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Resumen

Este trabajo se enfoca en los decaimientos B → lνD∗ como pruebas de uni-
versalidad de sabor leptónico, los cuales se han vuelto un argumento popular
para la justificación de f́ısica más allá del modelo estándar ya que experimen-
tos recientes han medido un exceso consistente de productos con sabor tau.
Espećıficamente, se han medido desviaciones con significación estad́ıstica de
3.7σ en la razón de tasas de decaimiento R∗D ≡ BR(B → τνD∗)/BR(B →
lνD∗). Aqúı argumentamos que esta discrepancia puede no ser una señal de
violaciones a la universalidad de sabor leptónico, sino que se debe al menos en
parte al hecho de que el D∗ no es un estado asintótico y los cálculos teóricos
deben hacerse con el proceso completo que incluye a sus productos – ya sea
Dπ o Dγ. Trabajamos únicamente con el canal D∗ → Dπ y mostramos que
el grado de libertad longitudinal del D∗, el cual se vuelve disponible una vez
que éste se toma fuera de capa de masa, introduce una corrección consider-
able al hacer interferencia con el grado transversal. Encontramos una nueva
razón RDπ = 0.275 ± 0.003, donde la incertidumbre se hereda de la de la
medición de los factores de forma que describen al vértice de QCD. Al com-
parar con la razón RDπ en vez de RD∗ , la brecha con los últimos resultados de
LHCb se reduce de 1.1σ a 0.48σ, mientras que la de los últimos resultados de
Belle se reduce de 0.42σ a 0.10σ, y con el promedio mundial de 3.7σ a 2.1σ.
Ya que el desacuerdo con los resultados más recientes parece desaparecer por
completo, argumentamos que el problema de RDπ podŕıa ser resuelto sin la
necesidad de recurrir a ningún tipo de f́ısica más allá del modelo estándar. Ya
que todo el análisis de datos se ha hecho asumiendo el decaimiento original a
tres cuerpos, incluyendo el cálculo de los factores de forma para el vértice de
QCD, nuestro resultado debe considerarse aún como una aproximación. Por
lo tanto, hacemos también un planteamiento de los siguientes pasos a seguir
y las consideraciones adicionales que debeŕıan hacerse una vez que el D∗ sea
tomado fuera de capa de masa. Resaltamos que un análisis del decaimiento
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a cuatro cuerpos seŕıa extremadamente útil para refinar nuestro resultado de
RDπ, y posiblemente cerrar la brecha con el promedio mundial aún más.



Summary

This work focuses on the semileptonic decays B → lνD∗ as tests for lepton
flavor universality, which have become a popular argument for physics beyond
the standard model in recent years after experiments started consistently
detecting an excess of tau products. Specifically, the ratio of tau to light
lepton products, RD∗ ≡ BR(B → τνD∗)/BR(B → lνD∗), has been found
to deviate by 3.7 σ from the standard model prediction. We argue that
this discrepancy may not be a sign of lepton flavor universality violation,
but is due at least in part to the fact the D∗ is not an asymptotic state
and the theoretical calculations should be done with the complete process
including its daughter particles - either Dπ or Dγ. We work only with the
D∗ → Dπ mode and show that the longitudinal degree of freedom of the
D∗, which becomes available when it is taken off shell, although small by
itself, introduces a sizable correction when interfering with the transversal
degrees of freedom. We find a new ratio of Rµ

Dπ = 0.275 ± 0.003, where
the uncertainty comes from the uncertainty of the form factors parameters.
Comparing against RDπ reduces the gap with the latest LHCb result from
1.1σ to 0.48σ, while the gap with the latest Belle result is reduced from 0.42σ
to just 0.10σ and with the world average results from 3.7σ to 2.1σ. Since the
disagreement with the latest results is completely gone, this might indicate
that the RD∗ problem could be solved without the need of lepton flavor
universality violation or any form of physics beyond the standard model.
Since all the data analysis has been done assuming only a three body decay,
including the calculation of the form factors that we use for the QCD vertex,
our answer should still be considered an approximation. Therefore, we also
lay the groundwork for other considerations that should be made once the
D∗ is taken to be off shell and point out that a proper four body analysis
of the experimental results could be used to refine our result for RDπ, and
possibly close the gap with the world average even further.
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Chapter 1

Introduction

The assumption of lepton flavor universality (LFU) states that the rules of
physics are invariant under any exchange between the three families of lep-
tons, and is closely tied to the gauge invariance of the standard model (SM).
Each of the lepton families is assumed to have exactly the same coupling
to gauge bosons, so that processes related by flavor symmetry involve the
same types of diagrams and the only differences that arise are of kinematical
origins. Put simply, the couplings of each of the families must all be the
same, but their masses are allowed to differ. Because new theories of physics
beyond the standard model often involve the breaking of gauge symmetries,
the search for LFU violation has gained significant relevance in recent years.
In this work we focus on the search for LFU violation in the weak sector,
namely differences in the weak coupling constant among lepton flavors.

The weak sector is where these searches have returned the most interesting
results, and can be explored through semileptonic decays of heavy mesons of
the form M1 → l+νlM2. The reason for requiring a heavy meson is to enable
the production of τ particles, for which we need a quark-level transition
with a large mass difference, ideally b → c. Thus, we naturally arrive to
the processes of the form B → l+νD(∗) that are central to this work. This
encompasses two different cases that are treated equivalently:

B0 → l+νD(∗)−, if the spectaror quark is d, and
B+ → l+νD(∗)0, if the spectaror quark is u,

as well as all charge-conjugate modes. These processes have a single tree-
level diagram, shown in Fig. 1.1, where the emission of the lepton-neutrino
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Figure 1.1: Tree-level diagram of the B → lνD(∗) process.

pair happens through a virtual W boson. Therefore, we can use this process
to probe the coupling of each lepton-neutrino family to the weak sector.
Because the decay widths are proportional to several constants with relatively
large uncertainties, it is convenient to make the comparison between different
flavors by considering the ratio

RD(∗) ≡
Br(B → τ+ντD

(∗))

Br(B → l+νlD(∗))
, l = e, µ,

where the overall factors cancel out. This is the quantity that is expected
to reflect the lepton flavor universality property of the process, and is often
stated as independent of the choice of l due to the small mass difference rel-
ative to the τ mass. The standard model predicts values for RSM

D = 0.300(8)
[1] and RSM

D∗ = 0.252(3) [2] that are based solely on the different masses of
the leptons, and these values are compared to experimental results as a form
of precision test for lepton flavor universality.

Historically, the experimental measurements of the RD and RD∗ ratios
have controversially but consistently pointed towards higher values than the
standard model prediction, prompting the possibility that an effect of LFU
violation is being observed. The first measurements were reported by the
BaBar collaboration in 2013, and indicated a disagreement with the stan-
dard model of 2.0 σ for RD and 2.7 σ for RD∗ [3, 4]. Later results by the
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Figure 1.2: Summary of the RD and RD∗ measurements performed by differ-
ent collaborations. The shaded red area represents the average of all exper-
iments, and the shaded blue area is the standard model prediction. Image
produced by [12].

Belle [5, 6] and LHCb [7] collaborations were published in 2015 and were in
agreement with BaBar. All of these experiments chose to reconstruct the
product τ ’s only through leptonic decays, excluding the cases with hadronic
decays so that both B → τντD

(∗) and B → lνlD
(∗) would be identified

through the same daughter particles. However, in 2017 the LHCb [8, 9] and
Belle [10, 11] collaborations published their latest results, which included
hadronic channels for the τ detection, and significantly closed the gap on
RD∗ to 0.9 σ and 0.4 σ, respectively. Nevertheless, the world-average for
all the experiments is still at a 3.5 σ disagreement with the standard model
prediction, and it is this disagreement that we will focus on in this work. A
visual summary of all the measurements performed is provided by Fig. 1.2,
and the exact values reported are shown in Table 1.1.

In this work we are concerned solely with the ratio RD∗ and not RD,
and we propose a method to bring the standard model prediction closer to
experimental results that is based on considering the longitudinal degree
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Table 1.1: Results on RD and RD∗ reported by various experiments.
RD RD∗

BaBar[3, 4] 0.440± 0.058± 0.042 0.332± 0.024± 0.018
Belle [5] 0.375± 0.064± 0.026 0.293± 0.038± 0.015
Belle [6] 0.302± 0.030± 0.011
LHCb[7] 0.336± 0.027± 0.030

Belle[10, 11] 0.270± 0.035+0.028
−0.025

LHCb[8, 9] 0.291± 0.019± 0.029
Average[12] 0.407± 0.039± 0.024 0.306± 0.013± 0.007
Theoretical 0.300± 0.008[1] 0.252± 0.003[2]

of freedom of the D∗. Our calculations are based only on a more detailed
analysis using the standard model and do not assume any LFU violation, nor
do they rely on any other form of new physics. As experimental precision
continues to increase, and with the upcoming Belle 2 experiment expected
to have a 75% increase in its precision for the RD∗ measurement [13], it
will be increasingly important to have a solid and more rigorous standard
model calculation to compare the results to, which is what has inspired this
work. Specifically, we take into account the fact that the D∗ is an unstable
particle, and thus it is never detected directly but through its decay into
daughter particles, which are most commonly a Dπ pair. Therefore, what
the experiments observe is not a three-body decay and it is not appropriate
to compare the results with the ratio RD∗ , but with a new ratio RDπ obtained
from the whole four-body B → lνlπD decay. In this new process, the D∗

becomes an off-shell particle, which enables its longitudinal degree of freedom.
These are the longitudinal corrections to the process that we refer to in the
title, and which we aim to calculate. Taking the D∗ off-shell requires the
much harder task of calculating the four-body B → lνπD decay instead of
the three-body B → lνD∗ decay, which is rarely actually done because the
longitudinal contribution is thought to be heavily suppressed. However, we
will show that the corrections that arise in the ratio are not negligible, in great
part due to the large mass difference between the daughter π and D particles,
and that they help to considerably close the gap with the experimental data.
Therefore, it is more likely that the experiments can be reconciled with the
standard model, without the implication of LFU violation.

It should be noted that neutral D∗ mesons also exhibit the D∗ → Dγ
decay mode, where the longitudinal corrections that we have mentioned are
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absent. Throughout this work we neglect this mode and work only with the
D∗ → Dπ mode, so our results should be considered a better description for
experiments using only charged D∗ mesons which exhibit D∗ → Dπ with a
branching ratio of 98.4% [14]. Experiments that use only charged D∗ mesons
are the 2016 results by Belle [6] as well as all LHCb experiments [7–9]. Other
Belle measurements [5, 10, 11] and BaBar results [3, 4] use both charged and
neutral particles, and report a single value for RD∗ assuming the result makes
no distinction.

In order to achieve our goal, we will begin with a brief review in chapter
2 of all the basic elements of quantum field theory that we will need in order
to set up the theoretical framework of our calculations, as well as the general
characteristics of the standard model. In chapter 3, we present a thorough
analysis of the longitudinal corrections and the B → lνD∗ process as a
whole, and go over the technical aspects needed to calculate the decay width.
Finally, in chapter 4 we present our results and discuss the implications
they have, and also propose some new directions that future research in this
subject could follow in order to further refine these results.



Chapter 2

Quantum Field Theory and the
Standard Model

In this chapter we present a brief overview of all the basic elements of the
standard model and quantum field theory needed in order to study the
B → lνD∗ process. Although we only go into detail for topics that are per-
tinent to this decay, we attempt to describe these ingredients in as much
generality as possible, leaving more detailed insights into the particular case
of the B → lνD∗ process for chapter 3. We begin by describing the basic
aspects of the Dirac field in section 2.1 and of the vector field in section 2.2.
In section 2.3 we go over gauge symmetries and the couplings of leptons to
gauge bosons, deriving the Feynman rules along the way. We put all these
ingredients together in section 2.4, where we present a summary of all the
particles and interactions of the standard model, and then give a description
of mesons based on the quark model in section 2.5. Finally, we discuss the
phase space kinematics of three- and four-body decay processes in section
2.6, and present the integration method that we will use.

2.1 Fermions

The group of fermions consists of all half-integer spin particles, and includes
everything that we typically conceive as matter. In quantum relativistic
mechanics, a fermion is described by a four-tuple of complex numbers, called
a spinor, which takes some value at each point of space and time. The
evolution of a spinor Ψ(x) for a spin-1/2 particle of mass m is determined by

13
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the Dirac equation:
(iγµ∂µ −m)Ψ(x) = 0,

where γµ are the Dirac gamma matrices, which are 4x4 complex matrices
chosen to satisfy {γµ, γν} = 2gµν , with {·, ·} denoting the anticommutator
and gµν ≡ diag[1,−1,−1,−1] the flat space metric tensor. This definition of
the gamma matrices is such that Sµν ≡ i

2
[γµ, γν ] forms a valid representation

of the Lorentz group generators, which indicate how a spinor transforms
under a Lorentz transformation [15].

We also define the left and right components of a spinor as

ΨL ≡
1

2
(1− γ5)Ψ

ΨR ≡
1

2
(1 + γ5)Ψ,

where γ5 ≡ iγ0γ1γ2γ3 is hermitian and has the property {γ5, γ
µ} = 0. This

allows us to decompose any spinor as Ψ = ΨL + ΨR.
The Dirac equation can also be obtained from the Lagrangian

LD = Ψ̄(iγµ∂µ −m)Ψ

if we consider Ψ and its adjoint spinor Ψ̄ as independent variables. In order
for the Lagrangian to be a Lorentz scalar, the adjoint is defined as

Ψ̄ ≡ Ψ†γ0.

This makes it so that Ψ̄Ψ is a Lorentz scalar, while quantities like Ψ̄γµΨ
transform like a vector and Ψ̄γµγνΨ like a tensor of rank 2.

In addition to Lorentz transformations we also have the parity transfor-
mation (x0, ~x) 7→ (x0,−~x). When acting on a spinor, this may be imple-
mented in several ways. In the Weyl basis [16], one has

P̂Ψ = ηPγ
0Ψ,

where ηP can be either +1 or -1 and is known as the parity of the particle.
The scalar form Ψ̄Ψ and the vector form Ψ̄γµΨ behave as one would expect
under parity. That is, the scalar is unaffected by it while the vector has
the sign of its spatial components switched. On the other hand, quantities
like Ψ̄γ5Ψ are called pseudoscalars because they transform like scalars under
Lorentz transformations but gain a negative sign under parity, and quantities
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like Ψ̄γ5γ
µΨ are called pseudovectors or axial vectors because they transform

like vectors under Lorentz transformations but under parity all components
switch sign, not just the spatial ones. The parity operator also exchanges
the left and right components of a spinor:

P̂ΨL = ηPΨR and P̂ΨR = ηPΨL.

Any solution to the Dirac equation can be written in terms of four types
of normal modes, namely:

Ψ1
p(x) = u1

pe
−ip·x

Ψ2
p(x) = u2

pe
−ip·x

Ψ3
p(x) = v1

pe
+ip·x

Ψ4
p(x) = v2

pe
+ip·x,

where [17]

usp =
m+ γµpµ√
2(p0 +m)

(
ξs

ξs

)
and

vsp =
m− γµpµ√
2(p0 +m)

(
ξs

ξs

)
,

with

ξ1 =

(
1
0

)
, ξ2 =

(
0
1

)
.

The spinors u1
p and v1

p correspond to a particle and antiparticle of spin up,
while u2

p and v2
p correspond to a particle and antiparticle of spin down. More-

over, the usp and vsp spinors satisfy the orthogonally relations

us1†p us2p = vs1†p vs2p = 2p0δs1s2

and the spin sum rules ∑
s

uspu
s†
p = γµpµ +m,∑

s

vspv
s†
p = γµpµ −m. (2.1)

From this one can derive the free propagator and the Feynmann rules for
the Dirac field:
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• For an incoming particle of spin s, add the spinor usp

• For an incoming antiparticle of spin s, add the spinor v̄sp

• For an outgoing particle of spin s, add the spinor ūsp

• For an outgoing antiparticle of spin s, add the spinor vsp

• For each internal line, add the propagator iγµpµ+m

p2−m2

2.2 Bosons

The second group of particles, the Bosons, consists of all particles of integer
spin, which are typically conceived as force carriers. The standard model
contains only one particle of spin 0, which we need not delve into. All other
bosons are spin-1 particles which are described by the vector field. The vector
field receives its name because it is a four-tuple of complex numbers just like
the Dirac field, but under Lorentz transformations its components transform
just like the components of a four-vector.

We will begin by analyzing the case of a massless spin-1 particle, which has
only two internal degrees of freedom (i.e. two spin states). This means that
a description using the four components of a vector field has two additional
degrees of freedom that are redundant. This redundancy can be addressed
by associating into equivalence classes all the configurations of the vector
field that differ by a total derivative. That is, for a vector field Aµ we have

Aµ(x) ∼= Aµ(x) + ∂µθ(x)

for any function θ(x), where the equivalence means that the two configura-
tions represent the same physical state, and we say that the two configura-
tions are related by a gauge transformation. The only free Lagrangian that
we can write that is invariant under both gauge and Lorentz transformations
is the Maxwell Lagrangian,

LM = −1

4
F µνFµν ,

where F µν ≡ ∂µAν − ∂νAµ. The equations of motion that result from
this Lagrangian are the inhomogeneous Maxwell equations without sources,
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∂µF
µν = 0. Any solution to this equation can be decomposed into normal

modes of four kinds:
Aµk+(x) = εµk+e

−ik·x,

Aµ∗k+(x) = εµ∗k+e
+ik·x,

Aµk−(x) = εµk−e
−ik·x,

Aµ∗k−(x) = εµ∗k−e
+ik·x,

where the polarization vectors correspond to a left and right circular-polarized
particle and can be taken as

εµk+ = Λ


0

1/
√

2

i/
√

2
0

 , εµk− = Λ


0

1/
√

2

−i/
√

2
0

 ,

with Λ a Lorentz transformation matrix that maps (1, 0, 0, 1) 7→ k.
This allows us to derive the free propagator and the Feynmann rules for

the massless vector field [17]:

• For each incoming particle of polarization ±, add the polarization vec-
tor εµk±

• For each outgoing particle of polarization±, add the polarization vector
εµ∗k±

• For each internal line, add the propagator −ig
µν

k2

Note that the propagator may have a different form under different gauge
choices, but all physical results must be independent of this.

We now turn our attention to the massive vector field, described by the
Proca Lagrangian:

LP = −1

4
F µνFµν +

1

2
m2AµAµ.

It should be noted that the mass term breaks the gauge invariance of the
Lagrangian, but the standard model solves this by introducing additional
terms of interaction with the Higgs boson. The corresponding equation of



18

motion is the Procca equation without sources: ∂µF
µν + m2Aν = 0. This

time, the solution accepts six different normal modes:

Aµk+(x) = εµk+e
−ik·x,

Aµk−(x) = εµk−e
−ik·x,

Aµk0(x) = εµk0e
+ik·x,

as well as their complex conjugates, with the new polarization vector corre-
sponding to the longitudinally polarized particle. The polarization vectors
can be taken as

εµk+ = Λ


0

1/
√

2

i/
√

2
0

 , εµk− = Λ


0

1/
√

2

−i/
√

2
0

 , εµk0 = Λ


0
0
0
1

 ,

Where Λ is now a Lorentz transformation matrix that maps (m, 0, 0, 0) 7→ k.
The three polarization vectors for an on-shell massive vector particle sat-

isfy the projector relation [15]∑
λ=+,−,0

εµ∗kλε
ν
kλ = −gµν +

kµkν

k2
≡ –T µνk , (2.2)

where T µνk is a transversal projector in the sense that, when contracted with
a four-vecor, it results in its projection to the space transversal to k. That
is, T µνk kµ = 0 and T µνk qµ = qν for any q transversal to k (meaning qµk

µ = 0).
Likewise, we define the longitudinal projector

Lµνk ≡
kµkν

k2

with the property that Lµνk kµ = kν and Lµνk qµ = 0 for any q transversal
to k. The transversal and longitudinal projectors also satisfy the following
projector identities:

T µνk (Tk)να = (Tk)
µ
α,

Lµνk (Lk)να = (Lk)
µ
α,

T µνk (Lk)να = 0,

T µνk + Lµνk = gµν . (2.3)

The propagator for the massive vector field can be written in terms of
the transversal and longitudinal projectors, and the Feynman rules are:
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• For each incoming particle of polarization +/−/0, add the polarization
vector εµk(+,−,0)

• For each outgoing particle of polarization +/−/0, add the polarization
vector εµ∗k(+,−,0)

• For each internal line, add the propagator
−iTµνk
k2−m2 +

iLµνk
m2

2.3 Gauge Symmetries

In the standard model, gauge symmetries act primarily on fermions, and
bosons are introduced as a form of ensuring that this symmetry is main-
tained. Let us first illustrate this process by examining the Quantum Elec-
trodynamics sector of the standard model.

Consider the Dirac Lagrangian:

LD = Ψ̄(iγµ∂µ −m)Ψ,

which is invariant under the transformation Ψ 7→ eig
′θΨ, where g′θ is a con-

stant. This is known as a global symmetry because the transformation is
applied equally at all points in space-time, as opposed to a local symmetry
where the transformation can be different at each point. We could promote
this to a local transformation by promoting θ to a function θ(x), but then
the Lagrangian would not be invariant because the derivative would gener-
ate an additional −g′∂µθ(x)Ψ̄γµΨ term. Recall that the gauge invariance
of the massless vector field allows it to absorb any function that is a total
derivative, which can be exploited to compensate for this extra term. In-
deed, we can invoke a massless field Bµ and add the term g′BµΨ̄γµΨ to the
Lagrangian, asking that the vector field transforms simultaneously with Ψ
as Bµ 7→ Bµ + ∂µθ(x). From now on we refer to this transformation, which
acts locally on the vector field and the Dirac field simultaneously, as the
gauge transformation. When the new g′BµΨ̄γµΨ term undergoes the gauge
transformation, it gains an additional +g′∂µθ(x)Ψ̄γµΨ term, which precisely
cancels the previous extra term. Notice that adding the g′BµΨ̄γµΨ term
to the Lagrangian corresponds to substituting the partial derivative by a
covariant derivative:

∂µ 7→ Dµ ≡ ∂µ − ig′Bµ,
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Figure 2.1: QED vertex coupling two fermion lines (f) to a photon line (γ).

so the full gauge-invariant Lagrangian (including the free Maxwell Lagrangian)
can be written as

LQED = Ψ̄(iγµDµ −m)Ψ− 1

4
F µνFµν .

In order to preserve the gauge symmetry, we had to add a new term which
couples two fermion lines to a vector line. If Bµ were the photon field, this
would be what is known as the QED vertex (Fig. 2.1), and because g′ is the
coupling constant that modulates it, it would be clear that it represents the
electric charge (denoted by e) of the particle. This is not strictly the case
because the photon field is a mixture of the Bµ field and the W 3

µ field that
we will soon discuss. If we ignore this subtlety for now, however, we arrive
to the Feynman rule for the QED interaction:

• For each QED vertex, add –ieγµ

The gauge symmetry that we have worked with so far is known as a
U(1) symmetry because it acts on a single fermion field by multiplying it
by a phase. However, we can also have other symmetry groups that act on
multiple fields by mixing them. For instance, consider the group SU(2) of
2 × 2 unitary matrices with determinant 1, which can act on a 2x1 column
of left-handed spinors ΨL and χL:(

ΨL

χL

)
7→ G

(
ΨL

χL

)
, G ∈ SU(2).

By definition, the transformation acts only on the left-handed components
while doing nothing to the right-handed components. Because ΨL and χL
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are affected by the SU(2) tranformation jointly, they are said to form an
SU(2) doublet, whereas ΨR and χR are SU(2) singlets. We can write the free
Lagrangian of both particles as

L =V̄Lγ
µ∂µVL + Ψ̄Rγ

µ∂µΨR + χ̄Rγ
µ∂µχR

−mΨ

(
Ψ̄LΨR + Ψ̄RΨL

)
−mχ (χ̄LχR + χ̄RχL) ,

where

VL =

(
ΨL

χL

)
and V̄L =

(
Ψ̄L χ̄L

)
.

Any transformation G ∈ SU(2) can be written as

G : VL 7→ eiθiσiVL

for some choice of constants θi, where we sum over i = 1, 2, 3 and σi are the
pauli matrices, which are the generators of SU(2). As before, the Lagrangian
is invariant under any such global transformation, but not if we consider local
transformations by taking θi(x) as functions. This time we need three vector
fields, one for each generator, in order to make the symmetry local. We
denote these fields by ~Wµ = (W 1

µ ,W
2
µ ,W

3
µ) and define the 2× 2 matrix field

Wµ ≡
i

2
~Wµ · ~σ.

To extend SU(2) to a gauge symmetry we ask that W µ transforms as

Wµ 7→ G(x)

[
Wµ(x)

1

g
∂µ

]
G†(x),

where g is a new coupling constant, and replace the partial derivative with
a new covariant derivative defined as

Dµ ≡ ∂µI + gWµ(x),

where I is the 2× 2 unitary matrix which will be omitted from now on.
This is equivalent to adding the interaction term

igV̄Lγ
µWµVL = − g√

2

[
W+
µ Ψ̄Lγ

µχL +W−
µ χ̄Lγ

µΨL

+
W 3
µ√
2

(
Ψ̄Lγ

µΨL − χ̄LγµχL
) ]
,
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where we have introduced the fields

W±
µ ≡

1√
2

(
W 1
µ ∓ iW 2

µ

)
which represent the charged W bosons that are observable according to the
standard model.

In order to replicate the electroweak interaction of the standard model in
the leptonic sector, let us now consider this SU(2) symmetry joint to a U(1)
symmetry that acts with coupling constant g′ on χR, 0 on ΨR, and g′/2 on
ΨL, χL. In this case, the sum of all interaction terms is

V̄Lγ
µ

(
g′

2
Bµ − gW 3

µ

)
VL + g′χ̄Rγ

µBµχR =

− g√
2

[
W+
µ Ψ̄Lγ

µχL +W−
µ χ̄Lγ

µΨL

]
− eAµχ̄γµχ

− g1ZµΨ̄Lγ
µΨL − g2Zµχ̄Lγ

µχL − g3Zµ(Ψ̄Rγ
µΨR + χ̄Rγ

µχR),

where we have defined the photon and Z-boson fields

Aµ ≡
g′W 3

µ + gBµ√
g2 + g′2

and Zµ ≡
gW 3

µ − g′Bµ√
g2 + g′2

,

which correspond to the observable particles of the standard model, and the
new coupling constants are defined as

e ≡ gg′√
g2 + g′2

, g1 ≡
√
g2 + g′2

2
, g2 ≡

g′2 − g2

2
√
g2 + g′2

, g3 ≡
g′2√
g2 + g′2

.

This change of basis is done so that the photon field Aµ couples to left- and
right-handed components indistinctly, and also such that Aµ and Zµ are the
mass eigenstates which originate from the interaction with the Higgs boson
(discussed in the following section).

Notice that only the χ field is coupled to the photon and since e is the
constant that modulates this interaction, it is clear that it represents the
electric charge. This term represents the electromagnetic interaction and is
the same as the QED vertex we had considered before, except the charge now
has its proper value and the coupling is with the actual photon field. The fact
that only χ is charged suggests that our doublet consists of a charged lepton
χ and a neutrino Ψ, and is a consequence of our choice of coupling constants
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Figure 2.2: Charged current (top) and neutral current (bottom) interactions
for any pair of fermions ΨL, χL that form an SU(2) doublet.

for the U(1) symmetry (a choice of g′/6 for the left-handed spinors, 2g′/3 for
ΨR and −g′/3 for χR would have resulted in Ψ and χ having electric charges
2e/3 and −e/3, respectively, which is the familiar case of the quark doublet).
The two terms in the bracket account for the charged current interaction,
mediated by the W± bosons, while the last three terms represent neutral
current interactions, mediated by the Z boson. These interactions are shown
in Fig. 2.2.

By noting that we can rewrite

Ψ̄Lγ
µχL =

1

2
Ψ̄γµ (1− γ5)χ and χ̄Lγ

µΨL =
1

2
χ̄γµ (1− γ5) Ψ,

we arrive at the Feynman rule for the charged current interaction:

• For each charged current vertex, add the coupling i g

2
√

2
γµ(1− γ5)

and a similar rule can be derived for the neutral current interaction. Because
the term γµ (1− γ5) in-between spinors has the structure of a vector minus
an axial vector, this is often referred to as a V-A coupling.
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2.4 The Standard Model

The standard model of particle physics includes twelve kinds of fermions
divided into six quarks and six leptons, together with twelve kinds of gauge
bosons and one Higgs boson. Fig. 2.3 shows a graphical summary of all the
particles considered in the standard model.

The up, charm and top quarks have electric charge +2/3 and are de-
noted by the letters u, c, t or u1, u2, u3 when refered to as type-up quarks.
Meanwhile, the down, strange and bottom quarks have electric charge -1/3
and are denoted by the letters d, s, b or d1, d2, d3 when refereed to as type-
down quarks. The left-handed component of each type-up quark forms an
SU(2) doublet with the left-handed component of the corresponding type-
down quark, denoted by

Qi =

(
uiL
diL

)
, i = 1, 2, 3

while the right-handed components form SU(2) singlets.
On the lepton side, there are three flavors that we call electronic, muonic

and tauonic, and each flavor has a charged lepton (denoted e, µ, τ) of elec-
tric charge -1 and a corresponding neutrino (denoted νe, νµ, ντ ) of electric
charge 0. Each left-handed charged lepton forms an SU(2) doublet with the
corresponding left-handed neutrino, denoted by

Ll =

(
νlL
lL

)
, l = e, µ, τ

while the right-handed components form SU(2) singlets.
Thus, the Lagrangian that includes both the U(1) and SU(2) gauge sym-

metries, with the U(1) couplings described in the last section, can be written
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Figure 2.3: Particles of the standard model, divided into quarks (top left),
leptons (bottom left) and gauge bosons (right).



26

(excluding the kinetic boson terms and the masses) as

L =
∑
i=1,2,3

[
Q̄iLγ

µ

(
∂µ − i

g′

6
Bµ + gWµ

)
QiL

+ ūiRγ
µ

(
∂µ + i

2g′

3
Bµ

)
uiR + d̄iRγ

µ

(
∂µ − i

g′

3
Bµ

)
diR

]

+
∑
l=e,µ,τ

[
L̄lγ

µ

(
∂µ − i

g′

2
Bµ + gWµ

)
Ll (2.4)

+ l̄Rγ
µ (∂µ − ig′Bµ) lR + ν̄lRγ

µ (∂µ) νlR

]
(2.5)

The concept of lepton flavor universality in the standard model refers to
the fact that the coupling constants to the B and W fields are assumed to
remained unchanged when switching flavors (although of course they are dif-
ferent for the charged leptons than for the neutrinos), and studying processes
involving the charged current interaction allows us to test this hypothesis, at
least for the g coupling.

The standard model considers another scalar particle called the Higgs
boson, which arises as two complex fields that form an SU(2) doublet and
couple to the W± and Z0 bosons, as well as all quarks and charged leptons,
allowing them to have a mass term without breaking the gauge symmetry
upon experiencing a spontaneous symmetry breaking, which also results in
several couplings among bosons in what is known as the Higgs mechanism.

The weak interaction also exhibits quark flavor mixing. This is so because
the quark fields that couple to the gauge fields (called the flavor eigenstates)
need not be in the same basis as the ones that appear in the mass terms
(called the mass eigenstates), which are the ones that interact with the Higgs
boson. In particular, we could replace the quark fields in the first line of (2.5)
by fields u′iL, d

′
iL in a different flavor basis, related to the original fields by

3× 3 unitary matrices U (u), U (d) as follows:uLcL
tL

 = U (u)

u′Lc′L
t′L

 and

dLsL
bL

 = U (d)

d′Ls′L
b′L

 ,

which also implies (
ūL c̄L t̄L

)
=
(
ū′L c̄′L t̄′L

)
U (u)†
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and (
dL sL bL

)
=
(
d̄′L s̄′L b̄′L

)
U (d)†.

Notice that we could have done the same for the right-handed fields, but
because the matrices commute with the ∂µ and Bµ terms, they would cancel
because of the unitarity. In fact, this is true for all currents that match
a spinor with its conjugate spinor, and the only difference arises with the
charged currents that match type-up quarks to type-down quarks. The form
of these currents in the new basis will now be

Lc.c. =− g√
2

∑
i=1,2,3

[
W+
µ ūiγ

µdi +W−
µ d̄iγ

µui
]

=− g√
2

W+
µ

(
ūL c̄L t̄L

)
γµ

dLsL
bL

+W−
µ

(
d̄L s̄L b̄L

)
γµ

uLcL
tL


=− g√

2

[
W+
µ

(
ū′L c̄′L t̄′L

)
γµU (u)†U (d)

d′Ls′L
b′L


+W−

µ

(
d̄′L s̄′L b̄′L

)
γµU (d)†U (u)

u′Lc′L
t′L

]

=− g√
2

∑
i,j=1,2,3

[
W+
µ Vuidj ū

′
iγ
µd′j +W−

µ V
∗
uidj

d̄′jγ
µu′i

]
,

where we have defined the Cabibbo–Kobayashi–Maskawa matrix V ≡ U (u)†U (d)

with components Vuidj = (V )ij. Thus, in the standard model we obtain
charged currents connecting quarks of different flavors at the price of intro-
ducing the CKM matrix element in the Feynman rules for each vertex. In
practice, the measurements of the CKM matrix have found it to be close
to the identity, so that charged currents connect mostly quarks of the same
flavor and flavor mixing is minimal. This exact same procedure can be re-
peated for the left-handed leptons, but the distinction between flavor and
mass eigenstate is meaningless until we consider neutrino mass terms. If
we assume that neutrinos are Dirac fermions (that is, that they have mass
terms of the same form as the other Dirac fields), the equivalent of the CKM
matrix that we obtain is known as the Pontecorvo–Maki–Nakagawa–Sakata
matrix. Unlike the CKM matrix, the PMNS matrix has been found to devi-
ate strongly from the identity. We will not consider neutrino masses, so that



28

the flavor eigenstates can be taken to be mass eigenstates and flavor mixing
does not occur in the leptonic sector.

It should be noted that each type of quark actually has three spinor fields,
which we refer to as its color components. The standard model considers one
more gauge symmetry, which is given by the group SU(3) and acts on the
color components of each quark by mixing them. Thus, we say that the full
gauge symmetry of the standard model is a U(1)×SU(2)×SU(3) symmetry.
In order to conserve the SU(3) symmetry locally, the standard model also
incorporates 8 new bosons (which is the number of SU(3) generators) called
gluons, in addition to the four already needed for the U(1) and SU(2) sym-
metries. The interactions that arise, called strong interactions, form the basis
of Quantum Chromodynamics. We will not delve too much into QCD, but we
do note that, unlike the other theories, it exhibits a phenomenon known as
asymptotic freedom which means that the couplings become asymptotically
null at large energies. Conversely, the couplings also become increasingly
strong at low energies (or large distances), which leads to the phenomenon
of confinement, meaning that quarks can never exist as free particles but
are always found in color-neutral multi-quark systems known as hadrons.
On a practical level, this also complicates the calculation of QCD processes
because higher order diagrams cannot be simply neglected, so processes in-
volving quarks often require experimental measurement of form factors rather
than direct theoretical calculations.

2.5 The Quark Model

As we have previously mentioned, quarks cannot exist as free particles and are
always confined to color-neutral multi-quark states called hadrons. The most
simple types of hadrons are one quark and one antiquark of the same color,
which form systems known as mesons, and three quarks of complementing
colors which form systems known as baryons. Because the running strong
coupling cannot be considered a perturbation, systems with more elaborated
structures are no less likely to appear. Therefore, the real mesons and baryons
that we observe are actually a complex conglomerate of quarks and gluons
with net zero couplings to other gauge fields, plus an excess two or three
quarks (respectively). The description of hadrons in terms of these valence
quarks is known as the quark model, and it should come as no surprise that
the mass of the hadrons is usually much larger than the sum of its valence
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quarks’ masses. In this section we consider the quark model for mesons only,
as they are the ones that play an important role in our work.

Let us first consider only the u and d quarks. Since they (or their
left-handed components at least) form a doublet that transforms under the
SU(2) group, which is the same group used for the spin-1/2 representation
in quantum physics, we can form an analogy where a quark is a particle of
total isospin 1/2 and the u quark represents a state of isospin projection
T3 = +1/2, while the d quark represents the isospin projection T3 = −1/2.
The consideration of the u and d quarks as different states of the same par-
ticle is known as isospin symmetry, an is only an approximation once we
consider their slight difference in mass. When we add two quarks together to
form a meson, we can either get a system of total isospin 1 or 0. The states of
total isospin 1 are known as pions, with the projections T3 = −1, 0, 1 denoted
π−, π0, π+ respectively, while the state of total isospin 0 is denoted η0. In
complete analogy to spin addition, these states are given by

|π+〉 = |uu〉

|π0〉 =
1√
2

(|ud〉+ |du〉)

|π−〉 = |dd〉

|η0〉 =
1√
2

(|ud〉 − |du〉) .

Let us now consider the s quark, to which we will not assign any isospin
structure (it is a particle of isospin 0). In fact, the concept of isospin is
not useful for any of the other quark families, because the mass differences
are much larger and the symmetry is vastly broken. Instead, we distinguish
hadrons containing s quarks by a property called strangeness. The s quark
is said to have strangeness -1, and can couple with an anti-u or d quark to
form the kaon states K− and K0, respectively. Meanwhile, the anti-s quark
is said to have strangeness +1 an can couple to an u or d quark to form
the K+ and K̄0. We can form yet another state, called the ηs, by coupling
an ss̄ pair. Note that both η0 and ηs are states of zero total isospin and
zero strangeness, so we could get eigenstates from any mixture of them. The
actual energy eigenstates, called the η and η′, are indeed mixtures of η0 and
ηs, which are due to the flavor mixing of the weak interaction.

The u, d and s quarks that we have considered so far are usually consid-
ered light quarks, and they form the eight most common types of mesons,
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Figure 2.4: Mesons formed by the u, d and s quarks form the eightfold way,
where horizontal lines represent constant strangeness and diagonal lines rep-
resent constant electric charge. The η′ state has been added to this diagram,
bringing the total number of mesons up to nine.

often summarized graphically in an arrangement called the Eightfold Way
[18], plus the additional singlet state η′ as shown in Fig. 2.4. Mesons that
include a c or b quark are known as heavy mesons. The t quark has never
been observed to form hadrons, since its mass is so large that it usually de-
cays before forming any bound states. The c quark can couple to an anti-u,
d or s quark, forming the D0, D+ and D+

s mesons, respectively, while the
anti-c quark can couple to an u, d or s quark to form the D̄0, D− and D−s
mesons. Likewise, the b quark couples to anti-u, d, s and c quarks to form
the B−, B0, B0

s and B−c mesons, and the anti-b couples to u, d, s and c to
form the B+, B̄0, B̄0

s and B+
c .
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Because each quark is a spin-1/2 particle, each meson system can be in
either a spin-0 or a spin-1 configuration. Note that quarks and antiquarks
must always have opposite parities, so all ground-state mesons must have
parity −1. This means that ground-state spin-0 mesons are pseudoscalars,
while ground-state spin-1 mesons are vectors. When a meson is not in its
ground state, it may have an orbital angular momentum (denoted L), and the
parity is switched for each unit of L, so the parity is given by P = (−1)1+L.
When considering ground-state mesons, the pseudoscalar configurations are
denoted by the letters we have been using so far, while the vector configura-
tions are denoted with a star (e.j. D∗−). A special exception is considered
for the vector configurations of the pions, the η and the η′, which are denoted
by the letters ρ, ω and ϕ (without a star), respectively.

The mesons that are relevant for our work are the B0,±, D∗∓,0, D∓,0 and
π±,0. The properties of these mesons are listed in Table 2.1. As mentioned
in the introduction, the B → lνD∗ decay arises naturally from a b→ c quark
transition which has a large mass difference that enables tau production,
with a spectator u or d quark. One could also consider an s spectator quark,
leading to the analogous process

Bs → lνD∗s

which has been studied before [19, 20], but its theoretical description is more
complicated due to the fact that the s quark mass is not as small as that of
the u and d when compared to that of the c, which makes the heavy quark
approximation (discussed in section 3.4) less useful. There is also a lack of
experimental data to compare with for this case and we do not delve into it
because, moreover, the D∗s decay is dominated by the Dsγ mode even for the
charged case, so longitudinal corrections are not applicable.

2.6 Decay Processes

In this section we consider the problem of integrating a squared amplitude
to obtain the cross section of a process. In particular, we limit ourselves
to considering decay processes of one particle into three or four products.
Our discussion and the parametrization that we use closely follows the one
found in [21]. Once the squared amplitude for a process into N products is
calculated, it must be integrated over the momenta of the outgoing particles
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Table 2.1: Properties of the mesons present in the B → lνπD decay. The
I(JP ) notation represents the quantum numbers for isospin(total spinparity)

Particle Symbol Valence Quarks I(JP ) Mass (MeV)

B±/B0 ub̄/db̄ 1
2
(0−) 5279

D∗±/D∗0 dc̄/uc̄ 1
2
(1−) 2010/2007

D±/D0 dc̄/uc̄ 1
2
(0−) 1870/1865

π±/π0 ud̄/ 1√
2
(uū+ dd̄) 1(0−) 140/135

in order to get the decay width, while enforcing each outgoing particle to be
on shell and requiring momentum conservation as follows:

Γ =

∫
|M |2

2E0

(2π)4δ4

(
p0 −

N∑
i=1

pi

)
N∏
i=1

(
d4p1

(2π)3
δ(p2

1 −m2
1)

)
,

where pi,mi are the momenta of the outgoing particles and E0 is the energy
of the initial particle.

Let us first consider a decay into three bodies using for convenience the
notation of the B → lνD∗ decay with the momenta and masses of the re-
spective particles given by pB, pl, pν , pD∗ ,mB,ml,mν ,mD∗ . We also work in
the rest frame of the system, so that E0 = mB. By enforcing momentum
conservation, all scalar products can be written in terms of the two variables:

s ≡ (pB − pD∗)2 = (pl + pν)
2 and u ≡ (pB − pν)2 = (pl + pD∗)

2,

and the three-body decay width can be rewritten as

Γ3 = −
∫ s+

s−

∫ u+

u−

|M(u, s)|2

2mB(2π)5
du ds,

where we have used |M(u, s)|2 to refer to the square amplitude in terms of
only u and s once momentum conservation has been enforced, and the limits
of integration are

s− = (ml +mν)
2, s+ = (mB −mD∗)

2,

u± = m2
B+m2

ν−
(s+m2

ν −m2
l )(m

2
B + s−m2

D∗)

2s
±λ

1/2(s,m2
ν ,m

2
l )λ

1/2(m2
B, s,m

2
D∗)

2s
,
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Figure 2.5: Dalitz plots representing the phase space for the B → lνD∗ decay
for each lepton flavor.

with
λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. (2.6)

These limits define a phase space region known as the Dalitz region, which is
plotted in Fig. 2.5 for the particles in question, for each of the lepton flavors.
Notice that for the electron and the muon the phase space is almost identical,
so we can usually talk about the ”light flavor” case indistinctly. This is to
be expected, since both masses are negligible compared to the energy scale
of the process (given by the mass of the B), but the same is not true for the
tau.

Once we consider the full B → lνπD process, we need the four-body
phase space. We again use the usual notation for the momenta and masses
of the B, l, ν, π,D, and also use pD∗ ≡ pD + pπ while noting that this is no
longer an on-shell momentum. This time we can write all scalar products in
terms of five variables:

s1 ≡ (pB − pl)2 = (pν + pπ + pD)2, s2 ≡ (pB − pl − pν) = p2
D∗ ,

u1 ≡ (pB − pν)2 = (pl + pπ + pD)2, u2 ≡ (pB − pπ)2 = (pl + pν + pD)2,

and t ≡ (pB − pν − pπ)2 = (pl + pD)2,
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and the four-body decay width can be rewritten as

Γ4 =

∫
|M |2ds2ds1

2mB(2π)8

du1du2

λ1/2(m2
B, s2, s′2)λ1/2(m2

B,m
2
π, u2)

× dt

λ1/2(m2
B, u1,m2

l )[(1− ξ2)(1− η2)(1− ζ2)]1/2
,

where
s′2 ≡ s2 − s1 − u1 +m2

B +m2
l +m2

ν

and the functions ξ, η, ζ are defined as follows:

ξ ≡ (m2
B + s′2 − s2)(m2

B +m2
l − u1)− 2m2

Bs
′
2

λ1/2(m2
B, s2, s′2)λ1/2(m2

B,m
2
π, u2)

,

η ≡ 2m2
B(s2 +m2

π −m2
D)− (m2

B +m2
π − u2)(m2

B + s2 − s′2)

λ1/2(m2
B, s2, s′2)λ1/2(m2

B,m
2
π, u2)

,

and
ζ ≡ (ω − ξη)

√
(1− ξ2)(1− η2)

with

ω ≡ 2m2
B(u1 +m2

π − t)− (m2
B +m2

π − u2)(m2
B + u1 −m2

l )

λ1/2(m2
B, u1,m2

l )λ
1/2(m2

B,m
2
π, u2)

.

The limits for the integration are:

s−2 = (mπ +mD)2, s+
2 = (mB −ml −mν)

2,

s−1 = (
√
s2 +mν)

2, s+
1 = (mB −ml)

2,

u±1 =mB +m2
ν −

(s1 +m2
ν − s2)(mB + s1 −m2

ν)

2s1

± λ1/2(s1,m
2
ν , s2)λ1/2(m2

B, s1,m
2
ν)

2s1

,

u±2 =mB +m2
π −

(s2 +m2
π −m2

D)(mB − s2 − s′2)

2s2

± λ1/2(s2,m
2
π,m

2
D)λ1/2(mB, s2, s

′
2)

2s2

,
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and

t± =u1 +m2
π −

(m2
B +m2

π − u2)(m2
B + u1 −m2

l )

2m2
B

+
λ1/2(m2

B,m
2
π, u2)λ1/2(m2

B, u1,m
2
l )

2m2
B

(
−ξη ±

√
(1− ξ2)(1− η2)

)
.

Notice that the invariant mass of the D∗, which may be off-shell in general,
has been isolated in the variable s2 ≡ p2

D∗ . We have left this variable as
the outermost integration variable, so that the limits s±2 do not depend on
any other variables. Therefore, taking the D∗ to be on-shell corresponds to
simply ignoring the s2 integral and setting s2 = m2

D∗ (we will discuss how
the on-shell limit arises in the following chapter).



Chapter 3

B → lνD∗ and B → lνπD Decay
Processes

In this section we develop all the process-specific theory needed to study
the B → lνπD decay process. We begin in section 3.1 by comparing and
contrasting this process with the shortened B → lνD∗ version, and point out
exactly how the so-called longitudinal corrections arise. We also write down
the general form of the amplitude for the process, and then dedicate the next
three sections to describing each of its ingredients in more depth: In section
3.2 we discuss the vector propagators of the W and D∗ and tackle the issue
of renormalization for the D∗; in section 3.3 we describe the leptonic charged
current; and in section 3.4 we study the strong-interaction vertex connecting
the B−D∗−W and detail the parametrization that we use for our numerical
calculations.

3.1 Decay Amplitudes for the B→ lνD∗ and

B→ lνπD Decays

We begin by writing out the general forms of the amplitudes for the B →
lνD∗ and B → lνπD decay processes, describing how part of the later can
be reduced into the former but also pointing out the new terms that give
place to the longitudinal corrections we have alluded to.

As we have mentioned before, the decay that is observable to the exper-
iments is closer to the four-body process shown in Fig. 3.1, but the results

36
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are usually compared with the theoretical calculation [2] for the ratio

RD∗ ≡
BR(B → τντD

∗)

BR(B → lνlD∗)
, l = e, µ

which considers only the three-body decay. We argue that it is more appro-
priate to compare with the ratio obtained from the four body decay, which
we call

RDπ ≡
BR(B → τντπD)

BR(B → lνlπD)
, l = e, µ.

It is often thought that these processes can be made equivalent by considering
the B → lνD∗ decay and the D∗ → Dπ decay as separate, subsequent
processes, by “cutting” the diagram as shown in Fig. 3.1. When doing this,
the D∗ is considered first as an outgoing particle and then as an incoming
particle, so it is always on shell. Specifically, we write

M =
∑

(Mµ
3 ε
∗
µ)(ενM

ν
2 ),

where M3 is the B → lνD∗ amplitude with the D∗ polarization vector ε∗µ
factored out and Mν

2 is the D∗ → Dπ amplitude with the D∗ polarization
εν factored out, and the sum is over polarizations. At this point, it appears
as though the amplitude factors into independent pieces. Moreover, the
amplitude ενM

ν
2 , which represents the D∗ → Dπ decay, has no dependence

on the lepton, which is produced in the other factor of the amplitude, so one
might assume that this contribution cancels out in the ratio, which would
justify working only with the B → lνD∗ decay. This is not strictly the
case, however, because in order for the D∗ to connect the two processes
the two polarization vectors must be the same and so the two factors are
not independent. More specifically, we can use the polarization sum rule
described in (2.2) to write

M = Mµ
3

(
−gµν +

(pD∗)µ(pD∗)ν
m2
D∗

)
Mν

2 , (3.1)

where it is clear that the factorization has been lost. Moreover, although the
amplitude Mν

2 is independent of the lepton, the phase space region where it
is to be integrated is not. We have already shown in Fig. 2.5 that the Dalitz
region for the τ is drastically different than the region for the light leptons,
so even if the part being added is lepton-independent there is no reason to
think that its contribution cancels out in the ratio.
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Figure 3.1: B → lνπD decay, often considered as subsequent but indepen-
dent B → lνD∗ and D∗ → Dπ decays as illustrated by the red cutting
line.

Since we have already established that the subsequent decay process can
have different contributions depending on the lepton flavor, let us go one step
further and consider the proper four-body decay where the D∗ is allowed to
be off shell. The actual amplitude for this process is

M = Mµ
3 DµνM

ν
2 ,

where Dµν is the propagator of the D∗, which has the form

Dµν =
−iT µν

p2
D∗ −m2

D∗ + imD∗Γ(p2
D∗)

+
iLµν

m2
D∗ − iImΠL(p2

D∗)
, (3.2)

as will be discussed in section 3.2, where Γ(p2
D∗) and ImΠL(p2

D∗) are correc-
tions to the vector propagator and Γ(m2

D∗) = ΓD∗ is the decay width of the
D∗ into Dπ. Because Γ(p2

D∗) is relatively small, the transversal part of the
propagator has a pole close to p2

D∗ = m2
D∗ and a narrow width approximation

|p2
D∗ −m2

D∗ + imD∗Γ(p2
D∗)|−2 ≈ π

mD∗ΓD∗
δ(p2

D∗ −m2
D∗)

can be used when integrating the squared amplitude. If we consider only the
transversal part of the propagator, then the squared amplitude is

|MT |2 = M3µM
∗
3αT

µνTαβM2νM
∗
2β

πδ(p2
D∗ −m2

D∗)

mD∗ΓD∗
,
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which is exactly what one would get by squaring (3.1), plus some propor-
tionality factors that account for the splitting of the phase space and the
delta function that forces the D∗ to be on shell. Therefore, using only the
transversal part of the propagator is equivalent to working with the simplified
model where the D∗ is on shell.

However, the longitudinal part of the amplitude will remain off-shell be-
cause it lacks a pole, and introduces two new terms to the squared amplitude
(one purely longitudinal and one of interference) that cannot be accounted
for in the simplified model, and are what we refer to as the longitudinal cor-
rections. In order to get a sense of the size of these corrections, we write
out the form of the Mν

2 amplitude. This is simply the D∗ − D − π vertex,
which must have the form of a Lorentz vector: either (pD + pπ)ν = pνD∗ or
(pD − pπ)ν . If the D∗ were on shell, Mν

2 would contract with εν and so con-
tributions proportional to pνD∗ would vanish, leaving only those proportional
to (pD − pπ)ν . Thus, we write Mν

2 = g(pD − pπ)ν for some coupling constant
g, and consistency with the D∗ decay width requires that

g2 =
48πm5

D∗ΓD∗

λ3/2(m2
D∗ ,m

2
D,m

2
π)

(3.3)

with λ as in (2.6).
Notice the slight inconsistency here: we are assuming the D∗ is off shell,

so we could also have a term proportional to pνD∗ in the vertex. We discuss
this possibility in chapter 4, but for now we will not take it into account.
The longitudinal part of the amplitude, ignoring the lower-order correction
ImΠL, is now

ML = igMµ
3

Lµν
m2
D∗

(pD − pπ)ν ∼ (pD∗)ν
m2
D∗

(pD − pπ)ν =
m2
D −m2

π

m2
D∗

≡ ∆2,

so the longitudinal term is proportional to the dimensionless mass-squared
difference parameter ∆2. This is a well-known result for any vector decaying
into two pseudoscalars, and ∆2 is usually invoked as a suppression parameter.
However, due to the large D − π mass difference, here ∆2 has an unusually
high value of 0.86, so the longitudinal corrections that are usually neglected
are not heavily suppressed, and it might be no coincidence that the case of
the D∗ has proven the most problematic in reconciling the experimental data
with the theory.

We have already written out the D∗ propagator and the Mν
2 amplitude,

so let us now write out the Mµ
3 amplitude. Following the Feynman rules, this
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can be written as
Mµ

3 = lλWλθV
θµ,

where lλ is the leptonic charged current, Wλθ is the propagator of the W
boson, and V θµ is the structure of the B −D∗ −W vertex. In the following
sections, we take a closer look at each of these components in order to write
out an explicit amplitude for the process.

3.2 W and D∗ Propagators

The propagator for the W boson is the one described in the massive case of
section 2.2. Notice that the W propagator connects to two charged-current
vertices, which contain the coupling constant g/

√
2 plus a factor of 1/2 from

the left-handed projector 1
2
(1 − γ5). For ease of notation, we absorb into

the W propagator term both couplings g/2 as well as the factor 1/2 from
the quark charged current but not from the leptonic current. Thus, the
propagator is

Wλθ =
g2

4

[
−iTλθ
q2 −m2

+
iLλθ
m2

]
,

where q is the momentum of the W . Because the mass of the W is consider-
ably larger compared to the center-of-mass energy of the process (mW ≈ 80
GeV compared to mB ≈ 5 GeV), we can safely take the limit m2

W >> q2,
which leaves the much simpler propagator

Wλθ = i
gλθ
m2
W

= i
√

2GFgλθ, (3.4)

where we have defined the fermi constant

GF ≡
√

2

8

g2

m2
W

≈ 1.17× 10−5 GeV−2.

The D∗ is also a massive vector, so its propagator has the same form, at
least to first order. This is what we refer to as the naked propagator,

Dµν
0 =

−iT µνpD∗
p2
D∗ −m2

0

+
iLµνpD∗
m2

0

,

where we have introduced a naked mass parameter m0 that need not be the
physical mass of the D∗. Because the D∗ can decay into other pairs and then
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Figure 3.2: One-loop corrections to the D∗ propagator.

“reassemble”, we must also consider these loops in the propagator, as done
in [22–24] and shown in Fig. 3.2. This is known as the one-loop correction
to the propagator because it does not contain any nested loops. Here we
consider only the Dπ loop corrections, which is a proper assumption for the
charged D∗ (BR(D∗ → Dπ) = 98% [14]).

We denote the structure of the Dπ loop, which must have two Lorentz
indices, as −iΠαβ, so that the nth diagram in Fig. 3.2 can be written as

Dµα1

0

(
−iΠα1β1D

β1α2

0

)(
−iΠα2β2D

β2α3

0

)
× · · ·

· · · ×
(
−iΠαn−1βn−1D

βn−1αn
0

)(
−iΠαnβnD

βnν
0

)
.

Moreover, note that the loop only depends on the momentum pD∗ , so Παβ

must be a combination of pαD∗p
β
D∗ and metric tensors gαβ, which allows us to

write a decomposition in terms of the projection operators:

−iΠαβ = −iΠT (p2
D∗)T

αβ
pD∗
− iΠL(p2

D∗)L
αβ
pD∗

.

Therefore, the full series for the propagator is

Dµν =
∞∑
n=0

(
−iT µα1

p2
D∗ −m2

0

+
iLµα1

m2
0

)
[
(−iΠTTα1β1 − iΠLLα1β1)

(
−iT β1α2

p2
D∗ −m2

0

+
iLβ1α2

m2
0

)]
× · · ·

· · · ×
[
(−iΠTTαnβn − iΠLLαnβn)

(
−iT βnν

p2
D∗ −m2

0

+
iLβnν

m2
0

)]
=
∞∑
n=0

−iT µν

p2
D∗ −m2

0

(
−ΠT

p2
D∗ −m2

0

)n
+
∞∑
n=0

iLµν

m2
0

(
ΠL

m2
0

)n
,

where in the last line we have expanded all the products while making use of
the projector properties (2.3). The sums are thus reduced to simple geometric
series, ∑

xn =
1

1− x
,
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and the propagator is then

Dµν =
−iT µν

p2
D∗ −m2

0 + ΠT

+
iLµν

m2
0 − ΠL

.

Notice that the real parts of the functions ΠT ,ΠL are just scalars that can
be absorved into the mass parameter by defining the physical mass m2

D∗ =
m2

0 − Re(Π), which is the real mass that we observe. This is in principle
different for ΠT and ΠL, but we neglect this in favor of the more interesting
effect of adding an imaginary quantity to the denominators. In terms of the
physical mass, the propagator is

Dµν =
−iT µν

p2
D∗ −m2

D∗ + iIm(ΠT )
+

iLµν

m2
D∗ − iIm(ΠL)

, (3.5)

and the one-loop functions Im(ΠT ), Im(ΠL) can be explicitly computed [22–
24]:

Im(ΠT ) =
g2

48πp4
D∗
λ3/2(p2

D∗ ,m
2
D,m

2
π) ≡

√
p2
D∗Γ(p2

D∗),

Im(ΠL) = −g
2λ1/2(p2

D∗ ,m
2
D,m

2
π)

16π

(
m2
D −m2

π

p2
D∗

)2

,

where g is the same D∗ − D − π coupling defined in (3.3) and λ is defined
in (2.6). When taken on shell we have Im(ΠT ) = mD∗ΓD∗ , as previously
mentioned, and Im(ΠL) ∼ ∆4 is a correction to the longitudinal part of
second order in ∆2 which is more suppressed but may not be negligible as
already argued.

3.3 Leptonic Charged-Current Tensor

The propagator of the W boson contracts with the leptonic charged current,
given by

lλ =
1

2
ūlγ

λ(1− γ5)vν ,

where ul and vν are the particle and anti-particle spinors for the charged
lepton and the neutrino, respectively. Since we need to compute the squared
amplitude and sum over all spins of the products, it is more convenient to
work with the spin-summed leptonic tensor

lλ1λ2 ≡
∑

lλ1l†λ2 =
∑

Tr

[
ulūlγ

λ1
1

2
(1− γ5)vν v̄νγ

λ2
1

2
(1− γ5)

]
,
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where the sum is over spins of l and ν, the product has been written as a
trace of Dirac gamma matrices, and the ciclicity of the trace has been used.
Using the spin sum rules (2.1), we can rewrite this as

lλ1λ2 =Tr

[
(γαplα +ml) γ

λ1
1

2
(1− γ5)

(
γβpνβ

)
γλ2

1

2
(1− γ5)

]
=Tr

[
(γαplα +ml) γ

λ1
1

2
(1− γ5)

(
γβpνβ

)
γλ2
]
,

where in the second line we have anti-commuted one of the left projectors
past two gamma matrices and used the property[

1

2
(1− γ5)

]2

=
1

2
(1− γ5).

The trace can now be evaluated systematically using the following Dirac
trace properties:

Tr (γµ) = Tr (γ5) = Tr (γµγ5) = 0,

T r (γµγν) = 4gµν , T r (γµγνγ5) = 0,

T r
(
γµγνγθ

)
= Tr

(
γµγνγθγ5

)
= 0,

T r
(
γµγνγθγω

)
= 4

(
gµνgθω − gµθgνω + gµωgνθ

)
,

T r
(
γµγνγθγωγ5

)
= −4iεµνθω,

and the end result is:

lλ1λ2 = −2gλ1λ2(pl · pν) + 2pλ1l p
λ2
ν + 2pλ1ν p

λ2
l + 2iελ1λ2αβ(pl)α(pν)β. (3.6)

We note that under the exchange of the indices λ1 ↔ λ2, this has a symmetric
part that is real and an antisymmetric part that is imaginary:

lλ1λ2S = −2gλ1λ2(pl · pν) + 2pλ1l p
λ2
ν + 2pλ1ν p

λ2
l

lλ1λ2A = 2iελ1λ2αβ(pl)α(pν)β (3.7)
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Figure 3.3: The B −D∗ −W vertex is shown along with the notation that
we use. The indices µ, θ represent the notation for which part contracts with
the D∗ and which part contracts with the W .

3.4 B−D∗ −W Vertex

In this section we consider the structure of the vertex between the B, the
D∗ and the W , shown in Fig. 3.3. In this section, we adopt the notation
presented in this figure. Since the B → D∗ can be seen as a b → c quark
transition at a first approximation, with a spectator u or d quark, the ver-
tex should be proportional to the CKM matrix element Vcb, as well as the
coupling g/

√
2 which has already been absorbed into (3.4). However, as

previously discussed, the presence of strong interactions makes it unfeasi-
ble to directly compute the structure of the vertex. Instead, we must write
down the most general form of the vertex and then use experimental data
to approximate the particular values. Because the vertex contracts with two
vector particles, it must contain two Lorentz indices, and it is a function of
the two independent momenta q and pD∗ . There are six different Lorentz
tensors that satisfy these conditions:

• εθµαβ(pD∗)αqβ

• qθqµ

• pθD∗qµ
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• gθµ

• qθpµD∗

• pθD∗p
µ
D∗

The common parametrization of this vertex [2, 25, 26] considers the D∗ to be
on shell, so that the µ index contracts with the D∗ polarization εµ and the
last two terms in the list are irrelevant because pµD∗εµ = 0. Of course, we are
taking the D∗ to be off shell, so these terms should still be present. This is
discussed further in section 4.4, but for now we stick to this parametrization
as it is the only one available. The most general vertex that we are left with
is a linear combination of four different terms, and each of them must come
with a factor that may depend on the only scalar involved, which we may
take as q2 (the W is not assumed to be on shell). These scalar factors are
called form factors, and in this case we denote them by V (q2), A0(q2), A1(q2)
and A2(q2). The convention is to consider the four Lorentz structures in a
different basis than the one shown in the list, as follows:

〈B(pB)| Jθ(q) |D∗(pD∗ , ε)〉 =Vcb

[
2iV (q2)

mB +mD∗
εθµαβqα(pD∗)β − 2mD∗A0(q2)

qθqµ

q2

− (mB +mD∗)A1(q2)

(
gθµ − qθqµ

q2

)
+

A2(q2)qµ

mB +mD∗

(
(q + 2pD∗)

θ − m2
B −m2

D∗

q2
qθ
)]

εµ

(3.8)

where Jθ = 1
2
ūbγ

µ(1 − γ5)uc is the charged-current for the quarks. This
quantity, with the polarization εµ factored out, is what we use as the vertex
structure Vθµ, which in the full amplitude will contract with the D∗ propa-
gator instead of ε. Notice that terms proportional to pµD∗ would still vanish
when contracting with the transversal part of the propagator, but not when
contracting with the longitudinal part! This parametrization is chosen so
that the terms accompanying A0 and A1 are the Lθµq and T θµq projectors,
respectively, while the A2 term is chosen to be linearly independent to the
others while still being transversal to qθ just like T θµq . That is,(

(q + 2pD∗)
θ − m2

B −m2
D∗

q2
qθ
)
qθ = 0
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when pD∗ is on shell. The notation also reflects the fact that the V term
comes from the vector part of the charged current, while the Ai terms come
from the axial part of the charged current. Since q = pl + pν , we note that
A0 represents a longitudinal behavior of the lepton-neutrino system, whereas
A1 and A2 represent the transversal behavior of it.

Instead of q2, it is convenient to work with a parameter proportional to
the square of the recoil hadronic velocity:

w ≡ 1− 1

2

(
pB
mB

− pD∗

mD∗

)2

=
pB · pD∗
mBmD∗

=
m2
B +m2

D∗ − q2

2mBmD∗

Since the b and c quarks are quite heavy, we can consider the velocity of
the mesons to be dictated by theirs. Moreover, the recoil velocity tends to
zero in the limit of infinite mass, so we would expect w ≈ 1 which leads us
to work with an expansion in orders of w − 1. This is known as a Heavy
Quark Effective Theory, and it can be used to provide a parametrization of
the form factors. The usual approach is to define A1 in terms of a universal
form factor

hA1(w) =
A1(q2)

RD∗

2

w + 1

with RD∗ ≡ 2
√
mBmD∗/(mB +mD∗), and then define the other form factors

in terms of ratios R0, R1, R2:

V (q2) = R1(w)
hA1

RD∗
,

A0(q2) = R0(w)
hA1

RD∗
,

A2(q2) = R2(w)
hA1

RD∗
.

The result of the HQET calculation is [2, 25, 26]:

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2,

R0(w) = R0(1)− 0.11(w − 1) + 0.01(w − 1)2, (3.9)

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2, and

hA1(w) = hA1(1)
[
1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3

]
,

with z ≡
√
w + 1−

√
2

√
w + 1 +

√
2
,
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Table 3.1: Input values used for our calculation have been taken from Belle
results [27]. For completeness, we also show the world-average results com-
puted by HFLAV[12].

Belle Average

hA1(1)|Vcb| (34.6± 0.2± 1.0)× 10−3 (35.61± 0.43)× 10−3

ρ2 1.214± 0.034± 0.009 1.205± 0.026
R1(1) 1.401± 0.034± 0.018 1.404± 0.032
R2(1) 0.864± 0.024± 0.008 0.854± 0.020

which has five free parameters R1(1), R0(1), R2(1), hA1(1), ρ2 that must be
measured experimentally. For our calculations we use the results obtained
by Belle [27] for R1(1), R2(1), hA1(1), ρ2 using B → lνD∗ decays for the
light flavors, shown in Table 3.1, which are in agreement with world-average
measurements [12]. The parameter R0(1) cannot be extracted from these
decays for reasons discussed in section 4.3, so instead we make use of another
identity derived [2, 25, 28] from HQEFT:

R2(1)(1−mD∗/mB) + (mD∗/mB) [R0(1)(1 +mD∗/mB)− 2]

(1−mD∗/mB)2
= 0.97 (3.10)

to derive R0(1) in terms of R2(1).

We have now fully described all elements of the B → lνπD decay, whose full
squared amplitude can be written as

|M |2 = 2G2
F l
λ1λ2Vλ1µ1V

∗
λ2µ2

Dµ1ν1 (Dµ2ν2)∗ g2(pD − pπ)ν1(pD − pπ)ν2 ,

and are ready to proceed with the integration as described in section 2.6.
The results will be discussed in the following chapter.



Chapter 4

Discussion on the RDπ Ratio

In this section we present the main results of this work as well as the dis-
cussion on them. We begin by providing our numerical calculation for the
RDπ ratio in section 4.1, and then elaborate further on the origin and form
of the interference term of the amplitude in section 4.2. The remaining sec-
tions are dedicated to laying a groundwork for other aspects that should be
considered for future research on this topic, and which could potentially fur-
ther refine our value of RDπ: in section 4.3 we discuss the importance of a
direct measurement of the A0 form factor, and in section 4.4 we consider the
presence of additional form factors in the QCD vertex as well as additional
resonances for the Dπ mass distribution. Section 4.5 presents various other
minor considerations that we have considered worth noting.

4.1 Calculation of the RDπ ratio

As mentioned in chapter 3, the squared amplitude for the B → lνπD process
consists of three terms: transversal, longitudinal, and interference. In the
notation of section 3.1, the interference term is

|M |2I =
Mµ1

3 M∗µ2
3 Mν1

2 M
∗ν2
2

p2
D∗ −m2

D∗ + imD∗Γ(p2
D∗)

(
Tµ1ν1Lµ2ν2 + Lµ1ν1Tµ2ν2

m2
D∗ + iImΠL

)
,
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and we can implement the narrow width approximation by writing

1

p2
D∗ −m2

D∗ + imD∗Γ(p2
D∗)

=
p2
D∗ −m2

D∗ − imD∗Γ(p2
D∗)

|p2
D∗ −m2

D∗ + imD∗Γ(p2
D∗)|2

≈
(
p2
D∗ −m2

D∗ − imD∗Γ(p2
D∗)
) πδ(p2

D∗ −m2
D∗)

mD∗Γ

= −iπδ(p2
D∗ −m2

D∗),

where the last step is valid inside the integral by invoking the p2
D∗ = m2

D∗ con-
dition enforced by the delta function. Therefore, the transversal, interference
and longitudinal terms are:

|M |2T = |Mµ
3 TµνM

ν
2 |2

π

mΓD∗
δ(p2

D∗ −m2
D∗)

|M |2I = −iMµ1
3 M∗µ2

3 Mν1
2 M

∗ν2
2

(
Tµ1ν1Lµ2ν2 + Lµ1ν1Tµ2ν2

m2
D∗ + iImΠL

)
πδ(p2

D∗ −m2
D∗)

|M |2L = |Mµ
3 LµνM

ν
2 |2

1

m4
D∗ + (ImΠL)2

. (4.1)

As already mentioned, the transversal term exhibits a delta function that
forces the D∗ to be on shell while the longitudinal term does not. Although
the longitudinal term has no delta function, it should also be integrated
around p2

D∗ ≈ m2
D∗ because the experiments select only the processes with a

pD + pπ momentum close to the D∗ resonance. For our calculation we have
chosen to integrate this over p2

D∗ ∈ m2
D∗ ± δ, with δ ranging from ΓD∗/2 to

1 MeV but, as expected, the lack of a pole makes the integration over this
small region negligible. The interference term, however, inherits the pole from
the transversal part of the propagator which can again be approximated to
a delta function. It is in this way that the longitudinal degree of freedom,
upon interference with the transversal one, introduces a correction even when
evaluated on shell, and we have found this contribution to be sizable.

We have also found that the interference term makes a slight distinction
between the l = e and l = µ cases. Thus, we quote our final result separately
as

Re
Dπ = 0.271± 0.003

and
Rµ
Dπ = 0.273± 0.003,
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where the uncertainty comes from the uncertainties on the measurement
[27] of the form factor parameters discussed in section 3.4. Notice that the
relationship (3.10) between A0 and A2 introduces an anti-correlation on the
form factors, which brings the uncertainties lower.

In Table 4.1, we show the contribution to the branching ratio from the
transversal, longitudinal (with δ = ΓD∗/2) and interference parts of the am-
plitude for all three lepton flavor products, which are consistent with Belle
measurements for the electron and muon [27]. Within parenthesis we quote
the errors coming from the uncertainties in the form factor parameters and
Vcb [27]. In the last two rows we show RDπ for the electron and the muon as
each part is added subsequently from left to right. As expected, taking only
the transversal part replicates the RD∗ = 0.252 result [2], while the longitu-
dinal part itself introduces a negligible correction. However, the interference
part introduces a sizable correction that creates a sharp difference between
RDπ and RD∗ . In Table 4.2 we also plot the value of the longitudinal con-
tribution as the integration interval parameter δ is increased from ΓD∗/2 to
1 MeV to show that, although the contribution increases with δ, it remains
negligible throughout, so the choice of this parameter is unimportant.

Notice that, due to the cancellation of global factors in the ratio (mainly
Vcb and hA1(1)), RDπ has a much higher precision than the individual branch-
ing ratios. Comparing with RDπ instead of RD∗ improves the agreement with
the experiments in all cases. In particular, the gap with the latest LHCb re-
sults [8, 9] goes down from 1.1 σ to 0.48 σ, while the gap with the latest
Belle results [10, 11] goes from 0.42 σ to 0.10 σ, and with the world average
[12] from 3.7 σ to 2.1 σ.

The longitudinal degree of freedom has been considered before as a cor-
rection to RD∗ by a few authors, but the interference has not been con-
templated. In [2], the transversal and longitudinal contributions are con-
sidered separately and a ratio for the purely longitudinal contributions of
RL
D∗ = 0.115(2) is found, in agreement with our result of 0.111(3) when

integrated over the whole phase space (which is not what is shown in the
table), but the interference is not computed. In [29], the complete four-body
amplitude is considered but the interference is found to be negligible. This
can be traced back to the propagator being used, which effectively differs
from the one here by a factor of (p2

D∗ −m2
D∗)/(p

2
D∗ −m2

D∗ + imD∗ΓD∗) in the
longitudinal part which makes it vanish when evaluated on shell (as is the
case in the interference).

In our case, we have found that the longitudianl corrections, through the
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Table 4.1: Contribution to the branching ratio of the transversal, longitudinal
and interference parts of the amplitude for all three lepton flavors. The
longitudinal part has been integrated over p2

D∗ = m2
D∗ ± ΓD∗/2. Quantities

are given in percentage. The last two rows show the value of RDπ as each
contribution is added subsequently from left to right for e and µ.

Transversal Longitudinal Interference
Electron 4.6(3) 2.5(2)× 10−6 7.6(6)× 10−8

Muon 4.6(3) 2.5(2)× 10−6 1.6(1)× 10−3

Tau 1.16(8) 5.5(4)× 10−7 1.02(7)× 10−1

Re
Dπ 0.252 0.252 0.274,

Rµ
Dπ 0.252 0.252 0.275

Table 4.2: Contribution of the purely longitudinal part of the amplitude
integrated over the region p2

D∗ ∈ m2
D∗ ± δ with δ ranging from ΓD∗/2 to 1

MeV.

δ ΓτL(%) ΓµL(%) ΓeL(%)

1
2
ΓD∗ 5.5(4)× 10−7 2.5(2)× 10−6 2.5(2)× 10−6

ΓD∗ 1.10(6)× 10−6 5.0(3)× 10−6 5.0(3)× 10−6

3
2
ΓD∗ 1.66(9)× 10−6 7.5(4)× 10−6 7.5(4)× 10−6

2ΓD∗ 2.2(1)× 10−6 1.0(6)× 10−5 1.0(6)× 10−5

1 MeV 1.33(8)× 10−5 6.0(3)× 10−5 6.0(3)× 10−5
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interference term, manage to virtually eliminate discrepancies with the latest
experimental results. Although the agreement with the world average is also
greatly improved, there is still some tension than cannot be explained by our
results so far. In sections 4.3, 4.4 and 4.5 we discuss a few other details that
could be used to further refine these results.

4.2 The Interference Term in B → lνπD

Since we have argued that it is of great relevance, let us elaborate more
on the form of the interference term in the B → lνπD decay process. The
propagator in (3.5), when ignoring the smaller order correction ΠL and taken
to be on shell, can be written as

Dµν
on ∼

−T µν

mD∗ΓD∗
+
iLµν

m2
D∗
.

Given the relative factor of i between the two terms, it is tempting to think
that the interference would vanish, but this is not the case because of the
Lorentz structure. Specifically, let us write the complete squared amplitude
as

|M |2 = lλ1λ2
(
HT
λ1

+HL
λ1

) (
HT∗
λ2

+HL∗
λ2

)
, (4.2)

where lλ1λ2 is the leptonic tensor described in (3.6) and HT
λ , H

L
λ are the

hadronic part of the amplitude going through the transversal and longitudinal
term of the D∗ propagator, respectively. The interference term can then be
written as

|M |2I =lλ1λ2
(
HT
λ1
HL∗
λ2

+HL
λ1
HT∗
λ2

)
=2lλ1λ2S Re

(
HT
λ1
HL∗
λ2

)
+ 2lλ1λ2A Im

(
HT
λ1
HL∗
λ2

)
, (4.3)

where lλ1λ2S , lλ1λ2A are the symmetric and antisymetric parts of the leptonic
tensor, described in (3.7). Note that , lλ1λ2A is proportional to the Levi-Civita
symbol which vanishes unless it ultimately contracts with the four indepen-
dent momenta pl, pν , pD∗ , pD. The last one can only come from the D∗−D−π
vertex, and can only ”connect” to the Levi-Civita if it contracts with one met-
ric tensor in the D∗ propagator (found only in the transversal part) and then
another metric tensor in the B − D∗ − W vertex (found only in the term
proportional to A1 in (3.8)). Thus, the second interference term is always
proportional to A1(q2).
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In order to study the other interference term, let us now write the fac-
torization HT

λ ≡ (iVλµ + Aλµ)T µ and HL
λ ≡ AλµiL

µ, where Vλµ and Aλµ
represent the vector and axial terms of the B − D∗ − W vertex in (3.8),
respectively, and T µ, Lµ represent the remaining parts of the corresponding
amplitudes. We have factored an i out of Vλµ and Lµ so that all the quan-
tities that have been defined are real. Also, note that we have not included
the Vλµ term in the factorization for HL

λ because the Levi-Civita term that
accompanies the V form factor in (3.8) vanishes when contracted with the
longitudinal projector LµνpD∗ . In this notation, we have

Re
[
HT
λ1
HL∗
λ2

]
=Re [i (iVλ1µ1 + Aλ1µ1)T

µ1Aλ2µ2L
µ2 ]

=− Vλ1µ1Aλ2µ2T µ1Lµ2 ,
which is always proportional to the V form factor which also contains a
Levi-Civita.

Thus, we obtain two interference terms: the first in (4.3) proportional to
V (q2) and the second proportional to A1(q2), and both proportional to the
Levi-Civita term |ε| ≡ εαβγδp

α
l p

β
νp

γ
D∗p

δ
D. This term is closely related to the

chirality of the lepton, which depends on its mass. If we work on the rest
frame of the lepton, then

|ε| =mlε0βγδp
β
νp

γ
D∗p

δ
D

=ml~pν · (~pD∗ × ~pD)

=ml|~pν ||~pD∗ ||~pD|
√

1 + 2 cosα cos β cos γ − cos2 α− cos2 β − cos2 γ,
(4.4)

where α, β, γ are the angles between ~pν − ~pD∗ , ~pν − ~pD, and ~pD∗ − ~pD. In
this frame we see a clear dependence of the interference on the mass of the
lepton, which explains why the contributions of the interference follow the
same hierarchy as the masses of the leptons.

For integration purposes, the angle θij between the momenta of particles
i and j can be expressed as

cos(θij) =
−pi · pj + EiEj√

(E2
i −m2

i )
(
E2
j −m2

j

) ,
where pi · pj is easily expressed in terms of the scalar variables and, in the
rest frame of the tau,

Ei =
pτ · pi
mτ

.
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4.3 Measurement of the A0 Form Factor

The term with the A0 form factor in (3.8) has the form of a longitudinal
projector in q = pl + pν , which represents the contribution with longitudinal
polarization of the lepton-neutrino system. Since this state is forbidden in
the limit of zero mass, the contribution of A1 is heavily suppressed for the
electron and muon, but not for the tau. This effect can be observed in Fig.
4.1, where we plot the contribution of each of the vertex terms to the squared
amplitude. Notice that A0 represents the second largest contribution for the
tau, whereas for the electron it is practically absent.

This drastically different behavior between the tau and the light flavors
makes A0 a prime candidate for explaining discrepancies in the RDπ ratio,
which is made even more interesting by the fact that its corresponding pa-
rameter R0(1) in (3.9) has never been meassured directly. This is so because
the measurements of the form factors performed by the Belle [27] and BaBar
[30] collaborations have been done with data of light-flavored lepton decays,
to which the A1 contribution is unaccessible. Instead, R0(1) is calculated in
terms of R2(1) using another HQEFT approximaion as described in (3.10)
and plugged directly into the tau decay to estimate its contribution.

Given the relatively high contribution of A1 to the decay into the tau and
its discriminative behavior, we believe that a carefull study of the R0(1) pa-
rameter is needed in order to properly understand the RDπ ratio. Therefore,
we stress the importance of making a direct measurement of this parameter
using data of decays into tau, which has not been done to date.

4.4 Additional Form Factors and Other Res-

onances for the D − π Mass Distribution

As mentioned in section 3.4, the description of the B−D∗−W vertex that we
use is incomplete since it lacks terms proportional to pµD∗ that could couple
to the longitudinal term of the D∗ propagator. Therefore, the vertex should
in principle be parametrized with the presence of another two form factors.
The same is true for the D∗−D−π vertex which, as described in section 3.1,
we have taken to be proportional to the momentum difference (pD−pπ)ν but
have not considered the other independent momentum, (pD + pπ)ν = (pD∗)ν
that vanishes when contracted with the transversal part of the propagator
but could couple to the longitudinal term.
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Figure 4.1: Contribution to the squared amplitude of each of the vertex form
factors, plotted for the tau (top) and the electron (bottom). Notice that the
A0 contribution is heavily suppressed for the electron. Interferences between
the form factors are not shown.
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Rather than working with a total of 8 form factors (six for the B−D∗−W
vertex and two for the D∗−D−π vertex), one can combine the information
from both vertices and consider only four form factors. This is done by
factoring out the leptonic current as in (4.2) so that we can write

M = lλHλ,

where Hλ is the hadronic part of the amplitude. This hadronic part must
be a vector and depends only on three independent momenta, which can be
taken as qλ = (pl + pν)λ, (pD∗)λ = (pD + pπ)λ and kλ ≡ (pD− pπ)λ. Thus, we
can decompose Hλ into four possible terms:

V ′λ ≡ −
iV ′

m3
B

ελαβγq
αpβD∗k

γ

A′0λ ≡
A′0
mB

qλ

A′1λ ≡
A′1
mB

(pD∗)λ

A′2λ ≡
A′2
mB

kλ, (4.5)

so that Hλ = V ′λ− (A′0 +A′1 +A′2)λ, and where V ′, A′0, A
′
1, A

′
2 are scalar func-

tions. Unlike the last time, there are now three independent scalar variables
(e.j. k2, q2 and k · q) that these form factors can depend on. This type
of parametrization has been used before to describe the Kl4 decay (namely
K → lνππ) [31] in the chiral approximation, but the form factors have not
been computed for the B → lνπD decay in the heavy quark approximation
which presents the added complication of a large D − π mass difference as
opposed to the negligible mass difference between two pions.

In addition to new form factors, one could also consider the effect of addi-
tional resonances for the D− π mass distribution. A recent study [29] made
this consideration for the case of a B∗ resonance, but found the effect on
RDπ to be negligible. This is due mainly to the fact that the D − π mass
distribution is only integrated over a narrow region around m2

D∗ , in compli-
ance with experimental selection rules, so the lack of a pole near m2

D∗ for
the B∗ propagator makes the contribution vanish as the integration region
is made narrower. In this article, an integration region width ranging from
Γ∗D/2 to 1 MeV was used, and the B∗ resonance contribution was found to
remain negligible throughout. One could also consider a scalar resonance,



57

such as the one from D∗0(2400)0, which could mimic the longitudinal degree
of freedom of the D∗. It has been shown in [22] how these scalar and longi-
tudinal vector resonances can be described simultaneously, and an analogous
calculation could be done to estimate this contribution, although we would
expect it to be negligible for the same reason, namely the lack of a pole.
That being said, the form factor parametrization described in (4.5) has the
added advantage of describing the B → lνπD process globally, so an exper-
imental measurement of these form factors would automatically encompass
all of these effects without the need for special consideration.

4.5 Other Corrections

In this section we go over a few additional corrections that could be done for
the calculation of the RDπ ratio which we consider to be of lesser importance.
The Belle II experiment has started recording data in early 2018, and is
expected to achieve a 50-fold increase in integrated luminosity which would
translate into an uncertainty for the RDπ ratio only 0.57 times as big as
the current one [13]. Since the experimental precision is always expected to
keep improving, corrections that are currently consider small may become
increasingly important in the future, and it will be mandatory to have a
theoretical value to compare to that is more rigorous each time.

The form factors that describe the B − D∗ −W vertex, shown in (3.9),
have been calculated using HQEFT to first order in the inverse mass of
the b quark. Second order corrections have been calculated for this decay,
and could be expected to modify the results for the branching ratios by an
order up to few percent [26] which could likely become relevant in the future.
It is also valuable to have available other calculations for the form factors
that rely on models different than HQEFT, particularly on lattice QCD. So
far, lattice QCD has been used to provide measurements on the A1 form
factor [32, 33], which have been found to be in agreement with the HQEFT
calculation. However, since this form factor is used for the normalization of
all the others, it enters in the branching ratio as a global factor and plays
no role in the RDπ ratio. In fact, the purpose of these calculations has been
to extract the Vcb matrix element from the information of the overall factor;
not to verify the HQEFT calculations.

As mentioned in the introduction, our study considers only the D∗ → Dπ
detection modes which is an excellent approximation for the charged D∗
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case, but for a neutral D∗ one would also need to make calculations for the
D∗ → Dγ mode. The later case also exhibits radiate corrections which have
been studied before and have been found to be relevant at the few percent
level [34, 35]. For this reason, we argue that measurements with charged D∗

mesons should be favored as they present a cleaner theoretical description.
However, when considering the full B → lνπD decay one needs to account for
radiative corrections of the daughter particles even for the case of a charged
D∗. These have been studied for the case where the B decays directly into a
scalar D [36], and the effect on the analogous ratio RD has been found to be
non-negligible for both the charged and uncharged cases. Therefore, it may
be important to calculate radiative corrections in the full B → lνπD decay
as well.



Chapter 5

Concluding Remarks

We have argued that the experimental results for the semileptonic decays
B → lνD∗ → lνπD should be compared to theoretical quantities computed
with the full four-body decay, where the D∗ becomes a virtual particle and
gains a longitudinal degree of freedom. Although the longitudinal term by
itself lacks any contribution with a pole near the mass shell, the interfer-
ence that it creates with the transversal part introduces a sizable correction.
Moreover, this correction was found to be largely dependent on the lepton
mass, contrary to the common belief that the the D∗ → Dπ can be con-
sidered an independent subsequent process that cancels out in the ratio. In
particular, this results in the fraction of branching ratios

RDπ = 0.274± 0.003

as opposed to the ratio
RD∗ = 0.252± 0.003

that is usually considered. We note that these numbers are incompatible at
a statistical significance of 7.3 σ, and so choosing the right value to compare
with is bound to be crucial once the experimental uncertainties start getting
closer to the theoretical ones. Even at the current level of experimental
precision [12], the difference between these numbers already represents the
closing of a gap by 1.5 σ, and we expect this to be an even more relevant
factor once the Belle 2 experiments starts taking measurements, which are
expected to have a 75% increase in precision [13].

So far, the use of RDπ completely eliminates any statistically significant
gap with the latest Belle [10, 11] and LHCb [8, 9] results, and helps reduce the
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Figure 5.1: Current status of measurements for RD∗ . This work argues that
results must actually be compared with RDπ (outlined red area) as opposed
to RD∗ (not outlined), which significantly improves the agreement.
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overall gap with the world average measurements from 3.7 σ to 2.1 σ. Current
measurements are shown in Fig. 5.1, along with a graphical representation of
the improvement of using RDπ over RD∗ . Although some tension still remains
with the world average, we believe that this consideration alone has already
greatly contributed to closing the gap on the RD∗ problem, and that it is now
entirely in the realm of possibility that this discrepancy be resolved without
the need of any lepton flavor universality violation or other forms of physics
beyond the standard model. We have tried to lay a groundwork for future
theoretical research on this topic, including ways in which the RDπ ratio
could be further refined to possibly close the gap even further. Specifically,
we have proposed the following considerations:

• The direct experimental measurement of the A0 form factor from tau-
flavored decays, since this is currently indirectly inferred from light-
flavored decays where it is absent despite being the second largest con-
tribution to the tau-flavored one.

• A new analysis of Belle data [27] with the consideration of additional
form factors in both the B − D∗ −W and D∗ − D − π vertices that
could couple to the longitudinal part of the off-shell D∗.

• Additional resonances for the D − π mass distribution, which may be
vectorial or scalar.

• Alternatively to the last three points, we have also proposed the use of
a global form factor parametrization for the full B → lνπD decay, like
the one already in use for the case of Kl4 [31].

• The use of lattice QCD calculations to verify the HQEFT approxima-
tions.

• Absorptive corrections that may be present when considering the daugh-
ter Dπ particles.

In addition, we have also argued that the ratio obtained from neutral B
mesons may be considerably different than the one obtained from charged
ones, even though some experiments [3–5, 10, 11] have used both indistinctly.
This is so because the longitudinal corrections we have computed apply only
for the D∗ → Dπ detection mode but not the D∗ → Dγ mode that is also
exhibited in the case of a neutral D∗ (charged B). Therefore, it is preferable
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to consider neutral B decays which exhibit D∗ → Dπ practically as their
only mode.

Finally, we conclude by pointing out that some works have also pro-
posed the study of the B → lνD∗ decay through its helicity amplitudes,
which corresponds to indirectly accounting for the longitudinal term of the
D∗ propagator in its separate amplitude. It has been proposed that direct
measurements of helicity amplitudes can be used to evaluate the consistency
of new physics interactions [37]. More recently, it has been shown [38] that
some combinations of helicity amplitudes are strictly independent of the lep-
ton mass, so that the standard model prediction for their ratios between
different leptons is unity. A direct measurement of said combinations would
provide a new way of testing for lepton flavor universality which is more effi-
cient since the competing effect of the lepton mass is being excluded and also
the theoretical result would be exact and independent of the form factors and
other experimental measurements.
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