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Introduction

In this thesis, we present a characterization of independence using the d-sample copula defined
in [9] and improved in [II] and using the checkerboard approximation. Using this characteri-
zation, we define some statistics based on different metrics such as the total variation distance,
the Hellinger distance and the supremum distance; and we also define a statistic based on the

divergence of Kullback-Leibler.

This work is divided in five chapters. In the first chapter we present the basic definitions and

the most important results in copula theory.

In the second chapter we give a comparison between the empirical copula and the d-sample
copula of order m. Moreover, we note that it is a better idea to use the sample copula instead

the empirical copula, because of the simplicity of its evaluation.

In the third chapter we find the distribution of the sample copula under the assumption of

independence and we establish a way to evaluate moments.

In the fourth chapter we present the most important result of the present work: we give a sim-
ple characterization of independence through the checkerboard approximation and define four
statistics. We also compare our tests with some of the most used tests via simulations. More-
over, we use the proposed tests with real data. Finally, in the last section we propose further

investigations.

In the fifth chapter we give our final conclusions.
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Chapter 1

Preliminaries

We begin this chapter the basic definitions and main results of copulas. Moreover, in the second
section, we will see a certain type of dependence, called concordance. Also, in the third section,
we introduce an important class of copulas known as Archimedean. The results presented are
based on Nelsen’s book, An Introduction to Copulas [18]. We omit the proofs because they are

well known results.

1.1 Basic definitions and main results

This section includes the basic definitions and the most important theorem in copula theory:
Sklar’s Theorem. We also present the definitions and the principal results of the Frechet-
Hoeffding bounds and the product copula.

Definition 1.1.1. Let I = [0, 1] be the closed unit interval and let d > 2 be the dimension. Let
S1, 59, ..., Sy be subsets of 1 such that 0,1 € S; for every i € 1, where I; = {1,2,...,d}. Let
C": S xSy X+ x 83— R be a function. Then C" is a d-subcopula if and only if C" satisfies:

i) C'(uq,...,uq) = 0 if at least one u; = 0 for some i € Iy;
i) C'(1,...,u; 1, ..., 1) = u; for every i € Iy and for every u; € S;;

iii) C" is d-increasing, that is, for every 0 < u; < v; < 1 such that u;,v; € S; for every

i € 1y, we have that if B = [uy,v1] X -+ X [ug,vq4] then

Vor(B) ==Y " sgn(b)C'(b) > 0, (1.1)

where the sum runs over all b = (by,...,bg) which are the vertices of B, and the sign

function is defined by

sgn(b) = 1 if by = ug for an even number of k’s;
A if b, = uy for an odd number of k’s.



We say that a d-subcopula is a d-copula if and only if S; =Sy =---=53=1.

The following theorem says that copulas have a Lipschitz condition on I¢. From this it follows

immediately that copulas are uniformly continuous.

Theorem 1.1.2. Let S1,S5,...,54 be subsets of 1 such that 0,1 € S; for every i € I;. Let

C": 51 x Sy x -+ x Sg— R be a subcopula. Then for every (ui, ..., uq), (v, ...,vq) € I%,

d
|C" (ua, oo tta) = C' (01, o v02)| <Y Jor — i,
=1

i.e., C" is uniformly continuous in S.

The following theorem is the most important in the theory of copulas and was introduced by
Sklar in his doctoral thesis in 1959.

Theorem 1.1.3. (Sklar’s Theorem) Let H be a joint d-distribution function for d > 2 with
margins Fy, Fy, ..., Fy. Then there exists a d-copula C such that for every (z1, s, ...,z4) € RY,

H(l’l, T2, ..y ZL‘d) = C(Fl(flfl), FQ(IQ), ceey Fd(ﬂfd)) (12)

If F\,F5, ..., F; are continuous, then C is unique; otherwise, C' is uniquely determined on
Ran(Fy) x Ran(F,) x --- x Ran(F;). Conversely, if C is a d-copula and Fy, Fs, ..., Fy are
distribution functions, then the function H defined in equation (1.2) is a joint d-distribution

function in R,

Theorem 1.1.4. Let (uq,...,uq) € I2. We define

My(uq, ..., ug) = min(ug, ..., ug), (1.3)
and
d
Wa(us, ..., ug) = max() _u; — (d—1),0). (1.4)
=1

Let C" be any d-subcopula with domain S. Then
Walug, ..., ug) < C'(ug, ... uq) < Mg(uy, ..., ug), (1.5)

for every (uq,...,uq) € S.
My and Wy are known as the Frechet-Hoeffding’s bounds.



M, is always a d-copula for every d > 2 and W, is a copula for d = 2, but W, is not a copula
for d > 3. The left side of (1.5] is best possible, in the sense that for every d > 3 and for every

(U1, ...,uq) € I, there exists a d-copula C such that C(uy, ..., ug) = Wy(uy, ..., ug).
Definition 1.1.5. Let (u1,...,uy) € I2. We define the product copula, denoted as 11y, by
d
My(ugy ..oy ug) = Hul (1.6)

=1

The following theorem characterizes the independence between continuous random variables via

copulas.

Theorem 1.1.6. Let X, ..., Xy be continuous random variables with unique d-copula C'. Then
X1, ..., Xq are independent if only if C = 1l,.

If C'is a d-copula, then by theorem [1.1.2]it is uniformly continuous, and hence by the Lebesgue’s

decomposition theorem we have that for every (uy, ..., uy) € I¢
C(uy,...,uq) = Ac(u, ..., uq) + Sc(u, ..., ug),

where A¢ is the absolutely continuous component with respect to the Lebesgue measure in R?

and

u1 Uq ad
Ac(ug, ..., ug) = ———C(xy, ..., xq)dzy . . . dxy;
clu 2 /0 /0 0xy...0xy (1 4)dza !
and S is the singular component with respect to the Lebesgue measure in R? and
Sc(u, ...,ug) = Clug, ..., uq) — Ac(ui, ..., ug).
If C = A on I¢, we say that C is absolutely continuous and its density is given by

_ adC(Ul, vy ud) .
Oouy---Oug '

C(Uh SE) Ud)

if C' = S¢ on I¢, we say that C is singular and we have that

8dC(u1, ceey ud)

Dur - ou, 0 a.s. [Pol;

and in any other case we will say that C' has an absolutely continuous component Ax and a

singular component S¢. It is common that, in this case, C' is called hybrid.



If H is the distribution function related to C, as in Sklar’s Theorem, we know that if the support
of H is denoted by Sy, then

Sy = (UA) such that A is an open set in R? and Py (A) = 0,

where P denotes the probability measure induced by H on (R?, B(R)).
We remember that the arbitrary union of open sets is an open set and its complement is a closed

measurable set. Then, if S¢ denotes the support of C' we have that S¢ is a closed set and
So = (UB) such that B is an open set in I and Pg(B) = 0.

We can determine if a d-copula is singular via the Lebesgue’s measure in RY, according with the
following result: C' is singular if only if the support of C' has Lebesgue’s measure zero.
We observe that the product copula I1; is absolutely continuous, because for every (uq, ..., uq) €

Id

25 Ud ad
A = e e — | dvg---d
114 (u17 ,Ud) /0' /0v aul . aud d(vh JUd) Vg U1

Ul ug
:/ / ldvy - - - dv;
0 0
d

i=1

= Hd(ul, ...,Ud).

(1.7)

Let M, as in . The support of My, denoted by Sy, is the main diagonal, i.e., Sy, = {u; =
Uy = -+ =ug_1 = uglu; € I for every i € I;}. Then M, is singular, because \%(Sy,) = 0, where
A% is the Lebesgue’s measure on R%. Besides 0¢My/0u; - - - Qug = 0 a.s. [A9].

Let 0 <a<1and 0<p <1. We define for every (u,v) € I? the family of copulas

ulm if u® > 08

— i l-a 1-8y _
Cap(u,v) = min(u ~*v, uv )—{uvl_ﬁ it <P,

This family is known as Marshall-Olkin family or Generalized Cuadras-Augé family. This family
of copulas is hybrid, i.e., it has absolutely continuous and singular components. This follows
because

(1—a)u™™ if u® > P

5?2
8u8vca’ﬁ(u’v) B { (1—B)w=? if u® <P

4



Then,if A, s denotes the absolutely continuous part of C, 3, we have that for u® < V8

Ao plu,v) = wpt P — —aﬁ u® (a+5*aﬁ)/aﬁ7
sl v) a+ [ — 046( )
and for u® > vf
af
Aa U/7 V) = ul_a/U F — 'Uﬁ (a-l—ﬁ—aﬁ)/aﬂ’
5(u,v) - aﬁ( )
ie.,
A p(u,v) = Cyp(u,v) — a—ﬁ(min(ua pP))ath—aB)/ab
a,B\ W, a, ’ o+ 6 — O{/B 5

And if S, 5 denotes the singular part of C, 5 we have that for u® = v?

ap o ) e
Saﬁ(u7v) = M——aﬁ(mln(u ,Uf8>)( +B—aB)/ B

1.2 Archimedean copulas

In this section we introduce an important class of copulas called Archimedean. The Archimedean
class has many properties and the copulas which belong to this class are easy to construct.

Besides, many of the most used copulas belong to this family.

Definition 1.2.1. Let ¢ be a continuous, strictly decreasing function such that ¢ : I — [0, 00]

and (1) = 0. We define the pseudo-inverse of ¢, denoted by o=, as the function with

domain [0,00] and range 1 given by

gy TN i 0<t < p(0);
¢ ](’f)‘{o if ¢(0) <t <o,

Lis the usual inverse of .

where @~

Observe that if p(0) = oo, then =1 = 1.

Theorem 1.2.2. Let ¢ and =Y as in Definition . Let C : 1?2 = 1 be a function such that
Clu,v) = o (p(u) + p(0)). (18)

Then C' is a 2-copula if and only if ¢ is convez.



Definition 1.2.3. If a 2-copula C' can be represented as in (1.8), then it is called an Archimedean

copula; and the funtion ¢ is known as the Archimedean generator of C. If o~ = o1,

then ¢ is called a strict generator. In any other case ¢ is known as a non strict generator.

We will see two examples of Archimedean copulas:

Example 1.2.4. i) Let o(t) = —In(t), fort € I. We notice that ¢(0) = oo, then o= = =1 =
exp(—t) and generates a copula. According to (1.8)) the copula is given by

C(u,v) = exp(—[—In(u) — In(v)]) = vv = Hy(u, v).

ii) Let o(t) = %(t_e - 1), with 0 € [—1,00) \ {0}. We observe that ¢(0) = oo, and then it
follows that =1 = =" = (14 60t)"'/?. Then ¢ generates a copula given by
C(u,v) = max(u™? + v~ —1,0)71/.

C s known as the Clayton copula.

Definition 1.2.5. A function g is said to be completely monotonic on an interval J if and

only if it is continuous and satisfies

(1) () 20, (1.9

for all t in the interior of J and for every k =0,1,2,....

Theorem 1.2.6. Let ¢ : I — [0,00] be a continuous, strictly decreasing function such that

©(1) =0 and p(0) = co. Letd > 2 and C : 1¢ — 1 be a function given by

C(uy, ..., uqg) = @ (plur) + -+ o(ug)). (1.10)

1

Then C'is a d-copula for every d > 2 if and only if ¢~ is completely monotonic on [0, 00).

A copula C' that satisfies (1.10]) is called Archimedean d-copula, for every d > 2.

Example 1.2.7. Let 0 > 0. We define @o(t) = 5(1/t° —1). Then, clearly, ¢y satisfies the
condition of theorem . We note that o, ' = (14 0t)~Y% and

—(14k6)/6 k1
Ve Ty | ((RTRN)

=1




Hence

-1/6
Cg(ul,...,Ud>: (U;9++U;9—n+1) ;

is an Archimedean d-copula.

This is known as the Clayton family of d-copulas for 6 > 0.

1.3 Dependence

In this section we present the definition of one measure of dependence: the concordance. We
also give the definition of two measures of association: Kendall’s tau and Spearman’s rho, and

we discuss their relation with copulas.

Definition 1.3.1. Let (z;,y;) and (z;,y;) denote two observations from a vector (X,Y) of
continuous random variables. We say that (z;,y;) and (x;,y;) are concordant if and only if
z; < xj and y; < y;, orif x; > x; and y; > y;. In the same way, we say that (x;,y;) and (x;,y;)

are disconcordant if and only if x; < x; and y; > y;, or if x; < x; and y; > y;.

Definition 1.3.2. Let {(z1,v1), ..., (X0, yn)} be a random sample of size n from a vector (X,Y)
of continuous random wvariables. Let ¢ be the number of concordant pairs and d be the number

of discordant pairs. We define the sample version of the Kendall’s tau, denoted by T, as

c—di c—d
c+d n
2

i.e., T s the probability of concordance minus the probability of discordance.

T =

Following the same idea, the population version of Kendall’s tau is given by the difference

between the probability of concordance and the probability of discordance.

Definition 1.3.3. Let (X;,Y1) and (Xo,Y3) be independent and identically distributed random
vectors, each with joint distribution function H and copula C. We define the population

version of Kendall’s tau, denoted by 7xy or by ¢, as
Txy = Tc = P[(X1 — X2)(Y1 — Y2) > 0] — P[(X; — X5) (Y1 — Y3) < 0. (1.11)

The next theorem gives a way to calculate the population Kendall’s tau from continuous random
vectors.



Theorem 1.3.4. Let (X1,Y71) and (Xs,Y3) be independent vectors of continuous random vari-
ables with joint distributions Hy and Hs, respectively, with common margins F (of Xiand X3)
and G (of Y1 and Y3). Let Cy and Cy be the copulas of (X1,Y1) and (Xso,Y3), respectively. Let
Q) denote the difference between the probabilities of concordance and discordance of (X1,Y1) and
(Xo,Y3), t.e.,

Then
Q(Cl, CQ) = 4//12 CQ('LL, v)dC’l(u, U) — 1.

As a direct consequence of the theorem [1.3.4] we have that if 7xy is defined as in (1.11]), then

Txy =Tc = Q(C,C) = 4//12 C(u,v)dC(u,v) — 1 = 4E[C(u,v)] — 1.

Now, we give the definition of another measure of association based on concordance and discor-

dance, called Spearman’s rho.

Definition 1.3.5. Let (X;,Y7), (Xo,Y2) and (X3,Y3) be three independent random vectors with
a common joint distribution function H and copula C. We define the population version of

Spearman’s rho, denoted by pxy or by pc, as
pxy = pc = 3(P[(X1 — X2) (Y1 — Y3) > 0] — P[(X1 — Xo)(Y1 — Y3) < 0]), (1.13)

The Spearman’s rho is defined as the probability of concordance minus the probability of dis-
cordance for a pair of vectors with the same margins, but one has distribution function H, while

the other vector has independent components.

In the same way that Theorem [[.3.4] the next theorem establishes a way to calculate the

Spearman’s rho for random continuous variables.

Theorem 1.3.6. Let X and Y be continuous random variables with copula C. Then the popu-
lation version of the Spearman’s rho, defined as in (1.13)), is given by

pxy = pc =3Q(C,1Iy) = 12// wvdC(u,v) — 3 = 12// C(u,v)dudv — 3. (1.14)
12 1

Let X and Y be continuous random variables with distribution functions F' and G, respectively,
and copula C. If U = F(X) and V = G(Y), then U and V have the same distribution, uniform



(0,1), and joint distribution C'. Then E[U] = E[V] = 1/2 and Var[U] = Var[V] = 1/12, and

this implies

pry =pe =12 [ [ wwdCuv) -3 = 12B(0V] 3 - s 5[53[5]5[5%

(1.15)
i.e., the population version of Spearman’s rho for X and Y is equal to Pearson’s correlation

coefficient for U and V.



Chapter 2

Sample-d copula of order m

In this chapter we present the definition and the most important results about the sample d-
copula of order m. Moreover, in the first section, we establish two almost unknown results
about empirical distribution functions and empirical copulas. In the third section we compare
the sample d-copula of order m with the empirical copula, and we will see that the sample copula
is a better approximation in many senses. Finally, in the fourth section, we give the definition
of the copula called the checkerboard approximation and we give some basic result; besides we

establish a Glivenko-Cantelli Theorem for the sample copula.

2.1 Empirical functions

In this section we present the theorems of Glivenko-Cantelli for the empirical distribution func-
tion and for sample copulas. Besides, we give two results that establish bounds in the opposite
way that the Glivenko-Cantelli theorem, we can think these results as “anti-Glivenko-Cantelli

Theorems”. It is surprising that these results have been little studied previously.

Definition 2.1.1. Let X4,...,X,, be a random sample of size n from a continuous random
variables X and let X(y), ..., X(n) be their order statistics. The rank functionr: I, x R" — I,

s defined by
(4, X1, ..., Xn) =k, if and only if X; = Xy where j, k € I,.

Definition 2.1.2. Let X,,..., X, be a random sample of size n from a continuous random
vector X of dimension d, where X; = (X;1,...,Xiq) € R?, for every i € I,. Leti € I, the i-th
modified sample Y, = (Y;1,...,Yi4), is defined by

1
Yij=—r(i,X1,,...,Xn ) for every j € 1.
n

Example 2.1.3. Let X, = (2.2178,2.6011), X, = (—2.1351,1.9449), X, = (0.1139,0.2113),
X, = (—0.3874,3.0680) and X; = (0.7394,—2.0514) be a random sample of size n =5 from a

10



bivariate normal distribution with mean p = (0,0) and correlation coefficient p = 0.4. Then

5 4 13 392 2 5 41
1 (5’5)’—2 (5’5)’—3 (5’5)’—4 (5’5) anae Ls (5’5)

Definition 2.1.4. Let X,,..., X, be a random sample of size n from a random vector X of

dimension d, with continuous joint distribution H and unique copula C'. Let Y,,...,Y, be the

corresponding modified sample. We define the empirical copula, denoted by C,, : 1¢ — 1, by
1 n
Cr(ug, ..oy ug) = - Z L(—oou]x-x(—ooyug) (Yi1s -y Yia), for every (uy, ..., uq) € I¢. (2.1)
i=1

The following Theorem is the version of the Glivenko-Cantelli’s Theorem for empirical copulas:

Theorem 2.1.5. (Glivenko-Cantelli) Let C,, be the empirical copula constructed from a sample

of size n from a continuous joint distribution H with copula C'. Then

lim  sup |Ch(ur,...,uq) — Clug,...,uq)| =0 a.s. [Pl

where [Pc] is the probability measure on (R, B(R?)) induced by the d-copula C'.

Definition 2.1.6. Let Xy, ..., X,, be a random sample of size n from a random variable X with
distribution function F. We define, for every x € R, the empirical distribution function,
denoted by F,,, as

F,(x) = %Z 1o (X2). (2.2)

A well known result for distribution functions is the Glivenko-Cantelli’s Theorem:

Theorem 2.1.7. (Glivenko-Cantelli) Let X1, ..., X,, be a random sample of size n from a random
variable X with distribution function F, and let F,, be the empirical distribution function as in

([2.2). Then
lim sup |F,(z) — F(z)] =0 a.s. [Pg].

n—oo zeR
where Pr is the probability measure induced by F on R.

The Glivenko-Cantelli’s Theorem indicates that when the sample size goes to infinity the empir-
ical distribution converges a.s. to the theoretical distribution. But, what happens for a fixed n?
What is the bound for the “worst” sample? An answer to this question is given by the almost

unknown result:

11



Lemma 2.1.8. Let Xy, ..., X, be a random sample of size n from a random variable X with

continuous distribution function F. Let F,, be the empirical distribution function as in ([2.2]).
Then

sup |F,,(x) — F(x)| > 2i a.s. [Pgl. (2.3)

zeR n

Proof: Assume that F' is continuous and that the sample is ordered, that is, X7 < Xo < --- <
X,. As F, is a step function, we have for every k € {1,...,n}

k—1

n

Fo(Xy) = % and F,(X;) =

Then
sup [F(z) — F(z)] = max (max(|Fo (X)) — F(Xp)[, |[Fo(Xe) — F(Xi)|))

z€R 1<k<n
-1
= max (max(‘k —F(Xk) E_F<Xk)D)
1<k<n n n

If we also assume that, for every k € {1,...,n}, F(X;) = (2k—1)/(2n), that is, X;, = F(=Y((2k—
1)/(2n)), then

(2.4)

9

F—1 2k—1| [2k—2-2k+1| 1 |2k—(2k—1)| |k 2k—1
n om | 2n o 2n n on |
If F(Xg) # (2k—1)/(2n) then
k—1 k 1
Hence
|Fu() — F(2)] > max — — -
sup |Fo() = F2)] 2 max 50 = o0,

and ([2.3) is satisfied.

In the same sense that in the last lemma, we establish a bound between the real copula and the

empirical copula for the supremum distance and for a fixed sample size.

Lemma 2.1.9. Let X,,..., X, be a random sample of size n from a random vector X of di-
mension d, with continuous joint distribution function H and copula C'. Let Y,,...,Y, be the

corresponding modified sample, and let C,, be the empirical copula. Then

1
sup  |Cp(ury ooy ug) — Clug, ...y ug)| > ~ a.s. [Pc]. (2.5)

12



Proof: Let 0 < e < 1/n. Since C is a d-copula, then C(g, 1,...,1) = £, but by definition of the
empirical copula we have that C),(e,1,...,1) = 0, because we can not see any points with any

coordinates less than or equal to €. Then

lim |C,(e,1,...,1) = C(e, 1,...,1)| = —,
Jim [Ca(e 1 1) = C(e, 1)

and the result follows.

2.2 Sample d-copula of order m

The first concept presented in this section is the generalized transformation matrix. The matri-

ces of this kind are generated by a probability measure.

The main topic of the section is the sample d-copula of order m; this copula was first introduced
in [9], and the article [I1] presents some improvements. The sample copula assigns uniform
mass to every d-box generated by a generalized transformation matrix that is determined by

the sample.

We establish some important results: given a fixed size for the sample, the partition generated
by the generalized transformation is independent from the sample; the density of the sample is

constant on every d-box generated by the partition, and the sample copula is in fact a copula.

Definition 2.2.1. Let I,, = {1,2,...,n}. For dimension d > 2, let m € N, we define I¢, =

x4 T,,. Let T be a probability measure on (I, 25), 7 is known as a generalized transfor-

mation matrix if for all j € I and for oll k € I,

> T >0,

ield, ij=k

where i = (i1, ...,105-1,1; = k,ij41,...,14) € I¢ . 7 can be thought of as a d-dimensional matriz T,
considering

7(1) = Tiyoiy f i = (i1, .., i) € T2,

Example 2.2.2. Let

o

I
SCwim O
o owie
wim O O
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and

%00
00 %

Then A is a generalized transformation matriz and B is not.

Definition 2.2.3. Let 7 = (Ti,j)i7je{17_._7m} be a generalized transformation matrix where d = 2.
Define {q1.0,q1.1, -, @1.m} and {G20,92.1, .., @2.m} two partitions of I, such that g10 = qao = 0
and for i,j5 € I, we have that

i J

Qi = Z Z T and qo; = Z Z Tij-

i'=1j5€ln j'=1li€lny

We also define the partition induced by T on I? by

m

M= {quim1, Qi) X (q2j—1, Q2] for every (i,7) € I, X I,
J J J

where the ( notation indicates that the left end of the interval is closed if i =1 or j =1, and
open in any other case. Let Ily be the product 2-copula, and define the (Ily) transformation by

T(IL)(w,v) = > Tyt M dio1 S it TPyt S 7

V<ig < q1: — Q1,i—-1 =i 42,5 — 42,51 i

U—{(q15i-1 UV—(g2;-1
+ Ti,jHZ( ) ;
q1i — Q1,i-1 92,5 — 42,5—1

(2.6)

with u,v € QY for every i,j € Ip,.

Equation (2.6) is the same as equation 2.3.2 in Lemma 2.3.5 in the proof of Sklar’s Theorem in
[18], using the subcopula generated by the generalized transformation matrix 7. Equation ({2.6))

is a bilinear interpolation and hence 7(Il;) assigns the mass uniformly in every 2-box Q; ;.

Definition 2.2.4. Let m > 2 and let 7 = (74,,...i,) (iy,...ia)e(1)d be @ generalized transformation

matriz. We define g10 = qo0 = -+ = qao = 0, and for every j € 1; and for every k € I,
k m m m m
q]’k = : : : : T : : : : U : :Tilv---vijfl7ij7ij+17'--7i(i'
ij=lii=1  ij_1=lijpi=1  ig=1

Then 0 = g0 < gj1 < -+ < Qjm-1 < @jm = 1 15 a partition of I, induced by the matriz T in the

j-coordinate. For every i = (iy,...,iq) € (I,,)* we define
QZL = <QL(i1—1)7Q1,il] X <QQ,(i2—1)7q2,i2] X X <Qd,(id—1)7Qd,id]- (27)
Then the family (QF")ie(1,)¢ s a partition of I

14



Definition 2.2.5. Let 2 < m < n and let X,,...,X,, be a random sample of a size n from a
random vector X of dimension d, with continuous joint distribution H or d-copula C, where
X, = (Xi1, .., Xiq) € RY for every i = 1,...,n. Let U, = {Y,,..., Y, } be the corresponding

1

modified sample. Define the uniform partition of size m of 1¢, where for every i = (iy, ..., iq) €

(1"
1 1
R;”:<“ ,Z—l]x---x<zd Z—d} (2.8)
‘ m ' m m ' m
Define
(. card(R" NU,)
11,(...,)zd - ;l ) (29)

S, = (SZ(m)zd)(zl ..... iq)€(Im)ds (2.10)

then S}, is always a d-dimensional generalized transformation matrir. Finally, let (QF" )1,y be

the partition of 1¢ induced by the generalized transformation matriz S™ given in equation ([2.7)).

Using the partition (Q7"

7 )ic(1,,)4, we define the sample d-copula of order m by

Ch(uy, ...yuqg) = Sy () (uy, ...y ug), (2.11)

as in the generalization of equation (2.6)), where I1; is the product copula in I¢.

The function C was first proposed in [9]. We will see that C is an estimator of the true copula
C because is an estimator of C™ the Checkerboard approximation, see Definition below.
For a more in-depth study of C see [11].

We give the following example to clarify the definition of the Sample Copula of Order m:

Example 2.2.6. Let X, = (—0.2787191,0.8874746), X, = (—1.60796965,0.9300367), X, =
(3.85470838, —2.7634594), X, = (3.83099590, —1.7714260) and X, = (—0.87848834, —0.78799474)

be a random sample of sizen =5 from a bivariate t distribution with 3 degrees of freedom, mean

1= (0,0) and variance-covariance matrizc

5 =2
v=(2 %)
According to definition[2.1.3, the modified sample is given by Y | = (3/5,4/5),Y, = (1/5,5/5),Y 3 =
(5/57 1/5)7X4 = (4/57 2/5)7Z5 = (2/57 3/5) Let U5 = {Xla -'-7X5}'

15



For m = 2 we have
R%,l ﬂ U5 - @7

R%g NU; = {X27X5},

R%,l NUs ={Ys5,Y,},

R3,NUs ={Y,}.

Then the matriz defined in 15 given by

sg=< )

The partition induced by S5, as in deﬁm’tion 1s determined by
10=q0=0,q11 = q1=2/5,q12 = 2= 1.
Then
1= 1[0,2/5] x [0,2/5], Q3 , = [0,2/5] x (2/5,1],Q3, = (2/5,1] x [0,2/5],Q3, = (2/5,1] x
(2/5,1].
By equation , the sample 2-copula of order 2 is given by

alo O
G =O DN

‘0 if (u,v) € Q%l
u<5'u3—2) if (u,v) € Q,

C3(u,v) = { (5u32>v if (u,v) € Qgg ’
() (o) () o e

and its density is given by

Zf (uv U) S Q%,l
if (u,v) € Q%z U Q%l
Zf <u7 ’U) € Q%Q'

We observe that the density is constant in every 2-box and is given by s; j/N*( f,j), fori g €I,

cg(u, v) =

olowlon O

where A\* denotes the Lebesques measure in (R?, B(R?)).
Now, for m = 3 we have

RN Us =0, for (i,5) € {(1,1),(1,2),(2,1),(3,3)},
Ri;NUs = {Ys,},

R, NUs = {Y5},

R%,:& NUs ={Y,},

Rg,l NU; = {Y},

16



Then

00%
5 5 0

The partition induced by S5 is determined by
G10=q0=0,q110 =q1=1/5,q12=q2=3/5q13= q3 = 1.
Then

11 =10,1/5]x[0,1/5], @1, = [0,1/5] x (1/5,3/5], @} 5 = [0,1/5] x (2/5,1], @3, = (1/5,3/5] x
[0,1/5], Q35 = (1/5,3/5] x (1/5,3/5], Q35 = (1/5,3/5] x (3/5,1], @3, = (3/5,1] x[0,1/5], Q3 , =
(3/5,1] x (1/5,3/5],@%73 = (3/5,1] x (3/5,1].

Hence, the sample 2-copula of order 3 is given by

(0 if (u,v) €@, UQT,UQS,
uf B2 if (u,v) € Q4
% 5u;1 <5v21> if (u, U) S Q%Q
C3(u,v) =< 4 5(u+2v)_4) + %(5u_2—1) (%) i (u,v) € Qs
<5u2—3>v if (u,v) € Q3
%(B(U-‘r;)_‘l) + %(%) (%) if (U, U) € Qg,Z
\ U+ v— 1 Zf (ua U) € Q§,3'

and its density is given by

if (u,v) € Qil))l U Q?z U Q%l U Qg?)
Zf (U, U) € Qi?) U Qg,l
if (u,v) € ng U Q§,33 U Qg,z-

cg(u, v) =

lowojon O

Again, we observe that the density is constant in every 2-box and is given by s; j/ \*( ?,j)’ for

i,j €I,

For m = 4 we have
Rfij NUs =0, for (i,7) € {(1,1),(1,2),(1,3),(2,1),(2,2), (2,4),(3,1),(3,2),(3,3), (4,3), (4,4)},
Ril,z; NUs ={Y,},
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R§,4 NU; = {Xl}v
Ril NUs = {X3}7
RiaNUs ={Y,}.
Then

55 =

a= O O O
O O O
O ull—= O ut=

S Oui O

The partition induced by S3 is given by
71,0 = G20 =0,q11 = G21 = 1/5, qi12 = (422 = 2/5, 41,3 = (42,3 = 3/5, Q14 =G24 = 1.
Then

11 =10,1/5] x [0,1/5], Q1 = [0,1/5] x (1/5,2/5], Q1 5 = [0,1/5] x (2/5,3/5], Q1 4 = [0,1/5] x
(3/5,1], Qa1 = (1/5,2/5]x[0,1/5), Q35 = (1/5.2/5]x(1/5,2/5], Q3 5 = (1/5,2/5]x(2/5,3/5], Q34 =
(1/5,2/5] x (3/5,1], Q31 = (2/5,3/5] x [0,1/5], Q3 = (2/5,3/5] x (1/5,2/5], Q3 5 = (2/5,3/5] x
(2/5,3/5], Q34 = (2/5,3/5] % (3/5,1], Q41 = (3/5,1] x[0,1/5], Q4 = (3/5,1] x (1/5,2/5], Q4 3 =
Thus, the sample 2-copula of order 4 is given by

(0 if (u,v) €A
u(%) if (u,v) € Q%A
()02 i () € Qly
Houm14222) i (w0) € Q4
Cf(u,v) = ¢ 22 if (u,v) € Q34
%(1 + 5”2—3 + (bu —2) (%)) if (u,v) € Q§,4
(5u23),0 if (u,v) € Qil
%(% + (%) (5’1) — 1)) Zf (uv U) S QiQ
| uto—1 if (u,v) € Q1,UQL,,

where A = Qil,l U Q%,z U Qzll,3 U Q%,l U Q§,2 U Q§,1 U Q%,z'
The density is given by

18



if (u,v) € Q%J U Q%g U Qzll,?, U Q%,l U Q%,Q U Q%A U Qé,l U Q§,2 U Q§73 U Qi,?, U Qi4
if (u,v) € Q%A U Q§74 U Qil U Qiz
if (u,v) € Qéﬁ.

ci(u, v) =

Otojon O

We observe that the density is constant in every 2-box is constant and is given by s; j/N*( f’j),

fori,j5 € L,.

Let m = 5. Then we have that

Ry ;N Us =0, for (i,5) € I3\ {(1,5),(2,3),(3,4),(4,2), (5, 1)},
R?,5 NU; = {Y,},

Rg,?, NUs = {XE)}a

Rg,z; NUs = {Y,},

Ry, NUs = {Y,},

Rg,l NUs = {¥s}.

Then the generalized transformation matriz is

S5

I
Tk O O O O
Cum o O O
o o ouro
o our o O
o o o oulm

The matriz induces the partition

Q0= qo=0,¢11 = @1 = 1/5,611,2 = ({22 = 2/576]1,3 = Q23 = 3/5,Q1,4 = (@24 = 4/57611,5 =
q2,5 = 17

and in this case we have that (Q? ;) perz = (B ;)i jerz-

The sample 2-copula of order 5 is given by

(

0 if (u,v) € B
u(5v - 4) i (uv) € Qi
Wou-1)(6u-2) if (o) € Qs
{ou—1) i (o) € Qf,

C2(u,v) =% u+v—1 if (u,v) € C
(50— 2) i (uv) € Qi
i+ Gu-2)6v-3) if (uv)eQ],
Wu-3Go-1)  if (wv)eQly
\ (5u - 4)U Zf (u?v) < Qg,lu

where B = Q?,l U Q?,Q U Q?,s U Q?A U Qg,1 U Qg,z U Qg,l U ng U Qi,l and C' = Qg,s U Qg;) U QZ,:; U
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QiaUQI; U@, UQ,UQ3,UQs,.
The density is determined by

O A D e B,
5 if (u,v) € QisUQy3UQ3,UQ;,UQs;.
We notice that, in the same way that in the previous cases, the densilty of the copula is constant

in every 2-box and its given by s;;/N*(Q7;), fori,j € Iy,

We will see in the next theorem that the partition defined in does not depend of the sample

and we will see that the density of the copula is constant on every d-box:

Theorem 2.2.7. Let 2 < m < n and let X,,...,X,, be a random sample of size n from a
random vector X of dimension d, with continuous joint distribution H or d-copula C, where
X, = (Xi1, .., Xiq) € RY for every i = 1,...,n. Let U, = {Y,,...,Y,} be the corresponding
modified sample.

Let 2 <m < n fized and define (R}");c(1,.ye the uniform partition of size m of I as in equation

(12.8), sz(m) as in equation (2.9), the generalized transformation matriz S, as in equation

std
, the partition (Qf")ic(r,ne of 1¢ induced by S" given in equation , and C), the
sample copula of order m as in equation . Then
i) For the partitions of (QF")ic(r,,)e we know that 0 = q10 < q11 < -+ < qum = 1, but we also
have that

6G0=0,0=0,01=0q11,02= Q2 -, QGm = Q1.m = 1 for every j € {2,3,...,d}, (2.12)

that is, in the d coordinates the partition of I does not change. Even more, with probability one,
the partition 0 = q10 < q11 < --- < q1,m = 1 only depends on n and m, and does not depend on

the sample; in fact we have that

1 |(j5-n
= € {0,1,2,...,m}, 2.13
¢ " L - J for every j € { m} ( )

where |a| denotes the greatest integer less than or equal to a.

i) Let A% be the Lebesque measure on the measurable space (R, B(R?)), where B(RY) denotes
the o-algebra of Borel. If C denotes the sample copula of order m, let us denote by c}., its joint

density function. Then

A (U, ey ug) = SZ,(TL/)‘CI( ) for every (uy, ... uq) € Q7 and (iy, ..., iq) € (In)".

(2.14)
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Hence, the density is constant on every d-box Q) . of the partition of I¢ induced by ST..

Besides, if Mg > n then exists at least one d-box Q]! , on which the density is zero. In fact,

7id
at most there are n d-boxes with positive density.

iii) For every 2 < m <n, C" is always a d-copula.

) Assume that m divides n, the the partition (Qf'),e(r,ya of I¢ coincides with the uniform

partition (R")ie(r,,)* of size m.
v) If m = n there are exactly n elements of the partition (QF")ic1,.) = (Ri")ic(r,,)¢ on which the

d—1

density equals n®* and the remaining elements have density zero.

Proof: i) We observe that for every k € I,, and for every sample of size n, Y, always has the

v, (Pl(k;) Py(k) "Pd(k;)) 215

form

s 5
n n n

where P; is a permutation of I, for every i € I;.

We define, for every k € I; and for every [ € I,

- Py (i)
Ni(k) = 1. — . 2.16
(b) Z(}(n) (2.16)
Since Py is a permutation, for every k € I;, we have that N;(1) = N;(2) = --- = N,(d), for every
[ € I,,. From this observation it follows that for every j € I,
450 = q1,0 = 0, i1 = 411,952 = 41,25 -, @5m = q1,m = L, (2-17)

and besides, for every j € {0,1,2,...,m},

1 J
a1 = EZNZ(U

=1
ey
= - 1, Pi() 1
< <=
1 Zn 2.18)
= — 1, p_y ( ’
O<—Lt2<L
n < {0<===51)
== loenpein)
=1



ii) Let pucn be probability measure generated by C7 in (I?, B(I%)). We notice that, by definition,

for every (iy, ...,1q) € (I,n)?, we have that

pen (Q )= st (2.19)

On the other hand, let ¢, be the density function associated with C7. Then for every (i1, ...,1q) €
(I,,)* we have that

a1,iy a1,iy
pon (Qi) i) = / .. / (U, .oy ug)duy . .. dug, (2.20)

q1,(ig—1) q1,(iq—1)

and moreover
d

d1,ig4 q1,iq
)\d( ?117__.7”) = / . / 1du1 e dud = H(qu — qL(ik,l)). (221)
q

1,(ig—1) 4q1,(i1 —1) k=1

By the definition of the sample d-copula of order m it follows that ¢}, is constant on every d-box.

Hence

A (Uyy ey ug) = SZ’fﬁd/)\d( i) forevery (uy,...,uq) € Q7 ;. and (iy, ..., i4) € (I)".

Now, we assume that My > n. We have that for (uy,...,uq) € Q7 ;. , ¢y (u1,...,uq) > 0 if and

only if sz(mzd > (. Since S} is a generalized transformation matrix we can conclude that there
are at most n d-boxes with positive density.

iii) We have already proved that C" is a d-subcopula in {q10, q1.1,---, ¢1.m }*. Then, by the proof
of Lemma 2.3.5 in Nelsen’s book [18], we have that C7 is a d-copula.

iv) We assume that m divides n. There exists | € N such that n = [ - m. Thus, for every

j €40,1,2,...,m} we have that

1 |7-1l-m 1 .
W=y T TRt

A
-
v) Let m = n. We notice that Ny = N, = --- = N,,, = 1, then there are exactly n elements of

the partition (Qj")ic(r,,)¢ on which the density is positive and has the form

2

and the remaining elements have density zero.
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The following definition can be understood as the maximum distance or the “distortion” between
the uniform partition and the partition induced by the generalized transformation matrix given
in2.2.4
Definition 2.2.8. Let 2 < m < n. Let, for every k € I, 0 =rpo < 1/m =11 <2/m =142 <
< (m—=1)/m=1pm-1 <1 =7rkm. Then (rr;)rciyjcf{o1,..m} generates the partition induced
by the uniform partition of size m. We define the distance between (R]");c (1,2 and (QF")ie(r,.)
by
m((R"), (@) = = G- 2.22
n((R)QM) = _max iy = auy| 2:22)

In the next proposition we establish a bound for the distance e,, defined above:

Proposition 2.2.9. Let 2 <m < n, (R]")icq,,)e as in (2.8), (QF)ie,)e as in (2.7) and e, as
i (2.22)). Then

nmxem«ET%(Q?»<:% (2.23)

2<m<n

Proof: Since z — |z| < 1 for every z € R, we notice that for every j € {0,1,...,m} and for

g Jn |1 mn n
m m|n m m

every 2<m <n
1

T~ G
J J n

1
<_7
n

and hence the result follows.

Remark 2.2.10. If n is a multiple of m then en,((R}"), (Q7")) = 0, and this follow directly from
Theorem part iv).

The following lemma shows that, in some cases, the sample d-copula of order m coincides (in

the supremum distance) with the real copula.

Lemma 2.2.11. Let d > 2 be an integer and let n > 4 be an even integer. Then there exists

2<m<n, C ad-copula and a sample of size n from C, such that

sup  |Cp (uy,...,uq) — C(uq, ...,Cy)| = 0. (2.24)

(u1,...,uq)€Id

Proof: Let ¢ be a function such that

C<uh_._’ud)_{ 2471 if (wy, .. ug) € 10,1/2)14U (1/2,1])4

V0 i (g, ug) €19\ [0,1/2]4 U (1/2, 1)
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We will see that C' is a d-copula with density function c. In order to see that, let u; = 0, for
some 1 < j < d. Then

up uj_1 0 Ujt1 Ud
C(ul,...,uj_l,O,qu,...,ud):/ / / / / (1, .y xg)drg - - dry = 0.
0 0 0o Jo 0

Let 0 <wuy < 1. Then

C(us, 1, ..., / / / c(xy, ..., xq)dzy - - - dxg. (2.25)

fo<u < %, then ([2.25) is equal to

I a
/ / / / 2d 1daj‘1 _2d 12d 1U1 = Uux.

If 1/2 <y <1, then (2.25)) is equal to

1 1 1 2d—1 1
2Ly ooidr, = = + — ) = u.
/0 /0 X1 Ty 5 + a1 (u1 2) Uq

Finally, as ¢ is a nonnegative function, then clearly C'is d-increasing. Hence C' is a d-copula.
Now, let m = 2. We notice that, by definition, all the mass of the d-copula C' is accumulated in

5. Let X, ..., X; be arandom sample of size n from the copula C', and assume

----------

that exactly n / 2 elements of the sample fall in the d-box R%’l 1. Then obviously the remaining

.....

, a.s. We observe that the modified sample U,, =Y,,....Y

,,,,,,

satisfies the same conditions as the sample. Then s;’ 1() = 352)2 = 1/2, and the remaining
Si1,...i, = 0. Besides, by the theorem the density of the d-copula C7), i

291 if (uy, ..., ug) € [0,1/2)4 U (1/2,1)%

(11, ) = { 0 i (ur, g € 19\ [0.1/27 0 (1/2, 1]%

Hence is satisfied.
2.3 A comparison between the sample copula and the
empirical copula

It is very important to mention that the sample d-copula of order m is far easier to compute

than the empirical copula, the Bernstein copulas or the beta empirical copulas, see [I3] and
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[20]. All three have been used to estimate the true copula C, but as shown in [II], in all of
these cases we may obtain better approximations to the true copula C' using the sample copula.
In fact, when the sample size is not small or the dimension is slightly large, in many cases the
empirical copula, the Bernstein copulas or the beta empirical copula are impossible to evaluate

in a standard computer.

In the first result of this section we determine a bound for the supremum distance between II
and M for the case d > 2 and also we give a bound for the case d = 2 for the supremum distance
between II and W.

Proposition 2.3.1. Let d > 2 and 11y, My and Wy as in (|1.6)), , and (1.4]), respectively.
Then

d—1
sup . [a(ur, ..., ua) — Ma(ur, ..., ua)| = J4/(@-1)’ (2.26)
(U1,...,ud)€I
where the supremum is attained at uy = ug = - - = ug = (d¥@=1)=1,
Besides,
1
sup |[a(u,v) — Ma(u,v)| = sup |[Ig(u,v) — Wa(u,v)| = 7 (2.27)
(u,v)el? (u,v)el?

where the supremum is attained in u = v = 1/2 in both cases.

Proof: Let 0 < upy < up) < -+ <y < 1such that P(u) = u;, for 1 <k <d, 1 <5 <d,

and P is a permutation of I;. Then

d
sup (g, oy ug) — Ma(ug, ..., uqg)| = sup UGy — (1)
0<u (1) Su(z) < S <1 0<u)ySu@) < Su@ <1 |y
d
= sup u(r) ugy — 1
0<u(1)<uz)<-<ugy<1

d
= sup U(1) (1 — Hu(i)>

0<u(1)<ug)<-<ug<l

_ _d-1
—OSI}}(?)’&U(I)O Uy )-

(2.28)

Let f(u) = u(l — 1), for 0 <u < 1. Then f'(u) = 1 — du?"!, and it follows hat f'(u) = 0 if
and only if u = (d*/(@=Y)~1. We observe that f”(u) = —d(d — 1)u?? < 0, and hence f reaches
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a maximum at u = (d/(4=V)~! and

L \__t (, 1\ d-1
I\ @ ) = g\t~ \ s =A@,

and ([2.206) is satisfied.

Now, let 0 < a < 1. We have that

sup |Iy(u,v) — Wa(u,v)| = sup |uv — max(u+ v —1,0)]
(u,v)€el? (u,v)€I?

= max{ sup |uv —max(u+ v —1,0)|, sup |uv — max(u+v —1,0)|}
utv<l utv>1

= max{ sup wv, sup |uv —u—v+ 1|}
u4v<1 u+tv>1

=max{ sup u(a—u), sup (u—1)%}.
0<u<1/2 1/2<u<1
(2.20)

Let f(u) = u(aw —u), for 0 < w < 1/2. Then f'(u) = a — 2u, and f'(u) = 0 if only if
u = a/2. Besides, f”(u) = —2 < 0, then f reaches a maximum at u = a/2. We observe that
f(a/2) = a*/4. Letting a 1 1 we have

o2

( ) =i 1
sup u(a —u) = lim— = —.
0<u<1/2 afl 4 4

Let g(u) = (u—1)2, for 1/2 < u < 1. We have that ¢'(u) = 2(u — 1) < 0, and then the function

g is strictly decreasing, hence reaches a maximum at v = 1/2. Then

1 1
sup (u—1 229(—) = -,
1/2§u§1( ) 2 4
and the result follows.

We notice that if we define h(d) = (d — 1)/(d%{@=V), then it can be easily proved that

lim A(d) = lim 94— _ 1. (2.30)

d—o00 d—o00 dd/(d_l)
Let %, be the set of all d-copulas. We notice that if we define, for every C;, Cy € 6,

dsup(Ch, C) = sup  |C1(ug, ..., ug) — Co(uy, ..., ug)|,

then (6, dsyp) is obviously a metric space. Besides, by (1.5 and (2.30)) if Cy, Cy € 6, then

0 S dsup(Cla CZ) S 1.
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Definition 2.3.2. Let2 < m < n and let X,, ..., X,, be a random sample of size n from a random
vector X of dimension d, with joint distribution H and copula C. Let U, = {Y,,...,Y,} be the
corresponding modified sample. Let C,, be the empirical copula defined as in , and let C7,
be the the sample copula of order m defined as in equation . We define

G ) - o)

n n n n

S N e ! (2.32)
n n n n

Remark 2.3.3. The function dg,,, is never a metric, and (€y, dsup,

dsup, (Cp, C') = max < sup

(15eees id)EIg

,l>, (2.31)

n

and

Quupy iy (G C) = sUD

(i1yeyia) ETS

(m)) 18 a pseudometric space.

The idea behind the definition in equation ([2.31)) arises from the Lemma , ie., dgy(Cp, C) >
1/n. Directly from the definition dg,,, (C,, C) > 1/n, and then dg,,, is not a metric. We notice
that from Theorem[2.2.7/C" is a d-copula, and if C is a d-copula such that for every (ui, ..., uq) €

14, C" (uy,...,uq) = C(uy,...,uq), then it is obvious that in particular C7(iy/n,...,iq/n) =
Clir/n, ...,ig/n), for every (iy, ...,i4) € I%, and hence Asup,, oy (Cpy C) = 0; but if CF, (i1 /n, ... ia /1) =
C(ir/n, ...,ia/n) for every (i, ...,iq) € I} does not imply that C, = C. Hence (64, dop, ,,) is @
pseudometric space.

Since {(i1/n, ...,iq/n)|(i1, ..., 1) € I?} C 14, it is obvious that for every d-copula C
dsupn(om C) < dsup(cnu C), (2.33)

and
dsupn,(m) (C:vlw C) S dsup(cgn C) (234)

The following example shows that in (2.33]) the inequality can be strict.

Example 2.3.4. Let d = 2, m = n = 2 and C = Ily. Let Uy be the modified sample. We
notice that Uy only can be of the form Uy = {(1/2,1),(1,1/2)} or Uy = {(1/2,1/2),(1,1)};
and takes every form with probability equal to 1/2. If the modified sample has the form Uy =
{(1/2,1),(1,1/2)}, we have that

-

Aoup(Co, Iy) = sup |Ca(u,v) — Ha(u,v)| > |Co(1 —&,1 —¢) — (1 —¢)?| = (1 —¢)*.

(u,v)€I?

1 1

2 2

1
dsup2<c27H2> = max (’0 — Z" 5 _ 2

1 1 '

Let 0 <e < 1. Then
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Letting € | 0, we have that

dsup(Ca, 115) > 113]1(1 —e) =1

Hence

1
1= dsup<c2> H2> > dsupg (027 HQ) - 5

On the other hand, we have
11 11 1 1
2 o 2 o o
e ) R [

1
T
Now, if the modified sample has the form Uy = {(1/2,1/2),(1,1)}, we have that

and hence

1 = dgp(C3,1Ip) > Asupy (3 =

1 1)1 1p|1 1 1 1
dSu C,H - a  abla  Aalla &l _17_ )
st = (g =gl =gl o3l 1 }a]) =
and
dsup(C2, 112) = sup |Ca(u, v) — Ia(u, v)
(u,v)€I?
= max( sup |0 — uv|, sup |0 — uvl),
(uv)eRt 1\{(1/2),(1/2)} (uw)eR? )\{(1/2,1/2)}
sup 0 — |, |Ca(1/2,1/2) —T1,(1/2,1/2)|, sup [1/2 —uwv])
(uw)eR3 1 \{(1/2,1/2)} (uv)ERS ,
B 11111 1
M \wrrrrz) Ty
(2.35)
Hence

1 1
5 = dsup<02’ H2> - dsup2 (027 HQ) = 5

On the other hand, we have

11 11 1 1] 1
o @1 =08 (3:3) - (3:5) | =[5 - 3| 5
and hence

1
5= Aoup(C3,T15) > Dsupy ) =
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The next example shows that in some cases dgyp, (Cr, C') = dgup(Cp, C') on the grid
{(ir/n,..sia/n)|(iv, .. ) € 17}

Example 2.3.5. Let X, ..., X, be a random sample of size n from the copula M, defined as
m . Let U, ={Y,,....,Y,} be the corresponding modified sample. Since My has as support
the principal diagonal, we have that X, = (u;, u;, ..., u;), for all i € I,,, with u; € I. We can
assume (reordering if necessary) that uy < ug < --- < uy, and then Y, = (i/n,i/n,....;i/n), for

all i € I,. Then, for (v, ...,vq) € I we have

C(v va) = 0 if there exists i € Iy such that v; < 1/n
P BT knif k> Vi€ Iy and 3 € I such that v; < (k+1)/n,

where k € I,,.
Let (i, ...,iq) € I2. By definition

. . 1
Md (Z—l, ceey Z—d> = —min(il, ...,id),

n n n

C<——d> - Md<ﬁ,...,@)’ 0
n n n n

Definition 2.3.6. Let 1 and v be two probabilities measures on (R4, B(R?)). We define the

total variation distance between p and v, denoted by dry, as

and hence

sup
(i1,..-,0q) €T

drv(p,v) = sup [u(A) = v(A)].

Recall that if f, and f, are the Radon-Nykodim’s derivatives of ;1 and v, respectively, then

1
0 < drvlnv) = [ 1fu= HlaX <1,
R

where A\ is the Lebesgue measure in (R<, B).
Let Uy, ...,U,, be a random sample from the product copula II,. Let m = n and consider the

d-sample copula of order m. In this case we are considering the uniform partition of size n,

(Rgl)i€ 4, and according to Theorem the density of the copula C" is n?~! in exactly n

boxes and is zero in the remaining boxes. Let J C I¢ be the subset of n indices where the
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density of C is positive and let . Let fr, and fon be the densities of II; and C?, respectively.
Then

(T C3) = 5 [ 1y = fegla
1
-2 Z/ a4 / |1—0|dAd]
- iedJ i€(IP\J)
1 r d—1 __ 1 d _
Afa(t 1) i (230
2 nd nd
1 1 1
9 1_nd71+1 nd1:|
1
=1- nd—1

Hence

hIIl dTV(Hda OZ) = 1,

n—oo

and, moreover, for a fixed n we have

lim dTV(Hd>C:~Z> =1.
d—o0

2.4 Checkerboard approximation

In this section we define the Checkerboard approximation and give some basic results about it.
Also, we present an important result on the convergence of this copula to the real copula.

The most important result of this section is the Glivenco-Cantelli’s Theorem for the sample
d-copula of order m. We use the checkerboard approximation to prove the theorem.

Using the notation in Lemma 2.3.5 in Nelsen’s book [I8], we give the followings definitions:

Definition 2.4.1. Let (a,b) € I? and let C' be a 2-subcopula with finite domain Sy X Sy. Let a;
and ay be, respectively, the greatest and least elements of S1 that satisfy a1 < a < as; and let by
and by be, respectively, the greatest and least elements of Sy that satisfy by < b < by. Clearly, if
a € Sy, then a; = a = as, and if b € Sy, then by = b = by. We define the quantities \(u,v) and
pi(a,b) as follows

M(@.8) = A = { ga —a1)/(az — a1) 2; Zi i Zz,
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and

paa,b) = py = { (1b_ b/t =) Z Zi - Zz
By the proof of Lemma 2.3.5 in Nelsen’s book [I§], we have that, if we define
C(a,b) =(1 — A (a,b))(1 — pu1)(a,b)C"(ar,by) + (1 — Xi(a, b)) p(a, b)C'(ay, bs) (237
+ A (a,b)(1 — p1)(a,b)C’'(az, by) + A (a, b)ui(a, b)C'(as, ba),

then C'is a copula.

We give the following definition according to [15]:

Definition 2.4.2. Let X be a random bivariate vector with joint distribution function H and

copula C. Let m > 1. For every (u,v) € 12, we define the checkerboard approximation of

C' using the uniform partition of size m, denoted as C™, by

ZZ{ ( . “ } v <(1‘A1<“ o)1~ (v, v>>0<i_1/;1)

m m
7=1 =1

3\“

’m

z—l

) + A1 (u, v) (1 = (u, U))g(%) %)

g |%.

(1= M, 0)) e (,0) (

+ A (u, 0)pa (u, 0) (% %)} (2.38)

Equation ([2.38)) is the same as in Lemma 2.3.5 in the proof of Sklar’s Theorem in Nelsen’s book

using the copula C, i.e., C™ assigns the mass uniformly in every box R; ;. The checkerboard of
order m, is an approximation of the density of a true d-copula C', based on a uniform partition
of I =10,1], given by {0,1/m,2/m,...,(m —1)/m,1}.

The following lemma establishes a Gilvenko-Cantelli’s Theorem for the supremum distance be-
tween C™ and C"

Lemma 2.4.3. Let X be a random bivariate vector with copula C. Let m > 1 and let C'™ be
the checkerboard approximation as in (2.38). Then, for every m > 1,

2
sup |C"™(u,v) — Clu,v)| < —.
(u,v)€I? m

In fact we have, in general

sup ’C(m)(uh'”aud)_C(uh”'?ud)' <

d
-
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Moreover, it is well known, see [, [5], [14] and [16], that C™ is a good approximation of the
true copula C even for moderate values of m. In fact, C™ is a good density approximation for

the true copula C. It is also trivial to see that C'™ has a density given by

c(m)(ul, ooug) = Vo(R id)/)\d(R’;f ..... id) =M, - Vo(m) for every (uy,...,uq) € R
where \¢ is the Lebesgue measure on the Borel space (I¢, B(I?)). Hence, the density is constant
on each of the d-boxes of the uniform partition for every (iy,...iq) € I¢.

We notice that if we take C' = I, in Definition then we have that, for every m > 1,
C™ =Tl,. In order to see that let (a,b),ay,as, by, by, C’', Ay and g as in Definition And
let C" = Il,, then by equation (2.37)) we have

as — Qa bg—b s — Q b—bl
Cla,b) = b b
(@5) (az—a1)<bz—b1)al e (az—%)(bz—bl)al ’
a — ay bg—b a — ay b-bl
b b
" <a2—al> (bz—bl>a2 e (az—al) (bz—bl)a2 ?

a1a2b1b2 — a1a2b1b — alblbga + alblab + Cllagbgb — a1a2b1b2 — albgab + alblbga
(az — ar)(bs — by)

agblbga — agbl(lb — ala,gblbg + alagblb + aszab — azblbg(l — a,laszb + (Zlazblbg
(ag —ay)(by — by)

(a1b1 — albg — a2b1 + agbg)ab
= = ab = 1ly(a, ).
(a2 — a1)(by — b1) ! 2,

(2.40)

Let (u,v) € I? and take C' = II, in equation (2.38). Then there exists a unique (4, 5) € I,,, such
that (u,v) € ((i — 1)/m,i/m] x ((j — 1)/m,j/m]. Then using equation ({2.40)) we have that
C(m = Tl,.

The next theorem shows that if we take C),, the empirical copula, as the subcopula used in the
proof of the Sklar’s Theorem given in [I§], then the resulting copula is C”, the sample copula

of order m.
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Theorem 2.4.4. Let 2 < m an let n be a multiple of m. Let X4, ..., X,, be a random sample of
size n from a random vector X of dimension 2, with copula C;and let U, ={Y,...,Y,,} be the
corresponding modified sample. Let C,, be the empirical copula defined as in , and let C7,
be the the sample copula of order m defined as in equation (2.11). Then for every (u,v) € I?

-7:1 i=1 “m 'm m ‘m

iZ{ ( B ]( J}(wv)((lAl(uw))(lul(u,v))on(iml,%)

i—l

(1= Al o) (s ) (

+ Ar(w, v)pa (u, v) (% %)}

3 |<.

) + A (u,0)(1 — “1(%11))0”(1, 3;1)

(2.41)

Proof: Let (u,v) € I, let 2 < m and let n be a multiple of m. Then there exists (i, ) € I2

such that (u,v) € R ; = <u i] X <]71 —] and besides there exists k£ € N such that n = mk.

m ' m

= <<i _kl)n’%} " <W%]

By definition of the 2-volume of a subcopula, we have that

n n n n

Then

- ﬁ [Z 1{%,1§(ik)/n,Yz,2§(jk)/n} - Z 1{Yz,1S((i—l)k)/n%,gé(jk)/n}
=1 =1

o Z Lvia<(imy/mYio<(G-1k) fny T Z 1{%,1<((i1)k)/n7Yz,z<((J'1)’6)/”}}
=1 =1

T Z 1{((i—1)k)/n<Yz,1S(ik)/nv((j—l)k)/nd’z,zS(jk)/n} -
=1

card(Rij NU,) n(m)

n = Sij

?

(2.42)

where s’;’j(m) is defined as in equation (2.9).
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Now, by the definition of the sample copula of order m, we have

N n(my  nu—(i—1)k n(my . v —(j—1k n(m
C (u,v) = Z SZ-/S-/ ) 4 — ZSM(/ )+ - ZS@'/,E' )

i’ <i,j'<j §'<j i<i

L (= (= DE)(nw = (G = DE) o)

k2 i,J

- Z 531571) +Ai(u,v) Z Szlj(’m) + pa(u,v) Z S;igm) + A1 (u, v)p (u, v)s%(m),

i1 <d,j’ <j J'<J i/ <i

(2.43)

On the other hand, if the right side of (2.41)) is equal to «, then
— 1Dk (j — 1)k ik (7 — 1)k — Dk (j—1)k
a:Cn<<Z ) 7(] ) )JrAl(u,U)[Cn(l_’ (-1 )_Cn((z )k (1) >]

n n n n n n

+ o1, v) {Cn(@ _n”k, ﬁ) e (“ — Uk G- 1)’“)] (o o) (u, ) {cn(% J_’f)

n n n n

- (Jn((i —n1)k’%) —@(%W) +On((i —nl)k7 (U —nl)kz)]

- Z S?ngn) + A1 (u,v) Z S:L](,m) + 1 (u, v) Z s:fgm) + Ay (u, ) (1, 'U)SZ}(m),

i/ <4,5'<j 3'<3 1<

(2.44)

and the result follows.
The folloging theorem is a version of the Glivenko-Cantelli’s Theorem for the sample copula of

order m.

Theorem 2.4.5. (Glivenko-Cantelli) Let m > 2 and let n be a multiple of m. Let X, ..., X,
be a random sample of size n from a random vector X of dimension d, with copula C. Let C}!
be the sample d-copula, defined as in equation (2.11)). Let € > 0; then there exists N, € N such

that if n,m > N, with N. < m <n, then

sup O (uy, ..oy ug) — Cluy, ..., uq)| < € a.s [Pol. (2.45)

m

Proof: We will do the proof for the case d = 2. Let ¢ > 0 and let C), be the empirical copula as
in (2.1). From the Glivenko-Cantelli’s Theorem for the empirical copula, there exists N;. € N
such that if n > N; ., then

sup |Cy(u,v) — C(u,v)| < as [Pe],
(u,v)€I? 2
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and it follows that, for every (u,v) € I?

1, v) — Clu, )| < g a.s [Po). (2.46)

Let (u,v) € I?. Then there exist i,j € I, such that (u,v) € R}, = <ﬂ i} X <3; m] Let

C) be the checkerboard approximation, defined as in (2.38)); let A\, and y; as in Definition
2.4.1. Using Theorem [2.4.4] the triangle inequality and ({2.46)), we have

() e ()
() o)
() e
(o) (o)

< [(1 = M, 0)) (1= (u,0) + (1= A (u, v) p (u, v)

| (1w, 0) = O (u, 0)] <(1 = A (u,0))(1 = pa(u, v))

(1= A, 0 (u,0)|C

SIh
SIh

+ A (u, 0) (1 = g (u, 0))|C

+ A1 (u, v)p (u, v)

SIN
3 [

N (u,0) (1 — (1, 0)) + Ay (w, 0) g (uy v)] g - g as [Po).

(2.47)

Now, by the Lemma [2.4.3] we have that for every m <1

sup \C(m)(u,v) — C(u,v)| < %,

(u,v)€I?

and by the Archimedean property there exists No . such that if m > N, ., then

2
sup  |C™ (u,v) — C(u,v)| < — < % a.s [Pc.
(u,v)€I? m

Let N. = max(Ny ., Na.). If n,m > N., with N. <m <mn, then
sup ‘077711(“7@) - C(uav)‘ < sup |CTT;L<U7U) - C(m)<u7v)’ + sup ‘C(m)(ua U) o C(u7 U)|
(u,v)€I? (u,v)€I? (u,v)€I?
€ €
< -+ -=cas |Pq
5 + 5 = €as [Pc]
(2.48)
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Chapter 3

Sample distribution under
independence

In this chapter we assume that the modified sample comes from the product copula. Our goal is
to find the distribution of the sample frequencies in the boxes generated by the uniform partition
when we are sampling from the product copula. We will see that this distribution is well known.

Moreover, we will find some sample moments, like means, variances and covariances.

3.1 Preliminaries

Remark 3.1.1. If we consider the grid of I?, generated by the uniform partition of size n, then
there exist n! different ways in which can be observe the modified sample if the sample size is
equal to n. That is because we have n different possibilities in the region [0,1/n] x [0,1], n —1

different possibilities in the region (1/n,2/n] x [0,1], and so on.

We use the notation P to refer the k-permutations of n, i.e. ,

We will use the following result in several proofs of this chapter. This is a well know result in

combinatorial theory.

Proposition 3.1.2. (Generalized Vandermonde’s identity) Let 1 < m < n, withm,n € Z*. Let
n=1U+---+1l;, withl; € Z* for everyi=1,...,j; and let m = ky+- - -+ k;, with k; € Z+U{0}.

Then
()=, (o) ()
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We recall that if X has a hypergeometric distribution with parameters: N the population size,

m the class 1 size, with m < N, and k the sample size, then

(D Gr)
(k)

PX =x] =

and
km _km (N —m) (N —k)

E[X] = —, VaR[X] = =, (3.1)

X counts the number of observations in the class 1.

Definition 3.1.3. Let X, ..., X, be a random sample of size n from a random vector X of
dimension 2 and Y,,...,Y, be the corresponding modified sample.Let 2 < m < n, and assume

that m divides n; let | = n/m. Fori,j € I, let

R 1—1 1 " j—1 7
1] mam m7m7

and let N; ; be the random variable that indicates the number of observations from the modified

sample falling in the region R; ;.
As m divides n, we have that, for every ¢, € I,,,
Rij = ((i = 1)/m,ifm] x {(j = 1)/m, j/m] = (((i = 1)) /n, (il)/n] x (((j = 1)I)/n, (j1)/n].

For example, we can see the region R;; in the figure [3.1]

3

Ry

1
0 ™

Figure 3.1: Region Ry
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3.2 Distribution of the sample frequencies and moments

Lemma 3.2.1. Let n,m,l, Ry and Ny, as in the Definition[3.1.5 Then

P[Nl,l—nl,l]—w( l )(ln—l ) _M

n! nia —MNi1 (l)

i.e., the random variable Ny, has hypergeometric distributions with parameters: n the population

size, | the class 1 size and | the sample size.

Proof: Let Ay =1[0,l/n] x (I/n,1] and Ay = (I/n,1] x [0, 1]. We notice that N ; only can take
values with positive probability in {0, 1,...,1}. First select the number of ways in which we can

select the n; 1 observations for the coordinate X in the region R, ;, that is (ml 1), as we can see

in Figure ; then we select the number of ways in which we can select the n, ; observations for

the coordinate Y in the same region, that is P!, as we can see in Figure . For the elements

ni,1’

l—n11

I—ny 1) ways to select the coordinate X and P~}

of the sample in the region A;, we have ( ne—ni

ways to select the coordinate Y. Finally, there are (n — [)! ways to select the elements of the

sample in the region A,. Then

(s ) Phay G ) B (=)

P[Nm = nl,l] = ol
l Al (n—1)!
(n171) (I—n1,1)! (n—2l4n1,1)! (n B l>'
N n!
(3.2)
l n—I
(’ﬂl,l) (l—nLl)(n - l)‘l'
N n!
l n—I
. (n171) (l—nl,l)
(7)
Theorem 3.2.2. Let n,m,l, Ry and N1y as in the Definition[3.1.5. Then
1 9 I2(1—1)? 1
B[N /n] = g BI/n)) = e+ o (33)

and

VarlNyym) = 24D 1 (i>2.

- nd(n—1) nm
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We select n1, 1 posibilities
(marked in red) among
the [ total options
regardless of the order

|
U |
1 1 |
1
0 m
Figure 3.2:
Lo
Lo
Lo
(I
| I 'We select n1, 1 posibilities
: : (marked in red) among
| | the [ total options
: : considering the order
Lo
Lo
Lo
J S A
m [
e
- f‘?&u;fl 77777777777777
1 1 |
1
0 m

Figure 3.3:

Proof: According to the equations in (3.1)), we have

1
E[lel/n] = w,
and
Pn—10)2% 12n?-2nl+10?)
Var[N = =
ar{Nua/n] n*(n—1) n*(n—1)
P =20l + 1" 0l — nl* + nl? —nl?
B ni(n—1)
P(?=214+1)+Pn(n—1)—1*(n—1
(R 20 1) 4 Pofn— 1)~ o~ 1) o
nt(n —1)
org=-1r o
ndn—1) n3 nt
_Be-y 1 (1 ?
“nd(n—1)  nm? m2)
Finally

,_ PU-1) 1

E{(Ny1/n)") = VarlNu, /o] + (BINy /) = Sor—5 + 05
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Lemma 3.2.3. Let n,m,l, R;; and N;; as in the Definition m Then forr € {2,...,m}

Nn—0)! [ 1 l n—2l
]P[Nl,l :711,17N1,r:nlﬂ“] - ( n! ) <n11> <n1 >(l_"11_n1 )

Proof: Let 4y = [0,1/n]x(({/n, 1]\((r=1){/n,rl/n))), as in Figure[3.4] and A, = (I/n,1]x[0, 1].
We note that 0 < n;; <[, 0 < ny, <1 and are such that 0 < n;; + n;, <. Following the
same idea as in the proof of the Lemma [3.2.1], first we select the number of ways in which we

can select the n;; observations for the coordinate X in the region R, that is to say, (ml 1);

then there are P” ways in which we can select the coordinate Y for the same region. Now we

ni1

select the number of ways in we which can select the n;, for the coordinate X in the region

R, ,, that is (l;:l’l); then we select the number of ways for the coordinate Y in the same region,

that is equal to Pqil _. Next, for the region A; we have (;:211:21’“) ways in which can select the

coordinate X and Pf__n?ll_nl _ways for the coordinate Y. Finally, for the region Ay we can select

the sample in (n — [)! ways. Hence

3

3

Figure 3.4: Region A;

( l )Pl (linl’l)Pl (lfnlﬂlfnl,r)Pn—Ql (n o 2l)|

ni,1 ni,1 ni,r nir lfnlylfnlﬂ. lfnl,lfnl,,«

P[Ni1 =n11, N1y =n1,] = ,
n!
YA | _ | | — |
< [ ) (n—1)! l! (Il —nqq)! [! (n—21)! (3.5)

ni1 n! (l — nl,l)! (l — N1 — nu)!nu! (l — nLr) (n — 3l + ni1 + nl’r)!

)

UM =D l n— 2l
B n! nii nyr [ — Niip—Nir .
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Using the Vandermonde’s identity, we have that for every r € {2,...,1}

Nn=0D!/ 1 [ n— 2l
Z P[Ni1=n11, Ny =n1,] = Z ol (m 1) (nl r) (l —nNip— r>

0<ni,1+n1,-<I 0<n1,1+n1,~<l

_A(n—1)! l l n — 21
B n! Z <n1,1> (nl,r) (l —nNi1— nl,r)

0<ny,1+n1,-<I

(3.6)
Theorem 3.2.4. Let n,m,l,R;; and N;; as in the Definition [3.1.5.  Then for every r €
{2,...,m}

Cou[Ny 1 fr, Nyyjn] = L= ( ! )2. (3.7)

n3(n—1) m?

Proof:

Nn-=0/1 l n — 21
E|N{ 1Ny, | = _—
(N1 N Z ML T (m,l) <”1,r> (l — Ny — nl,r)

0<ny,14+n1,,-<l

N(n—1)! I il n — 21
N n! Z AT,y (l — 71171)!71171! (l — 711,7‘)!711,7»! (l —Ni1— TLL,,) (38)

0<n1,1+n1,»<I

 Bli(n—1)! 5 -1 -1 n— 2l
N n! niip — 1 ny,r — 1 [l — NnNi1p—Niyr '

0<n1,1+n1,~<I

Let j; = n11—1 and j, = ny,. It follows that j; +7, = ny1+n1,—2, and hence 0 < j; 47, < [-2.
Then by the above and by the Vandermonde’s identity

E[N11Ny,] = W > (l ]_1 1) (l ;1) ((l - 2;—_(?1 +jr))

0<j1+jr<l-2

_Pl(n—=0!{n—-2
B n! -2

(3.9)
P =D (n —21)!
onln =D —2)!
_Pe=1
n(n—1)
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Then
l3(l —1)

E[(N1,1/n) (N1 /n)] = =1y

and

Covo[Ny fm, Ny fm] = =D ( ! )2.

n3(n —1) m?

Lemma 3.2.5. Let n,m,,l, Ry 1, Ry2, N11 and Nagy as in the Definition[3.1.5. Then

P[N11 =n11, Nop = ngo] = W > 2 anl) <:zfl> (n ;ZZ)

r1t+22=l—n11 y1+y2=l—no32
(l — nm) (l — l’1> (TL — 2[ — .1'2):|
n USW’ Y2 '

Proof: Let Ay = (2l/n,1] x [0,1/n], A2 = (21/n,1] x (I/n,2l/n], and A3z = [0,1] x (2{/n,1].

The number of ways in which we can select the k;; observations for the coordinate X in the

(3.10)

region R is (mll) and is equal to P,fm for the coordinate Y. In the region Ry; we can select

1

x1 observations from the sample in (mll) ways for the coordinate X and Pgil_"l’ ways for the

coordinate Y; and for the region A;, we can select x5 observations for the coordinate X in
(";221) ways and the coordinate Y in Pé;nl‘l_m. We note that the condition ny 1 + 1 + 23 =1
must be satisfied. Now, for the region R, s we can select y; observations in (l_;ll’l) ways for the
coordinate X and Pél ways for the coordinate Y'; the numbers of ways in which we can select
ng observations in the region Ry o for the coordinate X is (ly;z;), and for the coordinate Y is
Pflggl; and for the region A, we can select y, observations in ("_Zylz_m) different ways for the
coordinate X and P;; Y1722 We note again that y; + ngo + y2 = [ must be satisfied. Finally,

for the region called As, we can select the observations in (n — 21)! ways. We can see all this in
the Figure |3.5 Then
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3o

Y1 | 22 Y2

3

ni1| 71 T2

1 2
0 m m

Figure 3.5:

l l n — 2l
]P)[Nl,l =Ny, N2’2 — n2’2] — Z Z |:(n )Prln,l (x )P‘ilnl,l ( N )PCiQ’I’Ll,lfL‘l
1,1 1 2

z1+x2=l—n11 y1+y2=l-—n22

l—mn11 pl [ — 14 plou [~ 2] — x4 pl-yi—naz (n —20)!
Y1 VI ngg 22 Yo Y2 n!

R o

z1t+z2=l—n11 y1+ty2=l-—n22

(l — 71171)! (’I’L — 2[) (l — nl,l — 1'1)' (l — n171> l'
(l — 7l171 — 1’1)' ) (l — n171 — T — 1’2)' U1 (l — yl)'

(l—.ﬁﬂl) (l—y1)| (TL—QZ—.TQ) (l — U —n2’2>! :|
N2 2 (l — Y1 — 712,2)! Y2 -y — Nog2 — ?JQ)!

S i SID S (A5 [ 61y

r1+ro=l—n11 y1+y2=l—n22

<l — n171> <l — a:l) (n — 2] — 1’2)}
n n22 Y2
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Using the Vandermonde’s identity we have

l l l
E E IP)]\711—7111,]\722—7122 E
n1,1=0

ng,2=0 1=0

e

n—2l

2. X

r1+ro=l-n11 y1+y2=Il—n22

()G ;fl) )G )

(11)*(n — 20)!

2

n2,2=0 y1+y2=Il—n2 2

n—2l

22 e

n1,1=0x14+x2=l—n11

(l — n1,1> (l — l'1> <TL — 2l — J]2>:|
n N2 2 Y2

SOy e ()G

n1,1=0x1+x2=l—n11

<n - g;g)]
_ (u)?(:z - 20)! (7) (n . z)

_ (H2%(n—20)! n!

=1.

n! (n—l)!l!(

n—0)!(n — 20!

(3.11)

Theorem 3.2.6. Let n,m,,l, Ny and Nyy as in the Definition[3.1.3. Then

CO'U[NLl/TL, N272/n] =

14 1

nd(n—1) m*
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Proof:

E[N,, N %—55 i: (11)2(n — 21)!
1,14V22 - —n! n11M22 Z Z

n1,1=0n r1+ro=l-n11 y1+y2=Il—n22
() GO0
nia T D) n 2.2 Y2

l 11— 1) (3.12)

(1% (n—20)
- n! Z Z [711,1”171(”171 — DIl —nqq)!

n1’1:1 361+:L“2=l7n1,1
1

l n — 2l l—a2))( —21— 1)
(Y % et

1 2 i T nna 2,2(M2,2 ! 1 22)!
(l - 71171) (n — 20 — xQ)]

n Y2 .
Let j1 = n11 — 1 and j2 = ngs — 1. Then

E[N1 1Nz ] = W lzi Z [(l ]—1 1) (l”ll) (n ;221)

J1=0 z1+xo=I-1—j;

5 S0 D () [ (et |

J2=0 y1+y2=Il—-1—j2

(3.13)

and by the Vandermonde’s identity

IN2(n — 201 &2 =1\ 1(l—1)
E[Ny1Nos] = ()(T) Z Z [( . )ﬁ(l — 1)

Jj1=0 z1+x2=l—1—7j;1 J1
n—20\ (n—2l
L2 To
% [0 (e
; jl I T To

71=0 z1+x2=l—1—71

_ (l!)ZZQ(nn! —921)! (Zl:f) (n l_—lI 1)
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l4
n(n—1)
Then
l4

E[(N1,1/n)(Naz/n)] = P —1)

and hence
Cov[Ny1/n, Noo/n] = 3L — L
’ ’ n3(n—1) mA
Theorem 3.2.7. Let 2 < m < n, n € N, and assume that m divides n, i.e. | = n/m. Let
I, = {1,...m}, (Ri;)ijer, be the uniform partition of size m of I* and N, ; be the random
variable that indicate the number of observations falling in R, ;, for every i,j € I, when we

consider the modified sample of size n from the product copula; for i,j € I,,, let n;; be zero or

a positive integer, satisfying the following conditions
an =1 forall i€ 1,
j=1

and

an =1 for all j € I,.
i=1

Then
{ [] {Niy ,g}] ()

i,j€lm n! ] nas!
4,J€Im
Proof: First we select n;; elements from the sample in the region R, i, for the coordinate X

we have (ml 1) ways and for the coordinate Y is given by P}Ll .5 after that, we select n o elements

l-n11

- ) ways for the coordinate X and

from the sample in the region R, , this can be done in (

me ,I ways for the coordinate Y; and so on, i.e., we select ny ,, elements from the in the region

m—1
Ry in (l_zrffl ”Lj) ways for the coordinate X and Pfll . ways for the coordinate Y. Now, for
the region Ry there are (nzl 1) and Pqi;?lzl,l ways in which we can select n; o elements from the

sample for the coordinates X and Y, respectively; for the region Rs2 we can select ny o points
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l—n21
n2.2

from the sample in ( ) ways for the X axis and P,i;;l’g ways for the Y axis; and so on, i.e.,
for the region Rs,, the number of ways in which we can select ny,, elements for the sample is

given by (l_zg;;ll 2.4 ) for the coordinate X and Pﬁ;?nl'm for the coordinate Y.

! ! l—n11Y [—>" oy l
IP’{ ﬂ {N;,; = n”}} = (n11)P"1’1‘< - )an... njl,; J P

4,JE€Im
m—1
G proma (P2 proms (U 2550 124 pronim
n2.1, n22 n2,m
N1 N2 N2,m

m—1
* ( : )Pflﬁglm’l (l_n”“) plEE e <l_zj1 ”W)P,im% " i

Nm1 Nm,2 Nm,m

! ! (I —nqq)! [!
(l — 1)'”1 Ll —m 1) (l— (n1 1+ 2))'”1 ol (I —m 2)'
(Z_Zj _1 nlj)| l‘
=T ) ! (= nam)!
l' (l—m 1)' (l—ng’l)l (Z—m 2)'
(I —ng1)no ! (I — (nyg +n21))! (I — (na1 + n22))nes! (I — (N12 + n22))!
U S ) (I — nim)!
(l — Z;nzl n27j)!n2’m! (l - (an + n27m))!

I (1= 327 min)! (1= 1! (1= 307 nin)!
(I = nm1) ! (1= > i=1 Tl D= (M + i 2) ) 2! (10— ZZl ni2)!
. U 5 ). (L= >0 M)
(= (271 g — ) Munn! (U= (3205 R — M)
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3.3 (General case, d > 2

The objective in this section is to discuss how we can generalize some of the ideas presented

above to the case d > 2, concerning the moments and the joint distribution.

In the same way as in the case when d = 2, let 2 < m < n, such that m divides n.

Definition 3.3.1. Let d > 2 and let let 2 < m < n, such that m divides n, that is, there
exists | € 7 such that | = n/m. Leti = (i,4,...,1), for i = 1,2, that is, i is a d-dimensional
vector with every entry equal to 1. Let N be the random variable that indicates the number of

observations in the d-box Ry = [0,1/n]¢, and let Ny be the random wvariable that indicates the

number of observations in the d-box Ry = (I/n,2l/n]?.

Theorem 3.3.2. Let d,n,m,l, N1, Ny, Ri and Ry as in Definition |3.5.1. Then

i) E(Ny/n) = L,
. d(1_1\d
ii) B((N1/n)?) = srra—brs + ot

dr_1)d
iii) Var(Ny/n) = % + # — ﬁ,

12d

iU) COU(NL/TL,NQ/W) = W - L

Theorem 3.3.3. Let d > 2, and let N;

observations in the box R;,..., = ((i1 — 1)/m,iy/m] x --- X ((ig — 1)/m,iq/m]. Then

iy be the random variable that indicates the number of

(11ydm

n!)d_l Hily'" ia€lm nil...id! '

P{ (N ANiia = M} =1

i1, ,ig€lm

For more details, see [10].

3.4 Additional comments

The results presented above are valid in general, but we are interested only in the cases m = 2
and m = 3.Then we note the following, if d = 2 we have:

If m = 2 then N;; determines the distribution of C%.

If m = 3 then Ny, Ni2, Noy and Ny o give the distribution of C%.

In the following chapter we will give a characterization of independence using the distribution
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of C¥ given CF. Using the present chapter, we could give the exact distribution of the statistics
that we will propose, but we will not present that result in this work. Instead of that, we notice
the following: because C3 and C¥ are copulas and how [0,1/3]* C [0,1/2]* C [0,2/3]* we have

11 11 2 2\ 1
(a) =ai(zg) =i (3) 3

1 2 2
<o)<z
3~ 3(3)—3

Hence, CJ and C% are not independent.

and
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Chapter 4

A new test of independence

In this chapter we provide a very simple characterization of II%, the independence copula in
dimension d > 2, in terms of the checkerboard approximations of order m = 2 and m = 3.

As we will see in the third section, the independence copula 1%, satisfies that T1%(uy, . .., ug) =

CU (uy,. .., ug) for every (ui,...,ug) € I¢ and for every m > 2. However, for the converse we
only need the equality for m = 2 and m = 3.

Let Hy denote the null hypothesis of independence, that is, the true copula is the product
copula, so that C' = TI%. Since C¥ and C§ are unbiased estimators of C® and C®| respectively,
and using the fact that C?” and C(™ have constant densities on the boxes of the uniform
partition defined below, we can propose a test based on the distances between C? and C¥, and

C® and C§. We consider several different distances, including: the supremum distance, the
total variation distance, the Hellinger distance, and even the Kullback-Leibler divergence. This
proposal works for every dimension d. Moreover, the exact distributions of the statistics used in
the test can be very easily approximated by a large number of simulations, because the sample
copula is “computer friendly”. Hence, we do not need to employ heavy machinery in order to
compute the corresponding null distributions.

We will show, via simulations, that our proposals have acceptable powers in dimensions d = 2,
and good powers in d = 3, and d = 4. We note, however, that the tests can be easily extended
to higher dimensions.

Also we run the presented tests with real data for dimension 3. We will see that all the test

have similar results. The data was taken from the financial markets.
Finally, we give a basic idea for a further investigation. This idea is called exhaustive dependence.

4.1 Introduction

Consider a dimension d > 2 and consider a d-dimensional random vector X. A very relevant

problem is to determine if it is possible to decompose the vector in d independent uni-variate ran-
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dom variables. In some cases we could have evidence that a random vector could be independent
and then a statistical test of independence is necessary.

Many tests of statistics already exist. The majority of the tests are based on, at least, one of
the following concepts: empirical distribution function, ranks, empirical copula, characteristic
function, conditional distribution and distance correlation.

The most studied case is , of course, the case of dimension 2. Several tests have been pro-
posed, for example: the test of Spearman, the test of Hoeffding (1948), the test of Blum-
Kieffer-Rosenblatt(1961), and more recently the test of Genest-Remillard (2004) and the test of
Bagkavos-Patil (2017), see [12], [3], [7] and [I].

The case d > 3 has been studied less and there are not as many tests as in the case of dimension
2. We can highlight two reasons for the complications in the case d > 3: first, the statistics
based on the empirical distribution (or in the empirical copula) defined in dimension 2 can be
extended easily ti higher dimensions, however, they become difficult to evaluate for large sample
sizes; second, for the statistics based on ranks, for example the Spearman’s test, there is not a
simple extension for the case d > 3, see [2] and [19].

Our goal is to show that the tests that we propose can be evaluated easily for higher dimensions
and for not small sample sizes. Moreover, of course, we have to show that the performance of

our tests is good.

4.2 Preliminary Results

We start this section with some basic notions. First, we have a Glivenko-Cantelli’s Theorem
which gives uniform almost sure convergence of C™ to C™| for every m > 2, that is,

lim sup |C"(u,v) — C™ (u,v)| =0 as. (4.1)

=0 (y,v)el?

On the other hand, from [4], we also have that

d
7711_{%0 (f;;}e)p 1O (u, v) — C(u,v)| < 7711_{%0 o = 0. (4.2)
From equations (4.1]) and (4.2) we get a Glivenko-Cantelli’s Theorem for the convergence of C"

to C.
Let Pcn and Qgm) be the probability measures induced by the sample d-copula C}, and by

the checkerboard copula O™, respectively, associated with a d-copula C. Recall that the total

variation distance, see for example [§], between two probabilty measures P and Q on the Borel

measurable space (I¢, B(I?)) is defined by
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dr(P,Q) = sup [P(A) —Q(A)]. (4.3)

AeB(14)
Recall that 0 < dpy = (P,Q) < 1.
The total variation distance of P and Q, in the case that P and Q have densities fp and fg, with

respect to the Lebesgue measure A% on the measurable space (I¢, B(I¢)), which are constants on

the uniform partition of order m of I¢, can be written as

drlP.Q) = sup [P(A) = QUA) = 5 [ 1o folaX’ (1.4)

AeB(14)

Using equations ([2.39)), (2.14)), (4.1]) together with equation (4.4)), it is easy to see that

Theorem 4.2.1. Let C' be a d-copula, let m > 2 fized and let n be a multiple of m, let C] be
the sample copula of order m built from a modified sample of size n from C and let C™ be the

checkerboard of order m. If Pon and Qg are the probability measures on I defined by C™

and C™) respectively, then
nh_)nolo dry (]P’Cgl,(@c(m)) =0 a.s. (4.5)

We give the definition of other important metrics: the Hellinger distance and the supremum

distance or uniform distance, see [§]:

Definition 4.2.2. Let P and Q be two probability measures on (RY, B(RY)) and let fp and gg be
the densities of the measures P and Q, respectively . We define the Hellinger distance between
P and Q, denoted by dy(P,Q), as

/2

du(P,Q) = 7[/ <\/_—\/TQ) dxi] . (4.6)

Note that 0 < dy(P,Q) <1
The Hellinger distance is a type L? distance between P and Q.

Definition 4.2.3. Let Fp and Fy be the distribution functions associated with the probability
measures P and Q, respectively. We define the supremum distance between P and Q,
denoted by dsup(Fr, Ip), as

dsup (Fp, F) = doo(Fp, Fg) = sup [Fp(z) — Fo(z)| < 1. (4.7)

zeld
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The sumpremum distance is called the weak distance, because it is related to weak convergence.

Finally, we also include another function which is not a metric, called relative entropy, also

known in Statistics as Kullback-Leibler divergence

Definition 4.2.4. Let two probability measures P and Q and let fp and fq the densities of P
and Q, respectively. We define the Kullback-Leibler divergence between P and Q, denoted

by dr(P,Q), as

d;(P,Q) = - frplog (j%) d\?, (4.8)

where, S(P) is the support of P on R®, and we define 0log(0/q) = 0 for every ¢ € R and
plog(p/0) = oo, see [§].

This divergence satisfies that d;(P,P) = 0 and d;(P,Q) > 0, but the remaining properties of a
metric are not satisfied, because even though d;(P,Q) € [0, 00|, so it can take the value oo, it
is not symmetric, and it does not satisfy the triangle inequality. However, it is an important

quantity in Statistics, which measures information gain.

We will use the concepts in equations (4.4)), (4.6), (4.7) and (4.8, in the next section to define

four statistics to test for multivariate independence.

4.3 Main Theorem

In this section we find a characterization of independence in terms of the checkerboard approx-

imations of a copula.
Theorem 4.3.1. Let C be a d-copula. Then
C =Tlgif and only ifCluy, ..., ug) = CP(uy, ..., ug) = C® (uy,. .. ug) for every (uy, ..., uq) € 1%

(4.9)
where C® and C®) are the checkerboards approzimation of the d-copula C of order 2 and 3,

respectively.

Proof: First, assume that d = 2. Let us assume that C' = Il, that is, C' is the independence

copula, we know that

C ={Cu,v) =u-v|u,ve{0,1/m2/m,... (m—1)/m,1}},

is a 2-subcopula. For this 2-subcopula and the uniform partition of size m given in equation
(2.8), and using equation (1.1)), we have that, for every iy, iy € I,
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1192 11— 1ig ilig—l_l_z'l—lig—l

V ’ Rm = — — R
Cm( iviz) mm m m m m m m
. Z_l _ le —1 Z_Q _ 19 — 1
— \m m m m
) (1.10)

where \? is the Lebesgue measure on (R?, B(R?)).
If we use the bilinear interpolation of Lemma 2.3.5 in Nelsen’s book, see [I8], we have that C(™)
the checkerboard approximation of order m of C' = Il, has a density given by equation (12.39))
Ver (RiY,
™ (u,v) = —C’"( 1)

22 (RT)

11,12

for every (u,v) € R" (4.11)

11,82

for every iy,i9 € I,,. On the other hand, using equations (4.10) and (4.11)) we have that

Vo (RM™. N2(Rm™ .
™ (u,v) = AN = () =1 for every (u,v) € R
N(RG,) N (RTL)

11,12 11,82

m
11,827

for every iy, iy € I,,. Hence, the density of C™ is the constant 1 on I2. Therefore, for every

integer m > 2, the checkerboard approximation C™ satisfies
C™ (u,v) = / / ldsdt = u - v = y(u,v) = C(u,v) for every (u,v) € I*. (4.12)
o Jo

In particular this holds for m = 2 and m = 3.

Now, let us assume that for some 2-copula C' we have that C(u,v) = C® (u,v) = C®(u,v) for
every (u,v) € I2.

Let m = 2 and define a = Vi([0,1/2]%) = Ve (R} ), as in the uniform partition of order m = 2,
given in equation (2.8). Then, by equation and using inequality (L.5), if o = C(1/2,1/2),

we have

0= W(1/2,1/2) < a=C(1/2,1/2) < M(1/2,1/2) = % (4.13)

Observe that R} U R}, = [0,1/2] x [0,1] is a disjoint union. Also, observe that by continuity

of C, Vo(R?,) = Vo(RY ,); the same applies to R3 | and R3,. Hence, using equation ([L.1)),

5= Ve([0,1/2] % 0.1]) = Ve(R ) + Vo (RS p) = o+ Ve(R2 )
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and so Vo(R},) = (1/2 — «). Similar arguments show that Vo(R3,) = (1/2 — ) and that

Vo(R3,) = a. So, using the bilinear interpolation we obtain

4auv if (u,v) € R%,l

20 + 4(1/2 — a)u(v — 1/2) if (u,v) € R?
(2) _ _ 1,2
Cw,0) = Cal,0) = 9 900 4+ 4(172 = a)(u — 1/2)0 it (u,0) € RS,
a+(1-2a)(u+v—1)+4a(u—1/2)(v—1/2) if (u,v)e R3,

From equation (4.14) we have that C'® is a function of a unique parameter, that is, a@ =
C(1/2,1/2), and from the hypothesis we have that C(u,v) = C®(u,v) = Cy(u, v), where from
equation (4.13), 0 < o < 1/2.

Now, we also assume that C' satisfies

Colu,v) = C(u,v) = CP(u,v) = C¥(u,v) = CP¥(u,v), (4.14)

for every (u,v) € I?. In order to construct C’S’)(u, v) we need to evaluate all the volumes

Voo (RS ) for every iy,iy € Iy = {1,2,3}. We first observe that R}, = [0,1/3]> C [0,1/2]* =

11,2

R? ., so using equation (4.14)), we obtain

Ve (R = Ve (0.1/37) = Cal1/3,1/3) = o (115)

In general, by continuity of C', Vi, (R? ;,) = Ca(i/m, j/m) = Co((i —1)/m, j/m) — Co(i/m, (j —
1)/m) + Co((i — 1)/m, (j — 1)/m) for every iy,iy € I3. We also know from equation ({2.8)), that

N(R} ;) = 1/9 for every iy, iy € I5. Hence, using equation (4.11)), the density of O is given
by
¢® (u,v) = Vel s) _ Ve (RE L) (4.16)
MR ) ’

for every (u,v) € R} ;. and for every iy, iy € I5. Using equations (4.14)) and (4.15)) we have that

4
C¥(u,v) =9IV, (R} Ju-v =9 (?a) u-v=4dau-v, (4.17)

for every (u,v) € R}, = [0,1/3]*. We also have that
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Ve (R3,) = Ca(1/3,2/3) — Ca(1/3,1/3) — Ca(0,2/3) + Ca(0,1/3)

) 0)6)5

_ 1, 12-4-8
BT
1
= 5 (4.18)
Now, using equations(4.17)), (4.18)) and integration we obtain
3 1 3 1

for every (u,v) € R}, =[0,1/3] x (1/3,2/3].
Finally, let us take (ug,vo) = (1/4,1/2); then using equation ({2.8)), we have that (1/4,1/2) €
(R}, N R},), and from equation (4.14)), we have that

1 1
Caltig, vg) = CP(1/4,1/2) = 4a (Z) (5) — % (4.20)
And using equations (4.18]) and (4.19)), we have that

1 1 1 1 1 « 1
(3)1412:4 hl _ - — — ) = — —. 4.21
Therefore, from hypothesis (4.14) and equations (4.20) and (4.21]), we have that

C®(1/4,1/2) = Cy(1/4,1/2) if and only if /2 = a/3 +1/24 if and only if o = 1/4.

But, from equation (4.14]), this happens if and only if C,(u,v) = Ils(u,v) = u - v.
We now assume that d = 3 and that C' = Il3 is the product 3-copula. Then we know that

C ={Cu,v,w)=u-v-w|uv,we{0,1/m,2/m,... (m—1)/m1}},

is a 3-subcopula, and for this 3-subcopula and the uniform partition of size m given in equation
(2.8), and using equation (|I.1]), we have by continuity of C' that
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m 11 19 13 11— 11y 13 11 19 — 1 13 11 1913 — 1
Ver (R ablb
m

117i2,i3) -

mmim m mim m m m mm m

11 —1lig—11 11 —1igi3—1 4309 —1i3—1 43 —11ws—1i3—1
1 2 B 1213 L hk 3 ! 2 3

m mom m m m m - m m m m m
(i =1\ (i i1\ [iy  dz—1
N m m m m m m
3 m
= N(B ), (4.22)

where A% is the Lebesgue measure on (R?, B(R?)).
If we use the trilinear interpolation of Lemma 2.3.5 in Nelsen’s book, [I8], we have that C(™)

the checkerboard approximation of order m of C' = II3 has a density given by equation (2.39))

vc;n (RZL,iQ,ig)

X3(Rm

2172'271'3)

for every (u,v,w) € R" (4.23)

clm) (u,v,w) = i1,i2,i3

for every iy, 19,13 € I,,,. But, using equations (4.22)) and (4.23]) we have that

m Vc’ (Rzmz J ) )‘3(R;'ni i ) m
™ (u, v, w) = ,\3(Rm1 N As(R??I% =y = 1lorevery (u,v,w) Rif;,

ll,iz,is) Z1,1'2,1'3)

for every iy, is,13 € I,,. Hence, the density of C™ is the constant 1 on I®. Therefore, for every

integer m > 2 the checkerboard approximation C'(™ satisfies that

O™ (u, v, w) = / / / ldsdtdr = u-v-w = Hy(u,v,w) = C(u,v,w) for every (u,v,w) € I°.
o Jo Jo

(4.24)
In particular this holds for m = 2 and m = 3.

We now prove the converse. Let us assume that for some 3-copula C' we have that C'(u, v, w) =
C®(u,v,w) = C®(u,v,w) for every (u,v,w) € I*.

Let m = 2, define ag = V([0, 1/2]%) = V(R ), as in the uniform partition of order m = 2,
given in equation (2.8)). Then, by equation (L.1)), g = C(1/2,1/2,1/2), and using the inequality
, we have

0=W?31/2,1/2,1/2) < ap = C(1/2,1/2,1/2) < M3(1/2,1/2,1/2) = % (4.25)

Define oy = C(1,1/2,1/2),a0 = C(1/2,1,1/2) and a3 = C(1/2,1/2,1). Let Cia(u,v) =
C(u,v,1), the we know that C| 5 is a 2-copula, and by hypothesis we also know that C} o(u,v) =
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C(u,v,1) = C®(u,v,1) for every (u,v) € I2. Tt is trivial to see that by linearity in the
construction of C® and C®) we have that the checkerboards of C, of order m = 2 and
m = 3 are given by C%)(u,v) = C®(u,v,1) and Cfg (u,v) = C®(u,v,1) for every (u,v) € I2.

Therefore, we have the transformed hypotheses

Chro(u,v) = C’f?(u, v) = C’g (u,v) for every (u,v) € I% (4.26)
So using what we proved for the case d = 2 above, we have that

az =C(1/2,1/2,1) = C12(1/2,1/2) = 5(1/2,1/2) = 411' (4.27)

Defining C' 3(u, w) = C(u, 1,w) and Cy3(v,w) = C(1,v,w) for every u,v,w € I, and reasoning

as above we observe that
ap = C(L 1/27 1/2) = 02,3<1/27 1/2) = i = 01,3(1/27 1/2> = 0(1/27 17 1/2) = Qo. (428)

Now using the fact that any 3-copula is increasing in each coordinate, together with equations

(4.27) and (4.28)) and inequality (4.25)) we have that

0 < ag = C(1/2,1/2,1/2) < min(as, as, as) — }1 (4.29)

In order to find C® (u,v,w), we first need to evaluate the C-volumes of all the uniform boxes

R?,j,k for every 1, j, k € I, in order to find its density in each box, which is given by the constant
Vo(R? 1)/ N (R? ;) = 8- Vo(R?, ) for every i, j,k € I, = {1,2}.

We know that Vo (RP, ;) = C(1/2,1/2,/12) = ag. By equation (LI)) and using i) in Def-
inition [I.1.1] we have that Vo(RZ,,) = Ve((1/2,1] x [0,1/2] x [0,1/2]) = C(1,1/2,1/2) —

C(1/2,1/2,1/2) = a1 — ag = 1/4 — ap, similarly Vo(R3,,) = Ve(RE,,) = 1/4 — ap. Again,

by equation (L.I)) and using i) and ii) in Definition |1.1.1, we obtain Vi (R3,,) = Ve([1/2, /1] x
[1/2,1] x [0,1/2]) = C(1,1,1/2) — C(1,1/2,1/2) — C(1/2,1,1/2) + C(1/2,1/2,1/2) = 1/2 —
o —ay +ag = 1/2 = 1/4 —1/4 + oy = «p, analogously, Vo(R3,,) = Vo(Ri,) = ao.

Finally, using Definition [1.1.1{ we have that Vo(R3,,) = Vo([1/2,/1] x [1/2,1] x [1/2],1) =
1—1/2—1/2—1/2+1/4+1/4+1/4—ay = 1/4 — ay.

Therefore, integrating the above density we get 0(2)(u,v,w) the checkerboard copula of order

m = 2, for every (u,v,w) € I?, which is given by:
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( 8agu - v-w if  (u,v,w) € Ri,,

(2 — 8(1/0)U “v-w A+ (8&0 - l)u "V if (U, U, ’LU) S R%,I,Q

(2—=8ap)u-v-w—+ (8apg — u-w if (u,v,w) € R},

(2 —8ap)u-v-w+ (8ag — v - w if (u,v,w)€ R3,,
8apu-v-w~+ (1 —8ag)u-v

+(1 = 8ag)u - w + (8ag — 1)u if  (u,v,w) € 33,2,2
2 ) 8au-v-w+ (1 —8ap)u-v

C(u, v, w) = +(1 = 8ap)v - w+ (8ag — 1)v if  (u,v,w) € 33,1,2
8apu - v -w + (1 — 8ap)u - w

+(1 = 8ap)v - w+ (8ap — 1)w if  (u,v,w) € 33,2,1

(1/2 = 200){(u —1/2) + (v —1/2) + (w — 1/2)}
dap{(u—1/2)(v —1/2) + (u —1/2)(w — 1/2)}

dag(v —1/2)(w —1/2) + ap

L (2 —8a)(u—1/2)(v—1/2)(w —1/2) if (u,v,w) € R3,,.

Observe that by hypothesis C® (u,v,w) = C(u,v,w), and that by equation (4.30) it has a
unique parameter ag.

In order to obtain C® we will obtain its density using equation (4.30)), that is,

Ve(R3. L) =5
3) — ik oy (RS 4.30
c(u, v, w) )\3(R?,j,k) @ ( m,k)’ ( )

for every i,j, k € I and for every (u,v,w) € R?;,, as defined in equation (2.8).

To find the density of C® on R}, = [0,1/3]* we observe that R}, C R}, so, using
, Voo (RY 1) = CP(1/3,1/3,1/3) = (8/27)ap. To obtain the density of C® on R, | =
[0,1/3] x (1/3,2/3] x [0,1/3] C R%,, U R?,,, we need Vo) (R3,,) = CP(1/3,2/3,1/3) —
C®(1/3,1/3,1/3) = (2 — 8ay)(2/27) + (8ag — 1)(1/9) — 8ap(1/27) = 1/27. For the den-
sity of C® on R}, , = [0,1/3] x [0,1/3] x (1/3,2/3] C R, UR},, we need Ve (m) =
C®(1/3,1/3,2/3) —C®(1/3,1/3,1/3) = (2 —8ap)(2/27) + (8ag — 1)(1/9) — 8a(1/27) = 1/27.
Finally, for the density of C®® on R}, , = [0,1/3]x(1/3,2/3]x(1/3,2/3] C R}, JUR},,UR?, ,U
R?,, we need Voo (R ,,) = C®(1/3,2/3,2/3) — C(1/3,2/3,1/3) — C(1/3,1/3,2/3) +
C®(1/3,1/3,1/3) = 8ag(4/27) + (1 — 8ag)(4/9) + (8ag — 1)(1/3) — (2 — 8c)(4/27) — (8arg —
1)(2/9) 4+ 8a(1/27) = 1/27. Hence, from equation , we have that C'® has density 1 on
Rim, R:{”Q?I and Rim, and density 8ag on Rim-

Let (ug, vo, wo) = (1/4,1/2,2) € R}, NR},, then by hypothesis C®(1/4,1/2,1/2) = C®(1/4,1/2,1/2).
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Integrating the density of C'® we have that

1/3 p1/3 pl1/4 1/3 p1/2 pl1/4
C®(1/4,1/2,1/2) = / / / 8apdudvdw + / dudvdw
0 0 0 0 1

/3 Jo
1/3 p1/3 pl1/4 1/2 p1/2 pl1/4
+ / / dudvdw + / dudvdw
1/2 Jo 0 1/3 J1/3 Jo

= (2/9)ag + (1/72) + (1/72) + (1/144)
= (2/9)a + (5/144). (4.31)

Now, using equation (4.30) we know that C®(1/4,1/2,1/2) = ay/2. Therefore, we have that

040_2 i 5
2~ oM T T4

Solving for ay we have that ay = 1/8, and using equation (4.30)), we have that C'®)(u, v, w) =
C®(u,v,w) = Hy(u,v,w) for every (u,v,w) € I3.

The rest of the proof follows from an easy induction. O
From equations and in the last proof we have the following result:

Corollary 4.3.2. Let C' =119 be the product copula, then for every m > 2 we have that

C™ (uy, ... ug) =% uy, ..., ug)  for every (uy, ..., ug) € I%

4.4 Independence Tests

The total variation distance defined in equations and (4.4]) provides the largest possible
difference between two probability measures, so it is considered a far stronger distance than the
“sup” distance. Many statisticians seem to think that “the d,, is generally too strong to be
useful”, but this is not so in our case as Theorem [4.2.1] shows.

Using the characterization of independence given in Theorem [£.3.1) we first propose a new
independence test based on the total variation distance. We know by equation that for
d>2

C =11 ifand only if C=C® =C®,

Let Qo and Qqi) be the probability measures induced by the checkerboards of order m = 2
and m = 3, respectively. Assuming holds, if we observe that the probability measure

associated to ITI¢ the product copula is simply the Lebesgue product measure A%, then we have
that
dr(Qoe, M) =0 and  dr(Qee, M%) = 0. (4.32)
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Since the total variation distance is quite strong, we may use it to see whether the true copula
C equals the product copula IT% or not. So, we will use the fact that under Hy, that is, C' = I1¢,
we have that Qo and Qo) are equal to A4 by equation , and besides, by Theorem m
Qe and Qo) are the uniform limits of Pcp and Pop as n increases. Hence, based on Corollary

[4.3.2) we propose the statistic

dTv(PCg, )\d) + dTV(PCg7 )\d)

nrv(Cin) = 9

(4.33)

In this case, we take a sample from a true copula C' with sample size n, and Pon for m = 2
and m = 3 are the probability measures induced by the sample copulas C} with orders m = 2
and m = 3, respectively. Since in our case, the alternative hypothesis is H; : C' # II¢ | then we
have that under Hj, by equation , lim,, 00 77v(C;n) = 0 almost surely. Also for any copula
C # T1% we have that lim,,_,, ns(C;n) > 0.

Even if the null distribution of the test statistic, 7,,(I1% n) is not known for a fixed sample size
n, it is straightforward to generate a large number of simulations in a very reasonable time,
even for not so small dimension d and sample sizes n, in order to approximate the quantiles, let
us say of order 90%, 95% and 99%, needed in order to perform a standard test. Of course, we
reject Hy at levels o = 0.10,0.05 and o = 0.01, if the observed value of 7,,(C;n) exceeds the
respective (1 — «) quantiles above.

We can also use different distances, other than the total variation distance. For example,
we can use the Hellinger distance given in equation , or the supremum distance given
in equation . Furthermore, we can even use the Kullback-Leibler divergence in equation
. Since the densities of the product copulas IT1%, and the sample d-copulas of order m
are constant on the d-boxes of the uniform partition as in equation , d; satisfies that
di(Qo@, ) = 0 = di(Qpwe), \?) if C = 119 however both are greater than zero if C' # II¢.

Therefore, we can also use any of the following statistics to test for multivariate independence.

dH(PCgL’ )\d) + dH(PC:?? /\d)

nu(Ci;n) = 5 : (4.34)
d Cy 11%) + d Ccn, 114
(i) = B CL T+ doup (G, TE) (4.39
dy(Pon . A + dy(Pen, M
n(Ci;n) = (Pop, X) + di (P ) (4.36)

2

When the sample is not a multiple of six, we must modify the sample size. We need some

criterion to, we remove some data. Some criteria may be: remove the most recent data, remove
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the oldest data, remove the data randomly, etc. Let n be the size of the original sample, then

we define the sample size after removing the data, denoted by n* as

=

It is relevant to note that at most five data may be removed. When the sample size is big,

removing five data does not impact the results significantly

4.5 Simulations

In this Section we will carry out a simulation study in dimensions d =2, d = 3 and d = 4. We
start by doing a comparison to several well known proposals of tests of independence, in the
case d = 2. For dimensions d = 2 and d = 3 we present the results of the comparison among our
statistics mentioned above for several different families of copulas. We also discuss some tests
of independence in the multivariate case.

For example, we simulate samples for a Clayton copula with p = 0.05 and for the product copula.
We run the simulations 1,000 times for sample sizes equal to 60, 600 and 6000, see Figure and
Figure ; then we present the results of some basic statistics such as the mean, the maximum
and the minimum the grids generated by the uniform partitions of size 2 and 3, see Figure 4.2
and Figure 4.4 The graphs of both simulations are very similar for every sample size, since p
is very close to 0. Instead of that, the statistics presented differ. The data corresponding to
the mean must be interpreted in the same way as the partition of I?, generated by the uniform
partitions of size 2 and 3. Of course, the mean in each rectangle, in the case of the product
copula, is very close to 1/4 for m = 2, and is close to 1/9 for m = 3. For the Clayton copula,
the values of the mean are a little far from the values 1/4 and 1/9, for m = 2 and m = 3,
respectively. Now, for the minimum and the maximum, the values for the independent copula

are closer than the values of the Clayton copula to 1/4 and 1/9.
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Clayton,n=60, p=0.05 Clayton,n=600, p=0.05 Clayton,n=6000, p=0.05
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Figure 4.1: Clayton copula. Sample size of 60, 600 and 6000, respectively, and d = 2

m=2 m=3 m=2 m=3 m=2 m=3
24.0% 26.0% 10.4%| 11.2%| 11.7% 24.2%| 25.8% 10.5%| 11.3%) 11.6% 24.2%|25.8% 10.4%| 11.3%| 11.6%
26.0% 24.0% 10.8%| 11.2%| 11.3% 25.8%| 24.2% 10.9%| 11.2%) 11.3% 25.8%| 24.2% 10.9%| 11.2%| 11.3%
12.1%| 10.9%| 10.4% 12.0%| 10.9%| 10.5% 12.0%| 10.9%| 10.5%

|min 13.3% 0.0% min 11.5% 7.8% min 23.0% 9.4%
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Figure 4.2: Statistics for a Clayton copula. Sample size of 60, 600 and 6000, respectively, and
d=2
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Figure 4.3: Product copula. Sample size of 60, 600 and 6000, respectively, and d = 2
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n=60 n=600 n=6000

m=2 m=3 m=2 m=3 m=2 m=3

25.1% 24.9% 11.2% 11.2% 11.0% 25.0% 25.0% 11.2% 11.1% 11.1% 25.0% 25.0% 11.1% 11.1% 11.1%

24.9% 25.1% 11.0% 11.0% 11.3% 25.0% 25.0% 11.1% 11.1% 11.1% 25.0% 25.0% 11.1% 11.1% 11.1%

11.1% 11.2% 11.0% 11.1% 11.1% 11.1% 11.1% 11.1% 11.1%
min 13.3% 0.0% min 21.8% 7.5% min 23.9% 10.0%
max 36.7% 21.7% max 28.2% 14.7% max 26.1% 12.2%

Figure 4.4: Statistics for the product copula. Sample size of 60, 600 and 6000, respectively, and
d=2

4.5.1 Dimension d = 2

In this subsection we will study the case d = 2, which has been the most studied case for
independent tests. Several statistics have been proposed to test for independence. For example,
we have two classical tests; the first one proposed by Hoeffding in 1948, to test the independence
of two continuous random variables with continuous joint and marginal densities, see [12]. This
test is based on the function D(x,y) = F(x,y) — F(z,00) - F(00,y) = F(x,y) — Fi(x) - F3(y),
where F' denotes the joint distribution function, F; and Fj are the margins of X and Y, and
A(F) = [ D*(z,y)dF(z,y). The statistic he proposed is based on the joint empirical distribution
function minus the product of the marginal empirical functions. Here we used the hoeffd
function of the R PACKAGE HMIscC. The second test is based on extensions of this result and
is known as the Blum-Kiefer-Rosenblatt’s independence tests, see [3]. See also [I7] for null
Gaussian approximations of the bivariate Blum-Kiefer-Rosenblatt (BKR) test of independence.
To perform the BKR test we use their statistic B,, and the normal approximation in [I7]. Since
the results of these two statistics are always quite similar, here we only report the results based
on Hoeffding’s statistic.

Another well known test for independence in the case d = 2 is based on Spearman’s p, and
has been used extensively in applications. Here we use the spearman.test function of the R
PACKAGE PSPEARMAN. However, it is well known that this test has low power if the distribution
of the alternative is continuous but singular, as is the case for several copulas.

We used a small value of the sample size, n = 36, to compare our results to other works which
also use small sample sizes for their simulations.

We first observe that, if we are simulating from a standard Archimedean copula, such as Clayton,
Gumbel, Frank, etc., the power obtained by using the tests of Hoeffding, Blum-Kiefer-Rosenblatt
and Spearman’s p are a little better at levels o = 0.01,0.05 and o = 0.10 than the ones we obtain
using the statistics given in equations , and ; that is, the total variation, the
Hellinger distances and the Kullback-Leibler divergence, see Figure 4.5 It is important to note

that most of all these Archimedean copulas are absolutely continuous, with complete support
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and with smooth densities.
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Figure 4.5: Powers for the Clayton family with n = 36 in dimension d = 2

It is not difficult to see, via simulations, that the independent tests of Hoeffding and Blum-Kiefer-

Rosenblatt have a problem with small sample sizes. In fact, we note that if we are sampling from
the independent copula Il, and test at the usual levels o = 0.01,0.05 and o = 0.10, the real

levels of the test do not correspond to the desired values of a. For example, if we set @ = 0.05

and perform several simulations, the actual value of o under independence is approximately

a = 0.075. Something similar happens with the other two values of o. This happens because

there is an effect of discretization of the statistic when the sample size is small. Therefore, we

recommend caution when using these two tests with small sample sizes. For a better detail,

observe Figure [4.6|

,,,,,,,,,,

L

Figure 4.6: Powers for the Product copula with dimension d = 2

We did not use the supremum distance in the simulations because we observed a strong dis-
cretization effect of the statistic (4.35)); that is, the different values observed from this statistic

were very limited, with many ties.
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As a second example, we use the Fréchet-Mardia copulas. In this case, we use a convex mixture
of Wy and My, the Fréchet-Hoeffding bounds, for the Figure[4.7, and we use a convex mixture of
Wy, My and Il for the Figure Remember that the copulas defined in Figure {.7] are singular
and the copulas defined in Figure [4.8 are absolutely continuous. As we can see in Figure 4.7/ and
Figure the Spearman’s test has very low power, specially for singular copulas. We also note
that the total variation statistic in equation performs a little better than the Hoeffding
and the Blum-Kiefer-Rosenblatt tests at the three levels, but the statistics given in equations
and have the best performance at all three levels, and have a power really close to
100% when « = 0.05 and « = 0.10.

In the Figure the parameters in the convex combination aMy + bWs 4 (1 — a — b)Ily begin
with a = 0.5 and b = 0.5, and after b reduces until 0 while a = 0.5; after that, a reduces until 0

and b remains equal to 0.
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Figure 4.7: Powers for the Frechet-Mardia family with n = 36 in dimension d = 2 and II =0
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Figure 4.8: Powers for the Frechet-Mardia family with n = 36 in dimension d = 2 and II # 0

Finally, we use a convex combination of a Gumbel and a Gumbel-ID, where the latter denotes a
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Gumbel distribution with an increasing transformation in its first coordinate and a decreasing
transformation in its second coordinate. That is, we used the transformation (U, V) — (U,1-V),
for any observation (U;,V;) of the Gumbel copula. The notation ID stands for increasing-
decreasing transformation. As we can see in Figure £.9] in this case the Spearman’s p, the
Hoeffding and the Blum-Kiefer-Rosenblatt have lower powers than our three statistics ,
and . Note, however, that in this case the powers for these three statistics may be
far better than the ones obtained using the standard tests. In particular, the Kulback-Leibler

test (4.36) has the highest powers.

MixGum-GumID,d=2,n=36,alpha=01 MixGum-GumiD,d=2,n=36,alpha=05 MixGum-GumiD,d=2,n=36,alpha=10
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Figure 4.9: Powers for the Mixture Gumb.-Gumb.ID family with n = 36 in dimension d = 2

Additionally, we include three examples from three absolutely continuous copulas: Clayton,
Gumbel and normal, see Figure |4.10, Figure [4.11] and Figure [4.12] The sample size in this case

is 60. We can observe that the results are very similar as in the case of sample size equal to 36.

Clayton, d=2 ,n=60, a=1% Clayton, d=2 ,n=60, a=5% Clayton, d=2 ,n=60, a=10%
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Figure 4.10: Powers for the Clayton family with n = 60 in dimension d = 2
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Gumbel, d=2 ,n=60, a=1% Gumbel, d=2 ,n=60, 0=5% Gumbel, d=2 ,n=60, a=10%
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Figure 4.11: Powers for the Gumbel family with n = 60 in dimension d = 2
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Figure 4.12: Powers for the Normal family with n = 60 in dimension d = 2

Hence, we observe that our statistics , and are competitive even in the case
d = 2. Besides, in the case of a very smooth copula with complete support and 0.5 < |p| < 0.95,
where p is the estimated value of Spearman’s rho, we found that for small values of the sample
size n, the Spearman’s p test had the best powers.

In a recent paper, see [I], the authors proposed a new test of bivariate independence based on
the idea that if (X,Y") is a random vector with joint distribution F, then under independence

Fy(y|r) = Fy(y) and Fy ' (y|z) = Fy,'(y), that is, they do not depend on the value of X. Here
Fy (y|x) denotes the c.d.f of Y conditional on X = x and F}'(y|x) is its inverse. Based on this

idea they construct a new statistic 7;, based on the empirical joint distribution function. They
compare their statistic to six different tests, including them the Hoeffding D,,, the BKR B,, and
the Spearman’s rank statistic S,,. In Figure 1 and Figure 2 of [I], with sample size n = 40, they
see that their T}, is competitive for some alternatives, and does not present a power to far below

in the case of copulas when the sample size n = 60. We did not include this statistic in our

68



study, but from the figures in [I], we can see that our proposals are close to the values of S,,,

and are always competitive if the joint distribution function is continuous and smooth.

4.5.2 Dimension d =3

Many of the statistics proposed in dimension d = 2 for independence tests may be extended to
higher dimensions. In particular, some extensions to dimension d = 3 are somehow natural. For
example, in the case of the Hoeffding statistic, we could obviously use D(z,y,2) = F(z,y, z) —
Fi(x) - F5(y) - F3(2), where I denotes the joint distribution function and Fy, Fy and Fj are the
margins of X, Y and Z, respectively. If we define A(F) = [ D?*(z,y, 2)dF (z,y,z) we could use
the empirical version D,, of the previous A in order to test for independence. The Blum-Kiefer-
Rosenblatt statistic could be similarly extended to dimension d = 3. Many other statistics based
on the empirical copula have 3-dimensional versions, for example the statistic G,, of Genest and
Rémillard, [7]. The problem with all these possible extensions is that in dimension d = 3 the
empirical copula becomes unfeasible if the sample size is not small. For example if n = 1000
then the array necessary to obtain the empirical copula is of size 10°, which blocks a lot of the
memory in a standard computer. Also since we have to operate with it to evaluate several of
these statistics, it becomes useless to try in large simulation studies. Note that, even in the case
of dimension d = 2, most of the papers that have been written proposing new independence
tests deal only with simulations based on small sample sizes, in most cases n < 100. The reason
is that, even in dimension d = 2, the evaluation of some of the statistics become prohibitively
slow if the sample size is moderately large. On the other hand, every statistician who has
used the empirical distribution function for data in dimensions greater than or equal to d = 3,
knows that they need large sample sizes in order to obtain reasonable approximations of the true
distribution function F' using the empirical distribution function F),. In the case of 3-copulas,
the same is true with the empirical (sub)copula C,,.

In some cases, one can find the asymptotic distribution of a statistic based on the empirical
distribution function or empirical copula, but the limiting distribution can only be reached with
large extremely sample sizes. In such cases, the statistic is unfortunately impossible to evaluate
using a standard computer. Hence, it is not possible to assess for which values of the sample
size n the limiting distribution is actually reached.

There are another tests, based on the empirical process or multivariate characteristic functions,
which also have problems when working with large sample sizes. See for example [6].

In our simulations using our proposals given in equations (4.33), (4.34), (4.35) and (4.3€]), we

use large values of the sample size n. In many instances the other tests take a very long time,

or are even impossible to evaluate. Therefore, we only have compared our proposals among

themselves, in order to see which one of them has better power in each of the different cases.
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In [2], the authors propose a statistic, Z2, which coincides with the square product moment
correlation when d = 2. The power of this test is good only for absolutely continuous random
variables, and it has the same problem as the Spearman’s p test in dimension d = 2.

In [19], the authors give a new test of multivariate independence based on analogues to Kendall’s

tau and Spearman’s p. The comments given in the previous paragraph also apply to these tests.
In Figures through we analyze the case d = 3. We used three sample sizes n = 60,
n = 120 and n = 216, with N = 10000 simulations to find the critical values of the tests under
H,. We also generated a thousand simulations under the alternative Hy, to find the powers of
the four tests based in the statistics given in equations (4.33), (4.35), ([4.34) and (4.36).

In Figure 4.13| we consider the Gumbel family, with o = 0.10. We observe that for n small the

statistic based on the supremum distance has better powers, but for n = 216 the powers are
similar for all tests. It is important to note that the statistic based on the supremum distance
has a strong discretization effect, which means that the critical values for this test are not very

accurate. The same effect is observed in Figure |4.14

Gumbel,d=3,n=60,alpha=10 Gumbel,d=3,n=120,alpha=10 Gumbel,d=3,n=216,alpha=10
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Figure 4.13: Powers for the Gumbel family with different n in dimension d = 3

In Figure 4.14] we consider the normal family where the covariance matrix has equal correlations
for each pair of variables. We also observe that the supremum distance has a little better power,

that disipates when the sample size increases.
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and R in dimension d = 3

In Figure we also study the normal family, but now one of the variables is independent

of the other two. In this case we observe that the supremum distance has the worse power

compared with the other three statistics, but for large values of n this difference dilutes.
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Figure 4.15: Powers for the Normal family with different n and R weak independence in dimen-
sion d = 3

4.5.3 Dimension d =14

The comments made for the case d = 3 also apply to the case d = 4. The only difference is that
we now take different values of the sample size which include n = 600 and n = 1296. (The value
1296 = (16) - (81) is obtained by multiplying the number of boxes of C® and C'® in dimension
d = 4). It is important to observe that if we try to evaluate the empirical distribution function
of a sample in dimension d = 4 and sample size n = 1296, in a computer we would only get an
error message because the array needed to get it is of size (1296)* = 2821109907456, which no

personal computer can manage.
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In Figure 4.16| we consider the Frank family. With a = 0.05, we have the same remarks as in

Figure [£.13]
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Figure 4.16: Powers for the Frank family with different n in dimension d = 4

In Figure we study the normal distribution with same correlation among all the random
variables, whereas in Figure one random variable is independent of the other three, giving
weak dependence, The results are quite similar to those given in Figures and [4.15]
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Figure 4.17: Powers for the Normal family with different n and R in dimension d = 4
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Figure 4.18: Powers for the Normal family with different n and R weak indep. in dimension
d=14

Finally, we study the t distribution with same correlation among all the random variables. As we
can see in Figure[4.19] for a sample size of n = 60, the statistic based on the supremum distance
has the highest power followed by the statistic based in the Kullback-Liebler divergence, but
this behavior changes for larger sample sizes, for example, in the case of a sample size n = 1296,
the statistic based on the supremum distance has the worst performance and the statistic based

in the divergence has the best.
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Figure 4.19: Powers for the t distribution with different n and same correlation in dimension
d=14

4.6 Real data

In this section we present the results of the proposed tests using real data. In the financial
world, a problem of high relevance is to determine if a set of financial variables are independent.
For example, we can ask if there is dependence between the reference rate and a certain index

of the equity market, or between a certain foreign exchange rate and the prices of the oil, etc.
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For this illustration, we use three important variables in the Mexican financial market: the index
of the Bolsa Mexicana de Valores, called IPC (Index of Price and Quotations), the exchange rate
for the US Dollar to the Mexican Peso (USDMXN), and the price of the sovereign bond with
term of one year called MBono. The data that we used correspond to the closing price taken
daily from 02/01/2015 to 13/02/2018 (dd/mm/yyyy). The data was taken from the Bloomberg
platform with the variable called pz_last. It is important to highlight that in the period that
we are considering there were many moments of high volatility, and the most relevant were: the
Brexit referendum in June 2016, the presidential election in the USA in November 2016 and

the sharp fall of the equity market presented in February 2018. The sample size observed was
n = 780.

As we can see in the graphics, the IPC index and the MXNUSD currency present an upward
drift; on the other side, the value of the MBono presents a downward drift, see [£.20]
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Figure 4.20: Time series of daily values of the IPC, USDMXN and MBono

As is usual in finance, we work with the returns (arithmetic) instead of the original values of

the variables in order to center and to stabilize them.

The variance of the returns for the IPC index is bounded and it seems that it is not time
dependent. For the case of the USDMXN exchange rate, the variance is stationary and the

majority of the data is close to the media, with a few exceptions. The variance of the MBono
is obviously time dependent, as we can see in the third graph of Figure [£.21} it is high at the

beginning and it reduces practically to a constant at the end.
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Figure 4.21: Time series of daily returns of the IPC, USDMXN and MBono

We run the tests using all possible pairs and the joint distribution of the 3 variables, that is, we
run the tests in the bivariate case for the IPC vs USDMXN, IPC vs MBono and USDMXN vs
MBono, and for the case of 3 dimensions, [IPC vs USDMXN vs MBono.

In Figure we show the modified sample for the bivariate cases. In the first graph, we can
notice that there is dependence between the IPC index and the USDMXN exchange rate because
there is a higher concentration of the modified sample in the corners of the second diagonal of
the unit box. In the second graph, the related one to the IPC index and the MBono, we can
not clearly appreciate a concentration of the modified sample in a particular place of the unit
box. For the third graph, we have a similar case to the first graph, that is, we can appreciate

higher concentration in two corners.

USDMXN
MBono

IPC IPC USDMXN

Figure 4.22: Modified sample for the returns IPC vs USDMXN, IPC vs MBono and USDMXN
vs MBono, respectively

According to the tests, the variables IPC, USDMXN and MBono are not independent two to

two for the significance levels of 0.01, 0.05 and 0.1. In the following tables we can observe the
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p-value for each test. We can notice that for every case, the p-value is 0 for the distance of total
variation, for the Hellinger distance and for the Kulback- Liebler divergence; it is equal to 0 in

two cases for the Spearman; and it is close to 0 for Hoeffding and B-K-R statistics.

The following graph presents the modified sample of the returns of the IPC index, USDMXN

currency and MBono. We can see that the sample is not uniformly distributed in I?, see Figure

4231

IPC vs USDMXN

Test p-value
Total variation 0
Hellinger 0
Kulback-Liebler 0
Hoeftding 0.00000001
BKR 0.00000271
Spearman 0

IPC vs MBono

Test p-value
Total variation 0
Hellinger 0
Kulback-Liebler 0
Hoeftding 0.00000166
BKR 0.00024956
Spearman 0.00001147

USDMXN vs MBono

Test p-value
Total variation 0
Hellinger 0
Kulback-Liebler 0
Hoeffding 0.00000001
BKR 0.00000298
Spearman 0
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Figure 4.23: Modified sample of the returns for IPC vs USDMXN vs MBono

Now, for the tridimensional case, we reject independence in all the tests for the levels 0.01, 0.05

and 0.1. Moreover, the p-value is 0 for all the statistics.

4.7 Applications

A further investigation based on the work presented in this thesis is the following: What is the
maximum separation in which we can divide a vector in independent subvectors? To answer

this question we need the following definition

Definition 4.7.1. Let X = (Xy,...,Xy) be a d-dimensional random vector. We say that X is
exhaustively dependent if and only if the distribution function of X can not be decomposed

in the product of the distribution functions associated to any independent subvectors of X.

For example, we consider a random vector X = (Xj, X3, X3, X4). Then X is exhaustively de-

pendent if its distribution function can not be expressed in any of the following forms:

FXI,XQ,Xg,X4(3?1, T2,T3, $4) = Fxgm (%(1))FX(,<2),XU<3),XG(4) (370(2), Ts(3), 930(4)%
FX1,X2,X3,X4(1B1, X2, T3, $4) = FX[,(U,X(,(Q) (!Ea(1), fa(Q))FXU<3),XU(4) (fEa(s), IEU(4)),
FX1,X2,X3,X4($1, T2, T3, $4) = FXUm (:Ea(l))FXU(Z) ($J(2))FX0<3),X0(4) ($a(3), 1Ua(4)),
FX X0, X5, %4 (01, T, T3, T4) = Fx, ) (T0(1)) FX, ) (To(2)) X, ) (To(3)) X, ) (To(a))

where o is any permutation of I, = {1,2, 3,4}, Fx, x, xs.x, (%1, T2, T3, x4) is the joint distribution

function of X and FXU(I)’mXU(k) for k < 3 are the marginals.
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Then, the tests proposed in this thesis can be used to determine if a vector is not exhaustively

dependent and hence can be decomposed in independent subvectors.

Exhaustive dependence may be very useful in many applications. For example, in finance
it is relevant to identify if there is dependence between a group of variables. However, in
many real examples it is known from experience that some of the variables of interest are
dependent. Hence we can test if the assumption holds or not. For example, if we consider a
vector X = (X, Xo, X3, X4, X5) that is not exhaustively dependent, and suppose that it can be

expressed as

Fg(iﬁy T2, T3, Ty, 5175) = FX1,X2 (1317 372)FX3,X4,X5 (5637 Ty, $5)7

if the assumption is not rejected then it may be easier to model the structure of dependence
between (X7, X5) and between (X3, X4, X5) than the structure of dependence of X.
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Chapter 5

Final Comments

In the second chapter of this thesis we presented the concept of sample d-copula and we showed
that it has important properties such as it has constant density and a version of a Glivenko-
Cantelli’s theorem. Additionally, we compare the sample d-copula against the empirical copula,
and we noticed that there are many advantages using the sample d-copula instead the empirical.
In the third chapter we showed that it is possible to obtain the exact distribution of the sample
frequencies under the assumption of independence. We found simple expressions for the distri-
bution of the frequencies, and also we found expressions for the means and covariances. At the
end of the chapter we noticed that, in the case of dimension 2, the distribution in the cases of
the partition of order 2 and 3 is determined for only one and four random variables, respectively.

The main result of this thesis is the trivial characterization of multivariate independence in

terms of the checkerboards of order m = 2 and m = 3, C® and C®. As we have seen, C"

the sample d-copula of order m give us a very easy way to estimate the checkerboards of order

m =2 and m = 3, C" is an estimator of the true copula C, and also, an estimator of C™) for
every 2 < m < n. Besides, this estimator can be evaluated with a standard computer, even for
large sample sizes and in dimension not so small, which allows us to perform a large number of
simulations in order to estimate the distributions under independence of the statistics that we
propose; this in contrast to some of the most famous tests that are impossible to evaluate for
large sample sizes in high dimensions.

Our proposed statistics are defined in terms of various distances and the Kulback-Leibler diver-
gence. Therefore, we do need not at all the heavy machinery of asymptotic theory to perform

the tests.
We simulated examples in dimension d = 2, d = 3 and d = 4, with different models and different

sample sizes, including a sample size of n = 1296 in dimension d = 4. As pointed out above, it
would be impossible to compute the empirical distribution function for these values of n and d.
Hence, any statistic based on this function is useless in this case, even if we rely on asymptotic

results. In [I0], there are interesting results about the rate of the weak convergence of the sample
process.
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As we could observe the tests that we proposed are very competitive in comparison with the most
used tests in dimension 2; in fact, for small sample sizes we recommend to use the Hoeffding’s
test and the Blum’s test with caution because it has problems with the true value of a. Besides,
the Spearman’s test present problems with singular continuous random vectors.

In our simulations we observed that if the sample size is moderately large, any of the statistics
that we proposed may be used because they have similar powers. However, when the sample
size is small we warn the user against the statistic based on the supremum distance, because
it is affected by a strong discretization, which causes problems with the real values of «, the
probability of type I error. For more detail of this, observe the following graphs for dimension
d = 3, clearly the power of the test based on the supremum distance are higher than the

correspondent levels, see Figure |5.1

=
54 108
Sample size

Figure 5.1: Powers for the Product copula with dimension d = 3
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