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Abstract. 
 

In several problems of nuclear engineering it is necessary to study the changes that undergo in 

the fuel of a nuclear reactor. Such changes are mainly due to the fission process, the radioactive 

decay, and neutron-nuclear reactions.  

It is possible to model these changes using a system of coupled differential equations, which set 
a balance relationship between the gains and the losses of the isotopes that constitutes the fuel.  

Due to historical reasons, such equations are known as Bateman Equations, and the problems 

where were necessary to solve them are called burnup and activation problems.  

In accordance to the methodology used, there are several solutions to these equations, which 

include from a matrix exponential approach to rational approximation methods.  

Among these solutions, one of the most popular methodology used to solve the Bateman 

equation is the linear chain method, which includes a solution based on the Laplace transform, 

and a procedure known as linearization. 

During the last three decades, the linear chain method was widely used in computational 

neutronic codes and, along with the exponential matrix method, was the methodology that 

dominate the field. Nevertheless, in 2012, a new and powerful method to solve the Bateman 

equations was developed by Maria Pusa and Jakko Leppänen, which is called CRAM (Chebyshev 

Rational Approximation Method). Such new approach is faster than the linear chain method, 

and can overcome some of the main difficulties related to the numerical treatment of the 

mentioned system of differential equations. 

In spite of the development and advantages of CRAM, some authors suggest that the linear chain 

method continue being a complementary tool to solve burnup and activation problems, and 

nowadays, there are codes who continue including it among its solvers. Therefore, the study of 

the linear chain method, and the development of contributions related to it, is an important line 

of research in nuclear reactor engineering. 

Among the current research about the linear chain, are the development of more general 

solutions, as well as the optimization of routines and the reduction of computational time. In 

the present thesis, contributions to the Bateman equations were developed, under these both 

fields. 

Starting from an algorithmic level, the present work analyzes the process of linearization, which 

as was mentioned before, is a fundamental part of the linear chain method. From such analysis, 

an alternative method to carry out this procedure is proposed, which is faster than the standard 

methodology reported in literature.  

In terms of general solutions, the present thesis contains two new approach to the study of the 

structures of isotopes known as cyclic chains. The first one is related to the modelling of cyclic 

chains through a Lagrange solution, and the second one is based on the development of a 

symbolic computation algorithm. 
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Through the present work it was possible to conclude that several aspects of the Bateman 

Equations and their solutions can be improved. Such aspects cover from the linearization 

process until the theory behind the structure of the decay and burnup chains.  

Even when the Bateman equations have more than a hundred years of being developed, there 

are research topics that have not been studied, but which represents fields of potential 

developments.  

In the present thesis it was concluded that the topic related to the cyclic chains can be 

fundamental to reduce the execution time of the linear chain method, because such chains 

appear in several practical problems due to the presence of heavy isotopes.  Additionally, it was 

found that no efforts have been made to include in a practical way the general solutions to the 

Bateman Equation.  

Furthermore, the present research showed that several procedures related with the developed 

burnup codes are based in empirical studies, instead of theorical analysis. A notable example of 

the last affirmation is the methodology of assignation of the yields, which is analyzed in detail 

in the present work. 

These contributions and conclusions were developed in order to be included in a computational 

code, named Szilard, who belongs to the AZTLAN Platform project, which is a Mexican effort for 

developing own neutronic and thermohydraulic codes for nuclear reactors design and analysis.  
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Resumen 
 

En diversos problemas de ingeniería nuclear resulta necesario estudiar los cambios que 

ocurren en el combustible de un reactor, los cuales se deben principalmente al proceso de 

fisión, al decaimiento radiactivo, y a las reacciones de los neutrones con los núcleos. 

Es posible modelar estos cambios usando un sistema de ecuaciones diferenciales acopladas, las 

cuales establecen relaciones de balance entre las ganancias y las pérdidas de isótopos que 

constituyen el combustible. Debido a razones históricas, tales ecuaciones son conocidas como 

las ecuaciones de Bateman, y los problemas donde es necesario resolverlas se conocen como 

problemas de quemado o activación. 

De acuerdo con la metodología usada, existen varias soluciones a estas ecuaciones, las cuales 

incluyen desde un tratamiento de la matriz exponencial, hasta métodos basados en 

aproximaciones racionales. 

Dentro de esas soluciones, una de las metodologías más populares que se usa para resolver las 

ecuaciones de Bateman, se conoce como el método de cadena lineal, el cual incluye una solución 

basada en la transformada de Laplace, junto con un procedimiento conocido como 

“linealización”.  

Durante las últimas tres décadas, el método de cadena lineal fue ampliamente usado en códigos 

neutrónicos computacionales, y junto con el método de la matriz exponencial, fue el método 

dominante. Sin embargo, en el 2012, un nuevo y poderoso método para resolver las ecuaciones 

de Bateman fue desarrollado por Maria Pusa y Jakko Leppänen, el cual es llamado CRAM 

(Chebyshev Rational Approximation Method). Dicho método es más rápido que el método de 

cadena lineal, y puede superar algunas de las dificultades relacionadas con el tratamiento 

numérico del sistema de ecuaciones diferenciales mencionado antes. 

A pesar del desarrollo y las ventajas que tiene el CRAM, algunos autores sugieren que el método 

de cadena lineal continúa siendo una herramienta complementaria para resolver problemas de 

activación y quemado, y actualmente hay códigos que continúan incluyéndolo dentro de sus 

solvers. Por lo anterior, el estudio del método de cadena lineal, y el desarrollo de contribuciones 

relacionadas con él, es una importante línea de investigación en la ingeniería de reactores 

nucleares. 

Dentro de las actuales líneas de investigación acerca del método lineal se encuentran los 

desarrollos de soluciones más generales, así como la optimización de rutinas y la reducción de 

su tiempo computacional. En la presente tesis se desarrollan contribuciones a las ecuaciones 

de Bateman bajo el enfoque de estos dos campos. 

Comenzando desde un nivel algorítmico, el presente trabajo analiza el proceso de linealización, 

el cual, como se mencionó antes, es parte fundamental del método de cadena lineal. A partir de 

dicho análisis se desarrolló un método alternativo para llevar a cabo este proceso, el cual es 

más rápido que el método estándar que se reporta en la literatura. 

Con respecto a las soluciones generales, la presente tesis contiene dos nuevos enfoques 

relacionados con el estudio de las estructuras conocida como cadenas cíclicas. El primero de 
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estos enfoques se relaciona con el modelamiento de las cadenas cíclicas a través de la solución 

de Lagrange, y la segunda se basa en el desarrollo de un algoritmo de cálculo simbólico. 

A través del presente trabajo fue posible concluir que varios aspectos relacionados con las 

ecuaciones de Bateman pueden mejorarse. Dichos aspectos van desde el proceso de 

linealización, hasta la teoría detrás de la estructura de las cadenas de decaimiento y quemado. 

Aun cuando las ecuaciones de Bateman tienen más de 100 años de haber sido desarrolladas, 

hay líneas de investigación que no se han estudiado, pero que representan áreas potenciales de 

desarrollo. 

En la presente tesis se concluyó que el tópico relacionado con las cadenas cíclicas puede ser 

fundamental para reducir el tiempo de ejecución del método de cadena lineal, porque dichas 

cadenas aparecen en problemas prácticos, debido a la presencia de isótopos pesados. 

Adicionalmente, se encontró que no han existido esfuerzos para incluir en una forma práctica 

las soluciones generales a la ecuación de Bateman. 

Por otro lado, la presente investigación mostró que varios procedimientos relacionados con el 

desarrollo de códigos de quemado están basados en estudios empíricos, más que en teóricos. 

Un ejemplo notable de esta última afirmación es la metodología de asignación de los yields, que 

se analiza en detalle en el presente trabajo. 

Estas contribuciones fueron desarrolladas con el fin de incluirse en el código llamado Szilard, 

que forma parte del proyecto AZTLAN platform, el cual representa un esfuerzo mexicano en el 

desarrollo de códigos neutrónicos y termo hidráulicos propio, para el análisis y diseño de 

reactores nucleares. 
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Introduction 
 

It is known that the improvement of a quality of life and the development of the countries 

depend, among other topics, on the use and production of energy, and particularly of electricity 

(NEA, 2008). Since the energy demand is strongly conditioned by the grown of population, a 

recurrent challenge that the countries face is to find a sustainable and economical way to 

produce electricity. 

Unfortunately, the current world supply energy depends considerably on fossil fuels, which 

represent a major cause of the increasing of atmospheric concentration of greenhouse gases, 

particularly of CO2, whose direct consequences include the warming of the atmosphere as well 

as oceans, the increase of global mean sea level, the air pollution, among other phenomena.  

Nuclear power has a crucial role in the effort of reducing greenhouse gas emission, due that 

such plants practically do not produce such gases during their operation (IAEA, 2018), and 

because it can provide an economically feasible source of energy. Based on this advantage, 

many countries intend to include nuclear power in their energy programs for the coming 

decades. Therefore, the continuous improvements in technology and modelling of nuclear 

power, and particularly of nuclear reactors, are topics of vital importance to the progress and 

development of the countries.  

The modelling of certain phenomena in a nuclear reactor are studied by a branch of nuclear 
engineering known as reactor physics. Over such discipline, and particularly over its 

computational methods, depends an important part of the nuclear technology’s improvements 

and designing, because experimental work usually is difficult or even impossible (Isotalo, 

2011). 

Among the topics studied in reactor physics is the analysis of the changes of the fuel and 

material composition of a nuclear reactor, a set of phenomena known as burnup problem. Since 

the neutronic behavior of a nuclear reactor strongly depends on such composition, the solution 

of the burnup problem is very important to several applications related to design, safety, 

economy of a reactor core loading, evaluation of the spent fuel material, among others. 

Therefore, a fundamental part of the computational reactor physics is related to the 

development and improvement of codes that solve the burnup problems, which are called 

burnup codes. 

In Mexico, the Aztlan Platform strategic project, sponsored by SENER-CONACYT, represents a 

governmental effort to develop own thermohydraulic and neutronic codes, and to meet the 
need to analyze and modelling nuclear power plants, as well as to develop knowledge and 

human resources in nuclear engineering (Gómez-Torres et. al. 2015). The present thesis is part 

of the outcomes of the Aztlan Platform strategic project, and contains several contributions to 

the computational, mathematical and physical modelling of burnup problems.  

Research objectives. 

The work described in this thesis focused on the development of contributions to the Bateman 

equations, who are the core of the burnup problems. Such contributions will be part of the novel 

features of the Aztlan’s code Szilard.  
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Additionally, the present thesis addressed some topics related to the yield’s assignation, a very 

difficult task who deserves to be discussed due to the shortage of information in the literature. 

Such analysis aims to facilitate the future implementation of large amount of fission products, 

which is a novel feature of the new-generation burnup codes.  

Finally, one of the research objectives lies in the improvement of computational time related to 

the execution of the linear chain method, in order to make the Aztlan’s code Szilard competitive 

in relation to the existing ones. 

Main contributions.  

The contributions of the present work can be divided in three levels: 1) Algorithmic, 2) Physical 

and 3) Mathematical. The first one, is related to the analysis of the linearization process, a 

fundamental part of the linear chain method, for which an alternative algorithm was proposed. 

As for the physical contribution, classification and study of the cyclic chains was carried out. 

Starting from it, a set of solutions were proposed, which have several advantages over the linear 

chain method. Finally, at the mathematical level, an analysis of the general solutions of the 

Bateman equations was carried out, and an integral formulation was proposed. 

Organization of the thesis. 

The thesis is organized so that Chapter 1 provides the Fundamentals of the Bateman equation, 

as well as its analytical solution. This chapter describes general aspects of the Lagrange 

transform method, and the most important assumptions related with the solution through it. 

Additionally, in this chapter are discussed the general procedures behind the general solutions 

to facilitate wider understanding of the topic and putting the context related to the symbolical 

calculation algorithm. 

Chapter 2 contains a detailed discussion of the definition of the type of yield, as well as a 

description of the procedure to assign it in a given network. Also, this chapter analyses the 
relationship between the topology of the networks, and the concentration of the fission 

products, and it provides some insights about the way in which two different burnup codes can 

be compared. 

In Chapter 3 is described the developed algorithm for the linearization process. This chapter 

also contains the elements related to the analysis of the number of linear chains, and the 

conclusion that in a cyclic chain the linearization process can only approximate the exact 

solution. Finally, this chapter ends with a comparison between the proposed algorithm and the 

standard deep first search method. 

Chapter 4 covers the theory of the cyclic chains, beginning with a classification of these 

structures based on their complexity, and proposing two solution to a specific kind of them 

named as the pure type. Additionally, this chapter includes the description of the forward and 

backward method, as well as an analysis of the superposition process. 

In Chapter 5 the main elements of an integral formulation of the Bateman equation is discussed, 

which is the core for the symbolical computational algorithm. This chapter shows how through 

this procedure it is possible to include several of the general solutions of the Bateman equation 

in a burnup code. Additionally, this chapter propose a methodology to find the error involved 

when the effective removal coefficients are modified.  
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Chapter 6 provide the general conclusions, and summarize the work herein. This chapter also 

contains some prospects of future work. 

Finally, there are two appendixes. One of them includes the pseudo-code of all the algorithms 

developed in the present thesis, and the other one includes some proofs and developments of 

theorems cited in the chapters. 
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Chapter 1. The Fundamentals of the 

Bateman Equations. 
 

 

 

 

 

 

 

The Bateman equations are a set of coupled differential equations, which essentially describe 

balance relationships between the gains and the losses of the isotope’s concentration. Under 

certain conditions, such equations can be considered linear with constant coefficients, and 

therefore they can be solved through a standard methodology as the Laplace transform. 

In the present chapter the fundamentals of this set and its solution is discussed, beginning with 

a discussion of the concept of burnup, and ending with an analysis of the general formulations 

used when there are two or more repeated isotopes in a linear chain. 

1.1 Burnup Concept. 
 

The composition of a nuclear reactor changes during its operation. Such changes are related to 

three main phenomena that undergo the isotopes who compose it: radioactive decay, fission, 

and neutron-nucleus reactions, among others.  

Since these changes are related to the production of energy, some authors suggest (Cacuci, 

2010) that there is an analogy to the concept of burnup in chemical reactions, where a material 

change its composition in the process of energy’s generation. In fact, in the same way that 
occurs in chemical reactions, in the nuclear ones appear new substances in such process and 

the fuel is depleted as burnup occurs.  

Nevertheless, in addition to the level where the reactions occur, there is an important difference 

between the chemical burnup and the nuclear burnup. While the behavior of a chemical 

reactors depends slightly on the properties of the fuel, in the nuclear case there is a strongly 

dependency, because the neutronic properties of a nuclear reactor core are determined directly 

by its composition and configuration. Therefore, the study and quantification of such changes 

is a very important part of reactor analysis and design.  

For the above discussion. it is possible to define the burnup concept in reactor physics as the 

study and modelling of the fuel changes in a nuclear reactor over time.  Provide a definition is 

important, because in literature there are several others that are not necessary equivalent. For 

example: 
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i) Baratta and Lamarsh defined burnup calculations as the computation of changing 

reactor properties (Lamarsh and Baratta, 2001),  

ii) Duderstadt and Hamilton considered as burnup the consumption of fissile nuclides 

(Duderstadt and Hamilton, 1975),  

iii) Stacey set the concept as the cause of long-term changes in the properties of a nuclear 

reactor over its lifetime (Stacey, 2007),  

iv) And, recently, Shigeo Ohki (Oka, 2014) provide a more complete definition considering 

it as the evaluation of the time-dependent power distribution and reactivity, by solving 

the equations for the atomic density change of nuclides contained in the fuel.  

The main difference between these definitions lies in the scope of the analysis and the 

methodology used in the calculations. While Duderstadt and Hamilton only considered the 

consumption of fissile nuclides, the rest of the authors also include the study of some properties 

of the reactor. In this context, Ohki makes an additional step pointing out what are the main 

properties of interest for burnup studies: the power distribution and the reactivity. 

In the present thesis the concept of burnup problem will be related, adopting a focus closer to 

the second part of the Ohki’s definition, to the solution of the equations for atomic density 

change of nuclides contained in the fuel. But the present work does not include topics related 

to the properties of the reactor. 

In other words, most of the present work is more related to the solution of the mathematical 

model involved in burnup calculations, than with the physical analysis that can be obtained 

from such a solution.  

Finally, it is worth mentioning that the concept of burnup has been defined in multiple ways 

since the early studies about this topic. Due to this variety, some authors made attempts to 

provide for a formal meaning of such concept with the purpose to clarify it. At our best 
knowledge, the first work that tried to set a formal definition of the concept was the work of 

Stover and Moeller, published in 1961 (Stover and Moller, 1961). This word can be considered 

as the first one who studied in a deeper way the experimental and analytical method behind the 

burnup phenomena. 

1.2 Importance of Rutherford’s work.  
 

It is possible to model the changes over time in the isotopic composition of a nuclear reactor 

through the following balance equation: 

                                 
𝑑𝑋𝑖(𝑡)

𝑑𝑡
= 𝐺𝑖(𝑡) − 𝐿𝑖(𝑡) 

 

 
(1.1) 

Where 𝑋𝑖(𝑡) represents the concentration of the isotope 𝑖 , and 𝐺𝑖(𝑡) and 𝐿𝑖(𝑡) are functions 

related to the gains and losses.  

In order to conclude if the equation (1.1) can be solved and, if possible, finding its solution, it is 

necessary to determine who are the functions 𝐺𝑖(𝑡) and 𝐿𝑖(𝑡). Such solution, belonging to the 

physical and experimental terrain, was carried out by Ernest Rutherford in 1900 (Rutherford, 

1900).  
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And even when Rutherford’s work only considered the change due to radioactive decay, he was 

the first who set a differential equation system similar to (1.1), and who related the functions 

𝐺𝑖(𝑡)  and 𝐿𝑖(𝑡)  with a relationship that nowadays is known as the exponential law of 

radioactive disintegration. Nevertheless, for reasons that will be discussed later, such system 

did not receive his name, instead it is known as the Bateman equations.  

1.2.1 Rutherford and the decay process. 
 

In a series of experiments carried out by Rutherford in 1898, he found that the thorium element 

emitted certain particles, whose radiation had a more penetrating character than the related to 

uranium (Rutherford, 1899). 

He called this emission as “emanation” and, as a part of his research, he discovered that such 

emanation gradually lost its radioactive power. In his attempt to describe this reduction, he set 

the following differential equation in a paper published in 1900 (Rutherford, 1900), which can 

be considered as the early antecedent of (1.1): 

 𝑑𝑛

𝑑𝑡
= 𝑞 − 𝜆𝑛 

 

 
(1.2) 

In this equation 𝑛 was the number of ions produced per second between certain plates in an 

experimental arrange, 𝑞  was the number of ions supplied per second by the “emanation” 

diffusing from thorium, and 𝜆 was a constant. 

Additionally, he observed that under certain experimental conditions, the rate of discharge due 

to the emanation reached a steady state value. He concluded that this state was reached when 

the loss of radiation intensity was compensated by the new radioactive particles emitted from 

the thorium “emanation”. In other words, he confirmed his “balance” equation. 

The next step of Rutherford was to remove the source of the emanation, i.e. 𝑞 = 0 in (1.2), 

whereupon he deduced the following two equations 

 
 
𝑑𝑛

𝑑𝑡
= −𝜆𝑛    →    𝑛 = 𝑛(0)𝑒−𝜆𝑡 

 

(1.3) 

Essentially, which Rutherford found was that the rate at which the number of ions decrease is 

proportional to number of ions presented in such time. As some authors suggest (Radvanji and 

Villain, 2017), (Kragh, 2012) that the most important consequence of (1.3) is the development 

of the radioactive law.  

Nowadays, it is possible to conclude that the number of ions was proportional to the 

concentration of the isotope. In other words, the variable 𝑛 is equivalent to the function 𝑋𝑖(𝑡). 

Therefore, through the discover of the radioactive law is possible to conclude that 

 𝐿𝑖(𝑡) = 𝜆𝑋𝑖(𝑡) 
 

(1.4) 

On the other hand, the procedure to determine who is the function 𝐺𝑖(𝑡) was more complex, 

because it involved the concept of transmutation, which was a very disputed term in the early 

development of the nuclear energy, at such grade that several works preferred to use the term 

of “successive transformations”. 
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1.2.2. The gain function 𝐺𝑖 and the discovery of transmutation. 
 

Nowadays, it is known that the “emanation” described by Rutherford was the Rn220  isotope, 

which was produced by Ra224  through alpha decay. Nevertheless, this conclusion was not 

immediate, and two years passed before Rutherford and his colleague Soddy concluded that 

emanation radioactivity implied that a new substance was produced by thorium, with a more 

penetrating property than its parent. In other words, they observed a transmutation process 

(Rutherford and Soddy, 1902).  

Even when the term transmutation is very common in the current nuclear field, in Rutherford’s 

time the “transmutation” word was related to alchemy, a pseudoscience that had been 

discredited since the middle ages (Marshal and Marshal, 2003). Therefore, the conclusions 

obtained by these researches were totally revolutionary, and part of their success was due to 
they did not discard the transmutation hypothesis, as wrongly their French counterparts did 

(Malley, 1979). The discovery of the transmutation process allowed that Rutherford and Soddy 

observing that there were successive transformations, where a new substance was produced, 

which in turn produced another substance. In this way, Rutherford also discovered the first 

radioactive decay chains in history (Rutherford, 1904). In his work, Rutherford reported the 

following sequence: 

Thorium →
Thorium
 𝑋

4 days
→   

Thorium
Emanation

1
minute
→    

Emanation X
First change

55
minutes
→    

Second
Change

11
hours
→    

Where the upper scripts above the arrows are the half-life reported by Rutherford, who 
observed that the lambda constant was different for each substance. Nowadays it is known that 

the actual decay chain was: 

Th228
1.91 
years
→  
𝛼
 Ra224

3.66 
days
→  
𝛼

Rn220
55.6
seconds
→    
𝛼

Po216
0.145
seconds
→    
𝛼

 Pb212
10.64
hours
→   
𝛼

Bi212 → 

Considering the conservation of mass, it was possible to conclude that in a decay chain the gain 

term of an element, 𝐺𝑖(𝑡), was the loss term of the predecessor element in the chain, i.e. 𝐿𝑖−1(𝑡). 

Therefore, the system (1.1) can be written as: 

                                 
𝑑𝑋𝑖(𝑡)

𝑑𝑡
= 𝐿𝑖−1(𝑡) − 𝐿𝑖(𝑡), 𝐿𝑖(𝑡) = 0, for 𝑖 = 1 

 

 
(1.5) 

1.2.3 The first solution for the balance equations. 
 

From the last two sections it is clear that the Rutherford’s work was crucial to set the balance 

equation in the form they are currently known. In fact, using (1.3) and (1.5) in equation (1.1) it 

follows that: 

                                 
𝑑𝑋𝑖(𝑡)

𝑑𝑡
= 𝜆𝑖−1𝑋𝑖−1 − 𝜆𝑖𝑋𝑖  

 
(1.6) 
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This differential equation is coupled, linear, with constants coefficients, and it is reduced to the 

radioactive law for 𝑖 = 1 . Due to this and the transmutation process, this equation has a 

recursive nature.  

The solution for the case 𝑖 = 2 can be obtained, among other methods, using an integral factor. 

Nevertheless, Rutherford proposed a physical solution, which he called “theory of the 

secondary changes”, which deserves to be analyzed. 

Using the notation given in (1.6), he began considering that after a time 𝑡1, the number 𝑋1 of 

particles remaining unchanged is given by 𝑋1 = 𝑋1(0)𝑒
−𝜆1𝑡1 , then the term 𝜆1𝑋1(0)𝑒

−𝜆1𝑡1𝑑𝑡1 

represents the amount that has changed in an interval 𝑑𝑡1 about 𝑡1. 

If the last term is considered as a new substance related to 𝑋2 , this concentration also will 

undergo for a “second” process of transmutation, characterized by another 𝜆2 constant. Since 

the radioactive decay law is also valid for this new substance, after a time 𝑡 (measure from the 

beginning of all the transmutations) the number of particles that remaining unchanged of it can 

be computed using (1.3) 

 𝑑𝑋2⏟
equivalent to
𝑛 in (1.3)

= 𝜆1𝑋1(0)𝑒
−𝜆1𝑡1𝑑𝑡1⏟          

equivalent to
𝑛0 in (1.3)

∙ 𝑒−𝜆2(𝑡−𝑡1)⏟      
equivalent to

𝑒−𝜆𝑡 in (1.3)

 

 

(1.7) 

Finally, it is only necessary to carry out an integration from 𝑡1 = 0 to 𝑡1 = 𝑡 , after which it 

follows: 

 
𝑋2 = 𝜆1𝑋1(0)

𝑒−𝜆1𝑡 − 𝑒−𝜆2𝑡

𝜆1 − 𝜆2
 

 

(1.8) 

This solution is notorious because it depends totally on the meaning of the radioactive law, 

instead of a mathematical procedure. At our best know, Rutherford found the solution to the 

case 𝑖 = 1 to 𝑖 = 5. As will be discussed in the following section, there were other authors who 

published other solutions, including of the general type.  

Nevertheless, one of the most important part to solve the problem of the mass balance in 

radioactive decay was result of Rutherford’s work.  

1.3 Solutions before 1910. 
  

A recurrent mistake in literature is the assumption that the mathematician Harry Bateman was 

the first who solved the mass balance equations given in equation (1.6). This could not be 

farther from the truth. 

Before 1910, the date in which the Bateman’s work was published, there were other authors 

who published general solutions to such system. At our best knowledge, J. Stark (Stark, 1904) 

and P. Gruner (Gruner, 1907), separately, were the first who proposed the solution for case 𝑖 =

𝑘.  It is possible that Stark and Gruner used an induction process to find their formulas, but 

there is not enough information about this topic.  

Nevertheless, the work of these authors has a remarkable importance, to the point that late 

works cited them instead of the solution proposed by Harry Bateman (Bothe et. al,1933), 



29 
 

(Meyer and Schweildler, 1927).  This is significative, because it means that the Bateman 

solution’s not necessary represented an innovation in terms of a formula for the case 𝑖 = 𝑘. 

Instead, the importance of it is related to the method he developed in his work, which will be 

discussed in the following section. 

On the other hand, it is possible to use mathematical induction to find a general solution for the 

case 𝑖 = 𝑘 in the equation (1.6). Such solution is developed in Appendix A. Nevertheless, some 

authors suggest that mathematical induction is a type of not explanatory proof (Stylianides et. 

al, 2015), (Baker, 2010), and this could be a reason for which there were not authors who used 

as a formal proof. In this sense, the word explanatory means that a proof offers new insights in 

the subject, besides of providing new ways of reasoning, as well as the discover of new possible 

connections between different fields (Hersh, 1993).  

1.4 The Bateman solution. 
 

In 1910, the English mathematician Harry Bateman proposed a very novel solution which was 

based in a methodology that nowadays is known as the Laplace transform (Bateman, 1910). In 

fact, this was the first time where such procedure was used (Deakin, 1982). Therefore, the work 

of Harry Bateman was not only important to the nuclear field, but also for the mathematic filed 

of the differential equations and the integral transformations. 

1.4.1 Procedure followed by Bateman. 
 

Using modern notation, the Bateman solution used the following definitions. 

 

{
 

 ℒ{𝑋𝑖} = �̃�𝑖 = ∫ 𝑋𝑗(𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡,    1 ≤ 𝑗 ≤ 𝑛

ℒ {
𝑑𝑋𝑗

𝑑𝑡
} = 𝑠ℒ{𝑋𝑗} − 𝑋𝑗(0) = 𝑠�̃�𝑗 − 𝑋𝑗(0)

 

 

 
(1.10) 

Where ℒ denotes the Laplace transform and 𝑋𝑗 is the concentration of an isotope belonging to 

the following decay chain: 

 𝑋1
𝑟1,2
→ 𝑋2

𝑟2,3
→ …

𝑟𝑛−1,𝑛
→   𝑋𝑛 (1.11) 

 
In the last equation the upper scripts 𝑟𝑖−1,𝑖  denote the reaction who originates the 

transformation. This structure, where except for the first and the last isotopes all the other 

elements have only one father and only one daughter, is known as a linear chain. The following 

step is to express equation (1.6) in a matrix way: 

 

{
  
 

  
 
𝑑𝑋1
𝑑𝑡

= −𝜆1𝑋1

𝑑𝑋2
𝑑𝑡

= 𝜆1𝑋1 − 𝜆2𝑋2
… …

𝑑𝑋𝑛
𝑑𝑡

= 𝜆𝑛−1𝑋𝑛−1 − 𝜆𝑛𝑋𝑛

   

 

 
 
 
(1.12) 
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Once the definitions given in (1.10) are applied to (1.12) it follows that: 

 

{

𝑠�̃�1 − 𝑋1(0) = −𝜆1�̃�1
𝑠�̃�2 − 𝑋2(0) = 𝜆1�̃�1 − 𝜆2�̃�2

⋮ ⋮
𝑠�̃�𝑛 − 𝑋𝑛(0) = 𝜆𝑛−1�̃�𝑛−1 − 𝜆𝑛�̃�𝑛

   

 

 
(1.13) 

Under the following initial conditions  

 𝑋𝑖(𝑡 = 0) = 𝑋𝑖(0) = 0  with  2 ≤ 𝑖 ≤ 𝑛,   𝑋1(0) ≠ 0 
 

(1.14) 

 And after multiple replacements it is possible to write (1.13) as: 

 

{
 
 
 

 
 
 �̃�1 =

𝑋1(0)

𝑠 + 𝜆1

�̃�2 =
𝜆1𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)
⋮ ⋮

�̃�𝑛 =
𝜆1𝜆2…𝜆𝑛−1𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)

   

 

 
 
(1.15) 

It is possible to note that the last system of equations is symmetric, i.e. the equations have the 

same structure. Then, the solution for the last term �̃�𝑛 can be applied to the other terms if the 

sub index is adequately used. Therefore, the problem is reduced to solve the following equation 

for 𝑋𝑛: 

 
�̃�𝑛 = ∫ 𝑒−𝑠𝑡𝑋𝑛(𝑡)𝑑𝑡

∞

0

 

 

 
(1.16) 

A standard procedure consists of using the inverse Laplace transform, for which is valid: 

 
ℒ−1{�̃�𝑛} = ℒ

−1 {∫ 𝑒−𝑠𝑡𝑋𝑛(𝑡)𝑑𝑡
∞

0

} = 𝑋𝑛 

 

 
(1.17) 

Nowadays there are known inverse Laplace transforms for several functions, which commonly 

are tabulated. Then it is necessary to express �̃�𝑛 in terms of such functions with the purpose to 

solve equation (1.16). If it is assumed that all the lambda constants are different, it is possible 

to rewrite the denominator of �̃�𝑛 as: 

 1

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
=∑

𝑎𝑖
𝑠 + 𝜆𝑖

𝑛

𝑖=1

 
 
(1.18) 

Where the coefficients 𝑎𝑖  can be computed as:  

 
𝑎𝑖 = [

(𝑠 + 𝜆𝑖)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
]
𝑠=−𝜆𝑖

 
(1.19) 

 

The term 𝑎𝑖  can be interpreted as a product where an index is omitted. In such way it can be 

written as: 
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𝑎𝑖 =∏

1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

 
(1.20) 

Using (1.20) in (1.18): 

 
�̃�𝑛 = 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

1

𝑠 + 𝜆𝑖

𝑛

𝑖=1

 
 
(1.21) 

Therefore: 

 

𝑋𝑛 = ℒ
−1{�̃�𝑛} = ℒ

−1

{
 
 

 
 

𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

1

𝑠 + 𝜆𝑖

𝑛

𝑖=1

}
 
 

 
 

 

 
(1.22) 

Considering linearity: 

= 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

ℒ−1 {
1

𝑠 + 𝜆𝑖
}

𝑛

𝑖=1

 

Finally, only it is necessary to use the known inverse Laplace transform: 

 
ℒ−1 {

1

𝑠 + 𝜆𝑖
} = 𝑒−𝜆𝑖𝑡 

(1.23) 

 

Replacing the last term, the solution is given by the following equation: 

 
𝑋𝑛 = 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑖𝑡
𝑛

𝑖=1

 
 
(1.24) 

The last equation is known as the Bateman solution. 

1.5 Theory behind the Bateman solution. 
 

As was mentioned in Section 1.3, there were other solutions before the Bateman’s work. 

Nevertheless, the main contribution of this author was not the solution but rather the 

methodology he used to obtain it. It is possible that this is the reason why nowadays the system 

given in (1.6) bears his name, and that, wrongly, some authors considered him as the first one 

who solved such system.  

The Bateman’s work was fundamental to the development of the Laplace transform 

methodology. About this topic, the Australian mathematician Michael Deakin carried out an 

historical and technical analysis about the Bateman’s role and its importance as well of other 

authors (Deakin, 1982). Unfortunately, Harry Bateman did not receive proper credit and 

recognition for his work in this field, as some biographers suggest (Erdelyi, 1947). 
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There are thee parts of the procedure developed in the last section who deserve to be analyzed. 

Firstly, the equality of (1.18) is only valid when all the lambda constants are different. As will 

be discussed later, there are some cases when this condition is not valid. The other two parts 

are related to use a more formal method to find the solution for the equation (1.16), as well the 

uniqueness of the solution. Both topics will be described in the following sections. 

1.5.1 A more formal solution based in complex theory. 
 

Nowadays there is a more complete theory to find the solution of the equation (1.16) through 

the use of the Fourier-Mellin formula (Brown and Churchill, 2004), which states that: 

 
𝑋𝑛(𝑡) =

1

2𝜋𝑖
∫ 𝑒𝑠𝑡�̃�𝑛(𝑠)𝑑𝑠
𝛾+𝑖∞

𝛾−𝑖∞

 

 

(1.25) 

Where �̃�𝑛 must fulfill the following conditions: being a complex function, being analytic through 

the finite 𝑠 plane, except for a finite number of isolated singularities. On the other hand,  the 

positive constant 𝛾  is related with a vertical line segment between 𝑠 = 𝛾 − 𝑖𝑅  to 𝑠 = 𝛾 + 𝑖𝑅 , 

and it must be large enough that all singularities of �̃�𝑛 lie to the left of that segment, and finally 

𝑡 must be a real variable.  

It is possible to note that �̃�𝑛 given in (1.15) fulfill all these conditions. Firstly, the singularities 

or poles are the values at which the following function becomes zero: 

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛) 

In other words: −𝜆1, −𝜆2, … , −𝜆𝑛 . Due to the radioactive law it is know that the lambda 

constants are positive, and therefore the poles are negative, for which they lie in the left of the 

region described in the conditions.  

To find the solution, it is possible to use the residue theorem, defining a region 𝐶 as an infinite 

semicircle in the left half plane of the complex space. It is possible to show that the path integral 

along such curve tends to zero as the radius tends to infinity. Therefore equation (1.25) can be 

written as: 

 1

2𝜋𝑖
∮ 𝑒𝑠𝑡�̃�𝑛(𝑠)𝑑𝑠
𝐶

=∑Res

𝑛

𝑖=1

(𝑒𝑠𝑡�̃�𝑛(𝑠), 𝜆𝑖) 

 

(1.26) 

With: 

 Res(𝑒𝑠𝑡�̃�𝑛(𝑠), 𝜆𝑖) = lim
𝑠→−𝜆𝑖

[(𝑠 + 𝜆𝑖)𝑒
𝑠𝑡�̃�𝑛(𝑠)] 

 

(1.27) 

Clearly, the constant part of the right side of equation (1.27) is equal to 𝑎𝑖  defined in (1.20). 

Once this term is replaced in (1.26) a similar expression to (1.24) is obtained. 

This is a more direct and formal way to obtain the Bateman’s solution, being published in 2002 

by Pressyanov (Pressyanov, 2002). Strictly speaking, the only difference with the procedure 

discussed in Section 1.4 was the way in which the inverse Laplace transform was obtained, but 

the other steps are identical. 
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1.5.2 The work of Lerch 
 

Bateman did not use the result (1.25) to obtain his solution. In his time there was an early 

antecedent of this formula provided by Pincherle (Pincherle, 1887), who in fact is cited in the 

Bateman’s publication of 1910, but whose formula was not used to obtain the inverse Laplace 

transform. 

Instead, Bateman used a result developed by the Czech mathematician Mathias Lerch (Lerch, 

1903), which set that for the Laplace transform: 

 
∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

= 𝜙(𝑠) 

 

(1.28) 

The uniqueness of 𝑓(𝑡) given 𝜙(𝑠) is granted if there is a 𝑐 such that: 

 
lim
𝑥→0

𝑡𝑐𝑓 (ln (
1

𝑥
)) = 0 

 

(1.29) 

Bateman used this result in his work considering that for the equation: 

�̃�(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

There is only a function 𝑓(𝑡) that will yield a function �̃�𝑛(𝑠). In other words, he used the fact 

that the inverse Laplace transform is unique, and therefore through the following equation: 

�̃�(𝑠) =
1

𝑠 + 𝜆𝑖
= ∫ 𝑒−𝑠𝑡 ∙ 𝑓(𝑡)𝑑𝑡

∞

0

 

He concluded that 𝑓(𝑡) = 𝑒−𝜆𝑖𝑡, which is the same result that (1.23). Even more, the procedure 
that is used today in several engineering applications is more related to the Lerch’s work than 

with the formula (1.25).  

1.6 The Backward and forward methods. 
 

It was said in Section 1.2.3 that the mass balance given in (1.6) has a recursive nature. Such 

recursion can be expressed in two ways: backward and forward. In the first type, it is necessary 

to know the solution of 𝑋𝑛 in order to obtain the solution of 𝑋𝑛−1. For the second type is the 

contrary situation. 

Both recursive methods are very important because there are some cases where there is not 

symmetry on a differential equation system related to burnup problems. For example, in 

Section 1.4.1 it was only necessary to find the solution for �̃�𝑛, and then extending it to other 

isotopes changing the sub index in an adequate way. Nevertheless, as it will be study in Chapter 

4, this situation is not always true, and there are cases where it will be necessary to use the 

recursion of the solution.  

Since the recursion formulations usually are slow or consume a lot of computational time, one 

of the contributions of the present thesis consist of finding a procedure which transform the 
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recursive formulation to a general one. On the other hand, an additional contribution is related 

to a general methodology of using one of the recursion methods through the convolution 

theorem. Both topics are discussed below. 

1.6.1 The backward method. 
 

For the index 𝑖 = 𝑛, the equation (1.6) can be written as: 

                                 
𝑑𝑋𝑛(𝑡)

𝑑𝑡
= 𝜆𝑛−1𝑋𝑛−1 − 𝜆𝑛𝑋𝑛 

 
(1.30) 

Once the term 𝑋𝑛−1 is isolated: 

                                 

𝑋𝑛−1 =
1

𝜆𝑛−1
(
𝑑𝑋𝑛(𝑡)

𝑑𝑡
+ 𝜆𝑛𝑋𝑛) 

 
(1.31) 

 

On the other hand, for 𝑋𝑛−1 there is a mass balance equation given by (1.6) under the index 𝑖 =

𝑛 − 1: 

                                 
𝑑𝑋𝑛−1(𝑡)

𝑑𝑡
= 𝜆𝑛−2𝑋𝑛−2 − 𝜆𝑛−1𝑋𝑛−1 

 
(1.32) 

 

Again, it is possible to isolate the term 𝑋𝑛−2 from (1.32) : 

                                 

𝑋𝑛−2 =
1

𝜆𝑛−2
(
𝑑𝑋𝑛−1(𝑡)

𝑑𝑡
+ 𝜆𝑛−1𝑋𝑛−1) 

 
(1.33) 

 

If (1.31) is replace in (1.33) it follows that: 

                                 

𝑋𝑛−2 =
1

𝜆𝑛−2
(
𝑑

𝑑𝑡

1

𝜆𝑛−1
(
𝑑𝑋𝑛(𝑡)

𝑑𝑡
+ 𝜆𝑛𝑋𝑛) + 𝜆𝑛−1

1

𝜆𝑛−1
(
𝑑𝑋𝑛(𝑡)

𝑑𝑡
+ 𝜆𝑛𝑋𝑛)) 

 
 

 

 
=

1

𝜆𝑛−2𝜆𝑛−1
(
𝑑2

𝑑𝑡2
+ (𝜆𝑛 + 𝜆𝑛−1)

𝑑

𝑑𝑡
+ 𝜆𝑛𝜆𝑛−1)𝑋𝑛 

 

(1.34) 

In a similar way, for 𝑋𝑛−3  

 
𝑋𝑛−3 =

1

𝜆𝑛−3𝜆𝑛−2𝜆𝑛−1
(
𝑑3

𝑑𝑡3
+ (𝜆𝑛 + 𝜆𝑛−1 + 𝜆𝑛−2)

𝑑2

𝑑𝑡2

+ (𝜆𝑛−1𝜆𝑛 + 𝜆𝑛−2𝜆𝑛 + 𝜆𝑛−2𝜆𝑛−1)
𝑑

𝑑𝑡
+ 𝜆𝑛−2𝜆𝑛−1𝜆𝑛)𝑋𝑛 

 

 
(1.35) 
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And for the case of 𝑋𝑛−4: 

 1

𝜆𝑛−4𝜆𝑛−3𝜆𝑛−2𝜆𝑛−1
× (

𝑑4

𝑑𝑡4
+ (𝜆𝑛 + 𝜆𝑛−1 + 𝜆𝑛−2 + 𝜆𝑛−3)

𝑑3

𝑑𝑡3
 

 

+(𝜆𝑛𝜆𝑛−1 + 𝜆𝑛−2𝜆𝑛 + 𝜆𝑛−2𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛 + 𝜆𝑛−3𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛−2)
𝑑2

𝑑𝑡2
 

 

+(𝜆𝑛−2𝜆𝑛𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛−2𝜆𝑛 + 𝜆𝑛−3𝜆𝑛−2𝜆𝑛−1)
𝑑

𝑑𝑡
 

 
+𝜆𝑛−3𝜆𝑛−2𝜆𝑛−1𝜆𝑛)𝑋𝑛 

 

 
 
 
 
(1.36) 

Through the last terms it is possible to propose a general formula to 𝑋𝑛−𝑘, it is only necessary 

to infer the patron in the coefficients before the derivatives. Such task was carried out using 

combinatorics and represents one of the contributions of this thesis.  

1.6.2 Combinatorics 
 

A combination of 𝑛 elements of a set 𝐴, will be defined as a sequence of 𝑛 elements belonging 

to 𝐴  where the order and position is not important. For example, if 𝐴 = {𝑑1, 𝑑2, 𝑑3, 𝑑4}  the 

following sequences are all the different combinations of two elements of such set: 

𝑑1𝑑2, 𝑑1𝑑3, 𝑑1𝑑4, 𝑑2𝑑3, 𝑑2𝑑4, 𝑑3𝑑4 

After an analysis of the terms inside of (1.34)-(1.36) it is possible to infer that the general 

formula has the following structure: 

 

𝑋𝑛−𝑘 =∏
1

𝜆𝑛−𝑗

𝑘

𝑗=1

(
𝑑𝑘

𝑑𝑡𝑘
+ 𝑐1

𝑑𝑘−1

𝑑𝑡𝑘−1
+ 𝑐2

𝑑𝑘−2

𝑑𝑡𝑘−2
+⋯+ 𝑐𝑘−2

𝑑

𝑑𝑡
+∏𝜆𝑛−𝑖

𝑘−1

𝑖=0

)𝑋𝑛 

 

 
(1.37) 

The coefficients 𝑐1, 𝑐2, … , 𝑐𝑘−2 are related to combinations of the elements 𝜆1, 𝜆2, … , 𝜆𝑘−1. For 

example, for 𝑐1 it is possible to note from (1.34) – (1.36): 

 

{

𝑐1 = 𝜆𝑛𝜆𝑛−1 for 𝑘 = 1
𝑐1 = 𝜆𝑛 + 𝜆𝑛−1 for 𝑘 = 2

𝑐1 = 𝜆𝑛 + 𝜆𝑛−1 + 𝜆𝑛−2 for 𝑘 = 3
𝑐1 = 𝜆𝑛 + 𝜆𝑛−1 + 𝜆𝑛−2 + 𝜆𝑛−3 for 𝑘 = 4

  

 

 
(1.38) 

In each case 𝑐1 is the sum of the combinations of one element of the set 𝐴𝑘, with: 

𝐴𝑘 = {𝜆𝑛, 𝜆𝑛−1, … , 𝜆𝑛−𝑘+1} 

For 𝑐2, the following relationship is true: 

 
{

𝜆𝑛𝜆𝑛−1 for 𝑘 = 2
𝜆𝑛−1𝜆𝑛 + 𝜆𝑛−2𝜆𝑛 + 𝜆𝑛−2𝜆𝑛−1 for 𝑘 = 3

𝜆𝑛𝜆𝑛−1 + 𝜆𝑛−2𝜆𝑛 + 𝜆𝑛−2𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛 + 𝜆𝑛−3𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛−2 for 𝑘 = 4
  

 

 
(1.39) 
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Again, it is possible to note that 𝑐2 is the sum of all combinations of two elements of the set 𝐴𝑘. 

For 𝑐3 and 𝑘4: 

𝜆𝑛−2𝜆𝑛𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛𝜆𝑛−1 + 𝜆𝑛−3𝜆𝑛−2𝜆𝑛 + 𝜆𝑛−3𝜆𝑛−2𝜆𝑛−1 

Which is equal to the sum of all combinations of three elements of the set 𝐴𝑘. Following a similar 

reasoning, it is possible to conclude that 𝑐𝑗 is the sum of all the combinations of 𝑗 elements of 

the set 𝐴𝑘. 

1.6.3 An efficient way to express combinations. 
 

Even when the coefficients 𝑐𝑗 were found in the last section, it was not provided an efficient way 

to compute them. In fact, until now it is necessary to carry out at least three steps to build such 

coefficients: 1) build the set 𝐴𝑘, 2) compute the combinations, 3) perform a sum. 

Possibly the most difficult step is related to build the sequences of combinations. It is very 

interesting that most books deal with the computation of the numbers of combinations, instead 

that with the procedure to build such sequences. Even more, the author of this thesis was 

unable to find a reference where the procedure to find the sum of the combinations were 

discussed. Therefore, it was necessary to develop it.  

The idea behind such procedure depends on positions. For example, the following set will be 

considered: 

𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} 

The combinations of 𝑟  elements, with 1 ≤ 𝑟 , can be built using the sub index. Firstly, the 

element 𝑢1 is chosen, and 𝑟 − 1 places can be occupied by other elements: 

 𝑢1  …⏟        
𝑟−1 places

  

 

(1.40) 

In (1.40) the potential places were denoted by squares. Using the sub index, the next element 

that needs to be chosen is 𝑢2 . Clearly 𝑢1  cannot be selected because the combinations are 

without replacement. Therefore, the follow stage of the sequence is equal to: 

 𝑢1𝑢2  …⏟        
𝑟−2 places

  

 

 
(1.41) 

Once such procedure is repeated 𝑟 times, the first combination is complete, and it is equal to 

the following sequence: 

 𝑢1𝑢2𝑢3…𝑢𝑟  
 

(1.42) 

In order to build the following 𝑛 − 𝑟 combinations, it is necessary to replace the last term, 𝑢𝑟, 

by the next terms 𝑢𝑟+1, 𝑢𝑟+2, … , 𝑢𝑛: 

 𝑢1𝑢2𝑢3…𝑢𝑟−1𝑢𝑟, 𝑢1𝑢2𝑢3…𝑢𝑟−1𝑢𝑟+1, … , 𝑢1𝑢2𝑢3…𝑢𝑟−1𝑢𝑛  
 

(1.43) 

The numbers of sequences given in (1.43) are equal to (𝑛 − 𝑟). For the next step, it is necessary 

to replace the last two terms of (1.41): 
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 𝑢1𝑢2𝑢3…𝑢𝑟−2   
 

(1.44) 

To build a new set of sequences, the terms 𝑢𝑟−1 will not be included. Therefore, it is necessary 

to use the next item 𝑢𝑟 in (1.44): 

 𝑢1𝑢2𝑢3…𝑢𝑟−2𝑢𝑟   
 

(1.45) 

From this point, the following sequences are built: 

 

{
 
 

 
 
𝑢1𝑢2𝑢3…𝑢𝑟−2𝑢𝑟𝑢𝑟+1 
𝑢1𝑢2𝑢3…𝑢𝑟−2𝑢𝑟𝑢𝑟+2

⋮
𝑢1𝑢2𝑢3…𝑢𝑟−2𝑢𝑟𝑢𝑛−1
𝑢1𝑢2𝑢3…𝑢𝑟−2𝑢𝑟 𝑢𝑛

  

 

 
(1.46) 

Clearly, there are (𝑛 − 𝑟 − 1) sequences this time. Since the element 𝑢𝑟−1 was not included, all 

the combinations in (1.46) are different from (1.43). If this procedure is repeated considered 

as base the sequence given in (1.44), then the following sets of sequences will be built: 

𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+1𝑢𝑟+2
𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+1𝑢𝑟+3

⋮
𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+1𝑢𝑛−1
𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+1 𝑢𝑛⏟              

(𝑛−𝑟−2)
sequences

𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+2𝑢𝑟+3
𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+2𝑢𝑟+4

⋮
𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+2𝑢𝑛−1
𝑢1𝑢2…𝑢𝑟−2𝑢𝑟+2 𝑢𝑛⏟              

(𝑛−𝑟−3)
sequences

…
𝑢1𝑢2…𝑢𝑟−2𝑢𝑛−2𝑢𝑛−1
𝑢1𝑢2…𝑢𝑟−2𝑢𝑛−2𝑢𝑛⏟              

2
sequences

𝑢1…𝑢𝑟−2𝑢𝑛−1𝑢𝑛⏟            
1

sequence

 

All these sequences are different because they differ in at least one element. Until this point 

there are: 

 
1 + 2 +⋯+ (𝑛 − 𝑟) =

(𝑛 − 𝑟)(𝑛 − 𝑟 + 1)

2
 sequences 

 

(1.47) 

For the next step, the following sequence will be considered as base: 

 𝑢1𝑢2…𝑢𝑟−3 ⏟
1

⏟
2

⏟
3

  

 

(1.48) 

In the position denoted by 1 it is possible to put the following elements 𝑢𝑟−1, 𝑢𝑟 , 𝑢𝑟+1, … , 𝑢𝑛−2. 

Once one of these elements is selected, in the position denoted by 2, only the terms with a lager 

index will be considered. For example, if the term 𝑢𝑟+1 is chose: 

 𝑢1𝑢2…𝑢𝑟−3 𝑢𝑟+1⏟  
1

⏟
2

⏟
3

  

 

(1.49) 

Then, the following terms can be considered for the position denoted by 2: 𝑢𝑟+2, 𝑢𝑟+3, … , 𝑢𝑛−2. 

In other words, once that element is selected for the rest of positions, only the terms with a 

larger index can be considered. 

Therefore, the total number of sequences will be given by the following summa: 
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∑ ∑ ∑ 1

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=𝑖+1

𝑛−2

𝑖=𝑟−1

= ∑ ∑ 1

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=𝑟

+ ∑ ∑ 1

𝑛

𝑘=𝑟+2

𝑛−1

𝑗=𝑟+1

+⋯+ ∑ ∑ 1

𝑛

𝑘=𝑛−1

𝑛−1

𝑗=𝑛−2

 

 
 

 
(1.50) 

It is very interesting to note that each double sum of the right side is equal to the number of 

combinations of two elements of a total (𝑛 − 1 − 𝑗). In fact, it is possible to write for the right 

side: 

=
(𝑛 − 𝑟 + 1)(𝑛 − 𝑟)

2⏟            
Number of combinations
of 2 elements of a total

of 𝑛−𝑟

+
(𝑛 − 𝑟)(𝑛 − 𝑟 − 1)

2⏟            
Number of combinations
of 2 elements of a total

of 𝑛−𝑟−1

+⋯+
(3)(2)

2⏟  
Number of combinations
of 2 elements of a total

of 3

 

Considering the following relationship (Bartle and Sherbert, 2011): 

∑
1

2

𝑛

𝑘=2

(𝑘 − 1)𝑘 =
1

6
(𝑛 − 1)𝑛(𝑛 + 1) 

The sum of (1.49) can be computed as: 

 1

6
(𝑛 − 𝑟)(𝑛 − 𝑟 + 1)(𝑛 − 𝑟 + 2) 

 

(1.51) 

The results discussed before can be expressed in terms of combinations of 2 and 3 elements, 

respectively. First, it is necessary to note that: 

𝐶(𝑛 − 𝑟 + 1,2) = (
𝑛 − 𝑟 + 1

2
) = eq (1.47) 

And: 

𝐶(𝑛 − 𝑟 + 2,3) = (
𝑛 − 𝑟 + 2

3
) = eq (1.48) 

The above discussion shows how the combinations are built using the sub-indexes, and how 

the number of sequences is related to the number of combinations of 2 and 3 elements of a total 

of (𝑛 − 𝑟 + 1) and (𝑛 − 𝑟 + 2).  

In this last step, all the sequences have the same root given by (1.49). Then, the only elements 

that change are 𝑢𝑟−1, 𝑢𝑟, 𝑢𝑟+1, … , 𝑢𝑛−2 , and the number given by the sum in (1.50) can be 

interpreted as the number of different combinations of 3 elements of the set: 

Ω = {𝑢𝑟−1, 𝑢𝑟, 𝑢𝑟+1, … , 𝑢𝑛−2, 𝑢𝑛−1, 𝑢𝑛} 

If the argument 1 is replaced by the sequence 𝑢𝑖𝑢𝑗𝑢𝑘 in such sum, instead of having the number 

of different combinations, such equation will be equal to the sum of all the combinations of 3 

elements of Ω. In other words: 

∑ ∑ ∑ 𝑢𝑖𝑢𝑗𝑢𝑘

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=𝑖+1

𝑛−2

𝑖=𝑟−1

= 𝑢𝑟−1𝑢𝑟𝑢𝑟+1 + 𝑢𝑟−1𝑢𝑟𝑢𝑟+2 +⋯ 
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+𝑢𝑟−1𝑢𝑟𝑢𝑛 + 𝑢𝑟𝑢𝑟+1𝑢𝑟+2 +⋯+ 𝑢𝑟𝑢𝑟+1𝑢𝑛 +⋯+ 𝑢𝑛−2𝑢𝑛−1𝑢𝑛 

Therefore, for the general case of combinations of 𝑟 elements of a total of 𝑛, the associated sum 

will be equal to: 

 
𝒮(𝑛, 𝑟) = ∑ ∑ … ∑  ∑ ∏𝜆𝑙𝑗

𝑟

𝑗=1

𝑛

𝑙1=𝑙2+1

𝑛−1

𝑙2=𝑙3+1

𝑛−𝑟+2

𝑙𝑟−1=𝑙𝑟+1

𝑛−𝑟+1

𝑙𝑟=𝑟

 

 

 
(1.52) 

1.6.4 The backward formulation of the balance equation. 
 

Using the discussion of the last section it is possible to write the coefficients 𝑐1, 𝑐2, … , 𝑐𝑘−2 of 

the equation (1.37) as 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑐1 = ∑𝜆𝑛−𝑘

𝑘−1

𝑗=0

𝑐2 = ∑ ∑ 𝜆𝑛−𝑗𝜆𝑛−𝑖

𝑘−1

𝑖=𝑗+1

𝑘−2

𝑗=0

𝑐3 = ∑ ∑ ∑ 𝜆𝑛−𝑙𝜆𝑛−𝑗𝜆𝑛−𝑖

𝑘−1

𝑖=𝑗+1

𝑘−2

𝑗=𝑙+1

𝑘−3

𝑙=0

⋮ ⋮

𝑐𝑘−2 ∑ ∑ … ∑ ∑ ∏𝜆𝑙𝑗

𝑘−1

𝑗=1

𝑛

𝑙1=𝑛−1

𝑛−1

𝑙2=𝑛−2

3

𝑙𝑘−1=𝑙𝑘−2+1

2

𝑙𝑘−2=0

   

 

 
 
 
 
 
(1.53) 

After a modification of the sub-indexes of (1.52), it is possible to write the coefficients as of 

(1.53) as: 

 

𝑐𝑖 = 𝑆
∗(𝑖, 𝑘) = ∑ ∑ … ∑  ∑ ∏𝜆𝑙𝑗

𝑖

𝑗=1

𝑙2−1

𝑙1=𝑛−𝑘+1

𝑙3−1

𝑙2=𝑛−𝑘+2

𝑙𝑖−1

𝑙𝑖−1=𝑛−𝑘−1

𝑛

𝑙𝑖=𝑛−𝑘+𝑖

 

 

 
(1.54) 

And through this last equation, the backward formulation of the balance equation will be 

equal to: 

 

𝑋𝑛−𝑘 =∏
1

𝜆𝑛−𝑗

𝑘

𝑗=1

(
𝑑𝑘

𝑑𝑡𝑘
+∑𝑆∗(𝑖, 𝑘)

𝑘−2

𝑖=1

𝑑𝑖

𝑑𝑡𝑖
 +∏𝜆𝑛−𝑖

𝑘−1

𝑖=0

)𝑋𝑛 

 

 
(1.55) 

This last equation is one of the contributions of the present thesis, and it represents an 

important development to the Bateman Equations, because it allows to remove the recursion 

nature of the equation (1.30). Additionally, it is only necessary to know the solution of 𝑋𝑛 to 

compute all the other solutions, and even when this procedure involves the calculation of higher 

derivatives of 𝑋𝑛, in Chapter 4 a general formula will be developed to it. 

From this point onwards the equation (1.55) will be called the Backward Bateman Equation. 
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1.6.5 The forward method. 
 

If the equation (1.6) is multiplied by the integral factor given by 𝑒𝜆𝑖𝑡, the differential equation 

can be solved as: 

𝑒𝜆𝑖𝑡 [
𝑑𝑋𝑖(𝑡)

𝑑𝑡
+ 𝜆𝑖𝑋𝑖] = 𝑒

𝜆𝑖𝑡[𝜆𝑖−1𝑋𝑖−1] 

𝑑

𝑑𝑡
[𝑒𝜆𝑖𝑡𝑋𝑖(𝑡)] = 𝑒

𝜆𝑖𝑡[𝜆𝑖−1𝑋𝑖−1] 

∫
𝑑

𝑑𝑡′
[𝑒𝜆𝑖𝑡

′
𝑋𝑖(𝑡′)]

𝑡

0

𝑑𝑡′ = 𝜆𝑖−1∫ 𝑒
𝜆𝑖𝑡

′
𝑋𝑖−1(𝑡

′)𝑑𝑡′
𝑡

0

 

 
𝑋𝑖 = 𝑒

−𝜆𝑖𝑡 (𝜆𝑖−1∫ 𝑋𝑖−1(𝑡
′)𝑒𝜆𝑖𝑡

′
𝑡

0

𝑑𝑡′ + 𝑋𝑖(0)) 

 

(1.56) 

In this last method it is necessary to know the solution for the isotope 𝑋𝑖−1  to obtain the 

solution of 𝑋𝑖 , therefore it will be called the forward method equation. Considering the initial 

conditions given in (1.14), it is possible to write 𝑋𝑖  as: 

 
𝑋𝑖 = 𝑒

−𝜆𝑖𝑡𝜆𝑖−1∫ 𝑋𝑖−1(𝑡
′)𝑒𝜆𝑖𝑡

′
𝑡

0

𝑑𝑡′,            2 ≤ 𝑖 ≤ 𝑛 

 

(1.57) 

Clearly, this equation has a recursive nature. As in the previous case, for the backward method, 

it is possible to write equation (1.57) as a general formula. Again, it is necessary to make 

multiple replacements, being convenient for this case considering: 

 𝑋1(𝑡) = 𝑋1(0)𝑒
−𝜆1𝑡 

 

(1.58) 

Using equation (1.57) for 𝑖 = 2, and replacing (1.58): 

 
𝑋2 = 𝑒

−𝜆2𝑡𝜆1∫ 𝑋1(𝑡
′)𝑒𝜆2𝑡

′
𝑡

0

𝑑𝑡′ = 𝑋1(0)𝑒
−𝜆2𝑡𝜆1∫ 𝑒

−(𝜆1−𝜆2)𝑡′𝑑𝑡′
𝑡

0

 

 

(1.59) 

Repeating this procedure for 𝑖 = 3: 

 
𝑋3 = 𝑋1(0)𝜆1𝜆2𝑒

−𝜆3𝑡∫ 𝑒−(𝜆2−𝜆3)𝑡2𝑑𝑡2

𝑡

0

∫ 𝑒−(𝜆1−𝜆2)𝑡1𝑑𝑡1

𝑡2

0

 

 

(1.60) 

For the case 𝑖 = 𝑘, 𝑘 ≤ 𝑖: 

𝑋𝑘 = 𝑋1(0)𝜆𝑘−1𝜆𝑘−2…𝜆2𝜆1𝑒
−𝜆𝑘𝑡 × 

∫ 𝑒−(𝜆𝑘−1−𝜆𝑘)𝑡𝑘−1𝑑𝑡𝑘−1

𝑡

0

∫ 𝑒−(𝜆𝑘−2−𝜆𝑘−1)𝑡𝑘−2𝑑𝑡𝑘−2

𝑡𝑘−1

0

…∫ 𝑒−(𝜆2−𝜆3)𝑡2𝑑𝑡2

𝑡3

0

∫ 𝑒−(𝜆1−𝜆2)𝑡1𝑑𝑡1

𝑡2

0

  

Using the Fubini’s theorem, it is possible to write the last equation as: 
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𝑋𝑘 = 𝑋1(0)𝑒

−𝜆𝑘𝑡∏𝜆𝑢

𝑘−1

𝑢=1

× 

∫ ∫ …
𝑡𝑘−1

0

∫ ∫ 𝑒−(𝜆𝑘−1−𝜆𝑘)𝑡𝑘−1 × 𝑒−(𝜆𝑘−2−𝜆𝑘−1)𝑡𝑘−2 × …×
𝑡2

0

𝑒−(𝜆1−𝜆2)𝑡1𝑑𝜏 
𝑡3

0

𝑡

0

 

 
 
(1.60) 

   
Where 𝑑𝜏 = 𝑑𝑡𝑘−1𝑑𝑡𝑘−2…𝑑𝑡1 . This last equation has some advantages over the Bateman 

solution and the backward method, but also some disadvantages. Firstly, there are not 

assumptions about the lambda constants, as it was the case in equation (1.18). In fact, equation 

(1.60) allows the possibility that two or more lambda constants were equal. In such case it is 

only necessary to perform the subtractions where necessary, reducing terms and finally carry 

out the integral. Therefore, this is a more general solution for the linear chain given in (1.11). 
Besides, this analysis about the lambda constant is performed once and the integrals involved 

are of two types: 

 
ℐ = ∫ 𝑥𝑛𝑒(𝜆𝑖−𝜆𝑗)𝑥𝑑𝑥

𝑡

0

,     ℳ = ∫ 𝑒(𝜆𝑖−𝜆𝑗)𝑥𝑑𝑥
𝑡

0

 

 

(1.61) 

Such integrals can be computed in a fast way, using a symbolical algorithm, and therefore they 

do not involve any difficulty. In Chapter 5 such integrals will be studied in detail. Finally, several 

operations involved in (1.60) can be reduced through recursive functions. 

The main disadvantage of this equation is its lack of generality. In fact, such equation is only 

valid for a linear chain, because due to the use of the equation (1.58) is implicit that this isotope 

has the following balance equation: 

 𝑑

𝑑𝑡
𝑋1 = −𝜆1𝑋1 

 

(1.62) 

Nevertheless, as it will be discussed in Chapter 4, it is possible to find decay and transmutations 

structures where this balance equation can have a gain function. For such cases, equation (1.60) 

is not valid, and therefore it is necessary to use (1.56) or (1.57). Unfortunately, in several cases 

the involved integration can be very difficult and, therefore, the forward method cannot be 

used.  

In the present thesis, the forward method is fundamental because it is used to develop a 

symbolical computation algorithm. But it is also important because there are several possible 

improvements to the Bateman equations that can be carried out through it. The most important 

aspects of the forward method are discussed in the following sections. 

1.6.6. The forward method as an integral transformation. 
 

It is possible to find analogies between the forward method and the equations related to 

diffusion and transport of neutrons. Such analogies have their origin in the concept of integral 

transform and the kernel, who are powerful mathematical tools widely used in Physics. The 

former concept can be defined through the following operation: 

 
∫ 𝐾(𝑠, 𝑡)𝑓(𝑡)𝑑𝑡
∞

0

 
(1.63) 
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Where 𝑓(𝑡) ≥ 0, and 𝐾(𝑠, 𝑡) is a special function whose main task is transforming, through the 

integral, a function 𝑓 of the variable 𝑡 into a function 𝐹 of the variable 𝑠 (Zill, 2009), (Buschman, 

1996). This last function is called kernel. Clearly the definitions provided in (1.10) are integral 

transformations.   

In order to analyze the first analogy, between the forward method and the neutron diffusion 

equation, it is necessary to set the following integral transform to find de neutron flux for a 

neutron diffusion problem: 

 
𝜙( 𝑟→ , 𝑡) =  ∫ 𝑠 (𝑟′

→
, 𝑡)

all space

𝐺 ( 𝑟→ , 𝑟′
→
, 𝑡)𝑑𝑉′ 

 

(1.64) 

In this case 𝐺 ( 𝑟→ , 𝑟′
→
, 𝑡) is the kernel, 𝑠 (𝑟′

→
, 𝑡) is the source distribution, and 𝑠 (𝑟′

→
, 𝑡) 𝑑𝑉′ are 

the neutrons emitted per second from the volume 𝑑𝑉′ located at 𝑟′
→

 (Lamarsh, 2002) .  

The analogy begins considering that both, this equation and (1.57), are alternative 

methodologies to solve the corresponding differential equations. In fact, instead of using a 

differential formulation, they used an integral approach. 

In the neutron diffusion case, this task involves finding the kernel, 𝐺 ( 𝑟→ , 𝑟′
→
, 𝑡), which is built 

according to physical and geometric properties. This function has two main roles, firstly, as it 

was mentioned before, it carries out the task of transforming, through the integral, a function 

of the vector 𝑟′
→

 into a function of the vector 𝑟→ . Its second role is related to the following 

property: 

 𝕃𝐺 ( 𝑟→ , 𝑟′
→
, 𝑡) = 𝛿( 𝑟→ − 𝑟′

→
) 

 

(1.65) 

Where 𝕃 is the operator defined through the neutron diffusion equation: 

(∇2 −
1

𝐿𝐷
2 ) ∙ 𝜙 ( 𝑟

→ , 𝑟′
→
, 𝑡) = 𝕃 ∙ 𝜙 ( 𝑟→ , 𝑟′

→
, 𝑡) = −

𝑠 (𝑟′
→
, 𝑡)

𝐷
 

Where 𝐿𝐷  is the diffusion length, and 𝐷  is the diffusion coefficient. Clearly, property (1.65) 

allows to carry out a special integration over the position, including where the source is located. 

The kernels defined by this last property are related to the Green’s function, which is widely 

used in engineering and physical problems (Duffy,2001) (Stakgold and Holst, 2003). 

To continue analyzing the analogy between the equations, it is necessary to observe that the 

formulation given in (1.57) also can be built defining a kernel, as in the neutron diffusion case. 

Firstly, the equivalent term to 𝑠 (𝑟′
→
, 𝑡) will be a function of generation, 𝑅(𝑡′), which represents 

the number of atoms or isotopes that are created at time 𝑡′ . For the kernel function it is 

necessary to find a function 𝐺𝑟 , who models the change that the atoms generated by 𝑅(𝑡′) 

undergo. This function will have two arguments, 𝑡 and 𝑡′. It is possible to conclude from the law 

of radioactive decay that: 
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 𝐺𝑟(𝑡
′, 𝑡) = 𝑒−𝜆(𝑡−𝑡

′) 
 

(1.66) 

Therefore, the concentration of a substance 𝑋(𝑡)  who is created through the function of 

generation 𝑅(𝑡′) can be written as: 

 
𝑋𝑛 = ∫ 𝑅(𝑡

′)𝐺𝑟(𝑡
′, 𝑡)𝑑𝑡′

𝑡

0

= ∫ 𝑅(𝑡′)𝑒−𝜆(𝑡−𝑡
′)𝑑𝑡′

𝑡

0

 

 

(1.67) 

Finally, from the transmutation relationship, it will possible to conclude that 𝑅(𝑡′) = 𝜆𝑛−1𝑋𝑛−1: 

 
𝑋𝑛 = ∫ 𝑅(𝑡

′)𝑒−𝜆(𝑡−𝑡
′)𝑑𝑡′

𝑡

0

= 𝜆𝑛−1𝑒
−𝜆𝑛𝑡∫ 𝑋𝑛−1(𝑡

′)𝑒−𝜆𝑛𝑡
′

𝑡

0

𝑑𝑡′ 

 

(1.68) 

Where 𝜆 = 𝜆𝑛. This is the same equation given in (1.57), but this time it was obtained from a 

point of view of an integral transformation, and following the analogy used for the neutron 

diffusion case. Additionally, the way in which the kernel was built is similar to the reasoning 

used by Rutherford to solve the balance equation for 𝑖 = 2, and that was described in Section 

1.2.3. 

At our best knowledge, the early antecedent of the equation (1.67) appeared in the work of 

Meyer and Schweidler published in 1927 (Meyer arid Schweidler, 1927), but a formal 

discussion of it was developed by Rubinson in 1949 (Rubinson, 1949), who analyzed the way 

in which the integral equation is built.   

1.6.7 Generalization of the Integral transformations.  
 

The analogy between the neutron integral transport equation and the forward method is more 

complex. The author M’Backe Diop made a deep analysis of such analogy in 2007 (M’Backe 

Diop, 2007), where he used the Monte Carlo formulation for the neutral particle transport. 

Through the notation used in the present thesis, and omitting the variable dependence on 

position 𝑟
→
 , the integral equation for the forward method proposed by Diop can be expressed 

as: 

 
𝑋𝑖(𝑡) = ∫ ∑𝑋𝑗→𝑖(𝑡

′)

𝑗

∙ 𝑝𝑗,𝑖 ∙ 𝑒
−𝜆𝑗→𝑖(𝑡−𝑡

′)𝑑𝑡′
𝑡

0

+∫ 𝑈𝑖(𝑡
′)𝑒−𝜆𝑗→𝑖(𝑡−𝑡

′)𝑑𝑡′
𝑡

0

 

 

(1.69) 

There are some differences between this equation and (1.57). Firstly, (1.69) considers the 

possibility that several isotopes, denoted by 𝑋𝑗→𝑖 , produce the isotope 𝑋𝑖(𝑡). For such reactions, 

a constant probability density, 𝜌𝑗,𝑖, is defined, being equivalent to the lambda constant in the 

case of radioactive decay, but with a more general meaning that will be discussed in detail in 

the following chapter.  Additionally, the Diop’s equation considers the possibility of a source 

term,  𝑈𝑖(𝑡
′) , which represents the contribution to 𝑋𝑖 , whose origin is not related to the 

transformation of other isotopes. Clearly, these differences become the equation (1.69) more 

general than (1.57). 

An important contribution of Diop’s work is the way in which he transforms the recursive 

equation (1.69) to a general equation similar to (1.60). Firstly, he considered that 
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transmutation reactions can be divided in generations. For example, in order to obtain the final 

concentration of the isotope 𝑋𝑖 , first it is necessary to sum the concentration of initial isotopes, 

i.e. the isotopes that were at the beginning of the process of transmutation: 𝑋𝑖
(1)
(𝑡), where the 

super index denotes the generation. The next step is to add the concentration of the isotope 𝑋𝑖 , 

which was generated after a first process of transmutation, i.e. 𝑋𝑖
(2)(𝑡). Clearly, this function is 

different from 𝑋𝑖
(1)

. Following this procedure, it is possible to show that: 

 
𝑋𝑖(𝑡) = ∑𝑋𝑖

(𝑝)
(𝑡)

𝑃

𝑝=1

 

 

(1.70) 

Where 𝑃 is the last generation to be considered. In order to compute 𝑋𝑖
(𝑝)
, it is necessary to 

divide the time’s domain in set of disjoint intervals, where the transmutations generation can 

be located through: 

 
0 < 𝑡0 < 𝑡1⏟      ⏞      

𝑝2

first interval
where occurs the
first transmutation

, 𝑡1 < 𝑡2 < 𝑡3⏟        ⏞        
𝑝3

second interval
where occurs the

second transmutation

… , 𝑡𝑝−1 < 𝑡𝑝 < 𝑡⏟        ⏞        
𝑃

final interval
where ocurrs the
final transmutation

 

 

(1.71) 

Then, to model each generation, Diop used an equation similar to the following expression1: 

 

𝑋𝑖
(𝑝)(𝑡) =∏𝜌𝑗

𝑝−1

𝑗=1

∫ ∫ ∫ …∫ 𝑈𝑖(𝑡0)
𝑡

𝑡𝑝

𝑒−𝜆1(𝑡1−𝑡0)
𝑡

𝑡1

𝑡

𝑡0

𝑡

0

 

 

× 𝑒−𝜆2(𝑡1−𝑡0) ×…× 𝑒−𝜆𝑝(𝑡−𝑡𝑝)𝑑𝑡0𝑑𝑡1…𝑑𝑡𝑝 

 

 
 
(1.72) 

Where 𝑈𝑖(𝑡0) = 𝑋𝑖(0). After brief inspection, it is possible to conclude that this equation is 

identical to (1.60). In fact, the apparent differences are explained due to the limit’s integration. 

Diop interpreted equation (1.72) as a Neumann series, where an operator is applicated 𝑝 times. 

In fact, such interpretation is a generalization of equation (1.63) (Arfken, 1985).Based on this 

formulation, Diop found the analogies between the forward method and the Monte Carlo 

formulation of the neutron transport equation, which are listed in Table 1.1. 

1.7 Other interpretations and applications of the forward method. 
 

In addition to the interpretations of the forward method given in the last section, there are three 

important studies who used as a base the integral formulation of the balance equation given in 

(1.60). The first one has a probability nature, and it is related with the Markov process; the 

following consist of a moment function that can be used to overcome some numerical 

difficulties; and the final is related to recursive expressions that allow to reduce the execution 

time of the Bateman equation. 

 
1 In such equation a sum was omitted, but there is not lack of generality for the present analysis. 
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Table 1. 1. Analogies between integral formulation for neutron transport, and the forward 
formulation. 

 

1.7.1 The interpretation of transition probabilities. 
 

An important interpretation of the forward equation was provided by Raykin and Shlyakhter 

in 1988 (Raykin and Shlyakhter, 1988), through the concept of transition probabilities and the 

matricant. The work of these authors is also important to justify a fundamental procedure used 

to solve the Bateman equation: the linearization process, a topic that will be discussed in detail 

in Chapter 3.  To use transition probabilities, it is necessary to express equation (1.6) in a matrix 

form: 

𝑑

𝑑𝑡
𝑿 = 𝑨𝑿 

Where: 

 

𝑑

𝑑𝑡

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)
⋮

𝑋𝑛(𝑡)]
 
 
 
 

⏟    
𝑿

=

[
 
 
 
 
−𝜆1
𝜆1 −𝜆2

𝜆2 −𝜆3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝑛−1 −𝜆𝑛]
 
 
 
 

⏟                        
𝑨

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)
⋮

𝑋𝑛(𝑡)]
 
 
 
 

⏟    
𝑿

 

 

 
 
(1.73) 

In their work, the authors called A the reaction rate matrix. After this, it is introduced a 

transition probability matrix, 𝑷(𝑡), where its elements are defined as the concentration of the 

isotope 𝑖  at time 𝑡 , with the initial conditions where only the isotope 𝑋𝑗  has a unity initial 

concentration. Using the Kronecker delta, it is possible to write the mathematical definition of 

𝑃𝑖𝑗  as: 

Concept Transport equation Forward equation 

Phase space 𝑟→ 𝑡 
Phase space 𝐸 type of nuclide 

Direction Ω
→

 
time irreversibility 

𝑡 > 0 

Phase particle flux 𝜙( 𝑟→ , 𝐸, Ω
→
) 

Isotopic concentration: 

𝑋𝑖( 𝑟
→ , 𝑡) 

Process Nuclear interactions Nuclear transmutation process 
Reaction 

parameter 
Σ𝑡( 𝑟
→ , 𝐸) [𝑐𝑚−1] 𝜆 [𝑠−1] 

Reaction density Σ𝑡( 𝑟
→ , 𝐸)𝜙( 𝑟→ , 𝐸, Ω

→
) 

Activity 

𝐴𝑖( 𝑟
→ , 𝑡) = 𝜆𝑋𝑖( 𝑟

→ , 𝑡) 

Source 𝑆( 𝑟→ , 𝐸, Ω
→
) 𝑈𝑖( 𝑟

→ , 𝑡) 

 
Transport operator 

 

Σ𝑡( 𝑟
→ , 𝐸)∫𝑒

−∫ Σ𝑡(𝑟
→−𝑠′Ω

→
,𝐸,Ω
→
)𝑑𝑠′

𝑠

0 𝑑𝑠 

 

 

𝜆∫ 𝑒−𝜆(𝑡−𝑡
′)𝑑𝑡′

𝑡

0
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 𝑃𝑖𝑗 = 𝑋𝑖(𝑡)|𝑋𝑘(0)=𝛿𝑘𝑗 

 

(1.74) 

In order to provide clarity for the present analysis, the Bateman equation will be used to sketch 

the matrix 𝑷(𝑡), even when Raykin and Shlyakhter did not use it in their work. According to 

(1.70), 𝑃𝑖=1,𝑗=1 will be the solution of the isotope 𝑋𝑖=1, under the initial conditions where only 

the isotope 𝑋𝑗=1 has a unity initial concentration. In order words: 

 𝑑

𝑑𝑡
𝑋1 = −𝜆1𝑋1   

 

(1.75) 

Under the initial conditions given by: 

 
𝑋1(0) = 1 [

atoms

b∙cm
] , 𝑋𝑖(0) = 0 ∀𝑖 = 2,3,… , 𝑛 

 

(1.76) 

Through the Bateman equation it is possible to solve (17.5) with these initial conditions as 

follows: 

 
𝑃11 = 𝑋1(0)𝑒

−𝜆1𝑡 = 𝑒−𝜆1𝑡 [
atoms

b∙cm
] 

 

(1.77) 

For the case of 1 < 𝑘 ≤ 𝑛, 𝑃1𝑘 will be the solution of the isotope 𝑋1 for a time 𝑡, where only the 

isotope 𝑋𝑘, who is after 𝑋1, has an initial concentration different from zero and equal to the 

unity. Since the balance equation for this term is equal to (1.75), and due that the isotope 𝑋1 do 

not receive any contribution from other isotopes, because it is at the beginning of the decay 

chain, depending totally in its initial concentration, it is possible to conclude that: 

𝑃12 = 𝑃13 = ⋯ = 𝑃1𝑛 = 0 

Then, the first row of the transition probability matrix is equal to: 

 
(𝑒−𝜆1𝑡 0 0 … 0) [

atoms

b∙cm
] 

 

(1.78) 

The term 𝑃𝑖=2,𝑗=1 is equal to the concentration of the isotope 𝑋𝑖=2 for a time 𝑡, where only the 

isotope 𝑋𝑗 = 1 has an initial concentration different from zero, and equal to the unity. For this 

case it is necessary to solve the balance equation: 

 𝑑

𝑑𝑡
𝑋2 = 𝜆1𝑋1 − 𝜆2𝑋2   

 

(1.79) 

Under the same initial conditions given in (1.76). 

𝑋1(0) = 1 [
atoms

b∙cm
] , 𝑋𝑖(0) = 0 ∀𝑖 = 2,3,… , 𝑛 

Such solution is equal to: 

 
𝑋2(𝑡) =

𝜆1(𝑒
−𝜆1𝑡 − 𝑒−𝜆2𝑡)

𝜆2 − 𝜆1
[
atoms

b∙cm
] 

 

(1.80) 
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Following with the process,  𝑃𝑖=2,𝑖=2 represents the concentration of the isotope 𝑋𝑖=2, where 

only 𝑋𝑗=2 has an initial concentration different from zero, equal to the unity. For this case it is 

necessary to solve the system (1.79), but with the following initial conditions: 

𝑋1(0) = 0, 𝑋2(0) = 1 [
atoms

b∙cm
] , 𝑋𝑖(0) = 0 ∀𝑖 = 3,4,… , 𝑛 

Since 𝑋1(0) = 0, then 𝑋1(𝑡) = 0, the system (1.79) is reduced to: 

 𝑑

𝑑𝑡
𝑋2 = −𝜆2𝑋2   

 

(1.81) 

Whose solution is equal to 𝑋2(𝑡) = 𝑒
−𝜆2𝑡 [

atoms

b∙cm
]. For the rest of the terms in this row, 𝑃𝑖=2,𝑗=𝑘 is 

the concentration of the isotope 𝑋2(𝑡)  with the initial conditions where always, 𝑋1(0) =

𝑋2(0) = 0. Since the concentration of  𝑋2 depends only of 𝑋1 and its concentration itself, it is 

possible to conclude that the second row of the transition probability matrix is: 

 
(
𝜆1(𝑒

−𝜆1𝑡 − 𝑒−𝜆2𝑡)

𝜆2 − 𝜆1
𝑒−𝜆2𝑡 0 … 0) [

atoms

b∙cm
] 

 

(1.82) 

As it can be observed, the definition provided in (1.74) can be interpreted as a redefinition of 

the decay chain given in (1.11), where a shift of positions is included. For example, for 𝑃22 such 

chain is redefined as: 

𝑋2 → 𝑋3 → ⋯ → 𝑋𝑛 

In other words, the first isotope in (1.11) is removed from the chain. Using another example, 

for the term 𝑃5,3, it is necessary to find the concentration of the isotope 𝑖 = 5, considering that 

only the isotope 𝑗 = 3 has an initial concentration. Under such conditions 𝑋1(𝑡) = 𝑋2(𝑡) = 0, 

and, therefore, the following reduction or shift of the decay chain is obtained: 

 

𝑋1 → 𝑋2 → 𝑋3 → 𝑋4 → 𝑋5 →. . .→ 𝑋𝑛
⏞                

the redefined
chain

 

 

 
(1.83) 

From the above discussion, the transition matrix can be built as: 

 

𝑷(𝑡) =

[
 
 
 
 
 
𝑒−𝜆1𝑡

𝑓2,1(𝑡) 𝑒−𝜆2𝑡

𝑓3,1(𝑡) 𝑓3,2(𝑡) 𝑒−𝜆3𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑓𝑛,1(𝑡) 𝑓𝑛,2(𝑡) 𝑓𝑛,3(𝑡) … 𝑓𝑛,𝑛−1(𝑡) 𝑒−𝜆𝑛𝑡]

 
 
 
 
 

 

 

 
(1.84) 

Where it is possible to proof that: 

 
𝑓𝑖,𝑗(𝑡) =∏𝜆𝑢

𝑖−1

𝑢=𝑗

∑𝑒−𝜆𝑟𝑡
𝑖

𝑟=𝑗

 ∏
1

𝜆ℎ − 𝜆𝑟

𝑖

ℎ=𝑗
ℎ≠𝑟

, with 𝑓𝑖,𝑖(𝑡) = 𝑒
−𝜆𝑖𝑡  

 

 
(1.85) 
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This last equation, based on the Bateman solution, models the shift who was described before 

through the index 𝑖  and 𝑗  who appear in the summa and the product. In other words, such 

equation redefines the decay chain through the index. 

1.7.2 Some properties of the probability transition matrix.  

 

There are some important properties that it is necessary to analyze, in order to conclude that 

the transition probability matrix given in (1.84) has an important relationship with the system 

(1.73). One of these properties analyses the behavior of 𝑷 when 𝑡 = 0. The other property is 

related to 𝑑𝑷(𝑡)/𝑑𝑡. 

For the first property, it is possible to note that all the elements on the diagonal of (1.84) are 

equal to one when 𝑡 = 0. On the other hand, since the functions 𝑓𝑖,𝑗 models the concentration of 

an isotope 𝑖,  who is produced by previous isotopes, denoted by 𝑗 , in a system where the 

condition sets that this last isotope is the only that has an initial concentration different from 

zero; then it is clear that for time 𝑡 = 0, there is not concentration of the isotope 𝑖, because it 

has not been yet created . Therefore, 𝑓𝑖,𝑗(𝑡 = 0) = 0 ∀𝑖 = 1,2, . . , 𝑛.  

From these facts it is possible to conclude that: 

 

𝑷(0) =

[
 
 
 
 
1

1
1

⋱
1 ]
 
 
 
 

= 𝑰 

 

 
(1.86) 

From the second property it is necessary to show that: 

 𝑑𝑷(𝑡)

𝑑𝑡
= 𝑨𝑷(𝑡) 

 

(1.87) 

To make such proof it is possible to express 𝑷(𝑡) as a sum of matrix: 

 𝑷(𝑡) = 𝑴(𝑡) + 𝑻(𝑡) 
 

 
(1.88) 

Where: 

𝑴 =

[
 
 
 
 
𝑒−𝜆1𝑡

𝑒−𝜆2𝑡

𝑒−𝜆3𝑡

⋱
𝑒−𝜆𝑛𝑡]

 
 
 
 

 

And: 

 

𝑻(𝑡) =

[
 
 
 
 
0

𝑓2,1(𝑡) 0

𝑓3,1(𝑡) 𝑓3,2(𝑡) 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑓𝑛,1(𝑡) 𝑓𝑛,2(𝑡) 𝑓𝑛,3(𝑡) … 𝑓𝑛,𝑛−1(𝑡) 0 ]
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It follows that: 

 

𝑑𝑴(𝑡)

𝑑𝑡
=

[
 
 
 
 
 
−𝜆1𝑒

−𝜆1𝑡

−𝜆2𝑒
−𝜆2𝑡

−𝜆3𝑒
−𝜆3𝑡

⋱
−𝜆𝑛𝑒

−𝜆𝑛𝑡]
 
 
 
 
 

 

 

 
 
 

Furthermore, from the balance equation (1.6) it is possible to note that: 

 𝑑

𝑑𝑡
𝑓𝑖,𝑗(𝑡) = 𝜆𝑖−1𝑓𝑖−1,𝑗 − 𝜆𝑖𝑓𝑖,𝑗  

 

(1.89) 

Therefore, 𝑑𝑻(𝑡)/𝑑𝑡 will be equal to: 

[
 
 
 
 

0
𝜆1𝑓1,1 − 𝜆2𝑓2,1 0

𝜆2𝑓2,1 − 𝜆3𝑓3,1 𝜆2𝑓2,2 − 𝜆3𝑓3,2 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝑛−1𝑓𝑛−1,1 − 𝜆𝑛𝑓𝑛,1 𝜆𝑛−1𝑓𝑛−1,2 − 𝜆𝑛𝑓𝑛,2 𝜆𝑛−1𝑓𝑛−1,3 − 𝜆𝑛𝑓𝑛,3 … 𝜆𝑛−1𝑓𝑛−1,𝑛−1 − 𝜆𝑛𝑓𝑛,𝑛−1 0 ]
 
 
 
 

 

If this last term is added to 𝑑𝑴(𝑡)/𝑑𝑡 the outcome is: 

[
 
 
 
 
 

−𝜆1𝑒
−𝜆1𝑡

𝜆1𝑓1,1 − 𝜆2𝑓2,1 −𝜆2𝑒
−𝜆2𝑡

𝜆2𝑓2,1 − 𝜆3𝑓3,1 𝜆2𝑓2,2 − 𝜆3𝑓3,2 −𝜆3𝑒
−𝜆3𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜆𝑛−1𝑓𝑛−1,1 − 𝜆𝑛𝑓𝑛,1 𝜆𝑛−1𝑓𝑛−1,2 − 𝜆𝑛𝑓𝑛,2 𝜆𝑛−1𝑓𝑛−1,3 − 𝜆𝑛𝑓𝑛,3 … 𝜆𝑛−1𝑓𝑛−1,𝑛−1 − 𝜆𝑛𝑓𝑛,𝑛−1 −𝜆𝑛𝑒

−𝜆𝑛𝑡]
 
 
 
 
 

 

Finally, considering that 𝑓𝑖,𝑖 = 𝑒
−𝜆𝑖𝑡, the last matrix can be written as: 

[
 
 
 
 
 

−𝜆1𝑒
−𝜆1𝑡

𝜆1𝑒
−𝜆1𝑡 − 𝜆2𝑓2,1 −𝜆2𝑒

−𝜆2𝑡

𝜆2𝑓2,1 − 𝜆3𝑓3,1 𝜆2𝑒
−𝜆2𝑡 − 𝜆3𝑓3,2 −𝜆3𝑒

−𝜆3𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜆𝑛−1𝑓𝑛−1,1 − 𝜆𝑛𝑓𝑛,1 𝜆𝑛−1𝑓𝑛−1,2 − 𝜆𝑛𝑓𝑛,2 𝜆𝑛−1𝑓𝑛−1,3 − 𝜆𝑛𝑓𝑛,3 … 𝜆𝑛−1𝑒

−𝜆𝑛−1𝑡 − 𝜆𝑛𝑓𝑛,𝑛−1 −𝜆𝑛𝑒
−𝜆𝑛𝑡]

 
 
 
 
 

 

Which is equal to 𝑑𝑷(𝑡)/𝑑𝑡.  

Furthermore, it is necessary to study the following product: 

𝑨𝑴 =

[
 
 
 
 
−𝜆1
𝜆1 −𝜆2

𝜆2 −𝜆3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝑛−1 −𝜆𝑛]
 
 
 
 

[
 
 
 
 
𝑒−𝜆1𝑡

𝑒−𝜆2𝑡

𝑒−𝜆3𝑡

⋱
𝑒−𝜆𝑛𝑡]
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=

[
 
 
 
 
 
−𝜆1𝑒

−𝜆1𝑡

𝜆1𝑒
−𝜆1𝑡 −𝜆2𝑒

−𝜆2𝑡

𝜆2𝑒
−𝜆2𝑡 −𝜆3𝑒

−𝜆3𝑡

⋱
𝜆𝑛−1𝑒

−𝜆𝑛−1 −𝜆𝑛𝑒
−𝜆𝑛𝑡]

 
 
 
 
 

 

And: 

𝑨𝑻 =

[
 
 
 
 
−𝜆1
𝜆1 −𝜆2

𝜆2 −𝜆3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝑛−1 −𝜆𝑛]
 
 
 
 

[
 
 
 
 
0

𝑓2,1(𝑡) 0

𝑓3,1(𝑡) 𝑓3,2(𝑡) 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑓𝑛,1(𝑡) 𝑓𝑛,2(𝑡) 𝑓𝑛,3(𝑡) … 𝑓𝑛,𝑛−1(𝑡) 0 ]

 
 
 
 

 

 

=

[
 
 
 
 
 

0
−𝜆2𝑓2,1 0

𝜆2𝑓2,1 − 𝜆3𝑓3,1 −𝜆3𝑓3,2(𝑡) 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜆𝑛−1𝑓𝑛−1,1 − 𝜆𝑛𝑓𝑛,1 𝜆𝑛−1𝑓𝑛−1,2 − 𝜆𝑛𝑓𝑛,2 𝜆𝑛−1𝑓𝑛,3 − 𝜆𝑛𝑓𝑛,3 … 𝜆𝑛−1𝑓𝑛−1,𝑛−1 − 𝜆𝑛𝑓𝑛,𝑛−1 0 ]

 
 
 
 
 

 

From the above analysis it is possible to conclude that: 

 𝑑𝑷(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑴(𝑡) + 𝑻(𝑡)) = 𝑨𝑴+ 𝑨𝑻 = 𝑨(𝑴+ 𝑻) = 𝑨𝑷(𝑡) 

 

(1.90) 

If a matrix fulfills (1.86) and (1.90), then it is said that such matrix is a matricant of system 

(1.73) (Pease, 1965). 

1.7.3 Reaction rate Matrix as a matricant. 

 

Once it was concluded that the matrix 𝑷 defined in (1.73) is a matricant, it is possible to apply 

some of the properties that such matrices have. Particularly, it follows that: 

 𝑷(𝑡 − 𝑡1) ∙ 𝑷(𝑡1) = 𝑷(𝑡) 
 

(1.91) 

This property is very important, because it is a matrix analogy to the kernel concept mentioned 

in (1.63), which shows that this interpretation is equivalent to use an integral transformation. 

In fact, as some authors suggest, the Green’s function can be regarded as the matricant extended 

to infinitely dimensioned Hilbert spaces (Pease, 1965).  On the other hand, the equation (1.91) 

contains a Markov process nature, because it is possible to determine a certain state of a system, 

depending only on the immediate previous state. 

Even when the coefficients 𝑃𝑖,𝑗 were computed in the last section using the Bateman equation, 

it is possible to compute them using probability’s properties: 

𝑃𝑖,𝑗(𝑡) = ∫ 𝑑𝑡𝑖−1

𝑡

0

∫ 𝑑𝑡𝑖−2

𝑡𝑖−1

0

…∫ 𝑑𝑡𝑗

𝑡𝑗+1

0
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×∏𝜆𝑙

𝑖−1

𝑙=𝑗

∙ exp [−∫ 𝜆𝑙(ξ)
𝑡𝑙

𝑡𝑙−1

𝑑𝜉] ∙ exp [−∫ 𝜆𝑖(𝜉)𝑑𝜉
𝑡𝑖

𝑡𝑖−1

] 

Where 𝑡𝑙 is the instant of transition of the 𝑙’th isotope into the (𝑙 + 1)′th one. and the factor: 

 
𝜆𝑙 ∙ exp [−∫ 𝜆𝑙(ξ)

𝑡𝑙

𝑡𝑙−1

𝑑𝜉] 

 

(1.92) 

is the probability of this transition occurring over the interval from 𝑡𝑙 to 𝑡𝑙 + 𝑑𝑡𝑙 . And the term: 

exp [−∫ 𝜆𝑖(𝜉)𝑑𝜉
𝑡𝑖

𝑡𝑖−1

] 

represents the probability that the 𝑖’th nuclide does not pass to the next one over the interval 

𝑡𝑖−1 to 𝑡.  

Before concluding this section, it is necessary to note that the discussed interpretation has had 

little impact in the literature and in the developing of burnup codes. In addition to the work of 

Raykin and Shlyakhter, there has been few publications who address this topic, being the most 

recent the developed by Hálász and Szieberth (Hálász and Szieberth, 2018). 

On the other hand, it was considered convenient to include such discussion in the present 

thesis, because it represents a little explored field where the Bateman equation can be 

improved. In addition, there has been pedagogical reasons, because this interpretation is one 

of the most sophisticated and harder to follow, and all the developments carried out in the last 

three Sections, represented in the Raykin and Shlyakhter’s work a few lines. Therefore, the 

above discussion represents an introduction to the study of the forward method under a 

Markov process view.  

1.7.4 The forward method as a function of moments.  
 

Other study related to the forward method is described in Harr’s master thesis (Harr, 2007) as 

the exponential moments function. Originally developed in the context of the discrete ordinates 

transport by Mathews and his colleagues (Mathews et. al., 1994) such function can be defined 

as: 

 
𝑀𝑛(𝜆1, 𝜆2, … , 𝜆𝑘) = ∫ 𝑑𝑡1

1

0

∫ 𝑑𝑡2

𝑡1

0

…∫ 𝑑𝑡𝑘(1 − 𝑡1)
𝑛

𝑡𝑘−1

0

 

 

× 𝑒−𝜆1𝑡1𝑒(𝜆1−𝜆2)𝑡2 …𝑒(𝜆𝑘−1−𝜆𝑘)𝑡𝑘  
 

 
(1.93) 

Considering 𝑛 = 0, the last equation can be used to eliminate overflow errors. For such task, 

Harr begins considering a very similar equation to (1.60)2, then he proposed the following 

change of variable: 

 
2 The only difference between (1.60) and the formulation of Harr are the branches ratios.  
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𝑢𝑗 =

𝑡𝑗

𝑡
 

 

(1.94) 

Through which: 

 
∫

𝑑𝑡𝑗−1

𝑡

𝑡𝑗

0

= ∫ 𝑑𝑢𝑗−1

𝑢𝑗

0

   

 

(1.95) 

Using (1.95) in (1.60), the argument of the exponential can be expressed as: 

 
∫ ∫ …

𝑢𝑘−1

0

∫ ∫ 𝑒−((𝜆𝑘−1−𝜆𝑘)𝑡)𝑢𝑘−1 × 𝑒−((𝜆𝑘−2−𝜆𝑘−1)𝑡)𝑢𝑘−2
𝑢2

0

 
𝑢3

0

1

0

× … 
 
 
(1.96) 

 × 𝑒−((𝜆1−𝜆2))𝑢1𝑑𝜏∗  

Where: 

 𝑑𝜏∗ = 𝑑𝑢𝑘−1𝑑𝑢𝑘−2…𝑑𝑢2𝑑𝑢1 
 

(1.97) 

Additionally, the argument of the exponentials can be rewritten including the term 0 = (𝜆𝑘 −

𝜆𝑘): 

 
∫ ∫ …

𝑢𝑘−1

0

∫ ∫ 𝑒−((𝜆𝑘−1−𝜆𝑘)𝑡)𝑢𝑘−1
𝑢2

0

 
𝑢3

0

1

0

 
 
 
(1.98) 

 × 𝑒((𝜆𝑘−1−𝜆𝑘)−(𝜆𝑘−2−𝜆𝑘)𝑡)𝑢𝑘−2 × …× 𝑒((𝜆2−𝜆𝑘)−(𝜆1−𝜆𝑘)𝑡)𝑢1𝑑𝜏∗  

 

Using (1.93), it is possible to write (1.98) as: 

 
𝑋𝑘 = 𝑋1(0)𝑒

−𝜆𝑘𝑡∏𝜆𝑢

𝑘−1

𝑢=1

×𝑀0[(𝜆𝑘−1 − 𝜆𝑘)𝑡, (𝜆𝑘−2 − 𝜆𝑘)𝑡, … , (𝜆1 − 𝜆𝑘)𝑡] 
 
(1.99) 
 

   
By a property of the Bateman equation that will be discussed in Section 1.8, the function 𝑀0 is 

symmetrical in its arguments (Harr described this as an invariant property): 

 𝑀0(𝛽1, 𝛽2, … , 𝛽𝑖, … , 𝛽𝑗, … , 𝛽𝑛) = 𝑀0(𝛽1, 𝛽2, … , 𝛽𝑗, … , 𝛽𝑖, … , 𝛽𝑛) 

 

(1.100) 

The last equation guarantees that the arguments of 𝑀0 can be ordered in any possible way, 

particularly from the largest to the smallest. Then, using a new numeration: 

Λ = {𝜆1, 𝜆2, … , 𝜆𝑛}

↓
Λ∗ = {𝜆1∗ , 𝜆2∗ , … , 𝜆𝑛∗}

  

Where 𝜆1
∗  is the largest element in Λ , 𝜆𝑛

∗  the smallest, and 𝜆1
∗ < 𝜆2

∗ < ⋯ < 𝜆𝑛
∗ . With this new 

numeration and the symmetry described in (1.100), it is possible to write: 

 𝑀0[(𝜆𝑛−1
∗ − 𝜆𝑛

∗ )𝑡, (𝜆𝑛−2
∗ − 𝜆𝑛

∗ )𝑡, … , (𝜆1
∗ − 𝜆𝑛

∗ )𝑡] (1.101) 
 

In this form, equation (1.101) ensures that all the exponential arguments are greater than or 

equal to zero, and therefore it removes several overflow errors. As it was discussed in Chapter 
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4, these last errors are very important, because due to numerical precision, the Bateman 

equation fails and provides negative concentrations. 

1.7.5 Recursive integral formulas. 

 

The forward method can be used to develop recursive formulas, which allows reducing the 

complexity and the number of operations in the original Bateman equations. In this topic, the 

work of John N. Hamawi was one of the most popular from the 70’s to the 90’s (Hamawi, 1971).  

The idea behind the recursive formulas proposed by this author is using the operations that are 

repeated when the following operation is carry out: 

 
𝑒−𝜆𝑘𝑡∫ ∫ …

𝑡𝑘−1

0

∫ ∫ 𝑒−(𝜆𝑘−1−𝜆𝑘)𝑡𝑘−1 × 𝑒−(𝜆𝑘−2−𝜆𝑘−1)𝑡𝑘−2 × …×
𝑡2

0

𝑒−(𝜆1−𝜆2)𝑡1𝑑𝜏 
𝑡3

0

𝑡

0

 
 
(1.102) 
 

   
Where 𝑑𝜏 = 𝑑𝑡𝑘−1𝑑𝑡𝑘−2…𝑑𝑡1. The recurrence begins with the following definition: 

 𝐸(𝜆1) = 𝑒
−𝜆1𝑡 (1.103) 

Using this, the following equation is valid: 

 
∫ 𝑒−(𝜆1−𝜆2)𝑡𝑑𝑡
𝑡

0

= ∫
𝑒−𝜆1𝑡

𝑒−𝜆2𝑡

𝑡

0

𝑑𝑡 = ∫
𝐸(𝜆1)

𝐸(𝜆2)
𝑑𝑡

𝑡

0

=
𝑒−(𝜆1−𝜆2)𝑡 − 1

𝜆2 − 𝜆1
 

 

Therefore: 

 
𝑒−𝜆2𝑡∫ 𝑒−(𝜆1−𝜆2)𝑡𝑑𝑡

𝑡

0

= 𝑒−𝜆2𝑡 ∙
𝑒−(𝜆1−𝜆2)𝑡 − 1

𝜆2 − 𝜆1
=
𝐸(𝜆1) − 𝐸(𝜆2)

𝜆2 − 𝜆1
 

 

(1.104) 

Defining 𝐸(𝜆1, 𝜆2) as (1.104), the above calculations can be summarized as follows: 

 
𝐸(𝜆1, 𝜆2) = 𝐸(𝜆2)∫

𝐸(𝜆1)

𝐸(𝜆2)
𝑑𝑡

𝑡

0

=
𝐸(𝜆1) − 𝐸(𝜆2)

𝜆2 − 𝜆1
 

 

(1.105) 

For the next step, it is necessary to carry out the following integral: 

 
∫ ∫ 𝑒−(𝜆2−𝜆3)𝑡2 ∙ 𝑒−(𝜆1−𝜆2)𝑡1

𝑡2

0

𝑑𝑡1𝑑𝑡2 
𝑡

0

= ∫ 𝑒𝜆3𝑡 ∙
𝑒−𝜆1𝑡 − 𝑒−𝜆2𝑡

𝜆2 − 𝜆1
𝑑𝑡

𝑡

0

 

= ∫
𝐸(𝜆1, 𝜆2)

𝐸(𝜆3)
𝑑𝑡

𝑡

0

=
𝑒−(𝜆1−𝜆3)𝑡 − 1

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)
−

𝑒−(𝜆2−𝜆3)𝑡 − 1

(𝜆2 − 𝜆1)(𝜆3 − 𝜆2)
 

 

Therefore: 

𝐸(𝜆1, 𝜆2, 𝜆3) =  𝑒
−𝜆3𝑡∫ ∫ 𝑒−(𝜆2−𝜆3)𝑡2 ∙ 𝑒−(𝜆1−𝜆2)𝑡1

𝑡2

0

𝑑𝑡1𝑑𝑡2 
𝑡

0

 

= 𝐸(𝜆3)∫
𝐸(𝜆1, 𝜆2)

𝐸(𝜆3)
𝑑𝑡

𝑡

0

=
𝐸(𝜆1) − 𝐸(𝜆3)

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)
−

𝐸(𝜆2) − 𝐸(𝜆3)

(𝜆2 − 𝜆1)(𝜆3 − 𝜆2)
 

Again, the above calculations can be summarized as: 
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𝐸(𝜆1, 𝜆2, 𝜆3) = 𝐸(𝜆3)∫

𝐸(𝜆1, 𝜆2)

𝐸(𝜆3)
𝑑𝑡

𝑡

0

=
𝐸(𝜆1, 𝜆3)

(𝜆3 − 𝜆1)
−
𝐸(𝜆2. 𝜆3)

(𝜆3 − 𝜆2)
 

(1.106) 

After several algebraic manipulations it is possible to show that: 

 𝐸(𝜆1, 𝜆3)

(𝜆3 − 𝜆1)
−
𝐸(𝜆2. 𝜆3)

(𝜆3 − 𝜆2)
=
𝐸(𝜆1, 𝜆2)

(𝜆2 − 𝜆1)
−
𝐸(𝜆2, 𝜆3)

(𝜆3 − 𝜆2)
 

 

(1.107) 

In this way: 

 
𝐸(𝜆1, 𝜆2, 𝜆3) = 𝐸(𝜆3)∫

𝐸(𝜆1, 𝜆2)

𝐸(𝜆3)
𝑑𝑡

𝑡

0

=
𝐸(𝜆1, 𝜆2)

(𝜆2 − 𝜆1)⏟      
(1.105)

−
𝐸(𝜆2, 𝜆3)

(𝜆3 − 𝜆2)
 

 

(1.108) 

In the last equation the term given by equation (1.105) has been underlined, in order to show 

that it is only necessary to compute 𝐸(𝜆2, 𝜆3). 

Following this reasoning it is possible to show (Hamawi, 1971): 

 
(𝜆1, 𝜆2, … , 𝜆𝑖, 𝜆𝑖+1) = 𝐸(𝜆𝑖+1)∫

𝐸(𝜆1, 𝜆2, … , 𝜆𝑖−1, 𝜆𝑖)

𝐸(𝜆𝑖+1)

𝑡

0

𝑑𝑡 

=
𝐸(𝜆1, 𝜆2, … , 𝜆𝑖−1, 𝜆𝑖) − 𝐸(𝜆2, … , 𝜆𝑖+1)

𝜆𝑖+1 − 𝜆𝑖
 

 

(1.109) 

Such recursive equations are very useful to reduce the number of calculations, because they 

identified the repeated operations in the integral (1.102), and therefore the numbers of steps 

is smaller.  

1.7.6 Final considerations of the recursive formulas. 
 

One of the contributions in the present thesis is the development of recursive formulas, which 

are equivalent (but not identical) to those proposed by Hamawi. In order to show this 

procedure, it is necessary to begin with the Bateman solution (1.24), for the case 𝑛 = 2: 

 
𝑋2(𝑡) = 𝑋1(0)𝜆1 [

𝑒−𝜆1𝑡

𝜆2 − 𝜆1
+
𝑒−𝜆2𝑡

𝜆1 − 𝜆2
]   

(1.110) 

 

When such equation is used in a code, it is convenient to store the following terms: 

 
𝛼1 =

𝑒−𝜆1𝑡

𝜆2 − 𝜆1
, 𝛼2 =

𝑒−𝜆2𝑡

𝜆1 − 𝜆2
   

(1.111) 

 

Then, for 𝑛 = 3, the Bateman equation for 𝑋3(𝑡) is given by: 

 
𝑋1(0)𝜆1𝜆2 [

𝑒−𝜆1𝑡

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)
+

𝑒−𝜆2𝑡

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)
+

𝑒−𝜆3𝑡

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)
]   

(1.112) 

 

For this case, it is only necessary to calculate the following values: 
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𝛽1 =

1

𝜆3 − 𝜆1
,   𝛽2 =

1

𝜆3 − 𝜆2
, 𝛾(3) = 𝑒−𝜆3𝑡 

(1.113) 

 

Then, to compute (1.112), it is possible to use (1.111) and carry out the following operations: 

     𝛼1 ∙ 𝛽1 + 𝛼2 ∙ 𝛽2 + 𝛾
(3) ∙ 𝛽1 ∙ 𝛽2 

 
(1.114) 

Clearly (1.114) is equal to (1.112). Now, for the term 𝑛 = 4 , it is necessary to define the 

following values: 

         𝛼1
(2)
← 𝛼1 ∙ 𝛽1,     𝛼2

(2)
← 𝛼2 ∙ 𝛽2,    𝛼3

(2)
← 𝛾1 ∙ 𝛽1 ∙ 𝛽2 

 

(1.115) 

As well as the following calculations: 

 
𝛽1
(2)
=

1

𝜆4 − 𝜆1
,   𝛽2

(2)
=

1

𝜆4 − 𝜆2
, 𝛽3

(2)
=

1

𝜆4 − 𝜆3
,   𝛾(4) = 𝑒−𝜆4𝑡 

(1.116) 

 

Using the last terms, the Bateman’s equation for 𝑛 = 4 is equal to: 

   𝛼1
(2)
∙ 𝛽1
(2) + 𝛼2

(2) ∙ 𝛽2
(2) + 𝛼3

(2) ∙ 𝛽3
(2) − 𝛽1

(2) ∙  𝛽2
(2) ∙ 𝛽3

(2) ∙ 𝛾 
 

(1.117) 

This procedure can be generalized through the following equation: 

 

𝑋𝑛(𝑡) = 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

 [∑𝛼𝑖
(𝑛−2)𝛽𝑖

(𝑛−2)

𝑛−1

𝑖=1

+∏𝛽𝑗
(𝑛−2)

𝑛−1

𝑗=1

𝛾(𝑛)]  𝑛 ≥ 3 

 

 
(1.118) 

Where: 

 

𝛼𝑖
(𝑛)
=

{
 
 

 
 𝛼𝑖

(𝑛−1)
∙ 𝛽𝑖
(𝑛−1)

𝑖 < 𝑛

(−1)𝑛+1𝛾(𝑛)∏𝛽𝑗

𝑛−1

𝑗=1

𝑖 = 𝑛
   

 

 
(1.119) 

In computational terms, the recursive formulas require to store a very large amount of data, but 

the number of calculations decrease. For example, for the case when 𝑛 = 4, with the recursive 

formula it is only necessary to carry three division given in (1.116), four multiplications and 

one sum given in (1.117), one exponential evaluation, 𝛾(4), and six stored operations. 

Whereas with the standard Bateman solution without recursive operations (1.24) it is 

necessary to perform four exponential evaluations, twelve multiplications, four sums, and 

twelve divisions.  To end this section, it is necessary to mention that Hamawi’s work was 

reconsidered by Robert E. Miles in 1981 (Miles, 1981), who implemented a similar recursive 

formula in order to avoid singularities. Such work will be discussed in detail in Section 5. Finally, 

the topic of recursive formulas continues being studied, and in recent years Kai Huang (Huang 

et. al, 2015) and his colleagues proposed a novel formula that depends only on the original chain 

less the last isotope, nevertheless the study of recursive formulas will be part of future research.  
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1.8 Two important theorems. 
 

There are two important theorems that will be used later in the present thesis. One of them is 

related to a relationship that appears in several problems, and the other one is related to a 

property of symmetry. Both theorems are discussed in the present section. 

1.8.1 Reduction Theorem. 
  

The Reduction Theorem states that: 

 
∏

1

𝑑𝑗 − 𝑑𝑛

𝑛

𝑗=1,𝑗≠𝑛

+∑ ∏
1

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

𝑛−1

𝑖=1

= 0 

 

 
(1.120) 

Where all the numbers 𝑑1, 𝑑2, … , 𝑑𝑛  are different. Such theorem is very useful, because it 

reduces a sum of terms, expressing it as a single product. It is necessary to apply (1.120) to 

express in a symmetric way the Bateman equation. An example will be analyzed in order to 

show the application. It will assume the solution of 𝑋3(𝑡) using the Bateman equation, and 

starting from it, the solution of 𝑋4(𝑡) will be computed. If the forward method is used: 

 
𝑋4(𝑡) = 𝑒

−𝜆4𝑡𝜆3  ∫ 𝑋3(𝑡)𝑒
𝜆4𝑡𝑑𝑡

𝑡

0

= 𝑋1(0)𝜆1𝜆2𝜆3𝑒
−𝜆4𝑡 

×∫ [
𝑒−(𝜆1−𝜆4)𝑡

(𝜆3 − 𝜆1)(𝜆2 − 𝜆1)
+

𝑒−(𝜆2−𝜆4)𝑡

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)
+

𝑒−(𝜆3−𝜆4)𝑡

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)

𝑡

0

] 𝑑𝑡  

 

 
(1.121) 

The last integral is equal to: 

𝑒−(𝜆1−𝜆4)𝑡 − 1

(𝜆3 − 𝜆1)(𝜆2 − 𝜆1)(𝜆4 − 𝜆1)
+

𝑒−(𝜆2−𝜆4)𝑡 − 1

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)(𝜆4 − 𝜆2)
+

𝑒−(𝜆3−𝜆4)𝑡 − 1

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)(𝜆4 − 𝜆3)
 

 
=∑ ∏

𝑒−(𝜆𝑖−𝜆4)𝑡

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

3

𝑖=1

−∑∏
1

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

3

𝑗=1
𝑗≠𝑖

 

 

 
(1.122) 

The second term of the last expression is equal to: 

=
1

(𝜆3 − 𝜆1)(𝜆2 − 𝜆1)(𝜆4 − 𝜆1)
+

1

(𝜆1 − 𝜆2)(𝜆3 − 𝜆2)(𝜆4 − 𝜆2)
+

1

(𝜆1 − 𝜆3)(𝜆2 − 𝜆3)(𝜆4 − 𝜆3)
 

After many algebraic manipulations, such expression is equal to: 

 
−

1

(𝜆1 − 𝜆4)(𝜆2 − 𝜆4)(𝜆3 − 𝜆4)
 

 

(1.123) 

Nevertheless, instead of carrying out such manipulations it is possible to use (1.120), with 𝑛 =

4, from which: 
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∑ ∏

1

𝜆𝑗 − 𝜆𝑖

4

𝑗=1,𝑗≠𝑖

3

𝑖=1

= − ∏
1

𝜆𝑗 − 𝜆4

4

𝑗=1,𝑗≠4

 

 

 
(1.124) 

Replacing the last expression in (1.122), it follows that: 

∑ ∏
𝑒−(𝜆𝑖−𝜆4)𝑡

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

3

𝑖=1

−∑∏
1

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

3

𝑗=1
𝑗≠𝑖

=∑ ∏
𝑒−(𝜆𝑖−𝜆4)𝑡

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

3

𝑖=1

+ ∏
1

𝜆𝑗 − 𝜆4

4

𝑗=1,𝑗≠4

 

And, if again the last expression is replaced in (1.121): 

 

𝑋4(𝑡) = 𝑋1(0)𝜆1𝜆2𝜆3𝑒
−𝜆4𝑡

{
 
 

 
 

∑ ∏
𝑒−(𝜆𝑖−𝜆4)𝑡

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

3

𝑖=1

+ ∏
1

𝜆𝑗 − 𝜆4

4

𝑗=1,𝑗≠4

 

}
 
 

 
 

  

 

 
(1.125) 

= 𝑋1(0)𝜆1𝜆2𝜆3

{
 
 

 
 

∑ ∏
𝑒−𝜆𝑖𝑡

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

3

𝑖=1

+ ∏
𝑒−𝜆4

𝜆𝑗 − 𝜆4

4

𝑗=1,𝑗≠4

}
 
 

 
 

 

Finally, it is possible to reduce the term inside the curvy brackets under the same index 𝑖 , 

extending it to 4: 

 
𝑋4(𝑡) = 𝑋1(0)𝜆1𝜆2𝜆3∑ ∏

𝑒−(𝜆𝑖−𝜆4)𝑡

𝜆𝑗 − 𝜆𝑖

4

𝑗=1
𝑗≠𝑖

4

𝑖=1

  

 

 
(1.126) 

Which is the same solution that can be obtained through the Bateman Equation. The importance 

of the above analysis is related to the useful of the Reduction Theorem, which allowed to 

simplify a sum of fractions and expressed it as a single term. This property will be fundamental 

to developments related with cyclic chains, which will be discussed in Chapter 5.  

1.8.2 Lagrange Interpolation. 
 

It is possible to make a comparison between the interpolation polynomial in the Lagrange form 

and the Bateman solution, which is very useful to prove equation (1.120). At our best 

knowledge, the first authors who provided such proof were Slodička and Balážová (Slodička 

and Balážová, 2010). The Lagrange’s interpolation polynomial for a set of data is given by: 

(𝜆1, 𝑓1), (𝜆2, 𝑓2),… , (𝜆𝑛, 𝑓𝑛) 

is equal to (Burden and Faires, 2011): 

 
𝐿(𝑥) =∑𝑓𝑖

𝑛

𝑖=1

∏
(𝑥 − 𝜆𝑗)

(𝜆𝑖 − 𝜆𝑗)

𝑛

𝑗=1
𝑗≠𝑖

 
 
(1.127) 
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Considering the last equation, it is possible to define the following function: 

 
𝐵(𝑥, 𝑡) =∑𝑓𝑖(𝑡)

𝑛

𝑖=1

∏
(𝑥 − 𝜆𝑗)

(𝜆𝑖 − 𝜆𝑗)

𝑛

𝑗=1
𝑗≠𝑖

= 𝐿(𝑥, 𝑡)           
 
(1.128) 

With: 

 
  𝑓𝑖(𝑡) =∏𝜆𝑘

𝑛−1

𝑘=1

𝑒−𝜆𝑖𝑡∏
1

𝜆𝑗

𝑛

𝑗=1
𝑗≠𝑖

 

 

 
(1.129) 

Clearly, 𝐵(0, 𝑡) is equal to the Bateman equation defined in (1.24). In other words, the Bateman 

equation can be related to a Lagrange’s interpolation polynomial valuated in 𝑥 = 0, and whose 

coefficients are defined in (1.129).  In order to proof the Reduction Theorem given in (1.120), 

it is necessary to build the Lagrange’s interpolation polynomial of the following points: 

 (𝜆1, 𝑔1), (𝜆2, 𝑔2),… , (𝜆𝑛, 𝑔𝑛) 
 

(1.130) 

Then, the values 𝑔1, 𝑔2, … , 𝑔𝑛 will be built using the following function: 

 
𝑔𝑖 = 𝑔(𝜆𝑖),   with    𝑔(𝑥) = 𝑥 ∙∏

1

𝜆𝑗

𝑛

𝑗=1

 

 

(1.131) 

The Lagrange’s interpolation polynomial has a property of uniqueness, which means that it is 

the only polynomial, with a degree < 𝑛, who fulfills that: 𝐿(𝜆1) = 𝑔1, 𝐿(𝜆2) = 𝑔2, … , 𝐿(𝜆𝑛) = 𝑔𝑛 

(Burden and Faires, 2011). Therefore, the Lagrange’s interpolation polynomial, built with the 

conditions (1.130) and (1.131), must to be equal to the function 𝑔(𝑥).   Using (1.127) and 

(1.130) and (1.131): 

 
𝐿1(𝑥) =∑𝑔𝑖

𝑛

𝑖=1

∏
(𝑥 − 𝜆𝑗)

(𝜆𝑖 − 𝜆𝑗)

𝑛

𝑗=1
𝑗≠𝑖

=∑∏
𝜆𝑖
𝜆𝑗

𝑛

𝑗=1

𝑛

𝑖=1

∏
(𝑥 − 𝜆𝑗)

(𝜆𝑖 − 𝜆𝑗)

𝑛

𝑗=1
𝑗≠𝑖

 
 
(1.132) 

At 𝑥 = 0: 

𝐿1(0) =∑∏
𝜆𝑖
𝜆𝑗

𝑛

𝑗=1

𝑛

𝑖=1

∏
(0− 𝜆𝑗)

(𝜆𝑖 − 𝜆𝑗)

𝑛

𝑗=1
𝑗≠𝑖

=∑∏
1

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

Then, due to the uniqueness discussed before: 𝐿1(0) = 𝑔(0) = 0. Therefore: 

𝐿1(0) =∑∏
1

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

= 0 

Finally, the last sum can be expresses as: 
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∑∏
1

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

= ∑∏
1

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

+∏
1

(𝜆𝑗 − 𝜆𝑛)

𝑛

𝑗=1
𝑗≠𝑛

 

And finally: 

∑∏
1

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

+∏
1

(𝜆𝑗 − 𝜆𝑛)

𝑛

𝑗=1
𝑗≠𝑛

= 0 

Which is equal to the proposition (1.120). Therefore, the Reduction Theorem is proved.  

1.8.3 The symmetry property. 

 

It is possible to define a symmetric function of 𝑛 arguments, as a function whose result or value 

does not depend on the order of such arguments (Bartle and Sherpert, 2010). In Section 1.7.4 

the symmetry property was discussed through the following equation: 

 𝑀0(𝛽1, 𝛽2, … , 𝛽𝑖, … , 𝛽𝑗, … , 𝛽𝑛) = 𝑀0(𝛽1, 𝛽2, … , 𝛽𝑗, … , 𝛽𝑖, … , 𝛽𝑛) 

 

(1.133) 

Where it is clearly shown that the function 𝑀0 has the same value, whatever the order of its 

arguments. Such property also appears in some part of the Bateman Equation. Considering 

equation (1.24): 

 
𝑋𝑛 =∏𝜆𝑘

𝑛−1

𝑘=1

∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑖𝑡
𝑛

𝑖=1

=∏𝜆𝑘

𝑛−1

𝑘=1

 𝐹(𝜆1, 𝜆2, … , 𝜆𝑛) 
 
(1.134) 

Where the function: 

 
𝐹(𝜆1, 𝜆2, … , 𝜆𝑛) =∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑖𝑡
𝑛

𝑖=1

  
 
(1.135) 

Is symmetric in all these arguments. In other words: 

 𝐹(𝜆1, 𝜆2, … , 𝜆𝑖, … , 𝜆𝑗, … 𝜆𝑛) = 𝐹(𝜆1, 𝜆2, … , 𝜆𝑗, … , 𝜆𝑖, … 𝜆𝑛)  (1.136) 
 

This part of the Bateman equation was widely study by the authors Shlyakhter (Shlyakhter, 

1983) and Vukadin (Vukadin, 1991), (Vukadin, 1998). In fact, the function (1.135) were called 

“depletion functions”, and it is possible to propose recursive formulas for them, and in the same 

way in which the moment functions, described in Section 1.7.4, avoid round errors. This 

property will be very useful in Chapter 4, where several properties of a superposition process 

will be discussed.  

1.9 A more general solution of the balance equations. 
 

One of the most important conditions in the Bateman solution is related to the lambda 

coefficients, expressed in (1.18), where it was assumed the following identity  
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 1

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
=∑

𝑎𝑖
𝑠 + 𝜆𝑖

𝑛

𝑖=1

 
 
(1.137) 

Where the coefficients 𝑎𝑖  can be computed as:  

 
𝑎𝑖 = [

(𝑠 + 𝜆𝑖)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
]
𝑠=−𝜆𝑖

 
(1.138) 

 

Both equations only have sense if all the lambda coefficients are different. Nevertheless, in 

several burnup problems this condition is not fulfilled, and it is possible that more than one 

lambda will be equal. Of course, there are several physical implications of such cases, which will 

be discussed in Chapter 4, because the solution of the structures, where this situation occurs, 

has several issues related with the execution time and the numerical precision. In the present 

section a more general solution will be developed, using the Laplace transform.  

1.9.1 Decomposition in partial fractions. 
 

The most direct way to obtain a general solution is using a more general partial decomposition 

when there are repeated roots in the denominator. This is a well-studied topic in disciplines 

like Pharmacokinetics (Popovíc, 1999), Dynamic Systems (Cochin and Cadwallender, 1997), 

Signal and Systems (Boyd, 1993), among others. Firstly, it will be considered the following 

rational function: 

𝐴(𝑠) =
𝑃(𝑠)

𝐷(𝑠)
 

where 𝑃(𝑠) = 1, and 𝐷(𝑠) = (𝑠 + 𝜆𝑟)
𝑛𝐾(𝑠), being 𝐾(𝑠) a polynomial whose roots are different 

from 𝑠 = −𝜆𝑟 . Then, it is possible to assume that 𝐴(𝑠)  can be expresses as (Cochin and 

Cadwallender, 1997): 

 
𝐴(𝑠) =

1

(𝑠 + 𝜆𝑟)
𝑛𝐾(𝑠)

=
𝐴1

(𝑠 + 𝜆𝑟)
+

𝐴2
(𝑠 + 𝜆𝑟)

2
+⋯+

𝐴𝑛
(𝑠 + 𝜆𝑟)

𝑛
+
𝐴𝑘(𝑠)

𝐾(𝑠)
 

 

(1.139) 

Where 𝐴𝑘(𝑠)/𝐾(𝑠)  is a partial decomposition that does not depend on the root −𝜆𝑟 , and 

𝐴1, 𝐴2, … , 𝐴𝑛 are constants. To find 𝐴𝑛 it is possible to multiply that expression by (𝑠 + 𝜆𝑟)
𝑛: 

 
𝐴(𝑠)(𝑠 + 𝜆𝑟)

𝑛 = 𝐴1(𝑠 + 𝜆𝑟)
𝑛−1 +⋯+ 𝐴𝑛 +

𝐴𝑘(𝑠)

𝐾(𝑠)
(𝑠 + 𝜆𝑟)

𝑛 

 

(1.140) 

 

Therefore: 

 𝐴𝑛 = lim
𝑠→−𝜆𝑟

𝐴(𝑠)(𝑠 + 𝜆𝑟)
𝑛  

 

(1.141) 

To find 𝐴𝑛−1, it is possible to derivate (1.140): 

𝑑

𝑑𝑠
𝐴(𝑠)(𝑠 + 𝜆𝑟)

𝑛 = (𝑛 − 1)𝐴1(𝑠 + 𝜆𝑟)
𝑛−2 + (𝑛 − 2)𝐴2(𝑠 + 𝜆𝑟)

𝑛−3 
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+2(𝑠 + 𝜆𝑟)𝐴𝑛−2 + 𝐴𝑛−1 + (𝑠 + 𝜆𝑟)
𝑛
𝑑

𝑑𝑡
(
𝐴𝑘(𝑠)

𝐾(𝑠)
) + 𝑛(𝑠 + 𝜆𝑟)

𝑛−1
𝐴𝑘(𝑠)

𝐾(𝑠)
 

Through the derivation process the term 𝐴1 in (1.140) disappears, and clearly: 

lim
𝑠→−𝜆𝑟

𝑑

𝑑𝑠
𝐴(𝑠)(𝑠 + 𝜆𝑟)

𝑛 = 𝐴𝑛−1 

Following such reasoning: 

 
𝐴𝑛−𝑘 =

1

𝑘!
lim
𝑠→−𝜆𝑟

𝑑𝑘

𝑑𝑠𝑘
[𝐴(𝑠)(𝑠 + 𝜆𝑟)

𝑛] 

 

(1.142) 

Considering a more general function: 

 
𝐴(𝑠) =

𝑃(𝑠)

(𝑠 + 𝜆1)
𝑘1(𝑠 + 𝜆2)

𝑘2 …(𝑠 + 𝜆𝑛)
𝑘𝑛

 

 

(1.143) 

From the above discussion, it is clear that (1.143) can be expressed as: 

 𝐴𝑘1,𝑘1
(𝑠 + 𝜆1)

𝑘1
+

𝐴𝑘1,𝑘1−1
(𝑠 + 𝜆1)

𝑘1−1
+⋯+

𝐴𝑘1,1
(𝑠 + 𝜆1)

+
𝐴𝑘2,𝑘2

(𝑠 + 𝜆2)
𝑘2
+⋯+

𝐴𝑘2,1

(𝑠 + 𝜆2)
 

+⋯+
𝐴𝑘𝑛,𝑘𝑛

(𝑠 + 𝜆𝑛)
𝑘𝑛
+

𝐴𝑘𝑛,𝑘𝑛−1
(𝑠 + 𝜆𝑛)

𝑘𝑛−1
+⋯+

𝐴𝑘𝑛,1

(𝑠 + 𝜆𝑛)
 

 

 
 
 
(1.144) 

= ∑∑
𝐴𝑘𝑢,𝑘𝑢,𝑞
(𝑠 + 𝜆𝑢)

𝑢

𝑘𝑢

𝑞=1

𝑛

𝑢=1

 

Where: 

 
𝐴𝑘𝑖,𝑘𝑖−𝑗 =

1

𝑗!
lim
𝑠→−𝜆𝑖

𝑑𝑗

𝑑𝑠𝑗
[𝐴(𝑠)(𝑠 + 𝜆𝑖)

𝑛] 

 

(1.145) 

1.9.2 General solution.  
 

A linear chain with  𝑛 different isotopes will be considered, each one appearing in the structure 

several times given by the numbers 𝑘1, 𝑘2, … , 𝑘𝑛, respectively, and with the lambda coefficients 

denoted by 𝜆1, 𝜆2, … , 𝜆𝑛. Repeating similar steps from (1.12) to (1.15) it follows: 

 

 

�̃�𝑛 = 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∑
𝐴𝑘𝑢,𝑘𝑢,𝑞
(𝑠 + 𝜆𝑢)

𝑢

𝑘𝑢

𝑞=1

𝑛

𝑢=1

 

 

(1.146) 

Considering the inverse Laplace transform of (1.146), it follows: 
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𝑋𝑛 = ℒ
−1{�̃�𝑛} = 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∑𝐴𝑘𝑢,𝑘𝑢,𝑞ℒ
−1 {

1

(𝑠 + 𝜆𝑢)
𝑢}

𝑘𝑢

𝑞=1

𝑛

𝑢=1

 

 

 
(1.147) 

Using that: 

 
ℒ−1 {

1

(𝑠 + 𝜆𝑢)
𝑢} =

𝑒−𝜆𝑢𝑡𝑡𝑢−1

(𝑢 − 1)!
 

 

 
(1.148) 

Therefore, the Bateman solution to the general case is equal to: 

 

𝑋𝑛 = ℒ
−1{�̃�𝑛} = 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∑𝐴𝑘𝑢,𝑘𝑢,𝑞
𝑒−𝜆𝑢𝑡𝑡𝑢−1

(𝑢 − 1)!

𝑘𝑢

𝑞=1

𝑛

𝑢=1

 

 

 
(1.149) 

1.9.3 Final considerations of the general Bateman solution. 

 

As it can be noticed from the previous section, the development of the modified Bateman 

solution, that deals with repeated elements, is a straightforward task using Laplace transform.  

At our best knowledge, the first author who published a general solution was Michael J. 

Newman, who followed the research line of Clayton (Clayton et. al., 1961), and published the 

exact solution of the s-process or slow neutron capture process (Newman, 1978). In his work, 

Newman developed a very similar expression to (1.149) using the same procedure: the Laplace 

method. The only difference between his equation and the one developed in the past section is 

that the removal coefficients only considered capture cross sections in his work. 

Nevertheless, after Newman, about 15 different works who contains general solutions have 

been published. These works do not necessary use the Laplace Inversion Method, and they 

belong to a wide range of disciplines, from astrophysics to transport theory, including nuclear 

engineering. 

This is a very interesting fact, because some authors developed their own solutions practically 

ignoring the previous works, and it seems that some of them did not know about the 

publications of authors that belonged to other disciplines. Nevertheless, this situation did not 

prevent that their solutions were obtained in many ingenious and original ways.  

About a third part of the developed work in the present thesis is related to the general solutions, 

because one of the most important contributions consist of developing a Symbolical 

Computational Algorithm who implements one of such solution to a burnup code.  

Therefore, the discussion about the general solutions among other topics, will be cover in detail 

in Chapter 5.  

1.10 Conclusions of the Chapter 1. 
 

In the present chapter, the fundamentals of the Bateman Equation were discussed. Through a 

detailed review of the literature, it was possible to conclude that Harry Bateman neither 

proposed the balance equations nor was the first who solve it, even when several authors make 
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this affirmation in the open literature. Instead, in the present chapter was concluded that his 

main contribution was related with the development of the Laplace method to solve differential 

equations.  

In terms of the balance equation, in the present chapter the backward and the forward method 

were discussed. For the first methodology it was possible to transform a recursive formula, to 

a general one, which represents an important step in the analysis of the equations, because 

starting from a given solution it is possible to find others. 

In addition, in the present chapter several interpretations and applications of the forward 

method were analyzed. As it will be discussed in Chapter 5, such methodology is the core of the 

symbolical algorithm developed in the present thesis.  

Finally, through the Laplace method developed by Bateman it was possible to find a general 

solution, which admits the case with repeated lambda constants. Such solution was obtained in 

a straightforward way, which becomes very interesting because it was the first solution to be 

published, but there at least 15 others reported in literature. The last fact can only be explained 

considering that several authors, who developed their formulas, ignored the work of other 

authors, or maybe they want to show another procedure to obtain them.  

The general solution described in the present chapter, as long with the main theorems and 

properties discussed here, represents the main results who will be used in the rest of the thesis. 
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Chapter 2. Branching Ratios and 

Fission Yields. 
 

 

 

 

Among the nuclear data that is used in burnup and activation problems, the branching ratios 

and the fission yields deserve a special discussion, because during the research related with the 

present thesis some issues emerged, which represented an important challenge to the 

development of the code Szilard. 

The present chapter covers the most important topics related with these nuclear parameters, 

from the way in which they can be found in nuclear data libraries, until the way in which it can 

be implemented. Additionally, this chapter also contains a formal analysis about the yields in 

terms of the topology of the decay and transmutation networks, which is an important 

contribution to the state of the art. 

2.1 Branching ratios. 
 

As it was discussed in the past chapter, the Bateman’s equation was used to model successive 

transformations originated by radioactive decay. Originally, there was not a full understanding 

about the radioactive decay process and, therefore, the lambda constants that were used 

represent the total decay constants. This implies that such system does not consider the 

possibility that the isotopes have more than one decay mode, or that they could undergo other 

reactions as the fission. Today it is known that the isotopes can have several decay modes, each 

one characterized by a specific decay constant. 

Certainly, Rutherford identified in the study of the Thorium emanations, that some isotopes 

emitted several types of radioactivity (Rutherford, 1904). In fact, he described three types of 

reactions, 𝛼, 𝛽 and 𝛾, for the stage that he named as “second change”, which was discussed in 

Section 1.2.2. 

Nowadays it is known that such stage was the isotope Bi212 , for which: 

 

Bi212 𝑟
→{

Tl208 , 𝑟 = 𝛼

Po212 , 𝑟 = 𝛽

Bi*,212 𝑟 = 𝛾

 

 

 
(2.1) 

 

Therefore, it is clear that Rutherford discovered the possibility of several types of decay. 

Nevertheless, this was not included in the formulation of the mass balance (1.6). Considering 
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that the different decays process are independent events, it is possible to define the total 

lambda constant for a given isotope as: 

 𝜆𝑖 =∑𝜆𝑖
(𝑔)

𝑔

 

  

(2.2) 

Where the 𝜆𝑖
(𝑔)

 is the lambda constant of the isotope 𝑖 related with the process or decay mode 

𝑔 . As it will be discussed later in this chapter, the equation (2.2) can be deduced from 

probabilistic considerations. Since there is a uniqueness between the reaction that an isotope 

undergoes and the product of such reaction, then it is possible to use the following notation for 

𝜆𝑖
(𝑔)

: 

 𝜆𝑖
(𝑔)
= 𝜆𝑖,𝑗 

  

(2.3) 

Where again the sub index 𝑖 denotes the isotope that is decaying, and the sub index 𝑗 is the 

product of such reaction. Clearly the relationship between (2.2) and (2.3) is given by: 

      𝜆𝑖,𝑗 = 𝑏𝑖,𝑗𝜆𝑖 (2.4) 

   
Where the constant 𝑏𝑖,𝑗 is known as the branching ratio, i.e., the fraction of decays of the isotope 

𝑖 that produces the isotope 𝑗. In order to provide generality to the balance equation given in 

(1.6), it is necessary to include these branching ratios, which can be made as follows: 

 

{
  
 

  
 
𝑑𝑋1
𝑑𝑡

= −𝜆1𝑋1

𝑑𝑋2
𝑑𝑡

= 𝑏1,2𝜆1𝑋1 − 𝜆2𝑋2
… …

𝑑𝑋𝑛
𝑑𝑡

= 𝑏𝑛−1,𝑛𝜆𝑛−1𝑋𝑛−1 − 𝜆𝑛𝑋𝑛

   

 

 
 
 
(2.5) 

Following similar steps as in the case of (1.24), it is possible to show that the Bateman equation 

for a linear chain, who consider the branching ratios, is equal to: 

 
𝑋𝑛 = 𝑋1(0)∏𝑏𝑘,𝑘+1𝜆𝑘

𝑛−1

𝑘=1

∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑖𝑡
𝑛

𝑖=1

 
 
(2.6) 

2.2 Branching ratios and the ENDF/B-VII.1 Library. 
 

As with other parameters, it is possible to consult the branching ratios in several libraries of 

nuclear data. In the present work the ENDF/B-VII.1 library was used. At the date in which the 

present thesis is written there is a new actualization of such library, which was published in 

2018: the ENDF/B-VIII.0. Nevertheless, the study of the branching ratios was cover in the early 

stages of the thesis work, when such library had not yet been published, and therefore some of 

the following conclusions related with missed data and other issues are referring only to 

ENDF/B-VII.1. In terms of the format, both versions of the library share the same structure. 
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2.2.1 Structure of the file  
 

The ENDF/B-VII.1 can be downloaded from the web site of the National Nuclear Data Center3 

as a file with extension .gz. There is a folder named “decay” inside such file, who contains 3821 

text files with an extension “.endf”. Each file has an identification name given by the following 

format: 

 dec⏟
1

-⏟
2

092⏟
3

_⏟
4

U⏟
5

_⏟
6

235⏟
7

.endf (2.7) 

   

Where 1  is the identifier of the “decay” sub library, 2 , 4  and 6  are separators, 3  is the 

atomic number, 5  is the symbol’s element, and 7  is the mass number. Clearly, through the 

names of the text files it is possible to build a list of the isotopes, their atomic and mass number, 

and their symbols. Among the decay information that is contained in each text-file, it is possible 

to find the following lines: 

 Parent half life:
Decay mode:

 
(2.8) 

   
The information about the half-life is showed after the first line, and the type of decay is given 

after the second one. Figure 2.1 contains two examples of these structure for two files 

corresponding to the U235  and the metastable Pm133  isotopes.  

For the half-life information and the decay modes, the ENDF format uses a set of capital letters 

and acronyms that are listed in Table 2.1 and Table 2.2 respectively. 

For isotopes that have more than one decay modes, each type is listed following by the 

branching ratio expressing as a percentage value. Figure 2.1 shows that for the 

metastable Pm133  isotope there are two decay modes: EC (electronic capture), and IT (isomeric 

transition), each of them with a branching ratio of 50%. 

It is worth mentioning that some half-lives are given in energy units of electron-volts instead of 

time unities, for example for the H4  isotope the ENDF reports a half-life of 4.6 MeV. For such 

cases it is possible to convert the values to units of time through the following equation 

(Duderstadt, 1974): 

 
Γ =

ℎ𝜆

2𝜋
 

 

(2.9) 

   
Where ℎ is the Planck’s constant and 𝜆 is the decay constant. For some isotopes the half-life is 

give as an upper bound, as it can be observed in Figure 2.1 for the metastable Pm133  isotope. In 

other cases, the value of the half-life is not known and a label of “unknown” or “?” is used 

instead.   

The information described above is fundamental to a burnup code, because it allows to build 

the mass balance equation for the decay reaction. Firstly, it is necessary to build a database with 

such data, after which an algorithm to follow the successive transformation is required.   
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Figure 2. 1. Two examples of the structure of the text files of the sub library of decay for the 

lines given in (2.8). The upper one is corresponding to U235  and the lower one is related to 

Pm133 . 

 

Table 2. 1 Capital letters and acronyms that are used by the ENDF/B-VII.1 Library  to express 

the half-lives. 

 

 

 

 

 

Table 2. 2a. Capital letters and acronyms that are used in the ENDF/B-VII.1 library to represent 
the decay modes. 

Decay mode Capital Letter Reaction Decay mode Capital Letter Reaction 

𝛼 A 𝑋 → 𝑍
𝐴 𝑌𝑍−2

𝐴−4  𝛽+ B+ 𝑋 → 𝑍
𝐴 𝑌𝑍−1

𝐴  

𝛽− B- 𝑋 → 𝑍
𝐴 𝑌𝑍+1

𝐴  𝑛 N 𝑋 → 𝑍
𝐴 𝑋𝑍

𝐴−1  

2𝑛 2N 𝑋 → 𝑍
𝐴 𝑋𝑍

𝐴−2  3𝑛 3N 𝑋 → 𝑍
𝐴 𝑋𝑍

𝐴−3  

Electronic 

Capture 
EC 𝑋 → 𝑍

𝐴 𝑌𝑍−1
𝐴  𝑝 P 𝑋 → 𝑍

𝐴 𝑌𝑍−1
𝐴  

 

 

 

 

Symbol Unity or prefix Symbol Unity or prefix 

Y Year M Milli 
D Day U Micro 
H Hour N Nano 
M Minute P Pico 
S Second K Kilo 

EV Electron-volt M Mega 
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Table 2.2b. (Continuation) Capital letters and acronyms that are used in the ENDF/B-VII.1 

Library to represent the decay modes.  

Decay mode Capital Letter Reaction Decay mode Capital Letter  Reaction 

2𝑝 2P 𝑋 → 𝑍
𝐴 𝑌𝑍−2

𝐴  𝛽+ + 𝑛 B+N 𝑋 → 𝑍
𝐴 𝑌𝑍−1

𝐴−1  

𝛽− + 2𝑛 B2N 𝑋 → 𝑍
𝐴 𝑌𝑍−1

𝐴−2  𝛽− + 3𝑛 B3N 𝑋 → 𝑍
𝐴 𝑌𝑍−1

𝐴−3  

𝛽− + 4𝑛 B4N 𝑋 → 𝑍
𝐴 𝑌𝑍−1

𝐴−4  
Isomeric 

transition 
IT 𝑋∗ → 𝑍

𝐴 𝑋𝑍
𝐴  

 

2.2.2 Some issues with the decay data. 
 

A recurrent issue with the decay sub library of the ENDF/B-VII.1 is that the format is not 

uniformly followed for certain text files. 

For example, in some cases a branching ratio is reported even when the isotope has only one 

decay mode, but in other text files this is not the case. Additionally, sometimes the equality 

symbol between the decay mode and the branching ratio is omitted, as well as the colon symbol. 

Besides the blank spaces between the values are not always respected. 

Nevertheless, the most important issues are related with the lack of information. For example, 

the isotopes Si40 , P28 , and K36  have more than one mode of decay, but the text files do not 

contain the corresponding branching ratios. Therefore, it is necessary to complete such 

information from other libraries in order to include them in the solution of a given chain. 

Through the present study, it was found that nearly other 90 isotopes have the same situation 

about lack of information.  

Another interesting issue is related with the following summa: 

 
∑𝑏𝑖,𝑘

𝐾

𝑘=1

= 1  

 

(2.10) 

   
Where 𝑘 is related with 𝑋𝑘, an isotope of a total of 𝐾 isotopes who are produced by the decay 

of 𝑋𝑖 . Clearly (2.10) must to be fulfilled.  

Nevertheless, as some authors affirm, such sum can be greater than 1 for some isotopes. In fact, 

according to Isotalo (Isotalo, 2013), “the sum of branching ratios coming from a single nuclide 

can be greater than one as some reactions…”. , This can be considered as a contradiction, 

because it would imply that the mass balance is not conserved. 

This issue represented a mystery on the first stage of the present research, and it was possible 

to confirm it finding several isotopes in ENDF/B-VII.1 for which this was true. In Table 2.3 30 

examples of this are listed.  However, this is not an error or contradiction. In fact, it is related 

with the way in which the branching rations are computed and the probabilistic nature of some 

reactions.  
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Table 2. 3. Examples of 30 isotopes whose sum of branching ratios is greater than 1, according 
to data obtained from ENDF/B-VII.1. 

Isotope ∑𝑏𝑖,𝑗
𝑗

 Isotope ∑𝑏𝑖,𝑗
𝑗

 Isotope ∑𝑏𝑖,𝑗
𝑗

 Isotope ∑𝑏𝑖,𝑗
𝑗

 

F27  1.77 Ne29  1.219 Na30  1.32 Gd135  1.18 

I110  1.11 Xe113  1.071 Ba114  1.29 B15  1.97 

Dy145  1.5 Er143  2 Lu152  1.15 S43  1.4 

C16  1.99 N22  1.49 P38  1.12 Ca35  1.957 

Cl45  1.24 Ar31  1.69 K49  1.86 Co71  1.026 

Ti39  2 Cr43  1.23 Mn46  1.22 Sn101  1.26 

Zn57  1.65 Ge61  1.8 Sr75  1.052   

Te109  1.09 Cs114  1.09 Sb104  1.08   

 

In order to explain it, the isotope F27  will be analyzed. According to ENDF/B-VII.1, such isotope 

has the following decays with the respective branching ratios: 

        𝛽− =  100%,    𝛽−𝑛 =   77.00%  (2.11) 
 

Clearly the sum is equal to 1.77 or 177%. This does not mean that the mass conservation is not 

valid, instead it means that a beta decay always is presented each time that the F27  isotope 

decays. But, only in the 77% of such decays a neutron is emitted.   

Clearly this is a conditional probability, because the emission of the neutron is a dependent 

event: always that a neutron is emitted, a beta decay is presented. A similar analysis can be 

carried out by all the isotopes whose sum is greater than one. Therefore, this is not an error or 

a contradiction, and it is very important to be considered for a detailed analysis of the decay 

process. Finally, in order to describe the reactions, it follows that the daughters of the isotope 

F27 , the isotopes Ne27  and Ne26  are produced with a 23% and 77%, respectively. 

2.3 The Bateman equation and the neutron flux. 
 

Over the years, and with the discovery of neutron-nuclei reactions, another type of successive 

transformations appeared in addition to the decay process, and therefore it was necessary to 

model them. In 1949 Rubinson (Rubinson, 1949) observed that these reactions can be treated 

by similar balance equations to the radioactive decay's type, with an effective transformation 

constant given by: 

 𝜆𝑖
eff = 𝜆𝑖 + 𝜎𝑖𝜙 

 

(2.12) 

Where 𝜎𝑖  is the microscopic cross section of the nuclide 𝑖 , and 𝜙  is the neutron flux. This 

expression can be extended to consider different reactions of type 𝑚, and multigroup neutron 

fluxes denoted by 𝑔: 
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 𝜆𝑖
eff = 𝜆𝑖 +∑∑𝜙𝑔  𝜎𝑚,𝑖

𝑔

𝑚𝑔

 (2.13) 

If a multigroup methodology is not used, then it is possible to analyze the neutron reaction rates 

in order to define the effective lambda constant. It is possible to write the volumetric  reaction 

rate 𝑚 of nuclide 𝑖, as: 

 𝑅𝑖,𝑚(𝐸) = 𝑋𝑖𝜎𝑖,𝑚(𝐸)𝜙(𝐸) 
 

(2.14) 

Where 𝑋𝑖  is the atomic density of nuclide i. This volumetric reaction rate has its origin in a beam 

of incident neutrons of energy 𝐸. The total volumetric reaction rate can be obtained through 

the integral over all the neutron energies (Isotalo, 2013): 

𝑅𝑖,𝑚 = ∫ 𝑅𝑖,𝑚(𝐸)𝑑𝐸
∞

0

= 𝑋𝑖∫ 𝜎𝑖,𝑚(𝐸)𝜙(𝐸)𝑑𝐸
∞

0

 

 
= 𝑋𝑖 ( 

∫ 𝜎𝑖,𝑚(𝐸)𝜙(𝐸)𝑑𝐸
∞

0

∫ 𝜙(𝐸)𝑑𝐸
∞

0

)
⏟              

𝜎𝑖,𝑚

(∫ 𝜎𝑖,𝑚(𝐸)𝜙(𝐸)𝑑𝐸
∞

0

)
⏟              

𝜙ℎ

 

 

(2.15) 

= 𝑋𝑖𝜎𝑖,𝑘
ℎ 𝜙ℎ 

In the last expression 𝜙ℎ  and 𝜎𝑖,𝑚
ℎ  are the homogenized one group-flux and one-group cross 

section. Using this definition, it is possible to write the effective removal lambda coefficient as: 

 𝜆𝑖
eff = 𝜆𝑖 + 𝜙ℎ∑𝜎𝑖,𝑘

ℎ

𝑘

 (2.16) 

Starting with the definitions provided in (2.13) and (2.17) it is possible to define a new 

branching ratio who includes the neutron-nucleus reactions, and therefore to generalize the 

Bateman equation. Nevertheless, firstly it is necessary to briefly discuss about the fission 

process and the concept of yield. 

2.3.1 The fission process and the yield concept. 
 

Essentially, the fission can be defined as the division or split of a heavy nucleus in two or more 

lighter nuclei, in which energy and neutrons are produced. This process was discovered a few 

years after the discovery of the neutron, and the term has its origin in biology, where it is used 

to call a division of an organelle o entity into small parts or organelles (Corcho Orrit, 2013).  

There are two ways in which the fission occurs: the induced way and the spontaneous one. In 

the first case it is necessary a neutron who interacts with the nucleus, while the second one can 

occur in absence of it, because it happens as result of the nucleons interactions inside the 

nucleus.  

The isotopes that are produced as result of this process are called “fission products”. In the case 

of the induced fission, such products depend on the energy of the incident neutron, and they 

are not always the same. Instead, they follow a statistical distribution, who is unique according 

to the isotope that undergoes fission. In other words, for a given heavy isotope and a given 
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neutron incident energy, there is a unique distribution in which the fission products appear. A 

percentual ratio is used to describe the amount of fission product that appear in each fission, 

which can be defined as: 

 

𝛾𝑖,𝑗(𝐸) = 𝑁(𝑋𝑖 , 𝑋𝑗, 𝐸) (∑𝑁(𝑋𝑖 , 𝑋𝑗)

𝑗

)

−1

 

 

(2.17) 

Where 𝑁(𝑋𝑖 , 𝑋𝑗) is the average number of isotopes 𝑋𝑗 that are produced as a fission of 𝑋𝑖  for a 

statistical sample who was measured at the energy 𝐸, and the summa is carry out considering 

all the fission products that can be generated as result of the fission of 𝑋𝑖 . The number defined 

in (2.17) is called as the fission yield, and it is analogue to the branch ratio defined in the Section 

2.1.  

2.3.2 The generalization of the branching ratio. 
 

Using (2.17), it is possible to define the effective branching ratio, for a multigroup formulation, 

by the following expression (Isotalo, 2013): 

 
𝑏𝑖,𝑗
eff =

𝑏𝑖,𝑗𝜆𝑖 +𝜔

𝜆𝑖
eff

, 𝜔 =∑∑𝑓𝑖,𝑖+1,𝑚
𝑔

𝜙𝑔 𝜎𝑚,𝑖
𝑔

𝑚𝑔

 
(2.18) 

Where: 

 
𝑓𝑖,𝑖+1,𝑚
𝑔

= {
𝛾𝑖,𝑖+1,𝑚
𝑔

for fission proccess

1 for other neutron-nucleus reaction
 

 

 
(2.19) 

In this case,  𝛾𝑖,𝑖+1,𝑚
𝑔

 is the fission yield of the isotope 𝑖 , related with the production of the 

isotope 𝑗 and the energy group 𝑔. For the case of one group formulation, such generalization is 

given as: 

 
𝑏𝑖,𝑗
eff =

𝑏𝑖,𝑗𝜆𝑖 +𝜔

𝜆𝑖
eff

, 𝜔 = 𝜙ℎ∑𝑓𝑖,𝑗,𝑚
ℎ 𝜎𝑖,𝑚

ℎ

𝑚

 
(2.20) 

Where 𝜎𝑖,𝑘
ℎ  and 𝜙ℎ were defined in equation (2.15) and 𝑓𝑖,𝑗,𝑚

ℎ  is defined as: 

 

𝑓𝑖,𝑗,𝑚
𝑔

= {

∫ 𝛾𝑖,𝑗(𝐸)𝜙(𝐸)𝑑𝐸
∞

0

∫ 𝜙(𝐸)𝑑𝐸
∞

0

for fission proccess

1 for other neutron-nucleus reaction

 

 

 
(2.21) 

From this point forward, we will call the term 𝜆𝑖
eff  as the effective removal coefficient. An 

interesting fact about the definitions provided in (2.18) and (2.20) is that, for practical cases, 

only one term in the numerator of the branching ratio is different. In other words: 

 

𝑏𝑖,𝑗
eff =

{
 
 

 
 𝑏𝑖,𝑗𝜆𝑖

𝜆𝑖
eff

for decay reactions

𝜔

𝜆𝑖
eff

for neutron-nucleus reactions
 

 
(2.22) 
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This is due that the unique scenario where both terms, 𝑏𝑖,𝑗𝜆𝑖 and 𝜔, are different from zero is 

when an isotope 𝑗 can be produced as result of a decay reaction and a neutron-nucleus reaction, 

that occur in the isotope 𝑖. For example, if an isotope 𝑋𝑖  undergoes decay neutron emission as 

well as the reaction (𝑛, 2𝑛), in both cases the following equation is valid: 

𝑋𝑖𝑍
𝐴 → 𝑋𝑗𝑍

𝐴−1  

And, therefore, the numerator of 𝑏𝑖,𝑗
eff for this example is equal to 𝑏𝑖,𝑗𝜆𝑖 +𝜔 and (2.22) cannot 

be used. Nevertheless, as it was mentioned before, for practical cases only, one of these terms 

is different from zero. Using the elements that were discussed before, the original Bateman’s 

equation (2.6) can be written as: 

 
𝑋𝑛(𝑡) = 𝑋1(0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

𝑛−1

𝑘=1

 ∑𝑒−𝜆𝑖
eff 𝑡  ∏

1

(𝜆𝑗
eff − 𝜆𝑖

eff)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 
 
(2.23) 

This last equation will be called the modified Bateman’s equation. 

2.4 Decay and transmutation networks. 
 

An important consequence of the branching ratios and the fission yields is related to the 

topology and structure of the decay chains. Until this moment it was considered the following 

structure of successive transformation: 

 𝑋1
𝑟1,2
→ 𝑋2

𝑟2,3
→ …

𝑟𝑛−1,𝑛
→   𝑋𝑛 (2.24) 

 
Which was called in Section 1.4 as a linear chain. Nevertheless, since isotopes can undergo 

several transmutations, it is more probable to find structure as the one that is showed in Figure 

2.2, which are called transmutation and decay networks. The modified Bateman’s equation can 

be used to solve these networks, but it is necessary to apply a procedure called linearization, 

which essentially search all the possible paths in a network, which will be the linear chains of 

it.  Such search is equivalent to a procedure of tree traversal in data structures (Cormen et. al., 

2003). Figure 2.3 shows the set of linear chains that are produced after a linearization process 

of the network described in Figure 2.2. 

In Chapter 3 the linearization process will be discussed in detail, but for the moment it is 

necessary to consider that, at first, almost all the decay and transmutation networks can be 

reduced to a set of linear chains, which can be solved using the modified Bateman equation.  

Nevertheless, it is necessary to carry out a mass balance of these linear chains, and considering 

some issues related with the structure of the networks, and the definition of two types of fission 

yields. Such topics will be discussed in the following sections. 

2.4.1 Mass balance of a Decay and Transmutation network. 
 

Once a network is reduced to a set of linear chains, the total concentration of a given isotope 

can be obtained through the solution of each of these linear chains and using a mass balance 

analysis.  
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   Figure 2. 2. An example of a transmutation and decay network. 

 

 

 

 

 

 

Figure 2. 3. Set of linear chains generated by a linearization process applied to the network of 
Figure 2.2. 

It is possible to explain such mass balance analysis using the example given in Figure 2.2 and 

Figure 2.3, and considering that only the first isotope of the decay and transmutation network 

has an initial concentration different from zero. Firstly, the set of linear chains of Figure 2.3 can 

be expressed as the following matrix: 

 

[
 
 
 
𝑋1 𝑋2 𝑋3 𝑋4 𝑋5
𝑋1 𝑋2 𝑋3 𝑋4 𝑋6
𝑋1 𝑋7 𝑋8
𝑋1 𝑋7 𝑋9 𝑋10 𝑋11 𝑋12]

 
 
 

  

 

 
(2.25) 
 

Analyzing this matrix from the left to the right and from the top to the bottom, a set of indexes 

will be assigned in order to determine which concentration will be computed for the total 

concentration of the isotopes. In first place, the index given by “1” will be assigned to the first 

time that an isotope is found when the matrix is analyzed, as it was described before. In (2.26) 

such assignation is showed.  

The concentration of each isotope, whose index is equal to 1, will be considered for the final 

concentration, because it represents the elements of the original structure, before the 

linearization process was carried out. 
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[

1 1 1 1 1
𝑋1 𝑋2 𝑋3 𝑋4 1

𝑋1 1 1
𝑋1 𝑋7 1 1 1 1

]  

 

 
(2.26) 
 

As can be noted, the second row of the matrix has only one “1” index, because the segment given 

by 𝑋1 → 𝑋2 → 𝑋3 → 𝑋4, is repeated in the first and the second row. Therefore, it has already 

been considered for the final concentration, because these elements have an index “1”, which 

was assigned in the first row. In other words, this is a segment that is repeated due to the 

linearization of the following segment of the network: 

 
𝑋1 → 𝑋2 → 𝑋3 → 𝑋4 → {

𝑋5
𝑋6

 

 

 
(2.27) 
 

The index “2” will be assigned to the isotopes who appear more than one time, but whose 

previous elements are not the same or they are not in the same order. In (2.25) this case is not 

presented, but it can be exemplified if the following linear chain is considered to be part of the 

set given in Figure 2.3: 

𝑋1 → 𝑋13 → 𝑋14 → 𝑋5 

For this case, the isotope 𝑋5 would appear for the second time. Nevertheless, the concentration 

for 𝑋5 need to be considered, because this isotope was produced through a different succession 

of isotopes. In other words, this case can be represented by the following structure: 

 𝑋1 → 𝑋2 → 𝑋3 → 𝑋4
𝑋1 → 𝑋13 → 𝑋14

} → 𝑋5 

 

 
(2.28) 
 

Finally, the index “3” will be assigned in the other cases. Using these rules, the final matrix of 

indexes will be equal to: 

 

[

1 1 1 1 1
3 3 3 3 1
3 1 1
3 3 1 1 1 1

]  

 

 
(2.29) 
 

Only the elements who have an index of “1” or “2” need to be solved through the Bateman 

equation. 

2.4.2 Mass balance as a function of segments. 
 

The rules described in the above section can be generalized in a mathematical way using 

functions of segments.  The function 𝐿(𝑋𝑖 , 𝑘) can be defined as: 

 𝐿(𝑋𝑖 , 𝐴) = Sequence of isotopes before 𝑋𝑖 for a given linear chain 𝐴 
 

(2.30) 
 

Clearly, each sequence that will be produced by 𝐿(𝑋𝑖 , 𝐴) will be a segment of the original linear 

chain 𝐴. For example, if 𝐴 = 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑖−1 → 𝑋𝑖 → 𝑋𝑖+1 → ⋯ → 𝑋𝑛, then: 

𝐿(𝑋𝑖 , 𝐴) = 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑖−1 
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Now, a second function 𝜒 will be defined as: 

 
𝜒(𝑋𝑖 , 𝐴) = {

3 if 𝐿(𝑋𝑖 , 𝐴) ∈ 𝒦

2 if 𝐿(𝑋𝑖 , 𝐴) ∉ 𝒦
 

 

(2.31) 
 

Where the set 𝒦 will be empty at the beginning of the analysis, but then it will store segments 

𝐿(𝑋𝑖, 𝐴) based in the result of the function 𝜒. Particularly, for a given isotope 𝑋𝑖  in a linear chain 

𝐴: 

 
{
store 𝐿(𝑋𝑖, 𝐴) in 𝒦 𝜒(𝑋𝑖, 𝐴) = 2 

nothing 𝜒(𝑋𝑖, 𝐴) = 3
 

 

(2.32) 
 

Clearly, through (2.30)-(2.32) it is possible to assign the index “2” to the elements of a matrix.  

2.4.3 Superposition process. 
 

Until this moment it was considered that only the first isotope in a linear chain or in a decay 

and transmutation network has an initial concentration different from zero. Clearly this 

situation is very rare in practical burnup problems, and therefore it is necessary to consider the 

more general case.  

It is possible to start from equation (1.13), and to ignore the initial conditions given in (1.14), 

considering the general case where all the isotopes have an initial concentration different from 

zero. In such case the resultant analogue matrix to (1.15) will be: 

 

{
 
 
 
 

 
 
 
 �̃�1 =

𝑋1(0)

𝑠 + 𝜆1

�̃�2 =
𝜆1𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)
+
𝑋2(0)

(𝑠 + 𝜆2)

�̃�3 =
𝜆2𝜆1𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)(𝑠 + 𝜆3)
+

𝜆2𝑋2(0)

(𝑠 + 𝜆2)(𝑠 + 𝜆3)
+
𝑋3(0)

(𝑠 + 𝜆3)
⋮ ⋮

�̃�𝑛
𝜆1𝜆2…𝜆𝑛−1𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
+

𝜆2…𝜆𝑛−1𝑋2(0)

(𝑠 + 𝜆2)(𝑠 + 𝜆3)… (𝑠 + 𝜆𝑛)
+ ⋯+

𝑋𝑛(0)

(𝑠 + 𝜆𝑛)

  

 
 

 

It is possible to note from the last system, that the equation for �̃�𝑛 can be interpreted as the sum 

or superposition of the equations of the following linear chains: 

𝜆1𝜆2…𝜆𝑛−1𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)⏟                  
Solution of:

𝑋1→𝑋2→𝑋3→⋯→𝑋𝑛 

+
𝜆2…𝜆𝑛−1𝑋2(0)

(𝑠 + 𝜆2)(𝑠 + 𝜆3)… (𝑠 + 𝜆𝑛)⏟                  
Solution of:

𝑋2→𝑋3→𝑋4→⋯→𝑋𝑛

+⋯+
𝑋𝑛(0)

(𝑠 + 𝜆𝑛)⏟    
Solution of

𝑋𝑛

 

Where in each case only the first isotope of the linear chains has an initial concentration 

different from zero. In other words, the general solution for 𝑋𝑛 can be interpreted as the sum 

of the solutions of the following set of linear chains, with their respective initial conditions: 
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{
  
 

  
 
𝑋1 → 𝑋2 → 𝑋3 → ⋯ → 𝑋𝑛 𝑋1 = 𝑋1(0), 𝑋𝑖 = 0,   𝑖 ≠ 1

𝑋2 → 𝑋3 → ⋯ → 𝑋𝑛 𝑋2 = 𝑋2(0) 𝑋𝑖 = 0,   𝑖 ≠ 2

𝑋3 → ⋯ → 𝑋𝑛 𝑋3 = 𝑋3(0) 𝑋𝑖 = 0,   𝑖 ≠ 3

⋮ ⋮ ⋮
𝑋𝑛 𝑋𝑛 = 𝑋𝑛(0) 𝑋𝑖 = 0,   𝑖 ≠ 𝑛

   

 

 
 
(2.33) 

 

From (2.33) it is possible to note that the original linear chain is resized in each case. Therefore, 

instead of using a more general equation, it is possible to continue using the equation (2.23) 

and to resize the linear chain following the scheme given in (2.33). This procedure is known as 

superposition (Isotalo, 2013), and the final concentration of the isotopes is the sum of the 

concentration found in all the superposition scenarios. 

It is worth mentioning that certain codes, like Helios (Studsvik, 2008), do not use the 

superposition process, and instead they use a more general formulation of the system (1.15). 

Nevertheless, in the Szilard code, the author of the present thesis uses the methodology 

described in this section, because the development of such code was based, mainly, in the 

Isotalo’s description of the linear chain method. Finally, in Chapter 4 a similar superposition 

process will be developed for a special structure known as cyclic chains, which is based on the 

symmetry functions described in the past chapter.  

2.5 A detailed study of the yields. 
 

At first glance it seems that the definition of the yields given in Section 2.3.1 is sufficient to 

include such parameters in the Bateman equation, but nothing is further from reality. Firstly, 

there are two types of fission yields in the ENDF/B-VII.1 library, and it is necessary to determine 

which of these will be used in a burnup problem. Secondly, the type of yield that is used strongly 

depends on the isobaric structures of the decay and transmutation network. Finally, the 

assignation of a given type of yield is related with the capture reactions that are included in a 

given structure of isotopes. All these topics will be discussed in the following sections.  

2.5.1. A brief analysis of the fission yields’ graphs.  
 

In order to understand some of the properties of the yields, it is necessary to analyze their 

graphs and the symmetry contained in them. As a first example, the yield distribution of the 

fission products issued in the fission of the U235  due to an incident neutron of an energy of 

0.0253 eV is showed in Figure 2.4. Most of the graphs of the fission yields have a two camel 

humps shape, as can be observed in that figure.  

This shape is the result of the lack of symmetry in terms of the mass number of the fission 

products. In other words, when a fission occurs it is more probable that the two fission products 

have different mass number 𝐴, which implies that the original nuclei does not split in two exact 

half parts. On the other hand, the peaks or maximum values in the Figure 2.4 are related with 

the nuclear magic numbers, which represented mass numbers of nuclei whose nucleons are 

arranged into complete shells, and therefore they have greater stability. 
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Figure 2. 4. Fission yield as a function of the mass number for 𝑈235  isotope, for an incident 
neutron energy of 0.0253 eV. The image was obtained from the web site wwwndc.jaea.go.jp. 

According to this theory, the mass numbers given by 2, 8, 20, 28, 50, 82 y 126 represented 

stabled nucleons configuration, and it is more probable to find fission reactions close to these 

numbers.  A similar example of the symmetry can be found in the graph of the isotope Fm255 , 

which is showed in Figure 2.5. In such image it is possible to note that the two camel humps 

shape almost has disappeared, and the fission products with a major probability are quasi-

symmetric in terms of their mass numbers. In other words, the symmetry is greater. 

It is possible to define the fission distribution yield function as 𝑌(𝑋, 𝐸, 𝐴), where 𝑋 is related to 

the heavy isotope that undergoes fission, 𝐸 is the energy of the incident neutron, and 𝐴 is the 

mass number of the fission product. Therefore, the symmetry property can be expressed as, for 

a given mass number 𝐴𝑖 , there is another mass number 𝐴𝑗 for which 

 𝑌(𝑋, 𝐸, 𝐴1) =   𝑌(𝑋, 𝐸, 𝐴2) (2.34) 
 

In other words, the distribution function 𝑌 is not injective. Another interesting fact related with 

the symmetry is the following distribution sum: 

 
∑ 𝑌(𝑋, 𝐸, 𝐴)

180

𝐴=60

 

 

(2.35) 

Whose result is equal to 2. This can be strange at first, because it seems that the sum must be 

equal to 1, since the fission yields are fractions. Nevertheless, it is necessary to remember that 

in a fission process two isotopes are produced, and the mass numbers of such products will 

have the same fission yield. In other words, two mass values 𝐴𝑖  and 𝐴𝑗  are characterized 

through a same value of yield. Therefore, when the summa is carried out, the yield value is 

multiplied by two.  
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Figure 2. 5. Fission yield as a function of the mass number for the 𝐹𝑚255  isotope, for an incident 
neutron energy of 0.0253 eV. The image was obtained from the web site wwwndc.jaea.go.jp. 

2.5.2 Cumulative and independent yield. 
 

As it is known, fission products usually have a higher number of neutrons than protons, and 

therefore they are unstable, undergoing a 𝛽− decay. This process is not instantaneous, and it 

takes a given time that can be related to the half-life of the fission product. Due to this behavior, 

it is possible to find isobaric structures in fission products networks, which have the following 

form: 

 ↘↓

𝑋𝑍
𝐴

↘↓

𝑋𝑍+1
𝐴

↘↓
⋮
↘↓

𝑋𝑍+𝑛
𝐴

↘↓

 

 
 
 
 
(2.36) 

 

In (2.36), the diagonal arrows indicate that the isotopes are produced by fission and the vertical 

arrows represent the 𝛽− decay. As was mentioned before, these structures are not generated 

immediately after the fission process, because it is necessary that a given time 𝑡 elapses, in 

order that the beta decay undergoes. Clearly, all the isotopes 𝑋𝑍
𝐴 , 𝑋𝑍+1

𝐴 ,…, 𝑋𝑍+𝑛
𝐴  are produced as 

result of the fission process. One of them have their origin in the fission itself in a direct way, 

but they also have contributions due to the beta decay from other isotopes that were generated 

also by fission. Therefore, if someone measure the number of isotopes that appear after a time 

𝑡 after the fission process, then it will be necessary to consider all the elements that belong to 

(2.36). 
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This is the idea behind the definitions of the direct fission yield, and the cumulative fission yield. 

The first kind is related to the amount of the fission products that appear directly by the fission 

process. The other kind involves both contribution: one due to the fission and another one due 

to the beta decay of the isobaric structures. The main advantage of these definitions is related 

to the reduction of the decay and transmutation networks. For example, for an isotope 𝑋𝑍+𝑖
𝐴  

that belongs to the structure (2.36), it is possible to make the following reduction: 

 

↘

Direct
Yield

↓

   𝑋𝑍
𝐴

↘

Direct
Yield

↓
⋮

↘

Direct
Yield
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𝐴

↘
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↓

𝑋𝑍+𝑖+1
𝐴

↘

Direct
Yield

↓
⋮

↘

Direct
Yield

↓
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𝐴

↘

Direct
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↓

      

Reduction
Through
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→            
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Direct
Yield

↓

↘

Direct
Yield

↓

↘

Direct
Yield
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𝐴
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Direct
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𝐴
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⋮
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𝐴
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↘
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𝑋𝑍+𝑖
𝐴

↘

Direct
Yield

↓

𝑋𝑍+𝑖+1
𝐴
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Direct
Yield

↓
⋮

↘

Direct
Yield

↓

𝑋𝑍+𝑛
𝐴

↘

Direct
Yield

↓

 

 
 
 
 
 
 
 
 
 
 
 
 
 
(2.37) 

 

In (2.37) the isobaric chain given by the sequence of isotopes 𝑋𝑍
𝐴 , 𝑋𝑍+1

𝐴 , … , 𝑋𝑍+𝑖−1
𝐴  was 

compacted or reduced, through a cumulative yield, which represented all the process and 

contributions to the isotope 𝑋𝑍+𝑖
𝐴 .  Since not all the isotopes are important in several burnup 

problems, the cumulative yield allows reducing the isobaric chains, and therefore it is very 

useful to decrease the involved time in the solution of the Bateman equation. 

Strictly speaking the cumulative yield is a function of time, because the production of a given 

isotope in an isobaric chain strongly depends on the time that has passed after the fission 
process, therefore it is necessary a more detailed study of this parameter, which will be carried 

out in the following section. It is possible to obtain some conclusions from the above discussion. 

Firstly: 

𝛾cumulative ≥ 𝛾direct 
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On the other hand, there are some isotopes whose direct yield is equal to zero, while the 

cumulative yield is not. This means that such isotope is not directly produced by fission, but 

belongs to an isobaric chain that has its origin by the fission process. For example, in the 

following scheme, the isotopes denoted by 𝑌𝑍+𝑖
𝐴  and 𝑌𝑍+𝑛

𝐴  will have a direct yield equal to zero, 

but a cumulative value different from it: 

 

↘

Direct
Yield

↓

   𝑋𝑍
𝐴

↘

Direct
Yield

↓
⋮
↓

𝑌𝑍+𝑖
𝐴

↘

Direct
Yield

↓

𝑋𝑍+𝑖+1
𝐴

↘

Direct
Yield

↓
⋮
↓

𝑌𝑍+𝑛
𝐴

↘

Direct
Yield

↓

 

 
 
 
 
 
 
 
 
 
 
(2.38) 

 

In other words, these isotopes do not have a diagonal arrow in (2.38). An important question 

that can be answered from the above discussion is: In which case the cumulative and the direct 

yields have the same value? It is possible to solve this question through the following equation: 

 𝛾cumulative(𝑡) = 𝛾direct + 𝐶(𝑡) 
 

(2.39) 

Where 𝐶(𝑡) is a contribution function that represents the yellow block in the scheme showed 

in (2.37). Clearly 𝛾cumulative(𝑡) = 𝛾direct  only when 𝐶(𝑡) = 0 . Particularly, this happens for 

isotopes that do not have ancestors through beta decay, i.e. isotopes whose yellow block does 

not have elements. In Table 2.4 there are listed eight fission products of the U235 , for an energy 

of 0.0253 eV, whose cumulative yield is equal to the direct yield.  

2.5.2 Formal definitions. 
 

The definitions provided by Mills for the direct (also called independent) yield is (Mills, 1995): 

“…the number of atoms of an isotope X∗Z
A  produced directly from one fission, but after the 

emission of prompt neutrons, but before any radioactive decay and hence the emission of 

delayed neutrons”. 

From the definition of cumulative yield, it is possible to define: 
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Table 2. 4. Some examples of isotopes for which the cumulative yield is very close to the indirect 
yield. The percentual error was computed considering as base the direct yield. 

 

 

 

 

 

 

 

The cumulative yield is the total number of atoms of that an isotope produces over all time after 

one fission. There are three cases that depends on the value of the half-life of the isotopes: 

Case 1: “If the isotope is stable, the cumulative yield is the total number of atoms of that isotope 

remaining per fission after all precursor decays (ignoring the effects of other nuclear reactions 

e.g. neutron capture).” 

Case 2: “Similarly, for an isotope with a much longer half-life than any of its precursors, the 

cumulative yield is nearly equal to the amount of it produced at a time short compared to its 

half-life, but long compared to those of its precursors.” 

Case 3: “For the rest of the isotopes, some atoms will have decayed before all have been 

produced, so that at no time there will actually be a cumulative yield for atoms per fission 

present.” 

For the first case, the cumulative yield can be found as: 

 𝛾 = lim
𝑡→∞

𝛾cumulative(𝑡) = 𝛾direct + lim
𝑡→∞

𝐶(𝑡) 

 

(2.40) 

For practical cases, the condition 𝑡 → ∞ can be interpreted as a time 𝑡 , from which all the 

precursors have been decayed. For the second case, the cumulative yield can be analyzed in a 

similar way in which a transient equilibrium problem is solved. In such case an isotope with a 

longer half-life 𝑇𝑛  is produced, with 𝑇𝑛 > 𝑇𝑖, 1 ≤ 𝑖 < 𝑛, and where 𝑇1, 𝑇2, … , 𝑇𝑛−1 are the half-

lives of the precursors of 𝑇𝑛. In order to use this cumulative yield, it is necessary to consider a 

time 𝑡, which must to fulfill: 

  𝑇𝑖 ≪ 𝑡 ≪ 𝑇𝑛 
 

(2.41) 

Clearly this second case is similar, but not equal to the first case. Since 𝑡 ≪ 𝑇1, it is possible to 

consider as a good approximation that for a given time interval the isotope 𝑋𝑛 remains stable. 

Nevertheless, due to the first part of the inequality, 𝑇𝑖 ≪ 𝑡, it is possible to consider that most 
of the precursors have been decayed. Clearly the use of cumulative yield depends on the 

analysis of (2.40) and (2.41). Finally, the third part of the definition provided by Mills suggests 

that if neither (2.40) and (2.41) are valid, then it is not possible to use the cumulative yield.  

Isotope Direct Yield Cumulative 
Yield 

Percentual Error 

Sb-135 1.45527x10−3 1.46028x10−3 0.343084888 
In-131 6.49993x10−5 6.54135x10−5 0.633202626 
In-133 1.71443x10−6 1.71446x10−6 0.001749822 
Te-136 1.36706x10−2 1.32087x10−2 3.496937624 
Sn-134 1.77403x10−4 1.774150E-04 0.006763802 
Cu-79 1.31738x10−8 1.317380E-08 0 
Zn-77 2.36950x10−5 2.525490E-05 6.17662315 
Kr-95 7.20629x10−5 7.208490E-05 0.030519568 
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From the above discussion it is possible to conclude that the assignation of the yield’s type is a 

very hard task, because it requires a study of the isobaric chains as well as an analysis of the 

half-lives of the isotopes that belong to them. It is possible to summarize it using the words of 

Knott and Yamamoto: “… the estimation of the fission yields … is a very complicated task”. 

(Cacuci, 2010). 

2.5.4 The importance of the neutron captures and a practical solution. 
 

Actually, the structure given in (2.36) is not complete, because it only considers beta decay and 

fission process. Therefore, it is also necessary to include the reaction captures, with which the 

final network will be: 
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(2.42) 

According to the definitions provided in Section 2.5.3, the cumulative yield does not consider 

neutron captures, and therefore it cannot be used to reduce (2.52) as in the scheme (2.37). This 

difficulty can be explained through concentration of the isotope 𝑋𝑍+𝑖
𝐴 . Firstly, the cumulative 

fission yield can simulate the direct fission yield and the contribution due to the precursors or 

ancestors of it.  

Nevertheless, since the cumulative yield does not consider capture reactions, the concentration 

of the precursors of 𝑋𝑍+𝑖
𝐴  are underestimated. For example, for the precursor 𝑋𝑍−𝑖

𝐴 , there are 
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several contributions that are not considered, among which is the contribution due to the 

following linear chains: 

… → 𝑋𝑍+𝑖−1
𝐴−2 → 𝑋𝑍+𝑖−1

𝐴−1 → 𝑋𝑍+𝑖−1
𝐴  

… → 𝑋𝑍+𝑖−2
𝐴−1 → 𝑋𝑍+𝑖−1

𝐴−1 → 𝑋𝑍+𝑖−1
𝐴  

There is a similar case for each of the precursors. Since the cumulative yield simulates the 

contribution to a certain isotope due to its precursors, it is clear that if the concentration of such 

precursors is underestimated, then the final concentration of the isotope will be lower than its 

actual value. Then, the cumulative yield cannot be used to reduce the complete structure. For 

some cases, where the capture reactions of the precursors are not very significative it is 

possible to use the following approximation for the concentration of 𝑋𝑍+𝑖
𝐴 : 
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(2.43) 

In this last structure the precursors of the isotopes 𝑋𝑍+𝑖
𝐴−2 , 𝑋𝑍+𝑖

𝐴−1  and 𝑋𝑍+𝑖
𝐴  were simplified 

through the cumulative yields, and the only capture reactions that are included are those who 

belong to the following linear chain: 

… → 𝑋𝑍+𝑖
𝐴−2 → 𝑋𝑍+𝑖

𝐴−1 → 𝑋𝑍+𝑖
𝐴  
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This is a better approximation instead of using only a cumulative yield for 𝑋𝑍+𝑖
𝐴 , however all the 

relationships denoted by the horizontal arrows in the upper part of (2.43) are ignored, which 

can lead to incorrect outcomes for decay and transmutation networks where the reaction 

capture are significative. As it can be observed, the problem of the yield assignation becomes 

more complex when capture reactions are included.  

It is possible that the most practical solution consists of using only direct or independent yield, 

and avoiding the cumulative one. This implies that it is necessary to use the full decay and 

transmutation networks and not to use simplifications. Even when this procedure is more 

demanding in terms of computational storage and execution time, it solves the problem in a 

straightforward way.  

Additionally, modern codes, including SERPENT (Leppänen et al., 2015), follow this procedure, 

and nowadays it is common to find that some of them include more than 1000 fission products 

in their analysis. 

2.5.5 Extraction of the Fission Yields data from ENDF/B-VII.1 
 

A set of fission and cumulative yields from the WIMS project was used in an early stage of the 

development of the code Szilard (Leszczynski et. al., 2007). Such set corresponds to the decay 

and transmutation network that is used in the package of software that belong to that project. 

Nevertheless, once the difficulties discussed before were identified, it was considered more 

convenient to use the data directly from ENDF/B-VII.1 library.   

As in the case of the branching ratios, the data related to the fission products yield is contained 

in a folder whose name is “nfy” (neutron fission yields). Inside such folder there are 31 data 

files, whose name has the following structure: 

 nfy⏟
1

-⏟
2

092⏟
3

_⏟
4

U⏟
5

_⏟
6

235⏟
7

.endf (2.44) 

   
Except for the element denoted by 1, that represents the header of the neutron fission yields, 

all the other elements have the same meaning that in (2.7). In Table 2.5 the isotopes that are 

contained in the folder are listed. The information of each file has the structure showed in 

Figure 2.6. Each line has 72 characters (including blank spaces) and there are four digits related 

to the type of yield according to the following rule: 

 8454 → direct yield
8559 → cumulative yield

  
(2.45) 

   
Such digits are near to the end of the line. Therefore, the information of a file can be divided in 

two parts in accordance to these numbers. Each of this part, in turn, is divided in 4 segments 

that are related to the energy spectrum, inside of them there are energy identifiers, through 

which it is possible to cluster the information. In Table 2.6 the energy identifiers are listed, and 

one of them is showed in Figure 2.6.  

As in the case of the branching ratios, there is a lack of uniformity in the format for the file 

related to Cf251 . In this case, instead of using the identifier 2.530000-2 for the energy of 

2.53𝑥10−2 eV as in the rest of the isotopes, the identifier 2.520000-2 has been used.  
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Table 2. 5. Isotopes whose information related to the fission product yields is contained in the 

ENDF/B-VII.1 library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 6. Structure of the information for the fission product yields contained in the ENDF/B-

VII.1 library. In the purple rectangle the identifiers for the type of yield are showed: 8454 for 

the direct type and 8459 for the cumulative one. In the red rectangle is showed the identifier 

for the energy of 2.53x10−2 eV. 

 

                  Table 2. 6. Identifiers for the energy that are used in the ENDF/B-VII.1 library. 

 

 

 

 

 

Th227  U236  Pu241  Cm245  

Th229  U237  Pu242  Cm246  

Th232  U238  Am241  Cm248  

Pa231  Np237  Am*242  Cf249  

U232  Np238  Am243  Cf251  

U233  Pu238  Cm242  Es254  

U234  Pu239  Cm243  Fm255  

U235  Pu240  Cm244   

Energy Identifier 

2.53x10−2 eV 2.530000-2 
5x105 eV = 50 keV 5.000000+5 
 1.4x107 eV = 14 MeV 1.400000+7 
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The identifiers for the fission products are given as a float number of 7 digits, which is followed 

by an exponent equal to 4: 

 𝑎𝑧1 . 𝑎𝑧2𝑏𝐴1𝑏𝐴2𝑏𝐴300 + 4 (2.46) 

The first two digits, 𝑎𝑧1and 𝑎𝑧2are related to the atomic number, while the digits 𝑏𝐴1 , 𝑏𝐴2  and 

𝑏𝐴3  denote the mass number. Afterward, two zeros are added and an exponent +4 is at the end. 

There are three other data after the fission product identifier, which are separated by a blank 

space: the excited state, the value of the yield and finally its uncertainty. As an example, in 

Figure 2.7 is showed the yield information of the Xe133 ∗ and the Xe135  fission products of U235 . 

The information related to these isotopes is the following: 

 Xe133 ∗

5 . 4 1 3 3 0 0 + 4 ZAI identifier
1 .  0 0 0 0 0 0 + 4 Excited state
1 . 8 8 5 8 7 0 − 5 Yield's value
1 . 2 0 6 9 5 0 − 5 Uncertainy

Xe135

5 . 4 1 3 5 0 0 + 4 ZAI identifier
0 .  0 0 0 0 0 0 + 4 Excited state
7 . 8 5 1 2 5 0 − 4 Yield's value
4 . 7 1 0 75 0 − 5 Uncertainy

 

 

(2.47) 

The extraction of these data requires to find the fission product identifier, and then search the 

following three values, with the possibility that this information can be contained in two 

different and consecutives lines. Finally, in order to use the cumulative yield for fission products 

with metastable states, it is necessary to carry out the summa of them. In other words: 

 𝛾cumulative( 𝑋𝑍
𝐴 ) =∑𝛾cumulative( 𝑋

𝑖
𝑍
𝐴

𝑖

)  

 

(2.48) 

Where 𝑖 is the metastable state of the fission product. 

2.6 A numerical approach to the fission product yields. 
 

Based on the analysis of the last section, it is possible to summarize the yield assignation as 

follows: if an isotope is at the beginning of an isobaric chain (i.e. at the beginning of a column of 

Figure 2.36), then it will have a cumulative yield. Also, all the other elements in an isobaric chain 

will have an independent yield. 

There are some important findings when the cumulative yield is interpreted as a factor that 

simulates the contributions related to the elements that were not considered. For example, we 

can suppose that in a complete network we have the following isobaric chain (which in this 

example will be draw in a horizontal form): 

 
𝑋1𝑍
𝐴

↘
→ 𝑋2𝑍+1

𝐴
↘

→ ⋯ → 𝑋𝑖𝑍+𝑖−1
𝐴

↘
→ 𝑋𝑖+1𝑍+𝑖

𝐴
↘

→ ⋯ → 𝑋𝑛𝑍+𝑛−1
𝐴

↘
 

(2.49) 

 

If only the isotopes that appear after 𝑋𝑖  are considered, it is possible to reduce the linear chain 

as follows: 

 
𝑋𝑖𝑍+𝑖−1
𝐴

↘
→ 𝑋𝑖+1𝑍+𝑖

𝐴
↘

→ ⋯ → 𝑋𝑛𝑍+𝑛−1
𝐴

↘
 

 
(2.50) 
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Figure 2. 7. Figure 2.7. Fission yield information of U235 , for the Xe133 ∗
 and the Xe135     fission 

products. The information related to Xe133 ∗
 are enclosed in the blue rectangle, and the 

corresponding to Xe135  in the red one. 

2.6.1 Solution to the complete scheme. 
 

It is possible to simulate, in a numerical way, the scheme given in (2.49), in order to compare it 

with the scheme given in (2.50). Essentially, it is necessary to find the solution of both systems 

and compare them. After a process of linearization of the scheme given in (2.49), it is possible 

to find the following linear chains: 

 Heavy
isotope

fission
→    𝑋1

𝛽−

→ 𝑋2
𝛽−

→ …
𝛽−

→ 𝑋𝑖−1
𝛽−

→ 𝑋𝑖  

 

Heavy
isotope

fission
→    𝑋2

𝛽−

→ 𝑋3
𝛽−

→ …
𝛽−

→ 𝑋𝑖−1
𝛽−

→ 𝑋𝑖−1 

⋮  
 

Heavy
isotope

fission
→    𝑋𝑖−1

𝛽−

→ 𝑋𝑖 

 

  
 
 
 
 
(2.51) 

The heavy isotope will be denoted by 𝐻 with an initial concentration equal to 𝐻(0). Since the 

contribution due to the fission process is investigated, it will be assumed that all the other 

elements in (2.51) have an initial concentration equal to zero. Using the modified Bateman 

equation, it is possible to compute the contribution to 𝑋𝑖 , for a given time 𝑡, due to the first linear 

chain: 

 

𝑋𝑖(𝑡, 𝑋1) =  𝐻(0)𝑏𝐻,𝑋1
eff 𝜆𝐻

eff∏𝑏𝑑,𝑑+1
eff 𝜆𝑑

eff

𝑖−1

𝑑=1
[
 
 
 
 

 ∑ 𝑒−𝜆𝑖
eff𝑡

𝑖

𝑘=0

∏
1

𝜆𝑗
eff − 𝜆𝑘

eff

𝑛

𝑗=0
𝑗≠𝑖 ]

 
 
 
 

 

 

  
 

With 𝜆𝐻
eff = 𝜆0

effand where 𝑏𝑑,𝑑+1
eff  denotes the fraction of atoms of the isotope 𝑋𝑑+1  that are 

generated by the transformation of the atoms of the isotope 𝑋𝑑 . Similarly, the 𝜆𝑑
eff is the effective 

removal coefficient of 𝑋𝑑 . For the general case, with 1 ≤ 𝑝 ≤ 𝑖: 

 

𝑋𝑖(𝑡, 𝑋𝑝) =  𝐻(0)𝑏𝐻,𝑋𝑝
eff 𝜆𝐻

eff∏𝑏𝑑,𝑑+1
eff 𝜆𝑑

eff

𝑖−1

𝑑=𝑝
[
 
 
 
 

 ∑ 𝑒−𝜆𝑖
eff𝑡

𝑖

𝑘=1

∏
1

𝜆𝑗
eff − 𝜆𝑘

eff

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

 

 

  
(2.52) 
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Finally, the concentration of 𝑋𝑖(𝑡) can be found through the following summa: 

 

𝑋𝑖(𝑡) = ∑𝑋𝑖(𝑡, 𝑋𝑝)

𝑝=𝑖

𝑝=1

 

 

  
(2.53) 

It is convenient to express (2.53) as follows: 

𝑋𝑖(𝑡) = ∑ 𝑋𝑖(𝑡, 𝑋𝑝)

𝑝=𝑖−1

𝑝=1

+ 𝑋𝑖(𝑡, 𝑋𝑖) 

 

= ∑ 𝑋𝑖(𝑡, 𝑋𝑝)

𝑝=𝑖−1

𝑝=1

+𝐻(0)𝑏𝐻,𝑋𝑖
eff 𝜆𝐻

eff [
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff
] 

 

  
(2.54) 

The last equation will be called the solution to the complete scheme. 

2.6.2 Comparison between the scheme solutions. 
 

Through the cumulative yield, the solution to the reduced scheme is given by: 

 
𝑋𝑖,cumulative(𝑡) = 𝐻(0)𝑏𝐻,𝑋𝑖,cumulative

eff 𝜆𝐻
eff [
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff
] 

 

  
(2.55) 

Assuming that the concentration given in (2.54) and (2.55) needs to be equal, it is possible to 

set: 

∑ 𝑋𝑖(𝑡, 𝑋𝑝)

𝑝=𝑖−1

𝑝=1

+𝐻(0)𝑏𝐻,𝑋𝑖
eff 𝜆𝐻

eff [
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff
] = 𝐻(0)𝑏𝐻,𝑋𝑖,cumulative

eff 𝜆𝐻
eff [
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff
] 

From which it is possible to write: 

 
𝑏𝐻,𝑋𝑖,cumulative
eff =

∑ 𝑋𝑖(𝑡, 𝑋𝑝)
𝑝=𝑖−1
𝑝=1

𝐻(0)𝜆𝐻
eff [
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff ]

+ 𝑏𝐻,𝑋𝑖
eff  

  
(2.56) 

 

Using the definition given in (2.18), considering one group of energy: 

 𝑏𝐻,𝑋𝑖,cumulative
eff =

𝛾cumulative𝜙𝜎𝑓,𝐻

𝜆𝐻
eff

, 𝑏𝐻,𝑖
eff =

𝛾direct𝜙𝜎𝑓,𝐻

𝜆𝐻
eff

 

Replacing this in (2.56) it follows that: 

 
𝛾cumulative =

∑ 𝑋𝑖(𝑡, 𝑋𝑝)
𝑝=𝑖−1
𝑝=1

𝐻(0)𝜙𝜎𝑓,𝐻 [
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff ]

+ 𝛾direct  
  
(2.57) 
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This last equation is very useful because it allows finding a relationship between the cumulative 

and the direct yield. Additionally, it represents a contribution of the present thesis, because at 

least to the best knowledge of the author, there is a lack of information about the numerical 

analysis of the yields and the relationship between them in terms of the time evolution.  

2.6.3 Some applications of the equation (2.57). 
 

Through equation (2.57) it is possible to express who is the function 𝐶(𝑡) , which was described 

in equation (2.39): 

 
𝐶(𝑡) =

∑ 𝑋𝑖(𝑡, 𝑋𝑝)
𝑝=𝑖−1
𝑝=1

𝐻(0)𝜙𝜎𝑓,𝐻 [
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff ]

 

 

  
(2.58) 

This equation allows answering where the cumulative yield can be applied. Firstly, as it was 

mentioned before, the values of the cumulative yields that are contained in the ENDF/B-VII.1 

library are constant in time. It is possible to explain this situation through the exponential 

functions inside the term ∑ 𝑋𝑖(𝑡, 𝑋𝑝)
𝑝=𝑖−1
𝑝=1 . Clearly the experimental cumulative yields assume 

that: 

 ∑ 𝑋𝑖(𝑡, 𝑋𝑝)
𝑝=𝑖−1
𝑝=1

[
𝑒−𝜆𝑋

eff𝑡 − 𝑒−𝜆𝑖
eff𝑡

𝜆𝑖
eff − 𝜆𝐻

eff ]

≈ constant 

 

  
(2.59) 

The condition (2.58) is very useful to determine when a cumulative yield can be used, because 

through a graphical analysis it will be possible to determine, for different energies, an interval 

of time where the cumulative yield fulfilled it. The study of the mathematical behavior of (2.59) 

can have impact, because even when the modern and future burnup codes will not use 

cumulative yields, it is possible that such data continue being useful to other applications.  

In fact, the cumulative yields are not used exclusively in burnup problems. They have a crucial 

role in heat fission calculations, in waste management, in estimation of gamma and delayed 

neutron emission, and even with nuclear tests (Britt et al., 2010), (Privas et. al., 2016). On the 

other hand, the paradigm’s change about the use of only independent yield is not overnight, and 

it is possible that some codes (not necessary burnup codes) will continue to use cumulative 

yields. Therefore, a good propose to a future work consist on the detailed study of such 

equation.  

2.6.4 Topology of the decay and transmutation network. 
 

There is an important question related to the yields and the fission products: given a set of 

isotopes, does exist a minimal decay and transmutation network that contain them, and whose 

error’s concentration (computed from it) are below certain value 𝜖? 
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In other words, if there is a special interest in a set of isotopes, it could be possible to build a 

minimal decay and transmutation network who contain it (with the possibility of containing 

other more) and whose concentration value will be below to a given value 𝜖? The importance 

behind this question is related to the possibility to compare two different burnup codes, as well 

as to the possibility to optimize the execution time involved in the solution of the Bateman 

equation. If the answer is positive, the following question will be: is this network unique?  

In order to answer this question, it is necessary to study the structure of the decay and 

transmutation network, as well as to carry out a study of all the number of linear chains that 

contributes to the concentration of a given element. This last task can be made through 

combinatorics and analysis of all the different paths that lead to the isotope whose 

concentration is searching. In order to show that procedure, the following structure will be 

considered: 

 
𝑋𝑖𝑍
𝐴 →

↘

↓

𝑋𝑖𝑍
𝐴+1 →

↘

↓

𝑋𝑖𝑍
𝐴+2 →

↘

↓

𝑋𝑖𝑍
𝐴+3 →

↘

↓

𝑋𝑗𝑍+1
𝐴 →

↘

↓

𝑋𝑗𝑍+1
𝐴+1 →

↘

↓

𝑋𝑗𝑍+1
𝐴+2 →

↘

↓

𝑋𝑗𝑍+1
𝐴+3 →

↘

↓

𝑋𝑘𝑍+2
𝐴 →

↘

↓

𝑋𝑘𝑍+2
𝐴+1 →

↘

↓

𝑋𝑘𝑍+2
𝐴+2 →

↘

↓

𝑋𝑘𝑍+2
𝐴+3 →

↘

↓

𝑋𝑙𝑍+3
𝐴 →

↘

↓

𝑋𝑙𝑍+3
𝐴+1 →

↘

↓

𝑋𝑙𝑍+3
𝐴+2 →

↘

↓

𝑋𝑙𝑍+3
𝐴+3 →

↘

↓

 

 

 
 
 
 
(2.60) 

As an example, the number of all the linear chains who contribute to 𝑋𝑙𝑍+3
𝐴+3  will be computed. In 

order words, the isotope 𝑋𝑙𝑍+3
𝐴+3  will be the target, or the final isotope in the paths.  In practical 

burnup problems, it is more probable to find (𝑛, 𝛾), 𝛽−  and 𝛽+  (or EC) reactions than other 

reactions. Even when the neutron reaction (𝑛, 2𝑛)  is important to several heavy nuclide’s 

chains, it is possible to ignore it for the fission products. The same is true for the 𝛼  decay. 

Therefore, each of the isotopes belonging to (2.60) can be interpreted as the end of a route or a 

path, in which it is only possible to move to the right or down. The first movement is related to 

the capture reaction and the second with the beta decay.  

In order to compute the concentration of 𝑋𝑙𝑍+3
𝐴+3 , the combinatoric analysis will begin 

considering only the contribution due to linear chains whose initial element is 𝑋𝑖𝑍
𝐴 . It is possible 

to note that all these linear chains have 3 reactions capture and 3 beta decays, which can be 

corroborate in the following examples: 

 𝑋𝑖
𝑛,𝛾
→ 𝑋𝑖𝑍

𝐴+1
𝑍
𝐴

𝑛,𝛾
→ 𝑋𝑖𝑍

𝐴+2
𝑛,𝛾
→ 𝑋𝑖𝑍

𝐴+3
𝛽−

→ 𝑋𝑗𝑍+1
𝐴+3

𝛽−

→ 𝑋𝑘𝑍+2
𝐴+3

𝛽−

→ 𝑋𝑙𝑍+3
𝐴+3  

 

𝑋𝑖
𝛽−

→ 𝑋𝑗𝑍+1
𝐴

𝑍
𝐴

𝛽−

→ 𝑋𝑘𝑍+2
𝐴

𝛽−

→ 𝑋𝑙𝑍+3
𝐴

𝑛,𝛾
→ 𝑋𝑙𝑍+1

𝐴+1
𝑛,𝛾
→ 𝑋𝑙𝑍+2

𝐴+2
𝑛,𝛾
→ 𝑋𝑙𝑍+3

𝐴+3  

 

𝑋𝑖
𝛽−

→ 𝑋𝑗𝑍+1
𝐴

𝑍
𝐴

𝑛,𝛾
→ 𝑋𝑗𝑍+1

𝐴+1
𝑛,𝛾
→ 𝑋𝑗𝑍+1

𝐴+2
𝑛,𝛾
→ 𝑋𝑗𝑍+1

𝐴+3
𝛽−

→ 𝑋𝑘𝑍+2
𝐴+3

𝛽−

→ 𝑋𝑙𝑍+3
𝐴+3  

 

𝑋𝑖
𝑛,𝛾
→ 𝑋𝑖𝑍

𝐴+1
𝑍
𝐴

𝑛,𝛾
→ 𝑋𝑖𝑍

𝐴+2
𝛽−

→ 𝑋𝑗𝑍+1
𝐴+2

𝛽−

→ 𝑋𝑘𝑍+2
𝐴+2

𝑛,𝛾
→ 𝑋𝑘𝑍+2

𝐴+3
𝛽−

→ 𝑋𝑙𝑍+3
𝐴+3  

 
 
(2.61) 
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The structure given in (2.61) can be expressed in terms of the involved reactions as: 

 𝑛, 𝛾 𝑛, 𝛾 𝑛, 𝛾 𝛽− 𝛽− 𝛽−

𝛽− 𝛽− 𝛽− 𝑛, 𝛾 𝑛, 𝛾 𝑛, 𝛾

𝛽− 𝑛, 𝛾 𝑛, 𝛾 𝑛, 𝛾 𝛽− 𝛽−

𝑛, 𝛾 𝑛, 𝛾 𝛽− 𝛽− 𝑛, 𝛾 𝛽−

 

 

 
 
(2.62) 

From (2.62) it is possible to note that each path consists of three 𝛽− and three (𝑛, 𝛾) reactions. 

In fact, each route or path that begins with 𝑋𝑖𝑍
𝐴  and ends with 𝑋𝑙𝑍+3

𝐴+3 , needs having three beta 

decay and three beta reactions, and clearly it is possible to find the number of linear chains that 

fulfill this condition through permutations with repetitions (Grimaldi, 2003). In other words, 

the number of linear chains is equal to the permutation of 3 elements with repetition in a total 

of six places: 

 6!

3! 3!
= 20 

 

(2.63) 

To generalize this outcome, it is necessary to replace the mass number 𝐴 + 3 and the atomic 

number 𝑍 + 3  for arbitraries 𝐴 + 𝑘  and 𝑍 + 𝑛 . Therefore, the number of linear chains who 

begin with 𝑋𝑍
𝐴  and ends with 𝑋𝑍+𝑛

𝐴+𝑘 , with 1 ≤ 𝑘, 𝑛, there will be at most: 

 (𝑘 + 𝑛)!

𝑘! 𝑛!
    

 

 
(2.64) 

For the second step, it is necessary to solve the problem considering all the possible 

contribution, and not only those who begin with the isotope 𝑋𝑖𝑍
𝐴 . In other words, the original 

problem was to find all the linear chains that ends with a given isotope 𝑋𝑍+𝑛
𝐴+𝑘  and, the above 

discussion only solves the question of what number of linear chains begin with a 𝑋𝑍
𝐴  isotope 

and ends with 𝑋𝑍+𝑛
𝐴+𝑘 .  

Therefore, it is necessary to carry out a second generalization, in which all the possible linear 

chains that ends with 𝑋𝑍+𝑛
𝐴+𝑘  will be considered. In order to carry out this last task it is necessary 

to observe that the decay and transmutation schemes, like the one shown in (2.60), have a 

rectangular shape3. In this rectangle, the size of the width is related to the mass number, and 

the height with the atomic number.  

Due to this rectangular shape, it is possible to locate the isotope whose concentration is desired 

in the right lower corner of a given rectangle, while in the left upper corner will be the initial 

isotope of the largest path that ends with the desired isotope. 

Now, from this initial “giant” rectangle, it is necessary to build the set of all the possible 

rectangles that end with the desired isotope, which can be built removing rows and columns. 

For example, in the scheme (2.65) is showed how a small rectangle is built, where the first 

column and the first row have been removed in (2.60).  

 
3 It is possible that voids or empty spaces exist in the networks. However, the general shape can be 
considered as a rectangle.  



92 
 

 

 

[
 
 
 
 
 
 
 
 𝑋𝑗𝑍+1

𝐴+1 →
↘

↓

𝑋𝑗𝑍+1
𝐴+2 →

↘

↓

𝑋𝑗𝑍+1
𝐴+3 →

↘

↓

𝑋𝑘𝑍+2
𝐴+1 →

↘

↓

𝑋𝑘𝑍+2
𝐴+2 →

↘

↓

𝑋𝑘𝑍+2
𝐴+3 →

↘

↓

𝑋𝑙𝑍+3
𝐴+1 →

↘

↓

𝑋𝑙𝑍+3
𝐴+2 →

↘

↓

𝑋𝑙𝑍+3
𝐴+3 →

↘

↓ ]
 
 
 
 
 
 
 
 

 ,   

[
 
 
 
 
 𝑋𝑘𝑍+2

𝐴+2 →
↘

↓

𝑋𝑘𝑍+2
𝐴+3 →

↘

↓

𝑋𝑙𝑍+3
𝐴+2 →

↘

↓

𝑋𝑙𝑍+3
𝐴+3 →

↘

↓ ]
 
 
 
 
 

 

 

 
 
 
 
(2.65) 

For each of these small rectangles it is necessary to carry out the counting process that was 

described in the step 1, using equation (2.64). For a given “giant” rectangle, with width of 𝑎 

isotopes, and a high of 𝑏 isotopes, the number of possible small rectangles will be 𝑎 × 𝑏 − 1. 

Therefore, in order to obtain the total number of linear chains that have as final element the 

isotope 𝑋𝑍
𝐴 , it is necessary to perform the following sum: 

 
∑ ∑

(𝑗 + 𝑖)!

𝑘! 𝑛!

𝐴

𝑖=𝐴−𝑏

𝑍

𝑗=𝑍−𝑎

− 1 

 

 
(2.66) 

This expression is very useful, because through it an estimated time of computational 

calculation can be computed. In other words, if the mean time related to the solution of a linear 

chain of a path is known, then an approximate time to solve all these linear chains can be 

obtained through a multiplication of (2.66) by such mean time. 

The counting approach to the decay and transmutation networks allows finding the total 

number of linear chains that contribute to a given solution. Nevertheless, the graph approach 

is more powerful because it provides information about the relationship of the elements 

belonging to these structures. In other words, this last approach allows answering the first 

question that was set at the beginning of the present section. 

Under the graph approach, each isotope can represent a vertex or a node, and a reaction (decay 

process or capture) can be viewed as an edge (or link). Particularly, some decay and 

transmutation networks can be treated as tree structures, which is very useful in order to carry 

out the linearization process.  

In her thesis dissertation, Maria Pusa (Pusa, 2013) provided an insightful analysis of the burnup 

matrix through a graph theory approach. Essentially, such analysis can be extended to decay 

and transmutation structures, in order to find the isotopes that are strongly connected, and in 

this way to permute the corresponding burnup matrix. In fact, even when a burnup code does 

not use the linear chain method, and instead it applies a matrix method like CRAM, it is 
necessary to perform a study of the decay and transmutation networks. In this case, such a 

study will allow building the burnup matrix, and as in the case of the Pusa’s study, permuting 

it. Therefore, this study is not limited to the linear chain method. 

Another interesting work related to the topology of the decay and transmutation network was 

developed by Stanisz and his colleagues (Stanisz et. al, 2019), who developed a trajectory 
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period folding, who is very close to the TTA methodology that will be explained in the following 

Chapter.  

At least to the best knowledge of the author of this thesis, the graph and topological approach 

to the decay and transmutation network is a fertile topic, where there are a few studies, and 

where there is the possibility to carry out important contributions. Particularly, this topic will 

be considered as part of future work.  

2.6.5 Uncertainty related to the fission yields products.  
 

An important issue in the development of nuclear reactor codes is the uncertainty analysis. Such 

analysis can be defined as a study of the propagation of the uncertainties related to nuclear data 

(Mills, 2014), and particularly through the different calculations inside the routines of a 

computational code. This analysis is necessary, especially with transport/diffusion couplings, 

and therefore it is convenient to make a brief discussion about such topic related to the fission 

product yields. 

The result of a given calculation of a burnup code is influenced or has a sensitivity to at least 

three sources:  

1) the effects related to the reactor physics calculations involved in the determination 

of the neutron flux, as long with the uncertainties related to the solution of the neutron 

transport equation (in the case of Monte Carlo codes)4,  

2) the effects related to the numerical methods and the computational round errors,  

3) sensitivity due to nuclear data, as well as to the correlations between the 

uncertainties of it.  

A common methodology used to compute the sensitivity terms consist in to repeating a series 

of calculations, varying the value of the nuclear data starting from the best estimate value, and 

to observe the spread of the results. Nevertheless, this procedure does not take into account 

the correlation neither the constraints between the uncertainties of the data. For the 

uncertainties related to cross sections, it is possible to carry out such variations with the 

Variance-Covariance Matrices, through which it is possible to consider the correlations 

between reactions, energies and isotopes (Leray et. al., 2017).  

Unfortunately, in the case of the fission product yields, only the uncertainties are provided in 

the international evaluations, but not the correlations, and therefore it is not possible to apply 

the same procedure. Therefore, there is a recent effort in the development of methodologies 

that take into account correlations between fission yields considering conservation equations, 

for which is necessary the generation of covariance matrices (Pigni et. al., 2013).  

There are different methodologies to generate these covariance matrices, for example through 

perturbation theory with the “Five Gaussians and Wahl’s models” (Pigni et. al., 2013), through  

updating data with the Bayesian/General Least-Squares (GLS) method (Kawano and Chadwick, 

2013), through the Monte Carlo perturbation using the GFE code (Schmidt et. al., 2016), and 

 
4 Some authors also include the uncertainties related to the normalization factor (García-Herranz et. al, 
2008). 
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with the Q-matrix approach for generating covariances for the direct fission yields through the 

cumulative fission yields (Mills, 2014).  

From the last methodologies, the work developed by Mills has a relationship with the discussion 

that was carried out in Section 2.6.2. As it was showed in that section, it is possible to compute 

the cumulative yield through the direct yield and the solution of the isobaric chain given in 

equation (2.36). Since the cumulative yield’s measurements have smaller uncertainties that the 

direct ones, it is possible to use them to generate covariance matrices. Mills set the following 

equation, which can be proved to be equal to the equation (2.57): 

 𝑌𝑖
𝑐 =∑𝑌𝑗

𝑖𝑄𝑗,𝑖
𝑗

 

 

 
(2.67) 

Where 𝑌  represents the yield and the superscripts 𝑐  and 𝑖  denote the cumulative and 

independent (or direct) type, the subscripts 𝑗 and 𝑖 refers to the isotopes 𝑋𝑗 who decays to the 

isotope 𝑋𝑖 , and 𝑄𝑗,𝑖  is the fraction of such decays. If the variance equation is applied to (2.67) it 

follows: 

 

𝑣𝑎𝑟(𝑌𝑖
𝑐) = 𝑣𝑎𝑟 (∑𝑌𝑗

𝑖𝑄𝑗,𝑖
𝑗

) 

 

 
(2.68) 

Through the formula for the variance of a sum, the equation (2.68) becomes: 

 𝑣𝑎𝑟(𝑌𝑖
𝑐) =∑𝑣𝑎𝑟(𝑌𝑗

𝑖)𝑄𝑗,𝑖
2

𝑗

+ 2∑∑𝑄𝑗,𝑖𝑄𝑘,𝑖
𝑘𝑗

𝑐𝑜𝑣(𝑌𝑗
𝑖, 𝑌𝑘

𝑖) 

 

(2.69) 

As it was mentioned in Section 2.5.5, the ENDF/B-VII.1 library contains the values 𝑣𝑎𝑟(𝑌𝑖
𝑐), and 

𝑣𝑎𝑟(𝑌𝑗
𝑖). The values 𝑄𝑗,𝑖 can be obtained through the solution of the isobaric chain discussed in 

Section 2.6.3. Therefore, in equation (2.69) the only values that are unknown are 𝑐𝑜𝑣(𝑌𝑗
𝑖, 𝑌𝑘

𝑖), 

and, clearly, they can be obtained through such equation. The topic of uncertainties related to 

the fission product yields is relatively recent, and it also represent an important field to develop 

future contributions. Additionally, it will be necessary to study this field as a part of the work 

that is being developed in the AZTLAN Platform project. 

There is an interesting fact about the values of the uncertainties 𝑣𝑎𝑟(𝑌𝑖
𝑐) and 𝑣𝑎𝑟(𝑌𝑗

𝑖) found in 

the ENDF/B-VII.1 library. In some cases, these variances are considerably large and can be 

comparable with the value of the fission yields, specially, for the direct or independent’s type. 

Some examples of this behavior are listed in Table 2.7. Particularly, this is true for the direct or 

independent type. 

2.6.6 Uncertainty related to the effective removal coefficients.  
 

In terms of the effective removal coefficients, it is possible to carry out an uncertainty analysis 

based on the Taylor series expansion of the concentration function 𝑋. Such procedure is known 

as the linear sensitivity analysis and it is implemented in codes like ACAB or CASEMATE 

(García-Herranz et. al., 2008).  
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         Table 2. 7. Examples of isotopes whose yields have a significant variance. 

Isotope 𝑌𝑐  𝑣𝑎𝑟(𝑌𝑐 ) 𝑌𝑖  𝑣𝑎𝑟(𝑌𝑖 ) 

Mo95  6.5196x10−2 4.85 x10−4 4.952930x10−12 3.1698x10−12 

Xe131  3.1788x10−4 8.700x10−5 4.912820x10−9 2.4062x10−9 

Xe133  1.9654x10−3 1.246x10−3 2.558684x10−5 1.1586x10−5 

Sr87  2.4899x10−9 1.589x10−9 1.324457x10−8 7.0650x10−9 

I133  3.6556x10−3 2.339x10−3 1.654684x10−3 7.7043x10−4 

Cd133  4.5014x10−11 2.873x10−11 4.501480x10−11 2.8809x10−11 

 

If it is considered that the concentration function 𝑋 depends on the following set of variables 

𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑛}, among which there are the 𝜆𝑖
eff constants, it is possible to set that: 

 
𝑋𝑘 = 𝑋𝑘̅̅̅̅ +∑

𝜕𝑋𝑘
𝜕𝑥𝑖

𝑖

(𝑥𝑖 − 𝑥1̅̅ ̅) + ⋯ 

 

(2.70) 

Where 𝑥�̅� represents the best estimate value of the variable 𝑥𝑖, and 𝑋𝑘̅̅̅̅  is the solution obtained 

with the values {𝑥1̅̅ ̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅}  (Chaitanya Tadepalli and Subhash, 2018). For a first order 

approach it follows that: 

 
𝑋𝑘 − 𝑋𝑘̅̅̅̅ ≅ ∑

𝜕𝑋𝑘
𝜕𝑥𝑖

𝑖

(𝑥𝑖 − 𝑥1̅̅ ̅) 

 

(2.71) 

Applying the same procedure used in (2.68): 

 
𝑣𝑎𝑟𝑋𝑘 ≅∑∑

𝜕𝑋𝑘
𝜕𝑥𝑖

𝑗𝑖

𝜕𝑋𝑘
𝜕𝑥𝑗

 𝑐𝑜𝑣(𝑥𝑖 − 𝑥1̅̅ ̅) 

 

(2.72) 

The term defined as 𝑆𝑘𝑖 = (𝜕𝑋𝑘/𝜕𝑥𝑖) ∙ (𝑥𝑖/𝑋𝑘), is the sensitivity coefficient of the concentration 

function. In this case, the uncertainty and the sensitivity are related with the derivative of the 

modified Bateman equation with respect to the effective lambda coefficient. In a recent work 

developed by Chaitanya Tadepalli and Subhash (Chaitanya Tadepalli and Subhash, 2018), a set 

of simplified recursive relations of such derivatives has been developed.  

As it will be showed in Chapter 5, there is an alternative way to build in a fast way such 

derivatives through a symbolical computational algorithm, which was developed in the present 

thesis. From the above discussion, it is clear that the modified Bateman equation has an 

important role in the uncertainty analysis, and therefore its study continues being important.  

2.7 The artificial dependence on time in burnup problems.  
 

In Section 2.3 the effective removed lambdas, 𝜆𝑖
eff , and the effective branching ratios, 𝑏𝑖,𝑖+1

eff  , 

were considered constant in time. Nevertheless, for some isotopes who undergoes nuclear 

reactions, such parameters are not constant, because they depend on the flux and the 

microscopic cross section, which acquire an artificial dependence on time due to the burnup 

process.  
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2.7.1 The flux dependence on time. 
 

It is possible to understand this phenomenon through the dependence of the flux on the 

material composition. As it is known, when the diffusion or the transport equation is solved, the 

material composition is an important part of such solution through the macroscopic cross 

sections: 

 Σ𝑟 = 𝑋𝜎𝑟 
 

(2.73) 

Where 𝑋 is the atomic density and 𝜎𝑟 is the microscopic cross section for the reaction 𝑟. The 

term given in (2.7) is very useful to compute the different ration rates. Then, it is possible to set 

the following relationship between the flux and the atomic density: 

 𝜙(𝐸) ≡ 𝜙(𝐸, 𝑋) 
 

(2.74) 

As it was defined in Chapter 1, in a burnup problem the composition of the core change in time, 

due to the transformation of the isotopes and the different reactions that they undergo. 

Therefore, it is clear that the atomic density is a function of time. In other words, 𝑋 ≡ 𝑋(𝑡). 

Considering this, it is clear that the relationship described in (2.74) can be written as: 

 𝜙(𝐸, 𝑋) ≡ 𝜙(𝐸, 𝑡) 
 

(2.74) 

In the last equation the relationship between the flux and the time in a burnup problem has 

been showed.  

2.7.2 An integral the cross section. 
 

The dependence on time of the microscopic cross section, on the other hand, is artificial and it 

is possible to discuss it through its definition. As it is known, the microscopic cross section 

usually is described as a proportionally constant through the following equation (Lamarsh, 

2001): 

 
    

Number of collision per
second (in entire target)

= 𝜎𝑛𝑣𝑁𝒜𝑇  

 

(2.76) 

Such definition arises from a theoretical experiment, where a beam containing 𝑛 

monoenergetic neutrons per 𝑐𝑚3 with a velocity 𝑣, impinges on a target of thickness 𝑇, area 𝒜 

and atom density 𝑁. If the equation (2.76) is divided by the volume of the target, given by 𝒜𝑇, 

it is possible to define the collision density 𝐹: 

 𝐹 = 𝜎𝑁𝑛𝑣 = Σ𝑛𝑣 
 

(2.77) 

From the last equation comes the definition provided in (2.73). Even when this definition set 

that the microscopic cross section is constant, it does not explain the nature of such constancy.  

Therefore, it is more convenient to develop a definition starting from the macroscopic cross 

section Σ and considering its relationship with length. As it is known, Σ is the expected number 

of neutron-nucleus collision per unit of length of path traveled (Meghreblian and Holmes, 

1960). Essentially, it is a necessary a formulation from a point of view of the neutron instead of 
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the theoretical experiment, who describes the properties of the materials through the space. In 

addition, it is convenient to include the speed of such neutron as a variable. 

The function ℎ(𝑟) will be defined as the probability per unit of time that a neutron who has a 

distance 𝑟 from a nucleus, will suffer a collision with it. For a differential length 𝑑𝑠, Σ can be 

computed as: 

 
Σ = ∫

𝑁𝑑𝑉 ∙ ℎ(𝑟)𝑑𝑡

𝑑𝑠

∞

0

 

 

(2.78) 

In this case, the integral has been defined in terms of the time, considering a total of 𝑁𝑑𝑉 

nucleus in a differential volume 𝑑𝑉 . The next step consists of making a change of variable, 

considering that in a differential time 𝑑𝑡, the neutron travels a distance given by: 

 
𝑑𝑡 =

𝑑𝑠

𝑣
 

 

(2.79) 

Clearly the integration limits remain unchanged. On the other hand, since a reference frame 

centered on the neutron is used, then the differential of volume corresponds to a sphere 𝑑𝑉 =

4𝜋𝑟2𝑑𝑟, therefore (Meghreblian and Holmes, 1960): 

 

Σ = ∫
𝑁𝑑𝑉 ∙ ℎ(𝑟)𝑑𝑡

𝑑𝑠

∞

0

= ∫
𝑁(4𝜋𝑟2𝑑𝑟) ∙ ℎ(𝑟)

𝑑𝑠
𝑣

𝑑𝑠
 

∞

0

 

= ∫ 𝑁(4𝜋𝑟2𝑑𝑟) ∙
ℎ(𝑟)

𝑣

∞

0

= 𝑁∫
4𝜋𝑟2

𝑣
∙ ℎ(𝑟)𝑑𝑟

∞

0⏟          
𝜎

 

 
 
(2.80) 

In the last equation the term ℎ(𝑟)𝑑𝑟 can be interpreted as a probability distribution, per unit of 

time, that a neutron who has a distance between 𝑟 and 𝑟 + 𝑑𝑟 from a given nucleus, will suffer 

a collision with such nucleus. Therefore, the microscopic cross section can be interpreted as an 

integral of a weighted probability function, who only depends of the position 𝑟. 

Strictly speaking, the dependence on time has been changed by a dependence on energy, which 

can be found in the term 1/𝑣 of the integral. In other words, the microscopic cross section only 

depends on the type of the nucleus and on the energy.  

2.7.3 Artificial dependency on time of the microscopic cross section. 
 

In the past section it was analyzed that the microscopic cross section does not depends on time, 

instead it is defined in terms of the isotope and the energy of the incident neutron. Nevertheless, 

this parameter is used in burnup calculations in two ways:  

1) through the definition provided in (2.15), corresponding to the homogenized one group 

cross section: 

 
𝜎𝑖,𝑚 =

∫ 𝜎𝑖,𝑚(𝐸)𝜙(𝐸)𝑑𝐸
∞

0

∫ 𝜙(𝐸)𝑑𝐸
∞

0

 

 

 
(2.81) 

2) through the multigroup energy discretization: 
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𝜎𝑖,𝑚
𝑔
=
∫ 𝜎𝑖,𝑚(𝐸)𝜙(𝐸)𝑑𝐸
𝐸𝑖+1
𝐸𝑖

∫ 𝜙(𝐸)𝑑𝐸
𝐸𝑖+1
𝐸𝑖

 

 

 
(2.82) 

For a group 𝑔 defined as the interval of energy between 𝐸𝑖  and 𝐸𝑖+1. Both (2.81) and (2.82) use 

the flux as a weight function, and since such function depends on the time, then the microscopic 

cross section acquires an artificial dependency on time.  

2.7.4 An approximated solution. 
 

An important conclusion for the past sections is that, for effective removal coefficients who 

involve neutron-nucleus reactions, the following mass balance equation can be written as: 

 𝑑𝑋𝑖+1
𝑑𝑡

= 𝑏𝑖,𝑖+1
eff 𝜆𝑖

eff𝑋𝑖 − 𝜆𝑖+1
eff 𝑋𝑖 

 

= 𝑏𝑖,𝑖+1 (𝜙(𝑋)) 𝜆𝑖 (𝜙(𝑋))𝑋𝑖(𝑡) − 𝜆𝑖+1 (𝜙(𝑋))𝑋𝑖  

 

 
(2.83) 

Where 𝑋 denotes the total composition of the core, which clearly depends of the function of 𝑋𝑖  

and 𝑋𝑖+1. In other words, the mass balance equation has the following structure: 

 𝑑𝑋𝑖+1
𝑑𝑡

= 𝐺(𝑋𝑖 , 𝑡)𝑋𝑖(𝑡) − 𝐿(𝑋𝑖+1, 𝑡)𝑋𝑖+1(𝑡) 

 

 
(2.84) 

Since the functions 𝐺 and 𝐿 depends on 𝑋𝑖  and 𝑋𝑖+1 respectively, the equation (2.84) becomes 

in a not linear differential equation, and therefore the system cannot be solved as it was made 

until now. A methodology that is used to overcome this difficulty consist of discretizing the time 

in a set of intervals, ∆𝑡𝑖, ∆𝑡𝑖+1, …,. Then, for each interval of time, the neutron flux 𝜙 will be 

assumed not depending on time, i.e. the parameters 𝑏𝑖,𝑖+1
eff 𝜆𝑖

eff   and 𝜆𝑖+1
eff  will be considered 

constant, and the modified Bateman equation can be used. Then, the neutron flux will be 

updated as long with the microscopical cross section for the next interval, repeating the 

process. 

For example, beginning with the interval ∆𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 , the system (2.83) will be solved, 

obtaining 𝑋(𝑡𝑖+1). Afterward, this material composition, 𝑋(𝑡𝑖+1)  will be used in the solution of 

the neutron diffusion or in the neutron transport equation, considering it as constant, and 

obtaining the neutron flux 𝜙(𝑡𝑖+1). This new flux will be used or updated, in turn, to compute 

the microscopical cross section 𝜎(𝑡𝑖+1) and to solve equation (2.83) for the following time 

interval ∆𝑡𝑖+1 = 𝑡𝑖+2 − 𝑡𝑖+1. Then, the new material composition 𝑋(𝑡𝑖+2) will be found, after of 

which the procedure is repeated. This approximated solution is equivalent to a coupling 

between a solver of the Bateman’s equation with a solver of the neutron diffusion or the 

transport equation. Such coupling is described in Figure 2.8. 

2.7.5 The predictor-corrector method. 
 

It is possible to improve the methodology described in the past section through an averaging 

process called the “predictor-corrector method”.  
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Figure 2. 8. Scheme of the discretization of time and coupling for a burnup process. The vertical 

relationships show the coupling between a Bateman’s equation solver and a 

diffusion/transport solver. The horizontal arrows show the discretization in time 

Such methodology can be explained using as example the first step of burnup. As it was 

mentioned in the last section, when the material composition  �̅�1 is computed during the first-

time step, it is considered that the neutron flux 𝜙0 remains constant. This can be represented 

as: 

 𝐵(𝑋0, 𝜙0, 𝜎0, 𝑡1) → 𝑋1,𝑝̅̅ ̅̅ ̅ 

 

(2.85) 

Where 𝐵 represents a burnup solver, which uses the input data given by 𝑋0, 𝜙0, 𝜎0, for a time 

step 𝑡1.  The sub index 𝑝 will refer to the concentration computed in a predictor step. After this, 

the neutron flux is calculated through a diffusion/transport solver, using the  𝑋1,𝑝̅̅ ̅̅ ̅ computed 

previously. In other words: 

 (𝐷/𝑇 )(𝑋1,𝑝̅̅ ̅̅ ̅) → 𝜙1, 𝜎1 

 

(2.86) 
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Where (𝐷/𝑇 ) represents a Diffusion/Transport Solver. Once this new neutron flux and the 

microscopic cross section have been computed, it is necessary to repeat the calculation for the 

same time step, but with the updated neutron flux and microscopic cross section, i.e.: 

 𝐵(𝑋0, 𝜙1, 𝜎1, 𝑡1) → 𝑋1,𝑐̅̅ ̅̅ ̅ 
 

(2.87) 

Where the sub index 𝑐 will refer to the corrector step. Finally, the concentration for the first-

time step can be computed as: 

 
𝑋1̅̅ ̅ =

𝑋1,𝑝̅̅ ̅̅ ̅ + 𝑋1,𝑐̅̅ ̅̅ ̅

2
 

 

(2.88) 

Then, this mean concentration will be used to compute the adjusted neutron flux  𝜙1̅̅̅̅  and the 

microscopic cross section 𝜎1̅̅̅. In the scheme showed in Figure 2.9 is summarized this procedure. 

The discussion about the mathematical justification of the predictor-corrector method is 

related to the Euler constant extrapolation method, and more formally with serval 

methodologies to approximate nonlinear differential equations (Douglas and Jones, 1963), 

(Cash, 1983), (Voss and Khaliq, 1999). Nevertheless, such formal discussion is beyond the scope 

of the present thesis.  

There are more advances methodologies of the predictor-corrector method, which are based in 

using extrapolated reaction rates for the predictor step as well as interpolated reactions rates 

for the corrector calculations. Such methodologies are used in the well-known Monte Carlo 

transport code SERPENT, and they have been studied mainly through the works carried out by 

Isotalo and Aarnio (Isotalo and Aarnio, 2011). 

2.7.6 Sub-steps methodology. 
 

It would be desirable to use small time steps for a burnup calculation, with the purpose to 

provide a better estimation of the material composition  �̅� as well as the neutron flux and the 

microscopic cross section. Unfortunately, as it is suggested (Knott and Yamamoto, 2010), the 

calculations of the neutron flux and the microscopic cross section dominate the execution time 

of a lattice physics computation.  

Therefore, it is not convenient to use a large number of time steps, because the execution time 

will increase considerably. The methodology described in the last section allows to improve the 

approximation of considering the neutron flux and the microscopic cross section constant, but 

there is another methodology that allows to improve the limitation of the number of time steps 

that can be used in a burnup problem.  

Such methodology consists of defining a second set of time steps of a given time steps, i.e. 

defining sub-steps. In order to explain the idea behind such methodology, two-stages of a given 

burnup problem will be considered, which are represented as: 

 
{𝑋0, 𝜙0, 𝜎0}
Initial conditions

    
∆𝑡
→     {𝑋1, 𝜙1, 𝜎1}

First time-step

 
 

(2.89) 
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Figure 2. 9. Scheme of the predictor-corrector methodology. 

As it was discussed before, during the time interval ∆𝑡, both 𝜙0 and 𝜎0 are considered constant. 

At the end of such interval in 𝑡1 , there is a suddenly change from 𝜙0, 𝜎0  to 𝜙1, 𝜎1  due to the 

update through the diffusion/transport code, using 𝑋1  as an input. This change can be 

represented as a stair-step graph: 

 
𝜙(𝑡)𝜎(𝑡) = {

𝜙0𝜎0 𝑡 ∈ [0, 𝑡1)
𝜙1𝜎1 𝑡 = 𝑡1

 

 

(2.90) 

Clearly the equation (2.90) is not continuous in 𝑡 = 𝑡1. For some scenerios it is useful to produce 

a set of values 𝜙(𝑡)𝑖𝑗𝜎(𝑡)𝑖𝑗 , 0 < 𝑖1 < 𝑖1 < ⋯ < 𝑖𝑛 < 𝑡1 , through a process of interpolation 

between 𝜙0𝜎0  and 𝜙1𝜎1 . It is worth nothing that such generation does not require using a 

diffusion/transport code. Therefore: 

 

𝜙(𝑡)𝜎(𝑡) =

{
  
 

  
 
𝜙0𝜎0 𝑡 ∈ [0, 𝑖1)

𝜙𝑖1𝜎𝑖1 𝑡 ∈ [𝑖1, 𝑖2)

𝜙𝑖2𝜎𝑖2 𝑡 ∈ [𝑖2, 𝑖3)

⋮ ⋮
𝜙𝑖𝑛𝜎𝑖𝑛 𝑡 ∈ [𝑖𝑛,𝑡1)

𝜙1𝜎1 𝑡 = 𝑡1

 

 

 
 
(2.91) 

Depending on the type of the interpolation process, this new stair-step graph can be closer to 

the actual behavior of the function 𝜙(𝑡)𝜎(𝑡). Figure 2.10 shows an example of such procedure 

for a linear interpolation (Isotalo, 2013). One of the most important implications of (2.91) is 

related to the new size of the time step, and to the balance equation of certain fission products.  
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Figure 2. 10. Example of a sub-step methodology where an original time step has been divided 
in three sub steps. In the left part, a standard procedure of a predictor-corrector calculation is 
depicted. 

Leppänen explained this last through the analysis of the fission product I131 , who is a low-

absorbing fission product with a continuously changing production rate (Leppänen, 2012). 

Essentially, this author shows that the mass balance equation for some isotopes can be written 

as: 

 𝑑𝑋𝑗

𝑑𝑡
= 𝑃(𝑡) − 𝜆𝑗𝑋𝑗 ≈ 𝑃 − 𝜆𝑗𝑋𝑗 

 

(2.92) 

Where the production term, 𝑃(𝑡), who originally depends on time, can be approximated by a 

constant value over a time step for certain cases, where the main contribution to 𝑋𝑗 comes from 

a heavy isotope whose concentration has a small variation on the given time step. In such 

scenario the solution of equation (2.92) is equal to: 

 
𝑋(𝑡) =

𝑃

𝜆𝑗
(1 − 𝑒−𝜆𝑗𝑡) 

 

(2.93) 

If the burnup time step is considerably longer than the half-life of the isotope, the concentration 

of the isotope will reach the most part of the equilibrium concentration at the end of such time 

step: 

 
𝑋 ≈

𝑃

𝜆𝑗
 

(2.94) 

 

The problem is that 𝑃 depends considerably on the value 𝜎(𝑡)𝜙(𝑡), which is treated as constant 

in the time-step interval. Therefore, for a procedure similar to the left part of Figure 2.10, this 

constant value 𝜎0𝜙0  differs considerably from the final value 𝜎1𝜙1 , and therefore the 

production rate 𝑃 is lower than the actual value and the concentration 𝑋 is underestimated.  

With the sub-step methodology, the time step is lower and therefore the concentration from 

equation (2.93) can be approximated in a better way. It is worth mentioning that the use of the 

sub-step methodology does not automatically improve the results of all the fission products, as 
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Leppänen suggests (Leppänen, 2012), because as it was discussed the procedure depends on 

the comparison of the time-steps with the half-life of the isotopes, as well with the condition of 

equilibrium. 

Additionally, Knott and Yamamoto (Knott and Yamamoto, 2010) analyzed the importance of 

the sub-step methods for reducing the error of temporal discretization, and for avoiding the 

underestimation of the burnup due to the power normalization. 

2.8 Comparison between burnup codes. 
 

In one of the stages of the development of the code Szilard, it was very important to have a 

tested burnup code in order to perform comparisons. As a first option it was used the Monte 

Carlo SERPENT Code, but when some issues related with the fission product appeared, it was 

used instead the Monte Carlo N-Particle X code (MCNPX) in its version 2.6.2 (Pelowitz, 2008). 

The reason behind this change was related to some discrepancies between the concentration 

of some fission products between SERPENT and Szilard. Once several possible causes of such 

discrepancies were discarded, it was considered the possibility that the origin was in the decay 

and transmutation networks that were used. Unfortunately, the way in which the linear chains 

are formed and used by SERPENT are not documented (Leppänen, 2017), and therefore a it was 

impossible to carry out a correct comparison.  

On the other hand, the specific isotopes that are included in the calculations performed by 

MCNPX are well documented. This code used three schemes named TIER, which uses different 

numbers of fission products. TIER 1 contains 12 fission products, TIER 2 considers 85 and TIER 

3 uses 220. This last are listed in Table 2.8. 

Using this information, a set of linear chains were built for Szilard, through which it was 

possible to make more adequate comparisons. During such process an important conclusion 

was obtained about the relationship between the neutron flux and the fission products.  

2.8.1 The neutron flux and the decay and transmutation network. 
 

A very interesting conclusion was obtained when the results of MCNPX were compared with 

the results of SERPENT, which shows that even when two codes have similar results for the 

behavior of neutron flux, this not implies that the concentration of the fission products will 

share the same behavior, even more it is possible that the percentual error between the 

concentrations will be considerable.  

The data in which is based the following discussion is related to a comparison that was carried 

out simulating a unit cell in infinite medium, in a thermal neutron flux spectrum. Even when the 

configuration of this simulation will be described in Section 4, for the moment a general 

discussion of the results it is possible in order to exemplified the issues related with the 

comparison between codes. As it is possible to conclude from Figure 2.11, the neutron flux 

computed with both codes has the same behavior, and from the Figure 2.12 it is possible to 

conclude that the percentual error between the results is lower than 1.4%. In fact, the graph 

has its maximum value for the time equal to 12.5 days. In other words, the results for the 

neutron flux for both codes are very close.  
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Table 2. 8. List of isotopes that are considered in the TIER 3 in MCNPX. 

            

      

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 11. Comparison between the neutron flux computed between MCNPX and SERPENT 
for the same simulation. 
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  Figure 2. 12. Percentual error between the data showed in Figure 2.11 vs time. 

2.8.2 Discrepancies between the concentration of some fission products.  
 

As it was discussed in the past section, for the studied case there are not considerable 

differences between the neutron fluxes computed by MCNPX and SERPENT. Nevertheless, for 

some fission products the opposite is true, because there are marked discrepancies. Three 

examples are showed from Figure 2.13 to Figure 2.18, where the behavior between the 

concentrations are different. In total, at least 39 isotopes of the TIER 3 given in Table 2.8 showed 

similar discrepancies between their concentrations computed with MCNPX and SERPENT. 

The author of this thesis concluded that the origin of the discrepancies can be related to the 

different decay and transmutation networks or to the distinct predictor-corrector method that 

are used by the codes. The first possibility is based in the analysis of several fission products, 

and it can be illustrated with the study of Ag109  and the graphs given in Figure 2.15 and Figure 

2.16. This isotope belongs to the following isobaric chain, which is formed by negative beta 

decay: 

 
Tc109

↘
𝛽−

→ 
0.87 s

Ru109

↘
𝛽−

→ 
34.5 s

Rh109

↘
𝛽−

→ 
80 𝑠

Pd109

↘
𝛽−

→ 
13.7012 h

Ag109  

 

(2.95) 

Ag109  also belongs to an isobaric chain given by electron capture decay: 

 
Sb109 𝛽+

→ 
17 s

Sn109
𝛽+

→ 
18 min

In109
𝛽+

→ 
4.2 h

Cd109 𝛽+

→ 
462.6 d

Ag109  

 

(2.96) 

 



106 
 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 13. Concentration as a function of time for Gd160  computed with the code SERPENT, 
and the code MCNPX, for a case of study described in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 14. Percentual error for the concentration showed in Figure 2.13. 
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Figure 2. 15. Concentration as a function of time for Ag109   computed with the code SERPENT, 
and the code MCNPX, for a case of study described in Chapter 4. 

      

 

 

 

 

 

 

 

 

 

 

 

      Figure 2. 16. Percentual error for the concentration showed in Figure 2.15. 
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Figure 2. 17.  Concentration as a function of time for Xe135   computed with the code SERPENT, 

and the code MCNPX, for a case of study described in Chapter 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 2. 18. Percentual error for the concentration showed in Figure 2.17. 
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From the scheme of (2.95) it is possible to conclude that the Ag109  is not produced directly by 

the fission process. On the other hand, all the isotopes belonging to the isobaric chain in (2.96) 

are not produced by fission, or there are not enough data about them in the ENDF/B-VII.1 

library, because they are not included as fission products of the U235  and Pu239 . 

Therefore, the concentration only depends on the analysis of the scheme (2.95). The half-lives 

of the ancestors of Ag109  in such scheme fulfill the condition of the first case given in Section 

2.5.2., therefore it is adequate to use the cumulative yield for Ag109 .  

From Table 2.8 it is clear that MCNPX use this type of yield for Ag109 , because there are not 

included the ancestors of this isotope in such table. Nevertheless, if the isotope Pd109  (one of 

the ancestors) is not included, the concentration of Ag109  will be underestimated, due to the 

omission of contributions originated by the following sequence radioactive captures: 

 
Pd104

↘

→ Pd105

↘

→ … → Pd108

↘

→ Pd109

↘

↓

Ag109

 

 

 
 
(2.97) 

In other words, the isotope Pd109  is a link between the contribution due to radioactive capture 

from Pd108 , as well as to the set of linear chain given by the sequence Pd104 → Pd105 → ⋯ →

Pd109  and those that have one of the isotopes of it. Thus, if Pd109  is not included, then several 

contribution paths will be omitted, and therefore the concentration Pd109  will be 

underestimated. It is possible to corroborate this underestimation from the graph Figure 2.15.  

A more detailed study would require to analyze the value of the microscopic cross section of 

capture for Pd108  , in order to determine if such reaction can be discarded. Additionally, it will 

be necessary to study the value of the cumulative (or direct) yield for the isotopes belonging to 

the sequence Pd104 → Pd105 → ⋯ → Pd109 , to find their actual contribution to the 

concentration of Ag109 . Clearly, all these tasks are complex, and they corroborate that the type 

assignation of a yield type is not straightforward. Nevertheless, the most important conclusion 

for this example, if that if two burnup codes have similar results for the neutron flux, this not 

means that the concentration of the fission products also will be similar.  

Since the Ag109  fission product is stable, the analysis of the differences between MCNPX and 

SERPENT was reduced to the decay and transmutation network. However, the analysis of other 

isotopes as Xe135  is more complex, because the differences between the codes can be related 

also to the predictor-corrector and sub steps methodology. For such isotope, it is necessary to 

study the following isobaric chain: 

 
Sb135

↘
𝛽−

→ 
1.68 s

Te135

↘
𝛽−

→ 
19 s

I135

↘
𝛽−

→ 
6.57 h

Xe135

↘
𝛽−

→ 
9.14 h

 

 

 
(2.98) 
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According to the isotopes given in Table 2.8, the code MCNPX uses a cumulative yield for I135  

because the other two ancestors Sb135  and Te135  does not appear. Based on the half-lives of 

these ancestors, it is possible to conclude that a use of a cumulative yield for  I135  is adequate, 

as well as the assignation of a direct yield for Xe135 . Unlike the analysis of the Ag109 , in this case 

the differences between the results between the codes that is shown in Figure 2.18 cannot be 

related to the decay and transmutation network, because the most important contribution to 

this isotope are being considered in Table 2.8. Nevertheless, its short half-life suggests that an 

adequate treatment of this isotope can be accomplished through a sub step methodology.  

The MCNPX’s version that was used includes a predictor-corrector methodology (Bomboni et. 

al., 2010), (Fensin, 2008), but it does not use a sub step methodology as Serpent does (Isotalo, 

2010). Therefore, the author of the present thesis considers that the differences that are 

showed in Figure 2.17 and Figure 2.18 can be explained according to these methodologies.  

2.9 The constant lambda decay.  
 

The findings describing in all the past sections show that there are several issues related to 
nuclear data required for a burnup code. Until now such issues have a relationship with the 

branching rations, the fission yields, and the microscopic cross sections. In terms of the decay 

lambda constant, there are some topics that were studied by the author of the present thesis 

that not necessary are fundamental to the development of a burnup code, but that represent 

interesting facts about the standard treatment of the decay constant in nuclear engineering.  

The first of these facts is related with the common assumption of the constancy of the parameter 

𝜆  in the radioactive decay law. What are the reasons behind this assumption? Are there 

theoretical foundations that guarantee this? What is the time-region where this can be 

assumed?  The second fact is related with a more mathematical interpretation of the lambda 

constant through a probability approach. These two topics will be discussed in the following 

subsections. 

2.9.1 A briefly quantum formulation of the decay process. 
 

In Section 1.2.1 was described the discovery of the radioactive law by Rutherford, which was 

essentially empirical and was obtained through experimental means. The theory that was 

developed later about the decay process had a probabilistic interpretation. It considered that a 

radioactive atom can undergo decay with a certain probability, which is independent of past 

decaying process. Therefore, the variation of the number of such radioactive atoms, 𝑋(𝑡) will 

be represent by the following differential equation: 

 𝑑𝑋(𝑡)

𝑑𝑡
= 𝜆𝑋(𝑡) 

(2.99) 

Whose solution is: 

 𝑋(𝑡) = 𝑋(0)𝑒−𝜆𝑡 
 

(2.100) 

This last equation, nevertheless, does not explain the mechanism who produces the decay, and 

clearly has an experimental base. A more formal interpretation of this phenomena appeared 
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with the developing of the quantum mechanics under the study of nuclear stability and unstable 

quantum systems. It is considered that the first formal treatment of this problem was carried 

out by Weisskopf and Wigner (Weisskopf and Wigner, 1930). 

The quantum mechanics formulation of the problem consists of finding the probability that a 

quantum system with an initial state 𝜓  measured at time 𝑡 = 0 , will have the same state 

measured at time 𝑡. In other words, the problem is finding the probability that the physical 

situation does not change in the interval (0, 𝑡)  (Fonda et. al., 1978). In order to find such 

probability, it is necessary to use the following functions: 

 𝐴(𝑡) = (𝜓, exp(−𝑖𝐻𝑡)𝜓) 
 

𝑃(𝑡) = |𝐴(𝑡)|2 

 
(2.101) 

   
Where 𝐻 is the Hamiltonian, and 𝑖 is the imaginary unit. If there is a set of identical systems, 

whose number can be represented by 𝑋(𝑡) , the mathematical formulation for the problem 

discussed above can be given by: 

 𝑋(𝑡) = 𝑋(0)𝑃(𝑡) 
 

(2.102) 

Which is the quantum version of (2.100). The study of the function 𝑃(𝑡) allows to conclude that 

for larger and smaller times, the behavior of such function cannot be considered as exponential. 

For larger times, Krylov and Fock (Fonda et. al., 1978) found that 𝐴(𝑡) fulfills the following 

Riemann-Lebesgue lemma: 

 lim
𝑡→∞

𝐴(𝑡) = 0 

 

(2.103) 

Later Khalfin concluded that 𝐴(𝑡) cannot be purely exponential, using a theorem on Fourier 

transforms which requires that such function must to fulfill: 

 
∫ 𝑑𝑡
+∞

−∞

|log |𝐴(𝑡)||

1 + 𝑡2
< +∞ 

 

(2.104) 

In order to guarantee the convergence of this integral for the upper limit, it is necessary that: 

 |log|𝐴(𝑡)||  ~
𝑡→∞

  𝐵𝑡2−𝑝 
 

(2.105) 

For a constant 𝐵 and 𝑝 > 1. Clearly, this implies that: 

    𝐴(𝑡)  ~
𝑡→∞

exp(𝑐1𝑡
2−𝑝) = exp (𝑐1𝑡

𝑞) 

Since 𝑝 > 1, 𝑞 = 2 − 𝑝 < 1. Using (2.103), it follows that 𝑐1 < 0, and therefore: 

 𝐴(𝑡) ~
𝑡→∞

exp(−𝑐𝑡𝑞) ,   𝑞 < 1, 𝑐 > 0 
 

(2.106) 

From (2.101) and (2.106) it is clear that: 

 𝑃(𝑡) = |𝐴(𝑡)|2   ~
𝑡→∞

  exp (−2𝑐𝑡𝑞) 
 

(2.107) 
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The last equation shows that for a larger time, the behavior of (2.107) cannot be considered 

purely exponential due to the power 𝑞. For the case of very small values, the discussion is more 

complex, because it is related to the eigenstates of the operator 𝐻 and with the study of the 

derivative of 𝑃(𝑡) at the origin (Fonda et. al., 1978). Essentially such analysis concludes that: 

 𝑃(𝑡) >
𝑡→0+

exp(−𝜆𝑡) 

 

(2.108) 

Which means that the function 𝑃(𝑡) is greater than an exponential behavior for small times. 

Through equation (2.107) and (2.108) it is possible to conclude that there are derivations from 

the exponential decay law for very small times and very large times. In other words, in such 

cases it does not have sense to talk about a lambda constant decay.  

2.9.2 Experimental considerations. 
 

There have been experimental studies about the deviations of the exponential law. The earlier 

researches were carried by Rutherford in 1911, who studied the 𝛼 decay in Rn222 , which has a 

half-life of 3.82 days. Rutherford traced the decay curves to 27 half-lives, without finding 

important deviations (Rutherford, 1911). Later, in 1961 Winter carried out studies for the Mn56  

(𝑇1/2 = 2.58 ℎ) for 𝛽− decay until 34 half-lives, finding similar results (Winter, 1962). In 1972, 

Butt and Wilson continued the Rutherford’s study of the isotope Rn222  until 40 half-lives 

obtaining the same conclusions (Butt and Wilson, 1972). 

In 1984 Gopych and his colleagues studied the 𝛽−  decay process of the In116𝑚  ( 𝑇1/2 =

54.3 min )  for 33 half-lives, without finding any derivations of the decay curve from 

exponentiality shape (Gopych et. al., 1984). In 1988 Norman and his colleagues carried out the 

first study for small times, considering the beta decay for the Co60  and Mn56  isotopes, for lower 

limits of ≤ 10−4𝑇1/2  and 0.3 𝑇1/2 respectively (Norman et. al., 1988), finding a behavior 

consistent with purely exponential behavior.  

In 1988 Gopych and Zalyubovskii concluded that, in order to find notable effects for a 

nonexponential behavior considering the isotope K40 , it will be necessary to extend the 

experimental analysis at least to 10−38𝑇1/2 . This is a very important conclusion that was 

reconsidered by Norman and his colleagues, who performed tests with this isotope, confirming 

the validity of the decay law at least to 10−10 𝑇1/2 (Norman et. al., 1995).  

Dykhne and Tkalya proposed a new method for checking the exponentiality of the radioactive 

law in 1998, obtaining measurements for times longer than 50 𝑇1/2 (Dykhne and Tkalya, 1998).  

Afterwards in 2006, Rothe and his colleagues found the first experimental proof of the turnover 

in to the nonexperimental decay regime, concluding that the deviations of the power law are 

related to the cases where the width of the energy distribution is large compared to the released 

energy (Rothe et. al., 2006). Semkov reported in 2007 the following conditions for the 

deviations of the radioactive law, which are experimentally unviable (Semkov, 2007): 

 −𝜆𝑡 < 10−14

𝜆𝑡 > 71
 

 

(2.109) 
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Based on the above discussion, it is possible to consider that the exponential radioactive law is 

valid for the times related to practical burnup problems. Finally, it is worth to mentioning that 

recently Pommé and his colleagues carried out an analysis about the claim that the neutrinos 

could affect the decay constants through the fifth-force interaction, concluding that such claim 

is false (Pommé, 2018).  

2.9.3 A basic probabilistic study of the lambda constant. 
 

Meghreblian and Holmes proposed an interesting study about the macroscopic cross section 

through probabilistic theory, which is known as the “as good as new” hypothesis (Meghreblian 

and Holmes, 1960). Essentially such hypothesis consists of considering that if a neutron does 

not undergo a collision or a reaction in the interval [0, 𝑥1], then the probability that it undergoes 

a reaction will be computed starting from 𝑥1, as the neutron is as good as new. 

It is possible to formulate a similar hypothesis for the radioactive decay and the lambda 

constant, considering that if an atom survives a time 𝑡 without decay, then it is as good as new. 

From equation (1.3), it is possible to define the probability that an atom survives a time 𝑡 

without decay as: 

 𝑝(𝑡) = 𝑒−𝜆𝑡 
 

(2.110) 

In the last equation a frequency probability given by 𝑛(𝑡)/𝑛(0)  was used. The related 

probability that an atom will decay before the time 𝑡 , measure from 𝑡 = 0  is called the 

distribution function for the first decay and it is given by: 

 𝐹(𝑡) = 1 − 𝑝(𝑡) = 1 − 𝑒−𝜆𝑡 
 

(2.111) 

From this point the frequency for the first decay before a time 𝑡 can be obtained from (2.111) 

through derivation: 

 
𝑓(𝑡) =

𝑑

𝑑𝑡
𝐹(𝑡) = 𝜆𝑒−𝜆𝑡 

 

(2.112) 

Strictly speaking, the last three equations were deduced in an informal way, because they 

started from a frequency definition. Nevertheless, using the “as good as new” hypothesis it is 

possible to find such relationships in a more formal way, from a mathematical probabilistic 
theory. Firstly, it is necessary to define a probability that an atom decay before reaching the 

time 𝑡 as: 

 𝑃(𝒯 ≤ 𝑡) ≡ 𝐹(𝑡) 
 

(2.113) 

Where 𝒯 is a random variable. Using (2.113) the conditional probability of decay in the interval 

(𝑡, 𝑡 + 𝜏] without decaying in the interval (0, 𝑡] is given by: 

 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏|𝒯 > 𝑡) 
 

(2.114) 

In this point the hypothesis as good as new needs to be used to find 𝐹(𝑡)  and 𝑓(𝑡) . The 

probability on (2.114), under such hypothesis, is equivalent to the probability that an atom will 

decay before a time 𝜏. In other words: 
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 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏|𝒯 > 𝑡) = 𝑃(𝒯 ≤ 𝜏) 
 

(2.115) 

From the conditional probability, it is possible to set the following equation: 

 
𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏|𝒯 > 𝑡) =

𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏, 𝒯 > 𝑡)

𝑃(𝒯 > 𝑡)
 

 

(2.116) 

The probability 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏, 𝒯 > 𝑡) is the probability that the atom decays in the interval  

(𝑡, 𝑡 + 𝜏), and that it decays after the time 𝑡 . If such probability is isolated from (2.116), it 

follows: 

 𝑃(𝒯 > 𝑡)𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏|𝒯 > 𝑡) = 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏, 𝒯 > 𝑡) 
 

(2.117) 

Replacing (2.115) in (2.117): 

 𝑃(𝒯 > 𝑡)𝑃(𝒯 ≤ 𝜏) = 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏, 𝒯 > 𝑡) 
 

(2.118) 

On the other hand, 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏, 𝒯 > 𝑡) = 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏)  due to the as good as new 

hypothesis. Therefore: 

 𝑃(𝒯 > 𝑡)𝑃(𝒯 ≤ 𝜏) = 𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏) 
 

(2.119) 

Considering that: 

𝑃(𝒯 > 𝑡)𝑃(𝒯 ≤ 𝜏) = [1 − 𝐹(𝑡)][𝐹(𝜏)] 

And: 

𝑃(𝑡 < 𝒯 ≤ 𝑡 + 𝜏) = 𝐹(𝑡 + 𝜏) − 𝐹(𝑡) 

It is possible to rewrite the equation (2.119) as: 

 [1 − 𝐹(𝑡)][𝐹(𝜏)] = 𝐹(𝑡 + 𝜏) − 𝐹(𝑡) (2.120) 
Dividing (2.120) by 𝜏: 

 
[1 − 𝐹(𝑡)]

[𝐹(𝜏)]

𝜏
 =
𝐹(𝑡 + 𝜏) − 𝐹(𝑡)

𝜏
 

(2.121) 

Computing the limit 𝜏 → 0: 

 
lim
𝜏→0
[1 − 𝐹(𝑡)]

[𝐹(𝜏)]

𝜏
= [1 − 𝐹(𝑡)]lim

𝜏→0

[𝐹(𝜏)]

𝜏
= lim
𝜏→0
 
𝐹(𝑡 + 𝜏) − 𝐹(𝑡)

𝜏
 

 

(2.122) 

It is assumed that the derivative of 𝐹(𝑡) exists, then it follows that: 

 
[1 − 𝐹(𝑡)]lim

𝜏→0

[𝐹(𝜏)]

𝜏
= 𝐹′(𝑡) 

 

(2.123) 

The last equation implies that the limit lim
𝜏→0

[𝐹(𝜏)]

𝜏
 must to exists and it needs to be a constant, 

which will be defined as 𝑘: 

[1 − 𝐹(𝑡)]𝑘 = 𝐹′(𝑡) 
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The solution of the last differential equation is given by:−𝑘𝑡 = ln|1 − 𝐹(𝑡)|, where it is found 

that: 

 𝐹(𝑡) = 1 − 𝑒−𝑘𝑡 
 

(2.124) 

The value of the constant can be found as: 

 
lim
𝜏→0

[𝐹(𝜏)]

𝜏
= 𝑘 = 𝐹′(0) 

 

(2.125) 

If follows that 𝑘 = 𝜆. On the other hand, it is possible to define the probability distribution 𝑓(𝑡) 

as: 

 𝑑

𝑑𝑡
𝐹(𝑡) = 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡  

 

 
(2.126) 

Particularly 𝑓(0) = 𝜆. Since 𝑓(𝑡)𝑑𝑡 can be interpreted as the probability that an atom will decay 

in an interval given by [𝑡, 𝑡 + 𝑑𝑡], then 𝑓(0) = 𝜆𝑑𝑡 can be interpreted as the probability that an 

atom will decay in an interval [0, 𝑑𝑡] . In other words, it is possible to consider the lambda 

constant as a probability of decay per unit of time. This last interpretation of the lambda 

constant is very intuitive, but it has a strong relationship with the meaning of the limit in 

(2.125), which is a probability per unit of time computed around the time equal to zero. 

2.10 Conclusions of the Chapter. 
 

In the present chapter three parameters related to burnup problems were discussed: the 

branching ratio, the microscopic cross section and the fission product yield. Such parameters 

allow solving more complex structures, which are known as decay and transmutation 

networks. With small modifications in the Bateman equation, it is possible to include such 

parameters obtaining a more general solution.  

Nevertheless, from the discussion carried in the present chapter, it is possible to conclude that 

the implementation of the branching ratio and the fission product yield is not a straightforward 

process, because these tasks are related to the study of the structure or topology of the decay 

and transmutation network. On the other hand, the implementation of the microscopic cross 

section is related to the study of the non-linearity of the mass balance equation, as well as to a 

discretization on time. 

The use of the branching ratios requires applying a linearization process to the network, as well 

as a process of superposition. The first procedure breaks-down the original structure in a set of 

linear chains, and the second one consists of determining which contribution will be considered 

to the calculation of the total concentration. The use of the fission product yields requires a 

study of the isobaric chains, and an analysis of the half-lives of the isotopes that belong the 

them. Additionally, it is necessary to take into account the capture reaction’s sequences that 

contributes to the final concentration of a given isotope.  

Capture reactions, where the fission is included, involve the non-linearity of the differential 

mass balance equations. In order to overcome this situation, a time-discretization is necessary. 
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Nevertheless, there are some issues related to the most appropriate way to make such 

discretization, that originate the predictor corrector and the sub steps methodology.  

Since there are several ways in which these parameters can be included in a burnup solver, the 

comparison between two different burnup codes regarding the concentration of the fission 

products is a very hard task. As it was possible to conclude in the present chapter, even when 

two codes have similar outcomes for the neutron flux, this does not imply that the fission 

product concentration will be equal. In fact, three examples were showed in the present 

chapter, where percentual error differences were considerable, being in one of them close to 

60%.  

Finally, it is possible to conclude that the study of the branching ratios, the fission product yield, 

and the microscopic cross section is necessary to develop a burnup code, and it is possible to 

make contribution to the solution of the Bateman equations through them.  
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Chapter 3. Contribution to the 

linearization process. 
 

 

 

 

As it was described in the previous chapter, it is possible to break a decay and transmutation 

network in a set of linear chains, solving each one with the Bateman’s solution or some of its 

variations, and finally apply a superposition process to take account of all valid contributions. 

The first part of this procedure is known as the linearization process, and jointly with the 

superposition, such methodology is called the “linear chain method”. 

The common way to build these linear chains is using a Depth-First-Search (DFS) algorithm, 

which consists in finding every possible path in a network, tracking the decay and 

transmutation reaction for a set of isotopes until one stable appears or there is no more 

information to continue. At this point, the algorithm moves backwards searching a branch or 

an untraveled path, and then the procedure is repeated. 

In the present chapter, an alternative new algorithm for building linear chains is developed, 

which uses a special notation and reduces the problem of finding paths to the problem of 

ordering a sequence of characters (known as string in computer science). The proposed 

notation allows summarizing the transmutation network information in a single line, in the 

same way as Newick’s three format does it. Unlike the DFS, the developed algorithm has not a 
backward routine, but it has a “fill” procedure instead. The last property decreases the 

computational time when the linear chains are building, and it can be useful with cyclic chains. 

3.1 The linearization process. 
 

In order to describe the linearization process, the transmutation and decay network illustrated 

in Figure 3.1 will be considered. The elements 𝑋𝑖 , with 1 ≤ 𝑖 ≤ 19, represent the isotopes, and 

the factors 𝑏𝑖,𝑗 are the branching ratios. For this network, the standard linearization process 

begins with the element  𝑋1, since it has two branches, it is necessary to choose one, and “put 

on hold” the other. Suppose the isotope 𝑋4 is chosen. 

From this point, there are not branches in the following isotopes. Indeed, there is a “segment” 

or a linear chain with the elements 𝑋4,  𝑋9  and 𝑋12 . Finally, there are three cases for a final 

element: 1) it has not progenies, 2) there is not available information about it, 3) it will be 

defined as the final element. The last case is useful when it has been decided to “truncate” or 

“cut off” a chain. 

Once a final element is reached, the set of isotopes traversing becomes a linear chain. In the 

example given in Figure 3.1 such linear chain will be: 
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     Figure 3. 1. Scheme of a transmutation and decay network. 

 

After this, it is necessary to travel the linear chain obtained in the opposite direction until the 

first branch with an element “put on hold” is found. In the case of the example this isotope is: 

𝑋5. The branching element 𝑋2, who originates 𝑋5, is taken as a reference point, and it is searched 

in the last immediate linear chain, i.e. in (3.1).  Once this isotope is located, it is necessary to 

take all the previous elements in that linear chain, which in the present case is only 𝑋1. These 

elements will form the “base” or the “stem” of the following linear chain. This process is 

repeated until there are not elements “put on hold”. Figure 3.2 shows the outcome of this 

process, i.e. the linearization of the network of the Figure 3.1. 

If the isotopes are called “nodes”, and the paths between elements are considered as “edges”, it 

is possible to see the network as a “tree”, and the procedure of searching can be considered as 

a method for traversing tree. In data structure’s theory, there are two main algorithms used to 

traversing trees: the “Depth-First Search” (DFS) and the “Breadth-First Search” (BFS) 

(Thulasiraman et. al, 2016). The linearization method above discussed is a standard “Depth-

First Search” algorithm. As its name suggests, this algorithm first finds the last element (the 

deepest) in a “steam” or “path”, and then search in the unexplored nodes.  

The DFS is the most direct way to find linear chains in a decay and transmutation network and 

it is also very intuitive. It is important to note that in the burnup problems, there are not 

networks “a priori”. Instead, they are built through the information from nuclear data libraries 

as ENDF or JEFF, and their structure is determined by the special treatment of the code. In the 

next section it will be discussed how the DFS is used, and it will justify the importance of 

improving this process of linearization.  

 

 𝑋1 → 𝑋2 → 𝑋4 → 𝑋9 → 𝑋12 (3.1) 
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Figure 3. 2. Linearization of the network depicted in Figure 3.1. 

3.2 The relevance of linearization. 
 

One of the early references to the linearization process is the England’s work about the “fission 

cross sections” (England, 1962a). In the Part I of his report, England shows how to break a 

section of the transmutation and decay network related with Xe134 . In the appendices A and B 

of the same report, England explains how the independent linear chains can be solved using an 

analytical solution.  Nevertheless, England’s explanation is merely intuitive and does not offer 

an explicit methodology for the linearization.  

Time after, the burnup code CINDER (England, 1962b) implemented England’s procedure, and 

it is, probably, the first code using the linearization process. Even when the idea behind the 

linearization process was merely intuitive in the first stages of the development of burnup 

codes, a formal mathematical proof about linearization was offered by Raykin and Shlyakhter 

(Rayking and Shlyakhter, 1989). In their work, it is strictly proved that any transmutation 

network can be broken into independent depletion chains if the burnup equations are linear in 

concentrations.  

After CINDER was developed, other codes who used the linear appeared, among which are 

ORIGEN (Bell,  1973), WIMS (Leszczynski et al. 2007), DCHAIN (Tasaka, 1976), HELIOS 

(Studsvik, 2008), BISON-C (Cetnar, 2000), MONTEBURNS (Poston and Trellue, 1999), 

PENBURN (Manalo, 2008), among others. Unfortunately, in their documentation there is not a 

detailed treatment about the linear chains building, and even with a fewer exceptions, the DFS 

algorithm is not mentioned. 

This lack of information about the linearization method can be explained if it is considered the 

computation limitations, and the conservative focus that some codes had. Since the number of 

linear chains that are used in a code impacts considerably in the execution’s time, it is very 

probable that the linearization process was carried out only once, using a probed scheme that 
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were developed heuristically. In other words, the codes always work with the same set of linear 

chains that produce adequate results.  

Besides, not all the linear chains are significant to compute the nuclides concentration, and they 

can be neglected. In fact, the main advantage of one of the most powerful linear chain 

methodologies, known as the Transmutation Trajectory Analysis (TTA), consists in reducing 

the set of linear chains, considering only those having a meaningful contribution (Cetnar, 2006).   

The above reasons seem to justify the little attention that the linearization process have 

received, nevertheless a new paradigm has emerged recently in the development of nuclear 

core analysis codes, which consists essentially in carry out several computations “on the fly” 

during the global core simulation (Ivanov, 2008, Zhang, 2008). Unlike the common and 

traditional approach where, for example, pre-generated tables for a homogenized node were 

calculated for these parameters, this new paradigm involves a greater use of computational 

resources to achieve best estimates. These new procedures are known as “Next Generation 

Methods” (NGM). 

Even when this new approach does not consider the linearization process in burnup 

calculations, it suggests using more detailed computations and more complex analysis. 

Therefore, it is possible to extend this paradigm in the transmutation and decay network’s 

study, to include a great number of isotopes, and to track all the possible reactions with fewer 

approximations.  In this way, it will be possible to gain flexibility respecting to the number of 

linear chains included, as well as its length.  

For the above discussion, it is justified the development of alternative linearization’s 

algorithms, that provides with longer linear chains obtained in a shorter time interval  

and tracking a greater number of elements in the network. Besides, this allows defining the set 

of linear chains according to different scenarios or problems, and thus avoiding the use of a 

fixed scheme. 

It seems that the last fact is true specially in another branch of nuclear engineering, namely: 

“nuclear activation calculations”, in which the Bateman’s equations are also solved with a 

similar methodology. For example, in the recently developed ACTYS activation code (Chaitanya 

et al., 2017), the linear chains (also called “pathways”) are automatically generated at each time 

step, adapting its procedure to several cases, and avoiding excessive time consumption.  

3.3 The algorithm based in sorting strings elements. 
 

One of the key points about the proposed algorithm is related with the “a priori” information of 

the isotopes, and their reactions that come from nuclear data libraries, such as ENDF or JEFF. 

As it was discussed in the past chapter, through these libraries it is possible to know if an 

isotope is stable, and who are their descendants or “daughters”. This information can be 

managed in data structures like lists or dictionaries, and the DFS’s queries are reduced to know 

if the isotope decays/transmutes and, if the answer is true, what are the products of these 

transformations.  

As it will be discussed in the next section, both queries can be summarized in a single consult 

about who are the descendants, using two vectors and a special notation. Later, the whole 

structure of a transmutation and decay network can be condensed in one vector, and from it 
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the linearization process is straightforward. Particularly, the procedure to build linear chains 

is equivalent to ordering a character’s sequence, also called “string” in computer science. 

3.3.1 Information’s condensation, and indexes generation. 
 

In order to describe the procedure of generation of indexes, the transmutation and decay 

network showed in the Figure 3.1 will be considered, as well as the empty vectors or lists 𝑉1 

and 𝑉2. The first element in the network 𝑋1, is adding to 𝑉1, and a string “P0” is stored in 𝑉2: 

 𝑉1 = [𝑋1]     ;             𝑉2 = [P0] (3.2) 
 

After this, it is necessary to define two iterative functions: “Add-indexes” and “Add-elements”, 

which are showed in the Algorithm 3.1 and Algorithm 3.2, respectively. The first one builds the 

necessary notation to the process of linearization, and the second one stores this information 

in a special structure. Once the first iteration of “Add-elements” function is carried out, the 

structures of 𝑉1 and 𝑉2 are the following: 

 𝑉1 = [𝑋1, 𝑋2, 𝑋3];          𝑉2 = [𝑃0, 𝑃0 − 1, 𝑃0 − 2] (3.3) 
 

Note that both vectors must have the same number of elements, and that there is a one-to-one 

correspondence (a bijective function) between them. Therefore, the information in the 𝑖 -

position in 𝑉2, belongs to the 𝑖-element in 𝑉1. The dash character (“-“) in the items in 𝑉2, allows 

identifying the relationship between the elements in 𝑉1. For example, for 𝑋3 the notation “𝑃0 −

2" is used, which means that this element is the “second daughter” or the “second descendent” 

of “𝑃0". In the present case, “𝑃0” correspond to 𝑋1 . Then, for the second iteration of “Add-

elements” function, 𝑉1 and 𝑉2 have the following structure: 

 𝑉1 = [𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5];        𝑉2 = [𝑃0, 𝑃0-1, 𝑃0-2, 𝑃0-1-1, 𝑃0-1-2] 
 

(3.4) 

Again, it is possible to track a pathway or a linear chain in 𝑉2 using the dash character. It is only 

needed to follow the ordering sequence of the strings. From (3.4) following pathways can be 

extracted: 

 𝑃0 → 𝑃0-1 →  𝑃0-1-1 
𝑃0 → 𝑃0-1 → 𝑃0-1-2 

 

(3.5) 

Essentially, the elements in (3.4) have been ordered, following the paths. This procedure of 

ordering the sequence of strings can be addressed with a more detail in Section 3.3.2. Through 

the correspondence with 𝑉1, the following two linear chains can be built from the pathways 

given in (3.5): 

 𝑋1 → 𝑋2 → 𝑋4 
𝑋1 → 𝑋2 → 𝑋5 

(3.6) 

 

If (3.6) is compared with the Figure 3.1, it is possible to realize that the algorithm traverses the 

network one generation at time. In other words, it first finds the descendants for one element, 

store them, and then repeated this procedure for the following elements in the same generation.  
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Algorithm 3.1 Add-indexes  
 

 
Input: Two integer numbers, 𝑗 and 𝑘, regarded as indexes 
Output: A character string stored in 𝑉2  
 
STEP 1 Select the item in the 𝑘- position in 𝑉2 
STEP 2 Build the character string “ − 𝑗” 
STEP 3 Concatenate the character string built in STEP 2, with the item in the 𝑘-position in 𝑉2 
i.e.: 

 
𝑉2[𝑘] + " − 𝑗" 

 
STEP 4 Store 𝑉2[𝑘] + " − 𝑗" in 𝑉2: 
 
                  𝑉2 ← 𝑉2[𝑘] + " − 𝑗"  
 
 

 

Algorithm 3.2 Add-elements 
 

 
Input: The element in the 𝑗-position in 𝑉1 
Output: Add elements to 𝑉1 and call the “Add-indexes” function 
 
If 𝑉1[𝑗] is different from “End”: 
                  ■ STEP 1 Check the “descendants” for the element in the 𝑗-position in 𝑉1  
                  ■ STEP 2 Count the number of “descendants”, and call that value as "𝑛" 
 
                  ■ If 𝑛=0: 
                                      ■   Add “End” to 𝑉1 : 
  
                                                              𝑉1 ← "End" 
 
                                      ■  Call the Add-indexes function with input’s values 𝑗 and 𝑖: 
 
                        Add-indexes (𝑗, 𝑖) 
                 ■ If 𝑛 is different from 0:    
             
                                      ■  For 𝑖 = 1,… , 𝑛: 
                                           
                                                          ■   Add the 𝑖-descendent (from a total of 𝑛) of the 𝑗- position      
                                                                 element in 𝑉1:      
                                                             
                                                                                  𝑉1 ← 𝑖-descendent of 𝑉1[𝑗] 
 
                                                          ■  Call the Add-indexes function with input’s values 𝑗 and 𝑖: 
 
               Add-indexes (𝑗, 𝑖) 
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Therefore, the algorithm is not a DFS’s type, because it does not search first in depth, instead it 

searches first in breadth. In computer sciences, this methodology is known as Breadth-First-

Search (BFS) algorithm. 

As it was mentioned earlier, the DFS method carries out two queries: 1) if the isotope 

decays/transmutes and 2) what are the products of these transformations. Nevertheless, if the 

information about the isotopes is treated before the queries, it is possible to reduce these 

consultations to only one. Therefore, if there is a “data-base” with the descendants of the 

isotopes, it is only necessary to consult if the isotope decays/transmutes, and then to select one 

of the descendants and “put on hold” the rest. The proposed algorithm makes the same 

consultation, but it does not “put on hold” elements, instead it builds the notation previously 

mentioned.  

For the 10th iteration the structure of the vectors will be the following: 

 𝑉1 =  [𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, End, 𝑋11, End, 𝑋12, 𝑋13, 𝑋14]; 
 
                                                                         𝑉2 =  
 
[P0, P0-1, P0-2, P0-1-1, P0-1-2, P0-2-1, P0-2-2, P0-2-3, P0-1-1-1, P0-1-2-1, P0-2-1-1, 

P0-2-2-1, P0-2-3-1, P0-1-1-1-1, P0-1-2-1-1, P0-1-2-1-2] 

 

 

3.3.2 Sorting based in the dash character 
 

Two paths were found in (3.5) through a sorting of the elements of the vector 𝑉2. It is possible 

to explain in a more formal way how this procedure it is carry out. An arbitrary item in 𝑋𝑘 will 

be considered, which has the following element in 𝑉2:  

 𝑃0 −⋯− 𝑛 −𝑚 − 𝑗 
 

(3.7) 

In order to search the immediate ancestor and successor elements of 𝑋𝑘, it is just necessary to 

find in 𝑉2 the next items: 

 𝑃0 −⋯− 𝑛 −𝑚,             𝑃0 −⋯− 𝑛 −𝑚 − 𝑗 − 1 (3.8) 
 

It can be noted, that the dash character and the notation structure provide a useful symbolic 

identifier. Starting from (3.8), for the ancestor element it is necessary to “back up” one dash 

character, omitting the 𝑗 element. For the successor, it is necessary to go forward one “dash” 

character, and search the “1” element that corresponds to the first successor. 

Once these items have been found in 𝑉2, it is possible to find the corresponding elements in 𝑉1 

through their positions, from the bijective relationship between 𝑉1 and 𝑉2. Nevertheless, this 

search method in its standard form can represent a high computational time cost, because the 

“back up” and “forward” steps in the element (3.7) are string operations. The first one is 
equivalent to a “split” process and the second one involves a concatenation procedure. Then, if 

this process is repeated for all the elements, it is possible that the computation time will be 

greater than the related with DFS algorithm, and therefore it would not exist an interest in this 

methodology. 
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Fortunately, there is an alternative form to carry out this search, that represents one of the main 

advantages for the present contribution, and whose computational time cost is minimal 

compared with the standard methodology previously mentioned. It turns out that, because of 

using “dashes”, the notation structure has hierarchical characteristics that makes it perfect for 

sorting techniques, being unnecessary to use strings operations. 

The best option for the present case is a sort method based in the lexicographic order, which 

(speaking in a non-rigorous way) compares ASCII characters codes, that are essentially 

numbers, and then orders the string elements based in its equivalent values. For example, the 

“A” character has an ASCII value code of “65”, the “4” character has “54”, and the dash character 

has “45”. So, if these three elements are compared, from lowest to highest, the result would be: 

“-“, “4” “A”. 

In computer science (Harzheim,2005) this kind of sorting uses a Cartesian product criterion, 

which is based in the comparison of two strings, taking element by element. It is possible to 

exemplify this with a simple case where the strings have two components or characters, i.e. a 

string with length 2.  To build this kind of strings it is necessary to use two sets, 𝐴 and 𝐵, each 

one having all the characters allowed in the strings structure. Now, the set of all strings of length 

2, named 𝑆,  can be defined as the cartesian product of 𝐴 and 𝐵: 

 𝑆 =  𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (3.9) 
 

Now for 𝑆, the lexicographic order is given as: 

 (𝑎, 𝑏) ≤ (𝑎′, 𝑏′) if and only if  𝑎 < 𝑎′ or   (𝑎 = 𝑎′ and   𝑏 ≤ 𝑏′) (3.10) 
 

This definition can be generalized for strings of an arbitrary length, and it is very suitable for 

the notation element in (3.7) and (3.8).  After the elements in 𝑉2  are sort applying a 

lexicographic order, the result is as follows: 

 𝑉2
∗ = 

[P0, P0-1, P0-1-1, P0-1-1-1, P0-1-1-1-1, P0-1-2, P0-1-2-1, P0-1-2-1-1, P0-1-2-1-2,
  

P0-2, P0-2-1, P0-2-1-1, P0-2-2, P0-2-2-1, P0-2-3, P0-2-3-1] 
 

 
(3.11) 

The asterisk superscript indicates that 𝑉2  has been sorted. Finally, several programming 

languages have native functions for sorting sets, vectors or list whom elements are strings. 

Therefore, after the condensation process described in Section 3.3.1, it is only necessary to 

apply a simple instruction to sort the elements in 𝑉2 . The linearization process is not yet 

complete, but as result of the sorting it has been generated a structure in (3.11) with various 

features will be useful to break-down the network more easily. 

3.3.3 Notation’s properties and linearization process. 
 

In order to discuss some properties of the notation the first five elements in (3.11) will be 

considered: 

 P0, P0-1, P0-1-1, P0-1-1-1, P0-1-1-1-1 (3.12) 
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From the relationship with 𝑉1, the equivalent elements are: 

 𝑋1, 𝑋2, 𝑋4, 𝑋9, X12 
 

(3.13) 

The last sequence is precisely the first linear chain appearing in Figure 3.2. Now, the following 

four elements will be analyzed 

  P0-1-2, P0-1-2-1, P0-1-2-1-1, P0-1-2-1-2 (3.14) 
 

Again, through the relationship between 𝑉1 and 𝑉2 it is possible to obtain the following linear 

chain: 

  𝑋5, 𝑋10, 𝑋13, 𝑋14 (3.15) 
 

In this case, there is not a complete linear chain. Nevertheless, if the first three elements are 

observed, it is possible to conclude that they belong to the second chain appearing in Figure 3.2. 

Even more, except5 for 𝑋17, these three elements build the last part of the second linear chain.  

The two missing items of this linear chain, 𝑋1 and 𝑋2, have already appeared in (3.13). Now, if 

the second and third linear chains in Figure 3.2 are compared, they are identical except for their 

last element: the second one ends with 𝑋13 and the third with 𝑋14. 

For the following sequence in 𝑉2
∗: 

 P0-2, P0-2-1, P0-2-1-1 
 

(3.16) 

With their corresponding items in 𝑉1: 

 𝑋3, 𝑋6,End (3.17) 
 

It is possible to conclude that this is a fragment of the fourth linear chain in Figure 3.2. Again, 

the first element missing, 𝑋1, has already appeared in (3.13), and also in this case the string 

“End” appears.  

From the above discussion it is possible to note that the sequences (3.12), (3.14) and (3.16) 

were extracted from (3.11), searching the elements where the dashes number in the items in 

𝑉2
∗  decrease. Also, in these extracted elements, the dashes number increases, or remains 

constant in its final part, as shown in (3.14) where P0-1-2-1-1 and P0-1-2-1-2 have the same 

number of dashes. Finally, the missing elements in (3.15) and (3.17) are items with a dashes 

number decreased by at least one unit, compared with the initial elements in (3.14) and (3.16).  

The above properties can be summarized as follows: 

1) In a linear chain, the dashes number in consecutive elements increases. Therefore, if 

there are two consecutive elements in 𝑉2
∗, with a growing dashes number, then these 

belong to the same linear chain; even more, they are ordered. 

 
5 This element does not appear, because we make only 10 iterations of the Add-elements function.  
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2) If 𝑘 −consecutive elements in 𝑉2
∗  have the same dashes number from the position 𝑗 , 

then it is necessary to duplicate 𝑘 − 1 times the previous “segment” of linear chain until 

the position 𝑗 − 1. 

3) If the dashes number decreases between two consecutive elements, 𝑗 and 𝑗 + 1 in 𝑉2
∗, 

then the element 𝑗 is the final of the current linear chain, and the 𝑗 + 1 item is where the 

following linear chain begins. 

A formal proof of these properties is given in Appendix A. With the first and third properties, it 

can be concluded that when the dashes number decreases then a linear chain “fragment” has 

been generated. All the possible linear chain fragments of the example are listed in Table 3.1. 

The second property represents an advantage over the DFS. It will be supposed that there are 

𝑘 consecutive elements in 𝑉2 with the same dashes number. This correspond to the following 

linear chains structure (supposing that the repetition begins in the 𝑗 position): 

 

{

𝑋0 → 𝑋1 → ⋯ → 𝑋𝑗−1 → 𝑋1
𝑋0 → 𝑋1 → ⋯ → 𝑋𝑗−1 → 𝑋2

…
𝑋0 − 𝑋1 → ⋯ → 𝑋𝑗−1 → 𝑋𝑘 →

    

 
(3.18) 

 

The arrow in 𝑋𝑘  means the possibility of having more elements from the position 𝑗 , i.e. the 

possibility that this linear chain continues. The proposed notation allows knowing this kind of 

repetitive structure easily unlike to the DFS, which for the same scheme would performs 𝑘 

queries to know if the 𝑗  element has more descendants, and therefore consuming more 

computational time. Additionally, the kind of structure in (3.18) is common if linear chains with 

a uniform length are generated.  

The result of applying the second property to (3.15) is: 

   𝑋5 → 𝑋10,→ 𝑋13                  ;                       𝑋5 → 𝑋10 → 𝑋14  

3.3.4 Breaking and Structuring Algorithm. 
 

From 𝑉2
∗, the process of linearization can be divided in two parts: 1) A breaking-down routine, 

and 2) a Structuring routine. In the first part, the vector 𝑉2
∗ is divided in linear chain fragments, 

while in the last part such fragments will be complete, filling the missing elements and 

duplicating (if applicable) the linear chain with the same dashes number, as in the case of  (318). 

The algorithms related with these routines are showed in Algorithm 3.3 and Algorithm 3.4. 

bracket’s notation will be used to represent vector or lists, as well as the colon operator whose 

use is common in MATLAB o Python Programming.  

Table 3. 1. Linear chain segments in 𝑉2
∗. 

               Linear chain fragment in 𝑉2
∗ 

 
        Equivalent element in 𝑉1  

1   [P0, P0-1, P0-1-1, P0-1-1-1, P0-1-1-1-1] [𝑋1, 𝑋2, 𝑋4, 𝑋9, 𝑋12] 
2   [P0-1-2, P0-1-2-1, P0-1-2-1-1, P0-1-2-1-2]            [𝑋5, 𝑋10, 𝑋13, 𝑋14] 
3   [P0-2, P0-2-1, P0-2-1-1] [𝑋3, 𝑋6,End] 
4   [P0-2-2, P0-2-2-1] [𝑋7, 𝑋11] 
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Algorithm 3.3. Breaking-down routine 
 
Input: A sorted vector/list 𝑉2

∗, whose ordering methodology is based in a lexicographic order  
Output: A vector/list  𝐿, whose elements are all the linear chain fragments in 𝑉2

∗, and a set 𝑈, 
whose elements are vectors with the dash’s numbers of the elements in 𝐿 
 
■ 𝑙 = length of 𝑉2

∗ (i.e. the number of elements in 𝑉2
∗)  

■ 𝐿 = [ ], i.e. 𝐿 is an empty vector.  
■ 𝑈 = [ ], i.e. 𝑈 is an empty vector.  
■ 𝑐 = 𝑙  
If  𝑙 > 2: 
          
         While 𝑐 ≠ 0: 
                  ■ 𝑆1 = [  ] (an empty momentary vector)         
                  ■ 𝑀1 = [ ] 
                  ■ 𝑑 = 0 
                  ■ 𝑖 = 1 + 𝑐 
                  While 𝑑 ≥ 0  and   𝑖 < 𝑙: 
                                           ■   𝑆1 ← 𝑉2

∗[𝑖] 
                                           ■   𝑀1 ← dashes number of 𝑉2

∗[𝑖] 
                                           ■   𝑑 = dashes number in 𝑉2

∗[𝑖 + 1] −dashes number in 𝑉2
∗[𝑖] 

                                           ■    𝑖 = 𝑖 + 1                                
                  If 𝑖 = 𝑙: 
                                           If dashes number in 𝑉2

∗[𝑖] ≥ 𝑉2
∗[𝑖 − 1]: 

                                                            ■   𝑆1 ← 𝑉2
∗[𝑖]               

                                                            ■   𝐿 ← 𝑆1 
                                                            ■   𝑀1 ← dashes number of 𝑉2

∗[𝑖] 
                                                            ■   𝑈 ← 𝑀1 
                                                            ■   𝑐 = 0 
                                           Else: 
                                                            ■   𝐿 ← 𝑆1 

                                                            ■   𝐿 ← [𝑉2
∗[𝑖]]   

                                                            ■   𝑈 ← 𝑀1 
                                                            ■   𝑈 ← [dashes number of 𝑉2

∗[𝑖]]  

                                                            ■   𝑐 = 0 
 
                 Else: 
                                            ■   𝐿 ← 𝑆1 
                                            ■   𝑈 ← 𝑀1 
                                            ■   𝑐 = 𝑖 − 1 
 Else: 
           If   𝑙 = 1: 
                     ■   𝐿 = 𝑉2

∗  
                     ■   𝑈 = [dashes number of 𝑉2

∗[1]] 
 
          Else: 
                    “The vector 𝑉2

∗ is empty”         
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Algorithm 3.4. Structuring algorithm 
 
Input: The vector/list 𝐿, which contains all the linear chain fragments of a vector 𝑉2

∗, and 
vector 𝑈, whose elements are vectors/lists that contain the dashes number information of 
the vector/list 𝐿 
Output: The vector 𝑅, which contains all the linear chains of a network 
 
 ■ 𝑙 = length of 𝐿, i.e. the number of elements in 𝐿 
 ■ 𝑚 = length of 𝑈 
 ■ 𝐾 = [ ] 
 ■ 𝐾 ← 𝐿[1] 
 For 𝑖 = 2,… , 𝑙:  
                ■ 𝑎 =  𝐿[𝑖][1] 
                For 𝑗 = 1,… , 𝑛 (where 𝑛 is the length of 𝐾): 
                                  If 𝑎 in 𝐾[𝑗]:             
                                              ■ 𝑝 = position of 𝑎 in 𝐾[𝑗] 
                                              ■ 𝑇 =   𝐾[𝑗][1: 𝑝 − 1] 
                                              ■ 𝐾 ← 𝑇 + 𝐿[𝑖][1] 
For 𝑖 = 1,… ,𝑚: 
                ■  𝑆 = elements that are repeated in 𝑀[𝑖] 
                ■  𝑂 = [ ] 
                ■  𝑂 ← 𝐾[𝑖] 
                ■  z = 0 
                ■  𝑔 = length of 𝐾[𝑖] − length of 𝑀[𝑖] 
                For 𝑗 = 1,… , 𝑠 (where 𝑠 is the length of 𝑆): 
                                   ■  𝑐= number of times that the element 𝑆[𝑗] appears in 𝑀[𝑖] 
                                   ■  𝑝= first position where the element 𝑆[𝑗] appears in 𝑀[𝑖] 
                                   ■  𝑝𝑧 = 𝑝 + 𝑔 − 𝑧 
                                   For 𝑢 = 1,… , 𝑐 − 1: 
                                               ■  𝑅 ← 𝑂[−1][1: 𝑝𝑧 − 1] + 𝑂[−1][ 𝑝𝑧 − 1 + 𝑢]     
    
                                   If 𝑗 ≠ 𝑠 (where 𝑙 is the length of 𝐾[𝑖]): 
          
                                               ■  𝑂 ← 𝑂[−1][1: 𝑝𝑧 − 1] + 𝑂[−1][ 𝑝𝑧 − 1 + 𝑐] + 𝑂[−1][𝑝𝑧 + 𝑐: ] 
                                   Else:          
                                               ■  𝑅 ← 𝑂[−1][1: 𝑝𝑧 − 1] + 𝑂[−1][ 𝑝𝑧 − 1 + 𝑐] 
                                                 
                                    𝑧 =  𝑧 + 𝑐 − 1 
 

 

3. 4. Additional notation properties and sorting methods. 

3.4.1 Comparison with Newick’s notation. 
 
In addition to improve the running time, another contribution of the proposed algorithm is its 

notation, which can provide information of the transmutation and decay networks used in a 

specific problem. Besides, the algorithm’s notation can be used to standardize the set of 

networks used between two different burnup codes, allowing the interchange of schemes.  
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For this task it is necessary to using a matrix column with two elements, which will be 𝑉1 and 

𝑉2. Later, with the proposed algorithm the set of linear chains can be extracted from these 

vectors in a straightforward way.  

In mathematics and computer science, there are several proposed notations for these types of 

structures, also called tree structures, being Newick’s one of the most popular. This notation 

uses “comas” and “parentheses” to denote the edges of a tree and their structure. For example, 

for the scheme of Figure 3.1, the Newick’s notation for the 𝑋1, 𝑋2, … , 𝑋8 elements will be: 

 ((𝑋4, 𝑋5)𝑋2, (𝑋6, 𝑋7, 𝑋8)𝑋3 )𝑋1 (3.19) 

With a right-to-left hierarchy, the parentheses contain the “direct descendants” for an isotope. 

So, the father or ancestor of a set of elements is on the right, outside of the parenthesis around 

these items. For the the following generation in the scheme of Figure 3.1, the corresponding 

Newick’s notation will be: 

 (((𝑋9)𝑋4, (𝑋10)𝑋5)𝑋2, (𝑋6, (𝑋11)𝑋7, 𝑋8)𝑋3 )𝑋1 (3.20) 

And finally, for the complete network: 

((((𝑋12)𝑋9)𝑋4, (((𝑋17)𝑋13, 𝑋14)𝑋10)𝑋5)𝑋2, (𝑋6, (((𝑋18)𝑋15, (𝑋19)𝑋16)𝑋11)𝑋7, 𝑋8)𝑋3 )𝑋1 

Also, it is possible to include more information in the Newick’s notation using the colon symbol. 

For example, for the first line it is possible to include the type of decay related with an isotope, 

or its branch ratio: 

((𝑏2,4: 𝑋4, 𝑏2,5: 𝑋5)𝑏1,2: 𝑋2, (𝑏3,8: 𝑋6, 𝑏3,7: 𝑋7, 𝑏3,8: 𝑋8)𝑏1,3: 𝑋3 )𝑋1 

Clearly, the Newick’s notation is a powerful tool to represent decay and transmutation 

networks. Nevertheless, there are several notable differences between the proposed 

algorithm’s notation and the Newick’s. Particularly, Newick’s notation have the following 

advantages over the first one: 

1) That notation can summarize all the information of a network in a single line or vector, 

using the colon symbol, while the proposed algorithm’s notation necessary requires at 

least two vectors: one for the elements, and another for the dashes structure. 

2) Read and interpret the Newicks’s notation is a relative straightforward process, 

because it is possible to find an element and his ancestor, or his descendants, in a 

simpler way due the parentheses and comas. Even when this process can become 

complex with many elements, it is easier than read and interpret the proposed 

algorithm’s notation, where it is necessary to use the relationship between the vector 

𝑉1 and 𝑉2, and the position of the elements in each of these vectors. 

On the other hand, its disadvantages the Newick’s notation have some disadvantages over the 

proposed algorithm, which are: 

1) Build linear chains starting from Newick’s notation will require a search algorithm that 

deals with the parentheses and the right-to-left hierarchy. This process can be 

extremely difficult, because that notation generates nested structures, and it is 

necessary to identify the initial and final parentheses for a set of given elements.  
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2) The proposed algorithm’s notation can provide information about the number of linear 

chains that will be generated in the linearization process. It is only necessary to build 

the vector 𝑉2
∗, i.e. the vector 𝑉2 under a sorting process, and later apply an elementary 

counting process. On the other hand, obtain that information from Newick’s does not 

seem to be a direct process, because the counting procedure necessarily requires build 

the linear chains. 

3.4.2 Building the linear chains through the Newick’s Notation. 
 

The first advantage of the proposed algorithm over the Newick’s notation will be discussed in 

more detail.  For such analysis, it will be considered the structure given in (3.20).  Such structure 

can be traversed from left to right, counting the number of left parentheses, “(“, and searching 

for the first right parentheses, “)”. In the present case, this element will be found after the 

isotope 𝑋9, i.e.: (((𝑋9).   

The next item on the right of this parenthesis will be the “father”, or “ancestor”, of all the 

elements grouped in the most nested structure, i.e., the set or elements between the first right 

parentheses “)”, and the last left parentheses, “(“.  

In our example, that element is 𝑋4: 

(

 
 
((𝑋9 )

First right parenthesis

↓

𝑋4⏟
Father

 , (𝑋10)𝑋5)𝑋2, (𝑋6, (𝑋11)𝑋7, 𝑋8)𝑋3

)

 
 

 

There may be more than one element in the parenthesis to the left of 𝑋4, and therefore it is 

necessary to select one of them, and “put on hold” the rest, in the same way that we did it with 

the DFS’s algorithm. In the present example, the only isotope is 𝑋9, which will be after 𝑋4: 

      𝑋4 → 𝑋9 (3.21) 

Then, there are two cases for the next element to the right of 𝑋4 in (3.20): 1) this element is a 

coma or 2) this element is a right parenthesis.  

For the first case, a coma would imply that there are more elements belonging to the same 

“generation” or “depth” of 𝑋4. Since it is necessary to find the “father” or “ancestor” of 𝑋4 to 

build the linear chain, the other elements of the same generation will be ignoring, including 

their parenthesis. To do that, it is necessary to walk the element, while counting the left and 

right parenthesis that will be found, until the number of right parenthesis will be more than the 

left’s type. This difference between the type of parenthesis would mean that the end of the 

parenthesis has been found, which contains all the elements belonging to the same generation. 

For the second case, where there is a right parenthesis after 𝑋4, this would imply that there are 

not more elements in the same generation. Then, the next item will be to the linear chain. 

In the present example there is a coma after 𝑋4 , and therefore it is necessary to walk the 

parenthesis to the right, until the isotope 𝑋5 will be reached.  Up to this point the counting is: 
one left parenthesis (to the left of 𝑋10), and two of the right type. During the walk, it is necessary 

to “store” all the elements that are in the same generation of 𝑋4, and put them on hold.  
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The next step is to take the element that has have found at the right of 𝑋5, in other words 𝑋2, 

and adding it at the beginning of the linear chain in (3.21): 

      𝑋2 → 𝑋4 → 𝑋9 (3.22) 

Then, this process is repeated, until there are not more elements “put on hold”.  The described 

procedure is like a DFS’s algorithm, even when the linear chains are built starting from the end, 

instead of the beginning.  Therefore, using the Newick’s notation to build linear chains is 

equivalent to use a DFS’s algorithm.  

It was mentioned earlier in this section, that the proposed algorithm’s notation can be used to 

standardize the set of networks used between two different burnup codes. Then, the objective 

of the detailed analysis that was carried out was to show that even when the Newick’s notation 

has several advantages, the process of linearization starting from it cannot be straightforward, 

neither direct or fast. 

3.4.3 The superposition process 
 
In addition to the advantages described before, the proposed notation may be useful to 
determine which contribution will be considered in the process the superposition process that 
was discussed in Section 2.4.3. For example, the first two linear chains of Figure 3.2 will be 
considered: 
 

 𝑋1 → 𝑋2 → 𝑋4 → 𝑋9 → 𝑋12 
            𝑋1 → 𝑋2 → 𝑋5 → 𝑋10 → 𝑋13 → 𝑋17 

(3.23) 

 
There are two common elements that appear in both lines, 𝑋1 and 𝑋2. The concentration of the 
isotopes of the two lines can be obtained using the Bateman equation. Nevertheless, when the 
second linear chain is solved, it is necessary to ignore these elements, otherwise their 
concentration will be overestimated. The reason for this, is not only that they are repeated, but 
rather that they have the same “position” in both (first and second place), and they are in the 
same order; therefore, the sequence represents the same physical phenomenon in the original 
network. 
 
Now, if it is assumed that there is another linear chain with the following structure (that not 

appears in Figure 3.2): 

                    𝑋1 → 𝑋2 → 𝑋3 → ⋯ → 𝑋𝑖 → 𝑋1 → 𝑋2 → 𝑋4 → 𝑋9 → 𝑋12 

In this structure also appears the sequence 𝑋1 → 𝑋2, with all the rest of elements belonging to 

the first linear chain in (3.23). Nonetheless, in this case these elements must not be ignored, 

because even when the items are repeated and they have the same order, they not are in the 

same position, and therefore this sequence represents a different physical phenomenon.   

Particularly in this case, the elements have a different “genealogy”, because they have distinct 

“ancestors” in the network. In the first linear chain, 𝑋1 does not have a “father” or an “ancestor”, 

while in the last chain the isotope 𝑋1 was the product or “daughter” of the isotope 𝑋𝑖 . 

Therefore, the procedure to decide which concentration will be taken into account, requires 

walking through the set of linear chains, identifying if an element appears for the first time in 

it, in which case their concentration will be considered. In another case, it is necessary to 
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determine if the sequence of ancestors of the given isotope is also repeated, as well as its 

sequence of successors.  

A detailed procedure of this task is described in the Helios code manual (Studsvik, 2008), using 

a set of special numbers or indices, also in the Kevin Manilo’s master thesis (Manalo,  2008). In 

the last reference, the author developed an algorithm to “enumerate” the linear chains, using 

four types of ID values: a zero value for elements whose concentration must not be considered, 

a negative value when the contribution due to these elements must not be considered, a value 

of -99 of the last two combined scenarios, and finally, an integer and common values for 

elements whose concentration must be taken into account. 

In any case, there are at least two methods to assign these values: 1) when the linear chains 

have been built, 2) during the process of linearization. 

If set of linear chains already has been generated, the process of assigning values can consume 

a great amount of time, depending on the number of the elements in the set, because it requires 

the procedure described in Section 2.4.3. On the other hand, if the values are assigned while the 

linear chains are built, the process is faster because it is possible to use several properties of 

the network. For example, it is possible to know when the sequences share the same ancestors, 

because this often happens with the presence of the branches of the network.  

Now, if it is desired to share the linear chains information between two burnup codes, these 

values should be included. Hence, the proposed algorithm’s notation, through 𝑉2
∗, can be used 

to assign these values during the linearization process. 

As it was mentioned before, the proposed notation allows to identify the branching points, the 

elements whose contribution must to be considered, and therefore is very suitable for the 

“enumerating procedure” of the superposition process, being other of its advantages. 

3.4.4 Cyclic chains. 
 

There is a class of networks whose structure contains a repeated pattern that under a 

linearization process leads to an infinite number of linear chains. For example, the following 

transmutation scheme can be considered as a cyclic chain: 

 𝑋𝑍
𝐴

𝑛,𝛾
→   𝑋

𝑛,2𝑛
→  𝑍

𝐴+1  𝑋1𝑍
𝐴 → ⋯ (3.24) 

 

The first element reappears at the final part; therefore, the pattern is repeated from this point. 

This case can happen with several heavy elements as U235  and U238 . If this were a linear chain, 

its length would be infinite, and the problem would be solved by restricting the length of the 

depth of search. Unfortunately, there may be branches and then the problem becomes complex. 

To illustrate this, suppose that in Figure 3.1 the element 𝑋14 is actually 𝑋2, i.e. it reappears in 

that node.  Note that the element 𝑋2 generates two branches at the beginning of the network, 

which have 𝑋4  and 𝑋5  as their initial elements. Therefore, if this element reappears in the 

position of 𝑋14, these branches will appear again and again, generating an infinite network. 
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This type of networks is called “cyclic chains” and have an impact in the Bateman’s equation, 

since its analytic solution presents problems if there are two elements with the same effective 

decay constant (that is the case if there are two repeated elements in a network’s pathway).  

In Section 1.9 it was discussed a methodology to solve such structures through a general 

solution, which is based in the Laplace transform, and in Chapter 4 and Chapter 5 such topic 

will be addressed in a more detailed way. As previously mentioned, the linearization process is 

applied to a cyclic chain, the result will be an infinity number of linear chains. Nevertheless, if 

the number of generations considered is restricted (i.e. the depth of search), it is possible to 

address the problem in a satisfactory way, and the number of linear chains can be finite, even if 

this number is large. The error due to this approach is acceptable.  

This procedure is used in the ALARA (Wilson 1999) activation code, and an earlier reference to 

it is in DCHAIN2 (Tasaka, 1980). Depending on the considered length, the number of linear 

chains can grow significantly, and therefore, using a standard DFS algorithm cannot be 

adequate. In the Section 3.5, the developed algorithm is compared with the DFS in several cases, 

among which the cyclic chain scenario is notorious. A more extensive discussion about the 

linear chains will be given in Chapter 4 and Chapter 5.  

3.4.5 Computing the number of linear chains 
 

In Section 3.4.1 it was stated that one disadvantage of the Newick’s notation is that there is not 

a straightforward method that allows knowing the number of linear chains that will be 

generated. This contrast with the proposed algorithm’s notation, from which this value can be 

obtained. In the present section, this subject will be treated in more detail. 

Based in the properties listed in section 3.3.3, it is possible to count the number of linear chains 

that will be generated from the vector 𝑉2
∗. If the number of dashes in 𝑉2

∗ is always growing, then 

the number of linear chains will be equal to one. Otherwise, when the number of dashes 

between two consecutive elements in 𝑉2
∗ decreases, then there is a “breaking point”. The total 

number of “breaking points” in 𝑉2
∗ will be represented by 𝛼. 

As was mentioned in Section 3.3.2, the vector 𝑉2
∗ can be divided into a set of “segments” of linear 

chains, whose cardinality is equal to 𝛼. For a given segment, denoted by 𝑖, the number of dashes 

is increasing or remains constant in certain sections. The element at the end of such segment 𝑖 

will have the maximum number of dashes for this segment, and will be denoted as 𝑚𝑖.   

Then, it is necessary to define the function 𝑛𝑖(𝑘), 1 ≤ 𝑘 ≤ 𝑚𝑖, which will count the number of 

elements inside the segment 𝑖, that have 𝑘 dashes. Therefore, the total number of linear chains 

that will be generated from the segment 𝑖 will be equal to: 

  

∑(𝑛𝑖(𝑘) − 1

𝑚𝑖

𝑘=1

) + 1 = ∑𝑛𝑖,𝑘

𝑚𝑖

𝑘=1

−𝑚𝑖 + 1 

 

 
(3.25) 

Finally, the total number of linear chains that will be generated from vector 𝑉2
∗ will be: 
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∑∑𝑛𝑖,𝑘

𝑚𝑖

𝑘=1

−𝑚𝑖 + 1

𝛼

𝑖=1

 

 

 
(3.24) 

3.5 Comparison with DFS 
 

3.5.1 The comparison scheme. 
 
Strictly, a formal comparison between two algorithms must be carried out based on their time 

and spatial complexity. A theoretical study of this topic involves an analysis of the steps and the 

structure of the algorithms, using the big 𝑂 notation (also called Bachmann-Landau notation).  

Nonetheless, this kind of study is beyond the scope of the present thesis, and therefore an 

empirical approach will be used instead. The proposed comparative scheme can be divided in 

three parts: 

1) A network of decay and transmutation of heavy isotopes, in which the fission process is 

presented, but the fission products do not appear explicitly. 

2) A set of networks that have a fission product as their initial element, which in turn are 

the first elements of isobaric chains. 

3) A set of networks that have a fission product as their initial element. 

Starting from this scheme, it is possible to build the network for a burnup problem in two 

different ways, each one using the part 1), and choosing between the part 2) and the part 3). 

The fission process for a heavy isotope will be simulated supposing that there is a descendant 

called “Fission Product”, and that it is the final element in a linear chain. In other words, this 

“Fission Product” will be treated as a stable isotope. 

Table I in the Appendix B illustrates this procedure for the case of U235 , considering only the 

(𝑛, 𝛾), (𝑛, 2𝑛) and the fission reactions. For this scheme, there are 53 linear chains with a length 

or depth of five elements, and the “Fission Product” isotope (abbreviated as “FP”) also has been 

added. 

For the part 2), as it was described in the past chapter, there is a set of networks whose first 

element is a fission product, and that it is at the beginning of an isobaric chain. After the 

linearization process of these elements, the product will be a set 𝐴, of linear chains with the 

following structure: 

 

𝐴 = {

𝑃1 𝑋11 … 𝑋1𝑛
𝑃2 𝑋21 … 𝑋2𝑛
… … … …
𝑃𝑛 𝑋𝑛1 … 𝑋𝑛𝑛

  

 

(3.25) 

Where 𝑃1, 𝑃2,…, 𝑃𝑛 are fission products, and the elements 𝑋𝑖𝑗  represent the descendent 𝑗 for the 

fission product 𝑖. In (3.25) it has been assumed that linear chains have the same length, but this 

assumption is not necessary. Then, the set 𝐴 must be inserted in the linear chains that were 

generated in the part 1) using the “Fission Product” as a link.  
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For example, for a linear chain with the following structure 𝑋1
𝑝𝑎𝑟𝑡 1

→ 𝑋2
𝑝𝑎𝑟𝑡 1

→ ⋯ → 𝑋𝑛−1
𝑝𝑎𝑟𝑡 1

→

"Fission Product" (where the superscript indicates that it was generated in the part 1), it is 

necessary to replace the “Fission Product” element by the set 𝐴: 

    𝑋1
𝑝𝑎𝑟𝑡 1

→ 𝑋2
𝑝𝑎𝑟𝑡 1

→ ⋯ → 𝑋𝑛−1
𝑝𝑎𝑟𝑡 1

→ 𝐴 

Which in turn produces the set 𝐴′: 

 

𝐴′ =

{
 
 

 
 𝑋1

𝑝𝑎𝑟𝑡 1
𝑋2
𝑝𝑎𝑟𝑡 1

… 𝑋𝑛−1
𝑝𝑎𝑟𝑡 1

𝑃1 𝑋11 … 𝑋1𝑛

𝑋1
𝑝𝑎𝑟𝑡 1

𝑋2
𝑝𝑎𝑟𝑡 1

… 𝑋𝑛−1
𝑝𝑎𝑟𝑡 1

𝑃2 𝑋21 … 𝑋2𝑛
… … … … … … … …

𝑋1
𝑝𝑎𝑟𝑡 1

𝑋2
𝑝𝑎𝑟𝑡 1

… 𝑋𝑛−1
𝑝𝑎𝑟𝑡 2

𝑃𝑛 𝑋𝑛1 … 𝑋𝑛𝑛

   

 

 

(3.26) 

As it was described above, the linear chains can be built in two separated steps: first for the 

heavy isotopes, and then for the fission products. Up to this point it may seem enough to 

consider only the part 2), with the isobaric scheme. Unfortunately, there are some cases where 

using only this scheme can cause problems. For example, if the isobaric scheme that begins with 

In131  is used, it will be necessary to use linear chains with a length of at least six elements to 

simulate the isotope Xe131 . So, it is possible that it will be a special interest in an isotope whose 

position in an isobaric chain is distant, and therefore the length of linear chains should be large. 

As it was explained the past chapter, there is a way to avoid this using the cumulative yield, and 

redefining the start of an isobaric chain. In the example of In131 , an isobaric chain that begins 

with I131  or Te131  can be considered, using a cumulative yield for them, reducing the length of 

the linear chains. Additionally, if an algorithm to track a specific reaction path is used, the 

isobaric chain scheme can be inadequate because it is possible that isotope in which there is a 

special interest, will be different from an initial isobaric element. Therefore, for the part 3) it is 

possible to define a set of networks whose initial element is not the start of an isobaric linear 

chain. 

Before continuing with the description of the comparison it is important to mention that the 

following tests were run on a 2.6 GHz-3.5 GHz6 Intel i7, 6700 HQ, under a 64-bit Windows, using 

the Python 2.7 programming language. 

3.5.2 Heavy isotopes comparison. 
 

For this part, the isotopes U235  and U238  will be considered as the initial elements in the 

transmutation and decay networks. In Table II of the Appendix B, all the isotopes that appear in 

each network are listed, with the corresponding reactions that were considered. That 

information was extracted from the ENDF/B-VII.1 Library. 

As it was mentioned before, the combination of the reaction (𝑛, 2𝑛) and (𝑛, 𝛾) can lead to the 

cyclic chain scenario, and since they are included in the present case, the growth of the number 

 
6 The processor’s specifications have two frequencies: a basic of 2.6 GHz and a turbo maxim of 3.5 GHz; 
the last one was used in the present work. 
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of linear chains can be significant. The Figure 3.3 shows the results for U235 , and the Table 3.2 

contains the corresponding data. This graph, whose 𝑦-axis is in logarithm scale, considers the 

running time in seconds as a function of the depth or chain’s length.  

It is possible to observe that, in the first eight values in the graph, the DFS’s time is greater than 

the corresponding time of the proposed algorithm. Even more, if the quotient between them is 

computed, using the DFS’s time in the numerator (these values are in the fifth column in Table 

3.2), there are values ranging from 6.5 to 1.35 for the first eight points. Since there is an interest 

in determine how many times, in average, the proposed algorithm is faster than the DFS, it is 

convenient to compute the geometric mean in the first eight points. This value is equal to 2.43, 

and therefore the proposed algorithm is 2.43 times faster than the DFS for the first eight values, 

corresponding to a depth from 4 to 11 elements.  

Due to the proximity of the curves for the chain’s length of 11, it is advisable to use the proposed 

algorithm up to the value of length 10. Nevertheless, if the 𝛼 reaction is not considered, it is 

possible to extend the length above this value. Such omission can be considered in practical 

problems, because it involves the following linear chain: 

    U235 → Th231 → Pa231 → Fission Product 

Fortunately, the decay constant for the 𝛼 reaction of U235  is 7.038𝑥108 years, and therefore the 

contribution of fission products due to Pa231  can be neglected. Then, for practical cases it is a 

very good approximation not to consider the 𝛼 reaction. Nevertheless, in the present study such 

reaction was considered only to include all the main reactions related with U235 .  

It may seem that the use of the proposed algorithm becomes inconvenient and disadvantageous 

for greater values of chain’s length. Nevertheless, it is necessary to analyze two key aspects 

before to conclude that. First one: until now it has been taken for granted that ordering elements 

is a fast task, but it was not mentioned that it depends on the number of items to order, their 

characteristics, and the sorting method used.  Particularly, for the present example with a depth 

of 13 items, the vector 𝑉2, described in Section 3.3.2, has 67823 elements, a considerable big 

number to be ordered. Additionally, the structure of its two last elements provides an idea of 

the complexity of the comparisons: 

        'P0-2-2-1-2-1-2-1-2-1-2-1-1-0', 'P0-2-2-1-2-1-2-1-2-1-2-1-1-1' 

Then, the first key point to consider is that the proposed algorithm was programmed using a 

standard function, and therefore its running time can be improved with a more powerful and 

complex method of sorting. Currently, there are several sorting algorithms whose 

implementation often depends on the nature of the elements to order, such as the “Merge sort”, 

the “Quick sort”, the “Cocktail sort”, among others (Knuth, 1997). These algorithms have 

different characteristics that not only involve distinct running times, but also have differences 

related with their stability, their convergence, etc. 

Therefore, implementing a more powerful and complex sorting method may require a deeper 

study of the characteristics of the items to be ordered, which can be extremely complex. But this 

topic leads to the second key point. It is possible to observe in Table 3.2 and Figure 3.4, that for 

a chain’s length of 11, there are 8544 linear chains. Now, within these linear chains there are 

nearly 3000 “Fission product” elements, where the set 𝐴 from (3.25) must be inserted. 
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Figure 3. 3. Comparison of Running time vs the chain’s length, between the DFS and the 

proposed algorithm for the U235 . 

 

Table 3. 2. Comparison for the running time between the DFS’s and the proposed algorithm 

for U235  . 

Length of 
linear chains 

Number of linear 
chains generated 

DFS’s 
time (s) 

Proposed 
Algorithm's time (s)  

Comparison 
quotient  

4 51 0.0974 0.0225 4.3157 

5 106 0.1118 0.0443 2.5216 

6 207 0.2345 0.0752 3.1167 

7 430 0.4596 0.2038 2.2547 

8 874 1.0119 0.3668 2.7581 

9 1855 2.0376 0.9011 2.2612 

10 3981 4.4856 2.2515 1.9922 

11 8544 9.6323 7.4464 1.2935 

12 18698 20.4035 23.225 0.8785 

13 40197 45.1705 108.64 0.41575 

 

Depth or Chain’s length 
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Figure 3. 4. Graph of the running time vs the number of linear chains for the first eight chain’s 

lengths for U235 . 

Now, if it is assumed that the set 𝐴 has 50 linear chains related to fission products (a low value, 

in fact), then the set 𝐴′ will have 150,000 linear chains, a large number. Even more, the number 

of linear chains can be astronomical if it is noted that for a chain’s length of 13, there are about 

40 mil linear chains for the part 1), and that the set 𝐴 often has at least 200 linear chains: i.e. 

the set 𝐴′ will be at least one million of elements.  

Therefore, the proposed algorithm is faster than the DFS in a region of practical applications, 

and if the user wants a more general case, the algorithm can be improved using a more complex 

and powerful sorting method. In Figures 3.5-3.6, similar results for U238  were obtained with 

their corresponding values in the Table 3.3. For this isotope, the geometric means for the first 

8 values of the comparison quotient is 2.816. Additionally, to corroborate the results, it was 

verified that the number of linear chains obtained from the DFS were the same as those 

obtained with the proposed algorithm. Finally, it is important to discuss an interesting fact 

related to the way in which the number of linear chains increase. For all the cases, when the 

depth or length is increased by one, the number of linear chains is increasing by a factor greater 
than 2, but less than 3. If an exponential function is used as an approximation to fit the dates, 

following equation is obtained for the U235  case: 

 𝑦 =   2.4805𝑒0.741𝑥 (3.27) 
  

Where 𝑦 is the number of linear chains, and 𝑥 represents the depth or chain’s length. Figure 3.7 

shows the graph of (3.27) compared with the results of U235 . 
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Figure 3. 5. Running time vs the chain’s length, comparison between the DFS and the proposed 

algorithm for U238 .  

 

 

Table 3. 3. Comparison for the running time between the DFS’s and the proposed algorithm 

for U238 . 

Length of 
linear chains 

Number of linear 
chains generated  

DFS’s 
time (s) 

Proposed 
Algorithm's time (s)  

Comparison 
quotient 

4 31 0.0926 0.0127 7.2479 

5 79 0.1056 0.0301 3.5078 

6 199 0.2482 0.0603 4.1144 

7 506 0.5472 0.1642 3.3319 

8 1197 1.2724 0.4846 2.6256 

9 2859 2.9198 1.2104 2.4121 

10 6502 7.0203 4.0597 1.7292 

11 15124 16.1745 15.5876 1.0376 

12 33983 37.4541 67.7777 0.5526 

13 78241 81.9111 399.6479  0.2049 

 

Depth or Chain’s length 
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Figure 3. 6.  Graph of the running time vs the number of linear chains for the first eight chain’s 

lengths for U238 .  

 

 

            

     

 

 

 

 

 

 

 

 

 

Figure 3. 7. Graph of the number of linear chains vs chain’s length, where the fitting curve 

(computed using an exponential function) is showed 

Depth or Chain’s length 
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3.5.3 Fission products analysis. 
 

For the present section the fission products Se87 , Rb95 , Sb131  and Sb135  will be considered. In 

each case, those isotopes will be the initial elements in a transmutation and decay network. In 

the Table III and Table IV of the Appendix B all the reactions considered for these isotopes, and 

all the elements that appear in the corresponding networks are listed. This information was 

mainly extracted from the ENDF/B-VII.1 library, and several schemes were sketched using the 

online data library in atom.kaeri.ie.kr. 

 Analysis for Se87 . 

According to atom.kaeri, the isotope Se87  does not have possible “parent” nuclides, and it has 

the beta decay and the beta + neutron reactions. From this element it is possible to build the 

following isobaric chain: 

 Se87 𝛽−

→ Br87 𝛽−

→ Kr87 𝛽−

→ Rb87 𝛽−

→ Sr87  
 

(3.28) 

The isotope Sr87  is stable, and therefore it is the final element in the isobaric chain. The right 

arrow after it implies that this element has a transmutation reaction: (𝑛, 𝛾), showed in Table 

III. Then, Se87  is a fission product at the beginning of an isobaric chain, and this case is related 

with the part 2) of the proposed comparative scheme of Section 3.5.1. Figure 3.8 shows the 

running times of the proposed algorithm and the DFS, versus the chain’s length. Table 3.4 

contains the corresponding data. 

            

            

            

            

            

            
            

            

            

            

            

            

            

            

            

            

            

            

             

Figure 3. 8. Running time vs the chain’s length, comparison between the DFS and the proposed 

algorithm for Se87 . 

Depth or Chain’s length 
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 Table 3. 4. Comparison for the running time between the DFS’s and the proposed algorithm 

for Se87 . 

Length of 
linear chains 

Number of linear 
chains generated  

DFS’s time (s) 
Proposed 

Algorithm's time (s)  

Comparison 
quotient 

5 2 0.0077 0.0008 8.9767 

6 2 0.0098 0.0016 5.8116 

7 4 0.0095 0.0015 6.3253 

8 6 0.0111 0.0020 5.5479 

9 10 0.0120 0.0041 2.9039 

10 16 0.0176 0.0060 2.9041 

11 16 0.0238 0.0081 2.9434 

12 16 0.0247 0.0120 2.0620 

13 32 0.0281 0.0168 1.6705 

14 32 0.0318 0.0201 1.5793 

15 48 0.0832 0.0199 4.1830 

17 80 0.0858 0.0438 1.9562 

19 80 0.0941 0.0650 1.4464 

22 336 0.2285 0.1565 1.4603 

25 976 0.6774 0.0008 1.1478 

 

Unlike the heavy isotopes, for the fission products it is necessary to use a greater depth, because 

there are several connections between isobaric chains. For example, in the present case the 

isobaric chain in (3.28) is related with the corresponding chain of Se88 . Such connection is 

showed in (3.29) through the Rb87  and Sr87  isotopes. 

 Se87 𝛽−

→ Br87 𝛽−

→ Kr87 𝛽−

→ Rb87 𝛽−

→ Sr87

↓ (𝑛, 𝛾) ↓ (𝑛, 𝛾)

Se88 𝛽−

→ Br88 𝛽−

→ Kr88 𝛽−

→ Rb88 𝛽−

→ Sr88

↓ (𝑛, 𝛾) ↓ (𝑛, 𝛾)

 

 

 
 
(3.29) 

It is important to mention that not all the reactions of transmutation were included for the 

isotopes. For example, the isotope Sr88  has a cross section related with the reaction (𝑛, 2𝑛), 

which was not included in the present analysis.  The reason for this is that for a thermal reactor 

the value of its cross section is practically zero. Even when the isotope Sr87  is stable, it is 

possible to build linear chains from Se87  with a length of 25 elements through the connections 

between isobaric chains by the reactions (𝑛, 𝛾) and (𝑛, 2𝑛). An example of this linear chain is 

the following: 
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Figure 3. 9. Running time vs the chain’s length, comparison between the DFS and the 

proposed algorithm for Rb95 . 

 Se87 → Br87 → Kr87 → Rb87 → Sr87  → Sr88  → Sr89 → Y89 → Y90 → Zr90 → Zr91 → 

Zr92 → Zr93 → Zr94 → Zr95 → Nb95 → Mo95 → Mo96 → Mo97 → Mo98 → Mo99 → 

Tc99 → Tc100 → Mo100 → Mo101 → 
 

 
(3.30) 

As indicated in Figure 3.8, the proposed algorithm is faster than the DFS in all the range. The 

time difference is remarkable for the first points, and at least for the 5-8 lengths, the comparison 

quotient is greater than 5. Unlike the case of the heavy isotopes, where the number of linear 

chains is increasing with the depth (due mainly to the cyclic chains), in this case there is a 

constant value for several depths. This happens in linear chains where the elements have only 

one descendant, i.e. where there are not branches. In the present case, several isotopes in (3.30) 

have only one descendant. The results show that the proposed algorithm is the best option to 

build linear chains in the range of depth from 5 to 25. From the depth values of 5 to 12, the 

geometric mean of the comparison quotient is 4.1827. Then, on average, the proposed 

algorithm is 4.1827 times faster than the DFS for that range. 

Analysis for Rb95 . 

Similar results for the isotope Rb95  are showed in Figure 3.9, and their corresponding data is in 

Table 3.5. In this case, the proposed algorithm curve intersects and becomes larger than the 

DFS’s for the last values. Nevertheless, as in the case of Se87 , in the first depth values the 

difference between the algorithms is remarkable. In the range of depth values from 5 to 15, 

where the proposed algorithm seems be more advantageous, the geometric mean of the 

comparison quotient is 3.469.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth or Chain’s length 
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Table 3. 5. Comparison for the running time between the DFS’s and the proposed algorithm 

for Rb95  . 

Lenght of 
linear chains 

Number of linear 
chains generated  

DFS’s time (s) 
Proposed 

Algorithm's time (s)  

Comparison 
quotient 

5 3 0.0086 0.0011 7.5733 

6 4 0.0088 0.0017 5.0078 

7 4 0.0110 0.0024 4.4819 

8 4 0.0114 0.0024 4.6354 

9 4 0.0131 0.0040 3.2625 

10 12 0.0151 0.0058 2.5838 

11 20 0.0183 0.0068 2.6788 

12 32 0.0239 0.0108 2.2090 

13 40 0.0795 0.0165 4.8081 

14 60 0.0807 0.0383 2.1049 

15 68 0.0922 0.0418 2.2040 

17 124 0.1025 0.0808 1.2692 

19 80 0.0941 0.0650 1.4464 

22 336 0.2285 0.1565 1.4603 

25 976 0.6774 0.5901 1.1478 

 

Analysis for Sb131  and Sb135  

Figure 3.10 and Figure 3.11 show similar results for Sb131  and Sb135 , and tables 3.6 and 3.7 

contain the corresponding data. The isobaric chains, whose first elements are these isotopes 

contain the elements Xe131  and Xe135 , respectively, which commonly are important to burnup 

problems. 

Strictly speaking, the isobaric chain related with Xe131  should start with the isotope In131  

instead of Sb131 , nevertheless the information of some of the elements belonging to this 

structure is missing in the ENDF library. As in the past cases, the proposed algorithm is faster 

than the DFS for all the points in the interval. For the Sb131 , there is a remarkable “gap” between 

the curves in the range of depth values from 9 to 13. In this interval the geometric mean of the 

comparison quotient is 3.5282.  

There is an interesting fact related with the points where the number of linear chains remains 

constant. For example, for Sb131 , in the range of depth values from 11 to 17, the number of linear 

chains is constant and it is equal to 33.  For a depth of 11, the DFS’s time is 0.109450531 

seconds, while that for the next value of depth, 12, the DFS’s time is 0.100898 seconds, clearly 

this last value is less than the first. This seems to make no sense, because the DFS’s algorithm 
makes more queries in the last case. Something similar happens between the depth value of 12 

and 13. After verifying that there were no errors in the DFS algorithm, the most plausible 

answer is related with the computer architecture, and with the function used to measure the 

elapsed time.  
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Figure 3. 10. Running time vs the chain’s length, comparison between the DFS and the 

proposed algorithm for Sb131 . 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Table 3. 6. Comparison for the running time between the DFS’s and the proposed algorithm for 

Sb131  . 

Lenght of 
linear chains 

Number of linear 
chains generated  

DFS’s time (s) 
Proposed 

Algorithm's time (s)  

Comparison 
quotient 

5 3 0.0089 0.0018 4.7996 

6 6 0.0122 0.0029 4.1871 

7 9 0.0140 0.0045 3.0634 

8 12 0.0173 0.0073 2.3481 

9 18 0.0241 0.0090 2.6615 

10 24 0.0823 0.0161 5.0862 

11 33 0.1094 0.0217 5.0401 

12 33 0.1008 0.0285 3.5361 

13 33 0.0989 0.0436 2.2661 

14 33 0.1055 0.0497 2.12203 

15 33 0.0997 0.0564 1.76705 

17 33 0.0993 0.0806 1.23249 

19 63 0.1430 0.1042 1.37164 

22 243 0.3794 0.2353 1.61223 

25 1023 1.2453 0.8949 1.39145 

 

Depth or Chain’s length 
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Figure 3. 11. Running time vs the chain’s length, comparison between the DFS and the 

proposed algorithm for Sb135 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. 7. Comparison for the running time between the DFS’s and the proposed algorithm for 

Sb135  . 

Length of 
linear chains 

Number of linear 
chains generated  

DFS’s time (s) 
Proposed 

Algorithm's time (s)  

Comparison 
quotient 

5 3 0.0090 0.0016 5.5235 

6 4 0.0127 0.003647 3.4936 

7 5 0.0137 0.003611 3.8192 

8 6 0.0138 0.0053 2.5632 

9 6 0.0182 0.0066 2.7597 

10 6 0.0191 0.0087 2.1825 

11 6 0.0203 0.0105 1.9253 

12 6 0.0206 0.0134 1.5338 

13 6 0.0265 0.0146 1.8133 

14 12 0.0292 0.0162 1.7972 

15 12 0.0762 0.0220 3.4565 

17 36 0.0919 0.0301 3.0562 

19 78 0.1138 0.0809 1.4071 

22 300 0.4350 0.21234 2.0486 

25 1260 1.5652 1.08811 1.4384 

 

 

Depth or Chain’s length 
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The difference in the running times is of the order of 𝑚𝑠 . As it was mentioned before, the 

processor that was used have a variable clock rate and it is possible that there are some 

variations in time, which were not significant for the other cases, but that for the present 

problem are comparable with the running time. 

On the other hand, in Python programming language there are several options to measure the 

elapsed time (Martelli et. al, 2005), and when this type of test is carrying, it is important to keep 

the computer “as quiet” as possible, because the elapsed time can be affected by other process 

in the computer. 

Even when the number of process were maintaining to a minimum when we the simulations 

were performed; it is possible that there were some tasks that affected our results. It is possible 

that this problem is only present in the DFS’s execution, due the way in which it performs the 

queries, but it is necessary to carry out a detailed analysis on this subject, which is beyond the 

scope of the present work. 

Additionally, the problem is presented with values of depth where the number of linear chains 

remains constant, and therefore, where few operations were carried out. This can be observed 

in the first running times where the number of linear chains is not constant, and the running 

time is increasing. 

3.6 Conclusions of Chapter 3  
 

In this chapter a new algorithm to build linear chains from a transmutation and decay network 

was developed. This algorithm uses a special notation based in the use of the dash symbol, and 

it carries out most of the linearization process through a sorting process, using a lexicographical 

ordering. The proposed algorithm was compared with the standard algorithm used for the 

linearization process: the depth first search. This analysis was carried out using the algorithms 

running times, versus the depth or chain’s length or the linear chains. 

For the comparison process an empirical numerical methodology was used, which is based on 

dividing the linearization process in two steps: 1) one for the heavy isotopes that present the 

fission process, 2) for the isotopes that are fission products. For the heavy isotopes step the 

elements U235  and U238  were considered. 

For the U235  case, the proposed algorithm was faster than the DFS’s algorithm in the range of 

the chain’s length values of 4 to 11. In that interval, on average, the proposed algorithm is 2.43 

times faster than the DFS’s.  For chain’s length values greater than 11, the proposed algorithm 

seems to be disadvantageous, but it was possible to conclude that this drawback can be solved 

if a more advanced and complex sorting algorithm is used. Additionally, the length’s interval 

where the proposed algorithm is faster can be extended if the 𝛼 reaction is ignored.A similar 

behavior is observed for U238 , where the proposed algorithm is faster than the DFS’s being on 

average 2.816 times faster than the DFS’s, in the range of depth values of 4 to 11.  

For the fission products step, the isotopes Se87 , Rb95 , Sb131  and Sb135  were considered, with a 

range of chain’s length values of 5 to 25. In all the cases, the proposed algorithm was faster than 

the DFS’s.  
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In addition to the running time, the proposed algorithm provides a useful notation, which would 

allow a standardization of the burnup schemes between two different codes. This notation has 

several properties, within which is it possible to know the number of linear chains before they 

are built.  

From the above facts it is possible to obtain at least three general conclusions. Firstly, the linear 

chain method can be improved in terms of the execution time, in the part related to the 

generation of the linear chains. At least to the best know of the author, this topic has not been 

addressed in literature. Therefore, this is field where it is possible to carry out potential 

contributions. Since, the mass balance analysis where is determined what isotopes will be 

considered to compute the final concentration, depends on the linearization method, an 

improvement in this last is equivalent to an improvement in the mass balance analysis. 

Secondly, using a notation to denote a decay and transmutation network allows to share 

schemes between burnup codes. Such schemes are more useful than only to specific the 

isotopes that are considered for a given burnup problem. As it was discussed in the past 

Chapter, in order to make proper comparison between two codes it is necessary to consider the 

same decay and transmutation network, and therefore the proposed notation will be useful. 

Finally, an important conclusion was obtained from the analysis of the grow of the linear chains 

as function of their length. For the case of heavy isotopes, the number of linear chains grows in 

an exponential way, due to the presence of the reactions (𝑛, 𝛾)  and (𝑛, 2𝑛) , which jointly 

produce cyclic chains. In the case of the fission products, it is possible that the number of linear 

chains remains constant for certain intervals of length.  

This last is an important conclusion, because the cyclic chains are present in the most of the 

burnup problems. Therefore, if the presence of such structures produces a huge amount of 

linear chains, which impacts on the execution’s time, it is necessary to develop a deeper study 

of this topic, which will be addressed in the following chapter. 
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Chapter 4. Study of the cyclic chains. 
 

 

 

 

 

Among the recent research topics related to the linear chain method, it is the development of 

general solutions, which overcome one of the most remarkable limitations of the Bateman’s 

solution: the presence of repeated elements. As it was described in Chapter 1, one of the 

conditions in the original Bateman’s formulation was the assumption that all the isotopes in a 

linear chain were different. Such condition guarantees that several subtractions in the 

denominator do not become zero, and therefore it allows that the solution is well defined.  

Nevertheless, as it was showed in the past chapter, transmutation and decay networks known 

as cyclic chains can lead to the generation of linear chains with repeated elements, and 

therefore the Bateman´s solution fails. Also, it is possible that singularities appear when two 

different isotopes in a linear chain have the same removal coefficients, even when this last case 

is not common. Two approaches were developed in order to solve the difficulty of this 

singularities. The first one is to introduce small modifications in the repeated removal 

coefficients, which avoid the divisions by zero. The second approach is to develop more general 

solutions.  

In the present chapter, the decay and transmutations schemes that contains loops or cycles are 

studied, beginning with their classification and identifying the simplest one. Afterward two 

approaches to solve them are proposed. Additionally, a comparison of these approaches is 

carried out, finding that they are easier to implement and provide several advantages over the 

standard linear chain method.  

4.1 Definition of cyclic chains.  
 

As it was discussed in the past chapter, there is a special type of networks where the 

linearization process fails. Such networks contain structures called “cyclic chains”, which 

appear commonly in several burnup and activation problems.  

It seems that the first author who analyzed this type of chains and proposed a procedure to deal 

with them was Tasaka (Tasaka, 1980), who defined it as “a loop chain where a nuclide 

transforms certain times and then transforms to the original nuclide”. Based in Tasaka’s 

definition, a cyclic chain can be represented in a network diagram through a closed loop 

between two or more nuclides. For example, in Figure 4.1 there is a cyclic chain given by the 

succession of isotopes 𝑋1 → 𝑋7 → 𝑋9 → 𝑋10 → 𝑋11 → 𝑋1 , which have been highlighted in 

yellow. 
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Figure 4. 1 Example of a decay and transmutation network which contains a cyclic chain. 

 

 

 

 

 

 

 

 

 

 

It is not possible to use equations (1.24) (2.5) to solve this loop or cycle due to several reasons. 

Firstly, the balance equations of the cyclic chain cannot be modelled by a system like the given 

in (1.12) because the corresponding equation for 𝑋1, in the loop of Figure 4.1, has a gain term, 

which does not appear in the original mass balance equation given in Chapter 1. In fact, in such 

chapter was considered that 𝑋1  has not contributions. Therefore, the actual mass balance 

equation for 𝑋1 based in Figure 4.1 is: 

 𝑑𝑋1
𝑑𝑡

= 𝑏11,1𝜆11𝑋11⏟      
gain term that does 
 not appear in (2.5)

− 𝜆1𝑋1 

 

 
(4.1) 

Except for this term, all the other balance equations of the loop can be perfectly described by 

the equations of the form given in (2.5). Therefore, a first approach to find the concentration of 

the isotopes that are included in this loop is to assume that 𝑏11,1𝜆11𝑋11 ≈ 0, which is reduced 

to treat these isotopes as if they belong to a linear chain. This approach can be improved in turn, 

through the use of an artificial succession of isotopes given by 

 
 

𝑋1 → 𝑋7 → 𝑋9 → 𝑋10 → 𝑋11 → 𝑋1 → ⋯  
 

(4.2) 

In other words, the element 𝑋1  has been added at the end of the linear chain in order to 

“simulate” the contribution 𝑏11,1𝜆11𝑋11 to 𝑋1. This methodology, where a repeated element has 

been added to a linear chain is known as “artificial linear chain”. Such name suggests that the 

structures approximate in an artificial way the contributions of the loops. There are notorious 

issues related to this process, which will be discussed in the following section.  

4.2 Implications of simulating the loops as artificial linear chains.  
 

The procedure of building artificial linear chains, adding the isotope 𝑋1 at the end in (4.2), is 

equivalent to duplicate an infinite number of times all the elements that are originated from the 

decay and transmutation of this isotope.  
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Figure 4. 2. Duplication of the decay and transmutation network of Figure 4.1. This scheme is 
the result of building an artificial linear chain. 

 

 

 

 

 

 

 

 

 

 

Particularly, since this element is the beginning of the structure in the example showed in 

Figure 4.1, it implies that all the transmutation and decay network appearing after it, will be 

repeated as it is represented in Figure 4.2, where only three times of this process of duplication 

are showed. In other words, the extension of the linear chain in (4.2) will be infinite. Therefore, 

it is necessary to approximate the linear chain with a finite extension.  

The first author that described this process of traveling a cyclic chain, was Wilson, who 

published a discussion about the duplication in 1999 (Wilson, 1999). In his work, Wilson 

compared this procedure to the process of converting a connected graph into a n-array tree, 

and called it as “tree straightening” procedure. It is possible to conclude that, under this 

procedure, the transmutation and decay network will have a finite number of isotopes that 

appear an infinite number of times, and it cannot be possible to traverse it in a full way. In other 

words, the use the linearization process cannot be applied in such structures, because such 

procedure will not have an end.  

Wilson proposed a method to overcome, to some extension, this problem. Essentially it is 

possible to approximate the solution of the linear chain, limiting the process of duplication to 

an appropriate number of times, which means that the deep of searching in the linearization 

process will be limited. Nevertheless, even when this methodology, the number of generated 

linear chains grows in an exponential way for the cases of cyclic chain, as it was discussed in 

the past chapter. Therefore, it is important to study alternative ways to approach this problem, 

in order to provide a more adequate answer. 

Before continue, it is necessary to note that the duplication methodology is an approximation 

due to two facts. Firstly, the mass balance equation does not correspond to the actual structure. 

And secondly, even when an artificial linear chain is built, their extension need being 

approximate. Another difficulty related to the structure given in (4.2) is the presence of 

repeated elements. As it was discussed in Section 1.9, when there are two or more elements 

with the same effective decay constant, the Bateman’s solution cannot be applied, and it is 

necessary to use a more general solution, as the equation (1.149), or introduce small 

modifications in the effective lambda constant. These both topics will be discussed in the 

Chapter 5. 
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Figure 4. 3. Classification of the cyclic chains. The gray rectangles represent nuclides, and the 

blue straight arrows and curved arrows indicate succession of isotopes. The extreme left is a 

pure cyclic chain that appears at the beginning of a network. The next diagram shows a loop that 

appears on the path of a network. The right structure is a compound cyclic chain where some 

nuclides belong to more than one loop. 

 

4.3 A first approach to the cyclic chains classification.  
 

As for its complexity, the cyclic chains can be divided into two classes: the pure and the 

compound. The first one can be defined as a loop, where all the nuclides belong to the same 

cyclic chain. On the other hand, the compound type is the structure where at least one nuclide 

belongs to at least two different loops. Among the structures of the first type, there are two 

additional classes regarding the place where the loop is present: the “first position” and the “on-

path position” class. Figure 4.3 shows some examples of this classification. 

In such figure the curve arrows represent a sequence of isotopes, and the gray rectangle 

represent a particular isotope for which there are at least two interpretation. For example, in 

the first two diagrams of Figure 4.3 it is possible to observe that all, except for the isotope 

denoted by the gray rectangle, the other elements in the cyclic chain have only one daughter 

and one father. Therefore, in the pure’s type the gray rectangle represent the initial isotope, or 

the connector isotope. On the other hand, the gray rectangles in the compound type correspond 

to isotopes that belong to more than one cyclic chain. 

Strictly speaking, the main objective of this study is to model the compound’s type, because in 

nuclear engineering it appears constantly, in special with heavy isotopes, as is showed in Figure 

4.4. In such figure only the reactions that involve isotopes of uranium have been represented, b 

the fission reaction has been omitted as well as the alpha and beta decay, and all the network 

related to plutonium and neptunium isotopes.  

In other words, even with the complexity of Figure 4.4, the full network is even more complex. 

A first approach to the treat these cyclic chains consists of finding the solution for the first two 

cases, the “first position” and the “on path position” and, starting from here, to develop a 

methodology that allows treating more general cases.   
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Figure 4. 4. An example of compound cyclic chain related to isotopes of uranium. Such structure 

is a simplification of the actual case, because the fission reaction, the beta and alpha decay, and 

the networks related to neptunium and plutonium isotopes have been omitted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Analysis for the pure type of first position class. 
 

A pure loop will be denoted as the succession of elements 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑛 → 𝑋1 , where 𝑋1 

is the initial isotope. Such element has been boxed at the end to the chain to denote that, starting 

from this element, the linear chain is repeated.  The balance equation to this cyclic chain can be 

set using the same initial conditions that were used in (1.14)7: 

{
  
 

  
 
𝑑𝑋1
𝑑𝑡

= 𝑏𝑛,1𝜆𝑛𝑋𝑛 − 𝜆1𝑋1

𝑑𝑋2
𝑑𝑡

= 𝑏1,2𝜆1𝑋1 − 𝜆2𝑋2

⋮ ⋮
𝑑𝑋𝑛
𝑑𝑡

= 𝑏𝑛−1,𝑛𝜆𝑛−1𝑋𝑛−1 − 𝜆𝑛𝑋𝑛

ℒ{ }
→ 

{
 

 
𝑠�̃�1 − 𝑋1(0) = 𝑏𝑛,1𝜆𝑛�̃�𝑛 − 𝜆1�̃�1

𝑠�̃�2 = 𝑏1,2𝜆1�̃�1 − 𝜆2�̃�2
⋮ ⋮ ⋮
𝑠�̃�𝑛 = 𝑏𝑛−1,𝑛𝜆𝑛−1�̃�𝑛−1 − 𝜆𝑛�̃�𝑛

 

If the transform terms are isolated it follows that:  

 
7 By simplicity, the effective removal coefficient and branch ratios will be denoted as 𝜆 and 𝑏, respectively 
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→

{
 
 
 

 
 
 �̃�1 =

𝑋1(0) + 𝑏𝑛,1𝜆𝑛�̃�𝑛
𝑠 + 𝜆1

�̃�2 =
𝑏1,2𝜆1�̃�1
𝑠 + 𝜆2

⋮ ⋮ ⋮

�̃�𝑛 =
𝑏𝑛−1,𝑛𝜆𝑛−1�̃�𝑛−1

𝑠 + 𝜆𝑛

 

 

 
 
 
(4.3) 

After multiple substitutions it is possible to obtain an equation for �̃�𝑛: 

 
�̃�𝑛 = [

𝛼(𝑛 − 1)𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛) − 𝛼(𝑛) 
],   

(4.4) 
 
 

Where: 

 
𝛼(𝑛) =∏𝑏𝑗,𝑗+1𝜆𝑗

𝑛

𝑗=1

 

 

(4.5) 

Equations (4.4) is significative if it is compared with the equivalent expression in (1.15). If 

presence of the branch ratios is omitted in this last expression, the equation for �̃�𝑛 is identical 

to (4.4), except for the term 𝛼(𝑛) that appears in the denominator.  Denoting the solution that 

corresponds to the linear and the cyclic chain as 𝑋𝑛
𝐿  and 𝑋𝑛 respectively, it is possible to show 

that:  

 𝑋𝑛 → 𝑋𝑛
𝐿   when 𝛼(𝑛) ≈ 0     

 
(4.6) 

Now, considering the definition of 𝛼(𝑛), it is possible to conclude that the situation given in 

(4.6) is very realistic, because the order of magnitude of the product of the effective removal 

coefficients is very small. Then, this justify the approximation of the cyclic chain with the linear 

chain case.  

4.4.1 Solution for the case 𝑘 = 𝑛 
 

The exact solution of the equation (4.4) can be found if it is assumed that: 

 
∏𝑏𝑗,𝑗+1𝜆𝑗

𝑛

𝑗=1

= 𝛼(𝑛)<|(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)|   

 

 
(4.7) 

Since 𝑠 is a complex variable in the Laplace transform space, the implications of this inequality 

are not straightforward, nevertheless, for the moment it will suppose it. Equation (4.4) can be 

written as follows: 

 

�̃�𝑛 =
𝛼(𝑛 − 1)𝑋1(0)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
[

1

1 −
𝛼(𝑛)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
 
]   

 

 
(4.8) 
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Considering (4.7), it is possible to use the following series expansion to the right side of the 

equation (4.8): 

 
  
1

1 − 𝑧
=∑𝑧𝑗

∞

𝑗=0

,   |𝑧| < 1, 
(4.9) 

Therefore: 

 

[
1

1 −
𝛼(𝑛)

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
 
] =∑[

1

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
]
𝑗

(𝛼(𝑛))𝑗
∞

𝑗=0

 

 

 
(4.10) 

Through (4.10) it is possible to rewrite (4.8) as: 

 
�̃�𝑛 =

𝑋1(0)

𝜆𝑛𝑏𝑛,1
∑[

1

(𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛)
]
𝑗+1

(𝛼(𝑛))
𝑗+1

∞

𝑗=0

   

 

 
(4.11) 

The element inside the brackets in (4.11) can be rewritten using (1.18) and (1.19): 

 

=
𝑋1(0)

𝜆𝑛𝑏𝑛,1
∑[∑

𝑎𝑖
𝑠 + 𝜆𝑖

𝑛

𝑖=1

]

𝑗+1

(𝛼(𝑛))𝑗+1
∞

𝑗=0

 

 

 
(4.12) 

If it is supposed that the inverse Laplace function of �̃�𝑛 exists, then it is possible to write: 

𝑋𝑛 = ℒ
−1{�̃�𝑛} =

𝑋1(0)

𝜆𝑛𝑏𝑛,1
ℒ−1 {∑[∑

𝑎𝑖
𝑠 + 𝜆𝑖

𝑛

𝑖=1

]

𝑗+1

(𝛼(𝑛))𝑗+1
∞

𝑗=0

} 

In this last step it is necessary to make another supposition, considering that the series in curly 

brackets is absolutely convergent. Therefore, the inverse Laplace operator can be introduced 

into the summation: 

 

𝑋𝑛 =
𝑋1(0)

𝜆𝑛𝑏𝑛,1
∑[ℒ−1 {∑

𝑎𝑖
𝑠 + 𝜆𝑖

𝑛

𝑖=1

}]

𝑗+1

(𝛼(𝑛))
𝑗+1

∞

𝑗=0

 

 

 
(4.13) 

From (1.24) it follows that: 

 
ℒ−1 {∑

𝑎𝑖
𝑠 + 𝜆𝑖

𝑛

𝑖=1

} =
𝑋𝑛
𝐿

𝛼(𝑛 − 1)𝑋1(0)
 

 
(4.14) 

 

Using the last step, it is possible to write (4.13) as: 

 
𝑋𝑛 =

𝑋1(0)

𝜆𝑛𝑏𝑛,1
∑[

𝑏𝑛,1𝜆𝑛𝑋𝑛
𝐿

𝑋1(0)
]

𝑗+1

 

∞

𝑗=0

 

 

(4.15) 

Where 𝑋𝑛
𝐿  is the solution of the term 𝑛 in a linear chain. Since that: 
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𝑏𝑛,1𝜆𝑛𝑋𝑛
𝐿

𝑋1(0)
< 1 

It follows that: 

𝑋𝑛 =
𝑋1(0)

𝜆𝑛𝑏𝑛,1

𝑋𝑛
𝐿𝑏𝑛,1𝜆𝑛
𝑋1(0)

∑[
𝑏𝑛,1𝜆𝑛𝑋𝑛

𝐿

𝑋1(0)
]

𝑗

 

∞

𝑗=0

= 𝑋𝑛
𝐿  

1

1 −
𝑏𝑛,1𝜆𝑛𝑋𝑛

𝐿

𝑋1(0)

  

Therefore: 

 
𝑋𝑛 = 𝑋𝑛

𝐿
𝑋1(0)

𝑋1(0) − 𝑏𝑛,1𝜆𝑛𝑋𝑛
𝐿  

 

(4.16) 

4.4.2 Analysis of the Assumptions of the pure cyclic solution. 
 

Three assumptions were made in the past section: 

1) The inequality in (4.7) is true. 

2) The inverse Laplace transform in (4.12) exists. 

3) The series in (4.13) is absolutely convergent. 

Even when the study of these three assumptions is beyond the scope of this thesis, it is possible 

to discuss, in general terms, the theory behind them.  

As Clayton and his colleagues pointed out (Clayton et. al., 1961), through the theory of 

functions, it is known that very small values of 𝑡 correspond to very large values of 𝑠, and vice 

versa. Then, equation (4.7) represents a condition for both 𝑠 and 𝑡. Nevertheless, it is necessary 

to be very careful with this kind of sentences regarding the values of 𝑠, because it is a complex 

variable, and because there is not a total order in ℂ, it is necessary to study this condition in a 

deepest way.  

Regarding the second assumption, it is possible to proof that the inverse Laplace exists using 

the integral Fourier-Mellin formula (Brown and Churchill, 2004) which was described in (1.25). 

Nevertheless, this proof is far to be easy. Even more, in most practical cases in engineering, the 

existence of the inverse Laplace transform is taken for granted, and it is searching for a correct 

representation of it in tables or using the convolution theorem.  

The third condition about the absolute convergence of the series is related again with the study 

of the variable 𝑠. In order to analyze the proposed solution in a formal way it is necessary to 

investigate about these topics, but they will be part of a future work. Finally, equation (4.16) is 

very useful, because it allows comparing the solution of a cyclic chain, and the solution of a 

linear chain, in fact if 𝑏𝑛,1𝜆𝑛 ≈ 0, then 

 𝑋1(0) − 𝑏𝑛,1𝜆𝑛𝑋𝑛
𝐿 ≈ 𝑋1(0)    and   𝑋𝑛 ≈ 𝑋𝑛

𝐿  
 

(4.17) 

The condition 𝑏𝑛,1𝜆𝑛 ≈ 0 is less restrictive that condition (4.6). If this term is very small, then 

the contribution of the isotope 𝑋𝑛 to the isotope 𝑋1 is neglected. 
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4.4.3 Lack of symmetry and convolution approach. 
 

A remarkable disadvantage of the system in (4.3) is the lack of symmetry between the 

equations of the terms corresponding to the isotope 𝑘, with 2 ≤ 𝑘 ≤ 𝑛 − 1, and the isotope 𝑛. 

Due to this lack of symmetry, equation (4.17) cannot be extended to the other isotopes of 

another index 𝑘. In other words: 

 
𝑋𝑘 ≠ 𝑋𝑘

𝐿
𝑋1(0)

𝑋1(0) − 𝑏𝑘,𝑘+1𝜆𝑘𝑋𝑘
𝐿 

 

(4.18) 

In this sense the index 𝑛 has a special meaning, because it denotes the element in the position 

before the term that has been considered as the first. All the other elements, between this 

isotope and the first one, are denoted by the 𝑘 index. As a first approach, it is possible to use 

(4.16) to compute the solution for the isotope 𝑋𝑛−1. According to the system in (4.3): 

     

�̃�𝑛−1 =
�̃�𝑛(𝑠 + 𝜆𝑛)

𝑏𝑛−1,𝑛𝜆𝑛−1
=

1

𝑏𝑛−1,𝑛𝜆𝑛−1
(𝑠�̃�𝑛 + 𝜆𝑛�̃�𝑛) 

 

 
(4.19) 

From this equation it is possible to compute ℒ−1{𝑠�̃�𝑛}. Considering: 

   
𝐷(𝑠) = 𝑠, 𝐹(𝑠) = �̃�𝑛 

And: 

   𝑑(𝑡) = ℒ−1{𝐷(𝑠)} = 𝛿′(𝑡),    𝑓(𝑡) = ℒ−1(𝐹(𝑠)) = 𝑋𝑛 

Where 𝛿 is the Dirac delta function. Through the convolution theorem (Zill, 2009): 

 
ℒ−1{𝑠�̃�𝑛} = ∫ 𝛿

′(𝑡 − 𝑢)𝑋𝑛(𝑢)𝑑𝑢
𝑡

0

= 𝑋𝑛
′ (𝑡) =

𝑑𝑋𝑛
𝑑𝑡

 

 

(4.20) 

Where in the last part it has been used a property of 𝛿. Using (4.16) and (4.20) it is possible to 

obtain: 

 
𝑋𝑛−1 = ℒ

−1{�̃�𝑛−1} =
1

𝑏𝑛−1,𝑛𝜆𝑛−1
(ℒ−1{𝑠�̃�𝑛} + 𝜆𝑛ℒ

−1{�̃�𝑛}) 

 

 
𝑋𝑛−1 =

1

𝑏𝑛−1,𝑛𝜆𝑛−1
(
𝑑𝑋𝑛
𝑑𝑡

+ 𝜆𝑛𝑋𝑛) 

 

(4.21) 

It is possible to note that the last equation is equivalent to (1.31), which was deduced through 

the backward method that was described in Section 1.6. In fact, if the convolution theorem is 

applied again to (4.22), the result will be equal to the backward solution for 𝑛 − 2. Therefore, 

the backward Bateman solution given in (1.55) can be used to compute the concentration of 

the other isotopes in the structure (4.3). Unfortunately, such equation involves high-order 

derivatives of 𝑋𝑛, which need to be computed from (4.16). Such task is hard and it is necessary 

to develop a general formula for them, which will be carried out in the following section. 
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4.4.4 Formula for the derivatives. 
 

When the backward formulation is used, it requires to compute the following high order 

derivatives: 

 𝑑𝑖𝑋𝑛
𝑑𝑡𝑖

,    1 ≤ 𝑖 ≤ 𝑛 

 

(4.22) 

It is convenient to rewrite equation (4.16) for 𝑋𝑛 as follows: 

 
𝑋𝑛 =

𝑋1(0)

𝑏𝑛,1𝜆𝑛
  

𝑏𝑛,1𝜆𝑛𝑋𝑛
𝐿

𝑋1(0) − 𝑏𝑛,1𝜆𝑛𝑋𝑛
𝐿   

 

(4.23) 

Considering the following functions: 

 
𝑈(𝑡) =  𝑏𝑛,1𝜆𝑛𝑋𝑛

𝐿(𝑡),   𝑉(𝑡) =
𝑈(𝑡)

𝑎 − 𝑈(𝑡)
  

 

(4.24) 

The problem to find a formula for the derivatives of (4.22) is equivalent to find a formula for 

the derivatives of  𝑉(𝑡)  and for the derivatives of 𝑈(𝑡) , defined in (4.24). It is possible to 

compute the first four derivatives of 𝑉(𝑡) in a straightforward way: 

 
𝑉′ =

𝑎𝑈′

(𝑎 − 𝑈)2
,    𝑉′′ =

𝑎𝑈′′

(𝑎 − 𝑈)2
+
2𝑎(𝑈′)

(𝑎 − 𝑈)3
, 

 

  𝑉(3) =
𝑎𝑈(3)

(𝑎 − 𝑈)2
+
6𝑎𝑈′′𝑈′

(𝑎 − 𝑈)3
+
6𝑎(𝑈′)3

(𝑎 − 𝑈)4
  

 
 
(4.25) 

 

 
𝑉(4) =

𝑎𝑈(4)

(𝑎 − 𝑈)2
+
8𝑎𝑈(3)𝑈′

(𝑎 − 𝑈)3
+
6𝑎(𝑈′′)2

(𝑎 − 𝑈)3
+
36𝑈′′(𝑈′)2

(𝑎 − 𝑈)4
+
24(𝑈′)4

(𝑎 − 𝑈)5
  

(4.26) 

 

At first sight, it seems difficult to find a general formula because the coefficients and the number 

of terms does not exhibit a clear relationship. Nevertheless, after careful observation, it was 

found a pattern related to the derivatives of 𝑈. In fact, it is possible to observe a tendency 

between the sum of the orders of the derivatives of 𝑈 and the order of the derivative of 𝑉. 

For example, for the case of 𝑉(3) , there are three terms. In the first one a derivative 𝑈(3) 

appears, in the second term, the functions 𝑈′  and 𝑈′′  are present, which correspond to the 

orders of 1 and 2 respectively. If such orders are added, the outcome is 3. In the last term, the 

term that appears is (𝑈′)3 , which is equivalent to have three derivatives of order one, and 

whose sum is again 3. As it can be observed, the sum of the orders in the derivatives in each 

term is 3. It is possible to corroborate a similar pattern for 𝑉(4): 

 

𝑉(4)⏞
order =4

=
𝑎𝑈(4)

(𝑎 − 𝑈)2

⏞      
order 4

 +
8𝑎𝑈(3)𝑈′

(𝑎 − 𝑈)3

⏞      
order 3 +order 1= order 4

+
6𝑎(𝑈′′)2

(𝑎 − 𝑈)3

⏞      
order 2 + order 2 =order 4

 

 
 
(4.27) 
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36𝑈′′(𝑈′)2

(𝑎 − 𝑈)4

⏞      
order 2 + order 1 + order 1= order 4

+
24(𝑈′)4

(𝑎 − 𝑈)5

⏞      
order 1 + order 1 + order 1 + order 1= order 4

 

 

As it can be noted in (4.27), if the orders of derivatives are added in each term, the result is 4. 

Even when the derivatives of 𝑈 are multiplying, their orders can be analyzed as a sum. Such 

tendency is related to the integer’s partitions, which are all the possible combinations in which 

an integer 𝑛 can be represented as a sum of positive integers. In the last two cases, the partitions 

of 3 are: 3, 2+1, and 1+1+1, whereas the partitions of 4 are: 4, 3+1, 2+2, 2+1+1 and 

1+1+1+1. 

Strictly, there is not a closed-form equation to obtain all the partitions of a given integer, 

nevertheless, there is software like Wolfram Alpha that can provide them in a very fast way. 

Following the previous reasoning, it can be inferred some properties for 𝑉(5) . Firstly, it is 

possible to expect that this function will have as many terms as elements in the partitions of 5, 

and the distributions of derivatives of 𝑈 in each term will correspond to the configurations of 

these partitions. Therefore: 

 

𝑉(5)⏞
order =5

=
𝑐1𝑎𝑈

(5)

(𝑎 − 𝑈)𝑘1

⏞      
order 5

 +
𝑐2𝑎𝑈

(4)𝑈′

(𝑎 − 𝑈)𝑘2

⏞      
order 4+order 1=order 5

+
𝑐3𝑎𝑈

(3)𝑈′′

(𝑎 − 𝑈)𝑘3

⏞      
order 3+order 2= order 5

 

 
 
 

  

+
𝑐4𝑎𝑈

(3)(𝑈′)2

(𝑎 − 𝑈)𝑘4

⏞        
order 3 + order 1 + order 1=order 5

+
𝑐5𝑎(𝑈

′′)2𝑈′

(𝑎 − 𝑈)𝑘5

⏞        
order 2 + order 2 + order 1= order 5

 

 
 
(4.28) 

 

 

+
𝑐6𝑎𝑈′′(𝑈

′)3

(𝑎 − 𝑈)𝑘6

⏞        
order 2 + order 1 + order 1+order 1=order 5

+
𝑐7𝑎(𝑈

′)5

(𝑎 − 𝑈)𝑘7

⏞      
order 1+order 1 + order 1 + order 1+order 1=order 5

  

 

 

4.4.5 Sequences related to partitions.  
 

The following step is to find the coefficients 𝑐1, … , 𝑐7 and 𝑘1, … , 𝑘7 in equation (4.28), for this 

task it is possible to assume that they have a relationship with the partitions. Before continuing 

it is worth mentioning that the partitions can be ordered in decreasing order. Therefore, the 

terms in (4.28) must be written in such way, because the coefficients will be dependent on the 

position. In other words, the index 1,2,… ,7 denote the position of the term. 

After a search of sequences related to the partitions, it was found that the succession of 

numbers denoted by A049019 in the OEIS’s code 8 , predicts the coefficients 𝑐1, … , 𝑐7 . 

Henceforth, such sequence will be represented as 𝑝19(𝑧) , whose first 18 terms are the 

following: 

 1, 1, 2, 1, 6, 6, 1, 8, 6, 36, 24, 1, 10, 20, 60, 90, 240, 120,   

 
8 On-Line Encyclopedia of Integer Sequences. https://oeis.org/  

https://oeis.org/
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1, 12, 30, 20, 90, 360, 90, 480, 1080, 1800, 720,… 

(4.29) 

In order to use this sequence, it is only necessary to fragment it using the number 1 as a division 

point or delimiter: 

 1 , 1, 2 , 1, 6, 6 , 1, 8, 6, 36, 24 , 1, 10, 20, 60, 90, 240, 120 ,  

 

1, 12, 30, 20, 90, 360, 90, 480, 1080, 1800, 720 ,… 

 

 
(4.30) 

Then, as it can be observed, each resulted block corresponds to the set of coefficients of a given 

derivative of 𝑉. To locate the correct block, it is necessary to order them in an ascending form, 

then the position of the block will be equal to the order of 𝑉 . In the present example, the 

derivative 𝑉(5) is being computed, and therefore it is necessary to locate the fifth block that was 

generated by the fragmentation process. Thus, the set {𝑐1, 𝑐2, … , 𝑐7}  corresponds to the set 

{1, 10, 20, 60, 90, 240, 120} belonging to (4.30). 

In most programming languages is possible to carry out the fragmentation of the sequence 

𝑝19(𝑧). It is only necessary to use a “split” function of strings, using as a character separator (or 

delimiter) the number 1. A procedure of fragmentation related to the format used in Python 

and MATLAB is described in Algorithm 4.1. Nevertheless, for higher values of the order of the 

derivative of 𝑉, the procedure of fragmentation has one disadvantage: the time. This issue is 

related to the number of elements of the sequence 𝑝19(𝑧) that need to be considered with the 

purpose of carrying out the fragmentations, which becomes a huge number. 

In fact, such number needs to be big enough to guarantee that the “block” containing the set of 

coefficients will be included, but not so big that the fragmentation procedure consumes a lot of 

computational time. An alternative method can overcome this difficulty. This consists in using 

two other sequences related to the partitions of integers. The first one is the sequence A000041, 

whose elements are the number of partitions of the integers beginning with zero, which will 

denote it as 𝑝41(𝑧). The first fifteen numbers of 𝑝41(𝑧) are the following: 

 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135,… 
 

(4.31) 

In the present case, the value of 𝑧 will correspond to the value of the order of the derivative of 

𝑉. Therefore, it is possible to verify that 𝑝41(5) = 7, which are the number of terms that are in 

(4.28). The second sequence has the OEIS’s code of A026905 and has as first elements: 

 1, 3, 6, 11, 18, 29, 44, 66, 96, 138, 194, 271, 372, 507,… 
 

(4.32) 

Such sequence will be denoted as 𝑝05. As it can be noted, the elements in (4.32) are the partial 

sums of the numbers in (4.31), starting from 𝑧 = 1. In other words: 

 
𝑝05(𝑧) = ∑𝑝41(𝑘)

𝑧

𝑘=1

 

 

(4.33) 

It is not necessary to carry out a fragmentation procedure when we use 𝑝05(𝑧) and 𝑝41(𝑧), 

because these sequences allow us to find the exact segment of the sequence 𝑝19(𝑧) where we 

will find the coefficients of 𝑉(𝑘).  
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In fact, it is possible to corroborate that: 

 𝐻 = {𝑐𝑗|𝑐𝑗 is a coefficient of 𝑉
𝑘} = {𝑝19(𝑞)|𝑝05(𝑘) − 𝑝10(𝑘 + 1) ≤ 𝑞 ≤ 𝑝05(𝑘) } 

 

(4.34) 

4.4.6 Exponent of the denominators. 
 

The coefficients 𝑘1, … , 𝑘7 in (4.28) also have a relationship with the partitions. It is possible to 

determine their value considering the number of elements that are involved in a particular 

partition, which will be denoted by the function 𝑛𝑝. For the case of 𝑉(5) it follows that: 

 𝑛𝑝(5) = 1, 𝑛𝑝(4 + 1) = 𝑛𝑝(3 + 2) = 2,   

 
𝑛𝑝(3 + 1 + 1) = 𝑛𝑝(2 + 2 + 1) = 3 

 
𝑛𝑝(2 + 1 + 1 + 1) = 4, 𝑛𝑝(1 + 1 + 1 + 1 + 1) = 5 

 
(4.35) 

And therefore: 

Algorithm 4.1 Fragmentation and search procedure  
 

Input:  Order of the derivative of 𝑉 
Output: Coefficients of the derivative of 𝑉 
 
STEP 1: Select a subsequence of A049019 that contains its first element, and whose value is 
𝑛. Store it as a string variable 𝑥: 
 
                                                                                A049019[:𝑛] → 𝑥 
 
STEP 2:  Split the string variable 𝑥 using the number 1 as a separator (or delimiter), and store 
the generated list in the variable 𝑦:                                       
  
                                                                                    𝑠𝑝𝑙𝑖𝑡(𝑥, 1) → 𝑦 
IF (length (𝑦) ≥order of derivative):                        
                            
      IF the split function of STEP 2 removed the separator: 
                                         
                                         ■ For 𝑖 = 1, 2, … , length of 𝑦: 
                                                 ■ Add the element 1 at the beginning of the stored string in 𝑦[𝑖] 
      
      ■ Find the element in 𝑦 whose position is equal to the order of the derivative of 𝑉, and        
      store it in the variable 𝑧: 
  
                                                            𝑦[order of the derivative of V] → 𝑧  
ELSE: 
      
         ■ Choose a larger value of 𝑛 and repeat the algorithm. 
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 𝑘𝑙 = 𝑛𝑝(𝑃𝑛
𝑙) + 1 

 

(4.36) 

Where 𝑃𝑛
𝑙  is one element of the partition of the integer 𝑛, which is in the position 𝑙. Using (4.34) 

and (4.36) it is possible to complete the missing elements in (4.28): 

𝑉(5) =
𝑎𝑈(5)

(𝑎 − 𝑈)2
+
10𝑎𝑈(4)𝑈′

(𝑎 − 𝑈)3
+
20𝑎𝑈(3)𝑈′′

(𝑎 − 𝑈)3
+
60𝑎𝑈(3)(𝑈′)2

(𝑎 − 𝑈)4
  

 90𝑎(𝑈′′)2𝑈′

(𝑎 − 𝑈)4
+
240𝑎(𝑈′′)(𝑈′)3

(𝑎 − 𝑈)5
+
120𝑎(𝑈′)5

(𝑎 − 𝑈)6
 

 

(4.37) 

Once a method to determine the distributions and orders of 𝑈 has been developed, t is possible 

to propose a procedure to build the derivatives of 𝑉. Such procedure is described in Algorithm 

4.2. It is worth mentioning that the equation is built in a symbolical sense, but the numerical 

evaluation is not carried out. The following step consist of computing the high-order derivatives 

of 𝑈. 

4.4.7 Formula for the derivatives of 𝑈. 
 

The derivatives of 𝑈 can be computed using the balance equation of 𝑋𝑛
𝐿 . For the case of the first 

derivative: 

 
𝑈′ =

𝑑

𝑑𝑡
(𝑏𝑛,1𝜆𝑛𝑋𝑛

𝐿(𝑡)) = 𝑏𝑛,1𝜆𝑛
𝑑𝑋𝑛

𝐿

𝑑𝑡
= 𝑏𝑛,1𝜆𝑛(𝑏𝑛−1,𝑛𝜆𝑛−1𝑋𝑛−1

𝐿 − 𝜆𝑛𝑋𝑛
𝐿) 

 
= 𝜓(𝑛 − 1, 𝑛)𝑋𝑛−1

𝐿 − 𝜆𝑛𝑈 

 
 
 
(4.38) 

Where: 

 
𝜓(𝑘,𝑚) =∏𝑏𝑘,𝑘+1𝜆𝑘

𝑚

𝑗=𝑘

,       1 ≤ 𝑘 ≤ 𝑚 

 

(4.39) 

For the second and third derivative it follows that: 

𝑈′′ = 𝜓(𝑛 − 2, 𝑛)𝑋𝑛−2
𝐿 − 𝜓(𝑛 − 1, 𝑛)𝜆𝑛−1𝑋𝑛−1

𝐿 − 𝜆𝑛𝑈 

𝑈(3) = 𝜓(𝑛 − 3, 𝑛)𝑋𝑛−3
𝐿 − 𝜓(𝑛 − 2, 𝑛)(𝜆𝑛−1 + 𝜆𝑛−2)𝑋𝑛−2

𝐿  

+𝜓(𝑛 − 1, 𝑛)𝜆𝑛−1
2 𝑋𝑛−1

𝐿 − 𝜆𝑛𝑈′ 

And finally, the general formula for the derivatives of 𝑈 is given by: 

 

𝑈(𝑘) = 𝜓(𝑛 − 𝑘, 𝑛)𝑋𝑛−𝑘
𝐿 − 𝜓(𝑛 − 𝑘 + 1, 𝑛)(∑𝜆𝑛−𝑗

𝑘

𝑗=1

)𝑋𝑛−𝑘+1
𝐿  

+𝜓(𝑛 − 𝑘 + 1, 𝑛)𝐶𝑠(𝐴𝑘, 2)𝑋𝑛−𝑘+2
𝐿 − 𝜓(𝑛 − 𝑘 + 2, 𝑛)𝐶𝑠(𝐴𝑘−1, 3)𝑋𝑛−𝑘+3

𝐾  
 

+⋯+ (−1)𝑘+1𝜓(𝑛 − 1, 𝑛)𝐶𝑠(𝐴1, 𝑘 − 1)𝑋𝑛−1
𝐿 − 𝜆𝑛𝑈

(𝑘−1)  
 

 
 
(4.40) 
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Where 𝐴𝑘 denoted the set whose elements are {𝜆𝑛−1, 𝜆𝑛−2, … , 𝜆𝑛−𝑘}, and the function 𝐶(𝐴𝑘 , 𝑟), 

with 1 ≤ 𝑟 ≤ 𝑐𝑎𝑟𝑑(𝐴), is the sum of all combinations with repetitions of 𝑟 elements that belong 

to 𝐴𝑘. For example, 𝐶(𝐴3, 3) is given by: 

𝜆𝑛−1
3 + 𝜆𝑛−2

3 + 𝜆𝑛−3
3 + 𝜆𝑛−1

2 𝜆𝑛−2 + 𝜆𝑛−1
2 𝜆𝑛−3 + 𝜆𝑛−2

2 𝜆𝑛−1 + 𝜆𝑛−2
2 𝜆𝑛−3 

𝜆𝑛−3
2 𝜆𝑛−1 + 𝜆𝑛−3

2 𝜆𝑛−2 + 𝜆𝑛−1𝜆𝑛−2𝜆𝑛−3 

4.5 Root-based solution.  
 

4.5.1 Polynomial in Laplace transform space and roots. 
 

An alternative solution of (4.3) can be obtained from the algebraic equation theory, which can 

be useful to carry out a comparison with equation (4.16). This solution arises from the roots of 

the following polynomial: 

 (𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛) − 𝛼(𝑛) 
 

(4.41) 

Under the assumption that all the roots are real, it is possible to rewrite the last polynomial as: 

 
∏(𝑠 − 𝛽𝑗)

𝑛

𝑗=1

,     𝛽𝑗 is a root of (4.41) 
(4.42) 

Algorithm 4.2 Equation for the derivative of order 𝑖 of the function 𝑉 
 

Input: 𝑖 ∈ ℕ 
Output: Equation for the derivative of order 𝑖 of the function 𝑉 
 
STEP 1:  Compute all the partitions of 𝑖, and list them in a descending order. 
STEP 2:  Compute the set of coefficients of 𝑉(𝑖) using the Algorithm 4.1 or the Equation (4.34). 
STEP 3:  For each partition: 
                

i) Determine how many numbers belong to the partition and call this quantity 
as 𝑛0. 

ii) For each number 𝑠 that belongs to the partition: 
a) Write the derivative of 𝑈, whose order is equal to 𝑠. 
b) Store the term built in a).  

iii) Multiply all the derivatives that were built in (ii). 
iv) Compute the value 𝑛𝑝 using 𝑛0. 

v) Write the division of the product in (iii) by the expression (𝑎 − 𝑈)𝑛𝑝+1. 
vi) Store the final term in the set 𝑇. 

 
STEP 4: Write an equation given by the sum of all the terms contained in the set 𝑇. 
STEP 5: Multiply each term of the equation built in (iii) by the corresponding coefficient 
computed in STEP 2.                                
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In order to use symmetry in the analytic solution, the following variables will be defined: 

 𝛽𝑗
∗ = −𝛽𝑗,   1 ≤ 𝑗 ≤ 𝑛 (4.43) 

 

It is possible to obtain the analytical solution based on the roots of the isotope 𝑛, using a similar 

procedure like that described in (1.15)-(1.23): 

 
𝑋𝑛
𝐴(𝑡) = 𝑋1(0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

𝑛−1

𝑘=1

 ∑𝑒−𝛽𝑖
∗ 𝑡  ∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

 

 
(4.44) 

As it can be observed, this last equation has a similar shape that equation (2.23), which is very 

useful to develop comparisons. As well as equation (4.16), equation (4.44) cannot be applied 

to other isotopes in the cyclic chain due to the lack of symmetry of the system. Nevertheless, 

through the backward equation of (1.31), it follows that: 

 
𝑋𝑛−1
𝐴 =

1

𝑏𝑛−1,𝑛
eff 𝜆𝑛−1

eff
(
𝑑𝑋𝑛

𝐴

𝑑𝑡
+ 𝜆𝑛

eff𝑋𝑛
𝐴) 

 

(4.45) 

=

(

 
 
𝑋1(0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

𝑛−2

𝑘=1

∑𝑒−𝛽𝑖
∗ 𝑡  ∏

(𝜆𝑛
eff − 𝛽𝑖

∗)

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

)

 
 

 

Applying the same procedure for the general case 𝑘: 

 
𝑋𝑛−𝑘
𝐴 = 𝑋1(0) ∏ 𝑏𝑚,𝑚+1

eff 𝜆𝑚
eff

𝑛−𝑘−1

𝑚=1

∑𝑒−𝛽𝑖
∗ 𝑡  ∏ (𝜆𝑢

eff − 𝛽𝑖
∗)

𝑛

𝑢=𝑛−𝑘+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

 

 
(4.46) 

4.5.2 Symmetry of the solution based on roots. 
 

Using the described in Section 1.8.3, the following two functions will be defined: 

 
𝐹(𝐵) = 𝐹(𝛽1

∗, 𝛽2
∗, … , 𝛽𝑛

∗) =∑𝑒−𝛽𝑖
∗ 𝑡∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 
 
(4.47) 

 

 
𝑀𝑘(𝐵) = 𝑀𝑘(𝛽1

∗, 𝛽2
∗, … , 𝛽𝑛

∗) =∑𝑒−𝛽𝑖
∗ 𝑡  ∏ (𝜆𝑢

eff − 𝛽𝑖
∗)

𝑛

𝑢=𝑛−𝑘+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

 

 
(4.48) 

Where 𝐵 = {𝛽𝑖
∗| 1 ≤ 𝑖 ≤ 𝑛}.  It is possible to show that 𝐹(𝛽1

∗, 𝛽2
∗, … , 𝛽𝑛

∗) and 𝑀𝑘(𝛽1
∗, 𝛽2

∗, … , 𝛽𝑛
∗) 

are symmetric in all their arguments related to the 𝛽∗ variables. In other words: 
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 𝐹(𝛽1
∗, … , 𝛽𝑖

∗, … , 𝛽𝑗
∗, … , 𝛽𝑛

∗) = 𝐹(𝛽1
∗, … , 𝛽𝑗

∗, … , 𝛽𝑖
∗, … , 𝛽𝑛

∗)      1 ≤ 𝑖, 𝑗 ≤ 𝑛  

 

(4.49) 

And: 

 𝑀𝑘(𝛽1
∗, … , 𝛽𝑖

∗, … , 𝛽𝑗
∗, … , 𝛽𝑛

∗) = 𝑀𝑘(𝛽1
∗, … , 𝛽𝑗

∗, … , 𝛽𝑖
∗, … , 𝛽𝑛

∗)      1 ≤ 𝑖, 𝑗 ≤ 𝑛  

 

(4.50) 

The last property implies that the position of the variables 𝛽∗ does not matter, in other words, 
it is possible to make an arbitrary enumeration of the elements in 𝐵, and the outcome of the 

functions is the same. Under the previous argument the following equality is valid: 

 𝑀𝑘(𝛽1
∗, 𝛽2

∗, … , 𝛽𝑛
∗) = 𝑀𝑘 (𝛽𝜑1𝐵

∗ , 𝛽
𝜑2
𝐵
∗ , … , 𝛽

𝜑𝑛
𝐵
∗ ) (4.51) 

 
Where the elements  𝜑𝑘

𝐵 , 1≤ 𝑘 ≤ 𝑛, are the index of the positions of an arbitrary permutation 

of the elements of 𝐵. This is very useful in terms of computational time when some elements in 

𝐵 are removed, because several computational decisions steps can be omitted. For example, if 

the set 𝐵𝑙 = 𝐵 − {𝛽𝑙
∗} is considered, it follows that:  

 𝑀𝑘(𝐵𝑙) = 𝑀𝑘(𝛽1
∗, … , 𝛽𝑙−1

∗ , 𝛽𝑙+1
∗ , … , 𝛽𝑛

∗) 
 

(4.52) 
 

 

 
=∑𝑒−𝛽𝑖

∗ 𝑡  ∏ (𝜆𝑢
eff − 𝛽𝑖

∗)

𝑛

𝑢=𝑛−𝑘+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖
𝑗≠𝑙

𝑛

𝑖=1
𝑖≠𝑙

 

 

(4.53) 
 

As it can be noted, in the last equation there is a step of decision that verifies that 𝑖 ≠ 𝑙 . 

Nevertheless, such step can be avoided through a new enumeration, for which: 

 𝑀𝑘(𝛽1
∗, … , 𝛽𝑙−1

∗ , 𝛽𝑙+1
∗ , … , 𝛽𝑛

∗) = 𝑀𝑘(𝛽𝜑1
∗ , 𝛽𝜑2

∗ , … , 𝛽𝜑𝑛−1
∗ ) 

 

(4.54) 
 

 

 
= ∑𝑒−𝛽𝜑𝑖

∗  𝑡  ∏ (𝜆𝑢
eff − 𝛽𝜑𝑖

∗ )

𝑛

𝑢=𝑛−𝑘+1

∏
1

(𝛽𝜑𝑗
∗ − 𝛽𝜑𝑖

∗ )

𝑛

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

 
(4.55) 
 

   

With the elements 𝜑𝑘
𝐵𝑙 , 1≤ 𝑘 ≤ 𝑛 − 1, denoting the position of an arbitrary permutation of the 

elements of 𝐵𝑙 .  In equation (4.55) the step decision has been removed. While the depletion 

function 𝐹  only depends on the arguments given by the variables 𝛽∗ , the function 𝑀𝑘  also 

depends on the variable 𝑘, that is related with the following set: 

    Λ𝑘 = {𝜆𝑛−𝑘+1, 𝜆𝑛−𝑘+2, … , 𝜆𝑛}  
 

(4.56) 

Since this set is present in the function 𝑀𝑘 in equation (4.50), through the product in the middle 

part of its expression, it is possible to verify that the function is also symmetrical in the 

argument 𝑘. Even more, if an arbitrary enumeration is used for the variables 𝛽∗, this can be 
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inherited in a straightforward way by the set Λ𝑘, because both sets share the same subrange of 

index, given by 𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 2,… , 𝑛. Therefore, equation (4.55) can be written as: 

 
∑𝑒−𝛽𝜑𝑖

∗  𝑡  ∏ (𝜆𝜑𝑢
eff − 𝛽𝜑𝑖

∗ )

𝑛−1

𝑢=𝑛−𝑘+1

∏
1

(𝛽𝜑𝑗
∗ − 𝛽𝜑𝑖

∗ )

𝑛−1

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

 

 

(4.57) 

4.5.3 Simplifications of the solution based on roots. 
 

In certain cases, some variables 𝛽∗ will be very closed to some removal coefficient 𝜆eff, which 

allows simplifying equation (4.46) using the symmetry discussed in the past section.  For 

example, if 𝜆𝑛
eff ≈ 𝛽𝑛

∗ , then 𝜆𝑛
eff − 𝛽𝑛

∗ ≈ 0 and (4.48) is reduced to: 

   ∑ 𝑒−𝛽𝑖
∗ 𝑡  ∏ (𝜆𝑢

eff − 𝛽𝑖
∗) 

𝑛−1

𝑢=𝑛−𝑘+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛−1

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

  

In other words: 

    𝑀𝑘(𝛽1
∗, … , 𝛽𝑛−1

∗ , 𝛽𝑛
∗) = 𝑀𝑘(𝛽1

∗, … , 𝛽𝑛−1
∗ )  

 
(4.58) 

For the particular case where 𝑘 = 1, the last equation is reduced to: 

𝑀1(𝛽1
∗, … , 𝛽𝑛−1

∗ , 𝛽𝑛
∗) = 𝐹(𝛽1

∗, … , 𝛽𝑛−1
∗ ) 

For the general case, where several variables 𝛽∗ are approximately equal to the corresponding 

effective removal coefficient 𝜆𝑒𝑓𝑓, it is necessary to consider the following sets: 

 𝑆 = {𝛽𝑗
∗| 𝛽𝑗

∗ ≈ 𝜆𝑗
eff, 1 ≤ 𝑗 ≤ 𝑘}, 𝑃 = {𝑗|𝛽𝑗

∗ ∈ 𝑆} 

 

(4.59) 

Then: 

 
𝑀𝑘(𝛽1

∗, … , 𝛽𝑛−1
∗ , 𝛽𝑛

∗) ≈∑𝑒−𝛽𝑖
∗ 𝑡  ∏ (𝜆𝑢

eff − 𝛽𝑖
∗)

𝑛

𝑢=𝑛−𝑘+1
𝑢∉𝑃

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖
𝑗∉𝑃

𝑛

𝑖=1
𝑖∉𝑃

 

 

 
(4.60) 

Using the enumeration described in the previous section, the step decision given by 𝑖 ∉ 𝑃 and 

𝑢 ∉ 𝑃 can be avoided, through the following equation: 

 
𝑀𝑘(𝛽1

∗, … , 𝛽𝑛−1
∗ , 𝛽𝑛

∗) ≈ ∑ 𝑒−𝛽𝜑𝑖
∗  𝑡  ∏ (𝜆𝜑𝑢

eff − 𝛽𝜑𝑖
∗ )

𝑛−𝑝

𝑢=𝑛−𝑘+1

∏
1

(𝛽𝜑𝑗
∗ − 𝛽𝜑𝑖

∗ )

𝑛−𝑝

𝑗=1
𝑗≠𝑖

𝑛−𝑝

𝑖=1

 

 

 
(4.61) 

 

 = 𝑀𝑘 (𝛽𝜑1
∗ , 𝛽𝜑2

∗ , … , 𝛽𝜑𝑛−𝑝
∗ ) 

 

(4.62) 
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Where  𝑝 is the cardinality of the set 𝑃 . Finally, if the set 𝑆 is equal to the set Λ𝑘 , then it is 

possible to use the following approximation: 

𝑀𝑘(𝛽1
∗, … , 𝛽𝑛−1

∗ , 𝛽𝑛
∗) = 𝐹(𝛽1

∗, 𝛽2
∗, … , 𝛽𝑛−𝑘

∗ ) 

This analysis can help to reduce the computational time involved when the analytic solution 

based on the roots is used. 

4.6 Comparison schemes. 
 

The main objective in this section is to compare the set of equations developed above with the 

modified Bateman solution given for a linear chain. It is worth mentioning that equations (4.16) 

and (4.46) are not necessary equivalent, because the first one was developed using certain 

assumptions related to the branching ratios and the effective removal coefficients. In such 

sense, equation (4.46) will be considered as the reference solution, because there were not 

approximations or assumptions involved in its development. Strictly speaking, this equation is 

not totally exact, because there is an error involved in the process of finding the roots. 

Nevertheless, since this searching is related to a polynomial function, it is possible to consider 

this error as insignificant.    

Two examples related to cyclic chains will be analyzed. Such structures will consist of heavy 

isotopes, because these isotopes are commonly found in reactor nuclear problems. The first one 

consists in a pure cyclic chain composed by two isotopes, U235  and U236 , and the second is given 

by the sequence of isotopes U235 → U236 → U237 → Np237 → Np238 → Pu238 → Pu239 → U235 . 

These schemes will correspond to the case 𝑛 = 2 and the case 𝑛 = 7, respectively, which are 

shown in Figure 4.5. For the case of two isotopes, a similar procedure to the one used by M. 
Blaauw has been used (Blaauw, 1993). For the other scheme, a sequence of isotopes reported 

by R. Dreher was used (Dreher, 2012). The models were fed with data that was obtained from 

the simulation of a unit cell in infinite medium, in a thermal neutron spectrum. Calculations 

were done with the well-known Monte Carlo code SERPENT (Leppänen et al., 2015). The 

description and main features of the unit cell are shown Figure 4.6 and Tables 4.1-4.3. For the 

decay constants the ENDF/VII.1 Library was used. The set of data used in the comparison is 

presented in Table 4.2, and the numerical operations were carried in the software Mathematica 

11.3.0, using precision 30 in the case 𝑛 = 2 and precision 40 in the case 𝑛 = 7. 

4.6.1 Case 𝑛 = 2. 
Superposition process.  

From Table 4.1 it is known that both U235  and U236  have an initial concentration different from 

zero. In the previous developments it was always assumed that only one isotope has a 

concentration different from zero, which was the first element in the pure cyclic chain system 

given in (4.3) and (4.4). Therefore, in order to analyze a process of superposition, this structure 

will be solved in two steps. In the first one, the condition where only U235  has a concentration 

different from zero will be used. Thereby, 𝜆1 = 𝜆 U235
eff , 𝜆2 = 𝜆 U236

eff ,    𝑏1,2 = 𝑏 U235 , U236
eff , 𝑏2,1 =

𝑏
U236 , U235

eff . In the second step of the superposition it will be considered that 𝑋
U235 (0) = 0, and 

𝑋 U236 (0) ≠ 0, and thus 𝜆1 = 𝜆 U236
eff , 𝜆2 = 𝜆 U235

eff ,    𝑏1,2 = 𝑏 U236 , U235
eff , 𝑏2,1 = 𝑏 U235 , U236

eff . 
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Figure 4. 5. Left side: case 𝑛 = 2. Pure cyclic chain given by the isotopes U235  and U236 , through the 

reactions (𝑛, 𝛾)  and (𝑛, 2𝑛) . Right side: case n=7. Pure cyclic chain given by the sequence of 

isotopes that begins with U235  and ends with Pu239 . 

 

Figure 4. 6. Geometry of the unit cell in an infinite medium used in the comparison scheme. In such 

scheme the symbols 𝐽𝑥 and 𝐽𝑦 denote the magnitude of the neutron current density vector 𝐽
→

. This 

example was used in Chapter 2 to explain the comparison between the code MCNPX and SERPENT. 
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Table 4. 1. Main features of the unit cell used in the comparison scheme. 

 

 

 

 

 

 

 

 

Table 4. 2. Neutronic parameters of the isotopes belonging to the unit cell used in the 
comparison scheme. 

 

 

 

 

 

 

 

 

Table 4. 3. Neutronic parameters of the isotopes belonging to the unit cell used in the 
comparison scheme. 

 

 

 

 

 

 

 

 

 

Parameter  Isotope Initial 
concentration 
atoms/(b ∙ 𝑐𝑚)   

Inner radius (cm) 0.412  U234  6.15138x10−6 

Outer radius (cm) 0.475 U235  6.89185x10−4 

Square’s apothem (cm) 0.665 U236  3.16249x10−6 

Coolant Water U238  2.17092x10−2 

Cladding Zircalloy   

Neutron Flux (
neutrons

cm2∙s
)  2.72x1014    

Volume m3 5.33267x10−1    

Parameter U235  U236  U237  Np237  

𝜎𝑓 [𝑏] 5.51954x101 3.0372x10−1 1.73591 5.05637𝑥10−1 

𝜎(𝑛,𝛾) [𝑏] 1.17859x101 8.65019 6.29918𝑥101 3.75076𝑥101 

𝜎(𝑛,2𝑛) [𝑏] 3.52596x10−3 2.18561x10−3 1.12769𝑥10−2 9.28667𝑥10−4 

𝜎𝑓 ∙ 𝜙 [𝑠
−1] 1.503275x10−8 8.27197x10−11 4.72784𝑥10−10 1.37712𝑥10−10 

𝜎(𝑛,𝛾) ∙ 𝜙 [𝑠
−1] 3.20995026x10−9 2.35592x10−9 1.71561𝑥10−8 1.02154𝑥10−8 

𝜎(𝑛,2𝑛) ∙ 𝜙 [𝑠
−1] 9.60313x10−13 5.95262x10−13 3.07132𝑥10−12 2.52927x10−13 

𝜆 [𝑠−1] 3.12298x10−17 9.38495x10−16 1.18852x10−6 1.02516𝑥10−14 

𝜆eff 1.82437x10−8 2.43924x10−9 1.20615x10−6 1.03533𝑥10−8 

𝑏1,2
eff  1.75949x10−1 9.65843𝑥10−1 9.85381x10−1 9.86673x10−1 

𝑏2,1
eff*  2.4403𝑥10−4   

Parameter Np238  Pu238  Pu239  

𝜎𝑓 [𝑏] 1.94989x102 2.88213 1.41846x102 

𝜎(𝑛,𝛾) [𝑏] 1.97274x101 4.11423x101 7.96234x101 

𝜎(𝑛,2𝑛) [𝑏] 4.46679x10−3 1.08646x10−3 1.39825x10−3 

𝜎𝑓 ∙ 𝜙 [𝑠
−1] 5.31063x10−8 7.84963x10−10 3.86325x10−8 

𝜎(𝑛,𝛾) ∙ 𝜙 [𝑠
−1] 5.37286x10−9 1.12053𝑥10−8 2.16858x10−8 

𝜎(𝑛,2𝑛) ∙ 𝜙 [𝑠
−1] 1.21655x10−12 2.95903x10−13 3.80821x10−13 

𝜆 [𝑠−1] 3.78958x10−6 2.50622x10−10 9.11636x10−13 

𝜆eff 3.84806x10−6 1.22412x10−8 6.03196x10−8 

𝑏1,2
eff  9.84802x10−1 9.15377x10−1 1.51134x10−5 
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In other words, the index position has been switched in the equations. In fact, this process is 

very similar to the one described by Tasaka in 1980 (Tasaka, 1980), where the loops were 

“broken” in two parts or linear chains, which later were solved using the standard Bateman 

equation, and finally their concentration were superposed.  

4.6.2 Analysis of the roots.  
 

For the case 𝑛 = 2 equation (4.41) has two roots, which are given by: 

 

𝛽1,2 = ∓√(
𝜆1
eff + 𝜆2

eff

2
)

2

− 𝜆1
eff𝜆2

eff + 𝑏1,2
eff𝜆1

eff𝑏2,1
eff 𝜆2

eff   − (
𝜆1
eff + 𝜆2

eff

2
) 

 

(4.63) 

As it can be observed, equation (4.63) does not depend on the position index of the elements 

𝜆𝑖
eff and 𝑏𝑖,𝑗

eff. In other words, the roots are the same regardless what the first isotope is in the 

pure cyclic chain. Therefore, both steps of the superposition will have the same roots9.Once the 

data of Table 3.1 is replaced, the following values for the roots are obtained: 

 𝛽1 = −1.824378𝑥10
−8𝑠−1,   𝛽2 = −2.439118𝑥10

−9  𝑠−1 
 

(4.64) 

With their respective values of 𝛽∗: 

 𝛽1
∗ = 1.824378𝑥10−8𝑠−1, 𝛽2

∗ = 2.439118𝑥10−9  𝑠−1 
 

(4.65) 

Using equation (4.46) for the root-based solution for case 𝑛 = 2, it follows that: 

 
𝑋1
𝐴 = 𝑋1(0) (

(𝜆2
eff − 𝛽1

∗)

𝛽2
∗ − 𝛽1

∗ 𝑒−𝛽1
∗𝑡 +

(𝜆2
eff − 𝛽2

∗)

𝛽1
∗ − 𝛽2

∗ 𝑒−𝛽2
∗𝑡) 

 

(4.66) 

And using equation (4.44): 

 
𝑋2
𝐴 =

𝑏1,2
eff𝜆1

eff𝑋1(0)

𝛽2
∗ − 𝛽1

∗ (𝑒−𝛽1
∗𝑡 − 𝑒−𝛽2

∗𝑡) 
(4.67) 

 

These two equations will be used in the two superposition steps. As it can be noted, the values 

of (4.65) are very similar to the removal coefficients 𝜆
U235

eff  and 𝜆
U236

eff . Particularly, the following 

condition is valid 𝛽1
∗ ≈ 𝜆

U235
eff  and 𝛽2

∗ ≈ 𝜆
U236

eff . These values can be compared using the percentual 

error given by: 

 

E
U235 = 100%(

|𝛽1
∗ − 𝜆

U235
eff |

𝜆
U235

eff
) = 6.6269𝑥10−4% 

(4.68) 

And, in a similar way:  

 
9 The values of the roots are the same, but the sub-index of 𝛽∗  changes. Therefore, 𝛽1

∗  in the first 
superposition step has the same value of 𝛽2

∗ in the second superposition step.  
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   E U236 =   4.9566𝑥10−3%  (4.69) 

 

The errors are so small, that the approximation 𝛽∗ ≈ 𝜆eff can be considered and the analysis 

that we discussed in Section 4.5.3: 

  𝑋1
𝐴 ≈ 𝑋1

𝐿   and   𝑋2
𝐴 ≈ 𝑋2

𝐿   
 
 

(4.70) 

In other words, in this case the modified Bateman solution for a linear chain is a very good 

approximation to solve a cyclic chain. The analysis of this approximation is very different that 

the one given by 𝑏𝑛,1𝜆𝑛 ≈ 0 and (4.6). In this case, the approximation only depends on the 

effective removal coefficients and the roots of the polynomial in (4.41), the branch ratios have 

not been considered. Additionally, this approximation does not consider a comparison of how 

small is a parameter, or how it is close to zero, instead it depends on a comparison with another 

parameter. 

Another implication of the small errors is related to the localization of the roots of the 

polynomial in (4.41). As a first approach for other cases, the search of the roots can be 

performed in a neighborhood around the effective removal coefficients, which will reduce the 

time of the algorithm.  Finally, the third implication allows approximating the solution of the 

system in the case where it will be appropriated. For example, the percentual errors in (4.68) 

and (4.69) have different orders of magnitude, therefore, the Bateman’s solution of a linear 

chain can be used as an approximation of 𝑋
U235

𝐴 , but on the other hand, the root-based solution 

can be used to compute the concentration of U236 . 

4.6.3 First step of the superposition  
 

Using equation (2.23), the modified Bateman equation for a linear chain will be equal to: 

 
𝑋

U235
𝐿 = 𝑋

U235 (0)𝑒
−𝜆

U235
eff ∙𝑡 atoms

barn-cm
= 6.89185x10−4 ∙ 𝑒−(1.82437x10

−8)𝑡
atoms

barn-cm
 

 

 
(4.71) 

And: 

 

𝑋
U236

𝐿 = 𝑏
U235 , U236

eff 𝜆
U235

eff 𝑋
U235 (0)

(𝑒
−𝜆

U235
eff ∙𝑡

− 𝑒
−𝜆

U236
eff ∙𝑡

)

𝜆
U236

eff − 𝜆
U235

eff

atoms

barn-cm
= 

 

 
(4.72) 

 

 
= 1.39976x10−4(𝑒−(2.43924x10

−9)𝑡 − 𝑒−(1.82437x10
−8)𝑡)

atoms

barn-cm
 

 

(4.73) 

For the case of the root-based solution the equation (4.66) will be valuated: 
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  𝑋
U235

𝐴 = 6.89179x10−4𝑒−(1.824378x10
−8 𝑠−1)𝑡

+ 5.27199x10−8𝑒−(2.449118x10
−9 𝑠−1)𝑡

atoms

barn-cm
 

 

(4.74) 

And for equation (4.67): 

 
𝑋

U236
𝐴 = 1.39974x10−4(𝑒−(2.449118x10

−9 𝑠−1)𝑡 − 𝑒−(1.824378x10
−8 𝑠−1)𝑡)

atoms

barn-cm
 

(4.75) 

 

Finally, for the proposed equation given in (4.15):  

 

𝑋 U236 = 𝑋
U235 (0)

𝑋
U236

𝐿 atoms
barn-cm

𝑋 U235 (0) − 𝑏
U236 , U235

eff 𝜆
U236

eff 𝑋
U236

𝐿
 

 

(4.76) 

Once the values are replaced, 𝑋 U236  will be equal to: 

 6.89185x10−4 ∙ 1.39976x10−4(𝑒−(2.43924x10
−9)𝑡 − 𝑒−(1.82437x10

−8)𝑡)
atoms
barn-cm

6.89185x10−4 − 5.9526208x10−13 (1.39976𝑥10−4(𝑒−(2.43924x10
−9)𝑡 − 𝑒−(1.82437x10

−8)𝑡))
 

 

(4.77) 

And for the case of  𝑋
U235 : 

 
𝑋

U235 =
1

𝑏
U235 , U236

eff 𝜆
U235

eff
 
(
𝑑𝑋 U236

𝑑𝑡
+ 𝜆

U236
eff 𝑋 U236 ) 

 

(4.78) 

With: 

 𝑑𝑋 U236

𝑑𝑡
= 𝑋1(0)

2   
𝑏

U235 , U236
eff 𝜆

U235
eff 𝑋

U235
𝐿 − 𝜆

U236
eff 𝑋

U236
𝐿

(𝑋1(0) − 𝑏𝑛,1𝜆𝑛𝑋𝑛
𝐿)
2  

    

(4.79) 

Before continuing with this first step of superposition, the denominator in equation (4.77) will 

be analyzed. Firstly, the function 𝑒−(2.43924x10
−9)𝑡 − 𝑒−(1.82437x10

−8)𝑡  has a maximum value 

given by 0.63503, which is reached when 𝑡 = 1473.544 days. Therefore: 

 5.9526208x10−13 (1.39976𝑥10−4(𝑒−(2.43924x10
−9)𝑡 − 𝑒−(1.82437x10

−8)𝑡)) ≤ 8.33224𝑥10−17 

 

(4.80) 

Then, the denominator is, for practical purposes, equal to 6.89185x10−4 , which means that 

equation (4.76) is essentially equal to 𝑋
U236

𝐿 . It was expected, because the condition given in 

(4.6) is valid. Since equations (4.78) and (4.79) are obtained through the backward method 

described in equation (1.31), it is possible to verify that 𝑋
U235  also tends to 𝑋

U235
𝐿 .Therefore, the 

analysis in this first step of the superposition is reduced to compare the root-based equation 

with the modified Bateman equation for a linear chain. Since the data from a unit cell is using 

with conditions that are very similar to the ones finding in a thermal reactor case, it is possible 
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to conclude that the linear chain model can be a good approximation to model this pure cyclic 

chain.  

Figure 4.7 and Figure 4.8 contain the results for the concentration of U235  and U236  for the first 

superposition step. In such graphs only the root-based solution appears, because the percentual 

error between this and the modified Bateman equation is so small that the two curves overlap. 

Figure 4.9 contains the percentual error between them, which was computed using the root-

based solution as the reference. An interval of time between 1 hour (0.0417 days, 

approximately) and 1000 days was used, where it was assumed that the data in Table 4.2 

remains constant. 

It is important to consider such assumption, because the roots of equation (4.41) depend on 

the set of values of 𝜆𝑖
eff and 𝑏𝑖,𝑗

eff which in turn depends on the neutron flux and the microscopic 

cross sections. Strictly speaking, it is necessary to divide the calculations in a set of time steps, 

in which the effective removal coefficients must to be computed as well as the effective branch 

ratios, and therefore, the roots of equation (4.41) will not be the same. Nevertheless, the 

percentual errors given by (4.68) and (4.69) remain with the same order of magnitude, as it 

can be noted in Table 4.4, where each pair of roots has been computed in each burnup step, 

using the data obtained from SERPENT. 10  Based on Table 4.4, it is possible to justify the 

assumption that the data can be considered constant in time. 

From this analysis it is possible to conclude that, for this first step of superposition, the modified 

Bateman equation for a linear chain is a very good approximation for the pure cyclic chain given 

by U235 → U236 . In all the cases, the percentual error is less than 0.01%. 

4.6.4 Analysis of the error. 
 

As it can be observed in Figure 4.9, the error’s curves have the same shape. In both cases, the 

minimum value is found in the first-time steps, then it undergoes for a great increment of almost 

seven order of magnitude at 100 days. From this point, the error increases slowly, and in a time 

lapse of 900 days, it grows by almost two orders of magnitude.  

The error of the U-235 concentration is always greater than the error related to U-236. This can 

seem contradictory based in the errors (4.68) and (4.69). In other words, since  𝛽
U235

∗  is closer 

to 𝜆
U235

eff , in comparison with the closeness of 𝛽
U236

∗  to  𝜆
U236

eff , it would be expected that the 

percentual concentration error of U235  was lower than the error related to U236 .  

This can be explained because the modified Bateman equation for a linear chain is using, and 

therefore is assuming that, instead of a cyclic chain, there is a linear succession of isotopes given 

U235 → U236 . Therefore, the contribution to the concentration of U235  given by the reaction 

U236 𝑛,2𝑛
→  U235  is ignoring and undervaluing the concentration of this isotope.  

  

 
10 Such data is not shown in the present thesis. Tables 4.2 and 4.3, contain the values of the parameters 
only for the first burnup step.  
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Figure 4. 7. Concentration of the isotope U235  as a function of time, computed using the 
root-based solution for the first step of superposition. The modified Bateman equation 
was omitted in the graph, because both curves overlap. 
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Figure 4. 8. Concentration of the isotope U236  as a function of time, computed using the 

root-based solution for the first step of superposition. As in the case of Figure 4.7, the 

modified Bateman equation has been omitted. 
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Table 4. 4. Comparison of the roots of equation (4.63) with the effective removal coefficients 

considering the variation on neutron flux. 

 

 

 

 

 

 

 

 

 

 

 

 

Time 
(days) 

𝛽
U235

∗  𝜆
U235

eff  E
U235  𝛽

U236
∗  𝜆

U236
eff  E

U236  

12.5 1.824378E-08 1.824366E-08 6.63E-04 2.439119E-09 2.439239E-09 4.96E-03 

25 1.827399E-08 1.827386E-08 7.20E-04 2.563307E-09 2.563439E-09 5.14E-03 

125 1.827096E-08 1.827083E-08 7.29E-04 2.583379E-09 2.583512E-09 5.15E-03 

250 1.821497E-08 1.821483E-08 7.31E-04 2.536778E-09 2.536911E-09 5.25E-03 

375 1.831622E-08 1.831607E-08 8.12E-04 2.527604E-09 2.527753E-09 5.89E-03 

500 1.896815E-08 1.896799E-08 8.47E-04 2.519625E-09 2.519785E-09 6.38E-03 

625 1.989494E-08 1.989477E-08 8.77E-04 2.549947E-09 2.550121E-09 6.84E-03 

750 2.101352E-08 2.101333E-08 9.01E-04 2.613155E-09 2.613344E-09 7.25E-03 

875 2.230737E-08 2.230717E-08 8.98E-04 2.713452E-09 2.713652E-09 7.38E-03 

1000 2.368117E-08 2.368095E-08 9.08E-04 2.763975E-09 2.764190E-09 7.78E-03 
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Since U236  is produced from U235 , if the concentration of the second one is underestimated, then 

the concentration of the first one will also be underestimated. Finally, the difference of errors 

is explained because a small fraction of the reactions of U235  generates U236 . 

4.6.5 Second step of the superposition  
 

For the second step of superposition, it is possible to use some properties of the symmetry of 

the equations discussed in Section 4.5.2 with the purpose of reducing the amount of calculations 

to be done. Firstly, it is necessary to rewrite the modified Bateman equation for a linear chain, 

as: 

 
𝑋𝑛
𝐿 = 𝑋1(0)∏𝑏𝑘,𝑘+1

eff

𝑛−1

𝑘=1

𝜆𝑘
eff𝐹(𝜆1

eff, 𝜆2
eff, … , 𝜆𝑛

eff)  

 

 
(4.81) 

Where 𝐹  was defined in equation (1.135). As it was discussed, one of the properties of the 

function 𝐹 sets that 𝐹(𝜆1
eff, 𝜆2

eff, … , 𝜆𝑛
eff) = 𝐹(𝜆𝑛

eff, 𝜆𝑛−1
eff , … , 𝜆1

eff). In other words, the final isotope 

in the following two linear chains has the same function 𝐹: 

 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑛 ,    𝑋𝑛 → 𝑋𝑛−1 → ⋯ → 𝑋1   (4.82) 

 

This property will be useful in the superposition case that is studied in this section, because 

when the linear chain is traveled in the opposite direction, it is possible to use the same function 

𝐹 for the second isotope in both linear chains. Using the following notation: 

 𝑋𝑖,𝑗
𝐿 , 𝑋𝑖,𝑗(0)  (4.83) 

 

In the last expressions, the index 𝑖  denotes the isotope, whereas index 𝑗  denotes the 

superposition step. With this notation, it is possible to show that for the linear chains in (4.82) 

the following equation is valid: 

𝑋𝑛,1
𝐿 𝜆𝑛

eff

𝑋1,1(0)
(∏𝑏𝑘,𝑘+1

eff

𝑛−1

𝑘=1

)

−1

=
𝑋1,2
𝐿 𝜆1

eff

𝑋𝑛,2(0)
(∏𝑏𝑛−𝑘+1,𝑛−𝑘

eff

𝑛−1

𝑘=1

)

−1

 

Thus: 

 

𝑋1,2
𝐿 = 𝑋𝑛,1

𝐿
𝑋𝑛,2(0)𝜆𝑛

eff

𝑋1,1(0)𝜆1
eff
(∏𝑏𝑘,𝑘+1

eff

𝑛−1

𝑘=1

)

−1

 ∏𝑏𝑛−𝑢+1,𝑛−𝑢
eff

𝑛−1

𝑢=1

 

 
(4.84) 

 

In other words, the solution of the first isotope for the second superposition step was obtained 

in terms of the solution of the 𝑛  isotope for the first superposition step. Therefore, for the 

calculations of  𝑋
U235

𝐿  for the second step of superposition, it is possible to use the solution of 

𝑋
U236

𝐿  that was found in the first step. Replacing the values in (4.84) it follows that: 
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𝑋
U235 ,2

𝐿 = 𝑋
U236 ,1

𝐿  
𝑋 U236 ,2

(0)

𝑋 U235 ,1(0)

𝑏
U236 , U235

eff 𝜆
U236

eff

𝑏
U235 , U236

eff 𝜆
U235

eff
= 8.50948x10−7𝑋

U236 ,1
𝐿  

 
 
(4.85) 

 

Under a similar reasoning, it is possible to extend the conclusions for the root-based equation: 

  

𝑋
U235 ,2

𝑅 = 8.50948x10−7𝑋
U236 ,1

𝑅  

 

 
(4.86) 

It is possible to note that both equations, (4.85) and (4.86) are being multiplied by the same 

constant factor 8.50948x10−7, then it is possible to conclude that the error, between the two 

functions for the concentration of U235  in the second step of superposition, will be the same 

error for the first superposition step of the U236  concentration. Figure 4.10 shows the graph of 

the U235  concentration for the second superposition step. Again, the modified Bateman 

equation has been omitted in such graph, and it only shows the root-based solution, because 

both curves overlap.  It can be verified that the curve has the same shape that Figure 4.8, but it 

is multiplied by a factor 8.50948x10−7.  As it can be observed, through equation (4.84) it is 

possible to save computational time, using the values that were found for the first superposition 

step. For the concentration of the isotope U236  in this second superposition step, the backward 

equation can be used: 

  

𝑋
U236 ,2

𝐿 =
1

𝑏 U236 , U235 𝜆
U236

eff
(
𝑑

𝑑𝑡
𝑋

U235 ,2
𝐿 + 𝜆

U235
eff 𝑋

U235 ,2
𝐿 ) 

 
(4.87) 

 

Replacing equation (4.85) in equation (4.87), it follows: 

𝑋
U236 ,2

𝐿 = 8.50948x10−7
𝑏

U235 , U236 𝜆
U235

eff

𝑏 U236 , U235 𝜆
U236

eff
[ 

1

𝜆
U235

eff 𝑏 U235 , U236

(
𝑑

𝑑𝑡
𝑋

U236 ,1
𝐿 + 𝜆

U235
eff 𝑋

U236 ,1
𝐿 )] 

Considering the following relationship: 

  
𝑑
𝑑𝑡
𝑋

U236 ,1
𝐿 + 𝜆

U235
eff 𝑋

U236 ,1
𝐿

𝜆
U235

eff 𝑏 U235 , U236

= 𝑋
U235 ,1

𝐿 + 𝑋
U236 ,1

𝐿
(𝜆

U235
eff − 𝜆

U236
eff )

𝜆
U235

eff 𝑏 U235 , U236

 

 
 

 

Using the last equation, the expression (4.87) is rewritten as: 

  

𝑋
U236 ,2

𝐿 = 4.588738x10−3𝑋
U235 ,1

𝐿 + 2.25929861x10−2𝑋
U236 ,1

𝐿  

 
(4.88) 

Similarly 
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𝑋
U236 ,2

𝑅 = 4.588738x10−3𝑋
U235 ,1

𝑅 + 2.25929861x10−2𝑋
U236 ,1

𝑅  

 
(4.89) 

 

As it can be observed, it is possible to find the concentration of the isotope U236  for the second 

step of superposition, in terms of the solution of the isotopes U235  and U236  found in the first 

step of superposition. In Figure 4.11 the graph of the concentration for the U236  for the second 

step of superposition is shown. In this case, the graph has not the same shape that the one in 

Figure 4.7, because there is not symmetry between equations (4.88) and (4.89), and equations 

(4.71) and (4.74). The error between the root-based equation and the modified Bateman 

equation for this second step of superposition is shown in Figure 4.12. As in the first 

superposition step, it was not necessary to include equation (4.16) in the comparison, because 

it is equivalent to the modified Bateman equation. In fact, using a similar procedure that the one 

used in (4.77), the following denominator will be analyzed: 

 3.16249x10−6 − 3.20995x10−9(1.19110x10−10(𝑒−(2.43924x10
−9)𝑡 − 𝑒−(1.82437x10

−8)𝑡) 

 

(4.90) 

The second term in this last expression fulfills the following inequaility: 

 3.20995x10−9(1.19110x10−10(𝑒−(2.43924x10
−9)𝑡 − 𝑒−(1.82437x10

−8)𝑡) ≤ 2.42795x10−19 
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Figure 4. 11. Graph of the concentration of the isotope U236  for the second step of 

superposition, computed with the root-based equation.  

 

Figure 4. 12. Percentual error between the Root-based and the Modified Bateman solution for 

U235  and U236 , for the second superposition step. 
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Therefore, in terms of computational precision, equation (4.90) is equal to 3.16249x10−6, and 

therefore, equation (4.16) is reduced again to the modified Bateman equation. 

4.6.6 Total concentration. 
 

Finally, it is necessary to consider the two superposition steps in order to find the total 

concentration for the isotopes. Then, it follows that: 

  

𝑋
U235

𝑅 = 𝑋
U235 ,1

𝑅 + 𝑋
U235 ,2

𝑅   and       𝑋
U236

𝑅 = 𝑋
U236 ,1

𝑅 + 𝑋
U236 ,2

𝑅        

 

 
 

There are identical equations for 𝑋
U235

𝐿  and 𝑋
U236

𝐿 . Practically, the contribution of the second 

superposition step to U235  is insignificant in comparison with the value of the concentration of 

the first step. Therefore, the graph of the total concentration of this isotope is, essentially, the 

same that is shown in Figure 4.7. By the contrary, the total concentration of U236  depends on 

the two superposition steps. In Figure 4.13 two contributions and the final concentration is 

showed. Again, the modified Bateman equation has been omitted in the graph, because its curve 

overlaps with the corresponding to the root-based equation.  

Since the values of the microscopic cross section and the neutron flux that were used are very 

similar to the ones that are found in standard thermal nuclear reactor problems, these 

conclusions can be extended to other scenarios where the cyclic chain of U235  and U236  appears.  

4.7 Final considerations of the superposition. 
 

Equation (4.84) can be extended to a pure cyclic chain of length 𝑛 where more than one isotope 

has an initial concentration different from zero. This generalization will be very useful, because 

it is possible to find relationships that save computing time. In order to discuss this 

generalization, the following pure cyclic chain will be considered: 

 𝑋1
1

1 → 𝑋2
1

2 → ⋯ → 𝑋𝑛
1

𝑛  

 

(4.91) 

In the last equation three indexes have been used, the right lower one is used to distinguish the 

position of the isotopes in the structure under a numeration made from left to right. The left 

lower index is used to denote the isotope and the upper index denotes the superposition step. 

The following initial conditions will be used: 

 𝑋(𝑡 = 0)𝑖 ≠ 0, 1 ≤ 𝑖 ≤ 𝑛 
 

(4.92) 

In order to solve system (4.91) with the last initial conditions, it is necessary to break-down the 

procedure in 𝑛 steps of superposition. In each of these steps, it will be considered that only one 

of the isotopes has a concentration different from zero, while the rest will be assumed with an 

initial concentration equal to zero. Therefore, in each superposition step, it will be necessary to 

define a new enumeration that will start with the isotope whose initial concentration is 

assumed different from zero. 
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Beginning with the first superposition step; it will be considered that only 𝑋1  has an initial 

concentration different from zero. Then, the roots of the polynomial (4.41) corresponding to 

the system of (4.91) are computed, which will be denoted as 𝛽1
eff

1 , 𝛽2
eff

2 , … , 𝛽𝑛
eff

𝑛 . With these 

roots, and assuming that only 𝑋1 (0) ≠ 0 it is possible to set the root-based solution for the 

first superposition step for 𝑋𝑛  as: 

 
𝑋𝑛
1 =

𝑋1
1(0)

𝑏𝑛,1
eff

𝑛 𝜆𝑛
eff

𝑛

∏ 𝑏𝑘,𝑘+1
eff

𝑘 𝜆𝑘
eff

𝑘

𝑛

𝑘=1

𝐹( 𝛽1
∗

1 , 𝛽2
∗

2 , … , 𝛽𝑛
∗

𝑛 ) 
 
(4.93) 

 

In this case the right indexes in 𝑋𝑛
1, 𝑋1

1(0) and 𝜆eff𝑛  have been omitted, because their index 

position is the same that the index related to the isotope. For the second step, it is necessary to 

assume that only 𝑋𝑛 (0)  is different from zero, and defining the new numeration of the 

isotopes belonging to the sequence (4.91): 

 𝑋1
2

𝑛 → 𝑋2
2

1 → 𝑋3
2

2 → 𝑋4
2

3 → ⋯ → 𝑋𝑛
2

𝑛−1  

 

(4.94) 

It can be noted that in this second case the isotope 𝑋𝑛  is considered as the “first” isotope in 

the cyclic chain. Besides this, there are no other differences in the properties of the cyclic chain 

defined in (4.91). It is possible to remove other indexes in equation (4.93). Firstly, since the 

roots of the polynomial in (4.41) do not depend on the initial concentration, neither on the 
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numeration (or position) of the isotopes, it is possible to conclude that the roots of the system 

are the same that the roots of the system (4.94). 

Besides, it is known that the function 𝐹 is symmetrical in all its arguments, therefore the right 

index in the roots 𝛽∗ can be ignored. Additionally, the left index in the product of the elements 

𝑏𝑘,𝑘+1
eff

𝑘 𝜆𝑘
eff

𝑘  can be removed because in such multiplication all these parameters of the 

isotopes are involved. Then, when the solution of another isotope is built, this same product 

will be included, being this left index unnecessary. Considering the last arguments, the equation 

for the isotope 𝑋2𝑛−1  of the system in (4.94) is: 

 
𝑋𝑛
2

𝑛−1 =
𝑋1
2(0)𝑛

𝑏𝑛,1
eff

𝑛−1 𝜆𝑛
eff

𝑛−1

∏𝑏𝑘,𝑘+1
eff 𝜆𝑘

eff

𝑛

𝑘=1

𝐹(𝛽1
∗, 𝛽2

∗, … , 𝛽𝑛
∗) 

 
(4.95) 

 

Using equation (4.93), it is possible to rewrite (4.95) as: 

𝑋𝑛
2

𝑛−1 =
𝑋1
2(0)𝑛

𝑋1
1(0)

𝑏𝑛,1
eff

𝑛 𝜆eff𝑛

𝑏𝑛,1
eff

𝑛−1 𝜆𝑛
eff

𝑛−1

𝑋𝑛
1 

Therefore, it is possible to compute the solution of the isotope 𝑋𝑛−1  in the second superposition 

step, using the solution 𝑋𝑛
1 found in the first superposition step. Following a similar reasoning, 

for the superposition step 𝑗 with numeration given by: 

 𝑋1
𝑗

𝑛−𝑗+2 → 𝑋2
𝑗

𝑛−𝑗+3 → ⋯ → 𝑋𝑗−1
𝑗

𝑛 → 𝑋𝑗
𝑗

1 → 𝑋𝑗+1
𝑗
→2 … → 𝑋𝑛

𝑗
𝑛−𝑗+1  

 

(4.96) 

The following equation is valid: 

 𝑋𝑛
𝑗

𝑛−𝑗+1 = 𝜇𝑛−𝑗+1,𝑛
𝑗,1

𝑋𝑛
1 (4.97) 

With: 

 
𝜇𝑛−𝑗+1,𝑛
𝑗,1

=
𝑏𝑛,1
eff

𝑛 𝜆eff𝑛 𝑋1
𝑗
(0)𝑛−𝑗+2

𝑏𝑛,1
eff

𝑛−𝑗+1 𝜆𝑛
eff

𝑛−𝑗+1 𝑋1
1(0)

 
(4.98) 

 

As it can be observed, using equation (4.98) it is possible to find the solution of the isotope with 

the last index  𝑛 in each step of superposition, using the solution of the last isotope in the first 

step of superposition. Since the equations are proportional, it is only necessary to compute the 

solution 𝑋𝑛
1 for a set of time steps, and then multiply it by the factor in (4.98) in order to obtain 

the solution of the other superposition steps.  

Now, is necessary to find relationships for the other isotopes in the first superposition step. 

This can be done through the backward method. Using equation (1.131) to equation (4.97), it 

follows that: 

 
𝑋𝑛−1
𝑗

𝑛−𝑗 =
𝜇𝑛−𝑗+1,𝑛
𝑗,1

𝑏𝑛−1,𝑛
eff

𝑛−𝑗  𝜆𝑛−1
eff

𝑛−𝑗

[
𝑑 𝑋𝑛

1

𝑑𝑡
+ 𝜆𝑛

eff
𝑛−𝑗+1 𝑋𝑛

1] 
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Which can be rewritten as: 

 𝑋𝑛−1
𝑗

𝑛−𝑗 = 𝜔𝑗(0)[𝜛(0) 𝑋𝑛−1
1 + ∆𝑛−𝑗+1,𝑛 𝑋𝑛

1] (4.99) 

Where: 

 
𝜔𝑗(𝑢) = 𝜇𝑛−𝑗+1,𝑛

𝑗,1
∏

1

𝑏𝑛−ℎ−1,𝑛−ℎ
eff𝑗

 𝜆𝑛−ℎ
eff𝑗

𝑢

ℎ=0

, 𝜛𝑗(𝑢) =∏ 𝑏𝑛−ℎ−1,𝑛−ℎ
eff1  𝜆𝑛−ℎ

eff1

𝑢

ℎ=0

  

 

Where 𝑢  is an integer, the upper left index in the branch ratios and effective removal 

coefficients denotes the superposition step and ∆𝑥,𝑦= 𝜆eff𝑥 − 𝜆eff𝑦 . Through equation (4.99), it 

is possible to find the concentration of the isotope in the position 𝑛 − 1 that belongs to the 

superposition step 𝑗. As it can be observed, such concentration is given as a linear combination 

of the concentration of the isotopes 𝑋𝑛−1
1  and 𝑋𝑛

1 . Following a recursive procedure, it is 

possible to obtain an expression for the general case 𝑘: 

 𝑋𝑛−𝑘
𝑗

𝑛−𝑗+1−𝑘 = 𝜔𝑗(𝑘 − 1)[𝜛(𝑘 − 1) 𝑋𝑛−𝑘
1

+𝜛(𝑘 − 2)(∑∆𝑛−𝑗+1−𝑟,𝑛−𝑟

𝑘−1

𝑟=0

) 𝑋𝑛−𝑘+1
1 

+∑𝜛(𝑘 − 𝑟)𝜚∆(𝑟, 𝑘, 𝑗) 𝑋𝑛−1+𝑟
1

𝑘

𝑟=3

+∏∆𝑛−𝑗+1−𝑑,𝑛

𝑘−1

𝑑=0

𝑋𝑛
1 

 

 
 
(4.100) 

Where 𝜚∆(𝑟, 𝑘) are coefficients related to the differences given by ∆𝑥,𝑦, which can be computed 

in a recursive way: 

 

𝜚∆(𝑟, 𝑘, 𝑗) = {

𝜚∆(𝑟 − 1, 𝑘 − 1, 𝑗)∆𝑛−𝑗+2−𝑘,𝑛−(𝑟−2) + 𝜚∆(𝑟, 𝑘 − 1, 𝑗), 3 ≤ 𝑟 ≤ 𝑘

𝜚∆(𝑟 − 1, 𝑘 − 1, 𝑗)∆𝑛−𝑗+2−𝑘,𝑛−(𝑟−2) +∏∆𝑛−𝑗+1−𝑑,𝑛

𝑘−1

𝑑=0

𝑟 > 𝑘
 

 

 
 

And, as part of the definition the following two equalities are defined: 

 𝜚∆(2,2, 𝑗) = ∆𝑛−𝑗,𝑛−1 + ∆𝑛−𝑗+1,𝑛, 𝜚(3,2) = ∆𝑛−𝑗+1,𝑛∆𝑛−𝑗,𝑛 

 

 

As equation (4.100) suggests, it is possible to find the solution of all the isotopes of other 

superposition steps, as a lineal combination of the solution of the isotopes for the first 

superposition step. Therefore, it is only necessary to compute the constants 𝜔 , 𝜛 ,  

∆𝑥,𝑦, and 𝜚∆(𝑟, 𝑘, 𝑗).  

In general terms, the calculation of these constants is a less demanding task than computing the 

exponential functions and the product of inverse subtractions related with the terms 𝑋𝑖
1. Since 

basic arithmetical operations are less complex and less computational time consuming that the 

exponential function, it is expected that the calculations will be reduced when equation (4.100) 

is used.  

It is worth mentioning that these last asseverations require a detailed algorithm analysis, and 

the use of the Big O notation, nevertheless these topics are beyond the scope of the present 
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thesis, and these will be matter of a future research. Algorithm 4.3 summarizes the 

generalization of the superposition process and the use of equation (4.100). 

Algorithm 4.3. Superposition process 
Input: A pure cyclic chain of isotopes and their initial concentrations. 
 
Output: The concentration for the isotopes of a pure cyclic chain for a set of time steps. 
 
STEP 1:  Build a set 𝐼 that contains all the isotopes that belongs to the cyclic chain: 
 

𝐼 ≔ {𝑖| 𝑖 is a isotope of the pure cyclic chain} 
 
STEP 2:  Identify the isotopes of 𝐼 that have an initial concentration different from zero and 
with them build the set 𝐼0: 

𝐼0 ≔ {𝑖 ∈ 𝐼| 𝑋(0)𝑖 ≠ 0} 
 
STEP 3: Select an arbitrary isotope of 𝐼0, which we will call 𝑖0. 
STEP 4: Starting from 𝑖0, build the cyclic chain through the following sequence of isotopes: 
 

𝑖0 → 𝑖0+1 → ⋯ → 𝑖0+𝑐𝑎𝑟𝑑(𝐼)−1 

Where: 

{𝑖0, 𝑖0+1, … , 𝑖0+𝑐𝑎𝑟𝑑(𝐼)−1} = 𝐼 

 
STEP 5: For the structure set in STEP 4, use equations (4.44), (4.46) to compute the 
concentration’s function of the isotopes of the following sequence: 
  

𝑋𝑖0 1
1 → 𝑋𝑖0+1 2

1 → ⋯ → 𝑋𝑖0+𝑐𝑎𝑟𝑑(𝐼)−1 𝑐𝑎𝑟𝑑(𝐼)
1 ,    

With: 

𝑋𝑖0 1
1(0) ≠ 0, 𝑋𝑖0+ℎ 1+ℎ

1 (0) = 0, 1 ≤ ℎ ≤ 𝑐𝑎𝑟𝑑(𝐼) − 1 

 
STEP 6. For j=1, 2, …, card(I): 
 

◼ Select the element 𝑖0+𝑗 

◼ If   𝑖0+𝑗 ∈ 𝐼0: 

◼ Store the index 𝑗 in the set K and build the sequence: 
                                                  𝑖0+𝑗 → 𝑖0+𝑗+1 → ⋯ → 𝑖0+𝑐𝑎𝑟𝑑(𝐼)−1 → ⋯ → 𝑖0+𝑗−1 

◼         Solve the following structure: 

        𝑋𝑖0+𝑗 1
𝑗
→ 𝑋𝑖0+1 2

1 → ⋯ → 𝑋𝑖0+𝑐𝑎𝑟𝑑(𝐼)−1 𝑐𝑎𝑟𝑑(𝐼)
1     

        Using (1.31) and STEP 5 and the conditions: 

         𝑋𝑖0+𝑗 1
𝑗(0) ≠ 0, 𝑋𝑖0+𝑗+ℎ 1+𝑗+ℎ

𝑗 (0) = 0, 1 ≤ ℎ ≤ 𝑐𝑎𝑟𝑑(𝐼) − 1        

◼          Store the computed concentrations  
 
STEP 7. For u=0, 1, 2, …, card(I)-1:  
                                                    

𝑋𝑖0+𝑢
= 𝑋𝑖0+𝑢

1 +∑ 𝑋𝑖0+𝑢
𝑘

𝑘∈K
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4.8 case n=7. 

4.8.1 Roots. 
 

This case is related to the right side of Figure 4.5. Again, it is necessary to compute the roots of 

the following polynomial: 

 (𝑠 + 𝜆
U235

eff ) (𝑠 + 𝜆
U236

eff ) (𝑠 + 𝜆
U237

eff )… (𝑠 + 𝜆
Pu239

eff ) − 𝛼(7) 

 

(4.101) 

The roots of the last expression were found using the software Mathematica 11.3.0, which are 

shown in Table 4.5, with their respective values of 𝛽∗, as well as the percentual error given by 

their comparison with the effective removal coefficients.  As in the case of 𝑛 = 2, it can be noted 

that the negative of the roots of the polynomial are very close to the effective removal 

coefficients. Particularly, the lowest percentual error is related to the isotopes Np238  and Pu239 .  

Particularly, the lowest percentual error is related to the isotopes Np238  and Pu239 . 

4.8.2 Results for Pu239  
 

 

Using equation (4.44), the root-based equation for Pu239  is equal to: 

 
𝑋

Pu239
𝐴 (𝑡) = 𝑋7

𝐴(𝑡) = 𝑋1(0)∏𝑏𝑘,𝑘+1
eff 𝜆𝑘

eff

6

𝑘=1

 ∑𝑒−𝛽𝑖
∗ 𝑡  ∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

7

𝑗=1
𝑗≠𝑖

7

𝑖=1

 
 
(4.102) 

For the case of the modified Bateman equation, it follows: 

 
𝑋

Pu239
𝐿 (𝑡) = 𝑋7

𝐿(𝑡) = 𝑋1(0)∏𝑏𝑘,𝑘+1
eff 𝜆𝑘

eff

6

𝑘=1

 ∑𝑒−𝜆𝑖
eff 𝑡  ∏

1

(𝜆𝑗
eff − 𝜆𝑖

eff)

7

𝑗=1
𝑗≠𝑖

7

𝑖=1

 
 
(4.103) 

The concentration of Pu239  was obtained using the data in Tables 4.1-4.3 for a for a range of 5 

days to 1000 days. Figure 4.14 shows both graphs, which are overlapped as in the case 𝑛 = 2. 

Isotope 𝛽 𝛽∗ 𝜆eff E(%) 

U235  -1.82437 x10−8 1.82437 x10−8 1.82436x10−8 2.15839 x10−4 

U236  -2.439230 x10−9 2.439230 x10−9 2.43923947 x10−9 3.88253 x10−4 

U237  -1.20616x10−6 1.20616x10−6 1.2061559x10−6 3.34371x10−4 

Np237  -1.035350x10−8 1.035350x10−8 1.035336x10−8 1.322642x10−3 

Np238  -3.848060x10−6 3.848060x10−6 3.848058x10−6 4.115806x10−5 

Pu238  -1.22411x10−8 1.22411x10−8 1.224119 x10−8 7.927498 x10−4 

Pu239  -6.03196 x10−8 6.03196 x10−8 6.03196184 x10−8 3.04933 x10−5 
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Figure 4. 14. Concentration for Pu239  using the Modified Bateman Equation, and the Root Based 

Equation. The two curves overlap. 

 

Figure 4. 15. Percentual error between the Modified Bateman Equation and the Root-based 

equation for the concentration of Pu239 . 

Table 4. 5. Roots and their comparison with the effective removal coefficients for the structure 

of the right side of Figure 4.5. 
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For this case a precision of 50 digits has been used, because several of the isotopes of the cyclic 

chain have a very small effective removal coefficients, which can produce that the equations 

yield negative values of concentration if the computational precision is not increased. This 

situation will be discussed in more detail in Section 4.8.3. For the percentual error that is shown 

in Figure 4.15, it is possible to note a similar behavior that the one related to Figure 4.9 and 

Figure 4.12. Except for the first point, that has a percentual error close to 1%, the rest of data 

shows an increasing error that starts in an order of 10−3, and then it increases slowly to an 

error of the order of 10−1. 

In comparison with the case 𝑛 = 2, where the error for the two superposition steps remained 

below of 0.01%, in this case, the percentual error remains below 1%. The main source of this 

error is related to the product of the inverse of the subtractions 𝛽𝑗
∗ − 𝛽𝑖

∗ in equation (4.102), 

and with the corresponding term related to 𝜆𝑗
eff − 𝜆𝑖

eff in equation (4.103).  

Even when the percentual error between these parameters, 𝛽∗ and 𝜆eff, were of the same order 

(or even of a lower order) of the corresponding percentual error of case 𝑛 = 2, in this case there 

are several terms involved in the mentioned product, which was not the case with the cyclic 

chain given by U235 → U236 .  

In fact, in this last cyclic chain it is only necessary to compute the inverse of the differences: 

𝜆
U236

eff − 𝜆
U235

eff , and 𝛽
U236

∗ − 𝛽
U235

∗ . Therefore, when more differences of terms that are close are 

involved, the error can increase. Nevertheless, this error is still acceptable. With respect to the 

first two points, at 5 and 10 days, it is possible to omit them due to lack of precision. As it will 

be shown in the following section, when small time steps are considered, it is necessary to 

increases the precision to values beyond 50 digits, in order to compute the error in a right way. 

The data suggest that this cyclic chain can be approximated using the modified Bateman 

equation for a linear chain.  

4.8.3 Precision issues and negative values. 
 

A recurrent issue with the Bateman equations is related to precision and the round-off 

difficulties when very small removal coefficients are used. These topics were identified since 

the beginning of the development of the linear chain method in the 50’s and 60’s. The first 

author that addressed this topic in a very detailed work was D. R. Vondy (Vondy, 1962), who 

carried out a complete analysis about the way in which the modified Bateman solution can be 

implemented in digital machine calculations, particularly in the IBM-7090 computer on Fortran 

programming language. 

His work was based in the Lietzke and Claiborne (Lietzke and Claiborne, 1960), and Breslauer 

and Karricker (Breslauer and Karricker, 1960) articles. However, it seems that the precision 

and the round-off difficulties become the main disadvantage of the linear chain method, which 

made it the least popular among the burnup and activations codes, for at least two decades. 

Based on a description found in Tobias’s work in 1980 (Tobias, 1980), where he suggested that 
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this method was plagued with errors of this type, it is possible to conclude that the linear chain 

method was not popular in the early stages of the development of burnup codes. 

 

 

Table 4. 6. Concentration for Pu239  computed with the Modified Bateman equation, for several 
precision values. 

 

   

 

 

 

 

 

 

 

Time Precision 

Time Time (s) 15 30 40 50 100 150 

1 min 60 -3.42E-09 -2.86E-13 -4.06E-17 5.04E-20 3.97E-34 1.73E-40 

2 min 120 -3.42E-09 -1.13E-13 -2.13E-16 1.66E-20 4.16E-34 1.11E-38 

1 hr 3600 -3.44E-09 -1.87E-13 -1.13E-16 4.80E-20 8.07E-30 8.07E-30 

6 hrs 21600 -7.20E-09 -1.99E-13 -1.60E-16 1.66E-19 3.71E-25 3.71E-25 

12 hrs 43200 -7.33E-09 -2.05E-13 -5.75E-17 6.84E-20 2.34E-23 2.34E-23 

1 day 86400 -7.61E-09 -2.36E-13 -3.39E-17 1.98E-19 1.45E-21 1.45E-21 

5 days 432000 -2.50E-09 -1.88E-13 -2.17E-16 1.79E-17 1.79E-17 1.79E-17 

10 days 864000 -8.78E-09 -2.86E-13 7.27E-16 8.79E-16 8.79E-16 8.79E-16 

30 days 2592000 -4.15E-09 9.84E-14 2.78E-13 2.79E-13 2.79E-13 2.79E-13 

50 days 4320000 -5.82E-09 2.92E-12 3.24E-12 3.24E-12 3.24E-12 3.24E-12 

100 days 8640000 -2.67E-09 7.11E-11 7.12E-11 7.12E-11 7.12E-11 7.12E-11 

150 days 12960000 -2.51E-09 3.84E-10 3.84E-10 3.84E-10 3.84E-10 3.84E-10 

200 days 17280000 -2.69E-09 1.21E-09 1.21E-09 1.21E-09 1.21E-09 1.21E-09 

250 days 21600000 -3.32E-10 2.84E-09 2.84E-09 2.84E-09 2.84E-09 2.84E-09 

300 days 25920000 3.49E-10 5.60E-09 5.60E-09 5.60E-09 5.60E-09 5.60E-09 
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Certainly, there were authors that dealt with this problem in the past decades, included Tobias 

himself (Tobias, 1978), who developed new ways to write the Bateman equations in order to 

avoid these difficulties. Nowadays, some authors like Chaitanya Tadepalli and his colleagues 
(Chaitanya Tadepalli, 2016) continue to analyze this topic, and proposed mathematical tools to 

deal with precision problems.  In the present case, in order to perform a right comparison, it is 

necessary to deal with this problem increasing the precision and selecting an adequate range 

of time. Using the Python language, version 3.5, and the multi-precision library bigfloat, an 

analysis of equation (4.102) and (4.103) is carried out varying the precision. Table 4.6 presents 

the results for the modified Bateman equation, for a range of time from 60 seconds to 1000 

days. Table 4.7 shows the results for the root-based equation with the same conditions.11  

Table 4. 7. Concentration for Pu239  computed with the Modified Bateman equation, for several 

precision values. 

 
11 Only two precision digits has been included in both tables, because the purpose of this analysis is to 
show negative values and the consistency of the data. 



190 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the results where the concentration has a negative value have been highlighted. As it can be 

observed, when 15 digits of precision are used, there are problems in both equations. In the 

case of the modified Bateman equation this precision is not enough to model the time steps that 

are lower of 300 days, and it produces negative results. In the other case, with the root-based 

equation (Table 4.7) there are not negative values, but instead there is not consistency in the 

results if they are compared with the values of the sixth column, which is considered as the 

correct data for this case. 

Using precision 30, which was the precision that was used in the case 𝑛 = 2, difficulties still 

arise. In the case of the modified Bateman equation, there are negative values for time steps 

less or equal to 10 days. For the root-based equation, there are inconsistent values, and 

particularly a result for a time step of 5 days with a percentual error given by: 

 
𝐸% = 100% ∙

|4.72x10−13 − 1.79x10−17|

1.79x10−17
= 2636771.508% 

 

 
(4.104) 

For the precision of 50 digits, the results are consistent for a range of time of 5 days onwards, 

and this was the reason that this precision was chosen to make a comparison of Pu239  in the 

past section. Nevertheless, this precision is not enough to model the concentration value for 

Time Precision 

Time 
Time (s) 15 30 40 50 100 150 

1 min 
60 1.00E-08 3.19E-13 -1.06E-17 -3.97E-20 -7.06E-35 1.73E-40 

2 min 
120 1.00E-08 3.61E-13 -8.05E-18 -7.95E-20 1.53E-34 1.11E-38 

1 hr 
3600 1.00E-08 2.22E-13 -6.78E-18 -7.95E-20 8.07E-30 8.07E-30 

6 hrs 
21600 9.56E-09 3.75E-13 -1.06E-17 -1.32E-19 3.71E-25 3.71E-25 

12 hrs 
43200 5.46E-09 3.89E-13 -8.05E-18 -1.32E-19 2.34E-23 2.34E-23 

1 day 
86400 8.19E-09 4.44E-13 -7.21E-18 -1.46E-19 1.45E-21 1.45E-21 

5 days 
432000 5.01E-09 4.72E-13 9.32E-18 1.77E-17 1.79E-17 1.79E-17 

10 days 
864000 7.28E-09 4.72E-13 8.71E-16 8.79E-16 8.79E-16 8.79E-16 

30 days 
2592000 9.56E-09 6.81E-13 2.79E-13 2.79E-13 2.79E-13 2.79E-13 

50 days 
4320000 5.01E-09 3.64E-12 3.24E-12 3.24E-12 3.24E-12 3.24E-12 

100 days 
8640000 7.74E-09 7.16E-11 7.12E-11 7.12E-11 7.12E-11 7.12E-11 

150 days 
12960000 1.14E-08 3.84E-10 3.84E-10 3.84E-10 3.84E-10 3.84E-10 

200 days 
17280000 9.10E-09 1.21E-09 1.21E-09 1.21E-09 1.21E-09 1.21E-09 

250 days 
21600000 6.83E-09 2.84E-09 2.84E-09 2.84E-09 2.84E-09 2.84E-09 

300 days 
25920000 1.00E-08 5.60E-09 5.60E-09 5.60E-09 5.60E-09 5.60E-09 
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values of less of 5 days.  As it was mentioned before, the first two points in the graph of Figure 

4.15 can be omitted, because they have their origin in a lack of precision. This can be verified in 

Table 4.6 and Table 4.7. Observing the sixth column of both tables, it is possible to conclude that 

the value of the concentration for a time of 5 days is close to 1.79𝑥10−17. Since the sixth column 

uses the greatest precision value, such value is considered as the right one.  

Nevertheless, in the fourth column in Table 4.7, which corresponds to the root-based equation, 

there is a value of the concentration for the same day, but with a precision of 50 is 1.77𝑥10−17. 

Therefore, there is a difference with the same equation using two different values of precision, 

which is approximately equal to: 

 
𝐸% ≈ 100% ∙

|1.77483x10−17 − 1.79070x10−17|

1.79070x10−17
= 0.8862% 

 
(4.105) 

 

This error is close to the first value of the graph of Figure 4.15, which is approximately equal to 

0.9602%. If Table 4.6 is analyzed, which shows the data computed with the modified Bateman 

equation, it is possible to conclude that the modified Bateman equation gives a better result for 

the same time step and the precision of 50 digits. Nevertheless, if the percentual error between 

the results of the Modified Bateman Equation and the Root-based Equation is computed, using 

precision 100 instead of 50, it follows that for a time of 5 days this error approximately equal 

to: 

 
𝐸% = 100% ∙

|1.79070x10−17 − 1.79187x10−17|

1.79070x10−17
= 0.0012% 

 
(4.106) 

 

Which is a value close to the correct percentual error. Similarly, for the point of 10 days, there 

is a correct value of 0.0024%, instead of 0.012%. In practical cases these concentration values 

are very small, and usually the time steps related to them are of order of days. In fact, only a 

reduced number of isotopes are studied with small time steps, as it is the case of Xenon, whose 

study usually consider time steps of 50 hours onward (Itagaki et. al., 1993). This analysis was 

carried out in order to explain the apparent discrepancy in the first two points of Figure 4.1, 

and the need to increase the precision. Finally, it is possible to conclude that the percentual 

error in this cyclic chain is strongly influenced by the precision used, as it can be observed in 

Figure 4.16. 

4.8.4 Results for Pu238  
 

For the isotope Pu238 , whose position in the cyclic chain is equal to 𝑛 − 1 = 6, it is possible to 

use the root-based equation (4.45): 

 

𝑋
Pu238

𝐴 = 𝑋6
𝐴 =

(

 
 
𝑋

U235 (0)∏𝑏𝑘,𝑘+1
eff 𝜆𝑘

eff

4

𝑘=1

∑𝑒−𝛽𝑖
∗ 𝑡  ∏

(𝜆
Pu239

eff − 𝛽𝑖
∗)

(𝛽𝑗
∗ − 𝛽𝑖

∗)

7

𝑗=1
𝑗≠𝑖

7

𝑖=1

)

 
 

 

 
(4.107) 
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Figure 4. 16. Percentual error between the Modified Bateman Equation and the Root-Based 

Equation, for the isotope Pu239 , as a function of time and with different values of precision. 

The modified Bateman equation for this isotope is given by: 

 
𝑋

Pu238
𝐿 = 𝑋6

𝐿 = 𝑋
U235 (0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

5

𝑘=1

 ∑𝑒−𝜆𝑖
eff 𝑡  ∏

1

(𝜆𝑗
eff − 𝜆𝑖

eff)

6

𝑗=1
𝑗≠𝑖

6

𝑖=1

 

 

 
(4.108) 

With the same data and precision that was used for the isotope Pu239 , the Pu238  concentration 

was computed using equations (4.107) and (4.108). Figure 4.17 contains the graph for both 

equations, and Figure 4.18 contains the percentual error between these equations. Again, the 

curves overlap, even when there is a small difference in the first time-steps. This difference can 

be explained by the lack of precision as in the case of Pu239 . In Figure 4.18 a percentual error 

curve with a greater precision is showed, which confirms this. The percentual error is less than 

1% for all the time steps. Therefore, the results suggest that the linear chain can be a very good 

approximation to solve this particular cyclic chain. It was found that the results for the 

concentration of the isotopes Np238 , Np237 , U237  and U236  are very similar to the results of Pu239  

and Pu238 . In fact, for all these isotopes the graphs overlap, and the error has the same behavior.  

Therefore, it was considered convenient to discuss only the U235  of the rest of isotopes of the 

cyclic chain, because the forward method, discussed in Section 1.6, can be used to solve it. 
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Figure 4. 17. Concentration for Pu238  compute with the Modified Bateman Equation, and the 

Root Based Equation. The two curves overlap. 

 

Figure 4. 18. Percentual error between the Modified Bateman Equation and the Root-Based 

Equation, for the isotope Pu238 , as a function of time, and with two different values of precision. 
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4.8.5 The forward method for the root-based Equation. 
 

Using the forward method given in (1.56) it is possible to find  𝑋1
𝐴 in a cyclic chain, knowing the 

solution for 𝑋𝑛
𝐴. Starting from equation (4.44) it follows that: 

 
𝑋1
𝐴 = 𝑒−𝜆1

eff𝑡 (𝑏𝑛,1
eff 𝜆𝑛

eff∫ 𝑋𝑛
𝐴(𝑡′)𝑒𝜆1

eff𝑡′
𝑡

0

𝑑𝑡′ + 𝑋1
𝐴(0)) 

 

 
(4.109) 

Firstly, the following term is computed: 

 
∫ 𝑋𝑛

𝐴(𝑡′)𝑒𝜆1
eff𝑡′

𝑡

0

= ∫ 𝑋1(0)∏𝑏𝑘,𝑘+1
eff 𝜆𝑘

eff

𝑛−1

𝑘=1

 ∑𝑒−𝛽𝑖
∗ 𝑡′  ∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

𝑡

0

𝑒𝜆1
eff𝑡′𝑑𝑡′ 

= 𝑋1(0)∏𝑏𝑘,𝑘+1
eff 𝜆𝑘

eff

𝑛−1

𝑘=1

(

 
 
∑
𝑒−(𝛽𝑖

∗−𝜆1
eff)𝑡 − 1

𝜆1
eff − 𝛽𝑖

∗
 ∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

)

 
 

 

 

(4.110) 
 
 
 
(4.111) 

If the subtraction is expanded: 

∑
𝑒−(𝛽𝑖

∗−𝜆1
eff)𝑡 − 1

𝜆1
eff − 𝛽𝑖

∗
 ∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

=∑

(

 
 𝑒−(𝛽𝑖

∗−𝜆1
eff)𝑡

𝜆1
eff − 𝛽𝑖

∗
∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

−
1

𝛽𝑖
∗ − 𝜆1

eff
 ∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖 )

 
 

𝑛

𝑖=1

 

Considering the definition where 𝛽𝑛+1
∗ = 𝜆1

eff, the term 𝜆1
eff − 𝛽𝑖

∗ can be included in the product 

under the index 𝑗: 

 
=∑𝑒−(𝛽𝑖

∗−𝜆1
eff)𝑡

𝑛

𝑖=1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛+1

𝑗=1
𝑗≠𝑖

−∑∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛+1

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

 

(4.112) 

Using the Reduction Theorem proved in Section 1.8.1: 

 
−∑∏

1

𝛽𝑗
∗
− 𝛽𝑖

∗

𝑛+1

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

=∏
1

𝛽𝑗
∗
− 𝛽𝑛+1

∗

𝑛

𝑗=1

 
(4.113) 

Therefore: 

 
=∑

𝑒−(𝛽𝑖
∗−𝜆1

eff)𝑡 − 1

𝜆1
eff − 𝛽𝑖

∗
 ∏

1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

=∑𝑒−(𝛽𝑖
∗−𝜆1

eff)𝑡

𝑛

𝑖=1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛+1

𝑗=1
𝑗≠𝑖

+∏
1

𝛽𝑗
∗
− 𝛽𝑛+1

∗

𝑛

𝑗=1

 

 
 
(4.114) 
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Using the last expressions, the term 𝑒−𝜆1
eff𝑡𝑏𝑛,1

eff 𝜆𝑛
eff ∫ 𝑋𝑛

𝐴(𝑡′)𝑒𝜆1
eff𝑡′𝑡

0
𝑑𝑡′  is equal to: 

 

= 𝑋1(0)∏𝑏𝑘,𝑘+1
eff 𝜆𝑘

eff

𝑛

𝑘=1

(

 
 
∑𝑒−𝛽𝑖

∗𝑡

𝑛

𝑖=1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛+1

𝑗=1
𝑗≠𝑖

+∏
1

𝛽𝑗
∗
− 𝛽𝑛+1

∗

𝑛

𝑗=1

𝑒−𝜆1
eff𝑡

)

 
 

 

 
(4.115) 

The last term can be written as: 

 
=∏

1

𝛽𝑗
∗
− 𝛽𝑖

∗

𝑛+1

𝑗=1
𝑗≠𝑖

𝑒−𝛽𝑖
∗𝑡, 𝑖 = 𝑛 + 1 

 
(4.116) 

Therefore, the equation (4.113) is equal to: 

 
𝑋1(0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

𝑛

𝑘=1

∑𝑒−𝛽𝑖
∗𝑡

𝑛+1

𝑖=1

∏
1

𝛽𝑗
∗
− 𝛽𝑖

∗

𝑛+1

𝑗=1
𝑗≠𝑖

 
 
(4.117) 

Thus, equation (4.109) can be rewritten as: 

 
𝑋1
𝐴 = 𝑋1(0)𝑒

−𝜆1
eff𝑡 + 𝑋1(0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

𝑛

𝑘=1

∑𝑒−𝛽𝑖
∗𝑡

𝑛+1

𝑖=1

∏
1

𝛽𝑗
∗
− 𝛽𝑖

∗

𝑛+1

𝑗=1
𝑗≠𝑖

 

 

(4.118) 

This last equation is very useful, because it allows us to distinguish the solution related to the 

linear chain case, which correspond to the first term, from the contribution due to the cyclic 

chain.  

4.8.6 Concentration of U235  
 

Even when it is possible to use equation (4.44) to find 𝑋
U235

𝐴 , the forward method and equation 

(4.118) will be used instead, because this expression allows comparing the root-based equation 

and the modified Bateman equation in a simpler way. Using such equation, it follows that: 

 
𝑋

U235
𝐴 = 𝑋

U235
𝐴 (0)𝑒

−𝜆
U235

eff 𝑡
+ 𝑋

U235
𝐴 (0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

7

𝑘=1

∑𝑒−𝛽𝑖
∗𝑡

8

𝑖=1

∏
1

𝛽𝑗
∗
− 𝛽𝑖

∗

8

𝑗=1
𝑗≠𝑖

 

 

(4.119) 

On the other hand, the modified Bateman equation for this isotope is given by: 

 
𝑋

U235
𝐿 = 𝑋

U235
𝐴 (0)𝑒

−𝜆
U235

eff 𝑡
 

 

(4.120) 

Using this last equation, equation (4.119) can be rewritten as: 
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𝑋

U235
𝐴 = 𝑋

U235
𝐿 + 𝑋

U235
𝐴 (0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

7

𝑘=1

∑𝑒−𝛽𝑖
∗𝑡

8

𝑖=1

∏
1

𝛽𝑗
∗
− 𝛽𝑖

∗

8

𝑗=1
𝑗≠𝑖

 

 

(4.121) 

From the last equation it is possible to identify the contribution that is associated with the 

structure of the cyclic chain, and particularly with the reaction Pu239 𝛼
→ U235 . Figure 4.19 shows 

the graph of equations (4.120) and (4.121). As in the past cases, the curves overlap. The 

percentual error is shown in Figure 4.20. Again, a precision 50 has been used to compute this 

error. The contribution due to the cyclic chain is practically neglected. In fact, for a range of 

1 Day ≤ 𝑡 ≤ 1000 Days the following inequality is obtained 

 
1.64547x10−29 [

atoms

b ∙ cm
]  ≤ 𝑋

U235
𝐴 (0)∏𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff

7

𝑘=1

∑𝑒−𝛽𝑖
∗𝑡

8

𝑖=1

∏
1

𝛽𝑗
∗
− 𝛽𝑖

∗

8

𝑗=1
𝑗≠𝑖

≤ 4.0733x10−12 [
atoms

b ∙ cm
] 

 

 
(4.122) 

As it is known, this contribution is due to the alpha decay of Pu239  to U235 , which involves a half-

life of 24110 years. From the results it can be concluded that the cyclic chain of the right side of 

Figure 4.5 can be modelled correctly with the modified Bateman equation.  

4.9 Final considerations of the forward method. 
 

The integral method described in Section 1.7 and Section 4.6.5 can be used to extend the model 

of pure cyclic chains to more general and complex structures. For the following discussion, the 

scheme that is shown in Figure 4.21 will be used. It has as a base a pure cyclic chain, denoted 

by the sequence 𝑋1 → 𝑋2 → ⋯ 𝑋𝑛 . From several of the isotopes that belong to this base 

structure, there are “branches” that emerge, forming linear chains from them, as the sequences 

given by 𝑌1 → 𝑌2 → ⋯ and 𝑍1 → 𝑍2 → ⋯.  

Additionally, there is a linear chain whose final element, 𝑊𝑛, has a contribution to the cyclic 

chain. Using the forward method, the structures that emerge as branches from the cyclic chain 

can be solved. For the moment, the linear chain whose final element is 𝑊𝑛 will be ignored and 

only the cyclic chain and the two branches given by the sequences 𝑌1 → 𝑌2 → ⋯ and 𝑍1 → 𝑍2 →

⋯ will be considered. Based on Figure 4.21, it is possible to set the balance equation for the 

following isotopes: 

 𝑑

𝑑𝑡
𝑋𝑗 = 𝑏𝑗−1

eff 𝜆𝑗−1
eff 𝑋𝑗−1 − 𝜆𝑗

eff𝑋𝑗 ,    
𝑑

𝑑𝑡
𝑋𝑘 = 𝑏𝑘−1

eff 𝜆𝑘−1
eff 𝑋𝑘−1 − 𝜆𝑘

eff𝑋𝑘   

 

(4.123) 

And: 

 𝑑

𝑑𝑡
𝑍1 = 𝑏𝑘,𝑍1

eff 𝜆𝑘
eff𝑋𝑗−1 − 𝜆𝑍1

eff𝑍1 ,    
𝑑

𝑑𝑡
𝑌1 = 𝑏𝑗,𝑌1

eff 𝜆𝑗
eff𝑋𝑗 − 𝜆𝑌1

eff𝑌1  

 

(4.124) 

It can be observed that the first two equations only depend of the elements inside the pure 

cyclic chain. In fact, their root-based equations are set using expression (4.46): 
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Figure 4. 21. Scheme of cyclic chain where some of its elements have branches, from which 

emerge linear chains. In addition, there is a linear chain that has a contribution to the cyclic 

chain through the isotope 𝑊𝑞 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝑋𝑛−𝑢
𝐴 = 𝑋1(0) ∏ 𝑏𝑚,𝑚+1

eff 𝜆𝑚
eff

𝑛−𝑢−1

𝑚=1

∑𝑒−𝛽𝑖
∗ 𝑡  ∏ (𝜆𝑙

eff − 𝛽𝑖
∗)

𝑛

𝑙=𝑛−𝑢+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

 

 
(4.125) 

It is only necessary to replace the index 𝑢, by the indexes 𝑗 and 𝑘. In other words, with branches 

that emerge and not enter to a pure cyclic chain, the solution of them is the same that has been 

discussed in the present thesis, and it is not necessary to make modifications. The reason of it 

lies inside the terms of lost in the balance equation. In the present example, the elements 𝜆𝑘
eff𝑋𝑘 

and 𝜆𝑗
eff𝑋𝑗 represent all the losses that the isotopes undergo, and in these terms are included the 

transformations that have as a result the production of the isotopes 𝑍1and 𝑌1. In other words, it 

follows that: 

 𝜆𝑘
eff = 𝑏𝑘,𝑘+1

eff 𝜆𝑘
eff + 𝑏𝑘,𝑍1

eff 𝜆𝑘
eff +⋯,    𝜆𝑗

eff = 𝑏𝑗,𝑗+1
eff 𝜆𝑗

eff + 𝑏𝑗,𝑌1
eff 𝜆𝑗

eff +⋯   

 

 

Therefore, when the pure cyclic chain is solved, it is considered these reactions in the system. 

Then, even when there are branches emerging from each isotope of a pure cyclic chain, the 

solution of this structure can be obtained ignoring all these elements. Furthermore, the balance 

equations can be solved using the forward method and equation (4.125). The variable 𝑣 will be 

used to denote 𝑍1 or 𝑌1, and the expression 𝑛 − 𝑢 to denote the position of the isotope in the 

cyclic chain: 

 
𝑋𝑣
𝐴 = 𝑒−𝜆𝑣

eff𝑡 (𝑏𝑛−𝑢,𝑣
eff 𝜆𝑛−𝑢

eff ∫ 𝑋𝑛−𝑢
𝐴 (𝑡′)𝑒𝜆𝑣

eff𝑡′
𝑡

0

𝑑𝑡′ + 𝑋𝑣(0)) 

 

(4.126) 
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To solve the last equation it is necessary to compute the following term 

𝑒−𝜆𝑣
eff𝑡 ∫ 𝑋𝑛−𝑢

𝐴 (𝑡′)𝑒𝜆𝑣
eff𝑡′𝑡

0
𝑑𝑡′ 

 
𝑒−𝜆𝑣

eff𝑡∫ 𝑋1(0) ∏ 𝑏𝑚,𝑚+1
eff 𝜆𝑚

eff

𝑛−𝑢−1

𝑚=1

∑𝑒−(𝛽𝑖
∗− 𝜆𝑣

eff)𝑡′  

𝑛

𝑖=1

𝑡

0

 

× ∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑛−𝑢+1

∏
𝑑𝑡′

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑑𝑡′ 

 

 
 
(4.127) 

 

 
= 𝑋1(0) ∏ 𝑏𝑚,𝑚+1

eff 𝜆𝑚
eff

𝑛−𝑢−1

𝑚=1

∑
𝑒−𝛽𝑖

∗𝑡 − 𝑒−𝜆𝑣
eff𝑡

𝜆𝑣
eff − 𝛽𝑖

∗

𝑛

𝑖=1

∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑛−𝑢+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

 

 

 
(4.128) 

Replacing (4.128) in (4.126), the concentration for the isotope 𝑣 is: 

 
𝑋𝑣
𝐴 = 𝑋1(0)𝑏𝑛−𝑢,𝑣

eff 𝜆𝑛−𝑢
eff ∏ 𝑏𝑚,𝑚+1

eff 𝜆𝑚
eff

𝑛−𝑢−1

𝑚=1

 

(

 
 
∑
𝑒−𝛽𝑖

∗𝑡 − 𝑒−𝜆𝑣
eff𝑡

𝜆𝑣
eff − 𝛽𝑖

∗

𝑛

𝑖=1

∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑛−𝑘+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖 )

 
 
+ 𝑋𝑣(0)𝑒

−𝜆𝑣
eff𝑡 

 
 

 
 
 
(4.129) 

The last equation can be used to compute the concentration of the isotopes 𝑌1 and 𝑍1. It is only 

necessary to replace the variable 𝑣, and the variable 𝑢. The next step is to find the solution for 

the concentration of all the elements in the linear chains that emerge from the cyclic chain, and 
not only in their first term. Therefore, it is necessary to find a more general solution. In 

Appendix A it is shown that the general expression for the linear chain 𝑍1, 𝑍2, … , 𝑍𝑝is given by: 

 
𝑋𝑍𝑝
𝐴 =  𝑋1(0)𝑏𝑘,𝑍1

eff 𝜆𝑘
eff∏𝑏𝑍ℎ,𝑍ℎ+1

eff 𝜆𝑍ℎ
eff

𝑛−2

ℎ=1

∏𝑏𝑚,𝑚+1
eff 𝜆𝑚

eff

𝑘−1

𝑚=1

 

(

 
 
∑𝐹(𝛽𝑖 , 𝑍1, … 𝑍𝑝)

𝑛

𝑖=1

∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑘+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖 )

 
 

 

 
 

 
 
 
(4.130) 

A similar expression can be obtained for the linear chain 𝑌1, 𝑌2, … , 𝑌𝑛. In fact, in the last equation 

it can be identified the index 𝑘, that is related to the isotope where the linear chain emerges, 

the index 𝑖 that corresponds to the roots of the cyclic chain, and the index 𝑝 that represents the 

position in the linear chain.  
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4.9.1 Linear chains that enter and the convolution theorem.  
 

Unlike the linear chains that emerge from a cyclic chain, the linear chains that enter to the 

structure cannot be solved in a straightforward way. The main difficulty is that the equation 

(4.46) cannot be used as the base equation to perform the integration, as in the previous case, 

because its equation’s system is modified. For example, for the structure in the Figure 4.21, the 

balance equations are the following: 

 𝑑

𝑑𝑡
𝑋𝑛 = 𝑏𝑊𝑞,𝑋𝑛

eff 𝜆𝑊𝑞
eff𝑊𝑞 + 𝑏𝑛−1,𝑛

eff 𝜆𝑛−1
eff 𝑋𝑛−1 − 𝜆𝑛

eff𝑋𝑛,      

𝑑

𝑑𝑡
𝑊𝑞 = 𝑏𝑊𝑛−1,𝑊𝑛

eff 𝜆𝑊𝑛−1
eff 𝑊𝑞−1 − 𝜆𝑊𝑞

eff 𝑋𝑊𝑞 

 

(4.131) 
 
 
(4.132) 

Equation (4.141) modifies the last equation of the system described in (4.3). For such equation 

it follows: 

 
�̃�𝑛 =

𝑏𝑛−1,𝑛𝜆𝑛−1�̃�𝑛−1
𝑠 + 𝜆𝑛

+
𝑏𝑊𝑞,𝑋𝑛
eff 𝜆𝑊𝑞

eff 𝑤�̃�

𝑠 + 𝜆𝑛
  ,   𝑤�̃� = ℒ{𝑊𝑞}    

 

(4.133) 

After successive substitutions in such system, and considering the same initial conditions that 

were used until now, it follows that: 

 
�̃�𝑛 = [

𝛼(𝑛 − 1)𝑋1(0)

(𝑠 + 𝜆1
eff)(𝑠 + 𝜆2

eff)… (𝑠 + 𝜆𝑛
eff) − 𝛼(𝑛)

] [1 +
Ω(𝑛 − 1)𝑏𝑊𝑞,𝑋𝑛

eff 𝜆𝑊𝑞
eff �̃�𝑞

𝛼(𝑛 − 1)𝑋1(0)
]    

 

 
(4.134) 

Where the function 𝛼(𝑛) was defined in equation (4.5) and: 

 Ω(𝑛 − 1) = (𝑠 + 𝜆1)(𝑠 + 𝜆2)… (𝑠 + 𝜆𝑛−1)  
 

(4.135) 

It is possible to find the inverse of (4.134) through the convolution theorem, which it is 

necessary to use two times. First, it is known that the inverse of the expression inside the first 

pair of brackets is equal to (4.44). Then, for the second pair of brackets, the inverse Laplace 

transform of 1 is equal to the Dirac Delta Function, and it is only necessary to find the following 

term: 

 
ℒ−1 {

Ω(𝑛 − 1)𝑏𝑊𝑞,𝑋𝑛
eff 𝜆𝑊𝑞

eff 𝑤�̃�

𝛼(𝑛 − 1)𝑋1(0)
} =

𝑏𝑊𝑞,𝑋𝑛
eff 𝜆𝑊𝑞

eff

𝛼(𝑛 − 1)𝑋1(0)
ℒ−1{Ω(𝑛 − 1)𝑤�̃�} 

 

(4.136) 

4.9.2 First step of convolution. 
 

Since 𝑊𝑞 is an isotope in a linear chain, its solution is given by the modified Bateman equation. 

Then, the following step is to find the inverse Laplace transform of ℒ−1{Ω(𝑛 − 1)}. Through the 

polynomial equation theory (Uspensky, 1963) it is known that (4.135) can be expressed as: 

 
Ω(𝑛 − 1) = 𝑠𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 𝑎1 =∑ℐ(𝑗)𝑠𝑗
𝑛

𝑗=0

  
 
(4.137) 
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Where: 

ℐ(0) = 𝑎1 = 𝜆1
eff𝜆2

eff…𝜆𝑛−1
eff , ℐ(𝑛) = 1,   ℐ(𝑛 − 1) = 𝑎𝑛−1 =∑𝜆𝑖

eff

𝑛

𝑖=1

   

 

  ℐ(𝑛 − 𝑘) = 𝑎𝑛−𝑘 = ∑ ∑ … ∑ ∑ 𝜆ℎ1𝜆ℎ2 …𝜆ℎ𝑘

𝑛−𝑘−1

ℎ𝑘=𝑘+1

𝑛−𝑘−2

ℎ𝑘−1=ℎ𝑘−𝑘

 

ℎ1−1

ℎ2=ℎ𝑘−1

𝑛

ℎ1=ℎ𝑘

 

 

  
(4.138) 

The last expression can also be obtained using the analysis carried out in Section 1.6.2. It can 

be shown from the theory of the Dirac delta relationships that: 

 ℒ−1{𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 +⋯+ 𝑎1} = 𝛿

(𝑛)(𝑡) + 𝑎𝑛−1𝛿
(𝑛−1)(𝑡) + ⋯+ 𝑎1𝛿(𝑡)   

 

(4.139) 

Where the coefficients 𝑎𝑖 ,  1≤ 𝑖 ≤ 𝑛 are computed with (4.138). From (4.137) and (4.139) and 

using the convolution theorem it follows that: 

 
ℒ−1{Ω(𝑛 − 1)𝑤�̃�} = ∫ ∑ℐ(𝑗)

𝑛

𝑗=0

𝛿𝑗(𝑡 − 𝑢)𝑊𝑛(𝑢)𝑑𝑢
𝑡

0

 
 

The integral can be computed using the following relationship (Wheeler, 1997): 

 
∫𝑓(𝑦)𝛿(𝑛)(𝑦 − 𝑥)𝑑𝑦 = (−1)𝑛𝑓(𝑛)(𝑥)  

 

Then 

 
ℒ−1 {

Ω(𝑛 − 1)𝑏𝑊𝑞,𝑋𝑛
eff 𝜆𝑊𝑞

eff 𝑤�̃�

𝛼(𝑛 − 1)𝑋1(0)
} =

𝑏𝑊𝑞,𝑋𝑛
eff 𝜆𝑊𝑞

eff

𝛼(𝑛 − 1)𝑋1(0)
∑ℐ(𝑗)

𝑛

𝑗=0

[(−1)𝑗
𝑑𝑛𝑊𝑞(𝑢)

𝑑𝑡𝑛
]
0

𝑡

 
(4.140) 

 

4.9.3 Second step of convolution. 
 

Originally, the inverse Laplace transform of (4.134) was searched, and in the last section only 

one part of the procedure was carried out. Then, in order to solve the complete expression, it is 

necessary to solve the following integral, which comes from the convolution theorem: 

 
𝑋𝑛 = ∫ ℒ−1 {

Ω(𝑛 − 1)𝑏𝑊𝑞,𝑋𝑛
eff 𝜆𝑊𝑞

eff 𝑤�̃�

𝛼(𝑛 − 1)𝑋1(0)
}

𝑡−𝑢

𝑋𝑛
𝐴(𝑢)

𝑡

0

𝑑𝑢    

 

 
(4.141) 

Where the subscript 𝑡 − 𝑢 implies that the expression (4.140) was evaluated in 𝑡 − 𝑢. As it can 

be observed, finding a solution of (1.141) is a very complex task. Even when the Laplace 

transform and the convolution theorem are very useful tools, it is necessary to carry out a more 

detailed study and a new relationship in this last case, where linear chains enter in a pure cyclic 

chain. 

This topic will be matter of a future work, but the main objective in this section was to show 

that the forward method will be an essential part of the generalization of the solution of cyclic 

chain. 
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4.9.4 Conclusions of the Chapter 4. 
 

In the present chapter the cyclic chains were studied from a new perspective, using an 

alternative mathematical model based in the mass balance equation, instead of using the 

standard linear chain approximation. Firstly, it was proposed a classification of such structures 

based in their complexity. When all the isotopes of a cyclic chains only belong to a single 

structure, then it was named a pure cyclic chain. In the other hand, if at least one isotope belongs 

to more than one loop, then it is a compound cyclic chain.  

Though the present analysis, it was possible to compare the system of equations for a linear 

chain and the system related to the pure’s type. Such comparison shows that both Laplace 

transforms have a very similar structure, and that they only differ in one term. This difference 

in turns, strongly depends on how small is a product of effective branching ratios and effective 

removal coefficients.  

Therefore, as a first conclusion, it was proved mathematically that the linear chain method can 

approximate the solution of pure cyclic chains. This fact was already known, but it can be 

obtained from a numerical standpoint. Even more, in the present chapter it was identified on 

what this approximation depends on.  Once the system of pure cyclic chain was compared, two 

solution were proposed to it. One of them was developed under some assumptions, and it was 

written in terms of a linear chain. The other solution was obtained through the calculation of 

the roots of a polynomial in the Laplace transform space.  

As a second conclusion it was noted that the system of a pure cyclic chain, as well as the two 

proposed solution were not symmetrical. Therefore, in order to extend the application of these 

to other isotopes, it was necessary to use the forward and backward methods, which were 

developed in Chapter 1. Even when the resultant equations involve the computations of high 

order derivatives, it was possible to overcome this problem through the development of several 

expressions, some of them related with the topic of integer partitions of number theory.  

Therefore, it was possible to conclude in mathematical terms, that the solutions for the pure 

cyclic chain can be expressed in terms of arithmetical and exponential expressions, in the same 

way that the standard Bateman solution for a linear chain.  This fact is very important, because 

it implies that these solutions can be incorporated into a computational algorithm in a similar 

way that the standard Bateman solution. Additionally, through the depletion functions, it was 

possible to add some properties of symmetry to certain parts of the developed solutions.  

For the numerical part, using typical data of a thermal nuclear reactor, it was possible to 

conclude that the standard Bateman equation is a very good approximation to the cyclic chains. 

Of the two developed solutions mentioned before, the power series one was practically 

equivalent to the standard modified Bateman equation in the studied scenarios. On the other 

hand, the results obtained with the root-based solution have a very small percentual error, 

being less than 0.1% in all the cases. Using the forward method, it was possible to write the 

root-based solution in terms of the modified Bateman equation. This is an important finding 

because it allows comparing both equations and to obtain a formula for the error involved when 

a cyclic chain is approximate using the linear chain method. Through this fact, it was possible 

to conclude that for the case 𝑛 = 7, that was analyzed in the present work, the contribution to 

the concentration of U235  due to the cyclic chain was neglected. Another important conclusion 



203 
 

was that the root-based solution can be extended to other superposition steps through a set of 

equations and recursive formulas. Through a detailed analysis it was showed that it is only 

necessary to obtain the solution for the isotopes of a pure cyclic chain for the first superposition 

step, and then using them to obtain the solution for the rest of steps. This finding was used in 

the present numerical comparison to save computational time. 

The possibility to extend the solution of the pure cyclic chain model was studied. It was showed 

that a structure that consists of a pure cyclic chain, from which linear chains emerge, can be 

successfully solved using the forward method. On the other hand, structures in which linear 

chains enter involve a more complex solutions related to the convolution theorem and several 

Dirac delta relationships. These last findings open the possibility to extend the analysis to more 

complex cyclic chains, and therefore to obtain a general alternative method to the linear chain 

approximation. 

Finally, in general terms it was proved that the root-based solution and the power series 

solution are alternative methods to deal with cyclic chains, and, at least for thermal reactor 

scenarios are equivalent to the utilization of the modified Bateman equation. For the above 

discussion, it is possible to conclude that the pure cyclic chains can be solved through other 

alternative methods, which have similar properties to the standard Bateman solution.  
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Chapter 5. General solutions and the 

theory of increments. 
 

 

 

 

 

As it was discussed in the previous chapters, one of the disadvantages of the Bateman’s solution 

is that it cannot be used to solve linear chains with repeated elements, or where two different 

isotopes have the same effective lambda constant. There are two approaches that can be used 

in such cases: introducing small modifications to the effective lambda constants or using more 

general solutions. For the first methodology it is necessary to select an adequate modification, 

as an increment in the removal effective constants. On the other hand, the implementation of 

the last methodology has some issues related to the computational time, due to the huge 

amount of calculations involved in the analytical formulas.  

In the present chapter these two topics are discussed and the contributions related to them are 
described. Firstly, an algebraic computational approach is proposed to solve some of the 

difficulties of the use of general equations, through an algorithm that builds the analytical 

general solution in a fast way. Secondly, a proposed related to the theory of increments is 

introduced. This chapter contains topics belonging to future researches.  

5.1 Singularities of the Bateman equations. 
 

As it was mentioned in past chapters, the singularities in the Bateman equation appear when 

there are least two elements in a linear chain with the same value for the lambda coefficients. 

That situation only happens in in two cases: 

1) When there are repeated elements in the linear chain. 

2) When two different elements have the same lambda coefficient. 

As it was discussed in Chapter 3 and Chapter 4, for the first case it is possible to find repeated 

elements in a linear chain, if the (𝑛, 𝛾) and (𝑛, 2𝑛) reactions occur in any order in a consecutive 

way. With one reaction a neutron is lost, and with the other a neutron is gained. Therefore, the 

mass balance is the same after the two reactions: 

 
… → 𝑋𝑍

𝐴
(𝑛,𝛾)
→  𝑋𝑍

𝐴+1
(𝑛,2𝑛)
→    𝑋𝑍

𝐴 → ⋯

… → 𝑋𝑍
𝐴

(𝑛,2𝑛)
→    𝑋𝑍

𝐴−1
(𝑛,𝛾)
→  𝑋𝑍

𝐴 → ⋯
 

 

 
(5.1) 
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Those reactions are very common among the heavy isotopes as it is shown in the following 

example: 

 U235 (𝑛,𝛾)
→  U236 (𝑛,2𝑛)

→    U235 (𝑛,2𝑛)
→    U234 (𝑛,𝛾)

→  U235  (5.2) 

 

Additionally, as it was discussed in the past chapter, this type of linear chains present difficulties 

in the linearization process, because it generates branches that will appear again and again, 

generating an infinite network, as Figure 4.2 shows. In the linearization process it is necessary 

to move along the network (a process that is known as “traversing a tree” in computational 

science), and then if the length of the network is infinity, the process will generate an infinity 

number of linear chains, which in turn will have an infinity length. 

It is interesting to analyze the infinity meaning in the standard Bateman solution: 

 
𝑋𝑛 = 𝑋1(0)∏𝜆𝑘

𝑛−1

𝑘=1

∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑖𝑡
𝑛

𝑖=1

 

 

 
(5.3) 

Since the last equation tends to infinity when 𝜆𝑗 tends to 𝜆𝑖, at a first glance it may seem that 

the concentration for a given isotope will be infinity. Actually, this kind of infinity means that 

the number of “contributions” to the concentration will be infinite. Even more, when the 

concentration of an isotope is followed through a pathway or a route with an infinite length, the 

value of the contribution each time that the isotope appears decreases, and in fact it tends to 

zero. Therefore, even when the number of contributions tends to infinity, the value of them 

tends to zero, and thus the limit must exist. 

The second scenario where the singularities appear is when two different elements have the 

same lambda coefficient. It is more difficult to find examples of this cases, and in fact it was 

thought, at first, that this situation was impossible.  Nevertheless, Dreher (Dreher, 2013) 

provides two interesting examples about this situation: 

 
G86 a

𝛽−(𝑇1/2 >300 𝑛𝑠)
→             G86 e

𝛽−(𝑇1/2 >300 𝑛𝑠)
→             … 

 

A60 s
𝑝(𝑇1/2 =1 𝑛𝑠)
→         G59 e

2𝑝(𝑇1/2 =1 𝑛𝑠)
→          … 

 

 
(5.4) 
 

In the case of G86 a and G86 e, the estimation of the half-life is given as a lower limit, instead of a 

specific value. On the other hand, for A60 s  and G59 e , their half-lives were estimated by 

theoretical considerations. As it can be noted, in the Dreher’s examples the elements have the 

same lambda coefficient due to the state of the library that was used. In this case, Dreher uses 

the Karlsruhe Nuclides Chart (Sóti et. al., 2019). Then, it is possible that in the future these 

values will be known in more detail, and therefore the lambda coefficient will be different. Even 

more, unlike the cyclic chain’s case, where it is possible to give an interpretation or mean of the 

infinity, in this case it is more difficult to elaborate a plausible explanation. 

In brief, the author of the present thesis considered that the second case, where the singularities 

appear, is related to the information of the data libraries, and not with a physical phenomenon. 
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Therefore, this case will be considered as an “artificial case”, that will depend on the state of the 

information about the isotopes and their properties. 

5.2 Small modifications in lambda coefficients. 
 

A first approach to overcome the issues related to the singularities, consists in introducing small 

modification in the set of repeated coefficient lambdas. Essentially, if there are 𝑚 elements with 

the same lambda coefficient, it is necessary to add a “small” increment, ∆𝑐, as follows: 

 𝜆 + 𝑘∆𝑐 ,    where     𝑘 = 0,… ,𝑚 − 1 (5.5) 
 

According to Isotalo (Isotalo, 2013), these modifications can be kept below the level of the 

uncertainty in initial data, due the effective decay constants are usually known to a few digits. 

The main difficult of introducing small modifications is associated with the correct choose of 

∆𝑐. Cetnar (Cetnar, 2006) suggests that the accuracy of the numerical results depends on this 

task. Particularly, this last author used this procedure in the initial version of the TTA and the 

MCB codes. 

Since in the early steps of the Szilard’s development not enough references were found about 

how to determine the value of ∆𝑐, a variation of this procedure was used. Taking advantage of 

the programming language Python, digit 5 was added at the final of the repeated lambda values 

in a recursive way. For example, it will be assumed that there are three lambda values equal to 

2.342𝑥10−2 𝑠−1. In Szilard, this value is transformed to a string variable: 

 𝜆 =   0.002342 ,   with  𝜆 as a string variable  
 

Then, using a string concatenate operation, the digit 5 is added at the end of the string character 

lambda: 

 𝜆1 = 𝜆 + "5"=0.0023425  with  𝜆1 as a string variable  
 

For the other repeated 𝜆2: 

     𝜆2 = 𝜆1 + 5 = 0.00234255 
 

 
 

In general, this is a recursive function, defined by: 

     𝜆𝑛 = 𝜆𝑛−1 + "5" 
 

(5.6) 

This approximation brings adequate results for the heavy isotopes in Szilard, in comparison 

with a SERPENT’s output. Nevertheless, as it will be discussed later, this process is merely 

intuitive, and it is necessary to propose a more formal methodology to introduce the 

modifications. Such task can be carried out using the concept of limit, which can provide a more 

adequate answer about how to compute the value of ∆𝑐. 

Finally, the procedure of introducing small variations continues being used in several codes, 

even in the recent ones. For example, in the code DEPTH (She et. al., 2013), ACTYS (Chaytania 

et al., 2017), TTA (Cetnar, 2006), among others. Additionally, this procedure is also used in 

recent studies about the first order decay networks (Sun et. al., 2012). 



207 
 

5.3 The Bateman solution with the increments. 
 

It is important to rewrite the Bateman solution for the case where there are repeated elements. 

Such equation will be useful to discuss one of the most popular general solutions to the Bateman 

equations, as well as a methodology to find the increment ∆𝑐 discussed before. This task is not 

straightforward, because it involves sums and products under the sigma and the Capital Pi 

notation (Σ and  ∏). In the following developments, the standard Bateman solution without 

branching’s and yields will be considered, in order facilitate the explanation. Equation (5.3) can 

be written as: 

 
𝑋𝑛(𝑡) =

𝑋1(0)

𝜆𝑛
∑𝜆𝑖𝛼𝑖 𝑒

−𝜆𝑖𝑡

𝑛

𝑖=1

,       where    𝛼𝑖 =∏
𝜆𝑗

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

 

 

(5.7) 

It is a straightforward task to show that (5.3) and (5.7) are equivalents, in fact the main 

difference between the equations is the inclusion or reduction of the product of lambdas in the 

alpha coefficients. As a first case, a linear chain with 𝑛  different isotopes, each of them 

appearing two times, will be considered. Afterwards, using this first approach, the general case 

will be deduced. 

5.3.1 Case 𝑚 = 2, generalization of the summa. 
 

For a given linear chain with 𝑛 different isotopes, there are a repeated element of each of them. 

It is possible to distinguish their lambda constant using an increment that depends of the 

isotope 𝑖, in other words: 

 𝜆𝑖,   𝜆𝑖 + ∆𝑖 ,   with   1 ≤ 𝑖 ≤ 𝑛 (5.8) 
 

For this case it is possible to generalize the Bateman equation in two steps. One of them related 

to the summation, and the other one related to the alpha coefficient in (5.7). In the first case it 

follows that: 

 
∑𝜆𝑖𝛼𝑖 𝑒

−𝜆𝑖𝑡

𝑛

𝑖=1

→ ∑(𝜆𝑖 𝑒
−𝜆𝑖𝑡 + (𝜆𝑖 + ∆𝑖)𝑒

−(𝜆𝑖+∆𝑖)𝑡)

𝑛

𝑖=1

𝛼𝑖
𝑚∆𝑖        

 
(5.9) 
 

 

In equation (5.9) the symmetry properties of the Bateman equation have been used in order to 

write the terms in this way. This step will be justified later. Furthermore, 𝛼𝑖
𝑚∆𝑖  is a 

generalization of the product in (5.7), where instead of having (𝑛 − 1) products, there are 2𝑛 −

1, because the lambdas with the increments have been included. An analysis of this product will 

be carried out later, but for the moment it is possible to represent such product using this 

variable. In (5.9) the repeated elements have been grouped under the same summation index 

𝑛. It is possible to simplify (5.9) as: 

 
 ∑(𝜆𝑖 𝑒

−𝜆𝑖𝑡 + (𝜆𝑖 + ∆𝑖)𝑒
−(𝜆𝑖+∆𝑖)𝑡)

𝑛

𝑖=1

𝛼𝑖
𝑚∆𝑖 →∑∑(𝜆𝑖 +𝑚∆𝑖)𝛼𝑖

𝑚∆𝑖𝑒−(𝜆𝑖+𝑚∆𝑖)𝑡
1

𝑚=0

𝑛

𝑖=1

       
 
(5.10) 
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The last expression is the preliminary Bateman equation for the case where all the isotopes 

appears two times. Starting from the equation (5.10) it is possible to generalize the case to the 

scenario where the isotopes appeared an arbitrary number of times, instead of only two 

occasions. In order to make such generalization it is only necessary to modify the super index 

in the summation, considered the numbers 𝑚𝑖 and 𝜇𝑖 . The first one is equal to the number of 

times that the isotope 𝑋𝑖  appears. The second one is a useful coefficient that represents the 

lambda coefficient that will be modified, i.e. 𝜇𝑖 = 𝑚𝑖 − 1. Then, it follows: 

 
 ∑∑(𝜆𝑖 +𝑚∆𝑖)𝛼𝑖

𝑚∆𝑖𝑒−(𝜆𝑖+𝑚∆𝑖)𝑡
1

𝑚=0

𝑛

𝑖=1

→  ∑∑(𝜆𝑖 +𝑚∆𝑖)𝛼𝑖
𝑚∆𝑖𝑒−(𝜆𝑖+𝑚∆𝑖)𝑡

𝜇𝑖

𝑚=0

𝑛

𝑖=1

      
 
(5.11) 
 

 

5.3.2 Generalization of the product, 𝛼𝑖
𝑚∆𝑖 . 

 

The second step in the generalization consists in finding who is 𝛼𝑖
𝑚∆𝑖 , which is the real challenge 

for this procedure. For the moment the whole summation will be ignored. The standard form 

of the alpha coefficient without repeated elements is given by: 

 
𝛼𝑖 =∏

𝜆𝑗

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

=
𝜆1

(𝜆1 − 𝜆𝑖)

𝜆2
(𝜆2 − 𝜆𝑖)

…
𝜆𝑖−1

(𝜆𝑖−1 − 𝜆𝑖)

𝜆𝑖+1
(𝜆𝑖+1 − 𝜆𝑖)

…
𝜆𝑛

(𝜆𝑛 − 𝜆𝑖)
  

 
(5.12) 
 

As a first approach, the case where only the 𝑋𝑖  element has one repeated element will be 

considered. In this scenario there are 𝑛 + 1 isotopes, and the repeated one can be represented 

using the increment ∆𝑖, as 𝜆𝑖 + ∆𝑖. Introducing this term in the product given in (5.12) it follows 

that: 

 𝜆1
(𝜆1 − 𝜆𝑖)

…
𝜆𝑖−1

(𝜆𝑖−1 − 𝜆𝑖)

𝜆𝑖 + ∆𝑖
(𝜆𝑖 + ∆𝑖 − 𝜆𝑖)

𝜆𝑖+1
(𝜆𝑖+1 − 𝜆𝑖)

…
𝜆𝑛

(𝜆𝑛 − 𝜆𝑖)
  

 
(5.13) 
 

If it is assumed that the isotope 𝑋𝑖  appears 𝑚𝑖 times, instead of two times, the last expression 

can be generalized. In this case, it is necessary to modify 𝜇𝑖  times the 𝜆𝑖: 

𝜆𝑖, 𝜆𝑖 + ∆1, 𝜆𝑖 + ∆2, … , 𝜆𝑖 + ∆𝜇𝑖⏟                    
𝑚𝑖 elements

 

Then the product in (5.14) is written as follows: 

 𝜆1
(𝜆1 − 𝜆𝑖)

…
𝜆𝑖−1

(𝜆𝑖−1 − 𝜆𝑖)

𝜆𝑖 + ∆𝑖
(𝜆𝑖 + ∆𝑖 − 𝜆𝑖)

𝜆𝑖 + 2∆𝑖
(𝜆𝑖 + 2∆𝑖 − 𝜆𝑖)

…
𝜆𝑖 + 𝜇𝑖∆𝑖

(𝜆𝑖 + 𝜇𝑖∆𝑖 − 𝜆𝑖)

𝜆𝑖+1
(𝜆𝑖+1 − 𝜆𝑖)

…
𝜆𝑛

(𝜆𝑛 − 𝜆𝑖)
 

 
 
 

The elements of the last product can be sorted in the following way: 

𝜆1
(𝜆1 − 𝜆𝑖)

…
𝜆𝑖−1

(𝜆𝑖−1 − 𝜆𝑖)

𝜆𝑖+1
(𝜆𝑖+1 − 𝜆𝑖)

…
𝜆𝑛

(𝜆𝑛 − 𝜆𝑖)

𝜆𝑖 + ∆𝑖
(𝜆𝑖 + ∆𝑖 − 𝜆𝑖)

𝜆𝑖 + 2∆𝑖
(𝜆𝑖 + 2∆𝑖 − 𝜆𝑖)

…
𝜆𝑖 + 𝜇𝑖∆𝑖

(𝜆𝑖 + 𝜇𝑖∆𝑖 − 𝜆𝑖)
 

And using the product notation, this can be rewritten as: 
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∏

𝜆𝑗

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

 ∏
𝜆𝑖 + 𝑘∆𝑖

(𝜆𝑖 + 𝑘∆𝑖 − 𝜆𝑖)

𝜇𝑖

𝑘=1

 

 

 
(5.14) 
 

This expression was developed for the case where only the isotope 𝑋𝑖  has 𝜇𝑖  repeated elements. 

The following generalization consists of considering the case where all the isotopes have 

repeated elements, for which it is only necessary to add the similar products of the right side of 

the equation (5.12). In other words: 

 
∏

𝜆𝑗

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

 ∏
𝜆1 + 𝑘∆1

(𝜆1 + 𝑘∆1 − 𝜆𝑖)

𝜇1

𝑘=1

∏
𝜆2 + 𝑘∆2

(𝜆2 + 𝑘∆2 − 𝜆𝑖)

𝜇2

𝑘=1

∏
𝜆3 + 𝑘∆3

(𝜆3 + 𝑘∆3 − 𝜆𝑖)

𝜇3

𝑘=1

… 
 
(5.15) 
 

…∏
𝜆𝑖−1 + 𝑘∆𝑖−1

(𝜆𝑖−1 + 𝑘∆𝑖−1 − 𝜆𝑖)

𝜇𝑖−1

𝑘=1

∏
𝜆𝑖 + 𝑘∆𝑖

(𝜆𝑖 + 𝑘∆𝑖 − 𝜆𝑖)

𝜇𝑖

𝑘=1

∏
𝜆𝑖+1 + 𝑘∆𝑖+1

(𝜆𝑖+1 + 𝑘∆𝑖+1 − 𝜆𝑖)

𝜇𝑖+1

𝑘=1

…∏
𝜆𝑛 + 𝑘∆𝑛

(𝜆𝑛 + 𝑘∆𝑛 − 𝜆𝑖)

𝜇𝑛

𝑘=1

 

If the first term (from left to right) is omitted in the last expression, it is possible to observe that 

there are 𝑛 similar products with modified lambdas. The formulas are identical, except for the 

index of the considered element, and since all of them are multiplying, it is possible to 

summarize all with a product notation. In other words: 

∏∏
𝜆𝑙 + 𝑘∆𝑙

(𝜆𝑙 + 𝑘∆𝑙 − 𝜆𝑖)

𝜇𝑙

𝑘=1

𝑛

𝑙=1

=∏
𝜆1 + 𝑘∆1

(𝜆1 + 𝑘∆1 − 𝜆𝑖)

𝜇1

𝑘=1

∏
𝜆2 + 𝑘∆2

(𝜆2 + 𝑘∆2 − 𝜆𝑖)

𝜇2

𝑘=1

∏
𝜆3 + 𝑘∆3

(𝜆3 + 𝑘∆3 − 𝜆𝑖)

𝜇3

𝑘=1

… 

…∏
𝜆𝑖−1 + 𝑘∆𝑖−1

(𝜆𝑖−1 + 𝑘∆𝑖−1 − 𝜆𝑖)

𝜇𝑖−1

𝑘=1

∏
𝜆𝑖 + 𝑘∆𝑖

(𝜆𝑖 + 𝑘∆𝑖 − 𝜆𝑖)

𝜇𝑖

𝑘=1

∏
𝜆𝑖+1 + 𝑘∆𝑖+1

(𝜆𝑖+1 + 𝑘∆𝑖+1 − 𝜆𝑖)

𝜇𝑖+1

𝑘=1

…∏
𝜆𝑛 + 𝑘∆𝑛

(𝜆𝑛 + 𝑘∆𝑛 − 𝜆𝑖)

𝜇𝑛

𝑘=1

 

Particularly it is convenient to separate the double product in following way: 

 
∏∏

𝜆𝑙 + 𝑘∆𝑙
(𝜆𝑙 + 𝑘∆𝑙 − 𝜆𝑖)

𝜇𝑙

𝑘=1

𝑛

𝑙=1

=∏∏
𝜆𝑙 + 𝑘∆𝑙

(𝜆𝑙 + 𝑘∆𝑙 − 𝜆𝑖)

𝜇𝑙

𝑘=1

𝑛

𝑙=1
𝑙≠𝑖

 ∏
𝜆𝑔 + 𝑘∆𝑔

(𝜆𝑔 + 𝑘∆𝑔 − 𝜆𝑖)

𝜇𝑖

𝑔=1

 
 
(5.16) 
 

If (5.16) is replaced in (5.15), it follows that: 

 
∏

𝜆𝑗

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

 ∏∏
𝜆𝑙 + 𝑘∆𝑙

(𝜆𝑙 + 𝑘∆𝑙 − 𝜆𝑖)

𝜇𝑙

𝑘=1

𝑛

𝑙=1
𝑙≠𝑖

 ∏
𝜆𝑔 + 𝑘∆𝑔

(𝜆𝑔 + 𝑘∆𝑔 − 𝜆𝑖)

𝜇𝑖

𝑔=1

 
 
(5.17) 
 

Two products inside (5.17) have the same product notation under the index 𝑛, and it is possible 

to reduce it if the subscript 𝑙 is changed for 𝑗. Therefore, the expression for the product in the 

case where all the isotopes have repeated elements is equal to: 
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∏

𝜆𝑗

(𝜆𝑗 − 𝜆𝑖)

𝑛

𝑗=1
𝑗≠𝑖

 ∏∏
𝜆𝑙 + 𝑘∆𝑙

(𝜆𝑙 + 𝑘∆𝑙 − 𝜆𝑖)

𝜇𝑙

𝑘=1

𝑛

𝑙=1
𝑙≠𝑖

 ∏
𝜆𝑔 + 𝑘∆𝑔

(𝜆𝑔 + 𝑘∆𝑔 − 𝜆𝑖)

𝜇𝑖

𝑔=1

 
 
(5.18) 
 

 

Considering that 𝜆𝑗 =  𝜆𝑗 + 𝑘∆𝑗, when 𝑘 = 0, it is possible to modify the product under 𝑘 index, 

in such way that it starts from zero, and therefore the first two products can be summarized, in 

other words: 

 
=∏∏

𝜆𝑗 + 𝑘∆𝑗

(𝜆𝑗 + 𝑘∆𝑗 − 𝜆𝑖)

𝜇𝑙

𝑘=0

𝑛

𝑗=1
𝑗≠𝑖

∏
𝜆𝑔 + 𝑘∆𝑔

(𝜆𝑔 + 𝑘∆𝑔 − 𝜆𝑖)

𝜇𝑖

𝑔=1

 

 

 
(5.19) 
 

In order to finalize the generalization of the 𝛼𝑖
𝑚∆𝑖  factor, a modification is needed in equation 

(5.19). If the original factor that appears in (5.7) is analyzed, it is possible to note that the 

lambda 𝜆𝑖  that appears in the denominator’s subtraction is associated with the isotope 𝑋𝑖 . 

Nevertheless, following the reasoning used in (5.9), where the changed 𝜆𝑖 → 𝜆𝑖 +𝑚∆𝑖  was 

made, the final step of generalization is given as: 

 
𝛼𝑖
𝑚∆𝑖 =∏∏

𝜆𝑗 + 𝑘∆𝑗

(𝜆𝑗 + 𝑘∆𝑗 − 𝜆𝑖)

𝜇𝑙

𝑘=0

𝑛

𝑗=1
𝑗≠𝑖

∏
𝜆𝑔 + 𝑘∆𝑔

(𝜆𝑔 + 𝑘∆𝑔 − (𝜆𝑖 +𝑚∆𝑖) )

𝜇𝑖

𝑔=1

 

 

 
(5.20) 
 

Using (5.11) and (5.20) it is possible to write the Bateman general equation with modified 

lambda coefficients: 

 
∑∑(𝜆𝑖 +𝑚∆𝑖)∏∏

𝜆𝑗 + 𝑘∆𝑗

(𝜆𝑗 + 𝑘∆𝑗 − 𝜆𝑖)

𝜇𝑙

𝑘=0

𝑛

𝑗=1
𝑗≠𝑖

∏
(𝜆𝑔 + 𝑘∆𝑔)𝑒

−(𝜆𝑖+𝑚∆𝑖)𝑡

(𝜆𝑔 + 𝑘∆𝑔 − (𝜆𝑖 +𝑚∆𝑖) )

𝜇𝑖

𝑔=1

𝜇𝑖

𝑚=0

𝑛

𝑖=1

 
 
(5.21) 
 

There are two remarkable facts in the last equation. The first one is related to the two different 

indexes under the increments, and the second one is the complexity of the equation, which is 

very different from the original Bateman equation given in (5.7). This formula will be very 

useful in several of the following sections.  

5.4 Development of General solutions. 

5.4.1 Review of general solutions. 
 

As it was discussed before, the alternative approach to overcome the difficult of the repeated 

isotopes is to develop a more general solution of the mass balance system. In fact, in Chapter 1 

in Section 1.9, it was showed that this procedure is a straightforward task using the Laplace 

Inversion Method.  It is probable that Donald Clayton and his colleagues were the first who 

proposed in 1961, a general solution using this methodology. They studied the process of 

neutron capture, and they approached the case where there is more than one repeated element 

in successive transformations (Clayton et. al., 1961).  
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Nevertheless, at least to the best knowledge of the author of the present thesis, there are about 

15 different works that developed solutions for the Bateman’s equation with repeated 

elements, or that have relationships with the modeling of successive transformations with the 

same characteristics. These works do not necessary use the Laplace Inversion Method, and they 

belong to a wide range of disciplines, from astrophysics to transport theory, including nuclear 

engineering. 

This fact can be explained if it is considered the enormous amount of processes that can be 

modelled using the balance equations given in (1.1). Nevertheless, due to the wide range of 

disciplines that deal with this problem, some of which are not necessarily related with each 

other, some of the proposed solutions were practically ignored by other authors, at least in 

nuclear engineering. This is a very interesting fact, because some authors developed their own 

solutions practically ignoring the previous works, and it seems that some of them did not know 

about the publications of authors from other disciplines. Nevertheless, this situation did not 

prevent that their solutions were obtained in many ingenious and original ways.  

Before Clayton’s work, there were other attempts to model the case of successive 

transformations with one repeated element, however these works cannot be considered as 

“general solutions” due to two reasons:  

1) In some cases, the authors of these works only discussed specific situations were only 

one isotope was repeated, and they proposed particular equations for it, but they did 

not delve into the topic. 

2) In other cases, the authors developed a methodology to treat cyclic chains, but not to 

obtain a specific equation. 

In fact, the early attempt to describe this phenomenon belongs to Meyer and Schweilder. In 

1927, these authors solved this difficulty through a recursive integral formula (Meyer and 
Schweilder, 1927), but they did not propose a general solution. Afterwards, in 1949, Rubinson 

considered the formula of Meyer and Schweilder when he developed the Bateman´s equation 

for the case where there is neutron flux (Rubinson, 1949), but he only showed the case where 

only one element is repeated.  

Nearly two decades later, the developers of the depletion code ORIGEN, (Bell, 1973) obtain the 

solution to the elemental case where two isotopes have the same removal coefficients, and even 

when the procedure used to solve it is not mentioned, it is very possible that it consisted in to 

compute a limit.  Then, in 1961, Clayton and his colleagues published the case with more than 

one repeated element in successive transformations originated by neutron captures. Even 

more, their work contains a discussion about the mathematical tools related to the inverse 

Laplace theorem, which motivated the discussion given in Section 1.5. 

In 1978, Newman followed the research’s line of Clayton, and published the exact solution of 

the s-process or slow neutron capture process (Newman, 1978). In his work, Newman 
developed a very similar expression to (1.149) using the Laplace method and the residue 

theorem. The only difference between the equations is the presence of branching coefficients, 

and the fact that the removal coefficients are only the capture cross sections in his work. It is 

possible to consider the Newman’s work as the most early complete solution, because he 

considered the possibility where some elements were repeated, and others were not. This is a 
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remarkable difference with the Claytont’s work where only the case where all the elements 

were repeated was considered.  

Therefore, from a general perspective it is possible to say that the solution to this problem was 

solved in a full way in 1978. Nevertheless, it is very interesting that in the nuclear engineering 

field the only author that cited the work of Newman was Vudakin in 1994 (Vudakin, 1994).  In 

1980, Tasaka (Tasaka, 1980) proposed a methodology to simulate the cyclic chains for the 

burnup code DCHAIN 2, that essentially consisted in transforming the loop in two linear chains 

and travel them in opposite directions.   

It was until 1981 that a general solution was proposed in the field of nuclear engineering. Miles 

(Miles, 1981) developed a method that used recursive integral factors in order to remove 

singularities, obtaining a term very similar to (1.148).  Eight years later, Raykin and Shlyakhter 

carried out an analysis about the cyclic chains, which are called in their work as feedback-loops 

(Raykin and Shlyakhter, 1989). As it was discussed in Chapter 1, the authors proposed a method 

related to their theory of transition probabilities (that can be interpreted as a more 

sophisticated integral method) that used depletion functions and the “back of the envelope” 

method developed by Lasche (Lasche, 1983). 

In 1993, M. Blaauw published a work that included an equation with the same shape of (1.149), 

and he gave similar explicit expressions for the coefficients  𝑐𝑖𝑗  (Blaauw, 1993). His work is very 

interesting because he did not show the procedure by which he obtained the solution, instead 

he only gave it and used mathematical induction to show that it was correct.  In 1994, Vudakin 

(Vudakin, 1994) published a methodology to find the general solution. The procedure followed 

by this author consisted in using an expansion in series related to the depletion functions 

described in Section 1.8.3. In 1996, Pommé (Pommé, 1996) and his colleagues published a work 

where they proposed activation and decay formulas that deal with the problem of equal 

removal coefficients. One year later, Mirzadeh and Walsh proposed a solution based in the 

recursive integral formula given by Rubinson (Mirzadeh and Walsh, 1997). Their solution is 

very interesting because it considers the combinations of removal coefficients that are equal.  

In 1999, Wilson developed the activation code ALARA: Analytic and Laplacian Adaptive 

Radioactivity Analysis (Wilson, 1999). His work contained a full description of the Laplace 

Inverse Method described in Section 1.9.  In the same year, Jovan Popovic’ developed a solution 

related with metabolism kinetics (Popovic’, 1999). In fact, in pharmacokinetics there are 

several works that used inverse Laplace methods and the Heaviside’s expansion theorem to 

solve this kind of problems. In this work, Popovic proposed a solution where a compartment is 

repeated 𝑛 times, nevertheless he did not generalize his solution to the case where more than 

one element is repeated.  

In 2006, Cetnar published what can be considered as the most popular general solution in the 

nuclear engineering’s field (Cetnar, 2006). Cetnar developed his solution using a limit 

procedure, and his work is also remarkable because it contains a description of the TTA method. 

In fact, the Bateman solution using increments that was described in the past section was based 

in his work. It is a remarkable fact that the Cetnar’s solution has a very similar shape of the 

equation given by Pommé and his colleagues. 

After Cetnar, M. Slodička and Balážová published two works that deal with the problem in the 

field of transport and first-order kinetics phenomena. Even when their works solved more 
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complex and general processes, their solution to the case where two first-order reactions rates 

are repeated (that are equivalent to our effective removal coefficients) can be applied to 

generalize the Bateman’s equation. Their first work was published in 2008 (Slodička and 

Balážová, 2008) and the second in 2010 (Slodička and Balážová, 2010), both are very similar 

regarding the topic of a solution with repeated elements, and the main difference between them 

lies in the procedure used to develop the method for the decomposition of multiple solute 

transport equations. Finally, in 2012, Raymond Dreher published other solution using a 

procedure of limit (Dreher, 2012). His method is very ingenious, because he translates the 

Bateman´s equation, with increments, to the formal definition of derivative. In fact, this solution 

depends on computing derivatives, as in the case of the Inverse Laplace Transform method. 

This review is summarized in Table 5.1. As it can be seen, several solutions have been developed 

in a wide range of different disciplines. Nevertheless, as it was discussed in the past Chapter, in 

all the cases these solutions only modelled the approximation of a cyclic chain using a linear 

chain.  

5.4.2 Classification of the solutions. 
 

From this section onwards, a general solution will be defined as a solution of the system: 

  
𝑑𝑋𝑖(𝑡)

𝑑𝑡
= 𝜆𝑖−1𝑋𝑖−1 − 𝜆𝑖𝑋𝑖 

 
(5.22) 

With the initial conditions: 

 𝑋𝑖(𝑡 = 0) = 𝑋𝑖(0) = 0  with  2 ≤ 𝑖 ≤ 𝑛,   𝑋1(0) ≠ 0 
 

(5.23) 

Who considers the possibility to have repeated elements in a linear chain. Such solutions can 

be divided in four types, according to the mathematical tools that were used to obtained them: 

1) Solution by Laplace Inverse Method. 

2) Solution by integral formulation. 

3) Solution by limit. 

4) Solution by power series. 

The first two methodologies were discussed in Section 1.9 and Section 1.7, respectively. The 

third methodology, based in a mathematical limit, is very useful to develop a theory of 

increments, and it is used in the most recent solution that was published by Dreher (Dreher, 

2013). The limit solution will be studied in a more detailed way in the following sections.  

The solution based in power series, as its name suggest, is based in to expand the exponential 

function that originally appears in the Bateman equation as power series, and to analyze the 

case when two or more lambda constants are equal. The study of the power series requires a 

more detailed analysis of the depletion functions described in Section 1.8.3, and therefore it is 

beyond the scope of the present thesis. Nevertheless, it is possible to say that the power series 

solution is strongly related to the work developed by Newman (1978). 

It is worth mentioning that it is not a straightforward task to proof that the general solutions 

described before are equivalent. In other words, some of the solutions are expressed in a 

particular way, that is not obvious to conclude that are the same. For example, the solution that 
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was developed by Cetnar is expressed in nested sums whereas that the expression that was 

found by Dreher is expressed in terms of multiple derivatives.  

 

 

 

 

 

 

 

 

 

 

 

In the following section two general solutions that are based in the limit procedure will be 

described in general terms. A more formal discussion about this procedure will be discussed 

later, when the theory of increments will be explained.  

Table 5. 1. Chronology of general solutions that were published in literature. 

 

            

            

            

       

5.5 Main steps of the Cetnar’s solution. 
 

The Cetnar’s solution consists of computing the following limit: 

lim
∆𝑖, ∆𝑗→0

∑∑(𝜆𝑖 +𝑚∆𝑖)∏∏
𝜆𝑗 + 𝑙∆𝑗

(𝜆𝑗 + 𝑙∆𝑗  − 𝜆𝑖 −𝑚∆𝑖)
∏

𝜆𝑖 + 𝑘∆𝑖
((𝑘 − 𝑚)∆𝑖)

𝜇𝑖

𝑘=1
𝑘≠𝑚

𝜇𝑗

𝑙=0

𝑛

𝑗=1
𝑗≠𝑖

𝑒−(𝜆𝑖+𝑚∆𝑖)𝑡

𝜇𝑖

𝑚=0

𝑛

𝑖=1

 

The last expression will be analyzed in three parts as follows: 

 

lim
∆𝑖, ∆𝑗→0

∑∑ (𝜆𝑖 +𝑚∆𝑖)⏟      
First term

 ∏∏(
𝜆𝑗 + 𝑙∆𝑗

(𝜆𝑗 + 𝑙∆𝑗  − 𝜆𝑖 −𝑚∆𝑖)
)

⏟                
Second term

 

𝜇𝑗

𝑙=0

𝑛

𝑗=1
𝑗≠𝑖

𝜇𝑖

𝑚=0

𝑛

𝑖=1

 

 
 
(5.24) 

Year Authors Method Year Authors Method 

1927 Meyer and 
Schweildler 
 

Integral 1994 Vukadin Power 
series 

1949 Rubinson Integral 1996 Pommé et al. Integral 
1961 Clayton Laplace 1997 Mirzadeh 

and Walsh  
Integral 

1973 Bell Limit 1999 Wilson Integral 
1978 Newman Laplace 1999 Popovic’ Laplace 
1980 Tasaka Integral 2006 Cetnar Limit 
1981 Miles Integral 2008 Slodička and 

Balážová 
Limit 

1989 Raykin and 
Shlyakhter  

Integral 2013 Dreher Limit 

1993 Blaauw Laplace    
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×∏ (
𝜆𝑗 + 𝑙∆𝑗

(𝜆𝑗 + 𝑙∆𝑗  − 𝜆𝑖 −𝑚∆𝑖)
) 𝑒−(𝜆𝑖+𝑚∆𝑖)𝑡

⏟                        
Third term

𝜇𝑖

𝑘=1
𝑘≠𝑚

 

 
 

Computing the limits in an independent way, beginning with the first and third part, it follows 

that: 

 
( lim
∆𝑖→0

(𝜆𝑖 +𝑚∆𝑖))
⏟            

First term

 

× ( lim
∆𝑖→0

 ∏𝜆𝑖 + 𝑘∆𝑖

𝜇𝑖

𝑘=1
𝑘≠𝑚

)( lim
∆𝑖→0

∏
1

∆𝑖

𝜇𝑖

𝑘=1
𝑘≠𝑚

)( lim
∆𝑖→0

∏
1

(𝑘 −𝑚)

𝜇𝑖

𝑘=1
𝑘≠𝑚

𝑒−(𝜆𝑖+𝑚∆𝑖)𝑡)

⏟                                            
Third term

 

 
 

 
 
(5.25) 

Considering that lim
∆𝑖→0

(𝜆𝑖 +𝑚∆𝑖) = 𝜆𝑖 and: 

 
lim
∆𝑖→0

 ∏𝜆𝑖 + 𝑘∆𝑖

𝜇𝑖

𝑘=1
𝑘≠𝑚

= 𝜆𝑖
𝜇𝑖−1,   lim

∆𝑖→0
∏

1

(𝑘 −𝑚)

𝜇𝑖

𝑘=1
𝑘≠𝑚

= (−1)𝑚−1
1

𝜇𝑖!
(
𝜇𝑖
𝑚
) 

 

(5.26) 

It is possible to write (5.25) as: 

 
𝜆𝑖
𝜇𝑖𝑒−𝜆𝑖

𝜇𝑖!
 (𝑙𝑖𝑚
∆𝑖→0

∏
1

∆𝑖

𝜇𝑖

𝑘=1
𝑘≠𝑚

) 𝑙𝑖𝑚
∆𝑖→0

(−1)𝑚−1 (
𝜇𝑖
𝑚
)𝑒−(𝑚∆𝑖)𝑡 

 

(5.27) 

In this point it is necessary to develop the exponential function as a power series: 

 
𝑒−(𝑚∆𝑖)𝑡 =∑

(−𝑚∆𝑖𝑡)
𝑧

𝑧!

∞

𝑧=0

 

 

(5.28) 

Using (5.27) and (5.28) it is possible to rewrite the original limit that appears at the beginning 

of this section as: 

 

∑∑ lim
∆𝑖, ∆𝑗→0

∏∏
𝜆𝑗 + 𝑙∆𝑗

(𝜆𝑗 + 𝑙∆𝑗  − 𝜆𝑖 −𝑚∆𝑖)

𝜇𝑗

𝑙=0

𝑛

𝑗=1
𝑗≠𝑖

𝜇𝑖

𝑚=0

𝑛

𝑖=1

 

×
𝜆𝑖
𝜇𝑖𝑒−𝜆𝑖

𝜇𝑖!
 ( lim
∆𝑖→0

∏
1

∆𝑖

𝜇𝑖

𝑘=1
𝑘≠𝑚

) lim
∆𝑖→0

(−1)𝑚−1 (
𝜇𝑖
𝑚
)∑

(−𝑚∆𝑖𝑡)
𝑧

𝑧!

∞

𝑧=0

 

 

 
 
(5.29) 
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5.5.1 Limit of the second term. 
 

Introducing the limit when ∆𝑗→ 0 inside the second term of (5.24), it can be written as: 

 

𝑙𝑖𝑚
∆𝑖→0

∏∏ 𝑙𝑖𝑚
∆𝑗→0

𝜆𝑗 + 𝑙∆𝑗

(𝜆𝑗 + 𝑙∆𝑗  − 𝜆𝑖 −𝑚∆𝑖)

𝜇𝑗

𝑙=0

𝑛

𝑗=1
𝑗≠𝑖

= 𝑙𝑖𝑚
∆𝑖→0

∏∏
𝜆𝑗

(𝜆𝑗 − 𝜆𝑖 −𝑚∆𝑖)

𝜇𝑗

𝑙=0

𝑛

𝑗=1
𝑗≠𝑖

 

 

(5.30) 

Since the term inside the product does not depend on 𝑙, the expression is reduced to: 

 
𝑙𝑖𝑚
∆𝑖→0

∏
(𝜆𝑗)

𝜇𝑗+1

(𝜆𝑗 − 𝜆𝑖 −𝑚∆𝑖)
𝜇𝑗+1

𝑛

𝑗=1
𝑗≠𝑖

 
(5.31) 

Considering that: 

 

 1

(𝜆𝑗 − 𝜆𝑖 −𝑚∆𝑖)
𝜇𝑗+1

=
1

(1 −
𝑚∆𝑖
𝜆𝑗 − 𝜆𝑖

)
𝜇𝑗+1

 (𝜆𝑗 − 𝜆𝑖)
𝜇𝑗+1

 
(5.32) 

The expression (5.31) can be written as: 

 

𝑙𝑖𝑚
∆𝑖→0

∏(
𝜆𝑗

𝜆𝑗 − 𝜆𝑖
)

𝜇𝑗+1

(−1)𝜇𝑗+1 (
1

𝑚∆𝑖
𝜆𝑗 − 𝜆𝑖

− 1
)

𝜇𝑗+1
𝑛

𝑗=1
𝑗≠𝑖

 

(5.33) 

In this point it is necessary to make a power series expansion of the second term that contains 

𝑚. For such work the following relationships are needed: 

 
1

(𝑥 − 𝑎)
=
1

𝑎
∑ (

𝑥

𝑎
)
𝜔

∞

𝜔=0

, (∑ 𝑥𝜔
∞

𝜔=0

)

𝑘+1

= ∑ (
𝑛 + 𝑘
𝑘
)𝑥𝑛

∞

𝜔=0

 

(5.34) 

 

Considering that 𝑥 = 𝑚∆𝑖/(𝜆𝑗 − 𝜆𝑖), it follows that: 

 

(
1

𝑚∆𝑖
𝜆𝑗 − 𝜆𝑖

− 1
)

𝜇𝑗+1

= ∑ (
𝜔 + 𝜇𝑗 + 1

𝜇𝑗 + 1
)(

𝑚∆𝑖
𝜆𝑗 − 𝜆𝑖

)

𝜔∞

𝜔=0

 

 

(5.35) 

Using (5.33) and (5.35) it is possible to rewrite the second term of the original limit in (5.24) 

as: 

 
lim
∆𝑖→0

∏(
𝜆𝑗

𝜆𝑗 − 𝜆𝑖
)

𝜇𝑗+1

(−1)𝜇𝑗+1∑ (
𝜔 + 𝜇𝑗 + 1

𝜇𝑗 + 1
)(

𝑚∆𝑖
𝜆𝑗 − 𝜆𝑖

)

𝜔∞

𝜔=0

𝑛

𝑗=1
𝑗≠𝑖

 

 

(5.36) 
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5.5.2 Reduction from a limit of two variables to a limit of a single-one. 
 

Considering (5.29) and (5.36), the original limit has been reduced to a single-one variable 

limit: 

 
∑∑ lim

∆𝑖→0
∏(

𝜆𝑗

𝜆𝑗 − 𝜆𝑖
)

𝜇𝑗+1

(−1)𝜇𝑗+1∑ (
𝜔+ 𝜇𝑗 + 1

𝜇𝑗 + 1
)(

𝑚∆𝑖
𝜆𝑗 − 𝜆𝑖

)

𝜔∞

𝜔=0

𝑛

𝑗=1
𝑗≠𝑖

𝜇𝑖

𝑚=0

𝑛

𝑖=1

 

×
𝜆𝑖
𝜇𝑖𝑒−𝜆𝑖

𝜇𝑖!
 ( lim
∆𝑖→0

∏
1

∆𝑖

𝜇𝑖

𝑘=1
𝑘≠𝑚

) lim
∆𝑖→0

(−1)𝑚−1 (
𝜇𝑖
𝑚
)∑

(−𝑚∆𝑖𝑡)
𝑧

𝑧!

∞

𝑧=0

 

 
 
 
(5.37) 

 

The product of the inverse of increments can be written as: 

 

 
∏

1

∆𝑖

𝜇𝑖

𝑘=1
𝑘≠𝑚

= ∆𝑖
1−𝜇𝑖 

 

(5.38) 

Using this last expression and reordering the terms inside the products it follows that: 

 

∏𝜆
𝑗

𝜇𝑗+1
𝑛

𝑟=1
𝑟≠𝑖

∑
𝜆𝑖
𝜇𝑖𝑒−𝜆𝑖

𝜇𝑖!

𝑛

𝑖=1

∑(−1)𝑚−1

𝜇𝑗

𝑚=0

(
𝜇𝑖
𝑚
) 

× 𝑙𝑖𝑚
∆𝑖→0

∆𝑖
1−𝜇𝑖∑

(−𝑚∆𝑖𝑡)
𝑧

𝑧!

∞

𝑧=0
[
 
 
 
 

∏(
1

𝜆𝑗 − 𝜆𝑖
)

𝜇𝑗+1

∑(
𝜔 + 𝜇𝑗 + 1

𝜇𝑗 + 1
)(

𝑚∆𝑖
𝜆𝑗 − 𝜆𝑖

)

𝜔∞

𝜔=0

𝑛

𝑗=1
𝑗≠𝑖

(−1)𝜇𝑗+1

]
 
 
 
 

 

 
 
 
(5.39) 

 

5.5.3 Analysis of the power series and the final solution. 
 

The formal procedure to show that the limit in (5.39) exists depends on the analysis of the 

product of series inside the brackets. It is possible to carried out such step using the generalized 

Cauchy product (Apostol, 1997): 

 

∑ ∑ … ∑ 𝑎1,𝑘𝑛

𝑘𝑛−1

𝑘𝑛=0

𝑘1

𝑘2=0

𝑎2,𝑘𝑛−1−𝑘𝑛 …𝑎𝑛,𝑘1−𝑘2𝑥
𝑘

∞

𝑘1=0

=∏(∑ 𝑎𝑗,𝑘𝑗𝑥
𝑘𝑗

∞

𝑘𝑗=0

)

𝑛

𝑗=1

 

 

 
(5.40) 

Strictly speaking, Cetnar did not show this in an explicit way, but he describes the main steps 

that are included. Firstly, he considers that when ∆𝑖 approaching zero only the terms of the sum 

products that contain ∆𝑖
𝜇𝑖−1 will not vanish, and the terms with smaller order will cancel out. 
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The author of the present thesis is working in a formal demonstration of this step, which 

involves a combinatorial analysis, and it represents a topic for a future research.  

Considering the above facts, the final expression for the Bateman solution can be written as: 

 
𝑋𝑛(𝑡) =  

𝑋1(0)

𝜆𝑛
∑𝜆𝑖

𝑛

𝑖=1

𝛼𝑖𝑒
−𝜆𝑖𝑡 ∑

𝜆𝑖𝑡

𝑚!

𝜇𝑖

𝑚=0

Ω𝑖,𝜇𝑖−𝑚 

where       𝜇𝑖 = 𝑚𝑖 − 1,   𝛼𝑖 =∏(
𝜆𝑗

𝜆𝑗 − 𝜆𝑖
)

𝑚𝑗𝑑

𝑗=1
𝑗≠𝑖

 

 
 
(5.41) 

And: 

 

Ω𝑖,𝜇𝑖−𝑚 = ∑ ∑ … ∑ ∑…

𝑗

ℎ𝑖+1

𝑗

ℎ𝑖−1=0

𝑗

ℎ2=0

𝑗

ℎ1=0

∑∏(
ℎ𝑘 + 𝜇𝑘
𝜇𝑘

) (
𝜆𝑖

𝜆𝑖 − 𝜆𝑘
)𝛿 (𝑗,∑ℎ𝑙

𝑑

𝑙=1
𝑙≠𝑖

) 

𝑛

𝑘=1
𝑘≠𝑖

𝑗

ℎ𝑑

 

 

 
 
(5.42) 

Equation (5.41) will be called as the Cetnar’s general solution of the Bateman equation.  
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5.6 Main aspects of the Dreher Solution. 
 

The procedure followed by Dreher consists of the same basic idea followed by Centar: taking a 

limit.  Nevertheless, Dreher uses a formal definition of the derivative to compute the limit. This 

procedure is very elemental, and it is related to another formulation of the Bateman’s solution. 

In order to show the main idea behind Dreher’s work, a solution where there are two repeated 

elements will be used. First, it is necessary to use a different formulation of the Bateman 

Solution given by: 

 
𝑋𝑛(𝑡) =

𝑋1(0)

𝜆𝑛
 ∑ 𝜆𝑖

𝑛−1

𝑖=1

𝑒−𝜆𝑖𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑖
 ∏

𝜆𝑗

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1,𝑗≠𝑖

 

 

 
(5.43) 

It is possible to show that (5.43) is equivalent to (1.24). In Appendix A, a formal proof is 

provided using mathematical induction. In the last equation, the number of “addends” has been 

reduced from 𝑛  to 𝑛 − 1 , but at the same time two operation subtractions have been 

introduced. Considering that 𝜆𝑘 = 𝜆𝑚 + ∆, for 𝑘 ≠ 𝑚, it is possible to separate the summation 

in (5.43) as follows: 

 
∑𝜆𝑖

𝑛−1

𝑖=1
𝑖≠𝑘
𝑖≠𝑚

𝑒−𝜆𝑖𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑖
∏

𝜆𝑗

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1,𝑗≠𝑖

+ 𝜆𝑘
𝑒−𝜆𝑘𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑘
∏

𝜆𝑗
𝜆𝑗 − 𝜆𝑘

𝑛−1

𝑗=1,𝑗≠𝑘

 
 
 
 
(5.44) 

+𝜆𝑚
𝑒−𝜆𝑚𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑚
 ∏

𝜆𝑗
𝜆𝑗 − 𝜆𝑚

𝑛−1

𝑗=1,𝑗≠𝑚

 

Due to this representation, increment ∆ will not appear in the first term. replace 𝜆𝑘 = 𝜆𝑚 + ∆ 

in the last equation: 

(𝜆𝑚 + ∆)
𝑒−(𝜆𝑚+∆)𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − (𝜆𝑚 + ∆)
∏

𝜆𝑗
𝜆𝑗 − 𝜆𝑚 − ∆

𝑛−1

𝑗=1,𝑗≠𝑘

+ 𝜆𝑚
𝑒−𝜆𝑚𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑚
 ∏

𝜆𝑗

𝜆𝑗 − 𝜆𝑚

𝑛−1

𝑗=1,𝑗≠𝑚

  

It is possible to separate the product, in order to have the same set of subscripts in the product 

notation. Thus, the last equation can be written as: 

 
(𝜆𝑚 + ∆)

𝑒−(𝜆𝑚+∆)𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − (𝜆𝑚 + ∆)
∏

𝜆𝑗
𝜆𝑗 − (𝜆𝑚 + ∆)

  

𝑛−1

𝑗=1,𝑗≠𝑘
𝑗≠𝑚

(−
𝜆𝑚
∆
 )  

+𝜆𝑚
𝑒−𝜆𝑚𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑚
 ∏

𝜆𝑗
𝜆𝑗 − 𝜆𝑚

𝑛−1

𝑗=1,𝑗≠𝑚
𝑗≠𝑘

 
𝜆𝑚 + ∆

∆
 

 
 
 
(5.45) 

Factoring the term −(𝜆𝑚 + ∆)𝜆𝑚/∆, the equation (5.45) is reduced to: 
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−
(𝜆𝑚 + ∆)𝜆𝑚

∆

[
 
 
 
 
𝑒−(𝜆𝑚+∆)𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − (𝜆𝑚 + ∆)
∏

𝜆𝑗

𝜆𝑗 − (𝜆𝑚 + ∆)
  

𝑛−1

𝑗=1,𝑗≠𝑘
𝑗≠𝑚

−
𝑒−𝜆𝑚𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑚
 ∏

𝜆𝑗

𝜆𝑗 − 𝜆𝑚

𝑛−1

𝑗=1,𝑗≠𝑚
𝑗≠𝑘

 

]
 
 
 
 

 

Introducing the increment, and taking the limit ∆→ 0 we have the following expression: 

 −𝜆𝑚
2  𝑙𝑖𝑚∆→0 

 

[
𝑒−(𝜆𝑚+∆)𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − (𝜆𝑚 + ∆)
∏

𝜆𝑗
𝜆𝑗 − (𝜆𝑚 + ∆)

  𝑛−1
𝑗=1,𝑗≠𝑘
𝑗≠𝑚

−
𝑒−𝜆𝑚𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑚
 ∏

𝜆𝑗
𝜆𝑗 − 𝜆𝑚

𝑛−1
𝑗=1,𝑗≠𝑚
𝑗≠𝑘

 ]

∆
 

 
(5.46) 

Defining the following function: 

 
𝑓(𝜆𝑚): 𝑅 → 𝑅,      𝑓 =  

𝑒−𝜆𝑚𝑡 − 𝑒−𝜆𝑛𝑡

𝜆𝑛 − 𝜆𝑚
 ∏

𝜆𝑗

𝜆𝑗 − 𝜆𝑚

𝑛−1

𝑗=1,𝑗≠𝑚
𝑗≠𝑘

 
 
(5.47) 

Using the last equation, it is possible to write (5.46) as: 

𝜆𝑚
2 lim
∆→0

[𝑓(𝜆𝑚 + ∆) − 𝑓(𝜆𝑚) ]

∆
 

Which involves the formal definition of the derivative. In other words, the original limit is equal 

to: 

 
−𝜆𝑚

2  (
𝑑𝑓

𝑑𝜆𝑚
) 

(5.48) 

 

As it can be noted from the last equation, essentially the general solution proven by Dreher 

involves function’s derivates with repeated lambdas as independent variables. The general case 

with 𝑚𝐸  different isotopes, denoted by 𝑋𝑚 , and where there are 𝑔𝑚  repeated elements, the 

Bateman Solutions developed by Dreher is given by: 

 

𝑋𝑛(𝑡) = 𝑋1(0) ∏𝜆𝑗 ∑
(−1)𝑔𝑚−1

(𝑔𝑚 − 1)!

𝑚𝐸

𝑚=1

𝑖−1

𝑗=1

 

(

 
𝑑𝑔𝑚−1

𝑑𝜆𝑔𝑚−1

[
 
 
 

𝑒−𝜆𝑡

∏ (𝜆𝑏 − 𝜆)
𝑖
𝑝=1

𝑝|𝜆𝑝≠𝜆𝑚 ]
 
 
 

)

  

(5.49) 

 

It is clear that equation (5.49) is very different from equation (5.41) and, in fact, the first one 
might seem easier to use than the Cetnar’s equation. Nevertheless, both expressions must be 

equal, since an elemental calculus theorem guarantees that if a limit exists, it must be unique. 

Strictly, Cetnar and Dreher compute the same limit, and therefore their Bateman general 

solutions must be equivalent, even when they are expressed in different ways. To prove that 

equality can be an interesting mathematical contribution, even when it can be a very difficult 

task.  The manual of ORIGEN code (Bell, 1973), that was published in 1973, contains the same 

idea that Dreher’s use in his procedure. In such publication, the case where two isotopes have 

equal removal constants is considered. Even when the procedure that was used is not explicit 

mentioned, it is a straightforward task to show that it was obtained using the derivate function. 
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5.7 A combinatorial analysis related to the general solutions. 
 

Until now, all the described solutions do not have restrictions related either to the position in 

which the repeated isotopes appear, neither the number of times that they do it. In other words, 

the general solutions admit any configuration of a linear chain, even the one where all the 

isotopes are equal. Nevertheless, as it will be described in the present section, some of the 

possible configurations are physically impossible, at least in nuclear engineering problems, and 

therefore the total number of possible configurations can be significantly reduced to a lower 

number. If this last number is small enough, it is possible to build the set of solutions a priori, 

having them in a library inside an algorithm, and using in an activation or burnup code.  

This last methodology can simplify the use of the general solutions in practical problems. For 

example, for the integral equation it will be not necessary to compare all the effective lambda 

decays in each step, and therefore the execution time will be reduced. Using a combinatorial 

analysis and a study of the main reactions that appear in nuclear engineering, it is possible to 

propose a set of rules that allow simplifying the analysis of linear chains with repeated isotopes. 

5.7.1 Representation of the position using boxes. 
 

It is possible to use a scheme of boxes to represent a sequence of isotopes. For example, the 

equivalent representation for the sequence given in (1.11) is equal to: 

 1
 1

𝑟1,2
→ 2

 2

𝑟2,3
→ …

𝑟𝑖−1,𝑖
→   𝑖

 𝑖

𝑟𝑖,𝑖+1
→   𝑖 + 1

 𝑖+1

𝑟𝑖+1,𝑖+2
→     …

𝑟𝑛−1,𝑛
→   𝑛

 𝑛
 

 

(5.50) 

In the last equation, the boxes represent positions. The right sub-index indicates the position of 

the boxes, whereas the number inside them represents the isotope that is in such a position in 

the original sequence of isotopes. For example, the numbers 1 and 𝑛 represent the isotopes that 

are in the first and the last position in a linear chain. The terms 𝑟𝑘,𝑘+1 have the same meaning 

that in (1.11). The notation provided in (5.23) allows writing the configuration or permutations 

that the isotopes have in a given linear chain. Thus, if all the isotopes in a linear chain are equal, 

the corresponding notation is given by: 

 1
 1

𝑟1,1
→ 1

 2

𝑟1,1
→ …

𝑟1,1
→ 1

 𝑖

𝑟1,1
→ 1

 𝑖+1

𝑟1,1
→ …

𝑟1,1
→ 1

 𝑛
 

 

(5.51) 

Also, the notation allows representing in a more general way the different linear chains. For 

example, for the two following linear chains: 

 U235 (𝑛,𝛾)
→  U236 (𝑛,2𝑛)

→    U235 (𝑛,2𝑛)
→    U234 (𝑛,𝛾)

→  U235 (𝑛,𝛾)
→  U236 (𝑛,2𝑛)

→    U235  
 

U238 (𝑛,𝛾)
→  U239 (𝑛,2𝑛)

→    U238 (𝑛,2𝑛)
→    U237 (𝑛,𝛾)

→  U238 (𝑛,𝛾)
→  U239 (𝑛,2𝑛)

→    U238  
 

 
(5.52) 

can be represented as: 

 1
 1

𝑟1,2
→ 2

 2

𝑟2,1
→ 1

 3

𝑟1,3
→ 3

 4

𝑟3,1
→ 1

 5

𝑟1,2
→ 2

 6

𝑟2,1
→ 1

 7
 

 

(5.53) 
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That can be simplified as: 

 1  2  1  3  1  2  1   
 

(5.54) 

5.7.2 Rules for decay and transmutation. 
 

An adequate way to represent the reactions between the isotopes 𝑋𝑧
𝐴
𝑖 and 𝑌𝑗𝑧+𝑢𝑧

𝐴+𝑢𝑎  is given by: 

 𝑋𝑧
𝐴
𝑖 + 𝑝𝑖

𝑟𝑖,𝑗
→  𝑌𝑗𝑧+𝑢𝑧

𝐴+𝑢𝑎 + 𝑝𝑗  

 

(5.55) 

Where 𝐴 and 𝑍 are the mass and the atomic numbers, 𝑝𝑖  and 𝑝𝑗  can represent initial particles 

(for example, for capture reactions) and products (as 𝛼  and 𝛽+particles) respectively. The 

parameters 𝑢𝑎 and 𝑢𝑧 are numbers who describe the effects of the reactions over 𝐴 and 𝑍. For 

example, in the case of 𝛼 decay, 𝑢𝑎 = −4 and 𝑢𝑧 = −2, 𝑝𝑖  is not considered and 𝑝𝑗  is equal to an 

𝛼  particle. Pusa (Pusa, 2013) reported the main reactions that are considered in burnup 

problems, which can be represented in terms of the effects that they produced over the 

numbers 𝐴 and 𝑍. Such reactions are listed in Table 5.2, as well as the values 𝑢𝑎 and 𝑢𝑧. For the 

case of fission, it has been considered that the values of 𝑢𝑎 and 𝑢𝑧 is equal to 1000, since once 

the isotopes undergo fission it is practically impossible that, through a cyclic chain, a given 

isotope appears for a second time.  

In the present analysis only the terms 𝑋𝑧
𝐴  and 𝑌𝑗𝑧+𝑢𝑧

𝐴+𝑢𝑎  will be considered, being adequate to 

ignore 𝑝𝑖  and 𝑝𝑗 . Using the notation given in (5.55) it is possible to describe the cyclic chains 

using bidimensional vectors. This allows developing rules for decay and transmutation that can 

help to answer the problem of: given an isotope in a linear chain in the position 𝑖, for what of 

the following positions 𝑘 it is possible that such isotope can appear?  

Essentially, a cyclic chain begins with an isotope that can be denoted by (𝑍, 𝐴). If this isotope 

undergoes a reaction, then the parameters 𝑢𝑎 and 𝑢𝑧 are added to the vector: 

 (𝑍, 𝐴)⏟  
Initial isotope

+ (𝑢𝑧, 𝑢𝑎)⏟    
Effect of the
reaction

= (𝑍 + 𝑢𝑧, 𝐴 + 𝑢𝑎)⏟          
Final isotope

 

 

(5.56) 

Since that only an ordered pair (𝑢𝑧, 𝑢𝑎) has been introduced in (5.56), it is possible to conclude 

that isotopes (𝑍, 𝐴)  and (𝑍 + 𝑢𝑧, 𝐴 + 𝑢𝑎)  are consecutive. In other words, the number of 

ordered pair that are included in a given reactions allows finding the number of reactions that 

are considered. With the reactions described in Table 5.2, it is possible to answer if it is possible 

that two consecutive isotopes can be equal. In other words, the case where an isotope appears 

in two immediate positions can be analyzed, setting the following vector equation: 

 (𝑍, 𝐴)⏟  
Initial isotope

+ (𝑢𝑧, 𝑢𝑎)⏟    
Effect of the
reaction

= (𝑍, 𝐴)⏟  
Final isotope

 

 

(5.57) 

Whose solution is equal to: 

 (𝑢𝑧, 𝑢𝑎)⏟    
Effect of the
reaction

= (0,0) (5.58) 



223 
 

Table 5. 2. Main reactions present in burnup problems in nuclear engineering. 

 

 

 

 

 

 

 

 

From Table 5.2 it is possible to note that there is not reaction with value parameters 𝑢𝑧 = 0 

and 𝑢𝑎 = 0, and therefore it is not possible, with these reactions, the case where an isotope 

appears two consecutive times. In the same way it is possible to analyze the case where an 

isotope that appears in the position 𝑖, can appear in the position 𝑖 + 4. For this case it is 

necessary to set the following vector equation: 

 (𝑍, 𝐴)⏟  
Initial isotope

+ (𝑢𝑧
𝑟1 , 𝑢𝑎

𝑟1)⏟      
Effect of the
reaction 1

+ (𝑢𝑧
𝑟2 , 𝑢𝑎

𝑟2)⏟      
Effect of the
reaction 2

+ (𝑢𝑧
𝑟3 , 𝑢𝑎

𝑟3)⏟      
Effect of the
reaction 3

+ (𝑢𝑧
𝑟4 , 𝑢𝑎

𝑟4)⏟      
Effect of the
reaction 4

= (𝑍, 𝐴)⏟  
Final isotope

 

 

(5.59) 

In the last equation the super-index over the parameters 𝑢𝑧 and 𝑢𝑎 indicates the reaction that 

produces the effect. Using the box scheme described in the past section, equation (5.59) can be 

represented as: 

 1
 𝑖
&
 𝑖+1
 &

 𝑖+2
&
 𝑖+3

1
 𝑖+4

 

 

(5.60) 

Where the symbol & has been used to represent an arbitrary isotope, different from 1. Equation 

(5.59) can be written as: 

 (𝑢𝑧
𝑟1 , 𝑢𝑎

𝑟1)⏟      
Effect of the
reaction 1

+ (𝑢𝑧
𝑟2 , 𝑢𝑎

𝑟2)⏟      
Effect of the
reaction 2

+ (𝑢𝑧
𝑟3 , 𝑢𝑎

𝑟3)⏟      
Effect of the
reaction 3

+ (𝑢𝑧
𝑟4 , 𝑢𝑎

𝑟4)⏟      
Effect of the
reaction 4

= (0,0) 

 

(5.61) 

Which in turn can be expressed as: 

 
∑(𝑢𝑧

𝑟𝑘 , 𝑢𝑎
𝑟𝑘)

4

𝑘=1

= (0,0),∑ 𝑢𝑧
𝑟𝑘

4

𝑘=1

=∑𝑢𝑎
𝑟𝑘

4

𝑘=1

= 0 

 

(5.62) 

The following step will consist in finding which reactions of Table 5.2 fulfill equation (5.61). A 

first approach to this problem will be building all the possible combinations with 4 elements, 

from the total of 14 reactions that are listed in Table 5.2 (discarding the fission reaction) and 

introducing them in equation (5.61). From combinatorics (Grimaldi, 2003) such number of 

combinations is equal to: 

Reaction Daughter 𝑢𝑧 𝑢𝑎 Reaction Daughter 𝑢𝑧 𝑢𝑎 

𝛼 (Z-2, A-4) -2 -4 (𝑛, 𝛾) (Z, A+1) 0 1 
Proton 

emission 
(Z-1, A-1) -1 -1 (𝑛, 𝑝) (Z-1, A) -1 0 

Neutron 
emission 

(Z, A-1) 0 -1 (𝑛, 𝑑) (Z-1, A-1) -1 -1 

𝛽−1 (Z+1, A) 1 0 (𝑛, 𝑡) (Z-1, A-1) -1 -2 
𝛽+ (Z-1, A) -1 0 (𝑛, He3 ) (Z-2, A-2) -2 -2 

(𝑛, 2𝑛) (Z, A-1) 0 -1 (𝑛, 𝛾) (Z-2, A-3) -2 -3 
(𝑛, 3𝑛) (Z, A-2) 0 -2 Fission (Z/2, A/2) 1000 1000 
(𝑛, 4𝑛) (Z, A-3) 0 -3     
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 (
14 + 4 − 1
4 − 1

) = (
17
3
) = 680 

 

(5.63) 

Not all these configurations fulfill equation (5.61).  Even when the 680 combinations can be 

tested using programming, it is also possible to study equation (5.62) using Number Theory, in 

order to provide more restrictions. In Table 5.2 there are only two reactions whose parameters 

𝑢𝑧
𝑟  and 𝑢𝑎

𝑟  are positive: the (𝑛, 𝛾)  and 𝛽−reaction. Such reactions are represented with the 

ordered pairs (0,1)  and (1,0) respectively. The rest of reactions are described by pair of 

numbers that are equal to or less to zero.  

From the above discussion it can be concluded that any cyclic chain will have positive and 

negative numbers, in order to fulfill that the sum of the effects will be equal to zero. Therefore, 

it is necessary that a (𝑛, 𝛾) or a 𝛽−reaction will be present in any cyclic chain. Even more, for 

each negative parameter 𝑢𝑧
𝑟𝑘  equal to 𝑎, it is necessary to introduce the 𝛽− reaction 𝑎-times in 

order to have a sum equal to zero. A similar reasoning can be applied for (𝑛, 𝛾). Based on this, 

it is possible to conclude that the 𝛼  reaction cannot be part of the solution of the equation 

(5.62).  

In fact, according to Table 5.2, if an 𝛼 reaction is present in a cyclic chain, the minimum vector 

equation will be: 

 (−4,−2)⏟      
𝛼 reaction

+ 4 ∙ (1,0)⏟  
𝛽−

 reaction

+ 2 ∙ (1,0)⏟  
(𝑛,𝛾)
 reaction

= (0,0) 

 

(5.64) 

As it can be noted such equation involves at least six reactions in addition to the 𝛼 decay, four 

𝛽−  and two 𝛼  reactions. Nevertheless, the equation (5.62) only considers four reactions. 

Therefore, it is possible to conclude that a scheme as the one described in (5.59) cannot contain 

𝛼  reactions. With a similar reasoning the reactions (𝑛, 𝛼), (𝑛, He3 ) , (𝑛, 𝑑) , (𝑛, 3𝑛)  and the 

proton emission can be discarded. Therefore, the actual number of combinations that must to 

be analyzed is reduced to: 

 (
6 + 4 − 1
4 − 1

) = (
9
3
) = 84 

 

(5.65) 

5.7.3 Rules for the configurations. 
 

A set of rules for the possible configurations was deduced using a similar combinatorial analysis 

as the one described in the past sections. Additionally, with the library “itertools” of the Python 

programming language was possible to test all the possible configurations for linear chains. The 

rules can be summarized as follows: 

1) The case where two consecutive isotopes have the same lambda constant is not 

possible.  

2) Most of the cases where singularities appear have their origin in a combination of the 

(𝑛, 𝛾) and (𝑛, 2𝑛) reactions.  

3) There are some cyclic chains where the reaction (𝑛, 2𝑛) is not included, but where the 

reaction 𝛽− is present. 

Finally, from the study of the ENDF/B-VII Library it is possible to provide a fourth rule: 



225 
 

4) The case where two different isotopes have the same lambda decay is practically 

impossible.  

5.8 Development of a computer algebra algorithm. 

5.8.1 An intuitive definition of computer algebra. 
 

It is possible to divide calculations in two types: the ones that are based on numerical methods, 

and the ones that depends on the manipulation of symbolical formulas. For example, it will be 

supposed that the solution of the following integral is searched: 

 
𝐺(𝑎, 𝑏) = ∫ 𝑥2𝑑𝑥

𝑏

𝑎

 
(5.66) 

It is possible to find an approximate value to such integral using the following equation: 

 

𝐺(𝑎, 𝑏) = ∫ 𝑥2𝑑𝑥
𝑏

𝑎

≈
𝑏 − 𝑎

𝑛
(
𝑎2 + 𝑏2

2
+∑(𝑎 + 𝑘

𝑏 − 𝑎

𝑛
)

𝑛−1

𝑘=1

)

2

 

 

(5.67) 

Where 𝑛 is the number that has been used to divide the interval [𝑎, 𝑏], and 𝑘 = 0,1,… , 𝑛 − 1. 

This approximation depends on how large is 𝑛. On the other hand, another approach to (5.66) 

will consist in to perform the following algebraic manipulations: 

 
𝐺(𝑎, 𝑏) = ∫ 𝑥2𝑑𝑥

𝑏

𝑎

= [
𝑥3

3
]
𝑎

𝑏

,  using   ∫𝑢𝑛𝑑𝑢 =
𝑢𝑛+1

𝑛 + 1
+ ¿ 𝑐 

 

(5.68) 

There are two main differences between the last methodologies. Firstly, in equation (5.68) it is 

necessary to know the exact solution of the problem or some methods to determine if such 

solution exists, as well as carrying out several symbolical manipulations. On the other hand, in 

equation (5.67) it is not necessary to know what the solution of the problem is, and, instead, it 

is necessary to perform a greater number of arithmetical operations. 

The first type of methodology is called numerical calculus, because it allows approximating with 

a high degree of precision an operation or a solution. In such calculus it is not necessary to know 

the exact solution, and the approximation depends on a set of numerical algebraic operations. 

The second methodology, known as symbolical calculus, requires manipulating symbolical 

expressions in order to determine if the exact solution exists. In the example given in (5.68), the 

exact solution was found, but there are cases where the symbolical calculus needs to apply 

mathematical methods in order to search for such solution. 

Since several problems in engineering do not have an exact solution, and the mathematical 

methods that they require are very complex, the symbolical calculus have a limited range of 

applications. Instead, the numerical calculus is the predominant methodology to solve 

problems, and the development of computer science has been guided by the way in which 

numerical operations can be carried out. Finally, it is worth mentioning that the symbolical 

calculus requires a different paradigm in terms of software development. 
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5.8.2 Computer Algebra as an approach to the general Bateman solutions.   
 

It is possible to define the computer algebra or symbolic computation, as the process of 

automatically transforming mathematical formulas (Damiano and Ghio, 1997). Initially, the 

development of this computational branch was focus only on algebraic operations, but 

nowadays this includes every mathematical manipulation technique, including advanced 

mathematical methods. Strictly speaking, the computer algebra consists of the introduction of 

a symbolic computation in an algorithm or a software, forming a computer algebraic system, 

denoted as CAS. Today, it exists several CAS software, being the most popular Mathematica 

(where Wolfram|Alpha is included) (David, 2010), and Maple (Char et. al., 1983) among others.  

Using computer algebra, it is possible to calculate high order derivates, as well as performing 

multiple integrals in a fast way. Therefore, this computational tool allows including the general 

Bateman solutions who contains such operations in a burnup or activation code. In other words, 

computer algebra removes the complexity in the process of building general solutions for the 

Bateman equation. Nevertheless, instead of using some of these existing CAS to carry out such 

task, it was considered more useful to develop a reduced CAS who only requires operations 

related to string variables. Since most of the modern programming languages include strings 

functions, the developed algorithm can be included easily in a burnup code.  

Once the main generals’ solutions were studied, it was considered convenient to use the Laplace 
Inverse Method and the Integral solution, because other solutions involve complex nested 

sums, as it was showed in the Centar’s case.  

5.8.3 Algorithm properties and recurrence relationships. 
 

As it was discussed in the last section, equation (1.149) of the method, and equation (1.60) of 

the integral solution were chosen to develop the computer algebra algorithm. Such solutions 

are equivalent, but they have different properties in an algorithmic level. The integral approach 

finds the solution step by step, performing exponential integrals when the effective lambda 

coefficients are different, and for the case where there are repeated isotopes, such equation 

requires to find integrals of the type: 

 
𝑒−𝜆𝑦

eff𝑡∫ 𝑡1
𝑛𝑒−(𝜆𝑥

eff−𝜆𝑦
eff)𝑡1𝑑𝑡1

𝑡

0

 

 

 
(5.69) 

For which the following formula was developed as a part of the present thesis: 

 
= −

𝑡𝑛𝑒−𝜆𝑥
eff𝑡

(𝜆𝑥
eff − 𝜆𝑦

eff)
+
𝑛! (𝑒−𝜆𝑥

eff𝑡 − 𝑒−𝜆𝑦
eff𝑡)

(𝜆𝑥
eff − 𝜆𝑦

eff)
𝑛+1 +∑ [−

𝑛! 𝑡𝑛−𝑘𝑒𝜆𝑥
eff𝑡

(𝑛 − 𝑘)! (𝜆𝑥
eff − 𝜆𝑦

eff)
𝑘+1]

𝑛−1

𝑘=1

 

 

(5.70) 

 

As it can be noted, the complexity of the integration is reduced to a manipulation of algebraic 

operations with several terms, which is an advantage in computational terms. On the other 

hand, the main disadvantage of the integral solution, is that it requires to perform a comparison 

by pars of the effective lambda coefficients, in each step of the integrals.  
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In addition to the equation (5.70), it is possible to define a set of recurrence formulas that allows 

reducing the complexity when the integral method is used.  Such formulas can be described as: 

 

∫ 𝑒
−(𝜆𝑖

eff−𝜆𝑗
eff)𝑡1𝑑𝑡1

𝑡

0

= {
−

1

𝜆𝑖
eff − 𝜆𝑗

eff
[𝑒
−(𝜆𝑖

eff−𝜆𝑗
eff)𝑡

− 1] , 𝜆𝑖
eff ≠ 𝜆𝑗

eff

𝑡, 𝜆𝑖
eff = 𝜆𝑗

eff

 

 

(5.71) 

 

 
The operation described in the last equation can be represented using a binary function given 

by 𝜔(𝜆𝑖
eff, 𝜆𝑗

eff). Starting with (5.71), the following common operation has been identified: 

 𝜑(𝜆𝑖
eff, 𝜆𝑗

eff) = 𝑒−𝜆𝑗
eff𝑡𝜔(𝜆𝑖

eff, 𝜆𝑗
eff) 

 

= {
−

1

𝜆𝑖
eff − 𝜆𝑗

eff
[𝑒−𝜆𝑖

eff𝑡 − 𝑒−𝜆𝑗
eff𝑡] , 𝜆𝑖

eff ≠ 𝜆𝑗
eff

𝑒−𝜆𝑗
eff𝑡𝑡, 𝜆𝑖

eff = 𝜆𝑗
eff

 

 

 
 
 
(5.72) 

Following the procedure of integration, the following expression appears: 

 
𝑒−𝜆𝑘

eff
∫ 𝑒𝜆𝑘

eff𝑡1𝜑(𝜆𝑖
eff, 𝜆𝑘

eff)𝑑𝑡1

𝑡

0

 

 

=

{
 
 

 
 −

1

𝜆𝑖
eff − 𝜆𝑗

eff
[𝜑(𝜆𝑖

eff, 𝜆𝑗
eff) − 𝜑(𝜆𝑗

eff, 𝜆𝑘
eff)], 𝜆𝑖

eff ≠ 𝜆𝑗
eff

𝑒−𝜆𝑘
eff𝑡∫ 𝑒

−(𝜆𝑗
eff−𝜆𝑘

eff)𝑡1𝑡1𝑑𝑡1

𝑡

0

𝜆𝑖
eff = 𝜆𝑗

eff

 

 
 
 
(5.73) 

 
On the other hand, the Laplace’s solution carries out a comparison of the effective lambda 

constants only one time, because it determines how many isotopes are repeated, and the 

number of times that they appear. Therefore, it easily computes the coefficients 𝑘𝑖 of equation 

(1.49). Nevertheless, the main difficulty with this solution is the calculation of the high-order 

derivatives that are involved: 

 𝐴(𝑠)(𝑠 + 𝜆𝑗
eff)

𝑘𝑗
= 𝑃(𝑠)𝑗 

(5.74) 

Where: 

 𝑃(𝑠)𝑗 = (𝑠 + 𝜆1)
−𝑘1(𝑠 + 𝜆2)

−𝑘2 …(𝑠 + 𝜆𝑗−1)
−𝑘𝑖−1

(𝑠 + 𝜆𝑗+1)
−𝑘𝑖+1

…(𝑠 + 𝜆𝑛)
−𝑘𝑛 

 

(5.75) 

In the present work it was found that such derivatives can be solved using the natural 

logarithm. If such function is applied in both sides of (5.76): 

 
ln (𝑃(𝑠)𝑗) = ∑−𝑘𝑢

𝑛

𝑢=1
𝑢≠𝑗

ln (𝑠 + 𝜆𝑢) 
(5.76) 

And therefore: 
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𝑑

𝑑𝑠
𝐴(𝑠)(𝑠 + 𝜆𝑗

eff)
𝑘𝑗
= 𝑃′(𝑠)𝑗 = 𝑃(𝑠)𝑗

[
 
 
 
∑−

𝑘𝑢
𝑠 + 𝜆𝑢

𝑛

𝑢=1
𝑢≠𝑗

 

]
 
 
 
 

 
(5.77) 

For the following derivative it follows: 

𝑃′′(𝑠)𝑗 =

[
 
 
 
∑−

𝑘𝑢
𝑠 + 𝜆𝑢

𝑛

𝑢=1
𝑢≠𝑗

 

]
 
 
 
𝑃′(𝑠)𝑗 + 𝑃(𝑠)𝑗

[
 
 
 
∑

𝑘𝑢
(𝑠 + 𝜆𝑢)

2

𝑛

𝑢=1
𝑢≠𝑗

 

]
 
 
 
 

 

= 𝑃(𝑠)𝑗

{
 

 

[
 
 
 
∑−

𝑘𝑢
𝑠 + 𝜆𝑢

𝑛

𝑢=1
𝑢≠𝑗

 

]
 
 
 
2

+

[
 
 
 
∑

𝑘𝑢
(𝑠 + 𝜆𝑢)

2

𝑛

𝑢=1
𝑢≠𝑗

 

]
 
 
 

}
 

 
 

 
(5.78) 

Defining: 

 
𝑆(𝑎, 𝑏) = ∑(−1)𝑏

𝑎 ∙ 𝑘𝑢
(𝑠 + 𝜆𝑢)

𝑏

𝑛

𝑢=1
𝑢≠𝑗

 
 
(5.79) 

Using the last notation, it is possible to express (5.78) as: 

 = 𝑃(𝑠)𝑗[(𝑆(1,1)
2 + 𝑆(1,2)]  

For the following derivative: 

𝑃(𝑠)𝑗
′′′ = 𝑃(𝑠)𝑗[2𝑆(1,1) ∙ 𝑆(1,2) + 𝑆(2,3)] + [(𝑆(1,1)

2 + 𝑆(1,2)]𝑃(𝑠)𝑗[𝑆(1,1)] 

𝑃(𝑠)𝑗
′′′ = 𝑃(𝑠)𝑗[𝑆(1,1)

3 + 3𝑆(1,1) ∙ 𝑆(1,2) + 𝑆(2,3)] 

Using the notation given in (5.79) it is possible to compute in a very fast recursive way the high 

order derivates.  

5.8.4 Main features of the computer algebra algorithm. 
 

In order to describe the main features of such algorithm, some of the functions related to the 
integration solution will be described in Table 5.3. As it is possible to note, the functions have a 

symbolical representation that consist of a capital letter, as well as a parenthesis to close their 

argument. The letter "𝑙" accompanied with a number will be used to represent the lambda 

constants. As the Table 5.3 shows, the functions have some properties as commutation or 

distribution, which allowreducing them.  

The algorithm begins solving the following equation: 

 
𝑒−𝜆2

eff𝑡∫ 𝑒−(𝜆1
eff−𝜆2

eff)𝑡′𝑑𝑡′
𝑡

0

 
 

(5.80) 

Which has the equivalent string expression: 

 𝑀(𝑒𝑥(−𝑙2), 𝐺 (𝑒𝑥(−𝑑(𝑙2, 𝑙1)))) (5.81) 
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Table 5. 3. Main string functions related to the part of the integral solution. 

 

Then, it is necessary to identify all the integrals operations that appear in (5.81), which is a 

straightforward task, because it is only necessary to search for the character “G”. Once such 

identification is carried out, it is necessary to analyze the argument of the integrals and reduce 

them in order to have a subtraction of the lambda constants inside it. Such task can be carried 

out using the relationships described in the past section.  

For example, for the first stage the integral given in (5.81) has the following possibilities: 

 

{
 
 

 
 𝑎∫ 𝑔(𝑡)𝑡

𝑡

0

if 𝑓(𝑡) = 𝑎𝑔(𝑡)

𝑡 if 𝑓(𝑡) = 𝑒−(𝜆𝑥
eff−𝜆𝑦

eff)𝑡 ,   and 𝜆𝑥
eff = 𝜆𝑦

eff

−
1

𝜆𝑥
eff − 𝜆𝑦

eff
[𝑒−(𝜆𝑥

eff−𝜆𝑦
eff)𝑡 − 1] if 𝑓(𝑡) = 𝑒−(𝜆𝑥

eff−𝜆𝑦
eff)𝑡  and 𝜆𝑥

eff ≠ 𝜆𝑦
eff

 

 

 

(5.82) 

 

Function Symbolical representation Arguments Properties 

𝑎 − 𝑏 𝑑(𝑎, 𝑏) 2 𝑑(𝑎, 𝑏) = −𝑑(𝑏, 𝑎) 

𝑎 + 𝑏 𝑆(𝑎, 𝑏) 2 
𝑆(𝑎, 𝑏) = 𝑆(𝑏, 𝑎) 

𝑆(𝑎,−𝑏) = 𝑑(𝑎, 𝑏) 

𝑎 ∙ 𝑏 𝑀(𝑎, 𝑏) 2 

𝑀(𝑎, 𝑏) = 𝑀(𝑏, 𝑎) 

𝑀(𝑑(𝑎, 𝑏), 𝑐) = 𝑑(𝑀(𝑎, 𝑐),𝑀(𝑏, 𝑐)) 

𝑀(𝑆(𝑎, 𝑏), 𝑐) = 𝑆(𝑀(𝑎, 𝑐),𝑀(𝑏, 𝑐) 

𝑀(𝑎, 1) = 𝑎 

𝑒𝑎𝑡 𝑒𝑥(𝑎) 1 
𝑀(𝑒𝑥(𝑎), 𝑒𝑥𝑝(𝑏)) = 𝑒𝑥𝑝𝑛(𝑆(𝑎, 𝑏)) 

𝑒𝑥(𝑑(𝑙𝑥, 𝑙𝑦)) = 1, si 𝑙𝑥 = 𝑙𝑦 

𝑡𝑎 𝑡(𝑎) 1 𝑀(𝑡(𝑎), 𝑡(𝑏)) = 𝑡(𝑆(𝑎, 𝑏)) 

1

𝑎 − 𝑏
 𝑑𝑖(𝑎, 𝑏) 2 

 

𝑑𝑖(𝑎, 𝑏) = −𝑑𝑖(𝑏, 𝑎) 

 

∫ 𝑎𝑑𝑡
1

0

 

 

𝐺(𝑎) 1 

 

𝐺(𝑀(𝑎, 𝑏)) = 𝑀(𝑎, 𝐺(𝑏)) if 𝑎 is constant 

𝐺(𝑆(𝑎, 𝑏)) = 𝑆(𝐺(𝑎), 𝐺(𝑏)) 

𝐺(𝑑(𝑎, 𝑏) = 𝑑(𝐺(𝑎), 𝐺(𝑏)) 
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Which have the following symbolical representation: 

 

{
 
 

 
 𝑀(𝑎, 𝐺(𝑏)) for 𝐺(𝑀(𝑎, 𝑏)) and 𝑎 constant

𝑡(1) for 𝐺 (𝑒𝑥(−𝑑(𝑙𝑥, 𝑙𝑦))) and 𝑙𝑥 = 𝑙𝑦

𝑀 (−𝑑𝑖(𝑙𝑥, 𝑙𝑦), 𝑑(𝑒𝑥(−𝑑(𝑙𝑥, 𝑙𝑦)), 1)) with 𝐺 (𝑒𝑥(−𝑑(𝑙𝑥, 𝑙𝑦)))  and 𝑙𝑥 ≠ 𝑙𝑦 

 

 

 
 
(5.83) 

For the last case where 𝑙𝑥 ≠ 𝑙𝑦 the expression (5.81) becomes: 

 𝑀(𝑒𝑥(−𝑙2),𝑀 (−𝑑𝑖(𝑙1, 𝑙2), 𝑑(𝑒𝑥(−𝑑(𝑙1, 𝑙2)), 1))) (5.84) 

The multiplication inside the main product can be expressed as: 

 𝑑 (𝑀 (−𝑑𝑖(𝑙1, 𝑙2), 𝑒𝑥(−𝑑(𝑙1, 𝑙2))) , −𝑑𝑖(𝑙1, 𝑙2)) (5.85) 

Replacing this term in (5.84) it follows that (5.81) is equal to: 

 𝑑 (𝑀(−𝑑𝑖(𝑙1, 𝑙2), 𝑒𝑥(−𝑙1)),𝑀(−𝑑𝑖(𝑙1, 𝑙2), 𝑒𝑥(−𝑙2))) 

 

(5.86) 

This last expression was found only using the properties and functions given in Table 5.3. If 

(5.86) is written in a mathematical form, it is equal to: 

 
−

𝑒−𝜆1
eff𝑡

𝜆1
eff − 𝜆2

eff
+

𝑒−𝜆2
eff𝑡

𝜆1
eff − 𝜆2

eff
 

 

 
(5.87) 

Which can be obtained using the standard integration manipulations. This brief example shows 

how the symbolical algorithm can perform the operation required to find the general solution.  

5.8.5 Comparison in computational time. 
 

It is possible to show the utility of the proposed algorithm through a comparison with the use 

of the Bateman equation for a given cyclic chain. Such comparison could be in terms of the 

accuracy and in terms of the computational time. Isotalo and Aarnio study the first one, 

analyzing the results that are obtained when the general solution is applied in comparison with 

the use of the Bateman equation with modified effective lambda constants (Isotalo and Aarnio, 

2011). In the present thesis a comparison of the execution time using the proposed algorithm 

is showed. For this task the following cyclic chain will be used: 

 U235 (𝑛,𝛾)
→   U236 (𝑛,2𝑛)

→     U235 (𝑛,2𝑛)
→     U234 (𝑛,𝛾)

→  U235 (𝑛,𝛾)
→  … (5.88) 

 

Typical values for 𝑋 U235 (0) and the effective lambda coefficients were taken from a thermal 

burnup problem, but the results are not depending on such values, instead of the time required 

to build the solution. The analysis was focus on the time that the Bateman equation with 

modified effective lambda constants were used to obtain a solution, in comparison with the 

solution obtained with the symbolical algorithm. Such analysis considers as variable the length 

of the cyclic chain given in (5.88), which repeated the sequence given by the reactions 
(𝑛, 𝛾), (𝑛, 2𝑛), (𝑛, 2𝑛), (𝑛, 𝛾), and (𝑛, 𝛾).  



231 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The test was run on a 2.6 GHz–3.5 GHz2 Intel i7, 6700 HQ, under a 64-bit Windows, using the 

Python 3.5 programming language. Figure 5.1 shows the execution time of the methods as a 

function of the length of the cyclic chain showed in (5.88).  

From the Figure 5.1 it is possible to obtain a geometrical mean of the quotient between the 

execution times. Using as base the time involved when the Bateman equation is used, for the set 
of values the geometrical mean is approximately 1.4. Clearly, the Bateman solution that uses 

the modified effective lambda constants is the fastest, because the form of the equation does 

not change in function of the configuration of the repeated isotopes. Therefore, its execution 

time is only related to the calculation of the lambda modifications as well as the numerical 

evaluation. On the other hand, the proposed algorithm requires more time that is related to 

building the symbolical solution. Nevertheless, the results show that such time is comparable 

with the numerical evaluation, as well as to the execution of the standard Bateman equation. In 

other words, these preliminary results show that using general solutions through computer 

algebra can be suitable for burnup codes. It is clear that a more detailed study is required, where 

a considerable number of cyclic chains will be included, and where a complete study of the 

optimization of the algorithm will be carried out, but these topics are part of a future research.  

5.9 Theory of increments. 
 

It is possible to represent the Bateman solution in equation (5.3) using the following notation: 

 𝐵(𝜆1, 𝜆2, … , 𝜆𝑛) 
 

(5.89) 

Where all the lambda constants are different. If the isotope 𝜆𝑘, 2 ≤ 𝑘 ≤ 𝑛, is repeated 𝑚 times, 

through the small variations discussed in Section 5.2 it is possible to denote the Bateman 

equation as: 
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𝐵(𝜆1, 𝜆2, … , 𝜆𝑘 , 𝜆𝑘 + ∆𝑘 , 𝜆𝑘 + 2∆𝑘, … , 𝜆𝑘 + (𝑚 − 1)∆𝑘⏟                          
repeated isotope

 , … , 𝜆𝑛) 

For the case where there are 𝑝 different isotopes, each of one appear 𝑘𝑝 times, it is possible to 

generalize the last notation in the following way: 

𝐵(𝜆1, 𝜆1 + ∆1, … , 𝜆1 + (𝑘1 − 1)∆1⏟                    
isotope 𝑋1

, … , 𝜆𝑝, 𝜆𝑝 + ∆𝑝, … , 𝜆𝑝 + (𝑘𝑝 − 1)∆𝑝⏟                    
isotope 𝑋𝑝

) 

Due to the extension of the function’s argument, it is possible to reduce the notation as: 

 𝐵(∆1, ∆2, … , ∆𝑝) 

 

(5.90) 

The Cetnar’s work that was described in Section 5.5 can be summarized considering that he 

computed the following limit: 

 lim
∆𝑖→0,𝑖=1,…,𝑝

𝐵(∆1, ∆2, … , ∆𝑝) = 𝐵𝑔(𝜆1, 𝜆2, … , 𝜆𝑝) 

 

(5.91) 

Where 𝐵𝑔(𝜆1, 𝜆2, … , 𝜆𝑝) is the general solution, which depends on 𝑝 arguments. As it will be 

discussed later, inside equation (5.91) lies a formal procedure to compute the increments in 

order to have adequate results. As it was discussed in Section 5.2, there is not a formal 

methodology to propose the modification to the Bateman equation, and therefore it is necessary 

to develop a theory, which can be called the theory of increments.  

5.9.1 Case where only one isotope is repeated 𝑘𝑝 times. 

 

Using the symmetry function defined in Section 1.8.3 the Bateman equation can be written as: 

 
𝐵(𝜆1, 𝜆2, … , 𝜆𝑛) = 𝑋1(0) ∏𝜆𝑘

𝑛−1

𝑘=1

𝐹(𝜆1, 𝜆2, … , 𝜆𝑛) 
(5.92) 

It is important to note that 𝐵  is not symmetric on the lambda arguments due to the initial 

product over the index 𝑘. The following linear chain can be considered: 

 
𝑋1

𝜆1
→𝑋2

𝜆2
→…

𝜆𝑝−1
→  𝑋𝑝

𝜆𝑝
→ 𝑋𝑝+1

𝜆𝑝+1
→  …

𝜆𝑛−1
→  𝑋𝑛

𝜆𝑛
→ 𝑋𝑛+1

𝜆𝑛+1
→  …

𝜆𝑛+𝑘𝑝−2
→     𝑋𝑛+𝑘𝑝−1  

(5.93) 

 

In this structure there will be 𝑛 different isotopes, and the isotope 𝑋𝑝 will be repeated 𝑘𝑝 − 1 

times. In other words, there are 𝑘𝑝 isotopes in (5.93) that are equal to 𝑋𝑝. As it will be shown it 

is not necessary to know the positions where the isotope 𝑋𝑝 is repeated. In order to use the 

Bateman solution, a set of small variation will be introduced. It is possible to carry out this 

procedure in any order. Then, the Bateman solution for this linear chain is given by: 

𝐵 (𝜆1, 𝜆2, … , 𝜆𝑛+𝑘𝑝−1) = 𝑋1(0) ∏ 𝜆𝑘

𝑛+𝑘𝑝−2

𝑘=1

𝐹 (𝜆1, 𝜆2, … , 𝜆𝑛+𝑘𝑝−1) = 𝑃𝐹 (𝜆1, 𝜆2, … , 𝜆𝑛+𝑘𝑝−1) 

Where 𝐹 was defined in (1.135) and 𝑃 is a constant whose value is equal to: 
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𝑃 = 𝑋1(0) ∏ 𝜆𝑘

𝑛+𝑘𝑝−2

𝑘=1

 

Now, due to the symmetry of the function 𝐹 it is possible to make a new enumeration where 

the first 𝑛 − 1 terms correspond to the different isotopes, and the last 𝑘𝑝 terms are the repeated 

isotopes. Therefore: 

 𝐵 (𝜆1, 𝜆2, … , 𝜆𝑛+𝑘𝑝−1) = 𝑃𝐹 (𝜆𝜇1 , 𝜆𝜇2 , … , 𝜆𝜇𝑛−1 , 𝜆𝑝, 𝜆𝑝+1, … , 𝜆𝑝+𝑘𝑝−1) 

 

(5.94) 

The last function 𝐹 can be expressed as: 

 

∑𝑒−𝜆𝜇𝑖𝑡
𝑛−1

𝑖=1

∏
1

𝜆𝜇𝑗 − 𝜆𝜇𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

∏
1

𝜆𝑗 − 𝜆𝜇𝑖

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑖

+ ∑ 𝑒−𝜆𝑖𝑡

𝑝+𝑘𝑝−1

𝑖=𝑝

∏
1

𝜆𝜇𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

∏
1

𝜆𝑗 − 𝜆𝑖

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑖

 

 

 
(5.95) 

It is necessary to make simplifications to the second term of the last equation. One of them is 

related with the product. Firstly, the constants 𝜆𝑝+𝑗 will be rewritten as: 

𝜆𝑝 𝜆𝑝+1 … 𝜆𝑝+𝑘𝑝−1

↓ ↓ … ↓
𝜆𝑝 𝜆𝑝 + ∆𝑝 … 𝜆𝑝 + (𝑘𝑝 − 1)∆𝑝

  

Using the last relationships, it is possible to deduce an expression for the following product for 

the index 𝑝: 

∏
1

𝜆𝑗 − 𝜆𝑝

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑝

=
1

𝜆𝑝+1 − 𝜆𝑝

1

𝜆𝑝+2 − 𝜆𝑝
…

1

𝜆𝑝+𝑘𝑝−1 − 𝜆𝑝
 

=
1

∆𝑝

1

2∆𝑝
…

1

(𝑘𝑝 − 1)∆𝑝
= (

1

∆𝑝
)

𝑘𝑝−1 1

(𝑘𝑝 − 1)!
 

In the same way, for the index 𝑝 + 1 

∏
1

𝜆𝑗 − 𝜆𝑝+1

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑝+1

=
1

𝜆𝑝 − 𝜆𝑝+1

1

𝜆𝑝+2 − 𝜆𝑝+1
…

1

𝜆𝑝+𝑘𝑝−1 − 𝜆𝑝+1
 

= (−
1

∆𝑝
)(

1

∆𝑝
)(

1

2∆𝑝
)…

1

(𝑘𝑝 − 2)!∆𝑝
= −(

1

∆𝑝
)

𝑘𝑝−1 1

(𝑘𝑝 − 2)!
 

For the case 𝑖 = 𝑝 + 2: 

∏
1

𝜆𝑗 − 𝜆𝑝+2

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑝+2

=
1

𝜆𝑝 − 𝜆𝑝+2

1

𝜆𝑝+1 − 𝜆𝑝+2

1

𝜆𝑝+3 − 𝜆𝑝+2
…

1

𝜆𝑝+𝑘𝑝−1 − 𝜆𝑝+2
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= (−
1

2∆𝑝
)(−

1

∆𝑝
)(

1

∆𝑝
)…(

1

(𝑘𝑝−3 − 3)∆𝑝
) = (

1

∆𝑝
)

𝑘𝑝−1 1

2(𝑘𝑝 − 3)!
  

And following the same reasoning, it is possible to infer the case 𝑖 = 𝑟,   1 ≤ 𝑟 ≤ 𝑘𝑝: 

 

∏
1

𝜆𝑗 − 𝜆𝑝+2

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑝+𝑟

= (−1)𝑟 (
1

∆𝑝
)

𝑘𝑝−1 1

𝑟! (𝑘𝑝 − 𝑟)!
 

 

 
(5.96) 

Using the last expression, the second term in (5.95) is equal to: 

 

(
1

∆𝑝
)

𝑘𝑝−1

𝑒−𝜆𝑝𝑡 ∙ ∑ 𝑒−(𝑖−𝑝)∆𝑝𝑡

𝑝+𝑘𝑝−1

𝑖=𝑝

∏
(−1)𝑖−𝑝

𝜆𝜇𝑗 − (𝜆𝑝 + (𝑖 − 𝑝)∆𝑝)

𝑛−1

𝑗=1
𝑗≠𝑖

1

𝑖! (𝑘𝑝 + 𝑝 − 1 − 𝑖)!
 

 

 
(5.97) 

On the other hand, the first product in the left side of equation (5.95) can be expressed as: 

 

∑𝑒−𝜆𝜇𝑖𝑡
𝑛−1

𝑖=1

∏
1

𝜆𝜇𝑗 − 𝜆𝜇𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

∏
1

𝜆𝑝 + (𝑗 − 𝑝)∆𝑝 − 𝜆𝜇𝑖

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑖

 

 
(5.98) 

Then, the Bateman equation with increments is the sum of equation (5.97) with equation (5.98). 

Using these last equations, it is possible to obtain a set of inequalities that provides information 

about the increments ∆. 

5.9.2 Formal definition of limit. 
 

In mathematical analysis there is a formal definition of limit, which has the following sentence 

(Bartle and Sherpert, 2010): Let 𝑓 a real function defined in the interval (𝑎, 𝑏), and a number 

𝑥0. It is said that lim
𝑥→𝑥0

𝑓(𝑥) exists and that it is equal to 𝐿, if for all 𝜖 > 0 there is a 𝛿 > 0, such 

that, ∀𝑥 ∈ (𝑎, 𝑏) if: 

|𝑥 − 𝑥0| < 𝛿,  then    |𝑓(𝑥) − 𝐿| < 𝜖" 

It is possible to use this definition to know how to compute the increments in the Bateman 

equation. First it is necessary to interpret that in terms of the present problem. In first place, if 

it will be supposed that only one isotope, 𝑋𝑝 is repeated 𝑘𝑝 times, therefore the limit given in 

(5.91) can be expressed as: 

 lim
∆𝑝→0

𝐵(∆𝑝) = 𝐵𝑔(𝜆1, 𝜆2, … , 𝜆𝑛) (5.99) 

 

The left part of (5.99) is equal to the Bateman equation with increments that was developed in 

(5.21). The right side is the general solution. In this particular case, this is the general solution 

where the isotope 𝑋𝑝 is repeated 𝑘𝑝 times. Therefore, from the epsilon-delta definition, we will 

have the following inequality: 
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 |𝐵(∆𝑝) − 𝐵𝑔(𝜆1, 𝜆2, … , 𝜆𝑝)| < 𝜖 

 

(5.100) 

In terms of the present problem, 𝜖 will be the error between the general solution 𝐵𝑔 and the 

function of increments 𝐵(∆𝑝). Then by the definition, if the limit exists, for a given error it will 

be possible to find a value of 𝛿, such that it is true that: 

 |∆𝑝 − 0| = |∆𝑝| < 𝛿 

 

(5.101) 

This value 𝛿 allows finding the increments, because it will be an upper bound. Since that several 

authors showed that the limit exists, and proposed a general equation, it is possible to work 

with inequalities with the purpose to find an expression for this 𝛿 value. In other words, both 

functions inside (5.100) are known, and the procedure is reduced to solve the inequalities in 

order to find (5.101). In other words, the procedure to find the value of the increments is 

reduced to apply the formal definition of limit. A graphical representation of this procedure is 

shown in Figure 5.2. 

5.9.3 Special considerations. 
 

Strictly speaking, the limit described in (5.91) is a multivariable limit, not a single limit as was 

set in equation (5.100). Nevertheless, the problem is extremely complex if we considered the 

multivariable case. Therefore, the procedure described in the last section is only valid when 

only one isotope is repeated, which is a very rare case: in fact, it is more probable that more 

than one isotope is repeated. Nevertheless, it is possible to suppose that the errors related to 

the increments are independents. In other words, for the case where more than one isotope is 

repeated, it will be possible to compute the error due to each increment of the repeated isotope, 

and finally to compute a total error, which will be defined as: 

 𝜖𝑡 = 𝜖∆1 + 𝜖∆2 +⋯+ 𝜖∆𝑚 

 

(5.102) 

Furthermore, in order to deal with inequalities in an easy way, it is necessary to use a general 

Bateman solution whose form is not complex. In such terms, the Cetnar’s solution described in 

Section 5.5 is discarded because it is expressed in very difficult nested sums, as it was described 

before. The most appropriate general solution to the present problem is the one obtained by 

the Inverse Laplace Method, which was described in 1.9.2.  

5.9.4 The main inequality. 
 

The author of the present thesis continues working in an adequate way to solve the inequality 

given in (5.100). It is expected that such solution will be part of a future publication, and 

therefore in the following lines the main inequality that needs to be solved is described, as well 

as some of the properties of such problem. 

Once the equation (5.95), with the terms given in (5.97) and (5.98), is replaced in (5.100), and 

the general solution obtained by the Inverse Laplace method is used, the following inequalities 

need to be solved: 
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Figure 5. 2. Scheme of the procedure to compute the increment ∆𝑝  using the epsilon-delta 

definition of limit. In the image, the point in the function 𝐵(∆𝑝) does not appear in the vertical 

axis, because in this point such function is not defined, even when the limit exists. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

|| ∏
1

𝜆𝑝 + (𝑗 − 𝑝)∆𝑝 − 𝜆𝜇𝑖

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑖

−
1

(𝜆𝑝 − 𝜆𝑢𝑖)
𝑘𝑝|
| 

 

|| ∑ 𝑒−(𝑖−𝑝)∆𝑝𝑡

𝑝+𝑘𝑝−1

𝑖=𝑝

∏
(−1)𝑖−𝑝

𝜆𝜇𝑗 − (𝜆𝑝 + (𝑖 − 𝑝)∆𝑝)

𝑛−1

𝑗=1
𝑗≠𝑖

(
1
∆𝑝
)
𝑘𝑝−1

𝑒−𝜆𝑝𝑡

𝑖! (𝑘𝑝 + 𝑝 − 1 − 𝑖)!

−∑𝑐𝑝,𝑖

𝑘𝑝

𝑖=1

𝑒−𝜆𝑝𝑡𝑡𝑖−1

(𝑖 − 1)! |
| 

 
(5.103) 
 
 
 
 
 
(5.104) 

For the first inequality it is possible to show that: 

∏
1

𝜆𝑝 + (𝑗 − 𝑝)∆𝑝 − 𝜆𝜇𝑖

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑖

= ∏
1

(𝜆𝑝 − 𝜆𝜇𝑖) (1 −
(𝑗 − 𝑝)∆𝑝
𝜆𝑝 − 𝜆𝜇𝑖

)

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑖

 

=
1

(𝜆𝑝 − 𝜆𝑢𝑖)
𝑘𝑝

∏
1

(1 −
(𝑗 − 𝑝)∆𝑝
𝜆𝑝 − 𝜆𝜇𝑖

)

𝑝+𝑘𝑝−1

𝑗=𝑝
𝑗≠𝑖

  

Starting from these equations there have been found several other relationships that can be 

help us to solve the inequality, and therefore to find the relationship between the error and the 

increments.  The most difficult part is the analysis of the equation (5.104), which strongly 
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depends on the computation of derivatives of the Inverse Laplace method, which was showed 

in Section 5.8.3. Such topics are part of a future research. 

5.10 Conclusions of the Chapter 5. 
 

The present chapter was related to the study of the general solutions of the Bateman equation, 
and with some important findings that can be deduced from them.  Firstly, through a detailed 

review it was possible to conclude that the general solutions appeared, in a formal way, in the 

60’s. Since then, other general solutions were obtained, which belong to a wide range of 

disciplines. Therefore, the solution that was developed by Cetnar in 2006 was not the first one 

that appeared, as wrongly some authors suggest.  

It is possible to divide all the published solutions according to the methodology that was used 

to find them. Essentially there are four types: the inverse Laplace method, the integral solution, 

the limit solution and the power series solution. From this study it was possible to conclude 

that the most straightforward methodology that provides a general solution is the inverse 

Laplace method. Additionally, it was discussed that some of the solutions can be represented as 

nested sums, others involve the calculation of high order derivatives, and others require to 

compute a multiple integration. Due to these elements, it is very complex task to include some 

of these solution in a burnup code.  

Nevertheless, using symbolic calculation and computer algebra, it is possible to develop an 

algorithm that includes some of the general solutions in a burnup or activation code. After an 

algorithmic analysis it was concluded that the most adequate solutions that can be solved using 

these computational tools are the Laplace and integral type. In terms of numerical results, a 

comparison study was carried out, which demonstrated that the developed algorithm can build 

the general solution in a time that is approximately equal to the time that is involved when the 

modified Bateman equation is used.  

Since the general solutions were developed without restrictions related to the position of 

repeated isotopes, it is possible to reduce the number of possible linear chains with repeated 

isotopes, using a set of rules that were deduced with a combinatorial study. From this 

combinatorial analysis can be obtained a set of rules that allows building the linear chains that 

are physically possible in practical problems, and therefore the complexity of the cases is 

reduced. An important finding was the conclusion that is not possible that in a linear chain two 

consecutive isotopes can be equal. 

In terms of the increments it was possible to propose a methodology to compute such values in 

a formal way. This methodology is based in the concept of limit, and in the Bateman solution 

with increments. The main difficulty of this methodology consists of solving inequalities, which 

is part of a future research. From the above facts it is possible to conclude that the general 

solutions continue being a topic of interest and where can be obtained important contributions 

to the Bateman equations. 
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6. General Conclusions. 
 

The work developed in this thesis addresses several aspects of the Bateman equations, which 

allow solving them in a more precise and fast way. A set of new algorithms was proposed, which 

contributes from a programming level until a mathematical modelling a of complex decay and 

transmutation structures. In the present work the linearization process was improved, 

developing an alternative algorithm that builds the linear chain in a very fast way. It was 

possible to conclude from this part, that some of the methodologies that the linear chain uses 

can be improved using new approaches to the topology of decay and transmutation networks.  

Regarding the cyclic chains, the present work contains a detailed study of these structures, 

proposing a classification to them, and developing a mathematical background to this solution. 
From this part has been concluded that the study of cyclic chains is very important, because the 

solution of these structures allows reducing the number of linear chains that need to be solved 

with the Bateman equation. On the topic of general solutions, the present work shows that a 

theory of increments can be developed from it. This represents an important contribution to 

the development of burnup codes, because it can provide a formal way to introduce small 

modifications in the Bateman equation. Another important conclusion from this topic was the 

development of a computer algebra algorithm, which allows including general solutions in 

burnup codes.  

In terms of the yield’s assignation, it has been concluded that is very important to use only 

independent yields and using complete and transmutation networks. Additionally, in order to 

make adequate comparison between two different burnup codes, it is necessary to study the 

way in which the yields are assigned to a given structure.  

The contributions described before will be part of the burnup code Szilard, belonging to the 

AZTLAN Platform project. From the above discussion it is possible to conclude that all the 

objectives defined at the beginning of this doctoral research were fulfilled, and that it is possible 

to find improvements to the linear chain method and to the solution of the Bateman equations. 
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Journal Papers: 
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Cruz-López, C.; François, 2019. Two alternative approaches to the solution of cyclic chains in 

transmutation and decay problem. Submitted to Computer Physics Communications 

(December, 2019).  

Conference Papers: 

Cruz-López, C.; François, J., 2018. An alternative algorithm for the linearization process for 

transmutation and decay networks. The PHYSOR 2018 conference: Reactor Physics Paving The 
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Linealización de Cadenas de Decaimiento y Transmutación. XXVIII Congreso Anual de la 

Sociedad Nuclear Mexicana-2017 LAS/ANS-Symposium, New Technologies for a Nuclear 

Power Expansion Program. Ciudad de México, México, June 2017. 

Cruz-López, C.; François, J., 2019. Desarrollo de un Algoritmo de Cálculo Simbólico para la 
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Appendix A.  
 

 

A.1 Solution of the Bateman equation by Mathematical Induction. 
 

The strong mathematical induction will be used to formulate the hypothesis as: 

1) (1.24) is valid for 𝑛 = 1, 2, 3 

2) It will be supposed that is valid for 𝑛 − 1 

3) Finally, it will be proved that (1.24) it is valid for 𝑛 (using supposition 2) 

Starting with the following differential equation: 

 𝑑𝑋𝑛
𝑑𝑡

= 𝜆𝑛−1𝑋𝑛−1(𝑡) − 𝜆𝑛𝑋𝑛 

 

(A.1) 

Using supposition 2) the term  𝑋𝑛−1(𝑡) will be replaced in the last equation: 

 
𝑑𝑋𝑛
𝑑𝑡

= 𝜆𝑛−1

[
 
 
 
 

𝜆1𝜆2…𝜆𝑛−2𝑋1(0)∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑖𝑡
𝑛−1

𝑖=1
]
 
 
 
 

− 𝜆𝑛𝑋𝑛 

 

(A.2) 

Both sides are multiplied by 𝑒𝜆𝑛𝑡, and the term 𝑒𝜆𝑛𝑡𝜆𝑛𝑋𝑛 is added: 

 

𝑒𝜆𝑛𝑡𝜆𝑛𝑋𝑛 + 𝑒
𝜆𝑛𝑡
𝑑𝑋𝑛
𝑑𝑡

= 𝑒𝜆𝑛𝑡𝜆𝑛−1

[
 
 
 
 

𝜆1𝜆2…𝜆𝑛−2𝑋1(0)∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑖𝑡
𝑛−1

𝑖=1
]
 
 
 
 

 

 

(A.3) 

Rearranging the terms is follows that: 

 
𝑒𝜆𝑛𝑡𝜆𝑛𝑋𝑛 + 𝑒

𝜆𝑛𝑡
𝑑𝑋𝑛
𝑑𝑡

=
𝑑

𝑑𝑡
(𝑋𝑛𝑒

𝜆𝑛𝑡) 

 

(A.4) 

Therefore, the resultant expression is: 

 
𝑑

𝑑𝑡
(𝑋𝑛𝑒

𝜆𝑛𝑡) = 𝜆𝑛−1

[
 
 
 
 

𝜆1𝜆2…𝜆𝑛−2𝑋1(0)∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑒−(𝜆𝑖−𝜆𝑛)𝑡
𝑛−1

𝑖=1
]
 
 
 
 

 

 

(A.5) 

After the variable 𝑡 is changed for 𝑡1, it is necessary to perform the following integration: 
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∫
𝑑

𝑑𝑡1
(𝑋𝑛𝑒

𝜆𝑛𝑡1)𝑑𝑡1

𝑡

0

= ∫ 𝜆𝑛−1

[
 
 
 
 

𝜆1𝜆2…𝜆𝑛−2𝑋1(0)∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑒−(𝜆𝑖−𝜆𝑛)𝑡1

𝑛−1

𝑖=1
]
 
 
 
 𝑡

0

𝑑𝑡1 

 

(A.6) 

Since that 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑛  is constant with respect to 𝑡1 , it is only necessary to analyze the 

following integrals: 

 
∫ ∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑒−(𝜆𝑖−𝜆𝑛)𝑡1

𝑛−1

𝑖=1

𝑡

0

𝑑𝑡1 = ∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

∫ 𝑒−(𝜆𝑖−𝜆𝑛)𝑡1𝑑𝑡1

𝑡

0

𝑛−1

𝑖=1

 
(A.7) 

 

   

 
∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

∫ 𝑒−(𝜆𝑖−𝜆𝑛)𝑡1𝑑𝑡1

𝑡

0

𝑛−1

𝑖=1

= ∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

1

(𝜆𝑛 − 𝜆𝑖)
[𝑒−(𝜆𝑖−𝜆𝑛)𝑡1]

0

𝑡
 

 
(A.8) 

After carrying out the evaluation: 

 
= ∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

1

(𝜆𝑛 − 𝜆𝑖)
(𝑒−(𝜆𝑖−𝜆𝑛)𝑡 − 1) 

 
(A.9) 

The last term is expressed in the following way: 

 
= ∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

1

(𝜆𝑛 − 𝜆𝑖)
𝑒−(𝜆𝑖−𝜆𝑛)𝑡 −∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

1

(𝜆𝑛 − 𝜆𝑖)
 

 
(A.10) 

If the term 1/(𝜆𝑛 − 𝜆𝑖) is included in the product, the index can be extended until 𝑛 in (A.10): 

 
∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

𝑒−(𝜆𝑖−𝜆𝑛)𝑡 −∑∏
1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

 
(A.11) 

 Finally, we can apply (1.120) in the second term in (A.11), therefore: 

 
−∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

=∏
1

𝜆𝑗 − 𝜆𝑛

𝑛−1

𝑗=1

 
(A.12) 

Therefore (A.9) can be written as: 

 
∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

1

(𝜆𝑛 − 𝜆𝑖)
[𝑒−(𝜆𝑖−𝜆𝑛)𝑡1]

0

𝑡
= ∑∏

𝑒−(𝜆𝑖−𝜆𝑛)𝑡

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

+∏
1

𝜆𝑗 − 𝜆𝑛

𝑛−1

𝑗=1

𝑛−1

𝑖=1

  
(A.13) 

Since the term 𝑛 it is not considered in ∏
1

𝜆𝑗−𝜆𝑛

𝑛−1
𝑗=1 , it is possible to rewrite this term as: 
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∏
1

𝜆𝑗 − 𝜆𝑛

𝑛−1

𝑗=1

=∏
1

𝜆𝑗 − 𝜆𝑛

𝑛

𝑗=1
𝑗≠𝑛

  

If the term (A.13) is replaced in (A.8), it follows that: 

 
∑∏

1

𝜆𝑗 − 𝜆𝑖

𝑛−1

𝑗=1
𝑗≠𝑖

∫ 𝑒−(𝜆𝑖−𝜆𝑛)𝑡1𝑑𝑡1

𝑡

0

𝑛−1

𝑖=1

= ∑∏
𝑒−(𝜆𝑖−𝜆𝑛)𝑡

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

+∏
1

𝜆𝑗 − 𝜆𝑛

𝑛

𝑗=1
𝑗≠𝑛

𝑛−1

𝑖=1

  
(A.14) 

Then, through (A.6) and (A.7): 

 

∫
𝑑

𝑑𝑡1
(𝑋𝑛𝑒

𝜆𝑛𝑡1)𝑑𝑡1

𝑡

0

= 𝜆1𝜆2…𝜆𝑛−2𝜆𝑛−1𝑋1(0)

[
 
 
 
 

∑∏
𝑒−(𝜆𝑖−𝜆𝑛)𝑡

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

+∏
1

𝜆𝑗 − 𝜆𝑛

𝑛

𝑗=1
𝑗≠𝑛

𝑛−1

𝑖=1
]
 
 
 
 

 

 

 
(A.15) 

The integration of the left side is straightforward, considering that 𝑋𝑛(𝑡 = 0) = 0: 

 
∫

𝑑

𝑑𝑡1
(𝑋𝑛𝑒

𝜆𝑛𝑡1)𝑑𝑡1

𝑡

0

= 𝑋𝑛(𝑡)𝑒
𝜆𝑛𝑡 

 

 
(A.16) 

Therefore: 

 

𝑋𝑛(𝑡)𝑒
𝜆𝑛𝑡 = 𝜆1𝜆2…𝜆𝑛−2𝜆𝑛−1𝑋1(0)

[
 
 
 
 

∑∏
𝑒−(𝜆𝑖−𝜆𝑛)𝑡

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

+∏
1

𝜆𝑗 − 𝜆𝑛

𝑛

𝑗=1
𝑗≠𝑛

𝑛−1

𝑖=1
]
 
 
 
 

 

 

 
(A.17) 

   

Multiplying both sides of (A.17) by 𝑒−𝜆𝑛𝑡: 

 

 𝑋𝑛(𝑡) = 𝜆1𝜆2…𝜆𝑛−2𝜆𝑛−1𝑋1(0)

[
 
 
 
 

∑∏
𝑒−(𝜆𝑖−𝜆𝑛)𝑡

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

+∏
1

𝜆𝑗 − 𝜆𝑛

𝑛

𝑗=1
𝑗≠𝑛

𝑛−1

𝑖=1
]
 
 
 
 

𝑒−𝜆𝑛𝑡 

 

 
(A.18) 

Finally, (A.18) can be written as: 

  

𝑋𝑛(𝑡) = 𝜆1𝜆2…𝜆𝑛−2𝜆𝑛−1𝑋1(0)

[
 
 
 
 

∑∏
𝑒−𝜆𝑖𝑡

𝜆𝑗 − 𝜆𝑖

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1
]
 
 
 
 

 

 

 
 
(A.19) 

Comparing (A.19) with (1.24) it is possible to conclude that it was obtained the case 𝑘 = 𝑛, and 

therefore the validity of the equation has been showed. Then, the mathematical induction 

process is complete. 
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A.2 Proof of Properties in section 3.3. 

 

Proposition: 

“In a linear chain, the dashes number in consecutive elements increases. Therefore, if there are two 

consecutive elements in 𝑉2
∗, with a growing dashes number, then these belong to the same linear 

chain; even more, they are ordered.” 

Importance and proof: 

The first property is very important, because it guarantees that vector 𝑉2
∗ can be divided using 

the decrease in the dashes number. Then, the vector can be cut based on this, with the guarantee 

that all the resultant elements belong to a linear chain. 

The proof of the first property can be carried out starting from the definition given in (3.10). It 
will be considered that there are two consecutive elements in 𝑉2

∗ with an increasing dashes 

number, which can be denoted by: 

 𝑃0 −⋯− 𝑗 ⏟        
𝑘−𝑑𝑎𝑠ℎ𝑒𝑠

,              𝑃0 − ⋯− 𝑙⏟      
𝑘−𝑑𝑎𝑠ℎ𝑒𝑠

− ℎ (A.20) 

 

In order to show that these two elements belong to the same linear chain, it is only necessary 

to demonstrate that:   

 𝑃0 −⋯− 𝑗 = 𝑃0 −⋯− 𝑙 (A.21) 
 

Now, under the lexicographical ordering, and using the fact that the elements are consecutive, 

it follows that: 

 𝑃0 −⋯− 𝑗 <  𝑃0 −⋯− 𝑙 − ℎ (A.22) 
 

These last elements can be seen as ordered pairs, in the form: 

  
𝑃0 −⋯− 𝑗 =  (𝑃0 −⋯− 𝑗, empty space) 

 
(A.23) 

   
  

𝑃0 −⋯− 𝑙 − ℎ = < (𝑃0 −⋯− 𝑙,−ℎ) 
   
(A.24) 

 

Since the elements are consecutive and due to the fact that the algorithm produces strings with 

a continuous dashes number, it follows that 𝑃0 −⋯− 𝑗 and 𝑃0 −⋯− 𝑙 have the same number 

of characters. Therefore, the “empty space” has been added to compare the elements of the 

ordered pairs, one to one, considering that the empty space is “minor” (under a lexicographical 

order) that any other character. In other words, adding the empty space does not modify the 

problem. Using the definition given in (3.10), the inequality in (A.22) and the expressions as 

ordered pairs given in (A.23) and (A.24), only one of the following sentences is true: 

i) 𝑃0 −⋯− 𝑗 < 𝑃0 −⋯− 𝑙 
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ii) 𝑃0 −⋯− 𝑗 = 𝑃0 −⋯− 𝑙  ,   empty space < −ℎ 

 

For the proof, it is necessary to show that we can discard the first possibility. It will proceed 

by contradiction. It will be assumed that the first condition is true. Then: 

 𝑃0 −⋯− 𝑗 < 𝑃0 −⋯− 𝑙 
 

   
(A.25) 

Now, it is necessary to observe that the string 𝑃0 −⋯− 𝑙 is the immediate ancestor of 𝑃0 −

⋯− 𝑙 − ℎ, then under a lexicographical ordering this element must be to the left of it. In other 

words: 

 𝑃0 −⋯− 𝑙 < 𝑃0 −⋯− 𝑙 − ℎ 
 

(A.26) 

Nevertheless, because 𝑃0 −⋯− 𝑗  and  𝑃0 −⋯− 𝑙 − ℎ  are consecutive elements under a 

lexicographical ordering, it follows that the only possibility for the position of  𝑃0 −⋯− 𝑙 , the 

immediate ancestor of 𝑃0 −⋯− 𝑙 − ℎ , must be to the left of 𝑃0 −⋯− 𝑗, i.e.: 

      𝑃0 −⋯− 𝑙 < 𝑃0 −⋯− 𝑗 
 

  (A.27) 

But this is a contradiction the supposition in (A.25). Then, the only possibility is that 𝑃0 −⋯−

𝑗 = 𝑃0 −⋯− 𝑙  and  𝑎𝑛 empty space < −ℎ, therefore it has been proved.  

Proposition: 

“If 𝑘 −consecutive elements in 𝑉2
∗  have the same dashes number from the position 𝑗 , then it is 

necessary to duplicate 𝑘 − 1 times the previous “segment” of a linear chain until the position 𝑗 −

1.” 

Importance and proof: 

As mentioned in the Chapter 3, this property allows duplicating chains with several branches. 

If there are 𝑘  consecutive elements with the same dashes number, denoted by 𝑗 , then it is 

necessary to build the linear chains under the following scheme: 

 

{

𝑋0 → 𝑋1 → ⋯ → 𝑋𝑗−1 → 𝑋1
𝑋0 → 𝑋1 → ⋯ → 𝑋𝑗−1 → 𝑋2

…
𝑋0 − 𝑋1 → ⋯ → 𝑋𝑗−1 → 𝑋𝑘 →

    

 
(A.28) 

 

The right arrow in the final chain indicates that this chain can continue, whereas the previous 

chains do not.  

The proof for this property must show two facts: 

i) When there are elements in 𝑉2
∗ with the same dashes number, denoted by 𝑗, it is 

necessary to duplicate the segment of the linear chain, because each of these 

elements is a branch or ramification. 

ii) Only the last element with a repeated dashes number can have more descendants. 
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For the first fact it will be supposed that there are 𝑘 consecutive elements in the vector 𝑉2
∗, with 

a dashes number 𝑗: 

 𝑃0,… , 𝑃0 −⋯− 𝑛 ⏟        ,
𝑗−1,𝑑𝑎𝑠ℎ𝑒𝑠

𝑃0 −⋯−𝑚 − 1 ⏟          ,
𝑗 𝑑𝑎𝑠ℎ𝑒𝑠

𝑃0 −⋯−𝑚 − 2 ⏟          ,
𝑗 𝑑𝑎𝑠ℎ𝑒𝑠

… ,𝑃0 −⋯𝑚− 𝑘 ⏟          ,
𝑗 𝑑𝑎𝑠ℎ𝑒𝑠

… (A.29) 

 

First, it is necessary to show that 𝑃0 −⋯− 𝑛 is a common ancestor for all the 𝑘 items with the 

same dashes number. 

It is a straightforward task, because 𝑃0 −⋯− 𝑛 and 𝑃0 −⋯−𝑚 − 1 are consecutive elements, 

and they have an increasing dashes number. Therefore, by the previous theorem, these 

elements belong to the same linear chain. Therefore, it follows that: 

 𝑃0 −⋯− 𝑛 =   𝑃0 −⋯−𝑚 (A.30) 
 

Then this element is a common ancestor (in fact the immediate ancestor) of the 𝑘 elements. 

This imply that the 𝑘 elements are branches in this point, and therefore in order to build the 

linear chains it is necessary to duplicate the segment: 

     𝑃0,… , 𝑃0 −⋯−𝑚 

Then, the first fact is proved. 

For the second fact it will be assumed that there is at least one element after 𝑃0 −⋯𝑓 − 𝑢 with 

a dashes number given by 𝑗 + 1: 

     𝑃0 −⋯− 𝑓 − 𝑢 

Again, by the previous theorem, this element belongs to the same linear chain that 𝑃0 −⋯−

𝑚 − 𝑘, and thus it can be written as: 

 𝑃0 −⋯− 𝑘 − 𝑢 (A.31) 
 

Finally, since the 𝑘 index that appears before the 𝑢, all the others 𝑘 − 1 items with the same 

dashes number do not belong to the same linear chain. Therefore, only the last with a repeated 

dashes number can have more descendants, that is that was wanted to be proved. 

Proposition: 

“If the dashes number decreases between two consecutive elements, 𝑗 and 𝑗 + 1 in 𝑉2
∗, then the 

element 𝑗 is the final of the current linear chain, and the 𝑗 + 1 item is where the following linear 

chain begins.” 

Importance and proof: 

This sentence allows to divide the vector 𝑉2
∗ based on the decreases in the dashes number. Its 

proof guarantees that the “segment” cut belongs to distinct linear chains. 

The proof is very simple. If it is assumed that under lexicographical ordering, two consecutive 

elements have a decreases dashes number: 
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 𝑃0 −⋯− 𝑖 − 𝑗 ⏟          ,
𝑘 𝑑𝑎𝑠ℎ𝑒𝑠

 𝑃0 −⋯− 𝑙 −𝑚 ⏟          ,
𝑛 𝑑𝑎𝑠ℎ𝑒𝑠

     𝑛 < 𝑘 (A.32) 

 

Such elements can be written as: 

 𝑃0 −⋯− 𝑖 − 𝑗 = (𝑃0 −⋯− 𝑢 ⏟        
𝑛 𝑑𝑎𝑠ℎ𝑒𝑠

, −⋯− 𝑖 − 𝑗 ⏟        
𝑘−𝑛 𝑑𝑎𝑠ℎ𝑒𝑠

) (A.33) 

 

 𝑃0 −⋯− 𝑙 −𝑚 = (𝑃0 −⋯− 𝑙 − 𝑚 ⏟          
𝑛 𝑑𝑎𝑠ℎ𝑒𝑠

,                           ⏟        
𝑘−𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑝𝑎𝑐𝑒𝑠

) (A.34) 

According to (3.10), there are only two cases: 

 i) 𝑃0 −⋯− 𝑢 < 𝑃0 −⋯− 𝑙 −𝑚  

𝑖𝑖) 𝑃0 −⋯− 𝑢 = 𝑃0 −⋯− 𝑙 −𝑚 and  −⋯− 𝑖 − 𝑗 <                           ⏟        
𝑘−𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑝𝑎𝑐𝑒𝑠

 

The last case is always false, because the empty space is less than any other character.  Then the 

only valid case is 𝑃0 −⋯− 𝑢 < 𝑃0 −⋯− 𝑙 −𝑚. This implies that: 

𝑃0 −⋯− 𝑢 < 𝑃0 −⋯− 𝑢 − 1 < 𝑃0 −⋯− 𝑢 − 1 − 1 < ⋯ < 𝑃0 −⋯𝑢 −⋯− 𝑖 − 𝑗

< 𝑃0 −⋯− 𝑙 −𝑚 

All the elements before the string 𝑃0 −⋯− 𝑙 −𝑚 belong to the same linear chain, nevertheless, 

this final element is not part of the linear chain, because of the first theorem, this would imply 

that its dashes number is greater than the dashes number of 𝑃0 −⋯− 𝑖 − 𝑗 . Therefore, this 

element does not belong to the same linear chain, and the proposition is proved. 

A.3 Proof of the Equation (4.130) 

 

It will be proved that: 

𝑌𝑝 = 𝑋1(0)𝑏𝑗,𝑌1
eff 𝜆𝑗

eff∏𝑏𝑌ℎ,𝑌ℎ+1
eff 𝜆𝑌ℎ

eff

𝑝−1

ℎ=1

∏𝑏𝑚,𝑚+1
eff 𝜆𝑚

eff

𝑗−1

𝑚=1

 

(

 
 
∑𝐹 (𝛽𝑖, 𝜆𝑌1

eff, … , 𝜆𝑌𝑝
eff)

𝑛

𝑖=1

∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑗+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖 )

 
 

 

Proof 

It will be used induction over 𝑝. Considering that 

𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) =∑𝑒−𝑎𝑖𝑡  ∏
1

(𝑎𝑗 − 𝑎𝑖)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

The case 𝑝 = 1 was obtained in (4.129), being equal to 
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𝑌1
𝑅 = 𝑋1(0)𝑏𝑗,𝑌1

eff 𝜆𝑗
eff∏𝑏𝑚,𝑚+1

eff 𝜆𝑚
eff

𝑗−1

𝑚=1

 

(

 
 
∑
𝑒−𝛽𝑖

∗𝑡 − 𝑒−𝜆𝑌1
eff 𝑡

𝜆𝑌1
eff − 𝛽𝑖

∗

𝑛

𝑖=1

∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑛−𝑗+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖 )

 
 

 

It is clear that: 

𝑒−𝛽𝑖
∗𝑡 − 𝑒−𝜆𝑌1

eff 𝑡

𝜆𝑌1
eff − 𝛽𝑖

∗
= 𝐹(𝛽𝑖

∗, 𝑌1) 

Therefore, case 𝑝 = 1 confirm equation (4.130). The next step is assuming that equation is valid 

for 𝑝 = 𝑢 , and finally it is necessary that is valid to 𝑝 = 𝑢 + 1.Using the forward method, it 

follows: 

𝑌𝑢+1 = 𝑒
−𝜆𝑌𝑢+1

eff 𝑡𝑏𝑌𝑢,𝑌𝑢+1
eff 𝜆𝑌𝑢

eff∫ 𝑌𝑢(𝑡
′)𝑒𝜆𝑌𝑢+1

eff 𝑡′𝑑𝑡′
𝑡

0

 

Using the induction assumption: 

𝑌𝑢+1 = Λ𝑒
−𝜆𝑌𝑢+1

eff 𝑡∑ ∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑗+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

∫ 𝐹(𝛽𝑖, 𝜆𝑌1
eff, … , 𝜆𝑌𝑢

eff)𝑒𝜆𝑌𝑢+1
eff 𝑡′𝑑𝑡′

𝑡

0

𝑛

𝑖=1

 

With  

Λ = 𝑋1(0)𝑏𝑗,𝑌1
eff 𝜆𝑗

eff∏𝑏𝑌ℎ,𝑌ℎ+1
eff 𝜆𝑌ℎ

eff

𝑢

ℎ=1

∏𝑏𝑚,𝑚+1
eff 𝜆𝑚

eff

𝑗−1

𝑚=1

 

If it is considered that 𝑎1 = 𝛽𝑖
∗, 𝑎2 = 𝜆𝑌1

eff, 𝑎3 = 𝜆𝑌2
eff, … , 𝑎𝑢+1 = 𝜆𝑌𝑢

eff, 𝑎𝑢+2 = 𝜆𝑌𝑢+1
eff , then: 

∫ 𝐹(𝛽𝑖, 𝜆𝑌1
eff, … , 𝜆𝑌𝑢

eff)𝑒
𝜆𝑌𝑘+1
eff 𝑡′

𝑑𝑡′
𝑡

0

= ∫ 𝐹(𝑎1, 𝑎2, … , 𝑎𝑢+1)𝑒
−𝑎𝑢+2𝑡′𝑑𝑡′

𝑡

0

 

= ∑∏
1

(𝑎𝑗 − 𝑎𝑖)

𝑢+1

𝑗=1
𝑗≠𝑖

∫ 𝑒−(𝑎𝑖−𝑎𝑢+2)𝑡′𝑑𝑡′
𝑡

0

 

𝑢+1

𝑖=1

= ∑∏
1

(𝑎𝑗 − 𝑎𝑖)

𝑢+1

𝑗=1
𝑗≠𝑖

𝑒−(𝑎𝑖−𝑎𝑢+2)𝑡 − 1

(𝑎𝑢+2 − 𝑎𝑖)
  

𝑢+1

𝑖=1

 

= ∑∏
𝑒−(𝑎𝑖−𝑎𝑢+2)𝑡 − 1

(𝑎𝑗 − 𝑎𝑖)

𝑢+2

𝑗=1
𝑗≠𝑖

 

𝑢+1

𝑖=1

= ∑∏
𝑒−(𝑎𝑖−𝑎𝑢+2)𝑡

(𝑎𝑗 − 𝑎𝑖)

𝑢+2

𝑗=1
𝑗≠𝑖

 

𝑢+1

𝑖=1

−∑∏
1

(𝑎𝑗 − 𝑎𝑖)

𝑢+2

𝑗=1
𝑗≠𝑖

 

𝑢+1

𝑖=1

 

Using (1.120) we will have: 



248 
 

∫ 𝐹(𝛽𝑖, 𝜆𝑌1
eff, … , 𝜆𝑌𝑢

eff)𝑒𝜆𝑌𝑢+1
eff 𝑡′𝑑𝑡′

𝑡

0

= ∑∏
𝑒−(𝑎𝑖−𝑎𝑢+2)𝑡

(𝑎𝑗 − 𝑎𝑖)

𝑢+2

𝑗=1
𝑗≠𝑖

 

𝑢+1

𝑖=1

+ ∏
1

𝑎𝑗 − 𝑎𝑢+2

𝑢+2

𝑗=1
𝑗≠𝑢+2

 

= ∑∏
𝑒−(𝑎𝑖−𝑎𝑢+2)𝑡

(𝑎𝑗 − 𝑎𝑖)

𝑢+2

𝑗=1
𝑗≠𝑖

 

𝑢+2

𝑖=1

 

Therefore 

𝑌𝑢+1 = Λ∑ ∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑘+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑒−𝜆𝑌𝑢+1
eff 𝑡∑∏

𝑒−(𝑎𝑖−𝑎𝑢+2)𝑡

(𝑎𝑗 − 𝑎𝑖)

𝑢+2

𝑗=1
𝑗≠𝑖

 

𝑢+2

𝑖=1

𝑛

𝑖=1

 

= Λ∑𝐹(𝑎1, 𝑎2, … , 𝑎𝑘+2) ∏ (𝜆𝑙
eff − 𝛽𝑖

∗)

𝑛

𝑙=𝑗+1

∏
1

(𝛽𝑗
∗ − 𝛽𝑖

∗)

𝑛

𝑗=1
𝑗≠𝑖

𝑛

𝑖=1

 

Which it was searched to proof.  

A.4 Proof of the Equation (5.43) 

 

Equation (1.24) is equivalent to the following expression: 

 
𝑁𝑛(𝑡) =

𝑁1(0)

𝑏𝑛
 ∑ 𝑏𝑖

𝑛−1

𝑖=1

𝑒−𝑑𝑖𝑡 − 𝑒−𝑑𝑛𝑡

𝑑𝑛 − 𝑑𝑖
 ∏

𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛−1

𝑗=1,𝑗≠𝑖

 
(A.35) 

 

The equation (1.24) will be written as follows: 

 
𝑁1(0)

𝑏𝑛
[∑𝑏𝑖

𝑛−1

𝑖

𝑒−𝑑𝑖𝑡 ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

+ 𝑏𝑛𝑒
−𝑑𝑛𝑡 ∏

𝑏𝑗

𝑑𝑗 − 𝑑𝑛

𝑛

𝑗=1,𝑗≠𝑛

] 

(A.36) 

 

Adding and subtracting the following terms (they had been highlighted in red): 

 
=
𝑁1(0)

𝑏𝑛
∑𝑏𝑖

𝑛−1

𝑖

𝑒−𝑑𝑖𝑡 ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

+
𝑁1(0)

𝑏𝑛
𝑏𝑛𝑒

−𝑑𝑛𝑡 ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑛

𝑛

𝑗=1,𝑗≠𝑛

+ 
𝑁1(0)

𝑏𝑛
∑𝑏𝑖

𝑛−1

𝑖

𝑒−𝑑𝑛𝑡 ( ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

)

−
𝑁1(0)

𝑏𝑛
∑𝑏𝑖

𝑛−1

𝑖

𝑒−𝑑𝑛𝑡 ( ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

) 

 

(A.37) 
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If the first and the fourth term are grouped (they had been highlighted in blue), it follows: 

 
=
𝑁1(0)

𝑏𝑛
∑𝑏𝑖

𝑛−1

𝑖

(𝑒−𝑑𝑖𝑡 − 𝑒𝑑𝑛𝑡) ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

+
𝑁1(0)

𝑏𝑛
𝑏𝑛𝑒

−𝑑𝑛𝑡 ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑛

𝑛

𝑗=1,𝑗≠𝑛

+
𝑁1(0)

𝑏𝑛
 ∑ 𝑏𝑖

𝑛−1

𝑖

𝑒−𝑑𝑛𝑡 ( ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

) 

 

(A.38) 

The first term is the expression (A.35), then it is only necessary to show that the sum of the 

second and third term is equal to zero. In other words: 

 

=
𝑁1(0)

𝑏𝑛
[𝑏𝑛𝑒

−𝑑𝑛𝑡 ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑛

𝑛

𝑗=1,𝑗≠𝑛

+ ∑ 𝑏𝑖

𝑛−1

𝑖

𝑒−𝑑𝑛𝑡 ( ∏
𝑏𝑗

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

)] = 0 

 

 

It is possible to observe that the following product appears in both terms: 

𝑏1𝑏2𝑏3…𝑏𝑛 

Additionally, the exponential is common. Then, the equation is simplified as: 

 

=∏𝑏𝑖

𝑛

𝑗

𝑒−𝑑𝑛𝑡  ( ∏
1

𝑑𝑗 − 𝑑𝑛

𝑛

𝑗=1,𝑗≠𝑛

+∑ ∏
1

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

𝑛−1

𝑖

) = 0 

 

(A.39) 

The problem finally is reduced to show that: 

∏
1

𝑑𝑗 − 𝑑𝑛

𝑛

𝑗=1,𝑗≠𝑛

+∑ ∏
1

𝑑𝑗 − 𝑑𝑖

𝑛

𝑗=1,𝑗≠𝑖

𝑛−1

𝑖

= 0 

Which was showed in (1.120). Therefore, the proof is complete. 
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Appendix B. 
 

Appendix B. 1 Table I. Linear chains for the U-235 case. The “F.P.” is the link for the linear 

chains of fission products. 

 

0 U-235 U-236 U-237 Np-237 Np-238 Pu-238 

1 U-235 U-236 U-237 Np-237 Np-238 Np-239 

2 U-235 U-236 U-237 Np-237 Np-238 FP 

3 U-235 U-236 U-237 Np-237 Np-236 U-236 

4 U-235 U-236 U-237 Np-237 Np-236 Pu-236 

5 U-235 U-236 U-237 Np-237 Np-236 Pa-232 

6 U-235 U-236 U-237 Np-237 Np-236 Np-237 

7 U-235 U-236 U-237 Np-237 FP 
 

8 U-235 U-236 U-237 U-238 U-239 Np-239 

9 U-235 U-236 U-237 U-238 U-239 U-240 

10 U-235 U-236 U-237 U-238 U-237 Np-237 

11 U-235 U-236 U-237 U-238 U-237 U-238 

12 U-235 U-236 U-237 U-238 U-237 FP 

13 U-235 U-236 U-237 U-238 FP 
 

14 U-235 U-236 U-237 FP 
  

15 U-235 U-236 U-235 U-236 U-237 Np-237 

16 U-235 U-236 U-235 U-236 U-237 U-238 

17 U-235 U-236 U-235 U-236 U-237 PF 

18 U-235 U-236 U-235 U-236 U-235 U-236 

19 U-235 U-236 U-235 U-236 U-235 U-234 

20 U-235 U-236 U-235 U-236 U-235 FP 
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Appendix B. 2. Table II. Isotopes and reactions considered for the U-235 and U-238 

comparative cases 

 

 

 

 

 
U-235, 𝛼 , (𝑛, 𝛾) , (𝑛, 2𝑛), 𝑓 
U-238,  𝛼 , (𝑛, 𝛾) , (𝑛, 2𝑛), 𝑓 

 
N Isotope Reactions N Isotope Reactions N Isotope Reactions 
1 Th-231 𝛽− 2 Pa-231 𝛼 , (𝑛, 𝛾) , 𝑓 3 Rn-220 𝛼 
4 Ac-227 𝛼, 𝛽− 5 Th-227 𝛼, 𝑓 6 Bi-213 𝛼,𝛽− 
7 Pa-232 𝐶𝐸,𝛽−,(𝑛, 𝛾) 8 Th-232 𝛼 ,(𝑛, 𝛾) ,𝑓 9 Po-214 𝛼 
10 U-232 𝛼 , (𝑛, 𝛾), 𝑓 11 Pa-233 𝛽−, (𝑛, 𝛾) 12 Pu-241 𝛼 ,(𝑛, 𝛾) ,(𝑛, 2𝑛),𝑓 
13 U-236 𝛼 ,(𝑛, 𝛾) ,(𝑛, 2𝑛), 𝑓 14 Th-233 𝛽−, (𝑛, 𝛾) 15 Tl-210 𝛽− 
16 Th-234 𝛽− 17 U-237 𝛽−, (𝑛, 𝛾) , 𝑓 18 Bi-211 𝛼,𝛽− 
19 Np-237 𝛼 , (𝑛, 𝛾) , (𝑛, 2𝑛), 𝑓 20 Np-238 𝛽− ,(𝑛, 𝛾) , 𝑓 21 Pb-212 𝛽− 
22 Np-236 𝐸𝐶, 𝛽−, 𝛼 , (𝑛, 𝛾) 23 U-238 𝛼 , (𝑛, 𝛾) , (𝑛, 2𝑛), 

𝑓 
24 Pu-242 𝛼 ,(𝑛, 𝛾) ,(𝑛, 2𝑛),𝑓 

25 U-239 𝛽−, (𝑛, 𝛾) 26 U-234 𝛼 , (𝑛, 𝛾) , (𝑛, 2𝑛) 𝑓 27 Am-240 𝛼,𝐸𝐶 
28 Th-230 𝛼 , (𝑛, 𝛾) 29 U-233 𝛼 , (𝑛, 𝛾) , 𝑓 30 Bi-210 𝛼,𝛽− 
31 Th-229 𝛼, 𝑓 32 Ra-225 𝛽− 33 Hg-206 𝛽− 
34 Ra-228 𝛽− 35 Ac-228 𝛽− 36 Po-211 𝛼 
37 Ra-226 𝛼 38 Rn-222 𝛼 39 Tl-207 𝛽− 
40 Fr-223 𝛼, 𝛽−, 41 Ra-223 𝛼 42 Bi-209 𝛼 
43 At-219 𝛼, 𝛽−, 44 Th-228 𝛼 45 Pb-207 STABLE 
46 Pa-234 𝛽−,(𝑛, 𝛾) 47 Pu-238 𝛼 ,(𝑛, 𝛾) ,(𝑛, 2𝑛),𝑓 48 Po-212 𝛼 
49 Np-239 𝛽−,(𝑛, 𝛾) 50 Pu-239 𝛼 ,(𝑛, 𝛾) ,(𝑛, 2𝑛),𝑓 51 Tl-210 𝛽− 
52 U-240 𝛽− 53 Pu-236 𝛼 ,(𝑛, 𝛾) 54 Cm-243 𝛼,𝐸𝐶,(𝑛, 𝛾) ,𝑓 
55 Ac-225 𝛼 56 Po-218 𝛼,𝛽− 57 Pb-208 STABLE 
58 Rn-219 𝛼 59 Bi-215 𝛽− 60 Cm-244 𝛼,(𝑛, 𝛾), 𝑓 
61 Pa-235 𝛽−, (𝑛, 𝛾) 62 Pu-237 𝐸𝐶, 𝛼 , (𝑛, 𝛾) 63 Cm-246 𝛼,𝑓 
64 Np-240 𝛽− 65 Ra-226 𝛼 66 Cm-245 𝛼,(𝑛, 𝛾) ,𝑓 
67 Pb-214 𝛽− 68 At-218 𝛼,𝛽− 69 Pb-208 STABLE 
70 Ra-224 𝛼 71 Fr-221 𝛼 72 At-217 𝛼,𝛽− 
73 Rn-219 𝛼 74 Bi-215 𝛽− 75 Pb-211 𝛽− 
76 Pa-235 𝛽−, (𝑛, 𝛾) 77 Pu-237 𝐸𝐶, 𝛼 , (𝑛, 𝛾) 78 Po-216 𝛼 
79 Np-240 𝛽− 80 Ra-226 𝛼 81 Rn-217 𝛼 
82 Pb-214 𝛽− 83 At-218 𝛼 ,𝛽− 84 Am-241 𝛼, (𝑛, 𝛾) ,(𝑛, 2𝑛), 𝑓 
85 Ra-224 𝛼 86 Fr-221 𝛼 87 Pb-210 𝛼,𝛽− 
88 Pa-236 𝛽− 89 Pu-240 𝛼 ,(𝑛, 𝛾) ,(𝑛, 2𝑛),𝑓 90 Po-213 𝛼 
91 Ra-223 𝛼 92 Bi-214 𝛼,𝛽− 93 Tl-209 𝛽− 
94 Rn-218 𝛼 95 Po-215 𝛼 96 Am-242 𝐸𝐶,𝛽−,(𝑛, 𝛾) 
97 Bi-212 𝛼,𝛽− 98 Pb-209 𝛽− 99 Pu-243 𝛽− 
100 Am-243 𝛼,(𝑛, 2𝑛),𝑓 101 Cm-242 𝛼,(𝑛, 𝛾) ,𝑓 102 Po-210 𝛼 
103 Tl-206 𝛽− 104 Tl-208 𝛽− 105 Pb-206 STABLE 
106 Tl-205 STABLE 107 Cm-245 𝛼,(𝑛, 𝛾) ,𝑓 108 Pb-208 STABLE 
109 Cm-246 𝛼,𝑓       
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Appendix B. 3. Table III. List of all the isotopes and their reactions that appear in the network 

related with Se-87 

 

 

     

Appendix B. 4. Table IV. List of all isotopes and their reaction that appear in the network related 

with Sb-135 

  

Se-87, 𝛽− 

N Isotope Reactions N Isotope Reactions N Isotope Reactions 
1 Br-087 

 
𝛽− 29 Kr-087 

 
𝛽− 16 

Rb-087 
𝛽−,(𝑛, 𝛾) 

3 Sr-087 (𝑛, 𝛾) 31 Sr-088 (𝑛, 𝛾) 18 Sr-089 𝛽−,(𝑛, 𝛾) 
5 Y-089 (𝑛, 𝛾) 33 Y-090 𝛽−,(𝑛, 𝛾) 20 Zr-090 (𝑛, 𝛾) 
7 Zr-091 (𝑛, 𝛾) 35 Zr-092 (𝑛, 𝛾) 22 Zr-093 𝛽−, (𝑛, 𝛾) 
9 Nb-093 (𝑛, 𝛾)  37 Zr-095 𝛽−, (𝑛, 𝛾) 24 Nb-095 𝛽−, (𝑛, 𝛾) 
11 Mo-095 (𝑛, 𝛾)  39 Mo-096 (𝑛, 𝛾)  26 Mo-097 (𝑛, 𝛾) 
13 

Mo-098 
(𝑛, 𝛾)  41 

Mo-099 
(𝑛, 𝛾), (𝑛, 2𝑛) 28 Tc-099 

 
(𝑛, 𝛾), (𝑛, 2𝑛) 

15 Ru-099 
 

STABLE 2 
Tc-100 

𝐶𝐸, 𝛽− 30 
Mo-100 

(𝑛, 𝛾) 

17 Mo-101  𝛽− 4 Zr-094 (𝑛, 𝛾) 32 Tc-098 𝛽− 
19 Nb-096 𝛽−,(𝑛, 𝛾) 6 Nb-097  𝛽− 34 Zr-096 (𝑛, 𝛾) 
21 Zr-097  𝛽− 8 Y-091 𝛽−, (𝑛, 𝛾) 36 Y-092 𝛽− 
23 Sr-090 𝛽−,(𝑛, 𝛾) 10 Sr-091 𝛽− 38 Rb-088 (𝑛, 𝛾) 
25 Ru-100 (𝑛, 𝛾) 12 Ru-101 𝛽−, (𝑛, 𝛾)  40 Ru-098 STABLE 
27 Tc-101  𝛽−       

Sb-135, 𝛽− 

N Isotope Reactions N Isotope Reactions N Isotope Reactions 
1 

Te-135 
𝛽− 29 

Pr-142 
(𝑛, 𝛾)  16 

Sm-147 
𝛼 , (𝑛, 𝛾) , 
(𝑛, 2𝑛) 

3 I-135  𝛽− 31 Pr-143 𝛽−,(𝑛, 𝛾) 18 Sm-148 𝛼 , (𝑛, 𝛾)  
5 Xe-135 𝛽−,(𝑛, 𝛾) 33 Nd-143 (𝑛, 𝛾) (𝑛, 2𝑛) 20 Sm-146 𝛼  
7 Cs-135 𝛽−,(𝑛, 𝛾) 35 Nd-144 𝛼, (𝑛, 𝛾) 22 Pm-148 𝛽−, (𝑛, 𝛾) 
9 Ba-135 (𝑛, 𝛾)  37 Pr-144  𝛽− 24 Pm-149 𝛽−, (𝑛, 𝛾) 
11 Ba-136 (𝑛, 𝛾)  39 Ce-142 (𝑛, 𝛾)  26 Nd-148 (𝑛, 𝛾) 
13 Ba-137 (𝑛, 𝛾)  41 Nd-149 𝛽− 28 Nd-142 (𝑛, 𝛾) 
15 Ba-138 (𝑛, 𝛾)  2 Ce-143 𝛽−,(𝑛, 𝛾) 30 Pr-145 𝛽− 
17 Ba-139  𝛽− 4 Ce-144 𝛽−,(𝑛, 𝛾) 32 Cs-136 𝛽−, (𝑛, 𝛾) 
19 La-139 (𝑛, 𝛾)  6 Ce-145  𝛽− 34 Cs-137 𝛽−, (𝑛, 𝛾) 
21 La-140  𝛽− 8 Nd-145 (𝑛, 𝛾),(𝑛, 2𝑛) 36 Cs-138 𝛽− 
23 Ce-140 (𝑛, 𝛾)  10 Nd-146 (𝑛, 𝛾) 38 Xe-136 (𝑛, 𝛾) 
25 Ce-141 𝛽−,(𝑛, 𝛾) 12 Nd-147 𝛽−, (𝑛, 𝛾)  40 Xe-137 𝛽− 
27 Pr-141 (𝑛, 𝛾)  14 Pm-147 𝛽− ,(𝑛, 𝛾)     
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