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1er. Suplente: Dr. Alejandro Vargas Casillas

2o. Suplente: Dr. Leonid Fridman
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A los compañeros del Seminario de Modos Deslizantes, quienes contribuyeron en la mejora
continua de mi trabajo con sus observaciones y crı́ticas constructivas, y en especial a Gustavo
Rueda, quien siempre tuvo la disposición de revisar los avances de mi tesis y proporcionarme
realimentación valiosa.

A los miembros del jurado, por el tiempo destinado a la lectura del manuscrito original, y
sus valiosos comentarios que ayudaron a enriquecer el presente trabajo.

Finalmente, agradezco al CONACYT por el apoyo económico brindado para la realización
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Chapter 1

Introduction

1.1 Motivation

In a wastewater treatment plant, besides obtaining clean water, other useful resources may be
recovered. Biogas is one of the resources that can be produced, which is extremely useful
because it is flammable and an important energy vector, containing a significant amount of
methane or other combustible gases.

The most common process for converting liquid waste into biogas is anaerobic digestion, where
microorganisms degrade the organic matter and convert some of them into biogas, composed
mainly of methane (CH4) and carbon dioxide (CO2). The waste feed stream may be high
strength wastewater, excess sludge from wastewater treatment, or the organic fraction of mu-
nicipal solid waste, among others Batstone (2006). The amount of biogas produced depends
on several factors, including the influent composition and concentrations, the feed rate, the
reaction rate as well as the parameters of the process, which are usually highly uncertain and
difficult to determine. However, a usual objective is to produce as much biogas as possible
despite these uncertainties/perturbations.

1.2 Objective

The objective of this work is to design an extremum seeking controller for maximizing biogas
production of a second order bioreactor model, which provides robustness against uncertainty
in parameters and noise in measurements, independent of the reaction rate. Also, it is necessary
that this technique guarantees faster convergence than traditional ones by measuring only the
output.
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1. INTRODUCTION

1.3 Problem statement

We consider a (typical) simplified model for a bioreactor Andrews (1968), Antonelli and As-
tolfi (2000), which has two states: a biomass (concentration) x ∈ R≥0 and a substrate (con-
centration) s ∈ R≥0. The x variable models a population of microorganisms which is fed with
substrate sin (inlet substrate) with a rate u (dilution rate). The biomass degrades the substrate
with a certain growth function µ(s) (reaction rate), and also it is produced an amount of biogas
Q.

In some reactors, there is a matrix in which biomass is retained (for biohydrogen produc-
tion it is made by loofah sponge, expanded clay or activated carbon Chang et al. (2002), it is
considered a biomass retention parameter α ∈ (0, 1] modelling that phenomenon. When α = 1
there is no biomass retention and a Continuous Stirred Tank Reactor (CSTR), and for α = 0
all biomass is retained and this corresponds to a Fixed-Bed Reactor (FBR). In Figure 1.1, it is
shown a Partially Fixed-Bed Reactor (PFBR), i.e., α ∈ (0, 1); the central tube represents the
matrix that supports a fraction of the internal bacteria.

Q, x, su, sin

x, s

Dilution rate /

Inlet substrate

Biogas /

Microorganisms /

Outlet substrate

µ(s): reaction rate

α

Figure 1.1: Partially Fixed-Bed Reactor

The simplified bioreactor dynamics is described by the mass balance equations

ẋ = (−αu+ µ(s))x,

ṡ = −dµ(s)x+ u(sin − s),
Q = qµ(s)x,

(1.1)

where: u ∈ R≥0 is the dilution rate (input), µ ∈ R≥0 is a continuous differentiable function
representing the reaction rate (it is assumed that µ(0) = 0), d ∈ R≥0 is the constant yield
coefficient, sin is the (here assumed constant) substrate concentration in the input flow of the
bioreactor, q ∈ R≥0 is a constant conversion factor and Q ∈ R≥0 is the flow rate of gas pro-
duced in the bioreactor, which is assumed as the only measured variable.

2



1.3 Problem statement

The operation of the bioreactor with constant values of input u is usual, and different equi-
librium points are obtained for each u. Since the production of biogas is of interest in our ap-
plication, we want to operate the bioreactor at the equilibrium point for which Q is maximized,
i.e., the production of biogas is maximal among all possible equilibrium points. Assumption 1
is a necessary and sufficient condition for the existence of one and only one optimal operating
point, which is necessary to have a well-defined problem. It will be justified analytically in
the next chapter. (In Fed-Batch culture, the optimal condition is achieved when s = sc Lara-
Cisneros et al. (2014), i.e., maximizing the reaction rate µ(s). However, in continuous culture
the optimal condition is obtained with a smaller value of inlet substrate.)

Assumption 1. The reaction rate µ(s) is such that

dµ(s̄)

ds̄
(sin − s̄)− µ(s̄) = 0,

has one and only one solution s∗ in the compact s̄ ∈ [0, sin].

Reaction rate models satisfying assumption 1 are very common, i.e., typical reaction rates
which satisfy it are:

1. Monod model: this is a monotone growing function given by the expression

µ(s) =
µ0s

Ks + s
, (1.2)

whose behavior can be appreciated in Figure 1.2.

s
in

s

7(s
in

)

7
(s

)

7(s)
70

Figure 1.2: Monod reaction rate.
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1. INTRODUCTION

2. Haldane model: this corresponds to an inhibitory substrate and it is usually decribed by
the expression

µ(s) =
µ0s

Ks + s+ s2

KI

, (1.3)

whose behavior is shown in Figure 1.3 (sc =
√
KsKI , µ(sc) < µ0). Without loss of

generality, it is supposed that sin > sc for eliminating the monotonous case.

s
c

s
in

s

7(s
in

)

7
(s

)

7(s)
7(sc)

Figure 1.3: Haldane reaction rate.

Our problem consists in designing a controller that drives system trajectories to the optimal
operating point (the operating point in which Q is maximized). Also, the controller has to
satisfy the following conditions:

• The only measurable variable is the output, which has to be defined depending on the
value of α.

• It has to be independent of the reaction rate µ(s) (satisfying Assumption 1).

• It has to be robust against uncertainty on parameters.

• It has to be a saturated.

1.4 State of the art

The optimization of this system (when α = 1) has been studied for several decades. There
are many ways to achieve this objective such as the regulation of the optimal operating point
or extremum seeking (ES) techniques. Here are presented examples, and the assumptions that
were made in each approach.
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1.4 State of the art

One (natural) strategy to reach this objective is to calculate the value of (for example) x at
the equilibrium which maximizes Q (Qmax) and to regulate it at this value. For instance,
Schaum et al. (2012) developed a saturated output feedback controller to regulate the optimal
operating point considering a Haldane reaction rate. However, it requires the measurement of
x and the knowledge of the model and its parameters in a precise manner.

Another way to avoid this is using some kind of ES strategy. Wang et al. (1999) designed
an ES technique that requires to know the particular form of the reaction rate, i.e., whether it is
Monod or Haldane. Their main drawback occurs in the Haldane case because it is necessary a
state feedback for stabilizing the optimal operating point. For Monod reaction rate, ES requires
only the measurement of the output, but it has the disadvantage that the objective is reached
very slowly, since ES requires to operate near quasi-stationary states.

Other example is the adaptive ES controller proposed by Marcos et al. (2004), where it was
designed an adaptive algorithm for estimating system parameters, but it has the disadvantage
that only works for Haldane kinetics. Additionally, it was assumed that s and Q are measured,
which is a stronger condition than traditional ones of ES.

By using a Neural Networks approach, Guay et al. (2004) designed an ES controller that works
for bounded continuous reaction rates, i.e., not only for Monod or Haldane kinetics. However,
it is supposed that both states (x and s) are measurable.

Dieulot (2012) presented an output feedback controller that is independent on the reaction
rate, but it has some problems to avoid the washout state in the Haldane case. In that paper,
they assumed that x and P = ux are measured.

A variable structure controller for a bioreactor in fed-batch culture was presented by Lara-
Cisneros et al. (2014), which is related to the time-optimal control proposed by Moreno (1999).
Nevertheless, it is very different to the one presented here because it uses equivalent control
Sira-Ramı́rez (1988) in combination with a high gain observer. Also, it requires the measure-
ments of Q and s, and a non-monotonic kinetics which is very restrictive as the Monod case is
excluded.

The objective of this work is to propose a different strategy to cope with all these problems. It
could be called a fast extremum seeking (FES) strategy, since it is able to reach the objective
faster than with traditional ES, i.e., with a closed-loop settling time similar to the open-loop
settling time (when is applied the constant u that maximizes biogas production).

The basic idea is to switch between two constant values of the input variable u whenever
the transient maximum value of the output is reached, and this (surprisingly) leads to attain and
keep for all future times the (stationary) optimal value Qmax. The controller has some switch-
ing surfaces, but there is also a rather atypical sliding set, since it is a manifold of the same

5



1. INTRODUCTION

dimension of the state space (and not, as usually happens of lower dimension). The controller
switches with high frequency on this manifold.

1.5 Contributions

• The analysis of a second order bioreactor model was made, considering a biomass reten-
tion parameter. It was found a positive-invariant set for constant inputs (u ∈ [0,∞)).

• An ES controller for optimizing biogas production in a second order bioreactor model
was designed, achieving the optimal-operating-point considering an unknown reaction
rate and unknown constant parameters. The output being available for measurement is
the only requirement.

• The closed-loop turned out faster than provided by traditional ES, additionally the pro-
posed algorithm showed robustness against noise in measurements and time-varying inlet
substrate.

1.6 Outline of the thesis

This work is divided in five chapters. After this introduction and problem formulation, Chapter
Two analyses the second order bioreactor model, i.e., the optimal-operating-point conditions
are obtained; system trajectories are analysed in the phase plane; and finally it is found a
positive-invariant set for trajectories with constant inputs.

Chapter Three presents the controller design for the Continuous Stirred Tank Reactor (there
is no biomass retention). It is important to mention that, in order to give sense to closed-loop
solutions, sample-and-hold solutions are introduced. The controller is tested both in ideal and
realistic scenarios showing a very good performance.

Chapter Four extends previous results to Partially Fixed-Bed Reactors by introducing a new
output. The controller is also tested in different scenarios, once again, with excellent results.

Finally, Chapter Five presents the conclusions of this work and some guidelines for future
research.

6



Chapter 2

System Analysis

2.1 Equilibrium (operating) points

For calculating the equilibrium of (1.1), the following algebraic equations must be solved

0 = (−αū+ µ(s̄)x̄,

0 = −dµ(s̄)x̄+ ū(sin − s̄),
Q̄ = qµ(s̄)x̄,

(2.1)

where z̄ indicates the stationary value of the corresponding variable. It follows that there are
different possible equilibrium points, depending on the value of ū. However, independent of ū,
always exists the washout condition. It is important to notice that if α = 0, the only equilibrium
would be the washout, therefore it justifies that α ∈ (0, 1]

1. If ū = 0, then the set of equilibria is given by s̄ = 0 and x̄ any positive value. Since there
is no biogas production at this steady state, it corresponds to an undesirable operation
mode. Another possible equilibrium point corresponds to the washout, i.e. x̄ = 0 and
s̄ ≥ 0. However, this cannot be attained using the zero input, unless it is the initial
condition.

2. Additionally to the washout, there are other equilibrium points satisfying the following
relations:

ū =
µ(s̄)

α
,

x̄ =
sin − s̄
dα

.

(2.2)

(a) Monod: If 0 < ū < µ(sin)
α there is one equilibrium point.

(b) Haldane: If 0 < ū < µ(sin)
α there is one equilibrium point, and if µ(sin)

α ≤ ū <
µ(sc)
α ) there are two equilibrium points.

7



2. SYSTEM ANALYSIS

3. If ū ≥ µmax
α = µ(sin)

α (for Monod), or ū ≥ µmax
α = µ(sc)

α (for Haldane), then x̄ = 0
and s̄ = sin, which corresponds to the washout condition. Note that, from the equation
for ẋ, it follows that when ū > µmax

α the washout will be reached, since ẋ = −ax, with
a > 0⇒ lim

t→∞
x(t) = 0.

2.2 Optimal operating point

If ū = 0 or ū ≥ µmax
α there is no biogas production. Therefore, if there is an equilibrium in

which biogas production is maximized, it must satisfy the operating conditions (2.2).

Q̄ = qµ(s̄)x̄ = qµ(s̄)
sin − s̄
dα

,

Q̄ =
q

dα
µ(s̄)(sin − s̄).

and the maximal value of Q̄(s̄) satisfies

dQ̄

ds̄
=

d

ds̄

( q

dα
µ(s̄)(sin − s̄)

)
= 0, (2.3)

dQ̄

ds̄
=

q

dα

(
dµ(s̄)

ds̄
(sin − s̄)− µ(s̄)

)
= 0,

dµ(s̄)

ds̄
(sin − s̄)− µ(s̄) = 0. (2.4)

If (2.4) has one and only one solution s∗ in the compact s̄ ∈ [0, sin], Q̄(s∗) must be a maximum,
because Q̄(0) = Q̄(sin) = 0 and Q̄ ∈ R≥0. Then, define x∗, s∗, u∗, Qmax = Q̄(s∗) as the
optimal operating values. Notice that the solution to (2.4) is independent of the parameters α,
d and q.

2.2.1 Monod reaction rate

Replacing (1.2) in (2.3) and considering s = s̄, it is obtained:

dQ̄

ds̄
=

d

ds̄

(
qµ0

dα

sins̄− s̄2

Ks + s̄

)
,

dQ̄

ds̄
=
qµ0

dα

(Ks + s̄)(sin − 2s̄)− (sins̄− s̄2)

(Ks + s̄)2
= 0.

Previous expressions can be simplified to

(Ks + s̄)(sin − 2s̄)− (sins̄− s̄2) = 0,

sinKs − 2Kss̄+ sins̄− 2s̄2 − sins̄+ s̄2 = 0,

8



2.2 Optimal operating point

sinKs − 2Kss̄− s̄2 = 0,

s̄2 + 2Kss̄− sinKs = 0.

Obtaining the solution for s̄,

s̄1,2 = −Ks ±
√
K2
s + sinKs,

and due to
√
K2
s + sinKs > Ks, the only positive solution is

s∗ = −Ks +
√
K2
s + sinKs, (2.5)

which implies that Q̄(s∗) > 0, and consequently Qmax = Q̄(s∗) is the steady state absolute
maximum. The expressions defining the optimal operating conditions are

Qmax =
qµ0

dα

sins
∗ − s∗2

Ks + s∗
(2.6)

u∗ =
µ0

α

s∗

Ks + s∗
= µ0

√
K2
s + sinKs −Ks√
K2
s + sinKs

(2.7)

2.2.2 Haldane reaction rate

Replacing (1.3) in (2.3) and considering s = s̄, it is obtained:

dQ̄

ds̄
=

d

ds̄

(
qµ0

dα

sins̄− s̄2

Ks + s̄+ s̄2

KI

)
,

dQ̄

ds̄
=
qµ0

dα

(Ks + s̄+ s̄2

KI
)(sin − 2s̄)− (sins̄− s̄2)(1 + 2

KI
s̄)

(Ks + s̄+ s̄2

KI
)2

= 0.

Previous expressions can be simplified to(
Ks + s̄+

s̄2

KI

)
(sin − 2s̄)− (sins̄− s̄2)

(
1 +

2

KI
s̄

)
= 0,

sinKs − 2Kss̄+ sins̄− 2s̄2 +
sin
KI

s̄2 − 2

KI
s̄3 − sins̄+ s̄2 − 2sin

KI
s̄2 +

2

KI
s̄3 = 0,

sinKs − 2Kss̄−
(

1 +
sin
KI

)
s̄2 = 0,(

1 +
sin
KI

)
s̄2 + 2Kss̄− sinKs = 0.

9



2. SYSTEM ANALYSIS

Obtaining the solution for s̄,

s̄1,2 =

−Ks ±
√
K2
s +

(
1 + sin

KI

)
sinKs

1 + sin
KI

,

and due to
√
K2
s +

(
1 + sin

KI

)
sinKs > Ks, the only positive solution is

s∗ =

−Ks +

√
K2
s +

(
1 + sin

KI

)
sinKs

1 + sin
KI

, (2.8)

which implies that Q̄(s∗) > 0, and consequently Qmax = Q̄(s∗) is the steady state absolute
maximum. The expressions defining the optimal operating point are

Qmax =
qµ0

dα

sins
∗ − s∗2

Ks + s∗ + s∗2

KI

, (2.9)

u∗ =
µ0

α

s∗

Ks + s∗ + s∗2

KI

. (2.10)

2.3 Analysis of trajectories with extreme values of u

Consider the systems

Σ1 :

{
ẋ = µ(s)x,

ṡ = −dµ(s)x,
(2.11)

and

Σ2 :

{
ẋ = −(αuH − µ(s))x,

ṡ = −dµ(s)x+ uH(sin − s).
(2.12)

which were obtained by making u = uL = 0 and u = uH > µmax
α in (1.1), respectively (for

Monod reaction rate uH > µ(sin)
α and for Haldane uH > µ(sc)

α ).

2.3.1 Analysis of Σ1

Let us introduce the variety of equilibrium points E obtained from (2.2), which is invariant and
asymptotically stable (global attractor) for all u > 0 when α = 1 Schaum et al. (2012).

E = {(x, s) ∈ R2
≥0|s = sin − dx}. (2.13)

Theorem 2. The locus of trajectories of Σ1 are parallel lines.

10



2.3 Analysis of trajectories with extreme values of u

Proof. In the phase plane, the system dynamics is as follows

ds

dx
=
−dµ(s)x

µ(s)x
= −d,

then, by solving the differential equation∫ s

s0

ds

dx
dx =

∫ x

x0

−ddx,

the expression for Σ1 trajectories is obtained

s = −d(x− x0) + s0. (2.14)

which are parallel lines to E, and therefore if (x0, s0) ∈ E then (x, s) ∈ E ∀t > 0. Then, also

with u = 0, E is a positive invariant set. �

There is a continuum of equilibrium points at the positive part of x axis, i.e, x̄ ∈ R≥0 and
s̄ = 0. Next, it is necessary to prove the stability of the set, and not for a particular point.

Theorem 3. The set Z = {(x, s) : x ∈ R≥0 and s = 0} is asymptotically stable for Σ1 (2.11).

Proof. Consider the following Lyapunov candidate function

V =
1

2
s2,

which satisfies V > 0, ∀s 6= 0, and take its time derivative

V̇ = sṡ = s(−dµ(s)x) = −dµ(s)sx,

then

V̇ < 0, x 6= 0, s 6= 0.

Then s tends to zero, and given that x ∈ R≥0, Z is globally asymptotically stable. �

2.3.2 Analysis of Σ2

On the other hand, when uH is applied, there is only one equilibrium point (the washout) which
is asymptotically stable, and also it can be shown that it is exponentially stable.

Theorem 4. For Σ2 (2.12), the washout (x = 0 and s = sin) is globally exponentially stable.

11



2. SYSTEM ANALYSIS

Proof. Consider the following coordinates change

s̃ = s− sin, (2.15)

then, the transformed system is as follows

ẋ = −(αuH − µ(s̃+ sin))x,

˙̃s = −dµ(s̃+ sin)x− uH s̃.
(2.16)

The worst case for ẋ occurs if µ(s) takes its maximum value,

ẋ ≤ −(αuH − µmax)x,

and defining a = αuH − µmax > 0,

ẋ ≤ −ax, (2.17)

which implies that

x(t) ≤ x0e
−at. (2.18)

Considering that µ(s) takes its maximum value and x(t) is upper bounded as shown in (2.18),

bounds in the solution of s̃ can be obtained by analyzing two cases.

1. The first one is

˙̃s(t) ≥ −dµmaxx0e
−at − uH s̃. (2.19)

Solving the differential equation ˙̃s(t) = −dµmaxx0e
−at−uH s̃, and from the comparison

lemma, it is obtained

s̃(t) ≥ −dµmaxx0

uH − a
e−at +

(
dµmaxx0

uH − a
+ s̃0

)
e−uH t. (2.20)

2. The second one is

˙̃s(t) ≤ dµmaxx0e
−at − uH s̃. (2.21)

Solving the differential equation ˙̃s(t) = dµmaxx0e
−at − uH s̃, and from the comparison

lemma, it is obtained

s̃(t) ≤ dµmaxx0

uH − a
e−at −

(
dµmaxx0

uH − a
− s̃0

)
e−uH t. (2.22)
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2.4 Positive invariant set Ω

Then, combining the previous results and because uH > a, the solution s̃(t) is defined for all

t > 0 and it satisfies

|s̃(t)| ≤ dµmaxx0

uH − a
e−at −

(
dµmaxx0

uH − a
− |s̃0|

)
e−uH t. (2.23)

Finally, from (2.18) and (2.23) it is concluded that (0, sin) is globally exponentially stable. �

2.4 Positive invariant set Ω

In this section a set (subset of R2
≥0) for bioreactor trajectories is defined, which is positive

invariant (if it contains the system state at some time, then it will contain it also in the future
Bacciotti (2013)). Previous research about the bioreactor, e.g. Schaum et al. (2012), found
invariant sets for (1.1) when u > 0 (for α = 1). However, our approach considers u ≥ 0
and the parameter α ∈ (0, 1], which leads to slightly different admissible trajectories. In some
sense, it is an adaptation from the obtained results in Exothermic Continuous Reactors Álvarez
and Franco (2016) because the region is a trapezium.

Looking at Theorem 2 and the region proposed by Schaum et al. (2012) we can define the
following set Ω, which geometrically is a trapezium (Figure 2.1).

Ω =
{

(x, s) ∈ R2
≥0 | 0 ≤ x ≤ β(s), 0 ≤ s ≤ sin

}
, (2.24)

β(s) =
2sin − αs

dα
. (2.25)

where β(s) is a parallel line to E (2.13) which pases through (x, s) =
(

2sin
dα , 0

)
.

Theorem 5. The set Ω (2.24) is positive invariant for the system (1.1) with constant inputs.

Proof. It is convenient to recall Nagumo’s Theorem which is going to be useful for this proof.

This version was extracted from Blanchini (1999).

Nagumo’s Theorem: Consider the system ẋ = f(x), and assume that, for each

initial condition in a set Rn, it admits a globally unique solution. Let Ω ⊆ Rn be

a closed and convex set. Then, the set Ω is positive invariant for the system if and

only if

f(x) ∈ CΩ(x), ∀x ∈ Ω. (2.26)

Where

CΩ(x) =

{
z ∈ Rn : lim inf

h→0

dist(x+ hz,Ω)

h
= 0

}
. (2.27)

is the tangent cone to Ω in x and dist(x+hz,Ω) depends on the considered norm.
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2. SYSTEM ANALYSIS

The geometric interpretation of the theorem is also given in Bacciotti (2013). It says that if, for

x ∈ ∂Ω (boundary of Ω), the derivative ẋ points inside or is tangent to Ω, then the trajectory

remains in Ω. Also, the generalization for ẋ = f(x, u) is valid.

Another useful tool is the inner product. The scalar product (or dot product) between two

vectors ~a,~b ∈ Rn is denoted by ~a ·~b and is given by

~a ·~b ≡ |~a||~b| cos(θ) ≡
n∑
i=1

aibi, 0 ≤ θ ≤ π, (2.28)

where θ is the angle between the two vectors placed tail to tail or head to head, and ai and bi

are the components of the vector ~a and~b, respectively. Then, the value of the dot product ~a ·~b

equals the magnitude of ~a multiplied by the projection ~b onto ~a. Attending to the signum of

(~a ·~b), there are two cases which can be considered:

• ~a ·~b ≥ 0⇒ 0 ≤ θ ≤ π
2 ,

• ~a ·~b ≤ 0⇒ π
2 ≤ θ ≤ π.

Let

~v =

 −(u− µ(s))x

−dµ(s)x+ u(sin − s)

 , (2.29)

where ~v is the system (3.1) in vectorial notation.

To prove the positive invariance of Ω, it is necessary to show that trajectories cannot leave that

region by crossing its boundaries. As the trapezium has four sides and four vertexes (Figure

2.1), the analysis is divided in two stages. In the first, the normal vector ~n (outward-pointing) to

the analysed boundary is found. After that, the dot product ~n and the vector field ~v (evaluated at

the boundary) is taken in order to verify the signum of the projection. The second stage consists

in analyzing dynamics in the vertexes, to see that ẋ points inside Ω. If for all boundaries the

scalar product ~v · ~n is less than or equal to zero, it will be concluded that ẋ points inside or is

tangent to Ω.

1. Boundaries:
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2.4 Positive invariant set Ω

n


1

n


2

n


3

n


4

Ω

V1

V2 V3

V4

0 sin

d

sin

dα

2-α sin

dα
2
sin

dα

0

0.25sin

0.5sin

0.75sin

sin

set E s=sin-dαx (operating points)

Figure 2.1: Set Ω, and the normal vectors in its boundaries.

(a) x = 0, s ∈ [0, sin]. Its associated ~v and ~n are

~v1 =

 0

u(sin − s)

 and ~n1 =

−1

0

 .
And their scalar product results in

~v1 · ~n1 = 0. (2.30)

(b) s = sin, x ∈
[
0, (2−α)sin

dα

]
. Its asociated ~v and ~n are

~v2 =

−(αu− µ(sin))x

−dµ(sin)x

 and ~n2 =

0

1

 .
And their scalar product results in

~v2 · ~n2 = −dµ(sin)x ≤ 0. (2.31)
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2. SYSTEM ANALYSIS

(c) Isolating s in (2.25) (β(s) = x) it can be obtained the boundary s = 2 sinα −dx, x ∈[
(2−α)sin

dα , 2sin
dα

]
. The normal vector can be obtained by calculating the gradient to

h(x, s) = s− 2 sinα + dx, i.e., ∇h(x, s) = dı̂+ ̂. Then, its asociated ~v and ~n are

~v3 =

 − (αu− µ (s))x

−dµ (s)x+ u
(
sin
(
1− 2

α

)
+ dx

)
 and ~n3 =

d
1

 .
And their scalar product results in

~v3 · ~n3 = −dαux+ dµ (s)x− dµ (s)x+ u

(
sin

(
1− 2

α

)
+ dx

)
,

= u

(
sin

(
1− 2

α

)
+ dx− dαx

)
,

= −u
(
sin

(
2

α
− 1

)
− (1− α) dx

)
,

if x is replaced by its equivalent in the boundary x = 2sin−αs
dα , it is obtained

~v3 · ~n3 = −u
(
sin

(
2

α
− 1

)
− (1− α)

2sin − αs
α

)
,

= −u
(
sin

(
2

α
− 1− 2

α
+ 2

)
+ (1− α) s

)
,

which finally implies the negativity of the dot product.

~v3 · ~n3 = −u (sin + (1− α)) ≤ 0. (2.32)

(d) s = 0, x ∈
[
0, 2sin

dα

]
. Its asociated ~v and ~n are

~v4 =

−αux
usin

 and ~n4 =

 0

−1

 .
And their scalar product results in

~v4 · ~n4 = −usin ≤ 0. (2.33)

2. Vertexes:

(a) In V1(0, 0) the vectorial field is

~v(V1) =

 0

usin

 , (2.34)
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2.4 Positive invariant set Ω

which is tangent to boundary 1 and points in the correct direction. It implies that

trajectories cannot leave Ω by crossing V1.

(b) In V2(0, sin) the vectorial field is

~v(V2) =

0

0

 . (2.35)

Because it is an equilibrium point, trajectories cannot leave Ω by crossing V2.

(c) In V3

(
(2−α)sin

dα , sin

)
the vectorial field is

~v(V3) =

−(αu− µ(sin)) (2−α)sin
dα

−µ(sin) (2−α)sin
dα

 , (2.36)

There are two cases: u = 0 and u > 0.

• For u = 0, it is obtained

~v(V3)|u=0 =

 µ(sin) (2−α)sin
dα

−µ(sin) (2−α)sin
dα

 , (2.37)

which is tangent to boundary 3 (~v(V3)|u=0 · ~v3 = 0) and points in the correct

direction (the components are positive in the x − axis and negative in the

s− axis).

• For u > 0, it is obtained

~v(V3)|u>0 =

−(αu− µ(sin)) (2−α)sin
dα

−µ(sin) (2−α)sin
dα

 . (2.38)

When u > 0, it maps the x− axis component of the vector to u ∈ (0,∞) 7→(
µ(sin) (2−α)sin

dα ,−∞
)

. Then, as the s − axis component of the vector is

constant and negative, ~v(V3)|u>0 points inside Ω.

Previous analysis implies that trajectories cannot leave Ω by crossing V3.

(d) In V4

(
2sin
dα , 0

)
the vectorial field is

~v(V4) =

−2u sind

usin

 . (2.39)

There are two cases: u = 0 and u > 0.
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2. SYSTEM ANALYSIS

• For u = 0, it is obtained

~v(V4)|u=0 =

0

0

 , (2.40)

it corresponds to an equilibrium point, then trajectory holds in the vertex.

• For u > 0, it is obtained

~v(V4)|u>0 =

−2u sind

usin

 . (2.41)

Whichever u is, the direction of the vector is the same. It defines a line with

slope −d
2 (dividing s− axis component by x− axis component), which in Ω

is under boundary 3. Then, the vector points inside Ω.

From the previous analysis it is inferred that trajectories cannot leave Ω by crossing

V4.

Equations (2.30), (2.31), (2.32) and (2.33) show that ~v · ~n ≤ 0 in all set boundaries, which

implies that condition (2.26) is satisfied. And also it was proof that trajectories cannot leave

the set by its vertexes. Therefore Ω is a positive invariant set. �
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Chapter 3

Continuous Stirred Tank Reactor:

Controller Design

In this section, it is taken the model (1.1) in the limit case α = 1 is considered, which is
known as Continuous Stirred Tank Reactor and has been widely studied, e.g., Andrews (1968),
Antonelli and Astolfi (2000), Lara-Cisneros et al. (2012) and Schaum et al. (2012) present its
main properties. However, for our purposes, it is convenient to recall some of them by making
the basic calculations. With α = 1 the model adopts the following structure and its diagram is
presented in Figure 3.1.

ẋ = (−u+ µ(s))x,

ṡ = −dµ(s)x+ u(sin − s),
Q = qµ(s)x.

(3.1)

A control law for reaching the optimal operating point of (3.1) is proposed, i.e., it is designed

Q, x, su, sin
x, s

Dilution rate /

Inlet substrate

Biogas /

Microorganisms /

Outlet substrate

µ(s): reaction rate

Figure 3.1: Continuos Stirred Tank Reactor diagram.
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3. CONTINUOUS STIRRED TANK REACTOR: CONTROLLER DESIGN

an algorithm to maximize Q by assuming that it is the only measurable variable. The idea
behind the controller is quite simple, and it can be expressed as follows.

Assume that there are only two control values, labeled uL and uH , and at the beginning t0 one
of them (uL or uH ) is applied, with which the system evolves during a small time T1 = t1− t0.
It is clear that there are two measurements of the output: Q(t0) and Q(t1), with which the
tendency of biogas production can be checked by computing sign(Q(t1) − Q(t0)). There are
three cases,

• sign(Q(t1)−Q(t0)) = −1: Biogas production is decreasing which implies the applied
input is wrong, then it is necessary to change its value.

• sign(Q(t1)−Q(t0)) = 0: Biogas production is constant which implies the system could
have achieved a transient maximum or the optimal biogas production, however it is not
for sure that it is the optima. In this case, once again the control value it changed in case
it was not the correct maximum.

• sign(Q(t1)−Q(t0)) = 1: this condition implies biogas production is increasing towards
the desired optimal operation. In this case, the used input value continues being applied.

After this first step was carried out, the process is repeated by considering different intervals
T2, T3, . . . , after which the input is changed when sign(Q(ti)−Q(ti−1)) ≤ 0. This is how the
controller works, however it is necessary to prove that it can make the trajectories achieve the
optimal operating point.

The first step is putting the controller in the framework of switched control (Liberzon (2012),
Bacciotti (2013)), implying the need of some switching curves S(ū), which are obtained from
the transient-critical-points of Q(t). With those curves, the controller is formalized, and it is
demonstrated that it guarantees global convergence to a neighborhood of the optimal operating
point. It should be independent of the reaction rate and the parameter uncertainty.

3.1 Curves in which biogas achieves transient extrema: S(ū)

For control purposes, the function η(x, s, u) is defined as the time derivative of Q along the
trajectories of system (3.1), i.e.

η(x, s, u) ,
dQ

dt
=
∂Q

∂x
ẋ+

∂Q

∂s
ṡ,

= qµ(s)ẋ+ q
dµ(s)

ds
xṡ,

= qµ(s)(−u+ µ(s))x+ q
dµ(s)

ds
x (−dµ(s)x+ u(sin − s)) ,

= qx

(
µ(s)(−u+ µ(s)) +

dµ(s)

ds
(−dµ(s)x+ u(sin − s))

)
. (3.2)
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3.1 Curves in which biogas achieves transient extrema: S(ū)

For a constant input ū, the curve S(ū) = {(x, s) ∈ R2
≥0|η(x, s, ū) = 0} in the phase plane

consists of the transient critical points for trajectories of the system (3.1) with the input ū, i.e.,
the points where Q has a local minimum, a maximum or an inflection point for that (constant)
input.

Theorem 6. If (2.4) has only one solution in the compact [0, sin], all curves S(ū) (generated

with different ū values) intersect at the optimal operating point.

Proof. Making η(x, s, u) = 0 in (3.2), and ignoring the trivial solution x = 0, then

µ(s)(−u+ µ(s)) +
dµ(s)

ds
(−dµ(s)x+ u(sin − s)) = 0,

dµ(s)

ds
(dµ(s)x− u(sin − s)) = µ(s)(−u+ µ(s)),

dµ(s)x− u(sin − s) =
1

dµ(s)
ds

µ(s)(−u+ µ(s)),

x =
1

ddµ(s)
ds

(−u+ µ(s)) +
u

dµ(s)
(sin − s),

x =
u

d

(
sin − s
µ(s)

− 1
dµ(s)
dds

)
+

µ(s)

ddµ(s)
ds

, (3.3)

If two different values of u are taken: uL (L: low) y uH (H: high), there are two S(ū) curves

xuL =
uL
d

(
sin − s
µ(s)

− 1
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

,

xuH =
uH
d

(
sin − s
µ(s)

− 1
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

,

whose intersection can be checked by making xuL = xuH ,

uL
d

(
sin − s
µ(s)

− 1
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

=
uH
d

(
sin − s
µ(s)

− 1
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

,

uH − uL
d

(
sin − s
µ(s)

− 1
dµ(s)

ds

)
= 0,

sin − s
µ(s)

=
1

dµ(s)
ds

,

dµ(s)

ds
(sin − s) = µ(s),
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dµ(s)

ds
(sin − s)− µ(s) = 0. (3.4)

Replacing (3.4) in (3.3) it is obtained the following condition, which implies that it is an oper-

ating point:

x =
sin − s
d

. (3.5)

If (2.4) and (3.4) are compared, it is easy to see that they are the same equation, s̄ and s act

only like dummy variables. This implies that for a given µ(s), all S(ū) curves (generated with

different input values) intersect at the stationary maximum of Q if (2.4) has only one solution

in the compact [0, sin]. �

In particular, if Monod and Haldane reaction rates are considered, for some set of parame-
ters, and using different u values, their asociated S(ū) curves are shown in Figure 3.2. And, as
it was demonstrated, all of them intersect at the optimal operating point (x∗, s∗).

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

x

s

(a) Monod reaction rate.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

x

s

(b) Haldane reaction rate.

Figure 3.2: S(ū) curves for postive ū values.

3.2 Switching curves design

Theorem 6 states that all S(ū) curves intersect at the optimal operating point, suggesting that
the optimization ofQ can be achieved by a properly switching between two of them (associated
with uL and uH ). As a first approach, a reasonable restriction could be uL ≤ u∗ ≤ uH be-
cause the switching between uL and uH has to generate u∗ (on average). Nevertheless, there is
another restriction imposed by saturation limits presented in Schaum et al. (2012) uL < µ(sin)
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3.2 Switching curves design

and uH > µmax, which have to be satisfied for every saturated controller.

Figures 3.3a and 3.3b shown the open-loop phase portraits for a given ū for both reaction rates,
and also their associated switching curves S(ū) are presented. On one hand, for Monod kinet-
ics (Figure 3.3a) with ū ∈ (0, µ0) there is on equilibrium point (in addition to the washout), but
two intersections between S(ū) and E. On the other hand, for Haldane reaction rate (Figure
3.3b) with ū ∈ (µ(sin), µ(sc)) there are two equilibrium points (in addition to the washout),
but two intersections between S(ū) and E.
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Figure 3.3: Open-Loop Phase portrait with η(x, s, ū) ≥ 0 and the equillibria set E.

It is easily seen that S(ū) curves cross, not only the optimal operating point but also the equi-
libria associated to ū. That is why it is necessary to select S(ū) curves that have only one
intersection with the equilibria set E (2.13) to guarantee that trajectories do not get stuck in
another equilibrium. Then, it is concluded that the proper way to select the admissible input
values is choosing ū not satisfying conditions (2.2), in order to avoid other intersections be-
tween S(ū) and E.

Therefore, the input values which satisfy the above conditions are

uL = 0. (3.6)

and
uH > µmax, (3.7)

where µmax = µ(sin) for Monod and µmax = µ(sc) for Haldane kinetics. Figures 3.4a and
3.4b, present system trajectories considering ū = uL. As it can be seen, the curve S(uL) has
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Figure 3.4: Phase portrait with η(x, s, uL) ≥ 0 and the equilibria set E (uL = 0).

only one intersection with the set E as desired. Figures 3.5a and 3.5b shown phase planes
for ū = uH . Once again, the curve S(uH) has only one intersection with the set E, which
guarantee proper switching curves.
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Figure 3.5: Phase portrait with η(x, s, uH) ≥ 0 and the equilibria set E (uH > µmax).
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3.3 Sample-and-Hold Solutions

3.2.1 Closed-Loop Dynamics

Figure 3.6 displays the closed-loop phase plane for the bioreactor, i.e., the system behavior
by mixing both input values uL and uH is presented, in order to understand how trajectories
behave. We can sat that this is the heart of the proposed optimization strategy.
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Figure 3.6: Phase portrait for complete dynamics with uL = 0 and uH > µmax (α = 1).

3.3 Sample-and-Hold Solutions

Instead of using Filippov solution’s notion for differential equations, it is used the concept of
Sample-and-Hold solutions presented by Cortes (2008). For a more detailed explanation con-
sult Clarke et al. (1997). This is useful for differential equations with discontinuous inputs
because the differential equation with discontinuous right-hand-side can be analysed without
the need to consider the resulting differential inclusion.

Let f : Rn × U → Rn, where U ⊆ Rm is the set of allowable control-function values,
and consider the control equation on Rn given by

ẋ(t) = f(x(t), u). (3.8)

The first step is selecting the control input in some set, either an open loop u : [0,∞) → U,
a closed-loop u : Rn → U, or a combination u : [0,∞) × Rn → U, and then consider the
resulting differential equation.
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A partition of the interval [t0, tN ] is an increasing sequence π = {ti}Ni=0, i.e., t0 < t1 <
t2 < · · · < tN . The partition need not to be finite. The notion of partition of [t0,∞) is de-
fined similarly. The diameter of π is diam(π) , sup{ti − ti−1 : i ∈ {1, . . . , N}}. Given a
control input u :∈ [0,∞) × Rn → U, an initial condition x0, and a partition π of [t0, t1], a
π − solution of (3.8) defined on [t0, t1] ⊂ R is the map x : [t0, t1] → Rn, with x(t0) = x0,
recursively defined by requiring the curve t ∈ [ti−1, ti] 7→ x(t), for i ∈ {1, . . . , N − 1}, to be
a Carathéodory solution of the differential equation

ẋ(t) = f(x(t), u(ti−1, x(ti−1))). (3.9)

π − solutions are also referred to as sample-and-hold solutions because the control is held
fixed throughout each interval of the partition at the value according to the state at the begin-
ning of the interval Cortes (2008).

Clarke et al. (1997) remarked that this notion of solution is quite different from the Euler
solution which would be obtained when attempting to solve differential equation (3.8) us-
ing Euler’s method: in that case, on each interval t ∈ [ti−1, ti] one would have the formula
x(t) = x(ti−1) + (t − ti−1)f(x(ti−1), u(ti−1, x(ti−1))), corresponding to the solution of the
differential equation ẋ(t) = f(x(ti−1), u(ti−1, x(ti−1))). This alternative definition does not
have any physical meaning in terms of the original system.

3.4 Fast Extremum Seeking Controller

Conditions for proper switching curves were obtained; the proposed control law is defined
as a switching system (see e.g. Bacciotti (2013), Liberzon (2012)) alternating between sys-
tems Σ1 and Σ2, and having as switching surfaces S1 = {(x, s)|η(x, s, uL) = 0} and S2 =
{(x, s)|η(x, s, uH) = 0}. However, its behavior is very different with respect to the others,
because the switching event occurs whenever the slop of Q(t) is negative or zero (when the
biogas is decreasing or achieving an stationary maximum), and not only when the state crosses
a switching surface.

Definition 7. (Controller) Define Ω1 = {η(x, s, uL) > 0}, Ω2 = {η(x, s, uH) > 0, (for non-

monotonic µ(s), s < sc)} and introduce the discrete state σ, whose role is to specify, at each

time instant t ≥ 0, the index σ ∈ {1, 2} of the active system. Let σ(t0) = 1 and define π =

{ti}∞i=0 as a partition of [0,∞), with a very small diameter diam(π) , supi∈{1,2,... }(ti−ti−1).

At the beginning, let the system evolve as Σ1 in the interval [t0, t1]. Then, for each ti ≥ t1,

if σ(ti−1) = j ∈ {1, 2} and (x(ti), s(ti)) ∈ Ωj , make σ(ti) = j. On the other hand, if

σ(ti−1) = 1 but (x(ti), s(ti)) 6∈ Ω1, let σ(ti) = 2. In the same way, if σ(ti−1) = 2 but

(x(t), s(t)) 6∈ Ω2, let σ(ti) = 1. It is said that a switching event occurs when σ changes its

value.
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3.4 Fast Extremum Seeking Controller

The closed loop trajectories, generated with this algorithm, can be understood as the π −

solutions of 3.1 by defining recursively the applied input (uL or uH ). 4

The previous definition expresses the following system behavior: at the beginning it is
applied uL as an initial condition. The signum of dQ

dt is checked at every instant ti and when
dQ
dt |t=ti ≤ 0, the input value u is switched. It means that it is desired to search the optimal

operating point by making Q grow as much as possible, or by making Q decrease in a proper
way. The properties of Controller in Definition 7 in the nominal case are given in Theorem 8.

Theorem 8. Assume that µ(s) is at least once differentiable and it satisfies one of the following

statements:

• µ(s) is concave monotonic increasing.

• µ(s) is convex monotonic increasing.

• µ(s) has only one maximum in sc ∈ (0, sin), it is concave monotonic increasing in

[0, sc], and monotonic decreasing in [sc, sin].

Consider the Controller in Definition 7, system (3.1) and consider that the sign(dQ
dt ) is avail-

able for measurement. Given a neighborhood of the optimal operating point, there exists π∗

such that if diam(π) < diam(π∗) the system trajectories achieve it asymptotically for any

initial condition (x(0), s(0)) ∈ Ω (x(0) 6= 0).

Proof. Define the following regions: R1 = Ω1 ∩ Ωc
2, R2 = Ωc

1 ∩ Ω2, R3 = Ω1 ∩ Ω2 and

R4 = Ωc
1 ∩ Ωc

2. The proof is based on the following statements.

• Theorem 6: all S(ū) curves intersect at the optimal operating point.

• Lemma 9: Assume that µ(s) is at least once differentiable and it satisfies one of the

following statements:

– µ(s) is concave monotonic increasing.

– µ(s) is convex monotonic increasing.

– µ(s) has only one maximum in sc ∈ (0, sin), it is concave monotonic increasing in

[0, sc], and monotonic decreasing in [sc, sin].
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S1 and S2 divide the state space in four regions R1, R2, R3 and R4, which are oriented

clockwise R1 −R4 −R2 −R3 as shown in Figure 3.6.

• Lemma 10: system trajectories starting in R1 or R2 reach R3 or R4 in finite time.

• Lemma 11: system trajectories starting in R3 or R4 remain in a neighborhood of R3 or

R4, respectively.

• Lemma 12: system trajectories starting in R3 or R4 converge to a neighborhood of the

optimal operating point asymptotically.

�

Lemma 9. Assume that µ(s) is at least once differentiable and it satisfies one of the following

statements:

• µ(s) is concave monotonic increasing.

• µ(s) is convex monotonic increasing.

• µ(s) has only one maximum in sc ∈ (0, sin), it is concave monotonic increasing in

[0, sc], and monotonic decreasing in [sc, sin].

S1 and S2 divide the state space in four regions R1, R2, R3 and R4, which are oriented

clockwise as R1 −R4 −R2 −R3 as shown in Figure 3.6.

Proof. Conditions to ensure that η(x, s, u) > 0 are obtained at the beginning; η(x, s, u) > 0

has the following representation:

η(x, s, u) = qx

(
µ(s)(−u+ µ(s)) +

dµ(s)

ds
(−dµ(s)x+ u(sin − s))

)
> 0.

There are two cases for the inequality (when x > 0 is considered):

1. If µ′(s) > 0:

x <
uH
d

(
sin − s
µ(s)

− 1

µ′(s)

)
+

µ(s)

dµ′(s)
. (3.10)

2. If µ′(s) < 0:

x >
uH
d

(
sin − s
µ(s)

− 1

µ′(s)

)
+

µ(s)

dµ′(s)
. (3.11)
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3.4 Fast Extremum Seeking Controller

Below each µ(s) behavior is considered, and both curves, S1 = S(uL) and S2 = S(uH), are

analysed in each case.

• µ(s) is monotonic increasing concave.

The behavior of this function and its derivative, which is monotonic decreasing because

its concavity is negative, are shown in Figure 3.7. For both switching curves, the region

in which η(x, s, u) > 0 is under the curve.
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Figure 3.7: Concave monotonic increasing µ(s).

– Analysis of S1. The curve S1 has the following representation:

x =
µ(s)

dµ′(s)
.

As µ(s) grows while µ′(s) decreases, the quotient µ(s)
dµ′(s) grows faster as s increases.

Since µ(0) = 0 and for the previous properties, x(s) is convex and it crosses the

origin as in Figure 3.8.

– Analysis of S2. The curve S2 has the following representation:

x =
uH
d

(
sin − s
µ(s)

− 1

µ′(s)

)
+

µ(s)

dµ′(s)
.
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Figure 3.8: S1 for concave monotonic increasing µ(s).

The lim
s→0+

x = ∞, and since uH > µ(sin), x(sin) = −uH−µ(sin)
dµ′(sin) < 0. Therefore

there is an intersection with the s axis in (0, sin). The switching curve form is

shown in Figure 3.9.
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Figure 3.9: S2 for concave monotonic increasing µ(s).

Both curves with their associated regions in which η(x, s, u) > 0 are presented in Figure

3.10.

• µ(s) is convex monotonic increasing.
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Figure 3.10: Regions for concave monotonic increasing µ(s).

The behavior of this function and its derivative, which is monotonic increasing because

its concavity is positive, are shown in Figure 3.11. For both switching curves, the region

in which η(x, s, u) > 0 is under the curve.
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Figure 3.11: Convex monotonic increasing µ(s).

– Analysis of S1. The curve S1 has the following representation:

x =
µ(s)

dµ′(s)
.
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As µ(s) grows while µ′(s) increases, the quotient µ(s)
dµ′(s) grows slower as s in-

creases. Since µ(0) = 0 and for the previous properties, x(s) is concave and it

crosses the origin as in Figure 3.12.
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Figure 3.12: S1 for convex monotonic increasing µ(s).

– Analysis of S2. The curve S2 has the following representation:

x =
uH
d

(
sin − s
µ(s)

− 1

µ′(s)

)
+

µ(s)

dµ′(s)
.

The lim
s→0+

x = ∞, and since uH > µ(sin), x(sin) = −uH−µ(sin)
dµ′(sin) < 0. Therefore

there is an intersection with the s axis in (0, sin). The switching curve form is

shown in Figure 3.13.

Both curves with their associated regions in which η(x, s, u) > 0 are presented in Figure

??.

• µ(s) has only one maximum in sc ∈ (0, sin), it is concave monotonic increasing in

[0, sc], and monotonic decreasing in [sc, sin].

The behavior of this function and its derivative, which is monotonic decreasing in [0, sc)

and negative in (sc, sin] , are shown in Figure 3.15.
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Figure 3.13: S2 for convex monotonic increasing µ(s).
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Figure 3.14: Regions for convex monotonic increasing µ(s).

– Analysis of S1. The curve S1 has the following representation:

x =
µ(s)

dµ′(s)
.

For s ∈ [0, sc), µ(s) grows while µ′(s) decreases, the quotient µ(s)
dµ′(s) grows faster

as s increases. However, in (sc, sin], µ′(s) is negative and there are not curve in

x > 0. Since µ(0) = 0, lim
s→sc

x, and for the previous properties, x(s) it crosses the

origin and its form is shown in Figure 3.16. The region in which η(x, s, uL) > 0 is

under the curve for s ∈ [0, sc), and over the x axis for s ∈ [sc, sin] (η(x, sc, uL) =
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Figure 3.15: Haldane-like µ(s).

qxµ2(sc) > 0, and µ′(s) < 0 ∀s ∈ (sc, sin)).
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Figure 3.16: S1 for Haldane-like µ(s).

– Analysis of S2. The curve S2 has the following representation:

x =
uH
d

(
sin − s
µ(s)

− 1

µ′(s)

)
+

µ(s)

dµ′(s)
.

The lim
s→0+

x = lim
s→s+c

x = ∞, lim
s→s−c

x = −∞, and since uH > µ(sin), x(sin) =

−uH−µ(sin)
dµ′(sin) > 0. Therefore, there is an intersection with the s axis in (0, sc) and
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3.4 Fast Extremum Seeking Controller

an asymptote in sc. The region in which η(x, s, u) > 0 is under the curve in [0, sc)

and over the curve in (sc, sin]. This switching curve form is shown in Figure 3.17.
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Figure 3.17: S2 for Haldane-like µ(s).

Both curves with their associated regions in which η(x, s, u) > 0 are presented in Figure

3.18.
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Figure 3.18: S2 for Haldane-like µ(s).

Previous analysis is also valid for a monotonic increasing line µ(s) = ks (k ∈ R). Therefore

the state space is divided in four regions oriented clockwise R1 −R4 −R2 −R3. �

Lemma 10. System trajectories starting in R1 or R2 reach R3 or R4 in finite time.
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Proof. The following coordinate change is introduced, in order to make the analysis easier

z1 = x, (3.12)

z2 = dx+ s. (3.13)

Bioreactor dynamics (3.1) in new coordinates has the following representation.

ż1 = − (u− µ(z2 − dz1)) z1, (3.14)

ż2 = − (z2 − sin)u. (3.15)

and therefore, Σ1 and Σ2 are as follows

Σ1 :


ż1 = µ(z2 − dz1)z1,

ż2 = 0.
(3.16)

For Σ1, z1 increases and z2 is maintained constant.

Σ2 :


ż1 = −(uH − µ(z2 − dz1))z1,

ż2 = − (z2 − sin)uH .
(3.17)

For Σ2, z1 decreases and z2 has three different options

1. If z2 < sin, z2 increases.

2. If z2 = sin, z2 is constant.

3. If z2 > sin, z2 decreases.

For completeness of the proof, it is necessary to recover the form of previous axes and all sets

in the new coordinates.

• Mapping x = 0 (axis s):

z1 = 0,

z2 = s.

Which implies that s and z2 axes are coincident.
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3.4 Fast Extremum Seeking Controller

• Mapping s = 0 (axis x):

z2 = dz1

Which implies that x axis is a line with slope d that crosses the origin.

• The set of equilibria E (2.13) is easier in new coordinates.

E = {(z1, z2) ∈ R2
≥0|z2 = sin}. (3.18)

Phase planes presented in Figure 3.6 were constructed by mixing Figures 3.4 and 3.5. Same

plots, but in new coordinates, are presented in Figure 3.19, in order to graphically understand

the coordinates change. It can be seen that the state space is divided in four operating regions,
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Figure 3.19: Phase portrait with uL = 0 and uH > µmax in z coordinates.

independently of the reaction rate. To ensure convergence, it is necessary to analyse all of them,

considering initial conditions inside each one and looking at how trajectories behave. Also, it is

necessary to remember that u(t0) = uL, and that π is sufficiently small that trajectories move

very little during each interval [ti−1, ti] i ∈ {1, 2, . . . }.
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Region 1 (R1). It was stated that σ(t0) = 1, therefore the active system is Σ1 and (z1, z2) ∈

Ω1, which implies that z1 grows while z2 remains constant. Then, there are three possibilities:

1. If z2 ≤ sin, trajectories go to region R3 without a switching event, then the active

system continues being Σ1. If the trajectory is close to the optimal state the trajectory

may quickly pass region R3 and end at ti in R2 with a switching event to Σ2.

2. If z2 = sin, trajectories arrive to the optimal operating point with a switching event (the

switch can occur exactly at the optimal operating point or after passing it, as system

could go to region R2 due to the partition π), then the active system changes to Σ2.

3. If z2 ≥ sin, trajectories could go to R4 with a switching event (the switch can occur

exactly at the surface S1 or after passing it, due to the partition π). If trajectory is close

to the optimal state it could end in region R2. Whichever the case is, the active system

changes to Σ2.

Region 2 (R2). It was said that σ(t0) = 1, then the active system is Σ1, but (z1, z2) 6∈ Ω1.

This fact produces an initial switching event to system Σ2. When Σ2 is the active system, z1

decreases, and there are three cases:

1. If z2 < sin, z2 grows and trajectories could go to region R3 without a switching event,

then the active system continues being Σ2. If trajectory is close to the optimal state, it

could pass to region R1 with a switching event to Σ1.

2. If z2 = sin, z2 is maintained constant, and trajectories arrive to the optimal operating

point with a switching event (the switch can occur exactly at the optimal operaitng point

or after passing it, as system could go to regionR1 due to the partition π), then the active

system changes to Σ1.

3. If z2 > sin, trajectories could go to R4 with a switching event (the switch can occur

exactly at the surface S2 or after passing it, due to the partition π). If trajectory is close

to the optimal state it could end in region R1. Whichever the case is, the active system

changes to Σ2.
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Finite time convergence can be obtained from the fact that Σ1 and Σ2 have different asymp-

totically stable equilibrium points (they are not the optimal operating point). Since trajectories

need to cross switching surfaces to achieve those equilibria, it is concluded that trajectories

starting at (z1, z2) ∈ R1 ∪R2 reach R3 ∪R4 in finite time. �

Lemma 11. System trajectories starting in R3 or R4 remain in a neighborhood of R3 or R4,

respectively.

Proof. Region 3 (R3). As σ(t0) = 1, the active system is Σ1. Then z1 grows, while z2 is

constant. σ = 1 and (z1, z2) ∈ Ω1; therefore the active system continues being Σ1 until the

trajectory leaves region R3 and goes to region R2, instant in which there is a switching event

to Σ2. From Lemma 10 the trajectory has to return to a neighborhood of region R3.

Region 4 (R4). As σ(t0) = 1, the active system is Σ1. Then z1 grows, while z2 is constant. In

the next instant t1 there are two possibilities.

• Trajectory continues in region R4. Due to σ(t1) = 1 and (z1(t1), z2(t1)) 6∈ Ω1 the

controller changes and the new active system is Σ2. If with this new system the trajectory

goes to region R1, i.e., (z1(t2), z2(t2)) ∈ Ω1, it follows from Lemma 10 that trajectory

remains in a neighborhood of R4.

• Trajectory goes to region R2. Due to σ(t1) = 1 and (z1(t1), z2(t1)) 6∈ Ω1 the controller

changes and the new active system is Σ2. It follows from Lemma 10 that it remains in a

neighborhood of R4.

As it can be seen, both of them imply a switching event and it happens because σ(ti) = j

(j ∈ {1, 2}) and (x, s) 6∈ Ωj . As long as the trajectory is in region R4, the controller switches

at every instant ti. �

Lemma 12. System trajectories starting inR3 orR4 converge to a neighborhood of the optimal

operating point asymptotically.

Proof. Region 3 (R3). Trajectories arrive to this region by initial conditions or because they

were driven from regions 1 or 2. For analysis, arriving by initial conditions or from R1 is

equivalent. Then, only two cases are considered: Σ1 or Σ2 is the active system.
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1. Σ1 is active: it continues active until the trajectory arrives to region R2, time in which

(z1(ti), z2(ti)) 6∈ Ω1.

2. Σ2 is active: it continues active until the trajectory arrives to region R1, time in which

(z1(ti), z2(ti)) 6∈ Ω2.

In both cases all trajectories that start in R3 are confined to live in its neighborhood (Lemma

11). The general behavior is as follows: the state is driven to a region (R1 or R2), for instance

R1 and, once trajectory has reached it, the active system changes to Σ2. Then the trajectory

evolves in the opposite direction and arrives to R2, which produces a new switch to Σ1. The

pattern is repeated. For a very small diameter, the switching events occur almost in surfaces S1

and S2.

Since z2 always grows in this region, and switching curves intersect at the optimal operating

point (x∗, s∗), trajectories close region R3 tend to an optimal-operating-point-neighborhood.

Region 4 (R4). As in the previous region, there are two possibilities: Σ1 or Σ2 is the ac-

tive system. However, the system behavior is completely different from the previous case;

whichever the active system is, there is switching.

If trajectories stay near region R4, convergence to the optimal operating point could be con-

cluded by using similar arguments as before. Since z2 always decreases in this region and

switching curves intersect at the optimal operating point (x∗, s∗), trajectories close to region

R4 tend to an optimal-operating-point-neighborhood. �

3.5 Controller Algorithm and Simulations

In this section, the proposed controller is implemented by using the numerical parameters
shown in Table 3.1, which were selected to allow a comparison with the results of the ES
strategy presented by Wang et al. (1999). Although we want to maximize qµ(s̄)x̄, while in
Wang et al. (1999) ūx̄ is maximized (i.e. the optimization problems are different), for q = 1
we have Q̄ = µ(s̄)x̄ = ūx̄, and the optimal points for both problems are identical. For simula-
tions, the continuous time controller in Definition 7 is implemented as follows: There are two
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Table 3.1: Selected parameters for simulation.

Parameter Value

µ0 1

Ks (Monod) 0.02

Ks (Haldane) 0.1

KI (Haldane) 0.5

d 1

q 1

sin 1

uL 0

uH 1.1

CI1 [x(0), s(0)] = [0.8, 0.05]

CI2 [x(0), s(0)] = [1.05, 0.05]

CI3 [x(0), s(0)] = [0.1, 0.05]

different u values: uL and uH , and u[0] = uL. At every iteration the sign of Q[k]−Q[k − 1]
is calculated, and the input is updated considering Algorithm 1. To make it work correctly it
is necessary to define Q[−1] = 0. Notice that this algorithm does not require measurement of
neither x nor s, and only the measurement of Q is needed.

3.5.1 Simulations: ideal Case

First, we present the simulation results for a nominal plant, without considering any distur-
bance (noise or delays in the measurements). Due to results are quite similar for Monod and
Haldane kinetics, here are presented Monod results. Figure 3.20 presents two trajectories in
the state space, which represent the principal closed-loop behaviors.
For initial conditions CI1, system trajectory changes its direction after it crosses one switching
curve; the process is repeated, while the state converges to the optimal operating point. In the
other case, with initial condition CI2, trajectory goes to one switching curve and it experi-
ments a sliding-mode-like behavior, because it slides to the optimal operating point along the
switching curve S(uH). Whichever the initial condition is, trajectories converge to the optimal
operating point.

Due to switched control experiment chattering, the reader must be wondering about the control
signal. Output signal and control action are shown in Figure 3.21, for previous initial condi-
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Data: Q[k − 1], Q[k], u[k]

if Q[k]−Q[k − 1] ≤ 0 then

if u[k] == uL then

u[k + 1] = uH ;

else

u[k + 1] = uL;

end

else

u[k + 1] = u[k];

end
Algorithm 1: Updating law for u, k = 0, 1, 2, . . . , n.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

x (Biomass concentration)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

s 
(S

ub
st

ra
te

 c
on

ce
nt

ra
tio

n)

Response CI1

Response CI2

S(uL)
S(uH )
Optimal point

Figure 3.20: Fast Extremum Seeking: Monod kinetics with two initial conditions.

tions. It is appreciated that, effectively the input switches at every sampling time. However,
bioreactors are slow systems and the switch can be applied with a big time partition, which is
not dangerous for actuators.
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Figure 3.21: Fast Extremum Seeking: Monod kinetics with two initial conditions.

3.5.2 Comparisons: ideal case

Figure 3.22 present the closed-loop and open-loop control results, i.e., for open-loop the con-
stant input which maximizes the biogas production u∗ is assumed known and applied, while
closed-loop behavior was obtained using Algorithm 1. It can be noticed that both the open-loop
and closed-loop-settling-time are of the same magnitude order, independent of the tested initial
conditions (approximately 7 h). It means that closed-loop performance is as good as knowing
the optimal operating point.

On the other hand, there were made some simulations following the ideas presented in Wang
et al. (1999); the selected parameters are shown in Table 3.2. Figure 3.23 shows system be-
havior with initial condition CI1 for the system, and two initial conditions for the input. It is
evident that system behavior is slower than our approach, because system achieve an stationary
regiment approximately in 100 h with u0 = 0.6 and 300 h for u0 = 0.55. And as it can be
seen, the convergence time is intimately related with the input initial condition. Additionally,
in some simulations carried out with initial condition CI2 system goes to washout.

It is clear that the difference in convergence is big enough to conclude that the proposed strat-
egy is faster than traditional ES techniques. Needless to say, the control signal of traditional
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Figure 3.22: Closed-Loop and Open-Loop control: Monod kinetics with two initial conditions.

ES signal is smoother than switched control, which is better for the plant.

Table 3.2: Selected parameters for Wang et al. (1999) Extremum Seeking.

Parameter Value

ωh 0.04

ω 0.08

a 0.03

k 1.2

Besides the fastest convergence, it is important to remark that the proposed technique is in-
dependent of the reaction rate model, and it does not require knowing model parameters. It
has only one parameter for tuning, and its value can be obtained by knowing an estimate of
the upper bound of the reaction rate. Our approach works for every reaction rate satsfying
Assumption 1 (Wang et al. (1999) approach needs a stabilizing feedback for non monotonic
kinetics).
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Figure 3.23: Closed-Loop and Open-Loop control: Monod kinetisc with two initial conditions.

3.5.3 Simulation: robustness test

In the previous subsection ideal simulations of closed loop performance were presented, i.e.,
it was assumed that perfect output measurement was available, parameters were static and that
the controller was implemented in continuous time. However, for showing that closed loop
stability is robust in realistic scenarios, it is necessary to present simulations considering the
most common perturbations which occur in practice. For the following simulations nominal
parameters are those in Table 3.1, but the same initial conditions (CI3) are used for both reac-
tion rate models.

The first test checked controller performance under noisy measurements which additionally
are not available continuously. Noise was simulated by considering a Gaussian signal added to
a low-frequency sinusoidal that multiplied the output; the combination produced a 2% maxi-
mum error in measurements. The system was simulated in continuous time, but the controller
was implemented using a Zero-Order-Hold with sampling time of 1 minute.

Figures 3.24 and 3.25 show the system performance, with the described conditions. Once
trajectories have reached optimal operating point vicinity, results for particular reaction rates
can be analysed; in the Monod case, minimum biogas production is about 0.95 of its maximum
value, while in the Haldane case it is around 0.98 of its maximum.

In both cases, the phase plane displays the effect of noise in trajectories, i.e., it produces pre-
mature or delayed switching events that guarantee only practical stability. However, these
results show that the proposed controller is robust against noise in measurements and against
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its discrete implementation. In fact, discretization helps to minimize noise impact because the
controller only uses the difference between two measurements (Q[k] − Q[k − 1]) and not the
whole Q(t) signal.

The second test checked the closed-loop response when sin (inlet-substrate-concentration)
changes with time. Two cases were considered: when the change in sin is fast and when it
is slow, with sin = 1 + 0.1 sin(ωt) and ω = 0.25 (slow variation) or ω = 200 (fast variation).
The simulation results are presented in Figs. 3.26 and 3.27.

In the same way as in the previous case (when only noise was considered), practical stabil-
ity is achieved with fast and slow sin variation. When sin changes slowly, the output tries to
follow the instantaneous optimal biogas production, i.e., the biogas production calculated using
(2.6) or (2.9), respectively. On the other hand, when sin changes fast, the output Q follows on
the average of biogas production, which in this case corresponds with the nominal case, i.e.,
Q̄max calculated with sin = 1.
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Figure 3.24: Monod reaction rate with CI3 and noise in measurements.
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Figure 3.25: Haldane reaction rate with CI3 and noise in measurements.
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Figure 3.26: Monod reaction rate with CI3, noise in measurements and time variant inlet-

substrate-concentration sin = 1 + 0.1 sin(ωt) (ω is 0.25 in the first plot and 200 in the second).
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Figure 3.27: Haldane reaction rate with CI3, noise in measurements and time variant inlet-

substrate-concentration sin = 1 + 0.1 sin(ωt) (ω is 0.25 in the first plot and 200 in the second).
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Chapter 4

Partially Fixed-Bed Reactor: Controller

Design

4.1 Testing the previous solution

In the previous chapter, a controller for the CSTR (when α = 1) was designed, and before
a new solution is proposed for the case α ∈ (0, 1) PFBR (Partially Fixed-Bed Reactor), it
would be interesting to see what happens if Algorithm 1 is applied without any modification.
The selected parameters are shown in Table 4.1; they are basically are the same as in the last
simulations, but now α = 0.5. Figures 4.1 and 4.2 display simulations for system (1.1) with
Algorithm 1. Those plots show that system trajectories go to the intersection of S(uL) and
S(uH), but in this case it does not correspond to the optimal operating point as before. To
know the reason of this behavior, the intersection of S(ū) curves is analysed, and the definition
of η(x, s, u) as the time derivative of Q along system trajectories (1.1) is recalled.

η(x, s, u) ,
dQ

dt
=
∂Q

∂x
ẋ+

∂Q

∂s
ṡ,

= qµ(s)ẋ+ q
dµ(s)

ds
xṡ,

= qµ(s)(−αu+ µ(s))x+ q
dµ(s)

ds
x (−dµ(s)x+ u(sin − s)) ,

= qx

(
µ(s)(−αu+ µ(s)) +

dµ(s)

ds
(−dµ(s)x+ u(sin − s))

)
. (4.1)

For a constant input ū, the curve S(ū) = {(x, s) ∈ R2
≥0|η(x, s, ū) = 0} in the phase plane

consists of the transient critical points for trajectories of the system (1.1) with the input ū, i.e.,
the points where Q has a local minimum, a maximum or an inflection point for that (constant)
input. Making η(x, s, u) = 0 in (4.1), and ignoring the trivial solution x = 0,

µ(s)(−αu+ µ(s)) +
dµ(s)

ds
(−dµ(s)x+ u(sin − s)) = 0,
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and solving for x it is obtained

x =
u

d

(
sin − s
µ(s)

− α
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

. (4.2)

Parameter Value

α 0.5

µ0 1

Ks (Monod) 0.02

Ks (Haldane) 0.1

KI (Haldane) 0.5

d 1

q 1

sin 1

uL 0

uH 2

CI1 [x(0), s(0)] = [1, 0.1]

CI2 [x(0), s(0)] = [2, 0.25]

Table 4.1: Selected parameters for simulation.

If two different values of u are taken: uL (L: low) y uH (H: high), there are two S(ū) curves

xuL =
uL
d

(
sin − s
µ(s)

− α
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

,

xuH =
uH
d

(
sin − s
µ(s)

− α
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

,

whose intersection can be checked making xuL = xuH ,

uL
d

(
sin − s
µ(s)

− α
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

=
uH
d

(
sin − s
µ(s)

− α
dµ(s)

ds

)
+

µ(s)

ddµ(s)
ds

,

uH − uL
d

(
sin − s
µ(s)

− α
dµ(s)

ds

)
= 0,
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Figure 4.1: Closed loop: Monod reaction rate with CI1.
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Figure 4.2: Closed loop: Haldane reaction rate with CI2.
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dµ(s)

ds
(sin − s)− αµ(s) = 0. (4.3)

Replacing (4.3) in (4.2) it is obtained the following condition, which implies that it is an oper-
ating point:

x =
sin − s
dα

. (4.4)

If (2.4) and (4.3) are compared, it is easily seen that they are different equations, which implies
that the optimal operating point and the intersection of S(ū) curves are the same only when
α = 1. Recall that the (optimal) solution to (2.4) does not depend on the parameter α, but the
solution to (4.3) does. However, it is noticed that the values of uL and uH do not influence the
intersection of the two S(ū) curves.

4.2 Designing new switching curves

The objective of this section is to obtain new switching curves to achieve the optimal operating
point, in the same way that S(ū) curves work for the stirred tank reactor. A new outputR(x, s)
is proposed such that its time derivative along system trajectories generates proper switching
curves for maximizing Q.

For control purposes, it is defined the function ηR(x, s, u) as the time derivative of R along
the trajectories of system (1.1), i.e.,

ηR(x, s, u) ,
∂R

∂x
ẋ+

∂R

∂s
ṡ,

=
∂R

∂x
(−αu+ µ(s))x+

∂R

∂s
[−dµ(s)x+ u(sin − s)] ,

= qµ(s)(−u+ µ(s))x+ q
dµ(s)

ds
x (−dµ(s)x+ u(sin − s)) ,

= u

[
−αx∂R

∂x
+
∂R

∂s
(sin − s)

]
+ µ(s)x

∂R

∂x
− dµ(s)x

∂R

∂s
. (4.5)

For a constant input ū, the curve SR(ū) = {(x, s) ∈ R2
≥0|ηR(x, s, ū) = 0} in the phase plane

consists of the transient critical points ofR for trajectories of system (1.1) with the input ū, i.e.,
the points where R has a local minimum, a maximum or an inflection point for that (constant)
input.

Theorem 13. Let

R = qµ(s)x
1
α . (4.6)

If (2.4) has only one solution in the compact [0, sin], all curves SR(ū) (generated with different

ū values) intersect at the optimal operating point.
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Proof. Obtaining a proper output R(x, s):

It is necessary that all SR(ū) intersect at the same point for all u, which implies that

∂R

∂s
(sin − s)− αx

∂R

∂x
= 0. (4.7)

Furthermore, to satisfy ηR(x, s, u) = 0 it is needed that:

µ(s)x
∂R

∂x
− dµ(s)x

∂R

∂s
= 0. (4.8)

From (4.8)
∂R

∂x
= d

∂R

∂s
, (4.9)

by using Equations (4.9) and (4.7) it follows,

∂R

∂s
(sin − s)− αdx

∂R

∂s
= 0,

(sin − s− αdx)
∂R

∂s
= 0,

x =
sin − s
αd

. (4.10)

Equation (4.10) implies that their intersection is an operating point, independently of R(x, s).

Because it must occur at the optimal operating point, equation (4.10) has to be satisfied, i.e.,

dµ(s)

ds
(sin − s)− µ(s) = 0. (4.11)

If (4.11) is multiplied by φ(x), it is obtained

dµ(s)

ds
(sin − s)φ(x)− µ(s)φ(x) = 0. (4.12)

One way to simultaneously satisfy (4.7) and (4.12) is proposing

∂R

∂s
=

dµ(s)

ds
φ(x), (4.13)

αx
∂R

∂x
= µ(s)φ(x). (4.14)

Then, by integrating (4.13) with respect to s it is found the next expression for R which has an

unknown term ρ

R = µ(s)φ(x) + ρ(x).
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Choosing ρ(x) = 0 and replacing the R expression in (4.14),

αxµ(s)
dφ(x)

dx
= µ(s)φ(x),

αx
dφ(x)

dx
= φ(x),

This differential equation can be solved separating variables and integrating∫
d (φ(x))

φ(x)
=

1

α

∫
dx

x
,

ln(φ(x)) =
1

α
ln(x) + C,

ln(φ(x)) = ln
(
x

1
α

)
+ C,

φ(x) = Kx
1
α .

Finally, choosing K = q, the expression for R(x, s) is

R(x, s) = qµ(s)x
1
α . (4.15)

Validation of R(x, s):

Ṙ =
∂R

∂x
ẋ+

∂R

∂s
ṡ,

replacing (4.15) in (4.5), SR(x, s, u) curves are:

q

α
µ(s)x

1
α (−αu+ µ(s)) + q

dµ(s)

ds
x

1
α (−dµ(s)x+ u(sin − s)) = 0,

1

α
µ(s)(−αu+ µ(s)) +

dµ(s)

ds
(−dµ(s)x+ u(sin − s)) = 0,

u

[
−µ(s) +

dµ(s)

ds
(sin − s)

]
+

1

α
µ(s)2 − dµ(s)x

dµ(s)

ds
= 0, (4.16)

at the intersection, the previous relation has to be satisfied for any u, which implies that

dµ(s)

ds
(sin − s)− µ(s) = 0, (4.17)

1

α
µ(s)2 − dµ(s)x

dµ(s)

ds
= 0. (4.18)

Combining equations (4.17) and (4.18), it is recovered the stationary condition

x =
sin − s
dα

. (4.19)

Since (2.2) and (2.4) are satisfied, it is concluded that SR(x, s, u) curves, generated with dif-

ferent u values intersect at the optimal operating point. �
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4.3 Phase plane with complete dynamics

In particular, if Monod and Haldane reaction rates are considered, for some set of parame-
ters, and using different u values, their asociated SR(ū) curves are shown in Figure (4.3). And,
as it was demonstrated, in Theorem 13, all of them intersect at the optimal operating point
(x∗, s∗).
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(b) Haldane reaction rate.

Figure 4.3: S(ū) curves for both reaction rates.

4.3 Phase plane with complete dynamics

Taking the same restriction as in the CSTR, uL = 0 and uH > µmax
α , which define the dy-

namics of Σ1 and Σ2 the phase planes presented in Figure 4.4 are generated. Those plots show
that switching curves intersect at the optimal operating point, and that it can be reached with a
proper switching algorithm.

4.4 Fast Extremum Seeking Controller

As we obtained the switching curves SR(ū), the controller definition is almost the same as
Definition 7, because it is only needed to define S1 = SR(uL) and S2 = SR(uH).

Definition 14. (Controller) Define Ω1 = {ηR(x, s, uL) > 0}, Ω2 = {ηR(x, s, uH) > 0, (for

non-monotonic µ(s), s < sc)} and introduce the discrete state σ, whose role is to specify, at

each time instant t ≥ 0, the index σ ∈ {1, 2} of the active system. Let σ(t0) = 1 and define π =

{ti}∞i=0 as a partition of [0,∞), with a very small diameter diam(π) , supi∈{1,2,...}(ti−ti−1).
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Figure 4.4: Phase portrait for complete dynamics with uL = 0 and uH > µmax (0 < α < 1). The

operating points set is shown in black.

At the beginning, let the system evolve as Σ1 in the interval [t0, t1]. Then, for each ti ≥ t1,

if σ(ti−1) = j ∈ {1, 2} and (x(ti), s(ti)) ∈ Ωj , make σ(ti) = j. On the other hand, if

σ(ti−1) = 1 but (x(ti), s(ti)) 6∈ Ω1, let σ(ti) = 2. In the same way, if σ(ti−1) = 2 but

(x(ti), s(ti)) 6∈ Ω2, let σ(ti) = 1. It is said that a switching event occurs when σ changes its

value.

The closed loop trajectories, generated with this algorithm, can be understood as the π −

solutions of 1.1 by defining recursively the applied input (uL or uH ). 4
The previous definition expresses the following system behavior: at the beginning it is

applied uL as an initial condition. The signum of dR
dt is checked at every instant ti and when

dR
dt |t=ti ≤ 0, the input value u is switched. It means that it is desired to search the optimal

operating point by making R grow as much as possible, or by making R decrease in a proper
way. The properties of Controller in Definition 14 in the nominal case are given in the Theorem
15.

Theorem 15. Assume that µ(s) is at least once differentiable and it satisfies one of the follow-

ing statements:

• µ(s) is concave monotonic increasing.
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4.4 Fast Extremum Seeking Controller

• µ(s) is convex monotonic increasing.

• µ(s) has only one maximum in sc ∈ (0, sin), it is concave monotonic increasing in

[0, sc], and monotonic decreasing in [sc, sin].

Consider the Controller in Definition 14, system (3.1) and consider that sign(dR
dt ) is available

for measurement. Given a neighborhood of the optimal operating point, there exists π∗ such

that if diam(π) < diam(π∗) trajectories achieve it asymptotically for any initial condition

(x(0), s(0)) ∈ Ω (x(0) 6= 0).

Proof. The proof is basically the same as the proof of Theorem 8 with some changes. Define

the following regions: R1 = Ω1 ∩Ωc
2, R2 = Ωc

1 ∩Ω2, R3 = Ω1 ∩Ω2 and R4 = Ωc
1 ∩Ωc

2. The

proof is based on the following statements.

• Theorem 13: all SR(ū) curves intersect at the optimal operating point.

• Lemma 16: Assume that µ(s) is at least once differentiable and it satisfies one of the

following statements:

– µ(s) is concave monotonic increasing.

– µ(s) is convex monotonic increasing.

– µ(s) has only one maximum in sc ∈ (0, sin), it is concave monotonic increasing in

[0, sc], and monotonic decreasing in [sc, sin].

S1 = SR(uL) and S2 = SR(uH) divide the state space in four regions R1, R2, R3 and

R4, which are oriented clockwise R1 −R4 −R2 −R3 as shown in Figure 4.4.

• Lemma 17: system trajectories starting in R1 or R2 reach R3 or R4 in finite time.

• Lemma 18: system trajectories starting in R3 or R4 remain in a neighborhood of R3 or

R4, respectively.

• Lemma 19: system trajectories starting in R3 or R4 converge to a neighborhood of the

optimal operating point asymptotically.
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�

Lemma 16. Assume that µ(s) is at least once differentiable and it satisfies one of the following

statements:

• µ(s) is concave monotonic increasing.

• µ(s) is convex monotonic increasing.

• µ(s) has only one maximum in sc ∈ (0, sin), it is concave monotonic increasing in

[0, sc], and monotonic decreasing in [sc, sin].

S1 = SR(uL) and S2 = SR(uH) divide the state space in four regions R1, R2, R3 and R4,

which are oriented clockwise R1 −R4 −R2 −R3 as shown in Figure 4.4.

Proof. The proof is exactly the same as the proof of Lemma 9, but taking the following expres-

sions for the switching curves:

S1 :

{
x =

µ(s)

dαµ′(s)
. (4.20)

S2 :

{
uH
d

(
sin − s
µ(s)

− 1

µ′(s)

)
+

µ(s)

dµ′(s)
. (4.21)

�

Lemma 17. System trajectories starting in R1 or R2 reach R3 or R4 in finite time.

Proof. The following coordinate change is introduced, in order to make the analysis easier

z1 = x, (4.22)

z2 = dx+ s. (4.23)

Bioreactor dynamics (1.1) in the new coordinates has the following representation.

ż1 = − (αu− µ(z2 − dz1)) z1, (4.24)

ż2 = − (z2 − sin − d(1− α)z1)u. (4.25)

and therefore, Σ1 and Σ2 are as follows
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4.4 Fast Extremum Seeking Controller

Σ1 :


ż1 = µ(z2 − dz1)z1,

ż2 = 0.
(4.26)

For Σ1, z1 increases and z2 is maintained constant.

Σ2 :


ż1 = − (αuH − µ(z2 − dz1)) z1,

ż2 = − (z2 − sin − d(1− α)z1)uH .
(4.27)

For Σ2, z1 decreases and z2 has three different options. z2 = sin + d(1−α)z1 is the equilibria

set obtained from (2.2) in new coordinates.

1. If z2 < sin + d(1− α)z1, z2 increases.

2. If z2 = sin + d(1− α)z1, z2 is maintainded constant at least an instant.

3. If z2 > sin + d(1− α)z1, z2 decreases.

For completeness of the proof, it is necessary to recover the form of previous axes.

• Mapping x = 0 (axis s):

z1 = 0,

z2 = s.

Which implies that the s and z2 axes are coincident.

• Mapping s = 0 (axis x):

z2 = dz1

Which implies that x axis is a line with slope d that crosses the origin.

• Additionally, let z∗1 and z∗2 be the optimal operating values in new coordinates.

Phase planes presented in Figure 4.4 in new coordinates, are presented in Figure 4.5, in order to

graphically understand the coordinates change. It can be seen that the state space is divided in
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Figure 4.5: Phase portrait with uL = 0 and uH > µmax in z coordinates.

four operating regions, independent of the reaction rate. To ensure convergence, it is necessary

to analyse all of them, considering initial conditions inside each one and looking at how tra-

jectories behave. Also, it is necessary to remember that u(t0) = uL, and that π is sufficiently

small that trajectories move very little during each interval [ti−1, ti] i ∈ {1, 2, . . . }.

Region 1 (R1). It was stated that σ(t0) = 1, therefore the active system is Σ1 and (z1, z2) ∈

Ω1, which implies that z1 grows while z2 remains constant. Then, there are three possibilities:

1. If z2 ≤ z∗2 , trajectories go to region R3 without a switching event, then the active system

continues being Σ1. If the trajectory is close to the optimal state the trajectory may

quickly pass region R3 and end at ti in R2 to region R2 with a switching event to Σ2.

2. If z2 = z∗2 , trajectories arrive to the optimal operating point with a switching event (the

switch can occur exactly at the optimal operating point or after passing it, as system

could go to region R2 due to the partition π), then the active system changes to Σ2.

3. If z2 ≥ z∗2 , trajectories could go to R4 with a switching event (the switch can occur

exactly at the surface S1 or after passing it, due to the partition π). If trajectory is close
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4.4 Fast Extremum Seeking Controller

to the optimal state it could end in region R2. Whichever the case is, the active system

changes to Σ2.

Region 2 (R2). It was said that σ(t0) = 1, then the active system is Σ1, but (z1, z2) 6∈ Ω1.

This fact produces an initial switching event to system Σ2. When Σ2 is the active system, z1

decreases, and there are three cases:

1. Trajectories could go to region R3 without a switching event, then the active system

continues being Σ2. If trajectory is close to the optimal state, it could end in region R1

with a switching event to Σ1.

2. Trajectories arrive to the optimal operating point with a switching event (the switch can

occur exactly at the optimal operating point or after passing it, as system could go to

region R1 due to the partition π), then the active system changes to Σ1.

3. Trajectories could go to R4 with a switching event (the switch can occur exactly at the

surface S2 or after passing it, due to the partition π). If trajectory is close to the optimal

state it could end in region R1. Whichever the case is, the active system changes to Σ2.

Finite time convergence can be obtained from the fact that Σ1 and Σ2 have different asymp-

totically stable equilibrium points (they are not the optimal operating point). Since trajectories

need to cross switching surfaces to achieve those equilibria, it is concluded that trajectories

starting at (z1, z2) ∈ R1 ∪R2 reach R3 ∪R4 in finite time. �

Lemma 18. System trajectories starting in R3 or R4 remain in neighborhood of R3 or R4,

respectively.

Proof. Region 3 (R3). As σ(t0) = 1, the active system is Σ1. Then z1 grows, while z2 is

constant. σ = 1 and (z1, z2) ∈ Ω1; therefore the active system continues being Σ1 until the

trajectory leaves region R3 and goes to region R2, instant in which there is a switching event

to Σ2. From Lemma 17 the trajectory has to return to a neighborhood of region R3.

Region 4 (R4). As σ(t0) = 1, the active system is Σ1. Then z1 grows, while z2 is constant. In

the next instant t1 there are two possibilities.
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• Trajectory continues in region R4. Due to σ(t1) = 1 and (z1(t1), z2(t1)) 6∈ Ω1 the

controller changes and the new active system is Σ2. If with this new system the trajectory

goes to region R1, i.e., (z1(t2), z2(t2)) ∈ Ω1, it follows from Lemma 17 that trajectory

remains in a neighborhood of R4.

• Trajectory goes to region R2. Due to σ(t1) = 1 and (z1(t1), z2(t1)) 6∈ Ω1 the controller

changes and the new active system is Σ2. It follows from Lemma 17 that it remains in a

neighborhood of R4.

As it can be seen, both of them imply a switching event and it happens because σ(ti) = j

(j ∈ {1, 2}) and (x, s) 6∈ Ωj . As long as the trajectory is in region R4, controller switches at

every instant ti. �

Lemma 19. System trajectories starting inR3 orR4 converge to a neighborhood of the optimal

operating point asymptotically.

Proof. Region 3 (R3). Trajectories arrive to this region by initial conditions or because they

were driven from regions 1 or 2. For analysis, arriving by initial conditions or from R1 is

equivalent. Then, only two cases are considered: Σ1 or Σ2 is the active system.

1. Σ1 is active: it continues active until the trajectory arrives to region R2, time in which

(z1(ti), z2(ti)) 6∈ Ω1.

2. Σ2 is active: it continues active until the trajectory arrives to region R1, time in which

(z1(ti), z2(ti)) 6∈ Ω2.

In both cases all trajectories that start in R3 are confined to live in its neighborhood (Lemma

18). The general behavior is as follows: the state is driven to a region (R1 or R2), for instance

R1 and, once trajectory has reached it, the active system changes to Σ2. Then the trajectory

evolves in the opposite direction and arrives to R2, which produces a new switch to Σ1. The

pattern is repeated. For a very small diameter, the switching events occur almost in surfaces S1

and S2.
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Since z2 always grows in this region (in R3 z2 < sin + d(1 − α)z1), and switching curves

intersect at the optimal operating point (z∗1 , z
∗
2), trajectories close regionR3 tend to an optimal-

operating-point-neighborhood.

Region 4 (R4). As in the previous region, there are two possibilities: Σ1 or Σ2 is the ac-

tive system. However, the system behavior is completely different from the previous case;

whichever the active system is, there is switching.

If trajectories stay near region R4, convergence to the optimal operating point could be con-

cluded by using similar arguments as before. Since z2 always decreases in this region (in R3

z2 > sin + d(1− α)z1) and switching curves intersect at the optimal operating point (z∗1 , z
∗
2),

trajectories close to region R4 tend to an optimal-operating-point-neighborhood. �

4.5 Controller Algorithm and Simulations

In this section, the proposed controller is implemented for both possible reaction rates by using
the numerical parameters shown in Table 4.1. For simulations, the continuous time controller
in Definition 14 is implemented as follows: There are two different u values: uL and uH , and
u[0] = uL. At every iteration the sign ofR[k]−R[k−1] is calculated, and the input is updated
considering Algorithm 2. To make it work correctly it is necessary to defineR[−1] = 0. In this
case, additional information about the system is needed; R is calculated as R = qµ(s)x

1
α =

Qx
1−α
α , which implies on the one hand that α is known, and on the other hand that Q and x

are measured.

4.5.1 Simulations: ideal case

As before, first we present the simulation results for a nominal plant, without considering any
disturbance (noise or delays in the measurements). Also, there are presented only Monod re-
sults because for Haldane it is obtained a similar response. Figure 4.6 presents two trajectories
in the state space, which represent the principal closed-loop behaviors.
The conclusions are the same as in the CSTR. For initial conditions CI1, system trajectory
changes its direction after it crosses one switching curve; the process is repeated, while the
state converges to the optimal operating point. In the other case, with initial condition CI2, tra-
jectory goes to one switching curve and it experiments a sliding-mode-like behavior, because
it slides to the optimal operating point along the switching curve S(uH). Whichever the initial
condition is, trajectories converge to the optimal operating point.
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Data: R[k − 1], R[k], u[k]

if R[k]−R[k − 1] ≤ 0 then

if u[k] == uL then

u[k + 1] = uH ;

else

u[k + 1] = uL;

end

else

u[k + 1] = u[k];

end
Algorithm 2: Updating law for u, k = 0, 1, 2, . . . , n.
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Figure 4.6: Fast Extremum Seeking: Monod kinetics with two initial conditions.

Output signal and control action are shown in Figure 4.7. It is appreciated that the input
switches at every sampling time. However, bioreactors are slow systems and the switch can
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be applied with a big time partition, which is not dangerous for actuators.
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Figure 4.7: Fast Extremum Seeking: Monod kinetics with two initial conditions.

4.5.2 Comparisons: ideal case

Figure 4.8 present closed-loop and open-loop control results, i.e., for open-loop the constant
input which maximizes the biogas production u∗ is assumed known and applied, while closed-
loop behavior was obtained using Algorithm 2. It can be noticed that both the open-loop and
closed-loop-settling-time are of the same magnitude order, independent of the tested initial
conditions (approximately 10 h). It means that closed-loop performance is as good as knowing
the optimal operating point.

On the other hand, there were made some simulations following the ideas pesented in Wang
et al. (1999); the selected parameters are shown in Table 4.2. Figure 4.9 shows system be-
havior with initial condition CI1 for the system, and two initial conditions for the input. It is
evident that system behavior is slower than our approach, because system achieve an stationary
regiment approximately in 3000 h. In some simulations carried out with initial condition CI2

system goes to washout.

It is clear that the difference in convergence is big enough to conclude that the proposed strat-
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Figure 4.8: Closed-Loop and Open-Loop control: Monod kinetisc with two initial conditions.

egy is faster than traditional ES techniques. Needless to say, the control signal of traditional
ES signal is smoother than switched control, which is better for the plant.

Table 4.2: Selected parameters for Wang et al. (1999) Extremum Seeking.

Parameter Value

ωh 0.04

ω 0.08

a 0.03

k 1.2

Besides the fastest convergence, it is important to remark that the proposed technique is in-
dependent of the reaction rate model, and it does not require knowing model parameters. It
has only one parameter for tuning, and its value can be obtained by knowing an estimate of
the upper bound of the reaction rate. Our approach works for every reaction rate satsfying
Assumption 1 (Wang et al. (1999) approach needs a stabilizing feedback for non monotonic
kinetics).
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Figure 4.9: Closed-Loop and Open-Loop control: Monod kinetisc with two initial conditions.

4.5.3 Simulation: robustness test

In the previous subsection ideal simulations of closed loop performance were presented, i.e.,
it was assumed that perfect output measurement was available, parameters were static and that
the controller was implemented in continuous time. However, for showing that closed loop
stability is robust in realistic scenarios, it is necessary to present simulations considering the
most common perturbations which occur in practice.

The first test checked controller performance under noisy measurements which additionally
are not available continuously. Noise was simulated by considering a Gaussian signal added to
a low-frequency sinusoidal that multiplied the output; the combination produced a 2% maxi-
mum error in measurements. The system was simulated in continuous time, but the controller
was implemented using a Zero-Order-Hold with a sampling time of 1 minute.

Figures 4.10 and 4.11 show system performance with the described conditions. Once trajec-
tories have reached the vicinity of optimal operating point, results for particular reaction rates
can be analised; in the Monod case, minimum biogas production is about 0.90 of its maximum
value, while in the Haldane case it is around 0.96 of its maximum.

In both cases, phase plane displays the effect of noise in trajectories, i.e., it produces pre-
mature or delayed switching events that guaranteed only practical stability. However, these
results show that the proposed controller is robust against noise in measurements and against
its discrete implementation. In fact, discretization helps to minimize noise impact because the
controller only uses the difference between two measurements (R[k] − R[k − 1]) and not the
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whole R(t) signal.

The second test checked the closed-loop response when sin (inlet-substrate-concentration)
changes with time. Two cases were considered: when the change in sin is fast and when it
is slow, with sin = 1 + 0.1 sin(ωt) and ω = 0.25 (slow variation) or ω = 200 (fast variation).
The simulation results are presented in Figs. 4.12 and 4.13.

In the same way as in the previous case (when only noise was considered), practical stabil-
ity is achieved with fast and slow sin variation. When sin changes slowly, the output tries to
follow the instantaneous optimal biogas production, i.e., the biogas production calculated using
(2.6) or (2.9), respectively. On the other hand, when sin changes fast, the output Q reaches the
average of biogas production, which in this case corresponds with the nominal case, i.e., Q̄max
calculated with sin = 1.
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Figure 4.10: Monod reaction rate with CI3 and noise in measurements.
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Figure 4.11: Haldane reaction rate with CI3 and noise in measurements.
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Figure 4.12: Monod reaction rate with CI1, noise in measurements and time variant inlet-

substrate-concentration sin = 1 + 0.1 sin(ωt) (ω is 0.25 in the first plot and 200 in the second).
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Figure 4.13: Haldane reaction rate with CI2, noise in measurements and time variant inlet-

substrate-concentration sin = 1 + 0.1 sin(ωt) (ω is 0.25 in the first plot and 200 in the second).
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Chapter 5

Conclusions

A bioreactor is a system, in which liquid waste can be transformed in biogas, i.e., energy is
recovered from wastewater. Nevertheless, the amount of biogas is highly dependent on system
parameters and reaction rate, which are usually unknown and difficult to determine.

One (obvious) control objective is the maximization of biogas production, which can be achieved
by applying an extremum-seeking (ES) technique to the system. However, those controllers
achieve the optimal operating point very slowly because they ignore system dynamics. Instead,
in this work a control strategy based on the inherent system properties was designed and tested
via simulations.

It was presented the analysis of a second order model for a Partially Fixed-Bed Reactor (PFBR),
extending previos research made for a Continuous Stirred Tank Reactor (CSTR), i.e., one limit
case in the analysis made is the CSTR (the biomass is suspended), and the other is the Fixed-
Bed Reactor (FBR, where there is perfect biomass retention). Additionally, a positive invariant
set for the system considering positive inputs was found.

A novel Extremum-Seeking strategy for optimizing bioreactors is presented, which uses only
two input values, uL and uH , and is very robust because it is independent on the reaction
rate model and system parameters. The controller was tested in continuous time, and system
trajectories achieved convergence to a vicinity of the optimal operating point, independent of
the reaction rate model, initial conditions and model parameters. Also, it was obvious that its
performance was faster than traditional Extremum-Seeking strategies because the closed-loop
time convergence was almost the same as with an optimal open-loop.

Additionally, closed loop performance was simulated considering a continuous system with
a discrete controller, and noise in measurements. As in the previous case, it produced good
results because system trajectories showed practical stability, i.e., biogas production was kept
near its optimal value.

The controller design for the CSTR has the particularity that the only needed measurement
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is the biogas production, i.e., the variable that is maximized is the only one needed.. On the
other hand, for the PFBR it is necessary to measure a different output richer in information. It
is important to mention that the algorithm is very simple and easy to implement.

The proposed strategy is therefore a very good option for optimizing these systems due to
controller benefits. The authors hope to extend this methodology to higher order models (i.e.
more realistic) for their future implementation.
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