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Abstract

The physics of quantum many-body systems is a research field of the hig-
hest interest of the current scientific community. Remarkable phenomena arise
in quantum many-body systems, including Bose-Einstein condensation, super-
fluidity, superconductivity, supersolidity, and topological phases. In the expe-
rimental ground, ultracold atoms in optical lattices have emerged as an ideal
tool to simulate quantum many-body systems at low temperatures within perio-
dic structures analog to those found in condensed matter. From the theoretical
point of view, some tools to describe these systems are the Gross-Pitaevskii
equation and Dynamical Mean-Field Theory, complemented by numerical ap-
proaches based on Density Functional Theory, Quantum Molecular Dynamics,
and Quantum Monte Carlo methods, for instance.

Especially (but not limited to) in condensed matter physics, quantum many-
body systems in periodic structures will always have a prominent place. This
thesis presents the ground state properties of a one-dimensional, interacting Bo-
se gas constrained within a periodic multi-rod lattice at zero temperature. We
did our research using two complementary approaches. First, we used mean-
field theory to analyze the weakly-interacting regime, i.e., we solved the Gross-
Pitaevskii equation. Next, to go beyond the mean-field picture and investigate
the effect of short-range repulsive interactions of arbitrary strength on the quan-
tum behavior of the system, we used stochastic ab-initio Quantum Monte Carlo
techniques.

Under the mean-field picture, we studied the effect of the multi-rod latti-
ce, as well as the impact of the interactions on the condensate wave function,
obtaining analytic solutions for the density in terms of Jacobi elliptic functions
and incomplete elliptic integrals. Also, we characterized the energy spectrum
of the system, the chemical potential, the compressibility of the system, and the
sound velocity of the condensate. Finally, we used our model to predict the pro-
perties of Bose gases in optical lattices with a subwavelength structure, since
we are confident that our model is an excellent candidate to study these novel
structures.

To study our system beyond the mean-field theory regime, we mainly use
the Variational Monte Carlo and Diffusion Monte Carlo methods. First, we pro-
pose a suitable trial wave function to represent the ground state, which we carry
to its exact value within a controllable statistical error. Then, we calculate both
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the ground state energy and the static structure factor as functions of the in-
teraction and lattice parameters. Finally, we show that the Bose gas presents a
superfluid to Mott-insulator phase transition at zero temperature. We give the
phase diagram where we plot both the superfluid and Mott-insulator phases, as
well as the boundary between them, as functions of the interaction strength and
the lattice height.



Resumen

Los sistemas cuánticos de muchos cuerpos son una fuente fascinante de
fenómenos físicos: condensación Bose-Einstein; superfluidez, superconductivi-
dad y supersolidez; transiciones de fase cuánticas topológicas; o la transición
de fase superfluido a aislante de Mott en el gas de Bose, por nombrar algunos
ejemplos. En el campo experimental, los átomos ultra fríos en redes ópticas han
surgido como una plataforma ideal para simular sistemas cuánticos de muchos
cuerpos en estructuras periódicas a muy bajas temperaturas. Desde el punto
de vista teórico las herramientas para describir estos fenómenos incluyen, por
ejemplo, la ecuación de Gross-Pitaevskii en la aproximación de campo medio, y
la teoría de campo medio dinámica, las cuales pueden ser complementadas por
métodos numéricos como la Teoría de Funcionales de la Densidad y métodos
de Monte Carlo Cuántico, por ejemplo.

Especialmente en la física de la materia condensada (aunque no limitados
a este campo), los sistemas cuánticos de muchos cuerpos en redes periódicas
siempre tendrán un lugar importante. Esta tesis presenta un estudio de las pro-
piedades del estado base de un gas unidimensional de bosones interactuantes,
el cual se encuentra restringido espacialmente dentro de una red periódica com-
puesta por múltiples barras permeables, a temperatura cero. El análisis se hizo
usando dos métodos complementarios. Primero, en el régimen débilmente in-
teractuante usamos teoría de campo medio, es decir, resolvimos la ecuación de
Gross-Pitaevskii. Después, para ir más allá del contexto de teoría de campo me-
dio y analizar el efecto de interacciones repulsivas de magnitud arbitraria en
el comportamiento cuántico del sistema, usamos técnicas ab-initio de Monte
Carlo Cuántico.

En los Capítulos 1 y 2 damos una introducción a los conceptos físicos bá-
sicos sobre los gases de Bose. Introducimos el concepto de gas de Bose débil-
mente interactuante, y mostramos las condiciones bajo las cuales la teoría de
campo medio inicialmente desarrollada para gases en tres dimensiones sigue
siendo válida para gases en una dimensión. Siguiendo esta dirección deduci-
mos la ecuación de Gross-Pitaevskii, que es una herramienta fundamental para
el estudio de gases en el régimen débilmente interactuante. Enseguida damos
una breve descripción del gas de Lieb-Liniger, modelo físico al cual se reduce
nuestro sistema cuando suprimimos la red multibarras. Finalmente, damos una
breve descripción de la teoría del líquido de Luttinger, la cual es fundamen-
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tal para nuestro estudio de gases unidimensionales en regímenes fuertemente
interactuantes donde la teoría de campo medio no es aplicable.

En el Capítulo 3, estudiamos el efecto de la red multibarras periódica, así
como el impacto de las interacciones entre bosones, en la función de onda del
condensado en el regimen débilmente interactuante. Para ello resolvemos la
ecuación de Gross-Pitaevskii en 1D considerando que la función de onda del
condensado se puede escribir como una onda de Bloch. De esta forma encon-
tramos que la densidad del sistema puede expresarse analíticamente en términos
de las funciones elípticas de Jacobi y las integrales elípticas incompletas de pri-
mero, segundo y tercer tipo. Además caracterizamos el espectro de energía del
sistema, el potencial químico, la compresibilidad y la velocidad del sonido en el
condensado. Finalmente, usamos nuestro modelo para predecir las propiedades
de un gas de Bose atrapado en un nuevo tipo de redes ópticas que poseen una
estructura espacial a una escala mucho menor que su propia longitud de onda,
conocidas como “subwavelength optical lattices”, las cuales han sido produci-
das experimentalmente en años recientes.

En el Capítulo 4 presentamos la teoría básica que fundamenta lo que se co-
noce como métodos de Monte Carlo Cuántico. Mostramos las características
principales de los métodos Monte Carlo Variacional y Monte Carlo Difusivo,
así como las principales diferencias entre ambos. Mostramos cómo mediante
técnicas estocásticas ambos métodos son capaces de proveer información va-
liosa sobre las propiedades del estado base de un gas cuántico a temperatura
cero para regímenes donde la teoría de campo medio es inaplicable. Especial
atención merece el método Monte Carlo Difusivo pues es una técnica que nos
permite calcular muchas propiedades físicas de manera exacta hasta un error
estadístico que podemos calcular.

En el Capítulo 5 estudiamos las propiedades físicas de un gas de Bose con
interacciones de corto alcance en una red multi-barras más allá del régimen
de campo medio. Para ello empleamos los métodos Monte Carlo Variacional y
Monte Carlo Difusivo para dicho análisis. Primero proponemos una función de
onda de prueba adecuada para representar al estado base. Luego calculamos la
energía del estado base como función de los parámetros de la red. Finalmente
calculamos el factor de estructura estático del sistema y obtenemos el diagram
de fases a temperatura zero, donde delimitamos las fases superfluida y aislante
de Mott como funciones de la magnitud de la interacción entre partículas y de
la altura de las barreras de la red.

Finalmente en el Capítulo 6 damos una visión general de los principales re-
sultados obtenidos, y discutimos algunos temas de investigación hacia el futuro
relacionados con esta tesis.
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1
Introduction

Ultracold bosonic and fermionic quantum gases have been a subject of in-
tense research in the last few years after the experimental realization of Bose-
Einstein condensation (BEC) in 1995 [1, 2]. These experiments were a mile-
stone that transformed Bose and Einstein’s mathematical predictions [3] in a
physical reality. The technology to study cold matter has evolved enormously.
Currently, physicists can realize Bose-Einstein condensates and other exotic
quantum states with a significant degree of control on the system parameters
using magneto-optical traps, optical lattices, and atom chips [4–8]. We have
reached the point where experimental researchers can simulate [9–12] real quan-
tum many-body systems in the laboratory by controlling most of its variables
at will. In particular, these advances have opened the possibility to study the
behavior of Fermi and Bose gases constrained in such ways that their move-
ment is effectively quenched in two spatial directions, so they behave as one-
dimensional [13–18] systems. Now it is possible to study the exotic behavior
of one-dimensional quantum gases and verify theoretical predictions made long
ago about them [19–22].

Describing the properties of quantum many-body systems is an extraordi-
narily hard task. Due to the combined effect of interactions between particles
and the spatial constrictions, it is impossible to obtain, most of the time, the
solution of the Schrödinger equation, i.e., the many-body wave function. It is
possible, for example, in the one-dimensional world, for the ground state of
the Tonks-Girardeau Bose gas [19, 23], the Lieb-Liniger model [24], and the
Calogero model [25]. When solving the Schrödinger equation is not possible,
we have to resort to approximations that are applicable only under reasonable
assumptions.
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1. INTRODUCTION

The most common theoretical approach to study the properties of bosonic
quantum many-body systems is the mean-field theory, i.e., solving the Gross-
Pitaevskii equation [26, 27]. This approach assumes that the vast majority of the
bosons occupy the same quantum state: the ground state, which is described by
a wave function whose evolution is determined by a one-body, nonlinear partial
differential equation: the Gross-Pitaevskii equation (GPE). In its basic form,
the GPE is equivalent to the one-body Schrödinger equation plus an additional
nonlinear term that accounts for the interactions between bosons. Despite its
mathematical simplicity, the success of the GPE and the mean-field theory ap-
proach to model and predict the physical properties of weakly-interacting Bose
gases [28] is inquestionable. However, for strongly correlated quantum systems
like 4He [29, 30], the mean-field approximation is inadequate, and complemen-
tary methods become necessary.

Quantum Monte Carlo (QMC) methods are an attractive alternative to cal-
culate the ground-state properties of quantum many-body systems at zero or
finite temperatures [31] with density and interactions of arbitrary magnitude. In
particular, QMC methods are used to evaluate the expected values of quantum
observables. In the coordinate representation, for instance, the expected value
of the Hamiltonian on its ground state, i.e., the ground state energy of the sys-
tem, is a multidimensional integral over a 3N -dimensional space, being N the
number of particles in the system. Numerical techniques commonly used to
evaluate integrals in one dimension can be used in higher dimensions through
cartesian products. However, this approach suffers from a severe problem: the
time required to reach a given numerical accuracy increases exponentially with
the dimension of the space. This problem is known as the curse of dimension-
ality. Monte Carlo methods, on the other hand, are stochastic algorithms whose
rate of convergence is inversely proportional to the square root of the number of
times an observable should be measured to obtain its expected value. Although
it is a slow rate of convergence, it is independent of the space dimension. In a
QMC calculation, one fixes the particle number to simulate a quantum system,
and this number determines the size of the coordinate space. Even if the number
of particle changes, the convergence rate of the algorithm remains the same.

Among the various QMC methods, the Variational Monte Carlo approach
(VMC) is the most simple. It is based on the variational principle of quan-
tum mechanics, so we can use it to obtain an approximate upper bound to the
ground state energy of the system. The accuracy of this approximation depends
on the quality of the trial wave function used to evaluate the expected value
of the observable in question. A more sophisticated (and more complex) ap-
proach is the Diffusion Monte Carlo (DMC) method, a technique that solves
the imaginary-time Schrödinger equation in small time intervals. By evolv-
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ing an initial wave function repeatedly in small time steps, a DMC calculation
yields estimates for the expected values of many observables that are exact up
to a small, manageable stochastic error. Both VMC and DMC techniques have
been used extensively to study strongly correlated quantum systems with great
success [32–35].

In this thesis, we have used both mean-field and QMC approaches to study
the properties of the ground state of a one-dimensional interacting Bose gas
in a periodic, multi-rod lattice. The contents and results are organized in the
following way:

In Chapter 2, we describe the fundamental theory of weakly-interacting,
one dimensional Bose gases, also known as mean-field theory. In this chapter,
we explain what defines a weakly-interacting Bose gas in 3D, and develop the
mathematics that leads us to the famous Gross-Pitaevskii equation for a Bose
gas within an inhomogeneous medium. Then, we establish the conditions un-
der which the mean-field theory picture applies to one-dimensional systems,
to finally obtain the one-dimensional version of the Gross-Pitaevskii equation.
Afterward, we give a brief description of the Lieb-Liniger Bose gas (LL), a
1D system of major relevance in quantum many-body physics since it is an
example of an exactly solvable model. Also, it is a system whose properties,
especially the ground state energy, are relevant for the system we analyze in this
thesis. Next, we give an overview of the Luttinger liquid theory: a formalism to
describe the low-energy properties of one-dimensional bosonic and fermionic
gases at very low temperatures. Finally, we give a summary of the experimental
techniques used to manipulate cold atoms and Bose-Einstein condensates.

In Chapter 3, we show our research on the ground-state properties of the
weakly-interacting 1D Bose gas within multi-rod lattices. A large part of this
chapter is devoted to obtaining the solutions of the 1D GPE with an external
Kronig-Penney (KP) potential. We establish the boundary conditions corre-
sponding to periodic solutions in the form of Bloch waves. Remarkably, this
type of solution can be determined analytically in terms of the Jacobi elliptic
functions, as well as of the incomplete elliptic integrals of the first, second,
and third kind. We show numerical results for the ground state density profile,
energy spectrum, chemical potential, compressibility, and sound velocity. Fi-
nally, we use our model to predict some properties of ultracold BECs in optical
lattices with a subwavelength structure [36, 37].

In Chapter 4, we show the statistical foundations of Monte Carlo integra-
tion techniques, how they are used to evaluate multidimensional integrals, and
why their convergence rate is independent of the dimension of the space. Later,
we depict the Metropolis-Hastings algorithm [38], a robust procedure to sam-
ple an arbitrary probability distribution function. Afterward, we describe the
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1. INTRODUCTION

Variational Monte Carlo method as an initial approach to analyze the ground-
state properties of a quantum many-body system. Then, we show the basis
of the Diffusion Monte Carlo method and depict the procedure to obtain the
ground-state energy of a bosonic system. Also, we show some methods used
to approximate the expected value of observables that do not commute with the
Hamiltonian. Finally, we describe the so-called Slater-Bijl-Jastrow trial wave
functions commonly used for QMC calculations.

In Chapter 5, we use QMC methods to analyze the ground-state properties
of the 1D Bose gas with contact-like, repulsive interactions in multi-rods, be-
yond the weakly-interacting regime. First, we define the trial wave functions
for the system. Then, we evaluate the ground state energy using both VMC and
DMC when the KP potential vanishes since this case corresponds to the Lieb-
Liniger gas, so that we can compare our results with the analytical predictions
of the LL model [24]. Afterward, we introduce the KP potential and evaluate, in
addition to the energy, the static structure factor using the method of pure esti-
mators [33]. Knowledge of the static structure factor, together with results from
the Luttinger liquid formalism, permits us to distinguish the quantum phases of
the Bose gas in the case of unit-filling. Finally, we obtain the superfluid-Mott
insulator phase diagram of the Bose gas as a function of the KP lattice height
and the interaction magnitude between bosons.

In Chapter 6, we give an outlook about the results presented in this thesis,
as well as some perspectives on future research topics.

Publications

During the course of this doctoral research, the following papers were pub-
lished:

O. A. Rodríguez, & M. A. Solís, “Universal Behavior of the BEC Critical
Temperature for a Multi-slab Ideal Bose Gas”, J. Low Temp. Phys. 183,
144–151 (2016).

Omar Abel Rodríguez-López, & M. A. Solís, “Periodic Ultranarrow Rods
as 1D Subwavelength Optical Lattices”, J. Low Temp. Phys. (2019),
DOI: 10.1007/s10909-019-02276-6, arXiv:1907.12671v2

Earlier work

Rodríguez, O. A. & Solís, M. A. “BEC and Dimensional Crossover in
a Boson Gas Within Multi-slabs”, J. Low Temp. Phys. 175, 435–441
(2014).
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2
One-Dimensional Bose Gases

In this chapter, we review several important concepts about one-dimensional
degenerate Bose gases, as well as some theoretical approaches to study the prop-
erties of such systems.

2.1. Systems of Identical Particles

The quantum mechanical behavior of a system of identical particles is very
different than what classical physics predicts. Due to Heisenberg’s uncertainty
principle, there is no way any measurement can distinguish any pair of parti-
cles [39]. This indistinguishability has a major consequence: any measurable
quantity must remain fixed when the positions of two particles are interchanged
in the wave function, in particular, the probability density. If the wave function
remains unchanged after exchanging any pair of identical particles, it is sym-
metric, and the system constituents are called bosons. On the other hand, if
the wave function suffers a change of sign after exchanging of particles, it is
antisymmetric, and the system constituents are called fermions.

Indistinguishability has an increasing role in quantum statistics when parti-
cles satisfy the quantum degeneracy condition

nλ3
dB ∼ 1. (2.1)

Here, n is the average particle density and λdB is the thermal de Broglie wave-
length,

λdB =
√

2π~2

mkBT
, (2.2)
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2. ONE-DIMENSIONAL BOSE GASES

where m is the mass of the particles, T is the system temperature, kB is the
Boltzmann constant, and ~ = h/2π. In the quantum degeneracy regime, the
behavior of the system constituents depends on their type: bosons obey the
Bose-Einstein statistics, while fermions follow the Fermi-Dirac statistics. Be-
cause of the Pauli exclusion principle, any two fermions can not occupy the
same quantum state. On the other hand, bosons do not obey the Pauli exclusion
principle, so many of them can occupy the same quantum state.

Back in 1924, A. Einstein [3], based on a previous work of S. N. Bose,
predicted the appearance of a quantum phase transition nowadays known as
Bose-Einstein condensation (BEC). This phenomenon occurs when the tem-
perature of a Bose gas drops below a threshold known as Bose-Einstein con-
densation critical temperature. Under this condition, a significant fraction of
particles occupies the lowest energy state, i.e., the ground-state. This state of
matter is known as Bose-Einstein condensate, commonly referred through the
BECacronym.

2.2. The Ideal Bose Gas

An ideal Bose gas obeys Bose-Einstein statistics. The mean occupation of
a non-degenerate quantum state with energy Ek is

N(Ek) = 1
z−1eβEk − 1 , (2.3)

where β = 1/kBT and z = exp (µ/kBT ) is the fugacity. The index k labels the
quantum state. The total number of particles in the system is

N =
∑
k

N(Ek) =
∑
k

1
z−1eβEk − 1 . (2.4)

In the thermodynamic limit, whenN →∞ and the system volume V →∞,
but the average density n = N/V remains finite, the discrete energy spectrum
Ek becomes a continuum spectrum, and the sums become integrals:

∑
k →

V/(2π)3 ∫ dk. For a homogeneous ideal Bose gas, the particle energy is Ek =
~2k2/2m, where k = |k|. Then, the density equation Eq. (2.4) becomes

n = n0 + 1
λ3

dB
g3/2(z). (2.5)

Here, gν(z) is the Bose-Einstein function

gν(z) =
∞∑
n=1

zn

nν
, (2.6)
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2.2. The Ideal Bose Gas

also known as the Polylogarithm function. The term n0 is the density of parti-
cles in the ground state with energy E0 = 0,

n0 = V −1

z−1 − 1 = N0

V
=⇒ N0 = 1

z−1 − 1 , (2.7)

while the second term of Eq. (2.5) is the density of particles distributed among
the excited states: nexc = g3/2(z)/λ3

dB.
Since the occupation number Eq. (2.3) must be positive, the chemical poten-

tial must be negative. Therefore, the fugacity must fulfill 0 < z < 1. On the one
hand, z → 0 corresponds to the classical limit of very high temperatures. On
the other hand, z → 1 corresponds to the quantum degeneracy regime. This be-
havior has a significant consequence: the number of bosons distributed among
the excited states k 6= 0 is finite, and its value is such that

nexc ≤
1
λ3

dB
g3/2(1), (2.8)

with g3/2(1) = ζ(3/2) ≈ 2.612, being ζ(ν) the Riemann zeta function. For a
fixed number of bosons N , there is a temperature Tc that saturates the excited
states, exactly when nexc equals the density of the whole gas,

nλ3
dBc = ζ(3/2), (2.9)

with λdBc =
√

2π~/mkBTc. Since the particles are bosons, all of them that
could not fit into the excited states will start to populate the ground stateE0, and
they could represent a macroscopic fraction of the total; this event signals the
occurrence of BEC phenomenon. Equation (2.9) fixes the critical temperature:

Tc = 2π~
mkB

(
n

ζ(3/2)

)2/3

. (2.10)

We recognize two possible scenarios [40]: for T > Tc, all the particles in the
gas are distributed among the excited states. We refer to this situation as a
normal phase. For T < Tc, a fraction of particles occupy excited states, and the
rest occupy the ground state. This situation is known as the condensed phase.

2.2.1. The One-Dimensional Ideal Bose Gas

For an ideal homogeneous 1D Bose gas, one can find an expression for the
density similar to the 3D one Eq. (2.5):

n1 = 1
λdB

g1/2(z). (2.11)

7



2. ONE-DIMENSIONAL BOSE GASES

Here, the number of particles distributed among excited states is proportional to
g1/2(z). Since the term g1/2(z → 1) diverges to infinite in the quantum degen-
eracy regime, there is not an upper bound for the number of particles distributed
among excited states. Hence, the fraction of particles in the ground state never
becomes significant, and Eq. (2.11) rules out Bose-Einstein condensation in a
1D homogeneous ideal Bose gas. We can still define a degeneracy temperature:

T ∗1 = ~2n2
1

mkB
, (2.12)

where n1 = N/L is the average one-dimensional density in a system with
length L.

2.3. Long-Range Order

As we have seen, Bose-Einstein condensation occurs when a significant por-
tion of particles populate the ground-state. A more formal criterion for the oc-
currence BEC, formulated by C. N. Yang [41], is directly related to the concept
of off-diagonal long-range order (ODLRO). To illustrate the concept, we have
to introduce the one-body density matrix (OBDM),

n(1)(r, r′) =
〈
Ψ̂†(r)Ψ̂(r′)

〉
, (2.13)

where Ψ̂†(r) is the quantum field operator that creates a particle at point r.
At the same time, Ψ̂(r′) annihilates a particle at position r′. These operators
satisfy bosonic commutation relations,[

Ψ̂(r), Ψ̂†(r′)
]

= δ(r − r′) (2.14a)[
Ψ̂†(r), Ψ̂†(r′)

]
= 0 (2.14b)[

Ψ̂(r), Ψ̂(r′)
]

= 0. (2.14c)

Here, we implicitly assume that field operators, and consequently n(1), are time-
dependent, i.e., Ψ̂(r) ≡ Ψ̂(r, t). The one-body density matrix Eq. (2.13) con-
tains relevant information about the system. In particular, its diagonal elements
r = r′ give the density:

n(r) =
〈
Ψ̂†(r)Ψ̂(r)

〉
= n(1)(r, r). (2.15)

The total number of particles is

N =
∫
n(r) dr. (2.16)

8
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Yang relates the occurrence of BEC with the asymptotic behavior of the
OBDM when ‖r − r′‖ → ∞. If a BEC is present, then n(1) must have a
large eigenvalue of order N , namely N0, with a corresponding eigenfunction
Ψ0(r, t), normalized to N0, such that

n(1)(r, r′)→ Ψ∗0(r, t)Ψ0(r′, t) if ‖r − r′‖ → ∞. (2.17)

This behavior can be taken as the definition of ODLRO, and the eigenfunction
Ψ0(r, t) is taken as the order parameter of the condensate.

Yang’s definition of long-range order does not seem suitable for finite sys-
tems. Instead, an alternative definition proposed by O. Penrose and L. On-
sager [42] starts from the eigenvalues Ni of the OBDM, which are solutions of
the equation∫

dr′ n(1)(r, r′)ϕi(r′) = Niϕi(r). (2.18)

The single-particle functions ϕi(r′) are known as natural orbitals; they form a
complete set of ortho-normalized functions such that

∑
i

ϕ∗i (r)ϕi(r′) = δ(r − r′),
∫
dr ϕ∗i (r)ϕj(r) = δij. (2.19)

Hence, the normalization condition Eq. (2.16) is N = ∑
iNi, and the diagonal-

ized form of OBDM becomes

n(1)(r, r′) =
∑
i

Ni ϕ
∗
i (r)ϕi(r′). (2.20)

Penrose and Onsager define BEC as the occurrence of one (and only one) single-
particle state, referred to as the condensed state, whose eigenvalue is of the
order of the total number of particles, let us say, N0 ∼ N .

The natural orbits determined by Eq. (2.18) provide an unambiguous basis
to express the quantum field operator Ψ̂(r):

Ψ̂(r) =
∑
i

ϕi(r)âi, (2.21)

where the operator â†i (âi) creates (annihilates) a particle in the ϕi state. These
operators satisfy bosonic commutation relations,[

âi, â
†
j

]
= δij, [âi, âj] =

[
â†i , â

†
j

]
= 0. (2.22)

9



2. ONE-DIMENSIONAL BOSE GASES

Substituting Eq. (2.21) in Eq. (2.20), it follows that
〈
â†jâi

〉
= δijNi. It is

convenient to split Eq. (2.21) as

Ψ̂(r) = ϕ0(r)â0 +
∑
i 6=0

ϕi(r)âi, (2.23)

where the first term accounts for the particles in the condensed state, while
the second represents condensed particles. If most of the particles occupy the
ground-state and N0 =

〈
â†0â0

〉
� 1, effectively forming a macroscopic BEC,

then it becomes plausible to use the Bogoliubov prescription, which consists
of replacing the operators â†0 and â0 by the c-number

√
N0, neglecting their

non-commutativity, as done originally by Bogoliubov [43]. Therefore, we can
treat the condensed part ϕ0(r)â0 as a c-field, i.e., a classical field, so the field
operator Eq. (2.23) becomes

Ψ̂(r) = Ψ0(r) + δΨ̂(r), (2.24)

where Ψ0(r) =
√
N0ϕ0(r) and δΨ̂(r) = ∑

i 6=0 ϕi(r)âi. The function Ψ0(r) in
Eq. (2.24) can be identified as the order parameter of Yang’s ODLRO criterion
Eq. (2.17) since it is the eigenfunction of the OBDM with the largest eigenvalue
of order N .

2.4. Weakly-Interacting Bose Gases

A weakly-interacting gas is a system such that the range of the inter-particle
interactions is much smaller than the inter-particle distance. The previous as-
sumption has important physical consequences; for example, collisions between
two particles are described in terms of the asymptotic expression of the wave
function at large inter-particle distances. When we consider gases close to
zero temperature, or far below than its Bose-Einstein critical point, we can re-
strict to low values of the momenta. From scattering theory, it follows that the
asymptotic wave function is entirely defined by lowest-order s-wave scattering
length as. Hence, all the effects of the interaction on the physical properties
of the bosons are defined by just one single parameter, as. For a system with
N particles within a volume V , the average distance between them is roughly
d = n−1/3, where n = N/V is the average density of the system. Then, the
diluteness condition can be written as

|as| � n−1/3, (2.25)

or equivalently, as n|as|3 � 1.
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2.4. Weakly-Interacting Bose Gases

We start by writing the Hamiltonian of the homogeneous Bose gas in terms
of creation and annihilation field operators Ψ̂†(r) and Ψ̂(r) [44, 45],

Ĥ = − ~2

2m

∫
Ψ̂†(r)∇2Ψ̂(r) dr

+ 1
2

∫
Ψ̂†(r)Ψ̂†(r′)Vint(r′ − r)Ψ̂(r′)Ψ̂(r) dr′dr, (2.26)

where Vint(r′ − r) is the inter-particle interaction potential. These operators
satisfy the canonical commutation relations Eq. (2.14). For a system with vol-
ume V , we can express the creation field operator as a linear combination of
single-particle creation operators of bosons with momentum p, times a plane
wave,

Ψ̂(r) =
∑
p

âp
1√
V
eip·r/~. (2.27)

Substituting this expression in Eq. (2.26), we arrive at the following result,

Ĥ =
∑
p

p2

2m â
†
pâp + 1

2V
∑
p1,p2

∑
p′
Up′â

†
p1+p′â

†
p2−p′âp2âp1 , (2.28)

where

Up′ =
∫
dr Vint(r)e−ip′·r/~ (2.29)

and

[âp, â†p′ ] = δp,p′ and [âp, âp′ ] = [â†p, â
†
p′ ] = 0. (2.30)

The r.h.s. in Eq. (2.29) is proportional to the scattering amplitude, or scattering
length, in the first Born approximation [44],

as = m∗

2π~2

∫
dr Vint(r)e−ip′·r/~, (2.31)

where m∗ = m/2 is the reduced mass of a pair of interacting bosons. For low
momenta, we only have to consider the case p′ = 0; hence

as = m

4π~2

∫
dr Vint(r). (2.32)

Previously, we have emphasized that in virtue of the diluteness criterion, the
physics of the system depends only on the scattering-length as, not in the shape
of the two-body potential. Following Eq. (2.32) and Eq. (2.29), we get that

Up′=0 = 4π~2as

m
, (2.33)

11



2. ONE-DIMENSIONAL BOSE GASES

so the Hamiltonian reduces to

Ĥ =
∑
p

p2

2m â
†
pâp + Up′=0

2V
∑
p1,p2

â†p1
â†p2
âp2âp1 ., (2.34)

We see that the explicit dependence of the two-body potential is not present
anymore, but is implicit in the value of Up′=0.

The theory of dilute gases assumes the Bogoliubov prescription. Under this
premise, we replace the creation and annihilation operators by c-numbers:

â0 =
√
N0, (2.35)

where N0 � 1 is the number of bosons in the ground state of the system. We
consider that the system temperature is far below the BEC critical temperature.
Hence, it is reasonable to assume that the occupation of states with momenta
p 6= 0, although nonzero, it is negligible compared to the occupation of the
ground state. Consequently, practically all the N bosons in the system occupy
the ground state. Then N0 ∼ N , â0 ∼

√
N , and only the ground state will

contribute to the second term of Eq. (2.34). At the same time, the first term of
Hamiltonian will be zero as it depends on p2. The ground-state energy of the
system is

E0 = 1
2
N2Up=0

V
. (2.36)

In terms of the density n, the energy of the ground state becomes

E0 = 1
2gnN, (2.37)

where

g = 4π~2as

m
(2.38)

is a parameter that measures the interaction strength. Therefore the chemical
potential is

µ =
(
∂E0

∂N

)
S,V

= gn. (2.39)

Unlike a noninteracting Bose gas, the chemical potential is nonzero but is pro-
portional g times the density. As expected, the chemical potential corresponds
to the ideal Bose gas result when the interaction vanishes.
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2.4. Weakly-Interacting Bose Gases

The pressure of the Bose gas is related to its internal energy as

p = −
(
∂E0

∂V

)
S,N

= gn2

2 . (2.40)

Unlike the IBG, in general, the weakly-interacting Bose gas pressure is nonzero.
Its compressibility is

κ = − 1
V

(
∂V

∂p

)
S

= 1
gn2 , (2.41)

which is finite except for g → 0 since it diverges. Finally, the sound velocity in
the gas is

cs ≡
1√
κnm

=
√
gn

m
. (2.42)

2.4.1. Inhomogeneous Bose Gases

Now we proceed to look into the properties of the weakly-interacting Bose
gas subject to an external potential. Our starting is the many-body Hamiltonian
in second quantized form,

Ĥ =
∫

Ψ̂†(r)ĥ0(r)Ψ̂(r) dr

+ 1
2

∫
Ψ̂†(r)Ψ̂†(r′)Vint(r′ − r)Ψ̂(r′)Ψ̂(r) dr′dr. (2.43)

The operator ĥ0(r) is the Hamiltonian of the noninteracting Bose gas subject
to an external potential Vext(r):

ĥ0(r) = − ~2

2m∇
2 + Vext(r). (2.44)

Previously, in virtue of the diluteness criterion, we concluded that interactions
between bosons are determined entirely by the s-wave scattering length as. The
shape of the interaction potential does not matter, as long as it yields the correct
value of the scattering length. So, we can replace the physical two-body inter-
action potential Vint(r) in Eq. (2.32) with an effective potential that gives the
correct value of the scattering length. This effective interaction has the form of
a contact pseudo-potential:

Vint(r − r′) = gδ(r − r′), (2.45)
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2. ONE-DIMENSIONAL BOSE GASES

where g = 4π~2as/m, as defined in Eq. (2.38), measures the strength of the
contact interaction. Direct substitution of Eq. (2.45) in Eq. (2.32) shows the
consistency of this definition. Then, the many-body Hamiltonian subject to the
potential Eq. (2.45) becomes

Ĥ =
∫

Ψ̂†(r)ĥ0(r)Ψ̂(r) dr + g

2

∫
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)dr. (2.46)

We can get the evolution of the creation field operator Ψ̂(r, t) as a function of
time from Heisenberg’s equation:

i~
∂Ψ̂(r, t)

∂t
=
[
Ψ̂(r, t), Ĥ(t)

]
. (2.47)

The Hamiltonian Eq. (2.46) is a function of time, i.e., Ĥ ≡ Ĥ(t), though we
have omitted it explicitly. Hence, the time evolution of the field operator is

i~
∂Ψ̂(r, t)

∂t
= ĥ0Ψ̂(r, t) + g Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t). (2.48)

Analogously to the study of the interacting homogeneous Bose gas, we
assume that a macroscopic number of bosons occupy the ground state of the
system. Then we can use the Bogoliubov prescription for the field operator,
Ψ̂(r, t) = Ψ(r, t) + δΨ̂(r, t), according to Eq. (2.24). The classical field
Ψ(r, t) represents the wave function of the condensed bosons as a whole, and it
is also the order parameter of the BEC. If we neglect quantum fluctuations ac-
counted by the term δΨ̂(r, t), we arrive at the famous Gross-Pitaevskii equation
(GPE) [26, 27]:

i~
∂Ψ(r, t)
∂t

=
(
− ~2

2m∇
2 + Vext(r) + g |Ψ(r, t)|2

)
Ψ(r, t). (2.49)

The GPE governs the dynamics of the condensate. It resembles the one-particle
Schrödinger equation, with an additional nonlinear term proportional to the
square of the condensate wave function, which accounts for the interactions
between bosons. In this sense, Eq. (2.49) is a mean-field equation. Then, we
define the Gross-Pitaevskii Hamiltonian as

ĤGP = − ~2

2m∇
2 + Vext(r) + g |Ψ(r, t)|2 , (2.50)

so Eq. (2.49) becomes

i~
∂Ψ(r, t)
∂t

= ĤGPΨ(r, t). (2.51)
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2.4. Weakly-Interacting Bose Gases

The assumption that most bosons occupy the ground state allows us to assert
that the condensate density is the Bose gas density, i.e.,

n(r) = |Ψ(r, t)|2 , (2.52)

and the total number of bosons N is

N =
∫
n(r) dr. (2.53)

This equation is referred to as the normalization condition. Substituting the
Bogoliubov prescription Eq. (2.24) in the Hamiltonian Eq. (2.46) and neglecting
quantum fluctuations, we obtain the energy of the condensate:

E[Ψ] = ~2

2m

∫
dr |∇Ψ(r, t)|2

+
∫
dr Vext(r)|Ψ(r, t)|2 + g

2

∫
dr |Ψ(r, t)|4. (2.54)

Solutions of Eq. (2.51) subject to the normalization condition Eq. (2.53) de-
scribe the ground-state properties of the weakly-interacting Bose gas at zero
temperature. The normalization condition fixes the chemical potential µ of the
condensate, which is related to the energy by

µ =
(
∂E

∂N

)
S,V

. (2.55)

The Gross-Pitaevskii equation is considered the primary theoretical tool to
describe phenomena that occurs for weakly-interacting Bose gases at extremely
low temperatures, like in many of nowadays experiments realized in ultracold
atomic gases (see Section 3.1). Among the kind of solutions of the GPE, one
can find localized solutions like solitons in one, two, and three dimensions [46–
48], and even Bloch waves [49–51]. Also, there is a whole industry dedicated
to studying the dynamics and properties of Bose-Einstein condensates using
numerical techniques to solve the time-dependent GPE [52–56].

Equation Eq. (2.49) has a particular set of states that evolve in time in the
form

Ψ(r, t) = Φ(r)e−iµt/~, (2.56)

where the chemical potential fixes the time dependence of the wave function.
States defined by Eq. (2.56) are called stationary since they decouple the time
dependence from the spatial dependence. Then, Eq. (2.51) takes form of

ĤGPΦ(r) = µΦ(r). (2.57)
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2. ONE-DIMENSIONAL BOSE GASES

Equation (2.57) is the stationary Gross-Pitaevskii equation, and it looks very
similar to the stationary one-particle Schrödinger equation. However, it is a
nonlinear equation, due to the term proportional to the condensate density in
Eq. (2.50). For this reason, the GPE is known as the Nonlinear Schrödinger
equation (NLSE) in many contexts. Also, the chemical potential plays the role
of eigenvalue of ĤGP instead of the energy per particle. Only in the case when
the interaction is zero, both chemical potential and ground-state energy (per
particle) are equal.

2.5. Mean-Field Theory in One Dimension

The theory of dilute gases described in the previous section was developed
for a three-dimensional system. However, with nowadays experimental tech-
niques, it is possible to confine a Bose fluid within highly anisotropic potentials
that effectively constrain the movement of the particles in two or even in one
spatial dimension [13, 21, 57].

One criterion to discard or assert the applicability of mean-field theory for
a homogeneous Bose gas is that the average distance between bosons should be
smaller than the healing length ξ of the gas [45],

ξ = ~√
2mcs

= ~√
2mgn. (2.58)

Here, cs is the sound velocity in the fluid (see Eq. (2.42)), and g is the interaction
strength factor (see Eq. (2.38)). The average distance d between particles can
be estimated in terms of the average density n roughly as d ∼ n−1/3. Then,
following the definition of g, we obtain

ξ

d
∼ 1√

8πasd−1 = 1√
8π(asn1/3)

, (2.59)

with as being the s-wave scattering length. We observe that the ratio ξ/d is
proportional to (na3

s )−1/6, so the condition ξ > d is well satisfied for small
densities. However, if we change the geometry of the system and reduce the
dimension, the situation changes completely.

Let us consider a Bose gas of N bosons confined in a cylindrical geometry
of length L produced by a harmonic trap with a frequency ω⊥ in the transverse
(radial) direction and frequency ωz in the axial direction. A very elongated
trap, i.e., a cigar-shaped trap, is obtained with ω⊥ � ωz. We define the linear
density as n1 = N/L. Therefore, the average linear density n1 is related to the
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three-dimensional density n through

n1 = nπa2
⊥, (2.60)

where a⊥ =
√
~/mω⊥ is the oscillation length of the transverse harmonic trap-

ping potential V (r⊥) = mω2
⊥r

2
⊥/2. The average three-dimensional density n is

measured at r⊥ = 0. In this one-dimensional geometry generated by the trap-
ping potential, the distance between particles in terms of the linear density is
d = n−1

1 , so the quotient ξ/d becomes

ξ

d
=
√
a2
⊥

8as
n1. (2.61)

We see that this quotient becomes smaller as the linear density decreases; this
means that the mean-field theory developed in the previous section becomes
inadequate for diluted systems with a one-dimensional geometry. Nevertheless,
there is the possibility that the healing length ξ becomes larger than the average
interparticle distance d if

n1
a2
⊥
as
� 1, (2.62)

for instance, when the linear density is sufficiently large.
A system with cylindrical geometry, as described before, has two notable

regimes [45]. If n1as � 1, the system enters in the radial Thomas-Fermi
regime or three-dimensional cigar, where the system locally retains its three-
dimensional nature, although geometrically looks one-dimensional. Our pri-
mary interest is the one-dimensional mean-field regime, n1as � 1, where only
the ground state of the harmonic trapping potential in the radial direction con-
tributes to the chemical potential:

µ = ~ω⊥(1 + 2asn1) = µ⊥ + µ1D. (2.63)

The constant term µ⊥ = ~ω⊥ arises from the zero-point motion in the trans-
verse direction, while the second term is the chemical potential of the weakly-
interacting Bose gas in the one-dimensional mean-field regime:

µ1D = 2asn1~ω⊥. (2.64)

Looking back to Eq. (2.62), we can introduce a one-dimensional scattering
length:

a1D = −a
2
⊥
as
. (2.65)
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Then, the relevant condition that must be fulfilled to apply mean-field theory in
one-dimension is

n1|a1D| � 1. (2.66)

Here, the factor n1|a1D| is known as the gas parameter. We must note that
condition Eq. (2.66) is only guaranteed if the ratio a⊥/as is sufficiently large.
Only in this case the condition n1as � 1 required to reach the one-dimensional
mean-field regime is consistent with Eq. (2.66). Considering the previous ar-
guments, the limit of high densities always corresponds to the 1D mean-field
regime.

Following the definitions of the one-dimensional scattering length a1D, the
linear density n1, and the transverse radius a⊥, we find

µ1D = 2~2as

ma2
⊥
n1 = − 2~2

ma1D
n1. (2.67)

From Eq. (2.55), we obtain the energy of the Bose gas:

E = − ~2

ma1D
n1N. (2.68)

Equations (2.67) and (2.68) have the same mathematical form as Eqs. (2.39)
and (2.37) for the three-dimensional mean-field regime, provided that we define
an equivalent interaction parameter g1D for one-dimensional systems as

g1D = − 2~2

ma1D
. (2.69)

Immediately, we obtain

E = 1
2g1Dn1N (2.70)

µ1D = g1Dn1. (2.71)

2.5.1. 1D Mean-Field Equation

As we saw in the previous section, 1D Bose gases are experimentally re-
alized through a very elongated, cigar-like harmonic trap. Such a trap “froze”
the dynamics of the particles in the radial direction, and only the lowest energy
state in the radial direction contributes to the total chemical potential of the sys-
tem, as shown in Eq. (2.63). Under this premise, the lowest transverse state is
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the ground state of a 2D harmonic oscillator with frequency ω⊥ in both x and y
directions,

ΨT(x, y) =
√
mω⊥
π~

e−mω⊥(x2+y2)/2~. (2.72)

Due to the intense trapping in the radial direction, the wave function of the
system Eq. (2.51) factorizes as

Ψ(r, t) = e−iω⊥tΨT(x, y)Ψ1D(z, t). (2.73)

The phase e−iω⊥t corresponds to a time evolution with an energy µ⊥ = ~ω⊥,
i.e., the lowest contribution to the chemical potential of the transverse state
Eq. (2.72). At the same time, the axial part of the wave function, i.e., Ψ1D(z, t),
models the dynamics of the 1D Bose gas. Substituting Eq. (2.73) in the 3D
GPE (2.49), then multiplying by ΨT(x, y), and finally integrating over the x-y
plane, we find that the function Ψ1D(z, t) is governed by the differential equa-
tion

i~
∂Ψ1D(z, t)

∂t
= ĤGP1DΨ1D(z, t), (2.74)

where ĤGP1D(z, t) is the one-dimensional Gross-Pitaevskii Hamiltonian,

ĤGP1D = − ~2

2m
∂2

∂z2 + Vext(z) + g1D |Ψ1D(z, t)|2 . (2.75)

We note that the equation Eq. (2.74) has the same structure as Eq. (2.51) for a
3D system, but with a different interaction parameter g1D (see Eq. (2.69)) due
to the presence of the trap in the transverse direction. Not surprisingly, the 1D
energy functional (relative to the zero-point energy) has the same structure as
Eq. (2.54), i.e.,

E[Ψ1D] = ~2

2m

∫ ∣∣∣∣∣∂Ψ1D(z, t)
∂z

∣∣∣∣∣
2

dz

+
∫
Vext(z) |Ψ1D(z, t)|2 dz + g1D

2

∫
|Ψ1D(z, t)|4 dz,

(2.76)

Also, the wave function is subject to the normalization condition∫
|Ψ1D(z, t)|2 dz = N. (2.77)
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As in the 3D case, we can replace the interaction potential by an effective two-
body pseudo-potential between any pair of bosons:

V (z − z′) = g1Dδ(z − z′). (2.78)

The stationary states of Eq. (2.74), which evolve in time according to

Ψ1D(z, t) = Φ1D(z)e−iµ1Dt/~, (2.79)

are governed by the stationary 1D Gross-Pitaevskii equation,

ĤGP1D(z)Φ1D(z) = µ1DΦ1D(z), (2.80)

where Φ1D(z) contains the spatial dependence of the ground-state wave func-
tion of the gas, µ1D is the chemical potential, and

ĤGP1D = − ~2

2m
∂2

∂z2 + Vext(z) + g1D |Φ1D(z)|2 , (2.81)

since |Ψ1D(z, t)|2 = |Φ1D(z)|2. Analogously to the 3D case (see Eq. (2.77)),
the normalization condition becomes∫

|Φ1D(z)|2 dz = N. (2.82)

The procedure described in this section corresponds to a dimensional reduc-
tion of the 3D GPE to one dimension considering harmonic trapping potentials.
The method can also be used for two-dimensional Bose gases [58], and even for
particles with long-range interactions, as the dipole-dipole case [59].

2.6. BEC and Long-Range Order in One Dimension

In Section 2.5, we analyzed the applicability of mean-field formalism in 1D
systems, and finally, we arrived at the 1D Gross-Pitaevskii equation Eq. (2.74).
Our starting point was the 3D mean-field formalism; hence, during this study,
we assumed the existence of a BEC. However, the Mermin-Wagner-Hohenberg
theorem [60, 61] rules out Bose-Einstein condensation in uniform, weakly-
interacting 2D and 1D Bose gases at finite temperature; in 1D, there is no BEC
even at zero temperature. Phase fluctuations accounted by δΨ̂ in Eq. (2.23) de-
stroy long-range order, and they are the cause of BEC’s absence. Trapped Bose
gases in low-dimensional geometries with nowadays experimental techniques
are not certainly uniform, so the Mermin-Wagner-Hohenberg theorem does not
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2.6. BEC and Long-Range Order in One Dimension

necessarily hold. However, it is worthwhile to discuss some differences be-
tween BEC in lower dimensions compared to three dimensions, where ODLRO
and BEC exist at sufficiently low temperatures for dilute Bose gases.

It is possible to analyze the properties of low-dimensional Bose gases, as
well as the possibility of BEC, through the density-phase representation of the
quantum field operator. In this framework, one expresses the field operator as

Ψ̂†(r) =
√
n̂(r) e−iθ̂(r),

[
n̂(r), θ̂(r′)

]
= iδ(r − r′), (2.83)

where n̂(r) and θ̂(r) are the density and phase operators, respectively. We can
assume small density fluctuations, that is, representing the density operator as

n̂(r) = n(r) + δn̂(r). (2.84)

Here, n(r) is the mean density profile, and δn̂(r) accounts for density fluctua-
tions. Substituting Eq. (2.83) into the into Eq. (2.48), it is shown [62–65] that at
zero order in δn̂, the mean density n(r) satisfies the Gross-Pitaevskii equation

− ~2

2m
∇2
√
n(r)√
n(r)

+ Vext(r) + gn(r) = µ, (2.85)

where the chemical potential is fixed by the normalization condition∫
dr n(r) = N. (2.86)

Results indicate that if we assume small density fluctuations, the particles form
a BEC with a mean density profile n(r) given by the GPE Eq. (2.85). For
a weakly-interacting Bose gas trapped in 1D geometries, density fluctuations
become negligible for T � T ∗1 [44, 62], where T ∗1 = ~2n2

1/mkB is the quantum
degeneracy temperature Eq. (2.12) we defined in Section 2.2.1, being n1 the
average linear density.

Even if density fluctuations are strongly suppressed at low temperatures,
phase fluctuations can not always be neglected. Commonly, in this situation, it
is said that the system is a quasicondensate, i.e., a condensate with a fluctuat-
ing phase [62, 63, 66–68]. To observe the effects of phase fluctuations on the
asymptotic behavior of the OBDM, let us take a uniform 1D weakly-interacting
Bose gas at T = 0. At low temperatures, neglecting density fluctuations, we
have [62, 63]

n(1)(r) = n(1)(z, z′) = n1 exp
(
−1

2

〈[
θ̂(z)− θ̂(z′)

]2〉)
, (2.87)
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2. ONE-DIMENSIONAL BOSE GASES

where r = |z − z′|. The behavior of n(1)(r) when r → ∞ gives the following
expression for the phase correlator [45]:〈[

θ̂(z)− θ̂(z′)
]2〉
∼ mcs

π~n1
ln
(
r

ξ

)
, (2.88)

where ξ = ~/
√

2mcs is the healing length (see Eq. (2.59)), and cs =
√
µ1D/m

is the sound velocity. Expression Eq. (2.88) implies that, for distances much
larger than the healing length, the zero-temperature OBDM decays as a power
law, i.e.,

n(1)(r) ∝
(
r

ξ

)−α
, (2.89)

with exponent

α = mcs

2π~n1
. (2.90)

Hence, Eq. (2.89) implies that there is no ODLRO, so the gas is not a true Bose-
Einstein condensate. Nevertheless, the 1D Bose gas forms a quasicondensate.

For finite low-dimensional Bose gases, both analytical and experimental re-
sults show that BEC is possible. Remarkably, Ketterle and van Druten prove
the occurrence of BEC in a finite, 1D noninteracting Bose gas within a har-
monic trap [69]. Moreover, density and phase fluctuations do not necessarily
destroy ODLRO in weakly-interacting trapped Bose gases; the trapping poten-
tial suppresses quantum fluctuations. Hence, a true BEC can form even lower
dimensions [70, 71], even at finite temperature [72].

2.7. Confinement Induced Resonances

As we saw in see Section 2.5, experimentally, a quasi-one-dimensional Bose
gas can be created by confining the particles in a highly elongated cigar-shaped
harmonic trap (ω⊥ � ωz). In this situation, the interaction between bosons can
be modeled by the effective two-particle interaction potential [73]

Vint(r) = g1Dδ(r), (2.91)

where g1D = −2~2/ma1D is the interaction strength between particles, r is the
interparticle distance, and a1D is the one-dimensional scattering length. Due to
the effects of the transverse confinement, it is found [73, 74] that

a1D = −a
2
⊥
as

(
1− C as

a⊥

)
, (2.92)
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where as is the three-dimensional scattering length, a⊥ =
√
~/mω⊥ is the

transverse oscillator length, and C = −ζ(1/2) ≈ 1.46035. The effective one-
dimensional Hamiltonian for N trapped atoms is [75]

Ĥcigar = ĤLL +
N∑
i=1

mω2
zz

2
i

2 , (2.93)

where ĤLL is the 1D Lieb-Liniger Bose gas Hamiltonian [24]:

ĤLL = − ~2

2m

N∑
i=1

∂2
zi

+ g1D

N∑
i=1

N∑
j=i+1

δ(zi − zj), (2.94)

The additional term in Eq. (2.93) r.h.s. arises from the harmonic trapping in the
z direction. Hamiltonian Eq. (2.94) describes a one dimensional Bose gas of
particles interacting via a repulsive contact potential (see Section 2.8).

Both Eq. (2.92) and Eq. (2.93) establish a connection between theoretical
1D models and experiments in tightly confining waveguides. A remarkable
physical phenomenon appears due to the trapping: the so-called confinement-
induced resonance (CIR) [73, 74]. To understand this resonance, let us rewrite
the interaction strength in the following way:

g1D = 2~as

ma2
⊥

1
1− Cas/a⊥

. (2.95)

As we can see, by varying the value of the 3D scattering length as via a Feshbach
resonance (FR), the interaction strength can be adjusted. In the 1D mean-field
regime, a⊥/as � 1 hence g1D = 2~as/ma

2
⊥ = −2~2/ma1D, as we found in

Eq. (2.69). A CIR occurs when the scattering length as approaches the length of
transverse confinement a⊥; when a⊥ = Cas, g1D diverges. By slightly adjusting
as around this critical value (see Ref. [76]), the interactions can go from strongly
repulsive (g1D →∞) to strongly attractive (g1D → −∞). The former case (see
Section 2.8) corresponds to the Tonks-Girardeau (TG) regime [19, 23], while
the latter represents a new regime: the super Tonks-Girardeau gas (STG) [35].

2.8. The Lieb-Liniger Bose Gas

The Lieb-Liniger (LL) model [24] describes a one dimensional Bose gas
with N particles interacting via a repulsive contact potential. The Hamiltonian
of this system is

ĤLL = − ~2

2m

N∑
i=1

∂2
zi

+ g1D

N∑
i=1

N∑
j=i+1

δ(zi − zj), (2.96)
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2. ONE-DIMENSIONAL BOSE GASES

where g1D = −2~2/ma1D is the strength factor of the interaction in the 1D
regime.

The Lieb-Liniger gas is a system that can be solved analytically via a Bethe
ansatz [77],

ψ(z1, . . . , zN) =
∑
P

a(P ) ei
∑N

j=1 kjzj . (2.97)

The wavenumbers k1, . . . , kN form an ordered set, and the summation extends
over all the permutations {P} of them, where the coefficient a(P ) depends on
a particular permutation.

In the thermodynamical limit, the ground state of the Bose gas at zero tem-
perature can be expressed as

E = ~2

2mNn2
1e(γ(n1)), (2.98)

where n1 is the average linear density and

γ = mg1D

~2n1
(2.99)

is known as the Lieb-Liniger parameter. The function e(γ(n1)) is determined
by

e(γ) = − γ3

λ3(γ)

∫ +1

−1
g(x; γ)x2 dx, (2.100)

while the functions g(x, γ) and λ(γ) get determined from the equations

g(x; γ)− 1
2π = λ(γ)

π

∫ +1

−1

g(x′; γ)
λ2(γ) + (x− x′)2 dx

′ (2.101)

and

λ(γ) = γ
∫ +1

−1
g(x; γ) dx. (2.102)

Equation Eq. (2.101) is a Fredholm integral equation of the second kind (see
Appendix A.1).

The function e(γ) is a monotonically increasing function of γ, as shown
in Fig. 2.1. On the one hand, e(0) = 0, which corresponds to noninteracting
bosons. On the other hand, e(γ → ∞) = π2/3 when the gas enters the Tonks-
Girardeau (TG) regime [19, 23] of impenetrable bosons. In the TG regime,
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Figure 2.1: Dependence of e(γ) as a function of γ = 2/n1a1D for the Lieb-
Liniger theory Eq. (2.100) (solid line). The dashed line shows the small-γ be-
havior e(γ) ∼ γ, which coincides with the 1D GPE prediction. As γ increases,
the function tends to the Tonks-Girardeau limit π2/3 (dash-dot-dot, horizontal
line).

the system manifests the so-called fermionization phenomenon [23]. Accord-
ingly, there is a one-to-one correspondence between the wave function of an
impenetrable-bosons gas, and the wave function of a noninteracting, spinless-
fermions gas. The energy of both systems is

E = ~2π2n2
1

6m N. (2.103)

For γ � 1, we have e(γ) ∼ γ, so the total energy is E ∼ (g1Dn1/2)N . This
result is the same as the one obtained using mean-field theory in 1D, i.e., the
Gross-Pitaevskii equation applied to a one-dimensional system in Section 2.5.
Hence, γ � 1 corresponds to the mean-field regime.

The LL parameter Eq. (2.99) is related to the one-dimensional scattering
length Eq. (2.92) in a cigar-shape trap through

γ = − 2
n1a1D

. (2.104)
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2. ONE-DIMENSIONAL BOSE GASES

We saw in Section 2.5 that the 1D mean-field regime coincides with the high-
density limit n1|a1D| � 1; this agrees which the mean-field condition γ � 1 for
the LL model. The opposite limit γ → ∞, according to Eq. (2.104), is equiva-
lent to n1|a1D| � 1. Consequently, the Tonks-Girardeau regime coincides with
the low-density limit.

2.9. Low-Energy Universal Description

The Lieb-Liniger gas is a remarkable system because one can solve the
many-body problem for the ground state in an exact way; hence, it is an ex-
actly solvable model or integrable model. The Tonks-Girardeau Bose gas of
hard-core bosons [23] is another example of such models; it corresponds to
the limit g1D → ∞ in Eq. (2.96) for the LL model, i.e., bosons with infinitely
strong repulsive interactions. Additional examples of exactly solvable models
include the Calogero model [25], and the t-V model: a particular case of the
Bose-Hubbard model with an on-site interaction U →∞ [78].

Finding the exact solution of many-body, interacting systems is a tough task.
At low temperatures, an alternative way to investigate such systems, even those
nonintegrable, is using effective models that describe physical properties start-
ing from the system’s low-energy excitations. This approach is the spirit of
Landau’s Fermi liquid theory [79] for a degenerate, translationally-invariant,
interacting, 3D isotropic fermionic gas. It is a phenomenological theory that
predicts the behavior of the physical properties from some parameters that can
be determined experimentally. The most remarkable result of Fermi liquid the-
ory is that the properties of the interacting system remain mostly the same as
the ideal system, even when the interactions between the particles are not small.
However, the elementary constituents of the system are not individual electrons
anymore, but quasiparticles formed by electrons dressed by density fluctuations
around them, which behave like almost as free fermionic particles with a differ-
ent effective mass. The microscopic derivation of the theory was obtained by J.
M. Luttinger and P. Nozières in 1962 [80, 81].

How do one-dimensional systems compare to the 3D ones? In 3D systems,
nearly free quasiparticles can exist. In 1D, particles can only move along one
direction. If one of them tries to move, it has to push its neighbors. Therefore,
individual motion is not possible, and excitations become necessarily collective.
This collectivization invalidates the Landau Fermi liquid theory applicability for
1D systems. A useful low-energy description for 1D gases, whether bosonic or
fermionic, must take into account the collective nature of the excitations. Such
a formalism, applicable to a broad class of 1D systems with conducting or fluid
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properties, is known as Luttinger liquid theory [20, 82, 83]. Frederick D. M.
Haldane noticed two especially relevant characteristic properties of Luttinger
liquids. First, their density-wave, collective elementary excitations spectrum
has a linear dispersion at long wavelengths that defines a sound velocity. Sec-
ond, at zero temperature, the correlation functions show a power-law decay.
Haldane also derived [84] the low-energy properties of one-dimensional quan-
tum fluids from an Effective Harmonic-Fluid Approach independent of statis-
tics, and showed that the collective excitations of such fluids are noninteracting
bosonic particles, i.e., phonons.

Let us consider a system of N bosons with length L, average density n1 =
N/L, and periodic boundary conditions. We assume bosons interact via a two-
body potential. The Hamiltonian of the system is

Ĥ = ~2

2m

∫
dz

(
∂zΨ̂†(z)

) (
∂zΨ̂(z)

)
+ 1

2

∫
dz dz′ Ψ̂†(z)Ψ̂†(z′)Vint(z′ − z)Ψ̂(z′)Ψ̂(z), (2.105)

where the quantum field operator Ψ̂(z) fulfills commutation relations[
Ψ̂(z), Ψ̂†(z′)

]
= δ(z − z′), (2.106a)[

Ψ̂†(z), Ψ̂†(z′)
]

= 0, (2.106b)[
Ψ̂(z), Ψ̂(z′)

]
= 0, (2.106c)

and Ψ̂†(z + L) = Ψ̂†(z).
In the Luttinger liquid theory [84], the collective character of the excitations

motivates a field-theoretic approach in terms of collective fields. For bosons,
these are the density operator n̂(z) and the phase operator θ̂(z). The bosonic
field operator Ψ̂†(z) is written in polar form:

Ψ̂†(z) = [n̂(z)]1/2e−iθ̂(z). (2.107)

Since this field operator and its adjoint fulfill bosonic commutation relations
Eq. (2.14), there are similar relations for density and phase operators [85], in
particular:[

n̂(z), e−iθ̂(z′)
]

= δ(z − z′)e−iθ̂(z′), (2.108)

which is consistent with the relation [78][
n̂(z), θ̂(z′)

]
= iδ(z − z′). (2.109)
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This relation expresses the well-known fact that in a superfluid or a BEC, the
density and the phase are canonically conjugate fields.

To proceed further, let us consider the expression for the density field oper-
ator of a many-body system with N particles,

n̂(z) =
N∑
j=1

δ(z − zj), (2.110)

where zj is the position of the j-th particle. The density operator can be written
more conveniently if we introduce a labeling field φ̂l(z). This field is a smooth,
monotonically increasing continuous function of the position such that φ̂l(zj) =
2πj, i.e., it increases by 2π each time z passes the location of a particle. Its
boundary conditions are φ̂l(z + L) = φ̂l(z) + 2πN . Now, let us consider that
the particles are uniformly distributed on a straight line. Since the system has an
average density n1, the interparticle distance is n−1

1 , and the position of the j-th
particle is zj = jn−1

1 . Then, the perfect labeling field of the uniform system
is φ̂l(z) = 2πn1z. One can define a field φ̂(z) relative to the perfect one as
φ̂l(z) = 2πn1z − 2φ̂(z), by which the density operator can be written as

n̂(z) =
(
n1 −

1
π
∂zφ̂(z)

) ∞∑
p=−∞

ei2p(πn1z−φ̂(z)). (2.111)

This expression is known as the harmonic representation of the density operator.
Equation (2.111) leads to the corresponding low-energy, harmonic representa-
tion of the bosonic quantum field operator Eq. (2.107) [84, 85]:

Ψ̂†(z) '
(
n1 −

1
π
∂zφ̂(z)

)1/2
 ∞∑
p=−∞

ei2p(πn1z−φ̂(z))

 e−iθ̂(z). (2.112)

Physically, for low-energy states, it is expected that θ̂(z) and φ̂(z) should vary
slowly over a distance of order n−1

1 . From Eq. (2.109) and Eq. (2.111), it follows
that [

θ̂(z), 1
π
∂z′φ̂(z′)

]
= iδ(z − z′). (2.113)

This result proves that θ̂(z) and ∂zφ̂(z)/π are canonically conjugate fields.
The harmonic form of the field operator Eq. (2.111) results in a low-energy

representation (keeping only the leading terms) of the Hamiltonian:

Ĥ = ~
2π

∫
dz
[
csK

(
∂zθ̂(z)

)2
+ cs

K

(
∂zφ̂(z)

)]
. (2.114)
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Remarkably, the unknown parameters vJ = csK and vN = cs/K characterize
all the low-energy properties of the system. They fulfill vJvN = c2

s , where cs is
the velocity of the density fluctuations, i.e., the sound velocity in the fluid. The
parameterK, commonly referred to as the Luttinger parameter, controls the de-
cay rate of the correlation functions at long distances [78, 84, 85]. Parameters vJ
and vN are nonuniversal since they depend on the microscopic characteristics of
the system. They must be calculated, whether analytically or numerically, for
the particular microscopic model under study. Among the available methods
for such purpose are the Bethe ansatz, exact diagonalization, Quantum Monte
Carlo (QMC) methods, and Density Matrix Renormalization Group (DMRG),
to name a few. Once obtained, all the properties of the system are determined.
Fortunately, there are well-established relations for both parameters with ther-
modynamic properties, which we describe in the following lines.

The density stiffness vN = cs/K is related to the zero-temperature macro-
scopic adiabatic compressibility κ by [84, 85]

κ−1 = ~πvNn2
1 = ~πn2

1
cs

K
, (2.115)

where

κ−1 = n2
1L

(
∂2E0(N)
∂N2

)
. (2.116)

Here, E0(N) is the ground-state energy of the system with N particles. Next,
we obtain

vN = L

π~

(
∂2E0(N)
∂N2

)
. (2.117)

The phase stiffness vJ = csK is related to the response of the system (at
zero temperature) to a twist in the boundary conditions of the field operator:

Ψ̂†(z + L) = e−iαΨ̂†(z). (2.118)

We say that the field operator fulfills twisted boundary conditions, being α the
twist angle. The introduction of this twist shifts both ground state energy and
momentum regarding their values for α = 0. In particular, the ground-state
energy shift and the phase stiffness vJ become related by [85, 86]

vJ = πL

~

(
∂2E0(α)
∂α2

)
α=0

. (2.119)
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Looking at Eq. (2.117) and Eq. (2.119), we see that vN and vJ relate the re-
sponse of the system to a change in the particle number and a phase twist,
respectively. Physically, in the presence of a twist in the boundary conditions,
the system responds by drifting as a whole with a constant velocity, and the
kinetic energy of the superfluid fraction n1(sf) should be equal to the change of
the ground-state energy. Then, one can relate the phase stiffness vJ with the
superfluid fraction by [86]

vJ = ~πn1(sf)

m
. (2.120)

Although it is useful to calculate both cs and K together with Eq. (2.117), rela-
tion Eq. (2.120) should be interpreted with care [78, 87].

For Galilean invariant systems, such as the Lieb-Liniger model Eq. (2.96),
vJ is independent of interactions. Furthermore,

vJ = vF = ~kF

m
, (2.121)

where vF and kF are the Fermi velocity and Fermi momentum, respectively. For
instance, for a spinless Bose gas kF = πn1, then Eq. (2.117) yields

κ = K2

vF~πn2
1

= mK2

~2π2n3
1
. (2.122)

This relation shows that the system becomes more compressible if K increases.
For a noninteracting Bose gas, it is a well-known result that κ → ∞, then
K → ∞. Repulsive interactions reduce compressibility, as showed in Sec-
tion 2.4 for the weakly-interacting Bose gas. As an example, let us consider
the Lieb-Liniger Bose gas (see Section 2.8). For infinitely strong interactions
g1D → ∞, it becomes the Tonks-Girardeau gas whose energy is given by
Eq. (2.103). Using Eq. (2.122), it follows immediately that K = 1. For finite
interactions, the LL Bose gas energy is a monotonically increasing function of
g1D. Also, it approaches asymptotically to Eq. (2.103) as g1D →∞. According
to Eq. (2.116), the LL Bose gas compressibility is a monotonically decreasing
function of g1D. Therefore, K ≥ 1. When g1D ∼ 0, the LL energy is well
approximated by the 1D, weakly-Interacting Bose gas energy Eq. (2.70), and
the compressibility, as the Luttinger parameter, diverge as g1D → 0.
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3
Weakly-Interacting Bose Gas in

Multi-Rods

In this chapter, we report the analysis of the physical properties of a 1D,
weakly-interacting Bose gas constrained in a multi-rod, periodic structure. The
results include an analytical treatment of the GPE, as well as numerical results
obtained for the ground state properties. Also, we give a brief review of experi-
mental methods used to manipulate quantum gases.

3.1. Manipulation of Quantum Gases

3.1.1. Magnetic Traps

Typically, atomic quantum gases are confined by inhomogeneous magnetic
fields. By exploiting the Zeeman effect to subject the atoms to the action of
a spatially varying potential, experimental setups can trap atoms around a fi-
nite region where the field has a minimum. A simple configuration is the 3D
quadrupole field since the field vanishes at its center; this point acts as the cen-
ter of the trap for the atoms. Despite its simplicity, pure quadrupole fields are
not efficient to trap BECs due to Majorana losses [44, 45] that occur around the
minimum of the field. With the aid of extra fields, the field at the center of the
quadrupole trap is non-zero anymore, avoiding Majorana losses. For instance,
in a time-averaged orbiting potential trap (TOP), this is achieved with a rotat-
ing uniform field superimposed to the quadrupole one; this was the type of trap
used by Anderson et al. [1] to produce a BEC in 1995. A different approach
is followed by the Ioffe-Pritchard trap, which uses two sets of coils to create
the fields that confine the atoms harmonically in the three spatial directions. An
extra pair of coils produces a static bias field that shifts the minimum of the
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potential without disturbing the harmonic fields. The intensity of the fields can
be controlled to produce, for instance, a “cigar-shaped” trap, as well as almost
spherical traps. Magnetic traps can be combined with laser beams in an ex-
perimental setup to form a magneto-optical trap (MOT) that, besides trapping
atoms, cools them (Doppler cooling).

3.1.2. Optical Lattices

The interaction between an atom and an oscillating electric field E(r, t)
induces a dipole moment d in the atom. This interaction creates an energy
shift on the ground state of the atom which behaves as an effective trapping
potential [44] Vdip(r) = −1

2α(ω)|E(r)|2, where α(ω) is the real part of the
atomic polarizability, ω is the angular frequency of the electric field, and |E(r)|2
is the intensity of the laser light proportional to the squared magnitude of the
electric field.

The overlapping of two counter-propagating laser beams with the same
wavelength λOL in opposite directions generates a standing wave with a pe-
riod λOL/2 where the atoms can be trapped. The potential of this optical lattice
has a magnitude

VOL(z) = sER sin2(kOLz), (3.1)

where kOL = 2π/λOL is the wavenumber of the laser beams. The constant ER
is known as the recoil energy of the system,

ER ≡
~2k2

OL
2m , (3.2)

and is the natural energy scale in optical traps experiments. The parameter s
measures the lattice depth. Geometrically, this 1D lattice creates a periodic ar-
ray of 2D regions where the atoms get confined. Two potentials like Eq. (3.1)
in orthogonal directions create an array of potential 1D tubes, while three or-
thogonal standing waves create a 3D cubic lattice [10]. Harmonic traps can be
superimposed to the optical potentials to create more complex structures.

Optical lattices are versatile tools because of the high degree of tunability
of their features, as well as the capability to adjust the magnitude of the in-
teractions between particles via Feshbach resonances [88]. For example, the
angle of interference between beams can be adjusted to create complex optical
structures, like Kagomé lattices [89, 90]. Also, they have been used to observe
the superfluid to Mott insulator transition in three and one-dimensional Bose
gases [91, 92], as well as the experimental realization of the Tonks-Girardeau
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3.2. Ideal Bose Gas in Multi-Rods

Bose gas [21, 22]. On the other hand, the connection between high-TC super-
conductivity [93–95] and the Fermi-Hubbard model opens an opportunity to
study the former using ultracold fermionic gases. Previous examples (among
many others) show why optical lattices are considered an ideal platform for
simulations of quantum many-body problems [10–12].

3.1.3. Magnetic Micro-Traps

The magnetic traps described in the previous section use macroscopic coils
to generate magnetic fields. An alternative approach is building magnetic micro-
traps, i.e., a set of microscopic conducting structures where electric currents
flow, creating magnetic fields used to confine cold atoms very close to the sur-
faces of the conductors. The micro-trap concept can be enhanced by using the
mature technology of semiconductors and the advances in cold atoms research.
The result is a solid-state device where a BEC can be stored and manipulated.
Also, micro-traps can have almost-arbitrary shapes limited only by the struc-
ture of the conductors. The final result is a compact, portable, and flexible setup
commonly known as atom chip. First atom chips were realized in 1999 [5–7],
and the first Bose-Einstein condensates on this kind of devices were realized
only a couple of years later [8, 96]. Initially, only neutral bosonic atoms where
used; later, the universe of neutral particles expanded to include fermionic par-
ticles, molecules, and Rydberg atoms. Atom chips have also been used in the
study of degenerate 1D Bose gases [14–18]. For a more in-depth review of this
subject, see Refs. [97, 98].

3.2. Ideal Bose Gas in Multi-Rods

Let us consider a 1D ideal Bose gas constrained within a periodic lattice
composed by multiple rods. These rods can be seen as permeable barriers of
width b separated by a distance a one from each other, distributed along the z
direction. In order to model the rods, we use a Kronig-Penny potential [99]
in the z direction composed of potential barriers of width b and separation a.
The period of the potential is l ≡ a + b. The height of the potential barriers
V0, whose magnitude is inversely proportional to the barrier permeability, is a
measure of how probable the tunneling of the bosons through the rods is.

Since we are considering noninteracting particles, the problem reduces to
solve the one-particle Schrödinger equation

Ĥ0Ψ(z) = εΨ(z), (3.3)
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Figure 3.1: Schema of a 1D Bose gas in multi-rods.

where the one-particle Hamiltonian for the z coordinate Ĥ0 is defined as

Ĥ0 = − ~2

2m
∂2

∂z2 + VKP(z). (3.4)

with m the particle mass and VKP(z) the Krong-Penney potential,

VKP(z) = V0

∞∑
j=−∞

(
Θ(z − jl + a)−Θ(z − (j + 1)l)

)
, (3.5)

where Θ(z) is the Heaviside step function (see Fig. 3.2). Since the KP potential
is periodic, the solutions of the differential equation (3.3) are Bloch states,

Ψ(z) ≡ eikzφk(z), (3.6)

with ~k being the quasi-momentum of the particles and φk(z) a periodic func-
tion with the same period of the potential, i.e.,

φk(z + l) = φk(z). (3.7)

If we substitute Eq. (3.7) in (3.3), we arrive at a similar equation for φk(z),

Ĥ
(k)
0 φk(z) = εkφk(z), (3.8)

where the energy εk, which depends on k, is the eigenvalue of the one-particle
“shifted” Hamiltonian

Ĥ
(k)
0 = ~2

2m(−i∂z + k)2 + VKP(z), (3.9)

where we use the notation ∂z ≡ ∂/∂z.
In order to solve Eq. (3.8), we impose suitable boundary conditions: con-

tinuity of the wave function and its derivative at the edges of the barriers, as
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3.2. Ideal Bose Gas in Multi-Rods

−2l −l 0 l 2l
z →

V
K

P
(z

)
→ V0

Figure 3.2: Kronig-Penney potential schematic.

well as the periodicity condition. Then, the energy εk is given by the implicit
relation [99],

κ2 − α2

2ακ sinh(κb) sin(αa) + cosh(κb) cos(αa) = cos[k(a+ b)], (3.10)

where ~κ =
√

2m(V0 − εk) y ~α =
√

2mεk. Equation (3.10) is the well-known
Krong-Penney dispersion relation for the energy. In general, it can not be solved
analytically, so we have to resort to numerical techniques to estimate the values
of the energy for a given quasi-momentum k. The energy spectrum of a particle
subject to a nonzero KP potential is not continuous. We can understand this
directly from Eq. (3.10): only the right-hand side depends on the quasimomen-
tum k, while the left-hand side depends only on the energy εk. For a given value
of k, the right-hand side of (3.10) is a number in the interval [−1, 1]; therefore,
only the values of εk that make the left-hand side to fulfill this constraint are
accessible. There are values of the energy that never satisfy Eq. (3.10). The
final result is that for each value of k, Eq. (3.10) defines a complete family of
eigenstates φk,j(z) with their corresponding energies εk,j , j = 1, 2, 3, . . .. Then,
the energy spectrum of the particles is formed by intervals of allowed energies,
which we recognize as the energy bands of the system (labeled by the index j),
separated by regions of inaccessible energies, known as forbidden bands. The
shape of the energy bands is fixed by the potential parameters: magnitude V0,
a, and b.

The energy as a function of the potential magnitude for b = a is shown in
Fig. 3.3a. The colored regions represent the allowed energies. We can see how
the energy spectrum starts as a continuum, i.e., there are no forbidden bands
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Figure 3.3: (Color online) Energy spectrum (in units of ER = ~2π2/2ml2,
see Section 3.4) for a square lattice b = a. (a): as a function of the potential
magnitude V0. The filled regions indicate the allowed energy bands, while the
blank regions indicate the forbidden bands. The dashed line indicates εk = V0.
(b): as a function of the quasimomentum k in the first Brillouin zone. The solid
line shows the first three energy bands of the free, IBG. Dotted, dash-dot, and
dash-dot-dot lines correspond to V0 = 5, 10 and 20 times ER, respectively.

(white regions) when V0 is zero. As V0 increases, the forbidden regions appear,
and the continuum spectrum becomes a succession of allowed bands separated
by forbidden bands. When the potential magnitude becomes large enough, the
bands tend to collapse as energy levels very close to the limiting value

ε(j) = (1 + r)2j2
(
~2π2

2ml2

)
, (3.11)
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where r is lattice ratio of the potential,

r ≡ b

a
, (3.12)

and j is the band index. In Fig. 3.3b, we show the first three bands of the spec-
trum as a function of the quasimomentum k in the first Brillouin zone (BZ). We
can see how the bands become more narrow as the potential height V0 increases,
in agreement with results shown in Fig. 3.3a.

3.3. Bloch States of the Gross-Pitaevskii Equation

In Section 2.5, we have shown that the GPE is the primary tool to study
the properties of the 1D Bose gas in the weakly-interacting regime at temper-
atures very close to absolute zero. We now want to study the properties of the
interacting Bose gas in multi-rods, particularly the stationary states of the GPE.
Therefore, we have to solve Eq. (2.80) with an external KP potential, i.e., with
the Hamiltonian

ĤGP1D = − ~2

2m
∂2

∂z2 + VKP(z) + g1D |Φ1D(z)|2 (3.13)

subject to the normalization condition (2.82). Despite being a nonlinear equa-
tion, Eq. (2.80) with Hamiltonian Eq. (3.13) has solutions in the form of Bloch
states,

Φ1D(z) = eikzφk(z), (3.14)

where φk(z) is a periodic function with the same period than the KP potential,

φk(z + l) = φk(z), (3.15)

and k is the quasimomentum of the bosons. Direct substitution of (3.14) in
Eqs. (3.13) and (2.80) lead us to the stationary GPE equation for φk(z),

Ĥ
(k)
GP1D

φk(z) = µ
(k)
1Dφk(z), (3.16)

with

Ĥ
(k)
GP1D

(z) = ~2

2m(−i∂z + k)2 + VKP(z) + g1D |φk(z)|2 , (3.17)

where we have used that for Bloch states |Φ1D(z)|2 =|φk(z)|2. Since the multi-
rod system is periodic, and the unit cell repeats over and over, the total number
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3. WEAKLY-INTERACTING BOSE GAS IN MULTI-RODS

of particles is infinite. We redefine the normalization condition (2.77) in a way
that it makes sense,∫ l

0
|φk(z)|2 dz = Ncell, (3.18)

where Ncell is the average number of bosons in the condensate over a length
equal to the potential period such that the average linear density of the system
becomes

n1 ≡
Ncell

l
. (3.19)

The energy of our system, analogously to Eq. (2.76), is

E[Φ1D] = ~2

2m

∫ l

0

(
|(−i∂z + k)φk(z)|2

)
dz+∫ l

0

(
Vext(z) |φk(z)|2 + g1D

2 |φk(z)|4
)
dz. (3.20)

To solve the GPE with the corresponding boundary conditions, we express
the function φk(z) in complex form,

φk(z) =
√
n1(z)eiS(z), (3.21)

where the function S(z) represents the phase and n1(z) ≡ |φk(z)|2 = |Φ1D(z)|2
is the particle density profile as a function of z.

Let be R(z) =
√
n1(z); we substitute Eq. (3.21) in Eq. (3.16) and separate

the real and imaginary parts of the resulting expression. The real part is

− ~2

2m

(
∂2
zR(z)−R(z)

(
∂zS(z)

)2
)

+(
~2k

m
∂zS(z) + ~2k2

2m + VKP(z)
)
R(z) + g1DR(z)3 = µ

(k)
1DR(z), (3.22)

while the imaginary part becomes

− ~2

2m
[
2
(
∂zR(z)

)(
∂zS(z)

)
+R(z)∂2

zS(z)
]
− ~2k

m
∂zR(z) = 0. (3.23)

Equation (3.23) can be solved by separation of variables. First, we collect com-
mon terms, arriving at

R(z)∂2
zS(z) = −2

(
∂zR(z)

)(
k + ∂zS(z)

)
. (3.24)
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3.3. Bloch States of the Gross-Pitaevskii Equation

Under the change of variable u(z) = ∂zS(z), we can apply the separation of
variables. The resulting differential equation for the phase is

∂zS(z) = −k + α

n1(z) , (3.25)

where α is a constant of integration whose value is fixed by the boundary con-
ditions of the problem. Hence, the phase becomes

S(z) = S0 − kz +
∫ z

0

α

n1(z′) dz
′, (3.26)

where S0 = S(z = 0) is a constant of integration. Despite its simplicity,
Eq. (3.26) is coupled with (3.22), as it depends on n1(z) = R(z)2. We substitute
Eq. (3.25) in (3.22); after rearranging terms, we obtain a nonlinear differential
equation for R(z):

−∂
2R

∂z2 + α2

R(z)3 + 2m
~2

(
VKP(z)− µ(k)

1D

)
R(z) + 2mg1D

~2 R(z)3 = 0. (3.27)

In order to proceed further, we have to take into account the concrete func-
tional form of VKP(z), following the work of [47, 100]. The KP potential is a
piecewise function with two constant values: V0 in the region occupied by the
barriers, and zero in the wells region. First, we focus on the barriers region
where VKP(z) = V0. If we multiply Eq. (3.27) by ∂zR(z) and integrate, after
some algebraic steps, we arrive at

−1
2

(
∂R

∂z

)2

− α2

2R(z)2 + m

~2 (V0 − µ1D)R(z)2 + mg1D

2~2 R(z)4 = σ, (3.28)

with σ being a constant of integration. Finally, multiplying by −8R(z)2 and
rearranging terms, we arrive at(

dR2

dz

)2

= 4
[
mg1D

~2 R(z)6 + 2m
~2 (V0 − µ1D)R(z)4 − 2σR(z)2 − α2

]
. (3.29)

Here we have changed the partial derivatives to total derivatives as the equation
only depends on z. Equation (3.29) is equivalent to the differential equation for
the density(

dn1

dz

)2

= 4mg1D

~2 n3
1(z) + 8m

~2 (V0 − µ1D)n2
1(z)− 8σn1(z)− 4α2, (3.30)

39



3. WEAKLY-INTERACTING BOSE GAS IN MULTI-RODS

since n1(z) = R(z)2.
Equations (3.26) and (3.30) are equivalent to Eq. (3.16) for φk(z). They

determine the complete wave function of the ground state of the system that
is a Bloch state with quasimomentum k. Indeed, we have to supplement these
equations with the adequate boundary conditions in order to obtain the concrete
density profile, the energy of the system, and the chemical potential, among
other properties. Also, we should remember that we have arrived at this equa-
tion by considering that we are in the region occupied by the barriers, where
VKP(z) = V0. In the wells region where the potential is zero, the corresponding
ODE for the density has the same structure as Eq. (3.30), but we have to set
V0 = 0, so only the quadratic term in n1(z) changes.

Despite the nonlinear nature of Eq. (3.30), it has an analytical solution for
n1(z) given in terms of the Jacobi Elliptic functions [101],

n1(z) = n1(off) + 4mjλ
2 sn2

√4mjg1D

~2 λ(z − zoff) |mj

 , (3.31)

where sn(u|mj) is the Jacobi elliptic sine function of argument u in canonical
form. The factor mj is a real number known as the elliptic modulus; the factors
n1(off) and zoff are constant offsets on the value of the density and the position,
respectively, while λ is a parameter that fixes the amplitude of the spatial density
variations.

Before proceeding further, we should note that constant α has an important
physical meaning. Following the definition of the current density for a station-
ary state,

j(z) = − i~
2m (Φ∗1D(z)∂zΦ1D(z)− Φ1D(z)∂zΦ∗1D(z)) , (3.32)

we can show that, for a Bloch state Eq. (3.14), the current density is

j(z) = ~
m
n1(z)

[
k + ∂zS(z)

]
= ~α

m
. (3.33)

Then, the constant α is proportional to the current density corresponding to the
order parameter.

3.3.1. Boundary Conditions

The expression for the density Eq. (3.31) is valid only for a constant po-
tential. Because of the piecewise nature of the KP potential, we will have two
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3.3. Bloch States of the Gross-Pitaevskii Equation

solutions for φk(z): one within the wells (w) region and another within the
barriers (b) region. Then,

φk(z) =

φb
k(z) =

√
nb

1(z)eiSb(z), VKP(z) = V0

φw
k (z) =

√
nw

1 (z)eiSw(z), VKP(z) = 0
. (3.34)

These functions must match smoothly at the interface of each potential barrier.
Also, they have to be periodic with the same period as the potential. It follows,
from Eq. (3.34), that each region has a set of parameters n1(off), λ, mj, and zoff
that fix the density profile (3.31). The relationship between these parameters
will depend on the (suitable) boundary conditions imposed on the system. We
can exploit the periodicity of the multi-rod system and φk(z) and focus our
analysis on a single period of the lattice. This period extends from z = −b to
z = a, while the interface of the potential barriers locates at the origin z = 0.
A picture of this situation is shown in Fig. 3.4.

We start by imposing that φk(z) must be continuous at the barrier interface,
i.e., at z = 0. Accordingly,

φb
k(0) = φw

k (0). (3.35)

This equality yields the following conditions:

nb
1(0) = φw

k (0), (3.36)

Sb
0 − Sw

0 = 2nsπ, ns ∈ Z. (3.37)

The first of these equations corresponds to the continuity of the density profile at
the barrier interface. The second condition forces the phase difference between
the function in one side and on the other side to be an integer multiple of 2π.

−b 0 a
z →

φw
k (z)φb

k(z)

Figure 3.4: Identification
of the periodic function
φk(z) of the Bloch state
by region. The darker re-
gions correspond to the
potential barriers (super-
script “b”), while the
blank regions correspond
to the wells (superscript
“w”).
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The periodicity of φk(z), Eq. (3.15), can be stated as

φb
k(−b) = φw

k (a), (3.38)

which in turn corresponds to the conditions

nb
1(−b) = nw

1 (a), (3.39)

k(a+ b) = 2nsπ +
∫ 0

−b

αb

nb
1(z′) dz

′ +
∫ a

0

αw

nw
1 (z′) dz

′. (3.40)

In these equations, αb is the current density in the barriers region, and αw is the
current density in the wells region.

Next, we impose the condition that the derivative of φk(z) must be continu-
ous at the interface of the barriers,

∂zφ
b
k(0−) = ∂zφ

w
k (0+). (3.41)

This condition results in the following conditions,

∂zn
b
1(0−) = ∂zn

w
1 (0+), (3.42)

αb = αw. (3.43)

The first condition corresponds to the continuity of the derivative of the density.
The second condition follows from the continuity of the derivative of the phase
S(z); according to Eq. (3.33), it is nothing more than the conservation of the
current for a stationary state.

Finally, the derivative of φk(z) must be periodic too, which implies that

∂zn
b
1(−b) = ∂zn

w
1 (a). (3.44)

The periodicity of the phase derivative, Eq. (3.25), follows from Eq. (3.44) and
Eq. (3.43). Thus, Eqs. (3.35) to (3.44), together with the normalization condi-
tion

Ncell =
∫ 0

−b
nb

1(z) dz +
∫ a

0
nw

1 (z) dz (3.45)

define the full set of solutions for the wave function of the condensate.
We can use the definition and the properties of the Jacobi elliptic functions

in order to find a closed-form expression for the normalization condition. Fol-
lowing the notation of [101], we obtain that the integral of the density Eq. (3.31)
is ∫ z

0
n1(z′) dz′ = (n1(off) + 4λ2)z −

4λ√
4mg1D/~2

×
(
E(u(z)|mj)− E(u(0)|mj)

)
, (3.46)
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where E(u(z)|mj) is the incomplete elliptic integral of the second kind of argu-
ment u(z) =

√
4g1Dm/~2λ(z − zoff) in canonical form [101]. Equation (3.46)

corresponds to the average number of particles in the interval [0, z]. Please refer
to the Appendix A additional details about the Jacobi elliptic functions and el-
liptic integrals. Then the normalization condition can be expressed in terms of
Eq. (3.46), where each of the constants should be labeled to indicate the interval
where the integration of n1(z) is being carried out.

We proceed similarly with the condition Eq. (3.40). First, the integral in the
r.h.s. of Eq. (3.26) is, according to [101],

∫ z

0

dz′

n1(z′) = 1√
4mg1D/~2λn1(off)

×

(
Π (nj;u(z)|mj)− Π (nj;u(0)|mj)

)
, (3.47)

where Π(nj;u(z)|mj) is the incomplete elliptic integral of the third kind of order
nj = −4mjλ/n1(off). With this result, Eq. (3.40) can be expressed in terms of
Eq. (3.47), with the correct labeling for the density.

3.4. Ground State Density Profile

Up to this point, we have found analytic expressions for the density profile,
phase, and normalization condition of the condensate. Also, we established the
boundary conditions that the wave function of the condensate must satisfy. In
principle, by solving the nonlinear set of equations (3.35)–(3.44), we can find
the unknowns that fix the density profile Eq. (3.31) such that φk(z) is correctly
normalized. However, applying this procedure is not an easy task because of the
complex dependence of the Jacobi elliptic functions on its arguments. A more
convenient and robust approach to calculate the wave function is to use nonlin-
ear finite differences [102] on Eq. (3.16). The method is applied by imposing
periodic boundary conditions Eq. (3.38), as well as the normalization condition
Eq. (3.18).

A remark on energy units: we know that l (the potential period) is the dis-
tance between the midpoints of any two consecutive barriers, as well as the
distance between the midpoints of two consecutive wells. Making an analogy
with an optical lattice, we can identify the recoil energy of our multi-rod system
as

ER ≡
~2π2

2ml2 , (3.48)
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which is equal to the recoil energy of an optical lattice with period l follow-
ing Eq. (3.2). In this way, Eq. (3.48) becomes the natural energy scale of our
system. On the other hand, we establish the base on which our system can be
used to describe the physics of interacting Bose gases confined in a 1D optical
lattice.

We start by calculating the density profile n1(z) = |φk(z)|2 of the ground
state, k = 0, of a Bose gas with repulsive interactions (positive g1D). In
Fig. 3.5a, we show the density profile for a square lattice b = a (r = 1) of
height V0 = 5ER. We have plotted the density profile for the IBG, as well
as for g1Dn1 = 0.5, 1, 2, and 3 times V0. Results show that the density pro-
file changes notoriously concerning the IBG density as the interaction strength
increases. For all cases, the density is maximum at the well’s midpoint and
minimum at the center of the barrier. Also, as the interaction strength increases,
the density profile becomes flatter. We see an evident competition between the
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Figure 3.5: Ground state density profile for a square lattice for several values of
the repulsive interaction strength. The dark regions indicate the location of the
potential barriers.
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repulsive potential barriers and the repulsive force between bosons. When the
potential repulsion dominates, there is a notorious localization of the particles
in the wells, which is maximum for the IBG. On the other hand, as the repulsion
between particles increases, the localization diminishes, and the density profile
becomes flatter. However, there is still a depletion of the condensate inside the
barriers, which eventually disappears for g1Dn1 � V0, when the (normalized)
density profile takes an almost constant value around unity.

We can change the geometry of the KP potential, so we no longer have
a square lattice. For example, we have calculated the density profile for two
nonsquare lattices keeping the height of the barriers fixed at V0 = 25ER. In
Fig. 3.6a, we have a lattice with b = 0.5a, which means that the barriers are
thinner than the wells. We see a density profile with similar characteristics than
the density profile of the square lattice Fig. 3.5b; however, since the barriers are
smaller, the size of the depleted region is reduced, and the condensate is slightly
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Figure 3.6: Ground-state density profile for a square lattice for several values
of the repulsive interaction strength. The dark regions indicate the location of
the potential barriers.
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less localized (the peak density is lower than in Fig. 3.5b). In Fig. 3.6b, we show
the density profile for a lattice with b = 2a, i.e., the barriers are broader than
the wells. Beyond the evident similarities with Fig. 3.6a, we see an even greater
localization when the barriers are wider than the wells, a direct consequence of
the dominant repulsive effect of the external potential. Finally, as in the case
of the square lattice, increasing the interaction strength makes the density more
uniform.

3.5. Chemical Potential and Nonlinear Energy Spectrum

Solving the Gross-Pitaevskii equation gives us, at first instance, both the
chemical potential µ1D and the wave function of the condensate, Φ1D(z). Then,
we can calculate the total energy of the system from Eq. (3.20). We can find
a direct relationship between the chemical potential and the total energy from
Eq. (3.16). If we multiply both sides of Eq. (3.16) by φ∗k(z) and integrate over
a single period of the potential, we find that

µ1D = 1
Ncell

∫ l

0
φ∗k(z)Ĥ(k)

GP1D
φk(z) dz, (3.49)

result which we obtain after using the normalization condition Eq. (3.18). The
term on the r.h.s. of Eq. (3.49) results to be very similar to the r.h.s. of Eq. (3.20).
It is not hard to prove that

µ1D = E[Φ1D]
Ncell

+ g1D

2Ncell

∫ l

0
n2

1(z) dz, (3.50)

where the Bloch state Φ1D(z) has a quasimomentum k. Since g1Dn1 is positive,
the chemical potential is always greater than the energy per particle. Also, when
the interaction between the particles vanishes, µ1D reduces (as expected) to the
energy per boson, which is precisely the chemical potential of a noninteracting,
ideal Bose gas.

We saw in Fig. 3.3b that the energy spectrum of the ideal Bose gas has bands
of accessible energies, separated by forbidden bands. How the presence of in-
teractions changes the spectrum? We can look at the results in Fig. 3.7a, where
we have plotted the energy per particle as a function of the quasimomentum
k for the IBG (dashed line), as well as the energy for an interacting gas with
g1Dn1 = 0.5ER (solid line), in a lattice with V0 = 5ER and b = a. Also, we
plotted the chemical potential (dash-dot-dot line) of the interacting gas. For this
particular example, the interaction factor g1Dn1 is relatively small compared to
the lattice height. Accordingly, the energy bands of the interacting gas look
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3.5. Chemical Potential and Nonlinear Energy Spectrum

slightly distorted concerning the bands of the IBG. Also, a small offset appears
due to the interactions. The chemical potential does not change noticeably ei-
ther.

When the interaction becomes more significant, such as the example shown
in Fig. 3.7b where g1Dn1 = 5ER (as large as the lattice height),there is a re-
markable change in the bands of the interacting gas. First, the offset between
the interacting gas energy and the IBG energy becomes larger. Second, loops
appear in the energy bands at zero quasimomentum for the second band, and
also at the edges of the first BZ for the first and third band. The presence of
loops (commonly known as swallowtails) is a feature shared with other peri-
odic structures such as the optical lattice potential [103] and the Dirac comb
potential [104, 105].

E. Muller explained [106] the swallowtail phenomena origin in terms of the
response of a superfluid 1D Bose gas within a periodic lattice to an external
constant force field. In this situation, we start with a system in rest regarding
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Figure 3.7: Nonlinear energy spectrum. The dashed line indicates the energy
bands of the IBG. The solid line is the nonlinear energy spectrum.
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3. WEAKLY-INTERACTING BOSE GAS IN MULTI-RODS

the reference frame of the lattice, i.e., zero quasimomentum k (which lies in
the lowest band of the energy spectrum). Then we apply a small constant force
field additionally to the lattice potential [49]. For a Bose gas with relatively
small interactions (like the one shown in Fig. 3.7a), the quasimomentum will
increase with time. At the same time, the BEC energy will follow (under the
adiabatic approximation) the solid curve that represents the band. Beyond the
first BZ, the energy band repeats periodically; therefore, the group velocity of
the condensate,

vg ≡
∂Ek
∂k

, (3.51)

will be periodic too. This phenomenon is known as Bloch oscillations [107,
108]. For a BEC with relatively strong interactions (like the one shown in
Fig. 3.7b), the superfluid can screen out the lattice up to an extent. Then its
energy spectrum will resemble more like the free Bose gas energy spectrum.
As the gas accelerates, its energy will follow the path of the energy band; when
its velocity exceeds the critical velocity of superfluidity, the gas can not screen
the potential anymore, and the band terminates at some k, taking the character-
istic swallowtail shape.

The loops are a consequence of the appearance of two local minima sepa-
rated by a local maximum in the energy landscape defined by Eq. (3.20). To
understand this change, we should remember that the states φk(z) that sat-
isfy Eq. (3.16) subject to Eq. (3.18) are minimizers of the energy functional
Eq. (3.20). When the interaction strength g1Dn1 is small compared with V0,
only one of such states exist, so the band has the typical shape that resembles
the IBG bands. However, as the interaction increases, two local minima may
appear for a single k value, which must be separated by a local maximum for
purely topological reasons.

Regarding our system, a 1D Bose gas with contact-like interactions at zero
temperature is a Lieb-Liniger Bose gas, which is a Luttinger liquid and also is a
superfluid. Hence the applicability of the previous explanation about the origin
of the swallowtails to our system is justified.

3.6. Compressibility

The compressibility it directly related to the chemical potential through the
relation

κ−1 ≡ n1
∂µ1D

∂n1
(3.52)
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3.6. Compressibility

for a fixed k. It is an important quantity since it is required to calculate the
sound velocity in the condensate (as we will see in Section 3.7). In Fig. 3.8, we
show results of the chemical potential and the compressibility κ for the ground
state k = 0 of a square lattice. Figure 3.8a shows both properties as functions
of the interaction strength g1Dn1, while Fig. 3.8b shows the dependence as a
function of the lattice height V0.

First, we focus on Fig. 3.8a, where we see that µ1D is a monotonically in-
creasing function of g1Dn1. Also, we note that larger values of V0 increase the
value of µ1D further. At zero g1Dn1 (IBG), all the curves tend to group as V0
increases. This behavior is an expected result, since for the IBG, the chemical
potential is the energy of the ground state, and we have seen in Section 3.2 that
as V0 grows, the ground state energy approximates to the energy level 4ER ac-
cording to Eq. (3.11). Significant differences appear at intermediate values of
g1Dn1 when it is less or similar than V0, but not greater. For g1Dn1 > V0, we
appreciate that the chemical potential grows linearly with the interaction factor.
Analytically, we can analyze this situation by looking at the density profiles of
the gas in Fig. 3.5, where we can see that as the integration strength increases,
the profiles become flatter. Then, for g1Dn1 � V0, the kinetic energy term, i.e.,
the term with the derivative in the GPE Eq. (3.16), will be negligible concerning
the sum of the external potential and the interaction terms. The GPE reduces to

(
VKP(z) + g1D|φk(z)|2

)
φk(z) = µ1D(z)φk(z), (k = 0), (3.53)

which has the solution

n1(z) = |φk(z)|2 = (µ1D − VKP(z)) /g1D, (k = 0). (3.54)

The normalization condition Eq. (3.18) fixes the chemical potential. Integrating
both sides of Eq. (3.53) over one potential period, we find the result

µ1D = g1Dn1 + r

1 + r
V0, (k = 0). (3.55)

The assumption under which we neglect the kinetic energy term in the GPE is
commonly known as the Thomas-Fermi (TF) approximation. It predicts that the
energy to add a particle to the trapped gas is equal to the chemical potential of a
free, uniform Bose gas with the same average density plus a constant term aris-
ing from the trapping potential VKP(z). Chemical potential results in Fig. 3.8
confirm this prediction.

Results in Fig. 3.8b show that we have infinite compressibility for zero
g1Dn1, precisely as an IBG at zero temperature. At nonzero g1Dn1, we note
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3. WEAKLY-INTERACTING BOSE GAS IN MULTI-RODS

a reduction of the compressibility concerning the free Bose gas (solid line),
which occurs mainly because of the repulsive interaction between the particles.
The increase of the external potential, which is repulsive too, reduces the com-
pressibility even further. This effect manifests more strongly in the intermediate
regime of interactions. When g1Dn1 � V0, all the curves tend to gather around
the expected result κ−1 = g1Dn1 of the free Bose gas, which is the result pre-
dicted straightforwardly by the TF approximation from substituting Eq. (3.55)
in Eq. (3.52).

Figure 3.8c shows the chemical potential as a function of the lattice height
V0. Each curve corresponds to a different value of g1Dn1 (see figure caption).
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Figure 3.8: Chemical potential and compressibility for the ground state k = 0
of a square lattice b = a. (a) and (b): as a function of the interaction strength.
The solid line corresponds to the free gas. Dashed lines, from top to bottom,
correspond to lattice heights V0 = 25, 15, 10 and 5 times ER. (c) and (d): as a
function of the lattice height. The solid line corresponds to the noninteracting
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2.5 times ER.
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3.7. Sound Velocity

For the IBG (solid line), we have the same results as those shown in Fig. 3.3b,
i.e., the chemical potential (which is equal to the energy of the ground state)
tends to the value 4ER as V0 increases. We can see that all of the curves start
at g1Dn1 when the lattice height is zero since the gas is free, and the chemical
potential follows the relation Eq. (2.71). For intermediate values of g1Dn1, the
µ1D shows a similar behavior as the IBG. However, as the interaction approx-
imates to V0 or becomes larger (for instance, for g1Dn1 = 25ER), we can see
a clear linear dependence of µ1D on V0 as predicted by the TF approximation.
The compressibility in Fig. 3.8d is infinite for the IBG.

3.7. Sound Velocity

For a Bose gas confined in a periodic structure like an optical lattice or a
multi-rod lattice, the microscopic nature of the lattice, as well as the action of
interactions between particles, have a direct influence on the energy spectrum
Ek. Around a minimum of the energy, these effects get absorbed by the effective
mass meff ,

m−1
eff ≡

1
~2

∂2Ek
∂k2

∣∣∣∣∣
k0

. (3.56)

On the other hand, that influence becomes reflected in the compressibility κ
as we have seen in Section 3.6. Both effects influence the sound velocity of a
Bose-Einstein condensate through the thermodynamic relation [50, 109]

cs = 1
√
κmeff

. (3.57)

For a free, 1D weakly-interacting Bose gas, the inverse of the compressibility
is κ−1 = g1Dn1, while meff = m due to the absence of a lattice, so the sound
velocity is given by the well-known relation [45]

cs(free) =
√
g1Dn1

m
. (3.58)

In the presence of the multi-rod lattice, we have to resort to numerical calcula-
tions to estimate both the effective mass and compressibility.

In Fig. 3.9a, we show the dependence of the inverse of effective mass as
a function of the interaction strength g1Dn1. The results show two behaviors:
first, for a fixed value of g1Dn1, the effective mass becomes larger as the lattice
height increases, since the bosons seem heavier due to the repulsive interac-
tion with the external potential. Second, for a fixed value of V0, the effective
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3. WEAKLY-INTERACTING BOSE GAS IN MULTI-RODS

mass raises as the interaction strength increases. This behavior reflects how the
repulsive interactions counteract the localization effect of the barriers, which
favors the tunneling of bosons since they seem lighter. The effective mass is a
monotonically increasing function of the interaction strength. For large enough
values of g1Dn1, it will approximate to the real mass m due to the screening
effect of the repulsive interactions between bosons on the lattice. In Fig. 3.9b,
we show the dependence of meff on the lattice height for g1Dn1 = 0.25, 0.5,
and one times ER. As expected, for zero lattice height, both effective mass and
true mass coincide, while for nonzero V0, the effective mass is a monotonically
increasing function of V0. The interaction strength causes a reduction of the
meff , an effect that we also see in Fig. 3.9a.

Finally, in Fig. 3.10, we show the sound velocity (relative to the sound ve-
locity of the weakly-interacting free Bose gas cs(free)) as a function of the lattice
height for g1Dn1 = 0.25, 0.5 and one times ER. We can see that, for zero lat-
tice height, the sound velocity is equal to cs(free) for every value of g1Dn1, as
expected. Then it becomes a monotonically decreasing function of the lattice
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Figure 3.9: The inverse of the effective mass for the Bose gas in a square lattice.
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Figure 3.10: Sound velocity for a square lattice.

height. Comparing results in Fig. 3.10 with those in Fig. 3.9b, we see that the
effective mass determines the qualitative behavior of cs. Increasing the magni-
tude of the repulsive interactions increases the sound velocity.

3.8. The Limit of Ultranarrow Barriers

A feature of the KP potential is that as the barriers become very narrow and
the barriers very height, but the product V0b remains constant, every potential
barrier approaches a Dirac-δ potential. Then, the KP potential becomes a suc-
cession of δ-functions centered in the positions jl, being j an integer and l the
KP potential period, as well as the separation between two contiguous deltas.
The expression Eq. (3.5) becomes the Dirac comb potential,

VDC(z) = V0b
∞∑

j=−∞
δ(z − jl), (3.59)

where the finite, constant value V0b is the area below a single barrier of the KP
potential. This area can be interpreted as a measure of permeability, as well
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3. WEAKLY-INTERACTING BOSE GAS IN MULTI-RODS

as the strength of a single δ barrier. When V0b becomes zero, we recover the
homogeneous, free interacting Bose gas. On the other hand, as the delta strength
increases and goes to infinite, the system resembles more and more succession
of independent boxes separated by infinite walls of width l.

Significant research exists on the thermodynamics of noninteracting Bose
gases subject to Dirac comb potential [110, 111]. Investigated properties in-
clude the Bose-Einstein condensation temperature and heat capacity. In the
context of interacting Bose gases, the Dirac comb potential has been studied
before; for instance, by [51, 104, 105, 112] 1. Beyond the theoretical interest
of the problem, in recent years, the experimental realization of the Dirac comb
potential has become a reality [36, 37] (more on this subject in Section 3.8.1).

The delta strength V0b is an energy times a length. As such, we can redefine
it as

V0b ≡ sERl, (3.60)

where ER is the recoil energy of the Dirac comb lattice, which, according to
Eq. (3.59), is equal to Eq. (3.48). Definition Eq. (3.60) may seem somewhat
arbitrary, but is very useful when we write Eq. (3.59) in terms of the scaled
length z′ = z/l as

VDC(z′) = sER

∞∑
j=−∞

δ(z′ − j), (3.61)

where we have used the scaling property of the delta function, δ(lz) = δ(z)/l.
Then, the factor s arises naturally as the strength of the δ barriers in ER units.
Furthermore, it establishes a connection between the KP parameters and the
DC potential. In Fig. 3.11a, we show the density profile for several values of
the interaction factor g1Dn1, as the multi-rod lattice approximates to the Dirac
comb limit. We have chosen V0 = 20ER and b = 0.05a, such that the delta
strength is s = 1, according to Eq. (3.60). The density profile shares some
characteristics with the one of square lattice in Fig. 3.5: is maximum in the
midpoint of the well, and it becomes flatter as g1Dn1 increases. However, in
the region occupied by the barriers, the density profile shows a quick variation
due to the relatively strong potential barriers. In Fig. 3.11b, we show analog
results when the height of the barriers increases to V0 = 200ER, and their width
reduces to b = 0.005a such that we still have s = 1. We see that the density
remains essentially unchanged, except at the barrier locations, where effectively
it has a peak that is consistent with the results for a Dirac comb potential. We

1In these works, the Dirac comb potential is incorrectly referred to as the KP potential.
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Figure 3.11: Ground state density profile for several values of the repulsive
interaction strength in the Dirac comb approximation. The dark regions indicate
the location of the potential barriers.

can conclude that for barriers of height V0 = 20ER or higher, and b = 0.05a or
thinner, the multi-rod structure is an excellent approximation of the Dirac comb
potential.

In Fig. 3.12a, we show the energy spectrum for the lattice with V0 = 20ER,
b = 0.05a, and g1Dn1 = ER, which can be considered a condensate with rel-
atively small interactions. We see that the interacting spectrum is very simi-
lar to the IBG spectrum, just slightly distorted and shifted to higher energies
because of the repulsive KP. As we further increase the interacting factor to
g1Dn1 = 10ER in Fig. 3.12b, the swallowtails appear at the center and edges
of the first Brillouin zone, just as in the case of the square lattice in Fig. 3.7. A
particular result for the Dirac comb potential obtained by [104] states that the
swallowtails appear if the interaction strength is g1Dn1 ≥ 2sER. Clearly, for
results in Fig. 3.12 where s = 1, this criterion is not met for g1Dn1 = ER, but it
is for g1Dn1 = 10ER.
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Figure 3.12: Nonlinear energy spectrum in the Dirac comb approximation. The
dashed line indicates the energy bands of the IBG. The solid line indicates the
nonlinear energy spectrum.

3.8.1. Ultranarrow Barriers to Study Subwavelength Optical Lattices

Atoms confined in optical lattices follow the spatial variations of the trap-
ping light intensity. Consequently, the spatial resolution of the lattices is limited
by the light wavelength λOL, which is of the order of hundreds of nanome-
ters. In recent years there has been an increasing interest, as well as techni-
cal advances, to generate optical lattices with subwavelength spatial structure
(SWOL) [36, 37, 113]; in these lattices, the barriers can reach widths less than
ten nanometers. The result of these efforts is a conservative 1D optical lattice
of the form

VOL(z) = ε2 cos2(kOLz)
[ε2 + sin2(kOLz)]2

ER, (3.62)

where kOL = 2π/λOL, ER is the recoil energy of the optical lattice given by
Eq. (3.2), and ε is a factor that depends on the optical fields used to produce
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the lattice. In the limit when ε � 1, this potential generates a lattice of narrow
barriers separated by a distance λOL/2, height ER/ε

2, and width ελOL/2π �
λOL/2. Effectively, this lattice is a very close representation of the Dirac comb
(DC) potential formed by a sequence of δ-function potential barriers.

We model the subwavelength optical potential in the limit when ε� 1 using
our multi-rod system in the Dirac comb limit. First, both potentials should have
the same period, i.e., l = a + b = λOL/2 = lOL. Since the height of the optical
potential and the average width are ER/ε

2 and ελOL/2π respectively, only ε is a
free parameter for the optical lattice. For the KP potential, the height V0 and the
barriers width b are free parameters. Second, we have to choose the parameters
such that the strength of both potentials, i.e., the area below the curve VOL(z)
within one period, and the product V0b for the KP potential, are equal.

Since a subwavelength optical potential with ε = 0.14 is analyzed in [37],
we will use this value to fix the parameters V0 and b of our multi-rod lattice.
On the other hand, we know that the width of a single barrier of Eq. (3.62) is
ελOL/2π (with λOL/2 the period of the lattice), then the barrier size is approx-
imately 0.0466(λOL/2). In the multi-rod model, we can get a similar relation
between the width of the barrier and the potential period with a lattice ratio
r = 0.05, which is the potential whose density profile and energy spectrum are
shown in Fig. 3.11a and Fig. 3.12, respectively. Finally, using b = r/(1 + r)l
and matching the strength of both potentials, we obtain V0 ≈ 74.3ER, which is
somewhat larger than the height 51.02ER of the subwavelength optical lattice
peak.

In Fig. 3.14a, we show the density profile of the system derived in the pre-
vious paragraph: V0 = 74.3ER and b = 0.05a. We show the results for the
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Figure 3.14: (a): Density profile for the KP lattice with ultranarrow barriers for
the IBG and g1Dn1 = 10 and 74.3 times ER. Results correspond to ε = 0.14 in
the subwavelength optical potential Eq. (3.62). The darker regions indicate the
location of the barriers. (b): The nonlinear energy spectrum of the same system
with g1Dn1 = 10ER. The dashed line indicates the energy bands of the IBG,
while the solid line shows the nonlinear energy spectrum.

noninteracting case, i.e., the IBG, as well as for g1Dn1 = 10 and 74.3 times ER.
For the interacting cases, it is clear the effect of the interactions, since the den-
sity profiles differ considerably from the IBG profile. In Fig. 3.14b, we show
the energy spectrum for g1Dn1 = 10ER where, although it differs significantly
from the IBG spectrum, swallowtails are not significant.

Finally, we would like to analyze under which conditions the density profile
and energy spectrum in Fig. 3.14 could be considered good predictions. We
know that any result obtained from the GPE will be accurate if the Bose gas
belongs to the weakly-interacting regime (at zero temperature). This condition
is fixed by Eq. (2.66), which is a high-density limit in a one-dimensional Bose
gas. We saw in Section 2.8 that the exact description of a 1D Bose gas with
contact-like, repulsive interactions is given by the Lieb-Liniger model [24] and
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3.8. The Limit of Ultranarrow Barriers

the LL parameter γ = mg/~2n1, which must satisfy γ � 1 in order to the GPE
picture to be valid.

We can relate the interaction factor g1Dn1 and the LL parameter γ through
the relation

γ = 1
2

(
n1l

π

)−2
g1Dn1

ER
(3.63)

where the dimensionless quantity n1l is also referred to as filling factor since it
quantifies the average number of particles contained in an interval with length
equal to a single potential period. However, we have to note that the l.h.s. of
Eq. (3.63) is a parameter of a model without external potential (LL), while the
r.h.s. is a parameter for a model with or without an external potential (KP), but
with a length scale l such that we can define ER following Eq. (3.2). When we
set the height of the multi-rod potential barriers to zero, we recover the free,
weakly-interacting Bose gas whose properties (as functions of n1l and g1Dn1)
can be compared to the LL model properties.

In Fig. 3.15, we show results for the energy of the exact LL model as a
function of the interaction parameter, for an average density (or equivalently, the
filling factor) n1 = 10, 100, 250 and 500 times l−1. We compare these results
with the ground state energy of the weakly-interacting, free Bose gas E/N =
g1Dn1/2. For the case n1 = 10l−1, results show a clear difference between
the exact LL and GPE results, which is a sign that for such low densities, the
predictions of the mean-field theory will not be accurate (in the interval of g1Dn1
analyzed). Results show that only in the high-density case n1 = 500l−1, the
GPE gives accurate results over the full interval of interaction g1Dn1. Higher
densities should provide results even more accurate. For n1 = 100l−1, we
can see small discrepancies between the GPE predictions and the LL theory.
Numerical results indicate that for n1 = 250l−1, the GPE and LL exact results
are almost identical, and it can be taken as a lower limit for suitable densities.
Greater values of n1 than 250l−1 are within the range of typical experimental
densities for Bose gases in the 1D regime [57, 114].

Finally, we show the expected ground-state energy of the Bose gas con-
strained within the SWOL (modeled as an ultranarrow multi-rod lattice) in
Fig. 3.15 by the solid, red line. The lattice raises the energy concerning the
free Bose gas, and its dependence is not linear with g1Dn1. Then, the observed
energy band structure of the gas for g1Dn1 = 10ER should be similar to the one
shown in Fig. 3.14b.

59



3. WEAKLY-INTERACTING BOSE GAS IN MULTI-RODS

0 5 10 15 20

g1Dn1/ER

0

5

10

E
/N

[E
R

un
it

s]

Lieb-Liniger, n1 = 10l−1

V0 = 74.3ER, b = 0.05a

Free Bose Gas (GP)

Lieb-Liniger, n1 = 500l−1

Lieb-Liniger, n1 = 250l−1

Lieb-Liniger, n1 = 100l−1

Figure 3.15: Ground-state energy as a function of the interaction strength for
the Lieb-Liniger model and the multi-rod model. The solid line corresponds to
the Bose gas subject to the multi-rod potential close to the Dirac comb limit.
The dotted line shows the mean-field results for a free, interacting Bose gas.
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4
Quantum Monte Carlo Methods

Solving the Schrödinger equation for a many-body quantum system is a
challenging problem. With the advent of electronic computers, it became possi-
ble to study the properties of the ground state of a quantum many-body system
using ab-initio methods, instead of analytical approximations to the solution of
the many-body Schrödinger equation. Among many techniques developed for
such a goal, there is a type of stochastic methods commonly known as Quan-
tum Monte Carlo (QMC) methods. Variants of these methods differ in the way
they solve the many-body problem; for instance, the Variational Monte Carlo
(VMC) employs the variational principle of quantum mechanics to give an up-
per bound to the ground state energy of a quantum system. In comparison, with
the Diffusion Monte Carlo (DMC) method, one can obtain the exact value of
the ground state energy, as well as other properties, by solving the Schrödinger
equation in imaginary time. Both VMC and DMC work for systems at zero tem-
perature, and mainly for the ground state, although obtaining some information
of excited states is feasible. To study systems at finite temperature, one can
use Path Integral Monte Carlo (PIMC), a method that uses the thermal density
matrix and Feynman’s path-integral formulation to obtain the system properties.

Since we want to study a quantum, 1D Bose gas at zero temperature, we
focus exclusively on the VMC and DMC methods.

4.1. The Quantum Many-Body Problem

Let us consider a system of N quantum, interacting particles of mass m
under the effect of an external potential, that interact between them through
pairwise interaction potential. In the coordinate representation, the Hamiltonian
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of this system is

Ĥ = − ~2

2m

N∑
i=1
∇2
ri

+
N∑
i=1

Vext(ri) +
N∑
i=1

N∑
j=i+1

Vint(ri − rj), (4.1)

where r is the position of a single particle, and the indexes i and j label each
one of them. The first term on the r.h.s of Eq. (4.1) is the total kinetic energy of
the system; the second one accounts for the energy due to the external, trapping
potential Vext(r) acting over the entire system; and the third one corresponds to
the interaction energy of the system.

Now, suppose that we want to obtain the stationary states of the Schrödinger
equation. We have to solve the equation

ĤΦn(R) = EnΦn(R) (4.2)

where Φn(R) and En are the eigenstate and eigenenergy, respectively, and
R = {r1, r2, . . . , rN} is the 3N -dimensional vector with the positions of the
particles. The first obstacle in this quest is immediate: obtaining exact solu-
tions to Eq. (4.2) generally unrealizable. On the other hand, most of the time,
we do not need all the solutions of Eq. (4.2), but the main goal is the study
about the ground state and its properties, so one’s effort can be focused on
finding Φ0(R) = 〈R|Φ0〉. Therefore, some assumptions valid under specific
conditions may be used, like in the case of the theory for weakly-interacting
Bose gases and the Gross-Pitaevskii (Gross-Pitaevskii) equation, which has a
special place in the research of dilute Bose gases. Another example is density
functional theory (DFT) [115] for electronic systems, and more recently, for
bosons [116, 117].

Knowing the ground state wave function of the system, we can obtain, in
principle, the expected value of any observable Ô:

〈
Ô
〉

Φ0
= 〈Φ0| Ô |Φ0〉
〈Φ0|Φ0〉

. (4.3)

The most common property is the ground state energy, i.e., the expected value
of the Hamiltonian:

E0 =
〈
Ĥ
〉

Φ0
= 〈Φ0| Ĥ |Φ0〉

〈Φ0|Φ0〉
. (4.4)

Even for the ground state, solving Eq. (4.2) is a difficult task, although
physicists have found analytic solutions for some specific systems in 1D ge-
ometries, like the Tonks-Girardeau gas [23], the Lieb-Liniger model [24], or the
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Calogero model [25]. In addition to the necessary work to find the ground state
Φ0(R), there is an evident difficulty in evaluating the expected value Eq. (4.3),
as it requires the evaluation of a multidimensional integral, which is not an easy
task either. One may resort to numerical techniques to make the task doable;
however, there is a trade-off between feasibility and ease of execution.

4.2. Monte Carlo Quadrature

Numerical evaluation of integrals in high dimensions is a hard problem.
Standard methods for evaluating integrals based on cartesian products of one-
dimensional quadrature rules suffer from the so-called curse of dimensionality,
that is, the computing time required to evaluate an integral in a d-dimensional
space (up to a required precision) grows exponentially with the dimension. A
robust alternative consists of using stochastic integration techniques known as
Monte Carlo quadratures, which depend on quasi-random numbers specially
generated to approximate an integral through an arithmetic-mean. Compared
to standard cartesian-product quadratures, stochastic methods may be less ac-
curate for low-dimensional integrals. However, they have a remarkable (and
valuable) property: their accuracy is independent of the dimension of the in-
tegrand. Accordingly, to integrate an arbitrary function, Monte Carlo methods
show an accuracy of orderO(N−1/2), whereN is the number of function evalu-
ations used to approximate the integral. To improve the accuracy of an integral
estimation by a factor of two, one has to evaluate the function four more times.
Nevertheless, they do not suffer from any curse of dimensionality, and that is
the reason why these are the most used methods to evaluate high dimensional
integrals.

The description of the Monte Carlo quadrature method is closely related to
the concept of expected value. Let us consider the function f : RN → R, and a
probability distribution function (pdf), g : RN → R. The expected value of the
function f(R), whereR ∈ RN is distributed according to g(R), is given by the
N -dimensional integral

〈f〉 =
∫
g(R)f(R) dR. (4.5)

The pdf g(R) is a function that is nonnegative and satisfies the normalization
condition,

1 =
∫
g(R) dR. (4.6)

This type of integrals frequently appears in quantum mechanics as it is a com-
mon task to estimate expected values of operators that represent physical ob-
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servables, the most important being the Hamiltonian Ĥ since it corresponds to
the energy of the system.

Let us consider a set sequence of M random points in the N dimensional
space S = {R1,R2, . . . ,RM} drawn from the pdf g(R). We define the func-
tion f as the arithmetic mean of this collection,

f = 1
M

M∑
i=1

f(Ri). (4.7)

We should note that since the Ri points are random, the function f is a ran-
dom function too. The basis of Monte Carlo integration is the law of large
numbers [118],〈

f
〉

=
M→∞

〈f〉 =
∫
g(R)f(R)dR. (4.8)

It states that the function f has the same mean as f(R) when the number of
random points M goes to infinity. The function f is called an estimator of
〈f〉, that is, a random number that fluctuates around the theoretical value 〈f〉
for different sequences of random points S [119]. Since it fluctuates, we can
calculate the dispersion of the estimator, i.e., its variance:

σ2
f

=
〈
f

2〉− 〈f〉2
. (4.9)

Analogously, the variance of f(R) is

σ2
f =

〈
f 2
〉
− 〈f〉2 , (4.10)

where the expected values 〈f 2〉 and 〈f〉 are given by Eq. (4.5).
When the random variablesRi are all independent (which is not necessarily

true in a Monte Carlo calculation), the variance of estimator f becomes

σ2
f

= 1
M
σ2
f . (4.11)

Equation (4.11) shows that the variance of the estimator f decreases as 1/N .
Then, as the number of random points Ri increases, the mean value of the
estimator f becomes a better approximation to the mean value of f(R). Both
Eq. (4.8) and Eq. (4.11) are the main reasons of why Monte Carlo integration
works, and why the error of the approximation of f :

εf =
√
σ2
f
, (4.12)
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decreases as N−1/2 independently of the space dimension.
A major difficulty in evaluating Eq. (4.7) is drawing a sequence of points

from the pdf g(R). If g(R) is a typical distribution, for instance: the normal or
gaussian distribution, the binomial distribution, the Poisson distribution, among
others, we can generate samples from them in a relatively easy way. However,
this problem becomes a lot more complicated in quantum mechanics, because
the distribution function that we use to calculate expected values of observables
depends on the probability density of the many-body system, which is out of our
hands for the most cases. Then, it is not clear how the Monte Carlo quadrature
may be useful to accomplish our goals. In order to sample the target probability
distribution g(R), we employ a stochastic process known as Markov chain,
which we describe in the following section.

4.3. Markov Processes

A Markov process is a stochastic process that represents the evolution of a
random variable. It consists of a set of points (or states) commonly known as a
Markov chain: {R1,R2, . . . ,Rj−1,Rj, . . . ,RM} in the N -dimensional space
with an associated transition probability P (Rf |Ri) of going from an initial state
Ri = Rj−1 to a final state Rf = Rj , that is independent of the previous states,
i.e., before Rj−1. An evolving random configuration R it is commonly known
as a random walker.

We want to sample the target distribution g(R) through a Markov process,
starting from an arbitrary initial distribution gini(R), e.g., a delta function at
some arbitrary point: gini(R) = δ(R − R0). The initial distribution should
evolve to the target distribution by a repeated application of the transition prob-
ability. Therefore, the Markov process must be ergodic, i.e., it must be possible
to move between any pair of states in a finite number of steps, so all states in
the configuration space can be visited. Also, one imposes the detailed balance
condition:

P (Rf |Ri)ρ(Ri) = P (Ri|Rf)ρ(Rf), (4.13)

which forces the probability flux between the states Ri and Rf to be the same.
Eq. (4.13) is a sufficient condition for g(R) to be the target distribution [118,
120, 121].

The previous description of a Markov process leads to an obvious question:
can we find a transition probability P (Rf |Ri), which gives rise to the target pdf
g(R)? The answer to this question is yes, and we give some details about it in
the following section.
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4.3.1. The Metropolis-Hastings Algorithm

Sampling from an arbitrary probability distribution function by direct meth-
ods is usually a difficult task. The Metropolis-Hastings (MH) algorithm, devel-
oped by Nicholas Metropolis et al. in 1953 [38] and later by W. K. Hastings in
1970 [122], is a widely recognized procedure to sample an arbitrary probability
distribution in a relatively easy way. We can describe it as an iterative accept-
reject method with a properly defined transition probability between two states.
The repeated application of this probability over an initial distribution defines
a Markov chain, which after a long enough number of iterations, gives rise to
the target pdf g(R). Also, it has a significant benefit: it is relatively simple to
implement in a computer program.

The accept-reject procedure requires a probability to propose a movement
from, Pprop(R′|R), which must be nonnegative and normalized to unity,∫

dR′Pprop(R′|R) = 1. (4.14)

A temporary pointR′ is drawn from this probability; it is accepted with a prob-
ability Pacc(R′|R) or rejected with probability 1− Pacc(R′|R). The transition
probability is

P (R′|R) =

Pacc(R′|R)Pprop(R′|R) if R 6= R

1−
∫
dR′ Pacc(R′|R)Pprop(R′|R) if R′ = R

. (4.15)

Finally, the acceptance probability is chosen such that P (R′|R) fulfills the de-
tailed balance condition:

Pacc(R′|R)
Pacc(R|R′)

= Pprop(R|R′)g(R′)
Pprop(R′|R)g(R) . (4.16)

The acceptance probability, as chosen by Metropolis et al. [38], is

Pacc(R′|R) = min
{

1, Pprop(R|R′)g(R′)
Pprop(R′|R)g(R)

}
. (4.17)

We can make some observations about this formula:

We do not have to normalize the target probability g(R) in order to sam-
ple it since only the ratio g(R′)/g(R) is needed.

The proposal-of-movement probability Pprop(R′|R), although arbitrary,
should be relatively easy to sample by direct methods so one can draw
pointsR′ from it.
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If the proposal probability is symmetric: Pprop(R′|R) = Pprop(R|R′),
only the ratio g(R′)/g(R) defines the acceptance probability.

A usual MH implementation (although not the only one) draws a a uniformly-
distributed random stateR′ from a region in the N -dimensional space ΩR cen-
tered in the actual stateR:

P (R′|R) =


1

∆N if R′ ∈ ΩR

0 if R′ /∈ ΩR

(4.18)

Then a new stateR′ is proposed following the formula

R′ = R+ ∆
2 U ξ, (4.19)

where U ξ is a vector with N random components in the interval (−1, 1) drawn
from a uniform distribution. The parameter ∆ is the length of the side of a cube
in the N -dimensional space centered around the current stateR where the new
state will be located. Since Eq. (4.18) is a symmetric probability, an iterative
procedure using this proposal probability could be:

1. Let beR = Ri the current state labeled by the index i.

2. Propose a new stateR′ according to Eq. (4.19).

3. Take the quotient qi = g(R′)/g(Ri). Then

If qi ≥ 1, move to the new state: Ri+1 = R′.

If qi < 1, take a random number ξi from a uniform distribution in
[0, 1). If qi > ξi move to the new state: Ri+1 = R′, otherwise stay
in the same state:Ri+1 = Ri.

In both cases, define the acceptance probability according to Eq. (4.17).

After applying this procedure a large enough number of times, the Markov chain
will sample the target distribution g(R). The period during which the initial
distribution evolves to the target one is known as equilibration. It also is known
as the burn-in or thermalization phase. Generally, it is assumed that the states
that belong to this phase do not sample the target distribution; in practice, they
are discarded from the Markov chain and never used to evaluate any estimator.
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4.3.2. Reblocking Analysis and Correlation Time

The MH algorithm is a robust procedure to generate a sample of points that
follows the pdf g(R), so it is possible to obtain an approximation to an expected
value through the estimator Eq. (4.7), as well as an approximation of the error
from Eq. (4.12). However, one must note that the samples generated by the MH
algorithm are always serially correlated. Therefore, Eq. (4.12) must take into
account this correlation; otherwise, the value it yields will become an unreli-
able approximation to the error of the estimator that can severely underestimate
the real error. There are several methods to quantify the correlation of serially
generated data, for instance: calculation of correlation times, reblocking analy-
sis, or the Jackknife analysis [119]. We focus on the reblocking technique, also
called binning analysis, due to its relative simplicity.

The reblocking technique consists in dividing an initial set of measurements
{On | n = 1, 2, . . . , N}, N being the length of the set, in contiguous subgroups
with b data elements called blocks or bins. This splitting creates a new data
series with Nb elements such that N = Nbb. For each block, we calculate its
mean (the block average):

OB,n = 1
b

b∑
i=1
O(n−1)b+i, n = 1, 2, , . . . , Nb (4.20)

so effectively OB,n becomes the n-th element of the new time series. One can
prove that the mean of this series, i.e.,

OB = 1
Nb

Nb∑
n=1
OB,n (4.21)

is equal to the mean of the original series,

O = 1
N

N∑
n=1
On. (4.22)

However, the new series variance is different from the original series variance.
As the size of the block increases, one finds that the variance keeps increasing
until it reaches a top value. When this occurs, the block size is large enough
that we can think of every block to be practically uncorrelated from each other.

The block size at which the variance of the estimator Eq. (4.7) reaches a
maximum can be related to the autocorrelation time of the data series. Starting
from the definition of the estimator variance Eq. (4.9), we obtain

σ2
O = 1

N2

N∑
i,j=1

[〈OiOj〉 − 〈Oi〉 〈Oj〉] . (4.23)
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This expression can be rewritten as a term that includes diagonal measurements,
plus a term from the nondiagonal ones,

σ2
O = 1

N2

N∑
i=1

[〈
O2
i

〉
− 〈Oi〉2

]
+ 1
N2

N∑
i,j=1
i 6=j

[〈OiOj〉 − 〈Oi〉 〈Oj〉] . (4.24)

The first term in the r.h.s. can be identified as the variance of the original data
measurements σ2

Oi times 1/N . Also, it is the variance of the estimator as if
the measurements were serially uncorrelated. The second term accounts for
the serial correlations. Factoring σ2

Oi , we obtain a compact formula for the
estimator variance,

σ2
O =

σ2
Oi
N

2τO, (4.25)

where τO is the integrated autocorrelation time of the data series,

τO = 1
2 +

N∑
k=1

A(k)
(

1− k

N

)
, (4.26)

with

A(k) = 〈OiOi+k〉 − 〈Oi〉 〈Oi+k〉
〈O2

i 〉 − 〈Oi〉
2 , (4.27)

where A(0) = 1.
Equation (4.25) shows that the variance of the autocorrelated measurements

is greater than the variance of the independent measurements by a factor of 2τO.
This is equivalent to say that the original data series has an effective number
of elements Neff = N/2τO ≤ N , and the estimator variance is equal to the
variance of the uncorrelated data divided by Neff :

σ2
O =

σ2
Oi

Neff
. (4.28)

Furthermore, the statistical error εO of the estimator O becomes

εO =
√
σ2
Oi

Neff
. (4.29)

This result shows that, even when we take into account the correlations, the
statistical error of the estimator decreases as Neff

−1/2, like in the uncorrelated
case.
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An additional, important remark: to avoid an underestimation of the true
variance of the measurements, one should use the unbiased, or bias-corrected,
variance formula [119]:

σ2
Oi = 1

N − 1

N∑
i=1

(Oi −O)2
. (4.30)

To conclude this section, we note that the correlation degree of the measure-
ments forming a Markov chain will depend on the characteristics of the proposal
probability distribution we use to draw random points. How large the correla-
tion time becomes will depend, mainly, on the size of the random movements.
Small movements will lead to a high correlation between points, and to a high
acceptance rate (the proportion of movements that are accepted during the MH
procedure). On the other hand, large movements result in lower correlations,
but with a lower acceptance rate.

Finally, there are several factors to take into account when sampling the tar-
get pdf g(R). For instance, there is a discussion about which is the optimum
acceptance rate. A Monte Carlo calculation with large movements but a shal-
low acceptance rate will not cover the entire configuration space. Instead, it
will sample only a relatively small region. Hence, the generated Markov chain
will not reliably sample the target distribution. In comparison, a Monte Carlo
calculation with small movements but a high acceptance rate implies a high cor-
relation between samples, and it will require a very long Markov chain to cover
the largest area of the configuration space as possible. Traditionally, a Monte
Carlo calculation aiming at an acceptance rate of 50% is a rule of thumb: the
best compromise between data correlations and a satisfactory exploration of the
configuration space. However, there is no particular reason for saying that the
50% rule is the optimal one.

A broader discussion about data correlations and error estimations can be
read in [119].

4.4. Variational Monte Carlo Method

Variational Monte Carlo (VMC) method is a Monte Carlo variant used to
calculate an approximation to the ground state energy of a quantum system at
zero temperature based on the variational principle of quantum mechanics. This
principle states that the expected value of the Hamiltonian Ĥ over an arbitrary
state |ΨT〉 that has a nonzero overlap with the ground state |Φ0〉 of Ĥ , i.e.,
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〈ΨT|Φ0〉 6= 0, is an upper bound of the energy of the ground state,

E = 〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

≥ E0. (4.31)

The trial wave functions ΨT(R) = 〈R|ΨT〉 depend on one or more varia-
tional parameters whose optimum values are those that minimize the energy
Eq. (4.31).

In the position representation, the wave function of N particles depends on
the positions of all of the particles: R = {r1, r2, . . . , rN}. Then, the expected
value Eq. (4.31) becomes

E =

∫
dR Ψ∗T(R)Ĥ ΨT(R)∫
dR Ψ∗T(R)ΨT(R)

. (4.32)

To calculate the energy, we have to evaluate two 3N -dimensional integrals.
However, the integrals in Eq. (4.32) (and other expected values of similar struc-
ture that we will see later) can be rearranged in such a way that we can calculate
the energy using Monte Carlo integration. First, we must write the expected
value of the Hamiltonian as an integral of the form Eq. (4.5), which is not par-
ticularly difficult: we define the pdf

g(R) = |ΨT(R)|2∫
dR |ΨT(R)|2

, (4.33)

and the local energy

EL(R) = 1
ΨT(R)Ĥ ΨT(R). (4.34)

Then the expected value of Ĥ becomes

E =
∫
dR g(R)EL(R). (4.35)

Besides the evaluation of the expected value of the energy, VMC calculations
involve the minimization of Eq. (4.35). We achieve this by adjusting the vari-
ational parameters of the wave function. We will approach this subject with
more detail in Section 4.6.
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Other observables can be approximated by the VMC method too. In these
cases, the expected value

〈
Ô
〉

var
=

∫
dR Ψ∗T(R)ÔΨT(R)∫
dR Ψ∗T(R)ΨT(R)

. (4.36)

is referred to as the variational estimator of Ô. This estimator can be written
as

O =
∫
dR g(R)OL(R), (4.37)

where O is the “local observable”

OL(R) = 1
ΨT(R)ÔΨT(R). (4.38)

4.4.1. Stochastic Realization

To realize a VMC calculation, we start with a random pointR1 drawn from
an arbitrary probability distribution, although a point generated in a regular
pattern is equally valid. Whichever the choice is, the positions {r1, r2, . . . , rN}
of the N particles should cover the largest available volume of the system in
question. This initial point represents the initial distribution

gini(R) = δ(R−R1). (4.39)

Having gini(R), we use the Metropolis-Hasting algorithm to sample the next
R2 element of the chain that will eventually converge to the target distribution.
This point may be equal to R1, according to the accept-reject procedure of a
MH step. This procedure is repeated to generate the next point R3, then R4,
and as many points as required. After a large enough number of steps, and after
dropping the first Mburn steps that form the burn-in phase, the resulting Markov
chain S = {R1,R2, . . . ,RM−1,RM} with M samples will have converged to
the target distribution Eq. (4.33). Then, following Eq. (4.7) and Eq. (4.35), the
expected value of the Hamiltonian on the state ΨT(R) is given by the estimator

E = 1
M

M∑
i=1

EL(Ri). (4.40)

One can calculate the statistical error of Eq. (4.40) according to Eq. (4.29):

εE =
√
σ2
Ei

Neff
, (4.41)
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where σ2
Ei

should be the unbiased variance of the set {Ei}i=1,...,M , being Ei =
EL(Ri):

σ2
Ei

= 1
M − 1

M∑
i=1

(Ei − E)2
. (4.42)

Also, one can calculate the number of effective samples Neff = M/2τEi by a
reblocking analysis, as outlined in Section 4.3.2.

4.5. Diffusion Monte Carlo Method

In VMC, the accuracy of the approximation Eq. (4.32) and its statistical
error, are limited by choice of the trial wave function ΨT(R). This limitation
can be overcome with the use of one of the so-called Projector Monte Carlo
techniques [123]. The method we use in this work is the Diffusion Monte Carlo
(DMC) method.

The basis of the DMC method is the time-dependent, “shifted” many-body
Schrödinger equation:

i~
∂Ψ(R, t)

∂t
=
(
Ĥ − ET

)
Ψ(R, t)

=
(
− ~2

2m∇
2
R + V (R)− ET

)
Ψ(R, t). (4.43)

Here, Ψ(R, τ) is the state of the system as a function of the positions of the
particles and the time, Ĥ is the many-body Hamiltonian Eq. (4.1)

∇2
R =

N∑
i=1
∇2
ri
, V (R) =

N∑
i=1

Vext(ri) +
N∑
i=1

N∑
j=i+1

Vint(ri, rj), (4.44)

and ET is an energy shift which should be as close as possible to the exact
ground state energy.

The DMC method solves the Schrödinger equation in imaginary time, i.e.,
for τ = it/~:

−∂Ψ(R, τ)
∂τ

=
(
Ĥ − ET

)
Ψ(R, τ)

=
(
−D∇2

R + V (R)− ET
)

Ψ(R, τ), (4.45)

where D = ~2/2m. The units of τ are inverse of energy. We can identify
Eq. (4.45) as a modified diffusion equation in the 3N -dimensional space. If
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the term V (R) − ET is removed, it becomes the common diffusion equation
with a diffusion constant D. On the other hand, if the term with the Laplacian
is removed, the equation would represent an exponential growth or decrease of
the function Ψ(R, τ).

Solving Eq. (4.45) represents a way to access the ground state of the system.
The wave function Ψ(R, τ) can be expanded as a linear combination of the
Hamiltonian eigenstates {Φn(R)} (see Eq. (4.2)):

Ψ(R, τ) =
∞∑
n=0

cn e
−(En−ET)τΦn(R). (4.46)

Here, {En} are the Hamiltonian eigenenergies. While the amplitudes of each
one of the terms in Eq. (4.46) may increase or decrease in time depending on the
value of ET, for long times τ , the term proportional to e−(E0−ET)τ dominates
the sum. Then, the wave function becomes

Ψ(R, τ) =
τ→∞

c0 e
−(E0−ET)τΦ0(R) (4.47)

The DMC technique evolves, in a stochastic fashion, an initial, arbitrary (up to
some degree) many-body state Ψ(R, τ = 0) in imaginary time, until a suffi-
ciently long time passes and only the ground state contributes with a substantial
weight to the many-body wave function according to Eq. (4.47). During the
stochastic realization, the energy shift ET is continuously adjusted until it be-
comes practically equal to the exact ground state energy E0 (up to a statistical
error).

A solution of Eq. (4.45) corresponds to the imaginary-time evolution of the
state |Ψ(τ)〉:

|Ψ(τ)〉 = Û(τ) |Ψ(τ = 0)〉 , Û(τ) = e−(Ĥ−ET)τ , (4.48)

where Û (τ) is the “shifted” evolution operator. The projection of |Ψ(τ)〉 in
the position space: Ψ(R, τ) = 〈R|Ψ(τ)〉, results in the formal solution of
Eq. (4.45):

Ψ(R, τ) =
∫
dR′ G(R,R′; τ)Ψ(R′, 0), (4.49)

being Ψ(R, 0) the wave function at the initial time, andG(R,R′; τ) the Green’s
function of Eq. (4.45) (also known as the imaginary-time propagator):

G(R,R′; τ) = 〈R| e−(Ĥ−ET)τ |R′〉 , (4.50)

subject to the initial-type boundary condition G(R,R′; 0) = δ(R′ −R).

74



4.5. Diffusion Monte Carlo Method

In general, we can not calculate the many-body Green’s function Eq. (4.50)
for all times τ . However, the imaginary-time evolution can be applied repeat-
edly, in a step-by-step process, according to

|Ψ(τ + δτ)〉 = Û(δτ) |Ψ(τ)〉 , Û(δτ) = e−(Ĥ−ET)δτ , (4.51)

where δτ is the size of the imaginary time-step. Analogously to Eq. (4.49),
projecting in the position space one obtains

Ψ(R, τ + δτ) =
∫
dR′ G(R,R′; δτ)Ψ(R′, τ). (4.52)

The DMC method requires the repeated application of the evolution opera-
tor Eq. (4.51) since the many-body Green’s function is known analytically only
in the short-time limit when δτ is small. Let be δτ = τ/M , where M is a
large integer, then an approximation to the final state Eq. (4.48) is obtained by
applying M times the short-time evolution operator Û(δτ) over the initial state
|Ψ(τ = 0)〉.

4.5.1. Short-Time Green’s Function

Using the Trotter formula [124], we can obtain an approximation of the
evolution operator in the short-time limit up to terms of order O(δτ 2). Since
Ĥ − ET = T̂ + V̂ − ET,

Û(δτ) = e−(T̂+V̂ )δτeETδτ ≈ e−V̂ δτ/2e−T̂ δτe−V̂ δτ/2eETδτ +O(δτ 2). (4.53)

With this approximation, the Green’s function Eq. (4.50) becomes

G(R,R′; δτ) = (4πDδτ)−3N/2e−
‖R−R′‖2

4Dδτ × e
−
(
V (R)+V (R′)

2 −ET

)
δτ
, (4.54)

which can be written as the product of a diffusion term:

Pdiff(R,R′; δτ) = (4πDδτ)−3N/2e−
‖R−R′‖2

4Dδτ , (4.55)

times a rate term:

W (R,R′; δτ) = e
−
(
V (R)+V (R′)

2 −ET

)
δτ
. (4.56)

Then, the Green’s function Eq. (4.54) becomes:

G(R,R′; δτ) = Pdiff(R,R′; δτ)W (R,R′; δτ), (4.57)
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and solution Eq. (4.52) can be written as

Ψ(R, τ + δτ) =
∫
dR′ Pdiff(R,R′; δτ)W (R,R′; δτ)Ψ(R′, τ). (4.58)

In principle, Eq. (4.58) suggests how to realize a DMC calculation: evolve
Ψ(R, τ) through a procedure which can be depicted as a stochastic Gaussian
diffusion of N particles following the probability distribution Eq. (4.55), with a
corresponding weight given by the term Eq. (4.56). However, this is valid only
if we interpret Ψ(R, τ) as a probability, so it should be positive everywhere.
An additional difficulty comes from the presence of the potential V (R) in the
weight term: if the potential diverges when two particles are very close, then
the weight associated with the N particles will diverge too. This problem leads
to stability problems during the realization.

A more efficient way to deal with the previous problems is to introduce
importance sampling, by employing a proper trial wave function to approximate
the real ground state, as we did for VMC calculations.

4.5.2. Importance-Sampling

In DMC, the ground state expected value of an observable Ô is obtained
from

〈
Ô
〉

mix
= 〈ΨT| Ô |Ψ(τ →∞)〉
〈ΨT|Ψ(τ →∞)〉 , (4.59)

where Ψ(R, τ) is the solution of Eq. (4.45) whose time-evolution is fixed by
Eq. (4.52), and ΨT(R) is a known trial wave function. The expected value
Eq. (4.59) is referred to as a mixed estimator since it is evaluated over two
different states. Then, the ground state energy E0 of the system is the mixed
estimator of Ĥ:

E0 =
〈
Ĥ
〉

mix
= 〈ΨT| Ĥ |Ψ(τ →∞)〉

〈ΨT|Ψ(τ →∞)〉 . (4.60)

In the position representation, this expression becomes

E0 =

∫
dR Ψ∗T(R)ĤΨ(R, τ →∞)∫
dR Ψ∗T(R)Ψ(R, τ →∞)

. (4.61)

Unless a complex trial wave function becomes a requirement, for instance,
when imposing twisted boundary conditions on ΨT(R) [125], one works with
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real wave functions only. Then, the complex conjugation Ψ∗T(R) in Eq. (4.61)
becomes unnecessary. By applying similar algebraic transformations as we did
for the expected value Eq. (4.35), we obtain the following equivalent expression
for E0:

E0 =

∫
dR f(R, τ →∞)EL(R)∫

dR f(R, τ →∞)
, (4.62)

where we have defined the mixed distribution as

f(R, τ) = ΨT(R)Ψ(R, τ). (4.63)

At the same time, the local energy is given by Eq. (4.34).
To calculate the ground state energy, we need a method to sample the mixed

distribution f(R, τ) in the limit τ → ∞. The time evolution of f(R, τ) can
be obtained by multiplying Eq. (4.45) by ΨT(R). After using some vectorial
identities, one obtains

−∂f(R, τ)
∂τ

= −D∇2
Rf(R, t) +D∇ · [f(R, τ)F (R)]

+ (EL(R)− ET) f(R, t). (4.64)

Here, the quantity

F (R) = 2∇ΨT(R)
ΨT(R) = ∇R ln |ΨT(R)|2 (4.65)

is called the drift force or sometimes drift velocity.
Equation (4.64) describes a (modified) diffusion process for the mixed prob-

ability distribution f(R, τ). It contains a rate term proportional to the difference
EL(R) − ET, unlike the rate term in Eq. (4.45) that depends on the potential
V (R). With a suitable choice of ΨT(R), the local energy remains finite, un-
like the potential. Furthermore, as the trial wave function gets improved, the
so-called excess energy [126] approaches to the ground state energy E0, and the
rate term vanishes, which is favorable to the calculations. The most notable dif-
ference concerning Eq. (4.45) is the additional term∇ · [f(R, τ)F (R)], which
imposes a drift on the diffusion process that depends on the trial wave function.

In the large time limit, the mixed distribution becomes proportional to the
ground state wave function

f(R, τ) =
τ→∞

c0 e
−(E0−ET)τΨT(R)Φ0(R). (4.66)
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4.5.3. Importance-Sampling Green’s Function

The formal solution of Eq. (4.64) is

f(R, τ + δτ) =
∫
dR′ G̃(R,R′; δτ)f(R′, τ). (4.67)

Here, G̃(R,R′; δτ) is the importance-sampling Green’s function, which is a
solution of Eq. (4.64) with boundary condition

G̃(R,R′; 0) = δ(R′ −R) (4.68)

Using the Trotter formula, the analytical expression in the short time ap-
proximation for the Green’s function of Eq. (4.64) is expressed as

G̃(R,R′; δτ) = P̃diff(R,R′; δτ)W̃ (R,R′; δτ), (4.69)

where

P̃diff(R,R′; δτ) = (4πDδτ)−3N/2e−
‖R−R′−DδτF (R′)‖2

4Dδτ (4.70)

and

W̃ (R,R′; δτ) = e
−
(
EL(R)+EL(R′)

2 −ET

)
δτ
. (4.71)

Importance-sampling Green’s function Eq. (4.69) meaning is clear: Eq. (4.70)
represents an isotropic diffusion process followed by a drift, with a correspond-
ing weight Eq. (4.70) that depends on the local energy instead of the potential.

4.5.4. Stochastic Realization

A practical implementation of DMC always uses importance sampling. The
stochastic realization of a single time-step follows Eq. (4.67): it corresponds to
a weighed, isotropic, Gaussian diffusion process where all of the particles are
subject to a drift force. Compared to a VMC calculation, it is more complex to
implement.

Initialization

We start at an initial distribution fini(R, 0), which can be a random config-
uration R1 drawn from an arbitrary probability distribution. More commonly,
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to start with a better distribution, a VMC calculation precedes the DMC re-
alization. Then, the initial configuration is drawn from the VMC distribution
Eq. (4.33),

fini(R) = f(R, 0) = |ΨT(R)|2, (4.72)

after a long enough number of Metropolis-Hastings steps.
Several methods exist to take into account the effect of the weight term, the

more common being the branch-and-death with variable population sampling
variant [126]. In this variant, at each time step, we will track the configurations
of a set of random walkers:

Rk = {Rk,α | α = 1, 2, . . . , Nw,k}. (4.73)

Here, k is the time step index, τk = kδτ is the current time, and Nw,k is the
number of random walkers which may change between steps. At all times, the
walkers will have a unit weight: wk,α = 1, for k = 1, 2, . . . ,M , being M the
number of time steps of the DMC calculation. Also, the energy shift ET,k can
change between steps, as well as the energy estimatorE0,k (see Eq. (4.78)). The
full stochastic realization is described as follows:

At time-step k = 0, we start with a set of Nw,0 random walkers R0. The
number of walkers is somewhat arbitrary, but it could be of the order of one hun-
dred. These walkers can be drawn from the probability distribution Eq. (4.72);
although it is not mandatory, it helps to speed up the calculation. Since an ini-
tial estimate for ET is needed, we can use the mean of the local energies of the
walkers,

ET,0 = 1
N

Nw,0∑
α=1

EL(R0,α). (4.74)

The subindex “0” in the energy shift ET indicates that it changes between steps
in the main procedure.

Main Procedure

The following procedure corresponds to time steps 1, 2, . . . ,M .

1. For each random walker in Rk−1, draw a new configuration from the
distribution P̃diff(R,R′; δτ) according to Eq. (4.70). We achieve this by
proposing the following random move:

Rk,α = Rk−1,α +DδτF (Rk−1,α) + χ, (4.75)
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where χ is a random configuration in the N -dimensional space drawn
from the multivariate Gaussian distribution with zero mean and variance
σ2 = 2Dδτ . The new configurations form a new populationRk.

2. For each random walker inRk, calculate the branching probability:

wα = W̃ (Rk,α,Rk−1,α; δτ). (4.76)

Here one has to calculate the local energies EL(Rk,α) and EL(Rk−1,α) in
order to calculate wα.

3. For each random walker inRk, calculate the branching factor:

nα = int(wα + ξ). (4.77)

Here, nα is the closest integer to wα + ξ, where ξ is a random number
drawn from the uniform distribution in [0, 1). If nα ≥ 1, replace Rk,α

with nα identical copies of itself in Rk. If nα = 0, eliminate Rk,α from
Rk. This is the branch-and-death stage. Generally, the number of walkers
inRk will change due to branching.

4. Update the energy estimator E0,k, according to Eq. (4.78). Update other
estimators if needed.

5. Repeat Steps 1 to 4 until the target number of time steps M is reached.
The quantity E0,M will be the best approximation of the ground state.

The ground state energy depends on the average of the local energy over the
stationary distribution f∞(R) = f(R, τ → ∞), according to Eq. (4.62). The
estimator for E0 after a long enough DMC calculation of M time steps is

E0 =

M∑
k=1

Nw,k∑
α=1

wk,αEL(Rk,α)

M∑
k=1

Nw,k∑
α=1

wk,α

. (4.78)

Since the stationary distribution is reached only after a large enough number
of time steps, it is recommended to evaluate Eq. (4.78) after a burn-in phase of
Mburn time steps. During this lapse of time, only steps 2 to 4 are realized, but
not step 5.

Ideally, to calculate Eq. (4.78), no restrictions over the number of walkers
should be imposed at any time. In practice, the number of walkers can grow
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large enough that, in order to track their evolution, the computational resources
are insufficient: whether available memory is exhausted, or the computation
time of a single time step is prohibitive. Hence, a population-control stage is
introduced in the sampling procedure after updating the estimators of interest
in step 5. In this stage, the trial energy is updated according to

ET,k = E0,k −
C

δτ
ln
(
Nw,k

Nw,ref

)
, (4.79)

where C is a constant, and Nw,ref is a desired average number of walkers we
would like to maintain during the calculation. The population-control proce-
dure has benefits but introduces a systematic bias on the stationary distribution.
This bias introduces an error on E0,k, which is generally small and decreases as
1/Nw,k.

4.5.5. Statistical Error

The statistical error of Eq. (4.80) is more difficult to calculate than the error
of the VMC energy estimator Eq. (4.40) since the former is the quotient of two
estimators:

E0 = Ew

w
. (4.80)

Here,

Ew = 1
M

M∑
k=1

EkWk, w = 1
M

M∑
k=1

Wk, (4.81)

where

Wk =
Nw,k∑
α=1

wk,α, Ek = 1
Wk

Nw,k∑
α=1

wk,αEL(Rk,α). (4.82)

By propagation of uncertainty, the variance of E0 is

σ2
E0

=
(
E0
)2
 σ2

Ew

Ew
2 + σ2

w

w2 − 2

〈
Ew;w

〉
Ew w

 , (4.83)

where 〈X;Y 〉 = 〈XY 〉 − 〈X〉 〈Y 〉 is the covariance between the random vari-
ables X and Y . Note that the variance estimator Eq. (4.83) has a bias that
decreases as 1/M .
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The variances of Ew, w, and the covariance between them, can be related
to their integrated autocorrelation times according to Eq. (4.26),

σ2
Ew

= σ2
Eiwi

2τEiwi
M

, (4.84a)

σ2
w = σ2

wi

2τwi
M

, (4.84b)〈
Ew;w

〉
= 〈Eiwi;wi〉

2τ〈Eiwi;wi〉
M

. (4.84c)

The autocorrelation time of the covariance between the estimators is [119]

τ〈Eiwi;wi〉 = τ〈wi;Eiwi〉 = 1
2 +

M∑
k=1

〈Eiwi;wk〉
〈Eiwi;wi〉

(
1− k

M

)
. (4.85)

To calculate the autocorrelation times, we can use a reblocking analysis, as
described in Section 4.3.2. Hence, the statistical error of the ground state energy
is given by

εE0
=
∣∣∣E0

∣∣∣[σ2
Eiwi

Ew
2

2τEiwi
M

+
σ2
wi

w2
2τwi
M
− 2〈Eiwi;wi〉

Ew w

2τ〈Eiwi;wi〉
M

]1/2

.

(4.86)

The statistical error of other estimators can be calculated in a similar way than
the energy error.

4.5.6. Time-Step Dependence

The DMC algorithm previously described is valid only in the short time δτ
limit. For sufficiently small time steps, the ground state energy Eq. (4.78) scales
linearly:

E0(δτ) = E0 + κδτ. (4.87)

When high accuracy is required, the energy estimator is calculated for two or
more time steps {δτi}. Then, the exact ground state energy is obtained by ex-
trapolating to δτ = 0 [].

Some improvements have been proposed in order to reduce or eliminate the
time-step dependence; for instance, in Ref. [127]. In this work, the authors
propose the inclusion of an accept-reject stage, through a Metropolis-Hastings
algorithm, during the diffusion process to make the ground state energy esti-
mator practically independent of δτ . Also, in Ref. [32], the authors introduce
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a higher-order decomposition for the short-time Green’s function such that the
ground state energy depends quadratically on the time step. Hence, it becomes
plausible to calculate the properties of the system with high accuracy using only
one value of δτ .

4.5.7. Pure Estimators

Calculation of mixed estimators Eq. (4.59) suffers from a significant limi-
tation: it gives an exact result for the ground state only when the operator Ô
commutes with the Hamiltonian. In this case, the ground state Φ0(R) is both
an eigenstate of Ĥ and Ô, so it holds that

O0 = 〈ΨT| Ô |Φ0〉
〈ΨT|Φ0〉

= 〈ΨT| Ô |Ψ(τ →∞)〉
〈ΨT|Ψ(τ →∞)〉 =

〈
Ô
〉

mix
. (4.88)

If Ô does not commute with Ĥ , then O0 6= 〈O〉mix even in the limit τ → ∞.
In this case, the exact expected value corresponds to the pure estimator

〈
Ô
〉

pure
= 〈Φ0| Ô |Φ0〉
〈Φ0|Φ0〉

. (4.89)

Several techniques exist to calculate expected values that do not commute with
the Hamiltonian, being the extrapolation method the most widely known. Using
this method, one can obtain an approximation of the pure estimator from the
values of the mixed estimator and the variational estimator (see Eq. (4.36)),
assuming that the difference between the trial wave function ΨT(R) and the
ground state Φ0(R) is small: δΨ(R) = Φ0(R) − ΨT(R). The approximated
value of the pure estimator with a second-order error in δΨ(R) can be written
as 〈

Ô
〉

pure
= 2

〈
Ô
〉

mix
−
〈
Ô
〉

var
+O(δΨ2). (4.90)

Here,
〈
Ô
〉

pure
is obtained from a VMC and a DMC. The main limitation of

this method is evident: the extrapolated estimate depends heavily on the quality
of the wave function ΨT(R) used for importance sampling, and the bias of the
approximation is difficult to quantify.

To overcome the limitations of the extrapolation method, we can use for-
ward walking methods to sample the pure estimator directly from the mixed
distribution. Let us consider the pure estimator Eq. (4.89) of a local observable:
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〈R| Ô |R′〉 = Ô(R′)δ(R′ −R), which can be written as

〈
Ô
〉

pure
=

∫
dR Ψ∗T(R)

[
Φ∗0(R)
Ψ∗T(R)

]
Ô(R)Φ0(R)

∫
dR Ψ∗T(R)

[
Φ∗0(R)
Ψ∗T(R)

]
Φ0(R)

. (4.91)

If we consider only real trial wave functions as we have done in previous sec-
tions, then the pure estimator can be written in terms of the mixed distribution
Eq. (4.63):

〈
Ô
〉

pure
=

∫
dR f(R, τ →∞)

[
1

ΨT(R)Ô(R)ΨT(R) Φ0(R)
ΨT(R)

]
∫
dR f(R, τ →∞)

[
Φ0(R)
ΨT(R)

] . (4.92)

This expression for the pure estimator looks similar to the mixed estimator
Eq. (4.62) but for the function

O(R) = 1
ΨT(R)Ô(R)ΨT(R) Φ0(R)

ΨT(R) . (4.93)

Here, the operator Ô acts over the ground state Φ0(R), which we do not know
but until the end of the DMC calculation. Then, it is not clear how we can
sample the mixed distribution and, at the same time, obtain the pure estimator
Eq. (4.89).

According to [128], the quotient Φ0(R)/ΨT(R) is proportional to the pop-
ulation obtained from a walkerR in the asymptotic regime, i.e., when τ →∞.
Then, the number of descendants of this walker can be used as a weight W (R).
Therefore, the pure estimator Eq. (4.92) becomes

〈
Ô
〉

pure
=

∑
k

OL(Rk)W (Rk)∑
k

W (Rk)
. (4.94)

Here, OL(R) is the local observable defined in Eq. (4.38), and the summation∑
k runs over all the walkers and all times in the asymptotic regime. Algo-

rithms capable of tracking which walker of a preceding configuration originated
a present walker at any time of a DMC calculation have been devised [129].
Then, Eq. (4.94) can be used. An alternative algorithm was introduced by J.
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Boronat and J. Casulleras in [33]. This method has the advantage that oper-
ates only over the generation of walkers present at a given time step, without
tagging. Also, it can be introduced in the DMC algorithm without significant
modifications. The following instructions should be implemented in the context
of the procedure described in Section 4.5.4.

Initialization

At time-step k = 0, calculate the local observable over each one of the
walkers:

O0,α = OL(R0,α), α = 1, . . . , Nw,0 (4.95)

Main procedure

At time steps 1, 2, . . .M :

In Step 1.

Before the gaussian diffusion: for each walker in the previous population
Rk−1, keep track of the corresponding measurement:

(Ok,α)parent = Ok−1,α. (4.96)

After the gaussian diffusion: evaluate the local observable for each one
of the walkers in the new populationRk:

Ok,α = OL(Rk,α). (4.97)

In Step 3.

After the branching of the walker Rk,α, replicate (or drop) the measure-
ment Ok,α as many times as the walker. Then, for each surviving walker
in the new population, keep track of the observable value corresponding
to their “parent” walker (Ok,α)parent before the diffusion in Step 1.

In Step 4.

For each one of the walkers, update Ok,α according to:

Ok,α ← Ok,α + (Ok,α)parent. (4.98)
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To reach the asymptotic regime, we repeat this process (and accumulate mea-
surements) until we reach a sufficiently long time. After M time steps of this
forward walking, we end up with Nw,M walkers and the same number of mea-
surements {OM,α}α=1,...,Nw,M

. The pure estimator of Ô is

〈
Ô
〉

pure
= 1
M ×Nw,M

Nw,M∑
α=1
OM,α. (4.99)

4.6. Trial Wave Functions

Up to this point, we have not specified the mathematical form of the trial
wave functions. A trial wave function ΨT(R) of good quality is an essential
part of VMC and DMC calculations. First, it should be a good approximation
of the ground state of the system. At the same time, its derivatives should be
easy to compute since they are evaluated repeatedly in the calculations due to
the action of the Hamiltonian.

There is a standard mathematical form for ground-state trial wave functions
for systems with two-body interactions, i.e., where Vint(ri, rj) = Vint(ri− rj),
known as Slater-Bijl-Jastrow wave functions, initially used by A. Bijl [130] and
R. Jastrow [131] to analyze the ground state of quantum many-body systems.
The idea behind these wave functions consists of the following factorization:

ΨT(R) = S(R)J (R). (4.100)

The factor S(R) defines the symmetry of ΨT(R) in the face of the exchange
of particles. For fermions, it must be antisymmetric, and it is generally con-
structed as a Slater determinant of specially chosen one-body particle orbitals.
If required, spin states should be incorporated too. For bosons, the typical ap-
proach is to set S(R) equal to one.

The factor J (R) is known as the Bijl-Jastrow term and is constructed as
follows:

J (R) =
N∏
i=1

f1(ri)×
N∏
i=1

N∏
j=i+1

f2(rij), (4.101)

which is a product of one-body functions f1(ri) that depend only on the position
of a single particle ri, times a second product of two-body functions and f2(rij)
that depend on the distance between any two pair of particles: rij = |ri − rj|.
The choice of the one-body and two-body functions in Eq. (4.101) depends on
the characteristics of the system under study. In general, the one-body func-
tions are approximations to the eigenfunctions of the one-particle Hamiltonian
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with the external potential Vext(r). Similarly, the two-body functions should be
an approximation to the eigenfunctions of the two-body Hamiltonian with the
interaction potential Vint(rj − rj) only, but no external potential.

An alternative form for Eq. (4.100) is

ΨT(R) = S(R) exp(−U(R)), (4.102)

where

U(R) =
N∑
i=1

u1(ri) +
N∑
i=1

N∑
j=i+1

u2(rij), (4.103)

being the Jastrow term J (R) = exp(−U(R)). There is a direct relation be-
tween Eq. (4.100) and Eq. (4.102), since

u1(ri) = − ln f1(ri), u2(rij) = − ln f2(rij), (4.104)

so both forms are mathematically equivalent. However, the form Eq. (4.102)
is more suitable for numerical calculations since it involves sums, making cal-
culations more stable. The form Eq. (4.100), containing only products, may
become a very large or tiny number even for a system with a small number of
particles, so that it may lead to inaccurate results.

We can infer some properties of the one-body and two-body functions. For
instance, in a homogeneous system, i.e., not external potential, the wave func-
tion must depend only on the relative distance between the particles due to
translational invariance. Then, the one-body functions u1(r) must vanish,

u1(r) = 0 =⇒ f1(r) = 1. (4.105)

Analogously, for a noninteracting system, the two-body functions u2(r) must
vanish,

u2(r) = 0 =⇒ f2(r) = 1. (4.106)

For an interacting system, the effect of interactions must decrease as the in-
terparticle distance increases, whether the interactions are short range or long
range. Then, two-body functions must fulfill

lim
r→∞

u2(r) = 0 =⇒ lim
r→∞

f2(r) = 1. (4.107)

87



4. QUANTUM MONTE CARLO METHODS

4.6.1. Optimization

Up to this point, we have omitted the explicit dependence of the trial wave
function on any sort of free parameters beyond physical variables, like the po-
sition, for instance. Indeed, ΨT(R) is also a function of some set of variational
parameters p = {p1, p2, . . . , pNp}:

ΨT(R) ≡ ΨT(R;p). (4.108)

Parameters p affect the value of the energy estimator during a VMC calculation.
Therefore, they should be chosen such that they minimize the variational energy
Eq. (4.40). This process is called optimization.

Trial wave function optimization is not an easy task, even when the number
of variational parameters is small since wave functions usually depend on a
nonlinear fashion on them. Therefore, some sort of automatic procedure is
needed to find the optimum values of the variational parameters. One such
method is the variance minimization technique [132], whose primary goal is to
minimize the variance of the local energy:

σ2
opt =

Nopt∑
i=1

[EL(Ri;p)− Eguess]w(Ri;p)

Nopt∑
i=1

w(Ri;p)
. (4.109)

Here, Eguess is a guess of the energy of the state. The weights w(R;p) are

w(R;p) =
∣∣∣∣∣ ΨT(R;p)
ΨT(R;p0)

∣∣∣∣∣
2

, (4.110)

where p0 is the best set of variational parameters at the start of the optimization
process.

The variance minimization process starts by choosing a set of configura-
tions {Ri}i=1,...,Nopt

, from a previous VMC realization, for instance. This set
remains fixed during the optimization procedure. One takes an initial set p0,
while the VMC energy estimator corresponding to p0 may become an initial
energy estimate Eguess. Then, employing some routine for global optimization
of nonlinear problems, one obtains a new set of parameters p as a result. This
procedure is repeated as many times as needed in order to reach a minimum of
the variance.

Other methods used to optimize the trial wave functions minimize the ex-
pectation value of the energyE (see, e.g., [133]). These methods require several
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full VMC calculations of E before an optimal set of variational parameters is
found. Consequently, they are computationally more expensive than variance
minimization. For this reason, variance minimization is the most frequently
used technique for wave function optimization in QMC.

The optimization process is an essential step in a VMC calculation. On the
other hand, although it is not a requirement in DMC since the algorithm samples
the true ground state in the large time limit, a properly optimized wave func-
tion can reduce the number of time steps needed in order to reach the required
numeric accuracy.

4.7. The Fixed-Node Approximation

The trial wave function of a fermionic system must be antisymmetric with
respect to the exchange of particles. Then, it must have regions where it is pos-
itive as well as regions where it becomes negative, separated by nodal surfaces
in the N -dimensional space. Naturally, the mixed distribution Eq. (4.63) shows
similar behavior. A major problem that arises from the antisymmetry of the
trial wave function is the so-called fermionic sign problem, a pathology of the
algorithm where the signal-to-noise ratio due to the changing sign of the trial
wave function is practically zero.

The most commonly used approach to overcome the fermionic sign prob-
lem is the Fixed-Node Approximation (FN-DMC). The basic idea of the ap-
proximation is to force the nodes of the fermionic ground state function to be
the same as those of the trial wave function ΨT(R). In the N -dimensional
space, these nodes define a hypersurface of N − 1 dimensions. Then, the do-
main is partitioned in many nodal pockets whose walls (of infinite strength, i.e.,
they are impenetrable) are fixed by the nodes of ΨT(R). In each nodal pocket,
the wave function and the mixed distribution ΨT(R)Ψ(R, τ) have the same,
fixed sign. Then, the solution of the many-body problem consists of solving the
Schrödinger equation within these nodal pockets, subject to vanishing boundary
conditions on the nodal surface.

Let vα the volume of the nodal pockets delimited by the nodal surface. In
each pocket, the mixed distribution is

fα(~R, τ) = ΨT(R)Ψα(R, τ), (4.111)

and it is positive (or negative, but with fixed-sign). Its time evolution is realized
as we have explained in Section 4.5.4, with the constraint that the short-time
Green’s function only permits random moves within the same nodal pocket α:
any random walker that crosses the nodal surface is killed. Then, in each pocket,

89



4. QUANTUM MONTE CARLO METHODS

the FN-DMC yields an approximated ground state energyE0,α and ground state
function Φ0,α(R) that satisfy the relation

ĤΦ0,α(R) = E0,αΦ0,α(R), Rα ∈ vα. (4.112)

In a FN-DMC calculation, the initial distribution of walkers should cover as
many pockets as possible. Then, the expected value of the energy becomes

E =

∫
dR f(R, τ →∞)EL(R)∫

dR f(R, τ →∞)
, (4.113)

where the full mixed distribution at large times is

f∞(R) = f(R, τ →∞) =
∑
α

cαΨT(R)Φ0,α(R), (4.114)

with the constant cα depending on the initial population in the pocket vα.
The energy Eq. (4.113) is also an upper bound to the ground state energy

E0 [126], and its best value will be obtained when all the nodal pockets have
been populated. If somehow we knew how the true nodes of the ground state
are, we would find that all of the nodal pockets have the same ground-state en-
ergy. Therefore, the initial distribution of the walkers is irrelevant. However,
since we do not know the nodal surface exactly, the FN energy becomes a vari-
ational approximation: nodal surfaces of better quality, i.e., closer to the true
ones, will yield better approximations to the exact ground state energy E0.

4.8. Extended Systems

Realistically, QMC simulations are always realized on a finite volume of the
space. The study of extended systems, i.e., those whose extent is unbounded
(for instance, crystals or other structures with some type of periodicity) require
additional procedures to correctly estimate the properties of the system from
results calculated on finite subspaces.

Calculations on extended systems can be realized employing the supercell
approximation [134] to reduce the study to a finite, manageable volume. This
method consists in studying only a finite region of the space with volume ΩSC,
called supercell, which should contain (in principle) many primitive cells of the
system. Then, QMC calculations are realized in this finite simulation cell. Let
us callR to the set positions of the particles in ΩSC: R = {r1, r2, . . . , rN}, and
{l} the set of all lattice vectors of the system fixed by its structure, and possibly
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by some external potential Vext(r) with a periodicity of {l}. Then, the whole
system is reconstructed (approximately) via translations of the particles in ΩSC
by supercell lattice vectors {L}, which are a subset of {l}. These translations
create an infinite set of cells, which are exact images of the original cell ΩSC,
so the Hamiltonian of the whole system of the extended system is

Ĥ =
∞∑
k=1
ĤSC(Rk) =

∞∑
k=1

[
ĥ(Rk) + V̂int−im(Rk)

]
. (4.115)

Here,Rk = {rk,1, rk,2, . . . , rk,N} represents the positions of particles in the k-
th supercell. If n is the average density of the system, N = nΩSC is the number
of particles in the cell. The Hamiltonian ĥ(Rk) accounts for the interactions
between particles in the k-th cell and is given by Eq. (4.1). The additional term
V̂int−im(Rk) represents the interactions of particles in the group Rk with other
particles that lie in the infinitely large set of images of ΩSC. Since the j-th
particle inRk has a set of images at positions rk,j +L and interacts with all of
them, the expression for V̂int−im(Rk) becomes

V̂int−im(Rk) = 1
2

N∑
i=1

N∑
j=1

∑
L6=0

Vint(rk,i − rk,j −L). (4.116)

Consequently, the Hamiltonian of the supercell can be written as

ĤSC(R) = − ~2

2m

N∑
i=1
∇2
ri

+
N∑
i=1

Vext(ri)

+ 1
2

N∑
i=1

N∑
j=1

∑
L 6=0

Vint(ri − rj −L). (4.117)

4.8.1. Twisted Boundary Conditions

Hamiltonian Eq. (4.117) (and consequently Eq. (4.115)) is invariant under
the translation of any particle by a lattice vectors L:

ĤSC(r1, . . . , ri +L, . . . , rN) = ĤSC(r1, . . . , ri, . . . , rN). (4.118)

Accordingly, the eigenfunctions of ĤSC are many-particle Bloch waves:

ΨK,α(R) = ΦK,α(R) exp
iK · N∑

j=1
rj

 (4.119)

In this expression,K is the lattice momentum, α is a band index, and ΦK,α(R)
is a function that is invariant under the translation of any particle by a vector L.
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Let beLj , j = 1, 2, 3, withLj ∈ {L}, the simulation cell “primitive” lattice
vectors, such that ΩSC = |L1 ·(L2×L3)|. Like the single-particle Bloch waves,
many-particle Bloch waves acquire a phase when any particle is translated by a
primitive supercell lattice vector:

ΨK,α(r1, . . . , ri +Lj, . . . , rN) =
eiK·Lj ΨK,α(r1, . . . , ri, . . . , rN) (4.120)

For zero K, the phase is equal to one, and the wave function returns to the
same value when the particle was in its original position. In this case, we say
that the system satisfies periodic boundary conditions. On the other hand, if
the momentum K is nonzero, the wave function does not return to its original
value; we say that the system fulfills twisted boundary conditions [125].

An approximation to the ground-state energy can be obtained by taking the
lowest band index only: α = 0. Since the system has an infinite extent, the
wave vectorK varies continuously in the first Brillouin zone. Accordingly, the
ground-state energy in the supercell can be written as [135]

ESC =
〈
ĤSC

〉
= ΩSC

(2π)3

∫
K∈F.B.Z.

〈ΨK,0| ĤSC |ΨK,0〉 d. (4.121)

In practice, this integral is approximated by a discrete sum over a finite number
of K points; as the simulation cell volume ΩSC increases, a smaller number of
K points are required to represent the integral. The expected values of other
operators are calculated similarly.

4.8.2. Fixed-Phase Approximation

In the study of systems subject to twisted boundary conditions, additional
difficulties arise since the trial wave function must be complex-valued accord-
ing to Eq. (4.120). Consequently, calculating the energy Eq. (4.121) gives rise
to complex quantities during the evaluation of the local energy Eq. (4.34). In
VMC calculations, this is not a significant problem: first, because the sampled
probability distribution Eq. (4.33) is always real, and second, because expec-
tation values of hermitian operators like the Hamiltonian are real, hence only
the real part of the local energy is calculated and used. However, for DMC
calculations, the mixed distribution Eq. (4.63) becomes complex, and can not
be sampled following the methods described in Section 4.5 and Section 4.7. A
complex trial wave function requires an alternative approach: the fixed-phase
method.

As we know, during a DMC calculation, the mixed distribution f(R, τ) =
Ψ∗T(R)Ψ(R, τ) must remain positive. When using real wave functions, this
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is not a significant difficulty for a bosonic system, whereas, for a fermionic
system, this can be achieved using the fixed-node approximation. In the fixed-
phase method, one starts by expressing the complex wave function in polar
form: Ψ(R, τ) = |Ψ(R, τ)| exp(ϕ(R, τ)), where both amplitude |Ψ| and phase
ϕ are real-valued functions. In a similar way to the fixed-node method, to obtain
a real-valued mixed distribution, one forces Ψ to have the same phase as the trial
wave function: ΨT(R) = |ΨT(R)| exp(ϕT(R)). This way, the mixed distri-
bution f(R, τ) = |ΨT(R)| |Ψ(R, τ)| becomes a real-valued, positive function
that can be sampled using DMC while keeping constant the phase ϕT. Like
the fixed-node approximation, this procedure yields a variational upper bound
estimate to the true ground-state energy of the system. A detailed discussion
of the fixed-phase approximation is beyond the scope of this thesis but can be
consulted in Ref. [136].
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5
QMC Study of the Bose Gas in

Multi-Rods

In Chapter 3, we obtained the ground-state properties of a 1D Bose gas in a
multi-rod lattice in the mean-field regime. Beyond this regime, e.g., when the
interactions between particles are large enough, we have to resort to a different
theory to correctly describe the system. In this chapter, we show how Quantum
Monte Carlo (QMC) methods are used to numerically calculate the ground-
state properties of our system for arbitrarily strong interactions. Also, we show
how our results can be used in the context of the Luttinger liquid theory (see
Section 2.9) to obtain the superfluid vs. Mott-insulator quantum phase diagram
as a function of the parameters of our model.

5.1. The Hamiltonian of a Multi-Rod Lattice

Confinement Induced Resonances offer a way to probe the influence of in-
teractions in one-dimensional trapped Bose gases (see Section 2.7). Moreover,
the inclusion of an optical lattice in the axial direction provides a way to simu-
late periodic matter. The combination of CIRs and optical lattices may lead to
the appearance of new phenomena and novel phase transitions [92].

Here, we proceed to analyze the physical properties for a degenerate, in-
teracting 1D Bose gas within a multi-rod lattice. This structure is composed
of a succession of permeable rods of width b, separated by empty regions of
length a, along the z direction, so the period of the potential is l = a + b. We
model the multi-rod periodic structure through a Krong-Penney potential (see
Section 3.2). A noteworthy feature of the KP potential is its deep relation to
the Dirac-comb potential. As we saw in Section 3.8.1, realizing novel types of
optical lattices with sub-wavelength structure (SWOL) [36, 37] opens a way to
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realize experiments with lattices formed by nearly Dirac-δ potentials, and even
more complex combinations [113].

Our model allows repulsive interactions of arbitrary magnitude; therefore,
the mean-field theory approach and GPE are generally not applicable. Still, we
consider contact-like interactions between particles. Therefore, if we remove
the multi-rod lattice, our system effectively corresponds to the Lieb-Liniger
Bose gas (see Section 2.8). Hence, we can write the Hamiltonian of the full
system as the Lieb-Liniger Hamiltonian plus an external potential,

Ĥ = ĤLL + V̂ext

= − ~2

2m

N∑
i=1

∂2

∂z2
i

+ g1D

N∑
i=1

N∑
j=i+1

δ(zi − zj) +
N∑
i=1

VKP(zi), (5.1)

where N is the number of bosons, VKP(z) is the external KP potential, and
g1D is the interaction strength. The Lieb-Liniger parameter is γ = mg1D/~2n1,
where n1 is the average linear density of the system.

5.2. Bijl-Jastrow Trial Wave Functions

A trial wave function for VMC and DMC calculations is constructed ac-
cording to the general description of Slater-Bijl-Jastrow wave functions (see
Section 4.6),

ΨT(z) = S(z)J (z). (5.2)

First, since we are studying a Bose gas, we need a symmetric wave function, so
we set the symmetry factor to one: S(z) = 1. Next, we have to construct the
Jastrow factor,

J (z) =
N∏
i=1

f1(zi)×
N∏
i=1

N∏
j=i+1

f2(rij), (5.3)

where z = (z1, z2, . . . , zN) is the vector of positions of the bosons in the config-
uration space, and the relative distance is rij = |zi − zj|. Since we are studying
an extended system, we will employ the supercell approximation, according to
Section 4.8. In this work, we will be restricting ourselves to periodic boundary
conditions, so real-valued wave functions are sufficient for our needs. Being a
one-dimensional system, the primitive lattice vector of the multi-rod lattice is
simply l = lez, where ez is the unit-vector in the z direction, and l is the period
of the lattice. The supercell lattice vector is chosen as L = mzl, where mz
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z →

V
K

P
(z

)
→

Figure 5.1: Supercell approximation. The primitive lattice is defined by the KP
potential (gray barriers), while a supercell (red region) contains several primi-
tive cells. The supercell repeats over and over to span the whole system.

is an integer greater or equal than one, so the simulation cell contains several
primitive cells. This way, L = Lez, with L = mzl being the length of the
supercell.

We construct the one-body functions f1(z) as eigenfunctions of the single-
particle Schrödinger equation with an external potential VKP(z). As we saw in
Section 3.2, these solutions are Bloch waves: f1(z) = eikzzφk(z), where kz is
the one-particle wave vector, and the function φk(z) has the same periodicity as
the primitive lattice, i.e., φk(z + l) = φk(z). We build the Jastrow factor from
real-valued, Bloch waves with zero wave vector, which can be written as

f1(z) =

cos [α1 (z − jl − a/2)] , VKP(z) = 0
A cosh [κ1 (z − jl + b/2)] , VKP(z) = V0

, (5.4)

where l = a + b is the potential period, j is an integer, ~α1 =
√

2mε0, and
~κ1 =

√
2m(V0 − ε0). The parameter ε0 is the ground state energy fixed by

Eq. (3.10) with kz = 0. At the same time, the continuity of the derivative of f1
at the potential edges sets the constant A as

A =

√√√√1 + V0

ε0
sinh2

(
κ1b

2

)
. (5.5)

The two-body functions f2(r) are obtained as solutions of the two-particle
Schrödinger equation with a mutual interaction Vint(r) = g1Dδ(r),

− ~2

2mred

d2f2(r)
dr2 + g1Dδ(r)f2(r) = εf2(r), (5.6)
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where r = zi − zj is the relative coordinate, and m∗ = m/2 is the reduced
mass of the pair. Solutions with positive energy are plane waves, which we can
simply write as

f2(r) = A cos(α2|r|+ ϕ). (5.7)

Here, both α2 and ϕ are undetermined parameters of the wave function. These
parameters are not entirely free since the presence of the delta potential at the
origin gives rise to a discontinuity in the derivative of f2 at the origin,

f ′2(0+)− f ′2(0−) = 2
|a1D|

f2(0). (5.8)

If we conveniently write ϕ = α2r0 with r0 being an offset and substitute
Eq. (5.7) in Eq. (5.8), we find that

α2|a1D| tan(α2r0) = 1. (5.9)

In the absence of an external potential, two-body functions should be a good
representation of the exact ground-state wave function for an interval of g1D as
large as possible. This interval includes the limit of infinite interactions, i.e.,
the TG gas, whose ground-state wave function has the following form (up to
normalization factor) [23]:

Ψ(z) ∝
N∏
i=1

N∏
j=i+1

sin
(
π

L
|zi − zj|

)
. (5.10)

Here, Ψ(z) satisfies periodic boundary conditions under the translation of any
of the bosons by L. The wave function Eq. (5.10) has the form of a Jastrow
factor Eq. (4.101), which suggests the following extension for the trial wave
function [34]:

f2(r) =


A cos(α2(|r| − r0)) 0 ≤ |r| < |rm|

sin
(
π|r|
L

)β
|r| > |rm|

. (5.11)

This function can be interpreted in the following way: for 0 < |r| < |rm| it
is a solution of the Eq. (5.6) and takes into account the effect of the contact
interaction at r = 0; for |r| > |rm|, it approximates the ground-state wave
function of a system that supports long-wavelength phonons [137] and is very
close to Eq. (5.10) when β = 1. The distance |rm| < L/2 is a variational
parameter that separates both behaviors. Since bosons do not interact with other
particles outside the simulation cell, the two-body function becomes equal to
one at |r| = L/2, i.e., two bosons become uncorrelated. To determine the
coefficients, we impose the following boundary conditions on Eq. (5.11):
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At the origin, it satisfies the relation α2|a1D| tan(α2r0) = 1 due to the
delta interaction between bosons (see Eq. (5.8)).

It must be continuous a the matching point rm:

A cos(α2(|rm| − r0)) = sin
(
π|rm|
L

)β
. (5.12)

Its derivative must be continuous at rm. This condition, together with the
continuity of f2 yields the following equality:

−α2 tan(α2(|rm| − r0)) = π

L
β cot

(
π|rm|
L

)
. (5.13)

The local energy must be continuous at rm. Together with the two previ-
ous conditions this condition yields

−α2
2 =

(
π

L

)2
β

[
(β − 1) cot2

(
π|rm|
L

)
− 1

]
. (5.14)

These conditions fix the parameters α2, A, β, and r0 as functions of rm.

5.3. Observables

Having defined the form of the trial wave function, here we show how to
calculate some properties of the highest interest for us.

5.3.1. Local Energy

For both VMC and DMC calculations, the local energy is an essential quan-
tity. According to its definition Eq. (4.34), and based on the Hamiltonian of our
system Eq. (5.1), it can be written as

EL(z) = − ~2

2m
1

ΨT(z)

N∑
i=1

∂2

∂z2
i

ΨT(z)

+ g1D

N∑
i=1

N∑
j=i+1

δ(zi − zj) +
N∑
i=1

VKP(zi). (5.15)

In this expression, the calculation of potential energy is straightforward. On
the other hand, the most laborious job is calculating the derivatives of the wave
function. We can do this by defining

LT(z) = ln ΨT(z) =⇒ ΨT(z) = exp(LT(z)). (5.16)
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Then, the action of the 1D-Laplacian∇2
z = ∑N

i=1 ∂
2/∂z2

i is

∇2
zΨT(z) = ∇2

z exp(LT(z)) (5.17a)
= ∇z · ∇z exp(LT(z))
= ∇z · [exp(LT(z))∇zLT(z)]
=
[
∇2
zLT(z) + ‖∇zLT(z)‖2

]
exp(LT(z))

=
[
∇2
zLT(z) + ‖∇zLT(z)‖2

]
ΨT(z). (5.17b)

Therefore, the local energy Eq. (5.15) becomes

EL(z) = − ~2

2m

N∑
i=1

∂2LT(z)
∂z2

i

+
(
∂LT(z)
∂zi

)2


+ g1D

N∑
i=1

N∑
j=i+1

δ(zi − zj) +
N∑
i=1

VKP(zi). (5.18)

From the mathematical form of the trial wave function Eq. (5.2), it follows that

LT(z) =
N∑
i=1

ln f1(zi) +
N∑
i=1

N∑
j=i+1

ln f2(zi − zj). (5.19)

After some steps, the full expression for the local energy can be written as

EL(z) = − ~2

2m

N∑
i=1

 1
f1(z)

∂2f1

∂z2 −
(

1
f1(z)

∂f1

∂z

)2

z=zi

− ~2

2m

N∑
i=1

N∑
j=1

′

 1
f2(r)

∂2f2

∂r2 −
(

1
f2(r)

∂f2

∂r

)2

r=rij

− ~2

2m

N∑
i=1

 1
f1(zi)

∂f1

∂z

∣∣∣∣∣
zi

+
N∑
j=1

′ 1
f2(rij)

∂f2

∂r

∣∣∣∣∣
rij

rij
|rij|

2

, (5.20)

where the prime in the nested sums indicate j 6= i, and rij = zi − zj . The
first two terms of Eq. (5.20) correspond to∇2

zLT(z); the third term arises from
‖∇zLT(z)‖2, and it is proportional to the squared modulus of the drift force
Eq. (4.65):

F (z) = 2∇zΨT(z)
ΨT(z) = 2∇zLT(z). (5.21)
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The form of Eq. (5.20) suggests the following definitions:

K
(1)
L (z) = − 1

f1(z)
∂2f1

∂z2 +
(

1
f1(z)

∂f1

∂z

)2

, (5.22a)

K
(2)
L (r) = − 1

f2(r)
∂2f2

∂r2 +
(

1
f2(r)

∂f2

∂r

)2

, (5.22b)

Fi(z) = 2
 1
f1(zi)

∂f1

∂z

∣∣∣∣∣
zi

+
N∑
j=1

′ 1
f2(rij)

∂f2

∂r

∣∣∣∣∣
rij

rij
|rij|

 , (5.22c)

Then, substituting these expressions in Eq. (5.20), together with the definition
of the drift force, we obtain

EL(z) = ~2

2m

N∑
i=1

K(1)
L (zi) +

N∑
j=1

′K
(2)
L (rij)−

1
4F

2
i (z)

 . (5.23)

According to Eq. (5.22), the contribution to the local energy from the one-
body functions Eq. (5.4) is

K1
L(z) =


α2

1

(
1 + tan2[α1(z − a/2)]

)
VKP(z) = 0

κ2
1

(
− 1 + tanh2 [κ1(z − l + b/2)]

)
VKP(z) = V0

; (5.24)

from the two-body functions Eq. (5.11), the contribution is

K2
L(r) =


α2

2

(
1 + tan2(α2(|r| − r0))

)
0 ≤ |r| < |rm|(

π
L

)2
β

(
1 + cot2

(
π|r|
L

))
|r| > |rm|

, (5.25)

while the i-th component of the drift force contributes with

Fi(z) = 2

−α1 tan[α1(zi − a/2)] VKP(z) = 0
κ1 tanh [κ1(zi − l + b/2)] VKP(z) = V0

+ 2
N∑
j=1

′ rij
|rij|

−α2 tan(α2(|rij| − r0)) 0 ≤ |rij| < |rm|(
π
L

)
β cot

(
π|rij |
L

)
|rij| > |rm|

. (5.26)

Once determined the full expression of the local energy, we can calculate an
approximation of the ground-state energy according to Eq. (4.40) for VMC, or
Eq. (4.78) for DMC.
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5.3.2. Static Structure Factor

The presence of a lattice can promote a quantum phase transition in the
system from a superfluid (SF) state to a Mott-insulator (MI) state [91, 92] or
vice-versa. A fingerprint of these phases can be obtained from the static struc-
ture factor S(k) [138]:

S(k) = 1
N

(〈
n̂†1;kn̂1;k

〉
−
〈
n̂†1;k

〉
〈n̂1;k〉

)
. (5.27)

Here, the operator n̂k is the Fourier transform of the density operator n̂1(z),

n̂1;k =
∫
dz eikzn̂1(z), (5.28)

so the static structure factor is determined by the fluctuations of the density. For
a system with N particles at positions {z1, z2, . . . , zN},

n̂1(z) =
N∑
j=1

δ(z − zj) =⇒ n̂1;k =
N∑
j=1

eikzj . (5.29)

Since n̂†1;k = n̂1;−k, one obtains

S(k) = 1
N

(
〈n̂1;kn̂1;−k〉 − |〈n̂1;k〉|2

)
. (5.30)

The static structure factor (as well as its dynamic counterpart S(k, ω)) is an
important quantity that gives valuable information about single and collective
excitations of a quantum gas. It is a quantity that can be probed by Bragg spec-
troscopy [139], where k is the momentum of a system excitation. For small
momenta, it is sensitive to the structure and collective excitations of the sys-
tem, showing a non-trivial behavior. On the other hand, for high-k values, it
approximates to the model-independent value limk→∞ S(k) = 1.

Regarding the numerical side, one evaluates S(k) in the following way.
First, we split the Fourier density operator into both real and imaginary parts:

n̂1;k =
N∑
j=1

cos(kzj) + i
N∑
j=1

sin(kzj). (5.31)

Substituting this expression in Eq. (5.30), we arrive at

S(k) = 1
N

〈 N∑
j=1

cos(kzj)
2

+
 N∑
j=1

sin(kzj)
2〉

− 1
N

〈 N∑
j=1

cos(kzj)
〉2

+
〈

N∑
j=1

sin(kzj)
〉2 . (5.32)
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This expression can be evaluated straightforwardly during VMC and QMC cal-
culations for any random configuration z. For an extended system with periodic
boundary conditions (which is our case), the value of k is not arbitrary but is
quantized:

kj = 2π
L
j, j ∈ j = 0, 1, 2, . . . , (5.33)

Here, L is the size of the simulation cell. As we have set L = mzl, where
l = a+ b is the period of the multi-rod lattice, then

kj = 2π
l

j

mz

, j = 0, 1, 2, . . . . (5.34)

Finally, we can notice that calculating S(k) involves the expected values
of operators that do not commute with the Hamiltonian Ĥ . To obtain a good
approximation of the ground-state static structure factor, one has to resort to the
extrapolation method or the forward walking method (see Section 4.5.7). In this
thesis, we will employ the latter, since it is the only method that gives bias-free
predictions for S(k) and other local observables that do not commute with Ĥ .

5.4. Ground-State Energy of the LL Bose Gas

In the absence of the multi-rod lattice, our system becomes the Lieb-Liniger
Bose gas. This reduction suggests a way for testing the goodness of the trial
wave function and the exactness of QMC implementations. The energy of the
LL Bose gas can be obtained as indicated in Appendix A.1, and it can be com-
pared directly to VMC and DMC results.

For the LL Bose gas, the magnitude of the interactions is measured in terms
of the Lieb-Liniger parameter γ = 2/n1a1D. As we saw in Section 2.8, the limit
n1a1D � 1 (γ � 1) corresponds to the weakly-interacting Bose gas that can be
studied using GP formalism. On the other hand, for n1a1D � 1 (γ � 1), the gas
approaches to the TG Bose gas, whose properties are well known [23]. Based
on Section 2.8, we know that for arbitrary values of n1a1D, the LL ground-state
energy is E/N = (~2/2m)n2

1e(γ); by multiplying and dividing by a2
1D on the

r.h.s. of Eq. (2.100), we obtain

Ẽ

N
= (n1a1D)2e(γ). (5.35)

Here, Ẽ ≡ E/εa1D is the energy of the gas rescaled in terms of εa1D ≡ ~2/2ma2
1D.

Consequently, we can always determine the function e(γ) from any QMC calcu-
lation of the ground-state energy. In the mean-field regime, we have e(γ)→ γ;
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5. QMC STUDY OF THE BOSE GAS IN MULTI-RODS

from Eq. (5.35), we immediately obtain the behavior of the energy in this
regime,

Ẽ

N
→ 2n1a1D. (5.36)

On the other hand, in the TG regime γ → π2/3, so in the limit of impenetrable
bosons, we obtain

Ẽ

N
→ π2

3 (n1a1D)2. (5.37)

In Fig. 5.2, we have plotted the full behavior of the LL Bose gas ground-
state energy as a function of n1a1D, together with the energy in both Eq. (5.36)
and Eq. (5.37) regimes. Also, we plot ground-state energy results calculated
using DMC (and VMC) for n1a1D = 0.01, 0.1, 0.3, 1, 10, 30, and 100, using
N = 100 particles. Remarkably, both VMC and DMC energy results fall on
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Figure 5.2: Ground-state energy of the Lieb-Liniger Bose gas, as a function of
the gas parameter n1a1D. Results using the exact LL energy Eq. (5.35) (solid
red line), VMC (dark squares), and DMC (dark circles), are shown. Both
Gross-Pitaevskii (dashed blue line) and Tonks-Girardeau (dash-dot-dot gray
line) regimes are shown. An intermediate regime where both GP and TG re-
sults become inapplicable is visible, whereas VMC and DMC results lie above
the exact energy for any value of n1a1D.
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5.5. Mott Transition

the exact results obtained for the LL Bose gas. On the one hand, the results
validate the accuracy of the computer program developed for both VMC and
DMC methods. On the other hand, the results validate the goodness of the trial
wave function Eq. (5.2) [34].

5.5. Mott Transition

Without a lattice potential, a Luttinger liquid is a superfluid at zero tempera-
ture [85, 140]. The introduction of a lattice potential may give rise to a quantum
phase transition from the superfluid state to a Mott-insulator state, commonly
known as Mott-transition. The essence of such a quantum phase transition is
captured by the Bose-Hubbard model [4, 91, 92, 141, 142]: a system of bosonic
particles with repulsive interactions subject to a lattice potential that can hop
from a lattice site to the nearest sites only by quantum tunneling. The Mott
transition is driven by the permanent competition between the particle interac-
tions in a lattice site (captured by a U parameter) and the tunneling between
adjacent lattice sites (captured by a J parameter). In the Mott-insulator state,
each lattice site is filled by the same number of particles.

The first class of Mott transition can occur for sufficiently strong repulsive
interactions and sufficiently high lattices, when the average density and the lat-
tice period are commensurate, i.e., when its product (the filling) is an integer.
The second class of transition can be driven by varying the chemical potential
(which is equivalent to change the filling) while keeping the interactions (and
the lattice height) constant. The first Mott transition class that occurs at com-
mensurate filling is known as Mott-U transition, while the second one is known
as Mott-δ transition. Remarkably, in 1D gases, an arbitrarily weak potential is
enough to drive a Mott transition provided that the interactions are sufficiently
strong [143].

In Section 2.9, we gave a general description of the Luttinger liquid theory
for a homogeneous Bose gas. When a periodic potential V (z) is introduced in
the system, the low-energy Hamiltonian Eq. (2.114) (Ĥ0 in the current context)
becomes modified by a perturbation ĤV that accounts for the effects of the
potential. Due to the periodicity of V (z), the final form of Ĥ corresponds to
the quantum sine-Gordon model [78, 84, 85, 143]:

Ĥ = Ĥ0 + ĤV

= Ĥ0 + Vj

∫
dz cos

(
2pφ̂l(z)− zδ

)
. (5.38)
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Here, Vj is a constant that depends on the form of V (z), while

δ = 2jπ/l − 2pπn1 (5.39)

is the degree of incommensurability of the potential; both p and j integers, and
l is the period of V (z). In particular, δ = 0 corresponds to a commensurate
number of bosons per lattice site,

n1l = j

p
. (5.40)

For any commensurate filling, the sine-Gordon Hamiltonian can undergo a
Mott-U transition [78, 85]; at the transition point, the Luttinger parameter K
of the gas (see Section 2.9) takes a critical value Kc that depends only on the
commensurability order p,

Kc ≡
2
p2 . (5.41)

For instance, for a commensurability of order p = 1, the critical Luttinger pa-
rameter is Kc = 2. Physically, this commensurability order corresponds to an
integer number of bosons per site: n1l = j.

For commensurate fillings, even in the presence of a periodic potential, a
Luttinger liquid remains superfluid while K > Kc. Variations in the interaction
strength can push K towards Kc. At the critical point, K jumps discontinu-
ously from Kc in the superfluid phase to zero in the Mott-insulator phase. The
excitation energy spectrum, which is non-gapped and increases linearly with
the quasimomentum as E(k) = cs~|k| in the superfluid state [83, 84], devel-
ops an excitation gap ∆ in the Mott phase, so E(k) =

√
(cs~|k|)2 + ∆2 [85].

On the other hand, the compressibility tends to a constant at the transition. It
then drops discontinuously to zero in the Mott-insulator phase, since no density
changes occur upon changing the chemical potential.

5.5.1. Evaluation of the Luttinger Parameter

In this thesis, we calculate K from the low-momenta behavior of the static
structure factor S(k). As we saw in Section 5.3.2, S(k) gives valuable informa-
tion about single and collective excitations in the system. In particular, one can
obtain the velocity of propagation of the density collective excitations, i.e., the
sound velocity cs.

The low-momenta behavior of the energy spectrum E(k) of the density col-
lective excitations is related to the static structure factor through the well-known
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Feynman relation [45, 144, 145]:

E(k) ≡ ~2k2

2mS(k) . (5.42)

This equation gives an upper estimate of the energy of the elementary excita-
tions in terms of the static structure factor. For a Luttinger liquid, the excitation
spectrum at long wavelengths is linear with k: E(k) ∼ cs~|k|. Substituting the
energy spectrum in Eq. (5.42), the sound velocity can be obtained (in the limit
when k → 0) as

cs = ~
2m lim

k→0

(
S(k)
k

)−1

. (5.43)

Next, we use relation Eq. (2.121) to relate the sound velocity with the Luttinger
parameter, hence cs = ~kF/mK. Substituting this equality in Eq. (5.43), we
obtain

K = 2kF lim
k→0

S(k)
k

. (5.44)

Consequently, the Luttinger parameter can be obtained from the derivative of
the static structure factor at zero wave vector. As long as the system is in the
superfluid phase, i.e., K > Kc, the value obtained from Eq. (5.44) can be
interpreted as the Luttinger parameter of the gas.

5.5.2. Evaluation of the Static Structure Factor

When we introduce the multi-rod lattice, the system acquires a new length
scale: the lattice period l. This length fixes some critical parameters that define
the quantum behavior of the system, as well as other parameters that control the
QMC calculation efficiency. For instance, under the supercell approximation,
we use a simulation box that contains several primitive lattice cells, i.e., L =
mzl, where mz is the number of lattice sites. According to the definition of the
average linear density: n1 ≡ N/L = N/mzl, the filling becomes

n1l ≡
N

mz

. (5.45)

Its physical interpretation is straightforward: it represents the average number
of particles per lattice site. At the same time, the recoil energyER = ~2π2/2ml2
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becomes a natural energy scale for the multi-rod lattice height, and conse-
quently, to measure the height V0 of the KP potential barriers. Also, the in-
teraction magnitude can be measured in terms of ER,

g1Dn1

ER
= 2γ

(
n1l

π

)2

, (5.46)

where γ = 2/n1a1D is the Lieb-Liniger parameter of the gas. In a QMC calcu-
lation, we set N and L = mzl, so n1l gets fixed too, and the interaction factor
Eq. (5.46) that corresponds to a given γ can be determined. Then the QMC
results can be compared with data obtained by other means, for instance, from
experimental results, as well as from mean-field approximations.

Here we report the results obtained for the static structure factor at com-
mensurate filling of order p = 1 using the DMC method adapted for calculation
of pure estimators [32]. More specifically, from now on, all analyses will be
done with n1l = 1, i.e., our system will have, on average, one boson per lattice
site. Also, we will focus on the study of “square” multi-rod lattices, that is,
where the distance a that separates any pair of rods (barriers of the KP poten-
tial) is equal to their width b. This condition means that any QMC simulation
must be done in a supercell with as many lattice sites as particles according to
Eq. (5.45), i.e., N = mz. Also, as we impose periodic boundary conditions on
the wave function, the wave vector can only take quantized values according to
Eq. (5.34),

kj = 2π
l

j

N
, j = 0, 1, 2, . . . . (5.47)

Since n1l = 1 and kF = πn1, the j-th wave vector can be written conveniently
as

kj = 2kF
j

N
, j = 0, 1, 2, . . . . (5.48)

As we saw at the start of Section 5.5, a Mott transition can be driven in a Lut-
tinger liquid subject to a periodic potential in two ways: by a Mott-U transition,
or by a Mott-δ transition. Here, we study the Mott-U transition by calculating
the Luttinger parameter from Eq. (5.44) as a function of the interaction strength
γ and the lattice height V0. We estimate the boundary between both superfluid
and Mott-insulator phases defined by the condition K(γ, V0) = Kc. Finally,
we use the previously obtained pairs (γ, V0) to construct the zero-temperature
phase diagram of the gas.
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5.5. Mott Transition

As our starting point, we report the behavior of the static structure factor
for the LL Bose gas Fig. 5.3. We have plotted several curves for different val-
ues of the Lieb-Liniger parameter γ: as its value increases, the interactions
become stronger. We can observe that for systems with weaker interactions, the
static structure factor has a very steep slope, while as the interaction strength
increases, the slope diminishes monotonically. As the Luttinger parameter is
proportional to the slope of S(k) at zero k, it follows that as the interaction
increases, K diminishes. For substantial values of γ, i.e., for very strong inter-
actions, S(k) behaves more and more like the static structure factor of the TG
Bose gas:

STG(k) =


k

2kF
k < 2kF

1 k ≥ 2kF

. (5.49)

From this expression and Eq. (5.43), we can easily verify that the sound
velocity of the TG gas is cs = vF [23], and the Luttinger parameter is K = 1.
Hence, QMC calculations are in complete agreement with a result obtained at
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Figure 5.3: Static structure factor as a function of the wave vector for the Lieb-
Liniger Bose gas. Each plotted curve corresponds to a different value of the LL
parameter γ. The straight dashed line indicates the slope of S(k) at the origin
for which the Luttinger parameterK takes the critical valueKc = 2. The dotted
line indicates the slope of S(k) for the TG Bose gas at k < 2kF.
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the end of Section 2.9: the Luttinger parameter of a Lieb-Liniger Bose gas with
finite repulsive interactions is always greater than one.

A quick examination of the results reported in Fig. 5.3 indicates that there is
a minimum γc value where K = Kc = 2. One can notice that there is a family
of S(k) curves whose slope at the origin is below the dashed line with slope
one. Consequently, the Luttinger liquid for these curves is below the critical
value Kc. We can estimate the value of γc by calculating the slope of S(k)
at k = 0 from DMC results; then, we can obtain K as a function of γ using
Eq. (5.44). The results we obtained from this procedure are shown in Fig. 5.4.
As γ increases, we observe that K decreases until it reaches the critical value

Figure 5.4: LL Bose gas Luttinger
parameter K as a function of γ−1.
K value was obtained from QMC
results reported in Fig. 5.3 for γ =
64, 16, 4, 2, and 1. The horizon-
tal dashed line indicates the critical
value Kc = 2, while the black circle
shows the transition point (γc, Kc),
where γc ∼ 3.5. The darker region
indicates those values of γ for which
an arbitrarily weak periodic poten-
tial can pin the bosons in a Mott in-
sulator state.

0.00 0.25 0.50 0.75 1.00
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2
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indicated by the dashed horizontal line. From our data, we have estimated that
γ−1

c ∼ 0.28, or equivalently: γc ∼ 3.5. This result is in complete agreement
with theoretical estimations [143].

For interactions stronger than the critical value γc a novel phenomenon oc-
curs: the superfluid Luttinger liquid can be driven to a Mott-insulator state by
adding an arbitrarily weak periodic potential, pinning the bosons to the lattice
sites. This phenomenon is a consequence of the particular type of Mott tran-
sition manifested by the low-energy, sine-Gordon Hamiltonian that models the
system. For weaker interactions than the critical value γc, an arbitrarily weak
potential can not trigger a Mott transition. However, for these γ values, the
Mott transition can be driven by increasing the height of the periodic multi-rod
lattice potential. The transition point depends on the value of the Luttinger pa-
rameter: as long as K > Kc = 2, the sine-Gordon Hamiltonian is unable to
pin the bosons in the lattice sites. Hence, for a particular value γ < γc the Mott
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transition is triggered at a critical value of the potential height Vc; if V0 < Vc,
the system is a superfluid, whereas if V0 ≥ Vc the system is a Mott-insulator.

Analogously to the LL Bose gas, for nonzero lattice potential, we determine
the Luttinger parameter from the low-k behavior of the static structure factor
S(k). In Fig. 5.5, we show how the static structure factor of the gas changes in
the presence of the multi-rod lattice; the strength of the interactions is γ−1 = 1
in Fig. 5.5a and γ−1 = 0.5 in Fig. 5.5b. According to the previous discussion,
for this system, only a sufficiently high lattice can trigger the Mott-U transition.
As expected, for the free Bose gas (FBG), the slope of S(k) is above the tran-
sition line with slope one in both subfigures. As we increase the lattice height,
the slope diminishes; ultimately, for some height V0, the slope of the curve is
clearly below the transition slope.

We have calculated the Luttinger parameter for all the S(k) curves in both
Fig. 5.5a and Fig. 5.5b. For γ−1 = 1 results are reported in Fig. 5.6a, while
for γ−1 = 0.5 results are shown in Fig. 5.6b. The dependence of K on V0
shows that for shallow lattices K > Kc = 2; this means that the Bose gas is
in the superfluid state. As the lattice height increases, K diminishes until it
crosses the line K = Kc at some Vc. At this point, the gas becomes a Mott-
insulator. We estimated the critical value Vc for both interactions: for γ−1, we
get Vc ∼ 4.39ER, while for γ−1 = 0.5, we get Vc ∼ 2.05ER. Similarly, we
calculated the static structure factor S(k) for γ−1 = 0.75, γ−1 = 1.5, γ−1 = 2,
and γ−1 = 5. For these interactions, we obtained Vc ∼ 2.05ER, Vc ∼ 3.57ER,
Vc ∼ 5.46ER, Vc ∼ 6.60ER, and Vc ∼ 9.92ER, respectively.

5.5.3. Superfluid vs. Mott-Insulator Phase Diagram

Starting from the estimated values of the critical lattice height Vc as a func-
tion of the interaction γ−1, together with the critical interaction γ−1

c for the LL
Bose gas, we can establish, at first approximation, the boundary between the
superfluid and Mott-insulator phases of the 1D Bose gas in multi-rods. In Ta-
ble 5.1, we report the calculated pairs (γ−1, V0). Finally, in Fig. 5.8, we report
our DMC numerical results in the zero-temperature phase diagram γ-V0 of the
1D Bose gas in multi-rods (black circles). In this figure we also report and
compare with data from three relevant sources: first, experimental data reported
at Haller et al. [92] (red squares and orange circles); second, data reported at
Boéris et al. [146] (green squares and circles); and third, QMC data reported by
Astrakharchik et al. [147] (blue squares). Before comparing any results, let us
discuss a little more about the experimental data in the following lines.

On the one hand, Haller et al. [92] analyzed the Mott-U transition of a 1D
Bose gas in an optical lattice Vopt(z) = sER sin2(2πz/λOL) at commensura-
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Figure 5.5: Static structure factor as a function of the wave vector. (a): γ−1 =
1, (b): γ−1 = 0.5. In both figures, the red curve represents the free Bose
gas without periodic potential. Subsequent curves represent lattice with height
V0 = 1, 2, 3, 4, and 5 times ER, for γ−1 = 0.5. The straight dashed line
indicates the slope of S(k) at the origin for which the Luttinger parameter K
takes the critical value Kc = 2
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Figure 5.6: Luttinger parameter K as a function of V0. (a): γ−1 = 1; K value
was obtained from QMC results reported in Fig. 5.5a for V0 = 1, 2, 3, 4, and
5 times ER. (b): γ−1 = 0.5; K value was obtained from the QMC results
reported in Fig. 5.5b for V0 = 0 (FBG), 1, 2, 3, and 4 times ER. In both figures,
the horizontal dashed line indicates the critical value Kc = 2, while the black
circle shows the transition point (Vc, Kc). Points in the darker region indicate
systems which are Mott-insulators.

γ−1 V0 [ER units]

0.28(1) 0
0.5 2.05(15)
0.75 3.57(10)

1 4.39(8)
1.5 5.46(7)
2 6.60(10)
5 9.92(24)

Table 5.1: Some critical points (γ−1, V0) that lie in the boundary that separates
the superfluid phase from the Mott-insulator phase obtained from DMC calcu-
lations. The number between parenthesis indicates the statistical error in the
last digits of the corresponding value.

bility n1 ∼ 2/λOL, where λOL/2 is the period of the optical lattice potential
an s is the lattice height. The Mott transition was observed in two ways. The
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Figure 5.7: Luttinger parameter K as a function of V0. (a): γ−1 = 0.75, (b):
γ−1 = 1.5, (c): γ−1 = 2, and (d): γ−1 = 5. We can note that for weaker
interactions (larger γ−1), the lattice height must increase in order to trigger a
Mott-U transition. The horizontal dashed line indicates the critical value Kc =
2, while the black circle shows the transition point (Vc, Kc). Points in the darker
region indicate systems which are Mott-insulators.

first one by transport measurements (data marked by red squares in Fig. 5.8)
in weakly-interacting gases (γ−1 > 2) and deep lattices (results are compared
with predictions of the Bose-Hubbard model [148]). The second one by ampli-
tude modulation spectroscopy (blue circles in Fig. 5.8) on strongly-interacting
gases (γ−1 < 1) and shallow lattices (results are compared with predictions of
the sine-Gordon model). On the other hand, Boéris et al. [146] also studied
the Mott-U transition for a 1D Bose gas in an optical lattice at commensurabil-
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ity 〈n1λOL/2〉 = 1 by measurements of the momentum distribution, for both
strongly and weakly-interacting gases, as well as for both shallow and deep op-
tical lattices (green squares in Fig. 5.8). The authors also complemented their
experimental results with QMC calculations (green circles in Fig. 5.8).

According to our results reported in Fig. 5.8 (black circles), we observe that
for shallow lattices and strongly-interacting gases, our model predicts transition
values Vc in excellent agreement with experimental results, but somewhat larger
than the sine-Gordon model predictions. At γc and zero potential, both mod-
els agree; a similar correspondence occurs with results from [146] and [147]
also. As the interaction goes below γ−1 = 1, our results are very close to [92]
data and the predictions of the Bose-Hubbard model; however, they are slightly
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Figure 5.8: Phase diagram of the 1D Bose gas in a square multi-rods potential
at zero temperature. The region above the critical points is the Mott-insulator
phase, while the region below corresponds to the superfluid phase. We com-
pare our results (black circles) against data from [92] (red squares and orange
circles), [146] (green squares and circles), and [147] (blue squares). Our results
are in excellent agreement with experimental and QMC data.
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larger than QMC results from [146]. For γ−1 > 1, there is no experimental data
reported by [146].

It can not go unnoticed that experimental data is obtained from Bose gases
loaded into optical lattices, which are different from our multi-rod square lattice.
Surprisingly, we found that our results are very close to experimental data, as
Fig. 5.8 shows. Hence, results indicate that despite the obvious differences,
our square multi-rod lattice effectively captures essential features of an optical
lattice with the same period and height V0.
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6
Conclusions and Outlook

In this thesis, we report a detailed study of the ground-state properties of
a 1D, interacting Bose gas in a multi-rod lattice at zero temperature. We have
studied the system through two complementary approaches. In the first ap-
proach, we studied the ground-state properties of the Bose gas in the weakly-
interacting regime using mean-field theory. In a second approach, we ana-
lyzed the ground-state properties beyond the mean-field regime using Quantum
Monte Carlo techniques to obtain the zero-temperature properties, including the
superfluid–Mott insulator quantum phase-transition diagram of the gas. In both
approaches, we model the lattice structure through a periodic KP potential.

In the mean-field approach, we solved the 1D Gross-Pitaevskii equation
subject to the corresponding normalization and boundary conditions. Physi-
cally, due to the symmetry and translational invariance of the multi-rod lattice,
the condensate wave function can be written in the form of a Bloch wave. By
expressing the wave function in polar form, we obtain a pair of differential
equations for the density and the phase of the condensate wave function. We
found that both density and phase can be determined analytically in terms of the
Jacobi elliptic functions and the incomplete elliptic integrals of the first, second,
and third kind. Next, we obtained the condensate properties as functions of the
lattice height and the interaction strength between particles, namely: the parti-
cle number density, the energy band spectrum, the compressibility, and the first
sound velocity. The energy band spectrum, in particular, shows an extraordinary
feature, that is, the appearance of energy loops, also known as swallow-tails, at
the edge of the first Brillouin zone. When the interaction between particles
is relatively large compared to the lattice height, the chemical potential and the
compressibility show an excellent agreement with their corresponding Thomas-
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Fermi approximation closed-form expressions.
Recently, there has been a notorious interest in the experimental realization

of optical lattices with a subwavelength structure (SWOL) [36, 37, 113]. From
the experimental side, SWOLs have potential applications in the study of p-
wave superfluidity in fermionic gases [149, 150]. From the theoretical point of
view, these lattices, which are composed of a succession of very narrow, high
potential barriers, can be seen as experimental realizations of the 1D Dirac-
comb potential. Precisely, the KP potential we use to model the multi-rod lattice
becomes the Dirac-comb potential in the limit when the barriers become very
high and very thin, but the area below them remains finite. Accordingly, we
used our multi-rod lattice to predict the ground-state density and energy band
spectrum of a BEC within a SWOL.

Beyond mean-field theory, we resorted to QMC methods to estimate the
zero temperature, ground-state properties the 1D Bose gas with contact-like,
repulsive interactions of arbitrary magnitude in the presence of a multi-rod lat-
tice. First, we investigated the particular case where the lattice is absent since
our system becomes the 1D Lieb-Liniger Bose gas [24]. In this case, we calcu-
lated both VMC and DMC ground-state energies for interactions ranging from
the high density, weakly interacting regime where the GPE is applicable, up to
the low density, strongly interacting TG regime of impenetrable bosons. Our
numerical results are in complete agreement with the theoretical predictions of
the LL for any value of the interaction.

When the Bose gas is subject to the multi-rod lattice, new types of phe-
nomena may appear due to quantum effects, in particular, the superfluid–Mott
insulator phase transition. To study this transition, we employ the Luttinger-
liquid Theory [20, 82–84]. This theoretical formalism is a low-energy, effective-
description for an extensive collection of 1D quantum many-body systems (Lut-
tinger liquids) that share several common properties; among these systems is the
LL Bose gas. Luttinger-liquid formalism predicts that in the presence of a peri-
odic lattice, a Luttinger liquid, being initially a superfluid, can undergo a phase
transition to a Mott-insulator state in two ways: by a Mott-U transition, or by
a Mott-δ transition. In this thesis, we only investigate the Mott-U transition,
which occurs when (for a given lattice height) the interactions between parti-
cles are sufficiently strong, and the average density of the gas is commensurate
with the lattice periodicity [85]. We use the well-known Feynmann relation
to determine whether the Bose gas is a superfluid or a Mott-insulator from the
low-momenta behavior of the static structure factor. Next, for a square multi-
rod lattice, we calculate the interaction strength and lattice height where the
boundary between the superfluid and Mott-insulator phases lies. Finally, we
establish the zero-temperature phase diagram of the 1D Bose gas in a multi-rod
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lattice. The superfluid–Mott-insulator phase diagram shows that the effect on
the Bose gas behavior of a square multi-rod lattice is very similar to the one
of an optical lattice with the same periodicity and lattice height. The boundary
between superfluid and Mott-insulator phases is indeed very close when com-
paring experimental and QMC data for optical lattices with DMC obtained for
our multi-rod lattice.

Future Work

During the development of this thesis, some prospects of future work that
could complement and extend the current results arose.

Elementary Excitations of the Weakly-Interacting Bose Gas

The mean-field theory formalism and the Gross-Pitaevskii equation assume
that the vast majority of the particles in a Bose gas occupy the ground-state of
the system. Then, the Bogoliubov prescription is enforced, and quantum fluc-
tuations are discarded. Naturally, on real quantum systems, this assumption
does not always hold. To investigate the effect of quantum fluctuations on a
weakly-interacting condensate, we can resort to the Bogoliubov formalism. In
1D systems, this formalism can be applied within the phase-density represen-
tation of the quantum field operators [63, 68]. We can exploit the Bogoliubov
formalism predictions to determine if, for a given interaction strength between
particles, or certain external lattice features, a Bose gas is a true condensate and
the GPE is still applicable. Moreover, if the commensurability condition for a
Mott-U transition is fulfilled, the superfluid to Mott-insulator phase transition
can be observed [64, 65].

Influence of Lattice Defects on the Mott Transition

Our preliminary results obtained by DMC calculations show that the Mott-
U transition is strongly affected by the presence of a lattice defect, for instance,
by removing a single rod from the simulation supercell. Compared to the per-
fect multi-rod lattice, the superfluid phase area increases, in detriment of the
Mott insulator phase area. Hence, the presence of a defect promotes superflu-
idity. The influence of lattice imperfections in the quantum behavior of crystals
at sufficiently low temperatures is a relevant research topic. Andreev and Lif-
shitz [151], and later Chester [152], conjectured the existence of a supersolid
phase where defects like vacancies or interstitials in the lattice of a quantum
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solid can move from site to site forming a superfluid. QMC methods provide a
way to study this exotic state of matter; see Refs. [153] and [154].
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A
Lieb-Liniger Bose Gas

A.1. Estimation of the Ground State Energy

In the Lieb-Liniger theory introduction in Section 2.8, we saw that the en-
ergy of the ground state Eq. (2.98) depends on Eq. (2.101) that fixes the density
of pseudo-momenta, and on the normalization condition Eq. (2.102). Equa-
tion (2.101) is a particular case of a Fredholm Integral Equation of the second
kind [155, 156],

g(x) = f(x) + λ
∫ b

a
K(x, x′)g(x′) dx′, (A.1)

where the function g(x) is the unknown function we want to obtain. K(x, x′)
is called the kernel, f(x) is a known function, and λ is a regular value of the
kernel. For Eq. (2.101), we have

g(x; γ) = 1
2π + λ(γ)

∫ +1

−1
K(x, x′; γ)g(x′; γ) dx′, (A.2)

where γ = 2/n1a1D, f(x) = 1/2π, λ(γ) is the regular value, and

K(x, x′; γ) = 1/π
λ2(γ) + (x− x′)2 , (A.3)

is the kernel. Equation (A.2) can not be solved for all values of γ analytically.
However, we can resort to numerical integration methods to obtain an approxi-
mation of g(x; γ) and λ(γ).

In general, numerical integration techniques approximate an integral as a
weighted sum,∫ b

a
f(x) dx ≈

M∑
j=1

wjf(xj). (A.4)
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The weighted sum is done over a set of M abscissas xi in the integrand domain
and its corresponding wi weights. The accuracy and error of the approximation
will depend on the integration technique –quadrature rule– used and on how
many abscissas and weights are used. A rule may include the integration limits
in the weighed sum; in this case, it is called a closed method. If the rule only
uses points in the open interval (a, b), it is called an open formula.

If we approximate the integrand in the r.h.s of Eq. (A.2) by a quadrature rule
Eq. (A.4), then Eq. (A.2) is reduced to

g(x; γ)− λ(γ)
M∑
j=1

wjK(x, xj; γ)g(xj; γ) = 1
2π . (A.5)

A solution g(x; γ) must satisfy this equation for all a ≤ x ≤ b, in particular for
the i-nth abscissa xi. In this way, we arrive at the equality

g(xi; γ)− λ(γ)
M∑
j=1

wjK(xi, xj; γ)g(xj; γ) = 1
2π . (A.6)

Considering the whole set of abscissas xi, we have a system of M linear equa-
tions that we can write in matrix notation as

(I− λ(γ)KDw) g̃ = 1
2π1. (A.7)

Here, g̃ is the column vector with components g(xj; γ), 1 is the unit vector, I
is the identity matrix, K is the matrix whose (K)ij element is K(xi, xj; γ) and
Dw is the diagonal matrix whose diagonal element (Dw)ii is the weight wi.

To obtain an approximation for g(x; γ), we have to set value for λ(γ), where
we assume that γ has an unknown value at this point, and then we can solve
Eq. (A.7). The resulting set of values {g(xi; γ) | i = 1, 2, . . . ,M}, together
with the quadrature abscissas xi and weights wi, are used to calculate the cor-
responding value of γ and e(γ). To calculate γ, we approximate Eq. (2.102) by
the quadrature

γ ≈ λ(γ)
 M∑
j=1

wj g(xj; γ)
−1

(A.8)

with the same abscissas and weights used to approximate Eq. (A.5). Finally, to
obtain the ground state energy Eq. (2.98), we approximate Eq. (2.100) by the
quadrature

e(γ) ≈
(

γ

λ(γ)

)3 M∑
j=1

wj g(xj; γ)x2
j , (A.9)
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where the quotient γ/λ(γ) is obtained from Eq. (A.8). This way, we obtain the
ground-state energy as a function of λ(γ), and therefore, as a function of γ.
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B
QMC Technical Aspects

In the following sections, we illustrate some important technical aspects on
VMC and QMC calculations.

B.1. Variational Monte Carlo

In Fig. B.1, we show e(γ) calculated using VMC for a LL Bose gas as
a function of the variational parameter rm for n1a1D = 1, which is a rela-
tively strongly-interacting system that lies in the intermediate regime shown in
Fig. 5.2. The ground-state energy is proportional to e(γ), according to Eq. (5.35).
We highlight the following features:

Finite-size effects can be observed by increasing the number of particles
in the simulation: N = 24, 48, and 72 particles: there is a slight increase
in the energy for larger N .

The energy shows a minimum that moves towards smaller rm/L values
as the number of particles N increases. At the same time, the dependence
of E/N for rm/L→ 0.5 reduces.

Similar behavior can be observed for n1a1D = 0.01 and 10 in Figs. B.2a, b,
respectively. For the strongly-interacting gas with n1a1D = 0.01, despite the
statistical noise, the energy is practically independent of rm, although it in-
creases due to finite-size effects. On the other hand, for n1a1D = 10, there is a
clear dependence of the energy on rm, and finite-size effects are more important
as the significant increase in the energy from N = 24 to N = 48 shows.

Although VMC gives valuable information about the properties of the sys-
tem, we used the DMC method to obtain the main results of this thesis. The
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Figure B.1: Ground-state en-
ergy per boson (VMC) as a func-
tion of the variational parameter
rm, for n1a1D = 1 (intermediate
regime of interactions). An en-
ergy rise from finite-size effects
can be observed from three sets
of energies for N = 24, 48, and
72 particles. The value of rm
where the energy reaches a min-
imum is observed.
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Figure B.2: Ground-state energy per boson (VMC) as a function of the varia-
tional parameter rm. (a): n1a1D = 0.1 represents a strongly interacting system,
while (b): n1a1D = 10 corresponds to a weakly-interacting gas. Three sets of
energies for N = 24, 48, and 72 particles have been plotted.

variational approach is used mainly for the optimization of the trial-wave func-
tion used in DMC for importance sampling, in order to reduce the length of the
calculations.

B.2. Diffusion Monte Carlo

DMC results have a bias that depends on the imaginary time step magnitude
δτ , as the method yields exact results only in the limit when δτ → 0. In princi-
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ple, the magnitude of the time step should be small enough that the short-time
approximation of the Green’s function Eq. (4.54) is valid. However, if a very
small δτ is used, more steps are required to reach convergence within a given
statistical error. Also, we saw in Section 4.5.6 that for sufficiently small δτ ,
DMC ground-state energy should scale linearly with δτ ,

E0(δτ) = E0 + κδτ. (B.1)

One should calculate E0 for different time steps in the linear regime, and then
extrapolate to zero δτ to find the best approximation to the exact ground-state
energy.

Besides the time step dependence, DMC results depend on the system size.
The supercell approximation Section 4.8 we use for studying extended systems
reduces the analysis to a finite volume subject to periodic boundary conditions.
This procedure introduces finite-size effects that we can account for by increas-
ing the size L of the simulation cell progressively; then, we realize an extrapo-
lation to L→∞. Let be the system density

n1 ≡
N

L
, (B.2)

which we keep constant during a QMC simulation. Then, the size of the system
increases by adding more particles to the simulation, since L = n−1

1 N .
In Fig. B.3, we show the behavior of the Lieb-Liniger Bose gas function

e(γ) = (Ẽ0/N)/(n1a1D)2 calculated from DMC ground-state energy per par-
ticle, according to Eq. (5.35). We realized several DMC calculations of E0/N
for different δτ values, repeating these calculations in four systems with an in-
creasing number of particles N = 24, 48, 72, and 96, whose results we show
in Figs. B.3a, b, c, d, respectively. Results clearly show that the energy scales
linearly with time step δτ . We performed a linear fit on e(γ) for all the analyzed
systems, obtaining the best approximation at δτ = 0, which we indicate by a red
circle. We can see that e(γ) increases with the number of particles; remarkably,
differences appear at the third digit after the decimal point, a clear indicator of
DMC degree of accuracy for calculating ground-state energies. As a reference,
the exact energy obtained from the LL function Eq. (2.100) is ∼ 0.63915.

In Figs. B.4a, b, we show the dependence of Lieb-Liniger e(γ) as a function
of the inverse of the number of particlesN−1, for γ = 1 (n1a1D = 2) and γ = 20
(n1a1D = 0.1), respectively. We can observe that e(γ) increases as we add more
particles, i.e., as we increase the system size, but eventually, it reaches a plateau.
We calculate the value of the ground-state energy extrapolated for very large N
according to the relation [135]

ε(N) = ε(N →∞) + f(N), (B.3)
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Figure B.3: Dependence of DMC–calculated LL e(γ) as a function of the time
step δτ . The ground-state energy was calculated for γ = 1 (n1a1D = 2). Results
obtained from DMC (blue circles) show a linear dependence for small time
steps. The red circle indicates the value of e(γ) extrapolated to δτ = 0. We can
observe how e(γ) at zero δτ increases with the number of particles.

where ε(N) ≡ E0(N)/N , and f(N) is a function that vanishes for N → ∞.
For sufficiently large N , f(N) is dominated by a contribution proportional to
1/N . Hence, at large enough N , we have

ε(N) = ε(N →∞) + κ′N−1. (B.4)

For the LL Bose gas with a fixed interaction strength n1a1D, we obtain

e(γ)N = e(γ)N→∞ + κ′′N−1. (B.5)

The black circles in Figs. B.4a, b show the extrapolated value e(γ)N→∞ ob-
tained from DMC data. These results are in excellent agreement with the value
of e(γ) calculated from the LL function Eq. (2.100). A red circle shows this last
value.
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Figure B.4: Dependence of DMC–calculated LL e(γ) as a function of N−1.
The ground-state energy was calculated for (a): γ = 1 (n1a1D = 2) and (b):
γ = 20 (n1a1D = 0.1). Blue circles show results calculated through DMC. The
red circle indicates the exact value of e(γ) obtained from Eq. (2.100). The black
circle is the extrapolation of e(γ) for N →∞, according to Eq. (B.5).
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