

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ARQUITECTURA
TALLER UNO

ALTERNATIVAS DE DESARROLLO PROGRESIVO PARA EL MUNICIPIO DE ATLAULTA, ESTADO DE MÉXICO

CON EL PROYECTO ARQUITECTÓNICO "ESCUELA DE OFICIOS Y TALLERES PARA MUJERES"

TESIS

QUE PARA OBTENER EL TÍTULO DE **ARQUITECTA**

PRESENTA

AMAIRANI GUTIERREZ VALERA

SINODALES:

ARQ. JOSÉ MIGUEL GONZÁLEZ MORAN ARQ. MIGUEL ÁNGEL MENDEZ REYNA ARQ. ALFONSO GÓMEZ MARTÍNEZ

CIUDAD UNIVERSITARIA, CD. MX. 2018

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

"Aprender es descubrir lo que ya sabes. Hacer es demostrar que ya lo sabes. Enseñar es recordar a los demás que lo saben tan bien como tú. Todos somos aprendices, hacedores y maestros".

Richard Bach (1977)

AGRADECIMIENTOS

Con el paso de los años, no solo los de la universidad, hay mucha gente que aparece en éste camino, algunos permanecen, algunos se van y sin embargo hay unos que se van y aun así permanecen.

El presente documento es el resultado del esfuerzo conjunto de mi familia, quien me acompaño y apoyo durante todo éste proceso, de mi mamá por nunca dejar de alentarme y a la vez de presionarme, de mi papá que siempre me exigió ese 101%, también de mi hermana, por suplirme en los deberes cuando no tenía tiempo y por hacerme reír cuando estaba estresada, de mi abuelita qué siempre me animo a seguir adelante, de mis tíos y primos que me ofrecieron siempre sus consejos y que además se fueron a realizar encuestas conmigo para ésta investigación; a todos y cada uno de los miembros de mi familia les agradezco profundamente.

También éste documento es de los asesores que revisaron y despejaron las dudas que existieron en su momento y de los estudiantes que de la misma manera participaron, aportando sus conocimientos e investigaciones, a ellos les doy las gracias.

Así mismo, y como mencione anteriormente, hay algunas personas que partieron y que, a la fecha, a pesar de eso siguen presentes de muchas maneras para mí, de quién aprendí valores, hábitos, de quien tome experiencias para crecer no solo académicamente, si no como ser humano, día a día y que en donde sea que se encuentren mi agradecimiento se extiende hacia ellos.

Por otro lado hay más personas que estuvieron presentes en éste proceso, durante las jornadas escolares y no necesariamente en un salón de clases, personas que conozco de hace algunos o muchos años, desde que inicie la universidad o a la mitad de ella, la mayoría que conocí por extrañas pero afortunadas situaciones, a todos ellos también le agradezco el estar presentes no sólo en la escuela, si no todos los días y acompañándonos en los desvelos.

Finalmente les digo que ésta es una meta que les pertenece tanto a ellos como a mí, porque gracias a todas sus aportaciones he logrado ser quien soy por ahora.

<u>INDÍCE</u>

INDICE	Infraestructura sanitaria	64
INTRODUCCIÓN		
ÁMBITO REGIONAL1	2 EQUIPAMIENTO URBANO	69
SISTEMA DE ENLACES1	·	
SISTEMA DE CIUDADES1	6 DIAGNÓSTICO DEL EQUIPAMIENTO URBANO	72
IMPORTANCIA DE LA ZONA1	7 VIVIENDA	73
DELIMITACIÓN DE LA ZONA DE ESTUDIO1	9 PROBLEMÁTICA URBANA	
DESCRIPCIÓN DE LA POLIGONAL	PROPUESTAS URBANAS	82
ASPECTOS SOCIO-ECONÓMICOS2	2 ESTRATEGIA DE DESARROLLO	82
CRECIMIENTO POBLACIONAL2	2 PROGRAMAS DE DESARROLLO	82
ESTRUCTURA POBLACIONAL2	3 ESTRUCTURA URBANA PROPUESTA	86
MIGRACIÓN2	3 Vialidades	86
POBLACIÓN ECONÓMICA2	4	88
HIPÓTESIS POBLACIONAL2	5 Vivienda	91
MEDIO FÍSICO NATURAL2	o Propuesta de infraestructura eléctrica	93
MEDIO FISICO NATURAL2	8 Propuesta de infraestructura hidráulica	
TOPOGRAFÍA Y RELIEVE2		
EDAFOLOGÍA3	3	
GEOLOGÍA3	5 ESCUELA DE OFICIOS Y TALLERES PARA MUJERES	100
HIDROLOGÍA3	7 FUNDAMENTACIÓN	100
CLIMA Y VEGETACIÓN3	9 Aspectos técnicos	101
PROPUESTA DE USO DE SUELO4	3 Aspectos administrativos y operativos	103
ESTRUCTURA URBANA4	Factibilidad económica	103
ESTRUCTURA URBANA4	Factibilidad normativa	104
IMAGEN URBANA4	8 Aspectos sociales	105
TRAZA URBANA5	0 PROGRAMA ARQUITECTÓNICO	106
SUELO5	0 Árbol de componentes espaciales	106
CRECIMIENTO HISTÓRICO5	1 Tabla de programación	107
USO DE SUELO URBANO5		
TENENCIA DE TIERRA5	3 Diagrama de relaciones espaciales	110
DENSIDADES5	·	
VIALIDAD Y TRANSPORTE5	8	
INFRAESTRUCTURA	PLANOS DEL PROYECTO EJECUTIVO	114

Infraestructura hidráulica62

MEMORIAS DE CÁLCULO ESTRUCTURAL	148
BAJADA DE CARGAS	148
TALLERES	151
Eje (A-B) y (11-14)	151
Marcos dúctiles eje 11 y 14 (C-I)	
Marcos dúctiles eje A y B (3-14)	
Columnas y cimentación	225
Losas	246
ADMINISTRACIÓN	252
Vigas	254
Losas	
Cimentación	
Revisión por el método simplificado para sismo	277
MEMORIAS DE CÁLCULO DE INSTALACIONES	283
INSTALACIÓN HIDRÁULICA	283
INSTALACIÓN SANITARIA	289
INSTALACIÓN ELÉCTRICA	294
CONCLUSIONES	302
BIBI IOGRAFÍA	303

INTRODUCCIÓN

El municipio de Atlautla presenta una completa dependencia económica y social con Ozumba, debido a la concentración de comercio hacia este último, ya que cuenta con uno de los mercados ambulantes más grandes de toda la región, el cual es abastecido por el sector primario de la zona de estudio.

Esta no cuenta con un comercio interno debido a la poca venta y a los altos precios, lo que provoca que la población de la zona de estudio acuda a Ozumba para poder abastecerse.

Asimismo, la agricultura ha disminuido debido a la falta de apoyo del Estado, puesto que no se cuenta con tecnología, a la baja remuneración y la falta de un mercado activo, por consiguiente, se está presentando el fenómeno de ciudad dormitorio, ya que la mayor parte de la población acude a otras localidades para emplearse como albañiles o en el campo, mientras que el resto practica el comercio informal dentro de la zona.

Sumado a ello, existe un problema de corrupción ya que la cabecera no cumple con la solvencia financiera hacia: la Comisión Federal de Electricidad, la Comisión de Aguas del Estado de México y la empresa Promotora y Operadora de Estaciones de Servicios S.A. de C.V. (empresa gasolinera), con una suma total de \$134 millones 364 mil 454 pesos¹, la cual fue provocada por el desvío de recursos por parte de las administraciones pasadas y la actual, hay que mencionar que está catalogado en estado crítico² en el Indicador de Transparencia Municipal en el Órgano Superior Fiscal del Estado de México. No obstante, CFE y la empresa gasolinera aún siguen ofreciendo sus servicios a cambio de pagos al contado, pero no es el caso de la CAEM que decidió suspender sus servicios hasta el pago de la deuda.

Por lo tanto, los habitantes del municipio deben acudir a las cajas de agua que se proveen de los deshielos del volcán, administrada por comuneros, para llevarla hacia sus casas en garrafones o tambos, pero es mínima la proporción que pueden llevar, además de que la mayoría no posee cisternas en las que pueda guardar el agua de manera higiénica.

Por lo tanto el marco teórico estará basado en la teoría de la dependencia que es un conjunto de modelos que trata de explicar el progreso y la dificultad de los países sub-desarrollados en relación a los países industrializados.

Esta surgió en América Latina en los años sesenta y setenta, presentando los siguientes postulados:

- El subdesarrollo está directamente ligado a la expansión de los países industrializados.
- El desarrollo y subdesarrollo son dos aspectos diferentes del mismo proceso.
- El subdesarrollo no es ni una etapa en un proceso gradual hacia el desarrollo ni una precondición, sino una condición en sí misma.
- La dependencia no se limita a relaciones entre países, sino que también crea estructuras internas en las sociedades.³

Así mismo habla acerca de la industria en los países desarrollados y expresa que esta explota constantemente a los subdesarrollados provocando que estos no tengan un avance en este ámbito y asegurando una fuente de recursos a causa de dicha explotación.

¹ Ipomex.org.mx. Índice de Información Pública de Oficio. [Internet]. Disponible en: http://www.ipomex.org.mx/ipo/portal/atlautla.web. [Acceso 7 Sep. 2016].

² OSFEM. Informe de Resultados de la Fiscalización Superior. Estado de México, Libro 7. 2016

³ Blomström, M. y Ente, B. 1990 La teoría del desarrollo en transición (México DF: Fondo de Cultura Económica).

Con base en dicha teoría el municipio de Ozumba, colindante a Atlautla, presenta el fenómeno, antes mencionado de la industrialización, provocando que el municipio de Atlautla represente el problema de subdesarrollo.

El desarrollo económico del municipio de Ozumba se basa en el sector terciario, ya que cuenta con uno de los mercados ambulantes más grandes de toda la región, el cual se abastece del sector primario de Atlautla de Victoria, San Juan Tehuixtitlan, siendo esta la fuente principal de ingresos de dicha zona.

Por lo tanto, el municipio que se encentra con un mayor proceso de desarrollo económico es Ozumba y por el contrario la zona de estudio tiene un subdesarrollo notable debido a que la población de San Juan Tehuixtitlan es la mano de obra del sector agropecuario que abastece a ambos municipios; la cabecera municipal basa su economía en pequeños comercios pero sin fomentar la economía interna, provocando la necesidad de ir a abastecerse al municipio de Ozumba y la migración de la zona de estudio, dada la existencia de más oportunidades en este último municipio.

De ésta manera se desarrolló la hipótesis, de crear un comercio interno entre Atlautla de Victoria y San Juan Tehuixtitlan a través del intercambio de productos procesados, lo que lograría el aumento de la economía interna y a futuro se promovería el deslindamiento económico hacia Ozumba. Consecuentemente, daría origen a nuevas fuentes de empleo y evitaría la migración de los habitantes de la zona.

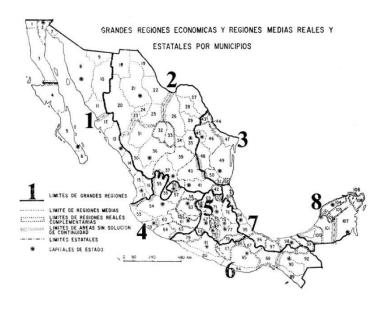
Para el problema de abastecimiento de agua, si se contará con una red de distribución que se conectará a las cajas de agua, ésta se distribuiría hacia las viviendas, por lo tanto, la población no tendría que acudir directamente a ellas.

Dicha hipótesis tendría como objetivos obtener una red de distribución de agua, para que ésta sea conectada a las cajas de agua. Así originar una independencia de la localidad con la CAEM.

Desarrollar el comercio interno mediante el aprovechamiento de la producción de la materia prima en San Juan Tehuixtitlan y la creación de la industria en Atlautla de Victoria, es decir, una agroindustria que pueda distribuirse en el mercado interno y el mercado exterior. Lo que aboliría la dependencia existente en Ozumba.

Para poder llevar a cabo el desarrollo de la investigación se parte del planteamiento del problema, así a su vez de la formulación de hipótesis y objetivos con la finalidad de elaborar un planteamiento metodológico que llevará a la comprobación de dicha hipótesis.

Con base a la información preliminar recabada, se generará un diagnósticopronóstico del ámbito regional en el cual se analizará el contexto a nivel nacional, regional y micro-regional de la zona a estudiar. Esto permitirá la delimitación de la zona de estudio.


Una vez definida la zona de estudio, en ella se analizarán los aspectos socioeconómicos, tomando en cuenta el comportamiento y tendencias de la población, los aspectos del medio físico natural, detectando los recursos naturales existentes y generando una propuesta de uso de suelo natural, y, por último, la estructura urbana con las características de desarrollo del asentamiento humano, sus problemáticas, necesidades y carencias.

Con todo lo anterior, se establecerán las conclusiones del diagnóstico para poder realizar la tesis del presente trabajo de investigación. Está partirá de una estrategia de desarrollo de la zona de estudio, seguida de una propuesta de estructura urbana y del desarrollo de los programas necesarios. Después de finalizar el trabajo correspondiente, se desprenderán los proyectos arquitectónicos más importantes a ejecutar.

ÁMBITO REGIONAL

ÁMBITO REGIONAL

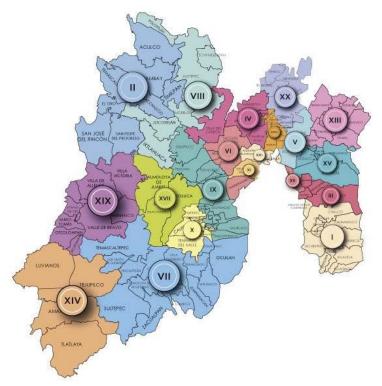
Se puede decir⁴ que la zona de estudio se encuentra en la región 5 o Centro-Este que abarca los Estados de Querétaro, Estado de México, Ciudad de México, Morelos, Hidalgo, Tlaxcala y Puebla, los cuales se caracterizan por aportar un PIB mayor a las demás regiones.

Fuente: Ángel Bassols, México formación de regiones económicas, México, D.F.

En la región, los dos estados que aportan mayor porcentaje en el PIB a nivel nacional son: la CDMX con un PIB de 16.5% (en el año 2015) y el Estado de México con 9.3%.

Los demás Estados que aportan menos del 3.2% en el PIB nacional son los siguientes:

PIB **SECTOR SECTOR SECTOR ESTADO NACIONAL** SECUNDARIO **TERCIARIO** PRIMARIO **CIUDAD DE** 16.5% 1.28% 32.45% 66.27% MÉXICO **ESTADO DE** 9.3% 0.04% 11.39% 88.57% MÉXICO **HIDALGO** 1.7% 3.66% 42.00% 54.34% **MORELOS** 65.79% 1.2% 2.71% 31.50% **PUEBLA** 3.2% 4.44% 32.90% 62.67% **QUERÉTARO** 2.2% 2.42% 43.85% 53.73% **TLAXCALA** 0.6% 3.64% 33.51% 62.85%


FUENTE: Elaboración propia con información de INEGI: PIB y Cuentas Nacionales 2015

⁴ Con base en la regionalización de Ángel Bassols.

Todos los Estados basan su economía en el sector terciario en más del 50%. La actividad que más aporta en el PIB nacional es el comercio, a excepción de Tlaxcala, que tiene más remuneración en los servicios inmobiliarios y de alguiler de bienes muebles.

Continúa el sector secundario con un porcentaje que varía entre el 30% y 40% centrando en la industria pesada (siderúrgica, metalmecánica, transformación textil, cerámica y automotriz).

Finalmente se encuentra el sector primario con una producción de: cebada, maíz y avena, aguacate, limón y nuez con menos del 5%.

Fuente: Subsecretaria de desarrollo municipal, Gobierno del Edo. De México.

En el Estado de México la mayor parte de la población se encuentra en el sector económico terciario, el comercio como el de mayor aporte, seguido de servicios inmobiliarios y de alquiler, servicios educativos y transportes, correos y almacenamientos.

Posteriormente se encuentran las actividades del sector secundario y sus principales actividades son: automotriz, alimentos y bebidas, químico-farmacéutico, textil. Finalmente, el sector primario cuenta con una amplia gama de productos agrícolas, cereales como: maíz, avena, cebada, nuez, etc.

PIB ESTATAL POR SECTOR ECONÓMICO

Fuente: Elaboración propia con información del Anuario Estadístico de México 2015.

Con base en la información anterior se observa que el Estado de México desarrolla su economía en el sector terciario, enfocado en turismo y comercio, debido a que la industria existente esta privatizada y la población en general tienden a concentrarse en el comercio informal como forma de subsistencia, además está la creación de pueblos mágicos que responden a la crisis económica por el abandono del campo.

De las 20 regiones en las que está divido el Estado de México, la zona de estudio se encuentra ubicada en la región I (Con Amecameca como representante), está zona basa su economía en servicios y comercio, se distingue de las regiones aledañas debido a su riqueza forestal y su cercanía a los volcanes; así mismo cuenta con producción ganadera y ambas son enviadas a Chalco para su posterior distribución.

Fuente: Subsecretaria de desarrollo municipal, Gobierno del Edo. De México.

Al investigar las principales actividades económicas de cada municipio se encontró que la mitad de la región se implanta en el comercio al por mayor de materias primas agropecuarias y forestales, para la industria, y materiales de desecho, donde se encuentran los municipios de Amecameca, Atlautla, Cocotitlán, Ozumba, Temamantla y Tenango del Aire.

La otra mitad está colocada en el comercio al por menor de abarrotes, alimentos, bebidas, hielo y tabaco; debido a que los municipios de Ayapango, Chalco, Ecatzingo, Juchitepec, Solidaridad son Ciudades Dormitorio. A excepción de Tepetlixpa que se diferencia por dedicarse principalmente a los servicios como el suministro de agua y suministro de gas por ductos al consumidor final.

Aunque Atlautla se dedique al comercio por mayoreo de materia prima, es importante señalar que se está convirtiendo en una Ciudad Dormitorio ya que los habitantes de los municipios de Chalco, Nezahualcóyotl y la Ciudad de México, entre otros, están inmigrando a causa del fenómeno de gentrificación que están sufriendo las localidades mencionadas que ocasiona el desplazamiento progresivo de la población con un nivel adquisitivo menor.

La zona de estudio a primera vista parece concordar en sus actividades económicas con la macro región (sector terciario); pues existen algunas especificidades: En San Juan Tehuixtitlan se dedican al sector primario con concentración en el maíz, nuez de castilla y otros cereales, los cuales se acumulan en la cabecera municipal y son enviados a comercializar a Ozumba.

Mientras que en la cabecera municipal, Atlautla de Victoria, la economía está basada en el comercio informal, como son tiendas, lecherías sociales, molinos y tortillerías.

SISTEMA DE ENLACES

Atlautla posee una ubicación estratégica entre los Estados de: Puebla, Morelos y la Ciudades de México, debido a que se encuentra en un punto medio entre ellos, de modo que las vialidades forman un circuito ecoturístico, histórico y comercial rápido generado por las carreteras federales México-Cuautla, México-Cuernavaca y México-Puebla

Las rutas ecoturísticas e históricas de la región son: el Corredor de los Volcanes y la Ruta de Sor Juana. Los cuales pasan por los municipios de Cocotitlán, Tlalmanalco, Ayapango, Amecameca, Juchitepec, Tepetlixpa, Ozumba, y por supuesto, Atlautla.

La ruta comercial es la más importante, ya que en ella se trasladan los productos cultivados en la región 1 de Amecameca (cultivar maíz, jitomate, tomate, y algunos otros productos) que son comercializados principalmente hacia la Ciudad de México, así como, a Cuernavaca y Cuautla. Por lo que la comunicación rápida entre los estados es de gran importancia, y disminuye los costos generados por la operación y el tiempo de recorrido de las mercancías del sector primario.

La importancia de ambas ha provocado que el gobierno del Estado de México invierta en el mejoramiento de la carretera México-Cuautla, lo que ocasionó la reducción de tiempo de viaje de tres horas a una hora y media.

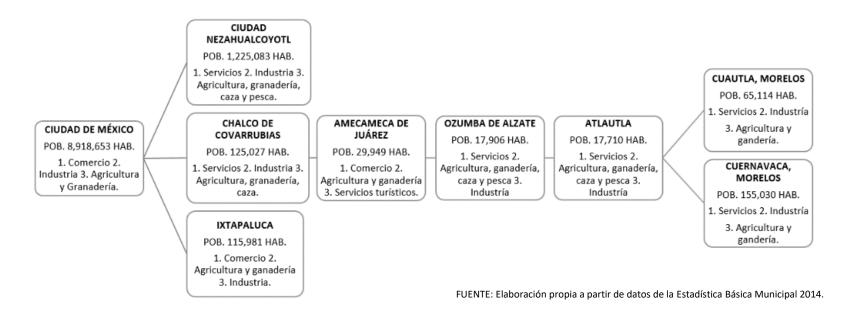
Fuente: Elaboración propia con base en Google Maps, 2016.

SISTEMA DE CIUDADES

El circuito creado a partir del sistema de enlaces provoca que se cree una jerarquía urbana entre las ciudades debido a las actividades económicas y nivel de servicios que poseen cada una.

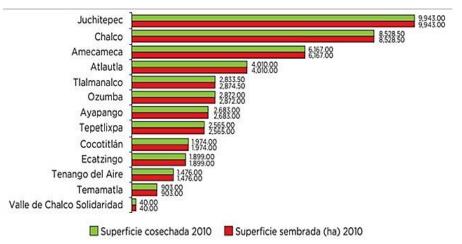
La situación económica de Atlautla ha provocado que sus actividades económicas, políticas y sociales sean dependientes de diversas ciudades.

Un caso claro de dependencia económica es la que se tiene con Ozumba de Alzate, la cual sirve como punto de acopio y venta para la economía agrícola regional y como un punto de articulación con los sistemas de comercialización de Cuautla y la CDMX.


Por otra parte, Tepetlixpa ha demostrado ser altamente productivo en el sector primario lo que ha provocado que tenga servicios como el de combustible, el cual le surte a Atlautla.

En cuanto a política, Amecameca de Juárez es un polo estratégico para los servicios administrativos y financieros, la educación a nivel superior y los equipamientos públicos de nivel regional.

Mientras que en las actividades turísticas se encuentran Cuautla y Cuernavaca, al ser éstas ciudades caracterizadas por sus servicios turísticos debido a su clima y sus balnearios con diversiones acuáticas.


Los casos que difieren en este sistema son Chalco de Díaz Covarrubias, lxtapaluca y Nezahualcóyotl debido a que la población está trasladándose a Atlautla por distintos motivos.

Por último, la Ciudad de México es el centro administrativo del país, por lo que los servicios que ofrece son especializados y a nivel regional. Además, es percibida como una fuente de empleo por los habitantes de los estados aledaños. Este es el caso del Estado de México, donde el 21.3% de la población ocupada trabaja en la ciudad.

IMPORTANCIA DE LA ZONA

El municipio de Atlautla se encuentra en la Región 1 de Amecameca, ésta se distingue por ser una zona de cultivo de alta producción. La zona de estudio está en un lugar importante en este sector, se encuentra en el 4to lugar en la producción agrícola.

FUENTE: COLIMEXIQ con base en la OEIDRUS Estado de México. Estadística Básica Agrícola. Anuario por entidad, 2010. Julio, 2012.

La localidad tiene altos rendimientos en la cosecha del maíz de grano, sin embargo, lo que le caracteriza es la producción de dos productos únicos en la zona de los volcanes.

Uno de ellos es el capulín que sólo se siembra en Atlautla y Ecatzingo, éste último es el mayor productor con 33.60 toneladas al año contra 24.00 toneladas, pero al ser un municipio poco turístico, la Feria del Capulín fue emplazada en la cabecera municipal de Atlautla en los días 13 al 15 de Mayo, donde recibe alrededor de 10 mil visitantes.

El siguiente es el más importante ya que Atlautla es el principal productor de la nuez de Castilla con 83.60 toneladas al año, seguida de Juchitepec con 41.50 toneladas, y por último, Amecameca con 31.80 toneladas. Sin embargo, Amecameca al ser el representante de la región obtuvo los derechos de la Feria de la Nuez que celebra la segunda semana de agosto con una duración de 8 días, cabe destacar que en ella se llegan a vender hasta 10 toneladas de Nuez.

En conclusión, Atlautla es una zona que basa su economía en la comercialización de los productos agrícolas. A pesar de eso, depende de Ozumba para distribuir su mercancía hacia la Ciudad de México, y en menor medida a Cuautla y Cuernavaca.

Esta condición de ciudad periferia provoca que sea dependiente de los servicios que ofrecen los demás como: Tepetlixpa que le suministra gas, Ozumba quién funge mediador en sus actividades comerciales, Amecameca donde se concentran los servicios educativos y de la salud. Aunque en el caso de Nezahualcóyotl, Ixtapaluca y Chalco, mantiene una relación de dependencia social puesto que la población está migrando a Atlautla por que el costo del suelo es más bajo.

DELIMITACIÓN DE LA ZONA DE ESTUDIO

DELIMITACIÓN DE LA ZONA DE ESTUDIO

Para delimitar territorialmente en la zona de estudio se estableció un posible radio de crecimiento de la mancha urbana partiendo del centro geométrico de cada localidad, por lo tanto, se contempló la localidad de San Juan Tehuixtitlan, cuya población es de 5909 habitantes, la cual depende de los servicios de Atlautla de Victoria; así mismo se contempla excluir a Popo Park del estudio, dado que es una localidad en su mayoría residencial, basta de recursos y por lo tanto guarda muy poca relación con el resto.

Con base en las localidades que se tomaron para el estudio la zona queda definida por los puntos que a continuación se mencionan.

DESCRIPCIÓN DE LA POLIGONAL

Para la delimitación de la zona de estudio fue necesario obtener los datos de la población (1960-2010), determinando tres tasas importantes (baja, media y alta) del municipio de Atlautla.

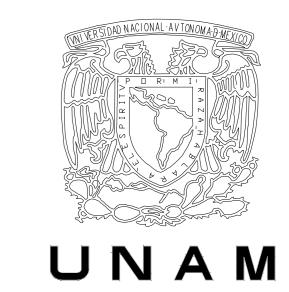
Dentro de los porcentajes, se tomó como tasa baja el 1.47% que corresponde a la década de 80-90, una media de 3.19% al año de 2000-2010 y un alta del 3.47% en la década de 70-80.

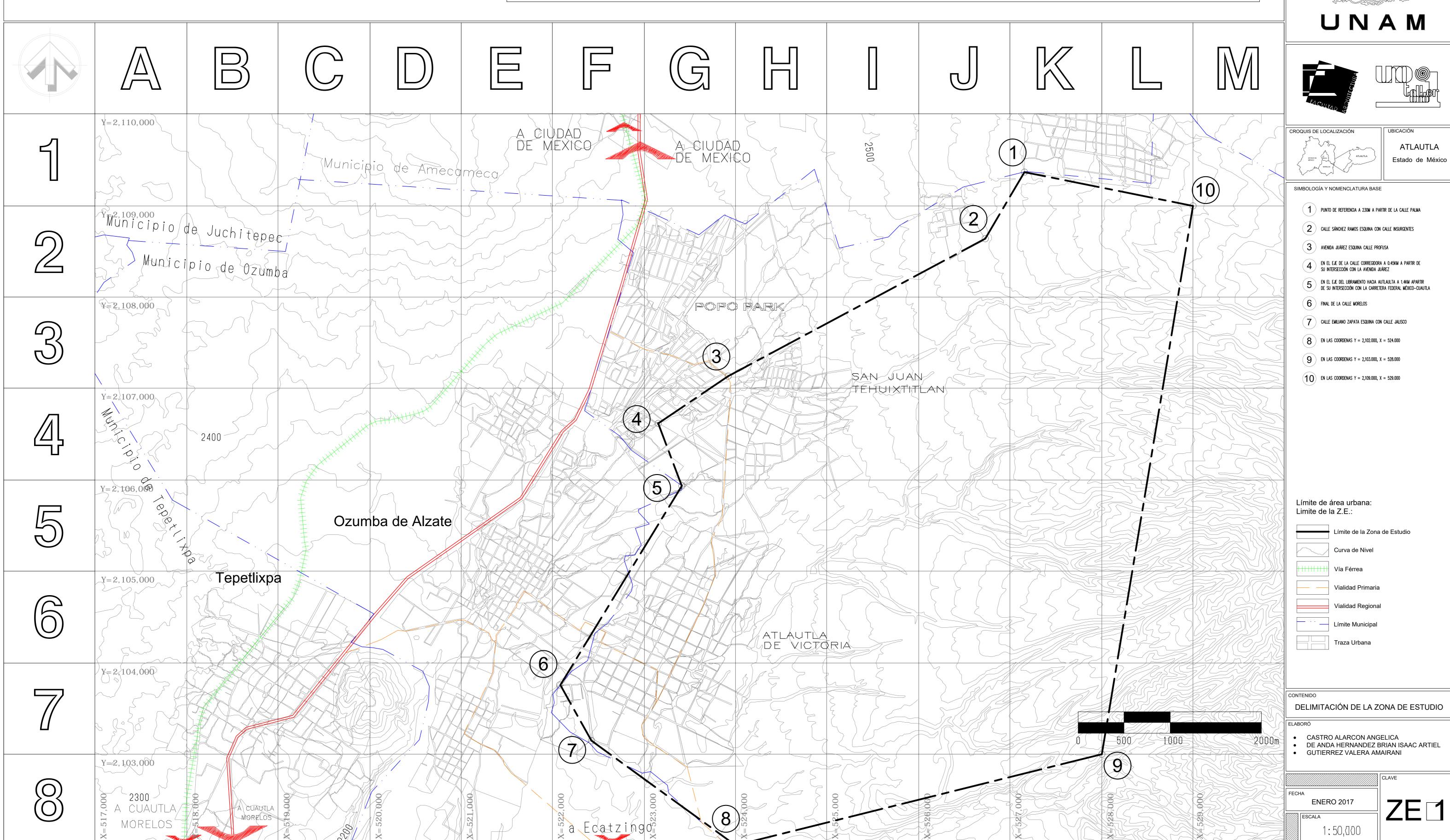
Con estos parámetros de tasas y mediante el uso de la fórmula de Interés Compuesto se generan tres proyecciones de población con tres plazos, éstos son:

Corto plazo: año 2021.

Mediano plazo: año 2026.

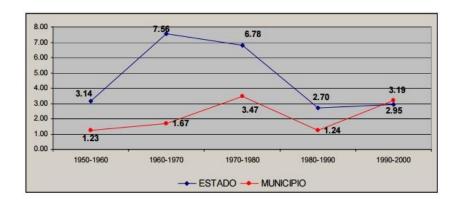
Largo plazo: año 2030.


Con los datos obtenidos se realizó una circunferencia partiendo del centro de la traza urbana. Se tomó en cuenta la zona para el futuro desarrollo poblacional y se analizaron elementos de referencia como: aspectos físiconaturales, aspectos físico-artificiales y barreras físicas. Una vez contemplando lo anterior, se generó una poligonal conformada por 10 puntos que abarca un área de 2,301.27 hectáreas. Siendo los puntos:


- 1) Punto de referencia a 230m a partir de la Calle Palma.
- 2) Calle Sánchez Ramos esquina con Calle Insurgentes.
- 3) Avenida Juárez esquina calle Profusa.
- 4) En el eje de la Calle Corregidora a 0.45km a partir de su intersección con la Avenida Juárez.
- 5) En el eje del libramiento hacia Atlautla a 1.4 km a partir de su intersección con la Carretera Federal México-Cuautla.
- 6) Final de la Calle Morelos.
- 7) Calle Zapata esquina con Calle Jalisco.
- 8) Dentro del Parque Nacional Ixta-Popo (19°04'30.4"N 98°43'21.4"W).
- 9) Dentro del Parque Nacional Ixta-Popo (19°00'54.5"N 98°45'23.8"W).
- 10) Dentro del Parque Nacional Ixta-Popo (19°00'50.1"N 98°46'32.0"W).

DELIMITACIÓN DE LA ZONA DE ESTUDIO

ASCPECTOS SOCIO - ECONÓMICOS


ASPECTOS SOCIO-ECONÓMICOS

CRECIMIENTO POBLACIONAL

El comportamiento poblacional de Atlautla ha sido variable, de acuerdo con la Gráfica 1:

El crecimiento de la población entre las décadas de los cincuentas y los sesentas fue causado por el gran crecimiento económico de México, basado en el dinamismo⁵ del sector primario. Luego de la Segunda Guerra Mundial los países desarrollados cayeron a una gran depresión económica por lo que los países no desarrollados tuvieron la necesidad de manufacturar los artículos que provenían del extranjero, a este fenómeno se lo conoció como "el modelo de sustitución de importaciones"⁶. Otro factor, es la aplicación de una nueva política de Ávila Camacho y continuada por Miguel Alemán que tenía el fin de industrializar el país mediante la obtención de maquinaria extranjera y el control de la importación de los bienes de servicio. A esta época se le conoció como el "milagro mexicano".

Durante la década de los sesentas y los setentas el aumento de la población fue acelerado, debido a que en esta época el gobierno tenía planeado impulsar el desarrollo interno del país, a este modelo económico se le llamó "Desarrollo Estabilizador" iniciado por Gustavo Díaz Ordaz y seguido por Luis Echeverría. De este modo se dio un incremento del rendimiento agrícola, lo que provocó la inmigración de personas al municipio ya que el suelo volcánico en el que se encuentra era bastante fértil.

Gráfica 1: Plan de desarrollo municipal Atlautla 2009-2012.

Sin embargo, entre la década de los ochentas y noventas la producción agrícola entró en crisis a causa de la política interna del país. La cual fue introducida por Zedillo y conocida como "el proyecto neoliberal" que intentaba controlar la inflación mediante la reducción del gasto público. En el sector primario se vio reflejado en la preservación de los precios de venta de los cultivos, pero por otro lado el incremento en los precios de los insumos, y la anulación de los subsidios de bienes y servicios de este sector7. Lo que provocó que los campesinos tuvieran problemas económicos y decidieran abandonar el campo, en la mancha urbana de Atlautla de ese periodo se puede ver que San Juan Tehuixtitlan creció escasamente, mientras que en la cabecera los servicios de comercio minorista aumentaron.

⁵ El sector primario de México ha mostrado mayor dinamismo que el resto de la economía; esto puede verse al comparar el PIB primario con el PIB total. Así, en los últimos dos años, el crecimiento real anual del PIB primario ha estado por encima de 4%, mientras que el PIB total creció a una tasa anual de 2.5%

⁶ Nieves López, Francisco. *Modelos económicos en México*. [Internet]

Disponible en: http://delfos.mty.itesm.mx/Articulos/modeloseco.html [Acceso el 25 de noviembre del 2016]

⁷ Escalante, R. and Rodríguez, C. (2011). *La agricultura latinoamericana: los casos de México, Argentina, Brasil y Chile.* [Internet] Procuraduría Agraria. Disponible en: http://www.pa.gob.mx/publica/pao7o211.htm [Acceso 25 oct.2016].

Por último, en 1990 y 2000, la población vuelve a tener una tasa alta de crecimiento debido a una nueva política de extensionismo del sector agrícola en América Latina que a grandes rasgos plantea como propósito desarrollar la capacidad de los productores. En Atlautla se vieron beneficiados los propietarios de los cultivos que exportan sus productos a otros estados, sin tener que recurrir a los comerciantes de Ozumba.

ESTRUCTURA POBLACIONAL

En el último censo del 2010 realizado por INEGI, la población de Atlautla presenta la siguiente estructura (ver Gráfica 2): Al comparar el año de 1995 en está tabla, se muestra que la población senil va en aumento en el año 2010, la cual está amortizada por la Población Económicamente Activa (que van desde los 12 años a los 64 años de edad), la cual triplica a la población.

Esto podría presentar un problema a futuro, ya que el grueso de la población joven dentro de 40 años envejecerá y necesitará que la cantidad de personas que aporten económicamente al municipio sea mayor para que éste no entre en crisis.

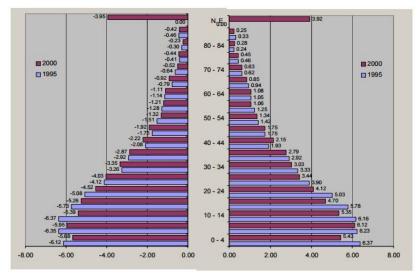


Gráfico 2. Fuente: Plan de desarrollo municipal. Atlautla 2009-2012

MIGRACIÓN

En la localidad se presenta un fenómeno de inmigración de personas de otras entidades o municipios a causa de problemas económicos y sociales. Entre ellos se ubica el fenómeno de la gentrificación que se caracteriza por el desplazamiento progresivo de la población con menor nivel adquisitivo.

Conforme a una encuesta realizada por INEGI en el 2005, el 3.7% de la población vivía en otro lugar, de este total: el 24.2% provenía principalmente de la zona conurbada del Distrito Federal, de municipios como Chalco, Ixtapaluca, Naucalpan de Juárez, Valle de Chalco y Nezahualcóyotl, el 17.7% del DF, el 15.4% de la misma región (la región de los volcanes), el 14.1% de Estados Unidos (migrantes ilegales que fueron regresados a México) y el 7% del estado de Morelos.

La razón por la que las personas están eligiendo Atlautla como su nuevo lugar de residencia, se debe al mejoramiento de las vías de acceso al municipio entre el 2005 y 2010, las cuales ayudaron a reducir el recorrido de 3 horas a solamente hora y media desde el municipio a la Ciudad de México.

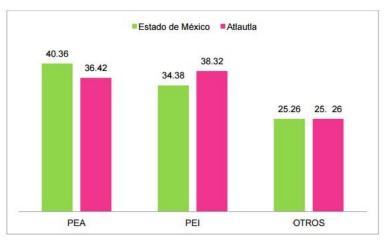
Además, en una encuesta realizada por la Dra. Ariana Estrada Villanueva, muestra los motivos por los cuales las personas decidieron instalarse en Atlautla.

Ambientales	Porcentaje
Mejores condiciones para vivir	23.06
Ambiente más seguro para los hijos	5.16
TOTAL	28.23
Sociales	
Percepción de una mayor seguridad	28.23
TOTAL	28.23
Económicas	
Perdió el empleo en el D.F.	22.97
Perdió el empleo en USA	5.16
TOTAL	28.13
Vivienda, Carece de vivienda en el D.F. o Llevó a la familia a Atlautla, pero sigue tra	
el D.F.	15.40
% TOTAL	100.00

Fuente: Migración forzada de retorno e índice de vulnerabilidad social y ambiental: Atlautla.8

Las consecuencias de esta inmigración son sociales y ambientales:

- Acelera el proceso de urbanización del municipio provocando un aumento en la demanda de servicios del municipio.
- La inserción de personas ajenas a las costumbres del lugar podría provocar una pérdida de identidad entre la población.
- La sensación de inseguridad por ambas partes.
- La falta de sentido de pertenecía hacia sus recursos naturales, lo que acarrea problemas de contaminación.
- La falta de apropiación de su entorno, es decir, que no se incentiva el cuidado de sus calles, plazas o parques.

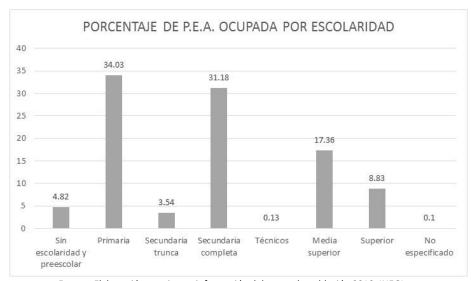

Por lo tanto, se puede decir que Atlautla está evolucionando en una Ciudad Dormitorio, es decir, la comunidad llega a descansar a sus casas, pero su vida económica e incluso social se realiza en otra ciudad.

8 Estrada Villanueva, A. Migración forzada de retorno e índice de vulnerabilidad social y ambiental: Atlautla. En: 20° Encuentro Nacional sobre Desarrollo Regional en México. Cuernavaca, Morelos. 2015

POBLACIÓN ECONÓMICA

Al observar la Gráfica 3, se encuentra que la Población Económicamente Inactiva (personas con más de 12 años que debido a su actividad no trabajan y no buscan empleo) predomina en el municipio, además supera por 1.9% a la Población Económicamente Activa (personas en edades de trabajar ocupadas y desocupadas) donde el 4.23% está desocupada y, por último, la Población Económica NO Económica (personas menores de 12 años que no pueden trabajar).

En el 2010, el sector terciario acaparó al 50.71% de la PEA ocupada, el sector primario acaparó al 32.44% de la PEA ocupada y el sector secundario concentró tan solo al 16.09% de la PEA ocupada.



Gráfica 3. Fuente: Instituto Electoral del Estado de México (2015).

Conforme a la escolaridad, la población ocupada se sitúa de mayor manera en aquellos con primaria, en segundo lugar, se ubican los que tienen la secundaria completa con 34.03% y 31.18% respectivamente.

En cuanto a la población ocupada sin escolaridad representa el 4.82%, por lo que la gran mayoría de los trabajadores en Atlautla tienen alguna instrucción educativa, dominando la primaria y la secundaria completa.

La poca especialidad en los estudios de la población ocasiona que tengan problemas para encontrar trabajo, ya que la mayoría busca empleo en los municipios aledaños, y principalmente en la Ciudad de México. El 21.30% de la población del Estado de México trabaja en la ciudad.

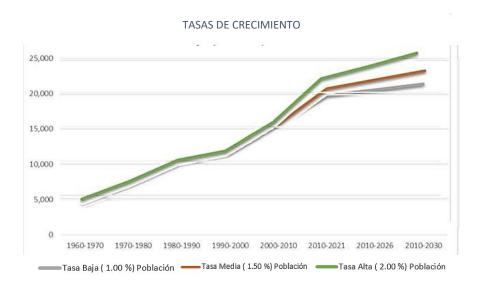
Fuente: Elaboración propia con información del censo de población 2010. INEGI.

Dentro del PEA ocupado, el sector terciario ocupa el primer lugar de las actividades económicas realizadas en Atlautla. El comercio predomina en este rubro, el cual se desenvuelve en la zona oriente del Estado de México y el Estado de Morelos, el ingreso aproximado de esta actividad es de apenas dos salarios mínimos. Por lo que los demás integrantes de las familias se ven obligados a emplearse en trabajos de poca remuneración, principalmente las mujeres se dedican a actividades como: empleadas domésticas, costureras u obreras.

El sector primario es la segunda actividad económica, en todo el municipio se siembra maíz, tomate, jitomate, entre otros, además se recoleta el capulín y la nuez de Castilla, los cuales terminan siendo vendidos en el mercado ambulante de Ozumba los días martes y viernes.

Y, por último, se encuentra el sector secundario, el cual se desarrolla de manera artesanal en la zona. Este es el caso del pan denominado "Cocol" que es comercializado en la zona oriente del Estado de México y en algunas zonas de la Ciudad de México.

HIPÓTESIS POBLACIONAL


Con base en lo anterior, se realizaron 3 proyecciones a futuro del crecimiento de la población para establecer la cantidad de ésta, y así tomar acciones que ayuden al desarrollo de la localidad.

Para realizar el cálculo de la población, se consideraron las tasas de crecimiento histórico de la localidad, donde tenemos el 2.95 como tasa alta (no se consideró el 3.47 debido a que en la época que se dio esta explosión fue causada por la crisis que vivía Europa y obligó al gobierno mexicano a desarrollar la economía interna del país), la tasa media se consideró de 1.67 y la tasa baja como el 1.23. Para facilitar el cálculo de la población a futuro se determinó que se utilizarían las tasas de 3.00, 1.50 y 1.00.

De esta manera cada tasa supone un escenario posible en el que la población crecerá. Para la Tasa Baja del 1.0% se dedujo que el ritmo de crecimiento sería en el caso de que la población continúe en la misma situación de dependencia con Ozumba.

La Tasa Media del 1.5% será tomada en cuenta si la situación de Ciudad Dormitorio continua, las personas están percibiendo a Atlautla como un lugar económico para hacer sus viviendas y si los servicios del municipio mejoran, habrá más migración.

La Tasa Alta del 3.00% predice que, si se mejora el sector industrial que tiene el municipio y se desarrollan las agroindustrias, esto mejorará la calidad de vida de los habitantes, lo que generará que permanezcan en el municipio y además atraerá a más personas para trabajar.

MEDIO FÍSICO NATURAL

MEDIO FÍSICO NATURAL

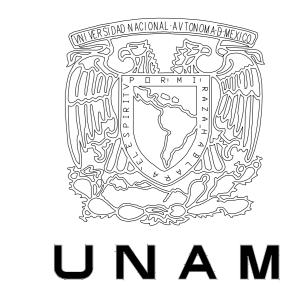
En este apartado se analizarán los aspectos del medio físico natural, como son: la topografía, el relieve, la hidrografía, la edafología, la geología, el clima, la vegetación, la fauna y el uso de suelo, con la finalidad de conocer las características existentes dentro de la zona de estudio. Esto permitirá ubicar y definir las áreas apropiadas para el desarrollo de futuros asentamientos poblacionales, así como el planteamiento de uso de suelo según las aptitudes y potenciales de cada zona.

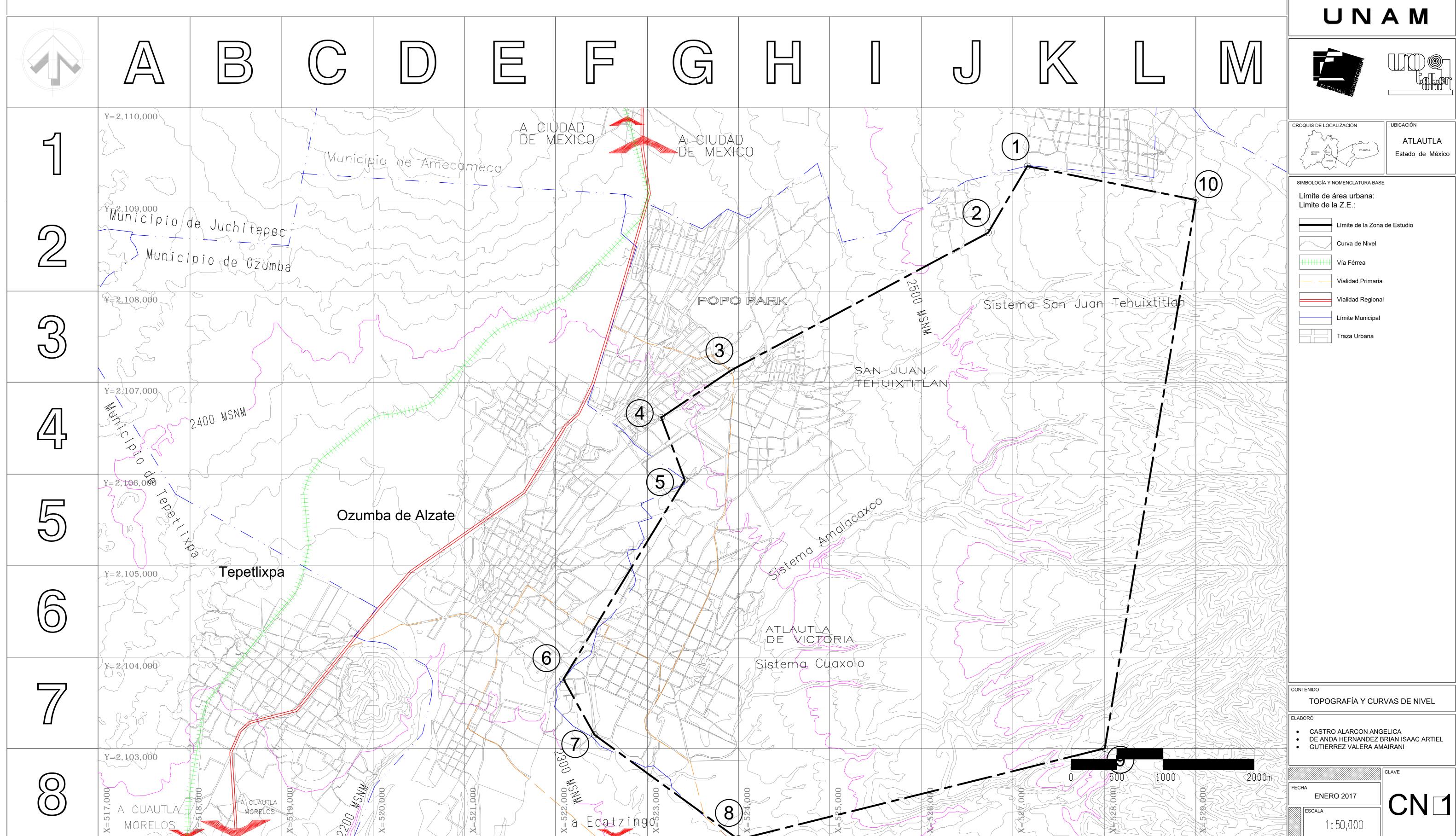
TOPOGRAFÍA Y RELIEVE

La topografía se encarga de estudiar las formas más representativas del suelo, delimitando las diferentes inclinaciones del terreno y agrupándolas en rangos. Su principal función es determinar y ubicar los diversos destinos de usos de suelo, tanto de uso urbano como agrícola, forestal, entre otros. Se ve involucrada principalmente con la parte del relieve, el cual se encarga de analizar qué tan accidentada es una zona en cuanto a valores de altura, tomando una superficie de referencia que permita especificar las formas del terreno.

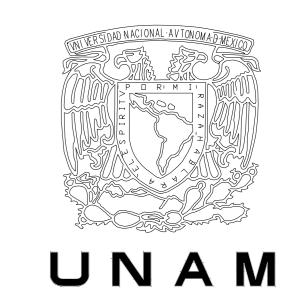
En la zona de estudio un aspecto importante a resaltar, es la presencia del volcán Popocatépetl. Este se encuentra ubicado al suroeste de la Ciudad de México y colinda con los municipios de Amecameca, Tlalmanalco, Ecatzingo y Atlautla. La cercanía que tiene con el municipio de Atlautla ocasiona un impacto visual en toda la zona, principalmente en la cabecera municipal, ya que la mayoría de su composición abarca pendientes de más del 50%.

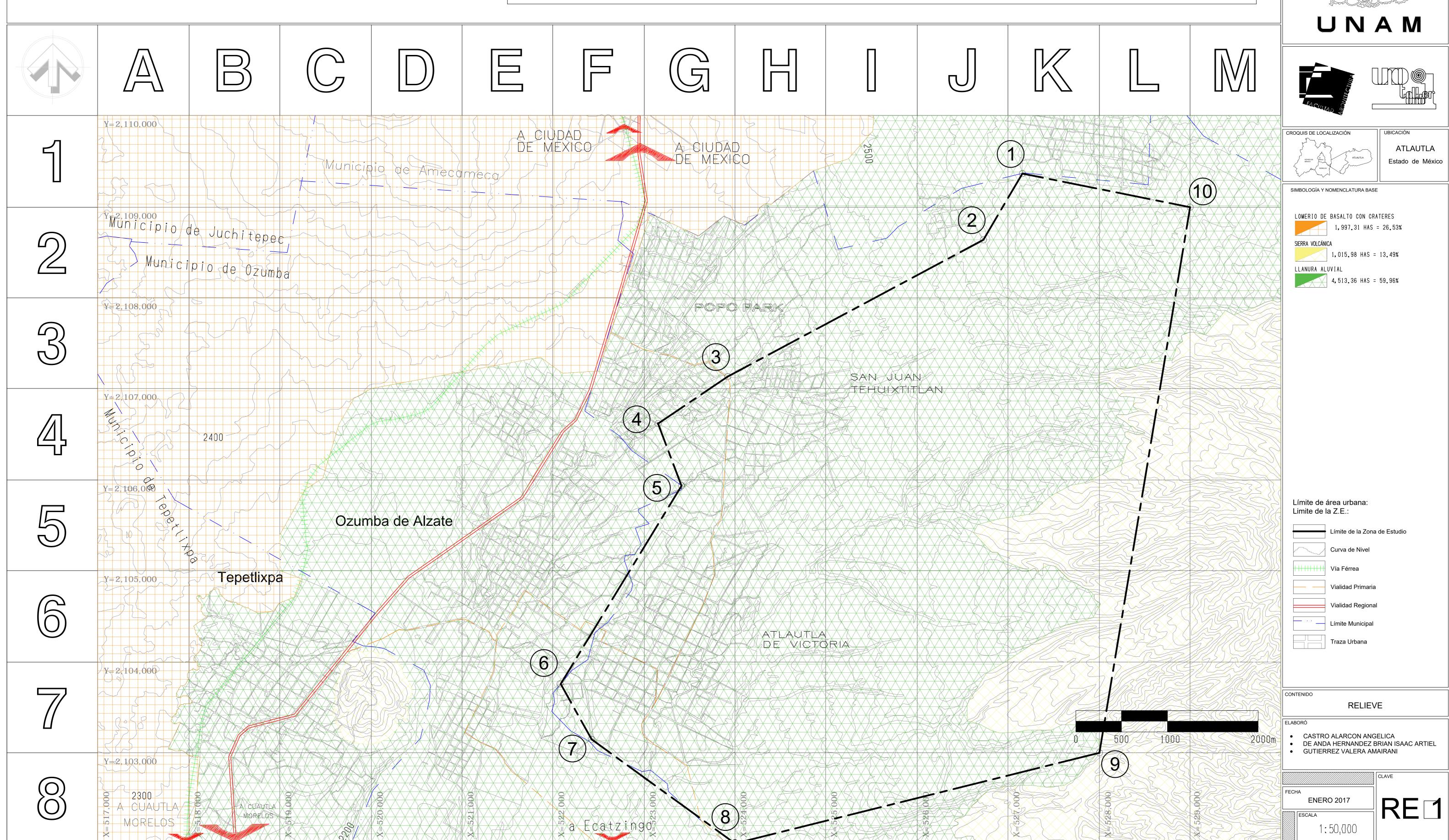
CRITERIOS PARA LA UTILIZACIÓN DE PENDIENTES		
PENDIENTE	CARACTERÍSTICAS	USOS RECOMENDABLES
0-2% 1,099 HAS 14.60%	Adecuada para tramos cortos. Inadecuada para tramos largos. Problemas para el tendido de redes subterráneas de drenaje, por ello el costo resulta elevado. Presenta problemas de encharcamientos por agua, asoleamiento regular. Susceptible a reforestar y controlar problemas de erosión. Ventilación media.	Agricultura. Zonas de recarga acuífera. Construcciones de baja densidad. Zonas de recreación intensiva. Preservación ecológica.
2-5% 2,365 HAS 31.32%	Pendiente óptima para usos urbanos. No presenta problemas de drenaje natural. No presenta problemas al tendido de redes subterráneas de drenajeagua. No presenta problemas a las vialidades ni a la construcción de obra civil.	Agricultura. Zonas de recarga acuífera. Habitacional, densidad alta y media. Zonas de recreación intensiva. Zonas de preservación ecológica.
5-10% 1,833 HAS 24.35%	Adecuada. Pero no óptima para usos urbanos, por elevar el costo en la construcción y la obra civil. Ventilación adecuada. Asoleamiento constante. Erosión media. Drenaje fácil. Buenas vistas.	Construcción habitacional de densidad media. Construcción industrial. Recreación.


CRITERIOS PARA LA UTILIZACIÓN DE PENDIENTES		
PENDIENTE	CARACTERÍSTICAS	USOS RECOMENDABLES
10-25% 363 HAS 4.81%	Zonas accidentadas por sus variables pendientes. Buen asoleamiento. Suelo accesible para la construcción. Requiere de movimientos de tierra. Cimentación irregular. Visibilidad amplia. Ventilación aprovechable. Presenta dificultades para la planeación de redes de servicios, vialidad y construcción, entre otras.	Habitación de mediana y alta densidad. Equipamiento. Zonas recreativas. Zonas de reforestación. Zonas preservarles.
30-45% 753 HAS 11.17%	Inadecuadas para la mayoría de los usos urbanos, por sus pendientes extremas. Su uso redunda en costos extraordinarios.	Reforestación. Recreación pasiva. Conservación.
	Laderas frágiles. Erosión fuerte. Asoleamiento extremo. Buenas vistas.	
Mayor de 45%	En un rango de pendiente considerado en general como no apto para el uso urbano por los	Reforestación. Recreación pasiva.
877 HAS 13.65%	altos costos que implican la introducción, operación y mantenimiento de las obras de infraestructura, equipamiento y servicios urbanos.	

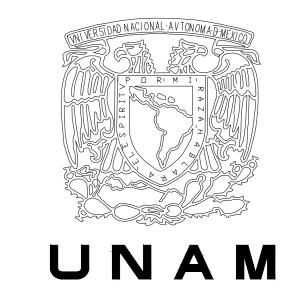

Fuente: SAHOP, 1980 y Jan Bazant, Manual de criterios de diseño urbano, Trillas, México, p. 80. El municipio de Atlautla presenta una gran variedad de relieves como son lomerío, sierra y llanura. Dentro de la zona de estudio predomina el relieve de llanura, que se halla normalmente a una altura de 200 metros del nivel del mar. Una parte de este relieve se encuentra compuesto por pendientes del 0 al 5% al igual que donde se localiza la zona urbana, lo que propicia un uso recomendable para las construcciones de baja densidad y construcciones habitacionales de alta y media densidad.

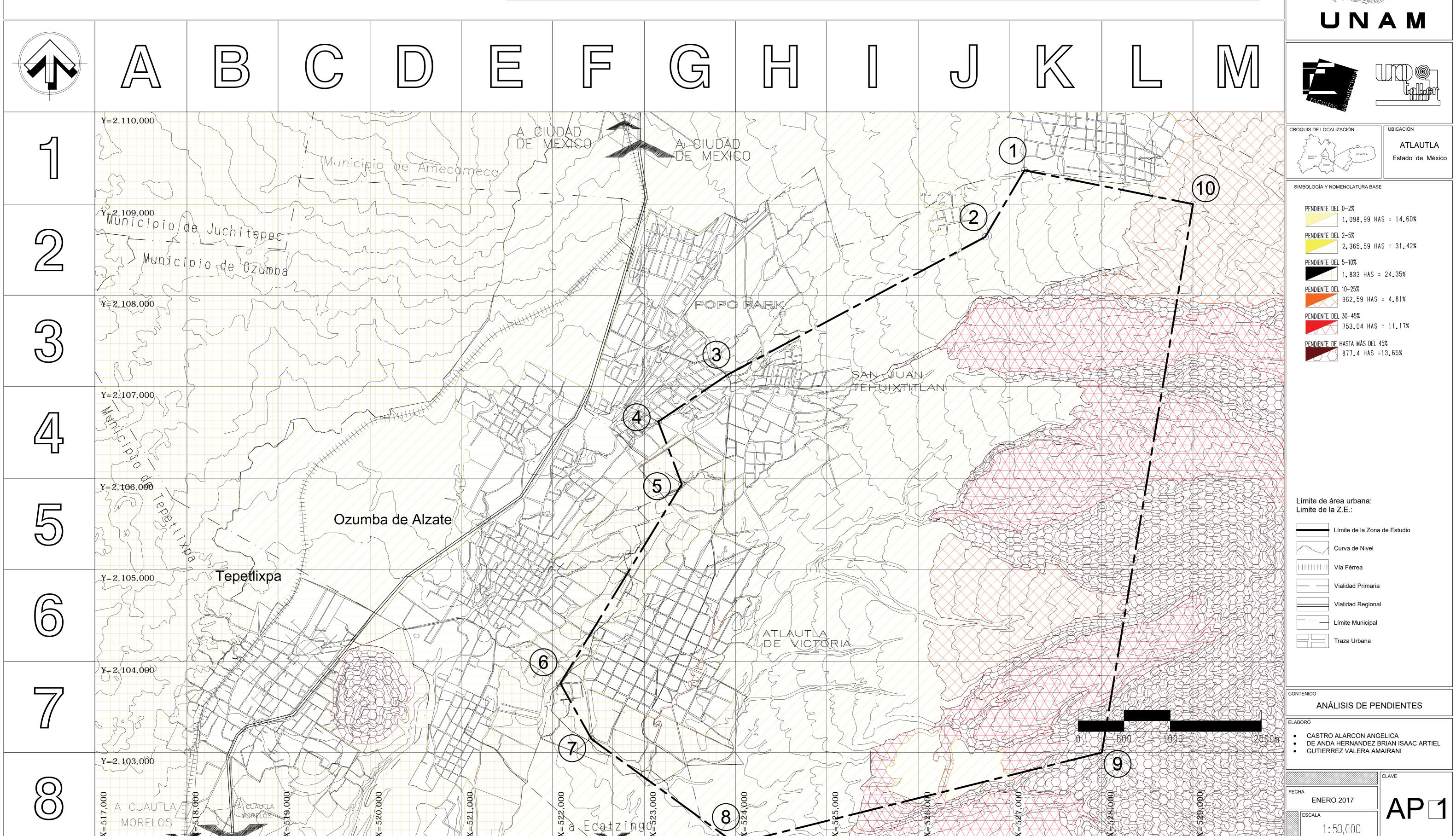
TOPOGRAFÍA - CURVAS DE NIVEL





RELIEVE





ANÁLISIS DE PENDIENTES

EDAFOLOGÍA

La edafología es la ciencia que tiene como objetivo estudiar los distintos tipos de suelos. Los suelos están determinados por las condiciones climáticas, la topografía y la vegetación, y según su variación de estas determinantes se presentan cambios en los mismos.

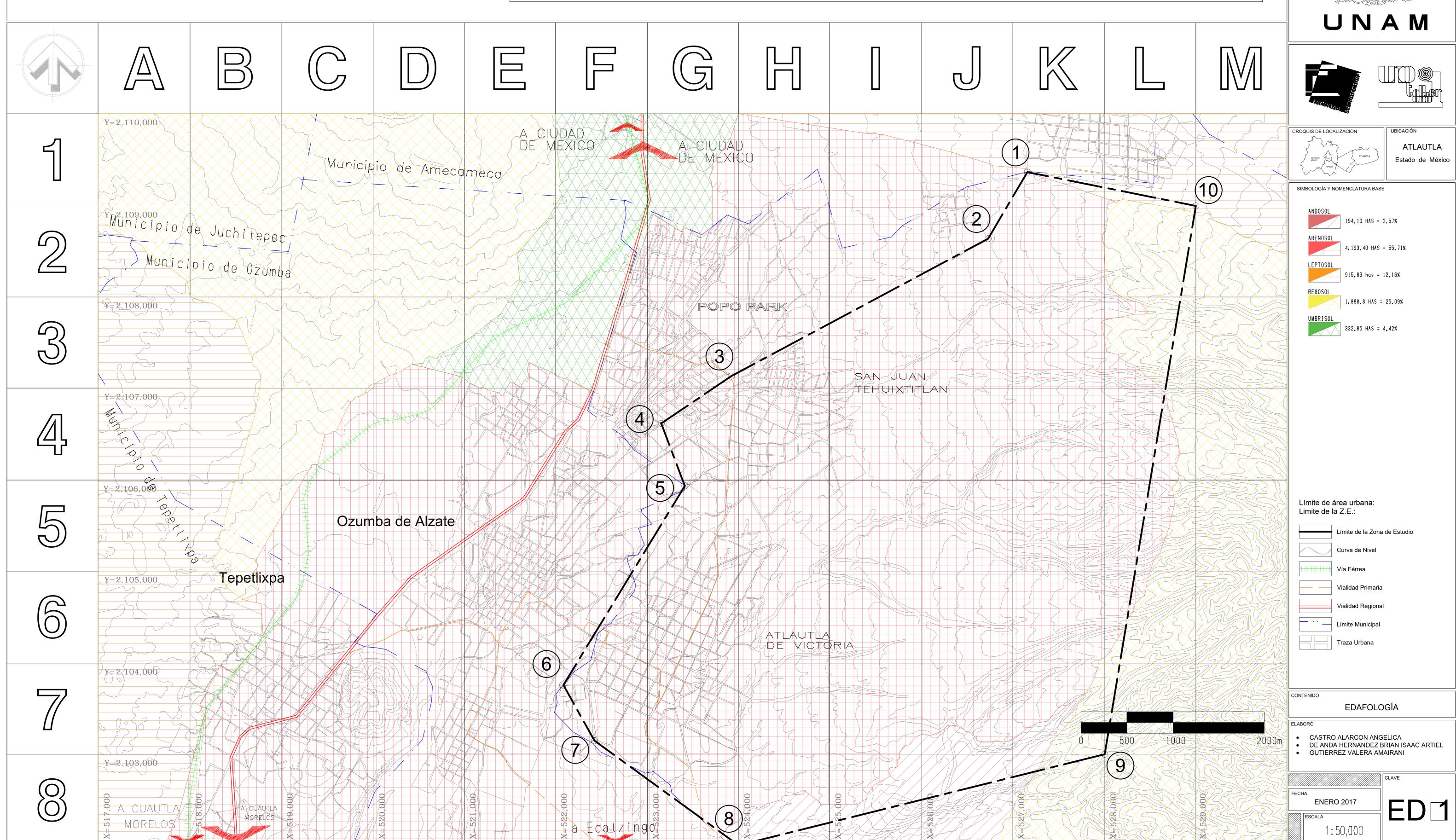
El estudio realizado dentro de la zona, determinó una estructura edáfica compuesta por los siguientes tipos de suelos: andosol, arenosol y regosol.

En la zona de estudio el suelo de mayor predominio es el de tipo Arenosol. Se encuentra ubicado bajo bosque, ya sea de producción forestal o rodales naturales en reservas. Este tipo de suelo podrá aprovecharse para el uso de pastoreo extensivo, especialmente el bovino y el caprino, ya que es utilizado principalmente para pastos y, si se riega puede soportar una gran variedad de cultivos, como serían el maíz, el frijol, el capulín, entre otros.

CRITERIOS PARA EL APROVECHAMIENTO DE LAS CARACTERÍSTICAS EDAFOLÓGICAS EN EL USO URBANO		
SUELO	CARACTERÍSTICAS	USOS RECOMENDABLES
Andosol	Suelos de origen volcánico, constituidos principalmente de	Pecuario, especialmente ovino.
194 HAS	ceniza, la cual contiene alto	Forestal como: bosques
2.57%	contenido de alófano, que le confiere ligereza y untuosidad al suelo. Son generalmente de colores oscuros y tienen alta capacidad de retención de humedad. En condiciones naturales presentan vegetación de bosque o selva. Tienen generalmente bajos rendimientos agrícolas debido a que retienen considerablemente el fósforo y este no puede ser absorbido por las plantas.	naturales protectores, plantaciones forestales comerciales y protectoras, y áreas de conservación de Biodiversidad.

CRITERIOS PARA EL APROVECHAMIENTO DE LAS CARACTERÍSTICAS EDAFOLÓGICAS EN EL USO URBANO		
SUELO	CARACTERÍSTICAS	USOS RECOMENDABLES
Arenosol 4,193HAS 55.71%	Suelos que se localizan principalmente en zonas tropicales o templadas muy lluviosas del sureste de México. La vegetación que presenta es variable. Se caracteriza por ser de textura gruesa, con más del 65 % de arena al menos en el primer metro de profundidad.	Pastoreo extensivo. Cultivos de granos pequeños, melones, legumbres, forrajes, entre otros.
Leptosol 916 HAS 12.16%	Material original puede ser cualquiera tanto rocas como materiales no consolidados con menos del 10% de tierra fina. Aparecen fundamentalmente en zonas altas o medias con una topografía escarpada y elevadas pendientes. Se encuentran en todas las zonas climáticas y, particularmente, en áreas fuertemente erosionadas.	Forestal, bosques naturales y bosques naturales protectores.
Umbrisol 333 HAS 4.42%	Se desarrollan principalmente sobre materiales de alteración de rocas silíceas, predominantemente en depósitos de Pleistoceno y Holoceno. Predominan en terrenos de climas fríos y húmedos de regiones montañosos con poco o ningún déficit hídrico.	Forestal, únicamente bosques naturales. Cultivo de cereales y cultivos de raíz, té y café.

CRITERIOS DARA EL ADROVECHAMIENTO DE LAS


Fuente: INEGI, Guía para la Interpretación de Cartografía Edafología

EDAFOLOGÍA

GEOLOGÍA

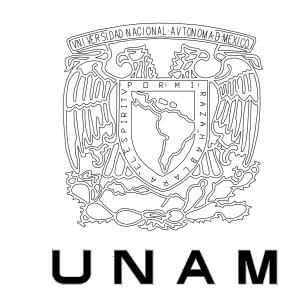
La geología analizará y evaluará las características del suelo para determinar el mejor rendimiento para el desarrollo urbano, en función de los costos que implicarían las mejoras de suelo en caso de requerirse. Esto beneficiará principalmente a la infraestructura y a los tipos de edificaciones que se construirán.

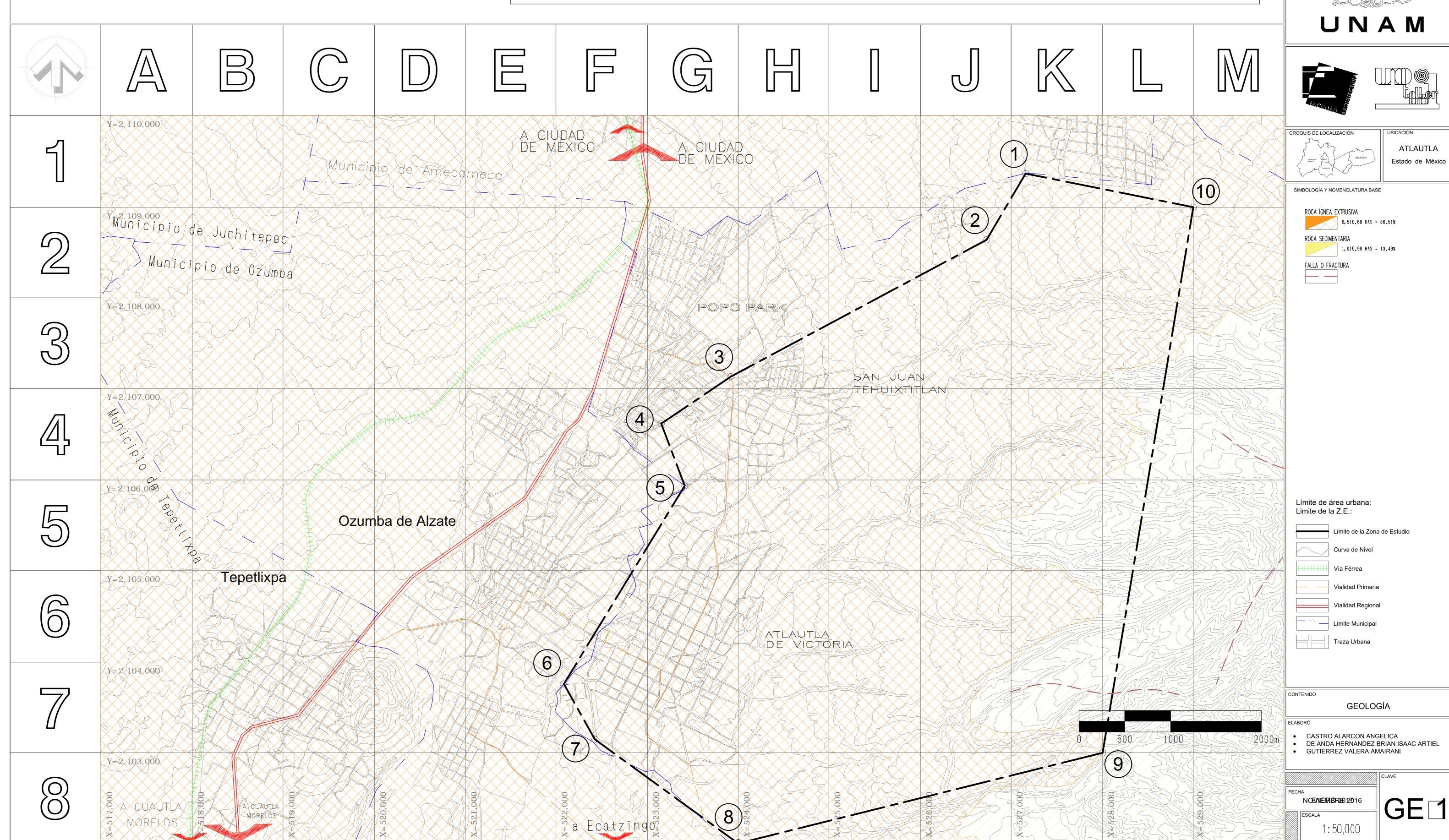
El municipio de Atlautla se encuentra conformado por dos tipos de rocas: las rocas ígneas, en este caso extrusivas, y las rocas sedimentarias.

El Popocatépetl domina la orografía del municipio formado íntegramente por sus estribaciones que descienden hacia el oeste, hacia el valle en que se encuentra asentada la cabecera municipal y otras de las principales localidades del municipio. La cercanía de dicho volcán, es la principal razón de que la mayor parte del territorio, de la zona de estudio, está compuesta por rocas ígneas.

El área donde se presentan las rocas ígneas, será propuesta principalmente para el asentamiento urbano, el desarrollo poblacional futuro y para la industria de tipo ligera; mientras en el área de rocas sedimentarias, se usará para actividades agrícolas, conservación y como amortiguación, gracias a las propiedades de ese tipo de rocas y suelo.

Se presentan algunas fracturas, estás son consideradas como la desintegración de una roca que dan origen a rocas más pequeñas. Las fracturas dan como consecuencia filtración de agua en los mantos de rocas impermeables. Ninguna fractura presenta riesgo alguno para la propuesta de usos de suelo.


CRITERIOS PARA LA UTILIZACIÓN DE LAS CARACTERÍSTICAS GEOLÓGICAS			
TIPO DE ROCA	CARACTERÍSTICAS	USO RECOMENDABLE	
Sedimentarias 6,510 HAS 86.51%	Sedimentos de plantas acumuladas en lugares pantanosos. Caliza, yeso, solgema. Mineral de hierro, magnesia y silicio.	Agrícola. Zonas de conservación o recreación. Urbanización de muy baja densidad.	
Ígneas 1,016 HAS 13.49%	Cristalización de un cuerpo rocoso fundido. Extrusivas, textura, utrea o pétrea de grano fino, colita, obsidiana, audesita, basalto. Intrusivas, grano relativamente grueso y uniforme.	Materiales de construcción. Urbanización con mediana y alta densidad.	


Fuente: Bazant, op. Cit., p. 84.

GEOLOGÍA

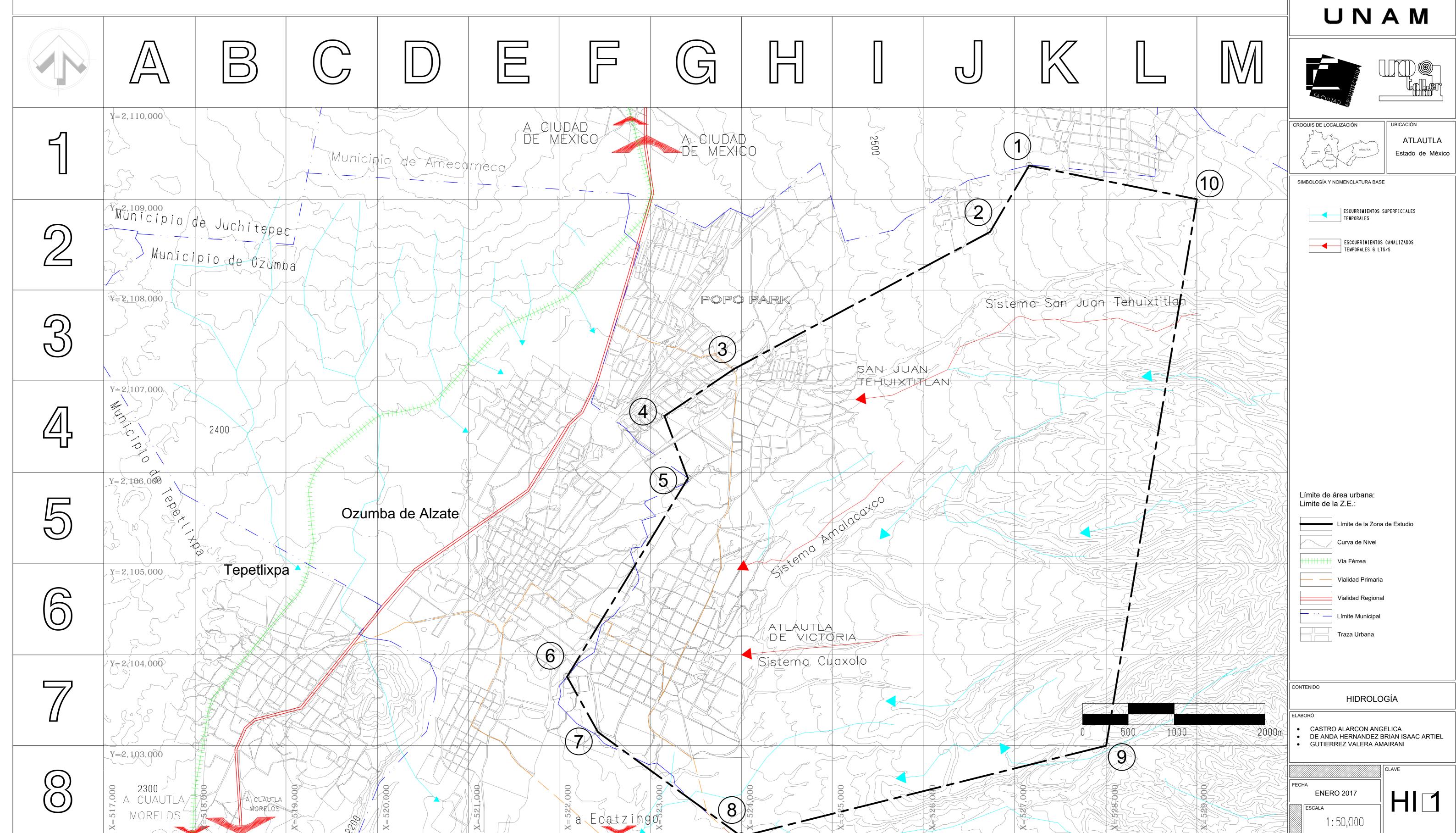
HIDROLOGÍA

La hidrología detecta los cuerpos de agua superficiales y subterráneos, así como sus propiedades, su circulación y distribución. Es necesario identificar los cauces de agua que cruzan o aparecen dentro de los predios a urbanizar para evitar la ubicación de construcciones sobre estos mismos. Por otra parte, es importante analizar la precipitación de las lluvias y las molestias de los escurrimientos que puedan ocasionar inundaciones.

El municipio de Atlautla pertenece a dos regiones hidrológicas, el 94.98% del territorio a la Región Hidrológica Balsas y de esta a la Cuenca del Río Grande, a la Cuenca del Río Atoyac, y el restante 5.02% a la Región Hidrológica Pánuco, con la Cuenca del Río Moctezuma.

En la zona de estudio existen importantes escurrimientos, caracterizados por sus altas pendientes y ser de humedad constante.

Se pueden identificar dos tipos de escurrimientos, los superficiales y los subterráneos. Dentro de los subterráneos se contemplan 4 de ellos: el Sistema Cuaxalo, el Sistema Amalacaxo, el Sistema San Juan Tehuixtitlan y el Sistema Alfredo del Mazo, los cuáles se encargan de abastecer de agua a las distintas localidades el municipio, principalmente a lo que es la cabecera municipal, Atlautla de Victoria, y a la localidad de San Juan Tehuixtitlan.


Por la ubicación de dichos escurrimientos, el agua aparte de cumplir con su funcionalidad de abastecimiento a los asentamientos poblacionales, podrá ser utilizada a su vez para el sector primario, principalmente en las actividades de ganadería y agricultura, así como en un futuro, en el sector secundario.

HIDROLOGÍA

CLIMA Y VEGETACIÓN

El clima es un componente del medio físico natural, determinante en el desarrollo de los asentamientos, no tan sólo en la parte del diseño de las edificaciones, sino en el proceso mismo de planeación de un asentamiento.

En la zona de estudio se encuentra dentro de la clasificación climática C (e) (w), Templado Subhúmedo con lluvias en verano, con una precipitación de 1,137 mm en promedio durante todo el año. Las lluvias empiezan a mediados de mayo hasta el mes de julio con aguaceros muy fuertes, y ocasionalmente en agosto y septiembre hay tormentas.

La temperatura promedio anual es de 14.1°C, presentándose la temperatura máxima en los meses de junio y julio con 21.7°C y la mínima en los meses de enero y febrero con 0.0°C.

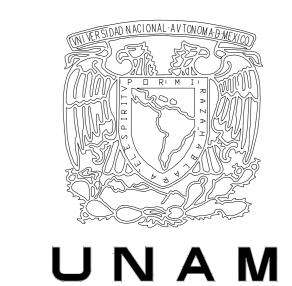
Una vez analizado el clima, se tiene que la vegetación funciona como reguladora del microclima y de la humedad del subsuelo, evitando la erosión de la capa vegetal del suelo y puede modificar el microclima; también incorpora oxígeno a la atmósfera y absorbe polvos a través de sus hojas, reduciendo la contaminación atmosférica.

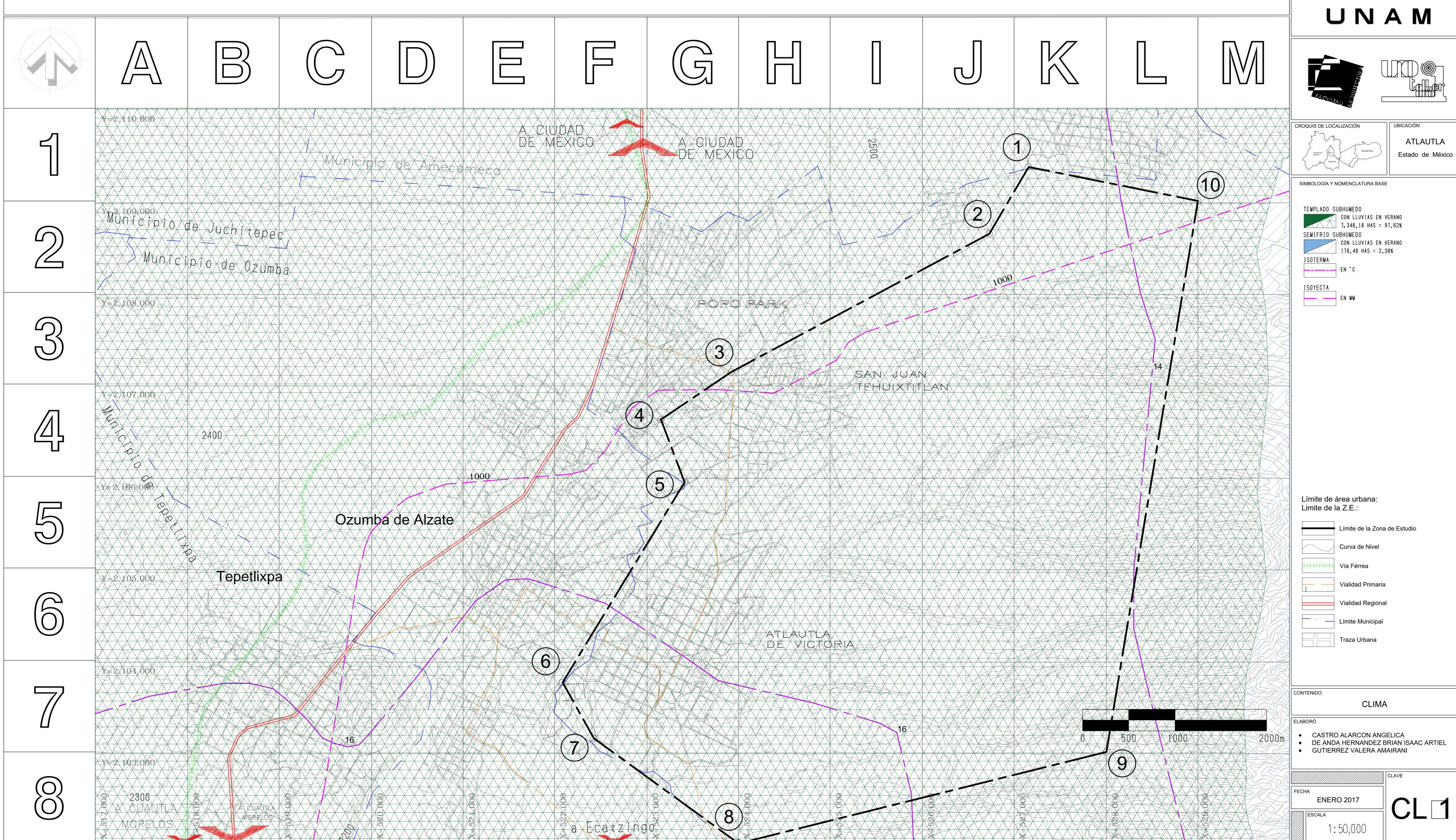
La zona de estudio comprende tres tipos de vegetaciones: Pastizal Inducido (PI), el cual abarca la mayor parte del territorio, seguido del Bosque de Pino-Encino (BPQ), y una minoría del tipo de Bosque Inducido (BI).

CRITERIOS PARA EL APROVECHAMIENTO DE LAS CARACTERÍSTICAS DE USOS Y VEGETACIÓN EXISTENTE EN LA ZONA							
VEGETACIÓN	CARACTERÍSTICAS	USO RECOMENDABLE					
Pastizal 2,368 HAS 72.31%	Vegetación de rápida sustitución. Asoleamiento constante. Temporal de lluvias Temperaturas extremas. Control bueno para siembras. Natural: Será área de conservación si explotación es intensiva y tiene importancia económica. Inducido: Por lo general no son áreas de conservación.	Agrícola. Ganadero. Urbanización. Industria.					
Bosques y frutales 2,389 HAS 27.69%	Vegetación sustituible si es planeada. Vegetación constante excepto otoño y parte de invierno. Asoleamiento 50%. Temperatura media. Topografía regular. Humedad baja y media. Inducido: Especies arbóreas productos de actividades de reforestación.	Industria maderera. Industria de comestibles. Urbanización.					

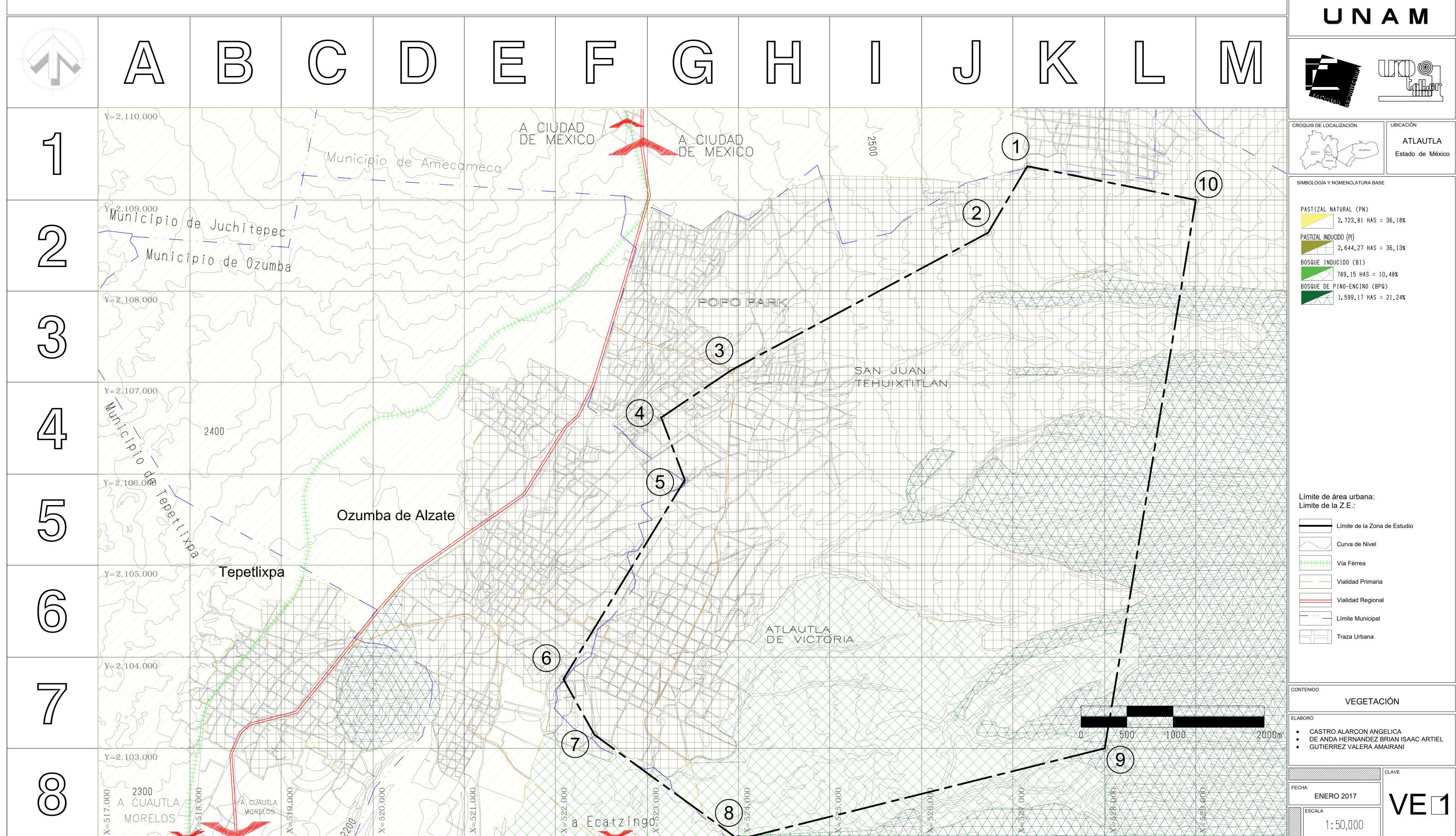
Fuente: Bazant, op. Cit., p. 88.

La zona de Pastizal Inducido por lo común son suelos fértiles y medianamente ricos en materia orgánica, lo que la hace propiamente apta para el asentamiento urbano, la industria, así como para las actividades agrícolas y ganaderas.


Dentro de la zona los cultivos que se dan son: el maíz, el frijol, el haba, el arvejón y el jitomate. Por otra parte, en la fruticultura predomina el aguacate, el tejocote, el zapote blanco, el capulín, la nuez de castilla, la zarzamora, entre otros. Se podrían aprovechar los cultivos del capulín en Atlautla de Victoria, y la nuez de castilla en San Juan Tehuixtitlan, que son los de mayor cosecha y ser utilizados a su vez para generar industrias.


El área de Bosque Pino-Encino está conformada por diferentes especies de pino y encino, con mayor dominancia en las primeras. Mientras que el Bosque Inducido se conforma por especies arbóreas que son producto de actividades de reforestación. En este caso podría utilizarse en creación de bosques, a partir de reforestación con casuarina, cedro o pirúl, así también como para industria o conservación. Los tres tipos de vegetación predominantes, son adecuados para la propuesta de usos de suelo.

CLIMA



VEGETACIÓN

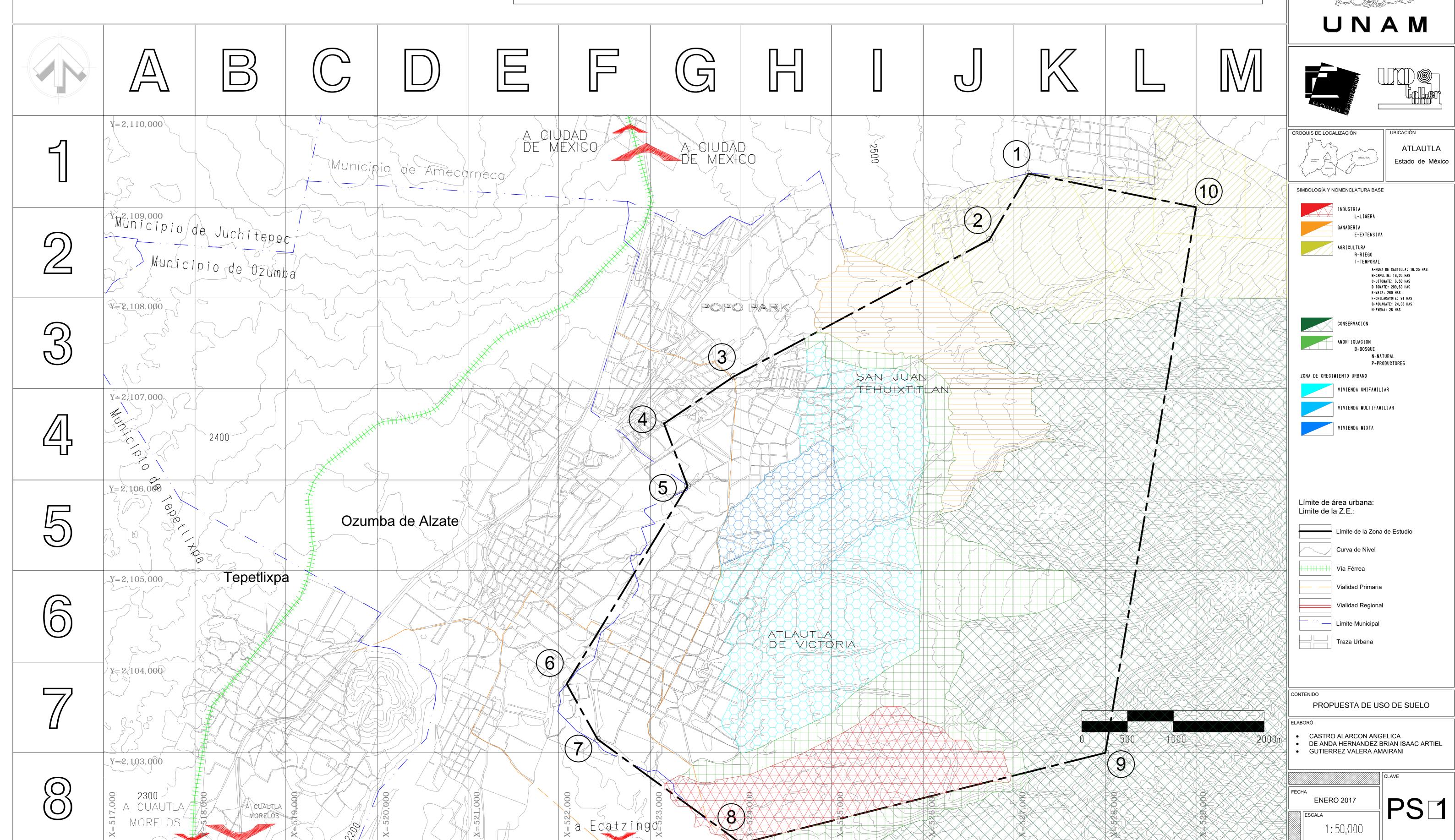
PROPUESTA DE USO DE SUELO

Con base en toda la información analizada anteriormente, se concluye que en su mayoría el tipo de suelo es regosol, el cual soporta una gran variedad de usos, por lo tanto se propone una zona de crecimiento urbano en las coordenadas 7-H a 4-I, ya que conviene que la localidad de San Juan Tehuixtitlan y Atlautla de Victoria conurben, por lo que podrían complementar sus actividades económicas y de esta manera poder desprenderse más fácilmente de su dependencia a Ozumba y desarrollar un mercado interno que a futuro pueda extenderse a otras localidades.

En la zona Este del área propuesta de crecimiento urbano se ubicará una zona de amortiguación la cual será el límite de dicho crecimiento, debido al riesgo por la cercanía con el volcán Popocatépetl y al aumento de pendiente en un 50%; ya que el resto de la zona de estudio cuenta con una pendiente menor al 5%.

En la parte Norte de la zona de estudio se localiza a San Juan Tehuixtitlan, esta localidad basa su economía en la actividad primaria, por lo tanto, se propone que en una sus periferias se ubiquen las zonas aptas para la ganadería y la agricultura. La ganadería basada en pastoreo extensivo, principalmente con ganado ovino y caprino, y la agricultura será temporal o de riego, con cultivos de: nuez de castilla, capulín, jitomate, tomate, maíz, chilacayote, aguacate y avena.

Por otro lado, la zona Sur, se encuentra sobre el tipo de suelo andosol, el cual tiene bajos rendimientos agrícolas. Ahí está ubicada una parte de la cabecera municipal, cerca de esta se encuentra la Av. Juárez, que al Sur continua a Ecatzingo y posteriormente a Cuautla; al Norte logra llegar al libramiento que se dirige a la ciudad de México. Por lo tanto, es favorable para el sector secundario y por lo mismo se propone la creación de una industria ligera, ya que sería más factible la distribución de los productos procesados a las grandes urbes.


El suelo de conservación estará basado en la zona de reserva del Popocatépetl, además se extenderá entre la coordenada 7-H y 8-H a manera de espacio de amortiguación entre el espacio urbano e industrial.

PROPUESTA DE USO DE SUELO

ESTRUCTURA URBANA

ESTRUCTURA URBANA

Analiza los aspectos de conformación en el asentamiento como son barrios, corredores urbanos, senderos, etc., con la finalidad de analizar la estructura urbana y poder definir las zonas con problemáticas y así, proponer alternativas para el mejoramiento de las mismas.

Senderos

Actualmente las principales arterias que conforman la estructura urbana son: La vialidad principal de la localidad, la calle Corregidora, es una calle recta que conecta la Plaza Principal con el centro de Ozumba, al salir de dicha Plaza rumbo a la Avenida Independencia se intersecta con la Avenida Emiliano Carranza; ésta última, hacia el norte atraviesa San Juan Tehuixtitlan y llega a la carretera federal México-Cuautla, hacia el sur se dirige hacia Ecatzingo. Estas vialidades son la continuación de la carretera que comunica a Ozumba con Ecatzingo y forman la espina dorsal, a lo largo de la cual se ha ido desarrollando la localidad.

Dentro del aspecto funcional estas arterias mantienen una buena disposición de flujo, sin embargo, se encuentran carentes de elementos de señalización, diferenciación de carriles, pasos de cebra y banquetas con rampas para el acceso de personas con discapacidad, el principal conflicto de tráfico se concentra en la Plaza Principal ya que ahí mismo se ubica la base de Taxis que se dirige a Ozumba y retrasa el flujo de los automóviles. Por otra parte, de manera general se encuentran vialidades que son únicamente necesarias para comunicar a los sectores pertenecientes a la localidad que son ricas por la diversidad de formas arquitectónicas, colores y texturas, eliminando cualquier monotonía a las calles lineales.

Corredores Urbanos

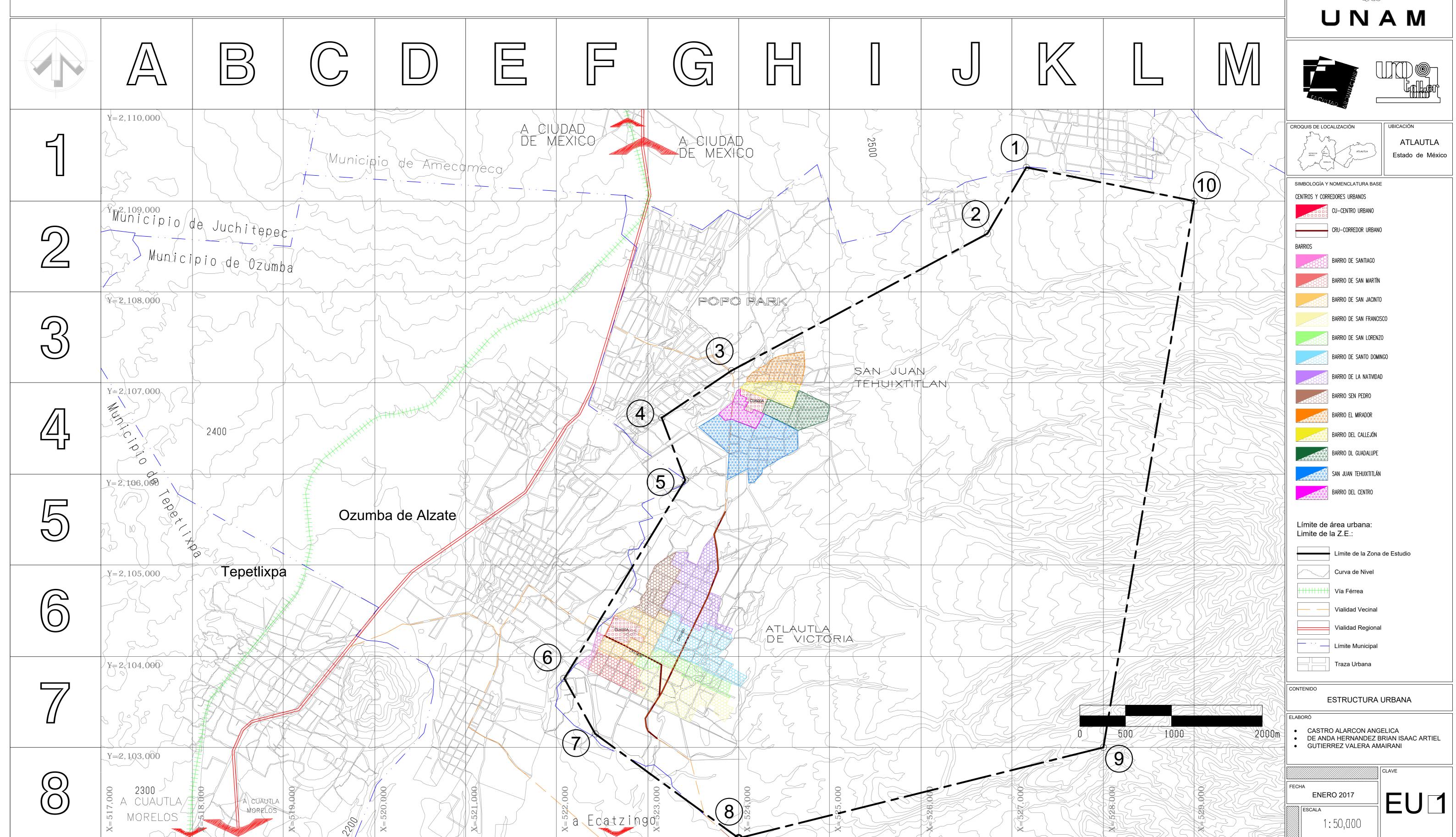
El principal y único corredor que se aprecia es el que se describió anteriormente en lo referente a "senderos", el cual se forma a lo largo de la carretera Ozumba - Ecatzingo, la cual al incorporarse a la localidad se denomina Emilio Carranza, hasta integrarse con la calle Adolfo López, formando estas arterias el corredor de servicios por excelencia de la localidad.

El estado del corredor está en buenas condiciones, aunque cabe destacar que no cuenta con señalizaciones.

Barrios

La localidad de Atlautla de Victoria se encuentra estructurada por "nueve barrios", denominándose de la siguiente manera:

- Barrio de San Jacinto
- Barrio de San Pedro
- Barrio de la Natividad
- Barrio de Santo Domingo
- Barrio de San Lorenzo
- Barrio de San Francisco
- Barrio de San Bartolomé
- Barrio de San Martín
- Barrio de Santiago


Hay que mencionar que los barrios sufren del abastecimiento de agua, aunque se cuenta con las cajas de agua, el servicio no es igualitario. Por lo que, en este periodo, los habitantes de los barrios con servicio deficiente se han reunido para exigir a la cabecera que resuelva el problema.

ESTRUCTURA URBANA

IMAGEN URBANA

A continuación, se describe de una manera particular los puntos que determinan la imagen urbana de la ciudad de Atlautla de Victoria.

Puntos de referencia (Hitos)

Dentro de este contexto sobresalen: El centro de la ciudad como el hito principal de la localidad que concentra la parroquia de San Miguel Arcángel, el Palacio Municipal, y la plaza cívica de la localidad. Las fachadas de las calles frente a la plaza con sus construcciones de vivienda y comercio tradicionales.

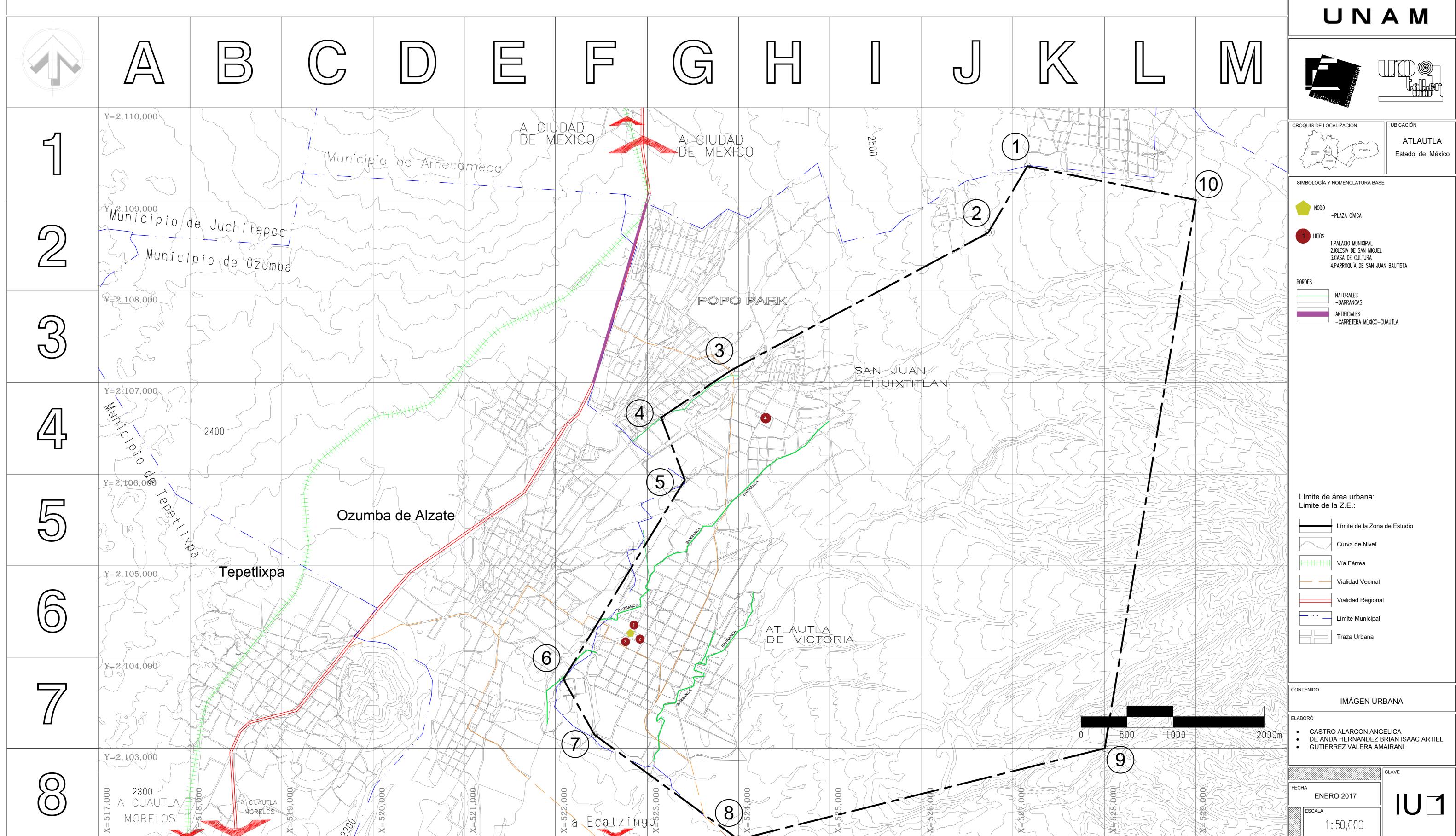
Nodos

Se identificó como único nodo en la ciudad, la Plaza Principal de Atlautla, esta se ha convertido en el centro de la ciudad donde convergen las vialidades principales; así mismo, es un centro político, religioso, comercial e histórico.

Bordes

Los bordes son limites que pueden ser naturales, por ejemplo, lagos, ríos, barrancas, bosques, cerros, montañas, etc. y artificiales como son vialidades, líneas de ferrocarril, etc.

En Atlautla de Victoria se cuenta con dos barrancas importantes: la primera, situada hacia el este, sirve como una barrera natural que divide Atlautla de Ozumba y hacia el oeste existe una barranca donde desembocan las aguas residuales de la localidad.


En el caso de San Juan Tehuixtitlan solamente se ubica una barranca que traviesa en el centro del municipio y llega hasta Ozumba.

IMÁGEN URBANA

TRAZA URBANA

El eje rector del municipio es el acceso principal a Atlautla que está conformado por la carretera federal 115 México – Cuautla, posteriormente se estructura regionalmente por la carretera estatal que va desde San Juan Tehuixtitlan hasta Ecatzingo, atravesando la cabecera municipal, Atlautla de Victoria.

La cabecera municipal cuenta con una traza reticular formada por los nueve barrios ya mencionados anteriormente. Dichos barrios están organizados alrededor del eje rector de la carretera estatal que al noroeste llega a la carretera federal 115, mientras que al sur se dirige a Ecatizingo, esta carretera estatal intercepta, de manera perpendicular con la calle Corregidora, que por el lado oeste llega a Ozumba y al este se dirige a las faldas de volcán Popocatépetl, atravesando de manera transversal Atlautla de Victoria. Por lo tanto, con base en estas vialidades se desarrolló la retícula de la traza urbana,

Otro elemento estructurador de dicha traza en la localidad, es el corredor urbano de baja intensidad que empieza de la calle de Allende hasta Córdoba, este corredor se localiza sobre la carretera que conecta a Atlautla con Ozumba y Ecatzingo, atravesando parte de la localidad.

De este modo se facilita la repartición ortogonal de la lotificación, la orientación de las vialidades y la fluidez del tráfico. Pero la desventaja de esta traza es la pobreza visual que provoca a los transeúntes y la monotonía del recorrido.

Por otro lado, la traza urbana de San Juan Tehuixtitlan es irregular, siendo su eje rector la Av. Juárez, dicha forma corresponde a la parcelación de la tierra agrícola; debido a que la actividad de la población local está basada en el sector primario y por lo mismo su organización al interior de los predios obedece en mucho a la actividad que la población realiza, debiendo tener espacios abiertos considerables en sus terrenos para el manejo, almacenamiento y cultivo de sus productos así como de sus herramientas y animales.

A este tipo de traza se le conoce como "plato roto" la cual puede traer ventajas como la riqueza visual, pero dificulta la orientación y provoca tráfico.

SUELO

El total de la superficie municipal está estimada en 16,551 ha, de las cuales el que tiene mayor presencia es el referido al uso forestal que comprende aproximadamente el 57.51 % de la superficie total.

El uso urbano representa tan solo el 3.87 % con una superficie de 641 ha; mientras que el uso agrícola subdesarrollo en una superficie de 3,955 ha representado el 23.90%.

CRECIMIENTO HISTÓRICO

Como antecedente histórico, se debe mencionar que Atlautla perteneció al municipio de Ozumba, donde se ubicaban los campos de cultivo. Fue hasta el 9 de octubre de 1874 que se dio la separación de ambos municipios, pero como hemos visto hasta ahora, Atlautla sigue teniendo una relación de dependencia con Ozumba.

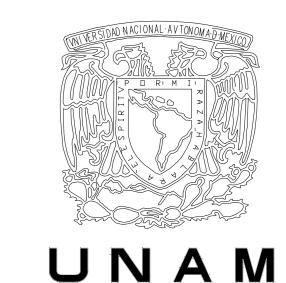
Durante el periodo del porfiriato comprendido de 1876 a 1911, que llegaron a esta municipalidad los ferrocarriles Interoceánico y el ferrocarril México-San Rafael-Atlixco; el primero pasaba por Popo Park y Ozumba hasta llegar a Cuautla, Morelos, el segundo pasaba por San Juan Tehuixtitlan, llegaba a la cabecera municipal de Atlautla y de aquí hasta "Lajas", un punto entre los límites del Estado de México y Puebla. Con este medio de comunicación cambió la vida de los habitantes y los que más se beneficiaron fueron los hacendados, ya que podían transportar sus productos con mucha rapidez hasta la capital mexicana. 9

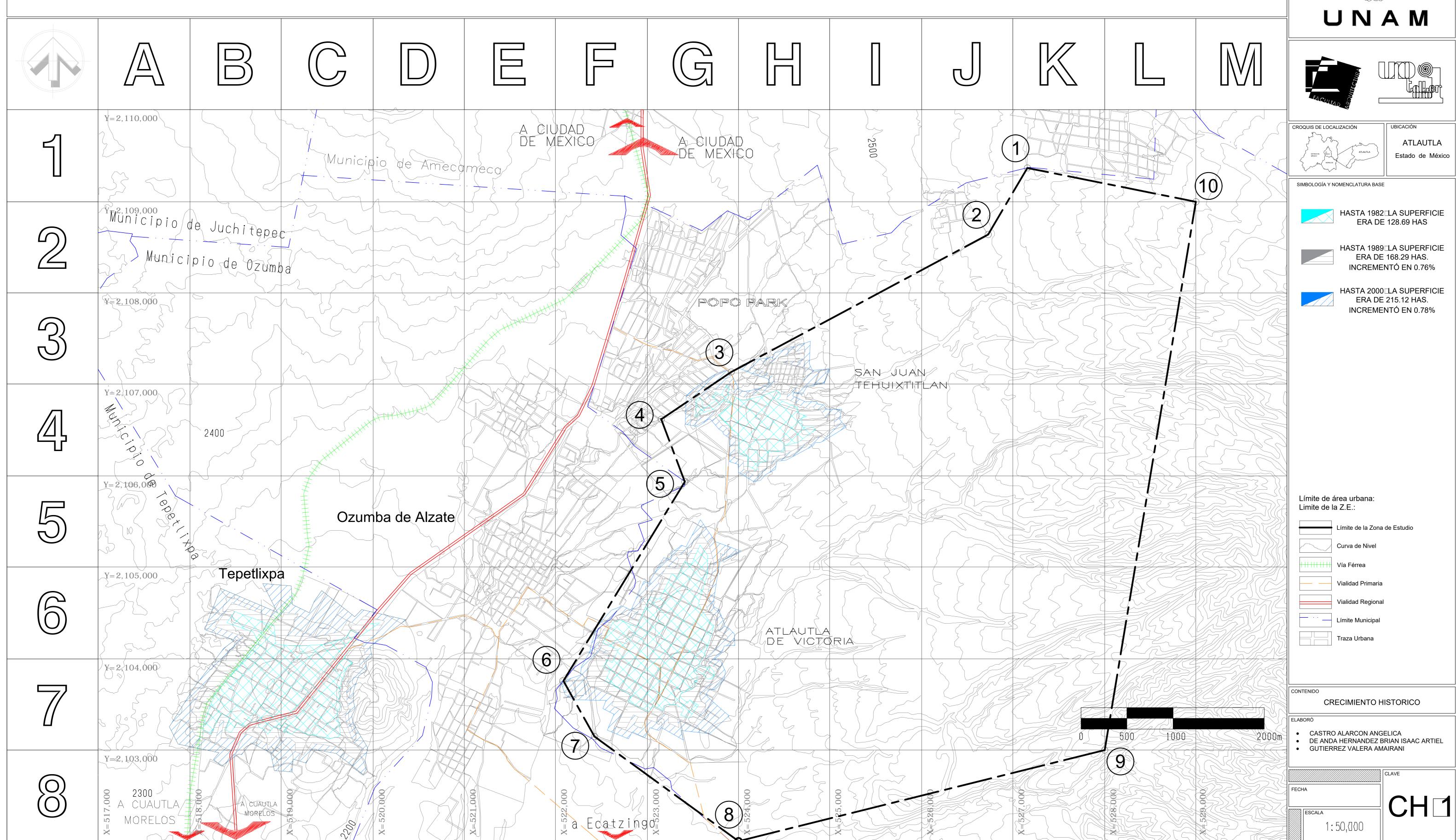
Sin embargo, no existen datos de cómo se distribuyó la población dentro del municipio. Es hasta 1982 que se encontró información acerca del comportamiento de la mancha urbana.

En la zona de estudio se puede observar diferentes picos de crecimiento en ambas localidades. En el caso de San Juan Tehuixtitlan, la población aumentó en la época de 1989, ocasionado por un aumento en la actividad agrícola, debido a que es su principal actividad económica. Sin embargo, en Atlautla de Victoria se observa un aumento mayor en el periodo del año 2000 debido a la centralización de servicios y el abandono del campo.

La diferencia en el crecimiento urbano está determinada por las relaciones de trabajo que desarrollaron cada localidad. Popo Park fue fundado a un lado de San Juan en 1890, como propiedad de un norteamericano que utilizó el terreno para edificar casas de verano para la burguesía de la Ciudad de México, de este modo la población de San Juan fue empleada como personal de servicio y campesinos para trabajar las parcelas de los dueños.

Mientras que en Atlautla de Victoria, los hacendados habían decidido independizarse de Ozumba. Así fue que se nombró como cabecera del municipio y comenzó la urbanización del poblado. Posteriormente, al disminuir las ganancias en el sector agrícola en el año 2000, la población comenzó a emplearse en el sector del comercio.


[Internet] Disponible en: http://www.inafed.gob.mx/work/enciclopedia/EMM15mexico/muni munici/15015a.html [Acceso el 3 de enero del 2017]


⁹ Instituto Nacional de la Infraestructura Física Educativa. Enciclopedia de municipios y delegaciones de México: Atlautla.

CRECIMIENTO HISTORICO

USO DE SUELO URBANO

De acuerdo con la información que proporciona el municipio, la micro región cuenta en el área urbana únicamente con el uso de suelo habitacional: H300A H (Uso Habitacional) 300 (m²/ terreno bruto/vivienda).

Sin embargo, lo que se pudo observar en la visita fue que la carencia de otros tipos de usos de suelo urbano ha ocasionado que la ubicación del equipamiento urbano sea arbitraria y desatienda menos población de la que debería. Este es el caso de las primarias las cuales están ubicadas en su mayoría en el centro de la cabecera, donde se logra ver hasta 3 primarias en un radio de dos cuadras. Mientras que en el caso de San Juan Tehuixtitlan sólo haya 2 primarias con un radio de hasta 10 cuadras.

TENENCIA DE TIERRA

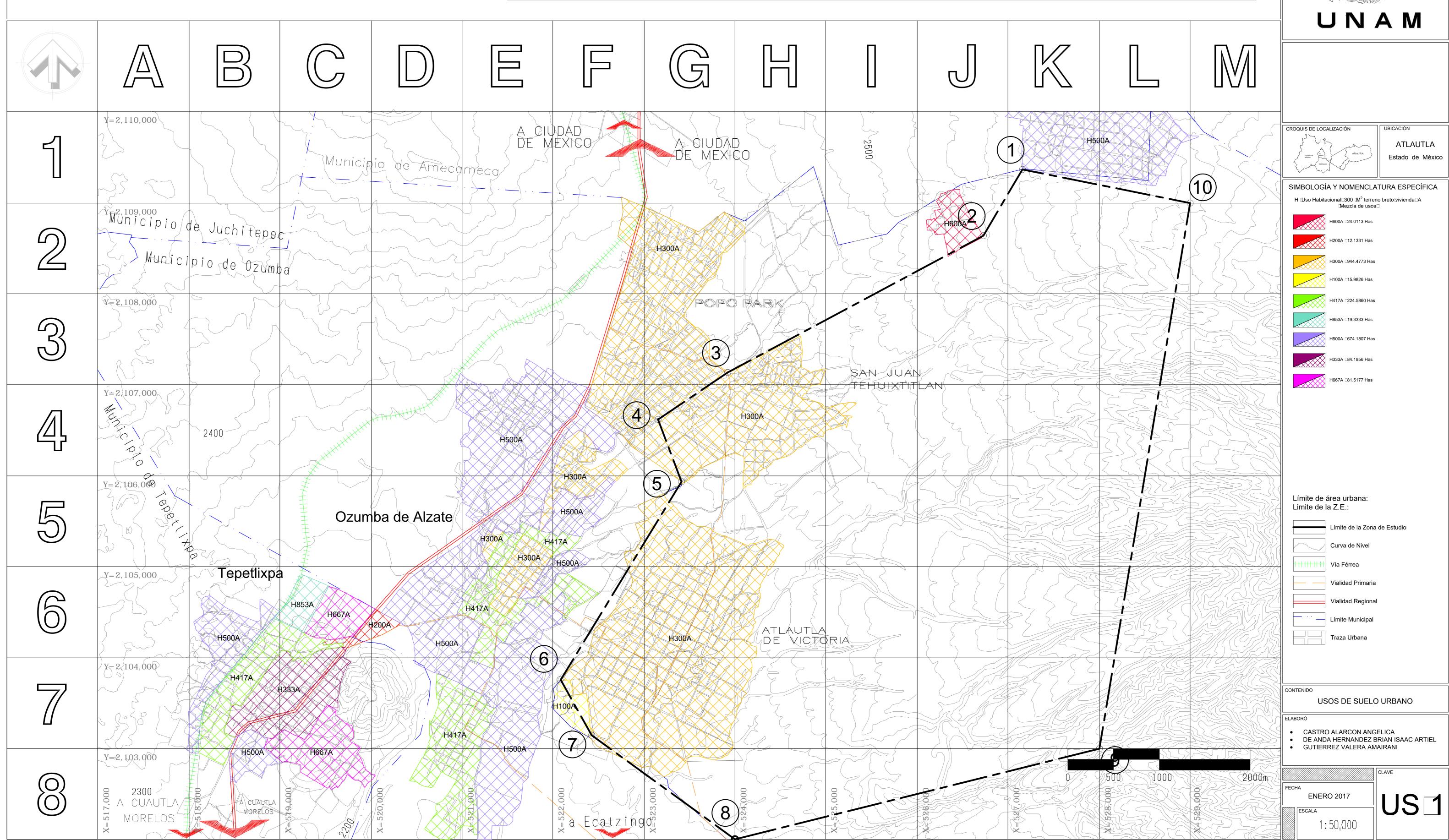
La información que nos presenta la Secretaría de Desarrollo Urbano y Metropolitano de la localidad menciona que el área urbana de la cabecera municipal es propiedad social, pero en la visita se determinó que actualmente toda el área urbana es propiedad privada. Además, los campos de cultivo están definidos como propiedad ejidal y la zona del Parque Nacional Ixta-Popo es propiedad social-comunal.

A pesar de tener definidos los tipos de propiedad, ésta no se ha cumplido. Pues debido al abandono del campo, los terrenos para cultivo se han estado vendiendo como propiedad privada. También algunas zonas del parque nacional han sido vendidas, por ejemplo, el santuario de mariposas monarca llamado "La Joya Redonda" que se encuentra al sur-este del parque.

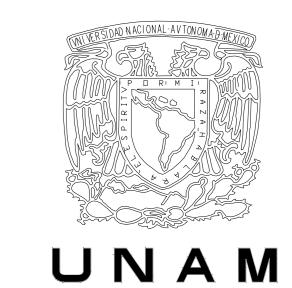
Si la situación continua, la mancha urbana seguirá creciendo hacia las faldas del volcán y provocará un daño ambiental a su entorno. Por lo que se debe proponer usos específicos, como el santuario, que sirvan de amortiguamiento entre el parque nacional y la población.

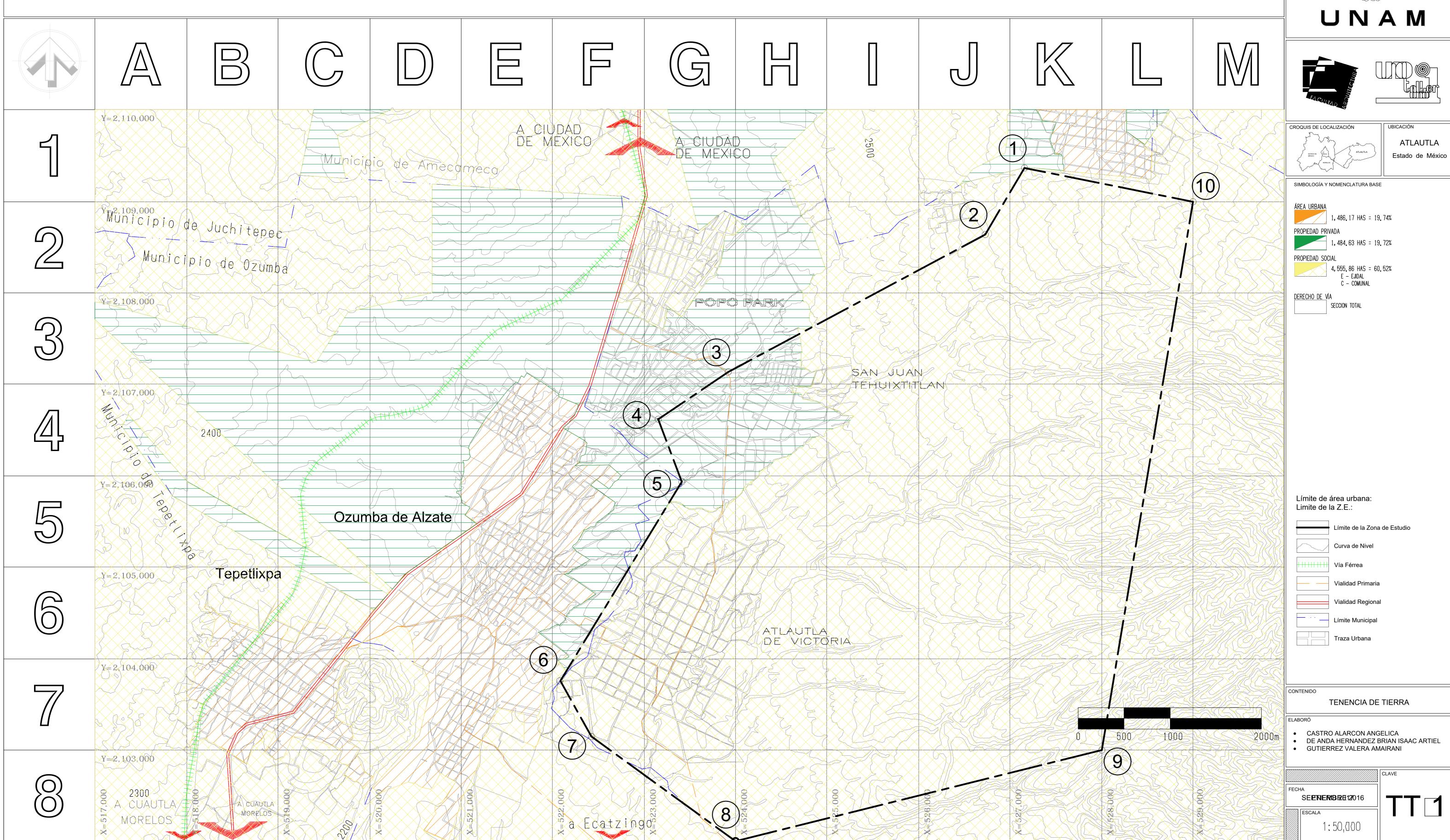
DENSIDADES

La ocupación de la zona de estudio, está definida de la siguiente manera:

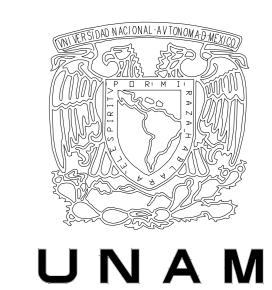

- 1) AGEB-A (46 Hab/Ha): En la cabecera municipal la población está concentrada principalmente en los accesos en la Av. Juárez y, esto podría seria a causa del desplazamiento de la población para acudir a los servicios que no se encuentran allí e incluso para salir a laborar.
- 2) AGEB-B y C (37-42 Hab/Ha): Posteriormente la población se concentra en el centro de la cabecera ya que ahí es donde se encuentra la mayor cantidad de servicios, también cerca de la Calle Corregidora debido a que es la calle que se dirige a Ozumba y sigue al sur de las barrancas, ya que allí la pendiente es mínima, aunque sigue presentando problemas de contaminación a causa de la basura.
- 3) AGEB D, E, F Y G (10-16 Hab/Ha): Finalmente, la zona menos densificada se encuentra en las aéreas más accidentadas de la barranca en donde se presentan graves problemas de contaminación, por basura y por desalojo de aguas servidas.
- 4) AGEB A, B, C (34-59 Hab/Ha) y D (7 Hab/Ha): En la localidad de San Juan Tehuixtitlan solo se muestra una diferencia considerable de densidades al sur de la localidad, lo cual se debe a al crecimiento que ha tenido la zona en los últimos años.

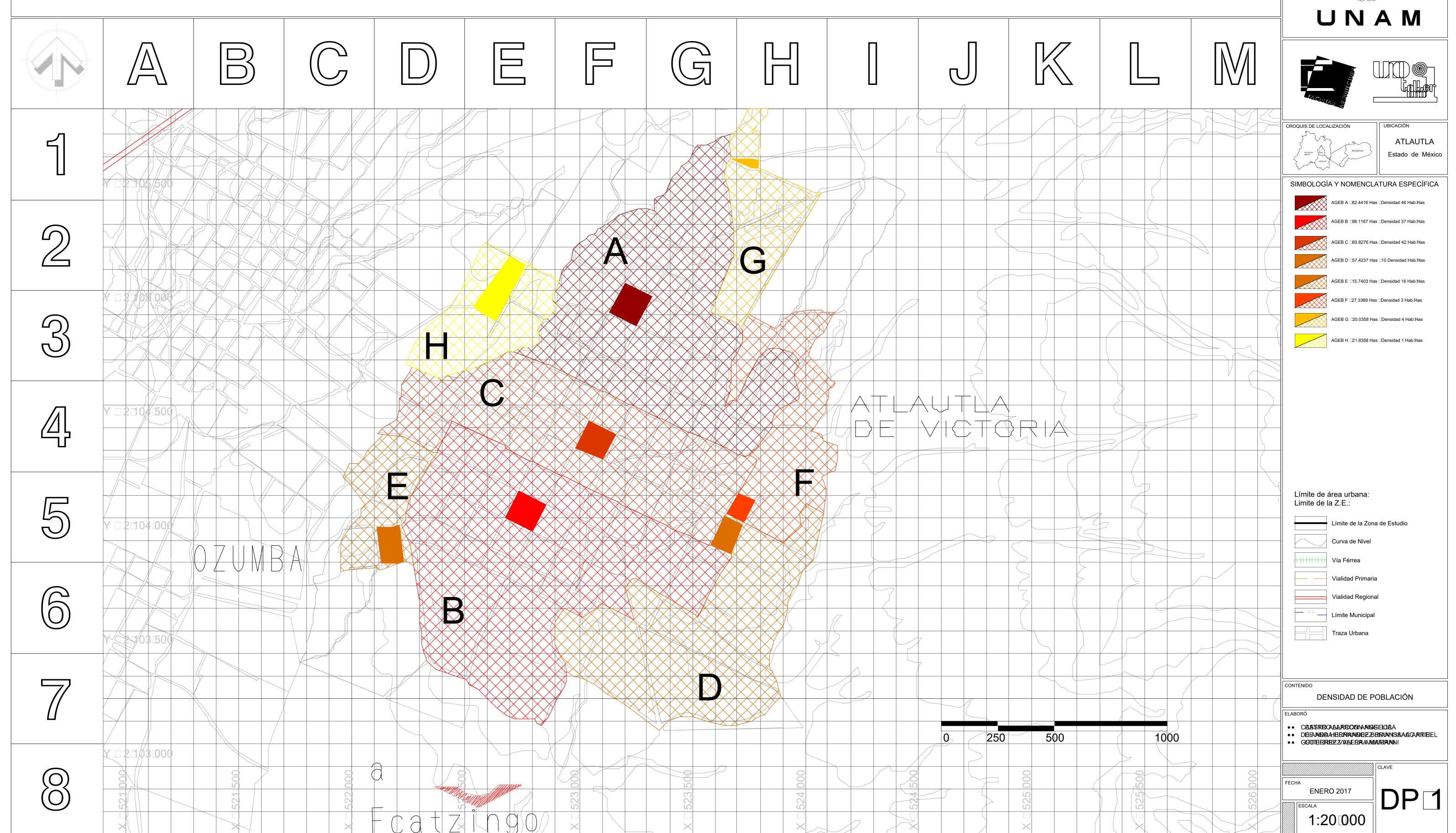
USOS DE SUELO URBANO



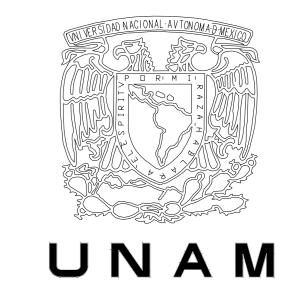


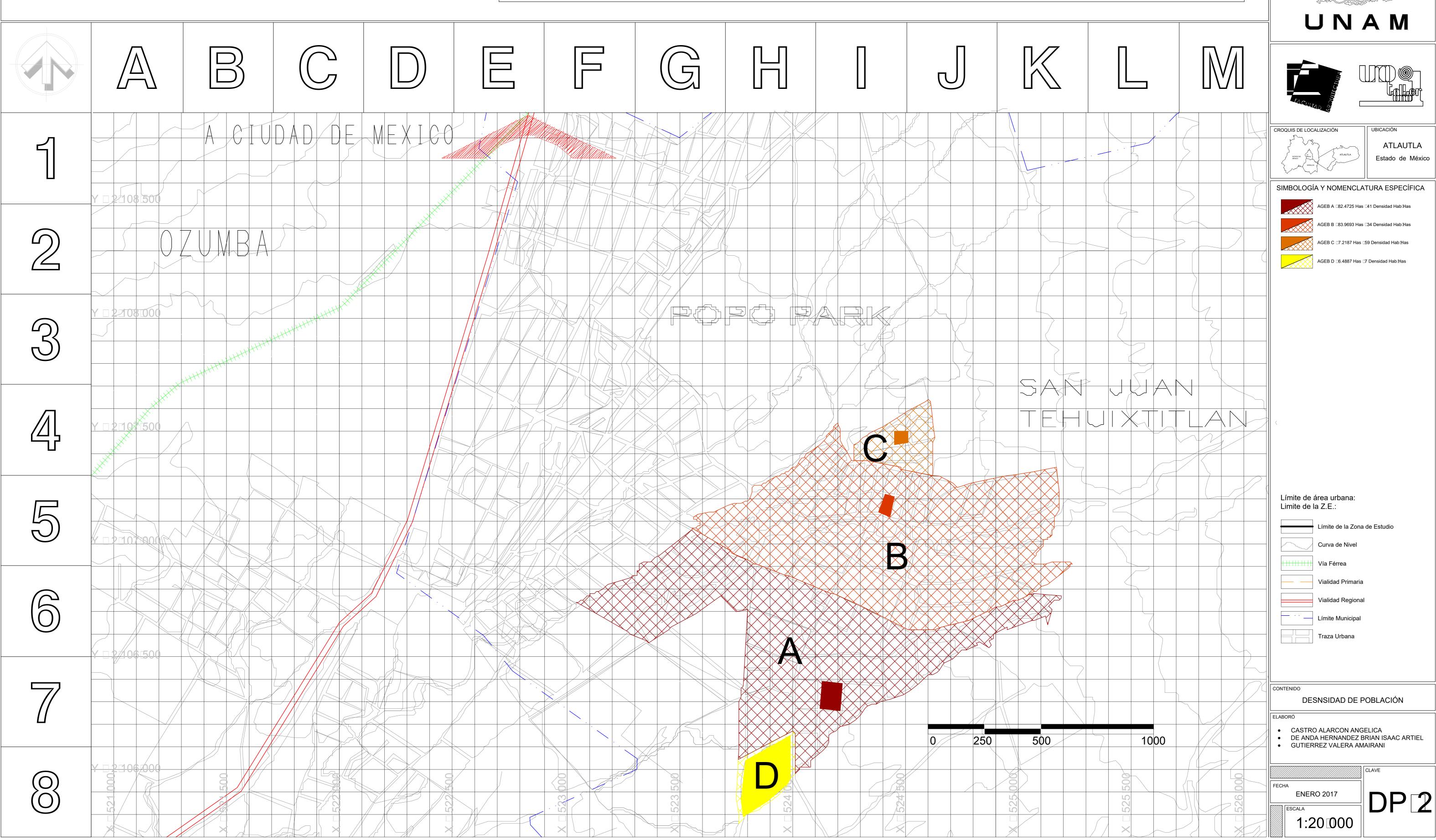
TENENCIA DE TIERRA





DENSIDAD DE POBLACIÓN (AGEB)





DENSIDAD DE POBLACIÓN (AGEB)

VIALIDAD Y TRANSPORTE

Vialidad

Dentro de la zona de estudio se localizan distintas vialidades, que por sus características de dimensiones o de conexiones son catalogadas de diferente denominación. Así también se pueden encontrar vías de comunicación entre municipios y localidades, gracias a la vía férrea que existe en esta zona.

Primero se encuentra la vialidad estatal que comprende la carretera federal 115 México—Cuautla, la cual da el acceso principal al municipio de Atlautla, conectándolo a dos grandes urbes como lo son la CDMX y Cuautla (Morelos), además de interconectar a dos grandes municipios del Estado de México, Amecameca y Chalco; esta conexión se da a través del transporte público que transita por esta vialidad y por el libre tránsito de vehículos particulares.

Posteriormente se estructura regionalmente por la carretera estatal que va desde San Juan Tehuixtitlan hasta Ecatzingo, atravesando la cabecera municipal, Atlautla de Victoria; esta cuenta con 9.20m de ancho en el arroyo, siendo únicamente de dos carriles para el tránsito vehicular, y con 1m de banqueta.

Así mismo se localizan vialidades locales, estas únicamente son, como su nombre lo indica, para el tránsito local de vehículos, estas vialidades son las que brindan el acceso a viviendas, comercios, escuelas, etc. Que están ubicados dentro de las localidades estudiadas.

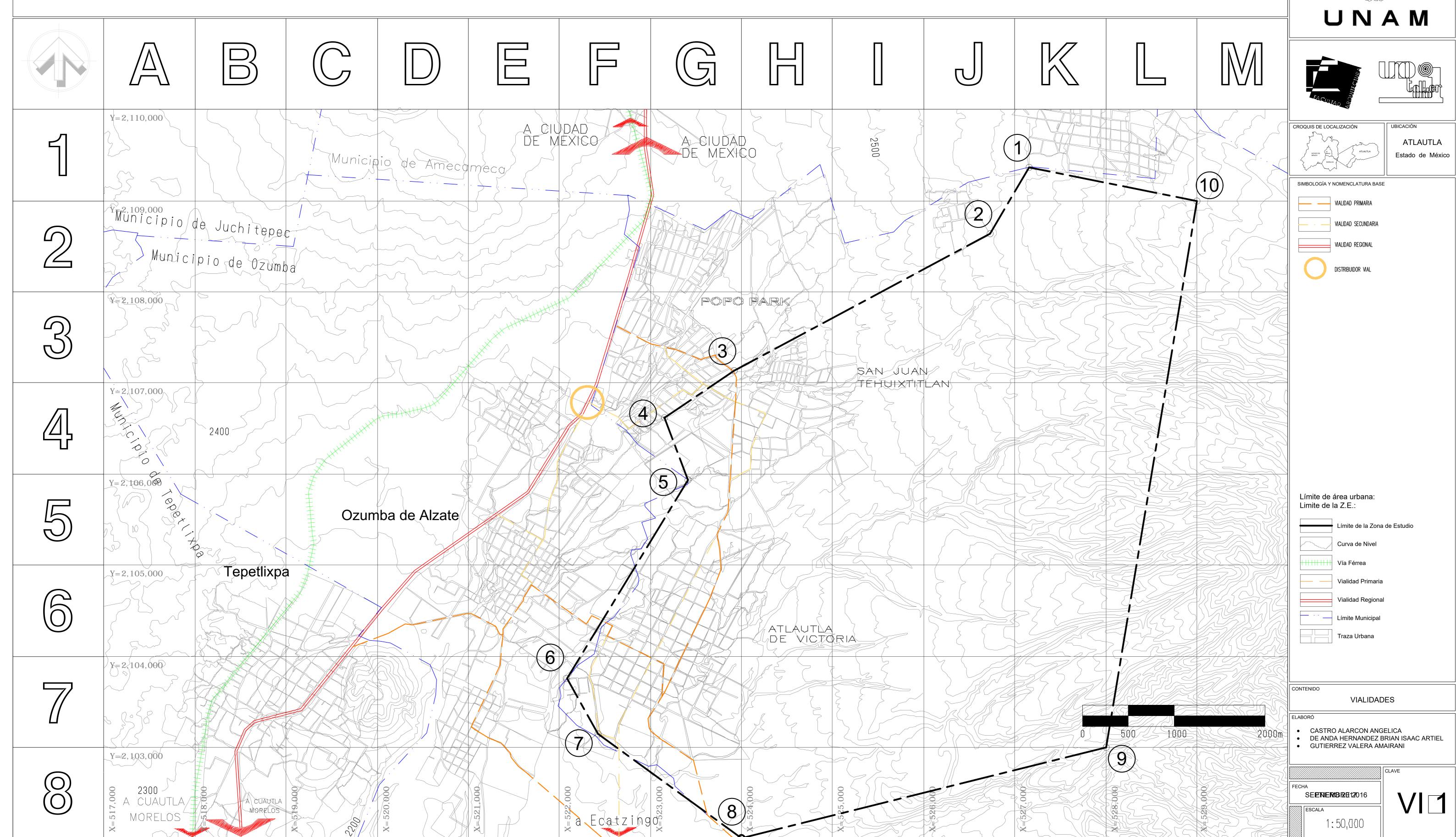
En segundo lugar, se localiza la vía férrea que, si bien sirve de conexión entre localidades y municipios, ya que va desde Amecameca hasta Tepetlixpa, actualmente no está en funcionamiento y únicamente se utiliza como atractivo para los visitantes, por sus locomotoras que existen en exhibición.

Las vialidades locales que se encuentran en el centro de la cabecera se encuentran pavimentadas y cuentan con alumbrado público y señalización, sin embargo, hacia los alrededores de la cabecera y en San Juan Tehuixtitlan, las vialidades tienen afectaciones en cuanto al pavimento ya que se localizaron baches dentro de ellas, además que la señalización no es suficiente, ni eficiente.

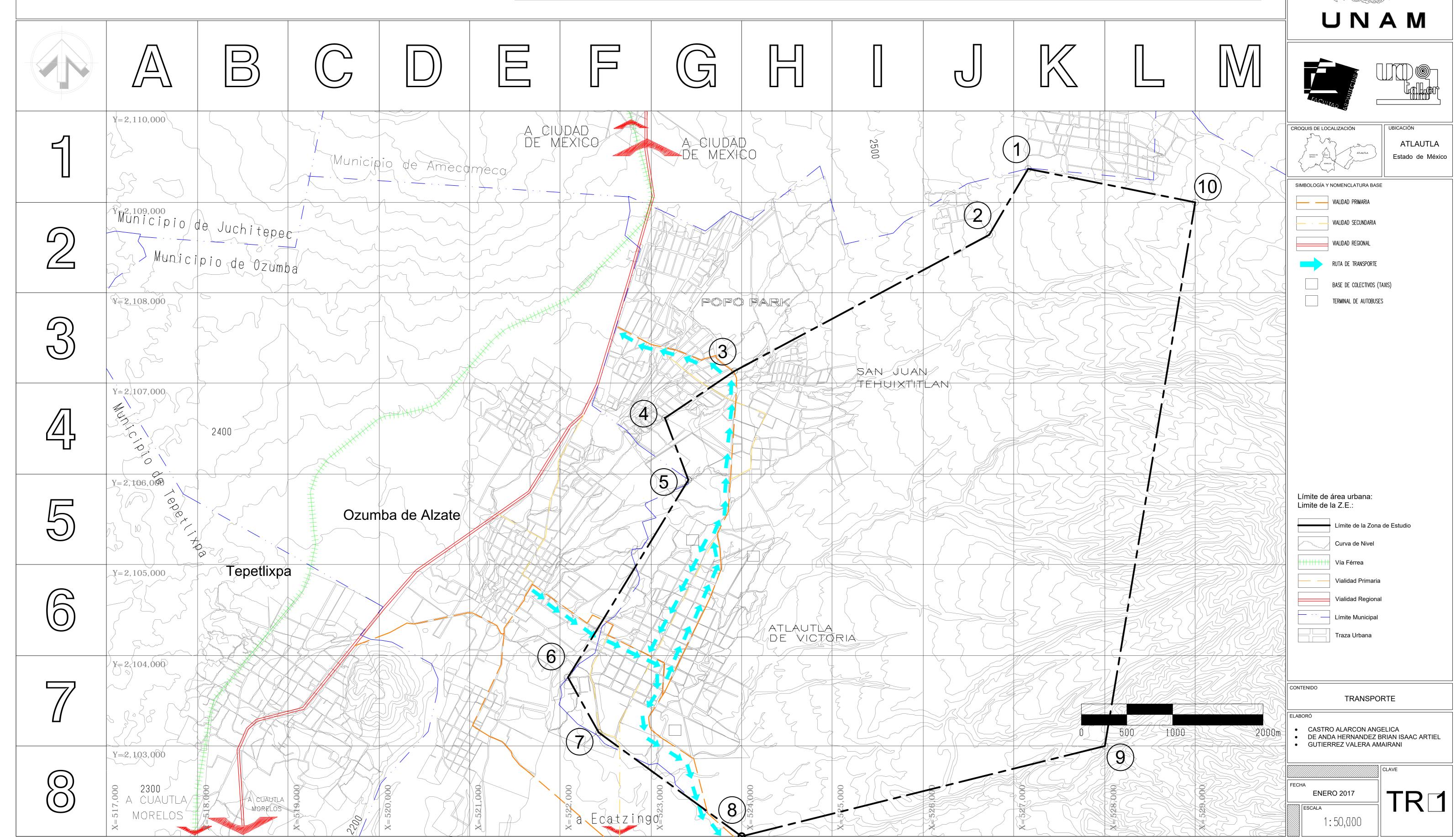
Transporte

Se compone de dos bases de Taxis que cuentan con 110 unidades, con capacidad para 4 personas, la primera se ubica en el Centro y la segunda en avenida Francisco I Madero esquina con Emilio Carranza; el circuito que recorre este transporte comienza en Emilio Carranza, dobla en Francisco I Madero, sube al barrio la Natividad, baja en Juárez, regresa a Emiliano Carranza y encuentra con la carretera que te dirige a Ozumba. El costo es de \$8 de manera colectiva y si se requiere el servicio individual tiene un precio de \$35. El servicio se brinda de las 5:00 am hasta las 10:00 pm.

En el libramiento pasa la Ruta 85 y la Ruta 91 que lleva a la CDMX, la primera al Metro Candelaria y la segunda del Metro Aeropuerto, ambas de la línea 1 del Sistema de Transporte Colectivo de la Ciudad de México y tienen un costo de \$28. El servicio se ofrece de las 3:00 am hasta las 10:00 pm. Sin embargo, existe un problema de inseguridad en ambas rutas ya que los usuarios son víctimas de constantes asaltos a mano armada.


Otra opción de transporte colectivo para llegar al libramiento de Atlautla desde la Terminal de Autobuses de Pasajeros de Oriente (Ciudad de México) es el servicio de "Autobuses Volcanes" perteneciente al Grupo ADO. El servicio que ofrece es de las 5:00 am a las 9:30 pm con un costo de \$30. En comparación con las rutas mencionadas anteriormente, ofrece un servicio más seguro y cómodo. Pero, su horario de servicio no es útil para los habitantes de Atlautla ya que para llegar a tiempo a sus respectivos trabajos deben salir desde las 4 de la mañana.

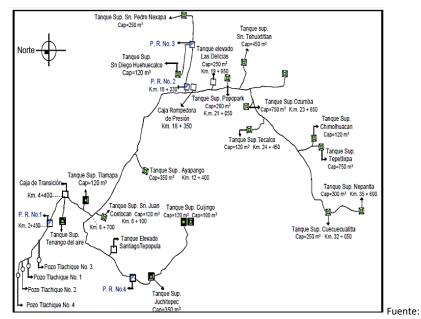
VIALIDADES



TRANSPORTE

INFRAESTRUCTURA

La infraestructura es el conjunto de medios técnicos, servicios e instalaciones necesarios para el desarrollo de una actividad o bien para el desarrollo de un lugar en específico.


El municipio de Atlautla de Victoria cuenta con diversos servicios, como son: agua, luz, drenaje, alcantarillado.

Infraestructura hidráulica

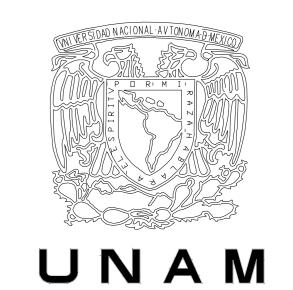
En Atlautla el abastecimiento proviene del sistema Sureste, los cuales son los pozos profundos del acuífero del Valle de Chalco, denominados Tlachiques 1, 2, 3, y 4. Estos pozos se localizan a 4 kilómetros de la cabecera municipal de Tenango del Aire. La oferta de esta batería de pozos actualmente es de 238.23 l.p.s.

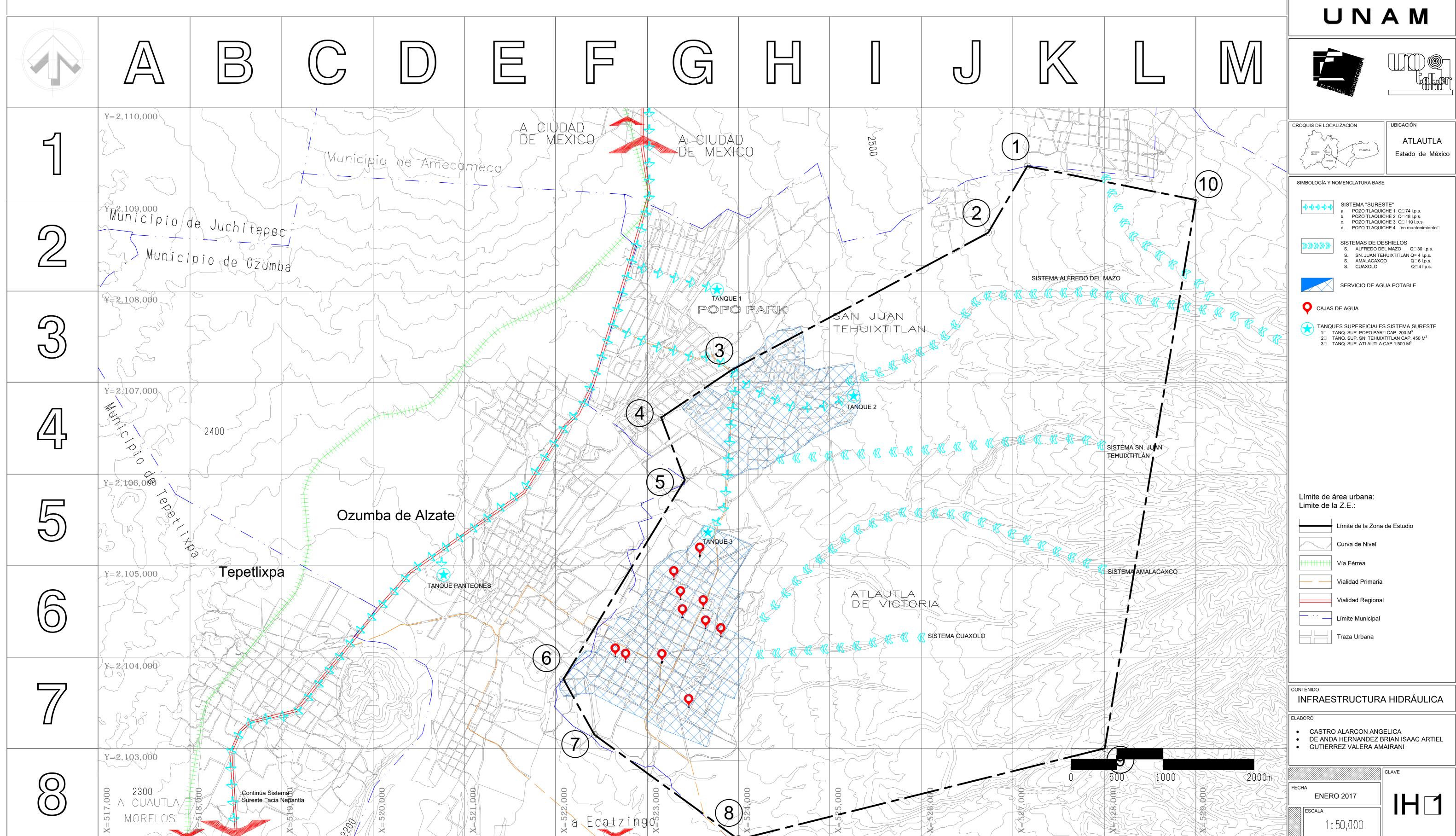
La red de abastecimiento llega a los tanques superficiales de mampostería del municipio los cuales se encuentran distribuidos en Popo Park con 200 metros cúbicos de capacidad, en San Juan Tehuixtitlan con una capacidad de 450 metros cúbicos, y en la cabecera municipal con capacidad de regularización de 1,500 metros cúbicos.

Asimismo, la localidad cuenta con varios sistemas de deshielos alimentados por los escurrimientos del volcán Popocatépetl. Los cuales son: el sistema Alfredo del Mazo cuenta con un flujo de 30 l.p.s., el sistema Amalacaxco con un flujo de 6 l.p.s., y los sistemas Sn. Juan Tehuixtitlan y Cuauxolo con 4 l.p.s. de flujo. Respecto a la cobertura del servicio, de acuerdo al censo del 2010 se registró una población de 31,732 habitantes. Sin embargo carece del abasto en los meses de octubre a enero provocando un problema de abastecimiento de agua en todo el municipio.

Centro de Estudios para la Preparación y Evaluación Socioeconómica de Proyectos. 1996

De este total de ocupantes el 89.1%, dispone de agua entubada en la vivienda ubicados en el centro de la cabecera y en el centro de San Juan Tehuixtitlan.


El 7.7%, dispone de agua entubada por acarreo de llave pública o de otra vivienda, el 1.7%, no dispone de agua entubada, sino que el suministro del vital líquido se realiza a través de pipa o pozo. Ambos casos se refieren a las casas ubicadas a los alrededores de las barrancas que atraviesan el municipio y en los terrenos que se encuentran al este del municipio, cercanos a los campos de cultivo.

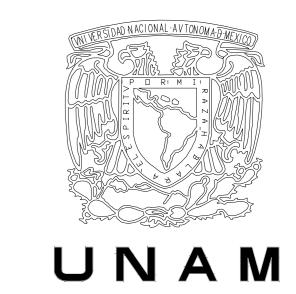

La red de distribución está conformada por dos redes de 8" y 6" de diámetro de P.V.C. con un total de 10 Km. de longitud, aproximadamente.

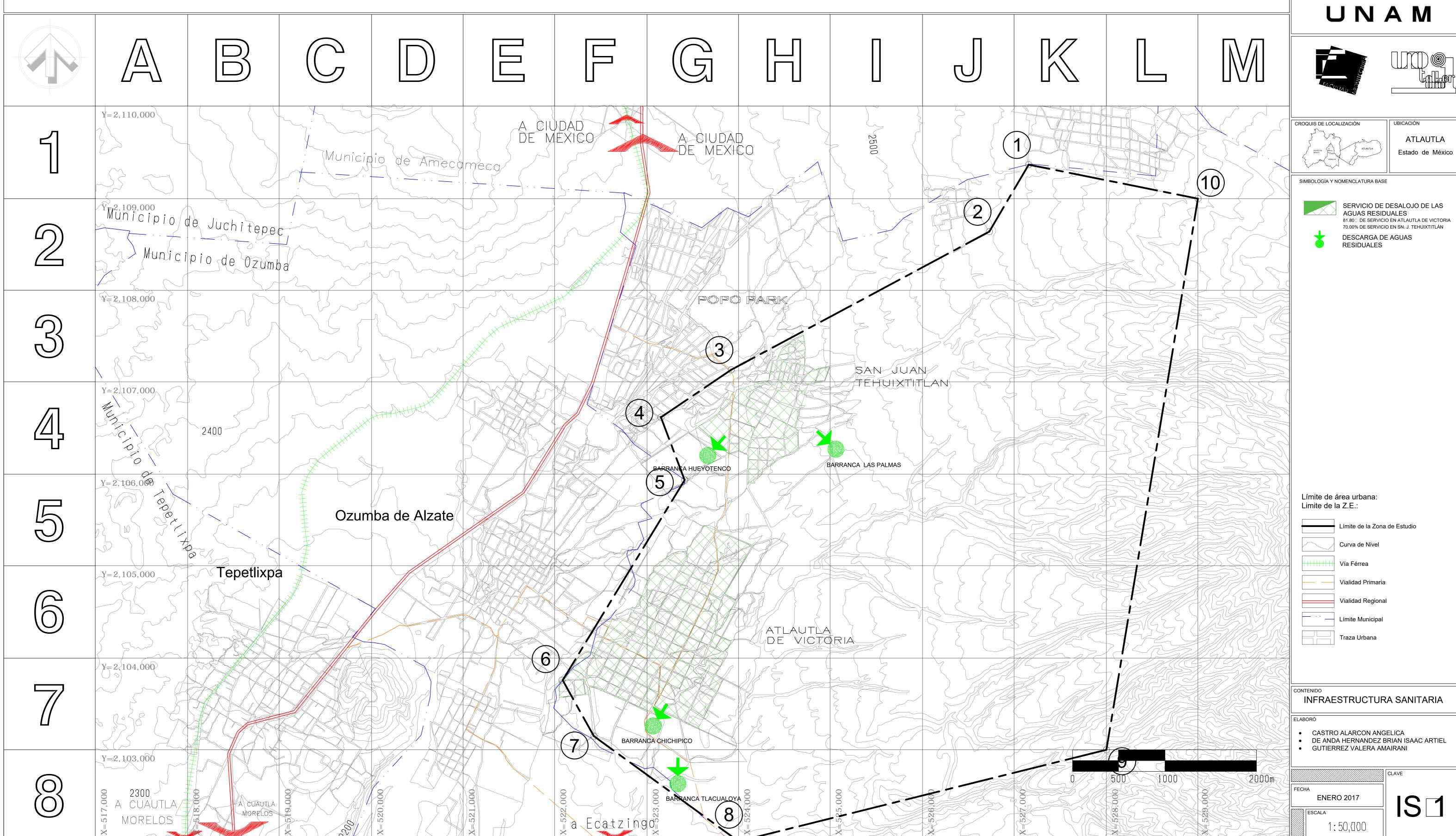
INFRAESTRUCTURA HIDRAÚLICA

Infraestructura sanitaria

La población que cuenta con acceso al servicio de drenaje significa el 81.8% conectado a la red pública ubicada en el centro de Atlautla de Victoria y de San Juan Tehuixtitlan, además el 13.1%, dispone de fosa séptica que se encuentran a las afueras del municipio hacia el este. Y el 5.1% tiene desagüe a grieta que se refiere a las viviendas cercanas a las barrancas. En cuanto a la red de alcantarillado se tiene el servicio en el 85% del área urbana. Este porcentaje solo se encuentra en el centro de la cabecera municipal.

Sin embargo, las aguas grises y las aguas negras se combinan por lo que todas las descargas llegan a las Barrancas Chichipico y Tlacualoya, en la cabecera municipal.

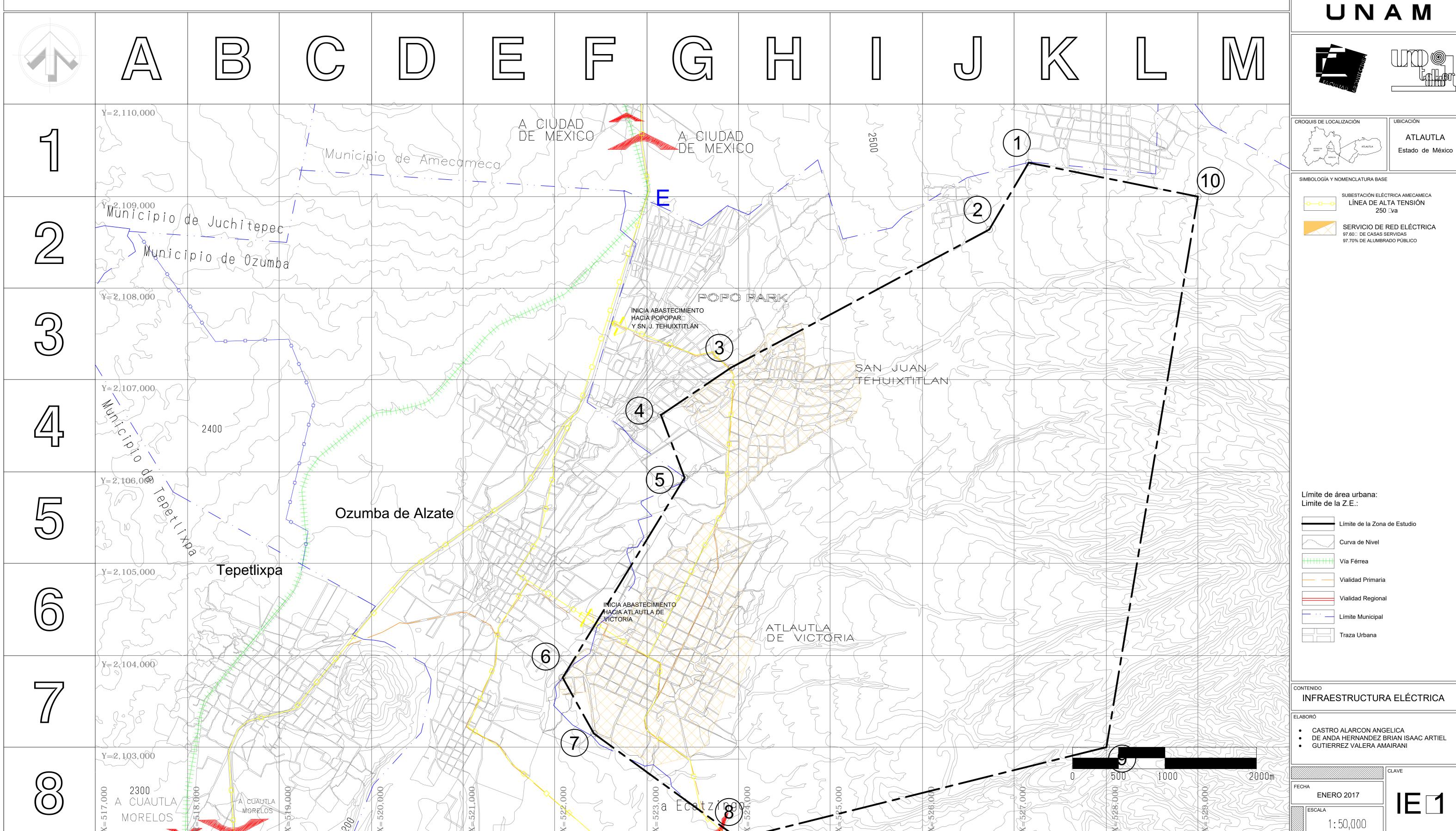

En San Juan Tehuixtitlan se cuenta con una cobertura del 70 %, en el centro de la localidad, ya que las viviendas que se fincaron después fueron construidas sobre los antiguos campos de cultivo cercanos. Pero persiste el mismo problema, la red va a descargar a las barrancas de Huyotenco y las Palmas.


En conclusión, la infraestructura sanitaria en la zona de estudio, la población cuenta con drenaje, pero finalmente la disposición de las aguas negras va directamente a los cauces naturales que fungen como colectores, provocando una alta fuente de contaminación.

INFRAESTRUCTURA SANITARIA

Infraestructura eléctrica

El servicio es proporcionado por Comisión Federal de Electricidad; ubicándose en Amecameca dos subestaciones que abastecen la región. La capacidad de suministro es de 250Kv.


La cobertura es de 97.6%, en las viviendas particulares habitadas registradas por el censo, el porcentaje restante se encuentra en las afueras del municipio, principalmente en las viviendas cercanas a la barranca que divide a Atlautla de Ozumba. Sin embargo, es necesario ampliar la cobertura del servicio y resolver el problema de bajo voltaje en toda la localidad, ya que el voltaje proveniente de la subestación de Amecameca (250 kva, es decir, 250,000 watts) es inapropiado para las 150 casas existentes en Atlautla de Victoria y San Juan Tehuixtitlan (600,000 watts en total). Pero, mientras no se considere el incremento del equipo no se podrán impulsar las actividades de desarrollo económico.

INFRAESTRUCTURA ELÉCTRICA

EQUIPAMIENTO URBANO

EQUIPAMIENTO URBANO

El siguiente capítulo mostrará el equipamiento con el que cuenta la población de la zona de estudio, para su posterior diagnóstico, según el déficit o superávit.

Para ayudar con el análisis se utilizaron los manuales del Sistema Normativo de Equipamiento Urbano que proporciona la Secretaria de Desarrollo Social (SEDESOL).

Los subsistemas que componen al equipamiento urbano se dividen, para facilitar su comprensión, en los siguientes rubros:

- I. Educación y Cultura
- II. Salud y Asistencia Social
- III. Comercio y Abasto
- IV. Comunicaciones y Transporte
- V. Recreación y Deporte
- VI. Administración Pública y Servicios Urbanos

EQUIPAMIENTO URBANO EXISTENTE

SUBSISTEMA / NIVEL /					
NOMBRE		SUP. PREDIO	SUP. CONS.	UBS	TURNOS
EDUCACIÓN					
Jardín de niños	Atlautla de Victoria				
Dr. Jorge Jiménez Cantú	Francisco I. Madero			7	Matutino
Lic. Alfredo del Mazo	Juárez s/n			7	Matutino
Jardín de Niños	San Juan Tehuixtitlan				
Albert Einstein	Cerrada Gómez Farias s/n			6	Matutino
Chimalpain	Morelos s/n			3	Matutino
Jardín de Niños	Localidades Restantes			11	Matutinos
Primarias	Atlautla de Victoria				
Guadalupe Victoria	Tamaulipas entre Jalisco y Tamaulipas			4	Matutino
Benito Juárez	Independencia #4			26	Matutino
Amado Nervo	Corregidora s/n			19	Matutino
Primarias	San Juan Tehuixtitlan				
Emancipación Campesina	Av. Del Trabajo #1			19	Matutino
Miguel Hidalgo y Costilla	Av. Del Trabajo #1			18	Vespertino
Rosario Castellanos	Estado de México #s/n			6	Matutino
Primarias	Localidades Restantes			74	Matutino
Secundarias	Atlautla de Victoria				
Fernando Montes de Oca	Corregidora			10	Matutino
Secundarias	San Juan Tehuixtitlan				
Tierra y Libertad	Insurgentes s/n			6	Matutino
Secundarias	Localidades Restantes			12	Matutino
Telesecundarias	Atlautla de Victoria				
Lic. Álvaro Gálvez y Fuentes	Corregidora			12	Matutino
Telesecundarias	San Juan Tehuixtitlan				
Benito Juárez	Av. Juárez No.91			13	Matutino
Telesecundarias	Localidades Restantes			3	Matutino

SUBSISTEMA / NIVEL /	LOCALIZACIÓN		CARACTER	ÍSTICAS	
NOMBRE		SUP. PREDIO	SUP. CONS.	UBS	TURNOS
C.B.T.A.	Atlautla de Victoria				
C.B.T.A. N° 35, extensión Atlautla	Emiliano Carranza # s/n			11	Matutino
CECYTEM	Atlautla de Victoria				
CECYTEM, plantel Atlautla	Corregidora #3			7	Matutino
Preparatoria	San Juan Tehuixtitlan				
Misael Núñez Acosta	Emiliano Zapata #s/n			2	Vespertino
CULTURA		'			
	Atlautla de Victoria				
Biblioteca Pública Municipal "Jaime Torres Bodet"		60 m2	60 m2	25 sillas	Mixto
	San Juan Tehuixtitlan				
Biblioteca Pública Municipal "Prof. Modesto Pérez Hernández"	Juárez s/n	70 m2	70 m2	20 sillas	Vespertino
	Atlautla de Victoria				
Casa de Cultura	Plaza de la Constitución s/n	595.70 m2	496.372	496.37 m2	Mixto

Fuente: Obtenida en campo por el consultor, H. Ayuntamiento de Atlautla, Supervisores de SEP- Edo. De México, y personal administrativo de los inmuebles censados. (2014)

SUBSISTEMA / NIVEL / NOMBRE	LOCALIZACIÓN		CARACTER	RÍSTICAS	
		SUP. PREDIO	SUP. CONS.	UBS	TURNOS
SALUD					
	Atlautla de Victoria				
Centro de Salud urbano	Emiliano Carranza #17			2 consult orios	
	San Juan Tehixtitlán				
Centro de Salud urbano	Gómez Farias s/n			1 consult orios	
	Localidades Restantes				
Centro de Salud urbano				2 consult orios	

Fuente: Obtenida en campo por el consultor, H. Ayuntamiento de Atlautla, y personal administrativo de los inmuebles censados (2014)

SUBSISTEMA / NIVEL /	LOCALIZACIÓN		CARACTER	ÍSTICAS	
NOMBRE		SUP. PREDIO	SUP. CONS.	UBS	TURNOS
COMERCIO					
	Atlautla de Victoria				
Plaza de Usos Múltiples (Tianguis o Mercados sobre Ruedas)				40 puestos	Domingo
Mercado Público (provisional)	Calle Mejoramiento Ambiental			14 puestos	Diario
Tienda CONASUPO		35 m2	35 m2	1 tienda	1

Fuente: Obtenida en campo por el consultor, H. Ayuntamiento de Atlautla, y personal administrativo de los inmuebles censados (2014).

SUBSISTEMA / NIVEL /	LOCALIZACIÓN		m2 25 m2 3 De 8:00 a		
NOMBRE		SUP. PREDIO	SUP. CONS.	UBS	TURNOS
COMUNICACIONES	COMUNICACIONES				
	Atlautla de Victoria				
Administración d Correos.	e Plaza de la Constitución, s/n (Presidencia Municipal)	25 m2	25 m2	3 ventanil las	De 8:00 a 15:00 hrs.

Fuente: Obtenida en campo por el consultor, H. Ayuntamiento de Atlautla, y personal administrativo de los inmuebles censados (2014).

			CARACTER	RÍSTICAS	
NOMBRE		SUP. PREDIO	SUP. CONS.	UBS	TURNOS
RECREACIÓN	•		•	•	
	Atlautla de Victoria				
Plaza Cívica.	Plaza de la Constitución.	2,300 m2	40 m2	2,300 m2	Variable: sujeto a eventos espontáneo s o programado s.
DEPORTE					
	Atlautla de Victoria				
Modulo Deportivo	Domicilio conocido, al lado de la presidencia municipal	3,500.00		2,200 m2 de cancha	12 horas
	San Juan Tehuixtitlan				
Modulo Deportivo	Domicilio conocido	2,800 m2		1,200 m2 de cancha	12 horas

Fuente: Obtenida en campo por el consultor, H. Ayuntamiento de Atlautla, y personal administrativo de los inmuebles censados (2014).

SUBSISTEMA / NIVEL /	LOCALIZACIÓN		CARACTER	ÍSTICAS	
NOMBRE		SUP. PREDIO	SUP. CONS.	UBS	TURNOS
ADMINISTRACIÓN PÚBLICA					
	Atlautla de Victoria				
Palacio Municipal	Plaza de la Constitución.	714.14	1,428.28 m2	1,428.28 m2	Matutino
Comandancia de Policía	Presidencia Municipal	80.00 m2	80.00 m2	80.00 m2	2 tumos 24*24
	San Juan Tehuixtitlan				
Delegación Municipal	Juárez s/n	55	55	55 m2 de construi dos	1
SERVICIOS URBANOS					
	Atlautla de Victoria				
Cementerio	Corregidora s/n	25,000	25,000	Al 100% de su capacid ad	1
Tiradero Municipal "Barranca a San Juan Tehixtitlán"		20,000 m2	-	20,000 m2	1
Tiradero Municipal "Calle Veracruz"		10,000 m2	-	10,000 m2	1
	San Juan Tehuixtitlan				
Cementerio	Paseo de la Reforma, esq. Gloria	15,000 m2	15,000 m2	Al 100% de su capacid ad	1
Tiradero Municipal "Cerrada de Reforma"		200 m2	-	200 m2	1

Fuente: Obtenida en campo por el consultor, H. Ayuntamiento de Atlautla, y personal administrativo de los inmuebles censados (2014).

DIAGNÓSTICO DEL EQUIPAMIENTO URBANO

Elemento	Unidad Actual	Unidades Requeridas, actuales	Déficit o Superávit
Jardín de Niños	34 aulas	39 aulas	5 aulas (Déficit)
Primarias	166 aulas	133 aulas	33 aulas (superávit)
Secundarias	56 aulas	30 aulas	26 aulas (superávit)
Biblioteca Pública	45 sillas	44 sillas	1 silla (superávit)
Casa de la Cultura	496.37 m2	852 m2	355.63 m2 (déficit)
Museo	No hay	1,400 m2	1,400 m2 (déficit)
Centro de Salud Urbano	5 Consultorios	1 Consultorio	4 consultorios (superávit)
Unidad de Medicina Familiar (IMSS)	No Hay	3 consultorios	3 (déficit)
Puesto de Socorro (Cruz Roja Mexicana)	No Hay	4 carros camilla	4 (déficit)
Tianguis	40 Puestos	214 Puestos	174 puestos (déficit)
Mercado Público (provisional)	14 Locales	83 puestos	69 puestos (déficit)
Tienda CONASUPO	1 tienda	4 Tienda (condicionadas)	3 tiendas (déficit, condicionadas)
Administración de Correos	3 ventanillas	1 ventanillas	2 ventanillas (superávit)
Plaza Cívica.	2,300.00 m2	4,152 m2	1,852 m2 (déficit)
Modulo Deportivo	3,400.00 m2	4,449.00 m2	1,049.00 m2 (déficit)
Palacio Municipal	1,428.28 m2 construidos	519.00 m2	909.28 m2 (superávit)
Delegación Municipal	55 m2	Cubiertas en todas las	Se encuentran cubiertas
		delegaciones	en todas las
			delegaciones
Oficina de Gobierno Estatal	No hay	259.00 m2	259.00 m2 (déficit)
Comandancia de Policía	80.00 m2 construidos	157.00 m2	77 m2 (déficit)
Cementerio	Saturado al 100% de su capacidad	150 fosas por año	150 por año (déficit)
Tiraderos	30,200 m2	3,707 m2	26,493 m2 (superávit)

Fuente: Obtenida en campo por el consultor, H. Ayuntamiento de Atlautla, y personal administrativo de los inmuebles censados, los superávit y déficit, fueron obtenidos en base a la normatividad establecida por la SEDESOL, para el equipamiento urbano.

VIVIENDA

De acuerdo al censo realizado en el 2010 por el Instituto Nacional de Estadística y Geografía, en Atlautla de Victoria hay 10,967 habitantes, mientras que en San Juan Tehuixtitlan hay 6,743 habitantes. Además, según el mismo censo, existen un total de 3,916 casas en la zona estudiada.

De estas se identificaron dos tipos de vivienda:

- H1: El aspecto dentro del lote es desordenado. Las superficies de construcción son mínimas, generalmente de 40 m² o menores. Los materiales empleados en techumbres son lámina de cartón, teja, asbesto, lámina galvanizada; en muros madera, adobe, material de desecho, etc.
- 2. H2: Autoconstrucción y autofinanciamiento en períodos medianos o largos, se localizan en los centros de los pueblos, en las periferias de las mismas en zonas con asentamientos espontáneos. Los materiales empleados son el concreto en, losas sin acabados, muros de tabique, tabicón o similar en muros.

El tipo 1 se encuentra en su mayoría hacia las periferias de la cabecera, mientras que el tipo 2 es el que mayor predomina en el centro de ambas localidades.

Para continuar con el análisis, se calculó el déficit o superávit de la zona de estudio. Con la información recabada en el censo, se pudo encontrar que composición familiar es de 4.43 integrantes por familia, de esta manera, se observó que hay un déficit de 82 casas.

TABLA DIAGNÓSTICO DE VIVIENDA ACTUAL						
Localidad	Población	Comp.	Casas	Casas	Déficit	Superávit
	Actual	Familiar	Necesarias	Existentes		
Atlautla de Victoria	10,967	4.43	2,476	2,357	119	-
San Juan Tehuixtitlan	6,743	4.43	1,522	1,559		37
Total	17,710		3,998	3,916	82	-

Elaboración propia

Con el análisis realizado, se llegó a un programa de acciones que ayuden a mejorar este problema. En primer lugar, es necesario sustituir las viviendas que están en mal estado, las cuales presentan deterioro por humedad y salitre. El segundo programa a realizar es el mejoramiento en viviendas donde se reparen daños en acabados como gritas o pintura en fachadas. Y, por último, la construcción de viviendas para albergar a la población futura.

VIVIENDA						
Reposición de	Periferia de	Corto	1	Consolidación		
viviendas	localidades					
Mejoramiento	Centro de	Mediano	2	Consolidación		
de viviendas	localidades					
Construcción	Lotificación	Corto	1	Impulso		
de vivienda	propuesta					
multifamiliar						

Elaboración propia

Para la lotificación propuesta, se tomó en cuenta el déficit que tiene actualmente más las viviendas que se necesitaran. Lo que da un total de 569 viviendas necesarias para el 2020.

TABLA DE VIVIENDAS NECESARIAS A PLAZO MEDIO							
Plazo	Plazo Población Composición Casas -20%						
	Total	Familiar	Necesarias	Densificación			
Medio	3,151	4.43	711	569			

Elaboración propia

Además, se tomó en cuenta los cajones salariales de los habitantes, los cuales ayudaron a destinar el tipo de vivienda según el rango de salario mínimo que ganaran.

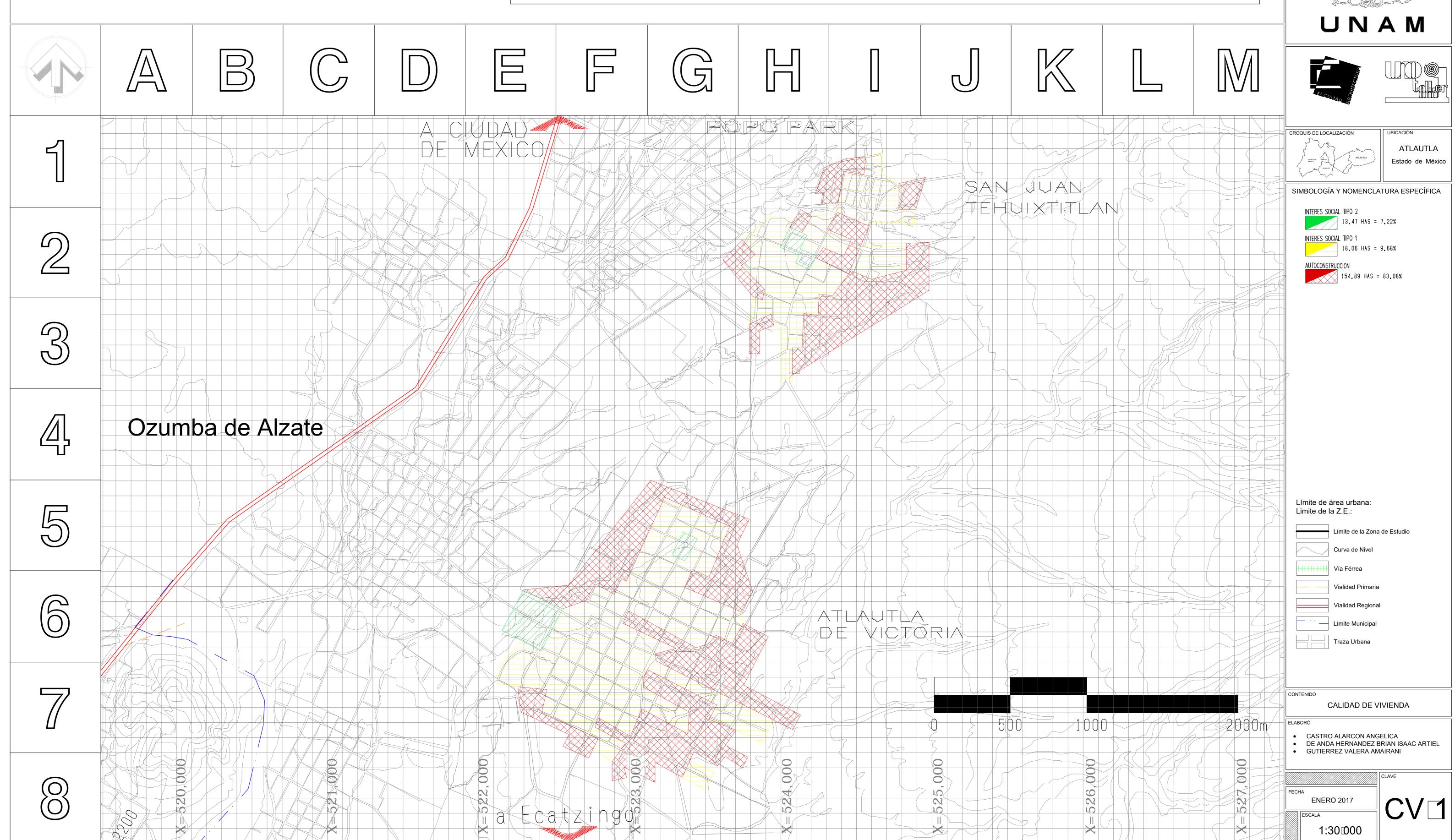
Se observó que la mayoría de la población se encuentra en un rango de uno a dos salarios mínimos, seguido de menos de un salario mínimo, y de dos a cinco salarios mínimos.

TABLA DE TIPOS DE VIVIENDA						
SVM	Tipo de	Terreno	Construcción	Costo Total		
	Vivienda					
- de 1	Terreno con	75 m ²	-	\$41,250.00		
	servicios					
1-2	Interés social	175	105 m ²	\$1,050,700.00		
	multifamiliar	m ²				
	(4 familias)					
2-5	Interés social	175	105 m ²	\$1,050,700.00		
	multifamiliar	m ²				
	(2 familias)					
5-10	Interés medio	200	120 m ²	\$982,640.00		
	unifamiliar	m ²				
+ 10	Residencial	250	150 m ²	\$1,743,250.00		
		m ²				

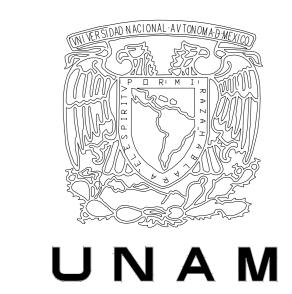
Elaboración propia

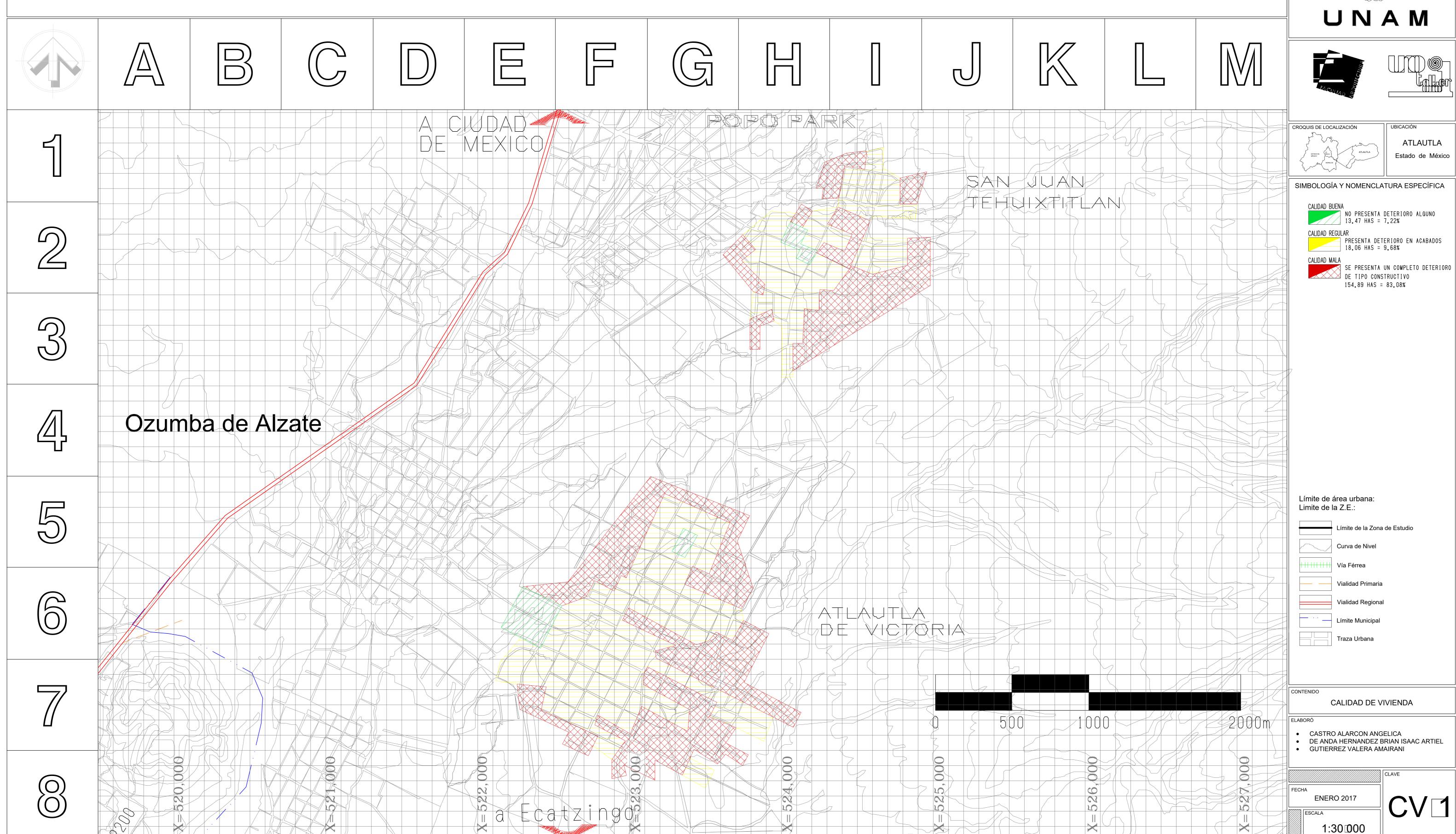
También, se calcularon las formas de crédito con las que pueden utilizar para la compra del inmueble. El Instituto del Fondo Nacional de la Vivienda para los Trabajadores ofrece un el Crédito Infonavit, que acepta cualquier tipo de cajón salarias, mediante el cual descuenta un 30% del salario del empleado para pagar el préstamo que le da el instituto.

TABLA DE SALARIOS						
SVM	30% SVM	Total Anual	Crédito			
- de 1	\$ 10.96	\$ 3,682.56	15 años			
1-2	\$ 24.89	\$ 8,361.76	30 años			
2-5	\$ 76.69	\$ 25,767.84	20 años			
5-10	\$ 164.34	\$ 55,218.24	20 años			
+ 10	\$ 219.12	\$ 73,624.32	25 años			

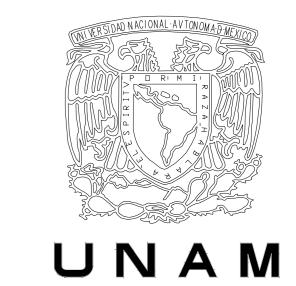

Elaboración propia

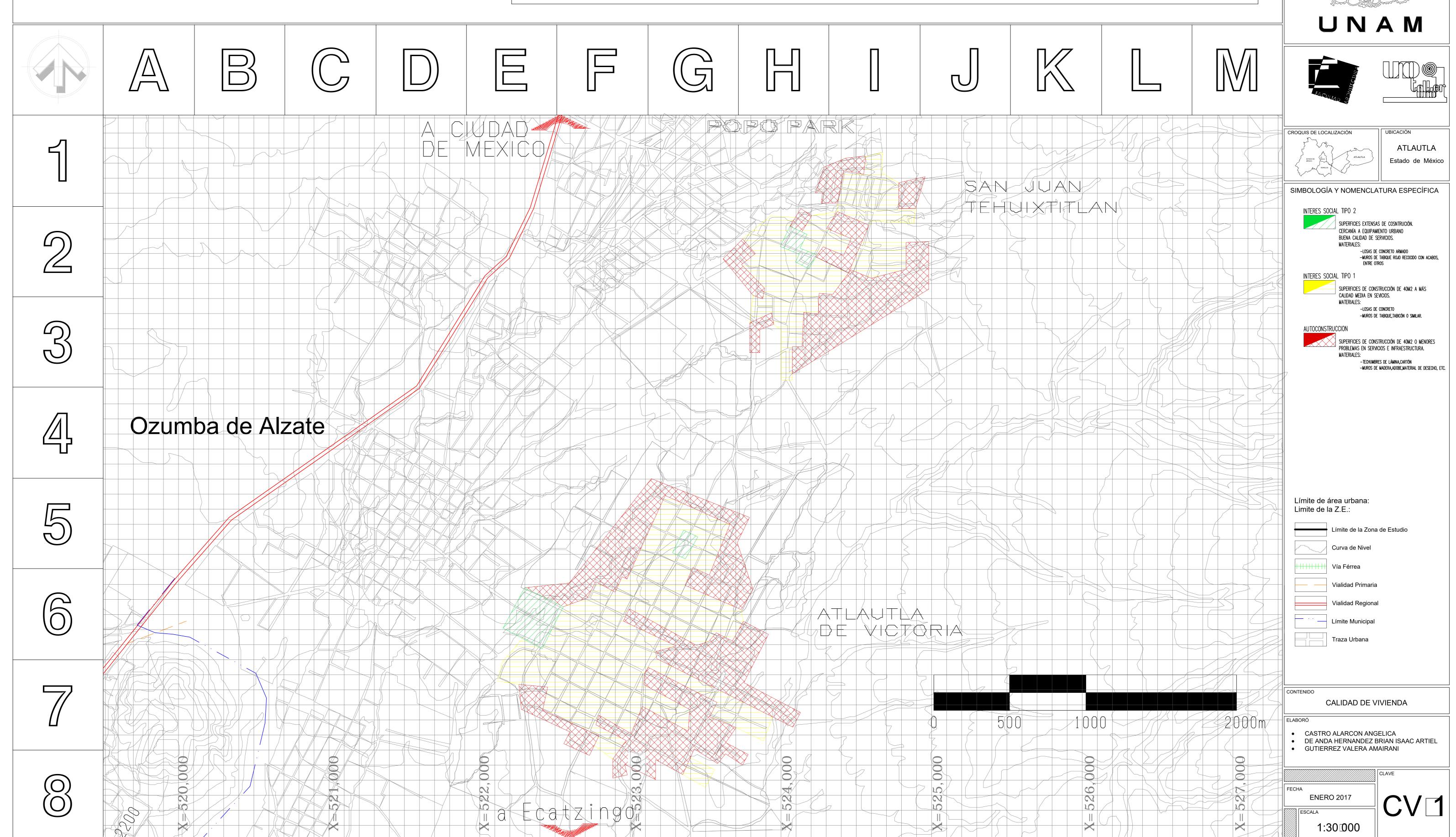
TIPOS DE VIVIENDA



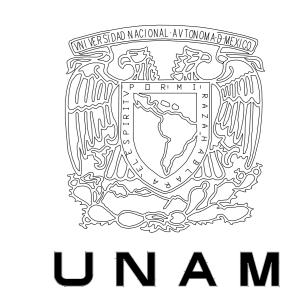


CALIDAD DE VIVIENDA





DIAGNÓSTICO DE VIVIENDA



PROGRAMA DE VIVIENDA

DETERIORO AMBIENTAL

La zona de estudio tiene una importante obligación con su entorno, debido a que sus asentamientos se encuentran muy cerca del Parque Nacional Ixta-Popo, uno de los principales pulmones de la Zona del Valle de México.

Los principales problemas que se presentan son:

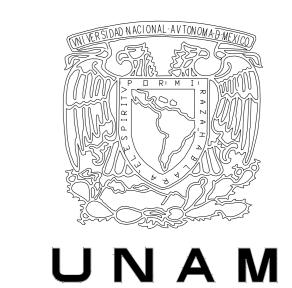
- a) La contaminación de barrancas por aguas residuales y basura.
- b) La deforestación generada por la tala ilegal de aboles dentro del parque.
- c) La extinción del Teporingo debido a la contaminación, los incendios forestales y la extracción clandestina de madera, pastos y suelo.
- d) El desplazamiento de la mariposa monarca causado por la explotación turística del santuario "La Joya Redonda" que ha causado que las mariposas migren a zonas más altas del volcán Popocatépetl.

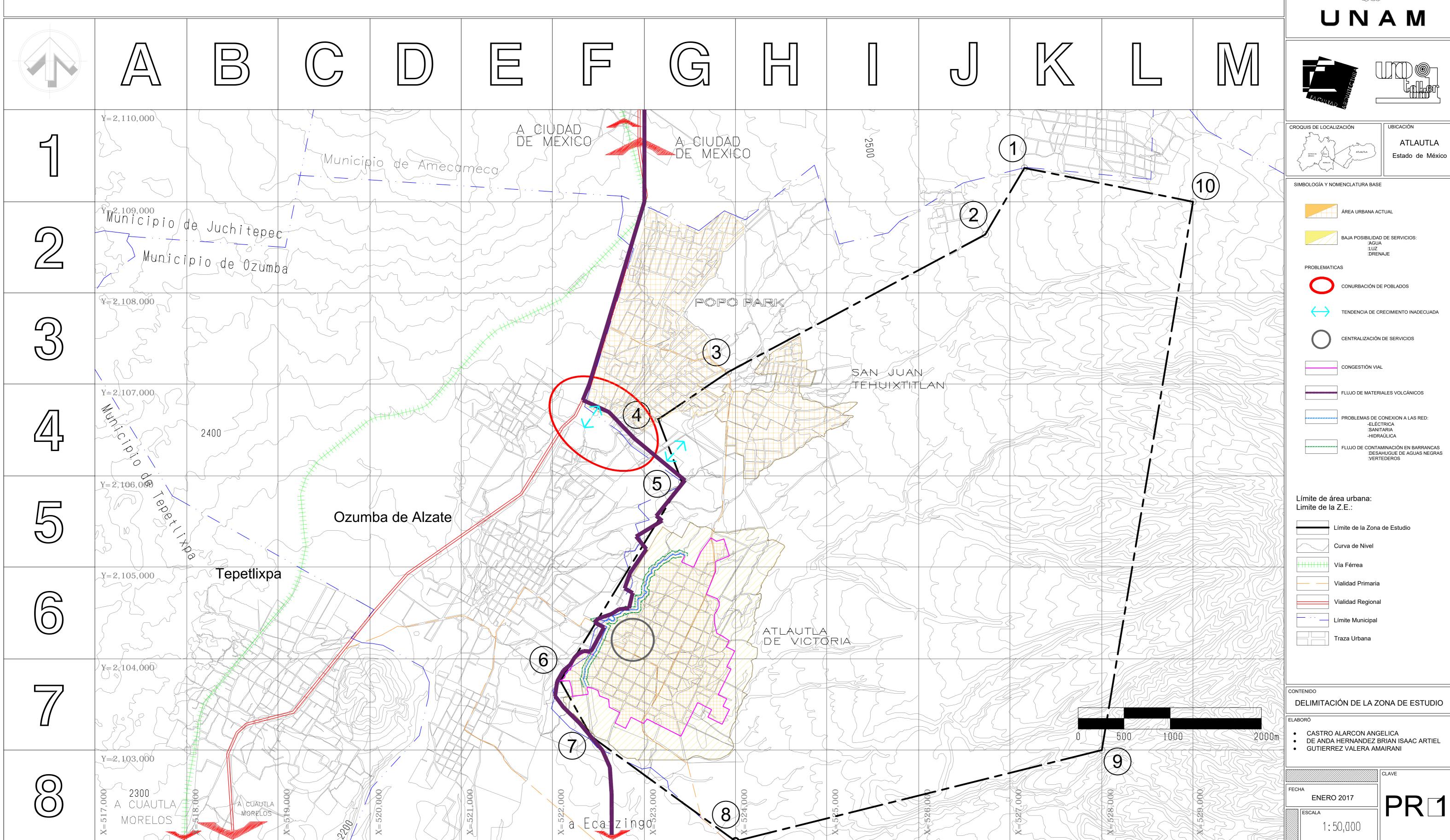
PROBLEMÁTICA URBANA

La problemática que se presenta en la localidad se deriva del aumento desordenado de la población. Lo que ocasiona una serie de problemas que vieron en este capítulo.

El crecimiento de la mancha urbana, que dirige hacia Ozumba o hacia zonas ejidales, causado por los cambios usos de suelo urbano, provoca que en esas zonas no haya servicio de agua potable, drenaje, alcantarillado y electricidad, además, de agravar el problema insuficiencia de las fuentes de abastecimiento de agua potable y el suministro de luz. También, representa un foco de contaminación ya que en la localidad desecha sus residuos en las barrancas.

Respecto a la imagen urbana, se desaprovechan los símbolos históricos como potencial atractivo turístico, pues no tienen un adecuado mantenimiento y son maltratados por los habitantes. Por otro lado, el estado de las viviendas que se ubican alrededor necesita mantenimiento en sus fachadas.


En cuanto a las vialidades, se presenta el problema de los baches en las zonas periféricas, y la falta de señalización. Así como la necesidad de habilitar las banquetas para el acceso de personas con discapacidad.


Así también, la centralización del equipamiento urbano en la cabecera municipal que se ocasiona por la falta de planeación del gobierno y provoca el desplazamiento forzado de la población para recibir sus servicios.

PROBLEMÁTICA URBANA

PROPUESTAS URBANAS

PROPUESTAS URBANAS

ESTRATEGIA DE DESARROLLO

Actualmente la zona de estudio presenta una dependencia económica con el municipio de Ozumba, aun así, tiene una importante producción agrícola con lo cual se pretende equilibrar las actividades económicas realizadas en la zona y de este modo se adquiera autonomía.

Los sectores económicos, con base en la investigación, están distribuidos de la siguiente forma: se presenta una mayor concentración en el sector terciario con un 48.56%, posteriormente el sector primario con un 33.84%, y finalmente se encuentra el sector secundario con un 16.78%. ¹⁰

Con base en eso se propone compensar los tres sectores, con un nuevo modelo económico distribuido de la siguiente forma: 5% en actividades primarias, 25% para actividades secundarias y finalmente 70% en actividades terciarias.

Generando una política de impulso, para beneficiar en mayor nivel a la población.

- Sector primario: Se propone la tecnificación del campo para aumentar y mejorar su productividad en la nuez de castilla y a la vez impulsar la producción de capulín, jitomate, maíz, tomate, chilacayote, aguacate y avena.
- Para lograr dicha tecnificación, se buscará capacitar a la población de manera que ellos mismos puedan generar un mejor aprovechamiento de la tierra, por medio de hidroponía, cultivos verticales, selección de especies resistentes a plagas y enfermedades generales del cultivo. A causa de dicha tecnificación se reduciría la población ocupada en este sector.

- Sector secundario: Comenzar una agroindustria dedicada, principalmente, a la transformación de la nuez en diversos productos como son: abrasivo vegetal, carbón vegetal, los cuales se derivan de la cascara; además de champú, jabón, aceite, licor y harina. los cuales podrán ser comercializados posteriormente.
- Sector terciario: Se plantea comercializar los productos derivados de la nuez y el capulín a nivel municipal y posteriormente a nivel estatal por medio del sistema de enlaces encontrado, que lleva hacia Cuautla y la Ciudad de México. Por lo tanto, se requiere un mayor número de población ocupada en este sector.

PROGRAMAS DE DESARROLLO

Siguiendo con la política de consolidación la zona de estudio requiere a corto plazo:

- Una escuela de oficios y talleres para mujeres, en donde puedan adquirir los conocimientos suficientes para llevar a cabo alguna de las actividades ahí propuestas y de ésta manera obtener una remuneración económica.
- Un centro de capacitación: En el cual se enseñarán nuevas formas de cultivar de una manera más productiva.
- Una fábrica de materiales plásticos: La cual se deriva de la misma tecnificación para poder llevar a cabo dicha actividad de manera autogestora.

¹⁰ Instituto Nacional de Geografía y Estadística. Secretaría de Economía.

Posteriormente, y de acuerdo a la estrategia de desarrollo, se podrá trabajar el campo de manera más eficiente, con lo que se propone la agroindustria de transformación de nuez y de capulín, por lo que se va a requerir lo siguiente:

- Industria transformadora de nuez en productos naturistas como: crema, jabón, aceite dulces y licores.
- Industria transformadora de cáscara de nuez en abrasivo vegetal y carbón vegetal.
- Industria transformadora de capulín en licor, medicina naturista y dulces.

Estos espacios van a requerir un lugar en donde se pueda llevar a cabo toda la organización y control de dichas operaciones además de un lugar para poder almacenar el producto.

Así mismo para aprovechar cualquier tipo de desechos se propone una planta recicladora.

A causa de la implementación de industrias aumentaría la bolsa de trabajo en la zona de estudio, por lo que se consideraría una política de impulso, ya resueltos los problemas existentes, lo cual promoverá el crecimiento económico y finalmente acabar con la dependencia con Ozumba.

A continuación se mencionan los programas de desarrollo propuestos para la zona de estudio, en los cuales se menciona su prioridad de acuerdo a la siguiente tabla con base en la problemática ya establecida anteriormente.

TABLA ÍNDICE DE PRIORIDAD					
NUMERACIÓN NIVEL DE PRIORIDAD					
1	Alta				
2	Media				
3	Baja				

	PROGRAMAS DE DESARROLLO						
PROGRAMA	SUBPROGRAMA	LOCALIZACION	PLAZO	PRIORIDAD	POLÍTICA		
SUELO	Introducción de nuevos cultivos	Al norte de la zona de estudio	Mediano	2	Impulso		
SUELO	Tecnificación del campo.	Al norte de la zona de estudio	Mediano	1	Impulso		
SUELO	Designar actividades eco turísticas para protección de zonas de conservación.	Faldas del volcán Popocatépetl	Corto	3	Control		
VIALIDADES	Mejoramiento de vialidades existentes.	Toda la zona de estudio.	Corto	1	Consolidación		
VIALIDADES	Pavimentación de caminos de terracería.	Periferia de localidades	Corto	1	Consolidación		
VIALIDADES	Prolongación de Avenida Francisco Madero para el desarrollo de las viviendas propuestas.	Noreste de Atlautla de Victoria	Corto	1	Impulso		
INFRA. DRENAJE	Saneamiento de barrancas	Periferia de localidades	Corto	1	Consolidación		
INFRA. DRENAJE	Ampliación de la red	Periferia de localidades	Corto	1	Consolidación		
INFRA. DRENAJE	Construcción de plantas de tratamiento para aguas negras y grises.	Suroeste de la zona de estudio	Corto	1	Consolidación		
INFRA. DRENAJE	Construcción de nueva red	Lotificación propuesta	Corto	1	Impulso		
INFRA. HIDRÁULICA	Obtención de red independiente para conectar a las cajas de agua existentes.	Toda la zona de estudio.	Corto	1	Consolidación		
INFRA. HIDRÁULICA	Ampliación de la red	Periferia de localidades	Corto	1	Consolidación		
INFRA. HIDRÁULICA	Construcción de sistema de captación pluvial.	Norte de la lotificación propuesta	Mediano	1	Impulso		
INFRA. HIDRÁULICA	Construcción de tanques elevados para almacenamiento.	Este de la lotificación propuesta	Mediano	1	Impulso		
INFRA. HIDRÁULICA	Construcción de nueva red	Lotificación propuesta	Corto	1	Impulso		
INFRA.: ELÉCTRICA	Ampliación de la red	Periferia de localidades	Corto	1	Consolidación		
INFRA. ELÉCTRICA	Aumento de abastecimiento	Toda la zona de estudio.	Corto	1	Consolidación		

PROGRAMAS DE DESARROLLO						
PROGRAMA	SUBPROGRAMA	LOCALIZACION	PLAZO	PRIORIDAD	POLÍTICA	
INFRA. ELÉCTRICA	Subestación eléctrica de media tensión	Lotificación propuesta	Corto	1	Impulso	
INFRA. ELÉCTRICA	Construcción de nueva red	Lotificación propuesta Corto		1	Impulso	
EQUIPAMIENTO	Auditorio municipal	Cabecera	Largo	3		
EQUIPAMIENTO	Centro de salud con hospitalización	Centro de cabecera / esquina	Corto	1	Consolidació n	
EQUIPAMIENTO	Central de urgencias	Área urbana / esquina	Corto	1	Impulso	
EQUIPAMIENTO	Centro de desarrollo comunitario	Área urbana / cabecera	Mediano	2	Impulso	
EQUIPAMIENTO	Guardería / casa hogar para ancianos	Área urbana / manzana completa	Corto	1	Consolidació n	
EQUIPAMIENTO	Centro de rehabilitación	Área urbana / manzana completa	Mediano	1	Impulso	
EQUIPAMIENTO	Mercado público	Área urbana / 1/2 manzana	Mediano	2	Consolidación	
EQUIPAMIENTO	Unidad de abasto mayorista	Fuera del área urbana	Largo	2	Impulso	
EQUIPAMIENTO	Central de autobuses de pasajeros	Cabecera / manzana completa	Mediano	2	Consolidación	
EQUIPAMIENTO	Escuela de oficios y talleres para mujeres	Centro de cabecera	Corto	1	Impulso	
EQUIPAMIENTO	Área de feria y exposiciones	Área urbana	Largo	3	Impulso	
EQUIPAMIENTO	Módulo deportivo	Cabecera / manzana completa	Mediano	2	Impulso	
EQUIPAMIENTO	Central de bomberos	Área urbana / esquina	Corto	1	Consolidación	
EQUIPAMIENTO	Estación de servicio (gasolinera)	Área urbana / cabecera	Mediano	1	Consolidación	
EQUIPAMIENTO	Creación de agroindustrias	Al sur de la zona de estudio	Mediano	1	Impulso	
EQUIPAMIENTO	Planta recicladora	Lotificación propuesta	Mediano	2	Impulso	
VIVIENDA	Establecer límite de crecimiento urbano sano	Faldas del volcán Popocatépetl	Corto	1	Control	
VIVIENDA	Establecer límite de crecimiento urbano sano	Faldas del volcán Popocatépetl Corto 1		1	Control	
VIVIENDA	Construcción de casa-hogar	Centro de localidades	Corto	2	Consolidación	
VIVIENDA	Reposición de viviendas	Periferia de localidades	Corto	1	Consolidación	
VIVIENDA	Mejoramiento de viviendas	Centro de localidades	Mediano	2	Consolidación	
VIVIENDA	Construcción de vivienda multifamiliar	Lotificación propuesta	Corto	1	Impulso	

Elaboración propia

ESTRUCTURA URBANA PROPUESTA

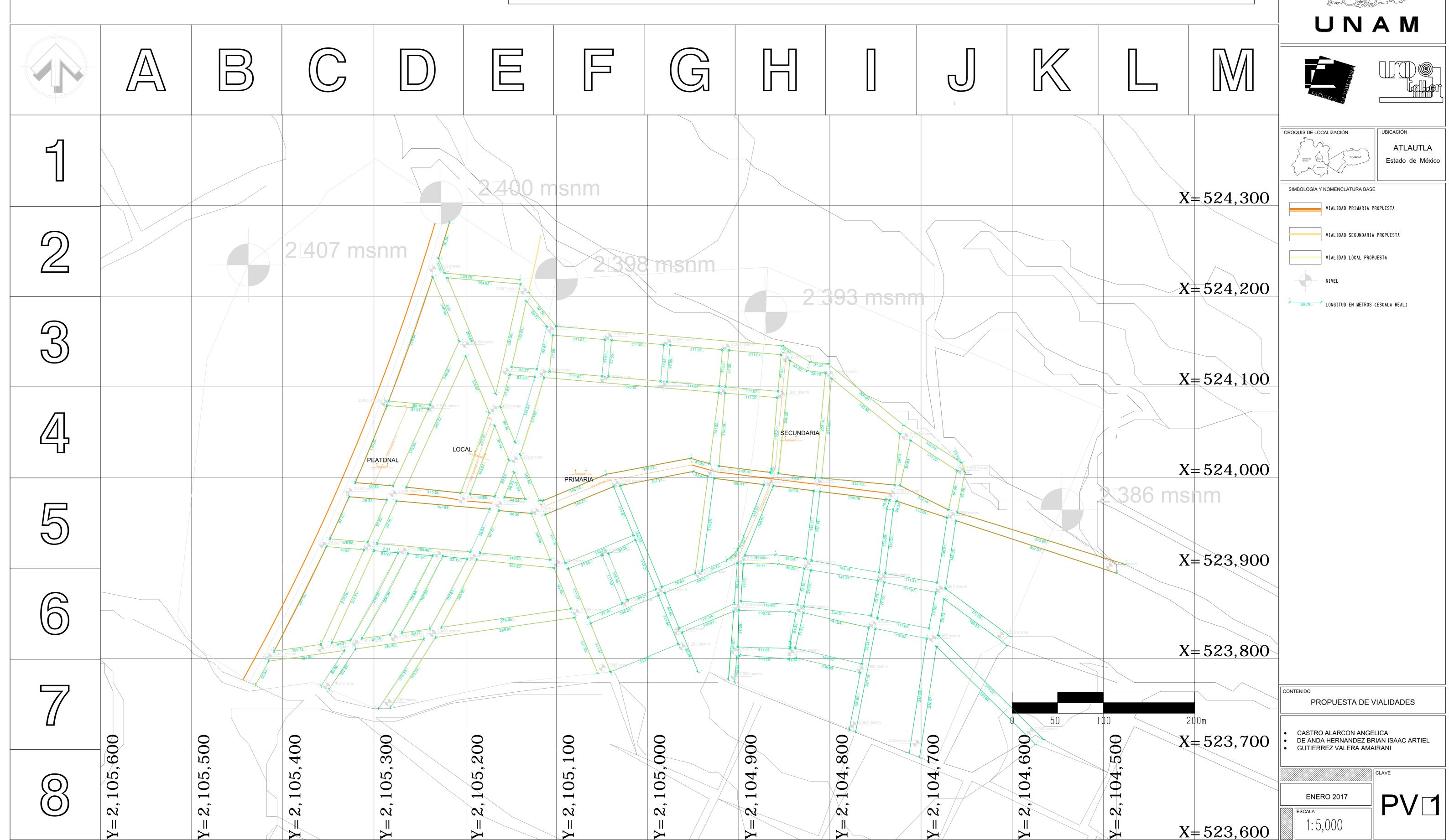
Para resolver los problemas urbanos encontrados en la zona de estudio, se proponen las siguientes soluciones.

Vialidades

Se proponen dos vialidades principales, las cuales cuentan con 19m de ancho divididos en: 2m de banqueta a cada lado, un arroyo vial de 14 metros, 7m por sentidos, los cuales están divididos por un camellón de un metro, la avenida más larga con 1.60km, la cual va de este a oeste y lleva a la cabecera municipal, permitiendo un rápido desplazamiento. Siguiendo con otra avenida de norte a sur con 1.01km que se conecta con la Av. Juárez, por donde se llega al libramiento de la carretera Federal 115 México-Cuautla. Ambas vialidades permiten un fácil acceso al futuro crecimiento urbano, además provoca una conurbación de las dos localidades en la zona de estudio, favoreciendo la densificación de servicios y comercio.

Posteriormente se continua con 12 vialidades secundarias que tienen 16m de ancho divididos en: 1.50m de banqueta a cada lado, dos carriles para cada sentido, uno de 3m y el otro de 3.5m; estos se distribuyen modularmente por toda la lotificación, la más destacada es la que continua con la Avenida Francisco I Madero de la cabecera municipal contando con .82km y llegando a ambas vialidades principales.

Finalmente se proponen 18 vialidades locales con 9m de ancho divididos en: 1.50m de banqueta a cada lado y un carril para cada sentido de 3.50m.

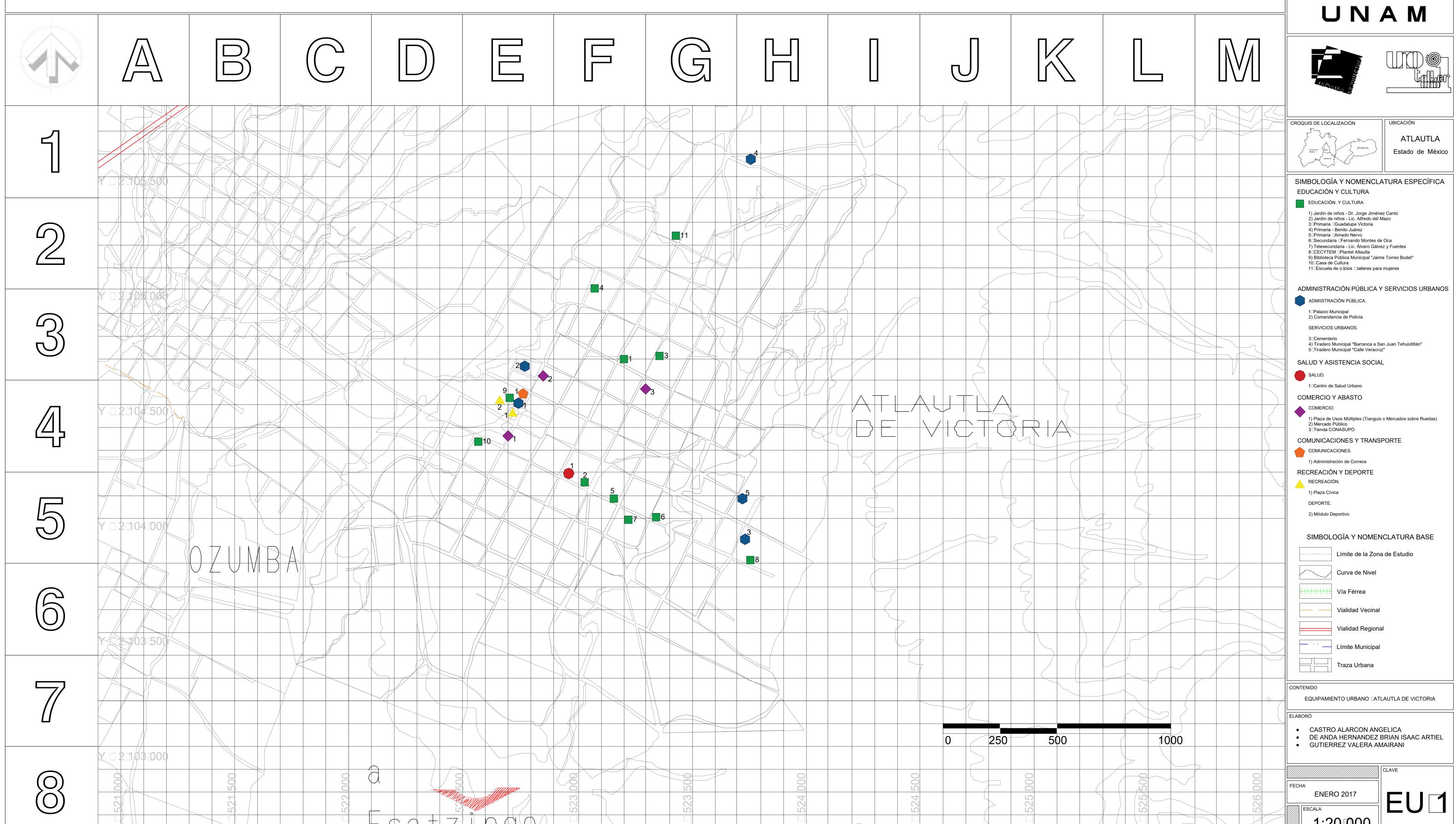

TABLA DE SALARIOS					
SVM	30% SVM Total Anual Crédito				
0- de 1	\$ 10.96	\$ 3,682.56	15 años		
1-2	\$ 24.89	\$ 8,361.76	30 años		
2-5	\$ 76.69	\$ 25,767.84	20 años		
5-10	\$ 164.34	\$ 55,218.24	20 años		
+ 10	\$ 219.12	\$ 73,624.32	25 años		

PROPUESTA DE VIALIDADES

Equipamiento

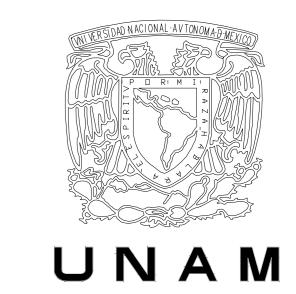
Para el equipamiento se tomó un rango de población intermedio (10,001 - 50,000 habitantes) ya que la población calculada para 2021 es de 20,861 habitante; éste estará distribuido de manera que pueda ser accesible para todas las personas que van a habitar en las nuevas viviendas y para la población de las dos localidades ya existentes. Además del propuesto en los programas de desarrollo.

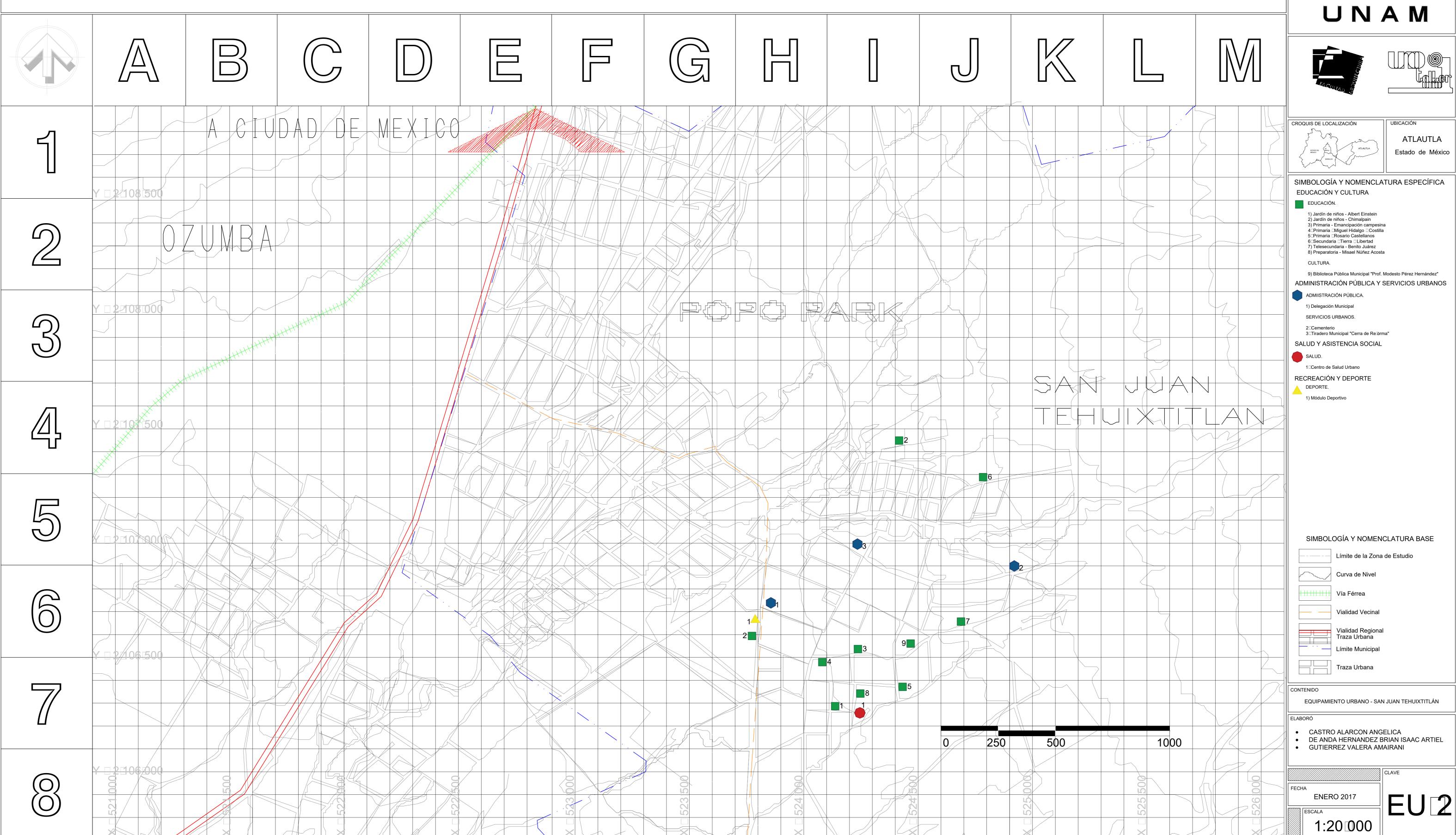
EQUIPAMIENTO URBANO PROPUESTO							
SISTEMA	CLAVE	ELEMENTO	M² DE TERRENO	DIMENSIONES	RADIO DE SERVICIO (KM)	% DE LA POBLACIÓN USUARIA	UBCACIÓN
CULTURA	EU-A	AUDITORIO MUNICIPAL	1,500	30 X 50	1.75	85.0	CABECERA
SALUD	EU-B	CENTRO DE SALUD CON HOSPITALIZACIÓN	2,000	40 X 50	CIUDAD	40.0	CENTRO DE CABECERA / ESQUINA
SALUD .	EU-C	CENTRAL DE URGENCIAS	1,750	35 X 50	7.50	90.0	ÁREA URBANA / ESQUINA
	EU-D	CENTRO DE DESARROLLO COMUNITARIO	2,400	40 X 60	0.70	52.0	ÁREA URBANA / CABCERA
ASISTENCIA SOCIAL	EU-E	GUARDERPIA / CASA HOGAR PARA ANCIANOS	2,400	40 X 60	VARIABLE	VARIABLE	ÁREA URBANA / MANZANA COMPLETA
SOCIAL	EU-F	CENTRO DE REHABILITACIÓN	3,600	60 X 60	CIUDAD	PERSONAS CON DISCAPACIADES	ÁREA URBANA / MANZANA COMPLETA
COMERCIO	EU-G	MERCADO PÚBLICO	2,625	35 X 75	0.75	100.0	ÁREA URBANA / 1/2 MANZANA
ABASTO	EU-H	UNIDAD DE ABASTO MAYORISTA	20,000	100 X 200	CIUDAD	100.0	FUERA DEL ÁREA URBANA
TRANSPORTE	EU-I	CENTRAL DE AUTOBUSES DE PASAJEROS	9,000	60 X 150	CIUDAD	100.0	CABECERA / MANZANA COMPLETA
RECREACIÓN	EU-J	SALA DE CINE	1,500	30 X 50	0.90	90.0	CENTRO DE CABECERA
	EU-K	ÁREA DE FERIA Y EXPOSICIONES	7,500	50 X 150	CIUDAD	100.0	ÁREA URBANA
DEPORTE	EU-L	MÓDULO DEPORTIVO	4,000	50 X 80	0.85	60.0	CABECERA / MANZANA COMPLETA
SERVICIOS	EU-M	CENTRAL DE BOMBEROS	600	20 X 30	CIUDAD	100.0	ÁREA URBANA / ESQUINA
URBANOS	EU-N	ESTACIÓN DE SERVICIO (GASOLINERA)	875	25 X 35	VARIABLE	VARIABLE	ÁREA URBANA / CABECERA



Gobierno del Estado de México

EQUIPAMIENTO URBANO





EQUIPAMIENTO URBANO

Vivienda

Se propone reponer 154.89has de vivienda en las periferias a corto plazo, ya que se encuentra en mal estado; por consiguiente, se plantea una casarefugio en donde se irá albergando a esta población mientras que se reconstruyen sus respectivas viviendas.

Posteriormente, propone mejorar 18.06has de vivienda que presentan problemas de pintura y acabados, las cuales se encuentran localizadas a lo largo de toda la zona de estudio.

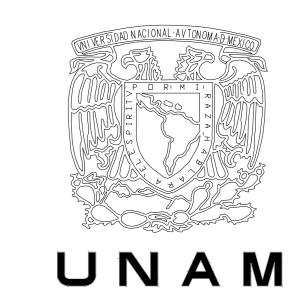
Para resolver el déficit de vivienda existente y a futuro se pretende consolidar y crear relaciones sociales, para que sea más fácil el desarrollo de organizaciones civiles que puedan resolver problemas futuros.

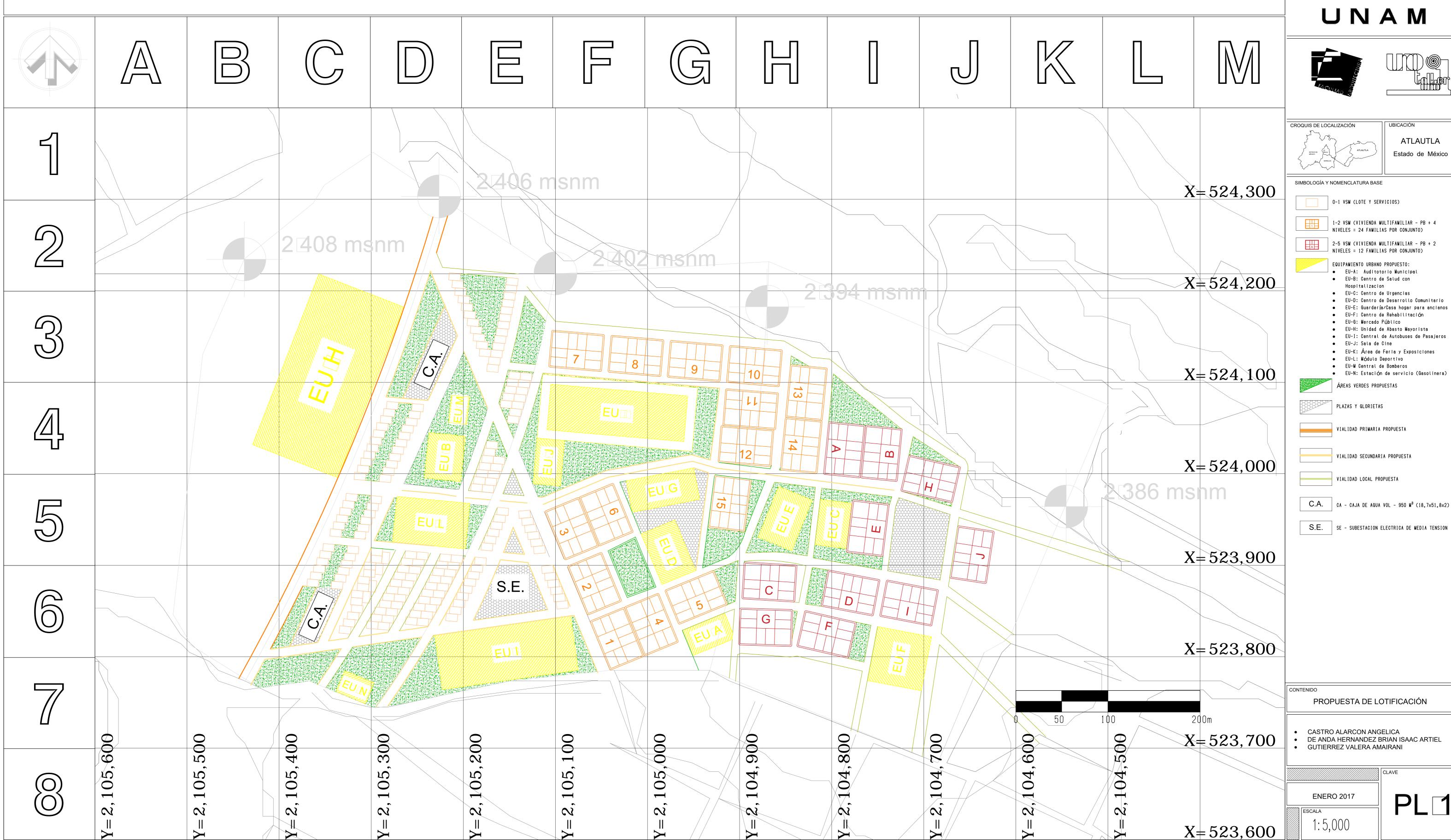
Por lo tanto, para personas con un ingreso de 1-2v.s.m se proponen 15 conjuntos de 55m x 37.5m con 6 edificios de 17.50mx 10m de 4 pisos, en la planta baja se ubicará un local comunitario y posteriormente viviendas, estos conjuntos cuentan con cajones de estacionamiento y con área verde.

Para los habitantes con un ingreso de 2-5v.s.m. se proponen 10 conjuntos de los antes mencionados, con las siguientes diferencias: Solo tendrá 2 pisos y contará con una azotea verde para recreación.

Finalmente, para las personas con un ingreso menor a un salario mínimo se proponen 166 predios con todos los servicios de 8m x 12.50m.

Las personas que van a obtener estas viviendas tendrán los siguientes créditos, de acuerdo a su ingreso:


TABLA DE SALARIOS					
SVM	30% SVM	Crédito			
- de 1	\$ 10.96	\$ 3,682.56	15 años		
1-2	\$ 24.89	\$ 8,361.76	30 años		
2-5	\$ 76.69	\$ 25,767.84	20 años		
5-10	\$ 164.34	\$ 55,218.24	20 años		
+ 10	\$ 219.12	\$ 73,624.32	25 años		


Elaboración propia

PROPUESTA DE LOTIFICACIÓN

Propuesta de infraestructura eléctrica

Como es posible observar en la propuesta de lotificación, se propone la ubicación de una subestación compacta de media tensión con los requerimientos técnicos que a continuación se enlistan, así como una breve descripción de la distribución a todo el crecimiento futuro.

Debido a la cercanía con el municipio de Amecameca, y que ahí se localiza la subestación más cercana a nuestra Zona de Estudio, es de esta que se obtendrá la fuente de alimentación eléctrica para nuestro poblado, debido a que se examinó las características con las que cuenta y la constancia con el servicio que brinda. Esta cuenta con una Línea de Alta Tensión de 250 Kva y su ubicación es en piso, por lo cual nuestra línea de conducción para la llegada a la nueva subestación será aérea, para el fácil mantenimiento y que cuente con condiciones de seguridad óptimas.

En primera instancia se ubica una Subestación Eléctrica compacta de media tensión, para la reducción y cambio de Alta a Media tensión, marca PROLEC, el cual es denominado como como: Transformador Tipo Subestación, este se colocará a nivel de piso terminado, para su fácil y sencillo mantenimiento.

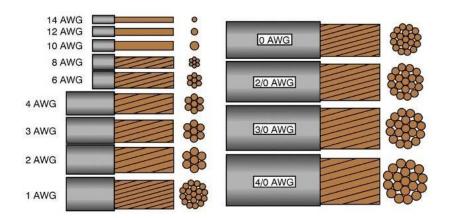
Este transformador permite el cambio y reducción de la tensión a la cual sea sometido para poderlo re direccionar disminuyendo su potencia, de igual forma ayuda a evitar pérdidas de tensión ya que trabaja a Corriente Alterna (Menor desgaste y mayor aprovechamiento de la corriente y recomendado para géneros de edificios habitacionales y comerciales) y puede trabajar en sistemas Monofásicos, Bifásicos o Trifásicos según sea la aplicación a la que se utilice.

El tipo Subestación, que se utilizará para el consumo es de una capacidad de 1000 Kva con las dimensiones exactas que se muestra en la tabla anterior, este valor es muy por encima del requerimiento actual y de los siguientes 2 plazos de tiempo (Corto y Mediano) ya que en ningún momento se pretende que el consumo rebase a la capacidad máxima de alguno de nuestros elementos y que por tal motivo sea necesaria la ampliación y renovación de esta Subestación.

Nombre denominado por la empresa: Transformador Poste Monofásico

El tipo propuesto, al igual que el anterior es diseñado y fabricado para su ubicación a la intemperie, y tiene un sistema de autoprotección para que evite los daños a terceros y que permita su inmediato control en caso de siniestro. Como se muestra en la siguiente imagen, la capacidad de cada transformador de poste es de 50 Kva, para evitar la sobrealimentación de este y que entre en el rango de los que se encuentran en existencia por parte de empresa y que el número requerido sea en promedio igual al número de vialidades propuestas.

Una vez reducida la tensión de llegada y trasportada por este elemento, se propone el uso de trasformadores aún más compactos, que tengan como finalidad la distribución y soporte de la instalación hasta el punto final del recorrido, mientras que por otro lado modifique nuevamente la tensión, para que sea posible el uso en cada una de las viviendas. Estos objetos se colocarán vía aérea en postes de concreto armado que cumplan con los lineamientos y especiaciones que la CFE establece en sus capítulos y normas.



A partir de la llegada que recorre la corriente eléctrica que va desde la subestación a el trasformador, es necesario contemplar todos los requerimientos y preparados necesarios para su exacta distribución y que tenga como mínimo los elementos que son básicos en una instalación eléctrica.

Debido a la composición y diseño de cada una de las viviendas con los respectivos locales, por lo cual se contemplará que para una casa habitación (vivienda, residencia o casa de interés social), "común" de hasta de 8×30 metros (aproximados), se utilice alambre o cable calibre No. 10 AWG como alimentadores principales. Acometida en calibre No. 8 AWG.

En las viviendas que se encuentran en el programa de Lotes y Servicios, se ubicaran cada uno de estos elementos que en las siguientes fichas se ilustran, y por otro lado para los conjuntos habitacionales, se realizara una misma acometida que direccione el cableado al interior hasta su posterior distribución por cada edificio separado, ubicando en la planta baja un lugar específico donde se encuentren los medidores por cada una de las familias que habiten en estos complejos.¹¹

CFE 173 STORE OF TO THE TIES FOR A STORE OF THE TIES F

¹¹ Con base en http://www.cfe.gob.mx/casa/4_Informacionalcliente/Lists /Para%20servicios%20de%20red%20area/Attachments/4/Trif %C3%A1sico1.pdf

Propuesta de infraestructura hidráulica

Para el cálculo de la dotación de agua se consultaron las Normas Técnicas Complementarias del Distrito Federal, debido a que el Estado de México no cuenta con una propia, por lo tanto, se rige bajo éstas.

La lotificación propuesta reúne un total de 2,428 habitantes repartidos en tres tipos de vivienda. De acuerdo con la Tabla 1, la dotación correspondiente para el proyecto es de 100 lts/hab/día, al realizar la operación lo que corresponde son 242,800 litros para la población en un día más dos días de reserva es un total de 728,400 litros.

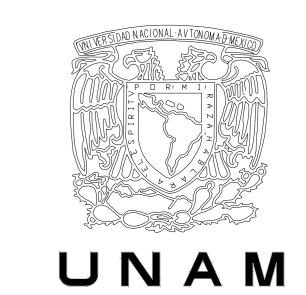
TABLA 1-2.- Dotación de agua potable

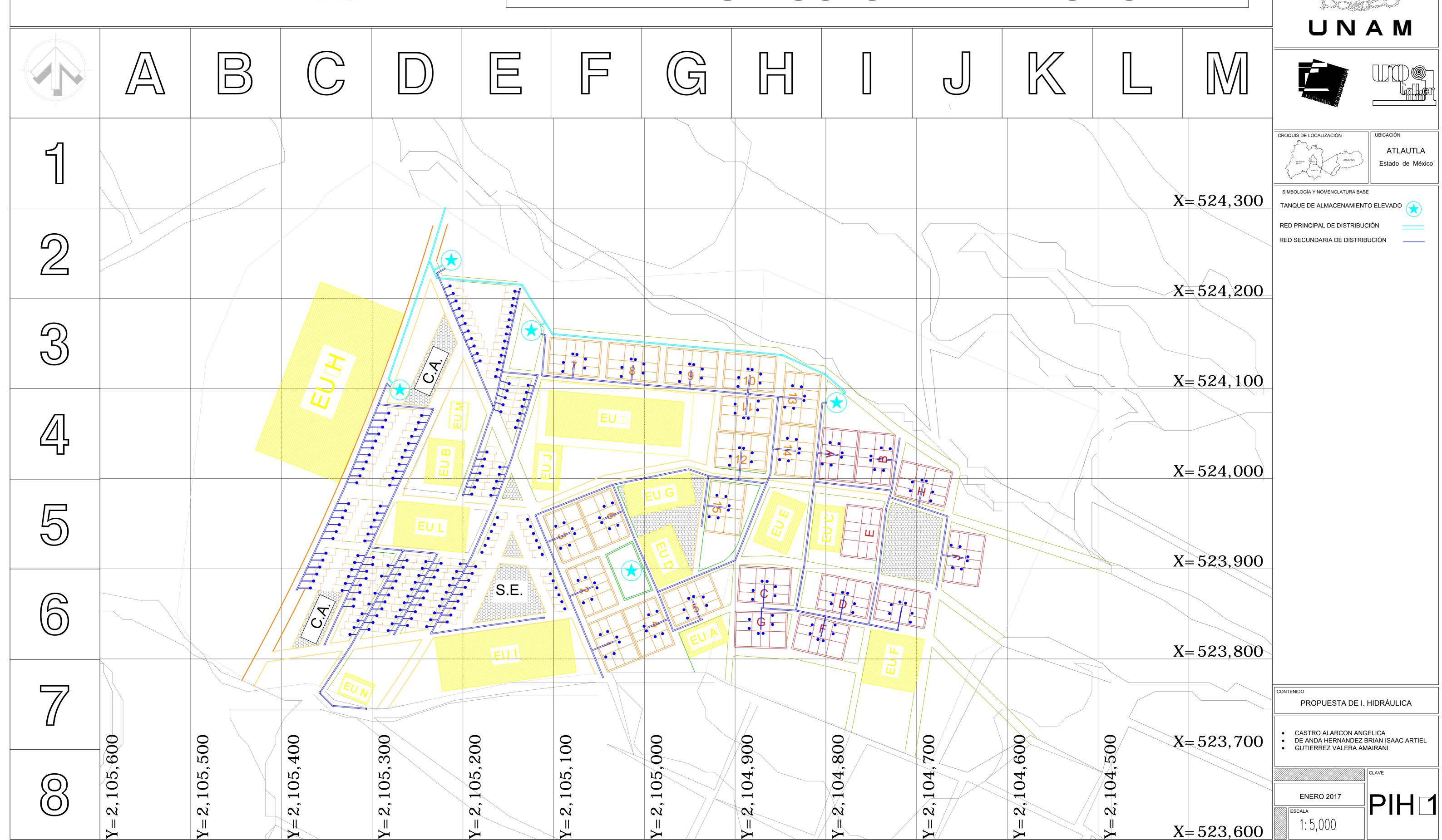
Población de proyecto (habitantes)	Dotación (l/hab/dia)
De 2,500 a 15,000	100
De 15,000 a 30,000	125
De 30,000 a 70,000	150
De 70,000 a 150,000	200
Mayor a 150,000	250

Normas Técnicas Complementarias para el diseño y ejecución de Obras e instalaciones hidráulicas

La primera propuesta fue abastecerse mediante los sistemas de deshielo existentes para evitar que les sea suspendido el servicio por el adeudo que tiene el gobierno hacia la Comisión de Aguas del Estado de México, sin embargo, el gasto de los sistemas existentes es insuficiente.

Un ejemplo, el sistema más cercano es el de Amalacaxco el cual cuenta con 6 l.p.s., pero es sobrepasado por el gasto de la propuesta que es de 8.43 l.p.s. Así que se decidió utilizar un sistema de captación pluvial.


Con datos del Servicio Meteorológico Nacional la precipitación máxima diaria que se presentó fue en febrero con 80.5 mm. Si 80.5 milímetros caen durante un día en una superficie de 1 metro cuadrado se obtienen 0.0805 metros cúbicos al día, es decir, 80.5 litros. Por lo tanto, la captación es de 0.00093 litros por segundo en un metro cuadrado, para alcanzar los 8.43 l.p.s. se necesitará una superficie de 9,064.52 metros cuadrados.


El sistema de captación de agua pluvial (C.A.) se ubicará en la parte más alta de la lotificación para aprovechar la gravedad y evitar incrementar la potencia del bombeo.

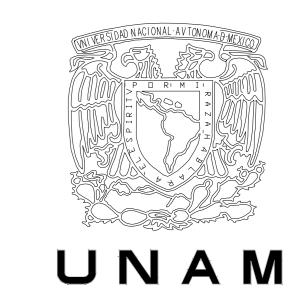
PROPUESTA DE INFRAESTRUCTURA HIDRÁULICA

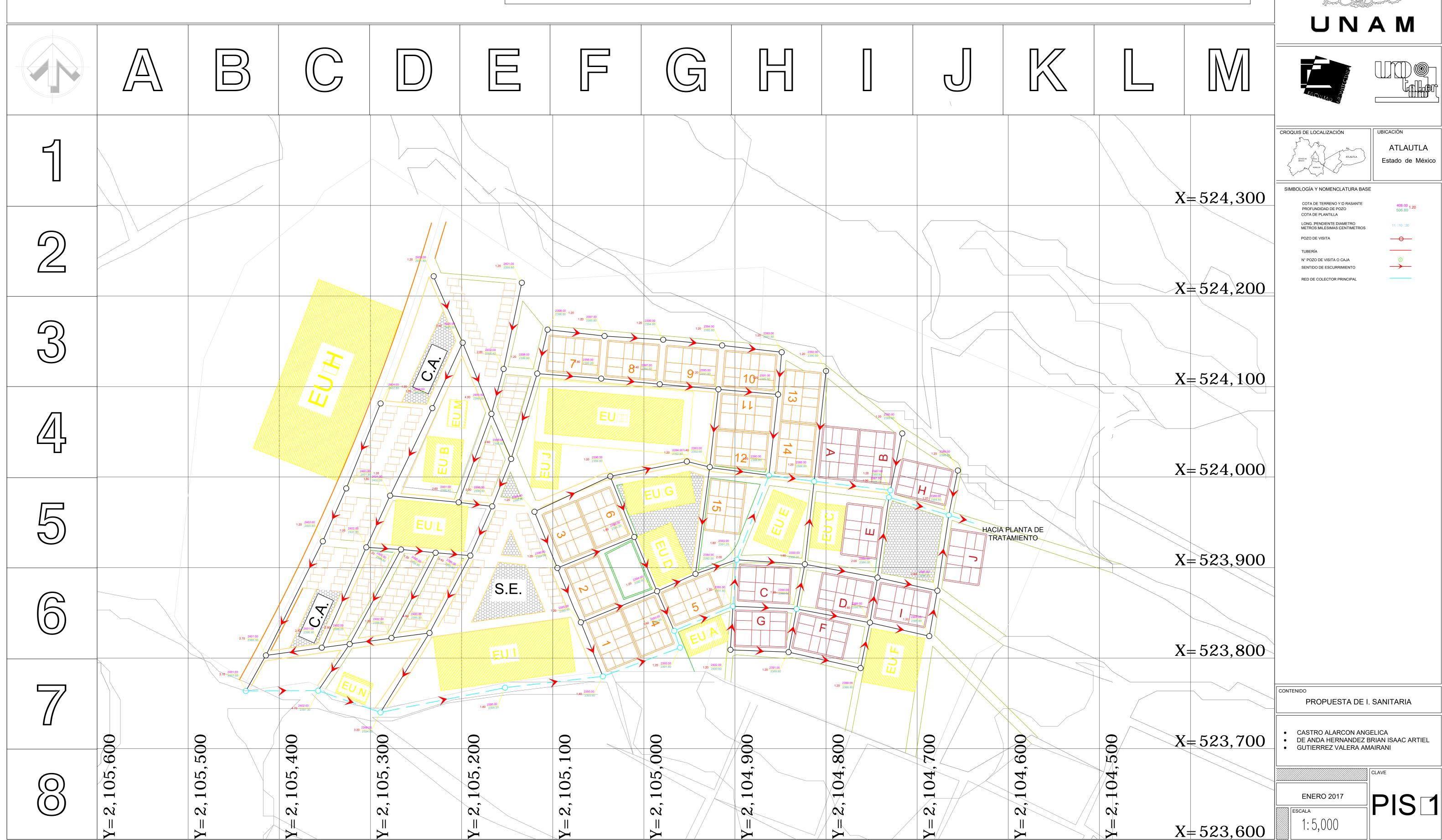
Propuesta de infraestructura sanitaria

En la infraestructura sanitaria se consideró como un 80% del consumo de agua potable de la población durante un día, de un total de 242,800 litros resulta en 194,240 litros que serán enviados al colector.

La contaminación ambiental es un problema en esta zona por lo que se plantea separar las aguas grises de las aguas negras, esto con la intención de mejorar el tratamiento de ambas.

Debido a los químicos que contienen las aguas grises, serán tratadas para eliminar su factor contaminante y así ser dirigidas hacia la barranca para ser filtrada naturalmente por el suelo.


En el caso de las aguas negras, al contener residuos orgánicos, el saneamiento de éstas mediante bacterias (reactor anaeróbico), la eliminación de sedimentos (sedimentador o arenero) y su purificación (tanque de cloración) garantizan que el agua puede ser utilizada para la agricultura.


La capacidad de la planta de tratamiento que recibirá por separado aguas grises y aguas negras será de 2.25 l.p.s., con una capacidad de 300 metros cúbicos. Se ubicará en el lado sur de la lotificación donde se encuentra la zona más baja, con la intención de facilitar el desalojamiento de la red. Dicha red tendrá un diámetro de 30 mm, de acuerdo con las Normas Técnicas Complementaria.

PROPUESTA DE INFRAESTRUCTURA SANITARIA

ESCUELA DE OFICIOS Y TALLERES PARA MUJERES

ESCUELA DE OFICIOS Y TALLERES PARA MUJERES

FUNDAMENTACIÓN

De acuerdo a la investigación realizada, la población económicamente activa en Atlautla es del 36.32%¹² y se ve superada en un 1.9% por la población económicamente inactiva que cuenta con el 38.22%¹¹, de éste porcentaje se desprende que el 72.56% son mujeres las cuales suman un total de 6,862¹³. Por lo tanto se plantea reducir el porcentaje de población económicamente inactiva, enfocándose en las mujeres.

Éste proyecto apoya a la estrategia de desarrollo municipal propuesta en el sector terciario ya que pretende capacitar a las mujeres y así puedan incorporarse a la población económicamente activa, incrementando el ingreso familiar de acuerdo a los oficios que se van a impartir.

Además el plan de desarrollo municipal de Atlautla 2016-2018 plantea dentro del tercer capítulo de diagnóstico por pilares temáticos y ejes transversales en el apartado 3.1.3 Objetivos, estrategias y líneas de acción del pilar temático Gobierno solidario la siguiente tabla en el tema de mujeres:

Тета	Objetivo	Estrategias	Líneas de acción
	Contribuir a majorar		Impartir talleres para el autoempleo de las mujeres de Atlautla.
res	Contribuir a mejorar la calidad de vida de las mujeres del municipio de Atlautla	Impulsar proyectos en	Impulsar proyectos productivos.
Mujeres	en diferentes situaciones económica, social y psicológica.	beneficio de las mujeres Atlautenses.	Impartir platica de equidad de género, autoestima, valores, violencia intrafamiliar derechos y obligaciones de las mujeres.

Plan de Desarrollo Municipal. Atlautla, Estado de México. 2016-2018. Pág. 77. 14

Por lo tanto el proyecto que se propone es Escuela de oficios y talleres para mujeres; dicho concepto coincide con un centro de capacitación para el trabajo, que es un inmueble ocupado por una o más escuelas de nivel medio básico terminal, área de capacitación para el trabajo, en el cual se imparten conocimientos mediante cursos impartidos en diversos talleres; ¹⁵ la diferencia es que dichos talleres son impartidos únicamente para mujeres de 16 a 59 años de edad. ¹⁶

Éste busca que las mujeres desarrollen y obtengan aptitudes y conocimientos y en el área de cocina, panadería, diseño de modas, estilismo y tejido; de ésta manera podrán auto emplearse para generar ingresos dentro del tercer sector económico, y por lo tanto se comenzará a reducir el porcentaje de PEI, representado en su mayoría por mujeres de los 12 a los 40 años de edad.¹¹

¹²Instituto Electoral del Estado de México. (2015)

¹³Instituto Nacional de geografía y Estadística. Censos y conteos de población y vivienda. Tabulados básicos.

¹⁴Plan de Desarrollo Municipal. Atlautla, Estado de México. 2016-2018. Pág. 77

¹⁵Sistema Normativo de Equipamiento Urbano de la Secretaría de Desarrollo Social.

¹⁶De acuerdo a entrevista realizada con la Lic. Guadalupe Gallardo Zepeda, directora de la Escuela de oficios y talleres para mujeres ubicada en la delegación Gustavo A. Madero.

Aspectos técnicos

Con base en los planes de estudios de la Dirección general de centros de formación para el trabajo se proponen talleres en donde se puedan obtener los conocimientos en las áreas ya mencionadas con el propósito del auto empleo para las mujeres, lo cuales tienen el siguiente porcentaje de preferencia:

•	Cocina	22%
•	Panadería y repostería	20%
•	Tejido	16%
•	Estilismo	24%
•	Diseño de modas	$18\%^{17}$

Se tomó en cuenta que las mujeres de la misma localidad sean quienes impartan dichos talleres, ya que un 3% de la población femenina tiene conocimientos en dichos oficios. ¹⁶

Cada taller sería impartido para 20 personas en cuatro horarios, de 7-10 horas, de 10-13 horas, de 13-16 y de 16-19 horas, por lo que se atenderá a una capacidad de 100 mujeres por turno, y 400 al día; dando un total de 880 mujeres capacitadas al año.

Los planes de estudios de cada taller se van a dividir en diferentes etapas, para que se puedan enfocar en cada tema y se obtengan mejores resultados.

El taller de panadería y repostería, junto con el taller de cocina tendría una duración de cuatro meses y se impartiría 3 horas de lunes a 640viernes, impartiendo los siguientes temas, con una duración de dos semanas cada uno.

TALLER DE PANADERÍA			
ETAPAS	DURACIÓN	TEMA	
Etapa 1	Semana 1 y 2	Pan blanco	
Etapa 2	Semana 3 y 4	Pan integral	
Etapa 3	Semana 5 y 6	Pan dulce	
Etapa 4	Semana 7 y 8	Pan de temporada	
Etapa 5	Semana 9 y 10	Gelatinas	
Etapa 6	Semana 11 y 12	Roscas	
Etapa 7	Semana 13 y 14	Tartas	
Etapa 8	Semana 15 y 16	Pasteles	

TALLER DE COCINA				
ESTAPAS	DURACIÓN	TEMA		
Etapa 1	Semana 1 y 2	Caldos y sopas		
Etapa 2	Semana 3 y 4	Cremas y arroz		
Etapa 3	Semana 5	Salsas		
Etapa 4	Semana 6	Ensaladas		
Etapa 5	Semana 7 y 8	Pastas		
Etapa 6	Semana 9 y 10	Pollo		
Etapa 7	Semana 11 y 12	Cerdo		
Etapa 8	Semana 13 y 14	Res		
Etapa 9	Semana 15 y 16	Guajolote		

Elaboración propia¹⁸

¹⁷Investigación propia, con base en encuestas realizadas en febrero del 2017.

¹⁸Con base en visita a un análogo ubicado en el parque recreativo de justicia social en la delegación Gustavo A. Madero.

El taller de estilismo tendrá una duración de cuatro meses, distribuido en 7 etapas, y las clases serían de 3 horas de lunes a viernes con los temas que se presentan a continuación.

TALLER DE ESTILISMO				
ESTAPAS DURACIÓN TEMA				
Etapa 1	Semana 1 y 2	Cuidados faciales y corporales		
Etapa 2	Semana 3 y 4	Cuidado de manos y pies		
Etapa 3	Semana 5 y 6	Maquillaje del rostro		
Etapa 4	Semana 6 - 9	Corte y peinado del cabello		
Etapa 5	Semana 9 - 12	Cortes de cabello para dama y caballero		
Etapa 6	Semana 13 - 15	Color y transformación del cabello		
Etapa 7	Semana 16	Decoración de uñas		

Elaboración propia con base en oferta educativa de D.G.C.F.T. 19

El taller de diseño de modas durará cuatros meses y constará de 7 etapas, las cuales se desarrollarán de 3 horas de lunes a viernes.

TALLER DE DISEÑO DE MODAS			
ESTAPAS DURACIÓN TEMA			
Etapa 1	Semana 1 - 3	Dibujo de modas	
Etapa 2	Semana 3 y 4	Diseño	
Etapa 3	Semana 5 - 7	Modelado	
Etapa 4	Semana 7 - 10	Patronaje	
Etapa 5	Semana 10 y 11	Graduación de patrones	
Etapa 6	Semana 13 y 14	Costura, confección y bordado	
Etapa 7	Semana 15 y 16	Graduación de plantillas para vestimenta	

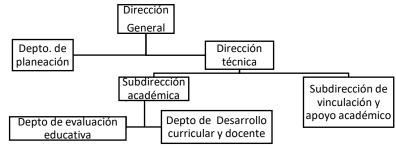
Elaboración propia con base en oferta educativa de D.G.C.F.T. 18

El último taller que se impartirá será de tejido con duración de tres meses, divididos en 7 etapas con clases de tres horas y de lunes a viernes.

TALLER DE TEJIDO			
ESTAPAS DURACIÓN TEMA		TEMA	
Etapa 1	Semana 1 y 2	Sacar medidas	
Etapa 2	Semana 3 y 4	Elaborar cuellos y sisas	
Etapa 3	Semana 5 y 6	Elaborar bufandas y zapatos	
Etapa 4	Semana 6 y 7	Elaborar chaleco para dama y caballero	
Etapa 5	Semana 8 y 9	Elaborar suéter para dama y caballero	
Etapa 6	Semana 10 y 11	Elaborar blusa y camisa	
Etapa 7	Semana 11 y 12	Desarrollo de presupuesto	

Elaboración propia con base en oferta educativa de D.G.C.F.T. 18

Para el desarrollo adecuado de éstas actividades el proyecto estaría ubicado en Avenida Juárez, que es la vía principal de la cabecera municipal, por lo que tendría un fácil acceso de transporte público y privado; éste cuenta con 2291.20 m² para albergar el programa indicado por SEDESOL, además de cumplir con la norma NMX-R-003-SCFI-2011 ESCUELAS - SELECCIÓN DEL TERRENO PARA CONSTRUCCIÓN –REQUISITOS; la cual dice que se deberá contar con servicio de transporte público a una distancia no mayor a 0.80km, ya que la Av. Juárez cuenta con la ruta de transporte público número 31, y ésta va desde el libramiento en la carretera federal México – Cuautla hasta el final de la cabecera municipal, atravesando San Juan Tehuixtitlan, por lo que se tendría un fácil acceso de ambas localidades de la zona de estudio.


¹⁹Con base en la oferta educativa 2016-2017 de la Dirección general de centros de formación para el trabajo.

Aspectos administrativos y operativos

Al ser un elemento de educación se propone que quede a cargo de la Secretaría de Educación Pública, para que de ésta manera, cómo se mencionó anteriormente, los cursos puedan ser impartidos de manera gratuita y todos los gastos sean cubiertos por parte del Gobierno Federal, en cuanto al costo del proyecto, y municipal, en cuanto a los insumos materiales y humanos para su funcionamiento.

La administración estará dedicada a gestionar todos los recursos, y al ser un elemento regido por la S.E.P. deberá ser una Dirección General de Centros de Formación para el Trabajo constituida de la siguiente manera:

El departamento de planeación será encargado de todos los recursos económicos necesarios para el debido funcionamiento del inmueble, la dirección técnica supervisara lo todo relacionado con las alumnas y los docentes, la subdirección académica controlará la interacción de alumnodocente, incluyendo los planes de estudio; por otro lado la subdirección de vinculación y apoyo administrará los documentos de las alumnas de ingreso y egreso, el departamento de evaluación educativa se encargará de supervisar el avance de las alumnas mientras que el departamento de desarrollo curricular verificará que los profesores sean aptos para impartir los talleres y se conformará de acuerdo al siguiente organigrama:

Elaboración propia²⁰

²⁰ Con base en Organigrama de Dirección General de Centros de Formación para el Trabajo.

Factibilidad económica

El costo estimado se va a desglosar en los siguientes aspectos:

COSTO DE PREDIO				
PREDIO SUPERFICIE COSTO POR m ² TOTAL				
2291 m ² \$178.00 ²¹ \$407,798.00				

Elaboración propia con base en datos de Tabla de Valores Unitarios de Suelo y Construcciones para el Ejercicio Fiscal 2016 del Municipio de Atlautla

COSTO POR ZONAS			
INMUEBLE SUPERFICIE COSTO POR M2 TOTAL			
Oficinas	228 m ²	\$5015.00	\$1,143,420.00
Estacionamiento	66.85 m ²	\$3430.00	\$229,562.90
Talleres	434.56 m ²	\$4980.00	\$2,164,108.80
Aulas infantiles	131 m ²	\$3480.00	\$455,880.00
Locales	15.55 m ²	\$3040.00	\$47,272.00

Elaboración propia con base en datos de Tabla de Valores de Construcciones para el 2016 del Municipio de Atlautla

COSTO DE MOBILILIARIO				
EQUIPO COSTO CANTIDAD TOTAL				
Mesa de trabajo	\$11,463.00	5	\$57,315.00	
Anaquel	\$4,153.00	6	\$24,918.00	
Máquina de coser	\$4,559.00	5	\$22,795.00	
			\$105,028.00	

Elaboración propia con datos de proveedores.

COSTO DE EQUIPO INDUSTRIAL				
EQUIPO COSTO CANTIDAD TOTAL				
Horno	\$14,464.00	2	\$28,928.00	
Estufa	\$8,503.00	10	\$85,030.00	
Microondas	\$10,927.00	2	\$21,854.00	
			\$135,812.00	

Elaboración propia con datos de proveedores.

²¹Tabla de valores unitario de suelo y de construcciones para el ejercicio Fiscal 2016 en Atlautla, Estado de México.

GASTOS ADICIONALES				
CONCEPTO	PORCENTAJE	TOTAL		
Obra exterior	15%	\$764,501.95		
Gastos notariales	5%	\$254,833.95		
Adjudicación	10%	\$507,667.97		
Imprevistos	15%	\$764,501.95		
		\$2,293,505.82		

Elaboración propia con base en BIMSA

EGRESOS				
SALARIOS	20 Trabajadores	\$76,838.40		
MANTENIMIENTO	10%	\$7,683.80		
IMPREVISTOS	5%	\$3,841.90		
		\$88,394.10		

Elaboración propia

Al contemplar los gastos mencionados que se necesitan para poder costear el proyecto por completo se obtuvo un resultado de \$7, 390,185.52.

Al ser un elemento de equipamiento de educación sería financiado en su totalidad por el Estado, ya que cumple con los aspectos administrativos y de programa de acuerdo a su funcionamiento; de ésta manera las alumnas no pagarían los cursos ni la inscripción a éstos, exceptuando los insumos del taller de cocina, en donde las alumnas se organizarán en equipos para traer los insumos de acuerdo a la temática que corresponda. ²²

Se podría asegurar el financiamiento y mantenimiento de la Escuela por parte del Estado ya que como se mencionó anteriormente el plan de desarrollo Municipal vigente apoyará proyectos para el autoempleo de las mujeres y su presupuesto asignado para obras publicas fue de \$35, 941,041.63 ²³ y el proyecto representaría el 20% de dicho presupuesto.

Para la selección del predio se tomó en cuenta la norma mexica NMX-R—SCF-2011 ESCUELAS — SELECCIÓN DEL TERRENO PARA CONSTRUCCION — REQUISITOS, ya que es un elemento en donde se adquirirán los conocimientos necesarios para auto emplearse.

Al ser un elemento de equipamiento urbano se tomarán en cuenta el primer tomo de educación y cultura del sistema normativo de equipamiento urbano de la secretaria de desarrollo social, con el cual se definió lo siguiente:

- La jerarquía urbana y el nivel de servicio es medio, de acuerdo con la población en la zona de estudio que es de 33,319 habitantes.
- La ubicación recomendable con respecto al uso de suelo del predio que es habitacional.
- La relación recomendable con respecto a las vialidades del predio que son dos, principal y secundaria.
- Los requerimientos de servicios, ya que el predio cuenta con: alumbrado público, pavimentación, Recolección de basura y transporte público.
- Se usó como base el programa arquitectónico propuesto, así como el concepto de casa de cultura.

También se tomó en cuenta la NORMA Oficial Mexicana NOM-251-SSA1-2009, Prácticas de higiene para el proceso de alimentos, bebidas o suplementos alimenticios; específicamente el capítulo 5 Disposiciones generales, el capítulo 7 Establecimientos de servicios de alimentos o bebidas y el capítulo 8 Expendios.

Factibilidad normativa

²²De acuerdo a entrevista realizada con la Lic. Guadalupe Gallardo Zepeda, directora de la Escuela de oficios y talleres para mujeres ubicada en la delegación Gustavo A. Madero, quien mencionó que los cursos son gratuitos así como el abasto de los insumos necesarios.

²³Presupuesto asignado. Información pública de oficios mexiquenses. Atlautla. 2016

En esta norma se pueden apreciar, el tipo de acabados que se requieren los cuales deben de ser fácil a la limpieza, así como el mobiliario que se requiere de acero inoxidable en el caso de que tenga acceso directo a los alimentos, y su adecuada colocación para que se pueda realizar el aseo adecuadamente.

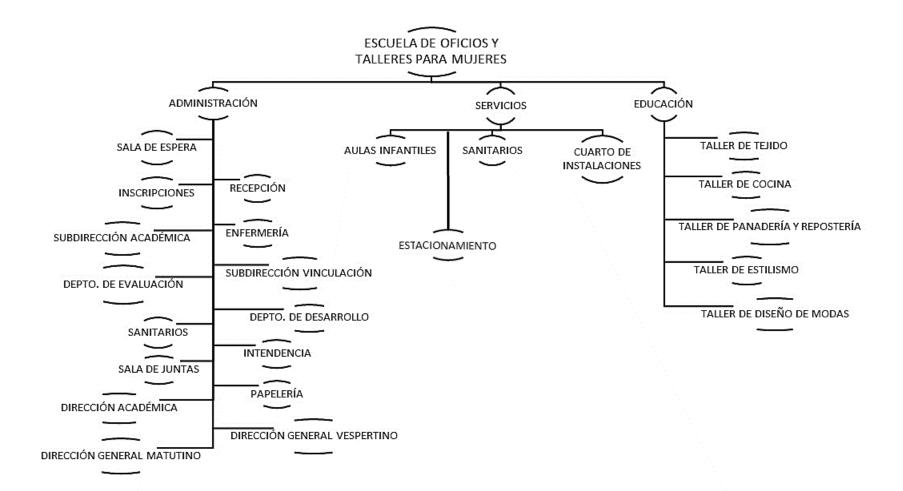
En cuanto al rubro de instalaciones, se deben incluir trampas de grasa y olores en los drenajes, en cuanto a la iluminación en áreas de alimentos y bebidas se debe de contar con protección en las luminarias en caso de rotura para evitar la contaminación de los insumos.

Además de las normas mencionadas se tendrán que tomar en cuenta los tomos de los 7 volúmenes de la Normatividad Técnica de Infraestructura Educativa para cada rubro, cómo son:

- Aspectos Generales.
- Estudios Preliminares.
- Habitabilidad y Funcionamiento.
- Seguridad Estructural.
- Instalaciones de Servicio. 24

Aspectos sociales

La casa de cultura propuesta es un proyecto de equipamiento urbano que pretende formar a las mujeres del municipio de manera que éstas puedan auto emplearse debido a que, como ya se mencionó, es la población mayoritariamente inactiva. Por lo tanto es importante ya que así se podría reducir dicho porcentaje y más importante aún, se les proporcionarían los conocimientos para poder obtener ingresos aumentando así su poder adquisitivo.


Ya que no se necesitan conocimientos previos para poder ingresar a los talleres, se propone que sea a partir de los 16 años, de manera que las madres adolescentes y las mujeres que abandonaron sus estudios puedan ingresar, y sin un límite de edad para que también las personas de la tercera edad que deseen participar puedan hacerlo.

De ésta manera el beneficio directo es para los 20 trabajadores en el inmueble, mientras que el beneficio indirecto se basa en el total de 880 mujeres anualmente, las cuáles tendrían la capacidad de obtener sus propios recursos mediante lo aprendido.

²⁴Normas y especificaciones para estudios, proyectos, construcción e instalaciones 2014 de Infraestructura Educativa.

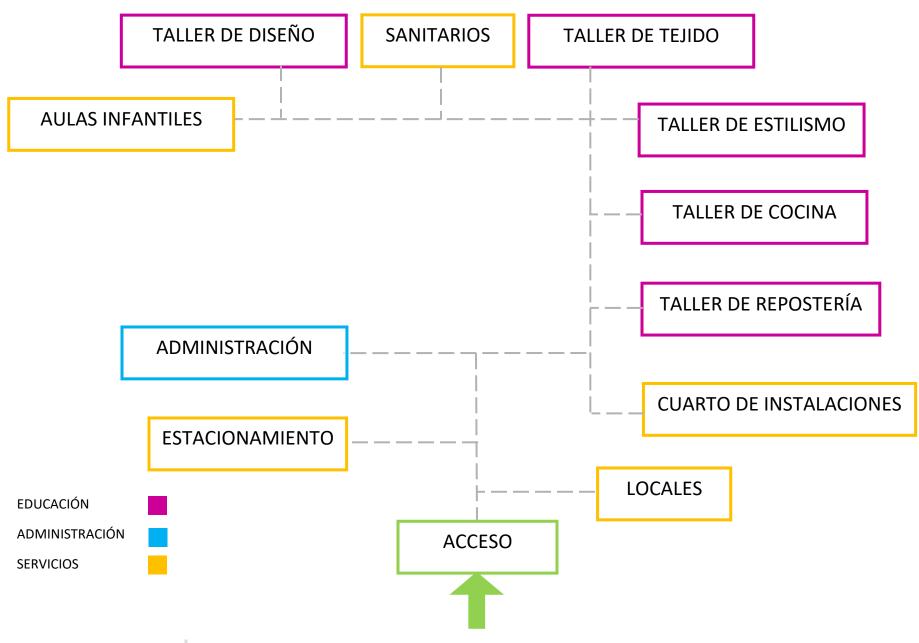
PROGRAMA ARQUITECTÓNICO

Árbol de componentes espaciales

Tabla de programación

SISTEMA	SUBSISTEMA	ÁREA m²	MOBILIARIO	REQUISISTOS TÉCNICO CONSTRUCTIVOS
ADMINISTRACIÓN	Sala de espera	11.69 m²	Asientos.	Ambientales: Ventilación natural, iluminación artificial. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Recepción	9.34 m ²	Escritorio, asientos, anaquel.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Inscripciones	8.05 m ²	Escritorios, asientos.	Ambientales: Ventilación natural, iluminación artificial. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Subdirección académica	9.64 m²	Escritorio, asientos, anaquel.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Subdirección de vinculación	9.34 m²	Escritorio, asientos, anaquel.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Enfermería	10.33 m²	Mesa de exploración, escritorio, asientos, anaquel.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica, sanitaria e hidráulica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Depto. de evaluación	10.33 m ²	Escritorio, asientos, anaquel.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Depto. de desarrollo	10.33 m²	Escritorio, asientos, anaquel.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Sanitarios	6.86 m ²	Lavamanos, W.C.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica, sanitaría e hidráulica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.
	Sala de juntas	21.00 m ²	Mesa para 6 personas, anaquel.	Ambientales: Ventilación natural, iluminación artificial y natural. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de muros de carga.

SISTEMA	SUBSISTEMA	ÁREA m²	MOBILIARIO	REQUISISTOS TÉCNICO CONSTRUCTIVOS
ADMINISTRACIÓN		7.84 m²		Ambientales: Iluminación artificial.
	Intendencia		Anagueles	Instalaciones: Eléctrica.
			Anaqueles.	Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
		7.84 m ²	Fotocopiadora, archiveros, anaquel.	Ambientales: Iluminación artificial.
	Papelería			Instalaciones: Eléctrica.
				Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
				Ambientales: Ventilación natural, iluminación artificial y natural.
	Dirección	9.64 m ²	Escritorio, asientos, anaquel,	Instalaciones: Eléctrica.
	académica	9.64 m²	archivero.	Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
				Ambientales: Ventilación natural, iluminación artificial y natural.
	Depto. de	9.34 m ²	Escritorio, asientos, anaquel.	Instalaciones: Eléctrica.
	planeación	9.34 m²	Escritorio, asientos, anaquei.	Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
	Dirección general matutino	16.95 m²	Escritorio, asientos, anaquel, archivero.	Ambientales: Ventilación natural, iluminación artificial y natural.
				Instalaciones: Eléctrica.
				Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
		16.83 m²	Escritorio, asientos, anaquel, archivero.	Ambientales: Ventilación natural, iluminación artificial y natural.
	Dirección general vespertino			Instalaciones: Eléctrica.
				Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
SERVICIOS	Aulas infantiles	131 m²	Mesas de trabajo para niños, asientos para niños, W.C., lavamanos.	Ambientales: Ventilación natural, iluminación natural y artificial.
				Instalaciones: Eléctrica, sanitaria, hidráulica.
				Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
	Sanitarios	39.20 m ²	Lavamanos, W.C.	Ambientales: Ventilación natural, iluminación artificial y natural.
				Instalaciones: Eléctrica, sanitaría e hidráulica.
			Lavamanos, w.c.	Materiales: Block marca Novaceramic.
				Estructura: a base de muros de marcos dúctiles.
	Cuarto de instalaciones	23.48 m ²	Tablero eléctrico, hidroneumático, tapa de cisterna.	Ambientales: Iluminación artificial.
				Instalaciones: Eléctrica, sanitaria e hidráulica.
				Materiales: Block marca Novaceramic.
				Estructura: a base de muros de carga.
	Estacionamiento	268.27 m ²		Ambientales: Iluminación artificial.
			Pluma de tarjeta magnética	Instalaciones: Eléctrica.
				Materiales: Adopasto


SISTEMA	SUBSISTEMA	ÁREA m²	MOBILIARIO	REQUISISTOS TÉCNICO CONSTRUCTIVOS	
EDUCACIÓN	Taller de tejido	84.00 m2	Mesas de trabajo, asientos, máquinas de coser, anaqueles.		
	Taller de cocina 90.23 m2 refrigerador, horno industrial,		refrigerador, horno industrial,	Ambientales: Ventilación natural, iluminación natural y artificial. Instalaciones: Eléctrica, sanitaria, hidráulica. Materiales: Block marca Novaceramic. Estructura: a base de marcos dúctiles.	
	Taller de panadería y repostería	Mesas de acero inoxidable, estutas,		Materiales: Block marca Novaceramic.	
	Taller de estilismo	84.00 m ²	Espejos, asientos, mesas de trabajo, anaqueles.	Ambientales: Ventilación natural, iluminación natural y artificial. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de marcos dúctiles.	
	Taller de diseño de modas	84.00 m ²	Mesas de trabajo, asientos, mampara, monigotes, pizarrón, anaqueles.	Ambientales: Ventilación natural, iluminación natural y artificial. Instalaciones: Eléctrica. Materiales: Block marca Novaceramic. Estructura: a base de marcos dúctiles.	

Matriz de relación

SIMBOLOGÍA DE RELACIÓN

- 0. Nulo
- 1. Medio
- 2. Importante
- 3. Muy importante

MEMORIA DESCRIPTIVA

El proyecto está ubicado en Avenida Juárez, esquina con Tlaxcala, Barrio de Natividad, el predio cuenta con 2291 metros cuadrados y con dos frentes; el primero sobre Av. Juárez, el cual tiene 33.20 metros, dicha avenida cuenta con 9 metros de arroyo vehicular en ambos sentidos y banqueta peatonal de 1 metro a cada lado, el segundo frente sobre la calle Tlaxcala cuenta con 20.69 metros y tiene 6 metros de terracería.

El predio está conformado por 6 puntos y tiene una pendiente de 1 a 3 metros, considerando un banco de nivel en un poste de luz, ubicado a 12.29m al sur-oeste del punto 5 de la poligonal, además se encuentra colindando con 3 predios de carácter habitacional.

Dicho predio cuenta con una pendiente del 3.8% y con un suelo de arenas con componentes arcillosos (SC), de acuerdo con el sistema unificado de clasificación de suelos, el cual es permeable con baja compresibilidad y una capacidad de carga de 8t/m². Al tacto se perciben partículas arenosas de 3mm y los finos arcillosos que así mismo presentan un alto grado de plasticidad.

Para comenzar a definir los elementos se creó una retícula, con base en el eje principal que inicia en el acceso que se encuentra sobre Av. Juárez, en donde se fueron posicionando los diferentes elementos, divididos en:

- Administración
- Servicios
- Educación

En el acceso principal cuenta con 47.25 m² en donde se puede apreciar un muro llorón que actúa como remate visual flanqueado por el área administrativa, que consta de 2 pisos; en la planta baja comienza una sala de espera y con la recepción de oficinas, posteriormente se encuentran las escaleras y el área de inscripción y finalmente esta la enfermería, la subdirección de vinculación y apoyo, la subdirección académica el departamento de evaluación educativa y el departamento de desarrollo curricular y docente.

En el segundo piso se encuentra un área para que los trabajadores puedan servirse café, la cual está al lado de la sala de juntas, además están los cuartos para intendencia y papelería y finalmente el departamento de planeación, la dirección académica y las direcciones generales para turno matutino y vespertino.

ÁREA ADMINISTRATIVA				
ÁREA	DIMENSIONES			
Sala de espera	11.69 m ²			
Recepción	9.34 m ²			
Inscripciones	8.05 m ²			
Subdirección académica	9.64 m ²			
Subdirección de vinculación	9.34 m ²			
Enfermería	10.33 m ²			
Depto. de evaluación	10.33 m ²			
Depto. de desarrollo	10.33 m ²			
Sanitarios	6.86 m ²			
Sala de juntas	21.00 m ²			
Intendencia	7.84 m ²			
Papelería	7.84 m ²			
Dirección académica	9.64 m ²			
Depto. de planeación	9.34 m ²			
Dirección general matutino	16.95 m ²			
Dirección general vespertino	16.83 m ²			

El área de servicios consta del cuarto de instalaciones, el cual albergará al hidroneumático y el tablero eléctrico de distribución, separados por un murete; además están sanitarios para hombres y mujeres con un ducto de instalaciones al centro, ubicados entre los talleres y finalmente están las aulas infantiles, destinadas a los hijos de las alumnas, éstas se dividen en dos, una para niños de 3 a 6 años y de 7 a 10 años, previamente a las aulas se encuentra el filtro para supervisar el buen estado de salud de los niños.

A continuación se presenta una tabla con las áreas destinadas a servicios:

ÁREA DE SERVICIOS				
ÁREA	DIMENSIONES			
Aulas infantiles	131 m ²			
Sanitarios	39.20 m ² 23.48 m ²			
Cuarto de instalaciones				
Estacionamiento	268.27 m ²			

El área educativa consta de 5 talleres, la cual comienza del lado derecho del acceso principal, comenzando con los talleres de cocina y panadería, los cuales cuentan con 4 mesas de trabajo para 5 personas, éstas tienen una tarja para lavar trastes y con una estufa, además de tener espacio en la parte baja para colocar trastes, cada taller cuenta con un horno de carácter industrial, un microondas y anaqueles para la colocación de instrumental, todos éstos muebles serán de acero inoxidable, de acuerdo a la norma Mexicana NOM-251-SSA1-2009, Prácticas de higiene para el proceso de alimentos, bebidas o suplementos alimenticios.

Posteriormente se encuentra el taller de estilismo que esta amueblado con espejos individuales, sillas y estaciones de trabajo para 20 personas, dicho mobiliario se agrupará de seis en seis con los espejos a espaldas unos de otros. A lado de éste se halla el taller de tejido y cuenta con espacio para 20 personas, así como anaqueles y espacios para almacenar los insumos necesarios.

Después de éstos se ubican los sanitarios y del lado contrario está el taller de diseño de modas, el cual tiene dos módulos de mesas para 10 personas para trabajar con telas grandes o bien se pueden separarse para crear espacios individuales.

ÁREA EDUCATIVA				
ÁREA	DIMENSIONES			
Taller de tejido	84.00 m ²			
Taller de cocina	90.23 m ²			
Taller de panadería y repostería	91.71 m ²			
Taller de estilismo	84.00 m ²			
Taller de diseño de modas	84.00 m ²			

Finalmente se proponen dos locales comerciales, los cuáles proveerán un gasto adicional para la escuela, éstos serán manejados de acuerdo a una convocatoria propuesta por la administración.

Al final se suma un total de 918.42 m² construidos, dejando una superficie libre de 1372.58m², de ésta manera se cumple con el porcentaje indicado por el sistema normativo de equipamiento urbano de la Secretaría de desarrollo social.

En cuanto a instalaciones actualmente el predio no cuenta con ningún servicio de infraestructura.

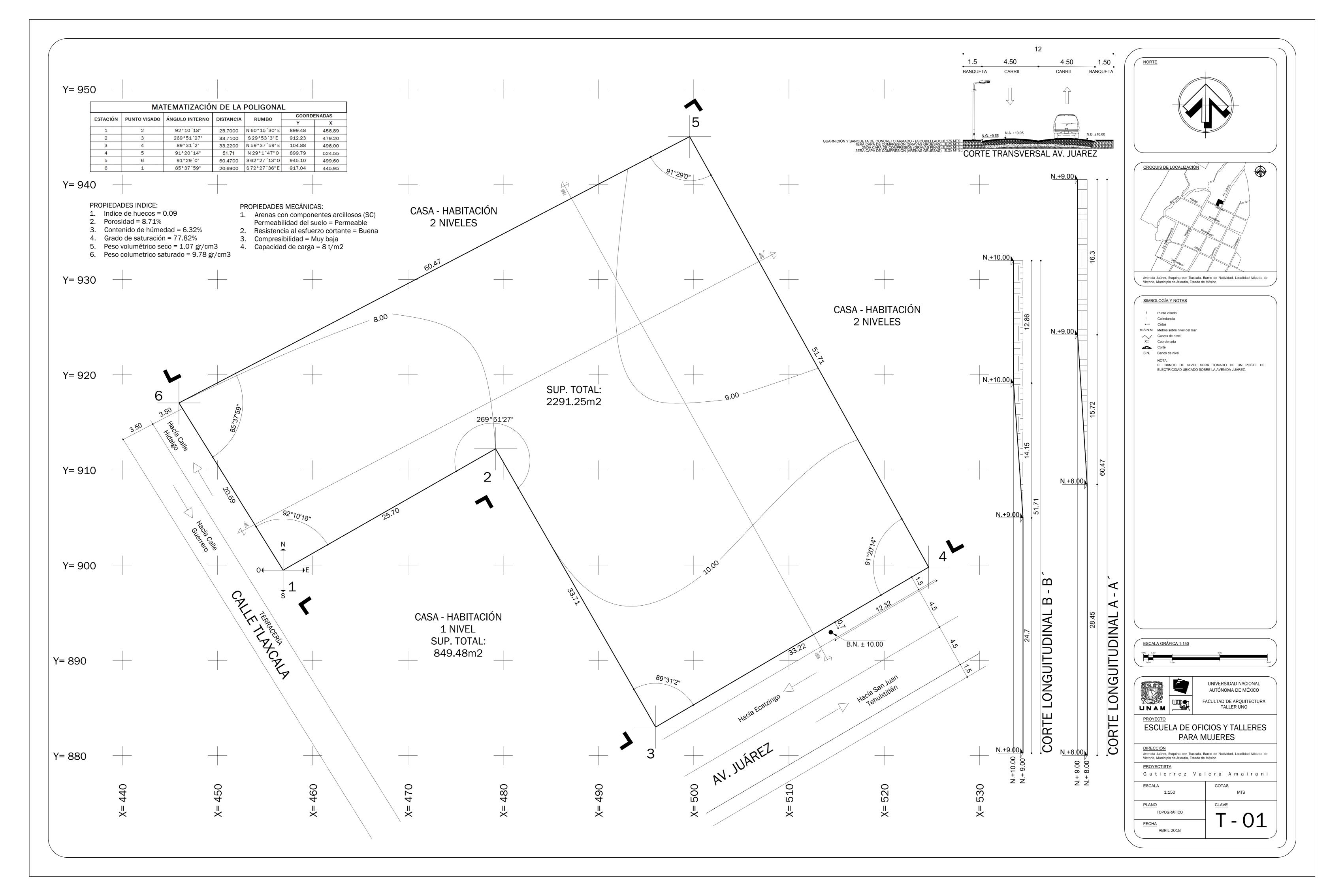
Se propone que la acometida hidráulica sea por Avenida Juárez llegando a una cisterna de 30 mil litros, con base en la dotación requerida para un elemento de educación media superior según el reglamento de construcción del Distrito Federal, de la cisterna se canalizará a un hidroneumático de manera que los muebles se puedan utilizar por medio de fluxómetro.

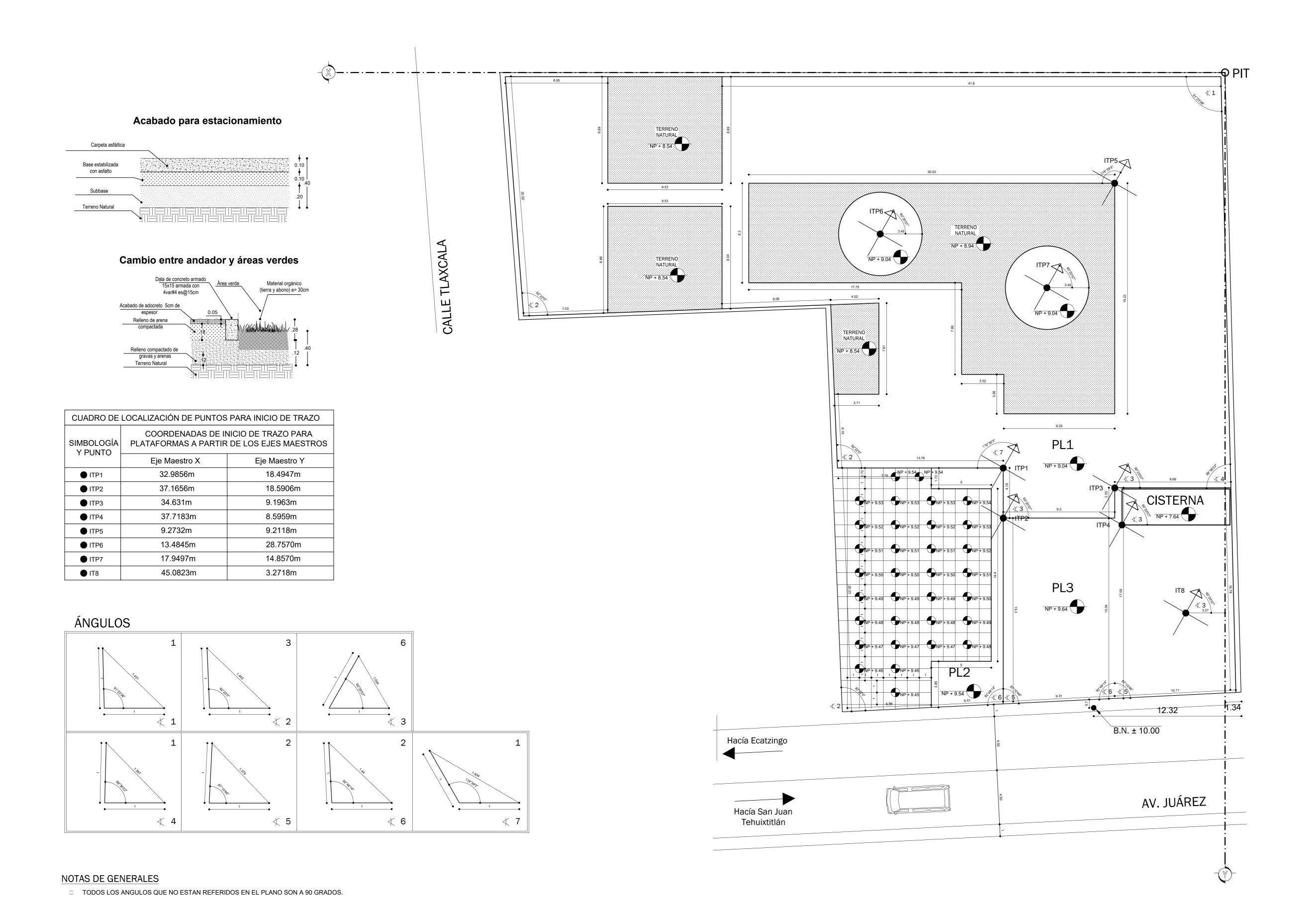
En cuanto al desalojo de aguas se tendrá una sola red de desalojo para aguas negras, aguas con residuos sólidos orgánicos, para aguas grises, aguas jabonosas, y para aguas pluviales éste ramaleo se conducirá a la conexión del colector general ubicado en Avenida Juárez.

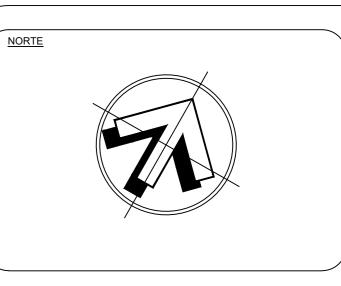
Finalmente, por el ámbito de las instalaciones, se propone una acometida trifásica, debido a que la carga total instalada es de 13340 watts, se proponen luminarias para el interior de 30 y de 10 watts de tipo led, para el ahorro de energía, y contactos de sencillos y dobles de 180 y 250 watts respectivamente, además del hidroneumático propuesto que consume 800 watts. Para la iluminación exterior se utilizarán dos luminarias diferentes a base de energía solar; el primer tipo marca ETW modelo 183096 se colocara en todo el perímetro del inmueble con una capacidad de iluminación de 200 lúmenes y un tiempo de carga de batería de 12 horas, ofreciendo de 4 a 7 días de iluminación y el segundo tipo serán dos postes ubicados en el acceso de marca Indirecta modelo Tlalpan con un flujo luminoso de 5490 lúmenes con iluminación por días.

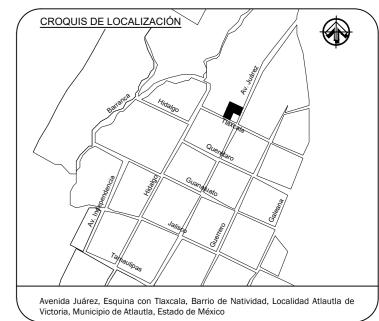
DIAGRAMA DE RANGO DE ILUMINACIÓN

Fuente: Ficha técnica del proveedor.


Por otro lado la estructura del área administrativa servicios será a base muros de carga y por tanto su cimentación estará compuesta por zapatas corridas de mampostería, debido a que es de fácil acceso en la zona por la cercanía con los volcanes, de acuerdo a la normatividad técnica de Infraestructura educativa los talleres deberán estructurase por medio de marcos dúctiles, las columnas serán de concreto armado y estarán posicionadas a cada cuatro metros y tendrán zapatas aisladas de concreto armado unidas perimetralmente con sus respectivas contratrabes para evitar hundimientos diferenciados.


La barda colindante será soportada por zapatas corridas de mamposterías.


Los muros serán de block marca Novaceramic modelo vintex 6/12 liso natural mientras que los claros serán cubiertos por losas de concreto.


Para los exteriores se propone adocreto con forma cuadrada de color gris obscuro en las áreas principales y finalmente asfalto para el estacionamiento.

PLANOS DEL PROYECTO EJECUTIVO

SIMBOLOGÍA Y NOTAS

☐ Colindano

Cotas

B.N. Banco de nivel

NOTA: EL BANCO DE NIVEL SERÁ TOMADO DE UN POSTE DE ELECTRICIDAD UBICADO SOBRE LA AVENIDA JUÁREZ.

PL1 Plata@rma
ITP1 Inicio de trazo de plata@rma

Nivel de plata orma

Orientación

ESCALA GRÁFICA 1:150

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ARQUITECTURA TALLER UNO

ESCUELA DE OFICIOS Y TALLERES
PARA MUJERES

<u>DIRECCIÓN</u>

Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de Victoria, Municipio de Atlautla, Estado de México

<u>PROYECTISTA</u> Gutierrez Valera Amairani

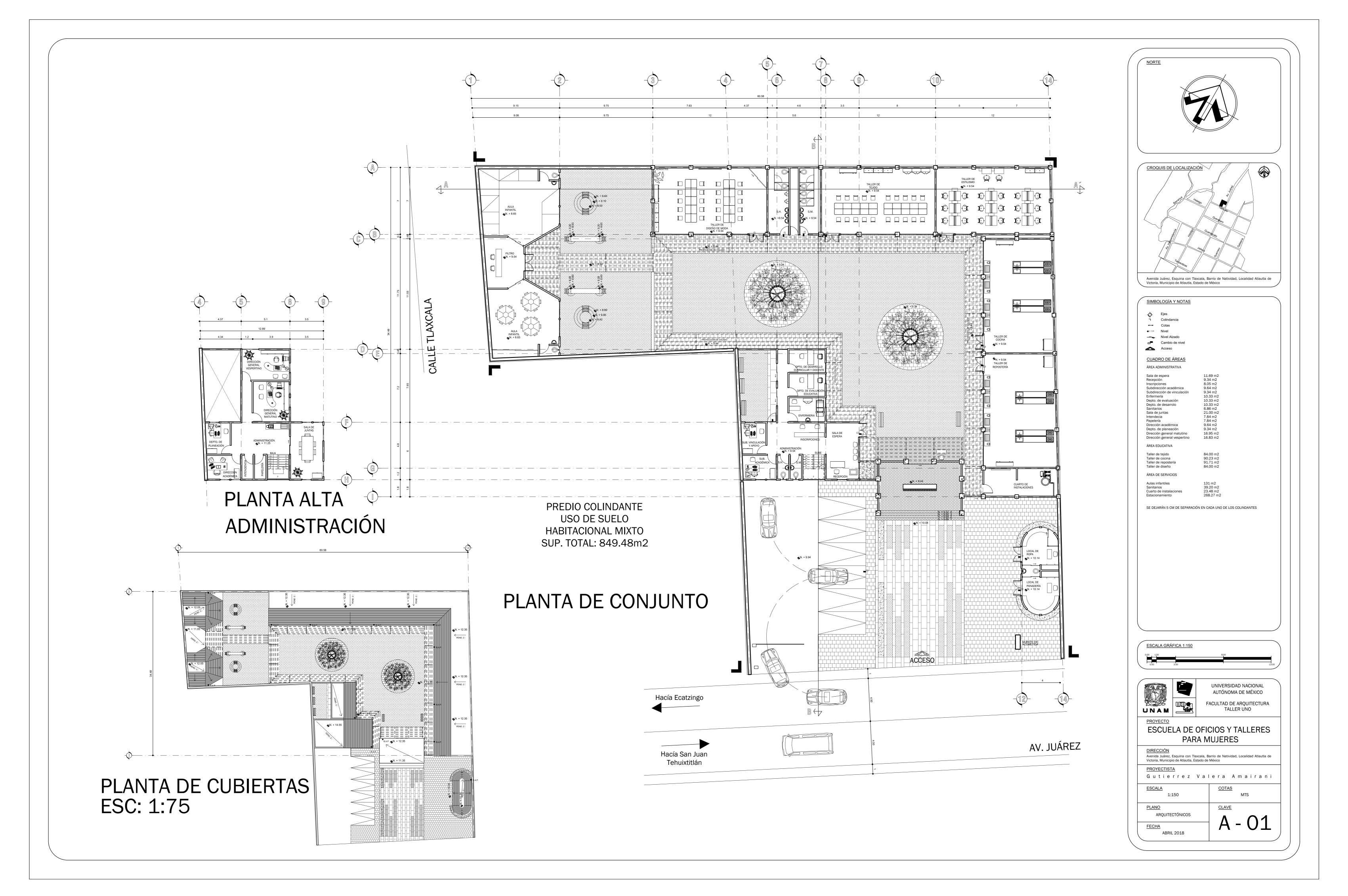
<u>FECHA</u>

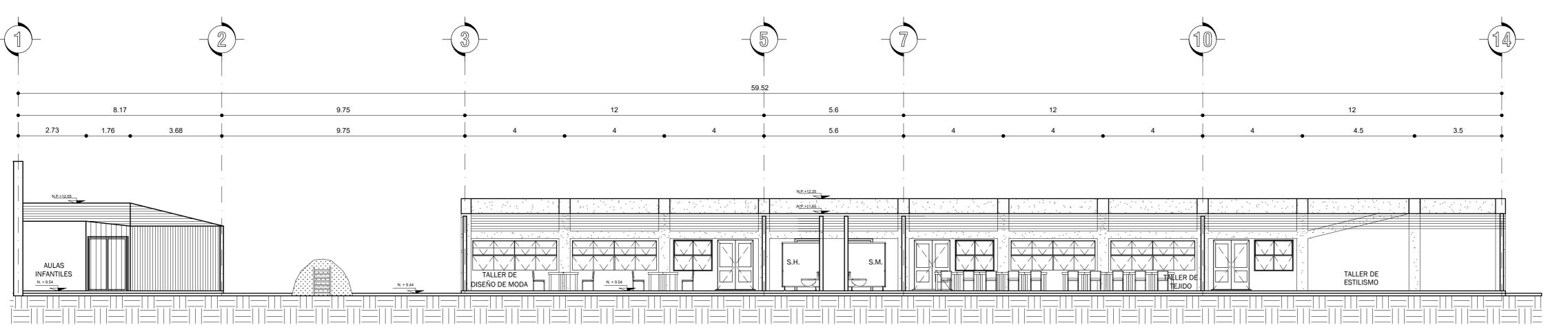
ABRIL 2018

ESCALA

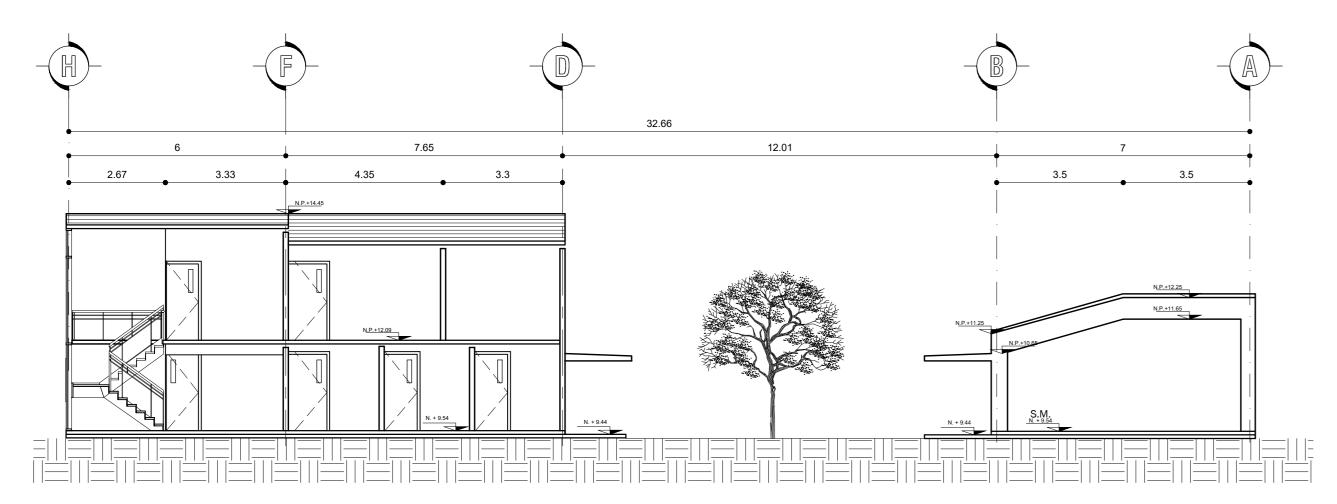
1:150

MTS

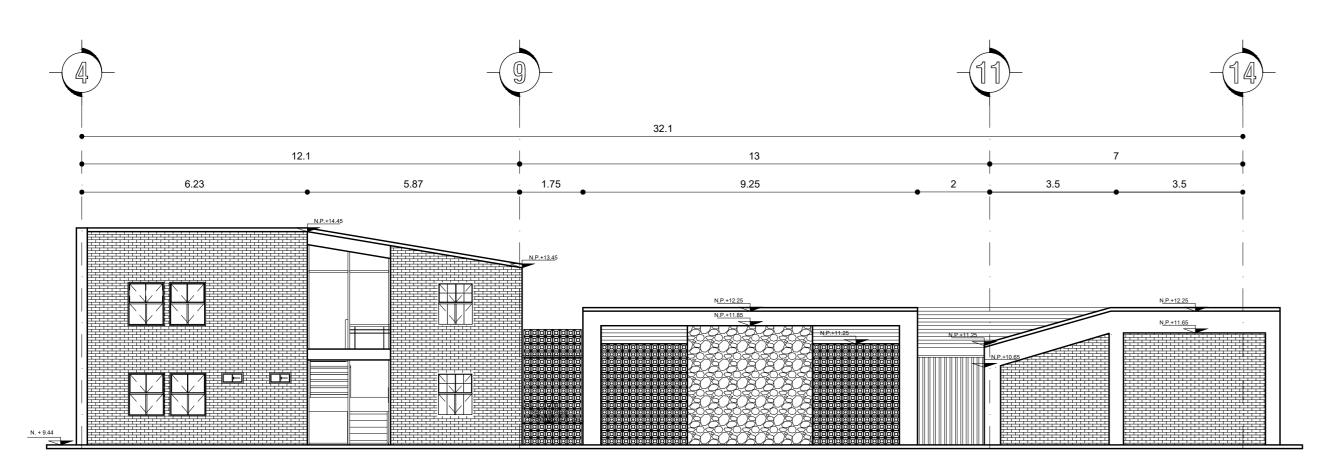

PLANO
TRAZO Y NIVELACIÓN

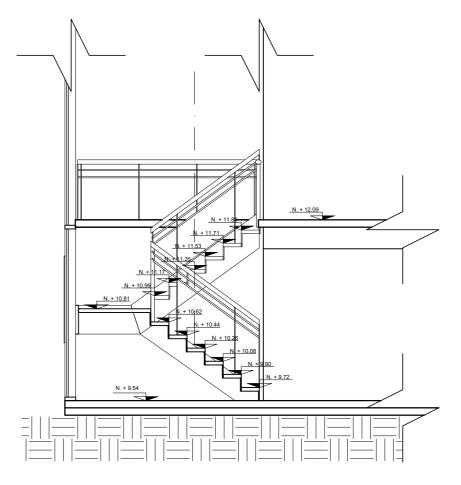

COTAS

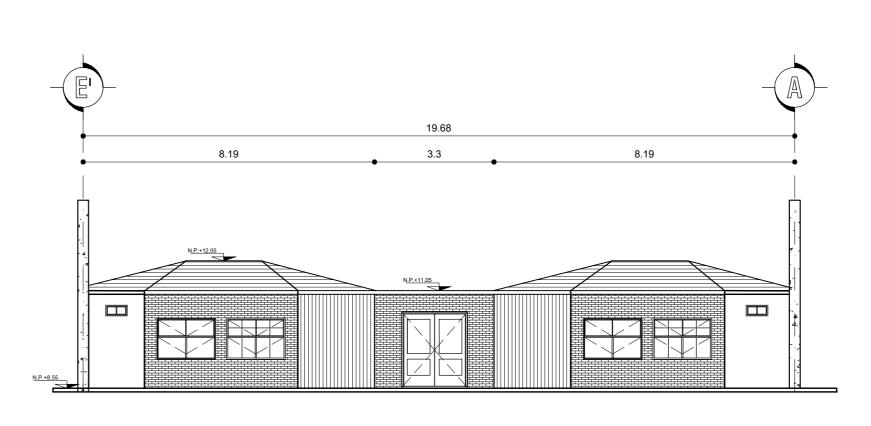
MTS

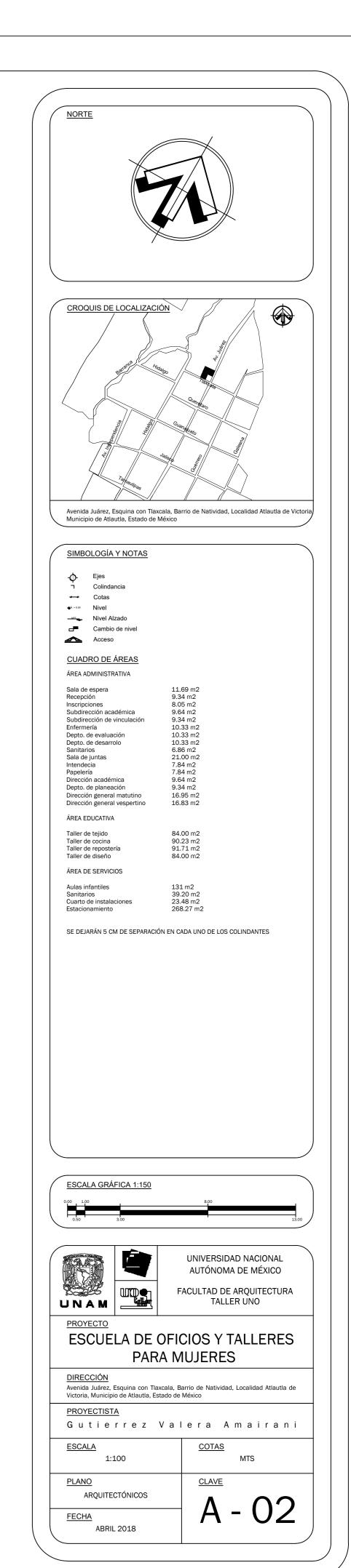

CLAVE

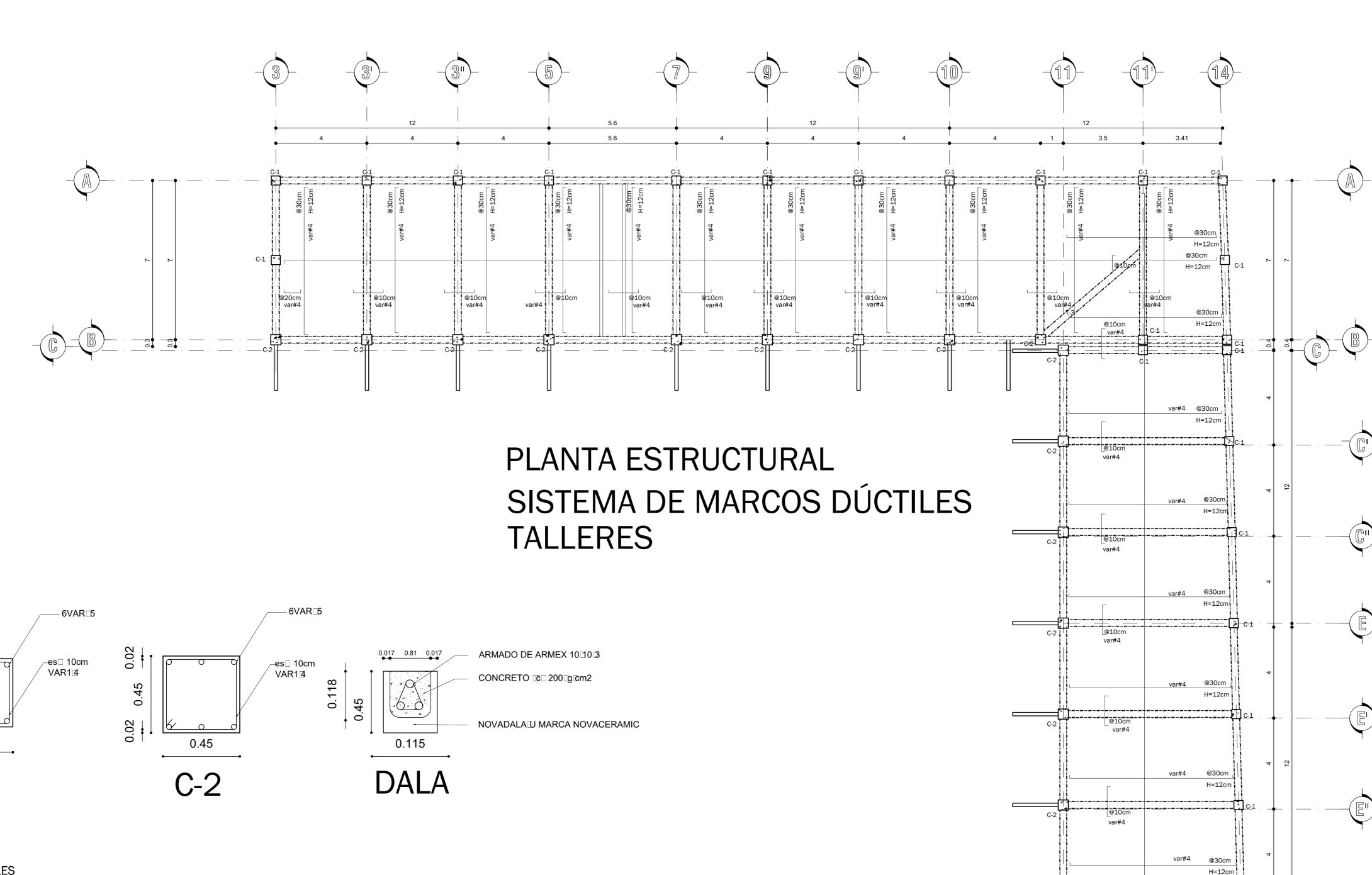
TN - 01




CORTE LONGUITUDINAL A - A 1


CORTE LONGUITUDINAL B - B '


FACHADA NOROESTE



CORTE LONGUITUDINAL ESCALERAS ESC: 1:50

FACHADA AULAS INFANTILES

NOTAS DE GENERALES

- LAS DIMENSIONES ESTAN DADAS EN CENTÍMETROS Y LOS NIVELES EN METROS, EXCEPTO DONDE SE INDIQUE OTRA UNIDAD. - VERIFICAR DIMENSIONES Y NIVELES CON PLANOS ARQUITECTÓNICOS Y EN OBRA.

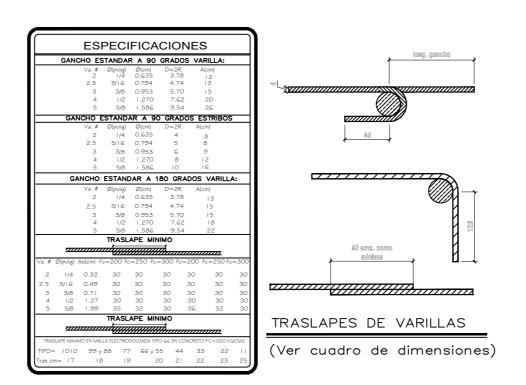
□CONCRETO MARCA CEMEX□CÓDIGO DE IDENTIFICACIÓN QIXXXIY □ 1288 155 11 3 13 13 14 VV □TAMAÑO MÁXIMO DEL AGREGADO 19 MM□ EDAD DE ESPECIFICACIÓN 28 DÍAS, CLASE I ESTRUCTURAL □IMPERMEABILIZANTE 1 □ FRAGUADO 8 19 HORAS □DENSIDAD 2200 □g 1cm²:

PÁRA CASTILLOS Y DALAS : :: 210 :: 210 :: 210 :: 210 :: 210 :: 245 :: 24

- LAS LONGITUDES DE ANCLAJE Y TRASLAPE DE LAS VARILLAS CUMPLIRÁN CON LA TABLA ADJUNTA, A MENOS QUE SE INDIQUE DE OTRA MANERA EN EL DIBUJO.

- NO DEBERÁ TRASLAPARSE MÁS DEL 50% DEL REFUERZO EN UNA MISMA SECCIÓN.

□LOS DOBLECES EN LAS VARILLAS SE HARÁN EN FRÍO SOBRE UN PERNO DE DÍAMETRO MÍNIMO IGUAL A 8 VECES EL DÍAMETRO DE LA VARILLA (VER FIGURA 1).


□EN TODOS LOS DOBLECES PARA ANCLAJES O CAMBIO DE DIRECCIÓN EN VARILLAS□DEBERÁ COLOCARSE UN PASADOR ADICIONAL DE DÍAMETRO IGUAL O MAYOR QUE EL DÍAMETRO DE LA VARILLA (VER FIGURA 2).

<u>ESTRUCTURACIÓN</u>

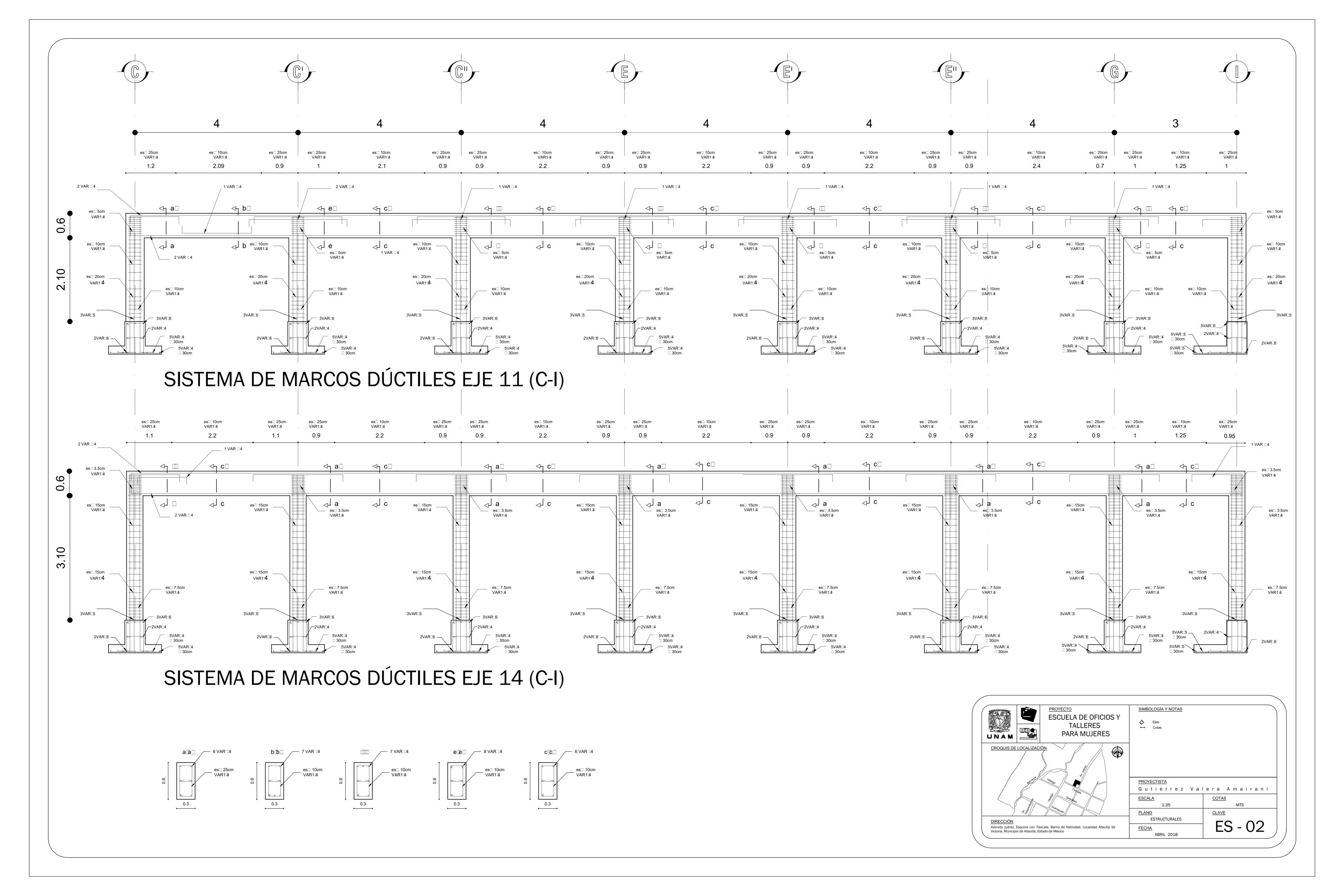
LA ESTRUCTURA EN GENERAL SE RESOLVIO CON MUROS DE CARGA EN LA ZONA ADMINISTRATIVA Y DE SERVICIOS.

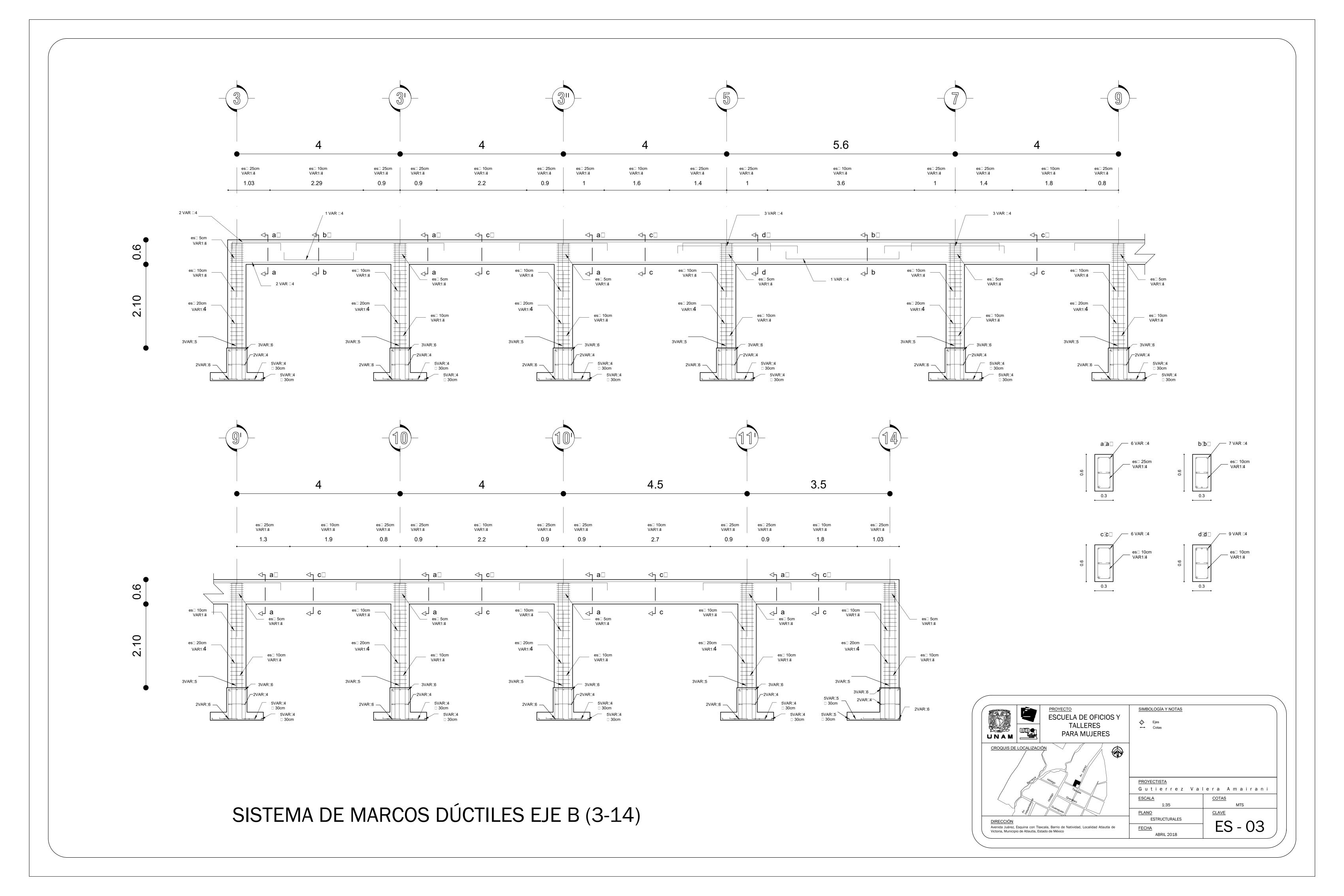

LA ESTRUCTURA EN LA PARTE EDUCATIVA CONSTA DE COLUMNAS Y TRABES DE CONCRETO DE ACUERDO A LA NORMATIVA CORRESPONDIENTE.

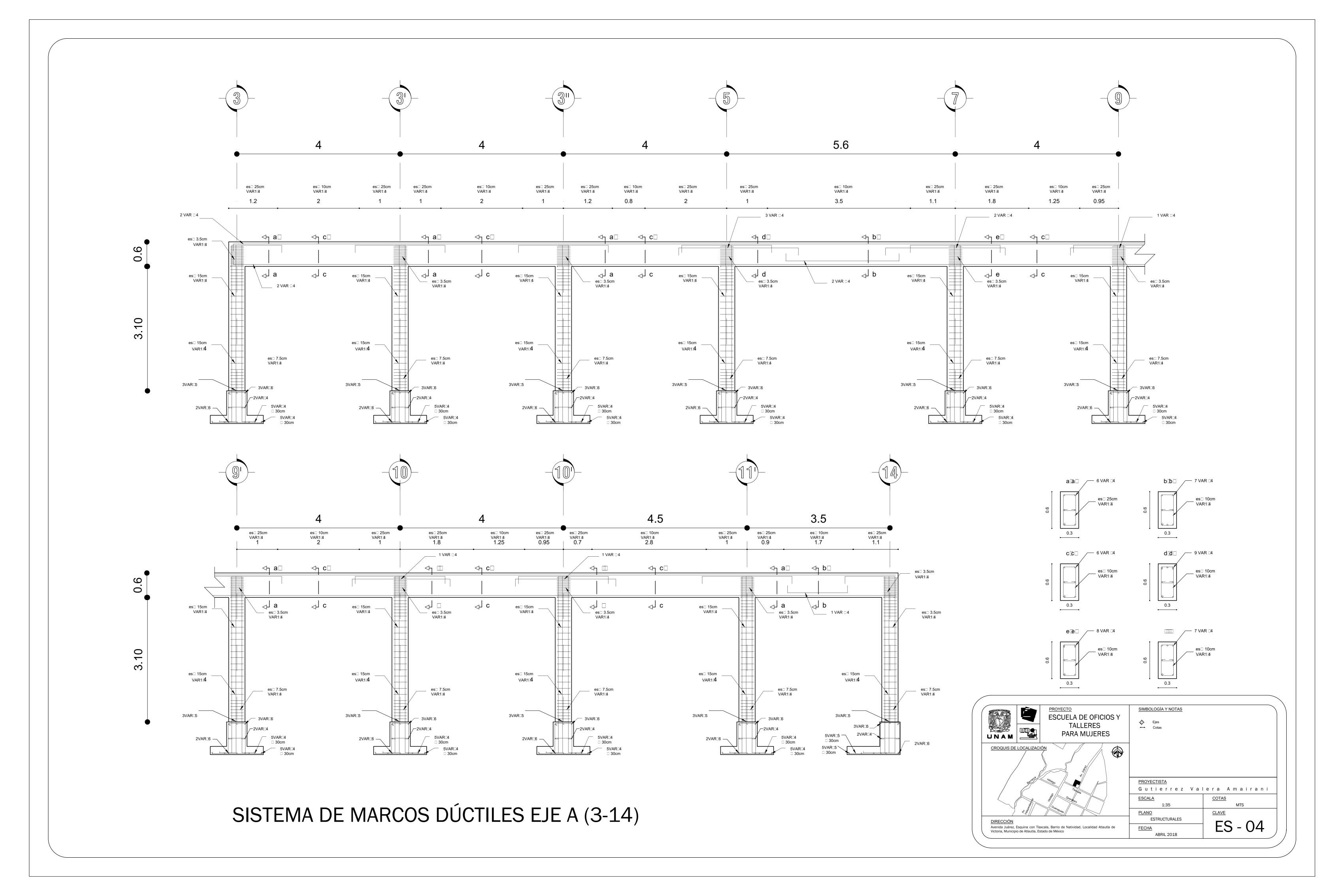
PARA LOS PASADORES EN EL ARMADO SE CONSIDERARÁ 40 VECES EL DIAMETRO DE LA VARILLA.

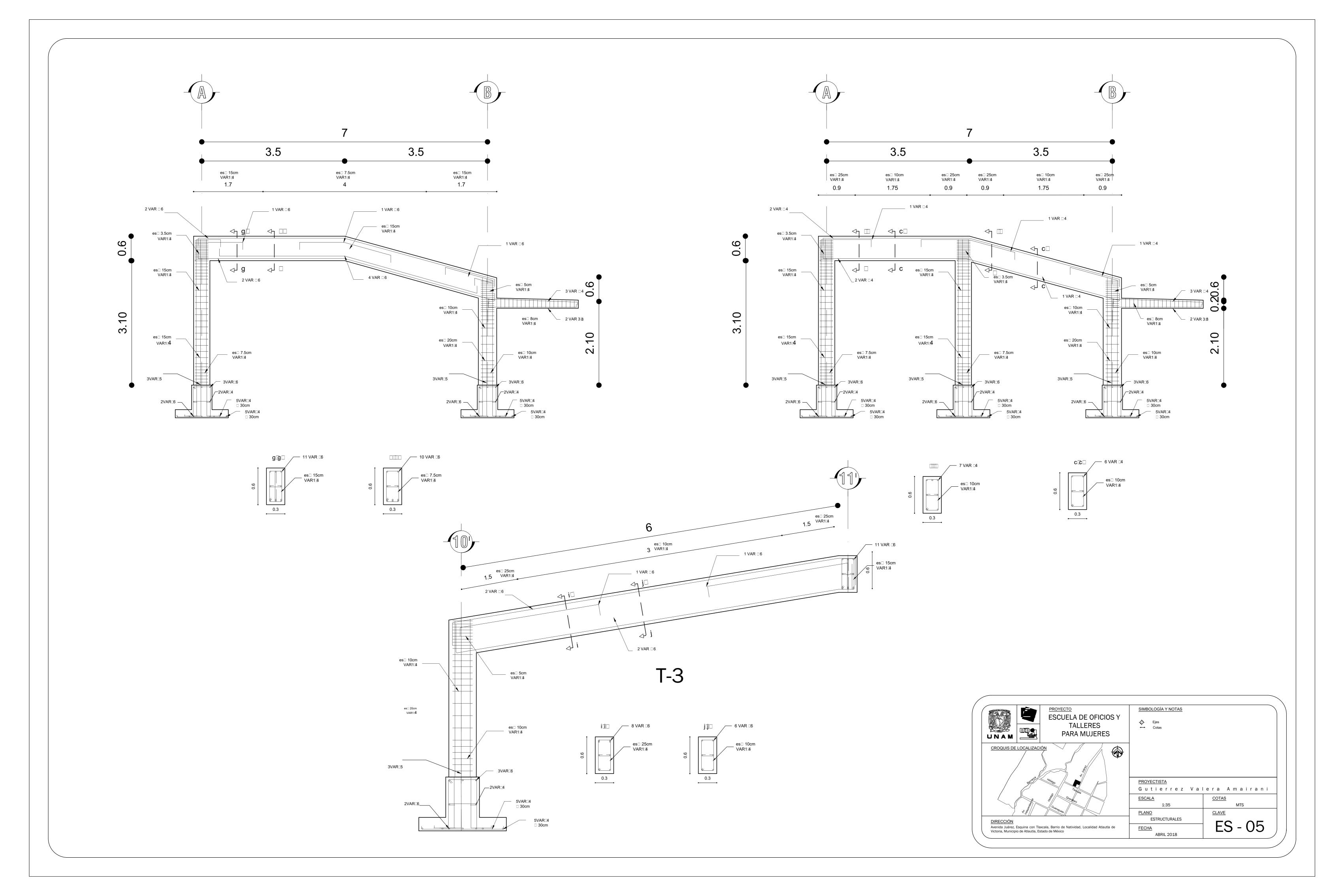
@10cm C-1

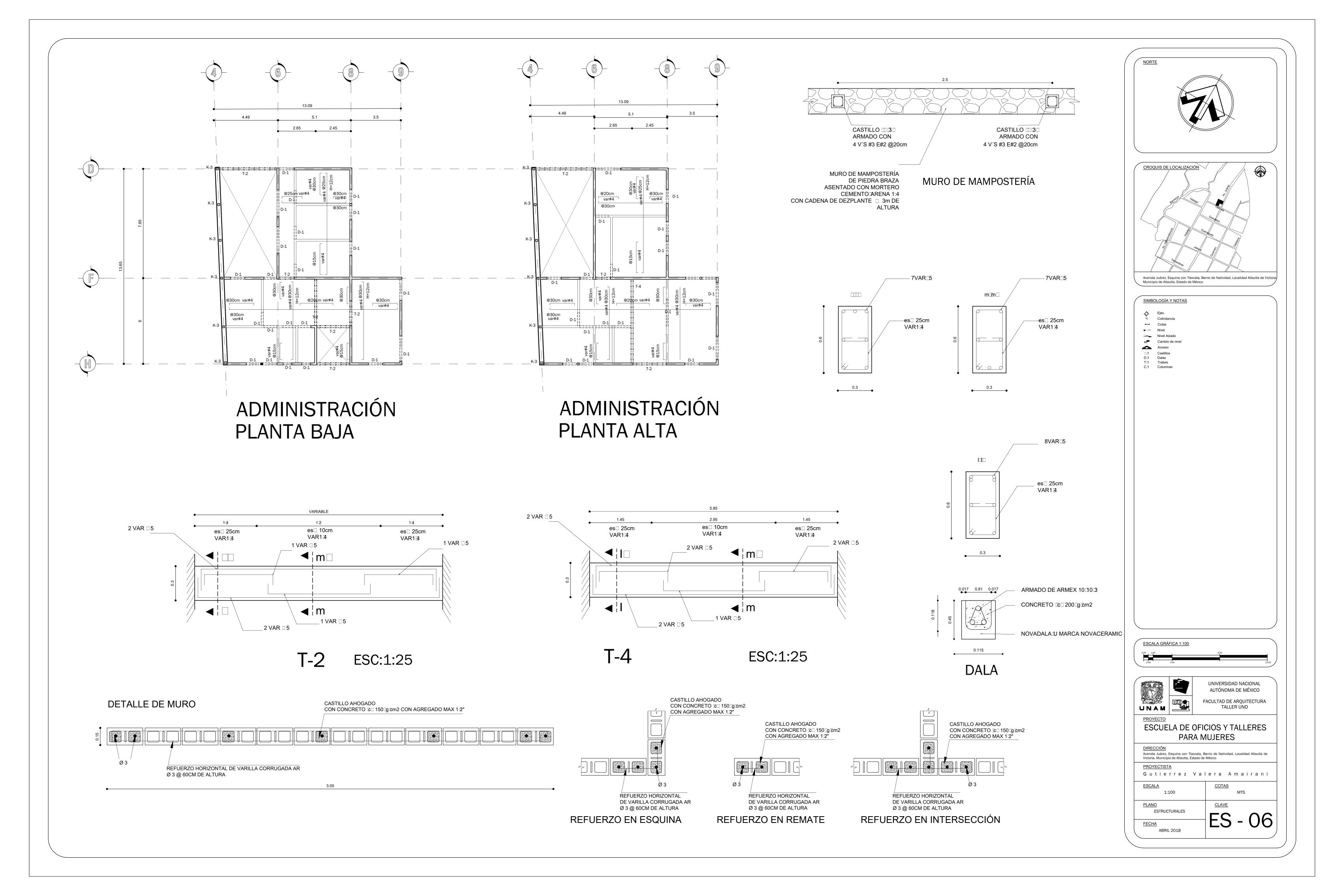
var#4 @30cm

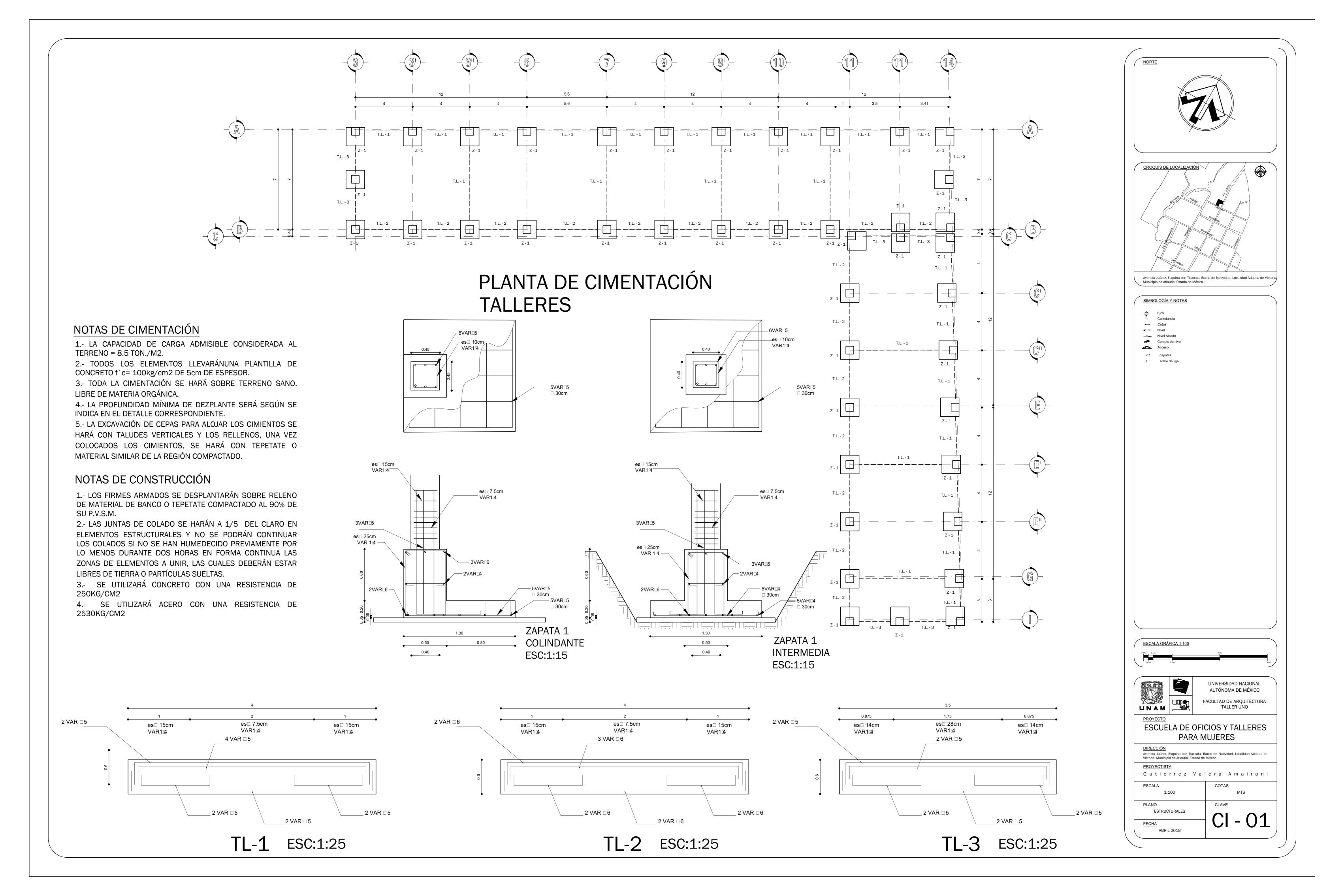

1:100

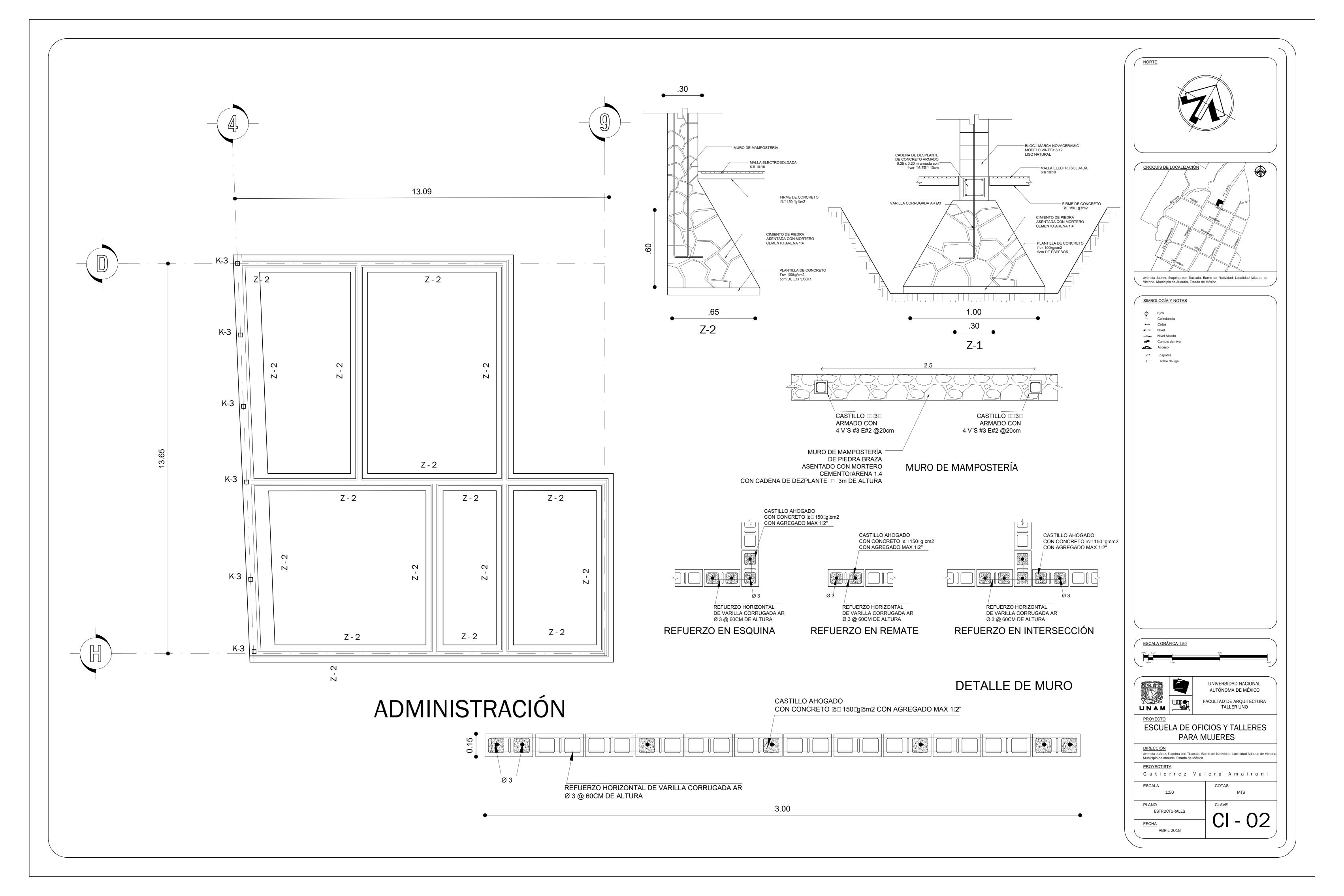

ESTRUCTURALES


ABRIL 2018

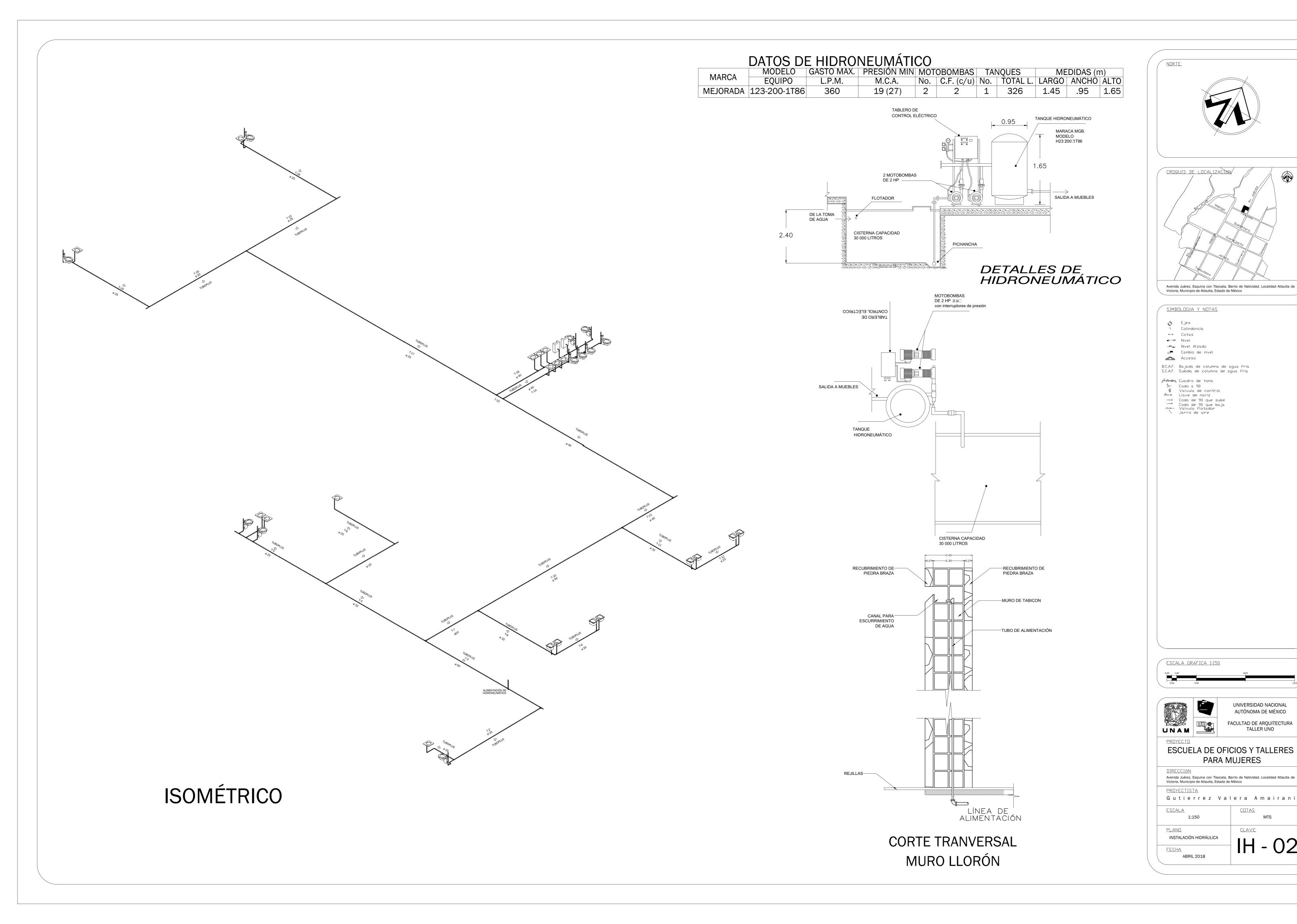

<u>FECHA</u>

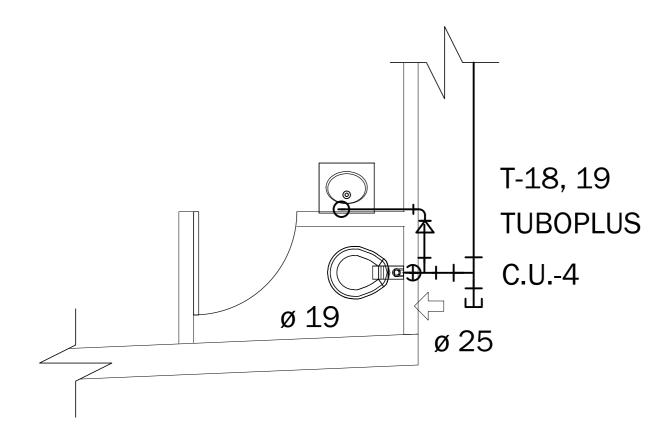

MTS



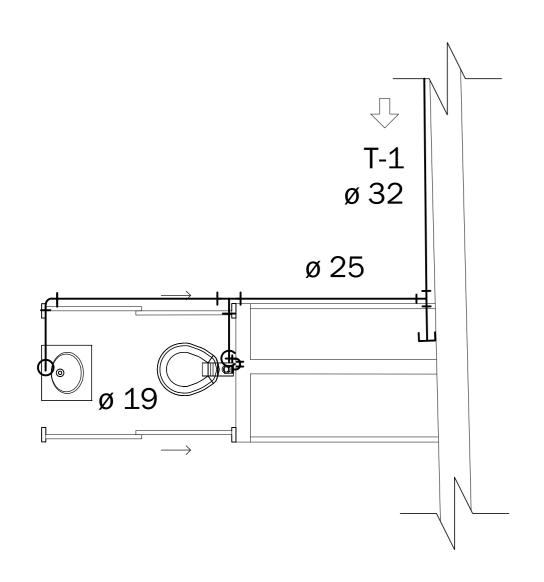




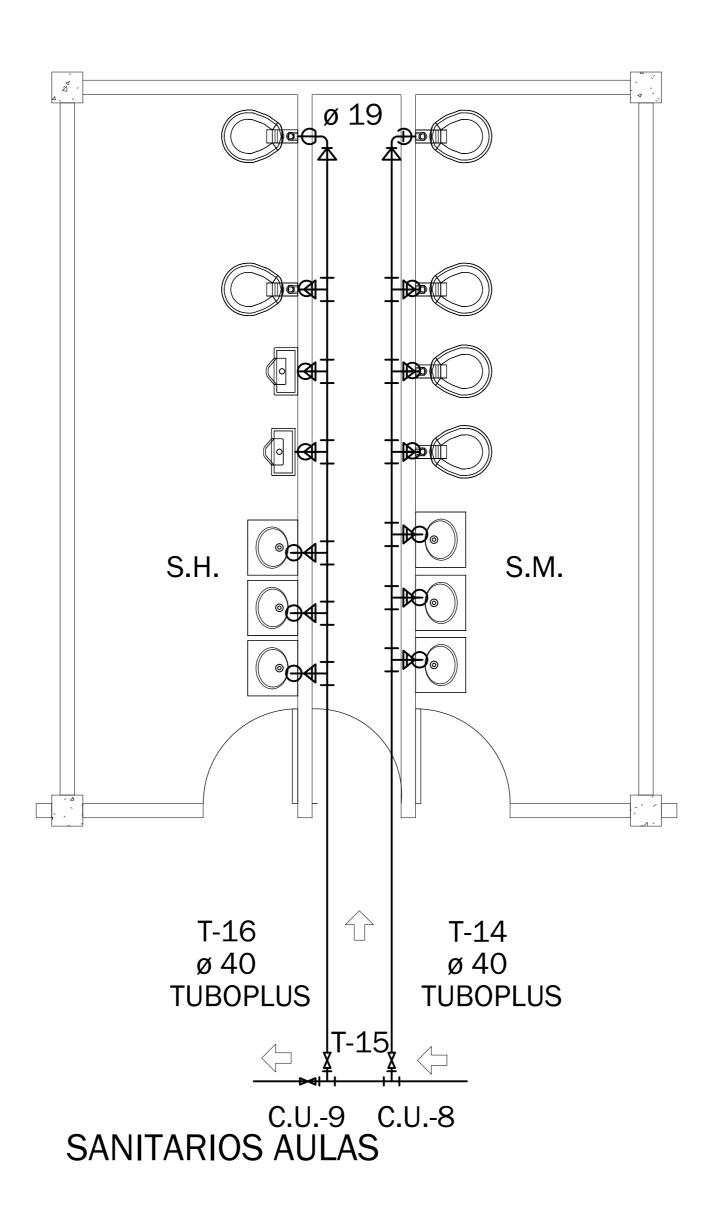


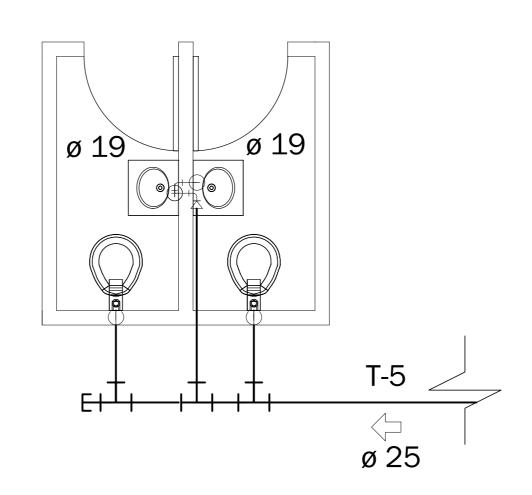


UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

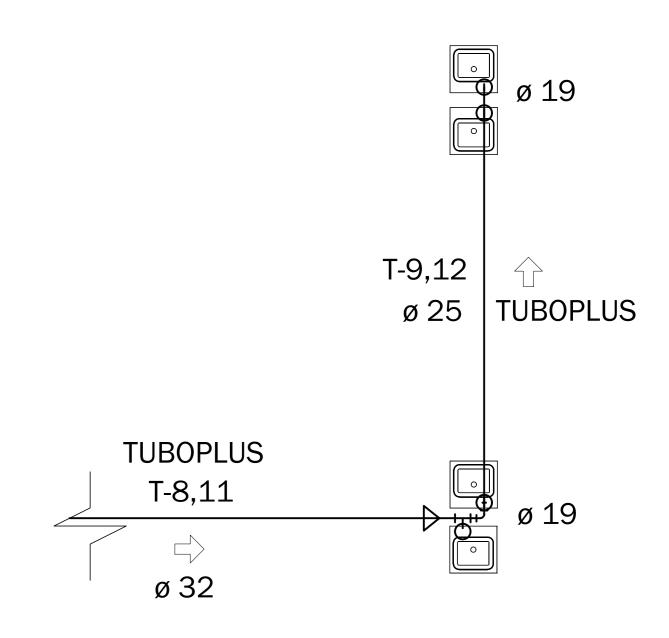

FACULTAD DE ARQUITECTURA TALLER UNO

<u>CLAVE</u>

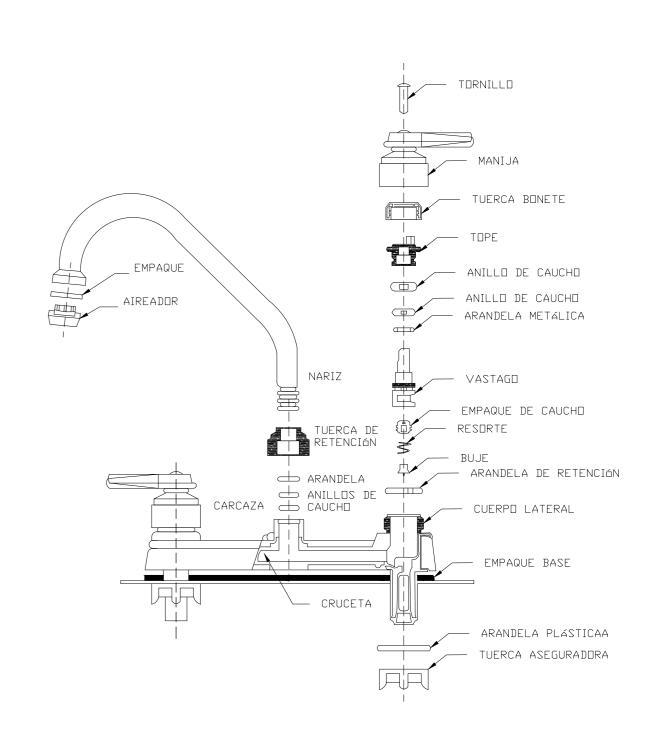

IH - 02



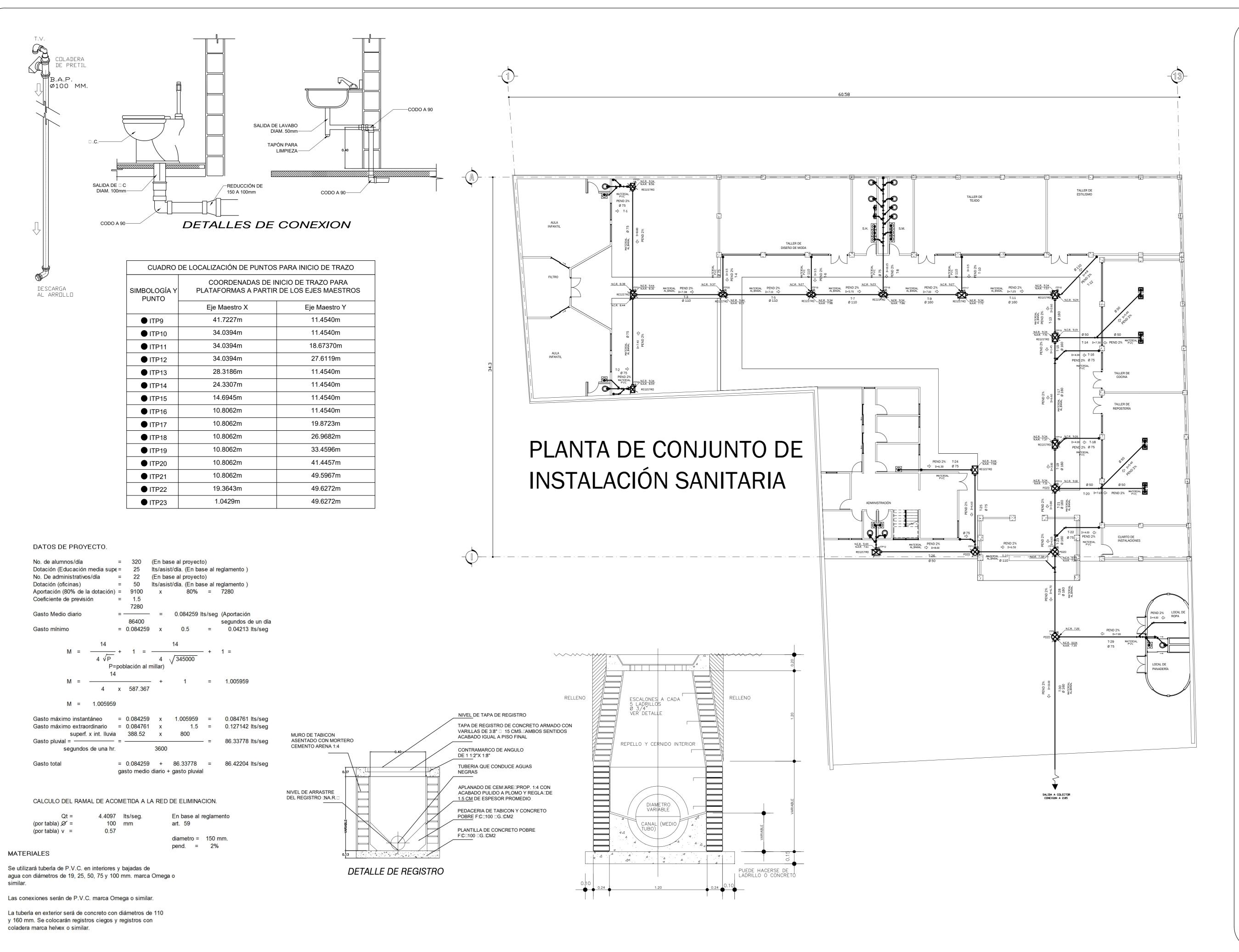
SANITARIO AULAS INFANTILES

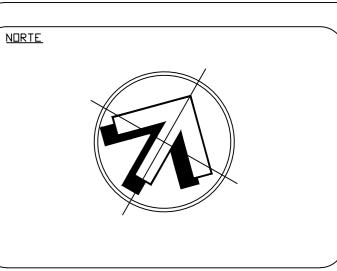


SANITARIO LOCALES

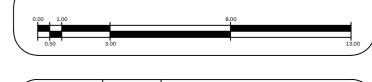



SANITARIOS ADMINISTRACIÓN




FREGADEROS TALLERES

DETALLE LLAVE TARJAS



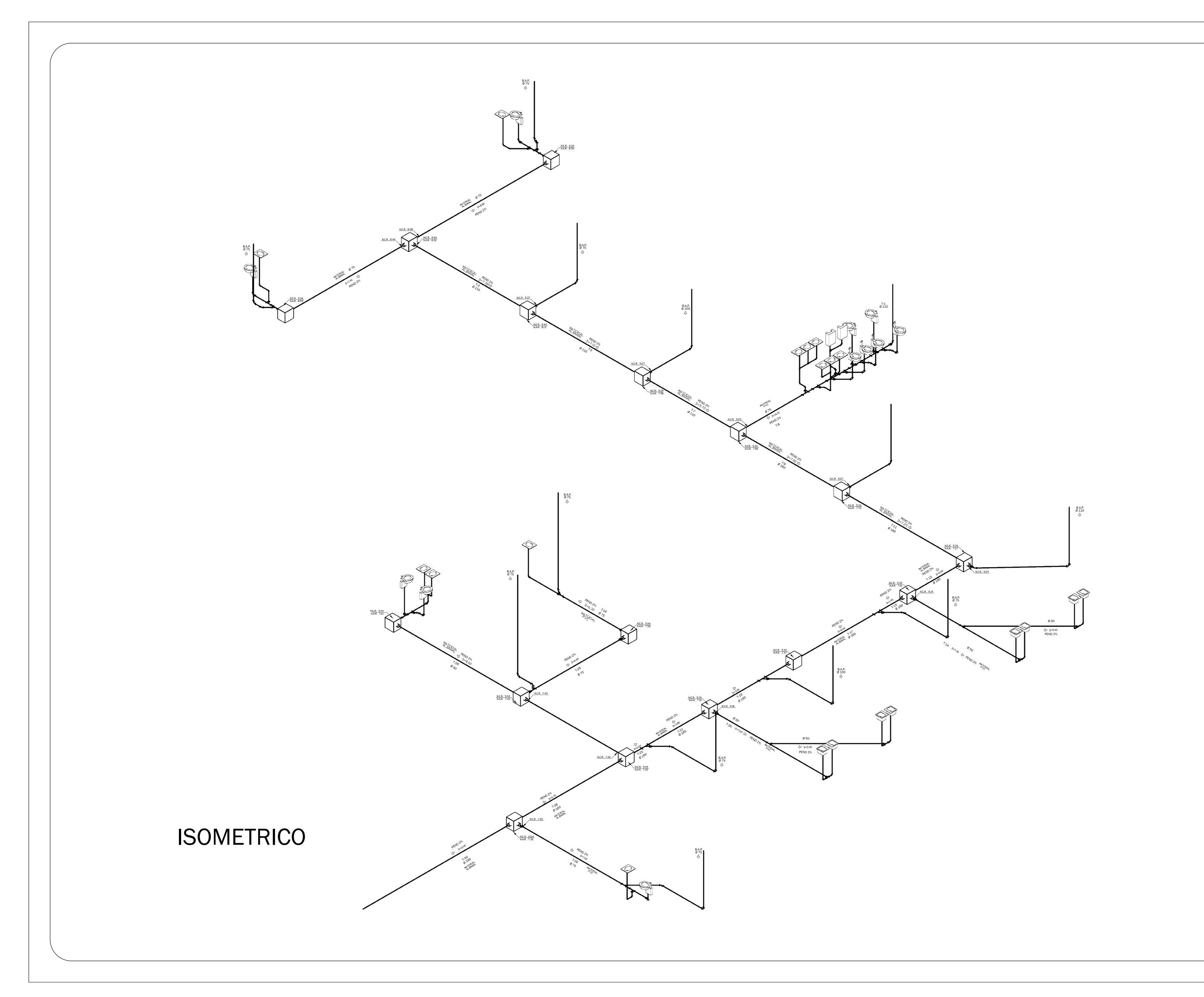
SIMBOLOGÍA Y NOTAS

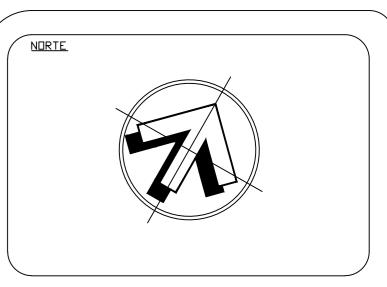
- -ф- Ejes
- Cambio de nivel

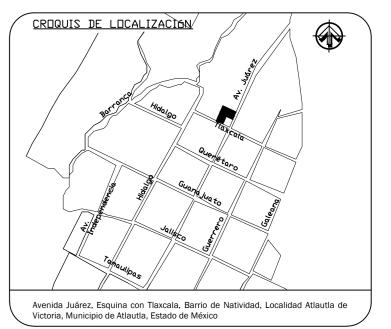
- YEE A 45°
- ITP1 Inicio de trazo
- NOTA: LAS COORDENADAS PARA LOS REGISTROS SE TOMARÁN CON BASE A LOS EJES MAESTROS DEL PLANO DE TRAZO Y NIVELACIÓN (TN-01). DE 60°20′57″, VER DETALLE DE ÁNDULO EN PLANO DE TRAZO Y NIVELACIÓN (TN-01).

ESCALA GRÁFICA 1:150

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ARQUITECTURA

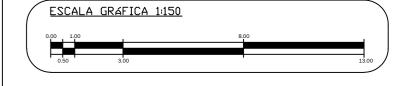

ESCUELA DE OFICIOS Y TALLERES PARA MUJERES


Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de


Gutierrez Valera Amairani

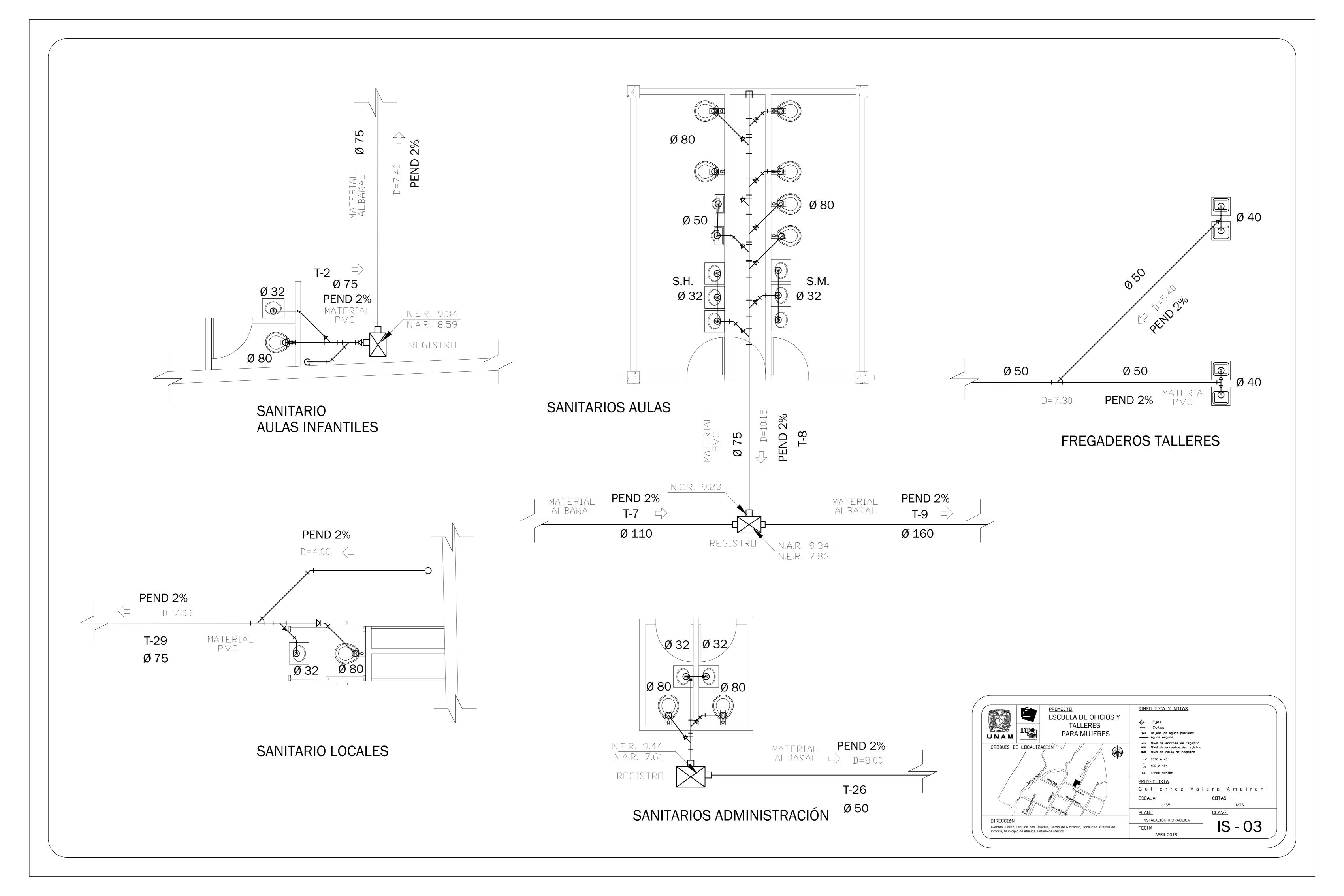
1:150 MTS INSTALACIÓN SANITARIA

ABRIL 2018



SIMBOLOGÍA Y NOTAS

- → Cotas •••••• Nivel
- Nivel Alzado Cambio de nivel
- Acceso
- B.A.P. Bajada de aguas pluviales ---- Aguas negras
- NTR. Nivel de enrrase de registro NAR. Nivel de arrastre de registro
- ncr. Nivel de caída de registro
- → CODO A 45°], YEE A 45°
- ⊔ TAP6N HEMBRA


UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

ESCUELA DE OFICIOS Y TALLERES PARA MUJERES

Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de Victoria, Municipio de Atlautla, Estado de México

Gutierrez Valera Amairani

INSTALACIÓN SANITARIA <u>FECHA</u> ABRIL 2018

SISTEMA TRIFÁSICO

CARGA TOTAL INSTALADA:

En base a diseño de iluminación 2,170 watts (Total de luminarias) Alumbrado (Total de fuerza) Contactos 10,620 watts 800 watts (Total de interruptores) Interruptores 13,590 watts (Carga total)

SISTEMA: Se utilizará un sistema trifásico a cuatro hilos (3 fases y neutro) (mayor de 8000 watts)

TIPO DE CONDUCTORES : Se utilizarán conductores con aislamiento TW

(selección en base acondiciones de trabajo)

1. CALCULO DE ALIMENTADORES GENERALES.

1.1 cálculo por corriente:

DATOS:

W	=	13,590 watts.	(Carga total)
En	=	127.5 watts.	(Voltaje entre fase y neutro)
Cos O	=	0.85 watts.	(Factor de potencia en centésimas)
F.V.=F.D	=	0.7	(Factor de demanda)
Ef	=	220 volts.	(Voltaje entre fases)

Siendo todas las cargas parciales monofásicas y el valor total de la carga mayor de 8000watts, bajo un sistema trifasico a cuatro hilos (3 o - 1 n). se tiene:

$$I = \frac{W}{3 \text{ En Cos O}} = \frac{W}{\sqrt{3} \text{ Ef Cos O}}$$

Corriente en amperes por conductor

= Tensión o voltaje entre fase y neutro (127.5= 220/3 valor comercial 110 volts.

Tensión o voltaje entre fases = Factor de potencia

Carga Total Instalada

-----= 41.96 amp.√3 x 220 x 0.85 323.894

29.37 amp. conductores calibre:

lc = Corriente corregida

con sección de 12.00 mm (neutro)

(con base a tabla 1)

Ic = Ix F.V. = Ix F.D. = 41.96

4 No. 12 Con capacidada de 30 amp.

S = Sección transversal de conductores en mm2 L = Distancia en mts desde la toma al centro de

0.7 =

2 L lc

En e%

1.2. cálculo por caída de tensión.

29.37 2937.08 ——— = <u>23.03589</u> mm2 127.5 x con sección de 27.24 mm

e% = 1 Caída de tensión en %

DIAMETRO DE LA TUBERIA :

(según tabla de area en mm2)

donde:

abia de alea en miniz)						
	calibre No	No.cond.	áre	а	subtotal	
	4 6	3 1		422 96		
			total	=	1362	

(según tabla de poliductos) 2 1/2 pulg.

* Tendrá que considerarse la especificación que marque la Compañía de Luz para el caso

* Se podrá considerar los tres conductores con calibre del número 4 y el neutro con calibre 6.

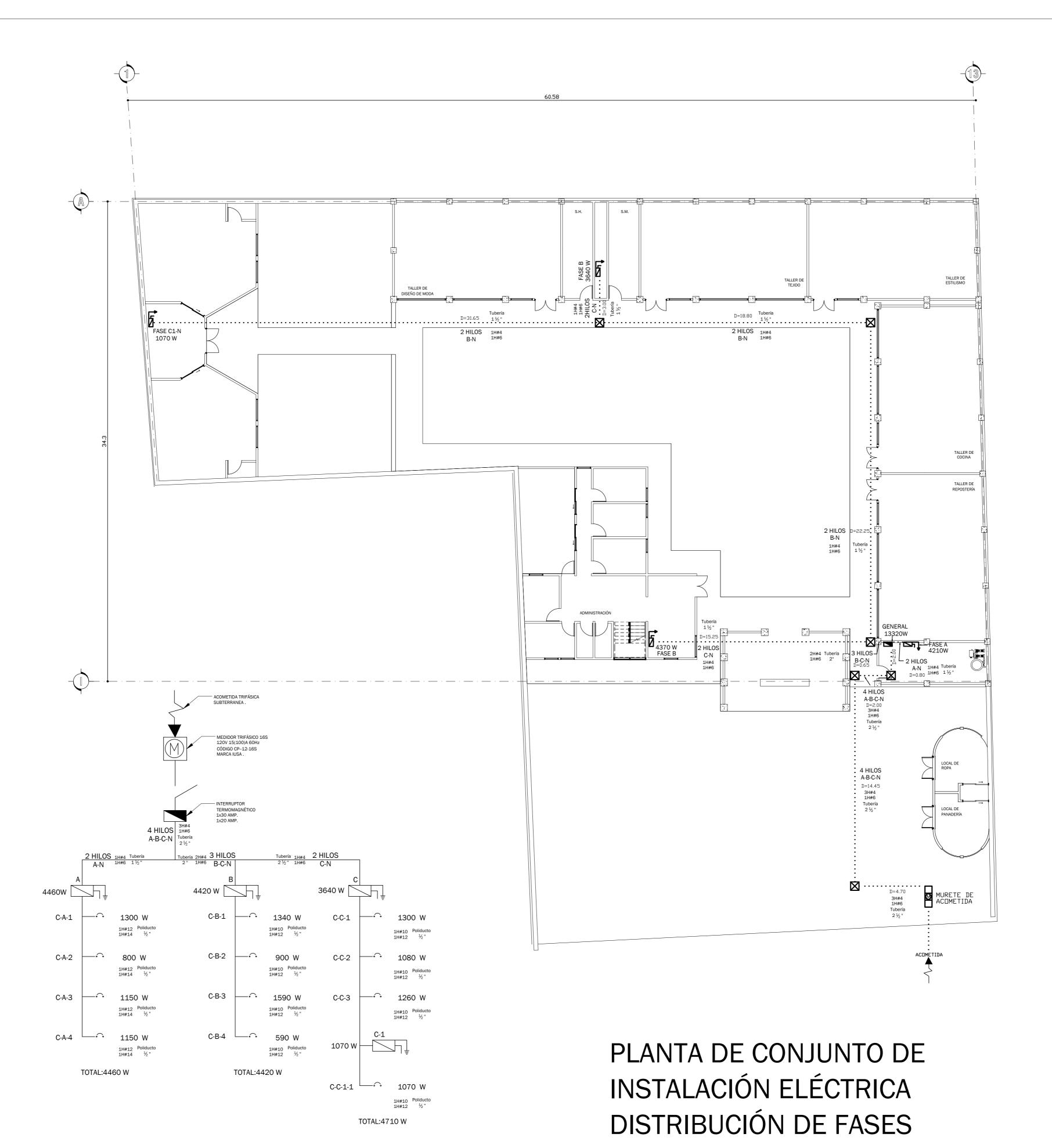
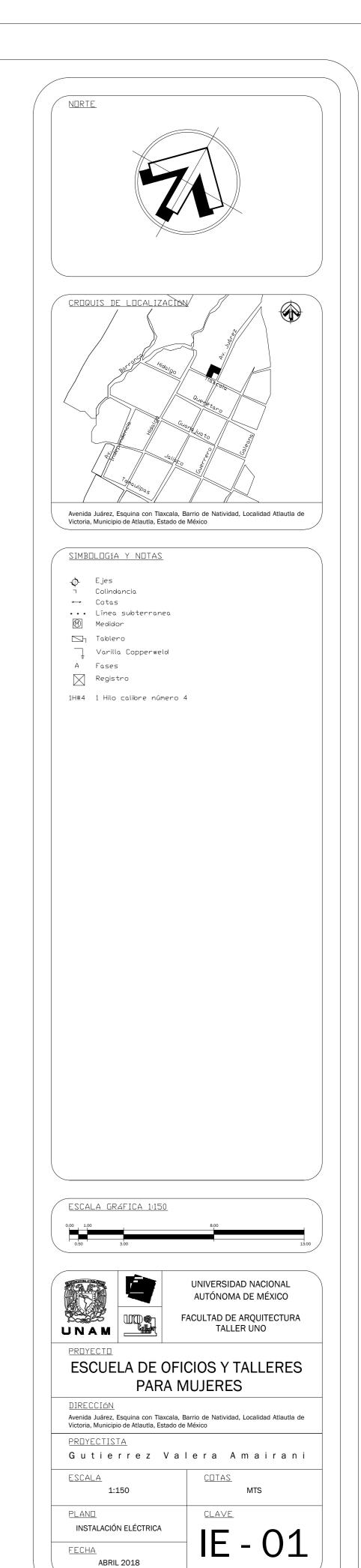
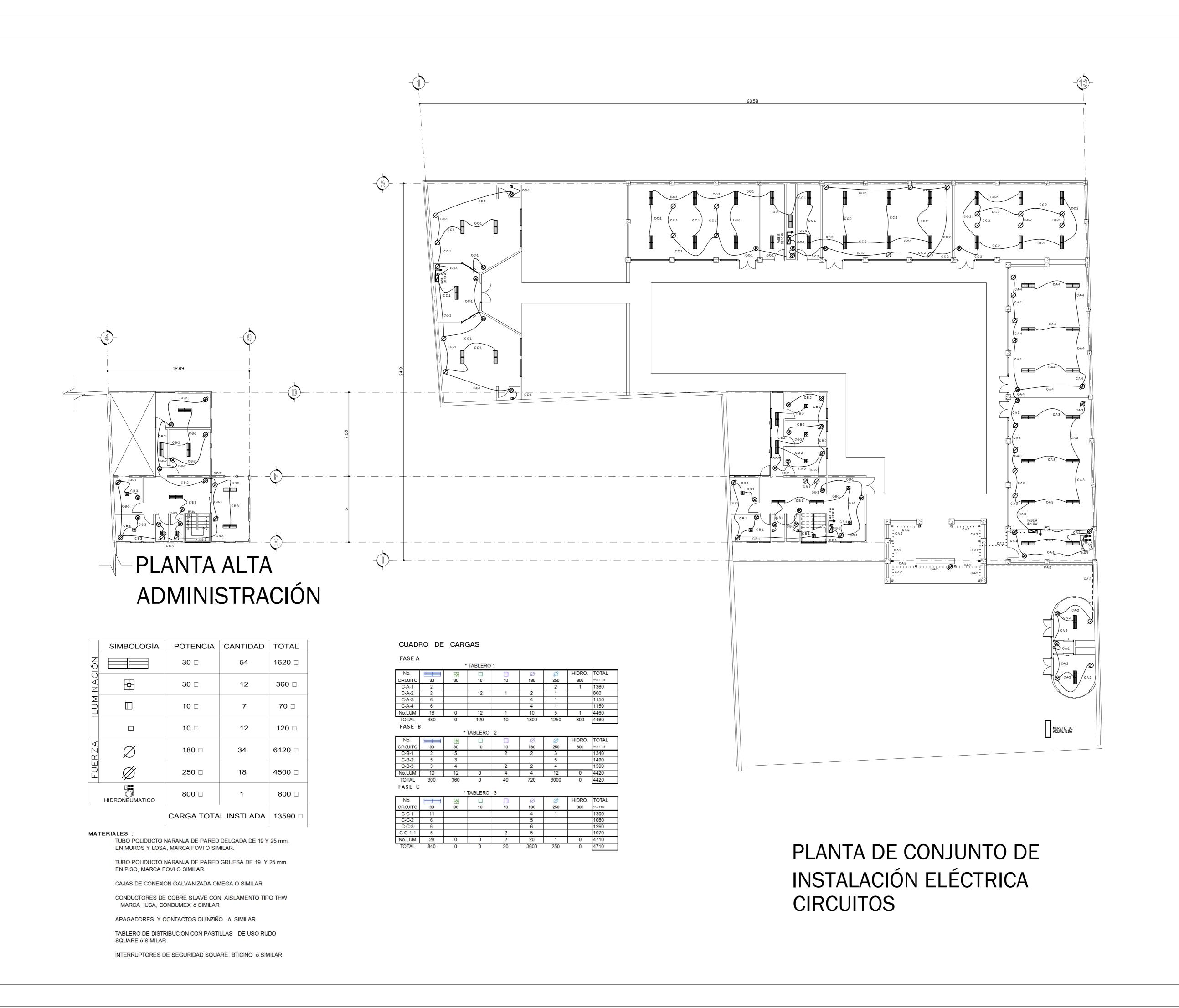
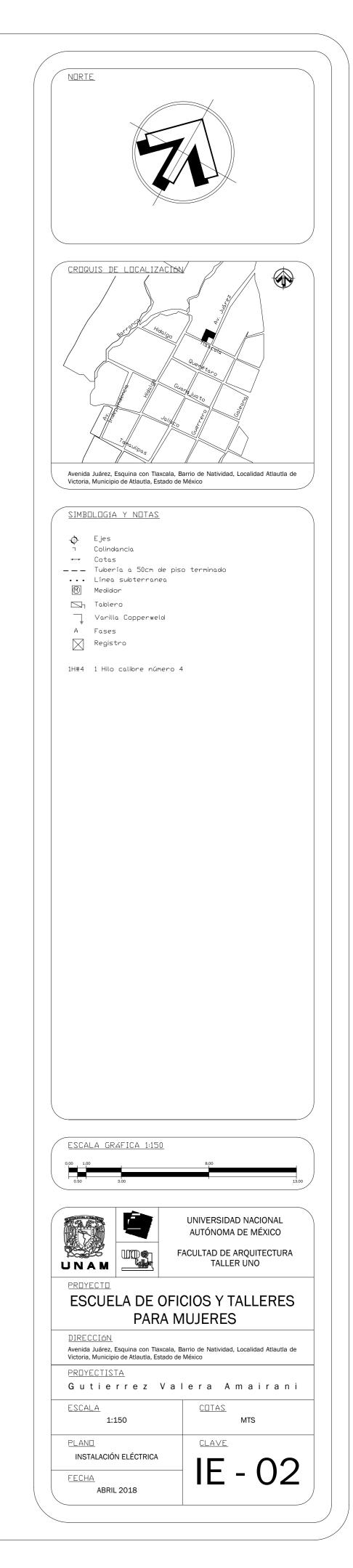
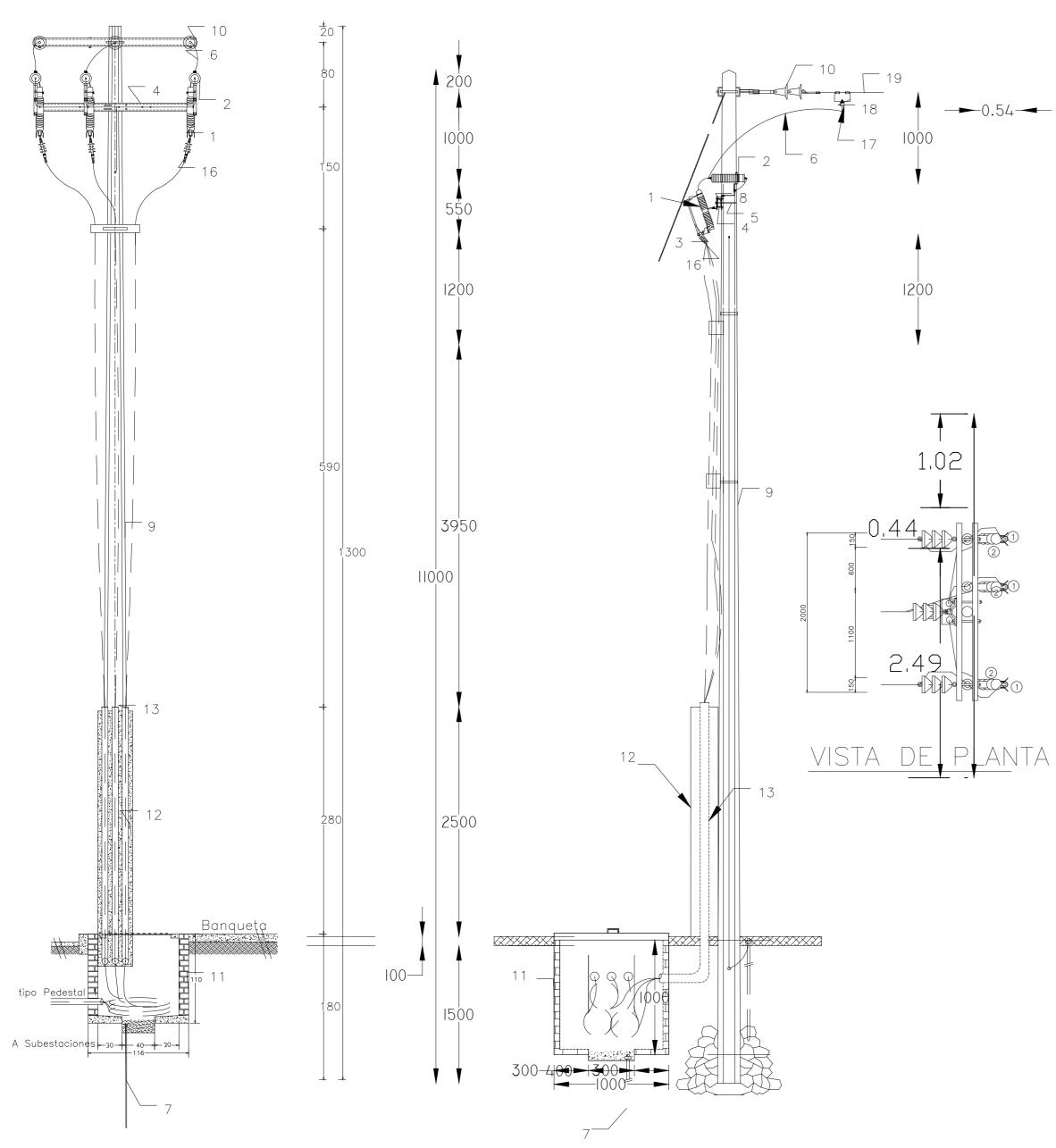
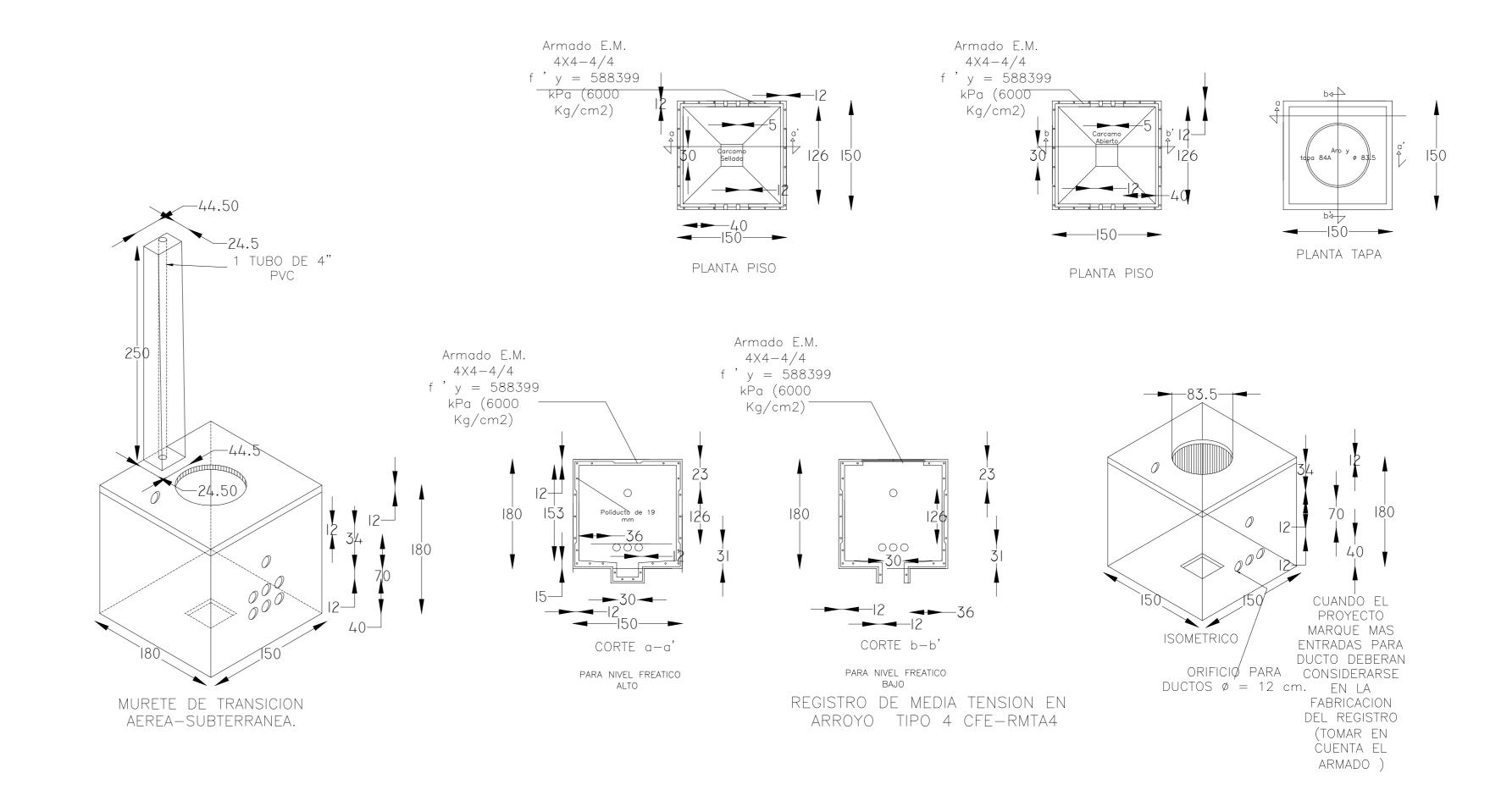
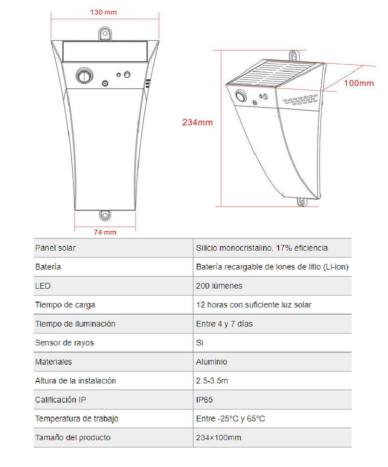






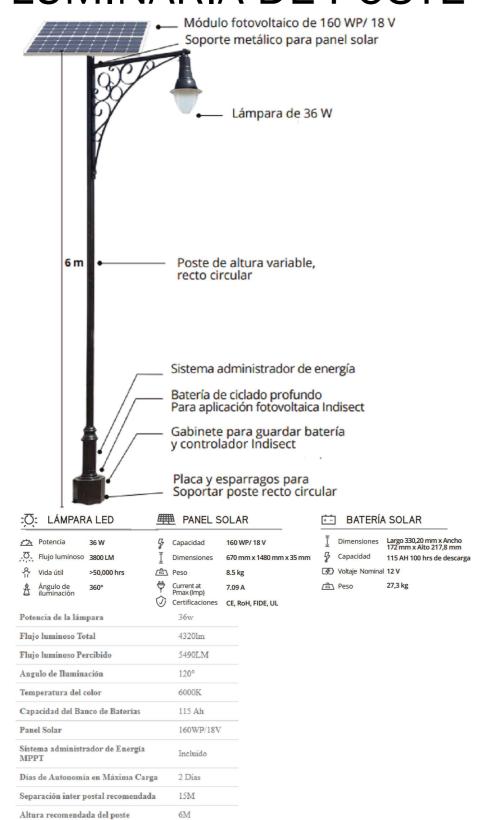
DIAGRAMA UNIFILAR

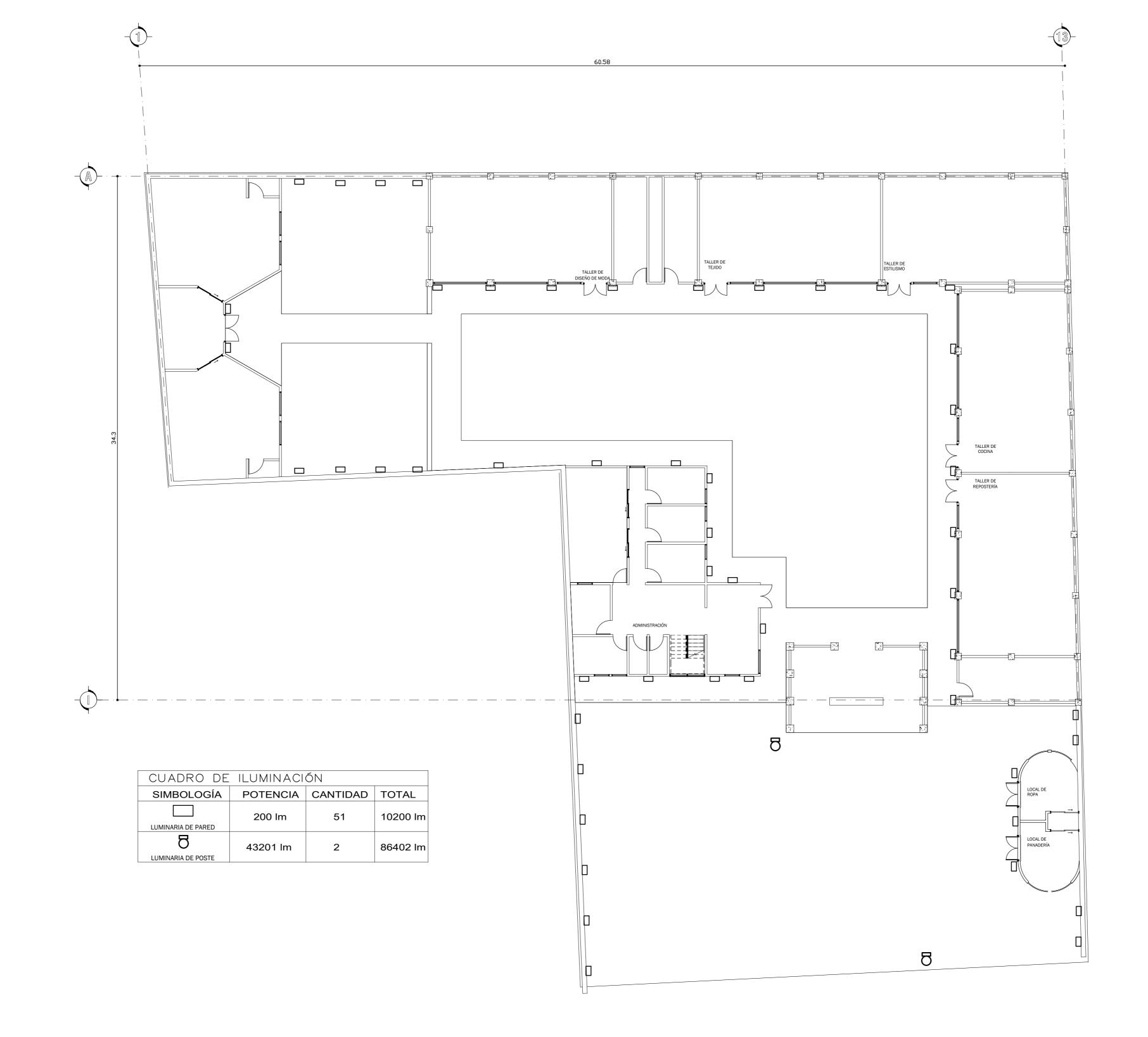


ESTRUCTURA DE TRANSICIÓN

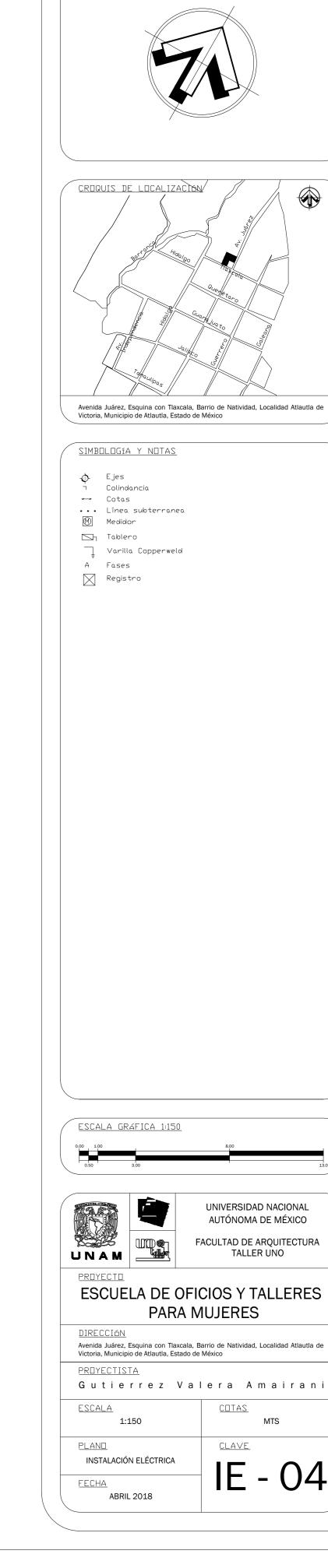


- 1. CORTACIRCUITO SMD-20 DISTRIBUCION, OXIDO DE ZING, 10 KA DE DESCARGA.
- 2. APARTARRAYOS AUTOVALVULARES 12 KV TIPO LV367, C600M.
- 3. FUSIBLE LIMITADOR DE CORRIENTE, 15 KV, 10 KA, DE CAPACIDAD INTERRUPTIVA SIMETRICA, 6 AMP. NOMINALES INTEGRADOS.
- 4. CRUCETA DE FIERRO GALVANIZADO 2000 X 102 mm.
- 5. ABRAZADERA DE FIERRO O TIPO 6U.
- 6. CABLE DE COBRE SEMIDURO DESNUDO CALIBRE 4.
- 7. SISTEMA DE TIERRAS FORMADO CON CABLE DE COBRE DESNUDO CALIBRE 4/0 CONECTADO A VARILLA COPPERWELD DE 3000 X 19.0 mm CON CONECTOR MECANICO.
- 8. DADO DE FIERRO FUNDIDO No. 46.
- 9. POSTE DE CONCRETO OCTOGONAL 11000 mm NORMA C.F.E. C-11-500.
- 10. AISLADORES TIPO SUSPENSION
- 11. REGISTRO DE MEDIA TENSION SEGUN NORMAS C.F.E.
- 12. MOGOTE DE CONCRETO, PROTECCION DE LOS TUBOS DE P.G.G. PARED GRUESA, LA SEPARACION MINIMA DEL POSTE SERA DE 10 cms.
- 13. TUBO CONDUIT DE P.G.G. DE 101 mm CONTENIENDO TRES CONDUCTORES DE COBRE FORRO 15 KV CALIBRE 1/0 CON PANTALLA DE COBRE CONCENTRICA PARA ATERRIZAR, TIPO XLP DE 15 KV (1XFASE)

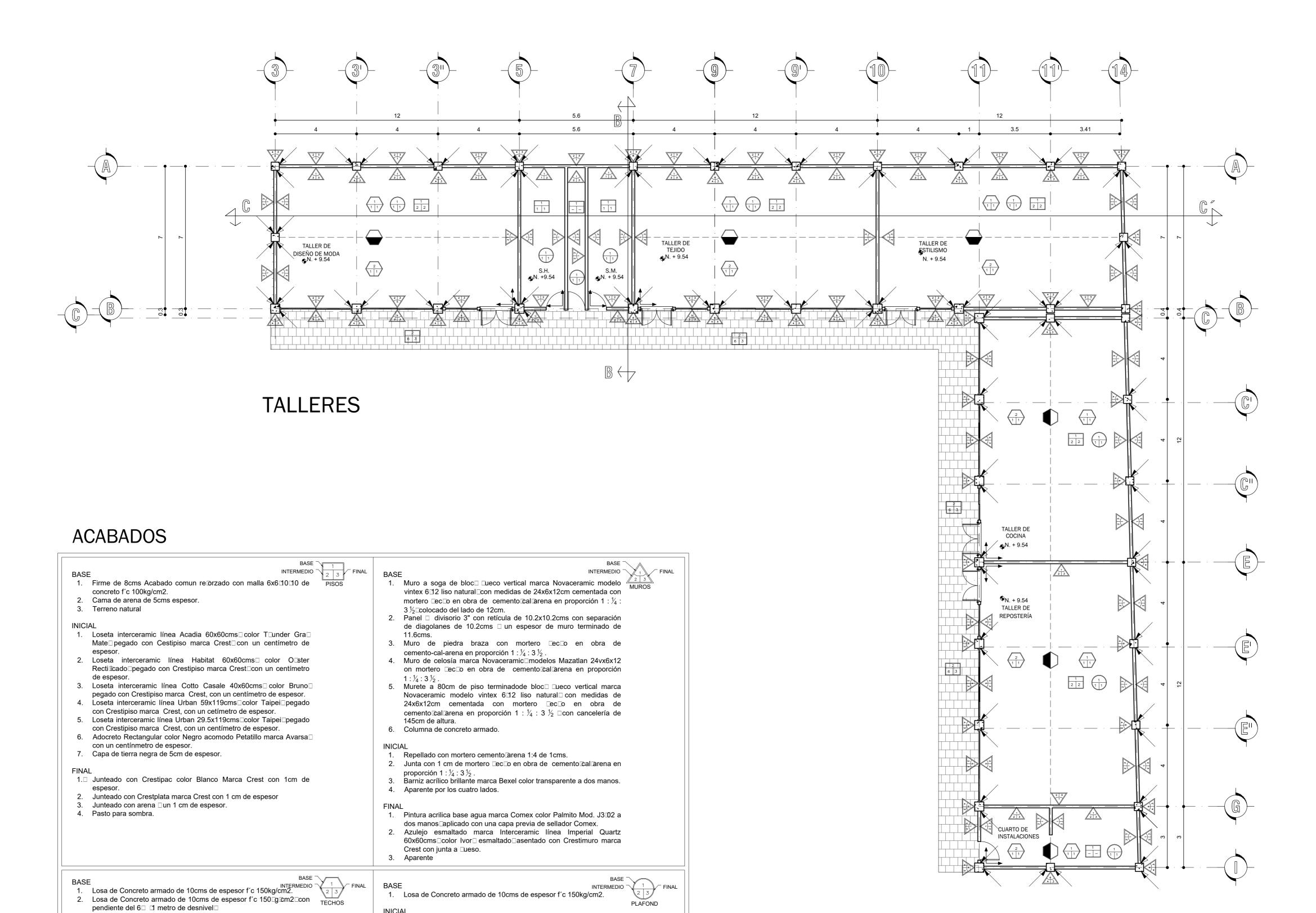



ESPECIFICACIONES

LUMINARIA DE MURO



LUMINARIA DE POSTE


PLANTA DE CONJUNTO DE INSTALACIÓN ELÉCTRICA ILUMINACIÓN EXTERIOR

NOTAS:

SE UTILIZARÁN LUMINARIAS CON CELDAS SOLARES Y BATERIAS PROPIAS SE UTILIZARÁN LUMINARIAS DE PARED MARCA INDISECT MODELO TLALPIAN

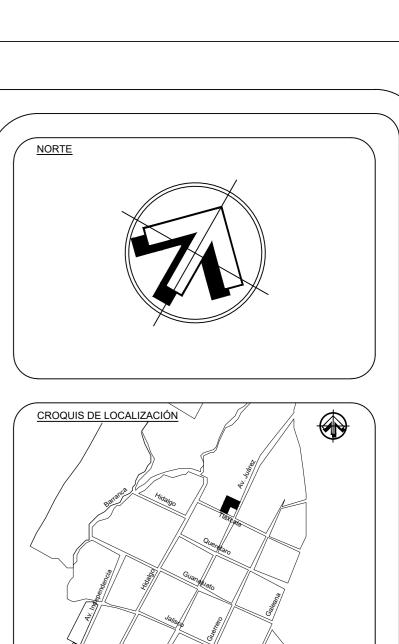
SE UTILIZARÁN LUMINARIAS DE PARED MARCA INDISECT MODELO TLALPLAN

1. Aplanado acabado fino de 1cms de espesor con mezcla

1. Pintura acrilica base agua marca Comex color Blanco a dos manos.

cemento arena 1:4 ☐ esterbond marca Fester proporción 1:1 con

1. Ripio de Tezontle de espesor promedio 4cms con mortero cal arena


1. Impermeabilizante marca Fester Mod. Acriton 5 años Color Terracota con Entortado de mortero cemento Arena de 2cms de

de acuerdo a la ficha técnica.

espesor.

de 3cm⊡mortero cemento arena 2cm inalizando con enladrillado en

orma de petatillo lec⊑ereado con membrana para impermeabilizante

Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de Victor Municipio de Atlautla, Estado de México

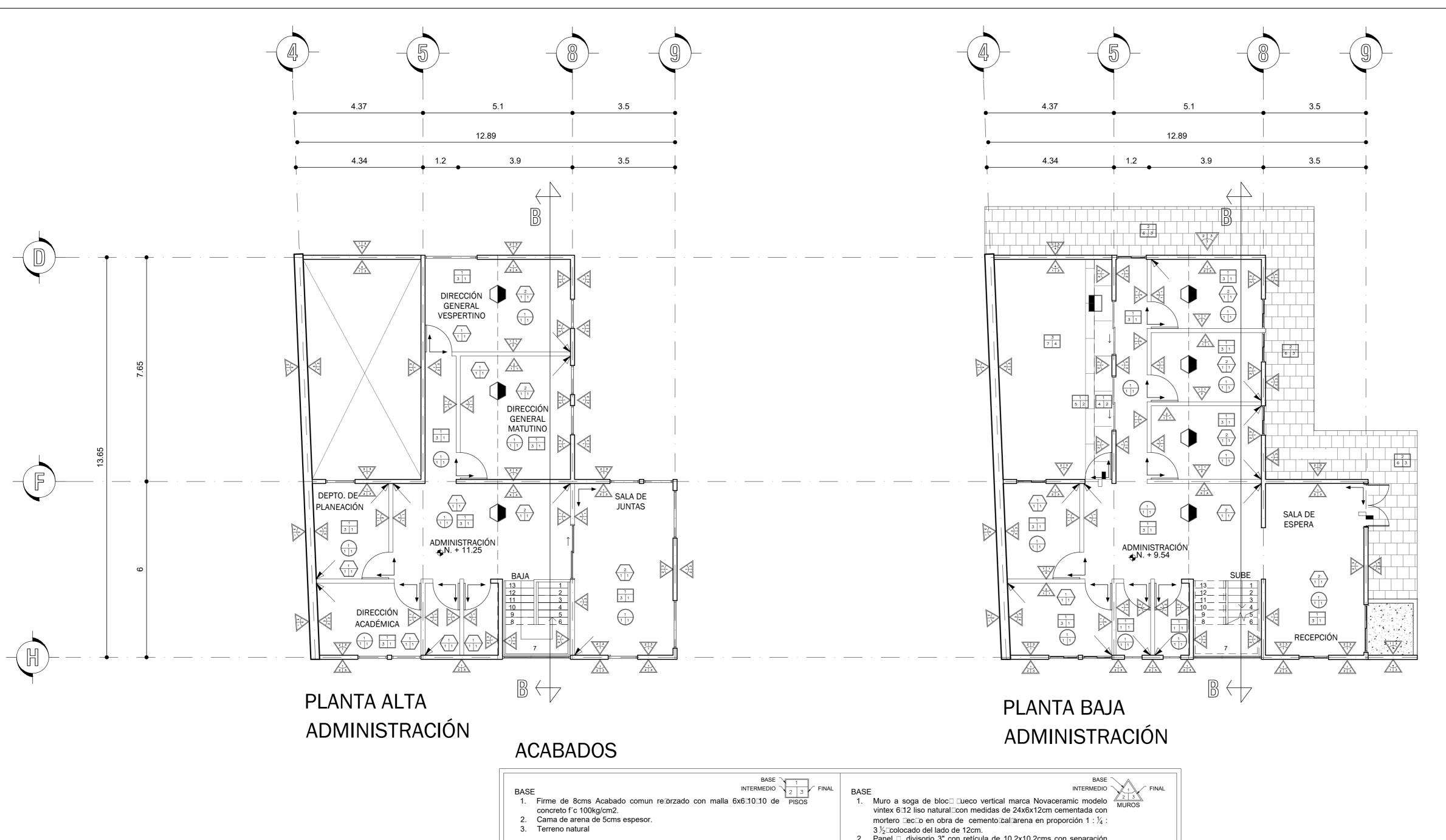
SIMBOLOGÍA Y NOTAS

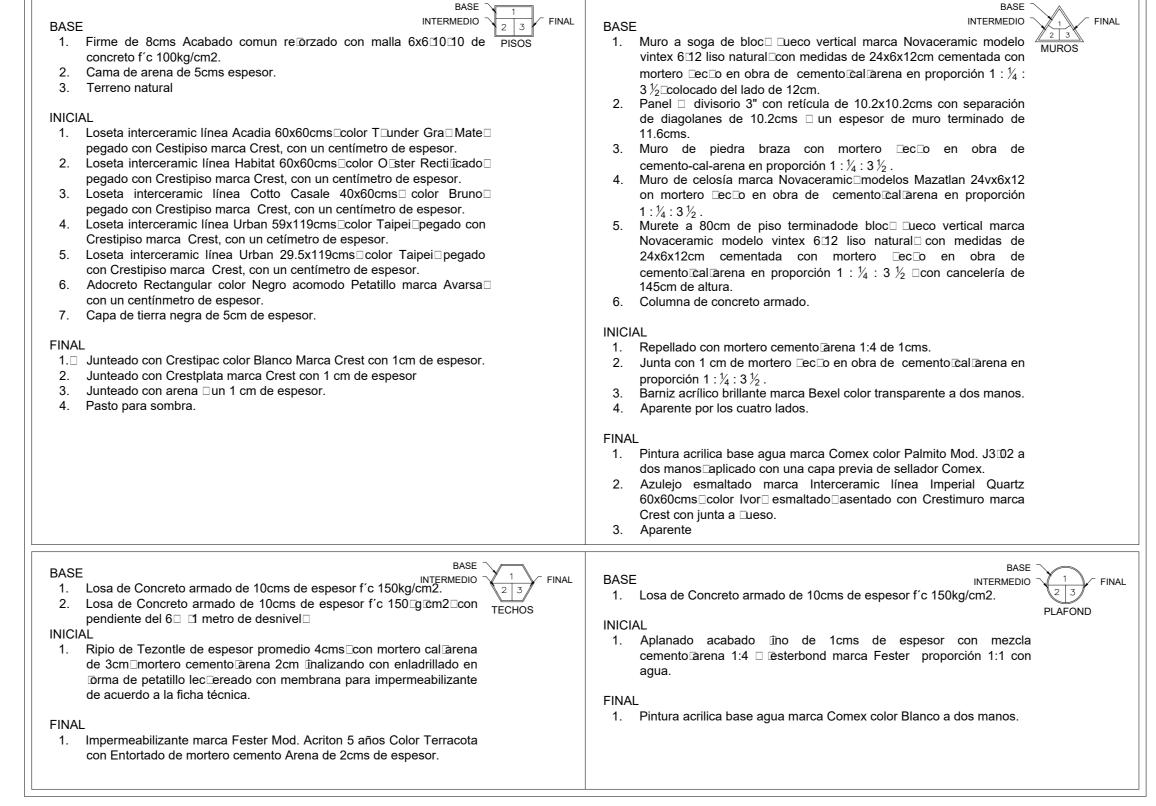
Cambio de acabado en muro Cambio de acabado pisco tec o □pla ond Inicio y ángulo de colocación de piso.

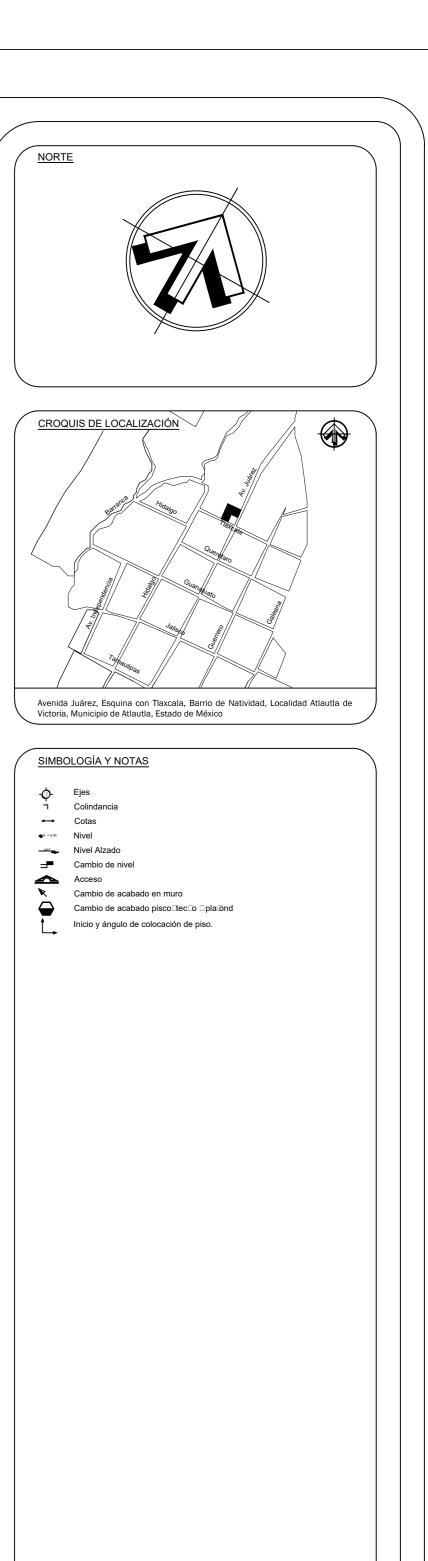
ESCALA GRÁFICA 1:100

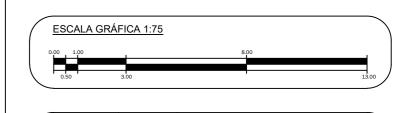
UNAM UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ARQUITECTURA TALLER UNO


ESCUELA DE OFICIOS Y TALLERES PARA MUJERES


Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de Victoria, Municipio de Atlautla, Estado de México


Gutierrez Valera Amairani

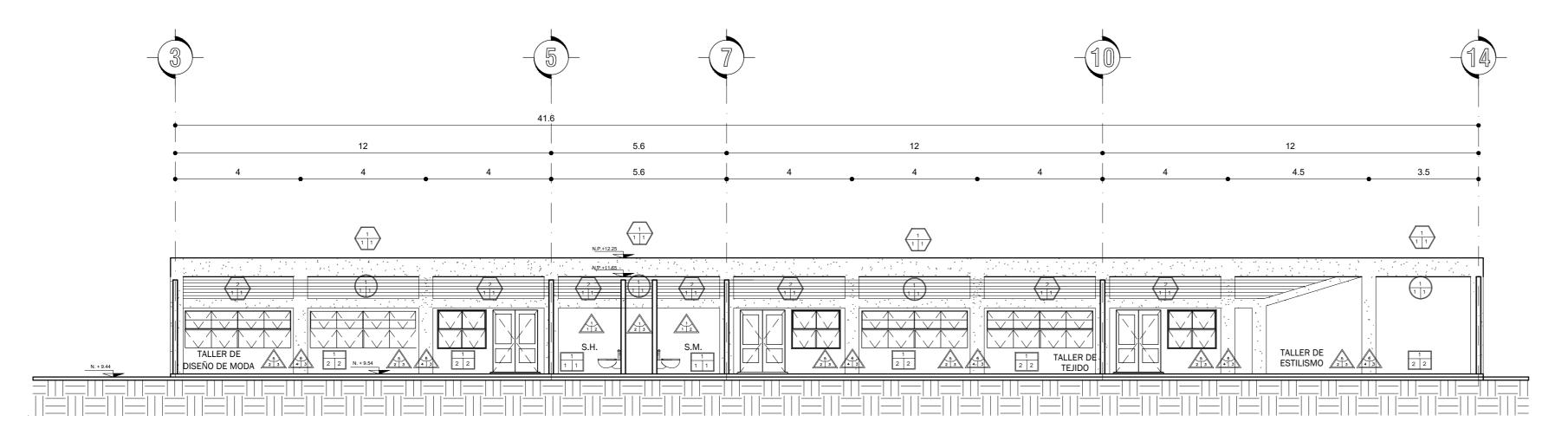

1:100 MTS <u>PLANO</u> ACABADOS

<u>FECHA</u> ABRIL 2018

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ARQUITECTURA

TALLER UNO

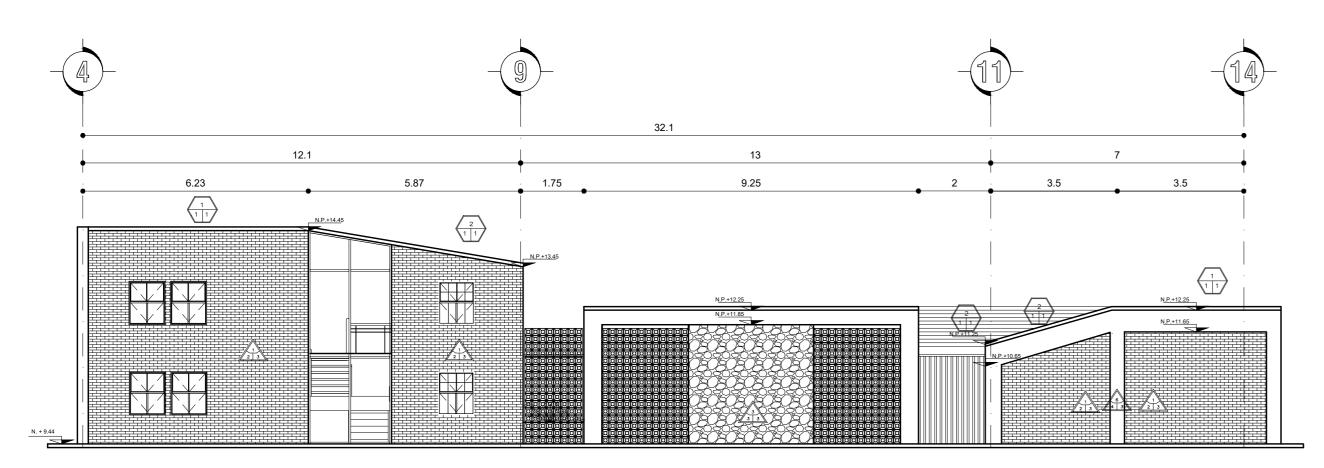
ESCUELA DE OFICIOS Y TALLERES PARA MUJERES

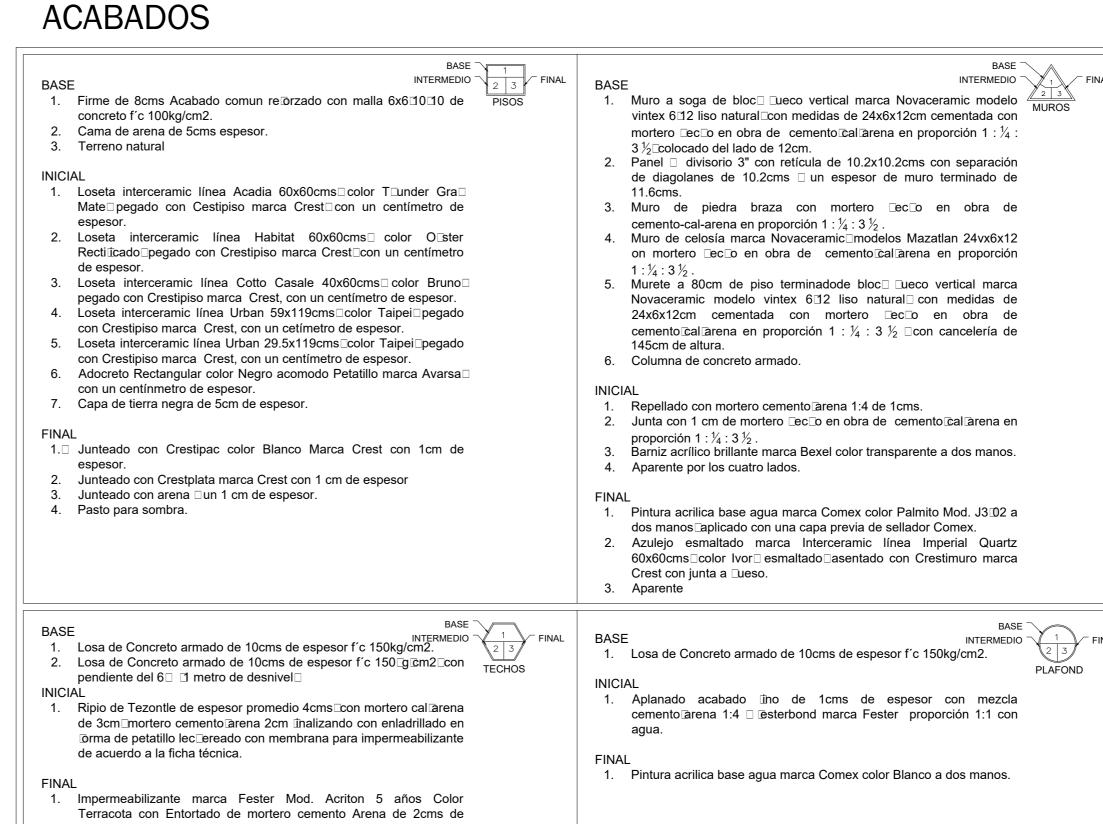

Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de Victoria, Municipio de Atlautla, Estado de México

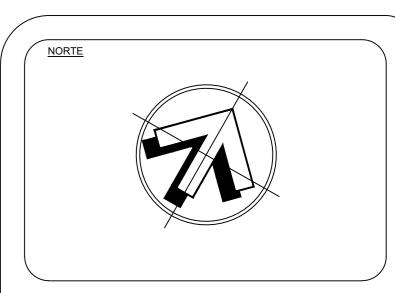
Gutierrez Valera Amairani

ABRIL 2018

1:75 MTS <u>PLANO</u> ACABADOS <u>FECHA</u>


COTAS


CORTE LONGUITUDINAL C - C´

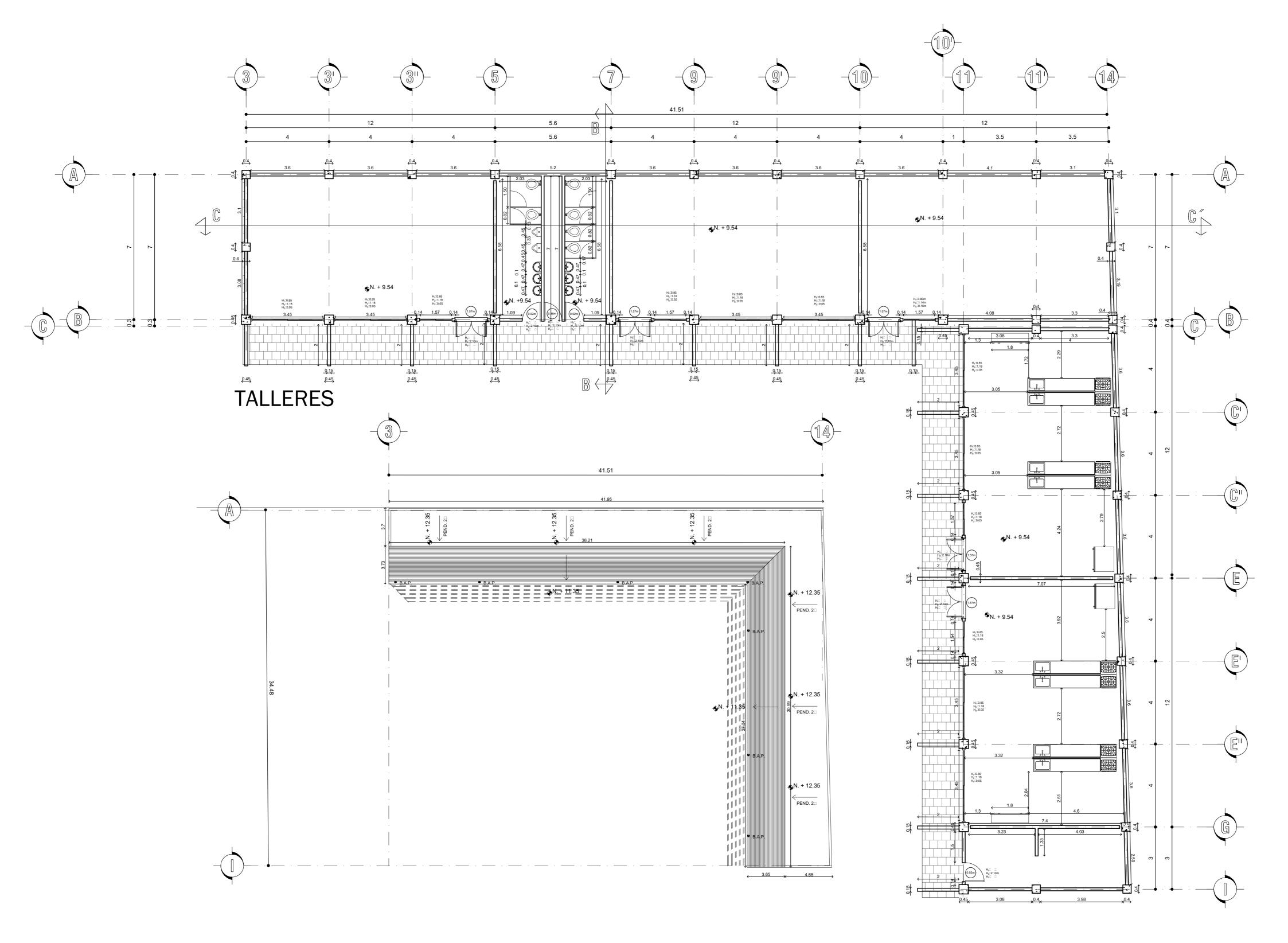


CORTE LONGUITUDINAL B - B 1

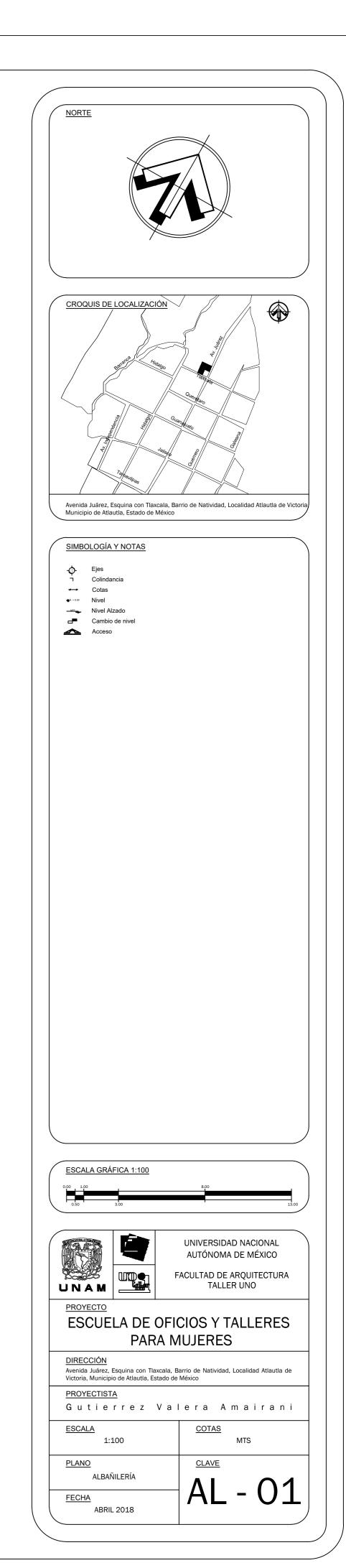
FACHADA NOROESTE

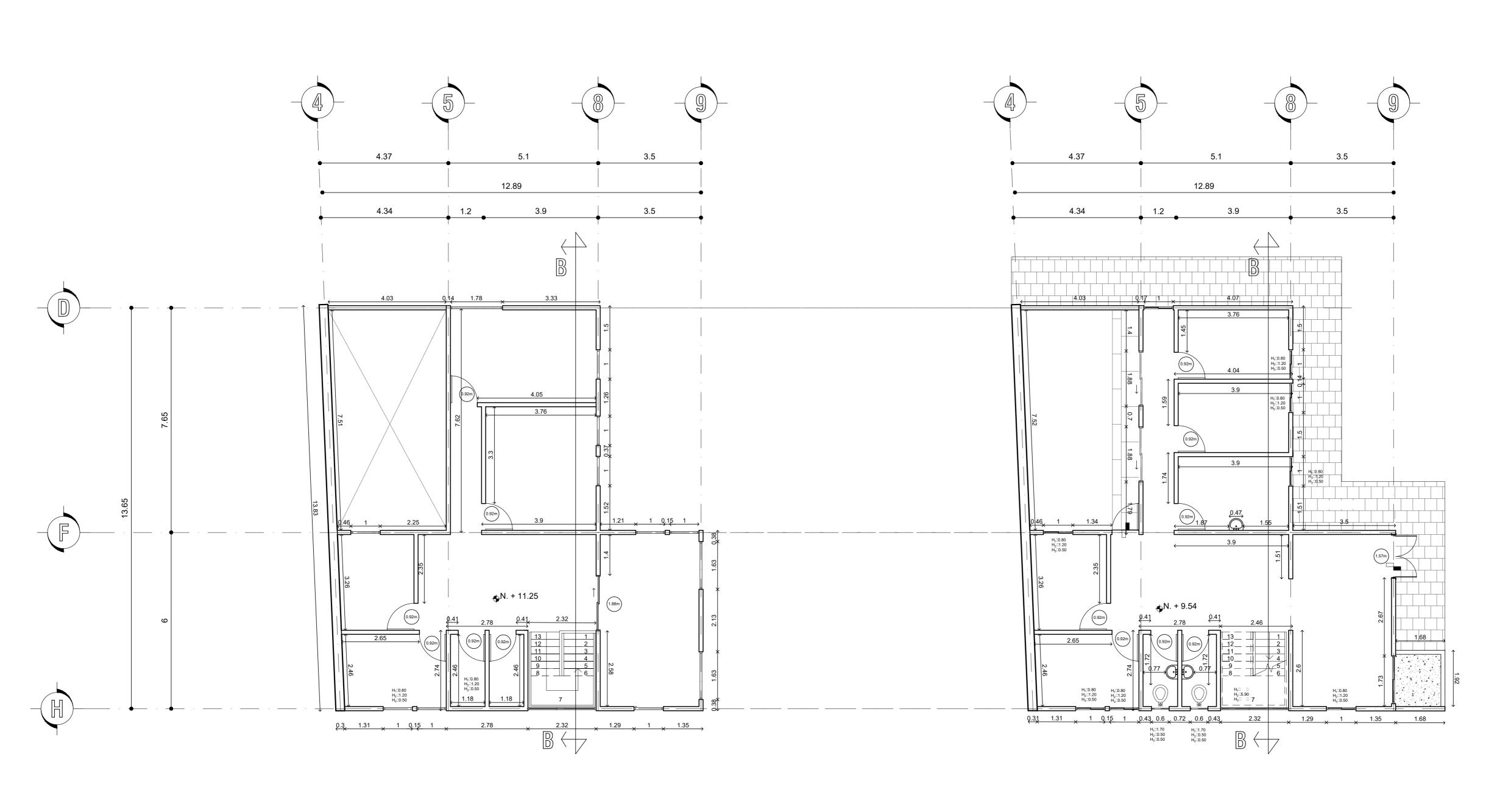
Cambio de acabado en muro Cambio de acabado pisco⊡tec⊡o □pla⊡nd Inicio y ángulo de colocación de piso.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ARQUITECTURA

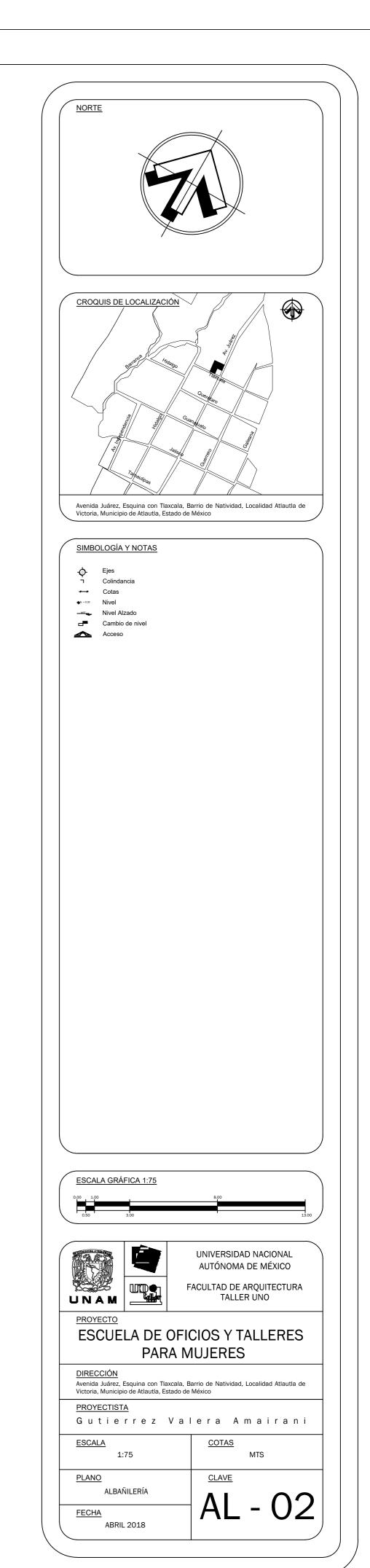

ESCUELA DE OFICIOS Y TALLERES PARA MUJERES

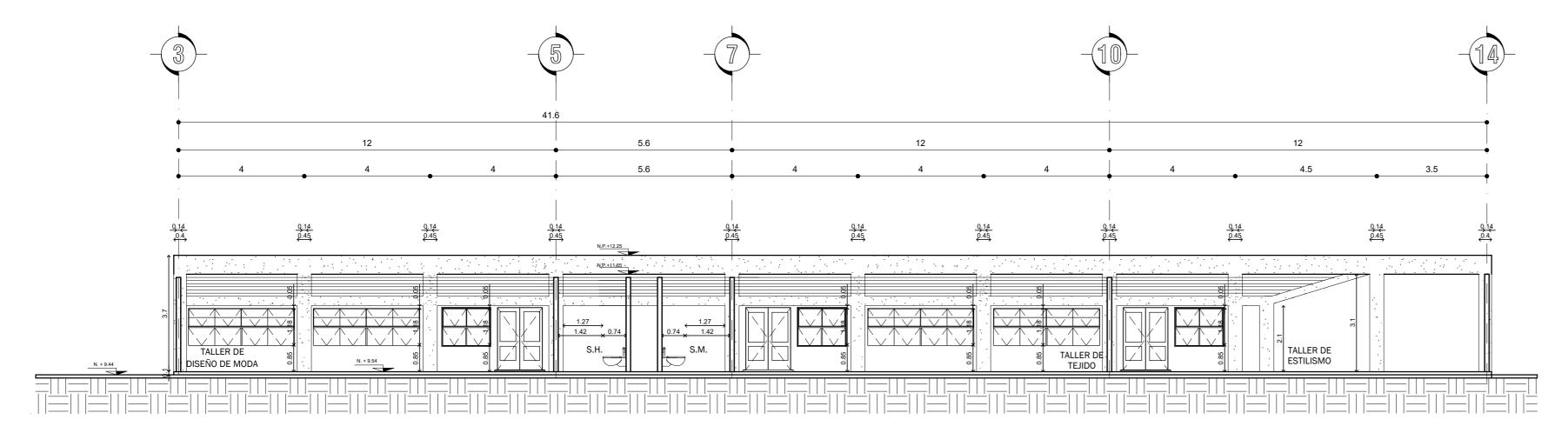
Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de Victoria, Municipio de Atlautla, Estado de México

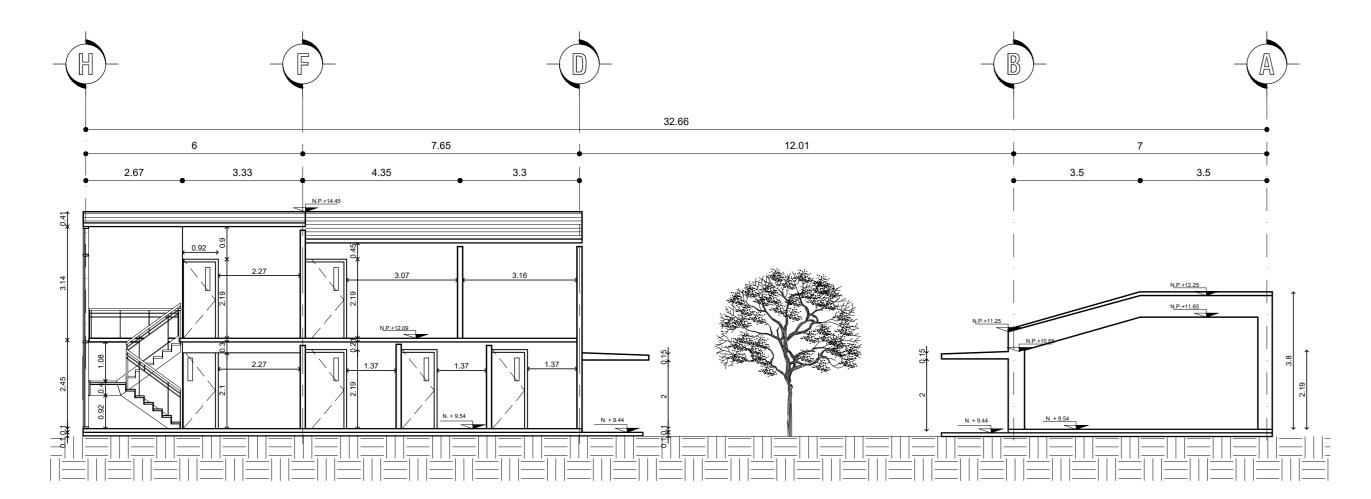

Gutierrez Valera Amairani


1:100 <u>PLANO</u>

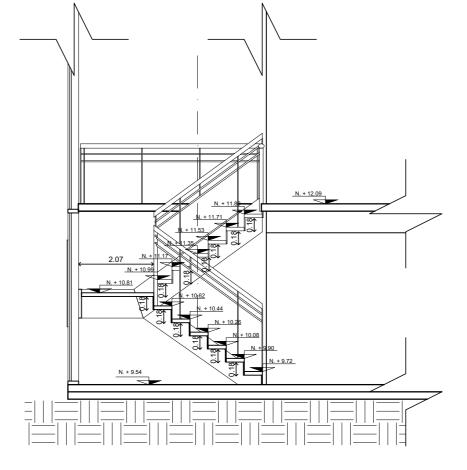
ABRIL 2018

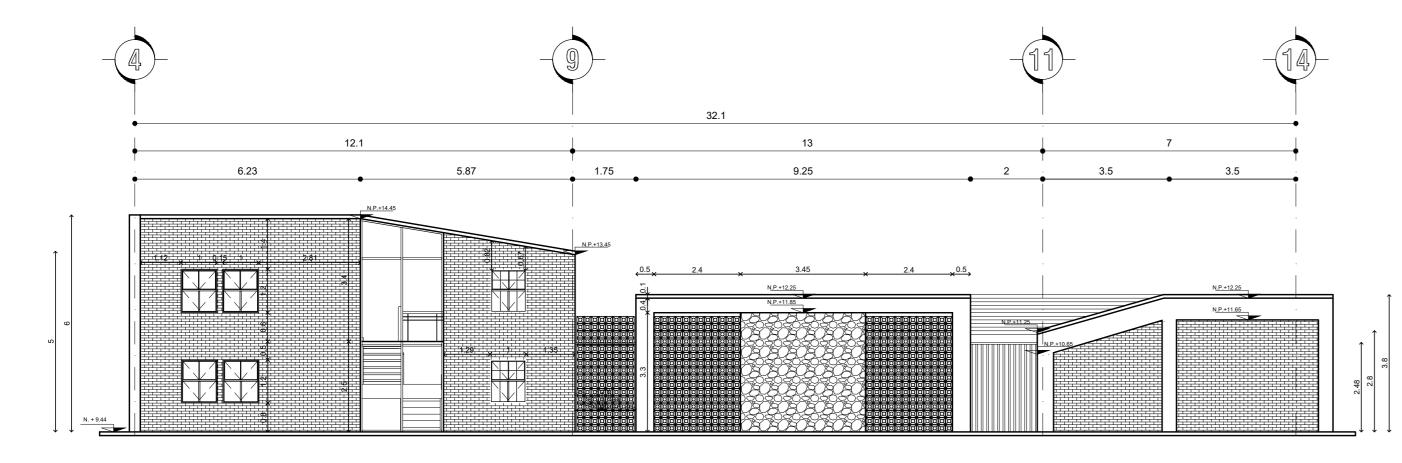

PLANTA DE CUBIERTAS ESC: 1:50

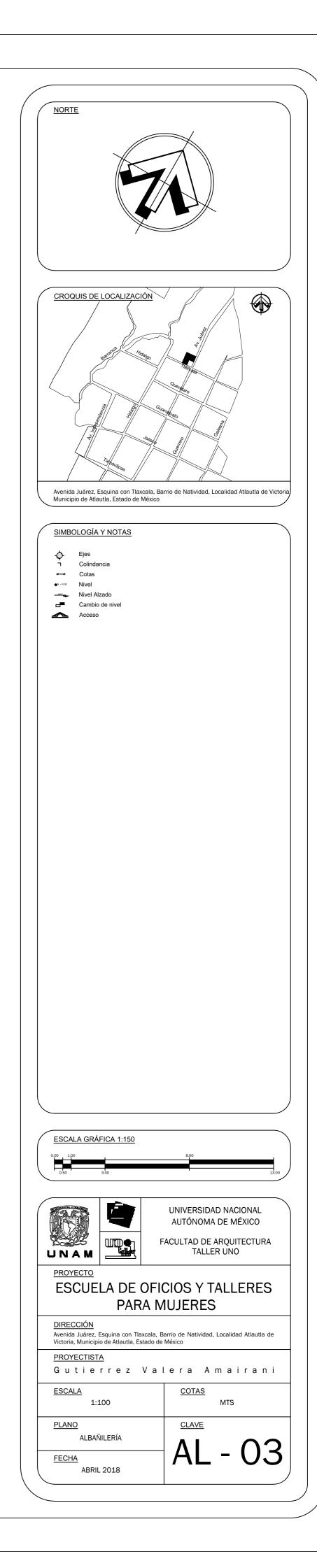


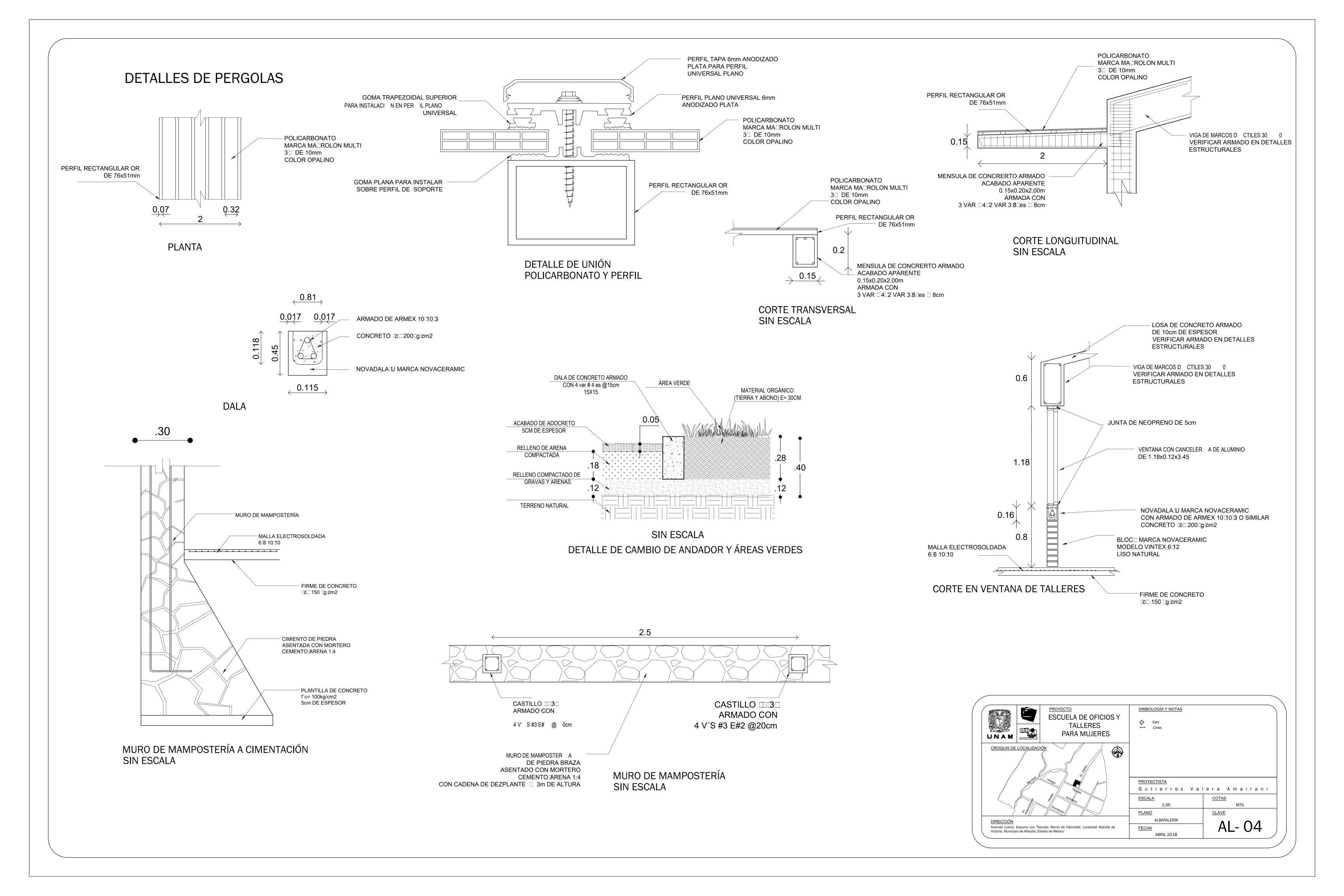

PLANTA ALTA ADMINISTRACIÓN

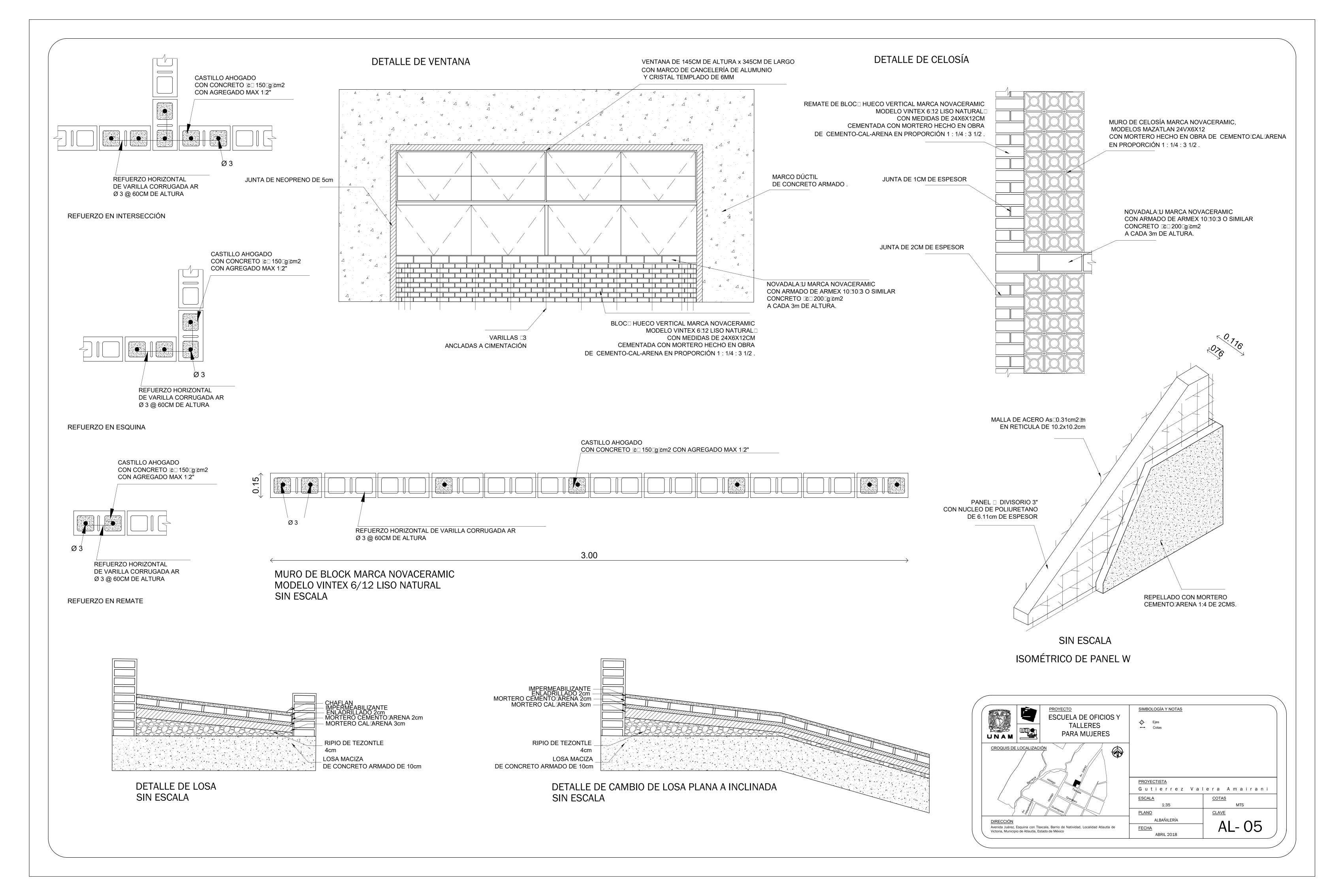
PLANTA BAJA ADMINISTRACIÓN

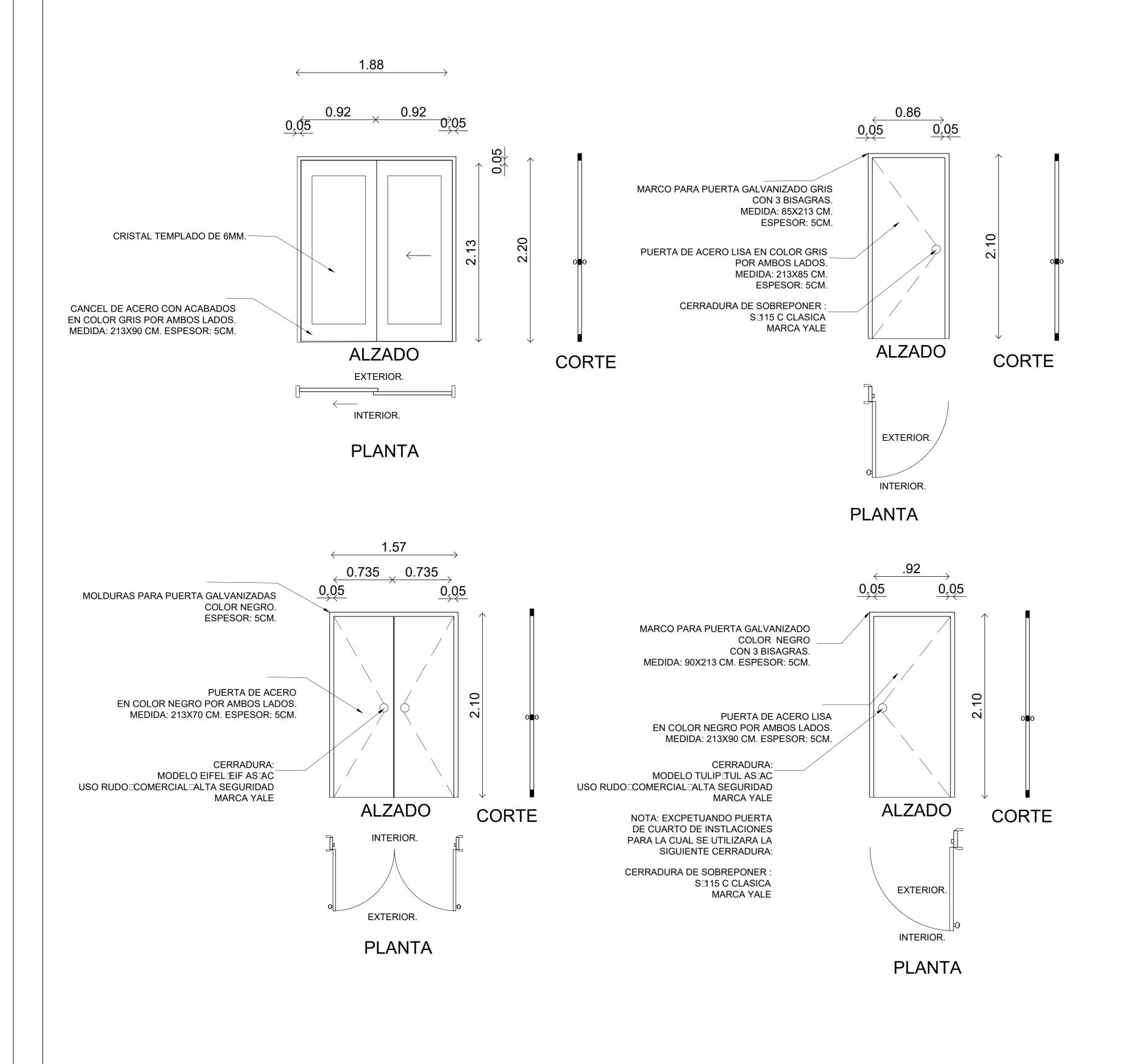


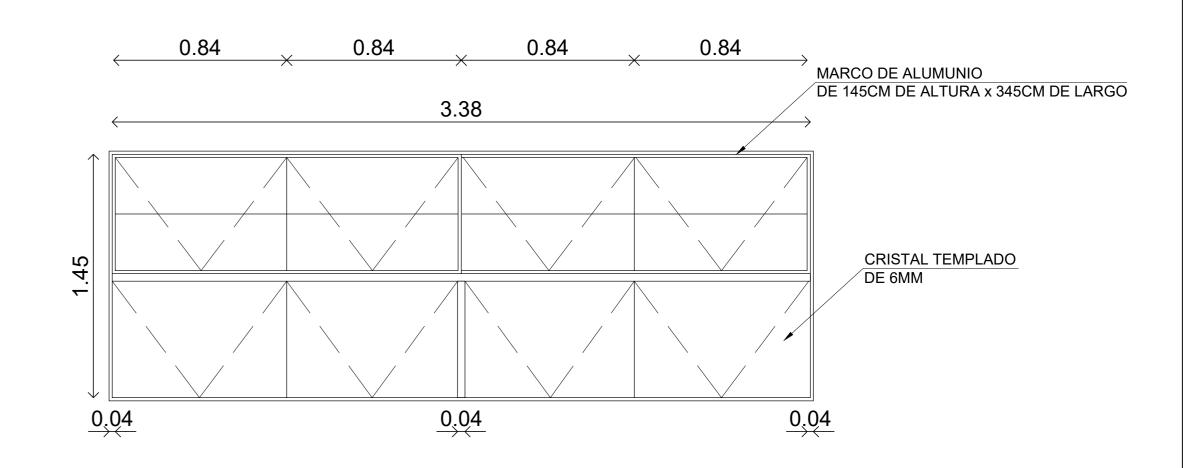

CORTE LONGUITUDINAL C - C 1

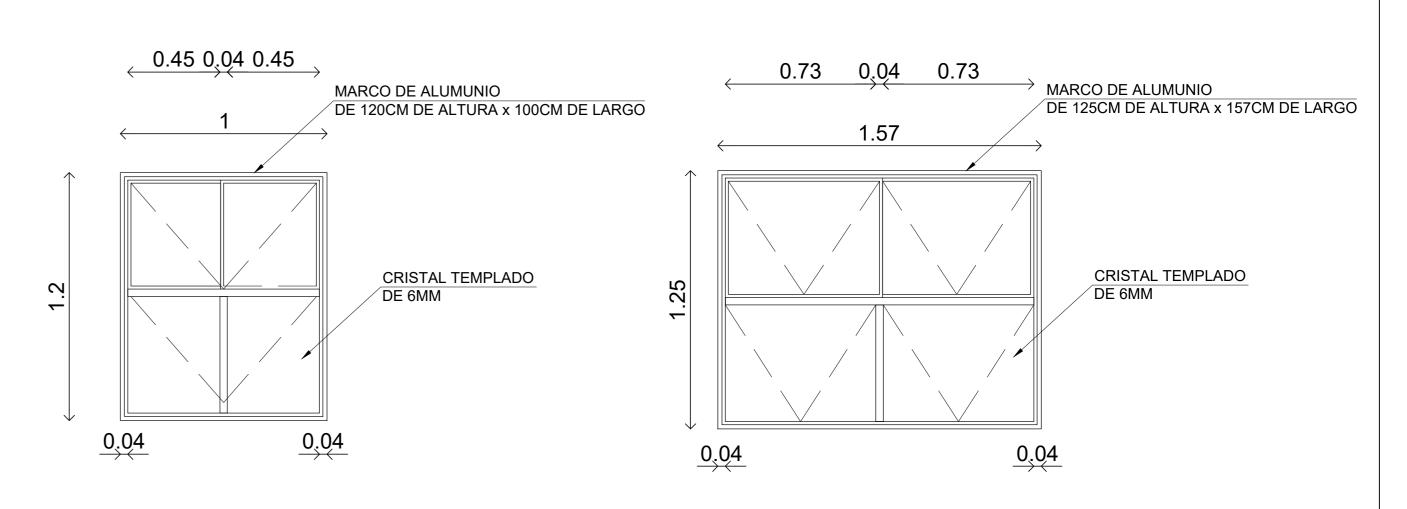

CORTE LONGUITUDINAL B - B 1

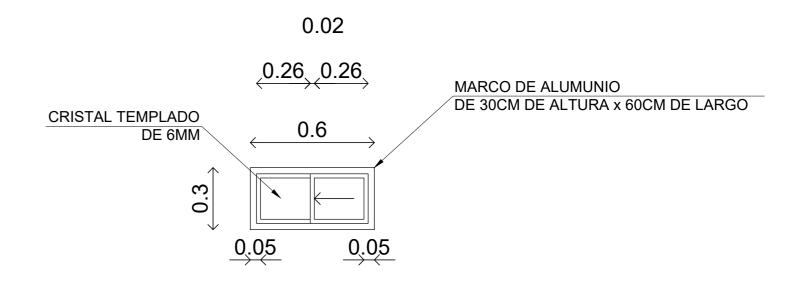



CORTE LONGUITUDINAL ESCALERAS ESC: 1:50

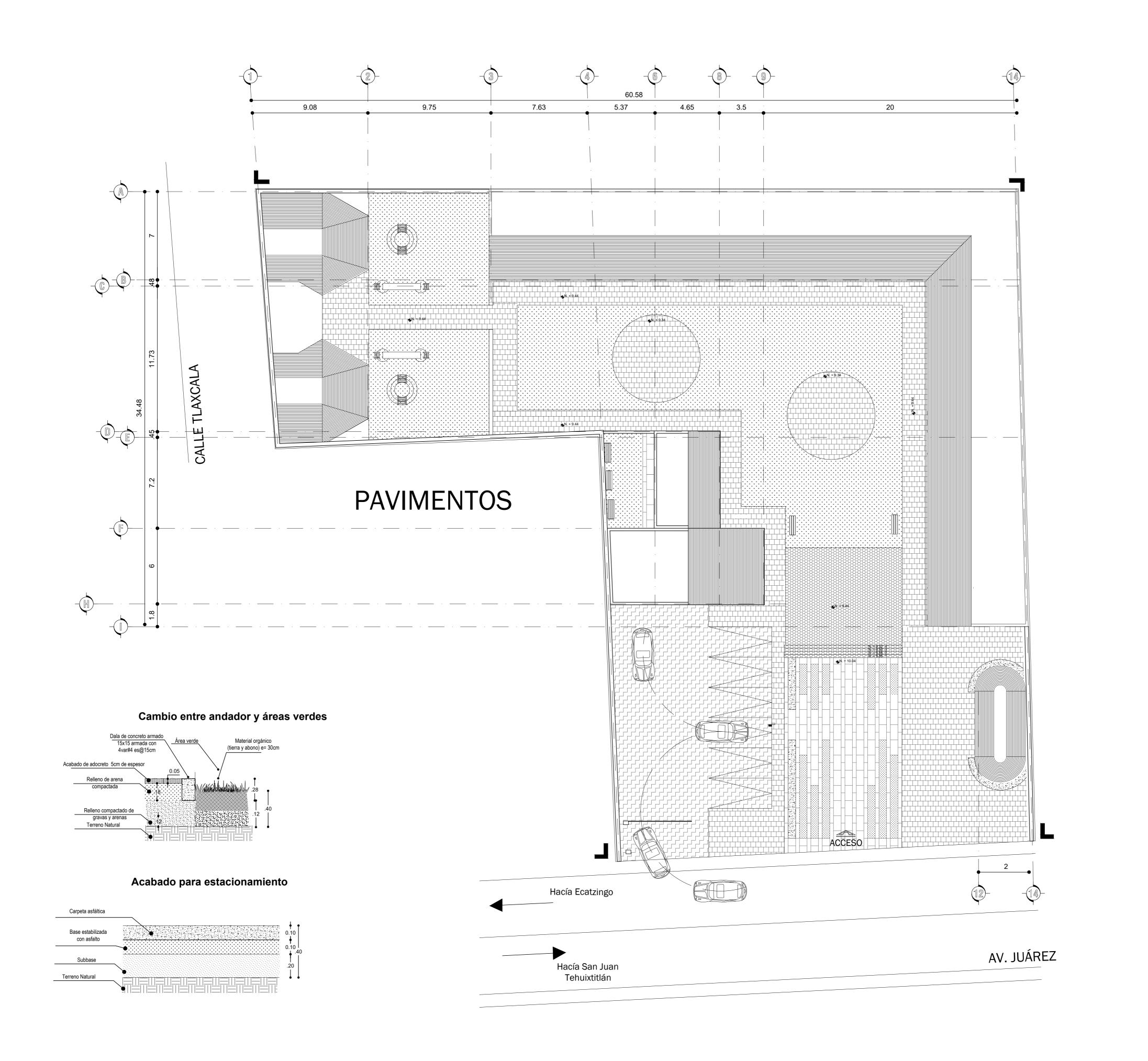

FACHADA NOROESTE

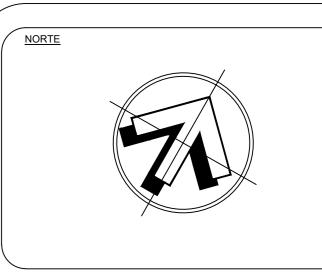






PUERTAS Y VENTANAS





SIMBOLOGÍA Y NOTAS

-⊕- Ejes ¬ Colin

← Cotas

Nivel Alzado
Cambio de nive

Área verde

Carpeta asfáltica

Adocreto Rectangular color Negro acomodo Petatillo marca Avarsa con un centínmetro de espesor.

Adocreto Hexagonal color Negro acomodo Petatillo marca Avarsa con un centínmetro de espesor.

Loseta interceramic línea Urban 59x119cms y 29.5x119cms color Taipei, pegado con Crestipiso marca Crest, con un cetímetro de

ESCALA GRÁFICA 1:75

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ARQUITECTURA TALLER UNO

ESCUELA DE OFICIOS Y TALLERES
PARA MUJERES

<u>DIRECCIÓN</u>

Avenida Juárez, Esquina con Tlaxcala, Barrio de Natividad, Localidad Atlautla de Victoria, Municipio de Atlautla, Estado de México

<u>PROYECTISTA</u>

Gutierrez Valera Amairani

ESCALA
1:75

MTS

PLANO
PAVIMENTOS

PAVIMENTOS

FECHA

ABRIL 2018

MEMORIAS DE CÁLCULO

MEMORIAS DE CÁLCULO ESTRUCTURAL

BAJADA DE CARGAS

BAJADA DE CARGAS

ENTREPISO		
Concepto	Peso	Espesor
Loseta cerámica	15 kg/m²	
Pegazulejo Crest	18 kg/m ²	1cm
Entrepiso de concreto armado	240 kg/m ²	10cm
Plafond de yeso	30 kg/m ²	2cm
Adicional por colado	40 kg/m ²	
Carga viva	250 kg/m ²	
TOTAL	593 kg/m ²	

LOSA PLANA		
Concepto	Peso	Espesor
Impermeabilizante	5 kg/m²	
Enladrillado	40 kg/m ²	
Mortero cemento-arena	42 kg/m ²	2cm
Mortero cal-arena	54 kg/m ²	3cm
Ripio de tezontle	128 kg/m ²	8cm
Losa maciza de concreto armado	240 kg/m ²	10cm

PERGOLADO					
Concepto	Peso	Espesor			
Policarbonato	1.7 kg/m ²	0.1cm			
Perfil rectangular OR (76x51mm)	5.84 kg/m ²				
Carga viva	100 kg/m ²				
TOTAL	107.54 kg/m²				

LOSA INCLINADA				
Concepto	Peso	Espesor		
Impermeabilizante	5 kg/m ²			
Enladrillado	40 kg/m ²			
Mortero cemento-arena	42 kg/m ²	2cm		
Mortero cal-arena	54 kg/m ²	3cm		
Ripio de tezontle	128 kg/m ²	8cm		
Losa maciza de concreto armado	240 kg/m ²	10cm		

TALLERES

EJE (A-B) Y (11-14)

TALLERES

MARCOS EMPOTRADOS EN PRIMER NIVEL.

Eje (A-B) y (11-14)

MARCO CON CARGA UNIFORMEMENTE REPARTIDA CON DOS APOYOS FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES MÉTODO DE " CROSS "

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México

SIMBOLOGÍA:

RIGIDEZ DE LA VIGA = **K vigas** TRANSPORTE = **T**FACTOR DE DISTRIBUCIÓN EN VIGAS = **FD vigas** CORTANTE INICIAL = **VI**

FACTOR DE DISTRIBUCIÓN EN COLUM.= FD columi CORREC. CORTANTE POR CONTINUIDAD = AV

MOMENTO DE EMPOTRAMIENTO = ME CORTANTE FINAL NETO = V

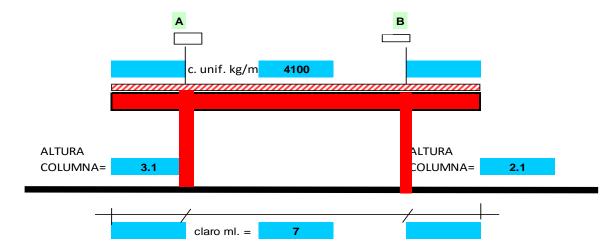
PRIMERA Y SEGUNDA DISTRUBUCIÓN = 1D Y 2D MODULO DE ELASTICIDAD DE LA VIGA = E

SUMA DEL MOMENTO FLEXIONANTE FINAL = SM MOMENTO DE INERCIA = I

DATOS BÁSICOS DE LA ESTRUCTURA (cm.).

U B I C A C I Ó N DEL E J E = C
CUBIERTA

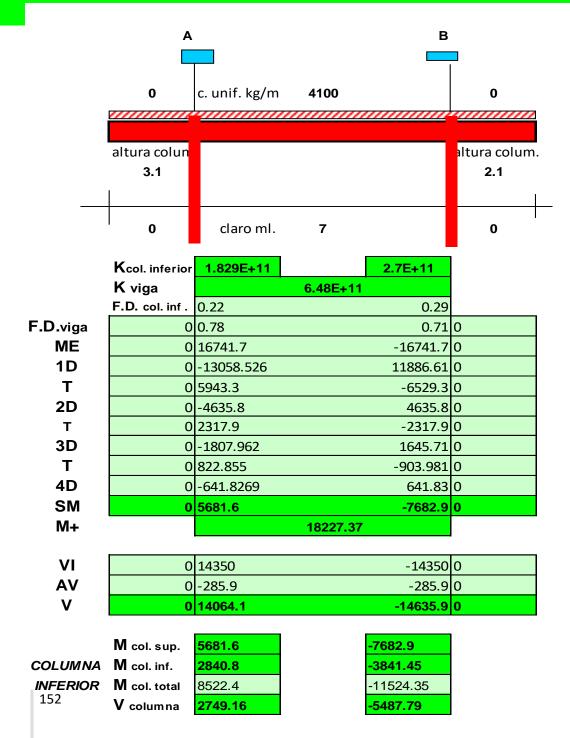
ANCHO DE LA VIGA CM. = 30
PERALTE DE LA VIGA CM. = 60
LADO eje x DE LA COLUMNAS EXTERIORES = 30
LADO eje y DE LA COLUMNAS INTERIORES = 30
LADO eje y DE LA COLUMNAS INTERIORES = 30
LADO eje y DE LA COLUMNAS INTERIORES = 30


MOMENTO TOTAL

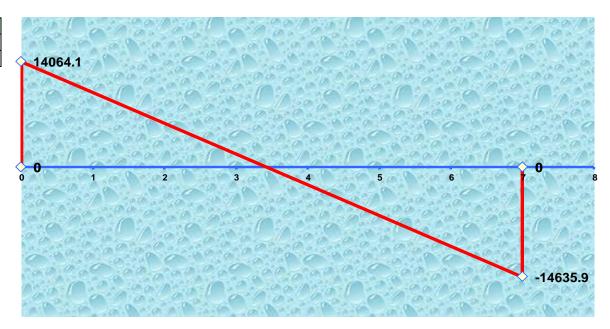
MOMENTO EN COLUMNA M col. sup.

M col. total

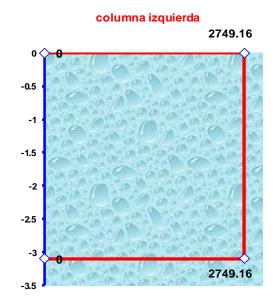
MOMENTO EN COLUMNA M col. inf.

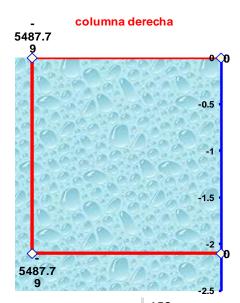

CORTANTE EN COLUMNA V columna

PRIMER NIVEL



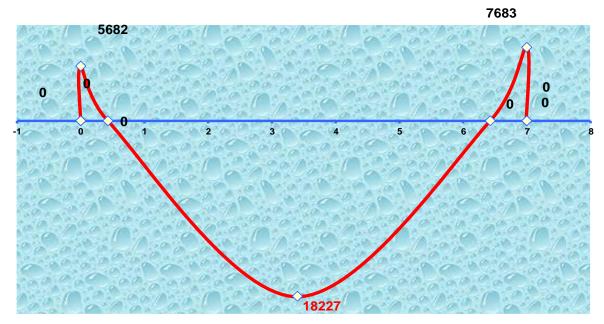
GRÁFICAS DE FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES


FUERZAS CORTANTES EN VIGAS


PUNTOS DE CORTANTE = 0

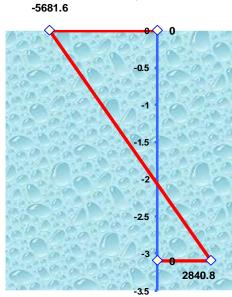
VIGA	N° 1
LADO "A"	LADO "B"
3.4	3.6

FUERZAS CORTANTES EN COLUMNAS INFERIORES

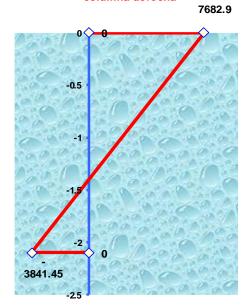

MOMENTOS FLEXIONANTES EN VIGAS

PUNTOS DE INFLEXIÓN

VIGA	N° 1
LADO "A"	LADO "B"
0.43	0.57

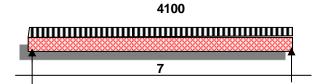

COLUMNA IZQUIERDA			
SUPERIOR	INFERIOR		
2.07	1.03		

COLUMNA DERECHA			
SUPERIOR INFERIOR			
1.4 0.7			



MOMENTOS FLEXIONANTES EN COLUMNAS INFERIORES

columna izquierda

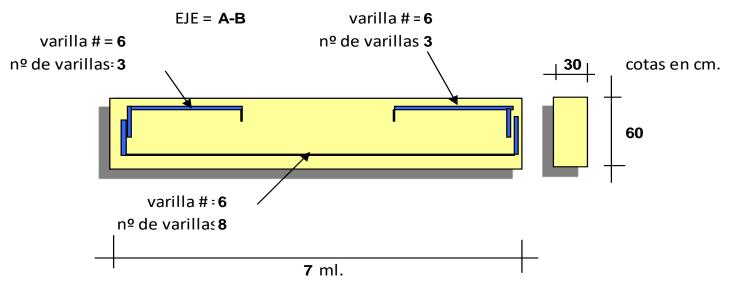


VIGAS A I S L A D A S (CON LIGERA RESTRICCIÓN DE EMPOTRE)

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.



DIRECCIÓN DE LA OBRA: Municipio de Altuatla, Estado de México

NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

250
2530
8.58377673
0.2768998

EJE	L	Q	Q1	QT	В	V1	M+
	7	28700	3528	32228	30	16114	2819950
	M-	R	D'	DT			
A-B	939983.333	14.1840841	81.4065646	85.4065646			
	QUIERE CAI	RE CAMBIAR EL PERALTE EFECTIVO :		56			
	DT	J	AS	#VAR	NV	VD	VU
	60	0.90770007	21.9275693	6	8	13535.76	8.057
	VAD	DFV	DE	# S	ES	ES ADM.	
	4.58530261	3.47169739	126.682268	0.64	15.5466699	28	
	U	UMAX	AS (-)	#VAR	NV (-)	U	UMAX
	6.60437505	26.5598124	7.30918978	6	3	17.6116668	20.4926208
	VERDADERO					VERDADERO	

Admisible : 28

MARCOS EMPOTRADOS EN PRIMER NIVEL.

MARCO CON CARGA UNIFORMEMENTE REPARTIDA CON DOS APOYOS FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES MÉTODO DE " CROSS "

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México

SIMBOLOGÍA:

RIGIDEZ DE LA VIGA = \mathbf{K} vigas TRANSPORTE = \mathbf{T} FACTOR DE DISTRIBUCIÓN EN VIGAS = \mathbf{FD} vigas CORTANTE INICIAL = \mathbf{VI}

FACTOR DE DISTRIBUCIÓN EN COLUM.= FD columi CORREC. CORTANTE POR CONTINUIDAD = AV

MOMENTO DE EMPOTRAMIENTO = ME CORTANTE FINAL NETO = V

PRIMERA Y SEGUNDA DISTRUBUCIÓN = 1D Y 2D MODULO DE ELASTICIDAD DE LA VIGA = E

SUMA DEL MOMENTO FLEXIONANTE FINAL = SM MOMENTO DE INERCIA = I

DATOS BÁSICOS DE LA ESTRUCTURA (cm.).

UBICACIÓN DEL E J E = CUBIERTA

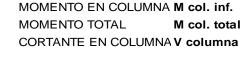
ANCHO DE LA VIGA CM. = PERALTE DE LA VIGA CM. =

LADO eje x DE LA COLUMNAS EXTERIORES =

LADO eje y DE LA COLUMNAS EXTERIORES =

LADO eje x DE LA COLUMNAS INTERIORES =

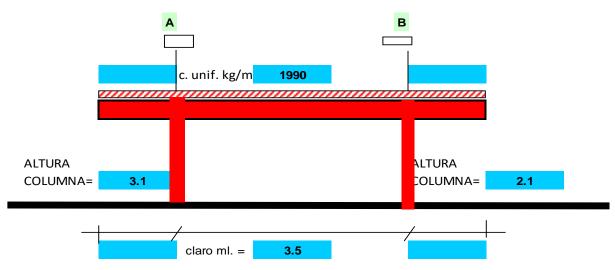
LADO eje y DE LA COLUMNAS INTERIORES =


30

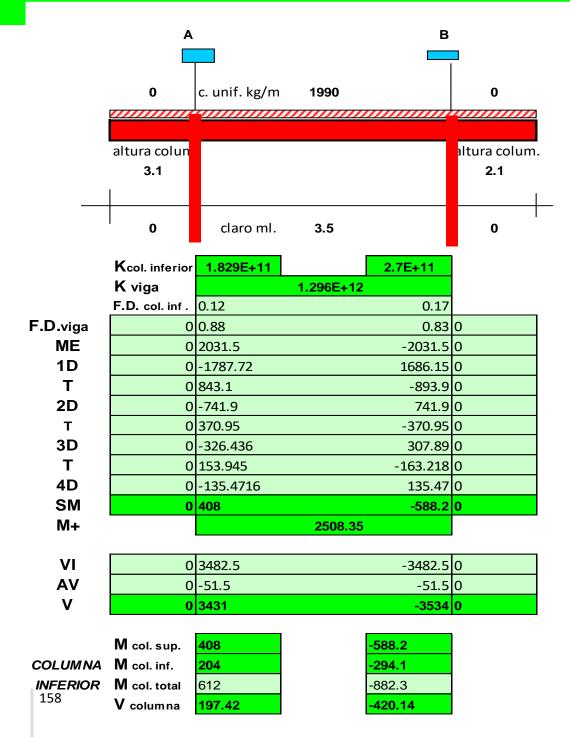
60 30

30

30

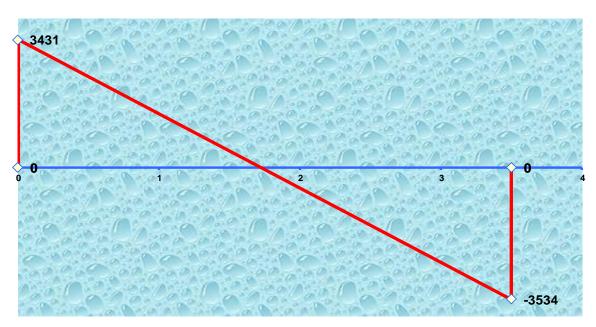

30

MOMENTO EN COLUMNA M col. sup.


157

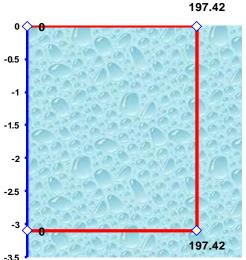
PRIMER NIVEL

PRIMER NIVEL

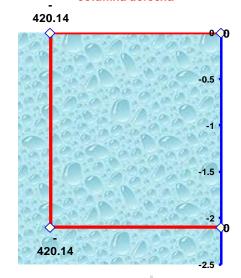


GRÁFICAS DE FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES

FUERZAS CORTANTES EN VIGAS


PUNTOS DE CORTANTE = 0

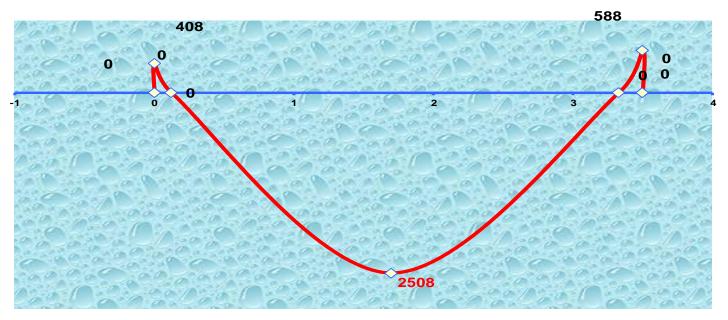
VIGA N°1		
LADO "A"	LADO "B"	
1.7	1.8	



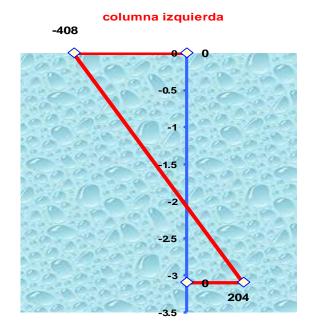
FUERZAS CORTANTES EN COLUMNAS INFERIORES

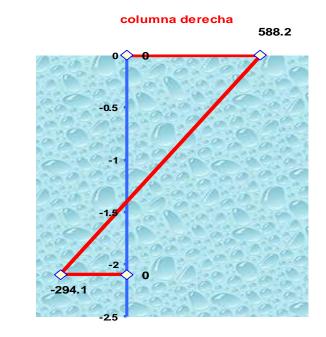
columna izquierda

columna derecha


MOMENTOS FLEXIONANTES EN VIGAS

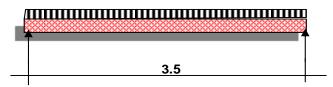
PUNTOS DE INFLEXIÓN


VIGA N° 1		
LADO "A"	LADO "B"	
0.12	0.17	


COLUMNA IZQUIERDA					
SUPERIOR INFERIOR					
2.07	1.03				

COLUMNA DERECHA					
SUPERIOR INFERIOR					
1.4	0.7				

MOMENTOS FLEXIONANTES EN COLUMNAS INFERIORES



VIGAS A I S L A D A S (CON LIGERA RESTRICCIÓN DE EMPOTRE) CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

1990

DIRECCIÓN DE LA OBRA: Municipio de Altuatla, Estado de México

NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

250
2530
8.58377673
0.2768998

EJE	L	Q	Q1	QT	В	V1	M+
	3.5	6965	882	7847	30	3923.5	343306.25
	M-	R	D'	DT			
A-B	114435.417	14.1840841	28.4040049	32.4040049			
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	: OVIT	56		
	DT	J	AS	#VAR	NV	VD	VU
	60	0.90770007	2.66950535	4	2	2667.98	1.58808333
	VAD	DFV	DE	# S	ES	ES ADM.	
	4.58530261	-2.99721927	-112.590918	0.64	-18.0078027	28	
	U	UMAX	AS (-)	#VAR	NV (-)	U	UMAX
	9.64835504	39.8397186	0.88983512	4	1	19.2967101	25.0982322
	VERDADERO					VERDADERO	

MARCOS EMPOTRADOS EN PRIMER NIVEL.

MARCO CON CARGA UNIFORMEMENTE REPARTIDA CON DOS APOYOS FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES MÉTODO DE " CROSS "

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México

SIMBOLOGÍA:

RIGIDEZ DE LA VIGA = **K vigas** TRANSPORTE = **T**FACTOR DE DISTRIBUCIÓN EN VIGAS = **FD vigas** CORTANTE INICIAL = **VI**

FACTOR DE DISTRIBUCIÓN EN COLUM.= **FD colum**i Correc. Cortante por continuidad = **AV**

MOMENTO DE EMPOTRAMIENTO = **ME** CORTANTE FINAL NETO = **V**

PRIMERA Y SEGUNDA DISTRUBUCIÓN = 1D Y 2D MODULO DE ELASTICIDAD DE LA VIGA = E

SUMA DEL MOMENTO FLEXIONANTE FINAL = SM MOMENTO DE INERCIA = I

DATOS BÁSICOS DE LA ESTRUCTURA (cm.).

U B I C A C I Ó N DEL E J E = C

CUBIERTA

ANCHO DE LA VIGA CM. = 30

PERALTE DE LA VIGA CM. = 60

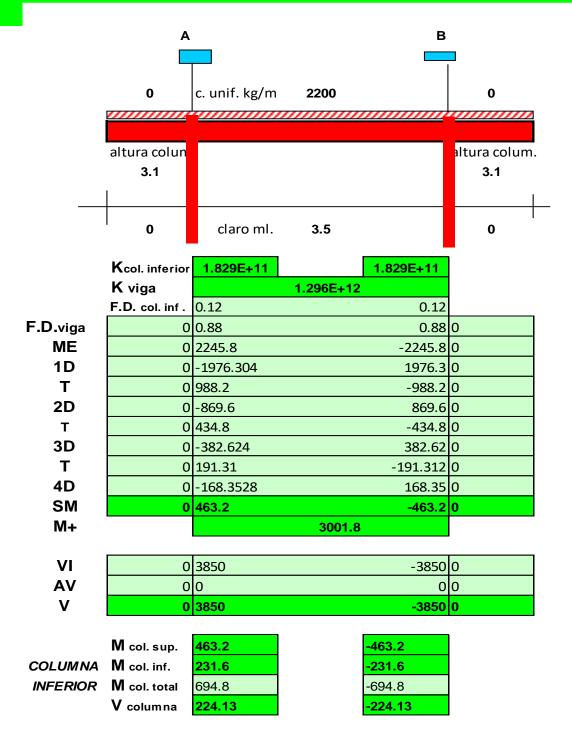
LADO eje x DE LA COLUMNAS EXTERIORES = 30

LADO eje y DE LA COLUMNAS INTERIORES = 30

LADO eje y DE LA COLUMNAS INTERIORES = 30

LADO eje y DE LA COLUMNAS INTERIORES = 30

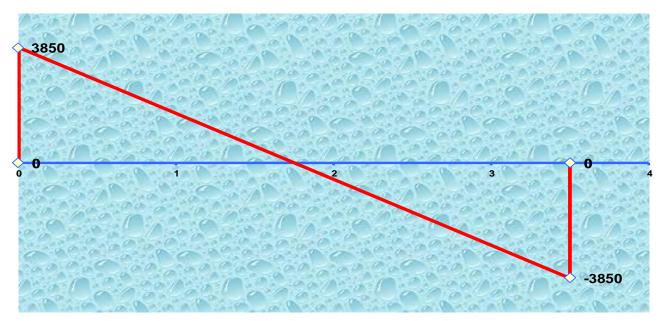
MOMENTO TOTAL


MOMENTO EN COLUMNA M col. sup.

MOMENTO EN COLUMNA M col. inf.

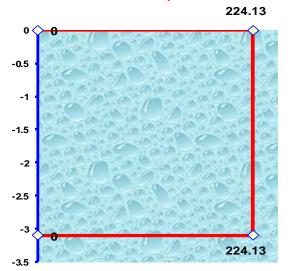
CORTANTE EN COLUMNA V columna

M col. total

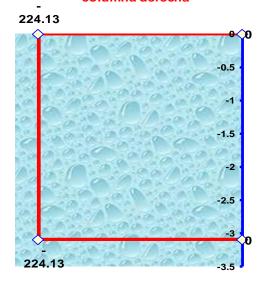


GRÁFICAS DE FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES

FUERZAS CORTANTES EN VIGAS


PUNTOS DE CORTANTE = 0

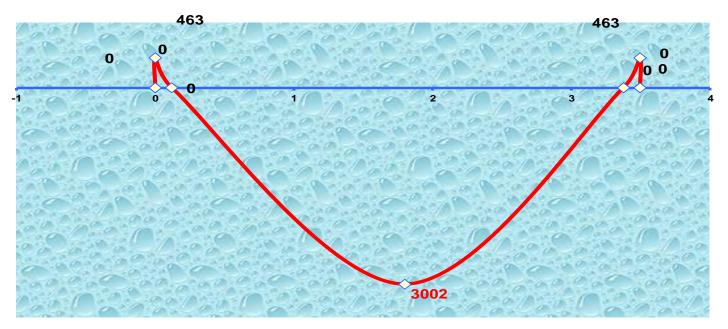
VIGA N° 1			
LADO "A"	LADO "B"		
1.8	1.8		



FUERZAS CORTANTES EN COLUMNAS INFERIORES

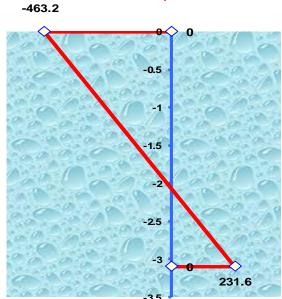
columna izquierda

columna derecha

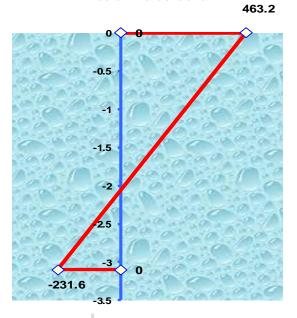

MOMENTOS FLEXIONANTES EN VIGAS

PUNTOS DE INFLEXIÓN

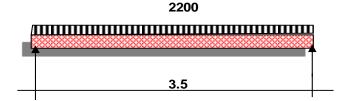
VIGA N°1			
LADO "A"	LADO "B"		
0.12	0.12		


COLUMNA IZQUIERDA					
SUPERIOR INFERIOR					
2.07	1.03				

COLUMNA DERECHA					
SUPERIOR INFERIOR					
2.07	1.03				



MOMENTOS FLEXIONANTES EN COLUMNAS INFERIORES

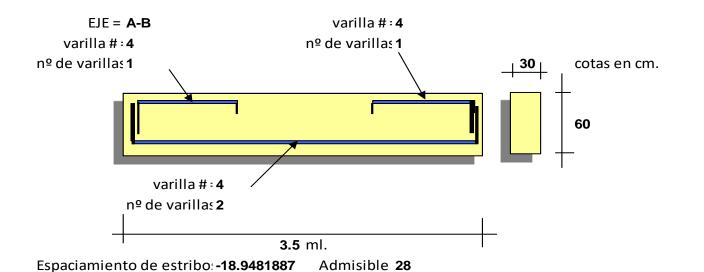


VIGAS A I S L A D A S (CON LIGERA RESTRICCIÓN DE EMPOTRE)

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO

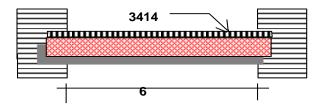
AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.


DIRECCIÓN DE LA OBRA: Municipio de Altuatla, Estado de México NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

250
2530
8.58377673
0.2768998

EJE	L	Q	Q1	QT	В	V1	M+
	3.5	7700	882	8582	30	4291	375462.5
	M-	R	D'	DT			
A-B	125154.167	14.1840841	29.7044836	33.7044836			
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	CTIVO :	56		
	DT	J	AS	#VAR	NV	VD	VU
	60	0.90770007	2.91954822	4	2	2917.88	1.73683333
	VAD	DFV	DE	# S	ES	ES ADM.	
	4.58530261	-2.84846927	-195.16429	0.64	-18.9481887	28	
	U	UMAX	AS (-)	#VAR	NV (-)	U	UMAX
	10.5520814	39.8397186	0.97318274	4	1	21.1041629	25.0982322
	VERDADERO					VERDADERO	

Espaciamiento de estribo: -18.0078027 Admisible 28

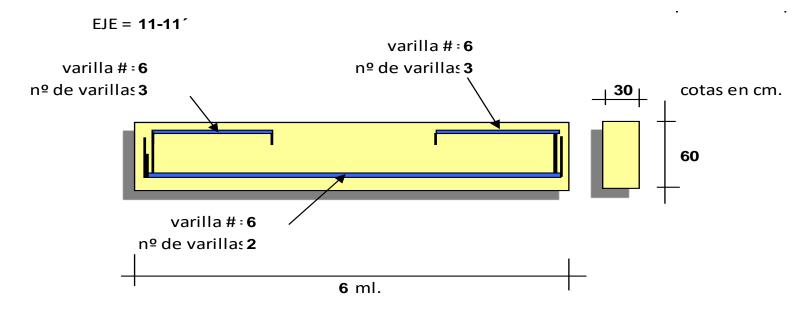


VIGAS AISLADAS EMPOTRADAS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

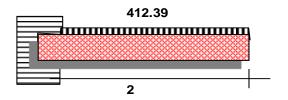


DIRECCIÓN DE LA OBRA: Municipio de Altuatla, Estado de México

NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

250
2530
8.58377673
0.2768998

EJE	L	Q	Q1	QT	В	V1	M+
	6	20484	2592	23076	30	11538	576900
	M (-)	R	D'	DT			
0	1153800	14.1840841	52.0719679	56.0719679			
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	CTIVO:	56		
	DT	J	AS +	#VAR	NV +	VD	VU
	60	0.90770007	4.48590037	6	2	9384.24	5.58585714
	VAD	DFV	DE	# S	ES	ES ADM.	
	4.58530261	1.00055454	155.70597	0.64	53.9434198	28	
	U	UMAX	AS (-)	#VAR	NV (-)	U	UMAX
	18.9155466	26.5598124	8.97180075	6	3	12.6103644	20.4926208
						VERDADERO	

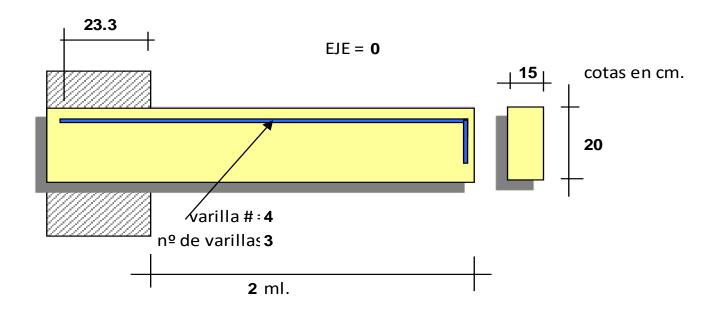

Espaciamiento de estribo: 53.9434198 Admisible 28

VIGAS EN MENSULA

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

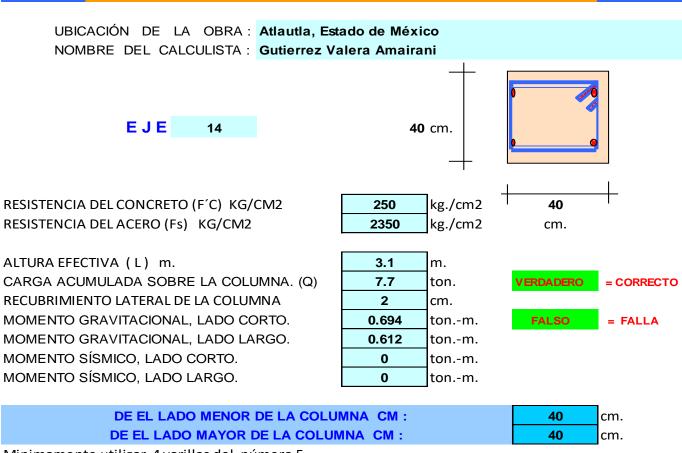


DIRECCIÓN DE LA OBRA: Municipio de Atlautla, Estado de México

NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

250
2100
8.58377673
0.31569868

EJE	L	Q	Q1	QT	В	V1	M MAX.
	2	824.78	144	968.78	15	968.78	96878
	R	D'	DT				
0	15.9411285	20.128315	24.128315				
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	16		
	DT	J	AS	#VAR	NV	VD	VU
	20	0.89476711	3.2223735	4	3	891.2776	3.71365667
	VAD	DFV	DE	# S	ES	ES ADM.	
	4.58530261	-0.87164594	12.2840527	0.64	-102.794031	8	
	U	UMAX					
	5.63915363	28.6347977	LONGITUD DE ANCLAJE cm = 23.3				
	VERDADERO						


Espaciamiento de estribo: -102.794031 Admisible 8

COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

RECTANGULARES REFORZADAS CON ESTRIBOS <u>CARGA CONCENTRADA EN TONELADAS.</u>

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DE EL LADO MENOR DE LA COLUMNA CM:	40	cm.
DE EL LADO MAYOR DE LA COLUMNA CM:	40	cm.
Minimamente utilizar 4 varillas del número 5		<u>_</u>
DE EL NÚMERO DE LA VARILLA A UTILIZAR:	5	#
DE LA CANTIDAD DE VARILLAS A UTILIZAR :	6	varillas
DE EL NÚMERO DE VARILLAS EN EL SENTIDO CORTO:	3	varillas
DE EL NÚMERO DE VARILLAS EN EL SENTIDO LARGO:	3	varillas

Área de acero total cm² =	11.8762463	Coeficiente (R) kg/cm ²	14.7921035		
Fatiga del concreto a compresión(fc) kg/cm ² =	112.5	lado menor de la columna - recubrim.	38		
Relación de modulos de elasticidad (n)	8.58377673	(lado menor de la columna - recubrim)	1444		
Límite elastico del acero (fy) kg/cm ² =	4700	lado mayor de la columna - recubrim. =	38		
Constante grande del concreto (Q) = $(fc \times k \times j)/2$ =					

COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

REFORZADAS CON ESTRIBOS

CARGA CONCENTRADA EN TONELADAS.

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

CARGA	QUE	SOPORTA	(Qa)	Q < Qa	VERDADERO	V
			ı			T	
				GRAVITACIO	ONAL	INCREMENTO	GRAV. + SISMO
CONCRETO	0.28	At(f'c)		112	ton	1.33	148.96 ton
ACERO	Ast (f	s-0,28(f'c))		27.0778415	ton	1.5	40.6167622 ton
			Qa =	139.077841	ton		189.576762 ton

MOMENTO RESISTENTE (SENTIDO CORTO)			
	GRAVITACIONAL	INCREMENTO	GRAV. + SISMO
CONCRETO (sentido corto) Mc= Qbd2	8.54391901 ton-m.	1.33	11.3634123 ton-m.
ACERO EN COMPRESIÓN (sentido corto) Ms= As(2n-1)(k-((5/d)/k)(fc)(d-5)	1.95395475 ton-m.	1.5	2.93093213 ton-m.

MOMENTO RESISTENTE (SENTIDO LARGO)				
	GRAVITACIONA	۱L	INCREMENTO	GRAV. + SISMO
CONCRETO (sentido largo)	8.54391901 ton	n-m.	1.33	11.3634123 ton-m.
Mc= Qbd2				
ACERO EN COMPRESIÓN (sentido largo) Ms= As(2n-1)(k-((d'/d)/k)(fc)(d-d')	1.95395475 ton	n-m.	1.33	2.59875982 ton-m.
TOTALES	10.4978738 ton	n-m.		13.9621721 ton-m.

MOMENTO RESISTENTE (DEL ACERO A LA TENSIÓN)				
ACERO A LA TENSIÓN (sentido corto) Ms= As*fs*j*d	9.57588823 ton-m.	1.5	14.3638323 ton-m.	
ACERO A LA TENSIÓN (sentidolargo) Ms= As*fs*j*d'	9.57588823 ton-m.	1.5	14.3638323 ton-m.	

COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

REFORZADAS CON ESTRIBOS

CARGASCONCENTRADA EN TONELADAS.

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

COMPROBACIÓN:

cuando ((N/N1)+ - (Mcorto/Mrcorto)+ - (Mlargo/Mrlargo)) < = 1, entonces no falla

DEL ACERO A LA COMPRESIÓN

GRAVITACIONAL 0.17977082 < 1 VERDADERO

GRAVITACIONAL + SISMO 0.0517666 < 1

DEL ACERO A LA TENSIÓN

GRAVITACIONAL -0.08101954 < 1

GRAVITACIONAL + SISMO -0.1315396 < 1

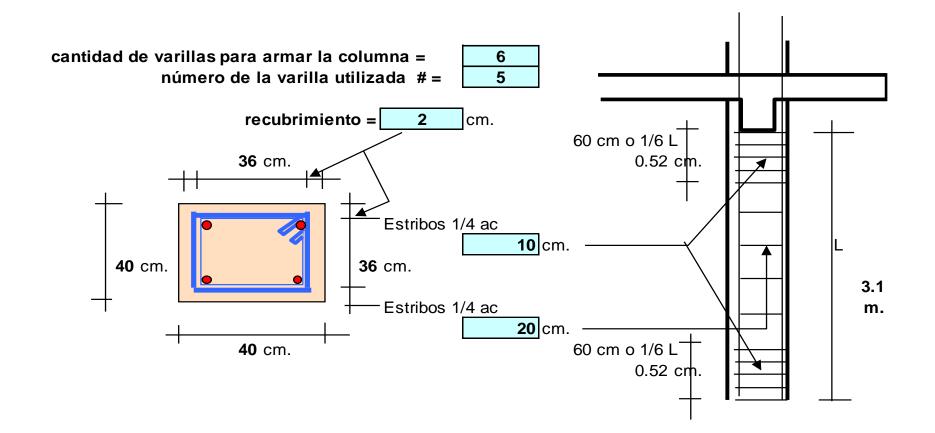
REFUERZO TRANVERSAL

SEPARACIÓN DE ESTRIBOS:

 NO MAYOR QUE :
 19.6826573
 cm
 NO MAYOR QUE :
 30.48
 con estribos # 2

 NO MAYOR QUE :
 20
 cm
 NO MAYOR QUE :
 45.72
 con estribos # 3

SELECCIONE LA SEPARACIÓN MENOR DE LA ANTERIORES ESPECIFICADAS:


20 cm.

VERDADERO

VERDADERO

LA SEPARACIÓN MÁXIMA DE LOS ESTRIBOS EN LA PARTE SUPERIOR DE LA COLUMNA, A

60 cm. DE LA UNIÓN DE ESTA CON TRABES O LOSAS SERÁ DE: 10 cm.

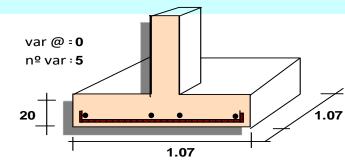
ZAPATAS AISLADAS DE CONCRETO ARMADO

DE PERALTE CONSTANTE

CIMENTACIÓN INTERMEDIA

CARGAS CONCENTRADAS EN KG.

MEMORIA DE CÁLCULO


AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA:

Municipio de Atlautla, Estado de México

CALCULISTA:

Gutierrez Valera Amairani

SIMBOLOGÍA

ÁREA DE DESPLANTE (A) = M2

LADO DE LA ZAPATA (ML) = L

CARGA UNITARIA (KG/M2) = W

DISTANCIA A LA COLUMNA (ML) = C

BASAMENTO DE LA COLUMNA (CM.) = B

MOMENTO FLEXIONANTE MAX. KGXCM = M

PERALTE EFECTIVO (CM) = D

`PERALTETOTAL (CM) = DT

CORTANTE A UNA DISTANCIA D (KG) = VD

CORTANTE LATERAL (KG/CM2) = VL

CORT. LATERAL ADMISIB. (KG/CM2) = VADM

DIST PARA CORTANTE PERIM. (CM.) = E

CORTANTE A UNA DISTANCIA D/2 (KG) = VD/2

CORTANTE PERIMETRAL (KG/CM2) = VP

CORTANTE PERIM. ADMISIBLE (KG/CM2) = VP ADM

ÁREA DE ACERO (CM2) = AS

NÚMERO DE VARILLAS = NV

ESPACIAM. DE VARILLAS (CM)= VAR@

ESPACIAM. ADMISIBLE DE VARILLAS =VAR ADM

CORTANTE POR ADHERENCIA (KG) = VU

ESFUERZO POR ADHERENCIA (KG/CM2) = U

ESF. POR ADHEREN. ADMISIBLE (KG/CM2) = UADM

8500 RELAC. ENTRE MÓDULOS DE ELASTIC. **250** RELAC. ENTRE EL EJE NEUTRO Y (D)

J =

0.90770007 R =

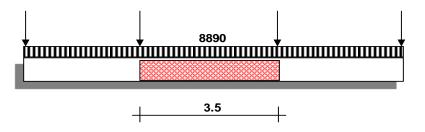
8.58377673 0.2768998 14.1840841

EJES CON CIMENTACIÓN INTERMEDIA

2530

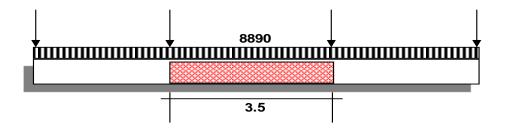
IDENTIFICACIÓN EJE	С	Α	L	W	С	В
		1.14001176	1.06771333	7798.16514	-21.9661433	4520
CARGA CONC. KG	8890	M	D	DT		
LADO COLUMNA ML	45	200874461	364.195336	374.195336		
		QUIERE CAN	IBIAR EL PER	RALTE EFECT	IVO	10
		DT	VD	VL	V ADM	E
		20	-183727.231	-172.07543	4.58530261	4510
		VD/2	VP	VP ADM	VERDADERO	
		-15852655.9	-87.8750325	8.3800358	VERDADERO	
		AS	# VAR	NV	VAR @	@ ADM
		8747.05459	5	4419.10065	0.02099801	30 CM.
		VU	U	U ADM		
		-182894.61	-0.9119156	31.8717748	VERDADERO	

CONTRATRABES DE CONCRETO ARMADO


CON LIGERA RESTRICCIÓN DE EMPOTRE

CONTRATRABES CONTINUAS

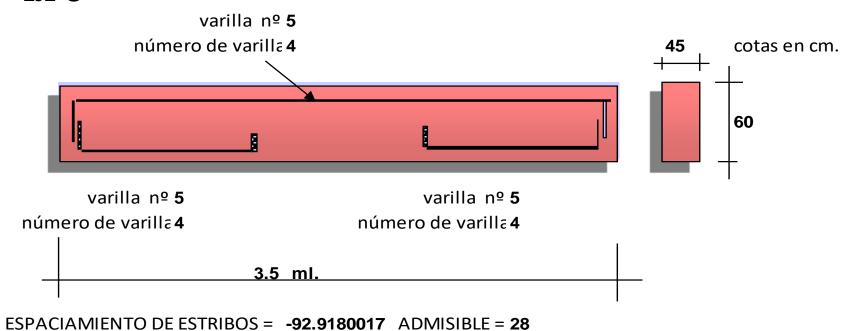
CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML


HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

SIMBOLOGIA

CLARO DE LA VIGA ML = (L)	AREA DE ACERO MOMENTO POSITIVO CM2 =(AS+)
CARGA UNIFORM.REPARTIDA KG = (Q)	AREA DE ACERO MOMENTO NEGAT. CM2 = (AS-)
CARGA TOTAL KG = (QT)	NUMERO DE LA VARILLA UTILIZADA = (#VAR)
ANCHO PROPUESTO DE LA VIGA CM.= (B)	NÚMERO DE VARILLAS REQUERIDAS = (NV)
CORTANTE VERTICAL MÁXIMO KG = (V1)	CORTANTE A UNA DISTANCIA D = (VD)
	CORTANTE UNITARIO KG/CM2 = (VU)
MOMENTO FLEXION. POSITIVO KGXCM = (M+)	
	CORTANTE UNITARIO ADMISIBLE KG/CM2 = (VAD)
MOMENTO FLEXION.NEGATIVO KGXCM = (M-)	
	DIFERENCIA DE CORTANTE KG/CM2 = (DFV)
COEFICIENTES KG/CM2 (R , J)	DISTANCIA EN QUE SE REQ. ESTRIBOS CM = (DE)
	NÚMERO DE VARILLA UTILIZ.EN ESTRIBOS = (# S)
PERALTE EFECTIVO CM = (D')	
	ESPACIAMIENTO DE ESTRIBOS CM = (ES)
PERALTE TOTAL CM. = (DT)	ESFUERZO POR ADHERENCIA KG/CM2 = (U)
	ESFUERZO POR ADHERENCIA ADM.KG/CM2 = (U)


DIRECCIÓN DE LA OBRA: Municipio de Atlautla, Estado de México NOMBRE DEL CALCULISTA: Gutierrez Valera Amairani

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2 RESISTENCIA DEL ACERO UTILIZADO KG/CM2 RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N) RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)

250
2530
8.58377673
0.2768998

EJE	L	Q	QT	В	V1	M(-)	M (+)		
	3.5	8890	31115	45	15557.5	907520.833	907520.833		
	R	D'	DT						
С	14.1840841	37.7069492	41.7069492						
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56				
	DT	J	AS (-)	#VAR	NV (-)	VD	VU		
	60	0.90770007	7.05676555	5	4	10579.1	4.19805556		
	VAD	DFV	DE	# S	ES @	ES ADM.			
	4.58530261	-0.38724705	101.022918	0.64	-92.9180017	28	VERDADERO		
	U	UMAX	AS (+)	#VAR	NV (+)	U	UMAX		
	15.3031001	31.8717748	7.05676555	5	4	15.3031001	22.4485413		

EJE C

MARCOS DÚCTILES EJE 11 Y 14 (C-I)

Marcos dúctiles eje 11 y 14 (C-I)

MARCOS EMPOTRADOS.

MARCO CON CARGA UNIFORMEMENTE REPARTIDA CON SIETE APOYOS FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES MÉTODO DE " CROSS "

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

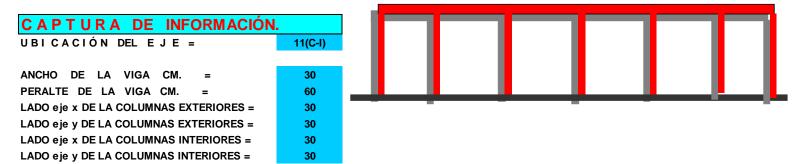
UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México

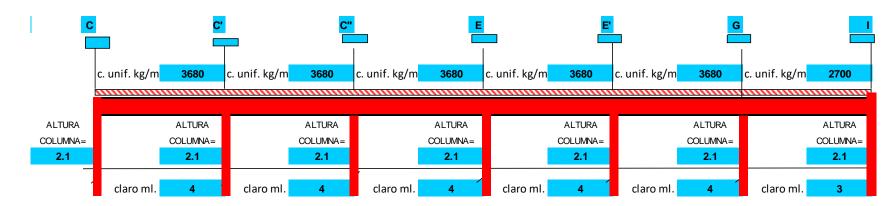
SIMBOLOGÍA:

RIGIDEZ DE LA VIGA = **K** vigas TRANSPORTE = **T**FACTOR DE DISTRIBUCIÓN EN VIGAS = **FD** vigas CORTANTE INICIAL = **VI**FACTOR DE DISTRIBUCIÓN EN COLUM.= **FD** columna CORREC. CORTANTE POR CONTINUIDAD = **AV**

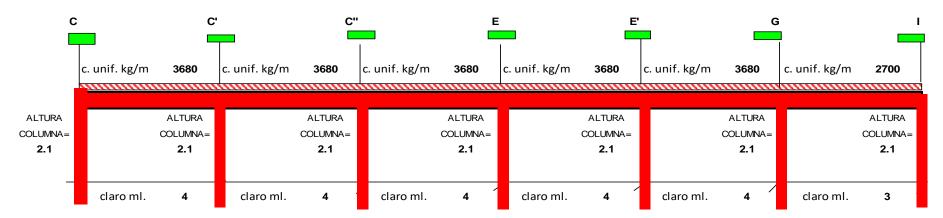
MOMENTO DE EMPOTRAMIENTO = ME CORTANTE FINAL NETO = V

PRIMERA Y SEGUNDA DISTRUBUCIÓN = **1D** Y **2D** MODULO DE ELASTICIDAD DE LA VIGA = **E**


SUMA DEL MOMENTO FLEXIONANTE FINAL = **SM** MOMENTO DE INERCIA = **I**

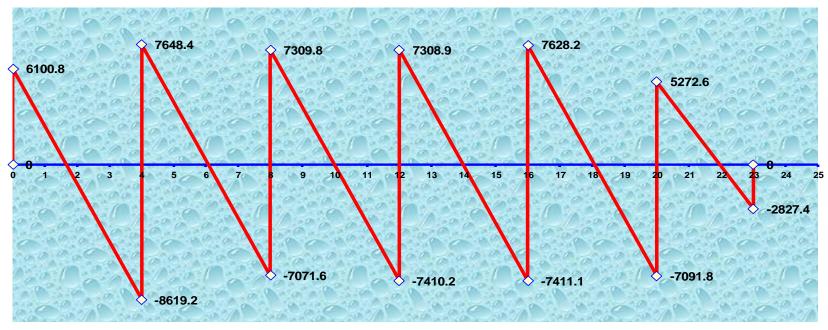

MOMENTO EN COLUMNA **M** col. sup.

MOMENTO EN COLUMNA **M** col. inf.

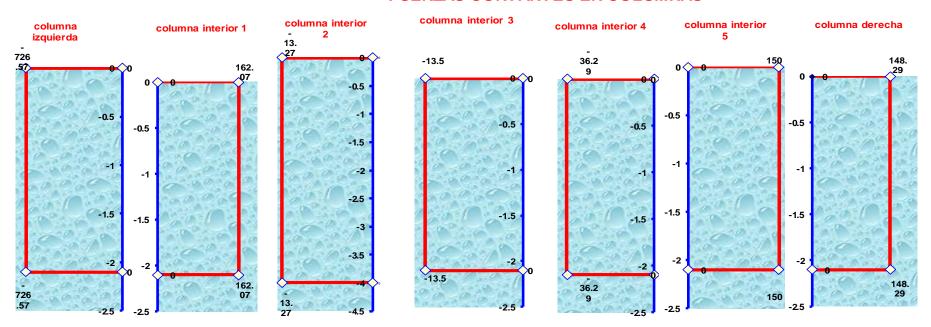

MOMENTO TOTAL **M** col. total

CORTANTE EN COLUMNA **V** columna

MÉTODO HARDY CROSS.

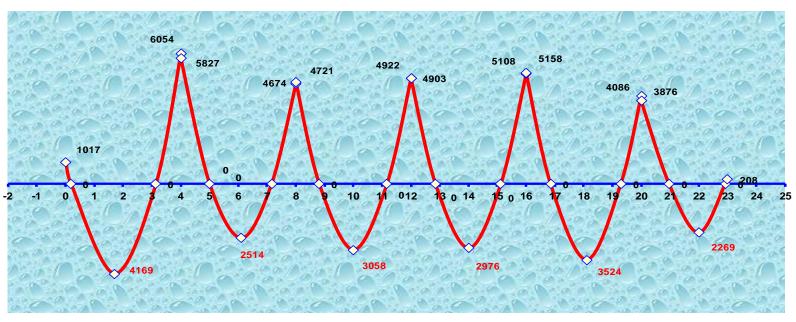


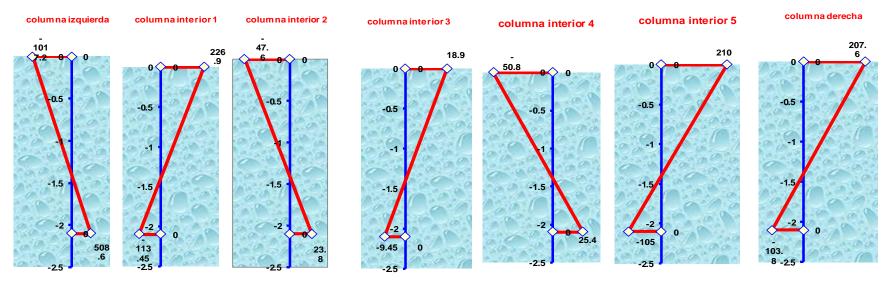
							_					
K columna	2.7E+11		2.7E+11		2.7E+11	2.7E+11		2.7E+11		2.7E+11		2.7E+11
K viga	1.134E+12		1.134E+12		1.134E+12			1.134E+12		1.134E+12		1.512E+12
F.D. colum.	0.19		0.11		0.11	0.11		0.11		0.09		0.15
F.D.viga	0.81	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.39	0.52	0.85
ME	4906.7	-4906.7	4906.7	-4906.7	4906.7	-4906.7	4906.7	-4906.7	4906.67	-4906.67	2025	-2025
1D	-3974.427	0	0	0	0	0	0	0	0.01	1123.85	1498.47	1721.25
T	0	-1987.2	0	0	0	0	0	0	561.925	0.005	860.625	749.235
2D	0	894.2	894.2	0	0	0	0	-252.9	-252.87	-335.65	-447.53	-636.84975
Т	447.1	0	0	447.1	0	0	-126.45	0	-167.825	-126.435	-318.424875	-223.765
3D	-362.151	0	0	-201.2	-201.2	56.9	56.9	75.5	75.52	173.5	231.33	190.20025
T	0	-181.0755	-100.6	0	28.45	-100.6	37.75	28.45	86.75	37.76	95.100125	115.665
4D	0	126.75	126.75	-12.8	-12.8	28.28	28.28	-51.84	-51.84	-51.82	-69.09	-98.31525
SM	1017.2	-6054	5827.1	-4673.6	4721.2	-4922.1	4903.2	-5107.5	5158.3	-4085.5	3875.5	-207.6
M+	4168.5		2514.1		3058.3		2975.9		3523.6			2269
							T					
VI	7360	-7360	7360	-7360	7360	-7360	7360	-7360	7360	-7360	4050	-4050
AV	-1259.2	-1259.2	288.4	288.4	-50.2	-50.2	-51.1	-51.1	268.2	268.2	1222.6	1222.6
V	6100.8	-8619.2	7648.4	-7071.6	7309.8	-7410.2	7308.9	-7411.1	7628.2	-7091.8	5272.6	-2827.4
							1		ı			
M col. sup.	-1017.2		-226.9		47.6	-18.9		50.8		-210		207.6
M col. inf.	-508.6		-113.45		23.8	-9.45		25.4		-105		103.8
M col. total	-1525.8		-340.35		71.4	-28.35		76.2		-315		311.4
V columna	-726.57		-162.07		34	-13.5		36.29		-150		148.29


PUNTOS DE CORTANTE = 0

FUERZAS CORTANTES EN VIGAS

VIGA	N° 1					
LADO "A"	LADO "B"					
1.7	2.3					
VIGA	N° 2					
LADO "A"	LADO "B"					
2.1	1.9					
VIGA	N° 3					
LADO "A"	LADO "B"					
2	2					
VIGA	N° 4					
LADO "A"	LADO "B"					
2	2					
VIGA	N° 5					
LADO "A"	LADO "B"					
2	2					
VIGA	N° 6					
LADO "A"	LADO "B"					


FUERZAS CORTANTES EN COLUMNAS


MOMENTOS FLEXIONANTES EN VIGAS

PUNTOS DE INFLEXIÓN

VIGA	N° 1								
LADO "A"	LADO "B"								
0.18	0.87								
VIGA	N° 2								
LADO "A"	LADO "B"								
1	0.85								
VIGA N° 3									
LADO "A"	LADO "B"								
0.81	0.84								
VIGA	N° 4								
LADO "A"	LADO "B"								
0.85	0.88								
VIGA	N° 5								
LADO "A"	LADO "B"								
0.85	0.71								
VIGA	N° 6								
LADO "A"	LADO "B"								
0.97	0.08								

MOMENTOS FLEXIONANTES EN COLUMNAS

	COLUMNA IZQUIERDA		IZQUIERDA COLUMNA INTERIOR 1		COLUMNA INTERIOR 2		COLUMNA INTERIOR 3		COLUMNA INTERIOR 4		COLUMNA INTERIOR 5		COLUMNA INTERIOR 6	
ĺ	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR
	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7

CÁLCULO DE VIGAS CONTINUAS DE CONCRETO ARMADO DE 3 A 7 APOYOS CON O SIN VOLADOS CARGA UNIFORMEMENTE REPARTIDA

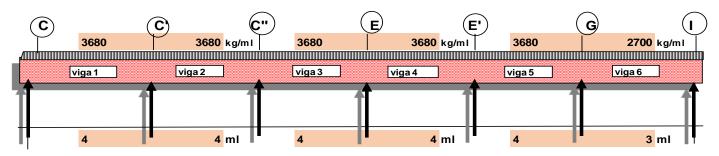
AUTOR: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN

CAPTURA DE INFORMACIÓN

DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA:

UBICACIÓN DEL EJE =
RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO (fs) KG/CM2

ANCHO DE LA VIGA CM. =


Municipio de Atlautla, Estado de México Gutierrez Valera Amairani

Υ

C 250 2530

30

CARGA UNIFORMEMENTE REPARTIDA = KG / ML CLARO ENTRE APOYOS = ML

	MOMENTOS FLEXIONANTES = KG x ML									
	VIGA 1	VIGA 2	VIGA 3	VIGA 4	VIGA 5	VIGA 6				
CENTRO DEL CLARO (+)	4168.5	2514.1	3058.3	2975.9	3523.6	2269				
LADO IZQUIERDO (-)	1017.2	5827.1	4721.2	4903.2	5158.3	3875.5				
LADO DERECHO (-)	6054	4673.6	4922.1	5107.5	4085.5	207.6				

SELECCIÓN DEL MOMENTO FLEXIONANTE MAYOR DEL EJE =	5158.3
---	--------

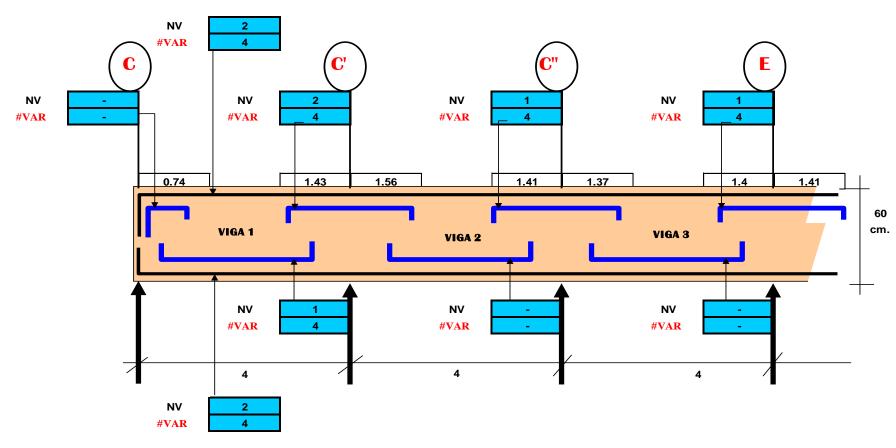
	FUERZAS CORTANTES = KG									
	VIGA 1	VIGA 2	VIGA 3	VIGA 4	VIGA 5	VIGA 6				
LADO IZQUIERDO (A)	6100.8	7648.4	7309.8	7308.9	7628.2	5272.6				
LADO DERECHO (B)	8619.2	7071.6	7410.2	7411.1	7091.8	2827.4				

PUNTOS DE INFLEXIÓN (ml.)

	LADO IZQ.	LADO DER.				
VIGA 1	0.18	0.87				
VIGA 2	1	0.85				
VIGA 3	0.81	0.84				
VIGA 4	0.85	0.88				
VIGA 5	0.85	0.71				
VIGA 6	0.97	0.08				

				ME	MORIA DE	E CÁLCUL	O DE LA	VIGA 1		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14720	1152	15872	30	6100.8	8619.2	416850	101720	605400
	R	J	D'	DT						
С	14.1840841	0.90770007	34.8170541	38.8170541						
I	QUIERE CAI	MBIAR EL PE	RALTE EFEC	: OVIT	56	cm	DT corre	gido =	60	cm
						_				
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						3.24137211	4	3	14.1304281	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						0.79096167	4	1	30.0051915	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						4.70751272	4	4	10.597821	28.6347977
	ES1	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	3878.72			3878.72	2.3087619	4.58530261	-2.2765407	-29.9903284	0.64	-23.708486
	EST	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				6397.12	3.80780952	4.58530261	-0.77749308	82.5975303	0.64	-69.4196958

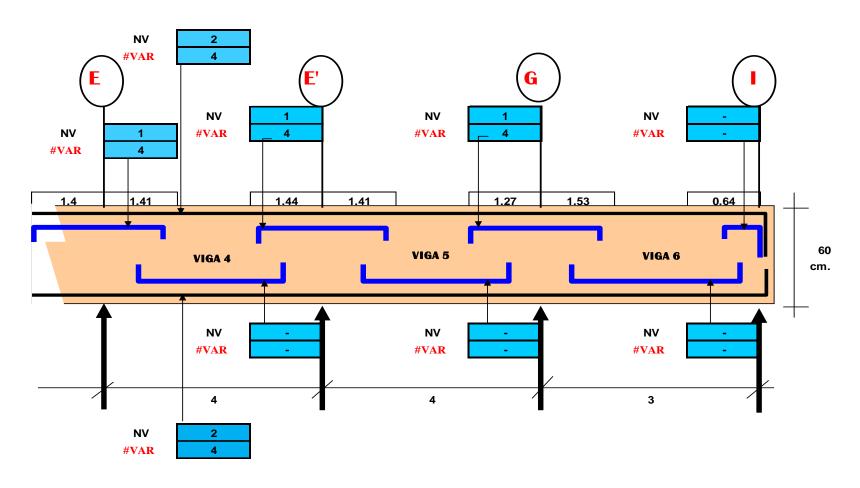
				ME	MORIA DE	E CÁLCUL	O DE LA	VIGA 2		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14720	1152	15872	30	7648.4	7071.6	251410	582710	467360
	R	J	D'	DT						
С	14.1840841	0.90770007	34.8170541	38.8170541		_				
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						_				
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.9549319	4	2	18.808329	39.8397186
	ÁRI	EA DE ACERC	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						4.53107819	4	4	9.40416448	28.6347977
	ÁRI	EA DE ACERC	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						3.63413139	4	3	11.5932726	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	5426.32				3.22995238	4.58530261	-1.35535023	51.5748266	0.64	-39.8224254
	ES1	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				4849.52	2.88661905	4.58530261	-1.69868356	27.260577	0.64	-31.7736244


				MER	MORIA DE	E CÁLCUL	O DE LA	VIGA 3		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14720	1152	15872	30	7309.8	7410.2	305830	472120	492210
	R	J	D'	DT		•	•			
С	14.1840841	0.90770007	34.8170541	38.8170541		_				
ı	QUIERE CA	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						•				
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						2.37809484	4	2	18.2225667	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						3.67114454	4	3	11.9837808	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						3.8273618	4	3	12.1483778	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				5087.72	3.02840476	4.58530261	-1.55689785	37.9698398	0.64	-34.6672285
	EST	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				5188.12	3.08816667	4.58530261	-1.49713594	42.1891385	0.64	-36.0510571

				ME	MORIA DE	E CÁLCUL	O DE LA	VIGA 4		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14720	1152	15872	30	7308.9	7411.1	297590	490320	510750
	R	J	D'	DT		•			•	
С	14.1840841	0.90770007	34.8170541	38.8170541		_				
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						-				
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						2.31402165	4	2	18.2247799	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						3.8126654	4	3	11.9823053	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						3.97152646	4	3	12.1498533	28.6347977
	EST	TRIBOS LADO	D "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				5086.82	3.02786905	4.58530261	-1.55743356	37.9312642	0.64	-34.6553039
	EST	TRIBOS LADO	D "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				5189.02	3.08870238	4.58530261	-1.49660023	42.2262225	0.64	-36.0639618

				MER	MORIA DI	E CÁLCUL	O DE LA	VIGA 5		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14720	1152	15872	30	7628.2	7091.8	352360	515830	408550
	R	J	D'	DT						
С	14.1840841	0.90770007	34.8170541	38.8170541						
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	CTIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						2.73990615	4	2	17.4395831	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						4.01102789	4	3	12.5057698	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						3.17683238	4	3	11.6263887	28.6347977
	ES1	TRIBOS LADO	D "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				5406.12	3.21792857	4.58530261	-1.36737404	50.8109907	0.64	-39.4722526
	EST	TRIBOS LADO	D "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				4869.72	2.89864286	4.58530261	-1.68665975	28.209407	0.64	-32.0001312

				DATE:	MODIA DE	CÁL CIU	O DE LA	MCAG		
						CALCUL	U DE LA	VIGA 0		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	3	3 8100 648 8748		30	5272.6	2827.4	226900	387550	20760	
	R	J	D'	DT						
С	14.1840841	0.90770007	34.8170541	38.8170541						
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.76434528	4	1	13.9058285	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						3.01353907	4	2	12.965953	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						0.1614271	4	0	#¡DIV/0!	28.6347977
	ES1	TRIBOS LADO	D "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				3639.64	2.16645238	4.58530261	-2.41885023	7.04873346	0.64	-22.3136318
	ES1	TRIBOS LADO	D "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				1194.44	0.71097619	4.58530261	-3.87432642	-400.234711	0.64	-13.9310238


VIGA Nº 1				
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEFEspaciamiento de estribo 28	Admisible	28	cm.
VIGA Nº 2				
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEFESpaciamiento de estribo 28	Admisible	28	cm.
VIGA Nº 3				
EJE	LADO IZQ, Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEFESpaciamiento de estribo 28	Admisible	28	cm.

PUNTOS DE INFLEXIÓN (ml.)

	LADO IZQ.	LADO DER.
VIGA 1	0.18	0.87
VIGA 2	1	0.85
VIGA 3	0.81	0.84

EJE C I

192

VIGA № 4								
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.				
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.	PUNTOS DE INFLEXIÓN (ml.)			
VIGA Nº 5								
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.		LADO IZQ.	LADO DER.	
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 4	0.85	0.88	
VIGA Nº 6					VIGA 5	0.85	0.71	
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 6	0.97	0.08	
EJE	LADO DEFESpaciamiento de estribo 28	Admisible	28	cm.		_		

MARCOS EMPOTRADOS.

MARCO CON CARGA UNIFORMEMENTE REPARTIDA CON SIETE APOYOS FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES MÉTODO DE " CROSS "

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México

SIMBOLOGÍA:

RIGIDEZ DE LA VIGA = **K** vigas

FACTOR DE DISTRIBUCIÓN EN VIGAS = **FD** vigas

MOMENTO DE EMPOTRAMIENTO = **ME**

PRIMERA Y SEGUNDA DISTRUBUCIÓN = **1D** Y **2D**

SUMA DEL MOMENTO FLEXIONANTE FINAL = **SM**

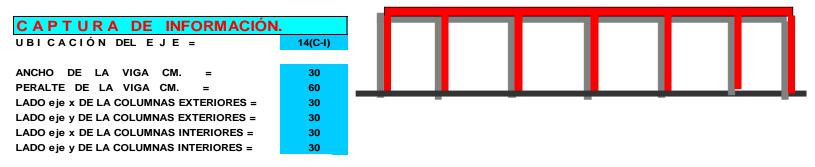
TRANSPORTE = \mathbf{T}

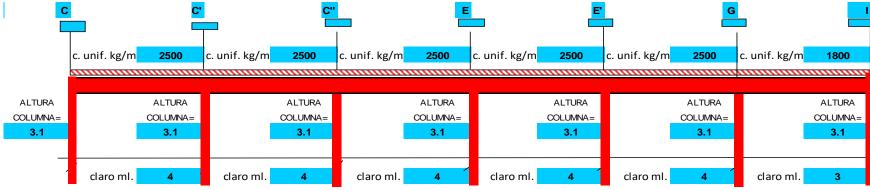
CORTANTE INICIAL = VI

FACTOR DE DISTRIBUCIÓN EN COLUM.= FD columna CORREC. CORTANTE POR CONTINUIDAD = AV

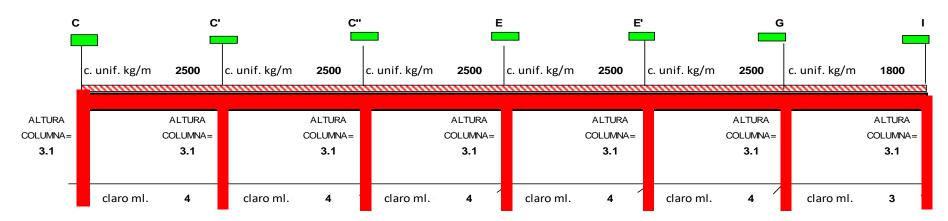
CORTANTE FINAL NETO = \mathbf{V}

MODULO DE ELASTICIDAD DE LA VIGA = **E**


MOMENTO DE INERCIA =

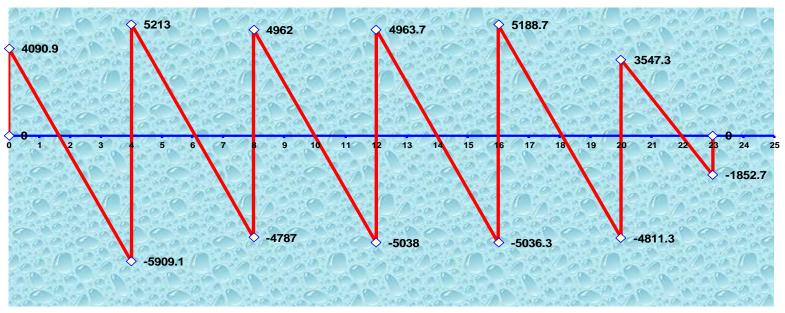

MOMENTO EN COLUMNA **M** col. sup.

MOMENTO EN COLUMNA **M** col. inf.

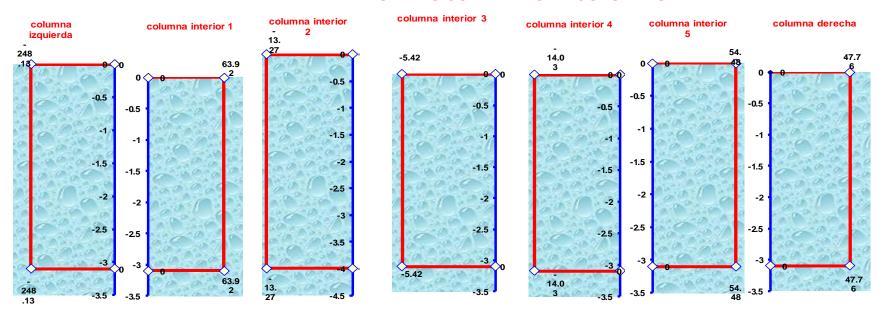

MOMENTO TOTAL **M** col. total

CORTANTE EN COLUMNA **V** columna

MÉTODO HARDY CROSS.

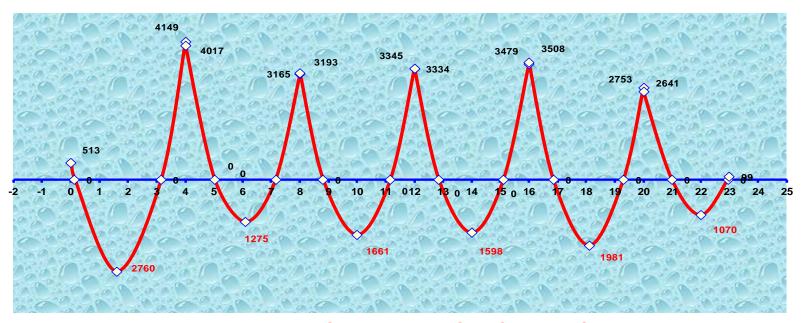


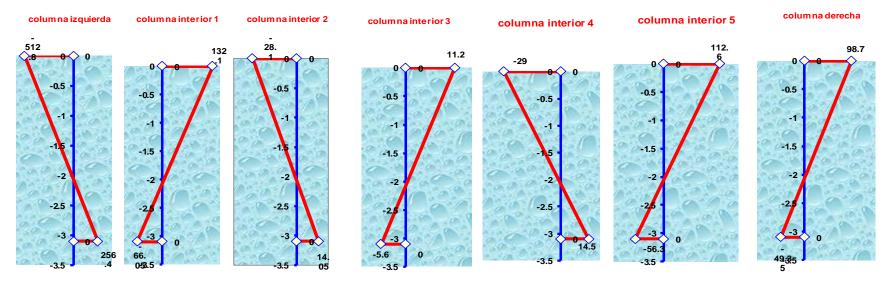
1.829E+11 1.512E+12 0.11 0.53 0.89 1350 -1350 1051.16 1201.5 600.75 525.58 -318.39 -467.7662
0.11 0.53 0.89 1350 -1350 1051.16 1201.5 600.75 525.58 -318.39 -467.7662
0.53 0.89 1350 -1350 1051.16 1201.5 600.75 525.58 -318.39 -467.7662
1350 -1350 1051.16 1201.5 600.75 525.58 -318.39 -467.7662
1051.16 1201.5 600.75 525.58 -318.39 -467.7662
600.75 525.58 -318.39 -467.7662
-318.39 -467.7662
222 0024 450 405
-233.8831 -159.195
172.31 141.68355
70.841775 86.155
-52.19 -76.67795
2640.6 -98.7
1069.9
2700 -2700
847.3
3547.3 -1852.7
98.7
49.35
148.05
47.76


PUNTOS DE CORTANTE = 0

FUERZAS CORTANTES EN VIGAS

VIGA	N° 1
LADO "A"	LADO "B"
1.6	2.4
VIGA	N° 2
LADO "A"	LADO "B"
2.1	1.9
VIGA	N° 3
LADO "A"	LADO "B"
2	2
VIGA	N° 4
LADO "A"	LADO "B"
2	2
VIGA	N° 5
LADO "A"	LADO "B"
2	2
VIGA	N° 6
LADO "A"	LADO "B"
2	2


FUERZAS CORTANTES EN COLUMNAS


MOMENTOS FLEXIONANTES EN VIGAS

PUNTOS DE INFLEXIÓN

VIGA	N° 1
LADO "A"	LADO "B"
0.13	0.85
VIGA	N° 2
LADO "A"	LADO "B"
1.02	0.85
VIGA	N° 3
LADO "A"	LADO "B"
0.81	0.84
VIGA	N° 4
LADO "A"	LADO "B"
0.85	0.89
VIGA	N° 5
LADO "A"	LADO "B"
0.85	0.7
VIGA	N° 6
LADO "A"	LADO "B"
0.99	0.05

MOMENTOS FLEXIONANTES EN COLUMNAS

COLUMNA IZO	QUIERDA	COLUMNA INTE	OLUMNA INTERIOR 1 C		COLUMNA INTERIOR 2		COLUMNA INTERIOR 3		COLUMNA INTERIOR 4		COLUMNA INTERIOR 5		COLUMNA INTERIOR 6	
SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	
2.07	1.03	2.07	1.03	2.07	1.03	2.07	1.03	2.07	1.03	2.07	1.03	2.07	1.03	

CÁLCULO DE VIGAS CONTINUAS DE CONCRETO ARMADO DE 3 A 7 APOYOS CON O SIN VOLADOS CARGA UNIFORMEMENTE REPARTIDA

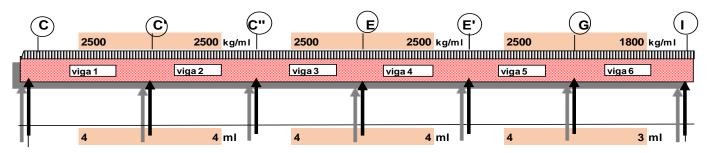
AUTOR: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN

CAPTURA DE INFORMACIÓN

DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA:

U B I C A C I Ó N DEL E J E =
RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO (fs) KG/CM2

ANCHO DE LA VIGA CM. =


Municipio de Atlautla, Estado de México Gutierrez Valera Amairani

C 250 2530

30

Y

CARGA UNIFORMEMENTE REPARTIDA = KG / ML CLARO ENTRE APOYOS = ML

	MOMENTOS FLEXIONANTES = KG x ML									
	VIGA 1	VIGA 2	VIGA 3	VIGA 4	VIGA 5	VIGA 6				
CENTRO DEL CLARO (+)	2759.9	1274.8	1661	1597.9	1980.7	1069.9				
LADO IZQUIERDO (-)	512.8	4016.9	3193	3333.8	3508.1	2640.6				
LADO DERECHO (-)	4149	3164.9	3345	3479.1	2753.2	98.7				

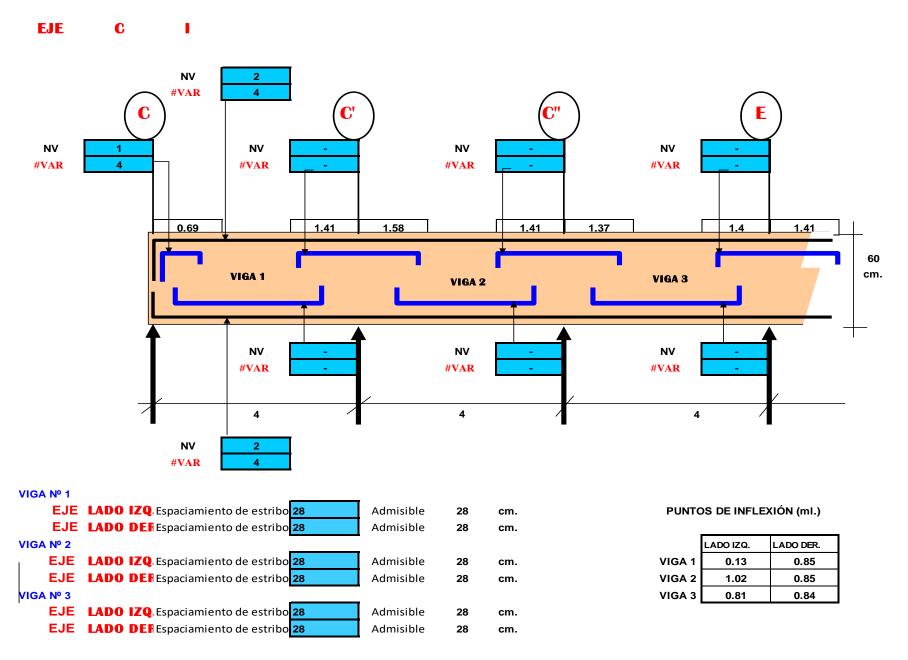
SELECCIÓN DEL MOMENTO FLEXIONANTE MAYOR DEL EJE =	4016.9
---	--------

		FUERZAS	S CORTANTE	S = KG				
	VIGA 1 VIGA 2 VIGA 3 VIGA 4 VIGA 5 VIGA 6							
LADO IZQUIERDO (A)	4090.9	5213	4962	4963.7	5188.7	3547.3		
LADO DERECHO (B)	5909.1	4787	5038	5036.3	4811.3	1852.7		

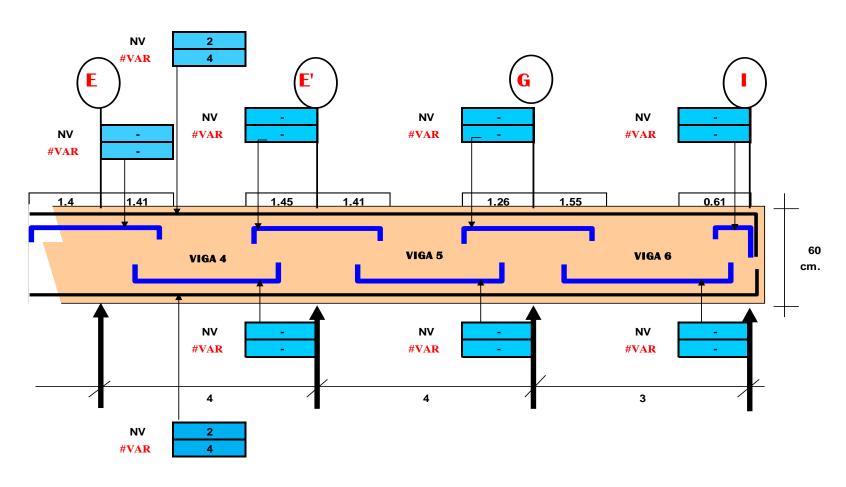
PUNTOS DE INFLEXIÓN (ml.)

	LADO IZQ.	LADO DER.
VIGA 1	0.13	0.85
VIGA 2	1.02	0.85
VIGA 3	0.81	0.84
VIGA 4	0.85	0.89
VIGA 5	0.85	0.7
VIGA 6	0.99	0.05

				ME	MORIA DE	E CÁLCUL	O DE LA	VIGA 1		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	4090.9	5909.1	275990	51280	414900
	R	J	D'	DT						
С	14.1840841	0.90770007	30.7244582	34.7244582						
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						2.14606283	4	2	14.5311826	39.8397186
	ÁRI	EA DE ACERC	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						0.3987467	4	0	#¡DIV/0!	28.6347977
	ÁRI	EA DE ACERC	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						3.22620916	4	3	9.68745504	28.6347977
	ES1	TRIBOS LADO	O "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				2529.62	1.50572619	4.58530261	-3.07957642	-182.515037	0.64	-17.5262199
	EST	TRIBOS LADO	D "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				4347.82	2.5879881	4.58530261	-1.99731451	0.86606926	0.64	-27.0229516


				ME	MORIA DE	E CÁLCUL	O DE LA	VIGA 2		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	5213	4787	127480	401690	316490
	R	J	D'	DT						
С	14.1840841	0.90770007	30.7244582	34.7244582						
I	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						0.99126812	4	1	25.6387791	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						3.1234899	4	2	12.8193895	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						2.46098563	4	2	11.7718047	28.6347977
	EST	TRIBOS LADO	O "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	3651.7				2.17364286	4.58530261	-2.41165975	-47.7681988	0.64	-22.3801609
	EST	ESTRIBOS LADO "B" VD (VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				3225.72	1.92007143	4.58530261	-2.66523118	-87.8849022	0.64	-20.2509012

				ME	MORIA DI	E CÁLCUL	O DE LA	VIGA 3		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	4962	5038	166100	319300	334500
	R	J	D'	DT						
С	14.1840841	0.90770007	30.7244582	34.7244582		_				
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.29157229	4	1	24.7780873	39.8397186
	ÁRI	EA DE ACERC	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.48283583	4	2	12.2021506	28.6347977
	ÁRI	EA DE ACERC	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						2.60102908	4	2	12.3890436	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
		3400.72			2.0242381	4.58530261	-2.56106451	-70.1886914	0.64	-21.07457
	EST	ESTRIBOS LADO "B" VD (B)		VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				3476.72	2.06947619	4.58530261	-2.51582642	-63.0583098	0.64	-21.4535204


				ME	MORIA DI	CÁLCIII	O DE LA	VIGA A		
F'c=KG/CM2	250		N =	8.58377673		- VALUUL	U DL LA	VIUM 4		
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	4963.7	5036.3	159790	333380	347910
	R	J	D'	DT						
С	14.1840841	0.90770007	30.7244582	34.7244582		_				
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						•				
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.24250654	4	1	24.7697263	39.8397186
	ÁRI	EA DE ACERC	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.5923201	4	2	12.2063311	28.6347977
	ÁRI	EA DE ACERC	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						2.70530352	4	2	12.3848631	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
		3402.42			2.02525	4.58530261	-2.56005261	-70.0257131	0.64	-21.0829001
	EST	STRIBOS LADO "B" VD (B)			VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				3475.02	2.06846429	4.58530261	-2.51683832	-63.214395	0.64	-21.4448949

				ME	MORIA DE	E CÁLCUL	O DE LA	VIGA 5		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	5188.7	4811.3	198070	350810	275320
	R	R J D' DT								
С	14.1840841	0.90770007	30.7244582	34.7244582						
ı	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.5401669	4	1	23.6631225	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.72785354	4	2	12.7596329	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO I	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						2.14085299	4	2	11.8315613	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				3627.42	2.15917857	4.58530261	-2.42612404	-49.8031347	0.64	-22.2467329
	EST	ESTRIBOS LADO "B" VD (E			VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				3250.02	1.93453571	4.58530261	-2.65076689	-85.3137171	0.64	-20.3614031

				ME	MORIA DE	CÁLCUL	O DE LA	VIGA 6		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	3	5400	648	6048	30	3547.3	1852.7	106990	264060	9870
	R	J	D'	DT						
С	14.1840841	0.90770007	30.7244582	34.7244582						
ı	QUIERE CA	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
										•
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						0.83194051	4	1	9.1120211	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.05329668	4	2	8.72323432	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						0.07674785	4	0	#¡DIV/0!	28.6347977
	ES	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
		2418.34			1.4394881	4.58530261	-3.14581451	-93.424807	0.64	-17.1571887
	EST	ESTRIBOS LADO "B" VD (B)		VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				723.74	0.43079762	4.58530261	-4.15450499	-794.512598	0.64	-12.9915197

EJE C I

VIGA № 4							
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.			
EJE	LADO DEl Espaciamiento de estribo 28	Admisible	28	cm.	PUNTO	OS DE INFLE	EXIÓN (ml.)
VIGA № 5							
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.		LADO IZQ.	LADO DER.
EJE	LADO DEl Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 4	0.85	0.89
VIGA № 6					VIGA 5	0.85	0.7
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 6	0.99	0.05
EJE	LADO DEl Espaciamiento de estribo 28	Admisible	28	cm.			

MARCOS DÚCTILES EJE A Y B (3-14)

Marcos dúctiles eje A y B (3-14)

MARCOS EMPOTRADOS.

MARCO CON CARGA UNIFORMEMENTE REPARTIDA CON SIETE APOYOS **FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES** MÉTODO DE " CROSS "

AUTOR DEL PROGRAMA: ARQ, JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México

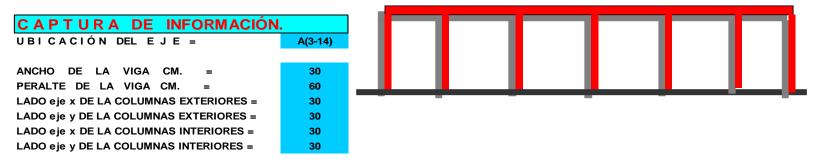
SIMBOLOGÍA:

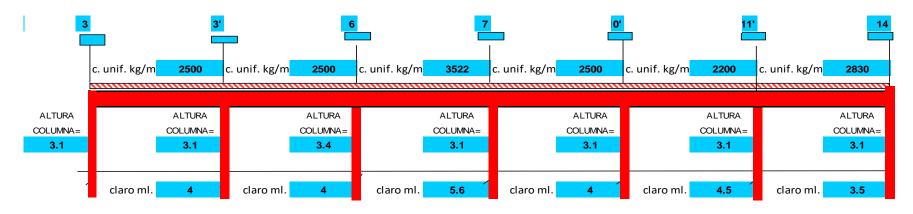
RIGIDEZ DE LA VIGA = \mathbf{K} vigas FACTOR DE DISTRIBUCIÓN EN VIGAS = FD vigas

MOMENTO DE EMPOTRAMIENTO = **ME**

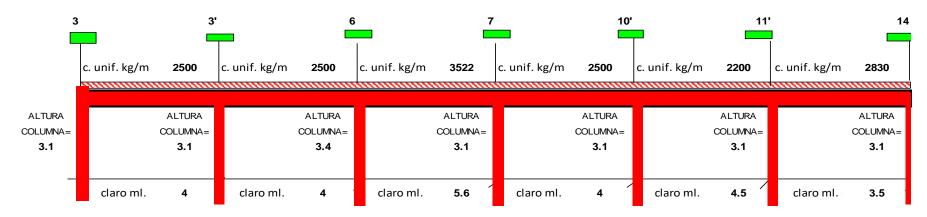
PRIMERA Y SEGUNDA DISTRUBUCIÓN = 1D Y 2D

SUMA DEL MOMENTO FLEXIONANTE FINAL = SM

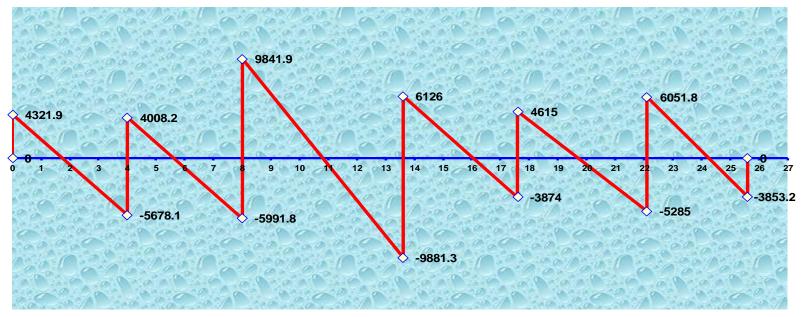

TRANSPORTE = **T** CORTANTE INICIAL = VI

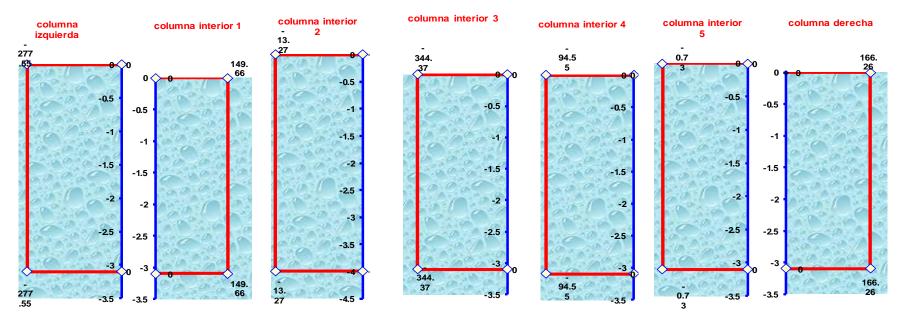

FACTOR DE DISTRIBUCIÓN EN COLUM.= FD column@CORREC. CORTANTE POR CONTINUIDAD = AV CORTANTE FINAL NETO = V

MODULO DE ELASTICIDAD DE LA VIGA = **E**


MOMENTO DE INERCIA =

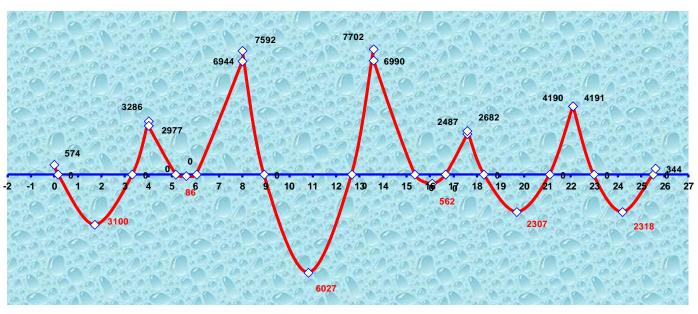
MOMENTO EN COLUMNA M col. sup. MOMENTO EN COLUMNA M col. inf. M col. total MOMENTO TOTAL CORTANTE EN COLUMNA V columna

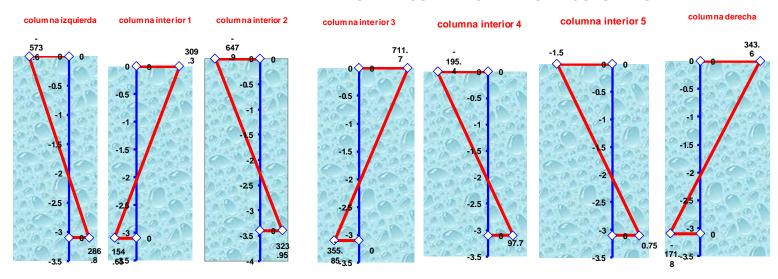

MÉTODO HARDY CROSS.


V .	4.0005.44	İ	4.0005.44	ĺ	4.00705.44	4.0005.44		4.0005.44		4.0005.44		4.0005.44
K columna	1.829E+11		1.829E+11		1.6676E+11	1.829E+11		1.829E+11		1.829E+11		1.829E+11
K viga	1.134E+12		1.134E+12		8.1E+11			1.134E+12		1.008E+12		1.296E+12
F.D. colum.	0.14		0.07		0.08	0.09		0.08		0.07		0.12
F.D.viga	0.86	0.46	0.46	0.54	0.38	0.38	0.53	0.49	0.43	0.41	0.52	0.88
ME	3333.3	-3333.3	3333.3	-3333.3	9204.2	-9204.2	3333.3	-3333.3	3712.5	-3712.5	2888.96	-2888.96
1D	-2866.638	0	0	-3170.29	-2230.9	2230.942	3111.577	-185.8	-163.06	337.65	428.24	2542.2848
Т	0	-1433.3	-1585.1	0	1115.47	-1115.45	-92.9	1555.79	168.825	-81.53	1271.1424	214.12
2D	0	1388.5	1388.5	-602.4	-423.9	459.17	640.43	-845.1	-741.58	-487.74	-618.6	-188.4256
Т	694.25	0	-301.2	694.25	229.585	-211.95	-422.55	320.215	-243.87	-370.79	-94.2128	-309.3
3D	-597.055	138.55	138.55	-498.9	-351.1	241.11	336.29	-37.4	-32.83	190.65	241.8	272.184
Т	69.275	-298.5275	-249.45	69.28	120.555	-175.55	-18.7	168.145	95.33	-16.415	136.092	120.9
4D	-59.5765	252.07	252.07	-102.51	-72.14	73.82	102.95	-129.1	-113.29	-49.07	-62.23	-106.392
SM	573.6	-3286	2976.7	-6943.9	7591.8	-7702.1	6990.4	-2486.6	2682	-4189.7	4191.2	-343.6
M+	3100		86.1		6026.7		5	62	2306.9			2317.8
VI	5000	-5000	5000	-5000	9861.6	-9861.6	5000	-5000	4950	-4950	4952.5	-4952.5
AV	-678.1	-678.1	-991.8	-991.8	-19.7	-19.7	1126	1126	-335	-335	1099.3	1099.3
V	4321.9	-5678.1	4008.2	-5991.8	9841.9	-9881.3	6126	-3874	4615	-5285	6051.8	-3853.2
												_
M col. sup.	-573.6		-309.3		647.9	-711.7		195.4		1.5		343.6
M col. inf.	-286.8		-154.65		323.95	-355.85		97.7		0.75		171.8
M col. total	-860.4		-463.95		971.85	-1067.55		293.1		2.25		515.4
V columna	-277.55		-149.66		285.84	-344.37		94.55		0.73		166.26

FUERZAS CORTANTES EN VIGAS

VIGA	N° 1				
LADO "A"	LADO "B"				
1.7	2.3				
VIGA	N° 2				
LADO "A"	LADO "B"				
1.6	2.4				
VIGA	N° 3				
LADO "A"	LADO "B"				
2.8	2.8				
VIGA	N° 4				
LADO "A"	LADO "B"				
2.5	1.5				
VIGA	N° 5				
LADO "A"	LADO "B"				
2.5	1.5				
VIGA	N° 6				
LADO "A"	LADO "B"				
2.5	1.5				


FUERZAS CORTANTES EN COLUMNAS


MOMENTOS FLEXIONANTES EN VIGAS

PUNTOS DE INFLEXIÓN

VIGA	N° 1
LADO "A"	LADO "B"
0.14	0.68
VIGA	N° 2
LADO "A"	LADO "B"
1.17	1.96
VIGA	N° 3
LADO "A"	LADO "B"
0.92	0.94
VIGA	N° 4
LADO "A"	LADO "B"
1.76	0.93
VIGA	N° 5
LADO "A"	LADO "B"
0.7	1
VIGA	N° 6
LADO "A"	LADO "B"
0.87	0.09

MOMENTOS FLEXIONANTES EN COLUMNAS

COLUMNA IZQI	UIERDA	COLUMNA INTE	RIOR 1	COLUMNA INTE	RIOR 2	COLUMNA INTERIOR 3		COLUMNA INTERIOR 4		COLUMNA INTERIOR 5		COLUMNA INTERIOR 6	
SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR
2.07	1.03	2.07	1.03	2.27	1.13	2.07	1.03	2.07	1.03	2.07	1.03	2.07	1.03

CÁLCULO DE VIGAS CONTINUAS DE CONCRETO ARMADO DE 3 A 7 APOYOS CON O SIN VOLADOS CARGA UNIFORMEMENTE REPARTIDA

AUTOR: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN

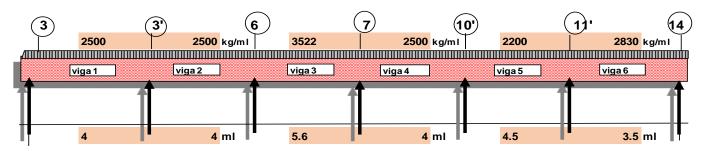
CAPTURA DE INFORMACIÓN

DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA:

U B I C A C I Ó N DEL E J E =
RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO (fs) KG/CM2

ANCHO DE LA VIGA CM. =

Municipio de Atlautla, Estado de México Gutierrez Valera Amairani


14

Υ

3 250 2530

30

CARGA UNIFORMEMENTE REPARTIDA = KG / ML CLARO ENTRE APOYOS = ML

	MOMENTOS FLEXIONANTES = KG x ML									
	VIGA 1	VIGA 2	VIGA 3	VIGA 4	VIGA 5	VIGA 6				
CENTRO DEL CLARO (+)	3100	86.1	6026.7	562	2306.9	2317.8				
LADO IZQUIERDO (-)	573.6	2976.7	7591.8	6990.4	2682	4191.2				
LADO DERECHO (-)	3286	6943.9	7702.1	2486.6	4189.7	343.6				

SELECCIÓN DEL MOMENTO FLEXIONANTE MAYOR DEL EJE =	7702.1
---	--------

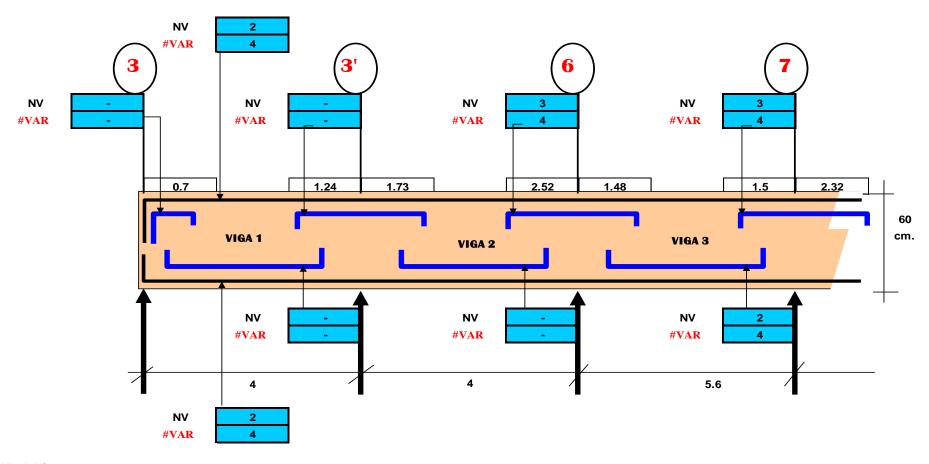
	FUERZAS CORTANTES = KG										
	VIGA 1	VIGA 2	VIGA 3	VIGA 4	VIGA 5	VIGA 6					
LADO IZQUIERDO (A)	4321.9	4008.2	9841.9	6126	4615	6051.8					
LADO DERECHO (B)	5678.1	5991.8	9881.3	3874	5285	3853.2					

PUNTOS DE INFLEXIÓN (ml.)

	LADO IZQ.	LADO DER.
VIGA 1	0.14	0.68
VIGA 2	1.17	1.96
VIGA 3	0.92	0.94
VIGA 4	1.76	0.93
VIGA 5	0.7	1
VIGA 6	0.87	0.09

				MER	MORIA DE	E CÁLCUL	O DE LA	VIGA 1		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	4321.9	5678.1	310000	57360	328600
	R	J	D'	DT						
3	14.1840841	0.90770007	42.5444879	46.5444879						
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						2.41052022	4	2	13.963126	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						0.446024	4	0	#¡DIV/0!	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						2.55515143	4	2	13.963126	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	2760.62			2760.62	1.64322619	4.58530261	-2.94207642	-145.821477	0.64	-18.34532
	ESTRIBOS LADO "B" VD (B)			VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				4116.82	2.4504881	4.58530261	-2.13481451	-13.4498197	0.64	-25.2824463

				ME	MORIA DE	E CÁLCUL	O DE LA	VIGA 2		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
	1						1			
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	4008.2	5991.8	8610	297670	694390
	R	J	D'	DT						
3	14.1840841	0.90770007	42.5444879	46.5444879		_				
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						0.06695026	4	0	#¡DIV/0!	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.31464372	4	2	9.85664246	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						5.39948754	4	4	7.36727587	28.6347977
	ES1	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	2446.92			2446.92	1.4565	4.58530261	-3.12880261	-197.335788	0.64	-17.2504757
	ESTRIBOS LADO "B" VD (B)			VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				4430.52	2.63721429	4.58530261	-1.94808832	5.62839424	0.64	-27.7057938

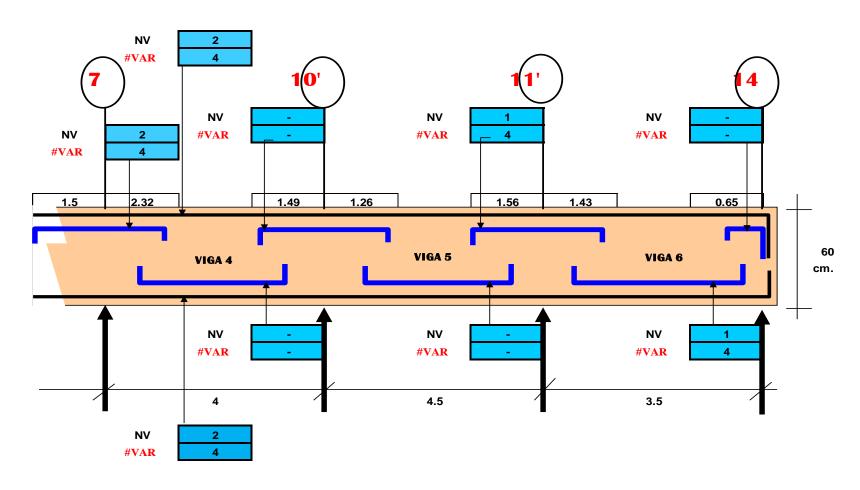

				MER	MORIA DE	E CÁLCUL	O DE LA	VIGA 3		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	5.6	19723.2	2257.92	21981.12	30	9841.9	9881.3	602670	759180	770210
	R	J	D'	DT						
3	14.1840841	0.90770007	42.5444879	46.5444879						
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
					-					
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						4.68628459	4	4	12.1496484	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO I	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						5.90328626	4	5	9.68096296	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						5.98905413	4	5	9.71971869	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	7643.788			7643.788	4.54987381	4.58530261	-0.0354288	110.255765	0.64	-1523.43113
	ESTRIBOS LADO "B" VD (B)			VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				7683.188	4.57332619	4.58530261	-0.01197642	111.413399	0.64	-4506.63453

				MER	MORIA DE	E CÁLCUL	O DE LA	VIGA 4		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	10000	1152	11152	30	6126	3874	56200	699040	248660
	R	J	D'	DT						
3	14.1840841	0.90770007	42.5444879	46.5444879						
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
					-					
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						0.43700399	4	0	#¡DIV/0!	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						5.43564534	4	4	7.53228278	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						1.93354825	4	2	9.52662863	28.6347977
	ES	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	4564.72				2.71709524	4.58530261	-1.86820737	12.9891676	0.64	-28.8904402
	ES	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				2312.72	1.37661905	4.58530261	-3.20868356	-223.641464	0.64	-16.8210209

				ME	MORIA DI	E CÁLCUL	O DE LA	VIGA 5		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4.5	9900	1458	11358	30	4615	5285	230690	268200	418970
	R	J	D'	DT						
3	14.1840841	0.90770007	42.5444879	46.5444879		_				
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						•				
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.79381584	4	1	25.9928923	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.08548878	4	2	11.3488361	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						3.25785696	4	3	8.66429742	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	3201.56				1.90569048	4.58530261	-2.67961213	-125.63274	0.64	-20.1422186
	ESTRIBOS LADO "B" VD (B)		VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)	
				3871.56	2.3045	4.58530261	-2.28080261	-55.2621569	0.64	-23.6641843

				ME	MORIA DI	E CÁLCUL	O DE LA	VIGA 6		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	3.5	9905	882	10787	30	6051.8	3853.2	231780	419120	34360
	R	J	D'	DT						
3	14.1840841	0.90770007	42.5444879	46.5444879						
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	CTIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.80229154	4	1	18.9509579	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						3.25902334	4	3	9.92139927	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						0.26717895	4	0	#¡DIV/0!	28.6347977
	EST	TRIBOS LADO	D "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				4325.88	2.57492857	4.58530261	-2.01037404	19.0908168	0.64	-26.8474087
	EST	TRIBOS LADO	D "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				2127.28	1.2662381	4.58530261	-3.31906451	-199.922914	0.64	-16.2616102
				2:2:20	1.2002001		0.0.000.01	15.51	5	10.2010102

EJE 3 14



VIGA № 1				
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.
VIGA Nº 2				
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.
VIGA № 3				
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.

PUNTOS DE INFLEXIÓN (ml.)

	LADO IZQ.	LADO DER.			
VIGA 1	0.14	0.68			
VIGA 2	1.17	1.96			
VIGA 3	0.92	0.94			

EJE 3 14

VIGA № 4								
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.				
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.	PUNTO	PUNTOS DE INFLEXIÓN (ml.)		
VIGA № 5								
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.		LADO IZQ.	LADO DER.	
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 4	1.76	0.93	
VIGA № 6					VIGA 5	0.7	1	
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 6	0.87	0.09	
EJE	LADO DEl Espaciamiento de estribo 28	Admisible	28	cm.				

MARCO CON CARGA UNIFORMEMENTE REPARTIDA CON SIETE APOYOS **FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES** MÉTODO DE " CROSS "

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México

SIMBOLOGÍA:

RIGIDEZ DE LA VIGA = \mathbf{K} vigas

FACTOR DE DISTRIBUCIÓN EN VIGAS = FD vigas

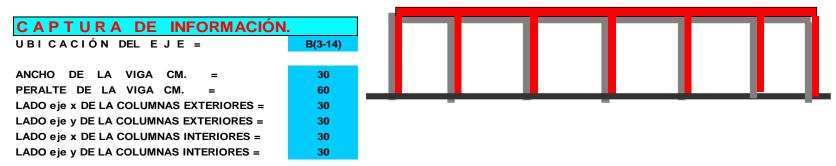
MOMENTO DE EMPOTRAMIENTO = ME

PRIMERA Y SEGUNDA DISTRUBUCIÓN = 1D Y 2D

SUMA DEL MOMENTO FLEXIONANTE FINAL = **SM**

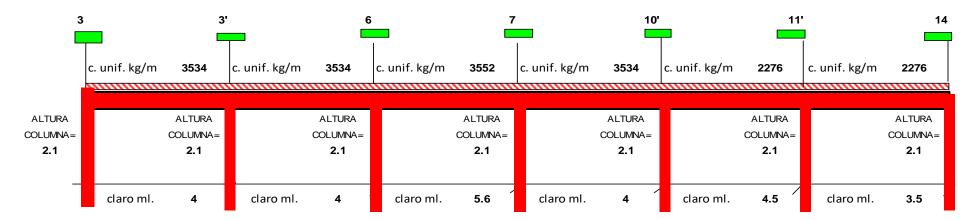
TRANSPORTE = \mathbf{T}

CORTANTE INICIAL = VI

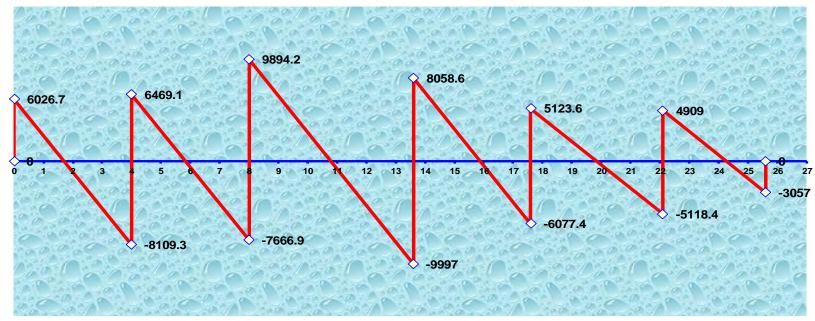

FACTOR DE DISTRIBUCIÓN EN COLUM. = FD columna CORREC. CORTANTE POR CONTINUIDAD = AV

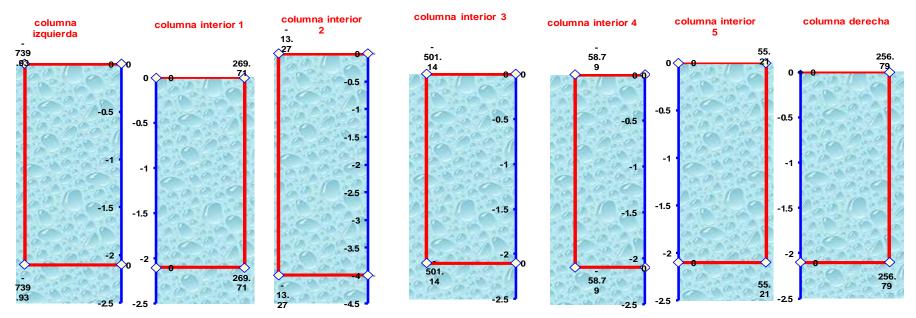
CORTANTE FINAL NETO = V

MODULO DE ELASTICIDAD DE LA VIGA = E


MOMENTO DE INERCIA =

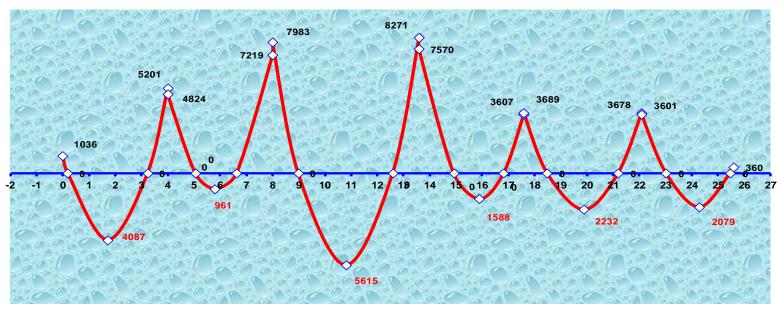
MOMENTO EN COLUMNA M col. sup. MOMENTO EN COLUMNA M col. inf. MOMENTO TOTAL M col. total CORTANTE EN COLUMNA V columna

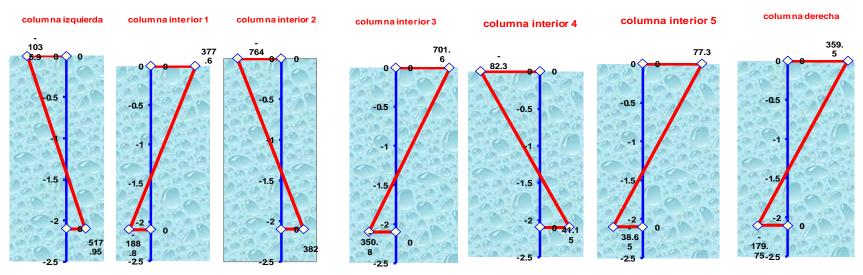

MÉTODO HARDY CROSS.


K columna	2.7E+11		2.7E+11		2.7E+11	2.7E+11		2.7E+11		2.7E+11		2.7E+11
K viga	1.134E+12		1.134E+12		8.1E+11			1.134E+12		1.008E+12		1.296E+12
F.D. colum.	0.19		0.11		0.12	0.12		0.11		0.1		0.17
F.D.viga	0.81	0.45	0.45	0.51	0.37	0.37	0.51	0.47	0.42	0.39	0.5	0.83
ME	4712	-4712	4712	-4712	9282.6	-9282.6	4712	-4712	3840.75	-3840.75	2323.42	-2323.42
1D	-3816.72	0	0	-2331.01	-1691.1	1691.122	2331.006	409.5	365.93	591.76	758.67	1928.4386
Т	0	-1908.4	-1165.5	0	845.56	-845.55	204.75	1165.5	295.88	182.965	964.2193	379.335
2D	0	1383.3	1383.3	-431.2	-312.9	237.1	326.81	-686.8	-613.78	-447.4	-573.59	-314.84805
Т	691.65	0	-215.6	691.65	118.55	-156.45	-343.4	163.405	-223.7	-306.89	-157.424025	-286.795
3D	-560.2365	97.02	97.02	-413.2	-299.8	184.94	254.92	28.3	25.32	181.08	232.16	238.03985
Т	48.51	-280.11825	-206.6	48.51	92.47	-149.9	14.15	127.46	90.54	12.66	119.019925	116.08
4D	-39.2931	219.02	219.02	-71.9	-52.16	50.23	69.23	-102.46	-91.56	-51.36	-65.84	-96.3464
SM	1035.9	-5201.2	4823.6	-7219.2	7983.2	-8271.1	7569.5	-3607.1	3689.4	-3677.9	3600.6	-359.5
M+	4086.8		960.9		5615.2		1588.4		2232.4			2079.4
VI	7068	-7068	7068	-7068	9945.6	-9945.6	7068	-7068	5121	-5121	3983	-3983
AV	-1041.3	-1041.3	-598.9	-598.9	-51.4	-51.4	990.6	990.6	2.6	2.6	926	926
V	6026.7	-8109.3	6469.1	-7666.9	9894.2	-9997	8058.6	-6077.4	5123.6	-5118.4	4909	-3057
		,		,					ı			
M col. sup.	-1035.9		-377.6		764	-701.6		82.3		-77.3		359.5
M col. inf.	-517.95		-188.8		382	-350.8		41.15		-38.65		179.75
M col. total	-1553.85		-566.4		1146	-1052.4		123.45		-115.95		539.25
V columna	-739.93		-269.71		545.71	-501.14		58.79		-55.21		256.79

FUERZAS CORTANTES EN VIGAS

VIGA	N° 1
LADO "A"	LADO "B"
1.7	2.3
VIGA	N° 2
LADO "A"	LADO "B"
1.8	2.2
VIGA	N° 3
LADO "A"	LADO "B"
2.8	2.8
VIGA	N° 4
LADO "A"	LADO "B"
2.3	1.7
VIGA	N° 5
LADO "A"	LADO "B"
2.3	1.7
VIGA	N° 6
LADO "A"	LADO "B"
2.3	1.7


FUERZAS CORTANTES EN COLUMNAS


MOMENTOS FLEXIONANTES EN VIGAS

PUNTOS DE INFLEXIÓN

VIGA	N° 1
LADO "A"	LADO "B"
0.18	0.77
VIGA	N° 2
LADO "A"	LADO "B"
1.05	1.37
VIGA	N° 3
LADO "A"	LADO "B"
0.98	1.01
VIGA	N° 4
LADO "A"	LADO "B"
1.32	0.77
VIGA	N° 5
LADO "A"	LADO "B"
0.89	0.9
VIGA	N° 6
LADO "A"	LADO "B"
0.93	0.12

MOMENTOS FLEXIONANTES EN COLUMNAS

COLUMNA IZQUIERDA		COLUMNA INTERIOR 1		COLUMNA INTERIOR 2		COLUMNA INTERIOR 3		COLUMNA INTERIOR 4		COLUMNA INTERIOR 5		COLUMNA INTERIOR 6	
SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR	SUPERIOR	INFERIOR
1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7	1.4	0.7

CÁLCULO DE VIGAS CONTINUAS DE CONCRETO ARMADO DE 3 A 7 APOYOS CON O SIN VOLADOS CARGA UNIFORMEMENTE REPARTIDA

AUTOR: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN

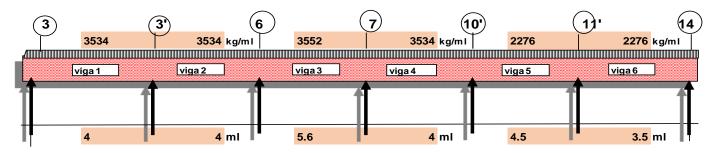
CAPTURA DE INFORMACIÓN

DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA:

U B I C A C I Ó N DEL E J E =
RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO (fs) KG/CM2

ANCHO DE LA VIGA CM. =

Municipio de Atlautla, Estado de México Gutierrez Valera Amairani


14

Υ

3 250 2530

30

CARGA UNIFORMEMENTE REPARTIDA = KG / ML CLARO ENTRE APOYOS = ML

		MOMENT	TOS FLEXION	IANTES = KG	x ML		
	VIGA 1	VIGA 2	VIGA 3	VIGA 4	VIGA 5	VIGA 6	
CENTRO DEL CLARO (+)	4086.8	960.9	5615.2	1588.4	2232.4	2079.4	
LADO IZQUIERDO (-)	1035.9	4823.6	7983.2	7569.5	3689.4	3600.6	
LADO DERECHO (-)	5201.2	7219.2	8271.1	3607.1	3677.9	359.5	

SELECCIÓN DEL MOMENTO FLEXIONANTE MAYOR DEL EJE =	8227.1

		FUERZAS CORTANTES = KG										
VIGA 1 VIGA 2 VIGA 3 VIGA 4 VIGA 5 VIGA 6												
LADO IZQUIERDO (A)		6026.7	6469.1	9894.2	8058.6	5123.6	4909					
LADO DERECHO (B)		8109.3 7666.9 9997 6077.4 5118.4 3057										

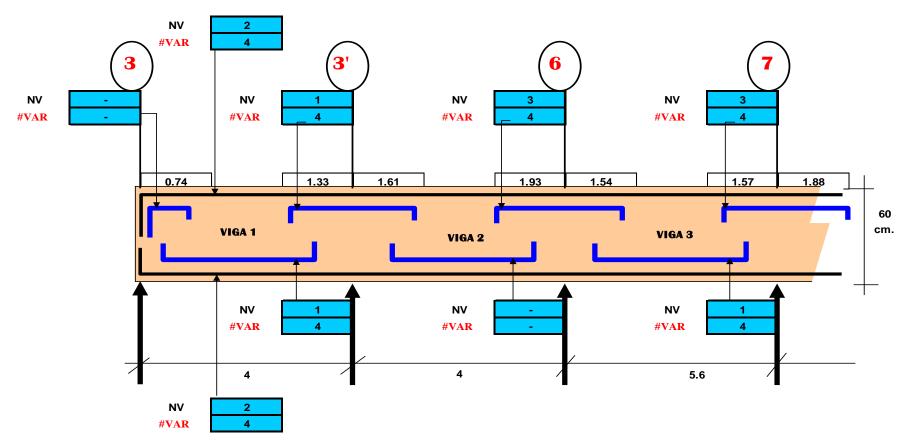
PUNTOS DE INFLEXIÓN (ml.)

	LADO IZQ.	LADO DER.
VIGA 1	0.18	0.77
VIGA 2	1.05	1.37
VIGA 3	0.98	1.01
VIGA 4	1.32	0.77
VIGA 5	0.89	0.9
VIGA 6	0.93	0.12

				MER	MORIA DE	E CÁLCUL	O DE LA	VIGA 1		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14136	1152	15288	30	6026.7	8109.3	408680	103590	520120
	R	J	D'	DT						
3	14.1840841	0.90770007	43.9705716	47.9705716						
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						3.17784324	4	3	13.2944914	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						0.80550255	4	1	29.64075	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						4.04438638	4	3	13.2944914	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				3886.38	2.31332143	4.58530261	-2.27198118	-29.4266456	0.64	-23.7560653
	EST	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				5968.98	3.55296429	4.58530261	-1.03233832	70.1598051	0.64	-52.2826017

				MER	MORIA DI	E CÁLCUL	O DE LA	VIGA 2		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14136	1152	15288	30	6469.1	7666.9	96090	482360	721920
	R	J	D'	DT						
3	14.1840841	0.90770007	43.9705716	47.9705716		_				
14	QUIERE CA	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						0.74718351	4	1	31.8165789	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						3.75076946	4	3	10.6055263	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						5.61355728	4	4	9.42691134	28.6347977
	ES	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				4328.78	2.57665476	4.58530261	-2.00864785	-0.25612915	0.64	-26.8704808
	EST	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				5526.58	3.28963095	4.58530261	-1.29567165	55.2833892	0.64	-41.6566444

				MER	MORIA DE	E CÁLCUL	O DE LA	VIGA 3		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	5.6	19891.2	2257.92	22149.12	30	9894.2	9997	561520	798320	827110
	R	J	D'	DT						
3	14.1840841	0.90770007	43.9705716	47.9705716		_				
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						•				
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						4.36630747	4	3	16.3892112	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						6.20763388	4	5	9.73240774	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						6.43150123	4	5	9.83352673	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	7679.288				4.57100476	4.58530261	-0.01429785	111.299341	0.64	-3774.92776
	EST	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				7782.088	4.63219524	4.58530261	0.04689263	114.267596	0.64	1150.99819

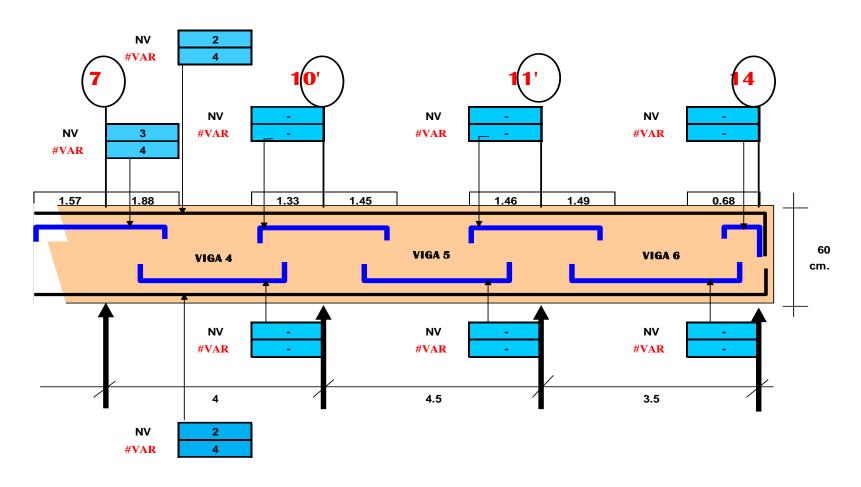

				ME	MORIA DI	E CÁLCUL	O DE LA	VIGA 4		
F'c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4	14136	1152	15288	30	8058.6	6077.4	158840	756950	360710
	R	J	D'	DT						
3	14.1840841	0.90770007	43.9705716	47.9705716						
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						•				
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.23511946	4	1	29.8901047	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						5.88594607	4	5	7.9268239	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						2.80483467	4	2	14.9450524	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				5918.28	3.52278571	4.58530261	-1.06251689	68.5677719	0.64	-50.7976237
	EST	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				3937.08	2.3435	4.58530261	-2.24180261	-25.7510456	0.64	-24.0758634

				MER	MORIA DI	E CÁLCUL	O DE LA	VIGA 5		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	4.5	10242	1458	11700	30	5123.6	5118.4	223240	368940	367790
	R	J	D'	DT						
3	14.1840841	0.90770007	43.9705716	47.9705716		_				
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
	ÁR	EA DE ACER	O CENTRO DI	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.73588559	4	1	25.1735137	39.8397186
	ÁRI	EA DE ACERO	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.8688301	4	2	12.5995443	28.6347977
	ÁRI	EA DE ACERO	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						2.85988785	4	2	12.5867568	28.6347977
	EST	TRIBOS LADO) "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
	3667.6				2.18309524	4.58530261	-2.40220737	-73.9621323	0.64	-22.468224
	ESTRIBOS LADO "B" VD (B)			VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				3662.4	2.18	4.58530261	-2.40530261	-74.4661196	0.64	-22.439311

				ME	MORIA DI	E CÁLCUL	O DE LA	VIGA 6		
F´c=KG/CM2	250		N =	8.58377673						
Fs=KG/CM2	2530		K =	0.2768998						
EJE	L	Q	Q1	QT	В	V(A)	V(B)	M(+)	M(-) A	M(-) B
	3.5	7966	882	8848	30	4909	3057	207940	360060	35950
	R	J	D'	DT						
3	14.1840841	0.90770007	43.9705716	47.9705716		_				
14	QUIERE CAI	MBIAR EL PE	RALTE EFEC	TIVO :	56	cm	DT corre	gido =	60	cm
						•				
	ÁR	EA DE ACER	O CENTRO D	EL CLARO =		AS +	#VAR	NV	U	UMAX
						1.61691476	4	1	15.0350561	39.8397186
	ÁRI	EA DE ACERC	NEGATIVO	LADO "A" =		AS (-) A	#VAR	NV (-) A	U	UMAX
						2.79978036	4	2	12.0718172	28.6347977
	ÁRI	EA DE ACERC	NEGATIVO	LADO "B" =		AS(-) B	# VAR	NV(-) B	U	UMAX
						0.27954259	4	0	#¡DIV/0!	28.6347977
	ES1	TRIBOS LADO	D "A"	VD (A)	VU (A)	VAD(A)	DFV(A)	DE(A)	# S	ES (A)
				3493.32	2.07935714	4.58530261	-2.50594546	-31.4133195	0.64	-21.5381117
	ES1	TRIBOS LADO) "B"	VD (B)	VU(B)	VAD(B)	DFV(B)	DE(B)	# S	ES(B)
				1641.32	0.97697619	4.58530261	-3.60832642	-327.510039	0.64	-14.9579963

INTERPRETACIÓN GRÁFICA DEL CORTE TRANSVERSAL DE LA VIGA SIN MÉNSULA.

EJE 3 14


VIGA Nº 1		_		
EJE	LADO IZQ Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.
VIGA Nº 2		_		
_I EJE	LADO IZQ Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.
VIGA № 3		_		
EJE	LADO IZQ Espaciamiento de estribo 28	Admisible	28	cm.
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.

PUNTOS DE INFLEXIÓN (ml.)

	LADO IZQ.	LADO DER.
VIGA 1	0.18	0.77
VIGA 2	1.05	1.37
VIGA 3	0.98	1.01

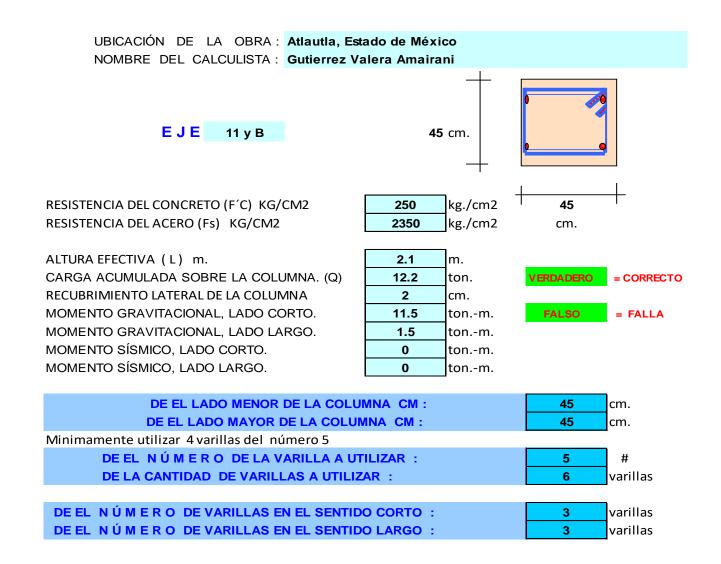
INTERPRETACIÓN GRÁFICA DEL CORTE TRANSVERSAL DE LA VIGA SIN MÉNSULA.

EJE 3 14

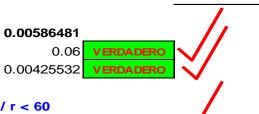
VIGA № 4							
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.			
EJE	LADO DEF Espaciamiento de estribo 28	Admisible	28	cm.	PUNTOS DE INFLEXIÓN (ml.)		
VIGA Nº 5	<u> </u>	_					
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.		LADO IZQ.	LADO DER.
EJE	LADO DE Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 4	1.32	0.77
VIGA Nº 6					VIGA 5	0.89	0.9
EJE	LADO IZQ. Espaciamiento de estribo 28	Admisible	28	cm.	VIGA 6	0.93	0.12
FJE	I ADO DE Espaciamiento de estribo 28	Admisible	28	cm.		<u> </u>	

COLUMNAS Y CIMENTACIÓN

Columnas y cimentación


COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

RECTANGULARES REFORZADAS CON ESTRIBOS


<u>CARGA CONCENTRADA EN TONELADAS.</u>

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

ÁREA DE ACERO / ÁREA DE CONCRETO =
RELACIÓN DE ACERO LONGITUDINAL MÁXIMO =
RELACIÓN DE ACERO LONGITUDINAL MÍNIMO =

REVISIÓN DE LA RESISTENCIA POR REDUCCIÓN L/r < 60

15.6 **VERDADERO**

Área de acero (lado corto) $cm^2 =$	5.93812313	Brazo del par resistente interno (J) =	0.90291822			
Área de acero (lado largo) cm² =	5.93812313	Profundidad del eje neutro (k) =	0.29124535			
Área de acero total $cm^2 =$	11.8762463	Coeficiente (R) kg/cm²	14.7921035			
Fatiga del concreto a compresión(fc) kg/cm ² =	112.5	lado menor de la columna - recubrim.	43			
Relación de módulos de elasticidad (n)	8.58377673	(lado menor de la columna - recubrim)	1849			
Límite elastico del acero (fy) kg/cm² =	4700	lado mayor de la columna - recubrim. =	43			
Constante grande del concreto (Q) = $(fc x k x j)/2$ =						

COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

REFORZADAS CON ESTRIBOS

CARGA CONCENTRADA EN TONELADAS.

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA : ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN .

CARGA	QUE	SOPORTA	(Qa)	Q < Qa	VERDADERO	
				GRAVITACIO	ONAL	INCREMENTO	GRAV. + SISMO
CONCRETO	0.28	At(f'c)		141.75	ton	1.33	188.5275 ton
ACERO	Ast (f	s-0,28(f'c))		27.0778415 ton		1.5	40.6167622 ton
			Qa =	168.827841	ton		229.144262 ton

MOMENTO RESISTENTE (SENTIDO CORTO)							
	INCREMENTO	GRAV. + SISMO					
CONCRETO (sentido corto) Mc= Qbd2	12.3077698 ton-m.	1.33	16.3693338 ton-m.				
ACERO EN COMPRESIÓN (sentido corto) Ms= As(2n-1)(k-((5/d)/k)(fc)(d-5)	2.46561338 ton-m.	1.5	3.69842008 ton-m.				
TOTALES	14.7733831 ton-m.		20.0677539 ton-m.				

MOMENTO RESISTENTE (SENTIDO LARGO)							
	GRAVITACIO	ONAL	INCREMENTO	GRAV. + SISMO			
CONCRETO (sentido largo)	12.3077698	ton-m.	1.33	16.3693338 ton-m.			
Mc= Qbd2							
ACERO EN COMPRESIÓN (sentido largo) Ms= As(2n-1)(k-((d'/d)/k)(fc)(d-d')	2.46561338	ton-m.	1.33	3.2792658 ton-m.			
TOTALES	14.7733831	ton-m.		19.6485996 ton-m.			

MOMENTO RESISTENTE (DEL ACERO A LA TENSIÓN)							
ACERO A LA TENSIÓN (sentido corto) Ms= As*fs*j*d	10.8358735 ton-m.	1.5	16.2538103 ton-m.				
ACERO A LA TENSIÓN (sentidolargo) Ms= As*fs*j*d'	10.8358735 ton-m.	1.5	16.2538103 ton-m.				

COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

REFORZADAS CON ESTRIBOS

CARGASCONCENTRADA EN TONELADAS.

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

COMPROBACIÓN:

cuando ((N/N1)+ - (Mcorto/Mrcorto)+ - (Mlargo/Mrlargo)) < = 1, entonces no falla

DEL ACERO A LA COMPRESIÓN

GRAVITACIONAL 0.95222389 < 1 VERDADERO

GRAVITACIONAL + SISMO 0.5961584 < 1 VERDADERO 1

DEL ACERO A LA TENSIÓN

GRAVITACIONAL -1.12745573 < 1 VERDADERO

GRAVITACIONAL + SISMO -0.85305403 < 1 VERDADER

REFUERZO TRANVERSAL

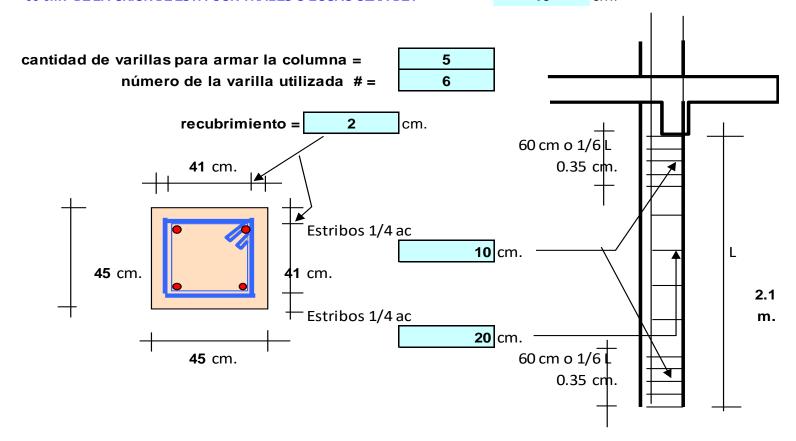
SEPARACIÓN DE ESTRIBOS:

 NO MAYOR QUE :
 19.6826573
 cm
 NO MAYOR QUE :
 30.48
 con estribos # 2

 NO MAYOR QUE :
 22.5
 cm
 NO MAYOR QUE :
 45.72
 con estribos # 3

SELECCIONE LA SEPARACIÓN MENOR DE LA ANTERIORES ESPECIFICADAS:

20 cm.


LA SEPARACIÓN MÁXIMA DE LOS ESTRIBOS EN LA PARTE SUPERIOR DE LA COLUMNA, A

60 cm. DE LA UNIÓN DE ESTA CON TRABES O LOSAS SERÁ DE: 10 cm.

LA SEPARACIÓN MÁXIMA DE LOS ESTRIBOS EN LA PARTE SUPERIOR DE LA COLUMNA, A

60 cm. DE LA UNIÓN DE ESTA CON TRABES O LOSAS SERÁ DE:

10 cm.

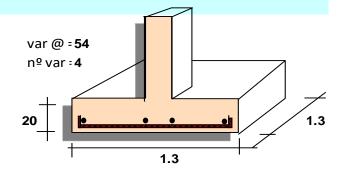
ZAPATAS AISLADAS DE CONCRETO ARMADO

DE PERALTE CONSTANTE

CIMENTACIÓN INTERMEDIA

CARGAS CONCENTRADAS EN KG.

MEMORIA DE CÁLCULO


AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA:

Atlautla, Estado de México

CALCULISTA:

Gutierrez Valera Amairani

SIMBOLOGÍA

Á

LADO DE LA ZAPATA (ML) = L CARGA UNITARIA (KG/M2) = W DISTANCIA A LA COLUMNA (ML) = CBASAMENTO DE LA COLUMNA (CM.) = B MOMENTO FLEXIONANTE MAX. KGXCM = M PERALTE EFECTIVO (CM) = D `PERALTETOTAL (CM) = DT CORTANTE A UNA DISTANCIA D (KG) = VD CORTANTE LATERAL (KG/CM2) = VL CORT. LATERAL ADMISIB. (KG/CM2) = VADM

RESISTENCIA DEL TERRENO KG/M2 RESISTENCIA DEL CONCRET. KG/CM2 RESISTENCIA DEL ACERO KG/CM2

DIST PARA CORTANTE PERIM. (CM.) = E

CORTANTE A UNA DISTANCIA D/2 (KG) = VD/2

CORTANTE PERIMETRAL (KG/CM2) = VP

CORTANTE PERIM. ADMISIBLE (KG/CM2) = VP ADM

ÁREA DE ACERO (CM2) = AS

NÚMERO DE VARILLAS = NV

ESPACIAM. DE VARILLAS (CM)= VAR@

ESPACIAM. ADMISIBLE DE VARILLAS =VAR ADM

CORTANTE POR ADHERENCIA (KG) = VU

ESFUERZO POR ADHERENCIA (KG/CM2) = U

ESF. POR ADHEREN. ADMISIBLE (KG/CM2) = UADM

8500 RELAC. ENTRE MÓDULOS DE FLASTIC. 8.58377673 **250** RELAC. ENTRE EL EJE NEUTRO Y (D) J = 2530 0.90770007 R =

0.2768998 14.1840841

EJES CON CIMENTACIÓN INTERMEDIA

IDENTIFICACIÓN EJE	11 y B	Α	L	W	С	В
		1.69527059	1.30202557	7798.16514	0.42601279	65
CARGA CONC. KG	13220	M	D	DT		
LADO COLUMNA ML	0.45	92135.5458	7.0632276	17.0632276		
		QUIERE CAN	IBIAR EL PER	RALTE EFECT	TVO	10
		DT	VD	VL	V ADM	E
		20	3310.14161	2.54230154	4.58530261	55
		VD/2	VP	VP ADM	VERDADERO	
		10861.055	4.9368432	8.3800358	VERDADERO	
		AS	# VAR	NV	VAR @	@ ADM
		4.01203141	4	3.16706085	53.622194	30 CM.
		VU	U	U ADM		
		4325.48266	37.616277	39.8397186	VERDADERO	

CONTRATRABES DE CONCRETO ARMADO

CON LIGERA RESTRICCIÓN DE EMPOTRE

CONTRATRABES CONTINUAS

CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

SIMBOLOGIA

CLARO DE LA VIGA ML = (L)

CARGA UNIFORM.REPARTIDA KG = (Q)

CARGA TOTAL KG = (QT)

ANCHO PROPUESTO DE LA VIGA CM.= (B)

CORTANTE VERTICAL MÁXIMO KG = (V1)

MOMENTO FLEXION. POSITIVO KGXCM = (M+)

MOMENTO FLEXION.NEGATIVO KGXCM = (M-)

COEFICIENTES KG/CM2 (R, J)

PERALTE EFECTIVO CM = (D')

PERALTE TOTAL CM. = (DT)

AREA DE ACERO MOMENTO POSITIVO CM2 =(AS+)

AREA DE ACERO MOMENTO NEGAT. CM2 = (AS-)

NUMERO DE LA VARILLA UTILIZADA = (#VAR)

NÚMERO DE VARILLAS REQUERIDAS = (**NV**) CORTANTE A UNA DISTANCIA D = (**VD**)

CORTANTE UNITARIO KG/CM2 = (VU)

, , ,

CORTANTE UNITARIO ADMISIBLE KG/CM2 = (VAD)

DIFERENCIA DE CORTANTE KG/CM2 = (DFV)

DISTANCIA EN QUE SE REQ. ESTRIBOS CM = (**DE**)

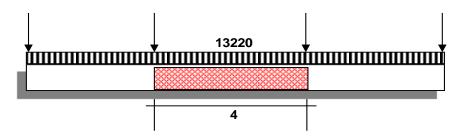
NÚMERO DE VARILLA UTILIZ.EN ESTRIBOS = **(# S)**

ESPACIAMIENTO DE ESTRIBOS CM = (ES)

ESFUERZO POR ADHERENCIA KG/CM2 = (U)

ESFUERZO POR ADHERENCIA ADM.KG/CM2 = (U)

CONTRATRABES DE CONCRETO ARMADO

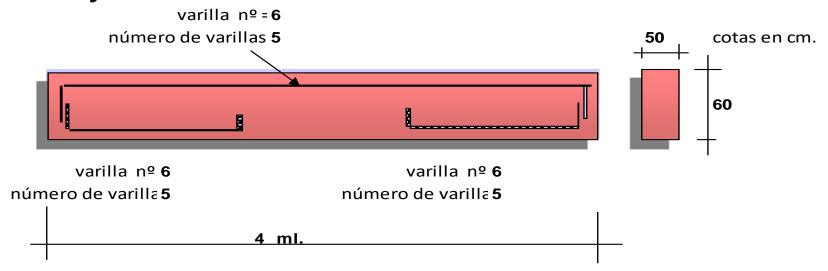

CON LIGERA RESTRICCIÓN DE EMPOTRE

CONTRATRABES CONTINUAS

CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.


DIRECCIÓN DE LA OBRA: Municipio de Atlautla, Estado de México NOMBRE DEL CALCULISTA: Gutierrez Valera Amairani

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2 RESISTENCIA DEL ACERO UTILIZADO KG/CM2 RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)

250
2530
8.58377673
0.2768998

EJE	L	Q	QT	В	V1	M(-)	M (+)
	4	13220	52880	50	26440	1762666.67	1762666.67
	R	D'	DT				
11 y B	14.1840841	49.8539352	53.8539352			_	
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	: OVIT	56		
	DT	J	AS (-)	#VAR	NV (-)	VD	VU
	60	0.90770007	13.7062698	6	5	19036.8	6.79885714
	VAD	DFV	DE	# S	ES @	ES ADM.	
	4.58530261	2.21355454	158.883152	0.64	14.6298632	28	VERDADERO
	U	UMAX	AS (+)	#VAR	NV (+)	U	UMAX
	17.3384313	26.5598124	13.7062698	6	5	17.3384313	20.4926208

EJE **11 y B**

ESPACIAMIENTO DE ESTRIBOS = 14.6298632 ADMISIBLE = 28

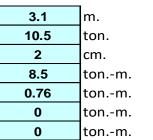
COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

RECTANGULARES REFORZADAS CON ESTRIBOS CARGA CONCENTRADA EN TONELADAS.

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA: **Atlautla, Estado de México** NOMBRE DEL CALCULISTA: **Gutierrez Valera Amairani**


EJE 14 y A

RESISTENCIA DEL CONCRETO (F'C) KG/CM2 RESISTENCIA DEL ACERO (Fs) KG/CM2

ALTURA EFECTIVA (L) m.

CARGA ACUMULADA SOBRE LA COLUMNA. (Q)
RECUBRIMIENTO LATERAL DE LA COLUMNA
MOMENTO GRAVITACIONAL, LADO CORTO.
MOMENTO GRAVITACIONAL, LADO LARGO.
MOMENTO SÍSMICO, LADO CORTO.
MOMENTO SÍSMICO, LADO LARGO.

	+		
	_	1	
250	kg./cm2	40	l
2350	kg./cm2	cm.	

40 cm.

		_
	VERDADERO	= CORRECTO
m.	FALSO	= FALLA
m.		
m.		

DE EL LADO MENOR DE LA COLUMNA CM:	40	cm.
DE EL LADO MAYOR DE LA COLUMNA CM:	40	cm.
Minimamente utilizar 4 varillas del número 5		
DE EL NÚMERO DE LA VARILLA A UTILIZAR:	5	#
DE LA CANTIDAD DE VARILLAS A UTILIZAR :	6	varillas
DE EL NÚMERO DE VARILLAS EN EL SENTIDO CORTO:	3	varillas
DE EL NÚMERO DE VARILLAS EN EL SENTIDO LARGO :	3	varillas

ÁREA DE ACERO / ÁREA DE CONCRETO =
RELACIÓN DE ACERO LONGITUDINAL MÁXIMO =
RELACIÓN DE ACERO LONGITUDINAL MÍNIMO =

REVISIÓN DE LA RESISTENCIA POR REDUCCIÓN L/r < 60

25.8 VERDADERO

Área de acero (lado corto) cm² =	5.93812313	Brazo del par resistente interno (J) =	0.90291822	
Área de acero (lado largo) cm² =	5.93812313	Profundidad del eje neutro (k) =	0.29124535	
Área de acero total cm² =	11.8762463	Coeficiente (R) kg/cm ²	14.7921035	
Fatiga del concreto a compresión(fc) kg/cm ² =	112.5	lado menor de la columna - recubrim.	38	
Relación de módulos de elasticidad (n)	8.58377673	(lado menor de la columna - recubrim)	1444	
Límite elastico del acero (fy) kg/cm ² =	4700	lado mayor de la columna - recubrim. =	38	
Constante grande del concreto (Q) = $(fc \times k \times j)/2 =$				

COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

REFORZADAS CON ESTRIBOS

CARGA CONCENTRADA EN TONELADAS.

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

CARGA	QUE	SOPORTA	(Qa)	Q < Qa	VERDADERO	V
				GRAVITACIO	NAL	INCREMENTO	GRAV. + SISMO
CONCRETO	0.28	At(f'c)		112	ton	1.33	148.96 ton
ACERO	Ast (f	s-0,28(f'c))		27.0778415	ton	1.5	40.6167622 ton
			Qa =	139.077841	ton		189.576762 ton

MOMENTO RESISTENTE (SENTIDO CORTO)				
	GRAVITACIONAL	INCREMENTO	GRAV. + SISMO	
CONCRETO (sentido corto) Mc= Qbd2	8.54391901 ton-m.	1.33	11.3634123 ton-m.	
ACERO EN COMPRESIÓN (sentido corto) Ms= As(2n-1)(k-((5/d)/k)(fc)(d-5)	1.95395475 ton-m.	1.5	2.93093213 ton-m.	
TOTALES	10.4978738 ton-m.		14.2943444 ton-m.	

MOMENTO RESISTENTE (SENTIDO LARGO)					
	GRAVITACIO	ONAL	INCREMENTO	GRAV. + SISMO	
CONCRETO (sentido largo)	8.54391901	ton-m.	1.33	11.3634123 ton-m.	
Mc= Qbd2					
ACERO EN COMPRESIÓN (sentido largo) Ms= As(2n-1)(k-((d'/d)/k)(fc)(d-d')	1.95395475	ton-m.	1.33	2.59875982 ton-m.	
TOTALES	10.4978738	ton-m.		13.9621721 ton-m.	

MOMENTO RESISTENTE (DEL ACERO A LA TENSIÓN)				
ACERO A LA TENSIÓN (sentido corto) Ms= As*fs*j*d	9.57588823 ton-m.	1.5	14.3638323 ton-m.	
ACERO A LA TENSIÓN (sentidolargo) Ms= As*fs*j*d'	9.57588823 ton-m.	1.5	14.3638323 ton-m.	

COLUMNAS DE CONCRETO ARMADO EMPOTRADAS EN LOS ESTREMOS

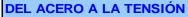
REFORZADAS CON ESTRIBOS

CARGASCONCENTRADA EN TONELADAS.

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

COMPROBACIÓN:


cuando ((N/N1)+ - (Mcorto/Mrcorto)+ - (Mlargo/Mrlargo)) < = 1, entonces no fall

DEL ACERO A LA COMPRESIÓN

GRAVITACIONAL 0.95758067 < 1

> 0.59368703 < 1

VERDADERO

GRAVITACIONAL -0.89151483

< 1

VERDADERO

GRAVITACIONAL + SISMO

GRAVITACIONAL + SISMO

-0.70006128 < 1

REFUERZO TRANVERSAL

SEPARACIÓN DE ESTRIBOS:

NO MAYOR QUE: 19.6826573 cm NO MAYOR QUE:

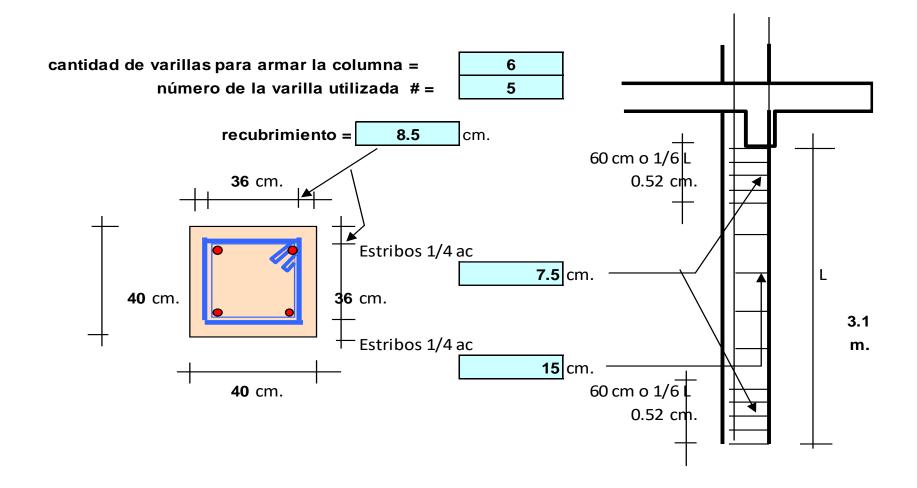
20 cm NO MAYOR QUE:

30.48

con estribos #2

NO MAYOR QUE:

45.72


con estribos #3

SELECCIONE LA SEPARACIÓN MENOR DE LA ANTERIORES ESPECIFICADAS:

15 cm.

LA SEPARACIÓN MÁXIMA DE LOS ESTRIBOS EN LA PARTE SUPERIOR DE LA COLUMNA. A

60 cm. DE LA UNIÓN DE ESTA CON TRABES O LOSAS SERÁ DE: 7.5 cm.

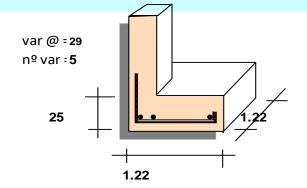
ZAPATAS AISLADAS DE CONCRETO ARMADO

DE PERALTE CONSTANTE

CIMENTACIÓN COLINDANTE

CARGAS CONCENTRADAS EN KG.

MEMORIA DE CÁLCULO


AUTOR DEL PROGRAMA: ARQ, JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA:

Atlautla, Estado de México

CALCULISTA:

Gutierrez Valera Amairani

SIMBOLOGÍA

ÁREA DE DESPLANTE (A) = M2 LADO DE LA ZAPATA (ML) = L CARGA UNITARIA (KG/M2) = W

DISTANCIA A LA COLUMNA (ML) = CBASAMENTO DE LA COLUMNA (CM.) = B

MOMENTO FLEXIONANTE MAX. KGXCM = M

PERALTE EFECTIVO (CM) = D

`PERALTETOTAL (CM) = DT CORTANTE A UNA DISTANCIA D (KG) = VD

CORTANTE LATERAL (KG/CM2) = VL

CORT. LATERAL ADMISIB. (KG/CM2) = VADM

RESISTENCIA DEL TERRENO KG/M2 RESISTENCIA DEL CONCRET. KG/CM2 RESISTENCIA DEL ACERO KG/CM2 DIST PARA CORTANTE PERIM. (CM.) = E

CORTANTE A UNA DISTANCIA D/2 (KG) = VD/2

CORTANTE PERIMETRAL (KG/CM2) = VP

CORTANTE PERIM. A DMISIBLE (KG/CM2) = VPADM

AREA DE ACERO (CM2) = AS

NÚMERO DE VARILLAS = NV

ESPACIAM. DE VARILLAS (CM)= VAR@

ESPACIAM. ADMISIBLE DE VARILLAS =VAR ADM

CORTANTE POR ADHERENCIA (KG) = VU

ESFUERZO POR ADHERENCIA (KG/CM2) = U

ESF. POR ADHEREN. ADMISIBLE (KG/CM2) = UADM

8.58377673

0.2768998

14.1840841

RELAC. ENTRE MÓDULOS DE ELASTIC.
 RELAC. ENTRE EL EJE NEUTRO Y (D)
 J = 0.90770007 R =

EJES CON CIMENTACIÓN COLINDANTE

IDENTIFICACIÓN EJE	14 y A	Α	L	W	С	В
		1.49907059	1.22436538	7798.16514	0.82436538	60
CARGA CONCENT.KG	11690	M	D	DT		
LADO COLUMNA ML	0.4	324423.993	13.6678534	23.6678534		
		QUIERE CAN	IBIAR EL PER	RALTE EFECT	TVO	15
		DT	VD	VL	V ADM	E
		25	6438.70811	3.50587507	4.58530261	55
		VD/2	VP	VP ADM	VERDADERO	
		9331.05505	2.82759244	8.3800358	VERDADERO	
		AS	# VAR	NV	VAR @	@ ADM
		9.41800287	5	4.75807053	28.8543117	30 CM.
		VU	U	U ADM		
		7870.87863	24.2990173	31.8717748	VERDADERO	

CONTRATRABES DE CONCRETO ARMADO

CON LIGERA RESTRICCIÓN DE EMPOTRE

CONTRATRABES CONTINUAS

CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

SIMBOLOGÍA

CLARO DE LA VIGA ML = **(L)**

CARGA UNIFORM.REPARTIDA KG = (Q)

CARGA TOTAL KG = (QT)

ANCHO PROPUESTO DE LA VIGA CM.= (B)

CORTANTE VERTICAL MÁXIMO KG = (V1)

MOMENTO FLEXIÓN. POSITIVO KGXCM = (M+)

MOMENTO FLEXIÓN.NEGATIVO KGXCM = (M-)

COEFICIENTES KG/CM2 (R, J)

PERALTE EFECTIVO CM = (D')

PERALTE TOTAL CM. = (DT)

AREA DE ACERO MOMENTO POSITIVO CM2 =(AS+)

AREA DE ACERO MOMENTO NEGAT. CM2 = (AS-)

NUMERO DE LA VARILLA UTILIZADA = (#VAR)

NÚMERO DE VARILLAS REQUERIDAS = (NV)

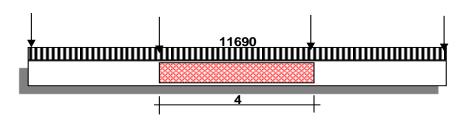
CORTANTE A UNA DISTANCIA D = (VD)

CORTANTE UNITARIO KG/CM2 = (VU)

CORTANTE UNITARIO ADMISIBLE KG/CM2 = (VAD)

DIFERENCIA DE CORTANTE KG/CM2 = (DFV)

DISTANCIA EN QUE SE REQ. ESTRIBOS CM = (DE)


NÚMERO DE VARILLA UTILIZ.EN ESTRIBOS = (# S)

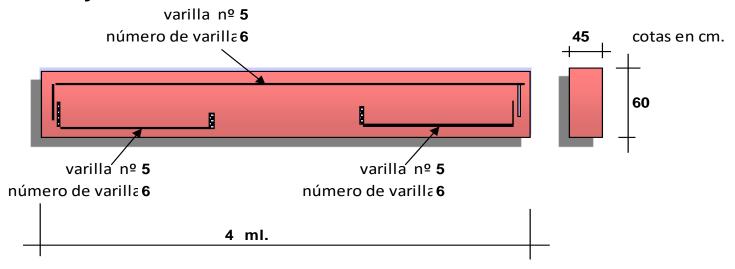
ESPACIAMIENTO DE ESTRIBOS CM = (ES)

ESFUERZO POR ADHERENCIA KG/CM2 = (U)

ESFUERZO POR ADHERENCIA ADM.KG/CM2 = (U)

BAJADA DE CARGAS Y CONTRATRABES DE CONCRETO ARM CON LIGERA RESTRICCIÓN DE EMPOTRE CONTRATRABES CONTINUAS CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML HOJA DE CAPTURA. AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA: Municipio de Atlautla, Estado de México


NOMBRE DEL CALCULISTA: Gutierrez Valera Amairani

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)

250
2530
8.58377673
0.2768998

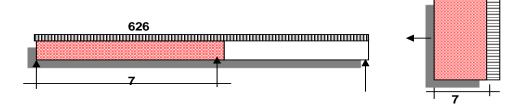
EJE	L	Q	QT	В	V1	M(-)	M (+)
	4	11690	46760	45	23380	1558666.67	1558666.67
	R	D'	DT				
14 y A	14.1840841	49.4162423	53.4162423			_	
	QUIERE CA	MBIAR EL PE	RALTE EFEC	: OVIT	56		
	DT	J	AS (-)	#VAR	NV (-)	VD	VU
	60	0.90770007	12.119992	5	6	16833.6	6.68
	VAD	DFV	DE	# S	ES @	ES ADM.	
	4.58530261	2.09469739	157.155153	0.64	17.1777663	28	VERDADERO
	U	UMAX	AS (+)	#VAR	NV (+)	U	UMAX
	15.3317899	31.8717748	12.119992	5	6	15.3317899	22.4485413

EJE **14 y A**

ESPACIAMIENTO DE ESTRIBOS = 17.1777663 ADMISIBLE = 28

LOSAS

SIMBOLOGÍA

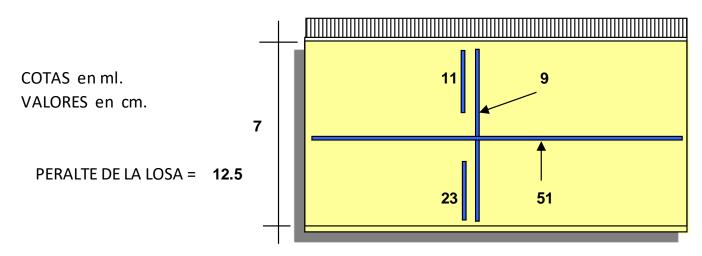

CLARO DE LA LOSA ML = (L)	AREA DE ACERO MOMENTO POSITIVO CM2 =(AS+)
CARGA UNIFORM.REPARTIDA KG/M2 = (Q)	AREA DE ACERO MOMENTO NEGAT. CM2 = (AS-)
CARGA TOTAL KG = (QT)	NUMERO DE LA VARILLA UTILIZADA = (#VAR)
ANCHO ANALIZADO DE LA LOSA CM.= (B)	NÚMERO DE VARILLAS REQUERIDAS = (NV)
CORTANTE VERTICAL MÁXIMO KG = (V1)	SEPARACIÓN DE VARILLAS MOMENT + = (VAR + @)
MOMENTO FLEXIÓN. POSITIVO KGXCM = (M+)	SEPARACIÓN DE VARILLAS MOMENT - = (VAR - @)
MOMENTO FLEXIÓN.NEGATIVO KGXCM = (M-)	SEPARAC. DE VAR. POR TEMPERAT.= (VAR T @)
COEFICIENTES KG/CM2 (R, J)	CORTANTE UNITARIO KG/CM2 = (VU)
PERALTE EFECTIVO CM = (D')	CORTANTE UNITARIO ADMISIBLE KG/CM2 = (VAD)
PERALTE TOTAL CM. = (DT)	DIFERENCIA DE CORTANTE KG/CM2 = (DFV)
LADO DISCONTINUO = (A)	ESFUERZO POR ADHERENCIA KG/CM2 = (U)
LADO CONTINUO = (B)	ESFUERZO POR ADHERENCIA ADM.KG/CM2 = (U)

LOSAS EN UNA DIRECCIÓN DE CONCRETO ARMADO

LOSAS SEMICONTINUAS

<u>CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2</u> MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.



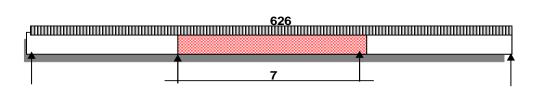
DIRECCIÓN DE LA OBRA: Municipio de Atlautla, Estado de México
NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

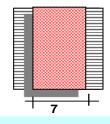
RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

250
2530
8.58377673
0.2768998
526
100

TABLERO		L	Q	QT	В	V(A)	V(B)
		7	626	4382	100	1752.8	2629.2
	M(+)	M(-) A	M(-) B	R	D'	DT	
	306740	127808.333	255616.667	14.1840841	14.7056613	17.2056613	
	QUIERE CAMBIAR EL PERALTE EFECTIVO :				10		
	DT	J	AS +	#VAR	NV	VAR + @	
	12.5	0.90770007	13.3569569	4	10.5438594	9.4841932	
	U	UMAX	AS (-) A	#VAR	NV (-) A	VAR - @A	
	6.86786355	39.8397186	5.56539872	4	4.39327477	22.7620637	
	VERDADERO		AS(-) B	# VAR	NV(-) B	VAR - @B	
			11.1307974	4	8.78654954	11.3810318	
	VU	VAD(A)	DFV(A)	# VAR T	AREA VAR	VAR T @	
	2.6292	4.58530261	-1.95610261	4	1.2667996	50.671984	
	VERDADERO						

MÁXIMO ESPACIAMIENTO DEL ARMADO POR FLEXIÓN = 30 cm.

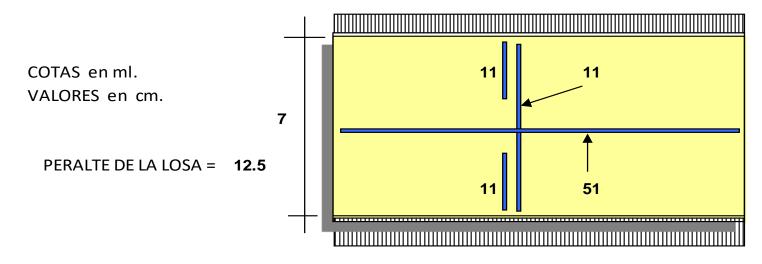

MÁXIMO ESPACIAMIENTO DEL ARMADO POR TEMPERATURA = 35 cm.


LOSAS EN UNA DIRECCIÓN DE CONCRETO ARMADO

LOSAS CONTINUAS

<u>CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2</u>
MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.


DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA: Municipio de Atlautla, Estado de México

Amairani Gutierrez Valera

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

250
2530
8.58377673
0.2768998
526
100

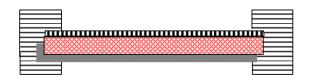
TABLERO		L	Q	QT	В	V1	M+	
		7	626	4382	100	2191	255616.667	
	M (-)	R	D'	DT				
	255616.667	14.1840841	13.4243707	15.9243707				
	QUIERE CAM	IBIAR EL PER	RALTE EFEC	TIVO :	10			
	DT	J	AS +	#VAR	NV +	VAR + @	VU	
	12.5	0.90770007	11.1307974	4	8.78654954	11.3810318	2.191	
	VAD	DFV	U	UMAX		·		
	4.58530261	-2.39430261	6.86786355	39.8397186	VERDADERO			
	AS (-)	#VAR	NV (-)	VAR - @	# VAR T	AREA VAR	VAR T @	
	11.1307974	4	8.78654954	11.3810318	4	1.2667996	50.671984	

MÁXIMO ESPACIAMIENTO DEL ARMADO POR FLEXIÓN = 30 cm.
MÁXIMO ESPACIAMIENTO DEL ARMADO POR TEMPERATURA = 35 cm.

ADMINISTRACIÓN

VIGAS

ADMINISTRACIÓN


VIGAS DE CONCRETO ARMADO

VIGAS AISLADAS EMPOTRADAS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

SIMBOLOGÍA

CLARO DE LA VIGA ML = (L)

CARGA UNIFORM.REPARTIDA KG = (Q)

CARGA CONCENTRADA KG = (Q2)

PESO PROPIO DE LA TRABE KG. = (Q1)

CARGA TOTAL KG = (QT)

ANCHO PROPUESTO DE LA VIGA CM.= (B)

CORTANTE VERTICAL MÁXIMO KG = (V1)

MOMENTO FLEXION. POSITIVO KGXCM = (M+)

MOMENTO FLEXION.NEGATIVO KGXCM = (M-)

COEFICIENTES KG/CM2 (R, J)

PERALTE EFECTIVO CM = (D')

PERALTE TOTAL CM. = (DT)

ÁREA DE ACERO MOMENTO POSITIVO CM2 =(AS+)

ÁREA DE ACERO MOMENTO NEGAT. CM2 = (AS-)

NUMERO DE LA VARILLA UTILIZADA = (#VAR)

NÚMERO DE VARILLAS REQUERIDAS = (NV)

CORTANTE A UNA DISTANCIA D = (VD)

CORTANTE UNITARIO KG/CM2 = (VU)

CORTANTE UNITARIO ADMISIBLE KG/CM2 = (VAD)

DIFERENCIA DE CORTANTE KG/CM2 = (DFV)

DISTANCIA EN QUE SE REQ. ESTRIBOS CM = (DE)

NÚMERO DE VARILLA UTILIZ.EN ESTRIBOS = (#S)

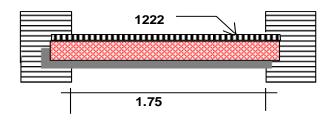
ESPACIAMIENTO DE ESTRIBOS CM = (ES)

ESFUERZO POR ADHERENCIA KG/CM2 = (U)

ESFUERZO POR ADHERENCIA ADM.KG/CM2 = (U)

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MODULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)

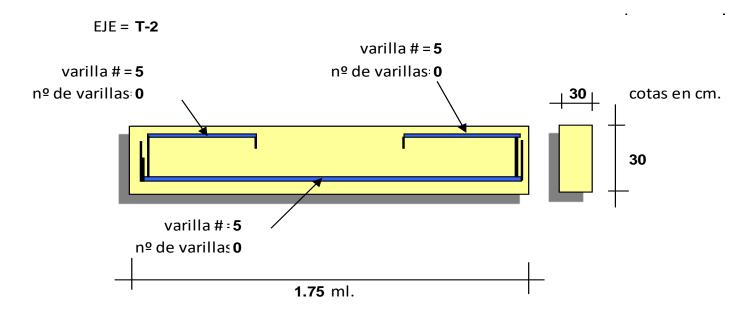
250
2530
8.58377673
0.2768998


VIGAS DE CONCRETO ARMADO

VIGAS AISLADAS EMPOTRADAS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO

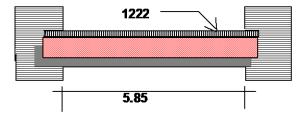

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA: Municipio de Atlautla, Estado de México

NOMBRE DEL CALCULISTA: Gutierrez Valera Amairani

EJE	L	Q	Q1	QT	В	V1	M+
	1.75	2138.5	220.5	2359	30	1179.5	17201.0417
	M (-)	R	D'	DT			
T-2	34402.0833	14.1840841	8.9914782	12.9914782			
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	CTIVO :	26		
	DT	J	AS +	#VAR	NV +	VD	VU
	30	0.90770007	0.28808358	5	0	829.02	1.06284615
	VAD	DFV	DE	# S	ES	ES ADM.	
	4.58530261	-3.52245645	-151.821664	0.64	-15.3226403	13	
	U	UMAX	AS (-)	#VAR	NV (-)	U	UMAX
	#¡DIV/0!	31.8717748	0.57616717	5	0	#¡DIV/0!	22.4485413
			-			#¡DIV/0!	

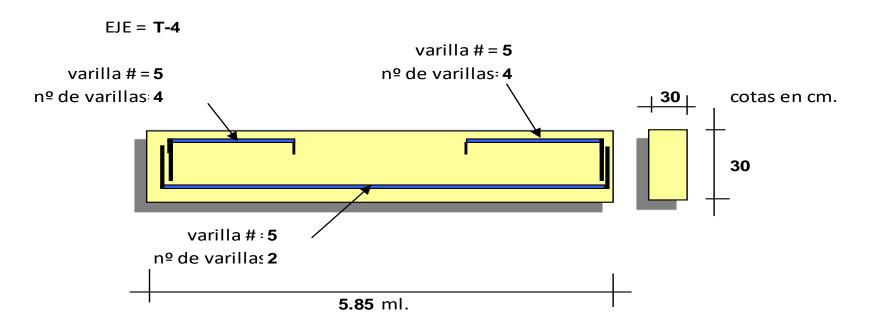
Espaciamiento de estribos -15.3226403 Admisible = 13


VIGAS DE CONCRETO ARMADO

VIGAS AISLADAS EMPOTRADAS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ ML.

MEMORIA DE CÁLCULO


AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

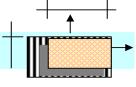
DIRECCIÓN DE LA OBRA: Municipio de Atlautla, Estado de México

NOMBRE DEL CALCULISTA: Gutierrez Valera Amairani

EJE	L	Q	Q1	QT	В	V1	M+
	5.85	7148.7	2464.02	9612.72	30	4806.36	234310.05
	M (-)	R	D'	DT			
T-4	46 8620.1	14.1840841	33.1855622	37.1855622		_	
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	: OVIT	26		
'	DT	J	AS +	#VAR	NV +	VD	VU
	30	0.90770007	3.92423205	5	2	4379.128	5.61426667
	VAD	DFV	DE	# S	ES	ES ADM.	
	4.58530261	1.02896406	48.8432307	0.64	52.4540511	13	
	U	UMAX	AS (-)	#VAR	NV (-)	U	UMAX
	20.3657581	31.8717748	7.84846411	5	4	10.1828791	22.4485413

Espaciamiento de estribos **52.4540511** Admisible **= 13**

LOSAS


LOSAS CON DOS BORDES DISCONTINUOS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA: Municpio de Atlautla, Estado de México Gutierrez Valera, Amairani

SIMBOLOGÍA

CLARO MAYOR DE LA LOSA ML = (L)

CLARO MENOR DE LA LOSA ML = (S)

CARGA UNIFORM.REPARTIDA KG/M2 = (Q)

RELACIÓN ENTRE CLARO CORTO Y LARGO= (m)

COEF. PARA MOMENT.(+) CLARO CORTO =(C+)

COEF. PARA MOMENT.(+) CLARO LARGO =(CL+)

COEF. PARA MOMENT.(-) CLARO CORTO =(C-)

COEF. PARA MOMENT.(-) CLARO LARGO =(CL-)

CORTANTE DEL LADO CORTO KG = (V (S))

CORTANTE DEL LADO LARGO KG = (V (L))

MOMENTO CLARO CORTO (+) KGXM = (MS+)

MOMENTO CLARO CORTO (-) KGXM = (MS-)

MOMENTO CLARO LARGO (+) KGXM = (ML+)

MOMENTO CLARO LARGO (-) KGXM = (ML-)

LADO A (BORDE CONTINUO)

LADO **B** (BORDE DISCONTINUO)

COEFICIENTES KG/CM2 (R, J)

PERALTE EFECTIVO CM = (D')

PERALTE TOTAL CM. = (DT)

AREA DE ACERO MOMENTO POSITIVO CM2 =(AS+)

AREA DE ACERO MOMENTO NEGAT. CM2 = (AS-)

NUMERO DE LA VARILLA UTILIZADA = (#VAR)

NÚMERO DE VARILLAS REQUERIDAS = (NV)

SEPARACIÓN DE VARILLAS MOMENT + = (VAR + @)

SEPARACIÓN DE VARILLAS MOMENT - = (VAR - @)

SEPARAC. DE VAR. POR TEMPERAT. = (VAR T @)

CORTANTE UNITARIO KG/CM2 = (VU)

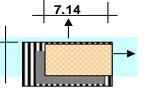
CORTANTE UNITARIO ADMISIBLE KG/CM2 = (VAD)

DIFERENCIA DE CORTANTE KG/CM2 = (DFV)

ESFUERZO POR ADHERENCIA KG/CM2 = (U)

ESFUERZO POR ADHERENCIA ADM.KG/CM2 = (U)

El espaciamiento del acero en las franjas extremas a un cuarto del claro podrá aumentarse en un 50% del armado en centro del claro, no excediendo tres veces el peralte de la losa .


LOSAS CON DOS BORDES DISCONTINUOS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA: Municpio de Atlautla, Estado de México Gutierrez Valera, Amairani 6

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

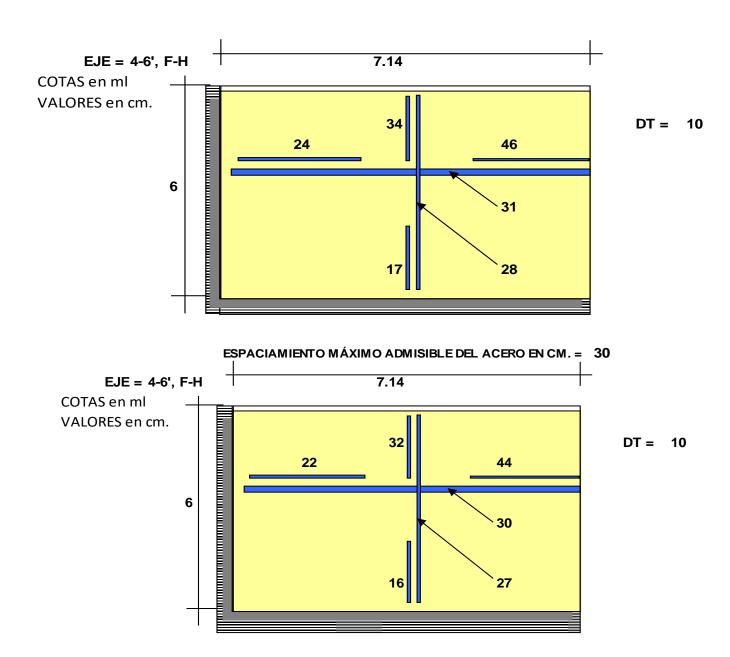
250
2530
8.58377673
0.2768998
343
250

TABLERO	L	S	Q	m	CS+	CS - en A	CS - en B
	7.14	6	593	0.8	0.048	0.064	0.032
	CL+	CL- en A	CL- en B	V (S)	V (L)	MS+	MS-en A
4-6', F-H	0.037	0.049	0.025	1186	1399.48	1024.704	1366.272
	MS-en B	ML+	ML- en A	ML- en B	R	D'	DT
	683.136	789.876	1046.052	533.7	14.1840841	9.81449448	11.8144945
						DT	J
QUIER	E CAMBIAR	EL PERALTE	EFECTIVO:		8	10	0.90770007
AS (+) S	#VAR	NV	VAR S+ @	AS (-)S A	#VAR	NV	VAR S-@
4.46206142	4	3.52231041	28.3904564	7.43676903	4	5.87051735	17.0342738
AS (-)S B	#VAR	NV	VAR S+ @	AS (+) L	#VAR	NV	VAR L+ @
3.71838451	4	2.93525867	34.0685477	4.04647726	4	3.19425209	31.306233
ASL (-) L A	#VAR	NV	VAR L- @	AS (-) L B	#VAR	NV	VAR L- @
5.35884827	4	4.23022574	23.6394004	2.73410626	4	2.15827844	46.3332248
VU (S)	VU (L)	VAD	U (S)	U (L)	UMAX		
1.4825	2.15304615	4.58530261	11.5921694	18.5644375	39.8397186		
VERDADERO	VERDADERO		VERDADERO	VERDADERO			

LOSAS CON DOS BORDES DISCONTINUOS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2

MEMORIA DE CÁLCULO


AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA: Municpio de Atlautla, Estado de México NOMBRE DEL CALCULISTA: Gutierrez Valera, Amairani 6

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

250
2530
8.58377673
0.2768998
529
100

TABLERO	L	S	Q	m	CS+	CS - en A	CS - en B
	7.14	6	629	0.8	0.048	0.064	0.032
	CL+	CL- en A	CL- en B	V (S)	V (L)	MS+	MS-en A
4-6', F-H	0.037	0.049	0.025	1258	1484.44	1086.912	1449.216
	MS-en B	ML+	ML- en A	ML- en B	R	D'	DT
	724.608	837.828	1109.556	566.1	14.1840841	10.1080158	12.1080158
						DT	J
QUIER	E CAMBIAR	EL PERALTE	EFECTIVO:		8	10	0.90770007
AS (+) S	#VAR	NV	VAR S+@	AS (-)S A	#VAR	NV	VAR S-@
4.73294541	4	3.73614376	26.7655654	7.88824236	4	6.22690626	16.0593392
AS (-)S B	#VAR	NV	VAR S-@	AS (+) L	#VAR	NV	VAR L+ @
3.94412118	4	3.11345313	32.1186785	4.29213187	4	3.38816958	29.5144613
ASL (-) L A	#VAR	NV	VAR L- @	AS (-) L B	#VAR	NV	VAR L- @
5.68417464	4	4.48703539	22.28643	2.9000891	4	2.28930377	43.6814027
VU (S)	VU (L)	VAD	U (S)	U (L)	UMAX		
1.5725	2.28375385	4.58530261	11.5921694	18.5644375	39.8397186		
VERDADERO	VERDADERO		VERDADERO	VERDADERO			

ESPACIAMIENTO MÁXIMO ADMISIBLE DEL ACERO EN CM. = 30

LOSAS CON TRES BORDES DISCONTINUOS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA:

NOMBRE DEL CALCULISTA:

Municpio de Atlautla, Estado de México

Gutierrez Valera, Amairani

5.1

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

250
2530
8.58377673
0.2768998
343
250

TABLERO	L	S	Q	m	CS+	CS - en A	CS - en B
	7.65	5.1	593	0.7	0.062	0.082	0.041
	CL+	CL- en A	CL- en B	V (S)	V (L)	MS+	MS-en A
6-8, D-F	0.044	0.058	0.029	1008.1	1265.1655	956.28366	1264.76226
	MS-en B	ML+	ML- en A	ML- en B	R	D'	DT
	632.38113	678.65292	894.58794	447.29397	14.1840841	9.44286542	11.4428654
						DT	J
QUIER	E CAMBIAR	EL PERALTE	EFECTIVO:		8	10	0.90770007
AS (+) S	#VAR	NV	VAR S+ @	AS (-)S A	#VAR	NV	VAR S-@
4.16412586	4	3.28712281	30.4217414	6.88424033	4	5.43435625	18.4014436
AS (-)S B	#VAR	NV	VAR S-@	AS (+) L	#VAR	NV	VAR L+ @
3.44212016	4	2.71717813	36.8028872	3.47668952	4	2.74446686	36.4369494
ASL (-) L A	#VAR	NV	VAR L- @	AS (-) L B	#VAR	NV	VAR L- @
4.58290891	4	3.61770632	27.6418237	2.29145446	4	1.80885316	55.2836473
VU (S)	VU (L)	VAD	U (S)	U (L)	UMAX		
1.260125	1.94640846	4.58530261	10.5583326	19.5332107	39.8397186		
VERDADERO	VERDADERO		VERDADERO	VERDADERO			

LOSAS CON TRES BORDES DISCONTINUOS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2

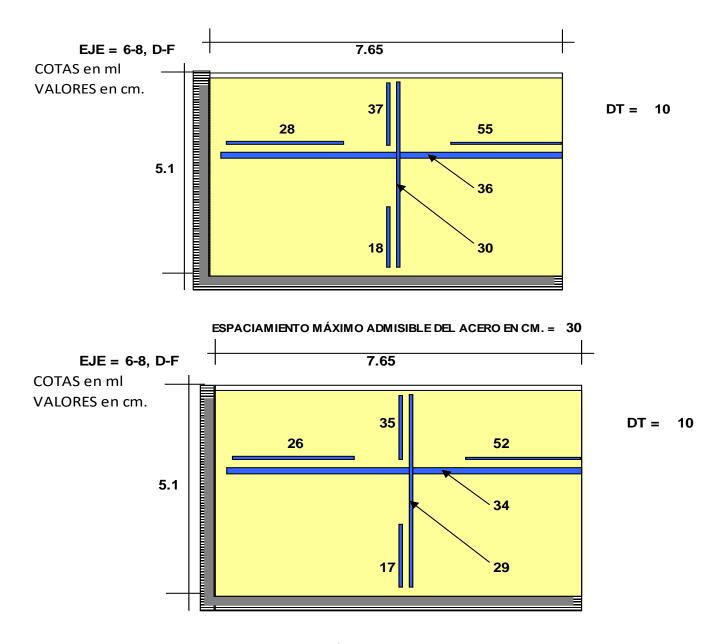
MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA:

NOMBRE DEL CALCULISTA:

Municpio de Atlautla, Estado de México


Gutierrez Valera, Amairani

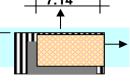
5.1

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

250
2530
8.58377673
0.2768998
529
100

TABLERO	L	S	Q	m	CS+	CS - en A	CS - en B
	7.65	5.1	629	0.7	0.062	0.082	0.041
	CL+	CL- en A	CL- en B	V (S)	V (L)	MS+	MS-en A
6-8, D-F	0.044	0.058	0.029	1069.3	1341.9715	1014.33798	1341.54378
	MS-en B	ML+	ML- en A	ML- en B	R	D'	DT
	670.77189	719.85276	948.89682	474.44841	14.1840841	9.72527243	11.7252724
						DT	J
QUIER	E CAMBIAR	EL PERALTE	EFECTIVO:		8	10	0.90770007
AS (+) S	#VAR	NV	VAR S+ @	AS (-)S A	#VAR	NV	VAR S-@
4.41692271	4	3.48667832	28.6805925	7.3021706	4	5.76426658	17.3482608
AS (-)S B	#VAR	NV	VAR S-@	AS (+) L	#VAR	NV	VAR L+ @
3.6510853	4	2.88213329	34.6965216	3.6877533	4	2.91107868	34.3515278
ASL (-) L A	#VAR	NV	VAR L- @	AS (-) L B	#VAR	NV	VAR L- @
4.86112935	4	3.83733098	26.0597797	2.43056468	4	1.91866549	52.1195594
VU (S)	VU (L)	VAD	U (S)	U (L)	UMAX		
1.336625	2.06457154	4.58530261	10.5583326	19.5332107	39.8397186		
VERDADERO	VERDADERO		VERDADERO	VERDADERO			

ESPACIAMIENTO MÁXIMO ADMISIBLE DEL ACERO EN CM. = 30


LOSAS CON DOS BORDES DISCONTINUOS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA: NOMBRE DEL CALCULISTA: Municpio de Atlautla, Estado de México Gutierrez Valera, Amairani 5.95

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

250
2530
8.58377673
0.2768998
343
250

TABLERO	L	S	Q	m	CS+	CS - en A	CS - en B		
	7.14	5.95	593	0.8	0.048	0.064	0.032		
	CL+	CL- en A	CL- en B	V (S)	V (L)	MS+	MS-en A		
6'-9, F-H	0.037	0.049	0.025	1176.11667	1387.81767	1007.69676	1343.59568		
	MS-en B	ML+	ML- en A	ML- en B	R	D'	DT		
	671.79784	776.766253	1028.69044	524.842063	14.1840841	9.73270703	11.732707		
QUIER	E CAMBIAR	8	10	0.90770007					
AS (+) S	#VAR	NV	VAR S+ @	AS (-)S A	#VAR	NV	VAR S-@		
4.38800359	4	3.46384984	28.8696117	7.31333932	4	5.77308307	17.321767		
AS (-)S B	#VAR	NV	VAR S+ @	AS (+) L	#VAR	NV	VAR L+ @		
3.65666966	4	2.88654153	34.6435341	3.97931698	4	3.14123637	31.8345989		
ASL (-) L A	#VAR	NV	VAR L- @	AS (-) L B	#VAR	NV	VAR L- @		
5.26990627	4	4.16001574	24.0383706	2.68872769	4	2.12245701	47.1152064		
VU (S)	VU (L)	VAD	U (S)	U (L)	UMAX				
1.47014583	2.1351041	4.58530261	11.6895826	18.7204412	39.8397186				
VERDADERO	VERDADERO		VERDADERO	VERDADERO					

LOSAS CON DOS BORDES DISCONTINUOS

CARGAS UNIFORMEMENTE REPARTIDAS EN KG./ M2

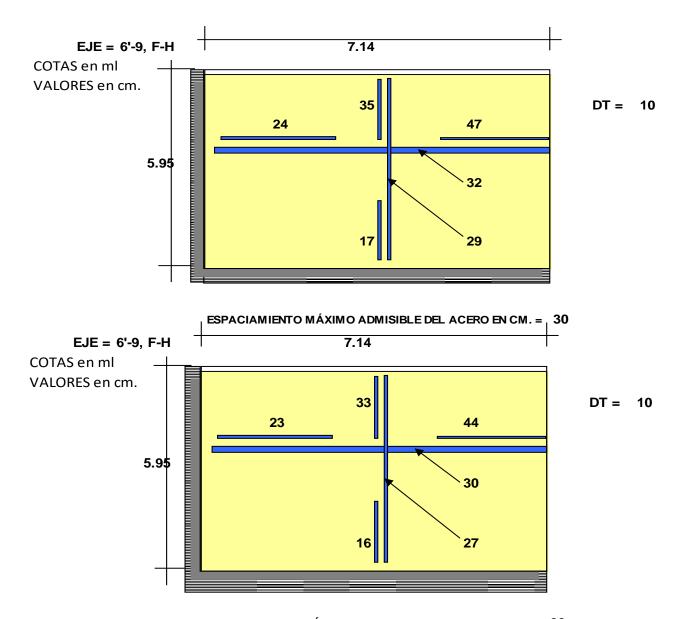
MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

DIRECCIÓN DE LA OBRA:

NOMBRE DEL CALCULISTA:

Municpio de Atlautla, Estado de México


Gutierrez Valera, Amairani

5.95

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)
CARGA MUERTA DE LA LOSA KG/M2 = (C.M.)
CARGA VIVA DE LA LOSA KG/M2 = (C.V.)

250
2530
8.58377673
0.2768998
529
100

TABLERO	L	S	Q	m	CS+	CS - en A	CS - en B
	7.14	5.95	629	8.0	0.048	0.064	0.032
	CL+	CL- en A	CL- en B	V (S)	V (L)	MS+	MS-en A
6'-9, F-H	0.037	0.049	0.025	1247.51667	1472.06967	1068.87228	1425.16304
	MS-en B	ML+	ML- en A	ML- en B	R	D'	DT
	712.58152	823.922383	1091.14045	556.704313	14.1840841	10.0237823	12.0237823
			DT	J			
QUIER	E CAMBIAR	EL PERALTE	8	10	0.90770007		
AS (+) S	#VAR	NV	VAR S+ @	AS (-)S A	#VAR	NV	VAR S- @
4.65439167	4	3.67413415	27.2172969	7.75731945	4	6.12355691	16.3303782
AS (-)S B	#VAR	NV	VAR S-@	AS (+) L	#VAR	NV	VAR L+ @
3.87865972	4	3.06177846	32.6607563	4.2208944	4	3.33193538	30.0125869
ASL (-) L A	#VAR	NV	VAR L- @	AS (-) L B	#VAR	NV	VAR L- @
5.58983313	4	4.41256307	22.6625656	2.85195568	4	2.25130769	44.4186286
VU (S)	VU (L)	VAD	U (S)	U (L)	UMAX		
1.55939583	2.26472256	4.58530261	11.6895826	18.7204412	39.8397186		
VERDADERO	VERDADERO		VERDADERO	VERDADERO			

ESPACIAMIENTO MÁXIMO ADMISIBLE DEL ACERO EN CM. = 30

CIMENTACIÓN

Cimentación

CIMENTACIÓN DE MAMPOSTERÍA DE PIEDRA

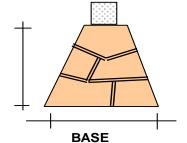
EJES CON CIMENTACIÓN INTERMEDIA

CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

MEMORIA DE CÁLCULO.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México


CALCULISTA: Gutierrez Valera Amairani

RESISTENCIA DEL TERRENO KG/M2

8500

KG/M²

ALTURA

PRIMERA APROXIMACIÓN

BASE DE DESPLANTE = (1.25 x CARGA) / RESISTANCIA DEL TERRENO

ALTURA DE CIMENTACIÓN = $((BASE - 0.30) / 2) \times 1.73$

SEGUNDA APROXIMACIÓN

BASE DE DESPLANTE = ((BASE+0.30) \times (ALTURA/2 \times 2065) \times (CARGA)) / RESISTANCIA DEL TERRENO ALTURA DE CIMENTACIÓN = ((BASE - 0.30) / 2) \times 1.73

		CARGA	BASE DESPLANTE		ALTURA CIMENTACIÓN	
		KG/ML	ML.		ML.	
			1ª APROX. ML	2ª APROX.	1ªAPROX. MI	L 2ªAPROX.
IDENTIFICACIÓN DEL EJE	Н					
RESULTADOS		1222	0.17970588	0.6	-0.10405441	0.5

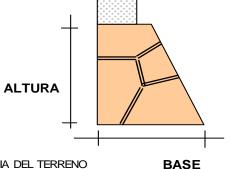
CIMENTACIÓN DE MAMPOSTERÍA DE PIEDRA

EJES CON CIMENTACIÓN COLINDANTE CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

MEMORIA DE CÁLCULO.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA : Municipio de Atlautla, Estado de México


CALCULISTA: Gutierrez Valera Amairani

RESISTENCIA DEL TERRENO KG/M2

8500

PRIMERA APROXIMACIÓN

BASE DE DESPLANTE = $(1.25 \times \text{CARGA})$ / RESISTANCIA DEL TERRENO ALTURA DE CIMENTA CIÓN = $(\text{BASE} - 0.30) \times 1.73$

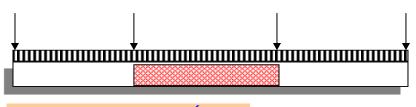
SEGUNDA APROXIMACIÓN

 ${\tt BASE DE DESPLANTE = ((BASE+0.30) \times (ALTURA/2 \times 2065) \times (CARGA)) / RESISTANCIA DEL TERRENO}$

ALTURA DE CIMENTACIÓN = (BASE - 0.30) x 1.73

		CARGA	BASE DESPLANTE		ALTURA CIMENTACIÓN	
		KG/ML	ML.		ML.	
			1ª APROX. ML 2ª APROX.		1ªAPROX. ML 2ªAPROX.	
IDENTIFICACIÓN DEL EJE	Н					
RESULTADOS		1222	0.17970588	0.6	-0.10405441	0.5

CONTRATRABES DE CONCRETO ARMADO


CON LIGERA RESTRICCIÓN DE EMPOTRE

CONTRATRABES CONTINUAS

CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

SIMBOLOGÍA

CLARO DE LA VIGA ML = (L)

CARGA UNIFORM.REPARTIDA KG = (Q)

CARGA TOTAL KG = (QT)

ANCHO PROPUESTO DE LA VIGA CM.= (B)

CORTANTE VERTICAL MÁXIMO KG = (V1)

MOMENTO FLEXIÓN. POSITIVO KGXCM = (M+)

MOMENTO FLEXIÓN.NEGATIVO KGXCM = (M-)

COEFICIENTES KG/CM2 (R, J)

PERALTE EFECTIVO CM = (D')

PERALTE TOTAL CM. = (DT)

AREA DE ACERO MOMENTO POSITIVO CM2 =(AS+)
AREA DE ACERO MOMENTO NEGAT. CM2 = (AS-)
NUMERO DE LA VARILLA UTILIZADA = (#VAR)
NÚMERO DE VARILLAS REQUERIDAS = (NV)

CORTANTE A UNA DISTANCIA D = (VD)

CORTANTE UNITARIO KG/CM2 = (VU)

CORTANTE UNITARIO ADMISIBLE KG/CM2 = (VAD)

DIFERENCIA DE CORTANTE KG/CM2 = (DFV)

DISTANCIA EN QUE SE REQ. ESTRIBOS CM = (DE)

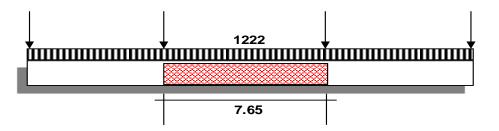
NÚMERO DE VARILLA UTILIZ.EN ESTRIBOS = (# S)

ESPACIAMIENTO DE ESTRIBOS CM = (ES)

ESFUERZO POR ADHERENCIA KG/CM2 = (U)

ESFUERZO POR ADHERENCIA ADM.KG/CM2 = (U)

CONTRATRABES DE CONCRETO ARMADO


CON LIGERA RESTRICCIÓN DE EMPOTRE

CONTRATRABES CONTINUAS

CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

HOJA DE CAPTURA.

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

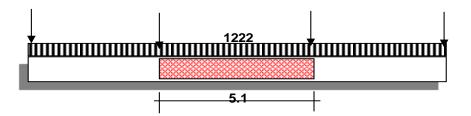
DIRECCIÓN DE LA OBRA: Atlautla, Estado de México NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2 RESISTENCIA DEL ACERO UTILIZADO KG/CM2 RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N) RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)

250
2530
8.58377673
0.2768998

EJE	L	Q	QT	В	V1	M(-)	M (+)
	7.65	1222	9348.3	25	4674.15	595954.125	595954.125
	R	D'	DT				
4	14.1840841	40.9954598	44.9954598			_	
	QUIERE CAI	MBIAR EL PE	21				
	DT	J	AS (-)	#VAR	NV (-)	VD	VU
	25	0.90770007	12.3575008	6	4	4417.53	8.41434286
	VAD	DFV	DE	# S	ES @	ES ADM.	
	4.58530261	3.82904025	206.504593	0.64	16.9149436	10.5	VERDADERO
	U	UMAX	AS (+)	#VAR	NV (+)	U	UMAX
	10.2171494	26.5598124	12.3575008	6	4	10.2171494	20.4926208

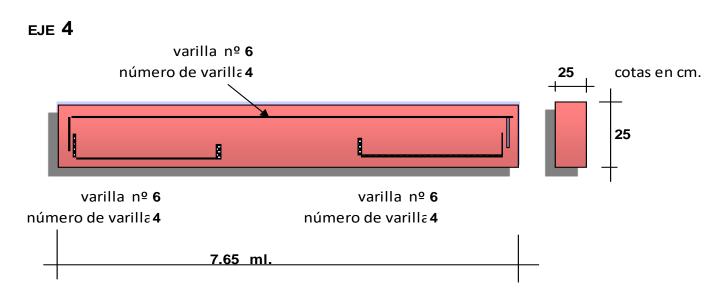
CONTRATRABES DE CONCRETO ARMADO

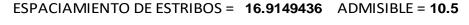

CON LIGERA RESTRICCIÓN DE EMPOTRE

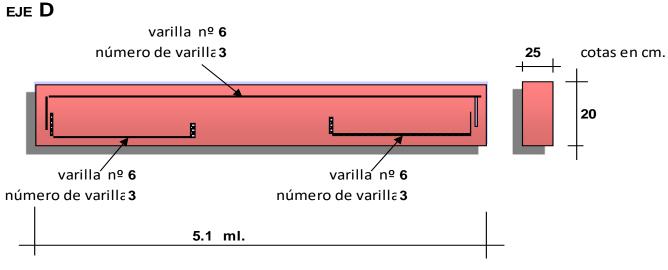
CONTRATRABES CONTINUAS

CARGAS UNIFOMEMENTE REPARTIDAS EN KG/ML

HOJA DE CAPTURA.


AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.




DIRECCIÓN DE LA OBRA: Atlautla, Estado de México NOMBRE DEL CALCULISTA: Amairani Gutierrez Valera

RESISTENCIA DEL CONCRETO UTILIZADO KG/CM2
RESISTENCIA DEL ACERO UTILIZADO KG/CM2
RELACIÓN ENTRE MÓDULOS DE ELASTICIDAD (N)
RELACIÓN ENTRE EJE NEUTRO Y(D') = (K)

EJE	L	Q	QT	В	V1	M(-)	M (+)
	5.1	1222	6232.2	25	3116.1	264868.5	264868.5
	R	D'	DT				
D	14.1840841	27.3303065	31.3303065			_	
	QUIERE CAI	MBIAR EL PE	RALTE EFEC	16			
	DT	J	AS (-)	#VAR	NV (-)	VD	VU
	20	0.90770007	7.20854214	6	3	2920.58	7.30145
	VAD	DFV	DE	# S	ES @	ES ADM.	
	4.58530261	2.71614739	120.908262	0.64	23.8455395	8	VERDADERO
	U	UMAX	AS (+)	#VAR	NV (+)	U	UMAX
	11.9200076	26.5598124	7.20854214	6	3	11.9200076	20.4926208

ESPACIAMIENTO DE ESTRIBOS = 23.8455395 ADMISIBLE = 8

REVISIÓN POR SISMO

REVISIÓN POR EL MÉTODO SIMPLIFICADO PARA SÍSMO.

EDIFICACIONES DEL GRUPO "B"

CON MUROS CONFINADOS

MEMORIA DE CÁLCULO

AUTOR DEL PROGRAMA: ARQ. JOSÉ MIGUEL GONZÁLEZ MORÁN.

UBICACIÓN DE LA OBRA:	Municipio de Atlautla, Estado de México						
NOMBRE DEL CALCULISTA:	Gutierrez Va	Gutierrez Valera Amairani					
MURO CON PIEZAS:							
P. MACIZAS = 1 , P. HUECAS = 2	2	PESO DEL MURO	O PLANT. BAJA KG/M2	147.3			
TABIQUE=1, TABICON= 2, B. HUECO=3	3	PESO DEL MURO	O PLANT. TIPO KG/M2	147.3			
TERRENO TIPO :		ANCHO DEL MU	IRO CM.	14			
T. I = 1 , $T. II = 2$, $T. III = 3$	1	ALTURA DE MU	ROS PLANTA BAJA ML	2.5			
ALTURA DE LA CONSTRUCCIÓN ML.		ALTURA DE MU	ROS PLANTA TIPO ML	2.8			
H<4M=1, $H 4M a 7m=2$, $H 7m a 13m=3$	3	LONG.PROM. D	MUROS D MENOS 2M	6			
CARGA MUERTA CUBIERTA .KG/M2	599	SUMA DE MURC	45.81				
C. VIVA GRAVIT. CUBIERTA KG/M2	100	SUMA DE MURC	35.45				
C. VIVA SISMICA CUBIERTA KG/M2	70	ÁREA DE CUBIE	144.85				
CARGA MUERTA ENTREPISO KG/M2	539	ÁREA DE PLAN	144.85				
C. VIVA GRAVIT.DEL ENTREPISOKG/M2	250	ÁREA DE PLAN	TA TIPO M2	144.85			
C. VIVA SISMIC. DEL ENTREPISOKG/M2	180	NÚMERO DE EN	TREPISOS	1			
LONGITUD DE MUROS DE MAS DE 2 ML EN EL	22.45						
LONGITUD DE MUROS DE MENOS DE 2 ML EN	11.74						
LONGITUD DE MUROS DE MAS DE 2 ML EN EL	26.4						
LONGITUD DE MUROS DE MENOS DE 2 ML EN	EL EJE Y =	14.78					

CARGA TOTAL EN MUROS EN P. BAJA PARA DISEÑO DE CARG. VERT. (KG).= 247027.331 CARGA TOTAL EN MUROS EN PLANTA BAJA PARA DISEÑO POR SISMO (KG). 232542.331

COEFICIENTE SISMICO =

0.11

FATIGA ADM. DEL MATERIAL=

44

REVISIÓN POR CARGAS LATERALES

RESISTENCIA EN EL EJE X : KG

MUROS DE MAS DE 2 ML =
MUROS DE MENOS DE 2 ML =

46202

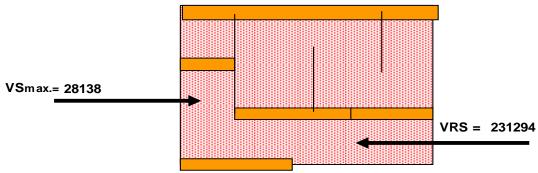
185092

VSR =

231294

CORTANTE SISMICO MÁXIMO =

CORT.SISMICO RESISTENTE X =

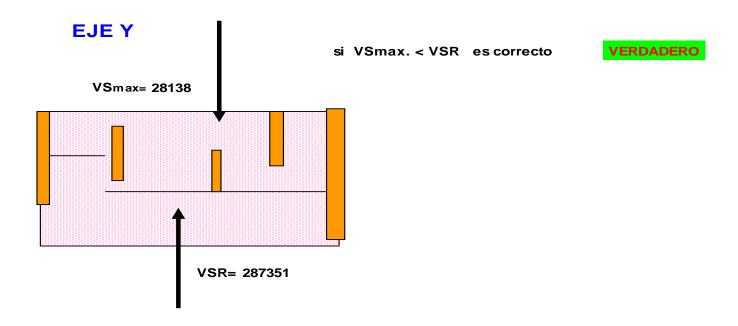

Vsmax. =

28138

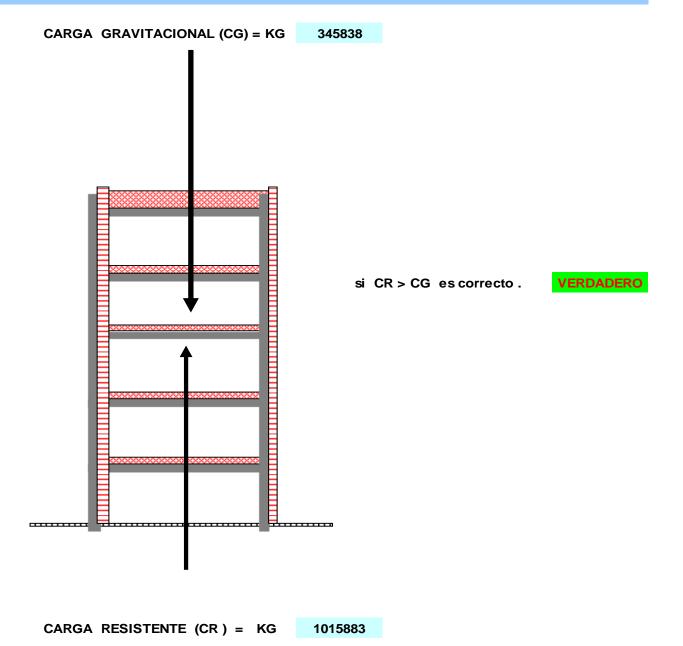
si VSmax. < VSR es correcto

VERDADERO

EJE X



RESISTENCIA EN EL EJE Y: KG


MUROS DE MAS DE 2 ML = 54331 MUROS DE MENOS DE 2 ML = 233020

CORT.SISMICO RESISTENTE Y = 287351

CORTANTE SISMICO MÁXIMO = 28138

REVISIÓN POR CARGAS VERTICALES

INSTALACIONES

INSTALACIÓN HIDRÁULICA

MEMORIAS DE CÁLCULO DE INSTALACIONES

INSTALACIÓN HIDRÁULICA

PROYECTO: ESCUELA DE OFICIOS Y TALLERES PARA MUJERES UBICACIÓN: MUNICIPIO DE ATLAUTLA, ESTADO DE MÉXICO

DATOS DE PROYECTO.

No. de alumnos/día	=	320	(En base al	proyecto)		
Dotación (Educación media sup	e=	25	lts/asist/día	. (En base al re	eglamento)
No. De administrativos/día	=	22	(En base al	proyecto)		
Dotación (oficinas)	=	50	lts/asist/día	. (En base al re	eglamento)
Dotación requerida	=	9100	lts/día	(No usuario	s x Dotac	ión)
•		9100				
Consumo medio diario	=		0.1053240	74 Its/seg (Dot	ación req	./ segundos de un día)
		86400				,
Consumo máximo diario	=	0.10532407	х	1.2	=	0.126388889 lts/seg
Consumo máximo horario	=	0.12638889	х	1.5	=	0.189583333 lts/seg
donde:						
Coeficiente de variación diaria	=	1.2				
Coeficiente de variación horaria	=	1.5				

CÁLCULO DE LA TOMA DOMICILIARIA (HUNTER)

DATOS:

Q = 0.126389 lts/seg se aprox. a 0.1 lts/seg (Q=Consumo máximo diario)
0.126389 x 60 = 7.583333 lts/min.

V = 2 mts/seg (A partir de Tabla y en función del tipo de tubería)

Hf = 1.5 (A partir de Tabla y en función del tipo de tubería)

 \varnothing = 13 mm. (A partir del cälculo del área)

$$A = \frac{Q}{V} \qquad A = \frac{0.12638889 \text{ lts/seg}}{2 \text{ mts/seg}} = \frac{0.000126 \text{ m3/seg}}{2 \text{ m/seg}} = 6.31944\text{E-05}$$

A = 0.0001 M2

$$d2 = \frac{3.1416}{4} = 0.7854 \qquad d2 = 0.7854$$

diam. =
$$\frac{A}{d2} = \frac{0.0001 \text{ m2}}{0.7854} = 0.000127 \text{ m2}$$

diam = 0.01128378 mt. = 11.28378 mm

DIÁMETRO COMERCIAL DE LA TOMA = 13 mm. 1/2" pulg

TABLA DE EQUIVALENCIAS DE MUEBLES EN UNIDADES MUEBLE

MUEBLE	No. DE	TIPO DE	UM	DIÁMETRO	TOTAL
(segun proy)	MUEBLES	CONTROL		PROPIO	U.M.
Lavabo	6	llave	2	19 mm	12
W.C.	6	Valvula	10	19 mm	60
Lavabo Part.	5	llave	1	19 mm	5
W.C. Part.	5	Valvula	6	19 mm	30
Freqadero	9	llave	4	19 mm	36
Minqitorio	2	llave	3	19 mm	6
Total	33				149

149 U.M.

DIÁMETRO DEL MEDIDOR = 3/4 " = 19 mm

(Según tabla para especificar el medidor)

TABLA DE CÁLCULO DE DIÁMETROS POR TRAMOS

TRAMO	GASTO	TRAMO	U.M	TOTAL	DIÁMETRO		VELOCIDAD	Hf.
	U.M.	ACUM.	ACUM.	lts/min "	PULG	MM.		
1	=	1 - 19	149	208.8	2	50	1.702	6.358
2	7	-	8	30.0	3/4	19	1.500	15.761
3	-	3 - 19	141	204.6	2	50	1.672	6.156
4	-	4 - 6	28	72.6	1 1/4	32	1.445	8.163
5	14	-	14	43.2	1	25	1.277	8.395
6	4	-	4	18.6	1/2	13	1.890	37.925
7	-	8 - 19	113	176.4	2	50	1.438	4.653
8	8	8 - 9	16	47.4	1	25	1.401	9.950
9	8	-	8	30.0	3/4	19	1.500	15.761
10	-	10 - 19	97	163.2	1 1/2	38	2.302	15.712
11	8	11 - 12	16	47.4	1	25	1.401	9.950
12	8	-	8	30.0	3/4	19	1.500	15.761
13	-	13 - 19	81	147.0	1 1/2	38	2.082	13.023
14	46	-	46	105.6	1 1/2	38	1.490	6.997
15	-	15 - 19	92	157.8	1 1/2	38	2.234	14.859
16	32	-	32	80.4	1 1/4	32	1.587	9.704
17	-	14 - 15	14	43.2	1	25	1.277	8.395
18	7	-	7	27.6	3/4	19	1.380	13.527
19	7	-	7	27.6	3/4	19	1.380	13.527
	149							

CÁLCULO DE CISTERNA

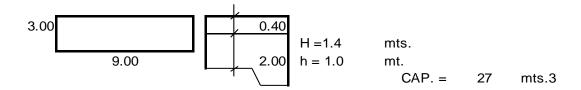
DATOS:

No. de alumnos/día = 320 (En base al proyecto)

Dotación (Educación media supe = 25 Its/asist/día. (En base al r (En base al reglamento)

No. De administrativos/día = 22 (En base al proyecto)

Dotación (oficinas) = 50 lts/asist/día. (En base al reglamento)


Dotación Total = 9100 lts/día

Volumen requerido = 9100 + 18200 = 27300 lts.

(dotación + 2 días de reserva)

según reglamento y género de edificio.

LA CISTERNA ALMACENARÁ

MATERIALES.

Se utilizará tubería de tuboplus en diámetros de 19, 25, 40, 32, 50 mm marca Rootoplas.

Todas las conexiones serán de tuboplus ó similar.

Todas las conexiones a mueble serán 19mm.

Se colocará hidroneumático marca Mejorada con las siguientes carácteristicas.

CÁLCULO DE HIDRONEUMÁTICO

Presión mínima (MCA) = md + 0.07 (mt) + 10

Donde:

md = Desarrollo en metros del nivel bajo de la cisterna al nivel del mueble

más elevado.

mt= Desarrollo líneal en metros de la línea de conducción diseñada en

proyecto del equipo hacia el mueble más alejado.

 $MCA = 3 + 0.07 \times 87.04 + 10$ = 19.0928

Modelo Equipo	Gasto	Presión	Motobombas		Tanques		Medidas (mts.)		
Modelo Equipo	máx.	min. MCA	No.	CF (c/u)	No.	T. Litros	Largo	Ancho	Alto
H23-200-1T86	360	19(27)	2	2	1	326	1.45	0.95	1.65

INSTALACIÓN SANITARIA

INSTALACIÓN SANITARIA

PROYECTO: ESCUELA DE OFICIOS Y TALLERES PARA MUJERES

UBICACIÓN: MUNICIPIO DE ATLAUTLA, ESTADO DE MÉXICO

DATOS DE PROYECTO.

CÁLCULO DEL RAMAL DE ACOMETIDA A LA RED DE ELIMINACIÓN.

Qt = 4.4097 lts/seg. En base al reglamento

(por tabla) \varnothing = 100 mm art. 59

(por tabla) v = 0.57

diametro = 150 mm. pend. = 2%

TABLA DE CÁLCULO DE GASTO EN U.M.

MUEBLE	No. MUEBLE	CONTROL	U.M.	Ø propio	total U.M.
Lavabo	11	llave	1	38	11
W.C.	11	válvula	4	100	44
Fregadero	9	llave	2	38	18
Mingitorio	2	válvula	2	50	4
•				total =	77

Velocidad = $V = (rh2/3 \times S1/2)/n$

rh = radio hidraulico = A / Pm donde = A = PI x d2/4

S = diferencia de nivel entre la longitud <math>Pm = pi x d

n =coef. De rugosidad 0.013 % de pendiente 2.00%

TABLA DE CÁLCULO DE DIÁMETROS POR TRAMOS

(En base al proyecto específico)

No. de	U.M.	tramo	U.M.	total	QAN	7 Diáme	tro	velocidad	longitud
TRAMO	0		acumuladas	U.M.	lts/seq	mm	pulg.	m/s	mts.
1	37	c.camaicas	acamalaaas	37	1.42	75	3	0.2603	8.70
2	37			37	1.42	75 75	3	0.2822	7.40
3	31	t-1 a t-2	74	74	2.27	110	4	0.2622	8.45
4 (BAP)	19	1-1 a 1-2	74	19	0.83	75	3	0.4104	3.50
4 (BAF)	19	+ 1 0 + 5	93	93	2.57	110	4	***************************************	7.10
	40	t-1 a t-5	93	42				0.3720	
6 (BAP) 7	42	11016	135		1.58	110	4	0.5298	3.50 5.70
8	36	t-1 a t-6	130	135	3.35	110 75	3	0.4151	
	30		474	36	1.42			0.2410	10.15
9	40	t-1 a t-8	171	171	3.79	160	6	0.4809	7.00
10 (BAP)	48	14140	040	48	1.74	110	4	0.5298	3.50
11		t-1-t-10	219	219	4.34	160	6	0.4725	7.25
12 (BAP)	52			52	1.8	110	4	0.4524	4.80
13		T-1 a t-12	271	271	4.93	160	6	0.7891	2.60
14	8			8	0.49	50	2	0.2169	7.30
15		t-1 a t-14		279	5	160	6	1.0566	1.45
16 (BAP)	32			32	1.31	75	3	0.3839	4.00
17		t-1 a t-16		311	5.36	160	6	0.4953	6.60
18 (BAP)	36		***************************************	36	1.42	75	3	0.3839	4.00
19		t-1 a t-18		347	5.86	160	6	0.5998	4.50
20	8			8	0.49	50	2	0.2118	7.65
21		t-1 a t-20		355	5.86	160	6	0.6527	3.80
22 (BAP)	30			30	1.26	75	3	0.3839	4.00
23		t-1 a t-22		385	6.37	160	4	1.5782	0.65
24 (BAP)	24			24	1.04	75	3	0.3059	6.30
25 (BAP)	37			37	1.42	75	3	0.2989	6.60
26	10			10	0.57	50	2	0.2072	8.00
27		t-24 a t-26		71	2.27	110	4	0.3887	6.50
28		t-1 a t-26		456	7.11	160	6	0.4916	6.70
29	22			22	0.96	75	3	0.2804	7.50
30		t-1 a t-29		478	7.38	160	6	0.4024	10.00

MATERIALES

Se utilizará tuberìa de P.V.C. en interiores y bajadas de agua con diámetros de 19, 25, 50, 75 y 100 mm. marca Omega o similar.

Las conexiones serán de P.V.C. marca Omega o similar.

La tuberia en exterior será de concreto con diámetros de 110 y 160 mm. Se colocarán registros ciegos y registros con coladera marca helvex o similar.

INSTALACIÓN ELÉCTRICA

INSTALACIÓN ELÉCTRICA.

PROYECTO: ESCUELA DE OFICIOS Y TALLERES PARA MUJERES

UBICACIÓN: ATLAUTLA, ESTADO DE MÉXICO

CARGA TOTAL INSTALADA:

En base a diseño de iluminación

Alumbrado = 2,170 watts (Total de luminarias) Contactos = 10,620 watts (Total de fuerza)

Interruptores = 800 watts (Total de interruptores)

TOTAL = 13,590 watts (Carga total)

SISTEMA: Se utilizará un sistema trifásico a cuatro hilos (3 fases y neutro)

(mayor de 8000 watts)

TIPO DE CONDUCTORES: Se utilizarán conductores con aislamiento THW (selección en base acondiciones de trabajo)

1. CÁLCULO DE ALIMENTADORES GENERALES.

1.1 cálculo por corriente:

DATOS:

Siendo todas las cargas parciales monofásicas y el valor total de la carga mayor de $\,$ 8000watts , bajo un sistema trìfasico a cuatro hilos (3 o - 1 n). se tiene:

1.2. cálculo por caída de tensión.

S

S = Sección transversal de conductores en mm2

 L = Distancia en mts desde la toma al centro de carga.

En e% e% = 1 Caída de tensión en %

$$S = \frac{2 \times 50 \times 29.37 \times 2937.08}{127.5 \times 1} = \frac{23.03589}{127.5} \text{ mm2}$$

3 No 4 con sección de 27.24 mm

1 No 6 con sección de 12.00 mm (neutro)

DIÁMETRO DE LA TUBERÍA:

(según tabla de area en mm2)

calibre No	No.cond.	área		subtotal
_				4000
4	3		422	1266
6	1		96	96
		total	=	1362

diámetro = 1362 mm2 (según tabla de poliductos) 2 1/2 pulg.

Notas:

- * Tendrá que considerarse la especificación que marque la Compañía de Luz para el caso
- * Se podrá considerar los tres conductores con calibre del número 4 y el neutro con calibre 6.

2. CÁLCULO DE CONDUCTORES EN CIRCUITOS DERIVADOS

2.1 cálculo por corriente:

DATOS:

W = especificada En = 127.5 watts. Cos O = 0.85 watts.

F.V.=F.D = 0.7

APLICANDO:

$$I = \frac{W}{\text{En Cos O}} = \frac{W}{108.375}$$

TABLA DE CÁLCULO POR CORRIENTE EN CIRCUITOS DERIVADOS.

(según proyecto específico)

CIRCUITO	W	En Cos O		F.V.=F.D.	lc	CALIB. No.
C-A-1	1360	108.375	12.55	0.7	8.78	14
C-A-2	800	108.375	7.38	0.7	5.17	14
C-A-3	1150	108.375	10.61	0.7	7.43	14
C-A-4	1150	108.375	10.61	0.7	7.43	14
C-B-1	1340	108.375	12.36	0.7	8.66	14
C-B-2	1490	108.375	13.75	0.7	9.62	14
C-B-3	1590	108.375	14.67	0.7	10.27	14
C-C-1	1300	108.375	12.00	0.7	8.40	14
C-C-2	1080	108.375	9.97	0.7	6.98	14
C-C-3	1260	108.375	11.63	0.7	8.14	14
C-C-1-1	1070	108.375	9.87	0.7	6.91	14

2.2. Cálculo por caída de tensión :

DATOS:

En = 127.50 watts. Cos O = 0.85 watts.

F.V.=F.D = 0.7 L = especificada

lc = del cálculo por corriente

e % = 2

APLICANDO: $S = \frac{4 \text{ L lc}}{\text{En e \%}} =$

TABLA DE CALCULO POR CAIDA DE TENSIÓN EN CIRCUITOS DERIVADOS

(según proyecto)

CIRCUITO	CONSTANT	L	lc	En e%	mm2	CALIB. No.
C-A-1	4	13.9401	8.78	255	1.92	14
C-A-2	4	21.5592	5.17	255	1.75	12
C-A-3	4	13.079	7.43	255	1.52	14
C-A-4	4	24.079	7.43	255	2.81	12
C-B-1	4	13.5709	8.66	255	1.84	14
C-B-2	4	19.5704	9.62	255	2.95	14
C-B-3	4	26.0138	10.27	255	4.19	10
C-C-1	4	23.1403	8.40	255	3.05	12
C-C-2	4	23.7957	6.98	255	2.60	12
C-C-3	4	26.5434	8.14	255	3.39	10
C-C-1-1	4	14.4823	6.91	255	1.57	14

MATERIALES:

TUBO POLIDUCTO NARANJA DE PARED DELGADA DE 19 Y 25 mm. EN MUROS Y LOSA, MARCA FOVI O SIMILAR.

TUBO POLIDUCTO NARANJA DE PARED GRUESA DE 19 Y 25 mm. EN PISO, MARCA FOVI O SIMILAR.

CAJAS DE CONEXION GALVANIZADA OMEGA O SIMILAR

CONDUCTORES DE COBRE SUAVE CON AISLAMENTO TIPO THW MARCA IUSA, CONDUMEX Ó SIMILAR

APAGADORES Y CONTACTOS QUINZIÑO Ó SIMILAR

TABLERO DE DISTRIBUCION CON PASTILLAS DE USO RUDO SQUARE Ó SIMILAR

INTERRUPTORES DE SEGURIDAD SQUARE, BTICINO Ó SIMILAR

CUADRO DE CARGAS

FASE A

* TABLERO 1

No.		吞			Ø	Ø	HIDRO.	TOTAL
CIRCUITO	30	30	10	10	180	250	800	WATTS
C-A-1	2					2	1	1360
C-A-2	2		12	1	2	1		800
C-A-3	6				4	1		1150
C-A-4	6				4	1		1150
No.LUM	16	0	12	1	10	5	1	4460
TOTAL	480	0	120	10	1800	1250	800	4460

FASE B

* TABLERO 2

No.		中			Ø	Ø	HIDRO.	TOTAL
CIRCUITO	30	30	10	10	180	250	800	WATTS
C-B-1	2	5		2	2	3		1340
C-B-2	5	3				5		1490
C-B-3	3	4		2	2	4		1590
No.LUM	10	12	0	4	4	12	0	4420
TOTAL	300	360	0	40	720	3000	0	4420

FASE C

* TABLERO 3

No.		즆			Ø	Ø	HIDRO.	TOTAL
CIRCUITO	30	30	10	10	180	250	800	WATTS
C-C-1	11				4	1		1300
C-C-2	6				5			1080
C-C-3	6				6			1260
C-C-1-1	5			2	5			1070
No.LUM	28	0	0	2	20	1	0	4710
TOTAL	840	0	0	20	3600	250	0	4710

TOTAL =

13,590

CARGA TOTAL INSTALADA = 13,590 watts.

FACTOR DE DEMANDA = 0.7 6 70 %

DEMANDA MÁXIMA APROXIMADA = 13,590 X 0.7

= 9513 watts

CARGA INSTALADA	FASE A	FASE B	FASE C	TOTAL
ALUMBRADO	610	700	860	2170
CONTACTOS	3050	3720	3850	10620
INTERRUPTORES	800		0	800
SUBTOTAL	4460	4420	4710	
			TOTAL	13590

DESBALANCEO ENTRE FASES

FA y FB = 0.9 % FB y FC = 6.16 % FC y FA = -5.61 %

CONCLUSIONES

En la presente investigación se puede observar que Atlautla es gravemente afectada por una dependencia económica-social hacia el municipio de Ozumba, lo cual provoca que dicha zona sea abandonada, debido al efecto de ciudad dormitorio y la migración.

Por estas razones las propuestas, tanto en la estrategia de desarrollo, como en los programas de desarrollo, se basan en proveer de equipamiento urbano, servicios, industrias, en donde la población pueda explotar de manera benéfica sus propios recursos, como la nuez de castilla y el capulín, para transformarlos y de ésta manera obtener recursos y una fuente de empleo, todo esto con un plazo especifico de acuerdo a las necesidades más urgentes de la población.

De acuerdo a la investigación urbana se consideró un incremento de la población al 2030, con diferentes tasas de crecimiento de acuerdo a los diversos escenarios que se pueden presentar en la zona de estudio, en donde la población oscilaría entre los 21,000 a 26,000 hab. por lo que se desarrolló una propuesta de usos de suelo, para su sano crecimiento, así como una lotificación que pueda albergar a la futura población.

El proyecto aquí presentado está enfocado en las mujeres debido a que son el principal sector entre los habitantes, como ya se mencionó anteriormente, en población económicamente inactiva, por lo que éste proyecto pretende brindar los conocimientos necesarios para que con base en un oficio ellas mismas puedan obtener sus propios recursos económicos.

Ésta tesis demuestra la aptitud que se tiene para resolver problemas urbano-arquitectónicos de manera integral en favor de las comunidades de bajos recursos del país. Así mismo refleja, la capacidad de generar un proyecto ejecutivo con base en los conocimientos obtenidos a lo largo de estos años en la universidad.

BIBLIOGRAFÍA

- BAZANT S. Jan. 2005. Manual de diseño urbano.
 Sexta Edición. Reimpresión 2007.
 Editorial Trillas, México. 423 Páginas.
- CRUZ Martínez Alí. 2015 LEXICÓN Taller de Investigación V. Publicaciones Taller Uno Ediciones – e México. 15 Páginas
- DUCCI, María Elena. 1989. Conceptos básicos de urbanismo. Reimpresión 2011.
 Editorial Trillas, México. 94 Páginas.
- MARTÍNEZ Paredes, Teodoro Oseas. MERCADO M. Elia. 1992.
 MANUAL DE INVESTIGACIÓN URBANA.
 Primera Edición. Editorial Trillas. México.
 116 Páginas.
- MERCADO Mendoza, Elia. Lotificación, metodología de diseño. Publicaciones Taller UNO.
- BLOMSTRÖM, M. y Ente, B. 1990
 La teoría del desarrollo en transición
 (México DF: Fondo de Cultura Económica).
- BASSOLS Batalla Ángel 1979
 México, formación de regiones económicas: influencias, factores y sistemas.
 Segunda edición 1983
 Universidad Nacional Autónoma de México.

- NIEVES López, Francisco. Modelos económicos en México. [Internet]
 Disponible en: http://delfos.mty.itesm.mx/Articulos/modeloseco.html [Acceso el 25 de noviembre del 2016]
- ESCALANTE, R. and Rodríguez, C. (2011). La agricultura latinoamericana: los casos de México, Argentina, Brasil y Chile. [Internet] Procuraduría Agraria. Disponible en: http://www.pa.gob.mx/publica/pa070211.htm [Acceso 25 oct.2016].
- GONZÁLEZ Morán José Miguel. 2017. Análisis práctico de estructuras de marcos continuos, método de Cros. Tomo I y II. Publicaciones Taller UNO.