

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

INGENIERÍA CIVIL-HIDRÁULICA

ANÁLISIS COMPARATIVO DE CRITERIOS DE DISEÑO EN REDES DE DISTRIBUCIÓN DE AGUA POTABLE

TESIS

QUE PARA OPTAR POR EL GRADO DE: MAESTRA EN INGENIERÍA

PRESENTA:

YADIRA ELIZABETH REYNOSO CARRANZA

TUTOR:

DR. CARLOS EDUARDO MARIANO ROMERO Instituto Mexicano de Tecnología del Agua (IMTA)

JIUTEPEC, MORELOS. NOVIEMBRE 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	DR. ARROYO CORREA VÍCTOR MANUEL
Secretario:	Dr. Pedroza González Edmundo
VOCAL:	Dr. Carlos Eduardo Mariano Romero
1 ^{er} . Suplente:	M.I. BALLINAS GONZÁLEZ HÉCTOR ALONSO
2 ^{do} . Suplente:	M.I. Rodríguez Varela José Manuel

JIUTEPEC, MORELOS, UNAM. CAMPUS MORELOS.

TUTOR DE TESIS:

DR. CARLOS EDUARDO MARIANO ROMERO

GRACIAS DIOS

Por darme la vida y sobre todo unos padres y hermanos amorosos.

A MIS PADRES

Quienes han hecho el mayor esfuerzo de formarme y educarme, brindándome siempre su apoyo incondicional y moral.

A MIS HERMANOS

Por darme su ejemplo de superación, por guiarme y aconsejarme acertadamente ante cualquier circunstancia y mantenernos siempre unidos.

AGRADECIMIENTOS

Agradezco a Dios por permitirme llegar hasta este momento de mi vida.

Agradezco a mis padres que siempre me han apoyado, que se han esforzado y hecho sacrificios por brindarme una educación y sobre todo por brindarme su amor sincero e incondicional.

A mis hermanos que han estado conmigo cuando más los eh necesitado, por sus palabras de aliento y sobre todo por darme su ejemplo de superación.

Agradecimientos especiales para el DR. Carlos Eduardo Mariano Romero por dirigir este trabajo de investigación, por todo el apoyo brindado para la realización de esta tesis, pero sobre todo por su gran accesibilidad, sencillez y calidad humana.

Agradezco sinceramente al DR. Víctor Manuel Arroyo Correa, al DR. Edmundo Pedroza González, al DR. Héctor Alonso Ballinas González y al M.I. José Manuel Rodríguez Varela por toda la ayuda brindada, por sus observaciones, correcciones e ideas para mejorar y enriquecer este trabajo de investigación.

Agradezco al DR. Holanda de Castro, profesor de la Universidad Federal de Ceará por brindarme su apoyo para realizar una estancia en Brasil y aprender acerca de la herramienta UFC que utilizan como interface entre AutoCad y EPANET.

Agradezco al M.I. Oscar Jesús Llaguno Guilberto por sus consejos en temas técnicos durante la realización de la maestría.

Agradezco a mis amigos Jesús Gómez, Eduardo Ocampo, Jomaelah Morales y a mi gran amiga Irene González, por acompañarme desde la universidad y por brindarme su apoyo incondicional en esta etapa de mi vida.

También agradezco a la Universidad Nacional Autónoma de México por su programa de posgrado campus Morelos y al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el apoyo económico brindado para la realización de este trabajo de investigación.

RESUMEN

Hoy en día existen diversos métodos y programas de simulación empleados en el dimensionamiento y análisis hidráulico de las redes de distribución de agua potable, sin embargo, en los sistemas de distribución de agua persisten problemas como: zonas sin servicio, distribución irregular, bajas presiones, entre otros. Una posible causa de estos problemas es el diseño ya que en ocasiones no se considera la totalidad de los requerimientos que las redes deben satisfacer. Otra causa probable son las deficiencias de los métodos o técnicas empleadas.

La primera de ellas pudiera incluso deberse a la falta de experiencia del diseñador; que la persona encargada de diseñar el sistema de distribución no cuente con la información suficiente y también desconozca sabe que tampoco sepa cómo generarla. Esta deficiencia se extrapola con el uso de herramientas de diseño, ya que en muchas ocasiones creemos que el uso de programas de computadora sustituye la experiencia requerida para el diseño de este tipo de sistemas, lo cual es un error pues los programas de computadora no son otra cosa que herramientas que los diseñadores deben utilizar con sus reservas.

A pesar de contar con estas múltiples herramientas para el análisis hidráulico, normalmente las personas encargadas de la planeación y el diseño del sistema de distribución, descuidan tres componentes importantes: la confiabilidad, la calidad y los costos, esto debido a no conocer a profundidad la metodología que cada herramienta utiliza o si estos realmente están representando el comportamiento real de la red, o incluso, cómo impacta cada una de las variables de ingreso en los resultados obtenidos en cada uno. Por ello, es necesario conocer los criterios y sustentos teóricos que utilizan los métodos mayormente empleados para el análisis y el dimensionamiento hidráulico de las redes de distribución de agua, determinando las ventajas de utilizar uno respecto a otro.

El presente trabajo de investigación se enfocó en utilizar un método tradicional, un método simulado y un método heurístico para el análisis y el dimensionamiento hidráulico de redes de distribución, realizando una comparación y evaluación de los resultados obtenidos de cada uno, bajo ciertos criterios de diseño y bajo las mismas condiciones.

ÍNDICE GERNERAL

RF	SUN	/IEN	V
1 I	NTR	ODUCCIÓN	.1
1	.1	Problema	. 2
]	.2	Objetivo	. 2
2 (CON	CEPTOS GENERALES DEL DISEÑO DE LAS REDES DE DISTRIBUCIÓ	N
••••	•••••		.1
2	2.1 Ti	pos de redes de distribución de agua potable	. 1
4	2.2 Ec	cuaciones básicas de hidráulica para el análisis hidráulico de redes de distribución	. 2
	2.2	1 Ecuaciones para el análisis estático de una red	. 2
	2.2	2 Ecuaciones para el análisis dinámico de una red de distribución	. 5
4	2.3 Ec	cuaciones para calcular las pérdidas de carga por fricción en tuberías	. 7
	2.3	1 Ecuación de Darcy-Weisbach	. 8
	2.3	2 Ecuación de Chezy-Manning	10
	2.3	2 Ecuación de Hazen-Williams	13
2	2.4 Ca	aracterísticas fundamentales de los modelos de análisis de redes hidráulicas a presión	14
2	2.5 M	étodos aplicados para el diseño de las redes de distribución de agua potable	15
	2.5	.1 Método de Hardy-Cross con corrección de caudales en los circuitos	16
	2.5	2 Método de Hardy-Cross con corrección de alturas piezométricas en los nodos	16
	2.5	.3 Método de Newton-Raphson	17
	2.5	.4 Método de la teoría lineal	17
	2.5	5 Método del gradiente hidráulico	17
	2.5	.6 Métodos Heurísticos para el diseño de redes de distribución	18
	2.5	.7 Teoría de grafos para el diseño de redes de distribución de agua potable	19
	2.5	.8 El algoritmo de Dijkstra	20
	2.5	9 Programa de simulación hidráulica (EPANET)	20
3 E	ESTA	ADO DEL ARTE DEL DISEÑO DE REDES DE DISTRIBUCIÓN DE AGUA	
PC	TAI	3LE	22
	3.1 Di	iseño óptimo de redes de distribución	22
	3.1. agu	1 Trabajos realizados en los últimos años para el diseño óptimo de redes de distribución c a potable.	le 22
	3.1	2. Comentarios	28

4 METOD	OLOGÍA	30
4.1 Parán	netros de diseño	30
4.1.1 C	oeficientes de variación diaria y horaria	30
4.1.2	Velocidades máximas y mínimas en tuberías	31
4.1.3	Presiones máximas y mínimas permisibles	31
4.1.4	Perdidas por fricción máximas en tuberías	32
4.2 Métod	lo de Hardy Cross	32
4.3 Métod	lo Simulado (EPANET 2.0)	36
4.4 Algor	itmo genético de Dijkstra	40
5 CASOS	DE ESTUDIO	44
5.1 Caso estado de	1. Red de distribución de la localidad de San José del Pilón, municipio de Zirándaro Guerrero.	⁾ , 44
5.1.1 D	escripción de la zona de estudio	44
5.1.2 D	escripción del sistema de agua potable	45
5.1.3 D	atos básicos para el diseño de la red	46
5.2 Caso Coyuca d	2. Red de distribución de la localidad de las Juntas del Río chiquito, municipio de e Catalán, Estado Guerrero.	50
5.2.1 D	escripción de la zona de estudio	50
5.2.2 D	escripción del sistema de agua potable	51
5.2.3 D	atos básicos para el diseño de la red	52
5.3 Red d Morelos.	e distribución de agua potable del sector 3 del municipio de Tepoztlán, estado de	56
5.3.1 D	escripción del sector 3.	56
5.3.2 D	escripción del sistema de agua potable	57
5.2.3 D	atos básicos para el diseño de la red	59
6.1 RESU	LTADOS	63
6.1 Caso	1. Red de distribución San José del Pilón.	63
6.1.1 N	létodo Hardy Cross	63
6.1.2 N	létodo Simulado (programa EPANET 2.0).	65
6.2.3 N	létodo Heurístico (Algoritmo de Dijkstra)	67
6.2.4 C	omparación de los resultados	69
6.2 Caso	2. Red de distribución las Juntas	71
6.2.1 N	létodo de Hardy Cross	71
6.2.2 N	létodo simulado (programa EPANET 2.0)	72

6.2.3 Método Heurístico (Algoritmo de Dijkstra)	75
6.2.4 Comparación de resultados	77
6.3 Caso 3. Red de distribución sector 3 de Tepoztlán	78
6.3.1 Método de Hardy Cross	78
6.3.2 Método simulado (programa EPANET 2.0)	80
6.3.3 Método Heurístico (Algoritmo de Dijkstra)	
6.3.4 Comparación de los resultados	
7 CONCLUSIONES Y RECOMENDACIONES	
BIBLIOGRAFÍA	
ANEXO A	95
ANEXO B	
ANEXO C	

Figuras

Figura 2.1 Representación de la ecuación de continuidad y de energía para una tubería a presión Figura 2.2 Diagrama universal de Moody, coeficiente de fricción para cualquier tipo y tamaño d tube (Setale, 2002)	l 4 le
El como 2.2 Decomplia histórica de los modelos de simulación motomático enlicados e redes de	12
Figura 2.5 Desarrono misiorico de los modelos de simulación matematica aplicados a redes de	10
distribución de agua potable (Comisión Nacional del Água, 2015)	16
Figura 4.1 Curva de variación horaria para pequeñas poblaciones para la simulación de la red 1	y 2. 38
Figura 4.2 Ley de variación horaria para diferentes ciudades de México para la simulación de la 3	red 38
Figura 4.3 Introducción de la ley de variación horaria para comunidades pequeñas al programa c	de
simulación EPANET para la red de Las Juntas, Guerrero	39
Figura 4.4 Estableciendo el tiempo de simulación en el programa EPANET para la red caso 1 (L	Las
Juntas, Guerrero).	39
Figura 4.5 Red hipotetica para la realización del algoritmo de Dijkstra.	41
Figura 4.6 Camino optimo de la red obtenido por el algoritmo de Dijkstra en la red ejemplo Figura 4.7 Pseudocódigo del algoritmo de Dijkstra	42 43
i guiu ii, i seudocoargo dei argoinano de Dijnoud	15
Figura 5.1 Localización del municipio de Zirándaro en el estado de Guerrero.	44
Figura 5.2 Croquis de localización de San José del Pilón, Guerrero.	45
	46
Figura 5.3 Planimetría de la localidad de la localidad de San José del Pilón, Guerrero	46
Figura 5.4 Localización del municipio de Coyuca de Catalán, Guerrero.	50
Figura 5.5 Localidad Las Juntas, Guerrero.	51
Figura 5.6 Plano de la localidad de Las Juntas, Guerrero.	52
Figura 5.7 Localización del municipio de Tepoztlán, estado de Morelos	56
Figura 5.8 Croquis de localización del sector 3 del municipio de Tepoztlán	57
Figura 5.10 Plano de la traza urbana del sector 3	58
Figura 6.1 Plano de la red de distribución de San José, Guerreo. Diseñada por el método de Haro	dy
	63
Figura 6.2 Resultados obtenidos de la simulación estática en el programa EPANET 2.0 para la re	ed
The factor of t	65
Figura 6.3 Resultados obtenidos de la simulación dinámica en el programa EPANET 2.0 para la	red
de distribucion de la comunidad de San Jose.	66
Tabla 6.4 Comparación de resultados obtenidos por cada metodo.	69
I abla 6.5 Comparación del presupuesto total de la red disenada estaticamente por cada metodo.	70
Figura 6.5 Plano final de la red de distribución de Las Juntas, Guerrero, acorde a los resultados	71
Distriction de la construction d	/ I
rigura 6.6 Resultados oblemidos de la simulación estatica en el programa EPANET 2.0 para la re	ed 72
El cusultados obtenidos de la simulación dinómica en al programa EDANET 2.0 para la	/J
de distribución de la comunidad Las Juntas	. 100 74
Tigura 6.8 Anticando el Algoritmo de Dijkstra para la rad de San Josá	14 76
rigura 0.0 Apricando el Algoriuno de Dijksula para la leu de Sall Jose	70

Figura 6.9 Plano de la red de distribución del sector 3 de Tepoztlán, Morelos. Diseñada por el	
método de Hardy Cross	79
Figura 6.10 Resultados obtenidos de la simulación estática en el programa EPANET 2.0 para la re	ed
de distribución del sector 3 de Tepoztlán	81
Figura 6.11 Resultados obtenidos de la simulación dinámica a las 9:00 horas en el programa	
EPANET 2.0 para la red de distribución del sector 3 de Tepoztlán	82
Figura 6.12 Aplicando el Algoritmo de Dijkstra para la red de San José	83

Tablas

Tabla 6.7 Resumen del presupuesto total de la red Las Juntas, obtenido mediante los resultados	
obtenidos por el programa EPANET 2.0	75
Tabla 6.8 Resumen del presupuesto total de la red, conforme a los resultados obtenidos por el	
Algoritmo de Dijkstra.	76
Tabla 6.9 Comparación de resultados obtenidos por cada método.	77
Tabla 6.10 Comparación del presupuesto total de la red diseñada estáticamente por cada método.	78
Tabla 6.11 Resumen del presupuesto total de la red de distribución, diseñada estáticamente por	
Hardy Cross	80
Tabla 6.12 Resumen del presupuesto total de la red obtenido mediante los resultados obtenidos po	r
el programa EPANET 2.0	82
Tabla 6.13 Resumen del presupuesto total de la red, conforme a los resultados obtenidos por el	
Algoritmo de Dijkstra.	84
Tabla 6.14 Comparación de resultados obtenidos por cada método.	85
Tabla 6.15 Comparación del presupuesto total de diseño por cada método	86
Tabla 7. 1 Características, ventajas y desventajas del método de Hardy Cross.	87

Tabla /.	Características,	ventajas y desventajas	del metodo de Hardy	Cross a	57
Tabla 7. 2	2 Características,	ventajas y desventajas	del programa EPANE	T 2.0 8	<u>89</u>
Tabla 7. 3	3 Características,	ventajas y desventajas	del programa EPANE	T 2.0	90

1 INTRODUCCIÓN

Los recursos hídricos son esenciales para la supervivencia, el bienestar y el desarrollo de la población, sin embargo, cada día son más escasos debido al aumento de su demanda, por lo anterior es de suma importancia realizar una gestión adecuada del recurso y garantizar diseños de redes de distribución eficaces que contemplen el comportamiento de hidráulico, a fin de evitar redes sobredimensionadas que impliquen mayor costo de inversión, mantenimiento y operación. El caso inverso también se debe analizar, en situaciones en las que las redes quedan subdimensionadas debido a carencias del conjunto diseñador-método de diseño o dado que las redes sufren modificaciones en sus diseños originales que perturban su comportamiento y ocasionan un incumplimiento en los requerimientos de funcionamiento.

El diseño de las redes de distribución de agua potable (RDAP) comenzó con un análisis hidráulico estático y con un cálculo manual, donde el método Hardy Cross fue uno de los métodos pioneros, en éste se consideran las condiciones de demanda nodal puntual y las características topográficas de la red, con la finalidad de obtener las velocidades y gastos en los tramos y las presiones en los nodos.

Ligado al desarrollo de herramientas informáticas, en la actualidad existen programas de cómputo que resuelven los sistemas de ecuaciones algebraicas que resultan de la discretización de ecuaciones características de los sistemas de distribución de agua potable. A estas aplicaciones de cómputo se les identifica bajo el nombre de programas o software de simulación.

El uso de programas de simulación ha tomado mucha relevancia ya que son muchos los casos en donde se definen como la herramienta necesaria y en ocasiones única que garantiza propuestas de diseño o de mejora funcionales. Es importante mencionar que, aunque las bases teóricas matemáticas de los programas de simulación estén bien sustentadas, éstos solo ejecutan los cálculos y arrojan los resultados para los datos de entrada que el usuario proporcione, además para garantizar la convergencia realizan suposiciones que en ocasiones van en contra de la naturaleza del problema en solución, es decir, no representan adecuadamente el comportamiento hidráulico de la red. Sin embargo, los ingenieros proyectistas sustentan sus diseños con el uso de programas de simulación como: el AH, KYPIPE3, EPANET, SCARED, WATERCAD, entre otros, para el diseño de una RDAP.

Una de las razones para el uso de este tipo de herramientas es la reducción del tiempo requerido para resolver los sistemas de ecuaciones. Pero es sin duda el ahorro de tiempo un criterio ajeno al problema de diseñar redes de distribución eficaces y que cumplan con los requerimientos técnicos y operativos, por lo tanto, no es justificado.

1.1 Problema.

El problema del diseño de las redes de distribución se ha venido resolviendo, asignando valores a variables y evaluado el resultado obtenido a través de la aplicación de criterios definidos por los diseñadores, en un proceso iterativo de prueba y error aplicando un criterio de terminación a preferencia de cada diseñador y solo en pocos casos se aplica un criterio de evaluación económica, lo cual genera diseños hidráulicamente funcionales, pero con altos costos de construcción, operación y mantenimiento.

Ante ello surgen las preguntas: ¿El uso de programas de simulación ayudan a optimizar el diseño de las redes de distribución?, ¿Los métodos y/o programas de simulación realmente representan el comportamiento hidráulico de una red de distribución?, ¿Qué método y/o programa de simulación garantiza el dimensionamiento económico, eficiente y eficaz de una red de distribución?

Se consideró necesario aplicar, analizar y comparar tres métodos para análisis hidráulico de redes de distribución, aplicando criterios definidos y bajo las mismas condiciones de evaluación, obteniendo diseños equivalentes que cumplan con los requerimientos hidráulicos y económicos.

Para ellos, se recopiló información de tres casos reales de redes de distribución y se llevó a cabo el análisis hidráulico a través de: a) un método tradicional (Hardy Cross), b) un método simulado (software EPANET 2.0) y c) un método heurístico (Algoritmo de Dijkstra). Para cada combinación caso-tipo-método se establecieron los siguientes criterios para evaluar su efectividad:

- a) Diámetros de tubería seleccionada.
- b) Pérdidas de carga.
- c) Carga disponible en cada nodo.
- d) Costo del diseño.

1.2 Objetivo.

Determinar el método y/o programa de simulación más eficiente y eficaz para el análisis hidráulico y dimensionamiento económico de redes de distribución de agua potable.

Mediante la evaluación y comparación de los resultados obtenidos del análisis hidráulico realizado para los tres tipos de redes de distribución por cada método y estableciendo las ventajas de utilizar uno respecto a otro, determinando así con cuál de los tres métodos se obtiene un dimensionamiento económico (diámetro óptimo), eficaz y eficientes (presiones y velocidades permisibles) para el diseño de una red de distribución.

2 CONCEPTOS GENERALES DEL DISEÑO DE LAS REDES DE DISTRIBUCIÓN

Una red de distribución es el conjunto de tuberías, accesorios y estructuras que conducen el agua desde tanques de servicio o de distribución hasta las tomas domiciliarias o hidrantes públicos. Su finalidad es proporcionar agua a los usuarios para consumo doméstico, público, comercial, industrial y para condiciones extraordinarias como el extinguir incendios (CONAGUA, Diseño de redes de distribución de agua potable, 2015).

La red de distribución se divide en dos partes para determinar su funcionamiento hidráulico: la red primaria, que es la que rige el funcionamiento de la red, y la red secundaria.

La red primaria permite conducir el agua por medio de líneas troncales y alimentar a las redes secundarias que distribuyen el agua hasta la toma domiciliaria.

Cabe destacar que existen tres formas de distribución del agua en la red: por medio de un sistema a gravedad, un sistema a bombeo o un sistema mixto.

2.1 Tipos de redes de distribución de agua potable

Para lograr un sistema de agua público capaz de satisfacer las necesidades de una población es fundamental contar con un buen diseño, una construcción adecuada y un mantenimiento constante de la red (Vega, 2001).

Al conjunto de tuberías dispuestas una tras otra formando una figura cerrada dentro de la cual un fluido puede volver a su punto de partida después de recorrer todos sus componentes de le llama circuito (Vega, 2001). Conforme a lo anterior podemos clasificar las redes de distribución en cerradas, abiertas y mixtas.

Red cerrada. Sus tuberías forman al menos un circuito y en caso de falla, el agua recorre trayectorias alternas para abastecer zonas de la red, una desventaja es que es difícil detectar las fugas y el cálculo hidráulico es complejo.

Red abierta. Sus tuberías se ramifican sin formar circuitos (forma de árbol) se utilizan cuando la planimetría y topografía son irregulares o cuando el poblado es muy pequeño o disperso. Las desventajas de este tipo de red es que pueden formarse en los extremos crecimiento bacteriano y sedimentación; además, en caso de reparaciones se interrumpe el servicio más allá del punto de reparación; y en caso de ampliaciones, la presión en los extremos es baja. La ventaja es que el cálculo hidráulico es más sencillo.

Red combinada. Es una combinación entre la red cerrada y la red abierta. En algunos casos es necesario emplear ramificaciones en redes cerradas. El cálculo hidráulico es igual de complejo que en una red cerrada.

2.2 Ecuaciones básicas de hidráulica para el análisis hidráulico de redes de distribución

Los métodos de análisis para evaluar el funcionamiento hidráulico de una red de distribución deben considerar la capacidad de un flujo para transportar materia y el mecanismo por el que cambia sus propiedades de un lugar a otro, satisfaciendo los principios básicos de la mecánica del medio continuo que enseguida se describen:

- a) Conservación de la materia (principio de continuidad).
- b) Segunda ley de Newton (impulso y cantidad de movimiento).
- c) Conservación de la energía (primera ley de la termodinámica).

El principio de la conservación de materia o del transporte de masa permite derivar la primera ecuación fundamental o de continuidad, que admite diferentes simplificaciones de acuerdo con el tipo de flujo que se trate.

La segunda ley de Newton establece la relación fundamental entre la resultante de las fuerzas que actúan sobre una partícula y la variación en el tiempo de la cantidad de movimiento. De acuerdo con la forma en que se aplique puede conducir a dos ecuaciones: la primera llamada de *la energía* permite calcular las diferentes transformaciones de la energía mecánica dentro del fluido. La segunda, de tipo vectorial llamada *del impulso y cantidad de movimiento*, permite determinar alguna de las fuerzas que producen el flujo si se conoce el cambio en la cantidad de movimiento y las restantes fuerzas (Sotelo, 2002, pág. 112).

2.2.1 Ecuaciones para el análisis estático de una red

Cuando la operación de la red es a presión y los gastos que circulan en sus conducciones no cambian con el tiempo, se tiene el caso de flujo permanente. Se le acostumbra llamar *red estática*.

En una red con flujo permanente donde se conoce al menos la carga de presión de uno de sus nodos (generalmente es el nivel de la superficie libre del agua de un tanque de almacenamiento) y los gastos que entran o salen de la red (pueden ser gastos suministrados a usuarios de la red), es posible calcular las presiones en los nodos y los gastos que circulan en cada una de sus tuberías empleando los principios de conservación de masa (continuidad), de energía y cantidad de movimiento que a continuación se describen.

2.2.1.1 Ecuación de continuidad.

La ecuación de continuidad se basa en la aplicación del principio de conservación de la masa; también conocida como: ecuación de flujo permanente e incompresible; establece la invariabilidad del gasto Q (m^3/s) en cada sección del conducto. Es decir, el gasto que entra en una tubería a presión es el mismo gasto que sale de ella.

$$Q = VA \tag{2.1}$$

Donde:

- *V*, Es la velocidad media del flujo, en m/s
- A, Es el área de la sección transversal del conducto, en m^2

2.2.1.2 Ecuación de la conservación de energía (ecuación de Bernoulli).

Establece la constancia de energía entre dos secciones transversales del conducto (1 y 2). En la Figura 2.1 se muestra la interpretación de la ecuación de energía.

$$z_1 + \frac{P_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} = z_2 + \frac{P_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + h_f + h_l$$
(2.2)

Donde:

- g, aceleración de la gravedad, la cual se puede tomar igual a 9.81 m/s².
- *P*, presión, en kg/m².
- *V*, es la velocidad media en el conducto, en m/s.
- z, es la carga de la posición, en m.
- γ , peso específico del agua, en kg/m³.
- h_f , perdida de carga por fricción, en m.
- h_l , perdidas locales, en m.
- α , coeficiente de Coriolis, con un valor cercano a 1.

La ecuación (2.2) establece las relaciones entre las diferentes transformaciones de la energía mecánica del líquido, por unidad de peso del mismo. El término z, se refiere a la carga de posición; $\frac{\rho}{\gamma}$ es la carga de presión; $\frac{V}{2g}$ es la carga de velocidad; h_f es la pérdida de carga debido al rozamiento en las paredes del conducto; y finalmente, h_l corresponde a las perdidas locales, es decir pérdida de energía debido al cambio de la velocidad o dirección. Los subíndices 1 y 2 indican de que sección se trata. (Sotelo, 2002, pág. 127).

Si el flujo es permanente y además no existen perdidas de energía, $\sum h_f = 0$ y los coeficientes $\alpha_2 = \alpha_1 = 1$, la ecuación (2.2) adopta la forma llamada *ecuación de Bernoulli* (Sotelo, 2002), esto es:

$$z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g}$$
(2.2.1)

Figura 2.1 Representación de la ecuación de continuidad y de energía para una tubería a presión.

2.2.1.3 Ecuación de cantidad de movimiento.

Se deriva de la segunda ley de Newton en forma vectorial. Estableciendo que la suma vectorial de todas las fuerzas F que actúan sobre una masa de fluido es igual a la rapidez del cambio del vector lineal cantidad de movimiento de la masa de fluido (Sotelo, 2002). La ecuación se expresa como:

$$\sum F = \frac{\gamma}{g} Q[(\beta V)_2 - (\beta V)_1]$$
(2.3)

Donde:

- *F*, fuerzas vectoriales, en kg.
- *V*, es la velocidad media en el conducto, en m/s.
- γ , Peso específico del fluido, en kg/m³.
- g, aceleración de la gravedad, la cual se puede tomar igual a 9.81 m/s².
- Q, gasto que transporta el conducto, en m³/s.
- β , coeficiente de Boussinesq, es adimensional.

Donde $\sum F$ representa la suma de todas las fuerzas vectoriales que actúan sobre el elemento líquido, comprendido entre la seccione 1 y 2; *V* representa el vector de velocidad media del gasto *Q*. Finalmente β , representa el coeficiente de Boussinesq para corregir el efecto de considerar una velocidad media en lugar de la verdadera distribución de velocidades sobre la porción de área (Sotelo, 2002, pág. 133). Se obtiene mediante la siguiente expresión:

$$\beta = 1 + \frac{\alpha - 1}{3} \tag{2.4}$$

Las ecuaciones de energía y de cantidad de movimiento se aplican de manera diferente y, si se hace correctamente, ellas describirán un flujo con idénticos grados de exactitud. Sus principales diferencias se encuentran en su estructura: mientras la ecuación de la cantidad de movimiento es vectorial y engloba fuerzas totales y condiciones externas, la ecuación de la energía es por el contrario escalar y toma en cuenta los cambios internos de energía (Sotelo, 2002). Por ello, es necesario contemplarlas simultáneamente para una solución completa para un diseño de redes de distribución de agua potable.

2.2.2 Ecuaciones para el análisis dinámico de una red de distribución.

El modelo dinámico se basa en la solución de las ecuaciones diferenciales de continuidad y de cantidad de movimiento de flujo no permanente para una tubería funcionando a presión. Para ello se emplea un esquema de diferencias finitas de tipo implícito (Fuentes & Fuentes, 1992).

2.2.2.1 Ecuación de cantidad de movimiento en una tubería.

Para el caso de un tramo de tubería se tiene la ecuación 2.5 que relaciona las cargas piezométricas en los extremos de la tubería con el gasto que circula por ella en el instante k (suponiendo que el flujo es de 2 a 1) y acepta que las variables en el instante k - 1 son conocidas:

$$Q^{k+1} = \alpha^k \left(h_s^{k+1} - h_i^{k+1} \right) + \gamma^{k-1}$$
(2.5)

Donde:

- Q, gasto del conducto, en m³/s.
- h_s , perdida de carga, en m, en una sección s.
- h_i , perdida de carga, en m, en una sección *i*.
- α , coeficiente de Coriolis, en un instante *t*, se obtiene mediante la ecuación 2.6.
- γ , peso específico del agua, en kg/m³, en un instante *t*, se obtiene mediante la ecuación 2.7.

$$\alpha^{k} = \frac{\theta}{\frac{l}{Ag\Delta t} + 2\theta C |Q^{k}|}$$
(2.6)

$$\gamma^{k} = \frac{(1-\theta)(h_{s}^{k+1} - h_{t}^{k+1}) + (2\theta - 1)C|Q^{k}|Q^{k} + \frac{lQ^{k}}{Ag\Delta t}}{\frac{l}{Ag\Delta t} + 2\theta C|Q^{k}|}$$
(2.7)

Donde Δt es intervalo de tiempo, A es el área transversal del tubo, *l* la longitud del tubo, *g* la aceleración de la gravedad, θ es un factor de peso (comprendido entre cero y uno), *C* es función de la longitud y el diámetro de las tuberías, y *k* es un superíndice que indica el valor de la variable en el tiempo *t*=*k*\Delta t (CONAGUA, Diseño de redes de distribución de agua potable, 2015).

2.2.2.2 Ecuación de continuidad en cada nodo

En cada nodo *i* de la red y para el tiempo $t=k\Delta t$, se establece que la suma de los gastos que entran es igual a la de los gastos que salen. Así se plantea la ecuación 2.8:

$$\sum Q^{k+1} = q^{k+1} \tag{2.8}$$

Se considera que el gasto que sale de un nodo de la red en el tiempo *t* para tratar de satisfacer la demanda depende de la carga de presión en dicho nodo y del gasto de demanda requerido en tal tiempo. El gasto suministrado por la red se calcula mediante la ecuación 2.9:

$$q_R = c_d A \sqrt{2g} \sqrt{h - h_E} \tag{2.9}$$

Donde:

- q_R , gasto suministrado por la red, en m³/s.
- c_{d_1} es el coeficiente de descarga, adimensional.
- A, área de abertura por donde sale el agua, en m^2 .
- g, aceleración de la gravedad, la cual se puede tomar igual a 9.81 m/s².
- h_E , es la elevación del punto medio de la sección transversal, en m.
- *h*, perdida de carga, en m.

En la cual, h_E es la elevación del punto medio de la sección transversal, sin embargo, se acepta que aproximadamente sea igual a la elevación de la superficie del terreno y donde C es igual a: $C_d \alpha \sqrt{2g}$ d. Por lo que la ecuación 2.10 que permite determinar el gasto que aporta la red en cualquier instante queda de la siguiente manera:

$$q_R = C\sqrt{h - h_E} \tag{2.10}$$

Finalmente, el gasto entregado en los nodos es el menor entre el gasto de demanda y el gasto calculado con la ecuación anterior. En forma linealizada, la ecuación se expresa como (Bon Santoyo, 2017):

$$q_R = \tau^k h^{k+1} + \rho^k \tag{2.11}$$

donde:

$$\tau^{k} = \frac{0.5q_{a}}{(h^{k} - h_{E})} \tag{2.12}$$

y:

$$\rho^{k} = 0.5q_{a} \left(1 - \frac{h_{E}}{(h^{k} - h_{E})} \right)$$
(2.13)

2.3 Ecuaciones para calcular las pérdidas de carga por fricción en tuberías.

En tuberías ya instaladas es sencillo medir las perdidas por fricción por medio de la ecuación de la energía o ecuación de Bernoulli. Sin embargo, para el diseño de una red de distribución es necesario de conocer el valor de las pérdidas.

La pérdida de energía hidráulica en los conductos cerrados puede presentarse de dos maneras:

- a) Por el rozamiento entre partículas del agua y las paredes del conducto (pérdidas principales).
- b) Por el contacto del agua al pasar por los accesorios de conexión (pérdidas secundarias o locales).

Las ecuaciones para determinar las pérdidas de carga por fricción son las que se describen a continuación.

2.3.1 Ecuación de Darcy-Weisbach

Una de las fórmulas más empleadas para obtener la pérdida de carga es la de Darcy-Weisbach (Rojas, 1994), debido a que considera las características de las tuberías, la velocidad y viscosidad del fluido que circula dentro de ella, es decir, este modelo considera a los tres tipos de regímenes de flujo (laminar, transición y turbulento). La ecuación se expresa de la manera siguiente:

$$h_f = f \frac{L}{D} \frac{v^2}{2g} \tag{2.14}$$

Donde:

- h_f , pérdida de energía por fricción, en m.
- *f*, factor de pérdidas de carga por fricción, adimensional.
- *L*, longitud de la tubería, en m.
- D, diámetro interno del tubo, en m.
- v, velocidad media, en m/s.
- g, aceleración de la gravedad, la cual se puede tomar igual a 9.81 m/s².

Para encontrar el valor del factor de pérdidas de carga por fricción f se puede determinar en base al diagrama universal de Moody (ver Figura 2.2) o mediante las siguientes fórmulas, provienen de la ecuación de Colebrook-White modificada (ver ecuaciones 2.15 y 2.16):

Fórmula de Swamme y Jan:

$$f = \frac{0.25}{\left[log\left(\frac{\frac{\mathcal{E}}{D}}{3.71} + \frac{5.74}{R_e^{0.9}}\right) \right]^2}$$
(2.15)

Fórmula de Guerrero:

$$f = \frac{0.25}{\left[log\left(\frac{\varepsilon}{\overline{D}}}{3.71} + \frac{G}{R_e^T}\right) \right]^2}$$
(2.16)

Donde:

- f, factor de pérdidas de carga por fricción, adimensional.
- ε , Rugosidad absoluta, en m.
- D, diámetro interno del tubo, en m.
- R_e , número de Reynolds, en adimensional.

Los valores de G y T serán:

<i>G</i> = 4.555 y <i>T</i> = 0.8764	Para $4000 \le R_e \ge 10^5$
<i>G</i> = 6.732 y <i>T</i> = 0.9104	Para $10^5 \le R_e \ge 3 \ge 10^6$
<i>G</i> = 8.982 y <i>T</i> = 0.9300	Para 3 x $10^6 \le R_e \ge 10^8$

El número de Reynolds está dado por la siguiente ecuación:

$$R_e = \frac{vD}{v} \tag{2.17}$$

Donde:

- v, velocidad media en el conducto, en m/s.
- D, diámetro interno del tubo, en m.
- v, viscosidad cinemática del agua en m²/s.

En la Tabla 2.1 se presenta la rugosidad absoluta de algunos materiales empleados para tuberías en redes de distribución.

 Tabla 2.1 Rugosidad absoluta de algunos materiales (Sotelo, 2002).

MATERIAL	<i>ɛ</i> en mm
Cobre, PVC, polietileno de alta densidad	0.0015
Fierro fundido	0.005 a 0.03
Acero	0.04 a 0.10
Asbesto cemento	0.025 a 0.030
Concreto	0.16 a 2.0

2.3.2 Ecuación de Chezy-Manning

Originalmente fue obtenida a partir de siete ecuaciones diferentes basadas en los ensayos de Bazin y es la más utilizada en canales expresando el factor de Chezy. La ecuación se expresa como:

$$V = \frac{1}{n} R_h^{2/3} S^{1/2}$$
(2.18)

Donde:

- *n*, es el coeficiente de rugosidad de Manning.
- *V*, velocidad media en el conducto, en m/s.
- R_h , es el radio hidráulico de la sección, en m.
- *S*, es la pendiente de fricción.

Para simplificar los cálculos se han obtenido relaciones entre las diferentes variables hidráulicas de interés en una tubería de sección circular.

Para calcular la pendiente de fricción se utiliza la siguiente fórmula:

$$S = \frac{h_f}{L} \tag{2.19}$$

Al sustituir en la ecuación 2.19 las propiedades geométricas de la tubería y reemplazar la ecuación resultante en la de continuidad 2.1, tenemos las siguientes ecuaciones:

$$V = \frac{1}{n} \left(\frac{D}{4}\right)^{2/3} \left(\frac{h_f}{L}\right)^{1/2}$$
(2.20)

$$Q = 0.3117 \frac{D^{8/3} h_f^{1/2}}{L^{1/2} n}$$
(2.21)

Despejando h_f de la ecuación 2.18, se obtiene la ecuación simplificada de Manning para determinar las pérdidas de carga por fricción, quedando así de la siguiente manera:

$$h_f = \frac{10.293 \, n^2 \, Q^2 \, L}{D^{16/3}} \tag{2.22}$$

Donde el coeficiente "n" representa las características internas de la superficie de la tubería, su valor depende del tipo de material, calidad del acabado y el estado de la tubería, en la Tabla 2.2 se muestran algunos valores de "n" recomendados para ser usados en la ecuación de Manning.

MATERIAL	n
PVC, polietileno de alta densidad	0.009
Asbesto-cemento nuevo	0.010
Asbesto-cemento usado	0.011 a 0.15
Fierro fundido nuevo	0.013
Fierro fundido usado	0.017
Concreto liso	0.012
Concreto áspero	0.016
Concreto presforzado	0.012
Concreto con buen acabado	0.014
Mampostería con mortero de cemento	0.020
Acero sin revestimiento	0.014
Acero galvanizado nuevo o usado	0.014

Tabla 2.2Valores del coeficiente de fricción de Manning para diferentes materiales de tubería (CONAGUA,
Datos Básicos, 2007, pág. 40).

CAPÍTULO 2

Figura 2.2 Diagrama universal de Moody, coeficiente de fricción para cualquier tipo y tamaño de tubo (Sotelo, 2002).

2.3.2 Ecuación de Hazen-Williams

Esta es una ecuación empírica para el cálculo de las pérdidas por fricción en conducciones a presión. Surge a principios del siglo XX, como una tendencia de, precisamente, solventar lo complejo que resultaba el cálculo de estas pérdidas con la ecuación de Darcy-Weisbach referida anteriormente.

Esta ecuación es expresada de la siguiente forma en unidades métricas:

$$h_f = L^{0.54} \sqrt{\frac{Q}{35.834X10^{-7}CD^{2.63}}}$$
(2.14)

Donde:

- h_f , perdidas por fricción, en m.
- *L*, longitud del tramo, en m.
- Q, gasto en el tramo, en l/s.
- D, diámetro de la sección transversal del tubo, en m.
- *C*, coeficiente de fricción de Hazen-Williams.

Algunos de los valores del coeficiente de fricción de Hazen-Williams "*C*" se mencionan en la Tabla 2.3, en función del material, años de uso y del revestimiento interno de la tubería.

MATERIAL	С	
PVC, polietileno de alta densidad	150	
Vidrio	140	
Asbesto-cemento	140	
Fierro fundido n	130	
Concreto liso	130	
Concreto áspero	120	
Mampostería con mortero de cemento	100	
Acero galvanizado	120	

El rango de aplicación se restringe a las variables experimentales, ya que no considera los tres tipos de régimen del flujo (laminar, transición y turbulento). (CONAGUA, 2007).

El coeficiente de fricción de Hazen-Williams puede ser utilizado para sistemas que conducen agua a temperaturas "normales" (entre 18°C y 30°C) y bajo condiciones de flujo turbulento.

2.4 Características fundamentales de los modelos de análisis de redes hidráulicas a presión.

Un modelo de computadora no solo consiste en un programa de computadora para resolver ecuaciones de redes de tuberías, sino también en los datos que describen el sistema de distribución de agua que se analiza (Walski, Gessler, & Sjostrom, 1990).

La principal característica de los modelos de redes de distribución de agua potable es obtener los valores de las variables significativas, como son las presiones en los nodos y los gastos en las tuberías, a lo largo del tiempo. Teniendo en cuenta la presencia o no de la variable temporal, los modelos de análisis se clasifican en:

- Modelos de análisis estático. Son los modelos de análisis de redes hidráulicas bajo un régimen permanente y buscan la determinación de los valores de las variables para una situación dada, sin tener en cuenta las posibles variaciones temporales que pueden sufrir los parámetros del mismo (consumo, niveles de los tanques de almacenamiento, entre otros).
- Modelos de análisis dinámico. También denominados modelos de análisis en régimen transitorio. Son modelos en los que interviene la variación temporal de los parámetros del sistema. El análisis de este tipo de modelos suele ser de forma discreto, dado que es necesario resolver las ecuaciones del sistema para cada instante de tiempo.

Los modelos dinámicos, en los que interviene la variación a lo largo del tiempo tanto de los parámetros como de las variables, se pueden clasificar a su vez en:

 Modelos no inerciales. Son un tipo particular de modelos dinámicos en los que se desprecia la inercia del fluido en el sistema, de forma que la característica dinámica le viene conferida por el hecho de disponer de una serie de condiciones de frontera lentamente variables con el tiempo. El modelo de análisis para cada instante es un modelo estático. La variación entre un instante y el siguiente proviene de la actualización de parámetros tales como niveles en los tanques, demandas en los nodos, entre otros; en un instante de cálculo.

Este tipo de modelos son los que comúnmente se denominan modelos **cuasi estáticos** y cuya implantación es lo que se ha dado llamar simulación de periodos extendidos. Son los más utilizados por los paquetes de simulación existentes en el mercado para el análisis del comportamiento de una red de distribución a lo largo del tiempo (Walski, Gessler, & Sjostrom, 1990).

• *Modelos inerciales.* Presentan como característica principal el considerar la inercia del fluido en su movimiento, es decir, la energía puesta en juego en los cambios de velocidad, motivados por variaciones temporales de las condiciones de frontera. Necesarios cuando

el fenómeno analizado presenta cambios bruscos en la velocidad derivado de maniobras rápidas (Walski, Gessler, & Sjostrom, 1990).

2.5 Métodos aplicados para el diseño de las redes de distribución de agua potable.

En los últimos años se han desarrollado diferentes técnicas para afrontar la problemática que se presenta en los sistemas de distribución de agua potable, de las cuales destacan dos: un análisis numérico-matemático y un análisis matemático-computacional, este último conocido como modelo de simulación.

El primer tipo de técnica consiste en un análisis hidráulico generalmente estático y en un cálculo sin necesidad de usar una computadora, considerando las condiciones de demanda nodal puntual y las características de la red con la finalidad de obtener las velocidades y gastos en los tramos y las presiones en los nodos, de forma iterativa hasta lograr una convergencia en los caudales y pérdidas de fricción, como es el caso del método de Hardy Cross.

El segundo tipo de técnica consiste en utilizar las ecuaciones hidráulicas básicas de diseño aplicándolas a los nodos (discretización) que conforman las redes hidráulicas, para esto se utilizan técnicas como la de diferencias finitas, volumen finito, elemento finito, entre otras.

En el caso del programa EPANET utiliza la técnica de diferencias finitas de primer orden. El producto de esta discretización resulta en un sistema algebraico de ecuaciones, cuya solución se logra aplicando métodos como el de Newton-Rapshon. La solución del problema dinámico depende de la incorporación de condiciones de frontera adecuadas, en el caso de los esquemas numéricos estas corresponden a condiciones de tercer orden, también conocidas como tipo Neumann, aspecto que no se incluye en los programas de simulación, lo cual se fue comprobando en el desarrollo de esta tesis (Saldarriaga, 2013).

Para resolver los sistemas de ecuaciones no lineales se puede utilizar el método de Newton Raphson o bien un procedimiento que simplifique el problema matemático a resolver, por ejemplo, el método iterativo propuesto por Hardy Cross en 1936, que al considerar circuitos dentro de la red disminuye el número de ecuaciones no lineales por resolver (Saldarriaga, 2013). Sin embargo, los métodos de solución empleados han evolucionado, desde un análisis hidráulico realizado sin la ayuda de un software, hasta el desarrollo y extensión de programas para análisis y modelación de calidad de agua en redes de distribución, así como aquellos que integran sistemas de información geográfica (SIG), en la Figura 2.3 se presenta el desarrollo de estas herramientas a lo largo del tiempo.

Figura 2.3 Desarrollo histórico de los modelos de simulación matemática aplicados a redes de distribución de agua potable (Comisión Nacional del Agua, 2015).

2.5.1 Método de Hardy-Cross con corrección de caudales en los circuitos.

Este método fue desarrollado en 1936 por el ingeniero norteamericano Hardy Cross. El método en su forma original se usó para el cálculo de estructuras de concreto y acero. Sin embargo, Cross lo extendió rápidamente al caso de redes cerradas y publicó un artículo en el cual describía la aplicación de su método. Como ecuación de resistencia del fluido utilizó la ecuación de Hazen Williams, establecida en 1906 y popularizada en la década de 1930 (Saldarriaga, 2013).

El método se basa en suponer los caudales en cada uno de los tubos de la red e ir corrigiendo esta suposición de manera iterativa hasta balancearlos. Dado que se conocen todas las características de la tubería $(d, k_s, \sum k_m, l)$. (Saldarriaga, 2013)

2.5.2 Método de Hardy-Cross con corrección de alturas piezométricas en los nodos.

***El método original de Hardy Cross resultó ser tedioso al hacer varias iteraciones sobre todo en redes grandes; esta fue la razón por la cual apareció rápidamente una modificación al método. Ésta fue planteada en 1938 por el ingeniero R.J. Cornish (1939-1940), quien le dio el nombre de balance de continuidad, y se utilizó para resolver las ecuaciones de altura piezométrica.

El método de Hardy Cross con correcciones en las alturas se utiliza para resolver las ecuaciones de altura piezométrica, utilizando la ecuación de Darcy-Weisbach para el cálculo de las perdidas por fricción, aunque se puede recurrir a cualquier otra ecuación conocida (Saldarriaga, 2013).

2.5.3 Método de Newton-Raphson.

El método iterativo de Newton-Raphson fue aplicado por primera vez al cálculo de distribución de redes de agua potable por D. W. Martin y G. Peters en 1962-1963. Estos dos investigadores fueron los primeros en publicar un algoritmo para computador que podía emplearse para calcular en forma simultánea las alturas en todos los nodos de la red distribución (Saldarriaga, 2013).

Dentro de su algoritmo, escribieron las ecuaciones de pérdida por fricción en cada tubería en términos del caudal; la ecuación resultante relacionaba esta última variable con las alturas piezométricas aguas arriba y aguas debajo de cada tubo, al sustituir las ecuaciones en las ecuaciones de conservación de masa en cada nodo obtenían n número de ecuaciones no lineales en términos de las alturas en los nodos. Finalmente, linealizaron las ecuaciones resultantes utilizando una expansión en series de Taylor y las resolvieron de forma iterativa por el método de Newton Raphson (Saldarriaga, 2013).

Es un método numérico que permite la solución de ecuaciones no lineales y en el cual es necesario el uso de un software para resolverlas en cada iteración. (Saldarriaga, 2013).

2.5.4 Método de la teoría lineal.

Este método fue desarrollado por D.J Wood y C.O.A Charles entre 1970 y 1972, introdujeron una nueva forma de calcular las redes de distribución, en el cual se resuelven simultáneamente las ecuaciones de conservación de la masa en los nodos y de energía en los circuitos, con el fin de calcular el caudal en cada tubería (Wood Ronald & Carl O.A, 1972). Al igual que en el segundo método de Hardy Cross, el cálculo de la altura piezométrica en cada nodo requiere de la aplicación de una rutina secundaria de pérdidas de energía (Saldarriaga, 2013).

El nombre *método de la teoría lineal* es erróneo, habiendo surgido por la forma original que Wood y Charles trataron de minimizar el número de iteraciones que se requerían para la solución de las ecuaciones no lineales de energía (Saldarriaga, 2013).

2.5.5 Método del gradiente hidráulico.

El método del gradiente hidráulico fue desarrollado por los profesores E. Todini y E. P. O´ Connell en el año 1987 en el cual las ecuaciones de energía individuales para cada tubo se combinan con las ecuaciones de masa individuales en cada unión con el fin de obtener una solución simultánea tanto de los caudales en las tuberías como de las alturas piezométricas en los nodos (Saldarriaga, 2013).

Al igual que en el método de la teoría lineal, el método del gradiente hidráulico linealiza las ecuaciones de energía utilizando una expansión en series de Taylor. Sin embargo, a diferencia de los métodos anteriores, en este caso las ecuaciones se resuelven utilizando un esquema que se basa en la inversión de la matriz de coeficientes originales. El método de gradiente hidráulico es el más utilizado por la mayoría de los programas comerciales y de distribución gratuita en la Web (Saldarriaga, 2013).

En la Tabla 2.4 se describen cronológicamente los métodos para el análisis hidráulico de una red de distribución.

Año	Inventor(es)/autor(es)	Método / aplicaciones
1845	Darcy y Weisbach	Fórmula para la pérdida de altura en un flujo a través de una tubería simple
1892	Freeman	Solución gráfica.
1905	Hazen y Williams	Fórmula para la pérdida de altura en un flujo a través de una tubería simple y un método de tubería equivalente.
1934	Camp y Hazen	Análisis de una red eléctrica.
1936	Cross	Técnica de relajación.
1956	Mcllroy	Análisis del fluido Mcllroy.
1957	Hoag y Weinberg	Adaptación del método Hardy Cross para computadores digitales.
1963	Martin y Peters	Método del nodo simultaneo.
1968	Shamir y Howard	Expansión del método del nodo simultaneo.
1970	Epp y Fowler	Método del circuito simultaneo.
1977	Jeppson	Programa comercial para el análisis de redes con base en el método del circuito simultáneo.
1972	Wood y Charles	Teoría Lineal.
1980	Wood	-KYPIPE, programa comercial para el análisis de redes.
1987	Todini y Pilati	Método del gradiente.
1994	Rossman	-EPANET, programa de uso gratuito para el análisis de redes.

Tabla 2.4 Cronología de los métodos para el análisis de redes de distribución. (Saldarriaga, 2013).

2.5.6 Métodos Heurísticos para el diseño de redes de distribución.

El método Heurístico es el conjunto de técnicas que se emplean con el fin de encontrar y solucionar un problema en aquellos casos que es difícil hallar una solución óptima o satisfactoria.

En la década de los 30's grandes figuras de la computación como Alan Mathison Turing se basaron en el principio de la evolución para desarrollar técnicas heurísticas, intuyendo la conexión que existe entre la evolución y el aprendizaje de máquina.

La aparición de algunos algoritmos ha tenido un impacto importante, al igual que las ideas de ciencias de la computación acerca de estructuras de datos y la manipulación eficiente de los mismos. En consecuencia, ahora se dispone de algoritmos y paquetes de computadora que se usan en forma rutinaria para resolver problemas muy grandes que no se habrían podido manejar hace dos o tres décadas. (CONAGUA, Redes de distribución, 2007)

El proceso de selección de los diámetros de las tuberías de la red no es sencillo, ya que para llevar el agua a los sitios de consumo existen numerosas opciones que satisfacen las condiciones de operación hidráulica, sin embargo, conviene escoger la opción que tiene el mínimo costo de adquisición e instalación. (CONAGUA, Redes de distribución, 2007)

Las primeras aplicaciones de estos métodos trataban de que la suma de las longitudes de los conductos que unen los puntos de demanda de la red fuera mínima; sin embargo, ella se determinaba una vez que se habían escogido los diámetros de las tuberías de acuerdo con la experiencia del diseñador (Tong, 1961). Raman y Raman (1966) propusieron modificar el método anterior condicionando que, en los circuitos, la longitud mínima de tubería se encontrara cuando se cumpliera que en un circuito la suma de las longitudes entre el gasto fuera nula. Con este método tampoco se encontraba propiamente un diseño económico.

Deb y Sarkar A. (1971) plantearon minimizar los diámetros utilizados por medio de una ecuación de pérdida de energía junto con una función lineal del costo de la tubería. Como esta función no está relacionada con los diámetros comerciales, al ajustarlos cambia su valor mínimo.

2.5.7 Teoría de grafos para el diseño de redes de distribución de agua potable.

El problema de optimización de las redes de distribución de agua potable se puede representar a través de un grafo, el cual está representado por un conjunto de nodos y un conjunto de arcos que a su vez conectan a los nodos. La finalidad de esta metodología en las redes de distribución es encontrar la distancia más corta de tubería entre nodo y nodo, mediante algoritmos especiales.

Uno de los métodos de optimación de redes más conocidos es el de Alperovits y Shamir, el cual consiste en analizar toda la red a partir del origen, identifica de manera sucesiva la ruta más corta a cada uno de los nodos en orden ascendente de sus distancias (más cortas), desde el origen; el problema queda resuelto en el momento de llegar al nodo destino (Alperovits & Shamir, 1977).

2.5.8 El algoritmo de Dijkstra.

Es un algoritmo para la determinación del camino más corto dado un nodo origen al resto de los nodos en un grafo con pesos en cada uno. Su nombre se refiere a Edsger Dijkstra, quien lo describió por primera vez en 1959. Es un método muy simple y sobre todo efectivo que puede aplicarse para el diseño de las redes de distribución de agua potable (Pedraza F., López, & Salcedo, 2011).

La idea subyacente en este algoritmo consiste en ir explorando todos los caminos más cortos que parten del nodo origen y que llevan a todos los demás nodos; cuando se obtiene el camino más corto desde el nodo origen, al resto de nodos que componen el grafo, el algoritmo se detiene. El algoritmo es una especialización de la búsqueda de costo mínimo, y como tal, no funciona en grafos con nodos con valores negativos (Pedraza et al., 2011).

Las características de este algoritmo son:

- Es un algoritmo greddy.
- Trabaja por etapas, y toma en cada etapa la mejor solución sin considerar consecuencias futuras.
- El óptimo encontrado en una etapa puede modificarse posteriormente si surge una solución mejor.

El algoritmo de greddy, por su traducción también es conocido como: algoritmo voraz o devorador y constituye una solución de un problema de optimización paso a paso a través de una secuencia de elecciones que son factibles, localmente óptimas e irrevocables (Rodriguez Tello, 2018).

2.5.9 Programa de simulación hidráulica (EPANET).

El programa EPANET fue desarrollado por la U.S. Environmental Protection Agency, agencia de protección ambiental de los Estados Unidos (Rossman, 2000), es un programa computacional de uso público que cuenta con herramientas y aplicaciones para calcular redes de distribución de agua potable y regadío (Walski et al., 2001).

El programa EPANET aplica el método de iteraciones sucesivas conocido como Método del Gradiente, propuesto en 1987, así como en técnicas basadas en el método de Newton Rapshon. El problema es finalmente conducido a una solución algebraica (García Alcaraz, 2006). El programa de simulación EPANET, como la mayoría de los simuladores, trabajan a través de ecuaciones parciales discretizadas por métodos como el de diferencias finitas que son simplificadas a través de sistemas algebraicos, resolviéndolos por medio de un método numérico como el de Newton Rapshon con condiciones de frontera de primer orden.

El programa EPANET realiza simulaciones en periodo extendido y cuasi estático. Es decir, para un cierto periodo de tiempo, se divide éste en subintervalos y se resuelven las ecuaciones de continuidad en los nodos y de la conservación de energía (Bernoulli) en los tramos, para cada uno de los subintervalos de tiempo, tratando cada subintervalo como uno de régimen permanente. (Molina López, 2011). Teniendo así un modelo de análisis *no inercial* como se describió en el apartado 2.4, ya que cada subintervalo de tiempo partirá de los resultados del subintervalo anterior.

Conforme a lo expuesto anteriormente, cabe recalcar que no existen criterios definidos ni normas que determinen con exactitud la eficiencia y eficacia de los resultados que presenten cada uno de estos métodos y/o programas de simulación. Si realmente los métodos utilizados están representando el comportamiento real de la red, o incluso, cómo impacta cada una de las variables de ingreso en los resultados obtenidos en cada uno

3 ESTADO DEL ARTE DEL DISEÑO DE REDES DE DISTRIBUCIÓN DE AGUA POTABLE

3.1 Diseño óptimo de redes de distribución.

Como se ha mencionado anteriormente las redes de distribución de agua potable se pueden diseñar a través de sistemas a gravedad, bombeo o combinado; con un flujo permanente o no permanente, con la finalidad de satisfacer con las demandas de los usuarios a un menor costo posible.

A lo largo del tiempo han surgido diversos métodos para el análisis hidráulico en las tuberías de las redes de distribución, sin embargo, varios de estos métodos han caído en desuso, fundamentalmente por su inexactitud de resultados o bien por ser demasiado laboriosos, lo cual dificulta tener resultados rápidos y sobre todo precisos. A continuación, se describen algunos trabajos realizados en los últimos años para la obtención de un diseño económico de redes de distribución.

3.1.1 Trabajos realizados en los últimos años para el diseño óptimo de redes de distribución de agua potable.

Vázquez (1990) presenta una simplificación del método de Hardy Cross para que sea empleado como método de diseño y no de revisión. Con ello logra el diseño económico de una red de abastecimiento de agua potable conociendo sólo las longitudes de los tramos y los gastos de demanda en los nodos, sin necesidad de proponer diámetros en las tuberías. Esta simplificación se consigue en suponer que el producto del gasto por un factor que toma en cuenta el diámetro y el coeficiente de rugosidad es constante en todos los tramos.

La metodología es la siguiente:

Se tiene la ecuación de corrección de gastos:

$$\Delta Q = -\frac{\sum K |Q| L \cdot Q}{2 \sum K |Q| L}$$
(3.1)

Donde:

 ΔQ , Corrección que se debe hacer al gasto del tramo.

 $\sum K |Q|L$, Suma de pérdidas por fricción en el circuito.

Q, Gasto en el tramo.
- *L*, Longitud del tramo.
- |*Q*|, Valor absoluto del gasto en el tramo.
- *K*, Constante que incluye el coeficiente de pérdida por fricción.

Esta metodología presentada en 1984 y 1989 (Vázquez, 1984 y Vázquez y Ojeda, 1989), demuestra que si la red se diseña conservando constante el producto KQ en cada tramo, hay una opción económica.

Si K[Q], es constante en cada tramo, la ecuación (3.1) se escribe:

$$\Delta Q = -\frac{\sum L \cdot Q}{2\sum L} \tag{3.2}$$

De esta manera, aplicando el método de Hardy Cross se conocen los gastos en los tramos de la red cerrada, aun sin conocer los diámetros de las tuberías. Y una vez conocidos dichos gastos, se pueden diseñar las tuberías si se agrega como dato la suma de pérdidas por fricción en cada circuito.

Para encontrar los diámetros teóricos en los tramos se tienen las siguientes ecuaciones:

$$D = \left(\frac{f}{12.1 \, \kappa}\right)^{1/5} (\text{Darcy-Weisbach})$$
(3.3)

$$D = \left(\frac{10.29 \, n^2}{\kappa}\right)^{3/16} (\text{Manning}) \tag{3.4}$$

Finalmente, estos diámetros se aproximan a los diámetros comerciales.

Tzatchkov y Alonso (1991) proponen dos métodos heurísticos para aumentar o reducir los diámetros conforme a la velocidad de las tuberías y así seleccionar los diámetros óptimos de una red de distribución. Estos métodos pueden ser considerados como una aplicación basada en programación dinámica. La selección se efectúa entre varios diámetros discretos y está sujeta a condiciones de velocidad máxima en los tramos, presión mínima en los nodos y costo mínimo de la red. La solución parte de suponer los diámetros de las tuberías e iterativamente realizar el cálculo hidráulico de la misma, cambiando el diámetro de un tramo si no se cumplen las condiciones hidráulicas.

El cálculo hidráulico en cada etapa consiste en la solución de un sistema de ecuaciones no lineales con incógnitas en las cargas hidráulicas en los nodos, utilizando el método de Newton-Rapshon.

La metodología es la siguiente:

1. Se asigna el diámetro mínimo a todos los tramos de la red.

- 2. Se realiza el análisis hidráulico, obteniendo una distribución de gastos y presiones.
- 3. Se calcula la relación $V/V_{máx}$ para cada uno de los tramos, siendo V la velocidad obtenida del análisis hidráulico y $V_{máx}$, la velocidad máxima permisible.
- 4. Se selecciona el tramo con la mayor relación $V/V_{máx}$, y a éste se le asigna el diámetro inmediato superior.
- 5. Se repiten los pasos 2 a 4 hasta que en todos los tramos la relación $V/V_{máx}$ sea menor que 1.

Una vez satisfecho el punto número 5, se tendrá una red donde se cumple con la condición de velocidad máxima permisible y se procederá a verificar la condición de presión mínima en los nodos.

6. Se calcula el déficit de presión (ΔP_i), en cada uno de los nodos (*i*), utilizando la siguiente ecuación:

$$\Delta P_i = P_{min_i} - P_i \tag{3.5}$$

Dónde:

- $P_{j,}$ es la presión en el nodo, obtenida del cálculo hidráulico de la red con los últimos diámetros asumidos.
- P_{min_i} , es la presión mínima admisible.
 - 7. Se selecciona el nodo con mayor déficit de presión.
 - 8. Se incrementa el diámetro de uno de los tramos de manera que se disminuya el déficit encontrado en el punto 7. Este tramo debe ser el que mayor influencia ejerce sobre la presión en este nodo. Para determinar cuál es el tramo de mayor influencia Tzatchkov y Alfonso (1991) propone lo siguiente:
 - A. Incrementar el consumo en el nodo con mayor déficit.
 - B. Realizar el cálculo hidráulico de la red.
 - C. Con los resultados de este análisis hidráulico y los del último cálculo normal, se obtiene para cada uno de los tramos, la siguiente relación, donde Δh_{incr} y Δh representan la perdida de carga en el tramo del análisis hidráulico con el incremento de consumo y la pérdida de carga en el mismo tramo de análisis hidráulico normal, respectivamente. Se considera como tramo de mayor influencia aquel que tenga el mayor valor de *K*, es el tramo buscado.

$$K = \frac{\Delta h_{incr}}{\Delta h} \tag{3.6}$$

9. Se repiten los pasos 6 a 8 hasta eliminar el déficit de presión en todos los nodos.

En esta etapa, puede considerarse concluida la selección de los diámetros, pero suele ocurrir que se tengan diámetros de tuberías innecesariamente grandes, además de que la presión de

suministro en cabecera tiende a cero, entonces se recomienda revisar la velocidad mínima. Del último análisis hidráulico realizado, se selecciona el tramo con la velocidad más baja y a éste, se le cambia el diámetro por el inmediato inferior y se realiza nuevamente el análisis hidráulico para verificar que las otras condiciones se sigan cumpliendo, de no ser así, se señala el tramo como "no cambiarlo" y se repite la revisión de la velocidad mínima hasta reducir todos los diámetros posibles en los tramos posibles. Entonces se da por concluido el diseño para encontrar los diámetros mínimos.

La metodología mencionada anteriormente se implementó para los programas de cómputo AH (Análisis Hidráulico) y DR (Diseño de Redes), mediante la plataforma de QuickBASIC versión 4.5. La solución de estos programas está dividida en tres partes:

- I. Cálculo de constantes
- II. Aproximación inicial para las cargas en los nodos
- III. Solución iterativa

Como resultados se muestran los diámetros seleccionados para cada tramo y el último cálculo hidráulico de la red. Además, brinda el costo de la red de tuberías.

Carrillo et al. (1998) presentan un método, el cual consiste en el análisis hidráulico de una red, en un modo estático y empleando diámetros comerciales, por lo que al final del cálculo no se tienen que hacer redondeos, establecen una cota mínima de costo y otra máxima. (Carrillo, Isalas, Gómez, & Vega, 1998)

El costo de la red se calcula por medio de la ecuación siguiente:

$$C = \sum_{j=1}^{N} C_i L_j \tag{3.7}$$

Dónde:

- L_{i} es la longitud de la tubería *j*.
- C_{i} Es el costo por metro lineal de la tubería que tiene el diámetro comercial Di.
- *N*, Número de tuberías de la red.

Basándose en cuatro aspectos:

1. Arreglo de diámetros comerciales disponibles. Para todos los tramos de tubería de la red, se propone un conjunto de diámetros comerciales comprendidos entre D_{min} y D_{max} . Se calcula la red considerando que todas sus tuberías tienen el mismo diámetro, en este proceso es difícil que se cumplan con las restricciones hidráulicas de presión, por ello se irán asignando, iterativamente los diámetros comerciales inmediatos superiores hasta satisfacer las restricciones de presión.

- 2. Costo máximo y mínimo de la red. Mediante la ecuación 3.7 se obtiene el costo de la red C_{min} para el caso en que todas las tuberías de la red tengan el diámetro D_{min} y el costo dela red $C_{máx}$ de la red que tiene en todas sus tuberías el diámetro $D_{máx}$.
- 3. Combinaciones de diámetros para las tuberías de la red al costo C_p . Se propone un costo C_p para la red de tuberías y se escoge para cada tubería de la red un diámetro entre los incluidos en el arreglo de diámetros comerciales disponibles de modo que el costo de la red obtenido con la ecuación 5.1 sea del orden del costo C_p . Se forman varios conjuntos que constituyen, cada uno de ellos, una solución factible.
- 4. Revisión hidráulica. Para cada una de las combinaciones factibles, se revisa que cumplan en todos los nodos con las restricciones de presión. El método implica escoger el costo más pequeño posible para el cual existe al menos una combinación que cumpla con las restricciones. Este costo puede ser encontrado mediante técnicas de búsqueda secuencial, que consisten en la búsqueda binaria empezando con un intervalo finito dentro del cual la función objetivo tiene un solo punto donde es máxima o mínima.

Rosales et al. (2002) presentan una variación de los modelos llamados "análisis consecutivos direccionados". El método propuesto utiliza un modelo estático para realizar los análisis hidráulicos consecutivos, además de que utiliza diámetros comerciales y no necesita que los gastos iniciales se fijen de antemano.

El procedimiento de cálculo es el siguiente:

 Se asigna el mismo diámetro a todas las tuberías, se hace el análisis hidráulico y se verifica que al menos el 20 % de los nodos tengan cargas positivas, para poder iniciar el proceso de búsqueda, en caso contrario se asigna a todas las tuberías el diámetro comercial inmediato superior. Se determina para cada nodo, la carga disponible; para cada tubería se determina la velocidad, numero de Reynolds, gastos y la relación:

$$C_I = \frac{Re_i}{Re_{máx}} \tag{3.8}$$

Donde:

 Re_i , Número de Reynolds de la i-ésima tubería.

 Re_{max} , Mayor número de Reynolds en la iteración actual.

Se ordena de mayor a menor en base al valor C_i .

Aquella tubería para la cual el cociente C_i sea igual a 1, será la seleccionada para cambiar de diámetro; se le asignará el diámetro comercial inmediatamente superior. Y se procede a analizar hidráulicamente, así como también se realiza el cálculo del

costo de inversión, pues al aumentar el diámetro, también se incrementará el costo. Se calcula la relación beneficio costo, mediante la siguiente ecuación:

$$beneficio/costo = \frac{\Delta h_{min}}{c_i - c_c}$$
(3.9)

Dónde:

- $\begin{array}{lll} \Delta h_{min,} & \mbox{beneficio de la configuración actual, considerando el beneficio como el incremento de la carga de presión en el nodo con la menor carga del sistema. \\ c_i, & \mbox{costo de inversión de la opción actual.} \end{array}$
 - c_{c_i} costo de inversión de la combinación inicial.
- 3. Como segunda opción (en la primera iteración) se toma aquella tubería con el valor de c_i , inmediato inferior al valor de 1. A esta tubería se le asignara, ahora, el diámetro inmediato superior. Es importante destacar que en este, como en los sucesivos casos a analizar, solo se hará un cambio a la vez, es decir, todas las tuberías seguirán conservando el diámetro inicialmente propuesto, excepto la tubería que se proponga cambiar en el caso de análisis.
- 4. En cada iteración se analizan tantos casos como número de tuberías se tenga en la red, y se seleccionará aquella opción que implique la mayor relación beneficio/costo.

Sanvicente & Frausto (2003) presentan el algoritmo heurístico de optimización llamado recocido simulado (RS), un método global usado para hacer búsquedas estocásticas en el espacio de soluciones del problema, el cual es útil para la determinación de los diámetros de las tuberías en el diseño de costo mínimo de una red de agua, cuya topología ya está dada. Este algoritmo se basa en la analogía del proceso de un sólido en alcanzar la temperatura a un punto donde los átomos puedan moverse libremente (i.e. aleatoriamente) y, después, bajar la temperatura, obligando a los átomos a reacomodarse en un estado de energía más bajo (i.e. un estado de cristalización).

En el modelado de una de red, cada nodo tiene asociada una variable de carga de nivel piezométrico (H_i) y otra de gasto o consumo (q_i) , y cada tramo una variable de gasto (Q_{ij}) y una longitud (L_{ij}) . De esta forma la red es modelada para flujo permanente a través de la ecuación de continuidad en cada nodo y la pérdida de energía entre dos nodos. A partir de estas ecuaciones se obtiene un sistema no lineal que permite determinar los niveles piezométricos para una red donde se conoce al menos una carga, los gastos que entran y salen de la red, las longitudes de los tubos, y las propiedades del material del que están hechos.

$$\sum_{k=1}^{n} \phi_{ij(k)} \left(H_i - H_{j(k)} \right)^{1/m} - q_i = 0$$
(3.10)

Dónde:

Ν,	Número de nodos en la red.
n,	Número de tramos que se unen en el nodo i.
j(k),	denota el nodo contrario a i en el tramo k .

$$Q_{ij(k)=} \quad \frac{1}{\left(k_{ij(k)}\right)^{1/m}}$$

Dónde: $k_{ij(k)}$ y el exponente *m* dependen de la ecuación de pérdida por fricción empleada.

El diseño hidráulico de la red restringe la determinación de los diámetros a aquellos que mantenga un nivel piezométrico mínimo (Hmin) y máximo (Hmáx) en cada nodo. Una función de costo simple es la suma del costo de construcción de cada tramo. La ecuación de optimización es la siguiente:

$$Min \quad Z = \sum_{ij}^{|T|} C_k L_{ij} \quad ij \in T$$

$$Hmin \leq H_i \leq Hmia_i \quad \forall i \in N$$

$$(3.9)$$

Donde:

Τ,	Número de tramos en la red.
Ν,	Número de nodos en la red.
L _{ij} ,	Longitud del tramo ij.
$C_{k,}$	es el costo por metro lineal.
Hmín y Hmáx,	Nivel piezométrico mínimo y máximo.

3.1.2. Comentarios

De los métodos y trabajos realizados para el diseño óptimo de redes de distribución de agua potable mencionados anteriormente, en la actualidad no todos están disponibles para que sean empleados por ingenieros proyectistas y los que se pueden utilizar están sujetos a restricciones que ocasionan que estos no sean defácil acceso. Es el caso de los programas de simulación de Gessler y Walski; Jeppson y Tzatchkov.

Cabe preguntarse ¿por qué de todos los métodos mencionados anteriormente, solo algunos han tenido éxito en la ingeniería práctica? La respuesta a esta pregunta es debido a que en algunos casos los programas no arrojan resultados convincentes y en otros, los programas de cálculo no están a disposición de los ingenieros proyectistas. Existe también el problema que las plataformas de cómputo sobre los que fueron desarrollados son en la actualidad obsoletas.

Cabe destacar que la totalidad de los métodos de solución expuestos iniciaron como trabajos académicos o esfuerzos personales encaminados a resolver problemas específicos, nunca fueron diseñados para comercializarse o difundirse para uso extendido, razón por la cual en muchos de los casos solo el autor puede emplear los programas de manera eficaz.

4 METODOLOGÍA

Se realizó la recopilación de información sobre tres diferentes tipos de redes de distribución a diseñarse en los estados de Morelos y Guerrero, México. Las tres redes de distribución empleadas se diseñaron empleando los tres métodos seleccionados Hardy Cross, programa de simulación Epanet 2.0 y el algoritmo de Dijkstra; conforme a los parámetros de diseño. En los subtítulos 4.2, 4.3 y 4.4 se describe la metodología empleada para cada método.

4.1 Parámetros de diseño

Las redes de distribución de agua potable se diseñaron cumpliendo con los parámetros establecidos por el Manual de Agua Potable y Alcantarillado Sanitario (MAPAS), libro 4: Datos Básicos para Proyectos de Agua Potable y Alcantarillado (ver Tabla 4.1, Tabla 4.2 y Tabla 4.3). Los resultados obtenidos para cada caso y método se evaluaron aplicando los mismos criterios de diseño (presiones en los nodos, velocidades y pérdidas por fricción tuberías), lo que permitió identificar las ventajas y desventajas de cada uno, estableciendo con que método se obtienen mejores resultados. A continuación, se especifican los parámetros de diseño evaluados en cada red de distribución.

4.1.1 Coeficientes de variación diaria y horaria.

Los coeficientes de variación diaria y horaria son diferentes cuando se trata de diseñar una red de distribución en una zona urbana o zona rural, debido a la población y la demanda de cada una de ellas, en la Tabla 4.1 se expresan los coeficientes de variación diaria y horaria conforme a la zona de diseño de la red.

Zona urbana			Zona rural	
Concepto	Valor		Concepto	Valor
Coeficiente de variación diaria	1.40		Coeficiente de variación diaria	1.20
Coeficiente de variación horaria	1.55		Coeficiente de variación horaria	1.50

Tabla 4.1 Coeficientes de variación diaria y horaria.

4.1.2 Velocidades máximas y mínimas en tuberías.

La velocidad mínima permisible es de 0.3 m/s para cualquier tipo de material de tubería en redes de distribución, en cambio la velocidad máxima es diferente dependiendo del material a utilizar, esto debido a la magnitud de los fenómenos transitorios. En la Tabla 4.2 se muestran las velocidades máximas y mínimas permisibles para algunos materiales en tuberías.

Material de la tubería	Velocidad (m/s)		
	Máxima	Mínima	
Concreto simple hasta 45 cm de diámetro	3.00	0.30	
Concreto reforzado de 60 cm de diámetro o mayores	3.50	0.30	
Concreto presforzado	3.50	0.30	
Acero con revestimiento	5.00	0.30	
Acero galvanizado	5.00	0.30	
Asbesto cemento	5.00	0.30	
Fierro fundido	5.00	0.30	
Hierro dúctil	5.00	0.30	
Polietileno de alta densidad	5.00	0.30	
PVC (policloruro de vinilo)	5.00	0.30	

 Tabla 4.2 Velocidades máximas y mínimas en tuberías.

4.1.3 Presiones máximas y mínimas permisibles.

Las presiones es un parámetro fundamental de revisión para un correcto diseño de una red de distribución ya que a presiones muy altas se requerirán de tuberías y accesorios más resistentes (costosos) e incrementarán las fugas. Por lo que ningún punto de la red debe exceder la presión máxima permisible 50 m.c.a.

Por otra parte, la presión mínima permisible es 15 m.c.a garantizando así un suministro mínimo en la hora de máxima demanda. En la Tabla 4.3 se describen las presiones máximas y mínimas permisibles.

Tabla 4.3 Presiones mínimas y máximas en redes de distribución.

P MIN	1.5 kg/cm ²	15 m.c.a
P MAX	5.0 kg/cm^2	50 m.c.a

4.1.4 Perdidas por fricción máximas en tuberías.

Otro parámetro de revisión para un correcto diseño son las pérdidas de energía por fricción, teniendo en cuenta la máxima permisible en relación de su longitud y diámetro. En la Tabla 4.4 se puntualizan las pérdidas de energía por fricción máximas en las tuberías.

Tabla 4.4 Perdidas de	energía p	por fricción	máximas	en tuberías.

Hf=	0.01 m/m	10 m/km	Diam. < 40 cm
Hf=	0.03 m/m	30 m/km	Diam > 40 cm

4.2 Método de Hardy Cross

En base a la información obtenida se diseñaron las tres redes de distribución de agua potable de una forma combinada (**Anexo A**). En primera instancia con flujo permanente y posteriormente con flujo no permanente, mediante el método de Hardy Cross con correcciones de caudales.

Las tres redes de distribución conforme a su topografía, fue favorable la ubicación del tanque en una cota de terreno con suficiente altura para distribuir el agua hacia las tomas domiciliarias por medio de gravedad, asegurando las presiones requeridas.

Para los tres casos de redes, se utilizaron las siguientes consideraciones:

- El material para las tuberías se consideró de PVC (policloruro de vinilo), clasificación RD 41; ésta se refiere a la proporción que existe entre el diámetro exterior y el espesor mínimo de pared del tubo, soportando las presiones máximas existentes en la red.
- Se utilizó la ecuación de Darcy Weisbach (ecuación 2.14) para obtener las pérdidas de cargas en las tuberías.
- La rugosidad empleada de acuerdo con la Tabla 2.1 y conforme el tipo de material fue de 0.0015 mm.
- Considerando una temperatura del fluido de 25° C y una viscosidad cinemática de 8.88 $x10^{-7} m^2/_s$, para la obtención del número de Reynolds en los tramos de tubería.

Los pasos empleados para el análisis hidráulico de las tres redes de distribución a diseñarse para un régimen de flujo estático con corrección en los caudales fueron los siguientes:

1. Las redes de distribución bajo un régimen permanente (estático) se diseñaron con el gasto máximo horario, donde se tienen las demandas constantes las 24 horas del día.

- 2. Para facilitar el cálculo hidráulico de las redes y evitar demasiadas iteraciones, se procedió a distribuir la demanda en cada nodo mediante el procedimiento de gasto por unidad de longitud, es decir, se obtuvo el gasto unitario dividiendo el gasto máximo horario entre la longitud total de tubería, esto con cada red distribución. Para saber la demanda en cada nodo se multiplicó el gasto unitario por la longitud del tramo correspondiente.
- 3. Mediante el plano y la topografía de cada red de distribución se definieron los nodos, los circuitos y el sentido del flujo. Tomando en cuenta la dirección del flujo en la tubería; en los circuitos con sentido horario los caudales se consideraron positivos (entran) y con sentido antihorario se consideraron negativos (salen).
- 4. Conforme al gasto de cada nodo se calculó el diámetro de la tubería mediante la ecuación siguiente:

$$\emptyset = 1.1283 * Q^{1/2} \tag{4.1}$$

Donde:

Ø, Diámetro, en *m*. *Q*, Gasto, en $m^3/_s$. 1.1283, Velocidad ideal permisible cumpliendo un rango de 0.3 a 5.0 $m/_s$.

- 5. Posteriormente con los diámetros calculados, se propusieron diámetros comerciales que satisficieran las velocidades permisibles en las tuberías y de esta manera tener un análisis hidráulico que convergiera rápidamente.
- 6. Se calculó la pérdida de altura piezométrica en cada tubería de la red utilizando la ecuación de Darcy Weisbach (ecuación 2.14), obteniendo el factor de fricción mediante la ecuación de Colebrook-White modificada (ecuación 2.15).
- 7. Para cada circuito se verificó que la pérdida neta de altura piezométrica fuera cero, es decir, se sumaron las pérdidas de altura piezométrica y se restaron las adicionales para cada circuito, conforme al signo destinado en un principio. Si la pérdida neta de altura piezométrica no era cero, se procedió a corregir los caudales de cada una de las tuberías del circuito en cada iteración.
- 8. Los pasos anteriores se repitieron hasta que se obtuvo el balance de alturas piezométricas en todos los circuitos (ecuación de la conservación de la energía), es

decir, la suma de alturas piezométricas en ambos sentidos del circuito fuera igual a cero.

9. Por último, se analizaron los resultados.

Para el cálculo hidráulico de cada una de las redes de estudio bajo un régimen de flujo no permanente (dinámico), se llevaron a cabo los siguientes pasos:

- 1. Se obtuvo el gasto máximo diario y las variantes en el tiempo conforme al manual de Diseño de Redes de Distribución de Agua Potable (ver Tabla 4.5, Tabla 4.6) aplicables a diferentes ciudades y comunidades de la República Mexicana.
- 2. El gasto máximo horario para el diseño de las dos primeras redes de distribución se obtuvo a partir de multiplicar el gasto máximo diario por su coeficiente de variación horaria de la Tabla 4.5, de igual manera se obtuvo el gasto máximo horario para la tercera red de distribución con la diferencia de su coeficiente de variación horaria obtenido de la Tabla 4.6.

t (<i>h</i>)	$\mathbf{q}/\mathbf{q}_{\mathbf{med}}$	t (<i>h</i>)	$\mathbf{q}/\mathbf{q}_{med}$
0	0.45	12	1.20
1	0.45	13	1.40
2	0.45	14	1.40
3	0.45	15	1.30
4	0.45	16	1.30
5	0.60	17	1.20
6	0.90	18	1.00
7	1.35	19	1.00
8	1.50	20	0.90
9	1.50	21	0.90
10	1.50	22	0.80
11	1.40	23	0.60

Tabla 4.5 Coeficientes de variación horaria para pequeñas comunidades

t (<i>h</i>)	q/q _{med}	t (<i>h</i>)	$\mathbf{q}/\mathbf{q}_{\mathrm{med}}$
0	0.606	12	1.288
1	0.616	13	1.266
2	0.633	14	1.216
3	0.637	15	1.201
4	0.651	16	1.196
5	0.828	17	1.151
6	0.938	18	1.121
7	1.199	19	1.056
8	1.307	20	0.901
9	1.372	21	0.784
10	1.343	22	0.710
11	1.329	23	0.651

Tabla 4.6 Coeficientes de variación horaria para diferentes ciudades de México.

- 3. Para el análisis hidráulico de las redes de distribución se eligió la hora crítica donde se presenta la mayor demanda; para las redes 1 y 2, las horas críticas son de las 8:00 a las 10:00 horas con un cvh de 1.50, mientras que para la red 3 la hora crítica a las 9:00 con un cvh de 1.372.
- 4. Después se llevaron a cabo los pasos del 2 al 8 mencionados anteriormente.

El método de Hardy Cross converge al solucionar las ecuaciones de continuidad y de conservación de la energía y por la relación entre la pérdida de carga, cumpliendo en cada nodo que la sumatoria de gastos de entrada sea igual a la sumatoria de gastos de salida ($\sum Q \ entrada = \sum Q \ salida$) y para cada circuito la sumatoria algebraica de las pérdidas de carga sea igual a cero ($\sum h_f = 0$), tanto en el sentido horario como en el sentido antihorario.

Una vez convergido el método para cada red, se analizaron los resultados obtenidos y se evaluaron los siguientes criterios: diámetros y velocidades en los tramos de tubería, pérdidas de cargas y carga disponible en cada nodo, conforme a los parámetros de diseño.

Una vez aceptados los diámetros comerciales acorde a las velocidades permitidas en la tubería y la carga disponible permitida en los nodos, se realizó el presupuesto total del diseño de cada red de distribución.

4.3 Método Simulado (EPANET 2.0)

El simulador hidráulico utilizado en este trabajo es el EPANET 2.0, elegido por ser el más utilizado en ingeniería hidráulica, además de ser un programa de gratuito y de fácil acceso en la web.

El simulador EPANET fue desarrollado por la *U.S. Environmental Protection Agency* (Agencia de Protección Ambiental de Estados Unidos), es un programa computacional de fácil uso, el cual cuenta con herramientas y aplicaciones para el análisis hidráulico en redes de distribución de agua potable (Rossman, 2000).

Es recomendado por el Manual de Agua Potable, Alcantarillado y Saneamiento (MAPAS) de la CONAGUA para realizar simulaciones hidráulicas en redes de distribución de agua potable.

Se llevó a cabo la simulación hidráulica (**Anexo B**) de las tres redes de distribución bajo un régimen de flujo estático y un régimen de flujo dinámico y de igual manera se utilizaron las siguientes consideraciones:

- El material para las tuberías se consideró de PVC (policloruro de vinilo), clasificación RD 41; ésta se refiere a la proporción que existe entre el diámetro exterior y el espesor mínimo de pared del tubo, soportando las presiones máximas existentes en la red.
- Se utilizó la ecuación de Darcy Weisbach (ecuación 2.14) para obtener las pérdidas de cargas en las tuberías.
- La rugosidad empleada de acuerdo con la Tabla 2.1 y conforme el tipo de material fue de 0.0015 mm.
- Considerando una temperatura del fluido de 25° C.

Cabe destacar que el programa computacional EPANET depende de los datos de entrada que el usuario proporcione, por lo que un error puede provocar una mala simulación del comportamiento hidráulico de la red.

En primera instancia, se realizó la simulación de manera estática para los tres casos de estudio, bajo las mismas condiciones que con el método de Hardy Cross. Los pasos realizados para el análisis hidráulico fueron los siguientes:

- 1. Antes de introducir cualquier dato a la plataforma del programa, se verificó que las unidades del caudal estuvieran en l/s por default, la rugosidad en milímetros, para este caso de 0.0015 mm. Se estableció la fórmula de Darcy Weisbach (2.14) para el cálculo de las pérdidas de altura piezométrica en las tuberías.
- 2. Se extrajo una imagen de la geometría de la red ya trazada en el programa AutoCAD y se procedió a dibujarla con las mismas características, comenzando con los nodos, seguido las tuberías conforme el sentido propuesto de cuerdo a la topografía del lugar.

- 3. Se ubicó el tanque superficial (caso 1, caso 3) y el tanque elevado (caso 2) con sus respectivas propiedades y cotas de terreno.
- 4. Se ingresó en los nodos la cota del terreno y la demanda en cada uno, esta última en base a la distribución constante del gasto máximo horario a todo lo largo las 24 horas al día, como se realizó con el método de Hardy Cross para un régimen de flujo estático.
- 5. En cada tramo de tubería se colocó la longitud y el diámetro comercial apegado a los obtenidos por el método de Hardy Cross, dejando la rugosidad de 0.0015 mm establecida por default.
- 6. Una vez introducidos todos los datos correspondientes, se procedió a correr el programa hasta obtener una simulación exitosa.
- 7. Por último, se analizaron los resultados.

Para la simulación dinámica de las tres redes de estudio, se llevaron a cabo los siguientes pasos:

- 1. Se realizaron los pasos del 1 al 3 mencionados anteriormente para una simulación estática.
- 2. La demanda en cada nodo se obtuvo a partir del gasto por unidad de longitud, es decir, el gasto máximo diario se dividió entre la longitud total de la tubería de la red, obteniendo así el gasto unitario, posteriormente se hizo la comulación de gastos, multiplicando el gasto unitario por la longitud de cada tramo.
- 3. Introducimos en los nodos la cota del terreno y la demanda en cada uno, en base a la distribución del gasto máximo diario.
- 4. En cada tramo de tubería se colocó la longitud y el diámetro comercial apegado a los obtenidos por el método manual Hardy Cross, dejando la rugosidad de 0.0015 mm establecida por default.
- 5. Se añadió en el programa EPANET (ver Figura 4.3) como patrón las curvas de ley de variación horaria para poblaciones pequeñas en las redes 1 y 2 (Figura 4.1) y para diferentes ciudades de México, en la red 3 (Figura 4.2). Se le asignó a cada nodo el patrón de demanda, llamado para los tres casos "1".

LEY DE VARIACIÓN HORARIA PARA POBLACIONES PEQUEÑAS

Figura 4.1 Curva de variación horaria para pequeñas poblaciones para la simulación de la red 1 y 2.

Figura 4.2 Ley de variación horaria para diferentes ciudades de México para la simulación de la red 3.

Figura 4.3 Introducción de la ley de variación horaria para comunidades pequeñas al programa de simulación EPANET para la red de Las Juntas, Guerrero.

6. Se fue al apartado Options para establecer el tiempo de simulación y posteriormente se corrió el programa hasta tener una simulación exitosa. Se realizaron diferentes tiempos de simulación para cada red, que van desde las 10, 20 y 24 horas.

Figura 4.4 Estableciendo el tiempo de simulación en el programa EPANET para la red caso 1 (Las Juntas, Guerrero).

7. Se analizaron los resultados, como velocidades máximas y mínimas, presiones y diámetros obtenidos de cada simulación de las diferentes redes de estudio, en específico, se analizaron las horas pico donde se presenta el mayor gasto. Para las comunidades pequeñas varía entre las 8:00 y las 10:00 horas del día, mientras tanto para las diferentes ciudades de la república la hora crítica es a las 9:00 horas del día.

4.4 Algoritmo genético de Dijkstra.

Se desarrolló el algoritmo de Dijkstra (**Anexo C**) donde su principal aplicación es encontrar los diámetros menores en cada tramo de la red, bajo los criterios de entrada: demanda (l/s) en los nodos y longitud (m) de cada tramo de tubería. El algoritmo calcula los diámetros de cada tramo de tubería, considerando una velocidad factible de 1.1283 m/s considerada de igual manera para el método de Hardy Cross. La ecuación que se considera en el algoritmo para calcular los diámetros es la siguiente:

$$\phi = \sqrt{\frac{4\,Q}{\pi\,\nu}} \tag{4.11}$$

Donde:

- Ø, diámetro calculado, en m/s.
- Q, demanda en los nodos, en m³/s.
- v, velocidad igual a 1.1283 m/s.

El algoritmo explora la variedad de los diámetros calculados en cada tramo y determina los diámetros comerciales que satisfagan las velocidades permisibles en las tuberías, cumpliendo con lo anterior el algoritmo se detiene cuando haya obteniendo los diámetros menores comerciales, considerando que el diámetro mínimo permisible en una red principal de distribución es el de 2" (50.8 mm).

Para la programación del algoritmo de Dijkstra se utilizó el software Java y en forma conjunta se utilizó el entorno de desarrollo Netbeans 8.2 debido a que son software gratuitos y de fácil acceso en la web, lo cual nos permiten obtener resultados rápidamente y de forma ilustrativa.

Para ello se propuso una red hipotética de pequeñas dimensiones (Figura 4.5) para su elaboración y aplicación; posteriormente se utilizó para dimensionar los tres tipos de redes en estudio.

Figura 4.5 Red hipotética para la realización del algoritmo de Dijkstra.

Pasos del algoritmo de Dijkstra

- 1. Se dibuja el nodo de inicio con su respectiva demanda y posteriormente los demás nodos. Después se trazan los tramos de la red con su respectiva distancia.
- 2. El algoritmo parte su búsqueda de un nodo origen y a partir de ese nodo evaluamos sus adyacentes (diámetro y distancia), como Dijkstra usa una técnica Greedy (la técnica Greedy utiliza el principio de que para que un camino sea óptimo, todos los caminos que contiene también deben ser óptimos) entre todos los nodos adyacentes, buscamos el que esté más cerca de nuestro punto origen, lo tomamos como punto intermedio y vemos si podemos llegar más rápido a través de ese nodo a los demás. Después escogemos el siguiente más cercano y de menor diámetro, repetimos el proceso hasta llegar al nodo final.
- 3. Al quedar un solo nodo por seleccionar se da por terminado el código, para correr el programa se debe seleccionar el nodo inicial y el nodo final dando clic izquierdo, posteriormente se imprime la ruta más corta del nodo de inicio (marcada en color verde) con los diámetros, la distancia de cada tramo, la demanda y el peso total de cada nodo (ver Figura 4.6).

Figura 4.6 Camino óptimo de la red obtenido por el algoritmo de Dijkstra en la red ejemplo

Esto es la funcionalidad del algoritmo de Dijkstra, lo que se consideró para este estudio fue la implementación de dos parámetros más (demanda y diámetro) a considerar en la búsqueda del camino más corto entre cada nodo de la red.

Para encontrar el camino más corto, en cada iteración el algoritmo toma en cuenta los pesos que tiene cada nodo como son gastos, longitud y diámetro, el programa itera y busca el de menor diámetro y longitud.

Para la aplicación del algoritmo en los tres casos de redes, se consideraron las demandas obtenidas en un principio por el método de Hardy Cross bajo un régimen de flujo permanente (estático) debido a que es donde se presenta la demanda crítica en el día.

El algoritmo también arroja el camino más corto donde se encuentran los tramos de tubería con el menor diámetro y la menor demanda, haciendo una búsqueda con el menor peso de esos parámetros desde el nodo inicial (mayor elevación) hasta el nodo final (menor elevación).

Cabe mencionar que no tiene la finalidad de reducir tramos de tubería, sino más bien encontrar el camino donde se presenta la menor demanda en la red y con ello obtener rápidamente los diámetros económicos para su análisis hidráulico. En la Figura 4.7 se muestra el pseudocódigo del algoritmo de Dijkstra, en el cual se basó para realizar el programa.

Pseudocódigo

```
1 método Dijkstra(Grafo,origen):
     creamos una cola de prioridad Q
2
      agregamos origen a la cola de prioridad Q
3
      mientras Q no este vacío:
4
5
           sacamos un elemento de la cola Q llamado u
          si u ya fue visitado continuo sacando elementos de Q
6
          marcamos como visitado u
7
8
          para cada vértice v adyacente a u en el Grafo:
9
              sea w el peso entre vértices ( u , v )
10
              si v no ah sido visitado:
                  Relajacion( u , v , w )
11
1 método Relajacion( actual , adyacente , peso ):
2
       si distancia[ actual ] + peso < distancia[ adyacente ]</pre>
          distancia[ adyacente ] = distancia[ actual ] + peso
3
          agregamos adyacente a la cola de prioridad Q
4
```

Figura 4.7 Pseudocódigo del algoritmo de Dijkstra

5 CASOS DE ESTUDIO

5.1 Caso 1. Red de distribución de la localidad de San José del Pilón, municipio de Zirándaro, estado de Guerrero.

5.1.1 Descripción de la zona de estudio.

La localidad de San Jose del Pilon se cataloga como comunidad del ámbito rural donde se habla español. Conforme al censo realizado en el año 2010 por el INEGI, se tenía para ese año una población de 277 habitantes, para el año 2012.

Gran parte de la comunidad carece de agua en la red existente, de acuerdo con el Censo General de Población y Vivienda efectuado por el INEGI, el poblado contaba en el año 2010 con 82 viviendas ocupadas, de las cuales solo 30 dispone de agua potable entubada, por ello se propuso un diseño totalmente nuevo de la red de distribución.

La traza de la localidad está definida en su totalidad y solo la calle principal se encuentra pavimentada. Las viviendas están construidas con muros de adobe, techos de teja y pisos de concreto, aunque existen algunas viviendas construidas de madera con techo de lámina galvanizada y/o cartón con pisos de concreto y/o de tierra.

Figura 5.1 Localización del municipio de Zirándaro en el estado de Guerrero.

Localización Geográfica.

La localidad de San José del Pilón se identificada con la clave geoestadística 120730154 de acuerdo con el Instituto Nacional de Estadística, Geografía e Informática (INEGI), se localiza en el Municipio 073, Zirándaro (ver Figura 5.1), en la región de Tierra Caliente al noroeste de la capital del Estado de Guerrero. Las coordenadas geográficas de dicha localidad son: 18°17'51'' de Latitud Norte y 100°59'11'' de Longitud Oeste respecto del Meridiano de Greenwich, con una altitud de 361 m.s.n.m. (Ver Figura 5.2).

Figura 5.2 Croquis de localización de San José del Pilón, Guerrero.

5.1.2 Descripción del sistema de agua potable.

Para el diseño de la red de distribución se consideró la información proporcionada de los elementos que conforman el sistema de agua potable en dicha comunidad y a continuación se describen.

Fuente de abastecimiento.

La fuente de abastecimiento es el manantial la Huijulera, donde se construirá una galería filtrante como obra de captación y alimentará al tanque elevado.

Línea de conducción.

La línea de conducción será de fierro fundido de aproximadamente de 1.6 km de longitud desde la obra de captación hasta el tanque superficial.

Tanque de regulación.

Se contempló un tanque elevado de 20 m3 de concreto armado, con dimensiones de 3 m x 3 m y una altura total desde nivel de terreno de 17.5 m.

En la Figura 5.3 se muestra la planimetría de la localidad de San José del Pilón.

Figura 5.3 Planimetría de la localidad de la localidad de San José del Pilón, Guerrero.

5.1.3 Datos básicos para el diseño de la red.

Los datos básicos para el diseño de la red comprenden: periodo de diseño, población, consumo, demanda y dotación. A continuación, se describen cada uno de ellos.

Periodo de diseño

Se consideró un periodo de diseño de 10 años, de acuerdo con lo recomendado por el manual de Datos Básicos de Proyectos de Agua Potable y Alcantarillado del MAPAS, para zonas rurales. Durante este periodo se prevé que la red diseñada funcionará adecuadamente, tanto en operación como en su funcionamiento. El horizonte de diseño se tomó a partir del año

2012; ya que en ese año se consideraba construir la red, de tal forma, que el periodo de diseño se contempló del año 2012 al año 2022.

Proyección de población

Se obtuvo la población para el año 2012 de la localidad en base a la proyección de la población de censos anteriores.

Para la proyección de población futura (año 2022), se tomaron en cuenta los datos históricos de la localidad de los años 1900, 1910, 1921, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 1995, 2000, 2005, 2010, obtenidos del INEGI (ver Tabla 5.1).

Año	No. Habitantes
1900	
1910	
1921	4
1930	95
1940	123
1950	111
1960	171
1970	568
1980	243
1990	316
1995	316
2000	314
2005	269
2010	277

 Tabla 5.1 Datos históricos de la localidad San José del Pilón.

Los métodos empleados para la determinación de la tasa de crecimiento son: aritmético, geométrico por porcentajes e interés compuesto, Malthus, TCMA, mínimos cuadrados ajuste lineal.

En la Tabla 5.2 se muestra las proyecciones de la población por los diferentes métodos mencionados.

	Aritmético	Geomé	trico por	Malthus	T.C.M.A.	Mínimos
AÑO		Porcentajes	Interés Comp.			Cuadrados
	-2.12	0.24%	1.0088	0.24%	1.13	Ajuste lineal
2010	277	277	277	277	277	277
2011	275	278	279	278	280	278
2012	273	278	282	278	283	278
2013	271	279	284	279	287	277
2014	269	280	287	280	290	276
2015	266	280	289	280	293	276
2016	264	281	292	281	296	275
2017	262	282	295	282	300	274
2018	260	282	297	282	303	273
2019	258	283	300	283	306	273
2020	256	284	302	284	310	272
2021	254	284	305	284	313	271
2022	252	285	308	285	317	271

Tabla 5.2 Proyecciones de población por los diferentes métodos.

2022 (h-h-

De acuerdo con la tendencia de crecimiento que se ha tenido en los últimos años en la localidad y la comparación de los resultados de cada método, se consideró que el método que arrojó mejores resultados es el de Interés Compuesto, teniendo una población futura en la localidad de 308 habitantes (año 2022).

Dotación.

Cantidad de agua que se asigna a cada habitante y que comprende todos los consumos del servicio que se hace en un día medio anual, incluyendo fugas. En el manual de Sistemas Rurales se recomienda una dotación de 100 l/hab/día. Para fines de diseño, pudiendo aceptarse hasta un mínimo de 45 l/hab/día en función de las dificultades para obtener el recurso.

Dichas cifras, toman en cuenta el uso doméstico del agua en el medio rural, que oscila para bebida, cocina y limpieza entre 25 y 30 lts/hab, para eliminación de excretas entre 0 y 40 lts/hab y para aseo personal entre 20 y 30 lts/hab.

Con base a lo anterior, se determinó una dotación de diseño para la localidad de 100 l/hab/día.

Gastos de diseño.

Los gastos de diseño se determinaron con base en la dotación y los coeficientes de variación diaria y horaria para zonas rurales (Tabla 4.1).

Gasto medio diario

El gasto medio es la cantidad que se requiere para satisfacer las necesidades de la población en un día de consumo promedio, que se da con la siguiente expresión.

Gastos máximo diario y horario.

El gasto medio diario se determinó con la dotación y el número de habitantes de proyecto, el gasto máximo diario se obtuvo multiplicando este último por 1.2; finalmente el gasto máximo horario se obtuvo multiplicando el máximo diario por 1.50. En la Tabla 5.3 se muestran los datos básicos, el gasto máximo horario obtenido para el diseño de la red de distribución.

Concepto	Cantidad	Unidad
Dotación	100	l/hab/día
Gasto medio diario	1.00	l/s
Gasto máximo diario	1.20	l/s
Gasto máximo horario	1.80	l/s
Coeficiente de variación diaria	1.2	
Coeficiente de variación horaria	1.5	

Tabla 5.3 Datos básicos para el diseño de la red de San José del Pilón.

Con esta información se procedió a diseñar la red mediante los tres métodos: Hardy Cross, EPANET 2.0 y el Algoritmo de Dijkstra, como se describió en la metodología.

5.2 Caso 2. Red de distribución de la localidad de las Juntas del Río chiquito, municipio de Coyuca de Catalán, Estado Guerrero.

5.2.1 Descripción de la zona de estudio.

La localidad de Las Juntas del Río Chiquito (Las Juntas) se identificada con la clave geoestadística 120220046 de acuerdo con el Instituto Nacional de Estadística, Geografía e Informática (INEGI), está situada en el Municipio de Coyuca de Catalán en el Estado de Guerrero. En el año 2010 conforme al censo de población del INEGI, la localidad contaba con 571 habitantes, de los cuales 272 son hombres y 299 son mujeres.

En la localidad existen 179 viviendas. De las cuales, el 97.18% cuentan con servicio de electricidad, pero no cuentan con el servicio de agua potable, por lo que es necesario el diseño de la red de distribución de agua potable.

Localización Geográfica.

Las Juntas del Río Chiquito (Las Juntas) se localiza en el Municipio Coyuca de Catalán del Estado de Guerrero, México. Las coordenadas geográficas de dicha localidad son: 18°30'67'' de Latitud Norte y 100°63'88'' de Longitud Oeste respecto del Meridiano de Greenwich, con una altitud de 270 m.s.n.m. (ver Figura 5.4, Figura 5.5).

Figura 5.4 Localización del municipio de Coyuca de

Figura 5.5 Localidad Las Juntas, Guerrero.

5.2.2 Descripción del sistema de agua potable.

Para el diseño de la red de distribución se consideró la información proporcionada de los elementos a que conforman el sistema de agua potable y que se construirán en dicha comunidad. A continuación, se describen cada elemento del sistema.

Fuente de abastecimiento.

La fuente de abastecimiento es el río Amuco, donde se construyó una galería filtrante como obra de captación y alimentará al tanque elevado.

Línea de conducción.

La línea de conducción será de fierro fundido de aproximadamente de 1.2 km de longitud, conducirá el agua por medio de bombeo desde la obra de captación hasta el tanque elevado.

Tanque de regulación.

Se construirá un tanque elevado de una capacidad de 15 m3 de concreto armado, con dimensiones de 2.5 m x 2.5 m y una altura total de 15.5 m desde el nivel de terreno.

En la Figura 5.6 se muestra el trazo de la localidad de Las Juntas.

Figura 5.6 Plano de la localidad de Las Juntas, Guerrero.

5.2.3 Datos básicos para el diseño de la red.

Los datos básicos para el diseño de la red comprenden: periodo de diseño, población, consumo, demanda y dotación. A continuación, se describen cada uno de ellos.

Periodo de diseño

Se consideró un periodo de diseño de 10 años, de acuerdo con lo recomendado por el manual de Datos Básicos de Proyectos de Agua Potable y Alcantarillado del MAPAS, para zonas rurales. Durante este periodo se prevé que la red diseñada funcionará adecuadamente, tanto en operación como en su funcionamiento. El horizonte de diseño se tomó a partir del año 2012; ya que en ese año se consideraba construir la red, de tal forma, que el periodo de diseño se contempló del año 2012 al año 2022.

Proyección de población

Se obtuvo la población para el año 2012 y la población futura (año 2022) de la localidad en base a censos anteriores realizados por INEGI (ver Tabla 5.5). Se tomaron en cuenta los datos históricos de la localidad de los años 1900, 1921, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 1995, 2000 ,2005, 2010, obtenidos del INEGI.

Año	No.	
	Habitantes	
1900	81	
1921	142	
1930	32	
1940	181	
1950	45	
1960	342	
1970	400	
1980	619	
1990	745	
1995	625	
2000	614	
2005	526	
2010	571	

Tabla 5.5 Datos históricos de la localidad de Las Junta, Guerrero.

Los métodos empleados para la determinación de la tasa de crecimiento son: aritmético, geométrico por porcentajes e interés compuesto, Malthus, TCMA, mínimos cuadrados ajuste lineal.

En la Tabla 5.6 se muestra las proyecciones de la población por los diferentes métodos mencionados.

Proyecciones 2012 - 2022 (habitantes)							
	Aritmético	Geométrico por		Malthus	T.C.M.A.	Mínimos	
AÑO		Porcentajes	Interés Comp.			Cuadrados	
	-8.70	-1.18%	0.9906	-1.18%	-0.92	Ajuste lineal	
2010	571	571	571	571	571	571	
2011	562	564	566	564	566	589	
2012	554	557	560	557	561	580	
2013	545	551	555	550	555	571	
2014	536	544	550	543	550	562	
2015	528	537	545	536	545	553	
2016	519	530	540	529	540	544	
2017	510	524	534	523	535	535	
2018	501	517	529	516	530	526	
2019	493	510	524	510	525	517	
2020	484	503	519	503	521	508	
2021	475	497	515	497	516	499	
2022	467	490	510	491	511	491	

Tabla 5.6 Proyección de población por los diferentes métodos.

Proyecciones 2012 - 2022 (habitantes	5)	
--------------------------------------	----	--

De acuerdo con la tendencia de crecimiento que se ha tenido en los últimos años en la localidad, se consideró que el método que arrojó mejores resultados es el de Mínimos cuadrados ajuste lineal teniendo una población futura para el año 2022 de 591 habitantes.

Dotación.

Cantidad de agua que se asigna a cada habitante y que comprende todos los consumos del servicio que se hace en un día medio anual, incluyendo fugas. En el manual de Sistemas Rurales se recomienda una dotación de 100 l/hab/día. Para fines de diseño, pudiendo aceptarse hasta un mínimo de 45 l/hab/día en función de las dificultades para obtener el recurso.

Dichas cifras, toman en cuenta el uso doméstico del agua en el medio rural, que oscila para bebida, cocina y limpieza entre 25 y 30 lts/hab, para eliminación de excretas entre 0 y 40 lts/hab y para aseo personal entre 20 y 30 lts/hab.

Con base a lo anterior, se determinó una dotación de diseño para la localidad de 100 l/hab/día.

Gastos de diseño.

Los gastos de diseño se determinaron con base en la dotación y los coeficientes de variación diaria y horaria para zonas rurales (Tabla 4.1).

Gasto medio diario

El gasto medio es la cantidad que se requiere para satisfacer las necesidades de la población en un día de consumo promedio, El gasto medio diario se determinó con la dotación y el número de habitantes de proyecto (año 2022).

Gastos máximo diario y horario.

El gasto máximo diario se obtuvo multiplicando este último por 1.2; finalmente el gasto máximo horario se obtuvo multiplicando el máximo diario por 1.50. En la Tabla 5.7 se muestran los datos básicos para el diseño de la red de distribución.

Concepto	Cantidad	Unidad
Dotación	100	l/hab/día
Gasto medio diario	1.25	l/s
Gasto máximo diario	1.50	l/s
Gasto máximo horario	2.25	l/s
Coeficiente de variación diaria	1.2	
Coeficiente de variación horaria	1.5	

 Tabla 5.7 Datos de proyecto localidad las Juntas del Río chiquito.

Con esta información se procedió a diseñar la red mediante los tres métodos: Hardy Cross, EPANET 2.0 y el Algoritmo de Dijkstra, como se describió en el capítulo anterior.

5.3 Red de distribución de agua potable del sector 3 del municipio de Tepoztlán, estado de Morelos.

5.3.1 Descripción del sector 3.

La tercera red de distribución analizada y evaluada pertenece al sector 3 de la red existente en el municipio de Tepoztlán. En el año 2016 contaba con un porcentaje de cobertura del 65.38% de agua potable, del cual el 80% de la tubería tiene más de 40 años en servicio, por lo que se requirió el diseño totalmente de la red en ese sector.

Localización Geográfica.

El Municipio de Tepoztlán se encuentra al Norte del estado de Morelos (ver Figura 5.7), se localiza entre los paralelos 18° 54' y 19° 50' de latitud norte; los meridianos 99° 01' y 99° 12' de longitud oeste; con una altitud que oscila entre 1 200 y 3 500 m, dentro del municipio se encuentra se encuentra el sector 3 (ver Figura 5.8).

Figura 5.7 Localización del municipio de Tepoztlán, estado de Morelos.

Figura 5.8 Croquis de localización del sector 3 del municipio de Tepoztlán.

5.3.2 Descripción del sistema de agua potable.

Figura 5.9 Sistema de abastecimiento del municipio de Tepoztlán.

Fuente de abastecimiento.

Las fuentes de abastecimiento del sector 3, actualmente cuentan con el gasto suficiente para abastecer a la localidad. Las fuentes que abastecen al sector 3 son cuatro pozos profundos llamados: campo deportivo, panteón, río Atongo y nuevo Atongo, los cuales están referenciados en círculos de color magenta en la Figura 5.9.

Línea de conducción.

La línea de conducción que alimenta al tanque del sector 3, tiene una longitud de 1.10 km de PVC de 2" y 3" de diámetro.

Tanque de regulación.

Es un tanque superficial llamado el Tesoro que también funciona como cárcamo de rebombeo que alimenta a su vez el tanque superficial llamado San Sebastián y a la red del sector 3.

En la Figura 5.10 se muestra la traza urbana del sector 3.

Figura 5.10 Plano de la traza urbana del sector 3.
5.2.3 Datos básicos para el diseño de la red.

Los datos básicos para el diseño de la red comprenden: periodo de diseño, población, consumo, demanda y dotación. A continuación, se describen cada uno de ellos.

Periodo de diseño

Se consideró un periodo de diseño de 20 años, de acuerdo a lo recomendado por el manual de Datos Básicos de Proyectos de Agua Potable y Alcantarillado del MAPAS, para zonas urbanas. Durante este periodo se prevé que la red diseñada funcionará adecuadamente, tanto en operación como en su funcionamiento. El horizonte de diseño se tomó a partir del año 2016; de tal forma, que el periodo de diseño se contempló del año 2016 al año 2036.

Proyección de población

Para calcular la población del año 2016 y la población futura (año 2036) se tomaron en cuenta los datos históricos obtenidos de INEGI de los años 1980 a 2010, y se determinó la tendencia de crecimiento de esos años. En la Tabla 5.8 se muestran los datos históricos del municipio de Tepoztlán.

Año	Población (Hab).
1990	12,279
1995	13,978
2000	14,776
2005	15,245
2010	14,130

Tabla 5.8 Datos históricos de población del municipio de Tepoztlán

Para obtener la población actual y futura se utilizaron los siguientes métodos: aritmético, geométrico por porcentajes e interés compuesto, Malthus, TCMA, mínimos cuadrados ajuste lineal, CONAPO.

De acuerdo con la tendencia de crecimiento que se ha tenido en los últimos años, se consideró que el método que arrojó mejores resultados es el de TCMA (Tasa de Crecimiento Máximo Anual), teniendo una población para el año 2016 en el municipio de Tepoztlán de 15,605 habitantes.

Una vez obtenida la población del año 2016 se procedió a calcular la proyección de la población futura bajo los mismos métodos, considerando como el más aceptable los resultados obtenidos por el método Aritmético con 19,202 habitantes para el año 2036.

En la Tabla 5.9 se muestra las proyecciones de la población por los diferentes métodos mencionados.

Tabla 5.9 Proyección de población por los diferentes métodos.

	Aritmetico	Geométrico por		Malthus	T.C.M.A.	T.C.M.A.
AÑO		Porcentajes	Interés Comp.			CONAPO
	179.83	1.66%	1.0157	1.66%	1.65	
2016	15,605	15,606	16,605	15,605	15,605	15,605
2017	15,785	15,865	15,849	15,847	15,863	15,785
2018	15,965	16,125	16,098	16,093	16,125	15,963
2019	16,145	16,384	16,350	16,343	16,391	16,137
2020	16,324	16,644	16,606	16,597	16,662	16,308
2021	16,504	16,904	16,866	16,854	16,937	16,476
2022	16,684	17,164	17,130	17,116	17,217	16,642
2023	16,864	17,424	17,398	17,381	17,501	16,804
2024	17,044	17,684	17,670	17,651	17,791	16,964
2025	17,224	17,943	17,947	17,925	18,084	17,120
2026	17,403	18,203	18,228	18,203	18,383	17,274
2027	17,583	18,463	18,513	18,486	18,687	17,423
2028	17,763	18,723	18,803	18,773	18,996	17,570
2029	17,943	18,983	19,098	19,064	19,309	17,713
2030	18,123	19,242	19,397	19,360	19,628	17,852
2031	18,303	19,502	19,700	19,660	19,953	18,488
2032	18,482	19,762	20,009	19,965	20,282	19,146
2033	18,662	20,022	20,322	20,275	20,617	19,827
2034	18,842	20,282	20,640	20,590	20,958	20,533
2035	19,022	20,542	20,964	20,909	21,304	21,263
2036	19,202	20,801	21,292	21,234	21,656	22,020

Proyecciones 2013 - 2036 (habitantes)

Consumo.

Se calculó el consumo promedio de los habitantes estimado en litros por día conforme al nivel Socioeconómico (Alto ó Residencial, Media y Popular), los tipos de comercios e industrias manufactureras y en base de dividir la demanda doméstica, más la comercial, más la de servicios, entre el número de habitantes actuales (2016), ver Tabla 5.10.

TIPO DE	CONSUMO DE AGUA					
CONSUMO	(m3/día)	(m3/anuales)				
Domestico	3,158.20	1,152,742.91				
Comercial	244.73	89,326.23				
Industrial	314.59	114,823.79				
Publico	68.68	25,066.38				
TOTAL =	3,786.19	1,381,959.29				

 Tabla 5.10 Consumo promedio conforme al nivel socioeconómico del municipio.

Población actual (2016)= 15, 605 hab.

Consumo total= 3,786.19/15,605= 0.2426 m3/día.

Consumo total= 242.63 l/hab/día.

Así se determinó que el consumo diario promedio por habitante por tipo de usuario es de 242.63 l/hab/día.

Dotación.

Una vez calculado el consumo diario promedio (242.63 l/hab/día) y las pérdidas físicas que para el año 2016 se consideró un 30% y para el año 2036 se reducirán a un 30% para la zona de estudio, se procedió al cálculo de la dotación. Mediante la siguiente ecuación:

$$D_{otación} = \frac{consumo}{\left(1 - \frac{(\%)p\acute{e}rdidas}{100}\right)}$$
(5.1)

Aplicando la ecuación 5.1 con un consumo de 242.63 l/hab/día se obtuvo la dotación para el año 2016 de 346.61 l/hab/día, de la misma manera se obtuvo la dotación futura (2036) considerando el 20% de pérdidas físicas, teniendo así una dotación de diseño de 303.29 l/hab/día.

Gastos de diseño.

Los gastos de diseño se determinaron con base en la dotación y los coeficientes de variación diaria y horaria para zonas urbanas (Tabla 4.1).

Gasto medio diario

El gasto medio es la cantidad que se requiere para satisfacer las necesidades de la población en un día de consumo promedio. El gasto medio diario se determinó con la dotación y el número de habitantes de proyecto (año 2036).

Gastos máximo diario y horario.

El gasto máximo diario se obtuvo multiplicando el gasto medio diario último por 1.40; finalmente el gasto máximo horario se obtuvo multiplicando el máximo diario por 1.55. En la Tabla 5.11 se muestran los datos básicos, el gasto máximo horario obtenido para el diseño de la red de distribución.

Concepto	Cantidad	Unidad
Dotación	303.29	l/hab/día
Gasto medio diario	1.54	l/s
Gasto máximo diario	2.17	l/s
Gasto máximo horario	3.35	l/s
Coeficiente de variación diaria	1.40	
Coeficiente de variación horaria	1.55	

Tabla 5.11 Datos de proyecto de la red de distribución de Tepoztlán.

Cabe mencionar que se consideró únicamente la tubería principal de la red para determinar el diámetro comercial, teniendo en cuenta el algoritmo que el mínimo permisible es de 2" (50.8 mm).

Con esta información se procedió a diseñar la red mediante los tres métodos: Hardy Cross, EPANET 2.0 y el Algoritmo de Dijkstra, como se describió en el capítulo anterior.

6.1 RESULTADOS

6.1 Caso 1. Red de distribución San José del Pilón.

6.1.1 Método Hardy Cross.

Se consideraron tres circuitos de tubería primaria de 2" (50.8 mm) de diámetro de material de PVC-RD 41. El cálculo fue realizado por el método de Hardy Cross conforme a la metodología descrita en el capítulo 4.

En la Figura 6.1 se muestra el plano de la red de distribución de San José, elaborado acorde a los resultados obtenidos por el método.

Figura 6.1 Plano de la red de distribución de San José, Guerreo. Diseñada por el método de Hardy Cross.

En el **anexo** A se muestran las tablas con el cálculo realizado y los resultados obtenidos del análisis hidráulico. Con ello se realizó el presupuesto total del diseño de la red y en base al catálogo de precios unitarios 2016 de la CONAGUA.

El cálculo hidráulico dinámico de esta red se realizó de igual manera que para la red de distribución anterior, mediante diferentes intervalos de tiempo 10, 20 y 24 horas. Con un coeficiente de variación horaria de 1.50 para comunidades pequeñas, las 10 horas del día es donde se presenta la mayor demanda y es con la que se diseña la red de distribución. Teniendo así el mismo coeficiente de variación horaria utilizado para el diseño de la red para un régimen permanente, por lo tanto, el presupuesto realizado para ambos diseños es el mismo.

En la Tabla 6.1 se muestra un resumen del presupuesto total de la red la red conforme a los resultados obtenidos por el método de Hardy Cross.

Tabla 6.1 Resumen del presupuesto total de la red de la comunidad de San José del Pilón, Guerrero, diseñada por el método Hardy Cross.

NO.	СОМСЕРТО	UNIDAD	CANTIDAD	IMPORTE				
		Ī						
Ι	TERRACERÍAS	M3	1,123.53	\$411,559.84				
Π	OBRA CIVIL	M3	2.43	\$125,097.62				
		M2	743.35					
III	CAJAS OPERADORAS	ESTRUCTURA	6	\$47,248.98				
IV	SUMINISTROS E INTALACIONES	PZA	322.00	\$403,634.56				
	TUBERIA DE PVC RD/41	М	1,351.54					
11.7	ACARREOG		1 210 00	¢102 100 02				
IV	ACARREOS	M3	1,310.99	\$193,108.83				
		M3-KM	2,621.98					
	SUBTOTAL DE PRESUPUESTO= \$1,180,649.83							
			I.V.A. (16%) =	\$ 188,903.97				
	TO	OTAL DE PRES	UPUESTO=	\$1,369,553.80				

RESUMEN DEL PRESUPUESTO DE LA RED (MÉTODO HARDY CROSS)

6.1.2 Método Simulado (programa EPANET 2.0).

La red de distribución de San José fue simulada de acuerdo con los pasos descritos en la metodología, mediante una distribución a gravedad y en primera instancia bajo un régimen de flujo permanente. Se asignaron los datos de entrada correspondientes en el programa de simulación como son: los diámetros, el coeficiente de rugosidad y las longitudes en los tramos; las cotas de terreno y la demanda en los nodos de la red, similares a los asignados por el método de Hardy Cross.

Encontrar el diámetro interior comercial adecuado requirió de varias simulaciones con diferentes propuestas para satisfacer las condiciones hidráulicas. En la Figura 6.2 se muestran los resultados obtenidos de la simulación exitosa para un régimen de flujo permanente.

Figura 6.2 Resultados obtenidos de la simulación estática en el programa EPANET 2.0 para la red de la comunidad de San José.

Posteriormente se llevó a cabo la simulación dinámica para la misma red de distribución, contemplando diámetros comerciales que satisficieran las condiciones hidráulicas, en especial se analizó la hora donde se presenta la mayor demanda del líquido al día, la cual se encuentra dentro de las 8:00 y las 10:00 horas.

De igual forma que en la simulación estática de la red, se requirió de varias simulaciones y de diferentes propuestas para encontrar el diámetro interior comercial adecuado, buscando de antemano el más económico posible. Los resultados de la simulación exitosa se presentan en la Figura 6.3.

Figura 6.3 Resultados obtenidos de la simulación dinámica en el programa EPANET 2.0 para la red de distribución de la comunidad de San José.

Los diámetros comerciales contemplados para la simulación dinámica de la red fueron los mismos contemplados para la simulación estática, ya que si se disminuían, la red no cumplía con los parámetros de diseño. Por lo tanto, el presupuesto total de la red de distribución diseñada de manera estática y dinámica es el mismo (ver Tabla 6.2).

Tabla 6.2 Resumen del presupuesto total de la red conforme a los resultados obtenidos en EPANET 2.0.

NO.	CONCEPTO	UNIDAD	CANTIDAD	IMPORTE				
Ι	TERRACERÍAS	M3	1,351.54	\$789,618.12				
II	OBRA CIVIL	M3	2.43	\$268,654.62				
		M2	743.35					
III	CAJAS OPERADORAS	ESTRUCTURA	6	\$47,248.98				
	SUMINISTROS E							
	INTALACIONES HIDRAULICAS							
IV	DE TUBERIA DE PVC/RD 41	PZA	322.00	\$407,024.17				
		М	1,351.54					
IV	ACARREOS	M3	1,310.99	\$193,108.83				
		M3-KM	2,621.98					
İ								
	\$1,705,654.72							
	I.V.A. $(16\%) = $ \$ 272,904.7							
TOTAL DE PRESUPUESTO= \$1,978,559.4								

RESUMEN DEL PRESUPUESTO DE LA RED DE DISTRIBUCIÓN (EPANET 2.0)

6.2.3 Método Heurístico (Algoritmo de Dijkstra).

El algoritmo de Dijkstra se aplicó para el dimensionamiento de la tubería principal de la red de la localidad, bajo un régimen de flujo estático y mediante la demanda calculada desde un comienzo por el Método de Hardy Cros. El algoritmo considera como diámetro mínimo comercial el de 2" (50.8 mm) e identifica la distancia mínima del nodo con mayor elevación hasta el nodo con menor elevación, esto con la finalidad de saber en qué tramo de tubería se tienen los diámetros menores, más no implica reducir tubería. En la Figura 6.4, se muestra la red dimensionada aplicando el algoritmo de Dijkstra.

Figura 6.4 Aplicando el Algoritmo de Dijkstra para la red de San José.

De igual manera se realizó el presupuesto conforme a los diámetros arrojados por el algoritmo, como también se tomó en cuenta los tramos de tubería secundaria de 1.5" (38.1 mm) de la red para obtener un presupuesto total. En la Tabla 6.3 se muestra un resumen del presupuesto del dimensionamiento de la red.

Tabla 6.3 Resumen del presupuesto total de la red, conforme a los resultados obtenidos por el Algoritmo de Dijkstra.

NO.	CONCEPTO	UNIDAD	CANTIDAD	IMPORTE				
Ι	TERRACERÍAS	M3	1,123.53	\$411,559.84				
II	OBRA CIVIL	M3 M2	2.43 743.35	\$125,097.62				
III	CAJA ROMPEDORA DE PRESIÓN	ESTRUCTURA	6	\$47,248.98				
IV	SUMINISTROS E INTALACIONES HIDRAULICAS TUBERIA DE PVC/RD 41	PZA	322.00	\$407,024.17				
		М	1,351.54					
IV	ACARREOS	М3	1,310.99	\$193,108.83				
		M3-KM	2,621.98					
	SUBTOTAL DE PRESUPUESTO= \$1,184,039.44 I.V.A. (16%) = \$ 189,446.31 TOTAL DE PRESUPUESTO - \$1 373 485 75							

RESUMEN DEL	PRESUPLIESTO	DELA	RED (AL	GORITMO	DE DLISKTRA)
RESUMER DEL	I KESUI UESIU		KED (AL	JOKIIMO	DE DIJORTRAJ

6.2.4 Comparación de los resultados.

Conforme a los resultados obtenidos del análisis hidráulico de la red por cada método, se compararon y analizaron los siguientes criterios: el diámetro y la velocidad en los tramos de tubería; y la carga de presión en los nodos. En la Tabla 6.4 se muestran los parámetros evaluados por cada método.

						HARDY CROSS EPANET		ALGORITMO DE DIJKSTRA					
Circuito		Tram	10	Longitud	Flujo (lps)	Øcomer. (mm)	Velocidad (m/s)	Carga Disponible (m.c.a)	Øcomer. (mm)	Velocidad (m/s)	Carga Disponible (m.c.a)	Øcomer. (mm)	Velocidad (m/s)
		Т	1	10									
		1	2	195.86	1.06	50.8	0.93	40.9	102	1.94	37.08	50.8	1.128
		2	3	90.15	0.97	50.8	0.85	41.9	102	1.81	34.96	50.8	1.128
		3	4	33.85	0.94	50.8	0.82	38.37	102	1.70	33.87	50.8	1.128
		4	5	55.46	0.92	50.8	0.81	34.02	102	1.58	29.65	50.8	1.128
		5	6	24.34	0.9	50.8	0.79	34.22	76.2	1.46	24.32	50.8	1.128
		6	7	49.83	0.89	50.8	0.78	35.62	76.2	2.42	23.00	50.8	1.128
		7	9	53.55	0.98	50.8	0.86	36.06	76.2	2.22	21.72	50.8	1.128
	+	9	10	52.79	0.34	50.8	0.30	42.11	76.2	0.95	20.03	50.8	1.128
		10	11	25.44	0.32	50.8	0.28	39.05	76.2	0.85	25.50	50.8	1.128
CUITO		11	12	24.71	0.3	50.8	0.27	39.04	76.2	0.75	22.21	50.8	1.128
		9	76	87.99	0.64	50.8	0.36	33.22	76.2	0.83	15.57	50.8	1.128
5		76	73	34.24	0.58	50.8	0.34	35.98	76.2	0.71	19.17	50.8	1.128
	-	73	74	26.63	0.32	50.8	0.30	34.35	76.2	0.10	17.55	50.8	1.128
		74	75	13.58	0.31	50.8	0.31	35.09	76.2	0.10	18.31	50.80	1.128
		75	12	22.8	0.30	50.8	0.29	38.87	76.2	0.10	22.02	50.80	1.128
		12	13	58.67	0.58	50.8	0.59	39.75	76.2	0.58	22.58	50.80	1.128
		13	22	54.15	0.38	50.8	0.29	39.93	76.2	0.24	22.73	50.80	1.128
	+	22	23	30.85	0.22	50.8	0.27	41.74	76.2	0.20	24.54	50.80	1.128
		23	24	9.51	0.20	50.8	0.26	42.29	76.2	0.50	25.08	50.80	1.128
ПO		24	25	27.25	0.19	50.8	0.25	44.68	76.2	0.12	24.48	50.80	1.128
		25	27	41.28	0.16	50.8	0.22	41.12	76.2	0.19	23.93	50.80	1.128
CIR		75	12	22.8	0.30	50.8	0.25	39.02	76.2	0.10	22.01	50.80	1.128
		74	75	13.58	0.31	50.8	0.27	35.30	76.2	0.10	18.31	50.80	1.128
	-	73	74	26.63	0.32	50.8	0.32	34.50	76.2	0.10	17.55	50.80	1.128
		73	72	23.07	0.24	50.8	0.34	39.60	76.2	0.62	19.17	50.80	1.128
		72	27	34.84	0.23	50.8	0.35	41.12	76.2	0.59	24.1	50.80	1.128
		13	16	36.58	0.30	50.8	0.28	41.84	76.2	0.39	22.58	50.80	1.128
E		16	17	41 45	0,28	50.8	0.27	40,87	76.2	0,20	24.54	50,80	1.128
TOT	+	17	18	29.14	0.23	50.8	0.22	59.90	76.2	0.10	23.56	50.80	1.128
scu		18	20	27.1	0.20	50.8	0.19	30.80	76.2	0.26	22.50	50.80	1.120
5		20	20	10.07	0.20	50.0	0.15	40.02	76.2	0.20	22.0	50.00	1.120
	-	20	22	19.27	0.17	50.8	0.17	40.03	/6.2	0.41	22.73	50.80	1.128
•	1	13	22	54.15	0.38	50.8	0.33	39.99	76.2	0.24	22.58	50.80	1.128

Tabla 6.4 Comparación de resultados obtenidos por cada método.

A pesar de que se realizaron varias iteraciones para conseguir un dimensionamiento adecuado conforme a los parámetros de diseño; no se logró, en este caso la velocidad está por debajo de la mínima permisible ya que si se disminuía el diámetro, la presión en los nodos también disminuía y quedaba por debajo de la permitida, además de que el diámetro mínimo permisible en tubería primaria debe ser de 2" (50.8 mm); por ello se optó en dejar ese diámetro y obtener una presión entre la máxima y la mínima permisible. Aun así, el método de Hardy Cross arrojó mayor número de velocidades por debajo de la permisible, haciéndolo menos eficaz y eficiente.

En la Tabla 6.4 se demuestra que los diámetros arrojados por el programa EPANET 2.0 son de 1" a 2" mayores, en comparación con los obtenidos por el método de Hardy Cross y el Algoritmo de Dijkstra para la misma red de distribución, debido a que, si se disminuía el diámetro de las tuberías, las presiones en los nodos disminuían considerablemente y no cumplían con la mínima permitida con los parámetros de diseño.

Puede apreciarse que los resultados del Algoritmo de Dijkstra son similares que el de Hardy Cross, esto debido a que el algoritmo considera una velocidad constante de 1.1283 m/s para determinar el diámetro mínimo, misma que se considera en el método de Hardy Cross. Por lo tanto, el algoritmo no pude ser considerado como un método de análisis hidráulico, sino más bien como una herramienta de apoyo para el diseño económico de una red al obtener los diámetros mínimos comerciales y trazar la menor distancia en cada tramo.

De igual manera se realizó la comparación del presupuesto total de la red obtenido por cada método, mediante un análisis hidráulico estático, ver Tabla 6.5.

MÉTODO	PRESUPUESTO TOTAL
Hardy Cross	\$1,369,553.80
Programa de simulación EPANET 2.0	\$1,932,885.46
Algoritmo de Dijkstra	\$1,373,485.75

Tabla 6.5 Comparación del presupuesto total de la red diseñada estáticamente por cada método.

Cabe notar que se obtiene el presupuesto más económico de la red mediante el Algoritmo de Dijkstra, pero no por ello el más factible, ya que sólo considera la ecuación de continuidad para encontrar el diámetro mínimo, subsiguiente el método de Hardy Cross contra una diferencia de \$ 563,331.66 en comparación con el programa EPANET 2.0.

6.2 Caso 2. Red de distribución las Juntas.

6.2.1 Método de Hardy Cross.

Se contempló un solo circuito de tubería primaria de 2" de diámetro de material de PVC-RD 41 para la red de distribución de la comunidad, se realizó el diseño por el método de Hardy Cross. En la Figura 6.5 se muestra el plano de la red, elaborado bajo los resultados obtenidos por el método de Hardy Cross.

Figura 6.5 Plano final de la red de distribución de Las Juntas, Guerrero, acorde a los resultados obtenidos mediante el método de Hardy Cross.

En el **anexo A** se muestran las tablas con los resultados del análisis hidráulico de la red realizado mediante el método de Hardy Cross.

El método de Hardy Cross no puede resolver las diferentes ecuaciones del cálculo hidráulico de una red de manera que involucre todas las variaciones de gasto horario del día y así tener un análisis hidráulico dinámico como tal, por lo que se realizó un análisis puntual de la red para diferentes intervalos de tiempo (10, 20 y 24 horas) dando importancia a la hora donde se presenta mayor demanda, que oscila entre las 8:00 y las 10:00 horas, por su mayor impacto

para el diseño de una red de distribución. Con un coeficiente de variación horaria de 1.50 mismo que fue utilizado para determinar el gasto máximo horario y analizar la red bajo un régimen permanente, por lo que el presupuesto realizado para ambos diseños es el mismo.

En la Tabla 6.6 se muestra un resumen del presupuesto total de la red conforme a los resultados obtenidos por el método de Hardy Cross.

Tabla 6.6 Resumen del presupuesto total de la red de la comunidad, diseñada por el método de Hardy Cross.

NO.	CONCEPTO	UNIDAD	CANTIDAD	IMPORTE			
I	TERRACERÍAS	M3	1,645.24	\$602,601.71			
Π	OBRA CIVIL	M3 M2	3.56 1,088.52	\$183,188.61			
Ш	CAJAS OPERADORAS	ESTRUCTURA	3	\$23,624.49			
IV	SUMINISTROS E INTALACIONES TUBERIA DE PVC RD/41	PZA M	233.00 1,989.13	\$420,028.62			
IV	ACARREOS	М3	1,919.76	\$282,780.65			
		M3-KM	3,839.52				
SUBTOTAL DE PRESUPUESTO= \$1,51							
I.V.A. (16%) =							
		TOTAL DE PRE	ESUPUESTO=	\$1,754,179.93			

RESUMEN DEL PRESUPUESTO DE LA RED (MÉTODO DE HARDY CROSS)

6.2.2 Método simulado (programa EPANET 2.0)

La red fue simulada mediante una distribución a gravedad, primero bajo un régimen de flujo permanente y posteriormente bajo un régimen de flujo no permanente. Se asignaron los datos requeridos en el programa como son: diámetros, longitudes, coeficiente de rugosidad, en los tramos de tubería; las cotas de terreno y la demanda, en los nodos de la red.

Encontrar el diámetro interior comercial adecuado requirió de varias simulaciones con diferentes propuestas para satisfacer las condiciones hidráulicas.

En la Figura 6.6 se muestran los resultados obtenidos de la simulación exitosa.

Figura 6.6 Resultados obtenidos de la simulación estática en el programa EPANET 2.0 para la red de distribución.

Después, se realizó la simulación de la red de distribución para un flujo no permanente hasta obtener un diámetro comercial que tuviera las características para abastecer la hora de mayor demanda que oscila entre las 8:00 y las 10:00 de la mañana, cumpliendo así con los parámetros de diseño (ver Figura 6.7).

Figura 6.7 Resultados obtenidos de la simulación dinámica en el programa EPANET 2.0 para la red de distribución de la comunidad Las Juntas.

Los diámetros comerciales contemplados para la simulación dinámica de la red fueron los mismos que para la simulación estática, ya que si se disminuían, la presión requerida en cada nodo no cumplía con la mínima. Por lo tanto, el presupuesto total de la red de distribución diseñada de manera estática y dinámica es el mismo.

Se integró el presupuesto del diseño tanto estáticamente como dinámicamente, acorde a los resultados obtenidos en el programa EPANET 2.0 y a los precios unitarios de la CONAGUA 2016. En la Tabla 6.7 muestra el resumen del presupuesto total.

 Tabla 6.7 Resumen del presupuesto total de la red Las Juntas, obtenido mediante los resultados obtenidos por el programa EPANET 2.0

NO.	CONCEPTO	UNIDAD	CANTIDAD	IMPORTE				
Ι	TERRACERÍAS	M3	1,973.13	\$917,788.50				
Π	OBRA CIVIL	M3	132.00	\$393,745.44				
		M2	1,088.52					
III	CAJA ROMPEDORA DE PRESIÓN	ESTRUCTURA	3	\$23,624.49				
	SUMINISTROS E	PZA	233.00					
IV	INTALACIONES HIDRAULICAS DE TUBERIA DE PVC/RD 41	М	1,993.13	\$452,943.21				
IV	ACARREOS	M3	1,973.13	\$290,642.05				
		M3-KM	3,946.26					
	SUBTOTAL DE PRESUPUESTO= \$2,078,743.69							
	I.V.A. (16%) = \$332,598.9							
		TOTAL DE PRE	SUPUESTO=	\$2,411,342.68				

RESUMEN DEL PRESUPUESTO DE LA RED (EPANET 2.0)

6.2.3 Método Heurístico (Algoritmo de Dijkstra).

El algoritmo de Dijkstra se aplicó para el dimensionamiento de la tubería principal de la red de la localidad, bajo un régimen de flujo estático y mediante la demanda calculada desde un comienzo por el Método de Hardy Cros. El algoritmo considera como diámetro mínimo comercial el de 2" (50.8 mm) e identifica la distancia mínima del nodo con mayor elevación hasta el nodo con menor elevación, esto con la finalidad de saber en que tramo de tubería se tienen los diámetros menores, más no implica reducir tubería. En la Figura 6.8, se muestra la red dimensionada aplicando el algoritmo de Dijkstra.

Figura 6.8 Aplicando el Algoritmo de Dijkstra para la red de San José.

De igual manera se realizó el presupuesto conforme el dimensionamiento de la red obtenido por el algoritmo de Dijkstra, en la Tabla 6.3 se muestra un resumen del presupuesto total del dimensionamiento de la red.

Tabla 6.8 Resumen del presupuesto total de la red, conforme a los resultados obtenidos por el Algoritmo de Dijkstra.

M3	1.584.00	¢411 550 94					
	y ·	\$411,559.84					
M3 M2	3.56 1,088.52	\$183,188.61					
E	A 3	\$23,624.49					
AULICAS PZA 41	322.00	\$418,592.33					
М	1,351.54						
M3	1,919.76	\$282,780.65					
SUBTOTAL DE PRESUPUESTO= \$1,506,573.51							
I.V.A. (16%) = \$ 241,051.76 TOTAL DE PRESUPUESTO = \$1,747,625.27							
E	E M3 M2 ESTRUCTURA AULICAS PZA 41 M M3 SUBTOTAL DE PI TOTAL DE PR	M3 3.56 M2 1,088.52 E ESTRUCTURA 3 AULICAS PZA 322.00 41 M 1,351.54 M3 1,919.76 3 SUBTOTAL DE PRESUPUESTO= I.V.A. (16%) = TOTAL DE PRESUPUESTO =					

RESUMEN DEL PRESUPUESTO DE LA RED) (ALGORITMO DE DLISKTRA)
RESUMEN DEL I RESULUESTO DE LA REE	(ALGORITING DE DIJGRIKA)

6.2.4 Comparación de resultados.

Se analizaron y compararon los resultados obtenidos del análisis hidráulico de la red realizado por los diferentes métodos; método de Hardy Cross, método simulado (programa EPANET 2.0) y Algoritmo de Dijkstra. A continuación, se muestra la Tabla 6.8 con los parámetros de diseño que se evaluaron de cada método.

					HARDY CROSS			EPANET			ALGORITMO DE DIJKS TRA		
Circuito	Tramo		Longitud	Flujo (lps)	Øcomer. (mm)	Velocidad (m/s)	Carga Disponible (m.c.a)	Øcomer. (mm)	Velocidad (m/s)	Carga Disponible (m.c.a)	Øcomer. (mm)	Velocidad (m/s)	
	T 1												
		1 2		11.85	1.32	50.8	0.98	25.75	76.2	4.32	31.14	50.8	1.128
		2	15	33.67	0.738	50.8	0.55	36.94	62.1	3.88	30.72	50.8	1.128
		15	14	17.08	0.729	50.8	0.54	37.37	62.1	2.82	28.75	50.8	1.128
		14	13	53.82	0.724	50.8	0.54	37.05	62.1	2.18	26.83	50.8	1.128
		13	12	25.36	0.710	50.8	0.53	38.75	62.1	1.86	23.27	50.8	1.128
		12	11	103.41	0.703	50.8	0.52	38.19	62.1	0.91	22.56	50.8	1.128
	+	11	10	68.14	0.659	50.8	0.49	38.21	62.1	0.59	22.32	50.8	1.128
uito I		10	17	111.9	0.641	50.8	0.47	37.48	62.1	0.51	21.9	50.8	1.128
		17	24	110.03	0.471	50.8	0.35	37.17	62.1	0.36	22.57	50.8	1.128
		24	25	117.33	0.288	50.8	0.21	38.54	62.1	0.25	23.66	50.8	1.128
		25	26	121.02	0.256	50.8	0.20	36.93	62.1	0.13	24.93	50.8	1.128
		26	27	97.15	0.223	50.8	0.18	36.96	62.1	0.10	26.65	50.8	1.128
Circe		2	3	4.2	0.579	50.8	0.43	37.03	62.1	2.38	22.28	50.8	1.128
Ŭ		3	4	27.22	0.578	50.8	0.43	36.33	62.1	2.05	21.3	50.8	1.128
		4	5	107.78	0.571	50.8	0.42	38.52	62.1	1.73	21.56	50.8	1.128
		5	6	143.15	0.542	50.8	0.40	38.81	62.1	1.40	22.03	50.8	1.128
		6	20	123.04	0.305	50.8	0.23	39.26	62.1	0.71	22.27	50.8	1.128
	-	20	21	117.43	0.272	50.8	0.20	38.96	62.1	0.45	22.01	50.8	1.128
		21	31	121.85	0.240	50.8	0.28	39.18	62.1	0.28	21.66	50.8	1.128
		27	36	78.86	0.087	50.8	0.27	39.37	62.1	0.10	21.3	50.8	1.128
		29	36	93.08	0.065	50.8	0.25	38.90	62.1	0.20	22.46	50.8	1.128
		30	29	95.46	0.040	50.8	0.23	39.21	62.1	0.10	20.78	50.8	1.128
	1	31	30	196.3	0.068	50.8	0.25	39.31	62.1	0.11	20.79	50.8	1.128

Tabla 6.9 Comparación de resultados obtenidos por cada método.

Cabe destacar que a pesar de que se realizaron varias propuestas para el dimensionamiento adecuado de la red al aplicar los diferentes métodos no se lograron obtener resultados homogéneos, ni cumplir con los parámetros de diseño; en el caso de EPANET, la velocidad está por debajo de la mínima permisible ya que si se disminuía el diámetro, la presión en los nodos también disminuía y quedaba por debajo de la permitida, para el caso de Hardy Cross se podía disminuir y las presiones quedaban en un rango favorable, sin embargo, el diámetro mínimo permisible en tubería primaria debe ser de 2" (50.8 mm), por ello se optó en dejar ese diámetro y mantener una presión por encima de la permisible. Aun así, el método arrojó mayor número de velocidades por debajo de la permisible, haciéndolo menos eficaz y eficiente.

En la Tabla 6.9 se demuestra que los diámetros arrojados por el programa EPANET 2.0 son mayores (1") en comparación con los obtenidos por el método de Hardy Cross y el Algoritmo de Dijkstra para la misma red de distribución, debido a que, si se disminuía el diámetro de las tuberías, las presiones en los nodos disminuían considerablemente y no cumplían con la mínima permitida con los parámetros de diseño.

Puede apreciarse que los resultados del Algoritmo de Dijkstra son similares que el de Hardy Cross, esto debido a que el algoritmo considera una velocidad constante de 1.1283 m/s para determinar el diámetro mínimo, misma que se considera en el método de Hardy Cross. Por lo tanto, el algoritmo no pude ser considerado como un método de análisis hidráulico, sino más bien como una herramienta de apoyo para el diseño económico de una red al obtener los diámetros mínimos comerciales y trazar la menor distancia en cada tramo.

De igual manera se realizó la comparación del presupuesto total de la red obtenido por cada método, mediante un análisis hidráulico estático, ver Tabla 6.10.

MÉTODO	PRESUPUESTO TOTAL
Hardy Cross	\$1,754,179.93
Programa de simulación EPANET 2.0	\$2,411,342.68
Algoritmo de Dijkstra	\$1,747,625.27

Tabla 6.10 Comparación del presupuesto total de la red diseñada estáticamente por cada método.

Cabe notar que se obtiene el presupuesto más económico de la red mediante el Algoritmo de Dijkstra, pero no por ello el más factible, ya que sólo considera la ecuación de continuidad para encontrar el diámetro mínimo, subsiguiente el método de Hardy Cross contra una diferencia de \$657,162.75 en comparación con el programa EPANET 2.0.

6.3 Caso 3. Red de distribución sector 3 de Tepoztlán.

6.3.1 Método de Hardy Cross.

Para esta red se contemplaron dos circuitos de tubería primaria de 3" y 2" de diámetro de material de PVC-RD 41, para el cálculo realizado por el método de Hardy Cross. Se propusieron dos cajas rompedoras de presión debido al terreno accidentando del lugar, de manera que la carga de presión en cada nodo se encuentre dentro de la mínima y máxima permisible.

El cálculo hidráulico para régimen no permanente de la red se realizó de igual manera que para los casos anteriores, mediante diferentes intervalos de tiempo 10, 20 y 24 horas. Las

horas del día donde se presenta la mayor demanda en la localidad es a las 9:00 am, con un coeficiente de variación horaria de 1.372 conforme a los coeficientes de las diferentes ciudades de México (ver Tabla 4.6), teniendo así un coeficiente menor que el utilizado para el análisis hidráulico para un régimen permanente (1.55). Por lo tanto, el presupuesto se realizó con los resultados obtenidos del análisis estático de la red.

En el **anexo A** se muestran las tablas con los cálculos realizados mediante el método de Hardy Cross, bajo un régimen permanente y no permanente.

En la Figura 6.9 se muestra el plano de la red de distribución de Tepoztlán, elaborado acorde a los resultados obtenidos por el método de Hardy Cross.

Figura 6.9 Plano de la red de distribución del sector 3 de Tepoztlán, Morelos. Diseñada por el método de Hardy Cross.

El presupuesto total del diseño de la red se realizó en base al catálogo de precios unitarios 2016 de la CONAGUA, del cual se tomaron algunos conceptos respetando su clave, su descripción y precio unitario, en algunos casos se generaron conceptos combinados, con la finalidad de que el concepto incluya, suministros, acarreos, materiales, mano de obra, herramientas, equipos, entre otros., y así contar con conceptos globales.

En la Tabla 6.11, se muestra un resumen del presupuesto total de la red diseñada bajo un flujo estático.

Tabla 6.11 Resumen del presupuesto total de la red de distribución, diseñada estáticamente por Hardy Cross.

NO.	CONCEPTO	UNIDAD	CANTIDAD	IMPORTE				
Ι	TERRACERÍAS	M3	1,828.96	\$572,643.95				
Π	OBRA CIVIL	M3	3.56					
		M2	1,124.76	\$189,240.74				
Ш	CAJA ROMPEDORA DE PRESIÓN	ESTRUCTURA	3	\$47.248.98				
	CAJAS TIPO	ESTRUCTURA	3	,				
IV	SUMINISTROS E INTALACIONES	PZA	243.00	\$450.085.23				
	TUBERIA DE PVC RD/41	М	2,020.14	+				
IV	ACARREOS	M3	2,054.48	\$513,003.66				
		M3-KM	12,326.88					
	SUBTOTAL DE PRESUPUESTO= \$1,772,222.56							
	I.V.A. (16%) = \$283,555.61							
	TO)TAL DE PRES	SUPUESTO=	\$2,055,778.17				

RESUMEN DEL PRESUPUESTO DE LA RED DE DISTRIBUCIÓN TEPOZTLÁN

6.3.2 Método simulado (programa EPANET 2.0).

La red de distribución fue simulada mediante una distribución a gravedad y en primer lugar mediante un régimen de flujo estático, trabajando bajo las mismas condiciones que con el método de Hardy Cross. Se asignaron los datos requeridos al programa EPANET 2.0 como son: diámetros, longitudes y coeficiente de rugosidad, en los tramos de tubería; las cotas de terreno y la demanda, en los nodos de la red.

Encontrar el diámetro interior comercial óptimo requirió de varias simulaciones con diferentes propuestas para satisfacer las condiciones hidráulicas, al menor costo posible. Debido a su topografía se propusieron dos cajas rompedoras de presión y se contemplaron dos circuitos de tubería primaria. En la Figura 6.10 se muestran los resultados obtenidos de la simulación exitosa.

Figura 6.10 Resultados obtenidos de la simulación estática en el programa EPANET 2.0 para la red de distribución del sector 3 de Tepoztlán.

Una vez obtenido el análisis estático de la red, se llevó acabo la simulación de la red mediante un régimen de flujo no permanente, incluyendo la ley de variación horaria para diferentes ciudades de México, se analizaron las horas de demanda al día haciendo énfasis a las 9:00 horas donde se presenta la mayor demanda, revisando que cumpliera con los parámetros de diseño. Teniendo así el mismo dimensionamiento hidráulico para ambos casos.

En la Figura 6.11 se muestran los resultados de la simulación exitosa de la red de Tepoztlán bajo un régimen de flujo no permanente.

Figura 6.11 Resultados obtenidos de la simulación dinámica a las 9:00 horas en el programa EPANET 2.0 para la red de distribución del sector 3 de Tepoztlán.

Se integró el presupuesto del diseño tanto estáticamente como dinámicamente, acorde a los resultados obtenidos en el programa EPANET 2.0 y a los precios unitarios de la CONAGUA 2016. En la Tabla 6.12 se muestra el resumen del presupuesto total.

Tabla 6.12 Resumen del presupuesto total de la red obtenido mediante los resultados obtenidos por el programa EPANET 2.0

NO.	CONCEPTO	UNIDAD	CANTIDAD	IMPORTE			
Ι	TERRACERÍAS	M3	2,020.14	\$708,561.55			
II	OBRA CIVIL	M3	3.56	¢150.000.04			
		M2	1,124.76	\$159,099.24			
III	CAJA ROMPEDORA DE PRESIÓN	ESTRUCTURA	2				
	CAJAS TIPO	ESTRUCTURA	4	\$47,248.98			
IV	SUMINISTROS E INTALACIONES TUBERIA DE PVC RD/41	PZA M	243.00 2,020.21	\$485,923.99			
IV	ACARREOS	M3	513,003.66	\$513,003.66			
		M3-KM	12,326.88				
	SUBTOTAL DE PRESUPUESTO= \$1,913,837.42						
	I.V.A. (16%) = \$306,213.99						
		UTAL DE PRI	LSUPUESTO=	\$2,220,051.41			

RESUMEN DEL PRESUPUESTO DE LA RED (EPANET 2.0)

6.3.3 Método Heurístico (Algoritmo de Dijkstra).

El algoritmo de Dijkstra se aplicó para el dimensionamiento de la tubería principal de la red de la localidad, bajo un régimen de flujo estático y mediante la demanda calculada desde un comienzo por el Método de Hardy Cros. El algoritmo considera como diámetro mínimo comercial el de 2" (50.8 mm) e identifica la distancia mínima del nodo con mayor elevación hasta el nodo con menor elevación, esto con la finalidad de saber en que tramo de tubería se tienen los diámetros menores, más no implica reducir tubería. En la Figura 6.12, se muestra la red dimensionada aplicando el algoritmo de Dijkstra.

Figura 6.12 Aplicando el Algoritmo de Dijkstra para la red de San José.

De igual manera se realizó el presupuesto conforme a los diámetros arrojados por el algoritmo, como también se tomó en cuenta los tramos de tubería secundaria de 1.5" (38.1 mm) de la red para obtener un presupuesto total. En la Tabla 6.13 se muestra un resumen del presupuesto del dimensionamiento de la red.

Tabla 6.13 Resumen del presupuesto total de la red, conforme a los resultados obtenidos por el Algoritmo de Dijkstra.

NO.	СОМСЕРТО	UNIDAD	CANTIDAD	IMPORTE			
Ι	TERRACERÍAS	M3	2,005.12	\$572,183.02			
п	OPPACIVII	M3	3 56				
11	OBRA CIVIL	M2	1 124 76	\$189 240 74			
		1112	1,121.70	\$10 <u>9</u> ,210.71			
III	CAJA ROMPEDORA DE PRESIÓN	ESTRUCTURA	2				
	CAJAS TIPO	ESTRUCTURA	4	\$47,248.98			
IV	SUMINISTROS E INTALACIONES	PZA	243.00	\$117 681 2			
	TUBERIA DE PVC RD/41	М	2,020.21	\$ 44 7,001.2			
IV	ACARREOS	M3 M3-KM	513,003.66 12,326.88	\$513,003.66			
	MJ-KW 12,520.00						
	SUBTOTAL DE PRESUPUESTO= \$1,769,357.63						
	I.V.A. (16%) = \$ 283,097.22						
]	TOTAL DE PRI	ESUPUESTO=	\$2,052,454.85			

RESUMEN DEL PRESUPUESTO DE LA RED (Algoritmo de Dijkstra)

6.3.4 Comparación de los resultados.

Se analizaron y compararon los resultados obtenidos del análisis hidráulico de la red realizado por los diferentes métodos; método de Hardy Cross, método simulado (programa EPANET 2.0) y Algoritmo de Dijkstra. A continuación, se muestra la Tabla 6.14 con los parámetros de diseño que se evaluaron de cada método.

					HA		ARDY CROSS		EPANET			DIJKS TRA	
								Carga			Carga		
					Flujo	Øcomer.	Velocidad	Disponible	Øcomer.	Velocidad	Disponible	Øcomer.	Velocidad
Circuito	T	`ram	0	Longitud	(lps)	(mm)	(m/s)	(m.c.a)	(mm)	(m/s)	(m.c.a)	(mm)	(m/s)
			1	10									
			2	11.82	3.35	76.2	0.73	17.37	152	3.42	14.78	76.2	1.128
		2	67	3.73	2.32	76.2	0.43	17.88	102	4.43	14.95	76.2	1.128
		67	68	14.8	2.23	76.2	0.41	21.10	102	4.19	15.58	76.2	1.128
		68	69	50.02	2.20	76.2	0.40	28.77	102	3.96	17.6	76.2	1.128
		69	70	13.89	2.12	76.2	0.39	31.06	102	3.73	18.21	76.2	1.128
		70	6	18.64	2.03	76.2	0.37	21.45	102	3.51	18.84	76.2	1.128
		6	14	52.95	1.63	76.2	0.28	46.02	102	3.35	26.71	76.2	1.128
	+	14	36	35.41	1.54	76.2	1.64	45.53	102	2.18	26.6	76.2	1.128
		36	37	30.26	0.84	76.2	1.29	47.99	102	1.91	29.07	76.2	1.128
		37	38	22.52	0.79	76.2	1.27	45.27	102	1.65	26.4	76.2	1.128
10		38	39	19.62	0.75	76.2	1.25	44.20	102	1.39	25.44	76.2	1.128
DLI		39	40	54.13	0.72	76.2	1.23	36.82	102	1.13	19.18	76.2	1.128
sct		40	41	28.44	0.63	76.2	1.18	37.82	102	0.89	20.68	76.2	1.128
CI		41	46	23.28	0.58	76.2	1.16	46.82	50.8	2.64	22.68	76.2	1.128
		2	73	44.32	0.94	50.8	0.64	16.34	102	2.85	11.00	50.8	1.128
		73	74	14 32	0.87	50.8	0.61	16.33	102	2.7	10.65	50.8	1.128
		74	75	11.3	0.85	50.8	0.59	21.97	76.2	4 58	13.92	50.8	1 128
		75	76	6.8	0.83	50.8	0.58	24.05	76.2	4 33	15.11	50.8	1.120
	_	76	77	12.92	0.82	50.8	0.58	25.66	76.2	4.08	14.96	50.8	1.120
		70	70	12.92	0.82	50.0	0.58	20.22	76.2	4.00	19.17	50.8	1.120
		77	10	12.42	0.80	50.8	0.57	30.32	76.2	3.64	18.17	50.8	1.120
		/8	44	20.94	0.77	50.8	0.56	34.00	76.2	3.0	20.16	50.8	1.128
		44	45	41.34	0.64	50.8	0.49	41.91	76.2	3.37	22.99	50.8	1.128
		45	46	16.19	0.57	50.8	0.46	42.93	76.2	3.16	22.68	50.8	1.128
		14	16	30.18	1.37	50.8	0.85	46.86	102.00	3.74	17.33	50.8	1.128
		CF	RP			1	1	5.00		1	0.50		
		16	17	23.06	1.07	50.8	0.70	11.71	152.40	2.10	21.30	50.8	1.28
		17	18	23.04	1.03	50.8	0.68	19.68	76.20	4.21	23.75	50.8	1.28
	+	18	19	16.99	0.99	50.8	0.66	25.45	50.80	3.69	25.65	50.8	1.128
		19	20	17.82	0.96	50.8	0.65	30.67	50.80	3.21	29.53	50.8	1.128
		20	21	7.69	0.95	50.8	0.64	32.12	50.80	2.73	30.64	50.8	1.128
		21	22	10.87	0.93	50.8	0.64	35.31	50.80	2.26	33.54	50.8	1.128
		22	23	29.93	0.91	50.8	0.63	39.20	50.80	1.81	36.57	50.8	1.128
		46	47	37.41	1.81	50.8	1.07	47.36	76.20	3.87	22.17	50.8	1.128
пс		47	48	18.92	1.69	50.8	1.43	49.65	102.00	3.50	12.28	50.8	1.128
LIC		CF	RР			1	1	6.00		1	0.50		
RCI		48	49	18.92	0.18	50.8	0.30	11.5	102.00	0.85	13.94	50.8	1.128
CI		49	50	27.1	0.14	50.8	0.43	17.27	102.00	0.83	20.17	50.8	1.128
		50	51	30.12	0.09	50.8	0.45	24.21	76.20	1.46	26.05	50.8	1.128
		51	52	17.69	0.06	50.8	0.47	28.91	76.20	1.44	29.94	50.8	1.128
	-	52	53	19.05	1.43	50.8	0.49	34.22	50.80	3.21	31.71	50.8	1.128
		53	56	43.8	1.41	50.8	0.56	41.30	50.80	2.51	34.25	50.8	1.128
		56	57	18.48	1.32	50.8	1.24	43.64	50.80	1.81	35.57	50.8	1.128
		57	58	33.69	1.14	50.8	1.23	49.86	50.80	1.16	41.47	50.8	1.128
		58	60	30.08	1.09	50.8	1.19	49.22	50.80	0.59	40.98	50.8	1.128
		60	61	52.98	1.01	50.8	1.10	40.35	50.80	0.10	39.03	50.8	1.128
		01	62	37.24	0.94	50.8	1.07	42.62	50.80	0.45	30.00	50.8	1.128
		61	22	20.40	0.91	50.8	1.03	43.10	50.80	1.26	26.57	50.8	1.128
		01	23	29.32	0.91	50.8	1.00	41.00	50.80	1.30	30.37	50.8	1.128

Tabla 6.14 Comparación de resultados obtenidos por cada método.

Debido al terreno muy accidentado la localidad para el diseño de la red se contemplaron dos cajas rompedoras de presión y se requirió de varias propuestas e iteraciones de diámetros para conseguir un dimensionamiento acorde a los parámetros de diseño; para esta red se mantuvo la velocidad en un rango permisible, mientras que las presiones quedan por debajo, teniendo presiones de hasta 11 m.c.a., en los nodos consecuentes a las CRP, tanto en el método de Hardy Cross como en EPANET 2.0. Aun así, el programa EPANET arrojó mayor número de presiones por debajo de la permisible, haciéndolo menos eficaz y eficiente.

En la Tabla 6.14 se demuestra que los diámetros arrojados por el programa EPANET 2.0 son de 1" a 3" mayores en comparación con los obtenidos por el método de Hardy Cross y el Algoritmo de Dijkstra para la misma red de distribución, debido a que, si se disminuía el diámetro de las tuberías, las presiones en los nodos disminuían considerablemente y no cumplían con la mínima permitida con los parámetros de diseño.

Puede apreciarse que los resultados del Algoritmo de Dijkstra son similares que el de Hardy Cross, esto debido a que el algoritmo considera una velocidad constante de 1.1283 m/s para determinar el diámetro mínimo, misma que se considera en el método de Hardy Cross. Por lo tanto, el algoritmo no pude ser considerado como un método de análisis hidráulico, sino más bien como una herramienta de apoyo para el diseño económico.

De igual manera se realizó la comparación del presupuesto total de la red obtenido por cada método, mediante un análisis hidráulico estático, ver Tabla 6.15.

MÉTODO	PRESUPUESTO TOTAL
Hardy Cross	\$2,055,778.17
Programa EPANET 2.0	\$2,220,051.41
Algoritmo de Dijkstra	\$2,052,454.85

Tabla 6.15 Comparación del presupuesto total de diseño por cada método.

Cabe notar que se obtiene el presupuesto más económico de la red mediante el Algoritmo de Dijkstra, pero no por ello el más factible, ya que sólo considera la ecuación de continuidad para encontrar el diámetro mínimo, subsiguiente es el método de Hardy Cross contra una diferencia de \$657,162.75 en comparación con el programa EPANET 2.0.

7 CONCLUSIONES Y RECOMENDACIONES

Método de Hardy Cross.

Mediante los resultados obtenidos de cada caso se demuestra que el método de Hardy Cross no sobrestima los diámetros de la tubería ya que considera las tres ecuaciones básicas de un fluido: ecuación de continuidad, ecuación de conservación de energía y ecuación de cantidad de movimiento, sin embargo, los resultados eficientes y eficaces del método dependerán de las consideraciones del proyectista, una de ellas el diámetro mínimo y máximo permisible en la tubería primaria de la red. Como fue el caso de las dos primeras redes que se diseñaron; el diámetro mínimo permisible en la tubería principal es de 2" (50.8 mm) por lo que ya no se consideró un diámetro comercial inferior para garantizar una velocidad de acuerdo con los parámetros de diseño, teniendo así velocidades ineficientes.

Se comprueba que con el método de Hardy Cross se obtienen diseños económicos en comparación con el programa de EPANET, esto al obtener diámetros menores que implican menores costos tanto en construcción (accesorios de la tubería, ruptura de pavimento existente, excavaciones de zanja, acarreos, entre otros.), operación y mantenimiento.

En el método de Hardy Cross se puede visualizar rápidamente en la hoja de cálculo si las suposiciones planteadas para el dimensionamiento de la red son correctas, observando que la suma de los gastos en el circuito sea igual a cero.

En la Tabla 7.1 se muestran las características del método como también sus ventajas y desventajas, conforme a los resultados obtenidos en esta tesis.

MÉTODO HARDY CROSS				
Permite:	Análisis hidráulico: estático.			
Ecuaciones de análisis:	 Continuidad. Conservación de energía. Cantidad de movimiento Hazen-Williams. Darcy-Weisbach. Chezy-Manning. 			
Metodología de solución:	 Método de Hardy Cross con correcciones en los caudales. 			

Tabla 7.1 Características, ventajas y desventajas del método de Hardy Cross.

	MÉTODO HARDY CROSS
Ventajas:	Diseña.Elaboración propia en una hoja de cálculo.
	• Rapidez de convergencia al hacer mejores suposiciones del dimensionamiento de la red.
	 Presentación de resultados: en cada iteración realizada en la hoja de cálculo.
	• No sobrestima diámetros de tubería.
Desventajas:	 Entrada de datos complicada y laboriosa. Al introducir una ecuación mal en la hoja de cálculo, los resultados de diseño serán erróneos y no representarán el comportamiento hidráulico de la red.
	• El diseño en redes mayores, es decir, con más de 80 nodos, el cálculo se vuelve tedioso por el número de iteraciones a realizar.

Método simulado (EPANET 2.0).

Se demuestra que los diámetros arrojados por el programa EPANET 2.0 son mayores de 1" a 3" en comparación con los diámetros obtenidos por el método de Hardy Cross y el Algoritmo de Dijkstra para la misma red de distribución. Esto debido a que, si se disminuía el diámetro de las tuberías, las presiones en los nodos disminuían considerablemente y no cumplían con la mínima permitida con los parámetros de diseño, teniendo así un análisis de hidráulico ineficiente e ineficaz en las velocidades de los dos primeros casos y en el tercer caso las presiones quedan por debajo de la permitida, sin embargo, de igual manera la eficiencia y eficacia del programa depende de las consideraciones del proyectista.

Se reitera que el programa EPANET no realiza simulaciones dinámicas, si no únicamente cuasi-estáticas en periodos extendidos.

El programa de simulación EPANET para las mismas redes y bajo las mismas condiciones, tiende a sobrestimar los diámetros para obtener un diseño funcional, es decir, si el diámetro de la tubería disminuye la velocidad aumenta y las presiones disminuyen, teniendo de esta manera un dimensionamiento de la red más costoso tanto de construcción, operación y

mantenimiento en comparación con el método Hardy Cross y el método heurístico (Algoritmo de Dijkstra).

El simulador EPNAET es de acceso gratuito en la web y cuenta con una excelente representación de resultados, ya sea en pantalla, gráficas, tablas o en archivos de texto, sin embargo, un error en la entrada de datos puede arrojar una simulación errónea.

En la Tabla 7.2 se muestran las características del programa como también sus ventajas y desventajas, conforme a los resultados obtenidos en esta tesis.

PROGRAMA EPANET 2.0						
Permite:	 Análisis hidráulico: estático y cuasi-estático. Calidad de agua. 					
Ecuaciones de análisis:	 Continuidad. Conservación de energía. Cantidad de movimiento Hazen-Williams. Darcy-Weisbach. Chezy-Manning. 					
Metodología de solución:	Método del Gradiente.					
Ventajas:	 Acceso gratuito desde la Web. Facilidad de uso. Excelente presentación de resultados: en pantalla, en tablas, en gráficas y en archivos de texto. 					
Desventajas:	 No diseña la red. Entrada de datos complicada. No representa adecuadamente el comportamiento hidráulico de la red. Sobrestima diámetros de tubería. 					

Tabla 7. 2 Características, ventajas y desventajas del programa EPANET 2.0.

Método Heurístico (Algoritmo de Dijkstra).

El Algoritmo de Dijkstra no puede ser considerado como un método de análisis hidráulico debido a que no cumple con las tres ecuaciones básicas para el diseño de una red de distribución, sin embargo, puede ser empleado como una herramienta para el diseño económico de una red al obtener los diámetros mínimos comerciales al resolver la ecuación de continuidad y localizarlos desde el nodo inicial (mayor elevación) hasta el nodo final (menor elevación).

En la Tabla 7.3 se muestran las características del algoritmo como también sus ventajas y desventajas, conforme a los resultados obtenidos en esta tesis.

ALGORITMO DE DIJKSTRA	
Permite:	• Dimensionamiento de la red.
Ecuaciones de análisis:	• Darcy-Weisbach.
Metodología de solución:	• Método Heurístico (Algoritmo de Dijkstra)
Ventajas:	 Determina los diámetros comerciales mínimos de la red.
	 Elaboración propia en un lenguaje de programación.
	• Rapidez de resultados.
	• Presentación de resultados: en pantalla y en tablas.
	• No sobrestima diámetros de tubería.
Desventajas:	• No realiza un análisis hidráulico de la red.
	• No el comportamiento hidráulico de la red.
	• No diseña.
	• Entrada de datos muy complicada.
	• Al introducir un dato mal en el programa, los resultados del dimensionamiento serán erróneos.

Tabla 7. 3 Características, ventajas y desventajas del Algoritmo de Dijkstra.

RECOMENDACIONES

Se recomienda que para un correcto análisis hidráulico de una red se realice mediante un método que no requiera de uso de un computador, es decir de una forma manual como es el método de Hardy Cross, en forma conjunta de un método simulado como es el caso del programa EPANET, ya que cada uno de ellos se complementan, con el primer método se obtendrían la distribución de los gastos en cada nodo y los diámetros mínimos comerciales en las tuberías y con el segundo analizaría su funcionalidad, tomando en cuenta que el simulador sobrestima los diámetros y queda en consideración del proyectista.

Otra recomendación sería generar un programa que unifique las metodologías del algoritmo de Dijkstra y la de Hardy Cross, obteniendo de esta manera un dimensionamiento económico de forma rápida y sencilla de la red, en el cual también se incluya el costo de la misma y poder comparar los resultados con el programa simulador EPANET 2.0.

BIBLIOGRAFÍA

- Alperovits, E., & Shamir, U. (1977). *Desing of optimal water distribution systems*. En Water Resources Research (págs. 885-900). Vol. 13, No.6.
- Bon Santoyo, H. (2017). *Tesis: Flujo no permanente en redes de distribución de agua potable*. Ciudad de México: UNAM.
- Carrillo, J., Isalas, U., Gómez, H., & Vega, E. (1998). "Selección de tuberías de una red de distribución de agua potable para que sea eficiente y económica". XVIII Congreso lationoamericano de hidráulica. Oaxaca, México.
- CONAGUA. (2007). *Datos Básicos*. En Manual de Agua Potable, Alcantarillado y Saneamiento (MAPAS). México, D.F.: Secretaría de Medio Ambiente y Recursos Naturales.
- CONAGUA. (2007). *Redes de distribución*. En Manual de Agua Potable, Alcantarillado y Saneamiento (MAPAS). México, D.F: Secretaría de Medio Ambiente y Recursos Naturales.
- CONAGUA. (2015). *Diseño de redes de distribución de agua potable*. En Manual de Agua Potable, Alcantarillado y Saneamiento (MAPAS). México, D.F.: Secretaría de Medio Ambiente y Recursos Naturales.
- Deb, & Sarkar A. (1971). Optimation in Desing of Hydraulics Network. Journal of the Sanitary Engineering Division, Proceedings of the American Society of Civil Engineerings. Vol. 97, No. SA2.
- Fuentes, O., & Fuentes, G. (1992). *Funcionamiento Hidráulico a presión en régimen no permanente de una red de tuberías*. Memorias del XV Congreso latinoamericano de hidráulica, Cartagena, Colombia.
- Fuertes, V., García, J., Iglesias, P., López, G., Martínez, F., & Pérez, R. (2002). Modelación y diseño de redes de abastecimiento de agua. Universidad Politécnica de Valencia. Grupo Mecánica de Fluidos.
- García Alcaraz, M. (2006). *Modelación y simulación de redes hidráulicas a presión mediante herramientas informáticas*. Cartagena: Univerdad Politécnica de Cartagena.
- Molina López, G. (2011). *Tesis: Modelación con EPANET de las redes de transporte de agua potable de la ciudad de Cartagena*. Cartagena: Universidad Politécnica de Cartagena.
- Pedraza F., L., López, D., & Salcedo, O. (2011). "Enrutamiento basado en el algoritmo de Dijktras para una red". Scielo, 48-50.

- Raman, V., & Raman, S. (1966). *New Method of solving Distribution System Netword Based on Equivalent Pipe Lengths*. Journal of the American Water Words Association.
- Rodriguez Tello, E. (2018). Algoritmos voraces (greedy). Tamaulipas.
- Rojas, O. (1994). *Hacia una mayor eficiencia hidráulica en sistemas de agua potable*. En Tesis de Maestría. México, D.F.: DEPFI, UNAM.
- Rosales, I., De Luna, F., Vega, E., & Fueste, O. (2002). "*Método para diseño óptimo de redes de distribución de agua potable*". Seminario hispano-brasileños sobre planificación, proyecto y operación de rede de abastecimiento de agua. Valencia, España.
- Rossman, L. A. (2000). EPANET 2.0 Users Manual. Environmental Protection Agency. Cincinnati, Ohio.
- Saldarriaga, J. (2013). *Hidráulica de tuberías. Abastecimiento de agua, redes, riegos.* Bogotá, Colombia: Alfaomega.
- Salgado, R., E., T., & P.E, O. (September de 1987). Extending the Gradient Method to Include Pressure Regulating Valves in Pipe Networks. Internacional Conference on Computer Applications for Water Supply an Distribution 1987, págs. 8-10.
- Sanvicente, H., & Frausto, J. (2003). "Optimización de los díametros de las tuberías de una red de distribución de agua mediante algoritmos de recocido simulado". Ingeniería hidráulica en México/enero-marzo, 105-118.
- Sotelo, G. (2002). Hidráulica General. Fundamentos. México, D.F: Limusa. Vol 1.
- Tong, A. e. (enero de 1961). *Analysis of Distribution Network by Balancing Equivalent Pipe Lengths.* Journal of the AWWA.
- Tzatchkov, V., & Alfonso M., M. (1991). "Diseño óptimo de rede hidráulicas mediante análisis consecutivos direccionados". *Seminario Internacional sobre uso eficiente del agua.*, (págs. 635-642). México, D.F.
- Vázquez, E. (1984). Un criterio para el diseño économico en redes de distribución de agua potable. México: Memorias del VIII Congreso Nacional de Hidráulica, AMH.
- Vázquez, E. (1990). "Método de Hardy Cross en el diseño económico de redes de distribución de agua potable". Ingeniería Hidráulica en México/septiembrediciembre, 9-14.
- Vázquez, E., & Ojeda. (1989). *Diseño económico de tuberías en redes de distribución de agua potable*. Universidad y Ciencia, vol. 6, núm. 12, UJAT, México.
- Vega, E. (2001). *Métodos para el diseño óptimo de redes de agua potable*. México, D.F.: Facultad de Ingeniería .
- Walski, T. M. (1984). *State of the Art Pipe Network Optimization*. En T. M. Walski, Computer Applications in Water Resources. Bufalo, New York: Journal ASCE.

- Walski, T. M., Chase, D., & Savic, D. (2001). Water distribution modeling. Waterbury. CT.
- Walski, T., Gessler, J., & Sjostrom, J. (1990). *Water Distribution Systems: Simulation and Sizing*. Michigan: Lewis Publishers, INC.
- Wood Ronald, J., & Carl O.A, C. (July de 1972). *Hydraulic Network Analysis Using Linear Theory*. Journal of the Hydraulics. Division, ASCE. Volum. 98, num. HY7.
Método de Hardy-Cross (Darcy - Weisbach) RED DE DISTRIBUCIÓN DE SAN JOSÉ EL PILÓN, GUERRERO

Datos

Temperatura del Fluido =	28 °C
Viscocidad cinemática =	8.333
tubería de FO.GA \mathcal{E} =	2.5
tubería de PVC $\mathcal{E} =$	1.5

8.33333E-07 2.50E-05 m

1.50E-06 m

									_														 ,	-
Circuito			Tra	mo	Longitud	Q(l/s)	Øcalc. (m)	Øcalc. (in)	Øcomer. (in)	Øcomer. (m)	Øcomer. (mm)	V (m/s)	Re	f	Hf	Hf/Q	$\Delta oldsymbol{Q}$	Q1	Hf1	Hfc	Vf	СР	СТ	CD
			Т	1	10.00																	407.75	407.25	0.50
			1	2	195.86	1.06	0.04	1.44	2	0.0508	50.8	0.5219	33141.84	0.024334748	1.30261						0.93	407.75	366.85	40.90
			2	3	90.15	0.97	0.04	1.39	2	0.0508	50.8	0.4805	30514.20	0.024728138	0.51648						0.85	407.75	365.85	41.90
			3	4	33.85	0.94	0.03	1.36	2	0.0508	50.8	0.4615	29304.76	0.024926456	0.18030						0.82	407.75	369.38	38.37
			4	5	55.46	0.92	0.03	1.35	2	0.0508	50.8	0.4543	28850.63	0.025004066	0.28720						0.81	407.75	373.73	34.02
			5	6	24.34	0.90	0.03	1.33	2	0.0508	50.8	0.4426	28106.58	0.025135191	0.12026						0.79	407.75	373.53	34.22
			6	7	49.83	0.89	0.03	1.32	2	0.0508	50.8	0.4375	27780.04	0.025194364	0.24107						0.78	407.75	372.13	35.62
			7	9	53.55	0.98	0.04	1.39	2	0.0508	50.8	0.8605	54640.93	0.020479367	0.81471	0.8305	0.04	1.0209	0.28	0.27	0.86	407.48	371.42	36.06
			9	10	52.79	0.34	0.02	0.82	2	0.0508	50.8	0.3018	19162.81	0.026166173	0.12621	0.3668	0.04	0.3840	0.05	0.04	0.30	407.45	365.34	42.11
		T	10	11	25.44	0.32	0.02	0.79	2	0.0508	50.8	0.2781	17661.32	0.026709315	0.05274	0.1663	0.04	0.3570	0.02	0.01	0.28	407.44	368.39	39.05
	Ι		11	12	24.71	0.30	0.02	0.77	2	0.0508	50.8	0.2667	16937.74	0.026994509	0.04762	0.1566	0.04	0.3440	0.02	0.01	0.27	407.43	368.39	39.04
	lito														1.28235				0.37	0.32				-
	ircı		9	76	87.99	0.64	0.03	1.12	2	0.0508	50.8	0.5587	35478.12	0.024021862	0.66199	1.0393	-0.04	0.5971	0.18	0.20	0.36	407.29	374.07	33.22
	Ü		76	73	34.24	0.58	0.03	1.07	2	0.0508	50.8	0.5112	32458.92	0.024432446	0.21931	0.3763	-0.04	0.5429	0.06	0.07	0.34	407.21	371.23	35.98
		- [73	74	26.63	0.32	0.02	0.80	2	0.0508	50.8	0.2839	18027.09	0.027627102	0.05949	0.1838	-0.13	0.1903	0.01	0.02	0.30	407.20	372.85	34.35
			74	75	13.58	0.31	0.02	0.78	2	0.0508	50.8	0.2720	17269.66	0.027896147	0.02811	0.0907	-0.13	0.1767	0.00	0.02	0.31	407.18	372.09	35.09
			75	12	22.8	0.30	0.02	0.77	2	0.0508	50.8	0.2659	16883.41	0.02804007	0.04534	0.1496	-0.13	0.1697	0.00	0.02	0.29	407.16	368.29	38.87
															1.01425	3.3598			0.26	0.32				
			12	13	58.67	0.58	0.03	1.07	2	0.0508	50.8	0.5113	32469.84	0.024430861	0.37601	0.6450	0.09	0.6765	0.16	0.14	0.59	407.29	367.54	39.75
			13	22	54.15	0.38	0.02	0.86	2	0.0508	50.8	0.3297	20933.60	0.026730541	0.15783	0.4199	-0.12	0.2588	0.02	0.01	0.29	407.28	367.35	39.93
		$ _+ $	22	23	30.85	0.22	0.02	0.65	2	0.0508	50.8	0.1888	11985.85	0.030412195	0.03354	0.1558	0.09	0.3087	0.02	0.00	0.27	407.28	365.54	41.74
			23	24	9.51	0.20	0.02	0.63	2	0.0508	50.8	0.1749	11108.40	0.030990853	0.00905	0.0454	0.09	0.2929	0.01	-0.01	0.26	407.29	365.00	42.29
			24	25	27.25	0.19	0.02	0.62	2	0.0508	50.8	0.1707	10837.91	0.031182846	0.02812	0.1445	0.09	0.2881	0.02	0.00	0.25	407.29	362.61	44.68
			25	27	41.28	0.16	0.01	0.57	2	0.0508	50.8	0.1425	9048.01	0.031892439	0.00618	0.0380	0.09	0.2559	0.00	-0.01	0.22	407.30	366.18	41.12
															0.61072				0.24	0.1261				
			75	12	22.8	0.30	0.02	0.77	2	0.0508	50.8	0.2659	16883.41	0.02804007	0.04534	0.1496	-0.13	0.1697	0.0045	0.02	0.25	407.41	368.39	39.02
			74	75	13.58	0.31	0.02	0.78	2	0.0508	50.8	0.2720	17269.66	0.027896147	0.02811	0.0907	-0.13	0.1767	0.0029	0.02	0.27	407.39	372.09	35.30
		-	73	74	26.63	0.32	0.02	0.80	2	0.0508	50.8	0.2839	18027.09	0.027627102	0.05949	0.1838	0.00	0.3237	0.0188	0.04	0.32	407.35	372.85	34.50
			73	72	23.07	0.24	0.02	0.69	2	0.0508	50.8	0.2119	13457.95	0.028648852	0.02979	0.1233	-0.09	0.1481	0.0035	0.02	0.34	407.33	367.73	39.60
			72	27	34.84	0.23	0.02	0.67	2	0.0508	50.8	0.2016	12801.78	0.029028893	0.04124	0.1794	-0.09	0.1364	0.0046	0.02	0.35	407.30	366.18	41.12
															0.20397	2.1754			0.03	0.1261				

Método de Hardy-Cross (Darcy - Weisbach) RED DE DISTRIBUCIÓN DE SAN JOSÉ EL PILÓN, GUERRERO

Datos

Temperatura del Fluido =	28 °C
Viscocidad cinemática =	8.33
tubería de FO.GA E =	2
tubería de PVC $\varepsilon =$	1

28 °C 8.33333E-07 2.50E-05 m 1.50E-06 m

Circuito			Tra	mo	Longitud	Q (l/s)	Øcalc. (m)	Øcalc. (in)	Øcomer. (in)	Øcomer. (m)	Øcomer. (mm)	V (m/s)	Re	f	Hf	Hf/Q	ΔQ	Q1	Hf1	Hfc	Vf	СР	CT	CD
			13	16	36.58	0.30	0.02	0.77	2	0.0508	50.8	0.2609	16567.63	0.027147018	0.06782	0.2280	0.02	0.3210	0.02	0.02	0.28	407.39	365.55	41.84
	Π	[16	17	41.45	0.28	0.02	0.74	2	0.0508	50.8	0.2445	15527.19	0.027602416	0.06864	0.2462	0.02	0.3023	0.03	0.02	0.27	407.38	366.51	40.87
	0 II	+	17	18	29.14	0.23	0.02	0.68	2	0.0508	50.8	0.2031	12894.53	0.028973532	0.03493	0.1509	0.02	0.2551	0.01	0.00	0.22	407.37	347.47	59.90
	uit		18	20	27.1	0.20	0.02	0.62	2	0.0508	50.8	0.1736	11020.44	0.030215225	0.02474	0.1251	0.02	0.2214	0.01	0.00	0.19	407.37	367.48	39.89
	lirc		20	22	19.27	0.17	0.01	0.57	2	0.0508	50.8	0.1454	9231.11	0.031715675	0.01296	0.0782	0.02	0.1893	0.01	0.00	0.17	407.38	367.35	40.03
	0														0.20909				0.08	0.0321				
		-	13	22	54.15	0.38	0.02	0.86	2	0.0508	50.8	0.3297	20933.60	0.025596741	0.15113	0.4021	-0.12	0.2588	0.0227	0.03208	0.33	407.34	367.35	39.99
															0.15113	1.2304		· ·	0.0227	0.0321				

Método de Hardy-Cross (Darcy - Weisbach) RED DE DISTRIBUCIÓN LAS JUNTAS GUERRERO

Datos

Temperatura del Fluido =	28 °C
Viscocidad cinemática =	8.33333
tubería de FO.GA $\varepsilon=$	2.50
tubería de PVC \mathcal{E} =	1.50

8.33333E-07 2.50E-05 m 1.50E-06 m

Sircuito		Tr	amo	Longitud	Q (l/s)	Øcalc. (m)	Øcalc. (in)	Øcomer. (in)	Øcomer. (m)	Øcomer. (mm)	V (m/s)	Re	f	Hf	Hf/Q	ΔQ	Q1	Hf1	Hf1/Q1	∆ Q1	Q2	Hf2	Hfc	Vf	СР	СТ	CD
Tanque		Т	1																						297.05	295.55	1.50
LA		1	2	11.85	1.980	0.05	1.98	2	0.0508	50.8	0.9769	55829.55	0.022186219	0.25173										0.98	296.80	271.05	25.75
		2	15	33.67	1.106	0.04	1.48	2	0.0508	50.8	0.5459	31199.57	0.024620827	0.24788	0.2240	-0.11	0.9916	0.20	0.20	-0.003	0.9881	0.20	0.20	0.55	296.60	259.66	36.94
		15	14	17.08	1.093	0.04	1.47	2	0.0508	50.8	0.5392	30816.26	0.024680409	0.12297	0.1125	-0.11	0.9780	0.10	0.10	-0.003	0.9745	0.10	0.10	0.54	296.49	259.12	37.37
		14	13	53.82	1.086	0.04	1.46	2	0.0508	50.8	0.5358	30621.82	0.024711053	0.38309	0.3528	-0.11	0.9711	0.31	0.32	-0.003	0.9676	0.30	0.31	0.54	296.18	259.13	37.05
		13	12	25.36	1.064	0.04	1.45	2	0.0508	50.8	0.5251	30009.12	0.024809523	0.17405	0.1635	-0.11	0.9494	0.14	0.15	-0.003	0.9459	0.14	0.14	0.53	296.04	257.29	38.75
		12	11	103.41	1.054	0.04	1.44	2	0.0508	50.8	0.5200	29720.42	0.024856956	0.69747	0.6617	-0.11	0.9391	0.55	0.59	-0.003	0.9356	0.55	0.55	0.52	295.49	257.30	38.19
	+	11	10	68.14	0.988	0.04	1.40	2	0.0508	50.8	0.4876	27867.99	0.025178326	0.40930	0.4141	-0.11	0.8734	0.32	0.37	-0.003	0.8699	0.32	0.32	0.49	295.17	256.96	38.21
		10	17	111.9	0.961	0.03	1.38	2	0.0508	50.8	0.4741	27092.27	0.025322408	0.63890	0.6649	-0.11	0.8459	0.50	0.59	-0.003	0.8424	0.49	0.50	0.47	294.67	257.19	37.48
		17	24	110.03	0.706	0.03	1.18	2	0.0508	50.8	0.3486	19920.45	0.027021271	0.36243	0.5130	-0.11	0.5916	0.25	0.43	-0.003	0.5881	0.25	0.26	0.35	294.41	257.24	37.17
		24	25	117.33	0.431	0.02	0.92	2	0.0508	50.8	0.2128	12162.36	0.030303215	0.16156	0.3746	-0.11	0.3164	0.09	0.27	-0.003	0.3129	0.09	0.09	0.21	294.32	255.78	38.54
		25	26	121.02	0.384	0.02	0.87	2	0.0508	50.8	0.1894	10826.65	0.031190987	0.13592	0.3540	-0.11	0.2690	0.07	0.25	-0.003	0.2656	0.07	0.07	0.19	294.25	257.32	36.93
,	╡Ĺ	26	27	97.15	0.335	0.02	0.81	2	0.0508	50.8	0.1653	9448.93	0.031511776	0.08396	0.2506	-0.11	0.2202	0.04	0.16	-0.003	0.2167	0.04	0.04	0.17	294.21	257.25	36.96
:	Ĭ													3.41754				2.55				2.53	2.58				
	ILC	2	3	4.2	0.869	0.03	1.31	2	0.0508	50.8	0.4286	24495.08	0.025852609	0.02001	0.0230	0.11	0.9836	0.03	0.03	0.003	0.9871	0.03	0.02	0.43	296.78	259.75	37.03
ç		3	4	27.22	0.867	0.03	1.31	2	0.0508	50.8	0.4278	24447.26	0.025863137	0.12925	0.1491	0.11	0.9819	0.17	0.17	0.003	0.9854	0.17	0.16	0.43	296.43	260.10	36.33
		4	5	107.78	0.856	0.03	1.30	2	0.0508	50.8	0.4224	24137.39	0.025932113	0.50022	0.5843	0.11	0.9710	0.64	0.66	0.003	0.9744	0.65	0.64	0.42	295.85	257.33	38.52
		5	6	143.15	0.813	0.03	1.27	2	0.0508	50.8	0.4009	22910.40	0.026218513	0.60516	0.7448	0.11	0.9274	0.79	0.85	0.003	0.9309	0.79	0.79	0.40	295.39	256.58	38.81
		6	20	123.04	0.457	0.02	0.95	2	0.0508	50.8	0.2257	12897.78	0.029872805	0.18783	0.4106	0.11	0.5723	0.29	0.51	0.003	0.5758	0.30	0.29	0.23	295.75	256.49	39.26
		20	21	117.43	0.408	0.02	0.90	2	0.0508	50.8	0.2012	11497.06	0.030726601	0.14651	0.3593	0.11	0.5227	0.24	0.46	0.003	0.5261	0.24	0.24	0.20	295.25	256.29	38.96
		21	31	121.85	0.360	0.02	0.84	2	0.0508	50.8	0.1778	10160.22	0.031696136	0.12247	0.3399	0.11	0.4753	0.21	0.45	0.003	0.4787	0.22	0.21	0.28	296.57	257.39	39.18
		27	36	78.86	0.130	0.01	0.51	2	0.0508	50.8	0.0642	3667.02	0.041717515	0.01359	0.1045	0.11	0.2450	0.05	0.20	0.003	0.2484	0.05	0.04	0.26	296.34	256.97	39.37
		36	29	93.08	0.098	0.01	0.44	2	0.0508	50.8	0.0485	2769.26	0.045717275	0.01002	0.1021	0.11	0.2131	0.05	0.22	0.003	0.2166	0.05	0.04	0.25	296.39	257.49	38.90
		29	30	95.46	0.061	0.01	0.35	2	0.0508	50.8	0.0299	1709.62	0.054072833	0.00463	0.0764	0.11	0.1756	0.04	0.22	0.003	0.1790	0.04	0.04	0.23	296.43	257.22	39.21
		31	30	196.3	0.101	0.01	0.45	2	0.0508	50.8	0.0500	2857.60	0.045707729	0.02251	0.2221	0.11	0.2163	0.10	0.47	0.003	0.2197	0.11	0.10	0.25	296.46	257.15	39.31
																T						I					
														1.76221	7.2019			2.61	7.66			2.64	2.58				

Método de Hardy-Cross (Darcy - Weisbach) RED DE DISTRIBUCIÓN DE TEPOZTLÁN

Datos

Temperatura del Fluido =	28 °C
Viscocidad cinemática =	8.33333E-07
tubería de FO.GA $\mathcal{E}=$	2.50E-05 m
tubería de PEAD $\varepsilon =$	1.50E-06 m

Circuito	T	ramo		Longitud	Q (l/s)	Øcalc. (m)	Øcalc. (in)	Øcomer. (in)	Øcomer. (m)	Øcomer (mm)	V (m/s)	Re	f	Hf	Hf/Q	ΔQ	Q1	Hf1	Hf1/Q1	∆ Q1	Q2	Hf2	Hfc	Vf	СР	СТ	CD
Tanque	1																								1884.56	1883.06	1.50
LA	1		2	11.82	3.35	0.07	2.57	3	0.0762	76.2	0.7346	67170.91	0.020907223	0.09										0.73	1884.47	1867.10	17.37
		2	67	3.73	2.322	0.05	2.14	3	0.0762	76.2	0.5091	46554.78	0.021176664	0.01	0.0059	0.17	2.4876	0.02	0.0063	-0.522	1.965	0.01	-0.34	0.43	1884.81	1866.93	17.88
		67	68	14.80	2.226	0.05	2.10	3	0.0762	76.2	0.4880	44623.96	0.021379287	0.05	0.0226	0.17	2.3913	0.06	0.0243	-0.522	1.869	0.04	-0.31	0.41	1885.12	1864.02	21.10
		68	69	50.02	2.201	0.05	2.08	3	0.0762	76.2	0.4826	44129.62	0.021433075	0.17	0.0759	0.17	2.3666	0.19	0.0816	-0.522	1.844	0.12	-0.23	0.40	1885.35	1856.58	28.77
		69	70	13.89	2.118	0.05	2.04	3	0.0762	76.2	0.4643	42459.01	0.021621053	0.04	0.0205	0.17	2.2833	0.05	0.0221	-0.522	1.761	0.03	-0.32	0.39	1885.67	1854.61	31.06
		70	6	18.64	2.025	0.05	2.00	3	0.0762	76.2	0.4441	40607.32	0.021841456	0.05	0.0265	0.17	2.1910	0.06	0.0287	-0.522	1.669	0.04	-0.31	0.37	1885.99	1853.54	32.45
		6	14	52.95	1.632	0.05	1.79	3	0.0762	76.2	0.3580	32733.10	0.022957644	0.10	0.0638	0.17	1.7983	0.13	0.0703	-0.522	1.276	0.06	-0.29	0.28	1886.27	1840.25	46.02
		14	36	35.41	1.544	0.04	1.75	2	0.0508	50.8	0.7619	46446.90	0.021226402	0.44	0.2835	0.64	2.1823	0.87	0.4006	1.133	3.316	2.02	1.67	1.64	1884.60	1839.07	45.53
	+	36	37	30.26	0.845	0.03	1.29	2	0.0508	50.8	0.4169	25411.28	0.024412798	0.13	0.1524	0.64	1.4829	0.40	0.2676	1.133	2.616	1.24	0.89	1.29	1883.72	1835.73	47.99
		37	38	22.52	0.794	0.03	1.25	2	0.0508	50.8	0.3920	23895.28	0.024779193	0.09	0.1083	0.64	1.4325	0.28	0.1952	1.133	2.566	0.90	0.55	1.27	1883.17	1837.90	45.27
		38	39	19.62	0.752	0.03	1.22	2	0.0508	50.8	0.3710	22616.75	0.025113981	0.07	0.0905	0.64	1.3900	0.23	0.1673	1.133	2.523	0.77	0.42	1.25	1882.75	1838.55	44.20
		39	40	54.13	0.719	0.03	1.19	2	0.0508	50.8	0.3549	21633.80	0.025389623	0.17	0.2414	0.64	1.3573	0.62	0.4556	1.133	2.491	2.08	1.73	1.23	1881.02	1844.20	36.82
Т		40	41	28.44	0.629	0.03	1.11	2	0.0508	50.8	0.3104	18921.94	0.026249258	0.07	0.1147	0.64	1.2672	0.29	0.2310	1.133	2.401	1.05	0.70	1.18	1880.31	1842.49	37.82
		41	46	23.28	0.582	0.03	1.07	2	0.0508	50.8	0.2870	17497.12	0.026772593	0.05	0.0886	0.64	1.2198	0.23	0.1857	1.133	2.353	0.84	0.49	1.16	1884.32	1837.70	46.62
														1.45				3.43				9.19	4.65				
		2	73	44.32	0.945	0.03	1.37	2	0.0508	50.8	0.4660	28408.71	0.025081336	0.24	0.2564	-0.17	0.7788	0.16	0.2114	0.522	1.301	0.46	0.81	0.64	1884.47	1868.13	16.34
		73	74	14.32	0.871	0.03	1.31	2	0.0508	50.8	0.4296	26188.32	0.025498157	0.07	0.0776	-0.17	0.7049	0.04	0.0629	0.522	1.227	0.13	0.48	0.61	1883.99	1867.66	16.33
		74	75	11.30	0.847	0.03	1.29	2	0.0508	50.8	0.4178	25470.90	0.02564411	0.05	0.0599	-0.17	0.6811	0.03	0.0482	0.522	1.203	0.10	0.45	0.59	1883.54	1861.57	21.97
		75	76	6.80	0.828	0.03	1.28	2	0.0508	50.8	0.4085	24904.78	0.025763611	0.03	0.0354	-0.17	0.6623	0.02	0.0283	0.522	1.184	0.06	0.41	0.58	1883.13	1859.08	24.05
		76	77	12.92	0.817	0.03	1.27	2	0.0508	50.8	0.4030	24564.10	0.025837462	0.05	0.0666	-0.17	0.6509	0.03	0.0531	0.522	1.173	0.11	0.46	0.58	1882.67	1857.01	25.66
		77	78	12.42	0.795	0.03	1.25	2	0.0508	50.8	0.3923	23916.82	0.025982004	0.05	0.0627	-0.17	0.6294	0.03	0.0496	0.522	1.152	0.10	0.45	0.57	1882.21	1851.89	30.32
		78	44	20.94	0.775	0.03	1.24	2	0.0508	50.8	0.3821	23294.59	0.026126463	0.08	0.1035	-0.17	0.6087	0.05	0.0813	0.522	1.131	0.17	0.52	0.56	1881.69	1847.03	34.66
		44	45	41.34	0.639	0.03	1.12	2	0.0508	50.8	0.3152	19213.01	0.02723741	0.11	0.1757	-0.17	0.4730	0.06	0.1301	0.522	0.995	0.27	0.62	0.49	1881.07	1839.16	41.91
	ſ	45	46	16.19	0.570	0.03	1.06	2	0.0508	50.8	0.2812	17141.92	0.027943223	0.04	0.0630	-0.17	0.4042	0.02	0.0447	0.522	0.926	0.09	0.44	0.46	1880.63	1837.70	42.93
										0				0.72	2.1955			0.46	2.8459			1.51	4.65				

Método de Hardy-Cross (Darcy - Weisbach) RED DE DISTRIBUCIÓN DE TEPOZTLÁN

Datos

Temperatura del Fluido =	28 °C
Viscocidad cinemática =	8.33333E-07
tubería de FO.GA $\mathcal{E}=$	2.50E-05 m
tubería de PEAD $\varepsilon =$	1.50E-06 m

Circuito	Tra	umo	Longitud	Q (l/s)	Øcalc. (m)	Øcalc. (in)	Øcomer. (in)	Øcomer. (m)	Øcomer (mm)	V (m/s)	Re	f	Нf	Hf/Q	ΔQ	Q1	Hf1	Hf1/Q1	∆ Q1	Q2	Hf2	Hfc	Vf	СР	СТ	CD
		14 16	30.18	0.640	0.03	1.12	2	0.0508	50.8	0.3160	19261.61	0.027222193	0.08	0.1285	0.47	1.1127	0.25	0.2233	0.611	1.724	0.60	1.13	0.85	1879.50	1832.64	46.86
		CRP																						1840.14	1835.14	5.00
		16 17	23.06	0.341	0.02	0.82	2	0.0508	50.8	0.1680	10244.27	0.031629796	0.02	0.0607	0.47	0.8129	0.12	0.1448	0.611	1.424	0.36	0.89	0.70	1839.25	1827.54	11.71
		17 18	23.04	0.302	0.02	0.77	2	0.0508	50.8	0.1491	9088.98	0.032618409	0.02	0.0555	0.47	0.7745	0.11	0.1421	0.611	1.386	0.35	0.89	0.68	1838.36	1818.68	19.68
		18 19	16.99	0.264	0.02	0.72	2	0.0508	50.8	0.1302	7934.70	0.033808654	0.01	0.0370	0.47	0.7361	0.08	0.1033	0.611	1.347	0.25	0.79	0.66	1837.57	1812.12	25.45
		19 20	17.82	0.236	0.02	0.68	2	0.0508	50.8	0.1162	7083.52	0.034862224	0.01	0.0357	0.47	0.7078	0.08	0.1074	0.611	1.319	0.26	0.80	0.65	1836.77	1806.10	30.67
		20 21	7.69	0.223	0.02	0.66	2	0.0508	50.8	0.1099	6698.04	0.035402644	0.00	0.0148	0.47	0.6950	0.03	0.0462	0.611	1.306	0.11	0.65	0.64	1836.13	1804.01	32.12
		21 22	10.87	0.205	0.02	0.64	2	0.0508	50.8	0.1009	6153.68	0.036248836	0.00	0.0197	0.47	0.6769	0.04	0.0651	0.611	1.288	0.16	0.69	0.64	1835.43	1800.12	35.31
		22 23	29.93	0.186	0.02	0.61	2	0.0508	50.8	0.0915	5579.20	0.036654922	0.01	0.0497	0.47	0.6578	0.12	0.1762	0.611	1.269	0.43	0.97	0.63	1834.47	1795.27	39.20
													0.15				0.82				2.53	6.80			_	_
		14 36	35.41	1.544	0.04	1.75	2	0.0508	50.8	0.7619	46446.90	0.021226402	0.44	0.2835	0.64	2.1823	0.87	0.4006	1.133	3.316	2.02	1.48	1.64	1884.60	1839.07	45.53
		36 37	30.26	0.845	0.03	1.29	2	0.0508	50.8	0.4169	25411.28	0.024412798	0.13	0.1524	0.64	1.4829	0.40	0.2676	1.133	2.616	1.24	0.70	1.29	1883.72	1835.73	47.99
IT		37 38	22.52	0.794	0.03	1.25	2	0.0508	50.8	0.3920	23895.28	0.024779193	0.09	0.1083	0.64	1.4325	0.28	0.1952	1.133	2.566	0.90	0.36	1.27	1883.17	1837.90	45.27
		38 39	19.62	0.752	0.03	1.22	2	0.0508	50.8	0.3710	22616.75	0.025113981	0.07	0.0905	0.64	1.3900	0.23	0.1673	1.133	2.523	0.77	0.23	1.25	1882.75	1838.55	44.20
		39 40	54.13	0.719	0.03	1.19	2	0.0508	50.8	0.3549	21633.80	0.025389623	0.17	0.2414	0.64	1.3573	0.62	0.4556	1.133	2.491	2.08	1.55	1.23	1881.02	1844.20	36.82
		40 41	28.44	0.629	0.03	1.11	2	0.0508	50.8	0.3104	18921.94	0.026249258	0.07	0.1147	0.64	1.2672	0.29	0.2310	1.133	2.401	1.05	0.52	1.18	1880.31	1842.49	37.82
	-	41 46	23.28	0.582	0.03	1.07	2	0.0508	50.8	0.2870	17497.12	0.026772593	0.05	0.0886	0.64	1.2198	0.23	0.1857	1.133	2.353	0.84	0.31	1.16	1880.00	1837.70	42.30
	-	46 47	37.41	1.086	0.04	1.46	2	0.0508	50.8	0.5358	32661.62	0.02300139	0.25	0.2282	0.47	1.5582	0.51	0.3275	0.611	2.169	0.99	0.46	1.07	1879.55	1832.19	47.30
		47 48	18.59	1.810	0.05	1.89	Z	0.0508	50.8	0.8930	54458.51	0.02049596	0.30	0.1684	0.47	2.2825	0.48	0.2124	0.011	2.894	0.78	0.25	1.45	1079.30	1829.03	49.03
	-		18.02	1 694	0.05	1.83	2	0.0508	50.8	0.8358	50040.63	0.020795746	0.28	0 1628	0.47	1 2217	0.14	0.1174	0.611	0.610	0.04	0.50	0.30	1838 37	1826 87	0.00
		10 50	27.10	0.220	0.03	0.66	2	0.0508	50.8	0.1085	6616.84	0.034858823	0.28	0.1028	-0.47	-0.2523	0.14	-0.0582	-0.611	0.864	0.17	-0.36	0.30	1838 73	1821.46	17.27
	H	+> <u>50</u>	30.12	0.180	0.02	0.60	2	0.0508	50.8	0.0888	5413.77	0.036986325	0.01	0.0490	-0.47	-0.2923	0.02	-0.0795	-0.611	0.904	0.22	-0.31	0.45	1839.04	1814.83	24.21
		51 52	17.69	0,135	0.01	0.52	2	0.0508	50.8	0.0666	4060.33	0.040395659	0.00	0.0236	-0.47	-0.3373	0.02	-0.0589	-0.611	0.949	0.16	-0.38	0.47	1839.42	1810.51	28.91
		52 53	19.05	0.085	0.01	0.41	2	0.0508	50.8	0.0419	2556.50	0.046961783	0.00	0.0186	-0.47	-0.3873	0.03	-0.0846	-0.611	0.999	0.22	-0.32	0.49	1839.73	1805.51	34.22
		53 56	43.80	0.056	0.01	0.33	2	0.0508	50.8	0.0276	1684.29	0.05436721	0.00	0.0326	0.47	0.5283	0.16	0.3072	0.611	1.140	0.76	0.22	0.56	1839.51	1798.21	41.30

Método de Hardy-Cross (Darcy - Weisbach) RED DE DISTRIBUCIÓN DE TEPOZTLÁN

Datos

Temperatura del Fluido =	28 °C
Viscocidad cinemática =	8.33333E-07
tubería de FO.GA $\mathcal{E}=$	2.50E-05 m
tubería de PEAD \mathcal{E} =	1.50E-06 m

Circuito	T	ramo		Longitud	Q (l/s)	Øcalc. (m)	Øcalc. (in)	Øcomer. (in)	Øcomer. (m)	Øcomer (mm)	V (m/s)	Re	f	Hf	Hf/Q	ΔQ	Q1	Hf1	Hf1/Q1	∆ Q1	Q2	Hf2	Hfc	Vf	СР	СТ	CD
		56	57	18.48	1.427	0.04	1.68	2	0.0508	50.8	0.7041	42919.20	0.021605366	0.20	0.1392	0.47	1.8993	0.35	0.1852	0.611	2.511	0.61	0.08	1.24	1839.43	1795.79	43.64
		57	58	33.69	1.412	0.04	1.67	2	0.0508	50.8	0.6967	42468.05	0.021656875	0.36	0.2516	0.47	1.8843	0.63	0.3358	0.611	2.496	1.11	0.58	1.23	1838.85	1788.99	49.86
		58	60	30.08	1.323	0.04	1.62	2	0.0508	50.8	0.6527	39791.24	0.021978541	0.28	0.2136	0.47	1.7953	0.52	0.2899	0.611	2.407	0.94	0.40	1.19	1838.45	1789.23	49.22
		60	61	52.98	1.144	0.04	1.50	2	0.0508	50.8	0.5644	34407.54	0.022724491	0.38	0.3364	0.47	1.6163	0.77	0.4752	0.611	2.228	1.46	0.93	1.10	1837.53	1791.18	46.35
		61	62	37.24	1.094	0.04	1.47	2	0.0508	50.8	0.5398	32903.72	0.022961803	0.25	0.2285	0.47	1.5663	0.51	0.3271	0.611	2.178	0.99	0.46	1.07	1837.07	1794.40	42.67
		62	63	20.46	1.006	0.04	1.41	2	0.0508	50.8	0.4963	30256.98	0.023417674	0.12	0.1177	0.47	1.4783	0.26	0.1730	0.611	2.090	0.51	-0.02	1.03	1837.09	1793.93	43.16
		63	23	29.32	0.940	0.03	1.36	2	0.0508	50.8	0.4638	28271.93	0.023796959	0.15	0.1602	0.47	1.4123	0.34	0.2407	0.611	2.024	0.70	0.16	1.00	1836.93	1795.27	41.66
														3.61	3.6620			7.69	5.6216			18.54	6.80				

ANEXO B

Archivos de entrada para el análisis hidráulico mediante un flujo permanente por el método simulado EPANET 2.0

Caso 1. Red de San Jose

[TITLE]

[JUNCTIONS]

;ID	Elev	Demand	Pattern	
N1	369.87	1.06		;
N2	366.85	0.97		;
N3	365.85	0.97		;
N4	369.38	0.94		;
N5	373.73	.92		;
N6	373.53	0.90		;
N7	372.13	0.89		;
N8	367.02	0.051		;
N9	371.42	1.086		;
N10	365.34	0.45		;
N11	368.39	0.423		;
N12	368.39	0.51		;
N13	367.54	0.6747		;
N14	362.41	0.028		;
N15	359.40	0.015		;
N16	365.55	0.389		;
N17	366.51	0.37		;
N18	367.47	0.32		;
N19	366.26	0.187		;
N20	367.48	0.289		;
N21	358.16	0.0182		;
N22	367.35	0.225		;
N23	365.54	0.31		;
N24	365.00	0.291		;
N25	365.61	0.286		;
N26	361.73	0.0182		;
N27	366.18	0.19615		;
N28	365.65	0.424		;

N29	366.88	0.289	;
N30	364.58	0.015	;
N31	367.84	0.252	;
N32	367.03	0.019	;
N33	370.04	0.1344	;
N34	375.44	0.07	;
N35	375.76	0.04	;
N36	372.31	0.017	;
N37	369.31	0.069	;
N77	376.30	0.010	;
N76	375.07	0.531	;
N73	371.23	0.48	;
N74	372.85	0.126	;
N75	372.09	0.113	;
N72	366.18	0.15	;
N79	364.11	0.0152	;
N80	365.11	0.011	;
N78	365.88	0.026	;
N41	364.74	0.032	;
N40	361.72	0.072	;
N39	362.21	0.088	;
N38	363.11	0.111	;

[RESERVOIRS]

;ID	Head	Pattern

[TANKS]

;ID	Elevation	InitLevel	MinLevel	MaxLevel	Diameter	MinVol	VolCurve	
1	390.25	17	15	18	50	0		;
[PIPES]								
;ID	Node1	Node2	Length	Diameter	Roughness	MinorLoss	Status	
C2	N1	N2	195.86	102	0.0015	0	Open	;
C3	N2	N3	90.15	102	0.0015	0	Open	;
C4	N3	N4	33.85	102	0.0015	0	Open	;
C5	N4	N5	55.46	102	0.0015	0	Open	;
C6	N5	N6	24.32	76.2	0.0015	0	Open	;
C7	N6	N7	49.83	76.2	0.0015	0	Open	;
C8	N7	N8	99.76	50.8	0.0015	0	Open	;

C9 C10 C11	N7 N9 N10 N11 N12	N9 N10 N11 N12	53.55 52.79 25.44	76.2 76.2 76.2	0.0015 0.0015	0 0	Open Open	;;
C10 C11 C12	N9 N10 N11 N12	N10 N11 N12	52.79 25.44	76.2 76.2	0.0015	0	Open	;
C11	N10 N11 N12	N11 N12	25.44	76.2	0.0015			
C12	N11 N12	N12		70.2	0.0015	0	Open	;
012	N12		24.71	76.2	0.0015	0	Open	;
C13		N75	22.8	76.2	0.0015	0	Open	;
C14	N75	N74	13.58	76.2	0.0015	0	Open	;
C15	N74	N73	26.63	76.2	0.0015	0	Open	;
C16	N9	N76	87.99	76.2	0.0015	0	Open	;
C17	N76	N77	18.16	50.8	0.0015	0	Open	;
C18	N76	N73	34.24	76.2	0.0015	0	Open	;
C19	N12	N13	58.67	76.2	0.0015	0	Open	;
C20	N13	N22	54.15	76.2	0.0015	0	Open	;
C21	N13	N16	36.58	76.2	0.0015	0	Open	;
C22	N16	N17	41.45	76.2	0.0015	0	Open	;
C23	N17	N18	29.14	76.2	0.0015	0	Open	;
C24	N78	N80	21.43	50.8	0.0015	0	Open	;
C25	N17	N78	12.35	50.8	0.0015	0	Open	;
C26	N78	N79	29.68	50.8	0.0015	0	Open	;
C28	N13	N14	25.59	50.8	0.0015	0	Open	;
C29	N22	N20	19.27	76.2	0.0015	0	Open	;
C30	N22	N23	30.85	76.2	0.0015	0	Open	;
C31	N24	N23	9.51	76.2	0.0015	0	Open	;
C32	N25	N24	27.25	76.2	0.0015	0	Open	;
C33	N27	N25	41.28	76.2	0.0015	0	Open	;
C34	N73	N72	23.07	76.2	0.0015	0	Open	;
C35	N72	N27	34.84	76.2	0.0015	0	Open	;
C36	N27	N28	47.65	50.8	0.0015	0	Open	;
C37	N28	N29	43.83	50.8	0.0015	0	Open	;
C38	N29	N31	55.38	50.8	0.0015	0	Open	;
C39	N31	N37	137.03	50.8	0.0015	0	Open	;
C40	N31	N32	37.19	50.8	0.0015	0	Open	;
C41	N31	N33	126.16	50.8	0.0015	0	Open	;
C42	N33	N34	63.94	50.8	0.0015	0	Open	;
C43	N34	N35	39.82	50.8	0.0015	0	Open	;
C44	N35	N36	33.43	50.8	0.0015	0	Open	;
C45	N40	N41	61.94	50.8	0.0015	0	Open	;
C46	N39	N40	79.06	76.2	0.0015	0	Open	;
C47	N38	N39	32.31	50.8	0.0015	0	Open	;
C48	N28	N38	43.57	50.8	0.0015	0	Open	;

C49	N20	N18		27.10	76.2	2	0.0015	0		Open	;
C50	N18	N19		36.75	50.8	\$	0.0015	0		Open	;
C51	N20	N21		35.81	50.8	3	0.0015	0		Open	;
C52	N25	N26		35.68	50.8	3	0.0015	0		Open	;
C53	N29	N30		29.19	50.8	\$	0.0015	0		Open	;
C27	N14	N15		30.09	50.8	\$	0.0015	0		Open	;
1	1	N1		10	102		0.0015	0		Open	;
[PUMPS]											
;ID	Node1		Node2		Paramet	ers					
[VALVES]											
;ID	Node1		Node2		Diamete	r	Type S	etting	MinorLoss		
[TAGS]											
[DEMANDS]											
;Junction	Demand		Pattern		Categor	y					
[STATUS]											
	Status/Sattin	~									
,ID	Status/Settin	ig									
[PATTERNS]											
;ID	Multipliers										
	1										
[CURVES]											
;ID	X-Value		Y-Value								
[CONTROLS]											
[ENERGY]											
Global	Efficiency	75									
Global	Price	0									
Demand	Charge	0									
	-										
[EMITTERS]											
;Junction	Coefficient										

[QUALITY] ;Node InitQual [SOURCES] ;Node Type Quality Pattern [REACTIONS] Coefficient ;Type Pipe/Tank [REACTIONS] Order Bulk 1 Order Tank 1 Order Wall 1 Global Bulk 0 Global Wall 0 Limiting Potential 0 0 Roughness Correlation [MIXING] ;Tank Model [TIMES] Duration 0:00 Hydraulic Timestep 1:00 0:05 Quality Timestep Pattern Timestep 1:00 Pattern Start 0:00 Report Timestep 1:00 0:00 Report Start Start ClockTime 12 am Statistic NONE

[REPORT]

Status	No
Summary	No
Page	0

[OPTIONS]

Units	LPS		
Headloss	D-W		
Specific	Gravity	1	
Viscosity	1		
Trials	80		
Accuracy	0.001		
CHECKFREQ	10		
MAXCHECK	10		
DAMPLIMIT	0		
Unbalanced	Continue		10
Pattern	P1		
Demand	Multiplier	1.0	
Emitter	Exponent	0.5	
Quality	None	mg/L	
Diffusivity	1		
Tolerance	0.01		

[COORDINATES]

;Node	X-Coord	Y-Coord
N1	697.41	9231.12
N2	1873.84	7338.80
N3	2316.14	6399.48
N4	2676.37	6280.92
N5	3337.54	6226.20
N6	3506.26	6445.07
N7	4048.87	6290.04
N8	3506.26	7302.32
N9	4418.22	5756.54
N10	4997.32	5637.99
N11	5106.75	5355.28
N12	5366.66	5223.04
N13	6027.84	5172.88
N14	6018.72	5487.51
N15	6077.99	5815.82
N16	6461.02	5163.76
N17	6898.76	4981.37
N18	6693.57	4712.34
N19	6930.68	4356.68
N20	6465.58	4507.15

N21	6734.61	4183.40
N22	6255.83	4575.55
N23	6132.71	4242.68
N24	6046.08	4192.52
N25	5904.72	3887.01
N26	6274.07	3700.06
N27	5494.34	4142.36
N28	5111.31	3759.34
N29	4714.61	3444.71
N30	4960.84	3216.72
N31	4231.27	3038.89
N32	4199.35	2614.82
N33	3209.87	2003.81
N34	2635.33	1566.07
N35	2379.98	1178.48
N36	2370.86	795.46
N37	2685.49	3389.99
N77	4523.10	4867.38
N76	4723.73	4821.78
N73	5042.92	4602.91
N74	5248.11	4826.34
N75	5289.15	4981.37
N72	5166.03	4361.24
N79	7236.19	4726.02
N80	7263.55	5086.25
N78	7026.44	5022.41
N41	7068.45	2278.68
N40	6558.28	2792.66
N39	5876.79	3375.16
N38	5530.33	3485.57
1	249.46	9470.32

[VERTICES]

[LABELS]

;X-Coord	Y-Coord

Label & Anchor Node

[BACKDROP]

DIMENSIONS	0.00	0.00	10000.00	10000.00
UNITS	None			
FILE				
OFFSET	0.00	0.00		

[END]

Caso 2. Red Las Juntas

[TITLE]

[JUNCTIONS]

;ID	Elev	Demand	Pattern	
N1	271.05	1.98		;
N2	259.66	1.96		;
N3	259.75	0.987		• •
N4	260.10	0.985		;
N5	257.33	0.974		;
N6	256.58	0.93		;
N7	256.76	0.18		
N8	257.00	0.029		
N9	257.03	0.118		• •
N10	257.19	0.869		
N11	256.96	0.935		
N12	257.30	0.945		
N13	257.29	0.96		
N14	259.13	0.97		
N15	259.12	0.99		
N16	257.25	0.023		
N17	257.24	0.842		
N18	257.09	0.209		
N19	256.68	0.125		
N20	256.49	0.576		
N21	256.29	0.526		
N22	256.63	0.209		
N23	256.99	0.124		
N24	255.78	0.588		
N25	257.32	0.312		
N26	257.25	0.265		;

N27	256.97	0.248	;
N28	256.69	0.119	;
N29	257.22	0.18	;
N30	257.15	0.219	;
N31	257.39	0.479	;
N32	256.73	0.209	;
N33	257.06	0.122	;
N34	257.16	0.04	;
N36	257.49	0.22	;
N37	256.95	0.02	;
N38	256.56	0.117	;
N39	256.65	0.05	;
N40	256.85	0.0365	;
N41	256.92	0.017	;

[RESERVOIRS]

;ID	Head	Pattern

[TANKS]

;ID	Elevation	InitLevel	MinLevel	MaxLevel	Diameter	MinVol	VolCurve	
TAN1	281.05	13.30	10	13.50	5.30	0		;
[PIPES]								
;ID	Node1	Node2	Length	Diameter	Roughness	MinorLoss	Status	
C2	N1	N2	11.85	76.2	0.0015	0	Open	;
C3	N2	N3	4.20	62.1	0.0015	0	Open	;
C4	N3	N4	27.22	62.1	0.0015	0	Open	;
C5	N4	N5	107.78	62.1	0.0015	0	Open	;
C6	N5	N6	143.15	62.1	0.0015	0	Open	;
C7	N6	N20	123.04	62.1	0.0015	0	Open	;
C8	N20	N21	117.43	62.1	0.0015	0	Open	;
C9	N21	N31	121.85	62.1	0.0015	0	Open	;
C10	N31	N30	196.30	62.1	0.0015	0	Open	;
C11	N2	N15	33.67	62.1	0.0015	0	Open	;
C12	N15	N14	17.08	62.1	0.0015	0	Open	;
C13	N14	N13	53.82	62.1	0.0015	0	Open	;
C14	N13	N12	25.36	62.1	0.0015	0	Open	;
C15	N12	N11	103.41	62.1	0.0015	0	Open	;
C16	N11	N10	68.14	62.1	0.0015	0	Open	;

C17	N10	N17	111.90	62.1	0.0015	0	Open	;
C18	N17	N24	110.03	62.1	0.0015	0	Open	;
C19	N24	N25	117.33	62.1	0.0015	0	Open	;
C20	N25	N26	121.02	62.1	0.0015	0	Open	;
C22	N36	N27	78.86	62.1	0.0015	0	Open	;
C23	N29	N36	93.08	62.1	0.0015	0	Open	;
C24	N30	N29	95.46	62.1	0.0015	0	Open	;
C26	N24	N37	53.06	50.8	0.0015	0	Open	;
C27	N6	N7	96.74	50.8	0.0015	0	Open	;
C28	N9	N7	93.47	50.8	0.0015	0	Open	;
C29	N9	N10	100.56	50.8	0.0015	0	Open	;
C30	N6	N38	75.55	62.1	0.0015	0	Open	;
C31	N38	N39	32.64	62.1	0.0015	0	Open	;
C32	N39	N40	70.64	50.8	0.0015	0	Open	;
C33	N38	N40	69.06	50.8	0.0015	0	Open	;
C34	N40	N41	42.44	50.8	0.0015	0	Open	;
C35	N20	N19	96.84	50.8	0.0015	0	Open	;
C36	N19	N18	93.97	50.8	0.0015	0	Open	;
C37	N18	N17	96.88	50.8	0.0015	0	Open	;
C38	N7	N19	119.31	50.8	0.0015	0	Open	;
C39	N9	N18	111.08	50.8	0.0015	0	Open	;
C41	N22	N23	94.65	50.8	0.0015	0	Open	;
C42	N23	N24	96.65	50.8	0.0015	0	Open	;
C43	N18	N23	114.60	50.8	0.0015	0	Open	;
C44	N19	N22	114.90	50.8	0.0015	0	Open	;
C45	N33	N34	89.39	50.8	0.0015	0	Open	;
C46	N33	N32	96.11	50.8	0.0015	0	Open	;
C47	N32	N31	96.21	50.8	0.0015	0	Open	;
C48	N23	N33	118.71	50.8	0.0015	0	Open	;
C49	N22	N32	119.20	50.8	0.0015	0	Open	;
C50	N28	N29	83.77	50.8	0.0015	0	Open	;
C51	N32	N28	114.34	50.8	0.0015	0	Open	;
C52	N28	N27	96.71	50.8	0.0015	0	Open	;
C53	N33	N27	115.92	50.8	0.0015	0	Open	;
C54	N7	N8	72.26	50.8	0.0015	0	Open	;
C55	N12	N9	83.01	50.8	0.0015	0	Open	;
C56	N11	N16	59.31	50.8	0.0015	0	Open	;
C1	TAN1	N1	10	76.2	0.0015	0	Open	;
C21	N26	N27	97.15	62.1	0.0015	0	Open	;

C40	N21	N22	97.59	50.8	0.0015	0	Open	;
[PUMPS]								
;ID	Node1	Node2		Parameters				
[VALVES]								
;ID	Node1	Node2		Diameter	Type Setting	MinorLoss		
[TAGS]								
[DEMANDS]								
;Junction	Demand	Pattern		Category				
[STATUS]								
;ID	Status/Settin	g						
[PATTERNS]								
;ID	Multipliers							
[CURVES]								
;ID	X-Value	Y-Valu	e					
[CONTROLS]								
[RULES]								
[ENERGY]								
Global	Efficiency	75						
Global	Price	0						
Demand	Charge	0						
[QUALITY]								
;Node	InitQual							
[SOURCES]								
;Node	Туре	Quality		Pattern				
[REACTIONS]								
;Type	Pipe/Tank	Coeffic	ient					

[REACTIONS]

Order	Bulk	1
Order	Tank	1
Order	Wall	1
Global	Bulk	0
Global	Wall	0
Limiting	Potential	0
Roughness	Correlation	0

Model

[MIXING]

[TIMES]

Duration	0:00	
Hydraulic	Timestep	1:00
Quality	Timestep	0:05
Pattern	Timestep	1:00
Pattern	Start	0:00
Report	Timestep	1:00
Report	Start	0:00
Start	ClockTime	12
Statistic	NONE	

am

[REPORT]

Status	No
Summary	No
Page	0

[OPTIONS]

Units	LPS	
Headloss	D-W	
Specific	Gravity	1
Viscosity	1	
Trials	100	
Accuracy	0.001	
CHECKFREQ	2	
MAXCHECK	10	
DAMPLIMIT	0	

Unbalanced	Continue	10
Pattern	P1	
Demand	Multiplier	1.0
Emitter	Exponent	0.5
Quality	None	mg/L
Diffusivity	1	
Tolerance	0.01	

[COORDINATES]

;Node	X-Coord	Y-Coord
N1	6860.20	8967.43
N2	7014.01	9037.59
N3	7005.91	9153.63
N4	6663.20	9075.37
N5	5459.67	9499.04
N6	4822.82	7925.81
N7	5829.36	7367.21
N8	6217.95	8136.29
N9	6768.45	6800.53
N10	7831.66	6244.64
N11	8222.94	6962.44
N12	7221.80	7669.45
N13	6981.63	7858.34
N14	7148.94	8457.41
N15	7175.92	8675.99
N16	8800.42	6603.54
N17	7213.70	5089.67
N18	6199.06	5615.88
N19	5200.61	6098.92
N20	4175.18	6614.33
N21	3549.13	5373.02
N22	4596.15	4881.89
N23	5613.48	4396.16
N24	6641.62	3899.63
N25	6042.55	2655.62
N26	5397.60	1363.03
N27	4374.87	1897.34
N28	3349.44	2407.36
N29	2885.29	1535.74

N30	1846.37	2018.77		
N31	2914.98	4077.73		
N32	3942.66	3631.82		
N33	4983.29	3155.11		
N34	5936.71	2672.58		
N36	3900.58	1106.40		
N37	7193.05	3588.87		
N38	4036.66	8341.11		
N39	4170.26	8724.66		
N40	3334.21	8802.24		
N41	2834.30	8819.47		
TAN1	6793.27	8950.93		
[VERTICES]				
;Link	X-Coord	Y-Coord		
[LABELS]				
;X-Coord	Y-Coord	Label & Anchor	Node	
[BACKDROP]				
DIMENSIONS	0.00	0.00	10000.00	10000.00
UNITS	None			
FILE				
OFFSET	0.00	0.00		
[END]				

Caso 3. Red de Tepoztlán

[TITLE]

[JUNCTIONS]

;ID	Elev	Demand	Pattern	
N1	1872.06	3.35		;
N2	1867.10	2.026		;
N6	1852.46	1.337		;
N14	1840.25	1.45		;
N16	1832.64	1.366		;
N17	1827.54	1.066		;

; ; ; ; ; ; ; ; ; ; ; : : ; ; : ; ; ; : : ; ; ; : ; ; : : ; ; ; ; ; ; ; ; ; ;

N18	1818.68	1.027
N19	1812.12	0.989
N20	1806.10	0.961
N21	1804.01	0.948
N22	1800.12	0.930
N23	1795.27	0.911
N36	1839.07	2.197
N37	1835.73	2.146
N38	1837.90	2.104
N39	1838.55	2.071
N40	1844.20	1.981
N41	1842.49	1.933
N46	1837.70	1.811
N44	1847.03	1.070
N45	1839.16	0.934
N47	1832.19	1.694
N48	1829.65	0.212
N49	1827.87	0.181
N50	1821.46	0.135
N51	1814.83	0.085
N52	1810.51	0.056
N53	1805.51	1.427
N56	1798.21	1.412
N57	1795.79	1.323
N58	1788.99	1.144
N60	1789.23	1.094
N61	1791.18	1.006
N62	1794.40	0.944
N63	1793.93	0.910
N67	1866.93	1.93
N68	1864.02	1.905
N69	1856.58	1.822
N70	1854.61	1.799
N73	1868.13	1.24
N74	1867.66	1.166
N75	1861.57	1.142
N76	1859.08	1.124
N77	1857.01	1.112
N78	1851.89	1.091

[RESERVOIRS]

;ID	Head	Pattern
E1	1880.06	;
E2	1850	;
E3	1842	;

[TANKS]

-	-		
;ID		Elevation	InitLevel

[PIPES]

;ID	Node1	Node2	Length	Diameter	Roughness	MinorLoss	Status	
C1	E1	N1	10	152	0.0015	0	Open	;
C2	N1	N2	11.82	152	0.0015	0	Open	;
C8	N2	N67	3.73	102	0.0015	0	Open	;
C9	N67	N68	14.80	102	0.0015	0	Open	;
C10	N68	N69	50.02	102	0.0015	0	Open	;
C11	N69	N70	13.89	102	0.0015	0	Open	;
C22	N6	N14	52.95	102	0.0015	0	Open	;
C24	N16	N17	23.06	76.2	0.0015	0	Open	;
C25	N17	N18	23.04	50.8	0.0015	0	Open	;
C26	N18	N19	16.99	50.8	0.0015	0	Open	;
C27	N19	N20	17.82	50.8	0.0015	0	Open	;
C28	N20	N21	7.69	50.8	0.0015	0	Open	;
C29	N21	N22	10.87	50.8	0.0015	0	Open	;
C30	N22	N23	29.93	50.8	0.0015	0	Open	;
C31	N23	N63	29.32	50.8	0.0015	0	Open	;
C32	N63	N62	20.46	50.8	0.0015	0	Open	;
C33	N62	N61	37.24	50.8	0.0015	0	Open	;
C34	N61	N60	52.98	50.8	0.0015	0	Open	;
C37	N58	N60	30.08	50.8	0.0015	0	Open	;
C38	N57	N58	33.69	50.8	0.0015	0	Open	;
C40	N53	N56	43.80	50.8	0.0015	0	Open	;
C41	N52	N53	19.05	50.8	0.0015	0	Open	;
C42	N51	N52	17.69	76.2	0.0015	0	Open	;
C43	N50	N51	30.12	76.2	0.0015	0	Open	;
C44	N49	N50	27.10	102	0.0015	0	Open	;
C45	N48	N49	18.92	102	0.0015	0	Open	;

MinLevel

MaxLevel

Diameter

MinVol

VolCurve

[VALVES] ;ID	1	Node1	Node2	Dia	imeter	Type Setting	MinorI	Loss
;ID	1	Node1	Node2	Par	ameters			
[PUMPS]								
							Ĩ	,
C6	N70	N6	18.64	102	0.0015	0	Open	;
C39	N56	N57	18.48	50.8	0.0015	0	Open	:
C13	E2	N16	15.09	152	0.0015	0	Open	;
C5	N14	E2	15.09	50.8	0.0015	0	Open	;
C4	E3	N48	9.295	102	0.0015	0	Open	;
C3	N47	E3	9.295	76.2	0.0015	0	Open	;
C65	N45	N46	16.19	76.2	0.0015	0	Open	;
C64	N44	N45	41.34	76.2	0.0015	0	Open	;
C61	N78	N44	20.94	76.2	0.0015	0	Open	:
C60	N77	N78	12.42	76.2	0.0015	0	Open	:
C59	N76	N77	12.92	76.2	0.0015	0	Open	:
C58	N75	N76	6.80	76.2	0.0015	0	Open	;
C57	N74	N75	11.30	76.2	0.0015	0	Open	;
C56	N73	N74	14.32	102	0.0015	0	Open	:
C55	N2	N73	44.32	102	0.0015	0	Open	:
C54	N14	N36	35.41	102	0.0015	0	Open	;
C53	N36	N37	30.26	102	0.0015	0	Open	:
C52	N37	N38	22.52	102	0.0015	0	Open	;
C51	N38	N39	19.62	102	0.0015	0	Open	:
C50	N39	N40	54.13	102	0.0015	0	Open	;
C49	N40	N41	28.44	102	0.0015	0	Open	;
C48	N41	N46	23.28	50.8	0.0015	0	Open	:
C47	N46	N47	37.41	76.2	0.0015	0	Open	:

Category

[TAGS]

[DEMANDS]

;Junction	Demand	Pattern

[STATUS]

;ID

Status/Setting

ANEXO B

[CURVES]			
;ID	X-Value	Y-Value	
[CONTROLS]			
[RULES]			
[ENERGY]			
Global	Efficiency	75	75
Global	Price	0	0
Demand	Charge	0	0
[QUALITY]			
:Node	InitQual		
[SOURCES]			
;Node	Type	Quality	Pattern
[REACTIONS]			
;Type	Pipe/Tank	Coefficient	
[REACTIONS]			
Order	Bulk	1	
Order	Tank	1	
Order	Wall	1	
Global	Bulk	0	
Global	Wall	0	
Limiting	Potential	0	
Roughness	Correlation	0	
[MIXING]			
;Tank	Model		
[TIMES]			
Duration	0		
Hydraulic	Timestep	1:00	
Quality	Timestep	0:05	
Pattern	Timestep	1:00	
Pattern	Start	0:00	

Report	Timestep	1:00
Report	Start	0:00
Start	ClockTime	12 am
Statistic	None	
[REPORT]		
Status	No	
Summary	No	
Page	0	
[OPTIONS]		
Units	LPS	
Headloss	D-W	
Specific	Gravity	1
Viscosity	1	
Trials	300	
Accuracy	0.001	
CHECKFREQ	2	
MAXCHECK	10	
DAMPLIMIT	0	
Unbalanced	Continue	10
Pattern	1	
Demand	Multiplier	1.0
Emitter	Exponent	0.5
Quality	None	mg/L
Diffusivity	1	
Tolerance	0.01	

[COORDINATES]

;Node	X-Coord	Y-Coord
N1	5315.31	2867.86
N2	5294.22	3156.04
N6	2988.80	4217.37
N14	2658.45	5496.60
N16	2813.09	6283.82
N17	2876.34	6867.20
N18	2960.69	7457.61
N19	3284.01	7752.82
N20	3656.53	8019.91

N21	3480.81	8174.54
N22	3768.99	8244.83
N23	3607.33	9003.93
N36	3537.04	5285.74
N37	4155.57	4856.99
N38	4654.61	5201.39
N39	4830.33	5665.29
N40	6186.87	5517.69
N41	6903.80	5447.40
N46	7515.30	5665.29
N44	6854.60	4463.38
N45	7557.47	5222.48
N47	8302.51	6213.53
N48	8000.28	6571.99
N49	7508.27	6635.25
N50	6854.60	6368.16
N51	6257.16	6796.91
N52	5983.04	7169.44
N53	5898.69	7668.47
N56	7002.20	7900.42
N57	7367.69	8202.66
N58	7768.33	8996.90
N60	7016.26	9025.02
N61	5752.06	9547.99
N62	4781.13	9474.85
N63	4359.40	9249.93
N67	5188.79	3149.01
N68	4865.47	3303.64
N69	3684.65	3837.82
N70	3473.78	4161.15
N73	6425.84	2994.38
N74	6812.42	2959.23
N75	6938.94	3233.35
N76	6805.40	3409.07
N77	6587.51	3648.05
N78	6601.56	3936.23
E1	5322.34	2713.23
E2	2745.55	5920.32
E3	8158.67	6406.03

[VERTICES]				
;Link	X-Coord	Y-Coord		
C47	7483.15	5661.78		
[BACKDROP]				
DIMENSIONS	0.00	0.00	10000.00	10000.00
UNITS	None			
FILE				
OFFSET	0.00	0.00		

[END]

Análisis hidráulico mediante un flujo no permanente por el método simulado EPANET 2.0

Caso 1. Red de San José

[TITLE]

[JUNCTIONS]

;ID	Elev	Demand	Pattern	
N1	369.87	0.705	1	;
N2	366.85	0.649	1	• •
N3	365.85	0.649	1	•
N4	369.38	0.623	1	;
N5	373.73	0.613	1	;
N6	373.53	0.598	1	;
N7	372.13	0.591	1	;
N8	367.02	0.051	1	;
N9	371.42	0.548	1	;
N10	365.34	0.192	1	;
N11	368.39	0.177	1	;
N12	368.39	0.17	1	;
N13	367.54	0.326	1	;
N14	362.41	0.016	1	;
N15	359.40	0.0085	1	;
N16	365.55	0.166	1	;
N17	366.51	0.156	1	• •
N18	367.47	0.129	1	• •
N19	366.26	0.01	1	• •

N20	367.48	0.111	1	;
N21	358.16	0.01	1	;
N22	367.35	0.303	1	;
N23	365.54	0.12	1	;
N24	365.00	0.109	1	;
N25	365.61	0.091	1	;
N26	361.73	0.01	1	;
N27	366.18	0.128	1	;
N28	365.65	0.236	1	;
N29	366.88	0.1614	1	;
N30	364.58	0.008	1	;
N31	367.84	0.14	1	;
N32	367.03	0.0106	1	;
N33	370.04	0.075	1	;
N34	375.44	0.039	1	;
N35	375.76	0.021	1	;
N36	372.31	0.0095	1	;
N37	369.31	0.039	1	;
N77	376.30	0.005	1	;
N76	375.07	0.356	1	;
N73	371.23	0.325	1	;
N74	372.85	0.181	1	;
N75	372.09	0.173	1	;
N72	366.18	0.135	1	;
N79	364.11	0.0084	1	;
N80	365.11	0.0061	1	;
N78	365.88	0.01426	1	;
N41	364.74	0.017	1	;
N40	361.72	0.018	1	;
N39	362.21	0.012	1	;
N38	363.11	0.062	1	;

[TANKS]

;ID	Elevation	InitLevel	MinLevel	MaxLevel	Diameter	MinVol	VolCurve	
1	390.25	17	15	18	50	0		;
[PIPES]								
;ID	Node1	Node2	Length	Diameter	Roughness	MinorLoss	Status	
C2	N1	N2	195.86	102	0.0015	0	Open	;

C3	N2	N3	90.15	102	0.0015	0	Open	;
C4	N3	N4	33.85	102	0.0015	0	Open	;
C5	N4	N5	55.46	102	0.0015	0	Open	;
C6	N5	N6	24.32	102	0.0015	0	Open	;
C7	N6	N7	49.83	102	0.0015	0	Open	;
C8	N7	N8	99.76	50.8	0.0015	0	Open	;
C9	N7	N9	53.55	76.2	0.0015	0	Open	;
C10	N9	N10	52.79	76.2	0.0015	0	Open	;
C11	N10	N11	25.44	76.2	0.0015	0	Open	;
C12	N11	N12	24.71	76.2	0.0015	0	Open	;
C13	N12	N75	22.8	76.2	0.0015	0	Open	;
C14	N75	N74	13.58	76.2	0.0015	0	Open	;
C15	N74	N73	26.63	76.2	0.0015	0	Open	;
C16	N9	N76	87.99	76.2	0.0015	0	Open	;
C17	N76	N77	18.16	50.8	0.0015	0	Open	;
C18	N76	N73	34.24	76.2	0.0015	0	Open	;
C19	N12	N13	58.67	76.2	0.0015	0	Open	;
C20	N13	N22	54.15	76.2	0.0015	0	Open	;
C21	N13	N16	36.58	76.2	0.0015	0	Open	;
C22	N16	N17	41.45	76.2	0.0015	0	Open	;
C23	N17	N18	29.14	76.2	0.0015	0	Open	;
C24	N78	N80	21.43	50.8	0.0015	0	Open	;
C25	N17	N78	12.35	50.8	0.0015	0	Open	;
C26	N78	N79	29.68	50.8	0.0015	0	Open	;
C28	N13	N14	25.59	50.8	0.0015	0	Open	;
C29	N22	N20	19.27	76.2	0.0015	0	Open	;
C30	N22	N23	30.85	76.2	0.0015	0	Open	;
C31	N24	N23	9.51	76.2	0.0015	0	Open	;
C32	N25	N24	27.25	76.2	0.0015	0	Open	;
C33	N27	N25	41.28	76.2	0.0015	0	Open	;
C34	N73	N72	23.07	76.2	0.0015	0	Open	;
C35	N72	N27	34.84	76.2	0.0015	0	Open	;
C36	N27	N28	47.65	50.8	0.0015	0	Open	;
C37	N28	N29	43.83	50.8	0.0015	0	Open	;
C38	N29	N31	55.38	50.8	0.0015	0	Open	;
C39	N31	N37	137.03	50.8	0.0015	0	Open	;
C40	N31	N32	37.19	50.8	0.0015	0	Open	;
C41	N31	N33	126.16	50.8	0.0015	0	Open	;
C42	N33	N34	63.94	50.8	0.0015	0	Open	;

C43	N34	N35	39.82	50.8	0.0015	0	Open	;
C44	N35	N36	33.43	50.8	0.0015	0	Open	;
C45	N40	N41	61.94	50.8	0.0015	0	Open	;
C46	N39	N40	79.06	50.8	0.0015	0	Open	;
C47	N38	N39	32.31	50.8	0.0015	0	Open	;
C48	N28	N38	43.57	50.8	0.0015	0	Open	;
C49	N20	N18	27.10	76.2	0.0015	0	Open	;
C50	N18	N19	36.75	50.8	0.0015	0	Open	;
C51	N20	N21	35.81	50.8	0.0015	0	Open	;
C52	N25	N26	35.68	50.8	0.0015	0	Open	;
C53	N29	N30	29.19	50.8	0.0015	0	Open	;
C27	N14	N15	30.09	50.8	0.0015	0	Open	;
1	1	N1	10	102	0.0015	0	Open	;
[PUMPS]								
;ID	Node1	No	ode2	Parameters				
[VALVES]								
;ID	Node1	No	ode2	Diameter	Type Setting	MinorLoss		
[TAGS]								

Category

[DEMANDS]

;Junction

[STATUS]

;ID Status/Setting

Demand

Pattern

[PATTERNS]

;ID	Multipliers							
;Ley de demandas para comunidades pequeñas								
1	0.45	0.45	0.45	0.45	0.6	0.9		
1	1.35	1.50	1.50	1.50	1.40	1.20		
1	1.40	1.40	1.30	1.30	1.20	1.00		
1	1.00	0.90	0.90	0.80	0.60	0.45		

[CURVES]

ANEXO B

;ID	X-Value		Y-Value			
IENED CV1						
[ENERGI]	Efficiency		75			
Global	Efficiency		15			
Global	Channe		0			
Demand	Charge		0			
[EMITTERS]						
;Junction		Coef	ficient			
[OI]ALITY]						
Node		Init(Jual			
,11040		mit	Zuui			
[SOURCES]						
:Node		Type	e		Ouality	Pattern
,		51				
[REACTIONS]						
;Туре		Pipe	/Tank		Coefficient	
[REACTIONS]						
Order	Bulk		1			
Order	Tank		1			
Order	Wall		1			
Global	Bulk		0			
Global	Wall		0			
Limiting	Potential		0			
Roughness	Correlation		0			
[TIMES]						
Duration	20					
Hydraulic	Timestep		1:00			
Quality	Timestep		0:05			
Pattern	Timestep		1:00			
Pattern	Start		0:00			
Report	Timestep		1:00			
Report	Start		0:00			
Start	ClockTime		12	am		

Statistic	NONE	
[REPORT]		
Status	No	
Summary	No	
Page	0	
[OPTIONS]		
Units	LPS	
Headloss	D-W	
Specific	Gravity	1
Viscosity	1	
Trials	80	
Accuracy	0.001	
CHECKFREQ	10	
MAXCHECK	10	
DAMPLIMIT	0	
Unbalanced	Continue	10
Pattern	P1	
Demand	Multiplier	1.0
Emitter	Exponent	0.5
Quality	None	mg/L
Diffusivity	1	
Tolerance	0.01	

[COORDINATES]

;Node	X-Coord	Y-Coord
N1	697.41	9231.12
N2	1873.84	7338.80
N3	2316.14	6399.48
N4	2676.37	6280.92
N5	3337.54	6226.20
N6	3506.26	6445.07
N7	4048.87	6290.04
N8	3506.26	7302.32
N9	4418.22	5756.54
N10	4997.32	5637.99
N11	5106.75	5355.28
N12	5366.66	5223.04

N13	6027.84	5172.88
N14	6018.72	5487.51
N15	6077.99	5815.82
N16	6461.02	5163.76
N17	6898.76	4981.37
N18	6693.57	4712.34
N19	6930.68	4356.68
N20	6465.58	4507.15
N21	6734.61	4183.40
N22	6255.83	4575.55
N23	6132.71	4242.68
N24	6046.08	4192.52
N25	5904.72	3887.01
N26	6274.07	3700.06
N27	5494.34	4142.36
N28	5111.31	3759.34
N29	4714.61	3444.71
N30	4960.84	3216.72
N31	4231.27	3038.89
N32	4199.35	2614.82
N33	3209.87	2003.81
N34	2635.33	1566.07
N35	2379.98	1178.48
N36	2370.86	795.46
N37	2685.49	3389.99
N77	4523.10	4867.38
N76	4723.73	4821.78
N73	5042.92	4602.91
N74	5248.11	4826.34
N75	5289.15	4981.37
N72	5166.03	4361.24
N79	7236.19	4726.02
N80	7263.55	5086.25
N78	7026.44	5022.41
N41	7068.45	2278.68
N40	6558.28	2792.66
N39	5876.79	3375.16
N38	5530.33	3485.57
1	249.46	9470.32

[VERTICES]				
;Link	X-Coord	Y-Coord		
[BACKDROP]				
DIMENSIONS	0.00	0.00	10000.00	10000.00
UNITS	None			
FILE				
OFFSET	0.00	0.00		

[END]

Caso 2. Red las Juntas

[TITLE]

[JUNCTIONS]

;ID	Elev	Demand	Pattern	
N1	271.05	1.32	1	;
N2	259.66	1.30	1	;
N3	259.75	0.66	1	;
N4	260.10	0.656	1	;
N5	257.33	0.648	1	;
N6	256.58	0.62	1	;
N7	256.76	0.120	1	;
N8	257.00	0.0194	1	;
N9	257.03	0.0745	1	;
N10	257.19	0.581	1	;
N11	256.96	0.62	1	;
N12	257.30	0.63	1	;
N13	257.29	0.64	1	;
N14	259.13	0.65	1	;
N15	259.12	0.66	1	;
N16	257.25	0.016	1	;
N17	257.24	0.562	1	;
N18	257.09	0.139	1	;
N19	256.68	0.08	1	;
N20	256.49	0.33	1	;
N21	256.29	0.35	1	;

N22	256.63	0.0826	1	;
N23	256.99	0.139	1	;
N24	255.78	0.393	1	;
N25	257.32	0.21	1	;
N26	257.25	0.18	1	;
N27	256.97	0.16	1	;
N28	256.69	0.0793	1	;
N29	257.22	0.12	1	;
N30	257.15	0.1454	1	;
N31	257.39	0.32	1	;
N32	256.73	0.1398	1	;
N33	257.06	0.0818	1	;
N34	257.16	0.024	1	;
N36	257.49	0.1433	1	;
N37	256.95	0.014	1	;
N38	256.56	0.0781	1	;
N39	256.65	0.02429	1	;
N40	256.85	0.0242	1	;
N41	256.92	0.0114	1	;

[RESERVOIRS]

;ID	Head	Pattern	
E1	295.55		;

[TANKS]

;ID	Elevation	InitLevel	MinLevel	MaxLevel	Diameter	MinVol	VolCurve	
[PIPES]								
;ID	Node1	Node2	Length	Diameter	Roughness	MinorLoss	Status	
C2	N1	N2	11.85	76.2	0.0015	0	Open	;
C3	N2	N3	4.20	62.1	0.0015	0	Open	;
C4	N3	N4	27.22	62.1	0.0015	0	Open	;
C5	N4	N5	107.78	62.1	0.0015	0	Open	;
C6	N5	N6	143.15	62.1	0.0015	0	Open	;
C7	N6	N20	123.04	62.1	0.0015	0	Open	;
C8	N20	N21	117.43	62.1	0.0015	0	Open	;
C9	N21	N31	121.85	62.1	0.0015	0	Open	;
C10	N31	N30	196.30	62.1	0.0015	0	Open	;

C11	N2	N15	33.67	62.1	0.0015	0	Open	;
C12	N15	N14	17.08	62.1	0.0015	0	Open	;
C13	N14	N13	53.82	62.1	0.0015	0	Open	;
C14	N13	N12	25.36	62.1	0.0015	0	Open	;
C15	N12	N11	103.41	62.1	0.0015	0	Open	;
C16	N11	N10	68.14	62.1	0.0015	0	Open	;
C17	N10	N17	111.90	62.1	0.0015	0	Open	;
C18	N17	N24	110.03	62.1	0.0015	0	Open	;
C19	N24	N25	117.33	62.1	0.0015	0	Open	;
C20	N25	N26	121.02	62.1	0.0015	0	Open	;
C22	N36	N27	78.86	62.1	0.0015	0	Open	;
C23	N29	N36	93.08	62.1	0.0015	0	Open	;
C24	N30	N29	95.46	62.1	0.0015	0	Open	;
C26	N24	N37	53.06	50.8	0.0015	0	Open	;
C27	N6	N7	96.74	50.8	0.0015	0	Open	;
C28	N9	N7	93.47	50.8	0.0015	0	Open	;
C29	N9	N10	100.56	50.8	0.0015	0	Open	;
C30	N6	N38	75.55	62.1	0.0015	0	Open	;
C31	N38	N39	32.64	62.1	0.0015	0	Open	;
C32	N39	N40	70.64	50.8	0.0015	0	Open	;
C33	N38	N40	69.06	50.8	0.0015	0	Open	;
C34	N40	N41	42.44	50.8	0.0015	0	Open	;
C35	N20	N19	96.84	50.8	0.0015	0	Open	;
C36	N19	N18	93.97	50.8	0.0015	0	Open	;
C37	N18	N17	96.88	50.8	0.0015	0	Open	;
C38	N7	N19	119.31	50.8	0.0015	0	Open	;
C39	N9	N18	111.08	50.8	0.0015	0	Open	;
C41	N22	N23	94.65	50.8	0.0015	0	Open	;
C42	N23	N24	96.65	50.8	0.0015	0	Open	;
C43	N18	N23	114.60	50.8	0.0015	0	Open	;
C44	N19	N22	114.90	50.8	0.0015	0	Open	;
C45	N33	N34	89.39	50.8	0.0015	0	Open	;
C46	N33	N32	96.11	50.8	0.0015	0	Open	;
C47	N32	N31	96.21	50.8	0.0015	0	Open	;
C48	N23	N33	118.71	50.8	0.0015	0	Open	;
C49	N22	N32	119.20	50.8	0.0015	0	Open	;
C50	N28	N29	83.77	50.8	0.0015	0	Open	;
C51	N32	N28	114.34	50.8	0.0015	0	Open	;
C52	N28	N27	96.71	50.8	0.0015	0	Open	;
C53	N33	N27	115.92	50.8	0.0015	0	Open	;
------------------	-----------------	--------------	--------	------------	--------------	-----------	------	---
C54	N7	N8	72.26	50.8	0.0015	0	Open	;
C55	N12	N9	83.01	50.8	0.0015	0	Open	:
C56	N11	N16	59.31	50.8	0.0015	0	Open	:
C21	N26	N27	97.15	62.1	0.0015	0	Open	:
C40	N21	N22	97.59	50.8	0.0015	0	Open	;
C1	E1	N1	10	76.2	0.0015	0	Open	;
[PUMPS]								
:ID	Node1	Ν	ode2	Parameters				
,								
[VALVES]								
:ID	Node1	Ν	ode2	Diameter	Type Setting	MinorLoss	ŝ	
,					-)			
[TAGS]								
[11105]								
[DEMANDS]								
;Junction	Demand	Pa	attern	Category				
				0 7				
[STATUS]								
;ID	Status/Se	tting						
		U						
[PATTERNS]								
;ID	Multiplie	rs						
;Ley de demandas	s para comunida	des pequeñas						
1	0.45	0.	45	0.45	0.45	0.6	0.9	
1	1.35	1.	50	1.50	1.50	1.40	1.20	0
1	1.40	1.	40	1.30	1.30	1.20	1.00	0
1	1.00	0.	90	0.90	0.80	0.60	0.4	5
[ENERGY]								
Global		Efficiency		75				
Global		Price		0				
Demand		Charge		0				
[EMITTERS]		~ ~~ .						
;Junction		Coefficient						
[QUALITY]								
~~ /								

;Node	InitQual		
[SOURCES] ;Node	Туре	Quality	Pattern
[REACTIONS] ;Type	Pipe/Tank	Coefficient	

[REACTIONS]

Order	Bulk	1
Order	Tank	1
Order	Wall	1
Global	Bulk	0
Global	Wall	0
Limiting	Potential	0
Roughness	Correlation	0

[TIMES]

Duration	20:00	
Hydraulic	Timestep	1:00
Quality	Timestep	0:05
Pattern	Timestep	1:00
Pattern	Start	0:00
Report	Timestep	1:00
Report	Start	0:00
Start	ClockTime	12
Statistic	NONE	

[REPORT]

Status	No
Summary	No
Page	0

[OPTIONS]

Units	LPS	
Headloss	D-W	
Specific	Gravity	1
Viscosity	1	

Trials	180	
Accuracy	0.001	
CHECKFREQ	2	
MAXCHECK	10	
DAMPLIMIT	0	
Unbalanced	Continue	10
Pattern	P1	
Demand	Multiplier	1.0
Emitter	Exponent	0.5
Quality	None	mg/L
Diffusivity	1	
Tolerance	0.01	

[COORDINATES]

;Node	X-Coord	Y-Coord
N1	6860.20	8967.43
N2	7014.01	9037.59
N3	7005.91	9153.63
N4	6663.20	9075.37
N5	5459.67	9499.04
N6	4822.82	7925.81
N7	5829.36	7367.21
N8	6217.95	8136.29
N9	6768.45	6800.53
N10	7831.66	6244.64
N11	8222.94	6962.44
N12	7221.80	7669.45
N13	6981.63	7858.34
N14	7148.94	8457.41
N15	7175.92	8675.99
N16	8800.42	6603.54
N17	7213.70	5089.67
N18	6199.06	5615.88
N19	5200.61	6098.92
N20	4175.18	6614.33
N21	3549.13	5373.02
N22	4596.15	4881.89
N23	5613.48	4396.16
N24	6641.62	3899.63

N25	6042.55	2655.62
N26	5397.60	1363.03
N27	4374.87	1897.34
N28	3349.44	2407.36
N29	2885.29	1535.74
N30	1846.37	2018.77
N31	2914.98	4077.73
N32	3942.66	3631.82
N33	4983.29	3155.11
N34	5936.71	2672.58
N36	3900.58	1106.40
N37	7193.05	3588.87
N38	4036.66	8341.11
N39	4170.26	8724.66
N40	3334.21	8802.24
N41	2834.30	8819.47
E1	6811.23	8959.12

[BACKDROP]

0.00	0.00	10000.00
None		
0.00	0.00	
	0.00 None 0.00	0.00 0.00 None 0.00 0.00

[END]

Caso 3. Red de Tepoztlán

[TITLE]

[JUNCTIONS]

;ID	Elev	Demand	Pattern	
N1	1869.06	2.16	1	;
N2	1867.10	1.303	1	;
N6	1852.46	1.053	1	;
N14	1840.25	1.877	1	;
N16	1832.64	0.881	1	;
N17	1827.54	0.688	1	;
N18	1818.68	0.663	1	;

N19	1812.12	0.638	1	;
N20	1806.10	0.620	1	;
N21	1804.01	0.611	1	;
N22	1800.12	0.600	1	;
N23	1795.27	0.588	1	;
N36	1839.07	1.426	1	;
N37	1835.73	1.394	1	;
N38	1837.90	1.367	1	;
N39	1838.55	1.346	1	;
N40	1844.20	1.342	1	;
N41	1842.49	1.257	1	;
N46	1837.70	1.168	1	;
N44	1847.03	0.606	1	;
N45	1839.16	0.561	1	;
N47	1832.19	1.092	1	;
N48	1829.65	0.136	1	;
N49	1827.87	0.116	1	;
N50	1821.46	0.086	1	;
N51	1814.83	0.054	1	;
N52	1810.51	0.035	1	;
N53	1805.51	0.920	1	;
N56	1798.21	0.873	1	;
N57	1795.79	0.853	1	;
N58	1788.99	0.738	1	;
N60	1789.23	0.706	1	;
N61	1791.18	0.649	1	;
N62	1794.40	0.609	1	;
N63	1793.93	0.588	1	;
N67	1866.93	1.24	1	;
N68	1864.02	1.225	1	;
N69	1856.58	1.171	1	;
N70	1854.61	1.111	1	;
N73	1868.13	0.803	1	;
N74	1867.66	0.755	1	;
N75	1861.57	0.728	1	;
N76	1859.08	0.717	1	;
N77	1857.01	0.706	1	;
N78	1851.89	0.693	1	;

[RESERVOIRS]

;ID	Head	Pattern	
E1	1885.06		;
E2	1847		;
E3	1840		;

[PIPES]

;ID	Node1	Node2	Length	Diameter	Roughness	MinorLoss	Status	
C1	E1	N1	10	254	0.0015	0	Open	;
C2	N1	N2	11.82	254	0.0015	0	Open	;
C8	N2	N67	3.73	102	0.0015	0	Open	;
C9	N67	N68	14.80	102	0.0015	0	Open	;
C10	N68	N69	50.02	102	0.0015	0	Open	;
C11	N69	N70	13.89	102	0.0015	0	Open	;
C22	N6	N14	52.95	102	0.0015	0	Open	;
C24	N16	N17	23.06	76.2	0.0015	0	Open	;
C25	N17	N18	23.04	50.8	0.0015	0	Open	;
C26	N18	N19	16.99	50.8	0.0015	0	Open	;
C27	N19	N20	17.82	50.8	0.0015	0	Open	;
C28	N20	N21	7.69	50.8	0.0015	0	Open	;
C29	N21	N22	10.87	50.8	0.0015	0	Open	;
C30	N22	N23	29.93	50.8	0.0015	0	Open	;
C31	N23	N63	29.32	50.8	0.0015	0	Open	;
C32	N63	N62	20.46	50.8	0.0015	0	Open	;
C33	N62	N61	37.24	50.8	0.0015	0	Open	;
C34	N61	N60	52.98	50.8	0.0015	0	Open	;
C37	N58	N60	30.08	50.8	0.0015	0	Open	;
C38	N57	N58	33.69	50.8	0.0015	0	Open	;
C40	N53	N56	43.80	50.8	0.0015	0	Open	;
C41	N52	N53	19.05	50.8	0.0015	0	Open	;
C42	N51	N52	17.69	50.8	0.0015	0	Open	;
C43	N50	N51	30.12	76.2	0.0015	0	Open	;
C44	N49	N50	27.10	76.2	0.0015	0	Open	;
C45	N48	N49	18.92	76.2	0.0015	0	Open	;
C47	N46	N47	37.41	76.2	0.0015	0	Open	;
C48	N41	N46	23.28	50.8	0.0015	0	Open	;
C49	N40	N41	28.44	102	0.0015	0	Open	;
C50	N39	N40	54.13	102	0.0015	0	Open	;

C51	N38	N39	19.62	102	0.0015	0	Open	;
C52	N37	N38	22.52	102	0.0015	0	Open	;
C53	N36	N37	30.26	102	0.0015	0	Open	;
C54	N14	N36	35.41	102	0.0015	0	Open	;
C55	N2	N73	44.32	102	0.0015	0	Open	;
C56	N73	N74	14.32	102	0.0015	0	Open	;
C57	N74	N75	11.30	76.2	0.0015	0	Open	;
C58	N75	N76	6.80	76.2	0.0015	0	Open	;
C59	N76	N77	12.92	76.2	0.0015	0	Open	;
C60	N77	N78	12.42	76.2	0.0015	0	Open	;
C61	N78	N44	20.94	76.2	0.0015	0	Open	;
C64	N44	N45	41.34	76.2	0.0015	0	Open	;
C65	N45	N46	16.19	76.2	0.0015	0	Open	;
C3	N47	E3	9.295	76.2	0.0015	0	Open	;
C4	E3	N48	9.295	76.2	0.0015	0	Open	;
C5	N14	E2	15.09	50.8	0.0015	0	Open	;
C13	E2	N16	15.09	101	0.0015	0	Open	;
C39	N56	N57	18.48	50.8	0.0015	0	Open	;
C6	N70	N6	18.64	102	0.0015	0	Open	;
[PATTERNS]								
;ID	Multipliers							
;Ley de demanda	s para ciudades de	e Mexico						
1	0.616	0.633	0.637		0.651	0.828	0.938	
1	1.199	1.307	1.372		1.343	1.329	1.288	
1	1.266	1.216	1.201		1.196	1.151	1.121	
1	1.056	0.901	0.784		0.71	0.651	0.606	
[ENERGY]								
Global	Efficiency	75						
Global	Price	0						
Demand	Charge	0						
[REACTIONS]								
Order	Bulk	1						
Order	Tank	1						
Order	Wall	1						
Global	Bulk	0						
Global	Wall	0						
Limiting	Potential	0						
Roughness	Correlation	0						

[TIMES]

Duration	24:00		
Hydraulic	Timestep	1:00	
Quality	Timestep	0:05	
Pattern	Timestep	1:00	
Pattern	Start	0:00	
Report	Timestep	1:00	
Report	Start	0:00	
Start	ClockTime	12	am
Statistic	NONE		

[REPORT]

No	
No	
0	
LPS	
D-W	
Gravity	1
1	
300	
0.001	
2	
10	
0	
Continue	10
1	
Multiplier	1.0
Exponent	0.5
None	mg/L
1	
0.01	
	No No No No No O LPS D-W Gravity 1 300 0.001 2 10 0 Continue 1 Multiplier Exponent None 1 0.01

[COORDINATES]

;Node	X-Coord	Y-Coord
N1	5315.31	2867.86
N2	5294.22	3156.04
N6	2988.80	4217.37

N14	2658.45	5496.60
N16	2813.09	6283.82
N17	2876.34	6867.20
N18	2960.69	7457.61
N19	3284.01	7752.82
N20	3656.53	8019.91
N21	3480.81	8174.54
N22	3768.99	8244.83
N23	3607.33	9003.93
N36	3537.04	5285.74
N37	4155.57	4856.99
N38	4654.61	5201.39
N39	4830.33	5665.29
N40	6186.87	5517.69
N41	6903.80	5447.40
N46	7515.30	5665.29
N44	6854.60	4463.38
N45	7557.47	5222.48
N47	8302.51	6213.53
N48	8000.28	6571.99
N49	7508.27	6635.25
N50	6854.60	6368.16
N51	6257.16	6796.91
N52	5983.04	7169.44
N53	5898.69	7668.47
N56	7002.20	7900.42
N57	7367.69	8202.66
N58	7768.33	8996.90
N60	7016.26	9025.02
N61	5752.06	9547.99
N62	4781.13	9474.85
N63	4359.40	9249.93
N67	5188.79	3149.01
N68	4865.47	3303.64
N69	3684.65	3837.82
N70	3473.78	4161.15
N73	6425.84	2994.38
N74	6812.42	2959.23
N75	6938.94	3233.35

N76	6805.40	3409.07
N77	6587.51	3648.05
N78	6601.56	3936.23
E1	5322.34	2713.23
E2	2745.55	5920.32
E3	8158.67	6406.03

[VERTICES]

;Link	X-Coord	Y-Coord
C47	7483.15	5661.78

[BACKDROP]

DIMENSIONS	0.00	0.00	10000.00	10000.00
UNITS	None			
FILE				
OFFSET	0.00	0.00		

[END]

ANEXO C Algoritmo de Dijkstra

CaminoMinimo - NetBeans IDE	E 8.2 Pofac	tor	Pup Debug Defile Taxes Table Window Hele	٥	×
		:tor :defa	Aun Deoug Prome ream Tools Window Help		
× Files Servi —	Start	Page	x 🔂 Guijava X		-
E- Source Packages	Source	ce	Design History 🔯 🐻 - 🐻 - 🔯 - 🔁 🖶 🕞 🔗 🗞 😒 🖄 📦 🔛 🖉 🗮 🚅		BB
objetos operaciones	2	IT	* Autor: yadira reynoso carranza		
🖶 💼 ventana 🔜 💼 🔂 Gui.java	4	ll			
Test Packages Image: Contract of the second seco	6		package ventana;		
🖶 🍒 Libraries 🕀 🍒 Test Libraries	8	P	import java.awt.Color;		
	10		import java.utli.krayhis; import java.swing.JOptionPane;		
	11		<pre>import javax.swing.table.beraultlableModel; import objetos.*;</pre>		
	13		import operaciones.Disjktra;		Ξ
Gui - Navigator × —	15	ľ	/** *		E
Members V < V Liji	17	L	* @autor yad7 */		
	19		<pre>public class Gui extends javax.swing.JFrame { Grafo grafo = new Grafo();</pre>		
	21		Nodo nodoInicio = null; Nodo nodoFin = null;		
 dibujarGrafo() dibujarNodos() 	23 24	F	/** * Creamos el form		
ingresarDiametro() :	25	ę	public Gui() (
	27		<pre>initComponents(); }</pre>		-
	29 30				
	31 32	÷	<pre>@SuppressWarnings("unchecked") Generated Code</pre>		
	110	P	<pre>private void jPanellMouseClicked(java.awt.event.MouseEvent evt) {</pre>		
	112 113		<pre>int x = evt.getX(); int y = evt.getY();</pre>		
	114 115		<pre>if(evt.isMetaDown()) { // eliminarNodo(x, y); </pre>		_
	116 117		<pre>// JOptionPane.showMessageDialog(this,"Clic derecho"); if(grafo.buscarNodo(x, y)!=nul){//si se hace clic sobre un nodo</pre>		
	118 119		<pre>if(nodoInicio == null) { grafo.reiniciarGrafoParaDisjktra();</pre>		
	120 121		<pre>grafo.reiniciarColores(); nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic</pre>		Ξ
	122 123		<pre>nodoInicio.getCirculo().setColor(Color.red);//Lo hago cambiar de color // JOptionPane.showMessageDialog(null,"Seleccione otro nodo para crear una arista");</pre>		
	124 125		<pre>}else{//si nodoInicio ya estaba apunto a un nodo, lo preparo para crear arista nodoFin = grafo.buscarNodo(x, y);</pre>		
	126 127		Disjktra disjktra = new Disjktra(grafo); disjktra.ejecutar(nodoInicio);		
	128 129		<pre>disjktra.marcarRutaCorta(nodoFin, Color.GREEN); /// orearArista();</pre>		×
	131		// nodoInicio.getCirculo().setColor(Color.yellow);//lo regreso a su color original		
	133		<pre>nodoInicio = null;//null para poder crear mas arista nodoEn = null;//null para poder crear mas arista</pre>		
	135		Hodofin - mar,// mar para pouer crear mas arroua		
	130				-
	130		if(grafo.buscarNodo(x, y):=null)(//si se hace clic sobre un nodo		
	140		<pre>in(ndd)inicio = ndi);{ nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a apuntar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);//nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);/nodoInicio lo pongo a pontar al nodo donde hice clic nodoInicio = grafo.buscarNodo(x, y);/nodoInicio lo pongo al nodoInicio nodoInicio = grafo.buscarNodo(x, y);/nodoInicio nodoInicio nodoInicio = grafo.buscarNodo(x, y);/nodoInicio nodoInicio nodoInicio = grafo.buscarNodo(x, y);/nodoInicio nodoInicio nodoInicio = grafo.buscarNodo(x, y);/n</pre>		
	142		<pre>nodoinicio.get/irduo().set/oiof(color.red)//Lo mago cambiag de color // OptionPane.showMessageDialog(null,"Seleccione otro nodo para crear una arista"); };</pre>		Ξ
	144		<pre>relse()/si houring ya escana apunto a un hour, to preparo para creat arista nodoFin = grafo.buscarNodo (x, y); grageTrigat()</pre>		E
	147		podoTricio getCipylo() setColor/Color veligy)//lo verseo a su color original		-
	140				
	151		<pre>nodoFine = null://null para poder crear mas arista nodoFin = null://null para poder crear mas arista</pre>		
	152		<pre>>>lelse{//Si no he hecho clic sobre un nodo creating and the unage coordenades creating and the unage coordenades</pre>		
	155		<pre>> crearwook(x, y),//creo un nodo apareir de unas coordenadas }</pre>		
	157	ĺ	/ dibujarGrafo();		
	158 159	Ę	} public void dibujarGrafo()(
	160		<pre>jrane11.paint(jPanell.getGraphics()); dibujarArista();</pre>		
	162 163	L	dibujarNodos(); }		*
	164 165	Ē	<pre>public void dibujarNodos() { ArrayList<nodo> listaNodo = grafo.getListaNodos(); </nodo></pre>		
	166 167		<pre>for(Nodo nodo:listaNodo) { nodo.getCirculo().dibujarCirculo(jPanell.getGraphics());</pre>		E
	168 169	L	}		Ξ
	170 171	F	<pre>public void dibujarArista() { ArrayList.Nodo> listaNodo = grafo.getListaNodos();</pre>		-
	172 173		<pre>for(Nodo nodo:listaNodo)(ArrayList<enlace =="" nodo.getlistanodoadyacente();<="" pre=""></enlace></pre>		

174		if(listaEnlace != null) { for("Enlage and the enliptic particular and the enliptic par	
176	5	<pre>enlace.getLinsa().getLinsaQuebrada().dibujarLineaQuebrada(jPanell.getGraphics());</pre>	
157	11	dibujarGrafo();	
158	E) public void dibujarGrafo() (
160		<pre>jFanell.paint(jFanell.getGraphics());</pre>	
161		<pre>dibujarArista(); dibujarNodos();</pre>	
163	l	}	-
164	١F	public void dibujarNodos () {	
166		<pre>for(Ndo ndo/listaNdo) { for(Ndo ndo/listaNdo) { </pre>	-
167		<pre>nodo.getCirculo().dibujarCirculo(jPanell.getGraphics());</pre>	
168		3	Ξ
170	Ģ	public void dibujarArista()(
171		<pre>ArrayList<nodo> listaNodo = grafo.getListaNodos(); for(Nodo prode listaNodo) /</nodo></pre>	
173		ArrayListEnlace> listAEnlace = nodo.getListANodoAdyacente();	
174		if(listaEnlace != null)(
175		<pre>rot (Enlace enlace:ilstabilace); enlace.getXrista().getLineaQuebrada().dibujarLineaQuebrada(jPanell.getGraphics());</pre>	
177		3	
178			
180) Juniora (Jost IngressPeer())	ž –
182	lΤ	String peso = JOptionPane.showInputDialog("Digite la distancia entre puntos");	
8		float intPeso = 0;	
184		<pre>try(intPeso = Float.parseFloat(peso);</pre>	
8		<pre>}catch(Exception ex) {</pre>	
188		<pre>intPeso = ingresarPeso(); }</pre>	
189		return intPeso;	
190	1	}	+
192	Ę	<pre>private float ingresarDiametro() {</pre>	
193		<pre>String diametro = JOptionPane.showInputDialog("Digite la diametro entre puntos");</pre>	=
195	1	<pre>rloat intDiametro = 0; try(</pre>	=
196		<pre>intDiametro = Float.parseFloat(diametro);</pre>	=
		<pre>}catch (Exception ex) { infliametro = ingressfliametro(); }</pre>	_
199			-
200	11	return intDiametro;	
201		1	
203	F	private float ingresarGasto() (
204		<pre>String gasto = JOptionPane.showInputDialog("Digite la gasto entre puntos"); float intGasto = 0:</pre>	
206		try(
207	Н	<pre>intGasto = Float.parseFloat(gasto); intGasto = ridet.parseFloat(gasto);</pre>	-
		<pre>catch(Exception ex) { definition of the second se</pre>	_
210		Indesco - Indescosto();	
211		return intGasto;	
212		,	
214	F	<pre>private void eliminarNodo(int x, int y) {</pre>	
215		<pre>if(grafo.buscarNodo(X, y)!=null)(//s1 se hace clic sobre un nodo Nodo temp = grafo.buscarNodo(X, y);</pre>	-0-
217		<pre>grafo.eliminarAristasEntrante(temp);</pre>	
218		<pre>if(grafo.eliminarNodo(temp)) { JODT in DPane.showlessaceDialog(null_"Eliminado"); }</pre>	
220		dibujarGrafo();	13
221		3	_=
223		3	
224	1	3	
225		DefaultTableModel modelo ;	
227	F	private void greatArista() {	
228		<pre>float intDiametro = ingresarDiametro(); float intDiametro = ingresarDiametro();</pre>	
230		<pre>float intGasto = ingresarGasto();</pre>	
231		<pre>Arista arista = new Arista(); arista.setPeso(intPeso);</pre>	
233		arista.setDiametro(intDiametro);	~
234		arista.setGasto(intGasto); modes(lag(hag))TTabladous) Nodes(id gatMode)();	^ -
236		<pre>modelo_binarinary hassoning under(); modelo_addRow(new Object[] {nodolnics.getDato().toString()+", "+nodoFin.getDato().toString(),intPeso,intDiametro,intGasto,(in</pre>	cp —
237		//modelo.setValueAt("", 0,0); //modelo.uella.ve?(0,0)==0.decd"	
230		<pre>//model.setvalueat(0,0)sjagasd-; Coordenadas c = new Coordenadas(10000,100000);</pre>	
240		<pre>c.addCoordenada(nodoInicio.getCirculo().getX() + (nodoInicio.getCirculo().getDiametro()/2),nodoInicio.getCirculo().getY() + ()</pre>	10
241 242		<pre>c.acau.correnaca(nodorin.getCirculo().getX() + (nodoinicio.getCirculo().getDiametro()/2), nodoFin.getCirculo().getY() + (nodoIn Line@Quebrada [q = new Line@Quebrada(c);</pre>	LC
243		arista.setLineaQuebrada(lq);	*
244		grafo.crearEnlaceSNODirigido(hodoInicio, nodoFin,arista);	
246	Ľ	}	_
247	Ę	private void crearNodo(int x, int y){	=
249		Coordenadas c = new Coordenadas (100009,100000, x, y);	=
250		<pre>if(dato = null)(if(dato = null)(</pre>	_
252		<pre>dato = dato.toUpperCase();//por que lo quiero todo en mayusculas Node = ou Node (data a);</pre>	
253 254		<pre>woqo noqo = new woqo(qato,c); nodo.getCirculo().setDiametro(12);</pre>	
255		<pre>nodo.getCirculo().setEtiqueta(nodo.getDato()+"");</pre>	
256		<pre>if (grafo.adjuntarNodo(nodo)) { nodo.getCirculo().dibujarCirculo('Panell.getGraphics()):</pre>	
258		}else(
259		<pre>} nodoInicio = null;</pre>	~
	- T		

