

# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

# POSGRADO EN CIENCIAS DE LA TIERRA

# CENTRO DE GEOCIENCIAS

PROCEDENCIA DETRÍTICA DE LA FORMACIÓN CHIVILLAS, CRETÁCICO TEMPRANO, SUR DE MÉXICO: CONTRIBUCIÓN DE LA GEOQUÍMICA Y TERMOCRONOLOGÍA EN APATITOS Y GEOCRONOLOGÍA EN CIRCONES

# TESIS

QUE PARA OPTAR AL GRADO DE:

# MAESTRO EN CIENCIAS DE LA TIERRA

PRESENTA

RICARDO ENRIQUE MILIÁN DE LA CRUZ

TUTOR **DR. LUIGI SOLARI** CENTRO DE GEOCIENCIAS, UNAM

# MIEMBROS DEL COMITÉ SINODAL

DR. LUCA FERRARI, CENTRO DE GEOCIENCIAS, UNAM DR. JOSÉ RAFAEL BARBOZA, UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ DR. THIERRY CALMUS, INSTITUTO DE GEOLOGÍA, ERNO, UNAM DRA. MÉLANIE NOURY, INSTITUTO DE GEOLOGÍA, ERNO, UNAM

QUERÉTARO, MÉXICO, NOVIEMBRE DE 2019



Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

#### DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

## DECLARATORIA DE ÉTICA ACADÉMICA

"Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales".

Ricardo Enrique Miliján de la Cruz

#### AGRADECIMIENTOS

Un agradecimiento muy especial a México y a la Universidad Nacional Autónoma de México por abrir sus puertas a estudiantes extranjeros y brindar la oportunidad de formarnos en un posgrado de alta calidad.

Al Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica de la Universidad Nacional Autónoma de México, en especial al proyecto PAPIIT-DGAPA IN103417 -*Sedimentary provenance reloaded*: técnicas micro-analíticas aplicadas a la procedencia de sedimentos siliciclásticos mesozoicos en el Sur de México- por el financiamiento económico para la realización de este proyecto de investigación.

Al Concejo Nacional de Ciencia y Tecnología (CONACYT) por los recursos económicos que recibí durante mis estudios de maestría.

A mi asesor Dr. Luigi Solari por la confianza, el apoyo, consejos durante cada una de las etapas de este proyecto y sobre todo por su amistad.

Agradezco a Uwe Martens, por creer en mí incluso antes de empezar este proyecto y porque sin el esto no hubiese ocurrido.

A los miembros de mi comité tutor: Dr. Fanis Abdullin por el apoyo decisivo en la realización de este trabajo y al Dr. Uwe Martens por su apoyo y disposición constante a lo largo de este proceso.

A María Isabel Sierra Rojas y Rodrigo León por su amistad, apoyo y motivación en todo momento.

Agradezco a Ana Suárez por su amistad y por el apoyo incondicional en todo momento.

A mis muy buenos amigos Anita, Leidy, Carlos y David por hacerme sentir en casa.

A mis amigos y compañeros del Centro de Geociencias, por tantos momentos agradables. Especialmente a Pepe, Mariana, Gio, Andrea, Gustavo, Brighith, Janet, Lluvia, Paulina, Paola, Ángeles, Alexis y Carlos.

Al Dr. Carlos Ortega Obregón, por su amistad y ayuda en la realización de los fechamientos isotópicos en el Laboratorio de Estudios Isotópicos. A Juan Tomás Vázquez y Manuel Albarrán por la ayuda en la elaboración de láminas delgadas y preparación de muestras para datación. A la Dra. Marina Vega por su ayuda durante los análisis EDS de los minerales densos en el Laboratorio de fluidos corticales.

Un agradecimiento especial al personal administrativo del Posgrado en Ciencias de la Tierra y del Centro de Geociencias.

A mi familia y amigos en Guatemala, también es gracias a ustedes.

| Tabla de contenido                                                     | Pág. |
|------------------------------------------------------------------------|------|
| RESUMEN                                                                | 7    |
| ABSTRACT                                                               | 8    |
| 1. GENERALIDADES                                                       | 9    |
| 1.1 Introducción                                                       | 9    |
| 1.2 Planteamiento del problema                                         | 10   |
| 1.3 Objetivos                                                          | 10   |
| 1.3.1 General                                                          | 10   |
| 1.3.2 Específicos                                                      | 11   |
| 1.4 Hipótesis                                                          | 11   |
| 1.5 Localización del área de estudio                                   | 11   |
| 1.6 Uso del apatito como trazador en análisis de procedencia detrítica | 12   |
| 1.6.1 Química de apatitos: elementos traza y tierras raras (REE)       | 13   |
| 1.6.2 Edades isotópicas en apatito: Sistema U-Pb                       | 15   |
| 1.6.3 Termocronología de baja temperatura en apatito: Trazas de fisión | 17   |
| 2. MARCO GEOLÓGICO                                                     | 20   |
| 2.1 Contexto geodinámico                                               | 20   |
| 2.2 Contexto geológico                                                 | 21   |
| 2.2.1 Terrenos tectonoestratigráficos del sur de México                | 22   |
| 2.2.2 Arco continental del este de México                              | 24   |
| 2.2.3 Formación Chivillas                                              | 24   |
| 2.2.4 Sistema de Falla Oaxaca y el Valle de Tehuacán                   | 27   |
| 2.2.5 Orogenia Laramide                                                | 28   |
| 3. METODOLOGÍA                                                         | 30   |
| 3.1 Recolección de muestras                                            | 30   |
| 3.2 Petrografía                                                        | 30   |
| 3.3 Técnicas microanalíticas                                           | 31   |
| 3.3.1 Geocronología U-Pb en circón                                     | 32   |
| 3.3.2 Geocronología U-Pb y geoquímica en apatito                       | 33   |
| 3.3.3 Trazas de fisión en apatitos                                     | 34   |

| 3.3.4 Minerales densos                                                                                             | 36       |
|--------------------------------------------------------------------------------------------------------------------|----------|
| 4. RESULTADOS                                                                                                      | 37       |
| 4.1 Petrografía                                                                                                    | 37       |
| 4.2 Geocronología U-Pb en circón detrítico                                                                         | 40       |
| 4.3 Geocronología U-Pb en apatito detrítico                                                                        | 42       |
| 4.4 Geoquímica de apatitos detríticos                                                                              | 44       |
| 4.5 Trazas de fisión en apatitos (TFA)                                                                             | 47       |
| 4.6 Minerales densos (MD)                                                                                          | 48       |
| 5. DISCUSIÓN                                                                                                       | 51       |
| 5.1 Petrografía, minerales densos y procedencia                                                                    | 51       |
| 5.2 Geocronología U-Pb en circón detrítico                                                                         | 52       |
| 5.3 Geocronología y geoquímica de apatitos                                                                         | 57       |
| 5.3.1 U-Pb en apatito detrítico                                                                                    | 57       |
| 5.3.2 Geoquímica en apatitos                                                                                       | 60       |
| 5.4 Trazas de fisión en apatitos                                                                                   | 64       |
| 5.5 Procedencia detrítica de la Formación Chivillas                                                                | 67       |
| 5.5.1 Implicaciones paleogeográficas y tectónicas de la Formación Chivillas                                        | 68       |
| 6. CONCLUSIONES                                                                                                    | 71       |
| REFERENCIAS                                                                                                        | 73       |
| Anexo 1. Descripción petrográfica de muestras 8                                                                    | 87       |
| Anexo 2. Análisis U-Pb en circones mediante LA-ICPMS.                                                              | 05       |
| Anexo 3. Imágenes de catodoluminiscencia de circones12                                                             | 18       |
| Anexo 4. Análisis U-Pb en apatitos mediante LA-ICPMS                                                               | 22       |
| Anexo 5. Análisis geoquímico de apatitos mediante LA-ICPMS 13                                                      | 30       |
| Anexo 6. Datos de las trazas de fisión de granos individuales de apatito 13                                        | 37       |
| Anexo 7. Mediciones de las longitudes de trazas de fisión en apatito 14                                            | 42       |
| Anexo 8. Datos de las muestras para el análisis de escalamiento multidimensional 14                                | 46       |
| Anexo 9. Descripción de las muestras que se utilizaron para el análisis geoquímico o componentes principales (PCA) | de<br>48 |

# Lista de Figuras

# Pág.

| <b>1.</b> Mapa generalizado de México con las principales estructuras tectónicas, faja volcánica Transmexicana, los terrenos tectonoestratigráficos del sur y la localización de las cuencas sedimentarias desarrolladas durante el Cretácico Inferior en el sur de |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| México                                                                                                                                                                                                                                                              |
| 2. Ejemplo de fechamientos isotópicos U-Pb en apatitos                                                                                                                                                                                                              |
| <b>3.</b> Mapa generalizado del sur de México, de la localización de la Formación Chivillas y de las muestras analizadas en este estudio                                                                                                                            |
| <ul> <li>4. Columna esquemática generalizada de las unidades que afloran en los terrenos<br/>Mixteco, Zapoteco y Cuicateco</li></ul>                                                                                                                                |
| <b>5.</b> Columna estratigráfica del Valle de Tehuacán con los diferentes pulsos asociados al desarrollo del Sistema Norte de la Falla Oaxaca                                                                                                                       |
| 6. Microfotografías de las láminas delgadas de las rocas de la Formación Chivillas 39                                                                                                                                                                               |
| <ul> <li>7. Diagramas de concordia Tera-Wasserburg y KDE de los circones detríticos de la Formación Chivillas</li></ul>                                                                                                                                             |
| 8. Diagramas de concordia TW de los apatitos de la Formación Chivillas                                                                                                                                                                                              |
| 9. Diagramas de comportamiento químico de los apatitos de la Formación Chivillas 46                                                                                                                                                                                 |
| <b>10.</b> Diagramas radial de edades de TFA, de densidades de TFA contra <sup>238</sup> U (ppm) y edad de grano por TFA contra contenido de Cloro (wt.%)                                                                                                           |
| <b>11.</b> Microfotografías en luz polarizada plana de los minerales densos (HM) identificados en las muestras de la Formación Chivillas                                                                                                                            |
| <b>12.</b> Curvas de estimación de densidad de Kernel de las edades detríticas de los circones de la Formación Chivillas                                                                                                                                            |
| <b>13.</b> Diagrama MDS de las muestras de la Formación Chivillas y 69 muestras sedimentarias y metasedimentarias del centro y sur de México                                                                                                                        |
| <b>14.</b> Localización aproximada de las unidades utilizadas para el análisis de escalamiento multidimensional (MDS)                                                                                                                                               |
| <b>15.</b> Diagramas de comparación entre las edades de cristalización de los cuerpos ígneos emplazados en los Complejos Oaxaqueño y Acatlán y las isócronas de edad paleozoica obtenidas en los apatitos de la Formación Chivillas                                 |
| <b>16.</b> Diagrama de componentes principales (PCA) de los apatitos de la Formación Chivillas y campos que representan al Complejo Oaxaqueño, al arco magmático del Paleozoico y a la Formación Matzitzi                                                           |

| <b>17.</b> Modelos termales t-T basados en longitudes y edades de trazas de fisión de las muestras V-1 y RN-3 de la Formación Chivillas                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>18.</b> Esquema paleogeográfico del Cretácico Inferior durante el relleno de la cuenca Cuicateca                                                          |
| <b>19.</b> Secciones esquemáticas que representan los eventos tectónicos experimentados en la cuenca Cuicateca entre el Cretácico Superior y el Eoceno medio |

#### Listado de Tablas

## Pág.

| 1. Sustituciones complejas de elementos en la estructura cristalina del apatito                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|
| 2. Localización de las muestras colectadas de la Formación Chivillas                                                               |
| 3. Técnicas microanalíticas aplicadas a las muestras de la Formación Chivillas                                                     |
| <b>4.</b> Clasificación de areniscas con base en el contenido de Qt-F-L según las clasificaciones de Garzanti (2016) y Folk (1980) |
| 5. Cotejo entre los componentes químicos de las poblaciones de edades U-Pb en apatitos                                             |
| 6. Minerales densos identificados en las muestras de la Formación Chivillas                                                        |
| <ol> <li>Vecinas más próximas y más similares a las muestras de la Formación Chivillas en el<br/>MDS.</li> </ol>                   |
| 8. Isócronas de edad U-Pb en apatito de las muestras de la Formación Chivillas 58                                                  |
| 9. Prueba de Chi-cuadrado y edades de trazas de fisión en apatitos                                                                 |

#### RESUMEN

La Cuenca Cuicateca es una cuenca desarrollada en el sureste de la parte continental de México durante el Jurásico Medio y Cretácico Inferior. El relleno sedimentario de la cuenca está representado por la Formación Chivillas, la cual está constituida por turbiditas siliciclásticas, depósitos volcanoclásticos y rocas volcánicas. La edad máxima de depósito se ha restringido al Cretácico Inferior, con base en el registro paleontológico y la geocronología de circones detríticos. Con el objetivo de elucidar las fuentes de procedencia sedimentaria de la Formación Chivillas, se desarrolló un estudio multidisciplinario integrando la petrografía convencional con la geocronología U-Pb de circones y apatitos detríticos, la geoquímica en granos de apatito y el análisis de trazas de fisión.

A través de los nuevos fechamientos isotópicos en circones y apatitos se identificaron tres principales poblaciones de edades, siendo estas: Meso-Neoproterozoico, Carbonífero-Pérmico y Cretácico temprano. Dichas edades han sido reportadas en el sur de México en rocas asociadas a la orogenia *Grenville* y a arcos magmáticos desarrollados durante el Paleozoico tardío y el Cretácico temprano. La concentración de elementos traza en los apatitos del Meso-Neoproterozoico revela una relación casi proporcional entre la anomalía de Eu y el contenido de Sr, mientras que en los granos del Carbonífero-Pérmico la relación entre la anomalía de Eu y el contenido total de Tierras Raras en el grupo Meso-Neoproterozoico oscila entre ~0.1 y 3.5% en peso mientras que en el grupo del Carbonífero-Pérmico oscila entre ~0.02 y 1.5%. Éste comportamiento químico es similar al de los análisis *in situ* de apatitos metamórficos de alto grado y de rocas ígneas de composición félsica a intermedia-máfica reportados en la literatura.

Al integrar la geocronología U-Pb y la geoquímica de apatitos y considerar que las propiedades mecánicas de esta fase mineral limitan la procedencia a fuentes relativamente cercanas, se demostró que las fuentes de procedencia detrítica principales de la Formación Chivillas corresponden a las rocas metamórficas de alto grado del Complejo Oaxaqueño y a rocas ígneas de composición félsica a intermediamáfica que representan los arcos magmáticos del Carbonífero-Pérmico y Cretácico temprano en el occidente de Pangea y a lo largo del margen Pacífico de México. Esto sugiere además, que el bloque Acatlán-Oaxaca actuó como un alto de basamento y que los apatitos detríticos registran su exposición y denudación durante el Cretácico Inferior. Adicionalmente, el análisis de trazas de fisión en apatito y el modelado termal indican que la Formación Chivillas fue exhumada rápidamente (~330 – 320 m/m.a.) a partir del Eoceno medio y que dicho proceso duró ~ 9 m.a. Estas edades restringen el evento contráctil de la orogenia Laramide hasta antes de este tiempo y probablemente están asociadas con las primeras etapas de actividad extensional del Sistema Norte de la Falla Oaxaca durante el Cenozoico.

#### ABSTRACT

The Cuicateco basin is an extensional basin developed in the southeastern of mainland continental Mexico during Middle Jurassic and Early Cretaceous time. The Cuicateco basin deposition is represented by the Chivillas Formation, made up of siliciclastic turbidites, volcanoclastic deposits, and volcanic rocks. Both paleontological record and detrital zircon geochronology constrain the maximum age of deposition to the Early Cretaceous. To elucidate the sedimentary source provenance of the Chivillas Formation, a multi-technique study was applied. In this work, the conventional petrography analyses were integrated with U-Pb geochronology of detrital zircon and apatite grains, multiple trace-element geochemical analysis of detrital apatite, and apatite fission track.

The new detrital zircon and apatite U-Pb geochronology data of the Chivillas Formation identifies three main source areas: Meso-Neoproterozoic, Carboniferous-Permian, and a third Early Cretaceous source. These ages have been reported in southern Mexico in rocks associated with the Grenville orogeny and, in magmatic arcs of Late Paleozoic and Early Cretaceous time.

The geochemical relationship in the detrital apatite reveals that the Grenvillian grains have a Sr content directly related to the negative Eu anomaly, while the Carboniferous-Permian apatites have a Y content related to the Eu anomaly. Additionally, the REE-content pattern in the Grenvillian grains is higher (~0.1 y 3.5%) than the Late Paleozoic grains (~0.02 y 1.5%). This geochemistry behavior is similar to in-situ high-grade metamorphic and felsic to intermediate-mafic apatite analyses from the literature.

By integrating the geochronology and geochemistry data and considering that the apatite mechanical properties restrict the sedimentary provenance to nearby sources, this study demonstrates that the provenance sources most important of Chivillas Formation belong to Grenvillian Oaxacan Complex metamorphic rocks, the igneous rocks belonging to the Carboniferous-Permian magmatic arc, and those belonging to Early Cretaceous magmatic arc, the last one developed along the Pacific margin of Mexico. Besides, this suggests that the Acatlán-Oaxacan block was a basement high during the Early Cretaceous, and the detrital apatites register its exposition and denudation.

Apatite fission-track analyses indicate that the Chivillas Formation exhumed quickly (~330 – 320 m/m.y.) during the middle Eocene, with thermal modeling indicative of an approximately 9 m.y. time span. This exhumation post-dates the shortening Laramide event and probably is associated with the extensional activity phase of the Northern System of the Oaxaca Fault during the Cenozoic.

#### 1. GENERALIDADES

#### 1.1 Introducción

La formación de cuencas sedimentarias y acumulación de sus detritos es un proceso importante que guarda el registro del entorno paleogeográfico y de la evolución tectónica de las áreas fuente. En el centro y sur de México el desarrollo de cuencas sedimentarias estuvo asociado a los procesos relacionados a la fragmentación de Pangea, subducción de la placa paleo-Pacífica y las etapas finales de la apertura de Golfo de México durante el Jurásico Medio y Cretácico Inferior (e.g. Martini y Ortega-Gutiérrez, 2018). En el sur de México, la acumulación de sedimentos en un ambiente extensional sincrónico con actividad magmática, durante este tiempo, ha sido reportada en las cuencas sedimentarias Tentzo, Zapotitlán y Cuicateca (Figura 1; Mendoza-Rosales, 2010; Sierra-Rojas *et al.*, 2016). Los mecanismos de extensión se atribuyen al desarrollo de cuencas de tras-arco asociadas, ya sea, al arco del Terreno Guerrero (Martini *et al.*, 2014; Ortega-Flores *et al.*, 2016) o al arco volcánico continental Zicapa (Sierra-Rojas y Molina-Garza, 2014).

La cuenca Cuicateca es de las más orientales del sur de México y su historia sedimentaria está representada por las rocas de la Formación Chivillas del Cretácico temprano (Carrasco, 1978; Alzaga y Pano, 1989; Mendoza-Rosales, 2010). Estudios de procedencia detrítica en areniscas de esta formación han permitido identificar una procedencia de sedimentos de fuentes mixtas, que incluyen: rocas de basamento, arcos volcánicos y sucesiones detríticas más antiguas (Mendoza-Rosales, 2010; Mendoza-Rosales *et al.*, 2013; Sierra-Rojas *et al.*, 2016). Sin embargo, los estudios de procedencia que integran la petrografía y geocronología de circones detríticos no siempre proporcionan una buena restricción de la fuente, ya que la mayoría de sucesiones clásticas representan una mezcla derivada de varios tipos de rocas y además, porque el circón es una fase mineral muy resistente que puede representar más de un ciclo sedimentario.

Alternativamente, el apatito ha sido utilizado como trazador de procedencia detrítica de primer ciclo (Belousova *et al.*, 2002; Morton y Yaxley, 2007; Abdullin *et al.*, 2016; Gillespie *et al.*, 2018; O'Sullivan *et al.*, 2018) ya que es una fase mineral accesoria ampliamente distribuida en los diferentes tipos de rocas y porque su preservación en los sedimentos es dependiente del grado de transporte (Morton y Hallsworth, 1999; Belousova *et al.*, 2002). Además, el comportamiento de los elementos traza y Tierras Raras muestra que los apatitos preservan las condiciones existentes durante su génesis (Jennings *et al.*, 2011; Jafarzadeh *et al.*, 2014; Henrichs *et al.*, 2018). El análisis geocronológico de los sistemas U-Pb y trazas de fisión en apatito ha sido utilizado también para descifrar la historia termal de las regiones fuente y las de acumulación al registrar la evolución de las cuencas sedimentarias (Chew y Donelick, 2012).

Para identificar la paleogeografía de los bloques de basamento del sur de México durante la acumulación de la Formación Chivillas y elucidar las fuentes de procedencia sedimentaria, se realizó un análisis multidisciplinario integrando petrografía convencional y geocronología U-Pb de circones detríticos con el fechamiento isotópico U-Pb y caracterización geoquímica de apatitos detríticos. Se realizó también el análisis de trazas de fisión en apatitos con el fin de establecer la historia termal de la Cuenca Cuicateca.

Adicionalmente, el uso de los métodos estadísticos de escalamiento multidimensional (MDS, *Multidimensional Scaling;* Vermeesch, 2013) y de análisis de componentes principales (PCA, *Principal Analysis Components;* Vermeesch, 2013) para las edades detríticas en circón y la geoquímica de apatitos, respectivamente, ha permitido establecer la variación temporal de la procedencia, además de evaluar y comprobar las fuentes principales propuestas individualmente a través de la geocronología y química de los apatitos de las rocas de la Formación Chivillas.

## 1.2 Planteamiento del problema

La Formación Chivillas aflora que limita los en una zona а terrenos tectonoestratigráficos Cuicateco y Zapoteco, los cuales ya se encontraban yuxtapuestos durante la acumulación de los sedimentos en la cuenca Cuicateca durante el Cretácico Inferior. Aunque varios trabajos se han desarrollado teniendo como objeto de estudio a la Formación Chivillas, la procedencia detrítica ha sido restringida únicamente a la localidad tipo de la formación (noreste de Tehuacán en Puebla) y en donde las rocas prácticamente se encuentran sin deformar. Sin embargo, la mayor parte de los afloramientos en donde están expuestas las rocas de la Formación Chivillas presentan evidencias de deformación. En este trabajo se presentan los resultados de un estudio multitécnica que integra la petrografía de areniscas, la geocronología U-Pb en circón y técnicas microanalíticas aplicadas en apatitos de areniscas de la Formación Chivillas, que se colectaron en diferentes localidades donde aflora la formación, para constreñir cuantitativamente las principales fuentes de procedencia detrítica y establecer la evolución tectónica de la Cuenca Cuicateca.

#### 1.3 Objetivos

#### 1.3.1 General

Elucidar la procedencia de sedimentos de la Formación Chivillas integrando la petrografía de areniscas con técnicas microanalíticas aplicadas en apatitos y circones detríticos

## 1.3.2 Específicos

- Identificar y cuantificar los componentes principales del armazón de las areniscas de la Formación Chivillas
- Identificar las poblaciones de edades U-Pb en circones y apatitos detríticos de la Formación Chivillas a través de LA-ICP-MS
- Caracterizar el comportamiento geoquímico de los apatitos detríticos de la Formación Chivillas, cuantificado por medio de LA-ICP-MS, y contrastar los resultados con el comportamiento geoquímico de apatitos reportado en la literatura
- Establecer la historia termal de la Cuenca Cuicateca a través del análisis de trazas de fisión en apatitos

## 1.4 Hipótesis

Los patrones de procedencia detrítica en los sedimentos de la Formación Chivillas indican sedimentos derivados del Complejo Oaxaqueño, de otros macizos pre-Cámbricos del sur de México, de cinturones metamórficos de alta presión como los complejos Acatlán y Chuacús y del reciclaje de sucesiones detríticas pre-cretácicas del centro y sur de México.

#### 1.5 Localización del área de estudio

El área de estudio se localiza en la convergencia de varios terrenos tectonoestratigráficos del sur de México: Mixteco, Zapoteco, Cuicateco y Maya y al sur de la Faja Volcánica Transmexicana. La Formación Chivillas es una sucesión siliciclástica que corresponde al relleno sedimentario de la cuenca Cuicateca, durante el Cretácico temprano, y que aflora en la zona que limita los terrenos Cuicateco y Zapoteco (Figura 1).



Figura 1. Mapa generalizado de México con las principales estructuras tectónicas, faja volcánica Transmexicana, los terrenos tectonoestratigráficos del sur y la localización de las cuencas sedimentarias desarrolladas durante el Cretácico Inferior en el sur de México. Modificado de Elías-Herrera *et al.*, 2005; Mendoza-Rosales, 2010; Sierra-Rojas *et al.*, 2016; Ortega-Flores, 2017.

#### 1.6 Uso del apatito como trazador en análisis de procedencia detrítica

El apatito es el mineral fosfatado más común en la corteza terrestre (Deer *et al.*, 2013), representa una serie isomórfica cuyos miembros finales son: el fluorapatito  $[Ca_5(PO_4)_3F]$ , el cloroapatito  $[Ca_5(PO_4)CI]$  y el hidroxiapatito  $[Ca_5(PO_4)_3OH]$  y de los cuales, el primero es el más abundante en la naturaleza (Deer *et al.*, 2013).

El apatito posee varias características que lo hacen un excelente trazador en análisis de procedencia sedimentaria, siendo estas: su ocurrencia natural en muchas rocas de la corteza (sean ígneas, metamórficas o sedimentarias; Morton y Hallsworth, 1999; Piccoli y Candela, 2002; Spear y Pyle, 2002), la capacidad de sustitución de sus iones por diferentes elementos traza y tierras raras durante su génesis (Roeder *et al.*, 1987; Piccoli y Candela, 2002; Chew y Donelick, 2012) y su inestabilidad a la meteorización en la fuente, en contacto con aguas ácidas y durante el transporte sedimentario (e.g., Morton y Hallsworth, 1999, y trabajos referencia allí). Aunque el apatito está presente ubicuamente en las rocas sedimentarias clásticas su ausencia en cualquier sedimento puede ser atribuida, además de la fertilidad o disolución en la fuente, a la temperatura, la lluvia y el pH de los suelos (O'Sullivan *et al.*, 2018).

Los estudios de procedencia detrítica que involucran las propiedades físico-químicas del apatito para obtener información de la roca fuente, incluyen: 1) química de elementos traza y tierras raras (REE), 2) edades isotópicas U-Pb y 3) trazas de fisión. Estas técnicas permiten determinar la evolución del área fuente, su exhumación y el transporte de los materiales erosionados y su rastreo a través del tiempo cuando se aplican a estratos sedimentarios continuos (e.g., Carrapa *et al.*, 2009; Mark *et al.*, 2016).

#### 1.6.1 Química de apatitos: elementos traza y tierras raras (REE)

La mayoría de las rocas sedimentarias clásticas frecuentemente representan una mezcla derivada de varios tipos de rocas ígneas, metamórficas y sedimentarias más antiguas (Abdullin *et al.*, 2016), es por ello que los estudios de procedencia que emplean los métodos convencionales como el conteo de puntos en arenisca y la geocronología de circones detríticos algunas veces son problemáticos. En este sentido, el comportamiento geoquímico de los apatitos detríticos ha sido utilizado para establecer una mejor restricción de las rocas fuente, ya que su composición química puede ser específica de cierta paragénesis (e.g. Jafarzadeh *et al.*, 2014; Morton y Yaxley, 2007; Philander y Rozendaal, 2015).

El apatito puede incorporar una amplia variedad de elementos traza y Tierras Raras (*rare Earth elements*; REE) en su estructura cristalina, y en un rango muy variado de concentraciones, al sustituir ambos sitios de cationes y aniones (Chew y Donelick, 2012). Elementos divalentes como el Sr<sup>+2</sup>, Pb<sup>+2</sup>, Mg<sup>+2</sup>, Mn<sup>+2</sup>, Fe<sup>+2</sup> y Eu<sup>+2</sup> pueden sustituir directamente al Ca<sup>+2</sup> (Piccoli y Candela, 2002), mientras que los elementos monovalentes (Na<sup>+</sup>, K<sup>+</sup> y Li<sup>+</sup>), trivalentes (REE<sup>+3</sup> e Y<sup>+3</sup>) y tetravalentes (Th<sup>+4</sup> y U<sup>+4</sup>) entran a la red cristalina del apatito a través de sustituciones complejas, algunos ejemplos se presentan en la tabla 1.

| Sustitución de el                                                               | Referencia                                                                     |                                   |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|--|
| REE <sup>+3</sup> (Y <sup>+3</sup> ) + Na                                       | Sha y Chappell (1999)                                                          |                                   |  |
| $REE^{+3} + Si^{+4} = C_{-1}$                                                   | Ronsbo (1989)                                                                  |                                   |  |
| 2REE <sup>+3</sup> (Y <sup>+3</sup> )+ [V                                       | Pan y Fleet (2002)                                                             |                                   |  |
| Na <sup>+</sup> + S <sup>+6</sup> = Ca                                          | Sha y Chappell (1999)                                                          |                                   |  |
| 2Na <sup>+</sup> = Ca <sup>+2</sup>                                             | Ronsbo (1989)                                                                  |                                   |  |
| $Th^{+4}(U^{+4}) = 2Ca^{+2}$<br>$Th^{+4}(U^{+4}) + Si^{+4} = REE^{+3} + P^{+5}$ | Th <sup>+4</sup> (U <sup>+4</sup> ) + Ca <sup>+2</sup> =<br>2REE <sup>+3</sup> | Casillas <i>et al.</i> (1995)     |  |
| S <sup>+6</sup> + Si <sup>+</sup>                                               | Sha y Chappell (1999)                                                          |                                   |  |
| REE <sup>+3</sup> + Si <sup>+4</sup> = Ca <sup>+2</sup> + P <sup>+5</sup>       |                                                                                | Pan y Fleet (2002); Ronsbo (1989) |  |
| Zr <sup>+4</sup> + Si <sup>+4</sup> = REE <sup>+3</sup> + P <sup>5+</sup>       | $Zr^{+4}+Ca^{+2} = 2REE^{+3}$                                                  | Casillas <i>et al.</i> (1995)     |  |

Tabla 1. Sustituciones complejas de elementos en la estructura cristalina del apatito.

[V] Representa vacancia.

La concentración de elementos traza en apatitos ígneos se encuentra relacionada a su concentración en el fundido, al grado de fraccionamiento, a la fugacidad del oxígeno y al coeficiente de partición entre el apatito y el fundido (Piccoli y Candela, 2002; Morton y Yaxley, 2007; Pan *et al.*, 2016). Un cambio en la composición y concentración de los elementos traza en el apatito puede reflejar la variación composicional del magma, esto como resultado de la cristalización de otras fases minerales. Por ejemplo, la cristalización de feldespatos favorece la disminución del Sr en el fundido residual, ya que son los principales receptores de este elemento en magmas félsicos (Pan *et al.*, 2016).

Durante el fraccionamiento magmático los elementos como el Y, Mn, las tierras raras pesadas (*heavy rare Earth elements*; HREE), el F y el U son relativamente enriquecidos en el fundido (Nash, 1984; Belousova *et al.*, 2002; Morton y Yaxley, 2007). Este comportamiento químico se ve reflejado en una mayor concentración de dichos elementos en apatitos asociados a magmas más evolucionados. Además, se ha reportado una menor relación de Eu/Eu\* (anomalía de Eu negativa) en apatitos de granitos tipo S y granitos félsicos tipo I (Sha y Chappell, 1999). Por el contrario, los apatitos asociados a rocas ígneas básicas poseen una mayor concentración de Cl, Th, tierras raras ligeras (*light rare Earth elements*; LREE) y Sr (Sha y Chappell, 1999; Belousova *et al.*, 2002; Morton y Yaxley, 2007). La anomalía de Eu tiende a ser moderada o inexistente en apatitos máficos y es dependiente de si la cristalización de dicha fase mineral es antes o después del feldespato (Tang *et al.*, 2012).

La concentración de REE en apatitos ígneos es correlacionable con el índice de saturación de AI (ASI) en granitos (Belousova *et al.*, 2001), mientras que el contenido de Sr puede ser correlacionado con el grado de fraccionamiento del magma y el contenido de Mn a la fugacidad del oxígeno (Sha y Chappell, 1999; Hsieh *et al.*, 2008).

El comportamiento químico de apatitos asociados a rocas metamórficas es extremadamente heterogéneo y se puede distinguir fácilmente de los apatitos ígneos. Los apatitos metamórficos en general poseen un bajo contenido de REE, frecuentemente altos niveles de Sr y anomalía de Eu positiva a levemente negativa (El Korh *et al.*, 2009; Henrichs *et al.*, 2018). Por otro lado, una anomalía de Eu negativa puede ser explicada por el crecimiento cogenético del apatito con epidota (Henrichs *et al.*, 2018).

Apatitos metamórficos de metapelitas de bajo a medio grado y metabasitas pueden ser fácilmente distinguibles de apatitos graníticos por su significativo empobrecimiento en Th, REE e Y, el cual es atribuido al crecimiento cogenético de la epidota (Henrichs *et al.*, 2018). Bingen *et al.* (1996) demostraron que el contenido de tierras raras intermedias (*middle rare Earth elements*; MREE, excepto el Eu) incrementa con el aumento del grado metamórfico, como resultado de la descomposición de la

hornblenda, biotita y titanita; mientras que el contenido de LREE y Th lo hace con la isógrada de ortopiroxeno cuando la monacita es progresivamente consumida. Por otro lado, el contenido de las REE y Th en el apatito es totalmente reseteado durante el metamorfismo en facies de anfibolita y granulita (ya que el apatito actúa como un sistema abierto) y la liberación de F a partir de la biotita posiblemente explique el incremento de la estabilidad del apatito relativo a la monacita bajo condiciones de metamorfismo en facies de granulita (Bingen *et al.*, 1996).

En la actualidad no se han encontrado cocientes o abundancias de elementos que relacionen sistemáticamente los apatitos de rocas metamórficas con la composición de su protolito, esto debido probablemente a la paragénesis similar del apatito en metabasitas y metapelitas y al crecimiento simultáneo de dicha fase mineral con epidota rica en actínidos y REE (Henrichs *et al.*, 2018).

#### 1.6.2 Edades isotópicas en apatito: Sistema U-Pb

La termocronología detrítica es una de las herramientas de procedencia sedimentaria que descifra la historia termotectónica de las áreas fuente (Bernet y Spiegel, 2004). El sistema U-Pb en apatito es un termocronómetro de mediana temperatura, ya que el apatito experimenta pérdida total de Pb a temperaturas >550 °C y lo retiene cuantitativamente a temperaturas <375 °C (zona de retención parcial del Pb; Chamberlain y Bowring, 2001; Cochrane *et al.*, 2014). El sistema U-Pb en apatito proporcionar edades de enfriamiento en rocas ígneas (Chew y Donelick, 2012), restricciones de tiempo-temperatura en procesos retrógrados, prógrados de baja temperatura (Kirkland *et al.*, 2018) y eventos metamórficos regionales de mediano grado (O'Sullivan *et al.*, 2018).

El método U-Pb en apatitos posee ciertas limitaciones al ser aplicado en estudios de termocronología: 1) cuando las concentraciones de U y Pb radiogénico (Pb<sub>r</sub>) en el apatito son generalmente muy bajas, 2) cuando la proporción de Pb común (Pb<sub>c</sub>) contra Pb<sub>r</sub> es significativamente elevada, 3) para cuantificar el contenido de Pb<sub>r</sub> cuando los granos de apatito son muy jóvenes (e.g., edades <20 Ma) y 4) cuando los granos de apatito experimentan pérdida de Pb (e.g., cuando los granos son muy pequeños). Esto hace que raramente se obtenga la misma precisión lograda con los circones utilizando el mismo sistema (Chew y Donelick, 2012; Kirkland *et al.*, 2018).

El apatito generalmente incorpora cantidades sustanciales de Pb inicial (no radiogénico o común;  $Pb_c$ ) cuando cristaliza, en comparación con el contenido de U, esto hace que sus edades sean discordantes. Es por esta razón que los cocientes isotópicos U-Pb obtenidos pueden ser juzgadas utilizando los siguientes casos: 1) a través de una concordia o isócrona en un conjunto de granos cogenéticos con una propagación/dispersión en la relación  $Pb_c$  contra  $Pb_r$  y 2) una corrección de los

cocientes isotópicos basada en una elección apropiada de la composición inicial de Pb (Chew y Donelick, 2012).

Para el caso uno, se deben analizar varios granos con una propagación/dispersión de la razón Pb<sub>c</sub>/Pb<sub>r</sub> suficiente para definir un arreglo lineal en un diagrama de concordia o isócrona (Chew y Donelick, 2012). Para esto se proyecta una intercepta a través de los datos no corregidos en un diagrama de concordia tipo Tera-Wasserburg (TW; Tera y Wasserburg, 1972) para determinar la componente de Pb<sub>c</sub> en el eje <sup>207</sup>Pb/<sup>206</sup>Pb (intercepta en Y). La edad <sup>238</sup>U/<sup>206</sup>Pb puede entonces ser calculada como la intercepta inferior en el eje <sup>238</sup>U/<sup>206</sup>Pb (Simonetti *et al.*, 2006; Chew y Donelick, 2012). Los datos de U-Pb en apatito son más fáciles de representar en el diagrama TW, ya que las relaciones isotópicas <sup>238</sup>U/<sup>206</sup>Pb y <sup>207</sup>Pb/<sup>206</sup>Pb son menos correlacionables que los dos cocientes isotópicos de U-Pb, además de que es más sencillo visualizar la relación inicial de <sup>207</sup>Pb/<sup>206</sup>Pb en la intercepta de discordia (Mark *et al.*, 2016). El arreglo lineal en el diagrama TW es típico de granos cogenéticos de una sola fuente ígnea o metamórfica, a diferencia de granos detríticos que pueden producir una distribución más aleatoria y surtida (Mark *et al.*, 2016).

Para el caso dos, se requiere corregir individualmente los análisis por Pb inicial utilizando uno de los siguientes métodos: corrección por <sup>204</sup>Pb, por <sup>207</sup>Pb o por <sup>208</sup>Pb (Williams, 1998). Las estimaciones de la composición isotópica de Pb inicial son derivadas de los modelos de evolución del Pb terrestre (según el modelo de Stacey y Kramers, 1975). El método de corrección por <sup>204</sup>Pb es el más adecuado de los tres, ya que es el único que no asume concordancia de U-Pb<sub>r</sub> (Chew *et al.,* 2011; Chew y Donelick, 2012). Suponer una concordancia U-Pb<sub>r</sub> solo es razonable en el caso de estándares y granos de apatito magmáticos, pero no puede ser aplicado en el caso de granos detríticos que han experimentado pérdida parcial o total de Pb, como resultado, se debe utilizar argumentos geológicos para discriminar entre reseteo detrítico parcial o total de las edad U-Pb (Mark *et al.,* 2016).

En la figura 2 se presentan ejemplos de fechamientos U-Pb en apatito en diagramas TW (sin corrección por  $Pb_c$ ) y promedio ponderado de la edad (utilizando una corrección por  $Pb_c$ ) (Chew y Donelick, 2012). Para el primero (figura 2C y D) la intercepta inferior de la línea de discordia representa la edad del grupo cogenético de apatitos, mientras que en el segundo, se ha aplicado la corrección por <sup>207</sup>Pb al grupo de cocientes isotópicos (figura 2A y B).



Figura 2. Ejemplo de fechamientos isotópicos U-Pb en apatitos. Los datos de A y B fueron obtenidos usando un ICP-MS cuadrupolar Agilent 7700X acoplado a un sistema de ablación láser de excímero ArF Resonetics con una longitud de onda de 193 nm. Los datos de C y D fueron obtenidos con un Neptune MC-ICP-MS acoplado a un sistema de ablación láser de excímero New Wave de 193 nm. Tomado de Chew y Donelick (2012).

#### 1.6.3 Termocronología de baja temperatura en apatito: Trazas de fisión

La técnica de trazas de fisión en apatito ha sido aplicada para constreñir la historia térmica de baja temperatura de rocas ígneas, metamórficas y sedimentarias en un amplio rango de ambientes geológicos, tales como cinturones orogénicos, márgenes de rift, zonas de falla, cuencas sedimentarias, cratones, depósitos minerales, etc. (Donelick *et al.*, 2005; Malusà y Fitzgerald, 2019). Los problemas geológicos que pueden ser abordados a partir de trazas de fisión incluyen: tiempo y tasas de eventos tectónicos (exhumación-denudación), evolución de cuencas sedimentarias, formación, exhumación y preservación de depósitos minerales, edad absoluta de depósitos volcánicos, etc. (Donelick *et al.*, 2005; Liu *et al.*, 2010; Chew y Donelick, 2012).

El análisis de trazas de fisión puede ser empleado para fechar granos detríticos de rocas sedimentarias y trazar la procedencia de sedimentos a cuencas (Bernet y Spiegel, 2004). Los apatitos colectados en regiones más superficiales de la corteza, las cuales no han experimentado una historia termal post-deposicional suficiente para provocar el borrado térmico de las trazas, pueden conservar el registro de la historia térmica original de procedencia (Yan *et al.*, 2003). En relación a otros sistemas isotópicos de alta temperatura, la cantidad de tiempo entre el cierre del sistema de trazas de fisión en las rocas fuente (~120 °C) y el depósito de los sedimentos derivados

de estas rocas, en una cuenca sedimentaria, debería ser relativamente corto (Yan *et al.*, 2003).

El fechamiento por trazas de fisión se basa en el decaimiento por la fisión nuclear espontánea del isótopo de <sup>238</sup>U, que produce dos nuevos núcleos que son expulsados en sentido contrario. La vida media de la fisión espontánea del <sup>238</sup>U es de (8.2 ± 0.1)X10<sup>15</sup> años (Holden y Hoffman, 2000; Yoshioka *et al.*, 2005). Eso quiere decir que para aproximadamente dos millones de núcleos de éste isotopo que experimentan decaimiento tipo alfa ( $\alpha$ ) sólo un núcleo de <sup>238</sup>U experimentaría la fisión espontánea (Donelick et al., 2005). Las trazas de fisión están constituidas por zonas dañadas en la red cristalina, con longitudes típicas de <20 µm y entre 3 y 14 nm de ancho (Paul y Fitzgerald, 1992). El aumento de temperatura hace que dichos defectos sean borrados cuando los átomos desplazados dentro de la red cristalina regresan a su posición original. Este proceso de acortamiento de trazas se llama borrado térmico (annealing) (Wagner, 1968; Wagner y Reimer, 1972; Wagner y Van den Haute, 1992). El borrado térmico parcial de las trazas de fisión en los flúorapatitos poseen un rango de temperatura entre 60-120 °C, dicho rango de temperatura se conoce como zona de borrado parcial PAZ (partial annealing zone; Green et al., 1986). El borrado parcial reduce entonces las edades aparentes y acorta las longitudes de las trazas de fisión, mientras que el borrado total reinicia las edades de las trazas de fisión hasta 0 Ma (e.g., Gleadow et al., 1986). Para los apatitos con un alto contenido de Cl (≥ 3% wt.) la PAZ ronda entre 90-160 °C (Donelick et al., 2005), lo que significa que las trazas de fisión en apatitos con mayor contenido de CI resisten mejor el borrado térmico al experimentar borrado total a temperaturas >160°C (Ketcham et al., 1999). Lo anterior significa que los granos de apatito menos resistentes al borrado térmico entran a la zona de borrado total cuando los granos más resistentes apenas están entrando al PAZ.

Las trazas de fisión que no han experimentado borrado térmico tienen longitudes de 16  $\pm$  1 µm (Gleadow *et al.*, 1986). En el mismo cristal de apatito las trazas de fisión más jóvenes experimentan sólo una parte de la historia integrada de tiempo-temperatura (t-T) mientras que las trazas más antiguas han experimentado un mayor grado de borrado parcial. Para un grano de apatito con longitudes de trazas entre 14.5 y 15.5 µm, puede interpretarse que experimentó un enfriamiento relativamente rápido, de ≥110 °C a ≤60 °C, en el tiempo indicado por la edad de trazas de fisión (Chew y Donelick, 2012). Para un prolongado período de enfriamiento lento, una distribución de longitudes relativamente corta es esperada (Donelick *et al.*, 2005). Longitudes muy cortas de trazas de fisión, con una amplia desviación estándar, es indicativa de que la muestra estuvo en la PAZ por un periodo de tiempo significativo desde la formación de las trazas más antiguas (Gleadow *et al.*, 1986). La distribución de longitudes y edad de las trazas pueden ser combinadas para construir trayectorias de tiempo-temperatura a través del modelado inverso y/o directo de las edades y longitudes de trazas (Gallagher, 1995; Ketcham, 2005).

Aplicando un proceso de ataque químico (*etching*) los defectos lineales (trazas de fisión) en los cristales pueden ser observados bajo un microscopio óptico, ya que las zonas dañadas se encuentran en un estado de mayor energía libre que el resto del cristal, por lo que son químicamente más reactivas (Fleischer *et al.*, 1975).

## 2. MARCO GEOLÓGICO

#### 2.1 Contexto geodinámico

La evolución tectónica de México desde el Jurásico hasta el final del Cretácico Inferior fue dominada por deformación extensional influenciada por dos procesos geodinámicos principales: la subducción de la placa Farallón debajo del margen continental pacífico de Norteamérica y el rompimiento de Pangea y apertura del Océano Atlántico (Martini y Ortega-Gutiérrez, 2018).

Durante el Jurásico temprano a medio el magmatismo que se extiende del noroeste a sureste de México, hasta Chiapas, ha sido atribuido al arco magmático continental Nazas desarrollado en el margen pacífico de México (Dickinson y Lawton, 2001; Godinez-Urban *et al.*, 2011; Lawton y Molina-Garza, 2014) o bien al adelgazamiento de la litosfera producto de la ruptura inicial de Pangea occidental (Martini y Ortega-Gutiérrez, 2018). Durante el Jurásico medio a tardío, extensión cortical ha sido atribuida ya sea a: la apertura del Golfo de México y a procesos relacionados a la ruptura de Pangea (Pindell y Kennan, 2009; Stern y Dickinson, 2010; Martini y Ortega-Gutiérrez, 2018) o al retroceso de la placa oceánica subducida al oeste de México (Dickinson y Lawton, 2001).

Durante el Jurásico tardío y Cretácico temprano extensión en la cuenca trasarco Arperos produjo una efectiva desconexión sedimentológica entre el Terreno Guerrero y la parte mexicana de Norteamérica (Martini *et al.*, 2011; Martini *et al.*, 2014). Durante este intervalo un intenso magmatismo de arco en el margen pacífico produjo flujos volcánicos intermedios a máficos e intrusivos graníticos y granodioríticos (e.g. Solari *et al.*, 2007; Martini *et al.*, 2009; Martini *et al.*, 2014).

En el margen sureste de México durante el Cretácico temprano la extensión cortical es una característica importante. Este proceso es evidenciado por el desarrollo de las cuencas sedimentarias Cuicateca, Zapotitlán y Tentzo (Mendoza-Rosales *et al.*, 2010; Sierra-Rojas *et al.*, 2016) mientras que al oeste el registro de la extensión se encuentra en la cuenca Zicapa (Sierra-Rojas y Molina-Garza, 2014). La cuenca Cuicateca (Cretácico temprano) se desarrolló en un régimen extensional para el cual se han propuesto varios mecanismos tectónicos que incluyen: una cuenca tras arco asociada al retroceso de la Placa Farallón subducida (Delgado-Argote *et al.*, 1992), mecanismo de *pull-apart* asociado a un régimen transtensional (Angeles-Moreno, 2006), cuenca de rift desarrollada en una intersección falla transformante-dorsal asociada a la apertura del Golfo de México (Mendoza-Rosales, 2010) o una cuenca extensional de tras arco asociado al retroceso del *slab* de Arperos (Sierra-Rojas *et al.*, 2016). Acortamiento durante el Cretácico Superior-Paleógeno asociado a la Orogenia Laramide, provocó la inversión de la cuenca Cuicateca a través de cabalgaduras de escala regional (Angeles-Moreno, 2006; Fitz-Díaz *et al.*, 2018).

#### 2.2 Contexto geológico

El sur de México está constituido por los terrenos tectonoestratigráficos Cuicateco, Zapoteco, Mixteco, Maya y Chatino (Sedlock *et al.*, 1993). Dado que la Formación Chivillas se localiza en la convergencia de varios de estos terrenos del sur de México (Figura 3), muy cerca de cuerpos ígneos que se han considerado como parte de un arco continental activo durante el Paleozoico tardío, en el bloque piso de la Falla Oaxaca y al este del Valle de Tehuacán, éstos se describen brevemente a continuación.



Figura 3. Mapa generalizado del sur de México, de la localización de la Formación Chivillas y de las muestras analizadas en este estudio. Las coordenadas de las muestras se presentan en la tabla 2. Modificado de Elías-Herrera *et al.*, 2005; Ángeles-Moreno, 2006; Mendoza-Rosales, 2010; Ángeles-Moreno *et al.*, 2012).

## 2.2.1 Terrenos tectonoestratigráficos del sur de México

## • Terreno Zapoteco

El Complejo Oaxaqueño es el basamento cristalino del terreno Zapoteco (Figura 3 y 4). El Complejo Oaxaqueño es el más viejo de varios complejos cristalinos que afloran en el sur de México y constituye la mayor exposición de rocas en facies de granulita del territorio mexicano (Weber y Kohler, 1999). El Complejo Oaxaqueño se caracteriza por poseer registro de magmatismo entre ~1,210 y 1,179 Ma (Weber y Schulze, 2014), un evento de migmatización a ~1,100 Ma y metamorfismo en facies de granulita entre ~1,000 y 990 Ma (Solari *et al.*, 2003). Litológicamente el Complejo Oaxaqueño está conformado por ortogneises y paragneises con protolitos de anortositas, granitos, tonalitas, sienitas, gabros, charnoquitas, anfibolitas, pegmatitas y rocas calcisilicatadas (Ortega-Gutiérrez, 1977; Solari *et al.*, 2003; Ortega-Gutiérrez *et al.*, 2018). El Complejo Oaxaqueño subyace discordantemente a rocas sedimentarias marinas y continentales con edades que van del Paleozoico (formaciones Tiñu, Ixtaltepec, Santiago, Matzitzi) al Cenozoico (Angeles-Moreno, 2006; Figura 4).

#### • Terreno Mixteco

El Complejo Acatlán es el basamento del terreno Mixteco (Figura 3 y 4) y constituye la exposición más grande de rocas paleozoicas de México (e.g., Ortega-Gutiérrez *et al.*, 1999). El Complejo Acatlán está constituido por rocas metasedimentarias y metaígneas (*Suite* Piaxtla, formaciones Cosoltepec, Patlanoaya y Tecomate y Plutón Totoltepec; Keppie *et al.*, 2008) con edades entre el Cámbrico-Ordovícico y el Paleozoico tardío. Las rocas del Complejo Acatlán exhiben grados metamórficos entre las facies de esquisto verde, esquisto azul y eclogita y son el producto de la deformación y polimetamorfismo en condiciones tectónicas relacionadas a la apertura, cierre y/o subducción de los océanos lapetus, Rheico y Paleo-Pacífico (Talavera-Mendoza *et al.*, 2005; Ortega-Obregon *et al.*, 2009; Ortega-Gutiérrez *et al.*, 2018).

Sobreyaciendo discordantemente al Complejo Acatlán se encuentra la sucesión constituida por areniscas, lutitas y lentes de conglomerado de la Formación Matzitzi (Centeno-García *et al.*, 2009; Figura 4) y cubriendo a la Formación Matzitzi se encuentra la unidad denominada "Lechos rojos" de edad Triásico-Jurásico (Moran-Zenteno *et al.*, 1993). Depósitos continentales y fluviales del Jurásico medio-tardío (formaciones Piedra Hueca, Otlaltepec, Tecomazúchil y Chimeco) cubren discordantemente al Complejo Acatlán y éstos depósitos a su vez son sobreyacidos por carbonatos de la plataforma del Cretácico (Figura 4).

Las rocas del Complejo Ayú fueron previamente asignadas al Complejo Acatlán, sin embargo, Helbig *et al.* (2012) a partir de nuevos datos U-Pb en circones establecen que se formó en el Mesozoico (Figura 3 y 4). El complejo Ayú está constituido por rocas

metasedimentarias polideformadas (Litodema Chazumba) intercaladas con ortoanfibolitas que poseen una geoquímica transicional entre arco magmático y MORB. La parte sur del Complejo Ayú fue afectada por una fusión parcial hace ~171 Ma formando la migmatita Magdalena (Helbig *et al.*, 2012). Esta migmatización fue acompañada por intrusiones de diques graníticos, dioriticos y granodioriticos que constituyen los intrusivos San Miguel (~171-168 Ma; Figura 4).

#### • Terreno Cuicateco

El terreno Cuicateco posee una orientación NW-SE en forma de cuña que se adelgaza en dirección de la Faja Volcánica Transmexicana (Figura 1 y 3). El basamento del terreno Cuicateco no se conoce pero se ha considerado que puede corresponder a rocas gabroicas y ultrabásica del Complejo Milonítico Sierra de Juárez (Delgado-Argote, 1988; Alaniz-Alvarez *et al.*, 1994), a esquistos del Paleozoico que están en contacto tectónico con los gneises del Complejo Guichicovi (Murillo-Muñeton, 1996) o a bloques paleozoicos como el Complejo Mazateco (Ángeles-Moreno, 2006).

Angeles-Moreno (2006) describe dos complejos metamórficos que afloran entre el norte-noreste de Teotitlán y San Juan Coyula en el estado de Oaxaca: el complejo metamórfico Mazateco (Figura 3 y 4) que está constituido por los esquistos La Nopalera y Mazatlán de las Flores de edad pre-Titoniense, que representa los niveles estructurales más profundos del terreno Cuicateco, y el complejo migmatítico Teotitlán (Figura 3 y 4). El complejo Mazateco experimentó migmatización y metasomatismo parcial contemporáneamente al desarrollo del complejo migmatítico Teotitlán durante el Titoniense-Barremiense.

El Complejo Milonítico Sierra de Juárez (Alaniz-Alvarez *et al.*, 1994) es parte de la zona de falla de larga vida Oaxaca, que se ha interpretado como el contacto tectónico entre los terrenos Cuicateco y Zapoteco (Figura 3). El complejo milonítico está constituido por gneises, anortositas, mármoles, granitos leucocráticos, gabros y hornblenditas, rocas basálticas volcánicas y rocas sedimentarias de diversos orígenes (Alaniz-Alvarez *et al.*, 1994).

La sucesión vulcano-sedimentaria del Jurásico tardío-Cretácico temprano que aflora en la parte septentrional del terreno Cuicateco corresponde a los depósitos de la Formación Chivillas, los cuales son sobreyacidos por rocas de la Formación Tamaulipas Inferior que subyace a la Formación Tamaulipas Superior (Figura 4).

## • Terreno Maya

Este terreno incluye la Península de Yucatán y el sureste de México desde el istmo de Tehuantepec hasta Guatemala (Figura 1). El basamento del suroeste del Terreno Maya está constituido por el Complejo Macizo de Chiapas, el cual cubre un área de ~20,000

km<sup>2</sup> paralelo a la costa del Pacífico de México (Schaaf *et al.*, 2002). El Macizo de Chiapas está constituido por gneises fuertemente deformados, anatexitas y anfibolitas intruidas por granitoides no tan deformados, rocas metasedimentarias y rocas ígneas (unidades Sepultura, Custepec y Jocote; Schaaf *et al.*, 2002; Weber *et al.*, 2008). La estratigrafía pre-mesozoica del Terreno Maya está constituida por la Formación Santa Rosa que está cubierta discordantemente por la Formación Grupera y ésta a su vez concordantemente sobreyacida por la Formación Paso Hondo. Las rocas del Triásico hasta el Cretácico están dominadas por lechos rojos y calizas (e.g. formaciones Todos Santos y Sierra Madre).

#### 2.2.2 Arco continental del este de México

En el este y sur de México afloran una serie de rocas plutónicas y volcánicas (Carbonífero-Pérmico y que se extiende hasta el Triásico) que han sido consideradas parte de un arco magmático continental producto de la subducción hacia el este de la placa del Pacifico debajo del margen oeste de Gondwana. Este arco se extendió desde el sureste de Estados Unidos hasta Centroamérica (Torres *et al.*, 1999; Dickinson y Lawton, 2001; Solari *et al.*, 2001; Kirsch *et al.*, 2012; Ortega-Obregón *et al.*, 2014).

Entre las rocas ígneas que constituyen parte de este arco magmático se mencionan: el Granito Etla (~255 Ma), *stock* Carbonera (~272 Ma), Granito Cozahuico (~276 Ma), batolito Zanitza (~287 Ma), batolito Honduras (~290 Ma), plutón Cuanana (~311 Ma), *stock* Totoltepec (289-306 Ma) y las lavas félsicas de la Riolita Sosola (~270 Ma) que intruyen o cubren las rocas metamórficas de los complejos Oaxaqueño y Acatlán (Elías-Herrera *et al.*, 2007; Kirsch *et al.*, 2012; Ortega-Obregón *et al.*, 2014; Figura 3 y 4).

## 2.2.3 Formación Chivillas

La Formación Chivillas fue descrita por primera vez como una sucesión de lutitas, areniscas y filitas interestratificadas con conglomerados (Pano, 1973) que afloran en la base del cerro Chivillas al norte de San Antonio Cañada en Puebla. Carrasco (1978) describió una sección estratigráfica parcial de lutitas calcáreas, areniscas, micritas y rocas carbonáticas con intercalaciones de andesitas con estructura almohadillada. Toriz (1984) subdivide la formación en dos miembros: Chivillas Inferior, que corresponde a la secuencia descrita por Carrasco (1978) y que se caracteriza por la intercalación de rocas volcánicas, y Chivillas Superior que corresponde a la sucesión descrita por Pano (1973), la cual que está caracterizada por la ausencia de rocas (gneas. Mendoza-Rosales *et al.* (2013) definen formalmente que la Formación Chivillas consiste de flujos de lava basálticos, frecuentemente con estructura en almohadilla, intercalados con depósitos siliciclásticos de grauvaca, lutita, caliza arcillosa y conglomerado.

La Formación Chivillas está limitada, al oeste, por la Falla Oaxaca (Figura 3). En áreas en donde existen rampas de relevo, entre los segmentos principales de la falla, la

formación está cubierta discordantemente por depósitos cenozoicos (e.g., Lechos rojos Tilapa, Formación Tehuacán y Conglomerado San Isidro). Aunque la base de la Formación Chivillas no está expuesta se infiere un basamento conformado por rocas metamórficas del Proterozoico-Paleozoico, ya que a 30 km hacia el sureste Ortega-Gutierrez *et al.* (1995) reportaron rocas metamórficas de edad *Grenville*. La localidad tipo de la formación se ubica en la barranca Las Salinas, noreste de Tehuacán, en donde las rocas se encuentran no deformadas, sin embargo, al noreste y sur de la barranca la complejidad estructural aumenta y las rocas se encuentran fuertemente deformadas y localmente presentan metamorfismo de bajo grado (Mendoza-Rosales, 2010). La edad máxima de depósito (U-Pb en circón detrítico) de la Formación Chivillas es ~126 Ma (Mendoza-Rosales, 2010; Mendoza-Rosales *et al.*, 2013), compatible con el rango de edad Valanginiense tardío-Barremiense propuesto con base en amonites de los géneros *Olcostephanus* sp. y *Spitidiscus* sp. (Alzaga y Pano, 1989).

Mendoza-Rosales *et al.*, 2013 estableció que el ambiente de depósito de la Formación Chivillas corresponde a abanicos submarinos coalescentes y progradantes formados en una cuenca subsidente, esto con base en la presencia de fallas de crecimiento y cambios de facies finas a gruesas hacia el techo de la formación. La localidad tipo de la Formación Chivillas se encuentra en la barranca Las Salinas, al noreste de Tehuacán, en donde las rocas están prácticamente sin deformación. Es en esta localidad que Mendoza-Rosales *et al.* (2013) identificaron dieciséis facies divididas en cinco clases: conglomerática, arenosa, fina, calcárea e ígnea. Estas cinco clases fueron agrupadas en ocho asociaciones de facies: A) turbiditas de grano medio, B) turbiditas de grano grueso, C) turbiditas de grano fino, D) areniscas sin estructura interna, E) debritas soportadas por clastos, F) debritas soportadas por matriz, G) pliegues disarmónicos sinsedimentarios y H) derrames de lava almohadillados.

Mendoza-Rosales (2010) caracterizó químicamente las rocas volcánicas de la Formación Chivillas obteniendo una composición máfica a intermedia alcalina con afinidad MORB y OIB. Los valores isotópicos de plomo común son similares a los valores de manto enriquecido y la firma isotópica Pb/Pb de los derrames de lava sugieren que las rocas volcánicas están constreñidas principalmente a la corteza inferior (Mendoza-Rosales *et al.*, 2013).

La procedencia detrítica de la Formación Chivillas, con muestras colectadas en la barranca Las Salinas al noreste de Tehuacán, fue determinada por Mendoza-Rosales (2010) y Mendoza-Rosales *et al.* (2013) empleando el conteo de puntos en areniscas y la composición de clastos en conglomerados. Las areniscas de la Formación Chivillas en la barranca Las Salinas están constituidas por cuarzo monocristalino, cuarzo policristalino milonítico, cuarzo policristalino en mosaico, microclina pertítica y líticos de limolita, caliza, volcánicos máficos y esquisto (Mendoza-Rosales, 2010; Mendoza-Rosales *et al.*, 2013). Ésta composición indica una fuente detrítica de los complejos

Sierra de Juárez, Oaxaqueño y su cubierta sedimentaria, además de rocas metamórficas de bajo a medio grado (Mendoza-Rosales, 2010; Mendoza-Rosales *et al.*, 2013).

Mendoza-Rosales (2010) indica que las edades U-Pb en circones detríticos en el rango de edad entre 170 y 130 Ma corresponde con las edades reportadas en el Complejo Milonítico Sierra de Juárez (Alaniz-Alvarez *et al.*, 1996; Angeles-Moreno, 2006). Las edades entre 188 y 174 Ma pueden correlacionarse con edades reportadas en el Complejo Ayú (Helbig *et al.*, 2012) y el rango entre 288 y 209 Ma puede corresponder al cinturón de granitoides del Carbonífero-Pérmico que fueron emplazados en el Complejo Oaxaqueño (Torres *et al.*, 1999; Ortega-Obregón *et al.*, 2014). Para los circones con edades U-Pb del Paleozoico temprano, Panafricano-Brasiliano y *Grenville*, edades similares se han reportado en el Complejo Oaxaqueño y su cubierta paleozoica (Keppie *et al.*, 2001; Solari *et al.*, 2003; Gillis *et al.*, 2005), el Complejo Acatlán (Elías-Herrera *et al.*, 2005; Talavera-Mendoza *et al.*, 2005; Keppie *et al.*, 2006; Vega-Granillo *et al.*, 2007; Ortega-Obregon *et al.*, 2009) y en la Formación Todos Santos (Pérez-Gutiérrez *et al.*, 2009).

El estudio de procedencia en areniscas de la Formación Chivillas indica fuentes de procedencia mixta en su localidad tipo y en donde las rocas se encuentran prácticamente sin deformar. El hecho de que hacia el sur de esta localidad, noreste de Teotitlán, existan afloramientos con fallas de cabalgamiento regionales que incluso ponen en contacto rocas de diferentes niveles estructurales, brinda la oportunidad de analizar la procedencia detrítica de forma más detallada. Considerando que estructuralmente la zona es compleja, que no existe una cartografía a detalle y que la continuidad de muchas unidades es aún poco conocida, el muestreo de rocas dentro de las escamas tectónicas probablemente representen diferentes niveles estratigráficos durante la deposición de los sedimentos en la cuenca y con ello un estudio multitécnica de procedencia considerando muestras de varias localidades puede proporcionar un mejor control de las fuentes detríticas de la Formación Chivillas.



Figura 4. Columna esquemática generalizada de las unidades que afloran en los terrenos Mixteco, Zapoteco y Cuicateco. Elaborada con base en Ángeles-Moreno (2006); Mendoza-Rosales (2010); Ángeles-Moreno *et al.* (2012); Kirsch (2012); Ortega-Obregón *et al.* (2014); Sierra-Rojas *et al.* (2016); Bedoya-Mejía (2018); Ortega-Gutiérrez *et al.* (2018); Sierra-Rojas (2018).

#### 2.2.4 Sistema de Falla Oaxaca y el Valle de Tehuacán

La Falla Oaxaca es un sistema de falla que se ha propuesto como el límite de los terrenos tectonoestratigráficos Cuicateco y Zapoteco (Sedlock *et al.*, 1993; Figura 3). Este sistema está constituido por la zona de cizalla de Oaxaca, la falla de Oaxaca y la falla Donají (Nieto-Samaniego *et al.*, 1995). La primera evidencia de deformación en dicho sistema está representada por la zona de cizalla Oaxaca, la que se formó como una cabalgadura producida por la yuxtaposición de los terrenos Cuicateco y Zapoteco

entre el Pérmico y Jurásico Medio (Alaniz-Alvarez, Nieto-Samaniego y Ortega-Gutiérrez, 1994). La zona de cizalla se reactivó con cinemática lateral derecha durante la migración del bloque Yucatán (Jurásico Medio) y experimentó una cinemática normal entre el Jurásico Medio y el Cretácico temprano que exhumó al Cinturón Milonítico Sierra de Juárez. Durante el Cenozoico un evento extensional reactiva la zona de cizalla y además origina las fallas de Oaxaca y Donají (Nieto-Samaniego *et al.,* 1995).

El Valle de Tehuacán es una depresión tectónica asociada a la extensión, durante el Cenozoico, del Sistema de Falla Oaxaca con el progresivo levantamiento de la Sierra Mazateca y el hundimiento de la cuenca del Valle de Tehuacán (Dávalos-Álvarez et al., 2007; Figura 3). Los depósitos sedimentarios dentro del valle registran una fase de deformación progresiva de cuatro pulsos (Dávalos-Álvarez et al. 2007). El pulso 1 (p1) es el inicio de la extensión y está indicada por el depósito de los lechos rojos Tilapa y continuando durante el depósito de la Formación Meguitongo entre el Eoceno temprano a medio (Figura 5). El pulso p2 se asocia a la progresión de la deformación y formación de rampas de relevo (evidenciados por el conglomerado El Campanario; Figura 5) entre el Eoceno medio-Oligoceno temprano. El p3 está relacionado al fuerte basculamiento de unidades (lechos rojos Tilapa, Formación Meguitongo y conglomerado El Campanario) y a un cambio en el nivel de base regional, que está indicado por un hiatus, durante el Eoceno tardío y Oligoceno tardío (Figura 5). El p4 se asocia a la formación del relevo Tehuacán como parte del crecimiento del Sistema Norte de la Falla Oaxaca y que está indicado por el cambio de facies lacustres en la Formación Tehuacán al depósito potente del conglomerado San Isidro entre el Mioceno temprano y el Pleistoceno (Figura 5).

#### 2.2.5 Orogenia Laramide

Previo a la extensión cenozoica en el Sistema de Falla Oaxaca, deformación por acortamiento asociada a la Orogenia Laramide tomo lugar en el centro y sur de México. La Orogenia Laramide se caracterizó por el desarrollo de estructuras compresivas y por la migración de la deformación de oeste a este entre el Cretácico Superior y Cenozoico temprano (Nieto-Samaniego *et al.*, 2006; Cuéllar-Cárdenas *et al.*, 2012). En el sur de México la deformación tomó lugar entre el Santoniense-Campaniense y el Eoceno medio (Nieto-Samaniego *et al.*, 2006). Durante la migración del evento compresivo, el denominado bloque Acatlán-Oaxaca (Nieto-Samaniego *et al.*, 2006) colisionó contra el ensamble Cuicateco (Cinturón Milonítico Sierra de Juárez, Formación Chivillas y serpentinitas; Fitz-Díaz *et al.*, 2018) y originó el desarrollo de fallas inversas paralelas a la Falla Oaxaca (Ángeles-Moreno, 2006). Este acortamiento está asociado al desarrollo de fallas de cabalgadura a escala regional, formación de escamas tectónicas y probablemente al levantamiento e inversión de la cuenca de Cuicateca en la parte norte del Terreno Cuicateco (Angeles-Moreno, 2006; Fitz-Díaz *et al.*, 2018).

Las condiciones de deformación de la Orogenia Laramide en el borde oriental del centro de México son compatibles con el dominio frágil de la corteza, por debajo de la facies metamórfica de Esquistos Verdes (Cuéllar-Cárdenas *et al.*, 2012); mientras que en el borde noroccidental del terreno Cuicateco ésta deformación generó cabalgaduras y pliegues en un régimen frágil-dúctil (Angeles-Moreno, 2006). En el Valle de Tehuacán la orogenia está representada por una discordancia entre unidades del Cretácico (e.g. Formaciones Chivillas y Tamaulipas Superior) y los lechos rojos Tilapa del Eoceno temprano-medio (Dávalos-Álvarez *et al.*, 2007; Figura 5).



Figura 5. Columna estratigráfica del Valle de Tehuacán, p1, p2, p3 y p4 indican los diferentes pulsos asociados al desarrollo del Sistema Norte de la Falla Oaxaca. Modificado de Dávalos-Álvarez *et al.* (2007).

# 3. METODOLOGÍA

#### 3.1 Recolección de muestras

Se recolectaron 6 muestra en tres localidades de la Formación Chivillas, dos en las cercanías de la barranca Las Salinas (noreste de Tehuacán), dos en los alrededores de Rancho Nuevo (noreste de Tehuacán) y dos cerca del poblado Vigastepec (noreste de Teotitlán; Tabla 2).

| Localidad            | Código muestra  | Latitud | Longitud | Altura (msnm) | Roca         |
|----------------------|-----------------|---------|----------|---------------|--------------|
| Barranca Las Salinas | LS-2 (250618-2) | 674237  | 2048906  | 1,764         | Arenisca     |
| Barranca Las Salinas | LS-3 (250618-3) | 672670  | 2046422  | 1,640         | Arenisca     |
| Vigastepec           | V-1 (260618-1)  | 706814  | 2011815  | 1,932         | Arenisca     |
| Vigastepec           | V-2 (260618-2)  | 707754  | 2010207  | 2,087         | Arenisca     |
| Rancho Nuevo         | RN-3 (260618-3) | 684103  | 2055933  | 2,588         | Arenisca     |
| Rancho Nuevo         | RN-4 (260618-4) | 685615  | 2054213  | 2,722         | Conglomerado |

| Tabla 2. Localización d | e las muestras  | colectadas de la  | Formación Chivillas. |
|-------------------------|-----------------|-------------------|----------------------|
|                         | 0 100 111000100 | 00100100100 00 10 | i onnaoion onnaide.  |

Sistema de coordenadas: WGS 84 / UTM zona 14N

Dado que Mendoza-Rosales (2010) reporta la petrografía y la geocronología U-Pb en circón de dos muestras colectadas en la barranca La Salinas, se muestreo dicha localidad para tener un punto de control. Además, se colectaron muestras considerando la exposición de los afloramientos con horizontes arenosos de la Formación Chivillas y la orientación de las estructuras regionales NNW-SSE para tratar de que fueran representativas de las variaciones temporales de la formación (Figura 3).

#### 3.2 Petrografía

Se realizaron seis láminas delgadas para análisis petrográfico. La descripción de cada lámina se realizó en el Centro de Geociencias (CGEO) de la Universidad Nacional Autónoma de México (UNAM) utilizando un microscopio Olympus BX51.

El análisis petrográfico de areniscas consistió en la identificación de los componentes y análisis modal a través del conteo de por lo menos 400 puntos siguiendo la metodología de Gazzi-Dickinson (Ingersoll *et al.*, 1984) y una estimación visual para las rocas con evidencia de alta diagénesis. Cristales que conforman un fragmento lítico que superan los 0.0625 mm fueron contados como granos minerales independientemente (Dickinson, 1985). El resultado del conteo de puntos y estimación visual de las arenisca se clasificó en los diagramas ternarios de clasificación de areniscas F-Qm-L de Dickinson (1985) y Garzanti (2016). En el caso del conglomerado se identificaron los componentes principales y se hizo una estimación visual de los mismos, los resultados se graficaron en el diagrama F-Qm-L.

#### 3.3 Técnicas microanalíticas

De cada localidad se seleccionó una muestra para aplicar las técnicas microanalíticas U-Pb en apatitos, geoquímica de apatitos y trazas de fisión en apatitos. La técnica de U-Pb en circón se aplicó a dos muestras de la localidad de Vigastepec, a dos de la localidad Rancho Nuevo y a una de la localidad barranca Las Salinas (Tabla 3).

| Localidad            | Muestra | Técnica                                                             |  |
|----------------------|---------|---------------------------------------------------------------------|--|
| Barranca Las Salinas | LS-2    | U-Pb y química en apatitos                                          |  |
|                      |         | U-Pb en circon                                                      |  |
| Vigastepec           | V-1     | U-Pb en circón y apatito, química y trazas de fisión er<br>apatitos |  |
|                      | V-2     | U-Pb en circón                                                      |  |
| Rancho Nuevo         | RN-3    | U-Pb en circón y apatito, química y trazas de fisión en<br>apatitos |  |
|                      | RN-4    | U-Pb en circón                                                      |  |

Tabla 3. Técnicas microanalíticas aplicadas a las muestras de la Formación Chivillas.

La preparación de las muestras consistió en triturar y moler, en una prensa hidráulica aproximadamente 2 kg de roca que fueron tamizados en tres tamaños de malla: 4 mm, 180 µm y 125 µm. Este procedimiento se realizó en el taller de molienda del CGEO de la UNAM. La fracción con tamaño menor a 180 µm se usó para separar minerales densos. Para esto se utilizó Bromoformo (CHBr<sub>3</sub>) con densidad >2.8 g/cm<sup>3</sup> y <3.0 g/cm<sup>3</sup>. Este procedimiento se realizó en el taller de separación mineral del CGEO. Del concentrado de minerales densos (>2.8 g/cm<sup>3</sup>) se realizó la separación magnética utilizando un separador tipo Frantz®. En el concentrado no magnético final se encuentran circones y apatitos, además de otros minerales como pirita. Este procedimiento se realizó en el taller de CGEO.

Del concentrado no magnético se seleccionaron manualmente circones y apatitos que luego se montaron en una cinta doble pegamento. De cada muestra se montaron entre 120 a 180 cristales de circón y entre 500 a 600 cristales de apatito (tamaño >60 µm y libres de inclusiones y fracturas). De las fracciones magnéticas (a 0.05, 0.10, 0.25, 0.50, 0.75, 1.0, 1.50 y 2.0 amperios) se montaron grupos de entre 5 a 30 cristales con características físicas similares (tamaño, forma y color), de aquí en adelante éstos serán denominados minerales densos (MD).

Para las muestras que fueron analizadas únicamente por la técnica U-Pb en circón, después de ser trituradas y tamizadas, los minerales se concentraron utilizando una batea plástica en el taller de molienda del CGEO. Posteriormente se seleccionaron y montaron manualmente 120-180 cristales de circón. A continuación se hicieron probetas con resina epoxica de los separados de apatitos, circones y MD que fueron pulidas con lijas de diferentes tamaño de grano (400-3,000) para exponer la superficie

de los minerales. De las probetas de circones se obtuvieron imágenes de catodoluminiscencia (CL), en el laboratorio de fluidos corticales del CGEO, sobre las cuales se seleccionaron puntos (zona de núcleo y/o borde) de cada cristal que posteriormente se analizaron por ablación laser. De las probetas de apatitos se obtuvieron imágenes en luz reflejada que fueron utilizadas como mapas para la ablación laser y trazas de fisión (TF).

#### 3.3.1 Geocronología U-Pb en circón

Los fechamientos U-Pb se realizaron en el laboratorio de estudios isotópicos (LEI) del CGEO utilizando el sistema conformado por un equipo *Resolution Laser System* (*Resolution M50* de marca *Resonetics*) compuesto por un láser ultravioleta LPXpro 220 tipo excímero de 193 nm de longitud de onda que emplea una mezcla de argón y flúor para generar el pulso. El láser esta acoplado a un espectrómetro de masas (ICP-MS) cuadrupolar Thermo ICapQc.

Los protocolos de análisis se realizaron siguiendo la metodología descrita en Solari *et al.* (2010). Se utilizó un diámetro de ablación de 23 µm y una frecuencia de repetición de 5 Hz. El fraccionamiento entre los elementos Pb, U y Th fue controlado a partir de fragmentos del circón estándar 91500 (1,062.6 ± 2.42 Ma) y del circón *Plešovice* (337.13 ± 0.37 Ma) utilizado como segundo estándar. La concentración de elementos traza fue calculada a partir del análisis del vidrio NIST 610 de composición conocida. Durante la corrida analítica se midieron las señales de los isótopos <sup>206</sup>Pb, <sup>207</sup>Pb, <sup>208</sup>Pb, <sup>232</sup>Th, <sup>238</sup>U, <sup>31</sup>P, <sup>21</sup>Sc, <sup>49</sup>Ti, <sup>89</sup>Y, <sup>41</sup>Nb, <sup>177</sup>Hf y REE. Para la reducción de los datos, el cálculo de las edades y las concentraciones elementales de los circones se utilizó el *software* lolite y los esquemas de reducción de datos analíticos, cálculo de edades, errores y su correspondiente propagación (Paton *et al.*, 2010; Petrus y Kamber, 2012). El error sistemático (calibración del estándar, edad del estándar, composición del plomo común y la constante de decaimiento del U) se reportan al nivel de dos sigma (2 $\sigma$ ).

Para circones con edades <1,200 Ma la edad más precisa corresponde a la del cociente isotópico <sup>206</sup>Pb/<sup>238</sup>U y para los circones con edades >1,200 Ma la edad más precisa corresponde al cociente <sup>207</sup>Pb/<sup>206</sup>Pb (Gehrels, 2012). Las edades que excedían un error analítico del 10%, un error <sup>206</sup>Pb/<sup>238</sup>U >4%, una discordancia >20-25% para edades fanerozoicas, >29% para edades Precámbricas y más del -5% de discordancia fueron descartadas.

Los resultados fueron graficados en diagramas de concordia Tera-Wasserburg (TW) y KDE (*Kernel Density Estimator*) utilizando IsoplotR (Vermeesch, 2018) y *Density Plotter* v. 8.4 (Vermeesch, 2012) respectivamente. Las edades de circones detríticos se analizaron también por la técnica estadística multivariable de escalamiento multidimensional (MDS, *Multidimensional Scaling*). En esta se modela en un espacio de pocas dimensiones la similitud/disimilitud entre un conjunto de datos

independientemente del número relativo de análisis (edades en granos individuales) de cada muestra. El MDS es un método cuantitativo que permite hacer comparaciones de manera sencilla y objetiva entre las componentes de edad que se obtienen de la geocronología detrítica. Las muestras más similares se agrupan muy juntas y las disimilares se ubican muy separadas (Vermeesch, 2013). Además, en el MDS se introdujeron muestras sintéticas de unidades que representan posibles fuentes de procedencia y que están asociadas a eventos orogénicos y magmáticos más relevantes. Las muestras sintéticas proporcionan un vector que puede ser relacionado al incremento en la contribución de una componente de edad determinada, facilitando la visualización de los cambios en patrones detríticos a través del tiempo (Spencer y Kirkland, 2016). Las muestras sintéticas deben poseer como característica principal una distribución normal/unimodal del espectro de edad considerado (Spencer y Kirkland, 2016).

Las muestras sintéticas utilizadas en el MDS corresponden a los siguientes intervalos: magmatismo del Jurásico tardío-Cretácico temprano (Martini *et al.*, 2011; Sierra-Rojas y Molina-Garza, 2014), magmatismo del Jurásico (Lawton y Molina-Garza, 2014), el arco magmático del Carbonífero-Pérmico (Kirsch *et al.*, 2012), Orógeno Panafricano-Brasiliano (Cordani y Teixeira, 2007), Complejo Oaxaqueño (Solari *et al.*, 2003) y Orógenos *Grenville*/Sunsas (Cawood *et al.*, 2007).

#### 3.3.2 Geocronología U-Pb y geoquímica en apatito

El análisis U-Pb y geoquímico en apatitos detríticos se realizó en el LEI del CGEO utilizando un sistema de ablación láser de excímero ArF *Resonetics* LPX Pro 193 nm acoplado a un espectrómetro de masas cuadrupolar *Thermo* iCap Qc con fuente de plasma inductivamente acoplado (ICP-MS) siguiendo la metodología descrita en Abdullin *et al.* (2018) y Ortega-Obregón *et al.* (2019).

Se empleó un diámetro de ablación de 60 µm y una tasa de repetición de 4 Hz (Abdullin *et al.*, 2018). Para controlar el fraccionamiento de los elementos se utilizó como material de referencia primario el apatito *First Mine Discovery* de Madagascar (~485 Ma; Thomson *et al.*, 2012) y como estándar secundario el apatito Durango (31.4 ± 0.5 Ma; McDowell *et al.*, 2005). El vidrio NIST RMS 612 de composición conocida fue utilizado como referencia para el cálculo de las concentraciones de los elementos traza. Durante la sesión analítica se midieron las señales de los isótopos <sup>206</sup>Pb, <sup>207</sup>Pb, <sup>208</sup>Pb, <sup>232</sup>Th y <sup>238</sup>U además del Ca, Mg, Mn, Sr, P, Cl, Sr, Y y Tierras Raras (REE). La reducción de datos, la propagación de los errores, la corrección por Pb común frente a materiales de referencia y el cálculos de las edades se realizaron utilizando el *software* lolite y los esquemas de reducción *VizualAge* y *VizualAge\_UcomPbine* (Chew *et al.*, 2014; Paton *et al.*, 2010; Petrus y Kamber 2012). Los errores se reportan a escala de 2 $\sigma$ .

Los resultados fueron graficados en diagramas de concordia Tera-Wasserburg (TW) utilizando IsoplotR (Vermeesch, 2018). Se agruparon poblaciones que cualitativamente mostraran una tendencia lineal coherente y se ajustaran a una línea de discordia, cuya intercepta inferior fue interpretada como la edad de los granos cogenéticos (Chew y Donelick, 2012). El ajuste de la línea de discordia a través de los datos se hizo utilizando el algoritmo de máxima probabilidad de Ludwig (1998), el cual supone que la dispersión de los datos se debe únicamente a las incertidumbres analíticas. La edad de los granos cogenéticos y el error se reportaron como  $t \pm z$  o  $t \pm y$  cuando MSDW > 1 y MSDW <1 respectivamente (Ludwig, 1998). En ambos casos t representa la estimación de probabilidad máxima de la edad; y representa el intervalo de confianza para t usando el número apropiado de grados de libertad y z representa el intervalo de confianza aproximado para t con sobredispersión, calculado como z = y $\sqrt{MSWD}$  (MSDW = *Mean Square Weighted Deviation*; Ludwig, 1998).

Para graficar los resultados de la química de apatitos se utilizaron los siguientes diagramas bivariantes: contenido de Sr (ppm) contra anomalía de Eu (Eu/Eu<sup>\*</sup>), contenido de Y (ppm) contra anomalía de Eu (Eu/Eu<sup>\*</sup>) y contenido total de REE ( $\Sigma$ REE) contra anomalía de Eu (Eu/Eu<sup>\*</sup>). Estas variables fueron seleccionadas ya que son las que mejor representan el disímil comportamiento químico entre los grupos de apatitos identificados en las rocas de la Formación Chivillas. La anomalía de Eu (Eu/Eu<sup>\*</sup>) se calculó dividiendo el contenido normalizado a condrito (McDonough y Sun, 1995) de Eu dentro de Eu<sup>\*</sup>, este último se obtuvo al sumar el contenido normalizado a condrito de Sm y Gd y dividir el resultado dentro de dos.

El diagrama de Análisis de Componentes Principales (PCA; *Principal Analysis Components*; Vermeesch, 2013) se utilizó para establecer correlaciones entre seis variables químicas (Eu/Eu\*, Ce/Yb, La, Sm, Lu, ΣREE) por grano de apatito y además comparar dicho comportamiento con apatitos de rocas del Complejo Oaxaqueño, del magmatismo Carbonífero-Pérmico y de la Formación Matzitzi.

#### 3.3.3 Trazas de fisión en apatitos

Los análisis por trazas de fisión en apatito se realizaron por el método alternativo de medición del contenido de U, en el cual la concentración del <sup>238</sup>U en los cristales es medida *in situ* a partir de la ablación laser asociada a un espectrómetro de masas con fuente de plasma inductivamente acoplado (LA-ICP-MS; Donelick *et al.*, 2005; Hasebe *et al.*, 2004). El protocolo de LA-ICP-MS aplicado se describe en Abdullin *et al.* (2018) y fue usado en la misma sesión analítica utilizada para el cálculo de las edades U-Pb.

Las probetas fueron pulidas para exponer las partes internas de los apatitos. Posteriormente se realizó el ataque químico (*etching*) para revelar las trazas de fisión espontánea. El *etching* se hizo con la inmersión en ácido nítrico (HNO<sub>3</sub>) a 5.5 M a temperatura de 21 °C por 20 segundos. De las probetas se seleccionaron entre 40 a 90
cristales para el conteo de trazas, las cuales debían cumplir los siguientes requisitos: a) granos con un tamaño >60 µm, b) que no presentaran zoneamiento de U (distribución heterogénea de las trazas en el cristal), c) que los granos fueran relativamente limpios (sin muchas inclusiones y microfracturas) y d) que los granos no presentaran altos contenido de U (elevado número de trazas de fisión imposible de cuantificar).

Se realizó un mapa de localización de cristales, a partir de fotografías, con el objetivo de facilitar el conteo de trazas y la ubicación de puntos de ablación, ya que esta debe coincidir con el área del conteo de trazas espontáneas. Para el conteo de trazas de fisión se utilizó un microscopio Zeiss AxioScope-A1. Para la ablación laser se empleó un diámetro de 60 µm y una tasa de repetición de 4 Hz. Como materiales de referencia primarios se utilizaron el apatito Durango y el vidrio NIST 612 de composición conocida para el cálculo del <sup>238</sup>U. Los resultados obtenidos fueron normalizados al estándar interno de <sup>43</sup>Ca tomando un promedio de la concentración de CaO de todos los apatitos analizados, siendo este de 55 ± 3% (Lesnov, 2012). Las edades de trazas de fisión en apatitos se calcularon en IsoplotR (Vermeesch, 2018) y aplicando la corrección zeta, utilizando los resultados obtenidos en el apatito Durango.

Las edades de las trazas de fisión fueron graficadas utilizando RadialPlotter v. 9.4 (Vermeesch, 2009) y la prueba chi-cuadrado ( $\chi^2$ ) se utilizó para evaluar si las edades de granos individuales pertenecen a una sola población de edades. El conjunto de datos con valores de  $\chi^2 > 5\%$  indican una edad concordante (Galbraith, 1981) y representan una "edad central" que es en esencia un promedio ponderado de las edades (Galbraith, 1981; Galbraith y Green, 1990; Galbraith y Laslett, 1993; Vermeesch, 2009). Por el contrario, una probabilidad < 5% es evidencia de una propagación asimétrica de las edades de granos individuales y por lo tanto una mezcla de distintas poblaciones de edades.

Los modelos de enfriamiento (t-T) se construyeron combinando las edades individuales en los granos con las longitudes de las trazas de fisión por medio del *software* HeFTy v.1.9.3 (Ketcham, 2005), que se basa en el modelo de *annealing* de Ketcham *et al.* (2007), y el cual produce pasos de enfriamiento utilizando el sistema de algoritmo de Monte Carlo. En el modelado de inversión se utilizó el contenido de CI (wt. %) como parámetro cinético. Se realizaron al menos 700 historias de tiempo y temperatura elegidas al azar hasta obtener 200 buenos pasos (*good fit*) por muestra. Se consideraron tres restricciones en cada modelo de inversión, siendo estas: 1) una temperatura mayor a la PAZ; 2) la edad aparente de las trazas de fisión y 3) la temperatura media actual de la superficie terrestre ( $20 \pm 10$  °C).

## 3.3.4 Minerales densos

Se obtuvieron imágenes en luz reflejada de las probetas de MD que se utilizaron como mapas en los análisis EDS (*Energy dispersive X-ray spectroscopy*) con el objetivo de identificar los minerales con base en su composición elemental. Esto se realizó en el microscopio electrónico de barrido (MEB) del laboratorio de fluidos corticales del CGEO.

Después de realizados los análisis EDS, las probetas de MD fueron laminadas con el objetivo de contrastar las propiedades ópticas de los minerales con el contenido elemental obtenido y con esto hacer una identificación más certera de cada mineral. Se identificaron los MD de tres muestras (LS-2, V-1 y RN-3) de la Formación Chivillas utilizando la técnica SEM-EDS (contenido elemental) y petrografía convencional.

## 4. RESULTADOS

## 4.1 Petrografía

Petrográficamente se describieron seis muestras de la Formación Chivillas, cinco areniscas y un conglomerado de grano fino (gránulos) (Tabla 2).

Las areniscas poseen granos angulares a subredondeados de tamaño entre muy fino y muy grueso (~0.1 a ~2.0 mm) y un grado de selección muy pobre a pobre. Los contactos entre granos varían entre largos, cóncavo-convexos y suturados (Figura 6). En las muestras LS-3, V-2 y RN-3 las características texturales primarias han sido borradas por la deformación y alteración que poseen, siendo evidente en la disolución, deformación y fragmentación de granos, deformación de cristales de calcita (cemento), un clivaje poco desarrollado y mica blanca de neoformación (Anexo 1).

La pseudomatriz de las areniscas está constituida por arcillas y sericita, producto de la alteración de granos de feldespato, plagioclasa, fragmentos líticos y moscovita. El cemento es de calcita en arreglo poiquilotópico y mosaico poligonal. El reemplazamiento y la alteración de los componentes del armazón por calcita, sericita o hematita son frecuentes. La precipitación de horizontes irregulares y discontinuos de hematita y arcillas (parecidos a picos estilolíticos) se puede observar en algunas muestras.

El armazón de las areniscas está constituido por cuarzo monocristalino con extinción recta u ondulante (22-60% del armazón; Figura 6E), cuarzo policristalino foliado y no foliado (10-30%; Figura 6C); líticos de pedernal (0-6%), plagioclasas con macla polisintética (5-29%; Figura 6B), feldespato potásico (3-12%; Figura 6A), líticos metamórficos de cuarzo-mica (0-20%; Figura 6B), líticos volcánicos felsíticos (4-11%; Figura 6D), líticos volcánicos *lathwork* (0-5%; Figura 6B), líticos volcánicos traquíticos (0-11%; Figura 6C), líticos volcánicos vítreos (0-1%; Figura 6A) y líticos sedimentarios de arenisca (0-7%). Los minerales accesorios (<1%) corresponden a circón, apatito, moscovita, titanita, rutilo, turmalina, clorita, granate, hematita y minerales opacos. Además, la muestra LS-3 posee intraclastos con límites difusos constituidos por material recristalizado, arcillas y micas. Esta muestra posee también un clasto con aspecto de serpentina que ha sido deformado por compactación (Anexo 1).

Los granos de cuarzo en las muestra de arenisca se caracterizan por poseer evidencias de disolución (entrantes), poligonización y fracturamiento que puede estar relleno o no de calcita/sericita. Los feldespatos y plagioclasas frecuentemente exhiben fragmentación de tipo rompecabezas y fracturamiento. Granos con textura de intercrecimiento mirmequítico se identificaron en la mayoría de muestra. Los cristales de moscovita presentan deformación por compactación y en algunas de las muestras es posible observar cristales de mica blanca de neoformación (Anexo 1).

Los líticos metamórficos fueron clasificados con base en su composición y grado (Garzanti y Vezzoli, 2003) en: cuarzo-sericita con clivaje fuerte (Lmf2) y cuarzo-mica con esquistosidad (Lmf3).

Según el contenido de cuarzo total (Qt), feldespatos totales (F) y líticos (L), además de considerar el grado de alteración-deformación, las areniscas se clasifican como se indica en la tabla 4.

Tabla 4. Clasificación de areniscas con base en el contenido de Qt-F-L según las clasificaciones de Garzanti (2016) y Folk (1980).

| Muestras Garzanti (2016) |                                       | Folk (1980)                       |
|--------------------------|---------------------------------------|-----------------------------------|
| LS-2                     | Areniscas litofeldespato-cuarzosa     | Arcosa lítica                     |
| 183                      | Meta-arenisca entre lito-cuarzosa y   | Meta-arenisca entre litoarenita y |
| L3-3                     | feldespatolitico-cuarzosa             | litoarenita feldespática          |
| V-1                      | Arenisca litofeldespato-cuarzosa      | Arcosa lítica                     |
| V 2                      | Meta-arenisca entre litofeldespatico- | Meta-arenisca entre arcosa lítica |
| V-2                      | cuarzosa y feldespatolitico-cuarzosa  | y litoarenita feldespática        |
| RN-3                     | Meta-arenisca feldespato-cuarzosa     | Meta-arenisca arcosa              |

La muestra de conglomerado de gránulos (RN-4) se caracteriza por clastos angulares a subredondeados de tamaño entre ~4.25 y ~1.5 mm, contactos suturados y grado de selección pobre (Figura 6F). Está constituido por cuarzo monocristalino con extinción oblicua asociado a plagioclasas y/o feldespato potásico (~29%), cuarzo policristalino no foliado y foliado (~29%), plagioclasas con macla polisintética (~11%), moscovita asociada a cuarzo y plagioclasa (~8%), moscovita asociada a plagioclasa y feldespato potásico (~2.6%), líticos metamórficos (~5%), líticos sedimentarios de arenisca (~3.7%) y líticos volcánicos felsíticos (~6%).

Los granos de cuarzo presentan evidencias de disolución (entrantes), extinción ondulatoria, poligonización y fracturamiento que puede estar o no relleno de sericita. El fracturamiento, la fragmentación y la textura pertítica y antipertítica son característicos de feldespatos potásicos y plagioclasas. La textura mirmequítica es frecuente en los agregados de cuarzo-plagioclasas-feldespatos potásicos. Los granos de moscovita por lo general exhiben deformación y es posible distinguir mica blanca de neoformación asociada a un clivaje incipiente (Anexo 1).

Los líticos metamórficos están constituidos por cuarzo-moscovita y han sido clasificados como líticos de cuarzo-mica con esquistosidad (Lmf3) según la clasificación de Garzanti y Vezzoli (2003). Con base en la composición, estimación de los componentes y el grado de alteración y deformación la muestra RN-4, se clasifica como un metaconglomerado de gránulos de composición cuarzo-feldespática o feldespato-cuarzosa en la clasificación de Garzanti (2016) y de composición tipo arcosa en la clasificación de Folk (1980).



Figura 6. Microfotografías de las láminas delgadas de las rocas de la Formación Chivillas. Microfotografías con los objetivos 4x (A., C., D., E., F.) y 10x (B.) de areniscas (A-E) y conglomerado de gránulos (F) de la Formación Chivillas. **A.** Luz polarizada cruzada, muestra LS-2 compuesta de cuarzo, plagioclasas, feldespato potásico, líticos volcánicos felsíticos y vítreos. **B.** Luz polarizada cruzada, muestra LS-3 constituida por cuarzo, moscovita, plagioclasas, feldespato potásico, líticos volcánicos felsíticos, *lathwork*, líticos metamórficos y mica blanca de neoformación. **C.** Luz polarizada cruzada, muestra V-1 constituida por cuarzo mono y policristalino, feldespato potásico, plagioclasas, y líticos volcánicos felsíticos. **D.** Luz polarizada cruzada, muestra V-2 que esa constituida por cuarzo, líticos volcánicos felsíticos, líticos metamórficos y mica blanca de neoformación. **E.** Luz polarizada cruzada, muestra RN-3 constituida por cuarzo, feldespato potásico, plagioclasas, moscovita y mica blanca de neoformación. **F.** Luz polarizada cruzada, muestra RN-3 constituida por cuarzo, feldespato potásico, plagioclasas, moscovita y mica blanca de neoformación. **F.** Luz polarizada cruzada, muestra RN-4 con cuarzo mono y policristalino, plagioclasas y feldespato potásico. Símbolos: Qm, cuarzo monocristalino; Qp, cuarzo policristalino; P, plagioclasa; K, feldespato potásico; Lm, lítico metamórfico; Lvf, lítico volcánico felsítico; Lvv, lítico volcánico vítreo; Lvl, lítico volcánico *lathwork*, Lvt, lítico volcánico traquítico; Ms, moscovita; Mbn, mica blanca de neoformación; Ca, calcita.

### 4.2 Geocronología U-Pb en circón detrítico

Se realizaron fechamientos isotópicos U-Pb en circón para cinco muestras de la Formación Chivillas (Tabla 3), los cuales se describen a continuación.

Muestra LS-2: Arenisca recolectada en la barranca Las Salinas. Los cristales de circón se caracterizan por ser subhedrales (traslucidos) a anhedrales (tonalidades rosa) y cristales euhedrales subordinados (traslucidos a levemente amarillentos; Anexo 3). El eje mayor de los circones separados varía entre 300 µm y 60 µm.

En imágenes de CL los circones euhedrales-subhedrales presentan patrones de zonación concéntrica, característico de circones ígneos (Corfu *et al.*, 2003). Los circones anhedrales y algunos subhedrales muestran zonación irregular y estructuras de sobrecrecimiento característico de circones metamórficos (Corfu *et al.*, 2003). Algunos cristales presentan dominios de borde y núcleo (anexo 3). La muestra posee los siguientes rangos de edades: Meso-Neoproterozoico de ~1,367 a 628 Ma (n=86), Pérmico-Triásico (~281 a 215 Ma, n=31) y Jurásico (~199 a 158 Ma, n=10). Además, se obtuvo un grano con edad de ~1,687 Ma (Paleoproterozoico) y dos granos del Cretácico temprano con edad de ~139 y ~140 Ma (Figura 7A).

 Muestra V-1: Arenisca colectada en las cercanías de Vigastepec. Los circones tienen forma entre subhedral (traslucidos a tonalidades rosa) a anhedral (tonalidades rosa) con una pequeña fracción de cristales euhedrales (traslucidos). El eje mayor de los cristales seleccionados oscila entre 336 μm y 60 μm.

En imágenes de CL los cristales euhedrales y subhedrales presentan zonación concéntrica o ausente. Los cristales anhedrales presentan zonación irregular, bordes de crecimiento y en ocasiones son poco brillantes (Anexo 3). Algunos circones se caracterizan por presentar núcleos heredados. Esta muestra posee los siguientes rangos de edades: Meso-Neoproterozoico entre ~1,587 y 555 Ma (n=60), Cámbrico (~508 a 505 Ma, n=3), Ordovícico-Silúrico (~453 a 419 Ma, n=4) y Pérmico-Triásico (~274 a 213 Ma, n=54). Dos granos con las edades más jóvenes (187 y 194 Ma) corresponden al Jurásico temprano (Figura 7B).

Muestra V-2: Arenisca que se colectó cerca de Vigastepec. Los cristales son generalmente euhedrales y traslucidos. El tamaño del eje mayor de los cristales separados oscila entre 240 µm y 60 µm. La relación ancho-largo de los cristales varía entre 1:3 y 1:2. En CL se observan cristales con y sin zonación concéntrica. Algunos cristales poseen núcleos heredados que puede corresponder a un xenocristal o antecristal (Anexo 3). La muestra posee varios rangos de edades: Meso-Neoproterozoico (~1,119 a 586 Ma, n=7), Cámbrico (~535 a 500 Ma, n=3), Ordovícico-Silúrico (~481 a 409, n=5), Pérmico-Triásico (~284 a 214 Ma, n=6),

Jurásico (~178 a 146 Ma, n=5) y Cretácico temprano (144 a 118 Ma, n=37). Edades subordinadas del Paleoproterozoico, Carbonífero y Misisípico están representadas por dos o un grano (Figura 7C).

- Muestra RN-3: Arenisca que se recolectó en las cercanías del poblado Rancho Nuevo. La forma y color de los cristales oscila entre euhedrales a anhedrales y de traslucidos a tonalidades rosas respectivamente. El eje mayor de los cristales separados varía entre 372 μm y 60 μm, la relación ancho-largo de los granos es ~1:3. En imágenes de CL los cristales euhedrales-subhedrales son uniformes o exhiben zonación concéntrica. Algunos cristales subhedrales y los anhedrales presentan zonación irregular con sobrecrecimiento y dominios muy marcados de borde y núcleo. Algunos son poco luminiscentes (Anexo 3). La muestra tiene tres rangos de edades principales: Meso-Neoproterozoico entre ~1,348 y 576 Ma (n=47), Cámbrico (~520 a 507 Ma, n=2) y Pérmico-Triásico (~297 a 244 Ma, n=91). El Ordovícico está representado por un solo grano (Figura 7D).
- Muestra RN-4: Es un metaconglomerado de gránulos que se colectó cerca del poblado de Rancho Nuevo. Los cristales separados son generalmente euhedrales y traslucidos. El tamaño del eje mayor de los cristales seleccionados oscila entre 156 µm y 48 µm. La relación ancho-largo de los cristales varía entre 1:3 y 1:2. En imágenes de CL los cristales son uniformes o con zonación concéntrica, algunos presentan núcleos heredados. Muy pocos cristales exhiben zonación irregular (Anexo 3). Ésta muestra tiene tres rangos de edades principales: Meso-Neoproterozoico entre ~1,243 y 566 Ma (n=8) y Pérmico-Triásico (~297 a 232 Ma, n=70). El Cámbrico y Devónico están representados por una edad y el Carbonífero por dos edades (Figura 7E).





Figura 7. Diagramas de concordia Tera-Wasserburg y KDE (*Kernel density estimation*) de los circones detríticos de la Formación Chivillas. Los números al lado de los picos en el KDE indican la edad del mismo. A. Muestra LS-2. B. Muestra V-1. C. Muestra V-2. D. Muestra RN-3. E. Muestra RN-4.

#### 4.3 Geocronología U-Pb en apatito detrítico

Se realizaron fechamientos isotópicos U-Pb en apatito para tres muestras de la Formación Chivillas (Tabla 3). Los cristales fechados se caracterizan por su forma subredondeada y por el color blanco-gris poco traslucido.

Los cocientes isotópicos se presentan en diagramas de concordia TW (Figura 8), en donde la mayoría de edades forman arreglos lineales coherentes y que se ajustan a líneas de discordias. Esta geometría permitió identificar tres poblaciones principales: Meso-Neoproterozoico, Carbonífero-Pérmico y Cretácico temprano cuyas edades se determinaron a partir del intercepto inferior entre las líneas de concordia y discordia de cada gráfico. Los resultados se describen a continuación:

 Muestra LS-2: Se analizaron 109 cristales de los cuales 100 fueron utilizados para el cálculo de las edades, se descartaron los cristales que no presentaron señal de U, Th, Pb o de elementos traza durante la corrida analítica.

Se identificaron tres poblaciones de edades que se ajustan a igual número de líneas de discordia (Figura 8A). Un grupo con intercepto en 979.8  $\pm$  13.79 Ma (66% de los granos; Neoproterozoico temprano), un grupo con intercepto en 291.39  $\pm$  11.24 Ma (17%; Pérmico) y un grupo con intercepto en 137.20  $\pm$  14.60 Ma (8%; Cretácico temprano). Las elipses que no formaban un arreglo linear fueron descartadas para el cálculo de isócrona (n=9; 9%).

- Muestra V-1: Se analizaron 121 cristales de los cuales 111 fueron utilizados en el cálculo de las edades (Figura 8B). Se descartaron los cristales que no presentaron señal de U, Th, Pb o de elementos traza durante la corrida analítica. Se identificaron dos poblaciones de edades cuyos interceptos corresponden a 1,002.98 ± 14.95 Ma (52% de los granos; Meso-Neoproterozoico) y 275.96 ± 9.10 Ma (48%; Pérmico).
- Muestra RN-3: Se analizaron 128 granos de los cuales 101 fueron utilizados en los cálculos de las edades (Figura 8C). Se descartaron los cristales que no presentaron señal de U, Th, Pb o de elementos traza durante la corrida analítica. Se identificaron dos arreglos lineares con interceptos en 995.65 ± 13.60 Ma (10% de los granos; Meso-Neoproterozoico) y 302.97 ± 4.94 Ma (91%; Carbonífero-Pérmico).





Figura 8. Diagramas de concordia Tera-Wasserburg de los apatitos de la Formación Chivillas. A. Muestra LS-2, B. Muestra V-1 y C. Muestra RN-3.

### 4.4 Geoquímica de apatitos detríticos

La química de apatitos detríticos se determinó para tres muestras de la Formación Chivillas (Tabla 3). La concentración de elementos se obtuvo durante la misma corrida analítica utilizada en la geocronología U-Pb, por lo que se utilizaron los mismos granos. La química se diferenció esencialmente a partir del comportamiento de los siguientes componentes: Estroncio (Sr), Itrio (Y), contenido total de Tierras Raras (ΣREE) y anomalía de Europio (Eu/Eu\*) y tomando en consideración las poblaciones de edades U-Pb en apatito (Meso-Neoproterozoico, Carbonífero-Pérmico y Cretácico temprano).

El contenido de Sr en el grupo de apatitos con edad Meso-Neoproterozoico varía entre 48 y 9,496 ppm. En el grupo de edad Carbonífero-Pérmico el contenido oscila entre 103 y 5,388 ppm. Por último, el grupo del Cretácico temprano posee un contenido de Sr entre 242 y 824 ppm (Tabla 5). El contenido de Y en los apatitos del Meso-Neoproterozoico oscila entre 136 y 7,851 ppm, en los de edad Carbonífero-Pérmico el Y varía entre 52 y 3,797 ppm y para los de edad Cretácico temprano entre 281 y 1,224 ppm (Tabla 5).

La anomalía de Eu (Eu/Eu<sup>\*</sup>) en el grupo del Meso-Neoproterozoico oscila entre muy negativa a ausente (0.04-0.97). En el caso de los apatitos del Carbonífero-Pérmico varía entre muy negativa a muy positiva (0.09-1.88) y para los del Cretácico temprano entre muy negativa a levemente negativa (0.08-0.73; Tabla 5). El  $\Sigma$ REE en los apatitos del Meso-Neoproterozoico se encuentra entre 0.12 y 3.50% en peso. Los del Carbonífero-Pérmico poseen un  $\Sigma$ REE entre 0.02 y 1.49% en peso. Por último, los apatitos de edad Cretácico temprano poseen un  $\Sigma$ REE que varía entre 0.21 y 0.55% en peso (Tabla 5).

| Grupo de edad   | Sr (ppm)        | Y (ppm)           | ΣREE (%wt.)      | Eu/Eu*           |
|-----------------|-----------------|-------------------|------------------|------------------|
| Meso-           | 49.0.406 (422)  | 126 7 951 (1 700) | 0 10 2 50 (1 00) |                  |
| Neoproterozoico | 40-9,490 (422)  | 130-7,031 (1,709) | 0.12-3.50 (1.06) | 0.04-0.97 (0.30) |
| Carbonífero-    | 102 5 200 (557) | 52 2 707 (422)    | 0.02.1.40.(0.26) | 0.00.1.99 (0.66) |
| Pérmico         | 103-5,366 (557) | 52-5,797 (425)    | 0.02-1.49 (0.20) | 0.09-1.00 (0.00) |
| Cretácico       | 242 924 (607)   | 201 1 224 (517)   | 0.21.0.55 (0.27) | 0.09.0.72 (0.60) |
| temprano        | 242-024 (097)   | 201-1,224 (317)   | 0.21-0.00 (0.07) | 0.00-0.73 (0.00) |
| temprano        | 242-824 (697)   | 281-1,224 (517)   | 0.21-0.55 (0.37) | 0.08-0.73 (0.60) |

Tabla 5. Cotejo entre los componentes químicos de las poblaciones de edades U-Pb en apatitos.

Los paréntesis de cada componente indican el promedio del intervalo.

Los resultados geoquímicos se graficaron con base en los componentes Sr, Y,  $\Sigma$ REE y Eu/Eu\* y tomando en consideración los grupos de edades U-Pb en apatito, como se describe a continuación.

### • Diagrama de contenido de Sr (ppm) contra anomalía de Eu (Eu/Eu\*)

En este diagrama se observa como los apatitos del Meso-Neoproterozoico tienen una relación directa entre la anomalía de Eu y el contenido Sr. El comportamiento químico se caracteriza por un menor contenido de Sr conforme la anomalía de Eu es cada vez más negativa y un mayor contenido de Sr cuando la anomalía de Eu es menos negativa (Figura 9A).

Los apatitos del Carbonífero-Pérmico poseen un contenido de Sr más o menos definido en la mayoría de los granos (~200 a 900 ppm). Una población pequeña posee un comportamiento similar al de los apatitos del Meso-Neoproterozoico, es decir, cuando la anomalía de Eu esta entre 0.0 y ~0.6 hay una correlación directa entre ambas variables. El comportamiento de los apatitos del Cretácico temprano es similar al de la mayoría de los granos del Carbonífero-Pérmico (Figura 9A).

## • Diagrama de contenido de Y (ppm) contra anomalía de Eu (Eu/Eu\*)

El comportamiento químico del Y y la anomalía de Eu en los apatitos del Meso-Neoproterozoico no parecen estar asociados. En el caso de los apatitos de edad Carbonífero-Pérmico existe una relación inversa entre ambas variables, ya que los granos con mayor contenido de Y poseen una anomalía de Eu más negativa y viceversa. Los apatitos del Cretácico temprano se ajustan mejor a un comportamiento inverso entre el Y y la anomalía de Eu, como lo hacen los granos del Carbonífero-Pérmico (Figura 9B).

## • Diagrama de contenido total de REE (ΣREE) contra anomalía de Eu (Eu/Eu\*)

En este diagrama se observa una clara diferenciación entre los apatitos del Meso-Neoproterozoico y los del Carbonífero-Pérmico. Los primeros se caracterizan por un contenido de REE en un intervalo más amplio y disperso y, en general, una anomalía de Eu más negativa (Figura 9C). Para el segundo grupo, el contenido de REE frecuentemente es <1% y una variación en la anomalía de Eu entre muy negativa hasta positiva. El grupo del Cretácico temprano tiene una firma muy semejante al de los apatitos del Carbonífero-Pérmico (Figura 9C).



Figura 9. Diagramas de comportamiento químico de los apatitos de la Formación Chivillas. A. Anomalía de Eu contra Sr (ppm); B. Anomalía de Eu contra  $\Sigma REE$  (% wt.); C. Contenido de Sr contra  $\Sigma REE$  (% wt.) y D. Contenido de Y contra  $\Sigma REE$  (% wt.)

# 4.5 Trazas de fisión en apatitos (TFA)

Se realizó el análisis de TFA para tres muestras de la Formación Chivillas (LS-2, V-1 y RN-3), cuantificando el contenido de U a través de LA-ICP-MS (método alternativo de medición del contenido de U: Hasebe *et al.*, 2004). Los granos analizados corresponden a flúorapatitos típicos con cantidades variables de CI. Existe una buena correlación entre el contenido de <sup>238</sup>U (ppm) y la densidad de trazas medidas, lo que se asocia con una edad más confiable. Los resultados se describen a continuación.

- **Muestra LS-2:** Se contaron entre 5 y 115 trazas de fisión espontánea por grano de apatito. El contenido de <sup>238</sup>U varía entre 1.98 y 147.43 ppm y el de cloro entre 0.22 y 1.48% en peso. La edad en granos individuales varía de 42.2 ± 15.5 (1 $\sigma$ ) Ma a 10.4 ± 3.8 (1 $\sigma$ ) Ma con dispersión del 5.9% y edad central de 20.8 ± 0.9 Ma. La prueba  $\chi^2$  es de 13%, por lo que se asume que las edades individuales son consistentes con una sola población de granos (Galbraith, 1981; Figura 10A).
- **Muestra V-1:** Se contaron entre 6 y 263 trazas de fisión espontánea por grano de apatito. El contenido de <sup>238</sup>U oscila entre 1.95 y 176.75 ppm y el de cloro entre 0.40 y 1.57% en peso. Las edades varían entre 146.6 ± 23.4 (1 $\sigma$ ) Ma y 27.0 ± 7.4 (1 $\sigma$ ) Ma con dispersión del 19%. La prueba  $\chi^2$  es de 0.0%, por lo que se asume que las edades individuales no pertenecen a una solo población de granos. Para esta muestra se consideró un modelo de mezcla de edad mínima ( $\chi^2$ =0.0%; Galbraith y Laslett, 1993) ya que la mayoría de granos se traslapan dentro del error en la componente más joven de edad. La edad mínima para el grupo de apatitos es de 41.9 ± 1 Ma (Figura 10B).
- **Muestra RN-3:** Se contaron entre 5 y 80 trazas de fisión espontánea por grano de apatito. El contenido de <sup>238</sup>U varía entre 1.41 y 82.28 ppm y el de cloro entre 0.14 y 1.70% en peso. Las edades de TFA varían de 69.7 ± 17.2 (1 $\sigma$ ) Ma a 22.4 ± 9 (1 $\sigma$ ) Ma con dispersión del 14% y una edad central de 40.4 ± 1.3 Ma. La prueba  $\chi^2$  es de 13% por lo que se asume que las edades individuales son consistentes con una sola población de granos (Galbraith, 1981; Figura 10C).



Figura 10. Diagramas radial de edades de TFA, de densidades de TFA contra <sup>238</sup>U (ppm) y edad de grano por TFA contra Cloro (wt.%). A. Muestra LS-2. B. Muestra V-1. C. Muestra RN-3.

### 4.6 Minerales densos (MD)

Con base en el contenido elemental (Tabla 6) y las características petrográficas (Figura 11) se identificaron los MD para tres muestras de la Formación Chivillas. La cantidad de MD no se cuantificó estadísticamente, sin embargo se observó que los piroxenos y anfíboles están presentes solo en la muestra LS-2. El granate es más abundante en la V-1 con respecto al resto de muestras. La turmalina está presente en gran proporción

en todas las muestras, siendo mayor en RN-3. El apatito, circón y rutilo son muy abundantes mientras que la titanita es escasa o ausente en las muestras.

La presencia de ankerita/dolomita puede estar asociada al tipo de cemento en las muestras. La hematita/magnetita son minerales muy abundantes mientras que la ilmenita y pirita están presentes en dos y una muestra respectivamente.

Solo se identificaron dos granos de cromita, una en cada muestra como se indica en la tabla 9. Cristales de allanita están presentes en las tres muestras en proporciones relativamente bajas, siendo más frecuente en la muestra LS-2.

| SEM-EDS                       | Petrografía                   |      | Muestra |      |
|-------------------------------|-------------------------------|------|---------|------|
| Contenido elemental           | Mineral                       | LS-2 | V-1     | RN-3 |
| Zr, Si                        | Circón                        | X>>  | χ>>     | χ>>  |
| P, Ca, Si, Ti, Fe             | Apatito                       | X>>  | χ>>     | X>>  |
| Ti                            | Rutilo                        | X>>  | χ>>     | X>>  |
| Mg, Al, Si, Ca, Fe, Ti, K     | Piroxeno                      | Х    |         |      |
| Mg, Al, Si, Ca, Fe, Ti        | Anfíbol                       | Х    |         | X    |
| S, Fe                         | Opaco (Pirita)                | Х    |         |      |
| Al, Mg, Si, Ca, Fe, Ti, Na, K | Turmalina                     | Χ>   | Χ>      | χ>>  |
| Fe, Ti                        | Opaco (ilmenita)              | Х    |         | X    |
| Fe                            | Opaco<br>(hematita/magnetita) | Χ>>  | X>>     | χ>>  |
| Ca, Mg, Fe                    | Ankerita/Dolomita             | Х    |         |      |
| Fe, Ca, Ti, Si                | Titanita                      |      | Х       |      |
| Mg, Al, Si, Ca, Fe            | Granate                       | Х    | χ>>     | X    |
| Fe, Cr                        | Opaco (Cromita)               | Х    | Х       |      |
| Mg, Al, Si, Cl, Ca, Fe        | Clorita                       |      | Х       |      |
| Mg, Si, Ca, Fe, Ti            | Allanita                      | Х    | Х       | Х    |

Tabla 6. Minerales densos identificados en las muestras de la Formación Chivillas.

Las equis (X) y el signo mayor que (>) indican la presencia de los minerales en la muestra y la abundancia relativa de éstos respectivamente.



Figura 11. Microfotografías en luz polarizada plana de los minerales densos (HM) identificados en las muestras de la Formación Chivillas. Se utilizó el objetivo 20x para A y 20x para B - P. **A-G**. Minerales de la muestra LS-2. **H-L.** Minerales de la muestra V-1. **M-P.** Minerales de la muestra RN-3. Simbología: Px, piroxeno; Anf, anfíbol; Ap, apatito; Zrn, circón; Rt, rutilo; Tur, turmalina; Ank, ankerita; Grt, granate; Chl, clorita; Ttn, titanita.

## 5. DISCUSIÓN

### 5.1 Petrografía, minerales densos y procedencia

El análisis petrográfico de las rocas de la Formación Chivillas indica una procedencia principal de fuentes cuarzo-feldespáticas. Además, el contenido de plagioclasa sugiere una rápida acumulación próxima a la fuente, ya que este mineral es menos estable que el feldespato potásico (Dickinson, 1985). Los líticos metamórficos identificados en las rocas de la Formación Chivillas (Lmf2 y Lmf3) pueden ser derivados de las rocas metasedimentarias de los complejos Acatlán y Ayú (Ortega-Gutiérrez, 1978; Helbig *et al.*, 2012), ambos localizados en el Terreno Mixteco. Los líticos mirmequíticos proceden de rocas metamórficas de alto grado como las del Complejo Oaxaqueño (Solari *et al.*, 2003) y de rocas graníticas como las que intruyen a éste y al Complejo Acatlán (Ortega-Obregón *et al.*, 2014).

Los líticos volcánicos de composición félsica a intermedia-máfica pueden proceder de las tobas riolíticas de la Formación Matzitzi (Centeno-García *et al.*, 2009), de la riolita Sosola emplazada sobre las rocas del Complejo Oaxaqueño (Ortega-Obregón *et al.*, 2014), de las rocas volcánicas asociados al arco Nazas (Formación Nazas y equivalentes Barboza-Gudiño *et al.*, 2008; Lawton y Molina-Garza, 2014), de las rocas volcánicas de la Formación Tecomazuchil (Campos-Madrigal *et al.*, 2013) y de las rocas volcánicas del arco magmático del Cretácico temprano (Sierra-Rojas y Molina-Garza, 2014; Sierra-Rojas *et al.*, 2016). Recientemente se han identificado clastos volcánicos con esta composición en las facies conglomeráticas de la Formación Matzitzi (Juárez-Zúñiga, 2019) por lo que no se descartan como posible fuente.

Los líticos sedimentarios clásticos son poco abundantes en las muestras de la Formación Chivillas y pueden tener una gran variedad de posibles fuentes. Entre estas se pueden mencionar a la cubierta sedimentaria del Complejo Acatlán, la cubierta paleozoica del Complejo Oaxaqueño, rocas de la Formación Matzitzi, rocas de la Formación Todos Santos.

En resumen, los componentes del armazón en las rocas de la Formación Chivillas indican una procedencia principalmente de los complejos Oaxaqueño, Acatlán y Ayú y de rocas graníticas y volcánicas emplazadas especialmente en los terrenos Mixteco y Zapoteco. Adicionalmente, el contenido de minerales densos como granate, turmalina, anfíboles, allanita que se asocian a fuentes graníticas y metamórficas (Deer *et al.*, 2013), rutilo (mineral característico de las rocas metamórficas de alto grado; Mange y Maurer, 1992) y piroxenos (que se derivan principalmente de rocas ígneas básicas y metamórficas de medio-alto grado) confirma la procedencia de fuentes plutónicas y metamórficas establecida con base en los componentes del armazón en las areniscas de la Formación Chivillas.

## 5.2 Geocronología U-Pb en circón detrítico

Dado que el magmatismo y metamorfismo no son procesos continuos en el tiempo y que intervalos de erosión y acumulación de detritos pueden afectar a las rocas recién formadas y unidades preexistentes, muchas unidades sedimentarias pueden contener granos de circón que no necesariamente representen el primer ciclo detrítico y por ende las edades U-Pb pueden asociarse a una amplia variedad de rocas fuente. Dentro de los rangos de edad U-Pb en circón presentes en las muestras de la Formación Chivillas hay poblaciones que pueden correlacionarse con edades reportadas en bloques de basamento y arcos magmáticos distribuidos en el centro y sur de México (Figura 12).

La población de circones con edad entre ~1,300 y 931Ma (31% del total de granos analizados; Figura 12) se puede correlacionar con rocas que representan el evento orogénico *Grenville* durante el ensamble de Rodinia (Tohver *et al.*, 2004; Rino *et al.*, 2008). En sur de México estas edades se han reportado principalmente en las rocas metamórficas del Complejo Oaxaqueño (Ortega-Gutierrez *et al.*, 1995). En el Complejo Acatlán (Talavera-Mendoza *et al.*, 2005; Kirsch *et al.*, 2012) y en la cubierta sedimentaria paleozoica de este y del Complejo Oaxaqueño (Gillis *et al.*, 2005) los circones de edad *Grenville* son un grupo representativo, por lo que dichas rocas no se descartan como potenciales fuentes.

La población de circones detríticos con edad entre ~815 y 500 Ma (6% del total analizados) es reducido, pero está presente en todas las muestras (Figura 12). Estos granos representan los eventos relacionados con la orogenia Panafricana-Brasiliana durante el ensamble de Gondwana (da Silva *et al.*, 2005; Cordani y Teixeira, 2007). En rocas del terreno Maya (Weber *et al.*, 2007, 2008), el Complejo Acatlán (formaciones Cosoltepec, Magdalena, Chazumba y Tecomate; Talavera-Mendoza *et al.*, 2005; Kirsch *et al.*, 2012) y en unidades sedimentarias derivadas de éstas, se han reportado circones de este intervalo, indicando que dichas rocas son una potencial fuente de sedimentos de la Formación Chivillas.

La población de circones detríticos con edad entre ~482 y 410 Ma es muy reducido (2% del total analizados) y está presente en tres de las muestras (Figura 12). Estas edades pueden correlacionarse con las edades de rocas magmáticas que han sido reportadas en el Complejo Acatlán (~480-440 Ma; Keppie *et al.*, 2008), en el Macizo de Chiapas (~490-400 Ma; Estrada-Carmona *et al.*, 2012) y en Guatemala (Ortega-Obregón *et al.*, 2008; Martens *et al.*, 2010; Solari *et al.*, 2010), por lo que pueden ser la fuente de procedencia detrítica de dichos circones.

La población de circones detríticos con edad entre ~308 y 230 Ma (45% del total analizados; Figura 12) es compatible con la edad de las rocas plutónicas y volcánicas asociadas al arco magmático continental que se desarrolló en el oeste de Pangea durante el Carbonífero-Pérmico y que pudo haberse extendido hasta el Triásico (Torres

*et al.*, 1999; Dickinson y Lawton, 2001; Kirsch *et al.*, 2012). Cuerpos ígneos en los terrenos Mixteco y Zapoteco como el Plutón Cuanana (311 ± 2 Ma; Ortega-Obregón *et al.*, 2014), los batolitos Honduras y Zanitza (290 ± 2 Ma y 287 ± 2 Ma; Ortega-Obregón *et al.*, 2014), el *Stock* Carbonera (272 ± 1 Ma; Ortega-Obregón *et al.*, 2014), la riolita Sosola (270 ± 3 Ma; Ortega-Obregón *et al.*, 2014) y el granito Etla (255 ± 1 Ma; Ortega-Obregón *et al.*, 2014) que se emplazaron en y sobre las rocas del Complejo Oaxaqueño, además del Plutón Totoltepec en su fase máfica y félsica (306-289 Ma; Elías-Herrera y Ortega-Gutiérrez, 2002; Kirsch *et al.*, 2012) y el granito Cozahuico (270 ± 2.6 Ma; Elías-herrera *et al.*, 2005) en el Complejo Acatlán, probablemente sean las fuentes primarias de los circones detríticos con dicho rango edad de la Formación Chivillas. Además, rocas intrusivas con este rango de edad también han sido identificas en el sur del Terreno Maya por lo que no se descartan como potenciales fuentes.

La población de circones con edad entre ~201 y 159 Ma es poco abundante (3% del total analizados; Figura 12) y está presente solo en tres de las muestras. Estas edades pueden correlacionarse con la edad de las rocas volcánicas asociadas al arco Nazas, representadas por la Formación Nazas y equivalentes (Barboza-Gudiño *et al.*, 2008; Lawton y Molina-Garza, 2014), por lo que pueden constituir una viable fuente para éstos circones detríticos. Otra fuente potencial es el Complejo Ayú que posee edades que representan la fusión parcial de rocas metasedimentarias entre ~171 y 160 Ma (migmatización, emplazamiento de diques e intrusión de cuerpos de pegmatitas; Helbig *et al.*, 2012).

La población de circones con edad entre ~146 y 118 Ma (7% del total analizados) está presente en solo dos muestras (LS-2 y V-2; Figura 12). Estos circones detríticos poseen edades que son compatibles con la edad de rocas plutónicas, volcánicas y volcanosedimentarias asociadas al arco magmático continental que se extendió en el margen occidental de México durante el Cretácico temprano (Sierra-Rojas *et al.*, 2016) y con la edad de rocas asociadas al Terreno Guerrero (sucesiones vulcanogénicas con afinidad de arco intraoceánico y vulcanosedimentarias asociadas a cuencas extensionales del Jurásico tardío-Cretácico temprano; Ortega-Flores, 2017), por lo que estos circones detríticos pueden tener como fuentes de procedencia al conjunto de rocas mencionadas anteriormente.

Una población de circones con edad entre ~225 y 213 Ma (1.6% del total; Figura 12), una con edad entre ~925 y 850 Ma (2% del total; Figura 12) y una con edad >1,320 Ma (2.4% del total; Figura 12) están presentes en las muestras de la Formación Chivillas. Estos rangos de edades, en conjunto con alguno de los indicados anteriormente, son compatibles con los intervalos reportados en rocas asociadas al Abanico Potosino (~300-210 Ma, ~1,250-900 Ma y ~1,650-1,300 Ma; Barboza-Gudiño *et al.*, 2010; Ortega-Flores *et al.*, 2014), por lo que no se descartan como posibles fuentes detríticas. El grupo de circones más joven de todas las muestras analizadas se encuentra en la muestra V-2, por lo que se utilizó para calcular la edad máxima de depósito considerando las primeras ocho edades con traslape en el error. La edad calculada es 124.5 ± 1.3 Ma (*MSWD*=1.1) que corresponde al Barremiense-Aptiense y que es coherente con lo reportado en trabajos previos (Alzaga y Pano, 1989; Mendoza-Rosales, 2010; Sierra-Rojas *et al.*, 2016).



Figura 12. Curvas de estimación de densidad de Kernel (KDE) de las edades detríticas de los circones de la Formación Chivillas. Las franjas de color representan las edades de basamento y magmatismo encontradas en rocas de México y las barras de color negro representan los intervalos de edades detríticas del Abanico Potosino.

El diagrama de escalamiento multidimensional (MDS) de la figura 13 modela la similitud/disimilitud entre los patrones de edad de las muestras de la Formación Chivillas y las contrasta con 69 muestras sedimentarias y metasedimentarias de distintas formaciones del centro y sur de México y con 6 muestras sintéticas que representan los principales eventos orogénicos y magmáticos desarrollados entre el Precámbrico y el Cretácico Inferior (Anexo 8). La ubicación aproximada de las unidades utilizadas para el MDS se presenta en la Figura 14.

El mapa MDS (Figura 13) se caracteriza por mostrar un arreglo más o menos agrupado en las muestras más antiguas y uno más disperso en las unidades más jóvenes, esto es consistente con una proveniencia más variada a través del tiempo. Las muestras de edad pre-Jurásico, además de algunas más jóvenes, se ubican preferencialmente entre las muestras sintéticas del Orógeno *Grenville/*Sunsas, el Complejo Oaxaqueño y el Orógeno Panafricano-Brasiliano e indica una mayor afinidad genética hacia estas componentes de edad. En términos generales las muestras de la Formación Chivillas (LS-2, V-1, RN-3, RN-4 y V-2) son disimilares entre sí y la mayoría se ubican entre las muestras sintéticas del Complejo Oaxaqueño (*Grenville*) y el arco magmático del Paleozoico tardío (Carbonífero-Pérmico), lo que podría sugerir un cambio local en las fuentes de sedimentos, hasta un predominio total de la componente del Cretácico Inferior.



Figura 13. Diagrama MDS de las muestras de la Formación Chivillas y 69 muestras sedimentarias y metasedimentarias del centro y sur de México. Las muestras sintéticas representan las fuentes potenciales de sedimento del: Orógeno *Grenville*/Sunsas (1,200±100 Ma), Complejo Oaxaqueño (1,000±50 Ma), Orógeno Panafricano-Brasiliano (600±100), arco Carbonífero-Pérmico (300±50 Ma), arco Jurásico (170±20 Ma), magmatismo del Jurásico Superior-Cretácico Inferior (130±20 Ma).

En el MDS, la muestra LS-2 tiene como vecinas más próximas a las analizadas por Mendoza-Rosales (2010) de la Formación Chivillas. Esto es coherente, ya que las tres muestras fueron colectadas en la barranca Las Salinas al noreste de Tehuacán (Figura 3) y por lo tanto comparten características genéticas comunes. Además, el agrupamiento y cercanía de dichas muestras con las de las formaciones Zicapa y Atzompa (56 y 59) es coherente con lo establecido por Sierra-Rojas *et al.* (2016) y que se refiere al depósito de las formaciones Chivillas, Zicapa y Atzompa en un sistema geodinámico similar y sincrónico con actividad volcánica.

Tanto la muestra LS-2 como la V1 se localizan adyacentes a las que representan a los sistemas de abanicos Potosino y Tolimán (muestras: 4 y 5: El Alamar; 6, 8, 9: El Chilar, 16: Zacatecas y 15 y 20: Complejo Arteaga) y al Complejo Macizo de Chiapas (69 y 71: La Sepultura y 72: Custepec), mientras que las muestras RN-3 y RN-4 se encuentran en la vecindad de las que representan a las formaciones La Sepultura (71), Tianguistengo (24) y Tecomate (61; Figura 13 y tabla 7). La posición de las muestras de la Formación Chivillas con respecto a las sintéticas que representan al Complejo Oaxaqueño, el Orógeno Panafricano-Brasiliano y el Arco Carbonífero-Pérmico y la similitud con unidades sedimentarias de los terrenos Guerrero, Mixteco y Maya y de las rocas asociadas a los abanicos Potosino y Tolimán, sugieren firmas detríticas similares, principalmente en las componentes de edad *Grenville*, Neoproterozoico-Ordovícico y Paleozoico tardío. Lo anterior indica que las unidades sedimentarias poseen una procedencia común o que las unidades más jóvenes son el resultado del reciclaje de las más antiguas.

| Muestras  | LS-2                 | V-1                  | RN-3                                 | RN-4               |
|-----------|----------------------|----------------------|--------------------------------------|--------------------|
| Vecinas   |                      | 20 (C Arteaga)       | 20 (C Arteaga)                       |                    |
| más       | 54 y 55 (Chivillas)  | 71 (La Sepultura)    | 20 (C. Aneaya)<br>24 (Tionguistongo) | 24 (Tianguistengo) |
| próximas  |                      |                      |                                      |                    |
|           | 2 (Abanico Potosino) |                      |                                      |                    |
|           | 4 y 5 (El Alamar)    | 1 (Abanico Potosino) |                                      |                    |
| Más       | 6, 8, 9 (El Chilar)  | 15 (C. Arteaga)      | 61 (Tecomate)                        |                    |
| similares | 56 (Zicapa)          | 16 (Zacatecas)       | 71 (La Sepultura)                    |                    |
|           | 59 (Atzompa)         | 69 (La Sepultura)    |                                      |                    |
|           | 72 (Custepec)        |                      |                                      |                    |

| Tabla 7. | Vecinas más | próximas y | más similares | a las muestras | de la | Formación | Chivillas er | n el MDS |
|----------|-------------|------------|---------------|----------------|-------|-----------|--------------|----------|
|          |             | , ,        |               |                |       |           | -            |          |

La muestra V-2 posee edades del Barremiense-Aptiense que la hacen la más disimilar con respecto al resto de muestras. Esta muestra en el MDS posee como vecinas más próximas a las muestras de la Formación Arperos (30, 31 y 32) y se localiza muy cercana a la 57 (Zicapa), 44 (Taxco-Taxco Viejo) y 27 (Ojo de Agua) que representan depósitos vulcanosedimentarios y metasedimentarios (Figura 13). Las firmas detríticas entre estas unidades se caracterizan por la alta proporción de edades del Jurásico tardío-Cretácico temprano sobre las del Triásico o más antiguas.

Las edades del Cretácico temprano en sucesiones sedimentarias del centro y sur de México se asocian a actividad magmática coetánea con la deposición, como ha sido reportado entre otras, en las formaciones Taraises (Dávalos-Elizondo, 2011), San Juan de la Rosa (Dávila Alcocer *et al.*, 2009; Ortega-Flores *et al.*, 2014), Zicapa (Sierra-Rojas y Molina-Garza, 2014) y Atzompa (Sierra-Rojas *et al.*, 2016).



Figura 14. Localización aproximada de las unidades utilizadas para el análisis de escalamiento multidimensional (MDS). Más información de la muestras se presenta en el anexo 8.

### 5.3 Geocronología y geoquímica de apatitos

### 5.3.1 U-Pb en apatito detrítico

En los apatitos de las muestras de la Formación Chivillas se identificaron 2 poblaciones de edades que se corresponden dentro del rango de error: Meso-Neoproterozoico y Carbonífero-Pérmico. Una tercera población con edad del Cretácico temprano se identificó solo en la muestra LS-2 (Tabla 8).

| Muestra | Meso-Neorpoterozoico | Carbonífero-Pérmico | Cretácico temprano |
|---------|----------------------|---------------------|--------------------|
| LS-2    | 979.8±14 Ma (66%)    | 292.8±12 Ma (16%)   | 131.5±12 Ma (9%)   |
| V-1     | 1003±15 Ma (52%)     | 276±9 Ma (48%)      |                    |
| RN-3    | 995.6±14 Ma (10%)    | 303±5 Ma (90%)      |                    |

Tabla 8. Isócronas de edad U-Pb en apatito de las muestras de la Formación Chivillas.

Los paréntesis indican el porcentaje de granos de cada componente de edad del total analizado por muestra.

Las isócronas de edad U-Pb en apatitos con edades del Meso-Neoproterozoico pueden ser correlacionadas con el rango de edad *Grenville* de los cuerpos de basamentos metamórfico del sur de México. A partir de las consideraciones en cuanto a la inestabilidad a la meteorización y limitada resistencia mecánica del apatito en los sistemas de transporte sedimentario (Morton y Hallsworth, 1999) y de la ubicación de la cuenca Cuicateca adyacente al Complejo Oaxaqueño, durante el depósito de la Formación Chivillas, es más factible que estos apatitos representen la denudación y los detritos de primer ciclo procedentes del conjunto de rocas metamórficas en facies de granulita del Complejo Oaxaqueño. Esta asunción es coherente con lo establecido a través del contenido de plagioclasas, en el análisis petrográfico, en cuanto a una acumulación de detritos muy próxima a la fuente.

La temperatura de cierre (Tc) del sistema U-Pb en apatito oscila entre el rango de ~350-550 °C (Chamberlain y Bowring, 2001) por lo que las isócronos de edad Meso-Neoproterozoico obtenidas en los apatitos de la Formación Chivillas (Tabla 8) corresponden a edades de enfriamiento de la fuente. Esto es consistente con la edad de enfriamiento de 977 ± 12 Ma reportada por Solari *et al.* (2003) y que fue calculada por el método de Ar-Ar en hornblenda (Tc del sistema Ar-Ar en hornblenda: ~480-570°C; Harrison, 1982) y que corresponde al enfriamiento experimentado por las rocas en la parte norte del Complejo Oaxaqueño.

Un grupo de apatitos concordantes en las tres muestras analizadas (n=7 en total) poseen edades que van desde ~1,024 a 967 Ma (Figura 6) y que se traslapan dentro del error con las etapas de intrusión de la *suite* AMCG (anortosita, mangerita, charnoquita y granito; ~1,012 ± 12 Ma; Keppie *et al.*, 2004), metamorfismo granulítico (~1,004 a 979 Ma; Solari *et al.*, 2003) y enfriamiento de la zona norte del Complejo Oaxaqueño (979 a 945 Ma; Solari *et al.*, 2003; Keppie *et al.*, 2004). Las edades concordantes en apatito comparadas con las de cristalización de los circones del Complejo Oaxaqueño indican que las rocas pasaron de altas temperaturas (Tc del circón) a temperaturas intermedias (Tc del apatito) muy rápidamente y, además, sugiere que los apatitos concordantes más antiguos registran el enfriamiento de los protolitos de la *suite* AMCG.

Las isócronas de edad Carbonífero-Pérmico, de los apatitos analizados de las muestras de la Formación Chivillas (Tabla 8), se pueden correlacionar con la edad de las rocas

ígneas plutónicas y volcánicas que representan el arco magmático desarrollado en el oeste de Gondwana durante el Paleozoico tardío (como se estableció a partir de las edades U-Pb en circón) y que en la actualidad afloran de Norteamérica hasta Centroamérica. Dado que los apatitos más antiguos de la Formación Chivillas se asociaron a la denudación de las rocas de Complejo Oaxaqueño y que muchos de los cuerpos ígneos que representan el arco magmático del Paleozoico tardío están emplazados dentro de las rocas de los complejos Oaxaqueño y Acatlán, es factible que los apatitos con edades Carbonífero-Pérmico representen detritos de primer ciclo procedentes de los granitos Etla y Cozahuico, de la Riolita Sosola, del *Stock* Carbonera, de los batolitos Zanitza y Honduras y de los plutones Cuanana y Totoltepec en su fase máfica y félsica.

En la figura 15 se comparan las isócronas de edad U-Pb en apatito con la edad de cristalización (U-Pb en circón) de los cuerpos intrusivos y extrusivos de edad Carbonífero-Pérmico emplazados en y sobre las rocas de los complejos Oaxaqueño y Acatlán. En ésta figura se observa como los apatitos de la muestra RN-3 y LS-2 pueden tener como fuente principal a las rocas de los plutones Cuanana y Totoltepec en su fase máfica, aunque la isócrona de edad de LS-2 es relativamente más joven que la de RN-3. Considerando la isócrona de edad de la muestra V-1, ésta puede tener como fuente principal de los apatitos a los batolitos Honduras y Zanitza y al Plutón Totoltepec en su fase félsica. Además, no se puede descartar que el conjunto de apatitos que constituyen las tres isócronas procedan también de las rocas volcánicas asociadas a dicho arco magmático y de rocas plutónicas equivalente a las mencionadas anteriormente, aunque en la actualidad no se preserve el registro de las mismas.

|   |                   |             | Unidad magmática y | Edad isócro                | na U-Pb er                                                                                                  | apatitos    |            |          |
|---|-------------------|-------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|-------------|------------|----------|
| E | Era Periodo Época |             | Época              | edades U-Pb en circón (Ma) | LS-2                                                                                                        | V-1         | RN-3       |          |
|   |                   | Lopingiense |                    | pingiense                  | Granito Etla <b>(255±1)</b>                                                                                 |             |            |          |
|   | mico              |             | Guadalupiense      |                            | G. Cozahuico / R. Sosola <b>(270±3)</b><br><i>Stock</i> Carbonera <b>(272±1)</b>                            |             | 276+9 Ma   |          |
|   | Paleozolc         | Pér         | Cisuraliense       |                            | Batolito Zanitza <b>(287±2)</b><br>Plutón Totoltepec (F) <b>(289±2)</b><br>Batolito Honduras <b>(290±2)</b> | 292.8±12 Ma | 21020 1114 |          |
|   |                   | ífero       | anico              | Superior                   | Plutón Totoltepec (M) (306±2)                                                                               |             |            | 303±5 Ma |
|   |                   | Medio Medio |                    | Medio                      | Plutón Cuanana <b>(311±2)</b>                                                                               |             |            |          |
|   |                   | Cart        | Pel                | Inferior                   |                                                                                                             |             |            |          |

Figura 15. Diagramas de comparación entre las edades de cristalización de los cuerpos ígneos emplazados en los Complejos Oaxaqueño y Acatlán y las isócronas de edad paleozoica obtenidas en los apatitos de la Formación Chivillas. M=máfico, F=félsico y G=granito.

La edad del Cretácico temprano se identificó solo en los apatitos de la muestra LS-2, por lo que es una componente subordinada en las rocas de la Formación Chivillas. Sin embargo, es muy importante ya que restringe la edad máxima de depósito de la formación entre el Berriasiense y Aptiense, lo que además es coherente con la edad establecida a partir de la geocronología U-Pb de circones detríticos (Barremiense-Aptiense).

La configuración tectónica del centro y sur de México durante el Cretácico Inferior estaba influenciada por procesos de extensión (e.g., desarrollo de cuencas como la Cuicateca) y magmatismo que dio como resultado el emplazamiento de rocas ígneas coetáneas con la sedimentación. Esta geodinámica hace factible que los apatitos del Cretácico temprano presentes en la Formación Chivillas procedan de los rocas magmáticas (volcánicas y volcanosedimentarias) que se relacionan al arco volcánico que se desarrolló en el margen Pacífico de México y cuyas evidencias se observan, por ejemplo, en las formaciones Taraises (Dávalos-Elizondo, 2011), Zicapa (Sierra-Rojas y Molina-Garza, 2014) y Atzompa (Sierra-Rojas *et al.*, 2016) del Cretácico temprano como ya fue mencionado anteriormente.

## 5.3.2 Química de apatitos

El comportamiento químico de los apatitos, en especial el contenido total de Tierras Raras ( $\Sigma$ REE), de Sr, Y y anomalía de Eu, demuestra que existen al menos tres fuentes de procedencia principales para los sedimentos de la Formación Chivillas y que, además, están estrechamente relacionadas con las edades U-Pb en apatito.

El comportamiento químico de los elementos traza en apatitos de rocas metamórficas es muy heterogéneo y está influenciado por el crecimiento cogenético de otras fases minerales (e.g., monacita, epidota, granate) y por el grado metamórfico experimentado por las rocas (Henrichs *et al.*, 2018).

Los apatitos asociados a rocas de bajo a medio grado metamórfico se caracterizan por su bajo contenido en REE e Y (Henrichs *et al.*, 2018). Considerando que el contenido de Y en los apatitos del Meso-Neoproterozoico de la Formación Chivillas oscila entre 136 y 7,851 ppm y que solo 23% de los granos posee un contenido <700 ppm, se interpreta que los apatitos Meso-Neoproterozoico pudieron proceder principalmente de rocas con alto grado metamórfico. El comportamiento químico de apatitos de rocas de alto grado (e.g., paragneises en facies de anfibolita superior y granulita) indica que estos poseen típicamente alto contenido de REE y anomalía de Eu muy negativa a leve (Henrichs *et al.*, 2018). Este comportamiento es muy semejante al de los apatitos del Meso-Neoproterozoico de la Formación Chivillas ( $\Sigma$ REE entre 0.12-3.50% en peso y Eu/Eu\* entre 0.04-0.97; Figura 9) y es coherente con la interpretación de una procedencia asociada a rocas metamórficas de alto grado.

Dado que la cuenca Cuicateca se localizaba adyacente al Complejo Oaxaqueño durante el Cretácico Inferior, que la edad de los apatitos más antiguos identificados en las areniscas de la Formación Chivillas es coherente con la edad del metamorfismo en facies de granulita registrado en las rocas de dicho complejo y que el comportamiento químico de los apatitos del Meso-Neoproterozoico indican que su génesis está asociada a condiciones metamórficas de alto grado, se interpreta que el grupo de apatitos de la Formación Chivillas con edad Meso-Neoproterozoico proceden del conjunto de rocas del Complejo Oaxaqueño.

El grupo de apatitos del Carbonífero-Pérmico, identificado en las rocas de la Formación Chivillas, posee un contenido de Sr que tiende a mantenerse dentro de un rango más o menos bien definido cuando la anomalía de Eu oscila entre positiva a levemente negativa (Eu/Eu\* ≥ 0.7). Sin embargo, cuando la anomalía de Eu es más negativa (Eu/Eu\*  $\leq$  0.6) el contenido de Sr disminuye. Por el contrario la concentración de Y tiende a aumentar cuando la anomalía de Eu se hace más negativa. Dado que el contenido de Sr es empobrecido y el de Y aumenta relativamente durante el fraccionamiento magmático y que la anomalía de Eu tiende a ser cada vez más negativa en apatitos asociados a magmas félsicos (Morton y Yaxley, 2007; Tang et al., 2012), se interpreta, que los apatitos del Carbonífero-Pérmico reflejan un aumento en el grado de fraccionamiento del magma y por lo tanto el paso de una composición máficaintermedia a una félsica. En apatitos ígneos la concentración de REE está controlada principalmente por su contenido dentro del magma y el coeficiente de partición entre el apatito y el fundido (Pan et al., 2016). No parece existir una relación directa entre ΣREE y el grado de fraccionamiento del magma, aunque se han reportado concentraciones promedio de ~0.4% y ~1.5% (wt.) en apatitos de pegmatitas y rocas ultramáficasmáficas respectivamente (Belousova et al., 2002). Con base en lo anterior y en el contenido de ΣREE en el grupo de apatitos de edad Carbonífero-Pérmico (<1.0% wt.) se infiere, también, que estos proceden de rocas ígneas de composición máficaintermedia a félsica.

Ya que la cuenca Cuicateca se desarrolló muy próxima a varios cuerpos ígneos (emplazados en los complejos Oaxaqueño y Acatlán) y que el comportamiento químico de los apatitos de edad Carbonífero-Pérmico en la rocas de la Formación Chivillas sugiere que estos cristalizaron en condiciones magmáticas que reflejan una evolución desde magmas máficos-intermedios hasta félsicos; se interpreta que, este grupo de apatitos poseen como fuente de procedencia detrítica a las rocas ígneas asociadas al arco magmático desarrollado al occidente de Gondwana durante el Paleozoico tardío

El grupo de apatitos con edad del Cretácico temprano es muy reducido, sin embargo, el comportamiento químico parece ajustarse mejor al de los apatitos asociados a rocas ígneas. Los granos poseen una concentración de Sr entre 242 y 830 ppm, anomalía negativa de Eu entre moderada a muy marcada, contenido de REE <0.6% (wt.) y una

concentración de Y que aumenta cuando la anomalía de Eu se hace más negativa, lo anterior indica una génesis asociada a magmas de composición intermedia a félsica. Dado que el comportamiento químico de los apatitos más jóvenes de las rocas de la Formación Chivillas indican que cristalizaron en condiciones magmáticas y que la edad del Cretácico temprano es coherente con la edad de máxima de depósito establecida para dicha formación, se interpreta que este grupo de apatitos posee como fuente de procedencia detrítica a las rocas plutónicas, volcánicas y volcanosedimentarias asociadas al arco magmático continental desarrollado en el margen Pacífico de México durante el Cretácico Inferior, el cual está representado por rocas ígneas de composición félsica a intermedia, muchas de las cuales fueron emplazadas coetáneamente con la sedimentación de varias sucesiones detríticas del centro y sur de México.

Para evaluar las fuentes de procedencia de los granos de apatito, se construyó el diagrama de componentes principales (PCA; Figura 16) utilizando como variables la anomalía de Eu (Eu/Eu<sup>\*</sup>), contenido total de  $\Sigma$ REE, la pendiente del patrón de REE (Ce/Yb; ambos normalizados al condrito; McDonough y Sun, 1995) y el contenido normalizado al condrito de La, Sm y Lu. Además, al PCA se le agregaron los campos que representan el comportamiento químico de algunos apatitos del Complejo Oaxaqueño y de rocas que representan el arco magmático del Paleozoico tardío. Estos valores fueron tomados de la base de datos interna que posee el laboratorio de estudios isotópicos (LEI) del Centro de Geociencias de la UNAM. El LEI no cuenta con datos de apatitos de rocas del Cretácico por lo que dicha fuente no pudo ser evaluada.

De las variables elegidas las que mejor se ajustan al comportamiento químico de los apatitos corresponde a la anomalía de Eu (Eu/Eu<sup>\*</sup>) y el contenido total de REE ( $\Sigma$ REE), ya que ambos vectores son aproximadamente opuestos entre sí y la mayoría de datos están dispersos a lo largo del eje que se forma entre ambos. En el PCA los apatitos del Carbonífero-Pérmico son "empujados" hacia el vector Eu/Eu<sup>\*</sup> y "repelidos" de los vectores  $\Sigma$ REE, La, y Sm. Este comportamiento indica que los apatitos poseen una anomalía de Eu entre levemente negativa hasta positiva y un contenido bajo de REE. En contraste, los apatitos del Meso-Neoproterozoico son "atraídos" hacia los vectores  $\Sigma$ REE, La y Sm y "repelidos" del vector Eu/Eu<sup>\*</sup>. Este comportamiento indica que poseen un alto contenido de REE y una anomalía negativa más marcada de Eu.

La edad y el comportamiento químico de los apatitos del Meso-Neorpoterozoico de la Formación Chivillas corresponden en su mayoría al campo que representa al Complejo Oaxaqueño, mientras que los apatitos del Carbonífero-Pérmico en su mayoría caen dentro del campo que representan el magmatismo Pérmico asociado al arco magmático del Paleozoico tardío. Lo anterior corrobora las fuentes de procedencia detrítica de estas dos poblaciones de apatitos de la Formación Chivillas (Figura 16).



Figura 16. Diagrama de componentes principales (PCA) de los apatitos de la Formación Chivillas y campos que representan al Complejo Oaxaqueño, al arco magmático del Paleozoico tardío y a la Formación Matzitzi.

Alternativamente y para comprobar la efectividad del uso del PCA en este estudio, se añadió al diagrama el dominio que representa el comportamiento químico de apatitos de areniscas de la Formación Matzitzi (Bedoya-Mejía, 2018; muestras ABM2 y ABM-5, n=80; Figura 16) y a los cuales se les interpretó una fuente principal asociada a rocas metamórficas de edad *Grenville*, como las incluidas dentro del Complejo Oaxaqueño, y en menor proporción a fuentes plutónicas de edad Carbonífero-Pérmico. Ya que en los estudios de procedencia sedimentaria, el apatito es más probable que represente detritos de primer ciclo (Morton y Hallsworth, 1999; Chew *etal.*, 2011) se margina, pero no se descarta, a la Formación Matzitzi como posible fuente de procedencia de los apatitos detríticos de la Formación Chivillas. En el PCA el dominio de la Formación Matzitzi (Figura 16) cubre totalmente al campo del Complejo Oaxaqueño, además de poseer una geometría muy similar, e intersecta una parte del campo de las rocas del arco magmático. Esto es coherente con las interpretaciones de Bedoya-Mejía (2018) en cuanto a la procedencia de los apatitos. Este comportamiento es muy similar al discutido anteriormente para los distintos grupos de apatitos de la Formación Chivillas

y, como consecuencia, reafirma las fuentes de procedencia detrítica principales a las rocas metamórficas del Complejo Oaxaqueño y a las rocas del arco magmático del Carbonífero-Pérmico.

## 5.4 Trazas de fisión en apatitos

Las edades por trazas de fisión en las muestras de la Formación Chivillas poseen un rango entre ~42 y 21 Ma (Figura 10 y tabla 9). Estas edades indican que el sistema de trazas de fisión fue reseteado por algún evento tectónico, ígneo o metamórfico postdeposicional, ya que dichas edades son mucho más jóvenes que la edad máxima de depósito de la Formación Chivillas (~125 Ma).

Las edades concordantes de ~42 y 40 Ma (Eoceno medio: Luteciense-Bartoniense) de las trazas de fisión en las muestras V-1 y RN-3 coinciden dentro del error (Tabla 9) mientras que la distribución de longitudes de trazas se caracteriza por un solo valor pico. Lo anterior indica que la historia termal de ambas muestras es similar y representan un solo evento de enfriamiento (Figura 17).

| Muestra | $P(\chi^2)$ | Edad central    | Edad mínima | Longitud media de trazas |
|---------|-------------|-----------------|-------------|--------------------------|
| LS-2    | 13%         | 20.77 ± 0.85 Ma |             |                          |
| V-1     | 0%          |                 | 41.9 ± 1 Ma | 13.08 ± 1.27 μm          |
| RN-3    | 13%         | 40.4 ± 1.3 Ma   |             | 13.30 ± 1.35 μm          |

Tabla 9. Prueba de Chi-cuadrado y edades de trazas de fisión en apatitos.

Los modelos de historia termal de las muestras V-1 y RN-3, basados en el ajuste de las trayectorias de tiempo-Temperatura (t-T; Ketcham, 2005), indican que las muestras experimentaron una fase de enfriamiento rápido entre ~46 y 37 Ma que llevo a las rocas desde ~120 °C hasta una temperatura ~60°C a razón de 9.66 °C Ma<sup>-1</sup> y 9.83 °C Ma<sup>-1</sup> respectivamente (Figura 17). Es importante mencionar que estos modelos en particular son válidos únicamente para la zona de borrado parcial (PAZ).

Con las edades obtenidas por trazas de fisión y los modelos de t-T de las muestras V-1 y RN-3 se interpreta, que el reinicio del sistema de trazas de fisión en los apatitos de la Formación Chivillas se produjo como consecuencia de la deformación asociada a la Orogenia Laramide (desarrollo de fallas de cabalgadura a escala regional y formación de escamas tectónicas) que afectó el sur de México. El evento tectónico de acortamiento propició el aumento de temperatura necesario para resetear el sistema de trazas de fisión en los apatitos (T >120 °C), probablemente por el cabalgamiento de un bloque con espesor aproximado entre 3 y 4 km (considerando un gradiente geotérmico normal y en equilibrio antes de la deformación) sobre las rocas de la Formación Chivillas, mientras que los primeros pulsos de extensión del Sistema Norte de la Falla Oaxaca favorecieron la rápida exhumación de las rocas entre 46 y 37 Ma (Figura 17) a

razón de ~330 y 320 m/m.a. En consecuencia, las edades concordantes entre ~42 y 40 Ma del sistema de trazas de fisión restringen la actividad del acortamiento Laramide a un lapso anterior al Eoceno medio (Luteciense-Bartoniense) en la cuenca Cuicateca, siendo además compatible con la posición estratigráfica de los lechos rojos Tilapa en el Valle de Tehuacán (Dávalos-Álvarez *et al.*, 2007).

La muestra LS-2 posee una edad por trazas de fisión de ~21 Ma (Figura 10A y tabla 9) que es aún más joven que la edad de máxima depósito y que el límite mínimo de actividad de la Orogenia Laramide. Debido a la baja densidad de trazas y por ende la escasa cantidad de trazas confinadas disponibles para la medición de longitudes no se construyó un modelo termal t-T. La edad de ~21 Ma (Mioceno temprano: Aquitaniense) parece representar un evento termal no tan extendido. El evento extensional del Sistema Norte de la Falla Oaxaca se desarrolló desde el Eoceno temprano-medio hasta el Pleistoceno y el pulso 4 (Dávalos-Álvarez *et al.*, 2007) representa la formación del relevo Tehuacán (indicado por un cambio de facies en la Formación Tehuacán) que estuvo activo del Mioceno temprano hasta el Pleistoceno. La edad Aquitaniense obtenida de las trazas de fisión se ajusta bien a dicho pulso, sin embargo, no hay evidencias suficientes que indiquen una correlación directa entre la actividad tectónica y esta edad de enfriamiento.



Figura 17. Modelos termales t-T basados en longitudes y edades de trazas de fisión de las muestras V-1 (A) y RN-3 (B) de la Formación Chivillas. La región de color morado corresponde a un ajuste bueno (a *good fit*; bondad de ajuste >0.5) de los pasos y la de color verde a un ajuste aceptable (*an acceptable fit*; bondad de ajuste >0.05). La línea de color azul indica el valor promedio de todos los pasos y la negra el ajuste estadístico más adecuado. Las poblaciones de edades y longitudes utilizadas en el modelo t-T se definieron con base en el contenido de Cl (wt.%), siendo de 0.45 a 0.88 (wt.%) para la muestra V-1 y de 0.0 a 1.0 (wt.%) para la muestra RN-3.

### 5.5 Procedencia detrítica de la Formación Chivillas

La Formación Chivillas está constituida por turbiditas siliciclásticas, depósitos volcanoclásticos y por rocas volcánicas que representan la acumulación de la cuenca Cuicateca durante el Cretácico Inferior (Mendoza-Rosales *et al.*, 2013). El análisis petrográfico y el contenido de minerales densos indican una procedencia de los complejos Oaxaqueño, Acatlán y Ayú y de rocas graníticas y volcánicas emplazadas en los terrenos Mixteco y Zapoteco.

Con base en la geocronología U-Pb en circones detríticos se identificaron seis componentes de edad, que van del Meso-Neoproterozoico hasta el Cretácico temprano. Estas componentes corresponden a edades que han sido reportadas en bloques de basamento, arcos magmáticos y sucesiones detríticas pre-cretácicas en el centro y sur de México. En el diagrama de escalamiento multidimensional (MDS; Figura 13) las muestras de la Formación Chivillas tienen como vecinas más cercanas a unidades del Jurásico-Cretácico temprano, unidades sedimentarias del Triásico y a las muestras de los complejos Acatlán y Macizo de Chiapas. Además, las muestras de la Formación Chivillas se localizan más cerca de las muestras sintéticas que representan al Complejo Oaxaqueño, al arco magmático del Carbonífero-Pérmico, al Orógeno Panafricano-Brasiliano y al arco magmático del Cretácico temprano, indicando que la Formación Chivillas posee como precursores a rocas con tales edades. Adicionalmente, los patrones de edad U-Pb en circón en las muestras de la Formación Chivillas son muy parecidos a los identificados en sucesiones detríticas triásicas de la parte mexicana de Norteamérica (Complejo El Chilar, Sierra de Catorce; e.g., Ortega-Flores et al., 2014) y del Terreno Guerrero (Complejo Arteaga, Formación Zacatecas; Ortega-Flores, 2017 y trabajos referenciados allí) que se han asociado a los depósitos de los abanicos Potosino y Tolimán. Lo anterior sugiere que la Formación Chivillas puede estar constituida por dos sucesiones clásticas que representan contextos tectónicos de diferentes tiempos: una sucesión que podría correlacionarse con los depósitos del abanico Potosino de edad Triásica y la otra con una edad máxima de depósito del Barremiense-Aptiense.

La geocronología U-Pb en apatito y el comportamiento químico del Sr, Y, ΣREE y la anomalía de Eu (Eu/Eu\*) indican que los granos de apatito proceden de rocas metamórficas de alto grado de edad Meso-Neoproterozoico y de rocas ígneas de composición félsica a intermedia-máfica con edades Carbonífero-Pérmico y Cretácico temprano. Dado que en los estudios de procedencia sedimentaria, los apatitos se asocian a detritos del primer ciclo debido a su inestabilidad en aguas subterráneas ácidas y en sistemas de transporte sedimentario (Morton y Hallsworth, 1999; Chew, Sylvester y Tubrett, 2011) se considera que la fuente principal de procedencia de los apatitos detríticos del Meso-Neoproterozoico corresponden a las rocas metamórficas en facies de granulita del Complejo Oaxaqueño (y quizá subordinadamente a la Formación

Matzitzi) mientras que los apatitos de edad Carbonífero-Pérmico y Cretácico temprano procedan de las rocas ígneas que representan los arcos magmáticos desarrollados al occidente de Gondwana y en el margen pacífico de México respectivamente. El diagrama de componentes principales (PDA; figura 16) permitió evaluar las fuentes principales de procedencia al comparar el comportamiento químico de los apatitos de la Formación Chivillas con los de rocas del Complejo Oaxaqueño, de la riolita Sosola, del granito Etla y de la Formación Matzitzi (esta última con rocas del Complejo Oaxaqueño como fuente de procedencia principal; Bedoya Mejía, 2018).

Las edades del Eoceno medio obtenidas por trazas de fisión en apatitos de la Formación Chivillas (muestras V-1 y RN-3) representan un evento tectónico postdeposicional, las cuales restringen al evento de deformación por acortamiento de la Orogenia Laramide e inversión de la cuenca Cuicateca a antes de ~42-40 Ma y probablemente representan las primeras etapas de extensión del Sistema Norte de la Falla Oaxaca.

### 5.5.1 Implicaciones paleogeográficas y tectónicas de la Formación Chivillas

La configuración tectónica del sur de México durante el Jurásico Medio y el Cretácico Inferior estuvo influenciada por los procesos asociados a las últimas etapas de la apertura del Golfo de México y por la subducción a lo largo del margen paleo-Pacífico de México (e.g. Martini y Ortega-Gutiérrez, 2018). En este contexto se formaron cuencas sedimentarias en un régimen extensional. En el sur de México se desarrollaron las cuenca Zicapa, Tentzo, Zapotitlán y Cuicateca las cuales guardan el registro del entorno paleogeográfico del Cretácico Inferior (Mendoza-Rosales, 2010; Sierra-Rojas y Molina-Garza, 2014; Sierra-Rojas *et al.*, 2016). Estos eventos extensionales fueron seguidos por la acreción del Terreno Guerrero y el desarrollo de plataformas carbonatadas durante el Aptiense y Albiense (Sierra-Rojas *et al.*, 2016; Martini y Ortega-Gutiérrez, 2018).

En la cuenca Cuicateca, la sedimentación de la Formación Chivillas estuvo acompañada por el emplazamiento de rocas volcánicas de composición máfica durante el Cretácico Inferior (Mendoza-Rosales, 2010; Sierra-Rojas *et al.*, 2016). El análisis de procedencia sedimentaria (petrografía y geocronología U-Pb en circón) indica que las fuentes de detritos corresponden a bloques de basamento, arcos volcánicos y sucesiones detríticas más antiguas (complejos Oaxaqueño, Acatlán, Ayú y Macizo de Chiapas, unidades sedimentarias paleozoicas y triásicas y cuerpos ígneos de edad Carbonífero-Pérmico y Cretácico temprano). Sin embargo, la geocronología U-Pb y el análisis geoquímico de apatitos detríticos, fase mineral que se considera representa detritos de primer ciclo, permitió restringir las principales fuentes detríticas a: el Complejo Oaxaqueño, las rocas ígneas que representan el arco volcánico del

Carbonífero-Pérmico y a las rocas ígneas asociadas a un arco magmático como Guerrero o Zicapa del Cretácico Inferior (Sierra-Rojas *et al.*, 2016; Ortega-Flores, 2017).

Muchos cuerpos ígneos de edad Carbonífero-Pérmico se encuentran emplazados dentro del Complejo Oaxaqueño, por lo que es probable que estas rocas en conjunto hayan actuado como un alto de basamento que experimentó denudación hacia la cuenca Cuicateca durante el Cretácico Inferior y que las rocas volcánicas del Cretácico temprano hayan sido rápidamente erosionadas y acumuladas simultáneamente con el relleno de la cuenca. (Figura 18).



Figura 18. Esquema paleogeográfico del Cretácico Inferior durante el relleno de la cuenca Cuicateca. Con base en Pindell y Kennan, 2009; Talavera-Mendoza *et al.*, 2013; Ortega-Flores *et al.*, 2016; Sierra-Rojas *et al.*, 2016; Ortega-Flores, 2017; Martini y Ortega-Gutiérrez, 2018. TC= Tamaulipas-Chiapas.

Para finales del Mesozoico la mayor parte de México experimentó un evento de deformación por acortamiento que se asocia a la Orogenia Laramide, el cual migró de oeste a este del continente (Cuéllar-Cárdenas *et al.*, 2012). En el sur de México el evento tomó lugar durante el Cretácico Superior en la Plataforma Guerrero-Morelos, antes del Bartoniense en el bloque Acatlán-Oaxaca y finalizó en la cuenca de Veracruz en el Eoceno medio (Nieto-Samaniego *et al.*, 2006). En la cuenca Cuicateca la Orogenia Laramide causó el desarrollo de cabalgaduras a escala regional en un

régimen frágil-dúctil y el levantamiento y yuxtaposición de las rocas de los complejos Mazateco y Sierra de Juárez/Teotitlán sobre la Formación Chivillas (que representan niveles estructurales diferentes; Figura 19A). En este contexto las edades de ~42 y 40 Ma obtenidas en las trazas de fisión en apatitos de las rocas de la Formación Chivillas limitan temporalmente la deformación compresiva hasta un intervalo anterior al Eoceno Medio en la cuenca Cuicateca.

Para el inicio del Cenozoico la invertida cuenca Cuicateca experimento un cambio en el régimen de deformación. A nivel regional el régimen de acortamiento fue sucedido por un movimiento de desplazamiento lateral con alargamiento al NW (Nieto-Samaniego *et al.*, 2006) y es en este contexto que se desarrollaron las primeras etapas de extensión del Sistema Norte de la Falla Oaxaca con cinemática normal. La edad mínima de este evento extensional y por ende la formación del Valle de Tehuacán está marcada por la sedimentación de los lechos rojos Tilapa del Eoceno temprano-medio (Dávalos-Álvarez *et al.*, 2007; Figura 19). El progresivo hundimiento de la cuenca del Valle de Tehuacán y levantamiento de la Sierra Mazateca por la acción del Sistema Norte de la Falla Oaxaca (Dávalos-Álvarez *et al.*, 2007) es la responsable del enfriamiento a razón de 9.66 y 9.83 °C/m.a. y exhumación relativamente rápida (~330-320 m/m.a.) experimentado por las rocas de la Formación Chivillas entre ~46 y 37 Ma, pasando de una temperatura de ~120 a 60 °C en aproximadamente 9 m.a.



Figura 19. Secciones esquemáticas que representan los eventos tectónicos experimentados en la cuenca Cuicateca entre el Cretácico Superior y Eoceno medio. A. Acortamiento asociado a la Orogenia Laramide con la yuxtaposición de escamas tectónicas e inversión de la cueca. B. Extensión asociada al desarrollo del Sistema Norte de la Falla Oaxaca, hundimiento del Valle de Tehuacán, levantamiento de la Sierra Mazateca y exhumación de las rocas de la Formación Chivillas. Los cortes son aproximadamente perpendiculares a las estructuras regionales orientadas NNW-SSE. Con base en Angeles-Moreno, 2006; Dávalos Álvarez, 2006; Nieto-Samaniego *et al.*, 2006; Dávalos-Álvarez *et al.*, 2007; Ángeles-Moreno *et al.*, 2012.
### 6. CONCLUSIONES

- 1. El análisis petrográfico de las rocas de la Formación Chivillas indica que estas experimentaron condiciones de alta diagénesis, llegando incluso a facies metamórficas de muy bajo grado. La procedencia de sedimentos y el contenido de minerales densos sugiere como fuentes probables a rocas metamórficas de alto y medio-bajo grado y rocas graníticas y volcánicas de composición félsica a intermedia-máfica.
- 2. La geocronología U-Pb en circones detríticos permitió identificar seis componentes de edad, entre el Meso-Neoproterozoico y el Cretácico Inferior, que han sido identificadas en bloques de basamento, arcos volcánicos y secuencias detríticas del centro y sur de México (complejos Oaxaqueño y Acatlán y su cubierta sedimentaria, rocas ígneas del Carbonífero-Pérmico que representan un arco magmático y rocas ígneas y volcanosedimentarias del Jurásico y Cretácico Inferior).
- 3. El escalamiento multidimensional de las edades detríticas en circón indica una mayor afinidad hacia las muestras sintéticas del Complejo Oaxaqueño, el Orógeno Panafricano-Brasiliano y del arco magmático Carbonífero-Pérmico y cierta disimilitud entre las propias muestras de la Formación Chivillas. Además, la similitud entre éstas y las que se asocian al sistema de depósito de los abanicos Potosino y Tolimán sugiere que comparten características genéticas o que las unidades más jóvenes son el resultado del reciclaje de las más antiguas.
- 4. La geocronología U-Pb y geoquímica en apatitos detríticos permitió identificar como las fuentes de procedencia principales, de las rocas de la Formación Chivillas, a las rocas metamórficas de alto grado del Complejo Oaxaqueño y a las rocas ígneas de composición félsica a intermedia-máfica que representan los arcos magmáticos desarrollados en el oeste de Gondwana y en el margen Pacífico de México durante el Carbonífero-Pérmico y Cretácico Inferior respectivamente. Esto con base en las edades del Meso-Neoproterozoico, Carbonífero-Pérmico y Cretácico temprano y del comportamiento geoquímico del Sr, Y, anomalía de Eu y contenido total de Tierras Raras de los apatitos analizados.
- 5. El análisis de componentes principales permitió comprobar y evaluar las fuentes principales de procedencia de los apatitos de la Formación Chivillas, al contrastar su comportamiento químico con los de los apatitos de las rocas del Complejo Oaxaqueño Norte, del granito Etla y la Riolita Sosola. El comportamiento químico asociado a los apatitos de alto grado metamórfico se caracteriza por un alto contenido de Tierras Raras y anomalía negativa de Eu entre muy marcada a leve, mientras que el comportamiento de los granos asociados a rocas ígneas félsicas a

intermedias-máficas se identifica por un menor contenido de Tierras Raras y una anomalía de Eu entre positiva a negativa.

6. Las edades entre ~42 y 40 Ma obtenidas de trazas de fisión en apatitos restringen la actividad de deformación compresiva de la Orogenia Laramide hasta antes de ese tiempo en la Cuenca Cuicateca. El desarrollo de cabalgaduras a escala regional y la yuxtaposición de escamas tectónicas, que pusieron en contacto rocas de diferentes niveles estructurales, aportó la temperatura necesaria para resetear el sistema de trazas de fisión en los apatitos de las rocas de la Formación Chivillas. Los modelos de historia termal t-T indican que las rocas fueron exhumadas durante las primeras etapas de extensión del Sistema Norte de la Falla Oaxaca a razón de ~330 y 320 m/m.a., lo que llevo a los apatitos de una temperatura de ~120 °C a ~60 °C en aproximadamente 9 m.a.

### REFERENCIAS

Abdullin, F., Solé, J., Solari, L., Shchepetilnikova, V., Meneses-Rocha, N.P., Rodríguez-Trejo, A., 2016, Single-grain apatite geochemistry of Permian-Triassic granitoids and Mesozoic and Eocene sandstones from Chiapas, southeast Mexico: Implications for sediment provenance: International Geology Review, 58(9), 1132–1157 *et al.* (2016).

Abdullin, F. Solari, L., Ortega-Obregón, C., Solé, J., 2018, New fission-track results from the northern Chiapas Massif area, SE Mexico: trying to reconstruct its complex thermo-tectonic history: Revista Mexicana de Ciencias Geológicas, 35(1), 79–92.

Alaniz-Alvarez, S.A., Nieto-Samaniego, A.F., Ortega-Gutiérrez, F., 1994, Structural evolution of the Sierra de Juarez Mylonitic complex, State of Oaxaca, Mexico: Revista Mexicana de Ciencias Geológicas, 11(2), 147–156.

Alaniz-Alvarez, S.A., van der Heyden, P., Nieto-Samaniego, A.F., Ortega-Gutierrez, F., 1996, Radiometric and kinematic evidence for Middle Jurassic strike-slip faulting in southern Mexico related to the opening of the Gulf of Mexico: Geology, 24(5), 443-446.

Alzaga H., Pano A., 1989, Origen de la Formación Chivillas y presencia del Jurásico tardío en la región de Tehuacán. Puebla, México: Revista del Instituto Mexicano del Petróleo, 21(1), 5–15.

Ángeles-Moreno, E., 2006, Petrografía, geología estructural y geocronología del borde noroccidental del terreno Cuicateco, Sierra Mazateca, estado de Oaxaca, México: México, D.F., Universidad Nacional Autónoma de México, tesis de maestría, 216 pp.

Ángeles-Moreno, E., Elías-Herrera, M., Macías-Romo, C., Sánchez-Zavala, J.L., Ortega-Gutiérrez, F., 2012, Geological Map of the Western Border of Cuicateco Terrane, Southern Mexico: Geological Society of America, Map & Chart Series, MCH102.

Barboza-Gudiño, J.R., Orozco-Esquivel, M., Gómez-Anguiano, M., Zavala-Monsiváis, A., 2008, The Early Mesozoic volcanic arc of western North America in northeastern Mexico: Journal of South American Earth Sciences, 25(1), 49–63.

Barboza-Gudiño, J.R., Zavala-Monsiváis, A., Venegas-Rodríguez, G., Barajas-Nigoche, L.D., 2010, Late Triassic stratigraphy and facies from northeastern Mexico: Tectonic setting and provenance: Geosphere 6(5), 621–640.

Bedoya Mejía, A., 2018, Análisis de procedencia y termocronología detrítica de las formaciones Matzitzi y Tianguistengo: implicaciones tectónicas en la evolución paleozoicamesozoica del sur de México: Querétaro, México., Universidad Nacional Autónoma de México, tesis de maestría, 221 pp.

Belousova, E.A., Walters, S., Griffin, W.L., O'Reilly, S.Y., 2001, Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland: Australian Journal of Earth Sciences, 48(4), 603–619.

Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., 2002, Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type: Journal of Geochemical Exploration, 76(1), 45–69.

Bernet, M., y Spiegel, C., (eds.), 2004, Detrital thermochronology-Provenance analysis, exhumation, and landscape evolution of mountain belts: Boulder, Colorado, Geological Society of America Today, 378, 129 pp.

Bingen, B., Demaiffe, D., Hertogen, J., 1996, Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway: Geochimica et Cosmochimica Acta, 60(8), 1341–1354.

Campos-Madrigal, E., Centeno-García, E., Mendoza-Rosales, C.C, Silva-Romo, G., 2013, Sedimentología, reconstrucción paleoambiental y significado tectónico de las sucesiones clásticas del Jurásico Medio en el área de Texcalapa, Puebla - Huajuapan de León, Oaxaca: Revisión de las formaciones Ayuquila y Tecomazúchil: Revista Mexicana de Ciencias Geologicas, 30(1), 24–50.

Carrapa, B., DeCelles, P.G., Reiners, P.W., Gehrels, G.E., Sudo, M., 2009, Apatite triple dating and white mica <sup>40</sup>Ar/<sup>39</sup>Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history: Geology, 37(5), 407–410.

Carrasco, V., 1978, Estratigrafía de unas lavas almohadilladas y rocas sedimentarias del Cretácico Inferior en Tehuacán, Pue.: Revista del Instituto Mexicano del Petróleo, 10(3), 78–82.

Casillas, R., Nagy, G., Pantó, G., Brändle, J., Fórizs, I., 1995, Occurrence of Th, U, Y, Zr, and REE-bearing accessory minerals in late-Variscan granitic rocks from the Sierra de Guadarrama (Spain): European Journal of Mineralogy, 7(4), 989–1006.

Cawood, P.A., Nemchin, A.A., Strachan, R., Prave, T., Krabbendam, M., 2007, Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia: Journal of the Geological Society, 164(2), 257–275.

Centeno-García, E., Mendoza-Rosales, C.C., Silva-Romo, G., 2009, Sedimentología de la Formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla: Revista Mexicana de Ciencias Geológicas, 26(1), 18–36.

Chamberlain, K.R. y Bowring, S.A., 2001, Apatite–feldspar U–Pb thermochronometer: a reliable, mid-range (~450°C), diffusion-controlled system: Chemical Geology, 172(1–2), 173–200.

Chew, Sylvester, P.J., Tubrett, M.N., 2011, U–Pb and Th–Pb dating of apatite by LA-ICPMS: Chemical Geology, 280(1–2), 200–216.

Chew, D.M., Donelick, R.A., 2012, Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis: St. John's NL, Mineralogical Association of Canada, Short Course 42 (May), 219–247.

Chew, D.M., Petrus, J.A., Kamber, B.S., 2014, U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb: Chemical Geology, 363, 185–199.

Cochrane, R., Spikings, R.A, Chew, D., Wotzlaw, J., Chiaradia, M., Tyrrell, S., Schaltegger, U., Van der Lelij, R., 2014, High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite: Geochimica et Cosmochimica Acta, 127, 39–56.

Cordani, U.G., Teixeira, W., 2007, Proterozoic accretionary belts in the Amazonian Craton, in Hatcher, T.D., Jr., Carlson, M.P., McBride, J.H., Martínez-Catalán, J.R. (eds.), 4-D Framework of Continental Crust: Geological Society of America Memoir 200. 297–320.

Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003, Atlas of Zircon Textures: Reviews in Mineralogy and Geochemistry, 53(1), 469–500.

Cuéllar-Cárdenas, M.A., Nieto-Samaniego, A.F., Levresse, G., Alaniz-Álvarez, S.A., Solari, L., Ortega-Obregón, C., López-Martínez, M., 2012, Límites temporales de la deformación por acortamiento Laramide en el centro de México: Revista Mexicana de Ciencias Geológicas, 29(1), 179–203.

Dávalos Álvarez, O.G., 2006, Evolución tectónica cenozoica en la porción Norte de la Falla De Oaxaca: Querétaro, México, Universidad Nacional Autónoma de México, Tesis de maestría, 133 pp.

Dávalos-Álvarez, O.G., Nieto-Samaniego, A.F., Alaniz-Álvarez, S.A., Martínez-Hernández, E., Ramírez-Arriaga, E., 2007, Estratigrafía cenozoica de la región de Tehuacán y su relación con el sector norte de la falla de Oaxaca: Revista Mexicana de Ciencias Geológicas, 24(2), 197–215.

Dávalos-Elizondo, E., 2011, Análisis estructural del complejo vulcano-tectónico de Pinos, Zacatecas, México: Linares, Nuevo León, Universidad Autónoma de Nuevo León, tesis de licenciatura, 162 pp.

Dávila Alcocer, V.M., Centeno-García, E., Valencia, V., Fitz, E., 2009, Una nueva interpretación de la estratigrafía de la Región de Tolimán, Estado de Querétaro: Boletin de la Sociedad Geologica Mexicana, 61(3), 491–497.

Deer, W.A., Howie, R.A., Zussman, J., 2013, An introduction to the rock-forming minerals: United Kingdom, London, The Mineralogical Society, Third edit, 498 pp.

Delgado-Argote, L.A., 1988, Geología preliminar de la secuencia volcanosedimentaria y serpentinitas asociadas del Jurásico (?) del área de Cuicatlán-Concepción Pápalo, Oaxaca: Revista del Instituto de Geología de la Universidad Nacional Autónoma de México, 7(2),125–127.

Delgado-Argote, L.A., López-Martínez, M., York, D., Hall, C.M., 1992, Geologic framework and geochronology of ultramafic complexes of southern Mexico: Canadian Journal of Earth Sciences, 29(7), 1590–1604.

Dickinson, W. R., 1985, Interpreting provenance relations from detrital modes of sandstones, in Zuffa, G.G. (ed.), Provenance of Arenites: Dordrecht, Netherlands Springer, 333–361.

Dickinson, W.R., Lawton, T.F., 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico: Bulletin of the Geological Society of America. 113(9), 1142-1160.

Donelick, R.A., O'Sullivan, P.B., Ketcham, R.A., 2005, Apatite Fission-Track Analysis: Reviews in Mineralogy and Geochemistry, 58(1), 49–94.

El Korh, A., Schmidt, S.T., Ulianov, A., Potel, S., 2009, Trace Element Partitioning in HP–LT Metamorphic Assemblages during Subduction-related Metamorphism, Ile de Groix, France: a Detailed LA-ICPMS Study: Journal of Petrology, 50(6), 1107–1148.

Elías-Herrera, M., Ortega-Gutiérrez, F., 2002, Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications: Tectonics, 21(3), 4-1-4-18.

Elías-herrera, M., Ortega-Gutiérrez, F., Sánchez-Zavala, J.L., Macías-Romo, C., Ortega-Rivera, A., Iriondo, A., 2005, La falla de Caltepec: raíces expuestas de una frontera tectónica de larga vida entre dos terrenos continentales del sur de México: Boletín de la Sociedad Geológica Mexicana, Conmemorativo del Centenario (1), 83–109.

Elías-Herrera, M., Ortega-Gutiérrez, F., Sánchez-Zavala, J.L., Macías-Romo, C., Ortega-Rivera, A., Iriondo, A., 2007, The Caltepec fault zone: Exposed roots of a long-lived tectonic boundary between two continental terranes of southern México, in Alaniz-Álvarez, S.A., Nieto-Samaniego, A.F. (eds.), Geology of México: Celebrating the Centenary of the Geological Society of México: Geological Society of America Special Paper 442, 317–342.

Estrada-Carmona, J., Weber, Bodo., Martens, U., López-Martínez, M., 2012, Petrogenesis of Ordovician magmatic rocks in the southern Chiapas Massif Complex: relations with the early Palaeozoic magmatic belts of northwestern Gondwana: International Geology Review, 54(16), 1918–1943.

Fitz-Díaz, E., Lawton, T.F., Juárez-Arriaga, E., Chávez-Cabello, G., 2018, The Cretaceous-Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics: Earth-Science Reviews, 183, 56–84.

Fleischer, R.L., Price, P.B., Walker, R.M., 1975, Nuclear tracks in solids: principles and applications: Berkeley, California, University of California Press, 626 pp.

Folk, R. L., 1980, Petrology of sedimentary rocks: Autin, Texas, Hemphill Publishing Company, 190 pp.

Galbraith, R. F., 1981, On statistical models for fission track counts: Mathematical Geology, 13(6), 471–478.

Galbraith, R.F., Green, P.F., 1990, Estimating the component ages in a finite mixture: Nuclear Tracks and Radiation Measurements. 17(3), 197–206.

Galbraith, R.F., y Laslett, G.M., 1993, Statistical models for mixed fission track ages: Nuclear Tracks and Radiation Measurements. 21(4), 459–470.

Gallagher, K., 1995, Evolving temperature histories from apatite fission-track data: Earth and Planetary Science Letters, 136, 421–435.

Garzanti, E., Vezzoli, G., 2003, A Classification of Metamorphic Grains in Sands Based on their Composition and Grade: Journal of Sedimentary Research, 73(5), 830–837.

Garzanti, E., 2016, From static to dynamic provenance analysis—Sedimentary petrology upgraded: Sedimentary Geology, 336, 3–13.

Gehrels, G., 2012, Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities, in Busby, C., Azor, A. (eds.), Tectonics of Sedimentary Basins: Recent Advances: Chichester, UK, Blackwell Publishing Ltd, 45–62.

Gillespie, J., Glorie, S., Khudoley, A., Collins, A.S., 2018, Detrital apatite U-Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia): Lithos. 314–315, 140–155.

Gillis, R.J., Gehrels, G.E., Ruiz, J., Flores de Dios Gonzaléz, L.A., 2005, Detrital zircon provenance of Cambrian–Ordovician and Carboniferous strata of the Oaxaca terrane, southern Mexico: Sedimentary Geology, 182, 87–100.

Gleadow, A.J.W., Duddy, I.R., Green, P.F., Hegarty, K.A., 1986, Fission track lengths in the apatite annealing zone and the interpretation of mixed ages: Earth and Planetary Science Letters, 78, 245–254.

Gleadow, A.J.W., Duddy, I.R., Green, P.F., Lovering, J.F., 1986, Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis: Contributions to Mineralogy and Petrology, 94(4), 405–415.

Godinez-Urban, A., Lawton, T.F., Molina-Garza, R.S., Iriondo, A., Weber, B., López-Martínez, M., 2011, Jurassic volcanic and sedimentary rocks of the La Silla and Todos Santos Formations, Chiapas: Record of Nazas arc magmatism and rift-basin formation prior to opening of the Gulf of Mexico: Geosphere, 7(1), 121–144.

Green, P.F., Duddy, I.R., Greadow, A.J.W., Tingate, P.R., Laslett, G.M., 1986, Thermal annealing of fission tracks in apatite 1. A qualitative description: Chemical Geology: Isotope Geoscience Section, 59, 237–253.

Harrison, M.T., 1982, Diffusion of 40Ar in hornblende: Contributions to Mineralogy and Petrology, 78(3), 324–331.

Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., Hurford, A.J., 2004, Apatite fission-track chronometry using laser ablation ICP-MS: Chemical Geology, 207, 135–145.

Helbig, M., Keppie, J.D., Murphy, J.B., Solari, L.A., 2012, U-Pb geochronological constraints on the Triassic-Jurassic Ayú Complex, southern Mexico: Derivation from the western margin of Pangea-A: Gondwana Research, 22, 910–927.

Henrichs, I.A., O'Sullivan, G., Chew, D.M., Mark, C., Babechuk, M.G., McKenna, C., Emo, R., 2018, The trace element and U-Pb systematics of metamorphic apatite: Chemical Geology, 483, 218–238.

Holden, N.E., Hoffman, D.C., 2000, Spontaneous fission half-lives for ground-state nuclide (Technical report): Pure and Applied Chemistry, 72(8), 1525–1562.

Hsieh, P.-S., Chen, C.-H., Yang, H.-J., Lee, C.-Y., 2008, Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr–Nd isotope compositions: Journal of Asian Earth Sciences, 33, 428–451.

Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J., Sares, S.W., 1984, The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method: Journal of Sedimentary Research, 54(1), 103–116.

Jafarzadeh, M., Harami, R.H., Friis, H., Amini, A., Mahboubi, A., Lenaz, D., 2014, Provenance of the Oligocene–Miocene Zivah Formation, NW Iran, assessed using heavy mineral assemblage and detrital clinopyroxene and detrital apatite analyses: Journal of African Earth Sciences, 89, 56–71.

Jennings, E.S., Marschall, H.R., Hawkesworth, C.J., Storey, C.D., 2011: Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so: Geology, 39(9), 863–866.

Juárez Zúñiga, S., 2019, Análisis de los conglomerados de la Formación Matzitzi, sur de México implicaciones para la evolución del Paleozoico: Querétaro, México, Universidad Nacional Autónoma de México, tesis de maestría, 119 pp.

Keppie, J. D., Dostal, J., Ortega-Gutiérrez, F., López, R., 2001, A Grenvillian arc on the margin of Amazonia: Evidence from the southern Oaxacan Complex, southern Mexico: Precambrian Research, 112, 165–181.

Keppie, J.D., Solari, L.A., Ortega-Gutiérrez, F., Ortega-Rivera, A., Lee, J.K.W., López, R., Hames, W.E., 2004, U-Pb and 40Ar/39Ar constraints on the cooling history of the northern Oaxacan Complex, southern Mexico: Tectonic implications, in Tollo, R.P., Corriveau, L., McLelland, J., Bartholomew, M.J., (eds.), Proterozoic Tectonic Evolution of the Grenville Orogen in North America: Boulder, Colorado, Geological Society of America, 771–781.

Keppie, J.D., Nance, R.D., Fernández-Suárez, J.F., Storey, C.D., Jeffries, T.E., Murphy, J.B., 2006, Detrital Zircon Data from the Eastern Mixteca Terrane, Southern Mexico: Evidence for an Ordovician—Mississippian Continental Rise and a Permo-Triassic Clastic Wedge Adjacent to Oaxaquia: International Geology Review, 48(2), 97–111.

Keppie, J.D., Dostal, J., Murphy, J.B., Nance, R.D., 2008, Ordovician–earliest Silurian rift tholeiites in the Acatlán Complex, southern Mexico: Evidence of rifting on the southern margin of the Rheic Ocean: Tectonophysics, 461, 130–156.

Ketcham, R.A., Donelick, R.A., Carlson, W.D., 1999, Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales: American Mineralogist, 84(9), 1235–1255.

Ketcham, R.A., 2005, Forward and Inverse Modeling of Low-Temperature Thermochronometry Data: Reviews in Mineralogy and Geochemistry, 58(1), 275–314.

Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., Hurford, A., 2007, Improved modeling of fission-track annealing in apatite: American Mineralogist, 92, 799–810.

Kirkland, C.L., Yakymchuk, C., Szilas, K., Evans, N., Hollis, J., McDonald, B., Gardiner, N.J., 2018, Apatite: a U-Pb thermochronometer or geochronometer?: Lithos, 318–319, 143–157.

Kirsch, M., 2012, Estudio de la geoquímica, la estructura y el metamorfismo en el este del Complejo Acatlán: implicaciones tectónicas y paleogeográficas: Querétaro, México, Universidad Nacional Autónoma de México, tesis doctoral, 164 pp.

Kirsch, M., Keppie, J.D., Murphy, J.B., Solari, L.A., 2012, Permian-Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlan Complex, southern Mexico: Geological Society of America Bulletin, 124(9–10), 1607–1628.

Lawton, T.F., Molina-Garza, R.S., 2014, U-Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: Implications of a Jurassic age for continental-arc magmatism in north-central Mexico: Geological Society of America Bulletin. 126(9–10), 1181–1199.

Lesnov, F.P., 2012, Rare Earth Elements in Ultramafic and Mafic Rocks and their Minerals, Minor and accessory minerals: London, UK, Taylor and Francis Group, 314 pp.

Liu, Z., Wang, J., Zheng, D., Liu, J., Fu., C., 2010, Exploration prospect and post-ore denudation in the northwestern Jiaodong Gold Province, China: Evidence from apatite fission track themochronology: Acta Petrologica Sinica, 26(12), 3597–3611.

Ludwig, K.R., 1998, On the Treatment of Concordant Uranium-Lead Ages: Geochimica et Cosmochimica Acta, 62(4), 665–676.

Malusà, M.G., Fitzgerald, P.G., 2019, Application of Thermochronology to Geologic Problems: Bedrock and Detrital Approaches, in Malusà, M.G., Fitzgerald, P.G., (eds.), Fission-Track Thermochronology and its Application to Geology: Springer International Publishing, 191-209.

Mange, M.A., Maurer, H.F.W., 1992, Heavy Minerals in Colour: Springer Dordrecht, 151 pp.

Mark, C., Cogné, N., Chew, D., 2016, Tracking exhumation and drainage divide migration of the Western Alps: A test of the apatite U-Pb thermochronometer as a detrital provenance tool: Geological Society of America Bulletin, 128(9–10), 1439–1460.

Martens, U., Weber, B., Valencia, V.A., 2010, U/Pb geochronology of Devonian and older Paleozoic beds in the southeastern Maya block, Central America: Its affinity with peri-Gondwanan terranes: Geological Society of America Bulletin, 122(5–6), 815–829.

Martini, M., Ferrari, L., López-Martínez, M., Cerca-Martínez, M., Valencia, V.A., Serrano-Durán, L., 2009, Cretaceous-Eocene magmatism and Laramide deformation in southwestern Mexico: No role for terrane accretion, in Kay, S.M., Ramos, V.A., Dickinson, W.R. (eds.), Backbone of Americas: Shallow, Subduction, Plateau Uplift, and Ridge and errane Collision: Geological Society of America Memoirs 204, 151–182.

Martini, M., Mori, L., Solari., L., Centeno-García, E., 2011, Sandstone Provenance of the Arperos Basin (Sierra de Guanajuato, Central Mexico): Late Jurassic-Early Cretaceous Back-Arc Spreading as the Foundation of the Guerrero Terrane: The Journal of Geology, 119, 597–617.

Martini, M. y Ortega-Gutiérrez, F., 2018, Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: A review: Earth-Science Reviews, 183, 38–55.

Martini, M., M., Solari, L., López-Martínez, M., 2014, Correlating the arperos basin from Guanajuato, central Mexico, to Santo Tomás, southern Mexico: Implications for the paleogeography and origin of the Guerrero terrane: Geosphere, 10(6), 1385–1401.

McDonough, W.F., y Sun, S.S., 1995, Composition of the Earth: Chemical Geology, 120(3-4), 223-253.

McDowell, F.W., McIntosh, W.C., Farley, K.A., 2005, A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard: Chemical Geology, 214, 249–263.

Mendoza-Rosales, C.C., 2010, Estratigrafía y facies de las cuencas cretácicas de sur de Puebla y su significado tectónico: Ciudad de México, Universidad Nacional Autónoma de México, tesis doctoral, 208 pp.

Mendoza-Rosales, C.C., Centeno-García, E., Silva-Romo, G., Campos-Madrigal, E., Bernal, J.P., 2010, Barremian rift-related turbidites and alkaline volcanism in southern Mexico and their role in the opening of the Gulf of Mexico: Earth and Planetary Science Letters, 295, 419–434.

Mendoza-Rosales, C.C., Silva-Romo, G., Centeno-García, E., Campos-Madrigal, E., Rodríguez-Otero, M., 2013, La Formación Chivillas en Tehuacán, Puebla, México: Definición, análisis de facies y procedencia: Boletín de la Sociedad Geológica Mexicana, 65(3), 457–480.

Moran-Zenteno, D.J., Caballero-Miranda, C.I., Silva-Romo, G., Ortega-Guerrero, B., Golzález-Torres, E., 1993, Jurassic-Cretaceous paleogeographic evolution of the northern Mixteca terrane, southern México: Geofisica Internacional, 32(3), 453–473.

Morton, A., y Hallsworth, C., 1999, Processes controlling the composition of heavy mineral assemblages in sandstones: Sedimentary Geology 124, 3–29.

Morton, A., y Yaxley, G., 2007, Detrital apatite geochemistry and its application in provenance studies, in Arribas, J., Critelli, S., Johnsson, M.J. (eds.), Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry: Geological Society of America Special Paper 420, 319–344.

Murillo-Muñeton, G., 1996, Petrologic and geochronologic study of Grenville-age granulites and post-granulite plutons from the La Mixtequita area, state of Oaxaca in southern Mexico, and their tectonic significance: California, Faculty of the Graduate School University of Southern California, tesis doctoral, 186 pp.

Nash, W.P., 1984, Phosphate Minerals in Terrestrial Igneous and Metamorphic Rocks, in Nriagu, J.O., Moore, P.B., Photosphate Minerals: Berlin, Heidelberg, Springer, 215–241.

Nieto-Samaniego, Á.F., Alaniz-Álvarez, S.A., Silva-Romo, G., Eguiza-Castro, M.H., Mendoza-Rosales, C.C., 2006, Latest Cretaceous to Miocene deformation events in the eastern Sierra Madre del Sur, Mexico, inferred from the geometry and age of major structures: Bulletin of the Geological Society of America, 118(1–2), 238–252.

Nieto-Samaniego, Á.F., Alaniz-Álvarez, S. A., Ortega-Gutiérrez, F., 1995, Estructura interna de la Falla de Oaxaca (México) e influencia de las anisotropías litológicas durante su actividad Cenozoica: Revista Mexicana de Ciencias Geológicas,12(1), 1-8.

O'Sullivan, G.J., Chew, D.M., Morton, A.C., Mark, C., Henrichs, I.A., 2018, An Integrated Apatite Geochronology and Geochemistry Tool for Sedimentary Provenance Analysis: Geochemistry, Geophysics, Geosystems, 19, 1–18.

Ortega-Flores, B., Solari, L., Lawton, T.F., Ortega-Obregón, C., 2014, Detrital-zircon record of major Middle Triassic-Early Cretaceous provenance shift, central Mexico: demise of Gondwanan continental fluvial systems and onset of back-arc volcanism and sedimentation: International Geology Review, 56(2), 237–261.

Ortega-Flores, B., Soalri, L., Escalona-Alcázar, F., 2016, The Mesozoic successions of western Sierra de Zacatecas, Central Mexico: provenance and tectonic implications: Geological Magazine, 153(4), 696–717.

Ortega-Flores, B., 2017, Caracterización del límite este del Terreno Guerrero mediante isotopía de Hf y geolocronología U-Pb en circones detríticos: Querétaro, Universidad Nacional Autónoma de México, tesis doctoral, 255 pp.

Ortega-Gutiérrez, F., 1977, Los marmoles intrusivos del Complejo Oaxaqueño: Revista del Instituto de Geología de la Universidad Nacional Autónoma de México 1(1), 28–32.

Ortega-Gutiérrez, F., 1978, Estratigrafía del Complejo Acatlán en la Mixteca Baja, estados de Puebla y Oaxaca: Revista del Instituto de Geología de la Universidad Nacinal Autónoma de México, 2, 112–131.

Ortega-Gutierrez, F., Ruiz, J., Centeno-Garcia, E., 1995, Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic: Geology, 23(12), 1127-1130.

Ortega-Gutiérrez, F., Elías-Herrera, M., Reyes-Salas, M., Macías-Romo, C., López, R., 1999, Late Ordovician–Early Silurian continental collisional orogeny in southern Mexico and its bearing on Gondwana-Laurentia connections: Geology, 27(8), 719-722.

Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D.J., Solari, L., Weber, B., Luna-González, L., 2018, The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution: Earth-Science Reviews, 183, 2–37.

Ortega-Obregon, C., Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Solé, J., Morán-Ical, S., 2008, Middle-Late Ordovician magmatism and Late Cretaceous collision in the southern Maya block, Rabinal-Salama area, central Guatemala: Implications for North America-Caribbean plate tectonics: Geological Society of America Bulletin, 120(5–6), 556–570.

Ortega-Obregón, C., Keppie, J.D., Murphy, J.B., Lee, J.K.W., Ortega-Rivera, A., 2009, Geology and geochronology of Paleozoic rocks in western Acatlán Complex, southern Mexico: Evidence for contiguity across an extruded high-pressure belt and constraints on Paleozoic reconstructions: Geological Society of America Bulletin, 121(11–12), 1678–1694.

Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C., 2014, Permian–Carboniferous arc magmatism in southern Mexico: U–Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana: International Journal of Earth Sciences. 103(5), 1287–1300.

Ortega-Obregón, C., Abdullin, F., Solari, L., Schaaf, P., Solís-Pichardo, G., 2019, Apatite U-Pb dating at UNAM laboratories: analytical protocols and examples of its application: Revista Mexicana de Ciencias Geológicas, 36(1), 27–37.

Pan, L.-C., Hu, R.-Z., Wang, X.-S., Bi, X.-W., Zhu, J.-J., Li, C., 2016, Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China, Lithos, 254–255, 118–130.

Pan, Y., y Fleet, M.E., 2002, Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors: Reviews in Mineralogy and Geochemistry, 48(1), 13–49.

Pano, A., 1973, Estudio geológico de detalle estratigráfico de las áreas Sierra de Chivillas, Sierra de Miahuatepec, Los Reyes Metzontla, Pue. y San Sebastián Frontera, Oax. del Prospecto Tehuacán: IGPR 107 Petróleos Mexicanos (inédito).

Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R., 2010, Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction: Geochemistry, Geophysics, Geosystems, 11(3), 1-36.

Paul, T., y Fitzgerald, P., 1992, Transmission electron microscopic investigation of fission tracks in fluorapatite: American Mineralogist, 77, 336-344.

Pérez-Gutiérrez, R., Solari, L.A., Gómez-Tuena, A., Valencia, V.A., 2009, El terreno Cuicateco: ¿cuenca oceánica con influencia de subducción del Cretácico Superior en el sur de México? Nuevos datos estructurales, geoquímicos: Revista Mexicana de Ciencias Geológicas, 26(1), 222–242.

Petrus, J.A., Kamber, B.S., 2012, VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction: Geostandards and Geoanalytical Research, 36(3), pp. 247–270.

Philander, C., Rozendaal, A., 2015, Detrital zircon geochemistry and U–Pb geochronology as an indicator of provenance of the Namakwa Sands heavy mineral deposit, west coast of South Africa: Sedimentary Geology, 328, 1–16.

Piccoli, P.M., Candela, P.A., 2002, Apatite in Igneous Systems: Reviews in Mineralogy and Geochemistry, 48(1), 255–292.

Pindell, J.L., y Kennan, L., 2009, Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update, in James, K.H., Lorente, M.A., Pindell, J.L. (eds.), The Origin and Evolution of the Caribbean Plate: London, Geological Society, London, Special Publications, 1-55.

Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., Zhao, D., 2008, The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume: Gondwana Research, 14, 51–72.

Roeder, P.L., MacArthur, D., Ma, X.-P., Palmer, G.R., 1987, Cathodoluminescence and microprobe study of rare-earth elements in apatite: American Mineralogist, 72, 801-811.

Ronsbo, J.G., 1989, Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications: American Mineralogist, 74, 896–901.

Schaaf, P., Weber, B., Weis, P., Groß, A., Ortega-Gutiérrez, F., Köhler, H., 2002, The Chiapas Massif (Mexico) revised: New geologic and isotopic data and basement characteristics: Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. Schweizerbart'sche Verlagsbuchhandlung, 225(1), 1–23.

Sedlock, R.L., Ortega-Gutiérrez, F., Speed, R.C., 1993, Tectonostratigraphic Terranes and Tectonic Evolution of Mexico: Boulder, Colorado, Geological Society of America Special Paper 278, 153 pp.

Sha, L.-K., Chappell, B.W., 1999, Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis: Geochimica et Cosmochimica Acta, 63(22), 3861–3881.

Sierra-Rojas, M.I., 2018, Ambiente tectonico del margen occidental del Oaxaquia en el Cretacico inferior y su relacion con la geodinamica regional: Querétado, México, Universidad Nacional Autónoma de México, tesis doctoral, 125 pp.

Sierra-Rojas, M.I., Molina-Garza, R.S., 2014, La formación Zicapa del sur de México: Revisión estratigráfica, sedimentología y ambientes sedimentarios: Revista Mexicana de Ciencias Geologicas, 31(2), 174–189.

Sierra-Rojas, M.I., Molina-Garza, R.S., Lawton, T.F., 2016, The Lower Cretaceous Atzompa Formation in South-Central Mexico: Record of Evolution From Extensional Backarc Basin Margin To Carbonate Platform: Journal of Sedimentary Research, 86, 712–733.

da Silva, L.C., McNaughton, N.J., Armstrong, R., Hartmann, L.A., Fletcher, I.R., 2005, The neoproterozoic Mantiqueira Province and its African connections: a zircon-based U–Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens: Precambrian Research. 36, 203–240.

Simonetti, A., Heaman, L.M., Chacko, T., Banerjee, N.R., 2006, In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS: International Journal of Mass Spectrometry 253, 87–97.

Solari, L.A., Dostal, J., Ortega-Gutiérrez, F., Keppie, D., 2001, The 275 Ma arc-related La Carbonera stock in the northern Oaxacan Complex of southern Mexico: U-Pb geochronology and geochemistry: Revista Mexicana de Ciencias Geologicas, 18(2), 149–161.

Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Cameron, K.L., López, R., Hames, W.E., 2003, 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: Roots of an orogen: Tectonophysics, 365, 257–282.

Solari, L.A., Torres de León, R., Hernández Pineda, G., Solé, J., Solís-Pichardo, G., Hernández-Treviño, T., 2007, Tectonic significance of Cretaceous-Tertiary magmatic and structural evolution of the northern margin of the Xolapa Complex, Tierra Colorada area, southern Mexico: Geological Society of America Bulletin, 119 (9–10), 1265–1279.

Solari, L.A., Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, O., Tanner, M., 2010, U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy: Geostandards and Geoanalytical Research, 34(1), 5–18.

Solari, L.A., Ortega-Gutiérrea, F., Elías-Herrera, M., Gómez-Tuena, A., Schaaf, P., 2010, Refining the age of magmatism in the Altos Cuchumatanes, western Guatemala, by LA-ICPMS, and tectonic implications: International Geology Review, 52(9), 977-998.

Spear, F.S., Pyle, J.M., 2002, Apatite, Monazite, and Xenotime in Metamorphic Rocks: Reviews in Mineralogy and Geochemistry, 48(1), 293–335.

Spencer, C.J., Kirkland, C.L., 2016, Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach: Lithosphere, 8(1), 29–37.

Stacey, J.S., Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, 26(2), 207–221.

Stern, R.J., Dickinson, W.R., 2010, The Gulf of Mexico is a Jurassic backarc basin: Geosphere, 6(6), 739–754.

Talavera-Mendoza, O., Ruiz, J., Gehrels, G.E., Meza-Figueroa, D.M., Vega-Granillo, R., Campa-Uranga, M.F., 2005, U-Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico: 235, 682-699.

Talavera-Mendoza, O., Ruiz, J., Corono-Chavez, P., Gehrels, G.E., Sarmiento-Villagrana, A., García-Cíaz, J.L., Salgado-Souto, S.A., 2013, Origin and provenance of basement metasedimentary rocks from the Xolapa Complex: New constraints on the Chortis–southern Mexico connection: Earth and Planetary Science Letters, 369–370, 188–199.

Tang, M., Wang, X.-L., Xu, X.-S., Zhu, C., Cheng, T., Yu, Y., 2012, Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf–Nd isotopic decoupling: Gondwana Research 21(1), 266–280.

Tera, F., Wasserburg, G.J., 1972, U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks: Earth and Planetary Science Letters, 14(3), 281–304.

Thomson, S.N., Gehrels, G.E., Ruiz, J., 2012, Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS: Geochemistry, Geophysics, Geosystems, 13(1), 1-23.

Tohver, E., Bettencourt, J.S., Tosdal, R., Mezger, K., Leite, W.B., Poyolla, B.L., 2004, Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes: Earth and Planetary Science Letters, 228, 161–176.

Toriz, G.J., 1984, Informe geológico de actualización geológica del Prospecto Chapulco-Atzompa: México: IGPR 237, Petróleos Mexicanos, inédito.

Torres, R., Ruiz, J., Patchett, P.J., Grajales, J.M., 1999, Permo-Triassic continental arc in eastern Mexico: Tectonic implications for reconstructions of southern North America, in Bartolini, C., Wilson, J.L., Lawton, T.F. (eds.), Mesozoic sedimentary and tectonic history of north-central Mexico: Boulder, Colorado, Geological Society of America en Special Paper 340, 191–196.

Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D., Ruiz, J., Gehresl, G.E., López-Martínez, M., de la Cruz-Vargas, L.C., 2007, Pressure-temperature-time evolution of Paleozoic high-pressure rocks of the Acatlan Complex (southern Mexico): Implications for the evolution of the lapetus and Rheic Oceans: Geological Society of America Bulletin, 119(9–10), 1249–1264.

Vermeesch, P., 2009, RadialPlotter: A Java application for fission track, luminescence and other radial plots: Radiation Measurements, 44(4), 409–410.

Vermeesch, P., 2012, On the visualisation of detrital age distributions: Chemical Geology, 312–313, 190–194.

Vermeesch, P., 2013, Multi-sample comparison of detrital age distributions: Chemical Geology, 341, 140–146.

Vermeesch, P., 2018, IsoplotR: A free and open toolbox for geochronology: Geoscience Frontiers, 9(5), 1479–1493.

Wagner, G.A., 1968, Fission track dating of apatites: Earth and Planetary Science Letters, 4(5), 411–415.

Wagner, G.A., y Reimer, G.M., 1972, Fission track tectonics: The tectonic interpretation of fission track apatite ages: Earth and Planetary Science Letters, 14(2), 263–268.

Wagner, G.A., y Van den Haute, P., 1992, Fission-Track Dating: Dordrecht, Springer Netherlands, 299 pp.

Weber, B., y Kohler, H., 1999, Sm–Nd, Rb–Sr and U–Pb geochronology of a Grenville Terrane in Southern Mexico: origin and geologic history of the Guichicovi Complex: Precambrian Research, 96, 245–262.

Weber, B., Iriondo, A., Premo, W.R., Hecht, L., Schaaf, P., 2007, New insights into the history and origin of the southern Maya block, SE Mexico: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif: International Journal of Earth Sciences, 96(2), 253–269.

Weber, B., Valencia, V.A., Schaaf, P., Pompa-Mera, V., Ruiz, J., 2008, Significance of Provenance Ages from the Chiapas Massif Complex (Southeastern Mexico): Redefining the Paleozoic Basement of the Maya Block and Its Evolution in a Peri-Gondwanan Realm: The Journal of Geology, 116(6), 619–639.

Weber, B., y Schulze, C.H., 2014, Early Mesoproterozoic (>1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept-Evidence from U-Pb and Lu-Hf isotopes on zircon: Revista Mexicana de Ciencias Geológicas, 31(3), 377-394.

Williams, I.S., 1998, U-Th-Pb Geochronology by Ion Microprobe, in McKibben, M.A., Shanks III, W.C, Ridley, W.I. (eds.), Aplications of Microanalytical Techniques to Understanding Mineralizing Processes: Reviews in Economic Geology, 1-35.

Yan, Y., Lin, G., Wang, Y.-J., Guo, F., Li, Z.-A., Li, X.-M., Zhao, C., 2003, Apatite fission track age of Mesozoic sandstones from Beipiao basin, eastern China: Implications for basin provenance and tectonic evolution: Geochemical Journal, 37(3), 377–389.

Yoshioka, T., Tsuruta, T., Iwano, H., Danhara, T., 2005, Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1–2), 386–395.

# Anexo 1. Descripción petrográfica de muestras

# **MUESTRA LS-2**

# I. PARÁMETROS TEXTURALES

| 1. Forma de los granos:               | 2. Tamaño de los granos:     |
|---------------------------------------|------------------------------|
| Angulares a subangulares              | Entre ~1.5 mm y ~0.2 mm      |
| <ol><li>Grado de selección:</li></ol> | 4. Contacto entre granos:    |
| Pobremente seleccionada               | Suturados y cóncavo-convexos |

# II. COMPOSICIÓN

# 1. Matriz/Pseudomatriz:

| <ul> <li>Pseudomatriz constituida por granos de feldespato completamente alterados a arcillas<br/>y sericita, plagioclasas fracturadas y moscovitas con diferentes grados de alteración.<br/>Muchos granos se encuentran totalmente cubiertos por sericita. En algunos sectores<br/>hay cristales microlíticos de sericita bien desarrollados y sin deformación.</li> </ul>                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>2. Cemento:</li> <li>Cemento primario de illita que bordea a r</li> <li>Cemento secundario de calcita rellen componentes del armazón (feldespatos este cemento es poiquilotópico.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          | muchos granos del armazón.<br>ando espacios y reemplazando a algunos<br>y cuarzo). En algunos sectores la textura de                                                                                                                                                                                                                                                          |  |  |  |  |  |
| <ol> <li>Componentes del armazón:         <ul> <li>Cuarzo monocristalino, se encuentra granos presentan crecimiento sintaxial.</li> <li>Cuarzo policristalino foliado y no foliado ondulante.</li> <li>Plagioclasas con macla polisintética y sustitución (calcita).</li> <li>Feldespatos (microclina) casi totalmente reemplazados por calcita.</li> <li>Líticos volcánicos felsíticos microcrist cuarzo.</li> <li>Líticos volcánicos vítreos parcialmente a Líticos de arenisca constituidos por grano Líticos mirmequíticos.</li> <li>Líticos metamórficos de cuarzo-mos clasificación de (Garzanti y Vezzoli, 2003)</li> </ul> </li> </ol> | con extinción recta y ondulatorio. Algunos<br>o en mosaico poligonal, ambos con extinción<br>diferentes grados de alteración (sericita) y<br>e alterados a agregados de sericita-arcillas y<br>talinos, algunos con microfenocristales de<br>lterado a minerales opacos.<br>os de cuarzo y cemento de hematita- sericita.<br>scovita (líticos metamórficos Lmf3 de la<br>3)). |  |  |  |  |  |
| 4. Minerales accesorios (<1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Circón                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Turmalina                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| <ul> <li>Apatitos</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Moscovita</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Titanita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Granate                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| <ul> <li>Opacos</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hematita                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

| Qm   | Qp   | Р   | K   | Lvf | Lvl | Lvv | Lsa | Lm  | Qt   | F    | L    |
|------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 60.2 | 12.6 | 9.6 | 6.9 | 4.8 | 1.5 | 1   | 1.5 | 1.7 | 72.8 | 16.5 | 10.5 |

Porcentaje de componentes del armazón y valores normalizados de Qt-F-L para clasificación de la roca (conteo de 476 puntos)

# III. ALTERACIÓN-FRAGMENTACIÓN-DEFORMACIÓN

Los contactos suturados y cóncavo-convexos entre granos, la deformación de moscovitas y plagioclasas, la presencia de pseudomatriz, la precipitación de cemento sintaxial de cuarzo y de calcita que rellena poros, además del desarrollo de cristales de sericita no deformados indican que el grado de diagénesis experimentado por la roca es muy alto.

### **IV. PROVENIENCIA**

| Descripción                      | Probable fuente de sedimentos               |
|----------------------------------|---------------------------------------------|
| Cuarzo policristalino no foliado | Rocas metamórficas y plutónicas             |
| Cuarzo policristalino foliado    | Rocas metamórficas de alto grado            |
| Líticos volcánicos lathwork      | Rocas intermedias a basálticas              |
| Líticos volcánicos vítreos       | Rocas félsicas                              |
| Líticos volcánicos felsíticos    | Rocas félsicas                              |
| Líticos mirmequíticos            | Rocas metamórficas de alto grado y granitos |
| Líticos metamórficos (Lmf3)      | Rocas metamórficas de medio grado           |

### V. NOMBRE DE LA ROCA

- Arenisca litofeldespato-cuarzosa (Garzanti, 2016)
- Arenisca arcosa lítica (Folk, 1980)

#### VI. MICROFOTOGRAFÍAS



Microfotografías con los objetivos 4x (A., B.), 20x (C., D., E.) y 10x (F., G.) de la muestra 250618-2. Arenisca pobremente seleccionada con tamaño de grano entre fino a muy grueso. **A.** Luz polarizada cruzada, granos de cuarzo monocristalino con contactos suturados, plagioclasas y feldespatos potásicos con alteración a sericita, líticos volcánicos felsíticos y vítreos. Los componentes del armazón están cementados por calcita. **B.** Luz polarizada cruzada, granos de cuarzo monocristalino y policristalino, plagioclasa con macla polisintética con alteración a sericita, líticos volcánicos felsíticos y vítreos. Los componentes del armazón están cementados por calcita. **B.** Luz polarizada cruzada, granos de cuarzo monocristalino y vítreos. Los componentes del armazón están cementados por calcita. **C.** Luz polarizada plana, cristal de granate subhedral. **D.** Luz polarizada plana, cristal de turmalina fracturado. **E.** Luz polarizada, cristal de titanita subhedral. **F.** Luz polarizada plana, lítico metamórfico de cuarzo-moscovita con esquistosidad (Lmf3). **G.** Luz polarizada cruzada, lítico mirmequítico. Símbolos: Qm, cuarzo monocristalino; Qp, cuarzo policristalino; P, plagioclasas; K, feldespatos alcalinos; Ca, calcita; Lvf, lítico volcánico felsítico; Lvv, lítico volcánico vítreo; Grt, granate; Tur, turmalina; Ttn, titanita; Mqt, mirmequita.

# **MUESTRA LS-3**

### I. PARÁMETROS TEXTURALES

| 1. Forma de los granos     | 2. Tamaño de los granos              |
|----------------------------|--------------------------------------|
| Subangular a subredondeado | Entre ~0.33 mm y ~0.1 mm             |
| 3. Grado de selección      | 4. Contacto entre granos             |
| Pobremente seleccionada    | Largos, cóncavo-convexos y suturados |

### II. COMPOSICIÓN

- 1. Matriz/Pseudomatriz:
  - Pseudomatriz constituida de sericita y arcillas a partir de la alteración y de feldespatos y plagioclasas.
  - Moscovitas alteradas, deformadas y presionadas contra los bordes de granos más resistentes son frecuentes.

#### 2. Cemento:

 Cemento de calcita que rellenó espacios y reemplazó parcial o totalmente a otros granos (plagioclasas y cuarzo). La calcita por lo general es amorfa y sucia en arreglo poiquilotópico y en mosaico de cristales.

#### 3. Componentes del armazón:

- Cuarzo monocristalino con extinción recta, en menor proporción con extinción ondulatoria poco desarrollada. Muchos granos presentan evidencia de disolución (entrantes o golfos)
- Cuarzo policristalino foliado y no foliado en mosaico poligonal. Algunos granos son perfectamente circulares por lo que podría corresponder a radiolarios silicificados totalmente.
- Plagioclasas con macla polisintética.
- Feldespatos alterados a arcillas y con inclusiones de sericita.
- Moscovita deformada por compactación, algunas están asociadas a cuarzo policristalino foliado (foliación planar y *kink band*)
- Líticos volcánicos felsíticos con microfenocristales de cuarzo y feldespato.
- Lítico volcánico lathwork parciamente sustituido por calcita y minerales opacos.
- Líticos metamórficos constituidos por cuarzo foliado y moscovita (líticos metamórficos Lmf2 y Lmf3 de la clasificación de (Garzanti y Vezzoli, 2003)).
- Intraclastos, de límites difusos, constituidos por lodo recristalizado a arcillas-micas, cuarzo y minerales opacos.
- Clasto con aspecto de serpentina deformado por compactación
- Mica blanca de neoformación

| 4. Minerales accesorios (MA) (                           | <1%)                                                       |                                            |
|----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|
| <ul><li>Opacos</li><li>Circón</li><li>Hematita</li></ul> | <ul><li>Rutilo</li><li>Turmalina</li><li>Granate</li></ul> | <ul><li>Apatitos</li><li>Clorita</li></ul> |

|       |       |     |     | (   |     | ,     |       |      |       |
|-------|-------|-----|-----|-----|-----|-------|-------|------|-------|
| Qm    | Qp    | Р   | К   | Lvf | Lvl | Lm    | Qt    | F    | L     |
| 46-50 | 12-15 | 5-6 | 3-4 | 6-7 | 4-5 | 16-20 | 58-65 | 8-10 | 26-32 |

Porcentaje de componentes del armazón y valores normalizados de Qt-F-L para clasificación de la roca (Estimación visual)

### III. ALTERACIÓN-FRAGMENTACIÓN-DEFORMACIÓN

Los tipos de contactos entre granos, el desarrollo de pseudomatriz, la precipitación de cemento, la sustitución de granos por calcita, corrosión de bodes en los granos de cuarzo y la presencia de mica blanca de neoformación indican que el grado de diagénesis experimentado por la roca es alto llegando incluso al campo de las rocas metamórficas de muy bajo grado.

Hay precipitación de horizontes irregulares y discontinuos de hematita, parecidos a picos estilolíticos, que pueden ser diagnósticos de diagénesis alta o metamorfismo de bajo grado.

#### IV. PROVENIENCIA

El intraclasto descrito anteriormente puede corresponder a un parche de lodo intracuenca no compactado o litificado arrastrado por la corriente.

| Descripción                        | Probable fuente de sedimentos            |
|------------------------------------|------------------------------------------|
| Clasto de serpentina?              | Rocas ultramáficas                       |
| Líticos volcánicos felsíticos      | Rocas félsicas                           |
| Líticos volcánicos lathwork        | Roas intermedias a basálticas            |
| Cuarzo policristalino no foliado   | Rocas metamórficas y plutónicas          |
| Cuarzo policristalino foliado      | Rocas metamórficas de alto grado         |
| Líticos metamórficas (Lmf2 y Lmf3) | Rocas metamórficas de bajo y medio grado |

### V. NOMBRE DE LA ROCA

Con base en la descripción de la textura y componentes del armazón, la roca puede ser considerada como metasedimentaria de muy bajo grado.

- Meta-arenisca entre lito-cuarzosa y feldespatolitico-cuarzosa (Garzanti, 2016)
- Meta-arenisca entre litoarenita y litoarenita feldespática (Folk, 1980)

#### VI. MICROFOTOGRAFÍAS



Microfotografías con los objetivos 4x (A., C., D.) y 10x (B., E., F., G., H., I., J.) de la muestra 250618-3. Meta-arenisca pobremente seleccionada con tamaño de gano entre muy fino a fino. La roca presenta evidencia de haber experimentado metamorfismo de muy bajo grado. A. Luz polarizada cruzada, granos de cuarzo monocristalino con extinción plana, cuarzo policristalino foliado, líticos metamórficos, líticos volcánicos felsíticos y moscovita deformada. Los componentes del armazón están cementados por calcita. B. Luz polarizada cruzada, granos de cuarzo monocristalino con entrantes, feldespatos y plagioclasas con alteración a sericita. líticos metamórficos de cuarzo-moscovita. líticos volcánicos felsíticos y lathwork, moscovita deformada y mica blanca de neoformación. El cuarzo monocristalino presenta evidencias de disolución (entrantes). C. Luz polarizada cruzada, clasto deformado de serpentina?. D. Luz polarizada cruzada, intraclasto con límites difusos y recirstalización de sus componentes. E. Luz polarizada cruzada, granos de cuarzo circulares, posiblemente sean radiolarios recristalizados. F. Luz polarizada plana, cristal de granate. G. Luz polarizada cruzada, cristal de rutilo. H. Luz polarizada cruzada, cristal de turmalina. I. Luz polarizada cruzada, lítico de cuarzo-moscovita posiblemente de gneis. J. Luz polarizada cruzada, lítico de cuarzo-moscovita con esquistosidad. Símbolos: Qm. cuarzo monocristalino; Qp, cuarzo policristalino; Ms, moscovita; Ca, calcita; K, feldespato potásico; P, plagioclasa; Lm, lítico metamórfico; Lvf, lítico volcánico felsítico; Mbn, mica blanca de neoformación; Srp?, serpentina?; IC, intraclasto; Qtz, cuarzo; Grt, granate; Rt, rutilo; Tur, turmalina.

# **MUESTRA V-1**

# I. PARÁMETROS TEXTURALES

| 1. Forma de los granos:     | 2. Tamaño de los granos:       |
|-----------------------------|--------------------------------|
| Angulares a subangulares    | Rango entre ~1.8 mm y ~0.15 mm |
| 3. Grado de selección:      | 4. Contacto entre granos:      |
| Muy pobremente seleccionado | Suturados y cóncavo-convexos   |

# II. COMPOSICIÓN

| 1. Matriz/Pseudomatriz:                                                              |                                              |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| Pseudomatriz constituida por granos de feldespato completamente alterados a sericita |                                              |  |  |  |  |  |  |
| y reemplazados por calcita. Algunos lítico                                           | os sedimentarios y volcánicos han sido       |  |  |  |  |  |  |
| deformados a lo largo de fracturas en gra                                            | inos de cuarzo.                              |  |  |  |  |  |  |
| 2. Cemento:                                                                          |                                              |  |  |  |  |  |  |
| Cemento de calcita que rellenó espaci                                                | os y sustituyó a algunos componentes del     |  |  |  |  |  |  |
| armazón. El arreglo es poiquilotópico y el                                           | n mosaico.                                   |  |  |  |  |  |  |
| <ul> <li>Algunos granos poseen un borde muy de</li> </ul>                            | lgado de minerales opacos y hematita         |  |  |  |  |  |  |
| 3. Componentes del armazón:                                                          |                                              |  |  |  |  |  |  |
| Cuarzo monocristalino con extinción re                                               | ecta y ondulatoria. A partir de la extinción |  |  |  |  |  |  |
| ondulante se distinguen granos limpios y                                             | poco ondulantes y granos muy ondulantes y    |  |  |  |  |  |  |
| poligonizados. Algunos granos poseen                                                 | evidencia de disolución (entrantes). Granos  |  |  |  |  |  |  |
| poligonizados por deformación y fractura                                             | dos son comunes.                             |  |  |  |  |  |  |
| Cuarzo policristalino no foliado en m                                                | osaico poligonal inequigragular. El cuarzo   |  |  |  |  |  |  |
| policristalino foliado es escaso y algunos                                           | estan asociados con plagioclasas.            |  |  |  |  |  |  |
| Plagiociasas con macia polisintetica y                                               | diferentes grados de alteración (sericita) y |  |  |  |  |  |  |
| maclas)                                                                              | fragmentados y deformados (evidente en las   |  |  |  |  |  |  |
| <ul> <li>Feldespatos con diferentes grados al</li> </ul>                             | lteración a sericita Granos fracturados v    |  |  |  |  |  |  |
| fragmentados.                                                                        |                                              |  |  |  |  |  |  |
| <ul> <li>Líticos volcánicos felsíticos con microfenocristales de cuarzo.</li> </ul>  |                                              |  |  |  |  |  |  |
| Líticos volcánicos lathwork.                                                         |                                              |  |  |  |  |  |  |
| <ul> <li>Líticos volcánicos traquíticos.</li> </ul>                                  |                                              |  |  |  |  |  |  |
| <ul> <li>Líticos sedimentarios de arenisca mo</li> </ul>                             | deradamente seleccionada constituidos de     |  |  |  |  |  |  |
| granos de cuarzo.                                                                    |                                              |  |  |  |  |  |  |
| Líticos mirmequíticos.                                                               |                                              |  |  |  |  |  |  |
| Mica blanca.                                                                         |                                              |  |  |  |  |  |  |
| 4. Minerales accesorios MA (<1%)                                                     |                                              |  |  |  |  |  |  |
| Circón                                                                               | Apatito                                      |  |  |  |  |  |  |
| Rutilo                                                                               | <ul> <li>Opacos</li> </ul>                   |  |  |  |  |  |  |
| Clorita                                                                              | <ul> <li>Turmalina</li> </ul>                |  |  |  |  |  |  |
| Hematita                                                                             | Granate                                      |  |  |  |  |  |  |
|                                                                                      |                                              |  |  |  |  |  |  |

| de la roca (Estimación visual) |    |   |   |     |     |     |    |    |   |   |  |
|--------------------------------|----|---|---|-----|-----|-----|----|----|---|---|--|
| Qm                             | Qp | Р | К | Lvf | LvI | Lvt | Ls | Qt | F | L |  |
|                                |    |   |   |     |     |     |    |    |   |   |  |

4-6 2-3 9-11

3-5

49-55 26-30 18-25

Porcentaje de componentes del armazón y valores normalizados de Qt-F-L para clasificación de la roca (Estimación visual)

### III. ALTERACIÓN-FRAGMENTACIÓN-DEFORMACIÓN

19-21 7-9

27-30

La formación de pseudomatriz, el tipo de contacto entre granos, la alteración de feldespatos, disolución de granos, la precipitación de cemento y sustitución de algunos componentes por calcita indican que el grado de diagénesis experimentado por la roca es alto.

El desarrollo de fracturas y fragmentación de granos (tipo rompecabezas) de cuarzo y feldespato, la deformación de algunos cristales de calcita (cemento) y la precipitación de horizontes irregulares y discontinuos de hematita y arcillas indican que la roca ha experimentado deformación de tipo cataclástica.

#### **IV. PROCEDENCIA**

22-25

| Descripción                                    | Fuente probable del sedimento               |  |  |  |
|------------------------------------------------|---------------------------------------------|--|--|--|
| Cuarzo monocristalino poco ondulante           | Rocas ígnea                                 |  |  |  |
| Cuarzo monocristalino ondulante y poligonizado | Rocas metamórfica                           |  |  |  |
| Cuarzo policristalino no foliado               | Rocas metamórficas y plutónicas             |  |  |  |
| Cuarzo policristalino foliado                  | Rocas metamórficas de alto grado            |  |  |  |
| Líticos volcánicos felsíticos                  | Rocas félsicas                              |  |  |  |
| Líticos volcánicos lathwork                    | Rocas intermedias a basálticas              |  |  |  |
| Líticos volcánicos traquíticos                 | Rocas intermedias                           |  |  |  |
| Líticos mirmequíticos                          | Rocas metamórficas de alto grado y granitos |  |  |  |

### V. NOMBRE DE LA ROCA

- Arenisca litofeldespato-cuarzosa (Garzanti, 2016)
- Arenisca arcosa-lítica (Folk, 1980)

#### **VI. MICROFOTOGRAFÍAS**



Microfotografías con el objetivo 4x (A., B.) y 10x (C., D., E., F.) de la muestra 250618-3. Arenisca muy pobremente seleccionada con tamaño de grano entre fino y muy grueso. Deformación cataclástica y alteración sericita-calcita es evidente. **A.** Luz polarizada cruzada, granos de cuarzo monocristalino y policristalino con extinción ondulante, plagioclasas y feldespatos potásicos con alteración a sericita, líticos volcánicos traquiticos y líticos volcánicos felsíticos con microfenocristales de cuarzo. **B.** Luz polarizada cruzada, granos de cuarzo monocristalino fragmentados con extinción ondulante, cuarzo policristalino poligonizado, plagioclasas y feldespato potásico con alteración a sericita. Se observan horizontes irregulares y discontinuos de mica blanca y hematita. **C.** Luz polarizada cruzada, lítico mirmequítico. **D.** Luz polarizada cruzada, cristal de turmalina. Símbolos: Qm, cuarzo monocristalino; Qp, cuarzo policristalino; P, plagioclasa; K, feldespato potásico; Ca, calcita; Lvf, lítico volcánico felsítico; Lvt, lítico volcánico traquítico; H, hematita; Mb, mica blanca; Mqt, mirmequita; Rt, rutilo; Grt, granate; Chl, clorita; Tur, turmalina.

# **MUESTRA V-2**

# I. PARÁMETROS TEXTURALES

| 1. Forma de los granos:                                                                                                                                    | <ol><li>Tamaño de los granos:</li></ol>                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Angulares a subangulares                                                                                                                                   | Entre ~0.6 mm y ~0.1 mm                                                                  |
| <ol> <li>Grado de selección:</li> <li>No conserva las características texturales primarias<br/>como consecuencia de la alteración y deformación</li> </ol> | <ol> <li>Contacto entre granos:<br/>Suturados, cóncavo-convexos<br/>y largos.</li> </ol> |

### II. COMPOSICIÓN

- 1. Matriz/Pseudomatriz:
  - Pseudomatriz desarrollada por alteración de feldespatos, plagioclasas y algunos fragmentos líticos.
  - Clivaje discontinuo constituido por sericita, arcillas y mica blanca de neoformación.

#### 2. Cemento:

- Cemento de calcita muy deformado.
- 3. Componentes del armazón:
  - Cuarzo monocristalino con extinción recta y ondulatoria. Algunos granos poseen crecimiento sintaxial. Fracturas poligonales en ocasiones rellenas de calcita/sericita y fragmentación de granos son frecuentes. Disolución de granos es evidente por la formación de entrantes.
  - Cuarzo policristalino foliado y no foliado. Algunos granos han sido poligonizados.
  - Plagioclasas con macla polisintética y diferentes grados de alteración a sericita y calcita.
  - Feldespatos con diferentes grados de alteración a sericita y calcita.
  - Líticos volcánicos felsíticos con microfenocristales de cuarzo.
  - Líticos volcánicos traquiticos.
  - Líticos volcánicos lathwork.
  - Líticos metamórficos constituidos de cuarzo y moscovita (líticos metamórficos Lmf2 y Lmf3 de la clasificación de (Garzanti y Vezzoli, 2003)).
  - Líticos de arenisca constituidos principalmente de cuarzo.
  - Mica blanca de neoformación.

### 4. Minerales accesorios (<1%)

- Moscovita
- Apatito
- Clorita

- Minerales opacos
- Circón
- Hematita

Porcentaje de componentes del armazón y valores normalizados de Qt-F-L para clasificación de la roca (Estimación visual)

| Qm    | Qp    | Р     | К    | Lvf  | Lvl | Lvt | Ls  | Lm  | Qt    | F     | L     |
|-------|-------|-------|------|------|-----|-----|-----|-----|-------|-------|-------|
| 25-30 | 10-15 | 15-18 | 8-10 | 9-11 | 4-6 | 4-6 | 5-7 | 3-5 | 35-45 | 23-28 | 25-35 |

### III. ALTERACIÓN-FRAGMENTACIÓN-DEFORMACIÓN

El desarrollo de un clivaje discontinuo con el crecimiento de mica blanca de neoformación sugiere que la roca experimentó una intensa deformación y condiciones metamórficas de muy bajo grado, modificando las características texturales primarias.

### IV. PROCEDENCIA

| Descripción                        | Fuente probable del sedimento            |
|------------------------------------|------------------------------------------|
| Cuarzo policristalino no foliado   | Rocas metamórficas y plutónicas          |
| Cuarzo policristalino foliado      | Rocas metamórficas de alto grado         |
| Líticos volcánicos felsíticos      | Rocas félsicas                           |
| Líticos volcánicos traquíticos     | Rocas intermedias                        |
| Líticos volcánicos lathwork        | Rocas intermedias y basálticas           |
| Líticos metamórficos (Lmf2 y Lmf3) | Rocas metamórficas de bajo y medio grado |

# V. NOMBRE DE LA ROCA

- Meta-arenisca entre litofeldespatico-cuarzosa y feldespatolitico-cuarzosa (Garzanti, 2016)
- Meta-arenisca entre arcosa lítica y litoarenita feldespática (Folk, 1980)

#### VI. MICROFOTOGRAFÍAS



Microfotografías con el objetivo 4x (A., B., C.) y 10x (D.) de la muestra 260618-2. Meta-arenisca con clivaje discontinuo marcado por el desarrollo de sericita, arcillas y mica blanca de neoformación. El tamaño de los granos oscila entre arena gruesa y muy fina. Los rasgos primarios se han borrado casi totalmente sugiriendo deformación y metamorfismo de bajo grado. A. Luz polarizada cruzada, granos de cuarzo monocristalino y policristalino con extinción ondulante, feldespato potásico alterado a sericita, lítico metamórfico constituido de cuarzomoscovita, líticos volcánicos felsíticos con microfenocristales de cuarzo y mica blanca de neoformación. B. Luz polarizada cruzada, granos de cuarzo monocristalino y policristalino con extinción ondulante, feldespatos potásicos alterados a sericita, líticos volcánicos felsíticos y lathwork y mica blanca de neoformación paralela al clivaje discontinuo. C. Luz polarizada cruzada, lítico metamórfico de cuarzo-sericita con clivaje fuerte (Lmf2). D. Luz polarizada cruzada, lítico metamórfico de cuarzo-moscovita con esquistosidad. Símbolos: Qm, cuarzo monocristalino; Qp, cuarzo policristalino; K, feldespato potásico; Ca, calcita; Lm, lítico metamórfico; Lvf, lítico volcánico felsítico; Lvl, lítico volcánico lathwork, Mbn, mica blanca de neoformación.

### **MUESTRA RN-3**

# I. PARÁMETROS TEXTURALES

| 1. Forma de los granos:                 | 2. Tamaño de los granos:     |  |  |  |  |  |  |
|-----------------------------------------|------------------------------|--|--|--|--|--|--|
| Angulares a subangulares                | Entre ~2 mm y ~0.2 mm        |  |  |  |  |  |  |
| <ol><li>Grado de selección:</li></ol>   | 4. Contacto entre granos:    |  |  |  |  |  |  |
| La roca no conserva las características | Suturados y cóncavo-convexos |  |  |  |  |  |  |
| texturales primarias                    |                              |  |  |  |  |  |  |

### II. COMPOSICIÓN

- 1. Matriz/Pseudomatriz:
  - Pseudomatriz de sericita y arcillas. Se distinguen algunos pseudomorfos con esta composición.
- 2. Cemento:
  - Cemento de calcita con arreglo poiquilotópico y en mosaico poligonal.
  - Algunos componentes están siendo alterados y sustituidos por calcita.
- 3. Componentes del armazón:
  - Cuarzo monocristalino con extinción ondulante y fracturas poligonales. Hay evidencia de reabsorción y disolución de los bordes de granos (entrantes). Algunos granos parecen desarrollar sombra de presión de calcita y sericita
  - Cuarzo policristalino no foliado en mosaico poligonal. En menor medida cuarzo policristalino foliado. Ambos con extinción ondulante de los componentes. Poligonización y fracturamiento es común.
  - Plagioclasas con macla polisintética alterada y sustituida por sericita y calcita. Los granos exhiben fracturamiento y fragmentación de tipo rompecabezas. Algunos granos están asociados con cuarzo. Deformación es evidente por acuñamiento de las maclas.
  - Feldespatos alterados y sustituidos por sericita y calcita.
  - Líticos volcánicos felsíticos con microfenocristales de cuarzo.
  - Líticos metamórficos de cuarzo y moscovita (líticos metamórficos Lmf3 de la clasificación de (Garzanti y Vezzoli, 2003)).
  - Líticos de pedernal.
  - Líticos mirmequíticos.
  - Alteración de hematita de granos minerales y líticos.
  - Mica blanca de neoformación.
- 4. Minerales accesorios (<1%)
  - Circón
  - Titanita
    - Moscovita
  - Hematita

- Apatito
- Minerales opacos
- Turmalina

Porcentaje de componentes del armazón y valores normalizados de Qt-F-L para clasificación de la roca

| Qm    | Qp    | Qc  | Р     | K    | Lvf | Lm  | Qt    | F     | L    |  |
|-------|-------|-----|-------|------|-----|-----|-------|-------|------|--|
| 35-40 | 13-18 | 4-6 | 25-29 | 8-12 | 5-7 | 1-3 | 52-64 | 33-41 | 6-10 |  |

# III. ALTERACIÓN-FRAGMENTACIÓN-DEFORMACIÓN

El desarrollo de pseudomatriz, la alteración a sericita-calcita-hematita de los componentes que en ocasiones los hace no identificables, la deformación y fragmentación de granos de cuarzo y feldespatos, el desarrollo de aparentes sombras de presión en una orientación preferencial, horizontes irregulares y discontinuos de hematita, clivaje poco desarrollo, neoformación de mica blanca indican que la roca se encuentra en el campo de las rocas metamórficas de muy bajo grado.

### IV. PROCEDENCIA

| Descripción                      | Fuente probable del sedimento               |
|----------------------------------|---------------------------------------------|
| Cuarzo policristalino no foliado | Rocas metamórficas y plutónicas             |
| Cuarzo policristalino foliado    | Rocas metamórficas de alto grado            |
| Líticos volcánicos felsíticos    | Rocas félsicas                              |
| Líticos metamórficos (Lmf3)      | Rocas metamórficas de medio grado           |
| Líticos mirmequíticos            | Rocas metamórficas de alto grano y granitos |

### V. NOMBRE DE LA ROCA

- Meta-arenisca feldespato-cuarzosa (Garzanti, 2016)
- Meta-arenisca arcosa (Folk, 1980)

#### **VI. MICROFOTOGRAFÍAS**



Microfotografías con el objetivo 4x (A., B., F.) y 10x (C., D., E.) de la muestra 260618-3. Meta-arenisca con clivaje poco desarrollado marcado por sericita, hematita y mica blanca de neoformación. El tamaño de los granos oscila entre arena muy gruesa y fina. Las características primarias de la roca se han borrado casi en su totalidad sugiriendo deformación y metamorfismo de muy bajo grado. **A.** Luz polarizada cruzada, granos de cuarzo monocristalino con entrantes y evidencias de reabsorción, feldespatos potásicos y plagioclasas alteradas a sericita, moscovita como inclusiones de feldespatos, cemento de calcita y mica blanca de neoformación. **B.** Luz polarizada cruzada, cuarzo monocristalino con extinción ondulante, cuarzo policristalino, feldespatos potásicos y plagioclasas con alteración a sericita, alteración de componentes a calcita, moscovitas deformadas y lítico metamórfico constituido de cuarzo-moscovita. **C.** Luz polarizada cruzada, cristal de turmalina. **D.** Luz polarizada plana, cristal de titanita. **E.** Luz polarizada cruzada, lítico mirmequítico. **F.** Luz polarizada cruzada, lítico metamórfico de cuarzo-moscovita con esquistosidad. Símbolos: Qm, cuarzo monocristalino; Qp, cuarzo policristalino; P, plagioclasa; K, feldespato potásico; Ms, moscovita; Ca, calcita; Mbn, mica blanca de neoformación; Lm, lítico metamórfico; Tur, turmalina; Ttn, titanita; Mqt, mirmequita.

# **MUESTRA RN-4**

# I. PARÁMETROS TEXTURALES

| <ol><li>Tamaño de los granos:</li></ol> |
|-----------------------------------------|
| Entre ~4.25 mm y ~1.5 mm                |
| 4. Contacto entre granos:               |
| Suturados                               |
|                                         |

### II. COMPOSICIÓN

| 1. | Matriz/Pseudomatriz: |  |
|----|----------------------|--|
|----|----------------------|--|

- Pseudomatriz de sericita y arcillas
- 2. Cemento:
  - Ausente
- 3. Componentes del armazón:
  - Cuarzo monocristalino con extinción oblicua y evidencia de disolución en los bordes. Fracturas y poligonización de los cristales son frecuentes.
  - Cuarzo policristalino no foliado en mosaico poligonal y cuarzo policristalino foliado menos frecuente. La extinción ondulatoria es característico de ambos tipos de cuarzo.
  - Plagioclasa con macla polisintética y diferentes grados de alteración a sericita. La mayoría de granos posee textura de antipertita. Deformación de granos es común. Muchas plagioclasas se encuentran asociadas a cuarzo y feldespatos en agregados glomeroporfídicos.
  - Feldespatos potásicos con diferentes grados de alteración a sericita. Algunos granos poseen textura de pertita. Deformación de los granos es común. Muchos se encuentran asociados a cuarzo y plagioclasa en agregados glomeroporfídicos.
  - Líticos metamórficos de cuarzo moscovita y minerales opacos (líticos metamórficos Lmf3 de la clasificación de (Garzanti y Vezzoli, 2003)).
  - Líticos sedimentarios de arenisca constituidos principalmente de cuarzo.
  - Líticos volcánicos felsíticos con microfenocristales de cuarzo.
  - Moscovita deformada asociada a cuarzo o plagioclasas.
  - Líticos mirmequíticos.
  - Mica blanca de neoformación
- 4. Minerales accesorios (<1%)
  - Circón
  - Apatitos

- Minerales opacos
- Hematita

|       |      | ,    |        |        | ``  |      | ,   |     |
|-------|------|------|--------|--------|-----|------|-----|-----|
| Fls+Q | Qp   | PI   | Q+P+Ms | Fls+Ms | Lvf | Q+Ms | Lsa | Lm  |
| 29.3  | 28.7 | 10.7 | 8.0    | 6.0    | 6.0 | 2.6  | 3.7 | 5.0 |

Porcentaje de componentes de los clastos (Estimación visual)

Fls: plagiocalsa+feldespatos; Q: cuarzo; Qp: cuarzo policristalino; P: plagioclasa; Ms: moscovita; Lsa: lítico sedimentario de arenisca; Lm: lítico metamórfico; Lvf: lítico volcánico felsítico.

# III. ALTERACIÓN-FRAGMENTACIÓN-DEFORMACIÓN

El desarrollo de pseudomatriz con cristales de mica blanca bien desarrollados, granos de feldespato potásico y plagioclasa muy fracturados y alterados a sericita, cuarzo con evidencia de disolución en los bordes y poligonización de su estructura, fragmentanción de granos de cuarzo y plagioclasas y fracturas rellenas de sericita indican que la roca ha experimentado una intensa deformación y alteración sugiriendo que la misma se encuentra en el campo de las rocas metamórficas de muy bajo grado.

### IV. PROCEDENCIA

| Descripción                                                                | Fuente probable del sedimento               |
|----------------------------------------------------------------------------|---------------------------------------------|
| Cuarzo policristalino no foliado                                           | Rocas metamórficas y plutónicas             |
| Cuarzo policristalino foliado                                              | Rocas metamórficas de alto grado            |
| Líticos volcánicos felsíticos                                              | Rocas félsicas                              |
| Líticos metamórficos (Lmf3)                                                | Rocas metamórficas de medio grado           |
| Granos mirmequíticos                                                       | Rocas metamórficas de alto grano y granitos |
| Agregados glomeroporfídicos de plagioclasa-<br>cuarzo-feldespato-moscovita | Rocas plutónicas                            |

### V. NOMBRE DE LA ROCA

- Metaconglomerado de gránulos, composición cuarzo-feldespático/feldespato cuarzoso (Garzanti, 2016).
- Metaconglomerado de gránulos, composición tipo arcosa (Folk, 1980).

#### **VI. MICROFOTOGRAFÍAS**



Microfotografías con el objetivo 4x (A., B., C., D., E., F.) de la muestra 260618-4. Metaconglomerado de gránulos con pseudomatriz de sericita. El tamaño de los granos varía entre gránulos y arena muy gruesa. A. Luz polarizada cruzada, feldespato potásico con textura mirmequítica, pertitas y antipertitas en feldespatos, lítico metamórfico crenulado constituido de cuarzo-moscovita. La mayoría de granos poseen fracturas rellenas de sericita-arcillas. B. Luz polarizada cruzada, cuarzo policristalino con extinción ondulante, plagioclasas y feldespatos potásicos alterados a sericita, cuarzo monocristalino con extinción ondulante. Muchos de los granos presentan evidencia de disolución en sus bordes. C. Luz polarizada cruzada, lítico metamórfico de cuarzo-moscovita con *kink band* (Lmf4). D. Luz polarizada cruzada, plagioclasa con exsolución de microclina (antipertita). E. Luz polarizada cruzada, lítico mirmequítico. Símbolos: F, feldespato potásico; P, plagioclasa; Qm, cuarzo monocristalino; Lm, lítico metamórfico; Qp, cuarzo policristalino; Apt, antipertita; Pt, pertita; Mqt, mirmequita.

|            |                               |           |      |                                      |        |                                     |          | 2                                   |          |                                      |          |       | l                                   |          |                                     |          |                                      |           |             |          |             |  |  |  |  |
|------------|-------------------------------|-----------|------|--------------------------------------|--------|-------------------------------------|----------|-------------------------------------|----------|--------------------------------------|----------|-------|-------------------------------------|----------|-------------------------------------|----------|--------------------------------------|-----------|-------------|----------|-------------|--|--|--|--|
|            | CORRECTED RATIOS <sup>4</sup> |           |      |                                      |        |                                     |          |                                     |          |                                      |          |       |                                     |          | CORRECTED AGES (Ma)                 |          |                                      |           |             |          |             |  |  |  |  |
|            |                               | ть        |      |                                      | +2-    |                                     |          |                                     |          |                                      |          |       |                                     |          |                                     |          |                                      |           | Best        |          | Dicc        |  |  |  |  |
| Sample     | (nnm) <sup>1</sup>            | $(nnm)^1$ | Th/U | <sup>207</sup> Ph/ <sup>206</sup> Ph | abs    | <sup>207</sup> Ph/ <sup>235</sup> U | +2σ abs  | <sup>206</sup> Ph/ <sup>238</sup> U | +2σ abs  | <sup>208</sup> Pb/ <sup>232</sup> Th | +2σ abs  | Rho   | <sup>206</sup> Ph/ <sup>238</sup> U | +2σ      | <sup>207</sup> Ph/ <sup>235</sup> U | +2σ      | <sup>207</sup> Ph/ <sup>206</sup> Ph | +2σ       | age<br>(Ma) | +2σ      | %           |  |  |  |  |
| 15-2       | (PP)                          | (PP)      | , c  | 1.27 1.2                             | 0.00   | , .                                 | -20 0.00 | , .                                 | 220 0.00 | ,                                    | 220 0.00 |       | , .                                 |          | , .                                 | 0        | ,                                    |           | (           |          |             |  |  |  |  |
| Zircon 1B  | 289                           | 88        | 0.30 | 0.0926                               | 0.0035 | 2,9050                              | 0.1100   | 0.2274                              | 0.0045   | 0.0690                               | 0.0024   | 0.39  | 1321                                | 24       | 1382                                | 31       | 1478                                 | 77        | 1321        | 24       | 4.4         |  |  |  |  |
| Zircon 2B  | 213                           | 296       | 1.39 | 0.0605                               | 0.0047 | 0.2660                              | 0.0190   | 0.0317                              | 0.0007   | 0.0102                               | 0.0005   | 0.12  | 201                                 | 4        | 239                                 | 14       | 590                                  | 130       | 201         | 4        | 15.8        |  |  |  |  |
| Zircon 4B  | 169                           | 117       | 0.69 | 0.0529                               | 0.0039 | 0.3200                              | 0.0220   | 0.0435                              | 0.0008   | 0.0139                               | 0.0007   | -0.38 | 274                                 | 5        | 281                                 | 17       | 320                                  | 160       | 274         | 5        | 2.5         |  |  |  |  |
| Zircon 5B  | 98                            | 22        | 0.22 | 0.0543                               | 0.0049 | 0.2980                              | 0.0250   | 0.0399                              | 0.0009   | 0.0143                               | 0.0011   | 0.23  | 253                                 | 6        | 263                                 | 19       | 420                                  | 180       | 253         | 6        | 4.0         |  |  |  |  |
|            | 148                           | 105       | 0.71 | 0.0537                               | 0.0055 | 0.2640                              | 0.0310   | 0.0370                              | 0.0008   | 0.0117                               | 0.0008   | 0.13  | 234                                 | 5        | 237                                 | 23       | 310                                  | 190       | 234         | 5        | 1.2         |  |  |  |  |
| Zircon_7B  | 89                            | 30        | 0.34 | 0.0583                               | 0.0055 | 0.3410                              | 0.0320   | 0.0420                              | 0.0010   | 0.0144                               | 0.0010   | 0.04  | 265                                 | 6        | 295                                 | 24       | 440                                  | 210       | 265         | 6        | 10.0        |  |  |  |  |
| Zircon_9B  | 108                           | 50        | 0.46 | 0.0549                               | 0.0046 | 0.3190                              | 0.0240   | 0.0425                              | 0.0009   | 0.0142                               | 0.0010   | -0.07 | 268                                 | 5        | 282                                 | 20       | 380                                  | 180       | 268         | 5        | 4.8         |  |  |  |  |
| Zircon_10B | 65                            | 43        | 0.66 | 0.0795                               | 0.0047 | 1.7700                              | 0.1000   | 0.1638                              | 0.0026   | 0.0541                               | 0.0025   | 0.01  | 978                                 | 14       | 1030                                | 37       | 1178                                 | 110       | 978         | 14       | 5.0         |  |  |  |  |
| Zircon_12B | 209                           | 69        | 0.33 | 0.0760                               | 0.0032 | 1.9270                              | 0.0730   | 0.1831                              | 0.0022   | 0.0519                               | 0.0020   | 0.14  | 1084                                | 12       | 1089                                | 25       | 1102                                 | 83        | 1084        | 12       | 0.5         |  |  |  |  |
| Zircon_13B | 105                           | 32        | 0.30 | 0.0560                               | 0.0039 | 0.3200                              | 0.0210   | 0.0422                              | 0.0009   | 0.0136                               | 0.0009   | 0.27  | 267                                 | 5        | 283                                 | 16       | 390                                  | 160       | 267         | 5        | 5.8         |  |  |  |  |
| Zircon_15B | 85                            | 51        | 0.60 | 0.0561                               | 0.0049 | 0.2860                              | 0.0260   | 0.0376                              | 0.0009   | 0.0136                               | 0.0009   | 0.00  | 238                                 | 6        | 262                                 | 20       | 430                                  | 180       | 238         | 6        | 9.1         |  |  |  |  |
| Zircon_16B | 105                           | 36        | 0.35 | 0.0536                               | 0.0043 | 0.2760                              | 0.0220   | 0.0373                              | 0.0009   | 0.0143                               | 0.0012   | 0.22  | 236                                 | 6        | 250                                 | 18       | 340                                  | 170       | 236         | 6        | 5.6         |  |  |  |  |
| Zircon_18B | 111                           | 43        | 0.39 | 0.0532                               | 0.0045 | 0.3040                              | 0.0240   | 0.0420                              | 0.0008   | 0.0142                               | 0.0009   | 0.05  | 265                                 | 5        | 267                                 | 19       | 290                                  | 180       | 265         | 5        | 0.7         |  |  |  |  |
| Zircon_19B | 404                           | 102       | 0.25 | 0.0498                               | 0.0029 | 0.1486                              | 0.0091   | 0.0217                              | 0.0004   | 0.0073                               | 0.0005   | 0.25  | 139                                 | 2        | 142                                 | 8        | 183                                  | 120       | 139         | 2        | 2.0         |  |  |  |  |
| Zircon_20B | 301                           | 219       | 0.73 | 0.0523                               | 0.0030 | 0.2840                              | 0.0160   | 0.0389                              | 0.0006   | 0.0129                               | 0.0006   | -0.04 | 246                                 | 4        | 253                                 | 12       | 270                                  | 130       | 246         | 4        | 2.7         |  |  |  |  |
| Zircon_21B | 217                           | 101       | 0.47 | 0.0531                               | 0.0037 | 0.2660                              | 0.0200   | 0.0371                              | 0.0008   | 0.0130                               | 0.0007   | 0.35  | 235                                 | 5        | 241                                 | 15       | 360                                  | 140       | 235         | 5        | 2.6         |  |  |  |  |
| Zircon_22B | 271                           | 396       | 1.46 | 0.0564                               | 0.0038 | 0.2060                              | 0.0140   | 0.0271                              | 0.0004   | 0.0082                               | 0.0004   | 0.06  | 173                                 | 3        | 189                                 | 12       | 450                                  | 150       | 173         | 3        | 8.7         |  |  |  |  |
| Zircon_23B | 676                           | 395       | 0.58 | 0.0618                               | 0.0031 | 0.1847                              | 0.0076   | 0.0220                              | 0.0003   | 0.0085                               | 0.0004   | -0.06 | 141                                 | 2        | 172                                 | 7        | 657                                  | 100       | 141         | 2        | 18.3        |  |  |  |  |
| Zircon_24B | 116                           | 34        | 0.30 | 0.0545                               | 0.0042 | 0.3160                              | 0.0220   | 0.0415                              | 0.0008   | 0.0132                               | 0.0010   | 0.08  | 262                                 | 5        | 278                                 | 16       | 420                                  | 150       | 262         | 5        | 5.8         |  |  |  |  |
| Zircon_26B | 108                           | 67        | 0.62 | 0.0508                               | 0.0040 | 0.2850                              | 0.0230   | 0.0403                              | 0.0010   | 0.0133                               | 0.0007   | 0.17  | 255                                 | 6        | 253                                 | 18       | 230                                  | 170       | 255         | 6        | -0.6        |  |  |  |  |
| Zircon_27B | 76                            | 69        | 0.91 | 0.0769                               | 0.0038 | 1.6920                              | 0.0770   | 0.1602                              | 0.0025   | 0.0532                               | 0.0019   | 0.28  | 958                                 | 14       | 1017                                | 28       | 1120                                 | 95        | 958         | 14       | 5.8         |  |  |  |  |
| Zircon_29B | 306                           | 279       | 0.91 | 0.0725                               | 0.0029 | 1.6710                              | 0.0550   | 0.1661                              | 0.0015   | 0.0494                               | 0.0014   | -0.10 | 991                                 | 8        | 997                                 | 21       | 996                                  | 78        | 991         | 8        | 0.6         |  |  |  |  |
| Zircon_30B | 966                           | 790       | 0.82 | 0.0612                               | 0.0033 | 0.2280                              | 0.0130   | 0.0271                              | 0.0005   | 0.0090                               | 0.0007   | 0.04  | 172                                 | 3        | 209                                 | 10       | 630                                  | 100       | 172         | 3        | 17.4        |  |  |  |  |
| Zircon_32B | 86                            | 50        | 0.58 | 0.0570                               | 0.0076 | 0.3030                              | 0.0320   | 0.0376                              | 0.0014   | 0.0132                               | 0.0010   | -0.33 | 238                                 | 9        | 265                                 | 25       | 500                                  | 240       | 238         | 9        | 10.2        |  |  |  |  |
| Zircon_33B | 50                            | 42        | 0.83 | 0.0808                               | 0.0046 | 1.7900                              | 0.1000   | 0.1629                              | 0.0022   | 0.0524                               | 0.0018   | 0.10  | 973                                 | 12       | 1039                                | 33       | 1240                                 | 100       | 973         | 12       | 6.4         |  |  |  |  |
| Zircon_35B | 256                           | 275       | 1.07 | 0.0512                               | 0.0035 | 0.1980                              | 0.0140   | 0.0284                              | 0.0006   | 0.0089                               | 0.0004   | 0.34  | 181                                 | 4        | 183                                 | 12       | 220                                  | 130       | 181         | 4        | 1.3         |  |  |  |  |
| Zircon_36B | 70                            | 22        | 0.31 | 0.0588                               | 0.0049 | 0.3520                              | 0.0300   | 0.0437                              | 0.0010   | 0.0161                               | 0.0013   | 0.00  | 276                                 | 6        | 304                                 | 23       | 470                                  | 170       | 276         | 6        | 9.3         |  |  |  |  |
| Zircon_37B | 585                           | 262       | 0.45 | 0.0804                               | 0.0029 | 2.3060                              | 0.0/10   | 0.2070                              | 0.0018   | 0.0605                               | 0.0018   | 0.26  | 1213                                | 10       | 1214                                | 21       | 1205                                 | /4        | 1213        | 10       | 0.1         |  |  |  |  |
| Zircon_38B | 106                           | 42        | 0.39 | 0.0558                               | 0.0051 | 0.2820                              | 0.0240   | 0.0370                              | 0.0009   | 0.0132                               | 0.0009   | -0.06 | 234                                 | 6        | 250                                 | 19       | 390                                  | 180       | 234         | 6        | 6.4         |  |  |  |  |
| Zircon_39B | 587                           | 149       | 0.25 | 0.0552                               | 0.0030 | 0.2370                              | 0.0120   | 0.0311                              | 0.0006   | 0.0172                               | 0.0008   | 0.21  | 197                                 | 4        | 216                                 | 9        | 420                                  | 120       | 197         | 4        | 8.7         |  |  |  |  |
| Zircon_41B | 121                           | 63        | 0.52 | 0.0697                               | 0.0046 | 1.4500                              | 0.0990   | 0.1502                              | 0.0048   | 0.0531                               | 0.0042   | 0.20  | 902                                 | 27       | 903                                 | 45       | 870                                  | 140       | 902         | 27       | 0.1         |  |  |  |  |
| Zircon_42B | 167                           | 116       | 0.69 | 0.0516                               | 0.0040 | 0.3030                              | 0.0230   | 0.0416                              | 0.0006   | 0.0134                               | 0.0006   | 0.35  | 263                                 | 4        | 2/1                                 | 17       | 300                                  | 160       | 263         | 4        | 3.1         |  |  |  |  |
| Zircon_43B | 122                           | 48        | 0.40 | 0.0547                               | 0.0044 | 0.2990                              | 0.0220   | 0.0406                              | 0.0010   | 0.0140                               | 0.0012   | -0.15 | 257                                 | 6        | 264                                 | 1/       | 360                                  | 180       | 257         | 6        | 2.8         |  |  |  |  |
| Zircon 45P | 58<br>106                     | 32<br>20  | 0.54 | 0.0570                               | 0.0075 | 0.3020                              | 0.0370   | 0.0390                              | 0.0010   | 0.0138                               | 0.0013   | 0.00  | 240                                 | D<br>G   | 203                                 | 28<br>20 | 320                                  | 200       | 240         | o<br>G   | 0.3<br>22 / |  |  |  |  |
| Zircon E2D | 110                           | 59        | 0.57 | 0.0669                               | 0.0050 | 0.3900                              | 0.0500   | 0.0419                              | 0.0009   | 0.0185                               | 0.0012   | -0.09 | 205                                 | 5        | 274                                 | 20       | 910                                  | 100       | 205         | 5        | 6.2         |  |  |  |  |
| Zircon 1   | 110                           | 50        | 0.42 | 0.0550                               | 0.0052 | 0.5030                              | 0.0280   | 0.0407                              | 0.0007   | 0.0135                               | 0.0008   | 0.00  | 20/<br>100                          | 5        | 2/4                                 | 21<br>16 | 490<br>270                           | 190       | 237<br>197  | 5        | 0.Z         |  |  |  |  |
| Zircon 2   | 260                           | 22        | 0.31 | 0.0330                               | 0.0048 | 2 2550                              | 0.0190   | 0.0207                              | 0.0008   | 0.0097                               | 0.0009   | 0.20  | 102                                 | 17       | 1107                                | 70       | 1204                                 | 100<br>72 | 1102        | 5<br>17  | 4.1<br>0.2  |  |  |  |  |
| Zircon A   | 200<br>72                     | 03<br>28  | 0.32 | 0.0805                               | 0.0029 | 2.2330                              | 0.0730   | 0.2057                              | 0.0030   | 0.0599                               | 0.0042   | 0.49  | 1020                                | 1/<br>22 | 1033                                | 20<br>20 | 1102                                 | 72<br>100 | 1020        | 1/<br>22 | 1.2         |  |  |  |  |
| 20001_4    | 12                            | 20        | 0.59 | 0.0705                               | 0.0040 | 1.7020                              | 0.0760   | 0.1715                              | 0.0039   | 0.0313                               | 0.0041   | 0.27  | 1020                                | 22       | 1033                                | 30       | 1102                                 | 100       | 1020        | 22       | 1.5         |  |  |  |  |

# Anexo 2. Análisis U-Pb en circones mediante LA-ICPMS

| Zircon_5  | 103  | 43  | 0.42 | 0.0703 | 0.0034 | 1.5500 | 0.0730 | 0.1597 | 0.0031 | 0.0494 | 0.0035 | 0.15  | 955  | 17 | 947  | 29 | 928  | 95  | 955  | 17 | -0.8 |
|-----------|------|-----|------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|----|------|----|------|-----|------|----|------|
| Zircon_6  | 95   | 40  | 0.42 | 0.0819 | 0.0039 | 2.1600 | 0.0920 | 0.1930 | 0.0034 | 0.0588 | 0.0043 | 0.18  | 1137 | 19 | 1165 | 29 | 1246 | 87  | 1137 | 19 | 2.4  |
| Zircon_7  | 58   | 27  | 0.46 | 0.0738 | 0.0037 | 1.6680 | 0.0690 | 0.1660 | 0.0036 | 0.0512 | 0.0040 | 0.06  | 990  | 20 | 994  | 26 | 1039 | 100 | 990  | 20 | 0.4  |
| Zircon_8  | 190  | 79  | 0.42 | 0.0832 | 0.0031 | 2.4380 | 0.0800 | 0.2111 | 0.0035 | 0.0652 | 0.0044 | 0.05  | 1236 | 19 | 1253 | 24 | 1275 | 75  | 1236 | 19 | 1.4  |
| Zircon 9  | 307  | 119 | 0.39 | 0.0820 | 0.0029 | 2.3840 | 0.0750 | 0.2089 | 0.0034 | 0.0638 | 0.0042 | 0.35  | 1223 | 18 | 1239 | 22 | 1246 | 68  | 1223 | 18 | 1.3  |
| Zircon 10 | 229  | 110 | 0.48 | 0.0832 | 0.0030 | 2.3330 | 0.0720 | 0.2015 | 0.0037 | 0.0645 | 0.0043 | 0.54  | 1183 | 20 | 1222 | 22 | 1273 | 72  | 1183 | 20 | 3.2  |
| Zircon 11 | 193  | 45  | 0.23 | 0.0800 | 0.0033 | 2.3460 | 0.0860 | 0.2101 | 0.0045 | 0.0643 | 0.0045 | 0.40  | 1229 | 24 | 1230 | 25 | 1215 | 81  | 1229 | 24 | 0.1  |
| Zircon 12 | 298  | 43  | 0.14 | 0.0799 | 0.0030 | 2.3440 | 0.0870 | 0.2107 | 0.0052 | 0.0659 | 0.0047 | -0.07 | 1232 | 27 | 1225 | 25 | 1189 | 69  | 1232 | 27 | -0.6 |
| Zircon 13 | 139  | 54  | 0.39 | 0.0820 | 0.0032 | 2.3360 | 0.0800 | 0.2056 | 0.0036 | 0.0628 | 0.0043 | 0.16  | 1206 | 19 | 1222 | 25 | 1252 | 72  | 1206 | 19 | 1.4  |
| Zircon 14 | 160  | 77  | 0.48 | 0.0785 | 0.0032 | 2.1480 | 0.0730 | 0.1979 | 0.0034 | 0.0601 | 0.0040 | -0.03 | 1164 | 18 | 1163 | 24 | 1156 | 80  | 1164 | 18 | -0.1 |
| Zircon 15 | 637  | 288 | 0.45 | 0.0870 | 0.0030 | 2.5200 | 0.0770 | 0.2096 | 0.0035 | 0.0629 | 0.0040 | 0.54  | 1227 | 18 | 1277 | 22 | 1360 | 69  | 1227 | 18 | 3.9  |
| Zircon 16 | 202  | 37  | 0.18 | 0.0806 | 0.0030 | 2.2250 | 0.0750 | 0.2009 | 0.0035 | 0.0622 | 0.0042 | 0.35  | 1181 | 18 | 1190 | 24 | 1216 | 71  | 1181 | 18 | 0.7  |
| Zircon 17 | 198  | 72  | 0.36 | 0.0813 | 0.0032 | 2.3550 | 0.0830 | 0.2094 | 0.0038 | 0.0643 | 0.0044 | 0.24  | 1226 | 20 | 1228 | 25 | 1226 | 77  | 1226 | 20 | 0.2  |
| Zircon 18 | 102  | 61  | 0.59 | 0.0819 | 0.0034 | 2.2340 | 0.0780 | 0.1977 | 0.0034 | 0.0586 | 0.0040 | 0.02  | 1163 | 18 | 1193 | 25 | 1239 | 84  | 1163 | 18 | 2.5  |
| Zircon 19 | 930  | 143 | 0.15 | 0.0822 | 0.0028 | 2.2670 | 0.0850 | 0.1994 | 0.0047 | 0.0608 | 0.0039 | 0.80  | 1172 | 25 | 1202 | 27 | 1249 | 71  | 1172 | 25 | 2.5  |
| Zircon 20 | 482  | 22  | 0.05 | 0.0784 | 0.0029 | 1.8840 | 0.0600 | 0.1747 | 0.0029 | 0.0622 | 0.0046 | 0.35  | 1038 | 16 | 1075 | 21 | 1153 | 67  | 1038 | 16 | 3.5  |
| Zircon 21 | 20   | 5   | 0.27 | 0.0794 | 0.0059 | 1.8300 | 0.1300 | 0.1705 | 0.0045 | 0.0653 | 0.0087 | 0.34  | 1015 | 25 | 1057 | 48 | 1150 | 140 | 1015 | 25 | 4.0  |
| Zircon 22 | 161  | 56  | 0.35 | 0.0820 | 0.0034 | 2.4180 | 0.0930 | 0.2123 | 0.0038 | 0.0645 | 0.0048 | 0.47  | 1241 | 20 | 1245 | 24 | 1243 | 80  | 1241 | 20 | 0.3  |
| Zircon 23 | 143  | 23  | 0.16 | 0.0779 | 0.0032 | 2.1750 | 0.0760 | 0.2012 | 0.0037 | 0.0622 | 0.0049 | 0.20  | 1181 | 20 | 1174 | 25 | 1140 | 84  | 1181 | 20 | -0.6 |
| Zircon 24 | 107  | 236 | 2.21 | 0.0737 | 0.0033 | 1.5550 | 0.0650 | 0.1528 | 0.0029 | 0.0462 | 0.0030 | 0.33  | 916  | 16 | 949  | 25 | 1013 | 93  | 916  | 16 | 3.5  |
| Zircon 25 | 170  | 92  | 0.54 | 0.0893 | 0.0036 | 2.8720 | 0.1200 | 0.2320 | 0.0046 | 0.0683 | 0.0046 | 0.76  | 1345 | 24 | 1371 | 32 | 1408 | 74  | 1345 | 24 | 1.9  |
| Zircon 26 | 145  | 50  | 0.35 | 0.0769 | 0.0035 | 1.8860 | 0.0800 | 0.1767 | 0.0032 | 0.0543 | 0.0038 | 0.29  | 1049 | 18 | 1073 | 28 | 1103 | 89  | 1049 | 18 | 2.2  |
| Zircon 27 | 413  | 65  | 0.16 | 0.0787 | 0.0028 | 1.9880 | 0.0840 | 0.1802 | 0.0048 | 0.0641 | 0.0048 | 0.69  | 1068 | 27 | 1110 | 30 | 1161 | 73  | 1068 | 27 | 3.8  |
| Zircon 28 | 298  | 107 | 0.36 | 0.0529 | 0.0042 | 0.2530 | 0.0240 | 0.0355 | 0.0012 | 0.0091 | 0.0011 | 0.33  | 225  | 7  | 228  | 18 | 300  | 150 | 225  | 7  | 1.4  |
| Zircon 29 | 172  | 117 | 0.68 | 0.0792 | 0.0037 | 2.2580 | 0.1100 | 0.2052 | 0.0042 | 0.0649 | 0.0046 | 0.25  | 1203 | 22 | 1197 | 31 | 1167 | 86  | 1203 | 22 | -0.5 |
| Zircon 30 | 52   | 31  | 0.60 | 0.0863 | 0.0039 | 2.8000 | 0.1300 | 0.2362 | 0.0048 | 0.0696 | 0.0050 | 0.26  | 1367 | 25 | 1351 | 34 | 1338 | 93  | 1367 | 25 | -1.2 |
| Zircon 31 | 157  | 57  | 0.37 | 0.0816 | 0.0031 | 2.5260 | 0.0850 | 0.2233 | 0.0043 | 0.0674 | 0.0047 | 0.41  | 1299 | 22 | 1278 | 25 | 1236 | 70  | 1299 | 22 | -1.6 |
| Zircon 32 | 799  | 59  | 0.07 | 0.0754 | 0.0026 | 1.7470 | 0.0590 | 0.1674 | 0.0028 | 0.0388 | 0.0047 | 0.79  | 998  | 16 | 1027 | 22 | 1075 | 71  | 998  | 16 | 2.9  |
| Zircon 33 | 83   | 95  | 1.15 | 0.0560 | 0.0072 | 0.2000 | 0.0240 | 0.0270 | 0.0010 | 0.0083 | 0.0007 | -0.25 | 172  | 6  | 189  | 19 | 370  | 230 | 172  | 6  | 9.0  |
| Zircon 34 | 181  | 100 | 0.55 | 0.0533 | 0.0034 | 0.2940 | 0.0170 | 0.0405 | 0.0009 | 0.0138 | 0.0011 | -0.11 | 256  | 6  | 265  | 13 | 300  | 140 | 256  | 6  | 3.5  |
| Zircon 35 | 80   | 28  | 0.35 | 0.0780 | 0.0037 | 2.0450 | 0.0890 | 0.1902 | 0.0039 | 0.0596 | 0.0044 | 0.20  | 1122 | 21 | 1131 | 29 | 1136 | 93  | 1122 | 21 | 0.8  |
| Zircon 36 | 81   | 40  | 0.49 | 0.0783 | 0.0041 | 1.9610 | 0.0960 | 0.1812 | 0.0036 | 0.0563 | 0.0042 | 0.16  | 1074 | 20 | 1097 | 34 | 1136 | 110 | 1074 | 20 | 2.1  |
| Zircon 37 | 185  | 35  | 0.19 | 0.0755 | 0.0032 | 1.6700 | 0.0650 | 0.1610 | 0.0028 | 0.0524 | 0.0039 | 0.13  | 963  | 15 | 998  | 24 | 1069 | 88  | 963  | 15 | 3.6  |
| Zircon 38 | 250  | 16  | 0.06 | 0.0531 | 0.0032 | 0.2890 | 0.0160 | 0.0407 | 0.0008 | 0.0168 | 0.0021 | -0.06 | 257  | 5  | 259  | 12 | 320  | 130 | 257  | 5  | 0.7  |
| Zircon 39 | 471  | 291 | 0.62 | 0.0795 | 0.0028 | 2.1280 | 0.0650 | 0.1938 | 0.0033 | 0.0607 | 0.0040 | 0.27  | 1143 | 18 | 1161 | 20 | 1185 | 69  | 1143 | 18 | 1.5  |
| Zircon 40 | 436  | 271 | 0.62 | 0.0527 | 0.0037 | 0.2760 | 0.0160 | 0.0382 | 0.0008 | 0.0119 | 0.0009 | 0.01  | 242  | 5  | 248  | 12 | 300  | 120 | 242  | 5  | 2.4  |
| Zircon 41 | 113  | 41  | 0.36 | 0.0821 | 0.0036 | 2.1490 | 0.0830 | 0.1912 | 0.0033 | 0.0622 | 0.0044 | -0.11 | 1128 | 18 | 1166 | 27 | 1232 | 88  | 1128 | 18 | 3.3  |
| Zircon 42 | 139  | 63  | 0.45 | 0.0787 | 0.0032 | 2.1190 | 0.0750 | 0.1958 | 0.0036 | 0.0581 | 0.0039 | 0.25  | 1152 | 19 | 1156 | 25 | 1156 | 82  | 1152 | 19 | 0.3  |
| Zircon 43 | 31   | 9   | 0.28 | 0.0590 | 0.0079 | 0.3670 | 0.0500 | 0.0414 | 0.0014 | 0.0186 | 0.0027 | -0.01 | 262  | 9  | 310  | 37 | 550  | 290 | 262  | 9  | 15.5 |
| Zircon 44 | 235  | 90  | 0.38 | 0.0784 | 0.0029 | 2.0980 | 0.0700 | 0.1943 | 0.0032 | 0.0595 | 0.0040 | 0.28  | 1145 | 17 | 1151 | 23 | 1158 | 78  | 1145 | 17 | 0.6  |
| Zircon 45 | 80   | 38  | 0.48 | 0.0815 | 0.0037 | 2.1850 | 0.0950 | 0.1947 | 0.0037 | 0.0587 | 0.0046 | 0.23  | 1147 | 20 | 1184 | 29 | 1237 | 96  | 1147 | 20 | 3.1  |
| Zircon 46 | 76   | 45  | 0.59 | 0.0771 | 0.0037 | 2.0710 | 0.0920 | 0.1955 | 0.0037 | 0.0573 | 0.0039 | 0.21  | 1151 | 20 | 1143 | 31 | 1117 | 91  | 1151 | 20 | -0.7 |
| Zircon 47 | 179  | 69  | 0.39 | 0.0789 | 0.0031 | 2.2070 | 0.0770 | 0.2017 | 0.0035 | 0.0601 | 0.0041 | 0.34  | 1185 | 19 | 1182 | 25 | 1168 | 80  | 1185 | 19 | -0.2 |
| Zircon 48 | 31   | 13  | 0.42 | 0.0797 | 0.0041 | 2.1900 | 0.1300 | 0.1986 | 0.0047 | 0.0623 | 0.0050 | 0.45  | 1167 | 25 | 1183 | 40 | 1207 | 120 | 1167 | 25 | 1.4  |
| Zircon 49 | 1026 | 292 | 0.28 | 0.0707 | 0.0025 | 1.4190 | 0.0420 | 0.1450 | 0.0023 | 0.0447 | 0.0029 | 0.17  | 873  | 13 | 897  | 17 | 946  | 71  | 873  | 13 | 2.6  |
| Zircon 50 | 179  | 60  | 0.34 | 0.0784 | 0.0029 | 1.9620 | 0.0660 | 0.1850 | 0.0034 | 0.0577 | 0.0040 | 0.41  | 1094 | 19 | 1101 | 23 | 1151 | 75  | 1094 | 19 | 0.6  |
| Zircon 51 | 111  | 44  | 0.40 | 0.0796 | 0.0035 | 2.2010 | 0.0830 | 0.1994 | 0.0038 | 0.0640 | 0.0045 | -0.08 | 1172 | 20 | 1179 | 26 | 1210 | 92  | 1172 | 20 | 0.6  |
| Zircon 52 | 289  | 164 | 0.57 | 0.1034 | 0.0037 | 4.1530 | 0.1300 | 0.2911 | 0.0049 | 0.0844 | 0.0055 | 0.23  | 1647 | 25 | 1664 | 25 | 1687 | 67  | 1687 | 67 | 1.0  |
|           | -00  | 201 | 0.07 | 0.2001 | 0.0007 |        | 0.1000 | 0.2011 | 0.00.0 | 0.00.1 | 0.0000 | 0.20  | 20.7 |    | 200. |    | 2007 | 0.  | 2007 | 0. | 1.5  |
| Zircon_53  | 160 | 61  | 0.38 | 0.0796 | 0.0034 | 2.1970 | 0.0920 | 0.2028 | 0.0045 | 0.0659 | 0.0051 | 0.58  | 1190 | 24 | 1181 | 28 | 1191 | 84  | 1190 | 24 | -0.8 |
|------------|-----|-----|------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|----|------|----|------|-----|------|----|------|
| Zircon_54  | 123 | 25  | 0.20 | 0.0587 | 0.0065 | 0.2580 | 0.0300 | 0.0340 | 0.0012 | 0.0119 | 0.0019 | 0.14  | 216  | 8  | 236  | 23 | 440  | 220 | 216  | 8  | 8.6  |
| Zircon_55  | 77  | 23  | 0.30 | 0.0712 | 0.0040 | 1.5740 | 0.0840 | 0.1596 | 0.0033 | 0.0494 | 0.0044 | 0.33  | 955  | 18 | 960  | 32 | 958  | 120 | 955  | 18 | 0.5  |
| Zircon_56  | 153 | 66  | 0.43 | 0.0829 | 0.0033 | 1.8570 | 0.0680 | 0.1638 | 0.0039 | 0.0381 | 0.0028 | 0.60  | 978  | 21 | 1067 | 25 | 1257 | 78  | 978  | 21 | 8.3  |
| Zircon_57  | 318 | 112 | 0.35 | 0.0797 | 0.0027 | 2.1320 | 0.0630 | 0.1937 | 0.0032 | 0.0572 | 0.0038 | 0.34  | 1141 | 17 | 1159 | 20 | 1190 | 65  | 1141 | 17 | 1.5  |
| Zircon_58  | 527 | 93  | 0.18 | 0.0721 | 0.0025 | 1.6120 | 0.0490 | 0.1602 | 0.0025 | 0.0489 | 0.0032 | 0.09  | 958  | 14 | 974  | 19 | 985  | 72  | 958  | 14 | 1.7  |
| Zircon_59  | 133 | 94  | 0.71 | 0.0630 | 0.0064 | 0.2000 | 0.0210 | 0.0249 | 0.0008 | 0.0081 | 0.0007 | -0.40 | 159  | 5  | 191  | 17 | 630  | 190 | 159  | 5  | 16.9 |
| Zircon_60  | 75  | 34  | 0.45 | 0.0575 | 0.0061 | 0.3110 | 0.0320 | 0.0392 | 0.0011 | 0.0134 | 0.0012 | -0.25 | 248  | 7  | 271  | 24 | 370  | 210 | 248  | 7  | 8.5  |
| Zircon_61  | 162 | 136 | 0.84 | 0.0534 | 0.0043 | 0.2550 | 0.0190 | 0.0356 | 0.0008 | 0.0120 | 0.0009 | -0.13 | 225  | 5  | 233  | 15 | 320  | 170 | 225  | 5  | 3.3  |
| Zircon_64  | 92  | 70  | 0.76 | 0.0795 | 0.0036 | 2.1270 | 0.0850 | 0.1933 | 0.0037 | 0.0571 | 0.0038 | 0.18  | 1139 | 20 | 1159 | 26 | 1181 | 84  | 1139 | 20 | 1.7  |
| Zircon_65  | 106 | 63  | 0.59 | 0.0711 | 0.0036 | 1.2950 | 0.0570 | 0.1308 | 0.0029 | 0.0332 | 0.0023 | 0.19  | 792  | 17 | 841  | 25 | 973  | 99  | 792  | 17 | 5.8  |
| Zircon_68  | 255 | 66  | 0.26 | 0.0724 | 0.0028 | 1.6610 | 0.0550 | 0.1646 | 0.0028 | 0.0528 | 0.0036 | 0.13  | 983  | 16 | 993  | 21 | 1003 | 84  | 983  | 16 | 1.1  |
| Zircon_69  | 563 | 206 | 0.37 | 0.0794 | 0.0028 | 2.1570 | 0.0640 | 0.1964 | 0.0033 | 0.0592 | 0.0039 | 0.23  | 1156 | 18 | 1167 | 21 | 1178 | 69  | 1156 | 18 | 0.9  |
| Zircon_70  | 74  | 38  | 0.52 | 0.0799 | 0.0036 | 2.1890 | 0.0940 | 0.1999 | 0.0043 | 0.0647 | 0.0050 | 0.28  | 1174 | 23 | 1174 | 30 | 1190 | 93  | 1174 | 23 | 0.0  |
| Zircon_71  | 122 | 62  | 0.50 | 0.0785 | 0.0033 | 2.1820 | 0.0770 | 0.2031 | 0.0037 | 0.0594 | 0.0040 | -0.08 | 1192 | 20 | 1174 | 25 | 1146 | 84  | 1192 | 20 | -1.5 |
| Zircon_72  | 84  | 40  | 0.48 | 0.0793 | 0.0036 | 2.1980 | 0.0920 | 0.1997 | 0.0036 | 0.0589 | 0.0043 | 0.20  | 1176 | 20 | 1181 | 28 | 1175 | 86  | 1176 | 20 | 0.4  |
| Zircon_73  | 195 | 110 | 0.56 | 0.0826 | 0.0038 | 2.0310 | 0.1100 | 0.1772 | 0.0048 | 0.0524 | 0.0036 | 0.51  | 1051 | 26 | 1120 | 36 | 1242 | 88  | 1051 | 26 | 6.2  |
| Zircon_74  | 87  | 33  | 0.38 | 0.0537 | 0.0056 | 0.2140 | 0.0220 | 0.0302 | 0.0008 | 0.0116 | 0.0013 | 0.08  | 192  | 5  | 200  | 18 | 290  | 200 | 192  | 5  | 4.2  |
| Zircon_75  | 220 | 132 | 0.60 | 0.0774 | 0.0037 | 0.8810 | 0.0980 | 0.0805 | 0.0071 | 0.0142 | 0.0012 | 0.96  | 504  | 43 | 624  | 55 | 1112 | 97  | 504  | 43 | 19.2 |
| Zircon_76  | 102 | 22  | 0.22 | 0.0748 | 0.0043 | 1.6810 | 0.0890 | 0.1612 | 0.0035 | 0.0503 | 0.0080 | 0.15  | 963  | 19 | 998  | 34 | 1071 | 97  | 963  | 19 | 3.5  |
| Zircon_77  | 112 | 46  | 0.41 | 0.0746 | 0.0034 | 1.7130 | 0.0710 | 0.1664 | 0.0036 | 0.0511 | 0.0037 | 0.27  | 992  | 20 | 1014 | 28 | 1073 | 83  | 992  | 20 | 2.2  |
| Zircon_78  | 235 | 30  | 0.13 | 0.0755 | 0.0030 | 1.7210 | 0.0590 | 0.1665 | 0.0029 | 0.0512 | 0.0038 | 0.05  | 993  | 16 | 1017 | 22 | 1071 | 80  | 993  | 16 | 2.4  |
| Zircon_79  | 201 | 67  | 0.33 | 0.0786 | 0.0041 | 1.1190 | 0.0580 | 0.1024 | 0.0018 | 0.0352 | 0.0035 | 0.34  | 629  | 10 | 759  | 27 | 1149 | 100 | 629  | 10 | 17.2 |
| Zircon_80  | 85  | 27  | 0.31 | 0.0775 | 0.0035 | 2.0880 | 0.0850 | 0.1961 | 0.0037 | 0.0612 | 0.0046 | 0.21  | 1156 | 20 | 1146 | 29 | 1137 | 91  | 1156 | 20 | -0.9 |
| Zircon_81  | 94  | 29  | 0.30 | 0.0791 | 0.0035 | 2.1140 | 0.0790 | 0.1923 | 0.0036 | 0.0607 | 0.0044 | 0.18  | 1134 | 19 | 1152 | 26 | 1188 | 88  | 1134 | 19 | 1.6  |
| Zircon_82  | 276 | 51  | 0.18 | 0.0807 | 0.0030 | 2.4580 | 0.0770 | 0.2203 | 0.0038 | 0.0655 | 0.0045 | 0.26  | 1284 | 20 | 1259 | 23 | 1208 | 73  | 1284 | 20 | -1.9 |
| Zircon_83  | 109 | 32  | 0.29 | 0.0804 | 0.0036 | 2.1550 | 0.0920 | 0.1920 | 0.0035 | 0.0647 | 0.0047 | 0.27  | 1132 | 19 | 1170 | 29 | 1208 | 88  | 1132 | 19 | 3.2  |
| Zircon_84  | 73  | 36  | 0.50 | 0.0760 | 0.0038 | 1.7960 | 0.0830 | 0.1718 | 0.0032 | 0.0535 | 0.0039 | 0.07  | 1022 | 18 | 1040 | 30 | 1085 | 98  | 1022 | 18 | 1.7  |
| Zircon_85  | 229 | 68  | 0.30 | 0.0763 | 0.0029 | 1.9010 | 0.0640 | 0.1781 | 0.0032 | 0.0535 | 0.0036 | 0.37  | 1056 | 17 | 1083 | 23 | 1110 | 81  | 1056 | 17 | 2.5  |
| Zircon_86  | 564 | 67  | 0.12 | 0.0824 | 0.0029 | 2.3960 | 0.0720 | 0.2118 | 0.0035 | 0.0653 | 0.0044 | 0.27  | 1238 | 18 | 1241 | 21 | 1251 | 68  | 1238 | 18 | 0.2  |
| Zircon_87  | 79  | 501 | 6.31 | 0.0746 | 0.0036 | 1.7340 | 0.0760 | 0.1675 | 0.0035 | 0.0495 | 0.0032 | 0.10  | 998  | 19 | 1018 | 28 | 1088 | 90  | 998  | 19 | 2.0  |
| Zircon_88  | 102 | 85  | 0.83 | 0.0814 | 0.0033 | 2.2210 | 0.0800 | 0.1988 | 0.0037 | 0.0581 | 0.0039 | 0.20  | 1169 | 20 | 1189 | 26 | 1236 | 85  | 1169 | 20 | 1.7  |
| Zircon_89  | 188 | 470 | 2.50 | 0.0858 | 0.0035 | 2.7600 | 0.1700 | 0.2360 | 0.0110 | 0.0687 | 0.0050 | 0.90  | 1364 | 56 | 1335 | 47 | 1333 | 77  | 1364 | 56 | -2.2 |
| Zircon_90  | 128 | 52  | 0.41 | 0.0791 | 0.0032 | 2.0740 | 0.0760 | 0.1881 | 0.0035 | 0.0583 | 0.0041 | 0.22  | 1111 | 19 | 1141 | 25 | 1181 | 82  | 1111 | 19 | 2.6  |
| Zircon_91  | 251 | 100 | 0.40 | 0.0830 | 0.0030 | 2.4170 | 0.0760 | 0.2113 | 0.0035 | 0.0639 | 0.0043 | 0.20  | 1236 | 19 | 1247 | 22 | 1274 | 74  | 1236 | 19 | 0.9  |
| Zircon_92  | 35  | 18  | 0.51 | 0.0616 | 0.0073 | 0.3900 | 0.0470 | 0.0446 | 0.0014 | 0.0155 | 0.0018 | 0.22  | 281  | 9  | 328  | 34 | 660  | 240 | 281  | 9  | 14.2 |
| Zircon_93  | 90  | 79  | 0.88 | 0.0734 | 0.0040 | 1.6550 | 0.0840 | 0.1625 | 0.0030 | 0.0483 | 0.0034 | 0.00  | 972  | 17 | 991  | 32 | 1032 | 110 | 972  | 17 | 1.9  |
| Zircon_94  | 214 | 88  | 0.41 | 0.0833 | 0.0032 | 2.4850 | 0.0810 | 0.2151 | 0.0037 | 0.0628 | 0.0042 | -0.31 | 1256 | 20 | 1267 | 24 | 1282 | 76  | 1256 | 20 | 0.9  |
| Zircon_96  | 256 | 84  | 0.33 | 0.0838 | 0.0031 | 2.5180 | 0.0830 | 0.2171 | 0.0035 | 0.0633 | 0.0042 | 0.16  | 1266 | 19 | 1276 | 24 | 1301 | 76  | 1266 | 19 | 0.8  |
| Zircon_97  | 52  | 12  | 0.23 | 0.0820 | 0.0040 | 2.2030 | 0.1000 | 0.1960 | 0.0054 | 0.0668 | 0.0063 | 0.30  | 1153 | 29 | 1193 | 34 | 1252 | 96  | 1153 | 29 | 3.4  |
| Zircon_98  | 70  | 37  | 0.53 | 0.0783 | 0.0042 | 2.0540 | 0.0950 | 0.1907 | 0.0042 | 0.0599 | 0.0045 | -0.12 | 1125 | 23 | 1134 | 31 | 1149 | 110 | 1125 | 23 | 0.8  |
| Zircon_99  | 469 | 265 | 0.57 | 0.0501 | 0.0026 | 0.1819 | 0.0092 | 0.0262 | 0.0005 | 0.0088 | 0.0006 | 0.06  | 167  | 3  | 170  | 8  | 180  | 120 | 167  | 3  | 1.6  |
| Zircon_100 | 948 | 145 | 0.15 | 0.0743 | 0.0026 | 1.7290 | 0.0510 | 0.1686 | 0.0029 | 0.0482 | 0.0033 | 0.56  | 1004 | 16 | 1019 | 19 | 1049 | 68  | 1004 | 16 | 1.4  |
| Zircon_101 | 86  | 32  | 0.38 | 0.0591 | 0.0056 | 0.3440 | 0.0340 | 0.0411 | 0.0010 | 0.0153 | 0.0014 | -0.03 | 260  | 6  | 296  | 25 | 560  | 220 | 260  | 6  | 12.2 |
|            |     |     |      |        |        |        |        |        |        |        |        |       |      |    |      |    |      |     |      |    |      |

|           |                         |                          |      |                                      |            |                                     | CORRECT | ED RATIOS <sup>2</sup>              |         |                                      |         |       |                                     |      |                                     | CORF     | ECTED AGES (                         | Ma)       |                     |      |           |
|-----------|-------------------------|--------------------------|------|--------------------------------------|------------|-------------------------------------|---------|-------------------------------------|---------|--------------------------------------|---------|-------|-------------------------------------|------|-------------------------------------|----------|--------------------------------------|-----------|---------------------|------|-----------|
| Sample    | U<br>(ppm) <sup>1</sup> | Th<br>(ppm) <sup>1</sup> | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ<br>abs | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ abs | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ abs | <sup>208</sup> Pb/ <sup>232</sup> Th | ±2σ abs | Rho   | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ  | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ      | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ       | Best<br>age<br>(Ma) | ±2σ  | Disc<br>% |
| V-2       |                         |                          |      |                                      |            |                                     |         |                                     |         |                                      |         |       |                                     |      |                                     |          |                                      |           |                     |      |           |
| Zircon 1  | 224                     | 194                      | 0.87 | 0.0603                               | 0.0036     | 0.3760                              | 0.0210  | 0.0450                              | 0.0006  | 0.0156                               | 0.0007  | 0.09  | 284                                 | 4    | 324                                 | 14       | 592                                  | 120       | 284                 | 4    | 12.3      |
| Zircon 4  | 232                     | 89                       | 0.38 | 0.0620                               | 0.0076     | 0.1680                              | 0.0250  | 0.0196                              | 0.0005  | 0.0092                               | 0.0009  | 0.16  | 125                                 | 3    | 157                                 | 20       | 640                                  | 190       | 125                 | 3    | 20.4      |
| Zircon 5  | 133                     | 57                       | 0.43 | 0.0579                               | 0.0062     | 0.15/0                              | 0.0190  | 0.0208                              | 0.0005  | 0.0084                               | 0.0009  | 0.38  | 133                                 | 3    | 151                                 | 16       | 420                                  | 190       | 133                 | 3    | 12.1      |
| Zircon /  | 509                     | 345                      | 0.68 | 0.0564                               | 0.0037     | 0.1517                              | 0.0100  | 0.0196                              | 0.0003  | 0.0068                               | 0.0003  | 0.03  | 125                                 | 2    | 143                                 | 9        | 430                                  | 130       | 125                 | 2    | 12.7      |
| Zircon 14 | 124                     | 340<br>67                | 0.68 | 0.0557                               | 0.0037     | 1.0490                              | 0.0100  | 0.0200                              | 0.0004  | 0.0074                               | 0.0005  | 0.14  | 128                                 | 10   | 144                                 | 9        | 400                                  | 130       | 128                 | 10   | 11.3      |
| Zircon 14 | 124                     | 120                      | 0.54 | 0.0776                               | 0.0033     | 1.9480                              | 0.0730  | 0.1823                              | 0.0018  | 0.0595                               | 0.0019  | 0.13  | 1079                                | 2010 | 1090                                | 25<br>11 | 1127                                 | 82<br>140 | 1079                | 2010 | 1.0       |
| Zircon 18 | 311                     | 111                      | 0.31 | 0.0575                               | 0.0038     | 0.1970                              | 0.0130  | 0.0232                              | 0.0004  | 0.0101                               | 0.0000  | -0.12 | 100                                 | 2    | 105                                 | 1/       | 490<br>510                           | 140       | 171                 | 2    | 12.2      |
| Zircon 19 | 1370                    | 1270                     | 0.32 | 0.0570                               | 0.0047     | 0.2130                              | 0.0160  | 0.0208                              | 0.0003  | 0.0108                               | 0.0000  | 0.02  | 171                                 | 2    | 140                                 | 6        | 339                                  | 120       | 171                 | 2    | 83        |
| Zircon 20 | 1088                    | 1700                     | 1 56 | 0.0535                               | 0.0020     | 0.1474                              | 0.0007  | 0.0200                              | 0.0003  | 0.0093                               | 0.0003  | 0.23  | 214                                 | 2    | 224                                 | g        | 340                                  | 95        | 214                 | 2    | 4.8       |
| Zircon 21 | 458                     | 223                      | 0.49 | 0.0596                               | 0.0041     | 0.1690                              | 0.0110  | 0.0204                              | 0.0003  | 0.0078                               | 0.0004  | 0.16  | 131                                 | 2    | 158                                 | 9        | 570                                  | 130       | 131                 | 2    | 17.4      |
| Zircon 22 | 454                     | 308                      | 0.68 | 0.0561                               | 0.0036     | 0.1630                              | 0.0099  | 0.0210                              | 0.0003  | 0.0069                               | 0.0003  | 0.26  | 134                                 | 2    | 153                                 | 9        | 410                                  | 140       | 134                 | 2    | 12.6      |
| Zircon 25 | 2590                    | 4010                     | 1.55 | 0.0615                               | 0.0040     | 0.1595                              | 0.0082  | 0.0185                              | 0.0002  | 0.0060                               | 0.0002  | 0.34  | 118                                 | 1    | 150                                 | 7        | 662                                  | 110       | 118                 | 1    | 21.4      |
| Zircon 26 | 389                     | 226                      | 0.58 | 0.0516                               | 0.0037     | 0.1420                              | 0.0100  | 0.0198                              | 0.0003  | 0.0069                               | 0.0003  | -0.09 | 127                                 | 2    | 134                                 | 9        | 240                                  | 140       | 127                 | 2    | 5.5       |
| Zircon 27 | 654                     | 407                      | 0.62 | 0.0521                               | 0.0030     | 0.1640                              | 0.0077  | 0.0229                              | 0.0003  | 0.0071                               | 0.0003  | -0.13 | 146                                 | 2    | 154                                 | 7        | 270                                  | 120       | 146                 | 2    | 5.3       |
| Zircon 28 | 174                     | 87                       | 0.50 | 0.0671                               | 0.0051     | 0.3800                              | 0.0280  | 0.0405                              | 0.0008  | 0.0149                               | 0.0010  | 0.33  | 256                                 | 5    | 326                                 | 20       | 790                                  | 140       | 256                 | 5    | 21.5      |
| Zircon 29 | 239                     | 271                      | 1.13 | 0.0637                               | 0.0032     | 0.6830                              | 0.0380  | 0.0772                              | 0.0020  | 0.0315                               | 0.0010  | 0.44  | 479                                 | 12   | 528                                 | 22       | 716                                  | 98        | 479                 | 12   | 9.3       |
| Zircon 32 | 334                     | 159                      | 0.48 | 0.1261                               | 0.0046     | 5.5900                              | 0.2000  | 0.3230                              | 0.0077  | 0.0952                               | 0.0026  | 0.45  | 1804                                | 38   | 1914                                | 34       | 2050                                 | 65        | 2050                | 65   | 5.7       |
| Zircon 33 | 497                     | 233                      | 0.47 | 0.0514                               | 0.0042     | 0.1600                              | 0.0110  | 0.0227                              | 0.0003  | 0.0083                               | 0.0003  | 0.02  | 145                                 | 2    | 150                                 | 10       | 260                                  | 160       | 145                 | 2    | 3.5       |
| Zircon 36 | 382                     | 231                      | 0.60 | 0.0579                               | 0.0048     | 0.1630                              | 0.0130  | 0.0204                              | 0.0003  | 0.0076                               | 0.0003  | 0.07  | 130                                 | 2    | 155                                 | 11       | 530                                  | 150       | 130                 | 2    | 16.1      |
| Zircon 39 | 802                     | 349                      | 0.44 | 0.0556                               | 0.0028     | 0.1661                              | 0.0074  | 0.0214                              | 0.0003  | 0.0078                               | 0.0004  | -0.17 | 137                                 | 2    | 157                                 | 6        | 448                                  | 110       | 137                 | 2    | 12.8      |
| Zircon 45 | 450                     | 380                      | 0.84 | 0.0537                               | 0.0038     | 0.2080                              | 0.0140  | 0.0280                              | 0.0005  | 0.0094                               | 0.0004  | -0.24 | 178                                 | 3    | 192                                 | 11       | 390                                  | 150       | 178                 | 3    | 7.2       |
| Zircon 46 | 389                     | 16                       | 0.04 | 0.0564                               | 0.0031     | 0.2990                              | 0.0150  | 0.0386                              | 0.0005  | 0.0249                               | 0.0022  | -0.16 | 244                                 | 3    | 265                                 | 11       | 490                                  | 120       | 244                 | 3    | 8.0       |
| Zircon 48 | 250                     | 254                      | 0.57 | 0.0609                               | 0.0032     | 0.1760                              | 0.0089  | 0.0211                              | 0.0003  | 0.0076                               | 0.0003  | 0.20  | 134<br>E12                          | 2    | 164                                 | ð<br>no  | 630                                  | 110       | 134<br>512          | 2    | 18.1      |
| Zircon 50 | 259                     | 90<br>27                 | 0.55 | 0.0097                               | 0.0055     | 1.0700                              | 0.0550  | 0.0829                              | 0.0034  | 0.0555                               | 0.0015  | 0.02  | 021                                 | 20   | 1101                                | 20<br>10 | 900                                  | 99<br>150 | 021                 | 20   | 14.7      |
| Zircon 51 | 34                      | 1/1                      | 0.45 | 0.0929                               | 0.0075     | 0.1760                              | 0.1300  | 0.1333                              | 0.0030  | 0.0302                               | 0.0033  | -0.13 | 132                                 | 20   | 166                                 | 40       | 580                                  | 180       | 132                 | 20   | 20.4      |
| Zircon 51 | 407                     | 221                      | 0.45 | 0.0557                               | 0.0033     | 0.1700                              | 0.0196  | 0.0207                              | 0.0003  | 0.0077                               | 0.0003  | 0.10  | 132                                 | 2    | 146                                 | 9        | 420                                  | 150       | 132                 | 2    | 9.8       |
| Zircon 54 | 1772                    | 1397                     | 0.79 | 0.0522                               | 0.0025     | 0.1429                              | 0.0063  | 0.0198                              | 0.0002  | 0.0065                               | 0.0002  | 0.15  | 126                                 | 2    | 136                                 | 6        | 278                                  | 110       | 126                 | 2    | 6.9       |
| Zircon 55 | 1990                    | 575                      | 0.29 | 0.0502                               | 0.0022     | 0.1338                              | 0.0051  | 0.0197                              | 0.0003  | 0.0071                               | 0.0002  | 0.36  | 125                                 | 2    | 128                                 | 5        | 193                                  | 97        | 125                 | 2    | 2.2       |
| Zircon 56 | 103                     | 20                       | 0.19 | 0.0659                               | 0.0044     | 0.9010                              | 0.0630  | 0.0991                              | 0.0013  | 0.0381                               | 0.0047  | 0.16  | 609                                 | 8    | 665                                 | 31       | 840                                  | 120       | 609                 | 8    | 8.4       |
| Zircon 57 | 1130                    | 665                      | 0.59 | 0.0595                               | 0.0031     | 0.1604                              | 0.0084  | 0.0197                              | 0.0002  | 0.0070                               | 0.0003  | 0.00  | 126                                 | 2    | 152                                 | 7        | 563                                  | 110       | 126                 | 2    | 17.3      |
| Zircon 58 | 918                     | 108                      | 0.12 | 0.0606                               | 0.0024     | 0.7850                              | 0.0270  | 0.0951                              | 0.0017  | 0.0376                               | 0.0013  | 0.52  | 586                                 | 10   | 588                                 | 15       | 627                                  | 82        | 586                 | 10   | 0.4       |
| Zircon 59 | 802                     | 489                      | 0.61 | 0.0636                               | 0.0028     | 0.4750                              | 0.0230  | 0.0541                              | 0.0020  | 0.0257                               | 0.0008  | 0.02  | 339                                 | 12   | 394                                 | 16       | 759                                  | 98        | 339                 | 12   | 13.9      |
| Zircon 60 | 215                     | 102                      | 0.48 | 0.0590                               | 0.0055     | 0.1680                              | 0.0150  | 0.0213                              | 0.0005  | 0.0076                               | 0.0006  | -0.15 | 136                                 | 3    | 157                                 | 13       | 530                                  | 180       | 136                 | 3    | 13.6      |
| Zircon 61 | 834                     | 215                      | 0.26 | 0.0603                               | 0.0046     | 0.1640                              | 0.0140  | 0.0199                              | 0.0003  | 0.0086                               | 0.0007  | 0.57  | 127                                 | 2    | 156                                 | 11       | 590                                  | 140       | 127                 | 2    | 18.4      |
| Zircon 62 | 524                     | 293                      | 0.56 | 0.0579                               | 0.0036     | 0.1700                              | 0.0100  | 0.0213                              | 0.0003  | 0.0077                               | 0.0003  | 0.08  | 136                                 | 2    | 159                                 | 9        | 480                                  | 130       | 136                 | 2    | 14.3      |
| Zircon 63 | 268                     | 339                      | 1.27 | 0.0635                               | 0.0029     | 0.8500                              | 0.0370  | 0.0965                              | 0.0012  | 0.0313                               | 0.0009  | 0.30  | 594                                 | 7    | 626                                 | 20       | 724                                  | 95        | 594                 | 7    | 5.2       |
| Zircon 65 | 722                     | 610                      | 0.84 | 0.0590                               | 0.0035     | 0.1630                              | 0.0093  | 0.0203                              | 0.0003  | 0.0067                               | 0.0002  | 0.22  | 129                                 | 2    | 153                                 | 8        | 580                                  | 120       | 129                 | 2    | 15.5      |
| Zircon 66 | 850                     | 700                      | 0.82 | 0.0586                               | 0.0036     | 0.1537                              | 0.0110  | 0.0191                              | 0.0003  | 0.0062                               | 0.0005  | 0.20  | 122                                 | 2    | 145                                 | 9        | 520                                  | 130       | 122                 | 2    | 15.9      |
| Zircon 67 | 312                     | 102                      | 0.33 | 0.0608                               | 0.0035     | 0.5630                              | 0.0430  | 0.0675                              | 0.0021  | 0.0294                               | 0.0010  | 0.38  | 421                                 | 12   | 453                                 | 26       | 620                                  | 110       | 421                 | 12   | 7.1       |
| Zircon 68 | 675                     | 451                      | 0.67 | 0.0548                               | 0.0037     | 0.1560                              | 0.0100  | 0.0208                              | 0.0002  | 0.0070                               | 0.0003  | 0.12  | 133                                 | 1    | 147                                 | 9        | 400                                  | 130       | 133                 | 1    | 9.7       |

| Zircon 70  | 693  | 410  | 0.59 | 0.0558 | 0.0037 | 0.1594 | 0.0096  | 0.0206 | 0.0003 | 0.0072 | 0.0004 | 0.04  | 132  | 2  | 150  | 8    | 420  | 130         | 132  | 2  | 11.9 |
|------------|------|------|------|--------|--------|--------|---------|--------|--------|--------|--------|-------|------|----|------|------|------|-------------|------|----|------|
| Zircon 71  | 238  | 67   | 0.28 | 0.0662 | 0.0040 | 0.5930 | 0.0390  | 0.0656 | 0.0013 | 0.0230 | 0.0018 | 0.37  | 410  | 8  | 476  | 24   | 815  | 120         | 410  | 8  | 13.9 |
| Zircon 72  | 212  | 110  | 0.52 | 0.0717 | 0.0037 | 1.3260 | 0.0650  | 0.1347 | 0.0027 | 0.0442 | 0.0021 | 0.34  | 814  | 16 | 867  | 28   | 1005 | 91          | 814  | 16 | 6.1  |
| Zircon 76  | 525  | 411  | 0.78 | 0.0616 | 0.0039 | 0.1745 | 0.0130  | 0.0204 | 0.0003 | 0.0071 | 0.0004 | 0.00  | 130  | 2  | 163  | 11   | 663  | 120         | 130  | 2  | 20.1 |
| Zircon 77  | 517  | 238  | 0.46 | 0.0580 | 0.0033 | 0.1571 | 0.0081  | 0.0198 | 0.0003 | 0.0068 | 0.0003 | 0.16  | 126  | 2  | 148  | 7    | 510  | 120         | 126  | 2  | 14.7 |
| Zircon 78  | 273  | 107  | 0.39 | 0.1088 | 0.0040 | 4.8500 | 0.1800  | 0.3213 | 0.0068 | 0.0976 | 0.0034 | 0.79  | 1795 | 33 | 1791 | 32   | 1781 | 71          | 1781 | 71 | -0.2 |
| Zircon 79  | 689  | 415  | 0.60 | 0.0549 | 0.0029 | 0.1474 | 0.0075  | 0.0201 | 0.0003 | 0.0064 | 0.0003 | 0.07  | 128  | 2  | 141  | 7    | 400  | 130         | 128  | 2  | 9.0  |
| Zircon 80  | 462  | 179  | 0.39 | 0.0616 | 0.0039 | 0.1740 | 0.0110  | 0.0202 | 0.0003 | 0.0077 | 0.0005 | 0.07  | 129  | 2  | 162  | 10   | 660  | 130         | 129  | 2  | 20.3 |
| Zircon 84  | 563  | 26   | 0.05 | 0.0606 | 0.0032 | 0.6380 | 0.0280  | 0.0768 | 0.0009 | 0.0337 | 0.0026 | 0.21  | 477  | 5  | 500  | 17   | 611  | 100         | 477  | 5  | 4.7  |
| Zircon 85  | 934  | 41   | 0.04 | 0.0601 | 0.0023 | 0.6650 | 0.0230  | 0.0806 | 0.0010 | 0.0302 | 0.0030 | 0.11  | 500  | 6  | 517  | 14   | 602  | 87          | 500  | 6  | 3.4  |
| Zircon 86  | 334  | 138  | 0.41 | 0.0539 | 0.0047 | 0.2650 | 0.0260  | 0.0363 | 0.0007 | 0.0126 | 0.0015 | 0.04  | 230  | 4  | 239  | 19   | 350  | 150         | 230  | 4  | 3.8  |
| Zircon 87  | 1210 | 420  | 0.35 | 0.0489 | 0.0025 | 0.1471 | 0.0063  | 0.0219 | 0.0003 | 0.0071 | 0.0003 | 0.36  | 139  | 2  | 139  | 6    | 131  | 110         | 139  | 2  | -0.1 |
| Zircon 88  | 193  | 158  | 0.82 | 0.0597 | 0.0030 | 0.6250 | 0.0300  | 0.0776 | 0.0011 | 0.0254 | 0.0009 | 0.34  | 482  | 6  | 495  | 19   | 565  | 110         | 482  | 6  | 2.7  |
| Zircon 90  | 1477 | 1695 | 1.15 | 0.0491 | 0.0023 | 0.1319 | 0.0056  | 0.0194 | 0.0002 | 0.0061 | 0.0002 | -0.29 | 124  | 1  | 126  | 5    | 144  | 110         | 124  | 1  | 1.4  |
| Zircon 91  | 231  | 85   | 0.37 | 0.0551 | 0.0047 | 0.2030 | 0.0180  | 0.0268 | 0.0005 | 0.0103 | 0.0006 | -0.12 | 171  | 3  | 192  | 15   | 400  | 180         | 171  | 3  | 11.2 |
| Zircon 92  | 630  | 156  | 0.25 | 0.0581 | 0.0026 | 0.5700 | 0.0220  | 0.0712 | 0.0007 | 0.0236 | 0.0009 | -0.09 | 443  | 4  | 458  | 15   | 519  | 98          | 443  | 4  | 3.2  |
| Zircon 94  | 158  | 81   | 0.51 | 0.0782 | 0.0034 | 2.0310 | 0.0800  | 0.1897 | 0.0033 | 0.0603 | 0.0022 | 0.34  | 1119 | 18 | 1125 | 25   | 1144 | 83          | 1119 | 18 | 0.5  |
| Zircon 95  | 419  | 19   | 0.05 | 0.0573 | 0.0032 | 0.2640 | 0.0140  | 0.0339 | 0.0006 | 0.0429 | 0.0024 | 0.09  | 215  | 4  | 238  | 11   | 470  | 130         | 215  | 4  | 9.6  |
| Zircon 99  | 482  | 303  | 0.63 | 0.0531 | 0.0042 | 0.1539 | 0.0120  | 0.0213 | 0.0003 | 0.0072 | 0.0004 | -0.02 | 136  | 2  | 145  | 10   | 300  | 150         | 136  | 2  | 6.5  |
| Zircon 100 | 107  | 39   | 0.36 | 0.0641 | 0.0067 | 0.1760 | 0.0180  | 0.0207 | 0.0006 | 0.0099 | 0.0009 | 0.09  | 132  | 4  | 164  | 16   | 700  | 200         | 132  | 4  | 19.6 |
| Zircon 102 | 141  | 79   | 0.56 | 0.0623 | 0.0035 | 0.7160 | 0.0410  | 0.0866 | 0.0013 | 0.0287 | 0.0012 | 0.32  | 536  | 8  | 553  | 24   | 650  | 110         | 536  | 8  | 3.1  |
| Zircon 108 | 585  | 312  | 0.53 | 0.0570 | 0.0033 | 0.1671 | 0.0088  | 0.0215 | 0.0003 | 0.0075 | 0.0004 | 0.29  | 137  | 2  | 157  | 8    | 540  | 120         | 137  | 2  | 12.5 |
| Zircon 109 | 1078 | 1202 | 1.12 | 0.0516 | 0.0028 | 0.1340 | 0.0078  | 0.0195 | 0.0003 | 0.0059 | 0.0002 | -0.05 | 124  | 2  | 128  | 7    | 240  | 120         | 124  | 2  | 2.5  |
| Zircon 110 | 415  | 181  | 0.44 | 0.0512 | 0.0039 | 0.1440 | 0.0100  | 0.0207 | 0.0003 | 0.0074 | 0.0004 | -0.16 | 132  | 2  | 136  | 9    | 210  | 150         | 132  | 2  | 2.7  |
| Zircon 111 | 159  | 56   | 0.35 | 0.0558 | 0.0059 | 0.1580 | 0.0180  | 0.0207 | 0.0005 | 0.0087 | 0.0008 | -0.05 | 132  | 3  | 148  | 16   | 410  | 200         | 132  | 3  | 10.7 |
|            |      |      |      |        |        |        | CODDECT |        |        |        |        | I     |      |    |      | CODD |      | ( ) ( ) ( ) |      |    |      |

|            |                    |                    |      |                                      |        |                                     |                   |                                     | CORR              | ECTED AGES (                         | Ma)               |       |                                     |     |                                     |     |                                      |     |             |     |      |
|------------|--------------------|--------------------|------|--------------------------------------|--------|-------------------------------------|-------------------|-------------------------------------|-------------------|--------------------------------------|-------------------|-------|-------------------------------------|-----|-------------------------------------|-----|--------------------------------------|-----|-------------|-----|------|
|            | U                  | Th                 |      |                                      | ±2σ    |                                     |                   |                                     |                   |                                      |                   |       |                                     |     |                                     |     |                                      |     | Best<br>age |     | Disc |
| Sample     | (ppm) <sup>1</sup> | (ppm) <sup>1</sup> | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | abs    | <sup>207</sup> Pb/ <sup>235</sup> U | $\pm 2\sigma$ abs | <sup>206</sup> Pb/ <sup>238</sup> U | $\pm 2\sigma$ abs | <sup>208</sup> Pb/ <sup>232</sup> Th | $\pm 2\sigma$ abs | Rho   | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ | (Ma)        | ±2σ | %    |
| RN-3       |                    |                    |      |                                      |        |                                     |                   |                                     |                   |                                      |                   |       |                                     |     |                                     |     |                                      |     |             |     |      |
| Zircon_1B  | 271                | 163                | 0.60 | 0.0543                               | 0.0027 | 0.3290                              | 0.0130            | 0.0443                              | 0.0008            | 0.0140                               | 0.0007            | -0.01 | 279                                 | 5   | 291                                 | 10  | 360                                  | 120 | 279         | 5   | 4.0  |
| Zircon_3B  | 141                | 86                 | 0.61 | 0.0587                               | 0.0034 | 0.3230                              | 0.0200            | 0.0401                              | 0.0009            | 0.0151                               | 0.0008            | 0.11  | 253                                 | 6   | 284                                 | 15  | 520                                  | 110 | 253         | 6   | 10.8 |
| Zircon_4B  | 182                | 125                | 0.68 | 0.0530                               | 0.0030 | 0.3060                              | 0.0150            | 0.0424                              | 0.0008            | 0.0135                               | 0.0007            | 0.19  | 268                                 | 5   | 272                                 | 11  | 320                                  | 120 | 268         | 5   | 1.7  |
| Zircon_5B  | 288                | 199                | 0.69 | 0.0527                               | 0.0025 | 0.2970                              | 0.0120            | 0.0410                              | 0.0008            | 0.0128                               | 0.0006            | -0.06 | 259                                 | 5   | 266                                 | 9   | 320                                  | 110 | 259         | 5   | 2.6  |
| Zircon_7B  | 359                | 315                | 0.88 | 0.0532                               | 0.0036 | 0.3010                              | 0.0170            | 0.0405                              | 0.0011            | 0.0137                               | 0.0007            | 0.48  | 256                                 | 7   | 266                                 | 13  | 310                                  | 130 | 256         | 7   | 3.7  |
| Zircon_8B  | 169                | 122                | 0.72 | 0.0561                               | 0.0028 | 0.3520                              | 0.0150            | 0.0456                              | 0.0008            | 0.0148                               | 0.0007            | 0.18  | 287                                 | 5   | 308                                 | 11  | 420                                  | 110 | 287         | 5   | 6.8  |
| Zircon_9B  | 335                | 127                | 0.38 | 0.0586                               | 0.0026 | 0.3430                              | 0.0120            | 0.0419                              | 0.0007            | 0.0143                               | 0.0007            | 0.23  | 265                                 | 4   | 304                                 | 9   | 552                                  | 100 | 265         | 4   | 12.9 |
| Zircon_10B | 192                | 117                | 0.61 | 0.0527                               | 0.0036 | 0.3180                              | 0.0190            | 0.0436                              | 0.0010            | 0.0137                               | 0.0007            | -0.04 | 275                                 | 7   | 282                                 | 14  | 310                                  | 150 | 275         | 7   | 2.6  |
| Zircon_11B | 197                | 210                | 1.06 | 0.0600                               | 0.0045 | 0.3470                              | 0.0260            | 0.0417                              | 0.0008            | 0.0124                               | 0.0007            | 0.07  | 263                                 | 5   | 302                                 | 19  | 590                                  | 140 | 263         | 5   | 12.9 |
| Zircon_12B | 389                | 338                | 0.87 | 0.0510                               | 0.0026 | 0.3070                              | 0.0120            | 0.0425                              | 0.0007            | 0.0132                               | 0.0006            | 0.05  | 268                                 | 4   | 272                                 | 9   | 248                                  | 120 | 268         | 4   | 1.1  |
| Zircon_14B | 276                | 228                | 0.83 | 0.0512                               | 0.0030 | 0.3040                              | 0.0150            | 0.0426                              | 0.0007            | 0.0138                               | 0.0006            | 0.05  | 269                                 | 4   | 269                                 | 12  | 240                                  | 120 | 269         | 4   | 0.0  |
| Zircon_15B | 252                | 199                | 0.79 | 0.0531                               | 0.0029 | 0.2880                              | 0.0140            | 0.0387                              | 0.0009            | 0.0131                               | 0.0006            | 0.14  | 245                                 | 5   | 260                                 | 11  | 300                                  | 120 | 245         | 5   | 5.9  |
| Zircon_16B | 280                | 155                | 0.55 | 0.0559                               | 0.0028 | 0.3020                              | 0.0120            | 0.0387                              | 0.0007            | 0.0129                               | 0.0006            | 0.09  | 245                                 | 5   | 267                                 | 9   | 460                                  | 110 | 245         | 5   | 8.4  |
| Zircon_17B | 376                | 243                | 0.65 | 0.0530                               | 0.0027 | 0.3150                              | 0.0130            | 0.0425                              | 0.0007            | 0.0133                               | 0.0006            | 0.01  | 268                                 | 4   | 277                                 | 10  | 316                                  | 120 | 268         | 4   | 3.2  |
| Zircon_18B | 195                | 146                | 0.75 | 0.0540                               | 0.0034 | 0.3310                              | 0.0190            | 0.0434                              | 0.0007            | 0.0147                               | 0.0008            | 0.23  | 274                                 | 5   | 289                                 | 14  | 330                                  | 140 | 274         | 5   | 5.3  |

| Zircon_19B     | 355 | 303 | 0.85 | 0.0556 | 0.0031 | 0.3230 | 0.0170 | 0.0406 | 0.0007 | 0.0133 | 0.0006 | 0.17  | 257  | 5  | 283  | 13 | 460  | 130 | 257  | 5  | 9.4  |
|----------------|-----|-----|------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|----|------|----|------|-----|------|----|------|
| Zircon_20B     | 264 | 198 | 0.75 | 0.0540 | 0.0025 | 0.3250 | 0.0130 | 0.0422 | 0.0007 | 0.0121 | 0.0007 | 0.18  | 267  | 4  | 285  | 10 | 370  | 110 | 267  | 4  | 6.5  |
| Zircon_21B     | 300 | 272 | 0.91 | 0.0541 | 0.0027 | 0.3290 | 0.0120 | 0.0436 | 0.0008 | 0.0144 | 0.0006 | -0.10 | 276  | 5  | 288  | 9  | 370  | 110 | 276  | 5  | 4.0  |
| Zircon 22B     | 396 | 368 | 0.93 | 0.0570 | 0.0026 | 0.3290 | 0.0120 | 0.0412 | 0.0007 | 0.0132 | 0.0006 | 0.05  | 260  | 4  | 288  | 9  | 486  | 98  | 260  | 4  | 9.7  |
| Zircon 23B     | 496 | 434 | 0.88 | 0.0508 | 0.0028 | 0.2920 | 0.0130 | 0.0412 | 0.0006 | 0.0134 | 0.0005 | 0.16  | 261  | 4  | 262  | 10 | 240  | 120 | 261  | 4  | 0.6  |
| Zircon 24B     | 234 | 189 | 0.81 | 0.0564 | 0.0030 | 0.3370 | 0.0170 | 0.0425 | 0.0009 | 0.0139 | 0.0007 | -0.02 | 269  | 6  | 294  | 13 | 500  | 120 | 269  | 6  | 8.7  |
| Zircon 25B     | 244 | 188 | 0.77 | 0.0547 | 0.0031 | 0.3330 | 0.0170 | 0.0435 | 0.0009 | 0.0144 | 0.0008 | 0.33  | 275  | 6  | 291  | 13 | 370  | 120 | 275  | 6  | 5.7  |
| Zircon 26B     | 203 | 114 | 0.56 | 0.0521 | 0.0032 | 0.3100 | 0.0170 | 0.0428 | 0.0009 | 0.0146 | 0.0008 | -0.15 | 270  | 5  | 273  | 13 | 260  | 130 | 270  | 5  | 1.0  |
| Zircon 27B     | 185 | 139 | 0.75 | 0.0630 | 0.0030 | 0.3420 | 0.0130 | 0.0387 | 0.0008 | 0.0133 | 0.0006 | 0.39  | 245  | 5  | 298  | 10 | 680  | 100 | 245  | 5  | 18.0 |
| Zircon 28B     | 172 | 116 | 0.68 | 0.0540 | 0.0033 | 0.3170 | 0.0160 | 0.0422 | 0.0008 | 0.0149 | 0.0007 | -0.24 | 266  | 5  | 282  | 11 | 360  | 120 | 266  | 5  | 5.5  |
| Zircon 29B     | 188 | 157 | 0.84 | 0.0527 | 0.0040 | 0.3140 | 0.0220 | 0.0442 | 0.0009 | 0.0132 | 0.0007 | -0.02 | 279  | 6  | 279  | 17 | 290  | 160 | 279  | 6  | 0.1  |
| Zircon 30B     | 262 | 135 | 0.51 | 0.0520 | 0.0030 | 0.2940 | 0.0140 | 0.0409 | 0.0007 | 0.0134 | 0.0007 | 0.07  | 258  | 5  | 261  | 11 | 320  | 130 | 258  | 5  | 1.0  |
| Zircon 31B     | 211 | 137 | 0.65 | 0.0527 | 0.0032 | 0.3190 | 0.0180 | 0.0439 | 0.0007 | 0.0143 | 0.0008 | 0.15  | 277  | 5  | 280  | 14 | 300  | 140 | 277  | 5  | 1.0  |
| Zircon 32B     | 433 | 446 | 1.03 | 0.0562 | 0.0029 | 0.3270 | 0.0160 | 0.0419 | 0.0007 | 0.0132 | 0.0007 | 0.49  | 265  | 4  | 287  | 12 | 440  | 100 | 265  | 4  | 7.8  |
| Zircon 33B     | 327 | 257 | 0.79 | 0.0532 | 0.0026 | 0.3140 | 0.0120 | 0.0432 | 0.0007 | 0.0134 | 0.0006 | 0.33  | 273  | 4  | 277  | 10 | 320  | 110 | 273  | 4  | 1.6  |
| Zircon 34B     | 199 | 147 | 0.74 | 0.0523 | 0.0033 | 0.3170 | 0.0160 | 0.0440 | 0.0009 | 0.0140 | 0.0007 | 0.08  | 278  | 5  | 278  | 12 | 300  | 130 | 278  | 5  | 0.1  |
| Zircon 35B     | 351 | 322 | 0.92 | 0.0540 | 0.0029 | 0.3100 | 0.0150 | 0.0419 | 0.0009 | 0.0134 | 0.0007 | 0.20  | 264  | 5  | 274  | 12 | 390  | 120 | 264  | 5  | 3.5  |
| Zircon 36B     | 402 | 29  | 0.07 | 0.0542 | 0.0024 | 0.3470 | 0.0120 | 0.0467 | 0.0007 | 0.0184 | 0.0011 | 0.07  | 294  | 5  | 303  | 9  | 382  | 97  | 294  | 5  | 3.0  |
| Zircon 37B     | 398 | 299 | 0.75 | 0.0546 | 0.0023 | 0.3193 | 0.0092 | 0.0433 | 0.0007 | 0.0136 | 0.0006 | -0.04 | 273  | 5  | 281  | 7  | 378  | 96  | 273  | 5  | 2.8  |
| Zircon 39B     | 390 | 358 | 0.92 | 0.0536 | 0.0026 | 0.3070 | 0.0130 | 0.0426 | 0.0007 | 0.0131 | 0.0006 | 0.29  | 269  | 5  | 271  | 10 | 347  | 110 | 269  | 5  | 0.8  |
| Zircon 40B     | 416 | 266 | 0.64 | 0.0534 | 0.0030 | 0.2970 | 0.0150 | 0.0401 | 0.0010 | 0.0125 | 0.0006 | 0.21  | 254  | 6  | 263  | 11 | 310  | 120 | 254  | 6  | 3.5  |
| Zircon 41B     | 270 | 145 | 0.54 | 0.0613 | 0.0028 | 0.5920 | 0.0200 | 0.0724 | 0.0015 | 0.0272 | 0.0011 | 0.34  | 451  | 9  | 471  | 13 | 640  | 100 | 451  | 9  | 4.3  |
| Zircon 42B     | 496 | 470 | 0.95 | 0.0513 | 0.0024 | 0.2960 | 0.0110 | 0.0425 | 0.0007 | 0.0129 | 0.0005 | -0.01 | 268  | 4  | 263  | 8  | 234  | 100 | 268  | 4  | -2.0 |
| Zircon 43B     | 103 | 92  | 0.90 | 0.0587 | 0.0051 | 0.3550 | 0.0290 | 0.0449 | 0.0010 | 0.0147 | 0.0008 | -0.05 | 283  | 6  | 312  | 21 | 560  | 180 | 283  | 6  | 9.4  |
| Zircon 44B     | 137 | 74  | 0.54 | 0.0582 | 0.0036 | 0.3560 | 0.0200 | 0.0442 | 0.0010 | 0.0143 | 0.0007 | 0.10  | 279  | 6  | 311  | 15 | 530  | 140 | 279  | 6  | 10.4 |
| Zircon 45B     | 297 | 117 | 0.39 | 0.0551 | 0.0043 | 0.3290 | 0.0220 | 0.0436 | 0.0007 | 0.0138 | 0.0007 | -0.03 | 275  | 5  | 288  | 16 | 370  | 150 | 275  | 5  | 4.5  |
| Zircon 47B     | 232 | 182 | 0.78 | 0.0530 | 0.0036 | 0.3060 | 0.0200 | 0.0417 | 0.0008 | 0.0124 | 0.0007 | 0.09  | 264  | 5  | 270  | 16 | 280  | 150 | 264  | 5  | 2.4  |
| Zircon 48B     | 237 | 157 | 0.66 | 0.0525 | 0.0029 | 0.3100 | 0.0160 | 0.0427 | 0.0008 | 0.0133 | 0.0007 | 0.23  | 269  | 5  | 273  | 12 | 330  | 120 | 269  | 5  | 1.3  |
| Zircon 49B     | 485 | 237 | 0.49 | 0.0548 | 0.0020 | 0.3140 | 0.0090 | 0.0416 | 0.0007 | 0.0125 | 0.0006 | 0.39  | 263  | 5  | 277  | 7  | 396  | 80  | 263  | 5  | 5.2  |
| Zircon 51B     | 227 | 200 | 0.88 | 0.0525 | 0.0032 | 0.3120 | 0.0170 | 0.0434 | 0.0009 | 0.0128 | 0.0007 | 0.10  | 274  | 5  | 275  | 13 | 280  | 130 | 274  | 5  | 0.4  |
| Zircon 52B     | 740 | 464 | 0.63 | 0.0526 | 0.0019 | 0.3070 | 0.0060 | 0.0423 | 0.0006 | 0.0126 | 0.0005 | 0.22  | 267  | 4  | 272  | 5  | 303  | 84  | 267  | 4  | 1.7  |
| Zircon 1       | 212 | 142 | 0.67 | 0.0525 | 0.0032 | 0.3260 | 0.0190 | 0.0445 | 0.0009 | 0.0150 | 0.0011 | 0.26  | 280  | 5  | 286  | 14 | 280  | 130 | 280  | 5  | 2.0  |
| Zircon 2       | 462 | 32  | 0.07 | 0.0731 | 0.0028 | 1.6910 | 0.0550 | 0.1674 | 0.0027 | 0.0530 | 0.0042 | 0.15  | 998  | 15 | 1006 | 21 | 1010 | 79  | 998  | 15 | 0.8  |
| Zircon 3       | 85  | 75  | 0.88 | 0.0566 | 0.0046 | 0.3460 | 0.0250 | 0.0453 | 0.0010 | 0.0153 | 0.0012 | 0.09  | 285  | 6  | 303  | 20 | 420  | 180 | 285  | 6  | 5.8  |
| Zircon 4       | 225 | 112 | 0.50 | 0.0602 | 0.0027 | 0.9310 | 0.0390 | 0.1123 | 0.0021 | 0.0333 | 0.0023 | 0.08  | 686  | 12 | 669  | 20 | 628  | 95  | 686  | 12 | -2.5 |
| <br>Zircon_5   | 99  | 58  | 0.59 | 0.0596 | 0.0031 | 0.6790 | 0.0390 | 0.0840 | 0.0030 | 0.0271 | 0.0025 | 0.61  | 520  | 18 | 524  | 23 | 560  | 120 | 520  | 18 | 0.8  |
| Zircon_6       | 91  | 32  | 0.35 | 0.0739 | 0.0037 | 1.7320 | 0.0770 | 0.1695 | 0.0034 | 0.0532 | 0.0039 | -0.02 | 1009 | 19 | 1021 | 27 | 1039 | 98  | 1009 | 19 | 1.2  |
| Zircon 7       | 164 | 21  | 0.13 | 0.0714 | 0.0032 | 1.5720 | 0.0600 | 0.1578 | 0.0028 | 0.0481 | 0.0041 | 0.10  | 945  | 16 | 960  | 24 | 974  | 83  | 945  | 16 | 1.6  |
| Zircon_8       | 188 | 59  | 0.31 | 0.0736 | 0.0044 | 1.7110 | 0.1300 | 0.1671 | 0.0053 | 0.0543 | 0.0068 | 0.65  | 996  | 29 | 1011 | 43 | 1024 | 99  | 996  | 29 | 1.5  |
| Zircon_9       | 817 | 168 | 0.21 | 0.0704 | 0.0025 | 1.4260 | 0.0440 | 0.1474 | 0.0031 | 0.0461 | 0.0028 | 0.24  | 887  | 17 | 899  | 19 | 934  | 64  | 887  | 17 | 1.4  |
| Zircon 10      | 167 | 88  | 0.52 | 0.0523 | 0.0034 | 0.3270 | 0.0210 | 0.0451 | 0.0010 | 0.0137 | 0.0011 | 0.02  | 285  | 6  | 286  | 16 | 280  | 150 | 285  | 6  | 0.5  |
| Zircon 11      | 78  | 24  | 0.31 | 0.0742 | 0.0030 | 1.9420 | 0.0740 | 0.1875 | 0.0038 | 0.0556 | 0.0041 | 0.13  | 1108 | 21 | 1094 | 28 | 1036 | 89  | 1108 | 21 | -1.3 |
| Zircon 12      | 67  | 42  | 0.63 | 0.0571 | 0.0060 | 0.3550 | 0.0370 | 0.0448 | 0.0014 | 0.0153 | 0.0015 | 0.05  | 283  | 8  | 312  | 29 | 400  | 220 | 283  | 8  | 9.4  |
| Zircon 13      | 67  | 31  | 0.47 | 0.0763 | 0.0038 | 1.8290 | 0.0900 | 0.1747 | 0.0034 | 0.0533 | 0.0039 | 0.26  | 1038 | 19 | 1056 | 32 | 1106 | 94  | 1038 | 19 | 1.7  |
| _<br>Zircon_14 | 171 | 62  | 0.36 | 0.0770 | 0.0030 | 1.9950 | 0.0700 | 0.1887 | 0.0032 | 0.0560 | 0.0039 | 0.17  | 1114 | 17 | 1115 | 23 | 1121 | 75  | 1114 | 17 | 0.1  |
| Zircon_15      | 142 | 100 | 0.70 | 0.0560 | 0.0035 | 0.3420 | 0.0220 | 0.0443 | 0.0010 | 0.0143 | 0.0011 | 0.32  | 279  | 6  | 298  | 17 | 450  | 120 | 279  | 6  | 6.2  |
| Zircon_16      | 293 | 45  | 0.15 | 0.0725 | 0.0030 | 1.4740 | 0.0530 | 0.1469 | 0.0027 | 0.0378 | 0.0030 | -0.19 | 883  | 15 | 921  | 22 | 999  | 85  | 883  | 15 | 4.1  |
| Zircon_17      | 294 | 63  | 0.21 | 0.0771 | 0.0029 | 2.0440 | 0.0640 | 0.1922 | 0.0033 | 0.0615 | 0.0043 | 0.02  | 1133 | 18 | 1129 | 21 | 1118 | 75  | 1133 | 18 | -0.4 |
| -              |     |     |      |        |        |        |        |        |        |        |        |       |      |    |      |    |      |     |      |    |      |

| Zircon_18              | 169       | 150      | 0.88 | 0.0581 | 0.0045 | 0.3630    | 0.0260 | 0.0456 | 0.0010 | 0.0149 | 0.0010 | -0.29 | 287  | 6        | 315        | 19 | 470  | 170      | 287  | 6        | 8.8  |
|------------------------|-----------|----------|------|--------|--------|-----------|--------|--------|--------|--------|--------|-------|------|----------|------------|----|------|----------|------|----------|------|
| Zircon_19              | 129       | 151      | 1.17 | 0.0590 | 0.0037 | 0.3470    | 0.0190 | 0.0435 | 0.0010 | 0.0136 | 0.0010 | -0.17 | 274  | 6        | 304        | 14 | 540  | 130      | 274  | 6        | 9.7  |
| Zircon_20              | 178       | 24       | 0.13 | 0.0790 | 0.0033 | 1.9130    | 0.0700 | 0.1752 | 0.0029 | 0.0640 | 0.0049 | 0.21  | 1041 | 16       | 1087       | 25 | 1161 | 83       | 1041 | 16       | 4.2  |
| Zircon_21              | 166       | 14       | 0.09 | 0.0780 | 0.0032 | 1.8960    | 0.0840 | 0.1750 | 0.0037 | 0.0729 | 0.0062 | 0.72  | 1039 | 20       | 1076       | 29 | 1152 | 83       | 1039 | 20       | 3.4  |
| Zircon 22              | 41        | 11       | 0.27 | 0.0732 | 0.0044 | 1.8080    | 0.0920 | 0.1759 | 0.0043 | 0.0589 | 0.0059 | 0.00  | 1044 | 24       | 1044       | 33 | 1028 | 110      | 1044 | 24       | 0.0  |
| Zircon 23              | 49        | 14       | 0.29 | 0.0769 | 0.0038 | 1.8130    | 0.0920 | 0.1723 | 0.0037 | 0.0524 | 0.0049 | 0.45  | 1025 | 21       | 1049       | 33 | 1108 | 100      | 1025 | 21       | 2.3  |
| Zircon 24              | 104       | 41       | 0.39 | 0.0604 | 0.0040 | 0.3430    | 0.0230 | 0.0418 | 0.0011 | 0.0149 | 0.0015 | 0.30  | 264  | 7        | 301        | 18 | 630  | 150      | 264  | 7        | 12.3 |
| Zircon 25              | 109       | 60       | 0.55 | 0.0720 | 0.0034 | 1.4490    | 0.0640 | 0.1455 | 0.0029 | 0.0438 | 0.0032 | 0.15  | 875  | 17       | 907        | 26 | 1000 | 98       | 875  | 17       | 3.5  |
| Zircon 26              | 471       | 11       | 0.02 | 0.0711 | 0.0027 | 1.5900    | 0.0530 | 0.1617 | 0.0026 | 0.0531 | 0.0051 | 0.21  | 966  | 14       | 965        | 21 | 959  | 79       | 966  | 14       | -0.1 |
| Zircon 27              | 172       | 26       | 0.15 | 0.0732 | 0.0029 | 1.5850    | 0.0590 | 0.1581 | 0.0028 | 0.0498 | 0.0038 | 0.49  | 946  | 15       | 963        | 23 | 1016 | 82       | 946  | 15       | 1.7  |
| Zircon 28              | 460       | 35       | 0.08 | 0.0774 | 0.0030 | 1.9610    | 0.0860 | 0.1849 | 0.0037 | 0.0551 | 0.0041 | 0.83  | 1094 | 20       | 1099       | 30 | 1136 | 78       | 1094 | 20       | 0.5  |
| Zircon 29              | 183       | 104      | 0.57 | 0.0758 | 0.0029 | 1,7490    | 0.0560 | 0.1669 | 0.0031 | 0.0496 | 0.0033 | 0.19  | 995  | 17       | 1030       | 20 | 1089 | 74       | 995  | 17       | 3.4  |
| Zircon 30              | 169       | 27       | 0.16 | 0.0725 | 0.0030 | 1.5180    | 0.0560 | 0.1521 | 0.0027 | 0.0411 | 0.0035 | 0.30  | 913  | 15       | 942        | 23 | 995  | 84       | 913  | 15       | 3.1  |
| Zircon 31              | 211       | 120      | 0.57 | 0.0514 | 0.0029 | 0 3250    | 0.0170 | 0.0457 | 0.0009 | 0.0142 | 0.0011 | 0.01  | 288  | 6        | 285        | 13 | 250  | 130      | 288  | 6        | -11  |
| Zircon 32              | 283       | 165      | 0.58 | 0.0547 | 0.0023 | 0.3260    | 0.0160 | 0.0424 | 0.0008 | 0.0142 | 0.0011 | 0.01  | 268  | 5        | 286        | 12 | 420  | 110      | 268  | 5        | 6.5  |
| Zircon_32              | 118       | 59       | 0.50 | 0.0579 | 0.0031 | 0.3200    | 0.0100 | 0.0397 | 0.0010 | 0.0139 | 0.0010 | 0.17  | 250  | 6        | 273        | 16 | /90  | 160      | 251  | 6        | 8.2  |
| Zircon 36              | 364       | 289      | 0.50 | 0.0512 | 0.0041 | 0.3080    | 0.0200 | 0.0337 | 0.0010 | 0.0133 | 0.0012 | -0.01 | 275  | 5        | 273        | 9  | 255  | 110      | 275  | 5        | -0.2 |
| Zircon_37              | 689       | 598      | 0.75 | 0.0512 | 0.0023 | 0.3050    | 0.0120 | 0.0430 | 0.0000 | 0.0123 | 0.0005 | -0.01 | 273  | 5        | 272        | 8  | 265  | 94       | 273  | 5        | -0.5 |
| Zircon 38              | 169       | 124      | 0.07 | 0.0510 | 0.0021 | 0.3650    | 0.0110 | 0.0452 | 0.0000 | 0.0158 | 0.0005 | 0.01  | 275  | 7        | 215        | 18 | 430  | 150      | 207  | 7        | 5.7  |
| Zircon 39              | 977       | 37       | 0.75 | 0.0303 | 0.0000 | 1 6250    | 0.0240 | 0.1645 | 0.0011 | 0.0130 | 0.0012 | 0.00  | 982  | ,<br>15  | 980        | 19 | 982  | 71       | 987  | ,<br>15  | -0.2 |
| Zircon 41              | 261       | 144      | 0.55 | 0.0720 | 0.0023 | 0.2940    | 0.0400 | 0.1045 | 0.0027 | 0.0342 | 0.0041 | 0.50  | 246  | 6        | 260        | 14 | 350  | 130      | 246  | 6        | 5.4  |
| Zircon_41<br>Zircon_42 | 201       | 153      | 0.55 | 0.0530 | 0.0035 | 0.2340    | 0.0100 | 0.0303 | 0.0005 | 0.0145 | 0.0010 | -0.17 | 240  | 6        | 286        | 15 | 310  | 130      | 240  | 6        | 11   |
| Zircon_42<br>Zircon_43 | 396       | 20       | 0.73 | 0.0330 | 0.0000 | 1 5130    | 0.0150 | 0.0445 | 0.0005 | 0.0145 | 0.0010 | 0.17  | 905  | 16       | 93/        | 23 | 1024 | 81       | 905  | 16       | 3 1  |
| Zircon_43              | 121       | 70       | 0.23 | 0.0732 | 0.0028 | 0 3 2 1 0 | 0.0360 | 0.1307 | 0.0025 | 0.0407 | 0.0033 | -0.13 | 278  | 7        | 280        | 20 | 360  | 100      | 278  | 7        | 0.8  |
| Zircon_44              | 0/        | 20       | 0.05 | 0.0241 | 0.0043 | 2 2820    | 0.0200 | 0.0440 | 0.0011 | 0.0143 | 0.0012 | -0.13 | 1167 | 22       | 1207       | 20 | 1277 | 100      | 1167 | 22       | 2.2  |
| Zircon_45              | 10/       | 25       | 0.31 | 0.0050 | 0.0042 | 1 6640    | 0.0500 | 0.1505 | 0.0040 | 0.0555 | 0.0049 | 0.17  | 005  | 15       | 006        | 22 | 1012 | 75       | 005  | 15       | 0.1  |
| Zircon_40              | 1042      | 85       | 0.04 | 0.0723 | 0.0028 | 0.6600    | 0.0330 | 0.1070 | 0.0027 | 0.0301 | 0.0034 | 0.51  | 507  | 0        | 515        | 12 | 560  | 75       | 507  | 0        | 15   |
| Zircon_48              | 3042      | 57       | 0.08 | 0.0503 | 0.0021 | 0.0000    | 0.0210 | 0.0010 | 0.0014 | 0.0210 | 0.0018 | 0.02  | 270  | 5        | 284        | 11 | 203  | 120      | 270  | 5        | 1.5  |
| Zircon 50              | 504       | 160      | 0.19 | 0.0525 | 0.0020 | 0.3230    | 0.0140 | 0.0442 | 0.0009 | 0.0143 | 0.0012 | 0.03  | 275  | 5        | 204        | 11 | 295  | 120      | 275  | 5        | 1.0  |
| Zircon_50              | 200       | 270      | 0.28 | 0.0524 | 0.0020 | 0.3130    | 0.0150 | 0.0457 | 0.0008 | 0.0134 | 0.0010 | 0.10  | 270  | 5        | 270        | 12 | 206  | 120      | 270  | 5        | 0.0  |
| Zircon 52              | 126       | 270      | 0.90 | 0.0525 | 0.0025 | 0.3240    | 0.0100 | 0.0430 | 0.0010 | 0.0143 | 0.0010 | 0.05  | 204  | 5        | 204        | 12 | 290  | 140      | 204  | 5        | 2.0  |
| Zircon 52              | 1/0       | 69<br>69 | 0.34 | 0.0540 | 0.0033 | 0.3230    | 0.0200 | 0.0434 | 0.0009 | 0.0147 | 0.0012 | 0.19  | 274  | 5        | 205        | 17 | 200  | 140      | 274  | 5        | 1 5  |
| Zircon 55              | 200       | 60       | 0.40 | 0.0332 | 0.0039 | 2 1600    | 0.0220 | 0.0434 | 0.0010 | 0.0136 | 0.0012 | 0.03  | 1170 | 24       | 1160       | 20 | 1170 | 100      | 1170 | 21       | 1.5  |
| Zircon 56              | 172       | 25       | 0.33 | 0.0794 | 0.0029 | 1 6090    | 0.0910 | 0.1992 | 0.0003 | 0.0505 | 0.0043 | 0.79  | 094  | 54<br>21 | 1005       | 29 | 1026 | 0/       | 001  | 24<br>21 | 2 1  |
| Zircon 57              | 202       | 33<br>72 | 0.20 | 0.0741 | 0.0034 | 1.0560    | 0.0710 | 0.1030 | 0.0038 | 0.0558 | 0.0041 | 0.42  | 072  | 15       | 060        | 10 | 020  | 94<br>70 | 072  | 15       | 1.1  |
| Zircon 59              | 261       | 265      | 1.02 | 0.0705 | 0.0025 | 0.2450    | 0.0470 | 0.1027 | 0.0027 | 0.0310 | 0.0000 | 0.10  | 267  | 5        | 200        | 12 | 530  | 110      | 267  | 10       | 11 1 |
| Zircon 59              | 201       | 107      | 0.50 | 0.0377 | 0.0030 | 1 2020    | 0.0170 | 0.0422 | 0.0008 | 0.0135 | 0.0005 | 0.10  | 207  | 16       | 887        | 24 | 1101 | 80       | 207  | 16       | 05   |
| Zircon 60              | 104       | 107      | 0.30 | 0.0703 | 0.0031 | 1.5550    | 0.0330 | 0.1527 | 0.0028 | 0.0501 | 0.0020 | 0.01  | 001  | 17       | 007        | 24 | 1010 | 00       | 003  | 17       | 9.J  |
| Zircon_61              | 104       | 00       | 0.11 | 0.0731 | 0.0033 | 0 2 2 2 0 | 0.0700 | 0.1003 | 0.0031 | 0.0300 | 0.0032 | 0.33  | 277  | 6        | 393<br>205 | 17 | 220  | 150      | 277  | 6        | 2.0  |
| Zircon_62              | 127       | 40       | 0.09 | 0.0538 | 0.0041 | 0.3230    | 0.0230 | 0.0439 | 0.0010 | 0.0130 | 0.0010 | 0.03  | 277  | 7        | 205        | 20 | 490  | 100      | 277  | 7        | 2.9  |
| Zircon_62              | 95<br>777 | 42       | 0.44 | 0.0565 | 0.0050 | 0.5500    | 0.0260 | 0.0447 | 0.0012 | 0.0105 | 0.0015 | -0.10 | 1224 | 10       | 1220       | 20 | 400  | 190      | 1224 | 10       | 9.0  |
| Zircon 64              | 124       | 102      | 0.57 | 0.0604 | 0.0029 | 2.5290    | 0.0720 | 0.2091 | 0.0037 | 0.0056 | 0.0045 | 0.29  | 672  | 19       | 1220       | 22 | 1205 | 72       | 672  | 19       | 12 / |
| Zircon_64              | 124       | 5Z       | 0.42 | 0.0752 | 0.0036 | 1.1500    | 0.0570 | 0.1101 | 0.0033 | 0.0319 | 0.0023 | 0.51  | 1124 | 19       | 1150       | 27 | 1009 | 91       | 0/3  | 19       | 13.4 |
| Zircon_65              | 454       | 127      | 0.28 | 0.0814 | 0.0028 | 2.1280    | 0.0630 | 0.1905 | 0.0032 | 0.0564 | 0.0038 | 0.31  | 1124 | 17       | 1158       | 21 | 1227 | 100      | 1124 | 1/       | 2.9  |
| Zircon_66              | 49        | 22       | 0.46 | 0.0830 | 0.0043 | 2.2570    | 0.1100 | 0.1965 | 0.0040 | 0.0595 | 0.0049 | 0.15  | 1150 | 22       | 1195       | 33 | 1207 | 100      | 1150 | 22       | 3.3  |
| Zircon_6/              | 97        | 28       | 0.29 | 0.0882 | 0.0037 | 2.8500    | 0.1100 | 0.2325 | 0.0044 | 0.0735 | 0.0053 | 0.08  | 1348 | 23       | 1370       | 27 | 1375 | 82       | 1348 | 23       | 1.6  |
| Zircon_68              | 53/       | 35       | 0.07 | 0.0751 | 0.0027 | 1.5640    | 0.0540 | 0.1511 | 0.0031 | 0.0724 | 0.0064 | 0.79  | 907  | 1/       | 957        | 20 | 10/0 | /0       | 907  | 1/       | 5.2  |
| ∠ircon_69              | 1/5       | 101      | 0.95 | 0.0546 | 0.0036 | 0.3330    | 0.0190 | 0.0443 | 0.0009 | 0.0146 | 0.0011 | -0.06 | 2/9  | 6        | 293        | 15 | 370  | 140      | 2/9  | 6        | 4./  |
| Zircon_70              | 279       | 121      | 0.43 | 0.0574 | 0.0024 | 0.7380    | 0.0280 | 0.0935 | 0.0020 | 0.02/7 | 0.0020 | 0.28  | 576  | 11       | 560        | 1/ | 490  | 92       | 576  | 11       | -2.9 |

|            |     |     |      |        |        |        | CORRECT |        |        |        |        |       |      |    |      | CORR |      | (14-) |      |    |      |
|------------|-----|-----|------|--------|--------|--------|---------|--------|--------|--------|--------|-------|------|----|------|------|------|-------|------|----|------|
| Zircon_101 | 188 | 108 | 0.57 | 0.0573 | 0.0034 | 0.3340 | 0.0190  | 0.0430 | 0.0010 | 0.0142 | 0.0011 | 0.10  | 271  | 6  | 292  | 15   | 480  | 130   | 271  | 6  | 7.2  |
| Zircon_100 | 325 | 275 | 0.85 | 0.0546 | 0.0032 | 0.3480 | 0.0180  | 0.0465 | 0.0009 | 0.0150 | 0.0010 | -0.05 | 293  | 6  | 303  | 14   | 380  | 130   | 293  | 6  | 3.3  |
| Zircon_99  | 202 | 128 | 0.64 | 0.0519 | 0.0034 | 0.3140 | 0.0180  | 0.0434 | 0.0010 | 0.0141 | 0.0010 | -0.20 | 274  | 6  | 276  | 14   | 260  | 150   | 274  | 6  | 0.9  |
| Zircon_98  | 136 | 72  | 0.53 | 0.0599 | 0.0048 | 0.3460 | 0.0280  | 0.0424 | 0.0010 | 0.0157 | 0.0020 | 0.61  | 268  | 6  | 300  | 21   | 540  | 170   | 268  | 6  | 10.8 |
| Zircon_97  | 240 | 61  | 0.25 | 0.0846 | 0.0031 | 2.8920 | 0.0980  | 0.2472 | 0.0048 | 0.0771 | 0.0052 | 0.55  | 1424 | 25 | 1378 | 26   | 1300 | 72    | 1300 | 72 | -3.3 |
| Zircon_96  | 622 | 183 | 0.29 | 0.0736 | 0.0027 | 1.6450 | 0.0550  | 0.1626 | 0.0028 | 0.0478 | 0.0033 | 0.76  | 971  | 16 | 984  | 19   | 1025 | 72    | 971  | 16 | 1.3  |
| Zircon_95  | 693 | 209 | 0.30 | 0.0728 | 0.0025 | 1.6410 | 0.0480  | 0.1647 | 0.0027 | 0.0486 | 0.0032 | 0.29  | 983  | 15 | 987  | 19   | 1005 | 70    | 983  | 15 | 0.5  |
| Zircon_94  | 321 | 182 | 0.57 | 0.0561 | 0.0030 | 0.3110 | 0.0160  | 0.0398 | 0.0008 | 0.0135 | 0.0009 | 0.33  | 252  | 5  | 276  | 12   | 456  | 120   | 252  | 5  | 8.9  |
| Zircon_93  | 125 | 64  | 0.52 | 0.0542 | 0.0045 | 0.3240 | 0.0260  | 0.0438 | 0.0010 | 0.0144 | 0.0013 | 0.04  | 276  | 6  | 283  | 20   | 330  | 180   | 276  | 6  | 2.4  |
| Zircon_92  | 98  | 58  | 0.59 | 0.0514 | 0.0044 | 0.3210 | 0.0260  | 0.0451 | 0.0011 | 0.0143 | 0.0013 | -0.06 | 284  | 7  | 280  | 20   | 220  | 180   | 284  | 7  | -1.5 |
| Zircon_91  | 290 | 204 | 0.70 | 0.0553 | 0.0031 | 0.3360 | 0.0180  | 0.0448 | 0.0010 | 0.0141 | 0.0010 | -0.02 | 283  | 6  | 295  | 14   | 410  | 130   | 283  | 6  | 4.2  |
| Zircon_90  | 287 | 182 | 0.63 | 0.0553 | 0.0027 | 0.2900 | 0.0140  | 0.0390 | 0.0010 | 0.0124 | 0.0009 | 0.46  | 246  | 6  | 258  | 11   | 401  | 110   | 246  | 6  | 4.6  |
| Zircon_89  | 170 | 101 | 0.59 | 0.0537 | 0.0039 | 0.3130 | 0.0210  | 0.0432 | 0.0009 | 0.0151 | 0.0012 | -0.14 | 272  | 6  | 278  | 16   | 350  | 150   | 272  | 6  | 2.1  |
| Zircon_88  | 155 | 73  | 0.47 | 0.0555 | 0.0042 | 0.3210 | 0.0240  | 0.0419 | 0.0010 | 0.0145 | 0.0013 | 0.12  | 265  | 6  | 281  | 19   | 390  | 170   | 265  | 6  | 5.9  |
| Zircon_87  | 276 | 227 | 0.82 | 0.0527 | 0.0031 | 0.3100 | 0.0180  | 0.0433 | 0.0008 | 0.0133 | 0.0009 | 0.22  | 274  | 5  | 274  | 14   | 330  | 130   | 274  | 5  | 0.2  |
| Zircon_86  | 260 | 44  | 0.17 | 0.0731 | 0.0028 | 1.7280 | 0.0610  | 0.1713 | 0.0028 | 0.0523 | 0.0039 | 0.37  | 1019 | 15 | 1020 | 23   | 1014 | 81    | 1019 | 15 | 0.1  |
| Zircon_85  | 169 | 140 | 0.83 | 0.0514 | 0.0032 | 0.3100 | 0.0170  | 0.0444 | 0.0010 | 0.0139 | 0.0010 | -0.09 | 280  | 6  | 274  | 13   | 220  | 130   | 280  | 6  | -2.2 |
| Zircon_84  | 175 | 137 | 0.79 | 0.0635 | 0.0043 | 0.3900 | 0.0260  | 0.0452 | 0.0010 | 0.0158 | 0.0012 | 0.08  | 285  | 6  | 335  | 20   | 710  | 140   | 285  | 6  | 15.0 |
| Zircon_83  | 113 | 37  | 0.33 | 0.0794 | 0.0035 | 2.3710 | 0.1000  | 0.2183 | 0.0046 | 0.0591 | 0.0046 | 0.34  | 1272 | 24 | 1237 | 30   | 1185 | 85    | 1272 | 24 | -2.8 |
| Zircon_82  | 602 | 143 | 0.24 | 0.0898 | 0.0030 | 2.6270 | 0.0870  | 0.2121 | 0.0043 | 0.0973 | 0.0065 | 0.79  | 1240 | 23 | 1307 | 24   | 1418 | 64    | 1240 | 23 | 5.1  |
| Zircon_81  | 128 | 66  | 0.51 | 0.0576 | 0.0046 | 0.3540 | 0.0280  | 0.0449 | 0.0011 | 0.0157 | 0.0014 | 0.18  | 283  | 7  | 306  | 21   | 440  | 170   | 283  | 7  | 7.5  |
| Zircon_80  | 97  | 46  | 0.47 | 0.0550 | 0.0044 | 0.3380 | 0.0250  | 0.0441 | 0.0011 | 0.0151 | 0.0013 | -0.15 | 278  | 7  | 294  | 19   | 410  | 180   | 278  | 7  | 5.3  |
| Zircon_79  | 58  | 35  | 0.61 | 0.0618 | 0.0063 | 0.3780 | 0.0370  | 0.0438 | 0.0012 | 0.0154 | 0.0015 | 0.07  | 276  | 7  | 321  | 27   | 580  | 210   | 276  | 7  | 13.9 |
| Zircon_78  | 176 | 112 | 0.64 | 0.0524 | 0.0034 | 0.3160 | 0.0200  | 0.0425 | 0.0009 | 0.0133 | 0.0010 | -0.13 | 268  | 6  | 280  | 16   | 330  | 150   | 268  | 6  | 4.2  |
| Zircon_77  | 173 | 75  | 0.43 | 0.0540 | 0.0040 | 0.3190 | 0.0240  | 0.0427 | 0.0009 | 0.0146 | 0.0013 | 0.09  | 270  | 5  | 284  | 19   | 410  | 160   | 270  | 5  | 5.0  |
| Zircon_76  | 213 | 153 | 0.72 | 0.0538 | 0.0036 | 0.3200 | 0.0190  | 0.0438 | 0.0008 | 0.0137 | 0.0010 | 0.01  | 277  | 5  | 281  | 15   | 320  | 140   | 277  | 5  | 1.6  |
| Zircon_75  | 156 | 74  | 0.47 | 0.0828 | 0.0034 | 2.2110 | 0.0980  | 0.1958 | 0.0052 | 0.0588 | 0.0042 | 0.72  | 1152 | 28 | 1189 | 31   | 1263 | 78    | 1152 | 28 | 3.1  |
| Zircon_74  | 124 | 39  | 0.31 | 0.0769 | 0.0035 | 1.8090 | 0.0740  | 0.1717 | 0.0031 | 0.0525 | 0.0040 | 0.10  | 1022 | 17 | 1050 | 26   | 1114 | 88    | 1022 | 17 | 2.7  |
| Zircon_73  | 224 | 117 | 0.52 | 0.0823 | 0.0031 | 2.4190 | 0.0790  | 0.2142 | 0.0037 | 0.0617 | 0.0041 | 0.29  | 1251 | 19 | 1247 | 23   | 1257 | 73    | 1251 | 19 | -0.3 |
| Zircon_71  | 195 | 81  | 0.41 | 0.0847 | 0.0033 | 2.6960 | 0.0930  | 0.2321 | 0.0040 | 0.0709 | 0.0047 | 0.28  | 1345 | 21 | 1328 | 25   | 1313 | 75    | 1345 | 21 | -1.3 |

|            |                         |                          |      |                                      |            |                                     | CORRECT |                                     |         |                                      |         | CORR  | ECTED AGES (                        | Ma) |                                     |     |                                      |     |                     |     |           |
|------------|-------------------------|--------------------------|------|--------------------------------------|------------|-------------------------------------|---------|-------------------------------------|---------|--------------------------------------|---------|-------|-------------------------------------|-----|-------------------------------------|-----|--------------------------------------|-----|---------------------|-----|-----------|
| Sample     | U<br>(ppm) <sup>1</sup> | Th<br>(ppm) <sup>1</sup> | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ<br>abs | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ abs | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ abs | <sup>208</sup> Pb/ <sup>232</sup> Th | ±2σ abs | Rho   | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ | Best<br>age<br>(Ma) | ±2σ | Disc<br>% |
| V-1        |                         |                          |      |                                      |            |                                     |         |                                     |         |                                      |         |       |                                     |     |                                     |     |                                      |     |                     |     |           |
| Zircon_1B  | 168                     | 37                       | 0.22 | 0.0530                               | 0.0036     | 0.2870                              | 0.0170  | 0.0399                              | 0.0011  | 0.0146                               | 0.0012  | 0.14  | 252                                 | 7   | 255                                 | 14  | 280                                  | 150 | 252                 | 7   | 1.1       |
| Zircon_6B  | 94                      | 68                       | 0.73 | 0.0658                               | 0.0045     | 0.3540                              | 0.0200  | 0.0403                              | 0.0010  | 0.0138                               | 0.0009  | -0.06 | 255                                 | 6   | 307                                 | 15  | 730                                  | 150 | 255                 | 6   | 17.1      |
| Zircon_10B | 80                      | 80                       | 0.99 | 0.0623                               | 0.0057     | 0.2970                              | 0.0260  | 0.0336                              | 0.0009  | 0.0115                               | 0.0008  | -0.23 | 213                                 | 6   | 263                                 | 20  | 670                                  | 190 | 213                 | 6   | 19.0      |
| Zircon_11B | 217                     | 80                       | 0.37 | 0.0510                               | 0.0036     | 0.2670                              | 0.0170  | 0.0371                              | 0.0008  | 0.0122                               | 0.0008  | 0.05  | 235                                 | 5   | 239                                 | 13  | 230                                  | 140 | 235                 | 5   | 1.9       |
| Zircon_12B | 215                     | 131                      | 0.61 | 0.0514                               | 0.0031     | 0.2770                              | 0.0140  | 0.0385                              | 0.0007  | 0.0119                               | 0.0005  | 0.26  | 243                                 | 4   | 247                                 | 11  | 280                                  | 120 | 243                 | 4   | 1.5       |
| Zircon_13B | 199                     | 198                      | 1.00 | 0.0543                               | 0.0046     | 0.2710                              | 0.0210  | 0.0363                              | 0.0006  | 0.0115                               | 0.0005  | -0.23 | 231                                 | 4   | 242                                 | 16  | 350                                  | 180 | 231                 | 4   | 4.8       |
| Zircon_14B | 147                     | 119                      | 0.80 | 0.0517                               | 0.0044     | 0.2590                              | 0.0180  | 0.0368                              | 0.0008  | 0.0124                               | 0.0006  | 0.05  | 233                                 | 5   | 233                                 | 15  | 210                                  | 170 | 233                 | 5   | 0.2       |
| Zircon_16B | 150                     | 41                       | 0.27 | 0.0641                               | 0.0039     | 0.3570                              | 0.0210  | 0.0404                              | 0.0008  | 0.0177                               | 0.0016  | 0.21  | 255                                 | 5   | 308                                 | 15  | 730                                  | 120 | 255                 | 5   | 17.1      |
| Zircon_17B | 520                     | 613                      | 1.18 | 0.0524                               | 0.0026     | 0.2830                              | 0.0110  | 0.0387                              | 0.0006  | 0.0122                               | 0.0005  | 0.09  | 245                                 | 4   | 254                                 | 8   | 295                                  | 110 | 245                 | 4   | 3.7       |
| Zircon_18B | 173                     | 187                      | 1.08 | 0.0529                               | 0.0042     | 0.2800                              | 0.0190  | 0.0387                              | 0.0009  | 0.0122                               | 0.0006  | 0.16  | 245                                 | 5   | 249                                 | 15  | 330                                  | 160 | 245                 | 5   | 1.8       |
| Zircon 20B | 366                     | 218                      | 0.60 | 0.0605                               | 0.0028     | 0.3200                              | 0.0130  | 0.0363                              | 0.0008  | 0.0129                               | 0.0006  | 0.13  | 230                                 | 5   | 281                                 | 10  | 690                                  | 94  | 230                 | 5   | 18.3      |

| Zircon_21B | 76   | 26  | 0.34  | 0.0620 | 0.0057 | 0.3560 | 0.0320 | 0.0425 | 0.0011  | 0.0173 | 0.0014 | 0.20  | 268  | 7  | 312  | 23 | 700  | 180 | 268  | 7      | 14.0 |
|------------|------|-----|-------|--------|--------|--------|--------|--------|---------|--------|--------|-------|------|----|------|----|------|-----|------|--------|------|
| Zircon_22B | 439  | 414 | 0.94  | 0.0590 | 0.0026 | 0.3190 | 0.0110 | 0.0388 | 0.0006  | 0.0125 | 0.0005 | 0.17  | 245  | 4  | 281  | 8  | 540  | 96  | 245  | 4      | 12.7 |
| Zircon_23B | 98   | 57  | 0.59  | 0.0535 | 0.0058 | 0.2900 | 0.0320 | 0.0399 | 0.0009  | 0.0119 | 0.0011 | 0.02  | 253  | 5  | 263  | 23 | 350  | 210 | 253  | 5      | 4.0  |
| Zircon 24B | 102  | 20  | 0.19  | 0.0649 | 0.0049 | 0.3620 | 0.0270 | 0.0403 | 0.0010  | 0.0192 | 0.0027 | 0.16  | 255  | 6  | 312  | 20 | 710  | 160 | 255  | 6      | 18.4 |
| Zircon 25B | 104  | 56  | 0.54  | 0.0533 | 0.0043 | 0.2670 | 0.0200 | 0.0365 | 0.0009  | 0.0117 | 0.0008 | 0.01  | 231  | 6  | 239  | 15 | 280  | 160 | 231  | 6      | 3.4  |
| Zircon 26B | 341  | 194 | 0.57  | 0.0580 | 0.0033 | 0.3060 | 0.0160 | 0.0377 | 0.0007  | 0.0142 | 0.0007 | 0.11  | 239  | 4  | 270  | 12 | 500  | 120 | 239  | 4      | 11.7 |
| Zircon 27B | 252  | 262 | 1.04  | 0.0556 | 0.0026 | 0.5350 | 0.0200 | 0.0687 | 0.0012  | 0.0213 | 0.0008 | -0.22 | 428  | 8  | 434  | 13 | 410  | 100 | 428  | 8      | 1.4  |
| Zircon 28B | 138  | 111 | 0.80  | 0.0619 | 0.0044 | 0.3500 | 0.0230 | 0.0409 | 0.0009  | 0.0135 | 0.0009 | 0.19  | 258  | 6  | 310  | 17 | 630  | 140 | 258  | 6      | 16.7 |
| Zircon 29B | 84   | 63  | 0.75  | 0.0564 | 0.0050 | 0.2650 | 0.0210 | 0.0339 | 0.0009  | 0.0105 | 0.0008 | 0.19  | 215  | 6  | 242  | 17 | 410  | 170 | 215  | 6      | 11.3 |
| Zircon 30B | 187  | 186 | 0.99  | 0.0569 | 0.0043 | 0.2880 | 0.0200 | 0.0363 | 0.0007  | 0.0110 | 0.0006 | 0.07  | 230  | 4  | 256  | 16 | 460  | 160 | 230  | 4      | 10.2 |
| Zircon 31B | 72   | 39  | 0.54  | 0.0528 | 0.0064 | 0.2180 | 0.0240 | 0.0294 | 0.0011  | 0.0103 | 0.0009 | 0.07  | 187  | 7  | 197  | 21 | 270  | 230 | 187  | 7      | 5.1  |
| Zircon 32B | 163  | 138 | 0.85  | 0.0525 | 0.0041 | 0.2780 | 0.0190 | 0.0381 | 0.0008  | 0.0120 | 0.0006 | -0.01 | 241  | 5  | 248  | 15 | 280  | 170 | 241  | 5      | 2.7  |
| Zircon 33B | 455  | 121 | 0.26  | 0.0535 | 0.0030 | 0.2940 | 0.0160 | 0.0405 | 0.0007  | 0.0135 | 0.0008 | 0.14  | 256  | 4  | 262  | 12 | 330  | 130 | 256  | 4      | 2.4  |
| Zircon 34B | 366  | 225 | 0.61  | 0.0512 | 0.0027 | 0.2730 | 0.0110 | 0.0385 | 0.0006  | 0.0125 | 0.0006 | -0.11 | 244  | 4  | 245  | 9  | 224  | 110 | 244  | 4      | 0.4  |
| Zircon 35B | 181  | 117 | 0.65  | 0.0505 | 0.0033 | 0 2910 | 0.0170 | 0.0415 | 0.0008  | 0.0139 | 0.0007 | 0.18  | 262  | 5  | 261  | 13 | 210  | 140 | 262  | 5      | -0.5 |
| Zircon 37B | 38   | 16  | 0.03  | 0.0543 | 0.0097 | 0.2350 | 0.0170 | 0.0305 | 0.0000  | 0.0119 | 0.0007 | 0.10  | 194  | 7  | 213  | 33 | 330  | 320 | 194  | 7      | 9.2  |
| Zircon 38B | 313  | 66  | 0.71  | 0.0600 | 0.0029 | 0.2350 | 0.0120 | 0.0417 | 0.0007  | 0.0168 | 0.0011 | 0.33  | 263  | 4  | 303  | 10 | 580  | 110 | 263  | ,<br>4 | 13.1 |
| Zircon_30B | 136  | 77  | 0.57  | 0.0000 | 0.0025 | 0.3450 | 0.0130 | 0.0417 | 0.0007  | 0.0100 | 0.0011 | 0.15  | 203  | 6  | 306  | 15 | 470  | 140 | 203  | 6      | 10.8 |
| Zircon_35B | 604  | 850 | 1 / 1 | 0.0565 | 0.0030 | 0.5450 | 0.0200 | 0.0433 | 0.0010  | 0.0135 | 0.0000 | 0.04  | 453  | 6  | 455  | 10 | 465  | 79  | 453  | 6      | 0.0  |
| Zircon_40D | 31   | 4   | 0.12  | 0.0303 | 0.0020 | 1 7100 | 0.0150 | 0.0720 | 0.0011  | 0.0220 | 0.0000 | -0 11 | 995  | 23 | 1003 | 13 | 990  | 160 | 995  | 23     | 0.4  |
| Zircon_1   | 105  | 206 | 1.06  | 0.0537 | 0.0035 | 0.2640 | 0.1100 | 0.1005 | 0.00041 | 0.0323 | 0.0005 | -0.06 | 222  | 5  | 220  | 12 | 310  | 150 | 222  | 5      | 3 1  |
| Zircon_2   | 604  | 200 | 0.13  | 0.0337 | 0.0035 | 1 8300 | 0.0170 | 0.0300 | 0.0008  | 0.0118 | 0.0005 | -0.00 | 1051 | 16 | 1050 | 20 | 1066 | 70  | 1051 | 16     | 0.7  |
| Zircon_5   | 2004 | 47  | 0.13  | 0.0747 | 0.0020 | 1.0350 | 0.0500 | 0.1771 | 0.0025  | 0.0503 | 0.0050 | 0.50  | 1051 | 10 | 1035 | 20 | 051  | 00  | 1051 | 10     | 2 5  |
| Zircon_6   | 210  | 47  | 0.12  | 0.0711 | 0.0030 | 0.2220 | 0.0840 | 0.1781 | 0.0073  | 0.0344 | 0.0000 | 0.31  | 271  | 41 | 2020 | 14 | 420  | 120 | 271  | 41     | -3.5 |
| Zircon_0   | 150  | 107 | 0.31  | 0.0504 | 0.0033 | 0.3320 | 0.0180 | 0.0429 | 0.0009  | 0.0130 | 0.0010 | -0.04 | 2/1  | 5  | 255  | 14 | 220  | 120 | 2/1  | 5      | 1.0  |
| Zircon_0   | 100  | 104 | 0.70  | 0.0520 | 0.0054 | 0.2000 | 0.0100 | 0.0400 | 0.0009  | 0.0120 | 0.0010 | -0.05 | 200  | 5  | 200  | 14 | 200  | 150 | 235  | 5      | 1.5  |
| Zircon_9   | 105  | 129 | 0.60  | 0.0508 | 0.0056 | 0.2750 | 0.0190 | 0.0391 | 0.0009  | 0.0126 | 0.0009 | -0.09 | 247  | 20 | 244  | 15 | 200  | 100 | 247  | 20     | -1.2 |
| Zircon_10  | 107  | 43  | 0.40  | 0.0761 | 0.0034 | 2.0320 | 0.0860 | 0.1929 | 0.0037  | 0.0616 | 0.0047 | 0.18  | 1137 | 20 | 1123 | 29 | 1110 | 93  | 1137 | 20     | -1.2 |
| Zircon_11  | 218  | 213 | 0.98  | 0.0733 | 0.0029 | 1.5500 | 0.0530 | 0.1543 | 0.0026  | 0.0401 | 0.0030 | 0.27  | 925  | 15 | 950  | 21 | 1013 | 78  | 925  | 15     | 2.0  |
| Zircon_12  | 55   | 30  | 0.55  | 0.0729 | 0.0037 | 1.7360 | 0.0760 | 0.1720 | 0.0036  | 0.0538 | 0.0041 | 0.10  | 1023 | 20 | 1023 | 30 | 1012 | 110 | 1023 | 20     | 0.0  |
| Zircon_13  | 61   | 32  | 0.52  | 0.0713 | 0.0038 | 1.6280 | 0.0800 | 0.1646 | 0.0033  | 0.0514 | 0.0038 | 0.08  | 982  | 19 | 977  | 31 | 949  | 110 | 982  | 19     | -0.5 |
| Zircon_14  | 11/3 | 152 | 0.13  | 0.0688 | 0.0025 | 0.7750 | 0.0380 | 0.0815 | 0.0024  | 0.0341 | 0.0033 | 0.94  | 505  | 14 | 581  | 21 | 899  | /5  | 505  | 14     | 13.1 |
| Zircon_15  | 247  | 51  | 0.21  | 0.0585 | 0.0031 | 0.5950 | 0.0350 | 0.0729 | 0.0025  | 0.0176 | 0.0016 | 0.70  | 453  | 15 | 472  | 22 | 539  | 110 | 453  | 15     | 4.0  |
| Zircon_16  | 126  | 58  | 0.46  | 0.0736 | 0.0034 | 1.8940 | 0.0780 | 0.1863 | 0.0038  | 0.0577 | 0.0041 | 0.22  | 1101 | 21 | 1076 | 28 | 1014 | 92  | 1101 | 21     | -2.3 |
| Zircon_19  | 249  | 132 | 0.53  | 0.0768 | 0.0029 | 1.6980 | 0.0700 | 0.1611 | 0.0041  | 0.0430 | 0.0033 | 0.79  | 965  | 22 | 1005 | 27 | 1109 | /5  | 965  | 22     | 4.0  |
| Zircon_20  | 195  | 1/6 | 0.90  | 0.0504 | 0.0036 | 0.2820 | 0.0210 | 0.0406 | 0.0009  | 0.0146 | 0.0011 | 0.20  | 257  | 6  | 250  | 1/ | 1/0  | 160 | 257  | 6      | -2.6 |
| Zircon_21  | 126  | 81  | 0.64  | 0.0590 | 0.0044 | 0.3220 | 0.0240 | 0.0386 | 0.0009  | 0.0141 | 0.0012 | -0.07 | 244  | 6  | 281  | 18 | 530  | 1/0 | 244  | 6      | 13.2 |
| Zircon_23  | 337  | 250 | 0.74  | 0.0525 | 0.0028 | 0.2840 | 0.0140 | 0.0401 | 0.0008  | 0.0127 | 0.0009 | 0.09  | 253  | 5  | 255  | 11 | 285  | 120 | 253  | 5      | 0.8  |
| Zircon_24  | 175  | 84  | 0.48  | 0.0961 | 0.0036 | 3.5900 | 0.1200 | 0.2717 | 0.0046  | 0.0814 | 0.0054 | 0.41  | 1549 | 23 | 1546 | 27 | 1544 | 71  | 1544 | 71     | -0.2 |
| Zircon_25  | 279  | 102 | 0.36  | 0.0550 | 0.0034 | 0.3160 | 0.0180 | 0.0419 | 0.0009  | 0.0129 | 0.0010 | 0.25  | 265  | 6  | 278  | 14 | 400  | 130 | 265  | 6      | 4.9  |
| Zircon_26  | 341  | 138 | 0.40  | 0.0587 | 0.0028 | 0.5460 | 0.0240 | 0.0671 | 0.0012  | 0.0225 | 0.0016 | 0.00  | 419  | 7  | 442  | 16 | 567  | 110 | 419  | 7      | 5.3  |
| Zircon_27  | 211  | 97  | 0.46  | 0.0732 | 0.0029 | 1.6300 | 0.0600 | 0.1614 | 0.0030  | 0.0493 | 0.0033 | 0.26  | 965  | 17 | 980  | 23 | 1017 | 84  | 965  | 17     | 1.5  |
| Zircon_28  | 133  | 37  | 0.28  | 0.0714 | 0.0029 | 1.4730 | 0.0550 | 0.1495 | 0.0033  | 0.0469 | 0.0036 | 0.45  | 898  | 19 | 918  | 23 | 957  | 85  | 898  | 19     | 2.2  |
| Zircon_29  | 82   | 59  | 0.71  | 0.0553 | 0.0053 | 0.3170 | 0.0270 | 0.0413 | 0.0012  | 0.0139 | 0.0013 | -0.08 | 262  | 8  | 277  | 21 | 350  | 200 | 262  | 8      | 5.5  |
| Zircon_30  | 135  | 55  | 0.41  | 0.0617 | 0.0037 | 0.6970 | 0.0420 | 0.0820 | 0.0016  | 0.0228 | 0.0018 | 0.35  | 508  | 10 | 534  | 25 | 640  | 130 | 508  | 10     | 4.9  |
| Zircon_31  | 234  | 69  | 0.30  | 0.0745 | 0.0029 | 1.8160 | 0.0660 | 0.1768 | 0.0041  | 0.0534 | 0.0037 | 0.54  | 1049 | 22 | 1050 | 24 | 1048 | 77  | 1049 | 22     | 0.1  |
| Zircon_32  | 38   | 45  | 1.16  | 0.0621 | 0.0077 | 0.3730 | 0.0400 | 0.0416 | 0.0014  | 0.0145 | 0.0014 | -0.28 | 263  | 9  | 317  | 31 | 560  | 260 | 263  | 9      | 17.2 |
| Zircon_33  | 162  | 26  | 0.16  | 0.0514 | 0.0032 | 0.3010 | 0.0190 | 0.0422 | 0.0010  | 0.0155 | 0.0017 | 0.16  | 266  | 6  | 266  | 15 | 250  | 140 | 266  | 6      | -0.1 |
| Zircon_34  | 141  | 18  | 0.12  | 0.0507 | 0.0050 | 0.2950 | 0.0320 | 0.0417 | 0.0010  | 0.0171 | 0.0029 | 0.71  | 263  | 6  | 260  | 24 | 160  | 190 | 263  | 6      | -1.3 |
|            |      |     |       |        |        |        |        |        |         |        |        |       |      |    |      |    |      |     |      |        |      |

| Zircon_35     | 279 | 229 | 0.82 | 0.0549 | 0.0036 | 0.2870 | 0.0190 | 0.0381 | 0.0008 | 0.0119 | 0.0009 | 0.02  | 241  | 5  | 256  | 15 | 370  | 150 | 241  | 5  | 5.9  |
|---------------|-----|-----|------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|----|------|----|------|-----|------|----|------|
| Zircon_36     | 123 | 75  | 0.61 | 0.0584 | 0.0037 | 0.3470 | 0.0220 | 0.0435 | 0.0010 | 0.0155 | 0.0013 | -0.11 | 275  | 6  | 308  | 17 | 500  | 140 | 275  | 6  | 10.9 |
| Zircon 37     | 498 | 51  | 0.10 | 0.0588 | 0.0024 | 0.7700 | 0.0290 | 0.0949 | 0.0018 | 0.0316 | 0.0022 | 0.16  | 584  | 11 | 579  | 16 | 572  | 88  | 584  | 11 | -0.9 |
| Zircon 38     | 193 | 144 | 0.75 | 0.0602 | 0.0031 | 0.7550 | 0.0360 | 0.0904 | 0.0017 | 0.0279 | 0.0019 | 0.12  | 558  | 10 | 569  | 21 | 582  | 110 | 558  | 10 | 2.0  |
| Zircon 39     | 203 | 52  | 0.26 | 0.0808 | 0.0031 | 2.0490 | 0.0730 | 0.1851 | 0.0039 | 0.0572 | 0.0040 | 0.42  | 1094 | 21 | 1138 | 24 | 1209 | 77  | 1094 | 21 | 3.9  |
| Zircon 40     | 288 | 11  | 0.04 | 0.0728 | 0.0028 | 1.5780 | 0.0550 | 0.1572 | 0.0030 | 0.0552 | 0.0049 | 0.51  | 941  | 17 | 963  | 21 | 999  | 79  | 941  | 17 | 2.3  |
| Zircon_41     | 67  | 14  | 0.22 | 0.0731 | 0.0049 | 0.7950 | 0.0630 | 0.0818 | 0.0037 | 0.0278 | 0.0031 | 0.41  | 506  | 22 | 596  | 34 | 950  | 140 | 506  | 22 | 15.1 |
| Zircon 42     | 169 | 87  | 0.51 | 0.0967 | 0.0036 | 3.6600 | 0.1600 | 0.2750 | 0.0071 | 0.0825 | 0.0055 | 0.86  | 1565 | 36 | 1562 | 35 | 1556 | 70  | 1556 | 70 | -0.2 |
| Zircon 43     | 509 | 167 | 0.33 | 0.0708 | 0.0026 | 1.5560 | 0.0480 | 0.1608 | 0.0027 | 0.0481 | 0.0032 | 0.21  | 961  | 15 | 952  | 19 | 947  | 74  | 961  | 15 | -0.9 |
| Zircon 44     | 106 | 37  | 0.35 | 0.0566 | 0.0051 | 0.3110 | 0.0290 | 0.0395 | 0.0010 | 0.0146 | 0.0014 | 0.32  | 250  | 6  | 275  | 21 | 420  | 180 | 250  | 6  | 9.2  |
| Zircon_45     | 78  | 33  | 0.42 | 0.0563 | 0.0045 | 0.3180 | 0.0250 | 0.0410 | 0.0010 | 0.0153 | 0.0013 | 0.13  | 259  | 6  | 279  | 19 | 390  | 170 | 259  | 6  | 7.2  |
| Zircon 47     | 701 | 172 | 0.25 | 0.0712 | 0.0028 | 1.5910 | 0.0690 | 0.1600 | 0.0045 | 0.0495 | 0.0049 | 0.37  | 957  | 25 | 966  | 26 | 960  | 76  | 957  | 25 | 1.0  |
| Zircon 48     | 144 | 138 | 0.95 | 0.0631 | 0.0032 | 0.7900 | 0.0380 | 0.0916 | 0.0019 | 0.0285 | 0.0020 | 0.28  | 565  | 11 | 592  | 22 | 693  | 110 | 565  | 11 | 4.6  |
| Zircon 49     | 29  | 20  | 0.69 | 0.0837 | 0.0055 | 1.9100 | 0.1300 | 0.1726 | 0.0045 | 0.0618 | 0.0050 | 0.52  | 1026 | 25 | 1085 | 40 | 1250 | 130 | 1026 | 25 | 5.4  |
| Zircon 50     | 124 | 76  | 0.62 | 0.0579 | 0.0043 | 0.3030 | 0.0220 | 0.0373 | 0.0010 | 0.0128 | 0.0011 | 0.07  | 236  | 6  | 272  | 17 | 560  | 150 | 236  | 6  | 13.2 |
| Zircon 51     | 180 | 42  | 0.24 | 0.0752 | 0.0030 | 1.8540 | 0.0660 | 0.1776 | 0.0030 | 0.0593 | 0.0043 | 0.39  | 1054 | 17 | 1063 | 23 | 1080 | 75  | 1054 | 17 | 0.9  |
| Zircon 52     | 187 | 42  | 0.22 | 0.0729 | 0.0028 | 1.6630 | 0.0560 | 0.1676 | 0.0029 | 0.0507 | 0.0037 | 0.31  | 999  | 16 | 996  | 22 | 1003 | 78  | 999  | 16 | -0.3 |
| Zircon 53     | 503 | 91  | 0.18 | 0.0599 | 0.0023 | 0.7970 | 0.0260 | 0.0961 | 0.0015 | 0.0262 | 0.0019 | -0.03 | 591  | 9  | 595  | 14 | 609  | 86  | 591  | 9  | 0.6  |
| Zircon 54     | 171 | 207 | 1.21 | 0.0553 | 0.0036 | 0.3040 | 0.0200 | 0.0393 | 0.0008 | 0.0126 | 0.0009 | 0.11  | 248  | 5  | 273  | 15 | 440  | 130 | 248  | 5  | 9.0  |
| <br>Zircon_55 | 99  | 61  | 0.61 | 0.0558 | 0.0041 | 0.3110 | 0.0230 | 0.0396 | 0.0011 | 0.0139 | 0.0012 | 0.14  | 251  | 7  | 273  | 18 | 410  | 150 | 251  | 7  | 8.2  |
| Zircon_56     | 114 | 97  | 0.85 | 0.0514 | 0.0046 | 0.2710 | 0.0230 | 0.0378 | 0.0009 | 0.0123 | 0.0010 | -0.20 | 239  | 6  | 244  | 19 | 250  | 180 | 239  | 6  | 2.0  |
| Zircon_57     | 98  | 38  | 0.39 | 0.0976 | 0.0041 | 3.7400 | 0.1700 | 0.2759 | 0.0083 | 0.0812 | 0.0055 | 0.60  | 1571 | 43 | 1575 | 40 | 1582 | 80  | 1582 | 80 | 0.3  |
| Zircon_58     | 79  | 36  | 0.45 | 0.0733 | 0.0039 | 1.3670 | 0.0760 | 0.1349 | 0.0041 | 0.0342 | 0.0034 | 0.49  | 815  | 23 | 879  | 34 | 1023 | 100 | 815  | 23 | 7.3  |
| Zircon_59     | 164 | 175 | 1.07 | 0.0544 | 0.0037 | 0.2630 | 0.0190 | 0.0352 | 0.0010 | 0.0114 | 0.0009 | -0.09 | 223  | 6  | 236  | 15 | 370  | 140 | 223  | 6  | 5.6  |
| Zircon_60     | 416 | 243 | 0.58 | 0.0527 | 0.0030 | 0.2910 | 0.0160 | 0.0404 | 0.0008 | 0.0127 | 0.0009 | 0.05  | 255  | 5  | 261  | 12 | 320  | 130 | 255  | 5  | 2.3  |
| Zircon_61     | 412 | 238 | 0.58 | 0.0541 | 0.0029 | 0.3040 | 0.0160 | 0.0409 | 0.0008 | 0.0131 | 0.0009 | 0.36  | 259  | 5  | 271  | 12 | 361  | 110 | 259  | 5  | 4.6  |
| Zircon_62     | 97  | 35  | 0.36 | 0.0636 | 0.0037 | 0.7800 | 0.0410 | 0.0899 | 0.0023 | 0.0272 | 0.0025 | 0.24  | 555  | 13 | 583  | 23 | 733  | 120 | 555  | 13 | 4.8  |
| Zircon_63     | 550 | 181 | 0.33 | 0.0779 | 0.0029 | 2.0510 | 0.0640 | 0.1904 | 0.0030 | 0.0576 | 0.0038 | 0.12  | 1123 | 16 | 1134 | 21 | 1149 | 70  | 1123 | 16 | 1.0  |
| Zircon_64     | 146 | 62  | 0.42 | 0.0716 | 0.0031 | 1.7270 | 0.0670 | 0.1766 | 0.0035 | 0.0543 | 0.0036 | 0.19  | 1048 | 19 | 1020 | 26 | 959  | 90  | 1048 | 19 | -2.7 |
| Zircon_65     | 279 | 139 | 0.50 | 0.0727 | 0.0031 | 1.6720 | 0.0720 | 0.1656 | 0.0034 | 0.0507 | 0.0037 | 0.18  | 988  | 18 | 997  | 26 | 1001 | 81  | 988  | 18 | 0.9  |
| Zircon_66     | 91  | 41  | 0.45 | 0.0739 | 0.0036 | 1.6590 | 0.0800 | 0.1620 | 0.0031 | 0.0500 | 0.0035 | 0.06  | 968  | 17 | 993  | 29 | 1042 | 91  | 968  | 17 | 2.5  |
| Zircon_67     | 247 | 75  | 0.30 | 0.0792 | 0.0030 | 2.2810 | 0.0780 | 0.2099 | 0.0038 | 0.0600 | 0.0041 | 0.39  | 1228 | 20 | 1205 | 24 | 1177 | 72  | 1228 | 20 | -1.9 |
| Zircon_68     | 225 | 75  | 0.33 | 0.0773 | 0.0029 | 2.1550 | 0.0700 | 0.2011 | 0.0032 | 0.0604 | 0.0040 | 0.33  | 1181 | 17 | 1166 | 23 | 1133 | 70  | 1181 | 17 | -1.3 |
| Zircon_69     | 292 | 108 | 0.37 | 0.0681 | 0.0029 | 1.1110 | 0.0420 | 0.1202 | 0.0024 | 0.0432 | 0.0031 | 0.16  | 732  | 14 | 760  | 19 | 858  | 90  | 732  | 14 | 3.7  |
| Zircon_70     | 274 | 62  | 0.23 | 0.0716 | 0.0028 | 1.6990 | 0.0570 | 0.1724 | 0.0028 | 0.0541 | 0.0039 | 0.13  | 1027 | 16 | 1007 | 22 | 972  | 80  | 1027 | 16 | -1.9 |
| Zircon_71     | 144 | 39  | 0.27 | 0.0727 | 0.0034 | 1.6340 | 0.0630 | 0.1627 | 0.0030 | 0.0497 | 0.0037 | -0.13 | 972  | 16 | 982  | 25 | 996  | 95  | 972  | 16 | 1.0  |
| Zircon_72     | 153 | 44  | 0.29 | 0.0745 | 0.0031 | 1.6800 | 0.0630 | 0.1639 | 0.0031 | 0.0475 | 0.0035 | 0.33  | 979  | 17 | 1002 | 23 | 1051 | 82  | 979  | 17 | 2.3  |
| Zircon_73     | 134 | 87  | 0.65 | 0.0774 | 0.0033 | 2.0670 | 0.0750 | 0.1924 | 0.0034 | 0.0577 | 0.0039 | -0.01 | 1134 | 19 | 1136 | 25 | 1145 | 87  | 1134 | 19 | 0.2  |
| Zircon_74     | 38  | 10  | 0.27 | 0.0799 | 0.0050 | 2.1700 | 0.1400 | 0.1960 | 0.0077 | 0.0727 | 0.0077 | 0.52  | 1153 | 41 | 1162 | 44 | 1180 | 120 | 1153 | 41 | 0.8  |
| Zircon_75     | 140 | 37  | 0.27 | 0.0732 | 0.0030 | 1.6800 | 0.0620 | 0.1672 | 0.0030 | 0.0506 | 0.0038 | -0.10 | 997  | 16 | 1002 | 22 | 1010 | 83  | 997  | 16 | 0.5  |
| Zircon_76     | 271 | 59  | 0.22 | 0.0740 | 0.0027 | 1.6290 | 0.0500 | 0.1602 | 0.0027 | 0.0499 | 0.0034 | -0.13 | 958  | 15 | 981  | 19 | 1042 | 77  | 958  | 15 | 2.4  |
| Zircon_77     | 77  | 19  | 0.24 | 0.0699 | 0.0036 | 1.5560 | 0.0710 | 0.1622 | 0.0032 | 0.0536 | 0.0045 | 0.03  | 969  | 18 | 954  | 29 | 898  | 100 | 969  | 18 | -1.6 |
| Zircon_78     | 179 | 130 | 0.73 | 0.0536 | 0.0042 | 0.2910 | 0.0220 | 0.0401 | 0.0009 | 0.0133 | 0.0011 | 0.06  | 254  | 6  | 262  | 17 | 320  | 160 | 254  | 6  | 3.2  |
| Zircon_79     | 134 | 51  | 0.38 | 0.0740 | 0.0030 | 1.7450 | 0.0620 | 0.1702 | 0.0032 | 0.0507 | 0.0037 | 0.34  | 1013 | 18 | 1024 | 23 | 1039 | 79  | 1013 | 18 | 1.1  |
| Zircon_80     | 315 | 142 | 0.45 | 0.0732 | 0.0029 | 1.7640 | 0.0640 | 0.1750 | 0.0030 | 0.0539 | 0.0036 | 0.30  | 1039 | 17 | 1033 | 24 | 1016 | 84  | 1039 | 17 | -0.6 |
| Zircon_81     | 30  | 34  | 1.14 | 0.0733 | 0.0050 | 1.6900 | 0.1100 | 0.1701 | 0.0038 | 0.0547 | 0.0039 | 0.03  | 1012 | 21 | 1002 | 44 | 960  | 150 | 1012 | 21 | -1.0 |
| Zircon_82     | 161 | 57  | 0.35 | 0.0741 | 0.0030 | 1.6550 | 0.0580 | 0.1608 | 0.0028 | 0.0486 | 0.0034 | 0.12  | 961  | 15 | 990  | 22 | 1033 | 84  | 961  | 15 | 2.9  |
|               |     |     |      |        |        |        |        |        |        |        |        |       |      |    |      |    |      |     |      |    |      |

| Zircon_84  | 140 | 48  | 0.35 | 0.0803 | 0.0035 | 2.1790 | 0.0950 | 0.1941 | 0.0042 | 0.0592 | 0.0044 | 0.52  | 1143 | 23 | 1175 | 29 | 1222 | 82  | 1143 | 23 | 2.7  |
|------------|-----|-----|------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|----|------|----|------|-----|------|----|------|
| Zircon_85  | 43  | 27  | 0.63 | 0.0783 | 0.0036 | 2.1310 | 0.0860 | 0.1957 | 0.0042 | 0.0609 | 0.0046 | -0.03 | 1152 | 23 | 1156 | 28 | 1136 | 94  | 1152 | 23 | 0.3  |
| Zircon_86  | 150 | 69  | 0.46 | 0.0749 | 0.0034 | 1.6980 | 0.0690 | 0.1655 | 0.0029 | 0.0503 | 0.0036 | 0.24  | 987  | 16 | 1009 | 27 | 1048 | 91  | 987  | 16 | 2.2  |
| Zircon_87  | 225 | 93  | 0.41 | 0.0724 | 0.0028 | 1.7090 | 0.0600 | 0.1719 | 0.0029 | 0.0522 | 0.0035 | 0.29  | 1022 | 16 | 1015 | 23 | 989  | 79  | 1022 | 16 | -0.7 |
| Zircon_88  | 91  | 28  | 0.31 | 0.0737 | 0.0032 | 1.7570 | 0.0750 | 0.1727 | 0.0035 | 0.0556 | 0.0044 | 0.54  | 1027 | 19 | 1027 | 28 | 1039 | 84  | 1027 | 19 | 0.0  |
| Zircon_89  | 192 | 67  | 0.35 | 0.0739 | 0.0030 | 1.6800 | 0.0610 | 0.1651 | 0.0028 | 0.0505 | 0.0035 | 0.05  | 985  | 15 | 999  | 23 | 1028 | 83  | 985  | 15 | 1.4  |
| Zircon_90  | 138 | 41  | 0.30 | 0.0691 | 0.0029 | 1.5370 | 0.0560 | 0.1617 | 0.0029 | 0.0495 | 0.0037 | 0.03  | 967  | 17 | 944  | 22 | 890  | 86  | 967  | 17 | -2.5 |
| Zircon_91  | 23  | 66  | 2.87 | 0.0814 | 0.0063 | 1.9700 | 0.1500 | 0.1756 | 0.0048 | 0.0530 | 0.0037 | 0.13  | 1042 | 26 | 1115 | 51 | 1280 | 140 | 1042 | 26 | 6.5  |
| Zircon_92  | 114 | 126 | 1.11 | 0.0718 | 0.0032 | 1.6230 | 0.0660 | 0.1642 | 0.0031 | 0.0507 | 0.0034 | 0.29  | 980  | 17 | 980  | 27 | 992  | 90  | 980  | 17 | 0.0  |
| Zircon_93  | 383 | 81  | 0.21 | 0.0509 | 0.0027 | 0.2950 | 0.0130 | 0.0411 | 0.0008 | 0.0135 | 0.0011 | -0.15 | 260  | 5  | 262  | 10 | 232  | 120 | 260  | 5  | 0.8  |
| Zircon_94  | 227 | 78  | 0.34 | 0.0532 | 0.0035 | 0.2760 | 0.0180 | 0.0375 | 0.0008 | 0.0121 | 0.0010 | 0.20  | 238  | 5  | 249  | 15 | 330  | 140 | 238  | 5  | 4.5  |
| Zircon_95  | 341 | 34  | 0.10 | 0.0748 | 0.0030 | 1.7500 | 0.1000 | 0.1719 | 0.0080 | 0.0571 | 0.0042 | 0.65  | 1022 | 43 | 1026 | 35 | 1057 | 77  | 1022 | 43 | 0.4  |
| Zircon_96  | 318 | 52  | 0.16 | 0.0770 | 0.0028 | 1.8510 | 0.0600 | 0.1742 | 0.0030 | 0.0520 | 0.0039 | 0.36  | 1035 | 16 | 1063 | 21 | 1127 | 70  | 1035 | 16 | 2.6  |
| Zircon_97  | 535 | 378 | 0.71 | 0.0978 | 0.0034 | 3.4660 | 0.1200 | 0.2598 | 0.0057 | 0.0736 | 0.0048 | 0.36  | 1489 | 30 | 1519 | 29 | 1587 | 65  | 1587 | 65 | 2.0  |
| Zircon_98  | 91  | 22  | 0.24 | 0.0581 | 0.0040 | 0.3430 | 0.0240 | 0.0427 | 0.0012 | 0.0172 | 0.0018 | 0.29  | 269  | 7  | 298  | 18 | 480  | 150 | 269  | 7  | 9.7  |
| Zircon_99  | 26  | 14  | 0.53 | 0.0759 | 0.0050 | 1.8400 | 0.1100 | 0.1765 | 0.0050 | 0.0527 | 0.0040 | 0.31  | 1047 | 28 | 1060 | 41 | 1060 | 130 | 1047 | 28 | 1.2  |
| Zircon_101 | 36  | 21  | 0.59 | 0.0600 | 0.0085 | 0.3040 | 0.0450 | 0.0378 | 0.0013 | 0.0125 | 0.0017 | 0.38  | 239  | 8  | 261  | 35 | 420  | 300 | 239  | 8  | 8.5  |
|            |     |     |      |        |        |        |        |        |        |        |        |       |      |    |      |    |      |     |      |    |      |

|           |                         |                          |      |                                      |            |                                     | CORRECTI          | ED RATIOS <sup>2</sup>              |         |                                      |         |       |                                     |     |                                     | CORR | ECTED AGES (                         | Ma) |                     |     |           |
|-----------|-------------------------|--------------------------|------|--------------------------------------|------------|-------------------------------------|-------------------|-------------------------------------|---------|--------------------------------------|---------|-------|-------------------------------------|-----|-------------------------------------|------|--------------------------------------|-----|---------------------|-----|-----------|
| Sample    | U<br>(ppm) <sup>1</sup> | Th<br>(ppm) <sup>1</sup> | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ<br>abs | <sup>207</sup> Pb/ <sup>235</sup> U | $\pm 2\sigma$ abs | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ abs | <sup>208</sup> Pb/ <sup>232</sup> Th | ±2σ abs | Rho   | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ  | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ | Best<br>age<br>(Ma) | ±2σ | Disc<br>% |
| RN-4      |                         |                          |      |                                      |            |                                     |                   |                                     |         |                                      |         |       |                                     |     |                                     |      |                                      |     |                     |     |           |
| Zircon 1  | 108                     | 57                       | 0.53 | 0.0639                               | 0.0057     | 0.3890                              | 0.0350            | 0.0447                              | 0.0013  | 0.0174                               | 0.0013  | 0.07  | 282                                 | 8   | 332                                 | 25   | 690                                  | 200 | 282                 | 8   | 15.1      |
| zircon 2  | 209                     | 108                      | 0.52 | 0.1267                               | 0.0063     | 3.7500                              | 0.1900            | 0.2127                              | 0.0062  | 0.0485                               | 0.0027  | 0.33  | 1243                                | 33  | 1581                                | 46   | 2078                                 | 86  | 1243                | 33  | 21.4      |
| Zircon 4  | 387                     | 258                      | 0.67 | 0.0633                               | 0.0044     | 0.3650                              | 0.0250            | 0.0418                              | 0.0011  | 0.0138                               | 0.0011  | -0.10 | 264                                 | 7   | 315                                 | 19   | 680                                  | 160 | 264                 | 7   | 16.3      |
| Zircon 5  | 258                     | 172                      | 0.67 | 0.0546                               | 0.0037     | 0.3270                              | 0.0220            | 0.0441                              | 0.0011  | 0.0144                               | 0.0008  | 0.15  | 278                                 | 7   | 289                                 | 17   | 370                                  | 150 | 278                 | 7   | 3.8       |
| Zircon 6  | 231                     | 270                      | 1.17 | 0.0600                               | 0.0041     | 0.3690                              | 0.0250            | 0.0448                              | 0.0012  | 0.0142                               | 0.0008  | 0.10  | 282                                 | 8   | 318                                 | 19   | 580                                  | 140 | 282                 | 8   | 11.2      |
| Zircon 7  | 529                     | 398                      | 0.75 | 0.0562                               | 0.0033     | 0.3440                              | 0.0190            | 0.0447                              | 0.0010  | 0.0139                               | 0.0007  | -0.14 | 282                                 | 7   | 300                                 | 14   | 470                                  | 130 | 282                 | 7   | 6.0       |
| Zircon 8  | 269                     | 159                      | 0.59 | 0.0595                               | 0.0035     | 0.6580                              | 0.0390            | 0.0816                              | 0.0020  | 0.0261                               | 0.0013  | 0.27  | 505                                 | 12  | 513                                 | 24   | 570                                  | 120 | 505                 | 12  | 1.5       |
| Zircon 9  | 264                     | 216                      | 0.82 | 0.0642                               | 0.0042     | 0.3920                              | 0.0240            | 0.0448                              | 0.0011  | 0.0158                               | 0.0009  | 0.18  | 283                                 | 7   | 336                                 | 18   | 750                                  | 150 | 283                 | 7   | 15.9      |
| Zircon 10 | 577                     | 142                      | 0.25 | 0.0730                               | 0.0040     | 0.9310                              | 0.0470            | 0.0918                              | 0.0026  | 0.0235                               | 0.0021  | 0.57  | 566                                 | 16  | 667                                 | 26   | 1006                                 | 100 | 566                 | 16  | 15.1      |
| Zircon 11 | 444                     | 286                      | 0.64 | 0.0592                               | 0.0042     | 0.3830                              | 0.0230            | 0.0464                              | 0.0011  | 0.0160                               | 0.0008  | -0.20 | 292                                 | 7   | 328                                 | 17   | 540                                  | 130 | 292                 | 7   | 10.9      |
| Zircon 12 | 198                     | 202                      | 1.02 | 0.0639                               | 0.0042     | 0.3880                              | 0.0260            | 0.0442                              | 0.0013  | 0.0143                               | 0.0008  | 0.33  | 279                                 | 8   | 332                                 | 19   | 740                                  | 140 | 279                 | 8   | 16.1      |
| Zircon 13 | 328                     | 176                      | 0.54 | 0.0636                               | 0.0043     | 0.3940                              | 0.0270            | 0.0461                              | 0.0013  | 0.0173                               | 0.0010  | 0.00  | 291                                 | 8   | 341                                 | 20   | 690                                  | 140 | 291                 | 8   | 14.8      |
| Zircon 14 | 185                     | 95                       | 0.51 | 0.0607                               | 0.0040     | 0.4000                              | 0.0240            | 0.0471                              | 0.0013  | 0.0161                               | 0.0009  | -0.03 | 297                                 | 8   | 341                                 | 17   | 640                                  | 140 | 297                 | 8   | 12.9      |
| Zircon 15 | 234                     | 171                      | 0.73 | 0.0543                               | 0.0039     | 0.3170                              | 0.0230            | 0.0427                              | 0.0011  | 0.0141                               | 0.0009  | 0.06  | 270                                 | 7   | 279                                 | 17   | 350                                  | 150 | 270                 | 7   | 3.3       |
| Zircon 16 | 506                     | 477                      | 0.94 | 0.0604                               | 0.0048     | 0.3570                              | 0.0260            | 0.0425                              | 0.0011  | 0.0141                               | 0.0008  | 0.41  | 268                                 | 7   | 313                                 | 20   | 680                                  | 160 | 268                 | 7   | 14.3      |
| Zircon 17 | 227                     | 146                      | 0.64 | 0.0514                               | 0.0036     | 0.3190                              | 0.0230            | 0.0451                              | 0.0012  | 0.0174                               | 0.0010  | 0.63  | 284                                 | 7   | 280                                 | 17   | 240                                  | 130 | 284                 | 7   | -1.5      |
| Zircon 18 | 165                     | 115                      | 0.69 | 0.0619                               | 0.0045     | 0.4150                              | 0.0290            | 0.0489                              | 0.0014  | 0.0186                               | 0.0011  | -0.02 | 308                                 | 8   | 357                                 | 21   | 680                                  | 160 | 308                 | 8   | 13.8      |
| Zircon 19 | 97                      | 69                       | 0.71 | 0.0650                               | 0.0068     | 0.3980                              | 0.0420            | 0.0454                              | 0.0013  | 0.0155                               | 0.0010  | 0.32  | 286                                 | 8   | 350                                 | 29   | 740                                  | 210 | 286                 | 8   | 18.2      |
| Zircon 20 | 163                     | 103                      | 0.63 | 0.0682                               | 0.0050     | 0.4180                              | 0.0320            | 0.0438                              | 0.0012  | 0.0167                               | 0.0010  | 0.43  | 276                                 | 7   | 353                                 | 23   | 860                                  | 160 | 276                 | 7   | 21.8      |
| Zircon 21 | 214                     | 185                      | 0.87 | 0.0630                               | 0.0047     | 0.3740                              | 0.0280            | 0.0428                              | 0.0011  | 0.0151                               | 0.0009  | 0.21  | 270                                 | 7   | 321                                 | 20   | 660                                  | 160 | 270                 | 7   | 15.9      |
| Zircon 23 | 317                     | 119                      | 0.38 | 0.0781                               | 0.0045     | 1.3830                              | 0.0770            | 0.1290                              | 0.0035  | 0.0341                               | 0.0020  | -0.06 | 782                                 | 20  | 881                                 | 34   | 1138                                 | 110 | 782                 | 20  | 11.2      |
| Zircon 24 | 267                     | 195                      | 0.73 | 0.0552                               | 0.0047     | 0.3290                              | 0.0260            | 0.0436                              | 0.0011  | 0.0147                               | 0.0008  | -0.15 | 275                                 | 7   | 288                                 | 21   | 360                                  | 170 | 275                 | 7   | 4.4       |
| Zircon 25 | 201                     | 116                      | 0.58 | 0.0617                               | 0.0047     | 0.3690                              | 0.0270            | 0.0432                              | 0.0012  | 0.0148                               | 0.0010  | -0.12 | 273                                 | 7   | 320                                 | 19   | 640                                  | 160 | 273                 | 7   | 14.8      |
| Zircon 26 | 215                     | 173                      | 0.80 | 0.0554                               | 0.0047     | 0.3350                              | 0.0290            | 0.0453                              | 0.0012  | 0.0143                               | 0.0008  | -0.04 | 286                                 | 7   | 292                                 | 21   | 410                                  | 180 | 286                 | 7   | 2.2       |
| Zircon 27 | 184                     | 133                      | 0.72 | 0.0616                               | 0.0043     | 0.4000                              | 0.0290            | 0.0470                              | 0.0012  | 0.0169                               | 0.0010  | 0.28  | 296                                 | 7   | 344                                 | 20   | 650                                  | 140 | 296                 | 7   | 14.0      |

| Zircon 28  | 87   | 96  | 1.11 | 0.0573 | 0.0054 | 0.3630 | 0.0360 | 0.0464 | 0.0014 | 0.0165 | 0.0010 | 0.47  | 293  | 9  | 312  | 26 | 490  | 190  | 293  | 9  | 6.3  |
|------------|------|-----|------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|----|------|----|------|------|------|----|------|
| Zircon 29  | 195  | 165 | 0.84 | 0.0650 | 0.0047 | 0.3680 | 0.0310 | 0.0426 | 0.0013 | 0.0146 | 0.0009 | 0.48  | 269  | 8  | 322  | 23 | 730  | 170  | 269  | 8  | 16.5 |
| Zircon 30  | 183  | 97  | 0.53 | 0.0615 | 0.0051 | 0.3890 | 0.0280 | 0.0455 | 0.0014 | 0.0177 | 0.0011 | 0.16  | 287  | 9  | 332  | 20 | 620  | 170  | 287  | 9  | 13.7 |
| Zircon 31  | 210  | 129 | 0.62 | 0.0621 | 0.0052 | 0.3840 | 0.0320 | 0.0445 | 0.0014 | 0.0153 | 0.0011 | -0.24 | 281  | 9  | 328  | 23 | 610  | 160  | 281  | 9  | 14.4 |
| Zircon 32  | 264  | 221 | 0.84 | 0.0585 | 0.0040 | 0.3530 | 0.0240 | 0.0435 | 0.0011 | 0.0143 | 0.0008 | 0.36  | 275  | 7  | 306  | 18 | 510  | 140  | 275  | 7  | 10.3 |
| Zircon 36  | 671  | 594 | 0.89 | 0.0547 | 0.0031 | 0.3387 | 0.0190 | 0.0446 | 0.0011 | 0.0150 | 0.0008 | -0.24 | 281  | 7  | 296  | 14 | 392  | 140  | 281  | 7  | 5.1  |
| Zircon 37  | 310  | 214 | 0.69 | 0.0589 | 0.0041 | 0.3680 | 0.0240 | 0.0442 | 0.0012 | 0.0137 | 0.0010 | -0.02 | 279  | 7  | 317  | 16 | 610  | 140  | 279  | 7  | 12.1 |
| Zircon 39  | 337  | 11  | 0.03 | 0.0701 | 0.0036 | 1.5280 | 0.0780 | 0.1567 | 0.0042 | 0.0632 | 0.0048 | 0.39  | 939  | 24 | 941  | 32 | 938  | 110  | 939  | 24 | 0.2  |
| Zircon 40  | 191  | 108 | 0.57 | 0.0547 | 0.0048 | 0.4420 | 0.0440 | 0.0586 | 0.0020 | 0.0170 | 0.0009 | -0.41 | 367  | 12 | 371  | 30 | 440  | 170  | 367  | 12 | 1.0  |
| Zircon 42  | 647  | 854 | 1.32 | 0.0580 | 0.0047 | 0.3340 | 0.0250 | 0.0411 | 0.0011 | 0.0128 | 0.0007 | 0.12  | 260  | 7  | 292  | 19 | 539  | 160  | 260  | 7  | 11.1 |
| Zircon 43  | 290  | 368 | 1.27 | 0.0541 | 0.0046 | 0.3000 | 0.0250 | 0.0409 | 0.0010 | 0.0124 | 0.0007 | -0.33 | 258  | 6  | 266  | 19 | 340  | 170  | 258  | 6  | 2.9  |
| Zircon 44  | 526  | 253 | 0.48 | 0.0584 | 0.0030 | 0.3680 | 0.0210 | 0.0458 | 0.0014 | 0.0151 | 0.0008 | 0.46  | 289  | 8  | 318  | 14 | 539  | 120  | 289  | 8  | 9.2  |
| Zircon 45  | 583  | 441 | 0.76 | 0.0556 | 0.0032 | 0.3260 | 0.0180 | 0.0430 | 0.0011 | 0.0146 | 0.0008 | 0.12  | 271  | 7  | 289  | 14 | 420  | 130  | 271  | 7  | 5.9  |
| Zircon 47  | 331  | 267 | 0.81 | 0.0543 | 0.0037 | 0.3240 | 0.0210 | 0.0431 | 0.0010 | 0.0136 | 0.0008 | -0.27 | 272  | 7  | 285  | 16 | 350  | 150  | 272  | 7  | 4.6  |
| Zircon 49  | 211  | 195 | 0.93 | 0.0547 | 0.0039 | 0.3460 | 0.0230 | 0.0465 | 0.0012 | 0.0149 | 0.0008 | -0.02 | 293  | 7  | 305  | 17 | 360  | 150  | 293  | 7  | 3.9  |
| Zircon 50  | 178  | 145 | 0.81 | 0.0596 | 0.0049 | 0.3450 | 0.0280 | 0.0433 | 0.0012 | 0.0146 | 0.0012 | 0.21  | 273  | 7  | 300  | 22 | 630  | 170  | 273  | 7  | 8.9  |
| Zircon 51  | 135  | 79  | 0.59 | 0.0603 | 0.0050 | 0.3800 | 0.0310 | 0.0472 | 0.0014 | 0.0172 | 0.0010 | -0.20 | 297  | 8  | 330  | 22 | 540  | 170  | 297  | 8  | 10.0 |
| Zircon 52  | 392  | 119 | 0.30 | 0.0555 | 0.0037 | 0.3230 | 0.0200 | 0.0423 | 0.0011 | 0.0142 | 0.0011 | -0.06 | 267  | 7  | 284  | 16 | 400  | 150  | 267  | 7  | 5.9  |
| Zircon 55  | 121  | 54  | 0.44 | 0.0780 | 0.0044 | 1.8820 | 0.1000 | 0.1717 | 0.0042 | 0.0557 | 0.0030 | 0.24  | 1021 | 23 | 1080 | 36 | 1174 | 110  | 1021 | 23 | 5.5  |
| Zircon 56  | 161  | 35  | 0.21 | 0.0605 | 0.0049 | 0.3630 | 0.0280 | 0.0423 | 0.0012 | 0.0202 | 0.0013 | 0.20  | 267  | 8  | 314  | 21 | 670  | 150  | 267  | 8  | 15.0 |
| Zircon 58  | 1129 | 32  | 0.03 | 0.0737 | 0.0035 | 1.6120 | 0.0750 | 0.1581 | 0.0037 | 0.0592 | 0.0040 | -0.01 | 946  | 21 | 974  | 30 | 1032 | 97   | 946  | 21 | 2.9  |
| Zircon 59  | 637  | 81  | 0.13 | 0.0722 | 0.0036 | 1.3330 | 0.0740 | 0.1327 | 0.0053 | 0.0226 | 0.0011 | 0.14  | 803  | 29 | 860  | 35 | 989  | 110  | 803  | 29 | 6.6  |
| Zircon 63  | 435  | 173 | 0.40 | 0.0559 | 0.0035 | 0.3370 | 0.0260 | 0.0431 | 0.0013 | 0.0148 | 0.0009 | -0.01 | 272  | 8  | 298  | 16 | 420  | 150  | 272  | 8  | 8.8  |
| Zircon 65  | 326  | 134 | 0.41 | 0.0547 | 0.0035 | 0.3480 | 0.0200 | 0.0462 | 0.0011 | 0.0150 | 0.0008 | 0.21  | 291  | 7  | 302  | 15 | 380  | 130  | 291  | 7  | 3.7  |
| Zircon 67  | 299  | 245 | 0.82 | 0.0593 | 0.0038 | 0.3040 | 0.0200 | 0.0367 | 0.0010 | 0.0123 | 0.0008 | -0.08 | 232  | 6  | 269  | 15 | 550  | 130  | 232  | 6  | 13.6 |
| Zircon 68  | 290  | 201 | 0.69 | 0.0568 | 0.0035 | 0.3300 | 0.0210 | 0.0427 | 0.0011 | 0.0147 | 0.0008 | 0.28  | 269  | 7  | 289  | 16 | 466  | 120  | 269  | 7  | 6.8  |
| Zircon 69  | 353  | 115 | 0.33 | 0.0528 | 0.0032 | 0.3240 | 0.0200 | 0.0444 | 0.0011 | 0.0152 | 0.0008 | 0.03  | 280  | 7  | 285  | 15 | 300  | 140  | 280  | 7  | 1.8  |
| Zircon 70  | 289  | 222 | 0.77 | 0.0595 | 0.0042 | 0.3360 | 0.0240 | 0.0408 | 0.0012 | 0.0140 | 0.0008 | 0.08  | 257  | 7  | 293  | 18 | 610  | 140  | 257  | 7  | 12.2 |
| Zircon 71  | 333  | 307 | 0.92 | 0.0649 | 0.0071 | 0.3960 | 0.0580 | 0.0439 | 0.0014 | 0.0155 | 0.0014 | -0.04 | 277  | 9  | 338  | 37 | 770  | 180  | 277  | 9  | 18.0 |
| Zircon 72  | 427  | 415 | 0.97 | 0.0566 | 0.0034 | 0.3400 | 0.0200 | 0.0432 | 0.0011 | 0.0134 | 0.0007 | 0.13  | 272  | 7  | 297  | 15 | 471  | 120  | 272  | 7  | 8.1  |
| Zircon 73  | 191  | 104 | 0.55 | 0.0602 | 0.0048 | 0.3700 | 0.0280 | 0.0437 | 0.0012 | 0.0164 | 0.0012 | 0.14  | 276  | 7  | 319  | 21 | 590  | 160  | 276  | 7  | 13.5 |
| Zircon 75  | 105  | 60  | 0.58 | 0.0637 | 0.0059 | 0.4130 | 0.0430 | 0.0467 | 0.0013 | 0.0199 | 0.0013 | 0.35  | 294  | 8  | 347  | 30 | 720  | 210  | 294  | 8  | 15.2 |
| Zircon 76  | 323  | 187 | 0.58 | 0.0641 | 0.0039 | 0.3350 | 0.0220 | 0.0386 | 0.0012 | 0.0130 | 0.0008 | 0.41  | 244  | 8  | 293  | 16 | 710  | 130  | 244  | 8  | 16.7 |
| Zircon 77  | 377  | 403 | 1.07 | 0.0581 | 0.0038 | 0.3510 | 0.0210 | 0.0436 | 0.0011 | 0.0142 | 0.0007 | -0.14 | 275  | 7  | 305  | 16 | 540  | 140  | 275  | 7  | 9.8  |
| Zircon 78  | 245  | 44  | 0.18 | 0.0618 | 0.0042 | 0.3620 | 0.0220 | 0.0422 | 0.0011 | 0.0180 | 0.0011 | -0.08 | 267  | 7  | 313  | 17 | 660  | 150  | 267  | 7  | 14.9 |
| Zircon 79  | 248  | 177 | 0.71 | 0.0635 | 0.0048 | 0.3870 | 0.0290 | 0.0440 | 0.0011 | 0.0146 | 0.0010 | 0.20  | 278  | 7  | 332  | 21 | 700  | 150  | 278  | 7  | 16.3 |
| Zircon 80  | 164  | 99  | 0.60 | 0.0614 | 0.0041 | 0.3920 | 0.0290 | 0.0467 | 0.0017 | 0.0171 | 0.0010 | 0.21  | 294  | 10 | 335  | 21 | 660  | 130  | 294  | 10 | 12.2 |
| Zircon 82  | 497  | 362 | 0.73 | 0.0543 | 0.0034 | 0.3120 | 0.0230 | 0.0415 | 0.0013 | 0.0130 | 0.0008 | -0.31 | 262  | 8  | 276  | 17 | 410  | 140  | 262  | 8  | 5.0  |
| Zircon 84  | 106  | 73  | 0.69 | 0.0672 | 0.0065 | 0.3820 | 0.0390 | 0.0414 | 0.0014 | 0.0157 | 0.0010 | 0.02  | 262  | 9  | 326  | 28 | 810  | 210  | 262  | 9  | 19.8 |
| Zircon 86  | 209  | 82  | 0.39 | 0.0645 | 0.0047 | 0.3550 | 0.0250 | 0.0409 | 0.0011 | 0.0150 | 0.0011 | 0.11  | 259  | 7  | 312  | 19 | 720  | 150  | 259  | 7  | 17.1 |
| Zircon 88  | 290  | 213 | 0.73 | 0.0658 | 0.0051 | 0.3890 | 0.0340 | 0.0416 | 0.0011 | 0.0141 | 0.0009 | -0.21 | 263  | 7  | 332  | 24 | 790  | 160  | 263  | 7  | 20.8 |
| Zircon 89  | 118  | 70  | 0.59 | 0.0621 | 0.0047 | 0.4090 | 0.0300 | 0.0481 | 0.0012 | 0.0175 | 0.0010 | 0.07  | 303  | 8  | 347  | 21 | 630  | 140  | 303  | 8  | 12.7 |
| Zircon 90  | 259  | 189 | 0.73 | 0.0611 | 0.0043 | 0.3520 | 0.0240 | 0.0431 | 0.0011 | 0.0150 | 0.0008 | 0.14  | 272  | 7  | 305  | 18 | 600  | 150  | 272  | 7  | 10.8 |
| Zircon 91  | 219  | 170 | 0.77 | 0.0590 | 0.0039 | 0.3710 | 0.0250 | 0.0451 | 0.0011 | 0.0145 | 0.0009 | 0.12  | 284  | 7  | 320  | 18 | 560  | 150  | 284  | 7  | 11.3 |
| Zircon 92  | 384  | 165 | 0.43 | 0.0567 | 0.0034 | 0.3630 | 0.0240 | 0.0457 | 0.0013 | 0.0155 | 0.0009 | 0.20  | 288  | 8  | 314  | 18 | 480  | 130  | 288  | 8  | 8.2  |
| Zircon 95  | 570  | 286 | 0.50 | 0.0561 | 0.0036 | 0.3410 | 0.0210 | 0.0438 | 0.0012 | 0.0152 | 0.0009 | -0.35 | 276  | 7  | 298  | 16 | 440  | 130  | 276  | 7  | 7.3  |
| Zircon 96  | 699  | 47  | 0.07 | 0.0733 | 0.0036 | 1.2500 | 0.0950 | 0.1221 | 0.0071 | 0.0407 | 0.0031 | 0.80  | 742  | 42 | 822  | 48 | 1036 | 120  | 742  | 42 | 9.7  |
| Zircon 102 | 375  | 192 | 0.51 | 0.0532 | 0.0034 | 0.3390 | 0.0200 | 0.0457 | 0.0011 | 0.0152 | 0.0008 | -0.28 | 288  | 7  | 296  | 15 | 330  | 140  | 288  | 7  | 2.8  |
| 2          | 5,5  | 172 | 0.51 | 0.0002 | 0.0034 | 5.5555 | 0.0200 | 0.0437 | 0.0011 | 0.0102 | 0.0000 | 0.20  | 200  | ,  | 200  | 10 | 550  | 1-10 | 200  | '  | 2.0  |

| Zircon 104 | 299 | 161 | 0.54 | 0.0628 | 0.0071 | 0.3560 | 0.0510 | 0.0410 | 0.0015 | 0.0162 | 0.0022 | -0.24 | 259 | 10 | 308 | 33 | 700 | 190 | 259 | 10 | 15.9 |
|------------|-----|-----|------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-----|----|-----|----|-----|-----|-----|----|------|
| Zircon 107 | 148 | 111 | 0.75 | 0.0582 | 0.0050 | 0.3570 | 0.0260 | 0.0451 | 0.0013 | 0.0162 | 0.0010 | -0.03 | 284 | 8  | 309 | 19 | 550 | 170 | 284 | 8  | 8.0  |
| Zircon 108 | 433 | 216 | 0.50 | 0.0573 | 0.0033 | 0.3490 | 0.0190 | 0.0444 | 0.0010 | 0.0132 | 0.0008 | -0.02 | 280 | 6  | 307 | 14 | 490 | 120 | 280 | 6  | 8.8  |
| Zircon 109 | 232 | 143 | 0.62 | 0.0537 | 0.0038 | 0.3160 | 0.0230 | 0.0425 | 0.0011 | 0.0139 | 0.0009 | -0.19 | 268 | 7  | 278 | 17 | 340 | 160 | 268 | 7  | 3.5  |
| Zircon 110 | 348 | 87  | 0.25 | 0.0572 | 0.0043 | 0.3350 | 0.0250 | 0.0433 | 0.0012 | 0.0149 | 0.0010 | 0.42  | 273 | 7  | 296 | 18 | 500 | 160 | 273 | 7  | 7.8  |
| Zircon 111 | 155 | 113 | 0.73 | 0.0661 | 0.0048 | 0.4270 | 0.0320 | 0.0457 | 0.0012 | 0.0148 | 0.0011 | 0.19  | 288 | 8  | 359 | 23 | 800 | 150 | 288 | 8  | 19.9 |
| Zircon 112 | 529 | 144 | 0.27 | 0.0541 | 0.0034 | 0.3320 | 0.0200 | 0.0440 | 0.0011 | 0.0173 | 0.0011 | 0.27  | 278 | 7  | 290 | 15 | 350 | 130 | 278 | 7  | 4.3  |
| Zircon 114 | 165 | 101 | 0.61 | 0.0541 | 0.0050 | 0.3410 | 0.0300 | 0.0459 | 0.0012 | 0.0163 | 0.0010 | -0.33 | 289 | 7  | 296 | 21 | 360 | 170 | 289 | 7  | 2.3  |
| Zircon 117 | 430 | 137 | 0.32 | 0.0549 | 0.0035 | 0.3450 | 0.0210 | 0.0464 | 0.0011 | 0.0170 | 0.0010 | 0.11  | 292 | 7  | 301 | 16 | 420 | 140 | 292 | 7  | 2.9  |
|            |     |     |      |        |        |        |        |        |        |        |        |       |     |    |     |    |     |     |     |    |      |

1: U and Th concentrations are calculated employing an external standard zircon as in Paton et al., 2010, Geochemistry, Geophysics, Geosystems.

2: 2 sigma uncertainties propagated according to Paton et al., 2010, Geochemistry, Geophysics, Geosystems

<sup>207</sup>Pb/<sup>206</sup>Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012, Geostandards Geoanalytical Research

Analyzed spots were \_\_\_\_\_ micrometers, using an analytical protocol modified from Solari et al., 2010, Geostandards Geoanalytical Research.

Data measured employing a Thermo iCapQc ICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

## Anexo 3. Imágenes de catodoluminiscencia de circones



Muestra V-2

Muestra RN-4



Muestra LS-2











## Muestra RN-3





|        | -       |                                     | CORRECTED RATIOS |                                     |         |           |       |  |  |  |
|--------|---------|-------------------------------------|------------------|-------------------------------------|---------|-----------|-------|--|--|--|
| Sample | Apatite | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ abs          | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ abs | Rho       | Group |  |  |  |
| LS-2   | 6       | 135.40                              | 3.30             | 2.098                               | 0.0570  | 0.675040  | Ki    |  |  |  |
| LS-2   | 14      | 2.24                                | 0.12             | 0.056                               | 0.0032  | -0.076891 | Ki    |  |  |  |
| LS-2   | 15      | 2.68                                | 0.15             | 0.060                               | 0.0034  | 0.131740  | Ki    |  |  |  |
| LS-2   | 19      | 2.35                                | 0.12             | 0.055                               | 0.0028  | 0.170440  | Ki    |  |  |  |
| LS-2   | 20      | 2.67                                | 0.09             | 0.060                               | 0.0024  | 0.050516  | Ki    |  |  |  |
| LS-2   | 48      | 3.22                                | 0.24             | 0.066                               | 0.0045  | 0.652970  | Ki    |  |  |  |
| LS-2   | 72      | 4.74                                | 0.14             | 0.091                               | 0.0028  | 0.108670  | Ki    |  |  |  |
| LS-2   | 73      | 2.29                                | 0.10             | 0.052                               | 0.0027  | 0.088644  | Ki    |  |  |  |
| LS-2   | 80      | 2.30                                | 0.12             | 0.054                               | 0.0034  | 0.039586  | Ki    |  |  |  |
| LS-2   | 26      | 1.32                                | 0.04             | 0.061                               | 0.0010  | 0.612130  | C-P   |  |  |  |
| LS-2   | 28      | 6.02                                | 0.13             | 0.142                               | 0.0025  | 0.206990  | C-P   |  |  |  |
| LS-2   | 34      | 0.97                                | 0.03             | 0.055                               | 0.0014  | -0.123150 | C-P   |  |  |  |
| LS-2   | 43      | 17.73                               | 0.50             | 0.291                               | 0.0091  | 0.681070  | C-P   |  |  |  |
| LS-2   | 46      | 26.03                               | 0.64             | 0.408                               | 0.0130  | 0.289820  | C-P   |  |  |  |
| LS-2   | 58      | 8.93                                | 0.30             | 0.178                               | 0.0059  | 0.441380  | C-P   |  |  |  |
| LS-2   | 60      | 1.15                                | 0.03             | 0.058                               | 0.0008  | 0.165750  | C-P   |  |  |  |
| LS-2   | 71      | 6.05                                | 0.10             | 0.124                               | 0.0024  | 0.193440  | C-P   |  |  |  |
| LS-2   | 76      | 16.28                               | 0.46             | 0.279                               | 0.0081  | 0.254380  | C-P   |  |  |  |
| LS-2   | 78      | 7.37                                | 0.16             | 0.146                               | 0.0035  | -0.284810 | C-P   |  |  |  |
| LS-2   | 90      | 9.47                                | 0.19             | 0.184                               | 0.0044  | 0.092395  | C-P   |  |  |  |
| LS-2   | 96      | 4.69                                | 0.08             | 0.110                               | 0.0018  | -0.030117 | C-P   |  |  |  |
| LS-2   | 101     | 8.60                                | 0.18             | 0.166                               | 0.0032  | 0.309370  | C-P   |  |  |  |
| LS-2   | 102     | 2.93                                | 0.06             | 0.086                               | 0.0013  | -0.002092 | C-P   |  |  |  |
| LS-2   | 106     | 1.09                                | 0.02             | 0.057                               | 0.0010  | -0.060630 | C-P   |  |  |  |
| LS-2   | 108     | 15.19                               | 0.41             | 0.256                               | 0.0090  | 0.106740  | C-P   |  |  |  |
| LS-2   | 3       | 7.40                                | 0.12             | 0.211                               | 0.0031  | 0.223460  |       |  |  |  |
| LS-2   | 37      | 3.81                                | 0.35             | 0.137                               | 0.0046  | 0.958190  |       |  |  |  |
| LS-2   | 40      | 3.52                                | 0.06             | 0.123                               | 0.0016  | 0.272490  |       |  |  |  |
| LS-2   | 44      | 2.92                                | 0.08             | 0.117                               | 0.0021  | 0.414920  |       |  |  |  |
| LS-2   | 54      | 67.20                               | 2.30             | 0.993                               | 0.0430  | 0.471230  |       |  |  |  |
| LS-2   | 59      | 1.01                                | 0.02             | 0.109                               | 0.0016  | 0.344100  |       |  |  |  |
| LS-2   | 84      | 17.00                               | 0.31             | 0.319                               | 0.0059  | 0.238460  |       |  |  |  |
| LS-2   | 97      | 37.00                               | 1.10             | 0.593                               | 0.0200  | 0.535010  |       |  |  |  |
| LS-2   | 100     | 3.33                                | 0.12             | 0.150                               | 0.0036  | 0.161120  |       |  |  |  |
| LS-2   | 1       | 5.25                                | 0.11             | 0.219                               | 0.0041  | 0.136740  | G     |  |  |  |
| LS-2   | 2       | 2.05                                | 0.04             | 0.179                               | 0.0019  | 0.051887  | G     |  |  |  |
| LS-2   | 4       | 2.20                                | 0.04             | 0.177                               | 0.0021  | 0.196370  | G     |  |  |  |
| LS-2   | 7       | 4.49                                | 0.07             | 0.223                               | 0.0026  | 0.063468  | G     |  |  |  |
| LS-2   | 8       | 3.70                                | 0.05             | 0.181                               | 0.0022  | 0.106030  | G     |  |  |  |

## Anexo 4. Análisis U-Pb en apatitos mediante LA-ICPMS

| LS-2 | 10 | 1.90  | 0.04 | 0.177 | 0.0022 | -0.013265 | G |
|------|----|-------|------|-------|--------|-----------|---|
| LS-2 | 11 | 3.75  | 0.09 | 0.206 | 0.0028 | 0.188920  | G |
| LS-2 | 12 | 2.04  | 0.02 | 0.172 | 0.0012 | 0.162440  | G |
| LS-2 | 13 | 2.93  | 0.03 | 0.174 | 0.0015 | 0.177090  | G |
| LS-2 | 16 | 2.00  | 0.02 | 0.178 | 0.0012 | 0.424160  | G |
| LS-2 | 17 | 2.69  | 0.04 | 0.183 | 0.0017 | 0.362940  | G |
| LS-2 | 18 | 3.22  | 0.07 | 0.197 | 0.0032 | 0.022007  | G |
| LS-2 | 21 | 1.87  | 0.03 | 0.169 | 0.0018 | 0.310550  | G |
| LS-2 | 23 | 4.98  | 0.08 | 0.218 | 0.0022 | 0.170140  | G |
| LS-2 | 24 | 1.92  | 0.03 | 0.170 | 0.0017 | 0.110030  | G |
| LS-2 | 25 | 2.02  | 0.04 | 0.164 | 0.0018 | 0.233200  | G |
| LS-2 | 27 | 2.56  | 0.03 | 0.170 | 0.0017 | 0.030814  | G |
| LS-2 | 29 | 1.69  | 0.03 | 0.171 | 0.0012 | -0.089682 | G |
| LS-2 | 30 | 1.87  | 0.08 | 0.163 | 0.0015 | 0.799780  | G |
| LS-2 | 31 | 1.73  | 0.02 | 0.164 | 0.0013 | 0.147380  | G |
| LS-2 | 32 | 1.37  | 0.03 | 0.155 | 0.0014 | 0.161620  | G |
| LS-2 | 33 | 1.61  | 0.03 | 0.163 | 0.0013 | 0.089069  | G |
| LS-2 | 35 | 13.17 | 0.23 | 0.323 | 0.0041 | 0.730100  | G |
| LS-2 | 36 | 1.42  | 0.02 | 0.155 | 0.0011 | 0.107120  | G |
| LS-2 | 38 | 8.84  | 0.15 | 0.263 | 0.0039 | 0.447480  | G |
| LS-2 | 42 | 2.30  | 0.03 | 0.176 | 0.0013 | 0.206340  | G |
| LS-2 | 45 | 6.11  | 0.12 | 0.236 | 0.0032 | 0.391150  | G |
| LS-2 | 49 | 1.96  | 0.04 | 0.173 | 0.0015 | 0.026689  | G |
| LS-2 | 50 | 1.62  | 0.04 | 0.158 | 0.0019 | 0.288230  | G |
| LS-2 | 51 | 3.84  | 0.09 | 0.198 | 0.0039 | 0.189260  | G |
| LS-2 | 52 | 1.69  | 0.04 | 0.161 | 0.0022 | 0.248680  | G |
| LS-2 | 53 | 19.46 | 0.51 | 0.431 | 0.0095 | 0.185670  | G |
| LS-2 | 55 | 2.38  | 0.04 | 0.170 | 0.0019 | -0.089101 | G |
| LS-2 | 56 | 1.39  | 0.02 | 0.156 | 0.0010 | 0.043445  | G |
| LS-2 | 57 | 4.52  | 0.07 | 0.201 | 0.0026 | 0.367920  | G |
| LS-2 | 61 | 2.88  | 0.05 | 0.182 | 0.0016 | 0.023224  | G |
| LS-2 | 62 | 1.97  | 0.04 | 0.162 | 0.0024 | 0.165590  | G |
| LS-2 | 63 | 1.85  | 0.03 | 0.168 | 0.0014 | 0.125220  | G |
| LS-2 | 64 | 2.32  | 0.06 | 0.192 | 0.0031 | 0.214690  | G |
| LS-2 | 65 | 3.85  | 0.06 | 0.200 | 0.0029 | 0.138230  | G |
| LS-2 | 67 | 8.06  | 0.15 | 0.251 | 0.0047 | 0.121450  | G |
| LS-2 | 68 | 3.43  | 0.08 | 0.185 | 0.0025 | 0.127770  | G |
| LS-2 | 69 | 2.75  | 0.08 | 0.184 | 0.0031 | 0.401330  | G |
| LS-2 | 70 | 1.95  | 0.04 | 0.167 | 0.0016 | 0.247380  | G |
| LS-2 | 74 | 10.36 | 0.19 | 0.284 | 0.0049 | 0.294820  | G |
| LS-2 | 75 | 4.98  | 0.18 | 0.219 | 0.0055 | 0.402370  | G |
| LS-2 | 77 | 2.70  | 0.06 | 0.177 | 0.0015 | 0.387880  | G |
| LS-2 | 82 | 6.35  | 0.15 | 0.242 | 0.0047 | 0.418590  | G |

| LS-2 | 83   | 3.34  | 0.11 | 0.199 | 0.0030 | 0.577530  | G |
|------|------|-------|------|-------|--------|-----------|---|
| LS-2 | 85   | 15.18 | 0.25 | 0.356 | 0.0059 | 0.342380  | G |
| LS-2 | 86   | 1.90  | 0.02 | 0.172 | 0.0014 | 0.073210  | G |
| LS-2 | 87   | 4.19  | 0.09 | 0.204 | 0.0028 | 0.200520  | G |
| LS-2 | 88   | 2.45  | 0.05 | 0.173 | 0.0021 | 0.021889  | G |
| LS-2 | 89   | 1.67  | 0.02 | 0.167 | 0.0014 | 0.319750  | G |
| LS-2 | 91   | 1.89  | 0.04 | 0.159 | 0.0023 | 0.525180  | G |
| LS-2 | 92   | 3.21  | 0.09 | 0.189 | 0.0032 | 0.087158  | G |
| LS-2 | 93   | 3.49  | 0.04 | 0.192 | 0.0019 | -0.017452 | G |
| LS-2 | 94   | 2.58  | 0.04 | 0.179 | 0.0017 | 0.279500  | G |
| LS-2 | 95   | 3.57  | 0.03 | 0.192 | 0.0012 | 0.325490  | G |
| LS-2 | 98   | 12.17 | 0.18 | 0.313 | 0.0040 | 0.288300  | G |
| LS-2 | 99   | 5.90  | 0.14 | 0.228 | 0.0054 | 0.145960  | G |
| LS-2 | 104  | 11.74 | 0.29 | 0.302 | 0.0058 | 0.303820  | G |
| LS-2 | 105  | 4.66  | 0.11 | 0.206 | 0.0033 | 0.318610  | G |
| LS-2 | 106  | 2.26  | 0.03 | 0.173 | 0.0019 | 0.203040  | G |
| LS-2 | 108  | 9.91  | 0.26 | 0.281 | 0.0056 | 0.298320  | G |
| LS-2 | 110x | 4.27  | 0.10 | 0.210 | 0.0032 | 0.034141  | G |

|        |            |                                     | CORRECTED RATIOS |                                     |         |          |       |  |  |  |  |
|--------|------------|-------------------------------------|------------------|-------------------------------------|---------|----------|-------|--|--|--|--|
| Sample | Apatite    | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ abs          | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ abs | Rho      | Group |  |  |  |  |
| V-1    | 2606181-3  | 13.440                              | 0.280            | 0.2356                              | 0.0064  | 0.275830 | C-P   |  |  |  |  |
| V-1    | 2606181-9  | 11.350                              | 0.250            | 0.2037                              | 0.0044  | 0.259450 | C-P   |  |  |  |  |
| V-1    | 2606181-10 | 1.082                               | 0.029            | 0.0537                              | 0.0011  | 0.459500 | C-P   |  |  |  |  |
| V-1    | 2606181-11 | 13.270                              | 0.340            | 0.2351                              | 0.0064  | 0.329750 | C-P   |  |  |  |  |
| V-1    | 2606181-12 | 61.300                              | 3.800            | 1.0160                              | 0.0610  | 0.921790 | C-P   |  |  |  |  |
| V-1    | 2606181-16 | 14.440                              | 0.370            | 0.2491                              | 0.0070  | 0.529620 | C-P   |  |  |  |  |
| V-1    | 2606181-18 | 17.430                              | 0.380            | 0.3077                              | 0.0083  | 0.029510 | C-P   |  |  |  |  |
| V-1    | 2606181-22 | 5.520                               | 0.140            | 0.1238                              | 0.0033  | 0.203680 | C-P   |  |  |  |  |
| V-1    | 2606181-23 | 8.040                               | 0.180            | 0.1631                              | 0.0045  | 0.109700 | C-P   |  |  |  |  |
| V-1    | 2606181-27 | 2.301                               | 0.058            | 0.0722                              | 0.0014  | 0.480990 | C-P   |  |  |  |  |
| V-1    | 2606181-30 | 2.996                               | 0.062            | 0.0906                              | 0.0018  | 0.182350 | C-P   |  |  |  |  |
| V-1    | 2606181-31 | 1.989                               | 0.046            | 0.0680                              | 0.0011  | 0.231390 | C-P   |  |  |  |  |
| V-1    | 2606181-32 | 9.180                               | 0.140            | 0.1849                              | 0.0033  | 0.174630 | C-P   |  |  |  |  |
| V-1    | 2606181-34 | 11.220                              | 0.330            | 0.2090                              | 0.0083  | 0.257780 | C-P   |  |  |  |  |
| V-1    | 2606181-37 | 20.080                              | 0.350            | 0.3509                              | 0.0058  | 0.201640 | C-P   |  |  |  |  |
| V-1    | 2606181-38 | 3.700                               | 0.110            | 0.0957                              | 0.0025  | 0.355030 | C-P   |  |  |  |  |
| V-1    | 2606181-44 | 24.620                              | 0.820            | 0.3980                              | 0.0170  | 0.274660 | C-P   |  |  |  |  |
| V-1    | 2606181-48 | 2.057                               | 0.037            | 0.0707                              | 0.0012  | 0.417680 | C-P   |  |  |  |  |
| V-1    | 2606181-49 | 7.680                               | 0.170            | 0.1631                              | 0.0037  | 0.178720 | C-P   |  |  |  |  |
| V-1    | 2606181-52 | 2.009                               | 0.047            | 0.0729                              | 0.0017  | 0.190960 | C-P   |  |  |  |  |
| V-1    | 2606181-53 | 4.242                               | 0.089            | 0.1055                              | 0.0024  | 0.090658 | C-P   |  |  |  |  |
| V-1    | 2606181-56 | 2.423                               | 0.055            | 0.0821                              | 0.0016  | 0.053413 | C-P   |  |  |  |  |

| V-1 | 2606181-63   | 4.380  | 0.130 | 0.1063 | 0.0023 | 0.252890  | C-P |
|-----|--------------|--------|-------|--------|--------|-----------|-----|
| V-1 | 2606181-68   | 15.050 | 0.380 | 0.2700 | 0.0062 | 0.048432  | C-P |
| V-1 | 2606181-70   | 4.797  | 0.088 | 0.1142 | 0.0024 | 0.115760  | C-P |
| V-1 | 2606181-75   | 12.040 | 0.270 | 0.2221 | 0.0065 | 0.335810  | C-P |
| V-1 | 2606181-79   | 4.440  | 0.140 | 0.1041 | 0.0036 | 0.644440  | C-P |
| V-1 | 2606181-80   | 6.612  | 0.099 | 0.1387 | 0.0026 | 0.061054  | C-P |
| V-1 | 2606181-84   | 18.850 | 0.490 | 0.3189 | 0.0099 | 0.312940  | C-P |
| V-1 | 2606181-85   | 7.180  | 0.260 | 0.1462 | 0.0051 | 0.661480  | C-P |
| V-1 | 2606181-86   | 10.230 | 0.260 | 0.2004 | 0.0051 | 0.136660  | C-P |
| V-1 | 2606181-87   | 15.350 | 0.380 | 0.2687 | 0.0079 | 0.412130  | C-P |
| V-1 | 2606181-90   | 17.230 | 0.370 | 0.2903 | 0.0075 | 0.129270  | C-P |
| V-1 | 2606181-93   | 1.253  | 0.030 | 0.0553 | 0.0010 | -0.095372 | C-P |
| V-1 | 2606181-97xx | 5.460  | 0.390 | 0.1195 | 0.0064 | 0.837880  | C-P |
| V-1 | 2606181-98   | 4.350  | 0.150 | 0.1043 | 0.0025 | 0.741050  | C-P |
| V-1 | 2606181-99   | 19.750 | 0.590 | 0.3530 | 0.0110 | 0.217280  | C-P |
| V-1 | 2606181-100  | 4.680  | 0.130 | 0.1143 | 0.0028 | 0.484100  | C-P |
| V-1 | 2606181-103  | 8.640  | 0.280 | 0.1561 | 0.0088 | 0.081211  | C-P |
| V-1 | 2606181-104  | 22.300 | 1.400 | 0.3740 | 0.0240 | 0.837190  | C-P |
| V-1 | 2606181-105  | 1.685  | 0.048 | 0.0677 | 0.0014 | -0.111740 | C-P |
| V-1 | 2606181-110  | 24.190 | 0.770 | 0.4300 | 0.0110 | 0.528250  | C-P |
| V-1 | 2606181-112  | 12.550 | 0.310 | 0.2300 | 0.0061 | 0.100190  | C-P |
| V-1 | 2606181-114  | 20.200 | 1.200 | 0.3380 | 0.0180 | 0.664390  | C-P |
| V-1 | 2606181-115  | 3.086  | 0.096 | 0.0845 | 0.0024 | 0.198000  | C-P |
| V-1 | 2606181-116  | 6.300  | 0.200 | 0.1358 | 0.0037 | 0.534670  | C-P |
| V-1 | 2606181-117  | 7.450  | 0.370 | 0.1507 | 0.0063 | 0.739010  | C-P |
| V-1 | 2606181-119  | 10.050 | 0.250 | 0.1854 | 0.0055 | 0.246940  | C-P |
| V-1 | 2606181-120  | 4.930  | 0.170 | 0.1128 | 0.0042 | 0.365330  | C-P |
| V-1 | 2606181-121  | 4.280  | 0.120 | 0.1017 | 0.0028 | 0.421710  | C-P |
| V-1 | 2606181-122  | 5.460  | 0.140 | 0.1215 | 0.0028 | 0.440510  | C-P |
| V-1 | 2606181-123  | 6.730  | 0.190 | 0.1401 | 0.0038 | 0.035084  | C-P |
| V-1 | 2606181-127  | 2.960  | 0.150 | 0.0871 | 0.0030 | 0.729800  | C-P |
| V-1 | 2606181-1    | 4.361  | 0.046 | 0.2119 | 0.0010 | 0.121990  | G   |
| V-1 | 2606181-2    | 2.507  | 0.055 | 0.1847 | 0.0019 | -0.298460 | G   |
| V-1 | 2606181-4    | 2.464  | 0.047 | 0.1791 | 0.0020 | -0.017346 | G   |
| V-1 | 2606181-5    | 3.627  | 0.072 | 0.1959 | 0.0031 | -0.083399 | G   |
| V-1 | 2606181-6    | 3.510  | 0.130 | 0.1810 | 0.0043 | -0.086106 | G   |
| V-1 | 2606181-13   | 3.322  | 0.060 | 0.1858 | 0.0025 | 0.031641  | G   |
| V-1 | 2606181-15   | 3.999  | 0.075 | 0.1982 | 0.0022 | 0.271720  | G   |
| V-1 | 2606181-17   | 1.714  | 0.047 | 0.1761 | 0.0018 | 0.016401  | G   |
| V-1 | 2606181-19   | 2.143  | 0.035 | 0.1792 | 0.0014 | -0.106470 | G   |
| V-1 | 2606181-20   | 1.872  | 0.060 | 0.1687 | 0.0032 | -0.158330 | G   |
| V-1 | 2606181-21   | 1.879  | 0.023 | 0.1709 | 0.0017 | -0.067844 | G   |
| V-1 | 2606181-24   | 4.074  | 0.075 | 0.2034 | 0.0029 | 0.330700  | G   |

| V-1 | 2606181-25  | 2.453 | 0.028 | 0.1808 | 0.0017 | 0.193580  | G |
|-----|-------------|-------|-------|--------|--------|-----------|---|
| V-1 | 2606181-26  | 2.734 | 0.092 | 0.1830 | 0.0026 | 0.182470  | G |
| V-1 | 2606181-28  | 8.280 | 0.110 | 0.2720 | 0.0031 | 0.234550  | G |
| V-1 | 2606181-29  | 3.620 | 0.110 | 0.1971 | 0.0043 | 0.225580  | G |
| V-1 | 2606181-33  | 2.411 | 0.061 | 0.1824 | 0.0019 | 0.020959  | G |
| V-1 | 2606181-36  | 4.283 | 0.075 | 0.2167 | 0.0028 | 0.233140  | G |
| V-1 | 2606181-39  | 1.934 | 0.046 | 0.1694 | 0.0024 | 0.116030  | G |
| V-1 | 2606181-40  | 3.740 | 0.110 | 0.1889 | 0.0035 | -0.018888 | G |
| V-1 | 2606181-41  | 3.984 | 0.077 | 0.1964 | 0.0031 | 0.390040  | G |
| V-1 | 2606181-42  | 1.832 | 0.055 | 0.1761 | 0.0024 | 0.356840  | G |
| V-1 | 2606181-43  | 2.678 | 0.074 | 0.1832 | 0.0027 | 0.195080  | G |
| V-1 | 2606181-45  | 1.947 | 0.032 | 0.1771 | 0.0021 | 0.319390  | G |
| V-1 | 2606181-46  | 7.410 | 0.130 | 0.2720 | 0.0052 | 0.176040  | G |
| V-1 | 2606181-47  | 6.380 | 0.110 | 0.2471 | 0.0031 | 0.211160  | G |
| V-1 | 2606181-50  | 3.545 | 0.059 | 0.1968 | 0.0019 | 0.254960  | G |
| V-1 | 2606181-51  | 2.449 | 0.026 | 0.1782 | 0.0015 | 0.206650  | G |
| V-1 | 2606181-54  | 2.898 | 0.059 | 0.1831 | 0.0026 | -0.008534 | G |
| V-1 | 2606181-55  | 2.318 | 0.036 | 0.1828 | 0.0018 | 0.223190  | G |
| V-1 | 2606181-57  | 1.794 | 0.036 | 0.1722 | 0.0022 | 0.231600  | G |
| V-1 | 2606181-58  | 2.671 | 0.048 | 0.1850 | 0.0028 | 0.293750  | G |
| V-1 | 2606181-59  | 3.705 | 0.091 | 0.2036 | 0.0034 | 0.205930  | G |
| V-1 | 2606181-60  | 1.892 | 0.043 | 0.1686 | 0.0027 | 0.211690  | G |
| V-1 | 2606181-61  | 1.762 | 0.029 | 0.1697 | 0.0017 | 0.164220  | G |
| V-1 | 2606181-62  | 5.648 | 0.083 | 0.2284 | 0.0033 | 0.294510  | G |
| V-1 | 2606181-65  | 2.249 | 0.061 | 0.1776 | 0.0027 | 0.268580  | G |
| V-1 | 2606181-67  | 5.795 | 0.093 | 0.2366 | 0.0030 | 0.335630  | G |
| V-1 | 2606181-69  | 1.752 | 0.040 | 0.1716 | 0.0017 | 0.211580  | G |
| V-1 | 2606181-73  | 6.236 | 0.078 | 0.2392 | 0.0028 | -0.034936 | G |
| V-1 | 2606181-74  | 2.019 | 0.042 | 0.1693 | 0.0020 | 0.121630  | G |
| V-1 | 2606181-77  | 1.677 | 0.031 | 0.1672 | 0.0019 | 0.308570  | G |
| V-1 | 2606181-81  | 2.643 | 0.053 | 0.1816 | 0.0029 | 0.037103  | G |
| V-1 | 2606181-83  | 2.301 | 0.046 | 0.1706 | 0.0022 | 0.084543  | G |
| V-1 | 2606181-91  | 3.850 | 0.120 | 0.1901 | 0.0044 | 0.341830  | G |
| V-1 | 2606181-92  | 4.100 | 0.069 | 0.2100 | 0.0023 | 0.233900  | G |
| V-1 | 2606181-94  | 2.794 | 0.042 | 0.1910 | 0.0017 | 0.239880  | G |
| V-1 | 2606181-95  | 2.952 | 0.046 | 0.1827 | 0.0020 | 0.026118  | G |
| V-1 | 2606181-96  | 3.576 | 0.052 | 0.1860 | 0.0023 | 0.278120  | G |
| V-1 | 2606181-102 | 3.876 | 0.096 | 0.1964 | 0.0036 | 0.174180  | G |
| V-1 | 2606181-109 | 5.570 | 0.130 | 0.2259 | 0.0044 | -0.027638 | G |
| V-1 | 2606181-111 | 3.511 | 0.051 | 0.1833 | 0.0022 | 0.186180  | G |
| V-1 | 2606181-113 | 2.603 | 0.060 | 0.1776 | 0.0028 | 0.165030  | G |
| V-1 | 2606181-118 | 2.398 | 0.056 | 0.1760 | 0.0022 | 0.029131  | G |
| V-1 | 2606181-124 | 3.663 | 0.061 | 0.1830 | 0.0036 | 0.131320  | G |

| V-1 | 2606181-125   | 4.546 | 0.086 | 0.2160 | 0.0027 | 0.114750  | G |
|-----|---------------|-------|-------|--------|--------|-----------|---|
| V-1 | 2606181-129   | 3.410 | 0.071 | 0.1910 | 0.0028 | 0.333750  | G |
| V-1 | 2606181-130xx | 1.987 | 0.044 | 0.1706 | 0.0026 | -0.007772 | G |

|        |            |                                     |         | CORRECTED RA                        | TIOS    |           |       |
|--------|------------|-------------------------------------|---------|-------------------------------------|---------|-----------|-------|
| Sample | Apatite    | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ abs | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ abs | Rho       | Group |
| RN-3   | 2606183-2  | 1.641                               | 0.079   | 0.0652                              | 0.0015  | 0.608770  | C-P   |
| RN-3   | 2606183-3  | 8.430                               | 0.180   | 0.1621                              | 0.0032  | 0.412620  | C-P   |
| RN-3   | 2606183-4  | 19.890                              | 0.260   | 0.3227                              | 0.0051  | 0.248930  | C-P   |
| RN-3   | 2606183-5  | 4.750                               | 0.160   | 0.1107                              | 0.0031  | 0.233950  | C-P   |
| RN-3   | 2606183-7  | 5.420                               | 0.220   | 0.1220                              | 0.0028  | 0.589500  | C-P   |
| RN-3   | 2606183-8  | 3.650                               | 0.097   | 0.0932                              | 0.0020  | 0.010326  | C-P   |
| RN-3   | 2606183-9  | 1.405                               | 0.049   | 0.0607                              | 0.0015  | 0.053048  | C-P   |
| RN-3   | 2606183-10 | 16.460                              | 0.390   | 0.2729                              | 0.0064  | 0.728800  | C-P   |
| RN-3   | 2606183-12 | 10.690                              | 0.280   | 0.2010                              | 0.0060  | 0.134920  | C-P   |
| RN-3   | 2606183-13 | 2.412                               | 0.060   | 0.0795                              | 0.0017  | 0.309590  | C-P   |
| RN-3   | 2606183-14 | 5.080                               | 0.110   | 0.1161                              | 0.0023  | 0.055523  | C-P   |
| RN-3   | 2606183-15 | 23.550                              | 0.370   | 0.3818                              | 0.0070  | 0.481580  | C-P   |
| RN-3   | 2606183-16 | 20.520                              | 0.320   | 0.3407                              | 0.0067  | 0.289800  | C-P   |
| RN-3   | 2606183-17 | 23.220                              | 0.440   | 0.3777                              | 0.0068  | 0.490610  | C-P   |
| RN-3   | 2606183-18 | 5.340                               | 0.240   | 0.1184                              | 0.0042  | 0.531730  | C-P   |
| RN-3   | 2606183-19 | 6.104                               | 0.078   | 0.1310                              | 0.0018  | 0.062787  | C-P   |
| RN-3   | 2606183-20 | 0.371                               | 0.008   | 0.0477                              | 0.0006  | 0.731840  | C-P   |
| RN-3   | 2606183-23 | 3.960                               | 0.120   | 0.0960                              | 0.0023  | -0.027484 | C-P   |
| RN-3   | 2606183-24 | 18.230                              | 0.260   | 0.3022                              | 0.0062  | 0.083630  | C-P   |
| RN-3   | 2606183-25 | 32.720                              | 0.530   | 0.5135                              | 0.0099  | 0.384870  | C-P   |
| RN-3   | 2606183-28 | 9.180                               | 0.290   | 0.1751                              | 0.0044  | 0.169100  | C-P   |
| RN-3   | 2606183-29 | 5.770                               | 0.180   | 0.1255                              | 0.0039  | 0.601600  | C-P   |
| RN-3   | 2606183-30 | 24.020                              | 0.390   | 0.4006                              | 0.0076  | 0.268040  | C-P   |
| RN-3   | 2606183-31 | 4.880                               | 0.170   | 0.1153                              | 0.0029  | 0.540980  | C-P   |
| RN-3   | 2606183-32 | 17.690                              | 0.970   | 0.3140                              | 0.0160  | 0.919510  | C-P   |
| RN-3   | 2606183-33 | 2.721                               | 0.052   | 0.0837                              | 0.0017  | 0.004391  | C-P   |
| RN-3   | 2606183-36 | 2.907                               | 0.087   | 0.0893                              | 0.0021  | 0.263610  | C-P   |
| RN-3   | 2606183-39 | 4.150                               | 0.140   | 0.1088                              | 0.0037  | -0.070199 | C-P   |
| RN-3   | 2606183-40 | 22.460                              | 0.380   | 0.3773                              | 0.0057  | 0.191880  | C-P   |
| RN-3   | 2606183-41 | 18.340                              | 0.260   | 0.3193                              | 0.0055  | 0.309110  | C-P   |
| RN-3   | 2606183-42 | 3.155                               | 0.086   | 0.0884                              | 0.0021  | 0.272270  | C-P   |
| RN-3   | 2606183-43 | 8.230                               | 0.130   | 0.1697                              | 0.0034  | 0.338480  | C-P   |
| RN-3   | 2606183-44 | 2.440                               | 0.080   | 0.0784                              | 0.0020  | 0.306890  | C-P   |
| RN-3   | 2606183-45 | 5.420                               | 0.120   | 0.1249                              | 0.0028  | 0.382530  | C-P   |
| RN-3   | 2606183-46 | 1.758                               | 0.033   | 0.0698                              | 0.0012  | 0.122470  | C-P   |
| RN-3   | 2606183-47 | 12.390                              | 0.420   | 0.2333                              | 0.0087  | 0.512850  | C-P   |
| RN-3   | 2606183-51 | 5.110                               | 0.130   | 0.1215                              | 0.0030  | 0.338000  | C-P   |

| RN-3 | 2606183-53  | 15.700  | 0.520  | 0.2804 | 0.0090 | 0.174260  | C-P |
|------|-------------|---------|--------|--------|--------|-----------|-----|
| RN-3 | 2606183-55  | 8.610   | 0.230  | 0.1773 | 0.0042 | 0.474320  | C-P |
| RN-3 | 2606183-56  | 25.940  | 0.570  | 0.4380 | 0.0110 | 0.470980  | C-P |
| RN-3 | 2606183-57  | 7.100   | 0.190  | 0.1506 | 0.0042 | 0.135280  | C-P |
| RN-3 | 2606183-58  | 2.392   | 0.043  | 0.0826 | 0.0010 | 0.113700  | C-P |
| RN-3 | 2606183-59  | 18.970  | 0.610  | 0.3360 | 0.0120 | -0.016593 | C-P |
| RN-3 | 2606183-60  | 8.520   | 0.320  | 0.1791 | 0.0067 | 0.178390  | C-P |
| RN-3 | 2606183-61  | 10.350  | 0.240  | 0.2022 | 0.0039 | 0.048539  | C-P |
| RN-3 | 2606183-63  | 2.504   | 0.059  | 0.0804 | 0.0014 | 0.140240  | C-P |
| RN-3 | 2606183-67  | 9.480   | 0.210  | 0.1942 | 0.0039 | 0.084846  | C-P |
| RN-3 | 2606183-68  | 10.770  | 0.260  | 0.2083 | 0.0049 | 0.071937  | C-P |
| RN-3 | 2606183-69  | 7.500   | 0.150  | 0.1600 | 0.0046 | -0.147530 | C-P |
| RN-3 | 2606183-73  | 1.953   | 0.045  | 0.0724 | 0.0013 | 0.238420  | C-P |
| RN-3 | 2606183-74  | 10.410  | 0.210  | 0.1998 | 0.0042 | 0.108690  | C-P |
| RN-3 | 2606183-76  | 24.910  | 0.680  | 0.4110 | 0.0100 | 0.798080  | C-P |
| RN-3 | 2606183-77  | 3.260   | 0.100  | 0.0923 | 0.0020 | 0.408310  | C-P |
| RN-3 | 2606183-78  | 15.410  | 0.170  | 0.2655 | 0.0044 | 0.382580  | C-P |
| RN-3 | 2606183-79  | 4.060   | 0.150  | 0.1037 | 0.0030 | 0.674400  | C-P |
| RN-3 | 2606183-80  | 6.690   | 0.120  | 0.1427 | 0.0025 | -0.119070 | C-P |
| RN-3 | 2606183-81  | 24.780  | 0.360  | 0.3958 | 0.0085 | 0.316520  | C-P |
| RN-3 | 2606183-82  | 19.290  | 0.450  | 0.3172 | 0.0079 | 0.406200  | C-P |
| RN-3 | 2606183-83  | 14.080  | 0.200  | 0.2480 | 0.0048 | 0.352400  | C-P |
| RN-3 | 2606183-84  | 7.520   | 0.160  | 0.1522 | 0.0037 | 0.234780  | C-P |
| RN-3 | 2606183-85  | 7.350   | 0.180  | 0.1451 | 0.0041 | 0.303530  | C-P |
| RN-3 | 2606183-86  | 13.730  | 0.400  | 0.2450 | 0.0053 | 0.607770  | C-P |
| RN-3 | 2606183-88  | 2.788   | 0.056  | 0.0832 | 0.0018 | -0.124330 | C-P |
| RN-3 | 2606183-89  | 22.180  | 0.440  | 0.3707 | 0.0059 | 0.452150  | C-P |
| RN-3 | 2606183-91  | 20.790  | 0.240  | 0.3390 | 0.0061 | 0.127600  | C-P |
| RN-3 | 2606183-92  | 1.761   | 0.032  | 0.0687 | 0.0011 | 0.028319  | C-P |
| RN-3 | 2606183-93  | 19.800  | 0.340  | 0.3282 | 0.0057 | 0.504780  | C-P |
| RN-3 | 2606183-95  | 2.524   | 0.065  | 0.0797 | 0.0017 | 0.436730  | C-P |
| RN-3 | 2606183-97  | 9.770   | 0.220  | 0.1821 | 0.0043 | 0.260690  | C-P |
| RN-3 | 2606183-98  | 9.840   | 0.190  | 0.1860 | 0.0049 | 0.434470  | C-P |
| RN-3 | 2606183-100 | 13.020  | 0.330  | 0.2375 | 0.0054 | 0.473470  | C-P |
| RN-3 | 2606183-102 | 17.090  | 0.240  | 0.3004 | 0.0045 | 0.317270  | C-P |
| RN-3 | 2606183-103 | 25.220  | 0.400  | 0.4153 | 0.0065 | 0.436390  | C-P |
| RN-3 | 2606183-105 | 2.177   | 0.044  | 0.0746 | 0.0012 | 0.158800  | C-P |
| RN-3 | 2606183-106 | 175.000 | 17.000 | 2.6500 | 0.2600 | 0.970610  | C-P |
| RN-3 | 2606183-107 | 9.520   | 0.230  | 0.1818 | 0.0048 | 0.106760  | C-P |
| RN-3 | 2606183-108 | 6.690   | 0.580  | 0.1457 | 0.0088 | 0.731660  | C-P |
| RN-3 | 2606183-111 | 15.460  | 0.470  | 0.2751 | 0.0096 | 0.503050  | C-P |
| RN-3 | 2606183-112 | 9.610   | 0.260  | 0.1903 | 0.0048 | 0.272940  | C-P |
| RN-3 | 2606183-113 | 22.930  | 0.570  | 0.3890 | 0.0110 | 0.322110  | C-P |

| RN-3 | 2606183-115 | 11.470 | 0.270 | 0.2141 | 0.0049 | 0.208740  | C-P |
|------|-------------|--------|-------|--------|--------|-----------|-----|
| RN-3 | 2606183-117 | 2.357  | 0.050 | 0.0773 | 0.0016 | -0.064287 | C-P |
| RN-3 | 2606183-118 | 18.460 | 0.450 | 0.3179 | 0.0069 | 0.776480  | C-P |
| RN-3 | 2606183-119 | 1.682  | 0.037 | 0.0691 | 0.0013 | 0.107330  | C-P |
| RN-3 | 2606183-120 | 7.030  | 0.200 | 0.1485 | 0.0037 | 0.126980  | C-P |
| RN-3 | 2606183-122 | 9.560  | 0.210 | 0.1905 | 0.0042 | 0.155710  | C-P |
| RN-3 | 2606183-123 | 10.160 | 0.140 | 0.1947 | 0.0032 | 0.230520  | C-P |
| RN-3 | 2606183-125 | 6.100  | 0.120 | 0.1306 | 0.0033 | 0.089888  | C-P |
| RN-3 | 2606183-127 | 17.460 | 0.680 | 0.2980 | 0.0110 | 0.885670  | C-P |
| RN-3 | 2606183-128 | 5.950  | 0.130 | 0.1301 | 0.0025 | 0.104950  | C-P |
| RN-3 | 2606183-129 | 21.050 | 0.530 | 0.3549 | 0.0092 | 0.282770  | C-P |
| RN-3 | 2606183-1   | 1.375  | 0.027 | 0.1643 | 0.0017 | 0.259460  | G   |
| RN-3 | 2606183-11  | 2.237  | 0.046 | 0.1720 | 0.0022 | 0.189510  | G   |
| RN-3 | 2606183-38  | 2.234  | 0.060 | 0.1732 | 0.0019 | 0.426070  | G   |
| RN-3 | 2606183-54  | 1.380  | 0.056 | 0.1590 | 0.0024 | -0.046803 | G   |
| RN-3 | 2606183-90  | 2.542  | 0.048 | 0.1807 | 0.0023 | 0.218060  | G   |
| RN-3 | 2606183-94  | 1.499  | 0.026 | 0.1659 | 0.0013 | 0.072156  | G   |
| RN-3 | 2606183-101 | 1.562  | 0.036 | 0.1619 | 0.0022 | 0.215970  | G   |
| RN-3 | 2606183-104 | 1.338  | 0.082 | 0.1636 | 0.0049 | 0.179030  | G   |
| RN-3 | 2606183-116 | 1.924  | 0.073 | 0.1746 | 0.0028 | 0.438000  | G   |
| RN-3 | 2606183-126 | 1.768  | 0.034 | 0.1688 | 0.0019 | 0.020242  | G   |

| <b>C</b> 1  | ~        | Mg               | Mn             | Sr             | Y ,             | Tm          | La     | Ce             | Pr    | Nd              | Sm    | Eu           | Gd             | Tb           | Dy            | Но           | Er            | Yb    | Lu    | Th    | U ,   |
|-------------|----------|------------------|----------------|----------------|-----------------|-------------|--------|----------------|-------|-----------------|-------|--------------|----------------|--------------|---------------|--------------|---------------|-------|-------|-------|-------|
| Sample      | Group    | (ppm)            | (ppm)          | (ppm)          | (ppm)           | (ppm)       | (ppm)  | (ppm)          | (ppm) | (ppm)           | (ppm) | (ppm)        | (ppm)          | (ppm)        | (ppm)         | (ppm)        | (ppm)         | (ppm) | (ppm) | (ppm) | (ppm) |
| LS-Z        | V:       | 67.0             | 462.9          | 017.2          | 201 4           | 2.0         | 241.2  | 910.1          | 110 7 | F77 4           | 00.2  | 16.6         | 01.0           | 0.0          | 47 5          | 0.0          | 22.7          | 17.0  | 2.0   | 0.6   | 0.5   |
| 2500182-0   | KI<br>Ki | 1020.0           | 402.8          | 817.Z          | 281.4           | 3.0         | 241.3  | 1259.0         | 105.0 | 577.4<br>920 7  | 99.2  | 10.0         | 122.0          | 9.0          | 47.5          | 9.0          | 23.7          | 17.8  | 3.0   | 0.0   | 0.5   |
| 2506182-14  | KI<br>Ki | 1929.0           | 330.7          | 797.5          | 301.3           | 3.5         | 461.0  | 1258.0         | 140.7 | 726.0           | 140.9 | 32.7         | 123.9          | 14.4         | 70.7          | 13.3         | 32.2          | 18.9  | 2.4   | 7 1   | 2.3   |
| 2506182-15  | KI<br>Ki | 2000.0           | 439.0          | 790.2          | 405.2           | 4.8         | 401.0  | 1210.0         | 149.7 | 720.0           | 148.0 | 31.3         | 121.4          | 17.2         | 95.8          | 14.2         | 42.5          | 20.0  | 3.4   | 7.1   | 2.0   |
| 2506182-19  | KI<br>Ki | 21/5.0           | 505.7          | 789.2          | 380.9           | 3.8<br>0.1  | 0/3.2  | 1061.0         | 195.0 | 1246.0          | 155.0 | 34.9<br>42 F | 131.4          | 15.2         | 01./<br>171.4 | 14.5         | 34.5          | 20.0  | 2.0   | 12.0  | 2.4   |
| 2506182-20  | KI<br>Ki | 1222.0<br>E020.0 | 2274           | 024.5<br>770.9 | 040.9<br>272.0  | 9.1         | 985.0  | 1205.0         | 294.9 | 1340.U<br>9EE 0 | 202.5 | 43.5<br>24 E | 120.6          | 30.4<br>1E 2 | 1/1.4<br>20.6 | 31.3         | 78.Z          | 49.7  | 0.4   | 13.1  | 4.0   |
| 2500162-46  | KI<br>Ki | 220.0            | 327.4<br>126 7 | 242.2          | 372.0<br>1224.0 | 5.0<br>1E 7 | 603.2  | 1505.0         | 276.0 | 1417.0          | 250.0 | 0.4          | 271 4          | 15.2         | 20E 1         | 14.0<br>E4.9 | 55.4<br>124 1 | 20.2  | 2.0   | 10.0  | 2.5   |
| 2500162-72  | KI<br>Ki | 1092.0           | 450.7          | 242.2          | 227.0           | 24          | 672.7  | 12140.0        | 101 1 | 1417.0<br>910.0 | 142 4 | 9.4<br>21.0  | 371.4<br>171.2 | 49.0         | 72 6          | 17.0         | 20.2          | 10.1  | 3.7   | 10.0  | 4.7   |
| 2500162-75  | KI<br>Ki | 2064.0           | 240 6          | 024.2<br>002.2 | 202 0           | 2.4         | 710.0  | 1214.0         | 206.6 | 006.0           | 145.4 | 24.0         | 121.5          | 15.0         | 75.0<br>97 E  | 14.0         | 20.5          | 20.7  | 2.5   | 12.0  | 2.0   |
| 2506182-80  | NI       | 2004.0           | 165.2          | 101 2          | 303.0<br>1047.0 | 3.9         | 719.9  | 2010.0         | 200.0 | 1664.0          | 256.2 | 20.9         | 2175           | 15.4         | 02.5<br>220.6 | 14.4         | 55.0<br>111 5 | 20.7  | 2.0   | 12.2  | 2.5   |
| 2506182-20  |          | 46.0             | 320.5          | 368.8          | 1330.0          | 17.0        | 1/67.0 | 3644.0         | 594 7 | 2631.0          | 514.7 | 39.0         | /37.1          | 55.2         | 207.2         | 43.0<br>55 Q | 1/1.5         | 95 5  | 12.6  | 15.3  | 7.6   |
| 2506182-34  |          | 190.0            | 246.5          | 103.0          | 3220.0          | 17.0        | 717.0  | 2260.0         | 475.0 | 2566.0          | 726.0 | 39.1         | 746 1          | 110 5        | 680.3         | 131.3        | 3/15 1        | 222.2 | 20.3  | 67.7  | 12.0  |
| 2506182-43  |          | 71.0             | 760.4          | 449 3          | 393.0           | 42.0        | 766.0  | 1384.0         | 193.7 | 845.0           | 148.8 | 23.1         | 174.0          | 14.0         | 76.0          | 14 3         | 37.5          | 30.0  | 47    | 4.4   | 2 1   |
| 2506182-46  |          | 76.0             | 599.9          | 536.9          | 60.7            | 0.8         | 22.9   | 1004.0<br>61.0 | 94    | 53.6            | 13.9  | 65           | 15 7           | 1.8          | 10.7          | 2.3          | 6.0           | 53    | 1.0   | 35    | 1.4   |
| 2506182-58  |          | 2142.0           | 496.8          | 796.4          | 630.0           | 7.2         | 626.0  | 1292.0         | 207.6 | 975.0           | 209.3 | 26.7         | 188.6          | 23.4         | 131 3         | 24.0         | 60.7          | 39.1  | 5.2   | 7.8   | 2.7   |
| 2506182-60  |          | 64.0             | 351.3          | 160.1          | 318 3           | 1.8         | 402.8  | 1119.0         | 165.8 | 808.0           | 180.7 | 18.6         | 174.0          | 19.5         | 91 1          | 12 7         | 23.0          | 7.6   | 0.8   | 37.7  | 23.6  |
| 2506182-71  |          | 221.0            | 982.3          | 616.0          | 967.0           | 12.1        | 835.6  | 2086.0         | 356.1 | 1733.0          | 380.3 | 50.1         | 313.8          | 39.6         | 221.2         | 39.8         | 100.2         | 66.6  | 8.2   | 56.7  | 93    |
| 2506182-76  |          | 2749.0           | 533.3          | 795.5          | 525.0           | 5.4         | 694.5  | 1469.0         | 236.2 | 1116.0          | 222.8 | 28.6         | 188.0          | 21.4         | 114.7         | 20.1         | 47.6          | 28.3  | 3.7   | 8.6   | 1.6   |
| 2506182-78  |          | 41.2             | 459.7          | 483.7          | 536.9           | 7.0         | 50.0   | 198.9          | 42.3  | 303.3           | 113.0 | 26.4         | 125.7          | 16.9         | 101.3         | 19.9         | 53.3          | 41.7  | 6.3   | 2.9   | 5.1   |
| 2506182-90  |          | 53.5             | 483.9          | 527.4          | 388.3           | 5.0         | 171.1  | 577.7          | 98.4  | 567.3           | 130.6 | 28.6         | 116.0          | 13.7         | 76.0          | 14.5         | 38.6          | 30.5  | 4.6   | 6.5   | 3.7   |
| 2506182-96  |          | 30.0             | 541.1          | 169.8          | 1257.0          | 20.4        | 1057.0 | 2770.0         | 487.8 | 2603.0          | 512.0 | 13.1         | 372.8          | 40.7         | 231.4         | 47.9         | 139.4         | 136.3 | 21.6  | 37.4  | 14.4  |
| 2506182-101 |          | 94.0             | 273.2          | 237.6          | 1055.0          | 12.6        | 584.1  | 1488.0         | 261.4 | 1286.0          | 297.2 | 9.2          | 292.1          | 39.1         | 226.0         | 42.3         | 106.4         | 68.4  | 9.0   | 15.9  | 5.3   |
| 2506182-103 |          | 74.6             | 288.9          | 336.9          | 618.8           | 2.8         | 62.0   | 230.5          | 46.9  | 291.6           | 131.1 | 13.7         | 174.0          | 27.8         | 147.5         | 20.2         | 34.4          | 11.4  | 1.2   | 0.1   | 15.6  |
| 2506182-107 |          | 56.0             | 142.9          | 190.5          | 1245.0          | 15.5        | 765.8  | 1831.0         | 311.5 | 1582.0          | 383.2 | 39.0         | 377.6          | 48.5         | 277.2         | 51.7         | 129.6         | 87.1  | 11.4  | 34.4  | 20.1  |
| 2506182-109 |          | 2036.0           | 877.0          | 550.5          | 638.6           | 7.2         | 339.3  | 912.0          | 132.9 | 688.0           | 168.1 | 29.2         | 168.4          | 22.0         | 129.9         | 24.6         | 61.4          | 39.1  | 5.1   | 4.2   | 1.2   |
| 2506182-3   | C-P      | 118.0            | 99.0           | 576.0          | 191.3           | 0.8         | 1265.0 | 3006.0         | 458.9 | 2075.0          | 379.2 | 29.5         | 251.7          | 21.0         | 68.9          | 7.1          | 10.9          | 3.6   | 0.4   | 23.6  | 9.0   |
| 2506182-37  | C-P      | 88.0             | 1084.0         | 130.3          | 1411.0          | 18.2        | 309.9  | 1174.0         | 240.5 | 1367.0          | 482.8 | 7.9          | 490.5          | 65.4         | 341.4         | 57.9         | 142.9         | 107.2 | 14.6  | 0.3   | 27.0  |
| 2506182-40  | C-P      | 68.0             | 360.0          | 270.7          | 1960.0          | 26.2        | 2369.0 | 5848.0         | 904.0 | 4199.0          | 777.6 | 70.1         | 648.3          | 79.1         | 448.0         | 82.6         | 213.1         | 150.4 | 20.3  | 43.5  | 18.5  |
| 2506182-44  | C-P      | 46.0             | 307.6          | 1047.7         | 1648.0          | 22.1        | 1091.0 | 3777.0         | 720.6 | 3525.0          | 720.6 | 119.1        | 548.8          | 67.8         | 376.0         | 69.1         | 178.3         | 128.7 | 17.6  | 6.4   | 9.2   |
| 2506182-54  | C-P      | 174.0            | 783.6          | 641.7          | 289.5           | 3.1         | 166.1  | 506.5          | 81.7  | 431.6           | 106.3 | 19.1         | 91.1           | 11.1         | 59.7          | 10.6         | 26.6          | 16.6  | 2.2   | 13.3  | 0.4   |
| 2506182-59  | C-P      | 194.0            | 487.5          | 147.3          | 664.2           | 7.9         | 1009.0 | 1876.0         | 253.4 | 1026.0          | 190.7 | 31.8         | 174.3          | 21.9         | 127.3         | 24.1         | 63.9          | 46.4  | 6.6   | 91.5  | 42.6  |
| 2506182-84  | C-P      | 83.0             | 514.3          | 333.0          | 1231.0          | 16.2        | 1090.0 | 2510.0         | 407.0 | 1887.0          | 386.9 | 13.8         | 360.0          | 46.8         | 271.6         | 51.9         | 133.5         | 88.3  | 11.6  | 4.4   | 4.0   |
| 2506182-97  | C-P      | 50.0             | 806.8          | 635.0          | 242.2           | 2.8         | 287.5  | 771.0          | 107.6 | 524.2           | 99.4  | 15.2         | 84.3           | 9.2          | 47.7          | 8.9          | 22.6          | 16.9  | 2.7   | 1.5   | 0.8   |
| 2506182-100 | C-P      | 105.0            | 626.0          | 444.8          | 1090.0          | 13.0        | 1028.0 | 2196.0         | 359.2 | 1745.0          | 372.0 | 58.7         | 334.8          | 42.0         | 234.8         | 42.9         | 106.2         | 73.0  | 9.8   | 28.6  | 5.3   |
| 2506182-82  | G        | 52.4             | 512.3          | 48.3           | 2162.0          | 31.7        | 29.7   | 92.0           | 21.8  | 199.0           | 169.7 | 8.1          | 305.5          | 57.2         | 407.7         | 85.6         | 239.9         | 172.3 | 22.0  | 3.1   | 8.4   |
| 2506182-16  | G        | 101.0            | 561.4          | 137.0          | 2052.0          | 32.2        | 65.0   | 291.2          | 72.3  | 587.5           | 272.1 | 34.2         | 376.8          | 59.9         | 394.7         | 82.0         | 236.6         | 201.4 | 30.5  | 2.3   | 52.9  |
| 2506182-83  | G        | 38.6             | 293.0          | 96.8           | 1548.0          | 21.7        | 33.9   | 227.4          | 66.8  | 556.0           | 241.7 | 14.3         | 318.9          | 47.9         | 301.9         | 62.0         | 170.7         | 128.3 | 19.9  | 0.8   | 12.7  |
| 2506182-42  | G        | 26.2             | 403.0          | 130.2          | 2546.0          | 38.9        | 282.2  | 1100.0         | 210.6 | 1266.0          | 410.7 | 118.6        | 468.4          | 72.6         | 469.6         | 95.7         | 276.6         | 248.6 | 36.2  | 7.9   | 39.8  |
| 2506182-75  | G        | 117.0            | 781.0          | 266.9          | 2271.0          | 29.2        | 196.3  | 1137.0         | 261.9 | 1678.0          | 557.2 | 44.7         | 565.2          | 80.2         | 483.0         | 91.9         | 235.6         | 161.5 | 20.8  | 2.6   | 8.6   |
| 2506182-67  | G        | 129.7            | 446.1          | 752.6          | 2584.0          | 40.3        | 517.7  | 1750.0         | 379.1 | 2151.0          | 630.5 | 40.1         | 589.4          | 86.7         | 542.2         | 106.3        | 299.0         | 240.9 | 32.0  | 9.3   | 5.1   |
| 2506182-77  | G        | 37.8             | 891.2          | 82.9           | 3430.0          | 40.2        | 559.9  | 1932.0         | 423.2 | 2432.0          | 902.2 | 41.7         | 937.0          | 132.3        | 777.1         | 142.7        | 350.7         | 208.0 | 25.8  | 116.8 | 38.0  |
| 2506182-2   | G        | 64.0             | 309.0          | 423.3          | 2533.0          | 38.6        | 791.2  | 2242.0         | 448.3 | 2460.0          | 644.2 | 58.8         | 608.1          | 90.0         | 556.6         | 107.1        | 290.9         | 230.6 | 30.9  | 70.7  | 21.4  |
| 2506182-63  | G        | 80.0             | 336.3          | 258.4          | 3474.0          | 52.3        | 1054.0 | 3138.0         | 615.5 | 3318.0          | 896.5 | 124.2        | 852.5          | 125.6        | 781.7         | 147.8        | 397.1         | 315.2 | 42.9  | 98.3  | 28.9  |
| 2506182-24  | G        | 77.0             | 382.8          | 325.4          | 2372.0          | 35.2        | 753.8  | 2214.0         | 450.2 | 2413.0          | 648.0 | 124.2        | 633.0          | 88.6         | 528.5         | 100.3        | 268.7         | 214.9 | 30.3  | 57.6  | 29.2  |
| 2506182-65  | G        | 427.0            | 736.6          | 175.3          | 2682.0          | 39.8        | 1024.0 | 2750.0         | 466.4 | 2195.0          | 555.2 | 50.3         | 557.4          | 81.8         | 524.8         | 106.4        | 301.0         | 239.0 | 32.8  | 28.1  | 7.7   |
| 2506182-    | G        | 73.0             | 690.1          | 255.8          | 1154.0          | 15.8        | 340.4  | 1244.0         | 239.9 | 1320.0          | 335.4 | 35.7         | 305.6          | 41.4         | 245.1         | 47.3         | 127.0         | 86.2  | 11.0  | 7.0   | 7.1   |

## Anexo 5. Análisis geoquímico de apatitos mediante LA-ICPMS

| 110x        |   |       |       |        |        |      |        |        |        |        |        |       |        |       |       |       |       |       |      |       |      |
|-------------|---|-------|-------|--------|--------|------|--------|--------|--------|--------|--------|-------|--------|-------|-------|-------|-------|-------|------|-------|------|
| 2506182-32  | G | 148.0 | 800.4 | 51.1   | 2108.0 | 30.4 | 1212.0 | 3104.0 | 504.3  | 2305.0 | 496.6  | 19.4  | 488.8  | 68.4  | 427.0 | 86.0  | 235.3 | 179.7 | 25.0 | 6.9   | 33.0 |
| 2506182-69  | G | 73.0  | 181.6 | 71.7   | 3081.0 | 37.6 | 1154.0 | 3510.0 | 655.9  | 3454.0 | 879.2  | 25.4  | 896.0  | 121.9 | 722.5 | 134.4 | 331.1 | 195.2 | 23.5 | 15.4  | 6.2  |
| 2506182-61  | G | 130.0 | 283.0 | 200.9  | 1090.0 | 14.3 | 533.4  | 1465.0 | 265.6  | 1313.0 | 305.9  | 8.2   | 289.8  | 38.2  | 225.1 | 43.6  | 115.7 | 80.4  | 11.0 | 17.6  | 19.7 |
| 2506182-53  | G | 75.0  | 420.5 | 134.0  | 1526.0 | 17.4 | 546.6  | 1785.0 | 317.7  | 1512.0 | 411.4  | 9.4   | 405.8  | 57.2  | 333.0 | 59.8  | 149.4 | 92.6  | 11.4 | 13.3  | 1.9  |
| 2506182-11  | G | 91.0  | 554.0 | 574.8  | 1810.0 | 25.4 | 1066.0 | 3069.0 | 564.1  | 2840.0 | 626.7  | 79.4  | 540.2  | 70.2  | 397.4 | 74.9  | 196.8 | 154.8 | 21.7 | 11.6  | 6.6  |
| 2506182-36  | G | 51.5  | 541.8 | 145.6  | 1757.0 | 24.0 | 1109.0 | 2915.0 | 519.9  | 2481.0 | 507.5  | 39.0  | 460.9  | 60.4  | 354.5 | 68.7  | 185.6 | 143.9 | 20.5 | 8.5   | 67.3 |
| 2506182-94  | G | 183.0 | 296.4 | 504.1  | 853.6  | 10.7 | 570.0  | 1322.0 | 206.0  | 1014.0 | 234.7  | 37.3  | 219.1  | 28.5  | 165.2 | 30.6  | 80.1  | 62.6  | 8.6  | 30.7  | 28.1 |
| 2506182-70  | G | 110.0 | 369.5 | 353.2  | 604.0  | 8.3  | 498.0  | 1184.0 | 153.8  | 632.0  | 122.1  | 10.3  | 114.5  | 15.1  | 91.6  | 19.1  | 57.8  | 55.5  | 8.7  | 25.2  | 31.8 |
| 2506182-64  | G | 146.0 | 398.1 | 141.4  | 436.1  | 5.2  | 327.3  | 674.9  | 81.2   | 383.2  | 88.0   | 12.4  | 95.2   | 12.6  | 77.8  | 15.4  | 41.2  | 30.7  | 4.2  | 20.0  | 19.9 |
| 2506182-50  | G | 179.0 | 782.2 | 217.5  | 1266.0 | 18.0 | 948.0  | 2446.0 | 378.9  | 1582.0 | 326.5  | 39.2  | 302.0  | 41.8  | 248.9 | 49.1  | 135.9 | 109.6 | 15.1 | 39.4  | 14.5 |
| 2506182-17  | G | 53.3  | 442.8 | 386.9  | 638.4  | 7.7  | 899.1  | 1151.0 | 130.4  | 546.7  | 103.3  | 25.7  | 120.0  | 15.5  | 94.5  | 19.9  | 58.0  | 50.7  | 8.9  | 71.4  | 41.9 |
| 2506182-18  | G | 104.0 | 671.4 | 75.2   | 4252.0 | 56.5 | 3886.0 | 9800.0 | 1228.0 | 5405.0 | 1137.8 | 39.5  | 1035 5 | 142.9 | 855.5 | 165.8 | 445.4 | 325.2 | 42.5 | 30.2  | 8.0  |
| 2506182-29  | G | 45.0  | 443.2 | 94 5   | 2276.0 | 31.2 | 2280.0 | 5568.0 | 807.0  | 3247.0 | 596.0  | 40.2  | 545.4  | 72.6  | 432.8 | 85.6  | 237.2 | 184.4 | 25.4 | 71 5  | 45.5 |
| 2506182-56  | G | 164.0 | 345.1 | 167.4  | 1608.0 | 20.8 | 1225.0 | 3787.0 | 599.5  | 2557.0 | 502.1  | 24.4  | 436.4  | 55.2  | 318.0 | 61 1  | 163.8 | 122.7 | 16.6 | 43.7  | 83.6 |
| 2506182-98  | G | 117.0 | 532.7 | 1675.6 | 582.4  | 59   | 330.4  | 1141 0 | 190.4  | 1036.0 | 237.6  | 41 3  | 200.2  | 23.3  | 120.7 | 21.0  | 50.0  | 32.8  | 4 2  | 23    | 6.9  |
| 2506182-30  | G | 153.0 | 374.8 | 122.5  | 2154.0 | 29.3 | 3079.0 | 6263.0 | 838.0  | 3289.0 | 597.4  | 54.8  | 549 1  | 72.6  | 429.7 | 84.1  | 226.1 | 172.1 | 24.0 | 319 5 | 58.0 |
| 2506182-10  | G | 91.0  | 279.0 | 94.0   | 896.0  | 10.2 | 1116.0 | 2186.0 | 292.5  | 1246.0 | 231.3  | 17.9  | 215.0  | 27.2  | 157.6 | 30.6  | 81.5  | 59.4  | 8.6  | 31 7  | 16.5 |
| 2506182-88  | G | 135.0 | 260.2 | 85.0   | 1214.0 | 15.1 | 1774 0 | 3700.0 | 505.6  | 2150.0 | 388 5  | 32.0  | 358.2  | 45.5  | 258.8 | 49.0  | 174.4 | 83.9  | 11.2 | 14 5  | 13.3 |
| 2506182-45x | G | 160.0 | 318.5 | 341.9  | 896.0  | 9.5  | 1025.0 | 2533.0 | 436.6  | 2107.0 | 466.5  | 27.8  | 353.7  | 40.3  | 204.5 | 34.2  | 80.8  | 53.0  | 6.8  | 11.1  | 10.2 |
| 2506182-89  | G | 58.0  | 235.4 | 115.5  | 1353.0 | 19.0 | 2576.0 | 5510.0 | 767.2  | 3396.0 | 577.3  | 48.1  | 469.5  | 54.0  | 296.3 | 55.7  | 147.2 | 112.1 | 15.6 | 108.0 | 40.3 |
| 2506182-7   | G | 61.0  | 284.3 | 250.8  | 232.4  | 2.5  | 419.9  | 713.6  | 75.3   | 313.3  | 56.3   | 10.2  | 56.3   | 6.8   | 39.9  | 7.9   | 20.6  | 14.4  | 2.1  | 19.5  | 14.2 |
| 2506182-1   | G | 197.0 | 278.9 | 616.0  | 733.1  | 7.9  | 1082.0 | 2318.0 | 372.1  | 1726.0 | 316.2  | 42.7  | 251.6  | 29.0  | 152.7 | 27.0  | 66.6  | 43.2  | 5.6  | 19.8  | 6.1  |
| 2506182-93  | G | 142.0 | 229.7 | 278.9  | 800.0  | 8.4  | 1241.0 | 2589.0 | 345.9  | 1474.0 | 257.2  | 32.3  | 234.1  | 27.6  | 151.4 | 28.1  | 70.3  | 47.5  | 6.7  | 120.6 | 25.9 |
| 2506182-108 | G | 323.0 | 348.5 | 742.9  | 417.5  | 4.1  | 585.9  | 1236.0 | 205.1  | 968.0  | 182.0  | 31.8  | 147.7  | 16.6  | 86.3  | 15.2  | 36.3  | 22.2  | 3.0  | 8.1   | 2.9  |
| 2506182-49  | G | 76.0  | 358.5 | 1005.3 | 565.6  | 5.9  | 734.6  | 1763.0 | 295.6  | 1339.0 | 259.6  | 49.5  | 195.5  | 22.5  | 118.1 | 20.7  | 50.9  | 31.3  | 3.8  | 73.0  | 25.6 |
| 2506182-8   | G | 111.0 | 255.6 | 192.6  | 944.0  | 9.6  | 1089.0 | 2880.0 | 453.0  | 2008.0 | 384.8  | 7.6   | 329.0  | 39.1  | 203.2 | 35.6  | 86.5  | 51.0  | 6.6  | 8.0   | 15.3 |
| R2506182-4  | G | 105.0 | 402.8 | 321.9  | 1318.0 | 17.5 | 2654.0 | 5779.0 | 792.0  | 3186.0 | 532.4  | 41.6  | 420.7  | 51.5  | 286.2 | 52.8  | 138.5 | 101.8 | 14.0 | 76.3  | 20.7 |
| 2506182-74  | G | 27.1  | 634.6 | 159.4  | 1243.0 | 17.0 | 3081.0 | 6268.0 | 769.5  | 2824.0 | 409.2  | 35.3  | 341.4  | 40.4  | 232.8 | 46.5  | 129.2 | 103.4 | 15.2 | 46.8  | 4.4  |
| 2506182-99  | G | 295.0 | 232.2 | 712.1  | 254.9  | 2.6  | 363.4  | 871.0  | 120.7  | 588.0  | 110.5  | 21.4  | 91.5   | 10.1  | 52.5  | 9.2   | 21.9  | 14.4  | 1.9  | 5.1   | 4.6  |
| 2506182-55  | G | 185.0 | 404.9 | 438.8  | 930.7  | 11.1 | 1787.0 | 3910.0 | 567.7  | 2339.0 | 393.1  | 50.6  | 297.6  | 34.6  | 187.0 | 34.0  | 88.9  | 64.4  | 8.8  | 78.8  | 22.4 |
| 2506182-38  | G | 61.4  | 175.3 | 777.8  | 680.0  | 7.2  | 1058.0 | 2468.0 | 381.5  | 1707.0 | 310.9  | 25.0  | 239.6  | 27.3  | 143.5 | 24.9  | 60.7  | 40.2  | 5.1  | 17.6  | 9.5  |
| 2506182-35  | G | 163.2 | 439.9 | 796.0  | 582.2  | 6.5  | 1095.0 | 2349.0 | 345.4  | 1426.0 | 247.5  | 20.2  | 190.7  | 21.9  | 117.9 | 20.9  | 53.4  | 37.0  | 4.9  | 45.9  | 12.3 |
| 2506182-52  | G | 155.0 | 239.5 | 524.9  | 720.7  | 7.5  | 1232.0 | 2685.0 | 381.9  | 1654.0 | 296.0  | 36.0  | 240.8  | 27.2  | 145.0 | 25.9  | 64.7  | 41.4  | 5.5  | 46.2  | 18.1 |
| 2506182-31  | G | 152.0 | 426.7 | 884.2  | 1563.0 | 17.4 | 2442.0 | 7236.0 | 1136.0 | 5759.0 | 1210.3 | 191.4 | 775.2  | 77.5  | 368.2 | 61.5  | 149.1 | 99.0  | 13.0 | 75.0  | 33.8 |
| 2506182-95  | G | 127.0 | 444.7 | 9496.0 | 781.3  | 6.8  | 891.1  | 2983.0 | 639.0  | 3512.0 | 700.2  | 151.4 | 436.5  | 41.7  | 183.2 | 27.4  | 60.8  | 38.0  | 5.0  | 38.4  | 84.1 |
| 2506182-87  | G | 116.0 | 266.2 | 478.3  | 407.6  | 4.1  | 857.8  | 1794.0 | 271.5  | 1202.0 | 196.8  | 15.9  | 151.2  | 16.5  | 84.4  | 14.9  | 35.6  | 22.0  | 2.9  | 7.0   | 8.8  |
| 2506182-91  | G | 253.0 | 423.9 | 418.5  | 943.0  | 10.2 | 1985.0 | 5250.0 | 779.0  | 3351.0 | 535.5  | 21.3  | 372.1  | 40.8  | 205.9 | 34.9  | 85.7  | 57.7  | 7.5  | 75.2  | 23.9 |
| 2506182-57  | G | 77.0  | 136.1 | 136.3  | 1140.0 | 11.6 | 1493.0 | 3875.0 | 595.3  | 2628.0 | 522.2  | 10.5  | 448.3  | 53.1  | 283.9 | 48.1  | 110.9 | 42.3  | 6.9  | 45.3  | 9.7  |
| 2506182-25  | G | 192.0 | 464.7 | 351.2  | 1182.0 | 13.9 | 3129.0 | 7226.0 | 945.0  | 4281.0 | 678.9  | 59.7  | 511.5  | 54.5  | 278.9 | 48.7  | 120.4 | 78.8  | 10.8 | 91.5  | 17.4 |
| 2506182-27  | G | 37.8  | 172.3 | 156.5  | 1393.0 | 9.4  | 1372.0 | 4359.0 | 891.0  | 4921.0 | 1210.8 | 65.8  | 997.0  | 105.6 | 454.4 | 60.4  | 108.9 | 42.4  | 4.8  | 5.3   | 28.0 |
| 2506182-92  | G | 52.6  | 191.7 | 176.9  | 749.4  | 4.9  | 1078.0 | 2110.0 | 318.8  | 1489.0 | 312.2  | 39.9  | 298.8  | 35.7  | 179.0 | 27.6  | 53.8  | 20.4  | 2.1  | 10.9  | 6.0  |
| 2506182-12  | G | 76.1  | 210.3 | 2078.0 | 639.5  | 5.8  | 1432.0 | 3540.0 | 549.6  | 2485.0 | 421.3  | 63.1  | 286.1  | 29.2  | 137.4 | 21.4  | 50.5  | 34.0  | 4.4  | 33.7  | 51.3 |
| 2506182-68  | G | 81.0  | 139.1 | 110.9  | 624.5  | 4.1  | 1119.0 | 2814.0 | 437.2  | 1969.0 | 386.9  | 13.5  | 315.4  | 33.8  | 157.3 | 22.6  | 44.0  | 22.3  | 2.1  | 105.6 | 12.7 |
| 2506182-33  | G | 58.4  | 103.6 | 88.7   | 791.5  | 3.9  | 854.0  | 2584.0 | 556.3  | 3167.0 | 948.3  | 80.0  | 729.0  | 67.5  | 245.8 | 28.0  | 45.9  | 17.8  | 1.9  | 13.0  | 37.0 |
| 2506182-85  | G | 100.0 | 250.4 | 684.6  | 385.5  | 3.5  | 1718.0 | 3315.0 | 478.2  | 2007.0 | 290.0  | 37.8  | 210.8  | 20.2  | 92.0  | 14.5  | 32.4  | 18.2  | 2.4  | 21.5  | 4.2  |
| 2506182-86  | G | 241.0 | 73.3  | 310.1  | 1038.0 | 5.7  | 1179.0 | 4848.0 | 977.0  | 5844.0 | 1790.1 | 171.7 | 1243.8 | 112.1 | 403.9 | 44.1  | 70.2  | 25.7  | 2.6  | 15.7  | 48.1 |
| 2506182-104 | G | 94.0  | 193.1 | 397.9  | 569.1  | 3.1  | 1126.0 | 2745.0 | 431.8  | 1993.0 | 393.7  | 36.7  | 317.0  | 34.2  | 153.4 | 21.3  | 38.4  | 12.8  | 1.4  | 20.3  | 3.5  |
| 2506182-13  | G | 186.0 | 435.2 | 1478.1 | 288.8  | 2.8  | 1745.0 | 3555.0 | 461.7  | 1794.0 | 224.6  | 36.9  | 142.3  | 13.1  | 59.5  | 9.9   | 24.2  | 15.7  | 2.1  | 126.5 | 44.7 |
| 2506182-62  | G | 144.0 | 168.8 | 87.8   | 814.4  | 3.7  | 2479.0 | 5779.0 | 833.0  | 3562.0 | 687.5  | 21.1  | 537.9  | 55.2  | 233.6 | 29.5  | 50.1  | 14.8  | 1.4  | 83.4  | 15.7 |
| 2506182-106 | G | 104.0 | 201.9 | 115.0  | 416.8  | 1.8  | 1942.0 | 4989.0 | 818.0  | 3977.0 | 880.8  | 23.2  | 580.5  | 45.9  | 148.8 | 15.6  | 25.1  | 9.0   | 1.0  | 3.1   | 22.1 |
| 2506182-105 | G | 82.1  | 77.8  | 175.3  | 300.1  | 1.0  | 1090.0 | 2736.0 | 461.3  | 2293.0 | 524.4  | 40.6  | 398.7  | 34.3  | 111.2 | 10.7  | 15.0  | 4.8   | 0.5  | 6.2   | 8.2  |
| 2506182-51  | G | 85.9  | 135.2 | 216.7  | 146.4  | 0.5  | 907.0  | 2013.0 | 316.9  | 1427.0 | 303.7  | 22.7  | 214.3  | 17.4  | 54.8  | 5.2   | 7.6   | 2.3   | 0.2  | 11.6  | 5.2  |

| 2506182  | 2-21 | G     | 58.0         | 90.9   | 167.2        | 301.8  | 1.2   | 2030.0 | 4674.0  | 687.8          | 2946.0 | 528.9  | 32.8         | 364.7          | 30.0  | 102.4           | 10.9          | 16.9           | 4.7   | 0.5   | 101.4        | 23.4        |
|----------|------|-------|--------------|--------|--------------|--------|-------|--------|---------|----------------|--------|--------|--------------|----------------|-------|-----------------|---------------|----------------|-------|-------|--------------|-------------|
| 2506182  | 2-23 | G     | 150.0        | 118.7  | 201.0        | 136.4  | 0.3   | 621.0  | 1782.0  | 376.3          | 2169.0 | 592.5  | 48.9         | 403.3          | 27.6  | 65.4            | 4.6           | 5.4            | 1.7   | 0.1   | 2.4          | 13.1        |
|          |      |       |              |        |              |        |       |        |         |                |        |        |              |                |       |                 |               |                |       |       |              |             |
|          |      |       | Mø           | Mn     | Sr           | Y      | Tm    | la     | Ce      | Pr             | Nd     | Sm     | Fu           | Gd             | Th    | Dv              | Ho            | Fr             | Yb    | Lu    | Th           | U           |
| Sample   | le G | iroun | (nnm)        | (nnm)  | (nnm)        | (nnm)  | (npm) | (ppm)  | (nnm)   | (nnm)          | (npm)  | (nnm)  | (nnm)        | (npm)          | (nnm) | (nnm)           | (ppm)         | (ppm)          | (nnm) | (ppm) | (nnm)        | (nnm)       |
|          |      | noup  | (pp)         | (pp)   | (pp)         | (pp)   | (pp)  | (pp)   | (pp)    | (pp)           | (pp)   | (pp)   | (pp)         | (pp)           | (pp)  | (pp)            | (pp)          | (pp)           | (pp)  | (pp)  | (pp)         | (pp)        |
| 2606181  | -46  | G     | 62.1         | 1022.0 | 08.8         | 1050.0 | 20.2  | 6.6    | 25 5    | 10.6           | 102.2  | 86.0   | <i>1</i> 1 0 | 100 0          | 11 5  | 221 1           | 65.6          | 170 7          | 105 / | 12.0  | 0.1          | 6.0         |
| 2000181  | 175  | G     | 61 4         | 1033.0 | 30.0<br>C CT | 7951.0 | 111.0 | 1117.0 | 220E 0  | E17 /          | 2702.0 | 0010   | 41.5         | 100.0          | 101.2 | 1225 6          | 276.0         | 010.0          | 602.7 | 13.0  | 7.2          | 15 7        |
| 2000181- | -125 | G     | 72.0         | 1024.0 | 12.5         | 7851.0 | 101.9 | 1000.1 | 22770   | 517.4          | 2702.0 | 004.0  | 125.1        | 1095.5         | 171.2 | 1104.0          | 270.0         | 010.0<br>721.0 | 627.0 | 94.4  | 17.4         | 15.7        |
| 2000181  | L-47 | G     | 72.0         | 082.0  | 212.0        | 1952.0 | 20.2  | 241.2  | 3377.U  | 302.7<br>11F F | 2949.0 | 242.7  | 20.0         | 1030.4         | 174.0 | 206 5           | 250.5         | 167.6          | 027.0 | 87.Z  | 17.4         | 9.9<br>20 F |
| 2606181  | L-/4 | G     | 96.7         | 819.7  | 212.8        | 1852.0 | 20.3  | 241.2  | 665.1   | 115.5          | 783.4  | 342.7  | 30.6         | 460.7          | 66.9  | 380.5           | 68.4          | 167.6          | 117.9 | 16.2  | 2.3          | 38.5        |
| 2606181  | L-50 | G     | 42.0         | 607.4  | 299.0        | 7056.0 | 105.2 | 1029.4 | 4207.0  | 764.5          | 4157.0 | 1105.9 | 121.6        | 1112.4         | 175.9 | 11/2.8          | 242.0         | /21.1          | 673.9 | 96.2  | 126.1        | 27.3        |
| 2606181  | L-1/ | G     | 90.7         | 917.4  | 204.8        | 5478.0 | /6.8  | 2113.0 | /108.0  | 1084.0         | 5202.0 | 1218.1 | 123.4        | 1093.1         | 158.1 | 1001.4          | 195.7         | 555.6          | 475.5 | 64.2  | 33.1         | 59.1        |
| 2606181  | L-21 | G     | 132.0        | 1815.0 | 249.0        | 3841.0 | 59.6  | 21/9.0 | 6/35.0  | 915.4          | 4056.0 | 934.8  | 45.0         | 815.8          | 117.4 | /34.9           | 142.5         | 411.4          | 406.4 | 63.0  | 7.1          | 67.4        |
| 2606183  | 1-2  | G     | 84.5         | 295.7  | 312.6        | 3737.0 | 49.6  | 1470.0 | 4970.0  | 789.9          | 4001.0 | 971.2  | 67.7         | 901.1          | 127.4 | 760.6           | 142.7         | 377.4          | 289.6 | 39.5  | 45.2         | 38.5        |
| 2606183  | 1-1  | G     | 101.0        | 431.6  | 2121.0       | 395.7  | 4.4   | 66.0   | 460.9   | 121.4          | 878.0  | 225.0  | 46.9         | 155.1          | 16.8  | 82.3            | 13.5          | 34.0           | 26.8  | 3.7   | 1.0          | 86.2        |
| 2606181  | L-25 | G     | 70.8         | 397.7  | 168.7        | 1808.0 | 13.0  | 258.9  | 928.3   | 156.3          | 862.2  | 337.9  | 23.0         | 423.0          | 69.5  | 418.5           | 69.6          | 148.6          | 52.9  | 5.6   | 2.6          | 37.6        |
| 2606181  | L-57 | G     | 123.9        | 319.1  | 339.1        | 3492.0 | 44.4  | 1421.0 | 4581.0  | 733.1          | 3735.0 | 905.1  | 119.5        | 801.4          | 113.6 | 684.0           | 128.4         | 341.4          | 256.6 | 34.8  | 139.8        | 28.2        |
| 2606181  | L-69 | G     | 63.3         | 348.2  | 260.8        | 3090.0 | 40.0  | 1386.0 | 4816.0  | 759.1          | 3805.0 | 901.0  | 62.8         | 796.5          | 108.5 | 630.1           | 116.3         | 307.3          | 241.4 | 32.2  | 122.7        | 31.7        |
| 2606181  | L-65 | G     | 110.5        | 477.7  | 263.1        | 4076.0 | 53.5  | 2119.0 | 6635.0  | 1009.0         | 5035.0 | 1139.9 | 63.8         | 1003.1         | 136.2 | 803.0           | 151.3         | 402.6          | 318.3 | 41.6  | 105.4        | 25.6        |
| 2606181  | L-92 | G     | 142.6        | 500.7  | 112.3        | 518.5  | 7.5   | 446.7  | 1070.9  | 131.4          | 578.7  | 124.7  | 32.8         | 119.6          | 15.6  | 93.4            | 18.3          | 52.2           | 49.9  | 7.3   | 18.1         | 20.5        |
| 2606181- | -124 | G     | 253.0        | 314.8  | 225.4        | 1266.0 | 13.3  | 514.7  | 1575.0  | 255.6          | 1372.0 | 341.7  | 12.0         | 334.1          | 44.8  | 256.6           | 46.7          | 115.7          | 69.4  | 8.9   | 12.5         | 8.8         |
| 2606181  | L-67 | G     | 91.7         | 655.3  | 263.9        | 2158.0 | 28.5  | 1490.0 | 4282.0  | 601.5          | 2729.0 | 547.4  | 44.1         | 464.3          | 63.3  | 379.2           | 74.4          | 205.9          | 177.7 | 25.3  | 71.4         | 12.0        |
| 2606181  | L-20 | G     | 68.6         | 458.7  | 154.0        | 4975.0 | 62.0  | 2309.0 | 9363.0  | 1554.0         | 7573.0 | 1625.9 | 66.6         | 1235.6         | 163.7 | 975.1           | 181.4         | 486.8          | 355.0 | 44.9  | 202.0        | 13.2        |
| 2606181  | L-51 | G     | 66.2         | 735.9  | 225.9        | 3122.0 | 29.2  | 1304.0 | 3703.0  | 558.5          | 2774.0 | 829.5  | 64.8         | 836.9          | 114.6 | 640.1           | 112.9         | 270.7          | 137.4 | 14.8  | 46.1         | 65.7        |
| 2606181  | L-94 | G     | 47.7         | 252.8  | 996.9        | 886.4  | 11.0  | 472.8  | 1909.0  | 329.8          | 1676.0 | 359.0  | 69.1         | 255.6          | 29.8  | 162.3           | 30.0          | 80.1           | 69.7  | 10.5  | 33.1         | 32.5        |
| 2606181  | L-41 | G     | 103.5        | 473.4  | 299.0        | 3186.0 | 38.1  | 2095.0 | 6883.0  | 927.0          | 4208.0 | 824.5  | 61.3         | 733.9          | 99.1  | 601.1           | 114.9         | 305.2          | 221.2 | 29.7  | 94.6         | 17.2        |
| 2606181  | L-39 | G     | 71.9         | 470.1  | 297.6        | 2732.0 | 32.8  | 2119.0 | 5755.0  | 824.2          | 3904.0 | 847.7  | 67.8         | 746.3          | 98.9  | 575.3           | 104.3         | 265.3          | 182.8 | 23.3  | 73.8         | 22.4        |
| 2606181- | -109 | G     | 60.2         | 180.7  | 118.4        | 2089.0 | 23.9  | 1770.0 | 4341.0  | 564.8          | 2478.0 | 514.7  | 21.2         | 494.7          | 65.7  | 385.1           | 75.1          | 194.0          | 131.8 | 17.5  | 17.2         | 5.7         |
| 260618   | 1-6  | G     | 270.0        | 1367.0 | 65.1         | 3276.0 | 35.0  | 2210.0 | 6054.0  | 860.8          | 4093.0 | 907.7  | 63.3         | 872.0          | 116.4 | 676.2           | 124.7         | 305.5          | 183.4 | 23.3  | 30.8         | 11.4        |
| 2606181  | 1-91 | G     | 29.3         | 682.6  | 416.0        | 1750.0 | 20.3  | 1129.0 | 4089.0  | 628.9          | 2974.0 | 558.0  | 81.9         | 465.0          | 55.0  | 305.6           | 59.0          | 157.4          | 122.6 | 19.1  | 108.9        | 11.2        |
| 2606181  | 1-29 | G     | 116.0        | 999 7  | 170.9        | 1157.0 | 14.2  | 1122.0 | 2887.0  | 359.8          | 1481.0 | 271 5  | 10.5         | 238.8          | 31.6  | 194 1           | 38.2          | 108.1          | 85.0  | 11 5  | 10.3         | 7.2         |
| 2606181  | 62   | G     | 63 3         | 661 5  | 317.7        | 2516.0 | 31.5  | 2762.0 | 6630.0  | 829.3          | 3618.0 | 709.9  | 64.3         | 621.6          | 82.5  | 479 1           | 90.9          | 242.5          | 183.7 | 24.7  | 67.8         | 12.4        |
| 2606181- | -129 | G     | 120.4        | 399.3  | 263.8        | 2811.0 | 31.8  | 2541.0 | 6604.0  | 906.0          | 4379.0 | 890.7  | 57.5         | 782.2          | 101 7 | 582.5           | 103.8         | 264.5          | 175 5 | 22.6  | 46.0         | 14.7        |
| 2606181  | 125  | G     | 58.7         | 519.2  | 258.7        | 2011.0 | 35.5  | 2556.0 | 7845.0  | 1100.0         | 4973.0 | 975.6  | 18.8         | 820.6          | 105.1 | 593 /           | 108.5         | 281.8          | 100 / | 25.3  | 175 5        | 11 9        |
| 2606181  | -40  | G     | 111 5        | 100 /  | 250.7        | 1227.0 | 14.6  | 1220.0 | 2200.0  | 1100.0         | 2062.0 | 120.6  | 20.4         | 264.2          | 160.1 | 265.9           | 17.2          | 1201.0         | 20.2  | 10.0  | 20.2         | 95          |
| 2000181  | 1 40 | G     | 124 5        | 602.2  | 610 O        | 1910.0 | 20.9  | 1655.0 | 19200.0 | 44J.J          | 2002.0 | 430.0  | 55.4         | 504.2          | 40.5  | 203.8           | 47.5          | 171.2          | 116 E | 15.0  | 50.5<br>60 A | 27.1        |
| 2000101  | 1-42 | G     | 20 6         | 420.2  | 407.2        | 1760.0 | 20.0  | 1035.0 | 4030.0  | 740.2          | 2416.0 | 642.7  | 57.0         | 557.0          | 64.0  | 379.7<br>254 5  | 61.0          | 1/1.5          | 122.0 | 15.5  | 27.6         | 27.1        |
| 2000181  | 1-39 | G     | 59.0         | 450.5  | 407.2        | 2028.0 | 21.1  | 2205.0 | 5170.0  | 740.5          | 2410.0 | 044.4  | 12.0         | 517.4          | 71.2  | 409.4           | 72.0          | 107.4          | 122.0 | 10.0  | 27.0         | 25.7        |
| 2000181  | L-33 | G     | 04.8<br>72.2 | 454.0  | 377.3        | 2028.0 | 23.5  | 2205.0 | 7622.0  | 1042.0         | 3418.0 | 000.0  | 43.0         | 559.4<br>753.3 | /1.3  | 408.4           | 73.9<br>100.6 | 191.3          | 130.5 | 10.2  | 128.0        | 25.7        |
| 2000181  | 1-01 | G     | /3.2         | 308.1  | 432.9        | 2079.0 | 51.8  | 2005.0 | 12070.0 | 1043.0         | 4773.0 | 909.0  | 05.0         | 102.2          | 98.0  | 557.5<br>1001 C | 100.0         | 257.2          | 1/6.5 | 23.1  | 158.9        | 30.0        |
| 2606181  | L-58 | G     | 84.1         | 497.0  | 387.3        | 5231.0 | 59.1  | 5817.0 | 138/0.0 | 1795.0         | 8052.0 | 16/3.3 | 101.1        | 1450.9         | 190.1 | 1081.6          | 197.6         | 500.8          | 315.8 | 39.5  | 164.5        | 16.9        |
| 2606181- | -113 | G     | 108.7        | 359.1  | 395.9        | 1/63.0 | 20.7  | 1886.0 | 5050.0  | 688.1          | 3112.0 | 617.0  | 42.8         | 509.1          | 65.6  | 370.9           | 66.2          | 168.3          | 114.5 | 14.5  | 62.2         | 14.4        |
| 2606181  | L-55 | G     | 129.0        | 413.4  | 247.6        | 2810.0 | 33.4  | 3144.0 | 8202.0  | 1089.0         | 4875.0 | 999.1  | 54.3         | 841.4          | 107.1 | 597.8           | 107.2         | 2/3.4          | 184.7 | 23.9  | 137.6        | 32.2        |
| 2606181  | L-36 | G     | 96.9         | 693.0  | 327.5        | 1998.0 | 25.0  | 2/31.0 | 6849.0  | 856.2          | 3593.0 | 610.9  | 51.1         | 497.3          | 63.1  | 370.2           | /0.3          | 192.6          | 153.3 | 22.0  | 108.0        | 16.8        |
| 2606181  | L-26 | G     | 351.1        | 679.8  | 56.1         | 1822.0 | 17.7  | 1424.0 | 4208.0  | 591.7          | 2791.0 | 608.4  | 20.6         | 544.3          | 68.3  | 384.0           | 66.6          | 160.2          | 92.7  | 11.2  | 69.0         | 10.4        |
| 2606181  | L-24 | G     | 88.0         | 405.4  | 259.1        | 1884.0 | 21.8  | 2277.0 | 5963.0  | 793.1          | 3515.0 | 673.9  | 51.6         | 556.8          | 70.8  | 402.9           | 70.3          | 178.0          | 122.1 | 15.1  | 51.1         | 16.6        |
| 2606181  | L-28 | G     | 133.5        | 789.9  | 790.6        | 1681.0 | 19.7  | 2063.0 | 5719.0  | 759.4          | 3379.0 | 622.3  | 81.1         | 490.5          | 60.6  | 344.2           | 61.3          | 159.6          | 113.4 | 15.0  | 65.4         | 11.5        |
| 2606181- | -118 | G     | 75.5         | 337.6  | 150.3        | 2769.0 | 29.9  | 3167.0 | 8140.0  | 1131.0         | 5470.0 | 1104.8 | 39.6         | 946.4          | 115.4 | 630.4           | 109.3         | 264.1          | 157.9 | 19.9  | 19.7         | 19.9        |
| 2606181  | L-19 | G     | 84.0         | 668.3  | 213.6        | 2314.0 | 27.6  | 3521.0 | 8273.0  | 961.7          | 4006.0 | 726.0  | 45.7         | 616.5          | 78.2  | 454.1           | 83.5          | 219.0          | 159.6 | 21.3  | 151.2        | 40.6        |
| 2606183  | 1-5  | G     | 67.1         | 652.3  | 265.9        | 3166.0 | 38.7  | 5041.0 | 12288.0 | 1483.0         | 6039.0 | 1020.1 | 49.3         | 833.1          | 104.2 | 598.9           | 112.9         | 302.2          | 224.4 | 31.0  | 98.9         | 24.9        |
| 2606181  | L-45 | G     | 105.8        | 524.7  | 377.8        | 1878.0 | 22.4  | 3226.0 | 7114.0  | 881.0          | 3638.0 | 660.4  | 44.2         | 529.5          | 66.7  | 376.6           | 68.2          | 177.5          | 129.7 | 17.3  | 194.2        | 39.6        |
| 2606183  | 1-4  | G     | 128.1        | 430.7  | 462.9        | 366.1  | 3.8   | 566.5  | 1160.0  | 136.5          | 593.2  | 111.9  | 22.6         | 108.5          | 12.8  | 71.2            | 12.8          | 32.1           | 21.1  | 3.0   | 24.5         | 24.4        |
| 2606181  | L-81 | G     | 99.3         | 550.1  | 387.6        | 1662.0 | 20.2  | 2510.0 | 6605.0  | 805.2          | 3329.0 | 613.2  | 52.1         | 483.7          | 59.7  | 331.3           | 59.9          | 156.0          | 117.6 | 16.0  | 103.9        | 18.1        |
| 2606181  | L-96 | G     | 56.2         | 569.9  | 270.6        | 1851.0 | 18.4  | 1882.0 | 6832.0  | 1034.0         | 4888.0 | 951.9  | 66.9         | 703.9          | 80.1  | 412.2           | 69.8          | 163.4          | 102.3 | 13.5  | 110.9        | 17.8        |
|          |      |       |              |        |              |        |       |        |         |                |        |        |              |                |       |                 |               |                |       |       |              |             |

| 2606181-102 | G   | 111.5         | 632.3          | 405.3  | 1824.0         | 19.8 | 2994.0          | 7416.0 | 969.0        | 4219.0         | 775.7  | 81.4  | 617.8 | 73.8        | 392.3        | 68.5  | 165.5        | 108.4 | 13.6 | 64.9  | 9.7  |
|-------------|-----|---------------|----------------|--------|----------------|------|-----------------|--------|--------------|----------------|--------|-------|-------|-------------|--------------|-------|--------------|-------|------|-------|------|
| 2606181-    | 6   | 101 1         | 650.0          | 177.0  | 1012.0         | 10.0 | 1247.0          | 4404.0 | 642.1        | 2052.0         | 477.0  | 24.2  | 242 5 | 20.2        | 205.2        | 25.0  | 00.2         | C1 1  | 0.2  | 4.0   | 22.0 |
| 130XX       | G   | 161.1         | 659.9          | 1/7.8  | 1012.0         | 10.8 | 1347.0          | 4494.0 | 642.1        | 2852.0         | 477.0  | 34.2  | 342.5 | 39.2        | 205.3        | 35.9  | 90.3         | 51.1  | 8.3  | 4.6   | 23.8 |
| 2606181-73  | G   | 74.5          | /65.5          | 630.9  | 1061.0         | 12.1 | 3031.0          | 5771.0 | 614.3        | 2430.0         | 379.4  | 51./  | 317.1 | 36.3        | 196.5        | 37.2  | 96.8         | /2.4  | 11.1 | 150.9 | 19.5 |
| 2606181-95  | G   | 39.7          | 482.8          | 1320.4 | /12.3          | 8.1  | 1800.0          | 4204.0 | 4/8.5        | 1866.0         | 280.5  | 32.6  | 209.6 | 22.9        | 121.9        | 23.2  | 62.4         | 50.8  | 7.9  | 116.3 | 24.1 |
| 2606181-8   | G   | 194.3         | 849.3          | 1041.5 | 996.9          | 11.9 | 2310.0          | 6112.0 | 742.9        | 2889.0         | 436.5  | 46.0  | 315.5 | 36.8        | 199.2        | 35.6  | 92.9         | 69.9  | 9.6  | 136.8 | 6.6  |
| 2606181-54  | G   | 100.3         | 142.7          | 118.4  | 1202.0         | 6.4  | 3287.0          | 8450.0 | 1141.0       | 5195.0         | 1121.8 | 21.7  | 874.3 | 87.4        | 357.1        | 44.4  | 77.2         | 27.2  | 2.8  | 25.9  | 14.3 |
| 2606181-13  | G   | 187.0         | 129.4          | 121.8  | 572.7          | 2.6  | 815.3           | 3530.0 | 633.2        | 3445.0         | 945.8  | 9.4   | 621.2 | 52.1        | 183.8        | 20.3  | 32.9         | 11.3  | 1.1  | 0.7   | 12.6 |
| 2606181-111 | G   | 204.2         | 153.0          | 127.5  | 487.4          | 2.0  | 1756.0          | 6158.0 | 960.0        | 4733.0         | 1008.6 | 22.3  | 641.1 | 51.9        | 169.2        | 17.6  | 27.6         | 9.4   | 0.9  | 86.7  | 24.3 |
| 2606181-60  | G   | 112.7         | 95.5           | 88.7   | 574.6          | 3.2  | 3017.0          | 7692.0 | 1003.0       | 4543.0         | 822.7  | 17.2  | 534.2 | 45.7        | 171.3        | 21.0  | 37.3         | 11.2  | 1.6  | 81.8  | 22.1 |
| 2606181-83  | G   | 168.0         | 96.1           | 95.0   | 311.3          | 1.2  | 3700.0          | 8940.0 | 1175.0       | 5230.0         | 960.0  | 21.9  | 547.0 | 38.3        | 111.6        | 10.9  | 17.4         | 5.6   | 0.5  | 24.9  | 17.4 |
| 2606181-43  | G   | 71.9          | 97.0           | 93.1   | 230.1          | 0.7  | 3275.0          | 7677.0 | 979.9        | 4313.0         | 775.1  | 22.9  | 460.0 | 32.5        | 91.3         | 7.8   | 10.9         | 3.3   | 0.3  | 57.2  | 13.1 |
| 2606181-48  | C-P | 89.7          | 868.1          | 481.1  | 929.1          | 12.1 | 106.1           | 397.8  | 82.5         | 531.4          | 186.8  | 52.0  | 193.4 | 27.1        | 164.5        | 32.2  | 89.0         | 76.6  | 11.6 | 1.5   | 29.5 |
| 2606181-31  | C-P | 43.3          | 559.7          | 207.3  | 3797.0         | 53.7 | 488.9           | 1865.0 | 380.2        | 2403.0         | 755.9  | 129.7 | 797.4 | 117.1       | 750.2        | 146.5 | 407.2        | 331.0 | 45.0 | 4.8   | 25.1 |
| 2606181-123 | C-P | 56.3          | 1015.5         | 354.6  | 1700.0         | 19.9 | 172.3           | 695.0  | 138.7        | 933.0          | 346.3  | 35.8  | 380.4 | 53.9        | 321.6        | 59.0  | 154.3        | 121.2 | 18.2 | 12.7  | 5.5  |
| 2606181-56  | C-P | 344.0         | 1499.0         | 608.6  | 798.6          | 9.8  | 119.9           | 460.1  | 89.0         | 593.0          | 184.0  | 36.8  | 196.2 | 23.3        | 131.6        | 25.1  | 69.9         | 65.3  | 10.4 | 6.4   | 16.8 |
| 2606181-27  | C-P | 47.0          | 557.2          | 319.4  | 2522.0         | 33.4 | 398.1           | 1753.0 | 345.9        | 2033.0         | 598.5  | 113.6 | 591.7 | 83.3        | 512.7        | 96.0  | 257.5        | 202.4 | 27.8 | 16.7  | 24.1 |
| 2606181-120 | C-P | 32.4          | 828.0          | 424.2  | 450.8          | 5.5  | 174.9           | 483.9  | 72.4         | 399.2          | 92.3   | 21.1  | 91.9  | 11.5        | 68.9         | 14.1  | 41.0         | 36.1  | 6.0  | 1.7   | 3.6  |
| 2606181-119 | C-P | 470.0         | 948.6          | 327.5  | 2617.0         | 30.0 | 809.7           | 2555.0 | 431.8        | 2465.0         | 626.0  | 65.3  | 631.0 | 88.5        | 533.4        | 99.0  | 252.6        | 162.8 | 20.8 | 0.3   | 3.8  |
| 2606181-115 | C-P | 59.6          | 603.5          | 468.6  | 254.9          | 2.5  | 61.2            | 244.1  | 48.4         | 310.2          | 94.4   | 16.7  | 92.0  | 10.9        | 55.5         | 8.9   | 20.7         | 14.2  | 2.0  | 1.0   | 7.9  |
| 2606181-116 | C-P | 85.8          | 618.7          | 617.6  | 160.1          | 2.0  | 81.3            | 232.4  | 36.3         | 197.2          | 46.7   | 16.6  | 45.8  | 5.4         | 30.4         | 5.8   | 15.5         | 12.7  | 2.3  | 12.8  | 9.8  |
| 2606181-30  | C-P | 2669.0        | 365.2          | 5388.0 | 1860.0         | 26.0 | 981.1           | 2935.0 | 469.2        | 2477.0         | 619.7  | 65.7  | 600.7 | 79.8        | 467.5        | 86.3  | 219.9        | 142.2 | 18.5 | 36.9  | 14.6 |
| 2606181-44  | C-P | 520.0         | 1522.0         | 616.0  | 259.3          | 2.7  | 106.8           | 335.3  | 56.0         | 308.8          | 87.2   | 22.6  | 82.9  | 10.3        | 56.1         | 9,9   | 23.5         | 14.8  | 1.9  | 0.4   | 0.8  |
| 2606181-12  | C-P | 53.7          | 484.1          | 500.6  | 91.9           | 1.1  | 50.0            | 173.9  | 26.7         | 132.2          | 23.3   | 4.6   | 20.9  | 2.4         | 13.4         | 2.9   | 8.1          | 7.4   | 1.4  | 1.1   | 1.4  |
| 2606181-105 | C-P | 165.9         | 1689.0         | 921.0  | 1949.0         | 23.5 | 1467.0          | 4009.0 | 550.8        | 2511.0         | 536.4  | 50.6  | 486.1 | 65.2        | 379.0        | 71.7  | 184.6        | 134.0 | 17.5 | 60.3  | 17.4 |
| 2606181-34  | C-P | 98.8          | 869 5          | 476 5  | 61.0           | 0.8  | 116 7           | 185.3  | 19.8         | 86.8           | 15.5   | 4.6   | 16.3  | 19          | 10.9         | 2.2   | 6.2          | 5.2   | 0.9  | 17    | 2.2  |
| 2606181-98  | C-P | 121.0         | 2400.0         | 161.0  | 2228.0         | 26.1 | 2312.0          | 6092.0 | 799 1        | 3452.0         | 685.9  | 36.7  | 581.2 | 75.7        | 433.1        | 81.1  | 207.1        | 146.6 | 18.1 | 71.6  | 15.5 |
| 2606181-114 | C-P | 1364.0        | 2539.0         | 418.9  | 311.6          | 3 5  | 281.8           | 874 1  | 132.8        | 674.6          | 133.3  | 21.4  | 106.7 | 12 3        | 64.7         | 11.4  | 28.6         | 20.5  | 3.0  | 13    | 0.9  |
| 2606181-99  | C-P | 95.5          | 795 3          | 553.8  | 249 3          | 3.1  | 392.7           | 898.9  | 104.2        | 429.6          | 71.2   | 21.4  | 61.8  | 6.9         | 38.6         | 7.8   | 22.5         | 20.6  | 35   | 4.9   | 1.8  |
| 2606181-122 | C-P | 78.0          | 590.4          | 509.6  | 343.4          | 4 1  | 420.2           | 1115.0 | 150.7        | 746.0          | 139.6  | 28.9  | 120.7 | 13.3        | 71.0         | 13.0  | 34.2         | 25.0  | 3.9  | 16.8  | 6.9  |
| 2606181-32  | C-P | 1518.0        | 119 5          | 713.0  | 809.6          | 10.1 | 1172 0          | 2620.0 | 318.1        | 1318.2         | 2/3 2  | 24.0  | 205.2 | 26.2        | 152.9        | 28.8  | 78.0         | 58.3  | 7.8  | 22.8  | 8.2  |
| 2606181-110 | C-P | 5/9 0         | 1693.0         | 1050.2 | 121 7          | 4.0  | 103.3           | 1211 0 | 107 0        | 1083.0         | 263.8  | 58.3  | 200.5 | 20.2        | 97.6         | 1/1 3 | 32.0         | 26.4  | / 1  | 2 5   | 1.8  |
| 2606181-103 | C-P | 1391.0        | 669.2          | 65/ 1  | 131 7          | 1.5  | 137.5           | 388 0  | 55 3         | 262.8          | 53.1   | 13.3  | 15 7  | 5 2         | 28.3         | 5.0   | 12.0         | 8.4   | 1.2  | 6.6   | 1.0  |
| 2606181-37  | C-P | 250.3         | 705.8          | 376.7  | 7/3.2          | 9.4  | 1289.0          | 2758.0 | 317 5        | 1236.0         | 218.1  | 13.5  | 18/1  | 23.2        | 1/13 1       | 26.9  | 73 /         | 55.7  | 73   | 14.4  | 1.0  |
| 2606181-100 |     | 66.5          | 501 1          | 202.2  | 172.2          | 2.1  | 1205.0          | 760.0  | 66.8         | 22222          | 20.1   | 10.6  | 25 1  | 4.2         | 24.6         | 5 1   | 147          | 1/ 0  | 27   | 21.9  | 9.0  |
| 2606181-85  |     | 50.0          | 560.1          | 602.5  | 2/2.0          | 2.1  | 2/2.0           | 020.0  | 110 /        | 522.0          | 02.5   | 14.9  | 77 7  | 9.2         | 18.0         | 0.0   | 22.7         | 19.0  | 2.7  | 10.2  | 5.9  |
| 2000181-85  |     | 2470.0        | 202.1          | 1452.5 | 240.1          | 3.0  | 542.0<br>E 20 C | 1176.0 | 113.4        | 552.0<br>600.0 | 127 5  | 24.0  | 115 7 | 0.0<br>12 E | 40.0<br>74 E | 12 7  | 23.7         | 22.4  | 2.0  | 10.2  | 1.0  |
| 2000101-49  | C-P | 2479.0        | 300.Z          | 202.0  | 009.0          | 4.0  | 072 E           | 2405.0 | 242.0        | 1670.0         | 2202   | 24.0  | 200.2 | 15.5        | 102.0        | 21.0  | 55.9<br>70 7 | 47.2  | 5.0  | 13.5  | 4.0  |
| 2000181-121 | C-P | 510.U         | 495.0          | 252.9  | 005.4<br>1сс г | 0.0  | 5/2.5           | 1009.2 | 02.2         | 220 5          | 320.0  | 12.5  | 200.5 | 20          | 102.9        | 51.9  | 147          | 47.2  | 2.0  | 23.0  | 7.0  |
| 2000101-25  | C-P | 40.2          | 910.2          | 276.2  | 100.5          | 2.1  | 540.0           | 1006.5 | 92.2         | 320.5          | 41.1   | 12.7  | 30.0  | 5.9         | 22.2         | 4.7   | 14.7         | 12.2  | 2.9  | 0.7   | 4.1  |
| 2000181-75  | C-P | 45.5          | 800.0<br>F20.4 | 3/0.2  | 152.4          | 1.9  | 523.Z           | 930.0  | 00.0<br>40.0 | 330.0          | 40.9   | 15.7  | 43.0  | 4.4         | 23.7         | 4.8   | 14.0         | 13.3  | 2.0  | 5.4   | 2.8  |
| 2000181-10  | C-P | 39.9<br>120.0 | 529.4          | 419.2  | 80.0           | 1.0  | 331.0           | 2000.0 | 40.0         | 100.8          | 20.2   | 7.2   | 10.4  | 1.9         | 10.3         | 2.2   | 0.9          | 8.0   | 1.8  | 14.5  | 24.1 |
| 2000181-70  | C-P | 138.0         | 1540.0         | 530.1  | 458.9          | 0.1  | 1511.0          | 2000.0 | 275.0        | 905.4          | 134.4  | 21.0  | 112.7 | 12.0        | 71.0         | 14.4  | 42.1         | 41.0  | 0.8  | 55.5  | 2.0  |
| 2606181-112 | C-P | 213.0         | 12/7.0         | 635.1  | 430.9          | 5.1  | 965.5           | 2243.0 | 2/8.0        | 1153.0         | 1/4.1  | 21.6  | 130.5 | 14.5        | 77.3         | 14.2  | 38.5         | 30.8  | 4.4  | 5.1   | 3.0  |
| 2606181-53  | C-P | 58.1          | 307.9          | 638.4  | 281.3          | 3.1  | 395.1           | 1370.0 | 205.0        | 935.0          | 149.9  | 25.2  | 105.0 | 10.8        | 54.7         | 9.5   | 24.6         | 18.4  | 3.0  | 53.3  | 1.1  |
| 2606181-80  | C-P | 88.0          | 1///.0         | 399.3  | 358.9          | 4.7  | 1326.0          | 2463.0 | 238.3        | 825.5          | 111.9  | 18.7  | 93.5  | 10.2        | 57.3         | 11.4  | 33.1         | 31.7  | 5.1  | 42.2  | 10.3 |
| 2606181-84  | C-P | 80.8          | 851.4          | 573.0  | 181.2          | 2.2  | 631.5           | 1135.0 | 114.4        | 441.8          | 66.8   | 18.4  | 58.9  | 6.0         | 31.9         | 6.2   | 16.6         | 14.5  | 2.5  | 5.1   | 2.0  |
| 2606181-79  | C-P | 33.8          | 465.5          | 419.6  | 99.1           | 1.1  | 268.2           | 543.3  | 58.7         | 245.8          | 34.5   | 8.2   | 29.4  | 3.1         | 16.8         | 3.3   | 8.6          | 6.8   | 1.2  | 11.1  | 6.2  |
| 2606181-52  | C-P | 2539.0        | 360.7          | 1397.7 | 333.2          | 3.3  | 711.0           | 1543.0 | 194.1        | 872.7          | 164.8  | 30.5  | 130.8 | 13.9        | 69.2         | 11.7  | 28.1         | 18.4  | 2.3  | 40.1  | 14.4 |
| 2606181-90  | C-P | 101.8         | 1028.9         | 518.6  | 217.8          | 2.6  | 776.1           | 1483.0 | 147.2        | 541.3          | 75.2   | 19.3  | 64.7  | 6.5         | 35.1         | 6.9   | 19.6         | 17.4  | 3.0  | 6.2   | 2.2  |
| 2606181-127 | C-P | 64.5          | 889.0          | 427.4  | 160.6          | 1.7  | 462.0           | 756.0  | 75.9         | 326.3          | 50.2   | 8.0   | 49.2  | 5.5         | 30.3         | 5.7   | 14.8         | 8.7   | 1.5  | 27.4  | 8.0  |
| 2606181-16  | C-P | 107.4         | 1220.0         | 431.4  | 219.2          | 2.6  | 727.1           | 1384.0 | 139.0        | 514.3          | 73.9   | 18.3  | 65.7  | 6.9         | 37.5         | 7.3   | 20.1         | 15.6  | 2.7  | 8.2   | 3.0  |
| 2606181-117 | C-P | 47.9          | 761.0          | 396.5  | 117.7          | 1.5  | 616.2           | 952.0  | 79.9         | 280.7          | 35.9   | 11.5  | 33.8  | 3.3         | 17.4         | 3.5   | 10.4         | 10.7  | 2.4  | 8.5   | 5.3  |
| 2606181-38  | C-P | 34.6          | 587.9          | 334.2  | 65.6           | 0.8  | 483.0           | 629.0  | 47.2         | 161.0          | 18.5   | 7.7   | 17.9  | 1.6         | 9.0          | 1.9   | 5.8          | 6.7   | 1.6  | 13.4  | 8.4  |
|             |     |               |                |        |                |      |                 |        |              |                |        |       |       |             |              |       |              |       |      |       |      |

| 2606181-3   | C-P   | 94.1  | 949.3  | 507.2          | 151.6          | 1.9         | 730.4  | 1209.0 | 113.1 | 432.6  | 62.0  | 19.2         | 55.9         | 5.3   | 26.7  | 5.1   | 14.0  | 12.9  | 2.5        | 7.5   | 3.4   |
|-------------|-------|-------|--------|----------------|----------------|-------------|--------|--------|-------|--------|-------|--------------|--------------|-------|-------|-------|-------|-------|------------|-------|-------|
| 2606181-104 | C-P   | 42.7  | 703.7  | 397.8          | 107.0          | 1.2         | 407.2  | 767.4  | 75.7  | 285.7  | 40.1  | 10.2         | 35.9         | 3.6   | 18.7  | 3.6   | 9.7   | 8.0   | 1.4        | 2.8   | 1.6   |
| 2606181-18  | C-P   | 84.5  | 982.6  | 580.4          | 185.9          | 2.2         | 733.6  | 1367.0 | 135.4 | 502.4  | 70.5  | 15.7         | 58.9         | 6.1   | 32.5  | 6.1   | 16.8  | 13.5  | 2.1        | 5.3   | 2.0   |
| 2606181-    |       |       |        |                |                |             |        |        |       |        |       |              |              |       |       |       |       |       |            |       |       |
| 97xx        | C-P   | 59.8  | 950.6  | 448.0          | 95.4           | 1.2         | 567.9  | 883.4  | 74.0  | 248.1  | 30.4  | 12.1         | 27.5         | 2.6   | 13.5  | 2.9   | 8.2   | 8.6   | 1.8        | 9.1   | 6.6   |
| 2606181-68  | C-P   | 82.0  | 1161.0 | 466.6          | 159.0          | 1.9         | 801.0  | 1293.0 | 116.0 | 420.3  | 55.8  | 14.0         | 49.0         | 5.0   | 25.9  | 5.2   | 14.5  | 12.6  | 2.3        | 5.6   | 2.3   |
| 2606181-93  | C-P   | 59.6  | 655.7  | 253.9          | 149.7          | 2.0         | 1311.0 | 1551.0 | 109.5 | 331.6  | 39.8  | 5.9          | 38.2         | 3.7   | 20.7  | 4.5   | 14.1  | 14.6  | 2.9        | 45.0  | 29.8  |
| 2606181-63  | C-P   | 50.9  | 766 1  | 380.2          | 70.8           | 0.9         | 511.0  | 794.4  | 60.2  | 188.0  | 18.3  | 11.0         | 17.5         | 15    | 7.8   | 1.8   | 61    | 72    | 17         | 85    | 77    |
| 2606181-87  | C-P   | 97.2  | 1081.4 | 572.1          | 226.5          | 2.6         | 962.9  | 1746.0 | 176.7 | 670 3  | 93.9  | 19.3         | 79.0         | 8.0   | 41.9  | 7.8   | 20.6  | 15.6  | 2.4        | 7.0   | 23    |
| 2606181-86  | C-P   | 83.8  | 950 5  | 578.8          | 151.0          | 1 9         | 901.8  | 1/73 0 | 127.6 | /32.5  | 50.3  | 14.7         | 15.3         | 13    | 23.0  | 1.8   | 13.7  | 12.6  | 2.4        | 10.4  | 35    |
| 2606101 00  |       | 106.2 | 021.0  | 471.0          | 124 5          | 1.5         | 201.0  | 1274.0 | 127.0 | 410.7  | 40.1  | 14.7         | 40.0<br>2E 1 | 5     | 10.2  | 2.0   | 11.0  | 12.0  | 2.5        | 7.7   | 2.0   |
| 2000101-11  | C-P   | 100.2 | 951.9  | 4/1.9          | 134.5          | 1.7         | 002.2  | 1374.0 | 124.7 | 410.7  | 40.1  | 14.2         | 55.1         | 5.5   | 10.5  | 5.9   | 12.4  | 12.1  | 2.4        | 7.2   | 2.9   |
| 2000101-9   | C-P   | 27.4  | 630.7  | 271.0          | 70.4           | 1.7         | 075.7  | 1010 5 | 02.2  | 425.2  | 25.1  | 10.7         | 21.1         | 4.5   | 22.5  | 4.5   | 7.2   | 11.5  | 2.5        | 0.1   | 5.0   |
| 2000181-22  | C-P   | 37.4  | 603.4  | 3/1.8          | 79.4           | 0.8         | 822.1  | 1019.5 | 82.2  | 295.3  | 35.5  | 12.4         | 51.1         | 2.8   | 14.5  | 2.0   | 1.2   | 5.5   | 1.0        | 12.4  | 0.2   |
|             |       |       |        | _              |                | _           |        | _      |       |        |       | _            |              |       | _     |       | _     |       |            |       |       |
|             | _     | Mg    | Mn     | Sr             | Ŷ              | Tm          | La     | Ce     | Pr    | Nd     | Sm    | Eu           | Gd           | Tb    | Dy    | Но    | Er    | Yb    | Lu         | Th    | U     |
| Sample      | Group | (ppm) | (ppm)  | (ppm)          | (ppm)          | (ppm)       | (ppm)  | (ppm)  | (ppm) | (ppm)  | (ppm) | (ppm)        | (ppm)        | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm)      | (ppm) | (ppm) |
| RN-3        |       |       |        |                |                |             |        |        |       |        |       |              |              |       |       |       |       |       |            |       |       |
| 2606183-2   | C-P   | 24.0  | 389.9  | 441.5          | 53.5           | 0.7         | 35.2   | 94.0   | 13.0  | 68.4   | 13.2  | 4.4          | 13.5         | 1.5   | 8.7   | 1.8   | 5.0   | 4.2   | 0.8        | 1.4   | 23.2  |
| 2606183-3   | C-P   | -18.0 | 311.0  | 586.3          | 133.9          | 1.7         | 117.0  | 295.0  | 36.9  | 181.2  | 37.5  | 6.9          | 38.7         | 4.3   | 23.6  | 4.7   | 13.1  | 11.0  | 2.1        | 7.8   | 10.7  |
| 2606183-4   | C-P   | 84.0  | 503.2  | 523.7          | 190.7          | 2.6         | 317.4  | 665.3  | 68.9  | 278.2  | 44.9  | 9.3          | 44.3         | 4.9   | 28.3  | 5.9   | 18.0  | 18.8  | 3.8        | 12.4  | 6.7   |
| 2606183-5   | C-P   | 86.0  | 339.1  | 530.6          | 173.0          | 2.1         | 211.2  | 557.3  | 70.1  | 325.1  | 59.6  | 15.7         | 55.2         | 5.9   | 30.9  | 5.7   | 15.8  | 13.3  | 2.3        | 8.3   | 7.0   |
| 2606183-7   | C-P   | 105.0 | 373.7  | 818.1          | 112.7          | 1.3         | 272.3  | 535.2  | 58.9  | 259.4  | 45.0  | 10.8         | 39.7         | 4.0   | 20.3  | 3.7   | 10.0  | 8.4   | 1.5        | 13.1  | 9.8   |
| 2606183-8   | C-P   | 90.0  | 248.7  | 550.5          | 169.1          | 1.9         | 72.7   | 294.7  | 51.5  | 285.9  | 61.7  | 12.0         | 55.3         | 6.1   | 32.1  | 5.9   | 15.6  | 11.7  | 1.9        | 6.2   | 7.7   |
| 2606183-9   | C-P   | 24.0  | 624.7  | 369.7          | 266.6          | 3.2         | 459.0  | 879.0  | 94.6  | 396.7  | 71.5  | 10.9         | 67.5         | 7.9   | 45.0  | 8.8   | 24.4  | 20.2  | 3.6        | 11.2  | 16.8  |
| 2606183-10  | C-P   | 91.0  | 591.5  | 734.4          | 251.4          | 3.2         | 413.2  | 929.4  | 104.2 | 435.7  | 76.2  | 14.7         | 69.6         | 7.7   | 42.9  | 8.4   | 23.5  | 20.1  | 3.3        | 17.0  | 6.1   |
| 2606183-12  | C-P   | 118.0 | 1124.0 | 437.1          | 579.6          | 7.0         | 571.3  | 1615.0 | 213.3 | 1008.0 | 189.4 | 24.7         | 163.0        | 19.5  | 109.0 | 20.4  | 54.7  | 41.6  | 6.3        | 12.1  | 4.0   |
| 2606183-13  | C-P   | 32.0  | 375.5  | 451.9          | 203.7          | 2.5         | 114.1  | 324.0  | 47.8  | 248.1  | 51.6  | 13.3         | 50.9         | 6.0   | 34.8  | 6.9   | 19.3  | 15.7  | 2.8        | 9.5   | 15.0  |
| 2606183-14  | C-P   | 24.0  | 340 5  | 563.2          | 153.9          | 1.8         | 118.2  | 354.3  | 50.8  | 262.1  | 51.8  | 9.8          | 48.1         | 5.2   | 27.6  | 53    | 13.9  | 11.2  | 19         | 72    | 7.6   |
| 2606183-15  | C-P   | 126.0 | 594.1  | 671.6          | 247 5          | 3.1         | 387 1  | 883.0  | 99.3  | 418.2  | 69.7  | 12.8         | 64.9         | 73    | 41.2  | 83    | 23.0  | 19.9  | 3.2        | 10.8  | 49    |
| 2606183-16  | C-P   | 140.0 | 650.4  | 774.8          | 247.5          | 3.8         | 195.7  | 1196.0 | 135.3 | 575 /  | 97.8  | 17.1         | 87.7         | 10.0  | 55.2  | 10.6  | 20.0  | 23.5  | 3.6        | 11 0  | 5.1   |
| 2606182-17  |       | 86.0  | 526.7  | 608.8          | 1/0.2          | 1.5         | 1477   | 252.8  | 12 5  | 100.2  | /1 2  | 76           | 17.0         | 5.6   | 20.2  | 5 1   | 125   | 2J.J  | 1.6        | 22    | 10    |
| 2000183-17  |       | 01.0  | 075.0  | 271.0          | 140.3<br>E47.6 | 1.J<br>6.0  | 104.2  | 332.0  | 43.5  | 133.3  | 120 / | 22.0         | 122.0        | 17.2  | 100.0 | 10 5  | 12.J  | 12.0  | 1.0<br>6.0 | 7.0   | 4.9   |
| 2000103-10  | C-P   | 31.0  | 272.0  | 371.0          | 347.0          | 0.9         | 215.4  | 370.3  | 162.0 | 411.7  | 120.4 | 35.U<br>40.1 | 133.0        | 17.2  | 75.2  | 13.5  | 22.2  | 42.9  | 0.9        | 7.9   | 12.0  |
| 2000183-19  | C-P   | 22.0  | 338.1  | 802.0<br>C01.0 | 3/8.1          | 3.0<br>20.0 | 315.4  | 1029.0 | 102.0 | 035.4  | 104.5 | 40.1         | 139.7        | 15.0  | 75.5  | 13.2  | 32.2  | 21.7  | 3.4        | 33.3  | 13.8  |
| 2606183-20  | C-P   | 33.0  | 348.7  | 501.0          | 3170.0         | 38.0        | 1051.0 | 3604.0 | 592.7 | 3233.0 | /64./ | 452.6        | 674.8        | 88.7  | 519.9 | 98.2  | 274.5 | 249.1 | 37.4       | 142.8 | 327.0 |
| 2606183-23  | C-P   | 116.0 | 410.5  | 527.2          | 351.1          | 4.0         | 165.9  | 528.6  | 82.9  | 446.9  | 102.4 | 24.9         | 97.4         | 11.6  | 63.9  | 12.3  | 32.2  | 25.0  | 4.3        | 100.1 | 8.2   |
| 2606183-24  | C-P   | 158.0 | 640.6  | 863.4          | 313.3          | 3.8         | 313.6  | 826.9  | 106.0 | 483.3  | 101.0 | 18.4         | 93.0         | 10.6  | 58.8  | 11.2  | 30.1  | 22.6  | 3.3        | 8.1   | 5.1   |
| 2606183-25  | C-P   | 52.0  | 475.7  | 718.2          | 399.7          | 4.7         | 247.4  | 738.7  | 104.4 | 527.2  | 122.9 | 18.5         | 118.7        | 14.0  | 76.4  | 14.6  | 38.4  | 27.5  | 4.2        | 6.3   | 3.5   |
| 2606183-28  | C-P   | 40.0  | 325.6  | 436.5          | 203.2          | 2.4         | 199.8  | 582.7  | 78.2  | 379.9  | 74.5  | 13.7         | 66.1         | 7.4   | 39.3  | 7.4   | 19.3  | 14.2  | 2.3        | 8.9   | 3.2   |
| 2606183-29  | C-P   | 61.0  | 255.5  | 724.6          | 77.5           | 0.9         | 72.6   | 218.6  | 29.9  | 149.3  | 28.2  | 8.8          | 25.3         | 2.6   | 13.2  | 2.5   | 6.8   | 5.5   | 1.0        | 8.2   | 6.1   |
| 2606183-30  | C-P   | 203.0 | 551.4  | 775.3          | 270.9          | 3.3         | 263.4  | 728.8  | 93.5  | 423.8  | 85.0  | 15.4         | 74.6         | 8.5   | 46.3  | 9.0   | 24.7  | 20.0  | 2.9        | 7.7   | 3.8   |
| 2606183-31  | C-P   | 112.0 | 706.3  | 362.5          | 591.0          | 8.0         | 186.0  | 556.0  | 78.7  | 407.3  | 103.7 | 31.0         | 112.6        | 15.1  | 91.7  | 19.2  | 57.1  | 55.4  | 10.0       | 12.1  | 7.9   |
| 2606183-32  | C-P   | 206.0 | 668.7  | 801.2          | 325.6          | 3.9         | 353.4  | 932.9  | 114.5 | 503.3  | 100.3 | 17.3         | 89.1         | 10.4  | 58.0  | 11.2  | 30.0  | 23.9  | 3.6        | 8.9   | 5.5   |
| 2606183-33  | C-P   | 77.0  | 635.4  | 392.1          | 242.6          | 3.1         | 145.6  | 395.0  | 51.1  | 239.4  | 53.4  | 15.4         | 52.2         | 6.6   | 39.1  | 8.0   | 22.9  | 19.9  | 3.6        | 24.1  | 16.0  |
| 2606183-36  | C-P   | 93.0  | 440.5  | 424.1          | 67.1           | 0.9         | 26.6   | 80.5   | 12.4  | 65.6   | 15.1  | 4.9          | 16.6         | 1.9   | 11.3  | 2.4   | 6.7   | 5.6   | 1.0        | 0.4   | 11.4  |
| 2606183-39  | C-P   | 171.0 | 488.9  | 390.4          | 109.5          | 1.4         | 33.7   | 106.0  | 16.8  | 90.4   | 23.3  | 6.0          | 24.1         | 2.9   | 17.8  | 3.7   | 10.6  | 9.0   | 1.6        | 3.1   | 8.2   |
| 2606183-40  | C-P   | 40.0  | 446.4  | 658.4          | 196.3          | 2.3         | 254.7  | 648.7  | 79.0  | 343.3  | 66.6  | 11.6         | 59.4         | 6.6   | 35.8  | 6.9   | 18.0  | 13.9  | 1.9        | 4.0   | 4.6   |
| 2606183-41  | C-P   | 133.0 | 670.3  | 785.5          | 330.5          | 3.9         | 500.7  | 1250.0 | 138.0 | 578.4  | 105.5 | 18.2         | 95.5         | 10.7  | 59.0  | 11.4  | 31.1  | 24.8  | 3.7        | 12.1  | 5.2   |
| 2606183-42  | C-P   | 18.0  | 430.5  | 371.2          | 99.6           | 1.2         | 12.0   | 44.4   | 8.5   | 53.9   | 17.4  | 5.2          | 20.8         | 2.7   | 16.7  | 3.5   | 9.4   | 7.4   | 1.3        | 0.7   | 11.2  |
| 2606183-43  | C-P   | 17.0  | 358.7  | 575.9          | 185.7          | 2.3         | 205.9  | 498.0  | 59.7  | 279.9  | 55.5  | 9.4          | 54.4         | 6.0   | 33.6  | 6.6   | 18.3  | 14.3  | 2.6        | 12.0  | 11.3  |
| 2606183-44  | C-P   | 22.0  | 410.1  | 394.5          | 157.8          | 2.2         | 89.5   | 237.2  | 32.6  | 158.6  | 33.2  | 15.0         | 33.5         | 4.0   | 23.9  | 5.1   | 15.2  | 14.6  | 3.0        | 16.4  | 14.1  |
| 2606183-45  | С-Р   | 192.0 | 396.9  | 502 1          | 292.8          | 35          | 195 7  | 543.4  | 77.6  | 382.5  | 79 5  | 23.4         | 74 7         | 8.6   | 49.8  | 9.8   | 27.3  | 23.0  | 4 1        | 14 9  | 6.2   |
| 2606183-46  | С-Р   | 56.0  | 475 3  | 434.0          | 167.0          | 2.5         | 211 0  | 460.0  | 54.0  | 241 0  | 45 5  | 13.5         | 42 5         | 49    | 28.1  | 5.6   | 15.7  | 14.0  | 25         | 93    | 20.1  |
| 2606183.47  | C-P   | 47.0  | 2/9 5  | 732 5          | £107.0         | 0.9         | 152.0  | 330.0  | /3.0  | 199.0  | 37.9  | 97           | 31.2         | 3.2   | 15.9  | 2.8   | 73    | 55    | 0.9        | 33    | 25    |
| 2000103-47  |       | 47.0  | 245.5  | 152.5          | 01.0           | 0.5         | 192.0  | 555.0  | -5.0  | 155.0  | 57.5  | 5.7          | 51.2         | 5.2   | 10.0  | 2.0   | 7.5   | 5.5   | 0.5        | 5.5   | 2.5   |

| 2606183-51  | C-P | 92.0  | 513.4  | 447.0          | 289.6 | 3.7 | 372.9 | 832.7  | 97.8          | 433.1  | 74.9  | 20.9        | 67.3  | 7.9  | 46.4  | 9.5  | 27.2        | 24.7        | 4.4 | 21.6 | 7.4  |
|-------------|-----|-------|--------|----------------|-------|-----|-------|--------|---------------|--------|-------|-------------|-------|------|-------|------|-------------|-------------|-----|------|------|
| 2606183-53  | C-P | 232.0 | 244.6  | 809.2          | 62.5  | 0.6 | 183.8 | 372.9  | 44.5          | 206.8  | 36.8  | 9.2         | 30.2  | 2.8  | 13.2  | 2.2  | 5.1         | 3.7         | 0.6 | 14.9 | 2.0  |
| 2606183-55  | C-P | 109.0 | 914.8  | 498.7          | 345.9 | 4.0 | 673.3 | 1652.0 | 179.2         | 768.0  | 131.8 | 23.1        | 116.0 | 12.7 | 68.0  | 12.5 | 32.7        | 25.0        | 4.0 | 16.6 | 5.1  |
| 2606183-56  | C-P | 86.0  | 662.9  | 787.3          | 304.7 | 3.8 | 403.4 | 948.0  | 111.5         | 490.3  | 94.3  | 15.7        | 84.5  | 9.8  | 54.4  | 10.6 | 29.3        | 24.3        | 4.0 | 9.6  | 4.3  |
| 2606183-57  | C-P | 56.0  | 532.1  | 424.3          | 168.6 | 2.2 | 216.5 | 502.5  | 61.6          | 279.2  | 48.4  | 12.6        | 42.6  | 4.9  | 27.7  | 5.5  | 15.4        | 14.5        | 2.4 | 13.4 | 4.7  |
| 2606183-58  | C-P | 80.0  | 828.8  | 405.8          | 274.4 | 3.6 | 278.2 | 682.0  | 84.0          | 375.7  | 69.5  | 17.4        | 63.4  | 7.7  | 44.5  | 9.0  | 25.5        | 23.4        | 4.0 | 15.1 | 18.9 |
| 2606183-59  | C-P | 62.0  | 286.1  | 903.3          | 68.4  | 0.7 | 350.5 | 627.3  | 64.8          | 267.2  | 39.6  | 10.7        | 30.7  | 2.8  | 12.7  | 2.2  | 5.7         | 4.3         | 0.7 | 4.4  | 1.4  |
| 2606183-60  | C-P | 66.0  | 489.4  | 448.6          | 149.2 | 1.9 | 244.0 | 513.0  | 58.2          | 260.9  | 43.1  | 13.0        | 38.6  | 4.4  | 24.4  | 5.0  | 14.4        | 12.8        | 2.2 | 8.8  | 3.6  |
| 2606183-61  | C-P | 48.0  | 359.2  | 543.4          | 109.8 | 1.2 | 207.0 | 489.4  | 57.3          | 236.4  | 35.8  | 8.3         | 30.5  | 3.4  | 18.4  | 3.6  | 9.6         | 8.1         | 1.3 | 6.2  | 3.9  |
| 2606183-63  | C-P | 46.0  | 1023.0 | 318.0          | 311 3 | 37  | 404.0 | 888.0  | 111.9         | 545.0  | 97.0  | 11.9        | 98.5  | 10.7 | 58.2  | 11.3 | 29.3        | 22.4        | 37  | 17.5 | 15.3 |
| 2606183-67  | C-P | 53.0  | 305.8  | 610.2          | 54.9  | 0.6 | 302.5 | 435.7  | 43.6          | 178.4  | 27.0  | 8.2         | 22.9  | 21   | 99    | 1.8  | 4.6         | 3.8         | 0.7 | 7.8  | 49   |
| 2606183-68  | C-P | 48.0  | 1032.2 | 427.1          | 503.5 | 6.1 | 453.5 | 1156.0 | 177.0         | 884.0  | 172.1 | 23.1        | 153.8 | 18.1 | 100.4 | 19.1 | 49.6        | 36.2        | 5.4 | 10.6 | 3.8  |
| 2606183-69  | C-P |       | 297.6  | 526.7          | 64.3  | 0.7 | 116.6 | 266.8  | 31 0          | 147.6  | 25.3  | 83          | 22.2  | 23   | 11 5  | 2.2  | 5.6         | 4.5         | 0.8 | 6.0  | 3.0  |
| 2000183-03  |     | 20.0  | E24 C  | 320.7<br>200 E | 110.0 | 1.4 | 62.7  | 176.0  | 31.5          | 1247.0 | 23.3  | 0.5         | 23.5  | 2.5  | 17.1  | 2.2  | 10.1        | 4.5         | 17  | 2.0  | 10 0 |
| 2000103-73  | C-P | 67.0  | 202 F  | 590.5          | 106.7 | 1.4 | 211.1 | 450.2  | 23.5          | 224.4  | 24.9  | 0.4         | 24.5  | 2.9  | 10.0  | 3.5  | 10.1        | 9.5         | 1.7 | 2.5  | 10.3 |
| 2000183-74  | C-P | 07.0  | 302.5  | 622.0          | 100.7 | 1.2 | 211.1 | 450.2  | 52.8          | 231.8  | 38.0  | 9.9         | 33.3  | 3.4  | 18.0  | 3.3  | 9.5         | 0.1         | 1.4 | 12.4 | 4.0  |
| 2606183-76  | C-P | 131.0 | /18.2  | 642.7          | 351.1 | 4.1 | 324.0 | 856.2  | 110.2         | 521.4  | 106.2 | 15.8        | 96.2  | 11.6 | 05.2  | 12.5 | 32.8        | 24.0        | 3.4 | 7.3  | 3.7  |
| 2606183-77  | C-P | 61.0  | 450.9  | 426.1          | 216.7 | 2.8 | 139.8 | 391.0  | 54.5          | 275.0  | 56.1  | 12.5        | 54.5  | 6.6  | 37.2  | 7.5  | 21.0        | 17.5        | 3.0 | 13.4 | 10.9 |
| 2606183-78  | C-P | 42.0  | 375.6  | 569.8          | 1/8.2 | 2.2 | 216.4 | 497.7  | 58.3          | 264.8  | 47.7  | 8.3         | 47.7  | 5.3  | 29.7  | 6.1  | 17.1        | 14.5        | 2.7 | 10.5 | 6.0  |
| 2606183-79  | C-P | 70.0  | 1003.7 | 356.2          | 383.9 | 4.1 | 545.9 | 1105.0 | 143.0         | 718.2  | 145.1 | 14.0        | 132.4 | 14.6 | 77.8  | 14.4 | 36.0        | 23.8        | 4.0 | 20.3 | 10.6 |
| 2606183-80  | C-P | 64.0  | 628.9  | 428.6          | 275.2 | 3.5 | 326.2 | 808.4  | 100.3         | 459.1  | 88.1  | 20.7        | 83.5  | 9.3  | 51.2  | 9.8  | 26.4        | 23.0        | 4.0 | 15.4 | 5.5  |
| 2606183-81  | C-P | 83.0  | 509.5  | 640.8          | 207.4 | 2.6 | 238.0 | 606.9  | 73.5          | 318.4  | 61.7  | 11.2        | 54.4  | 6.1  | 34.5  | 6.8  | 19.8        | 16.5        | 2.6 | 6.8  | 3.4  |
| 2606183-82  | C-P | 41.0  | 272.4  | 654.5          | 66.4  | 0.7 | 256.1 | 510.2  | 56.2          | 234.8  | 40.7  | 9.7         | 31.6  | 2.9  | 13.1  | 2.3  | 5.6         | 4.3         | 0.7 | 4.6  | 2.1  |
| 2606183-83  | C-P | 12.0  | 382.0  | 538.5          | 267.1 | 3.3 | 241.6 | 625.0  | 80.1          | 389.0  | 88.7  | 12.4        | 80.3  | 9.3  | 52.1  | 10.1 | 26.3        | 20.0        | 3.0 | 8.6  | 7.5  |
| 2606183-84  | C-P | 40.0  | 535.5  | 432.6          | 162.9 | 2.1 | 237.1 | 565.2  | 65.8          | 279.6  | 53.6  | 11.3        | 46.9  | 5.4  | 29.8  | 5.9  | 16.4        | 13.6        | 2.3 | 10.9 | 4.5  |
| 2606183-85  | C-P | 75.0  | 370.1  | 544.8          | 66.0  | 0.7 | 413.4 | 605.6  | 54.1          | 200.0  | 32.2  | 11.2        | 26.9  | 2.5  | 12.2  | 2.2  | 5.6         | 4.7         | 0.9 | 13.9 | 3.7  |
| 2606183-86  | C-P | 75.0  | 1323.0 | 421.0          | 474.4 | 6.4 | 469.6 | 1064.0 | 161.1         | 729.0  | 153.3 | 23.6        | 132.4 | 15.6 | 87.2  | 17.0 | 47.0        | 41.9        | 7.2 | 12.6 | 3.8  |
| 2606183-88  | C-P | 35.0  | 178.7  | 610.0          | 153.0 | 1.7 | 258.1 | 575.0  | 67.8          | 312.0  | 65.0  | 26.5        | 53.5  | 5.4  | 26.7  | 4.9  | 13.2        | 11.8        | 2.2 | 30.3 | 10.8 |
| 2606183-89  | C-P | 90.0  | 528.8  | 607.0          | 203.3 | 2.8 | 352.4 | 750.0  | 75.9          | 309.6  | 59.6  | 11.9        | 54.5  | 6.1  | 34.5  | 7.0  | 20.1        | 18.8        | 3.2 | 10.6 | 5.0  |
| 2606183-91  | C-P | 45.0  | 500.8  | 615.0          | 293.2 | 3.7 | 192.2 | 540.0  | 72.4          | 354.2  | 88.9  | 15.3        | 82.2  | 9.5  | 52.8  | 10.2 | 28.4        | 24.2        | 3.8 | 9.4  | 6.5  |
| 2606183-92  | C-P | 88.0  | 713.9  | 268.7          | 475.6 | 6.1 | 986.0 | 1951.0 | 259.9         | 1046.0 | 187.6 | 13.7        | 159.4 | 18.2 | 99.8  | 18.7 | 48.7        | 37.0        | 5.6 | 40.4 | 24.2 |
| 2606183-93  | C-P | 49.0  | 491.9  | 552.5          | 244.0 | 3.2 | 313.5 | 710.5  | 77.5          | 334.6  | 68.2  | 10.8        | 63.4  | 7.3  | 42.0  | 8.3  | 23.6        | 20.6        | 3.4 | 10.9 | 6.0  |
| 2606183-95  | C-P | 12.0  | 646.8  | 378.3          | 140.3 | 2.0 | 6.3   | 25.2   | 5.0           | 34.7   | 15.6  | 7.0         | 21.8  | 3.2  | 21.8  | 4.8  | 14.4        | 13.2        | 2.3 | 6.2  | 14.1 |
| 2606183-97  | C-P | 44.0  | 277.5  | 603.5          | 66.5  | 0.7 | 246.8 | 471.7  | 48.5          | 203.8  | 34.7  | 8.6         | 28.2  | 2.6  | 12.7  | 2.1  | 5.5         | 4.4         | 0.7 | 5.3  | 3.3  |
| 2606183-98  | C-P | 64.0  | 995.0  | 394.9          | 480.0 | 6.3 | 505.0 | 1149.0 | 165.4         | 756.0  | 157.1 | 20.8        | 141.1 | 16.7 | 93.3  | 18.1 | 48.2        | 36.8        | 5.6 | 12.1 | 4.4  |
| 2606183-100 | C-P | 74.0  | 339.0  | 589.0          | 130.0 | 1.5 | 347.0 | 685.0  | 73.2          | 306.4  | 52.2  | 12.2        | 43.4  | 4.4  | 23.2  | 4.3  | 11.8        | 9.7         | 1.6 | 9.8  | 3.3  |
| 2606183-102 | C-P | 61.0  | 537.0  | 635.0          | 270.8 | 3.4 | 381.2 | 884.0  | 99.7          | 444 0  | 80.1  | 14.2        | 76.8  | 87   | 49.2  | 9.6  | 26.5        | 21.0        | 35  | 14.6 | 6.6  |
| 2606183-103 | C-P | 87.0  | 651.1  | 639.2          | 267.4 | 33  | 324.1 | 813.8  | 98.8          | 444 7  | 81.0  | 14 5        | 74.1  | 8.4  | 46.9  | 91   | 25.1        | 19.7        | 3.0 | 74   | 3.9  |
| 2606183-105 | C-P | 51.0  | 433.2  | 251.2          | 314.0 | 4.8 | 284.9 | 797.6  | 100 5         | 458.7  | 81.0  | 10.0        | 75.1  | 9.4  | 55.9  | 11 4 | 34.0        | 32.3        | 5.4 | 35.9 | 16.2 |
| 2606183-106 | C-P | 95.0  | 669.8  | 627.7          | 250.7 | 2.8 | 176.0 | /97.1  | 68.6          | 342.2  | 72 9  | 10.0        | 64.1  | 79   | 45.3  | 8.6  | 23.1        | 16.2        | 2.4 | 09   | 0.6  |
| 2606183-107 | C-P | 47.0  | 360.2  | 570.2          | 132.1 | 1.5 | 552.8 | 977.0  | 101.2         | /31 5  | 66.5  | 13.2        | 57.8  | 5.7  | 28.2  | 19   | 12.2        | 8 /         | 13  | 8.1  | 2.6  |
| 2606182-108 |     | 97.0  | 206.0  | 19/ 1          | 470.5 | 5.4 | 678.0 | 1224.0 | 200.8         | 956.0  | 172 1 | 25.4        | 1/7 2 | 17.0 | 20.2  | 16.7 | 12.2        | 21 7        | 5.0 | 20.0 | 7.1  |
| 2000183-108 |     | 16.0  | 227 1  | 404.1<br>E74.1 | 470.5 | 0.4 | 24.7  | 00 0   | 200.8<br>14 E | 950.0  | 10.2  | 23.4        | 147.5 | 10   | 10.7  | 10.7 | 4J.7<br>E 1 | 20          | 0.7 | 20.0 | 1.1  |
| 2000103-111 | C-P | 24.0  | 227.1  | 374.1          | 152.0 | 0.0 | 24.7  | 200.9  | 14.5          | 255.7  | 10.2  | 5.7<br>11 D | 17.7  | 1.9  | 20.2  | 1.9  | 12.2        | 5.0<br>10.4 | 1.0 | 5.0  | 1.0  |
| 2000183-112 | C-P | 24.9  | 253.9  | 472.8          | 153.0 | 1.7 | 93.0  | 280.9  | 44.8          | 255.5  | 22.3  | 11.2        | 20.0  | 5.4  | 28.2  | 5.1  | 13.2        | 10.4        | 1.8 | 4.7  | 3.2  |
| 2606183-113 | C-P | 22.0  | 224.5  | 659.6          | 69.7  | 0.7 | 350.6 | 5/6.8  | 58.8          | 248.9  | 37.7  | 8.8         | 30.9  | 2.8  | 13.2  | 2.3  | 5.9         | 4.5         | 0.8 | 4.2  | 1.5  |
| 2606183-115 | C-P | 33.0  | 179.5  | 654.6          | 59.5  | 0.6 | 109.8 | 259.9  | 32.5          | 155.0  | 27.4  | 9.1         | 22.5  | 2.2  | 10.6  | 1.9  | 4.9         | 3.8         | 0.7 | 14.3 | 3.2  |
| 2606183-117 | C-P | 40.0  | 445.4  | 418.2          | 57.9  | 0.8 | 19.0  | 58.0   | 9.1           | 50.0   | 12.5  | 4.2         | 13.4  | 1.6  | 9.3   | 2.0  | 5.5         | 4.5         | 0.9 | 3.0  | 13.2 |
| 2606183-118 | C-P | 83.0  | 576.9  | 679.4          | 302.9 | 3.6 | 233.2 | 654.1  | 91.2          | 453.4  | 99.3  | 17.6        | 88.5  | 10.1 | 55.4  | 10.5 | 28.4        | 22.2        | 3.3 | 7.9  | 5.4  |
| 2606183-119 | C-P | 19.0  | 245.6  | 463.6          | 52.5  | 0.5 | 280.0 | 406.0  | 37.0          | 148.2  | 20.7  | 8.2         | 19.2  | 1.7  | 8.6   | 1.5  | 4.1         | 3.5         | 0.7 | 31.7 | 13.8 |
| 2606183-120 | C-P | 42.0  | 367.5  | 488.0          | 570.7 | 8.4 | 11.6  | 78.3   | 21.8          | 188.2  | 75.6  | 12.9        | 100.1 | 14.4 | 92.4  | 20.0 | 59.5        | 54.6        | 9.5 | 6.6  | 3.9  |
| 2606183-122 | C-P | 135.0 | 1216.0 | 513.8          | 653.7 | 7.6 | 549.0 | 1326.0 | 228.5         | 1083.0 | 219.0 | 28.2        | 181.0 | 21.9 | 123.6 | 23.2 | 61.0        | 43.7        | 6.1 | 11.3 | 3.9  |
| 2606183-123 | C-P | 36.0  | 364.7  | 561.9          | 141.5 | 1.8 | 224.1 | 449.5  | 48.4          | 213.5  | 39.5  | 7.5         | 40.7  | 4.3  | 24.3  | 5.0  | 13.7        | 11.3        | 2.2 | 11.0 | 9.1  |
| 2606183-125 | C-P | 47.0  | 285.7  | 598.1          | 81.1  | 0.9 | 156.8 | 341.4  | 38.8          | 169.3  | 29.4  | 10.2        | 27.0  | 2.8  | 14.6  | 2.7  | 7.4         | 6.0         | 1.2 | 6.8  | 4.7  |
| 2606183-127 | C-P | 119.0 | 714.4  | 617.4          | 348.0 | 4.3 | 571.7 | 1128.0 | 146.1         | 603.0  | 105.4 | 17.5        | 92.5  | 10.7 | 59.6  | 11.8 | 32.4        | 26.0        | 4.1 | 13.8 | 5.6  |
|             |     |       |        |                |       |     |       |        |               |        |       |             |       |      |       |      |             |             |     |      |      |

| 2606183-128 | C-P | 29.0   | 874.6  | 305.0 | 483.3  | 6.0  | 161.1  | 617.2  | 104.3 | 570.3  | 131.9 | 19.4  | 121.9 | 15.0  | 86.7  | 16.9  | 45.8  | 37.7  | 6.5  | 10.3 | 6.5  |
|-------------|-----|--------|--------|-------|--------|------|--------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|------|
| 2606183-129 | C-P | 137.0  | 398.9  | 731.3 | 70.2   | 0.7  | 496.8  | 785.7  | 76.2  | 283.1  | 41.4  | 9.2   | 31.5  | 2.8   | 13.1  | 2.2   | 5.8   | 4.2   | 0.7  | 4.2  | 1.3  |
| 2606183-1   | G   | 153.0  | 334.6  | 126.5 | 728.4  | 6.3  | 779.7  | 2074.0 | 286.8 | 1432.0 | 301.3 | 22.4  | 263.4 | 30.2  | 154.8 | 25.2  | 58.3  | 31.0  | 3.8  | 43.2 | 36.8 |
| 2606183-11  | G   | 311.0  | 173.9  | 966.2 | 307.4  | 3.0  | 586.3  | 1450.0 | 188.2 | 877.3  | 162.1 | 29.1  | 127.9 | 14.0  | 69.2  | 11.4  | 26.6  | 16.4  | 2.2  | 19.1 | 18.5 |
| 2606183-38  | G   | 614.0  | 656.8  | 181.3 | 487.6  | 5.8  | 560.1  | 1213.0 | 128.8 | 557.6  | 113.8 | 15.1  | 118.1 | 15.2  | 90.0  | 17.7  | 46.1  | 33.9  | 4.8  | 47.1 | 27.4 |
| 2606183-54  | G   | 49.0   | 250.9  | 260.0 | 1733.0 | 19.3 | 4969.0 | 9775.0 | 989.0 | 3602.0 | 531.8 | 39.2  | 432.3 | 51.6  | 294.0 | 55.7  | 152.7 | 113.3 | 15.4 | 17.8 | 10.3 |
| 2606183-90  | G   | 95.0   | 199.6  | 299.4 | 668.9  | 6.4  | 956.0  | 2135.0 | 326.6 | 1444.0 | 323.8 | 6.3   | 255.6 | 28.8  | 146.9 | 24.5  | 58.4  | 33.3  | 4.1  | 19.3 | 12.7 |
| 2606183-94  | G   | 86.0   | 193.1  | 456.4 | 898.1  | 9.4  | 988.0  | 2411.0 | 381.4 | 1722.0 | 368.7 | 26.4  | 303.4 | 35.9  | 192.5 | 33.4  | 81.6  | 50.3  | 6.2  | 30.1 | 39.3 |
| 2606183-101 | G   | 2050.0 | 426.3  | 146.7 | 368.5  | 4.8  | 243.4  | 494.0  | 58.2  | 269.9  | 55.6  | 10.4  | 61.5  | 8.6   | 55.8  | 12.1  | 35.3  | 29.0  | 4.4  | 8.0  | 20.5 |
| 2606183-104 | G   | 305.0  | 126.5  | 356.9 | 308.5  | 3.4  | 440.8  | 1154.0 | 140.7 | 604.2  | 98.3  | 17.6  | 86.6  | 10.3  | 58.3  | 10.8  | 28.0  | 18.5  | 2.5  | 1.6  | 2.7  |
| 2606183-116 | G   | 107.0  | 311.9  | 149.1 | 303.0  | 3.7  | 505.0  | 970.0  | 104.7 | 410.0  | 67.8  | 6.2   | 62.6  | 7.8   | 47.1  | 9.8   | 27.9  | 23.4  | 3.6  | 11.3 | 8.5  |
| 2606183-126 | G   | 155.0  | 1149.0 | 91.9  | 3393.0 | 53.9 | 1078.0 | 3224.0 | 641.9 | 3333.0 | 854.4 | 105.1 | 798.8 | 114.5 | 725.0 | 145.9 | 403.4 | 318.2 | 45.4 | 2.0  | 18.9 |
|             |     |        |        |       |        |      |        |        |       |        |       |       |       |       |       |       |       |       |      |      |      |

|               |     |       |                                     | Mues             | stra V-1   |          |       |           |            |
|---------------|-----|-------|-------------------------------------|------------------|------------|----------|-------|-----------|------------|
|               |     | Área  |                                     | <sup>238</sup> U | tot incert | Edad TFA | 1σ    |           | tot incert |
| Ngr - apatito | Ns  | (µm²) | $\rho_{\rm s}$ (A/cm <sup>2</sup> ) | (ppm)            | (ppm)      | (Ma)     | (Ma)  | Cl (wt.%) | (wt.%)     |
| 2606181-1     | 127 | 4640  | 2737069                             | 85.57            | 6.24       | 58.53    | 7.85  | 0.927     | 0.085      |
| 2606181-2     | 82  | 9820  | 835031                              | 38.20            | 2.31       | 40.05    | 5.75  | 0.746     | 0.074      |
| 2606181-3     | 10  | 12800 | 78125                               | 3.40             | 0.23       | 42.1     | 13.92 | 0.665     | 0.066      |
| 2606181-4     | 30  | 5510  | 544465                              | 24.22            | 1.56       | 41.19    | 8.47  | 0.955     | 0.086      |
| 2606181-5     | 44  | 5860  | 750853                              | 24.71            | 1.50       | 55.61    | 9.82  | 0.769     | 0.075      |
| 2606181-6     | 32  | 10100 | 316832                              | 11.30            | 0.72       | 51.33    | 10.28 | 1.185     | 0.100      |
| 2606181-7     | 55  | 5790  | 949914                              | 28.99            | 1.82       | 59.95    | 9.83  | 0.979     | 0.092      |
| 2606181-8     | 60  | 11370 | 527704                              | 6.54             | 0.42       | 146.63   | 23.45 | 1.574     | 0.133      |
| 2606181-9     | 10  | 11840 | 84459                               | 3.76             | 0.26       | 41.16    | 13.62 | 0.677     | 0.068      |
| 2606181-10    | 23  | 4570  | 503282                              | 23.88            | 1.75       | 38.62    | 8.94  | 0.569     | 0.058      |
| 2606181-11    | 6   | 10120 | 59289                               | 2.87             | 0.19       | 37.86    | 15.88 | 0.621     | 0.059      |
| 2606181-13    | 28  | 8220  | 340633                              | 12.47            | 0.78       | 50.01    | 10.54 | 0.771     | 0.080      |
| 2606181-14    | 55  | 7390  | 744249                              | 16.54            | 1.03       | 82.18    | 13.46 | 0.933     | 0.087      |
| 2606181-15    | 36  | 6910  | 520984                              | 16.56            | 1.03       | 57.57    | 10.99 | 0.763     | 0.073      |
| 2606181-16    | 7   | 14580 | 48011                               | 2.99             | 0.20       | 29.45    | 11.48 | 0.693     | 0.073      |
| 2606181-17    | 120 | 7340  | 1634877                             | 58.65            | 3.53       | 51.03    | 6.6   | 0.884     | 0.085      |
| 2606181-18    | 8   | 21800 | 36697                               | 1.97             | 0.13       | 34.15    | 12.51 | 0.567     | 0.058      |
| 2606181-19    | 46  | 5600  | 821429                              | 40.26            | 2.39       | 37.39    | 6.48  | 0.861     | 0.082      |
| 2606181-20    | 21  | 7480  | 280749                              | 13.06            | 0.81       | 39.39    | 9.34  | 0.807     | 0.080      |
| 2606181-21    | 88  | 7570  | 1162483                             | 66.87            | 4.03       | 31.87    | 4.48  | 0.731     | 0.071      |
| 2606181-22    | 18  | 18780 | 95847                               | 6.12             | 0.39       | 28.72    | 7.29  | 0.548     | 0.060      |
| 2606181-23    | 8   | 6010  | 133111                              | 4.04             | 0.27       | 60.28    | 22.09 | 0.658     | 0.066      |
| 2606181-24    | 15  | 6190  | 242326                              | 16.46            | 1.08       | 27       | 7.43  | 0.600     | 0.064      |
| 2606181-25    | 101 | 9460  | 1067653                             | 37.29            | 2.30       | 52.41    | 7.13  | 0.929     | 0.087      |
| 2606181-26    | 30  | 10120 | 296443                              | 10.30            | 0.63       | 52.68    | 10.78 | 1.002     | 0.092      |
| 2606181-27    | 39  | 10420 | 374280                              | 23.91            | 1.55       | 28.71    | 5.34  | 0.633     | 0.069      |
| 2606181-28    | 25  | 7260  | 344353                              | 11.46            | 0.72       | 54.99    | 12.14 | 0.904     | 0.084      |
| 2606181-29    | 9   | 6240  | 144231                              | 7.10             | 0.45       | 37.23    | 12.89 | 0.656     | 0.068      |
| 2606181-30    | 16  | 6080  | 263158                              | 14.44            | 0.90       | 33.41    | 8.91  | 0.803     | 0.080      |
| 2606181-31    | 28  | 7210  | 388350                              | 24.88            | 1.55       | 28.63    | 6.03  | 0.613     | 0.063      |
| 2606181-33    | 54  | 8950  | 603352                              | 25.52            | 1.53       | 43.31    | 7.1   | 0.768     | 0.075      |
| 2606181-35    | 17  | 6170  | 275527                              | 13.23            | 0.82       | 38.17    | 9.91  | 0.572     | 0.065      |
| 2606181-36    | 25  | 6250  | 400000                              | 16.69            | 1.03       | 43.9     | 9.68  | 0.995     | 0.095      |
| 2606181-37    | 26  | 13020 | 199693                              | 4.21             | 0.28       | 86.6     | 18.91 | 1.346     | 0.122      |
| 2606181-38    | 17  | 7730  | 219922                              | 8.35             | 0.74       | 48.23    | 12.89 | 0.654     | 0.068      |
| 2606181-39    | 56  | 11560 | 484429                              | 22.23            | 1.39       | 39.93    | 6.51  | 0.700     | 0.071      |
| 2606181-40    | 16  | 7460  | 214477                              | 8.45             | 0.52       | 46.48    | 12.39 | 0.827     | 0.088      |
| 2606181-41    | 27  | 7140  | 378151                              | 17.11            | 1.06       | 40.5     | 8.65  | 0.593     | 0.057      |
| 2606181-42    | 48  | 9290  | 516685                              | 26.92            | 1.66       | 35.18    | 6.03  | 0.626     | 0.063      |
| 2606181-43    | 19  | 6950  | 273381                              | 13.01            | 0.81       | 38.51    | 9.53  | 0.759     | 0.078      |
| 2606181-45    | 60  | 7520  | 797872                              | 39.27            | 2.41       | 37.24    | 5.91  | 0.841     | 0.081      |
| 2606181-46    | 16  | 7340  | 217984                              | 6.85             | 0.49       | 58.23    | 15.67 | 0.716     | 0.071      |
| 2606181-47    | 12  | 7090  | 169252                              | 9.79             | 0.62       | 31.7     | 9.62  | 0.535     | 0.056      |
| 2606181-48    | 62  | 7730  | 802070                              | 29.25            | 1.85       | 50.21    | 7.92  | 1.216     | 0.110      |
| 2606181-49    | 12  | 7470  | 160643                              | 4.81             | 0.31       | 61.1     | 18.56 | 0.904     | 0.086      |

Anexo 6. Datos de las trazas de fisión de granos individuales de apatito

| 2606181-50 | 45  | 7000  | 642857  | 27.14  | 1.66  | 43.39 | 7.61  | 0.542 | 0.062 |
|------------|-----|-------|---------|--------|-------|-------|-------|-------|-------|
| 2606181-51 | 85  | 7060  | 1203966 | 65.26  | 3.98  | 33.82 | 4.81  | 0.473 | 0.051 |
| 2606181-52 | 27  | 7470  | 361446  | 14.30  | 0.98  | 46.29 | 9.98  | 0.618 | 0.062 |
| 2606181-53 | 20  | 9300  | 215054  | 7.62   | 0.48  | 51.67 | 12.52 | 0.430 | 0.051 |
| 2606181-54 | 37  | 9570  | 386625  | 14.17  | 0.87  | 49.96 | 9.42  | 0.691 | 0.066 |
| 2606181-55 | 42  | 6510  | 645161  | 32.01  | 1.93  | 36.94 | 6.63  | 0.994 | 0.092 |
| 2606181-57 | 39  | 7470  | 522088  | 27.96  | 1.76  | 34.23 | 6.35  | 0.655 | 0.063 |
| 2606181-58 | 36  | 8770  | 410490  | 16.73  | 1.04  | 44.94 | 8.58  | 0.803 | 0.078 |
| 2606181-59 | 17  | 7490  | 226969  | 14.10  | 1.00  | 29.52 | 7.73  | 0.706 | 0.074 |
| 2606181-60 | 30  | 7830  | 383142  | 21.91  | 1.34  | 32.06 | 6.56  | 0.672 | 0.064 |
| 2606181-61 | 63  | 9560  | 658996  | 29.78  | 1.86  | 40.55 | 6.35  | 0.485 | 0.052 |
| 2606181-62 | 35  | 9420  | 371550  | 12.29  | 0.79  | 55.33 | 10.71 | 0.660 | 0.067 |
| 2606181-63 | 11  | 7560  | 145503  | 7.64   | 0.51  | 34.91 | 11.05 | 0.475 | 0.055 |
| 2606181-64 | 37  | 8800  | 420455  | 17.58  | 1.14  | 43.81 | 8.31  | 0.489 | 0.055 |
| 2606181-65 | 59  | 8630  | 683662  | 25.39  | 1.59  | 49.3  | 7.9   | 0.786 | 0.085 |
| 2606181-66 | 116 | 4850  | 2391753 | 108.63 | 6.64  | 40.34 | 5.28  | 0.447 | 0.051 |
| 2606181-67 | 39  | 11000 | 354545  | 11.91  | 0.74  | 54.49 | 10.09 | 0.568 | 0.062 |
| 2606181-68 | 8   | 12280 | 65147   | 2.24   | 0.16  | 53.24 | 19.55 | 0.504 | 0.053 |
| 2606181-69 | 58  | 7460  | 777480  | 31.45  | 1.96  | 45.28 | 7.29  | 0.625 | 0.065 |
| 2606181-70 | 25  | 9460  | 264271  | 11.59  | 0.73  | 41.77 | 9.22  | 0.565 | 0.056 |
| 2606181-71 | 209 | 4750  | 4400000 | 176.75 | 10.53 | 45.59 | 5.22  | 0.805 | 0.076 |
| 2606181-72 | 248 | 7480  | 3315508 | 144.99 | 8.92  | 41.89 | 4.7   | 0.795 | 0.079 |
| 2606181-73 | 53  | 8960  | 591518  | 19.35  | 1.20  | 55.94 | 9.28  | 0.775 | 0.076 |
| 2606181-74 | 80  | 7670  | 1043025 | 38.23  | 2.69  | 49.95 | 7.45  | 0.731 | 0.070 |
| 2606181-75 | 10  | 10000 | 100000  | 2.83   | 0.19  | 64.62 | 21.36 | 0.504 | 0.059 |
| 2606181-76 | 263 | 9520  | 2762605 | 131.26 | 8.07  | 38.57 | 4.29  | 0.570 | 0.058 |
| 2606181-77 | 105 | 11350 | 925110  | 41.57  | 2.52  | 40.77 | 5.47  | 0.467 | 0.049 |
| 2606181-78 | 104 | 8280  | 1256039 | 58.47  | 4.34  | 39.36 | 5.55  | 0.704 | 0.074 |
| 2606181-79 | 13  | 5630  | 230906  | 6.17   | 0.39  | 68.42 | 20.03 | 0.618 | 0.062 |
| 2606181-80 | 23  | 8670  | 265283  | 10.23  | 0.63  | 47.49 | 10.83 | 0.520 | 0.053 |
| 2606181-81 | 29  | 7280  | 398352  | 17.98  | 1.11  | 40.59 | 8.43  | 0.561 | 0.060 |
| 2606181-82 | 170 | 6960  | 2442529 | 113.18 | 6.96  | 39.54 | 4.75  | 0.527 | 0.055 |
| 2606181-83 | 25  | 5930  | 421585  | 17.30  | 1.06  | 44.64 | 9.83  | 0.740 | 0.069 |
| 2606181-84 | 12  | 24700 | 48583   | 1.95   | 0.14  | 45.63 | 13.94 | 0.536 | 0.055 |
| 2606181-85 | 22  | 11530 | 190807  | 5.78   | 0.49  | 60.39 | 14.47 | 0.826 | 0.077 |
| 2606181-86 | 10  | 11800 | 84746   | 3.50   | 0.23  | 44.35 | 14.65 | 0.460 | 0.050 |
| 2606181-87 | 8   | 19300 | 41451   | 2.29   | 0.15  | 33.18 | 12.15 | 0.410 | 0.044 |
| 2606181-88 | 120 | 4060  | 2955665 | 151.44 | 9.06  | 35.77 | 4.62  | 0.724 | 0.071 |
| 2606181-89 | 95  | 8510  | 1116334 | 58.63  | 3.60  | 34.9  | 4.82  | 0.752 | 0.078 |
| 2606181-91 | 20  | 8970  | 222965  | 11.11  | 0.70  | 36.78 | 8.92  | 0.398 | 0.046 |
| 2606181-92 | 53  | 14650 | 361775  | 20.38  | 1.24  | 32.55 | 5.38  | 0.746 | 0.075 |
| 2606181-93 | 42  | 6620  | 634441  | 29.61  | 1.98  | 39.26 | 7.14  | 0.522 | 0.060 |
| 2606181-94 | 54  | 8010  | 674157  | 32.22  | 1.97  | 38.34 | 6.31  | 0.711 | 0.071 |
| 2606181-95 | 49  | 11060 | 443038  | 23.96  | 1.45  | 33.9  | 5.76  | 0.617 | 0.063 |
| 2606181-96 | 35  | 11710 | 298890  | 17.63  | 1.09  | 31.09 | 5.99  | 0.407 | 0.044 |

|               |    |       |                                    | Muest            | ra RN-3    |          |       |        |            |
|---------------|----|-------|------------------------------------|------------------|------------|----------|-------|--------|------------|
|               |    | Área  |                                    | <sup>238</sup> U | tot incert | Edad TFA | 1σ    | Cl     | tot incert |
| Ngr - apatito | Ns | (µm²) | $ ho_{\rm s}$ (A/cm <sup>2</sup> ) | (ppm)            | (ppm)      | (Ma)     | (Ma)  | (wt.%) | (wt.%)     |
| 2606183-1     | 80 | 9360  | 854701                             | 36.52            | 2.25       | 43.09    | 6.47  | 0.809  | 0.081      |
| 2606183-2     | 75 | 9130  | 821468                             | 23.03            | 2.37       | 65.56    | 11.39 | 0.240  | 0.034      |
| 2606183-3     | 23 | 8190  | 280830                             | 10.57            | 0.77       | 48.9     | 11.47 | 0.174  | 0.029      |
| 2606183-4     | 21 | 9780  | 214724                             | 6.64             | 0.43       | 59.47    | 14.33 | 0.281  | 0.038      |
| 2606183-5     | 17 | 7000  | 242857                             | 6.96             | 0.45       | 64.14    | 16.88 | 0.302  | 0.042      |
| 2606183-6     | 38 | 6800  | 558824                             | 33.61            | 2.32       | 30.64    | 5.92  | 0.232  | 0.033      |
| 2606183-7     | 17 | 6620  | 256798                             | 9.76             | 0.80       | 48.43    | 12.97 | 0.293  | 0.040      |
| 2606183-8     | 18 | 10460 | 172084                             | 7.64             | 0.48       | 41.48    | 10.63 | 0.147  | 0.023      |
| 2606183-9     | 34 | 8900  | 382022                             | 16.63            | 1.13       | 42.3     | 8.49  | 0.274  | 0.034      |
| 2606183-10    | 18 | 16320 | 110294                             | 6.07             | 0.44       | 33.48    | 8.67  | 0.136  | 0.025      |
| 2606183-11    | 41 | 10140 | 404339                             | 18.38            | 1.12       | 40.51    | 7.51  | 0.694  | 0.066      |
| 2606183-12    | 14 | 11340 | 123457                             | 3.98             | 0.26       | 57.05    | 16.33 | 0.207  | 0.029      |
| 2606183-13    | 24 | 6230  | 385233                             | 14.88            | 1.17       | 47.65    | 11.08 | 0.308  | 0.041      |
| 2606183-14    | 11 | 8270  | 133011                             | 7.53             | 0.48       | 32.55    | 10.36 | 0.306  | 0.040      |
| 2606183-15    | 14 | 13620 | 102790                             | 4.88             | 0.32       | 38.8     | 11.11 | 0.292  | 0.037      |
| 2606183-16    | 14 | 8800  | 159091                             | 5.09             | 0.33       | 57.49    | 16.45 | 0.282  | 0.039      |
| 2606183-17    | 8  | 7300  | 109589                             | 4.89             | 0.32       | 41.27    | 15.19 | 0.323  | 0.042      |
| 2606183-18    | 11 | 6800  | 161765                             | 6.85             | 0.66       | 43.48    | 14.18 | 0.365  | 0.044      |
| 2606183-19    | 17 | 5910  | 287648                             | 13.66            | 0.85       | 38.79    | 10.18 | 0.187  | 0.031      |
| 2606183-21    | 19 | 6020  | 315615                             | 16.67            | 1.00       | 34.88    | 8.72  | 0.336  | 0.040      |
| 2606183-23    | 15 | 5970  | 251256                             | 8.10             | 0.60       | 57.05    | 15.97 | 0.364  | 0.048      |
| 2606183-24    | 17 | 9850  | 172589                             | 5.11             | 0.33       | 62.1     | 16.34 | 0.200  | 0.030      |
| 2606183-25    | 13 | 12560 | 103503                             | 3.52             | 0.25       | 54.09    | 16.07 | 0.284  | 0.041      |
| 2606183-26    | 45 | 5990  | 751252                             | 42.28            | 2.79       | 32.74    | 5.93  | 0.683  | 0.070      |
| 2606183-27    | 24 | 6630  | 361991                             | 22.46            | 1.58       | 29.71    | 6.83  | 0.417  | 0.046      |
| 2606183-28    | 8  | 8520  | 93897                              | 3.17             | 0.22       | 54.49    | 20.1  | 0.405  | 0.051      |
| 2606183-29    | 12 | 8880  | 135135                             | 6.03             | 0.42       | 41.27    | 12.68 | 0.342  | 0.050      |
| 2606183-30    | 13 | 12300 | 105691                             | 3.74             | 0.25       | 52       | 15.39 | 0.285  | 0.038      |
| 2606183-31    | 14 | 5560  | 251799                             | 7.86             | 0.56       | 58.91    | 16.95 | 0.502  | 0.063      |
| 2606183-32    | 10 | 12820 | 78003                              | 5.47             | 0.65       | 26.29    | 9.12  | 0.317  | 0.043      |
| 2606183-33    | 17 | 4090  | 415648                             | 15.85            | 1.06       | 48.27    | 12.73 | 0.548  | 0.064      |
| 2606183-34    | 36 | 4940  | 728745                             | 30.93            | 1.89       | 43.38    | 8.43  | 0.904  | 0.089      |
| 2606183-35    | 20 | 5980  | 334448                             | 8.82             | 0.61       | 69.68    | 17.21 | 1.312  | 0.118      |
| 2606183-36    | 10 | 5810  | 172117                             | 11.30            | 0.76       | 28.08    | 9.34  | 0.718  | 0.077      |
| 2606183-37    | 47 | 6730  | 698366                             | 28.16            | 1.71       | 45.65    | 8.06  | 0.964  | 0.093      |
| 2606183-38    | 28 | 5720  | 489510                             | 27.17            | 1.69       | 33.2     | 7.11  | 0.882  | 0.085      |
| 2606183-40    | 6  | 7000  | 85714                              | 4.54             | 0.31       | 34.79    | 14.66 | 0.373  | 0.049      |
| 2606183-41    | 10 | 9300  | 107527                             | 5.16             | 0.32       | 38.38    | 12.74 | 0.264  | 0.035      |
| 2606183-42    | 27 | 10680 | 252809                             | 11.13            | 0.86       | 41.83    | 9.28  | 0.251  | 0.041      |
| 2606183-43    | 14 | 4800  | 291667                             | 11.17            | 0.76       | 48.06    | 13.79 | 0.288  | 0.042      |
| 2606183-44    | 14 | 6140  | 228013                             | 13.95            | 1.25       | 30.13    | 8.82  | 0.389  | 0.049      |
| 2606183-45    | 7  | 4820  | 145228                             | 6.18             | 0.41       | 43.27    | 16.95 | 0.564  | 0.062      |
| 2606183-46    | 32 | 4560  | 701754                             | 19.95            | 1.34       | 64.66    | 13.25 | 0.523  | 0.061      |
| 2606183-47    | 6  | 15650 | 38339                              | 2.48             | 0.22       | 28.5     | 12.12 | 0.272  | 0.039      |
| 2606183-48    | 8  | 8590  | 93132                              | 3.98             | 0.26       | 43.09    | 15.86 | 0.194  | 0.029      |
| 2606183-49    | 28 | 5130  | 545809                             | 40.20            | 2.47       | 25.03    | 5.35  | 0.597  | 0.065      |
| 2606183-51    | 10 | 5730  | 174520                             | 7.36             | 0.48       | 43.66    | 14.51 | 0.646  | 0.068      |

| 2606183-52 | 33 | 5850  | 564103  | 27.37 | 1.68 | 37.96 | 7.62  | 1.210 | 0.112 |
|------------|----|-------|---------|-------|------|-------|-------|-------|-------|
| 2606183-53 | 6  | 11920 | 50336   | 2.03  | 0.15 | 45.65 | 19.28 | 0.590 | 0.065 |
| 2606183-54 | 15 | 6660  | 225225  | 10.24 | 0.64 | 40.51 | 11.23 | 0.430 | 0.056 |
| 2606183-55 | 5  | 5620  | 88968   | 5.03  | 0.35 | 32.59 | 14.97 | 0.712 | 0.074 |
| 2606183-56 | 6  | 6350  | 94488   | 4.23  | 0.35 | 41.14 | 17.44 | 0.592 | 0.072 |
| 2606183-57 | 10 | 6420  | 155763  | 4.69  | 0.31 | 61.07 | 20.31 | 0.346 | 0.047 |
| 2606183-58 | 15 | 5670  | 264550  | 18.74 | 1.19 | 26.03 | 7.22  | 0.452 | 0.057 |
| 2606183-59 | 5  | 15760 | 31726   | 1.41  | 0.10 | 41.43 | 19.05 | 0.451 | 0.054 |
| 2606183-60 | 12 | 12700 | 94488   | 3.58  | 0.28 | 48.58 | 15.03 | 0.644 | 0.075 |
| 2606183-61 | 5  | 6840  | 73099   | 3.90  | 0.27 | 34.53 | 15.86 | 0.539 | 0.066 |
| 2606183-62 | 75 | 4890  | 1533742 | 82.28 | 5.17 | 34.35 | 5.27  | 0.405 | 0.048 |
| 2606183-64 | 40 | 5060  | 790514  | 40.12 | 2.56 | 36.3  | 6.82  | 1.701 | 0.144 |
| 2606183-66 | 16 | 5560  | 287770  | 17.52 | 1.13 | 30.27 | 8.17  | 0.553 | 0.066 |
| 2606183-67 | 15 | 9520  | 157563  | 4.83  | 0.32 | 59.99 | 16.68 | 0.632 | 0.066 |
| 2606183-68 | 6  | 9360  | 64103   | 3.75  | 0.25 | 31.5  | 13.27 | 0.307 | 0.042 |
| 2606183-69 | 5  | 6490  | 77042   | 3.38  | 0.21 | 41.97 | 19.24 | 0.203 | 0.032 |
| 2606183-70 | 40 | 7730  | 517464  | 30.89 | 1.91 | 30.87 | 5.78  | 0.973 | 0.088 |
| 2606183-71 | 43 | 6570  | 654490  | 45.34 | 2.81 | 26.61 | 4.86  | 1.161 | 0.099 |
| 2606183-72 | 23 | 6710  | 342772  | 19.15 | 1.34 | 32.98 | 7.71  | 0.422 | 0.050 |
| 2606183-73 | 18 | 7980  | 225564  | 18.19 | 1.17 | 22.87 | 5.87  | 0.381 | 0.047 |
| 2606183-74 | 8  | 6710  | 119225  | 3.94  | 0.26 | 55.66 | 20.5  | 0.397 | 0.047 |
| 2606183-76 | 8  | 7920  | 101010  | 3.71  | 0.30 | 50.1  | 18.6  | 0.261 | 0.031 |
| 2606183-77 | 14 | 6430  | 217729  | 10.80 | 0.76 | 37.14 | 10.67 | 0.551 | 0.059 |
| 2606183-78 | 20 | 9810  | 203874  | 5.96  | 0.37 | 62.89 | 15.42 | 0.255 | 0.037 |
| 2606183-79 | 13 | 9450  | 137566  | 10.56 | 0.98 | 24.02 | 7.28  | 0.394 | 0.045 |
| 2606183-80 | 5  | 5560  | 89928   | 5.50  | 0.36 | 30.14 | 13.83 | 0.504 | 0.060 |
| 2606183-81 | 9  | 11880 | 75758   | 3.42  | 0.23 | 40.79 | 14.24 | 0.184 | 0.027 |
| 2606183-83 | 13 | 8260  | 157385  | 7.47  | 0.50 | 38.81 | 11.49 | 0.158 | 0.023 |
| 2606183-84 | 17 | 15180 | 111989  | 4.49  | 0.29 | 45.91 | 12.08 | 0.136 | 0.021 |
| 2606183-85 | 8  | 12420 | 64412   | 3.71  | 0.24 | 32    | 11.77 | 0.595 | 0.065 |
| 2606183-87 | 30 | 6290  | 476948  | 28.49 | 1.77 | 30.85 | 6.43  | 0.506 | 0.053 |
| 2606183-88 | 13 | 6230  | 208668  | 10.72 | 0.73 | 35.86 | 10.63 | 0.300 | 0.042 |
| 2606183-89 | 5  | 6180  | 80906   | 4.91  | 0.33 | 30.37 | 13.94 | 0.478 | 0.057 |
| 2606183-90 | 12 | 6100  | 196721  | 12.64 | 0.77 | 28.69 | 8.76  | 0.854 | 0.078 |
| 2606183-91 | 6  | 7700  | 77922   | 6.41  | 0.42 | 22.42 | 9.44  | 0.216 | 0.031 |
| 2606183-92 | 52 | 6790  | 765832  | 24.02 | 1.48 | 58.63 | 10.03 | 0.512 | 0.052 |
| 2606183-93 | 9  | 7000  | 128571  | 5.96  | 0.42 | 39.73 | 13.9  | 0.183 | 0.027 |
| 2606183-94 | 30 | 4950  | 606061  | 39.04 | 2.39 | 28.62 | 5.96  | 0.465 | 0.048 |
| 2606183-95 | 15 | 4700  | 319149  | 14.01 | 0.97 | 41.95 | 11.69 | 0.414 | 0.049 |

Muestra LS-2

| Ngr - apatito | Ns  | Área<br>(um²) | $\rho_{\rm c}$ (A/cm <sup>2</sup> ) | <sup>238</sup> U<br>(ppm) | tot incert<br>(ppm) | Edad TFA<br>(Ma) | 1σ<br>(Ma) | Cl<br>(wt.%) | tot incert<br>(wt.%) |
|---------------|-----|---------------|-------------------------------------|---------------------------|---------------------|------------------|------------|--------------|----------------------|
| 2506182-2     | 12  | 4600          | 260870                              | 21.23                     | 1.34                | 22.32            | 6.82       | 0.534        | 0.058                |
| 2506182-3     | 7   | 4450          | 157303                              | 8.90                      | 0.57                | 32.08            | 12.54      | 0.596        | 0.066                |
| 2506182-4     | 8   | 4510          | 177384                              | 20.55                     | 1.28                | 15.69            | 5.76       | 0.433        | 0.053                |
| 2506182-5     | 115 | 7240          | 1588398                             | 114.78                    | 7.15                | 25.13            | 3.42       | 0.229        | 0.029                |
| 2506182-7     | 16  | 10060         | 159046                              | 14.11                     | 0.88                | 20.48            | 5.51       | 0.622        | 0.066                |
| 2506182-8     | 8   | 6620          | 120846                              | 15.22                     | 0.92                | 14.43            | 5.29       | 0.713        | 0.078                |
| 2506182-9     | 32  | 10000         | 320000                              | 29.02                     | 2.30                | 20.04            | 4.18       | 0.901        | 0.091                |

| 2506182-10 | 18 | 10200 | 176471  | 16.40  | 1.25 | 19.55 | 5.07  | 0.691 | 0.075 |
|------------|----|-------|---------|--------|------|-------|-------|-------|-------|
| 2506182-11 | 6  | 4000  | 150000  | 6.57   | 0.42 | 41.42 | 17.41 | 0.530 | 0.058 |
| 2506182-12 | 12 | 4050  | 296296  | 50.92  | 3.18 | 10.58 | 3.23  | 0.574 | 0.068 |
| 2506182-13 | 21 | 5630  | 373002  | 44.33  | 2.74 | 15.29 | 3.66  | 0.471 | 0.055 |
| 2506182-14 | 5  | 9870  | 50659   | 2.28   | 0.15 | 40.31 | 18.48 | 0.779 | 0.074 |
| 2506182-15 | 5  | 19060 | 26233   | 1.98   | 0.13 | 24.07 | 11.03 | 0.736 | 0.070 |
| 2506182-16 | 30 | 5000  | 600000  | 52.52  | 3.30 | 20.76 | 4.31  | 0.448 | 0.049 |
| 2506182-17 | 18 | 4630  | 388769  | 41.56  | 2.59 | 17    | 4.35  | 0.483 | 0.055 |
| 2506182-18 | 12 | 18000 | 66667   | 7.90   | 0.49 | 15.34 | 4.68  | 0.645 | 0.066 |
| 2506182-19 | 8  | 14440 | 55402   | 2.38   | 0.16 | 42.22 | 15.54 | 0.832 | 0.082 |
| 2506182-20 | 9  | 11640 | 77320   | 4.01   | 0.27 | 34.99 | 12.2  | 0.738 | 0.070 |
| 2506182-21 | 11 | 5100  | 215686  | 23.26  | 1.43 | 16.85 | 5.34  | 0.451 | 0.053 |
| 2506182-22 | 83 | 4920  | 1686992 | 147.43 | 8.92 | 20.79 | 3.06  | 0.435 | 0.051 |
| 2506182-23 | 9  | 4490  | 200445  | 13.02  | 0.78 | 27.96 | 9.71  | 0.816 | 0.078 |
| 2506182-24 | 14 | 8080  | 173267  | 29.00  | 1.78 | 10.86 | 3.09  | 0.440 | 0.052 |
| 2506182-25 | 16 | 7380  | 216802  | 17.28  | 1.05 | 22.79 | 6.12  | 0.863 | 0.080 |
| 2506182-26 | 17 | 6750  | 251852  | 32.86  | 2.00 | 13.93 | 3.64  | 0.439 | 0.053 |
| 2506182-27 | 25 | 7770  | 321750  | 27.84  | 1.71 | 21    | 4.68  | 0.215 | 0.027 |
| 2506182-29 | 24 | 5700  | 421053  | 45.19  | 3.11 | 16.93 | 3.87  | 0.514 | 0.056 |
| 2506182-30 | 25 | 4140  | 603865  | 57.53  | 3.61 | 19.07 | 4.26  | 0.397 | 0.044 |
| 2506182-31 | 24 | 5470  | 438757  | 33.59  | 2.03 | 23.73 | 5.37  | 0.816 | 0.082 |
| 2506182-32 | 17 | 5580  | 304659  | 32.77  | 1.99 | 16.9  | 4.42  | 0.467 | 0.050 |
| 2506182-33 | 21 | 5330  | 393996  | 36.74  | 2.29 | 19.49 | 4.67  | 0.468 | 0.054 |
| 2506182-34 | 9  | 6280  | 143312  | 12.82  | 0.89 | 20.31 | 7.09  | 0.817 | 0.084 |
| 2506182-35 | 15 | 8380  | 178998  | 12.24  | 0.74 | 26.56 | 7.33  | 1.475 | 0.132 |
| 2506182-36 | 67 | 6600  | 1015152 | 66.84  | 3.97 | 27.58 | 4.3   | 0.386 | 0.046 |
| 2506182-37 | 16 | 4200  | 380952  | 26.84  | 1.64 | 25.78 | 6.92  | 0.529 | 0.060 |
| 2506182-38 | 8  | 4130  | 193705  | 9.44   | 0.58 | 37.23 | 13.66 | 0.749 | 0.077 |
| 2506182-39 | 25 | 5540  | 451264  | 41.92  | 2.53 | 19.56 | 4.35  | 0.563 | 0.059 |
| 2506182-40 | 6  | 5120  | 117188  | 18.41  | 1.15 | 11.57 | 4.86  | 0.436 | 0.055 |
| 2506182-41 | 63 | 6510  | 967742  | 89.93  | 5.40 | 19.55 | 3.11  | 0.498 | 0.055 |
| 2506182-42 | 30 | 5260  | 570342  | 39.49  | 2.59 | 26.23 | 5.47  | 0.343 | 0.043 |
| 2506182-44 | 8  | 15320 | 52219   | 9.11   | 0.57 | 10.42 | 3.83  | 0.399 | 0.043 |

Note: Ns is the number of spontaneous fission tracks registered within the area A ( $\mu$ m<sup>2</sup>);  $\rho_{s}$  is the spontaneous track density (number of tracks expressed per 1 cm<sup>2</sup>); U-238 represents the uranium-238 concentration in ppm measured by LA–ICP-MS (normalized using <sup>43</sup>Ca as an internal standard and taking an average CaO of 55 wt.% for F-apatites and 53 wt.% for Cl-rich apatites); total uncert is the total uncertainity for U-238, including the analytical error from LA–ICP-MS measurements and an error generated by the CaO variation (55 ± 2 wt.%) and 53 ± 2 wt.%); AFT age is the apatite fission-track age in Ma; 1-SE is the 1 $\sigma$ -error in Ma; total uncertainity for CI measurements includes the analytical error derived from LA–ICP-MS measurement and an error generated by the common variation of Cl in Durango F-apatite of 0.43 ± 0.03 wt.% (primary standard for Cl measurements).

|              | Muestra V-1      |               |           |  |  |  |  |  |  |  |
|--------------|------------------|---------------|-----------|--|--|--|--|--|--|--|
| No. de traza | Grano de apatito | Longitud (µm) | Cl (wt.%) |  |  |  |  |  |  |  |
| 1            | 2606181-1        | 14.38         | 0.927     |  |  |  |  |  |  |  |
| 2            | 2606181-1        | 14.52         | 0.927     |  |  |  |  |  |  |  |
| 3            | 2606181-1        | 13.51         | 0.927     |  |  |  |  |  |  |  |
| 4            | 2606181-1        | 12.71         | 0.927     |  |  |  |  |  |  |  |
| 5            | 2606181-1        | 14.58         | 0.927     |  |  |  |  |  |  |  |
| 6            | 2606181-1        | 14.13         | 0.927     |  |  |  |  |  |  |  |
| 7            | 2606181-7        | 12.89         | 0.979     |  |  |  |  |  |  |  |
| 8            | 2606181-17       | 15.48         | 0.884     |  |  |  |  |  |  |  |
| 9            | 2606181-17       | 13.47         | 0.884     |  |  |  |  |  |  |  |
| 10           | 2606181-17       | 14.50         | 0.884     |  |  |  |  |  |  |  |
| 11           | 2606181-17       | 14.28         | 0.884     |  |  |  |  |  |  |  |
| 12           | 2606181-17       | 11.23         | 0.884     |  |  |  |  |  |  |  |
| 13           | 2606181-17       | 13.40         | 0.884     |  |  |  |  |  |  |  |
| 14           | 2606181-21       | 13.02         | 0.731     |  |  |  |  |  |  |  |
| 15           | 2606181-25       | 13.03         | 0.929     |  |  |  |  |  |  |  |
| 16           | 2606181-25       | 12.96         | 0.929     |  |  |  |  |  |  |  |
| 17           | 2606181-25       | 13.35         | 0.929     |  |  |  |  |  |  |  |
| 18           | 2606181-25       | 10.60         | 0.929     |  |  |  |  |  |  |  |
| 19           | 2606181-51       | 12.83         | 0.473     |  |  |  |  |  |  |  |
| 20           | 2606181-51       | 11.39         | 0.473     |  |  |  |  |  |  |  |
| 21           | 2606181-58       | 13.75         | 0.803     |  |  |  |  |  |  |  |
| 22           | 2606181-66       | 11.76         | 0.447     |  |  |  |  |  |  |  |
| 23           | 2606181-66       | 13.21         | 0.447     |  |  |  |  |  |  |  |
| 24           | 2606181-66       | 10.23         | 0.447     |  |  |  |  |  |  |  |
| 25           | 2606181-67       | 12.35         | 0.568     |  |  |  |  |  |  |  |
| 26           | 2606181-72       | 14.49         | 0.795     |  |  |  |  |  |  |  |
| 27           | 2606181-72       | 14.51         | 0.795     |  |  |  |  |  |  |  |
| 28           | 2606181-72       | 13.56         | 0.795     |  |  |  |  |  |  |  |
| 29           | 2606181-76       | 12.46         | 0.570     |  |  |  |  |  |  |  |
| 30           | 2606181-76       | 13.18         | 0.570     |  |  |  |  |  |  |  |
| 31           | 2606181-76       | 13.03         | 0.570     |  |  |  |  |  |  |  |
| 32           | 2606181-76       | 12.73         | 0.570     |  |  |  |  |  |  |  |
| 33           | 2606181-76       | 9.03          | 0.570     |  |  |  |  |  |  |  |
| 34           | 2606181-76       | 15.21         | 0.570     |  |  |  |  |  |  |  |
| 35           | 2606181-76       | 12.94         | 0.570     |  |  |  |  |  |  |  |
| 36           | 2606181-82       | 13.60         | 0.527     |  |  |  |  |  |  |  |
| 37           | 2606181-82       | 11.77         | 0.527     |  |  |  |  |  |  |  |
| 38           | 2606181-82       | 13.59         | 0.527     |  |  |  |  |  |  |  |
| 39           | 2606181-82       | 13.57         | 0.527     |  |  |  |  |  |  |  |

Anexo 7. Mediciones de las longitudes de trazas de fisión en apatito
| 40 | 2606181-95 | 13.88 | 0.617 |
|----|------------|-------|-------|
| 41 | 2606181-1  | 11.47 | 0.927 |
| 42 | 2606181-1  | 12.50 | 0.927 |
| 43 | 2606181-1  | 13.01 | 0.927 |
| 44 | 2606181-10 | 14.29 | 0.569 |
| 45 | 2606181-10 | 13.23 | 0.569 |
| 46 | 2606181-10 | 13.02 | 0.933 |
| 47 | 2606181-21 | 12.37 | 0.731 |
| 48 | 2606181-21 | 14.08 | 0.731 |
| 49 | 2606181-26 | 13.66 | 1.002 |
| 50 | 2606181-26 | 14.10 | 1.002 |
| 51 | 2606181-26 | 11.56 | 1.002 |
| 52 | 2606181-33 | 13.28 | 0.768 |
| 53 | 2606181-42 | 13.17 | 0.626 |
| 54 | 2606181-42 | 14.25 | 0.626 |
| 55 | 2606181-45 | 11.64 | 0.841 |
| 56 | 2606181-45 | 10.93 | 0.841 |
| 57 | 2606181-45 | 12.94 | 0.841 |
| 58 | 2606181-51 | 13.22 | 0.473 |
| 59 | 2606181-51 | 13.81 | 0.473 |
| 60 | 2606181-51 | 12.46 | 0.473 |
| 61 | 2606181-51 | 14.11 | 0.473 |
| 62 | 2606181-51 | 12.77 | 0.473 |
| 63 | 2606181-55 | 14.41 | 0.994 |
| 64 | 2606181-55 | 14.55 | 0.994 |
| 65 | 2606181-57 | 12.89 | 0.655 |
| 66 | 2606181-57 | 15.20 | 0.655 |
| 67 | 2606181-59 | 13.27 | 0.706 |
| 68 | 2606181-60 | 13.26 | 0.672 |
| 69 | 2606181-61 | 14.04 | 0.485 |
| 70 | 2606181-61 | 14.23 | 0.485 |
| 71 | 2606181-72 | 12.08 | 0.795 |
| 72 | 2606181-72 | 13.14 | 0.795 |
| 73 | 2606181-72 | 12.42 | 0.795 |
| 74 | 2606181-72 | 14.03 | 0.795 |
| 75 | 2606181-72 | 12.26 | 0.795 |
| 76 | 2606181-72 | 10.81 | 0.795 |
| 77 | 2606181-77 | 12.81 | 0.467 |
| 78 | 2606181-77 | 13.73 | 0.467 |
| 79 | 2606181-77 | 13.10 | 0.467 |
| 80 | 2606181-82 | 11.97 | 0.527 |
| 81 | 2606181-82 | 12.34 | 0.527 |
| 82 | 2606181-82 | 9.88  | 0.527 |

| 83 | 2606181-82 | 14.56 | 0.527 |
|----|------------|-------|-------|
| 84 | 2606181-83 | 14.40 | 0.740 |
| 85 | 2606181-86 | 15.01 | 0.460 |

| Muestra RN-3 |                   |               |           |  |  |
|--------------|-------------------|---------------|-----------|--|--|
| No de traza  | Grano muestra V-1 | Longitud (µm) | Cl (wt.%) |  |  |
| 1            | 2606183-2         | 15.26         | 0.240     |  |  |
| 2            | 2606183-6         | 13.57         | 0.232     |  |  |
| 3            | 2606183-6         | 14.55         | 0.232     |  |  |
| 4            | 2606183-11        | 14.68         | 0.694     |  |  |
| 5            | 2606183-11        | 12.77         | 0.694     |  |  |
| 6            | 2606183-13        | 14.01         | 0.308     |  |  |
| 7            | 2606183-13        | 10.62         | 0.308     |  |  |
| 8            | 2606183-26        | 11.74         | 0.683     |  |  |
| 9            | 2606183-26        | 15.28         | 0.683     |  |  |
| 10           | 2606183-26        | 13.79         | 0.683     |  |  |
| 11           | 2606183-26        | 13.30         | 0.683     |  |  |
| 12           | 2606183-26        | 11.65         | 0.683     |  |  |
| 13           | 2606183-26        | 9.56          | 0.683     |  |  |
| 14           | 2606183-27        | 12.63         | 0.417     |  |  |
| 15           | 2606183-27        | 13.48         | 0.417     |  |  |
| 16           | 2606183-27        | 13.35         | 0.417     |  |  |
| 17           | 2606183-27        | 13.83         | 0.417     |  |  |
| 18           | 2606183-32        | 13.52         | 0.317     |  |  |
| 19           | 2606183-33        | 12.38         | 0.548     |  |  |
| 20           | 2606183-34        | 15.95         | 0.904     |  |  |
| 21           | 2606183-34        | 12.88         | 0.904     |  |  |
| 22           | 2606183-34        | 14.64         | 0.904     |  |  |
| 23           | 2606183-34        | 13.20         | 0.904     |  |  |
| 24           | 2606183-35        | 13.35         | 1.312     |  |  |
| 25           | 2606183-35        | 11.03         | 1.312     |  |  |
| 26           | 2606183-37        | 11.21         | 0.964     |  |  |
| 27           | 2606183-38        | 14.17         | 0.882     |  |  |
| 28           | 2606183-51        | 15.40         | 0.646     |  |  |
| 29           | 2606183-61        | 11.88         | 0.539     |  |  |
| 30           | 2606183-87        | 14.50         | 0.506     |  |  |
| 31           | 2606183-92        | 12.93         | 0.512     |  |  |
| 32           | 2606183-53        | 14.68         | 0.590     |  |  |
| 33           | 2606183-49        | 11.94         | 0.597     |  |  |
| 34           | 2606183-49        | 11.60         | 0.597     |  |  |
| 35           | 2606183-49        | 13.00         | 0.597     |  |  |
| 36           | 2606183-54        | 13.29         | 0.430     |  |  |
| 37           | 2606183-58        | 11.21         | 0.452     |  |  |

| 38 | 2606183-58 | 14.11 | 0.452 |
|----|------------|-------|-------|
| 39 | 2606183-73 | 13.20 | 0.381 |
| 40 | 2606183-73 | 12.74 | 0.381 |
| 41 | 2606183-73 | 13.62 | 0.381 |
| 42 | 2606183-3  | 14.75 | 0.174 |
| 43 | 2606183-3  | 13.91 | 0.174 |
| 44 | 2606183-84 | 14.30 | 0.136 |
| 45 | 2606183-84 | 13.18 | 0.136 |
| 46 | 2606183-10 | 13.04 | 0.136 |

Note: Only TINT-type confined tracks

## Anexo 8. Datos de las muestras para el análisis de escalamiento multidimensional (MDS)

| No. MDS  | Unidad                                 | Clave        | Tipo de roca             | Referencia                        |
|----------|----------------------------------------|--------------|--------------------------|-----------------------------------|
| 1        | Abanico potosino                       | CH6-01       | Arenisca                 | Barboza-Gudiño et al. (2010)      |
| 2        | Abanico potosino                       | RC06-31      | Arenisca                 | Barboza-Gudiño et al. (2010)      |
| 3        | Fm. El Alamar                          | LB06-1       | Arenisca                 | Barboza-Gudiño et al. (2010)      |
| 4        | Fm. El Alamar                          | SM06-01      | Arenisca                 | Barboza-Gudiño et al. (2010)      |
| 5        | Fm. El Alamar                          | SM07-6       | Arenisca                 | Barboza-Gudiño et al. (2014)      |
| 6        | Complejo El Chilar                     | T11-01       | Arenisca                 | Ortega-Flores et al. (2014)       |
| 7        | Complejo El Chilar                     | T11-03       | Arenisca                 | Ortega-Flores et al. (2014)       |
| 8        | Complejo El Chilar                     | T11-06       | Arenisca                 | Ortega-Flores et al. (2014)       |
| 9        | Complejo El Chilar                     | T11-09       | Arenisca                 | Ortega-Flores et al. (2014)       |
| 11       | Complejo El Chilar                     | T11-11       | Arenisca                 | Ortega-Flores et al. (2014)       |
| 15       | Complejo Arteaga                       | GRO-12       | Meta-arenisca            | Talavera-Mendoza et al. (2007)    |
| 16       | Fm. Zacatecas                          | Z12-04       | Cuarzoarenita            | Ortega-Flores et al. (2016)       |
| 17       | Fm. Zacatecas                          | Z12-05       | Cuarzoarenita            | Ortega-Flores et al. (2016)       |
| 18       | Fm. Zacatecas                          | Z12-06       | Cuarzoarenita            | Ortega-Flores et al. (2016)       |
| 19       | Complejo Arteaga                       | Ar3          | Cuarzoarenita            | Ortega-Flores et al. (2016)       |
| 20       | Compleio Arteaga                       | 23           | Cuarzoarenita            | Ortega-Flores et al. (2016)       |
| 21       | Em. Matzitzi                           | ABM-02       | Arenisca                 | Bedova-Meiía (2018)               |
| 22       | Em. Matzitzi                           | ABM-05       | Arenisca                 | Bedova-Meiía (2018)               |
| 23       | Em. Tianguistengo                      | RMO-01       | Arenisca                 | Bedova-Meiía (2018)               |
| 24       | Em Tianguistengo                       | RMO-04       | Arenisca                 | Bedova-Meiía (2018)               |
| 25       | Ensamble Santo Tomás-Teiunilco         | VB5-12-5     | Meta-arenisca            | Martini et al. (2014)             |
| 26       | Ensamble Santo Tomás-Tejupilco         | VB5-12-6     | Meta-arenisca            | Martini et al. (2014)             |
| 20       |                                        | VB11-5       | Meta-arenisca            | Martini et al. $(2014)$           |
| 27       |                                        | VB11-5       | Meta-arenisca            | Martini et al. $(2014)$           |
| 20       | Ensamble Santo Tomás Tojunilso         | VBII-0       | Mota aronisca            | Martini et al. $(2014)$           |
| 20       |                                        | VB14-3-11(4) | Aronicco                 | Martini et al. $(2014)$           |
| 50<br>21 | Fin. Arperos                           | SL 67        | Arenisca                 | Martini et al. (2011)             |
| 22       | Fin. Arperos                           | SL-07        | Arenisca                 | Martini et al. (2011)             |
| 32       | Fin. Arperos                           | SL-70        | Arenisca                 |                                   |
| 33       | Fill. Sall Juall de la Rosa            | T11-04       | Arenisca                 | Ortega-Flores et al. (2014)       |
| 34<br>25 | Fm. San Juan de la Rosa                | T11-07       | Arenisca<br>Debria flaur | Ortega-Flores et al. (2014)       |
| 35       | Fm. Pena Azul                          | 111-05       | Debris flow              | Ortega-Flores et al. (2014)       |
| 36       | Fm. Las Trancas                        | 081102       | Arenisca                 | Ortega-Flores et al. (2014)       |
| 38       | Fm. Sierra de Cuarzos                  | P83a         | Arenisca                 | Palacios-Garcia and Martini (201  |
| 39       | Fm. Sierra de Cuarzos                  | SQB-167      | Arenisca                 | Palacios-Garcia and Martini (201  |
| 40       | Fm. Sierra de Cuarzos                  | SQB-168      | Arenisca                 | Palacios-García and Martini (201  |
| 41       | Fm. Sierra de Cuarzos                  | SQB-8        | Arenisca                 | Palacios-García and Martini (201  |
| 42       | Fm. Pelones                            | SQT-5        | Arenisca                 | Palacios-García and Martini (201  |
| 43       | Fm. Sierra de Cuarzos                  | SQT-8        | Arenisca                 | Palacios-García and Martini (2014 |
| 44       | Sucesión Taxco-Taxco Viejo             | GRO-1        | Arenisca                 | Talavera-Mendoza et al. (2007)    |
| 45       | Terreno Arcelia                        | GRO-7        | Arenisca                 | Talavera-Mendoza et al. (2007)    |
| 46       | Terreno Arcelia                        | GRO-8        | Arenisca                 | Talavera-Mendoza et al. (2007)    |
| 47       | Fm. San Lucas                          | GRO-9        | Arenisca                 | Talavera-Mendoza et al. (2007)    |
| 48       | Sucesión Miahuatepec                   | GRO-6        | Arenisca                 | Talavera-Mendoza et al. (2007)    |
| 50       | Fm. Arperos                            | M1a          | Depósitos de Slump       | Martini et al. (2012)             |
| 52       | Fm. Esperanza                          | GTO-56       | Arenisca                 | Martini et al. (2011)             |
| 53       | Complejo vulcanosedimentario Las Pilas | Z12-09       | Meta-arenisca            | Ortega-Flores et al. (2016)       |
| 54       | Fm. Chivillas                          | FCH-39       | Arenisca                 | Mendoza-Rosales (2010)            |
| 55       | Fm. Chivillas                          | FCH-40       | Arenisca                 | Mendoza-Rosales (2010)            |
| 56       | Fm. Zicapa                             | MIS055       | Arenisca                 | Sierra Rojas and Molina Garza (20 |
| 57       | Fm. Zicapa                             | 0118-3c      | Arenisca                 | Sierra Rojas and Molina Garza (20 |
| 58       | Fm. Atzompa                            | MIS164B      | Arenisca                 | Sierra-Rojas et al. (2016)        |
| 59       | Fm Atzomna                             | MIS166       | Arenisca                 | Sierra-Rojas et al. (2016)        |

| 60 | Fm. Atzompa                                        | MIS163B    | Arenisca              | Sierra-Rojas et al. (2016)                                        |
|----|----------------------------------------------------|------------|-----------------------|-------------------------------------------------------------------|
| 61 | Fm. Tecomate (Acatlán)                             | TT-81      | Metapsamita           | Kirsch et al. (2012)                                              |
| 62 | Fm. Tecomate (Acatlán)                             | TT-82      | Metapelita            | Kirsch et al. (2012)                                              |
| 63 | Fm. Tecomate (Acatlán)                             | TT612      | Metapelita            | Kirsch et al. (2012)                                              |
| 64 | Fm. Santiago (Oaxaqueño)                           | Santiago   | Arenisca              | Gillis et al. (2005)                                              |
| 65 | Fm. Ixtaltepec (Oaxaqueño)                         | Ixtaltepec | Arenisca              | Gillis et al. (2005)                                              |
| 66 | Unidad La Sepultura (CMC)                          | CB36       | Metapelita            | Weber et al. (2008)                                               |
| 67 | Unidad La Sepultura (CMC)                          | CB33       | Metapelita            | Weber et al. (2008)                                               |
| 68 | Unidad La Sepultura (CMC)                          | CB44       | Cuarcita              | Weber et al. (2008)                                               |
| 69 | Unidad La Sepultura (CMC)                          | CB54       | Meta-arenisca         | Weber et al. (2008)                                               |
| 70 | Macizo de Chiapas                                  | CMP2       | Migmatita (ortogneis) | Weber et al. (2007)                                               |
| 71 | Unidad La Sepultura (CMC)                          | CB32       | Metapelita            | Weber et al. (2007)                                               |
| 72 | Unidad Custeped (CMC)                              | CB45       | Para-anfibolita       | Weber et al. (2007)                                               |
| 73 | Fm. Santa Rosa                                     | CB55       | Arenisca              | Weber et al. (2006)                                               |
| 74 | Fm. Santa Rosa                                     | SR1        | Arenisca              | Weber et al. (2006)                                               |
| 75 | Filita San Diego                                   | Gt0417     | Meta-arenisca         | Torres-de León et al. (2012)                                      |
| 76 | Complejo Las Ovejas                                | Ov142B     | Meta-arenisca         | Torres-de León et al. (2012)                                      |
|    | Orógeno Grenville/Sunsas                           | 1200±100   | Muestra sintética     | Cawood et al. (2007)                                              |
|    | Complejo Oaxaqueño                                 | 1000±50    | Muestra sintética     | Solari et al. (2003)                                              |
|    | Orógeno Panafricano-Brasiliano                     | 600±100    | Muestra sintética     | Cordani y Teixeira (2007)                                         |
|    | Arco Carbonífero-Pérmico                           | 300±50     | Muestra sintética     | Ortega-Obregón et al. (2014)                                      |
|    | Arco Jurásico                                      | 170±20     | Muestra sintética     | Lawton y Molina-Garza (2014)                                      |
|    | Magmatismo Jurásico Superior-Cretácico<br>Inferior | 130±20     | Muestra sintética     | Sierra-Rojas y Molina-Garza (2014);<br>Sierra-Rojas et al. (2016) |

Nota: Las muestras sintéticas siguen una distribución normal.

## Anexo 9. Descripción de muestras que se utilizaron para el análisis geoquímico de componentes principales (PCA)

| Muestra | Unidad litológica  | Tipo de Roca                                                                                                                                                                                                                                                               | Referencia                 |
|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Oc1008  | Complejo Oaxaqueño | Granulita moderadamente retrogradada con granate, feldespato, sillimanita.<br>Se interpreta como una roca metasedimentaria de alto grado que<br>experimento fusión parcial adquiriendo una textura migmatítica                                                             | Solari et al. (2014)       |
| Oc1019  | Complejo Oaxaqueño | Migmatita bandeada y foliada totalmente retrogradada con todas las fases<br>máficas originales convertidas a biotita roja y epidota. Protolito incierto que<br>experimentó metamorfismo en facies de granulita y que fue totalmente<br>retrogradada a facies de anfibolita | Solari et al. (2014)       |
| Oc1012  | Complejo Oaxaqueño | Granulita de dos piroxenos y hornblenda, se encuentra intrusionada por pegmatitas foliadas. Se interpreta un protolito máfico.                                                                                                                                             | Solari et al. (2014)       |
| Oc1009  | Complejo Oaxaqueño | Melanosoma de la migmatita El Catrín de protolito máfico.                                                                                                                                                                                                                  | Solari et al. (2014)       |
| Oc1005  | Complejo Oaxaqueño | Granulita con granate que aflora cerca de la localidad tipo de las charnoquitas.                                                                                                                                                                                           | Solari et al. (2014)       |
| Oc111   | Complejo Oaxaqueño | Granulita con granates de tamaño >5mm y minerales máficos muy alterados.<br>Es la muestra de más al norte, cerca del contacto con la Fm. Matzitzi y cerca<br>de la zona de falla Caltepec.                                                                                 | Solari et al. (2014)       |
| Oc1013  | Complejo Oaxaqueño | Metasedimento en facies de granulita, caracterizado por abundante granate, biotita roja y grafito.                                                                                                                                                                         | Solari et al. (2014)       |
| Oc1020  | Complejo Oaxaqueño | Pegmatita.                                                                                                                                                                                                                                                                 | Interno LEI                |
| Oc008   | Complejo Oaxaqueño | Roca metamórfica de protolito máfico.                                                                                                                                                                                                                                      | Interno LEI                |
| Etla    | Granito Etla       | Granito                                                                                                                                                                                                                                                                    | Interno LEI                |
| Sosola  | Riolita Sosola     | Riolita                                                                                                                                                                                                                                                                    | Interno LEI                |
| ABM-02  | Fm. Matzitzi       | Arenisca                                                                                                                                                                                                                                                                   | Bedoya Mejía, A.<br>(2018) |
| ABM-05  | Fm. Matzitzi       | Arenisca                                                                                                                                                                                                                                                                   | Bedoya Mejía, A.<br>(2018) |