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Chiral extensions of toroids

José Antonio Montero Aguilar

Resumen

Un politopo abstracto es un objeto combinatorio que generaliza estructu-
ras geométricas como los politopos convexos, las teselaciones del espacio,
los mapas en superficies, entre otros. Todas estructuras tienen una natura-
leza inductiva natural: un polígono convexo puede ser pensado como una
familia de segmentos pegados por sus orillas; un poliedro es una familia
de polígonos pegados a través de sus aristas; una teselación del espacio
puede ser pensada como una familia de poliedros pegados a través de sus
caras, etcétera. Esta naturaleza inductiva permanece en la noción abstrac-
ta de politopo. Además, da nacimiento al problema de extensiones: dado
un politopo abstracto K, ¿existe un politopo abstracto P tal que todas las
caras maximales de P son isomorfas a K? En este trabajo exploramos es-
te problema cuando condiciones fuertes de simetría son impuestas sobre P .
En particular, presentamos algunas construcciones originales de extensiones
quirales para cuando K es una teselación con cubos del toro n-dimensional.

Palabras Clave: Politopos abstractos, politopos quirales, teselaciones, toroi-
des, extensiones.

Abstract

An abstract polytope is a combinatorial object that generalises geometric
structures such as convex polytopes, tilings, maps on surfaces, among oth-
ers. All such structures present an inductive nature: a polygon can be
regarded as a family of line segments glued along their endpoints; a poly-
hedron can be understood as a family of polygons glued along their edges;
a tiling of the space can be thought as a family of polyhedra glued along
their faces, an so on. This inductive nature is still present in the abstract
notion of a polytope and rises the extension problem. Given an abstract
polytope K, does there exist an abstract polytope P such that all the max-
imal facets of P are isomorphic to K? In this work we explore the problem
when strong symmetry conditions are imposed to P . In particular, we show
some original construction of chiral extensions in the situation when K is a
tilling with cubes of the n-dimensional torus.

Keywords: Abstract polytopes, chiral polytopes, tilings, toroids, extensions.
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Introducción

Los poliedros altamente simétricos han sido del interés de la humanidad no solamente
por su estructura matemática, sino también por su grado de belleza. Existe evidencia
de que los cinco sólidos platónicos se conocían antes de los griegos. Sin embargo, los
griegos tiene el crédito de formalizar el conocimiento matemático de estos objetos. De
hecho, casi todo el libro 13 de los Elementos de Euclides se dedica a la clasificación de
los poliedros regulares (ver [22]).

El estudio formal de estructuras similares a los poliedros con alto grado de simetría
tomó un segundo aire en el siglo XX. Los trabajos de Coxeter y Grünbaum fueron
significativos y sentaron las bases de lo que hoy conocemos como politopos abstractos.
Tratar de dar una lista exhaustiva de sus contribuciones sería imposible, pero el lector
puede encontrar de su interés [9, 11, 26, 27].

Los politopos abstractos son estructuras combinatorias que generalizan a los poli-
topos convexos así como a los politopos geométricos considerados por Coxeter y Grün-
baum. Ellos también incluyen a las teselaciones del espacio Euclidiano y del espacio
Hiperbólico así como la mayoría de los mapas en superficies. La noción de politopo
abstracto fue introducida por Danzer y Schulte en [18], donde ellos describen sus pro-
piedades básicas. La investigación durante los primeros años de la teoría se enfocó
mayormente en los politopos regulares abstractos. Estos son los politopos abstractos
que presentan un grado máximo de simetría por reflexiones combinatorias. Los polito-
pos abstractos regulares mantuvieron la mayoría de la atención de la comunidad por
muchos años y mucha teoría alrededor de éstos ha sido desarrollada. Probablemente la
consecuencia más concreta de todo este trabajo sea [40], donde una gran cantidad de
teoría acerca de los politopos abstractos regulares puede ser encontrada.

Los politopos abstractos heredan una estructura recursiva de sus análogos convexos
y geométricos: un cubo puede ser pensado como una familia de seis cuadrados pegados
por sus aristas. En general, un n-politopo P puede ser pensado como una familia de
(n − 1)-politopos pegados a través de sus (n − 2)-caras. Estos (n − 1)-politopos son
las facetas de P y cuando todos estos politopos son isomorfos a un politopo fijo K
entonces decimos que P es una extensión de K.

El problema de determinar cuando un politopo dadoK admite una extensión ha sido
parte del desarrollo de la teoría desde sus inicios. De hecho, en [18] Danzer y Schulte
atacan este problema para politopos regulares. Ellos prueban que todo politopo regular
no-degenerado K admite una extensión regular. Esta extensión es finita si y solo si K
es finito. En [17] Danzer prueba que todo politopo regular no-degenerado admite una
extensión y que esta extensión es finita (resp. regular) si y solo si K es finito (resp.
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regular). En [57] Schulte construye una extensión regular universal para cada politopo
regular K. Esta extensión es universal en el sentido de que cualquier otra extensión
regular de K es un cociente de U . En [47, 49] Pellicer desarrolla varias construcciones
que tienen como consecuencia que todo politopo regular admite una extensión regular
con condiciones preestablecidas sobre su combinatoria local. En particular, esto prueba
que todo politopo regular admite una infinidad de extensiones regulares no-isomorfas.
Revisaremos estos resultados con detalle en Section 2.1.

Además de los politopos regulares, otra clase de politopos altamente simétricos
que ha sido de interés es la de los politopos quirales. En algunas otras disciplinas, la
palabra quiral es usada para describir objetos que no admiten reflexiones. Sin embargo,
cuando hablamos de politopos abstractos, esta palabra se ha reservado para describir
aquellos politopos que presentan máxima simetría por rotaciones abstractas pero no
admiten reflexiones. Estos fueron introducidos por Schulte y Weiss en [63] como una
generalización de los panales torcidos de Coxeter descritos en [10].

A pesar de que la noción de politopo quiral parece ser natural, encontrar ejemplos
concretos no ha sido fácil. Los poliedros (3-politopos) quirales finitos han sido estu-
diados desde el punto de vista de la teoría de mapas en superficies. En [13] se prueba
que existen una infinidad de mapas quirales en el toro. Por otro lado, se sabe que no
existen mapas quirales en superficies orientables de género 2, 3, 4, 5 o 6 (ver [5, 23],
por ejemplo). El ejemplo más pequeño no-toroidal de un mapa quiral fue construido
por Wilson en [69]. Los resultados obtenidos por Sherk en [67] implican que existen
una infinidad de superficies orientables que admiten mapas quirales.

Encontrar ejemplos de politopos quirales en rangos superior ha probado ser un
problema aún más difícil. Algunos ejemplos de 4-politopos quirales pueden ser cons-
truidos a partir de las teselaciones regulares del espacio hiperbólico (ver [3, 45, 64]).
En [65] Schulte y Weiss desarrollan una técnica para construir extensiones quirales de
politopos, la cual sirvió para construir los primeros ejemplos de 5-politopos quirales.
Lamentablemente, esta técnica no puede ser usara recursivamente para construir 6-
politopos quirales (ver Section 2.2 para más detalle). Por otro lado, la construcción
de Schulte y Weiss da como resultado politopos infinitos. Los primeros ejemplos de 5-
politopos quirales finitos fueron construidos por Conder, Hubard y Pisanski en [6] con
el uso de herramientas combinatorias. En [19] Breda, Jones y Schulte desarrollan una
técnica para construir nuevos n-politopos quirales finitos a partir de ejemplos conocidos
de n-politopos quirales finitos. Esta técnica permitió construir ejemplos concretos de
politopos quirales de rangos 3, 4 y 5.

No fue sino hasta 2010 que Pellicer probó en [48] la existencia de politopos quirales
de todo rango mayor que 3. Su construcción está basada en encontrar una extensión
quiral de un politopos regular en particular y puede ser aplicada de manera recursiva a
la mínima cubierta regular regular del politopo quiral resultante. Uno de los problemas
con esta técnica es que el tamaño de los politopos crece de manera muy rápida con
respecto al rango y tener ejemplos concretos en rangos mayores que 4 usando esta
construcción supera el poder computacional actual.

El problema de encontrar extensiones quirales de politopos abstractos ha sido uno
de los principales enfoques para construir nuevos ejemplos de politopos quirales. Sin
embargo, los resultado son bastante menos abundantes que sus análogos para politopos
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regulares. Si P es un n-politopo quiral, entonces sus facetas son o bien regulares y
orientables o bien quirales. En cualquier caso, las (n−2)-caras de P deben ser regulares
(ver Section 1.2 para detalles). Esto implica que is P es una extensión quiral de K,
entonces K es o bien regular o bien quiral con facetas regulares.

Si K es quiral con facetas regulares, se sabe que existe una extensión quiral universal
de K. Esta extensión universal fue introducida por Schulte y Weiss en [65]. In [16] Cun-
ningham y Pellicer probaron que cualquier politopo quiral finito con facetas regulares
admite una extensión quiral finita. Existen ejemplos de politopos regulares orientables
que no admiten extensiones quirales (ver [15]), pero estos politopos son extremada-
mente degenerados. A la fecha de este trabajo no existen construcciones generales de
extensiones quirales de politopos regulares orientables que den como resultado ejemplos
concretos y fáciles de obtener en la práctica.

La necesidad de encontrar ejemplos concretos de politopos quirales ha sido la prin-
cipal motivación para este trabajo. En Chapter 1 revisamos las definiciones y conceptos
básicos acerca de politopos abstractos y algunas estructuras similares. También pre-
sentamos las herramientas necesarias para para desarrollar nuestros resultados. En
Chapter 2 repasamos algunos de los resultados conocidos acerca de extensiones de po-
litopos abstractos. Finalmente, en Chapter 3 desarrollamos algunas construcciones que
proveen respuestas parciales a algunos de los problemas acerca de extensiones quirales
de politopos. En particular, mostramos dos construcciones relacionadas con la combi-
natoria local de una extensión quiral de un politopo quiral. También presentamos una
construcción que da como resultado extensiones quirales de (n + 1)-toroides regulares
cúbicos para cualquier n par.



Introduction

Highly symmetric polyhedra have been of interest to humanity not only for their math-
ematical structure but also for their degree of beauty. There exists evidence that the
five Platonic Solids were known before the Greeks. However, undoubtedly the Greeks
have the credit of collecting and formalising the mathematical knowledge about these
objects. In fact, most of the 13th book of Euclid’s Elements is devoted to the classifi-
cation of regular polyhedra (see [22]).

The formal study of highly symmetric polyhedra-like structures took a new breath
in the 20th century. The works of Coxeter and Grünbaum were significant and set the
basis for what today we know as abstract polytopes. Trying to give an exhaustive list
of their contributions would be almost impossible, but the reader might find of interest
[9, 11, 26, 27].

Abstract polytopes are combinatorial structures that generalise convex polytopes
as well as the geometric polytopes considered by Coxeter and Grünbaum. They also
include face-to-face tilings of Euclidean and Hyperbolic spaces as well as most maps on
surfaces. Abstract polytopes were introduced by Danzer and Schulte in [18] where they
describe the basic properties of these objects. The early research on abstract polytopes
was focused on the so called abstract regular polytopes. These are the abstract poly-
topes that admit a maximal degree of symmetry by combinatorial reflections. Abstract
regular polytopes kept most of the community’s attention for several years and a lot
of theory was developed. Probably the most concrete consequence of all this work is
the text [40], where a large amount of theory about abstract regular polytopes can be
found.

Abstract polytopes inherit a natural recursive structure from their convex and ge-
ometric analogues: a cube can be thought as a family of six squares glued along their
edges. In general, an n-polytope P can be thought as a family of (n − 1)-polytopes
glued along (n − 2)-faces. These (n − 1)-polytopes are the facets of P and whenever
all these polytopes are isomorphic to a fixed polytope K we say that P is an extension
of K.

The problem of determining whether or not a fixed polytope K admits an exten-
sion has been part of the theory’s development since its beginning. In fact in [18]
Danzer and Schulte attack this problem for regular polytopes. They prove that every
non-degenerate regular polytope K admits an extension and this extension is finite
if and only if K is finite. In [17] Danzer proves that every non-degenerate polytope
K admits an extension and this extension is finite (resp. regular) if and only if K is
finite (resp. regular). In [57] Schulte builds a universal regular extension U for every
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regular polytope K. This extension is universal in the sense that every other regular
extension of K is a quotient of U . In [47, 49] Pellicer develops several constructions
that have as a consequence that every regular polytope admits a regular extension with
prescribed conditions on its local combinatorics. In particular, this proves that every
regular polytope admits an infinite number of non-isomorphic regular extensions. We
review the mentioned results with more detail in Section 2.1.

Besides regular polytopes, another class of symmetric abstract polytopes that has
been of interest is that of chiral polytopes. In some other disciplines, the word chiral is
used to describe objects that do not admit mirror symmetry. However, when talking
about abstract polytopes this word has been reserved to describe those polytopes that
admit maximal symmetry by abstract rotations but do not admit mirror reflections.
They were introduced by Schulte and Weiss in [63] as a generalisation of Coxeter’s
twisted honeycombs in [10].

Even though the notion of chiral polytope seems to be natural, finding concrete
examples has not been easy. Finite chiral 3-polytopes have been studied in the context
of maps on surfaces. In [13] it is proved that there are infinitely many chiral maps on
the torus. On the other hand, it is known that there are no chiral maps on orientable
surfaces of genus 2, 3, 4, 5 and 6 (see [5, 23], for example). The smallest non-toroidal
chiral map was constructed by Wilson in [69]. The results obtained by Sherk in [67]
imply that there are infinitely many orientable surfaces admitting chiral maps.

Finding examples of chiral polytopes of higher ranks has proved to be an even
more difficult problem. Some examples of chiral 4-polytopes were built from hyper-
bolic tilings in [3, 45, 64]. In [65] Schulte and Weiss develop a technique to build chiral
extensions of polytopes, which introduced the first examples of chiral 5-polytopes.
However, this technique cannot be applied twice directly, therefore it cannot be used
to build 6-polytopes (see Section 2.2 for details). On the other hand, the construction
introduced by Schulte and Weiss gives as a result an infinite polytope. The first ex-
amples of finite chiral 5-polytopes were constructed by Conder, Hubard and Pisanski
in [6] with the use of computational tools. In [19] Breda, Jones and Schulte develop a
technique to build new finite chiral n-polytopes from known finite chiral n-polytopes.
This technique allowed the construction of concrete examples of chiral polytopes of
ranks 3, 4 and 5.

It was not until 2010 that Pellicer showed in [48] the existence of chiral polytopes
of all ranks higher than 3. His construction is based on finding a chiral extension of a
particular regular polytope and can be applied recursively to the minimal regular cover
of the resulting chiral extension. One of the problems of this techinque is that the size
of the polytopes grows very fast and having concrete examples of ranks higher than 4
using this construction exceeds the current computational power.

The problem of finding chiral extensions of abstract polytopes has been one of the
main approaches to find new examples of chiral polytopes. However, the results are
less numerous than those concerning regular polytopes. If P is a chiral n-polytope,
then its facets are either orientably regular or chiral. In any case, the (n − 2)-faces
of P must be regular (see Section 1.2 for details). This implies that if P is a chiral
extension of K, then K is either regular or chiral with regular facets.

If K is chiral with regular facets it is known that there exists a universal chiral
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extension of K. This universal extension was introduced by Schulte and Weiss in
[65]. In [16] Cunningham and Pellicer proved that any finite chiral polytope with
regular facets admits a finite chiral extension. There are examples of orientably regular
polytopes that do not admit a chiral extension (see [15]), but these examples are
extremely degenerate. To the date of this work there are no general constructions of
chiral extensions of orientably regular polytopes that provide concrete and practical
examples.

The necessity of finding concrete examples of chiral polytopes has been the main
motivation of this work. In Chapter 1 we review the basic definitions concerning ab-
stract polytopes and some similar structures. We also introduce some of the tools that
we use to develop our results. In Chapter 2 we review some of the known results about
extensions of abstract polytopes. We also enumerate a list of related open problems.
Finally in Chapter 3 we develop some constructions that provide partial answers to
some of the problems regarding chiral extensions of polytopes. In particular we show
two constructions that are related to the possibilities for the local combinatorics of a
chiral extension of a chiral polytope. We also introduce a construction that gives a
chiral extensions of regular cubic (n+ 1)-toroids for any even n.



Chapter 1

Highly symmetric abstract
polytopes

1.1 Basic notions
The research of this work belongs to the area of highly symmetric abstract polytopes.
Through this chapter we will provide the basic concepts and the known results related
to our research. Several references will appear through the chapter, however most of
the basic concepts can be found in [40] and this will be our main reference.

An abstract polytope is a combinatorial object that shares many properties with
the face lattice of a convex polytope. However, abstract polytopes also encode the
combinatorial information of structures such as tilings of Euclidean and Hyperbolic
spaces, most maps on surfaces and tilings of manifolds, as well as some other objects
with in principle, no natural geometric interpretation. Formally speaking:

Definition 1.1.1. Let n be a non-negative integer. An abstract polytope of rank n is a
partially ordered set (P ,6) (we usually omit the order symbol), that satisfies Items 1
to 4 listed below.

1. P has a maximum element Fn and a minimum element F−1.

The elements of P will be called faces. This will remind us of the geometric origin
of those objects. A flag is a maximal chain of P . We will require that

2. every flag of P contains exactly (n+ 2) elements.

Item 2 lets us to define a rank function rk : P → {−1, 0, 1, 2, . . . , n} in such a way
that F−1 has rank −1, the face Fn has rank n and for every other face F ,

rk(F ) = |{G ∈ Φ : F−1 < G < F}|,

with Φ any flag containing F . We will say that a face of P is an i-face if rk(F ) = i.
The 0-faces are also called vertices, the 1-faces are called edges and the (n − 1)-faces
are called facets. Two faces F and G are incident if F 6 G or G 6 F .

We require that P satisfies the diamond condition:

1
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3. Given i ∈ {0, 1, . . . , n − 1}, if F is an (i − 1)-face and G is an (i + 1)-face such
that F 6 G, then the set {H ∈ P : F < H < G} has cardinality 2.

The diamond condition implies that for every flag Φ and every i ∈ {0, 1, . . . , n− 1},
there exists a unique flag Φi such that Φ and Φi differ exactly in the face of rank i. In
this situation we say that Φ and Φi are adjacent (or i-adjacent if we want to emphasize
i). We may extend this definition recursively by taking Φi1,i2,...,ik = (Φi1,...,ik−1)ik for
k > 2 and i1, . . . , ik ∈ {0, 1, . . . , n− 1}.

Finally, we require that

4. P is strongly flag connected, meaning that for every two flags Φ and Ψ, there exists
a sequence of flags Φ = Φ0,Φ1, . . . ,Φk = Ψ such that for every j ∈ {1, . . . , k},
Φj−1 and Φj are adjacent, and Φ ∩Ψ ⊆ Φj.

In this work we will use n-polytope as short for “abstract polytope of rank n”.
Whenever we are talking about convex polytopes it will be mentioned explicitly.

Definition 1.1.2. If P and Q are two abstract polytopes of rank n, a function
f : P → Q is an isomorphism if f is bijective and f(F ) 6 f(G) if and only if F 6 G.
If there exists an isomorphism between P and Q, then we say that P and Q are
isomorphic and write P ∼= Q.

Example 1.1.3. The following list enumerates a series of natural examples of the
concepts introduced above.

1. The face lattice of an n-dimensional convex polytope is an abstract polytope of
rank n. If fact, an abstract polytope is defined in such a way that it shares
combinatorial properties with the face lattice of a convex polytope. For an n-
dimensional convex polytope, the face of rank −1 is the empty set and the face
of rank n is the entire polytope (see Figure 1.1a for the representation of the
tetrahedron as an abstract polytope).

2. Up to isomorphism, there is exactly one 0-polytope: the set consisting only of
the minimum element and the maximum element. This is the face lattice of a
point (convex 0-polytope). There is also a unique 1-polytope: the face lattice of
a line segment with two endpoints (a convex 1-polytope) (see Figure 1.1b).

3. Every 2-polytope (also called polygon) is isomorphic to the incidence poset of a
connected 2-valent graph. In particular, for every p ∈ {2, 3, . . . ,∞}, there exists
a unique 2-polytope with p vertices and p edges. In Figure 1.1c we show an
example of a polygon with 5 vertices and 5 edges.

4. The face-to-face tilings of the n-dimensional Euclidean space En or the n-dimensio-
nal Hyperbolic space Hn are examples of (n+1)-polytopes when we consider their
face-lattices (see Figure 1.1d).

5. A map is an embedding of a finite graph G on a compact surface S in such a way
that the connected components of S \G (the faces of the map) are homeomorphic
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to open disks. Almost every mapM is a 3-polytope by considering as 0-faces and
1-faces the vertices and edges ofG, and as 2-faces the faces ofM. Moreover, every
finite abstract 3-polytope induces a map on a certain surface (see Figure 1.1e).
Readers interested in more details about highly symmetric maps should refer to
[33].

6. We may build a 4-polytope P from the complete graph K6 as follows. Take as
vertices, edges and 2-faces of P the vertices, edges and triangles of K6, respec-
tively. The facets of P are the five octahedra resulting after removing in turn the
edges of the five perfect matchings defined by a given 1-factorization of K6 (see
Figure 1.1f).

Observe that if F and G are faces of P such that F 6 G, then the section

G/F = {H ∈ P : F 6 H 6 G}

is an abstract polytope of rank rk(G)−rk(F )−1. There is usually no risk of confusion
if we identify every face F of P with the section F/F−1. We will use this identification
through all this work. If F is a face, then the co-face of F is the section Fn/F .
In particular, if F is a vertex, the co-face of F is called the vertex-figure at F (see
Figure 1.2).
Example 1.1.4.

1. The tetrahedron has a triangle as vertex-figure at any of its vertices (see Fig-
ure 1.2a).

2. The vertex-figure at any vertex of a cube is a triangle (Figure 1.2b).

3. The 4-dimensional cube has a tetrahedron as vertex-figure at each vertex (see
Figure 1.2c).

4. The vertex-figure at any vertex of the 4-polytope described in Item 6 of Exam-
ple 1.1.3 is isomorphic to the map in Figure 1.1e (see [6]).

Historically, much of the research on polytopes has been related to their symmetry
properties. The study of this aspect goes back all the way before the Greeks, when the
Platonic Solids were already known. Naturally, the results presented in this work are
related to highly symmetric polytopes.

Now we will introduce the first notion of homogeneity for abstract polytopes. Ob-
serve that for i ∈ {1, . . . , n − 1}, if F is an (i − 2)-face of P and G is an (i + 1)-face
incident to F , then the section G/F is a 2-polytope. Therefore, the section G/F is
isomorphic to a pi-gon where in general pi depends on F and G. When for every i, pi
depends only on i and not on the choice of the faces F and G we have the following
definition.
Definition 1.1.5. Let P be an abstract n-polytope. Assume that for every i ∈
{1, . . . , n− 1} there exists pi ∈ {2, 3, . . . ,∞} such that for every pair of incident faces
F , G with rk(F ) = i− 2 and rk(G) = i+ 1 the section G/F is isomorphic to a pi-gon.
Then we say that P has Schläfli type {p1, . . . , pn−1}. We also say that P is equivelar
of type {p1, . . . , pn−1} or that P is of type {p1, . . . , pn−1}, for short.
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(a) Hasse diagram of the tetrahedron
(b) Hasse diagrams of rank 0 and rank 1
polytopes

a

b

cd

e

a

b

c d

e

(c) Abstract polytopes of rank 2 (d) Cubic tiling of E3

(e) A map on the torus (f) A facet of a 4-polytope from K6

Figure 1.1: Examples of abstract polytopes
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(a) (b) (c)

Figure 1.2: Vertex figures

Example 1.1.6. The following list of examples is intended to illustrate the notion of
Schläfli type.

1. A polygon with p vertices has Schläfli type {p}.

2. The Schläfli types of the tetrahedron, the octahedron, the cube, the icosahedron
and the dodecahedron are {3, 3}, {3, 4}, {4, 3}, {3, 5} and {5, 3}, respectively.

3. The Euclidean plane admits a tiling of type {4, 4} with squares, a tiling of type
{3, 6} with equilateral triangles and a tiling with of type {6, 3} with regular
hexagons.

4. The n-dimensional cube has Schläfli type {4, 3, . . . , 3︸ ︷︷ ︸
n−2

}. Throughout this work we

will find it convenient to use exponents to denote sequences of equal symbols.
For example, we will say that the n-cube has type {4, 3n−2}.

5. The n-dimensional Euclidean Space En admits a tiling of type {4, 3n−2, 4}.

6. As will be discussed later, it is possible to find numerous examples of maps of
type {4, 4} on the torus.

7. The 4-polytope described in Item 6 of Example 1.1.3 has type {3, 4, 4} (see [6]).

Observe that if an n-polytope P is of type {p1, . . . , pn−1}, then the facets of P are
of type {p1, . . . , pn−2} and the vertex-figures of P are of type {p2, . . . , pn−1}. Moreover,
these numbers encode the local combinatorics of P . For instance, pn−1 denotes the
number of facets of P around every (n− 3)-face. For example, around every vertex of
the cube there are 3 faces. Around every edge of the 4-dimensional cube there are 3
facets (3-dimensional cubes).

The notion of symmetry has motivated plenty of research about convex polytopes
and other similar structures. The generalisation to abstract polytopes has been intrin-
sically related to the most symmetric ones. The following discussion will introduce the
basic notions about symmetries of abstract polytopes.
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Definition 1.1.7. An automorphism of an abstract polytope P is an order-preserving
bijection of the faces of P . The automorphism group of a polytope P , denoted by
Aut(P), is the group consisting of all automorphisms of P .

The automorphism group is the combinatorial analogue to the symmetry group
of a convex polytope. The group Aut(P) acts naturally on the set of faces of P .
Moreover, since every element γ of Aut(P) must preserve order, it follows from Item 2
of Definition 1.1.1 that γ must preserve rank. This implies that the automorphism
group of P acts on the set F(P) of flags of P by

Φγ = {Fγ : F ∈ Φ},

for every Φ ∈ F(P) and γ ∈ Aut(P). In this work the automorphism group of P will
induce right actions on flags as well as on the faces of P .

The action of Aut(P) on F(P) has very interesting properties.

Proposition 1.1.8. Let P be an abstract n-polytope. The action of Aut(P) on F(P)
has the following properties.

1. If γ ∈ Aut(P) and Φ ∈ F(P), then

(Φγ)i = (Φi)γ, (1.1.9)

for every i ∈ {0, . . . , n− 1}.

2. The action is free, meaning that the stabiliser of any flag is trivial.

3. Item 1 characterises the automorphism group. This is, given a bijection γ :
F(P) → F(P) that satisfies Equation (1.1.9) for every flag Φ and every i ∈
{0, . . . , n − 1}, there exists a unique automorphism γ such that the permutation
of F(P) induced by γ is precisely γ.

Proof. To prove Item 1 just observe that for every flag Φ, every automorphism γ and
every i ∈ {0, . . . , n− 1} the flags Φγ, (Φγ)i and Φiγ have the same faces of rank j for
every j 6= i. Note as well that the faces of rank i of Φγ and (Φi)γ are different since γ
is a bijection. By definition, the faces of rank i of Φγ and (Φγ)i are different. By the
Diamond Condition it follows that (Φγ)i = (Φi)γ.

We will use Item 1 to prove Item 2. First observe that by applying Item 1 inductively
we have that

(Φi1,...,ik)γ = (Φγ)i1,...,ik

for every i1, . . . , ik ∈ {0, . . . , n−1}. Now assume that γ ∈ Aut(P) is such that Φγ = Φ
for some Φ ∈ F(P). We want to show that γ = ε, where ε denotes the identity of
Aut(P). Let Ψ be any flag of P . Since P is strongly flag-connected then there exist a
sequence i1, . . . , ik ∈ {0, . . . , n} such that Ψ = Φi1,...,ik . Then we have

Ψγ = (Φi1,...,ik)γ = (Φγ)i1,...,ik = Φi1,...,ik = Ψ.
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Hence if γ fixes one flag, then it fixes every flag of P . Since every face belongs to at
least one flag and every flag has precisely one face of every rank, an automorphism
fixing every flag must fix every face.

In order to prove Item 3, define γ : P → P as follows. For every face F of P with
rk(F ) = i let Φ be a flag with F ∈ Φ. Define Fγ as the face of rank i of Φγ. If Ψ is
another flag containing F then there exist flags Φ0, . . . ,Φk such that Φ = Φ0, Ψ = Φk,
Φ ∩ Ψ ⊆ Φj for every j ∈ {0, . . . , k} and where Φj−1 and Φj are adjacent flags. Since
γ maps adjacent flags to adjacent flags, the flag of rank i of Φjγ is the same for every
j ∈ {0, . . . , k}. It follows that γ is well defined. Observe that γ−1 is the inverse of γ,
therefore, γ is bijective. Finally if F 6 G then there exists a flag Φ containing both F
and G. Therefore Φγ contains both Fγ and Gγ, implying that γ is order-preserving.
The uniqueness of γ follows from Item 2. �

Item 3 of Proposition 1.1.8 offers an important characterisation of the automor-
phisms of a polytope P in terms of the way they act on the flags. This characterisation
will be useful later when structures slightly more general than polytopes are considered.

Before finishing this section we will introduce an important concept.

Definition 1.1.10. If (P ,6) is a polytope then the dual of P is the partially ordered
set (P ,6δ) where F 6δ G if and only if G 6 F . We usually denote (P ,6δ) by Pδ or
P∗. A polytope P is self-dual if P ∼= P∗.

The cube and the octahedron are dual of each other. The tiling of En with cubes
is self-dual. If P is of type {p1, . . . , pn−1} then P∗ is of type {pn−1, . . . , p1}.

The notion of duality, as well as some other notions introduced in this section, have
been studied in the context of convex polytopes with some purposes not related to the
topic of this work. If the reader is interested in details about the theory of convex
polytopes we suggest [28] and [37].

1.2 Regular and chiral polytopes
Throughout this section we will start the study of highly symmetric polytopes. We will
focus on two of the most studied classes of polytopes: regular and chiral. In particular
we will explain the structures of their automorphism groups.

From now on we will work with rooted polytopes, meaning that we will fix a flag Φ0
which we will call the base flag. Several of the properties described below will depend
on the choice of the base flag. If the polytope is regular (defined below), the selection
of the base flag has no important consequences. However, if the polytope is chiral this
choice is important and we will discuss its implications later. In any case, we will see
that for chiral polytopes there are essentially two different selections.

An immediate consequence of Item 2 of Proposition 1.1.8 is that given a flag Ψ of
a polytope P , there exists at most one automorphism of P mapping the base flag Φ0
to Ψ. This observation offers a bound on the size of the automorphism group. If P is
an abstract polytope, then

|Aut(P)| 6 | F(P)|.
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In fact, it is clear that |Aut(P)| is a divisor of |F(P)| when P is finite.
The previous paragraph motivates the following definition.

Definition 1.2.1. An abstract polytope P is regular if the action of Aut(P) on the
flags of P is transitive. In particular, if P is finite, this occurs if and only if |Aut(P)| =
| F(P)|.

Informally speaking, regular polytopes are those that have the highest degree of
symmetry. According to [40], this definition of regularity for convex polytopes seems
to have been given first by Du Val in [21]. It generalises the notions of regularity given
by Coxeter in [11, 12] for dimensions 3 and 4. In the literature, several notions of
regularity of polytopal-like structures have appeared, a more detailed discussion about
them can be found in [38]. See also [36].

The unique polytope of rank 0 is trivially regular. The unique 1-polytope is regular
since swapping the two vertices induces a non-trivial automorphism that swaps the two
flags. Every finite polygon (2-polytope) is regular, since it is isomorphic to the convex
regular one. The infinite polygon {∞} is also regular. The Platonic Solids and the
tilings of the Euclidean plane of types {4, 4}, {3, 6} and {6, 3} are examples of regular
3-polytopes. The tiling of En with n-dimensional cubes is a regular polytope of rank
(n+ 1).

On the other hand, the polytope of Item 6 of Example 1.1.3 is not regular; however,
this is not obvious from the construction presented here. See [6] for details.

In Chapter 3 we will build some examples of regular and non-regular polytopes.
Observe that if P is a regular polytope, then it is equivelar. The converse is not

necessarily true (see Example 1.3.14). However, it has been proved that if P is an
equivelar convex polytope, then P is isomorphic to a regular polytope (see [38]).

In the following paragraphs we will discuss the structure of the automorphism group
of a regular polytope. First observe that if P is a regular n-polytope with base flag Φ0,
then for every i ∈ {0, . . . , n− 1} there exists an automorphism ρi such that

Φ0ρi = Φi
0. (1.2.2)

These automorphisms will be called abstract reflections with respect to the base flag
Φ0. The name is inspired by the convex case and the study of regular tilings of Eu-
clidean and Hyperbolic spaces, where these automorphisms are geometric reflections
(see Figure 1.3)

We will show some basic properties of the automorphisms ρ0, . . . , ρn−1. Our main
reference will be [40, Chapter 2].

Proposition 1.2.3. Let P be an abstract regular n-polytope with base flag Φ0. Let
ρ0, . . . , ρn−1 be the abstract reflections with respect to Φ0. Then

Aut(P) = 〈ρ0, . . . , ρn−1〉.

Proof. Let γ ∈ Aut(P) and let Ψ = Φ0γ. We will show that there is an automorphism
of 〈ρ0, . . . , ρn−1〉 mapping Φ0 to Ψ. The result will follow from the fact that the action
of Aut(P) is free.
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ρ0ρ1

ρ2

Φ0

(a)

ρ0
ρ1

ρ2
Φ0

(b)

Figure 1.3: Abstract reflections

By the strong flag connectivity of P , there exist i1, . . . , ik ∈ {0, . . . , n− 1} such
that Ψ = Φi1,...,ik

0 . We will proceed by induction over k. If k = 1, then Ψ = Φ0ρi1 .
Assume that for every i1, . . . , ik−1 ∈ {0, . . . , n − 1} there exists an automorphism
β ∈ 〈ρ0, . . . , ρn−1〉 mapping Φ0 to Φi1,...,ik−1

0 . Consider the following computation:

Φi1,...,ik
0 = (Φi1,...,ik−1

0 )ik = (Φ0β)ik = (Φik
0 )β = Φ0ρikβ.

Now, ρikβ ∈ 〈ρ0, . . . , ρn−1〉, as desired. �

The following result is an immediate consequence:

Corollary 1.2.4. Let P be an abstract n-polytope. Then P is regular if and only if there
exists a flag Φ0 and automorphisms ρ0, . . . , ρn−1 that act on Φ0 as in Equation (1.2.2).

Proposition 1.2.5. Let P be a regular n-polytope of type {p1, . . . , pn−1}. Let Aut(P) =
〈ρ0, . . . , ρn−1〉 be its automorphism group. Then the abstract reflections satisfy the
following relations:

ρ2
i = ε for every i ∈ {0, . . . , n− 1},

(ρi−1ρi)pi = ε for every i ∈ {1, . . . , n− 1},
(ρiρj)2 = ε if |i− j| > 2.

(1.2.6)

For certain integers pi satisfying 2 6 pi 6 ∞. (If pi = ∞ for some i ∈ {1, . . . , n− 1}
the second relation means that ρi−1ρi does not have finite order).

Proof. The fact that ρi is an involution follows from the fact that

Φ0ρ
2
i = (Φi

0)ρi = (Φ0ρi)i = (Φi
0)i = Φ0.
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Let Fi−2 and Fi+1 be the faces of ranks (i − 2) and (i + 1) of Φ0, respectively.
Consider the polygonal section Fi+1/Fi−2. This is isomorphic to a convex regular pi-
gon. Observe that the automorphism ρi−1ρi acts as a rotation of one step on this
polygon. Hence, ρi−1ρi has order pi.

To prove the last relation assume without loss of generality that i < j − 1. Let
Φ0 = {Fk : −1 6 k 6 n} such that rk(Fk) = k. Let F ′k denote the unique face of P of
rank k that is incident to both Fk−1 and Fk+1 and is different from Fk. Now consider
the following flags:

Φi
0 = {F−1, . . . , Fi−1, F

′
i , Fi+1, . . . , Fj, . . . , Fn},

Φj
0 = {F−1, . . . , Fi, . . . , Fj−1, F

′
j , Fj+1, . . . , Fn},

Φi,j
0 = {F−1, . . . , Fi−1, F

′
i , Fi+1, . . . , Fj−1, F

′
j , Fj+1, . . . , Fn}

= Φj,i
0 .

Then we have

Φ0ρjρi = (Φj
0)ρi = (Φ0ρi)j = Φi,j

0 = Φj,i
0 = (Φ0ρj)i = (Φi

0)ρj = Φ0ρiρj.

It follows that Φ0(ρiρj)2 = Φ0, implying that (ρiρj)2 = ε. �

The following discussion includes not only regular polytopes but a more general
class.

Recall that if Γ is a group acting on a set X, then for every A,B ⊆ X,

StabΓ(A) ∩ StabΓ(B) = StabΓ(A ∪B).

Let P be an abstract polytope and Φ0 = {F−1, F0, . . . , Fn} be a base flag with
rk(Fi) = i. Assume that Γ 6 Aut(P) is a group (acting on the set of faces of P). For
I ⊆ {0, . . . , n− 1} let

ΓI = StabΓ({Fi : i 6∈ I}).
Let I, J ⊆ {0, . . . , n− 1}, then

ΓI ∩ ΓJ = StabΓ({Fi : i 6∈ I}) ∩ StabΓ({Fj : j 6∈ J})
= StabΓ({Fi : i 6∈ I} ∪ {Fj : j 6∈ J})
= StabΓ({Fk : k 6∈ I ∩ J})
= ΓI∩J .

(1.2.7)

The condition on Equation (1.2.7) will be called the intersection property for Γ.
For our purposes, it will be convenient to understand the structure of the groups

ΓI when Γ is the automorphism group of certain classes of polytopes. The regular case
is covered in the following proposition.

Proposition 1.2.8. Let P be a regular polytope with base flag Φ0 = {F−1, . . . , Fn} and
rk(Fi) = i. Let Aut(P) = 〈ρ0, . . . , ρn−1〉 be its automorphism group, as generated by the
abstract reflections with respect to Φ0. Let I ⊆ {0, . . . , n−1} and ΓI = StabAut(P)({Fi :
i 6∈ I}). Then

ΓI = 〈ρi : i ∈ I〉.
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Proof. It is clear that 〈ρi : i ∈ I〉 6 ΓI . For the other inclusion it is enough to prove
that 〈ρi : i ∈ I〉 acts transitively on the flags containing {Fi : i 6∈ I} (see Item 3
of Proposition 1.1.8). This is essentially the same proof as in Proposition 1.2.3 but
restricting the indices to those in I. �

With Proposition 1.2.8 in mind, the intersection property for regular polytopes has
the form

〈ρi : i ∈ I〉 ∩ 〈ρj : j ∈ J〉 = 〈ρk : k ∈ I ∩ J〉 (1.2.9)
for every I, J ⊆ {0, . . . , n− 1}.

So far we have shown some properties of the automorphism group of an abstract
regular polytopes. It turns out that some of these properties characterise these groups.
For convenience we introduce the following definition.

Definition 1.2.10. A string C-group of rank n is a group Γ generated by group ele-
ments ρ0, . . . , ρn−1 that satisfy Equations (1.2.6) and (1.2.9). It is understood in Equa-
tion (1.2.6) that the group elements actually have the periods implied; for example,
each ρi is an involution.

Proposition 1.2.5 together with Proposition 1.2.8 imply that the automorphism
group of a regular polytope is a string C-group. The following theorem states that
every string C-group is the automorphism group of a regular polytope. We will not
give the proof of this theorem, but this proof is developed in detail in [40, Section 2E].

Theorem 1.2.11. Let n > 1 and let Γ = 〈ρ0, . . . , ρn−1〉 be a string C-group. Then, up
to isomorphism, there exists a unique regular polytope P = P(Γ) of type {p1, . . . , pn−1}
such that Aut(P) = Γ and ρ0, . . . , ρn−1 act as abstract reflections with respect to a flag
of P. Moreover, the following hold:

1. Let −1 6 j < k 6 n, and let F be a j-face and G a k-face of P with F 6
G. Then the section G/F is isomorphic to the polytope P(〈ρj+1, . . . , ρk−1〉). In
particular the facets and vertex-figures of P are isomorphic to P(〈ρ0, . . . , ρn−2〉)
and P(〈ρ1, . . . , ρn−1〉), respectively.

2. P is finite if and only if Γ is finite.

3. P is self-dual if an only if there exists an involutory group automorphism δ of Γ
satisfying δ : ρi 7→ ρn−1−i for every i ∈ {0, . . . , n− 1}.

Theorem 1.2.11 has proved to be a very useful tool to build regular polytopes, since
it reduces geometrical the problem to a group-theoretical problem. We will explore
some of its applications later, but if the reader is interested in a deeper study of the
use of this theorem we suggest [7, 42, 47, 49, 57, 59].

In what remains of this section we will introduce the theory of chiral polytopes.
Informally speaking, chiral polytopes are those that admit maximal rotational sym-
metry but do not admit reflections. We have already talked about reflections in the
context of regular polytopes, but before formally introducing chiral polytopes we will
discuss the ideas concerning rotations of abstract polytopes. The main reference for
this theory will be [63].
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Definition 1.2.12. Let P be an abstract regular n-polytope with automorphism group
Aut(P) = 〈ρ0, . . . , ρn−1〉. The rotation subgroup of P is the group Aut+(P) generated
by the elements

σi = ρi−1ρi

for i ∈ {1, . . . , n− 1}.

The elements σi are called the abstract rotations with respect to the base flag Φ0.
Observe that the action of these elements is given by

Φ0σi = Φi,i−1
0 .

This means that if Φ0 = {F−1, . . . , Fn}, then σi acts as a rotation of the polygonal
section Fi+1/Fi−2.

In the context of convex regular polytopes or tilings of Euclidean and Hyperbolic
spaces, the elements σi are represented by actual rotations. In the context of maps on
surfaces, a map with automorphisms σ1 and σ2 has been traditionally called regular
(see [13, 33, 70]). More recently the word rotary has been used to denote these maps to
avoid confusion with the notion of regularity for abstract polytopes. In the following
paragraphs we will discuss how this notion extends naturally to abstract polytopes.
It is important to remark that this has been done before for maniplexes, a common
generalisation for maps and polytopes (see [20]). We will follow their ideas.

Let P be a an abstract polytope with base flag Φ0. We will assign colours to the
set of flags of P in a recursive way as follows. The flag Φ0 will be white. The flags
adjacent to Φ0 will be black. If Ψ is a flag adjacent to a white flag, then Ψ will be
black; if Ψ is adjacent to a black flag, then Ψ will be white. Let Fw(P) denote the set
of white flags. It might be the case that Fw(P) = F(P); this is, that every flag of P
is white (and hence every flag of P is also black). In this situation we say that P is
non-orientable. If the previous procedure induces a partition of the flags of P in white
and black flags in such a way that adjacent flags are of different colours, then we say
that P is orientable.

The notions of orientable and non-orientable regular maps in terms of colourings
of flags coincide with the property of a map lying on an orientable or a non-orientable
surface, respectively (see [5]). Readers interested in a discussion about colourings of
flags on maps, consult [35]. In [51] a discussion about bicolourings of maniplexes can
be found.

Definition 1.2.13. Let P be a n-polytope with base flag Φ0. We say that P is rotary
if Aut(P) acts transitively on the set of white flags of P . We denote by Aut+(P) the
subgroup of Aut(P) consisting of the elements that map Φ0 to a white flag.

If P is rotary and non-orientable then P is regular and Aut+(P) = Aut(P). The
theory of rotary polytopes is interesting precisely when it is restricted to orientable
polytopes. Therefore, for now on and unless it is specified otherwise, we will assume
that our polytopes are orientable.

Observe that if P is an orientable regular polytope then the group Aut+(P), as
defined in Definition 1.2.12, permutes the white flags of P . This implies that Defini-
tion 1.2.13 is indeed a generalisation of orientable regular polytopes. In fact, if P is a
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regular polytope (no necessarily orientable), the rotation subgroup Aut+(P) has index
at most 2 in Aut(P). The polytope P is orientable if and only if [Aut(P) : Aut+(P)] =
2. A regular orientable polytope is also called an orientably regular polytope.
Remark 1.2.14. Let P be a rotary polytope with base flag Φ0. The set of white flags and
black flags of P are respectively the orbits of Φ0 and Φ0

0 under the action of Aut+(P).
For a rotay polytope, white flags and black flags are just another name for what in

[63] are called even and odd flags, respectively.
As mentione before, orientable rotary polytopes is a class of polytopes that include

orientable regular polytopes. If P is an orientably regular polytope then adjacent
flags belong to different orbits of Aut+(P). However, since P is regular there exist
automorphisms, for instance ρ0, that map white flags to black flags. The automorphism
ρ0 is a reflection, and any other automorphism mapping one orbit to the other is a
product of ρ0 by an element of Aut+(P). Therefore, a rotary polytope that does not
admit reflections should not admit an automorphism mapping white flags to black
flags. Hence, the formal definition of chiral polytopes is the following.

Definition 1.2.15. An abstract polytope P is chiral if its automorphism group Aut(P)
induces two orbits on flags in such a way that adjacent flags belong to different orbits.

The word chiral has more than one interpretation in the scientific community. It
comes from the Greek χειρ (hand) and usually refers to an object that cannot be
continuously moved to make it coincide with its mirror image. In principle, a chiral
object might not have any symmetry at all. Its first use is attributed to Lord Kelvin,
who in [34, Section 22] wrote

I call any geometrical figure, or group of points, ‘chiral’, and say that it has
chirality if its image in a plane mirror, ideally realized, cannot be brought
to coincide with itself. [. . . ] Equal and similar left and right hands are
heterochirally similar or ‘allochirally’ similar (but heterochirally is better).
They are also called ‘enantiomophs’[. . . ]

In the context of abstract polytopes the term chiral has been reserved for the
“most symmetric polytopes that do not admit reflectional symmetry”. The concept
was introduced by Schulte and Weiss in [63] as a generalisation of Coxeter’s twisted
honeycombs in [10].

As noted before, every polytope of rank 0, 1 and 2 is regular; therefore, a chiral
polytope has rank at least 3. The polytope of Item 6 of Example 1.1.3 is a chiral
4-polytope. In Section 1.3 we will show a family of examples of chiral 3-polytopes and
in Chapter 3 we will give constructions of chiral polytopes of higher ranks.

Note that the following remark is obvious.
Remark 1.2.16. Let P be an orientable rotary polytope. Then P is either orientably
regular or chiral. If P is chiral, then Aut(P) = Aut+(P).

A chiral polytope must be equivelar. This is not obvious in principle but it follows
from the fact the automorphism group of a chiral polytope is transitive on polygonal
sections determined by faces of the same rank. In fact, if i ∈ {1, . . . , n − 1}, let Fi+1
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and Fi−2 be the faces of ranks i+ 1 and i− 2 of the base flag Φ0, respectively. If Gi+1
and Gi−2 are any other faces of ranks i + 1 and i − 2, with Gi−2 < Gi+1, and Ψ is
a flag containing both, then either Ψ or Ψi is a white flag of P containing Gi+1 and
Gi−2. It follows that there is an automorphism of P mapping Φ0 to either Ψ or Ψi.
This automorphism maps the section Fi+1/Fi−2 to the section Gi+1/Gi−2.

In fact, following basically the same ideas discussed in the previous paragraph we
have the following result.

Proposition 1.2.17 (Proposition 2 of [63]). Let P be a chiral n-polytope. Let i ∈
{0, . . . , n− 1}, then Aut(P) acts transitively on the set of chains resulting of removing
the face of rank i of each flag of P.

Remark 1.2.18. Let P be a rotary polytope. Let Φ0 be the base flag of P . Then the
set of white flags of P is the set of flags Ψ satisfying that

Ψ = Φi1,...,ik
0

for some k even.
Moreover, the bicolouring of flags of P induces a bicolouring on any section of

P as follows. If Fi 6 Fj are faces of P with rk(Fi) = i and rk(Fj) = j, let
Φ = {F−1, . . . , Fi, . . . , Fj, . . . , Fn} be an arbitrary flag containing Fi and Fj with
rk(Fk) = k for every k ∈ {−1, . . . , n}. Every flag of the section Fj/Fi is of the
form {Fi, Gi+1, . . . , Gj−1, Fj} with rk(Gk) = k for k ∈ {i + 1, . . . , j − 1}. Then we
assign to this flag (of the section) the colour of the flag of P consisting of the faces
F−1, . . . Fi, Gi+1, . . . , Gj−1, Fj, . . . , Fn. This colouring is such that adjacent flags of the
section have different colours, since they are extended to adjacent flags of P . Moreover,
recall that Aut+(P) acts transitively on flags of the same colour. An implication of
this discussion is the following.

Proposition 1.2.19 ([63, Proposition 10]). If P is a chiral polytope, then every section
of P is either chiral or orientably regular.

And an immediate consequence of Propositions 1.2.17 and 1.2.19 is

Proposition 1.2.20 ([63, Proposition 9]). For a chiral n-polytope P, the facets of P
are either chiral or orientably regular, but the (n− 2)-faces of P are always regular.

In the following paragraphs we will discuss the structure of the group Aut+(P) for
P a rotary polytope.

Let P be a rotary n-polytope with base flag Φ0. Observe that if Φ and Ψ are
adjacent flags of P , then one is white and the other is black. It follows that there exist
automorphisms σ1, . . . , σn−1 such that

Φ0σi = Φi,i−1
0 .

We will call these automorphisms the abstract rotations of P .
Now we will introduce some notation that will help us to develop some theory about

the rotation group of a rotary n-polytope.
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For i, j ∈ {0, . . . , n− 1} with i < j we define the automorphisms

τi,j = σi+1 · · ·σj.

Note that this is a small change with respect to the notation of [63, Equation (5)].
What they call τi,j for us is τi−1,j. Observe that τi−1,i = σi for i ∈ {1, . . . , n − 1}. It
is also convenient to define τj,i = τ−1

i,j for i < j and τ−1,j = τi,n = τi,i = ε for every
i, j ∈ {0, . . . , n− 1}. In particular, we have that

〈τi,j : i, j ∈ {0, . . . , n− 1}〉 = 〈σ1, . . . , σn−1〉.

We also have
Φ0τi,j = Φj,i

0 . (1.2.21)

Proposition 1.2.22. Let P be a rotary polytope. Let σ1, . . . , σn−1 be the abstract
rotations with respect to the base flag Φ0. Then

(σi · · · σj)2 = ε (1.2.23)

for every i, j ∈ {1, . . . , n− 1} with i < j.

Proof. It follows from the fact that Φ0σi · · ·σj = Φj,i−1
0 and j − (i− 1) > 2. �

A particular consequence of the previous result is that τi,j is an involution whenever
|i− j| > 2.

Proposition 1.2.24. Let P be a rotary n-polytope. Let σ1, . . . , σn−1 be the abstract
rotations with respect to the base flag Φ0. Then

Aut+(P) = 〈σ1, . . . , σn−1〉.

Proof. We will show that Aut+(P) = 〈τi,j : i, j ∈ {0, . . . , n − 1}〉. One inclusion is
obvious since τi,j ∈ Aut+(P) for every i, j ∈ {1, . . . , n − 1}. The idea of the other
inclusion is to show that the group 〈τi,j : i, j ∈ {0, . . . , n− 1}〉 acts transitively on the
set of white flags.

Let Ψ be a white flag. By the strong flag connectivity of P , there exist i1, . . . , ik ∈
{0, . . . , n− 1} such that

Ψ = Φi1,...,ik
0 .

By Remark 1.2.18, k must be even. Assume that k = 2d; the proof is by induction
over d.

If d = 1, then
Ψ = Φi1,i2

0 = Φ0τi2,i1 .

Suppose that for any given i1, . . . , i2(d−1) ∈ {0, . . . , n − 1} there exists an auto-
morphism β ∈ 〈τi,j : i, j ∈ {0, . . . , n − 1}〉 such that Φ0β = Φi1,...,i2(d−1)

0 . Now take
i1, . . . , i2(d) ∈ {0, . . . , n− 1} and consider the following calculation

Φi1,...,i2d
0 = (Φi1,...,i2(d−1)

0 )i2d−1,i2d = (Φ0β)i2d−1,i2d = (Φi2d−1,i2d
0 )β = Φ0τi2d,i2d−1β.

But our assumptions on β imply that τi2d,i2d−1β ∈ 〈τi,j : i, j ∈ {0, . . . , n− 1}〉. �



Regular and chiral polytopes 16

Now, since Aut+(P) 6 Aut(P), then Aut+(P) must satisfy the general intersection
property of Equation (1.2.7). As we did for regular polytopes we are interested in
finding the groups ΓI for Γ = Aut+(P). These groups are described in the following
result. We will give this result without proof since the proof is essentially the same as
that of Proposition 1.2.24. A detailed proof can be found in [63]; recall that we denote
their τr,s by τr−1,s.

Proposition 1.2.25 (Proposition 5 of [63]). Let P be an orientably regular or a chiral
n-polytope. Let σ1, . . . , σn−1 be the abstract rotations with respect to the base flag Φ0 =
{F−1, . . . , Fn}. For i, j ∈ {−1, . . . , n} let τi,j be as defined in Equation (1.2.21). For
I ⊆ {0, . . . , n− 1}, we have

StabAut+(P)({Fi : i 6∈ I}) = 〈τi,j : i, j ∈ I〉.

A consequence of the previous proposition is that the intersection property of Equa-
tion (1.2.7) for the group Aut+(P) has the form

〈τi,j : i, j ∈ I〉 ∩ 〈τi,j : i, j ∈ J〉 = 〈τi,j : i, j ∈ I ∩ J〉. (1.2.26)

So far we have shown properties of the rotation subgroup of a rotay polytope. These
properties are shared by the rotation subgroup of an orientably regular polytope and
the automorphism group of a chiral polytope. However we have not shown differences
between them.

We will give some combinatorial motivation that will allow us to give a criterion to
determine whether a group satisfying some particular condition is the rotation group
of an orientably regular polytope or the automorphism group of a chiral polytope.

Let P be an orientably regular n-polytope. Let ρ1, . . . , ρn−1 and σ1, . . . , σn−1 be the
abstract reflections and the abstract rotations described above and taken with respect
to a base flag Φ0. Let k ∈ {0, . . . , n− 1} and let σ′1, . . . , σ′n−1 be the abstract rotations
with respect to the flag Ψ = Φk

0. In other words σ′i is an automorphism of P satisfying

Ψσ′i = Ψi,i−1

for i ∈ {1, . . . , n− 1}. It is clear that σ′i = ρkσiρk. In particular, for k = 0 we have

σ′i =


σ−1

1 if i = 1,
σ2

1σ2 if i = 2,
σi if i > 3.

(1.2.27)

Observe that in this case, σi and σ′i are conjugates in Aut(P) but not in Aut+(P).
Moreover, if Φ is another flag, the abstract rotations with respect to Φ are conjugates
in Aut+(P) to σ1, · · · , σn−1 if and only if Φ is a white flag. If Φ is a black flag, then the
abstact rotations with respect to Φ are conjugates in Aut+(P) to σ′1, . . . , σ′n. In other
words, up to conjugacy in Aut+(P), there are exactly two sets of abstract rotations,
namely {σ1, . . . , σn−1} and {σ−1

1 , σ2
1σ2, σ3, . . . , σn−1}. The former is associated to the

white flags and the latter to the black ones.
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Figure 1.4: Enantiomorphic forms of a map on the torus.

If P is a chiral polytope, the expression ρkσiρk is not defined. However, if σ′1, . . . , σ′n−1
are the abstract rotations associated to Ψ = Φ0

0 as above, it does make sense to ask
how σ′i is written in terms of σ1, . . . , σn−1. The expressions obtained are precisely those
of Equation (1.2.27). We will compute σ′1 as an example:

Φ0σ
′
1 = (Ψ0)σ′1 = (Ψσ′1)0 = (Ψ1,0)0 = Ψ1 = (Φ0

0)1 = Φ0σ
−1
1 .

Similarly, we can prove that σ′2 = σ2
1σ2 and that σ′i = σi if i > 3.

Again, up to conjugation in Aut+(P) = Aut(P) there are two sets of generating
rotations, the set {σ1, . . . , σn−1} associated to the white flags, and the set {σ−1

1 , σ2
1σ2, σ3,

. . . , σn−1}, associated to the black flags. If P is a chiral polytope, there is no group
automorphism mapping one set to the other (see [63, Theorem 1] or Theorem 1.2.28
below), whereas in the regular case, this mapping is achieved by the conjugation by ρ0.

The two sets of generating rotations correspond in some sense to mirror or enan-
tiomorphic images of the same object, justifying the choice of the word chiral to name
these polytopes. These two images are isomorphic but there is no isomorphism map-
ping the base flag of one the base flag of the other. In Example 1.3.14 we will show
that the map of Figure 1.4 is chiral. In this figure we show the two enantiomorphic
images of the map, each with its corresponding base flag.

It is important to remark that even though a chiral polytope is always equivelar,
the Schläfli type cannot be arbitrary. In particular, if a chiral n-polytope is of type
{p1, . . . , pn−1}, then pi > 3 for 1 6 i 6 n− 1. It was noted by Monson that this fact is
not obvious; a proof was provided to the author in private communication from Schulte
[62]. See also [15, Theorem 3.1].

Now we are ready to enunciate a theorem to characterise the automorphism groups
of chiral polytopes. This is the analogue of Theorem 1.2.11. Again we will give this
theorem without proof, which can be found in [63].

Theorem 1.2.28. Let 3 6 n, 2 < p1, . . . , pn−1 6∞ and Γ = 〈σ1, . . . , σn−1〉. For every
i, j ∈ {−1, . . . , n}, with i 6= j define

τi,j =


ε if i < j and i = −1 or j = n,

σi+1 · · ·σj if 0 6 i < j 6 n− 1,
σ−1
j · · ·σ−1

i+1 if 0 6 j < i 6 n− 1.
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Assume that Γ satisfies the relations of Equation (1.2.23) as well as the relations
σpii = ε. Assume also that Equation (1.2.26) holds. Then

1. There exists a rotary polytope P = P(Γ) such that Aut+(P) = Γ and σ1, . . . , σn−1
act as abstract rotations for some flag of P.

2. P is of type {p1, . . . , pn−1}. The facets and vertex-figures of P are isomorphic
to P(〈σ1, . . . , σn−2〉) and P(〈σ2, . . . , σn−1)〉, respectively. In general if n > 4 and
1 6 k < l 6 n− 1, F is a (k− 2)-face and G is an incident (l+ 1)-face, then the
section G/F is a rotary (l − k + 2)-polytope isomorphic to P(〈σk . . . , σl〉).

3. P is orientably regular if and only if there exists an involutory group automor-
phism ρ : Γ → Γ such that ρ : σ1 7→ σ−1

1 , ρ : σ2 7→ σ2
1σ2 and ρ : σk 7→ σk for

k > 3.

Just as Theorem 1.2.11 has been useful to build regular polytopes, Theorem 1.2.28
has proved to be an extremely powerful tool to build chiral polytopes. Most of the
main results of this work make use of this theorem. In fact, to the knowledge of the
author, every result concerning constructions of chiral polytopes of rank higher than
4 is based in the previous theorem. If the reader is interested in different ways of
applying Theorem 1.2.28, we suggest [6, 16, 48, 64, 65].

1.3 Toroids
In this section we explore the theory of highly symmetric toroids. These are a particular
class of polytopes that have been a natural source of examples.

Toroids generalise maps on the torus to higher dimensions. They have been studied
from different approaches and some classification results have been obtained (see [4],[13,
Chapter 8], [32], [40, Sections 1D and 6D]). In this section we will follow the concepts
and notation of [4, 32]. In Figure 1.6 we show two examples of maps on the torus
((2+1)-toroids). We will use these examples to illustrate the concepts we will introduce
in this section.

Throughout this section U will denote a regular tiling of the Euclidean space En.
Recall that U can be thought as an (n+1)-polytope. Therefore, in this section the rank
will be denoted by (n+1) instead of n as it has been denoted so far. Before introducing
toroids, we will review some theory that applies to regular tilings in general, but for
our purposes it is enough to keep in mind the tessellation U of En unit cubes, such
that the origin of En is a vertex of U and the edges of U point in the directions of the
coordinate axes.

If U is a regular tessellation, then its dual U∗, in the sense of Definition 1.1.10, can
be seen also as a regular tessellation. The cells of U∗ are the polytopes given by the
convex hulls of the centroids of the cells of U incident to a common vertex of U .

Euclidean regular tessellations are well-known. For every n > 2, there exists a self-
dual regular tessellation by cubes in En, with type {4, 3n−2, 4}. In E2 there also exist
a regular tessellation with equilateral triangles and type {3, 6}, and a tessellation with
regular hexagons and type {6, 3}. Those two are duals of each other (see Figure 1.5).



Toroids 19

Figure 1.5: Dual pairs of regular tilings of E2

In E4 there is another pair of regular tessellations, one with 24-cells as facets and
type {3, 4, 3, 3}, and its dual of type {3, 3, 4, 3} whose cells are four dimensional cross-
polytopes. For each type, these tessellations are unique up to similarity and they
complete the list of regular tessellations of the Euclidean n-space [11, Table II].

Let I(En) denote the group of isometries of En. The symmetry group of U , denoted
G(U), is the subgroup of I(En) that preserves U . It can be proved that if U is a
regular tiling of En, then its symmetry group and its combinatorial automorphism
group are isomorphic (see [40, Section 3B]). Moreover, if U is the cubic tessellation,
then the abstract reflections ρ0, . . . , ρn can be represented as isometries R0, . . . , Rn of
I(En) given by

R0 : (x1, . . . , xn) 7→ (1− x1, x2, . . . , xn),
Ri : (x1, . . . , xn) 7→ (x1, . . . xi−1, xi+1, xi, . . . xn) if 1 6 i 6 n− 1,
Rn : (x1, . . . , xn) 7→ (x1, x2, . . . ,−xn).

(1.3.1)

For each regular tessellation U , symmetries R0, . . . , Rn are the reflections in the
hyperplanes containing the facets of the n-simplex induced by the base flag Φ0. This
is, the simplex whose vertices are the centroids of the geometric faces corresponding to
Φ0. If U has type {p1, . . . , pn}, the group G(U) with the generators R0, . . . , Rn is the
string Coxeter group [p1, . . . , pn] meaning that

G(U) = 〈R0, . . . , Rn | (RiRj)pi,j = id〉

is a presentation for the group, where pi,j = pj,i, pi,i = 1, pi,j = 2 if |i − j| > 1,
and pi−1,i = pi. Moreover, the group of symmetries of the facet contained in the
base flag is 〈R0, . . . , Rn−1〉 ∼= [p1, . . . , pn−1] and the stabiliser of the vertex of Φ0 is
〈R1, . . . , Rn〉 ∼= [p2, . . . , pn] (see [40, section 3A] for details).

Now we are ready to introduce the theory related to toroids. While we are intro-
ducing the concepts and developing the theory, toroids will be regarded as geometrical
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objects. However, there is a natural notion of incidence just as this notion exists for
Euclidean tilings, that allows us to consider most toroids as abstract polytopes. In
fact, all toroids are quotients (in the sense of [40, Section 2D]) of a Euclidean tessella-
tion and several considerations of the conditions under which a quotient of an abstract
polytope is a polytope apply to them. Moreover, it is known that if a toroid is a regular
or chiral (n+ 1)-polytope, then it has to be a quotient of a regular tiling of En. In this
situation, the combinatorial concepts and the geometrical analogues coincide. Readers
interested in the details of this correspondence should consult [40, Section 6B].

Definition 1.3.2. A full-rank lattice group Λ of En is a subgroup of I(En) generated
by n linearly independent translations. If Λ = 〈t1, . . . , tn〉 is a full-rank lattice group
and vi is the translation vector of ti, then the lattice Λ induced by Λ is the orbit of the
origin o under Λ, that is

Λ = oΛ = {a1v1 + · · ·+ anvn : a1, . . . , an ∈ Z}.

In this case we say that {v1, . . . , vn} is a basis for Λ.

If U is a regular tessellation, then by a well-known result of Bieberbach, G(U)
contains a full-rank lattice group (see [55, Section 7.4]). This allows us to introduce
the following definition.

Definition 1.3.3. Let T(U) denote the group of translations of a tessellation U of En.
A toroid of rank (n + 1), or (n + 1)-toroid, is the quotient of U by a full-rank lattice
group Λ 6 T(U).

In the previous situation, we say that Λ induces the toroid, and denote the latter
by U/Λ. An (n + 1)-toroid may be regarded as a tessellation of the n-dimensional
torus En/Λ and every tessellation of the corresponding torus is induced this way (see
[40, 6B6 and 6B7]). Since we will only work with regular and chiral toroids, we restrict
our discussion to regular Euclidean tessellations.

In Figure 1.6 we have two examples of (2 + 1)-toroids. In these examples U is the
regular tiling of E2 with squares; in Figure 1.6a the full-rank lattice group Λ is generated
by the translations with respect to the vectors (3, 0) and (0, 3) and in Figure 1.6b, the
group Λ is generated by the translations with respect to the vectors (3, 1) and (−1, 3).

As usual, we are interested in symmetries of toroids. To achieve an understanding
of the group of automorphism of a regular or chiral toroid we first need to review the
structure of the group of symmetries of the regular tessellation that induces the toroid.
We begin with the following two lemmas. We do not prove Lemma 1.3.4 since the
proof might be a little technical; a proof can be found in [55, Theorem 1.3.5].

Lemma 1.3.4. Let S be an isometry of En fixing the origin. Then S is a linear
transformation.

Lemma 1.3.5. Let Λ be a full-rank lattice group of En and let G 6 I(En) a group
of isometries fixing the origin. Then S ∈ G normalizes Λ if and only if S preserves
the lattice Λ associated to Λ. If either of these conditions holds for every S ∈ G, then
〈G,Λ〉 ∼= Gn Λ.
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(a) (b)

Figure 1.6: Two examples of (2 + 1)-toroids

Proof. Let tv be the translation with respect to the vector v and let S ∈ G. Consider
the following computation:

(x)S−1tvS = (xS−1)tvS = (xS−1 + v)S = (x+ vS), (1.3.6)

where we have used Lemma 1.3.4 in the last equality. Equation (1.3.6) implies that
S−1tvS is the translation by the vector vS. The first part of the lemma follows from
the fact that tv ∈ Λ if and only if v ∈ Λ.

Finally observe that G and Λ intersect trivially since the only element of Λ that
fixes the origin o is the identity map. Since G normalises Λ, 〈G,Λ〉 ∼= GnΛ. Since Λ
is full rank, then G must be finite and 〈G,Λ〉 will be a discrete group. �

If U is a regular tessellation of En of type different from {6, 3} and {3, 4, 3, 3}, the
group of translations T(U) acts transitively on the vertex set of U . Therefore the
vertex set of U may be identified with the lattice associated to T(U) and the group
of symmetries G(U) is of the form Go(U) n T(U), where Go(U) denotes the stabiliser
of the origin o (see for example [40, Chapter 6] and Lemma 1.3.5 above). If U is of
type {6, 3} or {3, 4, 3, 3}, by duality, we may take Go(U) as the stabiliser of a facet and
the same considerations apply. Moreover, if U is the cubic tiling (hence, self-dual), the
group T(U) acts transitively on both vertices and facets, and we may think of Go(U)
as the stabiliser of either a vertex or a facet.

In the particular case when the discussion above is applied to the cubic tiling we
have the following result.

Proposition 1.3.7. Let U be the cubic tessellation of En. Let G(U) denote its sym-
metry group. Then

G(U) ∼= (Sn n Cn
2 ) n Zn. (1.3.8)

Proof. The vertex set of U can be identified with the points of En with integer coor-
dinates, i.e., Zn. Then by the discussion above, we just need to prove that Go(U) ∼=
(Sn n Cn

2 ).



Toroids 22

Let Go(U) = 〈R1, . . . , Rn〉 as in Equation (1.3.1). Recall from Equation (1.3.1) that
R1, . . . , Rn are linear transformations. Consider the action of the subgroup 〈R1, . . . ,
Rn−1〉 on the standard basis {e1, . . . , en} of En and observe that this action is faithful,
since any element of 〈R1, . . . , Rn−1〉 fixing each of the e1, . . . , en must be trivial. The
latter implies that there is a embedding of 〈R1, . . . , Rn−1〉 into Sn. Observe that this
embedding is surjective since for i ∈ {1, . . . , n− 1}, the element Ri induces the permu-
tation (i, i+ 1). It is well-known that these involutions generate the symmetric group
Sn. It follows that 〈R1, . . . , Rn−1〉 ∼= Sn.

The conjugates of Rn by the elements of 〈R1, . . . , Rn−1〉 are the reflections in each
of the coordinate hyperplanes. These reflections commute, so they generate a group
isomorphic to Cn

2 . This group is the normal closure of 〈Rn〉 in Go(U); in particular
Cn

2 / Go(U). Observe that 〈Cn
2 , Sn〉 ∼= Go(U). Finally it is clear these groups intersect

trivially, since the elements of 〈R1, . . . , Rn−1〉map points with non-negative coordinates
to points with non-negative coordinates. �

If tv is the translation by a vector v and S ∈ I(En) fixes the origin o, the compu-
tations made in the proof of Lemma 1.3.5 show that S−1tvS = tvS, the translation by
vS. In other words, if Λ is the lattice associated to Λ, then ΛS is the lattice associated
to S−1ΛS. Therefore if there exists an isometry mapping a lattice Λ to another lattice
Λ′, then there exists an isometry S that fixes o and maps Λ to Λ′. In this case the
corresponding tori En/Λ and En/Λ′ are isometric. Geometrically this means that S
maps fundamental regions of Λ to fundamental regions of Λ′.

With the notation given above and when Λ = Λ′, an isometry S of En induces an
isometry S of En/Λ that makes the diagram in Equation (1.3.9) commutative if and
only if S normalises Λ. Furthermore, two isometries of En induce the same isometry
of En/Λ if and only if they differ by an element of Λ. In particular, all the elements
of Λ induce a trivial isometry of En/Λ. This implies that the group NormI(En)(Λ)/Λ
acts as a group of isometries of En/Λ. It can be proved that every isometry of En/Λ
is given this way, that is I(En/Λ) ∼= NormI(En)(Λ)/Λ (see [55, p.336] and [40, Section
6A]).

En En

En/Λ En/Λ

S

S

(1.3.9)

Example 1.3.10. In the toroid of Figure 1.6a the reflection R in a vertical line that
contains the origin induces an isometry of En/Λ since R maps the vector (3, 0) to the
vector (−3, 0) = −(3, 0) and fixes the vector (0, 3). This implies that R preserves the
lattice generated by those vectors, so R normalises the lattice group Λ. With a similar
argument we can see that if S is the counterclockwise rotation by an angle of π

4 with
centre in the origin, then S induces an isometry of the torus of Figure 1.6a.

If S is the rotation mentioned above, then S is also an isometry of the torus of
Figure 1.6b, since S maps the vector (3, 1) to the vector (−1, 3) and the vector (−1, 3)
to (−3,−1). However, if R is the reflection mentioned in the previous paragraph,
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then R does not induce an isometry of this torus, since R maps (3, 1) to (−3, 1) =
−4

5(3, 1) + 3
5(−1, 3) 6∈ Λ. Which implies that R does not normalise Λ.

The previous discussion motivates the following result. We state it without proof,
since as mentioned before, this is just a consequence of the correspondence between
geometric and combinatorial concepts for toroids (see also [32, Lemma 6]).
Proposition 1.3.11. Let U be a regular tiling of En with symmetry group G(U). Let
Λ be a full-rank lattice group contained in G(U). Then the group of automorphisms of
the toroid U/Λ is given by

Aut(U/Λ) ∼=
NormG(U)(Λ)

Λ
.

It follows from Proposition 1.3.11 that if we want to understand the automorphism
group of a toroid U/Λ we need to understand the group NormG(U)(Λ).

If an isometry S of En normalises Λ then we say that S induces or projects to
an automorphism of U/Λ (namely, to the automorphism ΛS ∈ NormG(U)(Λ)/Λ). If
S ′ ∈ Go(U), then S ′ normalises Λ if and only if S ′ preserves Λ. Since every element
S ∈ G(U) may be written as a product tS ′ with t ∈ T(U) and S ′ ∈ Go(U), and
every translation normalises Λ, an isometry S induces an automorphism of U/Λ if and
only if S ′ preserves Λ. Observe that the central inversion of En, given by χ : x 7→
−x, is always an automorphism of U and preserves every lattice, so it projects to an
automorphism of every toroid (see [32, Table 1] for an expression of χ in terms of the
generating reflections). This implies that 〈T(U), χ〉 6 Norm(G(U))(Λ). Furthermore,
since χ normalises T(U) and T(U)∩〈χ〉 = {ε} it follows that 〈T(U), χ〉 = 〈χ〉nT(U).
Therefore, groups of automorphisms of toroids are induced by groups K such that
〈χ〉n T(U) 6 K 6 G(U).

By the Correspondence Theorem for groups, those groupsK with 〈χ〉nT(U) 6 K 6
G(U) are in one-to-one correspondence with groupsK ′ such that 〈χ〉 6 K ′ 6 Go(U). In
this correspondence, the group K ′ corresponds with the group K = K ′ n T(U). With
this discussion in mind we can give an slightly improved version of Proposition 1.3.11.
Proposition 1.3.12. Let U be a regular tiling of En with symmetry group G(U). Let
Λ 6 G(U) be a full-rank lattice group. Let Go(U) denote the stabiliser of the origin in
the group G(U) and assume that K 6 Go(U) is the maximal subgroup preserving the
lattice Λ. Then

Aut(U/Λ) ∼=
K n T(U)

Λ
∼= K n

T(U)
Λ

. (1.3.13)

Example 1.3.14. In this example we describe the group K of Proposition 1.3.12 for
each of the toroids in Figures 1.6 and 1.8.

1. In Example 1.3.10 we show that for the toroid of Figure 1.6a a vertical reflection
R and the counterclockwise rotation by π

4 induce isometries of the corresponding
torus. The isometries R and S are also automorphisms of the regular tessellation
{4, 4}. In fact,

Go({4, 4}) = 〈R, S〉 ∼= D4,

(the dihedral group of order 8). This implies that the group K is the full group
Go({4, 4}). As a consequence of this, the toroid of Figure 1.6a is regular.
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v

w

Φ Φ2

Figure 1.7: A chiral toroid

2. For the toroid in Figure 1.6b the group K is the group generated by the rotation
S and has index two in Go({4, 4}). This group, together with the translations of
{4, 4}, generates the rotation subgroup of {4, 4}. This implies that all the white
flags of Figure 1.7 belong to the same orbit of the automorphism group.
Proposition 1.3.12 implies that there are no other automorphisms. It follows that
the toroid is chiral. Nevertheless, there is a combinatorial argument to show that
there is no automorphism γ that maps the flag Φ to the flag Φ2. If there were
such an automorphism, since γ maps adjacent flags to adjacent flags (see Item 3
of Proposition 1.1.8), this automorphism should act as a reflection in the line
containing the common edge of Φ and Φ2. On one hand, this reflection fixes the
vertex v, on the other, the reflection maps v to w, which is a contradiction (see
Figure 1.7).

3. The group K of the toroid in Figure 1.8a is the full group Go({3, 6}). In this
case, the group is generated by a reflection R that can be taken as the one that
swaps the generating vectors of Λ and a rotation S of π

6 . This toroid is regular.

4. In the case of the toroid in Figure 1.8b, the rotation S of 2π
6 does induce an

automorphism but the lattice is not preserved by any reflection of Go({6, 3}).
The group K in this case is 〈S〉.

Proposition 1.3.12 has been used to classify highly symmetric toroids. In particular
in [39] McMullen and Schulte classify regular toroids of arbitrary rank (see also [40,
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Sections 6D,6E]). They also prove that chiral toroids do not exist in ranks higher than
3. In [32], Hubard, Obanić, Pellicer and Weiss classify cubic 4-toroids up to symmetry
type. In [4] Collins and the author extend this classification to equivelar (n+1)-toroids
with at most n flag-orbits.

To finish this chapter we review the classification of regular and chiral 3-toroids
and regular (n+ 1)-toroids induced by the cubic tessellation, for n > 3.

Let b, c ∈ Z. We denote by {4, 4}(b,c) the toroid induced by the regular tessellation
of type {4, 4} and the lattice group generated by the translations with respect to the
vectors (b, c) and (−b, c). These vectors are taken with respect to the standad basis
e1, e2 of En. Similarly, we denote {3, 6}(b,c) (resp. ({6, 3})(b,c)) the toroid induced by
the regular tessellation of type {3, 6} (resp. {6, 3}) and the lattice group generated by
the translations with respect to the vectors (b, c) and (−c, b + c). These vectors are
taken with respect to the basis (e1,

1
2e1 +

√
3

2 e2).

Theorem 1.3.15. Every regular or chiral (2 + 1)-toroid is isomorphic to one of the
following.

� {4, 4}(b,c),

� {3, 6}(b,c),

� {6, 3}(b,c).

Moreover, for every case the toroid is regular if and only if bc(b− c) = 0.

In Figures 1.6a and 1.6b we show the toroids {4, 4}(3,0) and {4, 4}(3,1). The map
on the torus in Figure 1.1e is the toroid {4, 4}(1,2). In Figures 1.8a and 1.8b we have
{3, 6}(2,2) and {6, 3}(2,1), respectively.

In Section 3.2 we will use the structure of the rotation group of a chiral or reg-
ular polytope. These groups are described in the following result. This result is a
consequence of Proposition 1.3.12.

Lemma 1.3.16. Let P = {p, q}(b,c) be a chiral or regular 3-toroid. Then the group
Aut+(P) is isomorphic to one of the following.

� 〈σ2〉n
T({p, q})

Λ(b,c)
if {p, q} is {4, 4} or {3, 6}.

� 〈σ1〉n
T({p, q})

Λ(b,c)
if {p, q} = {6, 3}.

If {p, q} = {4, 4} then the group T({p, q}) is generated by the elements σ2σ
−1
1

and σ−1
2 σ1, and the lattice Λ(b,c) is generated by the translations (σ2σ

−1
1 )b(σ−1

2 σ1)c and
(σ2σ

−1
1 )−c(σ−1

2 σ1)b. If {p, q} = {3, 6} then T({p, q}) is generated by σ2
2σ
−1
1 and σ−2

2 σ1
and the lattice Λ(b,c) is the group generated by the translations (σ2

2σ
−1
1 )b(σ−2

2 σ1)c and
(σ2

2σ
−1
1 )−c(σ−2

2 σ1)b+c. The generators of T({6, 3}) are the translations σ2
1σ
−1
2 and σ−2

1 σ2
and the corresponding lattice Λ(b,c) is generated by the elements (σ2

1σ
−1
2 )b(σ−2

1 σ2)c and
(σ2

1σ
−1
2 )−c(σ−2

1 σ2)b+c (see [64, Section 2]).
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(a) {3, 6}(2,2) (b) {6, 3}(2,1)

Figure 1.8

Let Λ(a,0,...,0) denote the lattice group with basis {ae1, . . . , aen}. Denote by Λ(a,a,0...,0)
the lattice group with basis {2ae1, a(e2−e1), a(e3−e2), . . . , a(en−en−1)}. Let Λ(a,a...,a)
be the lattice group with basis {2ae1, . . . , 2aen−1, a(e1 + · · ·+ en)}. In what remains of
this work we will denote by {4, 3n−2, 4}(a,0,...,0), {4, 3n−2, 4}(a,a,0...,0) and {4, 3n−2, 4}(a,a,...,a)
the toroids {4, 3n−2, 4}/Λ where Λ is Λ(a,0,...,0), Λ(a,a,0...,0) and Λ(a,a...,a), respectively. In
each case, Λ is invariant under the group Go(U) = 〈R1, . . . , Rn〉 from Equation (1.3.1).
Theorem 1.3.17 ([39, Theorem 3.1]). Let n > 3 and U be the cubic tessellation of
En. Then every regular toroid U/Λ is isomorphic to one of the following.

� {4, 3n−2, 4}(a,0,...,0),

� {4, 3n−2, 4}(a,a,0...,0),

� {4, 3n−2, 4}(a,a...,a).
If a > 2, then these toroids determine abstract polytopes.

In Chapter 3 we will be particularly interested in the automorphism group of these
toroids, so as an application of Propositions 1.3.7 and 1.3.12 we have the following
result.
Lemma 1.3.18. Let n > 3 and U be the cubic tessellation of En. Then the automor-
phism group of a regular toroid U/Λ is one of the following

� (Sn n Cn
2 ) n (Zn/Λ(a,0,...,0)) if U/Λ = {4, 3n−2, 4}(a,0,...,0),

� (Sn n Cn
2 ) n (Zn/Λ(a,a,0...,0)) if U/Λ = {4, 3n−2, 4}(a,a,0...,0),

� (Sn n Cn
2 ) n (Zn/Λ(a,a,...,a)) if U/Λ = {4, 3n−2, 4}(a,a,...,a).

Note that we may think of Zna = Zn/Λ(a,0,...,0) as the group of all n-dimensional integer
vectors taken modulo a.
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Φ

Φ0

r1(Φ)

r1(Φ0)

Figure 1.9: r1(Φ) and r1(Φ0) are not adjacent.

1.4 Connection group and maniplexes
In this section we will introduce the notion of connection group. Then, we will use this
concept to motivate the definition of maniplexes, which are structures slightly more
general than polytopes.

The connection group of a polytope P is a permutation group on the set of flags of
P . This group, together with its action on F(P), codifies the combinatorial structure
of P without assuming any symmetry properties of P . This concept has been known
in the literature as monodromy group (see [41, 48, 51], for example), but in the last
few years the term connection group has become popular. Our main reference for this
section will be [41].
Definition 1.4.1. Let P be an n-polytope. Let F(P) be the set of flags of P . For
i ∈ {0, . . . , n− 1} let ri denote the permutation of F(P) that acts as

riΦ = Φi (1.4.2)

for every flag Φ (note the left action). The connection group of P , denoted by Con(P),
is the group generated by r0, . . . , rn−1.

It is important to remark on some facts about the connection group in order to
avoid confusion. First observe that in general, connection elements do not induce
automorphisms. Compare, for instance, the action of r1 on the flags Φ and Φ0 of a
polygon: in general, r1(Φ) and r1(Φ0) are not adjacent (see Figure 1.9).

Connection groups are well established in the theory of maps (see [68]). The gener-
alisation to abstract polytopes of higher ranks has given new tools to attack problems
concerning polytopes with symmetry conditions weaker than regularity or chirality. To
see applications of these tools see, for example [31, 53, 54].

The main reason to use the connection group is that codifies the combinatorial
structure of a polytope. The elements r0, . . . , rn−1 encode adjacency of flags. The
following results are consequences of the basic properties of this adjacency and of the
strong flag connectivity. We have already used some of these results but here they are
written in terms of the connection group.



Connection group and maniplexes 28

Proposition 1.4.3. Let P be an abstract n-polytope, let Con(P) = 〈r0, . . . , rn−1〉 be its
connection group and let F(P) denote the set of flags of P. Then the following hold.

1. The group elements r0, . . . , rn−1 satisfy the following relations

r2
i = 1 for every i ∈ {0, . . . , n− 1},

(rirj)2 = 1 for every i, j such that |i− j| > 2.
(1.4.4)

2. The action of Con(P) on F(P) is transitive.

Connection elements and automorphisms also have an interesting relation. This is
described in the following proposition and it is a consequence of Item 1 of Proposi-
tion 1.1.8.

Proposition 1.4.5. Let P be an abstract polytope. If γ ∈ Aut(P) and w ∈ Con(P),
then

(wΦ)γ = w(Φγ) (1.4.6)
for every flag Φ of P.

In other words, the actions of Con(P) and Aut(P) commute. This is one of the
reasons why we prefer the connection elements to act on the left. We now focus on
some other important relations between the groups Aut(P) and Con(P) when P is a
regular or a chiral polytope.

Lemma 1.4.7. Let P be an abstract n-polytope with base flag Φ0. Let γ1, . . . , γk be a
set of automorphisms. For i ∈ {1, . . . , k} choose wi ∈ Con(P) such that wiΦ0 = Φ0γi.
Then the equation

wi1 · · ·wikΦ0 = Φ0γi1 · · · γik
holds for every i1, . . . , ik ∈ {1, . . . , k}.

Proof. The proof is by induction over k. The case k = 1 is given by hypothesis. Assume
that the equation above holds for any choice of k − 1 indices and take i1, . . . , ik ∈
{1, . . . , k}. Then consider the following computation:

wi1 · · ·wikΦ0 = wi1(wi2 · · ·wikΦ0)
= wi1 (Φ0γi2 · · · γik)
= (wi1Φ0)γi2 · · · γik
= (Φ0γi1)γi2 · · · γik .

�

Lemma 1.4.7 has important consequences in the case of P being a regular polytope
and the automorphisms γ1, . . . , γk being the abstract reflections. These consequences
are shown in the following result.

Proposition 1.4.8. Let P a regular n-polytope with base flag Φ0. Let Aut(P) =
〈ρ0, . . . , ρn−1〉 and Con(P) = 〈r0, . . . , rn−1〉 be the automorphism and connection group
of P respectively. Then the following hold.



Connection group and maniplexes 29

1. For every i1, . . . , ik ∈ {0, . . . , n− 1}

ri1 · · · rikΦ0 = Φ0ρi1 · · · ρik .

2. An element ri1 · · · rik ∈ Con(P) is trivial if and only if it fixes the base flag Φ0.

3. There is an isomorphism f : Aut(P) → Con(P) mapping ρi to ri for every
i ∈ {0, . . . , n− 1}.

Proof. Part 1 is a direct application of Lemma 1.4.7. To prove Part 2 assume that
ri1 · · · rik is such that Φ0 = ri1 · · · rikΦ0. Take any other flag Ψ. Since P is regular,
there exists an automorphism γ such that Φ0γ = Ψ. Then

ri1 · · · rikΨ = ri1 · · · rik(Φ0γ) = Φ0γ = Ψ.

It follows that ri1 · · · rik is trivial.
Finally, in order to prove Part 3, first observe that f is well defined: if ρi1 · · · ρik is

trivial, then:
Φ0 = Φ0ρi1 · · · ρik = ri1 · · · rikΦ0.

This implies that ri1 · · · rik fixes the base flag and by Part 2, ri1 · · · rik must be triv-
ial. Now assume that ρi1 · · · ρik is such that f(ρi1 · · · ρik) = ri1 · · · rik is trivial. Then
applying Parts 1 and 2,

Φ0ρi1 · · · ρik = ri1 · · · rikΦ0 = Φ0.

Since the action of Aut(P) is free, then ρi1 · · · ρik = ε. It shows that f is injective.
Clearly f is surjective. �

There is an analogous result for orientably regular and chiral polytopes, but first
we need to introduce some notation.

Definition 1.4.9. Let P be a n-polytope. Let Con(P) denote its connection group.
For i ∈ {1, . . . , n− 1} let si = ri−1ri. We will denote by Con+(P) the group generated
by the elements s1, . . . , sn−1.

Observe that if P is a rotary n-polytope and Aut+(P) = 〈σ1, . . . , σn−1〉 with
σ1, . . . , σn−1 the abstract rotations with respect to a certain base flag Φ0, then

siΦ0 = Φi,i−1
0 = Φ0σi,

hence we may apply Lemma 1.4.7 to these group elements. The corresponding result
is the following. We omit the proof since it follows the same ideas of the proof of
Proposition 1.4.8.

Proposition 1.4.10. Let P be a rotary n-polytope with base flag Φ0. Let Aut+(P) =
〈σ1, . . . , σn−1〉 and Con(P) = 〈r0, . . . , rn−1〉 be the rotation and connection groups of P
respectively. For 1 6 i 6 n− 1, define si = ri−1ri and consider the group Con+(P) =
〈s1, . . . , sn−1〉. Then the following hold
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Φ0Φ0
0

Ψ

Figure 1.10: The element (s−1
1 s2)(s1s

−1
2 )3 fixes Φ0 but maps Φ0

0 to Ψ.

1. For every i1, . . . , ik ∈ {1, . . . , n− 1}

si1 · · · sikΦ0 = Φ0σi1 · · ·σik .

2. An element si1 · · · sik ∈ Con+(P) fixes the base flag if and only if σi1 · · ·σik = ε.
In this situation, si1 · · · sik stabilises every white flag.

3. If Fw(P) denotes the set of white flags of P, then there is an isomorphism
f : Aut+(P) → G with G = 〈s1, . . . , sn−1〉 where si denotes the permutation of
Fw(P) induced by si. This isomorphism maps σi to si for every i ∈ {1, . . . , n−1}.

It is important to remark that if P is a chiral polytope, we cannot guarantee that
Con+(P) ∼= Aut+(P). In general the group Con+(P) is bigger than the group Aut+(P),
since there might be non-trivial elements of Con+(P) that fix the base flag Φ0 (see
Figure 1.10). However, by Part 3, there is a surjective group homomorphism from
Con+(P) to Aut+(P). The kernel of this homomorphism is precisely StabCon+(P)(Φ0)
and is known as the chirality group. In a certain way, this group is a measure of how
far a chiral polytope is from being regular. For details about the relations between the
chirality group and the connection group we suggest [41, Section 7].

As seen in the previous results, the connection group, as a permutation group of
the flags, encodes the combinatorial structure of an abstract polytope. Another way
to understand this structure is through the flag graph defined below.

Definition 1.4.11. The flag graph of an abstract n-polytope P is the graph GP whose
vertex set is F(P), the set of flags of P . The set of edges is given by {{Φ,Φi} : Φ ∈
F(P) and 0 6 i 6 n− 1}.
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r0
r1

r2

Figure 1.11: Flag graph of {4, 4}(3,1)

To illustrate the previous concepts, in Figure 1.11 we show the flag graph of
{4, 4}(3,1). Observe that we may think of GP as an edge-coloured graph where the
colour of an edge is i if and only if it is of the form {Φ,Φi}. These colours induce a
proper colouring of edges where every node has precisely one edge of each colour. This
implies that every colour of GP induces a perfect matching. The connection element
ri defined in Equation (1.4.2) is the permutation that swaps the endpoints of each
edge of colour i. Moreover, the flag resulting from the action of a connection element
rik · · · ri1 on a flag Φ is the endpoint of a path starting on Φ and going through colours
i1, i2, . . . , ik.

If i ∈ {0, . . . , n − 1}, then each connected component of the flag graph remaining
after removing the edges of colour i consists of all the flags incident to some face of
rank i. Hence we may identify each face F of rank i with the connected component of
colours {0, . . . , n − 1} \ {i} on any flag which contains F . In particular, the vertices
and the facets of an abstract polytope are identified with the connected components
of the flag graph after removing the edges of colour 0 and the edges of colour n − 1,
respectively. In this situation, two faces F and G of P are incident if and only if
the corresponding subgraphs have non-empty intersection. In terms of the partially
ordered set P , this means that there is a flag containing both F and G.

In general, the connected component of a flag Φ that uses the colours i1, i2, . . . , ik
is in correspondence with the orbit of Φ under the subgroup 〈ri1 , . . . , rik〉.

With the observations made above, it is easy to see that the flag graph of an abstract
polytope has the properties described in the following proposition.

Proposition 1.4.12. Let P be an abstract n-polytope and let GP denote the flag graph
of P. Then GP has the following properties.
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1. GP is connected.

2. If i, j ∈ {0, . . . , n − 1} such that |i − j| > 2, then the connected components of
GP using the colours i and j are alternating 4-cycles.

Proof. The first part follows from strong flag connectivity of P , the second one is a
consequence of Equation (1.4.4). �

The properties of the flag graph of an abstract polytope mentioned above might be
one of the main motivations for the definition of a maniplex. Maniplexes were intro-
duced by Wilson in [70] as a common generalisation of maps and abstract polytopes.
They can be defined in several equivalent ways. The definition we give below is not
the same as in [70] but it can be easily shown to be equivalent. We will follow the path
of [51] which is a little more convenient for our purposes.

Definition 1.4.13. Let n > 1. An n-maniplex M is a pair (F(M), {r0, . . . , rn−1})
where F(M) is a non-empty set of objects called flags and each ri is a fixed-point-free
involutory permutation of F(M) satisfying the following properties.

1. The group 〈r0, . . . , rn−1〉 acts transitively on F(M).

2. If Φ ∈ F(M), then riΦ 6= rjΦ if i 6= j.

3. If i, j ∈ {0, . . . , n− 1} are such that |i− j| > 2, then ri and rj commute.

The group 〈r0, . . . , rn−1〉 is called the connection group (or the monodromy group)
ofM and it is denoted Con(M).

As might be suspected by the reader by now, every polytope induces a maniplex
via the set of flags and the connection elements. The converse is in general false. For a
discussion about polytopality of maniplexes and examples of maniplexes that are not
polytopes see [24].

A common way to visualize a maniplex M is as a graph with vertex set F(M)
and edges {{Φ, riΦ} : Φ ∈ F(M)}. In this sense, every polytope induces a maniplex
through its flag-graph. The notions related to coloured graphs presented above for
polytopes apply as well for maniplexes. In particular, we may define the facets of a
maniplex as the orbits of a flag Φ under the group 〈r0, . . . , rn−2〉.

Of course, highly symmetric maniplexes have been of interest since the introduction
of the concept. The idea of symmetry of maniplexes rises as a natural generalisation
of symmetries of polytopes.

Definition 1.4.14. LetM be a maniplex. An automorphism ofM is a permutation
γ of F(M) that commutes with r0, r1, . . . , rn−1.

In light of Item 3 of Proposition 1.1.8, the notion of automorphism for maniplexes
coincides with the notion given for polytopes. This allows us to define regular mani-
plexes, orientably regular maniplexes, chiral maniplexes among others, as a natural gen-
eralisation of the corresponding concepts for polytopes. In particular Proposition 1.1.8,
Proposition 1.2.3, Corollary 1.2.4 and Proposition 1.2.5 hold when we consider their
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analogues with regular maniplexes instead of regular polytopes. The proofs are essen-
tially the same as those presented for polytopes.

Other notions not necessarily related to symmetry, such as equivelarity and Schläfli
type, extend naturally to maniplexes. However it is possible that certain properties
satisfied by highly symmetric polytopes are no longer satisfied by the corresponding
king of maniplex. For examples of such properties see [24].

For now, we will not go any further on the theory of maniplexes. Some examples
will be built later and we will work with those particular examples. If the reader is
interested in a deeper study of highly symmetric maniplexes, we suggest [51].

1.5 Quotients, covers and mixing
Sometimes it is useful to have a purely group theoretical version of highly symmetric
polytopes. The approach we introduce in this section has been used in several other
works. We will follow [14].

Definition 1.5.1. Let n > 2. The Universal String Coxeter Group of rank n is the
group W with presentation

W := [∞, . . . ,∞] =
〈
ρ0, . . . , ρn−1|(ρi)2 = (ρiρj)2 = ε if |i− j| > 2

〉
. (1.5.2)

Thus W is the Coxeter group whose diagram is a string (i.e. path) on n nodes with
each branch labeled ∞.

Similarly, the Universal rotation group is the subgroup W+ of W generated by the
elements σi = ρi−1ρi. It is easy to see that W+ has presentation

W+ =
〈
σ1, . . . , σn−1|(σi · · ·σj)2 = ε for i < j

〉
. (1.5.3)

The automorphism group of a regular n-polytope is a quotient of W and every
quotient ofW that satisfies ρi 6= ε for all i ∈ {0, . . . , n−1} and the intersection property
in Equation (1.2.9) is the automorphism group of an abstract regular polytope.

Similarly, if P is an orientably regular or a chiral n-polytope, then Aut+(P) is a
quotient ofW+, and every quotient ofW+ that satisfies σi 6= ε for all i ∈ {1, . . . , n− 1}
and the intersection property in Equation (1.2.26) is the rotation group of rotary poly-
tope. The differences between the rotation group of an orientably regular polytope
and the automorphism group of a chiral polytope can be described in this context.
In Proposition 1.5.5 we will describe these properties, but first consider the following
definition.

Definition 1.5.4. Let w ∈ W+. The enantiomorphic element of w, denoted by w, is
the element ρ0wρ0. Note that w ∈ W+. The element w can be computed from w by
replacing σ1 with σ−1

1 , σ2 with σ2
1σ2 and keeping σk for k > 3 in any expression of w

as product of σ1, . . . , σn−1.

The following result is a fairly well-known fact. Details can be found in [19].
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Proposition 1.5.5. LetM 6 W+ be a normal subgroup. Assume that W+/M satisfies
the intersection property in Equation (1.2.26). Let P be the abstract polytope associated
to W+/M . Then

1. P is regular if and only if M is normal not only in W+ but in W itself.

2. If P is chiral and P denotes its enantiomorphic image, then the quotient of W+

associated to P is W+/M with

M = 〈w : w ∈M〉 = ρ0Mρ0.

In general, the intersection property for a quotientW+/M will not hold. At the end
of this section we will give some sufficient conditions to determine if the intersection
property is satisfied. But we proceed without worrying about it for now.

Definition 1.5.6. Let M , N be two normal subgroups of W+. We say that the group
W+/M covers the group W+/N if M 6 N . If P and Q are abstract polytopes such
that Aut+(P) = W+/M and Aut+(Q) = W+/N then we also say that P covers Q. In
this situation we also say that Q is a quotient of P .

The notion of covering has an equivalent interpretation in terms of the so-called
flag-actions. We will not develop that part of the theory here. Readers interested in
this combinatorial equivalence should be referred to [29] and [41, Section 4]). Even
though it is not obvious from Definition 1.5.6, if P and Q are chiral or orientably
regular n-polytopes (or maniplexes) such that Q is a quotient of P , then Q is the
result of identifying flags of P in such a way that for every i ∈ {0, . . . , n − 1} if Φ is
identified with Ψ, then Φi is identified with Ψi.

Let W+/M = 〈σ̃1, . . . , σ̃n−1〉 and W+/N = 〈σ̂1, . . . , σ̂n−1〉 where for i ∈ {1, . . . ,
n− 1}, σ̃i and σ̂i are the images of σi under the quotient by M and N , respectively.
Observe that if W+/M covers W+/N then there is a surjective homomorphism from
W+/M to W+/N that maps σ̃i to σ̂i. For now on when we talk about covers and
quotients of automorphism groups it will be assumed that the corresponding generators
are mapped to the corresponding generators.

Let Γ = 〈x1, . . . , xn〉 and Γ′ = 〈x′1, . . . , x′n〉 be two groups, each with n specified
generators. Then the elements yi = (xi, x′i) ∈ Γ× Γ′ generate a group Γ♦Γ′ which we
call the mix of Γ and Γ′.

If P and Q are orientably regular or chiral n-polytopes (or n-maniplexes) with
Aut+(P) = 〈σ1, . . . , σn−1〉 and Aut+(Q) = 〈σ′1, . . . , σ′n−1〉, we may consider the mix
Aut+(P)♦Aut+(Q) generated by the elements ζi = (σi, σ′i). In general the group
Aut+(P)♦Aut+(Q) will not have the intersection property, but we may construct a
poset with the method described in [63]. This poset always satisfies Items 1 to 3
of Definition 1.1.1 but it might not be strongly flag connected. Therefore, the poset
induced by Aut+(P)♦Aut+(Q) might not be a polytope, however, it is always a rotary
maniplex.

Definition 1.5.7. Let P and Q rotary polytopes. The mix of P and Q, denoted by
P♦Q, is the maniplex defined by the group Aut+(P)♦Aut+(Q).
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The mix of two polytopes can be defined in a more combinatorial way in terms of the
flag-graph of the polytopes. This construction follows precisely the notion of parallel
product introduced by Wilson in [68] for maps. We will not describe this construction
here. The interested reader should refer to [68] and [41, Section 5].

Assume that Γ = 〈x1, . . . , xn|R〉 and Γ′ = 〈x′1, . . . , x′n|S〉 are presentations of the
two groups Γ and Γ′. The comix of Γ and Γ′ is the group

Γ�Γ′ = 〈x1, . . . , xn, x
′
1, . . . , x

′
n|R ∪ S ∪ {x1 = x′1, . . . , xn = x′n}〉 .

Informally speaking, the group Γ�Γ′ is the group resulting after adding the relations
of Γ′ to those of Γ, rewriting them to use xi instead of x′i.

Whenever the groups Γ and Γ′ are quotients of W+ both their mix and their comix
have a simple description. The following is essentially [14, Propositions 3.1 and 3.2].

Proposition 1.5.8. Let Γ = W+/M and Γ′ = W+/N , then

Γ♦Γ′ ∼= W+/(M ∩N),
Γ�Γ′ ∼= W+/MN.

(1.5.9)

Two consequences of Proposition 1.5.8 are the following. These are [14, Propositions
3.3]; see also [19, Section 5].

Corollary 1.5.10. Let Γ and Γ′ be finite groups. Then

|Γ♦Γ′| × |Γ�Γ′| = |Γ× Γ′| = |Γ||Γ′|.

Corollary 1.5.11. If Γ covers Γ′, then

Γ♦Γ′ ∼= Γ and
Γ�Γ′ ∼= Γ′.

In general if P and Q are rotary polytopes the comix Aut+(P)�Aut+(Q) might not
be the automorphism group of a maniplex. It might even be the case that this group
is trivial. However, in light of Propositions 1.5.5 and 1.5.8 we do have the following
results.

Proposition 1.5.12. Let P be a chiral n-polytope, and let P be its enantiomophic
image. Let Aut+(P) = 〈σ1, . . . , σn−1〉 and Aut+(P) = 〈σ1, . . . , σn−1〉. Then

1. Aut+(P)♦Aut+(P) is the smallest group that covers both Aut+(P) and Aut+(P).
The maniplex P♦P is a regular maniplex and it is the smallest one that covers
both P and P.

2. Aut(P)�Aut(P) is the maximal common orientably regular quotient of Aut+(P)
and Aut+(P).

In Section 3.2 we will consider regular quotients of maps on the torus. These quo-
tients are known to be maniplexes so, in our applications, the group Aut+(P)�Aut+(P)
will have a familiar combinatorial object associated to it.

Since our applications will involve toroids, and these are quotients of polytopes, it
is convenient to have the following result, which is a consequence of Proposition 1.5.8.
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Proposition 1.5.13. Let Γ = W+/M be a quotient of W+. Let Λ1 and Λ2 be normal
subgroups of Γ. Then Γ/Λ1 and Γ/Λ2 are quotients of W+ and

(Γ/Λ1)♦(Γ/Λ2) ∼= Γ/(Λ1 ∩ Λ2),
(Γ/Λ1)�(Γ/Λ2) ∼= Γ/〈Λ1,Λ2〉.

Proof. By the correspondence theorem for groups there exist normal subgroups Λ1
and Λ2 of W+, both containing M , and such that Λ1 = Λ1/M and Λ2 = Λ2/M . By
the third isomorphism theorem for groups Γ/Λ1 ∼= W+/Λ1 and Γ/Λ2 ∼= W+/Λ2. By
Proposition 1.5.8

(Γ/Λ1)♦(Γ/Λ2) ∼= W+/(Λ1 ∩ Λ2) and
(Γ/Λ1)�(Γ/Λ2) ∼= W+/〈Λ1,Λ2〉.

Finally, observe that (Λ1 ∩Λ2)/M = Λ1 ∩Λ2 and 〈Λ1,Λ2〉/M = 〈Λ1,Λ2〉. Then, by
the third isomorphism theorem:

(Γ/Λ1)♦(Γ/Λ2) ∼= (W+/M)/
(
(Λ1 ∩ Λ2)/M

) ∼= Γ/(Λ1 ∩ Λ2) and

(Γ/Λ1)�(Γ/Λ2) ∼= (W+/M)/
(
〈Λ1,Λ2〉/M

) ∼= Γ/〈Λ1,Λ2〉.

�

We finish this section with the following result that offers sufficient conditions for
a quotient of W+ to have the intersection property. The result is essentially [14,
Proposition 3.5]

Proposition 1.5.14. Let P be a rotary n-polytope. Let Γ = 〈σ1, . . . , σn−1〉 be a group
satisfying Equation (1.2.23), i.e., a quotient of W+. Let F be the facet of P. If
Aut+(F) covers the group 〈σ1, . . . , σn−2〉, then Aut+(P)♦Γ is the automorphism group
of a rotary polytope.



Chapter 2

Extensions of Abstract Polytopes

The objective of this chapter is to introduce the main problems we were interested in
through the development of this work. We explore the notion of extensions of polytopes
and we summarise what is known so far about the problems we present here.

The Platonic Solids are usually understood as convex bodies in Euclidean Space.
However when we are interested in just their combinatorics, they are commonly under-
stood as a bunch of polygons glued together along their edges. This notion extends to
maps naturally or to other structures that we have considered as examples of abstract
polytopes: the cubic tiling of the Euclidean space En can be understood as a family of
n-cubes glued together along their (n− 1)-faces.

In fact, this intuitive approach of building n-polytopes by gluing (n− 1)-polytopes
has been part of the theory of polytopes from its very beginning. In [27] Grünbaum
explores the problem of building n-dimensional polystromas (one of the ancestors of
what we now call abstract polytopes) with preassigned facets.

During the last few decades this notion of building polytopes from others has in-
spired very interesting works. Of course, symmetry has been an essential part of the
development of the topic. In this chapter we intend to introduce the formal definitions,
summarise some of the known results and motivate the problems of our interest.

We begin with the formal concept behind the notion of “gluing together some
polytopes”.

Definition 2.0.1. Let K be an abstract n-polytope. We say that an abstract (n+ 1)-
polytope P is an extension of K if all the facets of P are isomorphic to K.

Finding examples of extensions is not hard. In fact if P is a regular or a chiral
polytope, then P is a extension of its facets. The problem becomes interesting when
we start with some polytope K and look for an extension P . Without any extra
condition, this problem has a trivial solution. Given any abstract polytope K, there
exists a extension P of K with exactly two facets. We say that P is the trivial extension
of K. Note that P is extremely degenerate, in the sense that the two facets are incident
to every other face of lower rank. This construction is the analogue of considering the
map on the sphere whose vertices and edges lie on the equator and each hemisphere is
a facet (see Figure 2.1).

37
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K

P

Figure 2.1: The trivial extension of a polytope K.

Even if no-degeneracy conditions are imposed, the problem of finding extensions
has a positive answer (see [17] and [20, Section 6]). However a variant of this problem
that has been of the interest to the community in the last couple of decades involves
imposing extra conditions on P . Problems 9, 10, 11, 12, and 15 of [66] are related to a
stronger version of the existence of regular extensions of polytopes. Problems 24-30 of
[50] involve finding chiral extensions of polytopes. We will come back to some of these
problems later.

We divide this chapter into two main sections: In Section 2.1 we will explore what
is known about regular extensions of polytopes. Since this section is meant to be a
survey and not a complete source of information, we will usually not go too deep into
detail but will offer the appropriate references. In Section 2.2 we present some results
regarding chiral extensions of polytopes.

2.1 Extensions of regular polytopes
In the following paragraphs we will review some constructions of regular extensions of
polytopes. All these construction are based, in one way or another, on Theorem 1.2.11
so we will briefly describe the techniques that have been used to construct the groups.
We will also mention some of the key properties of each construction.

A first and maybe obvious observation is that if P is a regular extension of K, then
K must be a regular polytope, since facets of regular polytopes are themselves regular.
The general strategy goes as follows. If Aut(K) = 〈ρ0, . . . , ρn−1〉, then we want to build
a string C-group Γ = 〈ρ′0, . . . , ρ′n〉 and a group isomorphism φ : Aut(K)→ 〈ρ′0, . . . , ρ′n−1〉
such that φ : ρi → ρ′i. Then by Part 1 of Theorem 1.2.11, the facets of P(Γ) will be
isomorphic to K.

2.1.1 Universal Extension
This was one of the first results regarding extensions of polytopes. The construction
was introduced by Schulte in 1983 (see [57]). Its properties are summarised in the
following result.
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Theorem 2.1.1. Let K be a regular n-polytope and let F be the facet of K. Let Γ
be the free product of Aut(K) and (Aut(F) × C2) with amalgamation along the group
Aut(F). Symbolically we write

Γ = Aut(K) ∗Aut(F) (Aut(F)× C2).

Then Γ is a string C-group with respect to the generators {ρ0, . . . , ρn} where the ele-
ments ρ0, . . . , ρn−1 are the generators of Aut(K) and ρn is the generator of C2. If P is
the regular polytope associated to Γ, then P satisfies the following properties.

1. If K is of type {p1, . . . , pn−1}, then P is of type {p1, . . . , pn−1,∞}.

2. The polytope P is a universal regular extension of K in the sense that if Q is any
regular extension of K, then Q is a quotient of P (as in [40, Section 2D]).

3. If K is a lattice (as a partially ordered set), then P is a lattice.

Is is easy to verify that the group described above satisfies the relations of Equa-
tion (1.2.6). In fact, it is a consequence of the properties of free products with amal-
gamation that any other group satisfying those relations together with the defining
relations of Aut(K) must be a quotient of Γ. It follows that P is universal. The inter-
section property for Aut(P) requires some technical results that again, are consequences
of the properties of free products with amalgamation.

2.1.2 Extensions by permutations of facets
The universal extension of the previous section solves the existence problem of regular
extensions in the sense that every regular polytope admits an extension. The problem
with this extension is that not only is it infinite, but it is also locally infinite (note the
∞ as last entry of the Schläfli symbol). Some the first results regarding finite regular
extensions of polytopes were given by Schulte in [60, Sections 5 and 6], where he offered
a couple of constructions of regular extensions via permutations of the facets (see also
[58] and [61, Section 6]).

One of the constructions goes as follows. Let K is a regular finite polytope. Assume
that K is a lattice, hence Aut(K) acts faithfully on the facets of K (in fact, the latter
condition is sufficient), then this action induces a faithful representation of Aut(K) as
permutations of such facets. Denote byM the set of facets of K. Let φ : Aut(K)→ SM
be the representation mentioned above. Consider M ′ a copy of M and φ′ : Aut(K)→
SM ′ such that φ′(γ) acts on M ′ the same way as φ(γ) acts on M . This induces a
representation ψ : Aut(K)→ SM∪M ′ given by ψ : γ 7→ φ(γ)φ′(γ). In fact, it is easy to
see that ψ(γ) ∈ SM ×SM ′ . Now, consider a symbol a not in M (or M ′) and take as ρn
the involution (m0 a), where m0 ∈M is the base facet of K.

Assume that Aut(K) = 〈ρ0, . . . , ρn−1〉 and that |M | = m. It turns out that
〈ψ(ρ0), . . . , ψ(ρn−1), ρn〉 is a string C-group isomorphic to Aut(K) × Sm+1 and the
resulting regular polytope P has the following properties.

1. If K is a finite regular polytope of type {p1, . . . , pn−1}, then P is a finite regular
extension of K of type {p1, . . . , pn−1, 6}.
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2. If K is a lattice, then P is a lattice.

This construction gives a positive answer to the problem of determining whether or
not a finite regular polytope K admits a finite regular extension for those polytopes K
whose automorphism groups act faithfully on facets.

The other construction given by Schulte in [60] follows similar ideas. The corre-
sponding extension also has 6 as last entry of its Schläfli symbol. The automorphism
group of this extension is isomorphic to Sm+1 where m is the number of facets of K.

2.1.3 The polytope 2K

This construction was introduced by Danzer in [17] and can also be applied to non-
regular polytopes. The construction takes a polytope K and returns a polytope 2K.
The properties of the polytope 2K are summarised in the following result.

Theorem 2.1.2. Let n > 1 and let K be a finite abstract n-polytope such that every
face of K is uniquely determined by its vertex set. Then there exists an (n+1)-polytope
2K that satisfies the following properties.

1. The vertices of 2K can be described as the set {±1}|V |, where V is the vertex set
of K.

2. The vertex-figures of 2K are isomorphic to K, and for i > 1 each i-faces of 2K is
isomorphic to 2F , for some (i− 1)-face F of K.

3. If K is of type {p1, . . . , pn−1}, then 2K is of type {4, p1, . . . , pn−1}.

4. The group Aut(2K) is isomorphic to Aut(K)n (C2)|V | where Aut(K) acts on C |V |2
by permuting the coordinates.

5. The polytope 2K is regular if and only if K is regular.

6. The polytope 2K is a lattice if and only if K is a lattice.

If K is a regular polytope of type {p1, . . . , pn−1} such that each face of K∗ is deter-
mined by its vertex-set, then

(
2K∗

)∗
is an extension of K of type {p1, . . . , pn−1, 4}.

In [40, Section 8C], McMullen and Schulte generalize the construction of 2K for
every finite regular polytope K via a twisting operation (regardless of whether the
faces of K are determined by their vertices). Later, in [47], Pellicer found another way
to define the polytope 2K for any finite regular polytope K.

It is possible to extend the construction 2K for an infinite polytope K. In this
situation, the vertex set of 2K is the set∐

v∈V
C2 = {x : V → C2 : | sup(x)| <∞} ,

where V denotes the vertex set of K and sup(x) = {v ∈ V : x(v) = −1}. Most of the
properties of the construction 2K hold for infinite polytopes K. For the purpose of this
work, it is enough to consider the construction for finite polytopes.



Extensions of regular polytopes 41

We will give an explicit construction of the polytope 2S when S is the n-dimensional
simplex. Following Matoušek [37, Section 5.3], the n-dimensional simplex is the con-
vex hull of n + 1 affinely independent points. For k ∈ {0, . . . n}, any k + 1 vertices
determine a k-dimensional face of the simplex. We will assume that the vertex set of
S is {1, . . . , n+ 1}

The polytope 2S is constructed as follows: The vertices of 2S are the vectors in
{−1, 1}n+1. The j-dimensional faces of this polytope, for j ∈ {1, . . . , n + 1}, will be
determined by their vertex sets and the partial order will be given by inclusion.

Given a face F of the simplex, let IF ⊆ {1, . . . , n + 1} be the set of vertices of S
that determine F . Observe that if F is a k-dimensional face, then |IF | = k + 1. For
x ∈ {−1, 1}n+1 we define the set

F (x) =
{

y ∈ {−1, 1}n+1 : yi = xi if i 6∈ IF
}
,

where x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1). If F is a vertex of S, then F (x) has
precisely two elements, namely x and the unique vector that differs from x exactly on
the coordinate in IF . If F is an edge of S, then F (x) has precisely four elements: the
four vectors that differ from x in any of the two coordinates determined by IF . In
general, if F has dimension k, then F (x) has 2k+1 elements.

If y ∈ F (x), then F (x) = F (y). Moreover F (x) 6 G(y) if and only if IF ⊆ IG
and xi = yi for every i 6∈ IG. Observe that the first condition holds if and only if
F 6 G in (the face lattice of) S. Finally observe that the elements of {−1, 1}n+1 can
be described as F−1(x) where F−1 is the minimum face of S and IF−1 = ∅. Define the
polytope 2S as

2S =
({
F (x) : F is a face of S and x ∈ {−1,−1}n+1

}
,⊆
)
.

The following theorem states that 2S is a well-known polytope. We do not give a
detailed proof here but rather show some intuition about how this construction works.

Theorem 2.1.3. Let S denote the n-dimensional simplex. Then the polytope 2S is
isomorphic to the (n+ 1)-dimensional cube.

In [37, Section 5.3] Matoušek indexes the proper faces of the convex (n + 1)-
dimensional cube [−1, 1]n+1 by vectors v ∈ {−1, 0, 1}n+1. Each face has as vertex
set the set of vertices u ∈ {−1, 1}n+1 where vi = ui whenever vi 6= 0 (this means that
v is the centroid of the corresponding face in the (n + 1)-cube). The isomorphism of
Theorem 2.1.3 is the one mapping F (x) to the vector v where vi = 0 if and only if
i ∈ IF and vj = xj if j 6∈ IF .

In Figure 2.2 we present a graphic representation of the construction of 2S for n = 2
(Figure 2.2a) and n = 3 (Figure 2.2b). The colours represent the n + 1 coordinates
and two vertices are connected by an edge of colour i if they differ exactly in the
ith coordinate. For j ∈ {1, . . . , n + 1}, the j-faces are given by taking connected
components on j colours.

In this graphic representation, the automorphism group for each case is Sn+1nCn+1
2 .

The elements of Cn+1
2 act by preserving the colours. For a vector x ∈ Cn+1

2 the
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(a) (b)

Figure 2.2: 2S for n = 2 and n = 3

automorphism given by x is that induced by the permutation of vertices of 2S given by
changing the sign of the ith coordinate of each vertex whenever xi = −1. The elements
of Sn+1 act by permuting the colours.

2.1.4 Extensions of dually bipartite polytopes
Before explaining the next extension we will introduce a definition.
Definition 2.1.4. An abstract n-polytope is dually bipartite if its set of facets admits
a colouring with two colours in such a way that if two facets are incident to a common
(n− 2)-face, then they have different colours.

In [49] Pellicer introduces a construction of regular extensions of dually bipartite
polytopes. This construction uses the properties of CPR-graphs.

A CPR-graph is a way of representing an embedding of a string C-group into a
symmetric group Sm. CPR-graphs were introduced by Pellicer in [46] where he ex-
plores some of their combinatorial properties. Given a regular n-polytope K with
automorphism group Aut(K) = 〈ρ0, . . . , ρn−1〉 and an embedding φ : Aut(K) → Sm,
the CPR-graph of K induced by φ is the labelled graph whose vertex set is {1, . . . ,m}
and where there is an edge with label i ∈ {0, . . . , n− 1} between s and t if and only if
φ(ρi) maps s to t.

In [49] Pellicer shows some constructions of CPR-graphs (and hence of the automor-
phism group) of some regular extensions of dually bipartite regular polytopes. These
constructions generalize one of the constructions given by Schulte in [59]. The results
are summarised in the following theorem.
Theorem 2.1.5. Let K be a dually bipartite regular n-polytope of type {p1, . . . , pn−1}
such that Aut(K) acts faithfully on facets. Then for every s ∈ N with s > 2 there exists
a regular extension of P of type {p1, . . . , pn−1, 2s}.
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2.1.5 The polytope 2sK−1

In [47] Pellicer generalises Danzer’s construction 2K. For a given natural number s > 2,
the constructed polytopes has vertex figures isomorphic to K, in such a way that every
polygonal section F2/F−1 is isomorphic to a 2s-gon. First he gives a completely com-
binatorial construction that applies not only to regular polytopes but to any polytope
whose faces are determined by their vertex sets. Then, using CPR-graphs he gives
another construction of the polytope 2sK−1 for every regular polytope K.

Some of the properties of the construction 2sK−1 are summarised in the following
result.

Theorem 2.1.6. Let K be an abstract n-polytope such that every face of K is deter-
mined by its vertex set. Let s > 2. Then there exists an (n + 1)-polytope 2sK−1 with
the following properties.

1. All the vertex-figures of 2sK−1 are isomorphic to K.

2. If K is of type {p1, . . . , pn−1}, then 2sK−1 is of type {2s, p1, . . . , pn−1}.

3. The automorphism group of 2sK−1 is Aut(K)n(C2nCm−1
s ) where m is the number

of vertices of K.

4. 2sK−1 is finite if and only if K is finite.

5. 2 · 2K−1 ∼= 2K.

In a similar way to what happens with 2K, if K is a regular polytope of type
{p1, . . . , pn−1}, then

(
2sK∗−1

)∗
is a regular extension of K of type {p1, . . . , pn−1, 2s}.

Since s might be any integer greater than 1, this construction allows us to build regular
extensions of regular polytopes whose Schläfli symbols have any arbitrary even number
greater than 3 as last entry. This is as far as we can go in such a general context, since
in [30], Hartley proves that the hemicube cannot be extended with an odd number as
last entry of the Schläfli symbol.

This construction can be applied with s = 1. For an abstract n-polytope K
of type {p1, . . . , pn−1} the constructed extension is just the trivial extension of type
{p1, . . . , pn−1, 2} mentioned at the beginning of this chapter.

2.2 Extensions of chiral polytopes
In this section we will review what is known about chiral extensions of abstract poly-
topes. We will also develop some of the tools that we will use later to build chiral
extensions of polytopes.

If P is a chiral n-polytope, then its facets can be regular or chiral (see Proposi-
tion 1.2.20). Both situations can occur in the sense that there are examples of chiral
polytopes with regular facets and examples of chiral polytopes with chiral facets. The
maps on the torus mentioned in Section 1.3 provide examples of chiral polytopes with
regular facets. The example of Item 6 of Example 1.1.3 has octahedra as facets. In
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Section 3.2 we will explain a technique that can be use to build 4-polytopes with
chiral facets. On the other hand, the (n− 2)-faces of P must be regular (see Proposi-
tion 1.2.20).

Proposition 1.2.20 limits the possibilities of finding constructions for chiral exten-
sions and in general, for chiral polytopes of ranks higher than 5. Unlike regular ex-
tensions, there is no construction of chiral extensions that can be applied in a simple
recursive way. If P is a chiral extension of K, then it might happen that we can find
a chiral extension of P , say R, but there is no way that we can find a chiral exten-
sion of R. Otherwise we would have a chiral polytope whose facets have chiral facets
isomorphic to P , contradicting Proposition 1.2.20.

Proposition 1.2.20 also divides the approaches of finding chiral extensions of a poly-
tope K into two situations: when K is regular and when K is chiral with regular facets.

In a similar way to that with regular polytopes, the problem of finding chiral exten-
sions can be stated in a purely group-theoretical context. Given a chiral or orientably
regular n-polytope K with rotation group Aut+(K) = 〈σ1, . . . , σn−1〉 we are interested
in finding a group Γ = 〈σ′1, . . . , σ′n〉 and a group embedding φ : Aut+(K) → Γ map-
ping σi to σ′i such that σ′1, . . . , σ′n satisfy Equation (1.2.23) and in such a way that the
intersection property described in Equation (1.2.26) holds for Γ.

If we are in the situation described above, then according to Theorem 1.2.28, Γ is the
rotation group of a chiral or an orientably regular polytope P with facets isomorphic to
K. If K is chiral then P must be chiral. However, if K is regular, then we still have to
guarantee that the group automorphism described in Part 3 of Theorem 1.2.28 does not
exist for Γ. In general, formulating a construction that guarantees the non-existence
of this automorphism has proved to be a difficult problem.

It seems that the restrictions described in the previous paragraphs have been some
of the reasons why the results regarding chiral extensions of polytopes are not as many
as those for regular extensions. As we did in Section 2.1, we will review some of the
constructions of chiral extensions known so far.

2.2.1 Universal extension
If K is a chiral polytope with regular facets it is possible to build a universal chiral
extension of K. This construction was introduced by Schulte and Weiss in [65]. The
ideas behind this construction are not much different from the analogues for regular
extensions (see Section 2.1.1).

In this construction the authors use a particular set of generators for the rotation
group of the polytopes. IfQ is a chiral or orientably regular n-polytope with Aut+(Q) =
〈σ1, . . . , σn−1〉 consider the automorphisms

τj = σ1σ2 · · ·σj for j ∈ {1, . . . n− 1}.

Note that τj = τ0,j in our earlier notation. Observe that τ1 = σ1 and for j > 2, the
automorphism τj is an involution. In fact, if Φ0 is the base flag of Q, then

Φ0τj = Φj,0
0 .
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Note also that for j > 2, σj = τ−1
j−1τj, implying that

Aut+(Q) = 〈τ1, . . . , τn−1〉 .

Now let K be a chiral n-polytope with regular facets and such that Aut(K) =
〈τ1, . . . , τn−1〉. Let F denote the base facet of K. Since F is regular, then there exist
reflections ρ0, . . . , ρn−2 such that Aut(F) = 〈ρ0, . . . , ρn−2〉. For j ∈ {1, . . . , n − 2},
define τ ′j = ρ0ρj. Observe that Aut+(F) = 〈τ ′1, . . . , τ ′n−2〉. Moreover, 〈τ ′1, . . . , τ ′n−2〉 ∼=
〈τ1, . . . , τn−2〉. Finally note that conjugation by ρ0 defines an automorphism of Aut+(F)
and that

Aut(F) =
〈
τ ′1, . . . , τ

′
n−2, ρ0

〉
=
〈
τ ′1, . . . , τ

′
n−2

〉
o 〈ρ0〉 ∼= Aut+(F) o C2.

The group of the universal chiral extension of K is the group

Γ = Aut(K) ∗Aut+(F) Aut(F) ∼= Aut(K) ∗Aut+(F) (Aut+(F) n C2),

the free product of Aut(K) and Aut(F) with amalgamation along the group Aut+(F).
In other words, Γ is the group with generators τ1, . . . , τn−1, τ

′
1, . . . , τ

′
n−2, ρ0 and the fol-

lowing defining relations: all the defining relations for Aut(K), all the defining relations
for Aut(F), and τj = τ ′j for j ∈ {1, . . . , n− 2}. Here ρ0 plays the role of τn.

The fact that Γ satisfies the Intersection Property of Equation (1.2.26) has a techni-
cal proof but it is a consequence of the properties of free products with amalgamation
of groups. If P is the corresponding polytope, observe that P must be chiral, since K is
chiral. The properties of P are summarised in the following result. This is essentially
[65, Theorem 2].

Theorem 2.2.1 (Schulte-Weiss, 1995). Let K be a chiral n-polytope with Schläfli sym-
bol {p1, . . . , pn−1} and orientably regular facets isomorphic to an (n − 1)-polytope F .
Then there exists a chiral (n+ 1)-polytope P with the following properties.

1. P has facets isomorphic to K.

2. P is universal among all chiral (n + 1)-polytopes with facets isomorphic to K;
that is, any other such polytope is a quotient of P.

3. Aut(P) = Aut(K) ∗Aut+(F) Aut(F), the free product of Aut(K) and Aut(F) with
amalgamation of the two subgroups isomorphic to Aut+(F).

4. P is of type {p1, . . . pn−1,∞}.

It is important to remark that the construction also works for orientably regular
polytopes K, but then the resulting polytope P is regular. In fact P is isomorphic to
the universal regular extension of P (see [57] and Section 2.1.1)



Extensions of chiral polytopes 46

2.2.2 Finite extensions
The construction of universal chiral extensions for chiral polytopes solves an existence
problem; however, the question of whether or not a finite chiral polytope with regular
facets admits a finite chiral extension was open until 2014. In [16] Cunningham and
Pellicer find a construction using GPR-graphs.

GPR-graphs (generalised permutation representation graphs) are a generalisation
of CPR-graphs and have been used to build chiral polytopes. They were introduced by
Pellicer and Weiss in [52]. We review some concepts of GPR graphs that we are going
to use later.

Definition 2.2.2. Let K be rotary n-polytope with Aut+(K) = 〈σ1, . . . , σn−1〉. Let
φ : Aut+(K) → Sm be an embedding of the group Aut+(K) into a symmetric group
Sm. The GPR-graph associated to φ is the directed labelled multigraph (parallel edges
are allowed) whose vertices are {1, . . . ,m} and for which there is an arrow from s to t,
with label k, whenever φ(σk) maps s to t.

We call k-arrows the arrows labelled with k. Usually the embedding is given by
a known action of Aut(K) and it can be omitted. We also omit loops, so a point of
{1, . . . ,m} is understood to be fixed by φ(σk) if and only if it has no k-arrows starting
on it. A connected component of arrows with labels in I ⊆ {1, . . . , n− 1} is called an
I-component, and if I = {k} for some k, then it is called a k-component. Observe that
an I-component consists of one orbit of points in {1, . . . ,m} under 〈φ(σi) : i ∈ I〉.

Note that a GPR-graph of an orientably regular or chiral polytope K determines
the automorphism group of K (and hence, it determines K). Observe also that the
group Aut(K) acts on the vertices of any GPR-graph of K via the embedding φ. More-
over, every path from a vertex u to a vertex v of a GPR-graph determines a word on
{σ1, . . . σn−1} ∪ {σ−1

1 , . . . , σ−1
n−1} and hence, an element α of Aut+(K). The element α

satisfies that φ(α) maps u to v. In general different paths determine different elements
of Aut+(K).

If K is a rotary polytope with base flag Φ0, then we may consider the embedding
of Aut+(K) into the permutation group on the set of white flags (the set of flags on
the same orbit under Aut+(K) as Φ0) given by the (right) action of Aut(K). Moreover,
by Part 3 of Proposition 1.4.10, this embedding is equivalent to the one given by the
(left) action of Con+(K) on the white flags and hence, the GPR-graphs associated to
these embeddings are isomorphic. This observation implies that when working with
this particular GPR-graph of K, we can safely change Aut+(K) and Con(P) and obtain
analogous results.

Definition 2.2.3. Let K be a rotary polytope. The GPR-graph induced by the action
of Con(K) on the set of white flags is called the Cayley GPR-graph of K. This graph
is denoted by Cay(K).

In Figure 2.3 we show Cay({4, 4}(3,0)).
Since the action of Con+(K) on the set of white flags is free (see Part 2 of Propo-

sition 1.4.10), the following proposition is immediate.
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s1

s2

Figure 2.3: Cay({4, 4}(3,0))

Proposition 2.2.4. (Proposition 5 of [16]) Let Cay(K) be the Cayley GPR-graph of a
rotary polytope K and let u and v be vertices of Cay(K). There exists a unique element
α ∈ Con+(K) mapping u to v. In particular, every element of Con+(K) determined by
a path from u to v is equal to α.

Given an embedding φ of Aut(K) into Sm, there exists a natural embedding φd of
Aut(K) into the direct product Sm × · · · × Sm of d copies of Sm. This embedding is
given by φd : σi 7→ (φ(σi), . . . , φ(σi)). This motivates the following result.

Proposition 2.2.5. Let G1, . . . , Gd be isomorphic copies of a GPR-graph of an ori-
entably regular or chiral polytope K. Then the disjoint union of G1, . . . , Gd is a GPR-
graph of K.

We finish this review of GPR-graphs with the following result, which will be useful
in later sections. This is [16, Theorem 8].

Theorem 2.2.6. Let G be a directed graph with arrows labelled 1, . . . , n. Let G1, . . . Gd

be the {1, 2, . . . , n− 1}-components of G. Assume also that

1. G1, . . . Gd are isomorphic (as labeled directed graphs) to the Cayley GPR-graph
of a fixed chiral n-polytope K with regular facets.

2. For k ∈ {1, . . . , n− 1}, the action of (σk · · ·σn)2 on the vertex set of G is trivial,
where σi is the permutation determined by all arrows of label i.

3. 〈σ1, . . . , σn−1〉 ∩ 〈σn〉 = {ε}.

4. For every k ∈ {2, . . . , n − 1} there exists a {1, . . . , n − 1}-component Gik and
a {k, . . . , n}-component Dk such that Gik ∩ Dk is a nonempty {k, . . . , n − 1}-
component.

Then G is a GPR-graph of a chiral (n+ 1)-polytope P whose facets are isomorphic to
K.
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The construction given by Cunningham and Pellicer in [16] uses Theorem 2.2.6.
We review this construction here since later we will present a similar one.

Let K be a chiral n-polytope with regular facets. Let G and G′ be two copies of
Cay(K). Let {v1, . . . , vm} and {v′1, . . . , v′m} denote the vertices of G and G′ respectively
in such a way that v1 and v′1 are the vertices associated to the base flag of K. We will
also require that the numbering satisfies that there is a k-arrow from vi to vj if and
only if there is a k-arrow from v′i to v′j.

Cunningham and Pellicer define a perfect matching M between the vertices of G
and the vertices of G′ consisting of non-oriented edges. This matching defines an
involutory permutation τ given by swapping the endpoints of every edge of M . The
group 〈σ1, . . . , σn−1, τ〉 will be the group of the extension of K. In this construction,
the involutory permutation τ plays the role of τn−1,n as defined in Equation (1.2.21).
In other words, we may define σn = σ−1

n−1τ and apply Theorem 2.2.6 to prove that the
corresponding graph is a GPR-graph of a chiral extension of K.

The edges of M will be defined in several steps. The first three steps focus on
defining M on one vertex of each {1, . . . , n− 2}-component of G.

Step 1. Define an edge from v1 to v′1.
Step 2. For each l, add an edge from v1σ

l
n−1 to v′1σ−ln−1.

For k ∈ {1, . . . , n − 2} let Ek denote the {k, . . . , n − 1}-component of v1. In
other words, Ek = v1〈σk, . . . , σn−1〉. Note that En−2 ⊆ En−3 ⊆ · · · ⊆ E1 = G. For
k ∈ {1, . . . , n− 2} let

Ck = {F : F is a {1, . . . , n− 2}-component that intersects Ek but not Ek+1} .

Observe that every {1, . . . , n − 2}-component of G either intersects v1〈σn−1〉 or
belongs to exactly one of the Ck.

Step 3. For each F ∈ Ck we pick iF ∈ {1, . . . ,m} such that viF ∈ F ∩ Ek and
match viF to v′iF .

Note that we have matched exactly one vertex of each {1, . . . , n− 2}-component of
G. We extend the matching to the remaining vertices of G as follows. If v is a vertex
of G let viF denote the vertex of the {1, . . . , n − 2}-component F of G containing
v that is already incident to an edge of M . Since v and viF belong to the same
{1, . . . , n − 2}-component, there exists a unique α ∈ 〈σ1, . . . , σn−2〉 such that v = viα
so it remains to extend M to the vertices of this type. Recall that if Q is the facet
of K, then Q is regular, hence there exists an involutory group automorphism ρ of
〈σ1, . . . , σn−2〉 satisfying that ρ : σn−2 7→ σ−1

n−2, ρ : σn−3 7→ σn−3σ
2
n−2 and ρ : σi 7→ σi

for every 1 6 i 6 n − 4 (this is the dual version of the automorphism of Part 3 of
Theorem 1.2.28). For α ∈ 〈σ1, . . . , σn−2〉 let α denote ρ(α).

Step 4. Extend M to every vertex by connecting the vertex viα to viα.
As mentioned above, τ is defined as the involutory permutation induced by M so

that σn = σ−1
n−1τ . Then Theorem 2.2.6 can be used to prove that the graph constructed

above is the GPR-graph of a chiral extension of K. We will not present the proof here.
In Section 3.1.1 we will present a very similar construction where we use the same ideas
that Cunningham and Pellicer use in their construction.

As a direct consequence of this construction we have the following result.
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Theorem 2.2.7 ([16, Theorem 1]). Every finite chiral polytope with regular facets
admits a finite chiral extension.

Besides the results presented in this section, little is known about chiral extensions
of polytopes to the date of this work. There are some results that have as a consequence
the existence of extensions for particular polytopes but their approach is not precisely
that of chiral extensions. Among those results the following may offer new techniques
to attack the problems related to chiral extensions.

In the conference SIGMAP 2018 in Morelia, Mexico, Conder announced the follow-
ing result. This result has not been published to the date of this work.

Theorem 2.2.8 (Conder, Hubard, O’Reilly and Pellicer). For every n > 4 there are
chiral n-polytopes with simplicial facets and alternating automorphism group Ak, and
chiral n-polytopes with simplicial facets and symmetric automorphism group Sk, for all
but finitely many k.

As expected, they give a construction of the automorphism group of an extension of
the (n−1)-simplex. They use strongly that the automorphism groups of the alternating
and the symmetric groups are well-known to show that the polytopes they construct
are actually chiral and not orientably regular.

In [8], Conder and Zhang introduce a group theoretical construction that allows
them to build families of chiral polytopes from other particular polytopes P . They use
this technique to build 31 new families of chiral polytopes of rank 4, 5 and 6. Each
polytope of each family is of the same rank as P and the size of the polytopes in such
families grows linearly with the size of P . It is unknown if a similar approach can be
useful to build chiral extensions of particular families of polytopes.

To the date of this work, the results presented here are the main known results
related to chiral extensions of polytopes. Compared to what is known about regular
extensions, the results regarding chiral extensions are less numerous and more restric-
tive. There are several questions about chiral extensions of polytopes that remain
open. In particular, among those presented in [50] which involve chiral extensions of
polytopes, the ones listed below have not been completely answered.

As mentioned in Section 2.2.1, when applying the construction of [65] to a regular
polytope the result is the universal regular extension of [57]. This does not deny the
possibility that for every orientably regular polytope K, there exists a chiral extension
U such that every other chiral extension of K is a quotient of U . This situation is
presented in the following problem.

Problem 2.2.9 ([50, Problem 24]). Determine whether for every (any) regular poly-
tope K there exists a chiral extension which covers every chiral extension of K.

Regarding chiral extensions of chiral polytopes, the following two problems are
of deep interest (compare with the analogues for regular polytopes in Sections 2.1.3
and 2.1.5).

Problem 2.2.10 ([50, Problem 25]). Does every chiral polytope K with regular facets
admit a chiral extension with prescribed type?
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Problem 2.2.11 ([50, Problem 26]). Does every finite chiral polytope K with regular
facets admit a finite chiral extension with prescribed type?

Even though Theorem 2.2.7 shows that every chiral polytope with regular facets
admits a chiral extension, the analogous problem for regular polytopes has seen only
partial advances. Pellicer presents the following two problems in [50].

Problem 2.2.12 ([50, Problem 27]). Does every orientably regular n-polytope admit
a chiral extension?

Problem 2.2.13 ([50, Problem 28]). Does every finite orientably regular n-polytope
admit a finite chiral extension?

In [15] Cunningham gives a series of restrictions that imply that certain regular
polytopes, called (1, n − 1)-flat, do not admit a chiral extension. So Problems 2.2.12
and 2.2.13 in their more general setting have a negative answer. However the (1, n−1)-
flat polytopes are extremely degenerate, so answers to problems analogous to those
listed above after adding a non-degeneracy hypothesis will be of interest.

And of course, we have the analogues to Problems 2.2.10 and 2.2.11 for orientably
regular polytopes:

Problem 2.2.14. Does every orientably regular polytope admit a chiral extension
with prescribed type?

Problem 2.2.15. Does every finite orientably regular polytope admit a finite chiral
extension with prescribed type?

In the following chapter we will present advances in some of the problems listed
above.



Chapter 3

Chiral extensions of toroids

In this chapter we present the original results of this thesis regarding chiral extensions
of toroids. In Section 3.1 we will introduce two constructions of chiral extensions
that allow us to impose conditions on the Schläfli type of some of the extensions.
In Section 3.2 we will review some extensions of chiral maps (3-polytopes) on the
torus, then study the consequences of applying our construction to them. Finally, in
Section 3.3 we show a construction of chiral extensions of regular toroids.

Before going into the details of the constructions mentioned above, we introduce
some tools that will be useful along the way.

As seen before, if K is a rotary n-polytope, sometimes it is useful to consider
different sets of generators for Aut+(K). In Section 1.2 the results are in terms of the
abstract rotations σ1, . . . , σn−1 with respect to the base flag Φ0. However in upcoming
sections we will consider the set τ1, . . . , τn−1 where

τi = σ1 · · ·σi. (3.0.1)

These generators were already described in Section 2.2.1. Recall that if Φ0 denotes the
base flag, then

Φ0τi = Φi,0
0 .

We also have σ1 = τ1 and for 2 6 i 6 n − 1, σi = τ−1
i−1τi. It follows that Aut+(K) =

〈τ1, . . . , τn−1〉.
Let K be a rotary n-polytope. Assume that Γ = 〈σ1, . . . , σn〉 is a group that is

a candidate to be the automorphism group of a chiral extension of K. In principle,
we need to verify that Γ satisfies Equation (1.2.23) and the intersection property in
Equation (1.2.26) with n − 1 updated to n throughout. However, if the facets of
the polytope associated to Γ are isomorphic to K, then we must have Aut+(K) =
〈σ1, . . . , σn−1〉 and this gives us information about Γ. In particular we have

Lemma 3.0.2. Let Γ = 〈σ1, . . . , σn〉 be a group with the property that the subgroup
Γn = 〈σ1, . . . , σn−1〉 satisfies Equation (1.2.23). If the group elements σ1, . . . , σn satisfy
the equations

σpnn = ε, for some pn > 3,
(σi · · ·σn)2 = ε, for 1 6 i 6 n− 1,

(3.0.3)

then Γ itself satisfies Equation (1.2.23).
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Proof. The lemma follows from the fact that the relations of Equation (1.2.23) that
are not listed in Equation (3.0.3) occur in Γn. �

The following result is essentially the same as Lemma 3.0.2 but in terms of the
generators τ1, . . . , τn.

Corollary 3.0.4. Let Γ = 〈σ1, . . . , σn〉 be a group with the property that the subgroup
Γn = 〈σ1, . . . , σn−1〉 satisfies Equation (1.2.23). For i ∈ {1, . . . , n}, let τi = σ1 · · ·σi.
Then the set of relations of Equation (3.0.3) is equivalent to the set of relations

(τ−1
n−1τn)pn = ε,

τ 2
n = ε,

(τ−1
i τn)2 = ε, for i ∈ {1, . . . , n− 2}.

(3.0.5)

In Section 3.1.1 we will use another set of generators, namely the group elements
σ1, . . . , σn−1, τ where τ = σn−1σn. The analogue of Lemma 3.0.2 is the following (see
[48, Lemma 1] for a detailed proof).

Lemma 3.0.6. Let Γ = 〈σ1, . . . , σn〉 be a group with the property that the subgroup
Γn = 〈σ1, . . . , σn−1〉 satisfies Equation (1.2.23). Let τ = σn−1σn. Then the set of
relations in Equation (1.2.23), with n − 1 updated to n, is equivalent to the set of
relations

τ 2 = ε,

τσn−2τ = σ−1
n−2,

τσn−3τ = σn−3σ
2
n−2,

τσiτ = σi for 1 6 i 6 n− 4.

(3.0.7)

There is a similar result regarding the intersection property. Its proof is not com-
plicated but it is long and tedious. We will give it here without proof. This is [63,
Lemma 10].

Lemma 3.0.8. Let n > 3 and Γ = 〈σ1, . . . , σn〉 be a group which satisfies Equa-
tion (1.2.23). Assume that the subgroup Γn−1 = 〈σ1, . . . , σn−1〉 has the intersection
property in Equation (1.2.26) with respect to its generators. Also, suppose that the
following intersection conditions hold:

〈σ1, . . . , σn−1〉 ∩ 〈σj, . . . , σn〉 = 〈σj, . . . , σn−1〉 (3.0.9)

for j ∈ {2, . . . , n}. Then Γ itself has the intersection property of Equation (1.2.26).

Finally, in order to determine if a group Γ = 〈τ1, . . . , τn〉 satisfying Corollary 3.0.4
and Lemma 3.0.8 is the automorphism group or a chiral polytope, or instead the
rotation subgroup of an orientably regular polytope we need to determine whether
there exists group automorphism α : Γ → Γ such as the one described in Part 3
of Theorem 1.2.28. The properties of this automorphism are described, in terms of
τ1, . . . , τn in the following result.
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Corollary 3.0.10. Let Γ = 〈σ1, . . . , σn〉 be a group satisfying Equation (1.2.23). As-
sume that there is a group automorphism α : Γ→ Γ satisfying the conditions of Part 3
of Theorem 1.2.28, that is, α : σ1 7→ σ−1

1 , α : σ2 7→ σ2
1σ2 while fixing σi for i > 3. If

τi = σ1 · · ·σi, then α satisfies

α(τ1) = τ−1
1 ,

α(τi) = τi if i > 2.
(3.0.11)

Conversely, a group automorphism α : Γ→ Γ satisfying Equation (3.0.11) also satisfies
the conditions of Part 3 of Theorem 1.2.28.

3.1 Two constructions of chiral extensions
In this section we introduce two constructions that give information about the Schläfli
type of a chiral extension of a polytope. Both constructions are in the same direction:
If K is a chiral polytope with regular facets satisfying certain conditions, then we can
construct a chiral extension P of K such that the last entry of the Schläfli symbol of
P is finite but arbitrarily large. In particular, K has infinitely many non-isomorphic
chiral extensions.

3.1.1 Dually bipartite polytopes
In this section we give a construction of chiral extensions of dually bipartite chiral
polytopes with regular facets. Recall that an n-polytope K is dually bipartite if its
facets admit a colouring with two colours in such a way that facets incident to a
common (n− 2)-face of K have different colours.

Let K be a dually bipartite chiral n-polytope with regular facets. Let Fw(K) denote
the set of white flags of K and Con+(K) = 〈s1, . . . , sn−1〉 the subgroup of Con(K)
defined in Definition 1.4.9. Let Kn−1 denote the set of facets of K and c : Kn−1 →
{1,−1} a colouring like the one described above. Observe that c induces a colouring
c : Fw → {1,−1} by assigning to each white flag the colour of its facet. Consider the
following remark.
Remark 3.1.1. Let K and c be as above. If Ψ ∈ 〈s1, . . . , sn−2〉Φ, then c(Ψ) = c(Φ).

We will use this property of the colouring c in our construction. Another important
remark about dually bipartite polytopes is the following.
Remark 3.1.2. If K is a dually bipartite polytope of type {p1, . . . , pn−1} with pn−1 <∞,
then pn−1 must be even.

Remark 3.1.2 follows from the fact that the colouring of facets associated to K
induces a proper 2-colouring (in the sense of graphs) on the polygonal co-face at each
(n− 3)-face.

The idea of our construction is very similar to that of [16] (see also Section 2.2.2).Let
K be a dually bipartite chiral n-polytope with regular facets. Take s ∈ N and let
G1, . . . G2s be 2s copies of Cay(K), constructed as follows. For each ` ∈ Z2s, the
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vertices of the graph G` will be pairs labelled by (Φ, `) where Φ ∈ Fw(K). Note that
for k ∈ {1, . . . , n− 1}, there is an arrow labelled with k (k-arrow) from (Φ, `) to (Ψ, `)
if and only if Ψ = skΦ. As in Section 2.2.2, for I ⊆ {1, . . . , n− 1}, the I-component of
a vertex v is the connected component containing v after removing the arrows whose
labels do not belong to I. Observe that Remark 3.1.1 implies that the colouring c is
such that if v and u belong to the same {1, . . . , n − 2}-component, then c(u) = c(v).
We assume that if Φ0 is base flag of K, then c(Φ0) = 1.

The strategy is to define a matching M on the vertices of the disjoint union of
G1, . . . G2s. Then consider the involutory permutation t that results from swapping
the endpoints of every edge of M . We will take sn = s−1

n−1t and then use Theorem 2.2.6
to prove that the resulting graph is a GPR-graph of a chiral extension of K. Then we
will explore the properties of the resulting extension. We will use the group Con+(K)
instead of the group Aut+(K) (as in [16] and Section 2.2.2) for consistency with later
constructions in this chapter. Recall that by Proposition 1.4.10 the two actions on the
set of white flags are equivalent.

We will define M in several steps.

1. Add an edge between (Φ0, `) and (Φ0, `+ (−1)`).

2. For every j, add an edge from (sjn−1Φ0, `) to
(
s−jn−1Φ0, `+ (−1)`c(sjn−1Φ0)

)
.

Observe that the edge of Step 2 is well defined by Remark 3.1.2, since the order of
sn−1 must be even, which implies that skn−1Φ0 and s−kn−1Φ0 have the same colour.

Now for every ` ∈ Z2s and k ∈ {1, . . . , n − 2} let E`
k denote the {k, . . . , n − 1}-

component of (Φ0, `). The vertices of E`
k are of the form (Ψ, `) where Ψ belongs to the

orbit of Φ0 under 〈sk, . . . , sn−1〉. This implies that E`
n−2 ⊆ · · · ⊆ E`

1 = G`. Define also
the families

C`k =
{
{1, . . . , n− 2}-components F of G` : F ∩ E`

k 6= ∅ but F ∩ E`
k+1 = ∅

}
.

3. For k 6 n− 2 and for every F ∈ C`k with ` odd, pick a vertex (ΦF , `) in E`
k and

match it to (ΦF , `+ (−1)`c(ΦF )).

Since every {1, . . . n−2}-component of G` either has a vertex of the form
(
sjn−1Φ0, `

)
for some j or belongs to C`k for some k, with Steps 1 to 3 we have picked exactly one
vertex of each {1, . . . , n − 2}-component of the graphs G1, . . . , G2s. In Figure 3.1
we show a possible choice of flags on the graph G1 = Cay(K) with K the toroid
{4, 4}(3,1). The red flags are those of the form sk2Φ0 and the green flags are those of
the 1-components of C1

1 . The flags with darker colours are those flags Φ that satisfy
c(Φ) = −1.

Let (Φ, `) be a vertex and let F be its {1, . . . , n−2}-component. Let (ΦF , `) be the
unique vertex of F incident to an edge ofM . Observe that since the action of Con+(K)
is free on the set of white flags, there exists a unique element w of 〈s1, . . . , sn−2〉 such
that wΦF = Φ. In other words, every vertex of F is of the form (wΦF , `). Since K
has regular facets, there exist an involutory group automorphism ρ of 〈s1, . . . , sn−2〉
mapping sn−2 to s−1

n−2, sn−3 to sn−3s
2
n−2 while fixing si for 1 6 i 6 n − 4. For w ∈
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Φ0

Figure 3.1: A possible choice of the flags after Steps 1 to 3.

〈s1, . . . , sn−2〉, let w denote ρ(w). To define this automorphism we are thinking the
connection elements as the permutations they induce on the set of white flags. Recall
that by Proposition 1.4.10 the permutation group 〈s1, . . . sn−2〉 is isomorphic to the
rotation group of the facet of K. The automorphism ρ is the dual version of the
automorphism in Part 3 of Theorem 1.2.28.

4. For every vertex of the form (wΦF , `), with w ∈ 〈s1, . . . , sn−2〉, add an edge from
(wΦF , `) to (wΦF , `+ (−1)`c(wΦF )).

Observe that the edge of Step 4 is well-defined since all the flags of the form wΦF

with w ∈ 〈s1, . . . , sn−2〉 have the same colour.
We have defined the matching M . Let t be the involutory permutation given by

swapping the endpoints of each edge of M and define sn = s−1
n−1t.

Proposition 3.1.3. Let K be a finite dually bipartite chiral polytope with regular facets
and let s ∈ N. The permutation group 〈s1, . . . , sn〉 defined by the graph G = ⋃

`∈Z2s G`

together with the matching M constructed in Steps 1 to 4 defines the automorphism
group of a chiral extension P of K with the property that 2s divides the last entry of
the Schläfli symbol of P.

Proof. We will use Theorem 2.2.6. Part 1 there follows from our construction, since
G1, . . . , G2s are copies of Cay(K). To prove Part 2 we need to see that the action of
(sk · · · sn)2 is trivial on every vertex. According to Lemma 3.0.6 it suffices to prove



Two constructions of chiral extensions 56

Φ0

wΦ0

vΦ0

Φ0

vΦ0

wΦ0

ΦF

vΦF

ΦF

vΦF

wΦF

ΦF ′

wΦF ′

vΦF ′

ΦF ′

vΦF ′

wΦF ′

G1 G2G2sG2s−1

wΦF

Figure 3.2: The GPR graph of the extension.

that the following relations hold:

t2 = ε,

tsn−2t = s−1
n−2,

tsn−3t = sn−3s
2
n−2,

tsit = si for 1 6 i 6 n− 4.

The first relation holds by construction since t swaps the two vertices of every edge of
M . The other three relations are a consequence of the construction of M in Step 4.

To prove Part 3 of Theorem 2.2.6 consider the action of sn and s2
n on a vertex

(Φ0, `):
sn (Φ0, `) = s−1

n−1t (Φ0, `)
= s−1

n−1

(
Φ0, `+ (−1)`

)
=
(
s−1
n−1Φ0, `+ (−1)`

) (3.1.4)

s2
n (Φ0, `) = sn

(
s−1
n−1Φ0, `+ (−1)`

)
= s−1

n−1t
(
s−1
n−1Φ0, `+ (−1)`

)
= s−1

n−1

(
sn−1Φ0, `+ (−1)` + (−1)`+1c(s−1

n−1Φ0)
)

= s−1
n−1

(
sn−1Φ0, `+ 2(−1)`

)
=
(
Φ0, `+ 2(−1)`

)
,

(3.1.5)

where we have used that `+ (−1)` ≡ `+ 1 (mod 2) and that c(s−1
n−1Φ0) = −1.
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G`G`−1 G`+1

E`−1
k E`

k E`+1
k

· · · · · ·

Dk

Figure 3.3: The intersection of Dk with G` is E`
k

It follows that if sjn(Φ0, 0) = (Ψ, 0), then j is a multiple of 2s and Ψ = Φ0. In
particular sjn fixes (Φ0, 0). Since the unique element of 〈s1, . . . , sn−1〉 fixing (Φ0, 0) is ε
(see Proposition 1.4.10), 〈s1, . . . , sn−1〉 ∩ 〈sn〉 = {ε}, proving Part 3.

Let k ∈ {2, . . . , n− 1} and let Dk be the {k, . . . , n}-component of (Φ0, 0). In order
to prove Part 4, we will prove that Dk∩G` = E`

k for every ` ∈ Z2s. It is clear that every
vertex of E`

k belongs to Dk∩G`, since the elements of 〈sk, . . . , sn−1〉 map vertices of G`

to vertices of G`. To show the other inclusion, we will prove that if (Ψ, `) is a vertex
in E`

k then it is matched to a vertex in E`′
k where `′ = `+ (−1)`c(Ψ) (see Figure 3.3).

Let (Ψ, `) be a vertex of E`
k. Let F be the {1, . . . , n−2}-component of G` containing

(Ψ, `). Note that (Ψ, `) ∈ F ∩ E`
k. Observe that for every vertex (Φ, `) in F we have

that c(Φ) = c(F ). Define `′ = ` + (−1)`c(F ). Since F intersects E`
k, then F ∈ C`j for

some j > k. In Step 3 of the construction we picked a vertex (ΦF , `) in E`
j (and hence

in E`
k) and matched it to (ΦF , `

′). Since (ΦF , `) and (Ψ, `) belong to F , there exists
w ∈ 〈s1, . . . , sn−2〉 such that

w(ΦF , `) = (Ψ, `).
Similarly, since both vertices belong to E`

k, there exists v ∈ 〈sk, . . . , sn−1〉 such that

v(ΦF , `) = (Ψ, `).

But since the action of 〈s1, . . . , sn−1〉 is free (see Proposition 1.4.10), it follows that
w = v. Therefore, w is an element of 〈s1, . . . sn−2〉 ∩ 〈sk, . . . , sn−1〉 = 〈sk, . . . , sn−2〉.
This implies that w ∈ 〈sk, . . . , sn−2〉.

Since both (Φ0, `) and (Ψ, `) belong to E`
k, then there exists u ∈ 〈sk, . . . , sn−1〉 such

that
(Ψ, `) = u(Φ0, `).

Finally, in Step 4 we matched (Ψ, `) to

(wΦF , `
′) = ww−1(Ψ, `′) = ww−1u(Φ0, `

′),

but ww−1u ∈ 〈sk, . . . , sn−1〉, implying that (Ψ, `) is matched to a vertex in E`′
k .

As a consequence of Theorem 2.2.6, the group 〈s1, . . . , sn〉 is the automorphism
group of a chiral extension P of K. To see that the last entry of the Schläfli symbol of
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P must be a multiple of 2s just observe that the orbit of (Φ0, 0) under 〈sn〉 has length
2s (see Equation (3.1.5)). �

Proposition 3.1.3 has an important consequence. If K is a dually bipartite chiral
polytope with regular facets and q ∈ N is any number, then there exists a chiral
extension Pq of K such that the last entry of the Schläfli symbol of Pq is finite but
strictly greater than q; it is enough to take s = q + 1 and apply the construction of
Proposition 3.1.3. Then the following corollary holds.

Corollary 3.1.6. Every finite dually bipartite chiral n-polytope with regular facets has
infinitely many non-isomorphic chiral extensions.

3.1.2 The maniplex 2̂sM−1 and chiral extensions of chiral poly-
topes with regular quotients

In this section we will describe a technique to build an infinite family {Ps : s ∈
N, s > 2} of chiral extensions of a given chiral n-polytope K with regular facets from
a particular chiral extension P of K. The polytope Ps satisfies the property that if P
has type {p1, . . . , pn−1, q}, then Ps is of type {p1, . . . , pn−1, lcm(2s, q)}. To guarantee
the existence of such a family we will need that K satisfies certain particular conditions
that we describe in detail below.

In order to do so we develop a construction of extensions of maniplexes. In other
words, given a maniplex M we build a maniplex called 2̂sM−1 whose facets are iso-
morphic to M, and such that the last entry of the Schläfli symbol of 2̂sM−1 is 2s.
If K is an abstract regular polytope the resulting maniplex 2̂sK−1 is actually a poly-
tope that is isomorphic to the polytope

(
2sK∗−1

)∗
introduced by Pellicer in [47] (see

Corollary 3.1.16).

Definition 3.1.7. Let M be an n-maniplex with base flag Φ0. Let {F1, . . . , Fm} be
the facets of M labelled so that Φ0 ∈ Fm. Let F(M) and Con(M) = 〈r0, . . . , rn−1〉
denote the set of flags and the connection group ofM respectively. Choose s ∈ N such
that s > 2 and let U = {x = (x1, . . . , xm) ∈ Zms : ∑m

i=1 xi = 0}. Consider the vectors
aj = ej − em, where ei denotes the vector of Zms with ith entry equal to 1 and every
other entry equal to 0. Note that aj = (0j−1, 1, 0m−j−1,−1) if j < m and that am = 0.
Then 2̂sM−1 is the (n+ 1)-maniplex (Fs, {s0, . . . , sn}), where

Fs = F(M)× U × Z2,

si(Φ, x, δ) = (riΦ, x, δ) for 0 6 i 6 n− 1,
sn(Φ, x, δ) = (Φ, x + (−1)δaj, 1− δ) whenever Φ ∈ Fj,

Proposition 3.1.8. The pair (F s, {s0, . . . , sn}) defined in Definition 3.1.7 is a mani-
plex whose facets are isomorphic toM. Moreover, if every (n−2)-face ofM is incident
to two different (n− 1)-faces, then 2̂sM−1 has 2s facets incident to each (n− 2)-face.

Proof. First observe that if i ∈ {0, . . . , n}, then si is a permutation of Fs, since riΦ ∈
F(M) and ai ∈ U . Clearly si is an involution for i ∈ {0, . . . , n− 1}. Now assume that
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Φ is a flag ofM with Fj ∈ Φ, then

s2
n (Φ, x, δ) = sn

(
Φ, x + (−1)δaj, 1− δ

)
=
(
Φ, x + (−1)δaj + (−1)1−δaj, δ

)
= (Φ, x, δ) .

This proves that sn is an involution.
Observe that ri 7→ si for 0 6 i 6 n − 1 defines an isomorphism between Con(M)

and 〈s0, . . . , sn−1〉. This isomorphism proves that the facets of 2̂sM−1 are isomorphic
toM. Moreover, if w ∈ Con(M) we may think of w as en element of Con(2̂sM−1).

Let (Φ, x, δ) be a flag of 2̂sM−1. Let w ∈ Con(M) be such that Φ = wΦ0. Observe
that

wsnw
−1(Φ, x, δ) = (Φ, x, 1− δ). (3.1.9)

It follows that (wsnw−1)δ(Φ, x, δ) = (Φ, x, 0). Now, if j ∈ {1, . . . ,m} let wj ∈ Con(M)
be such that wjΦ ∈ Fj. Then

(wsnw−1)(w−1
j snwj)(wsnw−1)δ(Φ, x, δ) = (wsnw−1)(w−1

j snwj)(Φ, x, 0)
= (wsnw−1)(Φ, x + aj, 1)
= (Φ, x + aj, 0).

(3.1.10)

Combining Equation (3.1.9), Equation (3.1.10) and the fact that {a1, . . . , am} is a
generating set for U it follows that we can map every flag (Φ, x, δ) to every flag (Φ, y, ε)
by an element of 〈s0, . . . , sn〉. The transitivity of Con(2̂sM−1) on Fs now follows from
the transitivity of Con(M) on F(M).

If i, j ∈ {0, . . . , n − 1} it is clear that si(Φ, x, δ) 6= sj(Φ, x, δ) since M is a mani-
plex. For i ∈ {0, . . . , n − 1}, sn(Φ, x, δ) 6= si(Φ, x, δ) since they have different third
coordinates.

Let (Φ, x, δ) be a flag and let j ∈ {1, . . . ,m} be such that Φ ∈ Fj. If i ∈ {0, . . . , n−
2} then riΦ ∈ Fj, and then it follows that

sisn(Φ, x, δ) = (riΦ, x + (−1)δaj, 1− δ) = snsi(Φ, x, δ).

Then sn commutes with si whenever i 6 n − 2. The elements si and sj commute for
i, j ∈ {0, . . . , n − 1} with i 6= j and |i − j| > 2 because ri and rj commute. We have
proved then that 2̂sM−1 is a maniplex.

Let (Φ, x, δ) be a flag and assume that Φ ∈ Fj. Let k ∈ {1, . . . ,m} be such that
rn−1(Φ) ∈ Fk. Observe that if every (n− 2)-face ofM is incident to two (n− 1)-faces,
then j 6= k. Consider the action of (snsn−1)2 on an arbitrary flag (Φ, x, δ):

(snsn−1)2 (Φ, x, δ) = snsn−1sn (rn−1Φ, x, δ)
= snsn−1

(
rn−1Φ, x + (−1)δak, 1− δ

)
= sn

(
Φ, x + (−1)δak, 1− δ

)
=
(
Φ, x + (−1)δak + (−1)1−δaj, δ

)
=
(
Φ, x + (−1)δ(ak − aj), δ

)
.
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Figure 3.4: The maniplex 2̂sM−1 whereM is a triangle and s = 3.

It follows that orbit of (Φ, x, δ) under 〈(snsn−1)2〉 has length the same as the order of
(ak − aj) in U , which is s, provided that j 6= k. Therefore, if every (n− 2)-face ofM
is incident to two (n − 1)-faces, then the order of (snsn−1)2 is s. Then we have that
there are 2s facets incident to each (n−2)-face of 2̂sM−1. In particular, ifM is of type
{p1, . . . , pn−1}, then 2̂sM−1 is of type {p1, . . . , pn−1, 2s}. �

Remark 3.1.11. IfM is a regular maniplex, then the condition that every (n− 2)-face
ofM is incident to two facets ofM is equivalent to requiring thatM has at least two
facets.

Observe that the orbit of a flag (Φ, x, δ) under the group 〈s0, . . . , sn−1〉 is

{(Ψ, x, δ) : Ψ ∈ F(M)}.

In particular, every facet of 2̂sM−1 is determined by a pair (x, δ) with x ∈ U and δ ∈ Z2.
Furthermore, the maniplex 2̂sM−1 is dually bipartite; and the necessary colouring is
given by δ. The base facet of 2̂sM−1 is the facet determined by the pair (0, 0). This
facet together with the base flag Φ0 ofM determines the base flag (Φ0, 0, 0) of 2̂sM−1.

In Figure 3.4 we show then maniplex 2̂sM−1 whenM is a triangle and s = 3. The
facets of the triangle are labelled with {1, 2, 3} being 3 the base facet. The shaded
triangles are those whose flags satisfy δ = 1 and the white triangles are those with
δ = 0. Each facet has associated to it an element of U as explained in the previous
paragraph.

Now we describe some symmetry properties of 2̂sM−1. Assume that γ ∈ Aut(M).
Observe that γ acts on {1, . . . ,m} by permuting the elements the same way it permutes
the facets ofM. If x = (x1, . . . , xm), then take xγ := (x1γ−1 , . . . , xmγ−1). This defines
an action of Aut(M) on U . Observe that this action is linear in the sense that (x+y)γ =
xγ + yγ for every x, y ∈ U . Note also that ejγ = ejγ for every j ∈ {1, . . . ,m}. In
particular ajγ = ejγ − emγ = ejγ − emγ.
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For γ ∈ Aut(M), define γ : Fs → Fs by

(Φ, x, δ)γ = (Φγ, xγ + δamγ, δ).

Proposition 3.1.12. The mapping γ 7→ γ defines an embedding of Aut(M) into
Aut(2̂sM−1). In fact, ifM denotes the base facet of 2̂sM−1, then the image of Aut(M)
is precisely StabAut(2̂sM−1)(M).

Proof. First we need to prove that γ is an automorphism. To prove that γ is a permu-
tation of Fs observe that it has as inverse the function γ−1:

(Φγ, xγ + δamγ, δ) γ−1 =
(
Φ, (xγ + δamγ)γ−1 + δamγ−1 , δ

)
= (Φ, x + δ(emγγ−1 − emγ−1) + δ(emγ−1 − em), δ)
= (Φ, x, δ) .

If i ∈ {1, . . . , n− 1}, then

si ((Φ, x, δ) γ) = si (Φγ, xγ + δamγ, δ)
= (riΦγ, xγ + δamγ, δ)
= (riΦ, x, δ) γ
= (si (Φ, x, δ)) γ.

So it remains to show that sn ((Φ, x, δ) γ) = (sn (Φ, x, δ)) γ.
Consider the left side of the previous equation:

sn ((Φ, x, δ) γ) = sn (Φγ, xγ + δamγ, δ)
=
(
Φγ, xγ + δamγ + (−1)δaj, 1− δ

)
,

where j ∈ {1, . . . ,m} is such that Φγ ∈ Fj. Now the right side:

(sn (Φ, x, δ)) γ =
(
Φ, x + (−1)δak, 1− δ

)
γ

=
(
Φγ, (x + (−1)δak)γ + (1− δ)amγ, 1− δ

)
where k ∈ {1, . . . ,m} is such that Φ ∈ Fk. Note that if these two are different, then
they differ in the second coordinate. Observe also that kγ = j. Compare the second
coordinates. On the one hand,

xγ + δamγ + (−1)δaj = xγ + δ(emγ − em) + (−1)δ(ej − em)
= xγ + (δ)emγ +

(
−δ − (−1)δ

)
em + (−1)δej,

and on the other

(x + (−1)δak)γ + (1− δ)amγ = xγ + (−1)δ(ekγ − emγ) + (1− δ)(emγ − em)
= xγ +

(
−(−1)δ + (1− δ)

)
emγ − (1− δ)em + (−1)δej.
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Finally, observe that
(
−(−1)δ + (1− δ)

)
= δ and

(
−δ − (−1)δ

)
= (δ−1) for δ ∈ {0, 1}.

This proves that γ is indeed an automorphism of 2̂sM−1.
Clearly if (Φ, 0, 0) is a flag of the base facet, then

(Φ, 0, 0)γ = (Φγ, 0, 0).

Since Φ is arbitrary, this defines a group homomorphism such that the image of Aut(M)
is a subgroup of StabAut(2̂sM−1)(M). Since the action of the automorphism group on the
set of flags is free, this homomorphism is injective. Every element of StabAut(2̂sM−1)(M)
induces an automorphism ofM. Since the action of Aut(2̂sM−1) on flags is free, these
automorphisms must belong to the image of Aut(M). �

From now on we will abuse notation and denote γ simply by γ and think of Aut(M)
as a subgroup of Aut(2̂sM−1). Similarly, if there is no place for confusion, we will denote
the base facet of 2̂sM−1 byM instead ofM.

Now, for every y ∈ U consider τy : Fs → Fs given by τy : (Φ, x, δ) 7→ (Φ, x + y, δ).
Consider also the mapping χ : Fs → Fs given by χ : (Φ, x, δ) 7→ (Φ,−x, 1 − δ). The
following proposition describes more about these mappings.

Proposition 3.1.13. The functions τy and χ define automorphisms of 2̂sM−1. The
group 〈τy : y ∈ U〉 defines a subgroup of Aut(2̂sM−1) isomorphic to U , 〈χ〉 is a subgroup
of Aut(2̂sM−1) isomorphic to Z2 and

〈{χ} ∪ {τy : y ∈ U}〉 ∼= Z2 n U.

Moreover, this group acts transitively on facets of 2̂sM−1.

Proof. Observe that τ−y is the inverse of τy, so the latter is a bijection. Let (Φ, x, δ)
be a flag of 2̂sM−1 such that Φ ∈ Fj. If i ∈ {0, . . . , n− 1}, then

si ((Φ, x, δ) τy) = si (Φ, x + y, δ) = (riΦ, x + y, δ) = (riΦ, x, δ) τy = (si (Φ, x, δ)) τy.

We also have

sn ((Φ, x, δ) τy) = sn (Φ, x + y, δ)
= (Φ, x + y + (−1)δaj, 1− δ)
=
(
Φ, x + (−1)δaj, 1− δ

)
τy

= (sn (Φ, x, δ)) τy.

Therefore, τy defines an automorphism of 2̂sM−1. The mapping y 7→ τy defines an
isomorphism from U to 〈τy : y ∈ U〉.

Similarly, for i ∈ {0, . . . , n− 1}

si ((Φ, x, δ)χ) = si (Φ,−x, 1− δ) = (riΦ,−x, 1− δ)
= (riΦ, x, δ)χ
= (si (Φ, x, δ))χ,
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and
sn ((Φ, x, δ)χ) = sn (Φ,−x, 1− δ)

= (Φ,−x + (−1)1−δaj, δ)
=
(
Φ,−(x + (−1)δaj), δ

)
=
(
Φ, x + (−1)δaj, 1− δ

)
χ

= (sn (Φ, x, δ))χ.
This proves that χ is actually an automorphism. It is clear that χ is a involution.
Moreover

(Φ, x, δ)χτyχ = (Φ,−x, 1− δ) τyχ

= (Φ,−x + y, 1− δ)χ
= (Φ, x − y, δ)
= (Φ, x, δ)τ−y.

The previous computation implies that χτyχ = τ−y. Clearly 〈χ〉 ∩ 〈τy : y ∈ U〉 = {ε},
since τy does not modify the third coordinate. It follows that

〈{χ} ∪ {τy : y ∈ U}〉 = 〈χ〉n 〈τy : y ∈ U〉 ∼= Z2 n U.

Finally note that the automorphism χδτx maps the facet determined by the pair
(0, 0) to the facet determined by the pair (x, δ). �

Now we are ready to describe the structure of Aut(2̂sM−1).
Theorem 3.1.14. Let M be an n-maniplex such that every (n − 2)-face of M is
incident to two facets. Let 2̂sM−1 be the maniplex defined in Definition 3.1.7. Then

Aut(2̂sM−1) ∼= Aut(M) n (Z2 n U) .
Proof. Propositions 3.1.12 and 3.1.13 prove that

〈Aut(M) ∪ {χ} ∪ {τy : y ∈ U}〉 6 Aut(2̂sM−1).
To prove the other inclusion observe that if an automorphism ω ∈ Aut(2̂sM−1) maps the
base flag (Φ0, 0, 0) to (Ψ, x, δ), there is an automorphism of Z2 n U mapping (Φ0, 0, 0)
to (Ψ, 0, 0), and then there must be an automorphism in Aut(M) mapping Ψ0 to Φ,
since Aut(M) is the stabilizer of the base facet. The inclusion follows from the fact
the the action of Aut(2̂sM−1) on Fs is free (see Item 2 of Proposition 1.1.8).

It just remains to determine the structure of the group. It is clear that (Z2 n U)∩
Aut(M) = {ε}, since the former fixes the first coordinate of every flag and the only
element of Aut(M) that fixes a flag of M is ε. Take γ ∈ Aut(M), y ∈ U and let
(Φ, x, δ) be an arbitrary flag. Then

(Φ0, x, 0) γ−1τyγ =
(
Φγ−1, xγ−1 + δamγ−1 , δ

)
τyγ

=
(
Φγ−1, xγ−1 + δamγ−1 + y, δ

)
γ

=
(
Φ, (xγ−1 + δamγ−1 + y)γ + δamγ, δ

)
= (Φ, x + δ(emγ−1γ − emγ + emγ − em) + yγ, δ)
= (Φ, x + yγ, δ)
= (Φ, x, δ) τyγ.
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Similarly,

(Φ, x, δ) γ−1χγ =
(
Φγ−1, xγ−1 + δamγ−1 , δ

)
χγ

=
(
Φγ−1,−(xγ−1 + δamγ−1), 1− δ

)
γ

= (Φ,−x + δ(em − emγ−1)γ + (1− δ)(emγ − em), 1− δ)
= (Φ,−x + amγ, 1− δ)
= (Φ, x, δ)χτamγ .

These computations imply that γ−1τyγ = τyγ and γ−1χγ = χτamγ . Therefore, Aut(M)
normalises (U n Z2) and

〈Aut(M) ∪ {χ} ∪ {τy : y ∈ U}〉 = Aut(M) n (Z2 n U) . �

Corollary 3.1.15. Let M be a regular n-maniplex with at least two facets and such
that Aut(K) = 〈ρ0, . . . , ρn−1〉. Then 2̂sM−1 is a regular maniplex and ρ0, . . . , ρn−1, χ
act as abstract reflections with respect to the base flag (Φ0, 0, 0).

Proof. Just observe that for i ∈ {0, . . . , n− 1}

si (Φ0, 0, 0) = (riΦ, 0, 0) = (Φρi, 0, 0) = (Φ, 0, 0) ρi

and
sn (Φ0, 0, 0) = (Φ, 0, 1) = (Φ, 0, 0)χ. �

Corollary 3.1.16. If K is a regular polytope, then the maniplex 2̂sK−1 is an abstract
regular polytope and it is isomorphic to the polytope

(
2sK∗−1

)∗
constructed by Pellicer

in [47].

Proof. The automorphism group described in Theorem 3.1.14 is isomorphic to the one
described in [47, Theorem 3.4]. The isomorphism maps each abstract reflection of
2̂sK−1 to the corresponding abstract reflection of

(
2sK∗−1

)∗
. �

The construction 2̂sM−1 allows us to prove the following theorem.

Theorem 3.1.17. Let K be a chiral n-polytope of type {p1, . . . , pn−1}. Assume that
K has a quotient that is a regular maniplex with at least two facets. If P is a chiral
extension of K of type {p1, . . . , pn−1, q}, then for every s ∈ N, K has a chiral extension
of type {p1, . . . , pn−1, lcm(q, 2s)}.

Proof. Let Aut+(K) = 〈σ1, . . . , σn−1〉 and Aut+(P) = 〈σ1, . . . , σn−1, σn〉. Let R be the
regular quotient of K. For s ∈ N, consider 2̂sR−1. By Corollary 3.1.15, 2̂sR−1 is a
regular (n + 1)-maniplex. Let Aut+(2̂sR−1) = 〈σ′1, . . . , σ′n〉. Observe that Aut+(R) =
〈σ′1, . . . , σ′n−1〉. Consider the group

Γs = Aut+(P)♦Aut+(2̂sR−1) = 〈(σ1, σ
′
1), . . . , (σn, σ′n)〉 .

Observe that the group Aut+(K) = 〈σ1, . . . , σn−1〉 covers the group Aut+(R) =
〈σ′1, . . . , σ′n−1〉. Since Aut+(P) satisfies the intersection property, then Proposition 1.5.14
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Figure 3.5: The map {4, 4}(4,2) with {4, 4}(2,0) as quotient.

implies that Γs is the automorphism group of an orientably regular or chiral polytope
Ps. By Corollary 1.5.11, the group

Aut+(K)♦Aut+(R) =
〈
(σ1, σ

′
1), . . . , (σn−1, σ

′
n−1)

〉 ∼= Aut+(K).

It follows that the facets of Ps are isomorphic to K and hence they are chiral. Therefore
Ps is chiral itself. The order of (σn, σ′n) is lcm(q, 2s), which implies that Ps is of type
{p1, . . . , pn−1, lcm(q, 2s)}. �

Example 3.1.18. The map K = {4, 4}(4,2) has infinitely many non-isomorphic chiral
extensions. Moreover, K admits a chiral extension whose last entry of its Schläfli
symbol is arbitrarily large.

Indeed, by Theorem 2.2.7, K admits a chiral extension P . Let Λ(b,c) denote the
lattice group such that {4, 4}(b,c) = {4, 4}/Λ(b,c). Since the lattice group Λ(4,2) is
contained in the lattice Λ(2,0), then R = {4, 4}(2,0) is a regular quotient of K with 4
facets (see Proposition 1.5.13 and Figure 3.5). Therefore we may apply Theorem 3.1.17.

In Section 3.2 we will show some results that improve the one shown in Exam-
ple 3.1.18.

3.2 Chiral extensions of maps on the torus
In this section we will apply Theorem 3.1.17 to some chiral extensions of maps on the
torus constructed by Schulte and Weiss in [64]. We will show that almost every chiral
map on the torus admits infinitely many non-isomorphic chiral extensions. In order to
do so, we will first study the family of maps {4, 4}(b,c) and how this family is related to
the Gaussian integers. Some relations between abstract polytopes and numeric rings
like the Gaussian integers have been explored before, see [44, 43].
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In this section we denote by Z[i] the Gaussian integers, meaning the ring

Z[i] = {a+ bi : a, b ∈ Z} ⊆ C.

They were introduced by Gauss in [25]. If the reader is interested in a deeper discussion
about them we suggest [56, Example 3.77].

If z = a+bi ∈ Z[i], then its conjugate is z = a−bi. The norm of a Gaussian integer
z = a+ bi is denoted by N(z) and is defined by

N(z) = zz = a2 + b2.

Definition 3.2.1. We say that a Gaussian integer z1 divides a Gaussian integer z2 if
there exists a Gaussian integer w such that wz1 = z2. In this situation we write z1|z2.
A Gaussian integer z is a unit if z|1. We say that z is irreducible if z is not a unit and
if there exist w1, w2 ∈ Z[i] such that z = w1w2, then either w1 or w2 is a unit.

Known facts about Z[i] are that the only units are 1, −1, i and −i. Moreover,
a Gaussian integer z is a unit if and only if N(z) = 1. If z = w1w2, then N(z) =
N(w1)N(w2), in particular any Gaussian integer whose norm is a prime number must
be irreducible. Of our particular interest is the following theorem. Its proof follows
from [56, Proposition 3.78 and Exercise 3.79] (see also [25, p. 546]).

Theorem 3.2.2. If z is a Gaussian integer, then there exist irreducible Gaussian
integers p1, . . . , pk and r1, . . . , rk ∈ N such that

z = pr1
1 · · · p

rk
k .

Moreover, this decomposition is unique up to multiplication by units and permutation
of indices.

Theorem 3.2.2 says that Z[i] is a unique factorization domain. In fact, the Gaussian
integers together with their norm are a Euclidean domain (see [56, Proposition 3.78]).
This implies that Z[i] shares many properties with the integers. In particular, the
concepts of relative primes, least common multiple or greatest common divisor have
their analogues in Z[i]. Next we list some relevant properties of the Gaussian integers.

Lemma 3.2.3 ([56, Proposition 3.81]). Let z, w ∈ Z[i], then the following hold:

1. If d = gcd(z, w), then there exist s, t ∈ Z[i] such that d = sz + tw.

2. If z = pr for an irreducible p ∈ Z[i] then every divisor of z is of the form upk

with u a unit and k 6 r.

Now we describe how to relate Gaussian integers to the regular and chiral maps
{4, 4}(b,c). Consider the function f : Z[i] → Z2 defined by f(b + ci) = (b, c) (see
Section 1.3). Note that f is an additive group homomorphism. The connection of Z[i]
with regular and chiral toroidal maps is given by

b+ ci 7→ {4, 4}f(b+ci) = {4, 4}(b,c). (3.2.4)
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Recall that a map {4, 4}(b,c) is the quotient of the Euclidean tessellation of type
{4, 4} by the lattice group with basis {(b, c), (−c, b)}. In particular, the mapping
described in Equation (3.2.4) is not injective. We will develop some results that explain
how this mapping is related to the product in Z[i], but first we will prove some basic
facts about the maps {4, 4}(b,c). In the following results Λ(b,c) will denote the lattice
group whose generators are the translations with respect to the vectors (b, c) and (−c, b)
so that {4, 4}(b,c) = {4, 4}/Λ(b,c). As before, we denote Λ(b,c) the lattice associated to
the group Λ(b,c).
Proposition 3.2.5. Let {4, 4}(b,c) denote the toroidal map {4, 4}/Λ(b,c). Then

{4, 4}(b1,c1)♦{4, 4}(b2,c2) = {4, 4} /
(
Λ(b1,c1) ∩Λ(b2,c2)

)
.

{4, 4}(b1,c1)� {4, 4}(b2,c2) = {4, 4} /
〈
Λ(b1,c1),Λ(b2,c2)

〉
.

Proof. This is a direct consequence of Proposition 1.5.13 with Γ = Aut+({4, 4}), Λ1 =
Λ(b1,c1) and Λ2 = Λ(b2,c2). �

In general it is not easy to determine the lattice groups Λ(b1,c1) ∩ Λ(b2,c2) and〈
Λ(b1,c1),Λ(b2,c2)

〉
. However we will give some results that allow us to determine them

in certain cases. But first consider the following remark.
Remark 3.2.6. If z = b + ci, then toroidal map {4, 4}f(z) = {4, 4}(b,c) has 4(b2 + c2) =
4N(z) white flags, which in turn is the size of Aut+({4, 4})(b,c) (see [2, Theorem 4]).
Lemma 3.2.7. Let b1, c1, b2, c2 ∈ Z. Let z1 = b1 + c1i and z2 = b2 + c2i. Assume that
z1 and z2 are coprime in Z[i]. Then

{4, 4}f(z1)♦{4, 4}f(z2)
∼= {4, 4}(b1b2−c1c2,b1c2+b2c1) = {4, 4}f(z1z2) .

Proof. First observe that 〈Λ(b1,c1),Λ(b2,c2)〉 = Z2. To see this note that since z1 and z2
are coprime, then there exist w1 = s1 + t1i, w2 = s2 + t2i ∈ Z[i] such that

1 = w1z1 + w2z2

= (s1 + t1i) (b1 + c1i) + (s2 + t2i) (b2 + c2i)
= s1(b1 + c1i) + t1(−c1 + b1i) + s2(b2 + c2i) + t2(−c2 + b2i).

Since f is a group isomorphism, it follows that

(1, 0) = s1(b1, c1) + t1(−c1, b1) + s2(b2, c2) + t2(−c2, b2) ∈ 〈Λ(b1,c1),Λ(b2,c2)〉.

Similar computation show that (0, 1) ∈ 〈Λ(b1,c1),Λ(b2,c2)〉.
Observe that (b1b2−c1c2, b1c2 +b2c1) = b2(b1, c1)+c2(−c1, b1) ∈ Λ(b1,c1); analogously

(b1b2− c1c2, b1c2 + b2c1) ∈ Λ(b2,c2). This implies that the toroid {4, 4}f(z1z2) covers both
toroids {4, 4}(b1,c1) and {4, 4}(b2,c2).

Finally, by Corollary 1.5.10 and Remark 3.2.6 we have that

|Aut+({4, 4}(b1,c1)♦{4, 4}(b1,c1))| =
4N(z1)4N(z2)

4N(1)
= 4N(z1z2)
= |Aut+({4, 4}f(z1z2))|,
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which implies that
{4, 4}(b1,c1)♦{4, 4}(b1,c1) ∼= {4, 4}f(z1z2) . �

Lemma 3.2.7 says that the mix of chiral maps on the torus essentially behaves
as the product of Gaussian integers whenever the Gaussian integers are coprime. It
is important to remark that the hypothesis that the Gaussian integers are coprime
is necessary. For example, we know by Corollary 1.5.11 that {4, 4}(2,1)♦{4, 4}(2,1) ∼=
{4, 4}(2,1) but (2 + i)(2 + i) = 3 + 4i.

Now we show some technical results that will allow us to generalize some of the
results of [64].

Lemma 3.2.8. Let z = pr ∈ Z[i] with p irreducible. Assume that z = b+ ci. If bc 6= 0,
then gcd(b, c) = 1, that is, b and c are relative primes as rational integers.

Proof. Assume that there exists a positive prime q ∈ Z such that q|b and q|c. This
implies that q|z in Z[i]. Since z = pr, then q must be a power of p, say q = pk. Observe
that

q2 = N(q) = N(pk) = (N(p))k.
This implies that k ∈ {1, 2}.

If k = 1 then p = q, which implies that z = pr = qr ∈ Z, hence b = 0. If k = 2 then
q = p2 and N(p) = q, but this implies that

pp = N(p) = q = p2.

It follows that p = p, then p ∈ Z, implying that c = 0. In both cases we contradict the
assumption that bc 6= 0. �

Using Lemma 3.2.7 repeatedly and Lemma 3.2.8 we prove the following theorem.

Theorem 3.2.9. Let b, c ∈ Z. Let z = b + ci ∈ Z[i]. Assume that z = pr1
1 · · · prkk with

p1, . . . , pk irreducible in Z[i]. If prjj = bj + cji for every j ∈ {1, . . . , k} then

{4, 4}(b,c)
∼= {4, 4}(b1,c1)♦ · · ·♦ {4, 4}(bk,ck) .

Moreover, if bjcj 6= 0, then bj and cj are coprime.

Theorem 3.2.9 gives us a way to decompose chiral maps of type {4, 4} in terms of
“simpler” maps. The analysis we have done for the maps of type {4, 4} has its analogue
for the maps of type {3, 6} (and by duality, those of type {6, 3}), but instead of using
the Gaussian integers we have to use the Eisenstein integers Z[ω] defined by

Z[ω] =
{
b+ cω : b, c ∈ Z and ω = e

2π
3 i
}
.

In this situation the norm of an Eisenstein integer b + cω is given by c2 − cb + b2.
We just have to consider the function g : Z[ω] → Z2 given by g(b + cω) = (b − c, c).
The mapping analogous to that of Equation (3.2.4) is given by

b+ cω 7→ {3, 6}g(b+cω) = {3, 6}(b−c,c).

Lemma 3.2.7 and Lemma 3.2.8 have their analogues. The corresponding theorem is
the following.
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ω ω + 1

1

Figure 3.6: Coordinates of Eisenstein integers

Theorem 3.2.10. Let b, c ∈ Z. Let z = (b+c)+cω ∈ Z[ω]. Assume that z = pr1
1 · · · prkk

with p1, . . . , pk irreducible in Z[ω]. For every j ∈ {1, . . . , k}, let bj, cj ∈ Z such that
p
rj
j = (bj + cj) + cjω. Then

{3, 6}(b,c)
∼= {3, 6}(b1,c1)♦ · · ·♦ {3, 6}(bk,ck) .

Moreover, if bjcj 6= 0, then bj and cj are coprime.

The reason why the function g seems to be more complicated than its analogue for
Gaussian integersis that the coordinates of the vectors associated to the maps {3, 6}(b,c)
are usually taken with respect to the basis {1, ω+1} and not {1, ω} (see Theorem 1.3.15
and Figure 3.6).

In [64] Schulte and Weiss build chiral 4-polytopes from the hyperbolic tessellations
of types {4, 4, 3}, {4, 4, 4}, {6, 3, 3} and {3, 6, 3}. The strategy in all the cases is
essentially the same: they represent the rotation group [p, q, r]+ of {p, q, r} as matrices
in PGL2(R) with R = Z[i] if {p, q, r} is {4, 4, 4} or {4, 4, 3}, and R = Z[ω] if {p, q, r}
is {6, 3, 3} or {3, 6, 3}. Then they find an appropriate m in such a way there is a
ring homomorphism from R to Zm. This induces a homomorphism from PGL2(R) to
PGL2(Zm) which maps [p, q, r]+ to a finite group. Then they prove that these finite
groups are the rotation groups of orientably regular or chiral polytopes.

The following results are simplified versions of some of their results.

Theorem 3.2.11 ([64, Theorem 7.3]] ). For every rational integer m > 3 there exists
an orientably regular polytope P of type {4, 4, 3} with facets isomorphic to {4, 4}(m,0)
and vertex-figures isomorphic to the cube {4, 3}.

Theorem 3.2.12 ([64, Theorem 7.6]). Let m > 3 be a rational integer such that the
equation x2+1 has a solution in Zm. Then for every i ∈ Zm such that i2 ≡ −1 (mod m)
there exist b, c ∈ Z such that gcd(b, c) = 1, m = b2 + c2 and b + ci ≡ 0 (mod m). In
this situation, the image of [4, 4, 3]+ to PGL2(Zm) is the automorphism group of a
chiral polytope of type {4, 4, 3} with facets isomorphic to {4, 4}(b,c) and vertex-figures
isomorphic to {4, 3}.

The following result implies a converse to Theorem 3.2.12.
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Lemma 3.2.13. Let b, c ∈ Z be such that gcd(b, c) = 1. Let m = b2 + c2, then the
equation x2 + 1 admits a solution in Zm.

Proof. Observe that b and m are coprime, otherwise b and c would have a common
divisor. Then b has multiplicative inverse in Zm and since b2 + c2 ≡ 0 (mod m), then
1 + (b−1c)2 ≡ 0 (mod m). In other words, b−1c is a solution of x2 + 1 in Zm. �

As a consequence of Lemma 3.2.13 we have that for every b, c ∈ Z such that
gcd(b, c) = 1 the integer m = b2 + c2 satisfies the hypothesis of Theorem 3.2.12
and therefore there exists a chiral polytope of type {4, 4, 3} with facets isomorphic
to {4, 4}(b,c).

Observe that combining Theorem 3.2.9 with Theorem 3.2.11, Theorem 3.2.12 and
Lemma 3.2.13 we have the following result.

Theorem 3.2.14. For every b, c ∈ Z such that bc(b − c) 6= 0 there exists a chiral
polytope P of type {4, 4, 3} whose facets are isomorphic to {4, 4}(b,c).

Proof. Decompose the map {4, 4}(b.c) as

{4, 4}(b1,c1)♦ · · ·♦ {4, 4}(bk,ck)

as described in Theorem 3.2.9. For each j ∈ {1, . . . , k} let Pj be the extension of
{4, 4}(bj ,cj) given by Theorem 3.2.11 or Theorem 3.2.12. Let

P = P1♦ · · ·♦Pk.

We know that P is a maniplex of type {4, 4, 3}. Observe that the facets of P are
precisely {4, 4}(b,c). We just have to prove that Aut+(P) satisfies the intersection
property; however, we can use a dual version of Proposition 1.5.14 since all the vertex-
figures of these polytopes are isomorphic to the cube. �

Of course, the analysis we have done for type {4, 4, 3} can be done for types {4, 4, 4},
{6, 3, 3} and {3, 6, 3} (using the results of Section 8, Section 9 and Section 10 of [64],
respectively), and we would obtain chiral extensions of the maps {4, 4}(b,c), {3, 6}(b,c)
and {6, 3}(b,c). With those polytopes of type {6, 3, 3} the intersection property will
follow again from Proposition 1.5.14. With types {4, 4, 4} and {3, 6, 3} we cannot
use Proposition 1.5.14 any more. We will prove the intersection property for those
polytopes of type {4, 4, 4}, the proof for those of type {3, 6, 3} is analogous.

Theorem 3.2.15. Let b, c be two integers with bc(b − c) 6= 0. Then there exists a
4-polytope P of type {4, 4, 4} such that every facet of P is isomorphic to the map
{4, 4}(b,c).

Proof. Let b1, . . . , bk, c1, . . . ck ∈ Z such that

{4, 4}(b,c)
∼= {4, 4}(b1,c1)♦ · · ·♦ {4, 4}(bk,ck)

as in Theorem 3.2.9. For j ∈ {1, . . . , k} let Pj be the extension of {4, 4}(bj ,cj) of type
{4, 4, 4} constructed in [64, Theorem 8.2] (if {4, 4}(bj ,cj) is regular) or [64, Theorem 8.4]
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(if {4, 4}(bj ,cj) is chiral). Let σ
(j)
1 , σ(j)

2 and σ(j)
3 denote the generators of Aut+(Pj). Let

P = P1♦ · · ·♦Pj. Let σ1, σ2 and σ3 denote the generators of Aut+(P). Observe that

σ1 =
(
σ

(1)
1 , σ

(2)
1 , . . . , σ

(k)
1

)
,

σ2 =
(
σ

(1)
2 , σ

(2)
2 , . . . , σ

(k)
2

)
,

σ3 =
(
σ

(1)
3 , σ

(3)
2 , . . . , σ

(k)
3

)
.

A similar argument to that of Theorem 3.2.14 shows that the facets of P are iso-
morphic to {4, 4}(b,c). Therefore, by Lemma 3.0.8, we only need to prove that

〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉, and
〈σ1, σ2〉 ∩ 〈σ3〉 = {ε}.

Theorem 8.2 and Theorem 8.4 of [64] show that the vertex-figures of each Pj are
also toroids of type {4, 4}. It follows that the vertex-figures of P are also toroids of type
{4, 4} (see Proposition 3.2.5). The group 〈σ1, σ2〉 is the rotation group of the facet of
P and the group 〈σ2, σ3〉 is the rotation group of the vertex-figure of P . Lemma 1.3.16
implies that

〈σ1, σ2〉 = 〈σ2〉n T1,

〈σ2, σ3〉 = 〈σ2〉n T2,

where T1 = 〈σ2σ
−1
1 , σ−1

2 σ1〉 and T2 = 〈σ2σ
−1
3 , σ−1

2 σ3〉. Observe that for the group
〈σ2, σ3〉 we are using a dual version of Lemma 1.3.16. If γ ∈ 〈σ1, σ2〉 ∩ 〈σ2, σ3〉, then
there exist k1, k2 ∈ Z, t1 ∈ T1 and t2 ∈ T2 such that σk1

2 t1 = γ = σk2
2 t2. This implies

that t1t−1
2 ∈ 〈σ2〉. It is enough to prove that either t1 or t2 is trivial.

Observe that
t1 =

(
t
(1)
1 , . . . , t

(k)
1

)
and

t2 =
(
t
(2)
1 , . . . , t

(k)
2

)
,

where for a given j, t(j)1 and t(j)2 denote the elements resulting after replacing each σi
by σ(j)

i in any expression as a product of σ1, σ2 and σ3 of t1 and t2, respectively. We
will show that t(j)2 is trivial for an arbitrary j.

Following the construction given by Schulte and Weiss in [64], we have that

σ
(j)
1 =

[
ij 0
0 1

]
, σ

(j)
2 =

[
ij 1− ij
0 1

]
, σ

(j)
3 =

[
1 + ij −ij

1 0

]
, (3.2.16)

where the matrices are elements of PGL2(Zmj) with mj = b2
j + c2

j , ij is such that
bj + cjij ≡ 0 (mod mj) and i2j ≡ −1 (mod mj).

Let τ1 =
(
σ

(j)
2

(
σ

(j)
1

)−1
)
and τ2 =

((
σ

(j)
2

)−1
σ

(j)
1

)
. For any integers p, q we have

τ p1 τ
q
2 =

[
1 (1 + ij)(q − pij)
0 1

]
.
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Similarly, if τ ′1 =
(
σ

(j)
2

(
σ

(j)
3

)−1
)
and τ ′2 =

((
σ

(j)
2

)−1
σ

(j)
3

)
, then

(τ ′1)p(τ ′2)q =
[
1 + (q + pij) −(q + pij)
q + pij 1− (q + pij)

]
.

Since t1 ∈ T1 = 〈τ1, τ2〉 and t2 ∈ T2 = 〈τ ′1, τ ′2〉, there exist integers p1, q1, p2, q2 such that
if α = q1 − p1ij and β = q2 + p2ij, then

(
t
(j)
1

) (
t
(j)
2

)−1
=
[
1 (1 + ij)α
0 1

] [
1 + β −β
β 1− β

]

=
[
1 + β + (1 + ij)αβ −β + (1 + ij)(α)(1− β)

β 1− β

] (3.2.17)

However, since (t(j)1 )(tj2)−1 ∈ 〈σ(j)
2 〉, by comparing Equation (3.2.16) with Equa-

tion (3.2.17), we obtain that β = q2 + p2ij = 0, implying that t(j)2 is trivial. Since the
previous computation does not depend on j, we may conclude that t2 is trivial and
therefore γ = σk2

2 t2 ∈ 〈σ2〉. �

Following [1, Theorem 6], letM = {4, 4}(b,c) with d = gcd(b, c) and b0, c0 such that
b = db0 and c = dc0. If n = b2

0 + c2
0, then

M�M =

{4, 4}(d,0), if n is odd,
{4, 4}(d,d) , if n is even.

(3.2.18)

Similarly, by [1, Theorem 6], let M = {3, 6}(b,c), d = gcd(b, c) and b0, c0 be such
that b = db0 and c = dc0. If n = b2

0 + b0c0 + c2
0, then

M�M =

{3, 6}(d,0), if n ≡ 1 (mod 3),
{3, 6}(d,d) , if n ≡ 0 (mod 3).

(3.2.19)

And dually, ifM = {6, 3}(b,c), then:

M�M =

{6, 3}(d,0), if n ≡ 1 (mod 3),
{6, 3}(d,d) , if n ≡ 0 (mod 3).

(3.2.20)

Equations (3.2.18) to (3.2.20) imply that the only maps on the torus without a
regular quotient with at least two facets are {4, 4}(b,c) and {6, 3}(b,c) with b, c coprime
and b 6≡ c (mod 2) for type {4, 4}, or b 6≡ c (mod 3) for the case {6, 3}. Note that
every regular toroidal map of type {3, 6} has at least two facets. Using these facts and
the discussion about chiral extensions of maps above together with Theorem 3.1.17 we
have proved the following results.

Theorem 3.2.21. LetM = {4, 4}(b,c) be a chiral map of type {4, 4} on the torus. Let
d = gcd(b, c). If d 6= 1 or d = 1 but b ≡ c (mod 2), then for every s ∈ N there exists a
chiral extension ofM of type {4, 4, 6s} and a chiral extension ofM of type {4, 4, 4s}.
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Theorem 3.2.22. Let M = {3, 6}(b,c) be a chiral map of type {3, 6} on the torus.
Then for every s ∈ N there exists a chiral extension ofM of type {3, 6, 6s}.

Theorem 3.2.23. LetM = {6, 3}(b,c) be a chiral map of type {6, 3} on the torus. Let
d = gcd(b, c). If d 6= 1 or d = 1 but b ≡ c (mod 3), then for every s ∈ N there exists a
chiral extension ofM of type {6, 3, 6s}.

3.3 Chiral extensions of regular toroids
Throughout this section we will develop a construction of a chiral extension for almost
every regular (n + 1)-toroid of type {4, 3n−2, 4}(a,0,...,0) for n even. To be precise, we
will prove the following result:

Theorem 3.3.1. Let n > 2 be even. Then for all but finitely many toroids T of type
{4, 3n−2, 4}(a,0,...,0), there exists a chiral (n+ 2)-polytope P such that the facets of P are
isomorphic to T .

Observe that the rank in the previous result is denoted by (n + 1) instead of n,
just as we did in Section 1.3. We will keep this convention all through this section.
Therefore the results in this section are intended to build chiral extensions of regular
(n+ 1)-toroids.

To build the extension we will use Theorem 1.2.28. In the first part of this section
we will outline the construction of a permutation group Γ that satisfies the required
conditions to be the automorphism group of a chiral polytope. In particular, we will
give sufficient conditions to guarantee that Γ is not the rotation group of a regular
polytope. In Section 3.3.1 we will focus on the intersection property for Γ. This
construction follows the idea in [51].

Throughout this section we will assume that n is even. However, most of our results
will not make use of this fact. We will mention it explicitly when this hypothesis is
necessary. From now on, let T denote the toroid {4, 3n−2, 4}(a,0,...,0) for some fixed
a > 2.

In order to give the appropriate notation for this section we are going to study
the structure of the regular toroid T . We label the flags of T as follows. Recall that
Aut(T ) ∼= (SnnCn

2 )nZna (see Lemma 1.3.18). Let γ ∈ Aut(T ) and let σ ∈ Sn, x ∈ Cn
2

and t ∈ Zna such that γ = σ · x · t. Let Φ0 be the base flag of T , then label the flag Φ0γ
with the triple (σ, x, t). In particular, Φ0 is labelled with ((1), 1, 0) where 1 is the vector
of Cn

2 with all its entries equal to 1. Observe that we are just identifying every flag of
T with an element of its automorphism group. This identification is well defined, since
Aut(T ) acts freely and transitively on flags. The combinatorial aspects of the triplets
will be useful, as explained below.

Let F0 be the facet of the toroid containing the base flag Φ0. Since F is isomorphic
to an n-cube, then StabAut(T )(F0) = Sn n Cn

2 . This implies that whenever a flag is
labelled with a triple where the third coordinate is equal to 0, this flag belongs to F0.
Furthermore, observe that Zna acts on the facets of T by translation. It follows that
two flags (σ, x, t) and (τ, y, u) belong to the same facet of T if an only if u = t. This
allows us to identify the facets of T with the elements of Zna .
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The first two coordinates of the label of a flag also have a combinatorial interpre-
tation. We describe this interpretation only on the base facet F0.

Recall that F0 is an n-cube. Label the vertices of the cube with the elements of Cn
2

in such a way that if k ∈ {0, . . . , n}, each k-face F (x, I) of the cube can be described
by its vertex set as

F (x, I) = {y ∈ Cn
2 : yj = xj if j 6∈ I},

where x = (x1, . . . , xn), y = (y1, . . . , yn), I ⊆ {1, . . . , n}, |I| = k. With this iden-
tification, two faces F (x, I) and G(x, J) with |I| 6 |J | are incident if and only if
F (x, I) ⊆ G(y, J). In other words, we are just identifying the n-dimensional cube with
the polytope 2S where S is the (n− 1)-simplex (see Theorem 2.1.3).

Observe that a flag of the cube containing a vertex x now has the form

{∅, F (x, I0), F (x, I1), . . . , F (x, In)},

where |Ij| = j for j ∈ {0, . . . , n} and I0 ⊆ I1 ⊆ · · · ⊆ In. Thus I0 = ∅ and In =
{1 . . . , n}. Notice that for every j ∈ {1, . . . , n}, the set Ij \ Ij−1 has exactly one
element ij. The family of sets {Ij : 0 6 j 6 n} defines a permutation σ ∈ Sn such that
σ : j 7→ ij. Conversely, a permutation σ ∈ Sn determines a family {Ij : 0 6 j 6 n}
of nested sets such that Ij \ Ij−1 = jσ. Therefore, a permutation σ and an element
x ∈ Cn

2 determine uniquely a flag of the base cube. The label associated to this flag is
precisely (σ, x, 0).

Informally speaking, if (σ, x, 0) is the label of a flag Φ, then x describes the relative
position of the vertex of Φ on the cube F0. The permutation σ defines the “direction”
of the faces relative to x in the following sense. To get the other vertex of the edge in
Φ we have to “move” (change the sign of x) in direction 1σ; to get the four vertices
of the 2-face of Φ we have to “allow movement” in the directions 1σ and 2σ; etc. See
Figure 3.7 for an example on dimension two.

We next introduce some notation. Given x = (x1, . . . , xn) ∈ Cn
2 and a subset

I = {i1, . . . , ik} of {1, . . . , n} we denote by x(i1,...,ik) the vector (x′1, . . . , x′n) ∈ Cn
2 such

that xi = x′i if and only if i 6∈ {i1, . . . , ik}. Note that x(i1,...,ik) = yIx where yI is the
vector in Cn

2 whose ith-entry is 1 if and only if i 6∈ I. For a permutation σ ∈ Sn and
a vector x = (x1, . . . , xn) ∈ Cn

2 , we denote by σx the vector resulting after permuting
the coordinates of x according to σ, this is, σx = (x1σ−1 , x2σ−1 , . . . , xnσ−1). Similarly,
if t = (t1, . . . , tn) ∈ Zna , then σt denotes the vector (t1σ−1 , t2σ−1 , . . . , tnσ−1), and if
y = (y1, . . . , yn) ∈ Cn

2 , then yt = (y1t1, . . . , yntn). Finally, observe that all these
operations can be understood as left actions of the corresponding groups.

With the notation just introduced it is easy to understand the action of Con(T ) on
the set of flags. This is given by

ri(σ, x, t) =


(σ, x(1σ), t) if i = 0,
((i i+ 1)σ, x, t) if 1 6 i 6 n− 1,
(σ, x(nσ), t− xnσenσ) if i = n,

(3.3.2)

where x = (x1, . . . , xn) and ek denotes the vector (0k−1, 1, 0n−k) ∈ Zna . Equation (3.3.2)
follows from considering the combinatorial interpretation of the labeling, for instance,
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(1),
(1,−1),

0

(1),
(−1,−1),

0

(1 2),
(−1,−1),

0

(1 2),
(−1, 1),

0
(1),

(−1, 1),
0

(1),
(1, 1),

0

(1 2),
(1, 1),

0

(1 2),
(1,−1),

0

(1),
(1,−1),
e1

(1),
(−1,−1),

e1

(1 2),
(−1,−1),

e1

(1 2),
(−1, 1),
e1(1),

(−1, 1),
e1

(1),
(1, 1),
e1

(1 2),
(1, 1),
e1

(1 2),
(1,−1),
e1

(1),
(1,−1),
e2

(1),
(−1,−1),

e2

(1 2),
(−1,−1),

e2

(1 2),
(−1, 1),
e2(1),

(−1, 1),
e2

(1),
(1, 1),
e2

(1 2),
(1, 1),
e2

(1 2),
(1,−1),
e2

(1),
(1,−1),
e1 + e2

(1),
(−1,−1),
e1 + e2

(1 2),
(−1,−1),
e1 + e2

(1 2),
(−1, 1),
e1 + e2(1),

(−1, 1),
e1 + e2

(1),
(1, 1),
e1 + e2

(1 2),
(1, 1),
e1 + e2

(1 2),
(1,−1),
e1 + e2

Figure 3.7: Labeling of the flags of the toroid {4, 4}(2,0)
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it is clear that ri for i ∈ {0, . . . , n− 1} must fix the third coordinate in (σ, x, t) since it
fixes the facet of the flag.

Recall that Aut(T ) = (SnnCn
2 )nZna and that a flag is labelled (σ, x, t) if and only if

((1), 1, 0)σ · x · t = (σ, x, t). If τ ∈ Sn, then τ−1xτ ∈ Cn
2 and is the automorphism given

by the vector τx. Similarly, τ−1tτ is the automorphism given by the vector τt ∈ Zna .
For y ∈ Cn

2 , the automorphism y−1ty is given by the vector yt ∈ Zna . The previous
discussion implies that the action of Aut(T ) is given by

(σ, x, t)τ = (στ, τx, τ t),
(σ, x, t)y = (σ, yx, yt),
(σ, x, t)u = (σ, x, t+ u).

(3.3.3)

It follows that if γ = τ · y · u, then

(σ, x, t)γ = ((στ, y(τx), y(τt) + u).

As in Chapter 1, we say that a flag Ψ of T is white if Ψ and the base flag Φ0 belong
to the same orbit under Aut+(T ). If Φ is not white, then we say that Φ is a black
flag. If σ ∈ Sn, then sgn(σ) ∈ {1,−1} and is equal to 1 if and only if σ is an even
permutation. If x ∈ Cn

2 , let sgn(x) = (−1)k where k denotes the number of entries of x
equal to −1. Observe that a flag (σ, x, t) of T is white if and only if sgn(σ) sgn(x) = 1.

The construction of the chiral extension of T depends on the existence of a scattering
element, defined below, for the base facet. We will give conditions for the existence of
such elements later, but first we will show some basic properties of scattering elements.
Definition 3.3.4. Let F be a facet of the toroid T . An element η ∈ Con+(T ) is said
to be a scattering element for F if for every two flags Φ and Ψ containing F , the facet
in the flag ηΦ is different from the facet in the flag ηΨ.
Lemma 3.3.5. Let η ∈ Con+(T ) be a scattering element of T for the base facet F0.
Then the following hold:

1. If Φ is a flag containing F0, then the facet of ηΦ is not F0.

2. If Φ and Ψ are distinct flags containing the same facet of T , then the facets of
ηΦ and ηΨ are different.

Proof. For Part 1, assume that F0 is the facet of ηΦ. Let Ψ be a flag of T containing
F0 different from Φ. Since T is regular, there exists γ ∈ Aut(T ) such that Φγ = Ψ.
Then

ηΨ = η(Φγ) = (ηΦ)γ.
In particular, the facet of ηΨ is the facet of (ηΦ)γ, but since F0 ∈ ηΦ and F0γ = F0,
it follows that the facet of ηΨ is F0, contradicting that η is a scattering element.

Let Φ and Ψ be two distinct flags containing the same facet F of T . Since Aut(T )
acts transitively on facets, there is an automorphism γ mapping F to F0. Since η
is a scattering element for F0, the facets of η(Φγ) and η(Ψγ) are different. However
η(Φγ) = (ηΦ)γ and η(Ψγ) = (ηΨ)γ. This implies that the facets of (ηΦ)γ and (ηΨ)γ
are different; but since γ is an automorphism, the facets of ηΦ and ηΨ must also be
different, as desired. This proves Part 2. �
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Part 2 of Lemma 3.3.5 implies that for regular polytopes, the existence of a scat-
tering element only depends on the polytope and not on the choice of the base facet.
If P is a regular polytope, we say that η ∈ Con+(P) is a scattering element of P
if η is a scattering element for any facet of P . We will use this fact when proving
Proposition 3.3.7, where we show that certain toroids do have a scattering element.

Now it is time to give an explicit expression for a scattering element η of T . Let
((1), 1, 0) be the base flag of T . Let v0 ∈ Zna be the vector (1, 2, . . . , n). Let η be the
(unique) element of Con+(T ) that satisfies that η((1), 1, 0) = ((1), 1, v0).

For a permutation σ ∈ Sn and an element x ∈ Cn
2 , let v(σ, x) denote the vector

xσv0. This is the vector obtained from v0 after permuting its entries according to
σ then changing signs according to x. From Equation (3.3.3) follows that for a flag
(σ, x, t)

η(σ, x, t) = (σ, x, t+ v(σ, x)) . (3.3.6)

Proposition 3.3.7. Assume that T is the toroid {4, 3n−2, 4}(a,0,...,0) with a > 2n + 1.
Let v0 ∈ Zna be the vector (1, 2, . . . , n). Let η be the unique element of Con+(T ) that
satisfies that η((1), 1, 0) = ((1), 1, v0). Then η is a scattering element of T .

Proof. By Part 2 of Lemma 3.3.5, we only need to prove that if (σ, x, 0) and (τ, y, 0) are
different flags of the base facet, then v(σ, x) 6= v(τ, y). However, this follows from the
fact that a > 2n+ 1, since in this situation, all the elements of {1, . . . , n} are different
in Za, and if i, j ∈ {1, . . . , n} then −i 6≡ j (mod a). Therefore, if v(x, σ) = v(y, τ),
then x = y and σ = τ . �

Given a scattering element η, we will fix a base (white) flag of each facet of T as
follows. If F0 is the facet of the base flag Φ0, then Φ0 is the base flag of F0. Let
Φ1 = ηΦ0 and let F1 be the facet of Φ1; the base flag of F1 is Φ1. Let Ψ be a black flag
of T containing F0 and let Φ = r0Ψ. Note that ηΨ and r0ηr0Φ are 0-adjacent flags. In
particular, these two flags share the same facet. Define r0ηr0Φ to be the base flag of
this facet. Observe that we have chosen a base flag for F0 and for the facet of ηΨ for
every black flag Ψ containing F0. It follows from Part 1 of Lemma 3.3.5 and from the
fact that η is a scattering element that this choice is well defined.

Now for every other facet of T pick its base flag Φ such that if Φ is labelled with
(σ, x, t), then r0Φ is labelled with (σ, x(1), t). This is equivalent to requiring that 1σ = 1
(see Equation (3.3.2)).

In Figure 3.8 we show a configuration of base flags for the toroid {4, 4}(5,0) with η
defined as in Equation (3.3.6).

For every facet F of T let ρF0 be the automorphism of F that maps its base flag ΦF

to r0ΦF . Observe that ρF0 permutes the flags of F and maps white flags to black flags
and vice versa. Let ρ̃0 be the permutation of flags of T defined by

ρ̃0(Φ) = ΦρF0 , (3.3.8)

whenever the facet of Φ is F .
Remark 3.3.9. Let 0 6 i 6 n− 1. Since the element ri preserves the facet of every flag,
then ρF0 and ri commute. It follows that ρ̃0 and ri commute.
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Φ0

Φ1Φ1

Figure 3.8: Toroid {4, 4}(5,0) with the corresponding base flags and mirrors for ρ̃0.

Given that every facet F of T is an n-cube, the permutation ρF0 acts as a reflection
on a particular direction, namely, the direction of the normal vector of the mirror of
the reflection. Now recall that we may identify the set of facets of T with Zna in such
a way that every flag of the facet identified with an element t ∈ Zna has a label of
the form (σ, x, t) for some σ ∈ Sn and x ∈ Cn

2 . This allows us to define a function
ρ : Zna → {1, . . . , n} in such a way that ρ(t) = i if and only if the direction of the
reflection ρF0 , when F is the facet identified with t, is the ith direction. In other words,
ρ(t) is such that ρ̃0 acts on a flag (σ, x, t) by

ρ̃0(σ, x, t) = (σ, x(ρ(t)), t). (3.3.10)

Observe that for most of the facets t, the base flag has been chosen in such a way that
ρ(t) = 1. Moreover, we have a way to calculate the exact value of ρ for every facet.
Remark 3.3.11. Let t ∈ Zna be the vector associated to a facet F . Let ρ : Zna →
{1, . . . , n} be as defined above. Then

ρ(t) =


1τ, if t = v(τ, y) for some τ ∈ Sn, y ∈ Cn

2

and sgn(τ) sgn(y) = −1,
1, otherwise.

(3.3.12)

By the definition of the base flags we also have the following
Remark 3.3.13. If Φ is the base flag of a facet F , then ρF0 r0(Φ) = Φ, implying that

ρ̃0r0(Φ) = Φ.
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Let Fw denote the set of white flags of T . The group of automorphisms Γ of the
chiral extension of T will be a permutation group on the set Fw×Z2k for some k ∈ N to
be determined later. The group Γ will be generated by the permutations ξ1, ξ2, . . . , ξn+1
defined by Equations (3.3.14) and (3.3.15) to follow. Assume that the base flag of T
is Φ0 and F0 is the facet of Φ0. Let η be a scattering element. Let F1 be the facet of
ηΦ0. Then

ξi (Φ, `) = (r0riΦ, `) , if 1 6 i 6 n, (3.3.14)
and

ξn+1 (Φ, `) =



(ρ̃0r0Φ, `+ 1) , if F0 ∈ Φ and ` is even;
or F1 ∈ Φ and ` is odd.

(ρ̃0r0Φ, `− 1) , if F0 ∈ Φ and ` is odd;
or F1 ∈ Φ and ` is even.

(ρ̃0r0Φ, `) , otherwise.

(3.3.15)

First observe that for a fixed ` ∈ Z2k, the group Γn+1 := 〈ξ1, . . . , ξn〉 acts on the set
Fw×{`} just as the group 〈r0r1, r0r2, . . . , r0rn〉 ∼= Con+(T ) acts on the set Fw. This im-
plies that the group Γn+1 is isomorphic to the permutation group induced by Con+(T )
on Fw, which in turn is isomorphic to Aut+(T ) (see Part 3 of Proposition 1.4.10).

The group elements ξ1, . . . ξn+1 will play the role of the elements τ1, . . . , τn of Corol-
lary 3.0.4 (note the shift of indices), in the sense that if Φ is a flag of the extension of
T , then

Φξi = Φi,0.

By the observations made above, in order to guarantee that the group Γ is the
automorphism group of a chiral extension of T , we need to prove that the genera-
tors ξ1, . . . , ξn+1 satisfy the relations in Corollary 3.0.4. We also need to show that Γ
satisfies the intersection property in Equation (1.2.26), which will be proved in Propo-
sition 3.3.47 using Lemma 3.0.8. Finally, if we want to guarantee that the resulting
polytope is actually chiral we also need to prove the non-existence of a group automor-
phism as described in Part 3 of Theorem 1.2.28.

Proposition 3.3.16. With the notation given above, the group elements 〈ξ1, . . . , ξn+1〉
satisfy the relations of Corollary 3.0.4.

Proof. Translating the notation of Corollary 3.0.4, we only need to prove that

ξ2
n+1 = 1,

(ξ−1
i ξn+1)2 = 1 for all 1 6 i 6 n− 1.

First assume that Φ is a white flag with facet F0 and ` ∈ Z2k is even. Then

ξ2
n+1(Φ, `) = ξn+1(ρ̃0r0Φ, `+ 1),

but ρ̃0r0 maps flags containing F0 to flags containing F0 and `+ 1 is odd, hence

ξn+1(ρ̃0r0Φ, `+ 1) =
(
(ρ̃0r0)2Φ, `

)
= (Φ, k),
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where the last equality holds because ρ̃0 and r0 commute (see Remark 3.3.9). The
proof is identical if F1 ∈ Φ and ` is odd and it is very similar if F0 ∈ Φ and ` is
odd or if F1 ∈ Φ and ` is even. If the facet of Φ is different from F0 and F1, then
ξn+1(Φ, `) = ((ρ̃0r0)Φ, `) for every ` ∈ Z2k. Recall that by Remark 3.3.9, ρ̃0r0 has
period two. It follows that ξ2

n+1 = 1.
To prove the second part, first note that if Φ is a flag and 1 6 i 6 n − 1, then Φ

and riρ̃0Φ contain the same facet. Again, we will only prove the case when F0 ∈ Φ and
` is even; the remaining cases are analogous. We have

(ξ−1
i ξn+1)2 (Φ, `) = ξ−1

i ξn+1 (rir0ρ̃0r0Φ, `+ 1)
= ξ−1

i ξn+1 (riρ̃0Φ, `+ 1)
= ξ−1

i (ρ̃0r0riρ̃0Φ, `)
= (rir0ρ̃0r0riρ̃0Φ, `) = (Φ, `).

Here again, the last equality holds because r0 and ri commute with ρ̃0 (Remark 3.3.9).
�

Next we will prove that there is no group automorphism as described in Corol-
lary 3.0.10. This will imply that the resulting object is actually chiral and not regular.

We need to prove that there is no group automorphism α : Γ→ Γ satisfying

α(ξ1) = ξ−1
1 ,

α(ξi) = ξi for all 2 6 i 6 n+ 1.
(3.3.17)

The idea behind the proof is to assume the existence of such an automorphism
and find an element µ ∈ Γ such that 〈µ〉 induces an orbit of length k and the size of
the orbits 〈α(µ)〉 is bounded. Recall that k is such that Γ is a permutation group on
Fw×Zk and that k can be chosen arbitrarily. Then it will be sufficient to take k equal
to a large prime in such a way that k divides the order of µ but does not divide the
order of α(µ).

Notice that by Equation (3.3.14), there is a natural embedding of Con+(T ) into Γ
given by

w(Φ, `) = (wΦ, `),
for w ∈ Con+(T ). We abuse notation by considering the elements of Con+(T ) as
elements of Γ. In particular, if η denotes a scattering element of T , then we may think
that η ∈ Γ.

Let
µ = ξn+1η

−1ξn+1η (3.3.18)
and assume that α : Γ → Γ is an automorphism satisfying Equation (3.3.17). Let µ′
denote α(µ). Observe that α acts on 〈ξ1, . . . , ξn〉 ∼= Con+(T ) as conjugation by r0 (see
Corollary 3.0.10). Since η ∈ 〈ξ1, . . . , ξn〉 and α fixes ξn+1, then

µ′ = ξn+1r0η
−1r0ξn+1r0ηr0. (3.3.19)

The following discussion will give necessary conditions for the length of some orbits
of flags under the cyclic groups 〈µ〉 and 〈µ′〉.
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η

ξn+1

η−1

ξn+1

Fw × ` Fw × `+ 1 Fw × `+ 2

Figure 3.9: The pair (Φ0,`) under the action of µ

Lemma 3.3.20. Let Φ0 denote the base flag of T . Let Γ be the permutation group
on the set Fw × Z2k defined by Equations (3.3.14) and (3.3.15). Let µ be as in Equa-
tion (3.3.18). Then the orbit of (Φ0, 0) under 〈µ〉 has k elements.

Proof. Let Φ1 = η(Φ0) and let F1 denote the facet of Φ1. Recall that Φ0 and Φ1 are
the base flags of F0 and F1, respectively. This implies that ρ̃0r0Φi = Φi, for i ∈ {0, 1}.
Now, if ` ∈ Z2k, then

ξn+1(Φi, `) = (Φi, `+ (−1)i+`).

Consider then the following computation:

µ(Φ0, `) = ξn+1η
−1ξn+1η(Φ0, `)

= ξn+1η
−1ξn+1(Φ1, `)

= ξn+1η
−1(Φ1, `+ (−1)1+`)

= ξn+1(Φ0, `+ (−1)1+`)
= (Φ0, `+ (−1)1+` + (−1)1+`)
= (Φ0, `+ 2(−1)1+`),

where we have used the fact that `+(−1)1+` ≡ `+1 (mod 2). It follows that µ`(Φ0, 0) =
(Φ0, 2`) for every ` ∈ Z (see Figure 3.9). Therefore, the orbit of (Φ0, 0) under 〈µ〉 has
length k. �

Consider the automorphism −1 : T → T defined on the base flag ((1), 1, 0) by

((1), 1, 0)−1 = ((1),−1, 0) .

This automorphism belongs to Cn
2 and according to Equation (3.3.3) acts on an arbi-

trary flag as
(σ, x, t)−1 = (σ,−x,−t). (3.3.21)

The automorphism −1 belongs to Aut+(T ) if and only if n is even, since the flag
((1),−1, 0) is white precisely when n is even.
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Observe that

r0ηr0Φ0 = r0ηr0 ((1), 1, 0)
= r0η ((1), (−1, 1, . . . , 1), 0)
= r0 ((1), (−1, 1, . . . , 1), (−1, 2, . . . , n))
= ((1), 1, (−1, 2, . . . , n)) .

(3.3.22)

Similarly,

r0η
−1r0Φ0 = r0η

−1 ((1), (−1, 1, . . . , 1), 0)
= r0 ((1), (−1, 1, . . . , 1), (1,−2, . . . ,−n))
= ((1), 1, (1,−2, . . . ,−n)) .

(3.3.23)

Let σ ∈ Sn and x ∈ Cn
2 . Equations (3.3.3) and (3.3.22) imply that if γ = σx is an

automorphism of T fixing the base facet F0, then

r0ηr0(Φ0σx) = (r0ηr0Φ0)σx = (σ, x, x(σ(−1, 2, . . . , n))) . (3.3.24)

Similarly, by Equations (3.3.3) and (3.3.23)

r0η
−1r0(Φ0σx) =

(
r0η
−1r0Φ0

)
σx = (σ, x, x(σ(1,−2, . . . ,−n))) . (3.3.25)

The calculations above will be useful to prove the following lemma.
Lemma 3.3.26. Let n > 2 even. Let Φ0 be the base flag of T and let F0 be the base
facet. Consider the scattering element η defined in Equation (3.3.6). Let F1 be the
facet of ηΦ0. If Ψ is a white flag containing F0, then the following statements hold.

1. The facet of r0ηr0(Ψ) is not F0 nor F1.

2. The facet of r0η
−1r0(Ψ) is the same as the facet of r0ηr0(Ψ−1).

3. The flag r0η
−1r0(Ψ) is fixed by ρ̃0r0.

Proof. Let σ ∈ Sn and x ∈ Cn
2 be such that Ψ = Φ0σx. By Equation (3.3.24) the

facet F of r0ηr0 is the facet labelled by the vector xσ(−1, 2, 3, . . . , n). This vector is
different from zero, implying that F is not F0. The only possibility for F to be F1 is
when σ = (1) and x = (−1, 1, . . . , 1), but this is impossible since σx ∈ Aut+(T ).

Part 2 follows from Equations (3.3.21), (3.3.24) and (3.3.25). To prove Part 3 first
observe that if Ψ = (τ, y, 0), then Ψ−1 = (τ,−y, 0) (Equation (3.3.21)). Now, by
Equations (3.3.23) and (3.3.24) we have that

r0ηr0(Ψ−1) = (τ,−y,−y(τ(−1, 2, . . . , n))) = (τ,−y, y(τ(1,−2, . . . ,−n))) ,

and
r0η
−1r0(Ψ) = (τ, y, y(τ(1,−2, . . . ,−n))).

Since n is even, then −1 ∈ Aut+(T ) and then r0ηr0(Ψ−1) is the base flag of its facet
F . In particular, ρ̃0 acts as r0 on r0ηr0(Ψ−1). This implies that ρ̃0 acts as r0 on
r0η
−1r0(Ψ), since the action of r0 on each flag only depends on the first entry of its

label (see Equation (3.3.2)). The latter observation implies that r0η
−1r0(Ψ) is fixed by

ρ̃0r0. �
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The following results will be helpful to understand the flag orbits under 〈µ′〉. These
play the role of [51, Lemma 29].

Lemma 3.3.27. Let Φ be a white flag of T and let ` ∈ Z2k. Let

(Ψ, `′) = r0η
−1r0ξn+1r0ηr0(Φ, `).

Then, F0 ∈ Φ if and only if F0 ∈ Ψ. In this situation, the orbit of (Φ, `) under 〈µ′〉
has length two.

Proof. First, assume that F0 ∈ Φ. Then the facet of r0ηr0(Φ) is different from F0 and
F1 (Lemma 3.3.26), which implies that r0ηr0Φ is fixed by ξn+1. Therefore Φ = Ψ and, in
particular, F0 ∈ Ψ. The other implication follows from the fact that r0η

−1r0ξn+1r0ηr0
is an involution.

Now, assume that F0 ∈ Φ and consider the following calculation:

(µ′)2(Φ, `) = µ′ξn+1
(
r0η
−1r0ξn+1r0ηr0(Φ, `)

)
= µ′(ρ̃0r0Φ, `+ (−1)`).

However, ρ̃0r0Φ is also a flag containing F0, hence a similar calculation holds and we
have

(µ′)2(Φ, `) = µ′(ρ̃0r0Φ, `+ (−1)`) = (ρ̃0r0ρ̃0r0Φ, `) = (Φ, `). �

Lemma 3.3.28. Let Φ be a white flag of T and let ` ∈ Z2k. Let

(Ψ, `) = r0ηr0(Φ, `).

Assume that F0 ∈ Ψ, then the orbit of (Φ, `) under 〈µ′〉 has length two.

Proof. Consider the following calculation:

(µ′)2(Φ, `) = µ′ξn+1r0η
−1r0ξn+1r0ηr0(Φ, `)

= µ′ξn+1r0η
−1r0

(
ρ̃0r0Ψ, `+ (−1)`

)
,

where the last equality holds because F0 ∈ Ψ. Observe that F0 ∈ ρ̃0r0Ψ; therefore we
may use Part 3 of Lemma 3.3.26 to obtain

µ′ξn+1r0η
−1r0

(
ρ̃0r0Ψ, `+ (−1)`

)
= µ′r0η

−1r0
(
ρ̃0r0Ψ, `+ (−1)`

)
= ξn+1r0η

−1r0ξn+1
(
ρ̃0r0Ψ, `+ (−1)`

)
= ξn+1r0η

−1r0(Ψ, `)
= (Φ, `),

where the last equality follows from applying Part 3 of Lemma 3.3.26 to Ψ and from
the fact that r0η

−1r0Ψ = Φ. �

Lemma 3.3.29. For an element ` ∈ Z2k let Fw` denote the set Fw × {`}. Let t ∈
{1, . . . , k}, such that ` ∈ {2t, 2t+ 1}. Then:

1. If µ′(Φ, `) 6∈ Fw2t ∪ Fw2t+1, then the base facet F0 belongs to either r0ηr0Φ or to
r0ηr0(ρ̃0r0)r0ηr0Φ.
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2. If the orbit of (Φ, `) under the group 〈µ′〉 is not contained in Fw2t ∪Fw2t+1, then its
length is 2.

Proof. Part 1 follows from the definition of ξn+1 (see Figure 3.9), since r0ηr0 and r0η
−1r0

preserve `.
To prove Part 2 take i to be the smallest non-negative integer such that (µ′)i(Φ, `) ∈

Fw2t ∪ Fw2t+1, but (µ′)i+1(Φ, `) 6∈ Fw2t ∪ Fw2t+1. Let (Ψ, `′) = (µ′)i(Φ, `). Observe that
`′ ∈ {2t, 2t + 1}, and by Part 1, F0 belongs either to r0ηr0Ψ or to r0η

−1r0ξn+1r0ηr0Ψ.
In the former situation, Lemma 3.3.27 applies; in the latter Lemma 3.3.28 holds. In
any case, the orbit of (Ψ, `′) under 〈µ′〉 has length two, implying that i = 0 and the
orbit of (Φ, `) under 〈µ′〉 has length two. �

Lemma 3.3.29 implies that the orbit of a pair (Φ, `) under 〈µ′〉 is either contained
in two of the copies of Fw or has length two. This implies that if k is large enough, for
instance larger than 2|Fw|, then the orbit of (Φ, `) cannot have length k. On the other
hand, in Lemma 3.3.20 we have proved that the orbit of (Φ0, 0) under 〈µ〉 has always
length k. Therefore we have the following result.

Proposition 3.3.30. Let Γ be the group generated by the permutations ξ1, . . . , ξn+1
defined in Equations (3.3.14) and (3.3.15) acting on the set Fw × Z2k, for a prime
k > 2|Fw|. Let µ = ξn+1η

−1ξn+1η and µ′ = ξn+1r0η
−1r0ξn+1r0ηr0. Then, there is no

group automorphism α : Γ→ Γ such that

α(µ) = µ′.

Proof. By Lemma 3.3.20, k divides the order of µ. However, by Lemma 3.3.29, all the
orbits of µ′ have length at most 2|Fw|. The order of µ′ is the least common multiple of
the lengths of its orbits and since k is a prime larger than 2|Fw|, then k cannot divide
the order of µ′. Therefore, there is no group automorphism α : Γ → Γ mapping µ to
µ′. �

In particular, Proposition 3.3.30 implies that once we prove that Γ satisfies the
intersection property (1.2.26), then the resulting polytope is actually chiral.

3.3.1 The intersection property
Now we are going to prove that the group Γ satisfies the intersection property. The key
to this proof is to use Lemma 3.0.8. When translating the notation of Lemma 3.0.8 to
the generators ξ1, . . . , ξn+1 it is convenient to define

ς1 = ξ1,

ςi = ξ−1
i−1ξi if 2 6 i 6 n+ 1.

(3.3.31)

Now ς1, . . . , ςn+1 play the role of σ1, . . . , σn (note the change in the rank). Observe
that

〈ς1, . . . , ςn〉 = 〈ξ1, . . . , ξn〉 ∼= Con+(T ) ∼= Aut+(T ). (3.3.32)
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Moreover, the elements ς1, . . . , ςn act on (Φ, `) by

ςi(Φ, `) = (siΦ, `),

where si = ri−1ri. Lemma 3.0.8 indicates that we only need to prove that

〈ς1, . . . , ςn〉 ∩ 〈ςj, . . . , ςn+1〉 = 〈ςj, . . . , ςn〉 (3.3.33)

for every j such that 2 6 j 6 n+ 1.
The intersection property will be proved in Proposition 3.3.47. The strategy to

follow is to consider a certain flag Φ of T such that the intersection of the orbit of
(Φ, 0) under 〈ς1, . . . , ςn〉 and the orbit of (Φ, 0) under 〈ςj, . . . , ςn+1〉 is precisely the orbit
of (Φ, 0) under 〈ςj, . . . , ςn〉. The intersection property will follow from the fact that the
action of 〈ς1, . . . , ςn〉 on the set Fw × {0} is free. The following results will focus on
guaranteeing the existence of such a flag, for which we will introduce some terminology.
First, consider the following remark.
Remark 3.3.34. Let E be an edge of T . If (σ, x, t) and (τ, y, u) are two flags containing
E, then 1σ = 1τ .

Remark 3.3.34 follows from the fact that (σ, x, t) = w(τ, y, u) for some w ∈ 〈ri : i ∈
{0, . . . , n} \ {1}〉. In other words, σ = ντ for some ν ∈ 〈(2 3), (3 4), . . . , (n n+ 1)〉 (see
Equation (3.3.2)). Then στ−1 = ν fixes 1, which implies that 1σ = 1τ . This allows us
to define the direction of E as the number d whenever (σ, x, t) is a flag containing E
and 1σ = d.

If E is an edge of T , let V0 and V1 be the vertices of T incident to E. Since Zna
acts transitively on the set of vertices of T , there exists an automorphism γ ∈ Zna
mapping V0 to V1. Moreover, γ may be chosen as the translation by a certain vector
ed = (0d−1, 1, 0n−d), where d is the direction of E. The line L of E will be the orbit of
E under 〈γ〉. In this situation, d is the direction of L. Observe that the direction of
L is the same as the direction of any of its edges. This occurs because translations do
not modify the first coordinate of the flags (Equation (3.3.3)).

We say that a flag (τ, y, u) of T is perpendicular to a line with direction d if nτ = d.
Of course, all the notions defined in these paragraphs are combinatorial versions

of their geometrical analogues. For instance, a flag is perpendicular to a line with
direction d precisely when its (n−1)-face belongs to a hyperplane whose normal vector
points in the dth direction.

To prove the intersection property we need the existence of a line L satisfying certain
conditions that will be described in Lemma 3.3.37. Before proving that lemma, we will
prove some technical structural results about T . The following lemma characterises
the flags that contain the base edge of T .

Lemma 3.3.35. Let E0 be the base edge. Let Φ be the flag (σ, x, t), with x = (x1, . . . , xn)
and t = (t1, . . . , tn). Then Φ contains E0 if and only if Φ satisfies the following prop-
erties:

1. 1σ = 1,

2. t1 = 0,
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3. if i is such that 2 6 i 6 n, then ti ∈ {0,−1}, and

4. if i is such that 2 6 i 6 n, then ti = −1 if and only if xi = −1.

Proof. We will prove first that any flag containing E0 satisfies Items 1 to 4. Item 1
follows from Remark 3.3.34, since E0 belongs to the base flag Φ0 = ((1), 1, 0).

If E0 is contained in a flag Φ = (σ, x, t), then there exists w ∈ 〈ri : i ∈ {0, . . . , n} \
{1}〉 such that Φ = wΦ0. The element w can be written as

w = wkrnwk−1rn · · · rnw1

in such a way that wk, . . . , w1 ∈ 〈ri : i ∈ {0, . . . , n} \ {1, n}〉. We will prove that Φ
satisfies Items 2 to 4 by induction over k.

If k = 1 then w ∈ 〈ri : i ∈ {0, . . . , n} \ {1, n}〉, which implies that t = 0 and xi = 1
if i > 2 (see Equation (3.3.2)). It follows that wΦ0 satisfies Items 2 to 4.

Assume that
Ψ = (σ, x, t) = wk−1rn · · · rnw1Φ0

satisfies Items 2 to 4. We will prove that wkrnΨ satisfies Items 2 to 4. First observe
that

rnΨ = (σ, x(nσ), t− xnσenσ),

since 1σ = 1, nσ > 2. It follows that rnΨ satisfies Item 2. Now, xnσ and t − xnσenσ
differ from x and t, respectively, in exactly one coordinate, namely the coordinate nσ.
If xnσ = 1 then tnσ = 0, because Ψ satisfies Item 4. In this situation the coordinate
nσ of t − xnσenσ is −1. Similarly, if xnσ = −1, then the coordinate nσ of t − xnσenσ
is 0. It follows that rnΨ satisfies Item 4. As a consequence, Item 3 also holds for rnΨ.
Items 2 to 4 for wkrnΨ follow from the fact that wk preserves the third entry of rnΨ
and does not change any but the first coordinate of the second entry.

Now we need to prove that every flag satisfying Items 1 to 4 is incident to E0. Let
(σ, x, t) be a flag of T satisfying Items 1 to 4. Let x = (x1, . . . , xn) and t = (t1, . . . , tn).
For each i ∈ {2, . . . , n} let ai = (1i−1,−1, 1n−i) ∈ Cn

2 and ei = (0i−1, 1, 0n−i) ∈ Zna .
Consider the automorphisms

εi = (ai)(−ei).

First note that εi preserves E0. If i > 2, then ai acts as a reflection on the base facet
F0 precisely in the direction of ei. Now if i ∈ {2, . . . , n} is such that xi = −1 (hence
ti = −1) then, by Equation (3.3.3)

(σ, x, t)εi = (σ, x(i), ait− ei) = (σ, x(i), t+ ei).

Therefore, if i1, . . . , im are the coordinates of x that are equal to −1, we have that

(σ, x, t)εi1 · · · εim = (σ, 1, 0).

Since 1σ = 1, there exists w ∈ 〈r2, . . . , rn−1〉 such that (σ, 1, 0) = wΦ0 (see Equa-
tion (3.3.2)). This implies that the flag (σ, 1, 0) contains the edge E0. It follows that
the flag (σ, x, t) contains the edge E0, as desired. �
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An immediate consequence of Lemma 3.3.35 is the following result.

Corollary 3.3.36. Let E be the edge of a flag ((1), 1, u) for some u = (u1, . . . , un) ∈
Zna . Let

A = {(v1, . . . , vn) ∈ Zna : v1 = 0 and vi ∈ {0,−1} if i > 2} .

Then, the following hold.

1. A flag (σ, x, t) is incident to E if and only if σ, x = (x1, . . . , xn) and t =
(t1, . . . , tn) satisfy

(a) 1σ = 1,
(b) t1 = u1,
(c) if i > 2, then ti ∈ {ui, ui − 1}, and
(d) if i > 2 then ti = ui − 1 if and only if xi = −1.

2. The facets t incident to E are precisely those that satisfy that t− u ∈ A.

Lemma 3.3.37. Let a > 2n + 1 and let T be the toroid {4, 3n−2, 4}(a,0,...,0). Let Φ0
be the base flag of T . Let η be the scattering element described in Equation (3.3.6).
Assume that E is the edge of η−1Φ0 and let L be the line containing E.

1. The line L has direction 1.

2. Let F be a facet incident to an edge of L, let tF denote the vector of Zna associated
to F and ρ : Zna → {1, 2, . . . , n} be the function defined in Equation (3.3.10).
Then ρ(tF ) = 1.

Proof. Part 1 follows from the fact that the flag η−1Φ has the trivial permutation as
first entry.

Let F be a facet incident to an edge of L. This implies that F is a translate in
direction 1 of a facet G incident to E. Recall that the flag η−1Φ has label ((1), 1,−v0)
with v0 = (1, 2, . . . , n). By Part 2 of Corollary 3.3.36, if tF , tG ∈ Zna denote the vectors
associated to F and G respectively, then tF = tG + ke1 for certain k ∈ Za and tG + v0
belongs to the set A defined in Corollary 3.3.36. It is enough to prove that all the
vectors t = (w − v0) + ke1 with w ∈ A and k ∈ Z satisfy that ρ(t) = 1.

First, observe that if 2 6 i 6 n, then none of −i or −i − 1 are congruent with
±1 modulo a. This condition implies that either t cannot be a vector v(τ, y) for any
τ ∈ Sn and y ∈ Cn

2 or if t = v(τ, y), then 1τ = 1. By Equation (3.3.12), any of the two
conditions imply that ρ(t) = 1, which proves Part 2. �

Lemma 3.3.38. Let Φ be a flag of T such that the facet of Φ is incident to an edge of
the line L defined in Lemma 3.3.37, and let ` ∈ Z2k. Assume that Φ is perpendicular to
L and let (Ψ, `′) = ςn+1(Φ, `) with ςn+1 defined as in Equation (3.3.31). Then Ψ is the
image of Φ under a translation in direction 1. In particular, Ψ is also perpendicular to
L and the facet of Ψ is incident to an edge in L.
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Φ0

η−1Φ0

L

Figure 3.10: The line L

Proof. First observe that
Ψ = rnr0ρ̃0r0Φ = rnρ̃0Φ.

Let Φ = (σ, x, t). By Lemma 3.3.37, ρ(t) = 1. Then we have

Ψ = rnρ̃0Φ
= rnρ̃0(σ, x, t)
= rn(σ, x(1), t)
= (σ, x, t+ x1e1),

where the last equality holds because nσ = 1, since Φ is perpendicular to L. �

Lemma 3.3.39. Let Φ = (σ, x, t) be a flag of T such that the vertex and the facet of
Φ are incident to an edge of L and let ` ∈ Z2k. Let j > 2 and w ∈ 〈ςj, . . . , ςn〉. Let
(Ψ, `′) = ςn+1wς

−1
n+1(Φ, `). Then Ψ is the image under a translation in direction 1 of a

flag in 〈sj, . . . , sn〉Φ.

Proof. Let w ∈ 〈ςj, . . . , ςn〉. Observe that w fixes the second coordinates of the pairs
(Φ, `), hence we may think of w as an element of 〈sj, . . . , sn〉. Assume that

w = vpsnvp−1sn · · · snv1,

where vi ∈ 〈sj, . . . , sn−1〉, for i ∈ {1, . . . , p}. Notice that

Ψ = rnρ̃0wρ̃0rnΦ = (rnρ̃0vpρ̃0rn)(rnρ̃0snρ̃0rn) · · · (rnρ̃0snρ̃0rn)(rnρ̃0v1ρ̃0rn)Φ.

Hence, it suffices to prove that given a flag Φ satisfying the hypothesis of the lemma and
an arbitrary element v ∈ 〈sj, . . . sn−1〉, the flags rnρ̃0vρ̃0rnΦ and rnρ̃0snρ̃0rnΦ satisfy
the hypothesis of the lemma, and that these flags are the image under a translation in
direction 1 of a flag in 〈sj, . . . , sn〉Φ.

Notice that, as a consequence of Part 1 of Corollary 3.3.36, we have that if Φ is
such that the vertex and the facet of Φ are incident to an edge of L, then the vertex
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and the facet of a flag in 〈sj, . . . , sn〉Φ are also incident to and edge of L. Part 2 of
Corollary 3.3.36 implies that the vertex and the facet of every translate in direction
1 of a flag in 〈sj, . . . , sn〉Φ are incident to an edge of L. Therefore, we only need to
prove that if Φ is as above, then rnρ̃0uρ̃0rnΦ and rnρ̃0snρ̃0rnΦ are the image of a flag
in 〈sj, . . . , sn〉Φ under a translation in direction 1.

First consider rnρ̃0vρ̃0rnΦ with v ∈ 〈sj, . . . , sn−1〉. Now, by Remark 3.3.9, ρ̃0 and
v commute, which implies that rnρ̃0vρ̃0rnΦ = rnvrnΦ; but rnvrn ∈ 〈sj, . . . , sn〉, as
desired.

Now consider rnρ̃0snρ̃0rnΦ = rnρ̃0rn−1rnρ̃0rnΦ. Observe that since the facet of
Φ = (σ, x, t) is incident to an edge of L, Part 2 of Lemma 3.3.37 implies that ρ(t) =
ρ(t+ ke1) = 1 for every k ∈ Za. Notice that if nσ 6= ρ(t), then ρ̃0rnΦ = rnρ̃0Φ. In our
situation, this implies that if nσ 6= 1, then

rnρ̃0rn−1rnρ̃0rnΦ = rnρ̃0rn−1rnrnρ̃0Φ = rnrn−1Φ = s−1
n Φ,

where the second equality follows from the fact that ρ̃0 and rn−1 commute (see Re-
mark 3.3.9). Hence, if nσ 6= 1, then rnρ̃0snρ̃0rnΦ = s−1

n Φ.
Now assume that Φ = (σ, x, t) with nσ = 1, that is, the edge of Φ belongs to L.

Consider then the following computation:

rnρ̃0rn−1rnρ̃0rn(σ, x, t) = rnρ̃0rn−1rnρ̃0(σ, x(1), t− x1e1)
= rnρ̃0rn−1rn(σ, x, t− x1e1)
= rnρ̃0rn−1(σ, x(1), t− x1e1 − x1e1)
= rnρ̃0((n− 1 n)σ, x(1), t− x1e1 − x1e1)
= rn((n− 1 n)σ, x, t− x1e1 − x1e1)
= rnrn−1(σ, x, t− x1e1 − x1e1).

But rnrn−1(σ, x, t − x1e1 − x1e1) is the image under a translation in direction 1 of
s−1
n Φ, as desired. �

Using the previous results it is easy to obtain a description of the orbit of certain
flags under the action of 〈ςj, . . . , ςn+1〉 for j > 2.

Lemma 3.3.40. Let Φ be a flag of T such that the facet and the vertex of Φ are
incident to an edge of L and let ` ∈ Z2k. Let d ∈ Z2k be such that ` ∈ {2d − 1, 2d}.
Assume that Φ is perpendicular to L. Let j > 2. Then

〈ςj, . . . , ςn+1〉(Φ, `) =
(
a−1⋃
i=0
〈ςj, . . . , ςn〉(Φ, 2d− 1)ti1

)
∪

∪
(
a−1⋃
i=0
〈ςj, . . . , ςn〉(Φ, 2d)ti1

) (3.3.41)

where t1 is the translation by the vector e1 ∈ Zna . In other words, the orbit of (Φ, `)
under 〈ςj, . . . , ςn+1〉 is the union of translates in the direction of L of the orbit of Φ
under 〈sj, . . . sn〉. These translates go through two copies of Fw, namely Fw2d−1 and
Fw2d.
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Φ

Figure 3.11: The first coordinates of a pair (Φ, `) of Lemma 3.3.40.

Proof. Since F1 is incident to an edge of L but F0 is not, it is clear that the second
coordinate of any element of the orbit of (Φ, `) under 〈ςj, . . . , ςn+1〉 is either 2d− 1 or
2d, so we may restrict our analysis to the flags of Fw × {2d− 1, 2d}. Furthermore, by
Lemma 3.3.38, there are flags of 〈ςj, . . . , ςn+1〉 in both copies of Fw.

Observe that Lemma 3.3.38 proves that the right side of Equation (3.3.41) is con-
tained in the orbit of (Φ, `) under 〈ςj, . . . , ςn+1〉.

To prove the other inclusion it is enough to show that if w ∈ 〈sj, . . . , sn〉 and
(Ψ, `′) = ςn+1w(Φ, `), then Ψ is the image of a flag in 〈sj . . . , sn〉Φ under a translation
in direction 1. Let (Ψ1, `

′′) = ςn+1(Φ, `). Observe that

(Ψ, `′) = ςn+1w(Φ, `) = ςn+1wς
−1
n+1ςn+1(Φ, `) = ςn+1wς

−1
n+1(Ψ1, `

′′).

By Lemma 3.3.38, there exists i1 ∈ {0, . . . , a−1} such that Ψ1 = Φti11 . By Lemma 3.3.39,
there exists w1 ∈ 〈sj, . . . sn〉 and i2 ∈ {0, . . . , a−1} such that Ψ = w1Ψ1t

i2
1 . This implies

that Ψ = w1Φti1+i2
1 . �

Lemma 3.3.42. Let Φ be a flag of T perpendicular to L and let ` ∈ Z2k. Assume
that the vertex of Φ is incident to an edge of L. Let 2 6 j 6 n and w ∈ 〈ς1, . . . , ςn〉 ∩
〈ςj, . . . ςn+1〉. If (Ψ, `′) = w(Φ, `), then the vertex of Ψ is the same as the vertex of Φ.

Proof. By Lemma 3.3.40 the vertex of Ψ is incident to an edge of L.
Since w ∈ 〈ς1, . . . , ςn〉, the element w does not change the second coordinate of

(Φ, `). In other words, ` = `′ and we may think of w as an element in 〈s1, . . . , sn〉.
Now consider the automorphism β ∈ Aut+(T ) such that Φβ = snΦ. Let Φ =

(σ, x, t). Since Φ is perpendicular to L, we have that nσ = 1. This implies that
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Φβ = ((n − 1 n)σ, x1, t + x1e1). Therefore, Φβ is perpendicular to a line of direction
(n−1)σ; in particular, β does not preserve L. Let Lβ denote line containing the images
of the edges of L under β.

The vertex of the flag Ψβ is incident to an edge of Lβ. On the other hand, the vertex
of wsnΦ is incident to an edge of L (Lemma 3.3.40). However, Ψβ = wΦβ = wsnΦ.
This implies that the vertex of Ψβ must be incident to an edge of L and to an edge of
LΦ. The only vertex that satisfies this is the vertex of Φ, and since this vertex is fixed
by β, it follows that the vertex of Ψ is the same as the vertex of Φ. �

Now we are ready to prove the key results that will help us to prove that the group
γ = 〈ς1, . . . , ςn+1〉 satisfies the intersection property in Equation (1.2.26).

Lemma 3.3.43. Let Φ0 be the base flag of T . Then

〈ς1, . . . , ςn〉(Φ0, 0) ∩ 〈ςn+1〉(Φ0, 0) = {(Φ0, 0)} (3.3.44)

Proof. The result follows from the following equations:

〈ς1, . . . , ςn〉(Φ0, 0) = {(Φ, 0) : Φ is a white flag of T },
〈ςn+1〉(Φ0, 0) = {(Φ0, 0), (Φ0, 1)}.

�

Lemma 3.3.45. Let Φ be a flag of T such that Φ is perpendicular to L and the vertex
of Φ is incident to an edge of L. Let 2 6 j. Then

〈ς1, . . . , ςn〉(Φ, 0) ∩ 〈ςj, . . . , ςn+1〉(Φ, 0) = 〈ςj, . . . , ςn〉(Φ, 0). (3.3.46)

Proof. It is only necessary to prove that

〈ς1, . . . , ςn〉(Φ, 0) ∩ 〈ςj, . . . , ςn+1〉(Φ, 0) ⊆ 〈ςj, . . . , ςn〉(Φ, 0).

By Lemma 3.3.40,

〈ς1, . . . , ςn〉(Φ, 0) ∩ 〈ςj, . . . , ςn+1〉(Φ, 0) ⊆
(
a−1⋃
i=0
〈ςj, . . . , ςn〉(Φ, 0)ti1

)
,

since all the elements of 〈ς1, . . . , ςn〉 preserve the second coodinate of the pair (Φ, 0).
Now, by Lemma 3.3.42, if (Ψ, 0) is an element of 〈ςj, . . . , ςn+1〉(Φ, 0), then Ψ has the
same vertex as Φ. This implies that

〈ς1, . . . , ςn〉(Φ, 0) ∩ 〈ςj, . . . , ςn+1〉(Φ, 0) ⊆ 〈ςj, . . . , ςn〉(Φ, 0). �

As explained before, Lemma 3.3.43 and Lemma 3.3.45 offer the conditions to prove
the intersection property for the group 〈ς1, . . . , ςn+1〉.

Proposition 3.3.47. Let ς1, . . . , ςn+1 be the group elements defined in Equation (3.3.31).
Let j > 2. Then

〈ς1, . . . , ςn〉 ∩ 〈ςj, . . . , ςn+1〉 = 〈ςj, . . . , ςn〉. (3.3.48)
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Proof. If j < n+ 1, then define Φ as in the hypothesis of Lemma 3.3.45, if j = n+ 1,
then let Φ = Φ0, as in Lemma 3.3.43. In any case we have

〈ς1, . . . , ςn〉(Φ, 0) ∩ 〈ςj, . . . , ςn+1〉(Φ, 0) = 〈ςj, . . . , ςn〉(Φ, 0).

Let w ∈ 〈ς1, . . . , ςn〉 ∩ 〈ςj, . . . , ςn+1〉. Since w ∈ 〈ς1, . . . , ςn〉, then

w(Φ, 0) ∈ 〈ς1, . . . , ςn〉(Φ, 0).

Similarly,
w(Φ, 0) ∈ 〈ςj, . . . , ςn+1〉(Φ, 0),

which implies that there exists w′ ∈ 〈ςj, . . . , ςn〉 such that

w(Φ, 0) = w′(Φ, 0).

Observe that the action of the group 〈ς1, . . . , ςn〉 on the set

{(Ψ, 0) : Ψ is a white flag of T }

is equivalent to the action of Con+(T ) on the set of white flags of T . In particular,
this action is free. Now, since both w and w′ belong to the group 〈ς1, . . . , ςn〉 and
w(Φ, 0) = w′(Φ, 0), then w = w′, and we have that w ∈ 〈ςj, . . . , ςn〉.

The other inclusion is obvious. �

As a consequence of Propositions 3.3.16, 3.3.30 and 3.3.47 we have the following.

Theorem 3.3.49. Let ς1, . . . , ςn+1 the group elements defined in Equation (3.3.31).
Then the group Γ = 〈ς1, . . . , ςn+1〉 is the automorphism group of a chiral (n+2)-polytope
P whose facets are isomorphic to the toroid {4, 3n−2, 4}(a,0,...,0).

The abstract polytopes constructed in Theorem 3.3.49 prove Theorem 3.3.1.
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