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me aconsejaban siempre con muy buena intención. Al Consejo Nacional de Ciencia y Tecnologı́a CoNa-
CyT, por la beca doctoral con número de CVU 419082; ası́ como el proyecto del Fondo Institucional
FOINS como estudiante de proyecto de investigación FC-2016-1946 y el proyecto UNAM-DGAPA-
PAPIIT con número IN115217. A la Dra. Marı́a Emilia Caballero Acosta y al CoNaCyT por brindarme el
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Chapter 1

INTRODUCTION

This thesis focuses on 4 topics:

1. Construction of a d-dimensional random walk X = (X1, . . . ,Xd) conditioned to have its components
ordered forever, that is, conditioned on A = {X1

j ≤ ·· · ≤ Xd
j for all j ≥ 0}. Our hypotheses are

minimal, in particular, the components can be dependent, have drift, and no moment condition is
imposed. This is done conditioning X to stay ordered up to an geometric time, and seeing this
as a Doob h-transform. Then let the parameter of the geometric tend to infinity. The proof also
uses a generalization of the ladder height times of a random walk, allowing us to recover several
expressions of the (sub)-harmonic function h in the unidimensional case, that is, a random walk
conditioned to stay positive [Tan89, Ber93, CD05].

2. Convergence of the rescaled profile process (giving the number of individuals in each generation) of
uniform trees with a given degree sequence (TGDS). By mixing, this model is a Bienamé-Galton-
Watson (GW) tree conditioned on its size. Hence, we generalize the results of Drmota and Gitten-
berger [DG97] and Kersting [Ker11], about the convergence of the profile of GW trees conditioned
on its number of individuals (cGW). Our result relies on an encoding of the TGDS through the Ver-
vaat transformation (introduced in [Ver79]) of a discrete time exchangeable increments (EI) process.
Then, a time-change equation in the discrete case, relating the profile with such encoding, is proved
to hold in the limit. To prove that the profile converges, we need to prove that such continuous
time-change equation converges either to the zero function or the unique positive solution. This is
done introducing a novel path transformation, implying that in the limit, the tree is not thin near
the root. We also give a direct and simple proof of the convergence of the profile for a cGW tree
with offspring distribution in the domain of attraction of a stable law. This is based on a stochastic
bound of the cGW tree with Kesten’s tree, that is, a tree conditioned on non-extinction. We prove
that Kesten’s tree is not thin at the base, hence neither the cGW tree.

3. Construction and simulation of uniform multitype random forests with a given degree sequence
(MFGDS), and of multitype Galton-Watson forests conditioned by its number of individuals by type
(cMGW). Under an independence assumption, mixing this model results in a cMGW. To obtain
MFGDS, we define a multitype degree sequence, construct a multidimensional discrete time EI
process, and generalize the Vervaat transform (the latter using the results in [CL16]). The joint law
of the number of individuals by types in a cMGW is also obtained, generalizing the Otter-Dwass
formula [Ott49, Dwa69], which gives the law of the size of a GW tree. We obtain enumerations

7



CHAPTER 1. INTRODUCTION 8

of forests with prescribed roots and individuals by types, having a combinatorial structure, namely,
plane, labeled and binary multitype forests. We also give an algorithm to simulate cMGW using
MFGDS, generalizing Devroye’s algorithm [Dev12] for the unitype case.

4. For X a continuous time EI process of infinite variation and t ∈ [0,1) fixed, we prove that the
superior and inferior limits of (Xt+h−Xt)/h are +∞ and −∞, respectively, as h ↓ 0. This extends
Rogozin’s result for Lévy processes [Rog68]. Our main tool is a change of measure of X , which
reduces to the Esscher transform in the Lévy process setting. The applications of this result are the
following:

(a) Both half-lines (0,∞) and (−∞,0) are visited immediately (upward and downward regularity).

(b) X is continuous at its infimum iff its upward and downward regular, generalizing Millar’s
zero-one law [Mil77] for Lévy processes.

(c) Weak convergence of X conditioned to have its infimum above −ε to the Vervaat transform of
X , as ε goes to zero. This generalizes results of [DIM77, UB14, CUB15].

(d) Construction of the convex minorant of X , generalizing [PUB12] for Lévy processes. As
a consequence of this result, we also obtain for EI processes the formula E(inf0≤s≤1 Xs) =∫ 1

0
E(Xl∧0)

l dl (in the discrete case, this is Kac’s formula [Kac54]).

Each topic is presented as a chapter. Chapter 2 has been accepted for publication in the Volume of
the XIII Symposium on Probability and Stochastic Processes. We present first a brief discussion of each
chapter, along with our main results.

1.1 MULTIDIMENSIONAL RANDOM WALKS CONDITIONED
TO STAY ORDERED VIA GENERALIZED LADDER HEIGHT
FUNCTIONS

1.1.1 Preliminaries and motivation
In Chapter 2 we obtain a new construction of a d-dimensional random walk X = (X1, . . . ,Xd), started at
x = (x1, . . . ,xd) with x1 < · · ·< xd , conditioned on the event

A = {X1
j < · · ·< Xd

j for all j ≥ 0}.

Such processes have an important relation with random matrix theory, Dyson’s Brownian motion being
the classical example [Dys62] (a process with the same law as d independent Brownian motions con-
ditioned to stay ordered forever). Another well-studied model is the case d = 2, which is equivalent to
condition a process to stay non-negative, see [Tan89, Ber93, CD05]. Non-intersecting paths are also used
to model some physical phenomena [Fis84]. It also has connections with Young diagrams and domino
tiling [Kön05].

It is well-known that whenever the components of X are independent and E(X1) = 0, then P(A) = 0.
Hence, one has to give a meaning to a random walk conditioned to have ordered components forever. We
achieve this by conditioning X to stay ordered up to a geometric time Gc with parameter 1− e−c and let
c ↓ 0 (see Proposition 2.2 and Theorem 2.1). Under certain hypotheses, similar models of ordered random
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walks have been constructed: in [EK08] when X has i.i.d. components, satisfies a moment condition and a
local limit theorem; in [DW15] for random walks in cones, assuming zero drift, zero covariance between
the components of X , and a moment condition on X1; in [Dur14b] when the drift is not zero, under a
Cramér condition; in [Ign18] for substochastic transient random walks taking values on a countable semi-
group with transition probabilities satisfying a certain inequality. It is important to remark that our model
has minimal assumptions, namely, on some cases, we assume the existence of positive ε1, . . . ,εd−1 such
that

P
(

X2
1 −X1

1 ≥ ε1, . . . ,Xd
1 −Xd−1

1 ≥ εd−1

)
> 0, (1.1)

needed only to prove the finiteness of the (sub)harmonic function h (see Subsection 2.3.2). In particular,
neither a moment condition nor a countable space has to be assumed, as in the cited papers. We prove
that our construction gives a Markovian chain (sub-Markovian) whenever the first time two components
are not ordered has infinite (finite) expectation (see Lemma 2.6). The proof of our theorem is based
on a generalization of the ladder height process of a random walk, giving us several generalizations of
formulas for the unidimensional case (see Section 2.4).

1.1.2 Statement of the results
For ease of notation, our results are stated for d = 3 and for a random walk having state space Rd .
Let X = (X1,X2,X3) be a 3-dimensional random walk on R3 ∪{†}, starting at X0 = 0, having lifetime
ζ = sup{n : Xn 6= †}. Its increments are denoted by W = (W 1,W 2,W 3), and W1 has law P. We denote
by Y = (Y 1,Y 2) = (X2−X1,X3−X2) the size of the gap between components. The law of X killed
at time n ∈ N, that is, on the event ζ = n, will be denoted by Pn. When killing X at an independent
geometric law N ∈ {0,1, . . . ,} with parameter 1− e−c, its law will be Pc. The σ -algebra considered will
be Fn = σ(X1, . . . ,Xn).

The notation that we use is component-wise, hence min{Yi, i ∈ I } = (min{Y 1
i , i ∈ I },min{Y 2

i , i ∈
I }), for any index set I ⊂ Z+. We define for [n] = {1,2, . . . ,n} and [n]0 = {0,1, . . . ,n}, the processes
Y n = min{Yi, i ∈ [n]0}, Y n = min{Yi, i ∈ [n]} and Yn∨ (y1,y2) = (Y 1

n ∨ y1,Y 2
n ∨ y2), where y1,y2 ∈ R. We

also put (x1, . . . ,xd)< (y1, . . . ,yd) whenever component-wise the strict inequality is satisfied.
For W = {(x1, . . . ,xd) ∈ Rd : x1 < · · · < xd}, a positive regular function or harmonic function, with

respect to the transition kernel of X to W, is a function h : W such that

Ex (h(X1);τ > 1) = h(x) x ∈W,

where
τ := min{n : Xn /∈W}.

A function h is subharmonic (superharmonic) if Ex (h(X1);τ > 1) ≤ h(x) (Ex (h(X1);τ > 1) ≥ h(x)) for
every x ∈W.

To avoid trivial cases, we assume that Y has components taking positive and negative values with posi-
tive probability. Besides that, the construction works with no further hypothesis if either some component
of Y drifts to −∞, or every component of Y drifts to +∞. When such conditions are not satisfied, we need
Hypothesis (1.1), needed only for the finiteness of the (sub)harmonic function h. Our main result is the
following.
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Theorem 1.1. Let X be a d-dimensional random walk. Let N be a geometric time with parameter 1−e−c,
independent of X. Assume that

h↑(x) := 1+E

(
J1−1

∑
n=1

1Y n−1−Yn<y

)
< ∞ x = (x1, . . . ,xd) ∈W,

with y = (x2− x1, . . . ,xd − xd−1) and J1 = inf{n > 0 : Y k
n−1 < Y k

n ,k ∈ [d− 1]}. Then, for every x ∈W,
every finite Fn-stopping time T and Λ ∈FT

lim
c→0+

Px (Λ,T ≤ N|X(i) ∈W, i ∈ [N]) = P↑x(Λ,T < ζ ) :=
1

h↑(x)
EQ

x

(
h↑(XT )1Λ,T<ζ

)
,

where EQ
x is the expectation under the law of X killed at the first exit time of W. The limit law is a Markov

chain with transition probabilities

p↑(w,dz) = 1z∈W
h↑(z)
h↑(w)

p(w,dz) w ∈W. (1.2)

Moreover, it is a probability measure if E(τ) = ∞, or a subprobability measure if E(τ)< ∞.

Indeed, this theorem comprises several of our results: in Lemma 2.5 we prove the existence of the
limit of the resulting (sub)harmonic function when conditioning to be ordered up to a geometric time, say
h↑ = limc↓0 h↑c ; in Theorem 2.1 we prove the limit is a Markov chain and has as (sub)harmonic function
h↑; in Lemma 2.6 we characterize when h↑ is harmonic or subharmonic; and the limits of the probability
laws conditioning up to a geometric time, is given in Lemma 2.8.

It has to be noted that when d = 1, the above formula for h↑ coincides with Bertoin’s function h, see
[Ber93, p. 22].

We also give simple conditions to ensure h↑ is finite.

Lemma 1.1. Assume that either

1. some component of Y drifts to −∞,

2. every component of Y drifts to +∞ and P(τ = ∞)> 0,

3. there exists ε = (ε1, . . . ,εd−1) ∈ Rd−1
+ such that

P(Y1 > ε)> 0.

Then
h↑(x)< ∞ ∀x ∈W.

The following is an application of Theorem 1.1.

Example 1.1. For d≥ 1, consider a multidimensional random walk with partial sums Xn =(an,X1
n , . . . ,X

d
n ,bn),

where a < b and a,b ∈ R. Assume that P
(
X1

1 −a > ε1,X2
1 −X1

1 > ε2, . . . ,b−Xd
1 > εd+1

)
> 0 for some

εi > 0, i ∈ {1, . . . ,d+1}, and P
(
X1

1 −a < 0,X2
1 −X1

1 < 0, . . . ,b−Xd
1 < 0

)
> 0. Then, the construction of

Theorem 1.1 provides us with a d-dimensional random walk conditioned to have ordered components and
staying inside the set {x ∈ R : at < x < bt,∀ t ∈ R+}.
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Under some hypothesis concerning the drift of Y , we can reexpress the (sub)harmonic function h as
follows (see Lemma 2.9).

Lemma 1.2. Fix x ∈W. When some component of Y drifts to −∞, we have

h↑(x) =
Ex(τ)

E(τ)
.

When every component drifts to +∞ and P(τ = ∞) is positive, then

h↑(x) =
Px(τ = ∞)

P(τ = ∞)
.

Another reexpression of h↑ is the following. For k = 1,2 denote by (β k
i , i ∈ N) the strict descending

ladder times of Y k, so β k
0 = 0 and β k

i = min{n : Y k
β k

i−1+n
<Y k

β k
i−1
}. Let {β1, . . .} be the ordered union of the

ladder times {β 1
i ,β

2
j , i, j ≥ 1}. Set β0 = 1. Then we have the following (see Proposition 2.4).

Proposition 1.1. Fix x ∈W. Then

h↑(x) = 1+
∞

∑
n=1

P
(
−Y

βn
< y
)
.

We remark that the above formulas also extend the ones known in the unidimensional case, see [BD94,
p. 2155].

1.2 ON THE PROFILE OF TREES WITH A GIVEN DEGREE
SEQUENCE

1.2.1 Preliminaries and motivation
For a tree, we mean a rooted plane tree, that is, a connected graph with no cycles having a distinguished
vertex, together with a natural identification of each vertex by a finite sequence of non-negative integers
(indicating its location on the tree). The formal definition of rooted plane trees is stated in Section 3.1,
see also Figure 3.1 fon an example of such labeling. A branching tree τ with offspring distribution ν , is a
random tree, starting with a common ancestor and where each individual, independently of the others in
the same generation, has offspring according to ν . This is also called Bienaymé-Galton-Watson (BGW)
tree, or simply GW tree.

Branching theory has its origin in the second half of the XIXth century, arising from a demographic
question about the probability of extinction of surnames in noble families. Galton formulated the question
as follows:

“A large nation, of whom we will only concern ourselves with adult males, N in number, and who each
bear separate surnames colonize a district. Their law of population is such that, in each generation, a0
percent of the adult males have no male children who reach adult life; a1 have one such male child; a2

have two; and so on up to a5 who have five. Find (1) what proportion of their surnames will have
become extinct after r generations; and (2) how many instances there will be of the surname being held

by m persons. ”
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Bienaymé [Bie45] was the one to ensure (without mathematical justification), that the probability of
extinction of τ is one if the mean of the reproduction law is smaller than one. It was until 1875, that Galton
and Watson [WG75] used a method involving generating functions. Unfortunately, their conclusion was
incorrect; it was until 1930 that Steffensen gave the correct solution [Ste30].

Undoubtedly, branching processes serve as the most simple model for genealogical evolutions and
the dynamic of populations of individuals living and giving birth independently of the others. It has
applications in different areas such as demography, genealogy, genetics, cell kinetics, epidemics, computer
communications networks, statistical physics, data storage algorithms, ecology, image processing, etc.
[Jag75, AJ97, Pak03, HJV07, All11, ABD18].

Branching processes are also an important tool in pure mathematics. At the end of the past century,
there was a special interest in the asymptotic behavior of certain properties of random trees. Properties
such as the individual with maximum offspring, the number of individuals with a fixed degree, or the
profile of the tree. Among such large random trees studied, are random trees conditioned to be large.
The book of Drmota [Drm09] reviews several of such models. But in the 90’s, Aldous [Ald91a] studied
the convergence of the whole random tree to a new random object, the so-called Continuum Random
Tree (CRT). This is a universal limit in the sense that the normalized contour function of every GW
conditioned to have n vertices, with critical offspring distribution having finite variance converges as
n→∞, to the normalized Brownian excursion, see [Ald91b, Ald93]. The formalism was further developed
by [LGLJ98, DLG02, EPW06], where the theory of R-trees (seeing such trees as abstract metric spaces)
was used to prove the convergence for more general offspring laws, such as laws belonging to the domain
of attraction of a stable law. This theory resulted in the introduction of Lévy trees.

The previous convergence to the CRT, links in a very nice way the branching processes theory with
combinatorics. Depending on the offspring distribution, one can obtain asymptotic features on certain
classes of combinatorial trees with a given number of vertices. For example, the law of a GW tree with
geometric offspring distribution conditioned to have n individuals, is the uniform law on the set of all
rooted plane trees with n vertices. Similarly, with a Poisson offspring distribution the conditioned GW
tree has the uniform law on the set of all rooted Cayley (labeled) trees with n vertices. As a last example,
a Bernoulli-type distribution gives rise to the uniform law over binary trees with n vertices. See [Pit98]
for references. Since we know the convergence of the random conditioned trees to the CRT, we can obtain
several features of typical trees on such classes: height of the tree, number of vertices in the tree between
given generations, number of vertices in a generation that have descendants at a given generation, etc.
As a remark, not all the asymptotic properties of the tree can be obtained in this way. In particular, the
convergence of the whole tree does not imply the convergence of its profile (number of individuals at
each generation). Indeed, Broutin and Marckert [BM14b] proved the convergence of a certain class of
conditioned random trees, the so-called uniform trees with a given degree sequence, and we proved that
there is also convergence of the profile. Actually, we proved this result in a much more general setting
than in [BM14b].

Uniform trees with a given degree sequence are constructed as follows: let S = (Ni, i ≥ 0) be a se-
quence of non-negative integers such that s := ∑i Ni = 1+∑i iNi, and take a uniform tree from the set of
trees with degree sequence S. Let PS be the distribution that samples uniformly at random a tree from
the set of trees with degree sequence S. Such trees are a particular case of uniform random graphs with
a given degree sequence, which are important models for real-world networks (see [BA99, CDS11]). In-
deed, it has been shown that many of the latter have special features such as a degree sequence having
power law tails. This feature is not present in the most well-known model of random graphs, namely, the
Erdős-Rényi random graph [ER60].
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To understand the construction of random trees and scaling limits of its characteristics, it is easier to
code them with random paths and analyze the convergence of the latter.

1.2.2 Forests and excursions
A rooted plane forest F is a finite sequence of rooted plane trees, say (T1, . . . ,Tk). For any individual u in
a tree T , denote by c(u) its number of children. We code and order the individuals of a plane forest T in
two different ways.

Depth-first order: Order the vertices the tree T1 according to the lexicographical order (e.g., ∅ <
1 < 21 < 22), and assign label i to the ith vertex in T1. Similarly, assign label |T1|+ · · · |Tj−1|+ i to the ith
vertex in Tj, with 2≤ j ≤ k.

Breadth-first order: To define this, assign label 1 to the root of T1. Suppose the first generation
(offspring of the root) of u1 has size z1. Order the first generation in lexicographical order, and assign
label i to the ith vertex, for i ∈ {2, . . . ,1+ z1}. Do the same for each consecutive generation, and after
that, for each consecutive tree.

For any n ∈ N let [n]0 := {0,1, . . . ,n}. We say that the path y : [n]0 7→ Z is a downward skip-free
chain, if yk+1−yk ∈ Z+∪{−1}. There exists two known bijections between plane forests and downward
skip-free chains.

Lemma 1.3 (Lemma 6.3 [Pit06] or Proposition 1.1 of [LG05]). Given a plane forest F with n vertices
and k trees, let u1, . . . ,un be the vertices of F labeled in the breadth-first (or depth-first) order. Then the
coding

T 7→ (c(u1), . . . ,c(un))

sets up a bijection between the set of plane forests with k trees and n individuals, and sequences of non-
negative integers (x1, . . . ,xn) such that the downward skip-free chain, starting at zero and with steps xi−1,
first reaches −k at time n.

The depth-first walk (DFW) of a tree will be the walk started at one, and with ith increment c(ui)−1.
The breadth-first walk (BFW) of a tree will be the walk started at one, and with ith increment c(ui)− 1.
These codings are also called excursions. See Figures 3.1 and 3.2 for examples. For a minor technical
reason, when k ≥ 2, we start the DFW and BFW of the forest at zero.

1.2.3 Uniform trees with a given degree sequence and discrete time EI processes
In the paper [BM14b], the authors give an algorithm to construct a tree with law PS from a degree sequence
S, and which is easier to simulate. To introduce it, we need to define a discrete time EI process.

Definition 1.1. Let s ∈ N. A discrete time process (W b( j), j ∈ [s]0) with increments ∆W b(i) = W b(i)−
W b(i−1) has exchangeable increments (EI) if for every deterministic permutation σ on [s](

∆W b(1), . . . ,∆W b(s)
)

d
=
(

∆W b(σ1), . . . ,∆W b(σs)
)
.

To transform W b to an excursion we use a cyclic permutation. For s ∈ N, consider any application
y : [s]0 7→Z with y(0) = 0. The s-cyclical permutations of y are the s applications θs,q(y), for q∈ [s]0 given
by

θs,q(y) =

{
y( j+q)− y(q) j ≤ s−q
y( j+q− s)+ y(s)− y(q) s−q≤ j ≤ s.
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This transformation can be described as cutting the original path at time q obtaining two paths and ex-
changing them, making the new path to start at zero. The next path transformation, introduced by Vervaat
in [Ver79], is used to code random trees from discrete time EI processes.

Definition 1.2. The discrete Vervaat transform of y : [s]0 7→ Z, denoted by V (y), is the i∗th cyclic shift of
y, where i∗ = min{i ∈ [s] : y(i) = min j∈[s] y( j)} is the first time y reaches its minimum.

See Figure 3.3 for an example in the continuous setting.
Now we construct a tree with law PS. First, obtain the child sequence c(S) := c = (c1, . . . ,cs), a vector

with N0 zeros, N1 ones, and so on. Then, obtain the tree as follows:

1. Let π = (π(1), . . . ,π(s)) be a uniform random permutation on [s] := {1, . . . ,s}.

2. Define W b( j) = ∑
j
1(c◦π( j)−1) for j ∈ [s], with W b(0) = 1.

3. Construct W :=V (W b).

In [BM14b], the authors indicate that W codes the depth-first walk of a tree with law PS.

1.2.4 Profile and Lamperti transform
For some degree sequence Sn, consider a tree τn with law PSn . The number of individuals of τn will be
denoted by sn. For any j ≥ 0, let Csn( j) be the total number of vertices up to generation j of τn. The
process Csn is called the cumulative profile or cumulative population profile. If Zsn( j) denotes the total
number of vertices at generation j, then we call Zsn the population profile or simply the profile of τn.

Label the tree using the breadth-first order. Then, the number of individuals up to generation j + 1
is the number of individuals up to generation j, plus all the children from the individuals in the jth
generation, that is

Csn( j+1) =Csn( j)+ c(Csn( j−1)+1)+ · · ·+ c(Csn( j)).

This leads us to

Csn( j+1) = 1+
Csn( j)

∑
k=1

c(k).

Note that if Wsn( j) = ∑
j
k=1(c( j)−1), then

Zsn( j+1) =Csn( j+1)−Csn( j) = 1+
Csn( j)

∑
k=1

(c(k)−1) =Wsn ◦Csn( j). (1.3)

First we rescale Wsn , call this Xn, so that Xn converges to some process X . Then we show that a.s., any
subsequential limit of (Csn,n ∈ N) converges to a process C which, if not the zero function, is positive on
(0,∞), and a solution of

Z(t) = X ◦C(t), (1.4)

for t ≥ 0, where C(t) =
∫ t

0 Z(s)ds. We call the above process Z the Lamperti transform of X , and Zsn the
discrete Lamperti transform of Wsn (see [Lam67a]). To describe the limit of the profile in Equation (1.4)
we need to describe the limit X of the rescaled BFW’s.
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1.2.5 Continuous time EI processes
As in the unidimensional case, it turns out that the limit X can be described as the continuous Vervaat
transform of a continuous time process Xb with exchangeable increments (EI process, or also known as
interchangeable increment process).

A continuous time càdlàg R-valued stochastic process X has exchangeable increments if for every n,
the increments (Xi/n−X(i−1)/n, i∈ [n]) are exchangeable, in the sense of Definition 1.1. From Kallenberg’s
representation [Kal73], any EI on [0,1] has the form

Xb(t) = αt +σb(t)+
∞

∑
1

β j
(
1
(
U j ≤ t

)
− t
)

t ∈ [0,1], (1.5)

where b is a Brownian bridge on [0,1], (U j, j ≥ 1) are independent of b and i.i.d. with uniform law on
[0,1], and with independent three parameters α ∈ R, σ ≥ 0, and (β j, j ≥ 1) satisfying β1 ≥ β2 ≥ ·· ·> 0
and ∑β 2

j < ∞. We say that the process Xb has canonical parameters (α,σ ,β ). In our case, the EI process
will have deterministic canonical parameters (0,σ ,β ).

The “excursion-type” process X , is obtained from Xb as follows. Denote by {t} the fractional part of
a real number t. Let D[0,1] be the space of real-valued càdlàg functions w with domain [0,1] starting at
zero (with an analogous definition for D[0,∞)). Let D′ ⊂ D[0,1] be the subset of functions w such that
w(0) = w(1) = 0, and w hits its infimum in a unique time and continuously. Define for every u ∈ [0,1] the
transformation θu : D′ 7→ D′ by

θu(w)(t) = w({t +u})−w(u).

Definition 1.3. The continuous Vervaat transform of a càdlàg function w∈D′ is defined as V (w) = θρ(w),
where ρ is the unique time w hits its infimum.

Figure 3.3 shows an example.

1.2.6 Statement of the results
Our main theorem is the following.

Theorem 1.2. Consider a sequence (sn,n≥ 1) of degree sequences sn = (Nn
i , i≥ 0), satisfying

1. sn→ ∞.

2. There exists a sequence of positive numbers (bsn ,n≥ 1) going to infinity, and M ∈ N∪{+∞}, such
that (

1
b2

sn
∑( j−1)2Nn

j ,
c̃(1)
bsn

,
c̃(2)
bsn

, . . .

)
→

(
σ

2 +
M

∑
1

β
2
j ,β1,β2, . . .

)
for some β1 ≥ β2 ≥ ·· · ≥ βM > 0, and βM+ j = 0 for every j, and such that ∑

M
1 β 2

j < ∞ and
σ2 ∈ [0,∞), and where (c̃(i), i≥ 1) is the child sequence in decreasing order.

3. Either σ > 0 or ∑β j = ∞.

4. sn/bsn → ∞.
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Define the rescaled processes

Xn =

(
1

bsn

Wsn (bsntc) , t ∈ [0,1]
)
,

Cn =

(
1
sn

Csn

(⌊
sn

bsn

t
⌋)

, t ≥ 0
)

and Zn =

(
1

bsn

Zsn

(⌊
sn

bsn

t
⌋)

, t ≥ 0
)
.

Then, we have the convergence
Xn d→ X ,

under the Skorohod topology D(R+,R+). The limit X is the Vervaat transform of an EI process with
parameters (0,σ ,β ). Furthermore, if ∫ 1

1/2

1
Xs

ds < ∞ a.s., (1.6)

then, we have the joint convergence

(Xn,Cn,Zn)
d→ (X ,C,Z) (1.7)

under the product Skorohod topology D(R+,R+)
3. The limit C has an inverse I given by

I(t) =
∫ t

0

1
X(s)

ds, t ∈ [0,1],

and is the unique solution to

C(t) =
∫ t

0
X ◦C(s)ds, (1.8)

which is strictly increasing on [0, I(1)] if it is not the constant function. Finally Z = X ◦C.

As a corollary we obtain the convergence of the profile of TGDS with a finite variance condition.

Corollary 1.1. Consider a sequence (sn,n≥ 1) of degree sequences, such that

1. sn→ ∞.

2. For

σ
2
n := ∑

j≥1

Nn( j)
sn−1

j2−1,

we have σ2
n → σ2 for some σ2 ∈ (0,∞).

3. The maximum degree satisfies

∆n := max{ j : Nn( j)> 0}= o(s1/2
n ).

Define the rescaled processes Xn, Cn and Zn as in the previous theorem, with bsn = s1/2
n . Then, we have

the joint convergence
(Xn,Cn,Zn)

d→ (σe,C,Z) (1.9)

in the space C ([0,1],R3
+), with C and Z defined as in the previous theorem, but driven by σe.
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We prove our main theorem in several steps. The convergence of the rescaled BFW’s is given in
Proposition 3.6. The correct rescaling of the profile and cumulative profile is given in 3.3.1. The conver-
gence of subsequential limits of the cummulative profile is given in Subsection 3.3.2, and of the profile in
Subsection 3.3.3.

To prove this theorem, the technical difficulty is to show that any subsequential limit of the cumulative
Lamperti transform in (1.3), if converges to the non-zero function, then converges to the unique solution
of (1.4) which is positive on (0,∞). When it converges to the non-zero function, this is equivalent to prove
that such subsequential limits are not zero on (0,Λ), for some Λ ∈ (0,∞]. This can be interpreted as trees
with law PSn not having a thin base. This is proved in Section 3.4. Kersting gave another interpretation
for those trees having few individuals at the base (see Lemma 1.4 below).

In the literature, there are related results on convergence of trees with law Psn (when rescaled in an
appropriate way). The paper [BM14b] proves the convergence of such trees to the CRT, when the degree
sequence satisfies some finite variance condition. Even that the whole tree converges, from such results it
cannot be proved the convergence of the profile. This is true since the profile is not a continuous functional
in the Skorohod space. Therefore, we expand the analysis on convergence for such models, as well as
validate that the profile of such trees satisfying the finite variance condition, converges to the Lamperti
transform of the Brownian excursion. Another very related model are the p-trees, whose continuum
versions are related also by EI processes with some restrictions of the parameters. The paper [AMP04]
proves the convergence of their profile. Here, we prove that the profile of random trees converges in a
more general setting than such papers. Recently, the result of [BM14b] was extended to forests in [Lei17],
under a similar finite variance assumption. It is left as an open problem to prove the convergence of the
profile of uniform random forests with a given degree sequence.

1.2.7 Application to CGW trees
We prove that the law of a GW tree conditioned by its size, is a mixture of laws of TGDS (Lemma 3.10).
Hence, as a particular case of Theorem 1.2, we can prove a conjecture due to Aldous [Ald91b], about the
convergence of the profile for CGW trees with finite variance offspring. Indeed, our result also applies to
the case where the offspring distribution is in the domain of attraction of a stable law (in DA). Let us give
some definitions.

Galton-Watson Trees

We briefly describe the definition of a GW tree, as well as its law on the set of all rooted plane trees. The
formal statements can be found in [Nev86, LG05], and we follow the definitions of [AP98].

Let T(∞) the set of (possibly infinite) plane trees. For any k ∈ N, let T(k) be the set of plane trees
with height (latest generation having individuals) at most k. Consider the restriction map rk : T(∞) 7→ T(k),
where rkt is the subtree of t ∈ T(∞), formed by all the vertices up to generation k. A tree t ∈ T(∞) is
identified by the sequence (rkt,k ≥ 0).

A random family tree τ is a random element of T(∞), specified by the sequence (rkτ,k ≥ 0), where
each rkτ is a random variable taking values on T(k), and rkτ = rk(rk+1τ) for every k.

Let µ be a distribution on Z+. A GW tree τ with offspring distribution µ , satisfies

P(rkτ = t) = ∏
v∈rk−1t

µ(c(v)) ∀ t ∈ T(k),k ≥ 1,
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where the product is taken over all vertices v of t up to generation k−1, and c(v) is the number of children
of v.

Convergence of the profile of CGW trees with offspring distribution in the domain of attraction of
a stable law

Let µ be a critical and aperiodic distribution on Z+, that is, has mean one and the greatest common
divisor of all n such that µn > 0 is one. We exclude the case µ(1) = 1. We are interested in the following
distributions.

Definition 1.4. Consider a sequence of i.i.d. random variables (ξn,n ∈ N). If for some positive numbers
bn = n1/αL(n), with L a positive function satisfying limx→∞ L(tx)/L(x) = 1 for every positive t and α ∈
(1,2], we have

∑
n
1 ξk−n

bn
→ Sα ,

for some non-degenerate limit, then we say µ belongs to the domain of attraction of a stable law. For
simplicity, we simply say µ ∈ DA(α).

A well-known fact, is that the convergence of a rescaled sum of i.i.d. variables implies that the rescal-
ing (bn,n ∈ N) should be of the form mentioned above (see [BGT89]).

In the next proposition we work with a CGW(n) tree whose rescaled BFW, cumulative profile and
profile are denoted by Xn, Cn and Zn respectively, and are defined as in Theorem 1.2, but replacing sn with
n and bsn with bn.

Proposition 1.2. Assume µ is a critical, aperiodic law in DA(α), for some α ∈ (1,2). Then, for a CGW(n)
tree with offspring distribution µ we have the joint convergence

(Xn,Cn,Zn)
d→ (X ,C,Z)

under the product Skorohod topology D(R+,R+)
3, with C and Z defined as in Theorem 1.2, but driven by

the stable excursion X.

We prove this in Proposition 3.10. The proof of this result was given by Drmota and Gittenberger
[DG97] in the finite variance case, and by Kersting [Ker11] in the stable case. Note that our main result,
Theorem 1.2, is more general since rather than trees constructed from independent individuals, we allow
dependencies between them.

1.2.8 Another proof for the convergence of the profile of CGW in DA
As stated before, the main difficulty to prove Theorem 1.2 is to prove that all subsequential limits of the
cumulative profile are not thin at the base. Kersting deals with this issue in the case of CGW trees.

Lemma 1.4 (Lemma 9 of [Ker11]). Let Cn be the rescaled cumulative Lamperti transform of a GW tree τ

under P(· | |τ|= n), having offspring distribution µ . If µ is critical, aperiodic and in DA(α) for α ∈ (1,2],
then for every λ > 0

lim
ε↓0

lim
n
P(Cn(λ )≤ ε| |τ|= n) = 0.
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We give a different and simple proof of this Lemma in Section 3.6. The idea is based on a comparison
between the first generations of a CGW tree and the Q-process. Since the latter is not zero on the limit,
neither the former.

The Q-process is a Markov chain on N having transition probabilities

P↑ (Z̄n = j|Z̄0 = i) =
j
i
m−nP(Z̄n = j|Z̄0 = i) i, j ≥ 1,

where Z̄ is a GW with offspring distribution µ and mean m ∈ (0,∞). Define the size-biased distribution
µ̃(x) := xµ(x).

We define the infinite size-biased tree, as the tree with profile the Q-process. Its construction is:

1. The root of the tree is marked, and has offspring distribution µ̃ .

2. At generation n≥ 1, there is only one marked individual, which also has offspring law µ̃ .

3. At generation n + 1, chose one children uniformly at random from the children of the marked
individual, and mark it. Every other individual has offspring distribution according to µ .

The mentioned comparison to prove Lemma 1.4 is

lim
n
P(Cn(λ )≤ ε| |τ|= n)≤ cε lim

n
P↑ (Cn(λ )≤ ε) , (1.10)

for fixed ε > 0, where cε is a positive constant bounded from above as ε goes to zero (see Theorem 3.4
and page 96).

It will be proved that the Q-process has the same distribution as a GW process with immigration, GWI
for short (see Equation 3.35). This is a model like the GW but at each generation arrives i.i.d. immigrants
following some offspring law, independent of the actual population. More explicitly, the Q process has
the same law as the profile of the GWI

Zn(m+1) = 1+W ◦Cn(m)+W̃ (m+1) m≥ 0,

where W is a skip-free random walk with increments having law (µ( j+ 1), j ≥ −1), and W̃ is an inde-
pendent random walk having increments with law µ̃ . Finally, using the results about the convergence of
GWI in [CPGUB13], we can prove that the rescaled Q-process converges to a positive function on (0,∞)
(see Lemma 3.14). It follows that the right-hand side of Equation (1.10) converges to zero as ε ↓ 0.

1.3 ON MULTITYPE RANDOM FORESTS WITH A GIVEN DE-
GREE SEQUENCE, THE TOTAL POPULATION OF BRANCH-
ING FORESTS AND ENUMERATIONS OF MULTITYPE FORESTS

In Chapter 3 we prove the convergence of the profile of uniform trees with a given degree sequence,
as explained in the previous section. The natural generalization of this model is the profile of uniform
multitype forests with a given degree sequence (MFGDS). Analogously as in the unitype case, MFGDS
are a more general model than conditioned multitype Galton-Watson (MGW) forests, since under an
independence assumption, by mixing the former we obtain a MGW conditioned with the number of
individuals by types. Because a construction of both random forests has not been developed, we first
define them, generalizing several well-known results of random forests to the multidimensional case. In
future work, we will analyze the convergence of the profile of MFGDS.
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1.3.1 Preliminaries and motivation
In Chapter 4 we construct two types of constrained multitype random forests:

1. Uniform multitype forest from the set of forests with a given degree sequence.

2. Multitype Galton-Watson forests conditioned with the number of individuals by types.

Multitype random forests serve to model the genealogical evolution of random populations, when-
ever there are different types of individuals coexisting. Those forests have plenty applications, like in
biology, demography, genetics, medicine, epidemics, and language theory (see [Har63, San71, Jag75,
GP75, CKB+, AJ97, All11]). Multitype random forests also give rise to nice probability theory, for ex-
ample in the field of continuum random forests. When the progeny distribution has a finite variance,
Miermont [Mie08] proved its convergence to Aldou’s CRT (see also [BO18]). This convergence unveils
natural questions, as well as poses open problems regarding the convergence of multitype Lévy forests and
generalizations of the Ray-Knight theorems, proved in the unitype case in [LGLJ98, DLG02].

Conditioned MGW forests also provides us with a lot of theoretical applications. There are several
ways to condition such a forest leading to a generalization of the so-called Kesten’s infinite tree [Nak78],
as well as the Q-process. Pénisson [P1́6] proved that critical MGW forests conditioned on a special
proportion of its total progeny converges locally to a MGW forest under some moment condition. Minimal
assumptions of this result were found in [ADG18]. Another conditionings (differently to non-extinction
in the near future) were given in [P1́6], like the process reaching a positive threshold or a non-absorbing
state. Conditioning on a lineal combination of the population sizes by types was also proved in [Ste18],
to converge locally to the multitype Kesten’s tree, giving also applications on random maps.

Another way to condition a forest, which is also an active field of research, is to fix its degree sequence.
Several authors study conditioning a (unitype) forest to have a fixed degree sequence, as well as random
graphs with a given degree sequence [MR95, MR98, VL05, CDS11, AB12, HM12, BM14b, Jos14, Lei17,
Mar19]. As explained previously in Subsection 1.2.1, random graphs with a given degree sequence are
important models for real-world networks. They can be used to model specific features such as graphs
having degree sequence with power law tails, a property not present in the Erdős-Rényi random graph.
To our knowledge, there is no construction of multitype random forests with a given degree sequence,
so we present one, as well as a simulation algorithm (see Section 4.3 and Algorithm 7). Just as in the
unitype case, this is based on discrete time EI processes, and a generalization of the Vervaat transformation
[Ver79]. An important tool to generalize the latter is the result in [CL16], giving us the number of cyclical
permutations of the EI processes leading to paths coding multitype forests.

Using also the result in [CL16], we generalize the Otter-Dwass formula [Ott49, Dwa69], obtaining the
law of the total population by types in a MGW, under certain conditions. This is done in Section 4.5. The
unitype case of Otter and Dwass says that, if #τk is the size of a GW forest with k trees, having offspring
distribution µ , then

P(#τk = n) =
k
n
P(Xn = n− k) ,

where X is a random walk with step law µ . In Subsection 1.2.1 we pointed out the relation between GW
forests with a given size and certain combinatorial classes (plane, labeled and binary forests with a given
size). We also exploit such connection for the same classes in the multitype case, using our generalization
of the Otter-Dwass formula (see Subsection 4.5.1).
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Finally, we extend Devroye’s algorithm about the simulation of CGW trees in Subsection 4.6.5. In-
deed, Devroye’s algorithm generates a CGW tree from a tree uniformly chosen from the set of trees with
a given degree sequence, this last one obtained from the offspring distribution. So, we use both of our
constructions to simulate a MGW forest conditioned by its total population by types.

1.3.2 Coding of multitype forests and the Multivariate Cyclic Lemma
Before stating our results, we need some definitions. Recall form Section 1.2.2 the coding of forests of
size n with k trees with downward skip-free chains, starting at zero and first reaching −k at time n. We
briefly recall such coding for the multitype case, introduced in [CL16].

Define [n] = {1, . . . ,n} and [n]0 = {0,1, . . . ,n} for n ∈ N. For a forest F , let cF : v(F) 7→ [d] be
an application from the set of vertices of F to [d], such that the children of each vertex are ordered by
color, that is, if ui,ui+1 . . . ,ui+ j ∈ v(F) have the same parent, then cF(ui) ≤ cF(ui+1) ≤ ·· · ≤ cF(ui+ j).
The couple (F,cF) is a d-multitype forest. A subtree of type i of (F,cF), denoted by T (i), is a maximal
connected subgraph of (F,cF) whose all vertices are of type i. Subtrees of type i are ranked according
to the order of their roots, and with this ordering, we define the subforest of type i of (F,cF) as F(i) =

{T (i)
1 , . . . ,T (i)

k , . . .} For u ∈ v(F), denote by pi(u) the number of children of type i of u. Let ni ≥ 0 be the
number of vertices in the subforest F(i) of (F,cF). The coding of the forest is the d-dimensional chain
x(i) = (xi,1, . . . ,xi,d) ∈ Zd with length ni ∈ N, defined for 0≤ n≤ ni−1 by

xi, j
n+1− xi, j

n = p j(u
(i)
n+1)−1i= j i, j ∈ [d]. (1.11)

We set x(i)0 = 0. The set (u(i)n ;n≥ 1) is the labeling of the subforest F(i) in its own breadth-first order.
To generalize the Vervaat transform, we define the type of cyclical permutations that we apply to our

chains. For n ∈ N, consider any application y : [n]0 7→ Zd with y(0) = 0. The n-cyclical permutations of y
are the n applications θn,q(y), for q ∈ [n−1]0 given by

θq,n(y) =

{
y( j+q)− y(q) j ≤ n−q
y( j+q−n)+ y(n)− y(q) n−q≤ j ≤ n.

We say that the path y : N 7→ Z is a downward skip-free chain, if yk+1− yk ∈ Z+∪{−1}. The possible
paths that a coding of multitype forest can take values are the following.

Definition 1.5. Fix any n = (n1, . . . ,nd) ∈ Zd
+, and define Sd as the set of [Zd]d-valued sequences x =

(x(1), . . . ,x(d)) such that for all i ∈ [d], x(i) = (xi,1, . . . ,xi,d) is a Zd-valued sequence starting at zero of
length ni, and where xi, j = (xi, j

k ,k ∈ [ni]0) is non-decreasing when i 6= j, and a downward skip-free chain
when i = j.

The n-cyclical permutations of x ∈ Sd are given by

θq,n(x) := (θq1,n1(x
(1)), . . . ,θqd ,nd(x

(d))) ∀ q = (q1, . . . ,qd) such that 0≤ q≤ n−1d,

with 1d = (1, . . . ,1) of length d. Each sequence θq,n(x) will be called a cyclical permutation of x.
For m,n ∈ Zd

+, write m < n if m≤ n (the inequality understood component-wise) and if there exists
i such that mi < ni. Sequences x ∈ Sd will be denoted by x = (xi, j

k ,k ∈ [ni]0, i, j ∈ [d]), and the vector
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n = (n1, . . . ,nd) ∈ Zd
+, is called the length of x. Fix any such x of length n, and r = (r1, . . . ,rd) ∈ Zd

+ with
∑ri > 0. We say that the system (r,x) admits a solution if there exists m≤ n such that

r j +
d

∑
i=1

xi, j(mi) = 0 ∀ j ∈ [d]. (1.12)

If there is no smaller solution m < n for the system (r,θq,n(x)), then we call θq,n(x) a good cyclical
permutation. It is proved in [CL16] that only such good cyclical permutations code multitype forests, and
the next lemma tells us how many there are.

Lemma 1.5 (Multivariate Cyclic Lemma [CL16]). Let x ∈ Sd with xi,i(ni) 6= 0 for every i ∈ [d]. Con-
sider the system (r,x) with solution n as above. Then, the number of good cyclical permutations of x is
det((−xi, j(ni))i, j∈[d]).

Since in most of the cases, we fix the number of roots or number of individuals of each type, we need
the following definition.

Definition 1.6 (Root-type and individuals-type). We say a multitype plane forest with d ∈ N types has
root-type r = (r1, . . . ,rd) ∈ Nd , if it has ri roots of type i for i ∈ [d], with r > 0. Also, it has individuals-
type n = (n1, . . . ,nd) ∈ Nd if it has ni individuals of type i, for i ∈ [d].

1.3.3 Multitype Galton-Watson Forests
A multitype Galton-Watson forest in d-types, is a branching forest, where each individual has a type
i ∈ [d], and has children independently of the other individuals of its generation or below, according to
a law νi on Zd

+. The progeny distribution of the forest is ν = (ν1, . . . ,νd). The formal definition is the
following.

Definition 1.7. A multitype Galton-Watson process is a Markov chain Z =
(
(Z(1)

n , . . . ,Z(d)
n );n≥ 0

)
on

Zd
+, with transition function

P(Zn+1 = (k1, . . . ,kd) |Zn = (r1, . . . ,rd)) = ν
∗r1
1 ∗ · · · ∗ν

∗rd
d (k1, . . . ,kd),

where ν is the progeny distribution, and ν
∗ j
i is the jth iteration of the convolution product of νi by itself,

with ν∗0i = δ0.

For r ∈ Zd
+, the probability measure Pr is the law P(·|Z0 = r). As in Theorem 1.2 in [CL16], we

consider MGW trees satisfying the following. For i, j ∈ [d], let mi, j = ∑z∈Zd
+

z jνi(z) be the mean number
of children type j given by an individual type i, and set M = (mi, j)i, j as the mean matrix of the MGW
tree. Whenever M is irreducible, by the Perron-Frobenius Theorem (see [AN04, Chapter V.2]), it has a
unique eigenvalue which is simple, positive and with maximal modulus. We say in such case that the
MGW tree is irreducible. If the unique eigenvalue equals one (is less than one), then we say the tree is
critical (subcritical). The tree is non-degenerate if individuals have exactly one offspring with probability
different from one.
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1.3.4 Statement of the results
A multitype degree sequence S = (Si, j, i, j ∈ [d]) is a sequence of sequences of non-negative integers
Si, j = (Ni, j(k);k ∈ [mi, j]0), where mi, j ∈ N, satisfying:

1. ni = ∑k Ni, j(k) for every i ∈ [d],

2. n j = r j +∑k kN1, j(k)+ · · ·+∑k kNd, j(k), for every j ∈ [d],

3. det(−ki, j)> 0 with ki, j := ∑kNi, j(k)−ni1i= j and ki,i < 0 for every i ∈ [d].

The value Ni, j(k) represents the number of individuals of type i with k children of type j, so ni repre-
sents the total number of type i individuals. Clearly, the total number of vertices is s := n1 + · · ·+ nd =

∑k N1, j(k)+ · · ·+∑k Nd, j(k) for j ∈ [d]. The last condition is required to obtain the degree sequence of a
forest (see page 109). An example for d = 2 is given in Table 1.1.

S1,1 = (N1,1(0), . . . ,N1,1(m1,1)) S1,2 = (N1,2(0), . . . ,N1,2(m1,2)) n1 = ∑k N1, j(k)

S2,1 = (N2,1(0), . . . ,N2,1(m2,1)) S2,2 = (N2,2(0), . . . ,N2,2(m2,2)) n2 = ∑k N2, j(k)

n1 = r1 +∑k kN1,1(k)+ kN2,1(k) n2 = r2 +∑k kN1,2(k)+ kN2,2(k) n1 +n2 = s

Table 1.1: Relations on a 2-type degree sequence.

The canonical child sequence c = (ci, j, i, j ∈ [d]) is constructed from the degree sequence as follows:
let ci, j be a sequence whose first Ni, j(0) entries are zeros, the next Ni, j(1) entries are ones, and so on. Let
σi, j be any permutation on [ni], and construct wb = {wb

i, j; i, j ∈ [d]}, where

wb
i, j(k) =

k

∑
l=1

(
ci, j ◦σi, j(l)−1i= j

)
, k ∈ [ni].

Remark 1.1. Note that ki, j = wb
i, j(ni) does not depend on the permutation, so it is deterministic. Also,

note that the system of equations (r,wb) admits n as a solution, since by definition

r j +
d

∑
i=1

wb
i, j(ni) = r j−n j +

d

∑
i=1

∑kNi, j(k) = 0 ∀ j ∈ [d].

From the Multivariate Cyclic Lemma 1.5, we know that det(ki, j) is the number of good cyclical per-
mutations of wb. From such set we define a Vervaat-type transformation of wb. Such transformation is
given by choosing uniformly at random a good-cyclical permutation from all the good-cyclical permuta-
tions. After that, the algorithm is similar to the unidimensional case.

Definition 1.8 (Multidimensional Vervaat Transform). For any wb as constructed above and any u ∈
[det(ki, j)], define V (wb,u) as follows: enumerate the det(ki, j) good cyclical permutations of wb, using the
lexicographic order on the set of q such that θq,n(wb) codes a forest; then, let V (wb,u) be the u-th good
cyclical permutation.
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Define FS,r as the set of multitype plane forests with degree sequence S, having root-type r and
individuals-type n. Our construction of MFGDS is the following (the proof is given on page 109).

Theorem 1.3 (Uniform multitype forest with a given degree sequence). Fix the degree sequence S of a
multitype forest having root-type r and individuals-type n. Let W be the BFW coding a forest (see (1.11))
taken uniformly at random from FS,r. Let π = (πi, j, i, j ∈ [d]) be independent random permutations, where
πi, j takes values on [ni], and let U be an independent uniform variable on [det(ki, j)]. Define the processes
Wb = (W b

i, j, i, j ∈ [d]) as

W b
i, j(k) =

k

∑
l=1

(ci, j ◦πi, j(l)−1i= j), k ∈ [ni],

where c =
(
ci, j, i, j ∈ [d]

)
is the child sequence of S. Then

V (Wb,U)
d
= W.

From the proof, we obtain the number of multitype forests with a given degree sequence S:

|FS,r|=
det(−ki, j)

∏ni
∏∏

(
ni

Si, j

)
.

MGW forests conditioned by types

Before turning to the joint law of the number of individuals of type i ∈ [d], of a MGW forest, we prove
that the latter model is a mixture of MFGDS in Section 4.4. This justifies the importance of the latter
model.

Let Si, j be a random walk with increments having law the jth marginal of νi. Our hypotheses are the
following:

H1 For every i ∈ [d], the law νi has independent components, with

ν
∗ni
i (k1, . . . ,kd) = ∏

j
P
(
Si, j

ni
= k j

)
k1, . . . ,kd ∈ N0.

H2 For every i, j ∈ [d], with i 6= j

E

(
Si, j

ni
; ∑

l∈[d]
Sl, j

nl
= n j− r j

)
=

ni(n j− r j)

n
P

(
∑

l∈[d]
Sl, j

nl
= n j− r j

)
.

Using those hypotheses, we obtain the following result (see page 112), which is a generalization of the
Otter-Dwass formula.

Theorem 1.4. Consider an irreducible, non-degenerate and (sub)critical MGW forest, and let ni > 0 for
every i. Suppose that H1 and H2 and are also satisfied. If Oi is the number of type i individuals, then

Pr (Oi = ni, i ∈ [d]) =
r
n

d

∏
i=1

P

(
∑

l∈[d]
Sl,i

nl
= ni− ri

)
,

where r = r1 + · · ·+ rd and n = n1 + · · ·+nd , and ri < ni.
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Remark 1.2. The assumption ni > 0 for every i makes the proof easier, but we think this hypothesis can
be dropped as in [CL16].

Remark 1.3. After the proof of the theorem, we obtain the case when ni = ri for some i’s. Since Theorem
1.4 has a different formula on such case, the law of ∑i∈[d]Oi (computed on Corolary 4.1) does not have a
nice expression.

For the next results denote by Fplane
r,n , Flabeled

r,n and Fbinary
r,n , the set of d-type plane, labeled and binary

forests having root-type r and individuals-type n, with ri < ni for every i and r > 0. Our labeled multitype
forests have labels on [n], that is, for F ∈ Flabeled

r,n , each individual v has a unique label i ∈ [n] and a type
cF(v) ∈ [d]; also, F has fixed root set [r], that is, the r1 type 1 roots have labels on {1, . . . ,r1}, the r2 type
2 roots have labels on {r1 + 1, . . . ,r1 + r2}, and so on. Using Theorem 1.4, we give in Subsection 4.5.1
three examples of distributions were the law of a MGW forest conditioned by the number of individuals
of each type can be computed. This generalizes the constructions given in [Pit98].

Proposition 1.3. For fixed p ∈ (0,1), let Gr,p be a d-type GW forest with root-type r, having geometric
offspring distribution with parameter p independently for each type, that is, νi(k1, . . . ,kd) = ∏i p(1− p)ki

for ki ≥ 0. Let #iGr,p be the number of type i individuals in Gr,p. Then

P(Gr,p = F |#iGr,p = ni, i ∈ [d]) =
1

r
n ∏i∈[d]

(n+ni−ri−1
ni−ri

) ∀F ∈ Fplane
r,n ,

thus, such conditioned forest is uniform on Fplane
r,n .

Proposition 1.4. For µ ∈ R+, let Pr,µ be a d-type GW forest with root-type r, having Poisson offspring
distribution of parameter µ independently for each type, that is, νi(k1, . . . ,kd) = ∏i e−µ µki/ki! for ki ≥ 0.
Let #iPr,p be the number of type i individuals in Pr,p. If P∗

r,n is Pr,n relabeled by d uniform random
permutations, one for each type, then

P
(
P∗

r,p = F |#iPr,p = ni, i ∈ [d]
)
=

1
r
nnn−r ∀F ∈ Flabeled

r,n ,

thus, such conditioned forest is uniform on Flabeled
r,n .

Proposition 1.5. For 0< p< 1, let Br,p be a d-type GW forest with root-type r, having Bernoulli offspring
distribution with parameter p, for each vertex independently of the type, that is, νi(k1, . . . ,kd) = ∏ pki(1−
p)1−ki with ki ∈ {0,1}. Assume ni− ri is an even number for every i ∈ [d]. Since any vertex v has zero or
two children with probability p or 1− p respectively, then νi(c1(v), . . . ,cd(v)) = ∏ pci(v)/2(1− p)1−ci(v)/2.
Let #iBr,p be the number of type i individuals in Br,p. Then

P(Br,p = F |#iBr,p = ni, i ∈ [d]) =
1

r
n ∏
( n
(ni−ri)/2

) ∀F ∈ Fbinary
r,n ,

thus, such conditioned forest is uniform on Fbinary
r,n .

As a simple consequence of our results, we obtain the following enumerations.
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Lemma 1.6. The number of d-type plane, labeled, and binary forest, with root-type r and individuals-type
n is given respectively by

r
n ∏

i∈[d]

(
n+ni− ri−1

ni− ri

)
,

r
n

nn−r and
r
n ∏

(
n

(ni− ri)/2

)
.

Finally, we give an algorithm to simulate MGW processes conditioned by its types. This is done using
the following proposition and the well-known Accept-Reject method (see Algorithm 8).

Proposition 1.6. Let W be the breadth-first walk of a MCGW(n1, . . . ,nd) forest satisfying the Hypotheses
of Theorem 1.4, having offspring distribution ν , and root-type r, with 0 < ri < ni for every i. Generate
independent multinomial vectors Si, j = (Ni, j(0),Ni, j(1), . . .) with parameters (ni,νi, j(0),νi, j(1), . . .), and
stop the first time that r j +∑i ∑k kNi, j(k) = n j for every j. Denote by S the multitype degree sequence
obtained, and let V (Wb,U) be the breadth-first walk generated by Theorem 1.3 using the degree sequence
S. Then,

P
(

V (Wb,U) = w
)
=

1
n
r

det(ki, j)

∏ni

Pr
(
F = F |# jF = n j,∀ j

)
,

for every multitype forest F with root-type r and individuals-type n, coded by w and with ki, j =∑kni, j(k)−
ni1i= j.

1.4 DINI DERIVATIVES FOR EXCHANGEABLE INCREMENT
PROCESSES AND APPLICATIONS

1.4.1 Preliminaries and motivation
In Theorem 1.2 we stated our result about the convergence of the profile of TGDS. One of our hypotheses
for the convergence, is that σ > 0 or ∑β j = ∞. As will be seen in Proposition 3.6, this hypothesis implies
that the rescaled BFW’s converge to the Vervaat transform of a continuous time EI process. Indeed, the
facts needed are that the EI process has a unique infimum and that it is continuous there. In our particular
case, that is, when the EI process has deterministic canonical parameters, the jumps are positive and σ > 0
or ∑β j = ∞, the proof of Lemma 6 of [Ber01] tells us that the process has a unique infimum where it is
continuous.

Now, we review the known results of the previous facts, for Lévy processes. Recall that a Lévy process
X is a càdlàg stochastic process, starting at zero and having stationary and independent increments. By
the celebrated Lévy-Khintchine formula, its characteristic function is of the form

E
(

eiθXt
)
= e−tψ(θ) t ≥ 0, θ ∈ R+,

where
ψ(θ) =−iαθ +

1
2

σ
2
θ

2 +
∫
R

(
1− eiθx + iθx1|x|≤1

)
Π(dx),

for α ∈ R, σ ≥ 0 and Π is a measure satisfying

Π({0}) = 0 and
∫
R
(1∧ x2)Π(dx)< ∞.
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We say that a process starting at zero is upward regular (downward regular), if it hits (0,∞) immedi-
ately (respectively (−∞,0)). It is regular if it is both upward and downward regular. For Lévy processes
the whole picture is clear:

1. If it is of infinite variation, then it is regular (Rogozin [Rog68]).

2. If it hits is infimum in a unique place, then it is continuous there iff it is regular (this is Millar’s
zero-one law [Mil77]).

This was the motivation for Chapter 5: obtain a proof for the convergence of the profile independent of
Bertoin’s result [Ber01], and prove the above two points for the most general EI processes. It turns out,
that we were able to prove both for general EI processes: any infinite variation EI process is regular; and
any EI process hitting its infimum only once, is continuous at its infimum iff it is regular. As a matter of
fact, we were able to prove more.

1.4.2 Statement of the results
Our main result of Chapter 5 is the following.

Theorem 1.5. Let X be an EI process of infinite variation. Then, for any fixed t almost surely,

limsup
h→0±

Xt+h−Xt

h
= ∞ and liminf

h→0±

Xt+h−Xt

h
=−∞ (1.13)

both from the left and from the right.

This theorem says that any typical path of such EI processes cannot be enclosed by two lines starting
at the origin. Note that X is of infinite variation iff σ > 0 or ∑ |β j|= ∞.

The idea of the proof is to use a change of measure, depending on a parameter θ ∈R. In the particular
case of Lévy processes, this change of measure is the Esscher transform, see Section 5.2. For general EI
processes, this change of measure adds a drift (which depends on θ ) and takes away some of the original
jumps, thus X takes the form αθ Id+Y θ under the new measure (this is proved in Proposition 5.3). Then,
we prove that αθ is not bounded on θ , under the infinite variation assumption, hence neither the Dini
derivative (in page 137 we give a very simple idea of the proof).

Theorem 1.5 was proved by Rogozin [Rog68] in the case of Lévy processes, approximating the latter
with compound Poisson processes and using an integro-differential equation (which is proved in [Wat71]).
Other proofs for Lévy processes based in fluctuation theory are given in [Sat99, Ch. 9§47] and [Vig02,
Theorem 5.3.2]. In the particular case that X is an EI process with non-negative jumps, the limsup was
proved infinite by [Ber02], using martingale arguments and a result from [Fri72]. Kallenberg uses cou-
plings with Lévy processes to obtain rates of growth for EI processes as in Theorem 1.5, but of the form
limsuph→0 Xh/ f (h) where f satisfies certain conditions. Proposition 3.5 of [CUB15] proves Theorem 1.5
when σ > 0 or under an additional hypothesis on β ; such proof uses the law of the iterated logarithm for
Brownian motion or Lévy couplings, respectively. We remark that from those results our theorem is not
obtainable.

Regularity of half-lines for a Lévy process has many applications: it helps in obtaining perfectness
of the zero set and in constructing a continuous (Markovian) local time (Theorem 6.6 of [Kyp14]); it im-
plies uniqueness for solutions of time-change equations used to construct multitype branching processes
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(Lemma 6 in [CPGUB17]); regularity of (−∞,0) has been used when pricing perpetual American put
options, as a condition for smooth pasting (see the discussion on Section 1.4.4 in [KL05]).

Now, we state the applications of our theorem. The first is an easy consequence.

Corollary 1.2. Let X be an infinite variation EI process. Then X is regular.

An EI process is called extremal if its canonical parameters are deterministic. We use Knight’s result
[Kni96], about the necessary and sufficient conditions for X to admit a unique minimum:

UM either σ 6= 0, or ∑i 1βi 6=0 = ∞, or ∑i 1βi 6=0 < ∞ and ∑i βi 6= α .

The next result is an extension of Millar’s zero-one law for Lévy processes at its infimum (items a and b
of [Mil77, Thm. 3.1]); its proof is given in page 149. It characterizes the behavior of X at its infimum
with its regularity.

Theorem 1.6. Let X be an extremal EI process satisfying UM. Let X1 = infs∈[0,1]Xs and let ρ be the
unique element of {t ∈ [0,1] : Xt ∧Xt− = X1}. Then Xρ > X1 if and only if X is irregular upward and
Xρ− > X1 if and only if X is irregular downward. In particular, X is continuous at ρ if and only if X is
both upward and downward regular and this holds on the set where X has paths of infinite variation.

Next, we obtain the weak limit of an EI process X ending at zero, conditioned to remain above −ε , as
ε→ 0. The limit has the same law as the Vervaat transform V (X) of X , which was explained in Definition
1.3.

Theorem 1.7. Let X be a regular EI process with α = 0. Consider ε > 0 and let Xε have the law of X
conditionally on X1 >−ε . Then Xε d→V (X) as ε → 0.

For Brownian bridges from 0 to 0, this was proved in [DIM77]. Our proof follows directly from
[CUB15], and is given in Subsection 5.4.2. Indeed, the missing part to obtain our result in such paper,
was only the zero-one law at the minimum of EI processes, which we already proved in Theorem 1.6.

Our final application, is to generalize the results in [PUB12] about the convex minorant of a Lévy
process, but for EI processes. Our hypothesis is:

NPL σ > 0 or ∑i 1βi 6=0 = ∞.

This is equivalent to work with EI processes not having piecewise linear trajectories. We introduce several
definitions.

Definition 1.9. The convex minorant of a càdlàg function f : [0,1]→ R is the greatest convex function c
that is bounded above by f . The excursion set is the open set

O = {t ∈ [0,1] : f (t)> c(t)} .

Its maximal components, intervals of the form (g,d), are termed excursion intervals and they have an
associated length d − g, increment f (d)− f (g) , slope ( f (d)− f (g))/(d − g) and excursion e(t) =
f (g+ t)− c(g+ t) defined for t ∈ [0,d−g].
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Since the supremum of a set of convex functions bounded from above is a convex function, let C be
the convex minorant of X , where the latter satisfies NPL. We prove that its excursion set is open and
of Lebesgue measure 1. Thus, an independent i.i.d. sequence (Ui, i ∈ N) of uniform variables on [0,1]
falls a.s. inside the excursion set. Let (g1,d1), (g2,d2),. . . be the distinct excursion intervals successively
discovered by (Ui, i ∈ N), and (ei, i ∈ N) the corresponding excursions.

Now, consider another independent sequence (Vi, i ∈ N) of i.i.d. uniform variables on [0,1]. The
partition on [0,1] given by the stick-breaking process (Li, i ∈ N) constructed from (Vi, i ∈ N), is defined
by

S0 = 0, Si+1 = Si +Li and Li+1 = (1−Si)Vi+1.

Definition 1.10. Consider an EI process Y starting at zero on the interval [0, t] for t ∈ (0,1], satisfying
UM. We define the Knight bridge of Y as K̃s = Ys− (s/t)Yt . If ρ is the location of its infimum, define the
Knight transform of Y as

Ks = K̃(ρ+s)mod t− K̃ρ ∧ K̃ρ− for s ∈ [0, t].

For any i, let Ki be the Knight transform of X −XSi−1 on [0,Li]. The next description of the convex
minorant of an EI process, generalizes the result in [PUB12]. As before, the proof is a simple consequence
of such paper, which lacked only the right hypotheses for the regularity of an EI process (see Subsection
5.4.3).

Theorem 1.8. Assume that the EI process X satisfies NPL. Then, its excursion set O is open and of
Lebesgue measure 1, also the following equality in law holds:(

di−gi,Xdi−Xgi,e
i)

i≥1
d
=
(
Li,XSi−XSi−1,K

i)
i≥1 .

Using this theorem, we can obtain the following formula for NPL EI processes:

E
(

inf
0≤s≤1

Xs

)
=
∫ 1

0

E(Xl ∧0)
l

dl,

also known as Kac’s formula in the discrete case (see [Kac54]).



Chapter 2

MULTIDIMENSIONAL RANDOM WALKS
CONDITIONED TO STAY ORDERED VIA
GENERALIZED LADDER HEIGHT
FUNCTIONS

In this chapter, we define a d-dimensional random walk conditioned to have ordered components for-
ever, for any d ∈ N. This is done defining the Doob h-transform of the random walk and the associated
(sub)harmonic functions. The construction is equivalent as the limit as c ↓ 0 of the random walk condi-
tioned to have ordered components up to a geometric time of parameter 1− e−c. Several reexpresions of
the (sub)harmonic function are given, reducing to well-known formulas for the one dimensional case.

2.1 Introduction
Let X1, . . . ,Xd be independent, simple, symmetric random walks on Z. Let Pi be the probability measure
of X = (X1, . . . ,Xd) starting at i = (i1, . . . , id). In [KOR02] and [EK08], the authors define X conditioned
to have ordered components. The interest on such processes is by their relation with random matrix theory,
for example, with Dyson’s Brownian motion [Dys62], which can be interpreted as d Brownian motions
conditioned to stay ordered at all times. As another important connection, conditioning a 2-dimensional
random walk to have ordered components, is equivalent to condition a random walk to stay non-negative,
a theory with a long history (see [Tan89, Kee92, Ber93, Cha94, BD94, Hir01, Tan04, CD05, CC08, Par08,
GLP16]). The conditioning event can be written as

A = {X1
j < · · ·< Xd

j for all j ≥ 0}.

Denoting by W = {x ∈ Rd : x1 < · · · < xd} the Weyl chamber, the conditioning event A can be rewritten
as {X j ∈W,∀ j ≥ 0}. Note that, even in the case i1 < · · ·< id , we have

Pi(A) = 0,

since X2−X1 is an oscillating random walk. Therefore, a rigorous definition of the law of X condi-
tioned on A should be given. This is done in [KOR02] and [EK08] (as a particular case of their results),

30
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introducing the event
An = {X1

j < · · ·< Xd
j for all j ∈ [n]} n ∈ N,

with [n] = {1, . . . ,n}, and proving that for every k ∈ N, the limit as n→ ∞

Pi (X0 = i0, . . . ,Xk = ik|An)

exists and is a probability measure. In fact, Karlin-McGregor’s formula (cf. [KM59]) gives us an expres-
sion for Pi(An) and implies

lim
n
Pi (X0 = i0, . . . ,Xk = ik|An) = Ei

(
∆(ik)
∆(i0)

1X0=i0,...,Xk=ik

)
,

where, for x = (x1, . . . ,xd) ∈W

∆(x) = ∏
1≤i< j≤d

(x j− xi) = det
((

xi−1
j

)
, i, j ∈ [d]

)
. (2.1)

is the Vandermonde’s determinant. Hence, the conditioning is made using Doob’s h-transform. Similar
transformations, also called h-transforms or h-process, appear in [Saw97]. We must emphasize that most
of the papers constructing ordered random walks are based on finding the limit as n goes to infinity of
Pi(An)/P(An). Such limit will be the associated h-function of the process.

The objective is to generalize known constructions to d-dimensional random walks conditioned to
have ordered components. In particular, the components of X could be dependent or have different distri-
butions. Some models in the literature are [EK08, Dur14b, DW15, GR16, Ign18]. A general construction
(when the drift is zero) is given in [DW15], for random walks in cones. The assumptions on the step
distribution are that each of its components has mean zero, variance one, and zero covariance between
components; also, a moment assumption is made on the step distribution. The case of non-zero drift was
solved in [Dur14b], using a Cramér condition. Also, the recent paper [Ign18] constructs ordered Markov
chains without moment conditions, but the state space must be countable.

Our result has minimal assumptions. Define Y = (X2−X1,X3−X2, . . . ,Xd−Xd−1). In order to avoid
trivial cases, we assume Y has components taking negative and positive values with positive probability;
besides that, the construction works with no further hypotheses when some component Y k drifts to −∞,
or every component Y k drifts to +∞ (see Lemma 2.9). In the remaining cases, the assumption on Y is the
existence of positive ε1, . . . ,εd−1 such that

P
(

X2
1 −X1

1 ≥ ε1, . . . ,Xd
1 −Xd−1

1 ≥ εd−1

)
> 0.

This condition is used only to prove the finiteness of the (sub)harmonic function h.
Our method is to analyze a random walk conditioned to have ordered components up to an independent

geometric time N of parameter 1− e−c, and take the limit as c→ 0. The main tool is to construct a
ladder height function for the random walk, which is based on a generalization of the ladder times in the
unidimensional case. These ideas are adapted from the unidimensional case given for random walks in
[Ber93], and for Lévy processes in [CD05, Don07].
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2.1.1 Statement of the results
For ease of notation, our results are stated for d = 3 and for a random walk having state space Rd .
Let X = (X1,X2,X3) be a 3-dimensional random walk on R3 ∪{†}, starting at X0 = 0, having lifetime
ζ = sup{n : Xn 6= †}. Its increments are denoted by W = (W 1,W 2,W 3), and W1 has law P. We denote
by Y = (Y 1,Y 2) = (X2−X1,X3−X2) the size of the gap between components, and y = (x2−x1,x3−x2)
for x ∈ W . The law of X killed at time n ∈ N, that is, on the event ζ = n, will be denoted by Pn.
When killing X at an independent geometric law N ∈ {0,1, . . . ,} with parameter 1− e−c, its law will be
Pc = ∑

∞
0 e−cn(1− e−c)Pn. The σ -algebra considered will be Fn = σ(X1, . . . ,Xn).

The notation that we use is component-wise, hence min{Yi, i ∈ I } = (min{Y 1
i , i ∈ I },min{Y 2

i , i ∈
I }), for any index set I ⊂ Z+. We define for [n] = {1,2, . . . ,n} and [n]0 = {0,1, . . . ,n}, the processes
Y n = min{Yi, i ∈ [n]0}, Y n = min{Yi, i ∈ [n]}, Y n = max{Yi, i ∈ [n]0}, and Yn∨ (y1,y2) = (Y 1

n ∨y1,Y 2
n ∨y2),

where y1,y2 ∈R. We also put (x1, . . . ,xd)< (y1, . . . ,yd) whenever component-wise the strict inequality is
satisfied.

For W = {(x1, . . . ,xd) ∈ Rd : x1 < · · · < xd}, a positive regular function or harmonic function, with
respect to the transition kernel of X to W, is a function h : W 7→ R+ such that

Ex (h(X1);τ > 1) = h(x) x ∈W,

where
τ := min{n : Xn /∈W}.

A function h is subharmonic (superharmonic) if Ex (h(X1);τ > 1) ≤ h(x) (Ex (h(X1);τ > 1) ≥ h(x)) for
every x∈W. The resulting (sub)harmonic function associated with a Doob h-transform will also be called
h-function.

To avoid trivial cases, we assume that Y has components taking positive and negative values with posi-
tive probability. Besides that, the construction works with no further hypothesis if either some component
of Y drifts to −∞, or every component of Y drifts to +∞. When such conditions are not satisfied, we
need Hypothesis (1.1), needed only for the finiteness of the (sub)harmonic function h. Our main result is
the following, which justifies our construction can be interpreted as a random walk X conditioned to stay
ordered forever.

Theorem 2.1. Let N be a geometric time with parameter 1− e−c, independent of X. Assume that

h↑(x) := 1+E

(
J1−1

∑
n=1

1Y n−1−Yn<y

)
< ∞ x = (x1, . . . ,xd) ∈W,

with y = (x2− x1, . . . ,xd − xd−1) and J1 = inf{n > 0 : Y k
n−1 < Y k

n ,k ∈ [d− 1]}. Then, for every x ∈W,
every finite Fn-stopping time T and Λ ∈FT

lim
c→0+

Px (Λ,T ≤ N|X(i) ∈W, i ∈ [N]) = P↑x(Λ,T < ζ ) :=
1

h↑(x)
EQ

x

(
h↑(XT )1Λ,T<ζ

)
,

where EQ
x is the expectation under the law of X killed at the first exit time of the Weyl chamber. The limit

law is a Markov chain with transition probabilities

p↑(w,dz) = 1z∈W
h↑(z)
h↑(w)

p(w,dz) w ∈W. (2.2)

Moreover, it is a probability measure if E(τ) = ∞, or a subprobability measure if E(τ)< ∞.
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We also give simple conditions to ensure h↑ is finite.

Lemma 2.1. Assume that either

1. some component of Y drifts to −∞,

2. every component of Y drifts to +∞ and P(τ = ∞)> 0,

3. there exists ε = (ε1, . . . ,εd−1) ∈ Rd−1
+ such that

P(Y1 > ε)> 0.

Then
h↑(x)< ∞ ∀x ∈W.

The following is an application of Theorem 2.1.

Example 2.1. For d≥ 1, consider a multidimensional random walk with partial sums Xn =(an,X1
n , . . . ,X

d
n ,bn),

where a < b and a,b ∈ R. Assume that P
(
X1

1 −a > ε1,X2
1 −X1

1 > ε2, . . . ,b−Xd
1 > εd+1

)
> 0 for some

εi > 0, i ∈ {1, . . . ,d+1}, and P
(
X1

1 −a < 0,X2
1 −X1

1 < 0, . . . ,b−Xd
1 < 0

)
> 0. Then, the construction of

Theorem 2.1 provides us with a d-dimensional random walk conditioned to have ordered components and
staying inside the set {x ∈ R : at < x < bt,∀ t ∈ R+}.

Depending on the drift of its components, we reexpress our function h↑.

Lemma 2.2. Let x ∈W. If some component of Y drifts to −∞, the h↑-transform is given by

h↑(x) =
Ex (τ)

E(τ)
.

If every component drifts to +∞ and P(τ = ∞)> 0, then

h↑(x) =
Px (τ = ∞)

P(τ = ∞)
.

We also express h↑ as a renovation function. For k ∈ [d−1], denote by (β k
i , i∈N) the strict descending

ladder times of Y k, that is β k
0 = 0 and for i∈N the time β k

i is the smallest index n such that Y k(β k
i−1+n)<

Y k(β k
i−1). Let {β0,β1,β2, . . .} be the ordered union of all such ladder times, with β0 = 1. Denoting by

gn = βn and dn = βn+1 for n≥ 0, the set {gn,gn+1 . . . ,dn−1} is the nth interval where Y remains constant.

Proposition 2.1. Let x ∈W. The h-transform can be expressed as

h↑(x) = 1+
∞

∑
n=1

P
(
−Y

βn
< y
)
.

We conjecture that our h-function is subharmonic when X has i.i.d. components taking values in
R, satisfies the hypotheses of [EK08, DW10, DW15], and d > 2. The reason is that on such papers, it is
computed the tail of the distribution of τ := inf{n : X /∈W}, which we prove characterizes the harmonicity
of our h. In fact, we prove in Lemma 2.6 that h is harmonic (subharmonic) iff the random time τ has
infinite (finite) mean. In [DW10] it is proved that Px (τ > n) is of the order n−d(d−1)/4 (see Subsection
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2.5), implying Ex(τ)< ∞ when d ≥ 3 and x ∈W. Even that Ex(τ)≤ E(τ), it is expected that E(τ)< ∞.
This represents a difference with respect to [EK08], since, regardless of the dimension, their h-function is
harmonic. We give some conditions on the drift of the components of Y , to obtain harmonic h-function.

Such difference has been observed recently in [Ign18]. As an application of its results, the author
on such paper characterizes the h-functions of centered irreducible random walks taking values on a
countable set, with slowly varying hitting probabilities and other minor assumptions. The author proved
that when E(τ) = ∞, any harmonic function for the process is proportional to V (·) = E·(T ), where T is
the exit time of some ladder height process, and also that limPx(τ > n)/P(τ > n) =V (x), with x∈W. On
the case E(τ)< ∞, the author proved that V (x)≤ limPx(τ > n)/P(τ > n). We remark that such notion of
ladder height process is not as intuitive as ours, and the results in [Ign18] are only given when the process
takes values on a countable set, while our results works for Rd .

It is important to address that even in the unidimensional case, the harmonicity of the h-function
highly depends on E(τ) and even in the way we choose the approximating events. An example appears
in [BD94] for random walks not drifting to +∞. They obtain limits of some random walks, under two
different conditionings to stay positive. It is proved that for oscillating random walks both limits are the
same. But when the drift is negative, depending on the upper tail of the step distribution it can happen:
both limits are the same and the h-function is subharmonic; both limits are different with harmonic h-
function. Results in the same spirit for Lévy processes, are given in [BD94]. Also, the h-function of the
Brownian motion with negative drift conditioned to stay positive is harmonic or subharmonic, depending
on the approximation: it is proved in [MSM94] that is harmonic conditioning with {τ > t} and letting
t → ∞; while in [CD05] is subharmonic when conditioning with {τ > E/c}, an exponential random
variable with mean 1, and letting c→ 0.

In fact, the set of non-negative harmonic functions for random walks in Rd , having non-zero drift, and
killed when leaving general cones with zero as a vertex, was proved to be uncountable in [Dur14a].

We adapt the idea of using geometric times to condition a process to stay positive, given for random
walks in [Ber93], and for Lévy processes in [CD05, Don07]. Thus, we analyze a random walk conditioned
to have ordered components up to an independent geometric time N of parameter 1− e−c, and take the
limit as c→ 0.

This chapter is organized as follows. In Subsection 2.1.2 we review similar models of particles con-
ditioned to stay in some subspace and applications. Subsection 2.1.3 is devoted to provide an updated
literature and explicit results about ordered random walks. We include the first constructions of ordered
Brownian motions, several references to ordered processes, as well as the description of the most general
result of ordered random walks in cones, given in [DW15]. Our construction is given in Section 2.2,
where first we condition the random walk to stay ordered up to an independent geometric time, and prove
this is a Markov chain. There, we obtain a function h↑c which plays the role of an h-function of the random
walk, but up to the geometric time. In Subsections 2.2.1 and 2.2.2 we reexpress h↑c using a partition N
on intervals, making the random walk to be like excursions on each interval. This allows us to obtain in
Lemma 2.5 the limit h↑ of h↑c as c ↓ 0, and in Theorem 2.1 the limit of the conditioned random walk, as
a Markov chain using a change of measure with h↑. We characterize in Section 2.3 when h↑ is harmonic
or subharmonic, give a condition to ensure its finiteness, and prove that the law of the random walk using
the h-function h↑ is the same as the limit of the random walk law conditioned to stay ordered up to a
geometric time. In Section 2.4 we obtain several reexpresions of h↑. Finally, in Section 2.5 we review
known results for the order of Px(τ > n), thus, allowing us to know some cases where Ex(τ) is finite.



CHAPTER 2. RANDOM WALKS CONDITIONED TO STAY ORDERED 35

2.1.2 Related models
There exists several models which apply the theory of ordered stochastic processes. For random walks,
names like non-colliding, non-intersecting or vicious walkers are also employed. The model of vicious
random walks was investigated in [Bai00]. Johansson used non-intersecting trajectories for the analysis of
the corner-growth model in [Joh00], and for the Artic circle model in [Joh02]. There exists applications
to series of queues in tandem given in [O’C03, KOR02].

When the processes are Brownian motions, many results have been found. A complex random matrix,
having eigenvalues process a vector of Brownian motions ordered up to time s, is obtained in [KT03b].
In [O’C12], it is related a transformation of the partition function of a Brownian directed polymer model
with dimension 1+1 in a random environment, with the distribution of the largest eigenvalue of the random
matrix GUE. The latter has the same distribution as the first component of a multidimensional Brownian
motion conditioned to stay ordered. Also, physical applications are given in [KT04] and [IK11] (Makoto
Katori has done extensive research on non-colliding processes, mainly for Brownian motion). Brown-
ian bridges conditioned to non-collision where obtained in [BS07], using approximating random walk
bridges. The paper also analyzes the connections with the random matrix central limit theorem. The case
of squared Bessel processes is obtained in [KO01]. Wolfgang König in Section 4 of [Kön05], surveys
several results on non-colliding particle systems.

Some ordered infinite particle systems has been obtained before, for example in [KNT04] and [Bai00].
The former gives an N Brownian particle system conditioned to non-collision up to time s, and let N and s
tend to infinity. The latter uses a system of point in Z2

+, with each point in 2N and at each step they move
upwards one unity, and move left or right one unity as long as the place is empty.

Results about non-colliding systems with a wall are given in [Gra99, KT04, TW07, BFP+09, LW17].
In [BFP+09], it is related the law of the maximum of Dyson’s Brownian motion with d particles, with
models of non-intersecting Brownian particles which also: never hits a wall at the origin if d is par or the
wall is reflecting if d odd. The case of ordered random walks conditioned to stay on the Weyl chambers
of type C or D is given in [KS10], where

WC = {x = (x1, . . . ,xk) ∈ Rk : 0 < x1 < · · ·< xk)},

and
WD = {x = (x1, . . . ,xk) ∈ Rk : |x1|< x2 < · · ·< xk)}.

Another related models are processes conditioned to stay in a subset of the state space. For example,
Lévy processes conditioned to stay in an interval, studied in [Lam00], non-colliding systems on the unit
circle as in [LW16], or more generally, Markov processes conditioned to never leave a subspace, as seen
in [PR04].

2.1.3 Known results
First we review the results obtained in the unidimensional case, that is, conditioning a random walk to stay
positive. The paper [Ber93], gives the h-transform of a random walk X conditioned to stay positive forever,
under the unique hypothesis that the walk takes positive and negative values with positive probability (see
Theorem 2.3 of such paper). The explicit formula for the h-function in such case is

h↑(x) = 1+E

α
+
1 −1

∑
1

1−x<Xk

 , (2.3)
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where x≥ 0 and α
+
1 is the index of the first visit to (0,∞).

Such function, can be reexpresed in several ways. We review some formulas in this case (see [BD94]).
The first hitting times, respectively, in (−∞,0) and in [n,∞) are denoted by τ = min{k ≥ 1 : Xk < 0} and
σn = min{k ≥ 1 : Xk ≥ n}. Let (H,T ) = ((Hk,Tk),k ≥ 0) be the strict ascending ladder point process of
the reflected random walk −X . That is, we have T0 = 0 and

Hk =−XTk and Tk+1 = min{ j > Tk :−X j > Hk}.

The convention is Hk = ∞ if Tk = ∞. The renewal function associated with H1 is

V (x) =
∞

∑
k=0

P(Hk ≤ x), x≥ 0.

This is a non-decreasing right-continuous function. But the duality lemma gives us

V (x) = E

(
σ0−1

∑
j=0

1−x≤X j

)
= h↑(x).

In the case S drifts to +∞

V (x) =
Px(τ = ∞)

P(τ = ∞)
.

When S drifts to −∞, we have Ex(τ)< ∞ for every x≥ 0 and

V (x) =
Ex(τ)

E(τ)
.

The main result of this chapter is to generalize formula (2.3) for the multidimensional case. We also give
conditions, to obtain the remaining formulas in the multidimensional case.

In the multidimensional case, Dyson linked non-colliding particles with the theory of random matrices.
Dyson [Dys62], introduced the theory of processes conditioned to non-collision. For i < j and i, j ∈
[d], let B1

i, j and B2
i, j be i.i.d. real standard Brownian motions starting at zero, and define the Hermitian

random matrix M = (Mi, j)
d
i, j=1 with Mi, j = B1

i, j + iB2
i, j. Then, the process (B+BT )/

√
2 is a Gaussian

Orthogonal Ensemble process (or GOE process). The author identifies a distributional relation between
the eigenvalues process of the matrix hermitian Brownian motion, and Brownian particle systems of
dimension one, such that the repulsive forces of two particles are proportional to the inverse of their
distance. Such process, say Y = (Y1, . . . ,Yd), known as Dyson’s Brownian motion, can be described by
the stochastic differential equations

dYi(t) = dBi(t)+
β

2 ∑
1≤ j≤k, j 6=i

1
Yi(t)−Yj(t)

dt t ≥ 0, i ∈ [d], (2.4)

with β = 1,2,4 for the GOE, GUE and GSE respectively1, and (Bi, i∈ [d]) independent standard Brownian
motions of dimension one.

Those repulsive forces in Dyson’s Brownian motion, do not allow collisions between particles. That
is, the process in (2.4) for β = 2, satisfies that Y0 ∈W implies Yt ∈W for every t with probability one. It
has also been proved that the process can be started at the origin, see [OY02].

To prove that such a process can be viewed as Brownian motions conditioned never to collide, the two
most used methods are:

1Gaussian unitary, ortogonal and symplectic ensembles
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1. using Doob’s h-transforms with harmonic functions,

2. finding the limit law of the process conditioned to non-collision up to the (possibly random) time
T , and let T → ∞.

Let us recall both methods. To obtain harmonic functions, the paper [Ras14] lists several methods. Gra-
biner proved in [Gra99], that the density of the transition probabilities of (2.4) with β = 2 is given by

p(s,x; t,y) =
∆(y)
∆(x)

f (t− s,y|x),

where ∆ is the Vandermonde’s determinant, and f (t − s,y|x) is the transition density of the absorbing
Brownian motion in W, from state x at time s to state y at time t. Such f is found using Karlin-McGregor’s
formula [KM59]. As ∆ is a positive harmonic function on W, the process Y can be seen as an h-transform
in Doob’s sense, implying that the eigenvalues process of GUE has the same distribution that the h-
transform of an absorbing Brownian motion in the Weyl’s chamber.

Conditioning to non-collision up to a deterministic time is given in [KT03a]. They consider vicious
walker models, which is a system of non-intersecting random walks. Proving a functional central limit
theorem, they obtain Brownian motions X = (X1, . . . ,Xd) which do not intersect on the time interval (0,T ],
and prove X converges to Y as T → ∞.

2.2 The random walk conditioned to be ordered up to a geometric
time as an h-transform

Recall the notation at the beginning of Section 2.1.1. Consider x = (x1,x2,x3) ∈W and let y = (y1,y2) =
(x2− x1,x3− x2). Recall the definition of τ = inf{n : Xn /∈W}, the first exit time from the Weyl chamber.
For any n ∈ N and A = A0×A1×·· ·×An ∈B(R)n+1, we find the limit as c→ 0+ of

Pc

(
n⋂
0

{Xi + xi ∈ Ai}

∣∣∣∣∣τ > N

)
= Pc

(
n⋂
0

{Xi + xi ∈ Ai}

∣∣∣∣∣X1
j + x1 < X2

j + x2 < X3
j + x3, j ∈ [N]

)
.

First we prove this is a Markov chain.

Proposition 2.2. Under Pc and for any x = (x1,x2,x3) ∈W, the chain X +x conditioned to be ordered up
to time N is a Markov chain with transition probabilities

P↑c(w,dy) = 1y∈W
h↑c(y)

h↑c(w)
e−c p(w,dy),

with w = (w1,w2,w3) ∈W, y = (y1,y2,y3), p(w,dy) = P(W1 +w ∈ dy) and

h↑c(w) =
Pc (Xi +w ∈W, i ∈ [ζ ])

Pc (Xi ∈W, i ∈ [ζ ])
.



CHAPTER 2. RANDOM WALKS CONDITIONED TO STAY ORDERED 38

Proof. We compute the n-step transition probabilities

Pc
x (Xi ∈ dwi, i ∈ [n]0 | τ > N) ,

where wi ∈ R3 for i ∈ [n]0 := {0, . . . ,n} and w0 = x ∈W. Then, the numerator of the n-step transition
probability is given by

Pc (Xi + x ∈ dwi, i ∈ [n]0,Xi + x ∈W, i ∈ [N]) .

On such set we have N ≥ n, and for i ∈ [n]0 we have Xi + x = wi ∈W, while for n+ i ∈ {n,n+1, . . . ,N}

{Xn + x ∈ dwn,Xn+i + x ∈W}= {Xn + x ∈ dwn,Xn+i−Xn +wn ∈W} .

Summing over the values of N, and using independent and stationary increments of X , the numerator is
equal to

1∩n
1{wi∈W}P(Xi + x ∈ dwi, i ∈ [n]0)

×∑
k≥n

P(Xn+i−Xn +wn ∈W,n+ i ∈ [k])P(N = k)

= 1∩n
1{wi∈W}P(Xi + x ∈ dwi, i ∈ [n]0)e−cn

×Pc (Xi +wn ∈W, i ∈ [N]) ,

by the lack of memory property of N. Therefore, the n-step transition probability is given by

= 1∩n
1{wi∈W}P(Xi + x ∈ dwi, i ∈ [n]0)e−cn× Pc (wn +Xi ∈W, i ∈ [N])

Pc (x+Xi ∈W, i ∈ [N])
.

Denote by X↑ the random walk X conditioned to stay ordered up to time N. Considering wi ∈W for
i ∈ [n−1]0, we obtain, using that X is a random walk

Pc
(

X↑(n) ∈ dwn|X↑(0) = w0,X↑(1) ∈ dw1, . . . ,X↑(n−1) ∈ dwn−1

)
= 1{wn∈W}P(Xn + x ∈ dwn|Xn−1 + x ∈ dwn−1)e−c h↑c (wn)

h↑c (wn−1)

= 1{wn∈W}P(X1 ∈ dwn|X0 ∈ dwn−1)e−c h↑c (wn)

h↑c (wn−1)
,

which is the one-step transition probability, and depends only on wn−1 and wn.

Now we analyze the function h↑c .

2.2.1 Reexpression of the h-function of the ordered RW up to a geometric time

A priori, h↑c is the division of two probabilities converging to zero. We reexpress h↑c to prove it converges.
Working with the numerator of h↑c(x), first sum over all possible values of N

Pc (Xi + x ∈W, i ∈ [ζ ])

= (1− e−c)

(
1+

∞

∑
1

e−cnPn (Xi + x ∈W, i ∈ [n])

)
.
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Recall that Y = (X2−X1,X3−X2) and y = (x2− x1,x3− x2). It follows that

Pc (Xi + x ∈W, i ∈ [ζ ])/(1− e−c)−1 = E

(
∑
1

e−cn1−y<Y n

)
. (2.5)

For any n ∈ N, it is known that X and the time-reversed process X∗ has the same distribution, with

X∗i = Xn−Xn−i for 0≤ i≤ n.

This chain has components X∗ = (X1,∗,X2,∗,X3,∗), and similarly for Y ∗. Then{
−y < Y n

}
d
=
{

max{−Y 1,∗
j , j ∈ [n]}< x2− x1,max{−Y 2,∗

j , j ∈ [n]}< x3− x2

}
.

Define Y k
n = max{Y k

j ,0 ≤ j ≤ n} for k = 1,2 and Y n = (Y 1
n,Y

2
n). Add and subtract the term Y k,∗

n and use

Y k,∗
i −Y k,∗

n = Y k
n −Y k

n−i−Y k,∗
n =−Y k

n−i for k = 1,2, so{
−y < Y n

}
d
=
{

Y n−1−Yn < y
}
. (2.6)

This implies that h↑c can be reexpresed as

h↑c(x) =
1+∑

∞
1 e−cnP

(
Y n−1−Yn < y

)
1+∑

∞
1 e−cnP

(
Y n−1−Yn < 0

) (2.7)

2.2.2 Partitioning N via the times of a multidimensional ladder height function to
obtain the limit of the approximated h-function

In this subsection, we partition N at some particular times {Ji, i ∈ N}. Those are the times in common
among the ascending ladder times of Y 1 and Y 2, that is, if (αk

j , j ≥ 0) are the strict ascending ladder
times of Y k, then Ji is the ith time such that α1

j = α2
l for some j, l ∈ N. We prove that the subpaths

{YJi+n,0≤ n < Ji+1−Ji}i are i.i.d., and at the times Ji, every component of the walk Y is at least as big as
the current cumulative maximum. In this sense, the reader should think on those subpaths as excursions
of Y .

Let J0 = 0 and for i ∈ N, define

Ji+1 = min
{

n > Ji : Y k
n−1 < Y k

n ,k = 1,2
}
,

the first time after Ji, such that both walks reach the current maximum at the same time.

Remark 2.1. Note that Y Ji =YJi , since both processes are at the same maximum. Also, since we assumed
P(Y1 > 0)> 0, then P(J1 = 1) = P

(
Y 0 < Y1

)
= P(0 < Y1) has positive probability.

We prove (Ji, i≥ 0) are stopping times. Let (Fn,n ∈ N) be the natural filtration of X . For any m ∈ N,
the event {J1 = m} is equal to{

Y k
j−1 ≥ Y k

j ,1≤ j ≤ m−1 for k = 1 or k = 2
}
∩
{

Y k
m−1 < Y k

m,k = 1,2
}
,
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which is in Fm. Assuming Ji is a stopping time, the event {Ji+1 = m} is equal to

m−1⋃
l=i

(
{Ji = l}∩

{
Y k

j−1 ≥ Y k
j , l +1≤ j ≤ m−1 for k = 1 or k = 2

}
∩
{

Y k
m−1 < Y k

m,k = 1,2
})

,

which also belongs to Fm.
We prove the independence and obtain the distribution between such times.

Lemma 2.3. For every i ∈ N, the walk {Y Ji+n−1−YJi+n,n ≥ 1} is independent of FJi and has the same
distribution as {Y n−1−Yn,n≥ 1}.

Proof. Let T < ∞ be a stopping time. For n ≥ 2, decompose Y T+n−1 as the maximum up to time T and
the maximum between times {T +1, . . . ,T +n−1}. Hence

Y T+n−1−YT+n =
(
Y T −YT

)
∨max{YT+l−YT , l ∈ [n−1]}− (YT+n−YT ),

and for n = 1
Y T −YT+1 =

(
Y T −YT

)
∨ (0,0)− (YT+1−YT ) .

We substitute T = Ji for i ∈ N and recall Y Ji = YJi . For n ∈ N and Am ∈ R2 with m ∈ [n], the events

n⋂
m=1

{Y Ji+m−1−YJi+m ∈ Am}

=
n⋂

m=1

{(0,0)∨max{YJi+l−YJi, l ∈ [m−1]}− (YJi+m−YJi) ∈ Am}

are independent of FJi under {Ji < ∞}, by the strong Markov property. They also have the same distribu-
tion as

n⋂
m=1

{(0,0)∨max{Yl, l ∈ [m−1]}−Ym ∈ Am}=
n⋂

m=1

{
Y m−1−Ym ∈ Am

}
,

recalling that Y 0 = Y0 = (0,0) under P.

The following result is crucial to partition the sums in (2.7).

Lemma 2.4. The times {Ji+1− Ji, i ∈ N} are i.i.d. and Ji+1− Ji = J1 ◦ θJi , where θ is the translation
operator.

Proof. For i ∈ N we have

Ji+1− Ji = min{n > 0 : Y Ji+n−1 < YJi+n}
= min{n > 0 : max{YJi+m−YJi;0≤ m≤ n−1}− (YJi+n−YJi)< 0}
= J1 ◦θJi.

Then Ji+1− Ji is independent of FJi and has the same law as J1, by Lemma 2.3.
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Lemma 2.5. The h-function h↑c converges as c ↓ 0 to

h↑(x) = 1+E

(
J1−1

∑
n=1

1Y n−1−Yn<y

)
,

recalling that y = (x2− x1,x3− x2).

Proof. Recall Equation (2.7). Partition N at times (Ji, i ∈ N)

E

(
∑
1

e−cn1Y n−1−Yn<y

)

= E

(
∑
0

e−cJi1Ji<∞

Ji+1−Ji

∑
n=1

e−cn1Y n−1+Ji−Yn+Ji<y

)
.

Conditioning with FJi and summing over the values taken by Ji+1− Ji, the previous equation is equal to

E

{
∑
0

e−cJi1Ji<∞ ∑
m≥1

m

∑
n=1

e−cnP
(
Ji+1− Ji = m,Y n−1+Ji−Yn+Ji < y |FJi

)}
.

Using lemmas 2.3 and 2.4, we obtain

Pc (Xi + x ∈W, i ∈ [ζ ])/(1− e−c)

= 1+E

(
∞

∑
0

e−cJi1Ji<∞

)
E

(
J1

∑
n=1

e−cn1Y n−1−Yn<y

)
.

Since e−cJi1Ji=∞ = 0, we can ignore the indicator 1Ji<∞. When x = 0, the only term that remains in the
second expectation above is e−cJ1 , since Y 1

n−1 ≥ Y 1
n or Y 2

n−1 ≥ Y 2
n for n < J1. It follows that

Pc (Xi ∈W, i ∈ [ζ ])/(1− e−c) = 1+E

(
∞

∑
0

e−cJi

)
E
(
e−cJ1

)
.

Dividing both terms, and using

E

(
J1

∑
n=1

e−cn1Y n−1−Yn<y

)
−E
(
e−cJ1

)
= E

(
J1−1

∑
n=1

e−cn1Y n−1−Yn<y

)
,

we have

h↑c(x) = 1+E

(
J1−1

∑
n=1

e−cn1Y n−1−Yn<y

)
E
(
∑

∞
0 e−cJi

)
1+E(∑∞

0 e−cJi)E(e−cJ1)
.

Since Ji = ∑
i−1
0 (Jk+1− Jk) is a sum of i.i.d. random variables, then

E

(
∞

∑
0

e−cJi

)
=
(
1−E

(
e−cJ1

))−1
,

implying

h↑c(x) = 1+E

(
J1−1

∑
n=1

e−cn1Y n−1−Yn<y

)
.

The result follows from the monotone convergence theorem.
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The latter result implies Theorem 2.1. In the next section, we prove that h↑ is (sub)harmonic, and give
a simple condition that ensures it is finite.

2.3 Properties of the limiting h-function and the interpretation of
the walk as conditioned to stay ordered forever

2.3.1 The harmonicity of the h-function depends on the first exit time to W
We know that the first exit time from the Weyl chamber is given by

τ = min{n > 0 : Y 1
n ∧Y 2

n ≤ 0}.

By Lemma 2.5, we rewrite h↑ as

h↑(x) = lim
c→0+

Pc
x

(
Y N > 0

)
Pc
(

Y N > 0
) = lim

c→0+

Px (τ > N)

P(τ > N)
.

Let Qx be the law of X killed at the first exit of the Weyl chamber, that is, for n ∈ N and Λ ∈Fn

Qx (Λ,n < ζ ) = Px (Λ,n < τ) .

Expectations under Qx will be denoted by EQ
x . The next lemma gives us conditions to know if h↑ is

harmonic or subharmonic. It is based on Lemma 1 of [CD05].

Lemma 2.6. Let x ∈W. If E(τ)< ∞, then h↑ is subharmonic and

EQ
x

(
h↑(Xn)1n<ζ

)
< h↑(x).

If E(τ) = ∞, then h↑ is harmonic and

EQ
x

(
h↑(Xn)1n<ζ

)
= h↑(x).

Proof. Since we proved in Lemma 2.5 that the convergence of h↑c to h↑ is monotone, then

EQ
x

(
h↑(Xn)1n<ζ

)
= lim

c→0+
Ex

(
PXn (τ > N)

P(τ > N)
1n<τ

)
. (2.8)

Using the Markov property

Px (τ > n+N) = Ex

(
1Y 2

k ∧Y 1
k >0,k∈[n+N]

)
= Ex

(
1Y 2

k ∧Y 1
k >0,k∈[n]1Y 2

k ∧Y 1
k >0,k∈[N] ◦θn

)
= Ex (1τ>nPXn (τ > N)) ,
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which is the numerator in the right-hand side of Equation (2.8). Summing over all the values of N

Px (τ > n+N) = ∑
k
Px (τ > n+ k,N = k)

= ecn
∑
k≥n

Px (τ > k)(1− e−c)e−ck.

Starting the sum from k = 0, we obtain

Px (τ > n+N) = ecn

{
Px (τ > N)−

n−1

∑
0
Px (τ > k)P(N = k)

}
.

Thus, the right-hand side of Equation (2.8) is equal to

lim
c→0+

ecn

{
Px (τ > N)

P(τ > N)
−

n−1

∑
0

Px (τ > k)e−ck

∑P(τ > m)e−cm

}

= h↑(x)− 1
E(τ)

n−1

∑
0
Px (τ > k) ,

which proves the lemma, since Px(τ > 0) = P(x+X0 ∈W) = 1.

2.3.2 Finiteness of the h-function
To prove h↑(x) < ∞ for every x ∈W, we use the remark of Lemma 1 in [Tan89]. In this subsection, the
inequality x > z for x,z ∈ R3 means there is strict inequality component-wise.

Lemma 2.7. Assume there exists ε = (ε1,ε2) ∈ R+ such that

P
(
(X2

1 −X1
1 ,X

3
1 −X2

1 )> ε
)
> 0.

Then
h↑(x)< ∞ ∀x ∈W.

Proof. Note that Lemma 2.6 was independent of the finiteness of h↑. Hence, from such lemma and x ∈W
we have

h↑(x)≥
∫

P(x+X1 ∈ dz,1 < τ)h↑(z) =
∫

z∈W
P(x+X1 ∈ dz)h↑(z).

Define g(x) = (x2− x1,x3− x2) for x ∈ R3
+. For simplicity, instead of g(x) we write x−. So, for instance

X− = (X2−X1,X3−X2) and x− := (x2− x1,x3− x2). Then, we have

P(x+X1 ∈ dz) = P
(
x1 +X1

1 ∈ dz1,x−+X−1 ∈ dz−
)
.

Note from Lemma (2.5) that h↑(x) depends on x only trough x−. Define h− : R2
+ ∪{(0,0)} 7→ R+ as

h−(x−) := h↑(x), so

h−(x−) = 1+E

(
J1−1

∑
n=1

1Y n−1−Yn<x−

)
.
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It follows that
h−(x−)≥

∫
z∈W

P
(
x1 +X1

1 ∈ dz1,x−+X−1 ∈ dz−
)

h−(z−). (2.9)

Also, note that h−(0) = 1, since 1X−0 −X−1 ≤0 = 1 implies J1 = 1.

Assume that h−(z−) = ∞ for every z− > ε . Fix any x1 ∈ R, and use x = (x1,x1,x1) in (2.9) to obtain

1 = h−(0) = h↑(x)≥
∫

z∈W∩{z∈R3:z−>ε}
P
(
x1 +X1

1 ∈ dz1,x−+X−1 ∈ dz−
)

h−(z−).

Hence, it should be the case that

0 = P
(
x1 +X1

1 ∈ R,x−+X−1 > ε
)
= P

(
X−1 > ε

)
,

contradicting the hypothesis. Therefore, there exists z(1) = (x1,x1 + z(1),1,x1 + z(1),1 + z(1),2) ∈W such
that

z−(1) > ε and h↑(z(1)) = h−(z−(1))< ∞.

Now, assume h−(z−) = ∞ for every z− > ε + z−
(1). Use x = z−

(1) in (2.9) to obtain

∞ > h−(z−(1))≥
∫

z∈W∩{z∈R3:z−>ε+z−
(1)}

P
(

x1 +X1
1 ∈ dz1,z−(1)+X−1 ∈ dz−

)
h−(z−).

Then, it should happen that

0 = P
(

x1 +X1
1 ∈ R,z−(1)+X−1 > ε + z−(1)

)
= P

(
X−1 > ε

)
,

again contradicting the hypothesis. Hence, there exists z(2) = (x1,x1 + z(2),1,x1 + z(2),1 + z(2),2) ∈W such
that

z−(2) > ε + z−(1) and h↑(z(2)) = h−(z−(2))< ∞.

Continuing in this way, there is some subsequence (z(n),n ∈ N), with z(n) = (x1,x1 + z(n),1,x1 + z(n),1 +
z(n),2) ∈W satisfying

z−(n) > ε + z−(n−1) and h↑(z(n)) = h−(z−(n))< ∞,

for every n.
Fix any x = (x1,x2,x3) ∈W. We prove that h↑(x) < ∞. Note that in the previous analysis, x1 was

arbitrary. Let n ∈ N such that

z−(n),1∧ z−(n),2 > (nε1)∧ (nε2)> (x3− x2)∨ (x2− x1).

It follows that

h↑(x) = 1+E

(
J1−1

∑
n=1

1X−n−1−X−n <x−

)

≤ 1+E

(
J1−1

∑
n=1

1X−n−1−X−n <z−
(n)

)
,

which is finite by construction.
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2.3.3 Ordered random walks as the limit law of random walks conditioned to stay
ordered up to a geometric time

Let (qn,n ≥ 1) be the transition probabilities of (X ,Q). From Theorem 2.1, denote by (p↑n,n ≥ 1) the
transition probabilities of X conditioned to stay ordered

p↑n(w,dz) =
h↑(z)
h↑(w)

qn(w,dz) w ∈W, n ∈ N.

The law of the Markov process with transition probabilities (p↑n,n≥ 1) and starting from x∈W is denoted
by P↑x . Hence, for n ∈ N and Λ ∈Fn

P↑x(Λ,n < ζ ) =
1

h↑(x)
EQ

x

(
h↑(Xn)1Λ,n<ζ

)
. (2.10)

Its lifetime is P↑x-finite if h↑ is subharmonic and P↑x-infinite if it is harmonic. Let us prove (X ,P↑x) is the
limit as c→ 0+ of (X ,Px) conditioned to have ordered components up to a geometric time.

Lemma 2.8. Let N be geometric time with parameter 1− e−c, independent of (X ,P). Then, for every
x ∈W, every finite Fn-stopping time T and Λ ∈FT

lim
c→0+

Px (Λ,T ≤ N|X(i) ∈W, i ∈ [N]) = P↑x(Λ,T < ζ ).

Proof. First we use a deterministic time T ∈ N. Note that {T < τ}= {X(i) ∈W, i ∈ [T ]}. We work with
Px (Λ,T ≤ N,X(i) ∈W, i ∈ [N]). Separating in the first T values of X and summing over all the values of
N

Px (Λ,T ≤ N,X(i) ∈W, i ∈ [N])

= ∑
n≥T

Px (Λ,T ≤ n,X(i) ∈W, i ∈ [T ],X(T + i) ∈W, i ∈ [n−T ])P(N = n) ,

starting the sum at zero and using the Markov property at FT

Px (Λ,T ≤ N,X(i) ∈W, i ∈ [N])

= e−cT
∑
n≥0

Px (Λ,T < τ,Px (X(T + i) ∈W, i ∈ [n]|FT ))P(N = n)

= e−cTPx (Λ,T < τ,PXT (N < τ))

= Px (Λ,T < τ, t ≤ N,PXT (N < τ)) .

Now, consider c0 > 0 and any c ∈ (0,c0). Recall from Lemma 2.5 that h↑c increases to h↑, hence

1Λ,T<τ,T≤N
PXT (τ > N)

Px (τ > N)
= 1Λ,T<τ,T≤N

h↑c(XT )

h↑c(x)

≤ 1Λ,T<τ

h↑(XT )

h↑c0(x)
.
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Taking expectations on both sides and using Lemma 2.6

Ex

(
1Λ,T<τ,T≤N

PXT (τ > N)

Px (τ > N)

)
≤ h↑(x)

h↑c0(x)
,

and the right-hand side is finite by Lemma 2.7. Hence, by Lebesgue’s dominated convergence theorem

lim
c→0+

Px (Λ,T ≤ N|τ > N) = lim
c→0+

Ex

(
1Λ,T<τ,T≤N

PXT (τ > N)

Px (τ > N)

)
= P↑x (Λ,T < ζ ) .

Let us prove the same convergence for any finite stopping time T . Summing over all the values of T ,
the equality

Px (Λ,T ≤ N < τ) = Px (Λ,T < τ, t ≤ N,PXT (N < τ))

and Equation (2.10) holds for T . We need to prove Lemma 2.6 holds true for any stopping time T < ∞

a.s. Summing over all the values of T , in the subharmonic case

EQ
x

(
h↑(XT )1T<ζ

)
= ∑

n
Ex

(
h↑(Xn)1n<τ,T=n

)
≤ h↑(x)∑

n
P↑x (T = n,n < ζ )

= h↑(x)P↑x (T < ∞,T < ζ ) ,

which is smaller than h↑(x). In the harmonic case, the inequality above is an equality, so it remains to
prove that P↑x(T < ∞,T < ζ ) = 1. But this is clear since

P↑x(T = ∞,T < ζ ) = lim
n

1
h↑(x)

Ex

(
h↑(XT )1T>n

)
= 0,

by monotone convergence.

In the next section, we obtain several reexpresions of the h-function.

2.4 Reexpressions of the h-function

2.4.1 Reexpresions using the minimum of the descending ladder times of the com-
ponents

Changing the measure to start at zero, we have

E

(
∞

∑
1

e−cn1−y<Y n

)
= Ex

(
∞

∑
1

e−cn10<Y n

)
.

For k = 1,2, denote by (β k
i , i ∈ N) the strict descending ladder times of Y k, that is β k

0 = 0 and for i ∈ N
the time β k

i is the smallest index n such that Y k(β k
i−1 + n) < Y k(β k

i−1). The above sum stops when one
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component Y k becomes negative, that is, at β 1
1 ∧β 2

1 . Then

h↑c(x) =
1+Ex

(
∑

∞
1 e−cn10<Y n

)
1+E

(
∑

∞
1 e−cn10<Y n

)
=

1+Ex

(
∑

β 1
1∧β 2

1−1
1 e−cn

)
1+E

(
∑

β 1
1∧β 2

1−1
1 e−cn

) .

This equality allows us to prove the next proposition.

Lemma 2.9. If some component of Y drifts to −∞, the h-function h↑ is given by

h↑(x) =
Ex
(
β 1

1 ∧β 2
1
)

E
(
β 1

1 ∧β 2
1
) =

Ex (τ)

E(τ)
.

If every component drifts to +∞ and P
(
β 1

1 ∧β 2
1 = ∞

)
> 0, then

h↑(x) =
Px
(
β 1

1 ∧β 2
1 = ∞

)
P
(
β 1

1 ∧β 2
1 = ∞

) =
Px (τ = ∞)

P(τ = ∞)
.

Proof. If Y k drifts to −∞ for some k = 1,2, then E
(
β 1

1 ∧β 2
1
)
≤ E

(
β k

1
)
< ∞ by Proposition 9.3, page 167

of [Kal02]. Therefore, by the monotone convergence theorem

h↑c(x)→
1+Ex

(
β 1

1 ∧β 2
1 −1

)
1+E

(
β 1

1 ∧β 2
1 −1

) .
If every component drifts to +∞, then Y 1 ∧Y 2 has a finite minimum with positive probability. By

hypothesis P
(
β 1

1 ∧β 2
1 = ∞

)
> 0, so

h↑c(x) =
Ex

(
∑

β 1
1∧β 2

1−1
0 e−cn

)
E
(

∑
β 1

1∧β 2
1−1

0 e−cn
)

=
Ex

((
1− e−c(β 1

1∧β 2
1 )
)

1
β 1

1∧β 2
1 <∞

+1
β 1

1∧β 2
1 =∞

)
E
((

1− e−c(β 1
1∧β 2

1 )
)

1
β 1

1∧β 2
1 <∞

+1
β 1

1∧β 2
1 =∞

)
→

Px
(
β 1

1 ∧β 2
1 = ∞

)
P
(
β 1

1 ∧β 2
1 = ∞

) .

2.4.2 Reexpresions using the union of the descending ladder times
Let {β1,β2, . . .} be the ordered union of the positive strict descending ladder times of Y 1 and Y 2, that is,
the ordered union of {β 1

i ,β
2
j , i, j ≥ 1}. Define β0 = 1. Denoting by gn = βn and dn = βn+1 for n≥ 0, the
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set {gn,gn +1, . . . ,dn−1} is the nth interval where Y remains constant. Partitioning N on such intervals,
from Equation (2.5)

1+E

(
∞

∑
1

e−cn1−y<Y n

)

= E

(
∑
n≥0

1gn<∞

dn−1

∑
k=gn

e−c(k−gn)e−cgn1−y<Y k

)

= E

(
∑
n≥0

e−cgn1gn<∞,−y<Y gn

dn−gn−1

∑
k=0

e−ck

)
.

The above equation for x = 0 is

E

(
∑
n≥0

e−cn10<Y n

)
= E

(
d0−1

∑
k=0

e−ck

)
.

Note that d0 = β 1
1 ∧β 2

1 . Also, note that −y≤ 0≤ Y d0−1, therefore

h↑c(x) =
E
(

∑
d0−1
0 e−ck

)
+∑n≥1E

(
e−cgn1gn<∞,−y<Y gn

∑
dn−gn−1
k=0 e−ck

)
E
(

∑
d0−1
0 e−ck

)
= 1+

(
E

(
d0−1

∑
0

e−ck

))−1

∑
n≥1

E

(
e−cgn1gn<∞,−y<Y gn

dn−gn−1

∑
k=0

e−ck

)
.

As before, depending on the asymptotic behavior of the components, we can obtain a limit.

Proposition 2.3. If some component of Y drifts to −∞, then

E(dn−gn)< ∞ ∀n,

and the h-function is

h↑(x) = 1+ ∑
n≥1

E
(

dn−gn;gn < ∞,−y < Y gn

)
E(d0)

.

If every component drifts to +∞ and P(d0 = ∞)> 0, then

h↑(x) = 1+ ∑
n≥1

P
(

gn < ∞,−y < Y gn
,dn−gn = ∞

)
P(d0 = ∞)

.

Proof. As before, if the component k drifts to −∞, the first case follows by monotone convergence theo-
rem and dn−gn ≤ β k

j −β k
j−1 for some j. The second case follows by

dn−gn−1

∑
0

e−ck =
1− e−c(dn−gn)

1− e−c 1dn<∞ +
1

1− e−c 1dn=∞,

and using monotone convergence theorem.
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2.4.3 Reexpresion as a renovation function
Recall from the previous section that (βn,n≥ 0) is the ordered union of the strict descending ladder times
of Y 1 and Y 2. We have the following result.

Proposition 2.4. The h-function h ↑ can be expressed as

h↑(x) = 1+
∞

∑
n=1

P
(
−Y

βn
< y
)
.

Proof. First we express h↑ as an infinite sum, using Tonelli’s theorem and Theorem 2.1, we have

h↑(x)−1 = E

(
J1−1

∑
n=1

1Y n−1−Yn<y

)
=

∞

∑
n=1

E
(

1Y n−1−Yn<y1J1>n

)
. (2.11)

The event {J1 > n} means that for every j ∈ [n], there is some k, such that the running maximum at time
j−1 of Y k is at least Y k

j . This is written as

{J1 > n}=
n⋂

j=1

⋃
k

{
max

{
Y k

l ;0≤ l ≤ j−1
}
−Y k

j ≥ 0
}
.

Recall the equality in distribution between Y and Y ∗, which is Y reversed in time. Also, recall the equality
in distribution of −Y and Y ·−1−Y· of Equation (2.6). Hence, we have

{J1 > n} d
=

n⋂
j=1

⋃
k

{
max

{
Y k,∗

l ;0≤ l ≤ j−1
}
−Y k,∗

j > 0
}

=
n⋂

j=1

⋃
k

{
max

{
−Y k

n−l;0≤ l ≤ j−1
}
+Y k

n− j > 0
}

=
n⋂

j=1

⋃
k

{
min

{
Y k

n−l;0≤ l ≤ j−1
}
< Y k

n− j

}
.

In a similar way, we can prove that

{
Y n−1−Yn ≤ y,J1 > n

} d
=
{

Y k
n ≥−yk,∀k

}⋂ n⋂
j=1

⋃
k

{
min

{
Y k

n−l;0≤ l ≤ j−1
}
< Y k

n− j

}
.

Now we prove the last term means n is a strict descending ladder time of some Y k. In fact, reordering the
index set, the last term is equal to

n⋂
j=1

⋃
k

{
min

{
Y k

l ;n− j+1≤ l ≤ n
}
< Y k

n− j

}
=

n⋂
j=1

⋃
k

{
min

{
Y k

l ; j ≤ l ≤ n
}
< Y k

j−1

}
.
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The right-hand side means the future minimum of Y k up to time n is always smaller than the current value
of Y k, for some k. Thus, the time n is a strict descending ladder time of some Y k, and

h↑(x) = 1+
∞

∑
n=1

P
(

Y
βn

>−y
)
.

The next section is devoted to obtain conditions for the finiteness of E(τ).

2.5 Known results about the expectation of the first exit time of W,
to ensure the h-function is harmonic

In Theorem 1 of [DW10], the tail of the distribution of τ is computed. Explicitly, let X = (X1, . . . ,Xd) be
a random walk with i.i.d. components on R. Under the assumptions that the step distribution has mean
zero and the α moment is finite for α = d−1 if d > 3, and α > 2 if d = 3, they prove

lim
n

nd(d−1)/4Px (τ > n) = KV (x),

where K is an explicit constant and V is given by

V (x) = ∆(x)−Ex(∆(X(τ))) x ∈W∩Sd,

with S⊂ R the state space of the random walks, and ∆ defined in (2.1). This implies that for x ∈W∩Sd

Ex(τ)< ∞ whenever d ≥ 3.

This suggests that E(τ)< ∞ in this case.
In the paper [Dur14a] the author obtains the asymptotic behavior of τx, for random walks with non-

zero drift killed when leaving general cones on Rd . Under some assumptions, in particular, the step
distribution having all moments and a drift pointing out of the cone, it is proved the existence of a function
U such that

P(τx > n)∼ ρcnn−p−d/2U(x).

The value p ≥ 1 is the order of some homogeneous function, and c ∈ [0,1]. This suggests E(τx) ≤
ρU(x)∑cn < ∞ whenever c ∈ (0,1).

As mentioned in Section 2.1.3, in the paper [DW15] the authors obtain

P(τx > n)∼ cV (x)n−p/2 n→ ∞,

for random walks in a cone, with components having zero mean, variance one, covariance zero, and some
finite moment. In that case, the value p is

p =
√

λ1 +(d/2−1)2− (d/2−1)> 0.

Thus, the expectation of τx is infinite iff

1≥ p/2 ⇐⇒ (d/2+1)2 ≥ λ1 +(d/2−1)2

⇐⇒ 2d ≥ λ1.



CHAPTER 2. RANDOM WALKS CONDITIONED TO STAY ORDERED 51

The paper [GR16], computes the asymptotic exit time probability for random walks in cones, under
some general conditions. The first is that the support of the probability measure of X(1) is not included in
any linear hyperplane. The second is that, if L is the Laplace transform of the random walk having x∗ as
a minimum, then L is finite on an open neighborhood of x∗, and that this value belongs to the dual cone.
Under such hypotheses, they prove that

lim
n→∞

Px (τ > n)1/n = L(x∗),

for all x ∈ Kδ := K +δv, for some δ ≥ 0 and some fixed v in Ko. The authors note that in general, there
is no explicit link between the drift m of the walk (if exists), x∗ and L(x∗). The only exception is when
m ∈ K. In such case, L(x∗) = 1 iff x∗ = 0. Furthermore, when the drift m exists, then m ∈ K iff x∗ = 0.
Hence, if we want that E(τx) = ∞, we should restrict to the case L(x∗) = 1.



Chapter 3

ON THE PROFILE OF TREES WITH A
GIVEN DEGREE SEQUENCE

Let sn = (Nn
i , i≥ 0) be a sequence of non-negative integers satisfying sn := ∑i Nn

i = 1+∑i iNn
i . Such an sn is called

a degree sequence. Let Psn be the uniform distribution on all rooted plane trees with given degree sequence sn. We
give conditions for the convergence of the profile (sequence of generation sizes), giving a more general formulation
and a proof of a conjecture due to Aldous [Ald91b], concerning the convergence of the profile for conditioned
Galton-Watson trees. Our formulation contains and extends results in this direction obtained previously by Drmota
and Gittenberger [DG97] and Kersting [Ker11]. A technical result is needed to ensure trees with law Psn have
enough individuals in the first generations, and this is handled through a novel path transformation of exchangeable
increment processes.

3.1 Introduction and statement of the results
Trees are an important concept in both pure and applied mathematics, appearing (for example) in biology
to represent genealogies, in computer science as a fundamental data structure, as well as an important
example of a combinatorial class or species (cf. [Knu98], [Knu06], [Joy81], [FS09], [Drm09]). Random
trees, on the other hand, have been shown to be useful in analyzing the asymptotic behavior of certain
families of deterministic trees. For example, certain Galton-Watson (GW) trees conditioned to have size
n (denoted CGW(n)), have been shown to be uniform in classes of trees of size n, like plane trees, binary
plane trees or Cayley trees (cf. [Pit98]).

We will analyze the class of trees with a given degree sequence. The reason is that for several important
real-world networks that have been analyzed, their degree sequence might have a certain feature (see for
example [BA99, CDS11]), and the simplest way to build an associated model of random trees is through
the uniform distribution on trees whose degree sequence has the observed feature. One way to understand
the shape of rooted trees is through their profile, which counts the quantity of elements in the successive
generations. In this chapter, we will focus on the profile of uniform trees with a given degree sequence.
The introductions in [FHN06, GK12] summarize certain applications and references on the profile of
random trees.

Trees with a given degree sequence are more general than CGW(n) trees, since the latter laws can be
obtained as mixtures of the former (see Section 3.5). A conjecture due to Aldous [Ald91b] for CGW(n)
having a finite variance offspring distribution, states that the rescaled profile converges in distribution to a

52
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multiple of the total local time process of the normalized Brownian excursion (NBE). Aldous’s conjecture
was proved in [DG97] as a complex application of analytic combinatorics.

The latter work was generalized in [Ker11] to the case where the offspring distribution is in the domain
of attraction of a stable law. We show a much more general version of Aldous’s conjecture in the setting
of trees with a given degree sequence, satisfying a finite variance condition. Also, in Section 3.5, we
obtain as a particular case of our results another proof of Kersting’s theorem [Ker11], and consequently
of Aldous’s conjecture.

Let us turn to the formal statements of our results. We define rooted plane trees following [Nev86].
Let Z+ = {1,2, . . .} be the set of positive integers, and define U =

⋃
∞
n=0Zn

+ as the set of all labels, using
the convention Z0

+ = {∅}. An element of U is a sequence u = u1 · · ·un of positive integers, where |u|= n
represents the generation of u. If u = u1 · · ·ui and v = v1 · · ·v j belong to U , write uv = u1 · · ·uiv1 · · ·v j
for the concatenation of u and v. By convention u∅ = ∅u = u. For any n ∈ N, let [n] = {1, . . . ,n} with
[0] =∅.

Definition 3.1. A rooted plane tree T is a finite subset of U such that:

1. ∅ ∈ T ,

2. if v ∈ T and v = u j for some j ∈ Z+, then u ∈ T ,

3. for every u ∈ T , there exists a number c(u) ∈ N, such that u j ∈ T iff j ∈ [c(u)].

In the previous definition, the value c(u) represents the number of children of u in T . The size of a
tree T (the number of individuals) will be denoted by |T |. In the following, by a tree we mean a rooted
plane tree. See Figure 3.1 for a graphical representation.

Order the vertices of the tree according to the lexicographical order (e.g., ∅ < 1 < 21 < 22), and
assign label i to the ith vertex, for i ∈ [|T |]. This ordering is also called depth-first order. The depth-first
walk (DFW) of the tree will be the walk with ith increment c(i)−1, started at one. See Figure 3.1 for an
example.

Another labeling of the tree, is the breadth-first order. To define this, assign label 1 to the root.
Suppose the first generation (offspring of the root) has size z1. Order the first generation in lexicographical
order, and assign label i to the ith vertex, for i ∈ {2, . . . ,1 + z1}. Do the same for each consecutive
generation. The breadth-first walk (BFW) of the tree will be the walk with ith increment c(i)−1, started
at one. See Figure 3.2 for an example.

Now we introduce the trees analyzed in this paper. For every n ∈ N, let sn = (Nn
i , i ≥ 0) be a degree

sequence, that is, a sequence of non-negative integers satisfying sn := |sn|= ∑Nn
i = 1+∑ iNn

i . The values
Nn

i represent the number of vertices with i children of some rooted plane tree Tn. Let Psn be the distribution
which samples uniformly at random from the set of all trees with the given degree sequence sn. Consider
a tree τn with law Psn . The BFW (DFW) of τn will be denoted by Wsn .

Denote by Csn( j) the total number of vertices of τn up to generation j. This is called the cumulative
profile or cumulative population. Denote by Zsn( j) the number of vertices in generation j, called in this
paper the profile. Other names given in the literature for the profile are the population profile, horizontal
profile or height profile. Note that Zsn can be recursively obtained as follows: Zsn(0) = 1 and

Zsn( j+1) =Wsn ◦Csn( j), (3.1)
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108
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52

43

Figure 3.1: Tree labeled in lexicographical order (depth-first order) and the corresponding DFW. The explicit order of the
vertices in lexicographical order is ∅< 1 < 11 < 12 < 2 < 3 < 31 < 311 < 3111 < 312.

1

4

7

98

10

32

65

Figure 3.2: Tree labeled in breadth-first order and the relation between the profile and the BFW. The profile of the tree is
(1,3,3,2,1), which is the BFW evaluated at times 0,1,4,7,9.
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where Wsn is the BFW of τn and Csn( j) = ∑
j
0 Zsn(i) (cf. Chapter 9 of [EK86], and the introduction in

[CPGUB13]). By analogy with the continuous-time case (cf. [Lam67a]), Zsn is called the discrete Lam-
perti transform of Wsn . Figure 3.2 shows an example of a BFW and its Lamperti transform.

To study the scaling limits of the profiles, the general idea is: rescale Equation (3.1) and prove the
limit of the profile is a particular solution to

Z(t) = X ◦C(t) t ≥ 0, (3.2)

where X is the limit of the rescaled BFWs and C(t) =
∫ t

0 Z(s)ds.
In our case, the limit X is related to a continuous time process Xb with exchangeable increments (EI

process, or also known as interchangeable increments process) of the form

Xb(t) = σb(t)+
∞

∑
1

β j
(
1
(
U j ≤ t

)
− t
)

t ∈ [0,1], (3.3)

where b is a Brownian bridge on [0,1], (U j, j ≥ 1) are independent of b and i.i.d. with uniform law on
[0,1], and with constants σ ∈ R+, β1 ≥ β2 ≥ ·· · > 0 with ∑β 2

j < ∞. From Kallenberg’s representation
[Kal73], the process Xb has canonical parameters (0,σ ,β ).

The “excursion-type” process X , is obtained from Xb using the Vervaat transformation, defined as
follows. Denote by {t} the fractional part of a real number t. Let D[0,1] be the space of real-valued
càdlàg functions w with domain [0,1] starting at zero (with an analogous definition for D[0,∞)). Let
D′ ⊂ D[0,1] be the subset of functions w such that w(0) = w(1) = 0, and w hits its infimum in a unique
time and continuously. Define for every u ∈ [0,1] the transformation θu : D′ 7→ D′ by

θu(w)(t) = w({t +u})−w(u).

This transformation can be described as cutting the path of w at u obtaining two paths (to the left and to
the right of u), and interchanging them.

Definition 3.2. The Vervaat transform of a càdlàg function w ∈ D′ is defined as V (w) = θρ(w), where ρ

is the unique time w hits its infimum.

Figure 3.3 shows an example.

For a given degree sequence sn, let (c( j), j∈ [sn]) be the associated child sequence, obtained by writing
Nn

0 zeros, Nn
1 ones, etc. Note that Nn

j = |{i : c(i) = j}|. Our main theorem is the following.

Theorem 3.1. Assume the sequence (sn,n≥ 1) of degree sequences satisfies

1. sn→ ∞.

2. There exists a sequence of positive numbers (bsn ,n≥ 1) going to infinity, and M ∈ N∪{+∞}, such
that (

1
b2

sn
∑( j−1)2Nn

j ,
c̃(1)
bsn

,
c̃(2)
bsn

, . . .

)
→

(
σ

2 +
M

∑
1

β
2
j ,β1,β2, . . .

)
for some β1 ≥ β2 ≥ ·· · ≥ βM > 0, and βM+ j = 0 for every j, and such that ∑

M
1 β 2

j < ∞ and
σ2 ∈ [0,∞), and where (c̃(i), i≥ 1) is the child sequence in decreasing order.



CHAPTER 3. ON THE PROFILE OF TREES WITH A GIVEN DEGREE SEQUENCE 56

Figure 3.3: Continuous EI process (top) and its Vervaat transform (bottom). Note that if the EI process attains its infimum
in a unique time, the transformed path is positive.

3. Either σ > 0 or ∑β j = ∞.

4. sn/bsn → ∞.

Define the rescaled processes

Xn =

(
1

bsn

Wsn (bsntc) , t ∈ [0,1]
)
,

Cn =

(
1
sn

Csn

(⌊
sn

bsn

t
⌋)

, t ≥ 0
)

and Zn =

(
1

bsn

Zsn

(⌊
sn

bsn

t
⌋)

, t ≥ 0
)
.

Then, we have the convergence
Xn d→ X ,

under the Skorohod topology D(R+,R+). The limit X is the Vervaat transform of an EI process with
parameters (0,σ ,β ). Furthermore, if ∫ 1

1/2

1
Xs

ds < ∞ a.s., (3.4)

then, we have the joint convergence

(Xn,Cn,Zn)
d→ (X ,C,Z) (3.5)

under the product Skorohod topology D(R+,R+)
3. The limit C has an inverse I given by

I(t) =
∫ t

0

1
X(s)

ds, t ∈ [0,1],
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and is the unique solution to

C(t) =
∫ t

0
X ◦C(s)ds, (3.6)

which is strictly increasing on [0, I(1)] if it is not the zero function. Finally, Z = X ◦C.

In Figures 3.4 and 3.6 we show some simulations of trees with a given degree sequence. Figures 3.5
and 3.7 are their respective cumulative and population profiles. We also show in Figures 3.9 and 3.8 some
trees depicted generation by generation, showing the population profiles.

Let us discuss the hypotheses of the theorem. Hypothesis 1 just means that the sizes of the trees we
are considering go to infinity. Hypothesis 2 gives the asymptotic quantity of children of the individuals
with most children (also called the hubs) and bounds the contribution of other members of the population.
Hypothesis 3 guarantees that the breadth-first walks converge to a function with infinite variation so that
I (and therefore C) can be non-trivial. Hypothesis 4 implies that a bigger and bigger proportion of the
population is not a direct descendant of the hubs. Finally, the Hypothesis in Equation (3.4) ensures we
can find a giant subtree at the top of the tree, which is used to prove C is positive. At this moment we
believe this hypothesis can be removed, if one can obtain a giant subtree with an arbitrary small height.

One application of our theorem is for TGDS such that their rescaled BFW converges to the normalized
Brownian excursion e (intuitively, a Brownian motion conditioned to be positive and hit zero for the first
time at t = 1). For such trees, the spacial rescaling turns out to be bsn = s1/2

n . Since e is continuous, we
have to ensure that the maximum number of children an individual has is o(s1/2

n ).

Corollary 3.1. Consider a sequence (sn,n≥ 1) of degree sequences, such that

1. sn→ ∞.

2. For

σ
2
n := ∑

j≥1

Nn( j)
sn−1

j2−1,

we have σ2
n → σ2 ∈ (0,∞).

3. The maximum degree satisfies

∆n := max{ j : Nn( j)> 0}= o(s1/2
n ).

Define the rescaled processes Xn, Cn and Zn as in Theorem 3.1, with bsn = s1/2
n . Then, we have the joint

convergence
(Xn,Cn,Zn)

d→ (σe,C,Z) (3.7)

in the space C ([0,1],R3
+), where C is described as in Equation (3.6) but driven by σe and Z is the

derivative of C.

The proof of this corollary is simple. The convergence of the rescaled BFWs is given in [BM14b,
Lemma 7]. Several ways to prove (3.4) (about the integrability of 1/e on [0,1]) are given in [Jan06,
Remark 5.2]. Note that the previous corollary is also true if the rescaled BFW’s converge to the Vervaat
transform of an EI with parameters (0,σ ,β m), where β m = ∑

m
1 δβ j∈dx is a finite sum of positive jumps.

This is true because the integral in (3.4) is not affected by a finite number of jumps in X .
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Figure 3.4: Uniformly sampled tree with a given degree sequence, approximating an EI process with zero drift, σ = 2 and
(βi, i ≥ 1) = (1/i, i ≥ 1). The degree sequence is close to a geometric distribution, in the sense that Ni ≈ sn(1/2)i+1, but also
some individuals have a lot of descendants of the order 1/i.
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Figure 3.5: Profile and cumulative profile generated by the tree of Figure 3.4.
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Figure 3.6: Uniformly sampled tree with a given degree sequence, approximating an EI process with zero drift, σ = 0 and
(βi, i≥ 1) = (1/i, i≥ 1). The degree sequence is close to a Pareto distribution, in the sense that Ni ≈ sn(1/i)α+1.
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Figure 3.7: Profile and cumulative profile generated by the tree of Figure 3.6.
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Figure 3.8: Uniformly sampled tree with a given degree sequence depicted generation by generation from left to right. The
degree sequence is of the form of Figure 3.4.
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Figure 3.9: Uniformly sampled tree with a given degree sequence depicted generation by generation from left to right. The
degree sequence is of the form of Figure 3.6.
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Another application of our main theorem is for the convergence of the rescaled profile for CGW trees
having offspring distribution of finite variance. Recall that a distribution µ = (µn,n≥ 0) is called critical
if ∑nµn = 1, and aperiodic if the greatest common divisor of all n with µn > 0 is one.

The hypotheses on µ will be the following:

H2 The distribution µ is critical, aperiodic and has finite variance.

Proposition 3.1. Consider a CGW(n) tree with offspring distribution µ , satisfying hypothesis H2. Denote
by Xn, Cn and Zn its rescaled breadth-first walk, cumulative profile and profile as in Theorem 3.1, but with
sn replaced with n and bsn replaced with

√
n. Then, we have the joint convergence

(Xn,Cn,Zn)
d→ (σe,C,Z) . (3.8)

under the space C ([0,1],R3
+), where C is described as in Equation (3.6) but for σe and Z is the derivative

of C.

This gives another proof of Aldous’s conjecture [Ald91b], first proved in [DG97]. Actually, our
method is robust enough to handle the case where µ does not have a finite variance, and belongs to the
domain of attraction of a stable law. Kersting proved such case in [Ker11], and we recover its result as an
application of our main theorem (see Section 3.5).

Let us discuss about the proof of Theorem 3.1.

Definition 3.3. The process C defined in Theorem 3.1 is called the cumulative Lamperti transform of X,
and its right-hand derivative (satisfying Equation (3.2)) is called the Lamperti transform of X.

To explain our technique, we note that the cumulative Lamperti transform can be used to describe the
possible limits in (3.5).

Proposition 3.2. Any subsequential limit of the rescaled cumulative profile (Cn,n∈N) satisfies (3.6), and
is of the form CΛ for some random Λ ∈ [0,∞], where

CΛ(t) =


0 if t ∈ [0,Λ]
C(t−Λ) if t ∈ [Λ,Λ+ I(1)]
1 if t ∈ [Λ+ I(1),∞),

with the convention C∞ ≡ 0.

Theorem 3.1 will follow from Proposition 3.2 by showing that Λ can only be zero under Hypothesis
(3.4). Indeed, we prove in Section 3.4 that

P
(

Λ ∈ (0,∞],
∫ 1

1/2
ds/X(s)< ∞

)
= 0.

If Λ ∈ (0,∞), the equality CΛ(Λ) = 0 can be interpreted as an asymptotic thickness of the base of our
random trees. To give another interpretation of this thickness, by Skorohod’s representation Theorem, let
(nk)k be a subsequence such that Cnk →CΛ a.s. Then, for any λ ∈ R+ we have

P
(

CΛ(λ ) = 0
)
= lim

ε↓0
P
(

CΛ(λ )< ε

)
= lim

ε↓0
P
(

lim
k
{Cnk(λ )< ε}

)
≤ lim

ε↓0
lim

k
P(Cnk(λ )< ε) .
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Figure 3.10: On the left, a tree labeled in depth-first order. We choose the vertex u = 7 and its ancestor n = 4. We cut the tree
at vertex n and u, and interchange the subtrees with the original root and with root n. On the right, we show the transformed
tree.

The double limit on the right-hand side, is what Lemma 9 of Kersting [Ker11] proves as non-thickness of
the base.

A novel path transformation for discrete EI process, called the 213 transformation, is introduced to
show that, under the conditions of Theorem 3.1, our random tree sequence does not have an asymptotically
thin base.

Definition 3.4 (213 Transformation). Let T be a plane tree with |T | individuals. Let u be a vertex in T
with ancestor n ∈ {2, . . . , |T |}. Cut T at n and u, obtaining three subtrees keeping their original labels:
T (1,n) having the original root, T (n,u) with root n, and T (u) with root u (if u is a leaf, then T (u) is
empty). Construct a new tree Ψn,u(T ) by grafting T (u) at the leaf n of T (1,n) (that is, paste the root of
T (u) at n), and this resulting subtree is grafted at the leaf u of T (n,u). If w is the depth-first walk of T ,
denote by Ψn,u(w) the depth-first walk of Ψn,u(T ).

We obtain in this way a new tree with the same degree distribution. An example is shown in Figure
3.10.

In order to apply the 213 transformation and preserve the law Psn , we need to choose two vertices N
and U in an specific way. Given a natural number h≥ 1, define the condition

U has height greater than h. (3.9)

Proposition 3.3. Let Wsn be the DFW of a tree with law Psn . Consider an independent uniform r.v. U on
{2, . . . ,sn}, and a natural number h≥ 1. When (3.9) is satisfied for the Uth vertex of the tree generated by
Wsn , let N be the only ancestor of U at distance h, and define W̃sn := ΨN,U(Wsn) as the 213 transformation
of Wsn at N and U. If (3.9) is not satisfied, set W̃sn =Wsn . Then, we have(

W̃sn,U
) d
= (Wsn,U) .
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Consider an arbitrary λ ∈ R and a sequence of trees τn with law Psn. The idea to prove the main
theorem is: first we prove that on the event {Λ ∈ (λ ,∞), I(1)− I(1/2) < ∞}, there exists a giant subtree
at the top of τn and of height smaller than λ1 < λ/2; this subtree has many individuals, almost all of them
before height λ1 from its root (up to scaling factors). Apply the 213 transformation when the uniform
variable U falls in the subtree, with N being its ancestor at distance λ1. The transformed subtree will
be fat before height 2λ1, thin between heights {2λ1, . . . ,λ} and fat after height λ , which has probability
going to zero. In Figure 3.11 we give an example of such transformed tree.

3.1.1 Plan of the paper
In Section 3.2 we focus on the BFW of uniform trees with a given degree sequence. The 213 transfor-
mation and the asymptotic non-thickness of the base of trees are analyzed in Section 3.4. We use those
results, however, in Section 3.3 to prove our main theorem. Section 3.5 is devoted to the convergence of
the rescaled (cumulative) profile for CGW(n) trees with offspring distribution in the domain of attraction
of a stable law.

3.2 Convergence of the BFW to the Vervaat transform of an EI pro-
cess

Consider a plane tree T , and let c(u) be the number of children of the uth vertex in T . The degree sequence
of T is obtained from the sequence (c(u),u ∈ [sn]) as follows:

ni(T ) = ni = |{u ∈V (T ) : c(u) = i}|.

Recall that Ts is the set of plane rooted trees with a given degree sequence s = (ni, i ≥ 0) and that Ps is
the uniform distribution on Ts. If u1, . . . ,up are the vertices of T labeled increasingly in the breadth-first
(or depth-first) order, define the breadth-first (resp depth-first) walk (abridged BFW or DFW) of T by x,
where x0 = 1 and xn = 1+c(u1)+ · · ·c(un)−n. Its increments will be denoted k1, . . . ,kp. It is known that
T 7→ (k1, . . . ,kp) is a bijection between the the set of trees with p individuals and the set of sequences

E =

{
K = (k1, . . . ,kp) : ki ∈ N∪{−1},

|s|

∑
1

ki = 0,
j

∑
1

ki > 0 if j < |s|

}
,

see Lemma 6.3 of [Pit06] or Proposition 1.1 of [LG05]. For i≥ 0, let ñi = ñi(K) = |{ j ∈ [|s|] : k j = i−1}|
be the number of increments of the excursion which are equal to i− 1, and call (ñi, i ∈ N) the degree
sequence of the excursion K.

The BFW (DFW) of a tree τ with law Ps is related with a discrete time EI process.

Definition 3.5. A discrete time process (W b( j),0≤ j≤ |s|) with increments ∆W b(i) =W b(i)−W b(i−1)
has exchangeable increments (EI) if for every permutation σ on [|s|](

∆W b(1), . . . ,∆W b(|s|)
)

d
=
(

∆W b(σ1), . . . ,∆W b(σ|s|)
)
.
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Write θi(W b) = W b,(i) for the cyclic shift of W b at i, that is, the sequence of length |s| whose jth
increment is ∆W b(i+ j) with i+ j interpreted mod |s|. A path transformation, introduced by Vervaat in
[Ver79], is used to code discrete random trees from EI processes. The discrete Vervaat transform of W b,
denoted by V (W b), is the i∗th cyclic shift of W b, where i∗ = min{i ∈ [s] : W b(i) = min j∈[s]W ( j)} is the
first minimum of W b.

The next proposition is an easy consequence of the definitions (cf. the proof of Lemma 7 in [BM14b]).

Proposition 3.4. Let W be the BFW (DFW) of a tree with law Ps. and U an independent and uniform
random variable on [|s|]. Then, the cyclic shift of W at U is a discrete time EI process.

Since the BFW and the DFW of a tree have the same increments, but in different order, we deduce the
following.

Corollary 3.2. The breadth-first walk and the depth-first walk of a tree with law Ps, have the same distri-
bution.

Consider a sequence of degree sequences (sn)n≥1 = (Nn
i , i ≥ 0)n≥1 and define sn = |sn|. Using a

uniform permutation πn on [sn] and a child sequence (c( j), j ∈ [sn]), construct the process

W b
sn
(bsntc) = 1+ ∑

j≤bsntc
(c(πn( j))−1), t ∈ [0,1],

where b stands for bridge. It has exchangeable increments on {k/sn : 0≤ k ≤ sn}.
Now, we analyze the convergence of W b

sn
to an EI process. We introduce the notation for convergence

in the Skorohod topology, obtained from Chapter 3 of [Bil99]. Throughout this chapter, by an increasing
function we mean a strictly increasing function. For càdlàg functions f n, f ∈ D[0,1] (the space of càdlàg
functions with domain [0,1]), the functions f n converge to f in the Skorohod topology, denoted by f n→ f ,
if there exists increasing bijections αn : [0,1] 7→ [0,1] such that

||αn− Id || → 0 and || f n− f ◦α
n|| → 0,

where || f ||= supt∈[0,1] | ft | is the uniform norm, and Id the identity function.

Proposition 3.5. Suppose the sequence of degree sequences (sn,n ≥ 1) satisfies Hypotheses (1) and (2)
of Theorem 3.1. Then we have(

1
bsn

W b
sn
(bsntc), t ∈ [0,1]

)
d→
(

Xb
t , t ∈ [0,1]

)
in the Skorohod topology, where Xb an EI process on [0,1], having parameters (0,σ ,β ).

Proof. Define ξ j = (c(πn( j))−1)/bsn and ∆sn = max{i : Nn
i > 0}. By Theorem 2.2 of [Kal73], we know

that

W b
sn
(bsn·c)/bsn

d→ Xb if and only if
(
∑ξ j,∑ξ

2
j , ξ̃1, ξ̃2, . . .

)
d→
(
α,σ2 +∑β

2
j ,β1,β2, . . .

)
where (ξ̃ j, j ∈ [sn]) are the (ξ j, j ∈ [sn]) in decreasing order.
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The convergence to the drift α is due to the fact that W b
sn
(sn) = 0. For the sum of the squares, using

the definition of a child sequence

∑ξ
2
j = ∑(c( j)−1)2/b2

sn
=

∆sn

∑
0

( j−1)2Nn
j

b2
sn

→ σ
2 +

M

∑
1

β
2
j .

Finally, by hypothesis ξ̃ j→ β j for every j ∈ [M].

Remark 3.1. It should be obvious that we can modify hypotheses (1) and (2) of Theorem 3.1 by sn→ ∞,
∆sn = o(bsn) and ∑( j−1)2Nn

j /b2
sn
→ σ2 ∈ (0,∞). In this case, we obtain in the limit the Brownian bridge

on [0,1], as in [BM14b].

From Proposition 3.4 we deduce that the discrete Vervaat transform of W b
sn

is the BFW of a tree with
law Psn . Denote this BFW by Wsn =V (W b

sn
).

Proposition 3.6. Under the hypothesis of Proposition 3.5, assume also that either σ > 0 or ∑β j = ∞.
Then

Xn =

(
1

bsn

Wsn (bsntc) , t ∈ [0,1]
)

d→V (Xb) = X , (3.10)

the Vervaat transform of Xb.

Proof. By the proof of Lemma 6 of [Ber01], the process Xb hits its infimum in a unique time and continu-
ously. Hence, by Lemma 3 of [Ber01] (or Lemma 14 of [Ker11]) the Vervaat transform Xn of the rescaled
bridges W b

sn
converges to X , the Vervaat transform of Xb.

3.3 Convergence of the profile to the Lamperti transform
The objective of this section is to prove our main theorem on convergence of profiles stated as Theorem
3.1 by using Theorem 3.2 from Section 3.4. First, we study the effect of scaling on the discrete Lamperti
transformation in Subsection 3.3.1. Then, we analyze the subsequential limits of the cummulative profile
in Subsection 3.3.2 and of the profile in Subsection 3.3.3. Finally, the proof of Theorem 3.1 is obtained in
Subsection 3.3.4.

3.3.1 Rescaling the functional relation of the BFW and the cumulative profile
Recall that Zsn , Csn and Wsn are the profile, the cumulative profile and the BFW of a tree with law Psn ,
respectively. Define the scaling operators Sb

a acting on the Skorohod space by Sb
a f (t) = f (at)/b. From

Equation (3.1) the discrete Lamperti transform satisfies for any j ≥ 0

Zsn( j+1) =Wsn ◦Csn( j). (3.11)

Extend Csn to R+ by linear interpolation, and consider the sequence

an =
sn

bsn

n ∈ N,
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which is the temporal scaling of the cumulative profile. This is true because, by a simple change of
variables

Ssn
an

Csn(t) =
1
sn

Csn(ant) =
1
sn

+
bantc

∑
j=0

1
sn

Wsn ◦Csn( j)+(ant−bantc) 1
sn

Wsn ◦Csn(bantc)

=
1
sn

+
∫ ant

0

1
sn

Wsn ◦Csn(buc)du

=
1
sn

+
∫ t

0

an

sn
Wsn ◦ sn

1
sn

Csn(banuc)du

=
1
sn

+
∫ t

0
Sbn

sn
Wsn ◦Ssn

an
Csn(banuc/an)du.

We conclude that the scaling of the cumulative profile satisfies an equation similar to (3.6). This will be
the basis of our convergence analysis.

Define Cn(0) = 0, and for i≥ 0 and t ∈ [ti, ti+1), with ti = i/an, write

Cn(t) :=
∫ t

0
Xn ◦Cn(banuc/an)du =Cn(ti)+(t− ti)Xn ◦Cn(ti), (3.12)

with Xn = Sbn
sn Wsn . In the notation of [CPGUB13], the above equation is IVP1/an(X

n,0), which has a
unique solution (see [CPGUB13, page 1594]). Thus, we have

Cn(1/an) =
1
an

Xn(0) =
1
sn

= Ssn
an

Csn(0/an),

and for i≥ 1 and t ∈ [ti, ti+1), by induction

Cn(t) =Cn(ti)+(t− ti)Xn ◦Cn(ti)
= Ssn

an
Csn(ti−1)+(t− ti)Xn ◦Ssn

an
Csn(ti−1)

= Ssn
an

Csn(ti−1)+(t−1/an− ti−1)Xn ◦Ssn
an

Csn(ti−1)

= Ssn
an

Csn(t−1/an),

and for t ∈ [0, t1) note that Cn(t) = tXn(0). Therefore, to prove the convergence of the rescaled cumulative
profile, it is enough to prove the convergence of Cn. The rescaled profile is defined by Zn = D+Cn. First
we give conditions to ensure Hypothesis 2 of Theorem 3.1, that is an→ ∞.

Lemma 3.1. Assume either one of the following is true

∑β j = ∞ or
∑i< j cn

i cn
j

∑(cn
i )

2 → ∞.

Then an→ ∞.

Proof. Order the child sequence in decreasing order as cn
(1)≥ cn

(2)≥ ·· · and fix any k ∈N. The Hypothesis
2 of Theorem 3.1 implies that for n big enough

cn
(i)

bsn

≥ 1
2

βi for every i ∈ [k].



CHAPTER 3. ON THE PROFILE OF TREES WITH A GIVEN DEGREE SEQUENCE 67

Since sn = 1+∑cn
(i), this implies

lim
n

sn

bsn

≥ lim
n

1+∑
k
1 cn

(i)

bsn

≥ 1
2

k

∑
1

β j.

This being true for any k, the conclusion follows when ∑β j = ∞. Now assume the other hypothesis of the
lemma is true. By Hypothesis 2 of Theorem 3.1, we have

∑
(cn

i −1)2

b2
sn

= ∑
(cn

i )
2− sn +2

b2
sn

→ σ
2 +∑β

2
j .

This implies
bsn ∼

(
∑(cn

i )
2− sn

)1/2
.

Therefore
s2

n
b2

sn

∼
(∑cn

i )
2

∑(cn
i )

2− sn
.

Therefore, an goes to infinity whenever

sn +∑i< j cn
i cn

j

∑(cn
i )

2 → ∞.

3.3.2 All subsequential limits of the cumulative profile satisfy the IVP
We introduce the functions f which play the role of the sample paths of X .

Definition 3.6. An admissible breadth-first function is a non-negative function f , which is càdlàg without
negative jumps, starting at a non-negative value and with absorption time ζ = ζ ( f ) = inf{t > 0 : f (t) =
0} ∈ (0,∞).

For admissible breadth-first functions f , the initial value problem IVP( f ) is defined as

D+c = f ◦ c and c(0) = 0.

For λ ∈ [0,∞], define the function iλ by

iλ (t) = λ +
∫ t

0

dr
f (r)

t ∈ [0,ζ ],

and the value
λ0+ := iλ (0+) = inf{t > 0 : cλ (t)> 0}

where cλ is the right-continuous inverse of iλ , with cλ ≡ 0 if either λ = ∞ or
∫ t

0 dr/ f (r) = ∞ for some
t ∈ (0,ζ ). By convention we write i := i0 and c := c0. It is known the inverse c of i satisfies IVP( f ). This
is a solution which is identically zero if i(t) = ∞, or immediately becomes positive when i(t) < ∞, for
some t ∈ (0,ζ ). The function c is the cumulative Lamperti transform of f , and plays an important role in
the next proposition.
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For an admissible breadth-first function f define the functional inequality∫ t

s
f− ◦ c(r)dr ≤ c(t)− c(s)≤

∫ t

s
f ◦ c(r)dr s≤ t. (3.13)

Note that any solution to this inequality is continuous and non-decreasing on [0,∞), because f− is a non-
negative function. Also, any solution to IVP( f ) satisfies (3.13), so we have always a solution (as noted
after Equation (5) in [CPGUB13]). In fact, all the solutions are characterized as follows.

Proposition 3.7. For λ ∈ [0,∞) define the function

cλ (t) =


0 if t ∈ [0,λ ]
c(t−λ ) if t ∈ [λ ,λ + i(ζ ))
ζ if t ∈ [λ + i(ζ ),∞).

Define also cλ ≡ 0 if λ = ∞ or
∫ t

0 dr/ f (r) = ∞ for some t ∈ (0,ζ ]. Then, all the solutions of (3.13) are of
the form cλ . In particular, when i(t) = ∞ for t ∈ (0,ζ ), the unique solution is the zero function.

Proof. Assume there exists a non-zero solution d to (3.13) and define

λ = inf{t > 0 : d(t)> 0}.

Then, for t > 0 ∫
λ+t

λ

f− ◦d(r)dr ≤ d(λ + t)−d(λ )≤
∫

λ+t

λ

f ◦d(r)dr.

The function dλ (·) = d(λ + ·) satisfies (3.13) and is positive on the interval (0,ε), for some ε > 0. We
now show that dλ ≡ c, which proves the proposition. To ease notation, we write d instead of dλ .

Let τ(d) = inf{t > 0 : d(t) = ζ}. Then d is constant on (τ(d),∞) because f is absorbed at time ζ . By
definition, d is positive on the interval (0,ε ′) for some ε ′ > 0. Consider ε = τ(d)∧ ε ′. The left-hand side
of (3.13) is positive on (0,ε) and therefore d is strictly increasing on this interval. So, we have equalities
in (3.13). Hence, d is a solution to IVP( f ) which is positive on (0,∞).

Let î be the inverse of d on [0,ζ ). On this interval, î is increasing, continuous, and with values on
[0,∞). Let 0 < r < ζ . From the definition of the IVP, the right-hand derivative of d evaluated at î(r) is
equal to f ◦ d(î(r)) = f (r) > 0. Hence, by the formula for the derivative of the inverse function and the
fundamental theorem of calculus (for Riemann integrable derivatives)

∞ > î(t)− î(s) =
∫ t

s
D+î(r)dr =

∫ t

s

dr
f (r)

= i(t)− i(s) 0 < s < t < ζ .

Because d is continuous at 0, then î(s)→ 0 as s ↓ 0. Therefore, we obtain∫ t

0

dr
f (r)

= î(t)< ∞ ∀ t ∈ [0,ζ ). (3.14)

It remains to prove that τ(d) = i(ζ ). But this is clear from (3.14), because limt↑ζ î = limt↑ζ i. This implies
that d ≡ c.

Finally, when i(t) = ∞ for t ∈ (0,ζ ), the unique solution is the zero function because, a positive
solution would imply by (3.14), that i(t)< ∞ for t ∈ [0,ζ ).
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Remark 3.2. Note that cλ satisfies IVP( f ) for every λ .

As in the previous section, we denote by αn : [0,1] 7→ [0,1] the increasing bijections required for the
convergence on [0,1] of f n to f . For the next result, we introduce the definition of convergence in the
space D(R+,R) of càdlàg functions with domain R+ taking values on R, under the Skorohod topology.
This is obtained from Theorem 16.2 Chapter 3 of [Bil99] (cf. Section 2 of [Whi80]). Consider functions
gn,g ∈ D(R+,R). For 0 < v < ∞, denote by ||g||v = supr≤v |g(r)| the uniform norm of g on [0,v]. More
generally, for 0 ≤ u ≤ v < ∞ we write ||g||[u,v] = supu≤r≤v |g(r)|. The functions gn converge to g in the
Skorohod topology, denoted by gn→ g, if there exists increasing bijections β n : R+ 7→ R+ such that for
every continuity point v < ∞ of g, we have

||β n− Id ||v→ 0 and ||gn−g◦β
n||v→ 0. (3.15)

The functions (β n,n ∈ N) can be chosen as the identity when g is continuous. Note that the space
D(R+,R) is not complete under the metric we are defining. Nevertheless, Theorem 12.1 of [Bil99] says
this metric is equivalent to some d0 such that (D(R+,R),d0) is a complete metric space.

Define, for a random variable Λ ∈ [0,∞],

IΛ(t) = Λ+
∫ t

0

ds
X(s)

t ∈ [0,1] (3.16)

with the conventions IΛ ≡ ∞ on {Λ = ∞}∪ {
∫ t

0 ds/X(s) = ∞} for some t ∈ (0,1], and I := I0, with X
the Vervaat transform of an EI process on [0,1]. Define CΛ as the right-continuous inverse of IΛ, and
Λ0+ = inf{t > 0 : CΛ(t) > 0}. Thus, CΛ is defined as cλ from Proposition 3.7, but using the cumulative
Lamperti transform C of X . For the next result, we use Proposition 3.7 and a simplified version of the
proof given in Theorem 3 of [CPGUB13] (also, compare with Theorem 1.5, Chapter 6 of [EK86]).

Proposition 3.8. Under the assumptions of Theorem 3.1, let (Xn,n≥ 1) be the rescaled breadth-first walks
of trees (τn,n ≥ 1) with law Psn , as in (3.10). Let X be the limit of (Xn,n ∈ N). Consider the rescaled
cumulative profile Cn of τn. Then, (Cn,n ≥ 1) is sequentially compact for convergence in distribution
uniformly on compact sets, and every subsequential limit of ((Xn,Cn),n≥ 1) is of the form (X ,C) where
C satisfies Ct =

∫ t
0 X ◦Cs ds.

Proof. We prove tightness of (Cn,n ∈ N), which together with the tightness of (Xn,n ∈ N), implies tight-
ness of ((Xn,Cn),n∈N). Recall that 0≤Cn ≤ 1, so the sequence (Cn,n∈N) is uniformly bounded. Note
that

0≤ D+Cn(s) = Xn ◦Cn(bansc/an)≤ ‖Xn‖

and so the modulus of continuity

ωn(δ ) = sup{|Cn(t)−Cn(s)| : |t− s| ≤ δ}

of Cn satisfies ωn(δ )≤ ‖Xn‖δ . Therefore

P(ωn(δ )> ε)≤ P(‖Xn‖> ε/δ ) .

Using Theorem 13.2 in [Bil99], the right-hand side can be made as small as we want uniformly in n if δ

is small enough. Hence ((Xn,Cn),n ∈ N) is tight.
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Suppose that (X ,D) is a subsequential limit of ((Xnl ,Cnl), l ∈N). By Skorohod’s theorem, we assume
the convergence takes place almost surely. Suppose we have proved that for any T > 0

X− ◦D≤ liminf
l

Xnl ◦Cnl ≤ limsup
l

Xnl ◦Cnl ≤ X ◦D on [0,T ]. (3.17)

Then, using Fatou’s lemma, for 0≤ s < t ≤ T∫ t

s
X− ◦D(r)dr ≤ D(t)−D(s)≤

∫ t

s
X ◦D(r)dr. (3.18)

It remains to prove (3.17). We start with the equality

Xnl ◦Cnl = (Xnl ◦Cnl −X ◦α
nl ◦Cnl)+X ◦α

nl ◦Cnl .

The difference in parenthesis is bounded above by ||Xnl −X ◦αnl ||, which goes to zero. The convergence
of αnl ◦Cnl → D follows by adding the terms ±Cnl :

sup
u≤v
|αnl ◦Cnl(banuc/an)−D(u)| ≤ ||αnl − Id ||+ sup

u≤v
|Cnl(banuc/an)−D(u)| → 0. (3.19)

Then, because X is càdlàg and has only positive jumps

X− ◦D≤ liminf
l

X ◦α
nl ◦Cnl ≤ limsup

l
X ◦α

nl ◦Cnl ≤ X ◦D.

3.3.3 Obtaining all subsequential limits of the profile
The next step is to obtain all subsequential limits of Xn ◦Cn. We need some definitions.

Let c be a non-negative, non-decreasing continuous function c : R+ 7→ [0,1]. Denote by b and i its left
and right-continuous inverses, respectively.

Definition 3.7. An admissible cumulative profile function is a non-negative continuous function c : [0,∞) 7→
[0,1], such that

1. is zero on the interval [0, i(0)],

2. is strictly positive on [i(0),b(1)],

3. stays at one on [b(1),∞).

Note that in the definition, we allow i(0) = ∞ or b(1) = ∞. If we consider λ := i(0), we can also
denote c = cλ to express the dependence on λ , and analogously iλ := i for its right-continuous inverse.

Lemma 3.2. Consider a sequence of non-negative càdlàg functions ( f n,n∈N), starting at a non-negative
value and with absorption time ζ ( f n) = 1. Let f be an admissible breadth-first function with absorption
time ζ ( f ) = 1. Also, consider admissible cumulative profile functions (cn,n ∈ N) and cλ , where cn 6≡ 0.
Suppose that f n→ f in the Skorohod topology and cn→ cλ uniformly on compact sets. Then

f n ◦ cn a.s.→ f ◦ cλ

in the Skorohod topology.
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Remark 3.3. Lemma 3.2 could be proved as in Theorem 3 of [CPGUB13], using Theorem 1.2 of [Wu08].
Indeed the conditions of the latter hold since f is continuous at 0 and 1, which are the only possible
discontinuities of iλ . For completeness, we include the following proof, adapted from the proof of Lemma
3 of [Ker11].

Proof. First suppose that λ < ∞. Let 0 < u < v < r be continuity points of f ◦ cλ . Using Lemma 2.2 of
[Whi80], convergence of f n ◦ cn on [0,r] follows from its convergence on each of the subintervals [0,u],
[u,v] and [v,r].

The simplest is the middle interval whenever 0< iλ (ε)= u< v= iλ (1−ε) for some ε ∈ (0,1/2) where
ε and 1− ε are continuity points of f . Indeed, the definition of admissible cumulative profile function
implies that for n large enough, cn and cλ are strictly increasing on [u,v]. If ‖ f n ◦αn− f‖[ε,1−ε]→ 0 and
(αn,n ∈ N) are increasing homeomorphisms on [ε,1− ε] converging uniformly to the identity, we can
define β n = iλ ◦αn ◦ cn to obtain

‖iλ ◦α
n ◦ cn− Id‖[u,v]→ 0

because iλ ◦αn ◦ cn→ iλ ◦ cλ = Id on [u,v]. Also,

‖ f n ◦ cn− f ◦ cλ ◦β
n‖[u,v] = ‖ f n ◦ cn− f ◦α

n ◦ cn‖[u,v] = ‖ f n− f ◦α
n‖[cn(u),cn(v)]

The right-hand side goes to zero because cn(u)→ ε , cn(v)→ 1− ε , and both limits are continuity points
of f .

Now, we choose v and r such that || f n ◦ cn− f ◦ cλ ||[v,r] is as small as we want. Let τ↓(ε) = inf{t :
|| f ||[t,1] < ε}. For ε ∈ (0,1/2), set ṽ = τ↓(ε), v = iλ (τ↓(ε)) and choose any r > v. Since ‖ f‖[ṽ,1] ≤ ε then
‖ f n‖[ṽ,1] ≤ 2ε for n large enough. Then

‖ f ◦ cλ‖[v,r] = ‖ f‖[cλ (v),cλ (r)] ≤ ‖ f‖[ṽ,1] ≤ ε and ‖ f n ◦ cn‖[v,r] ≤ ‖ f n‖[cn(v),1].

Also, since the interval [cn(v),1] converges to [ṽ,1] and f is continuous at ṽ (by the lack of negative
jumps), then ‖ f n‖[cn(v),1] ≤ 3ε for large enough n. Hence || f n ◦ cn− f ◦ cλ ||[v,r] ≤ 4ε for large enough n.

A similar argument proves that || f n ◦ cn− f ◦ cλ ||u can be made smaller than ε for large enough n
by choosing u adequately. The latter works also when λ = ∞ (in which case f ◦ c∞ ≡ 0), but for any
u > 0.

3.3.4 All subsequential limits of the (cumulative) profile converge to the (cumula-
tive) Lamperti transform

Using Theorem 3.2 of the next section, we now prove that the rescaled cumulative profile converges to the
cumulative Lamperti transform of X . Actually, we prove the joint convergence under the product topology
of the rescaled BFW, the rescaled cumulative profile and the rescaled profile.

For the next lemma, denote by Z = X ◦C the Lamperti transform of X .

Lemma 3.3. Assume the hypotheses of Theorem 3.1. Furthermore, assume
∫ 1

1/2 1/X(s)ds < ∞ a.s. Let Zn

be the rescaled profile of a tree with law Psn . Then, for any bounded continuous function F on D(R+,R+)
3

we have the joint convergence

E(F(Xn,Cn,Zn))→ E(F(X ,C,Z)) .
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Proof. In Theorem 3.2 (below) we prove that

P
(

Λ ∈ (0,∞],
∫ 1

1/2
ds/X(s)< ∞

)
= 0.

Since
∫ 1

1/2 ds/X(s)< ∞ a.s., then P(Λ ∈ (0,∞]) = 0. Recall from Proposition 3.8 that every subsequence
has a further subsequence such that Y nl := (Xnl ,Cnl)→Y Λ := (X ,CΛ), and set Y = (X ,C), where C is the
cumulative Lamperti transform of X . For a continuity set A of the distribution function of Y Λ, we have

lim P(Y nl ∈ A) = P
(

Y Λ ∈ A
)

= P
(

Y Λ ∈ A,Λ = 0
)

= P(Y ∈ A,Λ = 0)
= P(Y ∈ A) .

Since the limit does not depend on the subsequence and by Portmonteau’s theorem, we have Y n d→ Y .
By Skorohod’s theorem, we can assume such convergence takes place almost surely. Note that, C and

Cn are admissible cumulative profile functions for every n. Hence, from Lemma 3.2 we have

Xn ◦Cn a.s.→ X ◦C = Z.

This implies (Xn,Cn,Zn)→ (X ,C,Z) a.s. on D(R+,R+)
3, and therefore convergence in distribution fol-

lows.

From the previous lemma we have

(Z(t), t ∈ [0, I(1)]) d
=
(

X ◦ I(−1)(t), t ∈ [0, I(1)]
)
,

which has been established in a similar context in Equation (3) of [AMP04]. The equality is a generaliza-
tion of Jeulin’s identity, given in Chapter 4 of [JY85].

It remains to show that having a positive limit of the form CΛ for Λ ∈ (0,∞] is the result of trees with
an asymptotically thin base.

3.4 Asymptotic thickness of the base
Through this section, we assume the hypotheses of Theorem 3.1. Recall from Proposition 3.8 that (Cn,n∈
N) is sequentially compact. The objective of this section is to prove the following result.

Theorem 3.2. Assume the hypotheses of Theorem 3.1 are satisfied. Let CΛ be any subsequential limit of
(Cn,n ∈ N), and IΛ(·) = Λ+

∫ ·
0 ds/X(s) its right-continuous inverse. Then

P
(

Λ ∈ (0,∞],
∫ 1

1/2
ds/X(s)< ∞

)
= 0. (3.20)
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The reader can imagine the event on the left-hand side, as the limit of trees having a base of the form
of a cord with size approximately Λ, after that, a giant subtree starts to grow, attached to such cord, there
can be other cords with (possibly) giant subtrees growing after height Λ (see the tree on the left in Figure
3.11).

To prove Theorem 3.2, we use a path transformation for discrete time EI processes which is very easily
visualized on the tree they code. Recall the 213 transformation was introduced in Definition 3.4 for plane
trees, and an example is given in Figure 3.10. Consider a tree τn with law Psn , an independent uniform
variable Un ∈ {2, . . . ,sn}, and h ∈N. We define a new tree τ̃n as follows: if the height of Un is greater than
h, then τ̃n is the 213 transformation of τn cutting at Un and Nn, where Nn is the ancestor of Un at distance
h; if the height of Un is at most h, then τ̃n = τn. We will use this transformation for individuals near the
top of the tree. To give a formal definition of what near the top means, we need some lemmas regarding
the convergence of the heights of the first and last individuals.

We work on the space where there is a.s. convergence (Xnl ,Cnl)→ (X ,CΛ), for some deterministic
subsequence (nl, l ≥ 1). Write only (X l,Cl)→ (X ,CΛ) to avoid cumbersome notation. We introduce the
hitting times of (ε,∞) by Cl .

Definition 3.8. For ε ∈ (0,1) and l ∈ N, define the first height that the rescaled cumulative profile has
more than ε individuals as

Λl,ε := inf{t > 0 : Cl(t)> ε}.

Recall from (3.16), that inf{t > 0 : CΛ(t) > ε} = IΛ(ε) = Λ+ I(ε) for any ε ∈ (0,1). We prove that
the height given in the above definition, converges to the height where the limit CΛ first accumulates ε .

Lemma 3.4. For every ε ∈ (0,1), we have Λl,ε
a.s.→ Λ+ I(ε) as l→ ∞.

The proof of this Lemma is given in Subsection 3.4.2. By monotonicity and Borel-Cantelli, we can
consider limits in which ε of the previous lemma also depends on l. This is stated in the next lemma.
To state it, we introduce notation for typographical convenience. For some subsequences (nl1

k
,k ∈ N)

and (nl2
k
,k ∈ N) we write them as (n(l1(k)),k ∈ N) and (n(l2(k)),k ∈ N). Also, we will only write

Λk,εk := Λn(l1(k)),εn(l2(k))
and Λk,1−εk := Λn(l1(k)),1−εn(l2(k))

when referring to the hitting times evaluated on

the previous subsequences. Define Λ0+ = inf{t > 0 : CΛ(t) > 0}, and note that Λ0+ = Λ whenever
I(1/2) < ∞, and Λ0+ = ∞ otherwise. We prove that jointly, the height of the first individuals in the tree
converges to the height were CΛ starts to grow, and the height of the last individuals in the tree (from the
height of half the tree) converges to the corresponding heights of CΛ.

Lemma 3.5. Consider any sequence εnl ↓ 0. Then, there exists deterministic subsequences (n(l1(k)),k ∈
N) and (n(l2(k)),k ∈ N) such that

(Λk,εk ,Λk,1−εk−Λk,1/2)
a.s.→ (Λ0+, I(1)− I(1/2)) as k→ ∞,

where in the right-hand side, we interpret I(1)− I(1/2) as
∫ 1

1/2 ds/X(s).

Indeed, from the proof of this lemma, we can prove that the previous convergence takes place together
with Xn and Cn on the product space D(R+,R+)

2. Also, we remark that the choice of 1/2 is arbitrary, and
the lemma works for any a ∈ (0,1).
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Remark 3.4. In the following, we will use the temporal rescaling ask = sk/bsk , which comes from the
Lamperti transform in Subsection 3.3.1. For ease of notation, we sometimes put the superscript (k) to
refer of such rescaling, for example, for λ > 0, we write λ (k) := bλaskc, and also Λ

(k)
k,εk

= bΛk,εkaskc.

To prove Theorem 3.2, we fix any λ > 0 and prove

P(Λ ∈ (λ ,∞), I(1)− I(1/2)< ∞) = 0. (3.21)

We use this case to deduce P(Λ = ∞, I(1)− I(1/2)< ∞) = 0. The proof of Theorem 3.2 is done in the

following way. It is proved in Section 3.4.1 that (τ̃k,U)
d
= (τk,U). Let δn ↓ 0 and λ1 ∈ (0,λ/2). In

Subsection 3.4.2 we prove that for n big enough and under the event of Equation (3.21), near the top of
the tree, that is, at height Λ

(k)
k,1−εk

−λ
(k)
1 , there is one vertex vk having at least bδnskc descendants, for every

k big enough. This will be referred to as a giant subtree. It is a subtree with a lot of individuals, almost
all of them between its first λ

(k)
1 generations. In Section 3.4.3, we use the 213 transformation to obtain a

tree which is fat near the root, thin in the middle and fat after that. The ideas are:

1. Intersect with the set Λk,1−εk−λ1 > Λk,1/2.

2. Consider two heights h(vk,1/2) < h(vk,1/4) where the giant subtree is fat: up to h(vk,1/2) there
is at least half of the size of the giant subtree, between h(vk,1/2) and h(vk,1/4) there is at least
quarter of the size of the giant subtree.

3. The probability that Uk (the uniform variable used for the 213 transformation) be in the giant subtree,
between heights h(vk,1/2) and h(vk,1/4), is at least δn/4.

4. Apply the 213 transformation cutting at Uk and Nk, this one having distance λ
(k)
1 from Uk. Note that

Nk is an ancestor of vk.

5. On such events, the transformed tree τ̃k has

(a) at least δnsk/2 individuals up to height (2λ1)
(k),

(b) less than 2εksk individuals between heights {(2λ1)
(k), . . . ,λ (k)},

(c) approximately at least sk/2 individuals after λ (k).

6. Such tree has the same distribution as the original, but its cumulative Lamperti transform is constant
between two intervals where it increases. This has probability zero.

In Figure 3.11 we show a representation of point (5).

3.4.1 The 213 transformation
The aforementioned transformation of a tree is easy to formalize using the associated depth-first walk.
Nevertheless, it will be applied to the breadth-first walk.

Let sn ∈N and xi ∈N∪{−1} for i∈ [sn] such that ∑
sn
1 xi =−1. Consider the discrete time excursion w

with partial sums w j = ∑
j
1 xi, starting at zero and non-negative up to time wsn =−1. The tree Tn generated

by w is labeled in depth-first order. We now define the 213 transformation of Tn, denoted Ψn,u(Tn). Let



CHAPTER 3. ON THE PROFILE OF TREES WITH A GIVEN DEGREE SEQUENCE 75

Uk

Nk

vk

h(vk, 1/2)

h(vk, 1/4)

Λ
(k)
k,1−εk

λ(k)

U

N

vk

Λ(vk, 1/2)

Λ(vk, 1/2, 1/4)

2λ
(k)
1

λ(k)

Figure 3.11: On the left, the original tree. The giant subtree has root vk, and the distance between vk and any of its
descendants at height Λ

(k)
k,1−εk

is bounded by λ
(k)
1 . The uniform variable Uk is in such subtree, between heights h(vk,1/2) and

h(vk,1/4) (gray). The ancestor Nk of Uk at distance λ
(k)
1 , is an ancestor of vk. After applying the 213 transformation (figure on

the right), the new tree is fat before height (2λ1)
(k), thin between heights {(2λ1)

(k), . . . ,λ (k)}, and again fat after λ (k).
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n u u+du n+dn

nh u u+du
nh+dnh

Figure 3.12: Recall the notation of the subtrees obtained after cutting at n and u the tree Tn, as in Definition 3.4. In the
top excursion, the subtree Tn(1,n) is represented in black, Tn(n,u) in blue and Tn(u) in red. The bottom excursion is Tn after
applying the 213 transformation. The root of the grafted subtree Tn(1,n) will have label nh = u−n+1 in T̃n.

∆w j := w j−w j−1 be the jth increment of w (number of children of j). Choose a vertex n ∈ {2, . . . ,sn} in
the tree which is neither the root nor a leaf, and let

dn = inf{ j ∈ {1, . . . ,sn−n+1} : wn−1+ j−wn−1 =−1}

be the length of the excursion starting at n (this is equivalent to |Tn(n)|+ 1). Notice that a vertex n is a
leaf iff dn = 1. Consider any vertex u ∈ {n+1, . . . ,n−1+dn}, implying n is its ancestor.

Denoting by Ψn,u(w) the depth-first walk of the transformed tree Ψn,u(Tn), we decree:

∆Ψn,u(w) j =


∆wn−1+ j if 1≤ j ≤ u−n
∆w j−(u−n) if u−n+1≤ j ≤ u−1
∆wu+ j−u if u≤ j ≤ u−1+du
∆wn+dn+ j−(u+du) if u+du ≤ j ≤ sn +u+du−n−dn
∆wu+du+ j−(sn+u+du−n−dn+1) if sn +u+du−n−dn +1≤ j ≤ sn.

Figure 3.12 shows the transformation of the depth-first walk.

Using a uniform law on the vertex u and choosing n in an adequate way, we prove the invariance of
the law Psn under a 213-type transformation.

Define the space of all excursions coding a tree with given degree sequence sn by

Esn = {w : w is an excursion with degree sequence sn}.

Given an excursion w ∈ Esn , the natural numbers u ∈ [sn]\{1} and h≥ 1, we construct w̃ as follows. In
the tree generated by w, if h(u) denotes the height of the vertex u (its distance to the root), when

h(u)> h, (3.22)
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let n be the ancestor of u at distance h, and define w̃ = Ψn,u(w). If condition (3.22) is not satisfied, define
w̃ = w.

Lemma 3.6. For fixed h ≥ 1 and u ∈ {2, . . . ,sn}, the transformation Φh,u : Esn → Esn sending w to w̃ is
bijective.

Proof. It is easy to prove that u satisfies (3.22) for w iff u satisfies (3.22) for w̃. Being a transformation
between finite sets, it suffices to prove it is onto. Consider w̃ ∈ Esn . If u does not satisfy (3.22) for w̃,
define w := w̃. If u satisfies (3.22) for w̃, choose the vertex nh = u−n+1 at height h which is its ancestor.
Define in this case w = Ψu−n+1,u(w̃). Hence, the explicit bijection is

w̃ = Ψn,u(Ψu−n+1,u(w̃)).

We now prove the aforementioned equality in distribution.

Proposition 3.9. Let Wsn be the depth-first walk of a tree with law Psn . Consider an independent uniform
r.v. U on {2, . . . ,sn} and a natural number h ≥ 1. When (3.22) is satisfied for the Uth vertex in the tree
generated by Wsn , let N be the only ancestor of U at distance h, and define W̃sn := ΨN,U(Wsn) the 213
transformation of Wsn at N and U. If (3.22) is not satisfied, set W̃sn :=Wsn . Then, we have(

W̃sn,U
) d
= (Wsn,U) .

Proof. Consider any excursion w ∈ Esn and u ∈ {2, . . . ,sn}. Using the bijection Φh,u of Lemma 3.6 and
the independence between the tree and U

P
(
W̃sn = w,U = u

)
= P

(
Wsn = Φ

−1
h,u(w),U = u

)
= P(Wsn = w,U = u) ,

using that Wsn is the excursion of the tree τn with a uniform law.

We will use this proposition with trees labeled in BFO. In that case, let (Wsn,U) be the BFW of a tree
τsn with law Psn and U a uniform r.v. on {2, . . . ,sn}. We define W̃sn exactly as before, that is, if h(U)> h
we cut both at U and its ancestor at distance h, and leave unchanged the excursion if h(U) ≤ h. Since
there is a bijection between (τsn ,U) and the same tree but labeled in DFO, together with the new label of

U , then also in this case
(
W̃sn,U

) d
= (Wsn ,U).

3.4.2 Existence of a giant subtree
In the following, assume that we are working on a space where the rescaled BFW’s and cumulative
Lamperti transform converge a.s.

Proof of Lemma 3.4. Recall that Λ0+ = inf{t > 0 : CΛ(t)> 0}. First assume ω ∈ {Λ0+ = ∞}. Using such
ω implicitly, then Cl → 0 on [0,M] for any M > 0. Hence, we have Cl(M) ≤ ε and Λl,ε ≥M for every l
big enough. It follows that Λl,ε → ∞.

Now, assume

ω ∈ {Λ0+ < ∞}= {CΛ(∞)> 0}= {IΛ(a) = Λ+ I(a)< ∞,∀a ∈ (0,1)}. (3.23)
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Using such ω implicitly, for ε ∈ (0,1), consider δ such that 0 < ε − δ < ε + δ < 1. Then, for every
u0 > Λ+ I(ε +δ ) exists Lu0 such that

CΛ(u)−δ <Cl(u)<CΛ(u)+δ ∀ l ≥ Lu0, u ∈ [0,u0].

Substituting u in this inequality with the values Λ+ I(ε−δ ) and Λ+ I(ε +δ ), we obtain

Cl(Λ+ I(ε−δ ))< ε <Cl(Λ+ I(ε +δ )).

Therefore, for every l ≥ Lu0

Λ+ I(ε−δ )< Λl,ε ≤ Λ+ I(ε +δ ).

Letting l→ ∞ and then δ ↓ 0 we obtain Λl,ε → Λ+ I(ε).

To prove the convergence of the heights for the first and last individuals, we need some definitions.
Fix any points 0 < a < b≤ 1 of X , and note X is continuous on both points since it only jumps at uniform
times. For Λl = bΛl,aaslc/asl , define the processes

X l
a = (X l(Cl(Λl)+ v),v ∈ [0,b−Cl(Λl)]) and Xa = (X(a+ v),v ∈ [0,b−a]).

Since Xa(0) = X(a) > 0 and Xa is absorbed at zero or positive, by Proposition 1 of [CPGUB13], the
equation D+Ca = Xa ◦Ca has a unique solution Ca, with inverse Ia. It is easy to see that

Ia(v) =
∫ v

0

ds
Xa(s)

= I(a+ v)− I(a) v ∈ [0,b−a].

Consider also the solution Cl
a to the equation

Cl
a(t) =

∫ t

0
X l

a ◦Cl
a(buaslc/asl)du,

which is unique by its definition as a recursion (see Equation (3.12)). We prove that

Cl
a(t) =Cl(Λl + t)−Cl(Λl), t ∈ [0,Λl,b−Λ

l] (3.24)

is such solution. Using Equation (3.12), and substituting the values of X l
a and Cl

a, we have for ti ≤ t < ti+1

Cl
a(t) =

∫ t

0
X l

a ◦Cl
a(buaslc/asl)du

=Cl
a(ti)+(t− ti)X l

a ◦Cl
a(ti)

=Cl(Λl + ti)−Cl(Λl)+(t− ti)X l ◦Cl(Λl + ti)

=Cl(Λl + ti)+(Λl + t− ti−Λ
l)X l ◦Cl(Λl + ti)−Cl(Λl)

=Cl(Λl + t)−Cl(Λl),

using the fact that there is a j such that for t j := Λl + ti, then t j ≤ Λl + t < t j+1. From these definitions,
we can prove the following lemma.

Lemma 3.7. For any 0 < a < b < 1, we have Λl,b−Λl,a→
∫ b

a ds/X(s) a.s. as l→ ∞.
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Remark 3.5. Recall that I(b)− I(a) :=
∫ b

a ds/X(s). Thus, even if Λl,a→ ∞ because Λ = ∞, the integral
Λl,b−Λl,a converges to a finite quantity in this case.

Proof. By definition
a =Cl(Λl,a) =Cl(Λl)+(Λl,a−Λ

l)X l ◦Cl(Λl),

and note that Λl,a−Λl ≤ 1/asl → 0 and X l ◦Cl(Λl)≤ 2||X ||<∞ for l large enough. This implies Cl(Λl)→
a, and therefore X l

a→ Xa > 0 a.s. by Lemma 2.2 of [Whi80] and Proposition 6.5.a of [EK86]. Then, by
Theorem 3 of [CPGUB13] we have Cl

a→Ca uniformly on [0, I(b)− I(a)]. This convergence implies the
convergence of its inverses, analogously as in the proof of Lemma 3.4 (cf. Theorem 7.2 in [Whi80]); since
Ia is continuous, the convergence takes place uniformly. If Il

a is the inverse of Cl
a, then

Λl,b−Λl,a = Λl,b−Λ
l +Λ

l−Λl,a

= inf{t : Cl(Λl + t)−Cl(Λl)> b−Cl(Λl)}+Λ
l−Λl,a

= Il
a(b−Cl(Λl))+Λ

l−Λl,a

→ Ia(b−a),

which equals I(b)− I(a) by definition.

Proof of Lemma 3.5. Recalling Equation (3.23), we have Λ0++ I(ε)→ Λ0+ as ε ↓ 0, since either both
sides are finite or infinite. Thus

(Λ0++ I(εnl), I(1− εnl)− I(1/2)) a.s.→ (Λ0+, I(1)− I(1/2)) as l→ ∞.

Hence, this convergence is also in probability. Let (δk;k ∈N) be any summable sequence of positive reals
decreasing to zero. Fixing k ∈ N, and using a distance d that generates the usual topology on [0,∞]2, we
know that for δk exists l2

k ∈ N such that

P(d ((Λ0++ I(εnl), I(1− εnl)− I(1/2)) ,(Λ0+, I(1)− I(1/2)))> δk/2)< δk/2 ∀ l ≥ l2
k .

Without loss of generality, assume l2
k > l2

k−1. By Lemmas 3.4 and 3.7, we have(
Λl,εn(l2k )

,Λl,1−εn(l2k )
−Λl,1/2

)
a.s.→
(

Λ0++ I(εn(l2
k )
), I(1− εn(l2

k )
)− I(1/2)

)
as l→ ∞.

Again, this implies convergence in probability. Thus, for the same δk > 0 exists l1
k ∈ N such that

P
(

d
(
(Λl,εn(l2k )

,Λl,1−εn(l2k )
−Λl,1/2),(Λ0++ I(εn(l2

k )
), I(1− εn(l2

k )
)− I(1/2))

)
> δk/2

)
< δk/2 ∀ l ≥ l1

k .

We assume l1
k > l1

k−1. Joining the previous inequalities and using the triangle inequality

P
(
d
(
(Λk,εk ,Λk,1−εk−Λk,1/2),(Λ0+, I(1)− I(1/2))

)
> δk

)
< δk.

We conclude the proof using Borel-Cantelli lemma.

Remark 3.6. In the following, we work with the subsequences given in Lemma 3.5.

Sometimes, we will use the notation Ik(·) := Λk,· for the inverse of Ck.
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3.4.3 Trees are not asymptotically thin at the base
In this section we prove our main result, Theorem 3.2. In the proof, we will apply the 213-type transfor-
mation to a tree τk using a uniform variable Uk, and its ancestor Nk at distance λ

(k)
1 (see Proposition 3.9

and its discussion); the value λ1 will be specified later. Define X̃k, C̃k and Λ̃k,εk as Xk, Ck and Λk,εk where

defined, but for the transformed tree τ̃k. Because Xk d
= X̃k, then Ck d

= C̃k and Λk,εk

d
= Λ̃k,εk .

To prove the result, we first restrict us to Λ ∈ (λ ,∞) for some fixed λ ∈ (0,∞), and compute

P(Λ ∈ (λ ,∞), I(1)− I(1/2)< ∞) = lim
λ ′2↑∞

P
(
Λ ∈ (λ ,∞), I(1)− I(1/2)< λ

′
2
)

Fix λ ′2 > 0 and define Aλ ′2
as the set inside the last probability. We need a lower bound on the distance

between Λk,1/2 and Λk,1−εk , hence for any fixed λ2 ∈ (0,λ ′2) we split

P
(

Aλ ′2

)
= P

(
Aλ ′2
∩{I(1)− I(1/2) ∈ (λ2,λ

′
2)}
)
+P
(

Aλ ′2
∩{I(1)− I(1/2)≤ λ2}

)
(A)

The first term on the right-hand side will be denoted by A1. We will prove that A1 equals zero for every
(fixed) λ2 ∈ (0,λ ′2). This would imply

P
(

Aλ ′2

)
≤ lim

λ2↓0
P(I(1)− I(1/2)≤ λ2)≤ P(I(1)− I(1/2) = 0) , (A’)

which has probability zero since
∫ 1

1/2 ds/X(s)> 0 a.s.
To prove A1 has zero probability, we decompose it using the set where there is a giant subtree at the

top of the tree. For a plane tree Tk with sk vertices, let u ∈ [sk] be any vertex on Tk. We denote by Tk(u) the
subtree generated by u in the tree Tk (a tree with root u and all its descendants). When v ∈ [0,1] is such
that bvskc ∈ [sk], we also refer to v as a vertex in the tree (and write Tk(v) instead of Tk(bvskc)). Let δn ↓ 0.
For any n,k ∈ N and λ1 ∈ (0,λ ∧λ2), consider:

A(n,k) = {there exists a vertex vk at height Λ
(k)
k,1−εk

−λ
(k)
1 such that |τk(vk)|> δnsk}.

Recall that Lemma 3.5 implies Λk,εk → Λ0+ ≥ Λ. Then, intersecting with A(n,k) and A(n,k)c, we bound
A1 as follows

P
(
Λ ∈ (λ ,∞), I(1)− I(1/2) ∈ (λ2,λ

′
2)
)

≤ P
(

lim
k
{Λk,εk > λ ,Λk,1−εk−Λk,1/2 ∈ (λ2,λ

′
2)}
)

≤ lim
n

lim
k

P
({

Λk,εk > λ ,Λk,1−εk−Λk,1/2 ∈ (λ2,λ
′
2)
}
∩A(n,k)

)
+ lim

n
lim

k
P
({

Λk,1−εk−Λk,1/2 ∈ (λ2,λ
′
2)
}
∩A(n,k)c) .

(B)

The first and second term on the right-side will be denoted by B1 and B2, respectively.
For arbitrary ε ∈ (0,1/2), we split B2 as

lim
n

lim
k

P
({

Λk,1−εk−Λk,1/2 ∈ (λ2,λ
′
2)
}
∩A(n,k)c)

≤ lim
n

lim
k

P
({

Λk,1−εk−Λk,1/2 ∈ (λ2,λ
′
2),C

k(Λk,1−εk−λ1)< 1− ε

}
∩A(n,k)c

)
+ lim

k
P
(

Λk,1−εk−Λk,1/2 ∈ (λ2,λ
′
2),C

k(Λk,1−εk−λ1)≥ 1− ε

)
,

(C)
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and denote by C1 the first term on the right. Similarly as in A, we shall prove that C1 is zero for fixed ε .
Thus

lim
n

lim
k

P
({

Λk,1−εk−Λk,1/2 ∈ (λ2,λ
′
2)
}
∩A(n,k)c)

≤ P
(

lim
ε↓0

lim
k

{
Λk,1−εk−Λk,1/2 ∈ (λ2,λ

′
2),C

k(Λk,1−εk−λ1)≥ 1− ε

})
.

(D)

Denote the right-hand side by D1.
Informally, the reason to decompose in such events is to obtain a giant subtree growing in the last λ1

generations (which is B1), and prove that Λ > 0 cannot happen using the 213 transformation by moving
such giant subtree to the base of the tree. For the existence of the giant subtree, we have to prove there
are a lot of individuals in the last λ1 generations, that is, to prove D1 equals zero; then use this to prove
that when there are a lot of individuals in the last λ1 generations, one vertex at such height has a lot of
descendants, which is C1. The steps of the proof are the following. First we prove D1 is zero, then prove
the same for C1. Both imply B2 is zero. Then we prove B1 is zero. Hence, we have that A1 is zero, which
also implies, by A’, that P(Λ ∈ (λ ,∞), I(1)− I(1/2)< ∞) = 0.

D1 equals zero: the last λ1 generations have a lot of individuals

Let a∈ (0,1/2) and consider 0 < λ1 < λ2. Here, we prove that even when Λ = ∞ (that is, in the limit there
are zero individuals at any fixed height), if we erase the first baskc individuals, the limit of the cumulative
profile will be positive, using Lemma 3.5. This means that above height Λk,a, there are a lot of individuals.
Actually, we prove that

D := lim
ε↓0

lim
k

{
Λk,1−εk−Λk,1/2 ∈ (λ2,∞),Ck(Λk,1−εk−λ1)≥ 1− ε

}
= Ø.

On the event D, over a subsequence, at least 1− ε individuals are below height λ1 from the top of the
tree. To simplify notation, we denote with the same k such a subsequence. Assume that on D, there exists
aλ1 ∈ (0,1−a), such that

lim
k

(
Ck(Λk,1−εk)−Ck(Λk,1−εk−λ1)

)
= 1−a−aλ1 > 0. (3.25)

This would imply that on D, adding to Ck(Λk,1−εk − 1/ask) the terms ±Ck(Λk,1−εk − λ1), the condition
Ck(Λk,1−εk−λ1)≥ 1− ε implies

1− εk ≥ 1− ε +Ck(Λk,1−εk−1/ask)−Ck(Λk,1−εk−λ1).

Hence, taking the limit first with k and then with ε , by (3.25) we obtain

D⊂ lim
ε↓0

{
I(1)− I(1/2) ∈ [λ2,∞),1≥ 1− ε +1−a−aλ1

}
= Ø.

Hence, it remains to prove (3.25) to obtain D1 equals zero. Note that any fixed a∈ (0,1/2) is a continuity
point of X (since X only jumps at uniform times). Consider the processes Xk

a and Xa on [0,1−a], defined
on page 78. Consider also the associated solution Ca and its inverse Ia of IVP(Xa). By Equation (3.24),
the expression inside parenthesis in (3.25) can be written as

Ck(Ik(1− εk))−Ck(Ik(1− εk)−λ1) =Ck
a(I

k(1− εk)−Λ
k)−Ck

a(I
k(1− εk)−Λ

k−λ1),
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were we recall that Λk = bΛl,aaslc/asl . Note that the above expression is well-defined since a ∈ (0,1/2)
and

Ik(1− εk)−Λ
k ≥ Ik(1− εk)− Ik(1/2)≥ λ2 > λ1. (3.26)

From Lemma 3.5, we obtain Ik(1− εk)−Λk → I(1)− I(a) = Ia(1− a), which is finite on the event of
interest. Also, in the proof of Lemma 3.7 we obtained the convergence Ck

a →Ca uniformly on compact
sets. This implies

lim
(

Ck(Ik(1− εk))−Ck(Ik(1− εk)−λ1)
)
=Ca(Ia(1−a))−Ca(Ia(1−a)−λ1). (3.27)

Let aλ1 ∈ (0,1−a) be such that
λ1 = Ia(1−a)− Ia(aλ1).

Such value exists because the function g(x) = Ia(1− a)− Ia(x) is continuous on [0,1− a], and satis-
fies g(1− a) = 0 and g(0) > λ1 by (3.26). Hence, the right-hand side of (3.27) equals Ca(Ia(1− a))−
Ca(Ia(aλ1)) = 1−a−aλ1 > 0.

C1 equals zero: some vertex at height λ1 from the top of the tree has a lot of descendants

Denote the event in C1 as C(n,k). On C(n,k), every individual at height Λ
(k)
k,1−εk

−λ
(k)
1 has less than δnsk

descendants (by the definition of A(n,k)c). Also on such set, the number of individuals at height greater
than Λ

(k)
k,1−εk

−λ
(k)
1 are greater than εsk, since

1 =Ck(Λk,1−εk−λ1)+Ck(∞)−Ck(Λk,1−εk−λ1)< 1− ε +Ck(∞)−Ck(Λk,1−εk−λ1).

Since the number of individuals at height greater than Λ
(k)
k,1−εk

−λ
(k)
1 is equal to the number of descendants

of the vertices at that height, which is also the elements of the subtrees growing at that height minus its
roots, then

ε < ∑
j:h(v j)=Λk,1−εk−λ1

|τk(v j)|−1
sk

≤ Zk(Λk,1−εk−λ1)(δn−1/sk)

≤ ||Xk||δn

≤ 2||X ||δn,

for k big enough, where the last rows are true since Xk→ X and Zk = Xk ◦Ck (see the definition of Zk in
page 66). Thus, for ε fixed, we can bound C1 with

P
(

lim
n
{ε < 2||X ||δn}

)
= 0.
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B1 equals zero: moving a giant subtree to the base of the tree

We prove that, for fixed λ1 ∈ (0,λ/2) small enough we have

lim
n

lim
k

P
(
Λk,εk > λ ,Λk,1−εk−Λk,1/2 ∈ (λ2,λ

′
2),

exists a vertex vk at height Λ
(k)
k,1−εk

−λ
(k)
1 with |τk(vk)|> δnsk

)
= 0.

Denote the set inside the probability as B(n,k). Now we formalize the steps given in page 74, using the
213 transformation to move a giant subtree to the base of the tree. First we need some definitions.

Definition 3.9. Let T be a tree and v a non-leaf vertex in T . For any h1,h2 ∈N∪{∞} with h(v)≤ h1 ≤ h2,
let

|T (v)|(h1,h2) = {number of individuals in T (v) having height h ∈ {h1, . . . ,h2} in the tree T }.

We also define |T (v)|(h1) := |T (v)|(h(v),h1), the number of individuals in T (v) up to height h1 in the tree
T .

Lemma 3.8. Let 2λ1 < λ2 < λ ′2 and 2λ1 < λ . Then for every n big enough

lim
k

P(B(n,k)) = 0.

Proof. Define the first height where the subtree τk(vk) has at least half of its size:

h(vk,1/2) = inf{h > h(vk) : |τk(vk)|(h)≥ |τk(vk)|/2},

and the first height h after h(vk,1/2), where the subtree τk(vk) accumulates a quarter of its size between
{h(vk,1/2)+1, . . . ,h}:

h(vk,1/4) = inf{h > h(vk,1/2) : |τk(vk)|(h(vk,1/2)+1,h)≥ |τk(vk)|/4}.

Note that h(vk,1/4) < Λ
(k)
k,1−εk

with high probability. This is true because, letting zk(vk,1/2) :=
|τk(vk)|(h(vk,1/2),h(vk,1/2)) be the number of individuals in τk(vk) at height h(vk,1/2), by definition

|τk(vk)|(h(vk,1/4)−1)
= zk(vk,1/2)+ |τk(vk)|(h(vk,1/2)−1)+ |τk(vk)|(h(vk,1/2)+1,h(vk,1/4)−1)
< 3|τk(vk)|/4+ zk(vk,1/2).

By definition, above height Λ
(k)
k,1−εk

there are at most skεk individuals. Hence, on the event B(n,k)∩
{h(vk,1/4)≥ Λ

(k)
k,1−εk

}, all the individuals in τk(vk) having height at least h(vk,1/4) are at most skεk, thus

skεk ≥ |τk(vk)|(h(vk,1/4),∞)≥ |τk(vk)|/4− zk(vk,1/2)≥ δnsk/4−Zsk(h(vk,1/2)).

Therefore, on the event of interest

δn/4− εk < (bsk/sk)||Zk|| ≤ (bsk/sk)||Xk|| ≤ (bsk/sk)2||X ||,
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for k big enough since Xk → X . The above has probability going to zero as k→ ∞ for fixed n, using
Hypothesis (4) of Theorem 3.1. Therefore, we can assume h(vk,1/4)< Λ

(k)
k,1−εk

. In a similar way, we can
prove that h(vk,1/2)< h(vk,1/4).

Consider a uniform and independent random variable Uk. An important remark is that Uk is inde-
pendent of τk, since the subsequence (n(l1(k)),k ∈ N) obtained in Lemma 3.5 was deterministic. The
probability for Uk to be in τk(vk), between heights {h(vk,1/2)+ 1, . . . ,h(vk,1/4)}, is at least δn/4, by
definition of h(vk,1/4). It follows that

δn

4
lim

k
P(B(n,k))

≤ lim
k

P
(

B(n,k)∩{Uk ∈ τk(vk),h(Uk) ∈ {h(vk,1/2)+1, . . . ,h(vk,1/4)},h(vk,1/4)< Λ
(k)
k,1−εk

}
)
.

Denote the event on the right-hand side by B1(n,k). Note that the ancestor Nk at distance λ
(k)
1 of Uk, is

also an ancestor of vk. Indeed, we have

h(Nk) = h(Uk)−λ
(k)
1 ≤ h(vk,1/4)−λ

(k)
1 ≤ Λ

(k)
k,1−εk

−λ
(k)
1 = h(vk).

By construction, on the set B1(n,k) the transformed tree τ̃k satisfies

1. There are at least δnsk/2 individuals up to height (2λ1)
(k). This is true, because

h(vk,1/2)−h(Nk)≤ Λ
(k)
k,1−εk

−h(Uk)+λ
(k)
1 ≤ Λ

(k)
k,1−εk

−h(vk)+λ
(k)
1 = (2λ1)

(k)

and
|τk(Nk)|(h(vk,1/2))≥ |τk(vk)|(h(vk,1/2))≥ δnsk/2.

2. Between heights {(2λ1)
(k), . . . ,λ (k)} there are at most 2εksk individuals. This is true, since on one

hand

|τk(Nk)|(Λ
(k)
k,1−εk

,∞)≤ |τk|(Λ
(k)
k,1−εk

,∞)≤ εksk and |τk|(λ (k))≤ |τk|(Λ
(k)
k,εk
−1)≤ εksk,

and, on the other hand

Λ
(k)
k,1−εk

−h(Nk)≤ h(Uk)+λ
(k)
1 −h(Nk) = (2λ1)

(k).

3. After height λ (k) there are at least sk/2− εksk individuals. This holds, since

h(Nk)/ask ≥ Λk,1−εk−2λ1 ≥ Λk,1/2 +λ2−2λ1 ≥ Λk,1/2,

and λ
(k)
1 < Λ

(k)
k,εk
≤ Λ

(k)
k,1−εk

implies

Ck(h(Nk)/ask)−Ck(λ )≥ 1/2− εk.
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These three properties are illustrated in Figure 3.11. Using the equality in distribution τk
d
= τ̃k of Proposi-

tion 3.9, we bound

lim
k

P(B1(n,k))≤ lim
k

P
(

C̃k(2λ1)≥ δn/2,C̃k(λ )−C̃k(2λ1)≤ 2εk,1−C̃k(λ )≥ 1/2− εk

)
= lim

k
P
(

Ck(2λ1)≥ δn/2,Ck(λ )−Ck(2λ1)≤ 2εk,1−Ck(λ )≥ 1/2− εk

)
≤ P

(
CΛ(2λ1)≥ δn/2,CΛ(λ )−CΛ(2λ1) = 0,1−CΛ(λ )≥ 1/2

)
,

which is zero, since CΛ cannot be constant inside an interval where it is strictly increasing. This concludes
the proof.

Proof of Theorem 3.2

On the set ω ∈ {Λ = ∞, I(1)− I(1/2)< ∞}, since Ck→CΛ ≡ 0, we have Λk,εk → ∞ using Lemma 3.5. It
follows that

P(Λ = ∞, I(1)− I(1/2)< ∞) = P

⋂
λ

⋃
λ ′2

{
lim

k
{Λk,εk > λ ,Λk,1−εk−Λk,1/2 < λ

′
2}
}

≤ lim
λ↑∞

lim
λ ′2↑∞

lim
k

P
(
Λk,εk > λ ,Λk,1−εk−Λk,1/2 < λ

′
2
)
,

which can be proved to be zero by the previous case. Since λ > 0 was arbitrary, the claim follows.

3.5 Application to CGW(n) trees
In this section we obtain the joint convergence of the rescaled BFW, cumulative profile and profile of
CGW(n) trees with offspring distribution in the domain of attraction of an stable law under the product
topology. This proves Aldous’s conjecture [Ald91b], and recovers the results of Drmota and Gittenberger
[DG97], and Kersting [Ker11]. The key point is that CGW(n) trees are a finite mixture of uniform trees
with a given degree sequence. This allows us to apply our previous results to CGW(n) trees. First we give
some definitions.

Let T(∞) be the set of (possibly infinite) plane trees. For any k ∈ N, let T(k) be the set of plane trees
with height at most k. Consider the restriction map rk : T(∞) 7→ T(k), where rkt is the subtree of t ∈ T(∞),
formed by all the vertices up to generation k. A tree t ∈ T(∞) is identified by the sequence (rkt,k ≥ 0).

A random family tree τ is a random element of T(∞), specified by the sequence (rkτ,k ≥ 0), where
each rkτ is a random variable taking values on T(k), and rkτ = rk(rk+1τ) for every k.

For a GW tree τ with offspring distribution µ , we have

P(rkτ = t) = ∏
v∈rk−1t

µ(c(v)) ∀ t ∈ T(k),k ≥ 1, (3.28)

where the product is taken over all vertices v of t up to generation k−1, and c(v) is the number of children
of v.
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A distribution µ = (µn,n ≥ 0) is called critical if ∑nµn = 1, and aperiodic if the greatest common
divisor of all n with µn > 0 is one. Let (ξn,n ∈ N) be i.i.d. with law µ . If there exists a sequence of
positive numbers (bn,n ∈ N) such that

ξ1 + · · ·ξn−n
bn

d→ Sα ,

where the limit Sα is non-degenerate, we say that µ belongs to the domain of attraction of a stable law,
DA for short.

It is well-known that if µ is in DA, then there exists an α ∈ (1,2] such that bn = n1/αL(n) where
L : R+ 7→ R+ is a slowly varying function, that is, limx→∞ L(tx)/L(x) = 1 for all t > 0. Alternatively, we
write DA(α) to indicate the dependence on the parameter.

The hypotheses on µ will be the following:

Hα The distribution µ is critical, aperiodic and belongs to DA(α) for α ∈ (1,2].

Throughout this section, the distribution µ = (µn,n ≥ 0) satisfies Hα . Let τ be a GW tree with
offspring distribution µ , and denote by Pµ its probability distribution. Consider the empirical degree
sequence n̂(τ) = (n̂i(τ), i≥ 0) of τ , that is

n̂i(τ) =
|τ|

∑
j=1

1{c( j) = i}, (3.29)

with c( j) the number of children of individual j. We simply write n̂ when the tree τ is obvious from the
context. Define the normalized empirical degree sequence µ̂ = (µ̂i, i≥ 0) of τ as µ̂i = n̂i/|τ|. The law of
the CGW(n) is denoted by Pn

µ(·) = Pµ(·| |τ|= n), considering the n for which this has sense.
By an α-stable Lévy process we mean a stable Lévy process Y of index α ∈ (1,2], without negative

jumps, standardized so we have

E(exp(−qY (t))) = exp(−tqα) q > 0.

Chaumont’s path construction (see [Cha97]) of the normalized α-stable bridge Xb and the normalized
α-stable excursion X , states that

Xb d
=
(

c−1/αY (ct), t ∈ [0,1]
)
,

where c = sup{t ∈ [0,1] : Y (t) = 0}, and

X =
(
(d−g)−1/α

(
Yg+(d−g)s−Yg

)
,s ∈ [0,1]

)
,

where g = sup{s≤ 1 : Ys = infu∈[0,s]Yu} and d = inf{s > 1 : Ys = infu∈[0,s]Yu}.
Similarly as in Corollary 3.2, it can be proved that the DFW and the BFW of a CGW(n) tree τn, have

the same distribution. Hence, the following well-known result can be stated in terms of BFWs. A proof
can be found in [Duq03].

Lemma 3.9. Let W (n) = ∑
n
1 ξi−n and W (0) = 0, where (ξi, i≥ 1) are i.i.d. with distribution µ satisfying

Hα . Then, the rescaled BFW of a CGW(n) tree with offspring distribution µ , converges to the normalized
α-stable excursion, that is, under Pn

µ

Xn =

(
1
bn

W (bntc) , t ∈ [0,1]
∣∣∣∣ inf{ j : W ( j) =−1}= n

)
d→ X . (3.30)



CHAPTER 3. ON THE PROFILE OF TREES WITH A GIVEN DEGREE SEQUENCE 87

Define the set of all possible degree sequences taken by τ when |τ|= n, as

DS(n) = {s = (Ni, i≥ 0) : n = ∑Ni = 1+∑ iNi,Nn
i ≥ 0}.

The next lemma relates a GW tree with a uniform tree with a given degree sequence.

Lemma 3.10. For every s ∈ DS(n), the distribution Ps is the same as the distribution of a GW tree with
offspring distribution µ conditioned to have degree sequence s. Therefore, the law of a CGW(n) tree is a
finite mixture of the laws (Ps,s ∈ DS(n)).

Proof. The first assertion can be verified directly from the definition (3.28) as follows. Let T1 and T2 be
two trees on Ts, the set of trees with degree sequence s. Then

Pµ (τ = T1, n̂i(τ) = Ni,∀i) = ∏
v∈T1

µc(v) = ∏
i≥0

µ
Ni
i = Pµ (τ = T2, n̂i(τ) = Ni,∀i) .

Hence, the probability that a tree conditioned to have degree sequence s, is the same for T 1 and T 2, so

Pµ (τ = T |n̂i(τ) = Ni,∀i) =
1

#Ts
.

To prove the second assertion, for every s ∈ DS(n) consider the probabilities

λ
s
µ = Pµ (n̂ = s| |τ|= n) ,

and notice that ∑s∈DS(n)λ s
µ = 1. Let τ be a GW tree with offspring distribution µ , then

Pn
µ(τ ∈ ·) = ∑

s∈DS(n)

Pµ (n̂ = s, |τ|= n)
Pµ (|τ|= n)

Pµ (τ ∈ ·| n̂ = s) = ∑
s∈DS(n)

λ
s
µPs (·) .

This proves the lemma.

We define the rescaled cumulative profile and rescaled profile with offspring distribution µ in DA(α),
exactly .

Define the rescaled BFW of τn, a CGW(n) tree, as Xn = Sbn
n W̃n, where W̃n is the BFW of τn started at

one. Using the results of Subsection 3.3.1, the temporal rescaling of the profile will be an = n/bn. The
rescaled cumulative profile is defined as Cn(t) =Cn(ti)+(t− ti)Xn ◦Cn(ti) for ti = i/an and ti ≤ t < ti+1.
Thus, for t ≥ 0

Zn(t) = D+Cn(t) and Cn(t) =

{
Sn

an
Cn(t−1/an) t > 1/an

tXn(0) t ≤ 1/an.
(3.31)

To prove the convergence of such processes, we need to prove that
∫ 1

1/2 1/Xsds is finite, a condition
imposed in Theorem 3.1. Let H(τn) be the height of τn, that is, the last generation having individuals.
Theorem 4 of [Kor15a] proves that, for every δ ∈ (0,α), there exists positive constants C1 and C2 such
that for every u≥ 0 and every n≥ 1, we have

P
(

H(τn)≥
n
bn

u
)
≤ c1 exp

(
−c2uδ

)
.

This also tells us that the correct scaling is Hn := bnH(τn)/n. The next lemma relies on Kortchemski’s
bound.
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Lemma 3.11. Let X be the normalized excursion of the α-stable process withouth negative jumps. Then∫ 1

0

1
Xs

ds < ∞ a.s.

Proof. In Proposition 3.8 we proved that (Cn,n ∈ N) is sequentially compact for convergence in distribu-
tion uniformly on compact sets, and that every subsequential limit is of the form CΛ (a result which only
depended on the convergence of the rescaled BFW’s). Denote by (nl, l ∈ N) the subsequence such that
Cnl →CΛ. Such subsequential limit, has inverse

IΛ(t) = Λ+
∫ t

0

ds
X(s)

t ∈ [0,1].

As in Lemma 3.5, for εn ↓ 0, we find deterministic subsequences (n(l1(k)),k ∈ N) and (n(l2(k)),k ∈ N),
such that Λk,1−εk := Λn(l1(k)),1−εn(l2(k))

satisfies

Λk,1−εk

a.s.→ Λ0++ I(1),

with Λ0+ = inf{t > 0 : CΛ(t)> 0}. By the definition in (3.31), note that

Λk,1−εk < sup{t : Ck(t−1/ak) = 1}= (H(τk)+1/ak)/ak = Hk +1/a2
k ,

for Hk = Hn(l1(k)) and ak = an(l2(k)). Thus, using Fatou’s Lemma, we obtain for every continuity point
u > 0 of the distribution function of Λ0++ I(1)

P(Λ0++ I(1)> u)≤ lim
k
P
(
Λk,1−εk > u

)
≤C1 exp

(
−C2(u−1/a2

k)
δ

)
.

Taking limits we conclude

Λ0++
∫ 1

0

1
Xs

ds < ∞ a.s.

We are ready to prove that jointly, the rescaled BFW, profile, and cumulative profile converge for
CGW trees with Pareto offspring distribution.

Proposition 3.10. Suppose assumption Hα is satisfied for µ . Let τn be a CGW(n) tree with law Pn
µ .

Let Xn, Cn and Zn be the rescaled BFW, cumulative Lamperti transform and Lamperti transform of τn
respectively, as in (3.30) and (3.31). Then, we have the joint convergence

(Xn,Cn,Zn)
d→ (X ,C,Z)

under the product Skorohod topology D(R+,R+)
3, where X is a normalized α-stable excursion, C and Z

are the cumulative Lamperti transform and Lamperti transform of X.

Proof. Note that Hypotheses (1), (3), (4) and 3.4 of Theorem 3.1 are satisfied in this case. Also, from
Lemma 3.9 we have Xn→ X in distribution. This convergence of the BFW’s was the result in Section 3.2,
and replaces Hypothesis (2) of Theorem 3.1. Note that this is enough to obtain Proposition 3.8, because the
latter only depended on the convergence of the rescaled BFWs. Now we prove the equality in distribution
of Proposition 3.9 but for CGW(n) trees. Let Un be a uniform variable on {2, . . . ,n} independent of τ , a
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GW tree with offspring law µ . Let W be the BFW of τ and n̂(W ) its degree sequence. Define W̃ as in
Proposition 3.9. As seen from the proof of Lemma 3.10, the probability that τ equals a fixed tree, does not
change for trees with the same degree sequence. This, the proof of Proposition 3.9 and the independence
with Un, imply

Pµ(W = w,U =U) = Pµ(W̃ = w,U =U), (3.32)

for excursions w having degree sequence s ∈ DS(n). To prove the same under the law Pn
µ we sum over

all the possible degree sequences. First note that the law of (W,U) is uniform on Ts× [n] under the law
Pµ(τ ∈ ·|n̂(τ) = s), for s ∈ DS(n). We also have that

λ
sn
µ := Pµ (n̂(τ) = s| |τ|= n) = Pµ (n̂(τ̃) = s| |τ̃|= n) =: λ̃

sn
µ ,

using (3.32) and that both τ and τ̃ have the same degree sequence and size. Joining the previous equalities,
we have

Pn
µ(W = w,Un = u) = ∑

s∈DS(n)
λ

s
µPµ (W = w,Un = u | n̂(W ) = s)

= ∑
s∈DS(n)

λ̃
s
µPµ

(
W̃ = w,Un = u

∣∣ n̂(W̃ ) = s
)

= Pn
µ(W̃ = w,Un = u).

Now, the results of Section 3.4 are applied straightforward in this case, because they rely on the
previous equality in distribution, in Proposition 3.8 and on trajectorial arguments. Therefore, we also
obtain P

(
Λ ∈ (0,∞],

∫ 1
0 ds/X(s)< ∞

)
= 0.

Remark 3.7. Proposition 3.10 also works for a more general model than GW trees, the so called simply
generated trees (see [Jan12], on such paper a degree sequence is what we called child sequence). Indeed,
given a fixed weight sequence w = (wk,k ≥ 0) of non-negative real numbers with w0 > 0 and wk > 0 for
some k ≥ 2, we define the weight of a tree T in the set T of all finite plane trees as

w(T ) = ∏
v∈T

wc(v) = ∏
i≥0

wni(T )
i , (3.33)

where (ni(T ), i ∈ N) is the degree sequence of T , and the first product is over the set of vertices v in T .
Such trees with weights are called simply generated trees. For every n∈N, let τn be a random tree chosen
from the set Tn of plane trees with n vertices proportional to its weight

P(τn = T ) =
w(T )

∑T∈Tn w(T )
T ∈ Tn,

when ∑T∈Tn w(T )> 0.

From formula (3.33), every tree T ∈ Tn with the same degree sequence sn has the same distribution.
Then, simply generated trees conditioned on having the degree sequence sn are uniform on the set of
all trees in Tn with degree sequence sn, and a similar result as in Proposition 3.10 could be obtained.
Nevertheless, it has been proved in [Kor15b], that for the particular case of subcritical GW trees with
offspring distribution in DA(α), it is not possible to scale the tree to obtain convergence in the Gromov-
Hausdorff topology. As a consequence of Theorem 5 of [Kor15b], Kortchemski proved that there is no
non-trivial scaling limit for the contour function of these trees. It is left as an open problem to obtain the
convergence of the profile for simply generated trees, other than critical CGW trees.
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3.6 On Kersting’s condition for the convergence of the profile of a
CGW tree with Pareto offspring distribution

The objective of this section is to give another proof for the asymptotic thickness of the base of CGW
trees with Pareto offspring distribution. Although we proved this result in Section 3.5 as an application of
Theorem 3.1, this proof is simpler, as it relies on simple facts about GW trees and α-stable distributions.
Note that proving this result, together with the results in Section 3.3, imply the convergence of the profile
of such CGW trees, thus giving another proof of Kersting’s result [Ker11].

Recall the hypotheses for an offspring distribution µ = (µ(x),x≥ 0):

Hα The distribution µ is critical, aperiodic and belongs to DA(α) for α ∈ (1,2).

In [Ker11], Kersting gives a condition to prove that CGW(n) trees are not thin at the base.

Lemma 3.12 (Lemma 9 of [Ker11]). Let Cn be the rescaled cumulative Lamperti transform of a CGW(n)
tree τ , having offspring distribution µ . If µ satisfies Hypotheses Hα , then for every λ > 0

lim
ε↓0

lim
n
P(Cn(λ )≤ ε| |τ|= n) = 0.

In this section we use the results of Subsection 3.3.3 and [CPGUB13], to give a different proof than
in [Ker11].

This is done via a comparison between the first generations of the CGW(n) tree and the Q-process.
This process is defined in Subsection 3.6.1. Then, in Subsection 3.6.2 we prove convergence of the
rescaled Q-process to a continuous-state branching process with immigration, and define this limit. Fi-
nally, in Subsection 3.6.3 we define the tree having population profile the Q-process, and compare it with
the CGW(n) tree, to prove Lemma 9 of [Ker11].

Throughout this section, some of the results we use are stated for (sub)critical offspring distributions,
so we say µ satisfies Hypotheses H(s) if it is (sub)critical, aperiodic and is in DA(α) for α ∈ (0,1).

3.6.1 Galton-Watson processes conditioned on non-extinction.
We briefly review some well-known results of the Q-process and GW processes with immigration (see
[Lam07]). Let (Z̄(n),n ≥ 0) be a Galton-Watson process with offspring distribution µ under the law P,
having positive and finite mean m. Label the tree in BFO, and let ξ ( j) be the number of children of
individual j ∈N, thus ξ ( j) has distribution µ . From Section 1.14 of [AN04], the conditional probabilities
P(·| inf{n : Z̄(n) = 0}> k) converge as k goes to infinity to a probability measure P↑, in the sense of finite-
dimensional distributions. This defines a Markov chain with values in {1,2, . . .} called the Q-process. Its
transition probabilities are given by

P↑ (Z̄n = j|Z̄0 = i) =
j
i
m−nP(Z̄n = j|Z̄0 = i) i, j ≥ 1.

This process is related to a GW process with immigration (GWI process, for short), which is defined as
follows.

Consider independent random walks (W ( j), j ≥ 1) and (W̃ ( j), j ≥ 1), having steps (ξ ( j)−1, j ≥ 1)
and (ξ̃ ( j), j ≥ 1), where ξ (1) has distribution (µ( j); j ≥ 0) and ξ̃ (1) has distribution µ̃ = (µ̃(x),x≥ 0).
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Let k ≥ 1 be the initial population. Similarly as in Equation (3.1), the population profile and cumulative
population profile, are respectively

Z(n+1) = k+W ◦C(n)+W̃ (n+1) and C(n+1) =C(n)+Z(n+1),

with Z(0) = C(0) = k and n ≥ 0. The value W̃ (m) represents the quantity of immigrants arriving at
generations less than or equal to m, not counting the initial k members of the population as immigrants.

The process Z just defined is a GWI, having offspring distribution µ and immigration µ̃ . It can be
proved that for s ∈ (0,1) and i≥ 0

Ei

(
sZ(1)

)
= f (s)ig(s),

where f and g are the probability generating functions of µ and µ̃ , respectively, and Ei is the law of the
process starting with i individuals. Denote this process as GWI( f ,g).

To obtain the relation between Q-processes and GWI processes, set µ̃ as the size-biased distribution
of µ:

µ̃(x) = xµ(x) x≥ 1. (3.34)

Then, it is true that
E↑i
(

sZ̄(1)−1
)
= f (s)i−1 f ′(s)/m. (3.35)

The latter implies that (Z(n)−1,n≥ 0) under the law P↑i is a GWI( f , f ′/m).
The interpretation of the Q-process as a GWI gives us a recursive construction of the infinite size-

biased tree:

1. Start with a marked individual (the root), which has offspring distribution µ̃ .

2. At generation n≥ 1, there is only one marked individual having offspring distribution µ̃ .

3. Choose one children of such marked individual uniformly at random and mark it. That individ-
ual also has offspring distribution µ̃ . All the other descendants in that generation have offspring
distribution µ .

After removing the marked individuals, this construction provides us with a tree having population
profile a GWI, with offspring distribution µ and immigration µ̃ . In Subsection 3.6.3 we give the formal
definition of such tree.

3.6.2 Convergence of the rescaled Q-process.
Consider the triangular array (ξ n( j)/an, j ∈ [bn]) for n ∈ N, of independent (in the individual series)
random variables, where an = n1/αLa(n), for La ∈ SV , a slowly varying function. Define the sum

S(n) = (ξ n(1)+ · · ·+ξ
n(bn)−n)/an.

In the case α ∈ (0,1) and the (ξ n( j)/an, j≥ 1,n≥ 1) are i.i.d., by IX.8, page 315 of [Fel71], the centering
constants −n/an are irrelevant for the convergence of (ξ n(1)+ · · ·+ ξ n(bn))/an. Assume that for fixed
ε > 0

lim
n

max
j∈[bn]

P(|ξ n( j)/an|> ε) = 0,
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which says that the terms in the sum are uniformly infinitesimal. Denote by Fn and Fn
j the distribution

functions of S(n) and ξ n( j)/an, respectively. Define

σ
ε
n =

bn

∑
1

Var
(

ξ n( j)
an

1ξ n( j)/an<ε

)
ε > 0.

The following result is a form of Corollary 15.16 in [Kal02].

Theorem 3.3. Consider in R an i.i.d. array (ξn j, j≤ bn)n and let X be a Lévy process with characteristics

(0,0,π). Then ∑ j ξn j
d→ X iff for any h > 0 with π{|x|= h}= 0, we have

1. bnL (ξn1)→ π ,

2. bnE
(
ξ 2

n1; |ξn1| ≤ h
)
→
∫
|x|≤h x2π(dx)

3. bnE(ξn1; |ξn1| ≤ h)→
∫

h<|x|≤1 xπ(dx),

where L (ξn1) is the law of ξn1.

Let the critical offspring distribution µ be of the form

µ(n) = cα

L(n)
nα+1 , (3.36)

where α ∈ (1,2), L ∈ SV and cα > 0 is a constant depending on α . By Theorem 5.10 we have that
nµ(n)/µ((n,∞))→ α , hence the tail of µ is of regular variation with index α . Without loss of generality,
write µ((n,∞)) = c′αn−αL(n), for some constant c′α and using the same slowly varying function L. By
the same theorem, the tail of the size-biased distribution satisfies limn2µ(n)/ṽ((n,∞)) = α−1, so write
ṽ((n,∞)) = c′′αn1−αL(n), for some constant c′′α . The latter implies that, if W̃ is a random walk with
step distribution µ̃ , then W̃ (n)/dn converges to an (α − 1)-stable variable, say Y (α − 1), where dn ∈
RV (1/(1−α)). In order to obtain convergence of the rescaled Q-process, we need the following lemma,
whose proof is postponed to the Appendix.

Lemma 3.13. Let W̃ be a random walk having increments (ξ̃ ( j), j ≥ 1) with distribution µ̃ . Suppose µ

satisfies Hypotheses H(s) and is defined in (3.36). Then

W̃ (bn/anc)
an

→ Y (α−1).

Let dn = bn/anc. If we set

Xn(t) =
W (nt)

an
and Y n(t) =

W̃ (dnt)
an

t ≥ 0,

then we have Xn→ X and Y n→ Y under the Skorohod topology, where X is an α-stable process without
negative jumps, and Y is an independent (α−1)-stable subordinator.

In analogy with Subsection 3.3.1, we define the appropriate rescalings for the Lamperti and cumulative
Lamperti transform of the Q-process.
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Let kn ≥ 1 such that kn/an → x ≥ 0. The profile and cumulative profile of a GWI( f , f ′/m) process
with kn initial individuals are

Zn(m+1) = kn +W ◦Cn(m)+W̃ (m+1) and Cn(m+1) =Cn(m)+Zn(m+1),

with Zn(0) = Cn(0) = kn and m ≥ 0. We work with the linear interpolation of Cn and its right-hand
derivative, and for simplification, denote them by Cn and Zn respectively.

Consider the processes

San
dn

Zn(t) =
1
an

Zn(dnt) and Sn
dn

Cn(t) =
1
n

Cn(dnt) t ≥ 0.

Then, define the rescaled cumulative Lamperti and Lamperti transform as

Cn(t) =
kn

an
t +
∫ t

0
Xn ◦Cn(s)ds+

∫ t

0
Y n(s)ds,

and
Zn(t) =

kn

an
+Xn ◦Cn(t)+Y n(t).

The latter has the continuum analogous

Z(t) = x+X ◦C(t)+Y (t), C(t) =
∫ t

0
Z(s)ds, (3.37)

where Z is a continuous-state branching process with immigration. We now briefly recall simple aspects
of continuous-state branching processes (CB processes) and continuous-state branching processes with
immigration (CBI processes). Those models were introduced in [Jr58, Lam67b, Sil68, KW71], see also
[Lam02, CPGUB13] for other detailed descriptions. A [0,∞]-valued strong Markov process Z is a CB
process if its paths are càdlàg and the sum of two independent copies started at x and at y has the same law
as the process started at x+y. For a CB process, the states 0 and ∞ are absorbing. Its Laplace exponent is
given by

Ex (exp(−θZt)) = exp(−xut(θ)) ∀x > 0, t,θ ≥ 0,

where ut satisfies
∂ut

∂ t
(θ)+ψ (ut(θ)) = 0, (3.38)

with initial condition u0(θ) = θ , and for λ ≥ 0

ψ(λ ) =−q−dλ +σ
2
λ

2/2+
∫
R+

(
e−λx−1+λx1x<1

)
Π(dx),

where q,σ ≥ 0, d ∈ R, and Π is a measure supported on R+ satisfying
∫
R+

(1∧ x2)Π(dx) < ∞. The
function ψ is called the branching mechanism of the CB process.

A [0,∞]-valued strong Markov process Z is a CBI process with branching mechanism ψ and immigra-
tion mechanism φ (CBI(ψ,φ ) for short) if the following holds: its paths are càdlàg and

Ex (exp(−θZt)) = exp
(
−xut(θ)−

∫ t

0
φ(ut−s(θ))ds

)
∀x, t > 0,θ ≥ 0,
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where ut is the unique solution to (3.38), and

φ(θ) = δθ +
∫
R+

(1− e−θx)ϒ(dx) θ ≥ 0,

with δ ≥ 0, and ϒ a measure concentrated on R+ such that
∫
R+

(1∧ x)ϒ(dx)< ∞.
By Proposition 2 and Theorem 2 of [CPGUB13], Equation (3.37) has a unique solution Z, which is a

CBI(φ ,φ ′) starting at x. Using this, we can prove the convergence of the Q-process to such CBI.

Lemma 3.14. Assume kn/an→ x≥ 0 and that the offspring distribution µ satisfies Hypotheses Hα . Then,
the rescaled Lamperti (resp. cumulative Lamperti) transform of the Q-process starting with kn individuals,
converges to Z (resp. C) defined by (3.37), under the Skorohod topology (resp. uniformly on compact sets).
The process Z is a CBI(φ ,φ ′) with φ(λ ) = λ α for λ ≥ 0.

Proof. By Skorohod’s representation theorem, we work on a space where Xn→ X and Y n→ Y a.s. Note
that Y is a strictly increasing Lévy process. Using Proposition 4 and Theorem 3 of [CPGUB13], we have
that

Zn→ Z and Cn→C,

where the first convergence holds under the Skorohod topology and the second uniformly on compact
sets.

3.6.3 The CGW(n) tree and the size-biased tree compared up to the height they
first have εn individuals.

In this subsection we compare a CGW(n) tree with the size-biased GW tree. This is used to prove that a
small probability for the size-biased tree of having a thin base, implies a small probability for the CGW(n)
tree.

Size-biased GW trees.

We state the construction of the infinite size-biased GW tree τ(∞), from a (sub)critical GW tree τ . Recall
the definition of the restriction map, given in (3.28).

Proposition 3.11 ([Kes86]). Let Zn be the number of individuals in the nth generation of a GW tree τ

having (sub)critical offspring distribution µ , with µ(0)< 1. Then

L (τ|Zn > 0)→L (τ(∞))

as n→ ∞, where the law on the right-hand side is specified by

P
(

rkτ
(∞) = t

)
=

zk(t)
mk P(rkτ = t) ∀ t ∈ T(k), k ≥ 0, (3.39)

and zk(t) denotes the number of individuals in generation k of t.

Fix any n ∈ N and ε ∈ (0,1). Define Λn
ε := inf{k : Cn(k) > εn}, and denote by Tn,ε the set of trees t

such that Ct(h(t)−1)≤ εn <Ct(h(t)), where h(t) is the height of the tree, and Ct is the cumulative profile
of t. In the next theorem, for a GW tree τ conditioned to have size n, we consider it up to height Λn

ε . This
restricted tree takes values on Tn,ε .
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Theorem 3.4. Let τ be a GW tree with offspring distribution satisfying Hypotheses Hα . Then, there exists
a constant cε > 0 (depending only on α and ε) such that

lim
n

sup
B⊂Tn,ε

P
(
rΛn

ε
τ ∈ B|s(τ) = n

)
≤ cε lim

n
sup

B⊂Tn,ε

P
(

rΛn
ε
τ
(∞) ∈ B

)
, (3.40)

for fixed ε ∈ (0,1). Also, limε↓0 cε < c for some finite c.

Proof. Let ε ′ ∈ (0,ε). First we prove inequality (3.40) restricted to trees in Tn,ε , such that (ε − ε ′)n ≤
Ct(h(t)− 1). On the event {rΛn

ε
τ = t}, we have Λn

ε = h(t), and so Cn(Λ
n
ε − 1) = Ct(h(t)− 1). Let zh(t)

be the number of individuals in generation h(t) of t. By the Markov property, there are zh(t) GW trees
growing from generation Λn

ε (denote this GW forest by Fzh(t)), and this is independent of rΛn
ε
τ . Then,

using Otter-Dwass formula and Equation (3.39),

P
(
rΛn

ε
τ = t,s(τ) = n

)
= P

(
rΛn

ε
τ = t

)
P
(

s(Fzh(t)) = n−Ct(h(t)−1)
)

= zh(t)P
(
rΛn

ε
τ = t

) 1
n−Ct(h(t)−1)

P
(
W (n−Ct(h(t)−1)) =−zh(t)

)
= P

(
rΛn

ε
τ
(∞) = t

) 1
n−Ct(h(t)−1)

P
(
W (n−Ct(h(t)−1)) =−zh(t)

)
.

It should be noted that Equation (3.39) can be applied since Λn
ε = h(t) is deterministic. Dividing by

P(s(τ) = n) on both sides

P
(
rΛn

ε
τ = t|s(τ) = n

)
= P

(
rΛn

ε
τ
(∞) = t

) n
n−Ct(h(t)−1)

P
(
W (n−Ct(h(t)−1)) =−zh(t)

)
P(W (n) =−1)

. (3.41)

We use the local limit theorem 5.8 on the right-hand side. From I.4 page 21 of [Zol86], it is known that
g is uniformly bounded and continuous on R. Then, there exists constants c1,c2 > 0 and N ∈ N such that
for every n≥ N

P
(
W (n−Ct(h(t)−1)) =−zh(t)

)
≤ c1

an−Ct(h(t)−1)
and P(W (n) =−1)≥ c2

an
.

Since by assumption (ε− ε ′)n≤Ct(h(t)−1)< εn, then

n
n−Ct(h(t)−1)

P
(
W (n−Ct(h(t)−1)) =−zh(t)

)
P(W (n) =−1)

≤ c1

c2

(
1

1− ε

)1+1/α L(n)
L(n−Ct(h(t)−1))

.

Using the Potter bounds (see [BGT89, Theorem 1.5.6]), there exists N ∈ N depending only on ε,ε ′ such
that for every n≥ N

L(n)
L(n−Ct(h(t)−1))

≤ 2
n

n−Ct(h(t)−1)
≤ 2

n
n− εn

.

This, together with (3.41) implies (3.40) but for B restricted to trees satisfying (ε − ε ′)n ≤Ct(h(t)− 1).
To get rid of this, note that by definition Cn(Λ

n
ε)≥ εn, therefore

An := {Cn(Λ
n
ε −1)< (ε− ε

′)n} ⊂
{

Zn(Λ
n
ε) =Cn(Λ

n
ε)−Cn(Λ

n
ε −1)≥ ε

′n
}
. (3.42)
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In particular, for the CGW(n) we have W ◦Cn(Λ
n
ε −1)≥ ε ′n. The latter implies that on An

an

n
sup

0≤t≤ε−ε ′
Xn(t) = sup

0≤t≤ε−ε ′

1
n

W (nt)≥ ε
′.

Without loss of generality, we can assume ε ′ is a point of continuity for the distribution of limn supt≤ε−ε ′ X
n(t)=

supt≤ε−ε ′ X(t). Hence, the probability of An goes to zero as n→ ∞.
Letting Tn,ε,ε ′ be the subset of trees t in Tn,ε with (ε− ε ′)n≤Ct(h(t)−1), then

lim
n

sup
B⊂Tn,ε

P
(
rΛn,ε τ ∈ B|s(τ) = n

)
≤ lim

n
sup

B⊂Tn,ε,ε ′
P
(
rΛn,ε τ ∈ B|s(τ) = n

)
+ lim

n
P
(
Cn(Λn,ε −1)< (ε− ε

′)n|s(τ) = n
)

≤ lim
n

sup
B⊂Tn,ε,ε ′

P
(
rΛn,ε τ ∈ B|s(τ) = n

)
.

Since the right-hand side is bounded from above by the left hand side, the previous inequalities are equal-
ities. Using the same reasoning, it is easy to prove the above equality for the Q-process. Indeed, on the
set An in Equation (3.42), but defined for the cumulative profile of the Q-process we have

an

n
sup

t
Zn(t)≥

Zn(Λn,ε)

n
≥ ε

′.

This probability goes to zero as n→ ∞ by the convergence of the Lamperti transform of Lemma 3.14. It
follows that

lim
n

sup
B⊂Tn,ε

P
(

rΛn,ε τ
(∞) ∈ B

)
= lim

n
sup

B⊂Tn,ε,ε ′
P
(

rΛn,ε τ
(∞) ∈ B

)
,

This proves (3.40).

Now, we are ready to prove Kersting’s condition, by bounding the event that the cumulative profile
of the CGW(n) tree is small, with the same event but for the Q-process. The latter converges by Lemma
3.14, to the event that the cumulative profile of a CBI is small, which happens with small probability.

Proof of Lemma 3.12. Recall that Λn
ε is the first height that the tree has more than εn descendants. Define

λn = bλn/anc, and consider as before ε ′ ∈ (0,ε). Denoting by Tn,ε,ε ′,λ the set of trees t in Tn,ε,ε ′ such
that Ct(λn)≤ εn, then for every n big enough

P
(
Cn(λ )≤ ε,(ε− ε

′)n≤Cn(Λ
n
ε −1)|s(τ) = n

)
= ∑

t∈Tn,ε,ε ′,λ

P
(
rΛn

ε
τ = t|s(τ) = n

)
≤ cε ∑

t∈Tn,ε,ε ′,λ

P
(

rΛn
ε
τ
(∞) = t

)
= cεP↑

(
Cn(λ )≤ ε,(ε− ε

′)n≤Cn(Λ
n
ε −1)

)
,

using the first part of the proof of Theorem 3.4. Since the CGW(n) process on the event {Cn(λ ) ≤
ε,Cn(Λ

n
ε −1)< (ε− ε ′)n} converges to zero as in the proof of Theorem 3.4, it follows that

lim
n
P(Cn(λ )≤ ε|s(τ) = n)≤ cε lim

n
P↑ (Cn(λ )≤ ε)≤ cεP↑ (C(λ )≤ ε) ,



CHAPTER 3. ON THE PROFILE OF TREES WITH A GIVEN DEGREE SEQUENCE 97

by Portmanteau’s theorem and Lemma 3.14. The right-hand side goes to zero as ε ↓ 0 because C(λ )> 0
P↑-a.s. and cε is bounded from above. D 



Chapter 4

ON MULTITYPE RANDOM FORESTS
WITH A GIVEN DEGREE SEQUENCE, THE
TOTAL POPULATION OF BRANCHING
FORESTS AND ENUMERATIONS OF
MULTITYPE FORESTS

In this chapter we introduce the model of multitype random forests chosen uniformly at random from the
set of multitype forest with a given degree sequence (MFGDS). The unitype case was studied in [BM14b].
By mixing our model, one obtains multitype Galton-Watson (MGW) forests conditioned by their degree
sequence. The construction of MFGDS is done using the results in [CL16], and a novel path transfor-
mation on multidimensional discrete exchangeable increments processes, which is a generalization of the
Vervaat transformation [Ver79]. We also obtain the joint law of the number of individuals by types in
a MGW forest, thus, generalizing the Otter-Dwass formula (which is shown to hold in the unitype case
in [Ott49, Dwa69]). This allows us to obtain enumerations of multitype forests with a combinatorial
structure (plane, labeled and binary forest), having a prescribed number of roots and individuals by types.
Finally, under certain hypotheses, we give an algorithm to simulate MGW forests conditioned by the
number of individuals of each type (cMGW), generalizing Devroye’s algorithm [Dev12] for the unitype
case.

4.1 Introduction
Bienaymé-Galton-Watson forests (GW forests) are a simplified model for the genealogy of populations,
where individuals have the same reproduction law. A natural generalization of such model are the
Multitype Galton-Watson forest (MGW forests), used when several types of individuals coexist, lead-
ing to different reproduction rates. Such multitype forest are used in a variety of areas, for example,
having applications in biology, demography, genetics, medicine, epidemics, and language theory (see
[Har63, San71, Jag75, GP75, CKB+, AJ97, All11]). MGW forest have several applications also for pure
mathematics. Miermont [Mie08] has proved that under certain conditions, MGW forests converge also to
the CRT. A very nice improvement of such result, would be to generalize the results of [LGLJ98, DLG02]

98
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to obtain the covergence of MGW forests to multitype Lévy forests, as well as generalizations of the
Ray-Knight theorems.

Conditioned random forests also provides us with several applications. In the unitype setting, Le
Gall [LG05] proved the convergence of GW trees conditioned to have a fixed number of vertices, to-
wards Aldou’s Continuum Random Tree (CRT), see [Ald91a]. In [Ald91b], GW trees conditioned to
have size n with Poisson offspring distribution (equivalently, uniform labeled trees on [n] := {1, . . . ,n})
where used to study the component sizes in the Erdős-Rényi random graph [ER60] (see also page 379
of [ABBG12]). Another way to condition a forest is by its degree sequence [BM14b, Lei17], that is, the
number of individuals having a fixed number of offspring. With no doubt, one application of this model is
to study invariance principles for random graphs with a prescribed degree sequence (see the discussion in
[BM14b]). The interest in such random graphs lies in its matching with observations in large real-world
networks (having features not present in the Erdős-Rényi random graph). For example, with this model,
one can obtain forests having degree sequence with power law tails.

Another reason to study MFGDS, is that they are a more general model than conditioned MGW
forests. Indeed, under an independence assumption on the progeny distribution, a MGW forest condi-
tioned by its types can be written as a linear combination of the laws of MFGDS (see Section 4.4). Thus,
some results of the latter model can be recovered for the former.

Most of the papers on multitype conditioned forests are interested on proving the convergence towards
a limiting object, such as the multitype generalization of Kesten’s infinite forest or a continuum random
forest ([Nak78, Mie08]). Some authors studying conditioned multitype forests are [DJ08, P1́1, P1́6, CL16,
Wan14, ADG18, Ste18]. But simulating such conditioned forests is not trivial, since the independence
assumption is generally lost, or the conditioning event is too complicated. Some papers giving explicit
algorithms for generating MGW trees are [PV91, AS95, Şte98]. We emphasize that neither constructions
of MGW forests conditioned by the total number of individuals by types, nor uniform multitype forests
with a given degree sequence, are available in the literature. In this chapter we define both forests and
provide easy algorithms for their simulation.

We state the known results in the unidimensional case, and how we generalize them. Consider a
unidimensional degree sequence S, that is, a sequence of integers S = (Ni, i≥ 0) such that s := 1+∑ iNi =

∑Ni. From such sequence we can obtain the child sequence c(S) := c = (c1, . . . ,cs), a vector with N0
zeros, N1 ones, and so on. In the paper [BM14b], the authors give an algorithm to construct, from a
discrete exchangeable increment (EI) process, a uniform tree from the set of trees with given degree
sequence S as follows: define W b a walk with increments (c ◦ π( j)− 1, j ∈ [s]), where π is a uniform
random permutation on [s], and let W be the walk with increments (c ◦ π(i∗+ j)− 1, j ∈ [s]), where
i∗+ j is considered modulo s and i∗ is the first time W b reaches its minimum value (that is, apply the
Vervaat transformation [Ver79]). From such excursion W we can recover the desired tree. This algorithm
was extended to unitype forests in [Lei17], the distinction is that one has to carefully chose the cyclical
permutations that lead bridges to excursions.

We extend the previous construction to multitype forest, uniformly chosen from the set of multitype
forest with a given degree sequence. In order to do this, we generalize the above algorithm: define a
multitype degree sequence, construct dxd exchangeable increments (EI) processes, and apply to them a
generalized Vervaat transform. We use the results in [CL16] to know how many cyclical permutations
lead to paths coding a multitype forest.

Also, using the results in [CL16], we obtain the law of the total population by types of a MGW forest,
under certain conditions. The unitype case is known as the Otter-Dwass formula [Ott49, Dwa69]. This
formula says that the total number of individuals in a GW forest τk with k trees, say #τk, having offspring
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distribution ν is given by

P(#τk = n) =
k
n
P(Xn = n− k) ,

where X is a random walk with step law ν .
It turns out that, using the law of #τk, it has been obtained the total number of plane, labeled and

binary forests having k trees and n vertices, see [Pit98]. This chapter generalizes elementary connections
between the combinatorial and probabilistic results about enumerations of forests and lattice paths given
in [Pit98]. An example of such connection in the unitype case is the following. Let F plane

k,n be a uniformly
distributed forest from the set of plane forests having k trees and n individuals; let Gk,p be a GW forest
with k trees and Geometric(p) offspring distribution, with p ∈ (0,1). Then we have

F plane
k,n

d
=
(
Gk,p |#Gk,p = n

)
and P

(
Gk,p = F |#Gk,p = n

)
=

1
k
n

(2n−k−1
n−k

) ,
for every plane forest F with k trees and n individuals. Similar equalities in distribution are available for
the Poisson and the Bernoulli distribution. We generalize the above formulas, obtaining the number of
multitype plane, labeled, and binary forests having an specified number of roots and individuals of each
type.

Finally, we give an algorithm to simulate MGW forests conditioned to have ni individuals of type i, for
i∈ [d], using our constructions. Indeed, an algorithm of Devroye [Dev12] simulates a GW tree conditioned
to have size n, using a uniform tree with a given degree sequence; thus, we use both of our constructions
to generalize such algorithm. Devroye’s algorithm is: generate a multinomial vector S = (N0,N1, . . .) with
parameters (n;ν0,ν1, . . .), repeat until 1+∑ iNi = n and apply the algorithm to generate a uniform tree
from the set of trees with degree sequence S. Our algorithm is analogous: generate d× d multinomial
distributions with laws (ni;νi, j(0),νi, j(1), . . .) until they form a multitype degree sequence, and apply the
algorithm to generate a uniform multitype forest with such given degree sequence.

4.1.1 Preliminaries
Coding of unititype and multitype forests

A rooted plane tree T is a connected graph with no cycles having a distinguished vertex, together with a
natural identification of each vertex by a finite sequence of non-negative integers (denoting its location on
the tree). The root of T will be denoted by r(T ), or simply r. A rooted plane forest is a directed planar
graph whose connected components are rooted plane trees, those are ordered according to its roots. We
will only consider finite rooted plane forests in the following.

We consider forests where each tree is labeled according to the breadth-first order (BFO), that is, from
the initial individual to the top, traverse each tree generation by generation from left to right. We define
the vector with ith component, the number of individuals having i children, for any i≥ 0.

Definition 4.1. Let T be a tree. The degree sequence S = (N0,N1, . . .) of T is a vector with

Ni := Ni(T ) = |{u ∈ T : c(u) = i}|,

where c(u) is the number of children of individual u.
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As an example, the tree in Figure 3.1 has degree sequence (5,2,2,1).
Let (ui)i be the individuals in BFO of a plane forest. It is well known that the walk with incre-

ments (c(ui)−1, i≥ 1) codes the branching forest, that is, determines its structure completely (see [Pit06,
Lemma 6.2]). This is called the breadth-first walk (BFW) of the forest. Now, we briefly recall the analo-
gous coding in the multitype case, following [CL16].

Define [n] = {1, . . . ,n} and [n]0 = {0,1, . . . ,n} for n ∈ N. For a forest F , let cF : v(F) 7→ [d] be
an application from the set of vertices of F to [d], such that the children of each vertex are ordered by
color, that is, if ui,ui+1 . . . ,ui+ j ∈ v(F) have the same parent, then cF(ui) ≤ cF(ui+1) ≤ ·· · ≤ cF(ui+ j).
The couple (F,cF) is a d-multitype forest. A subtree of type i of (F,cF), denoted by T (i), is a maximal
connected subgraph of (F,cF) whose all vertices are of type i. Subtrees of type i are ranked according
to the order of their roots, and with this ordering, we define the subforest of type i of (F,cF) as F(i) =

{T (i)
1 , . . . ,T (i)

k , . . .} For u ∈ v(F), denote by pi(u) the number of children of type i of u. Let ni ≥ 0 be the
number of vertices in the subforest F(i) of (F,cF). The coding of the forest is the d-dimensional chain
x(i) = (xi,1, . . . ,xi,d) ∈ Zd with length ni ∈ N, defined for 0≤ n≤ ni−1 by

xi, j
n+1− xi, j

n = p j(u
(i)
n+1)−1i= j i, j ∈ [d]. (4.1)

We set x(i)0 = 0. The set (u(i)n ;n≥ 1) is the labeling of the subforest F(i) in its own breadth-first order.
The cyclical permutations that we use are the following. For n∈N, consider any application y : [n]0 7→

Zd with y(0) = 0. The n-cyclical permutations of y are the n applications θn,q(y), for q ∈ [n−1]0 given by

θq,n(y) =

{
y( j+q)− y(q) j ≤ n−q
y( j+q−n)+ y(n)− y(q) n−q≤ j ≤ n.

We say that the path y : N 7→ Z is a downward skip-free chain, if yk+1− yk ∈ Z+∪{−1}. The possible
paths that a coding of multitype forest can take are the following.

Definition 4.2. Fix any n = (n1, . . . ,nd) ∈ Zd
+, and define Sd as the set of [Zd]d-valued sequences x =

(x(1), . . . ,x(d)) such that for all i ∈ [d], x(i) = (xi,1, . . . ,xi,d) is a Zd-valued sequence starting at zero of
length ni, and where xi, j = (xi, j

k ,k ∈ [ni]0) is non-decreasing when i 6= j, and a downward skip-free chain
when i = j.

The n-cyclical permutations of x ∈ Sd are given by

θq,n(x) := (θq1,n1(x
(1)), . . . ,θqd ,nd(x

(d))) ∀ q = (q1, . . . ,qd) such that 0≤ q≤ n−1d,

with 1d = (1, . . . ,1) of length d. Each sequence θq,n(x) will be called a cyclical permutation of x.
For m,n ∈ Zd

+, write m < n if m≤ n (the inequality understood component-wise) and if there exists
i such that mi < ni. Sequences x ∈ Sd will be denoted by x = (xi, j

k ,k ∈ [ni]0, i, j ∈ [d]), and the vector
n = (n1, . . . ,nd) ∈ Zd

+, is called the length of x. Fix any such x of length n, and r = (r1, . . . ,rd) ∈ Zd
+ with

∑ri > 0. We say that the system (r,x) admits a solution if there exists m≤ n such that

r j +
d

∑
i=1

xi, j(mi) = 0 ∀ j ∈ [d]. (4.2)

If there is no smaller solution m < n for the system (r,θq,n(x)), then we call θq,n(x) a good cyclical
permutation. It is proved in [CL16] that only such good cyclical permutations code multitype forests, and
the next lemma tells us how many there are.
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Lemma 4.1 (Multivariate Cyclic Lemma [CL16]). Let x ∈ Sd with xi,i(ni) 6= 0 for every i ∈ [d]. Con-
sider the system (r,x) with solution n as above. Then, the number of good cyclical permutations of x is
det((−xi, j(ni))i, j∈[d]).

Since in most of the cases, we fix the number of roots or number of individuals of each type, we need
the following definition.

Definition 4.3 (Root-type and individuals-type). We say a multitype plane forest with d ∈ N types has
root-type r = (r1, . . . ,rd) ∈ Nd , if it has ri roots of type i for i ∈ [d], with r > 0. Also, it has individuals-
type n = (n1, . . . ,nd) ∈ Nd if it has ni individuals of type i, for i ∈ [d].

Multitype Galton-Watson forests

Consider a (unitype) branching forest with k trees and progeny distribution ν on Z+, that is, each of
the k individuals at generation 0 has offspring according to ν , then each of its children has offspring
independently of the others and with the same law. Such forests are also called GW forests. A multitype
Galton-Watson (MGW) forest in d-types, is a branching forest, where each individual has a type i ∈ [d],
and has children independently of the others, according to a law νi on Zd

+. The progeny distribution of
the forest is ν = (ν1, . . . ,νd). The formal definition is the following.

Definition 4.4. A multitype Galton-Watson process is a Markov chain Z =
(
(Z(1)

n , . . . ,Z(d)
n );n≥ 0

)
on

Zd
+, with transition function

P(Zn+1 = (k1, . . . ,kd) |Zn = (r1, . . . ,rd)) = ν
∗r1
1 ∗ · · · ∗ν

∗rd
d (k1, . . . ,kd),

where ν is the progeny distribution, and ν
∗ j
i is the jth iteration of the convolution product of νi by itself,

with ν∗0i = δ0.

For r ∈ Zd
+, the probability measure Pr is the law P(·|Z0 = r). As in Theorem 1.2 in [CL16], we

consider MGW trees satisfying the following. For i, j ∈ [d], let mi, j = ∑z∈Zd
+

z jνi(z) be the mean number
of children type j given by an individual type i, and set M = (mi, j)i, j as the mean matrix of the MGW
tree. Whenever M is irreducible, by the Perron-Frobenius Theorem (see [AN04, Chapter V.2]), it has a
unique eigenvalue which is simple, positive and with maximal modulus. We say in such case that the
MGW tree is irreducible. If the unique eigenvalue equals one (is less than one), then we say the tree is
critical (subcritical). The tree is non-degenerate if individuals have exactly one offspring with probability
different from one.

4.1.2 Statement of the results
Multitype forests with a given degree sequence

To define uniform d-type forests with a given degree sequence, having root-type r > 0, we first define a
multitype degree sequence. A multitype degree sequence S = (Si, j, i, j ∈ [d]) is a sequence of sequences
of non-negative integers Si, j = (Ni, j(k);k ∈ [mi, j]0), where mi, j ∈ N, satisfying:

1. ni = ∑k Ni, j(k) for every i ∈ [d],
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2. n j = r j +∑k kN1, j(k)+ · · ·+∑k kNd, j(k), for every j ∈ [d],

3. det(−ki, j)> 0 with ki, j := ∑kNi, j(k)−ni1i= j and ki,i < 0 for every i ∈ [d].

The value Ni, j(k) represents the number of individuals of type i with k children of type j, so ni represents
the total number of individuals of type i. Thus, the total number of vertices is s := n1 + · · ·+ nd =

∑k N1, j(k)+ · · ·+∑k Nd, j(k) for j ∈ [d]. The last condition is imposed to obtain a forest with such degree
sequence (see page 109). For simplicity, we will assume that our multitype degree sequences satisfy the
third condition and we focus on the first two conditions. Table 4.1 summarizes the case d = 2.

S1,1 = (N1,1(0), . . . ,N1,1(m1,1)) S1,2 = (N1,2(0), . . . ,N1,2(m1,2)) n1 = ∑k N1, j(k)

S2,1 = (N2,1(0), . . . ,N2,1(m2,1)) S2,2 = (N2,2(0), . . . ,N2,2(m2,2)) n2 = ∑k N2, j(k)

n1 = r1 +∑k kN1,1(k)+ kN2,1(k) n2 = r2 +∑k kN1,2(k)+ kN2,2(k) n1 +n2 = s

Table 4.1: Relations on the degree sequence of a 2-type forest.

As in the unitype case, we construct the canonical child sequence c = (ci, j, i, j ∈ [d]) from the degree
sequence, that is, let ci, j be a sequence whose first Ni, j(0) entries are zeros, the next Ni, j(1) entries are
ones, and so on. Let σi, j be any permutation on [ni], and construct wb = {wb

i, j; i, j ∈ [d]}, where

wb
i, j(k) =

k

∑
l=1

(
ci, j ◦σi, j(l)−1i= j

)
, k ∈ [ni].

Remark 4.1. Note that ki, j := wb
i, j(ni) does not depend on the permutation, so it is deterministic. Also,

note that the system of equations (r,wb) admits n as a solution, since by definition

r j +
d

∑
i=1

wb
i, j(ni) = r j−n j +

d

∑
i=1

∑kNi, j(k) = 0 ∀ j ∈ [d].

Finally, note that −k j, j = r j +∑i6= j ki, j since by definition, we have

−k j, j = n j−∑
k

kN j, j(k) = r j +∑
i

∑
k

kNi, j(k)−∑
k

kN j, j(k) = r j +∑
i6= j

ki, j.

Trivially, whenever r j > 0 we have −k j, j > 0.

From the Multivariate Cyclic Lemma 4.1, we know that det(ki, j) is the number of good cyclical per-
mutations of wb. From such set we define a Vervaat-type transformation of wb. Such transformation is
given by choosing uniformly at random a good-cyclical permutation from all the good-cyclical permuta-
tions. After that, the algorithm is similar to the unidimensional case.

Definition 4.5 (Multidimensional Vervaat Transform). For any wb as constructed above and any u ∈
[det(ki, j)], define V (wb,u) as follows: enumerate the det(ki, j) good cyclical permutations of wb, using the
lexicographic order on the set of q such that θq,n(wb) codes a forest; then, let V (wb,u) be the u-th good
cyclical permutation.
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Let FS,r be the set of multitype plane forests with degree sequence S, having root-type r and individuals-
type n. Our construction of MFGDS is the following (the proof is given on page 109).

Theorem 4.1 (Uniform multitype forest with a given degree sequence). Fix the degree sequence S of a
multitype forest having root-type r and individuals-type n. Let W be the BFW coding a forest (see (4.1))
taken uniformly at random from FS,r. Let π = (πi, j, i, j ∈ [d]) be independent random permutations, where
πi, j takes values on [ni], and let U be an independent uniform variable on [det(ki, j)]. Define the processes
Wb = (W b

i, j, i, j ∈ [d]) as

W b
i, j(k) =

k

∑
l=1

(ci, j ◦πi, j(l)−1i= j), k ∈ [ni],

where c =
(
ci, j, i, j ∈ [d]

)
is the child sequence of S. Then

V (Wb,U)
d
= W.

From the proof, we obtain |FS,r|, the number of multitype forests with a given degree sequence S:

|FS,r|=
det(−ki, j)

∏ni
∏∏

(
ni

Si, j

)
.

MGW forests conditioned by types

Before turning to the joint law of the number of individuals of type i ∈ [d], of a MGW forest, we prove
that the latter model is a mixture of MFGDS in Section 4.4. This justifies the importance of the latter
model.

Let Si, j be a random walk with increments having law the jth marginal of νi. Our hypotheses are the
following:

H1 For every i ∈ [d], the law νi has independent components, with

ν
∗ni
i (k1, . . . ,kd) = ∏

j
P
(
Si, j

ni
= k j

)
k1, . . . ,kd ∈ N0.

H2 For every i, j ∈ [d], with i 6= j

E

(
Si, j

ni
; ∑

l∈[d]
Sl, j

nl
= n j− r j

)
=

ni(n j− r j)

n
P

(
∑

l∈[d]
Sl, j

nl
= n j− r j

)
.

It is important to remark that we do not assume that the components νi have the same distribution. Using
those hypotheses, we obtain the following result (see page 112), which is a generalization of the Otter-
Dwass formula [Ott49, Dwa69].
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Theorem 4.2. Consider an irreducible, non-degenerate and (sub)critical MGW forest, and let ni > 0 for
every i. Suppose that H1 and H2 and are also satisfied. If Oi is the number of type i individuals, then

Pr (Oi = ni, i ∈ [d]) =
r
n

d

∏
i=1

P

(
∑

l∈[d]
Sl,i

nl
= ni− ri

)
,

where r = r1 + · · ·+ rd and n = n1 + · · ·+nd , and ri < ni.

Remark 4.2. Under the assumption ni > 0 for every i, the proof is simpler, but we think this hypothesis
can be dropped as in [CL16].

Remark 4.3. On page 114, we obtain the case when ni = ri for some i’s. Since Theorem 4.2 has a different
formula on such case, the law of ∑i∈[d]Oi (computed on Corolary 4.1) does not have a nice expression.

For the next results denote by Fplane
r,n , Flabeled

r,n and Fbinary
r,n , the set of d-type plane, labeled and binary

forests having root-type r and individuals-type n, where ri < ni for every i and r > 0. Our labeled multitype
forests have labels on [n], that is, for F ∈ Flabeled

r,n , each individual v has a unique label i ∈ [n] and a type
cF(v) ∈ [d]; also, F has fixed root set [r], that is, the r1 type 1 roots have labels on {1, . . . ,r1}, the r2 type
2 roots have labels on {r1 + 1, . . . ,r1 + r2}, and so on. Using Theorem 4.2, we give in Subsection 4.5.1
three examples of distributions were the law of a MGW forest conditioned by the number of individuals
of each type can be computed explicitly. This generalizes the constructions given in [Pit98].

Proposition 4.1. For fixed p ∈ (0,1), let Gr,p be a d-type GW forest with root-type r, having geometric
offspring distribution with parameter p independently for each type, that is, νi(k1, . . . ,kd) = ∏i p(1− p)ki

for ki ≥ 0. Let #iGr,p be the number of type i individuals in Gr,p. Then

P(Gr,p = F |#iGr,p = ni, i ∈ [d]) =
1

r
n ∏i∈[d]

(n+ni−ri−1
ni−ri

) ∀F ∈ Fplane
r,n ,

thus, such conditioned forest is uniform on Fplane
r,n .

Proposition 4.2. For µ ∈ R+, let Pr,µ be a d-type GW forest with root-type r, having Poisson offspring
distribution of parameter µ independently for each type, that is, νi(k1, . . . ,kd) = ∏i e−µ µki/ki! for ki ≥ 0.
Let #iPr,p be the number of type i individuals in Pr,p. If P∗

r,n is Pr,n relabeled by d uniform random
permutations, one for each type, then

P
(
P∗

r,p = F |#iPr,p = ni, i ∈ [d]
)
=

1
r
nnn−r ∀F ∈ Flabeled

r,n ,

thus, such conditioned forest is uniform on Flabeled
r,n .

Proposition 4.3. For 0< p< 1, let Br,p be a d-type GW forest with root-type r, having Bernoulli offspring
distribution with parameter p, for each vertex independently of the type, that is, νi(k1, . . . ,kd) = ∏ pki(1−
p)1−ki with ki ∈ {0,1}. Assume that ni− ri is an even number for every i ∈ [d]. Since any vertex v has
zero or two children with probability p or 1− p respectively, then νi(c1(v), . . . ,cd(v)) = ∏ pci(v)/2(1−
p)1−ci(v)/2. Let #iBr,p be the number of type i individuals in Br,p. Then

P(Br,p = F |#iBr,p = ni, i ∈ [d]) =
1

r
n ∏
( n
(ni−ri)/2

) ∀F ∈ Fbinary
r,n ,

thus, such conditioned forest is uniform on Fbinary
r,n .
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As a simple consequence of our results, we obtain the following enumerations.

Lemma 4.2. The number of d-type plane, labeled, and binary forest, with root-type r and individuals-type
n is given respectively by

r
n ∏

i∈[d]

(
n+ni− ri−1

ni− ri

)
,

r
n

nn−r and
r
n ∏

(
n

(ni− ri)/2

)
.

Finally, we give an algorithm to simulate MGW processes conditioned by its types. This is done using
the following proposition and an Accept-Reject method (see Algorithm 8).

Proposition 4.4. Let W be the breadth-first walk of a MCGW(n1, . . . ,nd) forest satisfying the Hypotheses
of Theorem 4.2, having offspring distribution ν , and root-type r, with 0 < ri < ni for every i. Generate
independent multinomial vectors Si, j = (Ni, j(0),Ni, j(1), . . .) with parameters (ni,νi, j(0),νi, j(1), . . .), and
stop the first time that r j +∑i ∑k kNi, j(k) = n j for every j. Denote by S the multitype degree sequence
obtained, and let V (Wb,U) be the breadth-first walk generated by Theorem 4.1 using the degree sequence
S. Then,

P
(

V (Wb,U) = w
)
=

1
n
r

det(ki, j)

∏ni

Pr
(
F = F |# jF = n j,∀ j

)
,

for every multitype forest F with root-type r and individuals-type n, coded by w and with ki, j =∑kni, j(k)−
ni1i= j.

The chapter is organized as follows: in Section 4.2 we construct uniform forests with a given degree
sequence. This will be used in Section 4.3, to construct MFGDS and prove Theorem 4.1. In Section 4.4
we prove that under an independence assumption, the cMGW forests are mixtures of MFGDS. Section
4.5 is devoted to prove the joint law of the number of individuals by types in a MGW forest, which is
Theorem 4.2. In that section we also obtain in Corollary 4.1, the law of the total population in a MGW
forest. Examples satisfying the hypotheses of Theorem 4.2 are given in Subsection 4.5.1. The algorithms
are given in Section 4.6.

4.2 Construction of unitype random forests with a given degree se-
quence

A well-known encoding of forests by skip-free random walks is given as follows. Define the set of all
bridges finishing at −m at time s, as

Bs,m = {(y(1), . . . ,y(s)) ∈ Zs : y( j)− y( j−1)≥−1 for j ∈ [s],y(s) =−m} .

For i ∈ [s]−1 and y ∈ Bs,m, define θi(y) as the cyclic permutation of y at i, that is

(θi(y))( j) =

{
y( j+ i)− y(i) j+ i≤ s
y( j+ i− s)+ y(s)− y(i) s− i≤ j ≤ s.

This transformation puts the last s− i increments of y as the first s− i increments of θi(y), and the first i
increments of y as the last i increments of θi(y).
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For any u ∈ [m]− 1 and y ∈ Bs,m, let τu be the time that y hits min(y) + u for the first time. The
Vervaat-type transformation V that we use is given by

V (y,u) = θτu(y).

Note that this transformation leads the set of bridges, to the set of excursions of size s finishing at −m

Es,m = {(w(1), . . . ,w(s)) ∈ Zs : w( j)−w( j−1) ∈ {−1,0,1, . . .} for j ∈ [s], w first reaches −m at time s} .

Now, let F be a forest with trees T1, . . . ,Tm, for m ∈ N. The degree sequence of F is given by

Ni(F) =
m

∑
1

Ni(Tj).

Note that, any finite sequence of non-negative integers S = (Ni, i ≥ 0), such that for some m ∈ [|S|], we
have

s := ∑Ni = ∑ iNi +m,

is the degree sequence of some forest with m trees. In this case we call S a degree sequence. The size of
the forest F will also be denoted by |F |.

Fix any degree sequence S and obtain its child sequence c := c(S). As before, we obtain an EI process
using uniform permutations of the child sequence c. Let σ be any permutation on [s]. Define the bridge

wb( j) =
j

∑
1
(c◦σ(i)−1) j ∈ [s],

with wb(0) = 0. Note that wb(s) =−m. The set of paths taken by wb is

BS = {(y(1), . . . ,y(s)) ∈ Bs,m : | j : y( j)− y( j−1) = i−1|= Ni for every i≥ 0} .

From the excursions in Es,m, we consider those with fixed number of increments of given size:

ES = {(w(1), . . . ,w(s)) ∈ Es,m : | j : w( j)−w( j−1) = i−1|= Ni, i≥ 0} .

Define FS as the set of all forests with degree sequence S. Using Lemma 6.3 of [Pit06], it can be proved
that there exists a bijection between ES and FS, and we know that |FS|= m

s

( s
Ni,i≥0

)
.

It is clear from a picture, that a bridge is sent to an excursion by the Vervaat transformation. Let us
prove this is also the case for bridges in BS, that is, bridges coming from a degree sequence S. The next
three lemmas are inspired in [Lei17].

Lemma 4.3. For any u ∈ [m]−1 and y ∈ BS, the path V (y,u) belongs to ES.

Proof. By definition of τu, the minimum value that can take y(τu + j)− y(τu) for j+ τu ≤ s is −u >−m.
These are the first s− τu times of V (y,u). On the remaining times {s− τu, . . . ,s}, the minimum of V (y,u)
is attained for the first time at time s. This implies V (y,u)( j)>−m for j < s, and hence V (y,u)∈E. Since
the Vervaat transformation only permutes the increments, it is clear that if y ∈ BS then V (y,u) ∈ ES.
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Lemma 4.4. Let w ∈ ES. Then, the number of different pairs (y,u) ∈ BS× ([m]−1) such that V (y,u) = w
is exactly s.

Proof. Consider any i ∈ [s]− 1 and the cyclical permutation y′ = θi(w). It is clear that θs−i(y′) = w. In
fact V (y′,u) = w for some u ∈ [m]−1. This holds true since the last s− i increments of w are the first s− i
increments of y′, then y′ hits y′(s− i) = w(s)−w(s− i) for the first time at time s− i. Hence, the Vervaat
transform can be applied at u = y′(s− i), giving us the path w.

Note that the path of w can be partitioned in m subexcursions, each one of the form (w( j +Ti), j ∈
[Ti+1−Ti]), with i ∈ [m]− 1 and Ti the first hitting time to −i. First assume that w can be partitioned in
kw ∈ [m] identical subexcursions, each of length lw. It follows kwlw = s. This is equivalent to say that there
exists kw values u such that V (w,u) = w. Those values are w( jlw)+m ∈ [m]−1 for j ∈ [kw]. In this case,
there are only lw different cyclic permutations θi(w) of w, each one having kw distinct values of u such
that V (θi(w),u) = w. This proves that w has exactly s preimages. If w cannot be partitioned in identical
subexcursions, for every cyclical permutation θi(w) there is only one u such that V (θi(w),u) = w. This
concludes the proof.

Now, we construct a uniform forest on FS.

Lemma 4.5. Consider a degree sequence S of a forest having m trees and s individuals, and let F
be a forest taken uniformly at random from FS. Let π be a uniform random permutation on [s], U an
independent uniform variable on [m]−1, and define the bridge

W b( j) =
j

∑
1
(c◦π( j)−1) j ∈ [s],

where c is the child sequence of S. Then

V (W b,U)
d
= F .

Proof. Fix any w ∈ ES and any of its cyclical permutations wb ∈BS. From the s! possible values that
π can take, only ∏Ni! give the same bridge wb. This is true since we can permute the labels of the Ni
individuals having i children and obtain the same bridge. Hence

P
(

W b = wb
)
=

1( s
Ni,i≥0

) ,
which does not depend on wb.

By the previous lemma, there are s distinct pairs (wb,u) that are mapped to w. Denote such pairs as
(wb

k ,uk) ∈BS, for k ∈ [s]. Then, using the independence of W b and U , and that the former is uniform,
then

P
(

V (W b,U) = w
)
=

s

∑
k=1

P
(

W b = wb
k ,U = uk

)
=

s
m
P
(

W b = wb
)
=

1
|FS|

.
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4.3 Construction of multitype random forests with a given degree
sequence

Recall Definition 4.5 of the multidimensional Vervaat transform V (wb,u), using the bridge wb as con-
structed from the degree sequence. The set of values of V (wb,u) will be denoted by ES,r. Now we are
ready to construct a forest taken uniformly at random from FS,r, the set of plane forests with degree
sequence S having root-type r.

Proof of Theorem 4.1. First we prove that from any multitype degree sequence, we can construct a multi-
type forest. From Remark 4.1, since we can associate to the degree sequence a system of equations (r,wb)
with solution n. To such system we can associate a multitype forest using the Multivariate Cyclic Lemma
4.1, since any good cyclical permutation codes a forest.

Now, define Si, j = (Ni, j(k);k ≥ 0), and write(
ni

Si, j

)
:=
(

ni

Ni, j(0),Ni, j(1), . . .

)
.

Fix any bridge wb ∈ BS,r. From the possible ∏i(ni!)d values taken by the random permutations
(πi, j, i, j ∈ [d]), exactly ∏ j ∏i ∏k Ni, j(k)! form the bridge wb. This is true since, permuting the labels
of the Ni, j(k) individuals type i having k children type j, we obtain the same bridge. This proves the
assertion since this is true for every i, j,k. Therefore

P
(

Wb = wb
)
=

1
∏∏

( ni
Si, j

) .
Now, fix any w ∈ ES,r and i ∈ [d]. We obtain the number of different pairs (wb,u) that can be mapped to
w using the multidimensional Vervaat transform. The point is that such bridges can only be of the form
θq,n(w), that is, cyclical permutations of w. Hence, each component w(i) comes from a Vervaat transform
V (θ j(w(i)),u) for some j,u. By Lemma 4.4, the number of pairs (θ j(w(i)),u) that can be mapped to
w(i) are exactly ni. This being true for every i implies there are ∏ni unique pairs (θq,n(w),u) such that
V ((θq,n(w),u)) = w. Denote such pairs as

A(w) =
{
(wb

k ,uk) ∈ BS,r× [det(ki, j)] : V ((wb
k ,uk)) = w,k ∈

[
∏ni

]}
.

This implies

P
(

V (Wb,U) = w
)
= P

(
(Wb,U) ∈ A(w)

)
= ∑

k∈[∏ni]

P
(
(Wb,U) = (wb

k ,uk)
)

= ∑
k∈[∏ni]

1
∏∏

( ni
Si, j

) 1
det(−ki, j)

=
1

det(−ki, j)

∏ni
∏∏

( ni
Si, j

) .
This concludes the proof since the right-hand side is independent of w, so V (Wb,U) is uniform.
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Remark 4.4. From this lemma we can conclude that the set of plane forests with degree sequence S having
root-type r is

|FS,r|=
det(−ki, j)

∏ni
∏∏

(
ni

Si, j

)
.

4.4 Relation between MFGDS and cMGW forests
Before turning to the results about conditioned MGW forests, let us prove that under an independence
condition, a MGW conditioned by its degree sequence has the same law as a MFGDS. For any given
n = (n1, . . . ,nd) ∈ Zd

+ and r = (r1, . . . ,rd) ∈ Zd
+ with ∑ri > 0, define the set of all degree sequences

having ni individuals of type i, as

DS(n,r) =
{

S = (Ni, j(k), i, j ∈ [d],k ≥ 0) :

ni = ∑
k

Ni, j(k), n j = r j +∑
i

∑
k

kNi, j(k),Ni, j(k)≥ 0 for i, j ∈ [d]

}
.

Also, for any given multitype forest F , define its empirical multitype degree sequence N̂(F) := N̂ =
(N̂i, j(k), i, j ∈ [d],k ≥ 0) as

N̂i, j(k) = ∑
l:vl∈F(i)

1ci, j(l)=k,

where ci, j(l) is the number of children type j, that the lth individual of the subforest F(i) of vertices type
i has.

Lemma 4.6. Fix any n = (n1, . . . ,nd) ∈ Zd
+ and r = (r1, . . . ,rd) ∈ Zd

+ with ∑ri > 0. Consider a multitype
degree sequence S = (Ni, j(k), i, j ∈ [d],k ≥ 0) ∈ DS(n,r). Consider a MGW forest with progeny distri-
bution ν = (ν1, . . . ,νd) such that each νi has independent components. Then, the law of a MGW forest
conditioned to have multitype degree sequence S is the same as PS, the law of a MFGDS. Therefore, the
law of a cMGW forest is a finite mixture of the laws (PS,S ∈ DS(n)).

Proof. Let F be a MGW tree. The assumption on independence can be written as νi(z) = ∏ j νi, j(z j) for
any z = (z1, . . . ,zd)∈Zd

+ and any j. Let (F1,c(F1)) and (F2,c(F2)) be two multitype forests having degree
sequence S ∈ DS(n,r). Then

Pr
(
F = F1, N̂(F ) = S

)
= ∏

i
∏

k:vk∈F(i)
1

∏
j

νi, j(ci, j(k))

= ∏
i

∏
j

∏
k

νi, j(k)Ni, j(k)

= ∏
i

∏
k:vk∈F(i)

2

∏
j

νi, j(ci, j(k))

= Pr
(
F = F2, N̂(F ) = S

)
.

This implies the first assertion. Let O = (O1, . . . ,Od) be the vector with the total number of individuals
of each type in a MGW forest. To prove the second assertion, we sum over all the values in DS(n,r),
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obtaining

Pr (F ∈ ·|O = n) =
1

Pr (O = n) ∑
S∈DS(n,r)

Pr
(
F ∈ ·, N̂(F ) = S

)
= ∑

S∈DS(n,r)

Pr
(
N̂(F ) = S,O = n

)
Pr (O = n)

Pr
(
F ∈ ·|N̂(F ) = S

)
= ∑

S∈DS(n,r)
λ

S
ν PS (F ∈ ·) ,

where
λ

S
ν = Pr

(
N̂(F ) = S|O = n

)
.

Note that trivially ∑S∈DS(n,r)λ S
ν = 1.

4.5 Law of the number of individuals by types of a MGW forest
The main result in [CL16] is the following.

Theorem 4.3 (Theorem 1.2, [CL16]). Let Z be a d-type branching process, which is irreducible, non-
degenerate and (sub)critical. For i ∈ [d], let Oi be the total number of individuals of type i, up to the
extinction time T , and for i 6= j, let Ai, j be the total number of individuals of type j whose parent is of
type i, up to time T . Then, for all integers ri, ni, ki, j such that ri ≥ 0 with r > 0, ki, j ≥ 0 for i 6= j,
−k j, j = r j +∑i 6= j ki, j, and ni ≥−ki,i, we have

Pr
(
Oi = ni, i ∈ [d],Ai j = ki j, i, j ∈ [d], i 6= j

)
=

det(−ki j)

n̄1 · · · n̄d

d

∏
1

ν
∗ni
i
(
ki1, . . . ,ki(i−1),ni + kii,ki(i+1), . . . ,kid

)
,

(4.3)

where r = (r1, . . . ,rd), n̄i = ni∨1 and (−ki j)i, j∈[d] is the matrix to which we remove row i and column i,
for every i such that ni = 0.

For simplicity, we use ni > 0 for i ∈ [d] in the following. Let us give a hint on how to derive the law
of the population by types for a 2-type GW, having ri < ni type i roots, for every i. Recall the hypothesis
H1 about the independence in the components of νi of Theorem 4.2. From Theorem 4.3, summing over
all the possible values of (ki, j) we have

Pr (O1 = n1,O2 = n2)

=
n1−r1

∑
i=0

n2−r2

∑
j=0

r1r2 + r1 j+ r2i
n1n2

P
(
(S1,1

n1
,S1,2

n1
) = (n1− r1− i, j)

)
P
(
(S2,1

n2
,S2,2

n2
) = (i,n2− r2− j)

)
=

n1−r1

∑
i=0

n2−r2

∑
j=0

r1r2 + r1 j+ r2i
n1n2

P
(
S1,1

n1
= n1− r1− i

)
P
(
S1,2

n1
= j
)
P
(
S2,1

n2
= i
)
P
(
S2,2

n2
= n2− r2− j

)
.

(4.4)

We perform each summation in columns, obtaining three terms of the form
n1−r1

∑
i=0

ki1,1P
(
S1,1

n1
= n1− r1− i

)
P
(
S2,1

n2
= i
)n2−r2

∑
j=0

ki2,2P
(
S1,2

n1
= j
)
P
(
S2,2

n2
= n2− r2− j

)
,
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where ki1,1 can be r1 or i, and ki2,2 can be r2 or j. Hence, in order to perform the summation for any
dimension, we need to expand the determinant det(−ki, j), perform the summation in columns, and divide
in cases: either a constant or a variable multiply the above probabilities. Note that, in the first case the
summation is only a convolution. Is precisely the second case why we need Hypotheses H2. First, we
describe explicitly det(−ki j).

Definition 4.6. An elementary forest is a forest of Fd that contains exactly one vertex of each type. In
particular, each elementary forest contains exactly d vertices and is coded by the d couples (i j, j) for
j ∈ [d], where i j is the type of the parent of vertex type j. If the vertex of type j is a root, then we set i j = 0.
We define the set D of vectors (i1, . . . , id), with 0 ≤ i j ≤ d such that (i j, j), i ∈ [d] codes an elementary
forest.

Recall Definition 4.2 of Sd of coding sequences of multitype forests.

Definition 4.7. For any r = (r1 . . . ,rd) ∈ Zd
+ with r > 0, let Sr

d be the subset of Sd of sequences x whose
length belongs to Nd and corresponds to the smallest solution of the system (r,x).

Joining Lemmas 4.4, 4.5, 4.6 and 4.7 in [CL16], we obtain the following easy consequence, which is
a precise description of the number of good cyclical permutations of x ∈ Sr

d .

Lemma 4.7. Let x ∈ Sr
d , where r > 0. Assume that n = (n1, . . . ,nd) ∈ Zd

+ is a solution of the system (r,x).
Then, the number of good cyclical permutations of x is

det(−ki, j) = ∑
(i1,...,id)∈D

d

∏
j=1

ki j, j,

where we set k0, j = r j, and −k j, j = r j +∑i6= j ki, j, j ∈ [d], and ki, j = xi, j(ni).

Now, we prove our theorem.

Proof of Theorem 4.2. By the independence imposed on νi, the product in Equation (4.3) can be expressed
as follows:

P(K) :=
d

∏
1

ν
∗ni
i
(
ki1, . . . ,ki(i−1),ni + kii,ki(i+1), . . . ,kid

)
=

d

∏
j=1

P

(
S j, j

n j
= n j− r j−∑

i 6= j
ki, j

)
∏
i 6= j

P
(
Si, j

ni
= ki, j

)
.

We define the index set

A(n,r) = {K = (ki j) : ki j ≥ 0 for i 6= j,0≤−k j j ≤ n j,−k j j = r j +∑
i6= j

ki j,∀ j ∈ [d]},

and use the notation ∑K∈A(n,r) to denote the summation over all ki j with i, j ∈ [d] and i 6= j, such that
K = (ki j) ∈ A(n,r). Also, fix j ∈ [d] and define the index set

A j(n,r) = {K j = (k1 j, . . . ,kd j) : kl j ≥ 0 for l 6= j,0≤∑
l 6= j

kl j ≤ n j− r j}.
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Use the notation ∑K j∈A j(n,r) to denote the summation over all kl j with l ∈ [d] and l 6= j, such that K j =

(k1 j, . . . ,kd j) ∈ A j(n,r). Then, we have

Pr (Oi = ni, i ∈ [d]) =
1

∏ni
∑

K∈A(n,r)
∑

(i1,...,id)∈D

d

∏
j=1

ki j, jP(K).

Denote by m the number of summands in det(−K) for any K = (−ki j) ∈ A(n,r). This is the number
of elementary forests, hence, it does not depend on K. Note that there exists m functions σl : [d] 7→ [d]0
with σl( j) 6= j for every l, j, such that

det(−ki j) =
m

∑
l=1

d

∏
j=1

kσl( j), j.

This means that for K′ = (−k′i j) ∈ A(n,r), we have

det(−k′i j) =
m

∑
l=1

d

∏
j=1

k′
σl( j), j.

Now, fix any of the m permutations σl . We analyze the summation ∑K∈A(n,r)∏
d
j=1 kσl( j), jP(K). The

determinant det(−ki, j) is the sum of m terms, each one having one and only one term kσl( j), j of each
column j. Hence, we can join such term with the corresponding probabilities (in the jth column) involving
the walks Si, j

ni for i ∈ [d]. This means that, for every j ∈ [d] we can join the terms K j ∈ A j(n,r) as follows

∑
K∈A(n,r)

d

∏
j=1

kσl( j), jP(K)

=
d

∏
j=1

∑
K j∈A j(n,r)

kσl( j), jP

(
S j, j

n j
= n j− r j−∑

l 6= j
kl, j

)
∏
l 6= j

P
(

Sl, j
nl

= kl, j

)
.

(4.5)

Note that whenever σl( j) 6= 0 we have

∑
K j∈A j(n,r)

kσl( j), jP

(
S j, j

n j
= n j− r j−∑

l 6= j
kl, j

)
∏
l 6= j

P
(

Sl, j
nl

= kl, j

)
= E

(
Sσl( j), j

nσl ( j) ; ∑
l∈[d]

Sl, j
nl

= n j− r j

)
,

which is related with Hypotheses H2. Thus, we define

k̃σl( j), j =

{
r j σl( j) = 0
nσl( j)(n j− r j)/n σl( j) 6= 0.

The idea is that in Equation (4.5), when performing the summation with kσl( j), j 6= r j we use the Hypothe-

ses H2, whereas when kσl( j), j = r j we simply use the convolution formula ∑l∈[d] S
l, j
nl . This implies

∑
K∈A(n,r)

d

∏
j=1

kσl( j), jP(K) =
d

∏
j=1

k̃σl( j), jP

(
∑

l∈[d]
Sl, j

nl
= n j− r j

)
,
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therefore

Pr (Oi = ni, i ∈ [d])∏ni =
d

∏
j=1

P

(
∑

l∈[d]
Sl, j

nl
= n j− r j

)
∑

(i1,...,id)∈D

d

∏
j=1

k̃i j, j

Define the matrix K̄ as a d×d matrix with entries k̄i j = nk̃i j = ni(n j− r j) for i 6= j, and diagonal

−k̄ j j = nr j +∑
i 6= j

nk̃i j = nr j +∑
i 6= j

ni(n j− r j) = nr j +(n j− r j)(n−n j) = n j(n−n j + r j).

Then, using Lemma 4.5 of [CL16], which computes a determinant for integer valued matrices (ki, j) satis-
fying our conditions, we have

∑
(i1,...,id)∈D

d

∏
j=1

k̃i j, j = n−ddet(−K̄).

To prove that det(−K̄) = nd r
n ∏ni, factorize in row i the factor ni, obtaining

det(−K̄) = ∏ni

∣∣∣∣∣∣∣
n−n1 + r1 −(n2− r2) · · · −(nd− rd)

...
... . . . ...

−(n1− r1) −(n2− r2) · · · n−nd + rd

∣∣∣∣∣∣∣ .
Multiply the last row by minus one, and add it to every other row, to obtain

det(−K̄) = ∏ni

∣∣∣∣∣∣∣∣∣
n 0 · · · −n
0 n · · · −n
...

... . . . ...
−(n1− r1) −(n2− r2) · · · n−nd + rd

∣∣∣∣∣∣∣∣∣ .
Multiply by (ni− ri)/n each row i ∈ [d−1], and add it to the last row

det(−K̄) = ∏ni

∣∣∣∣∣∣∣∣∣
n 0 · · · −n
0 n · · · −n
...

... . . . ...
0 0 · · · n−∑

d
1(ni− ri)

∣∣∣∣∣∣∣∣∣ ,
and, being a diagonal matrix, it follows that det(−K̄) = nd−1r ∏ni = nd r

n ∏ni as wanted.

Now we treat the case ri = ni for some i. For simplicity assume ri < ni for i ∈ [d− 1] and rd = nd .
This implies neither there are children of type d nor type d individuals have children. Thus, from theorem
4.3 we have

Pr
(
Oi = ni, i ∈ [d],Ai j = ki j, i, j ∈ [d−1], i 6= j,Ald = 0,Adl = 0, l 6= d

)
=

det(−ki j)

n1 · · ·nd
ν
∗nd
d (0,0, . . . ,0)

d−1

∏
1

ν
∗ni
i
(
ki1, . . . ,ki(i−1),ni + kii,ki(i+1), . . . ,ki(d−1),0

)
.
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Since the matrix (−ki j) has zeros in column and row d, except at −kdd = rd = nd , we have det(−ki j) =
nddet(−ki j)i, j∈[d−1]. Using the independence of Hypotheses H1, we reduce the problem to the joint law
of the first d−1 components:

Pr
(
Oi = ni, i ∈ [d],Ai j = ki j, i, j ∈ [d−1], i 6= j,Ald = 0,Adl = 0, l 6= d

)
= P(r1,...,rd−1)

(
Oi = ni, i ∈ [d−1],Ai j = ki j, i, j ∈ [d−1]

)
∏

j
P
(

Sd, j
nd

= 0
)

∏
j 6=d

P
(

S j,d
n j

= 0
)
.

From this and the proof of Theorem 4.2, we obtain

Pr (Oi = ni, i ∈ [d]) = ∏
j
P
(

Sd, j
nd

= 0
)

∏
j 6=d

P
(

S j,d
n j

= 0
)

∑
d−1
1 ri

∑
d−1
1 ni

d−1

∏
i=1

P

(
∑

l∈[d−1]
Sl,i

nl
= ni− ri

)

=
∑

d−1
1 ri

∑
d−1
1 ni

d

∏
i=1

P

(
∑

l∈[d]
Sl,i

nl
= ni− ri,Sd,i

nd
= 0

)
= P(r1,...,rd−1) (Oi = ni, i ∈ [d−1])∏

j
P
(

Sd, j
nd

= 0
)

∏
j 6=d

P
(

S j,d
n j

= 0
)
.

This shows that the formula of Theorem 4.2 does not work for the case ni = ri for some i. By the same
reason, the next result, which is the law of the total number of individuals in a MGW forest, has four
additional terms.

Corollary 4.1. Assume the hypotheses of Theorem 4.2 are satisfied, that (Si, j, i ∈ [d]) are identically
distributed for every j, and that d = 2. Let O = ∑i∈[d]Oi, n ∈ N and r < n. Let S( j)

n have law ∑l Sl, j
nl for

any n1 + · · ·+nd = n. Then

Pr (O = n) =
r
n
P
(

S(1)n +S(2)n = n− r
)

+
r1

n− r2
P
(

S(1)n−r2
= n− r,S(1)r2 = 0

)
P
(

S(2)n = 0
)

+
r2

n− r1
P
(

S(1)n = 0
)
P
(

S(2)r1 = 0,S(2)n−r1
= n− r

)
− r

n
P
(

S(1)n = n− r
)
P
(

S(2)n = 0
)
− r

n
P
(

S(1)n = 0
)
P
(

S(2)n = n− r
)
.

Proof. We have to sum over all n1,n2 such that n1 +n2 = n. Note that ni ≥ ri, and also r1 ≤ n1 ≤ n− r2.
It follows

Pr (O = n)

= ∑
n1:r1<n1<n−r2

Pr (O1 = n1,O2 = n−n1)+Pr (O1 = r1,O2 = n− r1)+Pr (O1 = n− r2,O2 = r2)

=
r
n ∑

n1:r1≤n1≤n−r2

P
(

S1,1
n1

+S2,1
n−n1

= n1− r1

)
P
(

S1,2
n1

+S2,2
n−n1

= n−n1− r2

)
+Pr (O1 = r1,O2 = n− r1)+Pr (O1 = n− r2,O2 = r2)

− r
n
P
(
S11

n−r2
+S21

r2
= n− r

)
P
(
S12

n−r2
+S22

r2
= 0
)
− r

n
P
(
S11

r1
+S21

n−r1
= 0
)
P
(
S12

r1
+S22

n−r1
= n− r

)
.

Making the change of variables n1− r1 = l1, using the convolution formula and Theorem 4.2, gives the
desired result.
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4.5.1 Laws of some MGW forests conditioned by the number of individuals of
each type

We provide three examples where Hypotheses H2 are satisfied, under the assumptions of Theorem 4.2.
For simplicity, we consider d = 2, but the proofs also work for any d ≥ 3. We perform the summation in
Equation (4.4) explicitly in the next examples.

Geometric Offspring

Fix r = (r1,r2) ∈ N2 and n = (n1,n2) ∈ N2
+. Denote by Fplane

r,n the set of two-type plane forests having ri
roots and ni individuals of type i, for i ∈ [d].

On the other hand, for any p ∈ (0,1) let Gr,p be a two-type Galton-Watson forest with ri roots of
type i, having geometric offspring distribution with parameter p independently for each individual, that
is, νi(k1,k2) = p(1− p)k1 p(1− p)k2 . Recall that for any F ∈ Fplane

r,n , we denote by F(i) the subforest of
type i of F . Suppose that F ∈ Fplane

r,n has k1,2 type 2 individuals whose parent is of type 1, and k2,1 type
1 individuals whose parent is of type 2. Hence, n1− r1− k2,1 is the number of individuals type 1 whose
parent is of type 1, and similarly for the type 2 individuals. Denoting by ci(v) the number of children type
i that vertex v has, then

P(Gr,p = F) = ∏
v∈ f (1)

ν1(c1(v),c2(v)) ∏
v∈ f (2)

ν2(c1(v),c2(v))

= p2n(1− p)n1−r1−k21(1− p)k12(1− p)k21(1− p)n2−r2−k12

= p2n(1− p)n−r,

where n = n1 +n2 y r = r1 + r2.
Now, we compute the left-hand side of Hypotheses H2. Recall that the sum of k independent geometric

random variables with parameter p, has a negative binomial distribution NBk,p of parameters k and p.
From Equation (4.4), one obtains the sum

n1−r1

∑
i=0

iP
(
S1,1

n1
= n1− r1− i

)
P
(
S2,1

n2
= i
)

=
n1−r1

∑
i=0

i
(

n1 +n1− r1− i−1
n1− r1− i

)(
n2 + i−1

i

)
pn1(1− p)n1−r1−i pn2(1− p)i

= pn(1− p)n1−r1
n1−r1

∑
i=1

(
n1 +n1− r1− i−1

n1− r1− i

)(
n2 + i−2

i−1

)
(n2 + i−1)

= pn(1− p)n1−r1
n1−r1−1

∑
i=0

(n2 + i)
(

n1 +n1− r1−1− i−1
n1− r1−1− i

)(
n2 + i−1

i

)
,

making a change of variable in the last step. For any m,n1,n2 ∈ N, we use the equality

m

∑
i=0

(
n1 +m− i−1

m− i

)(
n2 + i−1

i

)
=

(
n1 +n2 +m−1

m

)
,
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which can be proved comparing the binomial coefficients in the convolution of two negative binomial
random variables. Hence, if we define a function f : [n1− r1]0 7→ R+, as

f (k) =
n1−r1−k

∑
i=0

i
(

n1 +n1− r1− k− i−1
n1− r1− k− i

)(
n2 + i−1

i

)
,

we obtain

f (0) = n2

(
n+n1− r1−2

n1− r1−1

)
+

n1−r1−1

∑
i=0

i
(

n1 +n1− r1−1− i−1
n1− r1−1− i

)(
n2 + i−1

i

)
= n2

(
n+n1− r1−2

n1− r1−1

)
+ f (1)

= n2

n1−r1

∑
j=1

(
n+n1− r1−1− j

n1− r1− j

)

= n2

n1−r1−1

∑
j=0

(
n−1+ j

j

)
,

making a change of variable. Now, for any m,r ∈ N use the identity

m

∑
j=0

(
r+ j

j

)
=

(
r+m+1

m

)
,

to deduce that

n1−r1

∑
i=0

iP
(
S1,1

n1
= n1− r1− i

)
P
(
S2,1

n2
= i
)
= n2

(
n+n1− r1−1

n1− r1−1

)
pn(1− p)n1−r1 . (4.6)

We compare this quantity with the right-hand side of Hypotheses H2:

n2

n
(n1− r1)P(NBn,p = n1− r1) =

n2

n
(n1− r1)

(
n+n1− r1−1

n1− r1

)
pn(1− p)n1−r1

=
n2

n
(n+n1− r1−1)!

(n1− r1−1)!(n−1)!
pn(1− p)n1−r1

= n2

(
n+n1− r1−1

n1− r1−1

)
pn(1− p)n1−r1,

which is identical to (4.6).
Thus, using Theorem 4.2, denoting by #iGr,p the number of individuals of type i, we obtain

P(#1Gr,p = n1,#2Gr,p = n2) =
r
n

(
n+n1− r1−1

n1− r1

)(
n+n2− r2−1

n2− r2

)
p2n(1− p)n−r.

It follows that

P(Gr,p = f |#1Gr,p = n1,#2Gr,p = n2) =
1

r
n

(n+n1−r1−1
n1−r1

)(n+n2−r2−1
n2−r2

) ∀ f ∈ Fplane
r,n ,
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being uniform on the set of two-type plane forests with ri roots type i, and ni vertices of type i. Note
that this implies that the denominator on the right-hand side is the number of two-type plane forests with
root-type r and individuals-type n. We also obtain the distributional equality

F plane
r,n

d
= (Gr,p|#1Gr,p = n1,#2Gr,p = n2) ,

where F plane
r,n is uniform on Fplane

r,n .
General case
In the general case d ∈ N, using Theorem 4.2, denoting by #iGr,p the number of individuals of type i

of Gr,p, we obtain

P(#iGr,p = ni,∀ i ∈ [d]) =
r
n

pdn(1− p)n−r
∏
i∈[d]

(
n+ni− ri−1

ni− ri

)
.

It follows that

P(Gr,p = F |#iGr,p = ni,∀ i ∈ [d]) =
1

r
n ∏i∈[d]

(n+ni−ri−1
ni−ri

) ∀ F ∈ Fplane
r,n ,

being uniform on Fplane
r,n . Note that the previous agrees with the unidimensional case, see Formula (35) in

[Pit98].

Poisson Offspring

Let r = (r1,r2) ∈N2 with r = r1+ r1 > 0 and n = (n1,n2) ∈N2. For µ ∈R+, let Pr,µ be a two-type GW
with ri roots type i, and Poisson offspring distribution of parameter µ , for every individual, independently
from anyone, that is, νi(k1,k2) = e−µ µk1e−µ µk2/(k1!k2!).

Similarly as in the previous example, consider any F ∈ Fplane
r,n having ri roots type i, k1,2 type 2

individuals whose parent is of type 1, and k2,1 type 1 individuals whose parent is of type 2. Then

P
(
Pr,µ = F

)
= e−2µn1 µ

n1−r1−k21 µ
k12 ∏

v∈ f (1)

1
c1(v)!

∏
v∈ f (1)

1
c2(v)!

e−2µn2 µ
n2−r2−k12 µ

k21 ∏
v∈ f (2)

1
c1(v)!

∏
v∈ f (2)

1
c2(v)!

= e−2µn
µ

n−r
∏

i:vi∈ f

1
c1(vi)!c2(vi)!

,

where the product is over any enumeration of the n vertices in F .
We compute the left-hand side of Hypotheses H2. Recall that the sum of k independent Poisson

random variables with parameter µ , has a Poisson distribution with parameter kµ . Then
n1−r1

∑
i=0

iP
(
S11

n1
= n1− r1− i

)
P
(
S21

n2
= i
)

= e−nµ

n1−r1

∑
i=0

i
(n1µ)n1−r1−i

(n1− r1− i)!
(n2µ)i

i!

= e−nµ (n1µ)n1−r1

(n1− r1)!

n1−r1

∑
i=0

i
(

n1− r1

i

)(
n2

n1

)i

.
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To simplify the sum, note that
n1−r1

∑
i=0

i
(

n1− r1

i

)(
n2

n1

)i

= (n1− r1)
n1−r1

∑
i=1

(n1− r1−1)!
(i−1)!(n1− r1− i)!

(
n2

n1

)i

= (n1− r1)
n2

n1

n1−r1−1

∑
i=0

(n1− r1−1)!
i!(n1− r1− i−1)!

(
n2

n1

)i

= (n1− r1)
n2

n1

(
1+

n2

n1

)n1−r1−1

=
n2

n
(n1− r1)

(
n
n1

)n1−r1

.

Hence, it follows that
n1−r1

∑
i=0

iP
(
S11

n1
= n1− r1− i

)
P
(
S21

n2
= i
)
= e−nµ µn1−r1

(n1− r1)!
n2

n
(n1− r1)nn1−r1 .

This is the same as the right-hand side of Hypotheses H2, since

n2

n
(n1− r1)P

(
Pnµ = n1− r1

)
= e−nµ n2

n
(n1− r1)

(nµ)n1−r1

(n1− r1)!

= e−nµ µn1−r1

(n1− r1)!
n2

n
(n1− r1)nn1−r1.

Denoting by #iPr,p the number of individuals type i, using Theorem 4.2 we obtain

Pr
(
#1Pr,µ = n1,#2Pr,µ = n2

)
=

e−2nµ(nµ)n−r

(n1− r1)!(n2− r2)!
r
n
,

and hence

P
(
Pr,µ = F |#1Pr,µ = n1,#2Pr,µ = n2

)
=

( n1−r1
c1(v1),...,c1(vn)

)( n2−r2
c2(v1),...,c2(vn)

)
r
nnn−r ∀ f ∈ Fplane

r,n .

General case
In the general case, from Theorem 4.2 we obtain

Pr
(
#iPr,µ = ni,∀i ∈ [d]

)
=

r
n

e−dnµ(nµ)n−r

∏i(ni− ri)!
.

From which we have

P
(
Pr,µ = F |#iPr,µ = ni,∀i ∈ [d]

)
=

∏i
( ni−ri

ci(v1),...,ci(vn)

)
r
nnn−r ∀ F ∈ Fplane

r,n .

Note that this agrees with the unidimensional case, as seen in Formula (39) of [Pit98]. Since the right-
hand side depends on F , it is not uniform on the set of plane forests. To obtain a uniform forest, we
introduce a function as in [Pit98]. Define Ψ : Flabeled

r,n 7→ Fplane
r,n as follows:
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1. Order the trees of the forest, according to the natural order of the labels in the roots of type 1, then
order the type 2 roots, and so on.

2. For each vertex vi of type i, order its c1(vi) children of type 1 according to its labels, its c2(vi)
children of type 2 according to its labels, and so on.

3. Erase the labels.

Now, we find the number of forests in Flabeled
r,n that are sent to a given plane forest F . For each i, there

are (ni− ri)! ways to label the type i vertices (recall that our rooted labeled forests have root set [r]). But
the permutation of the childrens of a fixed type of each vertex also lead to the same forest F . That is, if
vertex v has ci(v) children type i, there are ci(v)! labelings of such children leading to F . This being true
for every type and every vertex, we have

#Ψ
−1(F) =

∏i(ni− ri)!
∏v∈F ∏i ci(v)!

.

This is exactly the numerator in the formula obtained above. Thus, we have the following interpreta-
tion: let F labeled

r,n have uniform distribution over the set of all d-type labeled forests, where the roots are
in [r], with roots-type r and individuals-type n, and let P∗

r,n be Pr,n relabeled by d uniform random
permutations, one for each type, then

F labeled
r,n

d
=
(
P∗

r,p
∣∣#iPr,p = ni,∀ i ∈ [d]

)
.

We note that the previous formulas coincide with the results in [Pit98, Section 7] for the unitype case.
But our formulas relate directly enumerations of multitype labeled forests with the unitype enumerations.
Recall our labeling on page 105 for forests in F labeled

r,n . The above formulas also imply that the number of
multitype labeled forests in F labeled

r,n with root set [r] coincides with the number of unitype labeled forests
on [n] with root set [r], which by Cayley’s formula is (r/n)nn−r. This comes from the following bijection.
Regard each multitype forest F ∈F labeled

r,n as a unitype labeled forest on [n], together with the following
labeling: the roots retain their labels and, according with the order on F , the remaining n1− r1 type 1
individuals now have the new labels {r+1, . . . ,r+n1− r1}, the remaining n2− r2 type 2 individuals have
the new labels {r+n1− r1 +1, . . . ,r+n1− r1 +n2− r2}, and so on.

Bernoulli Offspring

Let r = (r1,r2) ∈ N2 with r > 0 and n = (n1,n2) ∈ N2. For 0 < p < 1, let Br,p be a two-type GW
with ri roots type i, and Bernoulli offspring distribution of parameter p, for each vertex independently
of the others, that is, νi(k1,k2) = pk1(1− p)1−k1 pk2(1− p)1−k2 with k1,k2 ∈ {0,1}. Since any vertex
v has zero or two children with probability p or 1− p respectively, then νi(c1(v),c2(v)) = pc1(v)/2(1−
p)1−c1(v)/2 pc2(v)/2(1− p)1−c2(v)/2.

As before, consider any F ∈ Fbinary
r,n having ri roots type i, k1,2 type 2 individuals whose parent is of

type 1, and k2,1 type 1 individuals whose parent is of type 2. Note that k1,2 and k2,1 are even numbers, as
well as ni− ri for i = 1,2. Hence

P(Br,p = F) = (p/(1− p))(n1−r1−k21)/2(1− p)n1(p/(1− p))k12/2(1− p)n1

× (p/(1− p))(n2−r2−k12)/2(1− p)n2(p/(1− p))k21/2(1− p)n2

= p(n−r)/2(1− p)2n−(n−r)/2.
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Recall that twice the sum of n independent Bernoulli random variables with parameter p, has distribu-
tion two times the Binomial distribution Bn,p of parameters n and p. If n is even, we denote the sum over
the even numbers up to n as {0,2, . . . ,n}= 2[n/2]0. The left-hand side of Hypotheses H2 is

∑
i∈2[(n1−r1)/2]0

iP
(
S1,1

n1
= n1− r1− i

)
P
(
S2,1

n2
= i
)

= ∑ i
(

n2

i/2

)
pi/2(1− p)n2−i/2

(
n1

(n1− r1− i)/2

)
p(n1−r1−i)/2(1− p)n1−(n1−r1−i)/2

= 2p(n1−r1)/2(1− p)n−(n1−r1)/2n2 ∑
i∈2[(n1−r1)/2]

(
n2−1
i/2−1

)(
n1

(n1− r1− i)/2

)
= 2p(n1−r1)/2(1− p)n−(n1−r1)/2n2 ∑

i∈2[(n1−r1−2)/2]0

(
n2−1

i/2

)(
n1

(n1− r1−2− i)/2

)
.

Note that, since there are n2 individuals type 2 and at most each can have 2 children, the number k2,1

of individuals type 2 having children type 1 is bounded by 2n2. Nevertheless, we have P
(

S2,1
n2 = i

)
= 0

for i > 2n2, which agrees with the definition of
(n

k

)
= 0 whenever n < k for positive integers. Using

Vandermonde’s identity, and adding the term (n1− r1)/2 in both the numerator and denominator, the
above is equal to

2p(n1−r1)/2(1− p)n−(n1−r1)/2n2

(
n−1

(n1− r1−2)/2

)
=

n2

n
(n1− r1)

(
n

(n1− r1)/2

)
p(n1−r1)/2(1− p)n−(n1−r1)/2.

The right-hand side of Hypotheses H2 is

n2

n
(n1− r1)P(2Bn,p = n1− r1) =

n2

n
(n1− r1)

(
n

(n1− r1)/2

)
p(n1−r1)/2(1− p)n−(n1−r1)/2.

Therefore, Hypotheses H2 are satisfied and

Pr (O1 = n1,O2 = n2) =
r
n

(
n

(n1− r1)/2

)(
n

(n2− r2)/2

)
p(n−r)/2(1− p)2n−(n−r)/2.

Denoting by #iBr,p the number of individuals type i, we have

P(Br,p = F |#1Br,p = n1,#2Br,p = n2) =
1

r
n

( n
(n1−r1)/2

)( n
(n2−r2)/2

) ∀ F ∈ Fbinary
r,n ,

being uniform on Fbinary
r,n .

General case
For d ∈ N, Theorem 4.2 implies

Pr
(
#iBr,µ = ni,∀i ∈ [d]

)
= p(n−r)/2(1− p)dn−(n−r)/2 r

n ∏
i

(
n

(ni− ri)/2

)
.
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This implies

P(Br,p = F |#iBr,p = ni,∀ i ∈ [d]) =
1

r
n ∏
( n
(ni−ri)/2

) ∀ F ∈ Fbinary
r,n ,

being uniform on the set of binary d-type plane forests with root-type r and individuals-type n. Compare
this formula with the number of binary trees, which is related to the Catalan numbers, see Theorem 2.1 in
[Drm09].

4.6 Algorithms
In this section we review the algorithms for the simulation of the unitype random forests presented before.
Then, those algorithms are generalized to the multidimensional case.

First, we present how to obtain a degree sequence approaching any given distribution. After that,
hubs are added to the algorithm to ensure individuals with a lot of children. Being able to obtain degree
sequences, we repeat the algorithm to simulate a uniform tree with such given degree sequence. Using this
we describe the simulation of CWG(n) trees given in [Dev12]. The construction for forests was given in
Lemma 4.5, but we explicitly write the algorithm. As a side note, a new algorithm is proposed to simulate
a tree which has offspring distribution almost as a CGW(n). This algorithm works incredibly fast. This is
done by fixing n1 ∈ N and positive ε , and constructing a CGW(n) tree, where |n−n1|/n1 ≤ ε .

After that, we present the counterparts in the multidimensional case. First, the construction of uni-
formly sampled multitype forests with a given degree sequence, which is Theorem 4.1. Finally, we present
an algorithm to obtain MGW forests conditioned by its number of individuals for each type, which is a
generalization of Devroye’s algorithm.

4.6.1 Simulation of a degree sequence whose normalization approaches a given
distribution

Fix any critical distribution ν = (νi, i ≥ 0). The objective is to find a degree sequence Sn = (Nn
i , i ≥ 0)

with sn = |Sn| such that ∀ i≥ 0
Nn

i
sn
→ νi. (4.7)

It turns out that for a CGW(n) tree T n having offspring distribution ν and n vertices, the convergence of
the normalized empirical degree sequence has been proved in Lemma 11 of [BM14b]. In such lemma
the authors assume that the offspring distribution has finite variance. The latter means that if we want to
construct degree sequences, we can construct them roughly setting Nn

i = bνisnc.
Let T be a GW with offspring distribution ν = (νi; i ≥ 0), that is in the domain of attraction of an

α-stable law, for short DA(α), with parameter α ∈ (1,2). This means that ν([0,∞)) = j−αL( j) where
L : R+ 7→ R+ is a slowly varying function, that is limx→∞ L(tx)/L(x) = 1 for every t > 0. See [BGT89,
Chapter 8.3] for more details. Denote by Pν the probability distribution of T , and by (n̂i; i ≥ 0) the
empirical degree sequence of T , that is

n̂i =
|T |

∑
j=1

I
(
c j = i

)
, (4.8)
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with c j the number of children of individual j. Define the normalized empirical degree sequence ν̂ =
(ν̂i; i≥ 0), where ν̂i = n̂i/|T |. The law of the CGW(n) is denoted by Pn

ν(·) = Pν(·| |T |= n), and we only
consider n for which this has sense.

We first generalize the result of [BM14b] in the next Lemma, by dropping the finite variance condition.
The proof is given in the Appendix, page 155.

Lemma 4.8. If ν is critic and aperiodic, then under Pn
ν

ν̂
(d)→ ν ,

Using this result, we can obtain uniform trees with a given degree sequence, behaving as trees having
a Pareto distribution, which is the content of Algorithm 1.

Algorithm 1 Generate a degree sequence from a given distribution
Input: A distribution ν and a natural cn.
Output: A degree sequence, which normalized, approaches ν .

1: Let M = inf{i : bcnνic= 1}.
2: for i = 1 to M do
3: Ni = bcnνic
4: end for
5: Set sn = 1+∑

M
1 iNi.

6: Set N0 = sn−∑
M
1 Ni.

7: Define the degree sequence Sn = (N0, . . . ,NM).

Lemma 4.9. Let Sn be defined as in Algorithm 1, and consider any sequence cn ↑ ∞. Assume the distri-
bution ν satisfies the Hypotheses of Lemma 4.8. Then the convergence in (4.7) holds true.

Proof. We emphasize the dependence of the degree sequence in n writing Nn
i , and also Mn. Since, for any

i≥ 1 we have 0≤ iNn
i /cn ≤ iνi for every n, then, by the Weierstrass test

sn

cn
=

1
cn

+
Mn

∑
1

i
bcnνic

cn
=

1
cn

+
∞

∑
1

i
bcnνic

cn
→

∞

∑
1

iνi,

which equals 1, since ν is critic. This easily implies Nn
i /sn→ νi for every i≥ 1, and also

Nn
0

sn
=

sn

cn
−

Mn

∑
1

bcnνic
cn

→ 1−
∞

∑
1

νi = ν0.

Next, we add hubs to the degree sequence, that is, individuals with many children. Those individuals
will have IM̄−i+1 = bβibsnc children, for M̄ fixed positive reals β1 > · · · > βM̄ > 0 and where bsn is the
scaling for the BFW (see Hypothesis 2 in Theorem 3.1). If necessary, we choose cn big enough such that
bβi+1bsnc < bβibsnc whenever βi+1 < βi. This condition ensures there are no unnecessary repetitions in
the child sequence. We also impose bβM̄bsnc> M, since M is the maximum number of children obtained
in Algorithm 1. This is given in Algorithm 2.
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Algorithm 2 Generate a degree sequence from a given distribution and having hubs

Input: A distribution ν , a natural cn, and M̄ positive reals β1 > · · ·> βM̄.
Output: A degree sequence, which normalized, approaches ν , and has individuals with bβibsnc chil-
dren, for i ∈ [M̄].

1: Obtain a degree sequence Sn = (N0, . . . ,NM) and sn from Algorithm 1.
2: Define the degree sequence S̄n = (N̄0, N̄1, . . . , N̄IM̄

), as
3: if i ∈ {1, . . . ,M} then
4: N̄i = Ni
5: else if i ∈ {I1, I2, . . . , IM̄} then
6: N̄i = #{k : Ik = Ii}
7: else if i = 0 then
8: N̄0 = N0 +∑

M̄
i=1(Ii−1)N̄Ii

9: else
10: N̄i = 0
11: end if
12: Set s̄n = ∑ N̄i.

The fact that this algorithm gives us a degree sequence, follows from

∑ N̄i = N̄0 +
M

∑
1

Ni +
M̄

∑
1

N̄Ii = sn +
M̄

∑
i=1

(Ii−1)N̄Ii +
M̄

∑
1

N̄Ii = sn +
M̄

∑
i=1

IiN̄Ii,

and

1+∑ iN̄i = 1+
M

∑
1

iNi +
M̄

∑
1

IiN̄Ii = sn +
M̄

∑
1

IiN̄Ii.

Note that the ratio of the number of individuals from the two algorithms is given by

s̄n

sn
=

M

∑
0

Ni

sn
+

M̄

∑
1

N̄Ii

sn
.

In Lemma 4.9 we proved the first term goes to one, thus, it suffices to assume the second term goes to
zero to ensure such new degree sequence also approaches to the given distribution ν .

Lemma 4.10. Let S̄n be defined as in Algorithm 2, and consider any sequence cn ↑ ∞. Assume the
distribution ν satisfies the Hypotheses of Lemma 4.8. If

M̄n

∑
1

N̄n
In
i

sn
→ 0,

then, for every i≥ 0 the convergence
N̄n

i
s̄n
→ νi

holds true.
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4.6.2 Constrained simulation of random trees in the unidimensional case
The paper [Dev12] gives an algorithm to simulate unitype GW trees with offspring distribution ν condi-
tioned to have size n. The idea is: simulate a multinomial vector (N0, . . . ,NK) with parameters (n,ν0,ν1, . . .)
such that

n = ∑Ni = 1+∑ iNi, (4.9)

that is, simulate the degree sequence of a CGW(n). Then, obtain a uniform tree with degree sequence
(N0, . . . ,NK). The resulting tree will have law Pn

ν .
First, we give an algorithm to simulate uniform trees with a given degree sequence S = (Ni; i ≥ 0)

satisfying (4.9). Algorithm 3 is obtained from [BM14b] and was proved in Lemma 4.5.

Algorithm 3 Generate uniformly sampled trees with a given degree sequence

Input: A degree sequence S = (Ni; i≥ 0) with ∑Ni = 1+∑ iNi = s.
Output: A uniformly sampled tree with the given degree sequence.

1: Define the vector c = (c1,c2, . . . ,cs), with N0 zeros, N1 ones, etc.
2: Set π = (π1, . . . ,πs) a uniform random permutation of [s].
3: For j ∈ [s] define the walk

W b( j) =
j

∑
1
(c◦ (πi)−1),

satisfying W b(0) = 0 and W b(s) =−1.
4: Let i∗=min{ j ∈ [s] : W b( j) =min1≤i≤sW b(i)} be the first time the partial sums reaches its minimum.
5: For j ∈ [s] define the walk V (W b) of length s as

V (W b)( j) =
j

∑
1
(c◦ (πi∗+ j)−1),

with i∗+ j mod s.
6: Generate the tree with breadth-first walk V (W b).

Using Algorithm 3, we give and prove Algorithm 4, which was proposed in [Dev12].

Algorithm 4 Generate a GW tree conditioned to have size n
Input: A distribution ν and a natural n.
Output: A tree with law Pn

ν .
1: Generate a multinomial vector S = (N0,N1, . . .) with parameters (n,ν0,ν1, . . .).
2: Let K be the last non-zero component of S, that is N j = 0 for j > K and NK > 0.
3: Define Ξ(S) = 1+∑ iNi.
4: if Ξ(S) = n then
5: go to step 9
6: else
7: repeat from step 1
8: end if
9: Apply Algorithm 1 to the degree sequence (N0, . . . ,NK).
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The following lemma proves Algorithm 4 gives us an CWG(n) tree.

Lemma 4.11. Let S(i) be the ith vector obtained by step 1 of Algorithm 4, and let K = inf{i : Ξ(S(i)) = n}.
If τ(K) is the tree obtained in step 9, then τ(K) has the same law as a CGW(n) tree.

Proof. Let S be a vector with the same distribution as S(1). For any vector s = (n0, . . . ,nk) with ∑ni = n,
by definition we have

P(S = s) =
(

n
n0, . . . ,nk

)
∏ν

ni
i .

Denote by W b the bridge with increments c ◦πi− 1, where π is a uniform permutation of the child
sequence c = (ci), the latter obtained from S(K). Denote by W its Vervaat transform, which codes the tree
τ(K). Then, for any bridge wb of size n, having Vervaat transform w and degree sequence s = (n0, . . . ,nk)
we have

P(W = w) = nP
(

W b = wb
)
=

n( n
n0,...,nk

)P(S(K) = s
)
,

since there are n bridges mapped to w by the Vervaat transform, and there are
( n

n0,...,nk

)
different labelings

of such bridges. For the last term, we sum over all possible values of K and use independence between
simulations

P
(
S(K) = s

)
= ∑

k
P
(
S(k) = s,Ξ(S(k)) = n,Ξ(S( j)) 6= n, j < k

)
= P(S = s,Ξ(S) = n) ∑

k≥1
P(Ξ(S) 6= n)k−1

= P(S = s,Ξ(S) = n)
1

P(Ξ(S) = n)
.

Note that

P(Ξ(S) = n) = ∑
s=(n0,...):

∑ni=1+∑ ini=n

P(S = s) = ∑
s=(n0,...):

∑ni=1+∑ ini=n

(
n

n0, . . . ,nk

)
∏ν

ni
i ,

where the sum is over all degree sequences of plane trees having size n. We relate this with ν∗n, the n-th
convolution of the law ν with itself. Using the formula for the convolution

ν
∗n(n−1) = ∑

(i1,...,in):
∑ ik=n−1

n

∏
k=1

νik .

Fix any degree sequence (ni, i ≥ 0) with ∑ni = n, and note that the number of vectors (i1, . . . , in) with
∑ ik = n−1 such that

n

∏
k=1

νik = ∏
k≥0

ν
nk
k ,

is equal to the number of different bridges wb of size n, having degree sequence (ni, i≥ 0). This number
is
( n

n0,n1...

)
, therefore

ν
∗n(n−1) = ∑

s=(n0,...):
∑ni=1+∑ ini=n

(
n

n0, . . . ,nk

)
∏ν

ni
i .
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The latter, together with the Otter-Dwass formula [Ott49, Dwa69] imply

P(Ξ(S) = n) = ν
∗n(n−1) = nP(|τ|= n) .

If w codes the tree T , then

P(τK = T ) =
n( n

n0,...,nk

)P(S = s,Ξ(S) = n)
1

nP(|τ|= n)

=
∏ν

ni
i

P(|τ|= n)
= P(τ = T ||τ|= n) ,

proving the assertion.

Note that one easy way to generate the multinomial vector (N0,N1, . . .) is using the binomials

N0 ∼ BIN(n,ν0)

N1 ∼ BIN(n−N0,ν1/(1−ν0))

N2 ∼ BIN(n−N0−N1,ν2/(1−ν0−ν1))

...

Using this conditional construction, the vector (N0,N1, . . .) has the desired multinomial distribution.
We can modify Algorithm 4 to make it faster. 12345
Using this two results, we can relax step 4 of Algorithm 4. Fix the number of initial individuals n1 ∈N.

We find n close enough to n1, and generate an approximated CGW(n) tree. Let ε > 0 be the error term
allowed in the simulations. Algorithm 5 generates an almost CGW tree.

Algorithm 5 Generate an approximated GW tree conditioned to have size n
Input: A distribution ν , a natural number n1 and an error term ε .
Output: A tree with law Pn

ν , where |n−n1|/n1 < ε .
1: Generate a multinomial vector (N0,N1, . . .) with parameters (n1,ν0,ν1, . . .).
2: Let K be the last non-zero component of (N0,N1, . . .), that is N j = 0 for j > K.
3: Define n = 1+∑ iNi.
4: if |n−n1|/n1 < ε then
5: go to step 9
6: else
7: repeat from step 1.
8: end if
9: Redefine N′0 = n−∑

K
1 Ni.

10: Apply Algorithm 3 to the degree sequence (N′0,N1, . . . ,NK).

Remark 4.5. Note that the number of individuals n in the tree is random. But the only difference between
the two sequences obtained in Algorithm 5 is that we add some few leaves to obtain a desired degree
sequence. By this we mean that we generate an approximated CGW tree.
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Note that Algorithm 5 gives us a degree sequence of size n, since

N′0 +
K

∑
1

Ni = n−
K

∑
1

Ni +
K

∑
1

Ni = n and 1+∑ iNi = n.

From our Lemma 4.8 (and Lemma 11 in [BM14b]), we know that the empirical degree sequence
(N̂i; i ≥ 0) of trees with law Pn1

ν , rescaled by n1, converges to ν . Let ε1 > 0 and consider a vector Mn1 =
(Nn1

0 ,Nn1
1 , . . . ,) with multinomial distribution having parameters n1 and ν0,ν1, . . .. By the Glivenko-

Cantelli theorem (see Lemma 5.5 in the Appendix), we have the uniform convergence∣∣∣∣Nn1
i

n1
−νi

∣∣∣∣< ε1

for every n1 big enough. It is not difficult to prove that for every n≥M for some M ∈ N, and i≥ 1

|Nn
0 − (Nn

0 )
′|

n1
=
|n−n1|

n1
< ε and

νi− ε1

1+ ε
≤

Nn
i

n1(1+ ε)
<

Nn
i

n
<

Nn
i

n1(1− ε)
≤ νi + ε1

1− ε
.

From the last inequalities we get

νi

1+ ε
≤ liminf

Nn
i

n
≤ limsup

Nn
i

n
≤ νi

1− ε
.

4.6.3 Constrained simulation of random forests in the unidimensional case
Now we give a way to simulate uniformly sampled forests with a given degree distribution, this is Algo-
rithm 6, and was proved in Lemma 4.5.

Algorithm 6 Generate uniformly sampled forests with a given degree sequence

Input: A degree sequence S = (Ni; i≥ 0) with ∑Ni = m+∑ iNi = s.
Output: A uniformly sampled forest with m trees having the given degree sequence.

1: Define the vector c = (c1,c2, . . . ,cs), with N0 zeros, N1 ones, etc.
2: Set π = (π1, . . . ,πs) a uniform random permutation of [s].
3: For j ∈ [s] define the walk

W b( j) =
j

∑
1
(c◦πi−1),

satisfying W b(0) = 0 and W b(s) =−m.
4: Let i∗=min{ j ∈ [s] : W b( j) =min1≤i≤sW b(i)} be the first time the partial sums reaches its minimum.
5: Define an independent uniform variable U on [m]−1, and τU = min{ j : W b( j) =W b(i∗)+U}.
6: Define the process V (W b,U) of length s whose jth term is c◦πτU+ j−1 with τU + j mod s.
7: Generate the forest with breadth-first walk V (W b,U).
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Algorithm 7 Generate uniformly sampled multitype forests with a given degree sequence

Input: A degree sequence Si, j = (Ni, j(k);k ∈ [mi, j]) satisfying ni = ∑k Ni, j(k) for every j, and n j =
r j +∑i ∑k kNi, j(k), for every j.
Output: A uniformly sampled multitype tree with the given degree sequence.

1: Generate the vectors ci, j = (ci, j(1),ci, j(2), . . . ,ci, j(ni)), with Ni, j(0) zeros, Ni, j(1) ones, etc., ordered
in non-decreasing order ci, j(k)≤ ci, j(k+1).

2: Generate πi, j = (πi, j(1), . . . ,πi, j(ni)), a uniform random permutation of [ni], everything independent.
3: Define Wb = (W b

i, j; i, j ∈ [d]), where

W b
i, j(k) =

k

∑
l=1

(ci, j ◦πi, j(l)− I(i = j)), k ∈ [ni]

satisfying W b
i,i(0) = 0 and W b

i,i(ni) =−ki.
4: Generate an independent uniform random variable U on [det(ki, j)], where ki, j := ∑kNi, j(k)−ni1i= j.
5: Construct the multidimensional Vervaat transform V (W b,U) of W b.
6: Generate the multitype forest with breadth-first walk V (W b,U).

4.6.4 Constrained simulation of random forests in the multidimensional case
Now we propose Algorithm 7, using the multidimensional Vervaat transform as defined in page 103. This
algorithm is precisely Theorem 4.1.

4.6.5 Simulation of MCGW(n1, . . . ,nd) forests with given type sizes
For fixed n = (n1, . . . ,nd), we consider the simulation of multitype GW forests conditioned to have ni
individuals of type i (MCGW(n1, . . . ,nd) forests for short). Using Devroye’s idea of Algorithm 4 we
propose Algorithm 8. We denote by Pν(·|# jF = n j,∀ j) the law of a MCGW(n1, . . . ,nd), and by νi, j the
jth component of the distribution νi.

The following proposition, stated on the introduction as Proposition 4.4, proves that from Algorithm
8 we construct a MCGW(n1, . . . ,nd).

Proposition 4.5. Let W be the breadth-first walk of a MCGW(n1, . . . ,nd) forest satisfying the Hypotheses
of Theorem 4.2, having offspring distribution ν , and root-type r with 1 ≤ ri < ni for every i. Generate
independent multinomial vectors Si, j = (Ni, j(0),Ni, j(1), . . .) with parameters (ni,νi, j(0),νi, j(1), . . .), and
stop the first time K = inf{k : Ξ(Si, j, i ∈ [d]) = n j for every j}. Denote by S(K) the multitype degree
sequence obtained, and let V (Wb,U) be the breadth-first walk generated by Algorithm 7 using the degree
sequence S(K). Then,

P
(

V (Wb,U) = w
)
=

1
n
r

det(ki, j)

∏ni

Pr
(
F = F |# jF = n j,∀ j

)
,

for every multitype forest F with root-type r and individuals-type n, coded by w and with ki, j =∑kni, j(k)−
ni1i= j.
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Algorithm 8 Generate a MGW forest F conditioned to have ni individuals of type i

Input: A distribution ν , and natural numbers ni > ri ≥ 1, for i ∈ [d].
Output: A multitype forest with law Pn

ν .
1: Generate independent multinomial vectors Si, j = (Ni, j(0),Ni, j(1), . . .) with parameters

(ni,νi, j(0),νi, j(1), . . .).
2: Let Ki, j be the last non-zero component of Si, j, that is Ni, j(Ki, j)> 0 and Ni, j( j) = 0 for j > Ki, j.
3: Define Ξ j := Ξ(Si, j, i ∈ [d]) = r j +∑i ∑k kNi, j(k) for every j.
4: if Ξ j = n j for every j then
5: go to step 9
6: else
7: repeat from step 1.
8: end if
9: Apply Algorithm 7 to the degree sequence

(
(Ni, j(0), . . . ,Ni, j(Ki, j)); i, j ∈ [d]

)
, obtaining a multitype

forest F0 with breadth-first walk distributed as V (Wb,U).
10: Define ki, j := ∑kNi, j(k)−ni1i= j.
11: Generate an independent uniform variable V on [0,1].
12: if V ≤ det(−ki, j)

(d+1)d−1 ∏ni
then

13: Accept F = F0
14: else
15: repeat from step 1.
16: end if

Proof. We follow the same lines as in Lemma 4.11. Fix any d-type forest F , having ri roots and ni vertices
of type i, and degree sequence s = (ni, j, i, j ∈ [d]). Using the same notation as in Theorem 4.1, let wb be
a multidimensional bridge in BS,r, having multidimensional Vervaat transform w = V (wb,u) for some
u ∈ [det(ki, j)], where ki, j := ∑kni, j(k)− ni1i= j. Using that W b has exchangeable increments, that U is
independent and uniform, and that there are ∏ni pairs (θq,n(w),u) that can be mapped to w (as seen on
page 109), then

P
(

V (Wb,U) = w
)
= ∏

i
ni P

(
Wb = wb,U = u

)
=

1
det(ki, j)

∏ni
∏i ∏ j

( ni
ni, j

)P(S(K) = s
)

=
1

det(ki, j)

∏ni
∏∏

( ni
ni, j

) P(S = s)
P
(
Ξ(Si, j, i ∈ [d]) = n j, ∀ j

) ,
where S has the same distribution as S(1). We compute explicitly the last fraction of the above equation.
For the term P(S = s) we use the definition of the multinomial distribution

P(S = s) = ∏
i

∏
j

(
ni

ni, j

)
∏
l≥0

ν
ni, j(l)
i, j (l).
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For the denominator we have

P
(
Ξ(Si, j, i ∈ [d]) = n j, ∀ j

)
= ∑

s=(ni, j):
∑i ∑k kni, j(k)=n j−r j,∀ j

∑k ni, j(k)=ni,∀ i

P(S = s)

= ∑
s=(ni, j):

∑i ∑k kni, j(k)=n j−r j,∀ j
∑k ni, j(k)=ni,∀ i

∏
i

∏
j

(
ni

ni, j

)
∏
l≥0

ν
ni, j(l)
i, j (l).

On the other hand, note that for fixed j, using the formula for the convolution,

P

(
d

∑
k=1

Sk, j
nk

= n j− r j

)
= ∑

∑
d
k=1 ∑

nk
l=1 ik,l=n j−r j

d

∏
k=1

nk

∏
l=1

νk, j(ik,l)

= ∑
∑i ∑k kni, j(k)=n j−r j,

∑k ni, j(k)=ni,∀ i

∏
i

(
ni

ni, j

)
∏
l≥0

ν
ni, j(l)
i, j (l),

where in the last equality, we used the fact that ∏i
( ni

ni, j

)
is the number of different bridges having the same

degree sequence (n1, j(0),n1, j(1), . . .), . . . ,(nd, j(0),nd, j(1), . . .). Note that the above sum only depends on
the sequences (ni, j, i ∈ [d]). Thus, multiplying for all j we have

P
(
Ξ(Si, j, i ∈ [d]) = n j, ∀ j

)
= ∏

j
P

(
∑
k

Sk, j
nk

= n j− r j

)
.

Therefore, using Theorem 4.2

P
(

V (Wb,U) = w
)
=

1
det(ki, j)

∏ni

∏i ∏ j ∏l≥0 ν
ni, j(l)
i, j (l)

∏ jP
(

∑k Sk, j
nk = n j− r j

)
=

1
det(ki, j)

∏ni

Pr (W = w)
n
rPr
(
O j = n j,∀ j

)
=

1
n
r

det(ki, j)

∏ni

Pr
(
W = w|O j = n j,∀ j

)
,

with n = ∑ni and r = ∑ri. We remark that Pr
(
W = w|O j = n j,∀ j

)
= Pr

(
F = F |# jF = n j,∀ j

)
is the

law of the MGW forest conditioned by its sizes.
From Algorithm 8, the first 9 steps are used to obtain a forest F0 with law V (Wb,U). The remaining

steps are a usual Accept-Reject method to obtain a sample from the law of the conditioned MGW forest.
For each multitype forest with root-type r and individuals type n coded by w, define

cw =
n
r

det(ki, j(w))
∏ni

=
Pr
(
W = w|O j = n j,∀ j

)
P
(
V (Wb,U) = w

) .
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Recall Definition 4.6 and Lemma 4.7. For i 6= j, since ki, j ≤ n j because the maximum number of type j
descendants that any type i can have is n j, then

det(−ki, j)≤ ∑
(i1,...,id)

d

∏
j=1

n j = (d +1)d−1
d

∏
j=1

n j,

where the last inequality is true by the following bijection. We define a function between the set of
elementary forests on d types and labeled trees on [d+1] vertices having root with label d+1. Regard an
elementary forest F on d types as a unitype tree on d+1 vertices by adding a root with label d+1 having
children the roots of F , and assigning label i to the type i vertex (cf. the paragraph before Lemma 4.5 in
[CL16], the remark after Proposition 7 in [BM14a]). This implies that the number of elementary forests
on d types is (d +1)d−1 by Cayley’s formula.

The previous paragraph gives us the bound cw ≤ n
r (d + 1)d−1 =: c. Thus the Accept-Reject method

(see [Law13, Section 8.2.4]) applies whenever the uniform V satisfies

V ≤
Pr
(
W = w|O j = n j,∀ j

)
cP
(
V (Wb,U) = w

) =
cw

c
=

det(−ki, j)

(d +1)d−1 ∏ni
≤ 1.

This concludes the proof.



Chapter 5

DINI DERIVATIVES FOR
EXCHANGEABLE INCREMENT
PROCESSES AND APPLICATIONS

Let X be an exchangeable increment (EI) process whose sample paths are of infinite variation. We prove
that, for any fixed t almost surely,

limsup
h→0±

(Xt+h−Xt)/h = ∞ and liminf
h→0±

(Xt+h−Xt)/h =−∞.

This extends a celebrated result of Rogozin for Lévy processes obtained in [Rog68], and completes the
known picture for finite-variation EI processes. Applications are numerous. For example, we deduce
that both half-lines (−∞,0) and (0,∞) are visited immediately for infinite variation EI processes (called
upward and downward regularity). We also generalize the zero-one law of Millar for Lévy processes
by showing continuity of X when it reaches its minimum in the infinite variation EI case (cf. [Mil77]);
an analogous result for all EI processes links right and left continuity at the minimum with upward and
downward regularity. We also consider results of Durrett, Iglehart and Miller on the weak convergence of
conditioned Brownian bridges to the normalized Brownian excursion considered in [DIM77] and broad-
ened to a subclass of Lévy processes and EI processes in [UB14, CUB15]. We prove it here for all infinite
variation EI processes. We furthermore obtain a description of the convex minorant known for Lévy pro-
cesses found in [PUB12] and extend it to non-piecewise linear EI processes. Our main tool to study the
Dini derivatives is a change of measure for EI processes which extends the Esscher transform for Lévy
processes.

5.1 Statement of the results
Undoubtedly, Lévy Processes are one of the most studied classes of stochastic processes. A less known
class which contains them is that of Exchangeable Increment (EI) processes considered in general by
Kallenberg in [Kal73].

Definition 5.1. A continuous time càdlàg R-valued stochastic process X = (Xt , t ∈ [0,1]) has exchange-
able increments if for every n≥ 1, the random variables

X1/n,X2/n−X1/n, . . . ,X1−X(n−1)/n

133
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are exchangeable.

Clearly, all Lévy Processes are EI since iid random variables are exchangeable. Therefore, one can
inherit results for Lévy processes from their counterparts for EI processes, as we illustrate in this chapter.
However, conditioning a Lévy process X by its final value (to obtain the so called Lévy bridges as in
[CUB11] and [UB14]) or considering (Xt − tX1, t ≤ 1) also yield non-Lévy processes, so that our results
can be applied more broadly.

Also, the analysis of EI processes is sometimes aided by simple combinatorial considerations. Indeed,
for random walks, the combinatorial considerations of [Spi56] lead to a more thorough understanding of
the Fluctuation Theory (study of extremes) of random walks and Lévy processes, and in particular of the
celebrated arcsine law for symmetric random walks and Lévy processes; it also reobtains the following
formula of [Kac54]

E
(

max
0≤k≤n

Xk/n

)
=

n

∑
k=1

1
k
E
(

X+
k/n

)
. (5.1)

More recently, [AP11] introduced a bijection on permutations which ultimately lead to a description of the
convex minorant of a (discrete time) EI process and reinterprets the fluctuation theory of random walks.
The Kac-Spitzer identity just displayed is interpreted as the equality in law

max
0≤k≤n

Xk/n
d
=

Kn

∑
i=1

[
XSi/n−XSi−1/n

]+ (5.2)

where 0 = S0 < S1 < · · · < SKn = n is the partition obtained from a uniform stick breaking process on
{1, . . .n} independent of X . The link with the typical fluctuation theory (of random walks and Lévy pro-
cesses) comes from considering a random n independent of X and geometrically distributed. The partition
is then seen to arise from a Poisson point process and the right hand side becomes a compound Poisson
distribution in the random walk or Lévy process case; cf. Theorem 4 in [AP11]. The description of the
convex minorant for discrete time EI processes is used here to prove an analogous theorem for contin-
uous time EI processes. The multidimensional case is much less studied, but the combinatorial lemma
of [BNB63], from which one obtains the expected characteristics of the convex hull of (2D) random
walks (like perimeter length or area) has been extended in various directions (and dimensions!) including
[RFW17, KVZ17a, KVZ17b, VZ18]. Still in the realm of fluctuation theory, [Ber93] constructs (one-
dimensional) random walks conditioned to stay positive through a bijection on permutations; this result
is used here to study continuity of an EI process when it reaches its minimum. Away from random walks,
(discrete time) EI processes of a particular type are associated to trees (with a given degree distribution)
in [BM14b] and combinatorial considerations give information on this probabilistic model.

Kallenberg obtained in [Kal73] the following representation of EI processes X : there exist random
variables α , β = (βi, i ∈ N), and σ ≥ 0 which are independent of an iid sequence of uniform random
variables (Ui, i≥ 1), and of a Brownian bridge b, such that

Xt = αt +σbt +∑
i≥1

βi [1Ui≤t− t] .

When α,β and σ are deterministic, the EI process X is termed extremal. All EI processes are therefore
mixtures of extremal EI processes and we say that X has canonical parameters (α,σ ,β ).

Remark 5.1. Our results are stated for extremal processes. They can be generalized by conditioning on
the parameters, on the set where these satisfy the given hypotheses.
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The sample paths of an extremal EI process X are of infinite variation if and only if

Infinite variation either σ > 0 or ∑ |βi| = ∞.

Our first result is the following:

Theorem 5.1. Let X be an extremal EI process of infinite variation. Then, for any fixed t almost surely,

limsup
h→0

Xt+h−Xt

h
= ∞ and liminf

h→0

Xt+h−Xt

h
=−∞ (5.3)

both from the left and from the right.

Reversibility for EI processes (the fact that (X1−X(1−t)−, t ≤ 1) has the same law as X) implies that it
is enough to handle the above theorem for the right-hand derivatives. By exchangeability, it is enough to
consider t = 0. We define

D(X) = limsup
h→0+

Xh

h
and D(X) = liminf

h→0+

Xh

h
.

In contrast, for finite variation EI processes X , which satisfy σ = 0 and ∑ |βi| < ∞, we can write them
as Xt = α̃t +∑i βi1Ui≤t where α̃ = α−∑i βi. Finite variation EI processes therefore are characterized by
the parameters (α̃,β ). It is well known that D(X) = D(X) = α̃ almost surely (cf. [Kal05, Cor. 3.30]) in
this case.

Theorem 5.1 was proved for Lévy processes in [Rog68] by using an integro-differential equation
initially found by Cramér and later recognized and analyzed as a resolvent equation by Watanabe in
[Wat71]. Additional proofs, based on the fluctuation theory for Lévy processes, may be found in [Sat99,
Ch. 9§47] and [Vig02]. Bertoin proved the limsup statement in the spectrally positive EI case (when
βi ≥ 0 for all i) in [Ber02], based on the results of Fristedt from [Fri72]. Kallenberg takes results further
by considering upper envelopes of EI processes in [Kal05] by clever couplings with Lévy processes.
These results are nevertheless insufficient to obtain Theorem 5.1. A particular case of the above result
is found in [CUB15, Prop. 3.5] under an additional hypothesis on β . Additionally, the same proposition
proves Theorem 5.1 whenever σ 6= 0 using the law of the iterated logarithm for Brownian motion. Hence,
we could assume that σ = 0 in our proofs, but the method is robust enough to handle it. Actually, in
the Lévy process setting, our method can also handle general Lévy processes and gives and independent
proof of Rogozin’s result. This is done in Section 5.2, while Theorem 5.1 is proved in Section 5.3.

Our next application is to show that the zero-one laws for Lévy processes of Millar are actually valid
(and therefore a consequence) of the following result (cf. items a and b of [Mil77, Thm. 3.1]) which links
behavior when reaching the minimum with behavior at time zero.

Definition 5.2. An EI process X is said to be upward regular if inf{t ∈ [0,1] : Xt > 0}= 0 almost surely.
The process X is downward regular if −X upward regular.

We consider Knight’s result [Kni96] in the extreme setting, about the necessary and sufficient condi-
tions for X to admit a unique minimum:

UM either σ 6= 0 or ∑i 1βi 6=0 = ∞ or ∑i 1βi 6=0 < ∞ and ∑i βi 6= α .
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Theorem 5.2. Let X be an extremal EI process satisfying UM. Let X1 = infs∈[0,1]Xs and let ρ be the
unique element of {t ∈ [0,1] : Xt ∧Xt− = X1}. Then Xρ > X1 if and only if X is irregular upward and
Xρ− > X1 if and only if X is irregular downward. In particular, X is continuous at ρ if and only if X is
both upward and downward regular and this holds on the set where X has paths of infinite variation.

Millar actually proves the above result in the Lévy process setting at more general random times and
refers to this as the pure behavior of Lévy processes, while noting that it is rather exceptional in the class
of Markov processes. Millar also remarks that it is this zero-one law which implies that the conditional
law of Xρ+· given X·∧ρ depends only on X1 and Xρ . The extension to general random times follows quite
easily with Millar’s arguments from the stated result above. When X is a Lévy process of finite-variation,
necessary and sufficient conditions for regularity have been found by Bertoin in [Ber97] in terms of the
Lévy measure. We believe that a similar characterization should be available for EI processes in terms of
β . This is left as an open problem.

Regularity of half-lines for a Lévy process has many other applications: it helps in obtaining perfect-
ness of the zero set and in constructing a continuous (Markovian) local time (Theorem 6.6 of [Kyp14]);
it implies uniqueness for solutions of time-change equations used to construct multitype branching pro-
cesses (Lemma 6 in [CPGUB17]); regularity of (−∞,0) has been used when pricing perpetual American
put options, as a condition for smooth pasting (see the discussion on Section 1.4.4 in [KL05]).

Our second application concerns the weak limit of an EI process X ending at zero, conditioned on
remaining above −ε , as ε → 0. The limiting process is called the Vervaat transform of X , and is defined
as

V (X) = X·+ρ mod 1

Theorem 5.3. Let X be an EI process with α = 0 which is both upward and downward regular. Consider
ε > 0 and let Xε have the law of X conditionally on X1 >−ε . Then Xε d→V (X) as ε → 0.

Note that the above theorem always applies to infinite variation EI processes thanks to Theorem 5.1.
The above theorem was proved when X is a Brownian bridge from 0 to 0 of length 1 by Durrett, Iglehart
and Miller in [DIM77]. The form given above is taken from [CUB15] and is more general, but is actually
a simple consequence of the results in that paper. What was lacking in the latter reference is the zero-one
law at the minimum of our Theorem 5.2 and, in particular, the fact that all infinite variation EI processes
reach their minimum continuously.

Our next application is to extend the description of the convex minorant of a Lévy process of [PUB12]
to the EI setting. In the latter reference, it is noted that this description gives another interpretation of a
fundamental fact of the fluctuation theory for Lévy processes, namely, the Pecherskii-Rogozin identity of
[PR69]. We will consider EI processes which do not have piecewise linear trajectories. By considering
the extremal case, this happens if and only if

NPL σ > 0 or ∑i 1βi 6=0 = ∞.

We will call these processes of the NPL type. The setting of infinite variation EI processes of Theorem
5.1 simplifies the proof.

Definition 5.3. The convex minorant of a càdlàg function f : [0,1]→ R is the greatest convex function c
that is bounded above by f . The excursion set is the open set

O = {t ∈ [0,1] : f (t)> c(t)} .
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Its maximal components, intervals of the form (g,d), are termed excursion intervals and they have an
associated length d − g, increment f (d)− f (g) , slope ( f (d)− f (g))/(d − g) and excursion e(t) =
f (g+ t)− c(g+ t) defined for t ∈ [0,d−g].

Recall that an upper bounded family of convex functions has a convex supremum, which explains why
the convex minorant exists. Let C be the convex minorant of an EI process X of the NPL type. As stated
in the next result, its excursion set

O = {t ∈ [0,1] : Xt >Ct}
is open and of Lebesgue measure 1. We will consider the following precise ordering of the excursion
intervals. Let (Ui, i≥ 1) be an iid sequence of uniform random variables on [0,1] and let (g1,d1), (g2,d2),
. . . be the sequence of distinct excursion intervals which are successively discovered by the sequence (Ui).
With them, we can define the sequence of lengths, slopes and excursions

(
ei). For another independent

sequence (Vi, i≥ 1) of iid uniform random variables on [0,1]. We will also consider the partition induced
by a stick-breaking scheme based on (Vi): define

S0 = 0, Si+1 = Si +Li and Li+1 = (1−Si)Vi+1.

Then (Li) is the uniform stick-breaking process and S is the partition of [0,1] induced by its cumulative
sums. Note that this is a very sparse partition of [0,1] which we can use to analyze X by considering:
XSi −XSi−1 and the sequence of Knight bridges where Ki is the Knight transform of X −XSi−1 on [0,Li].
The Knight transform of an EI process Y starting at zero on an interval [0, t] and satisfying UM is obtained
by first defining the Knight bridge Ks = Ys− sYt/t, letting ρ be the location of its (unique) minimum to
finally define

s 7→ K(ρ+s)mod t−Kρ ∧Kρ− for s ∈ [0, t].

Theorem 5.4. Assume that the EI process X satisfies NPL. Then, its excursion set O is open and of
Lebesgue measure 1. Furthermore, the following equality in law holds:(

di−gi,Xdi−Xgi,e
i)

i≥1
d
=
(
Li,XSi−XSi−1,K

i)
i≥1 .

Recent papers have used the above description of the convex minorant (in the Lévy process case) to
develop an exact simulation method for the maximum of a stable process (found in [GMU18b]) and an
approximate simulation method (albeit very efficient, cf. [GMU18a]) for the maximum of Lévy processes
whose one-dimensional distributions can be sampled exactly. This is particularly relevant to Monte Carlo
methods for ruin probabilities with finite and deterministic horizon. In [CM15], the classical Cramer-
Lundberg ruin process is generalized to an exchangeable increment process on [0,∞) to relax the inde-
pendence between claim sizes; these are mixtures of Lévy processes. In contrast to the classical setting,
when working under the classical net profit condition, the ruin probability might not converge to zero as
the initial capital goes to infinity and a new net profit condition is needed. In the finite-horizon case, we
would be dealing with an EI process of the type considered here; Theorem 5.4 would give us access to the
ruin probabilities.

We end this section with a few comments on the organization of the chapter. Our main result is
Theorem 5.1; all others have a simple proof from Theorem 5.1 and more specialized results from the
literature. A brief outline of the proof of Theorem 5.1, which explains the organization of the chapter, is
as follows.

Step 1: Assume α,σ = 0 and β j ≥ 0 for every j (if β j ≤ 0, apply this step to −X).
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• D(X) = ∞. This follows from results of [Fri72].

• D(X) =−∞. We use an exponential change of measure (which reduces to the well known Esscher
transform if X is a Lévy process), with parameters θ ∈R and T ∈ (0,1), to deduce that D(X) =
αθ/T +D(Xθ ), where Xθ is another EI process, αθ is a random variable (not independent
of Xθ , although for Lévy processes, αθ is deterministic). A lower bound on the probability
that an EI process with positive jumps is non-positive (found in [Sat99] for Lévy processes)
implies that D(Xθ ) ≤ 0. It remains to notice that the infinite variation hypothesis gives us
αθ →−∞ when θ →−∞, thereby proving Theorem 5.1 in this case.

Step 2: Assume σ 6= 0 or ∑ j
∣∣β j
∣∣ = ∞; also set α = 0.

• D(X) =−∞. We note that the aforementioned lower bound is valid when σ 6= 0 and that it works
along deterministic subsequences, so that liminfn→∞ Xtn/tn≤ 0 whenever tn ↓ 0 and X has only
positive jumps and a Brownian component. We then write X = X p +Xn, where X p and Xn

are independent, Xn only has negative jumps and X p only has positive jumps and contains the
Brownian component (if any). If X p or Xn has finite variation, we use [Kal05, Cor. 3.30] and
Step 1. Hence, assume both have infinite variation. We then get a random subsequence Tk ↓ 0
such that X p

Tk
/Tk→−∞ and, using independence, we get liminfXn

Tk
/Tk ≤ 0. Hence, we obtain

D(X) =−∞.

• D(X) = ∞. Apply the previous case to −X .

The chapter is organized as follows: In Section 5.2 we present a simplified proof following the outline
above in the setting of Lévy processes. This is because the exponential change of measure and lower
bounds on probabilities discussed above are already known. In Section 5.3, we consider Theorem 5.1 in
the case of EI processes. Here, we state and prove the exponential change of measure and lower bounds
for probabilities. Finally, Section 5.4 is devoted to the applications of our results, and contains the proofs
of Theorems 5.2, 5.3 and 5.4.

5.2 The Lévy process case
We now illustrate the proof of Theorem 5.1 in the case of Lévy processes. This proof is the only one
published that does not use fluctuation theory for Lévy processes and can be considered to be simpler. It
is based on basic facts on Lévy processes and on the Esscher transform. The reader might consult [Ber96]
and [Sat99] for these basic facts, some of which we now recall. In particular, Lévy processes satisfy the
Blumenthal 0-1 law and therefore the random variables D(X) and D(X) are actually constant.

Recall that X can be written as the independent sum of two Lévy processes X1 and X2, where X1 has
bounded jumps and X2 is compound Poisson. Since limt→0 X2

t /t exists and is finite, we see that it suffices
to prove Theorem 5.1 when X has bounded jumps.

Assume then, that the jumps of X are bounded by 1; we can then determine X by its Laplace transform

E
(

eλXt
)
= etΨ(λ ) where Ψ(λ ) = αλ +λ

2
σ

2/2+
∫
[−1,1]

[eλx−1−λx]π(dx)

by the Lévy-Khintchine formula. Let X be a Lévy process whose paths have infinite variation; equiva-
lently, we assume that

σ
2 > 0 or

∫
|x| π(dx) = ∞.
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The Lévy measure π , which is concentrated on [−1,1], satisfies∫
x2

π(dx)< ∞.

In other words, the characteristic triplet of X is (α,σ ,π).
The following result is a trivial extension of the well-known Esscher change of measure for Lévy

processes, as found in [Kyp14]. It will imply that the superior and inferior limits in Theorem 5.1 are not
finite. Let Ft = σ(Xs : s≤ t).

Proposition 5.1 (Esscher transform). Fix θ ∈ R. Define the measure Q by its restriction to Ft as

Q|Ft = eθXt−tΨ(θ) ·P|Ft .

Then, under Q, the stochastic process X is a Lévy process whose Laplace exponent is:

Ψ
θ (λ ) = Ψ(λ +θ)−Ψ(θ) .

In particular, the characteristic triplet of X under Q is (αθ ,σ ,πθ ) where:

αθ = α +θσ
2 +

∫
[−1,1]

[
eθx−1

]
xπ(dx) and πθ (dx) = 1[−1,1](x)eθx

π(dx) .

Note that αθ →−∞ as θ →−∞ when
∫
|x| π(dx) = ∞ or σ2 > 0.

We now specialize to the spectrally positive case and then use a (simple) argument to deduce the
general case.

5.2.1 The spectrally positive case
We now focus on the spectrally positive case, which corresponds to the Lévy measure π concentrated on
[0,1]. When X is spectrally positive, a general result of Fristedt implies that limsupt→0 |Xt | /t = ∞; cf. the
proof of part A of Theorem 1 in [Fri72]. Since Xt/t is a reverse martingale with no negative jumps (when
t decreases) which does not converge (because of the preceding phrase), Proposition 7.19 in [Kal02] tells
us that D(X) = ∞.

To prove that D(X) =−∞, we use the following result of Sato for spectrally positive Lévy processes.

Lemma 5.1. If X is a spectrally positive Lévy process with parameters (α,σ ,π) with jumps bounded by
1 and α = E(X1)≤ 0 then P(Xt ≤ 0)≥ 1/16 for all t ≥ 0. Also, for any deterministic sequence tn→ 0,

liminf
n→∞

Xtn
tn
≤ 0.

The first statement is Proposition 46.8 in [Sat99]; the proof is simple and based on inequalities of the
Paley-Zygmund type (based on exponentials of X) and on properties of the Laplace exponent. However,
it should be noted that the theorem cannot hold for all α (consider α → ∞, so that P(Xt ≤ 0)→ 0), and
that the proof is valid when α ≤ 0. The second statement is found in the penultimate paragraph of the
proof of Theorem 47.1 in [Sat99], and basically follows from the Borel-Cantelli lemma and the first part
of Lemma 5.1; however, in the proof, one uses that α ≤ 0, so that it remains valid. We reprove the lemma
in the EI setting using Lemma 5.3 below.
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Proof of Theorem 1 for totally asymmetric Lévy processes. As before, we restrict ourselves to the spec-
trally positive case with jumps bounded by 1.

Note in particular, that Lemma 5.1 implies that D(X)≤ 0 when α = 0. On the other hand, by absolute
continuity, we see that D(X) takes the same constant value both under P and under Q. Hence, we can
write

D(X) = αθ +D(X̃)

where X̃ is a spectrally positive Lévy process of characteristics (0,σ ,πθ ). By the preceding lemma,
D(X̃) ≤ 0. As we remarked, αθ →−∞ as θ →−∞, so that D(X) = −∞. We deduce that for all α ∈ R,
D(X +α Id) =−∞.

5.2.2 The general case
Let X be a Lévy process of infinite variation and bounded jumps. It suffices to prove D(X) =−∞ for any
such process and then apply this to −X to conclude that also D(X) = ∞. Using the Lévy-Itô decomposi-
tion, we write X = Xneg +Xpos as the sum of two independent Lévy processes, where Xneg is spectrally
negative and Xpos is spectrally positive; this can be achieved with E

(
Xpos

t
)
= 0 so that Lemma 5.1 applies.

In particular, from Theorem 5.1 for totally asymmetric Lévy processes (proved in Subsection 5.2.1), we
have D(Xneg) =−∞. Hence, there exists a random sequence Vn ↓ 0 such that Xneg

Vn
≤−nVn. Since Xneg is

independent of Xpos and the latter is spectrally positive, Lemma 5.1 implies that liminfn→∞ Xpos
Vn

/Vn ≤ 0.
We then conclude that

liminf
t→0

Xt

t
≤ liminf

n→∞

XVn

Vn
≤ liminf

n→∞

Xpos
Vn

Vn
−n =−∞.

5.3 Dini derivatives of EI processes in the totally asymmetric case
In this section, we prove Theorem 5.1; note that it suffices to prove it for extremal EI process and obtain
the general case by mixing. For concreteness, we assume that X is extremal and only has positive jumps,
so that βi ≥ 0. We first show that Dini derivatives are constant.

Proposition 5.2. Let X be an extremal EI process with parameters (α,σ ,β ). Then

D(X) = c1 and D(X) = c2

for some constants c1,c2 ∈ [−∞,∞].

Proof. Fix any k ∈ N, and define X (−k)
t = αt +σbt +∑

∞
j=k+1 β j

[
1U j≤t− t

]
. Hence, for any t < min{Ui :

i ∈ [k]} we have
Xt

t
=

X (−k)
t

t
−

k

∑
1

βi,

which implies

lim
t↓0

Xt

t
= lim

t↓0

X (−k)
t

t
−

k

∑
1

βi, (5.4)

for any k. Let
G =

⋂
ε∈(0,1)

σ(bs : s≤ ε) .
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The (local) absolute continuity of the Brownian bridge with respect to Brownian motion, and the Blu-
menthal zero-one law for the latter imply that G is trivial. Let Fk = σ(Uk,Uk+1, . . .) and note that G is
independent of (any sigma-algebra but in particular) Fk. As noted in the proof of [Ber96, Prop. I§2.4],
the argument for Kolmogorov’s zero-one law tells us that

⋂
k G ∨Fk is trivial. Since the right-hand side

of (5.4) is G ∨Fk-measurable, we deduce that the left-hand side is
⋂

k G ∨Fk-measurable and therefore
trivial. A similar argument works for the lower Dini derivative.

We will proceed as in the case of Lévy processes: we first give a change of measure for EI processes,
analogous to the Esscher transformation, which has the effect of transforming the drift and the jumps.
As in the Lévy case, D(X) = ∞ follows from simple results on the literature. We then use martingale
arguments to prove that D(X)≤ 0. Finally, our change of measure will imply that D(X) =−∞.

Proposition 5.3 (Change of measure). Let X = (Xt , t ∈ [0,1]) be an extremal EI process with character-
istics (α,σ ,β ), defined on the probability space (Ω,F ,P). Then

E
(

eθXt
)
= eαθ t+θ 2σ2t(1−t)/2

∞

∏
j=1

[
e−θβ jt [1− t]+ eθβ j(1−t)t

]
< ∞

for all t ∈ [0,1] and θ ∈ R.
Fix T ∈ (0,1), θ ∈ R and let Ft = σ(Xs : s≤ t). Define Q on FT by

Q(A) =
E
(
eθXT 1A

)
E
(
eθXT

) .

Under Q, the stochastic process (Xt , t ≤ T ) is an EI process whose (random) characteristics (αθ ,σ ,β θ )
have the following law. Let (B j) be independent Bernoulli random variables with parameter p j given by

p j =
Teθb j

Teθb j +(1−T )
. (5.5)

Then
α

θ = αT +θσ +∑
j

β j
[
B j−T

]
and β

θ
j = β jB j,

where ∑ j β j
[
B j−T

]
converges almost surely and in L1.

If α = 0 and either σ > 0 or ∑i 1βi 6=0 = ∞ then E
(

eλXt
)
→ ∞ as λ → ∞ for every t ∈ (0,1).

Remark 5.2. When X is a finite variation EI process, driven by the two parameters (α̃,β ) (rather than
(α,0,β ), ) as explained in Section 5.1, then X under Q is also of finite variation and is driven by the
two parameters (α̃T,β θ ). Hence, D

(
Xθ
)
= D

(
Xθ
)
= α̃ , which does not depend on θ ; the interpretation

is that, in this case, the change of measure is not adding a drift. If we choose not to reparametrize with
(α̃,β θ ), the finite variation case is characterized by the fact that αθ is bounded in θ . On the other hand,
if X is of infinite variation, we shall see that αθ stochastically increases from −∞ to ∞.

Proof. Let us begin with the proof that the moment generating function of X is finite. Use the canonical
representation Xt = αt +σbt +∑i β j

[
1U j≤t− t

]
. Define

φ(t,θ ,β ) = e−θβ t [1− t]+ eθβ (1−t)t.



CHAPTER 5. DINI DERIVATIVES FOR EI PROCESSES AND APPLICATIONS 142

Note that,

E
(

eθ

[
β j1U j≤t−t

])
= φ

(
t,θ ,β j

)
.

For fixed t and θ , we have

φ(t,θ ,β ) = 1+
1
2
(
θ

2t−θ
2t2)

β
2 +O

(
β

3)
as β → 0. Therefore, ∏

∞
j=1 φ

(
t,θ ,β j

)
exists, since (β j) is square summable. By Fatou’s lemma, we see

that

E
(

eθXt
)
≤ eαθ t+θ 2σ2t(1−t) lim

n→∞
∏
j≤n

E
(

eθ

[
β j1U j≤t−t

])
≤ eαθ t+θ 2σ2t(1−t)

∞

∏
j=1

φ
(
t,θ ,β j

)
< ∞.

But then, Hölder’s inequality implies the log-concavity of θ 7→ E
(
eθXt

)
, which is then enough to obtain

uniform integrability of the sequence Xn =X−∑ j>n β j
[
1U j≤t− t

]
. This implies the stated infinite product

formula for the moment generating function of Xt .
Consider now a sequence V = (Vj) of independent uniform (0,1) random variables, independent also

of b and the (U j) and define B j = 1V j≤p j . Note that obviously ∑β 2
j B2

j < ∞. Regarding αθ , we use
the Kolmogorov three series theorem. Indeed, since the sequence (β j) is bounded, so is the sequence
(β j
[
B j−T

]
). On the other hand, we have

E

(
n

∑
j=1

β j
[
B j−T

])
=

n

∑
j=1

T (1−T )β j
eθβ j −1

Teθβ j +(1−T )
= O

(
∞

∑
j=1

β
2
j

)
.

Finally, we see that

Var

(
n

∑
j=1

β j
[
B j−T

])
=

n

∑
j=1

β
2
j p j(1− p j)≤

∞

∑
j=1

β
2
j .

Consider also the process

Xθ
t = α

θ t/T +θσbt/T +∑
j

β jB j

[
1U j≤t/T − t/T

]
defined on [0,T ]. Note that Xθ is an EI process on [0,T ] with random characteristics (αθ ,σθ ,β θ ); we
finish the proof by comparing, through moment generating functions, the finite-dimensional distributions
of the increments of X under Q and of Xθ under P.

First of all, by independence of U and b; since the law of b under eθbT ·P equals that of b+σθ Id (as
can be proved through the Gaussian character of b), it suffices to prove the theorem when σ = 0. Since α

is deterministic, it also suffices to consider α = 0.
Let 0 = t0 ≤ t1 ≤ ·· · ≤ tn = T and λ1 · · · ,λn ∈ R. Using similar arguments as for justifying the

exchange of expectation and infinite products in the computation of the generating function, we first see
that

E

(
n

∏
i=1

eλi[Xti−Xti−1]eθXT

)

= ∏
j
E

(
n

∏
i=1

eλi

[
α(ti−ti−1)+σ(bti−bti−1)+β j1ti−1≤U j≤ti

]
eθ

[
αT+σbT+β j1U j≤T

])
.
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Therefore, the Laplace transform of (Xt1 , . . . ,Xtn) is finite under Q and

EQ

(
n

∏
i=1

eλi[Xti−Xti−1]

)
=

1
E
(
eθXT

)E( n

∏
i=1

eλi[Xti−Xti−1]eθXT

)

=
1

E
(
eθXT

) ∞

∏
j=1

E

(
n

∏
i=1

eλiβ j[1U j∈[ti−1,ti]
−(ti−ti−1)]eθβ j[1U j∈[0,T ]−T ]

)
.

By considering the interval of the partition [ti−1, ti] on which U j falls, and recalling the definition of p j in
(5.5), we get

EQ

(
n

∏
i=1

eλi[Xti−Xti−1]

)

=
1

E
(
eθXT

) ∞

∏
j=1

e−θβ jT−β j ∑
n
i=1 λi(ti−ti−1)

[
(1−T )+

n

∑
i=1

(ti− ti−1)e(λi+θ)β j

]

=
∞

∏
j=1

e−β j ∑
n
i=1 λi(ti−ti−1)

[
(1− p j)+

n

∑
i=1

ti− ti−1

T
p jeλiβ j

]
.

Recall that α and σ are zero in the definition of αθ and Xθ . On the other hand, using the definition
of Xθ , we can use the distributional assumptions on B and U (first independence, then conditioning on B,
and finally considering the interval [ti−1, ti) on which U j falls) to obtain

∏
j
E

(
n

∏
i=1

eλiβ j[B j−T ]
ti−ti−1

T +λiβ jB j

[
1TUj∈(ti−1,ti)

− ti−ti−1
T

])
= ∏

j
e−∑

n
i=1 λiβ j(ti−ti−1)E

([(
1− p j

)
+ p je

∑
n
i=1 λiβ j1TUj∈(ti−1,ti)

])
= ∏

j
e−∑

n
i=1 λiβ j(ti−ti−1)

[
(1− p j)+ p j

n

∑
i=1

eλiβ j
ti− ti−1

T

]
The preceding equation shows that the increments of the left-hand side have the same law as the corre-
sponding increments of β j[1U j≤·−·] under Q, for every j. Thus,

∏
j
E

(
n

∏
i=1

eλiβ j[B j−T ]
ti−ti−1

T +λiβ jB j

[
1TUj∈(ti−1,ti)

− ti−ti−1
T

])
= EQ

(
n

∏
i=1

eλi[Xti−Xti−1]

)
< ∞.

Similarly as in the proof of Proposition 5.3, using Fatou’s lemma and Hölder’s inequality we deduce

E

(
n

∏
i=1

eλi[Xθ
ti
−Xθ

ti−1
]

)
= ∏

j
E

(
n

∏
i=1

eλiβ j[B j−T ]
ti−ti−1

T +λiβ jB j

[
1TUj∈(ti−1,ti)

− ti−ti−1
T

])
.

Hence the finite-dimensional distributions of X under Q, and Xθ under P are the same.
The last part of the statement follows from the fact that if ξ is any random variable on R with finite

generating function g, then g(∞) = ∞ whenever P(ξ > 0) > 0. The hypotheses on X are chosen so that
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P(Xt > 0) > 0 for all t ∈ (0,1). Indeed, when α = 0, (Xt/(1− t), t < 1) is a martingale; the assumption
P(Xt > 0) = 0 implies E

(
X−t
)
= 0 which then gives P(Xt = 0) = 1 and our hypotheses imply that Xt has

no atoms for t ∈ (0,1) as shown in the proof of Lemma 1.2 in [Kni96].

We now consider the behavior of the drift αθ as a function of θ .

Proposition 5.4. The mapping θ 7→ αθ is stochastically non-decreasing. Also, αθ ∈ L1, θ 7→ E
(
αθ
)

is
continuous and strictly increasing and, if X is of infinite variation, E

(
αθ
)
→±∞ as θ →±∞.

Proof. We have already proved that αθ is a convergent series (plus the couple of constants α and θσ );
it is absolutely divergent in the infinite variation case and otherwise absolutely convergent. Using our
explicit construction of the random variables B j as 1V j≤p j and the definition of p j in (5.5), we note that
the β j[B j−T ] are increasing in θ , which implies the same for αθ .

Recall that αθ is (modulo a constant) a series of independent random variables taking two values,
whose means and variances are summable. Hence αθ ∈ L1 and

E
(

α
θ

)
= α +θσ +T (1−T )∑

j
β j

eθβ j −1
Teθβ j +(1−T )

.

The above summands are O
(

θβ 2
j

)
, uniformly for θ on compact sets. This implies the continuity of

θ 7→ E
(
αθ
)
. But the mapping

θ 7→ β j
eθβ j −1

Teθβ j +(1−T )

is strictly increasing, and monotone convergence implies the same for θ 7→ E
(
αθ
)
. Finally, note that the

preceding function of θ goes to ±β j as θ →±∞. When X is of infinite variation, Fatou’s lemma can be
applied to the series for E

(
αθ
)
, as the summands in its definition are either all positive or all negative,

and conclude that E
(
αθ
)
→±∞ as θ →±∞.

We now give a version of Lemma 5.1 for EI processes, as well as a simple lemma which uses it.

Lemma 5.2. Let X be an extremal EI process with parameters (0,σ ,β ) such that βi ≤ 0 for all i. Then
P(Xt ≥ 0)≥ 1/16 for every t ≤ 1/2.

Proof. Assume we have proved that

E
(

e2λXt
)
≤ E

(
eλXt

)4
(5.6)

for λ > 0 and t ≤ 1/2. Then, using the Cauchy-Schwarz inequality we would obtain for λ > 0

P(Xt ≥ 0)≥

(
E
(

eλXt
)
−E
(

eλXt 1Xt≤0

))2

E
(
e2λXt

)
≥

(
E
(

eλXt
)
−1
)2

E
(
eλXt

)4
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By Proposition 5.3 we can chose λt such that E
(

eλtXt
)
= 2, which implies

P(Xt ≥ 0)≥ 1
16

.

Now, let us prove (5.6). First note that (5.6) is an equality for a Brownian bridge. Hence, by the in-
dependence of the latter with the (purely discontinuous) jump part of X , it is enough to assume σ = 0.
Defining

φ j(λ ) := lnE
(

eλβ j[1U j≤t−t]
)

:= lnψ j(λ ),

it is enough to prove for every j ∈ N that

0≤ 4φ j(λ )−φ j(2λ ) λ ≥ 0. (5.7)

Since the right-hand side is zero when λ = 0, proving it has a non-negative derivative implies Equation
(5.7). Taking the derivative with respect to λ , we need to prove that

0≤4
β j(1− t)teλβ j(1−t)+β j(−t)(1− t)eλβ j(−t)

ψ j(λ )

−2
β j(1− t)te2λβ j(1−t)+β j(−t)(1− t)e2λβ j(−t)

ψ j(2λ )

which is equivalent to

0≥ 2
eλβ j −1

teλβ j +1− t
− e2λβ j −1

te2λβ j +1− t
.

and further equivalent, since the denominators are positive by convexity of the exponential function, to

1− t +(t−2)eλβ j +(1+ t)e2λβ j − te3λβ j ≥ 0

As before, the left-hand side at λ = 0 is zero, hence, it suffices to prove its derivative is non-negative.
We apply an analogous reasoning by evaluation at λ = 0, differentiation and division by β jeλβ j (which is
negative) three times! The sequence of derivatives, taking out the factor β jeλβ j are

t−2+2(1+ t)eλβ j −3te2λβ j ,

2(1+ t)−6teλβ j and

−6teλβ j .

The penultimate function is non-negative at λ = 0 when t ∈ [0,1/2]. The last row then shows that the
penultimate one is non-negative, which we can then bootstrap to show inequality (5.7).

The choose of λt such that f (λt) = 2 in the preceding proof seems arbitrary; the reader can check it
gives the best bound obtainable by this method.

Lemma 5.3. Let X = (Xt , t ≥ 0) be a càdlàg process such that, for some sequence tn ↓ 0, the random
variable liminfn Xtn/tn is constant. Assume that, for some ε,c > 0, we have P(Xt ≤ 0) > c for every
t ∈ [0,ε]. Then, liminfn Xtn/tn ≤ 0.
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Remark 5.3. Note that the above can be applied when the augmented initial σ -algebra of X, given
by ∩ε>0σ(Xs : s≤ ε), is trivial (hence for Feller processes) or in the case of extremal EI processes by
mimicking the proof of Proposition 5.2; in this case, we can apply the result to any sequence tn ↓ 0.

Also, by mixing,we deduce from the above two lemmas that if X is an EI process with random char-
acteristics (α,σ ,β ), where α ≤ 0 and βi ≥ 0 almost surely, then liminfn Xtn/tn ≤ 0 almost surely for any
sequence tn ↓ 0.

Proof. By contrapositive, assume that liminfn Xtn/tn > 0. Then:

lim
N→∞

P(XtN ≤ 0)≤ lim
N→∞

P(Xtn ≤ 0 for some n≥ N)

= P(Xtn ≤ 0 infinitely often)

= P
(

liminf
n

Xtn
tn
≤ 0
)
= 0.

We are now ready to prove Theorem 5.1 in the case of totally asymmetric EI processes. The proof is
similar to the one for (spectrally positive) Lévy processes given in Section 5.2.

Proof of Theorem 5.1 when α,σ = 0 and βi ≥ 0. We first prove that D(X)=∞. Define the measure β (dx)=
∑δβ j∈dx. Using Fubini’s theorem∫ 1

0
β (t,∞)dt =

∫ 1

0

∫
∞

t
β (dx)dt =

∫
∞

0

∫ 1∧x

0
dt β (dx) = ∑β j∧1 = ∞.

Hence, we obtain for any k ≥ 1 ∫ 1

0
β (kt,∞)dt =

∫ k

0
β (t,∞)du/k = ∞.

It follows that, for infinitely many t ∈ (0,1) we have |∆Xt | > kt, which in turn implies |Xt | > kt/2 or
|Xt−|> kt/2, for such t. Since k was arbitrary, we have limt↓0 |Xt |/t = ∞.

Note that (Xt/t, t ∈ (0,1]) is a backward martingale (here, it is important that we restricted ourselves to
the case α = 0) without positive jumps. Note that it does not converge, thanks to the preceding paragraph.
The process N = (−X−t/t, t ∈ [−1,0)) is therefore a martingale without positive jumps (divergent almost
surely). If we define τc as the first time N reaches c ∈R+, then (c−N−t∧τc ,−1≤ t < 0) is a non-negative
martingale. By the martingale convergence theorem N·∧τc converges a.s. to a finite limit as t ↑ 0. If τc
were infinite, N itself would therefore converge; hence, τc is almost surely finite. Since c was arbitrary,
then limt↑0 N−t = ∞, which implies limt↓0 Xt/t = ∞. (The above argument was taken from [Ber01] and
[Fri72]). We have proved that D(X) = ∞ for any extremal EI process with parameters (α,0,β ) of infinite
variation when βi ≥ 0 for all i. Taking mixtures, we can let α and β be random, as long as ∑i βi = ∞

almost surely. We use this remark in the following paragraph.
We now prove that D(X) = −∞. First we apply a change of measure (through Proposition 5.3) to

X ; call the resulting measure Qθ to stress the dependence on θ . Write αθ Id/T +Y θ for the (random
parameter) EI process whose law is Qθ . Recall from Proposition 5.2 that D(X) is a constant. Since Qθ is
absolutely continuous with respect to P then D(X) = αθ/T +D

(
Y θ
)
. Even if Y θ has random parameters,

its jumps are almost surely positive. The remark following Lemmas 5.2 and 5.3 implies that D
(
Y θ
)
≤ 0

almost surely. Taking expectations we see that

D(X) = E(D(X)) = E
(

α
θ/T

)
+E
(

D
(

Y θ

))
≤ E

(
α

θ/T
)
→−∞
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as θ →−∞, since E
(
αθ/T

)
→−∞ by Proposition 5.4.

Proof of Theorem 5.1. As before, assume that α = 0 and focus only on the statement D(X) =−∞, since
we can at the end apply it to −X . Write X = X pos +Xneg, where X pos and Xneg are independent extremal
EI processes with parameters (0,σ ,β pos) and (0,0,β neg), where β pos are the positive terms of β and β neg

the negative ones. We have proved Theorem 5.1 for X pos and for Xneg if they are of infinite variation. If
one of them is of finite variation, then the other one must be of infinite variation, and then Theorem 5.1
holds for X . Hence, we can assume that both X pos and Xneg are of infinite variation.

But then, there exists a random sequence Tk ↓ 0 such that Xneg
Tk

/Tk →−∞ thanks to Theorem 5.1 for
spectrally negative EI processes (just proved). Since (Tk) is independent of X pos, we can apply Lemmas
5.2 and 5.3 to conclude that liminfk X pos

Tk
/Tk ≤ 0. We conclude that D(X)≤ liminfk XTk/Tk =−∞.

5.4 Further applications
We now move on to the applications of Theorem 5.1, which were stated as Theorems 5.2, 5.3 and 5.4.
We already mentioned that Theorem 5.3 follows from the same arguments as in [CUB15] once we have
Theorem 5.1. Again, it suffices to prove the theorems for extremal EI processes.

5.4.1 An extension of Millar’s zero-one law at the minimum
To prove Theorem 5.2, we will use a representation of the post-minimum process associated to an EI
process found in [Ber93], which is now recalled.

Let X be an extremal EI process with parameters (α,σ ,β ); according to [Kal05, Ch. 2], such a process
is a semimartingale. Let τ = sup{t ∈ [0,1] : X1 = Xt ∧Xt−} be the time of the ultimate infimum. Define
the post-infimum process X−→ as

X−→(t) =

{
Xτ+t−X1 t ≤ 1− τ

† t > 1− τ,

(where † is a cemetery state) and the reversed pre-infimum process X←− as

X←−(t) =

{
X(τ−t)−−X1 t ≤ τ

† t > τ.

We introduce two processes X↑ and X↓ as in [Ber93]. Since X is a semimartingale, it has a semimartingale
local time at zero, denote this by L; this local time is actually zero unless σ > 0 in which case

Lt = lim
ε↓0

σ2

2ε

∫ t

0
1|Xs|≤ε ds.

Consider the time spent at (0,∞) and (−∞,0] up to time t of X , that is

A+
t =

∫ t

0
1Xs>0ds and A−t =

∫ t

0
1Xs≤0ds,
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Figure 5.1: The post-infimum and yuxtaposition of the positive excursion processes are depicted in blue. The pre-infimum
and yuxtaposition of the negative excursion processes in green.

and consider also their right-continuous inverses α±(t) = inf{s : A±s > t}. It can be seen by a picture, that
using the time change α+ on X consist on erasing the jumps of X that fall on (−∞,0] and closing up the
gaps (similarly for α−). The process of juxtaposition of the excursions in (0,∞) is given by

X↑(t) =

(
X·+ ∑

0<s≤·
[1Xs≤0X+

s−+1Xs>0X−s−]+L

)
(α+(t)).

We remark that an excursion in (0,∞) includes the possible initial positive jump across 0 and excludes
the possible ultimate negative jump across 0. The process of juxtaposition of the excursions in (−∞,0] is
given by

X↓(t) =

(
X·− ∑

0<s≤·
[1Xs≤0X+

s−+1Xs>0X−s−]−L

)
(α−(t)).

By establishing a bijection for discrete-time EI processes and passing to the limit, Bertoin obtains the
following result.

Theorem 5.5 (Theorem 3.1 in [Ber93]). Let X be an extremal EI process on [0,1] with parameters
(α,σ ,β ). Then, the following equality in law holds

(X−→,−X←−)
d
= (X↑,X↓).

A graphical representation of such equality in law is given in Figure 5.1.

We first establish the following simple result for EI processes.

Lemma 5.4. When X satisfies UM, we have P
(
XU j or XU j− = 0

)
= 0 for every j ∈ N.
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Proof. From the proof of Lemma 1.2 in [Kni96] we see that UM implies that P(Xt = x) = 0 for any
t ∈ (0,1) and x ∈R. Fix any j ∈N and define X j

t = Xt−β j[1U j≤t− t]. Since XU j = β j(1−U j)+X j
U j

, then

P
(
XU j = 0

)
= P

(
β j(1−U j)+X j

U j
= 0
)
=
∫ 1

0
P
(

β j(1− t)+X j
t = 0

)
dt = 0.

The statement for the left limit follows by time-reversibility.

Proof of Theorem 5.2. Let X be an EI process satisfying UM. The previous lemma tells us that X does
not jump into or from 0.

Assume that X is irregular upward. Then, X remains negative up to the time

τ
+
0 = inf{t > 0 : Xt > 0},

which is strictly positive. We actually have τ
+
0 < 1 since otherwise X would have to jump at time 1, an

event with zero probability. The trajectory of X up to τ
+
0 might comprise several excursions below zero

and we will be interested in the first one, which ends at the random time

T = min{t > 0 : Xt ≥ 0} ≤ τ
+
0 .

Recall the definition of τ as the time of the last minimum. Let us prove that

0 < ∆Xτ almost surely. (5.8)

Note that
∆Xτ = ∆ X−→0

d
= ∆X↑0 = ∆X

τ
+
0
,

where the equality in distribution holds by Theorem 5.5. Since we do not jump into or from 0, then
∆X

τ
+
0
= 0 if and only if X

τ
+
0
= 0 and X is continuous at τ

+
0 . Assume that ∆X

τ
+
0
= 0 has positive probability.

Then the reversed pre-infimum process would hit zero twice (and the process X would hit its infimum
twice); this is impossible under UM. Indeed, note that X = X↓ on [0,T ], and that from the construction of
the pre-minimum process in Theorem 5.5, T has the same distribution as S where

S = inf
{

t > 0 : X←−t = 0
}
= τ− sup{s < τ : Xt− = X1} .

When ∆X
τ
+
0
= 0, then T > 0 and XT = 0. Hence, with positive probability, we would have that S < τ and

XS− = X1, so that the minimum of X is reached at least twice. The contradiction follows from negating
(5.8), which proves its validity.

Conversely, assume X jumps from its infimum with positive probability. Then equation (5.8) holds
true (though only with positive probability). Since X is continuous at zero, then τ

+
0 ∈ (0,1), which implies

X is in (−∞,0] on (0,τ+0 ). This means X is irregular upward with positive probability; being irregular
upward is a tail event for the uniform random variables defining X , therefore, its probability is zero or
one.

Using similar arguments we can prove X is irregular downward if and only if X jumps into its infimum.
Finally, Theorem 5.1 shows that X is both regular upward and downward when it is of infinite varia-

tion, so that X reaches its minimum continuously.
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5.4.2 EI processes conditioned to remain positive
The aim of this subsection is to prove Theorem 5.3. As before, let X be an extremal EI process with
parameters (0,σ ,β ). Assume that X is both upward and downward regular. Since α = 0, either X has
infinite activity (∑i 1βi 6=0 = ∞) or a Gaussian component (σ 6= 0). Otherwise, X would have piecewise
linear trajectories with the same slope ∑i βi; but then, X would not be either upward or downward regular.
Hence, X satisfies UM; let τ be the unique time X reaches its minimum. Theorem 5.2 tells us that X is
continuous at τ . Corollary 3.1 in [CUB15] says that under these hypotheses, the law of X conditioned to
remain above −ε converges weakly to the Vervaat transform of X , given by Xρ+· mod 1−Xρ . What was
needed in the above cited corollary were conditions that would allow one to apply it and we have identified
them in terms of regularity of both half-lines. In the particular case when X is of infinite variation,
Theorem 5.1 tells us that X is both upward and downward regular and that therefore, the conclusion of
Theorem 5.3 is satisfied.

The reader might wonder why we had to impose α = 0. The reference [CUB15] has a description of
what could be the limit when α > 0 and β = 0 (that is, for a Brownian bridge from 0 to α). The candidate
for a limit is described as a random shift, just as the Vervaat transformation for the case α = 0, but it
needs a bicontinuous family of (non-zero!) local times in its definition. Defining such a process for an
EI process is an open problem; semimartingale local times are only non-zero when σ > 0, so a different
approach is needed. Note that a limit theorem is not provided in [CUB15].

5.4.3 The convex minorant of EI processes
Let X be an extremal EI process with parameters (α,σ ,β ). To prove Theorem 5.4, we will rely strongly
on [PUB12]. First, we establish some basic properties of the convex minorant in analogy with [PUB12,
Proposition 1]. They will be fundamental in applying a transformation in Skorohod space, which is
continuous on paths satisfying the conclusion.

Proposition 5.5. Assume that X satisfies NPL and let C be the convex minorant of X. Then

1. The open set O = {t ∈ [0,1] : Ct < Xt ∧Xt−} has Lebesgue measure 1.

2. For every connected component (g,d) of O , ∆Xg∆Xd ≥ 0. If X has infinite variation, ∆Xg∆Xd = 0.

3. If (g1,d1) and (g2,d2) are connected components of O , then

Cd1−Cg1

d1−g1
6=

Cd2−Cg2

d2−g2
.

The proof of the above proposition is almost the same as the corresponding one in [PUB12]. We just
need to apply different results. For example, the fact that when X has finite variation, D(X) = D(X) = α̃

(in the parametrization for this case), which is found in [Ber96, Prop. 4, p. 81] for Lévy processes, is now
found in [Kal05, Cor. 3.30, p. 161] for EI processes (we have already used this result). Döblin’s result
that non-piecewise linear Lévy processes have continuous distributions, has a counterpart for EI processes
in [Kni96], which also contains the fact that the minimum is reached in a unique place under NPL (which
implies UM). One also needs our extensions of Millar’s results stated in Theorem 5.2, as well as the fact
that

liminf
t→0+

XUi+t−XUi

t
=−∞,
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at any jump time Ui of X . This follows from 5.1 applied to (Xt−βi[1Ui≤t− t]).
To prove Theorem 5.4, we will use the following path transformation that leaves the laws of EI pro-

cesses invariant.

Theorem 5.6. Let X be an extremal EI process of parameters (α,σ ,β ) satisfying NPL. Define its convex
minorant C and the open set of excursion intervals O as before. Let U be a uniform random variable on
(0,1) independent of X and consider the connected component (d,g) of O that contains U. Define the
3214 transformation XU of X by means of

XU
t =


XU+t−XU , 0≤ t < d−U
Cd−Cg +Xg+t−(d+U)−XU d−U ≤ t ≤ d−g
Cd−Cg +Xt−(d−g) d−g≤ t < d
Xt d ≤ t ≤ 1

.

Then, (U,X)
d
= (d−g,XU).

Remark that U belongs almost surely to O , since the latter has Lebesgue measure 1 by Proposition
5.5.

The above path transformation can be understood as follows: the random variable U is used to select
a face of the convex minorant of X , with endpoints g and d. This divides the trajectory into 4 parts,
say 1,2,3 and 4 which are then rearranged as 3,2,1,4. Parts 1 and 4 have the same convex minorant as
X , with the selected face removed. Parts 3 and 2 are interpreted as an inverse Vervaat transformation;
the original trajectory 2 and 3 can be obtained as the Vervaat transform of the Knight bridge of XU on
[0,d−g]. One of the consequences is that d−g has the same law as U , which is a remarkable universality
result for exchangeable increment processes and is responsible for the stick-breaking process of Theorem
5.4. Indeed, we just need to iterate the path transformation on parts 1 and 4 of the trajectory of XU .
Therefore, Theorem 5.4 follows from Theorem 5.6, whose proof we now sketch, being very similar to the
proof for Lévy processes of [PUB12]. It is based on an analogous path transformation for discrete time EI
processes stated in [AP11, Theorem 8.1] or [APRUB11, Lemma 7]; the proof of the latter is by means of a
bijection between permutations. To pass to the limit, one uses the continuity of the path transformation, on
Skorohod space, whenever the trajectory satisfies the basic properties of Proposition 5.5, see Section 6.3
of [PUB12]. Continuity of the path transformation is mucho more simple when X is of infinite variation
since then X is continuous at g and d. See Section 6.2 of [PUB12].

We end the chapter with an explanation of the distributional description of the maximum (or minimum,
after multiplication by −1) of an EI process, which in discrete time is displayed in Equation (5.2), and
how it proves the celebrated formula due to M. Kac, which in discrete time is Equation (5.1). Indeed, note
that the infimum X1 of X on [0,1] is the sum of the increments of the convex minorant that are negative.
Thanks to Theorem 5.4, this gives us the equality in law

X1
d
= ∑

i

[
XSi−XSi−1

]−
.

Next, conditioning on the stick-breaking process L, we see that

E(X1) = E

(
∑

i

[
XSi−XSi−1

]−)
= ∑

i
E( f (Si−1,Si)) ,
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where f (r,s) = E([Xs−Xr]
−) for r < s. However, exchangeability implies that f (r,s) = f (0,s− r), so

that
E(X1) = ∑

i
E(g(Li))

where g(l) = f (0, l). Finally, recall that the uniform stick-breaking process is invariant under size-biased
permutations. Indeed, it is itself a size-biased permutation of a non-decreasing sequence; cf. [Pit95,
Corollaries 7 and 8] or the following comment from [Pit06, p. 57]: [The uniform stick-breaking process]
has the same distribution as the size-biased permutation of the jumps of the Dirichlet process[...]. In
particular, if conditionally on L, the index I has the law

P(I = i |L) = Li,

then L1
d
= LI . Hence, we obtain that for any h : [0,1]→ R−,

E

(
∑

i
h(Li)Li

)
= E(h(LI)) = E(h(L1)) =

∫ 1

0
h(s)ds.

Applying the above result to h(l) = g(l)/l gives

E(X1) =
∫ 1

0

E
(
X−l
)

l
dl.



APPENDIX

This appendix contributes with results and proofs of Section 3.6 and Chapter 4, about the convergence of
CGW trees with Pareto offspring distribution, and cMGW forests.

Regularly Varying Functions.

We give a brief review of functions of regular and slowly variation.

Definition 5.4 (Slowly varying function). A positive measurable function L : R+ 7→ R+ is said to be
slowly varying at ∞ if L(x)> 0 for x large enough, and for all λ > 0

L(λx)
L(x)

→ 1 x→ ∞.

In this case, we write L ∈ SV

Definition 5.5 (Regularly varying function). A measurable function f > 0 such that

f (λx)
f (x)

→ λ
ρ x→ ∞,∀λ > 0,

is called regularly varying of index ρ . In this case, we write f ∈ RV (ρ).

The Characterization Theorem (see Theorem 1.4.1 of [BGT89]), says that any measurable positive
function f is regularly varying iff f (x) = xρL(x), where L ∈ SV .

A subset A⊂ Z is said to be lattice if there exists a ∈ Z and an integer b≥ 2 such that A⊂ a+bZ. A
measure on Z is said to be lattice if its support is lattice.

Domains of attraction.

Assume X1,X2, . . . are i.i.d. variables with distribution F , and let G be a distribution not concentrated at
one point

Definition 5.6. The distribution F belongs to the domain of attraction of G if there exists constants an > 0
and bn such that the distribution of (X1 + · · ·+Xn)/an−bn tends to G.,

For x > 0 define
U(x) =

∫ x

−x
y2F(dy).

An alternative form of the definition is given in Theorem 9.34 of [Bre92].

153



CHAPTER 5. DINI DERIVATIVES FOR EI PROCESSES AND APPLICATIONS 154

Theorem 5.7. A distribution F belongs to the domain of attraction of the normal distribution iff U ∈ SV .
It belongs to the domain of attraction of a stable law with exponent α ∈ (0,1) (F ∈ DA(α) for short) iff
there are constants M+,M− ≥ 0, M++M− > 0 such that as x→ ∞

F(−x)
1−F(x)

=
M−

M+
,

and

M+ > 0 =⇒ lim
1−F(tx)
1−F(x)

= t−α

M− > 0 =⇒ lim
F(−tx)
F(−x)

= t−α .

In our case, the conditions p0 > 0, and (px,x ≥ 0) being critical and aperiodic imply that (px,x ≥ 0)
is non-lattice. Let g denote the density of X1, the α-stable process at time one. The following version of
the local limit theorem can be found in [Kor13].

Theorem 5.8 (Local Limit Theorem). Let W be a random walk on Z started at zero, with jump distribution
in the domain of attraction of an α-stable law, with α ∈ (1,2]. Suppose the law of W (1) is critical, non-
lattice, and W (1) takes values on {−1,0,1,2, . . . ,}. Then,

lim
n

sup
k∈Z
|anP(W (n) = k)−g(k/an)|= 0,

where an = n1/αL(n) and L is a slowly varying function.

The following result is given in IX.8, page 312 of [Fel71].

Theorem 5.9. A distribution F with support on R+ belongs to some domain of attraction iff there exists
Lµ ∈ SV such that

µ(x) :=
∫ x

0
y2F(dy) = x2−αLµ(x) x→ ∞, (5.9)

with 0 < α ≤ 2.

In fact, from (8.5) page 313 of [Fel71], Equation (5.9) is equivalent to

x2(1−F(x))
µ(x)

→ 2−α

α
, (5.10)

in the sense that the two relations imply each other. The next is Theorem 1.5.11.ii of [BGT89].

Theorem 5.10 (Karamata’s Theorem, direct half). For some ρ ∈ R, let f ∈ RV (ρ) be bounded in each
compact subset of R+. Then, for any σ <−(ρ +1)

xσ+1 f (x)∫
∞

x tσ f (t)dt
→−(σ +ρ +1) x→ ∞.

Using the previous results, we prove the following lemma of Subsection 3.6.2.
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Proof of Lemma 3.13. From Theorem 3.3 applied to the triangular array (ξ ( j)/an, j ∈ [n]), with ξ ( j)
having law µ , we have for some constant c > 0

cx−α = lim
n

nP(ξ ( j)> anx) = lim
n

nµ((anx,∞)) = x−α lim
n

nL(anx)
aα

n
= x−α lim

n

L(anx)
Lα

a (n)
,

hence the limit on the right-hand side is finite.
Consider the array (ξ̃ ( j)/an, j ∈ [bn]). This has terms in the sum that are uniformly infinitesimal,

because

lim
n

max
j∈[bn]

P
(

ξ̃ ( j)/an > ε

)
= lim

n
µ̃((anε,∞)) = c lim

n

L(anε)

n1−1/αLα−1
a (n)

= c lim
n

L(anε)

Lα
a (n)

an

n
→ 0.

Therefore, for any x > 0 we have

lim
n

bnµ̃((anx,∞)) = lim
n

n
an

(anx)1−αL(anx) = x1−α lim
n

L(anx)L1−α
a (n)

La(n)
= (α−1)x1−α .

On the other hand, from Theorem 5.9, we have σ ε
x = x2−(α−1)Lσ (x), for some Lσ ∈ SV . This, together

with (5.10) implies the convergence

(anε)2µ̃((anε,∞))

Var(ξ̃ (1)1
ξ̃ (1)≤anε

)
=

(anε)2(anε)1−αL(anε)

(anε)3−αLσ (anε)
=

L(anε)

Lσ (anε)
→ 3−α

α−1
.

Therefore

σ
ε
n n/an =

n
a3

n
Var(ξ̃ (1)1

ξ̃ (1)<anε
) = ε

3−α Lσ (anε)

L(anε)

L(anε)

Lα
a (n)

→ ε
3−αc′′′α ,

as n→ ∞ for some constant c′′′α . The above quantity goes to zero as ε ↓ 0. Since the variance is bounded
by the second moment, the second condition of the theorem holds. To prove the last condition, note that

bnE
(

ξ̃ (1)/an; |ξ̃ (1)| ≤ han

)
=

n
a2

n
(han)

2−αLµ(han) =
Lµ(han)

La(n)
,

which is bounded by a constant.

Convergence of the normalized empirical degree sequence of CGW trees with offspring distribution
in DA

We prove Lemma 4.8, that is, the normalized empirical degree sequence of a CGW tree with offspring
distribution in DA(α), for α ∈ (1,2), converges to the offspring distribution.

Proof of Lemma 4.8. Let us prove that µ̂i→ µi in probability for all i. Let W be the DFW associated to
the tree T under Pn

µ (so, is an excursion of size n). Define the skip-free random walk S̃, with increments
∆S̃i = X̃i, S̃0 = 0 and distribution

P
(
X̃1 = i

)
= µi+1 i≥−1.

Then W d
=
(
S̃|T−1 = n

)
under Pn

µ , where T−1 is the first time the walk S̃ hits −1.
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Let K = (Ki; i≥ 0), where Ki = #{k : X̃k = i−1} is the number of increments having size i−1. Using
the empirical degree distribution (4.8), for B⊂ N∞ we compute

Pn
µ((n̂i; i≥ 0) ∈ B) = Pµ (#{k : ∆Wk = i−1} ∈ Bi, i≥ 0| |T |= n)

= P(K ∈ B|T−1 = n)

= P
(
K ∈ B|S̃n =−1

)
,

where in the last inequality we used the rotation principle (see Chapter 6 of [Pit06] for the Kemperman’s
formula, and also Proposition 2 of [BK00] and the commentaries before it).

Let Fk be the σ -algebra generated by the first k increments of S̃. We need to prove that for all
B ∈Fbn/2c

P
(
B|S̃n =−1

)
≤ cP(B) (5.11)

as inequality (24), in Lemma 11 of [BM14b]. The proof follows the same lines as the mentioned paper,
but for the local limit theorems, we use Theorem 1 and Lemma 1 of [Kor13].

As in Lemma 11 of [BM14b], for all B ∈Fbn/2c

P
(
B|S̃n =−1

)
= ∑

k
P
(
B, S̃bn/2c = k

) P(S̃n−bn/2c =−1− k
)

P
(
S̃n =−1

) .

We bound the numerator and denominator by a constant, and sum over all k. For the numerator, we use
Theorem 1 of [Kor13]. For the denominator we use Lemma 1 of the same paper. Thus Equation (5.11) is
true. This says that there exists c1 > 0, such that for n big enough

sup
k
P
(
S̃n−bn/2c = k

)
≤ c1/bn−bn/2c.

For the denominator we use Lemma 1 of [Kor13], so for all ε ∈ (0,1) there exists M ∈ N and c2 > 0
such that for all n≥M we have

c2(1− ε)

bn
≤ P

(
S̃n =−1

)
.

Then, for n big enough we can find c > 0 such that

supkP
(
S̃n−bn/2c =−1− k

)
P
(
S̃n =−1

) ≤ c,

and (5.11) is true. The proof that µ̂i → µi in probability is the same as in Lemma 11 of [BM14b]. We
work with the random walk S̃ and use equation (5.11) to translate the results for the bridge. For i≥ 0, let
K(1)

i = #{k≤ bn/2c : X̃k = i−1} be the number of increments of (X̃1, . . . , X̃bn/2c) which are equal to i−1.
Notice that this random variables are Fbn/2c measurable. Then

1
bn/2c

K(1)
i =

1
bn/2c

bn/2c

∑
j≥1

1X̃ j=i−1→ P
(
X̃1 = i−1

)
= µi,

by the strong law of large numbers.
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If we define
K(2)

i = #{k ∈ {bn/2c+1, . . . ,n} : X̃k = i−1},
and the cyclic permutation σ that exchanges the first bn/2c elements of [n] with the last n−bn/2c, then

1
n−bn/2c

K(2)
i =

1
n−bn/2c

n

∑
j≥bn/2c+1

1X̃ j=i−1→ µi.

Let ε > 0, and let

K(1,n)
i =

bn/2c
n

K(1)
i
bn/2c

, K(2,n)
i =

n−bn/2c
n

K(2)
i

n−bn/2c
.

Notice that K( j,n)
i → µi/2 for j = 1,2 in probability under P(·|S̃n = −1). Using triangle inequality, as

Ki/n = K(1,n)
i +K(2,n)

i , then

P(|Ki/n−µi|> ε|Xn =−1)

≤ cP
(
|K(1,n)

i −µi/2|> ε/2
)
+ cP

(
|K(2,n)

i −µi/2|> ε/2
)

→ 0.

Let Mn have a multidimensional distribution with parameters n and µ0,µ1, . . .. We know that rescaling
any component j by n converges a.s. to µ j, thanks to the strong law of large numbers. We now prove that
this convergence holds also uniformly in j.

Lemma 5.5. Consider any positive ε and a distribution (µi, i ≥ 0). Then, there exists N ∈ N such that
for any n ≥ N and any j, the vector Mn = (Nn

0 ,N
n
1 , . . .) with multinomial distribution having parameters

n and µ0,µ1, . . . satisfies ∣∣∣∣Nn
j

n
−µ j

∣∣∣∣≤ ε.

Proof. Define p j = ∑
j
0 µi. The multinomial distribution can be obtained from a sequence of i.i.d. uniform

variables (Ui, i ∈ [n]) as

Nn
j = #{i : Ui ∈ [p j, p j+1)}=

n

∑
1

1i:Ui∈[p j,p j+1).

Hence we have
∑

j
0 Nn

i
n

=
∑

n
1 1i:Ui≤p j+1

n
.

The Glivenko-Cantelli theorem implies the convergence of the empirical distribution of the Ui’s, hence

sup
j

∣∣∣∣∣∑
j
0(N

n
j −nµ j)

n

∣∣∣∣∣≤ ε,

for every n big enough. Using this inequality for j and for j−1 we obtain

−ε + p j− ε− p j−1 ≤
Nn

j

n
≤ ε + p j + ε− p j−1,

for every n big enough and every j.



GLOSSARY AND LIST OF SYMBOLS

N= {1,2, . . . ,}
Z+ = {0,1,2, . . . ,}
[n]0 := {0, . . . ,n}
[n] := {1, . . . ,n}
{0,2, . . . ,n}= 2[n/2]0

{2, . . . ,n}= 2[n/2]

E(X ;A) = E(X1A)

W= {x ∈ Rd : x1 < · · ·< xd}, the Weyl chamber

∆(x) = ∏1≤i< j≤d(x j− xi), the Vandermonde determinant for x = (x1, . . . ,xd) ∈W

X∗, the time-reversed process of X on [n], that is X∗i = Xn−Xn−i for 0≤ i≤ n

max{Yi, i ∈I }= (max{Y 1
i , i ∈I },max{Y 2

i , i ∈I }) given any index set I ⊂ Z+

Y n = max{Yj,0≤ j ≤ n}
Y n = min{Yj,0≤ j ≤ n}

Y n = max{Yj,1≤ j ≤ n}
Y n = min{Yj,1≤ j ≤ n}

Yn∨ (y1,y2) = (Y 1
n ∨ y1,Y 2

n ∨ y2).

Strict ascending ladder times: for a discrete-time process X those are the times of new maximums
α0 = 0, and αi = inf{n > αi−1 : Xn > Xαi−1}. The strict descending ladder times of a process, are the
times of new minimums.

Ji+1 = min
{

n > Ji : Y k
n−1 < Y k

n ,k = 1,2
}

for i ≥ 0 and J0 = 0, are the times in common among the

strict ascending ladder times of Y 1 and Y 2.

(βn,n ≥ 0) is the ordered union of the strict descending ladder times of Y 1 and Y 2, with β0 = 1, that
is, the ordered union of (β k

j , j ∈ N), the strict descending ladder times of Y k

ei vector of zeros, except a one at position i.

Sb
a f (t) = f (at)/b for f a function from R+ to R, and positive a,b.

|T | size of the tree T .
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BFO, BFW are the breadth-first order and breadth-first walk of a tree

DFO, DFW are the depth-first order and depth-first walk of a tree

T (u) is the subtree generated by u, a vertex in the tree T , that is, the subtree with root u and individuals
all the descendants of u

Ps is the law of a uniform tree with given degree sequence s

Zsn , Csn and Wsn are the profile, the cumulative profile and the BFW of a tree with law Psn , respectively.
The BFW of such tree satisfies Wsn(0) = 1

Zsn satisfies Zsn( j+1) =Wsn ◦Csn( j) for every j ≥ 0, and is also called the Lamperti transform of Wsn

Csn(k) = ∑
k
0 Zsn( j) for k ≥ 0, and is extended to R+ by linear interpolation

an = sn/bsn is the spacial scaling of the profile

bsn is the spacial scaling of the BFW

Xn = Sbn
sn Wsn the rescaled BFW

Cn is defined as follows: Cn(0) = 0, and for i≥ 0 and t ∈ [ti, ti+1), with ti = i/an, write

Cn(t) :=
∫ t

0
Xn ◦Cn(banuc/an)du =Cn(ti)+(t− ti)Xn ◦Cn(ti).

Zn = D+Cn the right-hand derivative of Cn

C is the cumulative Lamperti transform of X , that is, the unique solution to D+C =X ◦C. This solution
is positive on R+ if not the zero function

Z = X ◦C

Λ0+ = inf{t > 0 : CΛ(t)> 0}
Λl,ε = inf{t > 0 : Cl(t)> ε}
I(·) =

∫ ·
0 ds/Xs

I(b)− I(a) =
∫ b

a ds/Xs for any 0 < a≤ b≤ 1

inf{t > 0 : CΛ(t)> ·}= IΛ(·) = Λ+ I(·)
Λk,εk = Λn(l1(k)),εn(l2(k))

and Λk,1−εk := Λn(l1(k)),1−εn(l2(k))
are defined in page 73, the deterministic sub-

sequences appearing here are given in Lemma 3.5

Ik(·) = Λk,·

λ (k) = bλaskc for any λ ≥ 0

T̃ tree defined in Proposition 3.9. For any tree T coded in DFO by w, u ∈ {2, . . . , |T |} and h ∈ N,
it is defined as the tree coded by the BFW w̃, using the transformation Φh,u(w) (which is defined before
Lemma 3.6)

|T (v)|(h1,h2) the number of individuals in T (v) having height h ∈ {h1, . . . ,h2} in the tree T

|T (v)|(h1) the number of individuals in T (v) up to height h1 in the tree T
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h(vk,1/2) = inf{h > h(vk) : |τk(vk)|(h)≥ |τk(vk)|/2}
h(vk,1/4) = inf{h > h(vk,1/2) : |τk(vk)|(h(vk,1/2)+1,h)≥ |τk(vk)|/4}
DA(α), a distribution belongs to the domain of attraction of a stable law of index α , see Definition

1.4

Q-process is the profile of the infinite size-biased tree. It is denoted by Z̄

Skip-free random chain is a path x : Z+ 7→ Z with increments on {−1,0,1,2, . . .}, it is also called
downward skip-free chain

Sd is given in Definition 4.2

Fplane
r,n set of plane d-type forests having r = (r1, . . . ,rd) roots and n = (n1, . . . ,nd) vertices of each

type

Flabeled
r,n set of labeled d-type forests having r = (r1, . . . ,rd) roots and n = (n1, . . . ,nd) vertices of each

type. Our labeled multitype forests have labels on [n], that is, for F ∈ Flabeled
r,n , each individual v has a

unique label i ∈ [n] and a type cF(v) ∈ [d]; also, F has fixed root set [r], that is, the r1 type 1 roots have
labels on {1, . . . ,r1}, the r2 type 2 roots have labels on {r1 +1, . . . ,r1 + r2}, and so on

Fbinary
r,n set of plane binary d-type forests having r = (r1, . . . ,rd) roots and n = (n1, . . . ,nd) vertices of

each type. In this case vertices have either zero or two children, for each type.

Bs,m set of bridges finishing at −m (skip-free paths) at time s

Es,m set of excursions finishing at −m at time s

S = (Ni, i≥ 0) degree sequence, that is a sequence of non-negative numbers such that ∑Ni = 1+∑ iNi

BS set of bridges finishing at −m and with Ni increments of size i−1, for each i

ES set of excursions finishing at −m and with Ni increments of size i−1, for each i

FS set of plane forests with degree sequence S

BS,r set of d×d bridges, where wb
i, j finishes at ki, j = ∑kNi, j(k)−ni1i= j, and with Ni, j(k) increments

of size k−1, for each i, j ∈ [d] and k

FS,r set of multitype plane forests with degree sequence S, root-type r and individuals-type n

F(i) subtree of type i of the multitype forest F

θq,n(y) is the n-cyclical permutation of the vector y with length n at the point q

θq,n(x) is the n-cyclical permutation of x, that is, each component x(i) is cyclically permuted using
θqi,ni

V (wb,u) Multidimensional Vervaat Transform (see Definition 4.5)

BS,r set of paths wb
i, j, the latter having increments ci, j ◦σi, j(l)−1i= j, with l ∈ [ni], c the child sequence

of S, and for every permutation σi, j of [ni]

FS,r set of multitype plane forests with degree sequence S, root-type r and individuals-type n
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A(n,r) = {K = (ki j) : ki j ≥ 0 for i 6= j,0≤∑
i 6= j

ki j ≤ n j− r j,−k j j = r j +∑
i 6= j

ki j,∀ j ∈ [d]},

and the notation ∑K∈A(n,r) means the summation over all ki j with i, j ∈ [d] and i 6= j, such that K = (ki j) ∈
A(n,r). For fixed j ∈ [d] define

A j(n,r) = {K j = (k1 j, . . . ,kd j) : kl j ≥ 0 for l 6= j,0≤∑
l 6= j

kl j ≤ n j− r j},

and the notation ∑K j∈A j(n,r) means the summation over all kl j with l ∈ [d] and l 6= j, such that K j =

(k1 j, . . . ,kd j) ∈ A j(n,r)

ni = min{n : xi,i
n = min0≤k≤ni xi,i

k }

ki,i =−min0≤n≤ni xi,i
n =−xi,i

ni

Admissible breadth-first pair, a pair of càdlàg functions ( f ,g) such that f has no negative jumps, g is
non-decreasing and f (0)+g(0)≥ 0

IVPσ ( f ,g): Consider an admissible breadth-first pair ( f ,g) and σ > 0. For the partition ti = iσ with
i≥ 0, let cσ the function defined by cσ (0) = 0 and

cσ (t) = cσ (ti)+(t− ti)[ f ◦ cσ (ti)+g(ti)]+ ti ≤ t < t+1.

Equivalently, the function cσ is the unique solution of

cσ (t) =
∫ t

0
[ f ◦ cσ (bs/σcσ)+g(bs/σcσ)]+ ds

IVP( f ,g): Consider ( f ,g) an admissible breadth-first pair. The initial value problem, denoted by
IVP( f ,g) is defined as

D+c = f ◦ c+g and c(0) = 0.

If g≡ 0, we simply write IVP( f ), and if σ = 0 in the previous definition, we write IVP0( f ,g) = IVP( f ,g)

Dini derivative: for any function f :R+→R we define the upper and lower right-hand Dini derivatives
of f at t ∈ R by

limsup
h→0+

( f (t +h)− f (t))/h and liminf
h→0+

( f (t +h)− f (t))/h,

respectively. If h→ 0− then the above are the left-hand Dini derivatives.

A function f is said to be of bounded variation on an interval [a,b] ⊂ R if its total variation is finite,
that is

sup
P∈P

nP−1

∑
0
| f (xi+1)− f (xi)|< ∞,

where the supremum is taken over all the partitions {x0, . . . ,xnp} of [a,b] satisfying xi ≤ xi+1 for 0≤ i≤
np−1
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A function f is said to be of infinite variation if its total variation is infinite

Extremal exchangeable increments process: an exchangeable increment process with deterministic
characteristics (α,σ ,β )

ρ = inf{t : Xt ∧Xt− = X1} for an EI process on [0,1]

V (X) = X·+ρ, mod 1 the Vervaat transform of an EI process X with α = 0

X−→ post-infimum process

X←− reversed pre-infimum process

X↑ process of juxtaposition of the excursions of X in (0,∞)

X↓ process of juxtaposition of the excursions of X in (−∞,0]
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[CPGUB17] M. Emilia Caballero, José Luis Pérez Garmendia, and Gerónimo Uribe Bravo, Affine pro-
cesses on Rm

+×Rn and multiparameter time changes, Ann. Inst. Henri Poincaré Probab.
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Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 6, 1128–1161. MR 2469338 20, 98, 99

[Mil77] P. W. Millar, Zero-one laws and the minimum of a Markov process, Trans. Amer. Math. Soc.
226 (1977), 365–391. MR 0433606 8, 27, 28, 133, 135

[MR95] Michael Molloy and Bruce Reed, A critical point for random graphs with a given degree
sequence, Proceedings of the Sixth International Seminar on Random Graphs and Proba-
bilistic Methods in Combinatorics and Computer Science, “Random Graphs ’93” (Poznań,
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