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Chapter 1

Introduction

The relation between mathematics and physics is evident. The former provides the language in
which the latter develops, but the relation between them is far closer, to the point that they were
considered the same science a few centuries ago and nowadays there are some research lines
where it is uncertain whether they are part of physics or pure mathematics. In this work, we
use two methods developed in physics to obtain analytical expressions of a statistical property of
random graphs.

The study of statistical aspects of graphs dates back to the middle of the last century [1,
2], but it was not until the works of Erdős and Rènyi [3] that the Random Graph Theory was
established with the study of what we currently know as Poisson random graphs. Precisely, this
kind of random graphs will be our object of study.

The property in which we are interested is the limiting spectral density. This property de-
scribes the distribution of eigenvalues of the associated adjacency matrix. It turns out that it also
provides information about the structure of the graphs [4] and has encountered applications in
chaotic systems [5], biology [6] and physics [7].

The methods that are used to compute this spectral density were developed in statistical
physics over the past half century. On the one hand, the physical implications of the replica
method were not fully understood for many years and there was a lot of work concerning its
understanding [8–10]. This led to a very refined method which has encontered applications
in a broad spectrum of fields, such as optimization [11, 12], information theory [13] and neural
networks [14, 15]. On the other hand, the cavity method was developed in an attempt to avoid the
using of replicas. It has been applied principally in optimization problems, such as the coloring
problem [16] and the k-satisfiability problem [17].

In the present work, the language, concepts and tools of statistical physics are abstracted and
applied to compute the spectral density of Poisson random graphs. During this computation, the
mathematical problem is transformed into a physical one, with the help of fictitious systems, en-
ergies and interactions. This allow us to apply the methods in a statistical physics ”environment”
and with a physical picture in mind. This work is principally based on [18] and [19].

This work is divided in five chapters, including the present introduction. In the second chapter
we establish the notation and present the tools and concepts that will be used throughout the
thesis. The computation of the magnetization of the Ising model will help us to introduce both
methods in the third chapter. Our main goal, the computation of the spectral density of Poisson
random graphs, will be the content of the fourth chapter and finally, the last chapter is devoted to
our conclusions.
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Chapter 2

Mathematical and Physical Background

In this chapter we review and clarify the concepts and results that appear in this work. It also
serves to establish the notation that will be used throughout the thesis. We adopt a pragmatical
approach, in particular in the section of functional analysis.

2.1 Probability
In this section we assume that the reader has a basic knowledge of probability. To begin with,
some useful definitions and theorems will be given, most of them taken from [20] and [21].

Definition 2.1.1. A probability space is the collection by three elements (Ω,A ,P) where Ω is an
arbitrary set, A is a σ -field of subsets of Ω, and P is a measure of probability defined over the
σ -field.

The set Ω is usually known as the sample space and the elements of A are known as events.

Definition 2.1.2. A random variable X is a function from the sample space to R, that is

X : Ω→ R . (2.1)

For the sake of clarity we will consider discrete random variables. The case of continuous
random variables is treated analogously.

Definition 2.1.3. The probability mass function (or probability function, for short) of a discrete
random variable X taken values on an alphabet χ denoted as

P(X = x) = f (x) , x ∈ χ (2.2)

and fulfills

f (x)≥ 0 ∀x ∈ χ , ∑
x∈χ

f (x) = 1 . (2.3)

Henceforth the notation X ∼ f (x) will be used to indicate that the random variable X follows
the probability function f (x).

2



CHAPTER 2. MATHEMATICAL AND PHYSICAL BACKGROUND 2.1. PROBABILITY

2.1.1 Joint and Marginal Probability
When dealing with multiple random variables, a vectorial notation is useful.

Definition 2.1.4. A N-dimensional random vector X = (X1,X2, ...,XN) is a collection of N ran-
dom variables.

Due to the fact that the vectorial notation stands for multiple random variables, it is neces-
sary to distinguish between the so-called joint probability function and the marginal probability
function.

Definition 2.1.5. The joint probability function of the random vector X is

P(X = x) = f (x) , x ∈ χ
N (2.4)

and fulfills

f (x)≥ 0 ∀x ∈ χ
N , ∑

x∈χN

f (x) = 1 . (2.5)

The notation ∑x∈χN (or ∑x for short) stands for the sum over the possible values of each entry
of the vector x. For simplicity, we assume that all random variables share the same alphabet χ .

Definition 2.1.6. Let X ∼ f (x) be a random vector. The marginal probability function of the
random variable X j is

P(X j = x) = ∑
x/ j

f (x) = g(x) (2.6)

and fulfills

g(x)≥ 0 , ∑
x

g(x) = 1 . (2.7)

The notation x/ j represents the vector x without the j-th entry.
The previous definition can be generalized for sets of random variables. For example, to

obtain the marginal probability of the set A = {Xi,X j} one only needs to sum over the remaining
entries of the random vector X ∼ f (x), i.e.

P(Xi = y,X j = w) = ∑
x/{i, j}

f (x1, ...,xi−1,y,xi+1, ...,x j−1,w,x j+1, ...,xN) = h(y,w) . (2.8)

2.1.2 Expectations
Definition 2.1.7. The expected value of a random variable X ∼ f (x) is defined by

E(X) = ∑
x

x f (x) . (2.9)

The words mean, average value or expected value will be used interchangably. Besides, the
notation 〈X〉 will also represent the expected value of the random variable X .

Most of the times we want to obtain the mean of a function. Fortunately, we count with the
following theorem

Theorem 2.1.1. Let X ∼ f (x) be a random variable. The expected value of a function g(x),
which defines a new random variable g(X), is

E(g(X)) = ∑
x

g(x) f (x) . (2.10)

Let us turn to the interesting field of random graph theory.

3



CHAPTER 2. MATHEMATICAL AND PHYSICAL BACKGROUND 2.2. RANDOM GRAPHS

2.2 Random Graphs
In this section we introduce some basic concepts and results of random graph theory that are
necessary to understand our work. First of all, we establish the notation with the very basic
concepts of graph theory.

2.2.1 Graphs
Graph theory is a vast branch of mathematics with many different applications in fields like
linguistics [22], biology [23] and social sciences [24]. Some useful references for this section
are [25–27]. Let us define what exactly a graph is.

Definition 2.2.1. A graph G = (V ,E ) is a family of two sets, where the sets V = {1,2, ...,N}
and E ⊆ V ×V are called the vertex set and the edge set, respectively.

Two vertices i, j ∈ V are called adjacent or neighbors if (i, j) ∈ E . The set of vertices
adjacent to the vertex i is the neighborhood of i and will be denoted by ∂ i; the cardinality of this
set will be denoted by |∂ i|. A path is a sequence of edges that connects a sequence of vertices,
which are all distinct from one another. It is said that a graph is a tree if any two vertices are
connected by exactly one path. If the direction of the edges matters, the graphs are called directed
graphs or digraphs. However, in this work we only deal with undirected graphs.

Sometimes it is useful to represent pictorially a graph with the so-called graph diagrams
[27]. Figure 2.1 shows an example.

Figure 2.1: Graph diagram: the circles stand for the vertices and edges are represented by lines
connecting them.

The adjacency matrix is another representation of a graph.

Definition 2.2.2. The adjacency matrix C = C(G) is an N×N matrix whose entries are given
by [26]

Ci j =

{
1 if (i, j) ∈ E
0 otherwise . (2.11)

The adjacency matrix is a powerful tool in graph theory because it allows us to use many
matrix properties in the graph analysis. Besides, we must highlight that the adjacency matrix
codify all the information of a graph. Another important feature in undirected graphs is that their
adjacency matrix is symmetric, that is C = CT , where the super-index T denotes the transpose
operation.

4



CHAPTER 2. MATHEMATICAL AND PHYSICAL BACKGROUND 2.2. RANDOM GRAPHS

The graphs that we will consider do not have self-interaction. This means that (i, i) 6∈
E (G) ∀i.

Now, we turn our attention to random graphs.

2.2.2 Random Graphs
Random graphs are graphs whose adjacency matrix is created through a random process. Their
study began with the works of Erdős and Rènyi in the middle of the last century [3].

In this work, we will only consider the simplest model, the so-called Poisson random graphs
[28]. In these random graphs each pair of vertices are connected with probability p. It is also
worthwhile to mention that it is meaningless to associate a dimension, at least in the usual sense,
to this kind of random graphs. The probability function of each entry of the adjacency matrix
can be written as

P(Ci j) = pδCi j,1 +(1− p)δCi j,0 . (2.12)

The name of this kind of random graphs is due to the fact that, if we set the parameter p = c
N , the

probability that a vertex has degree k tends to a Poisson distribution as the number of vertices
increases [29]

P(k) = lim
N→∞

(
N
k

)( c
N

)k(
1−
( c

N

))N−k
=

cke−c

k!
, (2.13)

where c is the mean degree.
On the other hand, a random matrix ensemble is defined by the joint probability density

function (JPDF) of its entries. Accordingly, the JPDF of the adjacency matrix of the random
graphs used throughout the work is

P(C) = ∏
i< j

{ c
N

δCi j,1 +
(

1− c
N

)
δCi j,0

}
δCi j,C ji . (2.14)

A property of a random matrix ensemble, which is of interest to us in this work, is its spectral
density.

2.2.3 Spectral Density

The set of eigenvalues
{

λ
(M)
i

}
i=1,2,...,N

of a matrix MNxN is called the spectrum of M. If we are

interested in the distribution of these eigenvalues, we can define the empirical spectral density
of M by

ϕ(λ ;M) =
1
N

N

∑
i=1

δ

(
λ −λ

(M)
i

)
, (2.15)

where δ is a δ -function. In the case of symmetric matrices this probability measure is over the
real line but, in general, it is over the complex plane.

If M is drawn from a random matrix ensemble with JPDF P(M), then it is pertinent to ask
for the limiting mean empirical spectral density, given by

〈ρ(λ ;M)〉= lim
N→∞

〈
1
N

N

∑
i=1

δ

(
λ −λ

(M)
i

)〉
= lim

N→∞

1
N ∑

M
P(M)

N

∑
i=1

δ

(
λ −λ

(M)
i

)
. (2.16)

In this context, a good estimator of Eq. (2.16) is the limiting empirical spectral density defined
by

ρ(λ ;M) = lim
N→∞

1
N

N

∑
i=1

δ

(
λ −λ

(M)
i

)
, (2.17)

5



CHAPTER 2. MATHEMATICAL AND PHYSICAL BACKGROUND 2.3. FUNCTIONAL ANALYSIS

which fulfills the properties of every probability density [21]. For some specific random matrix
ensembles, there are well-known results, such as the Wigner semi-circle distribution [30], the
Marčenko-Pastur distribution [31] and the McKay Law [32].

Once we have reviewed the basic concepts and tools in probability and graph theory, we
continue with a brief introduction of some concepts and tools of functional analysis.

2.3 Functional Analysis
In this section we review the concepts of functional derivatives and functional integrals. As it
was mentioned before, the exposition is non-rigorous. A more formal discussion of the topic can
be found in [33–35].

A functional can be seen as a generalization of a function, where the domain is a set of
functions.

Definition 2.3.1. Let S be a set of functions. F is called a functional on S if F is a mapping from
S into C (or R), that is [36]

F : S→ C(orR)
φ 7→ F [φ ] .

(2.18)

2.3.1 Functional Derivative
The definition that we will use is a practical one, that allows us to easily illustrate its use. This
subsection is mainly inspired by [37].

Definition 2.3.2. Let F [φ ] be a functional from the set of functions S = {φ(x)|x ∈R} to the field
of real or complex numbers. The functional derivative of F is the limit

δF [φ ]

δφ(y)
= lim

ε→0

F [φ + εδ (x− y)]−F [φ ]

ε
. (2.19)

To exemplify this definition, we prove a result which is analogous to the ordinary differential
calculus.

Example 2.3.1. Consider the following functional

F [φ ] =
∫

(φ(x))n dx . (2.20)

By definition,

δF [φ ]

δφ(y)
= lim

ε→0

1
ε

(∫
(φ(x)+ εδ (x− y))ndx−

∫
(φ(x))ndx

)
. (2.21)

Expanding the first integrand, we notice that the term (φ(x))n cancels out with the second in-
tegral, and only the term which is linear with ε will not vanish after taking the limit ε → 0.
Hence

δF [φ ]

δφ(y)
=
∫

n(φ(x))n−1
δ (x− y)dx = n(φ(y))n−1 . (2.22)

6



CHAPTER 2. MATHEMATICAL AND PHYSICAL BACKGROUND 2.4. OTHER MATHEMATICAL TOOLS

One can show that the functional derivative has the following -consistency- property:

δφ(x)
δφ(y)

= δ (x− y) . (2.23)

Furthermore, the functional derivative shares the same properties as partial derivatives. For in-
stance, the functional derivative is a linear operator and the product of two functionals F(φ) and
G(φ) follows the product rule

δ

δφ(x)
(F [φ ]G[φ ]) =

δF [φ ]

δφ(x)
G[φ ]+

δG[φ ]

δφ(x)
F [φ ] . (2.24)

2.3.2 Functional Integrals
Definition 2.3.3. Let F [φ ] be a functional on the set of functions S(K) = {φ(x)|x ∈ K} (K = R
or K = C) and φ : K→ K. The path integral of F over S(K) is formulated as [38]∫

F [φ ]{dφ}=
∫
· · ·
∫

F [φ ]∏
x

dφ(x) . (2.25)

The notation {dφ} stands for the ”differential” in the functional integration 1.
A useful functional that will appear frequently in our derivations is the Dirac delta functional

[29], denoted by δ f . If φ(x) and θ(x) are functions and F [φ ] is a functional, the functional Dirac
delta is defined by

F [φ ] =
∫
{dθ}F [θ ]δ f [θ(x)−φ(x)] . (2.26)

The previous equation can be seen as a generalization of the property of the Dirac delta function
inside an integral. Similarly, as it happens in the standard case, the δ -functional also has a Fourier
representation [39]

δ f [θ(x)−φ(x)] =
∫ {dθ̃

2π

}
exp
(

i
∫

θ̃(x)(θ(x)−φ(x))dx
)
, (2.27)

where θ̃ is just the integration variable. Let us finish the mathematical exposition with the
following section.

2.4 Other Mathematical Tools
In this section two important mathematical tools are reviewed: the Laplace method and the
Hubbard-Stratonovich transformation.

2.4.1 Laplace Method
This method, originally envisaged by Laplace [40], allows us to estimate the asymptotic behavior
of integrals of the form

I =
∫ b

a
e−N f (x)dx , (2.28)

1The braces avoids confusion with ordinary integration.

7



CHAPTER 2. MATHEMATICAL AND PHYSICAL BACKGROUND 2.4. OTHER MATHEMATICAL TOOLS

where N is a positive parameter and f (x) is a real and smooth function within the interval (a,b).
Suppose that there exists a unique point x∗ ∈ (a,b) such that

f ′(x∗) = 0 , f ′′(x∗)> 0 , (2.29)

that is, a local minimum. As the parameter N increases, the integral value is increasingly dom-
inated by the minimum of f (x). To prove this claim let us perform a power series expansion of
N f (x) around x∗

N f (x) = N f (x∗)+
N
2!

f ′′(x∗)(x− x∗)2 +
N
3!

f ′′′(x∗)(x− x∗)3 +O((x− x∗)4) . (2.30)

Therefore, with the change of variable x→ y = (x− x∗)/
√

N, the integral I transform into

I =
1√
N

∫ (b−x∗)/
√

N

(a−x∗)/
√

N
exp
(
−N f (x∗)− 1

2!
y2 f ′′(x∗)− 1

3!
y3
√

N
f ′′′(x∗)−O

(
y4

N

))
dy . (2.31)

In this form it is clear that, while N increases, the main contribution to the integral value is given
by the first two terms inside the exponential function. Besides, the upper and lower limits tend
to ∞ and −∞, respectively. Thus∫ b

a
e−N f (x)dx� e−N f (x∗)

∫
∞

−∞

e−
f ′′(x∗)

2 y2 dy√
N

= e−N f (x∗)

√
2π

N f ′′(x0)
.

(2.32)

The factor
√

2π

N f ′′(x∗) may be sometimes neglected if we only care about the exponential asymp-
totic behavior of the integral. In this case we simply write∫ b

a
e−N f (x)dx� e−N f (x∗) . (2.33)

The generalization of this method for complex integrands is called the saddle-point method.

2.4.2 Hubbard-Stratonovich Transformation
The second mathematical tool is the Hubbard-Stratonovich (H-S) transformation. This transfor-
mation was invented by R. L. Stratonovich [41] and popularized by J. Hubbard [42]. In spite of
its simplicity, the H-S transformation is a powerful tool widely used in many-body theory [43]
and particle physics [44].

To derive this transformation, we begin with a Gaussian integral

I =
∫

∞

−∞

exp
(
−u2

2
−ux

)
du . (2.34)

The usual method to solve this kind of integral is by completing the square in the argument of
the exponential function

− u2

2
−ux =−u2

2
−ux− x2

2
+

x2

2
=−(u+ x)2

2
+

x2

2
. (2.35)
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Substituting the previous relation in Eq. (2.34), we obtain

I = exp
(

x2

2

)∫
∞

−∞

exp
(
−(u+ x)2

2

)
du

= exp
(

x2

2

)∫
∞

−∞

exp
(
−y2

2

)
dy

= exp
(

x2

2

)√
2π .

(2.36)

From Eqs. (2.34) and (2.36) it is straightforward to obtain the H-S transformation, which in the
present case takes the form

exp
(

x2

2

)
=

1√
2π

∫
∞

−∞

exp
(
−u2

2
−ux

)
du . (2.37)

With this section we have finished the mathematical part of the exposition. We next move to
introduce both the cavity and replica methods in a statistical mechanics context, specifically
both will be applied to the Ising model. Before doing so we review some basic concepts of
statistical mechanics.

2.5 Statistical Physics
Statistical physics aims to explain and predict the macroscopic behavior of systems in terms of
their constituent particles and the interactions between them. For this purpose, it makes use of
statistical methods and the probability theory.

Particularly, in this work we are interested in the canonical ensemble, which can be seen as
a collection of identical systems, all in thermal contact with a heat reservoir at temperature T .
In this formalism, the probability that the system takes some microscopic configuration k, with
corresponding energy Ek, is given by the Boltzmann distribution

P(k) =
1
Z

e−βEk , (2.38)

where β = 1
T kB

(kB is the Boltzmann constant) and the Z is called the partition function2

Z = ∑
k

e−βEk . (2.39)

Despite its simplicity, the partition function plays a major role in the theory, since it is possible to
obtain all the thermodynamical properties from it. For instance, the relation between the internal
energy U (which is the average energy of the system) and the partition function is straightforward
to compute

U = 〈Ek〉=∑
k

EkP(Ek) =
1
Z ∑

k
Eke−βEk =− 1

Z ∑
k

∂

∂β
e−βEk =− 1

Z
∂Z
∂β

=−∂ (log(Z))
∂β

. (2.40)

The average over the Boltzmann distribution is usually known as the thermal average. In a
similar fashion, the entropy S and the Helmholtz free energy F [45] can be obtained from the

2The letter Z comes from the German word Zustandssumme (sum of states).
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partition function

S = kB log(Z)+ kBβU ,

F =− 1
β

log(Z) .
(2.41)

In statistical physics, one colloquially says that a problem is fully solved when the partition
function is calculated and from it, the Helmholtz free energy.

We have seen the important concepts (for our purposes) of statistical physics. Now, we want
to introduce the Ising model that is going to be our ”guinea pig”.

2.5.1 Ising Model
The Ising model was proposed by Wilhelm Lenz in 1920 [46] with the purpose of creating a
very simple mathematical model which exhibits ferromagnetic behavior. It was solved for the
one-dimensional case by Ernst Ising five years later [47]. Although Ising found that in the one-
dimensional case there is no phase transition to a ferromagnetic ordered state, nowadays this
model is the cornerstone of most of the models which are exactly solved in statistical physics
(see for example [48]). The solution for the two-dimensional case was given by Onsager 19
years after the Ising solution [49]. An overview of the curious history of the model can be found
in [50].

The Ising model consists of N atoms located in the vertices of a periodic lattice. Each atom is
solely characterized by the direction of its spin σi, which takes the value 1 if it is upwards or −1
if it is downwards. The configuration of the system is given by the vector σ = (σ1,σ2, ...,σN);
a pictorial representation of the system is given in Figure 2.2. The spin-spin interaction is only
between nearest neighbors (n.n.), so that the Hamiltonian reads

H(σ) =−∑
n.n.

Ji jσiσ j−
N

∑
i=1

θiσi , (2.42)

where Ji j are the so-called exchange coupling constants, ∑n.n represents the sum over the nearest
neighbors and θi stands for the effect of an external magnetic field3 at the i-th spin.

It is assumed that magnetic properties arise due to the alignment of the spins. In this sense, a
relevant property of a magnetic system is its magnetization, which is defined as

M =
1
N ∑

i
〈σi〉 , (2.43)

where the average is taken over the Boltzmann distribution. This quantity tells us how aligned
the spins are, depending on the temperature. For example, the more the spins are aligned, the
more M tends to its extreme values ±1.

In thermodynamics the magnetization is defined as

M =−
(

∂F
∂θ

)
T
, (2.44)

where we consider θi = θ ∀i. If we compare the previous relation with the Eq. (2.41), we can
conclude that

M =
1
β

∂ logZ
∂θ

, (2.45)

3Normally, it is preferred to use the letter h for the external magnetic field, but we reserve this letter for other
purposes.
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Figure 2.2: Ising model: The arrows represent the direction of the spin of each atom which is
localized at the nodes of a lattice.

at constant temperature.
An important remark for our purposes is that, in this model, the marginal probability of each

spin can always be written as

Pi(σi) =
e−βΘiσi

2cosh(βΘi)
. (2.46)

This equation defines the effective magnetic field Θi, which takes into account the external mag-
netic field and the interactions with other spins. The subindex in Pi is a consequence of the fact
that each spin may have a different effective field Θi, since the constants {J ji}may take different
values. With this representation the local magnetization is

Mi = 〈σi〉= tanh(βΘi) . (2.47)

Experimentally, it is found that the magnetization of ferromagnetic materials is zero above cer-
tain temperature known as the Curie temperature, which depends on the material. This disap-
pearance of the magnetization is known as the paramagnetic-ferromagnetic phase transition. The
usual behavior of the magnetization as a function of the temperature in a magnetic material is
shown in the Figure 2.3. The interested reader can see how the magnetization is experimentally
measured in [51] and some diagrams estimated from experimental measurements are shown in
[52].
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Figure 2.3: Usual behavior of the magnetization as a function of the temperature in a ferromag-
netic material.

12



Chapter 3

Replica and Cavity Method

In this chapter the cavity and replica methods are introduced. Both methods have their origin in
statistical physics, specifically, in the study of spin glasses [53].

In this context, the replica method was invented as a simple ”trick” to facilitate the compu-
tation of thermodynamic properties [54]. On the other hand, the cavity method was originally
elucidated [55] to reproduce the results that its peer had achieved in the study of spin glasses but
with a more intuitive approach. Therefore we start in the following section with the latter.

As it was mentioned before, both methods are going to be applied to the Ising model to obtain
its magnetization. In this case, the atoms will no longer be localized at the nodes of a lattice,
but they will be attached to the vertices of a Poisson random graph and the interacting spins are
those which are joined by an edge. In other words, the sum ∑n.n in the Hamiltonian (Eq. (2.42))
will be over adjacent spins.

3.1 Cavity Method
Before starting with the method let us introduce a useful approximation that will turn out to be
essential for the cavity method, and also reveals a fundamental limitation of its use.

3.1.1 Bethe-Peierls Approximation
Let us first imagine an Ising model attached to a tree. If we remove a vertex, say the vertex
i, then the graph is divided into disconnected subgraphs. In particular, the neighbors of the
removed vertex are disconnected, as can be seen in Figure 3.1. Physically, this means that there
is no interaction between the spins in ∂ i and therefore, their marginal probability factorizes

P(i)
∂ i (σk∈∂ i) = ∏

k∈∂ i
P(i)

k (σk) , (3.1)

where the super-index in P(i) emphasizes that we are talking about the system without the vertex
i and σk∈∂ i is the set of those spins which are neighbors of the vertex i. Evidently, the previous
equation is valid for trees, but for more general graphs it is only an approximation, known as the
Bethe-Peierls (B-P) approximation [56, 57].

3.1.2 Cavities in Action
Let us suppose that we are only interested in the marginal probability distribution for each spin
Pi(σi), to calculate for instance the magnetization. In what follows we will use the B-P approxi-
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Figure 3.1: a) A tree where the set ∂ i is highlighted. b) If the vertex i is removed, its neighbors
are disconnected.

mation, also known as cavity method, to obtain a closed system of equations for these marginals.
Starting from the definition of the marginal probability, we can write

Pi(σi) = ∑
σ/i

P(σ) =
1
Z ∑

σ/i

exp [−βH(σ)] , (3.2)

where, again, the notation σ/i represents the vector σ without the i-th entry. Let us separate the
Hamiltonian of the system (Eq. (2.42)) into two parts, those terms involving the i-th spin, and
those which do not

Pi(σi) =
1
Z ∑

σ/i

exp

[
−β

(
−θiσi−σi ∑

j∈∂ i
Ji jσ j +H(i)(σ)

)]

=
exp[βθiσi]

Z ∑
σ/i

exp

[
βσi ∑

j∈∂ i
Ji jσ j

]
exp
[
−βH(i)(σ)

]
,

(3.3)

where H(i)(σ) = H(σ)+ θiσi +σi ∑ j∈∂ i Ji jσ j is the Hamiltonian of the system where the i-th
spin has been removed. Next, we separate the sum ∑σ/i

= ∑σ j∈∂ i ∑σk 6∈∂ i
, resulting in

Pi(σi) =
exp[βθiσi]

Z ∑
σ j∈∂ i

exp

[
βσi ∑

j∈∂ i
Ji jσ j

]
∑

σk 6∈∂ i

exp
[
−βH(i)(σ)

]
=

exp[βθiσi]

Zi
∑

σ j∈∂ i

exp

[
βσi ∑

j∈∂ i
Ji jσ j

]
P(i)

∂ i (σk∈∂ i) .

(3.4)

In the last equation, to obtain the marginal probability of the set ∂ i in the system without the
vertex i (i.e. P(i)

∂ i (σk∈∂ i)), a normalizing factor has been added and incorporated into Zi. Up to
here, our analysis is rather general, as we have not made any assumption about the graph. Now,
we will apply the B-P approximation, yielding

Pi(σi)'
exp[βθiσi]

Zi
∑

σ j∈∂ i

exp

[
βσi ∑

j∈∂ i
Ji jσ j

]
∏
l∈∂ i

P(i)
l (σl) . (3.5)
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As it was mention before (cf. Subsection 3.1.1), the B-P approximation is exact for trees. There-
fore we will exclusively use sparse Poisson random graphs, which are locally tree-like (small
loops1 are rare). In our case at hand, the typical size of a loop is of order logN [58], therefore
Eq. (3.5) is an approximation for every finite graph. How this approximation is affected by the
presence of loops have been discussed in [59, 60].

Notice that the set of equations given by Eq. (3.5) is not closed yet because the probabilities
on the right-hand side correspond to a different physical system from those on the left-hand side.
To close the equations let us explore what happen if the vertex j ∈ ∂ i is removed. The marginal
probability is then

P( j)
i (σi) =

1
Z( j) ∑

σ/{i, j}

exp
[
βH( j)(σ)

]
, (3.6)

where σ/{i, j} represents the vector σ without the entries i and j. As in the previous case, the
Hamiltonian and the configuration sum are separated into two, yielding

P( j)
i (σi) =

exp[βθiσi]

Z( j) ∑
σk∈∂ i/ j

exp

[
βσi ∑

k∈∂ i/ j
Jikσk

]
∑

σl 6∈∂ i/ j

exp
[
βH(i, j)(σ)

]
=

exp[βθiσi]

Z( j)
i

∑
σk∈∂ i/ j

exp

[
βσi ∑

k∈∂ i/ j
Jikσk

]
P(i, j)

∂ i/ j (σk∈∂ i/ j) .

(3.7)

In this case the super-index in P(i, j) and H(i, j) indicates that we are talking about the system
where the vertices i and j ∈ ∂ i have been removed and P(i, j)

∂ i/ j (σk∈∂ i/ j) is the marginal probability
of the set ∂ i/ j in this system. If we use the Bethe-Peierls approximation one more time, we
obtain

P( j)
i (σi) =

exp[βθiσi]

Z( j)
i

∑
σk∈∂ i/ j

exp

[
βσi ∑

k∈∂ i/ j
Jikσk

]
∏

l∈∂ i/ j
P(i, j)

l (σl) . (3.8)

It seems that we have ended up in a similar problem as in the system of equations given by Eq.
(3.5). However, a closer look at the system, whose Hamiltonian is H(i, j)(σ), will shed light on
the problem. As we can see in Figure 3.2, the removal of the vertex j (after the vertex i has
already been removed) in graphs which are locally tree-like has little impact on the rest of the
vertices in ∂ i. Therefore, for l ∈ ∂ i, we have that

P(i, j)
l (σl)≈ P(i)

l (σl) , j ∈ ∂ i . (3.9)

With the help of this remark we can finally obtain a closed set of equations, known as cavity
equations for the so-called cavity marginals

P( j)
i (σi) =

exp[βθiσi]

Z( j)
i

∑
σk∈∂ i/ j

exp

[
βσi ∑

k∈∂ i/ j
Jikσk

]
∏

l∈∂ i/ j
P(i)

l (σl)

=
exp[βθiσi]

Z( j)
i

∏
k∈∂ i/ j

∑
σk=±1

exp [βσiJkiσk]P
(i)
k (σk) .

(3.10)

If we manage to solve this closed set of equations2, we can use Eq. (3.5) to compute the marginals
Pi(σi) of our original problem. In the following we present a way to work out this, proposing a
parameterization.

1Paths whose initial and final vertex is the same.
2Which contains ∑

N
i |∂ i| variables and equations.
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Figure 3.2: The vertices j ∈ ∂ i and i have been removed. If the graph is a tree, the remaining
vertices of ∂ i are still disconnected as they were in the presence of the vertex j.

Parameterization

It is customary to parameterize the probabilities and to obtain a relation between the parameters
using Eq. (3.10). We propose the following parameterization

P( j)
i (σi) =

exp
[
βh( j)

i

]
2cosh

[
βh( j)

i

] , Pi(σi) =
exp[βhi]

2cosh[βhi]
, (3.11)

with parameters {hi}N
i=1 and

{
h( j)

i

}N

i=1
(with j ∈ ∂ i), where the latter are known as cavity fields.

Notice that these parameterization have the same functional form as Eq. (2.46). Therefore, our
parameters can be physically interterpreted as effective magnetic fields of our original system and
of the system without one vertex, respectively. Now, we will find the value of these parameters.

Isolating3 the cavity fields from the previous equation, we get

h( j)
i =

1
2β

∑
σ=±1

σi logP( j)
i (σ) , (3.12)

and substituting the cavity equations in the previous relation

h( j)
i =

1
2β

∑
σi=±1

σi log

{
1

Z( j)
i

exp[βθiσi] ∏
k∈∂ i/ j

∑
σk=±1

exp[βσiJkiσk]P
(i)
k (σk)

}

=
1

2β

 ∑
σi=±1

σi log

{
1

Z( j)
i

}
︸ ︷︷ ︸

0

+

2βθi︷ ︸︸ ︷
∑

σi=±1
σ

2
i βθi+ ∑

σi=±1
∑

k∈∂ i/ j
σi log

{
∑
σk

exp[βσiJkiσk]P
(i)
k (σk)

} .

(3.13)

3We take the logarithm in both sides of Eq. (3.11), multiply the resulting equation by σi and take the sum over
its possible values.
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Then, if the parameterization given in Eq. (3.11) is substituted, after some algebraic manipula-
tions4 the previous equation transforms into the following closed system

h( j)
i = θi +

1
β

∑
k∈∂ i/ j

atanh
{

tanh
[
βh(i)k

]
tanh[βJki]

}
. (3.14)

Once the previous system of equations has been numerically solved, using for example the fixed-
point iteration, it is possible to obtain the parameters {hi}N

i=1 with the help of the relation

hi = θi +
1
β

∑
k∈∂ i

atanh
{

tanh
[
βh(i)k

]
tanh [βJki]

}
, (3.15)

which is reached in an analogous fashion as Eq. (3.14). Once {hi}N
i=1 are obtained, we can use

Pi(σi) to obtain the magnetization

M =
1
N ∑

i
σiPi(σi) =

1
N ∑

i
tanh(βhi) . (3.16)

Now let us turn our attention to the solution of the same problem by using the replica method.

3.2 Replica Method
Let us reanalyze the previous model with the replica method. For simplicity we will assume cou-
pling constants Ji j = 1 ∀i, j and the external field θ = 0. Accordingly, we define the Hamiltonian
of the system by

HC(σ) =−
N

∑
i< j

Ci jσiσ j , (3.17)

where Ci j are the entries of the adjacency matrix of our Poisson random graphs denoted by5

C, and the subindex in HC reminds us the dependence on this adjacency matrix. The first evi-
dent problem is that the thermodynamic properties of the system depend on C. We will trust in
the intuitive assumption (backed up by experience) that for large systems, their thermodynamic
properties will be the same, no matter their specific realization. Hence, these properties must be a
kind of average over the disorder caused by the random graph. This disorder is called quenched,
because it does not change with time.

With this in mind, if we imagine a large system and divide it into many small (macroscopic)
subsystems, then the properties of the former are going to be the average over the properties
of the latter, i.e. first we get the properties of each subsystem (thermal average) and then we
calculate the average over the quenched disorder. Mathematically, if we are interested in the
observable O(σ) of our system, we need to calculate 〈〈O(σ)〉T 〉C, where 〈· 〉T will represent the
thermal average and 〈· 〉C the average over the quenched disorder (over the probability function
that describes it). Let us see how this quantity is computed.

The thermal average 〈· 〉T is usually performed with the help of an external magnetic field s
in the Hamiltonian

HC(σ ,s) =−
N

∑
i< j

Ci jσiσ j + sO(σ) . (3.18)

4See Appendix A, for details.
5See Definition 2.2.2.
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Hence, (
∂

∂ s
log [ZC(s)]

)∣∣∣
s=0

=−β 〈O(σ)〉T (3.19)

and therefore

〈〈O(σ)〉T 〉C =− 1
β

(
∂

∂ s
〈log [ZC(s)]〉C

)∣∣∣
s=0

. (3.20)

In this way, it is clear that we need to compute 〈logZC〉C. We can work out this average with a
simple mathematical relation [61]

〈logZC〉C = lim
n→0

1
n

log〈Zn
C〉C . (3.21)

This identity is at the heart of the so-called replica trick. This trick works as follow: we first
assume n to be integer, so that

〈
Zn

C
〉

C is easier [62] to compute than 〈logZC〉C; then n is assumed
to be real and the limit n→ 0 is performed. For n integer we can imagine that Zn

C is the partition
function of a new system which consist of n replicas of the original system.

3.2.1 Replicas in Action
The first step is to make n replicas of our system

Zn
C =

(
∑
σ1

exp [−βHC(σ1)]

)
...

(
∑
σn

exp [−βHC(σn)]

)
= ∑

σ1

...∑
σn

(
exp

[
−β

n

∑
a=1

HC(σa)

])
.

(3.22)
Next, we perform the average over the quenched disorder, which in our case is the average over
the random graph (over its adjacency matrix C)

〈Zn
C〉C = ∑

C
P(C)∑

σ1

...∑
σn

(
exp

[
−β

n

∑
a=1

HC(σa)

])
, (3.23)

where ∑C represents the sum over all the possible adjacency matrices. For our random graphs,
the JPDF is P(C) = ∏i< j

{ c
N δCi j,1 +

(
1− c

N

)
δCi j,0

}
δCi j,C ji , as was given by Eq. (2.14), therefore

〈Zn
C〉C = ∑

C

(
∏
i< j

{ c
N

δCi j,1 +
(

1− c
N

)
δCi j,0

}
δCi j,C ji

)
∑
σ1

...∑
σn

(
exp

[
β

N

∑
i< j

Ci j

n

∑
a=1

σiaσ ja

])

= ∑
σ1

...∑
σn

∏
i< j

∑
Ci j∈{0,1}

{ c
N

δCi j,1 +
(

1− c
N

)
δCi j,0

}
exp

[
βCi j

n

∑
a=1

σiaσ ja

]
.

(3.24)

Performing the sum over the possible values of Ci j we finally obtain

〈Zn
C〉C = ∑

σ1

...∑
σn

∏
i< j

{
c
N

exp

[
β

n

∑
a=1

σiaσ ja

]
+
(

1− c
N

)}
. (3.25)
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Let us rewrite the expression between braces in an exponential form

〈Zn
C〉C = ∑

σ1

...∑
σn

exp

[
∑
i< j

log

{
1+

c
N

(
exp

[
β

n

∑
a=1

σiaσ ja

]
−1

)}]

= ∑
σ1

...∑
σn

exp

[
1
2 ∑

i, j
log

{
1+

c
N

(
exp

[
β

n

∑
a=1

σiaσ ja

]
−1

)}
+

−N
2

log
{

1+
c
N
(exp [βn]−1)

}]
.

(3.26)

At the end, we will take the thermodynamic limit N→ ∞, hence, we can expand the logarithms
and take into account only the first terms. It will turn out that only the terms of order N (extensive
terms) will be significant. Therefore

〈Zn
C〉C = ∑

σ1

...∑
σn

exp

[
c

2N ∑
i, j

(
exp

[
β

n

∑
a=1

σiaσ ja

]
−1

)
+O(N0)

]
. (3.27)

The sum ∑i, j is of order N2, so the explicit term inside the exponential is the only extensive term.
Let us introduce the following useful notation. We denote with σ = (σ1,σ2, ...,σn) a vector

in the replica space and, as before, σ = (σ1,σ2, ...,σN). A visual representation of these vectors
is shown in the Figure 3.3.

Figure 3.3: Visual representation of the replicated system and the different vectors in the system.

Taking advantage of the fact that f (xi) = ∑m δm,xi f (m), we can use a vector τ whose entries,
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like σ , can take the values 0 and 1 to write

∑
i, j

exp

[
β

n

∑
a=1

σiaσ ja

]
= ∑

i, j
∑
τ

δτ,σi exp

[
β

n

∑
a=1

τaσ ja

]

= ∑
i, j

∑
τ,γ

δτ,σiδγ,σ j exp

[
β

n

∑
a=1

τaγa

]
.

(3.28)

Defining the function Q(τ,{σi}N
i=1) =

1
N ∑

N
i=1 δτ,σi , which is the probability that a vector σ takes

the value τ in the replicated system [29], we can rewrite the previous equality more conveniently
as

∑
i, j

exp

[
β

n

∑
a=1

σiaσ ja

]
= N2

∑
τ,γ

Q(τ,{σi})Q(γ,{σi}) . (3.29)

Substituting it in Eq. (3.27) and ignoring the terms O(N0), we obtain

〈Zn
C〉C = ∑

σ1

...∑
σn

exp

[
cN
2 ∑

τ,γ

Q(τ,{σi})Q(γ,{σi})(exp
[
βτ · γ

]
−1)

]
, (3.30)

and after introducing a δ -functional we get

〈Zn
C〉C = ∑

σ1

...∑
σn

∫
{dP}exp

[
cN
2 ∑

τ,γ

P(τ)P(γ)
(

exp
[
βτ · γ

]
−1
)]

δ f

[
P(τ)− 1

N

N

∑
i=1

δτ,σi

]
,

(3.31)

where P is simply the integral variable of the δ -functional. Let us perform the Fourier transform
of this δ -functional

δ f

[
P(τ)− 1

N

N

∑
i=1

δτ,σi

]
=
∫ {dP̃

2π

}
exp

[
i∑

τ

P̃(τ)

(
P(τ)− 1

N

N

∑
i=1

δτ,σi

)]
. (3.32)

Substituting in Eq. (3.31)

〈Zn
C〉C =

∫ {dPdP̃
2π

}
exp

[
cN
2 ∑

τ,γ

P(τ)P(γ)(exp
[
βτ · γ

]
−1)+ i∑

τ

P̃(τ)P(τ)

]

×∑
σ1

...∑
σn

exp

[
− i

N

N

∑
i=1

∑
τ

δτ,σiP̃(τ)

]
.

(3.33)

To simplify the previous equation, we notice that we can count all the possible configurations in
a different way6, thus, the last term of the previous expression can be rewritten as

∑
σ1

...∑
σn

exp

[
− i

N

N

∑
i=1

∑
τ

δτ,σiP̃(τ)

]
= ∑

σ1

...∑
σN

exp

[
− i

N

N

∑
i=1

P̃(σi)

]
=

(
∑
σ

exp
[
− i

N
P̃(σ)

])N

.

(3.34)
6Instead of counting the possible states of the system row by row in Fig. 3.3, i.e. ∑σ1

...∑σn , we can count
them column by column, i.e. ∑σ1

...∑σN .
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Taking this into account and with the change of variable P̃→ NP̂, we are able to rewrite Eq.
(3.33) in the suggestive form

〈Zn
C〉C =

∫
D[P, P̂]e−NS[P,P̂] . (3.35)

where D
[
P, P̂
]
≡ N

{
dPdP̂

2π

}
and we have defined the functional

S[P, P̂] =−c
2 ∑

τ,γ

P(τ)P(γ)
(

exp
[
βτ · γ

]
−1
)
− i∑

τ

P̃(τ)P(τ)− log

{
∑
σ

exp
[
−iP̂(σ)

]}
.

(3.36)
Expressing

〈
Zn

C
〉

C as in Eq. (3.35) allows us to use the saddle-point method to estimate the inte-
gral. Thus, we want to find the extremal value of the functional S[P, P̂], which is usually known
as the action, in analogy to the Lagrangian formalism of classical mechanics. The equations that
must be fulfilled7 to apply the method are

δS[P, P̂]
δP(σ)

= 0 ,
δS[P, P̂]
δ P̂(σ)

= 0 . (3.37)

These conditions are known as the saddle-point equations. From the first condition, performing
the functional derivative we obtain

0 =−c
2 ∑

τ,γ

(
exp
[
βτ · γ

]
−1
)(

δτ,σ P(γ)+δγ,σ P(τ)
)
− i∑

τ

P̂(τ)δτ,σ

=−c
2 ∑

γ

(
exp
[
βσ · γ

]
−1
)

P(γ)− c
2 ∑

τ

(exp[βτ ·σ ]−1)P(τ)− iP̂(σ) .
(3.38)

Hence, the first condition reads

− iP̂(σ) = c∑
τ

(exp[βτ ·σ ]−1)P(τ) . (3.39)

The second condition in Eq. (4.22) yields

0 =−i∑
τ

δτ,σ P(τ)−
−i∑τ δτ,σ exp

[
−iP̂(τ)

]
∑τ exp

[
−iP̂(τ)

] , (3.40)

and therefore

P(σ) =
exp
[
−iP̂(σ)

]
∑σ exp

[
−iP̂(σ)

] . (3.41)

Using the first condition to eliminate the dependence on P̂(σ), the probability P(σ) must satisfy
the saddle-point equation

P(σ) =
exp
[
c∑τ(exp[βτ ·σ ]−1)P(τ)

]
∑σ exp

[
c∑τ(exp[βτ ·σ ]−1)P(τ)

]
=

∑
∞
l=0

cle−c

l!

(
∑τ exp [βσ · τ ]P(τ)

)l

∑σ exp
[
c∑τ(exp[βτ ·σ ]−1)P(τ)

] . (3.42)

7We skip the second condition in Eq. (2.29).
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Now, before performing the limit n→ 0, an assumption about the functional form of P(σ) in
the replica space must be considered. Intuitively, as the original system is invariant under the
permutation of any pair of replicas, we expect P(σ) to also fulfill that symmetry 8. This is
known as replica symmetric ansatz. For our case at hand, this implies that

PRS(σ) =
∫

w(h)
n

∏
a=1

q(σa|h)dh , (3.43)

where w(h) is the probability density function of the effective magnetic field of the system and
q(σ |h) is just the probability that σ takes the value 1 or -1 given that its effective magnetic field
is h. Notice that with this ansatz an expression for the magnetization is given by9

M =
∫

w(h) tan(βh)dh . (3.44)

Substituting our ansatz given by Eq. (3.43) into both sides of Eq. (3.42), it is possible to derive
an equation for w(h). Considering that the denominator in the latter tends to the unit as n tends
to zero, for simplicity, we ignore it altogether in the following

PRS(σ) =
∞

∑
l=0

cle−c

l!

(
∑
τ

exp [βσ · τ ]
∫

w(h)
n

∏
a=1

q(τa|h)dh

)l

=
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)(
l

∏
k=1

∑
τ l

exp

[
β

n

∑
a=1

σaτal

]
n

∏
a=1

q(τal|hk)

)

=
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)
n

∏
a=1

l

∏
k=1

∑
τ=±1

exp [βσaτ]q(τ|hk) .

(3.45)

It will turn out that the introduction of a Dirac delta function is going to be useful to rewrite the
right-hand side of the previous equation in a similar fashion to the left-hand side, facilitating the
identification of w(h). Hence,

PRS(σ) =
∫

dh
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)
n

∏
a=1

q(σa|h)

δ

(
q(σ |h)−∏

l
k=1 ∑τ exp [βστ]q(τ|hk)

Z
(
{hk}l

k=1

) )
Zn
(
{hk}l

k=1

)
,

(3.46)

where Z
(
{hk}l

k=1

)
= ∑σa ∏

l
k=1 ∑τ exp [βσaτ]q(τ|hk) is just a normalizing factor 10.

To carry out the derivation, we consider the following parameterization

q(σ |h) = exp[βσh]
2cosh[βh]

. (3.47)

Isolating the field h as a function of ρ(σ |h) we find that

h =
1

2β
∑
σ

σ log[q(σ |h)] . (3.48)

8This assumption can lead to unphysical conclusions; thus, the theory of replica symmetry breaking arises [63].
Fortunately, in our context the method has shown to lead to valid results, as we will see.

9See Eq. (2.47).
10Remember that q(σa|h) is a probability and must be normalized.
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With this relation and taking advantage of the fact that under the integral in Eq. (3.46) q(σ |h)
must be evaluated as

q(σ |h)→ 1
Z
(
{hk}l

k=1

) l

∏
k=1

∑
τ

exp [βστ]q(τ|hk) , (3.49)

we can obtain a relation between the parameters, namely

h→ 1
β

l

∑
k=1

atanh[tanh[βJ] tanh[βhk]] , (3.50)

cf. Appendix A for details. With this relation we can finally have an expression for w(h) from
Eq. (3.46)

∫
dhw(h)

n

∏
a=1

q(σa|h) =
∫

dh
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)
n

∏
a=1

q(σa|h)

δ

(
h− 1

β

l

∑
k=1

atanh[tanh[βJ] tanh[βhk]]

)
Zn
(
{hk}l

k=1

)
.

(3.51)

Thus in the limit n→ 0 we arrive to a self-consistent equation for w(h)

w(h) =
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)
δ

(
h− 1

β

l

∑
k=1

atanh[tanh[βJ] tanh[βhk]]

)
. (3.52)

With the help of the population dynamics algorithm (cf. Appendix C) we can use the previous
equation together with Eq. (3.44) to obtain the desired magnetization.

3.3 Numerical Results
In the previous sections we have reviewed two different ways of obtaining the magnetization of
the Ising model attached to a Poisson random graph. In order to prove the validity of our theory,
in this section we make a comparison between the theory and simulations.

In Figure 3.4 the numerical solution of both methods and Monte Carlo simulations, obtained
through the Metropolis Algorithm11, are presented. We have assumed a system with exchange
coupling constants Ji j = 1 ∀i, j and external magnetic field θ = 0. We can see a very good
agreement.

To explain the implementation of the Metropolis algorithm (with kB = 1), let us define our
algorithmic time as the switch proposal of only one (orderly selected) spin, and a Monte Carlo
(M-C) step as N (the size of the system) algorithmic times. The size of the system in every
simulation was N = 4000 spins. For each temperature all of them were pointing up at the initial
condition and we let the system 400 M-C steps to thermalize. We calculated the average of the
magnetization every 20 M-C steps after we reached the thermalization; our average was over 135
values.

Once the methods have been presented, we are able to compute the spectral density of Poisson
random graphs with their help.

11Cf. Appendix B for a review of this algorithm.
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Figure 3.4: Magnetization of an Ising Model. Comparison between the solution obtained from
the replica method through a population dynamics algorithm (solid lines), the solution obtained
from the cavity method (dashed line) and Monte Carlo simulation for c ∈ {10,15,20}.
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Chapter 4

Spectral Density of Poisson Random
Graphs

In this chapter the spectral density of Poisson random graphs is derived using the cavity and
replica methods, based on [18] and [19], respectively. The main idea to achieve this is to relate
this mathematical object with the partition function of a system of interacting particles. Let us
see how this is done.

We already know that the limiting empirical spectral density of a matrix MN×N is

ρ(λ ;M) = lim
N→∞

1
N

N

∑
i=1

δ (λ −λ
(M)
i ) , (4.1)

where {λ (M)
i }i=1,2,...,N are the eigenvalues of the matrix M. In physics, for example, M could be

the Hamiltonian operator of a system, in which case the empirical spectral density is interpreted
as the density of states [7]. Our approach here explained is valid for any symmetric matrix M.

We can rewrite this equation with the help of the Sokhotski-Plemelj theorem [64], which
states that

lim
η→0+

1
x− iη

= P
1
x
+ iπδ (x) , (4.2)

where P is the Cauchy principal value. The corollary that matters for us, is the representation
of the Dirac delta that is obtained from this theorem,

δ (x) = lim
η→0+

1
π

Im
(

1
x− iη

)
. (4.3)

Using this result to rewrite the empirical spectral density for x = λ −λ
(M)
i , we obtain

ρ(λ ;M) = lim
N→∞

lim
η→0+

1
Nπ

Im

(
N

∑
i=1

1

λ −λ
(M)
i − iη

)
. (4.4)

We aim to change the dependence on the eigenvalues of the matrix for a dependence on its
entries. For this purpose, let us focus on the sum inside the parentheses of the previous equation

N

∑
i=1

1

λ −λ
(M)
i − iη

=
N

∑
i=1

∂

∂λ
log
(

λ −λ
(M)
i − iη

)
=

∂

∂λ
log

[
N

∏
i=1

(
λ −λ

(M)
i − iη

)]
.

(4.5)
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Since M is a symmetric matrix, it can be decomposed as M = QT DQ, where Q is an orthogonal
matrix and D is a diagonal matrix of eigenvalues. Hence, the previous sum takes the form

N

∑
i=1

1

λ −λ
(M)
i − iη

=
∂

∂λ
log [det(I(λ − iη)−M)] , (4.6)

and its spectral density will be

ρ(λ ;M) =− lim
N→∞

lim
η→0+

2
Nπ

Im
(

∂

∂ z
logK(z,M)

)∣∣∣
z=λ−iη

(4.7)

where
K(z,M) =

1√
det(Iz−M)

. (4.8)

The function K(z,M) can be written in a more suggestive form to use the language of statistical
mechanics, as it is explained in Appendix A. This form is

K(z,M) =
1√
(2π)N

∫
RN

dxexp

[
−1

2 ∑
i, j

xi(Iz−M)i jx j

]

=
1√
(2π)N

ZM(z) ,

(4.9)

where we have defined

ZM(z) =
∫
RN

dxexp

[
−1

2 ∑
i, j

xi(Iz−M)i jx j

]
. (4.10)

In this occasion, for the sake of consistency, the dependence of the function Z on the matrix M
is pointed out with a sub-index.

Because the limiting empirical spectral density, given by Eq. (4.7), depends only on K(z,M)
through the derivative of its logarithm, the constant 1√

(2π)N
that appears in K(z,M) will cancel

out and, therefore, we end up writing ρ(λ ;M) as

ρ(λ ;M) =− lim
N→∞

lim
η→0+

2
Nπ

Im
(

∂

∂ z
logZM(z)

)∣∣∣
z=λ−iη

. (4.11)

Looking at Eq. 4.10, it is possible to interpret ZM(z) as a partition function (even though z is a
complex variable) with a Hamiltonian over unit temperature given by

HM(x;z) =−1
2 ∑

i, j
xi(Iz−M)i jx j . (4.12)

Continuing with the analogy, the probability that this ”system” takes a specific configuration is
given by

P(x;z,M) =
1

ZM(z)
e−HM(x;z) . (4.13)

In this interpretation the continuous random variable x plays the role that the discrete random
variable σ does in the Ising model. Indeed, the Hamiltonian given by Eq. (4.12), ignoring the
imginary units, remind us the Gaussian ferromagnetic model [65]. Therefore, we can interpret
the variable xi as the local magnetization, which can take continuos values, in a system with a
complex magnetic field. We will apply to this fictitious system the statistical mechanics’ methods
that have been reviewed in the previous chapter.
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4.1 Using Cavities
Using the statistical mechanics interpretation of Z(z), the spectral density given by Eq. (4.11)
can be written as

ρ(λ ;C) = lim
N→∞

lim
η→0+

1
Nπ

Im

(
N

∑
i=1

〈
x2

i
〉

z

)∣∣∣
z=λ−iη

, (4.14)

where the expected value 〈· 〉z is with respect to P(x;z,C) given by Eq. (4.13). Here is where the
cavity method enters the scene, since the average of a random variable can be computed using
its marginal probability, namely

〈
x2

i
〉

z =
∫

x2
i Pi(xi;z,C)dxi.

Let us apply the method. First of all, we separate the terms in the Hamiltonian which involve
the random variable xi from those which do not, and we also separate the integral over the
neighbors ∂ i and the rest of the system

Pi(xi;z,C) =
1

ZC(z)
dx/i exp [HC(x;z)]

=
exp
[
−x2

i z/2
]

ZC(z)

∫ [
∏
j∈∂ i

dx j

]
exp

[
−xi ∑

j∈∂ i
x j

]∫ [
∏
k 6∈∂ i

dxk

]
exp
[
−H

(i)
C (x;z)

]
.

(4.15)

For the sake of simplicity, we will obviate the dependence of Pi on z and C. If we notice that the
second integral of the last equality is just the marginal probability (up to a normalizing constant)
of the set ∂ i, we can use the Bethe-Peierls approximation to obtain

Pi(xi) =
exp
[
−x2

i z/2
]

Zi(z)

∫ [
∏
j∈∂ i

dx j

]
exp

[
−xi ∑

j∈∂ i
x j

]
∏
j∈∂ i

P(i)
j (x j)

=
exp
[
−x2

i z/2
]

Zi(z)
∏
j∈∂ i

∫
dx j exp

[
−xix j

]
P(i)

j (x j) ,

(4.16)

where the normalizing constant of the marginal of ∂ i has been added to Zi(z). In a similar fashion
the cavity equations can be obtained

P( j)
i (xi) =

exp
[
−x2

i z/2
]

Z( j)
i (z)

∏
k∈∂ i/ j

∫
dxk exp [−xixk]P

(i)
k (xk) , (4.17)

4.1.1 Parameterization
In principle, P( j)

i could be any possible probability function, but there is a family of functions
which are ”fixed points” of the cavity equations. These fixed points are the normal distributions.
Consequently, a suitable parametrization is

P( j)
i (xi) =

1√
2π∆

( j)
i

exp

[
− x2

i

2∆
( j)
i

]
, Pi(xi) =

1√
2π∆i

exp
[
− x2

i
2∆i

]
, (4.18)

with parameters {∆i}N
i=1 and {∆( j)

i }N
i=i with j ∈ ∂ i which depend on z and C, as we will see

below. If we substitute this parametrization in our cavity equations, we obtain

P( j)
i (xi) =

exp
[
−x2

i z/2
]

Z( j)
i (z)

∏
k∈∂ i/ j

1√
2π∆

(i)
k

∫
dxk exp

[
−xixk−

x2
k

2∆
(i)
k

]
. (4.19)
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Let us focus on the integral. This integral can be solved with a change of variable u = xk√
∆
(i)
k

and

with the help of the H-S transformation as follows∫
dxk exp

[
−xixk−

x2
k

2∆
(i)
k

]
=

√
∆
(i)
k

∫
duexp

[
−
√

∆
(i)
k xiu−

u2

2

]

=

√
2π∆

(i)
k exp

xi

√
∆
(i)
k

2

 .

(4.20)

Substituting back in Eq. (4.19) we end up with

P( j)
i (xi) =

1

Z( j)
i

exp

[
−x2

i
2

(
z− ∑

k∈∂ i/ j
∆
(i)
k

)]
. (4.21)

Finally, comparing the left-hand side of the previous equation (taking into account the param-
eterization given in Eq. (4.18)) with its right hand side, we can deduce a relation between the
”cavity” parameters, namely

∆
( j)
i (z,C) =

1

z−∑k∈∂ i/ j ∆
(i)
k

. (4.22)

Once we work out a solution of this system of equations, using, for example, the fixed-point
iteration, the parameters {∆i}N

i=1 can be computed from

∆i(z,C) =
1

z−∑k∈∂ i ∆
(i)
k

. (4.23)

After the parameters {∆N
i=1} are known, the limiting empirical spectral can be obtained from the

following expression

ρ(λ ;C) = lim
N→∞

lim
η→0+

1
Nπ

Im

(
N

∑
i

∆i(z,C)

)∣∣∣
z=λ−iη

. (4.24)

The Eq. 4.24 is the final result of the cavity method. Regarding to our statistical mechanics
interpretation, the parameters {∆i(z,C)}N

i=1 are nothing else than the variance of the probability
distribution that describes the random variables {xi}N

i=1, the local magnetization.

4.2 Using Replicas
To use the replica method, we start from Eq. (4.11) and rewrite 〈logZC〉C that appears in this
equation as follows

〈ρ(λ ;C)〉C =− lim
N→∞

lim
n→0

lim
η→0+

2
Nnπ

Im
(

∂

∂ z
log〈Zn

C(z)〉C

)∣∣∣
z=λ−iη

, (4.25)

The first step is to make n replicas of the partition function given by Eq. (4.10), obtaining

Zn
C(z) =

∫ ( n

∏
a=1

dxa

)
exp

[
−1

2 ∑
i, j;a

xia(zδi j−Ci j)x ja

]
. (4.26)
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The average over the disorder is applied to this replicated partition function

〈Zn
C(z)〉C = ∑

C

(
∏
i< j

{ c
N

δCi j,1 +
(

1− c
N

)
δCi j,0

}
δCi j,C ji

)

×
∫ ( n

∏
a=1

dxa

)
exp

[
− z

2 ∑
i;a
(xia)

2

]
exp

[
1
2 ∑

i, j;a
xiaCi jx ja

]
,

(4.27)

where, as a reminder, in our Poisson random graphs, p = c
N is the probability of two vertices to

be adjacents.
By taking into account that the adjacency matrix is symmetric, the last exponential function

in the previous equation can be written more conveniently as

exp

[
1
2 ∑

i, j;a
xiaCi jx ja

]
= exp

[
∑

i< j;a
xiaCi jx ja

]
= ∏

i< j
exp
[
∑
a

xiaCi jx ja

]
. (4.28)

Plugging the previous equation in Eq. (4.26) and rearranging terms, the average over the disorder
takes the form

〈Zn
C(z)〉C =

∫ ( n

∏
a=1

dxa

)
exp

[
− z

2 ∑
i;a
(xia)

2

]
∏
i< j

∑
Ci j∈{1,0}

( c
N

δCi j,1 +
(

1− c
N

)
δCi j,0

)
×

exp
[
∑
a

xiaCi jx ja

]
=
∫ ( n

∏
a=1

dxa

)
exp

[
− z

2 ∑
i;a
(xia)

2

]
∏
i< j

{
c
N

(
exp
[
∑
a

xiax ja

]
−1
)
+1
}
.

(4.29)

As in the case with the Ising model, let us rewrite the product of the previous equation in an
exponential form as follows

∏
i< j

{
c
N

(
exp
[
∑
a

xiax ja

]
−1
)
+1
}
= exp

[
∑
i< j

log
{

c
N

(
exp
[
∑
a

xa
i xa

j

]
−1
)
+1
}]

= exp

[
1
2 ∑

i, j
log
{

c
N

(
exp
[
∑
a

xa
i xa

j

]
−1
)
+1
}
− 1

2 ∑
i

log
{

c
N

(
exp
[
∑
a
(xa

i )
2
]
−1
)
+1
}]

= exp

[
c

2N ∑
i, j

(
exp
[
∑
a

xa
i xa

j

]
−1
)
+O(N0)

]
,

(4.30)

where only the extensive term is written explicitly. Summing up, the average over the disorder
of the replicated system is

〈Zn
C(z)〉C =

∫ ( n

∏
a=1

dxa

)
exp

[
c

2N ∑
i, j

(
exp
[
∑
a

xiax ja

]
−1
)
− z

2 ∑
i,a
(xia)

2

]
. (4.31)

At this stage, following the notation of the previous chapter1, we introduce the function Q(τ,{xi}N
i=1)=

1
N ∑

N
i=1 δ (τ−xi). Using this function, the first sum inside the exponential function can be rewrit-

ten as
c

2N ∑
i, j

(
exp
[
∑
a

xiax ja

]
−1
)
=

Nc
2

∫
dτdγQ(τ,{xi})Q(γ,{xi})

(
exp
[
γ · τ
]
−1
)
. (4.32)

1See the Figure 3.3 for a quick reminder.
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With this expression and introducing the Fourier transform of a Dirac delta functional in Eq.
(4.31), we end up with

〈Zn
C(z)〉C =

∫ {dPdP̃
2π

}
exp
[

i
∫

dτP̃(τ)P(τ)+
Nc
2

∫
Rn

dτdγP(τ)P(γ)
(

exp
[
γ · τ
]
−1
)]

∫ ( n

∏
a=1

dxa

)
exp

[
− z

2 ∑
i,a
(xia)

2− i
1
N

N

∑
i=1

P̃(xi)

]
.

(4.33)

To simplify this equation we notice that the last integral can be re-expressed as follows (just like
in Eq. (3.34))

∫ ( n

∏
a=1

dxa

)
exp

[
− z

2 ∑
i,a
(xia)

2− i
1
N

N

∑
i=1

P̃(xi)

]
=
∫ ( N

∏
i=1

dxi

)
exp

[
− z

2 ∑
i,a
(xia)

2− i
1
N

N

∑
i=1

P̃(xi)

]

=
N

∏
i=1

∫
dxexp

[
− z

2 ∑
a
(xa)

2− i
1
N

P̃(x)
]

=

(∫
dnxexp

[
− z

2 ∑
a
(xa)

2− i
1
N

P̃(x)
])N

.

(4.34)

This transformation, together with the functional change of variable P̃→ NP̂, yields the follow-
ing expression for the average over the disorder

〈Zn
C(z)〉C =

∫
D[P, P̂]e−NS[P,P̂;z] , (4.35)

with action

S[P, P̂;z] =−i
∫

dτP̂(τ)P(τ)− c
2

∫
dτdγP(τ)P(γ)

(
exp
[
γ · τ
]
−1
)
+

− log
{∫

dxexp
[
− z

2 ∑
a
(xa)

2− iP̂(x)
]}

.
(4.36)

Thus our original problem transforms into

〈ρ(λ ;C)〉C =− lim
N→∞

lim
n→0

lim
η→0+

2
Nnπ

Im
(

∂

∂ z
log
{∫

D[P, P̂]exp
[
−NS[P, P̂;z]

]})∣∣∣
z=λ−iη

.

(4.37)
If we apply the derivative of the logarithm and use the saddle-point method2 to solve the integral,
the result of the derivative is

∂

∂ z
log
{∫

D[P, P̂]exp
[
−NS[P, P̂,z]

]}
�−N

∂S[P, P̂;z]
∂ z

, (4.38)

where the functions P and P̂ fulfill the saddle-point equations

δS[P, P̂]
δP(x)

= 0 ,
δS[P, P̂]
δ P̂(x)

= 0 . (4.39)

2We assume that the limits N→ ∞ and n→ 0 can be switched.
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Hence, our problem boils down to the computation of ∂S[P,P̂;z]
∂ z where P and P̂ fulfill the previous

conditions.
From the first condition we obtain

− iP̂(x) = c
∫

dτP(τ)(exp[τ · x]−1) , (4.40)

and from the second condition

P(x) =
exp
[
− z

2 ∑a(xa)
2− iP̂(x)

]∫
dxexp

[
− z

2 ∑a(xa)2− iP̂(x)
] . (4.41)

Eliminating the function P̂ from both saddle-point equations, we can obtain only one condition
that must be fulfilled, which is

P(x) =
exp
[
− z

2 ∑a(xa)
2 + c

∫
dτP(τ)(exp[τ · x]−1)

]∫
dxexp

[
− z

2 ∑a(xa)2 + c
∫

dτP(τ)(exp[τ · x]−1)
]

=
exp
[
− z

2 ∑a(xa)
2]

∑
∞
l=0

cle−c

l! (
∫

dτ exp[τ · x]P(τ))l∫
dxexp

[
− z

2 ∑a(xa)2 + c
∫

dτP(τ)(exp[τ · x]−1)
] . (4.42)

Using this saddle-point equation the derivative given in Eq. (4.38) can be written as

∂S[P, P̂;z]
∂ z

=
1
2

∫
dx
(

∑
a
(xa)

2
)

P(x) . (4.43)

Let us propose a replica symmetric ansatz for P(x) given by

PRS(x) =
∫

w(h)
n

∏
a=1

q(xa|h)dh , (4.44)

where, in principle, the parameter vector h could have an infinite number of entries (therefore
the new notation), which characterize the probability distribution q(x|h). Substituting this ansatz
in Eq. (4.43), the derivative of the action with respect to z is

∂S[P, P̂;z]
∂ z

=
1
2

∫
dx
(

∑
a
(xa)

2
)∫

w(h)
n

∏
a=1

q(xa|h)dh

=
n
2

∫
dhw(h)

∫
dxq(x|h)x2 .

(4.45)

Aiming to obtain an expression for w(h), let us plug our replica symmetric ansatz in the left-hand
side of Eq. (4.42) and work out the right-hand side as follows

PRS(x) = exp
[
− z

2 ∑
a
(xa)

2
]

∞

∑
l=0

cle−c

l!

(∫
dτ exp[τ · x]

∫
w(h)

n

∏
a=1

q(τa|h)dh

)l

, (4.46)

where we have considered that the normalizing factor in Eq. (4.42) tends to the unit as n tends
to zero and so has been taken. After an algebraic manipulation the previous equation transforms
into

PRS(x) =
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)
n

∏
a=1

exp
[
− z

2
(xa)

2
] l

∏
k=1

∫
dτ exp [τxa]q(τ|hk) . (4.47)
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To identify w(h), which appears in the left hand side of this equation, we introduce a Dirac delta
function as follows

PRS(x) =
∫

dh
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)
n

∏
a=1

q(xa|h)

δ

[
q(x|h)−

exp
[
− z

2x2]
∏

l
k=1

∫
dτ exp [τx]q(τ|hk)

Z ({hk}k=1l)

]
Zn
(
{hk}l

k=1

)
,

(4.48)

where Z
(
{hk}l

k=1

)
is just a normalizing factor. Therefore, comparing both sides of this equation

in the limit n→ 0, we can recognize w(h) as

w(h) =
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

dhkw(hk)

)
δ

(
q(x|h)−

exp
[
− z

2x2]
∏

l
k=1

∫
dτ exp [τx]q(τ|hk)

Z({hk}l
k=1)

)
.

(4.49)

According to this equation, under the integral operator, the function q(x|h) must be evaluated as

q(x|h)→
exp
[
− z

2x2]
Z
(
{hk}l

k=1

) l

∏
k=1

∫
dτ exp [τx]q(τ|hk) . (4.50)

It turns out that the functions which conserve their functional form after this association3 are the
normal distributions. Therefore, we propose the following parametrization4

q(x|∆) = 1√
2π∆

exp
[
− x2

2∆

]
. (4.51)

Using this parameterization in Eq. (4.50) it is possible to obtain a relation between the parameters
in the following way

q(x|∆)→ 1
Z
(
{∆k}l

k=1

) exp
[
− z

2
x2
] l

∏
k=1

∫
dτ exp [τx]q(τ|∆k)

=
1

Z
(
{∆k}l

k=1

) exp
[
− z

2
x2
] l

∏
k=1

∫
dτ exp [τx]

1√
2π∆k

exp
[
− τ2

2∆k

]
=

1
Z
(
{∆k}l

k=1

) exp
[
− z

2
x2
] l

∏
k=1

1√
2π∆k

∫
dτ exp

[
τx− τ2

2∆k

]
.

(4.52)

To continue, we perform the change of variable u = τ√
∆k

and the Hubbard-Stratonovich transfor-
mation, hence

q(x|∆)→ 1
Z
(
{∆k}l

k=1

) exp
[
− z

2
x2
] l

∏
k=1

√
∆k√

2π∆k

∫
duexp

[
ux
√

∆k−
u2

2

]
=

1
Z
(
{∆k}l

k=1

) exp
[
− z

2
x2
] l

∏
k=1

exp
[

x2∆k

2

]
=

1
Z
(
{∆k}l

k=1

) exp

[
x2

2

(
−z+

l

∑
k=1

∆k

)]
.

(4.53)

3Compare Eq. (4.50) with Eq. (4.17).
4This parameterization is not general, it works for our case at hand [18].
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Comparing the left-hand side of Eq. (4.53) (taking into account our parametrization) with its
left-hand side, the relation between the parameters can be obtained, namely

∆(z)→ 1
z−∑

l
k=1 ∆k

. (4.54)

To bear in mind the dependence on z maintaining a readable notation, let us denote ∆z ≡ ∆(z).
With the help of the previous relation, Eq. (4.48) transforms into

PRS(x) =
∫

d∆z

∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

d∆kw(∆k)

)
n

∏
a=1

q(xa|∆z)δ

(
∆z−

1
z−∑

l
k=1 ∆k

)
Zn
(
{∆k}l

k=1

)
.

(4.55)

In this way, it is straightforward to identify w(∆z) if we compare the left hand side and the right
hand side of Eq. (4.55), which in the limit n→ 0 yields

w(∆z) =
∞

∑
l=0

cle−c

l!

∫ ( l

∏
k=1

d∆kw(∆k)

)
δ

(
∆z−

1
z−∑

l
k=1 ∆k

)
. (4.56)

With this relation and our parametrization of q(x|∆z), we can finally complete the computation
of ∂S[P,P̃;z]

∂ z . From Eq. (4.53)

∂S[P, P̂;z]
∂ z

=
n
2

∫
d∆zw(∆z)

∫
dxq(x|∆z)x2

=
n
2

∫
d∆zw(∆z)

∫
dxx2 1√

2π∆z
exp
[
− x2

2∆z

]
=

n
2

∫
d∆zw(∆z)∆z .

(4.57)

Finally, with the previous equation and Eqs. (4.37) and (4.38), the limiting spectral density turns
out to be

〈ρ(λ ;C)〉= lim
η→0+

1
π

Im
(∫

d∆zw(∆z)∆z

)∣∣∣
z=λ−iη

, (4.58)

which, together with Eq. (4.56), is our final result. The population dynamics algorithm (cf.
Appendix C) can help us to obtain a numerical result from these pair of equations. Again, in
our statistical mechanics interpretation, the parameter ∆z is the variance of the random variable
x, a local magnetization (see Eqs. (4.44) and (4.51)). The variace of the magnetization5 is
relevant in the study of magnetic systems because it is proportional to the magnetic susceptibility,
χ = β

(〈
M2〉−〈M〉2) [52], a quatity that can be measured in the lab.

4.3 Numerical Results
In the previous sections the cavity and replica methods were used to obtain the limiting spec-
tral density of Poisson random graphs. In this section we compare their results with numerical
diagonalization.

To obtain numerical results the limits η → 0+ and N → ∞ in Eqs. (4.58) and (4.24) were
taken numerically (see the caption of the figures). We compare our theoretical results with nu-
merical diagonalization over an ensamble of 10000 adjacency matrices of Poisson random graphs

5The magnetization was defined in Eq. (2.43).
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C1000×1000 with parameters c ∈ {10,15,20}. To create these adjacency matrices, we draw for
each entry a random number from a uniform distribution with minimum 0 and maximum 1. Each
entry takes the value 1 if its corresponding random number is less than or equal to p = c

N , and
takes the value 0 otherwise. In Figures 4.1, 4.2 and 4.3 our comparisons are shown; we see a
very good agreement between the theory and numerical diagonalization.

The small diferences between theory and numerical diagonalization may be due to the elec-
tion of the numerical limits (N and η), as well as the stopping criteria selected during our nu-
merical computations.

Figure 4.1: Spectral density of a Poisson random graphs with average degree c= 10. Comparison
between numerical diagonalization and the cavity and replica methods with numerical limits
η = 1×10−8 and N = 1000.
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Figure 4.2: Spectral density of a Poisson random graphs with average degree c = 5. Comparison
between numerical diagonalization and the cavity and replica methods with numerical limits
η = 1×10−8 and N = 1000.

Figure 4.3: Spectral density of a Poisson random graphs with average degree c = 3. Comparison
between numerical diagonalization and the cavity and replica methods with numerical limits
η = 1×10−3 and N = 10000.
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Chapter 5

Conclusions

In this bachelor’s thesis the cavity and the replica methods have been presented. With them,
the magnetization of an Ising model attached to an Poisson random graph was computed with
excellent agreement with Monte Carlo simulations.

Along their introduction, some of their limitations and subtleties were highlighted. For ex-
ample, the factorization of the marginal probability in the Bethe-Peierls approximation strongly
depends on the locally tree-like property of the graphs. On the other hand, during the mathemat-
ical manipulations of the replica method, complications which are difficult to overcome could
arise. Besides, the numerical methods commonly used in these computations were explicitly
explained in the appendices.

The main goal of this work has been achieved. We have obtained analytical expressions
for the spectral density of Poisson random graphs using the cavity and replica methods. This
expressions can help us to study the behavior of the spectral density, particularly when the size
of the system tend to infinity. Besides, since we have obtained analytical expressions, these can
serve to further mathematical treatment. The very good agreement between our numerical results
and numerical diagonalization proves the validity of the theory.

A further work could be a similar treatment but with constricted random graphs, which turn
out to present many interesting and exotic properties. Indeed, an onging work in which the
constriction is related with topological properties of the graphs has proved to be a true challenge.
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Appendix A

Some Derivations

In this appendix we present explicitly some mathematical derivations that were omitted in the
main text.

Derivation of Eq. (3.14)

If we plug the parametrization given by Eq. (3.11) into Eq. (3.13), then

h( j)
i = θi +

1
2β

∑
k∈∂ i/ j

∑
σi=±1

σi log

{
∑

σk=±1
exp
[
β

(
σiJik +h(i)k

)
σk

]}

= θi +
1

2β
∑

k∈∂ i/ j
log

∑σk=±1 exp
[
β

(
h(i)k + Jki

)
σk

]
∑σk=±1 exp

[
β

(
h(i)k − Jki

)
σk

]
 .

(A.1)

Performing the sum over σk, we obtain

h( j)
i = θi +

1
2β

∑
k∈∂ i/ j

log

cosh
[
βh(i)k +βJ(k)i

]
cosh

[
βh(i)k −βJ(k)i

]
 , (A.2)

and after expanding the hyperbolic cosine of a sum, we end up with

h( j)
i = θi +

1
2β

∑
k∈∂ i/ j

log

cosh
[
βh(i)k

]
cosh[βJki]+ sinh

[
βh(i)k

]
sinh[βJki]

cosh
[
βh(i)k

]
cosh[βJki]− sinh

[
βh(i)k

]
sinh[βJki]


= θi +

1
2β

∑
k∈∂ i/ j

log

1+ tanh
[
βh(i)k

]
tanh[βJki]

1− tanh
[
βh(i)k

]
tanh[βJki]

 .

(A.3)

Finally, we can make use of the following relation

atanh(x) =
1
2

log
(

1+ x
1− x

)
, (A.4)

and we obtain Eq. (3.14), namely

h( j)
i = θi +

1
β

∑
k∈∂ i/ j

atanh
{

tanh
[
βh(i)k

]
tanh [βJki]

}
.
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Derivation of Eq. (3.50)

The derivation of Eq. (3.50) is somewhat similar to the Eq. (3.14). If we plug Eq. (3.49) into
Eq. (3.48), we get

h→ 1
2β

∑
σ

σ log

{
∏

l
k=1 ∑τ exp [βJσaτ]q(τ|hk)

Z({hk}l
k=1)

}
. (A.5)

Because the normalizing factor does not depend on σ , it will be added and subtracted when we
perform the sum ∑σ . Therefore it is omitted in the following

h→ 1
2β

∑
σ

σ log

{
l

∏
k=1

∑
τ

exp [βJστ]q(τ|hk)

}
. (A.6)

Substituting the parameterization given by Eq. (3.47) in the previous relation yields

h→ 1
2β

l

∑
k=1

∑
σ

σ log{2cosh [βJσ +βhk]}

=
1

2β

l

∑
k=1

log
{

cosh[βJ+βhk]

cosh[βJ−βhk]

}
=

1
2β

l

∑
k=1

log
{

1+ tanh[βJ] tanh[βhk]

1− tanh[βJ] tanh[βhk]

}
,

(A.7)

and thus we recover the Eq. (3.50) of the main text, namely

h→ 1
β

l

∑
k=1

atanh[tanh[βJ] tanh[βhk]] .

Derivation of Eq. (4.9)

For this derivation we start from the integral

I =
∫
RN

dxexp

[
−1

2 ∑
i, j

xiAi jx j

]
=
∫
RN

dxexp
[
−1

2
xT Ax

]
, (A.8)

where x is a row vector and A is a symmetric, positive-definite N×N matrix. Performing the
change of variable x→Qy, where Q is an orthogonal matrix whose determinant is 1, the integral
I takes the form

I =
∫
RN

dyexp
[
−1

2
yT Q−1AQy

]
. (A.9)

We will demand that the matrix Q is a diagonalizing matrix, this means

Q−1AQ = diag(λ (A)
1 ,λ

(A)
2 , ...,λ

(A)
N ) , (A.10)

where {λ (A)
i }N

i=1 are the eigenvalues of the matrix A. This leads to

I =
∫

∞

−∞

exp
[
−1

2
(λ M

1 y2
1 +λ

M
2 y2

2 + ...+λ
M
N y2

N)

]
dy1dy2...dyN . (A.11)
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Having separated the variables, we can perform N times a Gaussian integral, obtaining

I =
∫
RN

dxexp

[
−1

2 ∑
i, j

xiAi jx j

]
=

√
2π

λ
(A)
1

√
2π

λ
(A)
2

...

√
2π

λ
(A)
N

=

√
(2π)N

detA
. (A.12)

Hence, if A = Iz−M where M is a symetric matrix and z a complex number, then we recover
Eq. (4.9), namely

K(z,M) =
1√
(2π)N

∫
RN

dxexp

[
−1

2 ∑
i, j

xi(Iz−M)i jx j

]
.
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Appendix B

Monte Carlo Methods

In this appendix we succinctly review Monte Carlo methods (MCm). This section is mainly
based on [66].

MCm are a set of techniques whose principal characteristic is the use of random number as
”raw material”. The first time that the term Monte Carlo appears in reference to computational
methods, was in the seminal paper of Metropolis and Ulam in 1949 [67]. However, given its
nature, some authors prefer the term stochastic simulations [68] instead.

When we deal with MCm we usually want to calculate the expected value of a property,
say A(x), which depends on the state of the system x ∼ 1

∑x f (x) f (x). This state could be, for
example, the direction of the spins in the Ising Model or a random matrix from a given ensemble,
depending what our system is. This expected value, as we know, is

〈A(x)〉= 1
∑x f (x)∑

x
f (x)A(x) . (B.1)

In many cases, the exact computation of (B.1) is impossible to perform analytically or simply
impracticable to perform numerically. Fortunately, MCm may help us to estimate it.

B.1 Simple Sampling
Instead of performing the sum in Eq. (B.1) over all the possible states of the system, a first
attempt could be to choose randomly (with equal probability) only n of them {xi}n

i=1. Thus a
first estimation of the expected value is

〈A(x)〉 ≈ ∑
n
l=1 f (xl)A(xl)

∑
n
l=1 f (xl)

. (B.2)

This first approximation is known as simple sampling. Unfortunately, in most cases this estima-
tion is very poor. To illustrate this, one can imagine an Ising Model at very low temperature.
In this case, the system will spend most of the time in very few states, which will represent the
main contribution to the expected value in which we are interested. Nevertheless, it would be
very unlikely that one of the randomly chosen {xi}n

i=1 coincides with one of these ”important”
states. One possible improvement of this method is the so-called importance sampling.

B.2 Importance Sampling
In the importance sampling method, we draw n states from the probability function that describes
the states of the system, which has been denoted by 1

∑x f (x) f (x). If we denote this sample by
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{
x( f )

i

}n

i=1
, then we can approximate our expected value by

〈A(x)〉 ≈ 1
n

n

∑
l=1

A(x( f )
l ) . (B.3)

If we apply this method to the previous example of the Ising Model at low temperature, we would
draw the states

{
x( f )

i

}n

i=1
from the Boltzmann distribution, which favors those states in which

the system spends most of the time, thus improving our estimation.
For some random matrices, like the adjacency matrix of Poisson random graphs, it is straight-

forward to take a sample from its JPDF. However, this is not the case of the thermal probability
due to the normalizing factor, which in most cases is not feasible to compute. The standard
solution in statistical physics is the use of a Markov Chain to obtain the sample.

B.2.1 Markov Chains
A Markov chain is an example of a stochastic process. The following definitions were taken
from [69].

Definition B.2.1. A stochastic process is a collection of random variables {Xt |t ∈ T} parame-
terized by the set T , known as the index set. Each random variable in the collection takes values
from a set S, called state space.

The index set is usually interpreted as the time. With this interpretation we can talk about
past and future states of the system.

Definition B.2.2. A Markov chain is a stochastic process {Xt |t ∈ N} such that the probability
distribution of the future state Xt+1 depends only on the current state Xt , i.e.

P(Xt+1 = xt+1|X0 = x0, ...,Xt = xt) = P(Xt+1 = xt+1|Xt = xt) . (B.4)

Definition B.2.3. Let y and z be two states of a Markov chain. The transition probability from
the state y to the state z is P(Xt+1 = z|Xt = y) and will be denoted P(y→ z) .

Naturally, this probability fulfills

P(y→ z)≤ 1 , ∑
z

P(y→ z) = 1 . (B.5)

Additionally, our Markov chain must satisfy two conditions in order to be a sample of our target
probability. These are ergodicity and the detailed balance condition. We will mention what these
conditions are and for further reading the reader can look at [66, 70, 71].

Ergodicity means that if the system begins in one state, it can reach any other state in a finite
number of steps. Thus this condition assures that after a sufficiently long time, the process will
visit all the set of states the system can occupy.

The detailed balance condition is

f (y)P(y→ z) = f (z)P(z→ y) . (B.6)

In words, the system should on average go from y to z as many times as it goes from z to
y. Physically, the detailed balance can be interpreted as the condition of equilibrium for our
system.

Therefore, if we can get a set of transition probabilities which fulfill Eqs. (B.5) and (B.6), it
only remains to contrive an ergodic algorithm to create a new state z from the current state y with
exactly these probabilities. To facilitate this task, we can make use of the so called acceptance
ratios.
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B.2.2 Acceptance ratios
The idea is to propose a new state to add it to our Markov chain but it will be added only with a
certain probability. Let us split the transition probabilities into two parts

P(y→ z) = S(y→ z)A(y→ z) , (B.7)

where S(y→ z) is the selection probability, which is the probability that our algorithm propose
the state z if our system is in the state y, and A(y→ z) is the acceptance probability which is the
fraction of times that this proposed state will be accepted and added to our Markov chain. If the
state z is rejected, we simply add the current state y to our Markov chain. After all, P(y→ y)
always fulfills the detailed balance condition.

With this separation, it is virtually possible to obtain a sample of our target probability with
any ergodic algorithm which proposes a new state from the current one. We only need to take
care that the acceptance probabilities are such that the detailed balance condition is fulfilled. In
the following section we review the well-known Metropolis algorithm.

B.2.3 Metropolis Algorithm
In the Metropolis algorithm [72] we choose S(y→ z) to be equal for all the states1. Thus the
detailed balance condition imposes that

P(y→ z)
P(z→ y)

=
A(y→ z)
A(z→ y)

=
f (z)
f (y)

(B.8)

Hence, only the quotient of the acceptance probabilities matters in the detailed balance condition,
so we have certain freedom to choose the exact form of these probabilities. In order to explore
efficiently the set of states, we want to maximize these probabilities. In the Metropolis algorithm
this is done by setting

A(y→ z) = min
{

1,
f (z)
f (y)

}
. (B.9)

This is known as the Metropolis probability. Summing up, the scheme of the Metropolis algo-
rithm is the following:

Metropolis algorithm scheme
If we have want to sample the probability P(x) with sample space Ω, then

1. Select a initial state y ∈Ω.

2. Propose a state z ∈Ω through a Markov chain with symmetric selection probability.

3. Accept the change with acceptance probability

A(y→ z) = min
{

1,
P(z)
P(y)

}
,

if the state is rejected, add to the chain the state y.

4. Return to the second step and repeat (until we have a sufficiently long chain).

1This condition can be weaker; we could merely demand a symmetric selection probability, i.e. S(y→ z) =
S(z→ y)
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Population Dynamics Algorithm

In this appendix the population dynamics algorithm, which has helped us to obtain numerical
result after applying the replica method, is described.

The idea of the algorithm is to approximate a distribution w(h) through a sample {hi}N
i=1,

which is known as the population. In the present work, the distribution has taken the following
form1

w(h) =
∞

∑
l=0

cle−c

l!

∫ ( ∞

∏
k=1

dhkw(hk)

)
δ (h− f ({hk}l

k=1)) . (C.1)

We will limit ourselves to explain how the previous equation can be solved numerically with
the population dynamics algorithm. A deeper analysis can be checked out in [61].

Population dynamics algorithm scheme
If we have want to sample the probability w(h) given in Eq. (C.1), then:

1. Select an initial population {hi}N
i=1.

2. Draw an integer r with distribution cle−c

l! .

3. Choose r h’s uniformly from {hi}N
i=1, this new set will be denoted by {h j}r

j=1.

4. Select uniformly one index α from 1 to N and replace the element hα from the initial
population with the value

hα → f ({h j}r
j=1) .

5. Return to the second step and repeat (until convergence).

1See Eqs. (3.52) and (4.56).
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[18] T. Rogers, I. Pérez Castillo, R. Kühn, “Cavity Approach to the Apectral Density of Sparse
Symmetric Random Matrices”, Physical Review E 2008, 78, 031116.
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