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Abstract

The main goal of this MSc thesis is to present a complete theory for the full order statistics of

the complex Ginibre ensemble of N × N random matrices. This consists of an ensemble of ma-

trices whose complex entries are independently drawn from a Gaussian distribution and, unlike

the classical random matrix ensembles, no other symmetries are imposed on it. One can show

that this system is mathematically equivalent to a two dimensional gas of charged particles with

inter-particle logarithmic repulsion in the presence of a convex harmonic potential. We study the

statistical properties of the number particles inside a circle of radius r, the so-called index number,

which is equivalent to the order statistics for the radial position of each particle. We are able to deri-

ve exact formulas describing the fluctuations of the index number for typical and large fluctuations.

Moreover, we show that, as in the case for the statistics of the extremal particle, there exists an

intermediate fluctuation regime that interpolates smoothly between the large and the typical fluc-

tuations. Our analytical results are successfully compared with reweighted Monte Carlo simulations.

This thesis is structured as follows: we first give a brief overview on large deviation theory, provi-

ding a simple example, that of a coin tossing, encapsulating the main ideas. We then move on to

provide the basic definitions and results of random matrix theory. We devote the rest of the thesis

to present the aforementioned results.

The results presented in this MSc thesis (which were carried out together with Bertrand Lacroix-

A-Chez-Toine, Isaac Pérez Castillo, Anupam Kundu, Satya N. Majumdar, Grégory Schehr and

Christopher Sebastian Hidalgo Calva) have been recently published in the article entitled: “In-

termediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble”,

Physical Review E 100 (1), 012137 (2019).
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Resumen

El objetivo principal de este trabajo es presentar una teoŕıa completa sobre la estad́ıstica de orden

completo en el ensamble complejo de matrices de Ginibre de tamaño N×N . Este ensamble consiste

en matrices cuyas entradas son independientes, obtenidas a partir de una distribución Gaussiana y,

a diferencia de los ensambles de matrices aleatorias clásicos, este no presenta ninguna simetŕıa. Uno

puede demostrar que este sistema es matemáticamente equivalente a un gas de part́ıculas cargadas

dos-dimensional que se repelen mediante un potencial logaŕıtmico en presencia de un potencial

armónico externo. Estudiamos las propiedades estad́ısticas del número de eigenvalores dentro de

un ćırculo de radio r, las cuales son equivalentes al orden estad́ıstico de la posición radial de cada

part́ıcula. En este trabajo derivamos fórmulas exactas para describir las fluctuaciones del número

de eigenvalores en el regimen de fluctuaciones t́ıpico y at́ıpico. Además, mostramos que, de forma

análoga al caso de la estad́ıstica de valores extremos, existe un regimen de fluctuaciones intermedio

que es capaz de conectar suavemente los reǵımenes de fluctuaciones t́ıpicas y at́ıpicas. Los resulta-

dos son comparados exitosamente con simulaciones Monte Carlo.

Esta tesis esta estructurada como sigue: primero damos una breve descripción general sobre teoŕıa

de grandes desviaciones, donde proveemos un ejemplo simple sobre el lanzamiento de N monedas,

el cual encapsula las ideas principales. Luego damos conceptos y resultados importantes en teoŕıa

de matrices aleatorias. En el resto de este trabajo presentamos los resultados mencionados.

Los resultados presentados en esta tesis de maestŕıa (que fueron llevados a cabo en cojunto con Ber-

trand Lacroix-A-Chez-Toine, Isaac Pérez Castillo, Anupam Kundu, Satya N. Majumdar, Grégory

Schehr y Christopher Sebastian Hidalgo Calva) han sido publicados en un art́ıculo titulado Inter-

mediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble, Physical

Review E 100 (1), 012137 (2019).
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1. Large deviation theory

Events such as earthquakes, overflows or river droughts, or financial crises are events that do not

happen daily. However, when they do occur, they have, more often than not, catastrophic consequen-

ces [1]. Then, it is desirable to have a mathematical tool that accurately models the probabilities

of occurrences of these rare events. To provide a little intuition, consider the behavior of the height

of the water level of a river and suppose we save the data to obtain an empirical histogram, i.e.

its probability distribution. From this histogram, fluctuations around the expected value can be

well-approximated by a Gaussian distribution justified by the central limit theorem (CLT). But

if we were interested in obtaining exactly the probability of rare events, which are important to

describe cases of droughts or overflows, the CLT is unable to capture properly the probability of

such events [1]. Thus, we need a complete theory that enables us to explore the statistics of these

extreme events. This approach is called large deviation theory.

The first formulation of this theory was introduced in 1930s by Cramér to describe the probability

of the sample mean yN = (x1 + x2 + · · ·+ xN )/N for a set of N independent and identically distri-

buted random variables xi. This theory is especially useful to deal with those events which result in

a value of yN far away from its mean 〈yN 〉, and captures how the probability of such events decays

exponentially fast as N increases [2, 3]. This approach can generally be thought as a generalization

of the central limit theorem for independent or weakly correlated random variables since, as we will

exemplify below, it is also able to accurately deal with those events that yield a value of yN close

to its mean [4].

Physicists may not be aware about the theory of large deviations, but it appears naturally in the

area of condensed matter physics and statistical mechanics, when one is trying to determine the

equilibrium properties of many-particle systems. The first encounter to the formal idea of large

deviations is through the use of the techniques such as Laplace’s or saddle-point methods. You

could even say that, in the same manner differential geometry is the mathematical language of

general relativity, large deviation theory is the natural mathematical language of statistical phy-

sics. Actually, one of the most relevant results of the large deviation theory is the generalization of

Einstein’s fluctuation theory which states that probabilities can be expressed in terms of entropy

functions. Large deviation theory explains too why free energies and entropy are related by a Le-

gendre transformation in thermodynamics. It also explains why the state of a system in equilibrium

can be determined from extreme principles, such as maximum entropy and minimal energy [3].

It is not the main goal of this thesis to provide formal definitions about large deviation theory,

nonetheless, we feel obliged to present the large deviation principle (LDP) in a mathematical

ligther framework, familiar to seasoned physicists.
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1.1. Large deviation principle

Large deviation theory simply states that the probability that the random variable yN is smaller

than a value y behaves asymptotically for large N in the following form [2, 5]:

PN (y) = Prob[yN ≤ y] �

{
e−w

(−)
N ψ(−)(y) , y < 〈yN 〉

1− e−w
(+)
N ψ(+)(y) , y > 〈yN 〉

, (1-1)

where ψ(−)(y) and ψ(+)(y) are the so-called rate functions that control the probability that yN
takes values smaller or larger than 〈yN 〉, respectively. Here, the terms w

(−)
N and w

(+)
N characterise

the decaying speed, which in general depends on N . Being more precise, by asymptotic behavior

(denoted with the symbol � in the expression above) we mean that PN (y) satisfies a large deviation

principle if the following limits exist

− ĺım
N→∞

1

w
(−)
N

logPN (y) = ψ(−)(y) (1-2)

− ĺım
N→∞

1

w
(+)
N

log(1− PN (y)) = ψ(+)(y), (1-3)

and they are different from zero. To ensure this, the terms w
(+)
N and w

(−)
N must be chosen so as to

obtain nontrivial results [2, 3]. Intuitively, this limit tells us that the dominant behavior of PN (y) is

a decaying exponential in w
(±)
N for large N [3]. It is worthwhile mentioning that, if the above limit

is zero, we say that PN (y) decays sub-exponentially in w
(±)
N , or if the limit diverges, we say that

the probability, PN (y), decays super-exponentially [3]. One can also show that this result implies

that the probability density function (PDF) of yN has the following behavior [4]

Prob(yN = y) � e−WNΨ(y), WNΨ(y) =

{
w

(−)
N ψ−(y) , y < 〈yN 〉

w
(+)
N ψ+(y) , y > 〈yN 〉

(1-4)

or, in other words, we say that pN (y) satisfies a large deviation principle with speed rate WN and

rate function Ψ(y) [3, 2, 5].

Let us enumerate some properties of the rate function Ψ(y) for the simplest case of the empirical

mean, yN = 1
N

∑N
i=1 xi, where xi are independent and identically distributed or weakly correlated.

In this situation, the rate function Ψ(y), also called Cramér function, is a convex function, i.e.

Ψ′′(y) > 0, which satisfies the following properties

Ψ(y) = 0 for y = 〈yN 〉

Ψ(y) > 0 for y 6= 〈yN 〉

Ψ(y) ≈ (y − 〈yN 〉)2/2σ2, with variance σ2 = 1
Ψ′′(y)

∣∣∣∣
y=〈yN 〉

, for y near 〈yN 〉.

Note that the third property corresponds to the central limit theorem (CLT), which states that

fluctuations of yN around its expected value are Gaussian distributed for independent or weakly
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correlated random variables [4, 6]. Thus, the large deviation theory can be thought of as a genera-

lization of CLT.

The interested reader can find a more formal treatment of the large deviation principle in [3, 7, 8,

9, 10].

1.2. A simple example: coin tossing

Suppose we have N unbiased coins and we toss them at the same time. Let Nh denote the number

of heads. If we repeat this experiment a certain number of times and record the value of Nh, its

value will fluctuate between 0 and N , as this is clearly a stochastic process. Thus, the probability

of the event Nh = M , denoted by P (M,N) = Prob(Nh = M), is the binomial distribution [6]

P (M,N) =
1

2N

(
N

M

)
. (1-5)

If we plot P (M,N) as a function of M and for N = 1000, we have that for values of M near the

mean (〈M〉 = 500), this distribution has a bell-shaped form with mean and variance given by N/2

and σ2 = N/4, respectively. By using the CLT, we can approximate the typical fluctuations of Nh

by the following Gaussian distribution [1]

P (M,N) ≈
√

2

Nπ
e−

2
N

(M−N/2)2
. (1-6)

The comparison between the exact expression P (M,N) and that obtained by the Gaussian appro-

ximation is shown in figure 1-1. From this, we can see that the Gaussian approximation (blue solid

line) fails to describe the correct distribution (square black symbols) away from the mean value, as

we expected by the CLT. To illustrate this discrepancy, consider the particular case of all the coins

giving head. The probability of this event, Nh = N , is

P (M = N,N) = Prob(Nh = N) =
1

2N
= e−N ln(2) , (1-7)

while if we were to naively use M = N in the Gaussian approximation, we would obtain P (N,N) ≈
e−N/2. Thus, the latter result is bigger than the exact probability, failing to quantify correctly the

probability of a rare event.

One may have intuitively noticed that rare events are those for which fluctuations of Nh are of

order N rather than
√
N . With this in mind, let us set M = cN with c ∈ [0, 1] in the equation

(1-5), so that we can write

P(M = cN,N) =
1

2N
N !

(cN)![(1− c)N ]!
. (1-8)

Next, using Stirling’s approximation [11] for large N we obtain that the probability distribution

P (M,N) becomes

P(M = cN,N) � e−Nφ(c), φ(c) = c ln(c) + (1− c) ln(1− c) + ln(2) . (1-9)
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Figure 1-1.: Plot of logP (M,N) given by the formula (1-5) (square symbols), the Gaussian appro-

ximation given by central limit theorem in the equation (1-6) (solid blue line) and the

approximation given by large deviation theory given by eq. (1-8) (solid red line) for

N = 1000.

This is our first simple example of a large deviation principle. It says that the probability of the

event Nh = cN decays exponentially fast with speed N and rate function φ(c) [1]. This rate function

has the following main properties: i) it is a convex function; ii) its minimum is located at c = 1/2,

precisely the typical value of Nh/N . Moreover, when evaluated at c = 1, which corresponds to the

event Nh = N , we obtain that φ(c = 1) = ln(2), recovering the exact result. Additionally, if we

expand φ(c) around its minimum, we obtain φ(c) ≈ 2(c−1/2)2, which, after substituting c = M/N ,

yields back the Gaussian approximation given by eq. (1-6). Thus, we have that CLT is captured by

the large deviation theory. The behaviour of the result obtained by the large deviation theory are

also shown in the figure 1-1 (solid red line).

Physicists may be inadvertently aware of the concepts of large deviation theory, perhaps presented

in a different language. To put it in context, consider the same problem of coin tossing, but instead

of asking about the probability of obtaining the number of heads, let us consider the number of

possible configurations that will give M heads [1]. This is given by

N (M) =

(
N

M

)
. (1-10)

Taking again M = cN , and for large N , we obtain

N (M) � eNS(c=M
N

) , (1-11)
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where S(c) reads

S(c) = ln(2)− φ(c) = −c ln(c)− (1− c) ln(1− c) . (1-12)

Thus, mathematicians will say that the number of configurations given by eq. (1-10) admits a large

deviation principle with rate function S(c). For physicists, on the other side, the rate function S(c) is

nothing but the entropy density. This can be made a bit more precise by noting that the experiment

of coin tossing corresponds to that of N non-interacting Ising spins si ∈ {−1,+1} subjected to

an external magnetic field h. The energy configuration of this system is E = −h
∑N

i=1 si. If we

particularize to h = −1/2 and do a change of variables si = 2σi− 1, with σi ∈ {0, 1}, then we have

that

E =
N∑
i=1

σi , (1-13)

so the energy E coincides with the number of heads, Nh. In this context, the number of spin con-

figurations for a fixed value of energy, N (E), is known as the micro-canonical partition function.

The corresponding entropy per spin S(c = E/N) is thus given by the same formula as the coin

tossing problem. This, of course, in the context of statistical physics, also applies for any external

field h.

Similarly, we can find a large deviation principle in the canonical ensemble. To realize this, we start

from the following integral

Z =

∫
e−βEN (E)dE , (1-14)

known as the canonical partition function. To solve this integral, we use that in the limit of large

N , we have that N (E) � eNS(c=E/N), and therefore

Z = N

∫
dce−βN [c−S(c)/β] . (1-15)

The above equation for large N can be solved by the saddle-point method, yielding

Z = e−βNminc[c−S(c)/β]. (1-16)

Since, in the thermodynamic limit, the free energy per particle is given by f(β) = − ĺımN→∞
1
βN lnZ,

we conclude that the canonical partition function Z follows a large deviation principle with velocity

N and rate function given by the free energy βf(β). Note that the entropy in the microcanonical

ensemble and the free energy in the canonical ensemble are related by a Legendre transformation.

Up to this point, we have discussed the case of N independent random variables in both a mathe-

matical and a physical setting. For correlated random variables (interacting physical systems) we

expect phase transitions to occur, which reveal themselves as non-analyticities on the rate functions

(free energies).



2. Random matrix theory

2.1. Introduction to random matrix theory

The theory of random matrices originated in the 1920s and the 1950s with the seminal works of

Wishart and Wigner in the areas of random covariance matrices and heavy nuclei, respectively.

Since then, this area of research has gained great popularity due to the variety of applications

ranging from combinatorics [12], stochastic growth [13] financial data [14], the metric of a manifold

[15] or the statistics of extreme value (EVS) for strongly correlated random variables [16].

Generally speaking, ensembles of random matrices offer the perfect mathematical laboratory to

study a system of strongly correlated random variables: that of its eigenvalues. As we want to

understand how the universal laws concerning, for instance, EVS for independent and identically

distributed random variables do change for strongly correlated systems, we will solely focus in the

use of random matrix theory in this subtopic of statistics and probability. For applications of ran-

dom matrix theory in other areas, we point the reader to the standard literature on the field and

a variety of review articles already in existence.

In this chapter, we briefly introduce the Gaussian and Ginibre ensembles, and discuss their use in

exploring the concepts of extreme value statistics and full counting statistics.

2.2. Gaussian ensembles

The Gaussian matrix ensembles were introduced by Wigner and mathematical formalized by Dyson.

The original goal was to approximate Hamiltonian systems describing heavy nuclei by considering

a random matrix representation of them and keeping only their most basic ingredients: symmetries.

This gave back three random matrix ensembles: the Gaussian Orthogonal Ensemble (GOE), the

Gaussian Unitary Ensemble (GUE), and the Gaussian Symplectic Ensemble (GSE). As the matrices

are random, so are their eigenvalues and it turns out that for the Gaussian ensembles it is possible

to derive exactly the joint distribution of eigenvalues. Indeed, if we consider matrices of size N ×N
and denote the eigenvalues as (λ1, λ2, ...λN ), then the joint distribution of eigenvalues is given by

[17]:

Pjoint(λ1, λ2, ..., λN ) =
1

ZN,β

∏
i<j

|λi − λj |β
N∏
k=1

e−
β
2
λ2
k , (2-1)

where ZN,β is the normalization factor, and β ∈ {1, 2, 4} is known as the Dyson index, whose value

is related to a particular ensemble: β = 1 for GOE, β = 2 for GUE, and β = 4 for the GSE

ensemble. Notice that the term
∏
i<j |λi − λj |β in the joint distribution of eigenvalues makes them
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to be a strongly correlated system in which the eigenvalues repel each other.

Notice that Pjoint(λ1, λ2, ..., λN ) can be re-interpreted in the context of statistical physics if we

rewrite it as the Gibbs-Boltzmann distribution Pjoint(λ1, λ2, ..., λN ) = e−βE({λi})/2

ZN,β
with

E({λi}) =

N∑
k=1

λ2
k −

∑
i 6=j

log |λi − λj | . (2-2)

This so-called Dyson’s log-gas can be interpreted as a two-dimensional interacting gas of charged

particles constrained to a one-dimensional line and with an external harmonic potential. While

Dyson’s index β plays the role of inverse temperature, within this interpretation, β could well be

any positive real value. Interestingly, there actually exists a matrix representation for such cases,

given in terms of tridiagonal random matrices [18, 19, 20].

Expressions of the sort (2-1) are very appealing mathematically, as they allow to study many

statistical properties of strongly correlated variables exactly. Indeed, let us start by considering a

simple statistics: the average density of eigenvalues. This is given by:

ρN (λ) =

〈
1

N

N∑
i=1

δ(λ− λi)

〉
, (2-3)

where 〈· · · 〉 is an average with respect to the joint PDF given in equation (2-1). It can be shown

that, if we rescale λ →
√
Nλ and take the limit when N → ∞, we obtain the celebrated Wigner

semi-circular law [17]:

ĺım
N→∞

ρN (λ) = ρ̃sc(λ) =
1

π

√
2− λ2, (2-4)

which has a support [−
√

2,
√

2]. A plot of this limiting density can be seen in figure 2-1. Notice

that in the limit of large N we obtain that the mean value of the maximum eigenvalue is
√

2. One

can study the statistics of the maximum eigenvalue for finite N to probe how EVS changes for

strongly correlated random variables [19]. This can done using various mathematical techniques.

For instance, if we define the cumulative distribution function (CDF) for the largest eigenvalue

λmax as

FN (w) = Prob[λmax ≤ w], (2-5)

this can be recast as a ratio of two partitions functions as

FN (w) =
ZN (w)

ZN (w →∞)
, (2-6)

with

ZN (w) =

∫ w

−∞
dλ1 · · ·

∫ w

−∞
dλN exp

β
2

N N∑
i=1

λ2
i −

∑
i 6=j

ln |λi − λj |

 . (2-7)

Being brief with the findings in [19], after appropriately rescaling FN (w), the limiting CDF for

the maximum eigenvalue follows a new universal law, departing from the iid case of EVS given

by the Tippett-Fisher-Gnedenko theorem [21, 22] . This new law is the celebrated Tracy-Widom
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Figure 2-1.: Density of eigenvalues in Gaussian ensembles which is described by Wigner semicir-

cular law for large matriz size. The above distribution was obtained by Monte Carlo

simulation for a matrix size of N = 500 averaging over 1000 samples.

distribution [23] .

The findings about statistical properties of extreme eigenvalues can also be generalised to bulk

eigenvalues by introducing the so-called full counting statistics (FCS) of the index number ND,

which counts how many eigenvalues are in a given domain D. For instance, the probability of ha-

ving exactly K eigenvalues, Prob(ND = K) = PD(K,N), in the domain D = {L ∈ R, 0 < L <
√

2}
(bulk) has a Gaussian behavior in the typical regime [24, 25, 26, 27], while the large fluctuations

[28, 29] of ND follows the large deviation principle PD(K,N) � e−N
2ψL(K/N), where ψL(K/N)

behaves quadratic around its minimum and match smoothly with the typical regime. This motiva-

tes the general purpose of this thesis, in which we will consider the full counting statistics of the

number ND in the Ginibre ensemble.

2.3. Ginibre ensembles

Another kind of random matrices are the complex Ginibre ensemble which was proposed by Jean

Ginibre in 1964 [30, 17]. The entries of those matrices of size N × N are composed by random

complex numbers where the real and imaginary parts follow a Gaussian distribution with zero

mean and variance O (1/N). Consequently, the eigenvalues are random complex variables, which are
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distributed in the complex plane according to the following joint probability distribution function

Pjoint(z1, ..., zN ) =
1

ZN

∏
i<j

|zi − zj |2
N∏
k=1

e−NV (zk), (2-8)

where the constant ZN is a normalization factor, and V (z) = |z|2. From the physics point of

view, the equation (2-8) can be understood as a Gibbs-Boltzmann distribution associated with

a 2-d Coulomb gas of N particles, where each particle is subjected to an harmonical external

confining potential and are repealing each other via the 2-d Coulomb logarithmic repulsive potential.

Interestingly, the joint (PDF) can be mapped onto the ground-state wave function of N non-

interacting fermions on a plane in the presence of a perpendicular magnetic field [16].

As in the Gaussian ensemble, expression in eq.(2-8) offers us the possibility to study some statistical

properties of the eigenvalues. For instance, the average density in eq. (2-3) converges in the limit

when N →∞ to the so-called Girko’s circular law given by (see figure 2-2)

ĺım
N→∞

ρN (z) = π−1Θ(redge − |z|), (2-9)

where Θ(x) is the heaviside step function and redge = 1.

-1 -0.5 0 0.5 1
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Figure 2-2.: Distribution of eigenvalues in the complex plane for a Ginibre ensemble for a sphe-

rical potential V (z) = v(|z|) = r2. This distribution was obtained by Monte Carlo

simulations for N = 1000 eigenvalues.

Moreover, for a large but finite N , it can be shown that the density of eigenvalues has the form

ρN (z) = ρb(redge)ρ̃

(
r − redge

∆N

)
, ρ̃(x) =

1

2
erfc(x) , (2-10)
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where ∆N = (2N)−1/2, erfc(x) is the complementary error function and ρb(redge) = π−1 [16]. Note

that in the asymptotic limit when x → −∞, erfc(x) ∼ 1 and we recover Girko’s circular law for

bulk elements (for r < redge) while for x → ∞, erfc(x) ∼ e−x
2
/(2
√
πx) and we obtain that the

eigenvalues density vanishes exponentially fast far from the edge [16, 31, 32].

Moreover, interesting properties can be derived for the random variable rmax = max1≤i≤N{|zi|}
such as the Cumulative Distribution Function (CDF) with the form

QN (w) = Prob(rmax ≤ w) =
N∏
k=1

qk(w), qk(w) =

∫ w
0 r2k−1e−Nv(r)dr∫∞
0 r2k−1e−Nv(r)dr

, (2-11)

with v(r) an arbitrary spherical potential. Equation (2-11) tells us that rmax is the maximum among

a collection of independent random variables xk drawn from a different probability distribution

qk(w) = Prob[xk ≤ w]. From equation (2-11) one can derive the CDF in the limit of large N and

find that there are three different kind of fluctuations around the mean value with different scales

which are summarized as follows (see ref. [16])

QN (w) ∼


e−N

2Φ−(w)+o(N2) for 0 < redge − w = O(1)

e
−
redge
∆N

ΦI

(
w−redge

∆N

)
for 0 < redge − w = O(∆N )

G(aN (w − bN )) for w − bN = O(a−1
N )

1− e−NΦ+(w)+o(N) for w − bN = O(1)

. (2-12)

In the third line of the above equation we read that the typical fluctuations of rmax are O(1/aN )

and obeys a Gumbel law with G(x) = e−e
−x

where the scaling factors aN and bN have the form

aN =
√

4NCN , bN = 1 +

√
CN
4N

, CN = lnN − 2 ln lnN − ln 2π. (2-13)

In the the first and fourth lines we have that the regimes of large fluctuations with redge−w ∼ O(1),

follows a large deviation principle for the left and right tail with rate functions given by (for more

details see [33])

Φ−(w) =
1

4
(4w2 − w4 − 4 lnw − 3), for 0 < w < 1

Φ+(w) = w2 − 2 lnw − 1 for w > 1
. (2-14)

Finally, in the second line an intermediate regime is introduced as a consequence of a mismatch

between the large left fluctuations and the central regime. This intermediate phase can be modeled

by a new rate function ΦI(y) which interpolates smoothly the left tail with the central distribution

and have the asymptotic limit (see ref. [16] for more details)

ΦI(y) ∼

{ |y|3
3 + |y| ln |y|+O(y) y → −∞
e−y

2

2
√
πy2 y → +∞ .

(2-15)

The behavior for the large fluctuations for the bulk elements was already computed in [34] when

N → ∞ finding that the PDF Pr(κ,N) that the fraction κ of eigenvalues inside the domain
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D = {z : z ∈ C, |z| ≤ r}, follows a large deviation principle Pr(κ,N) � e−N
2ψr(κ) with rate

functions given by

ψr(κ) =


1
4

[
r4 − 4r2κ+ 3κ2 + 2κ2 log r2

κ

]
, 0 ≤ κ < r2

−1
4

[
r4 − 4r2κ+ 3κ2 + 2κ2 log r2

κ

]
, r2 < κ ≤ 1

. (2-16)

By expanding this rate function around its minimum one would expect to recover the CLT descri-

bing the typical fluctuations of κ. After a simple derivation one finds that the rate function exhibits

a cubic behaviour given by

ψr(κ) ≈ |κ− r
2|3

6r2
. (2-17)

This is an odd result, as the Gaussian fluctuations are supposed to be quadratic instead of cubic.

This clearly indicates that there must be an intermediate regime separating atypical behaviour

from typical one.

The whole purpose of this MSc thesis is to explain this discrepancy. In the next chapter we will

show that the probability of having K eigenvalues in the domain D obeys for large N the following

Pr(κ,N) ∼


e−N

3/2
√
π

2r
(κ−r2)2

, |κ− r2| = O(N−3/4)

e−
√

2NrψI(κ) , |κ− r2| = O(N−1/2)

e−N
2ψr(κ) , |κ− r2| = O(N0)

, (2-18)

which characterizes three regimes: a typical regime, and atypical one, and an intermediate regime

that smoothly interpolates between both of them.



3. Intermediate deviation regime for the full

eigenvalue statistics in the complex Ginibre

ensemble

In this part of the thesis we derive the probability that the index number ND will be equal to a

number K of eigenvalues within a domain D = {z : z ∈ C, |z| ≤ r} for the Ginibre ensemble (see

figure 3-1). We denote the number of eigenvalues inside the disk by Nr. This chapter is divided as

follows: in section 3.1, we derive exactly the probability of having Nr = K eigenvalues for a finite

N and in section 3.2 we determine the typical, atypical and intermediate regimes in the limit of

large N .
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Figure 3-1.: In this figure we show a number of K eigenvalues for a Ginibre ensemble inside a disk

of radius r (red curve). The previous was obtained for a matrix of size N = 1000.
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ensemble

3.1. Exact results for finite N

In this section we focus on computing the PDF of having Nr = K eigenvalues inside the disk of

radius r, denoted by Pr(K,N). First of all, we introduce the random variable

Nr =

N∑
k=1

Θ(r − ri), (3-1)

where ri = |zi| is the modulus of the i-th eigenvalue and Θ(x) is the Heaviside step function. To

derive the probability Pr(K,N), we express this as an average of the Kronecker delta with respect

to the joint PDF given in the eq. (2-8) as Pr(K,N) = 〈δNr,K〉. Using the definition of the Kronecker

delta as an integral and after applying the Vandermonde determinant and the Cauchy-Binet formula

(see the appendix A.1 for details), we arrive to the result

Pr(K,N) =

∫ 2π

0

dφ̂

2π
eiφ̂K

N∏
k=1

[
e−iφ̂Lk(r) +Mk(r)

]
, (3-2)

where the terms Lk(r) and Mk(r) are given by

Mk(r) =

∫∞
r dr′r′2k−1e−Nv(r′)∫∞
0 dr′r′2k−1e−Nv(r′)

, Lk(r) =

∫ r
0 dr

′r′2k−1e−Nv(r′)∫∞
0 dr′r′2k−1e−Nv(r′)

. (3-3)

Note that Lk(r) and Mk(r) depend on a general spherical potential and are related to each other

as Mk(r) = 1− Lk(r). The Fourier integral given in the equation (3-2) can be solved by using the

following identity

N∏
k=1

[
e−iφ̂Lk(r) +Mk(r)

]
=
∑
A⊆Ω

e−i|A|φ̂LA(r)MΩ\A(r), (3-4)

where we introduce the sets Ω and A with Ω = {1, 2, · · · , N}, and A any posible subset of Ω. The

term |A| is the cardinality of A and fA =
∏
K∈A fK . The term

∑
A⊆Ω indicates that the sum is

made over all possible subsets A ⊆ Ω. Using the eq. (3-4) and expressing the integral in terms of a

Kronecker delta, we rewrite eq. (3-2) as

Pr(K,N) =
∑
A⊆Ω

δK,|A|LA(r)MΩ\A(r). (3-5)

From the above equation, we can obtain the cumulant generating function (CGF) of Nr defined as

χr(µ,N) = log〈e−µNr〉, with µ = iφ̂, and 〈· · · 〉 the average with respect to the eq. (3-5). The CGF

of Nr reads

χr(µ,N) = log

(
N∑
K=0

e−µKPr(K,N)

)
=

N∑
k=1

log
(
e−µLk +Mk

)
, (3-6)

which allows us to obtain the exact cumulants 〈Np
r 〉c, where the subscript p is the cumulant order

of the random variable Nr. Here, we compute the first four cumulants of Nr, which are displayed
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in the following set of equations

〈N1
r 〉c =

N∑
k=1

Lk, 〈N2
r 〉c =

N∑
k=1

Lk(1− Lk) (3-7)

〈N3
r 〉c =

N∑
k=1

Lk(1 + 3Lk + 2L2
k), 〈N4

r 〉c =
N∑
k=1

Lk(1− 7Lk + 12L2
k − 6L3

k),

where we use the short notation Lk ≡ Lk(r) (details for derivations in appendix A.2). This result is

rather remarkable as it is valid for a finite N and any general spherical potential v(r). Comparisons

between the analytical results from (3-7) and numerical Monte Carlo simulations are presented in

section 4.

Using eq.(3-5) for finite N , it is easy to obtain the particular probabilities when we have K = 0

and K = N eigenvalues in D, which corresponds to the cumulative distribution function (CDF) of

the rmin and rmax. Those probabilities read

Pr(N,N) = Prob[rmax ≤ r] =
N∏
k=1

Lk(r)

Pr(0, N) = Prob[rmin > r] =

N∏
k=1

Mk(r).

(3-8)

For the Ginibre ensemble, v(r) = r2, we have that the exact expressions of Lk(r) and Mk(r) for

finite N are

Mk(r) =
Γ(k,Nr2)

Γ(k)
, Lk(r) = 1− Γ(k,Nr2)

Γ(k)
, (3-9)

where Γ(k, z) =
∫∞
z tk−1e−tdt is the upper incomplete Gamma function.

3.2. The limit of large N

In this section, we compute the behavior of Pr(K,N) for the Ginibre ensemble for large N . Firstly,

we use the expression of the probability distribution function in eq. (3-2) in terms of the functions

Lk(r) and Mk(r) which are found in the formulas (3-9). Clearly, we can rewrite the PDF given in

(3-2) as

Pr(K,N) =

∫ iπ

−iπ

dµ

2πi
exp

[
µK +

N∑
k=1

log
(
e−µLk +Mk

)]
. (3-10)

Note that the sum term is nothing but the cumulant generating function (CGF), which is given in

the eq. (3-6). To derive the asymptotic behavior of the PDF given in eq. (3-10), we set k = xN

and use the Euler-Mclaurin formula [11] for large N which allows us to express the CGF χr(µ,N)

as an integral such that eq.(3-10) in the asymptotic limit reads

Pr(κ,N) =

∫
C

dµ

2πi
exp

[
Nκµ+N

∫ 1

0
dx log

(
e−µLxN (r) +MxN (r)

)]
, (3-11)
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ensemble

where κ = Nr/N . This result can be seen as an inverse Laplace integral where C is the Bromwich

contour (see the appendix B.1 and figure B-1). In the next section, we solve the PDF given in eq.

(3-11) in the three mentioned regimes: (i) typical, (ii) intermediate and (iii) atypical.

3.2.1. Regime of typical fluctuations

Here, we present the solutions of the PDF given in eq. (3-11) in the regime of typical fluctuations.

Moreover, we compute the mean and variance for large N and we prove that the rate function has

a quadratic behavior near its mean. We start solving equation (3-11) by using the saddle point

method which leads us to the formulas

Pr(κ,N) � exp(−NΦr(κ,N))

Φr(κ,N) = minµ(µκ− Ξr(µ,N))

Ξr(µ,N) =

∫ 1

0
dx log

(
e−µLxN (r) +MxN (r)

)
,

(3-12)

where the term NΞr(µ,N) is the CGF in the limit of large N . Notice that Φr(κ,N) has a minimum

at µ = 0. This point corresponds to the maximum of the probability in which κ fluctuates around

its typical value and therefore the Lagrange multiplier µ becomes ineffective. Doing and expansion

of Ξr(µ,N) in powers of µ around zero up to second order, leads us to

Φr(κ,N) = minµ

[
µ

(
κ− d

dµ
Ξr(µ,N)

∣∣∣∣
µ=0

)
− µ2

2

d2

dµ2
Ξr(µ,N)

∣∣∣∣
µ=0

+O(µ3)

]
. (3-13)

Now, solving the above equation we find that the minimum µ = µ∗ is

µ∗ =
1

d2

dµ2 Ξr(µ,N)

∣∣∣∣
µ=0

(
κ− d

dµ
Ξr(µ,N)

∣∣∣∣
µ=0

)
. (3-14)

Plugging equation (3-14) into the eq. (3-13), we obtain that

Φr(κ,N) =
1

2 d2

dµ2 Ξr(µ,N)

∣∣∣∣
µ=0

(
κ− d

dµ
Ξr(µ,N)

∣∣∣∣
µ=0

)2

. (3-15)

This result proves that the PDF has a Gaussian behavior in the typical regime given by

Pr(κ,N) � exp

(
1

2

(κ− 〈κ〉)2

Var(κ)

)
, (3-16)

where the mean and the variance behave asymptotically as in the following formulas

〈κ〉 ∼
∫ 1

0
dxLxN (r), Var(κ) ∼ 1

N

∫ 1

0
dxLxN (r)(1− LxN (r)). (3-17)

Since these integrals depend on the upper incomplete gamma function, we use the asymptotic

behavior of LxN (r) and MxN (r) obtained with Laplace method (see appendix B.2) that allows
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us to compute easily the above integrals (see appendix B.3). Then, we have that the mean and

variance of κ for large N have the form

〈κ〉 ∼ r2, Var(κ) ∼ r

N3/2
√
π
. (3-18)

Gathering the results, we obtain that the PDF of κ in the typical regime for large N is

Pr(κ,N) � exp

[
−N

3/2√π
2r

(
κ− r2

)2]
, (3-19)

where this result is found in the first line of eqs. (2-18).

3.2.2. Regime of intermediate fluctuations

In this section, we solve the PDF given in eq. (3-11) in the intermediate regime, where in this

case we keep the dependence with the parameter µ in the CGF, NΞr(µ,N), with Ξr(µ,N) given

in the third line of the equations (3-12). Since the fluctuations in this regime are of the order

|κ− r2| = O(N−1/2), we use the asymptotic expression of LxN (r) and MxN (r) when κ ∼ r2, which

are given in terms of the complementary error function (see appendix B.2) as it is shown below

LxN (r) ∼ 1

2
erfc

[√
2N(
√
x− r)

]
, (3-20)

where MxN (r) = 1 − LxN (r). Now, we use the result given in the eq. (3-20) and the identity

erfc(x) + erfc(−x) = 2 to manipulate the cumulant generating function which leads us to that the

PDF given in eq. (3-11) can be written as (see appendix C for details)

Pr(κ,N) ∼
∫
C

dµ

2πi
exp

[
−
√

2Nr (µy + χ(µ))
]
, y =

√
N

2r2
(κ− r2), (3-21)

with scaling function

χ(µ) ≡
∫ ∞

0
du log

[
1 + sinh2

(µ
2

)
erfc(u)erfc(−u)

]
, (3-22)

which is related with the CGF via
√

2Nrχ(µ) in the regime of intermediate fluctuations. From this

expression we can see immediately properties about the cumulants of Pr(κ,N). For instance, the

Taylor expansion of the expression (3-22) tells us that the odd cumulants vanish due to the fact

that χ(µ) is an even function with respect to µ. Next, using the saddle point method we solve the

integral given in (3-21), which yields the main result: the intermediate rate function, ψI(k), that

characterizes the fluctuations in the intermediate regime and it is shown in the second line of the

equation below

Pr(κ,N) � exp(−
√

2NrψI(κ))

ψI(κ) = minµ∈R{yµ+ χ(µ)}, y =

√
N

2r2
(κ− r2).

(3-23)

Looking closely at the previous expression, it seems difficult to obtain a more explicit expression

of the rate function. However, we can obtain the asymptotic behavior of this function when µ→ 0
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and µ→∞ by using the asymptotical form of χ(µ) in the mentioned limit situations, which is (for

details see appendix C.1 and appendix C.2)

χ(µ) ∼


1

2
√

2π
µ2 , µ→ 0

2
3 |µ|

3/2 , µ→∞
(3-24)

and allows us to prove that the intermediate rate function interpolates between the typical and

atypical regimes. Firstly, for small fluctuations we substitute the limit behavior of χ(µ) when µ→ 0

in the second line of the equation (3-23), obtaining that

ψI(y) ∼ minµ∈R

{
µy +

µ2

2
√

2π

}
, (3-25)

where the minimum is found at µ∗ = −y
√

2π. Then, evaluating the eq. (3-25) at µ∗, we obtain that

the intermediate rate function for small µ has a quadratic behavior given by

ψI(y) ∼ y2

√
π

2
, y =

√
N

2r2
(κ− r2). (3-26)

Expressing the eq. (3-26) in terms of κ and r2, and replacing it in the first line of equations (3-23),

we obtain that the PDF of κ for small µ is

Pr(κ,N) � e−N3/2
√
π

2r
(κ−r2)2

,

where this result matches with the obtained in the typical regime in the previous section given in

the eq. (3-19).

Secondly, we prove that the intermediate rate function connects with the regime of large fluctua-

tions. We use the asymptotic behavior of the scaling function χ(µ) for large |µ| given in eq. (3-24)

and obtain the following minimization problem

ψI(y) ∼ minµ∈R

{
µy +

2

3
|µ|3/2

}
. (3-27)

The point µ = µ∗ that minimizes the above expression is µ∗ = −sign(y)y2, which points out that

the intermediate rate function in this case behaves as

ψI(y) ∼ |y|
3

3
, y → ±∞. (3-28)

Plugging y =
√

N
2r2 (κ− r2) into the above equation shows us that the eq. (3-28) matches with the

cubic behavior of the large rate function given in the expression (2-17). Moreover, the PDF of κ in

the tails of the intermediate regime has the form

Pr(κ,N) � exp

(
−N2 |k − r2|3

6r2

)
. (3-29)

Finally, we conclude that an intermediate phase exist and it is able to connect the regimes of central

and large fluctuations.
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3.2.3. Regime of atypical fluctuations

In this section we focus on the large fluctuations which are of order |κ− r2| = O(1). We can obtain

those results if we rescale µ = −λN with λ = O(1) in eq. (3-11). In this regime, we employ the

uniform asymptotic expansion of the upper incomplete Gamma function (for more details see [35])

to rewrite MxN (r) and LxN (r) as

MxN (r) = e−N(r2−x−x log r2

x
)+o(N), x ≤ r2

MxN (r) = 1− e−N(r2−x−x log r2

x
)+o(N), x ≥ r2,

(3-30)

where LxN (r) = 1 −MxN (r). After the rescaling, we use the saddle point method to solve the

integral given in the eq. (3-11), obtaining the following formulas

Pr(κ,N) � exp[−N2ψr(κ)]

ψr(κ) = minλ{λκ− Ξr(λ)}

Ξr(λ) =
1

N

∫ 1

0
dx log

[
eNλLxN (r) +MxN (r)

]
κ =

∫ 1

0
dx

eNλ
∗
LxN (r)

eNλ∗LxN (r) +MxN (r)
.

(3-31)

The first line in the above equation is the large deviation principle with speed rate N2 and rate

function ψr(κ). The term N2Ξr(λ) is the cumulant generating function (CGF) in the atypical

regime for large N and the fourth line is the saddle point equation. Now, we introduce the notation

ϕr(x) = r2 − x− x log
r2

x
, (3-32)

which is a positive convex function of x ∈ [0, 1] with a minimum at x = r2. To compute the rate

function, we insert the expressions given in the eqs. (3-30) into the scaling function given in the

third line of the eqs. (3-31), which leads us to

NΞr(λ) ∼
∫ r2

0
dx log[eNλ(1−e−Nϕr(x)))+e−Nϕr(x)]+

∫ 1

r2

dx log[eN(λ−ϕr(x)) +1−e−Nϕr(x)]. (3-33)

Note that this function has two behaviors depending on the sign of λ. For λ > 0, we can see that

the right integral contributes to the solution only for values of x when (λ− ϕr(x)) ≥ 0. Thus, the

right integral will be different from zero if we integrate from r2 to min{1, F (λ, r)}, where F (λ, r)

is the solution in x, for x ≥ r2, of the equation (λ− ϕr(x)) = 0. Thus, we have that

Ξr(λ) ∼ r2λ+

∫ min{1,F (λ,r)}

r2

(λ− ϕr(x))dx, λ > 0. (3-34)

Next, solving the equation for the saddle point λ∗ given in the fourth line of eqs. (3-31) after taking

into account the different cases in eqs. (3-30), we obtain that λ∗ is such that κ = min{1, F (λ∗, r)}
with r2 ≤ κ ≤ 1 (see appendix D for details). Therefore, the solution of the second line given in

the eqs. (3-31) yields the rate function for the right tail

ψr(κ) =
1

4

[
−r4 + 4r2κ− 3κ2 − 2κ2 log

r2

κ

]
, r2 ≤ κ ≤ 1. (3-35)
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For λ < 0 we do a similar analysis, where we have that

Ξr(λ) ∼ r2λ−
∫ r2

κ
(λ+ ϕr(x))dx, λ < 0, (3-36)

for κ = max{0, G(λ∗, r)} and G(λ, r) is the solution in x of the equation (λ+ϕr(x)) = 0 (for details

see appendix D). This allows us to compute the rate function for the left tail expressed as

ψr(κ) =
1

4

[
r4 − 4r2κ+ 3κ2 + 2κ2 log

r2

κ

]
, 0 ≤ κ ≤ r2. (3-37)

Thus, with the rate functions given in the eqs (3-35) and (3-37) we recover the result of [34] in the

atypical regime.

Using equations (3-35) and (3-37) we can obtain the particular rate functions of the CDF of rmin

and rmax when κ = 0 or κ = 1, respectively. For the first one, we have that

ψr(κ = 1) = − 1

N2
log Prob[rmax ≤ r]

= −1

4
(r4 − 4r2 + 3)− log(r),

(3-38)

where this result matches with the one given in the first line of eq. (2-14) (making w = r). For the

CDF of rmin, we arrive to the following form

ψr(κ = 0) = − 1

N2
log Prob[rmax ≤ r]

=
1

4
r4.

(3-39)

Finally, we were able to derive the three different regimes where the most remarkable result is the

existence of the intermediate phase which interpolates smoothly the regimes of typical and atypical

fluctuations.



4. Comparison with Monte Carlo simulations

In this chapter we show a comparison between the exact results for the first four cumulants 〈Np
r 〉c,

1 ≤ p ≤ 4, from equations (3-7) with Monte Carlo simulations. These observables are related with

the typical fluctuations of Nr and they can be obtained by a standard Metropolis algorithm to

simulate the joint PDF of the Ginibre ensemble eq. (2-8). These results are displayed in the figure

4-1 for N = 100 eigenvalues and 1,2 × 107 Monte Carlo steps which shows us a good agreement

with respect to the theoretical expressions.
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Figure 4-1.: In this figure is compared the theoretical first four cumulants of Nr as a function

of r (solid blue line) with Monte Carlo simulations (red dots). The simulations were

performed for N = 100 and averaging over 1,2× 107 samples

Since we want to go beyond the first four cumulants and sample the intermediate and large regime

fluctuations, we need a numerical method capable of exploring probabilities which are far from the

expected value [36]. This can be done by an “importance” sampling approach as is found in [37].

The idea behind this is the following: we need that the atypical values of κ become “typical” with

respect to an auxiliary distribution. This later is introduced through the following auxiliary joint
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PDF

P βjoint(z1, ..., zN ) =
e−β

∑N
i=1 Θ(r−|zi|)

Zβ

∏
i<j

|zi − zj |2
N∏
k=1

e−NV (zk), (4-1)

where β plays a role analogous to the inverse of temperature in statistical physics, where the

difference is that this parameter may have positive or negative values. The term e−β
∑N
i=1 Θ(r−|zi|) is

a Boltzmann factor and Zβ is a normalization constant [37]. Now, let us introduce the definitions of

the probability of having Nr = κN eigenvalues below the circle of radius r in the unbiased (β = 0)

and the biased (β 6= 0) problem as

1

N
Pr(κ = K/N,N) =

∑
~z

Pjoint(z1, ..., zN )δNr,K

1

N
Pβr (κ = K/N,N) =

∑
~z

P βjoint(z1, ..., zN )δNr,K ,

(4-2)

where Pjoint is given in the eq. (2-8) and P βjoint is found in the eq. (4-1). The sum is performed over

all possible values of ~z = (z1, z2, ..., zN ). From the eqs. (4-2) we can easily prove that

Pr(κ,N) = eβNκZβP(β)
r (κ,N). (4-3)

The role of β is to force the atypical values of κ with respect to the unbiased problem to become

typical in the auxiliary problem. The latter is known as “reweighting”[37, 36]. With this in mind,

we perform a Monte Carlo simulation with respect to the auxiliary joint PDF given in the eq.

(4-1) for a fixed β to construct the histogram of κ in the biased problem. Therefore, if we use the

equation (4-3), we can obtain the PDF of κ in a region where it is atypical with respect to the

unbiased problem up to a normalization constant. Consequently, if we perform the simulations for

different values of β, we could get Pr(κ,N) over its full support [37]. The positive values of β will

allow us to know the distribution of κ to the left of its typical value, while the negative ones will

lead us to know the distribution of κ to the right of the expected value. Note that small values of

|β| yields histograms in a region that overlaps with respect to the original distribution. The latter is

necessary to be able to “glue” the histograms using the eq. (4-3), where Zβ allows us the “gluing”

process. Therefore, the set of values of β must be chosen in such a way that the histograms overlap

each other, and thus we can obtain Pr(κ,N) properly normalised in the three regimes: typical,

intermediate and atypical [37].

Monte Carlo simulations were carried out for a system of N = 500 eigenvalues with a fixed radius

r = 0.5. The theoretical and numerical results of − 1
N logPr(κ,N) are shown in the figure 4-2, where

we can see good agreement between the three theoretical regimes found in this thesis: the typical

(black solid line), atypical (red solid line), and intermediate (green solid line) with the numerical

simulations (solid blue circular markers).



23

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

Figure 4-2.: This figure shows the numerical results of − 1
N logPr(κ,N) obtained by “importance”

sampling tecniques (blue circular markers) and the theoretical results for typical (solid

black curve), intermediate (solid green curve) and atypical (solid red curve) fluctua-

tions of κ for N = 500 eigenvalues and r = 1/2. The simulations were performed for a

set of values of β between -333 and 117 in steps of 4.5 and using 2.8× 105 samples.



5. Conclusions and outlook

To conclude, we have provided rather complete understanding of the statistical behavior for the

number Nr of eigenvalues of N ×N complex Ginibre matrices inside a disk of radius r. For typical

fluctuations, we have obtained exact expressions, valid for any N , of the distribution and also for

the first 4 cumulants. We want to highlight that this result is also valid for any general spherical

potential.

In the limit of large N , we find the distribution Pr(κ = K/N,N) obeys different probability laws

depending on three different scales associated with the fluctuations of κ: (i) a regime of typical

fluctuations described by a Gaussian distribution, (ii) a large fluctuations regime which is charac-

terized by a large deviation function, and (iii) a regime of intermediate fluctuations. The latter

that smoothly interpolates between the typical and atypical regimes. Our results were throughly

compared with Monte Carlo simulations, showing excellent agreement

This intermediate phase is a novel result because it does not exist in the fluctuations of the index

number in β−Gaussian, β−Cauchy and β−Wishart ensembles, where in those ensembles, the large

deviation regime matches with the regime of typical fluctuations [28, 29] . Even though an interme-

diate deviation regime has been observed in other similar situations, as is the case of the statistics

of the eigenvalue with the largest modulus rmax in the complex Ginibre ensemble [16].

We hope that our results may shed some light into the description of real physical systems. For

instance, for a system of 2-d rotating fermions in a trap, the FCS of the index number derived in

this work is connected with some physical quantities, juts like the entanglement entropy with the

variance of Nr [38]

The results of this work motivate us to study the full counting statistics of Nr in other ensembles,

such as the real or the symplectic Ginibre ensemble, or the problem of the mismatch between

the typical and large regimes in the 1d Coulomb gas in the presence of a general external convex

potential [39], which could be explained due to the existence of an intermediate phase. All these

problems will motivate future projects.



A. Derivation of exact results for finite N

A.1. Exact probability of having Nr = K eigenvalues

First, we employ the definition of the joint probability density function (PDF) in the Ginibre

ensemble given in eq. (2-8). Then, we derive the probability of having exactly K eigenvalues inside

the domain D = {z : z ∈ C, |z| ≤ r} as

Prob[Nr = K] = Pr(K,N) = 〈δNr ,K〉, (A-1)

where 〈· · · 〉 denotes the average with respect to the joint PDF of the Ginibre ensemble. Thus, the

integral for Pr(K,N) is

Pr(K,N) =
1

ZN

∫
d2z1 · · ·

∫
d2zN

∏
i<j

|zi − zj |2
N∏
k=1

[
e−NV (zk)

]
δNr,K , (A-2)

where
∫
d2z =

∫ ∫
dxdy. Now, we compute the partition function ZN using the Vandermonde

determinant which is given by
∏
i<j(zi − zj) = det1≤i,j≤N (zj−1

i ), as it is shown below

ZN =

∫
d2z1 · · ·

∫
d2zN det

1≤i,j≤N

(
zj−1
i e−NV (|zi|)

)
det

1≤i,j≤N
z̄j−1
i

(
e−NV (|zi|)

)
. (A-3)

To simplify this integral, we use the Cauchy- Binet identity given by∫ [ N∏
i=1

w(xi)dxi

]
det

1≤i,j≤N
[φi(xj)] det

1≤i,j≤N
[ψi(xj)] = N ! det

1≤i,j≤N

(∫
dxw(x)φi(x)ψj(x)

)
, (A-4)

which leads us to

ZN = N ! det
1≤i,j≤N

(∫
d2ze−Nv(|z|)zi−1z̄j−1

)
, (A-5)

whose main advantage is that we went from solving an integral of N variables to solve an integral

of one variable. Now, we solve the integral term of the above expression in polar coordinates as∫
d2ze−Nv(|z|)zi−1z̄j−1 =

∫ 2π

0
dθeiθ(i−j)

∫ ∞
0

drrj+i−1e−NV (r)

= 2πδij

∫ ∞
0

drr2i−1e−NV (r). (A-6)

Thus, the partition function has the form

ZN = N !

N−1∏
k=0

hk, hk = 2π

∫ ∞
0

drr2k−1e−NV (r). (A-7)
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The next step is to compute Pr(K,N). Then, we focus on the numerator term in equation (A-2),

where we use the integral definition of the Kronecker delta (2π)−1
∫ 2π

0 dθeiθ(l−k) = δl,k. Therefore

Pr(K,N) =
1

ZN

∫ 2π

0

dφ̂

2π
eiφ̂K

∫
d2z1 · · ·

∫
d2zN

∏
i<j

|zi − zj |2
N∏
k=1

[
e−NV (zk)

]
e−iφ̂

∑N
i=1 Θ(r−|ri|).

(A-8)

If we write the exponential term as e−iφ̂
∑N
i=1 Θ(r−|ri|) =

∏N
k=1 e−iΘ(r−|ri|), we can use again the

Vandermonde determinant and the Cauchy-Binet formula to rewrite the eq. (A-8) as follows

Pr(K,N) =
N !

ZN

∫ 2π

0

dφ̂

2π
eiφ̂K det

1≤i,j≤N

(∫
d2ze−nv(|z|)−iφ̂Θ(r−|z|)zi−1z̄j−1

)
, (A-9)

where the integral term has the following solution∫
d2ze−nv(|z|)−iφ̂Θ(r−|z|)zi−1z̄j−1 = 2πδij

∫ ∞
0

dr′r′2i−1e−Nv(r′)−iφ̂Θ(r−r′).

Now, we introduce the definition

hk(r, φ̂) ≡ 2π

∫ ∞
0

dr′r′2k−1e−Nv(r′)−iφ̂Θ(r−r′), (A-10)

which allows us to write Pr(K,N) in a compact form given by

Pr(K,N) =

∫ 2π

0

dφ̂

2π
eiφ̂K

N−1∏
k=0

hk(r, φ̂)

hk
. (A-11)

Splitting the integral given in eq. (A-10) as
∫ r2

0 dr′ +
∫ 1
r2 dr

′, we can express finally Pr(K,N) as it

is shown below

Pr(K,N) =

∫ 2π

0

dφ̂

2π
eiφ̂K

N∏
k=1

[
e−iφ̂Lk(r) +Mk(r)

]
, (A-12)

where we introduce the functions Lk(r) and Mk(r) as

Mk(r) =

∫∞
r dr′r′2k−1e−Nv(r′)∫∞
0 dr′r′2k−1e−Nv(r′)

, Lk(r) =

∫ r
0 dr

′r′2k−1e−Nv(r′)∫∞
0 dr′r′2k−1e−Nv(r′)

. (A-13)

A.2. Cumulants for finite N

The first four cumulants of Pr(K,N) for a general potential can be computed exactly. To do this,

we remind that they are derived from the cumulant generating function (CGF)

χr(µ,N) = log

(
N∑
K=0

e−µKPr(K,N)

)
=

N∑
k=1

log
(
e−µLk +Mk

)
, (A-14)



A.2 Cumulants for finite N 27

by a Taylor expansion around µ = 0 up to fourth order as it is shown in the following result

χr(µ,N) =
N∑
k=1

log
(
e−µLk +Mk

)
= −µ

N∑
k=1

Lk −
µ2

2

N∑
k=1

Lk(1− Lk)−
µ3

6

N∑
k=1

Lk(1 + 3Lk + 2L2
k) (A-15)

+
µ4

24

N∑
k=1

Lk(1− 7Lk + 12L2
k − 6L3

k) +O(µ5)

where we use the short notation Lk ≡ Lk(r). From the above expression we identify the first four

cumulants, which are shown in the set of equations given in eq. (3-7). Note that these cumulants

are valid for any general spherical potential v(r).



B. Useful results for large N

B.1. Inverse Laplace integral

The formula for inverse Laplace integrals is given by

F (t) =
1

2πi

∫ a+i∞

a−i∞
estf(s)ds, t > 0 (B-1)

where the integration path is an infinite straight line on the imaginary axis, Re(s) = a. The function

f(s) is a complex function and the contour C = {s ∈ C|s = a + iy, y ∈ R} is called the Bromwich

contour (see figure B-1). We choose the constant a such that all finite singularities of f(s) are to

the left of the real part of C to guarantee convergence [40]. The above integral can be solved by

complex analysis integration methods such as the residue theorem or saddle point method. The

integral (B-1) is known too as Bromwich integral or Fourier-Mellin theorem [40].

Figure B-1.: In this figure we can see the Bromwich contour C, given by the solid black line, and

the singularities of f(s) which are to the left of C.

B.2. Asymptotic behavior of LxN(r) and MxN(r)

In this appendix section we find the asymptotic behavior of LxN (r) and MxN (r) using the Laplace

method. This mathematical derivation was performed by [16]. Firstly, we focus only in MxN (r)

because LxN (r) can be easily determined with LxN (r) = 1−MxN (r). We have

MxN (r) =
Γ(Nx,Nr2)

Γ(xN)
. (B-2)
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Now, we manipulate the above expression as shown below

Γ(Nx,Nr2) =

∫ ∞
Nr2

tNx−1e−tdt

=

∫ ∞
0

tNx−1e−tdt−
∫ Nr2

0
tNx−1e−tdt,

(B-3)

which lead us to that MxN (r) can be expressed as

Γ(Nx,Nr2)

Γ(Nx)
= 1−

∫ Nr2

0 tNx−1e−tdt

Γ(Nx)
. (B-4)

Now, we only focus on the integral given in the numerator and proceed to do the variable change

t = Nr′2, which leads us to that∫ Nr2

0
tNx−1e−tdt = 2NNx

∫ r

0

1

r′
e−N(r′2−2x log r′)dr′

= 2NNx

∫ r

0
g(r′)e−N(ϕ(r′))dr′, (B-5)

where ϕ(r′) = r′2 − 2x log r′ and g(r′) = 1
r′ . Thus, we proceed to solve the above integral with the

Laplace method, where we have that the minimun of ϕ(r′) is found at r′ =
√
x. Then, we compute

the following integral taking account if
√
x ≤ r′ or

√
x ≥ r′. First, the case when

√
x ≤ r′∫ r

0
g(r′)e−N(ϕ(r′))dr′ ∼ g(ro)e

−Nϕ(r0)

√
2

Nϕ′′(r0)

∫ √
Nϕ(ro)′′

2
(r−
√
x)

−
√
Nϕ(ro)′′

2
(
√
x)

e−y
2
dy (B-6)

∼ g(ro)e
−Nϕ(r0)

√
2

Nϕ′′(r0)

∫ √
Nϕ(ro)′′

2
(r−
√
x)

−∞
e−y

2
dy

∼ g(ro)e
−Nϕ(r0)

√
2

Nϕ′′(r0)

∫ ∞√
Nϕ(ro)′′

2
(
√
x−r)

e−y
2
dy,

which allows us to express the above result in terms of the complementary error function as∫ r

0
g(r′)e−N(ϕ(r′))dr′ ∼ g(ro)e

−Nϕ(r0)

√
π

2Nϕ′′(r0)
erfc

(√
Nϕ(ro)′′

2
(
√
x− r)

)
. (B-7)

Thus, the integral given in eq. (B-5) can be approximated by∫ Nr2

0
tNx−1e−tdt ∼ 2NNxg(ro)e

−Nϕ(r0)

√
π

2Nϕ′′(r0)
erfc

(√
Nϕ(ro)′′

2
(
√
x− r)

)
, (B-8)

where r0 =
√
x and N → ∞. Now, we compute the integral of Γ(Nx), whose derivation is similar

to the integral given in eq. (B-7) with the difference r →∞. Then, we have

Γ(Nx) ∼ 4NNxg(ro)e
−Nϕ(r0)

√
π

2Nϕ′′(r0)
. (B-9)

(B-10)
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Inserting the results found in eq. (B-8) and eq. (B-9) in the eq. (B-4), we obtain that the incomplete

gamma function in the limit of large N has the following asymptotic approximation

Γ(Nx,Nr2)

Γ(xN)
∼ 1− 1

2
erfc

(√
Nϕ(ro)′′

2
(
√
x− r)

)
∼ 1− 1

2
erfc

(√
2N(
√
x− r)

)
, (B-11)

where we used that ϕ(ro)
′′ = 4. Now, for the case when

√
x > r′, the integral (B-6) is solved as it

is shown below ∫ r

0
g(r′)e−Nϕ(r′)dr′ =

∫ ∞
0

g(r′)e−Nϕ(r′)dr′ −
∫ ∞
r

g(r′)e−Nϕ(r′)dr′, (B-12)

where for the left integral we use the result found in the equation (B-7) when r →∞, and for the

right integral we do the following∫ ∞
r

g(r′)e−Nϕ(r′)dr′ ∼ g(ro)e
−Nϕ(r0)

√
2

Nϕ′′(r0)

∫ ∞√
Nϕ(ro)′′

2
(r−
√
x)
e−y

2
dy

∼ g(ro)e
−Nϕ(r0)

√
π

2Nϕ′′(r0)
erfc(

√
Nϕ(ro)′′

2
(r −

√
x)). (B-13)

With this result, the integral (B-12) can be approximated as∫ r

0
g(r′)e−Nϕ(r′)dr′ ∼ g(ro)e

−Nϕ(r0)

√
2

Nϕ′′(r0)
(2− erfc(

√
2N(r −

√
x)))

∼ g(ro)e
−Nϕ(r0)

√
2

Nϕ′′(r0)
erfc

(√
2N(
√
x− r)

)
, (B-14)

where we use that erfc(x) + erfc(−x) = 2. Then, for the second case, we obtain that the incomplete

gamma function for large N has the following behavior

Γ(Nx,Nr2)

Γ(Nx)
∼ 1− 1

2
erfc

(√
2N(
√
x− r)

)
. (B-15)

Thus, we conclude that it does not matter if
√
x ≤ r or

√
x ≥ r, the result is the same. Then, we

obtain the following important asymptotic approximation of MxN (r) for large N

MxN (r) ∼ 1− 1

2
erfc

(√
2N(
√
x− r)

)
. (B-16)

Finally, using MxN (r) = 1− LxN (r), we arrive to

LxN (r) ∼ 1

2
erfc

(√
2N(
√
x− r)

)
, (B-17)

which was used in the derivation of the mean and the variance of κ and the cumulant generating

function in the intermediate deviation regime in the section 3.2.
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B.3. Derivation of the mean and variance of κ

B.3.1. Expected value of κ in the Ginibre ensemble

The formula for the expected value of κ is

〈κ〉 ∼
∫ 1

0
dxLxN (r). (B-18)

To solve this integral, we insert the asymptotic behavior of LxN (r) given in the equation (B-17)

into the above integral and proceed to do the variable change x = r2 + u√
N

, which leads us to that
√
x− r ≈ u

2r
√
N

. Thus, we have that

∫ 1

0
dxLxN (r) ∼ 1√

N

∫ (1−r2)
√
N

−r2
√
N

du
1

2
erfc

(
u√
2r

)
,

which is solved using the formula
∫

erfc(ax)dx = xerfc(ax) − 1
a
√
π

exp(−a2x2) with a = 1√
2r

(the

formula can be found in [41]). The latter leads us to the following result

1√
N

∫ (1−r2)
√
N

−r2
√
N

du
1

2
erfc

(
u√
2r

)
∼ r2

√
N√
N
∼ r2.

Thus, the expected value of κ in the Ginibre ensemble for large N becomes

〈κ〉 ∼
∫ 1

0
dxLxN (r) ∼ r2. (B-19)

B.3.2. Variance of κ in the Ginibre ensemble

To compute the variance of κ, we use the corresponding formula given in (3-17) and proceed as

follows

Var(κ) ∼ 1

N

∫ 1

0
dxLxN (r)(1− LxN (r)) ∼ 1

N

∫ 1

0
dxLxN (r)MxN (r), (B-20)

where we use again the formula (B-17), which allows us to write the variance explicitly as

Var(κ) ∼ 1

4N

∫ 1

0
dxerfc(

√
2N(
√
x− r))erfc(−

√
2N(
√
x− r)).

Then, we do the variable change x = r2 +
√

2
N ru which leads us to u ≈

√
2N(
√
x− r). Thus, the

integral for the variance is written now as

Var(κ) ∼ 1

4N

√
2

N
r

∫ √
N
2

(1−r2)/r

−r
√
N
2

duerfc(u)erfc(−u),

where for large N this integral becomes in the following improper convergent integral

Var(κ) ∼ 1

4N

√
2

N
r

∫ ∞
−∞

duerfc(u)erfc(−u) ∼ 2
1

4N

√
2

N
r

∫ ∞
0

duerfc(u)erfc(−u).
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Now, using the formula
∫∞

0 duerfc(u)erfc(−u) =
√

2
π , we arrive to

Var(κ) ∼ r
√
πN3/2

,

which corresponds to the result found in the equation (3-18) in the section 3.2.1 of the typical

fluctuations of Nr.
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To solve this puzzle, we use the probability Pr(κ,N) in the large N limit given in the eq. (3-11),

where we take LxN (r) as it is shown in the equation (3-20). With these ingredients, we write the

PDF of κ as

Pr(κ,N) =

∫
C

dµ

2πi
exp

[
(κ− r2)µN +N

∫ r2

0
dx log

(
1 +

1

2

(
eµ − 1

)
erfc

[√
2N(
√
x− r)

])
+N

∫ 1

r2

dx log

(
1 +

1

2

(
e−µ − 1

)
erfc

[√
2N(
√
x− r)

])
. (C-1)

Now, we do the variable change x = r2 +
√

2
N u, which lead us to

√
x−r ≈ u√

2Nr
in the limit of large

N . This change and algebraic manipulation, leads us to that the integral (C-1) can be expressed in

terms of an inverse Laplace integral as in the eq. (3-21).

C.1. Asymptotic behaviour of the scaling function χ(µ) for small µ

To compute the asymptotic behavior of the scaling function χ(µ) given in the expression (3-22)

when µ→ 0, we focus on the integrand of the eq. (3-22), which we call m(µ, u), as follows

m(µ, u) = log
[
1 + sinh2

(µ
2

)
erfc(u)erfc(−u)

]
∼ µ2

4
erfc(u)erfc(−u) as µ→ 0. (C-2)

With this asymptotic result, the integral (3-22) can be solved using that
∫∞

0 duerfc(u)erfc(−u) =√
2
π [41]. Thus, we obtain that χ(µ) when µ→ 0 is

χ(µ) ∼ µ2

4

∫ ∞
0

duerfc(u)erfc(−u) ∼ µ2

2
√

2π
, (C-3)

where this result is found in the first line of the equation (3-24)

C.2. Asymptotic behaviour of the scaling function χ(µ) for large |µ|

To compute the behavior of χ(µ) given in the equation (3-22) in the limit of large |µ|, we use as a

guide a result found in [42]. To do this, we split the integral (3-22) as follows

χ(µ) =

∫ √|µ|
0

du log
[
1 + sinh2

(µ
2

)
erfc(u)erfc(−u)

]
+

∫ ∞
√
|µ|
du log

[
1 + sinh2

(µ
2

)
erfc(u)erfc(−u)

]
,

(C-4)
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which lead us to that the second term in the above integral vanish . To check that the integral for

u >
√
|µ| is zero, we use the asymptotic behavior of the following functions

sinh2(x) ∼ e2|x|

4
, x→ ±∞, erfc(x)erfc(−x) ∼ 2

e−x
2

√
πx
, x→∞. (C-5)

Then, for µ→ ±∞ and u→∞, the integrand term behaves as

m(µ, u) = log
[
1 + sinh2

(µ
2

)
erfc(u)erfc(−u)

]
∼ log

[
1 +

e|µ|−u
2

2
√
πu

]
. (C-6)

Looking the term |µ| − u2 = (
√
|µ| − u)(

√
|µ|+ u), we can appreciate immediately that the above

result vanish in the limit situation if u >
√
|µ|. Then, only the left integral for large |µ| in the

expression given in eq. (C-4) contributes to the solution, yielding us that the scaling function

χ(µ) ∼
∫ √|µ|

0
du log

[
1 +

e|µ|−u
2

2
√
πu

]
∼
∫ √|µ|

0
du log

[
e|µ|−u

2

2
√
πu

]
∼ 2

3
|µ|3/2, µ→ ±∞. (C-7)

The above expression is found in the second line of the eqs. (3-24).



D. Saddle point equation for the atypical regime

In this appendix section we solve the saddle point equation which is found in the fourth line in the

eqs. (3-31). Firstly, we split this integral as

κ =

∫ r2

0
dx

eNλ
∗
LxN (r)

eNλ∗LxN (r) +MxN (r)
+

∫ 1

r2

dx
eNλ

∗
LxN (r)

eNλ∗LxN (r) +MxN (r)
. (D-1)

Then, we insert the uniform asymptotic expressions of LxN (r) and MxN (r) given in the eqs. (3-30).

For λ∗ > 0 we have for the left integral∫ r2

0

eNλ
∗
(1− eNϕr(x))

eNλ∗(1− eNϕr(x)) + e−Nϕr(x)
dx ∼

∫ r2

0
dx ∼ r2, (D-2)

where we use that ϕr(x) = r2 − x− x log r2

x is a positive convex function. For the right integral we

have that it contributes only if λ∗ − ϕr(x) ≥ 0. Thus, we have∫ 1

r2

eN(λ∗−ϕr(x))

eN(λ∗−ϕr(x)) + 1− e−Nϕr(x)
dx ∼

∫ min{1,F (λ∗,r)}

r2

1

1 + e−N(λ∗−ϕr(x))
∼ min{1, F (λ∗, r)} − r2,

(D-3)

where F (λ∗, r) is the solution in x of the equation λ∗ −ϕr(x) = 0 for r2 ≤ x ≤ 1. Thus, the saddle

point λ∗ is such that κ = min{1, F (λ∗, r)}. With this result, the upper integration limit given in

the right of the integral (3-34) is rewritten as κ. For the left tail we do a similar analisys (λ∗ < 0).

In this case, we have that only the left integral of the eq. (D-1) contributes to the the solution, as

it is shown below∫ r2

0
dx

eNλ
∗
LxN (r)

eNλ∗LxN (r) +MxN (r)
∼
∫ max{0,G(λ∗,r)}

0
dx

1

1 + e−N(λ∗+ϕr(x))
∼ max{0, G(λ∗, r)}, (D-4)

where G(λ∗, r) is the solution in x of the equation λ∗ + ϕr(x) = 0 for 0 < x ≤ r2. Finally, the

saddle point λ∗ is such that κ = max{0, G(λ∗, r)}.
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de la Société Française de Statistique, 154(2):66–97, 2013.

[22] Matteo Battilana. Order statistics of random walks, a test of universality. 2015.

[23] Craig A Tracy and Harold Widom. Level-spacing distributions and the airy kernel. Commu-

nications in Mathematical Physics, 159(1):151–174, 1994.

[24] Freeman J Dyson. Statistical theory of the energy levels of complex systems. i. Journal of

Mathematical Physics, 3(1):140–156, 1962.

[25] Freeman J Dyson. Statistical theory of the energy levels of complex systems. ii. Journal of

Mathematical Physics, 3(1):157–165, 1962.

[26] MM Fogler and BI Shklovskii. Probability of an eigenvalue number fluctuation in an interval

of a random matrix spectrum. Physical review letters, 74(17):3312–3315, 1995.

[27] Ovidiu Costin and Joel L Lebowitz. Gaussian fluctuation in random matrices. Physical Review

Letters, 75(1):69–72, 1995.

[28] Ricardo Marino, Satya N. Majumdar, Grégory Schehr, and Pierpaolo Vivo. Phase transitions

and edge scaling of number variance in gaussian random matrices. Phys. Rev. Lett., 112:254101,

Jun 2014.

[29] Ricardo Marino, Satya N. Majumdar, Grégory Schehr, and Pierpaolo Vivo. Number statistics

for β-ensembles of random matrices: Applications to trapped fermions at zero temperature.

Phys. Rev. E, 94:032115, Sep 2016.



38 Bibliography

[30] Jean Ginibre. Statistical ensembles of complex, quaternion, and real matrices. Journal of

Mathematical Physics, 6(3):440–449, 1965.

[31] V. Girko. Circular law. Theory of Probability And Its Applications, 29(4):694–706, 1985.
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