsh, L.,
 Paladin, L., Piovesan, D., Tosatto, S.C.E., Finn, R.D., 2019. The Pfam protein
 families database in 2019. Nucleic Acids Res.
 https://doi.org/10.1093/nar/gky995

- Estrella, A., Sánchez, E.E., Galán, J.A., Tao, W.A., Guerrero, B., Navarrete, L.F., Rodríguez-Acosta, A., 2011. Characterization of toxins from the broad-banded water snake Helicops angulatus (Linnaeus, 1758): Isolation of a cysteine-rich secretory protein, Helicopsin. Arch. Toxicol. 85, 305–313. https://doi.org/10.1007/s00204-010-0597-6
- Ferreira, L.A.F., Alves, W.E., Lucas, M.S., Habermehl, G.G., 1996. Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from Scaptocosa raptoria venom. Toxicon 34, 599–603. https://doi.org/10.1016/0041-0101(96)00010-4
- Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., Bateman, A., 2016. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. D279–D285. https://doi.org/10.1093/nar/gkv1344
- Fletcher, M.D., Possani, L.D., Fletcher, P.L., 1994. Morphological studies by light and electron microscopy of pancreatic acinar cells under the effect of Tityus serrulatus venom. Cell Tissue Res. 34, 1399–1411. https://doi.org/10.1007/BF00414168
- Fletcher, P.J., Fletcher, M., Possani, L., 1992. Characteristics of pancreatic exocrine secretion stimulated by venom from the Brazilian scorpion, Tityus serrulatus. Toxicon 58, 259–270. https://doi.org/10.1016/0041-0101(90)90200-q
- Fletcher, P.L., Fletcher, M.D., Weninger, K., Anderson, T.E., Martin, B.M., 2010. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. J. Biol. Chem. 285, 7405–7416. https://doi.org/10.1074/jbc.M109.028365
- Francke, Oscar; Santibáñez-López, C.E., n.d. CNAN [WWW Document]. URL http://aracnidos.unam.mx/prin.html
- Fry, B.G., Roelants, K., Champagne, D.E., Scheib, H., Tyndall, J.D.A., King, G.F., Nevalainen, T.J., Norman, J.A., Lewis, R.J., Norton, R.S., Renjifo, C., de la Vega, R.C.R., 2009. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 10, 483–511.

https://doi.org/10.1146/annurev.genom.9.081307.164356

- Fu, Y.J., Yin, L.T., Liang, A.H., Zhang, C.F., Wang, W., Chai, B.F., Yang, J.Y., Fan, X.J., 2007. Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci. Lett. https://doi.org/10.1016/j.neulet.2006.10.056
- Fuller, M.D., Thompson, C.H., Zhang, Z.-R., Freeman, C.S., Schay, E., Szakács, G., Bakos, É., Sarkadi, B., McMaster, D., French, R.J., Pohl, J., Kubanek, J., McCarty, N.A., 2007. State-dependent Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels by a Novel Peptide Toxin. J. Biol. Chem. 282, 37545–37555. https://doi.org/10.1074/jbc.M708079200
- Gao, B., Dalziel, J., Tanzi, S., Zhu, S., 2018. Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino Acids 50, 1025–1043. https://doi.org/10.1007/s00726-018-2580-0
- Gao, B., Harvey, P.J., Craik, D.J., Ronjat, M., De Waard, M., Zhu, S., 2013.
 Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold. Biosci. Rep. 33, 513–527. https://doi.org/10.1042/BSR20130052
- Gibbs, G.M., Roelants, K., O'Bryan, M.K., 2008. The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins - Roles in reproduction, cancer, and immune defense. Endocr. Rev. 29, 865–897. https://doi.org/10.1210/er.2008-0032
- Gmachl, M., Kreil, G., 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. U. S. A. 90, 3569–73. https://doi.org/10.1073/pnas.90.8.3569
- Goldstein, S.A.N., Pheasant, D.J., Miller, C., 1994. The charybdotoxin receptor of a Shaker K⁺ channel: Peptide and channel residues mediating molecular recognition. Neuron 12, 1377–1388. https://doi.org/10.1016/0896-6273(94)90452-9
- González-Santillán, E., Galán-Sánchez, M.A., Valdez-Velázquez, L.L., 2019. A new species of Centruroides (Scorpiones, Buthidae) from Colima, Mexico. Comptes Rendus - Biol. 342, 331–344. https://doi.org/10.1016/j.crvi.2019.10.002

- González-Santillán, E., Possani, L.D., 2018. North American scorpion species of public health importance with a reappraisal of historical epidemiology. Acta Trop. 187, 264–274. https://doi.org/10.1016/j.actatropica.2018.08.002
- Goudarzi, H.R., Salehi Najafabadi, Z., Movahedi, A., Noofeli, M., 2019. Bradykinin-Potentiating Factors of Venom from Iranian Medically Important Scorpions. Arch. Razi Inst. 74, 385–394. https://doi.org/10.22092/ari.2019.123404.1249
- Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. https://doi.org/10.1038/nbt.1883
- Guo, X., Ma, C., Du, Q., Wei, R., Wang, L., Zhou, M., Chen, T., Shaw, C., 2013. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie 95, 1784–1794. https://doi.org/10.1016/j.biochi.2013.06.003
- Gurevitz, M., Froy, O., Zilberberg, N., Turkov, M., Strugatsky, D., Gershburg, E., Lee, D., Adams, M.E., Tugarinov, V., Anglister, J., Shaanan, B., Loret, E., Stankiewicz, M., Pelhate, M., Gordon, D., Chejanovsky, N., 1998. Sodium channel modifiers from scorpion venom: Structure-activity relationship, mode of action and application. Toxicon 36, 1671–1682. https://doi.org/10.1016/S0041-0101(98)00160-3
- Habermann, E., Hardt, K.L., 1972. A sensitive and specific plate test for the quantitation of phospholipases. Anal. Biochem. 50, 163–173. https://doi.org/10.1016/0003-2697(72)90495-2
- Han, J., Lee, S.H., Giebisch, G., Wang, T., 2016. Potassium channelopathies and gastrointestinal ulceration. Gut Liver 10, 881–889. https://doi.org/10.5009/gnl15414
- Hernández-Aponte, C.A., Silva-Sanchez, J., Quintero-Hernández, V., Rodríguez-Romero, A., Balderas, C., Possani, L.D., Gurrola, G.B., 2011. Vejovine, a new

antibiotic from the scorpion venom of Vaejovis mexicanus. Toxicon 57, 84–92. https://doi.org/10.1016/j.toxicon.2010.10.008

- Hill, A.P., Sunde, M., Campbell, T.J., Vandenberg, J.I., 2007. Mechanism of block of the hERG K⁺ channel by the scorpion toxin CnErg1. Biophys. J. 92, 3915–3929. https://doi.org/10.1529/biophysj.106.101956
- Isbister, G.K., Bawaskar, H.S., 2014. Scorpion envenomation. N. Engl. J. Med. 2014, 457–63. https://doi.org/10.1056/NEJMra1401108
- Jablonsky, M.J., Jackson, P.L., Krishna, N.R., 2001. Solution structure of an insectspecific neurotoxin from the new world scorpion Centruroides sculpturatus Ewing. Biochemistry 40, 8273–82. https://doi.org/10.1021/bi010223h
- Jiménez-Ferrer, E., Reynosa-Zapata, I., Pérez-Torres, Y., Tortoriello, J., 2005. The secretagogue effect of the poison from Centruroides limpidus limpidus on the pancreas of mice and the antagonistic action of the Bouvardia ternifolia extract. Phytomedicine 12, 65–71. https://doi.org/10.1016/j.phymed.2004.05.001
- Jiménez-Vargas, J.M., Possani, L.D., Luna-Ramírez, K., 2017. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 127, 139–160. https://doi.org/10.1016/j.neuropharm.2017.09.025
- Jimenez-Vargas, J.M., Restano-Cassulini, R., Quintero-Hernández, V., Gurrola, G.B., Possani, L.D., 2011. Recombinant expression of the toxic peptide ErgTx1 and role of Met35 on its stability and function. Peptides 32, 560–567. https://doi.org/10.1016/j.peptides.2010.06.018
- Jridi, I., Catacchio, I., Majdoub, H., Shahbazeddah, D., El Ayeb, M., Frassanito, M.A., Ribatti, D., Vacca, A., Borchani, L., 2015. Hemilipin, a novel Hemiscorpius lepturus venom heterodimeric phospholipase A2, which inhibits angiogenesis in vitro and in vivo. Toxicon 105, 34–44. https://doi.org/10.1016/j.toxicon.2015.08.022
- Junqueira-Kipnis, A., Marques-Neto, L., Schwartz, E., Procopio, V., da Costa, A., Trentini, M., das Neves, R., Mortari, M., Resende, D., Kipnis, A., 2018. Antimicrobial and Chemotactic Activity of Scorpion-Derived Peptide, ToAP2, against Mycobacterium massiliensis. Toxins (Basel). 10, 219. https://doi.org/10.3390/toxins10060219

86

- Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772– 780. https://doi.org/10.1093/molbev/mst010
- Kuzmenkov, A.I., n.d. Kaliumdb [WWW Document]. URL https://kaliumdb.org/
- Kuzmenkov, A.I., Krylov, N.A., Chugunov, A.O., Grishin, E. V., Vassilevski, A.A.,
 2016. Kalium: A database of potassium channel toxins from scorpion venom.
 Database 2016, baw056. https://doi.org/10.1093/database/baw056
- Law, R.H.P., Zhang, Q., McGowan, S., Buckle, A.M., Silverman, G.A., Wong, W., Rosado, C.J., Langendorf, C.G., Pike, R.N., Bird, P.I., Whisstock, J.C., 2006.
 An overview of the serpin superfamily. Genome Biol. 7, 216. https://doi.org/10.1186/gb-2006-7-5-216
- Lebreton, F., Delepierre, M., Ramírez, A.N., Balderas, C., Possani, L.D., 1994.
 Primary and NMR Three-Dimensional Structure Determination of a Novel Crustacean Toxin from the Venom of the Scorpion Centruroides limpidus limpidus Karsch. Biochemistry 33, 11135–11149. https://doi.org/10.1021/bi00203a010
- Lecht, S., Chiaverelli, R.A., Gerstenhaber, J., Calvete, J.J., Lazarovici, P., Casewell, N.R., Harrison, R., Lelkes, P.I., Marcinkiewicz, C., 2015. Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus sochureki. Biochim. Biophys. Acta Gen. Subj. 1850, 1169–79. https://doi.org/10.1016/j.bbagen.2015.02.002
- Lin King, J. V., Emrick, J.J., Kelly, M.J.S., Herzig, V., King, G.F., Medzihradszky, K.F., Julius, D., 2019. A Cell-Penetrating Scorpion Toxin Enables Mode-Specific Modulation of TRPA1 and Pain. Cell 178, 1362-1374.e16. https://doi.org/10.1016/j.cell.2019.07.014
- Liu, D., Wang, Y., Wei, L., Ye, H., Liu, H., Wang, L., Liu, R., Li, D., Lai, R., 2013. Snake venom-like waprin from the frog of Ceratophrys calcarata contains antimicrobial function. Gene 514, 99–104. https://doi.org/10.1016/j.gene.2012.11.007
- Lodovicho, M.E., Costa, T.R., Bernardes, C.P., Menaldo, D.L., Zoccal, K.F., Carone, S.E., Rosa, J.C., Pucca, M.B., Cerni, F.A., Arantes, E.C., Tytgat, J., Faccioli,

L.H., Pereira-Crott, L.S., Sampaio, S. V., 2017. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicol. Lett. 265, 156–169. https://doi.org/10.1016/j.toxlet.2016.12.003

- Lu, J., Yang, H., Yu, H., Gao, W., Lai, R., Liu, J., Liang, X., 2008. A novel serine protease inhibitor from Bungarus fasciatus venom. Peptides 29, 369–374. https://doi.org/10.1016/j.peptides.2007.11.013
- Lu, S., Lu, R., Song, H., Wu, J., Liu, X., Zhou, X., Yang, J., Zhang, H., Tang, C., Guo, H., Hu, J., Mao, G., Lin, H., Su, Z., Zheng, H., 2019. Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Int. J. Biol. Macromol. 124, 1264–1273. https://doi.org/10.1016/j.ijbiomac.2018.11.060
- Luna-Ramírez, K., Quintero-Hernández, V., Juárez-González, V.R., Possani, L.D., 2015. Whole transcriptome of the venom gland from urodacus yaschenkoi scorpion. PLoS One 10. https://doi.org/10.1371/journal.pone.0127883
- Luna-Ramirez, K., Skaljac, M., Grotmann, J., Kirfel, P., Vilcinskas, A., 2017. Orally delivered scorpion antimicrobial peptides exhibit activity against pea aphid (Acyrthosiphon pisum) and its bacterial symbionts. Toxins (Basel). 9, 261. https://doi.org/10.3390/toxins9090261
- MA Chowdhury, S Miyoshi, and S., 1990. Purification and characterization of a protease produced by Vibrio mimicus. Infect Immun 58, 4159–4162.
- Marques-Neto, L.M., Trentini, M.M., das Neves, R.C., Resende, D.P., Procopio, V.O., da Costa, A.C., Kipnis, A., Mortari, M.R., Schwartz, E.F., Junqueira-Kipnis, A.P., 2018. Antimicrobial and chemotactic activity of scorpion-derived peptide, ToAP2, against Mycobacterium massiliensis. Toxins (Basel). 10. https://doi.org/10.3390/toxins10060219
- Martin, B.M., Ramirez, A.N., Gurrola, G.B., Nobile, M., Prestipinot, G., Possanit,
 L.D., 1994. Novel K⁺-channel-blocking toxins from the venom of the scorpion
 Centruroides limpidus limpidus Karsch. Biochem. J 304, 51–56.

Martinez, G., Hograindleur, J.P., Voisin, S., Nahed, R.A., Aziz, T.M.A. El, Escoffier,

J., Bessonnat, J., Fovet, C.M., Waard, M. De, Hennebicq, S., Aucagne, V., Ray, P.F., Schmitt, E., Bulet, P., Arnoult, C., 2017. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Mol. Hum. Reprod. 23, 116–131. https://doi.org/10.1093/molehr/gaw075

- Matsunaga, Y., Yamazaki, Y., Hyodo, F., Sugiyama, Y., Nozaki, M., Morita, T., 2009.
 Structural divergence of cysteine-rich secretory proteins in snake venoms. J.
 Biochem. 145, 365–375. https://doi.org/10.1093/jb/mvn174
- McCook, J.P., Dorogi, P.L., Vasily, D.B., Cefalo, D.R., 2015. In vitro inhibition of hyaluronidase by sodium copper chlorophyllin complex and chlorophyllin analogs. Clin. Cosmet. Investig. Dermatol. 8, 443–448. https://doi.org/10.2147/CCID.S86863
- McMahon, S.B., Wood, J.N., 2006. Increasingly Irritable and Close to Tears: TRPA1 in Inflammatory Pain. Cell 124, 1123–1125. https://doi.org/10.1016/j.cell.2006.03.006
- Meekins, D.A., Kanost, M.R., Michel, K., 2017. Serpins in arthropod biology. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2016.09.001
- Melo, M.M.A., Daniele-Silva, A., Teixeira, D.G., Estrela, A.B., Melo, K.R.T., Oliveira, V.S., Rocha, H.A.O., Ferreira, L. de S., Pontes, D.L., Lima, J.P.M.S., Silva-Júnior, A.A., Barbosa, E.G., Carvalho, E., Fernandes-Pedrosa, M.F., 2017.
 Structure and in vitro activities of a Copper II-chelating anionic peptide from the venom of the scorpion Tityus stigmurus. Peptides 94, 91–98. https://doi.org/10.1016/j.peptides.2017.05.009
- Meyer, S., Temme, C., Wahle, E., 2004. Messenger RNA turnover in eukaryotes: Pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197–216. https://doi.org/10.1080/10409230490513991
- Mitchell, A., Chang, H.Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla,
 C., McMenamin, C., Nuka, G., Pesseat, S., Sangrador-Vegas, A.,
 Scheremetjew, M., Rato, C., Yong, S.Y., Bateman, A., Punta, M., Attwood, T.K.,
 Sigrist, C.J.A., Redaschi, N., Rivoire, C., Xenarios, I., Kahn, D., Guyot, D., Bork,
 P., Letunic, I., Gough, J., Oates, M., Haft, D., Huang, H., Natale, D.A., Wu, C.H.,

Orengo, C., Sillitoe, I., Mi, H., Thomas, P.D., Finn, R.D., 2015. The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res. 43, D213--D221. https://doi.org/10.1093/nar/gku1243

- Miyashita, M., Otsuki, J., Hanai, Y., Nakagawa, Y., Miyagawa, H., 2007.
 Characterization of peptide components in the venom of the scorpion Liocheles australasiae (Hemiscorpiidae). Toxicon 50, 428–437.
 https://doi.org/10.1016/j.toxicon.2007.04.012
- Mochca-Morales, J., Martin, B.M., Possani, L.D., 1990. Isolation and characterization of Helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom. Toxicon 28, 299–309. https://doi.org/10.1016/0041-0101(90)90065-F
- Morey, S.S., Kiran, K.M., Gadag, J.R., 2006. Purification and properties of hyaluronidase from Palamneus gravimanus (Indian black scorpion) venom. Toxicon 47, 188–195. https://doi.org/10.1016/j.toxicon.2005.10.014
- Morrissette, J., Krätzschmar, J., Haendler, B., El-Hayek, R., Mochca-Morales, J., Martin, B.M., Patel, J.R., Moss, R.L., Schleuning, W.D., Coronado, R., 1995.
 Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors. Biophys. J. 68, 2280–8. https://doi.org/10.1016/S0006-3495(95)80410-8
- Naranjo, D., Miller, C., 1996. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K⁺ channel. Neuron 16, 123–130. https://doi.org/10.1016/S0896-6273(00)80029-X
- Nobile, M., Magnelli, V., Lagostena, L., Mochca-Morales, J., Possani, L.D., Prestipino, G., 1994. The toxin helothermine affects potassium currents in newborn rat cerebellar granule cells. J. Membr. Biol. 139, 49–55. https://doi.org/10.1007/BF00232674
- Nobile, M., Noceti, F., Prestipino, G., Possani, L.D., 1996. Helothermine, a lizard venom toxin, inhibits calcium current in cerebellar granules. Exp. Brain Res. 110, 15–20. https://doi.org/10.1007/BF00241369
- Ojeda, P.G., Chan, L.Y., Poth, A.G., Wang, C.K., Craik, D.J., 2014. The role of disulfide bonds in structure and activity of chlorotoxin. Future Med. Chem. 6,

1617-1628. https://doi.org/10.4155/fmc.14.93

- Olamendi-Portugal, T., Restano-Cassulini, R., Riaño-Umbarila, L., Becerril, B., Possani, L.D., 2017. Functional and immuno-reactive characterization of a previously undescribed peptide from the venom of the scorpion Centruroides limpidus. Peptides 87, 34–40. https://doi.org/10.1016/j.peptides.2016.11.008
- Oliveira, I.S., Ferreira, I.G., Alexandre-Silva, G.M., Cerni, F.A., Cremonez, C.M., Arantes, E.C., Zottich, U., Pucca, M.B., 2019. Scorpion toxins targeting Kv1.3 channels: Insights into immunosuppression. J. Venom. Anim. Toxins Incl. Trop. Dis. 25, e148118. https://doi.org/10.1590/1678-9199-jvatitd-1481-18
- Olsen, M.L., Schade, S., Lyons, S.A., Amaral, M.D., Sontheimer, H., 2003. Expression of voltage-gated chloride channels in human glioma cells. J. Neurosci. 23, 5572–82.
- Ortiz, E., Gurrola, G.B., Schwartz, E.F., Possani, L.D., 2015. Scorpion venom components as potential candidates for drug development. Toxicon 93, 125–135. https://doi.org/10.1016/j.toxicon.2014.11.233
- Ortiz, E., Possani, L.D., 2018. Scorpion toxins to unravel the conundrum of ion channel structure and functioning. Toxicon 150, 17–27. https://doi.org/10.1016/j.toxicon.2018.04.032
- Ortiz, E., Rendón-Anaya, M., Rego, S.C., Schwartz, E.F., Possani, L.D., 2014. Antarease-like Zn-metalloproteases are ubiquitous in the venom of different scorpion genera. Biochim. Biophys. Acta - Gen. Subj. 1840, 1738–1746. https://doi.org/10.1016/j.bbagen.2013.12.012
- Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017a. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197
- Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017b. salmon [WWW Document]. 2013-2017. URL https://salmon.readthedocs.io/en/latest/salmon.html
- Peichoto, M.E., Mackessy, S.P., Teibler, P., Tavares, F.L., Burckhardt, P.L., Breno,M.C., Acosta, O., Santoro, M.L., 2009. Purification and characterization of a cysteine-rich secretory protein from Philodryas patagoniensis snake venom.

Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 150, 79–84. https://doi.org/10.1016/j.cbpc.2009.03.002

- Peigneur, S., Billen, B., Derua, R., Waelkens, E., Debaveye, S., Béress, L., Tytgat, J., 2011. A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochem. Pharmacol. 82, 81–90. https://doi.org/10.1016/j.bcp.2011.03.023
- Petersen, T.N., Brunak, S., Von Heijne, G., Nielsen, H., 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–6. https://doi.org/10.1038/nmeth.1701
- Pineda, S.S., Chaumeil, P.A., Kunert, A., Kaas, Q., Thang, M.W.C., Le, L., Nuhn, M., Herzig, V., Saez, N.J., Cristofori-Armstrong, B., Anangi, R., Senff, S., Gorse, D., King, G.F., 2018. ArachnoServer 3.0: An online resource for automated discovery, analysis and annotation of spider toxins. Bioinformatics 34, 1074–1076. https://doi.org/10.1093/bioinformatics/btx661
- Polis, G.A., Sissom, W.D., McCormick, S.J., 1981. Predators of scorpions: field data and a review. J. Arid Environ. 4, 309–326. https://doi.org/10.1016/s0140-1963(18)31477-0
- Ponce-Saavedra, J., Francke, O.F., Cano-Camacho, H., Hernández-Calderón, E., 2009. Morphological and molecular evidence supporting specific status for Centruroides tecomanus (Scorpiones, Buthidae). Rev. Mex. Biodivers. 80, 71–84.
- Ponce-Saavedra, J., Francke, O.F., Quijano-Ravell, A.F., Santillán, R.C., 2016. ALACRANES (ARACHNIDA: SCORPIONES) DE IMPORTANCIA PARA LA SALUD PÚBLICA EN MÉXICO Scorpions (Arachnida: Scorpiones) of public health importance in Mexico. Folia Entomológica Mex. 2, 45–70.
- Possani, L.D., Becerril, B., Delepierre, M., Tytgat, J., 1999. Scorpion toxins specific for Na⁺-channels. Eur. J. Biochem. 264, 287–300. https://doi.org/10.1046/j.1432-1327.1999.00625.x
- Possani, L.D., Martin, B.M., Fletcher, M.D., Fletcher, P.L., 1991. Discharge effect on pancreatic exocrine secretion produced by toxins purified from Tityus serrulatus scorpion venom. J. Biol. Chem. 266, 3178–3185.

Price, D.R.G., Bell, H.A., Hinchliffe, G., Fitches, E., Weaver, R., Gatehouse, J.A., 2009. A venom metalloproteinase from the parasitic wasp Eulophus pennicornis is toxic towards its host, tomato moth (Lacanobia oleracae). Insect Mol. Biol. 18, 195–202. https://doi.org/10.1111/j.1365-2583.2009.00864.x

protparam [WWW Document], n.d. URL https://web.expasy.org/protparam/

- Quijano-Ravell, A.F., De Armas, L.F., Francke, O.F., Ponce-Saavedra, J., 2019. A new species of the genus centruroides marx (scorpiones, buthidae) from western michoacán state, méxico using molecular and morphological evidence. Zookeys 859, 31–48. https://doi.org/10.3897/zookeys.859.33069
- Quintero-Hernández, V., Ramírez-Carreto, S., Romero-Gutiérrez, M.T., Valdez-Velázquez, L.L., Becerril, B., Possani, L.D., Ortiz, E., 2015. Transcriptome analysis of scorpion species belonging to the Vaejovis genus. PLoS One 10, 1– 18. https://doi.org/10.1371/journal.pone.0117188
- Ramanaiah M1, Parthasarathy PR, V.B., 1990. Purification and properties of phospholipase A2 from the venom of scorpion, (Heterometrus fulvipes). Biochem. Int. 20, 931–40.
- Ramírez-Avila, J., Quevedo, B.E., López, E., Renjifo, J.M., 2004. Purification and partial characterization of phospholipases A2 from Bothrops asper (barba amarilla) snake venom from Chiriguaná (Cesar, Colombia). J. Venom. Anim. Toxins Incl. Trop. Dis. 10, 242–259. https://doi.org/10.1590/S1678-91992004000300005
- Ramírez, A.N., Martin, B.M., Gurrola, G.B., Possani, L.D., 1994. Isolation and characterization of a novel toxin from the venom of the scorpion Centruroides limpidus limpidus Karsch. Toxicon. https://doi.org/10.1016/0041-0101(94)90300-X
- Ranganathan, R., Lewis, J.H., MacKinnon, R., 1996. Spatial localization of the K⁺ channel selectivity filter by mutant cycle-based structure analysis. Neuron 16, 131–9. https://doi.org/10.1016/S0896-6273(00)80030-6
- Rendón-Anaya, M., Delaye, L., Possani, L.D., Herrera-Estrella, A., 2012. Global transcriptome analysis of the scorpion Centruroides noxius: New toxin families and evolutionary insights from an ancestral scorpion species. PLoS One 7.

https://doi.org/10.1371/journal.pone.0043331

- Riaño-Umbarila, L., Olamendi-Portugal, T., Morelos-Juárez, C., Gurrola, G.B., Possani, L.D., Becerril, B., 2013. A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins. Toxicon 76, 370–376. https://doi.org/10.1016/j.toxicon.2013.09.016
- Rochat, C., Rochat, H., Miranda, F., Lissitzky, S., 1967. Purification and Some Properties of the Neurotoxins of Androctonus australis Hector *. Biochemistry 6, 578–585. https://doi.org/10.1021/bi00854a028
- Rodríguez De La Vega, R.C., García, B.I., D'Ambrosio, C., Diego-García, E., Scaloni, A., Possani, L.D., 2004. Antimicrobial peptide induction in the haemolymph of the Mexican scorpion Centruroides limpidus limpidus in response to septic injury. Cell. Mol. Life Sci. 61, 1507–1519. https://doi.org/10.1007/s00018-004-4096-x
- Rodríguez de la Vega, R.C., Possani, L.D., 2005. Overview of scorpion toxins specific for Na C channels and related peptides : biodiversity, structure – function relationships and evolution. Toxicon 46, 831–844. https://doi.org/10.1016/j.toxicon.2005.09.006
- Rodríguez de la Vega, R.C., Possani, L.D., 2004. Current views on scorpion toxins specific for K⁺-channels. Toxicon 43, 865–875. https://doi.org/10.1016/j.toxicon.2004.03.022
- Romero-Gutiérrez, M.T., Santibáñez-López, C.E., Jiménez-Vargas, J.M., Batista, C.V.F., Ortiz, E., Possani, L.D., 2018. Transcriptomic and proteomic analyses reveal the diversity of venom components from the vaejovid scorpion Serradigitus gertschi. Toxins (Basel). https://doi.org/10.3390/toxins10090359
- Romero-Gutierrez, T., Peguero-Sanchez, E., Cevallos, M.A., Batista, C.V.F., Ortiz,
 E., Possani, L.D., 2017. A deeper examination of thorellius atrox scorpion venom components with omic techonologies. Toxins (Basel). 9. https://doi.org/10.3390/toxins9120399
- Santibáñez-López, C.E., Cid-Uribe, J.I., Batista, C.V.F.F., Ortiz, E., Possani, L.D., 2016a. Venom gland transcriptomic and proteomic analyses of the enigmatic scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with insights

on the evolution of its venom components. Toxins (Basel). 8, 3–6. https://doi.org/10.3390/toxins8120367

- Santibáñez-López, C.E., Cid-Uribe, J.I., Zamudio, F.Z., Batista, C.V.F., Ortiz, E., Possani, L.D., 2017. Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae). Toxicon 133, 95–109. https://doi.org/10.1016/j.toxicon.2017.05.002
- Santibáñez-López, C.E., Francke, O.F., Ureta, C., Possani, L.D., 2016b. Scorpions from Mexico: From species diversity to venom complexity. Toxins (Basel). 8, 1– 18. https://doi.org/10.3390/toxins8010002
- Santibáñez-López, C.E., Kriebel, R., Ballesteros, J.A., Rush, N., Witter, Z., Williams, J., Janies, D.A., Sharma, P.P., 2018. Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions. PeerJ 6, e5902. https://doi.org/10.7717/peerj.5902
- Santibáñez-López, C.E., Possani, L.D., 2015. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon 107, 317–326. https://doi.org/10.1016/j.toxicon.2015.06.029
- Schwartz, E.F., Diego-Garcia, E., Rodríguez de la Vega, R.C., Possani, L.D., 2007.
 Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics 8, 1–12. https://doi.org/10.1186/1471-2164-8-119
- Schwartz, E.F., Michelle Capes, E., Diego-García, E., Zamudio, F.Z., Fuentes, O., Possani, L.D., Valdivia, H.H., 2009. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br. J. Pharmacol. 157, 392–403. https://doi.org/10.1111/j.1476-5381.2009.00147.x
- Smith, J.J., Vetter, I., Lewis, R.J., Peigneur, S., Tytgat, J., Lam, A., Gallant, E.M., Beard, N.A., Alewood, P.F., Dulhunty, A.F., 2013. Multiple actions of phi-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proc. Natl. Acad. Sci. U. S. A. 110, 8906–11. https://doi.org/10.1073/pnas.1214062110

- SSA, D., 2018. Boletin epidemiologico sem 52 [WWW Document]. URL https://www.gob.mx/cms/uploads/attachment/file/425972/sem52.pdf
- Stehling, E.G., Sforça, M.L., Zanchin, N.I.T., Oyama, S., Pignatelli, A., Belluzzi, O., Polverini, E., Corsini, R., Spisni, A., Pertinhez, T.A., 2012. Looking over toxin-K
 ⁺ channel interactions. clues from the structural and functional characterization of α-KTx Toxin Tc32, a Kv1.3 Channel Blocker. Biochemistry 51, 1885–94. https://doi.org/10.1021/bi201713z
- Sun, W., Li, Q., Ning, X., Yang, Y., Guo, J., Zhu, Q., Guo, Y., Li, H., Wang, Y., Zhou, Y., Kou, Z., 2020. TFPR1 acts as an immune regulator and an efficient adjuvant for proteins and peptides by activating immune cells, primarily through TLR2. Vaccine 38, 288–297. https://doi.org/10.1016/j.vaccine.2019.10.017
- Tian, C., Zhu, R., Zhu, L., Qiu, T., Cao, Z., Kang, T., 2014. Potassium channels: Structures, diseases, and modulators. Chem. Biol. Drug Des. 83, 1–26. https://doi.org/10.1111/cbdd.12237
- Torres-Larios, A., Gurrola, G.B., Zamudio, F.Z., Possani, L.D., 2000. Hadrurin, A new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur. J. Biochem. 267, 5023–5031. https://doi.org/10.1046/j.1432-1327.2000.01556.x
- Torres, A.M., Bansal, P., Alewood, P.F., Bursill, J.A., Kuchel, P.W., Vandenberg, J.I., 2003. Solution structure of CnErg1 (Ergtoxin), a HERG specific scorpion toxin. FEBS Lett. 539, 138–142. https://doi.org/10.1016/S0014-5793(03)00216-3
- Tytgat, J., Chandy, K.G., Garcia, M.L., Gutman, G.A., Martin-Eauclaire, M.F., Van Der Walt, J.J., Possani, L.D., 1999. A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends Pharmacol. Sci. 20, 444–447. https://doi.org/10.1016/S0165-6147(99)01398-X
- UniProt, n.d. Animal Toxin Annotation Project [WWW Document]. URL https://www.uniprot.org/biocuration_project/Toxins/statistics
- Valdez-Cruz, N.A., Batista, C.V.F., Possani, L.D., 2004. Phaiodactylipin, a glycosylated heterodimeric phospholipase A2 from the venom of the scorpion Anuroctonus phaiodactylus. Eur. J. Biochem. 271, 1453–1464. https://doi.org/10.1111/j.1432-1033.2004.04047.x

- Valdez-Velázquez, L., Quintero-Hernández, V., Romero-Gutiérrez, M., Coronas, F.I.
 V, Possani, L., 2013. Mass Fingerprinting of the Venom and Transcriptome of
 Venom Gland of Scorpion Centruroides tecomanus. PLoS One 8.
 https://doi.org/10.1371/journal.pone.0066486
- Veloso Júnior, P.H. de H., Simon, K.S., de Castro, R.J.A., Coelho, L.C., Erazo, F.A.H., de Souza, A.C.B., das Neves, R.C., Lozano, V.F., Schwartz, E.F., Tavares, A.H., Mortari, M.R., Junqueira-Kipnis, A.P., Silva-Pereira, I., Bocca, A.L., 2019. Peptides ToAP3 and ToAP4 decrease release of inflammatory cytokines through TLR-4 blocking. Biomed. Pharmacother. 118, 109152. https://doi.org/10.1016/j.biopha.2019.109152
- Wang, F., Li, H., Liu, M. na, Song, H., Han, H. mei, Wang, Q. ling, Yin, C. chen, Zhou, Y. cong, Qi, Z., Shu, Y. yan, Lin, Z. jiong, Jiang, T., 2006. Structural and functional analysis of natrin, a venom protein that targets various ion channels. Biochem. Biophys. Res. Commun. 351, 443–448. https://doi.org/10.1016/j.bbrc.2006.10.067
- Wang, Y.L., Kuo, J.H., Lee, S.C., Liu, J.S., Hsieh, Y.C., Shih, Y.T., Chen, C.J., Chiu, J.J., Wu, W.G., 2010. Cobra CRISP functions as an inflammatory modulator via a novel Zn 2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules. J. Biol. Chem. 285, 37872–37883. https://doi.org/10.1074/jbc.M110.146290
- Ward, M.J., Ellsworth, S.A., Rokyta, D.R., 2018. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon 142, 14–29. https://doi.org/10.1016/j.toxicon.2017.12.042
- Wilkins, M.R., Lindskog, I., Gasteiger, E., Bairoch, A., Sanchez, J.C., Hochstrasser, D.F., Appel, R.D., 1997. Detailed peptide characterization using PEPTIDEMASS A World-Wide-Web-accessible tool. Electrophoresis 18, 403–8. https://doi.org/10.1002/elps.1150180314
- Xiao, L., Gurrola, G.B., Zhang, J., Valdivia, C.R., SanMartin, M., Zamudio, F.Z., Zhang, L., Possani, L.D., Valdivia, H.H., 2016. Structure–function relationships of peptides forming the calcin family of ryanodine receptor ligands. J. Gen.

Physiol. 147, 375–394. https://doi.org/10.1085/jgp.201511499

- Yamazaki, Y., Brown, R.L., Morita, T., 2002. Purification and cloning of toxins from elapid venoms that target cyclic nucleotide-gated ion channels. Biochemistry 11331–11337. https://doi.org/10.1021/bi026132h
- Yang, W., Feng, J., Wang, B., Cao, Z., Li, W., Wu, Y., Chen, Z., 2014. BF9, the first functionally characterized snake toxin peptide with kunitz-type protease and potassium channel inhibiting properties. J. Biochem. Mol. Toxicol. 28, 76–83. https://doi.org/10.1002/jbt.21538
- Yang, Y., Zeng, X.C., Zhang, L., Nie, Y., Shi, W., Liu, Y., 2014. Androcin, a novel type of cysteine-rich venom peptide from Androctonus bicolor, induces akinesia and anxiety-like symptoms in mice. IUBMB Life 66, 277–85. https://doi.org/10.1002/iub.1261
- Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou,
 A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L., Shi, C., 2018.
 WEGO 2.0: A web tool for analyzing and plotting GO annotations, 2018 update.
 Nucleic Acids Res. 46, W71–W75. https://doi.org/10.1093/nar/gky400
- ZAMUDIO, F., SAAVEDRA, R., MARTIN, B.M., GURROLA-BRIONES, G., HÉRION,
 P., POSSANI, L.D., 1992. Amino acid sequence and immunological characterization with monoclonal antibodies of two toxins from the venom of the scorpion Centruroides noxius Hoffmann. Eur. J. Biochem. https://doi.org/10.1111/j.1432-1033.1992.tb16635.x
- Zeng, X.C., Wang, S., Nie, Y., Zhang, L., Luo, X., 2012. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: Gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 33, 44–51. https://doi.org/10.1016/j.peptides.2011.11.012
- Zeng, X.C., Zhou, L., Shi, W., Luo, X., Zhang, L., Nie, Y., Wang, J., Wu, S., Cao, B., Cao, H., 2013. Three new antimicrobial peptides from the scorpion Pandinus imperator. Peptides 45, 28–34. https://doi.org/10.1016/j.peptides.2013.03.026
- Zhang, L., Shi, W., Zeng, X.C., Ge, F., Yang, M., Nie, Y., Bao, A., Wu, S., E, G., 2015. Unique diversity of the venom peptides from the scorpion Androctonus

bicolor revealed by transcriptomic and proteomic analysis. J. Proteomics 128, 231–250. https://doi.org/10.1016/j.jprot.2015.07.030

- Zhao, R., Dai, H., Qiu, S., Li, T., He, Y., Ma, Y., Chen, Z., Wu, Y., Li, W., Cao, Z., 2011. SdPI, the first functionally characterized Kunitz-type trypsin inhibitor from scorpion venom. PLoS One 6, e27548. https://doi.org/10.1371/journal.pone.0027548
- Zhou, Q., Wang, Q.L., Meng, X., Shu, Y., Jiang, T., Wagenknecht, T., Yin, C.C., Sui,
 S.F., Liu, Z., 2008. Structural and functional characterization of ryanodine receptor-natrin toxin interaction. Biophys. J. 95, 4289–4299. https://doi.org/10.1529/biophysj.108.137224
- Zhu, S., Li, W., Cao, Z., 2001. A naturally occurring non-coding fusion transcript derived from scorpion venom gland: Implication for the regulation of scorpion toxin gene expression. FEBS Lett. 508, 241–244. https://doi.org/10.1016/S0014-5793(01)03067-8
- Zilberberg, N., Froy, O., Loret, E., Cestele, S., Arad, D., Gordon, D., Gurevitz, M., 1997. Identification of structural elements of a scorpion α-neurotoxin important for receptor site recognition. J. Biol. Chem. 272, 14810–14816. https://doi.org/10.1074/jbc.272.23.14810

Anexo A. Clasificación de NDBP.

Para esta tesis la clasificación considerada para los NDBP propuesto por Almaayatah y Albalas, en 2014. La cual se muestra en la siguiente tabla.

Tabla 1. Anexo A. Clasificación de NDBP por Almaayatah y Albalas (2014).

Grupo	Nomenclatura	Longitud	Características
Group 1	NDBP-1	13-21 aa	Péptidos potenciadores de bradiquininas
Group 2	NDBP-2	41-56 aa	Péptidos multifuncionales de cadena larga
Group 3	NDBP-3	24-29 aa	Péptidos antimicrobianos de longitud media
Group 4	NDBP-4	13-19 aa	Péptidos antimicrobianos cortos
Group 5	NDBP-5	24-25 aa	Péptidos antimaláricos

Anexo B Transcriptomas de glándulas venenosas de alacranes

Tabla 1. Anexo B. Resultados generados por análisis transcriptómicos de glándulas venenosas de alacranes. El número de diferentes secuencias que codifican posiblemente para componentes de veneno. Cada categoría esta mostrada por especie. Los alacranes están agrupados por familia taxonómica. Un asterisco después de la especie indica que el análisis fue realizado por EST y secuenciación Sanger. Las categorías se encuentran abreviadas como NaT (Toxinas de sodio), KTx (Toxinas de potasio), CaT (Toxinas de calcio), CIT (Toxinas de cloruro), SeP (Serina Proteasa), Mtp (Metaloproteasa), CyP (Cisteína proteasa), PH (fosfolipasa), Hya (hialuronidasa), Nuc (nucleotidasa), PIn (Inhibidor de proteasa), HDP (Péptido de defensa del huésped), La1 (péptido La1-like), CAP (superfamilia CAP), IGF (IGFBP) y Und (no definidos). El símbolo + en la columna de familia indica que corresponde a la familia *Superstitionidae*.

	Especies	Transcritos	NaT	КТх	CaT	СІТ	SeP	MtP	СуР	PH	Hya	Nuc	Pin	HDP	La1	CAP	IGF	Und	Componentes sin reporte previo en venenos de alacrán
	Androctonus bicolor *	106	26	27	1	0	2	1	0	0	1	0	0	4	0	0	0	0	
	Centruroides hentzi	122	36	32	0	0	3	6	0	1	1	0	0	1	1	5	0	4	Flagellin-c (1); Transferrin superfamily (1); SNARE/SNAP superfamily (1); Cu2+ monooxegenase(1); Headcase superfamily (1); FKBP-C superfamily (1); CBM-14 superfamily (1); LAP-1 (1).
	Centruroides limpidus	198	59	26	0	0	14	24	0	7	1	3	0	17	2	0	0	0	Alpha amylase (1); Protein-glutamine gamma-glutamyltransferase (1); Inmunoglobulin I-set (1); Sco-spondin (1); Vitellogenin (1); Somatomedin (1).
	Centruroides noxius	72	31	15	2	0	3	7	0	1	1	0	0	11	1	0	0	0	Colipase (1); toxin-like peptide (1); neurotoxin(2).
	Centruroides tecomanus *	48	25	7	0	0	0	3	0	0	0	0	0	10	0	0	0	10	
	Hottentotta conspersus *	21	3	11	1	2	0	0	0	0	0	0	1	3				38	
۵.	Hottentotta judaicus *	66	22	17	2	1	4	7	0	1	1	0	0	6	0	0	0	9	
dae	Isometrus maculatus *	60	19	19	2	0	1	0	0	0	0	0	0	1	0	1	0	0	
thi	Lychas mucronatus*	56	28	12	2	0	2	0	0	0	0	0	17	14	0	9	8	0	
Bu	Mesobuthus eupeus *	60	21	15	0	3	1	0	0	0	0	0	18	13	1	10	7	10	
	Mesobuthus martensii	108	15	21	1	1		26 anot	adas so	o como	enzimas	5	1	3				24	Inhibitor of nitric oxide (NO) synthase (1); meu VNP2 (1).
	Odontobuthus doriae *	38	11	8	1	1	1	1	0	0	0	0	1	3	0	0	0	0	
	Parabuthus stridulus *	16	12	2	0	0	0	0	0	0	0	0	4	15	3	2	0	66	
	Tityus bahiensis	170	24	27	0	0	10	36	6	4	3	0	4	11	6	0	0	2	Chitinase (2); Hypotensin (6); Angiotensin-converting enzyme (4).
	Tityus obscurus	228	48	33	1	0	12	52	5	8	1	0	0	17	8	0	0	0	Lipase (4); Chitinase (1); amylase (1); neuropeptide-3 (1); Angiotensin-converting enzyme (2).
	Tityus serrulatus	235	24	23	1		11	61	5	8	4	0	18	19	5	6	17	1	Amylase (1); carbonic anhydrase (1); chitinase (2); lipase (3); neuropeptide-3 (2); putative defense protein 3 (2); Angiotensin-converting enzyme (1); voltage- dependent calcium channel gamma-2 subunit-like (1); voltage-dependent calcium channel type a subunit alpha-1-like (1).
0	Hadrurus gertschi *	9	0	4	0	0	0	0	0	1	0	0	6	67	15	0	0	16	
Caraboctonidae	Hadrurus spadix	148	0	32	1	0	5	6	1	3	1	1	2	11	6	7	10	1	Chitinase (1); glyceraldehyde 3-phosphate dehydrogenase (1); C-reactive protein (1); low density lipoprotein receptor (1); Superoxidase dismutase (1); transcetolase (1); Histidin_phosphatase (1); transferrin (1).
e	Scorpiops jendeki *	34	0	9	5	0	2	0	0	0	0	0	1	6	2	1	0	14	Lysozime (1).
piida	Scorpiops margerisonae *	43	0	10	1	0	7	0	0	0	0	0	0	10	4	0	0	11	
Euscol	Megacormus gertschi	182	4	8	7	0	16	36	0	20	5	1	18	19	5	6	17	1	Lipases (8); Endophilin-B1 (1); leucine-rich repeat-containing protein 15 (1); putative secreted protein (2); HP (3); prothoracicostatic peptide (1); putative vesicle coat complex copii subunit sfb3 (1); HtfTx2 (1).
-	Hadogenes troglodytes *	121	0	14	3	0	0	0	0	0	0	0	6	67	15	0	0	16	
misco iidae	Hemiscorpius lepturus	69	0	8	4	0	4	3	0	11	2	0	2	11	6	7	10	1	
Че	Ophisthacanthus cayaporum *	33	0	4	1	0	2	0	0	2	0	0	1	6	2	1	0	14	

	Especies	Transcritos	NaT	КТх	CaT	СІТ	SeP	MtP	СуР	PH	Нуа	Nuc	Pin	HDP	La1	CAP	IGF	Und	Componentes sin reporte previo en venenos de alacrán
	Heterometrus petersii *	57	0	9	1	0	2	0	0	2	0	0	0	10	4	0	0	11	Acid phosphatase (1); diuretic peptides (1); salivary tick protein (2); cuticule protein (4); other putative secretory proteins (19).
იი	, Heterometrus spinifer	62	0	9	4	0	16	5	0	7	3	0	11	3	2	0	0	0	Phosphatase (2).
lae	Pandinus cavimanus *	46	0	4	1	0	0	0	0	1	0	0	3	3	1	0	0	21	Hemolectin (1); elastase-like (1); supervillin-like (1); hemocyanine (1); Acyl-CoA reductase, putative (1); NADH dehydrogenase subunit 3 (1); NADH dehydrogenase subunit 6 (1); RNA polymerase II associated protein 2 (1); Cytochrome c oxidase subunit I (1).
pionic +	Scorpio maurus palmatus *	11	1	4	2	0	0	0	0	0	0	0	0	3	1	0	0	0	
Scor	Urodacus yaschenkoi	111	4	10	4	0	5	0	0	18	3	0	7	13	11	3	8	14	Serine-threonine protein phosphatase pp1 beta subunit (2); serine-threonine protein kinase (6); serine beta lactamase (1); carboxylesterase (1); serine- threonine-tyrosine interacting protein (1).
	Superstitionia donensis	135	8	18	3	0	0	9	0	5	8	0	18	31	7	18	10	0	· · · · · · · · · · · · · · · · · · ·
	Vaejovis mexicanus *	22	1	5	2	0	0	0	0	0	0	0	0	13	1	0	0	0	
	Thorellius cristmanus (Syn. Thorellius atrox, Vaejovis intrepidus)	172	13	21	7	0	18	14	0	21	2	1	24	17	11	8	0	3	Allatostatins-like (1); Ectonucleoside triphosphate diphosphohydrolase 2-like (1); Steryl-sulfatase-like isoform (1); Protein kinase C-binding protein NELL2-like (1); Interferon-induced_GILT (1); Angiotensin converting enzyme (5).
	Thorellius cristmanus (Syn.Thorellius atrox, Vaejovis intrepidus)*	15	1	4	1	0	0	0	0	0	0	0	0	8	1		0	0	
vidae vidae	Vaejovis subcristatus *	8	2	2	0	0	0	0	0	0	0	0	0	3	1		0	0	
<u>jo</u> jo	Vaejovis punctatus *	14	2	3	2	0	0	0	0	0	0	0	0	6	1		0	0	
Vae Vae	Paravaejovis schwenkmeyeri	146	7	15	6	0	7	5	0	13	2	1	25	25	11	12	9	1	Leucine rich repeat (3); ATPase function (1); Protein kinase (1); Angiotensin- converting enzyme (5).
	Serradigitus gertschi	119	9	22	6	0	7	9	0	9	3	0	9	17	7	10	11	0	
	Transritos recuperados de todos los estudios	3144	456	510	75	8	155	285	17	143	42	7	226	445	119	115	100	290	Enzimas (74); otras proteínas (77)

Anexo C. Epidemiología de intoxicaciones por picadura de alacrán

Tabla 1. Anexo C. Epidemiología de las intoxicaciones por picadura de alacrán. Los resultados fueron obtenidos de los boletines epidemiológicos del periodo 2015-2019. Solo fueron utilizados los accidentes acumulados, los cuales se muestran por entidad federativa (DGEDGAP, 2019).

	Intoxicaciones			
Entidad federativa	2018	2017	2016	2015
Aguascalientes	2,553	2,888	1,910	1,694
Baja California	118	86	144	202
Baja California Sur	68	53	74	62
Campeche	32	35	47	44
Coahuila	214	163	187	142
Colima	10,610	11,484	12,344	9,022
Chiapas	169	167	324	298
Chihuahua	394	307	262	340
Ciudad de México	406	440	427	478
Durango	8,928	9,689	8,525	8,036
Guanajuato	40,331	45,886	35,396	32,848
Guerrero	40,672	41,999	37,848	41,551
Hidalgo	222	251	224	222
Jalisco	47,370	52,095	50,541	45,606
México	11,009	11,445	10,826	10,533
Michoacán	27,813	27,499	30,786	30,724
Morelos	26,876	28,192	29,109	31,496
Nayarit	16,403	15,373	16,143	14,357
Nuevo León	85	121	108	107
Oaxaca	3,974	5,098	4,693	4,886
Puebla	11,617	13,716	13,515	12,627
Querétaro	4,083	3,857	4,916	4,799
Quintana Roo	88	54	63	94
San Luis Potosí	410	324	303	263
Sinaloa	10,227	9213	11,299	10,323
Sonora	5,119	5,735	4,896	4,566
Tabasco	38	39	32	21
Tamaulipas	348	298	259	300
Tlaxcala	58	49	63	49
Veracruz	220	304	205	143
Yucatán	25	43	24	28
Zacatecas	4,877	5,339	4,402	3,494
Total	275,357	292,242	279,895	269,355

Anexo D. Toxinas descritas de limpidus.

Se han descrito 14 secuencias de toxinas y posibles toxinas identificadas en *C. limpidus*. Hasta el momento se han identificado cinco toxinas activas en canales de mamíferos, las cuales se muestran en la Figura 1 de este anexo. También se ha descrito una toxina se sodio activa en crustáceos (Tabla 1, Anexo D).

		10	20	30	40	50	60	
				.				
Cll1m	KEGYIVNI	STGC <mark>K</mark> Y	ECY- <mark>K</mark> LGDNI	OYCL <mark>RE</mark> C <mark>K</mark> QQY(G <mark>K</mark> GAGGYCYAF	GCWCTHLY <mark>E</mark> QA	AVVWPLP <mark>KK</mark> T(CT
C112	KEGYLVNH	ISTGC <mark>K</mark> Y	ECF- <mark>K</mark> LGDNI	OYCL <mark>RE</mark> C <mark>K</mark> QQY(G <mark>K</mark> GAGGYCYAF	GCWCNHLY <mark>E</mark> QA	AVVWPLP <mark>KK</mark> T(CN
C112b	<mark>KE</mark> GYLVNH	ISTGC <mark>K</mark> Y	ECY- <mark>K</mark> LG <mark>D</mark> NI	OYCL <mark>RE</mark> C <mark>K</mark> QQY(G <mark>K</mark> GAGGYCYAF	GCWCTHLY <mark>E</mark> QA	AVVWPLP <mark>KK</mark> T(CNG <mark>K</mark>
C119	EDGYLFD <mark>k</mark>	(RKRCTL	ACI <mark>DK</mark> TG <mark>DK</mark> I	N-CDRNCKKE	-GGSFGHCSYS	ACWC <mark>K</mark> GLPGS	TPIS <mark>R</mark> TPG <mark>K</mark> T	CK-K
C113	KEGYLVDY	HTGC <mark>K</mark> Y	ICA- <mark>K</mark> LG <mark>DNI</mark>	OYCV <mark>RE</mark> CRLRY	YQSAHGYCYAF	ACWCTHLY <mark>E</mark> Q2	AVV <mark>R</mark> PLPN <mark>KR</mark> (CR

Figura 1. Anexo D. Toxinas que afectan canales de sodio de mamíferos.

Estas toxinas fueron identificadas en el veneno de C. limpidus.

ID	Secuencia
CII1	KEGYLVNKSTGCKYGCFWLGKNENCDKECKAKNQGGSYGYCYSFACWCEGLPESTP

Tabla 1. Anexo D. Toxina que afectan canales de sodio de crustáceos.

Finalmente, fueron descritos ocho transcritos de los cuales sus péptidos no fueron identificados en veneno, y su actividad no ha sido determinada.

		10	20	30	40	50	60	70	80
						.			
C113	MNSLLMITA	ACLAVIGT	/WA <mark>KE</mark> GYIV	VNYY <mark>D</mark> GC <mark>K</mark> YACI	L <mark>K</mark> LGENDYCI	L <mark>RE</mark> CKARYYKSA	.GGYCYAFAC	WCTHLY <mark>E</mark> QA	VVWPLPN <mark>K</mark> TCYG <mark>K</mark>
C114	MNSLLMITA	ACLALIGT	/WA <mark>KE</mark> GYIV	VNYHDGC <mark>K</mark> YECY	Y <mark>K</mark> LG <mark>DND</mark> YC]	L <mark>RE</mark> CKLRYG <mark>K</mark> GA	GGYCYAFGC	WCTHLY <mark>E</mark> QA	VVWPLP <mark>KKR</mark> CNG <mark>K</mark>
C115b	MNSLLMITA	ACLA <mark>E</mark> IGTV	/WA <mark>KE</mark> GYLV	VN <mark>K</mark> STGC <mark>K</mark> YGCI	FWLG <mark>KNE</mark> NCI	O <mark>KE</mark> CKAKNQGGS	YGYCYSFAC	WC <mark>E</mark> GLP <mark>D</mark> ST	PTYPLPN <mark>K</mark> SCS <mark>KK</mark>
C115c	MNSLLMITA	ACLVLFGT	/WA <mark>KE</mark> GYLV	VN <mark>K</mark> STGC <mark>K</mark> YGCI	FWLG <mark>KNE</mark> NCI	OMECKAKNQGGS	YGYCYSFAC	WC <mark>E</mark> GLP <mark>D</mark> ST	PTYPLPN <mark>K</mark> SCS <mark>KK</mark>
C115c*	MNSLLIITA	ACLVLFV	/WA <mark>KE</mark> GYLV	VN <mark>K</mark> STGC <mark>K</mark> YGCI	FWLG <mark>KNE</mark> NCI	OMECKAKNQGGS	YGYCYSFAC	WC <mark>E</mark> GLP <mark>D</mark> ST	PTYPLPN <mark>K</mark> SCS <mark>KK</mark>
C116	MNSLLMII	GCLVLIGT	/WT <mark>KE</mark> GYLV	VNM <mark>K</mark> TGC <mark>K</mark> YGCY	Y <mark>E</mark> LG <mark>D</mark> NGYC <mark>I</mark>	O <mark>RK</mark> CKAESGN	YGYCYTVGC	WCEGLPNSK	PTWPLPG <mark>K</mark> SCSG <mark>K</mark>
C117	MNSLLMITA	ACLVLFGT	/WA <mark>KE</mark> GYLV	VNTYTGC <mark>K</mark> YICV	W <mark>K</mark> LGENKYCI	[<mark>decke</mark> igag	YGYCYGFGC	YCEGFPENK	PTWPLPN <mark>K</mark> TCG <mark>RK</mark>
C118		T\	/SA <mark>KE</mark> GYLV	V <mark>KK</mark> SNGC <mark>KYE</mark> CI	F <mark>K</mark> LGENEHCI	OTEC <mark>K</mark> APNQGGS	YGYCDTFEC	WCEGLPEST	PTWPLPN <mark>K</mark> SCG <mark>KK</mark>

Figura 2. Anexo D. Transcritos codificantes de posibles toxinas de sodio. Estas secuencias solo fueron identificadas en la glándula venenosa de *C. limpidus*. Por otra parte, también fueron descritas 7 toxinas de potasio, las cuales se muestran en la tabla 2 de este anexo.

Tabla 2. Anexo D. Toxinas que afectan canales de potasio identificada	S
en el veneno de <i>C. limpidus</i> .	

ID	Subfamilia	Secuencias
CIITx1	α-KTx	ITINVKCTSPQQCLRPCKDRFGQHAGGKCINGKCKCYP
CIITx2	α-KTx	TVIDVKCTSPKQCLPPCKEIYGRHAGAKCMNGKCKC
CIITx5	α-KTx	TTINVKCTSPKQCLPPCKEIYGRHAGAKCINGKCHCSKI
Cllerg1	γ-KTx	DRDSCVDKSKCSKYGYYGQCDECCKKAGDRAGNCVYFKCKCNP
Cllerg2	γ-KTx	DRDSCVDKSRCSKYGYYQECQDCCKKAGHNGGTCMFFKCKCA
Cllerg3	γ-KTx	DRDSCVDKSKCAKYGYYGQCDECCKKAGDRAGNCVYLKCKCNQ
Cllerg4	γ-KTx	DRDSCVDKSKCSKYGYYGQCDKCCKKAGDRAGNCVYFKCKCNQ

		10	20	30	40
			· · · · · · · ·		· · · · · ·
Cllerg1	DRDSCVD	KSRCSKYG	GYYQ <mark>E</mark> CQ <mark>D</mark> CC <mark>I</mark>	(KAGHNGGTCN	IFF <mark>K</mark> CKCA
CeErgTx4	DRDSCVD	KSRCSKYG	GYYQ <mark>E</mark> CQ <mark>D</mark> CC <mark>E</mark>	(<mark>K</mark> AGHNGGTCN	IFF <mark>K</mark> CKCA

Figura 3. Anexo D. γ**-KTx identificada en venenos de distintas especies.** Esta toxina fue identificada en el veneno de *C. limpidus* y *C. elegans.*

Anexo E. Análisis proteómicos de venenos de alacrán realizados por LC-MS/MS.

Tabla 1. Anexo E. Datos proteómicos de venenos de alacrán obtenidos por LC-MS/MS. Cada categoría esta mostrada por especie. Los alacranes están agrupados por familia taxonómica. Un asterisco después de la especie indica que el análisis fue realizado sin una contraparte transcriptómica. Las categorías se encuentran abreviadas como NaT (Toxinas de sodio), KTx (Toxinas de potasio), CaT (Toxinas de calcio), CIT (Toxinas de cloruro), SeP (Serina Proteasa), Mtp (Metaloproteasa), CyP (Cisteína proteasa), PH (fosfolipasa), Hya (hialuronidasa), Nuc (nucleotidasa), PIn (Inhibidor de proteasa), HDP (Péptido de defensa del huésped), La1 (péptido La1-like), CAP (superfamilia CAP), IGF (IGFBP) y Und (no definidos).

	Especie	Péntidos	NaT	KTy	CaT	CIT	SeP	MtP		Ph	Hva	Nuc	Pin	HDP	l a1	CAP	IGE	Und	Componentes sin previo reporte en
	Lapecie	identificados	Nai	NIX.	Gar	CIT	Gei	WICI	Cyr	• ••	пуа	Nuc			Lai		101	onu	venenos de alacrán
	Androctonus bicolor	16	10	4	1	0	0	0	0	0	0	0	0	0	0	0	0	1	
	Centruroides hentzi	59	27	13	0	0	2	3	0	0	0	0	0	0	0	1	1	3	FKBP-C superfamily (1); GPR; Headcase superfamily (1); Cu2+ monooxegenase (1); SNARE/SNAP superfamily (1); Transferrin superfamily (1); flagellin-C superfamily (1); LAP-1(1), Chitinase (1)
	Centruroides limpidus	52	26	3	0	0	1	6	0	0	1	0	1	2	1	2	0	3	Alpha amylase (1); Protein-glutamine gamma-glutamyltransferase (1); Inmunoglobulin I-set (1); Sco-spondin (1); Vitellogenin (1); Somatomedin (1)
Buthidae	Tityus metuendus*	84	28	6	0	0	2	18	0	0	3	0	0	3	0	3	0	8	40S ribosomal protein S27 (1); arginyltransferase activity (1); Cytochrome b (1); DNA-binding transcription factor activity (1); Glucosamine 6-phosphate N- acetyltransferase (1); glycerophosphocholine cholinephosphodiesterase activity (1); Integrase_H2C2 domain-containing protein (1); Lysozime (1); NADH dehydrogenase (2); protein kinase activity (1); Angiotensin converting enzyme (2); Aminopeptidase-a (1); carboxvoeptidase Q (1)
	Titvus serrulatus	66	8	8	0	0	1	23	0	0	3	0	0	2	0	3	1	2	Amylase (1): cellular components (15)
	Tityus obscurus	80	3	2	0	0	2	27	1	1	1	0	0	0	0	3	0	4	Amylase (1); Angiotensin converting enzyme (2); cellular components (34).
Caraboctonidae	Hadrurus spadix	79	0	10	0	0	4	6	1	3	1	1	2	4	2	2	0	35	C-reactive protein (1); glyceraldehyde 3- phosphate dehydrogenase (1); histidine phosphatase (1); low density lipoprotein receptor (1); superoxide dismutase (1); transferrin (1); transketolase (1).

Euscorpiidae	Megacormus gertschi	23	0	1	0	0	0	9	0	1	1	1	0	0	0	2	0	4	Endophilin-B1 (1); Prothoracicostatic peptide (1); Putative vesicle coat complex copii subunit sfb3 (1).
Hemiscorpiidae	Heterometrus petersii	40	0	9	2	0	2	0	0	2	0	0	0	8	4	0	0	11	Acid phosphatase (1); Diuretic peptides(1).
Superstitionidae	Superstitionia donensis	26	4	4	0	0	0	2	0	2	0	0	0	8	4	2	0		
aejovidae	Thorellius atrox	40	0	0	1	0	1	2	0	4	1	1	0	7	2	2	0	9	Allatostatins-like (1); Ectonucleoside triphosphate diphosphohydrolase 2-like (1); Steryl-sulfatase-like isoform (1); Protein kinase C-binding protein NELL2-like (1); Interferon-induced_GILT (1); Angiotensin converting enzyme (5)
2	Paravaejovis schwenkmeyeri Serradioitus gertschi	27 24	0	3	0 3	0	1	4	0	2	0	1	0	3 4	1	1	0	6 5	Leucine rich repeat (3); ATPase (1); Protein Kinase (1).
	Proteínas identificadas en todos los estudios	616	108	67	7	0	16	109	2	18	12	4	3	41	17	22	2	91	Enzimas (34), otras proteínas (75)
Anexo F. Estadísticas de ensamble por TrinityStats.

Como parte del paquete Trinity, tenemos el script TrinityStats.pl (Grabherr et al., 2011) el cual determina valores estadísticos a partir de los ensambles obtenidos los cuales se muestran en la siguiente tabla.

Tabla T. Allexo F. Estaulsticas de elisalible.	Tabla 1	I. Anexo F.	Estadísticas	de ensamble.
--	---------	-------------	---------------------	--------------

Counts of transcripts, etc.				
Total trinity 'genes':	167464			
Total trinity transcripts:	198662			
Percent GC:	35.92			
Stats based on ALL transcript contigs:				
Contig N10:	5553			
Contig N20:	4013			
Contig N30:	3010			
Contig N40:	2254			
Contig N50:	1611			
Median contig length:	193			
Average contig:	541.25			
Total assembled bases:	107525450			
Stats based on ONLY LONGEST ISOFORM pe	er 'GENE':			
Contig N10:	4375			
Contig N20:	2858			
Contig N30:	1940			
Contig N40:	1260			
Contig N50:	722			
Median contig length:	173			
Average contig:	373.01			
Total assembled bases:	62464956			

Anexo G. Scripts

El siguiente script en Perl, fue utilizado para recuperar todas las secuencias asociados a PFAM relacionados con componentes de veneno.

Parseador.pl

#!/usr/bin/perl
use strict;

```
my $archivo_ensamble = $ARGV[0];#archivo ensamble Trinity
my $archivo toxinas = $ARGV[1];#archivo xls
my $archivo_aminoacidos = $ARGV[2];#archivo ensamble aminoacidos
my $archivo_salida = $ARGV[3];#archivo texto con resultado
open toxinas, "$archivo toxinas";
open in, "$archivo_ensamble";
open out, ">>$archivo_salida";
open aa, "$archivo_aminoacidos";
my %sec;
my $comp;
my %tox;
my $transcrito;
my @arreglo;
my %aminoacidos;
my $cds; my $type; my $long; my $cadena;
my @id_prot;
my %cds type;
my @dominio; my %mas_datos;
while (\text{sarchivo}_\text{ensamble} = <\text{in})
      if ($archivo_ensamble=~m/(comp\d+_c\d+_seq\d+)/gi){
      scomp = $1;
      $sec{$comp};
      print "$comp\n";
#
      }else{ $sec{$comp}= $archivo_ensamble;
      chop $archivo ensamble;
      }#close_else_ensamble
#
      print "$sec{$comp}\n";
      #close while ensamble
}
while ($archivo_aminoacidos = <aa>){
      if (\frac{\sqrt{d+}_{d+})/gi}{
```

```
@id_prot= split(/ /, $archivo_aminoacidos);
```

```
scds = $1;
      type = id_prot[6];
      long = id_prot[7];
      cadena = id prot[8];
      $cds type{$cds}=$type."\t".$long."\t".$cadena;
      $aminoacidos{$cds};
      }else{ $aminoacidos{$cds}= $archivo aminoacidos;
      print "$aminoacidos{$cds}\n";
      }#else
      print "$aminoacidos{$cds}\n";
}#while archivo aminoacidos
      #print "$sec{$comp}\n";
while ($archivo_toxinas = <toxinas>){
       @arreglo = split (\Lambda t/, $archivo toxinas);
      #cuantas columnas tiene el archivo y cual es la que necesitas
      if ($arreglo[7]=~/PF00451/gi or $arreglo[7]=~/PF00188/gi or
$arreglo[7]=~/PF05649/gi or $arreglo[7]=~/PF00537/gi or
$arreglo[7]=~/PF01650/gi or $arreglo[7]=~/PF05294/gi or
$arreglo[7]=~/PF05453/gi or $arreglo[7]=~/PF08086/gi or
$arreglo[7]=~/PF08095/gi or $arreglo[7]=~/PF09132/gi or
$arreglo[7]=~/PF08099/gi or $arreglo[7]=~/PF08102/gi or
$arreglo[7]=~/PF08120/gi or $arreglo[7]=~/PF08119/gi or
$arreglo[7]=~/PF14866/gi or $arreglo[7]=~/PF15860/gi or
$arreglo[7]=~/PF14259/gi or $arreglo[7]=~/PF13896/gi or
$arreglo[7]=~/PF13847/gi or $arreglo[7]=~/PF13833/gi or
$arreglo[7]=~/PF13688/gi or $arreglo[7]=~/PF13574/gi or
$arreglo[7]=~/PF12796/gi or $arreglo[7]=~/PF12301/gi or
$arreglo[7]=~/PF11901/gi or $arreglo[7]=~/PF08246/gi or
$arreglo[7]=~/PF08024/gi or $arreglo[7]=~/PF07993/gi or
$arreglo[7]=~/PF07714/gi or $arreglo[7]=~/PF06071/gi or
$arreglo[7]=~/PF05826/gi or $arreglo[7]=~/PF04389/gi or
$arreglo[7]=~/PF03572/gi or $arreglo[7]=~/PF03416/gi or
$arreglo[7]=~/PF01826/gi or $arreglo[7]=~/PF01630/gi or
$arreglo[7]=~/PF01421/gi or $arreglo[7]=~/PF01401/gi or
$arreglo[7]=~/PF01400/gi or $arreglo[7]=~/PF00557/gi or
$arreglo[7]=~/PF00112/gi or $arreglo[7]=~/PF00079/gi or
$arreglo[7]=~/PF00069/gi or $arreglo[7]=~/Pf01097/gi or
$arreglo[7]=~/PF00014/gi){
      $transcrito = $arreglo[1];
      $tox{$transcrito}= $arreglo[7]."\t".$arreglo[8];
      #close if trinotate search
```

```
@dominio = split (\land;/, $arreglo[2]);
```

```
$mas_datos{$transcrito} = $dominio[0];
#print "$tox{$arreglo[1]}\n";
#print "$sec{$comp}\n";
}#close if trinotate search
}#close while search
#foreach $comp(keys%sec){
#print "$comp\n$sec{$comp}\n";
#}
foreach $transcrito (keys%tox){
       print out
$transcrito."\t".$tox{$transcrito}."\n".$sec{$transcrito}."\n".$cds_type{$transcrito}."\t"
.$mas_datos{$transcrito}."\n".$aminoacidos{$transcrito}."\n";
#print "$tox{$transcrito}\n";
}
close in;
close toxinas;
close out;
close aa:
exit:
```

se utilizaron los siguientes scripts para generar los formatos necesarios para utilizar el software WEGO Este script recupera la columna con ID GO

```
saca_go.pl
#!/usr/bin/perl
use strict:
my $archivo= $ARGV[0];
my $archivo_salida= $ARGV[1];
my $head; my $qo;
open in, "$archivo";
my @columna2;
while (my $linea =<in>){
@ columna2 = split(/\t/, $linea);
#print "$columna2[10]";
$head = $columna2[11];
go = columna2[0];
open (out, ">>$archivo_salida");
print out $go."\t".$head."\n";
close out;
```

close in; exit;

Este script ajusta el formato de la salida del script anterior

```
trata_go.pl
#!/usr/bin/perl
use strict:
my $archivo = $ARGV[0]; my $concatenado_go;
my %hash_go; my $i;
my $archivo_salida = $ARGV[1];
open out, ">>$archivo_salida";
open in, "$archivo";
while ($archivo=<in>){
      my @columnas = split(\Lambda t/, $archivo);
      if (\text{Columnas}[1]=~/(\text{GO:}d+)/gi)
             my @saca_go = split(/^/, $columnas[1]);
                    $concatenado_go="";
                    foreach my $go (@saca_go){
                           #$saca_go =split(/'/, $columnas[1]);
                           go = m/(GO:d+)/gi;
                           $concatenado go .= $1."\t";
#
                           }#foreach
                    $hash go{$columnas[0]}=$concatenado go;
print out $columnas[0]."\t".$hash_go{$columnas[0]}."\n";
      }#if
}#while
close out:
close in;
exit:
```

El siguiente script fue utilizado para agrupar y concatenar todos los resultados de tbalstn con las bases locales.

Para_concatenar.pl

#!/usr/bin/perl
use strict;

```
my $archivo =$ARGV[0];
my @arreglo; my %comp; my $trans; my $identidad; my $evalue; my @ID; my
$id_db;
my $archivo_salida= $ARGV[1];
```

```
my %porcentaie:
open IN, "$archivo";
open out, ">>$archivo_salida";
#print "$archivo";
while (\text{sarchivo} = < IN >)
       @arreglo = split (/\t/, archivo);
#print "$archivo";
       @ID = split(//, $arreglo[0]);
       db = ID[1];
#print "$id_db";
       (1)
#
       $evalue= $arreglo[10];
       arreglo[1] = \frac{(comp\d+_c\d+)}{gi};
       trans = $1;
       if (exits($comp{$trans})){
#
       $comp{$trans}=$comp{$trans}."\t".$id_db;
       $porcentaje{$trans}=$porcentaje{$trans}."\t".$identidad;
#}#if
#print "$arreglo[1]\n$comp{$arreglo[1]}\n";
       print "$comp{$arreglo[2]}\n";
#
if ($trans eq $trans and $arreglo[2] > 70){
print "$arreglo[0]\t$arreglo[1]\t$arreglo[2]\n";
}
}
foreach $trans(keys%comp){
#print "$trans\t$comp{$trans}\t$porcentaje{$trans}\n";
}
close IN;
exit;
```

Las figuras fueron generadas en R y Rstudio con los siguientes scripts.

Para generar figura de diversidad.

```
getwd()
setwd("c:/Users/Jim/Desktop/Centruroides_limpidus/rnaseq/C_limpidus/C_limpidus
_v2/secuencias_para_articulo/")
b= read.table("cuentas_para_diversidad_tesis.txt", header = TRUE, sep ="\t", fill =
TRUE)
library(ggplot2)
```

levels(b\$Cat)

```
b$Cat<- factor(b$Cat, levels=c("Toxins","Enzyme","PIN","HDP","Other"))
```

levels(b\$Sub1)

b\$Sub1<- factor(b\$Sub1, levels =c("No definidos","La1like","CAP","IGFBP","Peptidos anionicos","NDBP","Defensinas","Serpinas","PIn-Kunitz","PIn-Ascaris","Hyaluronidasas","5 nucleotidasas","Phospholipasas","Serine proteasas","Metalloproteasas","KScTx","NaScTx"))

tag <- c("Toxinas", "Enzymas", "Inhibidores\nde\nProteasas", "HDP","Otros\ncomponentes")

library(ggplot2)

ggplot(b,aes(x=b\$Cat, y=b\$Per, fill=b\$Sub1)) +

geom_bar(stat ="identity")+

scale_fill_manual(values

c("darkolivegreen3","mediumseagreen","turquoise4","forestgreen","darkorchid4","m ediumpurple1","mediumpurple4","red","brown1","darkred","lightblue","lightslateblue ","deepskyblue","blue","navy","gold1","orangered"),

```
breaks=c("NaScTx", "KScTx","5
```

nucleotidasas","Phospholipasas","Hyaluronidasas","Serine

proteasas", "Metalloproteasas", "CAP", "La1-like", "No definidos","IGFBP", "Serpinas", "PIn-Kunitz", "PIn-Ascaris", "Peptidos anionicos", "Defensinas", "NDBP"))+ theme(panel.background element_rect(fill="white"), = axis.line = element line(color = "black", size = 0.8), axis.text.y = element text(size = 50),axis.text.x = element_text(color = "black", size=50,hjust = 0.5),legend.title = element_blank(), legend.text = element_text(size = 50), axis.title.v = element text(size = 50))+ scale_y_continuous(expand = c(0,0), limits = c(NA, 55))+labs(x=" y="Diversidad(%)")+ scale_x_discrete(labels=tag)

Para generar figura de distribución de pesos moleculares.

getwd()

```
setwd("C:/Users/Jim/Desktop/Centruroides_limpidus/sf3/")
b <- read.table("fingerprint_distribution.txt", header=TRUE, sep="\t")
levels(b$range)
b$range <- factor(b$range, levels=c("<1,000","1,001-2,000","2,001-3,000","3,001-
4,000","4,001-5,000","5,001-6,000","6,001-7,000","7,001-8,000","8,001-
9,000","9,001-10,000",">10,001","6,001-7,000","7,001-8,000","8,001-
9,000","9,001-10,000",">10,001",">10,001","6,001-7,000","7,001-8,000","8,001-
9,000","9,001-10,000",">10,001",))
library(ggplot2)
library(pals)
tag=c("<1000 Da","1001-2000 Da","2001-3000 Da","3001-4000 Da","4001-5000
```

```
Da","5001-6000 Da","6001-7000 Da", "7001-8000 Da","8001-9000 Da","9001-
10000 Da",">10,001 Da")
```

```
ggplot(b, aes(x=b$range, y=b$number))+geom_bar(stat = "identity", fill="steelblue",width = 0.5, position ="dodge2")+
```

scale_fill_discrete(guide_legend("MW ranges"),labels=c("<1,000 Da","1,001-2,000 Da","2,001-3,000 Da","3,001-4,000 Da","4,001-5,000 Da","5,001-6,000 Da","6,001-7,000 Da","7,001-8,000 Da","8,001-9,000 Da","9,001-10,000 Da",">10,001 Da","6,001-7,000 Da","7,001-8,000 Da","8,001-9,000 Da","9,001-10,000 Da",">10,001 Da","

theme(panel.background = element_rect(fill = "white"),axis.line = element_line(color = "black",size = 0.5)) +

theme(axis.title =element_text(size=20), axis.text.y = element_text(size =
16),axis.text.x = element_text(color = "black", size=14,hjust = 1, angle = 90, vjust =
0.35))+

scale_y_continuous(expand = c(0, 0),limits = c(NA,120))+labs(x="Peso Molecular (Da)", y="Número de componentes")

Para generar gráficos de términos GO.

setwd("C:/Users/Jim/Desktop/Centruroides_limpidus/rnaseq/C_limpidus/C_limpidu s_v2/secuencias_para_articulo/")

```
GO1= read.table("GO_general_cuentas.txt")
library(ggplot2)
library(gridExtra)
library(grid)
```

```
general=ggplot(GO1,aes (x=GO1$Category, y=GO1$percent,
fill=GO1$Category))+ geom_bar(stat = "identity", width = 0.5)+
scale_fill_brewer(palette = "Dark2")+
```

```
theme(panel.background = element_rect(fill="white"),axis.title.y =
element_text(size = 18), axis.line = element_line(color = "black",size = 0.8),
axis.text.y = element_text(size = 14),axis.text.x = element_text(color = "black",
size=14,hjust = 0.5),legend.title = element_blank())+
scale_y_continuous(expand = c(0, 0),limits = c(NA,50))+labs(x="",y="% of
abundance")+ guides(fill=FALSE)
GO2=read.table("Go_categorias_cuentas.txt", header = TRUE, sep ="\t")
```

```
GO2_1 =GO2[order(GO2$Category, GO2$transcripts, decreasing = F),]
```

```
GO2_1$tag=1:nrow((GO2_1))
```

```
GO2_1_2= within(GO2_1, GO <- reorder(GO,tag))

GOplot = ggplot(GO2_1_2, aes(GO2_1_2$GO,GO2_1_2$transcripts,

fill=GO2_1_2$Category)) + geom_bar(stat = "identity",width = 0.8) +

labs(fill="") + labs(y = "Number of transcripts",x = " ") +

scale_fill_brewer(palette = "Dark2")

GO=GOplot + theme(panel.background = element_rect(fill = "white")) +

theme(axis.text.x = element_text(size=10, angle = 90),axis.title.y =

element_text(size = 18)) +

theme(legend.position = "")+

theme(axis.line.y = element_line(color="black", size =0.8))

grid.arrange(general, GO)
```

Anexo H. Proceso de selección de secuencias codificantes de componentes de veneno.

Anexo I. Estimación de abundancia de transcritos codificantes de componentes de veneno.

La cuantificación de los transcritos fue realizada con Salmon, para ello es necesario indizar el transcriptoma el cual requiere la ejecución del siguiente comando.

>salmon index -t <Archivo.fasta> -i <output>

Posterior al indizado, se realiza el mapeo de los reads con el siguiente comando.

```
>salmon quant -i indice_generado_en_el_paso_anterior -l IU -1
reads directos 1.fq -2 reads reverso 2.fq -o out
```

Nota aclaratoria: -l se utiliza para indicar la orientación de los reads, si la secuenciación fue de cadena sencilla o doble y la direccionalidad de los reads. Las letras utilizadas para indicar estas tres características son:

Para las librerías pareadas el indicativo de direccionalidad es:

I = inward
O = outward
M = matching

Para indicar si son pareadas o no pareadas se utilizan:

S = stranded
U = unstranded

Los resultados obtenidos de estas cuantificaciones fueron depositados en la siguiente tabla.

Tabla 1. Anexo I. Cuantificación de los transcritos codificantes de componentes de veneno.

Name	Length	EffectiveLength	TPM	NumReads
CliEnz5Nuc01 m.56	1785	1640.759	8.321698	1792
CliEnz5Nuc02 m.61	1773	1628.759	3.269935	699
CliEnz5Nuc03 m.60	1743	1598.759	2.883309	605
CliEnzHya01	1206	1061.759	677.437838	94401
CliEnzMtp01 m.1	1221	1076.759	0.360886	51
CliEnzMtp02 m.2	2100	1955.759	2.368683	608
CliEnzMtp03 m.4	4068	3923.759	17.954375	9246
CliEnzMtp04 m.10	1410	1265.759	1.107607	184
CliEnzMtp05 m.11	1260	1115.759	1.119934	164
CliEnzMtp06 m.13	1617	1472.759	33.762466	6526
CliEnzMtp07 m.14	1335	1190.759	0.812641	127
CliEnzMtp08 m.15	1980	1835.759	1.568899	378
CliEnzMtp09 m.16	1212	1067.759	635.01194	88989
CliEnzMtp10 m.17	804	659.76	269.665627	23350.3233
CliEnzMtp11 m.18	804	659.76	41.444512	3588.67672
CliEnzMtp12 m.19	1332	1187.759	0.455459	71
CliEnzMtp13 m.20	945	800.759	13.454465	1414
CliEnzMtp14 m.21	1170	1025.759	71.928758	9683.42712
CliEnzMtp15 m.22	1179	1034.759	581.979539	79036.5763
CliEnzMtp16 m.23	1176	1031.759	185.802315	25159.9965
CliEnzMtp17 m.24	1521	1376.759	9.673915	1748
CliEnzMtp18 m.25	1188	1043.759	640.751791	87775.084
CliEnzMtp19 m.26	1179	1034.759	2425.11664	329346.486
CliEnzMtp20 m.27	1191	1046.759	1181.77582	162354.001
CliEnzMtp21 m.28	1338	1193.759	1.392073	218.102083
CliEnzMtp22/m.29	1197	1052.759	1166.21726	161134.903
CliEnzMtp23 m.30	1170	1025.759	3121.65378	420253.424
CliEnzMtp24lm.31	1821	1676.759	133.96923	29482
CliEnzPA201	363	218.796	1.184018	34
CliEnzPA202	684	539.762	1.28457	91
CliEnzPA203 m.79	699	554.761	10.397006	757
CliEnzPA204	552	407.782	22.515313	1205
CliEnzPA205	486	341.791	28.666065	1285.90665
CliEnzPA206	1773	1628.759	24.625526	5264.09335
CliEnzPLD01	3309	3164.759	2.065691	858
CliEnzSeP01 m.93	1029	884.759	1.782642	207
CliEnzSeP02 m.98	1005	860.759	3.912547	442
CliEnzSep03 m.99	864	719.759	0.58223	55
CliEnzSep04	1188	1043.759	2.657174	364
CliEnzSep05	1050	905.759	2.834889	337
CliEnzSep06lm.104	1083	938.759	15.47802	1907
CliEnzSep07	840	695.759	0.591362	54
CliEnzSep08	990	845.759	0.837829	93
CliEnzSep09	1203	1058.759	100.067416	13905
CliEnzSep10	1998	1853.759	0.826155	201
CliEnzSep11lm.115	1065	920.759	4.145821	501
CliEnzSep12	534	389.785	0.469142	24
CliEnzSep13lm.117	1098	953.759	0.479326	60
CliEnzSep14lm,118	837	692.76	4017.61242	365285
CliHDPAni01	228	87.933	53240.619	614433
CliHDPDef01	171	43.82	906.432062	5213
CliHDPDef02	183	52.112	705.037618	4822
CliHDPDef03	192	58.897	54,98155	425
CliHDPDef04	186	54,339	58.612044	418
CliHDPDef05	192	58,897	1.681789	13
CliHDPDef06	180	49 969	2294 07016	15045
CliHDPND201	216	77,933	37866.8572	387311
CliHDPND401	240	98.717	20390.928	264187
CliHDPND402	222	82.79	92209.6615	1001925
CliKtxAlp01	183	52,112	435,275194	2977
CliKtxAlp02	180	49,969	1121 49458	7355
0				

CliKtxAlp03	183	52.112	76.323027	522
CliKtxAlp04	135	23.966	10729.7939	33749
CliKtxAlp05	192	58.897	19396.0679	149929
CliKtxAlp06	180	49.969	1319.1581	8651.31941
CliKtxAlp08	153	32.833	4115.88052	17736
CliKtxAlp09	189	56.63	7343.14166	54576.8807
CliKtxAlp10	183	52.112	3733.2195	25532.7999
CliKtxAlp11	198	63.578	601.969314	5023
CliKtxAlp12	171	43.82	18086.0408	104015
CliKtxAlp13	195	61.188	2219.62636	17825
CliKtxAlp14	180	49,969	2942.57002	19298
CliKtxAlp15	180	49,969	6393.51025	41930
CliKtxAlp16	177	48.009	2639.92004	16634
CliKtxBet01	279	135 334	32286 1727	573464
CliKtxBet02	264	120 825	44116 4563	699582
CliKtxDel01	246	104.245	226.947972	3105
CliKtxDel02	240	98 717	102 422759	1327
CliKtxDel03	249	107.01	12 887622	181
CliKtxGam01	189	56.63	5525 27672	41065 8519
CliKtyGam02	100	58 897	1813 80284	14021 1481
CliKtyGam03	192	61 188	73 0051204	587
Cliktyl am01	201	65.946	7205 05503	63130
Cliktyl am02	102	58 807	28624 3007	221262
	252	100 725	7 09/027	115
	252	112 507	220 157001	E009
	200	112.307	00007 5044	212042 410
ClinaTAlp03	240	104.243	22607.0044	312042.419
Clina TAIp04	291	147.093	40483.2161	781536
	270	126.587	173.470131	2882
	279	135.334	326.316311	5796
	232	91.477	0.000818	0.009815
	249	107.01	17001.0541	238771.037
Clina l Alp09	258	115.291	1241.00401	18777.9634
	264	120.825	16050.5801	254524
CliNa I Alp11	246	104.245	880.428095	12045.6209
CliNa I Alp12	255	112.507	/42.9841/	10970.8892
CliNa I Alp13	255	112.507	11077.1594	163565.111
CliNaTAlp14	249	107.01	12.887622	181
CliNaTAlp15	180	49.969	7339.65218	48135
CliNaTAlp16	252	109.735	244.061045	3515
CliNaTBet01	252	109.735	1404.74824	20231.3732
CliNaTBet02	252	109.735	86.060893	1239.46056
CliNaTBet03	252	109.735	135.11886	1946
CliNaTBet04	185	53.601	211.235239	1486
CliNaTBet05	246	104.245	31893.1703	436348
CliNaTBet06	252	109.735	90.592879	1304.73082
CliNaTBet07	252	109.735	1799.90233	25922.4355
CliNaTBet08	255	112.507	4345.12314	64160
CliNaTBet09	255	112.507	283.760379	4190
CliNaTBet10	234	93.279	3048.79001	37324.2733
CliNaTBet11	237	96.003	412.789347	5201.10581
CliNaTBet12	285	141.198	555.48564	10294
CliNaTBet13	258	115.291	18247.5794	276109
CliNaTBet14	309	164.883	2353.97115	50940
CliNaTBet15	219	80.365	172.187152	1816.12891
CliNaTBet16	219	80.365	122.292657	1289.87109
CliNaTBet17	276	132.43	26.753786	465
CliNaTBet18	297	153.012	818.646309	16440
CliNaTBet19	224	84.498	15445.1286	171285.728
CliNaTBet20	227	87.091	9858.25222	112682.53
CliNaTBet21	252	109.735	38748.4446	558060.313
CliNaTBet22	327	182.815	941.337057	22586
CliNaTBet23	300	164.883	159.103311	3443
	309			
Clina i Bet24	237	96.003	0.873023	11
CliNa I Bet24 CliNa TBet25	237 252	96.003 109.735	0.873023 1238.91358	11 17843
CliNaTBet25 CliNaTBet25 CliNaTBet26	237 252 255	96.003 109.735 112.507	0.873023 1238.91358 5054.18547	11 17843 74630

CliNaTBet28	261	118.111	1.677267	26
CliNaTBet29	252	109.735	3545.8798	51068.2379
CliNaTBet30	258	115.291	23718.9651	358898
CliNaTBet31	252	109.735	17317.3075	249406.192
CliNaTBet32	210	73.186	9484,58445	91101.4604
CliNaTBet33	264	120.825	69015.4638	1094421
CliNaTBet34	258	115.291	4555.02413	68923.2874
CliNaTBet35	237	96.003	9043.20217	113943.472
CliNaTBet36	255	112,507	7826.07826	115559,713
CliNaTBet37	204	68.315	11439 1663	102563 638
CliNaTBet38	240	98 717	6160 01229	79809 7646
CliNaTBet39	261	118 111	11635 8217	180371 599
CliNaTBet40	261	118 111	7614 05993	118028 636
CliNaTBet41	270	126 587	668 901306	11113
CliNaTBet/2	288	1// 1/	0 702015	15
CliNaTBet/3	200	120 502	0.792913	13
	8/3	608 750	16 585107	1521
	1257	1112 750	979 /16106	102027
	620	1112.759	7 629276	120201
	1202	494.700	7.030370	490
CIOUNCAP04/III.51	1203	1006.709	13.126204	10245
CIUCINCAPU5/m.52	1200	1055.759	1862.12602	258021
CIIOthCAP06 m.53	1431	1286.759	22.376825	3779
CIIOthCAP07[m.55	2544	2399.759	1.555776	490
CIIOthIGF01	285	141.198	6.583374	122
CliOthIGF02	360	215.796	2.683417	/6
CliOthIGF03	318	173.838	116.325582	2654
CliOthIGF04	396	251.793	11.771323	389
CliOthIGF05	318	173.838	570.538849	13017
CliOthIGF06	312	167.866	391.349333	8622
CliOthIGF07 m.89	327	182.815	20.088748	482
CliOthIGF08	285	141.198	6255.98569	115933
CliOthIGF09 m.90	1083	938.759	11.411692	1406
CliOthIGF10 m.92	321	176.824	38.00541	882
CliOthLa101	297	153.012	6.025317	121
CliOthLa102	312	167.866	2021.79	44543
CliOthLa103	363	218.796	971.590991	27900
CliOthLa104	312	167.866	37.891282	834.800548
CliOthLa105	255	112.507	8.817529	130.199452
CliOthLa106 m.40	387	242.794	1467.36263	46758
CliOthUnd01	237	96.003	2908.59378	36648
CliOthUnd02	234	93.279	7.923333	97
CliOthUnd03	171	43.82	115605.125	664859
CliOthUnd04	486	341.791	2336.11948	104794
CliOthUnd05	357	212.796	273.664412	7643
CliPInKun01	246	104.245	4.750924	65
CliPInKun02	321	176.824	1.206521	28
CliPInSrp01	1236	1091.759	29.130267	4174
CliPInSrp02	1167	1022.759	4.745532	637
CliPInSrp03	1260	1115.759	26.072599	3818
CliPInSrp04	1218	1073.759	11.609013	1636
CliPInTIL01	282	138.257	11.518032	209
CliPInTIL02	246	104.245	843.179325	11536
CliPInTIL03	451	306.791	260.675688	10496
CliPInTIL04	462	317.791	4.651354	194
CliPInTIL05	426	281.792	3.109486	115
CliPInTII 06	474	329.791	2.125535	92
CliPInTII 07	453	308,791	71,211644	2886
CliPInTII 08lm 68	423	278 792	2 846315	104 146291
CliPInTII 00lm 70	441	296 792	7 606508	296 290744
CliPInTII 10lm 348	261	118 111	0 137357	2 120221
CliPInTII 11Im 71	435	200 702	6 200554	240 421224
CliPInTII 12lm 72	396	250.732	0.151691	5 0125
CliPInTII 13lm 7/	429	284 792	10 530552	730
CliPInTII 14lm 75	5610	5465 759	108 677607	77960
Sm m n∟i⊐µn./ S	0010	5-00.100	100.011001	11000

Anexo J: Calidad de RNA, Calidad de secuenciación y clasificación por ontologías.

Figura 1. Anexo J. Integridad de RNA total de obtenido de glándulas venenosas de hembras de *C. limpidus*. Determinadas en un agilent Bioanalyzer. El parámetro RIN no es aplicable en muestras de artrópodos.

Figura 2. Anexo J. Integridad de RNA total de obtenido de glándulas venenosas de machos de *C. limpidus*. Determinadas en un agilent Bioanalyzer. El parámetro RIN no es aplicable en muestras de artrópodos.

La calidad Phred 33 es indicador de la confiabilidad secuenciación de cada nucleótido de las lecturas, el cual está basado en código ASCII. Se utilizan tres rangos de confianza (Figura 3, Anexo J.): de 0-20 corresponde a una probabilidad del 99% de que esa base fuese asignada correctamente (área roja en los gráficos), 21-27 incrementa la probabilidad al 99.99% y mayores a 28 tienen una probabilidad de 99.999% (área verde en los gráficos).

Figura 3. Anexo J. Calidad Phred de las lecturas de 72bp. Fueron obtenidas de RNA (enriquecido en mRNA) de las glándulas venenosas de hembras (A) y machos (B) de *C. limpidus.*

Figura 4. Anexo J. Clasificación por ontologias de las secuencias anotadas en el transcriptoma de *C. limpidus.*

Anexo K. Transcritos codificantes de componentes de veneno.

En la siguiente tabla se muestras las 192 transcritos codificantes de componentes

de veneno identificados en el transcriptoma de la glándula venenosa de C.

limpidus.

Tabla 1. Anexo K. Secuencias traducidas de los 192 transcritos codificantes de componentes de veneno obtenidos del análisis transcriptómico de la glándula venenosa de *C. limpidus*. Las secuencias fueron clasificadas de acuerdo con los dominios Pfam presentes en animales venenosos. ID protein de referencia: códigos de UniProt o GenBank de la secuencia con mayor similitud. El péptido señal se muestra subrayado, el péptido maduro en negrita y el propeptide está en itálicas. Las secuencias en fuente regular indican que esas secuencias no fueron reconocidas por los predictores para determinar sitios de procesamiento.

TOXINS AFFECTING ION CHANNELS								
	Toxinas activas en canales Na⁺							
ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos				
CliNaT	XP_02323	2.00	α-	KSFILFICCLMVIDVVIESKDGYPLDEEDCIINCDIGSCEKLCTSRKANTGHCNSLDLSCYCE				
Alp01	5403	E-22	NaTx	SLPLDVKVFDSNSKTCKY <i>KK</i> *				
CliNaT	XP_02323	2.00	α-	MKRFILFISCLMVIGVVVESKDGYPIDSNGCTFRCDILINDCDTVCESRKANNGTCSSSNLA				
Alp02	5403	E-29	NaTx	CYCEGLPSDADVSDDPTKNDCS*				
CliNaT	XP_02321	2.00	α-	MKVLILIIASVLLIGVECKDGYPVDNKGCKISCVISGKFCDTECKMRKASSGYCYSLSCYCE				
Alp03	0703	E-36	NaTx	GLPENAKVSGKATSTCGGK*				
CliNaT	XP_02323	1.00	α-	MYLRRISDMNSIFVVALTILLLGIERSESRDGYPIASNGCKFGCSGLGENNPTCNHVCEKKA				
Alp04	0636	E-60	NaTx	GSDYGYCYWWTCYCQHVAEGTVLWGDSGTGPCMS*				
CliNaT	XP_02324	9.00	α-	VLAIALIFVLLGIEGTQARNGYLVSKHNCRYGCSSLGKSEKCNELCKEKAGAFYGYCYAFV				
Alp05	2001	E-19	NaTx	CYCEGMREDAIQYNRDQTRRDCQYDDDK*				
CliNaT	XP_02324	2.00	α-	VLAIALIFLLLGMEEVQAKDGYPVNEHRCKIGCSSLGESEYCKKICKKKADTSYGYCYMWA				
Alp06	2001	E-42	NaTx	CYCESVGKNAVLWNDPTLGPCIPDGKRSLSS*				
CliNaT	XP_02324	1.00	α-	MKYSISIAVFCLLALEAESRKDGYPVNSGNCKYECWNDDKCVDLCKKRGATKGYCYRRN				
Alp07	2920	E-22	NaTx	VSCYCQGLPDNEPIMKSGRCNPGGGRRK*				
CliNaT	XP_02324	4.00	α-	MKFLLLIALTCLLALGVECKKDGYIVDSGNCKYECLRDDYCKDMCLKRKADDGYCFLGKF				
Alp08	2920	E-32	NaTx	SCYCYGLPDNSPIKTSGKCKGK*				
CliNaT	XP_02324	4.00	α-	MKFLLLIALTCLLALGVECKKEGYPVDSGNCMYECLRDKYCNDLCLERKADSGYCYLGKF				
Alp09	2920	E-37	NaTx	SCYCYGLPDNSPTKTSDRCNPAKGK*				
CliNaT	XP_02322	1.00	α-	MNCLILVAVSCILVLGVDGEKDGYPDKGGNCKYECLWDTYCDELCKKKKAKSGYCYWGN				
Alp10	8500	E-48	NaTx	VSCYCYGLPDNEPTRGSSGKCRPALGRK*				
CliNaT	XP_02323	8.00	α-	MNYFILSLVAALLILHVNCIKNDYPVDENGCKIACQENAPCAAACKFNKAEGGVCPWSYRC				
Alp11	8168	E-20	NaTx	WCYGLPDSVTTEENCKGKRK*				
CliNaT	XP_02323	2.00	α-	MNYFILLFVATFLLLDVNCKKDGYPVDAKNCKFECWKNAYCDKLCKDKRGEGGYCYRLK				
Alp12	8168	E-40	NaTx	LSCWCTGLPDKVAIKTNQACKRKGK*				
CliNaT	XP_02322	6.00	α-	MNYFILLFVATFLLLDVNCKKDGYPVDAKNCKFECWKNAYCDKLCKDKRAESGYCYGWN				
Alp13	8501	E-47	NaTx	LSCYCEGLPDDEPIKTSDRCYGTRR*				
CliNaT	XP_02321	2.00	α-	MKLLLLLLIALLIEVNGLKNGYVLHKNSNCKYSCNITDKWGYCSPLCQKKHGKTGYCYFFA				
Alp14	6724	E-53	NaTx	CWCEGLPSDTPVYGDEGYTCW*				
CliNaT Alp15	F8UWP3	2.00 E-12	α- NaTx	<u>DVNC</u> KKDGYPVTSDKYSLPCWHSKVCNRICILLKAEKGYCPYSLYCWCYGLPDDAPTSG*				
CliNaT	ACD1182	4.00	α-	MVSFILVVTSFLVLDVQGKKDGYLYDMYDCRYKCWRNAYCDKLCKENKAEGGYCYALNL				
Alp16	0	E-18	NaTx	WCYCTGFFDDADAVSYGECMNDRK*				
CliNaT	XP_02324	9.00	β-	MKFLILIVASLVIVGVQSKDGYPMDHKGCKISCVINNQYCETECVKVLKGKKGYCYFWKLA				
Bet01	1641	E-52	NaTx	CYCEGLPNWAKVWDRATNKCRA*				
CliNaT	XP_02324	1.00	β-					
Bet02	1641	E-44	NaTx					

CliNaT Bet03	XP_02324 1641	8.00 E-32	β- NaTr	
CliNaT	XP_02323	7.00	β-	VASLMIIGVQSKDAYGKRKDGSTIPCLLDSSYCNRECVELKAKSGNCYFLAMTCYCQGLP
Bet04	5256	E-20	NaTx	D*
CliNaT Rot05	XP_02323	2.00 E 36	β- Νοτγ	
CliNaT	XP 02323	4 00	ß-	
Bet06	5257	E-45	NaTx	YCEGLPDWAKVWERATNKCRA*
CliNaT Bet07	XP_02323 5252	2.00 E-47	β- NaTx	
CliNaT	XP_02324	1.00	β-	MNYFILILIAALLIMDVNCKKDGYPVDAKQCRYNCWKNTYCDKLCKEKKGESGYCWWNLS
Bet08	2923	E-40	NaTx	CWCIGLPDNTNTKMNPFCQGLDGK*
CliNaT Bet09	XP_02323 7823	2.00 E-51	β- NaTx	MNYFVLIFVAALLMLGVNCKKDAYPVDGSNCRYPCWRNAYCDELCKERKAESGYCYTWS LWCWCIGLADDTPTQVNAGCAPS <i>GK</i> *
CliNaT Bet10	XP_02323 7823	8.00 E-18	β- NaTx	MNYFLLTLVAALLILHVNCIKNDYPVRNGCRIKCQENASCDEACKFNKAEGGVCPWSYRC WCYGLPDNIDTEKNCNG*
CliNaT Bet11	XP_02323 7823	8.00 E-18	β- NaTx	MNYFILSLVAALLILQVNCIINDYIVYQNGCRSVCTANKYCDEFCKANKAEGGVCPWSYYC WCYGLPDNIDTEKNCNG*
CliNaT	XP_02322	7.00	β- ΝαΤυ	
CliNaT	9318 YP 02322	E-45		
Bet13	3307	E-51	NaTx	LACWCEGLPSDAKVWDRATNKC <i>GKK</i> *
CliNaT Bet14	XP_02320 9741	2.00 E-49	β- NaTx	MNVALLFLMTLSLVLIHNGESKKKIPGAYPINENKCTYGCFHADKDKIRCSNFCKKLGGSS GYCYWMTCYCEYLPAEVPQINKIELISCGASIIGVNDTYYL*
CliNaT	XP_02320	3.00	β-	VGAVVNGFLVSKNRCLYTCKLDDSGHKKCRDRCGALGASWGYCELYSCYCLGLPDDVE
Bet15	9741	E-09	NaTx	TVNSIADSPCTTGA*
CliNaT Bet16	XP_02320 9741	6.00 E-07	β- NaTx	VGAVVNGFLVSKNRCLYTCKLDDSGHKKCRDRCNALGASWGHCELYVCCCIGLPDDVET VNSLADSPCTTRA*
CliNaT	XP_02324	8.00	β- ΝοΤγ	
CliNaT	3062 XP 02324	4 00	B-	
Bet18	0702	4.00 E-50	NaTx	ASACLCYDAPNTMMTWNAASSKCPYWNENSVNFLV*
CliNaT	XP_02321	2.00	β-	
Bet19	1611 VD 02221	E-32	Nalx	
Bet20	1611	E-34	NaTx	CEGLPEDAEVWDS
CliNaT Bet21	XP_02321 1611	1.00 E-37	β- NaTx	MKVLILIIASVLLIGVECKEGYPMNSKGCKIGCVIGNTFCDTECKMLKASSGSCWTFGLACW CKGLPEDVEVWDSATNKCG <i>GK</i>
CliNaT Bet22	XP_02320 9523	8.00 E-69	β- NaTx	MLNTLISLFLVVAVSLLTYVNVEGTEVPGGYPVNRFNCTYPCYYGEDEEQCQQFCTLLKGG FGYCYMYTCYCERLPESVKQIKKFKISGCSNGSWDITSVTKLYGSSR*
CliNaT	XP_02320	8.00	β-	MEIVYKILMLGALLLMCVKVEGSDVPSAYPVNRWNCTYPCYYGEDNDKCRKFCLILGGQH
Bet23	9523	E-36	Nalx	
Bet24	7F_02320 9523	2.00 E-12	р- NaTx	MICKCELLPEHVPHVTSM*
CliNaT Bet25	XP_02324 0701	1.00 E-60	β- NaTx	MKNLILIVFSVAAAIHEMKCSRTGYPIRENGCRISCVAGIEDNLCDTYCKNNGAEKGVCKEP ASSCYCEKGPFHMATWNVDYVNCEAWKENSVRFYVDAN*
CliNaT	XP_02320	3.00	β-	MNSLLMIIACLVLIGIVKAKDGYPVDISTGCKFRCTNKTGERNCNMLCKHRNRGSRGYCYN
Bet26	9923	E-27	NaTx	RECWCEGMPESTPTWPIPGKKCK*
CliNaT Bet27	XP_02321 3214	3.00 E-47	β- NaTx	MKIVVLFFCLVGTVVAVRRHGYILMDGKPMECPMEEERFLEQGTDYCDLKCKERGAKTGV CCYGGCYCYDIEDDEKVVDVSRFRSKLCKYLTEV*
CliNaT Bet28	Q95WD3	6.00 E-14	β- NaTx	MKTATIVILTVLLIGVQAKDGYLINEDYCRYRCWNLGKNTYCNNLCLTNGGKFGYCYRFSC YCEKLPDTYTIWGEPGTPTCGHASD*
CliNaT Bet29	P01491	3.00 F-42	β- NaTx	LIITACLALIGTVWAKKDGYLVDKTGCKYTCWKLGENKYCNRECTWKHRGGNYGYCYGF GCYCEGLADSTQTWPLPNKRC <i>GKK</i> *
CliNaT	A A L 00 400	1.00	β-	MKTFVLALCLVLIGMVYAKDGYLVSRHNGCKLSCAPMIGDRYCHIECTSMNHRGDEGYCY
Bet30	MAL20402	E-23	NaTx	
Bet31	P59899	4.00 E-53	NaTx	CWCTHLYEQAVVWPLPKKTCNGK*
CliNaT Bet32	P59899	3.00 E-39	β- NaTx	AKEGYIVNLSTGCKYECFKLGDNDYCLRECKQQYGKGAGGYCYAFGCWCTHLYEQAVV WPLPNKRCKGK*
CliNaT	Q7YT61	3.00	β-	MNSLLIITACLVLFGTVWAKEGYLVNKSTGCKYGCFWLGKNENCDKECKAKNQGGSYGY
Bet33	General	E-55	NaTx	CYSFACWCEGLPDSTPTYPLPNKSCS <i>KK</i> *

CliNaT	077165	2.00	β-	MNSLLMIIGCLVLIETVWTKEGYLVNMKTGCKYGCYKSNDNDYCDRKCKAESGNYGYCYA
Bet34		E-49	NaTx	VGCWCEGLPNSKPTWPLPGKSCSGK*
CliNaT	DEOREE	2.00	β-	TACLVLIGTVWAKKDGYLVDKTGCKYTCWKLGENKYCNSECKEVGAGYGYCYAFGCYCE
Bet35	F 59665	E-34	NaTx	GLPESVPTWPLSDKTCGTK*
CliNaT		7.00	β-	MNSLLMIIGCLVLIGTVWAEDGYLFDKRKRCTLACIDKTGDKNCDRNCKKEGGSFGHCSY
Bet36	QOVIN 14	E-53	NaTx	SACWCKGLPGSTPISRTPGKTCKK*
CliNaT	COLIKED	5.00	β-	EGYLVDYHTGCKYTCAKLGDNDYCVRECRLRYYQSAHGYCYAFACWCTHLYEQAVVWP
Bet37	CURK69	E-39	NaTx	LPNKRCK <i>GK</i> *
CliNaT	DESCO	8.00	β-	MKIFIAFAFISALLLLGVESARDGYPVDEKGCKLSCVINDKWCNSACHYRGAKYGYCYSGK
Bet38	F30290	E-34	NaTx	LACYCEAVPDNVKVWTYET
CliNaT	D59206	1.00	β-	MKIFIAFAFISALLLLGVESARDGYPVDEKGCKLSCVINNKWCNSACHSRGAKYGYCYTGG
Bet39	F 30290	E-36	NaTx	LACYCESVPDDVKVWTYETNTCGKK*
CliNaT	DESCO	2.00	β-	MKIFIAFAFISALLLLGVESARDGYPVDEKGCKLSCFMNHEPCRKACVSRGGKYGYCYVAG
Bet40	F36290	E-27	NaTx	RECYCEGVPDNVKLWTSETNTCGKK*
CliNaT	ACD1183	4.00	β-	MHYPGLYLLILFIILPPAFLSEFEERRSGFLLDRNHCKIECSLLGTNNMCETRCTSLGATNGY
Bet41	8	E-07	NaTx	CKYFACFCTNLRNEIKIWGDDVQCKW*
CliNaT		2.00	β-	SPVEGNSYKHNASRRSAEYIDKTGTEITYGEAKGAYPISVDCTYYKCLNLGVNDHCKDVCK
Bet42	FUCIDS	E-08	NaTx	HHFGGYGYCYAFKCYCEELNPKYAHYYMRFMQRDR
CliNaT	0011200	2.00	β-	LTVFLIGRRTVLGQGQYPRYVDNSYYKCGNLGENDYCVSVCKQHTVRYGYCYLFKCYCE
Bet43	D90299	E-12	NaTx	GLPDTHIYHADLKRIRGNQVDQSLTKKGIKA*

Toxinas	activas	en	canales	K⁺

ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliKTx Alp01	AIL48749	1.00 E-04	α-KTx	MKDFYVILIILSICPMFDFAVKFTPIDKTCVIKFECWVACWNEKGKPFGICSDRKCKCLV*
CliKTx Alp02	AIL48797	5.00 E-27	α-KTx	MKAVTILLLLAFILCAQEIANVEAERCVFWKCNSDCIRRRYRGGICSGILNNTYCTCLR*
CliKTx Alp03	O46028	3.00 E-15	α-KTx	IHSPFFHLFVILKSSENTFANWNVEAVACVHRTCDSNCKEMGYKSGKCINRTCKCYPRRK*
CliKTx Alp04	O46028	2.00 E-24	α-KTx	HTFANWNAEAAVCVYRTCDKDCKRRGYRSGKCINNACKCYPYGK*
CliKTx Alp05	O46028	1.00 E-26	α-KTx	MAGIAKITLILLFLFVTMDTFADWNAEANVACVHRTCDSNCKRNGYKSGKCINRKCNCYPH GK*
CliKTx Alp06	P0C182	1.00 E-15	α-KTx	MKAFYGILIILLFCFMFDLNESIFIDVDCTVSKECWAPCKAAVGVDRGKCMGKKCKCYP*
CliKTx Alp07	Q9TXD1	4.00 E-17	α-KTx	MKVFYGILLIFVFCSLYNLSQSTIINEKCFATSQCFTPCKKAIGSLQSKCMNGKCKCYNIG*
CliKTx Alp08	Q9TXD1	4.00 E-17	α-KTx	MKVFYDNLSQSTIINEKCFATSQCFTPCKKAIGSLQSKCMNGKCKCYNIG*
CliKTx Alp09	P0C165	1.00 E-19	α-KTx	MKAFYGILIILLFCSMFNLNESTVINVKCTSPKQCLPPCKEIYGRHAGAKCMNGKCHCSKIG
CliKTx Alp10	P45629	2.00 E-18	α-KTx	MKAFYGILIILLFCSMFNLNESTVINVKCTSPQQCLRPCKDRFGQHAGGKCINGKCKCYP*
CliKTx Alp11	XP_02323 8900	7.00 E-36	α-KTx	MNKVYLVAFLVLSVLLVANVSPVEGIPTGGCPVSDALCTKYCKSNKYGKSGKCTGPNKTT CKCSL*
CliKTx Alp12	Q95NJ8	6.00 E-13	α-KTx	MKFVFALLLLSILTITTVPTLVRGSGQCQRDSDCQRECMTVDKCQYGTCYCKTTGK*
CliKTx Alp13	P56219	5.00 E-16	α-KTx	
CliKTx Alp14	Q5G8B6	2.00 E-20	α-KTx	MKAVYGILIILLFCSMFDLSQQ TFINHKCKSSSECLPACKAAIGRASGKCINSTCKCYY *
CliKTx Alp15	Q5G8B6	3.00 E-19	α-KTx	MKAFYGILIIVLFCSMFNLSEEVFIDKKCSSSSECWPACKKAVGTFQGKCMNGGCKCYP*
CliKTx Alp16	Q5G8B6	1.00 E-16	α-KTx	MKVFYGILIILLFCSMFNLSQQTFIDVKCGSSKECWPPCKAAFGKARGRCMNKQCNCS*
CliKTx Bet01	XP_02322 0228	3.00 E-46	β-ΚΤχ	MVAAGRRWIWALLASLLLHSLAEAGRGKEIMNKIKKKLADAKVTVKGAWDKLTSKSEYA CPVIEKFCEDHCAAKETVGKCEDFKCLCLKPE*
CliKTx Bet02	XP_02322 0230	1.00 E-54	β-KTx	MERKLAVLLLLLGMVALASCGLREKHVQKLLSLVVPEGQLRKILQMVVHKAAKSQFGCPL YEGYCETHCQDITNKDGDCHGMKCKCE*

CliKTx Gam0 1	Q86QT3	2.00 E-34	γ-KTx	MKVLILILIIVSVMIMGVEMDRDSCVDKSRCSKYGYYQECQDCCKKAGHNGGTCMFFKCK CA*
CliKTx Gam0 2	Q86QT3	2.00 E-25	γ-KTx	
CliKTx Gam0 3	XP_02324 1648	9.00 E-35	γ-KTx	MKNILLMILILSAFILNEVELAKDSCTHLKRCGKYGFYKNCSECCREFGHEGGYCTMFKCK CKT*
CliKTx Del01	P0DJ50	3.00 E-19	δ-KTx	MKFVVTSLVVILFFHSFCTSDDDVDCSLPPDSGLCLALFPRYYYNAKSGKCESFTYGGCG GNSNNFENKNECCKACGDDRC*
CliKTx Del02	XP_02321 7495	5.00 E-44	δ-KTx	MNIKFASTIILILCMYSDAQEVDCNLPAETGPCKAAFRQYYHNSGSGKCEIFIYGGCRGNSN RFSSLDECCSHCFAKNC*
CliKTx Del03	XP_01590 5918	2.00 E-18	δ-KTx	MKLMLVSVALLLVQSFVKSEDVDCSLPPRNGMCLAYFRRYYYDPKFDKCKVFIFGGCNGN SNNFGSMEECCKACGKGQCKTG*
CliKTx Lam01	ADY39527	3.00 E-14	λ-KTx	MNLRFIIILGVLLASGVCSFARIDDEQARCNRLGKSCDSDSDCCRYGERCLSSGRKYVCKM DQGP*
CliKTx Lam02	AIL48798	1.00 E-10	λ-ΚΤχ	MNLRFIIILGVLLANGVCSFVDEQARCNNLGKPCDSDNDCCTYGERCLSSNGKDYFCSVDP GP*
				Peptidos de defensa del huésped
ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliHD PDef0 1	Q6GU94	7.00 E-32	Defens ina	MKAIVVLLILALILCLYAMTTVEGACQFWSCNSSCISRGYRQGYCWGIQYKYCQCQ*
CliHD PDef0 2	AIX87626	1.00 E-22	Defens ina	MKIVAVLFLLAFVFCTLEIATVEAGFGCPFNQGACHKHCQSIRKRGGYCDGFLKHRCRCY*
CliHD PDef0 3	AIX87626	3.00 E-23	Defens ina	MKAIVLFFFLAFTFCTLEIMPVEAGFGCPLNRYECHNHCRSIGRRGGYCKGTFRTTCTCYN SK*
CliHD PDef0 4	AIX87626	1.00 E-14	Defens ina	MKVIVVLLLLAYVFCTLEVMSLETEFGCPSIEIRCYIHCRSVNRKRGRCTGTSKQICTCYD*
CliHD PDef0 5	AIX87626	1.00 E-07	Defens ina	MKSIIIIFLLAFVFSTQALEGYVKTDRGCPFLSIECDGYCVNQGYKRGYCDGPFNTKCTCFN K*
CliHD PDef0 6	AIX87626	6.00 E-12	Defens ina	MKAIVLFFLLAFVFCTLEVPVDADRGCPSDRRCNAYCRKIGSRGGFCAGPRKLRCACLR*
CliHD PND20 1	AMX8149 3	7.00 E-29	NDBP 2	MKGKTLLVVLLVALLIAEEVNGFKFGGFLKKMWKSKLAKKLRAKGREMIKDYANRVLEGP QEEAPPAE <i>RR</i> *
CliHD PND40 1	SBQ1653 1	1.00 E-35	NDBP 4	<u>MQFKKQLLVIFFAYFLVINESEA</u> FLGSLFSLGSKLLPSVFKLFQ <i>RKKSRSINKRDLEDLYDPY</i> QRNLEMERFLKQLPMY*
CliHD PND40 2	S6D3A7	5.00 E-35	NDBP 4	$\frac{MQIKHLIVVFFVVLIVADHCHA}{FFGLIPSLVGGLISAFK} GRRKRDLTAQLNQYRHLQKREAEF REFLDNLPIY*$
CliHD PAni01	XP_02322 7050	4.00 E-40	Péptid o aniónic o	MVRKSLIVLLLVSVLVSTFLTTDAYPASFDDDFDALDDMNDLDLDSLLDLEPADLVLLDMW ANMLENSDFEDDFE*
				Enzimas
				Proteasas
ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliEnz Mtp01	XP_02322 1573	0	Metalo protea sas	VNIIVNRIILLKEKQPNLLISHHAGQTLSSFCKWQESIKRNENAILSYSHNHHDNAILITRYDICF DKDEPCDTLGLAQVSGMCERGRSCSINQDIGLTSGFTIAHELGHNFGMQHDGSGNDCLVKI NEPGYIMSTQLSRLVYPVKWSRCSRQYITDFFDSGQGDCLQNVPPMNDYAYTDLLPGQRY NADQQCRSQFGPHSSVCQDIQREVCGTLWCSKHKGRCVSNNTPLLDGTVCNSTTVPNG

				WCYGGECVDYGTIPSKVDGGWGQWSEWGVCSRKCGGGIETSERQCDKPRPSHGGRFC VGKRKRYRSCNVKECPSNSEDFRAMQCRKFNNIKFRGKYYQWIPFTADQVNSCSLYCQAV GYNFYVEQAVKVIDGTRCNQDSLDVCINGRCMPVGCDGILNSKVT
CliEnz Mtp02	XP_02321 0991	0	Metalo protea sas	MPYFFLGLAPVSGMCNPLNSCTISEGTSFQTVLVVGHEFGHSMGMEHDGRQDDNHCDPE KYIMSHTLGPGKTSWSTCSREYLEKFLRSSQSRCLQYTNSGVNMLKKLSPVLLPGQEYD ANKQCQLRYGEGSRRSTIQSSEDICYMLRCDVGFGGKDVSFTAHPALEGTVCGRNKMCQ AGKCTTANWRRNRAGPVDGGWSAWSNFGPCSSDCSTSRNTDAVGVMISTRRCNNPRP VNGGRYCQGADRRVRICDANRICSAAANAVTLSEYISETCQQASRLDTTLDPSGTQFPSH DNSHSCYVWCHKKQGGYITHGWKLPDGTPCWRGYHPQNQFCFQGKCNTFDCNGYTIET SNETPCPNRPTLATRHITEWSPWKKISECKHSCIVAGKGFLVSRKCNTVTGCTGVRDSF QLCDTNSKCTVMKSAEVYATDLCKKYRNRYPTVLSGKGRQLAPRSGNPHAACTVACQD QVWQGTHYQMDAFEDGKFPSGTDCSGGNYRKKAYCLNGKCVEFDENNVPKVEDNNSIL QVKKLFKYYRHRRDTSEQENSVENLFVNNKYTIDQNKRKKSIKYKLLTQNFHKYTYRWAIE MSECSEPCGGGIRNISMFCVRENVPVESAYCESIIKPMESGIQECNMHPCAGKWQIRHWT PCSVTCGNGTRTRYAICVQQLTEDLYSFISHINCPKTEEIVEKCEMPKCS*
CliEnz Mtp03	XP_02321 7439	0	Metalo protea sas	MSIDGRRRTSFRMDRTTATLLLAACLCAAVRGHRTPPGTSDRPEVVVPERIDGAGRSVGH GLARHFGRGKRSAEEAVHYRLPAGGKDLLLTLRPNRGLLAPAFVVERRRGPNSTFHRSRK PSEDGLCYYRGNVRNDTGSSVALSTCDGLMGVIRTKGEELLIQPMPGGSEKSGRRPHLL YKRSTTEVHGREAKCGNRDDVARALKYRAEWEKKKKRKKGRSRSKRSVSVERNVETL VVADKAMVDYYSDEDIETYILTVMNVVSSLYHDASIGNAINVILVRLILLESEEQEKEDLYIS HHADDTLKSFCKWQKYVNPRDENHPHHHDVAVLLTRYNICTRVNEPCSTLGLAEVAGMC QPHRSCNVNEDTGLALAYTIAHELGHNFGMSHDGPHNGCQAPLGERQHVMSPHLNSDA SPFVWSNCSRSEITKFLDRDWGSCLDDEPSDHEFTFPELPPGAMYNSDHQCRLQYGPEA EYCEGIEDVCQTLWCRQDNKCVTRLEPAAEGTLCDKNKWCYMGKCTVIGERLETINGEW GSWSPWSECSRSCGAGVMHSERHCDNPMPGNGGQYCIGERKRYRICQTEPCAENSPSF RSVQCSEFDNIPYKEQLYTWLPVSTPLTPCQLHCKPKGKFFSVMLSDTAKDGTPCNPGTN DMCINGKCRNVACDWGIDSNAQEDRCGICHGDGTQCQTIHGNFLQKKGLGYVEVLKIPTG ARNFRIEELGDANNYIAIQDSSREFQLNGQWFIQWSGEYPVAGTIFYYSREGEKESLHAPG PTKEPVYILLLFQTENPGLSYEYTIPNKNITRKPEFHWQYTDWSVCSATCNGGIQISRARCL EKEAGLVEDKYCSDLEKPVDISRICNRHQCPARWWAGPWQHCSVSCGSNGIRKRTVICV RSLGPDEQIALLDEDCYAEDRPSDSEPCRHKHPCLMHAHWETGQWTDVCHGDPCNYQS RHVYCNIPNGFCNEKEKPISRRKCGNITCGVWVIGNWSECSKTCGTGYRRNITCQGEA CQQAIKPVKETTCNEQPCLPFDDTQIFGVVHKSNDHKNNKDGSDHKHRHHHGEDKHEEN ENEERRSDKVAKDVIVVPLYEVPDNRVEDVKVDNEIDEGIHQIRREPPTVPEGGRSNPKQD SQKYEWQVTMWEKCSKPCDGGVRNRALCFDAVTKHMVVSELCDPFEMPSTEESCNLE PCLDWILTEWSECSSSCDRGLQYRKVYCPEEDKCDPEAKPSETRVCLIKSCLQWIAGPW SQCSASCGEGFRRRHVKCVDLSTQASSSRCSADDKPSHLQQCVNQECAEHNSAFSQCR DKLEVALCQSLRHMCDTWYFKAKCCHTCNKRINSRRRTYGSRKVGSS*
CliEnz Mtp04	XP_02321 6256	0	Metalo protea sas	ILWEENLVTSKENNVTLGDTFYPVIYSIPKNETDISNNEHEKLVIIKTGKVVFYVELYPNYNLLS NNFEESDIFNHSNAPCLFQGPIVSHKGGMAAISICHGDGILHGTLMLTEDTYFIKPLSIVRTD MKLSANQKSPVPHILSKVLRTETDICGTNESGREIITRTKILNRNKRSVKKYTIETAVFIDEKLK HHYTEKSFKTNAVVLSILNQMQLVFKYGSLNFPIRITIVELNKLNYRKKISRKVDAGKYLKEFC KWQNDKKKESYTKWDLAILLTGFDIYRGFKKNIVGLAYSNQMCTESACVIAEGFQFDAGLIL AHEIGHSLSMKHDGAGNSCDPEKYIMSSSIGGGKTKWSKCSNKYLRDFLRTKTSKCLRKTS TRRNYLKKENQFPGEKYPPKSQCHLSTGKDSFPFVENSSDDICSLLWCMNKKWRISSHPA LDGSECGSNKICFEGNCIPRNNIKWYNYY*
CliEnz Mtp05	XP_02322 7092	0	Metalo protea sas	NTNDTDEGNLTETARTRRNIQELIKYIEVGIVIDKTMFNMKNGIHSAVIGVIIQSVNYVDLFYK KMNTRLSIVYVETWNDNDYVDTESPLQSIMNNFINYATDKLSTINRDVMLFVTGHEIQEEKL GICTPRSICTDQSAIILQGRTDTHIIAGTTAHLLGHTLGINHDSADCICEDWWRGCIMEETLT NSTRSHFSSCNLETYLNILQNNEAICLFNKPYPLENIPFCGNGIIETDEDCDCGSIQDCLDNE PCCNPITCKLKHGAECSLGECCYNCKLKPKGHLCRKSVSECDIPEYCDGVHGKCPTDIYQ KNGKLCGDGENYCYLGTCPSPRSLCEHIWGYNSYPADDICFERLNVQGGLGGHCGRDG HGGYKKCLPENVKCGALQCQKGLYNKPLMEPDTEFTSAEFTNNGSISKY*
CliEnz Mtp06	XP_02321 6275	2.00 E- 173	Metalo protea sas	MRASKLHLFFSIIQVIQIRNCFLLKQIKISDDIVYPLLYHTPRDKRDISDNTKEKLLIIRTSNTTFY IELIPNNELLSEDFEFEGFTYENHSSNPCLFHGKILSQSGGMAAISTCEGDGKMHGLLVIPEG KYTMQPASSVQPHLDIPIERESVPHVLLKNTEDIEKFCAADHIAPPVDIEDNEIPNLHVRRR SKPRYTIRMAVFADKSLIDHYSDKKVNVKFAILNIINQVQFIYKYDSLKTQIDIRVVKLDLNVAE KDVPDNANGDIDRYLDNFCLWQREKKRRSKENWNLAVQLTGINLFKLVGSSLNKKVLGLA WVNGMCRDRYSCTICEARSFEAAYVMSHEMGHCLSMMHDGSNNSCNPDKFIMSPKTGP GKTNWSPCSNRYLEDFLRMPQSSCLLDDKNARDLTSEMDPRLPGQKYPPRIQCEYALGKG YKIYNNSKAPYNNICRELWCVQGYWATPAHPALEGSSCGQDKICLQGDCIRKLKSIPKRPS STERSPVHSKVANNNENQSPTFLDKIKGFVRNVFDKYFSGK*
CliEnz Mtp07	XP_02324 3712	0	Metalo protea sas	MFIQTVLIILSVLWPIGHVGATPQIHKVMTRGELLRTFQVSSANDVPVYEVVNIRSLTKREIS DGEIKRIYLSAFGKKMKLNLKKNKDFEERLKKFKVLLAETTNNGLKYRDVTAQQGGSSDL GSTYHDDEKMAAILMRQADDGGIEMEGTIGNDFVIKPIPKTLYDSSYVDDEMFLDEDEQIE LNKTRANFNNSQNIGGNHIVFKRKFGGLHDHSDYLNMESASLLNTSKLHQATSSRRKRA APDTVWPEVLMVADYDTFLLHGSNSRDVKRYFVSFFNGVDLRYKLLSFPRVRISLAGMIV AKDRDATPYLERNRLRHPNHDAVDAAGALTDMGKYLYRENRLPTYDLAVVITKLDMCRR RFEGGRCNRGTAGFAYVGGACVVNKRLEKVNSVAIIEDSGGFSGVIVAAHEIGHLLGCVH DGSPPPSYLGGPGATHCPWEDGF

CliEnz Mtp08	XP_02323 4770	0	Metalo protea sas	MSFAVIFFGLATLWICGESKFEKFHERLSQEELRKIFHVDLHNNVPEYDVVHVRSLSKRSIP SDDTKRVHLSAFGQNFHLNLKRNHELEDRLKSMKLFAAETKGNELRYKEMEPQEHAISD MGVSYHDENQMAALLVNHAEDGSLRLEGTIGNHLVIKPIPKQLIVIEDNYVDDEMFLDEDG NTSTTTPNTQRHLPTLSSVNHVVYKRKQNVPLSHSDYMELEAGYANNSDWTIRSRRTKR KAPTTVWPEVLVVIDYNTFLLHGSDSRALKRYFVSFWNGVDLRYKVLANPKVKISLAGMV VAKDKDATPYLEKNRLRPPNYDAVDAAGALSDMGKYLYREDRLPTFDLAVVITKLDMCR RQFNGGRCSRGTAGFAYVGGACVVNKRLEKVNSVAIIEDSGGFSGIIVAAHEVGHLLGCV HDGSQPPSYLGGPGASNCPWEDGFIMSDLRHTDRGFQWSACSVQQFKHFLQGETAVCL YNYPHDNQILSRVLPGTTMSLDDQCRKDRGTTACFKDARVCAQLFCYDTSSGFCVSFRP AAEGSTCGHGQVCRDGRCVGETENIIPDYTHYTPTYAGRHPNFVYRRTDRRGTTPYISRT TREIITRTTPSQSPSSCEDNAQQLAGGLTCTEFLQRYGFRYCKHRYMKQKCCKSQLKLCS HS*
CliEnz Mtp09	XP_02323 4515	0	Metalo protea sas	MLIYLISFSLCVVISAIPSGRIDVVYPSVETLRSGIKMIKFRTFDRDIELKLEPASEVISNDFAVV SDDQKQKQINIEFLKRHLYRNKEKGAALHINEEGPLSINGILSSDLRIKPLDKENIDKYGNRAH RIIEVLQDQRSRVISKIVTPEIENRTYNRKFSRISEDECVELKYIFLTESRFTKAFENDTVTLE EYLSVTLIQVQNFMDTLDLRIKVRLVKAISFTENSEPEFMKNSAIKGHENYIDPNKLIGGAR DYLCQSRENFNTGEADIIFVISKRRFGQMASDGSISTGIAGIAYVGVICDECYKTGCVFDDT NIYERSDTIAHESCHILGSPHDGQGPVSHVPNSPGSENCPSSYGYIMGSRNEANGTKFSP CTRNNIANLLKLGGRDCVKTKCTEE*
CliEnz Mtp10	XP_02321 3460	2.00 E- 123	Metalo protea sas	MNCLITFAVVFSIIIVDTYGKSFGLKHLKKLSVTEKRTVDVADAEDFEIDSTPPCPVIECVVVT DSFVYKHLSEEGIRPYLNELIRVSQEKYLDELGLNLTLRLIGHISYTNETEPGFIKGSLHSPT MIVGGSIIYSMHAINDNPLVSRADVVVLITGRTLINPFPKPGEEPQYIAGLAFLGTACNPSYK FAILQREGDQLYIDYTASVFIHEVGHLINIPDDWNGKDCSTALLPGKKHFNYCAKKDVIGFL DTHSCFLDHCDNGQE*
CliEnz Mtp11	XP_02321 6482	9.00 E- 143	Metalo protea sas	MNCLITFAVVFSIIIVDTYEKSFGLKQLRKLSVTEKRTVEDVTDVEYYEIDSTQPCPVLECVVI TDGYVSQQFSEERIKSDVKETIRLIQEMYIDELELNLTLRLIGHIFYTNETEPDYIKKSLYNPK TIAGNIIYNMNAIKDHPLVSRADVVVLITGRTLINPFPKPGEEPQYIAGLAFLGTACNPSYKF AILQREGDQLYIDYTASVFIHEVGHLINIPDDWNGKDCSTALLPGKKHFNYCAKKDVIGFLD THSCFLDHCDNGQE*
CliEnz Mtp12	XP_02323 4498	0	Metalo protea sas	TKAVIKAISSMELRGLKIICILFYFVTISAVLSGGIDVIYPSVITLRSGEKILKFRLLEENVELRLE PAGKVISDNFTVVNGKGERDESIDVKQLKSKLYKNEKIGAALHIDEGESLKVHGIINSYLRIE PFGPEEMVRKGKRAHHIIELKKDKNVYIKDQVIPKKLEKLLNPKARILNSNECLIIKYVFITES TFTESFIERNIGLTDYVATMFVQVQNLFNTLELNIEICMVGILAYTKLDEASFIQQSVIPGYEE YLNCEDLLDNMAIYFYSNPIEYRHVEWADIVILLVKRKWGDLINGDVYANTAGISYVGGVC DGRYKYGVCEDDANFMERADTIAHESGHLLGCPHDGEGPAPGIPHSPGAKECPESQGYL MSSNQSKENGQKFSPCCRKNVQNLLLWIETAQSIIQICKLDGDYNDNYYYNDEDYHVDNY DADND*
CliEnz Mtp13	XP_02323 4503	0	Metalo protea sas	DAALYINEEGPLEIKGLIDSRMKIEPCSSNEENKEGRKAHCITRRSEDDKRIHDAVIPPSIHQI YSSESLMMMQDDQCVGLDYIFVTESNFTRHFPNSEEIKVYLTMALVGVQNIMDTLNLRIKVR LIGVTEYNEENEPNYIKQSEMPGHKGIISVNQLIGNMMDYFCQHQNDKGFEEYKKANIIMLIT RRTFGNLYPDGNLFTGITGVAPLGAAACDSCGKCGAVTVGDDPLYRDEIIAHESAHLIGCPH DGEGPELSLPGSPAAKDCPGSDGFVMGDQKGENKRKFSNCSRENIKYFLSLPTSQCIIRDC KK*
CliEnz Mtp14	XP_02323 4510	0	Metalo protea sas	FCSPVLAIPAGRTEVTYPSLETLRSGEKILTLRAFGNDMELKLESAGDVIADDFTVMDGDGKI HKTDVKNLKSKLFRNKEKNAALYINEEGLLEIKGMLTSKLRIEPYESQDTLRDGIKAHRITEIL VETQRFNDAVFSSNLNLYSDYEAREFNEDQCVEIEYLFVTESTLTKRYPNLEKLEIYLASMF VKAQNMMDTLNLNMKLRLIGVKAYTDENEPAFVKESLFPGKDIFQYNRILRKFSNYYCVLRD DELVNRADIIMFSTRRAIGTLKDEDSINDSILGIGYLGGSCFRCTKFGVIKDLDDFLNTADTVA HESAHLIGSPHDGVNSSLSGSPGAEKCPRSDGFIMGDNSGNNRNKFSTCSLENIKFFLNKK QASCIIADCKKTF*
CliEnz Mtp15	XP_02323 4510	0	Metalo protea sas	FCSPVLAIPAGRTEVTYPSLETLRSGEKILTLRAFGNDMELKLESAGDVIADDFTVMDGDGKI HKTDVKNLKSKLFRNKEKNAALYINEEGLLEIKGMLTSKLRIEPYESQDTLRDGIKAHRITEIL VETQRFNDAVFSSNLNLYSDYEAREFNEDQCVEIEYLFVTDSTVTNWYKDAEKLLAYLFPM FVEVQNIMDTLNLSMKVELIGVRTYTDENEPAFVKESLFSGTDTFEKKAIINNFSNYYCKRQY DSFANRSDTIMFITRRAIGEKYYGQIIENILGLAFVGGACDPCKKYGVIKDSDNPLNMSIPAIV AHESAHLIGSPHDGEGTFSSLPGSPTGRKCPASDGFIMGDISGNNRNKFSTCSLENIKFFLN KKQASCIIADCKKTF*
CliEnz Mtp16	XP_02323 4510	0	Metalo protea sas	FCSPVLAIPAGRTEVTYPSLETLRSGEKILTLRAFGNDMELKLESAGDVIADDFTVMDGDGKI HKTDVKNLKSKLFRNKEKNAALYINEEGLLEIKGMLTSKLRIEPYESQDTLRDGIKAHRITEIL VETKQFNDAVFSSNLNLFSDHEAREFNADQCVEIEYLFVTESTLTKRYPNLEKLEIYLASMFV KAQNMMDTLNLNMKLRLIGVKAYTDENEPAFVKESLLPGKDIFHVDYIFKNFSNYYCRRQD DELVKRADIIMLSTRRVLGKPNKDGSIFYGIVGVAHLGGTCSPCAKYGLIADLNNFLETADTL AHESAHLLGSPHDGAGFFSSLPDSPTGEKCPASDGFIMGDISGNNRNKFSTCSLENIKFFLN KKQASCIIADCKKTF*
CliEnz Mtp17	XP_02322 8637	0	Metalo protea sas	MNILRILTMLIFLLTVSIFIVVSGRLTGREEIVFPSIETLRSGEKRLSFRALNEDIELKLESAGNV FGEGFFVESIHDGRSTIPELNLHDIKQNLYRDKRTGASLHIEEKEHTLIRGIINHKLRIEPHESE ARIRGGVRSHRIIEYIEEDGFHENDAVKPGANFHANINKSADDLRSGEPIYVEICIVTDTAFTK LFSNDYAIVLYVAILINGAQCRYDNLKNIRVILVFSGLKIVRYARDEPYIQNNLVEGHLLKGF DALNDFGTYMGRAGYTCDVIKLLTKLDLVDEVDGKLASGLLGLAYIGTVCDTSSEPHFSY KVGISEDDAHCFAGVRTVAHELAHSLGCGHDGDSPLSYIEGHPGSKNCPWDDGYIMSYV

				QESLNRYYFSSCCEDCIRYSAMIFDCLRNNNTGYNLGVSSEIPGVQMENTLGYSASKYEN EKVAYYDHRCRNLKRGDFFLLSFKYPDGTCSYACRTEVNEENQYYYWIMDCLDGDMCDT GKRCFHGQCI*
CliEnz Mtp18	XP_02324 0574	0	Metalo protea sas	MIYLASIFLFAIASAIPSGRVDVVFPSVETSRSGVKTVKFRALNEEIELKLEPAGEILAENFVLF DANNRILPSIEVQDLKSKMYRNSTNGAALLIDEEGPVKIEGIVNSNLKIEPYESGRAVIDGRIP HHIVEVTSDKNSFGHDGVMPMGVKETTKKVERMARDNQCIVVEYLILAESNFTKHFKTNR GLVNHISRLFIQVQNMIDTLELGIKLSVLGITMFTKKTDPSYIQESVIPGYEQYLHAMELLSN MGRYYCHHATGLAVDADIIMLFVHRKMGSLNPDNTVKLNVLGVAHTTGVCKKCRKVGIVS LDPLNYHRANVVAHESAHLLGSPHDGEDAKEEGSPGGLNCPKSDGYIMGSRRNGNENK FSKCSKESIKYTLSKSSCVIEDCKF*
CliEnz Mtp19	XP_02323 4508	1.00 E- 179	Metalo protea sas	<u>MVFYFAIYFLFGVVSA</u> IPTGRVDRVFPLVETSRSGVKTVKFRALNEEIELKLEPAGEILAENFA LLDANNRIRHSIDVPDLKRKLYRDSTNGAALLIDEEGPVTIQGIVNSNLRIEPYESGRTDRDG RIPHQIVEVISDKTSFGNDGIMPVDVKKTIEKVKRMARDDECIVVEYLVLTESNVTKRFKTDK SLTEYISVTYTAVQNIIDTLELGIKVRVLGITSFTEETEPDFIEKSAIPGYEQHLDPREVIYNMR MYYLEPATGLAADADIIMLLVDRKMGILHDDNTLSLNYYGMAYLGSVCSSRYKVGVTRHF SDHIERAAIIAHESGHLLGSQHDGEEPKGVDCPGSDGYVMGGRSTDKKNTFSSCSKKAIK DTLSLSRSSCVIEDCKF*
CliEnz Mtp20	XP_02323 4500	0	Metalo protea sas	MIYLASIFLFAIASAIPSGRVDVVFPSVETSRSGVKTVKFRALNEEIELKLEPAGEILAKNFALV DQQPNTIDVEDLKRRLYRDSDKGAALLIDEDEPLTIQGIVNSNMRIAPYESGRMVKDGRIAH QIVEVISDKNSFVNDVVTTDINRKLENVEGRADKKKCIVIEYLCVTESNFTKRFNTDKALTEY VTLLFTGVQNLLETLNLGIKVRLLGIQTFKIGTEPSFIKDSAIPGHEKHLDPVDLVVNMGKYY CKNDTGLAKQADIIMLIITRKLGELEDDGTVAFSTAGISQGGGVCIQCHKVGVAQDDSDYN ERVDTVAHETAHLIGSPHDGEGPEEMSIPKNPGAKNCPFNDGYIMGSDDHKVNKFKFSQC TKKCIEHLLSLPRAACLYKDCK*
CliEnz Mtp21	XP_02321 4049	0	Metalo protea sas	<u>MIYLASIFLFAIASA</u> IPSGRVDVVFPSVETSRSGVKTVKFRALNEEIELKLEPAGEILAKNFALV DQQPNTIDVEDLKRRIYRDSNNGAALLIDEDGPVTIQGIVNLKFRIEPYESGRTVKDGQVPH KIVEVINDGKSFLNDAVMQMDVNEEMEKVATMARDDQCIVVECLVVTESAFTKRFETTKA LTEYVTVMYTGVQNLIDTLEMGIQVRLLGIEPFTEKTEPPYIEESEIPGHPQNLNPYDLVEH MGKYYCSHATGLAKDADMIMLLVTRKLGELQDDGTVAFTLAGIAYVGTVCNECYKVGISL DDSELIMLIITRKMGELKKDGTVKFTAMGLAYLASVCKKCYKVGVSMDDSRYNERVDTVA HESNHLLGSLHDGERSDEGGPAGNPGAEDCPQTDGYIMGDRSDIVNRYKFSECSKKCVK YALSLPGASCVYESCGF*
CliEnz Mtp22	XP_02321 4049	0	Metalo protea sas	MIYLASIFLFAIASA/PSGRVDVVFPSVETSRSGVKTVKFRALNEEIELKLEPAGEILAKNFALV DQQPNTIDVEDLKRRIYRDSNNGAALLIDEDGPVTIQGIVNLKFRIEPYESGRTVKDGQVPH KIVEVINDGKSFLNDAVMQMDVNEEMEKVATMARDDQCIVVECLVVTESAFTKRFETTKA LTEYVTVMYTGVQNLIDTLEMGIQVRLLGIEPFTEKTEPPYIEESEIPGHPQNLNPYDLVEH MGKYYCSHATGLAKDADMIMLLVTRKLGELQDDGTVAFTLAGIAYVGTVCNECYKVGISL DDSEYNERVDTVAHESNHLLGSLHDGERSDEGGPAGNPGAEDCPQTDGYIMGDRSDIVN RYKFSECSKKCVKYALSLPGASCVYESCGF*
CliEnz Mtp23	XP_02322 9533	0	Metalo protea sas	MIYFAIFFPFVVVSAISSGRVDLLVFPSVETSRSGVKTVKFRALNEEIELKLEPAGEILAKNFAL VDQQPNTIDVEDLKRRIYRDSNNGAALLIDEDGPVTIQGIVNLKFRIEPYESGRTVKDGQVP HKIVEVINDGKSFLNDAVMQMDVNEEMEKVATMARDDQCIVVECLVVTESAFTKRFETTK ALTEYVTVMYTGVQNLIDTLEMGIKVRLLGIDPFTKETEPAYIEESAIPGHPNYLYADHIVDR MGKYYCSHATGLAKDADLIMLIITRKMGELKKDGTVKFTAMGLAYLASVCKKCYKVGVS MDDSRYNERVDTVAHETAHLLGSPHDGEPKAEDCPDTDGYIMGNRRNATNKFKFSECSK NRVKYTLSLPGASCVYESCGF*
CliEnz Mtp24	XP_02320 9358	0	Metalo protea sas	MLSAFLLCLSSINSCKYLITEEQIASRFIRNVNQINERQCHLFQLASWNYETNITKYNKNKMI EQEMLNSKITKENWKKLMKFDWKHFSDPQLRRQFHHLSHLGDEALSVTKLRKKSSLEAD MVDIYSTTVICDFKNKNKCNLALDPDLTNILAKSNDYEELKHVWKEWRNKVGRKIKPLYW KFVHLSNEAALLNGFKDAGEFQRDRYESPTFLQDLENLWKQIQPLYQQLHAYVRRKLIQK YGKDKIKHDGPIPAHLFGNMWSQEWQNILNLVIPYRNKPSLDVTPQMKAKKMKPIQIAKL AEEFFVSLGLRPMTKEFWNNSLFEKPKDRKVVCHASAWDLCNKGDFRVKLCMEPTMEF LITTHHEMGHVQYYMQYAKQPHIFRTGANPGFHEAIGDVMGLSVYTPNHLQSIGLLNDIISD RESDINFLMEMALKKIAFLPFGYILDKWRWGVYSGEIPLEEWNTKWWEMRFKYQGICPPV RRTEIDFDPGAKFHVPANTPYIRYFISFIIQFQFHEALCRVSGYLGPLHKCDIYNSKEAGKLI SEMMQMGSSRPWPEALEKLTGTREMNAHSLLEYFKPLYEWLKETNKEEIIGWETIDPNVC P*
CliEnz SeP01	XP_02323 8707	0	Serina protea sa	MKRCLQFFLLLLLFPAIPGTRRGASRRGRNCRFRRPGDGKCVSADFCGRIGKAGTCPGS GRNSPVCCPRVHVRRRTASGVTPACGLNLPNASRLLTRIRQQVVGGRDSDPAFWPWMV SLHKKTSNSTRYLCGGALIDRRRLITAAHCFGRKDPKASDYLVKVGGRDEGRERRVESVR VHPGFSNARYYHDIALVTLEEDREWKTMPACLPDRNEDYSGKEAVLIGWGDTSFGGRPG RVLQRVTLRVFANRRCQADYRKLKSAPFPRGIVPQLLCAGHRREARDACQGDSGSPLML RDSSSGTWKVIGLVSFGYQCAVSAYPGVYTRVDHYRKWIAENGKSS*
CliEnz SeP02	XP_02323 9597	0	Serina protea sa	MFKLDRRKTLLLMFAVSAVRAQQSNDAQEGHSGHQCDCMEYWECISAGGKPYSYCVYSN KVCCFIDQNAKTVGILPRRGKSTSCGQKGVDNRKDGFSEPGEWAWHAAILEKPRDLYVC GASLVDEYWVMTAAHCVDDFVDSKSLKVRLGEYDVLRSSEPQKHEEFQVSRVIIHPGFVN TTLLHDIALLRLSTPAKRRSHINTVCMPGNELSEKVLTASKCIVTGWGKRSERGNHSVVLK EIIVPVWKNNDCERSMKLQFGPNYQLPSSVVCAGTTGRDACDGDGGGPLVCEKNNHWY QIGIVSFGIGCGRPNVPGVYTRVHSYKQWIHDVVLNS*

CliEnz Sep03	XP_02323 3218	0	Serina protea sa	LISEISLSLRSFAIYFDFNTMKFLGWQLLCCCGFVFTLTIEDENCGKRNISDEELDFKIVGGLP ARPGEWPWQVSVQLTHPQYGKIGHWCGGVLVDKRWVLTAAHCIINSLFALPQPVFWKIR LGDYHLKKTEGTESTIAVSDVYYNRWYLGYQNDLALMRLSEPAKIDYYVRPICLPTSEDGF EDMTCTATGWGKADFNRTGSSTLQKVSVKVMENSICLNAYMKNFNISILPSHLCAGDLAG GKGTCLGDSGGPLQCLIKDKWYLAGLTSFGSGCAKPGFPDVYTKVTYFVDWIKHIQHTHI ARF*
CliEnz Sep04	XP_02322 7283	3.00 E- 172	Serina protea sa	MLRPFQSSYQCRTPDGLPGVCSVVTQCIYLIFDLNKLRQSVCFRPFSMPGVCCPVIRDVTS TVATATTTDKLDPITTTTITYDNFTSSLPSTTVIWPTDVETTSTTVTTTTDTTTVAVNETLSDL SLFKQPIIAESTRGCGHSGRDGRIVGGFESEAGNWPWMAAIYLITHRGREYWCGGTLIDNR HVITAAHCLVHKSGRKYHPRSIIVRLAAHRIYNHYDRKNTVDVYVTKTIPHAKFMRHGFYNDI GIIQLASEVKYNIDISPVCLPSIKMADNNLEGYMATVLGWGVISYGGRNAETLQQVSVPIWN NVDCQKRYVQKITKGMLCAGYHEGLKDACQGDSGGPLMVPNNSRRWILVGIVSFGSKCG EKEQPGVYTRVTNYLDWIHEVTKA*
CliEnz Sep05	XP_02321 0062	0	Serina protea sa	MKFHLILICLLSSKKISGIEVNFPEETKRCHEKLGEEGICIEFGKCSIAKELIKQRKIPVPCGFS GIVPLVCCAISSLPGQLVRESECGIKQLEEEERNSGISFPSTESSEYGDSIIQPRKLNRTLEN KHEFQHGNLPWIVSVVRKNDSAVICLGFLIDEFRVITAAHCYSEASTAEHYSMYILKNGSK EWYEIDEVRIYEEFNGYYDDIAILKSSSAISGIPICLPKTINEINLIGRAAVFIGWLNGDDDDVK MVSEEMQIADVEVCEKDYSKFIVSPFPSGIKEESICTYSLYPDADTCKNNSGGLLMLEDEG RWFVIGIQTFSAPCDLQNIPIVYTNVSHYLNWIQ*
CliEnz Sep06	XP_02320 9481	0	Serina protea sa	MNITLVFALVTFKQAWSVSIKPKPCFNGKRQRGTCMFVWECIRAEGKHLGTCTDSFLVGS CCWRRGNAEEQPPAQWTASHFHNSSSENGVRPTETDRRKKPRPECGVPFDTHRSKVVG GSDAAFGSWPWQVSIRKVRGSYGFASTHRCGGVILNRLWIATAAHCVEDLYPSRMRIRV GEHDFGSTNEPFPEMEKNVGGKVLHPGYNVFTYEHDLALVKLADPLVFRPHVFPICLPST DDAFAGREAVITGWGRLREGGILPSVLQEVKVPIISNQRCREMFRRAGKLEVVPETFLCA GFAEGGRDSCQGDSGGPLQIKDDDGKWILAGIISWGVGCAQPNMPGVCVRITKYRDWIT GIIA*
CliEnz Sep07	XP_02323 7211	0	Serina protea sa	MADVLQIFLIAVFFLIEYSMQEADFENGTPCGRQFVRNGKIVGGRNAEEGEVPWIASIYLRG IYSCVGSIIAKRWILTAAHCFMSTSKPRNYYIRVGNLYMNGEGNDLDIESIYKHPNYRNPRR YNNDIALLKLKNDIVYNKYTWPICLDRNNVSLNDKIATIAGWGKLEEGGAYHPEILQLVRLP IVNNEMCQQWFRNNGKKWVIVEDNQICAGYEEGGKDACQGDSGGPQYIKQGNSHILIGV VSSGIGCARPQTPGLYTRVSSYISWIDETIKNNS*
CliEnz Sep08	XP_02323 0910	0	Serina protea sa	ERSISSFPRGLVNFSLLKPVRAALFSDCTTGSQCQLTLTCWLSGGVVTTPCGPFFTCCSSA AEQKIQPAYYGPVRNDPYCGRNSENTRRIVGGSDAAFGQFPWQVFIQIGGSRCGGALVAW RHVVTAGHCVAKSQFNPSNIRVTVGDYILNSDMESIPSESFGVERVKLHPNFRFTPQADRY DVSVLILDRPVSYKYNMKPICLPEKNADFLGRIGYAAGWGALEAGSKLRPKVLQYVPVPVIN NQICETWHRRRGINIRIYDEMLCAGYEFGGRDSCQGDSGGPLMINSYGVWYLIGIVSAGYS CAKQYQPGIYHRVSSSSDWISSNLY*
CliEnz Sep09	XP_02322 8456	0	Serina protea sa	MKILFSSRHSLDMKYLTIFLAIGYAIAQDEQFGGSEGGTDVSPDKLGGADYESAIPNPGLST NPDPIPDQSADCLCVPYYQCKDGEIINDGSGIIDARKKPPLKEELPLDKHFEPPFCGAFHV CCKAPESSTARPYEHRCGVRNPSGINSRILSPGKKGESDFGEWPWQAAVLKVEGKVNLF QCGGVLIDKRHVLTVAHCVFHYKGLNQYPLKVRLGEWDTQNTDEFLAHDDYNVEKIITHP EFRNNSLWNDIAVLTLDRDVIFVPHIDTICLPNYKDIYEGQTCVVTGWGKDAYKGGTYSNIL KEVNIPVLDNPKCQELLRETRLGIFYKLHEGFICAGGEKGLDSCKGDGGGPLVCYRPDGT YALAGLVSWGIDCGLAGVPGVYVRVLKYVDWIVQNTGGRLEDYWPIGS*
CliEnz Sep10	XP_02322 8456	0	Serina protea sa	MKTFTAVVVLSVLSFLHAQNENNYKRRARVFLEPLTTENTTEKFQPIISSNNETDIETSVSAT NDTEGRSIDLDLFDFKGSSRQGRIINDRKKVKVSGFIPLVTLDDVDKSEETPQESIYDYPIYK PEKSALPPIINAHKQFISQGDSYPSDVQANFDNRKLSPIYPGTPGKYPSSSIDRPLYQEKVV DTHGPIYPHPQSHHFPDKGPKYIEHVHRPNINQLIPKRDQCICVPFYLCKNGFLQDFGRNK DLVDERSANVGAVYFDQKNHTQNLEDVAQERIVNDKTNATKHQTDLADYASDVMARFIG LPDDGCGYMRICCKIPPVISPVGSFPPLHPLHPNPIHQVIPEIHHPHPNPVNKPLPPIVRPPL FPNPNIGLPKPKPVYPGEIGIHPGHFHKTCGVRNAVGIHGRVQNLQYYDDSAEFGEYPWH VAILKKTGPSESLYVCGGVLIHPQWIATAAHCLKKHGPDDIVIRLGEWDVHRGDEFYPYKE KYVADIIVHPHYFPGNFANDIALIKMDSPMDPKLPHITPACLPEPHELFVGQRCWVTGWGK SAFGHKGEYQSVLKEVDVPILSHKDCEHRLHQTRLGPYYRLHPSFVCAGGEPGKDACTG DGGSPMVCEVHGIWKVVGLVSWGIGCGIPGIPGVYVNMANLRPWIENIIHKIG*
CliEnz Sep11	XP_02323 0909	0	Serina protea sa	MRRIIGDAKIYILLVYLVYINQRSNAQLFSFRRRADTDTCHRNGEVHQCQFFLFCLLSGGTS AGNCRGNLLSTCCVKPNLRRSRPSNFNQRTLRKETNSVCGRSAVKPRSRIVGGQDAFYG EFPWQAHIKIIQQQCGGVLVSPYFVVTAAHCVYRARLPQITVVLGAYDIHDHSYQLQPAHY LKVAEKRLHPKFKFSPSHPDRYDVALLRLNRKVNYQENILPICLPPYGWNFRGWRAVVTG WGKTDPALRNRYGTRLLQKVDVPIISNQECEYWHRSRGIQLKIYPEMICAGYENGKKDAC VGDSGGPLMVNMNGKWTLVGITSAGFGCAQWRQPGIYHSVSTTVDWINSNIR*
CliEnz Sep12	XP_02323 9874	2.00 E- 125	Serina protea sa	EEEYLPYVERRVQLIASHPKFDRRTFEYDLALLRFYEPVPFQQNILPICVPTGNSTYIGEFAT VAGWGRLYEDGPLPEKLQEVEVPIVANKECEDMYRKAGYVEDIPDIFICAGLAKGGRDSCE GDSGGPLVIKEDDGRWVLAGIISWGIGCALPNQPGVYTRITKFSDWINQIIIF*
CliEnz Sep13	XP_02324 3443	0	Serina protea sa	MIEFLLCILCLSSVLKTSLSLDTCEVSSEVSGMCRRRSDCSTLRRGSVVKSCPERRDLICCP LWRKTTWPVQTTKRSRAQSKTTAIPRTENVCGQRSVTRRRSNRGVDLEEEEESFNLTTDA IVNGRTAVKGSWPWMAALLSIRTTSFGQSASFFCGGSIITSRVVLTAAHCLYPYMHNRRQI SSNMKKLKVRVGAHTKSDGISHDISQMNYHKSYGRNYANDIGYVKLSKDIIFNAHVRPICL PTLIESYSDTFYITGWGTTRSGGSASSTLREAKVKMVSLSTCKSSYSRINLKITDKQVCAG

RGEADTCQGDSGGPMVMYSETKKRWILVGITSFGNGCGNRRYPGVYTSVKAYRSWIDTI S*

CliEnz XP_02323 0 Sep14 9572 0					
	CliEnz Sep14	XP_02323 9572	0	Serina protea sa	FRKRRLLLVFLGTMSSAFVLTFFSLLICVDL NCSGFLISPSYVLTAAHCMIRPLEEMWAKIG ALLKLTSPVVFDQNINRICLANDRNFYRGN HGDCSDMFAFFNYTLWDGTVCIKNSGSEG
				ou	

SAVQDEKRIFGGRFANPGEFPWMVFIRLTDEL GTVDREEGQEYRFQSSRVHPDYSNLTYHGDI ITPVLQMGWGRFSNETAEVTRILKVTEEGYIFD GVCEGDSGGPLVTRNGNSYTAIGLESIGFYEN ICQQ*

	Fosfolipasas				
ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos	
CliEnz PA201	XP_02323 6869	7.00 E-81	PA2	MDKCCRTHHFCKDVIPVLSDRYGLTNTDIFPKLSCDCEEKFFKCLHKANTVVSNKMGETYF NQEKSQCFMKDYPIVKCLIRKAISQYESICVKYELDATKSEIYQLFDTPFYKVPNFHRE*	
CliEnz PA202	XP_02323 4362	2.00 E- 161	PA2	<u>IVLEFSMILLLLLCQTTHF</u> VVVLQSEIYYKHDWSKISVEFPSSPCEENGLKCSENKSWKFSN SISNKQNDIRRKHLRQIPYENIKKRYKRSQDDFIKTFAILPGTKWCGAGNKSDGGDLGYFN DTDRCCRRHDSCPNSIQSKATKYGLRNNESSTMSHCDCDDEFYHCLKEVNSVVSNKVGI MFFNVLQKSCFRKDYPIVGCKNKSWFARRCKEYEFDRSKRKIWQIFDAKEY*	
CliEnz PA203	XP_02323 4380	1.00 E- 166	PA2	MLRSLLYILVLVEISISES QVYVYPYGSKLILVEPNHDPTKTSRNCYFYEDGKIGNSIGENSKD VEEEIIRFLKCETATTESKIRSKRTINKVLRKLVIFPGTNWCGAGNVSNNARDLGTFEKTDD CCRNHDQCFDVINANQTKYGLYNAGLVTLSHCDCDDEFYECLKEVNSPASFSIGNLFFNV LKMKCFREDYPIKGCIKETGIIKVCQEYEFDVEKPKEWQMFDPKIY*	
CliEnz PA204	XP_02323 1606	3.00 E- 105	PA2	MLSIIKNFILVVLLLSTCQICEFRSLGRKERSLIDLAEMVKITTGRNGTDFVPYGNWCGMGG SGKALDPIDDCCRRHDLCYIDKLGKECNSIFNLYVANYKWNNAGGKISCSIEDTNPCNRAT CACDREVVFCLAKNIKEYKEEHRYVRSALKT*	
CliEnz PA205	XP_02324 2353	3.00 E- 102	PA2	NIHFKEIALHYVGTKWCGAGDVADDYDDLGPAAETDMCCRTHDHCNDSITGFETKYKLKNK DFYTKSHCDCDNGFHQCLLEGETLISDAVGHLFFNILQTQCFKNEYPIVKCLKKWGIPIVRDI CQEYELDENKPKKYQFFDGKMYQGKHEPSFLKNILSH*	
CliEnz PA206	XP_02324 2353	0	PA2	MYFLIIFGGTMMSILTTTTVAGGILDIVDDILPVTTSFYREKDGHRMVEIIEVNTYIGGKKLVD CFLYGDNYIIEKMLELVPKKLVKVVPKKDISKLVNQCNELLYRKIRENAFDIIKTPFDFARKI FKSFLIFPGTKWCGAGDVADDYDDLGPAAETDMCCRTHDHCNDSITGFETKYKLKNKDF YTKSHCDCDNGFHQCLLEGETLISDAVGHLFFNILQTQCFKNEYPIVKCLKKWGIPIVRDIC QEYELDENKPKKYQFFDGKMYQGKHEPSFLKNILSH*	
CliEnz PLD01	XP_02323 7656	0.00 E+0 0	PD	MNSSEGRLTSLSSSDYDDYEDLKPPDSEDEIDHNESREGPPYIPFAHIHAPSLGFEDLRLTM LIPNRPIRLKIIDAFRVPGSSIMNPNLYVIHLQHGNFEWIIKKRYKHFQRLHQQLLLFRASLSLP IPTRRYRERRKSFKHRKTLPLFPRRPEALIQPDQLSHRAEQLEKYLRNLLRIPLYKTHYETMN FLEIGPLSFINDLGQKGKEGLVLKRSGGHLTKAVCLKLRRAITECCGFWRKRWLVVKDSFV AYIRPKDGKIKSVLLMDSYFNVECGLAATGIHHGLFITNLSRQLLVKCWTKRKAREWMQHI VETSNTLARDFTQPNRFDSFAPVRFCVDCRWFIDGGTYFEAVADAVERAKVEIFIADWWL SPEIYLKRPVIQGELWRLDRVLQRKAEEGVKIFVLLYKEVELALGINSYYSKKQLAQLHPNI KVLRHPDHVTGGVLLWAHHEKIVVIDQTYAFLGGIDLCYGRWDDYLHRLTDLGGIHKPVQ NKSGYTPPPRRCCSTSDLTMAAHDSEKFMYQAKEMQYNKLHRHDSAESLPNFDVTITAP RIEIDEDIKNVTFGDNFNTQEDDKYKKKEKDVPDGSAISRPRFTTKLKTQRVMQAVARFQA LKHRLHHKGHSIDSLRMGARTDSLGIPSFELRRTASEVALNQMGLQGSCKLWFGKDYSN FITKDFVNLDRPYQDLVDRTVTPRMPWHDIGVLVQGSAARDVARHFIQRWNFTKLEKAKN YDAYPYLLPKNYENVTNIPPLPLSSVGILYTTNCQILRSVSTWSAGIRTTERSIHSAYVNLIN NAKHFIYIENQFFITQAAGHKDVFNEIGEALYQRIMKAHKNNETFRVYVVMPLLPAFEGEIG TTTGTAIQAITHWNYASICRGPGSLIQRLSTEIDDPISYISFYGLRNYSTLNDKLVTELVYVHS KLMIVDDQAVIIGSANINDRSLLGKRDSEIAVVIEDIEFEKSLMNEKPYNSGLFAGSLRRSLF KEHLTSLNKDKSLDIDVRDPISEHFFKDVWMKTAGVNTSIFEKVFRCIPADEIHTYSQLRQY VSQSGLCETDPDSAKELLEKVKGYLVLFPLYFLCSENLTPAHGTKEALMPVSLWT*	
5´ nucleotidasas					

ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliEnz 5Nuc0 1	XP_02323 3208	0	5´nucl eotidas a	MFYKSEMWFAVLTCMFTLLSSIESYNLTVLHTNDFHSRYEEINNKGGKCKPEKSCYGGIAR QVTAVRNIRNAEENVIFLNAGDYYQGTVWYTVHRWRAVAEFTNRLHHDAMALGNHEFDD GVAGLVPFLDNVTFPIISSNINISGIPELEGKIRKSVILDVGGEKIGVIGYTTKDTPELAKTGPV TFFDEVESIQEEANNLQQSGITIIIAVGHAGFLKDKEIAEKVPLVDVVVGGHTNTFLYTGEPP IPQEKEGPYPVVIERSDGSKALVVQDYAFGLYLGHLKVTFDETGNVISWEGNPILMDETIP QDNETAEVVETYKEVVDRRGNVIVGQTNVYLNADRPYCRMHECNFGNVITDAVLRFYLKK PTENQWNTIAISIFNSGGIRDSISEKEHDGNILMRDVMNVLPYLNTLDVVDIYGKYLIEILERS VYDYGNNPEDPPGRFLQVSGVRVTYNISQPPGQRVHKALVHCTFCRVPRYLPINETKIYRV VMPTYLTQGGDDYKMIPENTLRLLNTGSLDIDIVVDYLNKSSPIVTGIEGRINFVDPYAPCN GAALSTINNNSLCIYAFLTFSILLFPGVHKNLPVIATI*

132

CliEnz 5Nuc0 3	XP_01379 4928	0	5´nucl eotidas a	MNILELSKLNSGNENMVTILHFNDVYNVEPRDIEPVGGAARFSTAMKSFSHLDPLIIFSGDVL SPSVLSTFTHGEHMIDVLNILGVHCSVYGNHEFDFGVDRLLEFAERTKFPWLMSNVIDKETN EPLGSGNITYVLEHHGKKFGFIGLVEKEWLVTLATVDVDDVIYLDFVDVGEKLAKQLKENDQ VDFVIAITHMRFPNDCHLAEKVEEIDLILGGHDHVYDIKVVNGKYIIKSGSDFQKFSKITLTGN PVTSISIDEITVTSKYEEDPELKEILKNYEGVVAVKMDEVLAHFSVDLDGRFSSVRTMETNIG NFVCDVMLAATHADLTILNSGTIRCDRIYPKGPFKMRDLITVLPLMDPMVVLKCTGYQVWKA LENGVSQYPRLDGRFPQVAGISFKFDPMKPPGERIDPADIKVSFEPLDMNQVYLVATKKYC ALGRDGYEALKKCEIITDEENTPELCISVQNHFRSIKFLTGAARQRSHHRQSLFCVSRRASL RHFDEIPSFSGLMRSMSCDTIAPDIPLVRTVSIDEIEHEQCRLAPKVEGRIQILTEEFKEKLER EKSQLSILNDVIEEVSE
CliEnz 5Nuc0 2	XP_02323 6967	0	5´nucl eotidas a	MFIAAVLAVLLPGHIWTYQLTILHTNDVHARFEEFNKYGGRCTESLSQKGECFGGVARQMT KVREIRETNDNVLFLNAGDYYQGTFMYTVHKWKIVADFMNRLGHDAMALGNHEFDDGVE GLLPFLENVKFPVLGCNIDVGKVPFLKGKILSSIERDVGGEKIGIIGYVTPETSFLARPGNVS FKTESDCLKEQAEQLNSKGIKIIIALGHSGFTRDLEIARTIPYLDVVVGGHTDTFLYTGNPPS IEEPQGKYPVVIDKEDGSKTLVVQDYTYGKYLGFLQVEFTDDGKVQSWTGNPILLDEKVE EDPLIQNALKPYVEKVEKISKEVVGKSRVLLLGERSTCRMRECNMGNMLTDAVVSEFTKM PKDGGWTSVSVALWNSGGIRSSIDERYADGNITMEDLMNVIPFAGIFLIVELKGSDLITAME EAVENYDVTGVDPPGAFLQVSGMKIRYNLKKNPGERVEKILIKCSNCRVPKYFPLNTTSYY KVAITDFIYNKGDGFKTFMEKSTSVISTGLEDNDIIKSYLRTSSPLVAGVEDRISFQDENRCL KSTNFQPSNRKVNILLIILSVVYSYLR*

Hialuronidasa

ID ID Proteín de referenc	a E- Valu ia ^e	Sub- clasific ación	Secuencia de aminoácidos
CliEnz XP_023 Hya01 6974	²² 0	Hialuro nidasa	MHSISIFSIFISIIYSAQADFKVYWEVPSFLCSKKYKINITQDLTSHKVLVNQGEGFNGDKIVIF YENQLGKYPYIDPTKGDVNGGLLQVADLKEHLKVSKDDITKFIPNPKFDGIGVIDWESWRP SWDFNWGKMKVYRERSIDLVKSKHPDWSSKKIEETAIKEWEDSAKEWMVKTLKLAEDM RPDAGWCYYYFPDCYNYNGKDQPSQYTCNARVREQNSRLSWLWNQSTALCPSIYTQES HIKKYNMSQRAWWIDARLRETMRLANPNTPIYPYINYVLPGTNETIPSMDFKRMLGQIASL GLDGAIIWGSSYHVLTKSQCELTATYVKDVMAPTIATVVLNTNRCSQAICKGRGHCYWPD EPFTSWKYLIDPKMPVFKPTNISCKCKGYTGRYCQIAP*

Inhibidores de Proteasas

	Tipo Ascaris						
ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos			
CliPIn TIL01	XP_02323 5660	3.00 E-60	TIL	MKTYIATIICIFFLCFSQDSAQPLICGEGQELIDCITPCGPRRCSTYLENTIHPERCASILLPLC TIGCQCKDGKFLNDEGECVELINCSLDFS			
CliPIn TIL02	XP_02322 9070	1.00 E-47	TIL	MKAFLIIALLIIVASTVNSAITTPQCGENEEFDSCGTACPVDCTNYMNEPEPCTRQCVIGCAC KRGFVRSATKKCIHPSEC*			
CliPIn TIL03	ABY26681	3.00 E-23	TIL	MSSKIICLTVLSLLVMNVAAQRGFCGPNEELKGCGACDGSCRTPNVACTADCRPPSCGCI RDYVRDPSGRCIPLESCYRN*			
CliPIn TIL04	XP_02321 7168	1.00 E-95	TIL	MKMSNAWKIILLVCGINNIFGKEIHTSEDNCEKNEIYMKAGCEPLCDNILKGPPFCLNNETR QGCFCKTGFIRNSSDHQQRNQCISIEECGIRVCTRPNTELNFEGRISFCTKDGIVGSIKYPL GFLSICNCKRGFVWKDYICIPEDECRKSL*			
CliPIn TIL05	XP_02322 4657	7.00 E-95	TIL	MLVNYGTLLLFLVLAIDGAKTQRCGVNEVFYDARCEPYCDNALDDPCYQQVERSGCFCQT GYIRDQRTKKCIRLEQCSSRVCRQPYTELDLNGRFTICSGPRQSYTGYPYRRKPACACISE YAESREGCIPISQCRRLERN*			
CliPIn TIL06	XP_02321 7141	1.00 E- 112	TIL	MLLHSIYSLDLSIYAYCKRVRIMWKLLKLIIVVTAVNGVPINQLCGKNEEFRHQSCEPTCNRV HDQPCSVVEKYDGCFCKTDFIRDEKNKCIPVGECSKKMCNMPNEELNLNGDLRFCNGSG TYYTTKFKFDVIKICFCKDGYAKKHDACVPIKECT*			
CliPln TIL07	XP_02323 8824	5.00 E-99	TIL	MFKVVLSCGICLIFIHWAVDGSGITEGVCGVDEVYVKAGCESSCKNLLKEPCLGRPTHPGC ICKAGLIREESTNHCIPIKECGQRICQQPNRELNLDGRFTICTGPGQAYTGHPFRPHPVCTC KRGFARSEGICIPVSECKAPQLNRNSE*			
CliPIn TIL08	XP_02321 7773	8.00 E-35	TIL	MSLFKFILVSVFFVDVLNIVAQRVCTGPNEELKEACLKLNEELKPTIRNDSNICIPVKECCPE PNVRNDYNICIPVKQCCPKPNEELKPCGACDGTCTNPNPICPFICKSSSCGCIKGTVRNKY NKCIFCSEECENMQYFISYMP*			
CliPIn TIL09	XP_02321 7773	7.00 E-35	TIL	MSLFKFILVSVFFVDVLNIVAQKACLKLNEELKPTVRNDYNICIPVKQCCPKPNEELKPCGA CDGTCTNPNPICPFICKSSSCGCIKGTVRNKYNKCILEHAVFHILYALKTPLNADQLRVDAS YMLRFMQTSFVWMHRGNCQKRL*			
CliPIn TIL10	XP_02321 7773	8.00 E-24	TIL	MSLFKFILVSVFFVDVLNIVAQKACLKLNEELKPTVRNDYNICIPVKQCCPKPNEELKPCGA CDGTCTNPNPDIPKNMQYFISYMP*			

CliPIn TIL11	XP_02321 7773	5.00 E-31	TIL	MSLFKFILVSVFFVDVLNIVAQKACLKLNEELKPTIRNDSNICIPVKECCPEPNVRNDYNICIP VKQCCPKPNEELKPCGACDGTCTNPNPRTCSISYPICPEDTLECGPASCGCVLYAPIYAD QLRVDASRELSETIIIYVSQ*
CliPIn TIL12	XP_02321 7773	5.00 E-37	TIL	MSLFKFILVSVFFVDVLNIVAQKACLKLNEELKPTIRNDSNICIPVKECCPEPNVRNDYNICIP VKQCCPKPNEELKPCGACDGTCTNPNPICPFICKSSSCGCIKGTVRNKYNKCIEECENMQ YFISYMP*
CliPIn TIL13	XP_02322 7691	3.00 E-57	TIL	MLLILLLVFLGNVFAYNQECFSPFEEYSECTGNCDRYCEWSNGTIMAPRCSEDCQEGCVC QNGYVRIHKEWFAYCIPESDCKKCPDNEHFDICTHHCQKNCENKDELVPCASICIPGCICN SGYVREVDEDSPCIPAEDCNN*
CliPIn TIL14	XP_02321 0698	0	TIL	MDQHKLFVLIFLSLYQLAQSKSKRKLGFHGPKPGPIASKNLCDIPKPANSIDHCEDKTHQ RECTYRCLEGYTFPSGTLEITYTCVFREGWTSVVDIPDCTPVCKPPCENNGECIEQKCICP AEYRGNACEYPISLCQPSFQNTTGIIQCNHDRNVSRCTFVCPQQTEPWDLPEKQYTCNLR GEWSKSFPDCIPFNGWIGEIVEEEASAFPNWFKFDYFKRTNNIVSRTKKVIKHREDVYLSQ NFYSSGVCATWGQFNYKTFDGYIYSFHGPCTYVLVEECKSNSFSHLKNDPQCLTESECV RLISVIIENKKFEVTKNEGIMMIRREYQNLTIPGRVDNLQFYQSNEFLVLESSFGFRLRWDG KETVLVTVESFLRNKTCGLCGQFIGRSGRYMLKANGEVDNDVVEFANSWKVMYDDENEKC NSLQVGQHVCKYRTDTERMLFKKSRETCEKIFNHPIFSTCQKLVSDELFERACRLEFCAC KIENEKCICSTLAEYLRECVRHGQQVSGDWRSITNCTIECPEGMIPAKCGRECPKTCQGTT YLCSDQTCVDSCICPEGKVLDTINNRCVLQEECPCIFEDAEYSPGGRRIQDCNECDCIKGK WLCTNRPCEARCVVSGNKHYTTFDGQRYEIMGSCSYYLVYNKEFYVLQQKTKCSDLSSNI VSDNRATCTKAIVIGYKKDVFVLKRFEIYVNNEEETIPYIGQEVLIDKLSHFIKVDMPNGLTV FWDKMNRIYIDATPDLYNRLYGLCGVLNGDISDDLFSRYGEKETNIEIFAGSWKDPTVECR EIMLNVKDFCK3DEKRLQLAEKACYPIHMDTFAACHISVDPHVYRECVEDMCSCLTGDC YCSAIANYGVACARKGKTVKWTEDIPSCASQCHLRQTFDDCTDPCEYSCTSLAMSKAVR ACTKKCVQGCTCPKGNTLNVNGTCIFPQQCPCLYNGKQYHEGESIQVEGASCICLAERW ECVGEKQSVVAFADAVECNDDMKIPNNSTSCGSEELKYLYCFGVATTEECMREPCRCKD TYSMDRETKKCLPPTKCTGCMFYGRKLQREATIYKHBDCEIWKKSEDKSMGVSVKDVTD EYSETVCFNNPCRVWGQENILTFKKELFKFHKSTCFYYLLKHDKYSIAYKNIRCPKSDIVCS IEVEFKVENETVHLPKDLNSTEQKREHFIVYEKGWIVVHSDKQIILAWDRGTRVYIYNSET LKSDTVNGLCISKKSEGTKIDAYCILVSKNRIDEDNIDITRKSTREQCRILDENIFRDCKKNLL KFSDLKEICEKEAGICSTMDFCKCHCHTISVIADICSDMGMEMNWRNSTFCPLENVDVCNY TGRISVCPEDVCESEATIKNYCKYLPPVEGTEKAHCPEGKVPSYSNRTCISKDDCKKRV QCIVNGTAYEEDDIFPDVATFCKNCICRDMQLQNCTECVTECKDGIQYFEVNTTALDFANN VSCGREYITKVDCRGPDILDNGKLKSDECIIENVLDCFQTGKEGKSEICYKHGFHIQCTCVE IPPGKKNETSPTTPLTTTTSTSPATPTSPATPIHVTKCNQPIGMWDNNTIKDSQIIVSSTAKG TNLTKGDKIRYNNDKPQVISGSIIKKDLGEVYFLVGMMYRGKHDPNVTESFKVFSSLN KEISSTVEVTETETEFTSVSTVPCNSSLNITTESFEYDTKYISVNFTTGIPYNTTVYKN NFCNTKYIEIYVINLKPSDNWEENESMHIQKIFTSLQDIWIIPVDKSEVEFLYLNFLDEESCN YTKTEVTVYGCEITTPPTLSTTLSSPSTGPTT
				Tipo Kunitz
ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliPIn Kun01	XP_02321 7494	6.00 E-51	Kunitz	MKTFLAICVSLFFCINVVLEAKHETKALQPGKEYHQFFFHNYEKNKCEAFIYDPCYGMYNP DNRFETQQQCCEKCGGNNCS*
CliPIn Kun02	XP_02321 7492	2.00 E-61	Kunitz	<u>EVVCIVILIICINTDA</u> TRYNIPIKCHLQPDSGCLAYLLRYYYNISTDKCELFSYGGCPGNGNNF ETLQECCDECSATNLDCEQSKKYMQDMIDSLPRPSGKSIEMW*
				Serpinas
	ID Proteína	E-	Sub-	
חו	rioteina	Valu	clasific	Secuencia de aminoácidos

U	de referencia	e	ación	
CliPIn Srp01	XP_02323 4887	0	Serpin a	MNTLLFLILAGLSTVYAECIEENDALDPNWDNILKSFEIGNMEFGLELFRNLNSDSKNDSTN LFYSPLSIWSALSSLYIGARGQTAKELENVLGLDFTKKFFLPKLFDKFLEICSQCGDNENA SFKMANRIYIDKKVELKLCEDVLKNIVKKIDFSENPKISGEEINKWVEEKTNGKIHDVIPVSA VTSETQMVVINAIYFKEHWKTQFNPEMTRNSRFYMNRDTIYRVDMMNTHGTFIYGASEEM KCQALEIPYSGDELSMLLLLPQHPYNGFDNLVKTITGSRLKNLINSMSHRELWVTIPKFKV EQEFELSNVLQKMGLRSMFNPVFTDLSGFTGKKDLTVDAVYHKSYIKVNEEGTEAAVTTSI LLSRVARPGGITRFVADRPFLYLIRHVQSNVILFMGTVKSPQY*
CliPIn Srp02	XP_02321 6488	0	Serpin a	MMKIFLLLFCSIFLIANAQQEIKKLASTSNEFCFSLLKTFPINQNVFFSPANIYLSLGMLYAGA RGSTAETMQSVLGYSDEGNIHLAFSNLINLLTSQSDEYRIELANALVYQESFHISPQFKEIL QIYYGALVKELDFEESAEEALEEINQWVEENTNRKIPKFLDELPPDLVMILLNAVYFKGIWQ KQFDPELTQDAIFYNDGVNKVTVSMMNIKDHLPYVWYPQKWLNAVELPYKGEDISMLIILP FRHDKI DEIEKNI DEESI KDIISI I KII PNKIDVSIPKEKI EDCRKI KSNI TYI GI DDIENRNA

				DFTGINNDYDLLVSEIFHKATIEVNEEGSEIAAVSGIELVPESLIGIVYANHPFLFFIRDLRTN MILFAGRVTRL*
CliPIn Srp03	XP_02323 6972	0	Serpin a	MQLLLLLLLFAISLILPFIEG YGRGVSSGISAFIESNNNFAFALYKDLLKEKNLVISPWSISRGLA SIYLGAQNYTKREMEEVLFKNEAGVTGKEMIVSYGHLERLLKRKAQVDLTTFNAAMIQQGS PVSETYKHRLFHYFNSILYDLDMANHGKLVRDWINILVEIKTNGLIKDILTKVPTSDTILLLLN GIHYKGEWVQKFDPELTTVSTFYNIDKVPVQAAMMLSTSNFTYRYSHLDDVHVLRLPLQG KFAMTFVMPGENGSLEEVGKTLNYKTLQRIISEEATPKMIKLSLPKFKLESKEDLAEALIDL GMHTLFSPVNADLGGIDQNKGLFLKDVIHQATVEVSEEGVEAAATTLLGVESRLGAIYIPF NRPFMFLIEDLDTGLIIFMGHLSDCTNVCAVPASDDQQKLNSDSF*
CliPIn Srp04	XP_02321 6515	0	Serpin a	<u>MWLTNQVTTFVVLFTLFPSKNPYIEG</u> QEQVKYTERRSHSESLVLANNKLSFKLLKTMENGK NIFFSPFSIHSALSMLNEGAKGVTSQEIREVLGYDITGVNSNTTSRDFNVLLRLVESFGPEYQ LQVANVLLTQSNYPVFKEFVTKISEDFKAFVKNINFETGEDSVREINNWVNDATGGKIKSIIKE IQEDTKALILNAVYFKGSWENPFDEKNTEDFIFYNNGINPVNSPIMSREISKCMYTRNTEEGY HAVSLPYKGNDVEMIIILPLPKYTINDIRLSDEKMEEIILSMRNFKVFVKLPKFTIEYFRDLKE DLITLGMKQAFTNYANLSGINEDKRLFVRSVLHKAIIEVNERGSVATGTTAVIVGTRISPVLF ICDHPFLFVIRHRKTRMNLFIGQINQL*
				Otros componentes de veneno
				Superfamilia CAP
ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliOth CAP01	XP_02321 2786	0	CAP	MAKVQLLLLALFFQPFSSFACHYSKLSYRHTMCIYNPHACPNSQLLKSGGLTHKDKALIVRI HNRIRSSVASGWVSGLPPASNMRVMMWDNELAQIAQRWADQCTEGHDQYRNTRRFSV GQNVALQWTYSHRDLKWKNRPDWNSSINLWAKELAQFGFPRSYINPFHFDGNVGHYTQ MIWGSTYTIGCGYAYYKHPYKGYTKIYVCNYGPGGNIIGGKMYEESRGGKKCTNPKLILSK QYSGLCEKRSLYKRMRTHHKSSKSTAGRRKQRKTRVRTKQLL*
CliOth CAP02	XP_02324 1578	0	САР	MKGTLFFDISPKLIFLLIYLCSSVLSDCPALYKRYSHEHTFCKTKNQKCHVKKWGVSEDDR EIIIDLHNKVRNNIATGKDQSGRLPAAGDMLEMEWDDELAQIAQKLADQCVFKHDCDDCR KVENFDVGQNIYTSTITAVKPPESFWVDAIRSWYSEIYRFTPDFIKPFTSDHATGHFTQMA WSTTWRVGCGYVLYEKRRDSWTQLYVCNYGPAGNIDDSEMYKVGKPCDKCPGNTCCG AHCKTRKPSSYLGLCKVLNGRGPDFDETDFGNFIFNCDFRPESSSDCNSKVEGSNKWQT RQIISDVYKTVVLNGGESSSLKFSSNIQSKNGFCLTVSFRKGPNVAGTKSDSKFDLQLERR GSAPLSFELDSEGNQWLPYSMGIPMNQPMQINLKFSVPKGSPAQYLDVNYVRARPGVCK
CliOth CAP03	XP_02321 6533	1.00 E- 156	CAP	MNLSRNMTDLAAFRMNERYVSINNNNKLYRNQSLPANNPIKSRPFDPNAIKQQMYTRHN NYRYLHNSPLLCWSAELAEFSQVWANKIAEKGYLQYSENPSLGENIVIVDLQECPTGEEIVD KWYEERKYYDYDKPGWSKSTFHFSQMIWRSSSEIGVGVQKFKNKNCAAIVVNYKPCGND NLPGEYKKNVLMPKPVNMKDIKKRNSCQNSF*
CliOth CAP04	XP_02322 8306	0	CAP	MAATYVRQCVKKPDCYKHNYTDDTQMEQNFKAVVYNKNYEVKDPILRFANIIKEWAFEIK DLPGSIVQNFQPDQSPENDWVNLFRATTYKVGCGIVTFQHDNEKFKEIYACNYAPAKLKR GEEIYKKGKTDWCTECPAEMKCQRKWFRLCAPEDDIDDEPNEILWQCDFSIGAMKQCEY VIQCSKDWKTVCGLHTCHEEITTNKPKSSLLFMTPILVKDQACLRFNYKKNHLPTSQREST LTAIAVWNNGKNYTSLKIDEDVNTWMPYSLKIPVKNKKIQVGFVVRKVGNSEGQTISIQNL VILSGSC*
CliOth CAP05	XP_02324 2168	0	CAP	MIFAVLFLSMTISELVVSQSCPAIYRRLSKNHSYCMSSTCKVIAGGKVSESDKQTILKVHNE LRSKLATGKETQYQKLPSAANMMEMEWDDELAAIAQAHANQCKFEHDSGDQRAVGNFS VGQNLFQSSGSLSINWNGVKMWYTSEVKYFHPEYNNPFQFQSTYGHFSQVIWAKTWKV GCGLAGYEENGVKKVLYTCNYGPGGNSKGSEVYQVGSPCSACPKNTKCSDTYPGLCKS LTSDGPQPSRPSSSDYLLYCDFSNEDPQACKDVKMTGSRSFSTQKVYTGKYVTAVFNAG EKMTINFGKFQHKDGLCAFLIGRFGPNVAGEKAGSFVSFHFAAPGLIFPDGMKETKISSS WHTIGILMQSDTEMEVSYTFEVNAGAPPQYFEFKEYGVKGGKCP*
CliOth CAP06	XP_02323 4678	0	САР	MYNLNSQCDKKYSDITPDHSMCQPKNEGCKRLRSGYMQKYTVLKVHNELRNNIRSYNQRF PLATNMLKMEWDDELYEIAKHHVLRCIEQPDCSKCHQTGGTHVEQNFEVLSYPNNYEIDTP AGRFRDVIKKWASEISGLPRKIIKKFLSAESPKKNWVNIFRATTYKVGCDSINYNVDNKTYKE IYVCNYTPATLTEGEEIYKRGLSCSECPDGMGCDTFYKRLCAPIKTTTSSTIDALITVPASTTA ASTATAAVPTTTASVPTTTAAAPTITAPPSTTVSASAVSSTLTNINADNLTSTTITTITTFQTTFI NNEILWECDFSIGTKKQCEFEMQCYKNWKTICGFEDCYQEIIIHKPKSSLLFIMPISIEDQACLI FDYKKEYLSIAQDKSRLIAVAVWNEGENYAAVIIDDDANIWTMVSLLIPVRNQEIQIGFIVRKP NNSEGQKISIRNVHVLNGSC*
CliOth CAP07	XP_02323 0542	0	CAP	MEKANENRNLYHGRKKGISKLRPPQLTTNKFGFVKESCVAEKAEFEQLEKQSKVFCKENVP KTEFKQCDLKLGDPVCIGGVKKGLLRYYGETKFADGIWCGIELDEPVGKNNGIIEGVQYFQC KENHGIFAPVSKVQLISNAELSHNAQQPVSSNFRVDNFQQVHKFSYKNLTDFRRTSSPKES LSHLTFCSDQESRIPFPNYVGTKKDSHSEQCLSFVLRRNSGFGKDNKNSSVKELKDCENLC SDTFVRNEKEESAKIMPSSLLIDKTMHSTESLTVAFPETNAKANLTHLLDKDDLNSTFTLDKP AEISETTIVKDQDALNTTFDVDLSPINDNFNKLSDPCLKLISDLNSTFTLETTTEVEKDKEEPK ENECNFLKSEKKLSFEDAFDINDIDDDDOPSLDESLGILTPNOMKDFSIDQQGVIVFDGDMFRI

PKMASCDNIDDIPEDEVKETLSHLNDPYVQILAENRENDFESADLLYESRTLPKSTKITIDNN DEFDEVSKNSRQTSTPYGNTRTLKSEFPSSPLIGSSEFNMGIDSYDKNLKLVMKDQTKTDT TLGDDIITDNKNIERKINEIDQEEIPSCSFIHNITFSNQIDGDDVNFDSELKSLNNDKEKVSAIS NENLQISIENLNMQHISDNNCNNAPLTIDSEISENNFLTNNIPICSDTNVLMKSDIEVIKVERPA STYTTGSTDTGYQEDGDFDVQSEISAAVPSPCSEIPTHSIYNSNRNMGLEDNERHQIEMSD SDFFTDSGGVGFTTESEMETDGECKMVSDFTVESNGMDTVVERKNQNEDQRSAILTTKQD DTLKEIISENVSEDLAKDVTVSQTVTSSLNSVCDSFTT

ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos				
CliOthI	XP_02321	2.00	IGFBP	MLCFMILFGLIVSSYCIPCSCDKKSCKPVTNCKFGMVKDGCNCCQVCAKGVGESCGGRFN				
GF01	7449	E-28		VHGICADDLECVYSRSLTNLEKLKRGGTCIGA*				
CliOthI	XP_02323	8.00	IGFBP	MKKFFFIICLCFAIFIDISALDCKECQRNQCDDKTEEECLAGLVTDLCDCCLVCGKGENEDC				
GF02	4366	E-29		GGTFGMLGKCGTGLYCKTENEEDVYSDGICQKIE*				
CliOthI	XP_02323	7.00	IGFBP	MTFKFFTFLLVSVCLYSMAVSLSCLPCDKSACPPLSEADCPVGIVLEGGCGCCQVCGKNV				
GF03	4364	E-67		GETCGGPWNIQGNCGIGLVCVKPPPPAEDLHVHEFNSIGKCQLKH*				
CliOthl	XP_02323	1.50	IGFBP	MNLYFVFTLCMLFCMENTISALTCLACDQNTCEKKTEEDCPAGLTRDVCECCVICAKDIGE				
GF04	4740	E-68		RCGGIWNMYGKCGRNLKCVNPSNPLTTFDYANEYGICLPIRE*				
CliOthl	XP_02323	3.00	IGFBP	MDLRLLTFLLVSVCLYSVVVSLSCRPCDKSACAPVKEADCPVGISSDACGCCQRCAQNVG				
GF05	4363	E-66		EKCGGPWKVYGKCGKGLICVKPPAPEEVNPSLYEFNSKGTCQLKN*				
CliOthl	XP_02321	1.00	IGFBP	MLRFVILLSLIGSLYALSCPCWEWTEKQLKEYCPDISNCPLGLTHDSCGCCQECEKALGEV				
GF06	7417	E-63		CGGPWFTSGRCGKGLRCQTDDGNEVSDEDYPGTLDDGTCVTV*				
CliOthl	XP_02323	8.00	IGFBP	MASRLSIFIVLLSGLLDVGRTLTCIPCEEATCINKTEEECPVGTVYNTCGCCKVCAKNVGEIC				
GF07	4355	E-71		DGPYKVYGQCGRGLICVKPSPPPGIDSFLHYFNIEGICQVNNEKL*				
CliOthl	XP_02323	8.00	IGFBP	MSRIFLCIFFCAGLLLCVETRKCLTCDKSKCDEKKESDCPAGLVLNKCNCCLVCGKALNEP				
GF08	4354	E-48		CGGGYRNYGRCGRGLVCKPDSTSPDNASTCQKA*				
CliOthl GF09	XP_02323 3099	0	IGFBP	MKRTARAAAFYLLLVVGPLSAQSTPAARLGSEVERCSPCRCPEEPPSCPRGVAVVTDGCG CCPICGRQQGEACDRVQLCDSGRRLRCHYRRPRDPTGICQVKQGRSCLVAGRVYPDGE TFKLDCRTQCTCQNGTYGCVSLCPHENIRPSGNCRNPQLVPLRSACCREWLCETSVWEH KEPDCERYSSEWSPCSVSCGAGWSSRVTNHNAECRMRKESRVCQIRPCQETTGPPAVG HHTRRNHLCRATVKSSSPVRIVDDRNCSSVKLYEPKFCGRCRGRRCCRPRLSTTVEMTF DCSSSDREEGSPLRLTRDYMWIVKCVCDDRC*				
CliOthI GF10	API81348	9.00 E-19	IGFBP	MRTLNILLIFIVIASTNACDFCFNYECPPPPEDCPFGTVLDGCGCCLVCAKGEGESCGGVW DVEGICAEGLICMERSRIYRGVKDLPGICRKLKQ*				

Insuline Growth Factor Binding Protein

- - -

Péptidos I	La1-like
------------	----------

		E-	Sub-				
ID	Proteína	Valu	clasific	Secuencia de aminoácidos			
	de	е	ación				
	referencia						
CliOth	XP_02321	8.00	SV/WC	<u>MLNTLIALLALGTLANC</u> YTFNSTVRMRDGKCVYGSELKEDREDWYNPDFCERLTCRIVEDK			
La101	5406	E-66	00000	AYIIITDCGVPSSPNPNCKIEKKEGNYPDCCPRIICP*			
CliOth	XP 02321	8.00	0.4440	MAFVTKLYTCGICVCLLVQFLYAAILLTPQEVGPGVCIDKNGNKHELKDVWTDNDRCERHK			
La102	5422	E-69	SVWC	CVMIRGIRHIKTYRCGVIDVPEGCKMIRGEGPYPQCCPDIEC*			
CliOth	XP_02324	3.00	0,000	MNYLILFSLMSVLVVVNSYTARKNVPNVNGKCDINGVLVKSGDTYYEEDACEAWICSASSS			
La103	1610	E-78	SVWC	PTAYKVLDDGTVQPVYNKKAQVEILGCGVATVEKNGKTCHVQTTTGIYPECCNGPEVCP*			
CliOth	XP_02321	7.00	0,000	MVFLTKLYTCIICVCLLVQFLHAAILHTPQEVGPGPCIDKNGIKRKLKEIWTDNERCEKHRCV			
La104	5405	E-67	5VWC	VIRGIRNIKTYKCTVIDNPEGCTIIKREGPYPRCCPDIQC*			
CliOth	XP_02321	2.00	0,000	MVFLTKLYTCIICVCLLVQFLHAAILHTPQEVGPGPCIDKNGIKRKLKEIWTDNERCTVIDNP			
La105	5405	E-48	5VWC	EGCTIIKREGPYPRCCPDIQC*			
CliOth		2.00		MIYIFLIFLMCVVYEVNSYTATITVPKVNGKCEINGKLFKRGEKYMSKQKCEVWTCLKKSPR			
	AP_02324	2.00	SVWC	KNGKLDKKLALVNVKGCRKIWMDIDSVNDCFFKSTTGKYPDCCFGEQECGERNFAKNND			
La106	1612	⊑-49		FFDIMFE*			
	Peptidos No definidos						

ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliOth	AMX8147	2.00	KIP/CI	MFQVLTLSCLIFSYIYSCQGEDEEGRLFFNFIFSDEGRKLLRCFGTFGFSYSMKTDIRSKME
Und01	3	E-27	Р	AQEKLCNCTSAAIKTT*

CliOth Und02	XP_02322 8376	7.00 E-49	no definid os	MFTTINIALRRIIIVTPILFLYLMAELYMPFVEAQFFHHHFNITACIVCDEGVNYSVRNFMCCL FSSKCCGEEKFKD*
CliOth Und03	P0DL69	5.00 E-11	no definid os	MNKIVALLLLTVLVLTVVPISEVESKYCYNDDDCKSECMVVKYCQYGTCYCKGNGK*
CliOth Und04	XP_02322 7575	3.00 E- 107	no definid os	MKTSMDMTPLLMLFIFAIVLSPTNSIGIPDIIPIDPNVIPIDPNVIPIDPNVIPLDPLKDLSKTMDM YCGLSCAEKRDFRFCLIENGLQTVLDFAKNCAQGLQFFPTTDEITEFVCKLTEASPEVFGK FLKCHSSAQKTFSITNPNVYLIIAKCLETSKTC*
CliOth Und05	XP_02322 9377	8.00 E-81	no definid os	<u>MRLHRGSSLLTFIFFLFILTITFS</u> MPHYSFRDKR SGISDQRLAELETLINLAKQKNRGRPPIAF GVIDPLKVGKRKRSNDVTEMDDLRELFDDPLKEKEYAENARFWDLMTDLRRYTN*

Otros Transcritos identificados por LC-MS/MS

ID

ID	ID Proteína de referencia	E- Valu e	Sub- clasific ación	Secuencia de aminoácidos
CliEnz AML01	XP_02322 5708	0	Alpha amilas a	MVQMVTILLFLFLQAVLCSYYEPNTVPGKSVFVHLFEWRWKDVADECEQFLGPFGFGGVQ ISPPNENGIVWEPFWNKEIKRPWFERYQPVSYKLGTRSGTESEFREMVRRCNKAGVRIYV DAVINHMTGNIGKGQGTAGSHFDPGALQYYGVPYGPSDFNNDKCHSQSGNIENYQDKHQ VRDCRLSGLADLNLGKQYVRDKITEYLNYLIDIGVAGFRFDAAKHMWPSDIKALRDRLKN LNTEFFPPNTRPFVFQEVIDLGGGEAAKADEYLHIGRVTEFRYGKHLGDIIRKNYDQRLKY LKNFGEEWGMVPGGNAITFIDNHDNQRGHGAGGFGTILTFFESRMYKMAVAFMLAWPYG LPRVMSSYQWPRHIEHGKDKNDWIGPPHDDNYNIKPVIRNSDMTCGNGWVCEHRWRQIY NMVKFRNVAGFEPVDYWWDNNYHQIAFGRKGKGFLVINNDNHPVDQNFLTGLPAGTYCD VISGNLENNSCTGKKVNVGNDGRAQIFVDNNWEDPMLAIHIEAKLK*
CliEnz TGa01	XP_02322 4970	0	Protein - glutami ne gamm a- glutam yltransf erase	MATRPRGSNYGRSRNMDPEKEHKLREMERLREEYLKRKREEMLREQALKSGGKTLEVDV VELYAKDNALDHNTSRYDLLNGKDAPAIFRRGQLFYMCIRFKRNFDLSQDKIKLIFLIGPQP QVSKGTLVQLPITGNQSFTKPKSQWDIRLHHQEQAIIHLQVQIATKAIVGVWSLNIETTHPS STVPSHFQASKNIYILFNPWCKDDAVYMEDEACRNEYVLNESGKIFVGSHKSPKGRRWIY GQFSSAALPAAMAILEASPLDYVGRANPVKVVRTVSAMINSEDDNGVLKGRWDGSYDDG TAPWIWTGSTAILEEYLRNGGNAVKYGQCWVFAGVCTTVCRALGIPCRPVTNFVSAHDTD DTLTIDKFFDPKGEKMELNDDSIWNYHVWNDCWMTRPDLPPGYGGWQAVDATPQETSD GVYQTGPASLEAVRRGEVGFSYDSPFVFSEVNADIIHWQKDDDAPIGWKKLKTNKYHVG RFILTKKVGVEDHKGDTDVENIINLYKNVEGTAEERIAIRNAATYGNFTELFEMPATGEEDIF FDMLEIDQIMIGEPFDIVLKIENLSNSVRTIHTVMSANTVYTGINAHVVKKEIRKLVLNPRQ KETLTIKVTSKEYYDKLVDYSMMKIYAMATVKETKQTWTEEDDFAVEKPKLKLEVSGRIQV GKPFDLVASFVNPLDRILQDCVFIIEGPGLSEPHRFYFRDIDPKETAVYKESFVPSKEGKRN IVVMFSSRQLIEVQGSMEVEVTP*
CliOthI Gl01	XP_02322 2952	5.00 E- 172	Inmun oglobul ina I- set	MKNWISLATIIVFLSAMIGSSLSRVISNKRTIGNSAHQNVFRRMKRSAEFLKFHKKPPSSIRL LTGSNRVLECEAGASPSPMIVYWLKDGKKIDEESSTDEVINGDVESYTITMVKSRLYLDCV TPDDAGEYTCVIENAYEKKSKNVKVEIMESEEDLCVDREISSSARINLWTTRMLKTQGYDV RLICRSEGSPTPKITWLDTEENPISDSNKYKLMENGDLIIYDLKWNDMGHYTCLSENSRGS DTAVLFLYPLLPENKD*
CliOth LTR01	XP_02321 8207	0	Vitello genina	LINKHQTLTFVLFSQISDADLQDIVKKECRHSSDSESFLQPGHVYKYRYHSVGSIAFAGVND RSSEIELECSVTVSAAVNCLYNLELSGCKTSAGGGPNGNLQYWVKDRDLSELTEYPVLFSL NNGKLGSIFALPQDPIYSVNIKRGIISGFSLSKSSADGKERTQRDVHGNCPRQTNSISDQKY SSHKIINRCQFPSRPNWKLSPFSLFWNTSFAQVLIRSSVDCDYDVNSGQMKLEKVSCHEKH ILLPHSSKNTEVSVQANIKYHLTLESAKSALFKQRYQLNEMRATGIEMEYEKIEEPTTQPPDF LQNAQDILSDLVLFSQEEVQIRAAGLFDELLHLVRQSTDLIPFIDSVTACNFIKGVPKCNKVQ KQLALQFLKDAISQCNTGPCMKGFRHLVVRDQISRMYLNLVLISLTNIPIPNPTYIEEILAICKH TEMKLCWLTLGTAIYKYNQEHSEIPQAVSDAVSYLTSYISDDCNVEDVTFPSDYTTADKNEY LLTVIKTIGNIGDTARVAHNTVVKQLYSCAAGKETSLEVSVAAIKAMYRMKPNNYIHKKLTYL MRDTTRAVGVRLAAYDVLVNLFDDDDLAKEIALLLREEKSIQVKCYIASDVQMIEQEHVGST KTDTFADKLKEHFKAEGIYLEDIRCSPIHHSSSYRDSSFYDFHFLPKEMRGFGSKYEHKVIFE TLSALPYSSTFNYTVQLFSKYNLFETGITAKNWEEFGIWIRRQLSDSNINVGQWVITNFIEV VRKLGIKGLIPVVSNFGGEELSFVYPDQKVADNLRKVVKQFLDANIKQKPSLEIYLKIFGNEL AFVTLNGIFSFLTTQYHWISNQNIGESLRKGIEYDYTRTLKIGESYHHVPTSMGLPLTWGSN AINIISPRIKLDATENVGDQTQHLELVHSNSYSVIDELILEFPTVTKIGLRGNTSTHASWNADL KFHHSEAHDFHEITSKVPEKKQKYFELYRRNQEIFGDKIEDIPIDETFIKENDGCTGKNFNEIT GVKLCHYKYYPNLPDELKTSTFLFGRIESKYSLEKYDSEFKYSTLQISTPRNNEKGSFEIKLK NSAPGSKYTREYDIDLKVNSETKEYNLGVTHKDFPDFALTAYRTKIHNDDHVETGVKHYWL LQCHADKKYEMKYNVNEQTESKPIHQGHKGHHKRSAKSKEFAASTRERTLDFETPYNIYR WNSKLFTHHGVKKAEALLTYENLADGWKWPAKYLPDSMWETDKKAWLHFEGELEIEKGE SDRFHRHSIGRLSSPKRSVEIVTHKMKTPENLHLQANATVIEKPSGKFLSFINGSYHRSEFN ARGTWKRAHEFKLVIPRYSWDIRAEREISDSESSSAVYTRYRMVPKTEEGKSYVGEPIQL DNFDLEEVHIKYKGHIKHKHVENQLLPQKLRETDYIRNKDQRYPGVETIIDASLKFPNENKKEE SVTIKGHLLRVYEDKPRSFDIFRLSHQRPVGSELSLTGVDTLANIRREIKTVTGYKHDWVKTL

CliOth SCO0 1	XP_02323 3098	1.00 E- 114	Sco- spondi na	VMHNDAIYRNNEKKTDYNLNLLWGEKEKCEYIDLKHDFQSSFYNFDSTILLECKPRTKAYNL EININTNSPEWDMLNSKTRQVFYLERHLEGWETMNFSHPAINIDAEGKIGMDFEGPFYDKK YHIKSKTDVLPSYEITYSSKLTSTPYMELNIEVPEDGFKNIKYRTDIARDGSGFSIVGTHVHTD KPEEVKENLVFALKLLSPFIISLKGYEDLKFSIEVAEKLHPRLGLLADKIEAIVKDRNHPINVLIK SLKKQSKKQEEFYRNAFEKLENRKREIRELLYPFIEPTVEMIRNIRREADERTKQAQDNYES FTVAANAFKNIDYQGYANKAVTQIPQESIEAIKAYITSRENNIVKYQYTGPHPFYWQNLFQIP QPWEGTYRSPVFYLLPHLHKEILFKRRYIVSPIYKTAMIFGTSHMYTFDGKMYEFPDFPGSD CTYMLAHDVRESTFSVLLSEQKLHILFPEVTVTLDRDNKIYLDNSRQESGVPIETPNGKVFVT REGGIVSINSIGLTVLCDSQRSFCIFILDPLYHSGTIGLLGNADGEAYNDFSLPDGKHVETSA ELARGYEVSNRKRCRNIQEKQKPEFTKDTQTRCSSSFPHLSTACAAYLGIEEDLFLEACRW DVSQGKDACISSDAFAGYCTVRGMKSTPCSSKPSWYLKTVNSAKKLEVILVIEEYHKMFAS GLKGLDSLFSAIHDEFKKNGYESIIFSVIGYGGKGNHWDPHIYTPDSNIWHSKAELISHLENS LKFEGEHKGNTLEAIKYATTILPFDMQASRIMLLFTDHDTNTYLCGLKLQYLEDLLSKYSLTLY TFSDFESVDKGKKVFGLKSDGKVLHQGKKETTYMDYPETEAAKLSADTEGSILLKRYVEANE PRQFFKTAAEQFYAKVEEESSKCRKCIWKLNNWGDIQNECSVADECKDK* ITSSPSTAFTPSTPSSTTIFPERRGCERQKLSQLLYNVSSTANHDTQYTYGIGVHFYSSEM NDNHHINIYINYARKIALIENAEDKDLLLALTYSIDNRTWTIMSKVIYLKEKYIFSDLSVQANYFT FVFLPQNNVNEIQNEIFFCSDTDCPKLNTTSCQESCHEKKINTCNCTCLCEKPNHGCIT KDPEVQCIREVGICDNITDCVDGSDESCCPVSLGNETTCNFHDEQCTFVPSCRVRRNFIIGF NKQRSCQICDGILFRERGKQRFSIRYGPHPFSSAISVEINEYRFINRTEFEVDVRNSETMDK YTTLSRSDSLKVVENEYQFKVVANAVVFKSLKYGFKVIWRENNMVDILPEKCLLGRTEGL CGYYVNYNGTLIKEYRTQNGSCGVNSTEFCDDWEAFTGSCNGITNWEKELYSIKKGMK FCKELRNDIGEACNIEAIDFSPESYNAIEESCGYAIFSNCSDTHTDRECRCAAIRYLLSETQ CDQDGKLLGSNGCETCEKGFSWKPCSFDYTCDDFHLKKQKQFVGCKMSSKLPFFKILGIIEKC GPNTNFTCTTGIVIEYNKTRLEVYANKTVFVNQTEFTSYCEDVDCPINGMTLRNATQLNEF QINLHESEVDVSYVLRNAGRHQLRSLSIKFSLPMYSKTTEGLCGTCNRNDSDDFALRDGT
				NQKSIINLGNCEGGCNTTSKYQYESNGVTYTKNCSCCIPYRYKQVAIKLYCDKNDTTVNHF IKEPAECRCEQCNLQNK*
CliOth SFU01	XP_02323 0592	0	Somat omedi n	MDLWKLIVFASVLTGICRGRTVSYEELVSLRADCDPIDKCNTTKENLEVPSRSCQCDDSCA FYGDCCLDAPNRQAMERMKTRNICLKKNNFQGYFAVSNCKRNWRDLETRRKCEIPNAED PYTLIPVMSQRSKITYRNRYCASCNDDNRDLEFWKIGVTCRQLGANLSYDFPNDLVYNSY LKTWGVFLPNQTFLRCKLVPVPPENTENLRSCYSNTISTCSTNWKDESIKEKCESYTAIILA RHRIKYRNVHCAVCNGVNVTDLNCLYVSSRELARTFVKIPGTPNIVCLFSVGNCSCENKVY DAAFRKCRELTCGLPFLELKNGKCVHKS*

Anexo L. Análisis filogenético de las λ -KScTx encontradas en el transcriptoma de *C. limpidus*.

Dicho análisis fue realizado por el Dr. Santibáñez-López, la inferencia bayesiana fue realizada con Mr. Bayes usando el modelo Dayhoff (Santibáñez-López et al., 2018) en el cual se observa que las secuencias obtenidas en el transcriptoma de *C. limpidus*. A pesar de que las λ -KScTx y las calcinas comparten una estructura tipo ICK, estas son agrupadas en dos clados principales: el clado de las λ -KScTx se compone por secuencias identificadas en alacranes butidos, en este clado se han situado las secuencias identificadas en el transcriptoma de *C. limpidus*, el segundo clado se compone de las secuencias de calcinas identificadas en alacranes no butidos.

Figura 1. Anexo L. Análisis filogenético de las secuencias con estructura ICK. En naranja se muestran las secuencias con estructuras ICK identificadas en butidos, en morados las que han sido identificadas en no butidos y en rojo se muestran los identificadores de las secuencias identificadas en C. limpidus.

Anexo M. Actividades enzimáticas del veneno de C. limpidus.

Fueron realizados ensayos adicionales al objetivo principal de esta tesis, en el cual se determinó la actividad enzimática de los venenos de hembras y machos del alacrán *C. limpidus.* Todos los ensayos fueron realizados por triplicado.Para ello se siguieron los protocolos de actividad proteolítica, hialuronolítica y fosfolipolítica.

Actividad hialuronolítica.

La fracción de componentes de alto peso molecular de los venenos de hembras y machos de *C. limpidus* presenta actividad hialuronolítica. Para degradar %50 de ácido hialurónico se requieren $2.27\pm0.44 \mu g$ (hembras) y $2.69\pm0.18 \mu g$ (machos) de dicha (Tabla 1, Anexo N).

Actividad fosfolipolítica

Se ensayaron 1, 10 y 100 μ g de la fracción de componentes de alto peso molecular de los venenos de hembras y machos de *C. limpidus* y ninguna de ella hidrolizo los fosfolípidos del sustrato.

Actividad proteolítica.

La fracción de componentes de alto peso molecular de los venenos de hembras y machos de *C. limpidus*, presentan actividad proteolítica (Tabla 1, Anexo N). La actividad específica es expresada en unidades/mg de proteína. Dicha fracción presentan 0.25 ± 0.01 y 0.29 ± 0.01 unidades /mg de proteína.

 Tabla1.Anexo N. Actividades enzimáticos de los componentes de alto

 peso molecular de los venenos de machos y hembras de *C. limpidus.*

Ensayos	Machos ^a	Hembras ^a
Actividad hialuronolítica (µg de fracción I que degradan el 50 % de ácido hialurónico)	2.69 ± 0.18	2.27 ± 0.44
Actividad proteolítica en azocaseína (units/mg proteína)	0.29 ± 0.01	0.25 ± 0.01
Actividad de fosfolipasas A2 con 100 µg de Fracción I	0	0

Anexo N. Datos proteómicos del veneno del alacrán C. limpidus.

Tabla 1. Anexo N. Los 52 péptidos codificados por los transcritos que fueron identificados in el veneno por LC-MS/MS. Los parámetros generados por el software Proteome Discoverer son mostrados para cada fragmento identificado. En minúsculas se muestran los aminoácidos con modificaciones postraduccionales identificados por el software

ID	Score	Coverage	No de péptid os	MW (KDa)	Secuencia identificada	Xcorr	Z	MH+(Da)	m/z
					NaScTx				
CliNaTxAlp03	2661.99	75.41	6	6.5	ISCVISGK	2.88	2	863.46391	432.2356
					FCDTECK	2.08	2	959.35771	480.18256
					KDGYPVDNK	3.64	2	1035.51006	518.25867
					KASSGYCYSLSCYCEGLPENAK	4.43	3	2544.07999	848.69818
					ISCVISGKFCDTECK	0.29	2	1803.84294	902.42511
					ASSGYCYSLSCYCEGLPENAK	3.72	2	2415.98613	1208.4967
CliNaTxAlp04	1584.14	98.51	6	7.2	AGSDYGYCYWWTCYCQHVAEGTVLWGDSGTGPCMS	1.2	3	4081.60434	1361.20789
					DGYPIASNGCKFGCSGLGENNPTCNHVCEK	0.3	3	3342.43467	1114.81641
					DGYPIASNGCK	2.56	2	1182.5064	591.75684
					RDGYPIASNGCK	4.46	2	1338.60862	669.80768
					FGCSGLGENNPTCNHVCEK	5.36	3	2179.89219	727.30225
					RDGYPIASNGCKFGCSGLGENNPTCNHVCEK	0.39	3	3499.49961	1167.17139
CliNaTxAlp07	267.51	50	2	7.2	KDGYPVNSGNCK	2.78	2	1338.61174	669.80768
					NVSCYCQGLPDNEPIMKSGR	0.23	2	2343.99858	1172.50293
CliNaTxAlp08	1649.32	90.48	6	7.1	TSGKCKGK	0.36	2	865.47222	433.23975
					YECLRDDYCK	0.73	3	1421.57938	474.53131
					KKDGYIVDSGNCK	3.88	3	1483.71943	495.24484
					DGYIVDSGNCK	2.05	2	1227.52873	614.26801
					KADDGYCFLGK	4.66	2	1273.58684	637.29706
					FSCYCYGLPDNSPIK	4.94	2	1820.79534	910.90106
CliNaTxAlp11	36.91	95.16	4	6.9	CWCYGLPDSVTTEENCKGKR	0.41	2	2460.03008	1230.51831
					NDYPVDENGCKIACQENAPCAAACKFNK	1.88	4	3246.36001	812.3457
					IACQENAPCAAACKFNKAEGGVCPWSYR	0.2	3	3218.42942	1073.48132
					AEGGVCPWSYR	3.46	2	1281.56658	641.28693
CliNaTxAlp13	49.21	74.6	5	7.3	NCKFECWK	0.48	2	1172.50395	586.7547
					NAYCDKLCK	0.51	2	1172.50395	586.75323
					AESGYCYGWNLSCYCEGLPDDEPIKTSDR	4.9	3	3442.42527	1148.14661
					RAESGYCYGWNLSCYCEGLPDDEPIK	6.99	3	3139.32126	1047.11194
					AESGYCYGWNLSCYCEGLPDDEPIK	0.65	3	2983.21982	995.07813
CliNaTxAlp15	764.2	50.91	5	6.2	DGYPVTSDKYSLPCWHSK	1.74	3	2139.97849	713.99768
-					ICILLK	2.34	2	759.47875	380.24301
					YSLPCWHSK	2.17	2	1177.54643	589.27533
					VCNRICILLK	0.3	2	1289.7105	645.35889

					YSLPCWHSKVCNR	0.3	2	1706.75737	853.88318
CliNaTxBet01	182.65	89.23	4	7.6	LACYCEGLPNWAK	4.36	2	1581.7199	791.36212
					DGYPMDHKGCKISCVINNOYCETECVK	1.33	4	3324.30117	831.83075
					KGYCYFWK	0.97	2	1151.53362	576.27124
					VWDRATNKCR	0.22	2	1305.64336	653.32532
CliNaTxBet05	6759 82	96.83	11	71	DGYAMR	15	2	712 30718	356 65723
emaindense	0759.02	20.05		<i>,.</i> 1	GKSGYCYFLKOSCYCAOLPDDK	0.23	2	2689 12041	1345 06384
					DGYAMRSDGCTIPCI FDNSFCNRK	0.47	3	2884 25333	962 08929
					KCIEOK	1.13	2	805 42302	403 21497
					VVPSATNK	1.13	2	879 45445	403.21497
					SGVCVELK	3.25	2	1037 47502	510 24115
					VVDSATNKCD	0.28	2	1105 56572	508 28625
					SDCCTIPCI EDNSECNDV	0.28	2	2100.02610	720 0827
						4.70	2	1494 6115	730.9857
					QSC I CAQLEDDK	5.94	2	1464.0115	742.61012
					QSCTCAQLPDDKVTPSATNK	5.55	3	2345.05002	/82.33480
	04.74	(7.0)	~	7.5	SDGUTIPULFDINSFUNK	5.02	2	2062.84165	1031.92615
Clina I xBet06	24.74	67.69	5	1.5	LACYCEGLPDWAK	1.66	3	1582.72904	528.24786
					LACYCEGLPDWAKVWER	2.89	2	2152.95732	1076.98254
					IPCVINNRFCEIECVNALK	0.53	3	2351.09873	784.37109
					IPCVINNR	0.2	2	985.52385	493.26556
					KGYCYFWK	0.97	2	1151.53362	576.27124
CliNaTxBet08	130.12	65.08	4	7.4	YNCWKNTYCDKLCK	1.35	2	1953.81035	977.40698
					KGESGYCWWNLSCWCIGLPDNTNTK	6.98	3	3046.33298	1016.11584
					GESGYCWWNLSCWCIGLPDNTNTK	0.33	3	2918.23258	973.41693
					LCKEKK	0.34	2	805.45781	403.23254
CliNaTxBet10	206.48	67.24	5	6.6	IKNDYPVR	1.86	2	1005.51641	503.26184
					CWCYGLPDNIDTEK	3.67	2	1770.74211	885.87469
					NDYPVRNGCRIK	1.33	3	1492.72331	498.2442
					IKNDYPVRNGCR	0.69	3	1492.72234	498.24509
					AEGGVCPWSYR	3.46	2	1281.56658	641.28693
CliNaTxBet12	70.37	28	3	8.4	RFACWCAGLPK	0.47	2	1365.65239	683.32983
					RFACWCAGLPKSTPTWPLPNK	3.12	3	2488.18924	830.06793
					FACWCAGLPKSTPTWPLPNK	4.09	2	2332.09062	1166.54895
CliNaTxBet13	1537.03	87.1	5	6.8	VWCVINSK	2.49	2	1005.51848	503.26263
					KDGYPMDNK	3.67	2	1067.48039	534.2442
					VWCVINSKSCDNTCK	0.42	2	1872,79253	936,8999
					VWDRATNKC	0.52	2	1149.55315	575.28021
					SGYCYTLGLACWCEGLPSDAK	6.28	2	2408 03472	1204 521
CliNaTxBet19	23 44	30.36	2	63	ISCVINDK	2 71	2	948 48131	474 74429
eni (uTADeti)	23.11	50.50	2	0.5	KDGYPMDSK	1 44	2	1040 47136	520 73932
CliNaTxBet20	211.16	56 14	3	63	SGSCYSLK	1.12	$\frac{2}{2}$	901 40672	451 207
Chi di Abet20	211.10	50.14	5	0.5	KDGVPVDNK	3.64	2	1035 51006	518 25867
					ISCUINDTECDNECK	3.46	2	1874 76680	037 88708
CliNeTyPot21	18240 1	97.2	4	6.9	VECYDMNSK	2.99	2	1052 50176	527 25452
Cinva i Abel2 i	10240.1	07.5	4	0.0		5.00	2	1650 79716	820 30557
					ICOVICNTEODTEOV	5.51	2	1037.70710	030.37337
						5.50	2	1//3./38/1	001.303
CIN T D 22	252 71	72.05	~	76	ASSUSU W IFGLAUWUK	5.22	2	18//.//041	939.39063
CIINaTxBet26	353./1	/3.85	5	1.5	NUNMLUKHKNK	0.38	2	1502.67522	/51.84149
					ECWCEGMPESTPTWPIPGK	4.66	2	2261.9666	1131.48645
---------------	----------	--------------------	---	-----	--	------	---------------	------------	-------------
					CTNKTGERNCNMLCK	0.3	2	1903.78899	952.39813
					ECWCEGMPESTPTWPIPGKK	3.97	3	2390.05918	797.35876
					GSRGYCYNRECWCEGMPESTPTWPIPGK	0.28	3	3375.42331	1125.81262
CliNaTxBet29	684.03	72.06	5	7.9	LGENKYCNR	0.25	2	1154.53349	577.77039
					GGNYGYCYGFGCYCEGLADSTOTWPLPNK	2.53	3	3335.38987	1112.46802
					HRGGNYGYCYGFGCYCEGLADSTOTWPLPNK	0.82	3	3630.48923	1210.83362
					KDGYLVDK	3.17	2	937.50841	469.25839
					GGNYGYCYGFGCYCEGLADSTOTWPLPNKR	6.84	3	3491.48838	1164.50098
CliNaTxBet30	2320.84	92.31	6	7.3	KDGYLVSR	3.31	2	937.50939	469.25839
					YCHIECTSMNHR	5.53	3	1607.64823	536.55426
					LSCAPMIGDR	3.28	2	1119.52629	560.26678
					GMPENAEVYPLPNK	3.91	2	1558 75456	779 88092
					GDEGYCYLLGCYCR	3.61	2	1785 70073	893 354
					GDEGYCYLL GCYCRGMPENAEVYPI PNKSC	0.59	3	3589 50656	1107 17708
CliNaTyBet31	10506.6	95 / 15	8	76		2.87	5	3922 8288	785 37158
CIIVATADetST	3	JJ. 4 J	0	7.0	OVGKGAGGYCYAEGCWCTHLYEOAVVWPLPK	4.55	1	379/ 73183	9/19/138/12
	5				VECVK	4.55	2	762 21272	281.66
					ECKOOVCK	0.32	2	1040 47126	520 72022
						2.09	2	1125 40992	562 2522
					LGDNDYCLK	5.98	2	1125.49885	505.25258
					KEUILVINHSIGUK CACCNCNAECCWCTHINEOANNUNDIDK	5.51	2	1492./1819	/40.80243
					GAGGYCYAFGCWCTHLYEQAVVWPLPK	/.61	3	3190.44101	1064.15186
	100 00 5		_		GAGGYCYAFGCWCTHLYEQAVVWPLPKK	4.87	4	3318.53244	830.38843
CliNaTxBet33	12260.7	78.79	5	7.3	AKNQGGSYGYCYSFACWCEGLPDSTPTYPLPNKSCS	0.44	3	4124.67807	13/5.5636
	5				AKNQGGSYGYCYSFACWCEGLPDSTPTYPLPNK	4.23	3	3789.62802	1263.88086
					KEGYLVNK	3.42	2	950.53203	475.76801
					YGCFWLGK	3.48	2	1030.48027	515.7439
					NQGGSYGYCYSFACWCEGLPDSTPTYPLPNK	6.85	3	3589.51279	1197.1803
CliNaTxBet37	1541.78	71.64	6	7.9	YYQSAHGYcYAFAcWcTHLYEQAVVWPLPNKR	5.54	4	4038.83291	1010.46368
					YYQSAHGYcYAFAcWcTHLYEQAVVWPLPNK	4.33	3	3882.73276	1294.91577
					LRYYQSAHGYcYAFAcWcTHLYEQAVVWPLPNKR	4.09	5	4308.01588	862.409
					LRYYQSAHGYcYAFAcWcTHLYEQAVVWPLPNK	1.47	5	4151.91785	831.18939
					LGDNDYcVR	2.1	2	1111.48296	556.24512
					YTcAKLGDNDYcVREcR	0.62	3	2179.89017	727.30157
CliNaTxBet38	27.03	85	5	6.8	LACYCEAVPDNVK	2.68	2	1538.69316	769.85022
					ARDGYPVDEK	1.52	2	1149.55315	575.28021
					WCNSACHYR	2.51	3	1253.49195	418.50217
					LSCVINDKWCNSACHYRGAK	0.77	2	2440.09404	1220.55078
					WCNSACHYRGAKYGYCYSGK	0.24	2	2488.06133	1244.5343
CliNaTxBet39	548.78	80.95	5	7	LSCVINNK	2.87	2	947,49529	474.25128
					WCNSACHSR	3.02	3	1177.4607	393,15842
					ARDGYPVDEK	1.52	2	1149.55315	575.28021
					GCKLSCVINNKWCNSACHSR	0.38	2	2451.06241	1226.03174
					YGYCYTGGLACYCESVPDDVK	672	2	2477 00908	1239 00842
CliNaTxBet40	67 15	95 24	6	7	LWTSETNTC	1 19	$\frac{1}{2}$	1111 48357	556 24481
Cin wi Abel+0	57.15	,	0	,	ECYCEGVPDNVK	2.85	2	1469 60149	735 30438
					YGYCYVAGR	3.04	2	1108 48552	55/ 7/66/
					GCKI SCEMNHEPCRK	0.47	$\frac{2}{2}$	1003 85215	962 12615
					OUNLOUI MINIEI UNIX	0.47	4	1743.03413	202.42043

					ARDGYPVDEK	1.52	2	1149.55315	575.28021
					LSCFMNHEPCRKACVSR	0.74	2	2152.95708	1076.98218
	-	-	-	-	KScTx	-	-	-	
CliKTxAlp15	392.84	91.89	6	4	CSSSSECWPACK	2.78	2	1458.54131	729.77429
*					AVGTFQGKCMNGGCK	0.24	2	1632.66643	816.83685
					VFIDKK	2.33	2	749.45409	375.23068
					AVGTFQGK	1.94	2	807.43431	404.22095
					KAVGTFQGK	2.9	2	935.53191	468.26892
					KAVGTFQGKCMNGGCK	0.48	2	1758.82598	879.91663
CliKTxBet01	794.59	53.73	4	7.5	EIMNKIKK	0.54	2	1003.58159	502.29443
					GAWDKLTSK	0.21	2	1005.51933	503.26331
					FCEDHCAAK	0.39	2	1137.44316	569.22522
					SEYACPVIEK	2.97	2	1195.56389	598.28601
CliKTxBet02	2234.29	31.34	3	7.6	LLSLVVPEGQLR	3.78	2	1323.79802	662.40265
					KILQMVVHK	3.93	2	1095.66924	548.33826
					ILQMVVHK	2.64	2	967.57414	484.29086
					HDP				
CliHDPND201	65.69	80.43	4	5.3	MWKSKLAK	0.98	2	1007.55107	504.27914
					EMIKDYANR	2.36	2	1139.55046	570.27838
					FGGFLKKMWK	0.86	2	1241.6884	621.34747
					VLEGPQEEAPPAE	2.83	2	1365.65227	683.33051
CliHDPND401	910.64	75	4	5.8	LLPSVFK	1.79	2	803.502	402.25464
					LFQRKK	0.24	2	819.52526	410.26627
					RDLEDLYDPYQR	0.25	3	1582.73325	528.24927
					FLGSLFSLGSK	4.1	2	1155.64067	578.32397
	-	-	-	-	Fnzimas	-	-	-	-
CliEnzHue01	1654.01	60.62	22	44.2		2.0	2	1202 70920	662 36769
Chillinzifyaoi	1054.91	09.05	23	44.5	CHCYWDDEDETSWK	J.9 4.76	2	1800 76628	002.30708
					AWWIDAP	4.70	2	017 46260	450 23405
					AWWIDAR DVM ADTIATVVI NITNID	5.25	2	1714 01533	459.25495
					VPVIDPTKODVNGCI LOVADI KEHI K	1.25	4	2883 52080	721 63568
					VPVIDPTKGDVNGGLLQVADLKEHLK	7.05	3	2333.52089	703 08405
					I AEDMEDAGWCVVVEDCVNVNGK	7.75	3	3160 28008	1057 1001
					MPVEKPTNISCKCKGYTGP	0.85	2	2244 07256	1122 54016
					VI VNOGEGENGDKIVIEVENOI GK	5.12	2	2682 37937	894 7984
					PMI GOIAȘI GI DGAIIWGSSYHVI TKSOCEI TATYVK	1.41	1	4084 0375	1021 76483
					VSKDDITKFIPNPK	0.3	2	1601 89043	801 44885
					FWMVKTI KI AFDMRPDAGWCYYYFPDCYNYNGK	1.04	4	4217 78774	1055 20239
					VI VNOGEGENGDKIVIEVENOI GKYPYIDPTK	2.18	4	3658 86464	915 47162
					SOCEI TATYVKDVMAPTIATVVI NTNR	5.26	3	2995 5226	999 18109
					INITODI TSHKVI VNOGEGENGDK	0.25	3	2627 30912	876 44122
					KIEETAIK	0.21	2	931,55907	466 28317
					RMLGOIASLGLDGAIIWGSSYHVLTK	0.27	$\frac{1}{2}$	2803 47051	1402.22107
					INITODUTSHK	0.22	2	1269 70452	635 3559
					VYWEVPSFLCSK	4.15	$\frac{1}{2}$	1514.73381	757.87109
					MPVFKPTNISCKCK	0.7	2	1710.84551	855.92603

					MLGQIASLGLDGAIIWGSSYHVLTK	7.27	3	2630.40451	877.47235
					FDGIGVIDWESWRPSWDFNWGK	5.68	3	2697.25083	899.75665
					LSWLWNOSTALCPSIYTQESHIK	7.61	3	2762.35709	921.45825
CliEnzSep14	176.72	17.27	2	31.6	FANPGEFPWmVFIR	4.42	2	1726.84245	863.92487
Ĩ					LTDELNcSGFLISPSYVLTAAHcmIRPLEEMWAK	4.06	4	3968.90883	992.98267
CliEnzMtp15	49.7	38.78	9	44	LFRNKEK	0.54	2	935.52989	468.26859
1					CPASDGFIMGDISGNNRNKFSTCSLENIK	0.79	3	3234,49839	1078.83862
					EKNAALYINEEGLLEIKGMLTSK	0.31	4	2582.28531	646.32666
					OYDSFANRSDTIMFITRR	0.32	3	2237.12033	746.37848
					GMLTSKLRIEPYESODTLR	0.31	3	2237.12088	746.37848
					VELIGVRTYTDENEPAFVKESLESGTDTFEK	0.2	3	3521.70188	1174.57214
					AFGNDMELK	0.25	2	1040 47136	520,73932
					YYGOIIENILGLAFVGGACDPCKK	7.84	3	2686 33683	896,11713
					YYGOIIENILGLAFVGGACDPCK	29	2	2558 24265	1279 62573
CliEnzMtn19	67 55	67.4	8	25.3	MGII HDDNTI SI NYYGMAYI GSVCSSRYK	1.09	3	3329 51035	1110 5083
ChEnzivitp1)	07.55	07.4	0	23.5	VI GITSETEETEPDEIEK	4 72	2	2055 01543	1028 01147
					DDECIVVEYI VI TESNVTK	0.71	3	2226 10416	742 70715
					HESDHIER & ALLAHESGHI L GSOHDGEEPK	0.93	1	3318 53261	830 388/3
					MYVI EPATGI AADADIIMI I VDRK	4.15	3	2714 37925	905 4646
					MYYI EPATGI AADADIIMI I VDR	3 38	3	2586 28/3/	862 7663
					NTESSCSV	0.35	2	021 20502	466 2016
					NITSSESK SI TEVISVTVTAVONIIDTI ELGIK	1.03	2	2784 40541	1302 75134
CliEnzMtn20	185.01	50.84	11	26.2	VCVAODSDVNEP	0.45	2	1460 60161	725 20444
CHERZMIP20	165.01	30.84	11	20.2	I GIOTEK	0.43	2	010 55001	155.50444
					NCDENDCVIMCCDDURVNR	1.73	2	2212.00200	729 20595
						1.07	2	1006 75570	/ 30.30303
						0.2	2	1000./33/0	710 00100
						4.10	2	1430./304	/18.88184
						0.32	2	2488.0623	1244.55479
					QADIIMLIITK	3.83	2	1286./5029	643.8/8/8
						0.58	3	2115.16001	/05./2559
					QADIIMLIITKK	0.6	2	1414.8654	/0/.93/32
					CIVIEYLCVIESNFIKRFNIDK	0.2	3	2/3/.32/85	913.11414
		10.01			ALTEYVILLFIGVQNLLEILNLGIK	3.79	3	2/63.55/16	921.85724
CliEnzMtp21	203.33	48.01	11	36	IVEVINDGK	0.68	2	987.52971	494.26849
					DGTVKFTAMGLAYLASVCKK	5.52	3	2160.11917	720.71124
					TEPPYIEESEIPGHPQNLNPYDLVEHMGK	4.46	3	3333.57383	1111.86279
					DADMIMLLVTR	3.13	2	1277.65837	639.33282
					DDQCIVVECLVVTESAFTK	5.29	2	2213.04668	1107.02698
					VDTVAHESNHLLGSLHDGER	0.44	2	2186.08525	1093.54712
					SFLNDAVMQMDVNEEMEKVATMAR	0.22	5	2778.1822	556.44226
					SDIVNRYKFSECSK	0.25	2	1733.81328	867.41028
					YYCSHATGLAK	2.93	3	1270.5875	424.20068
					FTAMGLAYLASVCK	5.34	2	1531.76579	766.38654
					IVEVINDGKSFLNDAVMQMDVNEEMEK	1.03	3	3099.42771	1033.82703
CliEnzMtp23	807.37	80	23	30.1	IVEVINDGK	0.68	2	987.52971	494.26849
					AEDCPDTDGYIMGNRR	0.22	2	1886.75578	943.88153
					DGTVKFTAMGLAYLASVCKK	5.52	3	2160.11917	720.71124
					LLGIDPFTKETEPAYIEESAIPGHPNYLYADHIVDR	5.73	4	4084.03883	1021.76483

					DADLIMLIITRK	2.66	2	1401.81279	701.41003
					DDOCIVVECLVVTESAFTK	5.29	2	2213.04668	1107.02698
					YYCSHATGLAKDADLIMLIITRK	3.79	4	2653.3854	664,10181
					YYCSHATGLAKDADLIMLIITR	4.88	3	2525.29282	842.43579
					SFLNDAVMOMDVNEEMEKVATMAR	0.22	5	2778.1822	556.44226
					ALTEYVTVMYTGVONLIDTLEMGIKVR	0.21	3	3075 59214	1025 8689
					MGKYYCSHATGLAKDADLIMLIITR	0.24	3	2857.47416	953.1629
					YYCSHATGLAK	2.93	3	1270.5875	424,20068
					LLGIDPFTK	2.74	2	1003.58275	502.29382
					DADLIMLIITR	4.29	2	1273.7199	637.36359
					VDTVAHETAHLLGSPHDGEPK	5.4	3	2210.08152	737.36536
					FTAMGLAYLASVCK	5.34	2	1531.76579	766.38654
					ETEPAYIEESAIPGHPNYLYADHIVDR	5.03	3	3099.47011	1033.82703
					NATNKFKFSECSK	0.23	2	1561.73625	781.37177
					AEDCPDTDGYIMGNR	1.83	2	1713.7022	857.35474
					ALTEYVTVMYTGVQNLIDTLEMGIK	7.53	3	2802.42862	934.81439
					DADLIMLIITRKMGELK	0.21	2	1976.07549	988.54138
					IVEVINDGKSFLNDAVMQMDVNEEMEK	1.03	3	3099.42771	1033.82703
					AEDCPDTDGYIMGNRRNATNK	0.21	2	2415.98662	1208.49695
CliEnzMtp24	25.21	4.79	2	71.5	DRYESPTFLQDLENLWK	3.39	3	2154.05271	718.68909
1					IAFLPFGYILDK	2.91	2	1396.7874	698.89734
CliEnzAML01	42.4	14.15	4	60	NVAGFEPVDYWWDNNYHQIAFGR	4.41	3	2798.27469	933.42975
					DKITEYLNYLIDIGVAGFR	3.94	2	2200.16753	1100.5874
					GHGAGGFGTILTFFESR	3.79	3	1753.86637	585.29364
					mAVAFmLAWPYGLPR	2.92	2	1754.87627	877.94177
CliEnzTGa01	51.57	5.99	2	85.5	IQVGKPFDLVASFVNPLDR	4.97	3	2115.1622	705.72559
					RGEVGFSYDSPFVFSEVNADIIHWQK	3.56	4	3027.46645	757.62207
					Inhibidores de Proteasas				
CliPInTIL14	175.91	5.78	8	212.9	SDEcIIENVLDcFOTGK	5.38	2	2027.90666	1014.45697
					LKSDEcIIENVLDcFOTGK	4.97	3	2269.08487	757.03314
					LYGLcGVLNGDISDDLFSR	4.55	2	2114.02007	1057.51367
					IFTSLODIWIIPVDK	3.69	2	1787.99382	894,50055
					ETVLVTVESFLR	3.48	2	1392.77422	696.89075
					VDLGEVYFLVGMMYR	2.72	2	1791.88005	896.44366
					WDGKETVLVTVESFLR	2.61	3	1878.99808	627.00421
					RFEIYVNNEEETIPYIGQEVLIDK	3.11	3	2911.46994	971.1615
					Otros componentes de veneno				
CliOthCAP02	20.45	54.08	11	44.4	FTPDFIKPFTSDHATGHFTQMAWSTTWR	0.98	3	3329.51186	1110.5083
					RDSWTQLYVCNYGPAGNIDDSEMYK	0.21	3	3000.2468	1000.75378
					RGSAPLSFELDSEGNQWLPYSMGIPMNQPMQINLKFSVP	0.47	4	4541.10463	1136.03162
					K				
					VEGSNKWQTRQIISDVYK	0.86	3	2153.0643	718.35962
					GPDFDETDFGNFIFNCDFRPESSSDCNSK	3.88	3	3404.37522	1135.46326
					GSAPLSFELDSEGNQWLPYSMGIPMNQPMQINLK	1.08	4	3794.73183	949.43842
					KVENFDVGQNIYTSTITAVKPPESFWVDAIR	4.89	4	3524.81093	881.95819
					VENFDVGQNIYTSTITAVKPPESFWVDAIR	1.61	3	3396.71115	1132.90857
					LPAAGDMLEMEWDDELAQIAQK	1.31	2	2474.15801	1237.58264

					DSWTQLYVCNYGPAGNIDDSEMYKVGKPCDK	0.3	3	3612.60678	1204.87378
					NNIATGKDQSGR	0.21	2	1261.61833	631.31281
CliOthCAP05	419.12	73.23	16	42	KVLYTCNYGPGGNSK	0.55	2	1659.78581	830.39655
					SLTSDGPQPSRPSSSDYLLYCDFSNEDPQACK	5.81	3	3621.57492	1207.86462
					DGLCAFLIGR	3.67	2	1121.57732	561.2923
					LSKNHSYCMSSTCKVIAGGK	0.54	3	2244.07706	748.6972
					LATGKETOYOK	0.57	2	1267.67119	634.33923
					RLSKNHSYCMSSTCK	0.21	2	1874.8206	937,91394
					DGLCAFLIGRFGPNVAGEKAGSFVSFHFAAPGLIFPDGM	0.48	5	4198.0763	840.42108
					Κ				
					YFHPEYNNPFOFOSTYGHFSOVIWAK	5.73	4	3235.50547	809.63361
					AGSFVSFHFAAPGLIFPDGMKETK	3.55	3	2554.27713	852.09723
					AGSFVSFHFAAPGLIFPDGMK	6.31	3	2196.09702	732,70355
					FEHDSGDORAVGNESVGONLEOSSGSLSINWNGVKMW	0.31	5	4822.25782	965.25739
					YTSEVK				
					LPSAANMMEMEWDDELAAIAOAHANOCKFEHDSGDOR	9.94	4	4218.76821	1055.44714
					LPSAANMMEMEWDDELAAIAOAHANOCK	0.45	3	3177.36069	1059.79175
					GSEVYOVGSPCSACPKNTKCSDTYPGLCK	0.98	4	3251.36391	813 59644
					VHNELRSKLATGK	0.51	3	1453.81255	485.27704
					VYTGKYVTAVENAGEKMTINEGK	0.42	2	2554 29668	1277 65198
CliOthLa106	142 04	11 72	2	14 9	IWMDIDSVNDcFFK	5 77	2	1789 79473	895 401
enotillaroo	112.01	11.72	2	1	KIWMDIDSVNDcFFK	5.1	2	1917.88567	959.44647
CliOthUnd03	362.89	93.1	3	34	YCOYGTCYCK	2.92	2	1402 51872	701 763
enomendos	502.07	25.1	5	5.1	KYCYNDDDCKSFCMVVK	3 73	3	2213 89505	738 63739
					YCYNDDDCKSECMVVK	0.6	3	2085 81461	695 94183
					YCOYGTCYCK	0.26	2	1403 52519	702 26624
CliOthUnd04	51 46	323	3	179	FcLIEnGLOTVLDFAK	3.91	2	1868 94744	934 97736
enomendor	51.10	32.3	5	17.9	TESITNPNVYLIJAK	3.49	2	1693 95122	847 47925
					NcAOGLOFEPTTDEITEEVcK	2.12	2	2505 14409	1253 07568
CliOthUnd05	33 78	68 42	2	14	LAFLETLINLAK	4 51	2	1327 78227	664 39478
enomendos	55.70	00.12	2		GRPPIAFGVIDPLK	3.43	3	1479 86789	493 96082
CliOthIGI01	57 53	14 12	2	29.8	GSDTAVI FI VPI I PENKD	4 39	2	1992 03081	996 51904
enotinoloi	01.00	12	2	27.0	VI EcEAGASPSPMIVYWI K	4 36	2	2150.0667	1075 53699
CliOthSFU01	134 73	9 97	2	38	IPGTPNIVcLESVGNcScENK	4 19	3	2366 0936	789 36938
enoubl cor	101.75		2	50	ELTCGLPFLELK	4.14	2	1419.7542	710.38074
CliOthLTR01	140 31	8 93	11	278.2	SYVGEPIOL DNEDLEEVHIK	4 46	3	2345 1652	782 39325
enoullinter	110101	0.70		27012	NOEIFGDKIEDIPIDETFIK	4.35	3	2364 19645	788,737
					A AGLEDELL HLVR	4 34	3	1453 81702	485 27719
					L GSIFAL PODPIYSVNIK	3.31	2	1975 08757	988.04742
					FLLYPFIFPTVEMIR	3 17	2	1849 97795	925 49261
					GLIPVVSNEGGEELSEVYPDOK	2.79	2	2395.21855	1198 11292
					OSTDI IPFIDSVTACNFIK	2.66	2	2169 08891	1085 0481
					nGYESIIFSVIGYGGK	2.66	2	1704 8488	852,92804
					LAAYDVLVNLFDDDDLAK	2.45	2	2010.00749	1005.50739
					YOYTGPHPFYWONLFOIPOPWEGTYR	2.37	3	3316.56589	1106 19348
					IGESYHHVPTSMGLPLTWGSNAINIISPR	2.11	4	3147.60561	787.65686
CliOthSCO01	27.76	3.86	2	121.3	YGVSTEDWLYDEGeDIIEcK	5.46	2	2452 03301	1226 52014
Chompeool	-1.10	5.00	4	141.5		2.40	-	2 TJ 2.0 J J 0 I	1220.32014

DGTVTDDIETFAFDWIEETDK

2.83 2

2447.08159 1224.04443

El perfil de pesos moleculares obtenidos del veneno de *C. limpidus* es mostrado en la tabla 2 de este anexo.

Tabla 2. Anexo N. Pesos moleculares identificados en el veneno de C. limpidus. Las 395 masas fueron identificadas en el veneno deC. limpidus por LC-MS, en una C18-RT-HPLC Tiempo de retención(RT).

RT (min)	Peso molecular (Da)
20-40	2569.08, 2609.1, 2747.16, 2779.32, 2826.66, 3423.85, 4241.03, 4479.15, 4497.15, 4758.88, 4759.9, 4831.96, 6172.87, 6463.85, 7137.92, 7317.12, 7434.15, 7539.4, 7560.4, 7576.36, 7701.48, 7773.54, 7846.55
40-60	949.6, 991.5, 1002.64, 1406.82, 1690.05, 1764.04, 1794.06, 3420.29, 3737.04, 3765.68, 4104.8, 4224.1, 6173.88, 6573.96, 6946.15, 6988.01, 7048.98, 7226.19, 7240.2, 7338, 17351, 14, 7384, 3, 7470, 24, 7882, 56, 7944, 54, 8355, 66
	7556.1,7551.14, 7564.5, 7470.24, 7682.50, 7944.54, 8555.00
60-80	801.34, 818.37, 879.48, 891.52, 907.58, 942.54, 1032.64, 1077.52, 1154.64, 1501.68, 1518.7, 1523.66, 1530.8, 1536.88, 1564.9, 1602.88, 1816.04, 1968.84, 1975.89,
	2014.94, 2036.91, 2052.2, 2075.28, 2691.16, 2779.32, 2801.11, 3402.26, 3418.28, 3434.35, 3456.23, 3458.28, 3626.7, 3730.67, 3783.85, 3788.67, 3878.75, 3971.52,
	3983.76, 3985.75, 4002.72, 4009.44, 4016.73, 4021.69, 4023.69, 4030.56, 4046.88, 4081.56, 4104.8, 4140.76, 4189.87, 4208.1, 4285.11, 4303.96, 4338.99, 4354.01,
	4363.15, 4382.05, 4390.98, 4433.1, 4497.15, 4556.22, 4577.1, 4688.3, 4742.9, 4758.88, 4771.35, 4830.96, 4831.96, 4865.16, 4915.16, 4951.91, 5071.2, 6002.65, 6461.89,
	6857.08, 6963.05, 6972.95, 7015.18, 7073.07, 7173.05, 7357.23, 7855.46, 8038.62, 8085.45, 8284.58, 8355.66, 9032.65, 9121.98
80-100	903 46 907 58 914 46 942 54 949 6 955 42 984 54 993 38 1002 64 1024 62 1032 64 1218 72 1235 74 1240 7 1242 75 1256 66 1261 68 1279 8 1412 88 1434 86
	1489.81, 1498.82, 1518.7, 1530.8, 1536.88, 1541.86, 1544.86, 1558.84, 1690.05, 1811.04, 1816.04, 1818.04, 2014.94, 2028.99, 2190.06, 2198.07, 2422.48, 2483.43,
	2511.52, 2548.04, 2569.08, 2747.16, 2826.66, 3294.72, 3382.39, 3420.29, 3855.52, 3865.6, 3896.56, 4189.87, 4199, 4224.1, 4479.15, 5322.9, 5338.88, 5651.68, 6068.7,
	6074.04, 6087.96, 6259.71, 6385.74, 6462.85, 6480.85, 6482.88, 6499.85, 6514.79, 6536.82, 6793.95, 6795.95, 6802.96, 6815.96, 6817.92, 6837.03, 6844.92, 6887.16, 6891,
	6943.93, 6945.11, 6988.01, 7048.98, 7073.07, 7111.14, 7154.95, 7173.05, 7227.22, 7232.22, 7240.2, 7257.18, 7267.4, 7272.16, 7273.21, 7279.14, 7296.17, 7315.16,
	7316.15, 7317.12, 7352.15, 7357.23, 7373.16, 7383.24, 7384.3, 7432.1, 7433.28, 7436.35, 7462.08, 7507.43, 7518.31, 7539.4, 7551.48, 7582.38, 7603.68, 7613.35, 7615.38,
	7649.53, 7655.55, 7665.2, 7674.3, 7689.48, 7701.48, 7711.04, 7743.55, 7745.46, 7753.53, 7755.48, 7768.38, 7846.55, 7874.53, 7882.56, 7944.54, 8513.35, 10154.34,
	10155.3, 10902.1
100-120	1289.6, 1412.88, 1414.9, 1434.86, 1604.9, 2231.36, 2747.16, 2877.25, 2922.32, 3018.68, 3612.36, 3651.65, 3737.04, 3834.52, 3928.8, 3948.73, 3952.8, 3969.51, 3980.85, 1492.65,
	3991.5, 4006.75, 4014.7, 4197.95, 4241.03, 4257.05, 4281.95, 4286.16, 4297.96, 4397.4, 4516.1, 4538.25, 4745.95, 4759.9, 475.55, 4791.55, 4815.95, 4
	30/1.2, 3321.94, 3322.9, 3420.87, 3330.88, 0006.08, 01/2.87, 01/3.88, 0440.82, 0330.82, 0389.93, 0053.92, 0780.95, 0784.90, 0791.90, 0813.90, 0844.92, 0871.00, 680.90, 0781.92, 0871.00, 680.90, 0781.92, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 680.90, 0871.00, 0
	0053.52, 0743.52, 1405.1, 1050.05, 1151.52, 1104.11, 1530.1, 1530.1, 1545.10, 1531.14, 1575.10, 1537.20, 1415.13, 14070.5, 1410.24, 1410.51, 14170.53, 1400.82, 1510.4, 1582.16, 1562.16
	7841 3, 7846 55, 7874 53, 7882 56, 7889 6, 7904 52, 7044 54, 7960 56, 7973 52, 8354 64, 8513 35, 10154 34, 10155 3, 10902 1

120-1	1077.52, 1086.58, 1098.36, 1786.02, 2043.2, 2052.2, 2645.08, 2816.36, 2819.25, 2821.24, 2862.63, 2865.6, 2880.76, 3432.32, 3434.35, 3765.68, 3985.75, 4030.56, 4030	031.88,
	4033.8, 4052.56, 4073.52, 4171.15, 4297.96, 4338.99, 4397.4, 4743.95, 5338.92, 5354.88, 5436.84, 6259.71, 6385.74, 6461.89, 6478.33, 6589.95, 6793.95, 6795.95,	
	6837.06, 6853.08, 6870.08, 6871, 6891, 6895.92, 6901.09, 6905.1, 6927.95, 6945.11, 6959.9, 6972, 6972.95, 7067.01, 7077.12, 7112.49, 7208.16, 7257.18, 7269.12,	
	7339.12, 7414.15, 7419.24, 7430.22, 7434.15, 7459.14, 7567.44, 7576.36, 7577.43, 7735.56, 7753.53, 7768.38, 7849.56, 7973.52, 8201.8, 8354.64, 8513.35, 9126.06, 7612, 76	,
	9367.12, 9605.47, 9763.46, 9824.43, 10142.34, 10154.34, 10155.3, 10902.1, 16038.81, 16052.84	
140-1	2609.1, 2746.14, 2859.24, 3728.7, 4001.75, 4118.95, 4173.15, 4177.96, 4178, 4199, 4257.05, 6791.96, 6963.05, 7108.12, 7229.22, 7300.14, 7318.08, 7334.1, 7414.15	<i>;</i> ,
	7459.14, 7462.08, 7485.33, 7488.1, 7495.38, 7501.76, 7503.24, 7507.43, 7510.15, 7550.4, 7551.48, 7560.4, 7567.44, 7576.36, 7577.43, 7665.2, 7674.3, 7735.56, 775.	3.53,
	7768.38, 7849.56, 7904.52, 7973.52, 8137.28, 8143.74, 8158.8, 8354.64, 8513.35, 8514.95, 9125.83, 9126.06, 9367.12, 9605.47, 9763.46, 9824.43, 10142.34, 10154.	34,
	10155.3, 10861.13, 10902.1, 11584.23, 16038.81, 16052.84	
160-1	4433.1, 6463.85, 6478.33, 6709.85, 7082.1, 7154.95, 7208.16, 7263.15, 7269.12, 7419.24, 7546.38, 7561.41, 7577.43, 7592.76, 7687.48, 7706.46, 7743.55, 10902.1,	12947.2

180-200 6877.95, 7553.36, 7566.42, 7613.35, 7640.34, 7690.4, 10142.34, 10861.13

200-220	6780.95, 7566.42, 12832.3, 12931.28, 12947.2, 13781.04, 14098.08, 14193.68, 14275.84, 14357.28, 14482.44, 16038.81, 16052.84, 16068.86, 17130.7, 18969.9, 19017.9,
	19069.8

220-240 1133.54, 1136.6, 1154.64, 1218.72 2016.38

Anexo O. Datos adicionales

Adicional a los objetivos descritos en esta tesis, fueron realizados algunos ensayos que complementan la información obtenida en los análisis proteómicos y transcriptómicos de esta tesis.

La abundancia relativa de los componentes determinados por LC-MS, demostro que hay componentes que cualitativamente son únicos entre machos y hembras (Tabla 1, Anexo O), debido a que no se detectaron los iones correspondientes en ambos venenos. Para el análisis cuantitativo solo se utilizaron 237 componentes, que son aquellos que se comparten entre las 6 muestras. De las cuales, 70 componentes diferentes presentaron un p-value (prueba t) <0.05 y un log2FC >1 o <-1. En la Figura 1 del Anexo O se muestra el -log p-value vs log2FC y se muestran en rojo aquellos sobre-expresados para hembras y en azul sobre-expresados para machos, en gris aparecen todos aquellos que no cumplen con los criterios de selección, las líneas punteadas en el gráfico indican los valores de corte. Estas diferencias pueden estar relacionadas con el ciclo reproductivo de los alacranes, ya que no presentan las mismas estrategias de caceria a lo largo del ciclo reproductivo.

Figura 1. Anexo O. Expresión diferencial de componentes presentes en el veneno de hembra y machos del alacrán *C. limpidus*. En gris se muestran los componentes no significativos, en azul aquellos sobre-expresados en machos y en rojo los sobre-expresados en hembras. Las líneas grises muestran los valores de corte para considerarlos como diferentes significativamente.

ION	H1	H2	H3	M1	M2	M3	MEAN_H	se_H	MEAN_M	se_M	FC	log2FC	ttest\$pvalue	logpvalue	tag1	МН	color
801.34				3839.5	2659.4												
806.32				298.1	582	82.8											
818.37				175.3	8.5	55.4											
824.54				338.8	401.2												
879.48	72.5		171.7	64.8	72.1												
891.52				9330.6	9330.6	1536.4											
903.46				80.4	29.1	43.2											
907.58	0.4	0.2	0.2	131.7	215.3	164.3	0.26666667	0.06666667	170.433333	29.7947423	0.00156464	-9.31995431	0.00219818	2.65793762	1	2	blue
914.46				5739.5	10061.1	1405.3											
942.54	529.6	1013.8	807	2370.8	629.1	546.2	783.466667	140.270897	1182.03333	728.557734	0.66281267	-0.59332692	0.54989478	0.2597204	2	0	black
949.6		7.9	6.6	829.1	1272.8												
955.42				768.8	873.6	295.5											
984.54				9.3	1416.7												
991.5	78.6																
993.38				519.1	268.2	136.4											
1002.64	1741.8	1669.3	1192.3	3859.4	2760	1037.7	1534.46667	172.358718	2552.36667	1005.69166	0.60119366	-0.73409829	0.29180347	0.53490955	2	0	black
1024.62	76.9																
1032.64	350.7	433.6	183.6	1065.2	391.8	174.4	322.633333	73.5205262	543.8	328.41221	0.5932941	-0.75318065	0.47089244	0.32707828	2	0	black
1077.52		0.2	0.3	728.8	831.5	155.5											
1086.58				670.7	522.5	173											
1098.36				793.9	1318.6	64.6											
1133.54				143.4	123.9	41.5											
1136.6				595.5	416.5	233.3											
1154.64	307.3	426.6	215	1043.3	483.3	258.5	316.3	61.2491905	595.033333	285.780522	0.53156686	-0.91167693	0.3122438	0.50550618	2	0	black
1218.72	1161.2	1320.9	1246	509.6	629.3	242.7	1242.7	46.1309368	460.533333	139.947389	2.69839317	1.43210057	0.00315593	2.50087279	1	1	red
1235.74	322.3	528.8	385.3	567.8	497.2	131.1	412.133333	61.1026004	398.7	165.760988	1.03369284	0.04780755	0.93226889	0.03045881	2	0	black
1240.7	822.5	875.6	603.3	812	902.8	314.9	767.133333	83.3385132	676.566667	223.789235	1.13386215	0.18124525	0.6753843	0.17044904	2	0	black
1242.75				199	213.5	65.8											
1256.66				177.3	83.5												

Tabla 1. Anexo O. Intensidad de los iones de los componentes identificados en el veneno de C. limpidus.Se muestran los iones analizados, sus intensidadesy sus datos estadísticos.Dicho análisis fue realizado en Rstudio.

1201 00				100.0	101.0												-
1201.08	05.2	0.2 5		180.9	104.8												
12/9.8	85.3	83.5		020.2	110.0	172.0											
1289.6	<i></i>	70.0		820.3	119.6	172.9											
1406.82	00.0	79.9	2007.0	F4F4 4	2425		2164.6	210 120222	2477 10007	1002 12507	0.01010001	0.12500000	0.75540246	0 10170040			
1412.88	3782.4	2903.5	2807.9	5151.1	3135	2145.4	3164.6	310.130333	34/7.10007	1083.13587	0.91010881	-0.13588906	0.75549316	0.12176946			ріаск
1414.9	247.0	174.0	120 5	1/99.2	1059.2	1/29.8	402.4	24.2462244	420.00007	405 222064	0.40044554	4 22056660	0.05647004	4 25040552			
1434.86	247.8	1/1.9	130.5	457.8	563.2	269.2	183.4	34.3463244	430.066667	105.322964	0.42644551	-1.22956668	0.05617001	1.25049553			ріаск
1489.81	128.2		168.2														
1498.82	115.3	146.1		4007.0	4050.0	056.0											
1501.68	200.0	225.0	462.2	4007.9	1950.8	856.8	265.0	40.0400067	420.20007	202 50504	0.00070000	0.0007004	0 774 04 070	0.440.40045			
1518.7	299.6	335.8	462.3	853.4	412	52.7	365.9	49.3198067	439.366667	283.58581	0.83278962	-0.26397601	0.77181079	0.11248915			black
1523.66	~	2.4		2330.8	1095.6	528.1											
1530.8	2.4	3.4		24.5	4.9												
1536.9	3.2	107	123.2														
1541.86	232.6	238.7	243.8														<u> </u>
1544.86	20.9	22.1	20.2	7.7	14.6	6.8	21.06666667	0.55477723	9.7	3.01744925	2.17182131	1.11890541	0.01081517	1.96596647			red
1558.84	135.6	85.6	93.9														
1564.9	271.1	240.3	107.6	166.6	117.3	99.6	206.333333	50.1609521	127.833333	24.550594	1.61408083	0.69071283	0.2198245	0.6579239	2	0	black
1602.88	82.1	104.1	118.4														
1605.9	5.4	14.7	9.5	519.5													
1629.78				0.4													
1690.05	394.3	402.5	149.5	604.7	306.7	211.7	315.433333	83.0004284	374.366667	144.993678	0.84257858	-0.24711686	0.70443481	0.15215919	2	0	black
1764.04	343.1	1833.9	608.9		40.3												
1786.02		198.2			10.4												
1794.06	898.03	3616.2	1419.4														
1811.04	103.2	508.9	459.5	144.9													
1816.04	109.1	430	176.5	5.7													
1818.04	59.2	246.3	100	9.8													
1968.84	84.1	98.6	10.3														
1975.89	0.7	0.06															
2014.94			3.7	335.8	693.5	1220.7											
2016.38				6663.9	717.2	1252.9											
2028.99					2.3												
2036.91				965.5	1230.5	349.9											
2043.2	77.8	97.2	66.8	207.4	27.6	21.2	80.6	8.88669417	85.4	74.7436954	0.94379391	-0.08345623	0.94169985	0.0260875	2	0	black
2043.2	77.8	97.2	66.8	207.4	27.6	21.2											
2052.2	184.8	515.7	522.2	802.1	301.6	100.8	407.566667	111.399137	401.5	255.382488	1.01511	0.02163608	0.98075645	0.00843883	2	0	black

2052.2	184.8	515.7	522.2	802.1	301.6	100.8											
2075.28	129.7	113.2		273.3	207.5	4.2											
2190.06	79.4	89.3	52	139.2													
2198.07	0.8	0.5	0.8														
2231.36																	
2327.34																	
2422.48	20.2	46.3	87.4	284.4	206.1	365.5	51.3	19.5593967	285.333333	56.3593086	0.17978972	-2.47561756	0.00944402	2.02484297	1	2	blue
2483.43		157.5															
2511.52	54.3	49.4	10.3	139.6													
2548.04		89.3	60.3	6	5												
2568.05	979.1	1060.7	562.4	2740.1	3240.2	1461.2	867.4	154.308555	2480.5	648.75048	0.34968756	-1.51586161	0.04308128	1.36571136	1	2	blue
2569.08	1279.5	1325.3	748.7	3588.8	4217.2	1921.7	1117.83333	185.039611	3242.56667	838.820065	0.34473719	-1.53643114	0.04014332	1.39638671	1	2	blue
2609.1	1012.7	930.7	1239.3	1571.9	2568.8	1572.4	1060.9	92.2874495	1904.36667	406.880697	0.5570881	-0.84402261	0.07072877	1.15040391	2	0	black
2645.08				5.4	64												
2691.16	45.7		51.4	224.4	72.9	47.1											
2746.14	172.3	160.7	477.7	2622.8	2667.2	334.3	270.233333	103.787368	1874.76667	943.469926	0.14414238	-2.7944335	0.10793249	0.9668478	2	2	black
2747.16	235.7	223.4	657.4	3711.5	3678.8	481.6	372.166667	142.66086	2623.96667	1311.97723	0.14183361	-2.81772864	0.10558212	0.97640963	2	2	black
2779.32	488.9	419.6	402.8	1266.6	4295	1285.4	437.1	26.3501423	2282.33333	1232.51951	0.19151453	-2.38447423	0.14074233	0.85157528	2	2	black
2801.16	20.5		11.5	95.9	161.1	84											
2816.36	50.7				0.4	0.1											
2819.25	14.3			10.7													
2821.24	2.4			11.1													
2826.66	3574.5	4496.3	3554.1	462.1		387.9											
2859.24	31.6			75.4	47.6												
2862.63	51.3			77.5	44.4												
2865.6	58.8			9	6												
2877.25		1.7															
2880.76		28.2			162.9												
2922.32					196.1												
3018.68	53.2	76.9															
3294.72	202.3	398.8	306.5	599.9		161.8											
3403.98			7.9	172.8	248.9	57.5											
3418.28	1046.2	1040.8	1007.6	9387.4	25969.2	2670.9	1031.53333	12.0677716	12675.8333	8479.77125	0.08137795	-3.61921825	0.16790004	0.7749492	2	2	black
3420.32	1136.1	1112.6	1085.8	19230.2	52365.1	5495.5	1111.5	14.5307719	25696.9333	17037.5149	0.04325419	-4.53101635	0.15191242	0.81840673	2	2	black
3423.85	312.1	322.8	298	6062.6	16958.8	1574.9	310.966667	7.18153496	8198.76667	5594.12642	0.03792847	-4.72057506	0.15925789	0.79789904	2	2	black
3432.32	66.6	186.1	73.4	283.1	103.8	63.5	108.7	38.7497527	150.133333	82.6623352	0.72402309	-0.46589239	0.62265971	0.20574924	2	0	black
3434.35	109.8	299.3	116.4	419.7	575.2	147.3	175.166667	62.0959025	380.733333	153.155808	0.46007704	-1.12005262	0.21491382	0.66773567	2	2	black

3458.28				638.8	817	119.2											
3612.36				820.9	2093.1	200.4											
3626.7	9.6	2.4	89.6	108.8	229.1	91.4	33.8666667	27.9440711	143.1	53.022118	0.23666434	-2.07908577	0.10135388	0.99415961	2	2	black
3651.65				106.1	135.4	72.5											
3728.7	50.9	138.9	107.7	1166.4	1612.6	744.4	99.1666667	25.759227	1174.46667	306.994799	0.08443549	-3.5660067	0.01297697	1.8868266	1	2	blue
3730.7	61.4	156.2	128.7	2686.1	3712.1	1813	115.433333	28.1588549	2737.06667	672.158242	0.0421741	-4.56749878	0.00883603	2.0537426	1	2	blue
3737.04	118.2	218.1	167.8	351.8	93.9	64.3	168.033333	28.8388819	170	111.820101	0.98843137	-0.01678729	0.98459619	0.00674185	2	0	black
3765.68			82.8	4599.4	6298.5	3045											
3783.85			78.3	8.9	15.3	61.8											
3834.52			74.3	3.3	11.4	66.7											
3855.52				641.8	1066.8	332											
3865.6				27	39.5	28.4											
3878.75				2164.2	3345.5	2395.1											
3896.56	56.4	16.2		2122	2580.4	523.8											
3928.8	71.2		64.4	159.2	107.1	1											
3948.75	136.8	79.6	139.6	8673.3	5893.4	1451.8	118.666667	19.5500497	5339.5	2575.61832	0.0222243	-5.49171801	0.06803031	1.16729753	2	2	black
3952.8	143.2	777.6	833	1641.5	737.4	389.1	584.6	221.278678	922.666667	457.093668	0.63359827	-0.65835971	0.47940542	0.31929706	2	0	black
3969.51				1784.7	3260.1	2296.8											
3971.52				4329.1	7639	5696.4											
3980.85	689.3	385.5	411.6	2096.8	4914.3	890.4	495.466667	97.2090931	2633.83333	1460.17917	0.18811618	-2.41030415	0.14835586	0.82869529	2	2	black
3983.76	959.2	919.7	994.8	7276.1	5934.5	2350.4	957.9	21.6892446	5187	1800.65229	0.18467322	-2.43695341	0.04518636	1.34499268	1	2	blue
3985.75	2569.4	2417.8	2750.7	19520.9	15138.2	6356.6	2579.3	96.2273523	13671.9	4740.10682	0.18865703	-2.40616226	0.04568863	1.34019183	1	2	blue
3991.5	100.9	102	116.5	1409	1972	885.3	106.466667	5.02670645	1422.1	384.290209	0.07486581	-3.7395492	0.01377956	1.86076477	1	2	blue
4001.75	77.7	60.1	82.8	622.1	908	306.4	73.5333333	6.87612617	612.166667	212.784684	0.12011979	-3.0574542	0.03629716	1.4401274	1	2	blue
4006.75	11.2	8.2	8.5	112.6	187.7	106.4	9.3	0.9539392	135.566667	32.0001823	0.06860093	-3.86562796	0.00846501	2.0723727	1	2	blue
4014.7	98.3	164.7	136.2	158.2	348.5	57	133.066667	19.2319468	187.9	104.653309	0.70817811	-0.49781585	0.56523406	0.24777168	2	0	black
4030.56	2.4	4.5	0.5	1873.2	1733.8	587.9	2.46666667	1.15518156	1398.3	498.707936	0.00176405	-9.14689543	0.02658619	1.57534391	1	2	blue
4031.88	51.9	46.7	66.6	1686.4	4981.4	499.4	55.0666667	5.9588403	2389.06667	1642.00888	0.02304945	-5.43912402	0.15667839	0.80499091	2	2	black
4033.8	163.1	142.8	179.8	717.9	2845.2	928.4	161.9	10.6978191	1497.16667	828.846477	0.10813759	-3.20905994	0.11978339	0.92160342	2	2	black
4046.88	1494.9	625	994.3	832.4	1741.1	995.9	1038.06667	252.070191	1189.8	342.514109	0.87247156	-0.19681998	0.70754979	0.150243	2	0	black
4052.56	152.4	53.9	100	98.5	224.9	102.4	102.1	28.4538808	141.933333	50.825207	0.71935181	-0.47523058	0.47286163	0.32526593	2	0	black
4073.52	0.5		0.3	171.1	220.5	122.6											
4073.84	0.4		0.4		312.9	83.6											
4081.56				431.8	517.9	282.5											
4104.8	137.5	97	151.1	548.2	1611.8	366	128.533333	16.248111	842	475.785267	0.15265241	-2.71167768	0.14041547	0.85258504	2	2	black
4118.95			129.7	11.6		2.5											
4171.15	444.2	687.3	861.4	12241.6	12285.9	3544.8	664.3	120.98307	9357.43333	3559.53089	0.07099169	-3.81620605	0.04039794	1.39364077	1	2	blue

4173.15	290.1	434.5	577	8599.8	8559.1	2449.3	433.866667	82.8215015	6536.06667	2502.66463	0.06638039	-3.91309904	0.04058514	1.39163296	1	2	blue
4177.96	772.3	1626.6	1199.1	681.1	532.8	201.3	1199.33333	246.615195	471.733333	173.707892	2.54239683	1.34618923	0.06280104	1.20203315	2	1	black
4178	506	2053.7	1538.1	893	620.5	260.1	1365.93333	454.999943	591.2	224.482149	2.31044204	1.2081689	0.18939599	0.72262921	2	1	black
4190	432.5	168.1	438.4	93.9	1106.5	304.6	346.333333	89.1329407	501.666667	377.800307	0.69036545	-0.53456783	0.6538429	0.18452659	2	0	black
4198	188.3	292.2	217.1	147.1	147.1	21.8	232.533333	30.970111	105.333333	51.1535108	2.20759494	1.14247548	0.07072398	1.1504333	2	1	black
4199	20.9	280.9	114.2	114.3	202.7	45.7	138.666667	76.0459583	120.9	55.6548291	1.14695341	0.19780678	0.85083303	0.07015566	2	0	black
4224.1	363.4	191.5	221.3	316.3	296	141.2	258.733333	53.0356589	251.166667	67.7219438	1.03012608	0.04282092	0.92608118	0.03335094	2	0	black
4240.04	2779	2982.1	2960	5008.1	9696.2	5587.9	2907.03333	64.3337737	6764.06667	1807.22113	0.42977597	-1.21834326	0.05933192	1.22671162	2	2	black
4257.05	126	109.9	129.9	168.1	446.7	388.9	121.933333	6.12109286	334.566667	103.967719	0.36445153	-1.45620114	0.06688477	1.17467273	2	2	black
4281.95	187	191	170	0.4	97.7	30.2	182.666667	6.43773597	42.7666667	35.2509811	4.27123928	2.09465472	0.00901445	2.04506061	1	1	red
4284.12		17.3	202.4	690.2	562.7	255											
4286.16	3.8	16.6	66.3	809.7	684.8	314.8	28.9	19.0615669	603.1	181.98581	0.04791908	-4.38325584	0.01857203	1.73114064	1	2	blue
4297.96	10	8.8	9.5		871.3												
4304					65.9												
4339	63.02		43.6	36.6	151.6	88.1											
4363.2				725	693.6	203.3											
4382.05				60.6	181.1	87.8											
4397.4	126	250	151	273.6	26.6	6.8	175.666667	37.8608564	102.333333	105.112353	1.71661238	0.77956431	0.47803419	0.32054104	2	0	black
4433.1	49.5			336.2	576.4	357											
4479.15	1261.1	1127	1297.4	7162.6	8317.1	2163.2	1228.5	51.8205558	5880.96667	2312.95907	0.20889423	-2.25915546	0.0694954	1.15804394	2	2	black
4497.15	302.4	230.2	252.2	455.8	715.2	334.4	261.6	21.3657046	501.8	137.548464	0.52132324	-0.93974993	0.10352692	0.98494673	2	0	black
4516.1	87.6	62.4	69.5	303.9	471.4	109.9	73.1666667	7.50207379	295.066667	127.923968	0.24796656	-2.01178251	0.10145475	0.9937276	2	2	black
4538.25					183												
4553.25					749.4												
4577.1	72.1	36.4	62	58.2	43	49	56.8333333	10.6245523	50.0666667	5.41356321	1.13515313	0.18288693	0.58810812	0.23054283	2	0	black
4635.42				3.3	26.6	19.5											
4688.3	15.5	489.2	432.3			96.8											
4742.9	193.3	62.9	323.3	401.8	835.4	125.2	193.166667	75.1710346	454.133333	253.130493	0.42535232	-1.23326977	0.30104097	0.5213744	2	2	black
4743.95	202.8	61.6	317.5	420.2	888.1	212.1	193.966667	74.0038813	506.8	244.814899	0.38272823	-1.38560778	0.21610135	0.66534252	2	2	black
4758.9	770.3	1008.4	749.3	2116.4	2378.6	1271.6	842.666667	83.0881125	1922.2	409.052246	0.43838657	-1.18972449	0.03496103	1.45641582	1	2	blue
4759.9	801.4	1043.7	779.7	2241.6	2531.1	1336.8	874.933333	84.6155292	2036.5	440.532422	0.42962599	-1.21884682	0.03472994	1.45929591	1	2	blue
4770.35	81.5	63.1	72.8	427.5	342.4	269.9	72.4666667	5.31423664	346.6	55.7793421	0.20907867	-2.25788221	0.00393377	2.40519134	1	2	blue
4771.35	85.5	64.6	79.7	458.4	364.8	287.2	76.6	6.22923216	370.133333	60.6163894	0.20695245	-2.27262877	0.00416908	2.37995975	1	2	blue
4775.35	10.5	17	23	146.6	636.6	128.9	16.8333333	3.6094013	304.033333	203.750783	0.05536674	-4.17483671	0.15943583	0.79741407	2	2	black
4791.35				5.1	524.5												
4815.95				81.6	317.8	72.1											
4831.02	15.1	31.6	60		26.8												

4832	15.6	28.6	55.5														
4865.2	73.2	57.7	84.2	311.7	510.4	98.2	71.7	7.68656837	306.766667	145.766017	0.23372813	-2.0970967	0.12003824	0.92068038	2	2	black
4879.2	198.4	122.3	128	1319.7	768.1	802.5	149.566667	24.4720475	963.433333	218.506628	0.1552434	-2.68739616	0.01066271	1.97213232	1	2	blue
5321.94	923.1	846.3	598.4	1247.5	515.8	519.8	789.266667	97.9746963	761.033333	297.902134	1.03709868	0.05255318	0.91944368	0.03647487	2	0	black
5322.9	1022	926.1	680.3	1328.5	561.8	558.4	876.133333	101.754973	816.233333	313.70029	1.07338588	0.10216881	0.83858072	0.07645513	2	0	black
5338.92	280.9	191	194.4	596.4	526.6	278.5	222.1	29.4163787	467.166667	118.140474	0.47541919	-1.07272795	0.07197433	1.14282236	2	2	black
5354.88	18.9	16.3	10.9	48.5	42.1	14.5	15.3666667	2.35607961	35.0333333	12.7760192	0.43862988	-1.18892401	0.13976382	0.85460524	2	2	black
5420.87	259.2	248	143.7	129													
5436.84	55	37.6	25.7	30.4		11.7											
5536.74				184.4	177.7	147											
6074.04		14.7	26.1	242.2	253.5	120.5											
6087.96			118														
6172.9	1852.5	2002.9	3530.8	9987	8253.7	3983.3	2462.06667	536.127548	7408	2184.89242	0.33235241	-1.58921427	0.05667687	1.24659413	2	2	black
6173.88	1893.4	2040.9	3593.5	10618.5	8321.1	3985.4	2509.26667	543.786264	7641.66667	2381.77729	0.32836641	-1.60662153	0.06386818	1.19471549	2	2	black
6385.74	429.1	686.1	961.6	3032.8	2478.1	984.1	692.266667	153.750429	2165	749.271857	0.31975366	-1.64496724	0.07984017	1.09777856	2	2	black
6446.82	125.5	102.3	137.2														
6462.85	8342.5	7628.4	9982.3	191.7	287.9	401.6	8651.06667	696.807325	293.733333	74.296781	29.4521108	4.88029913	0.00028111	3.5511228	1	1	red
6463.86	8764.2	7970.4	10445.6	144.6	312.6	201	9060.06667	729.681797	219.4	60.4562652	41.2947432	5.36788624	0.00026863	3.57084752	1	1	red
6480.85	849.4	560.3	949.4		72.1	20.8											
6482.88	751.1	543.8	965		99.3												
6499.85	259.5	208.5	190.5		3.2												
6514.85	1057.4	835	1991.6	7609.5	7174.4	1270.7	1294.66667	354.331527	5351.53333	2503.72008	0.24192443	-2.04737161	0.12220561	0.91290885	2	2	black
6536.82	120.7	191.5	162.5	173.2	283.3												
6573.96	851.3	830.5	898.9	3172.2	1714.8	2384.3	860.233333	20.2442859	2423.76667	515.835198	0.3549159	-1.49445088	0.02069001	1.68423925	1	2	blue
6589.95	153.2	238.3	248.4	806.6	1691.7	742.4	213.3	30.1911135	1080.23333	375.132659	0.19745734	-2.3403871	0.04798681	1.31887813	1	2	blue
6655.92	184.2	147.3	106.4														
6709	57.5	76	68.7	405	311.1	47.1	67.4	5.37990087	254.4	131.214081	0.26493711	-1.91627817	0.15624329	0.80619863	2	2	black
6780.95	17940.9	33674.7	26623	3603.8	3383.9	2337.2	26079.5333	4550.07812	3108.3	478.557943	8.39028837	3.0687204	0.00733337	2.13469622	1	1	red
6784.96	6867.5	9646.8	6319.2	893.1	882.2	594.2	7611.16667	1030.05025	789.833333	119.862428	9.63642119	3.26849745	0.00274202	2.56192963	1	1	red
6791.96	526	1136.4	359.7	25.3	279.2	257.3	674.033333	236.115172	187.266667	99.4856857	3.5993236	1.84772582	0.12303786	0.90996124	2	1	black
6793.95	2193.3	1798.5	1898.3	418.4	670.3	260.4	1963.36667	118.521465	449.7	146.183566	4.36594767	2.12629484	0.00084426	3.07352238	1	1	red
6795.95	1912	1477.8	2188.7	580.6	1150.2	369.9	1859.5	206.891187	700.233333	285.439243	2.65554339	1.4090071	0.020477	1.68873369	1	1	red
6802.96	523	886.1	471.2	168.8	420.1	123.8	626.766667	130.526043	237.566667	112.904967	2.63827697	1.39959603	0.07154912	1.14539572	2	1	black
6815.96	644.9	677.6	637.5	178	163.5	102.6	653.333333	12.3199477	148.033333	28.2904872	4.4134204	2.14189718	4.25E-05	4.37195434	1	1	red
6817.92	598.8	734.9	594.4	192.3	290.5	128.3	642.7	46.1174949	203.7	57.7697152	3.15513009	1.65769949	0.00264795	2.57708981	1	1	red
6837.06	1509.9	1195.5	991.8	14107.2	8587.5	6829.7	1232.4	150.696284	9841.46667	2685.1281	0.12522524	-2.99740275	0.01728354	1.76236739	1	2	blue
6838.09	1432.5	987.3	905.4	13310.8	8013.3	6495.2	1108.4	163.765595	9273.1	2530.16036	0.11952853	-3.0645731	0.01696221	1.7705176	1	2	blue

6844.92	1584.6	1030.3	1429.3	1615.6	929.1	821.4	1348.06667	165.087112	1122.03333	304.635736	1.20144975	0.26477631	0.4911141	0.3088176	2	0	black
6853.08	99.2	77.8	107.2	1655.9	1846.9	724.3	94.7333333	8.77597731	1409.03333	424.714641	0.06723285	-3.89468978	0.0192885	1.71470156	1	2	blue
6870.08	102.2	32.5	32.6	285.1	304.1	93.2	55.7666667	23.2166846	227.466667	82.4951615	0.24516413	-2.0281802	0.0735578	1.13337127	2	2	black
6871	1011.5	37.5	48.2	313.5	406.6	164.3	365.733333	322.898107	294.8	86.4279758	1.24061511	0.3110556	0.84056723	0.07542755	2	0	black
6877.95	251.8	348.8	266.4	324.7	205.6	120	289	30.1955847	216.766667	72.6947155	1.33323082	0.41492657	0.33906655	0.46971505	2	0	black
6887.16	225	285.7	227.1	718.7	713	269.5	245.933333	19.8925726	567.066667	182.232768	0.43369386	-1.20525107	0.09917353	1.00360423	2	2	black
6891	84.9	89	93.9	246.3	212.1	105.5	89.2666667	2.6014953	187.966667	51.9277062	0.4749069	-1.07428338	0.08082347	1.09246252	2	2	black
6895.92	64.8	122.1	119.6	101.4	42.5	28	102.166667	18.6972666	57.3	27.4879064	1.78301338	0.83431753	0.199359	0.70036416	2	0	black
6901.09	53.5	66.1	61.4	10.9	45.8	10.8	60.3333333	3.67619973	22.5	14.2683216	2.68148148	1.42303029	0.03632816	1.43975662	1	1	red
6905.1	68.8	147.6	93.6	6	54.6	10.1	103.333333	23.2623683	23.5666667	19.0591623	4.38472419	2.1324861	0.04639242	1.33355295	1	1	red
6943.93	1108.4	2277.7	1625.3	1210.8	3786	1869.8	1670.46667	338.30245	2288.86667	945.945668	0.72982262	-0.45438223	0.5039837	0.29758351	2	0	black
6945.12	1269.5	2574.8	1859.2	1441.5	2976.7	1473.5	1901.16667	377.391452	1963.9	620.313985	0.96805676	-0.04683646	0.92566233	0.03354741	2	0	black
6946.01	1163.8	2426.3	1719.4	1260.4	2302.9	1124.5	1769.83333	365.323694	1562.6	455.878421	1.13262085	0.17966499	0.71140478	0.14788322	2	0	black
6959.9	154.1	257.4	246.9	1346.9	1583.2	717.1	219.466667	32.8235857	1215.73333	316.572127	0.18052204	-2.46975307	0.0187201	1.72769191	1	2	blue
6963.05	365.3	592.2	666	4698.8	4530.8	1144.4	541.166667	90.4772961	3458	1418.02939	0.15649701	-2.67579299	0.06594488	1.18081889	2	2	black
6972	7.3	509.7	8.1	290.1	304.8	74.1	175.033333	167.333493	223	91.3302524	0.78490284	-0.34941402	0.80638228	0.09345902	2	0	black
6972.95	341.1	574.3	295.2	302.6	260.1	175.1	403.533333	86.4053303	245.933333	45.9052466	1.64082407	0.71442056	0.16958114	0.77062244	2	0	black
6988	894.3	1070	924.1	19478.1	15398.9	5059.2	962.8	54.2859405	13312.0667	5255.5839	0.07232536	-3.78935461	0.04512175	1.34561409	1	2	blue
7043.1	126.3	219.4	182.9	193.7	193.2	94.7	176.2	27.0836359	160.533333	40.3149063	1.09759136	0.13434103	0.731844	0.13558148	2	0	black
7048.98	433.1	741.2	475.2	8319.3	5493.7	3244.3	549.833333	96.4520664	5685.76667	1798.13423	0.09670346	-3.37028862	0.02510778	1.60019174	1	2	blue
7050.05	196.1	68.6	115.2	8035.9	5218.7	3119.5	126.633333	37.2473862	5458.03333	1744.37776	0.02320128	-5.42965209	0.02008701	1.69708467	1	2	blue
7067.01	76.2	84.1	83.3	558.2	735.2	725.5	81.2	2.51064401	672.966667	70.3635678	0.12065977	-3.05098341	0.00050299	3.29844337	1	2	blue
7073.1	222.2	221.2	322.3	3569.1	6047.4	1277.4	255.233333	33.5345759	3631.3	1686.87976	0.07028704	-3.83059746	0.07041202	1.15235318	2	2	black
7077.12	101.9	105.6	129.7	1471.9	2495.4	469.9	112.4	8.71569466	1479.06667	716.13584	0.07599387	-3.71797314	0.07963659	1.09888733	2	2	black
7082.14	42.3	75	63.4	185.9	213.6	93.7	60.2333333	9.57154347	164.4	44.3885683	0.36638281	-1.44857629	0.04987778	1.30209287	1	2	blue
7108.12	86	102.2	138.1	402.3	304.8	62.5	108.766667	15.3941908	256.533333	123.719973	0.42398649	-1.23790981	0.22168378	0.65426608	2	2	black
7111.14	230.4	333.5	454	1290.8	639.6	102.4	339.3	64.6128728	677.6	420.806749	0.5007379	-0.99787244	0.38801516	0.4111513	2	0	black
7112.49	261.2	322.9	411.2	1207.1	572.2	122.9	331.766667	43.5276285	634.066667	385.190228	0.52323625	-0.93446559	0.39495528	0.40345207	2	0	black
7137.92	2564.5	3581.2	2410.1	1109.5	1430.7	313.3	2851.93333	367.347358	951.166667	406.784816	2.9983529	1.5841702	0.01848966	1.73307106	1	1	red
7154.95	144	164.4	140.6	593.4	557.8	147	149.666667	7.43176366	432.733333	175.427326	0.3458635	-1.53172531	0.11967871	0.92198311	2	2	black
7173.05	109.1	197.8	140.3	2054.3	1356.8	877.3	149.066667	25.9779607	1429.46667	418.504829	0.10428132	-3.26144739	0.02018626	1.69494418	1	2	blue
7184.17	75.6	78.6	91.4	523.8	485.2	133.9	81.8666667	4.84469928	380.966667	151.911065	0.21489194	-2.21831671	0.07358815	1.13319211	2	2	black
7207.17	96	92.1	91.6	185.3	179.5	106.1	93.2333333	1.39084307	156.966667	31.216769	0.593969	-0.75154047	0.0669974	1.17394204	2	0	black
7226.22	5376.2	5791.4	6520.3	9854.7	6321.8	10105.4	5895.96667	334.385926	8760.63333	1496.10221	0.6730069	-0.5713068	0.08650118	1.06297797	2	0	black
7227.18	5105	5553.9	6314.5	9439.1	5910.7	9816.6	5657.8	352.996209	8388.8	1523.37803	0.67444688	-0.56822327	0.10223433	0.99040322	2	0	black
7229.01	3080.4	3374.5	3855.9	5793.1	3365.3	6042.9	3436.93333	226.033555	5067.1	1045.87103	0.67828409	-0.56003843	0.13872399	0.85784843	2	0	black
7232.22	656.1	751.8	817	1211.4	769	1340.3	741.633333	46.7251657	1106.9	211.879813	0.67000934	-0.5777469	0.11115312	0.95407833	2	0	black

7240.2	9376.1	9212.3	9973.7	27162.2	49206.3	17848.8	9520.7	231.383059	31405.7667	11387.0342	0.30315133	-1.72188993	0.07824624	1.10653651	2	2	black
7257.18	261.2	296.5	343.7	1527.9	3855.9	578.3	300.466667	23.8981403	1987.36667	1192.47592	0.15118834	-2.72558122	0.1583069	0.80050016	2	2	black
7263.18	521.5	489.9	470	861.6	1370	749.4	493.8	14.99411	993.666667	233.845348	0.49694733	-1.00883513	0.05942166	1.22605519	2	2	black
7267.4	527.7	890.9	961.1	2589.9	2074.6	345.1	793.233333	134.304348	1669.86667	831.456121	0.47502795	-1.0739157	0.27398549	0.56227244	2	2	black
7269.18	563.1	1021.6	1001.2	2814.5	2009.3	227.6	861.966667	149.549327	1683.8	936.075742	0.51191749	-0.9660168	0.35082643	0.4549077	2	0	black
7272.16	444.2	690.2	609	1420.2	882.3	159.3	581.133333	72.3680715	820.6	447.39377	0.70818101	-0.49780995	0.55520362	0.25554771	2	0	black
7273.22	403.8	619.5	509.9	1072.9	1062	267.3	511.066667	62.2699589	800.733333	326.682601	0.63824827	-0.64781037	0.34990447	0.45605051	2	0	black
7279.14	572.9	532.8	531	1313.8	2526.6	816.2	545.566667	13.6765411	1552.2	622.090411	0.35147962	-1.50848705	0.11865238	0.92572355	2	2	black
7296.17	633.2	935.9	637	1574.8	1770.4	215.1	735.366667	100.272667	1186.76667	599.027096	0.61963879	-0.69050062	0.41706602	0.3797952	2	0	black
7300.14	379.4	547.8	494.9	1143.1	2027.5	407.9	474.033333	49.7198932	1192.83333	573.424404	0.39740115	-1.33133206	0.20155182	0.69561329	2	2	black
7315.14	12724.5	15597.5	18193	9800.3	6248.9	4968.6	15505	1579.29734	7005.93333	1770.05026	2.21312411	1.14608436	0.01653735	1.78153408	1	1	red
7316.19	15319.5	18023	22604.2	12410.5	6452.7	5255.1	18648.9	2126.07045	8039.43333	2710.0027	2.31967842	1.21392482	0.02587814	1.5870669	1	1	red
7317.12	16396.3	18415.9	24364.7	13550.6	6679.4	5114.6	19725.6333	2391.68007	8448.2	3173.16987	2.33489185	1.22335573	0.03295267	1.48210933	1	1	red
7318.08	15562.2	16591.4	22853.7	12931.5	7924.6	4846.8	18335.7667	2278.42082	8567.63333	2885.36934	2.14012038	1.09769195	0.04072115	1.39017992	1	1	red
7334.1	835.2	704.6	954.5	1072.5	1239.9	389.4	831.433333	72.1644957	900.6	318.590466	0.92319935	-0.11528589	0.81042014	0.09128978	2	0	black
7336.1	617.5	559.1	690.6	1572.8	1401.5	333.9	622.4	38.0397599	1102.73333	474.691712	0.56441569	-0.82516999	0.28495865	0.54521815	2	0	black
7338.1	842.1	880.7	985.7	1896.6	1851.2	809.8	902.833333	42.9055293	1519.2	434.713446	0.59428208	-0.75078022	0.15980441	0.79641123	2	0	black
7339.12	830.4	920	981.9	1753	1748.4	1012.1	910.766667	43.9772795	1504.5	301.536573	0.60536169	-0.72413071	0.0764887	1.11640272	2	0	black
7349.16	699.2	1056.4	693	498.2	441.1	237.5	816.2	120.113335	392.266667	96.9010922	2.0807274	1.05708796	0.04207555	1.37597019	1	1	red
7351.14	925.3	1149.6	787.1	705.3	772.2	284.9	954	105.624066	587.466667	186.787103	1.62392192	0.69948227	0.1193803	0.92306734	2	0	black
7352.15	812.8	1008.1	750.7	798.6	1202.4	448.4	857.2	77.5504352	816.466667	266.803686	1.04988977	0.07023786	0.86873123	0.06111457	2	0	black
7354.12	498.2	513.2	443.9	1131.9	2017	804	485.1	21.0501781	1317.63333	443.686209	0.36816009	-1.44159487	0.08346618	1.07848948	2	2	black
7373.16	743.8	1544.1	991.6	467.1	350.4	172.7	1093.16667	236.542359	330.066667	104.828248	3.31195718	1.72768402	0.03864495	1.41290727	1	1	red
7379.16	106.9	214.9	118.6	223.2	390.3	154.4	146.8	34.217101	255.966667	85.7829917	0.57351218	-0.80210398	0.23398393	0.63081397	2	0	black
7383.24	1525.5	1431.7	1554.8	3775.6	7278.3	3495.4	1504	37.1263159	4849.76667	1490.46278	0.31011801	-1.68911077	0.05147967	1.28836423	2	2	black
7384.3	1528.6	1352.6	1585.6	3949.7	7825.8	3616.1	1488.93333	70.1244925	5130.53333	1654.71584	0.29021024	-1.78482965	0.05456048	1.26312178	2	2	black
7399.26	124	80	93.7	386.7	920.6	321.7	99.2333333	12.9995299	543	232.371007	0.18275015	-2.45205548	0.07994808	1.09719195	2	2	black
7413.15	275.7	251.3	268.8	625.9	1336.7	636.5	265.266667	7.26184856	866.366667	288.04355	0.30618291	-1.70753434	0.06299572	1.20068896	2	2	black
7414.15	244	212.6	264.7	766.5	1535.9	701.6	240.433333	15.145333	1001.33333	328.157084	0.24011318	-2.05821348	0.04709141	1.32705831	1	2	blue
7419.24	248.1	225.9	184.9	1020.1	1034	978.6	219.633333	18.5113779	1010.9	20.3809961	0.21726514	-2.20247136	5.84E-06	5.23378498	1	2	blue
7430.22	128.2	126	90.2	1255.4	2241.8	816.5	114.8	12.3163848	1437.9	516.163593	0.07983865	-3.6467688	0.03491187	1.4570269	1	2	blue
7432.1	259.5	212.1	146.6	2364.5	4056.1	1505.9	206.066667	32.7307365	2642.16667	917.524957	0.07799155	-3.68053842	0.03141451	1.50286977	1	2	blue
7433.28	260.2	229	117.5	2412	3981.4	1517.8	202.233333	43.3134442	2637.06667	881.851034	0.07668875	-3.70484133	0.0279019	1.5543663	1	2	blue
7434.15	206.3	149	110.1	2046.7	3465	1303	155.133333	27.9393589	2271.56667	776.686798	0.06829354	-3.87210703	0.02899369	1.53769651	1	2	blue
7436.43	149.5	117.3	91.5	1093.2	1859.5	656.6	119.433333	16.7771008	1203.1	430.581357	0.09927133	-3.33247911	0.03697201	1.43212689	1	2	blue
7459.14	315.4	407.5	403.3	1508.9	1385	9.3	375.4	30.02449	967.733333	588.550611	0.38791678	-1.36618091	0.28601831	0.54360617	2	2	black
7462.08	910.5	1640.7	1238.3	5654.6	4975	2258	1263.16667	211.156951	4295.86667	1270.85394	0.29404234	-1.76590421	0.04574587	1.3396481	1	2	blue

7469.05	156.6	165.1	160.5	507.4	499.9	189.9	160.733333	2.45651062	399.066667	128.115345	0.40277314	-1.31196063	0.08499557	1.07060368	2	2	black
7471.74	1008.3	435.9	1232.7	478.2	349.5	230.9	892.3	237.216188	352.866667	87.4580566	2.52871717	1.33840569	0.09501034	1.02222915	2	1	black
7476.73	230.8	93.1	272.3	263.6	633.7	271.4	198.733333	54.1582968	389.566667	149.525956	0.51013947	-0.97103636	0.22626008	0.64539206	2	0	black
7479.05	138.8	102.5	112.5	430.2	877	315.6	117.933333	10.8253304	540.933333	209.748532	0.21801824	-2.19747925	0.06931616	1.15916551	2	2	black
7486.82	702	1687.1	681.6	1548.5	486.6	654.2	1023.56667	331.818928	896.433333	403.680346	1.14182129	0.19133687	0.7992082	0.09734007	2	0	black
7488.1	635.2	1547.7	636.7	1300.3	440.5	528.6	939.866667	303.916975	756.466667	334.482005	1.24244294	0.31317959	0.67678047	0.16955218	2	0	black
7495.38	219.6	145.5	269.5	169.2	246.2	91.5	211.533333	36.0222308	168.966667	54.6948962	1.25192346	0.32414636	0.49934858	0.30159618	2	0	black
7501.76	83.8	127.3	98.6	360.1	427.2	110.3	103.233333	12.7692774	299.2	118.084737	0.34503119	-1.53520129	0.11415645	0.94249956	2	2	black
7503.24	96	128.7	85.3	278.7	296	107.5	103.333333	13.054033	227.4	73.6777782	0.4544122	-1.13792654	0.11408738	0.9427624	2	2	black
7507.43	290.6	305.4	205.7	1059.8	667.6	350.1	267.233333	31.0618916	692.5	251.379723	0.38589651	-1.3737141	0.10986341	0.95914693	2	2	black
7510.15	268.6	265.2	218.2	886.6	486.8	278.4	250.666667	16.2629777	550.6	218.551641	0.45526093	-1.13523445	0.16947079	0.77090514	2	2	black
7518.6	81.5	65.8	67.3	165.5	294.2	107.8	71.5333333	5.00211067	189.166667	67.4771196	0.37814978	-1.40297032	0.10061905	0.99731978	2	2	black
7539.4	2202.3	1784.7	2496.7	8607.2	5527.4	2452.5	2161.23333	206.5598	5529.03333	2176.01528	0.3908881	-1.35517243	0.13284377	0.8766588	2	2	black
7546.82	171.7	144.6	189.8	722.3	1059.9	372.2	168.7	13.1340524	718.133333	243.152055	0.23491459	-2.08979176	0.05077496	1.29435042	2	2	black
7550.4	462.9	554.9	562.4	295.8	996.2	512.2	526.733333	31.9900158	601.4	253.581861	0.87584525	-0.19125211	0.73954895	0.13103307	2	0	black
7551.54	748.3	866.7	857.5	1250.7	2147.2	776.9	824.166667	38.0261898	1391.6	492.097617	0.59224394	-0.75573656	0.23245697	0.63365743	2	0	black
7552.38	891	1001.9	1069.7	1381.7	2289.8	885.2	987.533333	52.0839813	1518.9	503.658203	0.6501635	-0.62112554	0.26914021	0.57002141	2	0	black
7560.4	2076.9	2670.6	2656.2	3895.3	16703.4	4554.4	2467.9	195.544189	8384.36667	5099.67351	0.29434543	-1.76441787	0.22880785	0.64052908	2	2	black
7561.4	2089.9	2674.6	2639.2	3967.9	16591.1	4573	2467.9	189.276068	8377.33333	5034.43188	0.29459255	-1.76320714	0.22432236	0.64912744	2	2	black
7566.42	2061.8	2077.8	1821.2	2154.9	4429.8	855.8	1986.93333	82.9952877	2480.16667	1279.20245	0.80112896	-0.31989361	0.6623414	0.1789181	2	0	black
7567.44	2401.4	2728.3	2160.7	2047.4	1615.2	1044.3	2430.13333	164.480641	1568.96667	355.7777	1.54887506	0.63122077	0.06134713	1.21220574	2	0	black
7570.4	1574.1	1698.5	1452.5	1685.1	1229.2	656.7	1575.03333	71.0156164	1190.33333	364.372477	1.32318678	0.40401673	0.27690669	0.55766655	2	0	black
7576.4	6392.6	7942.7	7470	34626.6	49144.3	15343.7	7268.43333	458.684475	33038.2	11989.8374	0.22000089	-2.18441875	0.0582191	1.23493451	2	2	black
7577.43	6364	7993.9	7649.4	34971.8	49174.6	15363.2	7335.76667	495.956283	33169.8667	12004.9555	0.22115756	-2.17685356	0.0580507	1.2361925	2	2	black
7582.38	1142.7	1595.1	1339.9	5775.9	8510.2	2471.3	1359.23333	130.953902	5585.8	2138.24482	0.24333727	-2.03897078	0.07322795	1.1353231	2	2	black
7583.76	663.5	1063.1	828.6	3000.6	4747.9	1305.5	851.733333	115.933031	3018	1217.11883	0.2822178	-1.82511909	0.09633107	1.01623361	2	2	black
7592.74	208.5	307.1	222.9	685.4	722.5	290.9	246.166667	30.7489476	566.266667	169.13634	0.43471862	-1.20184619	0.0864418	1.06327619	2	2	black
7598.35	270.1	277.3	246.4	643.7	1604.9	496.4	264.6	9.33434518	915	425.673484	0.28918033	-1.78995868	0.13472947	0.8705374	2	2	black
7603.68	316.9	288.8	210.1	321.3	479	176.9	271.933333	31.9631211	325.733333	106.842977	0.83483422	-0.26043836	0.59358897	0.22651418	2	0	black
7613.35	504.4	548.5	465.6	1800.8	2962.2	935.2	506.166667	23.9474657	1899.4	719.19181	0.26648766	-1.90785935	0.07676818	1.11481878	2	2	black
7615.38	431.3	456.1	369.8	1287.3	2291.6	625.3	419.066667	25.6525719	1401.4	593.255017	0.2990343	-1.74161712	0.1128353	0.94755503	2	2	black
7640.34	101.6	216.4	115.5	198.5	219.8	113.4	144.5	36.1732406	177.233333	39.8085627	0.81530938	-0.29458047	0.53777411	0.26940011	2	0	black
7649.53	102	97.9	106.9	197.9	284.1	120.8	102.266667	2.6014953	200.933333	57.7651423	0.5089582	-0.97438093	0.10497657	0.97890764	2	0	black
7655.55	633.2	1187.9	1006	338.6	323.8	476.9	942.366667	163.258408	379.766667	59.7114869	2.48143597	1.31117523	0.02987801	1.52464835	1	1	red
7665.2	251.9	216.8	167.1	121.7	138.7	82	211.933333	24.6002936	114.133333	20.5750253	1.85689252	0.89289031	0.03041282	1.51694331	1	0	black
7674.3	275.8	315.4	274	599.2	1024	412	288.4	13.5099963	678.4	221.743636	0.42511792	-1.23406501	0.09819135	1.00792678	2	2	black
7687.44	172.2	241.8	214.7	617.5	490.1	459.8	209.566667	20.255068	522.466667	59.1735724	0.40111012	-1.31792973	0.00394813	2.40360837	1	2	blue

7689.48	150.3	233	178.3	971.9	1282	534.7	187.2	24.2846316	929.533333	265.481189	0.20139138	-2.31192617	0.02719413	1.56552475	1	2	blue
7690.4	144.8	287.7	360.6	1040.1	1584.9	565	264.366667	63.3791326	1063.33333	360.869674	0.24862069	-2.00798174	0.05692499	1.24469701	2	2	black
7701.48	843.3	1412.7	425.1	1027.4	4822.9	1601.9	893.7	286.207128	2484.06667	1446.56811	0.35977295	-1.47484136	0.26078577	0.58371612	2	2	black
7706.81	264.3	103.6	90.3	218.9	1578.9	510.1	152.733333	55.915303	769.3	506.353868	0.19853547	-2.33253135	0.21351203	0.67057764	2	2	black
7711.04	38.6	67.7	46	132.2	224.8	163.5	50.7666667	8.73199735	173.5	33.3068311	0.29260327	-1.77298222	0.01267544	1.89703684	1	2	blue
7735.56	75.6	85.4	89.7	1468.4	3216.9	331	83.5666667	4.17226291	1672.1	1027.91657	0.04997707	-4.32258973	0.13134254	0.88159457	2	2	black
7743.73	60.4	56.4	44.6	184.1	153.7	89.7	53.8	4.74271371	142.5	34.0728631	0.37754386	-1.40528384	0.03474833	1.45906606	1	2	blue
7745.46	57	62.7	32.3	147.2	294	89.2	50.6666667	9.32958258	176.8	74.6420793	0.28657617	-1.80300945	0.11021558	0.95775702	2	2	black
7753.53	342.3	304.1	430.5	543.2	1354.8	543.2	358.966667	37.4280347	813.733333	331.334313	0.44113551	-1.18070621	0.17121533	0.76645735	2	2	black
7755.48	39.4	36.1	82.2	865.9	1484.3	449.5	52.5666667	14.8472594	933.233333	368.173256	0.05632746	-4.15001768	0.04298462	1.3666869	1	2	blue
7767.3	81.5	94.3	88.2	2097.5	3053.5	918	88	3.69639464	2023	756.390359	0.04349975	-4.52284899	0.03508056	1.45493345	1	2	blue
7768.38	133.2	118.3	80.3	2673.3	3826.9	1155.5	110.6	15.7487566	2551.9	947.40381	0.04334026	-4.52814851	0.03433843	1.46421952	1	2	blue
7773.54	758.4	172.5	691.4	841.2	1570.7	737	540.766667	185.146342	1049.63333	321.206525	0.51519578	-0.95680731	0.18812408	0.72555561	2	0	black
7841.3	181.5	232.5	211.2	333.4	761.2	159.1	208.4	14.7888471	417.9	219.073378	0.4986839	-1.00380248	0.30794909	0.51152108	2	2	black
7846.55	3940.5	4837.8	4780.8	4395.5	15518.2	3099.9	4519.7	290.067078	7671.2	4827.06959	0.5891777	-0.76322526	0.46984546	0.32804497	2	0	black
7849.78	1880.2	2328.7	2279	2158.3	7562.4	1503	2162.63333	141.943608	3741.23333	2351.41878	0.57805358	-0.79072486	0.45827563	0.33887324	2	0	black
7874.52	47	69	63.7	88.9	1085.6	51.5	59.9	6.62897679	408.666667	414.746153	0.14657423	-2.77029667	0.36133432	0.44209079	2	2	black
7882.56	645.5	717.3	617.7	442.6	1851.1	355.8	660.166667	29.6725088	883.166667	593.529596	0.74749953	-0.41985543	0.66987153	0.17400848	2	0	black
7889.6	83.7	87.5	118.8	91.2	3044	93.5	96.6666667	11.1209012	1076.23333	1205.00634	0.08981943	-3.47682859	0.37581623	0.42502447	2	2	black
7904.52	151.3	212.1	107.3	70.5	285.3	87.5	156.9	30.3824511	147.766667	84.4358139	1.06180916	0.08652449	0.90935548	0.04126631	2	0	black
7944.54	471.2	444	487.2	88.9	1897.4	159.6	467.466667	12.6096964	715.3	724.316895	0.65352533	-0.61368495	0.69676125	0.15691601	2	0	black
7960.56	408.6	469.7	380.02	558.3	2063.4	476.7	419.44	26.4496679	1032.8	631.770097	0.40611929	-1.30002455	0.30072949	0.52182399	2	2	black
7973.52	68.4	67	47.9	160.8	305.4	129.4	61.1	6.61236216	198.533333	66.3771547	0.30775688	-1.70013697	0.06555499	1.18339422	2	2	black
8038.62	127.6	142.7	74	494.5	1561.4	330.4	114.766667	20.8442105	795.433333	472.631412	0.14428194	-2.79303734	0.15299062	0.81533519	2	2	black
8137.28					125.8												
8143.74					372.8												
8158.8					1169.5												
8201.8					1285.2												
8354.64	109.8	110.9	109.2	281.9	217.2	92.8	109.966667	0.49777282	197.3	67.95848	0.55735766	-0.84332468	0.1906339	0.71979987	2	0	black
8355.66	158.4	157.3	169.2	311	227	72.9	161.633333	3.79663594	203.633333	85.3885336	0.79374693	-0.33324899	0.57992066	0.23663142	2	0	black
8512.98		14.3	9.7		435.5												
8514.95		15.5	10.1		387.9												
9121.98	63.9																
9125.83	42		6.2														
9126.06	17.7		8.2			5.7											
9367.12	63.9		131.3														
9605.47					26.5												

9763.46					32.1												
9824.43				207.1	149	68.9											
10142.34		82.8	70.2	630.1	1261.1												
10154.34	298.4	273.7		562.1	497.7	128.1											
10155.3	312.2	352.2	34.1	555.6	468.2	127.3	232.833333	100.035333	383.7	160.024076	0.60681088	-0.72068115	0.41111837	0.38603312	2	0	black
10861.13		11.1	23.2	116.7													
10901.1	76.8	107.4	105.9	561.3	502.8	193	96.7	9.95941765	419.033333	139.95332	0.23076923	-2.11547722	0.04831118	1.31595232	1	2	blue
10902.08	84	99.1	112.1	583.3	409.4	194.6	98.4	8.11931853	395.766667	137.679562	0.24863135	-2.00791989	0.05767756	1.23899309	2	2	black
11584.23		7.5															
12832.3				254.3		89.4											
12931.28				66.2		40.4											
12947.2				69.7		28.3											
13781.04	66.6	49.4	77.4		14.8												
14098.08	187.7	239.5	231.8	659.2	420.2												
14193.68	16.2	14.3	73	24.4		19.5											
14275.84				187.3													
14357.28		67		62.8	109.7												
14482.44	37.7		48.3	599.6	557.3												
16038.81	21.5	17.1	24.1	29.1		34.7											
16052.84	30.3	127.6	81.2	118.8		101.5											
16068.86	14.8	21.6	23.5	43.5		51.1											
17130.7					30.7	33.9											
18969.9					45.4												
19017.9					20.2												
19069.8					28.7												

Por otra parte, se tenían disponibles los espectros experimentales obtenidos de la fracción I del veneno de *C. limpidus*, la cual es enriquecida en componentes de alto peso molecular. Estos resultados fueron analizados nuevamente usando como base datos la traducción de los transcritos obtenidos en el transcriptoma de la glándula venenosa de dicho alacrán, mostrando que los componentes presentes en la fracción I del veneno son codificados por los transcritos antes mencionados (Tabla 2, Anexo O).

Tabla 2. Anexo O. Componentes de alto peso molecular identificados en el veneno de *C. limpidus*.

Transcrito	Anotación
CliEnzSep15	serin- proteasa
CliEnzMtp05	antareasa snake
CliEnzMtp22	antareasa snake
CliEnzMtp20	antareasa snake
CliOthCAP05	Alergeno 5
CliEnzHya01	Hialuronidasa

Anexo P. Artículos derivados de la tesis

El articulo principal de la tesis con el nombre "Dissecting toxicity: The venom gland transcriptome and the venom proteome of the highly Venomous scorpion *Centruroides limpidus* (Karsch, 1879)". Se encuentra disponible en la siguiente url: <u>https://www.mdpi.com/2072-6651/11/5/247</u>

Adicionalmente se publicaron dos artículos derivados de algunos análisis de esta tesis, los cuales se encuentran disponibles en la siguientes url:

"Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found".

https://www.sciencedirect.com/science/article/pii/S0041010116306006?via%3Dihub "Scorpion venomics: a 2019 overview".

https://www.tandfonline.com/doi/full/10.1080/14789450.2020.1705158?scroll=top&nee dAccess=true

Article

Dissecting Toxicity: The Venom Gland Transcriptome and the Venom Proteome of the Highly Venomous Scorpion *Centruroides limpidus* (Karsch, 1879)

Jimena I. Cid-Uribe ¹, Erika P. Meneses ², Cesar V. F. Batista ², Ernesto Ortiz ^{1,*} and Lourival D. Possani ^{1,*}

- ¹ Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico; jcidu@ibt.unam.mx
- ² Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico; pkas@ibt.unam.mx (E.P.M.); fbatista@ibt.unam.mx (C.V.F.B.)
- * Correspondence: erne@ibt.unam.mx (E.O.); possani@ibt.unam.mx (L.D.P.)

Received: 12 April 2019; Accepted: 26 April 2019; Published: 30 April 2019

Abstract: Venom glands and soluble venom from the Mexican scorpion Centruroides limpidus (Karsch, 1879) were used for transcriptomic and proteomic analyses, respectively. An RNA-seq was performed by high-throughput sequencing with the Illumina platform. Approximately 80 million reads were obtained and assembled into 198,662 putative transcripts, of which 11,058 were annotated by similarity to sequences from available databases. A total of 192 venom-related sequences were identified, including Na⁺ and K⁺ channel-acting toxins, enzymes, host defense peptides, and other venom components. The most diverse transcripts were those potentially coding for ion channel-acting toxins, mainly those active on Na⁺ channels (NaScTx). Sequences corresponding to β - scorpion toxins active of K⁺ channels (KScTx) and λ -KScTx are here reported for the first time for a scorpion of the genus Centruroides. Mass fingerprint corroborated that NaScTx are the most abundant components in this venom. Liquid chromatography coupled to mass spectometry (LC-MS/MS) allowed the identification of 46 peptides matching sequences encoded in the transcriptome, confirming their expression in the venom. This study corroborates that, in the venom of toxic buthid scorpions, the more abundant and diverse components are ion channel-acting toxins, mainly NaScTx, while they lack the HDP diversity previously demonstrated for the non-buthid scorpions. The highly abundant and diverse antareases explain the pancreatitis observed after envenomation by this species.

Keywords: Centruroides limpidus Karch; proteome; scorpion; transcriptome; venom toxicity

Key Contribution: A detailed molecular dissection of the venom of the highly toxic buthid scorpion *Centruroides limpidus* through transcriptomic and proteomic analyses is reported. Ion channel-acting toxins are shown to be the most abundant and diverse components of the venom, especially the NaScTx. Two new families of KScTx are reported for the first time in a scorpion of the genus *Centruroides*: β -KScTx and λ -KScTx. Zn-metalloproteases of the antarease family are present in the venom, providing the molecular basis for the observed pancreatitis after envenomation by this species.

1. Introduction

Scorpion venoms are known to contain hundreds of pharmacologically active components, affecting many other animals, which constitute their preys, competitors and/or predators [1]. They have a cosmopolitan distribution with 2415 distinct species reported up to December 2018 [2], which are classified into twenty different families. The scorpions belonging to the family Butidae produce the

most active toxins that affect mammals, including humans [3,4]. Mexico harbors approximately 12% of the world's diversity of scorpions, with 281 different species thus far described, of which 21 are dangerous to humans [5]. Their medical importance drove the initial research towards the isolation and biochemical characterization of the toxic compounds present in their venoms, and the identification of their physiological effects. The more recent development of high-throughput methods for massive sequencing and mass spectrometry has impacted the number of identified venom components [6–13].

In Mexico, the scorpions dangerous to humans belong to the genus *Centruroides*, comprising 42 different species [4,5]. The best studied species are: Centruroides noxius, Centruroides suffusus, Centruroides tecomanus, and Centruroides limpidus. Centruroides limpidus (Karsch, 1879) (Figure 1A) is widely distributed in densely populated areas of Central Mexico, including the States of Guerrero, Morelos, Mexico State, Michoacán, Queretaro, Hidalgo, and Puebla (Figure 1B) [14], and has a tendency to live side by side with humans [15]. It produces a potent venom which is highly toxic for mammals (the LD_{50} in mice is approximately 15 μ g/20 g [16]) and poses a serious threat to human life. Even though it is practically impossible to single out the species involved in each envenomation case, C. limpidus and other closely related species of the Centruroides genus with which it shares its habitat, are responsible for over 120,000 reported accidents with humans in those states alone every year—a third of all scorpionism cases in the country [17]. Those high morbidity numbers alone justify the efforts made toward the characterization of the venom components responsible for human intoxication. The identification of the toxins present in this venom should impact, for example, the research aimed at the production of antivenoms [18]. Thus far, for *C. limpidus* alone, nine peptides have been biochemically characterized, and nine precursors for other putative toxins have been described [19–23]. It is clear, however, that the characterization of this venom is far from complete, as information on novel, potentially lethal toxins from this species continues to emerge [23]. A more comprehensive study was therefore required.

Figure 1. Habitus and distribution of *Centruroides limpidus*. (**A**) The morphology of *C. limpidus*, male (left) and female (right). (**B**) Geographical distribution of *C. limpidus* in 10 Mexican States (red dots indicate the places of sampling). (**B**) Reproduced with permission from [14] Copyright 2009, Universidad Nacional Autónoma de México.

This communication reports the transcriptomic and proteomic analyses of the venom glands and the soluble venom of the scorpion *C. limpidus*, respectively. The transcriptomic results showed 192 transcripts encoding proteins/peptides with sequences identified as authentic venom components. Among these sequences, five main categories of precursors were identified: toxins, host defense peptides (HDPs), protease inhibitors, enzymes, and other components. The peptides encoded by the 46 transcripts identified in the transcriptome analysis were confirmed to be expressed in the venom

by LC-MS/MS sequencing. They showed sequence similarity with previously reported scorpion venom components.

The relative abundance and diversity of ion channel-acting toxins, in particular those active on Na⁺ channels, is reported, confirming their responsibility in venom toxicity for mammals. The presence of several transcripts coding for antareases provide molecular support for the observed pancreatitis resulting from this species' envenomation. Toxins from families never before identified in *Centruroides* venoms are also reported.

2. Results and Discussion

2.1. RNA Isolation, Sequencing, and Assembly

Two groups of scorpions separated by gender (5 males and 5 females) were used for total RNA isolation. A total of 9 µg (males) and 8 µg (females) of RNA was obtained and its quality was assessed with a Bioanalyzer 2100 (Agilent), as reported in other transcriptomic analyses [7,10,12,24,25]. The results indicated that the RNA samples were not degraded, even though a single RNA band corresponding to the mitochondrial 18S was observed, an effect previously reported for other organisms [7,10,12,24,25]. Paired-end cDNA libraries were prepared for males and females separately and sequenced using the Illumina platform (2×72 bp reads). The two genders were sequenced independently to fulfill the requirements of a related project that focuses on the differential expression of venom components in both genders [26], and which the results of will be published elsewhere. Two datasets with 38,364,311 and 41,366,601 reads were obtained for males and females, respectively, which were submitted to the European Nucleotide Archive (ENA), under project PRJEB31683. In order to have a global, species-specific transcriptomic analysis, comparable with other published scorpion transcriptomes, both datasets were merged and jointly analyzed henceforth. After de novo RNA-seq assembly with the Trinity software, 198,662 putative transcripts were obtained, with an N50 of 1611. The annotation was performed with the Trinotate software, resulting in 11,058 annotated transcripts that were identified by sequence similarity with sequences deposited in the Uniprot database. The divergence between the large number of assembled transcripts and the smaller subset of sequences with annotation, reflects the lack of information on many scorpion venom components, and reinforces the need for further biochemical and functional characterization of the scorpion venoms. Among the annotated transcripts, 366 sequences had similarity with arachnid sequences, 227 were specific for scorpions, and 192 sequences were from components related to venom, in particular. The 192 venom-related sequences were analyzed by BLAST to identify the closest related matches by sequence. The transcripts described in this study were labeled following the previously suggested standard for transcript nomenclature [10]. The species code for C. limpidus was set to "Cli", the existing family and subtype codes were observed, and new ones were added for components not previously found in scorpion venoms. A complete listing of the 192 sequence IDs, organized by type/subtype, the ID of the closest matches (with E values), and their translated Open Reading Frame (ORF) is provided in Supplementary Materials Table S1. For the reference sequences, the original names found in the databases were honored.

2.2. The Diversity of Transcripts Related to Venom Components in the Venom Gland of C. limpidus

The identification of transcripts putatively coding for venom peptides/proteins in *C. limpidus* was initially based on Pfam domains [27]. The search for matching domains was not limited to scorpions, but broadened to include all venomous animals [28]. Four major categories were identified by this method: toxins, host defense peptides, enzymes, and protease inhibitors. A fifth heterogeneous category denominated as "other components" was designated to include annotated sequences without defined domain and function, as well as sequences with well-conserved domains, but without a defined function in venoms. Figure 2 shows the distribution of the annotated venom-related sequences grouped into these five categories, as percentages of the total 192. For this figure, the number of

individual sequences was considered, rather than their relative abundance in the transcriptome (and therefore the term "Diversity" was used in the graph). Each major category was further divided into subcategories, determined by the more specific, putative structural or functional classification of the peptides/proteins. The transcripts were also globally classified in accordance to Gene Ontology (GO) terms [29] (Supplementary Materials Figure S1).

Figure 2. Relative diversity of transcripts related to venom components. For the graphic, only the number of different transcripts identified for each category.

2.2.1. Ion Channel-Acting Toxins

Hundreds of toxic components have been described to be present in scorpion venoms [1]. Many of these are peptides known to affect ion channels from mammals, birds or arthropods (e.g., arachnids, insects or crustaceans), including sodium, potassium, calcium and chloride ion channels [30].

As shown in Figure 2, this category was the most diverse in terms of sequence in the transcriptome of *C. limpidus*, which did not come as a surprise, given the known high toxicity of this species to animals from different taxa. Eighty-five distinct sequences with conserved motifs or domains for ion channel-acting toxins were found, including 59 transcripts potentially coding for sodium channel-acting toxins (NaScTx) and 26 for putative potassium channel-acting toxins (KScTx). This is by far the largest number of toxin sequences reported for a scorpion of any species to date. Supplementary Materials Table S2 contains all the transcripts putatively coding for ion channel-acting toxins, together with the reference protein/transcript (the best match by sequence similarity), the source of the reference, plus its function if known.

Toxins Active on Voltage-Gated Sodium Channels (NaScTx)

Due to their central role in the intoxication process following envenomation, the scorpion toxins that affect voltage-gated sodium channels are the best characterized venom components, both biochemically and functionally. They are broadly subdivided into α -NaScTx and β -NaScTx, the former being known for slowing down the Na⁺ channel inactivation and binding to receptor site-3, while the latter shifts

the channels' opening kinetics to more negative potentials and bind to receptor site-4 [31]. Scorpion β -NaScTx are further classified as classical (active on mammalian Na⁺ channels), excitatory anti-insect, depressant anti-insect, and β -like (compete for binding sites on both insect and mammalian Na⁺ channels) toxins [32].

The genome sequences from a scorpion of the same genus, *Centruroides sculpturatus*, have been recently released as BioProject PRJNA422877 on NCBI. As expected, many of the transcripts recovered in this study had sequence similarity with sequences from *C. sculpturatus*. Sequences matching those of other scorpions were also found, not only of the *Centruroides* genus, but also from old-world scorpions of the genera *Isometrus*, *Lychas* and *Parabuthus*. In the particular case of the putative NaScTx, 45 transcripts were found to be similar to sequences from *C. sculpturatus*, seven to previously reported sequences from *C. limpidus*, three to those from *C. noxius*, and one to a similar sequence from each of the following species, *C. exilicauda*, *Centruroides vittatus*, *Parabuthus transvaalicus*, and *Lychas mucronatus* (Supplementary Materials Table S2).

The NaScTx are usually more abundant in scorpions of the family Buthidae, which produce highly neurotoxic venoms. Three previous high-throughput sequencing-derived transcriptomic analyses with scorpions belonging to this family (*Tityus bahiensis, Centruroides hentzi,* and *C. noxius* [6,8,33]), reported 27 to 38 transcripts potentially coding for NaScTx. This study found 59 transcripts of this kind, which represents the largest diversity so far described for scorpions of this, or any other taxonomic family. Of them, 16 transcripts putatively code for α -NaScTx and 43 for β -NaScTx (Supplementary Materials Table S2).

Figure 3A shows, as an example, a multiple-sequence alignment of CliNaTAlp03 and CliNaTAlp08, both annotated as possible α -NaScTx, with their best matches in terms of sequence similarity. Only the sequence region corresponding to the predicted mature toxin was used for the alignment, since the signal and propeptide regions were missing in the sequences of the peptides obtained directly from the venom. The peptides encoded by CliNaTAlp03 and CliNaTAlp08 were confirmed to be present in the venom by the proteomic analysis, and were the α -NaScTx with the highest identification scores by that analysis. CliNaTAlp03 matched with "precursor alpha-like toxin CsEv5" (XP_023210703) and the peptide itself (P58779) [34]. CliNaTAlp08 matched with "precursor alpha-like toxin CsE5" (XP_023242920) and the peptide itself (P46066) [35]. Here, and in all further alignments, the newly reported *C. limpidus* sequences are shown on top of the alignment for clarity.

Α	10	20 	30 	40 	50	60	%Identity
CliNaTAlp08	KKDGYIVDSGNCKYEC	L-RDDYCKD	MCLKRKADDGY	FLGKFSCY	CYGLPDNSPI	KTSGKCK	100
CliNaTAlp03	PNKGIS.	VISGKF.DT	E.KMSS	YSL	.EE.AK	/SG.ATST.G	47
P46066 C. sculpturatus	P	KN.	LEK	.YWV		NPA-	82
XP_023242920 C. sculpturatus	P	KN.	LEK	.YWV		NPAR	82
XP_023210703 C. sculpturatus	PKGLS.	V-ANNDN	Q.KMKSG.H	YAM	.EE.AK	/SDSATNI.G	46
P58779 C. sculpturatus	PKGLS.	V-ANN DN	Q.KMKSG.H	YAM	.EE.AK	/SDSATNI	45

В	10	20	30	40	50	60	
						.	%Identity
CliNaTBet31	KEGYLVNHSTGCKYECY	KLGDNDY	LRECKQQYGKG	AGGYCYAFG	CWCTHLYEQA	VVWPLPKKTCN	100
CliNaTBet32	F					N.R.K	91
CliNaTBet33	KG.F	W.K.EN	DK AKNQG.	SYS.A	EG.PDST	PTYN.S.S	55
P59899 C. limpidus				<mark>.</mark>			100
P59898 C. limpidus	F				N		97
Q7Z1K7 C. limpidus	KG.F	W.K.EN	DK AKNQG.	SYS.A	EG. PDST	PTYN.S.S	55
Q7YT61 C. limpidus	KG.F	W.K.EN	DM AKNQG.	SYS.A	EG.PDST	PTYN.S.S	55

Figure 3. Examples of Na⁺ channel-specific toxins. (**A**) Putative α -NaScTx and (**B**) Putative β -NaScTx. The transcript-derived peptides are aligned to their reference sequences. The percentage of identity was calculated considering only the mature sequences. Accession numbers and species' names of the references were taken from UniProt or GenBank. Conserved cysteine residues are highlighted in blue. Dots indicate identical residues, and dashes indicate gaps.

Three transcripts, CliNaTxBet31, CliNaTxBet32, and CliNaTxBet33 are shown in Figure 3B, aligned to the best matching reference sequences (mature peptides only). CliNaTxBet31 codes for Cll2b (P59899), a peptide found in the *C. limpidus* venom [21], which was confirmed by the proteomic analysis in this study (see below). Cll2b is toxic to mice and active on sodium and calcium channels in cultured chick dorsal root ganglion cells [21]. CliNaTxBet32 potentially codes for a peptide similar to Cll2b, but with six amino acid changes. Cll2b is very close in sequence to Cll2 (P59898), one of the major toxins of the *C. limpidus* venom [18,23], having only two differences at the amino acid level. Cll2 is a highly neurotoxic peptide for mammals [19]. CliNaTxBet33 matches the precursor of Cll5b (Q7Z1K7) and was here confirmed to be present in the venom by the proteomic analysis. A very similar sequence, Cll5c (Q7YT61), which differs from Cll5b by just one residue, is also included in the alignment. The remaining 40 transcripts found in this study are described in Supplementary Materials Table S2. These include four sequences with similarity to other previously reported sequences from *C. limpidus*.

Toxins Active on Potassium Channels (KScTx)

Potassium channels are the most widely distributed type of ion channels, found in basically all living organisms, where they play fundamental roles in the physiology of the cells [36–38]. Scorpion venoms contain toxins that affect these channels (KScTx), as demonstrated with insect and mammalian channels [37]. The KScTx have been classified into seven families (α , β , γ , δ , ε , κ , and λ) depending on their amino acid sequences, length, and 3D-structure [39–41]. They have been shown to be active on voltage-gated potassium channels (such as Kv1, Kv3, Kv4, Kv7, Kv11) and calcium-activated potassium channels (KCa1.1 or BK) [37].

This study reports 26 transcripts with sequence similarity to members of five families of KScTx: 15 sequences potentially coding for α -KScTx, 2 for β -KScTx, 3 for γ -KScTx, 3 for δ -KScTx, and 2 for λ -KScTx (Supplementary Materials Table S1).

Figure 4A shows two examples of the peptide sequences derived from the transcriptomic analysis in this study, which potentially correspond to α-KScTx. CliKTxAlp15 codes for a peptide confirmed to be expressed in the venom of *C. limpidus* by the proteomic analysis here reported. It is similar to alpha-KTx4.5 from *Tityus costatus* (Q5G8B6), a toxin found to inhibit with low potency the Kv1.1, Kv1.2, Kv1.3, and Kv11.1 (ERG1) channels [42]. CliKTxAlp07 potentially codes for a peptide similar to Noxiustoxin-2 (Q9TXD1), having only one difference at the amino acid level. Noxiustoxin-2 has a paralyzing effect on crickets but is not toxic to mice or crustaceans [43]. Two other similar sequences were included in the alignment, A0A218QXG2, a nucleotide sequence reported from *Tityus serrulatus* (only the predicted, translated mature region was included), and Noxiustoxin (P08815), a toxin from *C. noxius* that blocks several Kv and KCa channels [44]. The remaining 14 transcripts found in this study are summarized in Supplementary Materials Table S2, including CliKTxAlp10, which is similar to a previously reported toxin from this scorpion, ClITx1 (P45629).

One very relevant finding of this work is the description, for the first time, of potential β -KScTx in a scorpion from the *Centruroides* genus. Toxins of this family have been found in the venoms of buthid and non-buthid scorpions from the genera *Androctonus*, *Euscorpiops*, *Heterometrus*, *Hoffmannihadrurus*, *Liocheles*, *Mesobuthus*, *Pandinus*, and *Tityus*, but never before in *Centruroides*. Toxins of the β -KScTx family are active on Kv1.1, Kv1.3 or Kv4.2 mammalian channels [45]. Two transcripts were found in the venom gland of *C. limpidus* coding for peptides that were confirmed to be expressed in the venom by the proteomic analysis. CliKTxBet01 displayed sequence similarity with a DNA sequence from *C. sculpturatus* (XP_023220228) and with toxin TdiKIK (Q0GY43) from *Tityus discrepans*. CliKTxBet02 was similar to another DNA sequence from *C. sculpturatus* (XP_023220230) and to the "Scorpine-like peptide Tco 41.46-2" from *T. costatus*. The putative β -KScTx here described are shown aligned to the reference sequences (only the predicted mature sequences) in Figure 4B.

A	10	20	30	40	
			I I	I	%Identity
CliKtxAlp15	VFIDKKCSSSSECWPACK	KAVGTFQ	G-KCMNGGCK	CYP	100
CliKtxAlp07	TI.NEFAT.Q.FTP	I.SL.	SK	NIG	54
Q5G8B6 T. costatus	NVRG.PL.K	E.I.KSA	ĸ		65
A0A218QXG2 T serrulatus	NARG.PQ.L.K	E.I.KAA	ĸ		62
Q9TXD1 C. noxius	TI.NEFAT.QTP	I.SL.	sĸ	N-G	57
P08815 C. noxius	TI.NVT.PKQ.SKP	ELY.SSA	.AK	N-N	49

В

D	10	20	30	40	50	60	70	
					1		.	%Identity
CliKtxBet01	GRGKEIMNKIKKKLA-	DAKVTVK	GAWDKLTSKSE	YACPVIEKF	CEDHCA-AKE	TVGKCEDFKCI	LCLKPE	100
CliKtxBet02	. LREKHVQ . LLSLVVP	EGQLRKILQ	MVVHAAQ	FG.LY.GY	TQDITN	KD.D.HGMH	K.E	27
XP_023220228 C. sculpturatus	s				–	SI		96
Q0GY43 T. discrepans	.KVLGNV-	EV.EKI.	AG	D	N	ΆΙ D ς	2NS-	68
XP_023220230 C. sculpturatus	. LREKHVQ . LLSLVVP	EGQLRKILQ	MVVHAAQ	FG.LY.GY	TQDISN	KD.D.HGT	K.E	27
Q5G8A6 T. costatus	. LREKHVQ.LVAIP	NDQLRSIL.	AVVHVA.TÇ	FG.AY.GY	.NN. QDIER	KD.E.HGH	K.A.D-	27

	10 20 30 40	
		%Identity
CliKtxGam01	DRDSCVDKSRCSKYGYYQECQDCCKKAGHNGGTCMFFKCKC-A	100
CliKtxGam02		71
CliKtxGam03	AKTHLKGF.KN.SEREFEY.TMKT	52
Q86QV0 C. limpidus		100
POC893 C. elegans	I	98
Q86QT3 C. noxius	N	95
XP_023241648 C. sculpturatus	AKRHLKGF.KN.SEREFEY.TMKT	52

D

D	10	20	30	40	50	60	
			.				%Identity
CliKtxDel01	DDDVDCSLPPDSGLCL	ALFPRYYYN	AKSGKCESFTY	GGCGGNSNNI	ENKNE <mark>CC</mark> KA	CGDDRC	100
CliKtxDel03	-E	.Y.RD	P.FDKV.IF	N	GSME	KGQ . KTG	63
CliKtxDel02	-QENAET.P.K	.A.RQH.	SGI.I.	RR	SSLDSH	.FAKN	53
XP_015905918 P. tepidariorum	EEAET.M.M	HK.A.D	.DLKQ.V.	G.K	NTEE.E	К	58
PODJ50 M. martensii	-EGTS.T.R.K	.Y.IF	Q.A.E.QK.V.	E	LT.SDQ	.SPGK	57
XP_023217495 C. sculpturatus	-QGNSET.P.K	.A.RQH.	SEN.I.I.	RR	VSLESH	.SAKN	52

E	10	20	30	40	
					%Identity
CliKtxLam01	CNRLGKSCDSD	SDCCRYGER	CLSS-GRKYV	CKMDQGP	100
CliKtxLam02	NP	NТ	N.KD.F	SV.P	72
F1CIZ6 H. judaicus	SK.N	G	VG.Y	P.F	78
P86399 L. mucronatus	GN.K.N	A	I.TVN.Y	.RP.F	67
PODJLO I. maculatus	SQPTE KY. RP. N	RWEY.	E.T	Q.P	62
A0A088DAF5 M. eupeus	GS.PSP.N.N	RPH	A KG. F	Q.P	61

Figure 4. Examples of K⁺ channel-specific toxins. (A–E) show the alignments of the transcript-derived sequences of members of the α , β , γ , δ , and λ -KScTx families, respectively, with the reference sequences. The percentage of identity was calculated considering only the mature sequences. Accession numbers and species' names of the references were taken from UniProt or GenBank. Conserved cysteine residues are highlighted in blue. Dots indicate identical residues, and dashes indicate gaps.

The γ -KScTx are short-chain peptides of 36–47 amino acid residues. Structurally, they have a cysteine-stabilized $\alpha\beta$ (CS α/β) motif, with three or four disulfide bridges. The γ -KScTx are capable of blocking the ERG K⁺ channels. Three new sequences, potentially coding for γ -KScTx are reported here (Figure 4). CliKTxGam01 codes for a peptide identical to CllErg1 (Q86QV0) isolated from the venom of *C. limpidus*, though never tested on ion channels. It is also closely related to CeErgTx5, from *Centruroides elegans*, differing in just one amino acid. CeErgTx5 is active on mammalian ERG K⁺ channels [46]. CliKTxGam02 is similar to CnErg1 (Q86QT3) identified in the venom of *C. noxius*, a peptide with activity on mammalian ERG K⁺ channels [47]. CliKTxGam03 is closest in sequence to "potassium channel toxin gamma-KTx 1.1-like" (XP_023241648), derived from the genome sequences of *C. sculpturatus* (only the predicted mature sequence was considered in the alignment in Figure 4C). The three putative sequences, here reported, contained the functionally relevant K13, involved in the interaction with the outer vestibule of the channel [48]. Two other residues, demonstrated to be relevant for the interaction of γ -KScTx with the channels, are Q18 and M35 [49]. Only CliKTxGam01

has those residues conserved (Figure 4C), which might have implications in the functionality of the peptides derived from CliKTxGam02 and CliKTxGam03 if they happen to be indeed expressed in

the venom. The δ -KScTx are peptides with 59–70 amino acid residues. They are structurally characterized by the presence of a CS α/β motif of the Kunitz type, stabilized by three disulfide bonds [50]. They display a dual activity: as serine protease inhibitors and as blockers of the Kv channels, mainly the Kv1.3, though other channels can also be weekly inhibited. Three different transcripts are here described, which are shown aligned to reference sequences in Figure 4D. CliKTxDel01 is similar to "Kunitz-type serine protease inhibitor BmKTT-2" (P0DJ50), a peptide from *M. martensii* which completely inhibits trypsin and blocks the murine Kv1.3. CliKTxDel02 shares sequence similarity with a genome sequence from *C. sculpturatus* labeled as "isoinhibitor K-like" (XP_023217495). CliKTxDel03 was found to be similar to a genome sequence from the spider *Paraestatoda tepidariorum* annotated as "hemolymph trypsin inhibitor B-like isoform X2" (XP_015905918). The genome-derived sequences used in the alignment in Figure 4 are limited to the predicted mature sequences.

It is very relevant that no transcripts coding for calcium channel-specific toxins of the calcin family (active on the ryanodine receptors of mammalian cardiac or skeletal muscle cells) were found in the analysis, while two transcripts are here reported for the phylogenetically related, insect-specific λ -KScTx family. The λ -KScTx are short (approximately 40 amino acids) peptides which adopt an inhibitor cystine knot (ICK) fold. Both CliKTxLam01 and CliKTxLam02 code for the first λ -KScTx ever described for the genus *Centruroides*. Their finding in a buthid scorpion confirms the proposition that calcins and λ -KScTx are specific for non-buthid families and the buthid family, respectively, being mutually exclusive in those venoms [51]. In order to confirm that CliKTxLam01 and CliKTxLam02 are indeed λ -KScTx and not the structurally related calcins, these two sequences were incorporated into a phylogenetic analysis with those in Reference [51] by Carlos Santibáñez-López (see Acknowledgements) and shown to group with other buthid λ -KScTx and not the non-buthid calcins (Supplementary Materials Figure S2). CliKTxLam01 has sequence similarity with "phi-buthitoxin-Hj1a" (F1CIZ6), derived from a transcript from Hottentotta judaicus. CliKTxLam02 matched by sequence similarity the "potassium channel blocker pMeKTx30-1" (A0A088DAF5), derived from a transcript from Mesobuthus eupeus. These sequences are shown aligned in Figure 4E. Only two tested K⁺ channel blockers belonging to the λ-KScTx family have been reported thus far: ImKTx1 from *Isometrus maculatus* (P0DJL0) [52] and Neurotoxin lambda-MeuTx from M. eupeus (P86399) [53]. They are also included in the alignment for reference.

2.2.2. Host Defense Peptides (HDPs)

Arachnid venoms are rich sources of host defense peptides (HDPs) [54]. They are characterized by having a broad spectrum of biological activities, including antimicrobial [55–57], insecticidal [58], bradykinin-potentiating [59], antitumoral [60,61], and hemolytic [62], among others. Host defense peptides have been demonstrated to be abundant and highly diverse in the venoms of scorpions belonging to non-Buthidae families [7,24,25], though a previous study with high-throughput sequencing techniques also identified HDPs in the buthid C. hentzi [8]. Host defense peptides are divided into two categories: non-disulfide-bridged-peptides (NDBPs) and cysteine-stabilized β-sheet-rich peptides, which include the defensins and scorpines [54]. Though just one HDP (a defensin whose expression is induced in the hemolymph in response to septic injury) had been reported from *C. limpidus* [63], a mass fingerprint of the venom revealed components with lower molecular weights than KScTx, indicating the potential presence of HDPs [26]. This analysis confirms that conclusion. Ten transcripts coding for HDPs were found: six defensins, one NDBP-2, two NDBP-4, and one anionic peptide. Nevertheless, compared to the above referenced studies by massive RNA sequencing of non-buthid scorpions, the diversity here described for the HDPs was significantly lower, confirming the previous empiric observation that, contrary to the ion channel-acting toxins, HDP are more diverse in non-buthid scorpions than in buthids.

CliHDPDef01 is actually the transcript coding for Cll-dlp (Q6GU94), the previously reported hemolymph defensin. It is notable that the same defense peptide is expressed in both tissues. The remaining five defensin transcripts, CliHDPDef02–CliHDPDef06, have similarity to Defensin-1 (A0A0K0LBV1), a transcript from *Androctonus bicolor* [64]. Both CliHDPDef01 and CliHDPDef02 are shown in Figure 5A, aligned to the reference sequences. Since the complete precursors for all the sequences are available, they were used in the alignment and included in the calculated percentage of identity.

A CliHDPDef01 CliHDPDef02 Q6GU94 <i>c.limpidus</i> A0A0K0LEV1 A. bicolor	10 III MKAIVVLLILALILCLY IVAFLFVF.TI 	20 	30 CQFWSCNSS .P.NQGA.HKH .P.NQGR.HRH	40 SCISRGYRQGY H.Q.IRK.G.	50 	60 % 2CQ R.Y A.YRK	Identity 100 39 100 46	
B CliHDPND201 A0A146CJEO M. eupeus Q9Y0X4 M. martensii	10 MKGKTLLVVLLVALLIJ .NKIFI.TM NKIFF.TM	20 ll AEEVNGFKFGG 7Dss 7Ds.Rs	30 	40 AKKLRAKGREN K.1 SKQI	50 MIKDYANRVLJ .LK]	60 	70 % AERRR .K	Identity 100 73 69
C CliHDPND401 CliHDPND402 A0A1D3IXJ5 T. obscurus S6D3A7 T. serrulatus	10 III MOFKKQLLVIFFAYFLW .IH.I.VVVLI IH.ITLVLI	20 / <u>INESEA</u> FLGS: <u>ADHCH.</u> .F.L <u>V</u> F.T <u>ADHCH.</u> M	30 LFSLGSKLLPS IPS.VGG KI.C IPG.IGG	40 SVFKLFQ.RKK: SLISA.KGRRI 3.MSK1 SLISA.KGRRI	50 SRSINKRDLE K. DLTA-Q. N E LM E. K K. E. TS-QI.	60 	70 EMERFLKQLPM FREDN1 'LEL L.NL.ANV	. %Identity MY 100 G. 30 G. 75 7. 33
D CliHDPAni01 XP_023227050 C. sculpturatus JK483720 T. stigmurus	10 	20 	30 	40 	50 	60 LDMWANMLEN MDS	70 	Identity 100 99 87

Figure 5. Examples of host defense peptides (HDPs). The translated sequences from representative transcripts coding for HDPs found in the *C. limpidus* transcriptome are shown aligned to matching sequences from databases. The complete precursor sequences are shown and the complete precursor was considered in the calculation of the percentage of identity. (**A**) Defensins. (**B**) The unique NDBP-2 precursor found. (**C**) Two putative NDBP-4 precursors. (**D**) The unique precursor for the putative anionic peptide. Accession numbers and species' names of the references were taken from UniProt or GenBank. Conserved cysteine residues are highlighted in blue. The predicted mature sequences are indicated in bold typeface, the predicted signal peptides are underlined and the propeptides are indicated in italics. Dots indicate identical residues and dashes indicate gaps.

Transcripts with sequence similarity to members of families NDBP-2 and NDBP-4 were also found. CliHDPND201 had similarity to "venom toxin meuTx20" (A0A146CJE0) deduced from a transcript from *M. eupeus*, and with BmKbpp (Q9Y0X4), a peptide from *M. martensii* with antimicrobial and bradykinin-potentiating activities against bacteria and fungi [65]. The precursor sequence of these three molecules are shown aligned in Figure 5B. CliHDPND401 has similarity to ToAP2 (A0A1D3IXJ5), a transcript isolated from the venom of *Tityus obscurus*. Synthetic ToAP2 displayed antimicrobial activity, both in vitro and in vivo [66]. CliHDPND402 is similar to peptide TsAP2 (S6D3A7), an antibacterial, antifungal, anticancer, and hemolytic peptide isolated from *T. serrulatus* [61]. The precursor sequences of these NDBP-4 are shown aligned in Figure 5C.

A transcript for a putative anionic HDP without disulfide bridges is also reported. CliHDPAni01 shows similarities to the genome-derived sequence XP_023227050 from *C. sculpturatus*, and with TanP (GeneBank ID of the transcript: JK483720), a peptide isolated from the venom of *Tityus stigmurus* [67]. The predicted precursors translated from these sequences, are shown aligned in Figure 5D.

2.2.3. Enzymes

Enzymes are essential components of many animal venoms. Thought more abundant in snakes [68,69], enzymes have been discovered in venoms from many taxa, including ants [70],

jellyfish [71], wasps [72], spiders [73], and scorpions [74]. Scorpions, in particular, were shown to contain proteases [75], phospholipases [76], and hyaluronidases [77] in their venoms by classical studies. More recently, high-throughput transcriptomic analyses with venom glands have reported the existence of transcripts putatively coding for other enzymes never before reported in scorpion venoms, e.g., 5'nucleotidases in non-buthid scorpions [10,12,24].

The venom gland of *C. limpidus* was found in this study to be rich in terms of transcripts putatively coding for enzymes. Forty-nine different sequences potentially coding for enzymes are here reported. Thirty-eight corresponded to proteases, seven to phospholipases, three to 5'nucleotidases, and one to a putative hyaluronidase. All of them were annotated by sequence similarity to genome-derived sequences from *C. sculpturatus*. They are all reported in detail in Supplementary Materials Tables S1 and S2, together with the reference genomic sequences.

The large number of protease-encoding sequences in this scorpion is remarkable. It is particularly rich in transcripts for metalloproteases, with 24 out of the 38 transcripts potentially coding for proteases, being for metalloproteases (the remaining 14 are for serine proteases). It is also noticeable that the most diverse metalloprotease transcripts are those coding for antarease-type Zn-metalloproteases, 14 out of 24. Antarease was first described in the venom of *T. serrulatus* [78]. The envenomation by *Tityus* species can lead to the development of acute pancreatitis [79–83]. Venoms from *Tityus* scorpions are potent secretagogues that can elicit the release of secretory proteins from the pancreas [80,84–86]. Antarease was shown to specifically cleave the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) involved in pancreatic secretion, disrupting the normal vesicular traffic [78]. Antarease could, therefore, be responsible for the acute pancreatitis induced by the T. serrulatus venom. Antarease-like enzymes were shown thereafter to be ubiquitous in the venoms of different scorpion genera [74]. The venom from *C. limpidus* was also shown to elicit manifestations associated with pancreatitis and to act as a secretagogue for amylase in the mouse pancreas [87]. The abundance of transcripts coding for antareases in *C. limpidus* could be an indicative of the prominent role of these enzymes in the manifestation of pancreatitis after scorpion envenomation by this species. The presence of antareases in the venom was here confirmed by the proteomic analysis. The proteins encoded by CliEnzMtp15, CliEnzMtp19, CliEnzMtp20, and CliEnzMtp21 were found by LC-MS/MS.

The other found transcripts, potentially coding for disintegrins, reprolysins, an astacin, and an angiotensin-converting enzyme complete the picture of the metalloproteases putatively expressed in this venom (Supplementary Materials Table S2). The astacin (CliEnzMtp23) and the angiotensin-converting enzyme (CliEnzMtp24) were also confirmed to be present in the venom by LC-MS/MS.

It is intriguing that, even though transcripts potentially coding for phospholipases A2 and D2 were found in the transcriptomic analysis (Supplementary Materials Table S2), none were confirmed by the proteomic analysis. The inability to detect them in the proteome seems to correlate with the absence of phospholipase activity in the *C. limpidus* crude venom [26] as assayed by the egg-yolk method of Haberman and Hard, which detects phospholipases A, B, and C [88]. Nevertheless, it should be kept in mind that this transcriptomic analysis is descriptive and not quantitative. Therefore, no inferences can be derived from the transcript detection about the transcript and protein levels in the gland and the venom, respectively.

An interesting family of enzymes, just recently identified in scorpion venoms are the 5'nucleotidases. They were initially found in snake venoms where they seem to be ubiquitous [89]. They are known to endogenously liberate purines, which potentiate venom-induced hypotension and paralysis via purine receptors [89]. In addition, they can synergistically interact with other venom proteins, contributing to the overall effects of venoms [89]. The presence of 5'nucleotidases in non-buthid scorpion venoms was demonstrated for *Paravaejovis schwenkmeyeri*, *Thorellius atrox*, and *Megacormus gertschi* [10,12,24]. This study confirms that this enzyme could also be present in a buthid scorpion venom—at least its mRNA is transcribed in the gland—suggesting that these enzymes could also be ubiquitous in scorpion venoms. Three transcripts for *C. limpidus* 5'nucleotidases are reported in Supplementary Materials Table S2.

It was previously shown that the *C. limpidus* crude venom contains active hyaluronidases [26]. A single transcript encoding for a hyaluronidase, CliEnzHya01 (Supplementary Materials Table S2), was found in the present study. Noticeably, its presence in the venom was confirmed by the proteomic analysis. By degrading hyaluronic acid from the extracellular matrix [90], this enzyme could facilitate venom spreading [91].

2.2.4. Other Venom Components

Besides the ones described above, other components frequently found in scorpion venoms were also detected in this analysis (Supplementary Materials Table S1).

Protease inhibitors, which, in principle, protect the venom components from autogenous degradation by venom proteases [69], though might also inhibit enzymes in the targets' tissues with neurological consequences [92], were very diverse in terms of transcripts in *C. limpidus*. Nineteen precursors encoding potential protease inhibitors were found, 13 of the Ascaris-type [93], two of the Kunitz-type [94], and four serpins [95].

Ascaris-type protease inhibitors are serine protease inhibitors, which have a Trypsin-Inhibitor-Like (TIL) domain. They are long-chain peptides with approximately 60 amino acid residues, stabilized by five disulfide bonds [96]. Recombinant SjAPI was the first functionally characterized Ascaris-type protease inhibitor from animal venoms [93]. It inhibits chymotrypsin and elastase while being inactive on trypsin. Three transcripts described here (CliPInTIL01–CliPInTIL03) have sequence similarity with classical Ascaris-type protease inhibitors from scorpion venoms or transcriptomes. Ten others, (CliPInTIL04–CliPInTIL13), with conserved TIL domain, but which are larger (ca 14 kDa instead of the classical ca 6 kDa) and have more disulfide bridges than the classical inhibitors (up to five extra disulfides), are also reported. A fourteenth sequence with a TIL domain (annotated here as CliPInTIL14) was detected in the proteomic analysis but had no matching transcript. It was annotated within this group due to the presence of the TIL domain, but it is a much larger protein (ca 210 kDa).

Kunitz-type protease inhibitors have been described in scorpion venoms [94]. The transcripts here reported (CliPInKun01 and CliPInKun02) were similar to genome sequences from *C. sculpturatus*. Members of the superfamily of serine proteinase inhibitors (serpins) from venomous animals have been poorly studied [95,97]. Four transcripts encoding serpins, CliPInSrp01–CliPInSrp04 are here reported, which also have sequence similarities with genome sequences from *C. sculpturatus*.

The CAP superfamily proteins are well distributed in all organisms, where they display a variety of functions [98]. This superfamily includes three major groups of proteins: cysteine-rich secretory proteins (CRISP), antigen or allergen proteins from arthropod venoms, and pathogenesis-related proteins from plants (PR) [99]. The CRISP proteins and antigen/allergen proteins have been described in venoms [100]. There are reports showing that CRISP proteins can interact with ion channels [101,102]. Six precursors coding for CAP-like proteins are here reported, CliOthCAP01–CliOthCAP06 (Supplementary Materials Table S1). They all code for putative proteins with a Pfam domain corresponding to the CAP superfamily and the transcripts are similar to genome sequences from *C. sculpturatus*. Both CliOthCAP02 and CliOthCAP05 were confirmed to be expressed in the venom by the proteomic analysis.

Transcripts for Insuline Growth Factor Binding Proteins (IGFBPs) have been found in scorpion venom glands [7,8,12,33,64,103,104], though the function of IGFBPs in venoms has not been established. Ten putative IGFBP transcripts are reported for *C. limpidus* (Supplementary Materials Table S1). All of them matched genomic sequences from *C. sculpturatus*, except for CliOthIGF10, which was similar to a peptide annotated as "Venom toxin" (A0A1L4BJ69) from *Hemiscorpius lepturus*.

The first described La1 peptide was found in the venom of *Liocheles australiase* [105]. Peptides with similar amino acid sequences were thereafter annotated as "La1-like" peptides. They are usually long-chain peptides containing 73–100 amino acids, stabilized by four disulfide linkages, with a conserved single domain von Willebrand factor-type C (SVWC) structural motive. Transcripts for La1-like peptides have been identified in buthid [8] and non-buthid scorpions [7,10,12,24,104]. Six transcripts are here reported with those features, assumed to code for La1-like peptides

12 of 21

(Supplementary Materials Table S1). Of them, only CliOthLa106 was confirmed to be expressed as protein in the venom. Noticeably, CliOthLa106 is the only transcript among the six, which codes for a long-chain-type La1-like [24] (Supplementary Materials Table S1).

Other orphan transcripts with ORF coding for putative peptides with no conserved structural domains, nor a known function, were also found. Since similar sequences had been described in other scorpion transcriptomic analyses or were directly identified in the *C. limpidus* venom, they were grouped as "undefined peptides" and annotated as CliOthUnd01–CliOthUnd05. Not much information can be provided on them, except for the reference sequences they are similar with (Supplementary Materials Table S1).

2.3. Proteomic Exploration of the Venom Components of C. limpidus

2.3.1. Mass Fingerprint of the Soluble Venom

The soluble fraction of the whole venom from sixty scorpions of mixed gender was used for the proteomic analysis. An aliquot of the soluble venom was applied to an HPLC coupled to a mass spectrometer, as previously reported [26]. The mass fingerprint detected 395 individual masses, ranging from 800 to 19,000 Da (Supplementary Materials Table S3 and Figure 6). The mass range with the largest number of individual masses detected was the one which spans 7001 to 8000 Da, which is within the expected range for the Na⁺ channel-acting scorpion toxins. This mass group was followed, in the number of independent masses, by the 4001 to 5000 Da range, which are the characteristic masses of K⁺ channel-acting scorpion toxins. This mass distribution corroborates the findings by the transcriptomic analysis pointing to the ion channel-acting toxins as the most diverse components in the venom of the highly toxic *C. limpidus*. It is relevant to note that, although transcripts potentially coding for enzymes were highly diverse in accordance to the transcriptomic analysis, the used setup for the mass fingerprint cannot precisely detect the mass of high molecular weight components (approximately above 10,000 Da) [24], so all those components are shown grouped in Figure 6.

Figure 6. Distribution of the *C. limpidus* venom components detected by mass fingerprint with respect to their molecular masses.

2.3.2. Identification of Peptides by LC-MS/MS

The peptides identified by LC-MS/MS, which also matched the sequences discovered by the transcriptomic analysis, were mentioned above in the description of the corresponding transcripts. This section summarizes those findings (Supplementary Materials Table S4).

From a total of 52 identified sequences, 46 corresponded to molecular entities annotated as venom-related peptides/proteins. The remaining sequences corresponded to enzymes or proteins related to cellular processes, or without an identifiable conserved domain or structural motif. In correlation with the results of the transcriptomic and mass fingerprint analyses, the largest class of MS/MS-recovered sequences corresponded to toxins that affect ion channels, of which 26 were Na⁺ channel-acting toxins (7 α -type and 19 β -type, by sequence similarity) and three K⁺ channel-acting toxins. Tryptic peptides from eight enzymes were also recovered. Other venom components were also detected, but to a lesser extent. This includes two HDPs, one Ascaris-type protease inhibitor (though this is a protein much larger than the typical sequences of this kind, as discussed in the transcriptomic section), two proteins of the CAP superfamily, and one La1-like peptide of the long-chain type.

2.4. The Venom of the Highly Toxic C. limpidus versus the Venoms of Non-buthid Scorpions

Two other transcriptomic/proteomic analyses from scorpions of the genus *Centruroides* have already been published [6,8]. It would be interesting to compare these venoms in terms of their composition to try to define a possible pattern that would differentiate toxic from non-toxic species within this genus (C. limpidus and C. noxius are highly toxic to mammals while C. hentzi is not). However, even minor differences in sample preparation, cDNA library construction, cDNA sequencing protocol, MS/MS protocol or the bioinformatics analysis could lead to inaccurate conclusions. Nevertheless, the results here reported are comparable with those generated for other non-buthid scorpions under the exact same experimental protocol. That is the case for the analyses performed with Serradigitus gertschi, Superstitionia donensis, T. atrox, P. schwenkmeyeri, and M. gertschi [7,10,12,24,25]. As Figure 7A illustrates, the venom of *C. limpidus* is characterized by the highest diversity of toxins, in general. This is remarkable, considering also that no Ca²⁺ channel-acting toxins were recovered for the buthid species, so only two super-families, the NaScTx and the KScTx, are present in the venom. The fraction of recovered transcripts related to Na⁺ channel-acting toxins equals or surpasses the fraction of all toxins in the non-buthids, taken together. It is also relevant that the fraction of NaScTx in *C. limpidus* is larger than the fraction of KScTx, while for the non-buthids it is the other way around. It is well established that the toxicity of the scorpion venoms is primordially related to the neurotoxic action of the NaScTx [16,18]. It is well known that the neutralization of the main NaScTx in scorpion venoms results in the neutralization of the whole venom toxicity [106,107]. It is remarkable that, in the highly toxic *C. noxius*, the NaScTx are also more abundant and diverse than the KScTx [6,108], while in the non-lethal C. hentzi, the transcripts for NaScTx and KScTx are more or less equally diverse [8] (although, in absolute numbers, not comparable with the abundances here reported, as indicated above).

Figure 7. Comparative diversity of the transcripts coding for toxins (**A**), HDPs (**B**), and enzymes (**C**) found in *C. limpidus* versus those from non-buthid species reported in other transcriptomic analyses.

Figure 7B confirms that, on the contrary, the venoms from the non-toxic, non-buthid scorpions seem to be more diverse in terms of HDPs, with respect to the buthids, as proposed above in Section 2.2.2. Additionally, no direct link seems to exist between enzyme diversity and venom toxicity, according to the results charted in Figure 7C.

3. Conclusions

A total of 192 transcripts were identified in the present transcriptomic analysis. These sequences are assumed to code for Na⁺ and K⁺ channel-acting toxins, enzymes, HDPs, protease inhibitors, CAP-super-sfamily proteins, IGFBP, La-1-like peptides, and other orphan venom components. Mass fingerprint of the venom resulted in the detection of 395 individual components, the most abundant of which were peptides with molecular weights in the range of 7000 to 8000 Da, which are known to correspond to Na⁺ channel-acting toxins. The LC-MS/MS of the tryptically-digested venom confirmed that at least 46 of the venom-related, transcript-encoded proteins are indeed expressed in the venom.

The molecular dissection of the venom components from the highly toxic buthid scorpion *C. limpidus* revealed that the most abundant (from the mass fingerprint) and most diverse (from the transcriptomic and MS/MS analyses) venom components are the neurotoxic NaScTx. The fraction of toxins (most notably, the NaScTx) is significantly higher in *C. limpidus* than in other non-toxic, non-buthid scorpions from different genera. These findings correlate with classical biochemical and physiological observations on the relevance of the neurotoxic NaScTx in the toxicity of the scorpion venoms for mammals. It also reveals that the efforts directed at generating neutralizing antivenoms from toxin-specific human antibodies or their fragments might require a larger number of antibodies in the cocktail, depending on their effective cross-reactivity.

Molecular support for the observed pancreatitis after envenomation by this species is also provided. The relative abundance and diversity of the antarease-like Zn-metalloproteases seem to confirm their relevant role in this pathology.

Two families of toxins are described here for the first time in a scorpion of the genus *Centruroides*. Transcripts coding for β -KScTx were found, and the presence of the expressed toxins in the venom was confirmed by the proteomic analysis. Transcripts putatively coding for members of the λ -KScTx family are here also reported, though their presence in the venom remains to be demonstrated.

4. Materials and Methods

4.1. Biological Material

Adult scorpions of the species *C. limpidus* were collected in Morelos and Guerrero States, with official permit from the Secretaría de Medio Ambiente, Recursos Naturales y Pesca (SEMARNAT, numbers SGPA/DGVS/07805/16 and 004474/18). The collected specimens were maintained in plastic boxes with water ad libitum. Sixty adult scorpions were milked by electrical stimulation for the proteomic analyses. The venom was immediately suspended in deionized water and centrifuged at 15,000 *g* for 15 min. The protein content of the soluble venom was estimated with a Nanodrop 1000 (Thermo Fisher Scientific, Waltham, MA, USA) based on absorbance at $\lambda = 280$ nm, assuming that one absorbance unit equaled 1 mg/mL of protein. The soluble fraction of the whole venom was lyophilized and kept at -20 °C until used.

Seven days after milking, 5 male and 5 female scorpions were processed for telson dissection to extract the total RNA. These specimens were thereafter euthanized and preserved in ethanol as vouchers. The remaining scorpions were kept alive and released thereafter in the same locations where they were collected.

4.2. RNA Isolation, Sequencing, and Assembly

Total RNA was isolated as previously described [7,10,12]. The SV Total RNA Isolation System Kit (Promega, Madison, WI, USA) was used for this purpose. The telsons from 5 males and 5 females

were dissected separately, under RNAse-free conditions, in microcentrifuge tubes containing the RNA lysis buffer. The optional 70 °C heating step of the protocol was followed before column purification. Total RNA was quantitated with a NanoDrop 1000 (Thermo Fisher Scientific, Waltham, MA, USA) and its quality was assessed with a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Two cDNA libraries were prepared from 1 μ g of total RNA for each gender, using the TruSeq Stranded mRNA Sample Preparation Kit (Illumina, San Diego, CA, USA), according to the manufacturer's directions. DNA sequencing was performed at the Massive DNA Sequencing Facility of the Instituto de Biotecnología (Cuernavaca, Mexico) with a Genome Analyzer IIx (Illumina, San Diego, CA, USA) using a 72-bp paired-end sequencing scheme over cDNA fragments ranging 200–400 bp in size. The quality of the reads was verified with the FastQC program [109] after clipping off the adaptors.

The reads resulting from the sequencing of both male and female cDNA libraries were joined together for a de novo assembly into contigs using the Trinity software version 2.0.3 [110], employing the standard protocol. Basic statistics, such as the number of transcripts and contigs, were determined with the TrinityStats.pl script.

4.3. Bioinformatics

The assembled contigs were annotated as previously described [24], using the Uniprot/Uniref90 protein database for BLASTx and BLASTp. The prediction of ORFs were done with TransDecoderLongORfs. Putative signal peptides and propeptides were predicted with the ProP 1.0 server [111] and SpiderP from Arachnoserver [112]. Multiple sequence alignments were performed using MAFFT 7.0 online [113]. Alignments were edited in Bioedit [114] and in Adobe Illustrator CS6. All figures were generated with Rstudio [115]. The GO terms were quantified in WEGO [116].

4.4. Molecular Mass Fingerprint by LC-MS of the Venom

Eight micrograms of soluble venom was applied in an LC-MS system composed of an HPLC UltiMate 3000; Dionex, RSLCnano System (Thermo Fisher Scientific, San Jose, CA, USA) coupled to an LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). Venom was fractionated through a 10-cm reversed-phase C18 in-house-made column (filled with Jupiter[®] 4 μ m Proteo 90 Å resin, Phenomenex, Torrance, CA, USA), using a linear gradient of 5% to 90% of solvent B (0.1% formic acid in acetonitrile) in 240 min, with a flow rate of 300 nL/min. The resolved peptides were ionized by a nano-electrospray ion source. A full scan MS was used (400–2000 m/z) with a resolution of 60,000. The monoisotopic molecular mass is reported for components below 3000 Da, and the average molecular masses for those above 3000 Da.

4.5. Identification of Venom Components by LC-MS/MS

Three hundred micrograms of the venom soluble fraction were reduced with dithiothreitol (DTT) 10 mM (Sigma–Aldrich, Saint Louis, MO USA) and alkylated with iodoacetamide (IAA) 55 mM (Sigma–Aldrich, Saint Louis, MO USA). After that, the samples were digested with trypsin (Promega Sequencing Grade Modified Trypsin; Madison, WI, USA) using a 1:50 enzyme:protein ratio by weight, in 50 mM ammonium bicarbonate buffer (ABC). The samples were acidified with 10 µL of 10% formic acid (FA). The tryptic peptides were desalted with Sep-Pak tC18 cartridges (Waters, Milford, MA, USA) following the manufacturer's protocol, and dried in a SpeedVac (Savant SPD1010, Thermo Scientific, San Jose, CA, USA).

Samples containing 4 µg of tryptically digested venom in 10 µL of solution A (0.1% formic acid) were analyzed. The proteins were separated through a 15-cm in-house-made column (filled with the same C18, Jupiter 4 µm Proteo 90 Å resin) using a linear gradient of 5% to 75% of solvent B (0.1% formic acid in acetronitrile) in 270 min. Mass spectra were registered in a full scan of 350 m/z to 1400 m/z with a resolution of 60,000. The MS/MS spectra were analyzed with the Proteome Discoverer 1.4.1.14 suite (Thermo Fisher Scientific, San Jose, CA, USA), employing the Sequest HT search engine with the following parameters: two missed cleavages, dynamic modifications (methionine oxidation, glutamine
16 of 21

and asparagine deamidation), static modifications (cysteine carbamidomethylation), precursor mass tolerance of 20 ppm, fragment mass tolerance 0.6 Da, and 1% false discovery rate. The database of the translated transcripts from Transdecoder was used for protein identification. An identification was considered positive when a minimum of two matching peptides were identified, and Sequest HT gave a global score (sum of all peptides' XCorr) of at least 20.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/5/247/s1, Supplementary Figure S1: Distribution of the annotated transcripts in accordance to Gene Ontology (GO) terms, Supplementary Figure S2: Phylogenetic tree of scorpion toxins with the ICK fold. Supplementary Table S1: Translated sequences of the 192 venom-related transcripts obtained from the transcriptomic analysis of the *C. limpidus* venom gland, Supplementary Table S2: The 192 venom-related transcripts obtained from the *C. limpidus* venom gland and their reference proteins, Supplementary Table S3: Mass fingerprint results. The 395 masses identified in the *C. limpidus* venom by LC-MS, sorted by C18-RT-HPLC Retention Times (RT). Supplementary Table S4: LC-MS/MS results. The 52 transcripts that were identified in venom by LC-MS/MS. The parameters generated by the Proteome Discoverer software are shown for each identified fragment.

Author Contributions: Conceptualization, J.I.C.-U., E.O. and L.D.P.; methodology, J.I.C.-U., E.P.M. and E.O.; software, J.I.C.-U.; validation, J.I.C.-U., E.P.M., C.V.F.B., E.O. and L.D.P.; formal analysis, J.I.C.-U. and E.P.M.; investigation, J.I.C.-U.; resources, J.I.C.-U. and L.D.P.; data curation, J.I.C.-U. and E.P.M.; writing—original draft preparation, J.I.C.-U. and E.P.M.; writing—review and editing, C.V.F.B., E.O. and L.D.P.; visualization, J.I.C.-U.; supervision, E.O. and L.D.P.; project administration, L.D.P.; funding acquisition, L.D.P.

Funding: This research was funded by grants IN203416 and IN202619, from Dirección General de Personal Académico, UNAM and grant SEP-CONACyT 237864 from Consejo Nacional de Ciencia y Tecnología (CONACyT) awarded to Lourival D. Possani and Jimena I. Cid-Uribe was supported by scholarship No. 404460 from CONACyT.

Acknowledgments: Specimens were classified by Edmundo González-Santillán based on the available literature [14]. We are indebted to Carlos Santibáñez-López from the University of Wisconsin-Madison, for performing the phylogenetic analysis that allowed the classification of the λ -KScTx. We are grateful to Gloria T. Vázquez-Castro and Ricardo A. Grande-Cano from the Massive Sequencing Unit of the Instituto de Biotecnología-UNAM for their technical support. The computer analysis was performed using the cluster of the Instituto de Biotecnología-UNAM maintained by Jérôme Verleyen. The technical assistance of David S. Castañeda-Carreón, Roberto P. Rodríguez-Bahena, Jesús O. Arriaga-Pérez, Juan M. Hurtado-Ramírez, and Servando Aguirre-Cruz is also greatly acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Possani, L.D.; Becerril, B.; Delepierre, M.; Tytgat, J. Scorpion toxins specific for Na⁺-channels. *Eur. J. Biochem.* 1999, 264, 287–300. [CrossRef]
- 2. The Scorpion Files. Available online: https://www.ntnu.no/ub/scorpion-files/ (accessed on 29 April 2019).
- 3. Chippaux, J.-P.; Goyffon, M. Epidemiology of scorpionism: A global appraisal. *Acta Trop.* **2008**, *107*, 71–79. [CrossRef] [PubMed]
- 4. Santibáñez-López, C.E.; Francke, O.F.; Ureta, C.; Possani, L.D.; Lai, R. Scorpions from Mexico: From species diversity to venom complexity. *Toxins* **2016**, *8*, 2. [CrossRef]
- 5. González-Santillán, E.; Possani, L.D. North American scorpion species of public health importance with a reappraisal of historical epidemiology. *Acta Trop.* **2018**, *187*, 264–274. [CrossRef]
- 6. Rendón-Anaya, M.; Delaye, L.; Possani, L.D.; Herrera-Estrella, A. Global transcriptome analysis of the scorpion *Centruroides noxius*: New toxin families and evolutionary insights from an ancestral scorpion species. *PLoS ONE* **2012**, *7*, e43331. [CrossRef]
- 7. Santibáñez-López, C.E.; Cid-Uribe, J.I.; Batista, C.V.F.; Ortiz, E.; Possani, L.D. Venom gland transcriptomic and proteomic analyses of the enigmatic scorpion *Superstitionia donensis* (Scorpiones: *Superstitioniidae*), with insights on the evolution of its venom components. *Toxins* **2016**, *8*, 367. [CrossRef]
- 8. Ward, M.J.; Ellsworth, S.A.; Rokyta, D.R. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (*Centruroides hentzi; Buthidae*) reveal high toxin diversity in a harmless member of a lethal family. *Toxicon* **2018**, *142*, 14–29. [CrossRef] [PubMed]
- Quintero-Hernández, V.; Ramírez-Carreto, S.; Romero-Gutiérrez, M.T.; Valdez-Velázquez, L.L.; Becerril, B.; Possani, L.D.; Ortiz, E. Transcriptome analysis of scorpion species belonging to the *Vaejovis Genus*. *PLoS ONE* 2015, 10, e0117188. [CrossRef] [PubMed]

- Romero-Gutierrez, T.; Peguero-Sanchez, E.; Cevallos, M.A.; Batista, C.V.F.; Ortiz, E.; Possani, L.D. A deeper examination of *Thorellius atrox* Scorpion venom components with omic techonologies. *Toxins* 2017, *9*, 399. [CrossRef]
- 11. Zhong, J.; Zeng, X.-C.; Zeng, X.; Nie, Y.; Zhang, L.; Wu, S.; Bao, A. Transcriptomic analysis of the venom glands from the scorpion *Hadogenes troglodytes* revealed unique and extremely high diversity of the venom peptides. *J. Proteom.* **2017**, *150*, 40–62. [CrossRef]
- 12. Santibáñez-López, C.E.; Cid-Uribe, J.I.; Zamudio, F.Z.; Batista, C.V.F.; Ortiz, E.; Possani, L.D. Venom gland transcriptomic and venom proteomic analyses of the scorpion *Megacormus gertschi Díaz-Najera*, 1966 (Scorpiones: *Euscorpiidae: Megacorminae*). *Toxicon* **2017**, *133*, 95–109. [CrossRef] [PubMed]
- 13. Luna-Ramírez, K.; Quintero-Hernández, V.; Juárez-González, V.R.; Possani, L.D. Whole transcriptome of the venom gland from *Urodacus yaschenkoi* Scorpion. *PLoS ONE* **2015**, *10*, e0127883. [CrossRef]
- Ponce-Saavedra, J.; Francke, O.F.; Cano-Camacho, H.; Hernández-Calderón, E. Morphological and molecular evidence supporting specific status for *Centruroides tecomanus* (Scorpiones, *Buthidae*). *Rev. Mex. Biodivers.* 2009, 80, 71–84.
- 15. Chavez-Haro, A.L.; Ortiz, E. Scorpionism and Dangerous Species of Mexico. In *Scorpion Venoms*; Springer: Dordrecht, The Netherlands, 2014; pp. 201–213.
- Riaño-Umbarila, L.; Rodríguez-Rodríguez, E.R.; Santibañez-López, C.E.; Güereca, L.; Uribe-Romero, S.J.; Gómez-Ramírez, I.V.; Cárcamo-Noriega, E.N.; Possani, L.D.; Becerril, B. Updating knowledge on new medically important scorpion species in Mexico. *Toxicon* 2017, *138*, 130–137. [CrossRef]
- 17. Available online: https://www.gob.mx/cms/uploads/attachment/file/425972/sem52.pdf (accessed on 29 April 2019).
- Riaño-Umbarila, L.; Olamendi-Portugal, T.; Morelos-Juárez, C.; Gurrola, G.B.; Possani, L.D.; Becerril, B. A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins. *Toxicon* 2013, *76*, 370–376. [CrossRef]
- Dehesa-Dávila, M.; Ramfrez, A.N.; Zamudio, F.Z.; Gurrola-Briones, G.; Liévano, A.; Darszon, A.; Possani, L.D. Structural and functional comparison of toxins from the venom of the scorpions *Centruroides infamatus infamatus, Centruroides limpidus and Centruroides noxius. Comp. Biochem. Physiol. Part B: Biochem. Mol. Boil.* **1996**, *113*, 331–339. [CrossRef]
- 20. Ramírz, A.N.; Martin, B.M.; Gurrola, G.B.; Possani, L.D. Isolation and characterization of a novel toxin from the venom of the scorpion *Centruroides limpidus limpidus* Karsch. *Toxicon* **1994**, *32*, 479–490. [CrossRef]
- Alagon, A.; Guzmán, H.; Martin, B.; Ramírez, A.; Carbone, E.; Possani, L. Isolation and characterization of two toxins from the mexican scorpion *Centruroides limpidus limpidus* Karsch. *Comp. Biochem. Physiol. Part B: Comp. Biochem.* 1988, 89, 153–161. [CrossRef]
- 22. Lebreton, F.; Delepierre, M.; Ramírez, A.N.; Balderas, C.; Possani, L.D. Primary and NMR three-dimensional structure determination of a novel crustacean toxin from the venom of the scorpion *Centruroides limpidus limpidus* Karsch. *Biochemistry* **1994**, *33*, 11135–11149. [CrossRef]
- 23. Olamendi-Portugal, T.; Restano-Cassulini, R.; Riaño-Umbarila, L.; Becerril, B.; Possani, L.D. Functional and immuno-reactive characterization of a previously undescribed peptide from the venom of the scorpion *Centruroides limpidus*. *Peptides* **2017**, *87*, 34–40. [CrossRef]
- 24. Cid-Uribe, J.I.; Santibáñez-López, C.E.; Meneses, E.P.; Batista, C.V.; Jiménez-Vargas, J.M.; Ortiz, E.; Possani, L.D. The diversity of venom components of the scorpion species *Paravaejovis schwenkmeyeri* (Scorpiones: *Vaejovidae*) revealed by transcriptome and proteome analyses. *Toxicon* **2018**, *151*, 47–62. [CrossRef] [PubMed]
- 25. Romero-Gutiérrez, M.T.; Santibáñez-López, C.E.; Jiménez-Vargas, J.M.; Batista, C.V.F.; Ortiz, E.; Possani, L.D. Transcriptomic and proteomic analyses reveal the diversity of venom components from the vaejovid scorpion *Serradigitus gertschi. Toxins* **2018**, *10*, 359. [CrossRef] [PubMed]
- 26. Cid-Uribe, J.I.; Jiménez-Vargas, J.M.; Batista, C.V.F.; Zuñiga, F.Z.; Possani, L.D. Comparative proteomic analysis of female and male venoms from the Mexican scorpion *Centruroides limpidus*: Novel components found. *Toxicon* **2017**, *125*, 91–98. [CrossRef]
- 27. Pfam. Available online: https://pfam.xfam.org/ (accessed on 29 April 2019).
- 28. Venom Zone. Available online: https://venomzone.expasy.org/ (accessed on 29 April 2019).
- 29. Gene Ontology. Available online: http://geneontology.org/ (accessed on 29 April 2019).
- 30. Quintero-Hernandez, V.; Jimenez-Vargas, J.; Gurrola, G.; Valdivia, H.; Possani, L. Scorpion venom components that affect ion-channels function. *Toxicon* **2013**, *76*, 328–342. [CrossRef] [PubMed]

- 31. Gurevitz, M.; Froy, O.; Zilberberg, N.; Turkov, M.; Strugatsky, D.; Gershburg, E.; Lee, D.; Adams, M.E.; Tugarinov, V.; Anglister, J.; et al. Sodium channel modifiers from scorpion venom: Structure–activity relationship, mode of action and application. *Toxicon* **1998**, *36*, 1671–1682. [CrossRef]
- 32. Escalona, M.P.; Possani, L.D. Scorpion beta-toxins and voltage-gated sodium channels: Interactions and effects. *Front Biosci.* **2013**, *18*, 572–587. [CrossRef]
- 33. De Oliveira, U.C.; Candido, D.M.; Dorce, V.A.C.; Junqueira-De-Azevedo, I.D.L.M. The transcriptome recipe for the venom cocktail of *Tityus bahiensis* scorpion. *Toxicon* **2015**, *95*, 52–61. [CrossRef] [PubMed]
- 34. Jablonsky, M.J.; Jackson, P.L.; Krishna, N.R. Solution structure of an insect-specific neurotoxin from the new world scorpion *Centruroides sculpturatus Ewing*^{†,‡}. *Biochemistry* **2001**, *40*, 8273–8282. [CrossRef] [PubMed]
- 35. Jablonsky, M.J.; Watt, D.D.; Krishna, N.R. Solution structure of an old world-like neurotoxin from the venom of the new world scorpion *Centruroides sculpturatus Ewing*. *J. Mol. Boil.* **1995**, *248*, 449–458. [CrossRef]
- 36. Kuang, Q.; Purhonen, P.; Hebert, H. Structure of potassium channels. *Cell. Mol. Life Sci.* **2015**, *72*, 3677–3693. [CrossRef] [PubMed]
- 37. Jiménez-Vargas, J.M.; Possani, L.D.; Luna-Ramírez, K. Arthropod toxins acting on neuronal potassium channels. *Neuropharmacology* **2017**, 127, 139–160. [CrossRef] [PubMed]
- 38. Kim, D.M.; Nimigean, C.M. Voltage-gated potassium channels: A structural examination of selectivity and gating. *Cold Spring Harbor Perspect. Boil.* **2016**, *8*, a029231. [CrossRef]
- Tytgat, J.; Chandy, K.; Garcia, M.L.; A Gutman, G.; Martin-Eauclaire, M.-F.; Van Der Walt, J.J.; Possani, L.D. A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. *Trends Pharmacol. Sci.* **1999**, 20, 444–447. [CrossRef]
- Rodríguez De La Vega, R.C.; Possani, L.D. Current views on scorpion toxins specific for K⁺-channels. *Toxicon* 2004, 43, 865–875. [CrossRef]
- 41. Cremonez, C.M.; Maiti, M.; Peigneur, S.; Cassoli, J.S.; Dutra, A.A.A.; Waelkens, E.; Lescrinier, E.; Herdewijn, P.; de Lima, M.E.; Pimenta, A.M.C.; et al. Structural and functional elucidation of peptide TS11 shows evidence of a novel subfamily of scorpion venom toxins. *Toxins* **2016**, *8*, 288. [CrossRef] [PubMed]
- 42. Correnti, C.E.; Gewe, M.M.; Mehlin, C.; Bandaranayake, A.D.; Johnsen, W.A.; Rupert, P.B.; Brusniak, M.-Y.; Clarke, M.; Burke, S.E.; De Van Der Schueren, W.; et al. Screening, large-scale production, and structure-based classification for cystine-dense peptides. *Nat. Struct. Mol. Boil.* **2018**, *25*, 270–278. [CrossRef] [PubMed]
- 43. Nieto, A.R.; Gurrola, G.B.; Vaca, L.; Possani, L.D. Noxiustoxin 2, a novel K⁺ channel blocking peptide from the venom of the scorpion *Centruroides noxius Hoffmann. Toxicon* **1996**, *34*, 913–922. [CrossRef]
- 44. Valdivia, H.H.; Smith, J.S.; Martin, B.M.; Coronado, R.; Possani, L.D. Charybdotoxin and noxiustoxin, two homologous peptide inhibitors of the K⁺(Ca²⁺) channel. *FEBS Lett.* **1988**, 226, 280–284. [CrossRef]
- 45. Kuzmenkov, A.I.; Krylov, N.A.; Chugunov, A.O.; Grishin, E.V.; Vassilevski, A.A. Kalium: A database of potassium channel toxins from scorpion venom. *Database* **2016**, *2016*. [CrossRef]
- Restano-Cassulini, R.; Olamendi-Portugal, T.; Zamudio, F.; Becerril, B.; Possani, L.D. Two novel ergtoxins, blockers of K⁺-channels, purified from the Mexican scorpion *Centruroides elegans elegans*. *Neurochem Res.* 2008, 33, 1525–1533. [CrossRef]
- 47. Hill, A.P.; Sunde, M.; Campbell, T.J.; Vandenberg, J.I. Mechanism of block of the hERG K⁺ channel by the scorpion toxin CnErg1. *Biophys. J.* **2007**, *92*, 3915–3929. [CrossRef] [PubMed]
- 48. Torres, A.M.; Bansal, P.; Alewood, P.F.; A Bursill, J.; Kuchel, P.W.; I Vandenberg, J.; Vandenberg, J. Solution structure of CnErg1 (Ergtoxin), a HERG specific scorpion toxin. *FEBS Lett.* **2003**, *539*, 138–142. [CrossRef]
- 49. Jimenez-Vargas, J.; Restano-Cassulini, R.; Quintero-Hernandez, V.; Gurrola, G.; Possani, L. Recombinant expression of the toxic peptide ErgTx1 and role of Met35 on its stability and function. *Peptides* **2011**, *32*, 560–567. [CrossRef] [PubMed]
- 50. Chen, Z.-Y.; Hu, Y.-T.; Yang, W.-S.; He, Y.-W.; Feng, J.; Wang, B.; Zhao, R.-M.; Ding, J.-P.; Cao, Z.-J.; Li, W.-X.; et al. Hg1, Novel peptide inhibitor specific for Kv1.3 channels from first scorpion kunitz-type potassium channel toxin family*. *J. Boil. Chem.* **2012**, *287*, 13813–13821. [CrossRef]
- Santibáñez-López, C.E.; Kriebel, R.; Ballesteros, J.A.; Rush, N.; Witter, Z.; Williams, J.; Janies, D.A.; Sharma, P.P.; Crandall, K. Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions. *PeerJ* 2018, *6*, e5902. [CrossRef]
- 52. Chen, Z.; Hu, Y.; Han, S.; Yin, S.; He, Y.; Wu, Y.; Cao, Z.; Li, W. ImKTx1, a new Kv1.3 channel blocker with a unique primary structure. *J. Biochem. Mol. Toxicol.* **2011**, *25*, 244–251. [CrossRef]

- 53. Gao, B.; Harvey, P.J.; Craik, D.J.; Ronjat, M.; De Waard, M.; Zhu, S. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold. *Biosci. Rep.* **2013**, *33*, 513–527. [CrossRef] [PubMed]
- Wang, X.; Wang, G. Insights into Antimicrobial Peptides from Spiders and Scorpions. *Protein Pept. Lett.* 2016, 23, 707–721. [CrossRef]
- 55. Yan, L.; Adams, M.E. Lycotoxins, antimicrobial peptides from venom of the wolf spider *Lycosa carolinensis*. *J. Boil. Chem.* **1998**, *273*, 2059–2066. [CrossRef]
- Torres-Larios, A.; Gurrola, G.B.; Zamudio, F.Z.; Possani, L.D.; Torres-Larios, A. Hadrurin, a new antimicrobial peptide from the venom of the scorpion *Hadrurus aztecus*. *JBIC J. Boil. Inorg. Chem.* 2000, 267, 5023–5031. [CrossRef]
- 57. Lorenzini, D.M.; Da Silva, P.I.; Fogaça, A.C.; Bulet, P.; Daffre, S. Acanthoscurrin: A novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider *Acanthoscurria gomesiana*. *Dev. Comp. Immunol.* **2003**, *27*, 781–791. [CrossRef]
- Luna-Ramirez, K.; Skaljac, M.; Grotmann, J.; Kirfel, P.; Vilcinskas, A.; Possani, L.D. Orally delivered scorpion antimicrobial peptides exhibit activity against pea aphid (*Acyrthosiphon pisum*) and Its Bacterial Symbionts. *Toxins* 2017, 9, 261. [CrossRef]
- 59. Ferreira, L.; Alves, W.; Lucas, M.; Habermehl, G. Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from *Scaptocosa raptoria* venom. *Toxicon* **1996**, *34*, 599–603. [CrossRef]
- 60. Liu, Z.; Deng, M.; Xiang, J.; Ma, H.; Hu, W.; Zhao, Y.; Li, D.-C.; Liang, S. A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. *Mol. Med.* **2012**, *12*, 1350–1360. [CrossRef]
- 61. Guo, X.; Ma, C.; Du, Q.; Wei, R.; Wang, L.; Zhou, M.; Chen, T.; Shaw, C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, *Tityus serrulatus*: Evaluation of their antimicrobial and anticancer activities. *Biochimie* **2013**, *95*, 1784–1794. [CrossRef]
- 62. Zeng, X.-C.; Zhou, L.; Shi, W.; Luo, X.; Zhang, L.; Nie, Y.; Wang, J.; Wu, S.; Cao, B.; Cao, H. Three new antimicrobial peptides from the scorpion *Pandinus imperator*. *Peptides* **2013**, *45*, 28–34. [CrossRef]
- 63. De La Vega, R.R.; García, B.I.; D'Ambrosio, C.; Diego-García, E.; Scaloni, A.; Possani, L.D. Antimicrobial peptide induction in the haemolymph of the Mexican scorpion *Centruroides limpidus* in response to septic injury. *Cell. Mol. Life Sci.* **2004**, *61*, 1507–1519. [CrossRef] [PubMed]
- Zhang, L.; Shi, W.; Zeng, X.-C.; Ge, F.; Yang, M.; Nie, Y.; Bao, A.; Wu, S.; E, G. Unique diversity of the venom peptides from the scorpion *Androctonus bicolor* revealed by transcriptomic and proteomic analysis. *J. Proteom.* 2015, 128, 231–250. [CrossRef] [PubMed]
- Zeng, X.-C.; Wang, S.; Nie, Y.; Zhang, L.; Luo, X. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion *Mesobuthus martensii Karsch*: Gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. *Peptides* 2012, *33*, 44–51. [CrossRef]
- 66. Marques-Neto, L.M.; Trentini, M.M.; Das Neves, R.C.; Resende, D.P.; Procopio, V.O.; Da Costa, A.C.; Kipnis, A.; Mortari, M.R.; Schwartz, E.F.; Junqueira-Kipnis, A.P. Antimicrobial and chemotactic activity of scorpion-derived peptide, ToAP2, against *Mycobacterium massiliensis*. *Toxins* **2018**, *10*, 219. [CrossRef]
- 67. Melo, M.M.; Daniele-Silva, A.; Teixeira, D.G.; Estrela, A.B.; Melo, K.R.; Oliveira, V.S.; Rocha, H.A.; Ferreira, L.D.S.; Pontes, D.L.; Lima, J.P.; et al. Structure and in vitro activities of a copper II-chelating anionic peptide from the venom of the scorpion *Tityus stigmurus*. *Peptides* **2017**, *94*, 91–98. [CrossRef]
- 68. Ramos, O.; Selistre-De-Araújo, H. Snake venom metalloproteases—structure and function of catalytic and disintegrin domains. *Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol.* 2006, 142, 328–346. [CrossRef]
- 69. Lu, J.; Yang, H.; Yu, H.; Gao, W.; Lai, R.; Liu, J.; Liang, X. A novel serine protease inhibitor from *Bungarus fasciatus* venom. *Peptides* **2008**, *29*, 369–374. [CrossRef]
- 70. Touchard, A.; Aili, S.R.; Fox, E.G.P.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A.; King, G.F. The biochemical toxin arsenal from ant venoms. *Toxins* **2016**, *8*, 30. [CrossRef] [PubMed]
- 71. Toom, P.M.; Chan, D.S. Enzymatic activities of venom from the jellyfish *Stomolophus meleagris*. *Comp. Biochem. Physiol. Part B: Comp. Biochem.* **1972**, 43, 435–441. [CrossRef]
- 72. De Graaf, D.C.; Aerts, M.; Brunain, M.; Desjardins, C.A.; Jacobs, F.J.; Werren, J.H.; Devreese, B. Insights into the venom composition of the ectoparasitoid wasp *Nasonia vitripennis* from bioinformatic and proteomic studies. *Insect Mol. Boil.* **2010**, *19*, 11–26.
- 73. Trevisan-Silva, D.; Bednaski, A.V.; Gremski, L.H.; Chaim, O.M.; Veiga, S.S.; Senff-Ribeiro, A. Differential metalloprotease content and activity of three *Loxosceles* spider venoms revealed using two-dimensional electrophoresis approaches. *Toxicon* **2013**, *76*, 11–22. [CrossRef]

- Ortiz, E.; Rendón-Anaya, M.; Rego, S.C.; Schwartz, E.F.; Possani, L.D. Antarease-like Zn-metalloproteases are ubiquitous in the venom of different scorpion genera. *Biochim. Biophys. Acta (BBA)—General Subj.* 2014, 1840, 1738–1746. [CrossRef]
- 75. Almeida, F.; Pimenta, A.; De Figueiredo, S.; Santoro, M.; Martin-Eauclaire, M.; Diniz, C.; De Lima, M.; Pimenta, A.M.D.C. Enzymes with gelatinolytic activity can be found in *Tityus bahiensis* and *Tityus serrulatus* venoms. *Toxicon* **2002**, *40*, 1041–1045. [CrossRef]
- 76. Conde, R.; Zamudio, F.Z.; Becerril, B.; Possani, L.D. Phospholipin, a novel heterodimeric phospholipase A2 from *Pandinus imperator* scorpion venom. *FEBS Lett.* **1999**, *460*, 447–450. [CrossRef]
- 77. Morey, S.S.; Kiran, K.; Gadag, J. Purification and properties of hyaluronidase from *Palamneus gravimanus* (Indian black scorpion) venom. *Toxicon* **2006**, *47*, 188–195. [CrossRef] [PubMed]
- Fletcher, P.L.; Fletcher, M.D.; Weninger, K.; Anderson, T.E.; Martin, B.M. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion *Tityus serrulatus*. *J. Biol. Chem.* 2010, 285, 7405–7416. [CrossRef] [PubMed]
- 79. Otero, R.; Navío, E.; Céspedes, F.; Núñez, M.; Lozano, L.; Moscoso, E.; Matallana, C.; Arsuza, N.; García, J.; Fernandez, D.; et al. Scorpion envenoming in two regions of Colombia: Clinical, epidemiological and therapeutic aspects. *Trans. Soc. Trop. Med. Hyg.* **2004**, *98*, 742–750. [CrossRef] [PubMed]
- 80. Fletcher, P.L., Jr.; Fletcher, M.D.; Possani, L.D. Characteristics of pancreatic exocrine secretion produced by venom from the brazilian scorpion, *Tityus serrulatus*. *Eur. J. Cell Biol.* **1992**, *58*, 259–270. [PubMed]
- D'Suze, G.; Sevcik, C.; Ramos, M. Presence of curarizing polypeptides and a pancreatitis-inducing fraction without muscarinic effects in the venom of the Venezuelan scorpion *Tityus discrepans* (Karsch). *Toxicon* 1995, 33, 295. [CrossRef]
- 82. Borges, A.; Trejo, E.; Vargas, A.M.; Céspedes, G.; Hernández, A.; Alfonzo, M.J. Pancreatic toxicity in mice elicited by *Tityus zulianus* and *Tityus discrepans* scorpion venoms. *Investig. Clin.* **2004**, 45, 269–276.
- 83. Bartholomew, C. Acute Scorpion Pancreatitis in Trinidad. BMJ 1970, 1, 666–668. [CrossRef]
- 84. Possani, L.D.; Martin, B.M.; Fletcher, M.D.; Fletcher, P.L. Discharge effect on pancreatic exocrine secretion produced by toxins purified from *Tityus serrulatus* scorpion venom. *J. Boil. Chem.* **1991**, *266*, 3178–3185.
- 85. Fletcher, M.D.; Possani, L.D.; Fletcher, P.L., Jr. Morphological studies by light and electron microscopy of pancreatic acinar cells under the effect of *Tityus serrulatus* venom. *Cell Tissue Res.* **1994**, 278, 255–264. [CrossRef]
- 86. Fletcher, P.L.; Fletcher, M.D.; Fainter, L.K.; Terrian, D.M. Action of new world scorpion venom and its neurotoxins in secretion. *Toxicon* **1996**, *34*, 1399–1411. [CrossRef]
- 87. Jiménez-Ferrer, E.; Reynosa-Zapata, I.; Pérez-Torres, Y.; Tortoriello, J. The secretagogue effect of the poison from *Centruroides limpidus limpidus* on the pancreas of mice and the antagonistic action of the *Bouvardia ternifolia* extract. *Phytomedicine* **2005**, *12*, 65–71. [CrossRef]
- 88. Habermann, E.; Hardt, K. A sensitive and specific plate test for the quantitation of phospholipases. *Anal. Biochem.* **1972**, *50*, 163–173. [CrossRef]
- Dhananjaya, B.L.; D'Souza, C.J.M. The pharmacological role of nucleotidases in snake venoms. *Cell Biochem.* 2010, 28, 171–177. [CrossRef]
- 90. Khan, N.; Niazi, Z.R.; Rehman, F.U.; Akhtar, A.; Khan, M.M.; Khan, S.; Baloch, N.; Khan, S. Hyaluronidases: A Therapeutic Enzyme. *Protein Pept. Lett.* **2018**, *25*, 663–676. [CrossRef] [PubMed]
- Bordon, K.C.F.; Wiezel, G.A.; Amorim, F.G.; Arantes, E.C. Arthropod venom *Hyaluronidases*: Biochemical properties and potential applications in medicine and biotechnology. *J. Venom. Anim. Toxins Incl. Trop. Dis.* 2015, 21, 165. [CrossRef]
- 92. Almonte, A.G.; Sweatt, J.D. Serine proteases, serine protease inhibitors, and protease-activated receptors: Roles in synaptic function and behavior. *Brain Res.* **2011**, *1407*, 107–122. [CrossRef] [PubMed]
- 93. Chen, Z.; Wang, B.; Hu, J.; Yang, W.; Cao, Z.; Zhuo, R.; Li, W.; Wu, Y. SjAPI, the first functionally characterized ascaris-type protease inhibitor from animal venoms. *PLoS ONE* **2013**, *8*, e57529. [CrossRef] [PubMed]
- 94. Zhao, R.; Dai, H.; Qiu, S.; Li, T.; He, Y.; Ma, Y.; Chen, Z.; Wu, Y.; Li, W.; Cao, Z. SdPI, the first functionally characterized kunitz-type trypsin inhibitor from scorpion venom. *PLoS ONE* **2011**, *6*, e27548. [CrossRef] [PubMed]
- 95. Law, R.H.P.; Zhang, Q.; McGowan, S.; Buckle, A.M.; A Silverman, G.; Wong, W.; Rosado, C.J.; Langendorf, C.G.; Pike, R.N.; I Bird, P.; et al. An overview of the serpin superfamily. *Genome Boil.* **2006**, *7*, 216.

- Gronenborn, A.M.; Nilges, M.; Peanasky, R.J.; Clore, G.M. Sequential resonance assignment and secondary structure determination of the ascaris trypsin inhibitor, a member of a novel class of proteinase inhibitors. *Biochemistry* 1990, 29, 183–189. [CrossRef]
- Meekins, D.A.; Kanost, M.R.; Michel, K. Serpins in arthropod biology. Semin. Cell Dev. Boil. 2017, 62, 105–119. [CrossRef] [PubMed]
- Gibbs, G.M.; Roelants, K.; O'Bryan, M.K. The CAP Superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—Roles in reproduction, cancer, and immune defense. *Endocr. Rev.* 2008, 29, 865–897. [CrossRef]
- 99. Abraham, A.; Chandler, D.E. Tracing the evolutionary history of the CAP superfamily of proteins using amino acid sequence homology and conservation of splice sites. *J. Mol. Evol.* **2017**, *85*, 137–157. [CrossRef]
- 100. Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. *Annu. Genom. Hum. Genet.* 2009, 10, 483–511. [CrossRef]
- 101. Wang, J.; Duan, Y.; Guo, M.; Huang, Q.; Liu, Q.; Niu, L.; Teng, M.; Hao, Q.; Shen, B.; Cheng, X.P.; et al. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from *Naja atra* Venom that Targets the BK Ca Channel^{+,‡}. *Biochemistry* 2005, 44, 10145–10152. [CrossRef] [PubMed]
- 102. Gibbs, G.M.; Orta, G.; Reddy, T.; Koppers, A.J.; Martínez-López, P.; De La Vega-Beltràn, J.L.; Lo, J.C.Y.; Veldhuis, N.; Jamsai, D.; McIntyre, P.; et al. Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. *Proc. Natl. Acad. Sci. USA* 2011, 108, 7034–7039. [CrossRef] [PubMed]
- 103. Ruiming, Z.; Yibao, M.; Yawen, H.; Zhiyong, D.; Yingliang, W.; Zhijian, C.; Wenxin, L. Comparative venom gland transcriptome analysis of the scorpion *Lychas mucronatus* reveals intraspecific toxic gene diversity and new venomous components. *BMC Genom.* 2010, 11, 452. [CrossRef]
- 104. Rokyta, D.R.; Ward, M.J. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (*Hadrurus spadix*) reveal detectability challenges and an unexplored realm of animal toxin diversity. *Toxicon* 2017, 128, 23–37. [CrossRef] [PubMed]
- 105. Miyashita, M.; Otsuki, J.; Hanai, Y.; Nakagawa, Y.; Miyagawa, H. Characterization of peptide components in the venom of the scorpion *Liocheles australasiae* (*Hemiscorpiidae*). *Toxicon* **2007**, *50*, 428–437. [CrossRef]
- 106. Possani, L.D.; Becerril, B.; Riaño-Umbarila, L.; Juárez-González, V.R.; Olamendi-Portugal, T.; Ortíz-León, M.; Riaño-Umbarila, L.; Juárez-González, V.R.; Olamendi-Portugal, T.; Ortiz-León, M. A strategy for the generation of specific human antibodies by directed evolution and phage display. *FEBS J.* 2005, 272, 2591–2601.
- 107. Riaño-Umbarila, L.; Rudiño-Piñera, E.; Becerril, B.; Torres-Larios, A.; Canul-Tec, J.C.; Possani, L.D. Structural basis of neutralization of the major toxic component from the scorpion *Centruroides noxius Hoffmann* by a human-derived single-chain antibody fragment. *J. Boil. Chem.* **2011**, *286*, 20892–20900.
- 108. Zamudio, F.; Saavedra, R.; Martin, B.M.; Gurrola-Briones, G.; Herion, P.; Possani, L.D. Amino acid sequence and immunological characterization with monoclonal antibodies of two toxins from the venom of the scorpion *Centruroides noxius Hoffmann. JBIC J. Boil. Inorg. Chem.* **1992**, 204, 281–292. [CrossRef]
- 109. Fastqc. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 29 April 2019).
- 110. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 2011, 29, 644–652. [CrossRef] [PubMed]
- 111. ProP. Available online: http://www.cbs.dtu.dk/services/ProP/ (accessed on 29 April 2019).
- 112. SpiderP. Available online: http://www.arachnoserver.org/spiderP.html (accessed on 29 April 2019).
- 113. Mafft. Available online: https://www.ebi.ac.uk/Tools/msa/mafft/ (accessed on 29 April 2019).
- 114. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp. Ser.* **1999**, *41*, 95–98.
- 115. Rstudio. Available online: https://www.rstudio.com/ (accessed on 29 April 2019).
- 116. Wego. Available online: http://wego.genomics.org.cn/ (accessed on 29 April 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Toxicon 125 (2017) 91-98

Contents lists available at ScienceDirect

Toxicon

journal homepage: www.elsevier.com/locate/toxicon

Comparative proteomic analysis of female and male venoms from the Mexican scorpion *Centruroides limpidus:* Novel components found

Jimena Isaias Cid Uribe^a, Juana Maria Jiménez Vargas^a, Cesar Vicente Ferreira Batista^b, Fernando Zamudio Zuñiga^a, Lourival Domingos Possani^{a,*}

^a Departmento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico

^b Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca, Morelos, 62210, Mexico

ARTICLE INFO

Article history: Received 13 September 2016 Accepted 23 November 2016 Available online 24 November 2016

Keywords: C. limpidus Dimorphism Proteome Scorpion Two-dimensional gel electrophoresis Toxin

ABSTRACT

Venom from male and female scorpions of the species Centruroides limpidus were separated by HPLC and their molecular masses determined by mass spectrometry. The relative concentration of components eluting in equivalent retention times from the HPLC column shows some differences. A new peptide with 29 amino acids, cross-linked by three disulfide bonds was found in male scorpions and its structure determined. Another unknown peptide present in female venom, with sequence identity similar to K⁺channel blocking peptide was isolated. This peptide contains 39 amino acid residues linked by three disulfide bonds. Due to sequence similarities, a systematic number (α KTx2.18) was assigned. Venom from male and female scorpions was separated by Sephadex G-50 gel filtration. Components of fraction I of this chromatogram were analyzed by two-dimensional gel electrophoresis and 41 spots were selected (20 from female and 21 from male). The spots were excised from the gel, enzymatically digested and sequenced by LC-MS/MS. This procedure allowed the identification of several proteins containing similar amino acid sequence of other known proteins registered on UniProt database. Among these proteins the presence of metalloproteinases (proteolytic enzymes), hyaluronidases and phosphatases were experimentally determined and shown to be present in both venom samples. The results shown here should help further work aimed at fully identification of the structure and function of venom components form C. limpidus male and female scorpions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The scorpion *Centruroides limpidus* is a very dangerous scorpion of Mexico, affecting mainly three states of the country: Morelos, Guerrero and Michoacan. It was earlier known as *Centruroides limpidus*, but in a recent review it was re-named simply as *Centruroides limpidus* (Santibáñez-López et al., 2016); here abbreviated *C. limpidus*. Only in Morelos State human accidents caused by *C. limpidus* is in the order of 32,000 per year. Dangerous scorpions of the entire country add over 313,000 cases annually, as registered in year 2012, by the National Health Secretary Service (http://www. cenaprece.salud.gob.mx/descargas/pdf/PAE_PrevencionControlIn toxicacionPicaduraAlacran2013_2018.pdf), and requires treatment with horse anti-venom (Tato et al., 1978; Dehesa-Davila and Possani, 1994). The biochemical characterization of the venom from this species started over 30 years ago (Tato et al., 1978; Alagon et al., 1988). At present there are several publications that report the characterization of different components of this venom. Most of the communications report the presence of peptides that affect ionchannel function from mammalians, such as Na⁺-channels (Alagon et al., 1988; Ramirez et al., 1994; Dehesa-Davila et al., 1996), K⁺-channels (Martin et al., 1994), ERG-K⁺-channels (Corona et al., 2002; Coronas et al., 2005), crustacean specific toxins (Lebreton et al., 1994), neurodepressant peptides (Corona et al., 2003), antimicrobial peptides (Rodríguez de la Vega et al., 2004). Additional work was conducted: pharmacokinetic studies of the venom

^{*} Corresponding author. Departmento de Medicina Molecular y Bioprocesos – UNAM, Avenida Universidad, 2001, Cuernavaca, Morelos, 62210, Mexico.

E-mail addresses: jcidu@ibt.unam.mx (J.I. Cid Uribe), jimenez@ibt.unam.mx (J.M. Jiménez Vargas), fbatista@ibt.unam.mx (C.V. Ferreira Batista), zam@ibt. unam.mx (F. Zamudio Zuñiga), possani@ibt.unam.mx (L.D. Possani).

Expert Review of Proteomics

ISSN: 1478-9450 (Print) 1744-8387 (Online) Journal homepage: https://www.tandfonline.com/loi/ieru20

Scorpion venomics: a 2019 overview

Jimena I. Cid-Uribe, José Ignacio Veytia-Bucheli, Teresa Romero-Gutierrez, Ernesto Ortiz & Lourival D. Possani

To cite this article: Jimena I. Cid-Uribe, José Ignacio Veytia-Bucheli, Teresa Romero-Gutierrez, Ernesto Ortiz & Lourival D. Possani (2020) Scorpion venomics: a 2019 overview, Expert Review of Proteomics, 17:1, 67-83, DOI: <u>10.1080/14789450.2020.1705158</u>

To link to this article: https://doi.org/10.1080/14789450.2020.1705158

View supplementary material \square

Accepted author version posted online: 13 Dec 2019. Published online: 25 Dec 2019.

Submit your article to this journal $m{C}$

View related articles 🗹

View Crossmark data 🗹