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Chapter 0

Introducción

Los primeros resultados de este trabajo tienen que ver con algunas relaciones entre la solu-

bilidad del problema inicial Lp Dirichlet y una condición de Lq regularidad, en cilindros de la

forma ΩT = D× (0,T) ⊂ Rn
×R, donde D es un dominio Lipschitz acotado enRn, 1 < p, q < ∞

y T > 0.

Para estos resultados requerimos que los coeficientes de los operadores parabólicos a

considerar, sean independientes de la variable temporal. De esta manera, garantizamos que

las soluciones a operadores adjuntos puedan obtenerse a partir de las soluciones al operador

original vı́a una reflexión en la variable temporal (y recı́procamente).

Tanto el problema Lp Dirichlet y la condición de regularidad surgen una vez que el

problema clásico de Dirichlet es planteado. El problema clásico de Dirichlet para un operador

parabólico L = div(A(x, t)∇) − ∂t en un cilindro Lipschitz ΩT, es el siguiente:

Dada un función en la frontera f ∈ C(ST), buscamos una función u ∈ C2,1 cumpliendo:
Lu(X) = 0 X ∈ ΩT,

lim
X→Q
X∈Ω

u(X) = f (Q) Q ∈ ST.

Para una descripción completa de este problema, véase la sección 2.2. Se sabe que el

problema clásico de Dirichlet tiene solución (véase [14]). Es natural preguntarse si podemos

plantear y resolver un problema de Dirichlet en el que el dato en la frontera pertenezca a un

espacio distinto de funciones.

El problema Lp Dirichlet, escrito (D)p de manera corta, se define pidiendo una condición

3



4 CHAPTER 0. INTRODUCCIÓN

que regule el comportamiento en la frontera de la solución al problema clásico. En conse-

cuencia, dada un dato en la frontera g que pertenezca a Lp, la condición antes mencionada

permite a la solución u alcanzar el dato en la frontera g en una manera similar al problema

clásico (véase la sección 2.3).

El problema de Regularidad, escrito (R)p abreviadamente, requiere de otra condición que

controle el comportamiento en la frontera del gradiente en las variables espaciales de la

solución al problema clásico. Debido a esto, dado un dato en la frontera h en un espacio de

Sobolev apropiadamente definido, la anterior condición permite a la solución u alcanzar al

dato en la frontera h (véase la sección 2.3).

En la segunda parte establecemos un resultado ligeramente más débil en un dominio que

varı́a con el tiempo. Probamos que la condición anteriormente mencionada de Lq regularidad

implica la condición A∞ de la medida parabólica, lo cual genera la solubilidad del problema

Lp Dirichlet para cierta p > 1, no necesariamente cumpliendo 1/q + 1/p = 1. En esta segunda

parte, la restricción de la variable temporal no es necesaria.

Para la primera parte, inicialmente probamos que la condición (R)p que definimos en este

contexto, implica una estimación para la norma Lp′ de la función maximal no tangencial de la

solución al problema inicial de Dirichlet, donde 1 < p < ∞, y p′ = p/(p− 1). Este resultado es

el análogo parabólico de [28, Theorem 5.4], y esencialmente significa que la solubilidad del

problema inicial de Lp regularidad implica la solubilidad del problema inicial Lp′ Dirichlet

en cilindros Lipschitz, con 1/p + 1/p′ = 1.

Esencial para este resultado son una desigualdad de Poincaré con peso (Lemma 3.2), una

desigualdad reversa de Harnack local para una familia muy especı́fica de funciones (Lemma

2.12 y Remark 3.5) y una técnica de reflexión local en la variable temporal del argumento de

cierta familia de soluciones.

También establecemos un resultado recı́proco parcial, el cual es una adaptación a ecua-

ciones parabólicas del resultado en [38]. Este resultado afirma que si 1 < p < ∞, las

condiciones (D)p′ y (R)q juntas implican la condición (R)p, siempre que 1 < q < p.

Las adaptaciones que realizamos no son consecuencia inmediata del caso de ecuaciones

elı́pticas. Por ejemplo, al contrario del operador elı́ptico en [28, 38], el operador parabólico

no es autoadjunto y por la naturaleza evolutiva de las ecuaciones parabólicas, ciertas estima-

ciones básicas para soluciones, medida parabólica y función de Green tienen un desplazamiento

en la variable del tiempo lo que requiere una argumentación distinta a la de ecuaciones elı́pticas.
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Una caracterı́stica particular en la prueba del resultado principal de la segunda parte, es el

uso de otra forma de una desigualdad de Poincaré para funciones anulándose en una porción

de la frontera. De esta manera, podemos evadir el uso de la bien conocida comparabilidad

de la función de Green y la medida parabólica asociada al operador parabólico en dominios

no cilı́ndricos (ver por ejemplo [37, Lemmata 2.8 and 2.9]).
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Chapter 1

Introduction

The first results of this dissertation deal with some connections between the solvability of

the initial Lp Dirichlet problem and a condition of Lq regularity, on cylinders of the form

ΩT = D × (0,T) ⊂ Rn
× R, where D is a bounded Lipschitz domain in Rn, 1 < p, q < ∞ and

T > 0.

For these results we require the main coefficients of the parabolic operators to be inde-

pendent of the time variable. This way, we guarantee that the solutions to adjoint equations

may be obtained from solutions to the original equation via a reflection in the time variable

(and conversely).

Both the Lp Dirichlet problem and a condition of Lq regularity arise once the Classical

Dirichlet problem is posed. The Classical Dirichlet problem for L = div(A(x, t)∇) − ∂t in a

Lipschitz cylinder ΩT is the following:

Given a boundary data f ∈ C(ST), we look for a function u ∈ C2,1 satisfying:
Lu(X) = 0 X ∈ ΩT

lim
X→Q
X∈Ω

u(X) = f (Q) Q ∈ ST.

For the complete description of this problem, see section 2.2. It is known that the Classical

Dirichlet problem is solvable (see e.g. [14]). It is natural to ask if we can pose and solve a

Dirichlet problem in which the boundary data belongs to a different space of functions.

The Lp Dirichlet problem, in short (D)p, is defined by requiring a condition that restricts the

boundary behavior of the solution to the Classical problem. Accordingly, given a boundary

7



8 CHAPTER 1. INTRODUCTION

data g belonging to Lp, the previously mentioned condition allows the solution u to attain

the boundary data g in a similar way to the Classical problem (see section 2.3).

The Regularity problem, in short (R)p, requires another condition that controls the bound-

ary behavior of the spatial gradient of the solution to the Classical problem. Likewise, given a

boundary data h in a properly defined Sobolev space, the aforementioned condition enables

the solution u to the boundary data h (see section 2.3).

In the second part we establish a slightly weaker result on a time-varying domain. We

prove that the previously mentioned condition of Lq regularity implies the A∞ property of

parabolic measure, which yields the solvability of the Lp Dirichlet problem for certain p > 1,

not necessarily satisfying 1/q + 1/p = 1. In this second part, the time variable independence

constraint is not needed.

For the first part, we first prove that the condition (R)p that we define in this setting,

implies an estimate for the Lp′ norm of the non-tangential maximal function of a solution of

the initial Dirichlet problem, where 1 < p < ∞, and p′ = p/(p− 1). This result is the parabolic

analogue of [28, Theorem 5.4], and essentially means that the solvability of the initial Lp

regularity problem implies the solvability of the initial Lp′ Dirichlet problem on Lipschitz

cylinders, with 1/p + 1/p′ = 1.

Essential to this first result are a weighted Poincaré type inequality (Lemma 3.2), a local

backward Harnack inequality for a very specific family of solutions (Lemma 2.12 and Remark

3.5) and a local reflection in time variable technique of the argument of certain family of solutions.

We also establish a partial reciprocal result, which is an adaptation to parabolic equations

of the result in [38]. This result asserts that if 1 < p < ∞, conditions (D)p′ and (R)q together

imply condition (R)p, provided 1 < q < p.

The adaptations we provide are not straightforward consequences from the situation for

elliptic equations. For instance, unlike the elliptic operator in [28, 38], the parabolic operator

is not self adjoint, and by the evolutionary nature of the parabolic equations, certain basic

estimates for solutions, parabolic measure and Green’s function have a shift in the time variable

which requires different argumentations than those for elliptic equations.

The second part’s main result is that a condition of Lq regularity implies the A∞ property

of parabolic measure, which yields the solvability of the Lp Dirichlet problem for certain

p > 1, not necessarily satisfying 1/q + 1/p = 1.

A particular technical feature in the proof of the last main result is the use of yet another
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particular form of Poincaré’s inequality for functions vanishing on a portion of the boundary.

In this way, we are able to avoid the use of a well-known comparability of Green’s function

and parabolic measure associated to the parabolic operator on non-cylindrical domains (see

e.g. [37, Lemmata 2.8 and 2.9]).

1.1 Brief historical background

The goal of this section is to provide a brief and non exhaustive historical view of the subject

studied in this thesis, making a strong emphasis on the work most closely linked to this

thesis. We leave for the next chapter the precise definitions of some of the descriptions that

we provide in the remaining of this chapter.

To understand the origins of the Dirichlet and regularity problem we can look at R. A.

Hunt and R. L. Wheeden’s paper [23]. They established a Fatou-type theorem for harmonic

functions on a Lipschitz domain. Namely, on a domain D ⊂ Rn with Lipschitz (non-

smooth) boundary, a bounded harmonic function has non-tangential boundary limit almost

everywhere. Along the way they developed some fundamental estimates about the harmonic

measure ω of starlike Lipschitz domains, and what is known as kernel function nowadays.

Along the lines of their work, while proving these estimates, they actually established the

solvability of a sort of Lp(dω) Dirichlet problem.

Years later, in the setting of a Lipschitz domain D ⊂ Rn, in the fundamental seminal work

[9] B. E. J. Dahlberg showed the mutual absolute continuity of the surface measure σ and the

harmonic measure ω. In connection to that, he also proved in [10] that the Poisson kernel,

written in its form of Radon-Nikodym derivative κ =
dω
dσ

, belongs to the class RH2(∆) of

reverse Hölder weights, for ∆ ⊂ ∂D a small surface ball. This last condition turns out to be

equivalent to the solvability of the L2 Dirichlet problem.

In fact, the previous characterization implies the existence of ε0 > 0 such that for 2 − ε0 ≤

p < ∞ and f ∈ Lp(∂D, dσ) one has

‖(u)∗‖Lp(∆r,dσ) . ‖ f ‖Lp(∂D,dσ),

where u is the solution to the Dirichlet’s problem with boundary data f and (u)∗ is the

maximal non-tangential function of u. A similar estimate holds in the case that D is a C1

domain and for 1 < p < ∞.
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The regularity problem was first studied by D.S. Jerison and C.E. Kenig in [24]. They

proved via the Green’s theorem and a Rellich-type identity that the regularity problem for

the Laplace equation in Lipschitz domains is valid for p = 2 (see [24, Theorem 3]).

It is worthwhile to mention that in [19], E.B. Fabes and S. Salsa prove the heat equation

analogue of [9], that is, the caloric and surface measure on the lateral boundary of a Lipschitz

cylinder ∂D×(0,∞) are mutually absolutely continuous and the caloric Poisson kernelκ =
dω
dσ

satisfies a reverse Hölder inequality of index 2 for small surface balls. This leads to the

solvability of the initial-Dirichlet problem for the heat equation with given lateral data in Lp,

p ≥ 2.

Back to the Laplace’s equation setting and D a C1 domain, E.B. Fabes, M. Jodeit, Jr.

and N.M. Riviére in [17] solved the Lp Dirichlet problem for 1 < p < ∞, even providing

a representation formula in the form of a double layer potential. Using this explicit form

of the solution they were able to obtain gradient estimates near the boundary, when the

boundary data has derivatives in Lp(∂D) for the same range 1 < p < ∞. The similar problem

on Lipschitz domains remained open for some time afterwards.

In [8], R.R. Coifman, A. Macintosh and Y. Meyer showed that the Cauchy Integral was

a bounded operator for Lp, 1 < p < ∞, on Lipschitz curves. Combining their result with

some arguments found in [17], G. Verchota in [41] proved some Maximal functions and

pointwise convergence results concerning layer potentials. For D, a bounded Lipschitz

domain in Rn, n ≥ 2, the classical layer potentials for Laplace’s equation were shown to be

invertible operators in L2(∂D, dσ) and various subspaces of L2(∂D, dσ). For 1 < p ≤ 2 and

data in Lp(∂D, dσ) with first derivatives in Lp(∂D, dσ) it was shown that there exists a unique

harmonic function u that solves the Dirichlet problem for the given data and such that the

non-tangential maximal function of the gradient ∇u belongs to Lp(∂D, dσ).

As far as the consequences of the solvability of the Lp regularity problem (that for short-

ness we denote by (R)p), work of C. E. Kenig and J. Pipher [28] established several results

concerning (R)p in the case of an elliptic operator L with non smooth coefficients over the

n-dimensional unit ball B. The first one says that the solvability of (R)p depends only on the

behavior of the coefficient matrix for L near the boundary:

Theorem 1.1. [28, Theorem 5.1] Suppose thatL0 = div(A0∇u) andL1 = div(A1∇u) and 0 < δ < 1

and A0 ≡ A1 in B \ Bδ. Then (R)p is solvable for L1 if (R)p is solvable for L0.
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The second result is the analog of the fact that for the Lp Dirichlet problem, the solvability

of (D)p for some 1 < p < ∞ implies the solvability of (D)q for all q ≥ p and states the following:

Theorem 1.2. [28, Theorem 5.2] Suppose that (R)p is solvable for L in B for some 1 < p < ∞. Then

(R)q is solvable for (R)q for L for all 1 < q ≤ p.

The third result is also an analogue for the Dirichlet problem:

Theorem 1.3. [28, Theorem 5.3] Suppose that (R)p is solvable for L in B for some 1 < p < ∞. Then

there exists and ε > 0 such that (R)q is solvable for L for p < q ≤ p + ε.

And the fourth result establishes a connection of the (R)q and the Lp Dirichlet problem:

Theorem 1.4. If (R)p is solvable for L, then (D)p′ is solvable for L, where
1
p

+
1
p′

= 1.

This relation is established by making use of some fundamental properties of solutions

to obtain integral estimates for the gradient of a solution close to the boundary and then

applying these estimates to a particular family of solutions, along with a known property

relating the elliptic measure and the Green’s function.

In this thesis, we establish the parabolic analogue of this last result (see Theorem 2.18). The

nature of parabolic equations requires to pose a proper estimate for a Regularity problem

that involves the change in time, one in which the tangential gradient in space as well a

half order derivative in time direction of the solution are included. This and other issues

mentioned earlier lead to some auxiliary inequalities (for instance Lemma 2.12) and new

argumentation.

Another important relation between the regularity and the Lp Dirichlet problem was

pointed out by Z. Shen in [38]. He proved what may be viewed as a partial converse

of Theorem 1.3, again in the setting of an elliptic operator L with bounded measurable

coefficients over a Lipschitz domain D.

Theorem 1.5. [38, Main Theorem] Suppose that (D)p′ is solvable for L. Then either (R)p is solvable

for L or (R)q is not solvable for any 1 < q < ∞.

The key ingredients for this theorem are a reverse Holder inequality for solutions van-

ishing locally at a small surface ball on the boundary and what can be called a good λ type

of inequality.
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A parabolic analogue is also established in this thesis in Theorem 2.19. This also requires

to introduce some adaptations and auxiliary estimates (for instance Theorem 3.1).

We now describe an important source of ideas for the regularity condition that we adopt in

this work. Credit should be given to works on Lipschitz cylinders as well as on time-varying

non-cylindrical domains.

In the heat equation setting, R. Brown in [3] constructed a solution for the initial L2

Dirichlet problem as a corollary of their solution to the initial Neumann problem. He also

considered an initial Dirichlet problem in a Lipschitz cylinder with data in the space H1, 1
2

(see [3, Definition 2.12]), a space of functions with one spatial derivative and half of a time

derivative in L2, and he proved that the solution to this problem satisfies

‖N(∇u)‖L2(ST ,dσ) . ‖ f ‖
H1, 1

2 (∂D,dσ)
.

In simple words, he proved (R)2 for the heat equation in a Lipschitz cylinder. Brown’s

definition of (R)2 is the first hint to our definition of a Regularity problem for a parabolic

operator.

In [22], S. Hofmann and J. L. Lewis, Lewis considered the Dirichlet problem for the

heat equation in domains Ω ⊂ Rn given by regions above a time varying graph. They

defined a regularity problem in which the boundary data belongs to a Sobolev space having

a tangential spatial gradient and half of a time derivative in L2. Solutions to this problem

could be represented as caloric layer potentials and satisfied optimal regularity estimates. In

[21], such regularity problem was proven uniquely solvable in a range 1 < p < p0 where p0

depends only on the geometric features of the domain Ω and the dimension n.

Another weight property related to the RHq classes is the so called A∞ property. One

may think of A∞(σ) as a class of measures which enjoy a mutual absolute continuity with

the surface measure σ. In fact it is well known that µ ∈ A∞(σ) if and only if µ � σ and the

Radon-Nikodym derivative
dω
dσ

belongs to RHq for certain 1 < q < ∞. In a sense, one may

write A∞(σ) =
⋃

q>1 RHq.

It is well known via some counterexamples, that the parabolic measure may be singular

with respect to the surface measure, even in a smooth cylinder. And so a strategy to prove

solvability of certain initial Lp Dirichlet problems is to establish that the parabolic measure

belongs to A∞(σ). Also, some recent criteria have been proved in order to establish this

property, and these results involve quadratic expressions related to area integral estimates,
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or Littlewood-Paley theory (both adapted to the parabolic setting). The origins of this

circle of ideas can be traced back to the work [27, 29] on equations of elliptic type (see also

[12]). Moreover, in the reference [11] it has been established a connection with A∞ and the

solvability of the so called BMO-Dirichlet problem. The parabolic versions of these results

are in [32, 33, 13].

The last result in this dissertation may be viewed as a continuation of these ideas. We

establish that under the assumption that (R)q holds for some 1 < q < ∞, one may obtain

the A∞ property of parabolic measure. Although this result is far from optimal on Lipschitz

cylinders (because of the results we obtained in the first chapters of this thesis), as far as

we know is the only result that relates the solvability of initial (R)q regularity problem with

initial Lp Dirichlet problem on non-cylindrical domains. It also makes the point that the initial

(R)q regularity problems may be closely related to quadratic expressions of Littlewood-Paley

type.
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Chapter 2

Preliminary definitions

2.1 Lipschitz cylinders and Lip
(
1, 1

2

)
cylinders.

2.1.1 Lipschitz cylinders.

Points in Rn+1 will be denoted by X = (x, t) = (x′, xn, t), where x = (x′, xn) ∈ Rn−1
×R ≡ Rn is

referred to as the space variables and t ∈ R is conceived as the time variable.

An open and bounded domain D ⊂ Rn is a Lipschitz domain if its boundary is given locally

by Lipschitz functions. This means that for every P = (p1, . . . , pn−1, pn) ∈ ∂D, there is a new

local coordinate system (x′, xn), x′ ∈ Rn−1, xn ∈ R, and with respect to these coordinates, one

can find

• A function φ = φP : Rn−1
→ R satisfying |φ(x′) − φ(y′)| ≤ mP|x′ − y′| for certain mP > 0,

• A rectangle of radius r > 0 of the form R = R(P, r) = {(x′, xn) : |xi−pi| < r, |xn−pn| < 2nmpr},

with the following significance. In this new local coordinate system (x′, xn), one has

(i) 2R ∩ ∂D = 2R ∩ {(x′, xn) : xn = φ(x′)},

(ii) 2R ∩D = 2R ∩ {(x′, xn) : xn > φ(x′)},

where 2R is the rectangle concentric to R with twice its radius.

By compactness of ∂D we can choose a finite number of rectangles R1, · · · ,RN with the

same radius r0 covering ∂D and a finite number of Lipschitz functions φ1, · · · , φN satisfying

15
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the conditions above with an absolute and unique Lipschitz constant m. In fact one can

always take 0 < r0 < 1. Once this constant is fixed, one can define local geometric objects

within Lipschitz cylinders, whose definition we recall shortly.

An infinite Lipschitz cylinder with constants m and r0 is an open set of the form Ω = D × R

where D is a Lipschitz domain with constants m and r0 as described above.

2.1.2 Lip
(
1, 1

2

)
cylinders.

Fix r0 > 0 and m > 0. A function ψ : Rn
→ (−m r0,m r0) is said to satisfy the Lip(1, 1/2)

condition with constant m if

|ψ(x′, t) − ψ(y′, s)| ≤ m
(
|x − y| + |t − s|

1
2

)
for all (x′, t), (y′, s) ∈ Rn. We define two very similar kind of non - cylindrical domains on

which we will work. For the first one we follow [21, 22]. We define regions Ω above the

graph of a compactly supported functionψ : Rn
→ R of Lip(1,1/2) type with Lipschitz constant

m > 0. More precisely

Ω =
{
(x′, xn, t) ∈ Rn−1

×R ×R : xn > ψ(x′, t)
}
. (2.1)

For the second type of non - cylindrical domain,

Z =
{
X ∈ Rn+1 : |xi| < r0, i = 1, · · · ,n − 1, |xn| < 2nmr0, t ∈ R

}
.

A domain Ω ⊂ Rn+1 is said to be Lip(1, 1/2) cylinder with constants m and r0 if there exists

cylinders Z1, · · · ,ZN and functions ψ1, · · · , ψN satisfying the Lip(1, 1/2) condition such that

(i) 2Zi ∩ ∂Ω = 2Zi ∩ {(x′, xn, t) : xn = ψi(x′, t)},

(ii) 2Zi ∩Ω = 2Zi ∩ {(x′, xn, t) : xn > ψi(x′, t)},

where 2Z is the cylinder concentric to Z with twice its radius. We assume that diam(Ω) =

supτ∈R diam(Ω∩{t = τ}) is finite, where diam is the euclidean diameter. We also assume that

there exists x0 ∈ Rn such that (x0, τ) ∈ Ω for all τ ∈ R.

It is important to notice that a Lipschitz cylinder is a Lip(1, 1/2) cylinder, since it suffices

to take ψ(x′, t) = ψ(x) for every t.
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2.1.3 Further definitions.

The following definitions apply to Lipschitz cylinders, Lip (1, 1/2) cylinders and the region

above the graph of a Lip(1, 1/2) graph. We denote by S the lateral boundary of Ω, defined as

S = ∂D ×R.

If T > 0, we let ΩT denote the bounded domain Ω ∩ {0 < t < T} and by ST we denote

its lateral boundary S ∩ {0 ≤ t < T}. The parabolic boundary of ΩT is defined by ∂pΩT =

ST ∪ (Ω ∩ {t = 0}), and the parabolic center of ΩT is defined as Ξ = (0,T + 1), which will play a

role in some future estimates. The fact that we will consider mainly solutions to Lu = 0 that

vanish at Ω × {t = 0}, the bottom of ΩT, is because of our interest to deal with initial Dirichlet

problems.

On S or ST we can consider the surface measure σ given by the product measure dσ =

dσ̃×dt, where σ̃denotes the surface measure on the Lipschitz domain D and dt is the Lebesgue

measure on R.

For r < r0/10 and Q = (q, s) ∈ S, where r0 depends on the geometric features of Ω, we

define the Carleson boxes, surface balls and right and left corkscrew points (in that order) as

Ψr(Q) =


X = (x′, xn, t) ∈ Ω :

|xi − qi| < r, i = 1, · · · ,n − 1

ψ(x′, t) < xn < ψ(x′, t) + 4nmr

|s − t| < r2


,

∆r(Q) = S ∩Ψr(Q),

Ar(Q) = (q′, ψ(q′, s) + 6nmr, s + 2r2), Ar(Q) = (q′, ψ(q′, s) + 6nmr, s − 2r2).

Sometimes we use ∆ instead of ∆r(Q) and by k∆ we mean the surface ball ∆rk(Q). The

parabolic cubes in Rn+1 are defined by Qr(X) =
{
Y = (y, s) ∈ Rn+1 : |x − y| < r, |t − s| < r2

}
, 0 <

r < r0.

In order to define the conditions (R)p and (D)p, we introduce the non tangential approach

regions Γα(Q) = {X ∈ Ω : δ(X,Q) ≤ (1 + α)δ(X)} ∩Ψr0 (Q). Here, δ(X) = δ(X; S) is the parabolic

distance from X to the lateral boundary S and is given by δ(X; S) := inf
Q∈S

δ(X; Q), where the

parabolic distance between X = (x, t) ∈ Rn+1 and Y = (y, s) ∈ Rn+1 is δ(X; Y) = |x − y| + |t − s|1/2.

The previous notations and definitions are of importance throughout this work. The

following ones derive from these, but are only used in chapter 5.
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For X = (x, t) ∈ Ω the Carleson region adapted to X, denoted by Ψ(X), is defined as the

Carleson region Ψθδ(X)(X̂), where the center of this Carleson region X̂ is the vertical projection

of X on ∂Ω and θ > 0 is the constant from the definition of Q(X) in 2.16.

For Z = (z, τ) ∈ ∂Ω and 0 < κ < 1 define generalized κ-scaled Carleson regions as

κΨr(Z) ≡
{
(x, xn, t) ∈ Ω : |x′ − z′| < κr, |t − τ| < κr2, zn < xn < zn + 4nmr

}
. (2.2)

For 0 < ε < 1, the ε-top portion of a Carleson region Ψr (or a κ-scaled Carleson region κΨr)

is defined as Ψε
r = Ψr ∩ {X ∈ Ω : δ(X) ≥ εr} (or κΨε

r = κΨr ∩ {X ∈ Ω : δ(X) ≥ εr} respectively).

Observe that if ∆ = ∆r(Q) or X ∈ Ω, then the notations Ψ = Ψ(∆), A(∆), A(Ψ), κΨ(∆),

κΨ(X)ε, etc. still make sense with an obvious meaning. For X we make the convention of

writingA(X) = A(Ψ(X)).

Also, for 0 < r < r0 define the local non tangential approach region as Γr
α(Q) = Γα(Q) ∩

{X ∈ Ω : δ(X,Q) < r} . The aperture α > 0 is chosen and fixed in such a way that Γα(Q) ⊂ Ω for

every Q ∈ ∂Ω (this can be done because of the Lip(1,1/2) property of ∂Ω), and so we simply

use the notation Γ(Q) or Γr(Q) for these non-tangential regions.

2.2 Solutions.

The functions we will consider are solutions to operators L = div(A(x, t)∇) − ∂t, where ∇

denotes the gradient with respect to space variables only, ∂t =
∂
∂t

, and where the coefficients

of A(x, t) form a symmetric matrix of functions (ai, j) which are assumed to be smooth or

infinitely differentiable, and satisfy the ellipticity condition

λ|ξ|2 ≤
n∑

i=1

n∑
j=1

ai, j(x, t)ξ jξi ≤
1
λ
|ξ|2 for all (x, t) ∈ Rn+1 and ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn, (2.3)

and where |ξ| denotes the Euclidean norm of ξ.

The smoothness assumption for the coefficients is adopted in order to have a well defined

concept of solution to the equation Lu = 0, and the only quantitative information that will

arise in the constants of the results and estimates invoked, is the ellipticity constant λ, the

dimension, and geometric constants of the domain D. This will potentially make it possible

to use limiting arguments to extend the results to weaker notions of solutions (see e.g. [5]).

One further assumption is that solutions to Lu = 0 are always supposed to vanish at the

bottom of Ω, hence we will only be considering initial Dirichlet problems.
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We emphasize that for the results concerning some connections between the initial Lp

Dirichlet problem and a condition of Lq regularity, namely Theorems 2.18 and 2.19, we have

assumed that the main coefficients of the operator L are independent of t. To justify this

assumption, recall the definition of adjoint solutions associated to L. These are functions

v ∈ C2,1 which are solutions to the equation L∗v = 0, where L∗ = div(A(x)∇) + ∂t.

With the change of variable t → −t one can see that if Lu = 0 on Ω then v(x, t) = u(x,−t)

is solution to L∗v = 0 on Ω. And even tough L∗ has the same ellipticity than L, they may

be very different operators. A couple of times in our argumentations we employ auxiliary

adjoint solutions arising from the application of this reflection mapping and compare them in

the adjoint variable with the Green’s functions for L in Ω. This is also why the proofs of

theorems 2.18 and 2.19 work on cylindrical domains.

2.2.1 Parabolic and surface measure.

It is well known that a Lipschitz cylinder is a regular domain for any parabolic operator that

satisfies condition (2.3) (this may be obtained using parabolic capacity, see e.g. [14]). That is,

for every f ∈ C(ST) there exists a unique solution u ∈ C2,1(ΩT) ∩ C(ΩT) such that
Lu(X) = 0 X ∈ Ω

lim
X→Q
X∈Ω

u(X) = f (Q) Q ∈ ST.
(2.4)

From this, through the Riesz Representation Theorem, we can derive the notion of the

parabolic measure. The L-parabolic measure at X ∈ Ω is the unique Borel measure ωX = ωX
L

defined on ST such that the solution to (2.4) is represented at X ∈ Ω by

u(X) =

∫
ST

f (Q) dωX(Q). (2.5)

Define the surface measure for any Borel set F ⊆ S by setting

σ(F) =

∫
F

dσtdt, (2.6)

where σt is the (n − 1)-dimensional Hausdorff measure of Ft ≡ F ∩ (Rn
× {t}), and dt denotes

integration with respect to 1-dimensional Hausdorff measure. Observe that in particular σ

is finite on surface cubes ∆ ⊂ ∂Ω, and in fact if ∆ has radius 0 < r ≤ r0 then σ(∆) ≈ rn+1. In

this work we will only consider the initial Dirichlet problem, that means that the boundary

data vanishes at t = 0.
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2.2.2 Green Function.

The Green function of L on Ω with pole at X = (x, t) ∈ Ω is denoted by G(X; Y) and defined

as

G(X; Y) = Γ(X; Y) −
∫

ST

Γ(Z; Y) dωX(Z), (2.7)

where Γ(X; Y) is the fundamental solution of L (see e.g. [1] or [37]).

2.2.3 Properties of solutions.

Now we state some fundamental theorems of the theory, which are quite useful for our

purposes. The constants playing a role in each of the following results depend only on

the ellipticity constant, the dimension and the geometric features of the Ω, such as m, the

Lipschitz constant of D.

Theorem 2.1 (Harnack’s Inequality). [31, Theorem 2][18, Theorem 1] Let u be a non-negative

solution of Lu = 0 in ΩT. Let D′ be a convex subdomain of D such that δ = dist(D′, ∂D) > 0. Then

for all x, y ∈ D′ and 0 < s < t ≤ T we have

u(y, s) ≤ u(x, t) exp
[
c
(
|x − y|2

t − s
+

t − s
R

+ 1
)]
,

where c = c(n, λ) and R = min{1, s, δ2
}.

Theorem 2.2 (Carleson estimate). [15, Theorem 0.3][18, Theorem 2] Let Q = (q, s) ∈ S and

0 < r < min{r0,
√

s}. Then for any non-negative solution ofLu = 0 in Ω vanishing continuously on

∆(Q, 2r), we have

sup
Ψr(Q)

u ≤ c u(Ar(Q)),

where the constant c = c(n, λ,m, r0) > 0.

Theorem 2.3. [26, Lemma 1.1] Let Q = (q, s) ∈ ST and 0 < r < 1
2 min{r0,

√
s,
√

T − s}. Then, for

each X ∈ Ψ r
2
(Q) we have

ωX(∆r(Q)) ≥ c,

where c = c(n, λ,m) > 0.

In the next two Theorems, G denotes the Green function in the domain D×{−1 < t < T+2}.
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Theorem 2.4. [15, Theorem 1.4] Let Q = (q, s) ∈ ST and 0 < r < 1
2 min{r0,

√
s,
√

T − s}. Then, for

each X = (x, t) ∈ ΩT with s + 4r2
≤ t ≤ T we have

c−1rnG(X;Ar(Q)) ≤ ωX(∆r(Q)) ≤ c rnG(X;Ar(Q)),

where c = c(n, λ,m, r0,T) > 0.

It’s worth noting that Theorem 2.4 differs from its elliptic analog in the order of the

argument variables (see [6, Lemma 2.2]).

Theorem 2.5. [15, Corollary 2.3] Let Q = (q, s) ∈ ST and 0 < r < 1
2 min{r0,

√
s,
√

T − s}. Then we

have

c−1
≤

G(Ξ;Ar(Q))

G(Ξ;Ar(Q))
≤ c,

where c = c(n, λ,m, r0,T) > 0.

Theorem 2.6 (Local comparison principle). [15, Theorem 1.6] Let Q ∈ ST and u, v be two positive

solutions of Lu = 0 in Ψ2r(Q) with u = v = 0 continuously on ∆2r(Q). Then, for each X ∈ Ψ r
8
(Q)

and 0 < r < 1
2 min{r0,

√
s,
√

T − s}, we have

u(X)
v(X)

≤ c
u(Ar(Q))
v(Ar(Q))

,

where the constant c = c(n, λ,m, r0) > 0.

Theorem 2.7 (Hölder continuity). [37, Theorem 1.3] Let Lu = 0 in Ω. Then there exists α =

α(n, λ) > 0 such that u ∈ Cα(Ω). Furthermore, if Q2r(x, t) ⊂ Ω and (z,w), (y, s) ∈ Qr(x, t), then

|u(z,w) − u(y, s)| ≤
(
|z − y|

r
+
|w − s|

r2

)α
r
(?
Qr(x,t)

|∇yu|2 dy ds
) 1

2

.

From now on, we will use the notation . or & to write an inequality where the constants

involved depend only on known features such as dimension, ellipticity and the Lipschitz

character of Ω.

From Theorem 2.7 we can derive Hölder continuity at the boundary for solutions to

Lu = 0 that vanish continuously on ∆3r(Q) for some Q ∈ S.

Proposition 2.8. Let Lu = 0 in Ω vanishing on ∆3r(Q) for some Q ∈ S. Then there exists

α = α(n, λ) > 0 such that

|u(X)| .
(
δ(X)

r

)α
r
(?

Ψ2r(Q)
|∇yu|2 dy′ dyn dρ

) 1
2

, (2.8)

for every X ∈ Ψr(Q).
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Proof. First consider the case when Ω = Rn+1
+ (we will use the + super-index to indicate that

we work with the Carleson box and the surface ball in the setting of Rn+1
+ ) and let ũ be the

function obtained by reflecting u across xn = 0 as an odd function of xn. Then L̃ũ = 0 where

L̃ has the same ellipticity thanL. If (x′, xn, t) ∈ Ψr(q′, 0, s), applying Theorem 2.7 to ũ, we get

|ũ(x′, xn, t) − ũ(x′, 0, t)| ≤
(xn

r

)α
r
(?
Q2r(q′,0,s)

|∇yũ|2 dy′ dyn dρ
) 1

2

.

With a change of variables and the definition of ũ

|u(x′, xn, t)| ≤
(xn

r

)α
r

?
Ψ+

2r(q
′,0,s)
|∇yu|2 dy′ dyn dρ


1
2

. (2.9)

Now, if Ω is a Lipschitz cylinder and u is a solution of Lu = 0 vanishing on ∆3r(Q) for

some Q = (q′, ψ(q′, s), s) we let v(x′, xn, t) = u(x′, xn + ψ(x′, t), t) for each (x′, xn, t) ∈ Ψ3r(Q).

Then Lv = 0 in Ψ+
3r(q

′, 0, s) where λ = λ(λ,m) and v vanishes on ∆+
3r(q

′, 0, s). From (2.9), for

each (x′, xn, t) ∈ Ψr(q′, 0, s), we have

|v(x′, xn, t)| .
(xn

r

)α
r

?
Ψ+

2r(q
′,0,s)
|∇yv|2 dy′ dyn dρ


1
2

.

Putting X = (x′, xn + ψ(x′, t), t) ∈ Ψr(Q), by a change of variables we obtain Proposition

2.8. �

There is also a version of the Theorem 2.9 adapted for solutions vanishing on a portion

of the boundary. The form of this result that we now present may be found in [30, Lemma

5], and the ideas for its proof are the same as sketched therein.

Theorem 2.9. LetLu = 0 in Ω vanishing on ∆2r(Q) for some Q ∈ S. Then there existα = α(n, λ) > 0

and C = C(n, λ) > 0 such that

|u(X)| .
(
δ(X)

r

)α
sup
Ψr(Q)

u, (2.10)

for every X ∈ Ψr(Q).

Some of the results stated above have a counterpart that holds for adjoint solutions, that

is, solutions to L∗v = 0, where L∗v = divA∇v + ∂tv. If needed, we will explicitly mention

each of the results that we may use, and at this point we also mention it as an instance of the

reflecting technique that we adopt in a couple of results later in the thesis.
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Proposition 2.10. Let v be a non-negative solution ofL∗v = 0 in ΩT. Let D′ be a convex subdomain

of D such that δ = dist(D′, ∂D) > 0. Then for all x, y ∈ D′ and 0 < s < t ≤ T we have

v(x, t) ≤ v(y, s) exp
[
c
(
|x − y|2

t − s
+

t − s
R

+ 1
)]
,

where c = c(n, λ) and R = min{1, s, δ2
}.

Proof. Define u(x, t) = v(x,−t) and apply Proposition 2.1. �

Theorem 2.11. Let Q ∈ ST and v1, v2 be two positive solutions of L∗v = 0 in Ψ2r(Q) with

v1 = v2 = 0 continuously on ∆2r(Q). Then, for each X ∈ Ψ r
8
(Q) and 0 < r < 1

2 min{r0,
√

s,
√

T − s},

we have
v1(X)
v2(X)

≤ c
v1(Ar(Q))

v2(Ar(Q))
,

where the constant c = c(n, λ,m, r0) > 0.

Proof. Define ui(x, t) = vi(x,−t) for i = 1, 2 and −T < t < 0. Then ui are positive solutions to

Lu = 0 in D × (−T, 0). Inserting ui in Theorem 2.6, we deduce the desired estimate. �

Finally, we include an adapted version of what might as well be called local backward

Harnack inequality.

Lemma 2.12. [2, Theorem 1][7, Theorem 13.7] Let ΩT be a Lipschitz cylinder. Pick Q = (q, s) ∈ ST

with 0 < r < 1
2 min

{
r0,
√

s,
√

T − s
}
. Assume u is a non-negative solution to Lu = 0 in Ψ2r(Q)

which continuously vanishes on ∆2r(Q). Then, for 0 < ρ ≤ 1
2 r we have

u(Aρ(Q)) .
(
1 +

Mr

mr

)
u(Aρ(Q)),

where Mr = supΨ2r(Q) u and mr = u(Ar).

Lemma 2.12 may not seem very strong in general, but for very specific solutions this

inequality does not depend on u or r, which will prove to be useful later on, as shown in the

next section.

2.3 Conditions (D)p and (R)p

We say that the Lp Dirichlet problem has solution for L in ΩT, denoted by (D)p, if the solution to

(2.4) satisfies also

‖(u)∗‖Lp(ST) ≤ c‖ f ‖Lp(ST), where the constant c > 0 is independent of f , (2.11)
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and where (u)∗ is the non tangential maximal function of u given by

(u)∗(Q) = sup
X∈Γ(Q)

|u(X)|. (2.12)

Estimate (2.11) guarantees that the solution u attains the boundary data f as established

in the following Theorem.

Theorem 2.13. [37, Theorem 6.3] Suppose (D)p holds for L for some 1 < p < ∞. Then given

f ∈ Lp(ST), there exists a unique u, Lu = 0 in ΩT such that,

i) limt→0+ u(x, t) = 0 uniformly on compact sets of ΩT.

ii) For almost every Q ∈ ST,

lim
X→Q

X∈Γ(Q)

u(X) = f (Q).

iii) u∗ ∈ Lp(ST, dσ) and estimate (2.11) holds for u and f .

The regularity condition associated to the Dirichlet problem that we describe, is meant to

generalize the problems for the heat equation considered in [3, 4, 21, 22].

Based on the definitions for similar problems for elliptic equations from [28] and the

heat equation in [3], we now define a regularity condition for the initial Dirichlet problem

associated to Lu = 0 on the Lipschitz cylinder ΩT. Given the nature of a parabolic equation

we will use a Sobolev-type space over S with the usual derivatives in the (space) tangent

directions, and a half order derivative in time direction.

The mixed norm space W1, 1
2

p (ST) is defined as the closure of the set{
g = f |ST : f ∈ C∞0 (Rn

× (0,∞))
}
,

with respect to the norm

‖ f ‖
W

1, 1
2

p (ST)
= ‖ f ‖Lp(ST) + ‖ f ‖1, 1

2 ,p
,

where

‖ f ‖1, 1
2 ,p

=

(∫
ST

(|∇tan f |p)d σ dt +

∫
ST

|∂
1
2
t f |p dσ

) 1
p

, (2.13)

and where ∇tan f = ∇ f − ν(∇ f · ν) is the tangential gradient of f , ∇ f is the spatial gradient of f ,

ν is the exterior normal unit vector to ∂D and

∂
1
2
t f (x, s) =

(∫ T

−∞

| f (x, s) − f (x, t)|2

|s − t|2
dt

) 1
2

.
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This definition is taken from [39, p. 1034].

We say that the (R)p condition holds for L in ΩT whenever the following estimate holds

‖N(∇u)‖Lp(ST) ≤ c‖ f ‖1, 1
2 ,p
, (2.14)

for each f ∈ C∞0 (Rn
× (0,∞)) and u the corresponding solution to (2.4).

We say that the (R)p problem is solvable for L in ΩT whenever

‖(u)∗‖Lp(ST) + ‖N(∇u)‖Lp(ST) ≤ c‖ f ‖1, 1
2 ,p
, (2.15)

for each f ∈ C∞0 (Rn
× (0,∞)) regarded as an element of W1, 1

2
p (ST) and u the corresponding

solution to (2.4).

Here, the modified non-tangential maximal function of a continuous function v defined on Ω

is defined as

Nv(Q) = Nαv(Q) = sup
X∈Γα(Q)

(?
Q(X)
|v|2 dY

) 1
2

, (2.16)

where Q(X) ≡ Qc−1δ(X)(X) is such that Q(X) ⊂ Ω and α = α(m) > 0 is fixed. We are adopting

the notation
>
Q(X) v dY for the integral average 1

δ(X)n+1

∫
Q(X) v dY. Integral averages with measure

different to the Lebesgue measure onRn+1 will be used later on in this work, and its meaning

should be clear from the context. Also, in later arguments N(∇u) will be used instead of

N(|∇u|).

Remark 2.14. Given α, β > 0, using standard arguments (see e.g. [40, §6.2-6.4] or the original

argumentation in [20, p. 166]) one may prove that for any function h defined on ΩT+1

‖Nα(h)‖Lp(ST) ≈ ‖Nβ(h)‖Lp(ST).

This will become useful when proving Theorem 2.18 that we state below.

Remark 2.15. In the process of solving an initial L2 regularity problem for the heat equation, the

definition of the mixed norm space W1, 1
2

p (ST) is meant to generalize the space adopted in [3, p. 352-

353]. Another extension is adopted in [4], using parabolic Riesz potentials, following a definition

from [16]. This extension is also adopted by [21, 22] in the setting of non-cylindrical domains. In

any case, for p = 2 the definitions coincide, by Plancherel’s theorem, as observed for instance in [21,

p. 353].
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Based on the norm (2.13) we can establish a regularity estimate very similar to condition

(R)p and inspired on [3, Theorem 6.1]. With this condition we are able to obtain a solution

for every boundary data in W1, 1
2

p (ST) with non tangentially boundary convergence. For that

purpose first we need the following uniform estimate for solutions.

Lemma 2.16. Let v be a solution to Lv = 0 and Ω′ ⊂⊂ ΩT. Then for p > 1,

sup
Ω′
|v|p .

?
Ω′
|v|p dX.

Proof. Consider the covering {QX
}X∈Ω′ where each cube has the form QX = Qκδ(X)(X) and

0 < κ < 1 depends on dist(Ω′, ∂ΩT). By the Besicovitch covering theorem (see [25, p. 483])

we can find a sequence of cubes {Qi}
∞

i=1 with finite overlap covering Ω′. By local boundedness

(see [31, Theorem 3]) we have,

sup
Ω′
|v|p ≤

∞∑
i=1

sup
Qi

|v|p .
∞∑

i=1

?
Q̃i

|v|p dY,

where every Q̃i is a cube contained in Qi and with the appropriate time shift such that

|Q̃i| ≈ |Qi|. Since Ω′ ⊂⊂ ΩT, the radii of the cubes Qi and Q̃i are uniformly bounded below

and therefore |Q̃i| ≈ |Qi| ≈ |Ω
′
|. With this in mind,

sup
Ω′
|v|p .

1
|Ω′|

∞∑
i=1

∫
Q̃i

|v|p dY .
1
|Ω′|

∫
Ω′
|v|p

 ∞∑
i=1

χ
Q̃i

 dY .
1
|Ω′|

∫
Ω′
|v|p dY,

where the last inequality is due to the finite overlap property inherited from the family of

cubes {Qi}
∞

i=1. �

Theorem 2.17. Suppose that for some 1 < p < ∞, (R)p is solvable for L in ΩT. Then given

f ∈W1, 1
2

p (ST), there exists a unique u, Lu = 0 in ΩT such that,

i) For almost every Q ∈ ST,

lim
X→Q

X∈Γ(Q)

u(X) = f (Q).

ii) N(∇u) ∈ Lp(ST, dσ) and estimate (2.15) holds for u and f .

Proof. Let { fk}∞k=1 be a sequence of smooth functions converging to f in Lp(ST) and in W1, 1
2

p (ST).

After passing to a subsequence we can assume that fk converges to f almost everywhere on

ST. Let {uk}
∞

k=1 be the corresponding sequence of solutions to (2.4) with boundary data fk.
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For 0 < ε < diam(ΩT)/2 define the non tangential truncated region

Γε(P) = Γ(P) \ {x ∈ D : |x − P| < ε}

and the corresponding non tangential truncated maximal function

(u)∗ε(P) = sup {|u(x)| : x ∈ Γε(P)} .

We will demonstrate that {uk}
∞

k=1 is uniformly Cauchy in every open set compactly contained

in ΩT with an estimate that allows us to prove that the limit function will be a solution to

Lu = 0. Let Ω ⊂⊂ ΩT be an open set and δ′ = dist(Ω′, ∂ΩT). For P ∈ ST we have,∫
ST

|(uk − ul)∗(P)|pdσ ≥
∫

ST

1
|Γ(P)|

∫
Γ(P)
|(uk − ul)(X)|p dX dσ ≥

1
|ΩT |

∫
ST

∫
Γε(P)
|(uk − ul)(X)|p dX dσ.

Now we make two observations:

a) For X ∈ Γε(P) the set Bε(X) = {P ∈ ST : X ∈ Γε(P)} has measure σ(Bε(X)) comparable to

a surface ball of radius δ(X).

b) χΓε(P)(X) = χBε(X)(P).

Hence, by Fubini’s Theorem we obtain,∫
ST

|(uk − ul)∗(P)|pdσ ≥
1
|ΩT |

∫
ST

∫
ΩT

|(uk − ul)(X)|pχΓε(P)(X) dX dσ

≥
1
|ΩT |

∫
ΩT

|(uk − ul)(X)|pσ(Bε(X)) dX

&

?
Ω′
|(uk − ul)(X)|pδ(X)n+1 dX &

?
Ω′
|(uk − ul)(X)|p dX,

where in the last inequality we have used that δ(X) ≥ δ′ because X ∈ Ω′. By lemma 2.16,

‖(uk − ul)∗‖
p
Lp(ST) &

?
Ω′
|(uk − ul)(X)|p dX & sup

Ω′
|uk − ul|

p.

As a consequence of the regularity estimate (2.15), there exists u, Lu = 0, such that {uk}
∞

k=1

converges uniformly to u. The uniform convergence assures that this limit is unique and

does not depend on the choice of the sequence converging to f .

Now, to establish ii) we notice that for Q ∈ ST,

N
ε(∇u − ∇uk)(Q) ≤ lim inf

l→∞
N
ε(∇ul − ∇uk)(Q)
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and that

‖(u − uk)∗ε‖Lp(ST) ≤ lim inf
l→∞

‖(ul − uk)∗ε‖Lp(ST).

For fixed l, k ∈N,

‖(ul − uk)∗ε‖Lp(ST) + ‖Nε(∇ul − ∇uk)‖Lp(ST) . ‖ fl − fk‖Lp(ST) + ‖ fl − fk‖
W

1, 1
2

p (ST)

and as l→∞ and ε→ 0 we have,

‖(u − uk)∗‖Lp(ST) + ‖N(∇u − ∇uk)‖Lp(ST) . ‖ f − fk‖Lp(ST) + ‖ f − fk‖
W

1, 1
2

p (ST)
.

On the other hand,

‖(u)∗‖Lp(ΩT) +‖N(∇u)‖Lp(ST) ≤ ‖(u−uk)∗‖Lp(ΩT) +‖(uk)∗‖Lp(ΩT) +‖N(∇u−∇uk)‖Lp(ST) +‖N(∇uk)‖Lp(ST).

By letting k → ∞ we get ii). Finally, it remains to check i) with a rather standard technique.

For P ∈ ST define

Θ f (P) = lim sup
X→P

X∈Γ(P)

u(X) − lim inf
X→P

X∈Γ(P)

u(X).

Note that Θ f (P) ≤ 2(u)∗(P) and Θ fk (P) = 0 for P ∈ ST. Therefore,

Θ f (P) ≤ Θ fk (P) + Θ( f− fk)(P) = Θ( f− fk)(P).

Hence, for α > 0

σ({P ∈ ST : Θ f (P) > α}) ≤ σ({P ∈ ST : Θ( f− fk)(P) > α}) .
1
αp

∫
ST

|(u − uk)∗|pdσ

.
1
αp ‖ f − fk‖Lp(ST) +

1
αp ‖ f − fk‖

W
1, 1

2
p (ST)

.

Letting k→∞ and α→ 0 we have proved i).

�

2.3.1 Connections between the (D)p and (R)p conditions.

With all the previous definitions and remarks, we are now in position to make precise our

goal in this work. We aim to prove the following two results relating the conditions (D)p and

(R)q.

Theorem 2.18. [36, Theorem 1.3] Let ΩT be a Lipschitz cylinder and L = div(A(x)∇) − ∂t an

operator satisfying (2.3). If condition (R)p holds for L in ΩT+1, then condition (D)p′ holds for L in

ΩT, 1/p + 1/p′ = 1.
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Theorem 2.19. [36, Theorem 1.4] Let ΩT be a Lipschitz cylinder and L = div(A(x)∇) − ∂t an

operator satisfying (2.3). Suppose 1 < p < ∞, and that 1/p + 1/p′ = 1. If conditions (D)p′ and (R)q

hold for L in ΩT for some 1 < q < p, then condition (R)p holds for L in ΩT.

The next result is an immediate consequence of these theorems, a well-known property

of the condition (D)p and the classical theory of Muckenhoupt weights and reverse Hölder

inequalities (see e.g. [37, Theorem 6.1]).

Corollary 2.20. [36, Corollary 1.5] Let 1 < q < ∞ and assume that the (R)q condition is satisfied.

Then there exists ε > 0 such that the (R)s condition is satisfied for every q < s ≤ q + ε.

Proof. If (R)q holds, by Theorem 2.18 we know (D)q′ holds, with 1/q + 1/q′ = 1. But then

there exists ε > 0 such that (D)s holds for s ∈ (q′ − ε, q′). Noticing that s′ ∈ (q, q + ε), where

s′ = s/(s − 1), by Theorem 2.19 we now know (R)s′ for s′ ∈ (q, q + ε). �

2.4 A∞ condition and its connection with the (R)p condition

The A∞ condition can be defined for any pair of measures ω and σ, but since in the entirety

of this work we assume that ω is the parabolic measure with pole at Ξ = (0,T + 1) and σ

is the surface measure on ∂Ω, we specialize our definitions and descriptions to this pair of

measures.

As in the classical case, we say that the measure ω is in the class A∞(σ) if for every ε > 0

there exists δ > 0 such that

σ(F)
σ(∆)

< δ implies
ω(F)
ω(∆)

< ε, (2.17)

for every Borel set F ⊂ ∆r(Q, s), with 0 < r < r0 and (Q, s) ∈ ∂Ω. The general theory

of Muckenhoupt weights can be adapted to the parabolic setting (see e.g. [37, Theorems

6.1 and 6.2]), and in particular the A∞ property entails a scale invariant mutual absolute

continuity between ω and σ, in the sense that ω ∈ A∞(σ) if and only if σ ∈ A∞(ω). Moreover

ω ∈ A∞(σ) if and only if there exist constants C > 0 and 0 < τ < 1 such that for every surface

ball ∆ ⊂ ∂Ω and every Borel set E ⊂ ∆ one has

ω(E)
ω(∆)

≤ C
(
σ(E)
σ(∆)

)τ
. (2.18)
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In exchange of the roughness of the ambient domain, we obtain a slightly weaker version of

Theorem 2.18.

Theorem 2.21. [35, Theorem 3.2] If Ω is the region above a Lip(1, 1
2 ) graph and condition (R)q holds

for some 1 < q < 2, then ω ∈ A∞(dσ).



Chapter 3

Poincaré type inequalities and

some consequences

The first Poincaré type inequality that we state takes place in the boundary of a Lipschitz

cylinder and has nothing to do with the properties of solutions of any parabolic operator.

Rather, it is a first instance where the definition of the norm in (2.13) becomes convenient.

The inequality contained in the following theorem is an auxiliary result to prove Lemma 4.5

which in turn helps to prove Theorem 2.19, and is inspired on a result in [4, p. 17-18]. It may

be of independent interest.

Theorem 3.1. Let f ∈ C∞0 (Rn
× (0,∞)). Then there exists βr such that for p ≥ 1 and r < r0, we have∫

∆r

| f (q, s) − βr|
p d σ(q, s) . rp

∫
∆r

|∇tan f (q, s)|p d σ(q, s) + rp
∫

∆r

|∂
1
2
t f (q, s)|p dσ(q, s),

where ∆r = ∆r(Q0) with Q0 ∈ ST.

Proof. Let Q0 = (q0, s0) ∈ ST. Notice that ∆r = ∆̃r × Ir, where ∆̃r = ∆̃r(q0) is a surface ball

with radius r on ∂D (the boundary of the Lipschitz domain D), and Ir = (s0 − r2 + s0 + r2) is a

time-interval. Define

βr =

?
∆r

f (q, s) d σ(q, s) and βr(s) ≡ β(s) =

?
∆̃r

f (q, s) d σ̃(q).

31
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Observe that∫
∆r

| f (q, s) − βr|
p d σ(q, s) .

∫
∆r

| f (q, s) − βr(s)|p d σ(q, s) +

∫
∆r

|βr(s) − βr|
p d σ(q, s)

≡ I + II.

In order to handle Iwe employ a Poincaré inequality valid for g ∈ C∞(Rn) (see [28, proof

of Theorem 5.19]): ∫
∆̃r

|g(q) − γr|
p d σ(q) . rp

∫
∆̃r

|∇tang(q)|p d σ(q),

where γr =
>

∆̃r
g(q) d σ(q). By Fubini’s theorem and the aforementioned Poincaré type in-

equality, we see that

I . rp
∫

∆r

|∇tan f (q, s)|p d σ(q, s).

To handle II, we notice that

|βr − βr(s)| .
?

∆̃r

?
Ir

| f (q, τ) − f (q, s)| d τ dσ̃(q)

.

?
∆̃r


(?

Ir

| f (q, τ) − f (q, s)|2

|τ − s|2
d τ

) 1
2
(?

Ir

|τ − s|2 d τ
) 1

2
 dσ̃(q)

. r
?

∆̃r

∂
1
2
t f (q, s) dσ̃(q).

Finally, integrating over ∆r and applying Hölder’s inequality and Fubini’s theorem we obtain,∫
∆r

|βr − βr(s)|p d σ(q, s) . rp
∫

∆r

∣∣∣∣∣∣
?

∆̃r

∂
1
2
t f (q, s) dσ̃(q)

∣∣∣∣∣∣p d σ

. rp
∫

∆r

?
∆̃r

∣∣∣∣∂ 1
2
t f (q, s)

∣∣∣∣p dσ̃(q) d σ(q, s)

. rp
∫

∆r

∣∣∣∣∂ 1
2
t f (q, s)

∣∣∣∣p d σ(q, s).

�

In order to prove Theorem 2.18 we will go through a series of lemmas and observations

concerning a very particular class of solutions to (2.4). The next result is the second Poincaré

type inequality alluded in the title of the chapter.

Lemma 3.2. Let Ω be a Lip(1, 1/2) cylinder, Q = (q′, qn, s) ∈ S and 0 < r < min
{
r0,
√

s
}
. If

u ∈ C∞(Ψr(Q)) ∩ C(Ψr(Q)) and u ≡ 0 on ∆(Q, r), then∫
Ψr(Q)

δ(X)αu2(X) d X .
r2

1 − α

∫
Ψr(Q)

δ(X)α|∇u(X)|2 d X,
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for each 0 ≤ α < 1.

Proof. Fix X′ = (x′, x′n, t) ∈ Ψr(Q). We first note that

u(X′) = u(x′, x′n, t) − u(x′, ψ(x′, t), t) =

∫ x′n

ψ(x′,t)

∂
∂xn

u(x′, xn, t) d xn.

Setting X = (x′, xn, t), by Cauchy–Schwarz inequality,

|u(X′)| ≤
∫ x′n

ψ(x′,t)

δ
α
2 (X)
δ
α
2 (X)
|∇u(X)| d xn ≤

(∫ x′n

ψ(x′,t)
δα(X)|∇u(X)|2 d xn

) 1
2
(∫ x′n

ψ(x′,t)
δ−α(X) d xn

) 1
2

. (3.1)

If α > 0,∫ x′n

ψ(x′,t)
δ−α(X) d xn .

∫ x′n

ψ(x′,t)

d xn

(xn − ψ(x′, t))α
=

∫ x′n−ψ(x′,t)

0
y−α d y ≤

∫ r

0
y−α d y =

r1−α

1 − α
. (3.2)

By (3.1) and (3.2)∫
Ψr(Q)

δα(X′)u2(X′) d X′ ≤
∫

Ψr(Q)
rαu2(X′) d X′

.
r1−αrα

1 − α

∫
Ψr(Q)

∫ x′n

ψ(x′,t)
δα(X)|∇u(X)|2 d xn d X′

≤
r

1 − α

∫
Er(Q)

∫ ψ(x′,t)+r

ψ(x′,t)

∫ ψ(x′,t)+r

ψ(x′,t)
δα(X)|∇u(X)|2 d xn d x′n d (x′, t)

≤
r2

1 − α

∫
Er(Q)

∫ ψ(x′,t)+r

ψ(x′,t)
δα(X)|∇u(X)|2 d xn d (x′, t)

=
r2

1 − α

∫
Ψr(Q)

δα(X)|∇u(X)|2 d X.

Here, Er(Q) = {(x′, t) : (x′, xn, t) ∈ Ψr(Q)}. If α = 0, we argue the same way using (3.1). �

Remark 3.3. Note that we have used the fact that xn − ψ(x′, t) ≈ δ(X) when Ω is a Lip(1, 1/2)

cylinder. This may be proven with the aid of Lagrange multipliers.

Proof of remark 3.3: Without loss of generality assume that X0 = (0, x0, 0) and ψ(0, 0) = 0. It is

clear that δ(X0) ≤ x0. Notice that Γ̃ = Γ̃(0) = {(x′, xn, t) ∈ Ω : |x′|+ |t|
1
2 < m−1 xn} is contained in

Ω and X0 ∈ Γ̃. As a consequence, δ(X, ∂Γ̃) ≤ δ(X0), so it is enough to compute δ(X, ∂Γ̃). This

problem reduces to minimize the function

f (x′, xn, t) = |x′|2 + |x0 − xn| + t
1
2
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in the surface of the cone

g(x′, xn, t) = |x′|2 + t
1
2 −m−1xn = 0.

Taking derivatives, we have

∇ f (x′, xn, t) = (2x′, 2(xn − x0), 1),

∇g(x′, xn, t) =

(
x′

|x′|
,−m−1,

1

2
√

t

)
.

Setting c = m−1, the pair of equations ∇ f = λ∇g and g = 0 becomes

|x′| = λ
2 = t

1
2 ,

xn = 1
2 (2x0 − λ c),

|x′|2 + t
1
2 = c xn.

From this, we may conclude that λ = 2cx0
2+c2 and

δ(X, ∂Γ̃)2
≈ min

∂Γ̃
f =

(
c4 + 2c2

(2 + c2)2

)
x2

0 ≈ x2
0.

�

Lemma 3.2 was first thought only as a step towards proving that condition (R)p implies

(D)p′ . Inspired by [11] we could find another application of the technique behind this lemma,

namely Lemma 3.4.

This lemma is an important step for the argumentation of Theorem 2.21 and may be of

independent interest when dealing with other initial Dirichlet-type problems for parabolic

equations.

Lemma 3.4 (Poincaré-type inequality). Suppose that ∆ ⊂ ∂Ω is the surface cube ∆ ≡ ∆r(Q) with

Q0 = (q0, s0) ∈ ∂Ω, 0 < 5r < r0. Let u be a positive solution to Lu = 0 on Ω vanishing continuously

on 4∆, and such that u ≤ 1 in Ω, and u(A4r(Q0)) & 1. For any Q = (q, s) ∈ ∆ let X = (x, t) ∈ Γr(Q),

with ρ = δ(X). Then for any 0 < ε0 < 1 and any 0 < κ < 1

1
ρ2

∫
Q(X)
|u(Y)|2 dY .

∫
κΨε0 (X)

|∇u(Y)|2 dY + εγ0ρ
nu2(A2ρ(Q)),

where γ ∈ (0, 1) depends only on n, λ1 and λ2.
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Proof. Let 0 < ε0 < 1, 0 < κ < 1, and recall that ρ = δ(X) with X ∈ Ω, and that diam(Q(X)) ≈ ρ,

|Q(X)| ≈ ρn+2. Applying the hypothesis to 2.12 we have

u(As(Q)) . u(As(Q)),

for Q ∈ ∆ and 0 < s ≤ r.

By Hölder continuity at the boundary (see e.g. [30, Lemma 5, p. 521]) and Carleson

estimate (Theorem 2.2), we have u(Y) .
(
δ(Y)
ρ

)γ
u(A(X)) for every Y ∈ Q(X). Altogether, by

the above observation and Harnack’s inequality sup
Q(X)

u . inf
κΨ

u, where κΨ is a generalized

κ-scaled Carleson region associated to Ψ ≡ Ψ(X). This yields by Lemma 3.2∫
Q(X)

u2(Y) dY .
1
ργ

∫
κΨ

δ(Y)γu2(Y) dY .
ρ2

ργ

∫
κΨ

δ(Y)γ|∇Yu(Y)|2 dY.

Defining Ψ1 = κΨε0 and Ψ2 = Ψ \Ψ1 we continue our estimates as follows:∫
Q(X)

u2(Y) dY . ρ2−γ

[∫
Ψ1

+

∫
Ψ2

]
δ(Y)γ|∇u(Y)|2 dY

. ρ2
∫

Ψ1

|∇u(Y)|2 dY + εγ0ρ
2
∫

Ψ2

|∇u(Y)|2 dY ≡ I + II.

Term I is the first term in the right-hand-side of Theorem (3.4). To estimate term II we apply

the parabolic version of boundary Caccioppoli’s inequality (obtained as a variation of [31, p.

113]) to obtain

II . εγ0

∫
Ψ∗2

|u(Y)|2 dY,

where Ψ∗2 denotes a small dilation of Ψ2. By the Carleson-type estimate in [37, Lemmata 2.3]

we obtain II . εγ0ρ
n+2u2(A2ρ(Q)). �

From this point on in this chapter as well as the whole next chapter the ambient domain

will be that of a Lipschitz cylinder . If Q = (q, s) ∈ ST and 0 < r < min{r0,
√

s,
√

T − s}, we

define
−→
Q(r) = (q, s + r2) and

←−
Q(r) = (q, s − r2). Now, take g ∈ C∞0 (Rn

× (0,∞)) such that

g ≡ 1 in ∆r(
←−
Q0(5r)) and g ≡ 0 in ∆2r(

←−
Q0(5r))c for some Q0 = (q0, s0) ∈ ST with 0 < 6r <

min{r0,
√

s0,
√

T − s0}.

For the remaining of this chapter and section 4.1 of the following chapter, u will denote

the solution to the Dirichlet problem over the domain Ω ∩ {−1 < t < 2T}, with boundary

datum given by a function g as described above.
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Remark 3.5. Observe that with the notation just introduced, Lemma 2.12 yields

u(Aρ(Q)) . u(Aρ(Q)), ρ ≤ 2r,

for Q = (q, s) ∈ ST with s0 + 43r2
≤ s ≤ s0 + 200r2 and |q − q0| . r.

Proof. Note that s0 + 43r2
≤ s implies ∆8r(Q) ⊂ ∆2r(

←−
Q0(5r))c. Clearly Mr ≤ 1. By Theorem 2.3,

for X ∈ Ψ r
2
(
←−
Q0(5r)) we have

ωX(∆r(
←−
Q0(5r))) & 1.

As a consequence

u(X) =

∫
ST

f dωX
≥ ωX(∆r(

←−
Q0(5r))) & 1.

With this, Carleson and Harnack inequality (Theorem 2.1) gives mr = u(A4r(Q)) & 1 and

the proof of this Remark is finished. �

Lemma 3.6. Let Q = (q, s) ∈ ST with s0 + 43r2
≤ s ≤ s0 + 200r2. Then, there exists 0 < α < 1

depending on n and λ only, such that?
Ψr(Q)

u2(X) d X ≤ c
1
rα

?
Ψr(Q)

δ(X)αu2(X) d X.

Proof. Consider K = Ψr(Q) \ S 1
2 r(Q) where Sar(Q) = {X ∈ Ψr(Q) : δ(X) < ar}, 0 < a < 1. Note

that |K| ≈ rn+2
≈ |Ψr(P)|. By the Theorem 2.2, Remark 3.5 and Harnack’s inequality give

sup
Ψr(Q)

u2 . u2(Ar(Q)) . u2(Ar(Q)) . inf
K

u2
≤

?
K

u2(X) d X. (3.3)

This and Theorem 2.9 imply that for X ∈ Ψr(Q) one has

u(X) .
(
δ(X)

r

)α (?
K

u2(Y) dY
)1/2

. (3.4)

Since δ(X) ≈ δ(Y), for X,Y ∈ K, we can use (3.3) and (3.4), to obtain?
Ψr(Q)

u2(X) d X .
?

K

?
K

(
δ(X)

r

)2α

u2(Y) dY dX

.
1
rα

?
K
δ(Y)αu2(Y) dY .

1
rα

?
Ψr(Q)

δ(Y)αu2(Y) dY.

The lemma follows. �

Lemma 3.7. Let Q = (q, s) ∈ ST with s0 + 43r2
≤ s ≤ s0 + 200r2. Then we have?

Ψ2r(Q)
u2(X) d X .

?
Ψr(Q)

u2(X) d X,
?

Ψr(Q)
|∇u(X)|2 d X .

?
Ψ 3

4 r(Q)
|∇u(X)|2 d X. (3.5)
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Proof. The first assertion follows using (3.3). For the second assertion we use Caccioppoli’s

at the boundary inequality to have?
Ψr(Q)

|∇u(X)|2 d X . r−2
?

Ψ 3
2 r(Q)

u2(X) d X.

With this, the second assertion of this lemma may be derived from the first assertion and

Lemma 3.2 for α = 0. �

Lemma 3.8. Let Q = (q, s) ∈ ST with s0 +43r2
≤ s ≤ s0 +200r2. Then, there exists ε = ε(n, λ,m) > 0

such that ?
Ψr(Q)

|∇u(X)|2 d X .
?

Ψr(Q)\Sεr(Q)
|∇u(X)|2 d X.

Proof. According to Lemma 3.7 and Caccioppoli’s inequality at the boundary inequality, we

have ?
Ψr(Q)

|∇u(X)|2 d X .
?

Ψ r
2

(Q)
|∇u(X)|2 d X .

1
r2

?
Ψr(Q)

u2(X) d X.

From Lemmas 3.6 and 3.2

1
r2

?
Ψr(Q)

u2(X) d X .
1

r2+α

?
Ψr(Q)

δα(X)u2(X) d X .
1
rα

?
Ψr(Q)

δα(X)|∇u(X)|2 d X.

Thus, we have?
Ψr(Q)

|∇u(X)|2 d X .
1
rα

?
Ψr(Q)\Sεr(Q)

δα(X)|∇u(X)|2 d X +
1
rα

?
Sεr(Q)

δα(X)|∇u(X)|2 d X

.

?
Ψr(Q)\Sεr(Q)

|∇u(X)|2 d X + εα
?

Sεr(Q)
|∇u(X)|2 d X

≤

?
Ψr(Q)\Sεr(Q)

|∇u(X)|2 d X + εα
?

Ψr(Q)
|∇u(X)|2 d X.

Finally, choosing ε > 0 very small we can hide the second term in the right hand side into

the left hand side, and hence we conclude the desired estimate. �
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Chapter 4

Connections between (D)p and (R)p

conditions

As stated previously, our goal in this work is to prove some connections between the (D)p

and (R)p conditions. At this moment, we are ready to prove Theorem 2.18.

Recall the definitions of Carleson boxes, surface balls, corkscrew point and non tangential

approach region from subsection 2.1.3.

4.1 Proof of Theorem 2.18

We retain notations from the previous sections. In particular, recall that we have stated right

before the Remark 3.5 that u denotes a solution over Ω∩ {−1 < t < 2T}with a very particular

prescribed data function f . It is convenient now to impose some extra conditions on this

data, namely |∇ f | . 1
r and | ft| . 1

r2 .

We are interested in the norm of f as an element of W1, 1
2

p (ST) because once this norm is

computed, the fact that (R)p is solvable will provide us a precise estimate of the Lp norm of

N(∇u). Indeed, observe that with these new conditions on f , we have

∫
ST

|∇ f (Q)|p dσ(Q) . rn+1−p,
∣∣∣∣∂ 1

2
t f (x, s)

∣∣∣∣ . ∫ s0−21r2

s0−29r2

( 1
r2

)2

d t


1
2

.
1
r
.

39
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This implies that

‖ f ‖p
W1,1/2

p (ST+1)
. rn+1−p.

When attempting to prove that (R)p implies (D)p′ , using the techniques from [28], one

finds some difficulties when trying to use the Theorem 2.4. Indeed, in the elliptic case, the

selfadjoint property of second linear operators in divergence form, similar to L, plays a

role several times. For the parabolic operators this is not the case, and actually the Green’s

function is not symmetric in its arguments; that is, the order of the argument variables is

essential.

One way to tackle this obstacle is to use an auxiliary solution v to the adjoint equation

L
∗v = 0 which is defined in terms of the particular solution u, by a reflection in time change

of variables, as mentioned earlier. The use of Theorem 2.11 is crucial in the estimates below

and this explains the time independence of the matrix A.

To be more precise, we think of Ω as the extended domain D × (−∞,∞). For X = (x, t) ∈

Ω ∩ {−2T < t < 2T}, define X̃ = (x, t̃) to be the reflection of X with respect to the hyperplane

for which t = s0 + 25r2, that is, X̃ = (x, 2(s0 + 25r2) − t). Here it is important to recall that

Q0 = (q0, s0) ∈ ST has been fixed when defining the support of f .

Now define v(X) = u(X̃). Observe that L∗v = 0 in Ω ∩ {−2T < t < 2T} and that by

the support definition of f we have v(x, t) = 0 if 2(s0 + 25r2) − t ≥ s0 − 21r2 or equivalently

t ≤ s0 + 71r2.

Take Q ∈ ∆ r
16

(Q0) and ρ < r
16 . From Theorems 2.4, 2.5 and 2.11 , we have

ωΞ(∆ρ(Q))

ρn+1 .
G(Ξ,Aρ(Q))

ρ
=

v(Aρ(Q))

ρ

G(Ξ;Aρ(Q))

v(Aρ(Q))

.
v(Aρ(Q))

ρ

G(Ξ;Ar(Q0))

v(Ar(Q0))
.

v(Aρ(Q))

ρ
G(Ξ;Ar(Q0))

.
v(Aρ(Q))

ρ

ωΞ(∆r(Q0))
rn , (4.1)

where we have used the fact that v(Ar(Q0)) = u(Ar(Q̃0)) & 1. On the other hand, by Carleson

inequality 2.2, Remark 3.5 and Harnack inequality 2.1(similarly to (3.3)), we may conclude

v(Aρ(Q)) = u(Aρ(Q̃)) .

?
Ψρ(Q̃)

u2(Y) d Y


1
2

.
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From this and lemmas 3.2 and 3.8 we obtain

v(Aρ(Q)) . ρ

?
Ψρ(Q̃)\Sερ(Q̃)

|∇u(Y)|2 d Y


1
2

. (4.2)

Plugging (4.1) and (4.2) together, we get

ωΞ(∆ρ(Q))

ρn+1 .
ωΞ(∆r(Q0))

rn

?
Ψρ(Q̃)\Sερ(Q̃)

|∇u(Y)|2 d Y


1
2

. (4.3)

This suggests that we introduce the next two maximal functions

Mσω(Q) ≡ Mσ, r
16
ω(Q) = sup

0<ρ< r
16

ωΞ(∆ρ(Q))

ρn+1 ,

N
εφ(Q) ≡ Nε

αφ(Q) = sup
X∈Γα(Q)

?
Ψδ(X)(PX)\Sεδ(X)(PX)

φ2(Y) d Y


1
2

,

where PX = (x′, ψ(x′, t), t) if X = (x′, xn, t). Notice that we have included in the notation the

aperture α. The reason will be clear shortly. With this definitions, (4.3) yields

Mσω(Q) .
ωΞ(∆r(Q0))

rn N
ε(∇u)(Q̃). (4.4)

For the final part of the proof of Theorem 2.18, we make use of the following

Lemma 4.1.

N
ε
αv(Q) . Nβv(Q),

for some β = β(n, λ,m, r0) > α, where ε is as in Theorem 3.8.

Proof. First note that the region

Ψ̃r(Q) =


(x, t) ∈ Rn+1 :

|xi − qi| < r, i = 1, · · · ,n − 1

ψ(x′, t) − r < xn < ψ(x′, t) + 4nmr

|s − t| < r2


,

can be covered with N = N(ε,n,m) parabolic cubes Q of radius r′ ≥ εc−2r, independently of

r. For X ∈ Γα(Q), as we just observed, we can cover Ψδ(X)(PX) \ Sεδ(X)(PX) with N parabolic

cubes Qi with radius c−2δ(Xi) centered at points of Ψδ(X)(PX) \ Sεδ(X)(PX). Now, from the fact

that εδ(X) ≤ δ(Xi) ≤ δ(X), it follows that∣∣∣Ψδ(X)(PX) \ Sεδ(X)(PX)
∣∣∣ ≈ ∣∣∣Ψδ(X)(PX)

∣∣∣ ≈ |Qi| ,
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where the comparability constants depend again only on ε and n. As a consequence, for

β > 0 big enough ?
Ψδ(X)(PX)\Sεδ(X)(PX)

|φ|2 dY . c
N∑
1

?
Qi

|φ|2dY . Nβφ(Q).

Taking the supremum over X ∈ Γα(Q), the inequality is proven. �

To finish the proof of Theorem 2.18, we can apply the previous lemma and (4.4), along

with the Remark 2.14 to obtain by the very definition ofMσω that ωΞ << σ and?
∆ r

16
(Q0)

(
dωΞ

dσ

)p

d σ


1
p

.
( 1

rn+1

) 1
p ω(∆)

rn ‖N(∇u)‖Lp(ST+1) .
( 1

rn+1

) 1
p ω(∆)

rn ‖ f ‖
W

1, 1
2

p (ST+1)

.
( 1

rn+1

) 1
p ω(∆)

rn

(
rn+1−p

) 1
p
≈
ω(∆)
rn+1 ≈

?
∆ r

16
(Q0)

(
dωΞ

dσ

)
dσ,

where ∆ = ∆r(Q0), thus finishing the proof.

4.2 Some observations about solutions

In order to prove Theorem 2.19, first we make a couple of observations about the behavior

of solutions near the boundary. While the second observation depends on properties of

solutions, the first one does not, and it depends purely on the geometric features of ΩT. Here

is our first observation:

Lemma 4.2. For any function u such that ∇u exists almost everywhere and r < r0, we have,?
Ψ28r(Q0)

|∇u(Y)| d Y .
?

∆32r(Q0)
N(∇u)(P) dσ(P),

where Q0 ∈ ST.

Proof. Inequality of lemma 4.2 can be broken into two assertions:?
Ψ28r(Q0)

|∇u(Y)| d Y .
?

Ψ28r(Q0)

?
Q(X)
|∇u(Y)| dY dX, (4.5)?

Ψ28r(Q0)

?
Q(X)
|∇u(Y)| dY dX .

?
∆32r(Q0)

N(∇u)(P) dσ(P). (4.6)
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Taking into account that δ(X) ≈ δ(Y) if Y ∈ Q(X), (4.5) is proved as follows:?
Ψ28r(Q0)

?
Q(X)
|∇u(Y)| dY dX ≈

?
Ψ28r(Q0)

1
δ(X)n+2

∫
Ψ30r(Q0)

|∇u(Y)|χQ(X)(Y) dY dX

≈

?
Ψ30r(Q0)

∫
Ψ28r(Q0)

1
δ(X)n+2 |∇u(Y)|χQ(Y)(X) dX dY

&

?
Ψ28r(Q0)

|∇u(Y)| d Y.

To prove (4.6) we observe that for P = (p′, pn, s) ∈ ∆32r(Q0),

N(∇u)(P) =

? pn+112nmr

pn

N(∇u)(P)dρ ≥
? pn+112nmr

pn

?
Q(p′,ρ,s)

|∇u(Y)|dY dρ.

Integrating this, we have?
∆32r(Q0)

N(∇u)(P)dσ(P) ≥
?

∆32r(Q0)

? pn+112nmr

pn

?
Q(p′,ρ,s)

|∇u(Y)|dY dρ dσ(P)

&

?
Ψ28r(Q0)

?
Q(X)
|∇u(Y)| dY dX.

�

Here is the second observation of the behavior of solutions near the boundary:

Lemma 4.3. Assume that u is a solution of Lu = 0 in Ω and that u = 0 continuously on ∆32r(Q0)

for some Q0 = (q0, s0) ∈ ST. Then we have,

|u(X)| .
G(Ξ; X̃)

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

|u(Y)|2 d Y
) 1

2

,

for X ∈ Ψ 3
2 r(Q0).

Proof. Let u1 and u2 be the solutions of Lu = 0 in Ψ32r = Ψ32r(Q0) with data f1 = max{u, 0}

and f2 = max{−u, 0} on ∂Ψ16r(Q0) respectively. Note that u = u1 − u2 in ∂Ψ32r, by uniqueness

u = u1 − u2 in Ψ32r.

Due to the evolutive nature of Theorem 2.4 we perform a reflection to X with respect to the

time variable of Q0, as we did previously. We must recall that for this step the independence

of the time variable is essential. More precisely, in this instance we define vi(X) = ui(X̃) for

X ∈ Ψ32r(Q̃0) where X̃ = (x, 2(s0 + (32)2r2) − t) if X = (x, t). By the comparison principle

vi(X̃) .
G(Ξ; X̃)

G(Ξ;A12r(Q̃0))
vi(A12r(Q̃0)), i = 1, 2,
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for X ∈ Ψ 3
2 r(Q0). This is the same as

ui(X) .
G(Ξ; X̃)

G(Ξ;A12r(Q̃0))
ui(A12r(Q0)), i = 1, 2. (4.7)

Now, note that by Harnack’s inequality we have

ui(A12r(Q0)) . inf
K

ui ≤

(?
K

u2
i (Y) d Y

) 1
2

.

(?
Ψ18r(Q0)

u2
i (Y) d Y

) 1
2

, i = 1, 2, (4.8)

where K ⊂ Ψ18r(Q0) is an appropriate compact set to the right ofA16r(Q0). Putting (4.7) and

(4.8) together we obtain the lemma. �

Back to the main goal, which is to prove Theorem 2.19, we now state two lemmas, whose

proof is provided in the last section of this chapter.

Lemma 4.4. Let 1 < p < ∞. Assume that (D)p′ is solvable in ΩT forL. Let u be a solution ofLu = 0

in ΩT that vanishes continuously in ∆32r = ∆32r(Q0) with 0 < 16r < 1
2 min{r0,

√
s0,
√

T − s0}, then

we have (?
∆r

|N(∇u)|p dσ
) 1

p

.

?
∆32r

N(∇u) dσ.

Lemma 4.5. Retaining the notation from the previous lemma, define

E(λ) = {Q ∈ ∆2r :M∆2r (|N(∇u)|q)(Q) > λ}. (4.9)

Let 1 < q < p < ∞ and suppose that (D)p′ and (R)q are solvable in ΩT. Then there exists constants

ε, γ, α > 0 such that

|E(Aλ)| ≤ ε|E(λ)| + |{Q ∈ ∆r :M∆2r (|∇tan f |q)(Q) > γλ}|

+ |{Q ∈ ∆r :M∆2r (|∂
1
2
t f |q)(Q) > γλ}|, (4.10)

for λ ≥ λ0, where A = (2ε)−
q
p and

λ0 = α

?
∆2r

|N(∇u)|q dσ. (4.11)

Assuming temporarily these results, we can now provide the proof of Theorem 2.19.
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4.3 Proof of Theorem 2.19

Multiplying both sides of (4.10) by λ
p
q−1, integrating and using the p-boundedness of Hardy-

Littlewood operator and (4.10), we get∫ Λ

λ0

|E(Aλ)|λ
p
q−1 dλ ≤ ε

∫ Λ

λ0

|E(λ)|λ
p
q−1 dλ (4.12)

+ c
∫

∆2r

|∇tan f |p dσ + c
∫

∆2r

|∂
1
2
t f |p dσ.

Working with the left hand side of (4.12), by a change of variables we find that

2ε
∫ AΛ

Aλ0

|E(λ)|λ
p
q−1 dλ ≤ ε

∫ AΛ

λ0

|E(λ)|λ
p
q−1 dλ (4.13)

+ c
∫

∆2r

|∇t f |p dσ + c
∫

∆2r

|∂
1
2
t f |p dσ.

Splitting the first integral of the right hand side, and noting that A
p
q = 1

2ε , (4.13) becomes∫ AΛ

Aλ0

|E(λ)|λ
p
q−1 dλ .

∫ Aλ0

λ0

|E(λ)|λ
p
q−1 dλ (4.14)

+
1
ε

∫
∆2r

|∇t f |p dσ +
1
ε

∫
∆2r

|∂
1
2
t f |p dσ.

From (4.14) and (4.9) we see that∫ AΛ

Aλ0

|E(λ)|λ
p
q−1 dλ . |∆2r|λ

p
q

0 +

∫
∆2r

|∇t f |p dσ +

∫
∆2r

|∂
1
2
t f |p dσ,

where ε has been incorporated to the constants of the inequality. From the last inequality we

obtain ∫ AΛ

0
|E(λ)|λ

p
q−1 dλ . |∆2r|λ

p
q

0 +

∫
∆2r

|∇t f |p dσ +

∫
∆2r

|∂
1
2
t f |p dσ.

Letting Λ→∞, from (4.10) we get∫
∆2r

|N(∇u)|p dσ . |∆2r|λ
p
q

0 +

∫
∆2r

|∇t f |p dσ +

∫
∆2r

|∂
1
2
t f |p dσ. (4.15)

Substituting λ0 as in (4.11), using the hypothesis (R)q via lema 4.4 and Theorem 2.18 and then

Hölder’s inequality we see that∫
∆2r

|N(∇u)|p dσ .
∫

∆2r

|∇t f |p dσ +

∫
∆2r

|∂
1
2
t f |p dσ. (4.16)

Finally, by a standard covering argument we obtain (R)p and the proof is finished.
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4.4 Proofs of Technical Lemmas 4.4 and 4.5

Proof of Lemma 4.4. It is enough to prove the following two estimates:

N(∇u)(Q) .
(u
δ

)∗
(Q) +

?
∆32r

N(∇u) dσ(Q), Q ∈ ∆r, (4.17)(?
∆r

∣∣∣∣∣(u
δ

)∗
(Q)

∣∣∣∣∣p dσ(Q)
) 1

p

.

?
∆32r

N(∇u)(Q) dσ(Q), (4.18)

where (u
δ

)∗
(Q) = sup

Y∈Γ20α(Q)

{
|u(Y)|
δ(Y)

: δ(Y) ≤ r
}
.

Let us begin by establishing (4.17). For Q ∈ ∆r pick X ∈ Γ(Q) with δ(X) ≥ r. This way, if

A = {P ∈ ∆32r : X ∈ Γ(P)} then we will have |A| & rn+1. Hence we have?
∆32r

|N(∇u)(P)| dσ(P) ≥
1
|∆32r|

∫
A

(?
Q(X)
|∇u(Y)|2d Y

) 1
2

dσ(P) &
(?
Q(X)
|∇u(Y)|2d Y

) 1
2

. (4.19)

On the other hand, if δ(X) ≤ r, by Caccioppoli’s inequality we see that

(?
Q(X)
|∇u(Y)|2d Y

) 1
2

.

 1
|Q 3

4 δ(X)(X)|

∫
Q 3

4 δ(X)(X)

|u(Y)|2

δ(X)2 d Y


1
2

.

 1
|Q 3

4 δ(X)(X)|

∫
Q 3

4 δ(X)(X)

|u(Y)|2

δ(Y)2 d Y


1
2

.
(u
δ

)∗
(Q). (4.20)

Now (4.17) follows from (4.19) and (4.20).

We now focus on proving (4.18). Applying lemma (4.3) one deduces that

(u
δ

)∗
(Q) .

1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y) d Y
) 1

2
(

G(Ξ, ·)
δ

)∗
(Q̃), (4.21)

for Q ∈ ∆r(Q0). By Theorem 2.4 we know that

G(Ξ,Aδ(X)(Q̃))
δ(X)

.
ω(∆δ(X)(Q̃))
δ(X)n+1 .

Using this and the adjoint version of Carleson estimate, for X ∈ Γ(Q) with δ(X) ≤ r we

have
G(Ξ; X̃)

δ(X̃)
.

G(Ξ;Aδ(X)(Q̃))

δ(X̃)
.

G(Ξ;Aδ(X)(Q̃))

δ(X̃)
.
ω(∆δ(X)(Q̃))

δ(X̃)n+1
.
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Therefore we obtain, (
G(Ξ, ·)
δ(·)

)∗
(Q̃) . sup

0<ρ<r

ω(∆ρ(Q̃))

ρn+1

 ≡ Mσ,r(ω)(Q̃), (4.22)

for Q ∈ ∆r(Q0). By hypothesis (D)p′ is solvable in ΩT, so we know that(?
∆r(Q̃0)

∣∣∣∣∣dωdσ
∣∣∣∣∣p dσ

) 1
p

.
ω(∆r(Q̃0))

|∆r(Q̃0)|
. (4.23)

By (4.21), (4.22), (4.23) and the Lp boundedness of Mσ,r(ω) )where this last maximal operator

is the same we defined at the end of section 4.1) we get

(?
∆r

∣∣∣∣∣(u
δ

)∗
(Q)

∣∣∣∣∣p dσ(Q)
) 1

p

.

?
∆r

 1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y) d Y
) 1

2
(

G(Ξ, ·)
δ(·)

)∗
(Q̃)


p

dσ(Q)


1
p

.
1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y) d Y
) 1

2
(?

∆r

(Mσ,r(ω)(Q̃))p dσ(Q)
) 1

p

.
1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y) d Y
) 1

2
(?

∆r(Q̃0)

(
dω
dσ

)p

(Q) dσ(Q)
) 1

p

.
1

G(Ξ;A12r(Q̃0))

(?
Ψ18r(Q0)

u2(Y) d Y
) 1

2 ω(∆r(Q̃0))

|∆r(Q̃0)|

.
1
r

(?
Ψ18r(Q0)

u2(Y) d Y
) 1

2

,

where the last two inequalities are consequence of Theorems 2.4 and 2.5 respectively. We

can continue this sequence of inequalities making use of Poincaré’s inequality in Lemma 3.2

with α = 0, and obtain(?
∆r

∣∣∣∣∣(u
δ

)∗
(Q)

∣∣∣∣∣p dσ(Q)
) 1

p

.

(?
Ψ18r(Q0)

|∇u(Y)|2 d Y
) 1

2

. (4.24)

By Caccioppoli’s inequality at the boundary, and arguing as in (4.8) we get(?
Ψ18r(Q0)

|∇u(Y)|2 d Y
) 1

2

. r−1

(?
Ψ19r(Q0)

u2(Y) d Y
) 1

2

. r−1 sup
Ψ19r(Q0)

|u|

. r−1
?

Ψ28r(Q0)
|u(Y)| d Y .

?
Ψ28r(Q0)

|∇u(Y)| d Y. (4.25)

The proof is complete once we put together (4.24),(4.25) and apply lema 4.2. �

Proof of Lemma 4.5. Let ε > 0 be a small constant to be chosen later. By the weak (1, 1) estimate

for the maximal operatorM∆2r we have |E(λ)| ≤ ε|∆r| for λ ≥ λ0 if we choose α big enough.
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Now we apply the Calderón-Zygmund type decomposition (described in [38, p. 210]) and

obtain a collection of disjoint cubes {Qk}k contained in ∆r such that E(λ) =
⋃

kQk and each Qk

is maximal. We may also choose ε small enough so that 64Qk ⊂ ∆2r.

The key statement of this proof is that there exists constants ε > 0, γ, α > 0 such that if Qk

is a cube that satisfies

Fk =
{
Q ∈ Qk :M∆2r (|∇tan f |q)(Q) ≤ γλ, M∆2r (|∂

1
2
t f |q)(Q) ≤ γλ

}
, ∅, (4.26)

then

|E(Aλ) ∩ Qk| . ε|Qk|. (4.27)

From this, setting Cλ =
⋃

k Fk, we have

|E(Aλ) ∩ Cλ| ≤
∑

k

|E(Aλ) ∩ Qk| ≤ ε
∑

k

|Qk| = ε|E(λ)|

and (4.10) follows. To prove (4.27), under the assumption (4.26), we notice that for Q ∈ Qk

M∆2r (|N(∇u)|q)(Q) ≤ max{M2Qk (|N(∇u)|q)(Q), βλ}. (4.28)

For ε small enough A ≥ β, so in view of (4.28), we get

|E(Aλ) ∩ Qk| ≤ |
{
Q ∈ Qk :M2Qk (|N(∇u)|q)(Q) > Aλ

}
|. (4.29)

Now, for each k consider the smooth function φk : Rn+1
→ R such that φk = 1 in 64Qk,

φk = 0 in (66Qk)c, |∇φk| . |Qk|
−

1
n+1 and |(φk)t| . |Qk|

−
2

n+1 . Let vk be the solution to Lv = 0 in ΩT

with boundary data φk( f − αk) where αk =
>

64Qk
f dσ. Let p > p. By (4.29), we obtain

|E(Aλ) ∩ Qk| ≤

∣∣∣∣∣{Q ∈ Qk :M2Qk (|N(∇u − ∇vk)|q)(Q) >
Aλ
2q+1

}∣∣∣∣∣
+

∣∣∣∣∣{Q ∈ Qk :M2Qk (|N(∇vk)|q)(Q) >
Aλ
2q+1

}∣∣∣∣∣
.

1

(Aλ)
p
q

∫
2Qk

|N(∇u − ∇vk)|pd σ +
1

Aλ

∫
2Qk

|N(∇vk)|qd σ ≡ I + II. (4.30)

First, let’s handle II. By hypothesis (R)q is solvable, which yields

II .
1

Aλ

∫
66Qk

∣∣∣∇tanφ( f − αk)
∣∣∣q d σ +

1
Aλ

∫
66Qk

∣∣∣∣∂ 1
2
t φ( f − αk)

∣∣∣∣q d σ ≡ III + IV.
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From the Poincaré inequality in Theorem 3.1, we can see that

III .
1

Aλ

∫
66Qk

∣∣∣φ∇tan f
∣∣∣q d σ +

1
Aλ

∫
66Qk

∣∣∣( f − αk)∇tanφ
∣∣∣q d σ

.
1

Aλ

∫
66Qk

|∇tan f |qd σ +
1

Aλ
|Qk|

−q
n+1

∫
66Qk

| f − αk|
qd σ

.
1

Aλ

∫
66Qk

|∇tan f |qd σ +
1

Aλ

∫
66Qk

∣∣∣∣∂ 1
2
t f

∣∣∣∣q d σ.

In order to bound IV, we first notice that

∂
1
2
t (φk( f − αk))(q, s) =

(∫
Ik

|φk( f − αk)(q, τ) − φk( f − αk)(q, s)|2

|τ − s|2
dτ

) 1
2

.

{∫
Ik

(
|φk(q, τ)|2

| f (q, τ) − f (q, s)|2

|τ − s|2
+ | f (q, s) − αk|

2 |φk(q, τ) − φk(q, s)|2

|τ − s|2

)
dτ

} 1
2

.

{∫
Ik

| f (q, τ) − f (q, s)|2

|τ − s|2
dτ

} 1
2

+ | f (q, s) − αk|

{∫
Ik

|φk(q, τ) − φk(q, s)|2

|τ − s|2
dτ

} 1
2

. ∂
1
2
t f (q, s) + |Qk|

−
1

n+1 | f (q, s) − αk|,

where Ik is the projection over the t axis of 66Qk. Consequently,

IV .
1

Aλ

∫
66Qk

|∇tan f |qd σ +
1

Aλ

∫
66Qk

∣∣∣∣∂ 1
2
t f

∣∣∣∣q d σ.

The estimates for III and IV together with (4.26) give,

II .
γ|Qk|

A
.

Now, let’s handle I. Note that the hypothesis (D)p′ and well-known properties of the

Lp-Dirichlet problem implies (D)p′ for some p > p. Also observe that u − vk − αk is a solution

with boundary data ( f − αk)(1 − φ) and it vanishes on 64Qk. By lemma 4.4 we find that

I .
|2Qk|

(Aλ)
p
q

(?
64Qk

|N(∇u − ∇vk)|d σ
)p

.
|2Qk|

(Aλ)
p
q


(?

64Qk

|N(∇u)|q d σ
) p

q

+

(?
64Qk

|N(∇vk)|q d σ
) p

q


.
|2Qk|

(Aλ)
p
q

(?
66Qk

|∇tan f |qd σ +

?
66Qk

∣∣∣∣∂ 1
2
t f

∣∣∣∣q d σ
) p

q

,

where the last inequality is due to (R)q. Using (4.26) again,

I .
|Qk|

A
p
q

.
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Finally, since A = (2ε)−
q
p ,

|E(Aλ) ∩ Qk| . {γε
q
p−1 + ε

p
p−1
}ε|Qk|.

We fix ε > 0 so small such that ε
p
p−1 < 1, and then we choose γ > 0 such that γε

q
p−1 < 1 and

(4.27) follows. �



Chapter 5

Connection between (R)p and A∞

conditions

In this chapter, Ω is always regarded as the region above a Lip(1, 1/2) graph as described in

2.1.

In section 5.1, we generalize condition (R)p for the region above a Lip(1, 1/2) graph and

prove a technical estimate about maximal functions.

Finally in section 5.2, we provide a simple argument that adapts a couple of ideas from

[28, 11] in order to prove that the condition (R)q implies the A∞ property of parabolic measure.

Incidentally, a similar argumentation has been recently performed in [34] for non-divergence

elliptic equations.

5.1 (R)p condition revisited

The reflection technique in the proof of Theorem 2.18 as well as Theorem 2.19 carries a strong

dependence of the time flatness in a Lipschitz Cylinder. The norm 2.13 carries that same

dependence.

Our purpose in this section is to generalize the norm defined in 2.13 via a map that flattens

the boundary of a region above a Lip(1, 1/2) graph.

Let π : ∂Ω→ Rn denote the canonical projection π(x, ψ(x, t), t) = (x, t) and set f̃ = f ◦ π−1.

51
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For 1 < p < ∞ define

‖ f̃ ‖
W

1, 1
2

p (Rn)
=

(∫
Rn
|∇x f̃ (x, t)|pdx dt +

∫
Rn
|∂

1
2
t f̃ (x, t)|pdx dt

)1/p

, (5.1)

where

∂
1
2
t f̃ (x, s) =

∫ T

−∞

| f̃ (x, s) − f̃ (x, t)|2

|s − t|2
dt

1/2

for every x ∈ Rn.

Then we define W1, 1
2

p (∂Ω), 1 < p < ∞, as the classes of equivalence of functions (equal almost

everywhere) such that

‖ f ‖
W

1, 1
2

p (∂Ω)
≡ ‖ f̃ ‖

W
1, 1

2
p (Rn)

< ∞.

As expected, we say that the condition (R)q holds (1 < q < ∞) for L in ΩT whenever the following

estimate holds

‖N(∇u)‖Lp(∂Ω) ≤ c‖ f ‖
W

1, 1
2

p (∂Ω)
,

for each f ∈ C∞0 , with a constant c > 0 not depending on f , where u is the solution to (2.4)

corresponding to the datum function f and the modified non-tangential maximal function Nv

for continuous v is defined as in (2.16).

For 0 < ε < 1 and 0 < κ < 1, there is also the (ε, κ)-modified non-tangential maximal function,

defined as

Ñε,κv(Q) = sup
X∈Γ(Q)

(
1

|κΨε(X)|

∫
κΨε(X)

|v|2 dY
)1/2

.

With a slight adaptation of the argument in [20, p. 166] we can prove the following:

Lemma 5.1. For every 0 < ε < 1 there exists 0 < κ < 1 such that for 0 < p < ∞ one has

‖Ñε,κv‖p . ‖Nv‖p.

Proof. Given ε > 0, choose κ = αε/4. We start making some constructions and computations

for some objects within Carleson regions and cones.

First notice that for any P ∈ ∂Ω and any 0 < R < r0, this choice of κ implies that

κΨε
R(P) ⊂ Γ(P). Next, construct slices of κΨε

R(P) ⊂ Γ(P) given by

S j ≡ S j(P) = κΨε
R(P) ∩

{
(y, yn, s) : 2 jεR < yn ≤ 2 j+1εR

}
, j = 0, 1, . . . ,m − 1,

where m is chosen so that 2mεR > A1R > 2m−1εR. Hence m < log2 A1 − log2 ε + 1, which is

an upper bound for m independent of R, α and P. Note that κΨε
R(P) ⊂

m⋃
j=0

S j. Finally observe
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that the ratio σ(κΨε)/σ(Ψ) remains constant, regardless of the radius of Ψ, which denotes

any Carleson region located anywhere on ∂Ω. Denote this constant by %, and note that it

clearly depends on α and ε.

Define

Eλ =

{
P ∈ ∂Ω : Nv(P) >

√
%

2
√

m
λ

}
and E∗λ =

{
P ∈ ∂Ω : M

(
χEλ (P)

)
>

(
ε

16

)n+1
}
,

where M denotes the Hardy-Littlewood maximal function on ∂Ω with respect to σ. We claim

that with these definitions, if P ∈ ∂Ω is such that Ñε,κv(P) > λ then P ∈ E∗λ. Observe that this

claim may be used in the first inequality of the following estimates:∫ ∣∣∣∣Ñε,κv
∣∣∣∣p dσ = p

∫
∞

0
λp−1σ({P ∈ Ω : Ñε,κv(P) > λ}) dλ . p

∫
∞

0
λp−1σ(E∗λ) dλ

.
Cn

εn+1 p
∫
∞

0
λp−1σ(Eλ) dλ ≈

Cn
√

m
εn+1√%

∫
|Nv|p dσ,

where of course we have used Hardy-Littlewood’s theorem in the second inequality. This

would finish the proof. To establish the claim, pick P ∈ ∂Ω such that Ñε,κv(P) > λ. Then, for

certain Y ∈ Γ(P) one has
1

|κΨε(Y)|

∫
κΨε(Y)

|v|2 dX >
(
λ
2

)2

.

Call P̃ ≡ PY the vertical projection of Y on ∂Ω, and r the vertical distance from Y to P. Then

m−1∑
j=0

∫
S j(P̃)
|v|2 dX ≥

∫
κΨε(Y)

|v|2 dX >
λ2

4
|κΨε(Y)| =

λ2

4
%|Ψ(Y)|.

Now choose cylinders of the form C j(P̃) ≡ C(X j), j = 0, 1, . . . ,m, with X j, j = 1, . . . ,m, in the

main axis of the truncated cone ΓA1r(P̃), satisfying C j(P̃) ⊃ S j. Since and |C j(P̃)| < |Ψ(Y)|, this

implies
m−1∑
j=0

1
C j(P̃)

∫
C j(P̃)
|v|2 dX >

λ2

4
%, which yields m

[
Nv(P̃)

]2
<
%

4
λ2.

In fact, the same argumentation establishes that for certain surface ball ∆(P̃) of radius r1 =

αεr/2, and Q ∈ ∆(P̃) one hasNv(Q) >
√
%λ/(2

√
m). This means that ∆(P̃) ⊂ Eλ. Hence

M(χEλ (P)) ≥
∆(P̃)

∆2αr(P)
=

(
ε
4

)n+1
>

(
ε

16

)n+1
.

Therefore P ∈ E∗λ, and the claim is proved. �



54 CHAPTER 5. CONNECTION BETWEEN (R)P AND A∞ CONDITIONS

5.2 Proof of Theorem 2.21

Proof. We will establish that ω is absolutely continuous with respect to σ, and that (2.18)

holds. For this purpose we let ∆ denote any surface ball of radius 0 < r < r0/5, and let

∆s = ∆s(Q) ⊂ ∆ be any surface ball of radius s satisfying r/20 < s < r/8. Denote by ∆′ ⊂ 5∆

another surface cube of radius r such that it is shifted away in time variable t by a distance

of r2 from ∆.

Once we think of s as a fixed parameter, we consider the boundary datum given by a

smooth function f satisfying 0 ≤ f ≤ 1, f ≡ 1 on ∆s/2, f ≡ 0 on ∂Ω \ ∆s, with |∇T f | . 1/s and

|∂t f | . 1/s2. Let u be the solution of the Dirichlet problem Lu = 0, u|∂Ω = f .

By our assumption, we know that ‖N(∇u)‖Lq(∂Ω) ≤ ‖ f ‖
W

1, 1
2

q (∂Ω)
, which by the choice of f

yields

‖N(∇u)‖Lq(∂Ω) .
1
s
σ(∆s)1/q. (5.2)

On the other hand, the doubling property of ω (see e.g. [37, §3]) and the above construction

yields

ω(∆s)
ω(∆)

.
1

ω(∆)

∫
f dω =

u(Ξ)
ω(∆)

.

By [37, Lemma 2.6] and Harnack’s inequality

u(Ξ)
ω(∆)

. u(Ar) . u(A′r) .

 1
|Q(A′r)|

∫
Q(A′r)

u2 dX

1/2

. (5.3)

Here we have used the notation Ar = A(∆), A′r = A(∆′), and once and for all we set

A
′

r = A(∆′) and Ar = A(∆). Now we use Theorem 3.4 to obtain for any ε0 ∈ (0, 1) and any

0 < κ < 1  1
|Q(A′r)|

∫
Q(A′r)

u2 dX

1/2

. r

 1
|κΨε0 (A′r)|

∫
κΨε0 (A′r)

|∇u|2 dX

1/2

+ εγ0 u(A
′

r). (5.4)

To handle the second term in the right hand side, we invoke Lemma 2.12, which in our

situation implies

u(A
′

r) ≤ cu(A′r),

because Harnack’s inequality and [37, Lemma 2.6] imply that m = u(A(∆′)) & 1. Hence, as

in the last estimate in (5.3), back in (5.4), we obtain 1
|Q(A′r)|

∫
Q(A′r)

u2 dX

1/2

. r

 1
|κΨε0 (A′r)|

∫
κΨε0 (A′r)

|∇u|2 dX

1/2

+ εγ0

 1
|Q(A′r)|

∫
Q(A′r)

u2 dX

1/2

.
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Picking the value of ε0, depending on n, the ellipticity constants of L and geometric

features of Ω, we can hide a small term in the left hand side, and back in (5.3) we get

ω(∆s)
ω(∆)

. rÑε0,κ(∇u)(Q), for Q ∈ ∆′′,

where ∆′′ is a surface cube of radius approximately r, with the property that the center of

Q(A′r) is contained in Γ(Q), for every Q ∈ ∆′′. Integrating over ∆′′ with respect to σ, by the

Lemma 5.1 with the adequate values of ε0 and κ, and using (5.2), we obtain

σ(∆)1/qω(∆s)
ω(∆)

. σ(∆s)1/q,

because r/s ≤ 20 and σ(∆) ≈ σ(∆′′). Although the constants involved in the last estimate

depends on ε0, this does not affect the essence of the estimate, since ε0 has already been fixed.

Note that this is (2.18) with E = ∆s, an arbitrary surface ball of radius s ∈ (r/20, r/8) within ∆.

With a covering lemma of Vitali-type one can get the result for E ⊂ ∆ any open set.

Finally, by regularity of both ω and σ, and invoking the continuity property of measures, we

get (2.18) for any Borel measurable set E ⊂ ∆, which is what we wanted to prove. �
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[17] E. B. Fabes, M. Jodeit and N.M. Riviére Potential techniques for boundary value problems on

C1 domains, Acta Math. 141 (1978), 165–186.

[18] E.B. Fabes and M.V. Safonov, Behavior near boundary of positive solutions of second order

parabolic equations, J. Fourier Anal. and Appl., Special Issue: Proceedings of the Confer-

ence El Escorial 96, 3 (1997), 871–882.

[19] E.B. Fabes and S. Salsa, Estimates of caloric measure and the initial-Dirichlet problem for the

heat equation in Lipschitz cylinders, Trans. Amer. Math Soc. 279 (1983), 635–650.

[20] Fefferman, C. and Stein, E. M, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.

[21] S. Hofmann and J. L. Lewis, L2 solvability and representation by caloric layer potentials in

time-varying domains, Ann. of Math. 144 (1996), 349–420.

[22] S. Hofmann and J. L. Lewis, The Lp regularity problem for the heat equation in non-cylindrical

domains, Illinois J. Math 43 (1999), 752–769.

[23] Richard A. Hunt and Richard L. Wheeden, On the Boundary values of harmonic functions,

Trans. Amer. Math. Soc. 132 (1967).



BIBLIOGRAPHY 59

[24] D.S. Jerison and C.E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math.

Soc. 4 (1981), 203–207.

[25] F. Jones, Lebesgue Integration on Euclidean Space, Jones and Bartlett Mathematics, 2001.

[26] J. T. Kemper, Temperatures in several variables: kernel functions, representations, and parabolic

boundary values,Trans. Amer. Math. Soc. 167(1972), 243–262.

[27] C. E. Kenig, H. Koch, J. Pipher, and T. Toro. A new approach to absolute continuity of elliptic

measure with applications to non-symmetric equations., Adv. in Math., 153 (2000) 231–298.

[28] C. E. Kenig and J. Pipher, The Neumann problem for eliptic equations with non-smoth

coefficients, Invent. Math. 113 (1993), 447–509.

[29] C. E. Kenig and J. Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ.

Mat. 45 (2001), 199–217.

[30] J. L. Lewis, and K. Nyström, On a parabolic symmetry problem, Rev. Mat. Iberoamericana

23 (2007), 513-536.

[31] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure. Appl. Math.

17 (1964), 101–134.

[32] J. Rivera-Noriega, Absolute continuity of parabolic measure and area integral estimates in

non-cylindrical domains, Indiana Univ. Math. J. 52 (2003), 477–525.

[33] J. Rivera-Noriega, Perturbation and solvability of initial Lp Dirichlet problems for parabolic

equations over non-cylindrical domains, Canadian J. Math. 66 (2014), 429–452.

[34] J. Rivera-Noriega, A connection between regularity and Dirichlet problems for non-divergence

elliptic equations, Differ. Equ. Appl. 10 (2018), 75–86.

[35] J. Rivera-Noriega and L. San Martin, An Lq regularity condition that implies the A∞ property

of parabolic measure, Submitted, 2018.

[36] J. Rivera-Noriega and L. San Martin, The Lp regularity of initial Dirichlet problem for

parabolic equations, Submitted, 2018.

[37] K. Nyström, The Dirichlet problem for second order parabolic operators, Indiana Univ. Math.

J. 46 (1997), 183–245.



60 BIBLIOGRAPHY

[38] Z. Shen, A relationship between the Dirichlet and regularity problems for elliptic equations,

Math. Res. Lett 14 (2007), 205–213.

[39] R. S. Strichartz. Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967),1031–1060.

[40] Torchinsky. Real Variable Methods in Harmonic Analysis, Academic Press, 1986.

[41] G. Verchota, Layer potentials and Regularity for the Dirichlet problem for Laplace’s equation

in Lipschitz doamins, J. Funct. Anal. 59 (1984), 572–611.


	Portada
	Contents
	Chapter 0. Introducción
	Chapter 1. Introduction
	Chapter 2. Preliminary Definitions
	Chapter 3. Poincaré Type Inequalities and Some Consequences
	Chapter 4. Connections Between (D)p and (R)p Conditions
	Chapter 5. Connection Between (R)p and A∞ Conditions
	Bibliography

