

# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

### **FACULTAD DE INGENIERÍA**

# OBTENCIÓN DE ELEMENTOS MECÁNICOS EN LA CIMENTACIÓN DE UN EDIFICIO DE TRES NIVELES CONSIDERANDO INTERACCIÓN SUELO-ESTRUCTURA

#### **TESIS**

Que para obtener el título de

**INGENIERO CIVIL** 

#### PRESENTA

Ricardo Razo Ferráez

#### **DIRECTOR DE TESIS**

DR. ARMANDO RAFAEL HERMOSILLO ARTEAGA







UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

#### DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

# **Contenido**

| 1. | 1. Introducción                                 | 3                         |
|----|-------------------------------------------------|---------------------------|
| 2. | 2. Análisis Estructural                         | 5                         |
|    | 2.1 Método de las Rigideces                     | 5                         |
| 3. | 3. Teoría de las Deformaciones en Suelos        | 16                        |
|    | 3.1 Cálculo de la Deformación Lineal del Suelo  | 17                        |
|    | 3.2 Cálculo de la Deformación No Lineal del Su  | elo19                     |
|    | 3.3 Incremento de esfuerzos en la masa del sue  | elo con carga uniforme 25 |
|    | 3.4 Asentamientos Permisibles                   | 27                        |
| 4. | Interacción Suelo-Estructura                    | 29                        |
| 5. | 5. Resolución de Sistema de Ecuaciones No Linea | les32                     |
| 6. | S. Programa ISE3D                               | 34                        |
|    | 6.1 Descripción del Programa                    | 34                        |
|    | 6.2 Subrutinas                                  | 35                        |
|    | 6.3 Manual de Uso                               | 37                        |
| 7. | 7. Ejemplo de Aplicación                        | 41                        |
|    | 7.1 Comparativa de Resultados                   | 71                        |
| 8. | 3. Conclusiones                                 |                           |
| 9  | ) Referencias                                   |                           |

# 1. Introducción

El objetivo de este trabajo es tratar el tema de la Interacción suelo-estructura, ya que la importancia de este conocimiento recae en el desarrollo y crecimiento de las ciudades y asentamientos humanos. Todo esto se debe a que las propiedades mecánicas, químicas y geológicas del suelo le proporcionan características muy específicas y éste, a su vez, ofrecerá una respuesta distinta ante las cargas y condiciones a las que se encontrará sometido pudiendo ser muy variables de un sitio a otro, y dependiendo el tipo de estructura y subestructura que estará interactuando con él.

A través de los fundamentos universales que rigen nuestro entorno, el ser humano ha buscado la manera de desarrollarse con mejores métodos y medios que le brinden velocidad y precisión para realizar sus actividades.

En esta tesis se presenta un programa de cómputo desarrollado para calcular la interacción suelo-estructura, el cual está diseñado para leer los datos de una estructura, las propiedades del suelo y el tipo de análisis que se realizará, y con el cual se obtendrán los elementos mecánicos, hundimientos, desplazamientos y giros.

En el primer capítulo se presentan conceptos básicos del análisis estructural, particularmente el método de las rigideces, su procedimiento práctico y teórico.

Posteriormente se discuten las teorías de deformaciones; sus procedimientos de cálculo para la interacción suelo-estructura en un suelo friccionante, tanto por métodos elástico-lineales como no lineales.

A continuación, se revisa brevemente el incremento de esfuerzos en una masa de suelo con carga uniforme y se mencionan, de acuerdo las Normas Técnicas Complementarias para el Diseño y Construcción de Cimentaciones del Reglamento del Distrito Federal, los límites máximos para movimientos y deformaciones, es decir, los asentamientos permisibles.

En el capítulo siguiente se trata el tema de interacción suelo-estructura y se explica de forma muy general el procedimiento de cálculo a través de dos casos particulares de cimentaciones.

Por último, antes de abundar en el programa desarrollado, se presenta el método de Newton para la resolución de sistemas de ecuaciones no lineales, método que

fue implementado en el programa de interacción; como se verá más adelante, dicho método es iterativo.

Los capítulos anteriores son un antecedente para comprender el funcionamiento y la metodología del programa de computadora desarrollado; se hace una breve descripción del mismo y posteriormente se exponen las subrutinas con el orden lógico en el que está diseñado el programa, así como una reseña de cada una de las funciones que cumplen.

Con la finalidad de manipular correctamente el programa y poder así obtener resultados confiables, en el capítulo XX se presenta el Manual de Usuario del mismo. Como se comenta más adelante, los datos se ingresan a través de "tarjetas" o entradas de datos con un orden específico el cual, debe respetarse para que el programa lea la información adecuadamente. Para ello se construye un archivo de datos ubicado en la misma dirección donde se encuentra el programa.

Como ejemplo, a través se capturas de pantalla se mostrará gráficamente y paso a paso la secuencia con la que se trabajará con un ejercicio práctico desde el ingreso de los datos, la obtención de los resultados y la interpretación de los mismos.

# 2. Análisis Estructural

Es el proceso de cálculo y la determinación de los efectos de las cargas y fuerzas aplicadas en una estructura, conociendo estas cantidades y propiedades de los materiales de la estructura se puede valuar el margen de seguridad.

Un buen análisis se basa en prever con certeza el comportamiento de una estructura en las condiciones de servicio. Todas las estructuras se deforman continuamente a causa de las cargas, de los cambios de humedad, de la temperatura y por otras causas.

#### 2.1 Método de las Rigideces

El análisis estructural puede realizarse con el método de las rigideces, en el que se debe cumplir (ec. 01):

$$K\delta + P_e + P_c = 0 (ec. 01)$$

Donde:

K = matriz de rigidez de la estructura

 $\delta$  = vector de desplazamientos (grados de libertad)

Pe = vector de cargas de empotramiento

Pc = vector de cargas concentradas

El método de rigideces consta de las siguientes etapas (Beaufait et al., 1970)

- a) Se empotra la estructura y se determinan los elementos mecánicos cuando la estructura está empotrada;
- b) Se liberan los nudos de la estructura y se hallan los elementos mecánicos debidos a desplazamientos lineales y angulares;
- c) Se establecen las condiciones de equilibrio en cada uno de los nudos donde haya desplazamientos diferentes de cero;
- d) Se resuelven las ecuaciones de equilibrio y se obtienen los desplazamientos de la estructura;
- e) Se obtienen los elementos mecánicos en los nudos de la estructura.

La matriz de rigideces de la estructura se puede obtener mediante la suma de las matrices de rigidez de todas y cada una de las barras que conforman la estructura. El vector de cargas de empotramiento de toda la estructura es igual a la suma de los vectores de carga de todas y cada una de las barras de la estructura.

A continuación, se obtiene la matriz de rigidez y el vector de cargas de empotramiento de una barra con apoyos continuos, sometida a una carga uniformemente repartida w (figura 2.1.1). Utilizando la siguiente convención de signos, para una barra horizontal: los giros se consideran positivos en sentido antihorario, los desplazamientos verticales son positivos si van hacia abajo y los desplazamientos horizontales son positivos si van hacia la izquierda (figura 2.1.1a). Los momentos flexionantes son positivos en sentido horario, las fuerzas cortantes verticales son positivas si van hacia arriba y las fuerzas cortantes horizontales son positivas si van hacia la derecha (figura 2.1.1b).

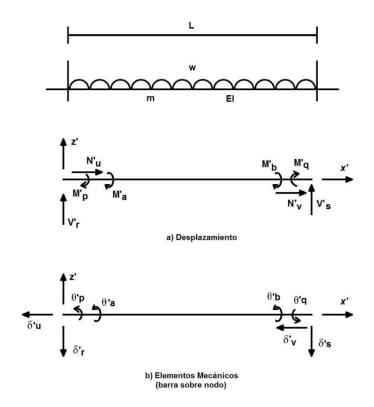
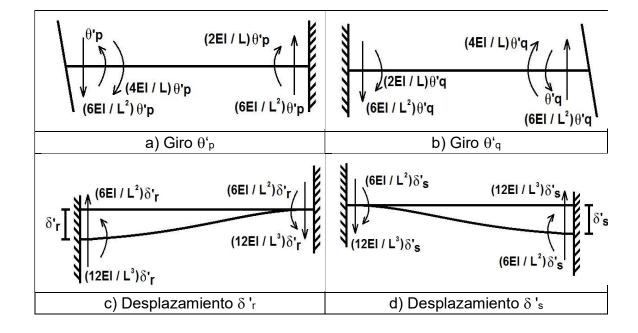




Figura 2.1. Grados de Libertad y elementos mecánicos. Convención de signos.

Demos un giro  $\theta_p'$  en el extremo izquierdo de la barra. En la *fig 2.1.a* se muestran los elementos mecánicos ocasionados por este giro. En la *fig 2.1.b* se muestran los elementos mecánicos producidos por un giro  $\theta_q'$  en el extremo derecho. Las *figuras 2.2c y 2.2d* exhiben los elementos mecánicos provocados por un desplazamiento vertical  $\delta_r'$  en el nudo izquierdo y un desplazamiento vertical  $\delta_s'$  en el nudo derecho, respectivamente. Las *figuras 2.2e y 2.2f* muestran los elementos mecánicos producidos por un desplazamiento horizontal  $\delta_u'$  en el nudo izquierdo y un desplazamiento horizontal  $\delta_v'$  en el nudo derecho. Las *figuras 2.2g y 2.2h* contienen los momentos producidos per un giro de torsión  $\theta_a'$  en el nudo izquierdo y un giro de torsión  $\theta_b'$  en el nudo derecho. Los elementos mecánicos que aparecen en la barra m valen

$$M_{p}' = \frac{\text{wL}^2}{12} + (\frac{4\text{El}}{L}) \theta_{p}' + (\frac{2\text{El}}{L}) \theta_{q}' - (\frac{6\text{El}}{L^2}) \delta_{r}' + (\frac{6\text{El}}{L^2}) \delta_{s}'$$
 (ec. 02)

$$M_{q'} = -\frac{\text{wL}^2}{12} + (\frac{2\text{EI}}{L})\theta_{p'} + (\frac{4\text{EI}}{L})\theta_{q'} - (\frac{6\text{EI}}{L^2})\delta_{r'} + (\frac{6\text{EI}}{L^2})\delta_{s'}$$
 (ec. 03)



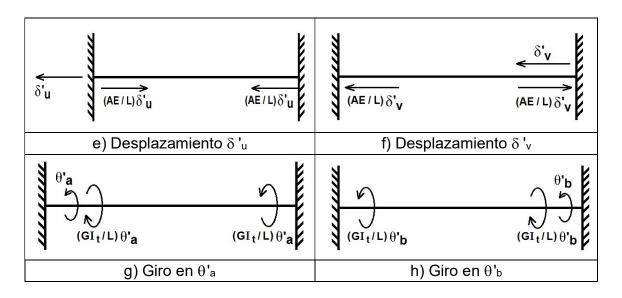



Figura 2.2. Elementos mecánicos ocasionados por desplazamientos lineales y angulares.

$$V_r' = -\frac{wL}{2} - \left(\frac{6EI}{L^2}\right)\theta_P' - \left(\frac{6EI}{L^2}\right)\theta_Q' + \left(\frac{12EI}{L^3}\right)\delta_r' - \left(\frac{12EI}{L^3}\right)\delta_S'$$
 (ec. 04)

$$V_s' = -\frac{wL}{2} + \left(\frac{6EI}{L^2}\right)\theta_P' + \left(\frac{6EI}{L^2}\right)\theta_Q' - \left(\frac{12EI}{L^3}\right)\delta_r' + \left(\frac{12EI}{L^3}\right)\delta_s'$$
 (ec. 05)

$$N_u' = \frac{AE}{L} \delta_u' - \frac{AE}{L} \delta_v'$$
 (ec. 06)

$$N_v' = -\frac{AE}{L}\delta_u' + \frac{AE}{L}\delta_v' \tag{ec. 07}$$

$$M_a' = \frac{GL_t}{L}\theta_a' - \frac{GL_t}{L}\theta_b' \tag{ec. 08}$$

$$M_b' = -\frac{GL_t}{L}\theta_a' + \frac{GL_t}{L}\theta_b' \tag{ec. 09}$$

En una viga de sección rectangular de dimensiones *b* por *h*, el momento polar de inercia debido a torsión se puede valuar en forma aproximada (Deaufait et. al, 1970)

$$I_t \cong \frac{hb^3}{3} \left[ 1 - 0.63 \frac{b}{h} + 0.052 \left( \frac{b}{h} \right)^5 \right]$$
 (ec. 10)

Los elementos mecánicos que transmite la barra al nudo están dados por

$$\overline{P}_{m} = \overline{K}_{m} \overline{\delta}_{m} + \overline{P}_{m}^{e'}$$
 (ec. 11)

Donde

$$K_{m} = \begin{bmatrix} \frac{\theta_{p}}{L} & \frac{\theta_{q}}{L} & \delta_{r}^{r} & \delta_{s}^{r} & \delta_{u}^{r} & \delta_{v}^{r} & \theta_{a}^{r} & \theta_{b}^{r} \\ \frac{4EI}{L} & \frac{2EI}{L} & -\frac{6EI}{L^{2}} & \frac{6EI}{L^{2}} & 0 & 0 & 0 & 0 \\ \frac{2EI}{L} & \frac{4EI}{L} & -\frac{6EI}{L^{2}} & \frac{6EI}{L^{2}} & 0 & 0 & 0 & 0 \\ -\frac{6EI}{L^{2}} & -\frac{6EI}{L^{2}} & \frac{12EI}{L^{3}} & -\frac{12EI}{L^{3}} & 0 & 0 & 0 & 0 \\ \frac{6EI}{L^{2}} & \frac{6EI}{L^{2}} & -\frac{12EI}{L^{3}} & \frac{12EI}{L^{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{AE}{L} & -\frac{AE}{L} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{AE}{L} & \frac{AE}{L} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{GI_{t}}{L} & -\frac{GI_{t}}{L} \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{GI_{t}}{L} & \frac{GI_{t}}{L} \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{GI_{t}}{L} & \frac{GI_{t}}{L} \end{bmatrix} \theta_{b}^{r}$$

$$(ec. 12)$$

$$\bar{\delta}'_{m} = \begin{bmatrix} \theta'_{p} \\ \theta'_{q} \\ \delta'_{r} \\ \delta'_{s} \\ \delta'_{u} \\ \delta'_{v} \\ \theta'_{a} \\ \theta'_{b} \end{bmatrix}$$
 (ec. 13)

$$P_m^e = \begin{cases} wL^2/12 \\ -wL^2/12 \\ -wL/2 \\ -wL/2 \\ 0 \\ 0 \\ 0 \end{cases}$$
 (ec. 14)

En donde:

 $\overline{K}_{\it m}$ : Matriz de rigidez de la barra m

 $\overline{\delta}_{\scriptscriptstyle{m}}^{\scriptscriptstyle{'}}$ : Vector de desplazamientos de la barra m

 $P_m^e$ : Vector de cargas de empotramiento de la barra m

Veamos a continuación la determinación de la matriz de rigidez y del vector de cargas de empotramiento para una estructura tridimensional, formada por marcos planos ortogonales entre sí (*figura 2.3*); en cada marco pueden existir barras inclinadas. En la *figura 2.4* se presenta la transformación de un vector del sistema global x-y al sistema local x'-y'. Aplicando las ecuaciones de la figura a la barra inclinada de la figura (despreciando el efecto de torsión con eje de giro vertical):

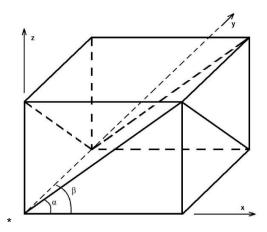



Figura 2.3. Marcos planos ortogonales entre sí.

$$\theta_p' = \theta_p$$
 (ec. 15)

$$\theta_q' = \theta_q$$
 (ec. 16)

$$\delta_r' = \delta_r \cos(\alpha) - \delta_u \sin(\alpha)$$
 (ec. 17)

$$\delta_{S}' = \delta_{S} \cos(\alpha) - \delta_{V} \sin(\alpha)$$
 (ec. 18)

$$\delta_u' = \delta_r \cos(\alpha) + \delta_u \sin(\alpha) \tag{ec. 19}$$

$$\delta_v' = \delta_s \cos(\alpha) + \delta_v \sin(\alpha)$$
 (ec. 20)

$$\theta_a' = \theta_a'' \cos(\alpha) \tag{ec. 21}$$

$$\theta_b' = \theta_b'' \cos(\alpha) \tag{ec. 22}$$

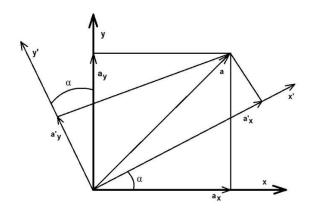
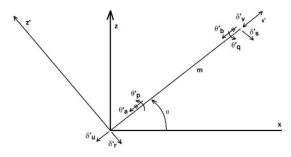


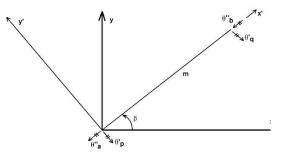

Figura 2.4. Transformación de un vector del sistema global x-y al sistema local x'-y'

$$a_x' = a_x \cos(\alpha) - a_y \sin(\alpha)$$
 (ec. 23)

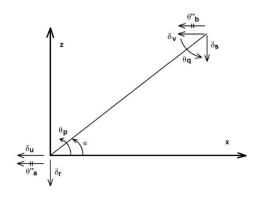
$$a_{y}^{'} = -a_{x}sen(\alpha) + a_{y}cos(\alpha)$$
 (ec. 24)

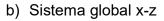

Aplicando las expresiones de la figura 2.5 a la barra de la figura 2.6.

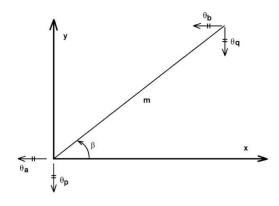
$$\theta_p' = \theta_p \cos(\beta) - \theta_a \sin(\beta)$$
 (ec. 25)


$$\theta_{q}^{'} = \theta_{q} \cos(\beta) - \theta_{b} \sin(\beta)$$
 (ec. 26)

$$\theta_a'' = \theta_p sen(\beta) + \theta_a cos(\beta)$$
 (ec. 27)


$$\theta_b^{"} = \theta_q sen(\beta) + \theta_b cos(\beta)$$
 (ec. 28)





a) Sistema local x'-z'



a) Sistema local x'-y'







b) Sistema global x-y

Figura 2.5. Desplazamientos de la barra inclinada

Figura 2.6. Giros de la barra paralelos al plano x-y

Sean

$$\vec{\mathcal{S}}_{m}' = \begin{bmatrix} \theta_{p}' \\ \theta_{q}' \\ \delta_{r}' \\ \delta_{s}' \\ \delta_{u}' \\ \delta_{v}' \\ \theta_{a}' \\ \theta_{b}' \end{bmatrix}$$
(ec. 29)

$$\bar{\delta}_{m} = \begin{bmatrix} \theta_{p} \\ \theta_{q} \\ \delta_{r} \\ \delta_{s} \\ \delta_{u} \\ \delta_{v} \\ \theta_{a} \\ \theta_{b} \end{bmatrix}$$
(ec. 30)

Es decir:

$$\overline{\delta}'_{m} = T_{m} \overline{\delta}_{m}$$
(ec. 31)

Donde:

$$T_{m} = \begin{bmatrix} \frac{\theta_{p}^{'}}{\theta_{p}^{'}} & \frac{\theta_{q}^{'}}{\theta_{p}^{'}} & \frac{\delta_{r}^{'}}{\theta_{s}^{'}} & \frac{\delta_{u}^{'}}{\theta_{u}^{'}} & \frac{\delta_{v}^{'}}{\theta_{u}^{'}} & \frac{\theta_{d}^{'}}{\theta_{p}^{'}} & \frac{\theta_{b}^{'}}{\theta_{p}^{'}} \\ \frac{\cos(\beta)}{\theta_{p}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}}{\theta_{0}^{'}} \\ \frac{\theta_{0}^{'}}{\theta_{0}^{'}} & \frac{\theta_{0}^{'}$$

Los desplazamientos de los sistemas local y global están relacionados mediante las expresiones:

$$\theta_p' = \theta_p \cos(\beta) - \theta_a \sin(\beta)$$
 (ec. 33)

$$\theta_q' = \theta_q \cos(\beta) - \theta_b \sin(\beta)$$
 (ec. 34)

$$\delta_r' = \delta_r \cos(\alpha) - \delta_u \sin(\alpha) \tag{ec. 35}$$

$$\delta_{s}' = \delta_{s} \cos(\alpha) - \delta_{v} \sin(\alpha)$$
 (ec. 36)

$$\delta_{u}^{'} = \delta_{r} sen(\alpha) + \delta_{u} cos(\alpha)$$
 (ec. 37)

$$\delta_{v}^{'} = \delta_{s} sen(\alpha) + \delta_{v} cos(\alpha)$$
 (ec. 38)

$$\theta_a' = \theta_p \cos(\alpha) \sin(\beta) + \theta_a \cos(\alpha) \cos(\beta)$$
 (ec. 39)

$$\theta_b' = \theta_q \cos(\alpha) \sin(\beta) + \theta_b \cos(\alpha) \cos(\beta)$$
 (ec. 40)

En el sistema local x'-z' (Figura 2.1.5)

$$P'_{m} = K_{m} \delta_{m} + P'_{m}^{e'}$$
 (ec. 41)

Pero

$$P_{m}^{e'} = T_{m} P_{m}^{e} \tag{ec. 42}$$

$$P'_{m} = T_{m}P_{m}$$
 (ec. 43)

Sustituyendo la ec 41 en la ec 43

$$\bar{T}_m \bar{P}_m = \bar{K}_m \bar{\delta}_m + \bar{P}_m^{e'} \tag{ec. 44}$$

Sustituyendo las ecs 32 y 42 en la ec 43

$$\bar{T}_m \bar{P}_m = \bar{K}_m' \bar{T}_m \bar{\delta}_m + \bar{P}_m^e \tag{ec. 45}$$

Premultiplicando por  $\overline{T}_{\scriptscriptstyle m}^{\scriptscriptstyle -1}$ 

$$\bar{P}_m = \bar{T}_m^{-1} \bar{K}_m \, \bar{T}_m \, \bar{\delta}_m + \bar{P}_m^e$$
 (ec. 46)

Donde

$$T_{m}^{-1} = \begin{bmatrix} \cos(\beta) & 0 & 0 & 0 & 0 & 0 & \frac{sen(\beta)}{0} & 0 \\ 0 & \cos(\beta) & 0 & 0 & 0 & 0 & \frac{sen(\beta)}{\cos(\alpha)} & 0 \\ 0 & 0 & \cos(\beta) & 0 & 0 & 0 & 0 & \frac{sen(\beta)}{\cos(\alpha)} \\ 0 & 0 & \cos(\alpha) & 0 & sen(\beta) & 0 & 0 & 0 \\ 0 & 0 & \cos(\alpha) & 0 & sen(\beta) & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos(\alpha) & 0 & sen(\beta) & 0 & 0 \\ 0 & 0 & -sen(\beta) & 0 & \cos(\alpha) & 0 & 0 & 0 \\ 0 & 0 & 0 & -sen(\beta) & 0 & \cos(\alpha) & 0 & 0 \\ -sen(\beta) & 0 & 0 & 0 & 0 & 0 & \frac{\cos(\beta)}{\cos(\alpha)} & 0 \\ 0 & -sen(\beta) & 0 & 0 & 0 & 0 & 0 & \frac{\cos(\beta)}{\cos(\alpha)} \end{bmatrix} \begin{pmatrix} e_{p} \\ \theta_{q} \\ \delta_{r} \\ \theta_{a} \\ \theta_{b} \end{bmatrix}$$

En el sistema global

$$\bar{P}_m = \bar{K}_m \bar{\delta}_m + \bar{P}_m^e \tag{ec. 48}$$

Donde

$$\bar{K}_m = \bar{T}_m^{-1} \bar{K}_m' \bar{T}_m$$
 (ec. 49)

Sustituyendo las ec 12, 32 y 47 en la ec 49 se obtiene la matriz  $K_m$ , la cual se muestra en la *Tabla 2.1*.

Para el vector de cargas de empotramiento:

$$\bar{P}_{m}^{e} = \bar{T}^{-1}\bar{P}_{m}^{e'} \tag{ec. 50}$$

$$P_{m}^{e} = \begin{cases} wL^{2}/12 & \cos \beta \\ -wL^{2}/12 & \cos \beta \\ -wL/2 & \cos \alpha \\ -wL/2 & \cos \alpha \\ wL/2 & \sin \alpha \\ wL/2 & \sin \alpha \\ -wL^{2}/12 & \sin \beta \\ wL^{2}/12 & \sin \beta \end{cases}$$
 (ec. 51)

La ec 49 proporciona la matriz de rigidez de la barra inclinada m, para el sistema coordenado general x-y-z. Las ec 50 ó 51 proporcionan el vector de cargas de empotramiento de la barra inclinada m, para el sistema coordenado general x-y-z.

Tabla 2.1. Matriz de rigidez, barra inclinada.

| $\theta_{p}$                 | $\theta_{q}$                 | $\delta_{r}$                                     | $\delta_{s}$                               | $\delta_{u}$                                     | $\delta_{v}$                 | $\theta_a$                              | $\theta_{b}$                            |              |
|------------------------------|------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|--------------|
| (4EI/L)cos²β                 | (2EI/L)cos²β-                | -(6El/L²)cosβ*                                   | (6El/L²)cosβ*                              | (6El/L²)cosβ*                                    | -(6El/L²)*                   | (-4El/L+Gl <sub>t</sub> /L)*            | (-2El/L-Gl <sub>t</sub> /L)*            | $\theta_{p}$ |
| +(GI <sub>t</sub> /L)sen²β   | (GI <sub>r</sub> /L)sen²β    | cosα                                             | cosα                                       | senα                                             | cosβsenα                     | cosβ senβ                               | cosβ senβ                               |              |
| (2EI/L)cos²β-                | (4El/L)cos²β                 | -(6El/L²)cosβ*                                   | (6EI/L²)cosβ*                              | (6EI/L²)cosβ*                                    | -(6EI/L²)*                   | (-2El/L-Gl <sub>t</sub> /L)*            | (-4El/L+Gl <sub>t</sub> /L)*            | $\theta_{q}$ |
| (GI <sub>r</sub> /L)sen²β    | +(Gl <sub>t</sub> /L)sen²β   | cosα                                             | cosα                                       | senα                                             | cosβsenα                     | cosβ senβ                               | cosβ senβ                               |              |
| -(6EI/L²)cosβ*               | -(6EI/L²)cosβ*               | (12EI/L³)cos²α+                                  | -(12EI/L <sup>3</sup> )cos <sup>2</sup> α- | (AE/L-12EI/L <sup>3</sup> )*                     | (12EI/L³-AE/L)*              | (6EI/L²)*                               | 6El/L²)*                                | $\delta_{r}$ |
| cosα                         | cosα                         | (AE/L) sen²α                                     | (AE/L) sen <sup>2</sup> α                  | cosαsenα                                         | cosasena                     | cosαsenβ                                | cosαsenβ                                |              |
| (6EI/L²)cosβ*                | (6EI/L²)cosβ*                | -(12EI/L <sup>3</sup> )cos <sup>2</sup> $\alpha$ | (12El/L³)cos²α+                            | (12EI/L³-AE/L)*                                  | (AE/L-12EI/L <sup>3</sup> )* | -(6EI/L²)*                              | -(6El/L²)*                              | $\delta_{s}$ |
| cosα                         | cosα                         | (AE/L) sen <sup>2</sup> $\alpha$                 | (AE/L) sen²α                               | cosαsenα                                         | cosαsenα                     | cosαsenβ                                | cosαsenβ                                |              |
| (6EI/L²)cosβ*                | (6EI/L²)cosβ*                | (AE/L-12EI/L <sup>3</sup> )*                     | (12El/L³-AE/L)*                            | (12EI/L³)sen²α+                                  | -(12El/L³)sen²α              | -(6El/L²)*                              | -(6El/L²)*                              | $\delta_{u}$ |
| senα                         | senα                         | cosαsenα                                         | cosαsenα                                   | (AE/L) cos²α                                     | (AE/L) cos²α                 | senαsenβ                                | senαsenβ                                |              |
| -(6EI/L²)*                   | -(6EI/L²)*                   | (12EI/L³-AE/L)*                                  | (AE/L-12EI/L <sup>3</sup> )*               | -(12EI/L <sup>3</sup> )sen <sup>2</sup> $\alpha$ | (12EI/L³)sen²α+              | (6El/L <sup>2</sup> )*                  | (6EI/L²)*                               | $\delta_{v}$ |
| cosβsenα                     | cosβsenα                     | cosαsenα                                         | cosαsenα                                   | (AE/L) cos <sup>2</sup> $\alpha$                 | (AE/L) cos²α                 | senαsenβ                                | senαsenβ                                |              |
| (-4EI/L+GI <sub>t</sub> /L)* | (-2El/L-Gl <sub>t</sub> /L)* | (6EI/L²)*                                        | -(6El/L²)*                                 | -(6EI/L²)*                                       | (6EI/L²)*                    | (4EI/L)sen <sup>2</sup> β+              | (2EI/L)sen <sup>2</sup> β-              | $\theta_a$   |
| cosβ senβ                    | cosβ senβ                    | cosαsenβ                                         | cosαsenβ                                   | senαsenβ                                         | senαsenβ                     | (GI <sub>t</sub> /L) cos <sup>2</sup> β | (GI <sub>r</sub> /L) cos <sup>2</sup> β |              |
| (-2EI/L-GI <sub>t</sub> /L)* | (-4El/L+Gl <sub>t</sub> /L)* | 6EI/L²)*                                         | -(6El/L²)*                                 | -(6EI/L²)*                                       | (6EI/L²)*                    | (2EI/L)sen <sup>2</sup> β-              | (4EI/L)sen <sup>2</sup> β+              | $\theta_{b}$ |
| cosβ senβ                    | cosβ senβ                    | cosαsenβ                                         | cosαsenβ                                   | senαsenβ                                         | senαsenβ                     | (GI <sub>t</sub> /L) cos <sup>2</sup> β | (GI <sub>r</sub> /L) cos <sup>2</sup> β |              |

En resumen, primero se utilizan la *Tabla 2.1.1* y las *ecs 50* ó *51* para hallar la matriz de rigidez y el vector de cargas de empotramiento de las barras de la estructura. La

matriz de rigideces de la estructura completa se obtiene mediante la suma de las matrices de rigidez de todas y cada una de las barras que forman la estructura; el vector de cargas de empotramiento de la estructura completa es igual a la suma de los vectores de carga de todas y cada una de las barras de la estructura. Sustituyendo en la ec 1 se obtiene la ecuación matricial de equilibrio de toda la estructura; resolviendo el sistema de ecuaciones se obtienen los desplazamientos correspondientes al sistema global x-y-z (vector  $\delta$  ). Los elementos mecánicos en las barras se obtienen de la siguiente forma: primero se determinan los desplazamientos en el sistema local, con el empleo de la ec 31 ó las ecs 33 a 40:

$$\bar{\delta}' = \bar{T}_m \bar{\delta}_m \tag{ec. 52}$$

A continuación, los elementos mecánicos en la barra m se determinan con la ec 53

$$\bar{P}'_m = \bar{K}_m' \bar{\delta}_m' + \bar{P}_m^{e'} \tag{ec. 53}$$

# 3. Teoría de las Deformaciones en Suelos

Para el cálculo de las deformaciones del terreno de cimentación se toma en cuenta la rigidez de la estructura, los grados de libertad de la estructura se obtienen con el método de rigideces, tanto los desplazamientos de la subestructura como los del terreno son iguales, es decir, existe compatibilidad de deformaciones entre estructura y suelo.

El procedimiento de cálculo para la interacción suelo-estructura consiste en tres pasos:

- a) Calcular los desplazamientos de la subestructura,
- b) Evaluar los desplazamientos del terreno de cimentación, y
- c) Establecer la compatibilidad de deformaciones entre estructura y suelo.

En el artículo (Hermosillo et al., 2012) se presenta un análisis de interacción sueloestructura de una zapata corrida sobre un suelo friccionante. En dicho trabajo se utiliza una ecuación constitutiva no lineal propuesta por Deméneghi (2008) para la compatibilidad de deformaciones. Así mismo, en el artículo se presenta el análisis de interacción suelo-estructura-superestructura usando como ejemplo un marco apoyado sobre un suelo friccionante; también se usó para la compatibilidad de deformaciones la ecuación constitutiva no lineal propuesta por Deméneghi.

En esta tesis se analiza la deformación de un suelo friccionante donde la presión es transmitida por una losa de cimentación, utilizando una ecuación constitutiva no lineal de deformación para suelos granulares propuesta por Deméneghi (2008). El análisis estructural se realiza por el método de rigideces, mientras que la compatibilidad de deformaciones se realiza con la solución de un sistema de ecuaciones no lineales con el método de Newton.

#### 3.1 Cálculo de la Deformación Lineal del Suelo.

Otros métodos para el cálculo de deformaciones en suelos friccionantes por métodos elástico-lineales son:

1. El asentamiento se calcula empleando la Ley de Hooke para cada estrato

$$\delta_{z} = \left(\frac{H}{E_{S}}\right) \left[\sigma_{z} - \nu(\sigma_{x} + \sigma_{y})\right]$$
 (ec. 54)

En suelos friccionantes es importante tomar en cuenta el incremento de rigidez del terreno con la presión de confinamiento. Para esto se puede emplear en forma aproximada la fórmula de Jambú (1963) dada por:

$$E_i = E_{i0} + K p_a \left(\frac{p_c}{p_a}\right)^n$$
 (ec. 55)

En la tabla 3.1 se presentan valores estadísticos de los valores de K y n, en función de la compacidad del suelo.

Tabla 3.1. Valores aproximados de propiedades de deformación en suelos friccionantes.

|                          |           |            |                    |             | Normalmente cargado | Precargado  |
|--------------------------|-----------|------------|--------------------|-------------|---------------------|-------------|
| Estado                   | Dr        | N          | qc                 | N           | K                   |             |
|                          |           |            | kg/cm <sup>2</sup> |             |                     |             |
| Muy suelto               | < 0.2     | < 4        | < 20               | 0.65        | < 140               | < 420       |
| Suelto                   | 0.2 - 0.4 | 4 –10      | 20 – 40            | 0.65 - 0.62 | 140 – 290           | 420 – 870   |
| Medianamente<br>Compacto | 0.4 – 0.6 | 10 –<br>30 | 40 – 120           | 0.62 - 0.58 | 290 – 800           | 870 – 2400  |
| Compacto                 | 0.6 – 0.8 | 30 –<br>50 | 120 – 400          | 0.58 - 0.55 | 800 – 1300          | 2400 – 3900 |
| Muy compacto             | > 0.8     | > 50       | > 400              | 0.55        | > 1300              | > 3900      |

Dr. Capacidad relativa

N: Número de golpes en la prueba de penetración estándar.

*q<sub>c</sub>*: Resistencia en la punta del cono holandés.

La presión de confinamiento  $p_c$  que debe utilizarse en la *ec. 55* debe ser la presión efectiva dada por:

$$p_c = p_{co} + \frac{1}{2} \Delta p_c$$
 (ec. 56)

Pero

$$\Delta p_c = \frac{1}{3}(\sigma_z + \sigma_x + \sigma_y)$$
 (ec. 57)

Por lo tanto

$$p_c = p_{co} + \frac{1}{6} (\sigma_z + \sigma_x + \sigma_y)$$
 (ec. 58)

Efecto de la presencia del nivel de agua freática (NAF). Sí el suelo se encuentra abajo del NAF en las ecs. 55 y 56 se deben de emplear la presión efectiva en vez de la presión total, pues la rigidez de una arena está en función de dicha presión efectiva.

2. El asentamiento se puede calcular por medio de la ecuación de *Burland y Burbridge* (1985; citados por Décourt, 1989).

Para zapatas en arenas normalmente cargadas está dado por

$$\delta = qB^{0.7}l_c \tag{ec. 59}$$

Mientras que para arenas precargadas

$$\delta = \frac{1}{3} q B^{0.7} l_c \tag{ec. 60}$$

Donde

$$l_c = 1.17/N^{1.4}$$
 (ec. 61)

q: Presión de contacto, [kN/m²].

B: Ancho de la cimentación, [m].

El asentamiento δ está dado en [mm].

#### 3.2 Cálculo de la Deformación No Lineal del Suelo

El método de Deméneghi toma en cuenta la ecuación constitutiva de Juárez Badillo (1965) que utiliza la siguiente expresión para el cálculo de la deformación volumétrica de los materiales.

$$\frac{dV}{V} = -\gamma (d\sigma/\sigma)$$
 (ec. 62)

Donde

V: Volumen de un elemento de suelo.

σ: Esfuerzo isotrópico sobre el elemento de suelo.

Y: Parámetro que mide la compresibilidad volumétrica del material.

A partir de estas ideas de Juárez Badillo, Deméneghi propone el siguiente procedimiento para llegar a la ecuación constitutiva de la deformación del suelo no lineal.

Supongamos por un momento que el confinamiento inicial  $p_{beo}$  se mantiene constante. Demos incrementos de esfuerzo  $\sigma_z$ ,  $\sigma_x$  y  $\sigma_y$ ; podemos usar entonces una variante de la ley de Hooke para el cálculo de la deformación unitaria.

$$\varepsilon \simeq (1/A) \left[ \sigma_z - \nu (\sigma_x + \sigma_v) \right]^r$$
 (ec. 63)

Donde (1/A) es el coeficiente de proporcionalidad entre el esfuerzo desviador y la deformación unitaria,  $\nu$  es la relación de Poisson y r un exponente que depende de la forma de la curva esfuerzo deformación unitaria del suelo.

Suponiendo que el espesor  $\Delta z_0$  del elemento es suficientemente pequeño para que la relación entre el incremento de esfuerzo horizontal y el incremento de esfuerzo vertical sea constante, tenemos que:

$$a_1 = \frac{\sigma_x}{\sigma_z}$$
 (ec. 64)

$$\sigma_x = a_1 \, \sigma_z$$
  $\sigma_x = a_1 \, \sigma_z$  (ec. 65)

Sustituyendo las ecuaciones

$$\varepsilon \cong (1/A) \{ \sigma_z [1 - \nu (a_1 + a_2)] \}^r$$
 (ec. 66)

$$\varepsilon \cong (1/A)(f\sigma_z)^r$$
 (ec. 67)

siendo

$$f = 1 - v (a_1 + a_2)$$
 (ec. 68)

Por otra parte, como mencionamos antes, la deformación es función inversa del esfuerzo de confinamiento. Veamos a continuación cómo tomar en cuenta este efecto. Consideremos un elemento de suelo cometido a una presión de confinamiento inicial  $p_{beo}$  demos incrementos de esfuerzo  $\sigma_z$ ,  $\sigma_x$  y  $\sigma_y$ , sobre el cuerpo. Estos incrementos de esfuerzo ocasionan que la presión de confinamiento  $p_{beo}$  aumente en una cantidad  $\Delta p_{beo}$  dado lugar a un nuevo valor de  $p_{be}$ , que vale

$$p_{be} = p_{beo} + \Delta p_{be} \tag{ec. 69}$$

En término generales, en mecánica de suelos se acepta que  $\Delta p_{be}$  es igual al incremento de esfuerzo normal en el plano octaédrico, o sea, que es igual al promedio de los incrementos de esfuerzo.

$$\Delta p_{be} = \frac{\sigma_z + \sigma_x + \sigma_y}{3} \tag{ec. 70}$$

Para fines prácticos podemos sustituir la cantidad de (1/3) por coeficientes, es decir

$$\Delta p_{be} = b_1 \sigma_z + b_1 (\sigma_x + \sigma_y) \tag{ec. 71}$$

Donde, dada la experiencia actual

$$b_1 = 1/3$$
 y  $b_2 = 1/3$  (ec. 72)

Reemplazando las ecuaciones

$$\Delta p_{be} = c \,\sigma_{z} \tag{ec. 73}$$

Demos ahora incrementos diferenciales de esfuerzo al elemento. Con los resultados anteriores, podemos plantear una ecuación constitutiva general, en la que la deformación unitaria sea directamente proporcional a la variante de la ley de Hooke dada por la ec. 63, el inversamente proporcional a la presión de confinamiento dada por la ec. 69 (Figura 3.2), es decir (Deméneghi, 1984).

$$\frac{d(\Delta z)}{\Delta z} = -\frac{1}{A} \frac{(f \sigma_z/p_a)^r d(f \sigma_z/p_a)}{[(p_{po} + c \sigma_z)/p_a]^s}$$
 (ec. 74)

Donde A es el módulo de rigidez del suelo, y r y s son exponentes que depende del tipo de suelo. pa es la presión atmosférica = 101.3 KPa, a nivel del mar, que se introduce con el fin de que el módulo A sea adimensional (Jambú, 1963).

La ecuación anterior (ec. 74) es la ecuación constitutiva diferencial general que podemos usar para calcular la deformación de un suelo, para diferentes condiciones de carga.

Para el cálculo de la deformación vertical de un elemento de suelo de espesor  $\Delta_{zo}$  (*Figura 3.2*) podemos usar la *ec. 74*, que corresponde a una ecuación constitutiva diferencial en un medio granular.

En suelos friccionantes, el exponente *r* varía entre 0 y 0.2. Para fines prácticos podemos tomar r=0; la ecuación *ec.* 74 queda

$$\frac{d(\Delta z)}{\Delta z} = -\frac{1}{A} \frac{d(f \sigma_z/p_a)}{[(p_{beo} + c \sigma_z)/p_a]^s}$$
 (ec. 75)

Al aumentar el esfuerzo normal vertical de 0 a  $\sigma_z$ , la altura del elemento cambia de la altura inicial  $\Delta z_o$  a la altura final  $\Delta z_f$  (*Figura 3.2*). Por lo tanto, debemos integrar la ecuación anterior de  $\Delta z_o$  a  $\Delta z_f$  el primer miembro y de 0 al segundo  $\sigma_z$  miembro.

$$\int_{\Delta zo} \frac{d(\Delta z)}{\Delta z} = -\int_0^{\infty} \frac{1}{A} \frac{d(f\sigma_z/p_a)}{[(p_{hea} + c\sigma_z)/p_a]^s}$$
 (ec. 76)

$$\frac{\Delta z_f}{\Delta z_0} = exp\left\{-\frac{f[(p_{beo} + c \sigma_z)^{1-s} - (p_{beo})^{1-s}]}{(1-s) c A p_a^{1-s}}\right\}$$
 (ec. 77)

Pero (Figura 3.2.1)

$$\Delta z_f = \Delta z_0 + \Delta w \tag{ec. 78}$$

$$\frac{\Delta z_f}{\Delta z_0} = 1 + \Delta w / \Delta z_0 \tag{ec. 79}$$

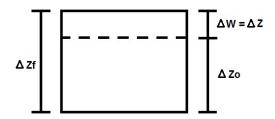



Figura 3.2. Deformación de un elemento de suelo de espesor inicial  $\Delta z_n$ .

$$\frac{\Delta w}{\Delta z_0} = \frac{\Delta z_f}{\Delta z_0} - 1 \tag{ec. 80}$$

$$\frac{\Delta w}{\Delta z_0} = exp\left\{-\frac{f[(p_{beo} + c \sigma_z)^{1-s} - (p_{beo})^{1-s}]}{(1-s) c A p_a^{1-s}}\right\} - 1$$
 (ec. 81)

El desplazamiento  $\Delta w$  se mide hacia arriba. Para que el desplazamiento hacia abajo sea positivo (como es usual es la mecánica de suelos), hagamos  $\delta_z = -\Delta w$ . La ecuación queda

$$\delta_z = \left\{ 1 - exp \left\{ -\frac{f[(p_{beo} + c \sigma_z)^{1-s} - (p_{beo})^{1-s}]}{(1-s) c A p_a^{1-s}} \right\} \right\} \Delta z_0$$
 (ec. 82)

Esta ecuación permite calcular la deformación vertical de un elemento de suelo friccionante de espesor  $\Delta z_0$  sujeto a incrementos de esfuerzo  $\sigma_z$ ,  $\sigma_x$  y  $\sigma_y$ . Cabe aclarar que en suelos friccionantes el exponente s es del orden de 0.5.

Para fines prácticos, para el cómputo de la deformación de un suelo friccionante conveniente entonces emplear la *ec.* 82 con *s*=0.5, con el procedimiento que indica a continuación.

El coeficiente  $K_0$  se calcula con la siguiente expresión (Mayne y Kulhawy, 1982).

$$K_0 = (1 - sen \varphi)(OCR)^{sen \varphi}$$
 (ec. 83)

Donde  $\phi$  es el ángulo de fricción interna y OCR es la relación de preconsolidación del suelo en el campo.

La relación de Poisson v se obtiene

$$v = K_0/(1 + K_0) \tag{ec. 84}$$

El módulo de rigidez promedio  $A_m$  del suelo se determina a partir del número de golpes de la prueba de penetración estándar (SPT), con la siguiente expresión aproximada

$$A_m = 26.25 N^{1.125} (ec. 85)$$

El módulo desfavorable se calcula en función del nivel de confianza α con

$$A = A_m C (ec. 86)$$

Donde

$$C = exp[-0.784 t_{\alpha} \sqrt{1.00758 + 0.0152 (In N - 2.976)^{2}}]$$
 (ec. 87)

 $t_{\alpha}$  es una variable t de Student, cuyos valores en función de  $\alpha$  se muestran en la *Tabla 3.2*. Cabe aclarar que existe una probabilidad de  $\alpha$  de que el módulo A del suelo sea menor que el valor dado por la *ec.* 86.

Tabla 3.2. Nivel de confianza en función de variable t de Student.

| Nivel de<br>Confianza α (%) | tα    |
|-----------------------------|-------|
| 2.5                         | 1.978 |
| 5                           | 1.657 |
| 10                          | 1.288 |
| 15                          | 1.041 |
| 20                          | 0.844 |
| 25                          | 0.676 |
| 30                          | 0.526 |
| 40                          | 0.254 |
| 50                          | 0     |

Finalmente, el cálculo de las deformaciones verticales  $\delta_z$  de una cimentación en suelos friccionantes de espesor de un estrato de suelo friccionante de espesor  $\Delta z_0$  sujeto a incrementos de esfuerzos  $\sigma_x$ ,  $\sigma_y$  y  $\sigma_z$  está dado por:

$$\delta_z = \left\{ 1 - exp \left\{ -\frac{f[(p_{beo} + c \sigma_z)^{1-s} - (p_{co})^{1-s}]}{(1-s) c A p_a^{1-s}} \right\} \right\} \Delta z_0$$
 (ec. 88)

Donde:

$$f = 1 - \nu(a_1 + a_2)$$
 (ec. 89)

$$a_1 = \frac{\sigma_x}{\sigma_z}$$
;  $a_2 = \frac{\sigma_y}{\sigma_z}$  (ec. 90)

s: es coeficiente que depende del tipo de suelo, el cual vale 0.5 para suelos friccionantes.

$$c = \frac{1}{3} + \frac{(a_1 + a_2)}{3}$$
 (ec. 91)

Los incrementos de esfuerzo  $\sigma_x$ ,  $\sigma_y$  y  $\sigma_z$  en la masa del suelo se calculan con la teoría de la elasticidad que están dadas para  $\sigma_z$  por Damy (1985) y para  $\sigma_x$  y  $\sigma_y$  por Dashkó y Kagán (1980).

# 3.3 Incremento de esfuerzos en la masa del suelo con carga uniforme

Las expresiones para determinar los esfuerzos normales verticales bajo la esquina de un rectángulo sometido a una carga uniforme "q" aplicada en la superficie (*Figura* 3.3).

Para  $\sigma_z$  (Damy 1985)

$$\sigma_z = \frac{q}{2\pi} \left[ \left( \frac{1}{x^2 + z^2} + \frac{1}{y^2 + z^2} \right) \frac{xyz}{A} + ang \ tan \ \left( \frac{xy}{zA} \right) \right]$$
 (ec. 92)

Para  $\sigma_x$  y  $\sigma_y$  (Dashkó y Kagán 1980)

$$\sigma_x = \frac{q}{2\pi} \left[ \frac{\pi}{2} - \frac{xyz}{(x^2 + z^2)A} - ang \tan\left(\frac{zA}{xy}\right) + (1 - 2v)(ang \tan\left(\frac{y}{x}\right) - ang \tan\left(\frac{yA}{xz}\right) \right]$$
 (ec. 93)

$$\sigma_y = \frac{q}{2\pi} \left[ \frac{\pi}{2} - \frac{xyz}{(y^2 + z^2)A} - ang \tan\left(\frac{zA}{xy}\right) + (1 - 2v)(ang \tan\left(\frac{x}{y}\right) - ang \tan\left(\frac{xA}{yz}\right) \right] \text{ (ec. 94)}$$

$$A = \sqrt{x^2 + y^2 + z^2}$$
 (ec. 95)

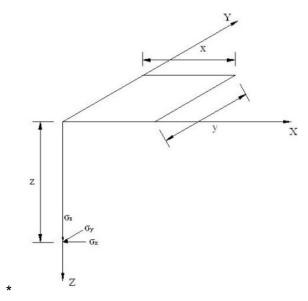



Figura 3.3. Incrementos de esfuerzo normal bajo la esquina de un rectángulo cargado uniformemente en un medio semi-infinito.

Definiendo el "Valor de Influencia", es el esfuerzo producido por una carga unitaria.

#### Donde:

l<sub>z</sub>: el incremento de esfuerzo vertical producido por una carga unitaria en la esquina de un rectángulo cargado uniformemente (*Figura* 3.3) y se calcula con la ecuación de Damy (1985):

$$I_{z} = \frac{1}{2\pi} \left[ \left( \frac{1}{x^{2} + z^{2}} + \frac{1}{y^{2} + z^{2}} \right) \frac{xyz}{\sqrt{x^{2} + y^{2} + z^{2}}} + ang \tan \frac{xy}{z\sqrt{x^{2} + y^{2} + z^{2}}} \right]$$
 (ec. 96)

 $I_x$  e  $I_y$  son los valores de influencia horizontales, producidos por una carga unitaria, en la esquina de un rectángulo cargado uniformemente (*Figura 3.3*); se calculan con las ecuaciones de Dashkó y Kagán, (Dashkó et al., 1980).

$$I_{x} = \frac{1}{2\pi} \left[ \frac{\pi}{2} - \frac{xyz}{(x^{2}+z^{2})\sqrt{x^{2}+y^{2}+z^{2}}} - ang \tan \frac{z\sqrt{x^{2}+y^{2}+z^{2}}}{xy} + (1-2v) * \left( ang \tan \frac{y}{x} - ang \tan \frac{y\sqrt{x^{2}+y^{2}+z^{2}}}{xz} \right) \right]$$
 (ec. 97)

$$I_{y} = \frac{1}{2\pi} \left[ \frac{\pi}{2} - \frac{xyz}{(y^{2} + z^{2})\sqrt{x^{2} + y^{2} + z^{2}}} - ang \ tan \frac{z\sqrt{x^{2} + y^{2} + z^{2}}}{xy} + (1 - 2v) * \left( ang \ tan \frac{x}{y} - ang \ tan \frac{x\sqrt{x^{2} + y^{2} + z^{2}}}{yz} \right) \right]$$
 (ec. 98)

#### 3.4 Asentamientos Permisibles

Asentamiento total permisible de la cimentación de una estructura, de tal forma que no se presente daño funcional en las siguientes instalaciones o elementos:

Tabla 3.3. Asentamientos permisibles en obras.

| Obras de drenaje                         | 15 a 30 cm  |
|------------------------------------------|-------------|
| Accesos a la estructura                  | 30 a 60 cm  |
| Muros de mampostería                     | 2.5 a 5 cm  |
| Marcos estructurales de concreto o acero | 5 a 10 cm   |
| Losas o cajones de cimentación           | 7.5 a 30 cm |

Los valores mayores son para asentamientos en terrenos de cimentaciones homogéneos y estructuras de buena calidad de construcción. Los valores menores son para asentamientos en terrenos de cimentación con estratigrafía errática y estructuras de regular calidad de construcción.

Tomado de Sowers (1962)

De acuerdo al Reglamento de las Normas Técnicas Complementarias para el Diseño y Construcción de Cimentaciones los límites se presentan en la *Tabla* 3.4. Respetando la numeración de las Normas de dicho reglamento.

Tabla 3.4. Límites máximos para movimientos y deformaciones originados en la cimentación

A) Movimientos verticales (hundimientos o emersión).

| Ty Movimentos verticales (nariamientos e emercieny. |             |
|-----------------------------------------------------|-------------|
| Concepto                                            | Límite      |
| En la zona I                                        |             |
| Valor medio en el área ocupada por la construcción: |             |
| Asentamiento: Construcciones aisladas               | 5 cm        |
| Construcciones colindantes                          | 2.5 cm      |
| En la zona II y III                                 |             |
| Valor medio en el área ocupada por la construcción: |             |
| Asentamiento: Construcciones aisladas               | 30 cm       |
| Construcciones colindantes                          | 15 cm       |
| Asentamiento: Construcciones aisladas               | 30 cm       |
| Construcciones colindantes                          | 15 cm       |
| Velocidad del componente diferido                   | 1 cm/semana |

| B) Inclinación media de l<br>Tipo de daño                                                           | Límite                                                               | Observaciones                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Inclinación visible                                                                                 | ,                                                                    | h₀: altura de la<br>construcción [m]                                                                                                          |
| Mal funcionamiento de grúas viajeras.                                                               | Lanca and                                                            |                                                                                                                                               |
| C) Deformaciones difere                                                                             | nciales en la propia estructura y sus vecir                          | nas.                                                                                                                                          |
| Tipo de Estructuras                                                                                 | Variable que se limita                                               | Límite                                                                                                                                        |
| Marcos de acero                                                                                     | Relación entre el asentamiento diferenci<br>entre apoyos y el claro. | al 0.006                                                                                                                                      |
| Marcos de concreto                                                                                  | Relación entre el asentamiento diferenci<br>entre apoyos y el claro. | al 0.004                                                                                                                                      |
| Muros de carga de<br>tabique de barro o<br>bloque de concreto                                       | Relación entre el asentamiento diferenci<br>entre apoyos y el claro. | al 0.002                                                                                                                                      |
| Muros con acabados<br>muy sensibles, como<br>Yeso, piedra o<br>mental, etc.                         | Relación entre el asentamiento diferenci entre apoyos y el claro.    | Se tolerarán valores mayores e la medida en la que deformación ocurra antes o colocar los acabados o éstos sencuentren desligados a lo muros. |
| Páneles móviles o<br>muros con acabados<br>poco sensibles, como<br>mampostería con<br>juntas secas. | Relación entre el asentamiento diferendente entre apoyos y el claro. | cial 0.004                                                                                                                                    |
| Tuberías de concreto con juntas                                                                     | Cambios de pendiente den las juntas.                                 | 0.015                                                                                                                                         |

<sup>1</sup>Comprende la suma de los movimientos debidos a todas las combinaciones de carga que se especifican en el Reglamento y las Normas Técnicas Complementarias. Los valores de la tabla son sólo límites máximos y en cada caso habrá que revisar que no se cause ninguno de los daños mencionados

# 4. Interacción suelo-estructura

Es aquella parte de la ingeniería que estudia las deformaciones del terreno de cimentación cuando éstas se ven afectadas por la presencia y rigidez de la propia estructura. La influencia de la estructura puede ser en condiciones estáticas, lo cual es tratado por la interacción estática suelo-estructura, o puede ser en condiciones dinámicas, lo cual cae en el campo de la interacción dinámica suelo-estructura.

Se conocen como métodos de interacción estática suelo-estructura aquellos procedimientos que para el cálculo de las deformaciones del terreno de cimentación toman en cuenta la rigidez de la estructura.

Estos métodos están basados en el principio de que el contacto cimiento-terreno, los desplazamientos tanto de la subestructura como los del terreno son iguales, es decir, existe compatibilidad de deformaciones entre estructura y suelo.

Generalmente, el procedimiento de cálculo consiste en 3 pasos:

- Se calculan los desplazamientos de la subestructura.
- Se calculan los desplazamientos del terreno de cimentación, y
- Se establece la compatibilidad de deformaciones entre estructura y suelo.

Podemos distinguir 2 clases de situaciones en relación con la interacción:

#### Zapatas Aisladas

Cuando los cimientos están lo suficientemente separados, de tal forma que la carga sobre un apoyo no ejerce influencia sobre los desplazamientos de los apoyos vecinos.

Para llevar a cabo, se hace uso del concepto de módulo de reacción o módulo de rigidez del terreno de cimentación.

Definamos el módulo de reacción o rigidez lineal vertical de un cimiento.

$$K_v = Q_v / \delta_v \tag{ec. 99}$$

Donde

 $Q_v$ : es la fuerza vertical aplicada al cimiento y

 $\delta_v$ : es el asentamiento vertical ocasionado por  $Q_v$ .

De la misma manera se define la horizontal.

$$K_h = Q_h/\delta_h \tag{ec. 100}$$

Donde

 $Q_h$ : es la fuerza horizontal aplicada al cimiento y

 $\delta_h$ : es el asentamiento horizontal ocasionado por  $Q_h$ .

Se define la rigidez a la rotación de un cimiento

$$K_r = M/\theta \tag{ec. 101}$$

Donde:

M: es el momento aplicado al cimiento y

 $\theta$ : el ángulo (En radianes) producido por dicho momento.

#### Zapatas Continuas

Se trata de un cimiento en donde el desplazamiento de un punto está afectado por la carga repartida en toda la subestructura.

Sea un cimiento totalmente flexible con carga uniforme apoyado en un suelo cohesivo totalmente saturado. El asentamiento a largo plazo toma la forma indicada en la *Figura 4.1*; el diagrama de reacción del terreno en este caso es igual al de la carga, es decir, la reacción es uniforme. Si dicho cimiento se apoya sobre un suelo friccionante, el asentamiento se distribuye como se indica en la *Figura 3.2*; por ser el cimiento totalmente flexible, la reacción del suelo es también uniforme.

Sea ahora una placa de rigidez infinita apoyada en una arcilla totalmente saturada.

El hundimiento es uniforme, pero el diagrama de reacción a largo plazo toma la forma:

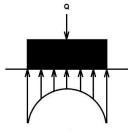



Figura 4.1. Diagrama de reacción de terreno en arcilla totalmente saturada.

Si la placa se apoya sobre el suelo friccionante, el diagrama de reacción toma la forma:

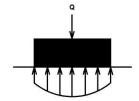



Figura 4.2. Diagrama reacción del terreno en suelo friccionante.

Los diagramas de asentamientos y de reacciones del terreno dependen de la clase de suelo y de la rigidez de la estructura. Un cimiento real puede quedar entre los dos casos extremos señalados, pues su rigidez no necesariamente es nula o infinita.

En esta tesis se presenta el análisis de la interacción suelo-estructura de una cimentación a base de losa.

Los suelos, a través de una cimentación, reciben las cargas de las edificaciones. Dichos asentamientos dependerán de la interacción entre el suelo y la estructura.

Conociendo la interacción que habrá entre un suelo y la estructura puede proponerse un diseño de cimentación que minimice los asentamientos y optimice el diseño estructural de dicha losa de cimentación.

En este trabajo se presenta el análisis estático de la interacción de una losa de cimentación con el suelo; por un lado, se plantea el análisis de las cargas que transmite la losa al suelo a través del método de rigideces, mientras que las deformaciones en el suelo se plantean mediante una ecuación constitutiva que puede ser lineal o no lineal. Ambos procedimientos se utilizan en este trabajo. Al resolverse el sistema de ecuaciones total se logra la compatibilidad de deformaciones.

# 5. Resolución de sistema de ecuaciones no lineales

El problema de encontrar la solución de un sistema de ecuaciones no lineales resulta más complicado que el caso de la solución de ecuaciones lineales. De hecho, algunos conjuntos de ecuaciones carecen de soluciones reales. El método de Newton puede aplicarse a sistemas de ecuaciones, así como a una sola ecuación no lineal. Comenzando con el siguiente ejemplo de dos ecuaciones con dos incógnitas, e igualando a acero:

$$f(x,y) = 0$$
 (ec. 102)

$$g(x,y) = 0$$
 (ec. 103)

Sea x = r y y = s, y ambas funciones se desarrollan en una serie de Taylor con respecto a un punto  $(x_i, y_i)$  en términos de  $(r - x_i)$ ,  $(s - y_i)$ ; donde  $(x_i, y_i)$  es un punto cerca de la raíz:

$$f(r,s) = 0$$
 (ec. 104)

$$f(x_i, y_i) + f_x(x_i, y_i)(r - x_i) + f_y(x_i, y_i)(s - y_i) + \dots = 0$$
 (ec. 105)

$$g(r,s) = 0 (ec. 106)$$

$$g(x_i, y_i) + g_x(x_i, y_i)(r - x_i) + g_y(x_i, y_i)(s - y_i) + \dots = 0$$
 (ec. 107)

Al truncar la serie se obtiene:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} f(x_i, y_i) \\ g(x_i, y_i) \end{bmatrix} + \begin{bmatrix} f_x(x_i, y_i) & f_y(x_i, y_i) \\ g_x(x_i, y_i) & g_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} r - x_i \\ s - y_i \end{bmatrix}$$
 (ec. 108)

Lo anterior puede reescribirse para resolverse como el sistema de ecuaciones:

$$\begin{bmatrix} f_x(x_i, y_i) & f_y(x_i, y_i) \\ g_x(x_i, y_i) & g_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} \Delta x_i \\ \Delta y_i \end{bmatrix} = - \begin{bmatrix} f(x_i, y_i) \\ g(x_i, y_i) \end{bmatrix}$$
 (ec. 109)

Donde

$$\Delta x_i = r - x_i, \text{ y } \Delta y_i = s - y_i \tag{ec. 110}$$

La ec. 107 se resuelve por eliminación gaussiana y luego, si se hace

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} \Delta x_i \\ \Delta y_i \end{bmatrix}$$
 (ec. 111)

Se obtiene una estimación mejorada de la raíz (r,s). Este proceso se repite con i reemplazada por i+1 hasta que f y g están próximas a 0. La extensión a más de dos ecuaciones simultáneas es directa. Por tanto, el método de Newton para un sistema de n ecuaciones puede escribirse al desarrollar la ec. 109. Así, se tiene:

$$\begin{bmatrix} f_{1x} & f_{1y} & f_{1z} & \cdots \\ f_{2x} & f_{2y} & f_{2z} & \cdots \\ f_{3x} & f_{3y} & f_{3y} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{nx} & f_{ny} & f_{ny} & \cdots \end{bmatrix} \begin{bmatrix} \Delta x_i \\ \Delta y_i \\ \Delta z_i \\ \vdots \end{bmatrix} = - \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{bmatrix}$$
 (ec. 112)

Evaluando en  $(x_i, y_i, z_i, ...,)$ . Al resolver lo anterior se calcula:

$$x_{i+1} = x_i + \Delta x_i, y_{i+1} = y_i + \Delta y_i, z_{i+1} = z_i + \Delta z_i,...$$
 (ec. 113)

En un programa de computadora resulta tedioso introducir cada una de las funciones de las derivadas parciales (que a menudo deben desarrollarse manualmente, a menos que se tenga acceso al sistema de álgebra por computadora o a una calculadora avanzada) a utilizar en la *ec. 107*. Una técnica alternativa es aproximar estas parciales volviendo a calcular la función con una pequeña perturbación a cada una de las variables a la vez:

$$(f_1)_x = \frac{f_1(x+\delta,y,z,...)-f_1(x,y,z,...)}{\delta},$$
 (ec. 114)

$$(f_1)_y = \frac{f_1(x,y+\delta,z,...)-f_1(x,y,z,...)}{\delta},$$
 (ec. 115)

$$(f_1)_{x_j} = \frac{f_1(x, y, z, \dots x_j + \delta) - f_1(x, y, z, \dots, x_j, \dots)}{\delta},$$
 (ec. 116)

Relaciones semejantes se usan para cada variable en cada función.

Para la resolución de la interacción suelo-estructura se realizó el programa de cómputo ISE3D, escrito en lenguaje FORTRAN y compilado para computadoras de escritorio de 32 y 64 bits.

# 6. Programa ISE3D

#### 6.1 Descripción del programa

El programa ISE3D realiza la interacción suelo-estructura y está escrito en lenguaje FORTRAN (Sanginés 2000, Hermosillo et. al 2014). Actualmente, el programa analiza la interacción suelo-estructura planteando la matriz de rigideces de la estructura y después ampliando dicha matriz con la matriz de flexibilidades del suelo, con lo cual se logra la compatibilidad de deformaciones. Esta última se estructura a partir de las propiedades del suelo y depende de cómo se considere el suelo, ya sea con un comportamiento lineal o no lineal, para el caso no lineal se considerá la teoría del profesor Agustín Demeneghi (1979) para suelos friccionantes.

El programa está compuesto por subrutinas las cuales, se describen en el siguiente capítulo. Éstas son presentadas siguiendo el orden lógico en el algoritmo.

Así mismo, está estructurado de tal forma que en la adquisición de datos del problema en estudio el usuario puede definir las características generales del caso y subsecuentemente las dichas características tanto de la superestructura, subestructura y el suelo.

Tanto la superestructura como la cimentación pueden definirse a través de áreas rectangulares.

# 6.2 Subrutinas

El programa ISE3D consta de las siguientes subrutinas, las cuales realizan lo que se indica en cada una de ellas:

LECN: Lectura de datos de nodos.

LECB: Lectura de datos de barras.

ZAP: Lectura de datos de zapatas.

GLIB: Calcula los grados de libertad de cada barra.

COSDIR: Calcula los cosenos directores de cada barra en el sistema

global.

LECLOS: Lectura de incidencias de losas de cimentación.

LECMAT: Lectura de propiedades elásticas de los materiales.

LECC: Lectura de cargas concentradas y de empotramiento.

CALC\_AR: Calcula las áreas y longitudes de las reacciones.

PROSU: Lectura de propiedades del suelo y calcula presiones del suelo.

VALINF: Calcula valores de influencia IX, IY, IZ.

LECEJESDIAG: Lectura de barras para diagramas de elementos mecánicos.

FORMA\_MAT\_K: Forma la matriz de rigideces.

FLSC: Matriz de flexibilidades lineal sin confinamiento,  $Ez_{ij}$  entra como

dato.

MAT\_FLEX\_K: Calcula la matriz de flexibilidades para zapatas aisladas.

HUND: Calcula hundimientos.

ELEM MEC: Calcula elementos mecánicos en los nodos.

DIAGRAMAS V M: Calcula los diagramas de elementos mecánicos.

SolNLDem: Resuelve el sistema no lineal (Demeneghi) por el método de

newton.

FLEXJ: Matriz de flexibilidades lineal para zapatas aisladas.

FLSC\_3: Matriz de flexibilidades lineal sin confinamiento, Ez<sub>ij</sub> entra como

dato. (caso 3)

FLSC\_4: Matriz de flexibilidades lineal sin confinamiento, Ez<sub>ij</sub> entra como

dato. (caso 4)

BOUSI: Calcula esfuerzos IX, IY, IZ.

Gaussj Solución del sistema de ecuaciones lineales por Gauss-Jordan.

SUB200: Obtiene los esfuerzos  $\sigma_x$ ,  $\sigma_y$  y  $\sigma_z$ .

CalcDefNL Calcula las deformaciones no lineales (MÉTODO DE

DEMÉNEGHI)

TRANSP: Calcula la transpuesta de una matriz.

MULMAT: Multiplica matrices.

PCRUZ: Calcula el producto cruz de 2 vectores.

#### 6.3 Manual de usuario

Las tarjetas de datos que se deben preparar son las siguientes:

Tarjeta 1: Datos generales

NN: Número de Nodos. Deben considerarse los nodos pertenecientes a las

barras y además incluir nodos auxiliares. Éstos deben ser en número

igual al número de barras

NB: No. de barras

NLOS: Número de losas de cimentación

NZAP: Número de zapatas aisladas

NMAT Número de materiales de barras

NPS: No. de perfiles de suelo

KANAL: Tipo de análisis que realizará el programa (0: elástico lineal, 1: Elástico

con Janbú, y 2: No lineal (Demeneghi)).

Caso1: Expansiones

Caso2: Compresiones a corto plazo

Caso3: Compresiones a largo plazo, consolidación primaria

Caso4: Compresiones a largo plazo, consolidación secundaria

Pa: Presión atmosférica (t/m²)

 Tarjeta 2: Lectura de coordenadas de nodos, y sus restricciones. Se leerán NN tarjetas

NNod Número de nodo
X Coordenada en x
Y Coordenada en y
Z Coordenada en z
RestX Restricción en x
RestY Restricción en y
RestZ Restricción en z

RestGX Restricción de giro en x
RestGY Restricción de giro en y
RestGZ Restricción de giro en z

NPN Número de perfil de suelo asociado al nodo

DF Profundidad de desplante

• Tarjeta 3: Lectura de barras

NBarra: No. de barra.

B Ancho de la barra

H Peralte de la barra

T\_Mat Tipo de material

W1: Carga (t/m) para Caso1

W2: Carga (t/m) para Caso2

W3: Carga (t/m) para Caso3

W4: Carga (t/m) para Caso4

N<sub>1</sub> Primer nodo de la barra

N<sub>2</sub> Segundo nodo de la barra

N<sub>k</sub> Nodo auxiliar de la barra (indica la dirección de su eje vertical). N<sub>k</sub> =1

si el vector de posición N<sub>1</sub> – Nk forma un ángulo positivo con el vector

de posición  $N_1 - N_2$ , de lo contrario  $N_k$  =-1.

 Tarjeta 4: Si NZAP >0, se realiza lectura de zapatas aisladas. Si no, no se realiza la lectura de tarjeta 4.

NZi Número de zapata

BZ: Ancho de la zapata

LZ: Longitud de la zapata

HZ: Peralte de la zapata

NNZ: Nodo en donde está la zapata

NTPi: Perfil asociado a la zapata i

 Tarjeta 5: Si NLOS >0, se lee datos de losas. Si no, no se realiza la lectura de tarjeta 5.

NL No. de losa

LOSAS Incidencias de losas (4 nodos por losa, sentido antihorario)

<sup>\*\*</sup>Nota: 0 es libre, 1 es fijo

• Tarjeta 6: Lectura de materiales (de barras)

IMAT Tipo de material *i* (desde 1 en orden ascendente)

E<sub>i</sub> Módulo de elasticidad

v<sub>i</sub> Relación de Poisson

Tarjeta 7: Lectura de cargas concentradas en nodos

NNC Número de nodos cargados.

Tarjeta 7.1: Se leerán a continuación NNC tarjetas con seis cargas cada una para cada nodo P<sub>i</sub>

 $P_j$   $Fx_j$ ,  $Fy_j$ ,  $Fz_j$ ,  $Mx_j$ ,  $My_j$ ,  $Mz_j$ 

• Tarjeta 8: Lectura de propiedades por perfil de suelo.

NE(*i*) Número de estratos del perfil *i*. Para cada perfil *i* se leerán NE(*i*) tarjetas de propiedades de cada estrato *j*.

o Tarjeta 8.1: propiedades del estrato j

 $N_{i,j}$ : Número del estrato j del perfil i

TipoSuelo<sub>i,i</sub>: 1: Arena, 2: Arcilla

AH<sub>i,j</sub>: Espesor del estrato j (m) del perfil i

GAMA<sub>i,j</sub>: Peso volumétrico del estrato j (t/m<sup>3</sup>)

 Tarjeta 8.2: Propiedades para análisis por expansión (Si Caso1=1, si Caso1=0 omitir esta tarjeta)

 $Ee_{i,j}$ : Módulo de rigidez del estrato j (t/m<sup>2</sup>)

NUei,j: Relación de Poisson

 Tarjeta 8.3: Propiedades para análisis por deformación inmediata (Si Caso2=1, si Caso2=0 omitir esta tarjeta)

Eu<sub>i,j</sub>: Módulo de rigidez del estrato j (t/m<sup>2</sup>)

NU<sub>i,j</sub>: Relación de Poisson

KO<sub>i,j</sub> Coeficiente de presión de tierra en reposo del estrato j del perfil i

K<sub>i,j</sub> Coeficiente k del suelo, para el cálculo del módulo de deformación E<sub>i</sub>,

del estrato j del perfil i

N<sub>i,j</sub>: Coeficiente N del suelo, para el cálculo del módulo de deformación E<sub>i</sub>,

del estrato j del perfil i

A<sub>i,j</sub> Módulo de deformación no lineal del suelo adimencional (Método

Deméneghi), del estrato j del perfil i

 Tarjeta 8.4: Propiedades para análisis por deformación diferida (consolidación primaria) (Si Caso3=1, si Caso3=0 omitir esta tarjeta)

Ev<sub>i,j</sub> Módulo de rigidez por cambio volumétrico del estrato j (t/m<sup>2</sup>)

AP<sub>i,j</sub> Módulo adimensional Ap para consolidación primaria

T<sub>i,i</sub> Factor tiempo

 Tarjeta 8.5: Propiedades para análisis por deformación diferida (consolidación secundaria) (Si Caso4=1, si Caso4=0 omitir esta tarjeta)

Emt<sub>i,j</sub> Módulo de rigidez por cambio de forma del estrato j (t/m<sup>2</sup>)

Acs<sub>i,i</sub> Módulo adimensional Acs para consolidación secundaria

PSI Parámetro ζ, consolidación secundaria

 $T_{i,j}$  Factor tiempo

• Tarjeta 9 Lectura de ejes para cálculo de diagramas de fuerza cortante y momento flexionante

NEJES: Número de ejes

NSB: Número de secciones en que se divide cada barra

Tarjeta 9.1 Se leerán el número de barras del eje i

NBEJE; Número de barras en eje i

Tarjeta 9.2 Barras que conforman al eje i

BAREJE(i,j)  $NB_1,NB_2,...NB_i$ , Barras que pertenecen al eje i

NOTA. Para ejecutar el programa deben ser copiadas las librerías (dll) incluidas en la carpeta "librerias" a la carpeta de windows (c:\windows)

# 7. Ejemplo de Aplicación

En este capítulo se presenta un ejemplo práctico para mostrar y comprender la manera lógica de análisis de interacción suelo-estructura de una losa de cimentación, utilizando el software ISE 3D desarrollado por el M. I. Héctor Sanginés (Sanginés, 2002) considerando deformaciones no lineales (Deméneghi, 2008), (Hermosillo et al., 2012), (Hermosillo et al., 2014), y actualizado para analizar estructuras tridimensionales.

Para ello, se realiza un ejercicio práctico donde se analiza un edificio de 3 niveles y planta baja con cimentación a base de losa y contratrabes con una geometría rectangular de 320 m² que a continuación se presentará esquemáticamente.

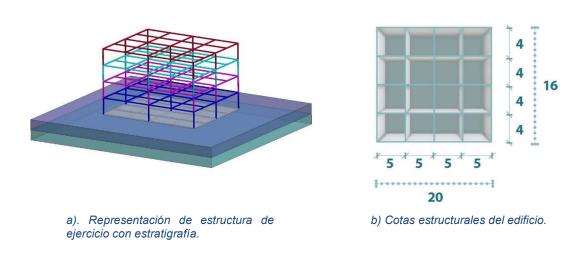



Figura 7.1. Croquis de planta, y elevación del edificio.

Como se puede observar en la figura 7.1a la losa cuenta con una base de 20 m y una longitud de 16 m, con una separación de 5 y 4 m respectivamente, la retícula propuesta será utilizada para calcular elementos mecánicos en distintos puntos los cuales, serán identificados a través de los ejes mostrados en la figura 7.2

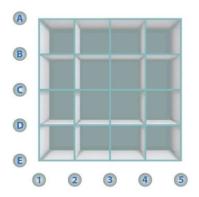
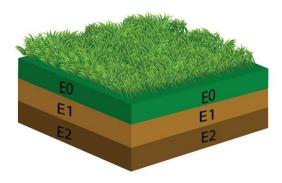
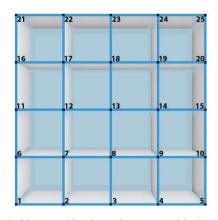



Figura 7.2. Denominación de ejes para cuadrícula.

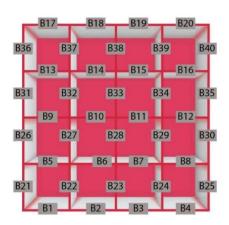
En este ejercicio se considerarán 2 estratos, sin embargo, el programa está diseñado para aceptar la cantidad de estratos que sean pertinentes en el proyecto. A mayor riqueza en datos e información menor incertidumbre en resultados.

No olvidar que, para la identificación de los estratos deberá ser precisada por medio de la mecánica de suelos la estratigrafía, la cual descarta el terreno superficial natural o los rellenos debido a sus condiciones mecánicas pobres.





Figura 7.3. Representación de estratigrafía con terreno natural.

El programa está diseñado para realizar tres tipos de análisis, los cuales se podrán seleccionar en la tarjeta 1 en la subrutina KANAL donde la opción (0) será para un análisis elástico lineal, (1) Elástico lineal con Janbú, y (2) No lineal para suelos friccionantes (Demeneghi)).


En este ejercicio, para el cálculo de las deformaciones del suelo, se utilizarán el método no lineal presentado como opción número (2) en los datos generales y la

opción (0), siendo este último el caso lineal; y no menos importante la opción 1, realizando el análisis por el método de Jambú para considerar el confinamiento en los suelos friccionantes.

A continuación, se mostrará gráficamente el acomodo y numeración nodal así como el ordenamiento de las barras del reticulado de la cimentación del edificio en cuestión. No olvidar que dichas barras representan una contratabe, la cual, al igual que la losa deberá ser diseñada a partir de los elementos mecánicos y reacciones obtenidas del análisis suelo estructura.







b) Numeración de barras en cuadrícula

Figura 7.4. Numeración de nodos y barras.

Ya que el programa trabaja en las 3 direcciones llamaremos a estas como "x" "y" y "z" ubicadas en las direcciones tradicionalmente conocidas. Además recordar que el análisis considera torciones, desplazamientos y giros (ver figura 7.5).

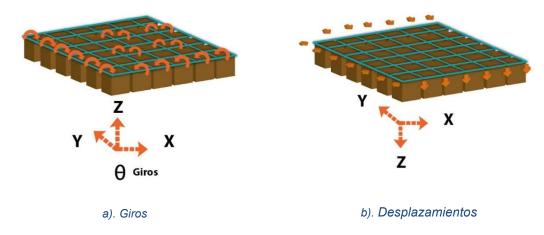



Figura 7.5. Convención de giros y desplazamientos.

Antes de empezar, deberá tenerse bien definido el proyecto de estudio, así como la información de mecánica de suelos. Posteriormente se requerirán consultar las instrucciones del programa para realizar el llenado correcto de la base de datos; en caso de cometerse un error en el vaciado de información se corre el riesgo de que el programa interprete incorrectamente los datos o en su defecto arroje un mensaje de error. Por lo anterior, se recomienda revisar la congruencia tanto de los datos asignados como de los resultados para evitar una incongruencia.

A continuación, se mostrará el procedimiento del uso del programa resolviendo el ejercicio propuesto. Véase que la entrada de datos se registrará para un análisis de tipo lineal sin embargo más adelante se registrarán los resultados del análisis No Lineal.

Haciendo uso del Manual de Usuario se hace el vaciado de datos del proyecto, siguiendo cada paso indicado por el mismo, en un archivo de datos (véase en las figuras de la 7.6 a 7.8)

| Tarjeta 1 |     |    |     |   |   |   |   |   |   |   |      |
|-----------|-----|----|-----|---|---|---|---|---|---|---|------|
| 125       | 236 | 16 | 0   | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 10.3 |
| Tarjeta 2 |     |    |     |   |   |   |   |   |   |   |      |
| 1         | 0   | 0  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 2         | 5   | 0  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 3         | 10  | 0  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 4         | 15  | 0  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 5         | 20  | 0  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 |      |
|           |     |    | 0   |   |   |   |   | 0 | 0 |   | 0    |
| 6         | 0   | 4  |     | 0 | 0 | 0 | 0 |   |   | 1 |      |
| 7         | 5   | 4  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 8         | 10  | 4  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 9         | 15  | 4  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 10        | 20  | 4  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 11        | 0   | 8  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 12        | 5   | 8  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 13        | 10  | 8  | 0   | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0    |
| 14        | 15  | 8  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 15        | 20  | 8  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 16        | 0   | 12 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 17        | 5   | 12 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 18        | 10  | 12 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 19        | 15  | 12 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 20        | 20  | 12 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 21        | 0   | 16 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 22        | 5   | 16 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 23        | 10  | 16 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 24        | 15  | 16 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 25        | 20  | 16 | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0    |
| 26        | 0   | 0  | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| 27        | 5   | 0  | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| 28        | 10  | 0  | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| 29        | 15  | 0  | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| 30        | 20  | 0  | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
|           |     |    |     |   |   |   |   |   |   |   |      |

Figura 7.6. Ingreso de datos generales y nodos del programa ISE3D.

| Tarjeta 3 |     |     |   |     |     |     |     |    |    |    |
|-----------|-----|-----|---|-----|-----|-----|-----|----|----|----|
| 1         | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 1  | 2  | 26 |
| 2         | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 2  | 3  | 27 |
| 3         | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 3  | 4  | 28 |
| 4         | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 4  | 5  | 29 |
| 5         | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 6  | 7  | 31 |
| 6         | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 7  | 8  | 32 |
| 7         | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 8  | 9  | 33 |
| 8         | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 9  | 10 | 34 |
| 9         | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 11 | 12 | 36 |
| 10        | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 12 | 13 | 37 |
| 11        | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 13 | 14 | 38 |
| 12        | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 14 | 15 | 39 |
| 13        | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 16 | 17 | 41 |
| 14        | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 17 | 18 | 42 |
| 15        | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 18 | 19 | 43 |
| 16        | 0.8 | 0.6 | 1 | 3.2 | 3.2 | 3.2 | 3.2 | 19 | 20 | 44 |
| 17        | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 21 | 22 | 46 |
| 18        | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 22 | 23 | 47 |
| 19        | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 23 | 24 | 48 |
| 20        | 0.8 | 0.6 | 1 | 1.6 | 1.6 | 1.6 | 1.6 | 24 | 25 | 49 |
| 21        | 0.8 | 0.6 | 1 | 1   | 1   | 1   | 1   | 1  | 6  | 26 |
| 22        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 2  | 7  | 27 |
| 23        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 3  | 8  | 28 |
| 24        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 4  | 9  | 29 |
| 25        | 0.8 | 0.6 | 1 | 1   | 1   | 1   | 1   | 5  | 10 | 30 |
| 26        | 0.8 | 0.6 | 1 | 1   | 1   | 1   | 1   | 6  | 11 | 31 |
| 27        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 7  | 12 | 32 |
| 28        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 8  | 13 | 33 |
| 29        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 9  | 14 | 34 |
| 30        | 0.8 | 0.6 | 1 | 1   | 1   | 1   | 1   | 10 | 15 | 35 |
| 31        | 0.8 | 0.6 | 1 | 1   | 1   | 1   | 1   | 11 | 16 | 36 |
| 32        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 12 | 17 | 37 |
| 33        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 13 | 18 | 38 |
| 34        | 0.8 | 0.6 | 1 | 2   | 2   | 2   | 2   | 14 | 19 | 39 |
| 35        | 0.8 | 0.6 | 1 | 1   | 1   | 1   | 1   | 15 | 20 | 40 |

Figura 7.7. Ingreso de datos de elementos y cargas repartidas sobre ellos del programa ISE3D.

```
Tarieta 5
                                                 12
                                                              11
                                                 13
                                    10
                                                 15
                                                              14
                                                              16
          10
                                    13
                                                 18
                                                              17
                                                 19
          11
                       13
                                    14
                                                              18
          13
                       16
                                    17
                                                22
                                                              21
                                                 23
          14
                       17
                                    18
          16
Tarjeta 6
           1 1130000
                                  0.3
Tajeta 7
Tarieta 8
                                1.0
     2500.00
                        0.29
                                        % PROPIEDADES PARA EXPANSIÓN : EE , NU
749.0 0.58 573.39 % PROPIEDADES PARA COMPRESIÓN INMEDIATA
                                 0.42
                                                                                                                                   : Eu,NU,k0,k,n,A DEM
     2500.00
                        0.29
                  35.10 0.73 % PROPIEDADES PARA COMPRESIÓN DIFERIDA, CONSOLIDACION PRIMARIA : (Ev,NU=0,AP,T)
                    0.31 % PROPIEDADES PARA EXPANSIÓN : Ee , NU
0.31 0.46 647.0 0.59 482.30 % PROPIEDADES PARA COMPRESIÓN INMEDIATA :
35.10 1.73 % PROPIEDADES PARA COMPRESIÓN DIFERIDA, CONSOLIDACION PRIMARIA : (Ev,AP,T)
     3000.00
     3000.00
                                                                                                                                : Eu,NU,k0,k,n,A_DEM
     3000.00
Tarjeta 9
                       10
                        2
                                     3
                                                  4
                       10
                                    11
                      14
                                    15
                                                16
          13
```

Figura 7.8. Ingreso de datos sobre losas, materiales, cargas concentradas y propiedades del suelo del programa ISE3D.

Puede verse en la figura 7.8 que al final se indica (en la tarjeta 9) en que elementos (ejes) se imprimirán los resultados.

Una vez completo y correcto lo anterior, se requerirá ubicar el archivo ejecutable en una sola carpeta junto con la base de datos donde se registró la información del proyecto como "archivo DAT", entenderse esto como que el archivo tendrá la extensión ".dat". Una vez hecho esto se deberá abrir el programa ejecutable ISE3D y escribir el nombre de este último archivo con extensión ".DAT". Para fines del ejercicio se registrará como "Edificio.dat" y dar enter. Figura 7.9

Inmediatamente aparecerá la leyenda "Archivo de Resultados" (Figura 7.10) y se deberá de ingresar el mismo nombre del archivo pero ahora con la extensión ".res" (Figura 7.11) para marcar el archivo de salida.

```
ARCHIVO DE DATOS DE ENTRADA
Edificio.dat
```

Figura 7.9. Introducción de nombre de Archivo para activación del programa.

```
ARCHIVO DE DATOS DE ENTRADA
Edificio.dat
ARCHIVO DE RESULTADOS
```

Figura 7.10. Respuesta de programa posterior a introducción de nombre tipo DAT.

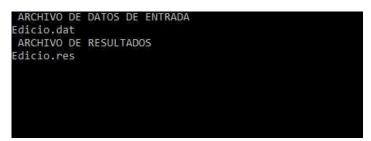



Figura 7.11. Introducción de nombre de archivo de salida, RES.

Una vez hecho esto se debe de dar "Enter" y de inmediato el programa deberá de ejecutarse apareciendo en la ventana algunos datos de las rutinas Figura 7.11 y 7.12.

```
ncoll=
X(ncol1+NG)=
                             4.63152790
2.47962570
X(ncol2+NG)=
ncol1=
ncol2=
                               20
X(ncol1+NG)=
X(ncol2+NG)=
                             21.3845711
5.24976587
ncol1=
X(ncol1+NG)=
X(ncol2+NG)=
ncol1=
                             5.27412271
19.2934723
ncol2=
X(ncol1+NG)=
X(ncol2+NG)=
                              22
                             2.47645259
2.78117967
18
ncol1=
ncol2=
X(ncol1+NG)=
X(ncol2+NG)=
ncol1=
                             7.77328825
22.5814075
                              19
                             2.47962570
2.76746082
X(ncol1+NG)=
X(ncol2+NG)=
ncol1=
ncol2=
X(ncol1+NG)=
X(ncol2+NG)=
DENTRO DE HUND
                             25
5.24976587
19.3002605
```

Figura 7.12. Programa ISE3D ejecutando las rutinas.

|          | 1     | 1 2   | 1 |      | 0.8000<br>1.600 | 000012<br>000002 | 1.7000000 |     |     |     |     |   |   |
|----------|-------|-------|---|------|-----------------|------------------|-----------|-----|-----|-----|-----|---|---|
| STRATOS  |       | 2     |   |      | 0.000           | 120212           | y Luccosa |     |     |     |     |   |   |
| O. DE PE |       | 1     |   |      |                 |                  |           |     |     |     |     |   |   |
| asos     | 1     | 1     |   |      |                 |                  |           |     |     |     |     |   |   |
| IN DE LE | ECC   |       |   |      |                 |                  |           |     |     |     |     |   |   |
| 236      | 0.700 | 0.500 |   | 0.00 | 0.00            | 0.00             | 0.00      | 100 | 125 | 95  | Sup | 0 | 0 |
| 235      | 0.700 | 0.500 |   | 0.00 | 0.00            | 0.00             | 0.00      | 98  | 123 | 93  | Sup | 0 | 0 |
| 234      | 0.700 | 0.500 |   | 0.00 | 0.00            | 0.00             | 0.00      | 96  | 121 | 91  | Sup | 0 | 0 |
| 233      | 0.700 | 0.500 | 1 | 0.00 | 0.00            | 0.00             | 0.00      | 90  | 115 | -95 | Sup | 0 | 0 |
| 232      | 0.700 | 0.500 |   | 0.00 | 0.00            | 0.00             | 0.00      | 88  | 113 | -93 | Sup | 0 | 0 |
| 231      | 0.700 | 0.500 | 1 | 0.00 | 0.00            | 0.00             | 0.00      | 86  | 111 | -91 | Sup | 0 | 0 |
| 230      | 0.700 | 0.500 | 1 | 0.00 | 0.00            | 0.00             | 0.00      | 80  | 105 | -85 | Sup | 0 | 0 |
| 229      | 0.700 | 0.500 | 1 | 0.00 | 0.00            | 0.00             | 0.00      | 78  | 103 | -83 | Sup | 0 | 0 |
| 228      | 0.700 | 0.500 | 1 | 0.00 | 0.00            | 0.00             | 0.00      | 76  | 101 | -81 | Sup | 0 | 0 |
| 227      | 0.400 | 0.600 | 1 | 0.50 | 0.50            | 0.50             | 0.50      | 120 | 125 | -95 | Sup | 0 | 0 |
| 226      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 119 | 124 | -94 | Sup | 0 | 0 |
| 225      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 118 | 123 | -93 | Sup | 0 | 0 |
| 224      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 117 | 122 | -92 | Sup | 0 | 0 |
| 223      | 0.400 | 0.600 | 1 | 0.50 | 0.50            | 0.50             | 0.50      | 116 | 121 | -91 | Sup | 0 | 0 |
| 222      | 0.400 | 0.600 | 1 | 0.50 | 0.50            | 0.50             | 0.50      | 115 | 120 | -90 | Sup | 0 | 0 |
| 221      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 114 | 119 | -89 | Sup | 0 | 0 |
| 220      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 113 | 118 | -88 | Sup | 0 | ø |
| 219      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 112 | 117 | -87 | Sup | 0 | 0 |
| 218      | 0.400 | 0.600 | 1 | 0.50 | 0.50            | 0.50             | 0.50      | 111 | 116 | -86 | Sup | 0 | ē |
| 217      | 0.400 | 0.600 | 1 | 0.50 | 0.50            | 0.50             | 0.50      | 110 | 115 | -85 | Sup | 0 | ø |
| 216      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 109 | 114 | -84 | Sup | 0 | 0 |
| 215      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 108 | 113 | -83 | Sup | 0 | 0 |
| 214      | 0.400 | 0.600 | 1 | 1.00 | 1.00            | 1.00             | 1.00      | 107 | 112 | -82 | Sup | 0 | 0 |

Figura 7.13. Programa ISE3D ejecutando rutinas.

Una vez ejecutado se creará en la carpeta fuente un archivo con el mismo nombre pero con la extensión ".SAL" en donde se encontrará todo el análisis, de cualquiera de las 3 opciones, realizado por el programa.

A continuación, se muestran los resultados del ejercicio tal y como lo entrega el programa ISE3D.

# INTERACCION SUELO-ESTRUCTURA A BASE DE BARRAS

## PROGRAMA ISE3DL

## ACTUALIZACION 2017

## LECTURA DE DATOS

| ANALIS  | SIS LINEAL | SIN CONFINA  | AMIENTO   |   |   |     |   |   |   |        |        |
|---------|------------|--------------|-----------|---|---|-----|---|---|---|--------|--------|
| NN I    | NUMERO DE  | NODOS        | =         |   |   | 12  | 5 |   |   |        |        |
| NB I    | NUMERO DE  | BARRAS       | =         |   |   | 23  | 6 |   |   |        |        |
| NLOS I  | NUMERO DE  | LOSAS        | =         |   |   | 1   | 5 |   |   |        |        |
| NZAP I  | NUMERO DE  | ZAPATAS AIS  | LADAS =   |   |   | (   | 9 |   |   |        |        |
| NMAT I  | NO. DE MAT | ERIALES (P/  | BARRAS) = |   |   |     | 1 |   |   |        |        |
| NPS I   | NO. DE PER | FILES DISPO  | NIBLES =  |   |   |     | 1 |   |   |        |        |
| KANAL   | TIPO DE A  | NALISIS      | =         |   |   | (   | 9 |   |   |        |        |
| CASO(1) | ,          | S POR EXPANS |           |   |   |     | 1 |   |   |        |        |
| CASO(2) |            | S POR COMPRI |           |   |   |     | 1 |   |   |        |        |
| CASO(3  | •          | DACIÓN PRIMA |           |   |   |     | 1 |   |   |        |        |
| CASO(4) |            | DACIÓN SECU  | NDARIA =  |   |   |     | 9 |   |   |        |        |
|         | ENADAS DE  |              |           |   |   | TRI |   |   |   | PERFIL | DF     |
| NODO    |            | Y            | Z         |   |   | DZ  |   |   |   | 10.2   |        |
| 1       | 0.0000     | 0.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 2       | 5.0000     | 0.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 3       | 10.0000    | 0.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 4       | 15.0000    | 0.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 5       | 20.0000    | 0.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 6       | 0.0000     | 4.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 7       | 5.0000     | 4.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 8       | 10.0000    | 4.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 9       | 15.0000    | 4.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 10      | 20.0000    | 4.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 11      | 0.0000     | 8.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 12      | 5.0000     | 8.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 13      | 10.0000    | 8.0000       | 0.0000    | 1 | 1 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 14      | 15.0000    | 8.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 15      | 20.0000    | 8.0000       | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 16      | 0.0000     | 12.0000      | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 17      | 5.0000     | 12.0000      | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 18      | 10.0000    | 12.0000      | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 19      | 15.0000    | 12.0000      | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |
| 20      | 20.0000    | 12.0000      | 0.0000    | 0 | 0 | 0   | 0 | 0 | 0 | 1      | 0.0000 |

Figura 7.14. Características generales y geometría la de la estructura.

#### PROPIEDADES DE LAS BARRAS

| No | BASE(m) | ALTURA(m) | TIPO_MAT | W1(t/m) | w2(t/m) | W3(t/m) | W4(t/m) | PI | PJ | NK | TIPO | PERF | SUELO | Iy       | Iz       |
|----|---------|-----------|----------|---------|---------|---------|---------|----|----|----|------|------|-------|----------|----------|
| 1  | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 1  | 2  | 26 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 2  | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 2  | 3  | 27 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 3  | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 3  | 4  | 28 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 4  | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 4  | 5  | 29 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 5  | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 6  | 7  | 31 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 6  | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 7  | 8  | 32 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 7  | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 8  | 9  | 33 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 8  | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 9  | 10 | 34 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 9  | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 11 | 12 | 36 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 10 | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 12 | 13 | 37 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 11 | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 13 | 14 | 38 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 12 | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 14 | 15 | 39 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 13 | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 16 | 17 | 41 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 14 | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 17 | 18 | 42 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 15 | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 18 | 19 | 43 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 16 | 0.800   | 0.600     | 1        | 3.20    | 3.20    | 3.20    | 3.20    | 19 | 20 | 44 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 17 | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 21 | 22 | 46 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 18 | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 22 | 23 | 47 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 19 | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 23 | 24 | 48 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 20 | 0.800   | 0.600     | 1        | 1.60    | 1.60    | 1.60    | 1.60    | 24 | 25 | 49 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 21 | 0.800   | 0.600     | 1        | 1.00    | 1.00    | 1.00    | 1.00    | 1  | 6  | 26 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 22 | 0.800   | 0.600     | 1        | 2.00    | 2.00    | 2.00    | 2.00    | 2  | 7  | 27 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 23 | 0.800   | 0.600     | 1        | 2.00    | 2.00    | 2.00    | 2.00    | 3  | 8  | 28 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 24 | 0.800   | 0.600     | 1        | 2.00    | 2.00    | 2.00    | 2.00    | 4  | 9  | 29 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 25 | 0.800   | 0.600     | 1        | 1.00    | 1.00    | 1.00    | 1.00    | 5  | 10 | 30 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 26 | 0.800   | 0.600     | 1        | 1.00    | 1.00    | 1.00    | 1.00    | 6  | 11 | 31 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 27 | 0.800   | 0.600     | 1        | 2.00    | 2.00    | 2.00    | 2.00    | 7  | 12 | 32 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 28 | 0.800   | 0.600     | 1        | 2.00    | 2.00    | 2.00    | 2.00    | 8  | 13 | 33 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 29 | 0.800   | 0.600     | 1        | 2.00    | 2.00    | 2.00    | 2.00    | 9  | 14 | 34 | Cim  | 1    | 1     | 0.014400 | 0.025600 |
| 30 | 0.800   | 0.600     | 1        | 1.00    | 1.00    | 1.00    | 1.00    | 10 | 15 | 35 | Cim  | 1    | 1     | 0.014400 | 0.025600 |

Figura 7.1. Propiedades de las barras y cargas sobre ellas.

|       |       | LECTUR         | A DE | NODOS  | OHE   | CONFORMAN  | CADA  | LOCA |
|-------|-------|----------------|------|--------|-------|------------|-------|------|
| 1.054 |       |                |      |        | QUE   | CONFORMAN  | CADA  | LUSA |
| LOSA  | NI    | ИЗ             | NK   | NL     |       |            |       |      |
| 1     | 1     | 2              | 7    | 6      |       |            |       |      |
| 2     | 2     | 3              | 8    | 7      |       |            |       |      |
| 3     | 3     | 4              | 9    | 8      |       |            |       |      |
| 4     | 4     | 5              | 10   | 9      |       |            |       |      |
| 5     | 6     | 7              | 12   | 11     |       |            |       |      |
| 6     | 7     | 8              | 13   | 12     |       |            |       |      |
| 7     | 8     | 9              | 14   | 13     |       |            |       |      |
| 8     | 9     | 10             | 15   | 14     |       |            |       |      |
| 9     | 11    | 12             | 17   | 16     |       |            |       |      |
| 10    | 12    | 13             | 18   | 17     |       |            |       |      |
| 11    | 13    | 14             | 19   | 18     |       |            |       |      |
| 12    | 14    | 15             | 20   | 19     |       |            |       |      |
| 13    | 16    | 17             | 22   | 21     |       |            |       |      |
| 14    | 17    | 18             | 23   | 22     |       |            |       |      |
| 15    | 18    | 19             | 24   | 23     |       |            |       |      |
| 16    | 19    | 20             | 25   | 24     |       |            |       |      |
|       |       |                |      |        |       |            |       |      |
|       | PROP] | <b>IEDADES</b> | ELAS | STICAS | PARA  | A BARRAS Y | LOSAS | 5    |
| NMAT  | E     | (T/M2          | )    | REL F  | POISS | SON        |       |      |
| 1     |       | 113000         | 0.00 | 0.     | .300  |            |       |      |

Figura 7.2. Lectura de nodos que conforman las losas y sus propiedades elásticas.

No P (t) LONGITUD DE BARRAS 5.0000 1 5.0000 2 5.0000 3 4 5.0000 5 5.0000 5.0000 6 5.0000 7 8 5.0000 9 5.0000 10 5.0000 5.0000 11 5.0000 13 5.0000 5.0000 14 15 5.0000 16 5.0000 17 5.0000 5.0000 18 19 5.0000 20 5.0000 21 4.0000 4.0000 22 23 4.0000 24 4.0000 25 4.0000

Figura 7.17. Cargas concentradas sobre las barras de la estructura.

COORDENADAS DE REACCIONES PUNTO FINAL PUNTO INICIAL PUNTO (Xi, (X Yi) Yf) direccion 1 0.0000 0.0000 0.0000 0.0000 2.5000 2.0000 5.0000 0.0000 2.5000 0.0000 7.5000 2.0000 2 3 10.0000 0.0000 7.5000 0.0000 12.5000 2.0000 15.0000 0.0000 12.5000 0.0000 17.5000 2.0000 4 5 20.0000 0.0000 17.5000 0.0000 20.0000 2.0000 6 0.0000 4.0000 0.0000 2.0000 2.5000 6.0000 7 5.0000 4.0000 2.5000 2.0000 7.5000 6.0000 8 10.0000 4.0000 7.5000 2.0000 12.5000 6.0000 9 15.0000 4.0000 2.0000 12.5000 17.5000 6.0000 10 20.0000 4.0000 17.5000 2.0000 20.0000 6.0000 0.0000 8.0000 0.0000 6.0000 2.5000 10.0000 11 5.0000 8.0000 2.5000 6.0000 7.5000 12 10.0000 10.0000 8.0000 7.5000 6.0000 13 12.5000 10.0000 15.0000 8.0000 12.5000 6.0000 17.5000 14 10.0000 15 20.0000 8.0000 17.5000 6.0000 20.0000 10.0000 0.0000 12.0000 0.0000 10.0000 2.5000 14.0000 16 5.0000 17 12.0000 2.5000 10.0000 7.5000 14.0000 18 10.0000 12.0000 7.5000 10.0000 12.5000 14.0000 12.5000 19 15.0000 12.0000 10.0000 17.5000 14.0000 20 20.0000 12.0000 17.5000 10.0000 20.0000 14.0000 16.0000 21 0.0000 16.0000 0.0000 14.0000 2.5000 22 5.0000 16.0000 2.5000 14.0000 7.5000 16.0000 10.0000 23 16.0000 7.5000 14.0000 12.5000 16.0000 15.0000 14.0000 16.0000 24 16.0000 12.5000 17.5000 20.0000 16.0000 17.5000 14.0000 20.0000 16.0000

Figura 7.18. Coordenadas de cada nodo que compone la estructura.

| GL DE | REACCION | LONGITUD | AREA    |
|-------|----------|----------|---------|
| 3     |          | 4.5000   | 5.0000  |
| 9     |          | 7.0000   | 10.0000 |
| 15    |          | 7.0000   | 10.0000 |
| 21    |          | 7.0000   | 10.0000 |
| 27    |          | 4.5000   | 5.0000  |
| 33    |          | 6.5000   | 10.0000 |
| 39    |          | 9.0000   | 20.0000 |
| 45    |          | 9.0000   | 20.0000 |
| 51    |          | 9.0000   | 20.0000 |
| 57    |          | 6.5000   | 10.0000 |
| 63    |          | 6.5000   | 10.0000 |
| 69    |          | 9.0000   | 20.0000 |
| 75    |          | 9.0000   | 20.0000 |
| 81    |          | 9.0000   | 20.0000 |
| 87    |          | 6.5000   | 10.0000 |
| 93    |          | 6.5000   | 10.0000 |
| 99    |          | 9.0000   | 20.0000 |
| 105   |          | 9.0000   | 20.0000 |
| 111   |          | 9.0000   | 20.0000 |
| 117   |          | 6.5000   | 10.0000 |
| 123   |          | 4.5000   | 5.0000  |
| 129   |          | 7.0000   | 10.0000 |
| 135   |          | 7.0000   | 10.0000 |
| 141   |          | 7.0000   | 10.0000 |
| 147   |          | 4.5000   | 5.0000  |
|       |          |          |         |

Figura 7.19. Grados de libertad de reacciones.

#### PROPIEDADES DEL SUELO

| PERFIL        | ESTRATO              | TIPO MAT                          | z<br>(m) | H<br>(m) |           | ESO     |         |           |     |
|---------------|----------------------|-----------------------------------|----------|----------|-----------|---------|---------|-----------|-----|
| 1             | 1                    | ARENA                             | 0.50     | 1.00     |           | 7000    |         |           |     |
| 171.50 (1.50) | STORES OF THE STORES | 7.5 / 5.0 / 5.0 / 5.0 / 5.0 / 5.0 | 0.50     | 1.00     | 1.        | 7000    |         |           |     |
| PROP          | TEDADES C            |                                   |          |          |           |         |         |           |     |
|               | -                    | NU                                |          |          |           |         |         |           |     |
|               | t/m2                 |                                   |          |          |           |         |         |           |     |
|               | 2500.00              | A Carlotte Charles                |          |          |           |         |         |           |     |
| PROP          | IEDADES C            |                                   |          |          |           |         |         |           |     |
|               | E                    | NU                                | KO       | K        | . N       | A       |         |           |     |
|               | t/m2                 |                                   |          |          |           |         |         |           |     |
|               |                      | 0.29                              | 0.42     | 749.00   | 0.58      | 573.39  |         |           |     |
| PROP          | IEDADES C            | ASO 3                             |          |          |           |         |         |           |     |
|               | Emv                  | Ap                                | T        |          |           |         |         |           |     |
|               | m2/t                 |                                   |          |          |           |         |         |           |     |
|               | 2500.00              | 35.10                             | 0.73     |          |           |         |         |           |     |
| PERFIL        | <b>ESTRATO</b>       | TIPO MAT                          | Z        | Н        | PI        | ESO     |         |           |     |
|               |                      |                                   | (m)      | (m)      | t/ı       | m3      |         |           |     |
| 1             | 2                    | ARCILLA                           | 2.25     | 2.50     | 1.9       | 9000    |         |           |     |
| PROP          | IEDADES C            | ASO 1                             |          |          |           |         |         |           |     |
|               | E                    | NU                                |          |          |           |         |         |           |     |
|               | t/m2                 |                                   |          |          |           |         |         |           |     |
|               | 3000.00              | 0.31                              |          |          |           |         |         |           |     |
| PROP          | IEDADES C            | ASO 2                             |          |          |           |         |         |           |     |
|               | Е                    | NU                                | КО       | K        | N         | A       |         |           |     |
|               | t/m2                 |                                   |          |          |           |         |         |           |     |
|               |                      | 0.31                              | 0.46     | 647.00   | 0.59      | 482.30  |         |           |     |
| PROP          | IEDADES C            |                                   |          |          |           |         |         |           |     |
|               | Emv                  | Ap                                | Т        |          |           |         |         |           |     |
|               | m2/t                 | AP.                               | 1000     |          |           |         |         |           |     |
|               |                      | 35.10                             | 1.73     |          |           |         |         |           |     |
|               | 3000.00              | 33.10                             | 1./5     |          |           |         |         |           |     |
| DRESTON       | ES EN PER            | ETI                               | 1        |          |           |         |         |           |     |
|               | PROFUND              |                                   | Pv       |          | PhEMPIITI | E POR   | EMPLITE |           |     |
| LJINATO       | r NOFOND<br>m        |                                   | t/m2     |          |           | ESTRATO |         | CONTINUE. | (+) |
| 1             | 1.0                  |                                   | 1.70     |          | 0.71      | 0.36    |         | 0.36      | ( ) |
| 2             | 3.5                  | 7                                 | 6.45     |          |           | 6.44    |         | 6.80      |     |
| 2             | 5.5                  |                                   | 0.43     |          | 2.31      | 0.44    |         | 0.00      |     |

Figura 7.20. Propiedades y características de estratigrafía

Como se puede observar, el programa entrega un resumen de la estructura que se analiza e imprime las características, ubicación de nodos y barras, geometría y propiedades tanto de los materiales como de perfiles estratigráficos.

Esto permite que el usuario pueda identificar con mayor facilidad las características entregadas al programa y confirmarlas o en su caso reconocer incongruencias.

Esto mismo realizará para cualquier tipo de análisis que se realice, siendo los siguientes datos que a continuación se mostrarán los resultados del análisis lineal.

#### ANALISIS DE EXPANSIONES SOLUCION CASO LINEAL

```
GRADO DE LIBERTAD, REACCION (t) HASTA N= 25 , Y GIROS (rad) LOS SIGUIENTES

1  2.019302851069289E-005
2  7.139419963120459E-006
3  -4.036103033128614E-003
4  1.933081038245699E-003
5  -1.835926776829952E-003
6  -1.367959431689119E-005
7  -5.368394996574117E-005
8  5.631735828878597E-006
9  -2.358309938437044E-004
```

10 3.102436903970418E-004

11 8.481318229709244E-004

12 -1.624444696388653E-005

13 -1.240224076707822E-004

14 7.332401076325557E-006 15 -7.818518493792654E-003

16 2.834028292675557E-003

17 2.112215169038437E-005

18 -2.838181363041127E-005

19 -1.973347312633671E-004

20 3.764934107670471E-005

Figura 7.21. Grados de libertad, reacciones y giros del análisis de expansiones para el caso lineal.

```
EL VALOR DE LAS REACCIONES ES:
         1 22.1808764578754
         2 4.518563942282683E-002
         3 27.5530484394922
         4 3.583648007498473E-002
         5 22.2012525395303
         6 1.75487060333047
           2.38376673753725
         8
            4.04886872523390
         9
             2.38513050736275
        10 1.75287162366422
            27.2706666931612
        11
        12 1.97770111266222
        13 38.5841405369019
        14 1.98518598367432
        15 27.2135029079415
        16 1.76265797045845
        17 2.38602409914978
            4.05572874914019
        18
        19
             2.38736042400160
        20
            1.75807769962686
        21
            22.2111635493015
        22 3.859632879652583E-002
        23
            27.5567788375997
        24 3.239565188150291E-002
        25
           22.2044273955071
```

Figura 7.3. Valores de las reacciones del análisis de expansiones para el caso lineal.

```
NUDO, HUNDIMIENTO DEL NUDO
               (m)
   1 -0.00404
2 -0.00024
3 -0.00782
   4 -0.00023
    5 -0.00404
    6 -0.00100
   7
       -0.00092
    8 -0.00253
   9 -0.00092
  10 -0.00100
  11 -0.00718
  12 -0.00112
13 -0.01410
   14 -0.00112
  15 -0.00716
   16 -0.00101
  17 -0.00092
18 -0.00253
   19 -0.00092
   20 -0.00100
   21 -0.00404
   22 -0.00023
   23 -0.00782
   24 -0.00023
   25 -0.00404
```

Figura 7.23. Valores de los hundimientos de cada nudo del análisis de expansiones para el caso lineal.

| Desplaz | amientos y | giros por no | do        |           |           |           |
|---------|------------|--------------|-----------|-----------|-----------|-----------|
| nodo    | dx         | dy           | dz        | tx        | ty        | tz        |
| 1       | 0.000020   | 0.000007     | -0.004036 | 0.001933  | -0.001836 | -0.000014 |
| 2       | -0.000054  | 0.000006     | -0.000236 | 0.000310  | 0.000848  | -0.000016 |
| 3       | -0.000124  | 0.000007     | -0.007819 | 0.002834  | 0.000021  | -0.000028 |
| 4       | -0.000197  | 0.000038     | -0.000233 | 0.000308  | -0.000871 | -0.000028 |
| 5       | -0.000270  | -0.000011    | -0.004040 | 0.001928  | 0.001892  | -0.000075 |
| 6       | -0.000083  | -0.000010    | -0.001004 | -0.000972 | -0.000616 | 0.000021  |
| 7       | -0.000094  | 0.000003     | -0.000917 | -0.000334 | 0.000438  | 0.000001  |
| 8       | -0.000110  | 0.000004     | -0.002527 | -0.001597 | -0.000000 | -0.000008 |
| 9       | -0.000127  | 0.000034     | -0.000918 | -0.000334 | -0.000437 | -0.000014 |
| 10      | -0.000140  | -0.000026    | -0.001003 | -0.000967 | 0.000615  | -0.000036 |
| 11      | 0.000085   | -0.000026    | -0.007178 | 0.000012  | -0.002435 | -0.000020 |
| 12      | 0.000038   | 0.000002     | -0.001122 | 0.000002  | 0.001223  | -0.000008 |
| 13      | 0.000000   | 0.000000     | -0.014101 | 0.000015  | -0.000024 | -0.000013 |
| 14      | -0.000053  | 0.000030     | -0.001124 | 0.000002  | -0.001199 | -0.000009 |
| 15      | -0.000099  | -0.000041    | -0.007163 | 0.000008  | 0.002370  | -0.000015 |
| 16      | -0.000024  | -0.000043    | -0.001007 | 0.000958  | -0.000619 | 0.000033  |
| 17      | -0.000030  | -0.000000    | -0.000918 | 0.000329  | 0.000438  | 0.000006  |
| 18      | -0.000042  | -0.000002    | -0.002530 | 0.001580  | -0.000001 | -0.000006 |
| 19      | -0.000053  | 0.000026     | -0.000918 | 0.000330  | -0.000437 | -0.000010 |
| 20      | -0.000061  | -0.000056    | -0.001005 | 0.000958  | 0.000615  | -0.000049 |
| 21      | 0.000084   | -0.000059    | -0.004042 | -0.001901 | -0.001842 | -0.000024 |
| 22      | 0.000011   | -0.000000    | -0.000234 | -0.000300 | 0.000850  | 0.000003  |
| 23      | -0.000061  | -0.000006    | -0.007820 | -0.002792 | 0.000018  | 0.000000  |
| 24      | -0.000133  | 0.000022     | -0.000232 | -0.000300 | -0.000869 | 0.000016  |
| 25      | -0.000207  | -0.000071    | -0.004040 | -0.001905 | 0.001889  | 0.000030  |
| 26      | 0.000355   | -0.000432    | -0.004693 | -0.001221 | 0.001147  | 0.000108  |
| 27      | 0.000192   | -0.000280    | -0.019282 | -0.005645 | 0.000405  | 0.000123  |
| 28      | 0.000026   | -0.000656    | -0.009209 | -0.002414 | 0.000005  | 0.000027  |
| 29      | -0.000138  | -0.000176    | -0.019282 | -0.005642 | -0.000409 | 0.000102  |
| 30      | -0.000308  | -0.000423    | -0.004697 | -0.001215 | -0.001137 | -0.000046 |
|         |            |              |           |           |           |           |

Figura 7.24. Desplazamientos y giros del análisis de expansiones para el caso lineal.

| BARRA | ELEMENTOS<br>MECANICOS | GRADO DE<br>LIBERTAD | MAGNITUD     |
|-------|------------------------|----------------------|--------------|
| 1     | NORMAL X1              | 1                    | 8.01417463   |
| 1     | CORTANTE Y1            | 2                    | -0.20356727  |
| 1     | CORTANTE Z1            | 3                    | 38.99725140  |
| 1     | TORSION X1             | 4                    | 3.17848684   |
| 1     | FLEXIONANTE Y1         | 5                    | -32.00348252 |
| 1     | FLEXIONANTE Z1         | 6                    | -0.41587983  |
| 1     | NORMAL X2              | 7                    | -8.01417463  |
| 1     | CORTANTE Y2            | 8                    | 0.01362008   |
| 1     | CORTANTE Z2            | 9                    | 8.56790385   |
| 1     | TORSION X2             | 10                   | -3.17848684  |
| 1     | FLEXIONANTE Y2         | 11                   | 25.10414746  |
| 1     | FLEXIONANTE Z2         | 12                   | -0.52375738  |
| 2     | NORMAL X1              | 7                    | 7.63031589   |
| 2     | CORTANTE Y1            | 8                    | -0.31455053  |
| 2     | CORTANTE Z1            | 9                    | 17.45760176  |
| 2     | TORSION X1             | 10                   | -4.94308080  |
| 2     | FLEXIONANTE Y1         | 11                   | -33.10396542 |
| 2     | FLEXIONANTE Z1         | 12                   | -0.61434076  |
| 2     | NORMAL X2              | 13                   | -7.63031589  |
| 2     | CORTANTE Y2            | 14                   | 0.08898924   |
| 2     | CORTANTE Z2            | 15                   | 43.53798344  |
| 2     | TORSION X2             | 16                   | 4.94308080   |
| 2     | FLEXIONANTE Y2         | 17                   | 12.34284836  |
| 2     | FLEXIONANTE Z2         | 18                   | -0.85659827  |
| 3     | NORMAL X1              | 13                   | 7.95292086   |
| 3     | CORTANTE Y1            | 14                   | -0.47349195  |
| 3     | CORTANTE Z1            | 15                   | 43,45234418  |
| 3     | TORSION X1             | 16                   | 4.94671417   |
| 3     | FLEXIONANTE Y1         | 17                   | -11.92310221 |
| 3     | FLEXIONANTE Z1         | 18                   | -0.66494790  |
| 3     | NORMAL X2              | 19                   | -7.95292086  |
| 3     | CORTANTE Y2            | 20                   | 0.07939798   |
| 3     | CORTANTE Z2            | 21                   | 17.51986812  |
| 3     | TORSION X2             | 22                   | -4.94671417  |
| 3     | FLEXIONANTE Y2         | 23                   | 33.08319944  |
| 3     | FLEXIONANTE Z2         | 24                   | -1.17973418  |
| 4     | NORMAL X1              | 19                   | 7.87773454   |
| 4     | CORTANTE Y1            | 20                   | -0.57656931  |
| 4     | CORTANTE Z1            | 21                   | 8.43581772   |
| 4     | TORSION X1             | 22                   | -3.17134733  |
| 4     | FLEXIONANTE Y1         | 23                   | -25.05370779 |
| 4     | FLEXIONANTE Z1         | 24                   | -1.32619235  |
| 4     | NORMAL X2              | 25                   | -7.87773454  |
| 4     | CORTANTE Y2            | 26                   | 0.19206500   |
| 4     | CORTANTE Z2            | 27                   | 39.15690483  |
| 4     | TORSION X2             | 28                   | 3.17134733   |
| 4     | FLEXIONANTE Y2         | 29                   | 32.58950038  |
| 4     | FLEXIONANTE Z2         | 30                   | -1.71499761  |

Figura 7.25. Magnitudes de los Elementos Mecánicos y grados de libertad del análisis de expansiones para el caso lineal.

| DIAGRA | MAS DE ELEM | ENTOS MECANI | COS POR EJE |       |           |           |           |
|--------|-------------|--------------|-------------|-------|-----------|-----------|-----------|
| EJE    | 1           |              |             | EJE   | 2         |           |           |
| BARRA  | X           | V            | М           | BARRA | X         | V         | M         |
| 1      | 0.000000    | -38.997251   | 32.003483   | 5     | 0.000000  | 2.755450  | 2.236002  |
| 1      | 0.500000    | -28.706813   | 15.077466   | 5     | 0.500000  | 2.032885  | 3.433085  |
| 1      | 1.000000    | -18.416375   | 3.296669    | 5     | 1.000000  | 1.310321  | 4.268887  |
| 1      | 1.500000    | -8.125937    | -3.338909   | 5     | 1.500000  | 0.587756  | 4.743406  |
| 1      | 2.000000    | 2.164502     | -4.829267   | 5     | 2.000000  | -0.134809 | 4.856643  |
| 1      | 2.500000    | 12.454940    | -1.174407   | 5     | 2.500000  | -0.857373 | 4.608597  |
| 1      | 3.000000    | 11.677533    | 4.858711    | 5     | 3.000000  | -1.265490 | 4.077881  |
| 1      | 3.500000    | 10.900125    | 10.503126   | 5     | 3.500000  | -1.673607 | 3.343107  |
| 1      | 4.000000    | 10.122718    | 15.758836   | 5     | 4.000000  | -2.081723 | 2.404275  |
| 1      | 4.500000    | 9.345311     | 20.625844   | 5     | 4.500000  | -2.489840 | 1.261384  |
| 1      | 5.000000    | 8.567904     | 25.104147   | 5     | 5.000000  | -2.897957 | -0.085565 |
| 2      | 5.000000    | -17.457602   | 33.103965   | 6     | 5.000000  | 0.453420  | -0.025318 |
| 2      | 5.500000    | -18.235009   | 24.180813   | 6     | 5.500000  | 0.045303  | 0.099362  |
| 2      | 6.000000    | -19.012416   | 14.868956   | 6     | 6.000000  | -0.362813 | 0.019985  |
| 2      | 6.500000    | -19.789823   | 5.168397    | 6     | 6.500000  | -0.770930 | -0.263451 |
| 2      | 7.000000    | -20.567230   | -4.920867   | 6     | 7.000000  | -1.179046 | -0.750945 |
| 2      | 7.500000    | -21.344638   | -15.398834  | 6     | 7.500000  | -1.587163 | -1.442497 |
| 2      | 8.000000    | -8.368113    | -22.827022  | 6     | 8.000000  | -1.162729 | -2.129970 |
| 2      | 8.500000    | 4.608411     | -23.766947  | 6     | 8.500000  | -0.738294 | -2.605226 |
| 2      | 9.000000    | 17.584935    | -18.218611  | 6     | 9.000000  | -0.313860 | -2.868265 |
| 2      | 9.500000    | 30.561459    | -6.182012   | 6     | 9.500000  | 0.110574  | -2.919086 |
| 2      | 10.000000   | 43.537983    | 12.342848   | 6     | 10.000000 | 0.535009  | -2.757690 |
| 3      | 10.000000   | -43.452344   | 11.923102   | 7     | 10.000000 | -0.536628 | -2.750678 |
| 3      | 10.500000   | -30.475820   | -6.558939   | 7     | 10.500000 | -0.112193 | -2.912884 |
| 3      | 11.000000   | -17.499296   | -18.552718  | 7     | 11.000000 | 0.312241  | -2.862872 |
| 3      | 11.500000   | -4.522772    | -24.058235  | 7     | 11.500000 | 0.736675  | -2.600643 |
| 3      | 12.000000   | 8.453753     | -23.075489  | 7     | 12.000000 | 1.161110  | -2.126196 |
| 3      | 12.500000   | 21.430277    | -15.604482  | 7     | 12.500000 | 1.585544  | -1.439533 |
| 3      | 13.000000   | 20.648195    | -5.084864   | 7     | 13.000000 | 1.178109  | -0.748619 |
| 3      | 13.500000   | 19.866113    | 5.043713    | 7     | 13.500000 | 0.770675  | -0.261423 |
| 3      | 14.000000   | 19.084032    | 14.781250   | 7     | 14.000000 | 0.363240  | 0.022055  |
| 3      | 14.500000   | 18.301950    | 24.127745   | 7     | 14.500000 | -0.044195 | 0.101816  |
| 3      | 15.000000   | 17.519868    | 33.083199   | 7     | 15.000000 | -0.451630 | -0.022140 |
| 4      | 15.000000   | -8.435818    | 25.053708   | 8     | 15.000000 | 2.892956  | -0.084452 |
| 4      | 15.500000   | -9.217899    | 20.640278   | 8     | 15.500000 | 2.485521  | 1.260167  |
| 4      | 16.000000   | -9.999981    | 15.835808   | 8     | 16.000000 | 2.078086  | 2.401069  |
| 4      | 16.500000   | -10.782063   | 10.640297   | 8     | 16.500000 | 1.670651  | 3.338253  |
| 4      | 17.000000   | -11.564145   | 5.053745    | 8     | 17.000000 | 1.263217  | 4.071720  |
| 4      | 17.500000   | -12.346227   | -0.923848   | 8     | 17.500000 | 0.855782  | 4.601470  |
| 4      | 18.000000   | -2.045600    | -4.521804   | 8     | 18.000000 | 0.132218  | 4.848470  |
| 4      | 18.500000   | 8.255026     | -2.969448   | 8     | 18.500000 | -0.591346 | 4.733688  |
| 4      | 19.000000   | 18.555652    | 3.733222    | 8     | 19.000000 | -1.314911 | 4.257124  |
| 4      | 19.500000   | 28.856279    | 15.586205   | 8     | 19.500000 | -2.038475 | 3.418777  |
| 4      | 20.000000   | 39.156905    | 32.589500   | 8     | 20.000000 | -2.762039 | 2.218649  |

Figura 7.25. Elementos mecánicos por eje del análisis de expansiones para el caso lineal.

| DIAGRA | MAS DE ELEM | MENTOS MECANI | COS POR EJE |       |           |           |           |
|--------|-------------|---------------|-------------|-------|-----------|-----------|-----------|
| EJE    | 3           |               |             | EJE   | 4         |           |           |
| BARRA  | X           | V             | M           | BARRA | X         | V         | M         |
| 9      | 0.000000    | -43.595036    | 33.771433   | 13    | 0.000000  | 2.735679  | 2.265342  |
| 9      | 0.500000    | -31.559703    | 14.982749   | 13    | 0.500000  | 2.017008  | 3.453514  |
| 9      | 1.000000    | -19.524369    | 2.211731    | 13    | 1.000000  | 1.298337  | 4.282350  |
| 9      | 1.500000    | -7.489036     | -4.541621   | 13    | 1.500000  | 0.579666  | 4.751850  |
| 9      | 2.000000    | 4.546297      | -5.277306   | 13    | 2.000000  | -0.139005 | 4.862015  |
| 9      | 2.500000    | 16.581631     | 0.004676    | 13    | 2.500000  | -0.857676 | 4.612845  |
| 9      | 3.000000    | 15.970481     | 8.142704    | 13    | 3.000000  | -1.264664 | 4.082260  |
| 9      | 3.500000    | 15.359332     | 15.975158   | 13    | 3.500000  | -1.671652 | 3.348181  |
| 9      | 4.000000    | 14.748182     | 23.502036   | 13    | 4.000000  | -2.078640 | 2.410608  |
| 9      | 4.500000    | 14.137033     | 30.723340   | 13    | 4.500000  | -2.485628 | 1.269540  |
| 9      | 5.000000    | 13.525883     | 37.639069   | 13    | 5.000000  | -2.892616 | -0.075021 |
| 10     | 5.000000    | -29.696837    | 56.212176   | 14    | 5.000000  | 0.444094  | -0.017588 |
| 10     | 5.500000    | -30.307986    | 41.210971   | 14    | 5.500000  | 0.037106  | 0.102712  |
| 10     | 6.000000    | -30.919136    | 25.904190   | 14    | 6.000000  | -0.369882 | 0.019518  |
| 10     | 6.500000    | -31.530285    | 10.291835   | 14    | 6.500000  | -0.776870 | -0.267170 |
| 10     | 7.000000    | -32.141434    | -5.626095   | 14    | 7.000000  | -1.183858 | -0.757352 |
| 10     | 7.500000    | -32.752584    | -21.849599  | 14    | 7.500000  | -1.590845 | -1.451027 |
| 10     | 8.000000    | -15.060514    | -33.802874  | 14    | 8.000000  | -1.162981 | -2.139484 |
| 10     | 8.500000    | 2.631557      | -36.910113  | 14    | 8.500000  | -0.735117 | -2.614009 |
| 10     | 9.000000    | 20.323627     | -31.171317  | 14    | 9.000000  | -0.307252 | -2.874601 |
| 10     | 9.500000    | 38.015697     | -16.586486  | 14    | 9.500000  | 0.120612  | -2.921261 |
| 10     | 10.000000   | 55.707767     | 6.844380    | 14    | 10.000000 | 0.548476  | -2.753989 |
| 11     | 10.000000   | -55.810568    | 7.328556    | 15    | 10.000000 | -0.550227 | -2.741329 |
| 11     | 10.500000   | -38.118498    | -16.153711  | 15    | 10.500000 | -0.122362 | -2.909476 |
| 11     | 11.000000   | -20.426428    | -30.789942  | 15    | 11.000000 | 0.305502  | -2.863691 |
| 11     | 11.500000   | -2.734357     | -36.580138  | 15    | 11.500000 | 0.733367  | -2.603974 |
| 11     | 12.000000   | 14.957713     | -33.524299  | 15    | 12.000000 | 1.161231  | -2.130325 |
| 11     | 12.500000   | 32.649783     | -21.622425  | 15    | 12.500000 | 1.589095  | -1.442743 |
| 11     | 13.000000   | 32.042376     | -5.449386   | 15    | 13.000000 | 1.182776  | -0.749775 |
| 11     | 13.500000   | 31.434969     | 10.419951   | 15    | 13.500000 | 0.776456  | -0.259967 |
| 11     | 14.000000   | 30.827562     | 25.985584   | 15    | 14.000000 | 0.370136  | 0.026680  |
| 11     | 14.500000   | 30.220155     | 41.247513   | 15    | 14.500000 | -0.036184 | 0.110168  |
| 11     | 15.000000   | 29.612748     | 56.205739   | 15    | 15.000000 | -0.442504 | -0.009503 |
| 12     | 15.000000   | -13.651617    | 37.667566   | 16    | 15.000000 | 2.885849  | -0.077203 |
| 12     | 15.500000   | -14.259024    | 30.689906   | 16    | 15.500000 | 2.479530  | 1.264141  |
| 12     | 16.000000   | -14.866431    | 23.408543   | 16    | 16.000000 | 2.073210  | 2.402326  |
| 12     | 16.500000   | -15.473838    | 15.823476   | 16    | 16.500000 | 1.666890  | 3.337351  |
| 12     | 17.000000   | -16.081245    | 7.934705    | 16    | 17.000000 | 1.260570  | 4.069216  |
| 12     | 17.500000   | -16.688652    | -0.257769   | 16    | 17.500000 | 0.854250  | 4.597921  |
| 12     | 18.000000   | -4.681900     | -5.600407   | 16    | 18.000000 | 0.133289  | 4.844806  |
| 12     | 18.500000   | 7.324851      | -4.939669   | 16    | 18.500000 | -0.587672 | 4.731211  |
| 12     | 19.000000   | 19.331603     | 1.724445    | 16    | 19.000000 | -1.308633 | 4.257134  |
| 12     | 19.500000   | 31.338354     | 14.391934   | 16    | 19.500000 | -2.029594 | 3.422578  |
| 12     | 20.000000   | 43.345106     | 33.062799   | 16    | 20.000000 | -2.750555 | 2.227540  |

Figura 7.26. Elementos mecánicos por eje del análisis de expansiones para el caso lineal.

#### ANALISIS DE COMPRESIONES SOLUCION CASO LINEAL

18 -3.046550055853595E-005
19 -2.113641192455270E-004
20 4.078761563160284E-005
21 -9.147747462031777E-004
22 3.037606054224053E-004
23 -1.007623498791568E-003
24 -2.979868811533364E-005
25 -2.877758836822503E-004
26 -1.150808865586555E-005
27 -4.923578157857142E-003
28 1.979518729449098E-003
29 1.958395951238801E-003
30 -8.003702329376062E-005

```
GRADO DE LIBERTAD, REACCION (t) HASTA N= 25 , Y GIROS (rad) LOS SIGUIENTES
          1 1.757347531783620E-005
          2 3.177280949016696E-006
          3 -4.919200327510019E-003
          4 1.986070065078696E-003
          5 -1.896314255184900E-003
          6 -1.473024978893321E-005
          7 -6.015695521728419E-005
          8 3.989948786847081E-006
          9 -9.178626983925377E-004
         10 3.058996087703051E-004
         11 9.829763513387595E-004
         12 -1.744638878192973E-005
         13 -1.341831229875398E-004
         14 7.900801029031302E-006
         15 -9.441869500459147E-003
         16 2.885212514365781E-003
         17 2.323690359953400E-005
```

Figura 7.27. Grados de libertad, reacciones y giros del análisis de compresiones para el caso lineal.

| EL VALO | OR DE LAS REACCIONES ES: | NUDO, HUNDIMIENTO DEL NUDO (m) |
|---------|--------------------------|--------------------------------|
| 1       | 21.9823066853749         | 1 -0.00492                     |
| 2       | 0.380250978151707        | 2 -0.00092                     |
| 3       | 27.0216750532418         | 3 -0.00944                     |
| 4       | 0.370304631650190        | 4 -0.00091                     |
| 5       | 22.0032814889112         | 5 -0.00492                     |
| 6       | 2.11804574726987         | 6 -0.00184                     |
| 7       | 2.43010515115872         | 7 -0.00186                     |
| 8       | 4.38822815073940         | 8 -0.00416                     |
| 9       | 2.43156464293283         | 9 -0.00186                     |
| 10      | 2.11549624085839         | 10 -0.00184                    |
| 11      | 26.5699707151006         | 11 -0.00862                    |
| 12      | 2.31762707759978         | 12 -0.00241                    |
| 13      | 37.1817924137048         | 13 -0.01678                    |
| 14      | 2.32542997209056         | 14 -0.00242                    |
| 15      | 26.5098757733090         | 15 -0.00861                    |
| 16      | 2.12646733031107         | 16 -0.00184                    |
| 17      | 2.43247921817023         | 17 -0.00186                    |
| 18      | 4.39535506701982         | 18 -0.00417                    |
| 19      | 2.43392988956307         | 19 -0.00186                    |
| 20      | 2.12065033957255         | 20 -0.00184                    |
| 21      | 22.0156611655546         | 21 -0.00493                    |
| 22      | 0.373411376154649        | 22 -0.00092                    |
| 23      | 27.0274015874230         | 23 -0.00944                    |
| 24      | 0.366719901076611        | 24 -0.00091                    |
| 25      | 22.0098086840623         | 25 -0.00493                    |

Figura 7.28. Valores de las reacciones y hundimientos de cada nodo del análisis de compresiones para el caso lineal.

| Desplaz | amientos y | giros por no | do        |           |           |           |
|---------|------------|--------------|-----------|-----------|-----------|-----------|
| nodo    | dx         | dy           | dz        | tx        | ty        | tz        |
| 1       | 0.000018   | 0.000003     | -0.004919 | 0.001986  | -0.001896 | -0.000015 |
| 2       | -0.000060  | 0.000004     | -0.000918 | 0.000306  | 0.000983  | -0.000017 |
| 3       | -0.000134  | 0.000008     | -0.009442 | 0.002885  | 0.000023  | -0.000030 |
| 4       | -0.000211  | 0.000041     | -0.000915 | 0.000304  | -0.001008 | -0.000030 |
| 5       | -0.000288  | -0.000012    | -0.004924 | 0.001980  | 0.001958  | -0.000080 |
| 6       | -0.000090  | -0.000015    | -0.001838 | -0.001097 | -0.000692 | 0.000022  |
| 7       | -0.000101  | 0.000002     | -0.001859 | -0.000453 | 0.000582  | 0.000001  |
| 8       | -0.000118  | 0.000005     | -0.004164 | -0.001808 | -0.000000 | -0.000009 |
| 9       | -0.000136  | 0.000037     | -0.001860 | -0.000453 | -0.000582 | -0.000016 |
| 10      | -0.000150  | -0.000027    | -0.001836 | -0.001091 | 0.000690  | -0.000038 |
| 11      | 0.000090   | -0.000032    | -0.008625 | 0.000013  | -0.002489 | -0.000021 |
| 12      | 0.000040   | 0.000000     | -0.002413 | 0.000003  | 0.001428  | -0.000009 |
| 13      | 0.000000   | 0.000000     | -0.016782 | 0.000017  | -0.000026 | -0.000014 |
| 14      | -0.000055  | 0.000033     | -0.002415 | 0.000002  | -0.001403 | -0.000010 |
| 15      | -0.000104  | -0.000042    | -0.008606 | 0.000009  | 0.002417  | -0.000016 |
| 16      | -0.000026  | -0.000049    | -0.001841 | 0.001081  | -0.000694 | 0.000035  |
| 17      | -0.000033  | -0.000002    | -0.001861 | 0.000448  | 0.000583  | 0.000006  |
| 18      | -0.000045  | -0.000003    | -0.004167 | 0.001790  | -0.000001 | -0.000006 |
| 19      | -0.000056  | 0.000029     | -0.001861 | 0.000448  | -0.000582 | -0.000011 |
| 20      | -0.000064  | -0.000058    | -0.001838 | 0.001081  | 0.000690  | -0.000052 |
| 21      | 0.000086   | -0.000065    | -0.004927 | -0.001951 | -0.001903 | -0.000024 |
| 22      | 0.000009   | -0.000003    | -0.000916 | -0.000295 | 0.000985  | 0.000003  |
| 23      | -0.000066  | -0.000006    | -0.009444 | -0.002840 | 0.000020  | 0.000000  |
| 24      | -0.000142  | 0.000024     | -0.000914 | -0.000295 | -0.001006 | 0.000017  |
| 25      | -0.000220  | -0.000073    | -0.004925 | -0.001956 | 0.001955  | 0.000032  |
| 26      | 0.000370   | -0.000455    | -0.005583 | -0.001247 | 0.001172  | 0.000116  |
| 27      | 0.000200   | -0.000303    | -0.020604 | -0.005753 | 0.000510  | 0.000128  |
| 28      | 0.000026   | -0.000675    | -0.010834 | -0.002451 | 0.000005  | 0.000030  |
| 29      | -0.000145  | -0.000188    | -0.020604 | -0.005749 | -0.000514 | 0.000105  |
| 30      | -0.000323  | -0.000434    | -0.005587 | -0.001243 | -0.001161 | -0.000047 |

Figura 7.30. Desplazamientos y giros del análisis de compresiones para el caso lineal

| BARRA | ELEMENTOS<br>MECANICOS | GRADO DE<br>LIBERTAD | MAGNITUD     |
|-------|------------------------|----------------------|--------------|
| 1     | NORMAL X1              | 1                    | 8.43219710   |
| 1     | CORTANTE Y1            | 2                    | -0.22565024  |
| 1     | CORTANTE Z1            | 3                    | 38.14610582  |
| 1     | TORSION X1             | 4                    | 3.29077938   |
| 1     | FLEXIONANTE Y1         | 5                    | -31.06042073 |
| 1     | FLEXIONANTE Z1         | 6                    | -0.49300892  |
| 1     | NORMAL X2              | 7                    | -8.43219710  |
| 1     | CORTANTE Y2            | 8                    | 0.02111424   |
| 1     | CORTANTE Z2            | 9                    | 9.76028834   |
| 1     | TORSION X2             | 10                   | -3.29077938  |
| 1     | FLEXIONANTE Y2         | 11                   | 27.60230110  |
| 1     | FLEXIONANTE Z2         | 12                   | -0.57984010  |
| 2     | NORMAL X1              | 7                    | 8.03035868   |
| 2     | CORTANTE Y1            | 8                    | -0.34349961  |
| 2     | CORTANTE Z1            | 9                    | 18.82470379  |
| 2     | TORSION X1             | 10                   | -5.05183846  |
| 2     | FLEXIONANTE Y1         | 11                   | -35.14492931 |
| 2     | FLEXIONANTE Z1         | 12                   | -0.67371956  |
| 2     | NORMAL X2              | 13                   | -8.03035868  |
| 2     | CORTANTE Y2            | 14                   | 0.10124883   |
| 2     | CORTANTE Z2            | 15                   | 41.68011128  |
| 2     | TORSION X2             | 16                   | 5.05183846   |
| 2     | FLEXIONANTE Y2         | 17                   | 9.02899780   |
| 2     | FLEXIONANTE Z2         | 18                   | -0.93407241  |
| 3     | NORMAL X1              | 13                   | 8.37259447   |
| 3     | CORTANTE Y1            | 14                   | -0.50972697  |
| 3     | CORTANTE Z1            | 15                   | 41.58538599  |
| 3     | TORSION X1             | 16                   | 5.05602791   |
| 3     | FLEXIONANTE Y1         | 17                   | -8.56590892  |
| 3     | FLEXIONANTE Z1         | 18                   | -0.71182134  |
| 3     | NORMAL X2              | 19                   | -8.37259447  |
| 3     | CORTANTE Y2            | 20                   | 0.08670009   |
| 3     | CORTANTE Z2            | 21                   | 18.89456322  |
| 3     | TORSION X2             | 22                   | -5.05602791  |
| 3     | FLEXIONANTE Y2         | 23                   | 35.12438457  |
| 3     | FLEXIONANTE Z2         | 24                   | -1.27045951  |
| 4     | NORMAL X1              | 19                   | 8.28914821   |
| 4     | CORTANTE Y1            | 20                   | -0.61732882  |
| 4     | CORTANTE Z1            | 21                   | 9.61538675   |
| 4     | TORSION X1             | 22                   | -3.28213739  |
| 4     | FLEXIONANTE Y1         | 23                   | -27.54763584 |
| 4     | FLEXIONANTE Z1         | 24                   | -1.41245801  |
| 4     | NORMAL X2              | 25                   | -8.28914821  |
| 4     | CORTANTE Y2            | 26                   | 0.20356092   |
| 4     | CORTANTE Z2            | 27                   | 38.31857855  |
| 4     | TORSION X2             | 28                   | 3.28213739   |
| 4     | FLEXIONANTE Y2         | 29                   | 31.70256265  |
| 4     | FLEXIONANTE Z2         | 30                   | -1.83398096  |

Figura 7.31. Magnitudes de los Elementos Mecánicos y grados de libertad del análisis de compresiones para el caso lineal.

| EJE   | 1         |            |            | EJE   | 2         |           |           |
|-------|-----------|------------|------------|-------|-----------|-----------|-----------|
| BARRA | X         | V          | M          | BARRA | X         | V         | M         |
| 1     | 0.000000  | -38.146106 | 31.060421  | 5     | 0.000000  | 2.097852  | 3.246827  |
| 1     | 0.500000  | -27.954952 | 14.535156  | 5     | 0.500000  | 1.556875  | 4.160509  |
| 1     | 1.000000  | -17.763799 | 3.105468   | 5     | 1.000000  | 1.015898  | 4.803702  |
| 1     | 1.500000  | -7.572646  | -3.228643  | 5     | 1.500000  | 0.474921  | 5.176407  |
| 1     | 2.000000  | 2.618508   | -4.467178  | 5     | 2.000000  | -0.066056 | 5.278623  |
| 1     | 2.500000  | 12.809661  | -0.610135  | 5     | 2.500000  | -0.607033 | 5.110350  |
| 1     | 3.000000  | 12.199786  | 5.642226   | 5     | 3.000000  | -0.991981 | 4.710597  |
| 1     | 3.500000  | 11.589912  | 11.589651  | 5     | 3.500000  | -1.376928 | 4.118370  |
| 1     | 4.000000  | 10.980037  | 17.232138  | 5     | 4.000000  | -1.761876 | 3.333669  |
| 1     | 4.500000  | 10.370163  | 22.569688  | 5     | 4.500000  | -2.146823 | 2.356494  |
| 1     | 5.000000  | 9.760288   | 27.602301  | 5     | 5.000000  | -2.531770 | 1.186846  |
| 2     | 5.000000  | -18.824704 | 35.144929  | 6     | 5.000000  | -0.319907 | 1.091731  |
| 2     | 5.500000  | -19.434578 | 25.580109  |       | 5.500000  | -0.704854 | 0.835541  |
| 2     |           |            |            | 6     |           |           |           |
|       | 6.000000  | -20.044453 | 15.710351  | 6     | 6.000000  | -1.089801 | 0.386877  |
| 2     | 6.500000  | -20.654327 | 5.535656   | 6     | 6.500000  | -1.474749 | -0.254260 |
| 2     | 7.000000  | -21.264202 | -4.943976  | 6     | 7.000000  | -1.859696 | -1.087872 |
| 2     | 7.500000  | -21.874076 | -15.728546 | 6     | 7.500000  | -2.244644 | -2.113957 |
| 2     | 8.000000  | -9.163239  | -23.487875 | 6     | 8.000000  | -1.650530 | -3.087750 |
| 2     | 8.500000  | 3.547599   | -24.891785 | 6     | 8.500000  | -1.056416 | -3.764486 |
| 2     | 9.000000  | 16.258436  | -19.940276 | 6     | 9.000000  | -0.462301 | -4.144165 |
| 2     | 9.500000  | 28.969274  | -8.633348  | 6     | 9.500000  | 0.131813  | -4.226788 |
| 2     | 10.000000 | 41.680111  | 9.028998   | 6     | 10.000000 | 0.725927  | -4.012353 |
| 3     | 10.000000 | -41.585386 | 8.565909   | 7     | 10.000000 | -0.727701 | -4.005166 |
| 3     | 10.500000 | -28.874548 | -9.049075  | 7     | 10.500000 | -0.133587 | -4.220488 |
| 3     | 11.000000 | -16.163711 | -20.308640 | 7     | 11.000000 | 0.460527  | -4.138753 |
| 3     | 11.500000 | -3.452873  | -25.212786 | 7     | 11.500000 | 1.054641  | -3.759961 |
| 3     | 12.000000 | 9.257964   | -23.761513 | 7     | 12.000000 | 1.648755  | -3.084112 |
| 3     | 12.500000 | 21.968802  | -15.954822 | 7     | 12.500000 | 2.242869  | -2.111206 |
| 3     | 13.000000 | 21.353954  | -5.124133  | 7     | 13.000000 | 1.858651  | -1.085826 |
| 3     | 13.500000 | 20.739106  | 5.399132   | 7     | 13.500000 | 1.474434  | -0.252554 |
| 3     | 14.000000 | 20.124259  | 15.614974  | 7     | 14.000000 | 1.090216  | 0.388608  |
| 3     | 14.500000 | 19.509411  | 25.523391  | 7     | 14.500000 | 0.705998  | 0.837662  |
| 3     | 15.000000 | 18.894563  | 35.124385  | 7     | 15.000000 | 0.321781  | 1.094607  |
| 4     | 15.000000 | -9.615387  | 27.547636  | 8     | 15.000000 | 2.526670  | 1.187647  |
| 4     | 15.500000 | -10.230234 | 22.586231  | 8     | 15.500000 | 2.142453  | 2.354928  |
| 4     | 16.000000 | -10.845082 | 17.317401  | 8     | 16.000000 | 1.758235  | 3.330100  |
| 4     | 16.500000 | -11.459930 | 11.741148  | 8     | 16.500000 | 1.374017  | 4.113163  |
| 4     | 17.000000 | -12.074777 | 5.857472   | 8     | 17.000000 | 0.989800  | 4.704117  |
| 4     | 17.500000 | -12.689625 | -0.333629  | 8     | 17.500000 | 0.605582  | 5.102962  |
| 4     | 18.000000 | -2.487984  | -4.128031  | 8     | 18.000000 | 0.063330  | 5.270190  |
| 4     | 18.500000 | 7.713656   | -2.821614  | 8     | 18.500000 | -0.478922 | 5.166292  |
| 4     | 19.000000 | 17.915297  | 3.585625   | 8     | 19.000000 | -1.021174 | 4.791269  |
| 4     | 19.500000 | 28.116938  | 15.093684  | 8     | 19.500000 | -1.563426 | 4.145119  |
| 4     | 20.000000 | 38.318579  | 31.702563  | 8     | 20.000000 | -2.105677 | 3.227843  |

Figura 7.32. Elementos mecánicos por eje del análisis de compresiones para el caso lineal.

|       |           | MENTOS MECANI | COS POR EJE |       |           |           |           |
|-------|-----------|---------------|-------------|-------|-----------|-----------|-----------|
| EJE   | 3         |               |             | EJE   | 4         |           |           |
| BARRA | X         | V             | М           | BARRA | X         | V         | M         |
| 9     | 0.000000  | -41.495113    | 31.739773   | 13    | 0.000000  | 2.076553  | 3.279017  |
| 9     | 0.500000  | -29.810127    | 13.913464   | 13    | 0.500000  | 1.539787  | 4.183102  |
| 9     | 1.000000  | -18.125142    | 1.929646    | 13    | 1.000000  | 1.003021  | 4.818804  |
| 9     | 1.500000  | -6.440156     | -4.211678   | 13    | 1.500000  | 0.466254  | 5.186123  |
| 9     | 2.000000  | 5.244829      | -4.510510   | 13    | 2.000000  | -0.070512 | 5.285058  |
| 9     | 2.500000  | 16.929814     | 1.033151    | 13    | 2.500000  | -0.607278 | 5.115611  |
| 9     | 3.000000  | 16.488628     | 9.387761    | 13    | 3.000000  | -0.991039 | 4.716032  |
| 9     | 3.500000  | 16.047441     | 17.521778   | 13    | 3.500000  | -1.374799 | 4.124572  |
| 9     | 4.000000  | 15.606255     | 25.435202   | 13    | 4.000000  | -1.758560 | 3.341232  |
| 9     | 4.500000  | 15.165068     | 33.128033   | 13    | 4.500000  | -2.142320 | 2.366013  |
| 9     | 5.000000  | 14.723882     | 40.600271   | 13    | 5.000000  | -2.526080 | 1.198912  |
| 10    | 5.000000  | -31.107743    | 58.555959   | 14    | 5.000000  | -0.329999 | 1.100264  |
| 10    | 5.500000  | -31.548929    | 42.891791   | 14    | 5.500000  | -0.713760 | 0.839325  |
| 10    | 6.000000  | -31.990116    | 27.007029   | 14    | 6.000000  | -1.097520 | 0.386505  |
| 10    | 6.500000  | -32.431302    | 10.901675   | 14    | 6.500000  | -1.481281 | -0.258196 |
| 10    | 7.000000  | -32.872489    | -5.424273   | 14    | 7.000000  | -1.865041 | -1.094776 |
| 10    | 7.500000  | -33.313675    | -21.970814  | 14    | 7.500000  | -2.248801 | -2.123237 |
| 10    | 8.000000  | -16.322779    | -34.379928  | 14    | 8.000000  | -1.651124 | -3.098218 |
| 10    | 8.500000  | 0.668117      | -38.293593  | 14    | 8.500000  | -1.053446 | -3.774361 |
| 10    | 9.000000  | 17.659013     | -33.711810  | 14    | 9.000000  | -0.455769 | -4.151664 |
| 10    | 9.500000  | 34.649910     | -20.634580  | 14    | 9.500000  | 0.141909  | -4.230129 |
| 10    | 10.000000 | 51.640806     | 0.938099    | 14    | 10.000000 | 0.739586  | -4.009756 |
| 11    | 10.000000 | -51.753497    | 1.466641    | 15    | 10.000000 | -0.741569 | -3.995914 |
| 11    | 10.500000 | -34.762601    | -20.162383  | 15    | 10.500000 | -0.143892 | -4.217280 |
| 11    | 11.000000 | -17.771705    | -33.295960  | 15    | 11.000000 | 0.453786  | -4.139806 |
| 11    | 11.500000 | -0.780809     | -37.934088  | 15    | 11.500000 | 1.051463  | -3.763494 |
| 11    | 12.000000 | 16.210088     | -34.076768  | 15    | 12.000000 | 1.649141  | -3.088343 |
| 11    | 12.500000 | 33.200984     | -21.724000  | 15    | 12.500000 | 2.246818  | -2.114353 |
| 11    | 13.000000 | 32.763699     | -5.232830   | 15    | 13.000000 | 1.863783  | -1.086702 |
| 11    | 13.500000 | 32.326414     | 11.039698   | 15    | 13.500000 | 1.480748  | -0.250569 |
| 11    | 14.000000 | 31.889129     | 27.093584   | 15    | 14.000000 | 1.097713  | 0.394046  |
| 11    | 14.500000 | 31.451844     | 42.928827   | 15    | 14.500000 | 0.714678  | 0.847144  |
| 11    | 15.000000 | 31.014559     | 58.545428   | 15    | 15.000000 | 0.331643  | 1.108724  |
| 12    | 15.000000 | -14.860325    | 40.629672   | 16    | 15.000000 | 2.519056  | 1.195492  |
| 12    | 15.500000 | -15.297610    | 33.090188   | 16    | 15.500000 | 2.136021  | 2.359261  |
| 12    | 16.000000 | -15.734895    | 25.332062   | 16    | 16.000000 | 1.752986  | 3.331513  |
| 12    | 16.500000 | -16.172180    | 17.355293   | 16    | 16.500000 | 1.369951  | 4.112247  |
| 12    | 17.000000 | -16.609465    | 9.159881    | 16    | 17.000000 | 0.986916  | 4.701463  |
| 12    | 17.500000 | -17.046750    | 0.745827    | 16    | 17.500000 | 0.603881  | 5.099163  |
| 12    | 18.000000 | -5.391813     | -4.863814   | 16    | 18.000000 | 0.064206  | 5.266184  |
| 12    | 18.500000 | 6.263125      | -4.645986   | 16    | 18.500000 | -0.475469 | 5.163368  |
| 12    | 19.000000 | 17.918063     | 1.399312    | 16    | 19.000000 | -1.015144 | 4.790715  |
| 12    | 19.500000 | 29.573001     | 13.272078   | 16    | 19.500000 | -1.554819 | 4.148225  |
| 12    | 20.000000 | 41.227939     | 30.972313   | 16    | 20.000000 | -2.094493 | 3.235897  |

Figura 7.33. Elementos mecánicos por eje del análisis de compresiones para el caso lineal.

A continuación, se muestran los resultados del análisis de tipo No Lineal para lo cual, se repiten los pasos del Manual de Uso con los datos del ejercicio propuesto y haciendo el cambio en la tarjeta 1.

El programa de igual manera que en el análisis de tipo Lineal entregará primero el resumen de la información de la estructura y posteriormente los resultados del análisis de expansiones. Figura 7.34.

```
ANALISIS DE EXPANSIONES
 SOLUCION CASO LINEAL
GRADO DE LIBERTAD, REACCION (t) HASTA N= 25 , Y GIROS (rad) LOS SIGUIENTES
          1 2.019302851069289E-005
          2 7.139419963120459E-006
          3 -4.036103033128614E-003
          4 1.933081038245699E-003
          5 -1.835926776829952E-003
          6 -1.367959431689119E-005
          7 -5.368394996574117E-005
          8 5.631735828878597E-006
          9 -2.358309938437044E-004
         10 3.102436903970418E-004
         11 8.481318229709244E-004
         12 -1.624444696388653E-005
         13 -1.240224076707822E-004
         14 7.332401076325557E-006
         15 -7.818518493792654E-003
         16 2.834028292675557E-003
         17 2.112215169038437E-005
         18 -2.838181363041127E-005
         19 -1.973347312633671E-004
         20 3.764934107670471E-005
```

Figura 7.34. Grados de libertad, reacciones y giros del análisis de expansiones para el caso No Lineal.

| EL VALOR DE | LAS REACCIONES ES:     | NUDO, | HUNDIMIENTO DEL NUDO (m) |
|-------------|------------------------|-------|--------------------------|
| 1           | 22.1808764578754       | 1     | -0.00404                 |
| 2           | 4.518563942282683E-002 | 2     | -0.00024                 |
| 3           | 27.5530484394922       | 3     | -0.00782                 |
| 4           | 3.583648007498473E-002 | 4     | -0.00023                 |
| 5           | 22.2012525395303       | 5     | -0.00404                 |
| 6           | 1.75487060333047       | 6     | -0.00100                 |
| 7           | 2.38376673753725       | 7     | -0.00092                 |
| 8           | 4.04886872523390       | 8     | -0.00253                 |
| 9           | 2.38513050736275       | 9     | -0.00092                 |
| 10          | 1.75287162366422       | 10    | -0.00100                 |
| 11          | 27.2706666931612       | 11    | -0.00718                 |
| 12          | 1.97770111266222       | 12    | -0.00112                 |
| 13          | 38.5841405369019       | 13    | -0.01410                 |
| 14          | 1.98518598367432       | 14    | -0.00112                 |
| 15          | 27.2135029079415       | 15    | -0.00716                 |
| 16          | 1.76265797045845       | 16    | -0.00101                 |
| 17          | 2.38602409914978       | 17    | -0.00092                 |
| 18          | 4.05572874914019       | 18    | -0.00253                 |
| 19          | 2.38736042400160       | 19    | -0.00092                 |
| 20          | 1.75807769962686       | 20    | -0.00100                 |
| 21          | 22.2111635493015       | 21    | -0.00404                 |
| 22          | 3.859632879652583E-002 | 22    | -0.00023                 |
| 23          | 27.5567788375997       | 23    | -0.00782                 |
| 24          | 3.239565188150291E-002 | 24    | -0.00023                 |
| 25          | 22.2044273955071       | 25    | -0.00404                 |
|             |                        |       |                          |

Figura 7.35. Valores de las reacciones y el hundimiento de cada nodo del análisis de expansiones para el caso No Lineal.

| Desplaz | amientos y | giros por noc | do        |           |           |           |
|---------|------------|---------------|-----------|-----------|-----------|-----------|
| nodo    | dx         | dy            | dz        | tx        | ty        | tz        |
| 1       | 0.000020   | 0.000007      | -0.004036 | 0.001933  | -0.001836 | -0.000014 |
| 2       | -0.000054  | 0.000006      | -0.000236 | 0.000310  | 0.000848  | -0.000016 |
| 3       | -0.000124  | 0.000007      | -0.007819 | 0.002834  | 0.000021  | -0.000028 |
| 4       | -0.000197  | 0.000038      | -0.000233 | 0.000308  | -0.000871 | -0.000028 |
| 5       | -0.000270  | -0.000011     | -0.004040 | 0.001928  | 0.001892  | -0.000075 |
| 6       | -0.000083  | -0.000010     | -0.001004 | -0.000972 | -0.000616 | 0.000021  |
| 7       | -0.000094  | 0.000003      | -0.000917 | -0.000334 | 0.000438  | 0.000001  |
| 8       | -0.000110  | 0.000004      | -0.002527 | -0.001597 | -0.000000 | -0.000008 |
| 9       | -0.000127  | 0.000034      | -0.000918 | -0.000334 | -0.000437 | -0.000014 |
| 10      | -0.000140  | -0.000026     | -0.001003 | -0.000967 | 0.000615  | -0.000036 |
| 11      | 0.000085   | -0.000026     | -0.007178 | 0.000012  | -0.002435 | -0.000020 |
| 12      | 0.000038   | 0.000002      | -0.001122 | 0.000002  | 0.001223  | -0.000008 |
| 13      | 0.000000   | 0.000000      | -0.014101 | 0.000015  | -0.000024 | -0.000013 |
| 14      | -0.000053  | 0.000030      | -0.001124 | 0.000002  | -0.001199 | -0.000009 |
| 15      | -0.000099  | -0.000041     | -0.007163 | 0.000008  | 0.002370  | -0.000015 |
| 16      | -0.000024  | -0.000043     | -0.001007 | 0.000958  | -0.000619 | 0.000033  |
| 17      | -0.000030  | -0.000000     | -0.000918 | 0.000329  | 0.000438  | 0.000006  |
| 18      | -0.000042  | -0.000002     | -0.002530 | 0.001580  | -0.000001 | -0.000006 |
| 19      | -0.000053  | 0.000026      | -0.000918 | 0.000330  | -0.000437 | -0.000010 |
| 20      | -0.000061  | -0.000056     | -0.001005 | 0.000958  | 0.000615  | -0.000049 |
| 21      | 0.000084   | -0.000059     | -0.004042 | -0.001901 | -0.001842 | -0.000024 |
| 22      | 0.000011   | -0.000000     | -0.000234 | -0.000300 | 0.000850  | 0.000003  |
| 23      | -0.000061  | -0.000006     | -0.007820 | -0.002792 | 0.000018  | 0.000000  |
| 24      | -0.000133  | 0.000022      | -0.000232 | -0.000300 | -0.000869 | 0.000016  |
| 25      | -0.000207  | -0.000071     | -0.004040 | -0.001905 | 0.001889  | 0.000030  |
| 26      | 0.000355   | -0.000432     | -0.004693 | -0.001221 | 0.001147  | 0.000108  |
| 27      | 0.000192   | -0.000280     | -0.019282 | -0.005645 | 0.000405  | 0.000123  |
| 28      | 0.000026   | -0.000656     | -0.009209 | -0.002414 | 0.000005  | 0.000027  |
| 29      | -0.000138  | -0.000176     | -0.019282 | -0.005642 | -0.000409 | 0.000102  |
| 30      | -0.000308  | -0.000423     | -0.004697 | -0.001215 | -0.001137 | -0.000046 |

Figura 7.36. Desplazamientos y giros del análisis de expansiones para el caso No Lineal.

| BARRA | ELEMENTOS<br>MECANICOS | GRADO DE<br>LIBERTAD | MAGNITUD     |
|-------|------------------------|----------------------|--------------|
| 1     | NORMAL X1              | 1                    | 8.01417463   |
| 1     | CORTANTE Y1            | 2                    | -0.20356727  |
| 1     | CORTANTE Z1            | 3                    | 38.99725140  |
| 1     | TORSION X1             | 4                    | 3.17848684   |
| 1     | FLEXIONANTE Y1         | 5                    | -32.00348252 |
| 1     | FLEXIONANTE Z1         | 6                    | -0.41587983  |
| 1     | NORMAL X2              | 7                    | -8.01417463  |
| 1     | CORTANTE Y2            | 8                    | 0.01362008   |
| 1     | CORTANTE Z2            | 9                    | 8.56790385   |
| 1     | TORSION X2             | 10                   | -3.17848684  |
| 1     | FLEXIONANTE Y2         | 11                   | 25.10414746  |
| 1     | FLEXIONANTE Z2         | 12                   | -0.52375738  |
| 2     | NORMAL X1              | 7                    | 7.63031589   |
| 2     | CORTANTE Y1            | 8                    | -0.31455053  |
| 2     | CORTANTE Z1            | 9                    | 17.45760176  |
| 2     | TORSION X1             | 10                   | -4.94308080  |
| 2     | FLEXIONANTE Y1         | 11                   | -33.10396542 |
| 2     | FLEXIONANTE Z1         | 12                   | -0.61434076  |
| 2     | NORMAL X2              | 13                   | -7.63031589  |
| 2     | CORTANTE Y2            | 14                   | 0.08898924   |
| 2     | CORTANTE Z2            | 15                   | 43.53798344  |
| 2     | TORSION X2             | 16                   | 4.94308080   |
| 2     | FLEXIONANTE Y2         | 17                   | 12.34284836  |
| 2     | FLEXIONANTE Z2         | 18                   | -0.85659827  |
| 3     | NORMAL X1              | 13                   | 7.95292086   |
| 3     | CORTANTE Y1            | 14                   | -0.47349195  |
| 3     | CORTANTE Z1            | 15                   | 43.45234418  |
| 3     | TORSION X1             | 16                   | 4.94671417   |
| 3     | FLEXIONANTE Y1         | 17                   | -11.92310221 |
| 3     | FLEXIONANTE Z1         | 18                   | -0.66494790  |
| 3     | NORMAL X2              | 19                   | -7.95292086  |
| 3     | CORTANTE Y2            | 20                   | 0.07939798   |
| 3     | CORTANTE Z2            | 21                   | 17.51986812  |
| 3     | TORSION X2             | 22                   | -4.94671417  |
| 3     | FLEXIONANTE Y2         | 23                   | 33.08319944  |
| 3     | FLEXIONANTE Z2         | 24                   | -1.17973418  |

Figura 7.37. Magnitudes de los Elementos Mecánicos y grados de libertad del análisis de expansiones para el caso No Lineal

| DIAGRA | MAS DE ELEM | ENTOS MECANI | COS POR EJE           |       |           |           |           |
|--------|-------------|--------------|-----------------------|-------|-----------|-----------|-----------|
| EJE    | 1           |              |                       | EJE   | 2         |           |           |
| BARRA  | X           | V            | M                     | BARRA | X         | V         | M         |
| 1      | 0.000000    | -38.997251   | 32.003483             | 5     | 0.000000  | 2.755450  | 2.236002  |
| 1      | 0.500000    | -28.706813   | 15.077466             | 5     | 0.500000  | 2.032885  | 3.433085  |
| 1      | 1.000000    | -18.416375   | 3.296669              | 5     | 1.000000  | 1.310321  | 4.268887  |
| 1      | 1.500000    | -8.125937    | -3.338909             | 5     | 1.500000  | 0.587756  | 4.743406  |
| 1      | 2.000000    | 2.164502     | -4.829267             | 5     | 2.000000  | -0.134809 | 4.856643  |
| 1      | 2.500000    | 12.454940    | -1.174407             | 5     | 2.500000  | -0.857373 | 4.608597  |
| 1      | 3.000000    | 11.677533    | 4.858711              | 5     | 3.000000  | -1.265490 | 4.077881  |
| 1      | 3.500000    | 10.900125    | 10.503126             | 5     | 3.500000  | -1.673607 | 3.343107  |
| 1      | 4.000000    | 10.122718    | 15.758836             | 5     | 4.000000  | -2.081723 | 2.404275  |
| 1      | 4.500000    | 9.345311     | 20.625844             | 5     | 4.500000  | -2.489840 | 1.261384  |
| 1      | 5.000000    | 8.567904     | 25.104147             | 5     | 5.000000  | -2.897957 | -0.085565 |
| 2      | 5.000000    | -17.457602   | 33.103965             | 6     | 5.000000  | 0.453420  | -0.025318 |
| 2      | 5.500000    | -18.235009   | 24.180813             | 6     | 5.500000  | 0.045303  | 0.099362  |
| 2      | 6.000000    | -19.012416   | 14.868956             | 6     | 6.000000  | -0.362813 | 0.019985  |
| 2      | 6.500000    | -19.789823   | 5.168397              | 6     | 6.500000  | -0.770930 | -0.263451 |
| 2      | 7.000000    | -20.567230   | -4.920867             | 6     | 7.000000  | -1.179046 | -0.750945 |
| 2      | 7.500000    | -21.344638   | -15.398834            | 6     | 7.500000  | -1.587163 | -1.442497 |
| 2      | 8.000000    | -8.368113    | -22.827022            | 6     | 8.000000  | -1.162729 | -2.129970 |
| 2      | 8.500000    | 4.608411     | -23.766947            | 6     | 8.500000  | -0.738294 | -2.605226 |
| 2      | 9.000000    | 17.584935    | -18.218611            | 6     | 9.000000  | -0.313860 | -2.868265 |
| 2      | 9.500000    | 30.561459    | -6.182012             | 6     | 9.500000  | 0.110574  | -2.919086 |
| 2      | 10.000000   | 43.537983    | 12.342848             | 6     | 10.000000 | 0.535009  | -2.757690 |
| 3      | 10.000000   | -43.452344   | 11.923102             | 7     | 10.000000 | -0.536628 | -2.750678 |
| 3      | 10.500000   | -30.475820   | -6.558939             | 7     | 10.500000 | -0.112193 | -2.912884 |
| 3      | 11.000000   | -17.499296   | -18.552718            | 7     | 11.000000 | 0.312241  | -2.862872 |
| 3      | 11.500000   | -4.522772    | -24.058235            | 7     | 11.500000 | 0.736675  | -2.600643 |
| 3      | 12.000000   | 8.453753     | -23.075489            | 7     | 12.000000 | 1.161110  | -2.126196 |
| 3      | 12.500000   | 21.430277    | -15.604482            | 7     | 12.500000 | 1.585544  | -1.439533 |
| 3      | 13.000000   | 20.648195    | -5.084864             | 7     | 13.000000 | 1.178109  | -0.748619 |
| 3      | 13.500000   | 19.866113    | 5.043713              | 7     | 13.500000 | 0.770675  | -0.261423 |
| 3      | 14.000000   | 19.084032    | 14.781250             | 7     | 14.000000 | 0.363240  | 0.022055  |
| 3      | 14.500000   | 18.301950    | 24.127745             | 7     | 14.500000 | -0.044195 | 0.101816  |
| 3      | 15.000000   | 17.519868    | 33.083199             | 7     | 15.000000 | -0.451630 | -0.022140 |
| 4      | 15.000000   | -8.435818    | 25.053708             | 8     | 15.000000 | 2.892956  | -0.084452 |
| 4      | 15.500000   | -9.217899    | 20.640278             | 8     | 15.500000 | 2.485521  | 1.260167  |
| 4      | 16.000000   | -9.999981    | 15.835808             | 8     | 16.000000 | 2.078086  | 2.401069  |
| 4      | 16.500000   | -10.782063   | 10.640297             | 8     | 16.500000 | 1.670651  | 3.338253  |
| 4      | 17.000000   | -11.564145   | 5.053745              | 8     | 17.000000 | 1.263217  | 4.071720  |
| 4      | 17.500000   | -12.346227   | -0.923848             | 8     | 17.500000 | 0.855782  | 4.601470  |
| 4      | 18.000000   | -12.346227   | -4.521804             | 8     | 18.000000 | 0.132218  | 4.848470  |
| 4      | 18.500000   | 8.255026     |                       | 8     | 18.500000 | -0.591346 | 4.848470  |
| 4      |             | 18.555652    | -2.969448<br>3.733222 | 8     | 19.000000 |           |           |
|        | 19.000000   |              |                       | 8     |           | -1.314911 | 4.257124  |
| 4      | 19.500000   | 28.856279    | 15.586205             | 8     | 19.500000 | -2.038475 | 3.418777  |

Figura 7.38. Elementos mecánicos por eje del análisis de expansiones para el caso No Lineal

| DIAGRA | MAS DE ELEM | ENTOS MECANI | COS POR EJE |       |           |           |           |
|--------|-------------|--------------|-------------|-------|-----------|-----------|-----------|
| EJE    | 3           |              |             | EJE   | 4         |           |           |
| BARRA  | X           | V            | M           | BARRA | X         | V         | M         |
| 9      | 0.000000    | -43.595036   | 33.771433   | 13    | 0.000000  | 2.735679  | 2.265342  |
| 9      | 0.500000    | -31.559703   | 14.982749   | 13    | 0.500000  | 2.017008  | 3.453514  |
| 9      | 1.000000    | -19.524369   | 2.211731    | 13    | 1.000000  | 1.298337  | 4.282350  |
| 9      | 1.500000    | -7.489036    | -4.541621   | 13    | 1.500000  | 0.579666  | 4.751850  |
| 9      | 2.000000    | 4.546297     | -5.277306   | 13    | 2.000000  | -0.139005 | 4.862015  |
| 9      | 2.500000    | 16.581631    | 0.004676    | 13    | 2.500000  | -0.857676 | 4.612845  |
| 9      | 3.000000    | 15.970481    | 8.142704    | 13    | 3.000000  | -1.264664 | 4.082260  |
| 9      | 3.500000    | 15.359332    | 15.975158   | 13    | 3.500000  | -1.671652 | 3.348181  |
| 9      | 4.000000    | 14.748182    | 23.502036   | 13    | 4.000000  | -2.078640 | 2.410608  |
| 9      | 4.500000    | 14.137033    | 30.723340   | 13    | 4.500000  | -2.485628 | 1.269540  |
| 9      | 5.000000    | 13.525883    | 37.639069   | 13    | 5.000000  | -2.892616 | -0.075021 |
| 10     | 5.000000    | -29.696837   | 56.212176   | 14    | 5.000000  | 0.444094  | -0.017588 |
| 10     | 5.500000    | -30.307986   | 41.210971   | 14    | 5.500000  | 0.037106  | 0.102712  |
| 10     | 6.000000    | -30.919136   | 25.904190   | 14    | 6.000000  | -0.369882 | 0.019518  |
| 10     | 6.500000    | -31.530285   | 10.291835   | 14    | 6.500000  | -0.776870 | -0.267170 |
| 10     | 7.000000    | -32.141434   | -5.626095   | 14    | 7.000000  | -1.183858 | -0.757352 |
| 10     | 7.500000    | -32.752584   | -21.849599  | 14    | 7.500000  | -1.590845 | -1.451027 |
| 10     | 8.000000    | -15.060514   | -33.802874  | 14    | 8.000000  | -1.162981 | -2.139484 |
| 10     | 8.500000    | 2.631557     | -36.910113  | 14    | 8.500000  | -0.735117 | -2.614009 |
| 10     | 9.000000    | 20.323627    | -31.171317  | 14    | 9.000000  | -0.307252 | -2.874601 |
| 10     | 9.500000    | 38.015697    | -16.586486  | 14    | 9.500000  | 0.120612  | -2.921261 |
| 10     | 10.000000   | 55.707767    | 6.844380    | 14    | 10.000000 | 0.548476  | -2.753989 |
| 11     | 10.000000   | -55.810568   | 7.328556    | 15    | 10.000000 | -0.550227 | -2.741329 |
| 11     | 10.500000   | -38.118498   | -16.153711  | 15    | 10.500000 | -0.122362 | -2.909476 |
| 11     | 11.000000   | -20.426428   | -30.789942  | 15    | 11.000000 | 0.305502  | -2.863691 |
| 11     | 11.500000   | -2.734357    | -36.580138  | 15    | 11.500000 | 0.733367  | -2.603974 |
| 11     | 12.000000   | 14.957713    | -33.524299  | 15    | 12.000000 | 1.161231  | -2.130325 |
| 11     | 12.500000   | 32.649783    | -21.622425  | 15    | 12.500000 | 1.589095  | -1.442743 |
| 11     | 13.000000   | 32.042376    | -5.449386   | 15    | 13.000000 | 1.182776  | -0.749775 |
| 11     | 13.500000   | 31.434969    | 10.419951   | 15    | 13.500000 | 0.776456  | -0.259967 |
| 11     | 14.000000   | 30.827562    | 25.985584   | 15    | 14.000000 | 0.370136  | 0.026680  |
| 11     | 14.500000   | 30.220155    | 41.247513   | 15    | 14.500000 | -0.036184 | 0.110168  |
| 11     | 15.000000   | 29.612748    | 56.205739   | 15    | 15.000000 | -0.442504 | -0.009503 |
| 12     | 15.000000   | -13.651617   | 37.667566   | 16    | 15.000000 | 2.885849  | -0.077203 |
| 12     | 15.500000   | -14.259024   | 30.689906   | 16    | 15.500000 | 2.479530  | 1.264141  |
| 12     | 16.000000   | -14.866431   | 23.408543   | 16    | 16.000000 | 2.073210  | 2.402326  |
| 12     | 16.500000   | -15.473838   | 15.823476   | 16    | 16.500000 | 1.666890  | 3.337351  |
| 12     | 17.000000   | -16.081245   | 7.934705    | 16    | 17.000000 | 1.260570  | 4.069216  |
| 12     | 17.500000   | -16.688652   | -0.257769   | 16    | 17.500000 | 0.854250  | 4.597921  |
| 12     | 18.000000   | -4.681900    | -5.600407   | 16    | 18.000000 | 0.133289  | 4.844806  |
| 12     | 18.500000   | 7.324851     | -4.939669   | 16    | 18.500000 | -0.587672 | 4.731211  |
| 12     | 19.000000   | 19.331603    | 1.724445    | 16    | 19.000000 | -1.308633 | 4.257134  |
| 12     | 19.500000   | 31.338354    | 14.391934   | 16    | 19.500000 | -2.029594 | 3.422578  |

Figura 7.39. Elementos mecánicos por eje del análisis de expansiones para el caso No Lineal.

Siguiendo la lógica de las subrutinas después, se imprimen los resultados para compresiones para el caso no lineal

#### INTERACCION SUELO-ESTRUCTURA UTILIZANDO LAECUACION NO-LINEAL DE DEMENEGHI

ANALISIS DE COMPRESIONES SOLUCION CASO NO-LINEAL, ECUACION DE DEMENEGHI

| REACCIONES, | t/m         | HUNDIMIENTOS, | m           |
|-------------|-------------|---------------|-------------|
| 1           | 21.57772181 | 1             | -0.00595136 |
| 2           | 0.56211205  | 2             | -0.00138589 |
| 3           | 27.09055064 | 3             | -0.00130303 |
| 4           | 0.55217621  | 4             | -0.00338123 |
| 5           | 21.59932015 | 5             | -0.00595586 |
| 6           | 2.21992503  | 6             | -0.00256494 |
| 7           | 2.39097753  | 7             | -0.00249875 |
| 8           | 3.56192152  | 8             | -0.00462461 |
| 9           | 2.39226947  | 9             | -0.00249908 |
| 10          | 2.21909253  | 10            | -0.00256372 |
| 11          | 26.68496916 | 11            | -0.00920908 |
| 12          | 1.86653148  | 12            | -0.00290071 |
| 13          | 39.56634079 | 13            | -0.01527411 |
| 14          | 1.87517287  | 14            | -0.00290402 |
| 15          | 26.61818121 | 15            | -0.00919235 |
| 16          | 2.22826910  | 16            | -0.00256933 |
| 17          | 2.39335055  | 17            | -0.00250028 |
| 18          | 3.56916930  | 18            | -0.00462821 |
| 19          | 2.39463562  | 19            | -0.00250051 |
| 20          | 2.22398970  | 20            | -0.00256599 |
| 21          | 21.61400890 | 21            | -0.00595911 |
| 22          | 0.55512985  | 22            | -0.00138323 |
| 23          | 27.09796155 | 23            | -0.00980836 |
| 24          | 0.54854586  | 24            | -0.00137979 |
| 25          | 21.60840934 | 25            | -0.00595782 |

Figura 7.40. Valores de las reacciones y hundimientos de cada nodo del análisis de compresiones para el caso No Lineal.

### ANALISIS DE COMPRESIONES SOLUCION CASO NO-LINEAL, ECUACION DE DEMENEGHI

| GIROS | Y DESPLAZAMIENTOS |
|-------|-------------------|
| 1     | 0.00001939        |
| 2     | 0.00000200        |
| 3     | -0.00595136       |
| 4     | 0.00201123        |
| 5     | -0.00193091       |
| 6     | -0.00001456       |
| 7     | -0.00006198       |
| 8     | 0.00000257        |
| 9     | -0.00138589       |
| 10    | 0.00023707        |
| 11    | 0.00088420        |
| 12    | -0.00001765       |
| 13    | -0.00013954       |
| 14    | 0.00000415        |
| 15    | -0.00980639       |
| 16    | 0.00272996        |
| 17    | 0.00002442        |
| 18    | -0.00003152       |
| 19    | -0.00022031       |
| 20    | 0.00004214        |
| 21    | -0.00138123       |
| 22    | 0.00023449        |
| 23    | -0.00091023       |
| 24    | -0.00003083       |
| 25    | -0.00030040       |
| 26    | -0.00000977       |
| 27    | -0.00595586       |
| 28    | 0.00200400        |
| 29    | 0.00199668        |
| 30    | -0.00008320       |

Figura 7.41. Desplazamientos y giros del análisis de compresiones para el caso No Lineal.

### ANALISIS DE COMPRESIONES SOLUCION CASO NO-LINEAL, ECUACION DE DEMENEGHI

| Desplazamientos  | W | ginos | non  | nodo |
|------------------|---|-------|------|------|
| Despirazamientos | v | 5TL02 | DOI. | nouo |

| espiaz | amientos y | giros por no | 10        |           |           |           |
|--------|------------|--------------|-----------|-----------|-----------|-----------|
| nodo   | dx         | dy           | dz        | tx        | ty        | tz        |
| 1      | 0.000019   | 0.000002     | -0.005951 | 0.002011  | -0.001931 | -0.000015 |
| 2      | -0.000062  | 0.000003     | -0.001386 | 0.000237  | 0.000884  | -0.000018 |
| 3      | -0.000140  | 0.000004     | -0.009806 | 0.002730  | 0.000024  | -0.000032 |
| 4      | -0.000220  | 0.000042     | -0.001381 | 0.000234  | -0.000910 | -0.000031 |
| 5      | -0.000300  | -0.000010    | -0.005956 | 0.002004  | 0.001997  | -0.000083 |
| 6      | -0.000094  | -0.000017    | -0.002565 | -0.001016 | -0.000697 | 0.000022  |
| 7      | -0.000105  | 0.000000     | -0.002499 | -0.000424 | 0.000535  | 0.000001  |
| 8      | -0.000122  | 0.000003     | -0.004625 | -0.001431 | -0.000000 | -0.000009 |
| 9      | -0.000141  | 0.000038     | -0.002499 | -0.000424 | -0.000535 | -0.000016 |
| 10     | -0.000155  | -0.000026    | -0.002564 | -0.001010 | 0.000695  | -0.000039 |
| 11     | 0.000086   | -0.000035    | -0.009209 | 0.000014  | -0.002427 | -0.000021 |
| 12     | 0.000038   | -0.000001    | -0.002901 | 0.000003  | 0.001096  | -0.000009 |
| 13     | 0.000000   | 0.000000     | -0.015274 | 0.000017  | -0.000027 | -0.000015 |
| 14     | -0.000054  | 0.000034     | -0.002904 | 0.000002  | -0.001069 | -0.000011 |
| 15     | -0.000100  | -0.000043    | -0.009192 | 0.000009  | 0.002352  | -0.000017 |
| 16     | -0.000027  | -0.000054    | -0.002569 | 0.000999  | -0.000700 | 0.000036  |
| 17     | -0.000034  | -0.000004    | -0.002500 | 0.000418  | 0.000536  | 0.000006  |
| 18     | -0.000046  | -0.000001    | -0.004628 | 0.001412  | -0.000001 | -0.000006 |
| 19     | -0.000058  | 0.000030     | -0.002501 | 0.000419  | -0.000535 | -0.000011 |
| 20     | -0.000066  | -0.000059    | -0.002566 | 0.001000  | 0.000695  | -0.000053 |
| 21     | 0.000091   | -0.000071    | -0.005959 | -0.001974 | -0.001939 | -0.000025 |
| 22     | 0.000010   | -0.000004    | -0.001383 | -0.000225 | 0.000887  | 0.000003  |
| 23     | -0.000069  | -0.000003    | -0.009808 | -0.002683 | 0.000020  | 0.000001  |
| 24     | -0.000149  | 0.000025     | -0.001380 | -0.000225 | -0.000908 | 0.000017  |
| 25     | -0.000230  | -0.000076    | -0.005958 | -0.001980 | 0.001993  | 0.000034  |
| 26     | 0.000384   | -0.000466    | -0.006609 | -0.001234 | 0.001169  | 0.000121  |
| 27     | 0.000207   | -0.000317    | -0.021241 | -0.005592 | 0.000406  | 0.000128  |
| 28     | 0.000025   | -0.000659    | -0.011191 | -0.002368 | 0.000005  | 0.000033  |
| 29     | -0.000153  | -0.000195    | -0.021242 | -0.005588 | -0.000410 | 0.000104  |
| 30     | -0.000338  | -0.000437    | -0.006613 | -0.001231 | -0.001159 | -0.000048 |
|        |            |              |           |           |           |           |

Figura 7.42. Desplazamientos y giros por nodo del análisis de compresiones para el caso No Lineal.

| BARRA | ELEMENTOS<br>MECANICOS | GRADO DE<br>LIBERTAD | MAGNITUD     |
|-------|------------------------|----------------------|--------------|
| 1     | NORMAL X1              | 1                    | 8.82769297   |
| 1     | CORTANTE Y1            | 2                    | -0.22523894  |
| 1     | CORTANTE Z1            | 3                    | 37.04914447  |
| 1     | TORSION X1             | 4                    | 3.47486762   |
| 1     | FLEXIONANTE Y1         |                      | -29.48949035 |
| 1     | FLEXIONANTE Z1         |                      | -0.50957544  |
| 1     | NORMAL X2              | 7                    | -8.82769297  |
| 1     | CORTANTE Y2            | 8                    | 0.02302834   |
| 1     | CORTANTE Z2            | 9                    | 10.30044018  |
| 1     | TORSION X2             | 10                   | -3.47486762  |
| 1     | FLEXIONANTE Y2         | 11                   | 28.29151016  |
| 1     | FLEXIONANTE Z2         | 12                   | -0.58097262  |
| 2     | NORMAL X1              | 7                    | 8.41296261   |
| 2     | CORTANTE Y1            | 8                    | -0.34577464  |
| 2     | CORTANTE Z1            | 9                    | 19.44582036  |
| 2     | TORSION X1             | 10                   | -4.88258048  |
| 2     | FLEXIONANTE Y1         | 11                   | -36.32411681 |
| 2     | FLEXIONANTE Z1         | 12                   | -0.72654248  |
| 2     | NORMAL X2              | 13                   | -8.41296261  |
| 2     | CORTANTE Y2            | 14                   | 0.10066340   |
| 2     | CORTANTE Z2            | 15                   | 41.68583636  |
| 2     | TORSION X2             | 16                   | 4.88258048   |
| 2     | FLEXIONANTE Y2         |                      | 9.02278621   |
| 2     | FLEXIONANTE Z2         | 18                   | -0.94465051  |
| 3     | NORMAL X1              | 13                   | 8.76273029   |
| 3     | CORTANTE Y1            | 14                   | -0.53834410  |
| 3     | CORTANTE Z1            | 15                   | 41.58480691  |
| 3     | TORSION X1             | 16                   | 4.88762500   |
| 3     | FLEXIONANTE Y1         |                      | -8.53171118  |
| 3     | FLEXIONANTE Z1         | 10 P. A.             | -0.76471180  |
| 3     | NORMAL X2              | 19                   | -8.76273029  |
| 3     | CORTANTE Y2            | 20                   | 0.10071948   |
| 3     | CORTANTE Z2            | 21                   | 19.52201022  |
| 3     | TORSION X2             | 22                   | -4.88762500  |
| 3     | FLEXIONANTE Y2         |                      | 36.30713954  |
| 3     | FLEXIONANTE Z2         |                      | -1.34188609  |
| 4     | NORMAL X1              | 19                   | 8.68787614   |
| 4     | CORTANTE Y1            | 20                   | -0.64752550  |
| 4     | CORTANTE Z1            | 21                   | 10.14948199  |
| 4     | TORSION X1             | 22                   | -3.46574582  |
| 4     | FLEXIONANTE Y1         |                      | -28.23785742 |
| 4     | FLEXIONANTE Z1         |                      | -1.45146717  |
| 4     | NORMAL X2              | 25                   | -8.68787614  |
| 4     | CORTANTE Y2            | 26                   | 0.21943887   |
| 4     | CORTANTE Z2            | 27                   | 37.22925892  |
| 4     | TORSION X2             | 28                   | 3.46574582   |
| 4     | FLEXIONANTE Y2         |                      | 30.16497494  |
| 4     | FLEXIONANTE Z2         | 30                   | -1.92180783  |

Figura 7.43. Magnitudes de los Elementos Mecánicos y grados de libertad del análisis de compresiones para el caso No Lineal

|       |           | ENTOS MECANI | COS POR EJE |       |           |           |           |
|-------|-----------|--------------|-------------|-------|-----------|-----------|-----------|
| EJE   | 1         | 100          | 17221       | EJE   | 2         | 100       | 1020      |
| BARRA | X         | V            | М           | BARRA |           | V         | М         |
| 1     | 0.000000  | -37.049144   | 29.489490   | 5     | 0.000000  | 1.842531  | 3.397476  |
| 1     | 0.500000  | -27.060284   | 13.462133   | 5     | 0.500000  | 1.352493  | 4.196232  |
| 1     | 1.000000  | -17.071423   | 2.429207    | 5     | 1.000000  | 0.862456  | 4.749969  |
| 1     | 1.500000  | -7.082562    | -3.609289   | 5     | 1.500000  | 0.372418  | 5.058687  |
| 1     | 2.000000  | 2.906299     | -4.653355   | 5     | 2.000000  | -0.117619 | 5.122387  |
| 1     | 2.500000  | 12.895160    | -0.702990   | 5     | 2.500000  | -0.607657 | 4.941068  |
| 1     | 3.000000  | 12.376216    | 5.614854    | 5     | 3.000000  | -1.012168 | 4.536112  |
| 1     | 3.500000  | 11.857272    | 11.673226   | 5     | 3.500000  | -1.416679 | 3.928900  |
| 1     | 4.000000  | 11.338328    | 17.472126   | 5     | 4.000000  | -1.821190 | 3.119433  |
| 1     | 4.500000  | 10.819384    | 23.011554   | 5     | 4.500000  | -2.225702 | 2.107710  |
| 1     | 5.000000  | 10.300440    | 28.291510   | 5     | 5.000000  | -2.630213 | 0.893731  |
| 2     | 5.000000  | -19.445820   | 36.324117   | 6     | 5.000000  | 0.241761  | 0.413897  |
| 2     | 5.500000  | -19.964764   | 26.471471   | 6     | 5.500000  | -0.162750 | 0.433650  |
| 2     | 6.000000  | -20.483708   | 16.359352   | 6     | 6.000000  | -0.567262 | 0.251147  |
| 2     | 6.500000  | -21.002652   | 5.987762    | 6     | 6.500000  | -0.971773 | -0.133612 |
| 2     | 7.000000  | -21.521596   | -4.643300   | 6     | 7.000000  | -1.376284 | -0.720626 |
| 2     | 7.500000  | -22.040540   | -15.533834  | 6     | 7.500000  | -1.780795 | -1.509896 |
| 2     | 8.000000  | -9.295265    | -23.367785  | 6     | 8.000000  | -1.599835 | -2.355054 |
| 2     | 8.500000  | 3.450010     | -24.829099  | 6     | 8.500000  | -1.418874 | -3.109731 |
| 2     | 9.000000  | 16.195286    | -19.917775  | 6     | 9.000000  | -1.237913 | -3.773928 |
| 2     | 9.500000  | 28.940561    | -8.633813   | 6     | 9.500000  | -1.056952 | -4.347644 |
| 2     | 10.000000 | 41.685836    | 9.022786    | 6     | 10.000000 | -0.875992 | -4.830880 |
| 3     | 10.000000 | -41.584807   | 8.531711    | 7     | 10.000000 | 0.874176  | -4.823591 |
| 3     | 10.500000 | -28.839532   | -9.074373   | 7     | 10.500000 | 1.055137  | -4.341263 |
| 3     | 11.000000 | -16.094256   | -20.307820  | 7     | 11.000000 | 1.236098  | -3.768454 |
| 3     | 11.500000 | -3.348981    | -25.168630  | 7     | 11.500000 | 1.417058  | -3.105165 |
| 3     | 12.000000 | 9.396294     | -23.656801  | 7     | 12.000000 | 1.598019  | -2.351396 |
| 3     | 12.500000 | 22.141570    | -15.772335  | 7     | 12.500000 | 1.778980  | -1.507146 |
| 3     | 13.000000 | 21.617658    | -4.832528   | 7     | 13.000000 | 1.375115  | -0.718623 |
| 3     | 13.500000 | 21.017038    | 5.845322    | 7     | 13.500000 | 0.971249  | -0.132032 |
| 3     | 14.000000 | 20.569834    | 16.261217   | 7     | 14.000000 | 0.567384  | 0.252627  |
| 3     | 14.500000 | 20.045922    | 26.415156   | 7     | 14.500000 | 0.163519  | 0.435352  |
| 3     | 15.000000 | 19.522010    | 36.307140   | 7     | 15.000000 | -0.240346 | 0.416145  |
| 4     | 15.000000 | -10.149482   | 28.237857   | 8     |           |           |           |
| 4     | 15.500000 | -10.149482   | 23.032138   |       | 15.000000 | 2.624988  | 0.895178  |
| 4     | 16.000000 | -11.197306   | 17.564464   | 8     | 15.500000 | 2.221122  | 2.106705  |
| 4     | 16.500000 | -11.721218   | 11.834833   | 8     | 16.000000 | 1.817257  | 3.116300  |
|       |           |              |             | 8     | 16.500000 | 1.413392  | 3.923962  |
| 4     | 17.000000 | -12.245130   | 5.843246    | 8     | 17.000000 | 1.009527  | 4.529692  |
| 4     | 17.500000 | -12.769041   | -0.410297   | 8     | 17.500000 | 0.605661  | 4.933489  |
| 4     | 18.000000 | -2.769381    | -4.294903   | 8     | 18.000000 | 0.115208  | 5.113706  |
| 4     | 18.500000 | 7.230279     | -3.179678   | 8     | 18.500000 | -0.375246 | 5.048696  |
| 4     | 19.000000 | 17.229939    | 2.935376    | 8     | 19.000000 | -0.865700 | 4.738460  |
| 4     | 19.500000 | 27.229599    | 14.050260   | 8     | 19.500000 | -1.356154 | 4.182996  |
| 4     | 20.000000 | 37.229259    | 30.164975   | 8     | 20.000000 | -1.846607 | 3.382306  |

Figura 7.44. Elementos mecánicos por eje del análisis de compresiones para el caso No Lineal.

| DIAGRA | MAS DE ELEM | ENTOS MECANI | COS POR EJE |       |           |           |           |
|--------|-------------|--------------|-------------|-------|-----------|-----------|-----------|
| EJE    | 3           |              |             | EJE   | 4         |           |           |
| BARRA  | X           | V            | M           | BARRA | X         | V         | M         |
| 9      | 0.000000    | -42.423843   | 32.597846   | 13    | 0.000000  | 1.821419  | 3.430256  |
| 9      | 0.500000    | -30.681359   | 14.321545   | 13    | 0.500000  | 1.335553  | 4.219499  |
| 9      | 1.000000    | -18.938874   | 1.916487    | 13    | 1.000000  | 0.849688  | 4.765810  |
| 9      | 1.500000    | -7.196390    | -4.617329   | 13    | 1.500000  | 0.363822  | 5.069187  |
| 9      | 2.000000    | 4.546095     | -5.279903   | 13    | 2.000000  | -0.122043 | 5.129632  |
| 9      | 2.500000    | 16.288579    | -0.071234   | 13    | 2.500000  | -0.607908 | 4.947144  |
| 9      | 3.000000    | 15.621845    | 7.906372    | 13    | 3.000000  | -1.011233 | 4.542359  |
| 9      | 3.500000    | 14.955111    | 15.550611   | 13    | 3.500000  | -1.414558 | 3.935911  |
| 9      | 4.000000    | 14.288377    | 22.861483   | 13    | 4.000000  | -1.817883 | 3.127801  |
| 9      | 4.500000    | 13.621642    | 29.838988   | 13    | 4.500000  | -2.221207 | 2.118028  |
| 9      | 5.000000    | 12.954908    | 36.483125   | 13    | 5.000000  | -2.624532 | 0.906594  |
| 10     | 5.000000    | -29.493593   | 55.999283   | 14    | 5.000000  | 0.231439  | 0.422838  |
| 10     | 5.500000    | -30.160328   | 41.085802   | 14    | 5.500000  | -0.171885 | 0.437726  |
| 10     | 6.000000    | -30.827062   | 25.838955   | 14    | 6.000000  | -0.575210 | 0.250952  |
| 10     | 6.500000    | -31.493796   | 10.258740   | 14    | 6.500000  | -0.978535 | -0.137484 |
| 10     | 7.000000    | -32.160530   | -5.654841   | 14    | 7.000000  | -1.381860 | -0.727583 |
| 10     | 7.500000    | -32.827265   | -21.901790  | 14    | 7.500000  | -1.785184 | -1.519344 |
| 10     | 8.000000    | -14.644094   | -33.769630  | 14    | 8.000000  | -1.600600 | -2.365790 |
| 10     | 8.500000    | 3.539076     | -36.545885  | 14    | 8.500000  | -1.416015 | -3.119943 |
| 10     | 9.000000    | 21.722246    | -30.230554  | 14    | 9.000000  | -1.231430 | -3.781805 |
| 10     | 9.500000    | 39.905417    | -14.823638  | 14    | 9.500000  | -1.046846 | -4.351374 |
| 10     | 10.000000   | 58.088587    | 9.674863    | 14    | 10.000000 | -0.862261 | -4.828650 |
| 11     | 10.000000   | -58.206649   | 10.230569   | 15    | 10.000000 | 0.860136  | -4.813979 |
| 11     | 10.500000   | -40.023479   | -14.326963  | 15    | 10.500000 | 1.044721  | -4.337765 |
| 11     | 11.000000   | -21.840308   | -29.792910  | 15    | 11.000000 | 1.229306  | -3.769258 |
| 11     | 11.500000   | -3.657138    | -36.167271  | 15    | 11.500000 | 1.413890  | -3.108459 |
| 11     | 12.000000   | 14.526032    | -33.450048  | 15    | 12.000000 | 1.598475  | -2.355368 |
| 11     | 12.500000   | 32.709203    | -21.641239  | 15    | 12.500000 | 1.783060  | -1.509984 |
| 11     | 13.000000   | 32.046789    | -5.452241   | 15    | 13.000000 | 1.380377  | -0.719125 |
| 11     | 13.500000   | 31.384376    | 10.405551   | 15    | 13.500000 | 0.977695  | -0.129607 |
| 11     | 14.000000   | 30.721962    | 25.932135   | 15    | 14.000000 | 0.575013  | 0.258570  |
| 11     | 14.500000   | 30.059549    | 41.127513   | 15    | 14.500000 | 0.172331  | 0.445406  |
| 11     | 15.000000   | 29.397135    | 55.991684   | 15    | 15.000000 | -0.230351 | 0.430901  |
| 12     | 15.000000   | -13.099368   | 36.515252   | 16    | 15.000000 | 2.617287  | 0.902984  |
| 12     | 15.500000   | -13.761782   | 29.799964   | 16    | 15.500000 | 2.214605  | 2.110957  |
| 12     | 16.000000   | -14.424195   | 22.753470   | 16    | 16.000000 | 1.811923  | 3.117589  |
| 12     | 16.500000   | -15.086609   | 15.375769   | 16    | 16.500000 | 1.409240  | 3.922879  |
| 12     | 17.000000   | -15.749023   | 7.666861    | 16    | 17.000000 | 1.006558  | 4.526829  |
| 12     | 17.500000   | -16.411436   | -0.373253   | 16    | 17.500000 | 0.603876  | 4.929438  |
| 12     | 18.000000   | -4.702345    | -5.651699   | 16    | 18.000000 | 0.115871  | 5.109374  |
| 12     | 18.500000   | 7.006745     | -5.075599   | 16    | 18.500000 | -0.372134 | 5.045308  |
| 12     | 19.000000   | 18.715836    | 1.355046    | 16    | 19.000000 | -0.860140 | 4.737240  |
| 12     | 19.500000   | 30.424926    | 13.640237   | 16    | 19.500000 | -1.348145 | 4.185169  |
| 12     | 20.000000   | 42.134017    | 31.779973   | 16    | 20.000000 | -1.836150 | 3.389095  |
|        |             |              |             | 10    |           | 2.000000  | 2.22233   |

Figura 7.45. Elementos mecánicos por eje del análisis de compresiones para el caso No Lineal.

# 7.1 Comparativa de Resultados

A partir de los resultados obtenidos de los análisis Lineal y No Lineal del ejercicio. Se presentan las siguientes tablas donde se comparan los elementos mecánicos de los ejes C, D y E y se muestran los diagramas de cortante y momento de cada uno.

Tabla 7.1. Comparativo de elementos mecánicos del Eje C para el análisis Lineal y No Lineal.

| Análisis Lineal |      |            |            |  |  |
|-----------------|------|------------|------------|--|--|
|                 |      | EJE C      |            |  |  |
| BARRA           | X    | V          | M          |  |  |
| 9               | 0    | -41.495113 | 31.739773  |  |  |
| 9               | 0.5  | -29.810127 | 13.913464  |  |  |
| 9               | 1    | -18.125142 | 1.929646   |  |  |
| 9               | 1.5  | -6.440156  | -4.211678  |  |  |
| 9               | 2    | 5.244829   | -4.51051   |  |  |
| 9               | 2.5  | 16.929814  | 1.033151   |  |  |
| 9               | 3    | 16.488628  | 9.387761   |  |  |
| 9               | 3.5  | 16.047441  | 17.521778  |  |  |
| 9               | 4    | 15.606255  | 25.435202  |  |  |
| 9               | 4.5  | 15.165068  | 33.128033  |  |  |
| 9               | 5    | 14.723882  | 40.600271  |  |  |
| 10              | 5    | -31.107743 | 58.555959  |  |  |
| 10              | 5.5  | -31.548929 | 42.891791  |  |  |
| 10              | 6    | -31.990116 | 27.007029  |  |  |
| 10              | 6.5  | -32.431302 | 10.901675  |  |  |
| 10              | 7    | -32.872489 | -5.424273  |  |  |
| 10              | 7.5  | -33.313675 | -21.970814 |  |  |
| 10              | 8    | -16.322779 | -34.379928 |  |  |
| 10              | 8.5  | 0.668117   | -38.293593 |  |  |
| 10              | 9    | 17.659013  | -33.71181  |  |  |
| 10              | 9.5  | 34.64991   | -20.63458  |  |  |
| 10              | 10   | 51.640806  | 0.938099   |  |  |
| 11              | 10   | -51.753497 | 1.466641   |  |  |
| 11              | 10.5 | -34.762601 | -20.162383 |  |  |
| 11              | 11   | -17.771705 | -33.29596  |  |  |
| 11              | 11.5 | -0.780809  | -37.934088 |  |  |
| 11              | 12   | 16.210088  | -34.076768 |  |  |
| 11              | 12.5 | 33.200984  | -21.724    |  |  |
| 11              | 13   | 32.763699  | -5.23283   |  |  |
| 11              | 13.5 | 32.326414  | 11.039698  |  |  |
| 11              | 14   | 31.889129  | 27.093584  |  |  |
| 11              | 14.5 | 31.451844  | 42.928827  |  |  |
| 11              | 15   | 31.014559  | 58.545428  |  |  |
| 12              | 15   | -14.860325 | 40.629672  |  |  |
| 12              | 15.5 | -15.29761  | 33.090188  |  |  |
| 12              | 16   | -15.734895 | 25.332062  |  |  |
| 12              | 16.5 | -16.17218  | 17.355293  |  |  |
| 12              | 17   | -16.609465 | 9.159881   |  |  |
| 12              | 17.5 | -17.04675  | 0.745827   |  |  |
| 12              | 18   | -5.391813  | -4.863814  |  |  |
| 12              | 18.5 | 6.263125   | -4.645986  |  |  |
| 12              | 19   | 17.918063  | 1.399312   |  |  |
| 12              | 19.5 | 29.573001  | 13.272078  |  |  |
| 12              | 20   | 41.227939  | 30.972313  |  |  |
|                 | 20   | ,          |            |  |  |

| Análisis No lineal<br>EJE C |      |                          |                       |  |  |
|-----------------------------|------|--------------------------|-----------------------|--|--|
| BARRA                       | х    | V                        | M                     |  |  |
| 9                           | 0    | -42.423843               | 32.597846             |  |  |
| 9                           | 0.5  | -30.681359               | 14.321545             |  |  |
| 9                           | 1    | -18.938874               | 1.916487              |  |  |
| 9                           | 1.5  | -7.19639                 | -4.617329             |  |  |
| 9                           | 2    | 4.546095                 | -5.279903             |  |  |
| 9                           | 2.5  | 16.288579                | -0.071234             |  |  |
| 9                           | 3    | 15.621845                | 7.906372              |  |  |
| 9                           | 3.5  | 14.955111                | 15.550611             |  |  |
| 9                           | 4    | 14.288377                | 22.861483             |  |  |
| 9                           | 4.5  | 13.621642                | 29.838988             |  |  |
| 9                           | 5    | 12.954908                | 36.483125             |  |  |
| 10                          | 5    | -29.493593               | 55.999283             |  |  |
| 10                          | 5.5  | -30.160328               | 41.085802             |  |  |
| 10                          | 6    | -30.827062               | 25.838955             |  |  |
| 10                          | 6.5  | -31.493796               | 10.25874              |  |  |
| 10                          | 7    | -32.16053                | -5.654841             |  |  |
| 10                          | 7.5  | -32.827265               | -21.90179             |  |  |
| 10                          | 8    | -14.644094               | -33.76963             |  |  |
| 10                          | 8.5  | 3.539076                 | -36.545885            |  |  |
| 10                          | 9    | 21.722246                | -30.230554            |  |  |
| 10                          | 9.5  | 39.905417                | -14.823638            |  |  |
| 10                          | 10   | 58.088587                | 9.674863              |  |  |
| 11                          | 10   | -58.206649               | 10.230569             |  |  |
| 11                          | 10.5 | -40.023479               | -14.326963            |  |  |
| 11                          | 11   | -21.840308               | -29.79291             |  |  |
| 11                          | 11.5 | -3.657138                | -36.167271            |  |  |
| 11                          | 12   | 14.526032                | -33.450048            |  |  |
| 11                          | 12.5 | 32.709203                | -21.641239            |  |  |
| 11                          | 13   | 32.046789                | -5.452241             |  |  |
| 11                          | 13.5 | 31.384376                | 10.405551             |  |  |
| 11                          | 14   | 30.721962                | 25.932135             |  |  |
| 11                          | 14.5 | 30.059549                | 41.127513             |  |  |
| 11                          | 15   | 29.397135                | 55.991684             |  |  |
| 12                          | 15   | -13.099368               | 36.515252             |  |  |
| 12                          | 15.5 | -13.761782               | 29.799964             |  |  |
| 12                          | 16.5 | -14.424195<br>-15.086609 | 22.75347<br>15.375769 |  |  |
| 12                          | 17   | -15.749023               |                       |  |  |
| 12                          | 17.5 | -15.749023               | 7.666861<br>-0.373253 |  |  |
| 12                          | 17.5 | -4.702345                | -5.651699             |  |  |
| 12                          | 18.5 | 7.006745                 | -5.075599             |  |  |
| 12                          | 19.5 | 18.715836                | 1.355046              |  |  |
| 12                          | 19.5 | 30.424926                | 13.640237             |  |  |
| 12                          | 20   | 42.134017                | 31.779973             |  |  |
| 12                          | 20   | 42,13401/                | 31.//33/3             |  |  |

Tabla 7.2. Comparativo de elementos mecánicos del Eje D para el análisis Lineal y No Lineal.

|       |      | is Lineal<br>IE D |          |
|-------|------|-------------------|----------|
| BARRA | x    | V                 | M        |
| 5     | 0    | 2.097852          | 3.24682  |
| 5     | 0.5  | 1.556875          | 4.160509 |
| 5     | 1    | 1.015898          | 4.803702 |
| 5     | 1.5  | 0.474921          | 5.17640  |
| 5     | 2    | -0.066056         | 5.27862  |
| 5     | 2.5  | -0.607033         | 5.11033  |
| 5     | 3    | -0.991981         | 4.71059  |
| 5     | 3.5  | -1.376928         | 4.1183   |
| 5     | 4    | -1.761876         | 3.333669 |
| 5     | 4.5  | -2.146823         | 2.356494 |
| 5     | 5    | -2.53177          | 1.18684  |
| 6     | 5    | -0.319907         | 1.09173  |
| 6     | 5.5  | -0.704854         | 0.83554  |
| 6     | 6    | -1.089801         | 0.38687  |
| 6     | 6.5  | -1.474749         | -0.2542  |
| 6     | 7    | -1.859696         | -1.08787 |
| 6     | 7.5  | -2.244644         | -2.11395 |
| 6     | 8    | -1.65053          | -3.0877  |
| 6     | 8.5  | -1.056416         | -3.76448 |
| 6     | 9    | -0.462301         | -4.14416 |
| 6     | 9.5  | 0.131813          | -4.22678 |
| 6     | 10   | 0.725927          | -4.01235 |
| 7     | 10   | -0.727701         | -4.00516 |
| 7     | 10.5 | -0.133587         | -4.22048 |
| 7     | 11   | 0.460527          | -4.13875 |
| 7     | 11.5 | 1.054641          | -3.75996 |
| 7     | 12   | 1.648755          | -3.08411 |
| 7     | 12.5 | 2.242869          | -2.11120 |
| 7     | 13   | 1.858651          | -1.08582 |
| 7     | 13.5 | 1.474434          | -0.25255 |
| 7     | 14   | 1.090216          | 0.38860  |
| 7     | 14.5 | 0.705998          | 0.83766  |
| 7     | 15   | 0.321781          | 1.09460  |
| 8     | 15   | 2.52667           | 1.18764  |
| 8     | 15.5 | 2.142453          | 2.35492  |
| 8     | 16   | 1.758235          | 3.330    |
| 8     | 16.5 | 1.374017          | 4.11316  |
| 8     | 17   | 0.9898            | 4,70411  |
| 8     | 17.5 | 0.605582          | 5.10296  |
| 8     | 18   | 0.06333           | 5.2701   |
| 8     | 18.5 | -0.478922         | 5.16629  |
| 8     | 19   | -1.021174         | 4,79126  |
| 8     | 19.5 | -1.563426         | 4.145119 |
| 8     | 20   | -2.105677         | 3.22784  |

|       | Análisis No lineal |           |           |  |  |  |
|-------|--------------------|-----------|-----------|--|--|--|
| BARRA | X                  | V V       | M         |  |  |  |
| 5     | 0                  | 1.842531  | 3.397476  |  |  |  |
| 5     | 0.5                | 1.352493  | 4.196232  |  |  |  |
| 5     | 1                  | 0.862456  | 4.749969  |  |  |  |
| 5     | 1.5                | 0.372418  | 5.058687  |  |  |  |
| 5     | 2                  | -0.117619 | 5.122387  |  |  |  |
| 5     | 2.5                | -0.607657 | 4.941068  |  |  |  |
| 5     | 3                  | -1.012168 | 4.536112  |  |  |  |
| 5     | 3.5                | -1.416679 | 3.9289    |  |  |  |
| 5     | 4                  | -1.82119  | 3.119433  |  |  |  |
| 5     | 4.5                | -2.225702 | 2.10771   |  |  |  |
| 5     | 5                  | -2.630213 | 0.893731  |  |  |  |
| 6     | 5                  | 0.241761  | 0.413897  |  |  |  |
| 6     | 5.5                | -0.16275  | 0.43365   |  |  |  |
| 6     | 6                  | -0.567262 | 0.251147  |  |  |  |
| 6     | 6.5                | -0.971773 | -0.133612 |  |  |  |
| 6     | 7                  | -1.376284 | -0.720626 |  |  |  |
| 6     | 7.5                | -1.780795 | -1.509896 |  |  |  |
| 6     | 8                  | -1.599835 | -2.355054 |  |  |  |
| 6     | 8.5                | -1.418874 | -3.109731 |  |  |  |
| 6     | 9                  | -1.237913 | -3.773928 |  |  |  |
| 6     | 9.5                | -1.056952 | -4.347644 |  |  |  |
| 6     | 10                 | -0.875992 | -4.83088  |  |  |  |
| 7     | 10                 | 0.874176  | -4.823591 |  |  |  |
| 7     | 10.5               | 1.055137  | -4.341263 |  |  |  |
| 7     | 11                 | 1.236098  | -3.768454 |  |  |  |
| 7     | 11.5               | 1.417058  | -3.105165 |  |  |  |
| 7     | 12                 | 1.598019  | -2.351396 |  |  |  |
| 7     | 12.5               | 1.77898   | -1.507146 |  |  |  |
| 7     | 13                 | 1.375115  | -0.718623 |  |  |  |
| 7     | 13.5               | 0.971249  | -0.132032 |  |  |  |
| 7     | 14                 | 0.567384  | 0.252627  |  |  |  |
| 7     | 14.5               | 0.163519  | 0.435352  |  |  |  |
| 7     | 15                 | -0.240346 | 0.416145  |  |  |  |
| 8     | 15                 | 2.624988  | 0.895178  |  |  |  |
| 8     | 15.5               | 2.221122  | 2.106705  |  |  |  |
| 8     | 16                 | 1.817257  | 3.1163    |  |  |  |
| 8     | 16.5               | 1.413392  | 3.923962  |  |  |  |
| 8     | 17                 | 1.009527  | 4.529692  |  |  |  |
| 8     | 17.5               | 0.605661  | 4.933489  |  |  |  |
| 8     | 18                 | 0.115208  | 5.113706  |  |  |  |
| 8     | 18.5               | -0.375246 | 5.048696  |  |  |  |
| 8     | 19                 | -0.8657   | 4.73846   |  |  |  |
| 8     | 19.5               | -1.356154 | 4.182996  |  |  |  |
| 8     | 20                 | -1.846607 | 3.382306  |  |  |  |

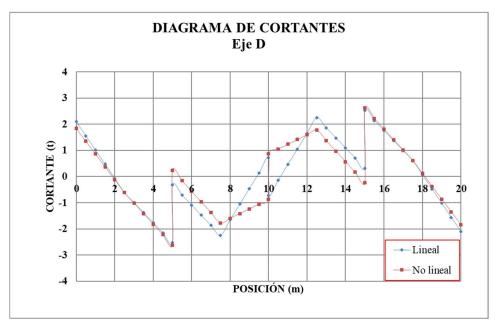



Figura 7.46. Comparativa de diagrama de cortantes del Eje D.

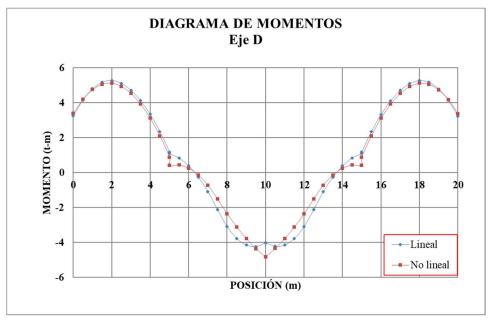



Figura 7.47. Comparativa de diagrama de momentos del Eje D.

Tabla 7.3. Comparativo de elementos mecánicos del Eje E para el análisis Lineal y No Lineal

| Análisis Lineal<br>EJE E |      |            |            |  |
|--------------------------|------|------------|------------|--|
| BARRA                    | х    | V          | M          |  |
| 1                        | 0    | -38.146106 | 31.060421  |  |
| 1                        | 0.5  | -27.954952 | 14.535156  |  |
| 1                        | 1    | -17.763799 | 3.105468   |  |
| 1                        | 1.5  | -7.572646  | -3.228643  |  |
| 1                        | 2    | 2.618508   | -4.467178  |  |
| 1                        | 2.5  | 12.809661  | -0.610135  |  |
| 1                        | 3    | 12.199786  | 5.642226   |  |
| 1                        | 3.5  | 11.589912  | 11.589651  |  |
| 1                        | 4    | 10.980037  | 17.232138  |  |
| 1                        | 4.5  | 10.370163  | 22.569688  |  |
| 1                        | 5    | 9.760288   | 27.602301  |  |
| 2                        | 5    | -18.824704 | 35.144929  |  |
| 2                        | 5.5  | -19.434578 | 25.580109  |  |
| 2                        | 6    | -20.044453 | 15.710351  |  |
| 2                        | 6.5  | -20.654327 | 5.535656   |  |
| 2                        | 7    | -21.264202 | -4.943976  |  |
| 2                        | 7.5  | -21.874076 | -15.728546 |  |
| 2                        | 8    | -9.163239  | -23.487875 |  |
| 2                        | 8.5  | 3.547599   | -24.891785 |  |
| 2                        | 9    | 16.258436  | -19.94027  |  |
| 2                        | 9.5  | 28.969274  | -8.633348  |  |
| 2                        | 10   | 41.680111  | 9.028998   |  |
| 3                        | 10   | -41.585386 | 8.565909   |  |
| 3                        | 10.5 | -28.874548 | -9.049075  |  |
| 3                        | 11   | -16.163711 | -20.30864  |  |
| 3                        | 11.5 | -3.452873  | -25.21278  |  |
| 3                        | 12   | 9.257964   | -23.761513 |  |
| 3                        | 12.5 | 21.968802  | -15.954822 |  |
| 3                        | 13   | 21.353954  | -5.12413   |  |
| 3                        | 13.5 | 20.739106  | 5.399132   |  |
| 3                        | 14   | 20.124259  | 15.614974  |  |
| 3                        | 14.5 | 19.509411  | 25.523393  |  |
| 3                        | 15   | 18.894563  | 35.124385  |  |
| 4                        | 15   | -9.615387  | 27.547636  |  |
| 4                        | 15.5 | -10.230234 | 22.586233  |  |
| 4                        | 16   | -10.845082 | 17.31740   |  |
| 4                        | 16.5 | -11.45993  | 11,741148  |  |
| 4                        | 17   | -12.074777 | 5.857472   |  |
| 4                        | 17.5 | -12.689625 | -0.333629  |  |
| 4                        | 18   | -2.487984  | -4,128033  |  |
| 4                        | 18.5 | 7.713656   | -2.821614  |  |
| 4                        | 19   | 17.915297  | 3.585625   |  |
| 4                        | 19.5 | 28.116938  | 15.093684  |  |
| 4                        | 20   | 38.318579  | 31.702563  |  |

| Análisis No lineal<br>EJE E |      |            |            |  |
|-----------------------------|------|------------|------------|--|
| BARRA                       | X    | V          | М          |  |
| 1                           | 0    | -37.049144 | 29.48949   |  |
| 1                           | 0.5  | -27.060284 | 13.462133  |  |
| 1                           | 1    | -17.071423 | 2.429207   |  |
| 1                           | 1.5  | -7.082562  | -3.609289  |  |
| 1                           | 2    | 2.906299   | -4.653355  |  |
| 1                           | 2.5  | 12.89516   | -0.70299   |  |
| 1                           | 3    | 12.376216  | 5.614854   |  |
| 1                           | 3.5  | 11.857272  | 11.673226  |  |
| 1                           | 4    | 11.338328  | 17.472126  |  |
| 1                           | 4.5  | 10.819384  | 23.011554  |  |
| 1                           | 5    | 10.30044   | 28.29151   |  |
| 2                           | 5    | -19.44582  | 36.324117  |  |
| 2                           | 5.5  | -19.964764 | 26.471471  |  |
| 2                           | 6    | -20.483708 | 16.359352  |  |
| 2                           | 6.5  | -21.002652 | 5.987762   |  |
| 2                           | 7    | -21.521596 | -4.6433    |  |
| 2                           | 7.5  | -22.04054  | -15.533834 |  |
| 2                           | 8    | -9.295265  | -23.367785 |  |
| 2                           | 8.5  | 3.45001    | -24.829099 |  |
| 2                           | 9    | 16.195286  | -19.917775 |  |
| 2                           | 9.5  | 28.940561  | -8.633813  |  |
| 2                           | 10   | 41.685836  | 9.022786   |  |
| 3                           | 10   | -41.584807 | 8.531711   |  |
| 3                           | 10.5 | -28.839532 | -9.074373  |  |
| 3                           | 11   | -16.094256 | -20.30782  |  |
| 3                           | 11.5 | -3.348981  | -25.16863  |  |
| 3                           | 12   | 9.396294   | -23.656801 |  |
| 3                           | 12.5 | 22.14157   | -15.772335 |  |
| 3                           | 13   | 21.617658  | -4.832528  |  |
| 3                           | 13.5 | 21.093746  | 5.845322   |  |
| 3                           | 14   | 20.569834  | 16.261217  |  |
| 3                           | 14.5 | 20.045922  | 26.415156  |  |
| 3                           | 15   | 19.52201   | 36.30714   |  |
| 4                           | 15   | -10.149482 | 28.237857  |  |
| 4                           | 15.5 | -10.673394 | 23.032138  |  |
| 4                           | 16   | -11.197306 | 17.564464  |  |
| 4                           | 16.5 | -11.721218 | 11.834833  |  |
| 4                           | 17   | -12.24513  | 5.843246   |  |
| 4                           | 17.5 | -12.769041 | -0.410297  |  |
| 4                           | 18   | -2.769381  | -4.294903  |  |
| 4                           | 18.5 | 7.230279   | -3.179678  |  |
| 4                           | 19   | 17.229939  | 2.935376   |  |
| 4                           | 19.5 | 27.229599  | 14.05026   |  |
| 4                           | 20   | 37.229259  | 30.164975  |  |

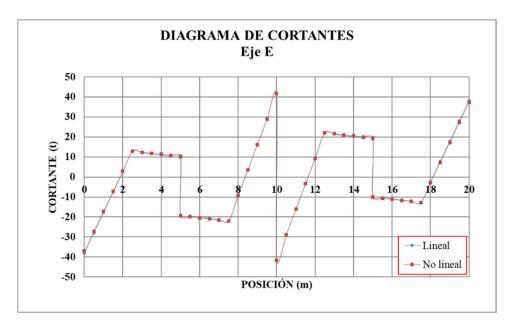



Figura 7.48. Comparativa de diagrama de cortantes del Eje E.

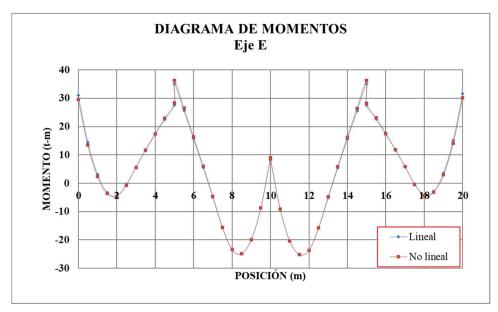



Figura 7.49. Comparativa de diagrama de momentos del Eje E.

Finalmente, a partir de los resultados obtenidos de ambos análisis se obtiene el comportamiento de la estructura para cada caso. Gráficamente los desplazamientos en cada nodo y barra se presentan en las figuras 7.50 y 7.51



Figura 7.50. Estructura deformada, desplazamientos para el análisis Lineal. La coloración indica su valor (m)

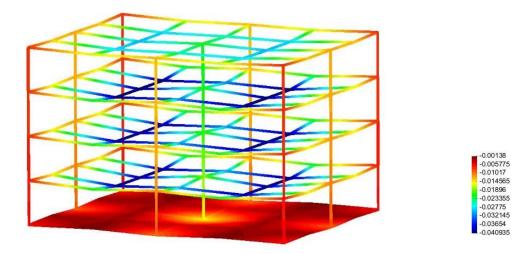



Figura 7.51. Estructura deformada, desplazamientos para el análisis No Lineal. La coloración indica su valor (m)

## 8. Conclusiones

Mediante el programa de computadora ISE3D, el cual toma en cuenta la interacción suelo-cimentación-superestructura y además considera la no linealidad del suelo, se obtuvieron los elementos mecánicos en cada barra, tanto en la estructura como en la losa de cimentación, a partir de la compatibilidad de deformaciones nodales entre la estructura, la subestructura y el suelo.

En el estudio de la interacción suelo-estructura resulta necesario emplear ecuaciones constitutivas no lineales para tomar en cuenta el comportamiento no lineal de los suelos. En este trabajo se empleó la expresión para calcular desplazamientos en suelos friccionantes propuesta por Deméneghi (2008).

Los resultados obtenidos de las reacciones, elementos mecánicos, hundimientos y desplazamientos para cada tipo de análisis permiten apreciar ciertas diferencias debido a las consideraciones mismas en cada método. Sin embargo lo recomendable para fines de diseño se deberá evaluar ambos casos para determinar el caso más desfavorable y garantizar la seguridad estructural de la edificación a través de un diseño adecuado.

La elaboración del programa ISE3D es una muestra de que los ingenieros civiles tenemos la capacidad de crear nuestras propias herramientas numéricas, las cuales nos permiten obtener información importante para el diseño de obras. Esto nos hace menos independientes del software comercial, y además, tenemos la libertad y el control completo para seguir modificando nuestro propio software según las necesidades que tengamos y conforme vayamos mejorando nuestras técnicas de cálculo.

## 9. Referencias

- Damy, J (1985). "Integración de las ecuaciones de Boussinesq, Westergaard y Fröhlich, sobre superficies poligonales de cualquier forma, cargadas con fuerzas verticales uniformemente repartidas", Rev Ingeniería, Vol LV, N° 1: 82-86
- Dashkó, R E y Kagán, A A (1980). Mecánica de Suelos en la Práctica de la Geología Aplicada a la Ingeniería, Cap 2, MIR, Moscú

Deméneghi Colina, Agustín. Cálculo del Asentamiento de un Cimiento en Arena. XXIV Reunión Nacional de Mecánica de Suelos. "Los nuevos retos de la ingeniería geotécnica en el siglo XXI". Tomo 2. Noviembre de 2008. Aguascalientes, Ags. Pág 301-305

Deméneghi A., Puebla M. y Sanginés H. (2008) "Apuntes de análisis y diseño de cimentaciones: Tomo 1". Facultad de Ingeniería, UNAM

Deméneghi Colina, Agustín, Puebla Cadena, Margarita, Sanginés García, Hector, Análisis y Diseño de Cimentaciones. Tomo 1. México, Universidad Nacional de México, Facultad de Ingeniería, Tercera Edición, 2015, pág.

- Hermosillo A., Deméneghi A. y Sanginés H. (2012) "Cálculo de asentamientos con interacción suelo-estructura utilizando una ecuación constitutiva no lineal". XXVI Reunión Nacional de Mecánica de Suelos, Sociedad Mexicana de Mecánica de Suelos, Cancún, Quintana Roo, México.
- Hermosillo A., Deméneghi A., Legorreta N. y Sanginés H. (2014) "Interacción Suelo Estructura tomando en cuenta la superestructura, la sub estructura y el terreno de cimentación". XXVII Reunión Nacional de Ingeniería Geotécnica, Sociedad Mexicana de Ingeniería Geotécnica, Puerto Vallarta, Jalisco, México.
- Mayne, P W y Kulhawy, F H (1982) "Ko –OCR relationships in soil". Jour Geot Eng Div, ASCE, GT8, junio.
- Sanginés H. (2000). "Interacción Suelo Estructura en Suelos Friccionantes". Tesis de Maestría. Facultad de Ingeniería, UNAM