

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN CIENCIAS DE LA TIERRA GEOLOGÍA ESTRUCTURAL Y TECTÓNICA

TECTÓNICA DEL LÍMITE SUR DE LA SIERRA MADRE OCCIDENTAL: LA ZONA DE CIZALLA DEL RÍO SANTIAGO

TESIS

PARA OPTAR POR EL GRADO DE:

MAESTRO EN CIENCIAS DE LA TIERRA

PRESENTA:

JUAN CARLOS CASTILLO REYNOSO

TUTOR:

Dr. LUCA FERRARI

(Centro de Geociencias)

MIEMBROS DEL COMITÉ TUTOR:

Dr. ANGEL FRANCISCO NIETO SAMANIEGO (Centro de Geocientcias)

Dr. ISIDRO LOZA AGUIRRE (UGTO)

Dra. ELISA FITZ DÍAZ (Instituto de geología)

Dra. LAURA MORI (Facultad de ingenieria)

Juriquilla, Qro., junio de 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Declaración de ética

"Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firmar al alcance que el presente trabajo es original y enteramente de mi autoría. Toda la actividad de, o referencias a, la obra de otros autores aparecerá debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales".

Jen; Calalitt

Juan Carlos Castillo Reynoso

- Cuando yo uso una palabra - díjo Humpty-Dumpty con un tono burlón - sígnifica precisamente lo que yo decido que signifique: ní más ní menos.

- El problema es - díjo Alícía - sí usted puede hacer que las palabras sígnifiquen tantas cosas díferentes.

- El problema es - díjo Humpty-Dumpty - sabes quién es el que manda. Eso es todo.

> Alicía a través del espejo. Lewis Carroll.

Agradecimientos

Agradezco a todas aquellas personas que de una u otra manera me han brindado su apoyo para mantenerme constante en este proceso, especialmente a mi madre Martha Reynoso y mis hermanos Jorge y Erick y a mi tía Catalina por el valioso apoyo durante los cursos propedéuticos.

Hago un agradecimiento especial a mi novia, la M. C. Aurea Y. González, quien me ha brindado su apoyo incondicional, ha sido mi amiga cuando lo he necesitado, mi acompañante de campo, mi motivo de alegría, quien ha escuchado y discutido la gran cantidad de opiniones geológicas, entre muchas cosas más. Gracias por tu infinito cariño.

Gracias al Dr. Luca Ferrari por darme la oportunidad de participar en el proyecto Conacyt CB2014-01 237745, por sus grandiosas enseñanzas teórico-prácticas y el apoyo para permanecer en el CGEO al principio y al final del trabajo de la maestría.

Agradezco a los investigadores de mi comité tutor: al Dr. Isidro Loza por su apoyo en las jornadas de campo, incluyendo las discusiones y enseñanzas sobre la cinemática de las fallas y por sus observaciones para este trabajo; al Dr. Ángel Nieto Samaniego por su disposición para resolver dudas y sus invaluables observaciones sobre este trabajo.

A la Dra. Elisa Fitz y la Dra. Laura Mori por sus comentarios para mejorar esta tesis y quienes fungieron como parte del comité de sinodales.

Agradezco también al Dr. Carlos Ortega por su apoyo con la obtención de los datos para la geocronología U-Pb en zircones, además del Dr. Alexander Iriondo por sus comentarios sobre la interpretación y descripción de estas edades U-Pb.

En mi estancia en el Centro de Geociencias, conocí a fabulosas personas que se volvieron amigos, Alma Lagunas, Gabriela Contreras, Adolfo Pacheco, Erika Moreno, Juan Manuel Rosales, Tatiana Salinas; entre otras personas que de una u otra manera han hecho este proceso mucho más ameno. Al personal de los talleres de molienda y laminación; Manuel "Juanito" y Oscar.

Al personal administrativo, quienes fueron un gran apoyo en la realización de todo tipo de trámites. Finalmente, a las personas que formaron parte del trabajo de campo, discusiones geológicas y obtención de datos: Fernanda Espinoza, Agesandro García, Edgar Juárez, Edgar Ángeles, Dra, Susana Alaniz.

Y a quienes me faltaron, gracias infinitas por su apoyo.

Esta tesis esta dedicada a mis abuelitos (QEPD) Gracias por todo Tina y Pancho

ÍNDICE

RESUMEN	1
1 INTRODUCCIÓN	5
1.1 PLANTEAMIENTO DEL PROBLEMA	5
1.2 OBJETIVOS	7
1.3 ANTECEDENTES DEL ÁREA DE ESTUDIO	7
1.4 METODOLOGÍA	15
Trabajo de campo	16
Geología estructural	17
Muestreo	19
Fechamiento por U-Pb	20
Petrografía	21
1.5 LOCALIZACIÓN DEL ÁREA DE ESTUDIO	22
2 MARCO TEÓRICO	23
2.1 GEOLOGÍA ESTRUCTURAL	23
2.1.1 DEFORMACIÓN Y ESFUERZO	23
2.1.2 FALLAS	25
2.1.3 ANÁLISIS DE FALLAS	29
2.2 GEOCRONOLOGÍA U-PB	32
2.3 NOMENCLATURA DE ROCAS PIROCLÁSTICAS	36
3 MARCO GEOLÓGICO	39
3.1 BLOQUE JALISCO	39
3.2 SIERRA MADRE OCCIDENTAL	42
3.2.1 ESTRATIGRAFÍA PRE-OLIGOCENO	42
3.2.2 OLIGOCENO-MIOCENO TEMPRANO	42
3.2.3 TECTÓNICA DE LA PORCIÓN SUR	47
3.3 FAJA VOLCÁNICA TRANSMEXICA	48
3.3.1 OCCIDENTE DE LA FAJA VOLCÁNICA TRANSMEXICANA	51
3.3.2 TECTÓNICA DEL OCCIDENTE DE LA FAJA VOLCÁNICA TRANSMEXICANA	52
4 RESULTADOS	54

4.1 INTRODUCCIÓN	54
4.2 ESTRATIGRAFÍA	54
4.2.1 SIERRA MADRE OCCIDENTAL	54
4.2.1.1 OLIGOCENO	54
Andesita San Pedro Analco	54
Granito Subvolcánico	57
Secuencia Volcánico Río Santiago	64
Capas Rojas Las Juntas	74
4.2.1.2 MIOCENO INFERIOR	80
Ignimbritas Monte del Favor	80
Domos El Vigía	85
Granito La Playa	88
4.2.2 FAJA VOLCÁNICA TRANSMEXICANA	90
4.2.3 DIQUES MÁFICOS	92
4.3 GEOLOGÍA ESTRUCTURAL	97
4.3.1 DOMINIO ORIENTAL	99
4.3.2 DOMINIO CENTRO-SUR	
4.3.3 DOMINIO NORTE	110
5 DISCUSIÓN	120
5.1 OLIGOCENO TARDÍO	
5.2 MIOCENO TEMPRANO	124
5.3 PLIO-CUATERNARIO	
5.4 FASES DE DEFORMACIÓN	
CONCLUSIONES	134
BIBLIOGRAFÍA	136
ANEXOS	146

RESUMEN

El límite entre la Sierra Madre Occidental (SMO) y el Bloque Jalisco (BJ), se encuentra parcialmente expuesto en la Zona de Cizalla del Río Santiago (ZCRS). Este límite ha sido parcialmente estudiado en trabajos previos, siendo interpretado como una zona con deformación polifásica, caracterizada por fallamiento normal y lateral dominante, superpuesta a deformación por acortamiento con componente lateral. Sin embargo, la estratigrafía y temporalidad de la deformación no ha sido establecida con claridad.

Para definir la evolución del límite sur de la SMO, en este trabajo se llevó a cabo la cartografía geológico-estructural, análisis petrográficos y estructurales y se obtuvieron edades U-Pb en zircones de las unidades que afloran en la Zona de Cizalla del Río Santiago.

La estratigrafía de las rocas de la SMO en el área de estudio esta representada por tres conjuntos litológicos temporal y espacialmente caracterizados. El primer conjunto esta conformado por andesitas cortadas por intrusiones subvolcánicas del Oligoceno tardío (~27–26 Ma) las cuales afloran en la porción suroriental del área y una sucesión de rocas piroclásticas con lavas intercaladas de composición intermedia, de ~26.5 Ma, localizadas a lo largo del lecho del Río Santiago y hacia el norte de la presa La Yesca; el segundo conjunto consiste de una sucesión de capas rojas con tobas intercaladas, con edades máximas de deposito obtenidas en areniscas de ~24 Ma que se encuentran en cuencas locales en la porción norte y central del área de estudio; el tercer conjunto litológico consiste de una secuencia de rocas piroclásticas con edades de 19 a 21 Ma que son abundantes en la poción centro-sur, coronada por domos riolíticos-dacíticos de 19.5 y 18.3 Ma en el norte y centro del área.

Al sur del Rio Santiago las rocas de la SMO se encuentran cubiertas por rocas volcánicas de composición bimodal, que conforman el volcanismo de la Faja Volcánica Transmexicana (FVTM). Las rocas volcánicas del Oligoceno tardío registran la fase de deformación más antigua, la cual consiste en fallamiento inverso con componente lateral izquierda que se asocia con pliegues abiertos expuestos al norte del área de estudio y que en conjunto definen una deformación transpresional. Esta deformación, caracterizada por una dirección NE-SW de σ 1, se dio entre ~26.5 y ~24 Ma y es contemporánea con deformación por extensión E-O en Durango y Sinaloa.

Posterior a la deformación transpresional se desarrolló un largo periodo de extensión que inicia con una deformación transtensional, de transición entre la fase transpresional y la extensión pura subsecuente. Esta transtensión se encuentra asociada al depósito de la sucesión de capas rojas y a la mineralización del distrito de Cinco Minas.

La fase extensional afecta toda la secuencia de la SMO. Los análisis de fallas y consideraciones estratigráficas muestran una posible rotación horaria de la dirección de extensión que pasa de WSW-ENE a N-S y finalmente a NE-SW. La extensión N-S bascula rocas del Mioceno temprano hacia el sur y norte. A este periodo se asocia la falla Río Santiago que desplaza los domos El Vigía hacía el sur entre 17.5 y 5.5 Ma. Regionalmente, la extensión N-S se puede asociar a fallas normales E-O que cortan basaltos de ~9 Ma al este del área de estudio. La extensión NE-SW también se encuentra en rocas de la FVTM y se asocia al desarrollo del Graben Plan de Barrancas-Cinco Minas.

Las edades U-Pb individuales de zircones detríticos en areniscas de las Capa Rojas Las Juntas sugieren que rocas del BJ se encontraban expuestas al menos hasta el Oligoceno tardío al sur del área de estudio.

La complejidad estructural que se observa en la ZCRS se debe a la superposición de fases de deformación, que a su vez reflejan la evolución dinámica de un límite de placas complejo durante el desarrollo del Golfo de California.

ABSTRACT

The boundary between the Sierra Madre Occidental (SMO) and the Jalisco Block (BJ) is partially exposed in the Santiago River Shear Zone (ZCRS). This limit has been partially studied in previous works and was interpreted as a zone with polyphasic deformation, with dominant normal and lateral faulting superposed to shortening deformation with lateral component. However, the stratigraphy of the region and the timing of deformation has not been clearly established.

In order to define the evolution of the southern limit of the SMO, in this work we carried out a geological-structural survey supported by petrographic and structural analysis and U-Pb geochronology of the geologic units exposed in the Santiago River Shear Zone.

The SMO stratigraphy in the study area is represented by three temporal and spatially characterized lithological suites. The first consists of andesites cut by subvolcanic intrusions of late Oligocene age ($\sim 27-26$ Ma) that crop out in the southeastern portion of the area and a succession of pyroclastic rocks with interbedded lavas of intermediate composition, with age of ~ 26.5 Ma, located along the Santiago River and to the north of the La Yesca Dam; the second suite consists of a succession of red beds with interbedded tuffs, with maximum deposit ages (in sandstones) of ~ 24 Ma that are found in local basins in the northern and central portions of the study area; the third suite consists of pyroclastic rocks with ages from 19 to 21 Ma widely exposed in the central-southern part of the area, capped by rhyolitic and dacitic domes dated at 19.5 and 18.3 Ma, in the northern and central part of the area. South of the Santiago River the SMO succession is covered by volcanic rocks of bimodal composition, belonging to the Trans-Mexican Volcanic Belt (TMVB).

The late Oligocene volcanic rocks are affected by reverse faulting with a left lateral component of motion that is associated with open folds located to the north of the study area, which as a whole define a transpressional deformation. This deformation, characterized by a NE-SW oriented σ 1, occurred between ~ 26.5 and ~24 Ma concurrent with E-W extension that affect the SMO in the states of Durango and Sinaloa.

A long period of extension followed after the transpressional deformation. A first transtensional deformation is interpreted as a transition between the transpressional phase and the following pure extensional phase. This transtension is associated to the deposit of the red beds succession and the mineralization in the nearby Cinco Minas mine district.

The extensional phase affects the entire sequence of the SMO. Fault analysis and stratigraphic considerations show a possible clockwise rotation of the extension direction, from WSW-ENE to N-S and finally to NE-SW. The last N-S extension tilts early Miocene rocks to the south and to the north and is associated with the Santiago River fault, which displaces the rhyolitic and dacitic domes to the south between 17.5 and 5.5 Ma. Regionally, the N-S extension can be associated with E-W trending faults that cut ~9 Ma old basalts east of the study area. The NE-SW extension is also found in the TMVB succession and is associated with the development of the Plan de Barrancas-Cinco Minas Graben.

Individual U-Pb ages of detrital zircons in sandstones of the Las Juntas Red Beds suggest that the Jalisco Block batholith was exposed south of the study area at least until the late Oligocene.

The structural complexity observed in the ZCRS is the result of the superposition of different deformation phases, which in turn are a response to the dynamic evolution of a complex plate boundary during the development of the Gulf of California.

1 INTRODUCCIÓN 1.1 PLANTEAMIENTO DEL PROBLEMA

La Sierra Madre Occidental (SMO) es una de las provincias geológicas con mayor extensión de México. El voluminoso vulcanismo de la SMO ha sido generado por distintos episodios magmáticos y tectónicos del Cretácico-Cenozoico relacionados a la subducción de la placa Farallón debajo de Norteamérica y a un proceso de extensión litosférica que finalmente desembocó en la apertura del Golfo de California (Ferrari *et al.*, 2017). La extensión litosférica estuvo acompañada por la erupción de grandes volúmenes de ignimbritas riolíticas entre el Eoceno y el Mioceno temprano, las cuales hacen de la SMO la provincia ígnea silícica más grande del Cenozoico (Bryan *et al.*, 2002a; Bryan y Ferrari, 2013).

La gran provincia silícica (SLIP por su sigla en inglés) de la SMO se extiende por más de 2,000 km desde la frontera con Estados Unidos hasta Guadalajara y Tepic, donde se encuentran los afloramientos mas meridionales de la SMO, los cuales se encuentran parcialmente cubiertos por las rocas volcánicas de la Faja Volcánica Transmexicana (FVTM). Al sur de la FVTM afloran rocas ígneas y metamórficas del Cretácico al Eoceno pertenecientes al llamado Bloque Jalisco (BJ) (Figura 1.1).

El sur de la SMO ha registrado una tectónica dominantemente extensional, caracterizada por la formación de grábenes de dirección NNE a N-S que afectan ignimbritas del Oligoceno tardío y Mioceno temprano. Al oeste de estas estructuras de desarrollaron semigrabenes en donde las fallas normales cortan a ignimbritas de la serie de El Nayar (~21 Ma, Ferrari *et al.*, 2002). Las fallas normales de los grábenes y semigrábenes no continúan hacia el Río Santiago, en donde rocas volcánicas del Oligoceno tardío-Mioceno temprano presentan una deformación polifásica compleja con direcciones de fallamiento principal WNW-ESE que se superpone a estructuras compresionales más antiguas, las cuales consisten de pliegues abiertos con un arreglo *en échelon,* cabalgaduras y fallas izquierdas aparentemente desarrolladas en el Mioceno medio y que afectan las secuencias volcánicas del Oligoceno y Mioceno inferior. En un trabajo preliminar de reconocimiento en la región del Río Santiago, Ferrari (1995) define que el plegamiento transpresional, fallamiento lateral izquierdo y cabalgamientos menores ocurrieron entre 14.5 y 11.5 Ma y se asocian a una zona de transpresión izquierda producto del movimiento a lo largo del límite

Figura 1.1. Geología y contexto tectónico del límite entre el BJ y la SMO en la zona del Rift Tepic Zacoalco (RTZ AC-Graben Amatlán de Cañas, AM-Falla Ameca, FBN-Falla Barra de Navidad, GM-Graben de Manzanillo, RC-Rift de Colima, LP-Caldera La Primavera, ME-Graben Mecatan, PB-Falla Plan de Barrancas, TE-Fa Techaluta, SM-Falla San Marcos, PSF-Sistema de fallas Pochotitán. Volcanes: TEQ-Tequila, CE-Ceboruc

entre la SMO y el BJ, durante las fases finales de la subducción de la microplaca Magdalena, mientras la placa de Cocos aún continuaba subduciendo bajo el BJ. Esta fase es seguida de una fase transtensiva lateral derecha entre ~12 y 9 Ma, acompañada de volcanismo alcalino y extensión en la boca del Golfo de California y al este del BJ. Estos eventos son explicados por el mismo autor como parte de una larga historia de extensión relacionada a la apertura del Golfo de California. La deformación que presentan las rocas de la SMO no está registrada en rocas del BJ, lo que sugiere que existe una zona de acomodo entre estos dos bloques corticales. Este límite estaría representado por la Zona de Cizalla del Río Santiago (ZCRS), en la cual se observan varias fases de deformación

con vulcanismo y mineralización asociadas que reflejan parte de la evolución de un límite tectónico entre dos provincias con características muy distintas, que además son el resultado de la tectónica regional del Cenozoico en el occidente de México.

La estratigrafía y la temporalidad de las fases de deformación en la ZCRS no han sido bien constreñidas por métodos isotópicos modernos, además, no existe un mapa geológico-estructural regional detallado ni un modelo cinemático integral que explique los eventos volcánicos y de deformación ocurridos en esta región considerada como el límite entre el BJ y la SMO. En este trabajo se presentan los resultados de la cartografía geológico-estructural, así como nuevos datos geocronológicos y estructurales de la ZCRS (Figura 1.1), para comprender mejor la evolución de esta zona de cizalla frágil y presentar un modelo claro contextualizando la actividad tectónica cenozoica al sur de la SMO.

1.2 OBJETIVO

El objetivo de este trabajo es determinar la evolución tectónica de la ZCRS y enmarcarla en la tectónica cenozoica del oeste de México. Un objetivo específico en el presente trabajo es determinar fases de deformación con base en observaciones de campo, complementando las observaciones de trabajos previos y caracterizar su cinemática y geometría con base en *softwares* para análisis estructurales. Finalmente, se plantea obtener un modelo geológico-estructural que explique la evolución de la ZCRS.

1.3 ANTECEDENTES DEL ÁREA DE ESTUDIO

Los estudios realizados en el área incluyen la estratigrafía regional, estructura y relación con la evolución de las provincias volcánicas SMO y FVTM. Además de la asociación espacio-temporal que existe entre ambas provincias, el contexto tectónico incluye la relación con el Bloque Jalisco. La evolución tectónica del área de estudio, en la que se traslapan tres provincias tectónicas distintas se asocia a una historia en la que procesos de subducción y extensión litosférica juegan un papel importante.

A continuación, se presentan los estudios previos relevantes para el área de estudio. La mayoría de estos trabajos son a escala regional, incluyendo datos geocronológicos (Anexo I), geoquímicos y estructurales.

La geología regional al sur de la SMO está restringida a una historia cenozoica. Las rocas pre-Cenozoico han sido reportadas solo en el cañón de Río Santiago previo a la construcción de la presa de Aguamilpa, en Nayarit, en donde afloramientos localizados de argilitas y calizas han sido interpretados como rocas de basamento pre-volcánicas en techos colgantes levantados por intrusivos (Ferrari *et al.*, 1999) ya que se encuentran asociadas espacialmente a stocks de granitogranodiorita de edades del Oligoceno Tardío al Mioceno Temprano (Gastil *et al.*, 1978; Nieto-Obregón *et al.*, 1985). En cambio, las rocas mesozoicas afloran ampliamente en el Bloque Jalisco. El volcanismo del Eoceno no es abundante en la porción sur de la SMO, pero algunos autores (Nieto-Samaniego *et al.*, 1999, 1996; Ferrari *et al.*, 2003) han documentado rocas Eocénicas en los estados de Zacatecas, Guanajuato, San Luis Potosí y Jalisco.

Al norte del área de estudio, Damon *et al.* (1979) reconocieron ignimbritas félsicas de 19 Ma que se encuentran plegadas en la parte central de Nayarit y sus límites con el estado de Jalisco, además de fallamiento normal post-plegamiento que expone a las rocas del Oligoceno, para las cuales obtuvo una edad de 34 Ma. Este plegamiento había sido ya señalado por Gastil *et al.* (1979) y Mooser (1972) aunque no se había dado una interpretación. La edad asignada al plegamiento, queda restringida entre 19 y 11 Ma con base en diques basálticos (11–12 Ma) con rumbo N-S que cortan las ignimbritas miocénicas y vetas de mineralización emplazada en las ignimbritas (Damon *et al.*, 1979). Damon *et al.* (1979) presentan datos geoquímicos y geocronológicos y observaron que el volcanismo del Oligoceno-Mioceno es de tipo calco-alcalino, mientras que las rocas máficas de 11–9 Ma y de 3–0.5 Ma son alcalinas.

Nieto-Obregón *et al.* (1981) realizaron un estudio geocronológico y geoquímico en el límite entre las provincias volcánicas de la SMO y la FVTM. En este trabajo enfatizan en la presencia de volcanismo principalmente ignimbrítico que va del Oligoceno al Mioceno medio (33–16 Ma), estas rocas se encuentran plegadas y falladas en por lo menos dos fases de deformación. En el curso del Río Grande de Santiago, ignimbritas y latitas del Mioceno superior (10-5 Ma) calco-alcalinas sobreyacen discordantemente a las rocas deformadas del Mioceno inferior. En esta región también reconocieron basaltos, andesitas y tobas que van del Mioceno medio al Pleistoceno. Nieto-Obregón *et al.* (1985), retomando los trabajos de Nieto *et al.*, (1981), Damon *et al.*, (1979), Damon (1979) y Demant (1981), obtuvieron datos geocronológicos K-Ar y datos estructurales en el área del Rio Santiago. De acuerdo con esos autores la zona presenta episodios volcánicos calcoalcalinos desde el Oligoceno hasta el Reciente. Mencionan que, productos volcánicos alcalinos fueron emplazados en un régimen extensional entre 14 y 12 Ma, además de basaltos de ~3 Ma en la zona de la Presa de Santa Rosa. De acuerdo con esos autores, la estructura del Río Santiago corresponde a un sistema de fallas tipo Riedel asociado a desplazamiento lateral derecho, el cual consideran que puede ser tectónicamente activo.

Rodríguez-Castañeda y Rodríguez-Torres (1992) realizaron un análisis estructural a lo largo del Río Santiago entre Guadalajara y Tepic, incluyendo estaciones estructurales en La Playa y San Pedro Analco, dentro del área de estudio del presente trabajo. Los autores determinaron que en el curso del Río Santiago hay una falla lateral derecha con fallas tipo Riedel que forma tanto subsidencia como levantamiento. De acuerdo con el análisis estructural plantean tres eventos de deformación, uno de acortamiento NW-SE y dos por extensión NE-SW y NW-SE.

Quintero Legorreta *et al.* (1992), realizaron un estudio estratigráfico y estructural en el Río Grande Santiago en las inmediaciones de la presa de Santa Rosa, en donde reconocieron una zona de fallamiento lateral izquierdo (activa entre 17 y 9 Ma) con dirección NW que genera plegamiento débil y fallas laterales, además fallas normales NE-SW y NW-SE, desarrolladas en fases distintas. Estos autores mencionan que un cono de escoria volcánica del Pleistoceno que descansa discordantemente sobre ignimbritas de 17 Ma (fechadas por Nieto-Obregón, *et al.* 1985), no se encuentra afallado, por lo que descartan que esta zona de fallamiento se encuentre actualmente activa. Esta fase de fallamiento lateral izquierdo generó compresión y extensión oblicua, pero con direcciones de σ_1 y σ_3 orientadas NW-SE y NE-SW, respectivamente. Por otro lado, la fase de extensión desarrolló fallas normales NW-SE (Falla de Santa Rosa, Graben de Cinco Minas y Falla de Plan de Barrancas) con σ_1 vertical y σ_3 horizontal con dirección NE-SW.

Moore *et al.* (1994), estudiaron el volcanismo basáltico y eventos de extensión en áreas cercanas a la ciudad de Guadalajara, en donde encontraron tres grupos de basaltos tipo intraplaca o de isla oceánica (OIB) asociados con fallamiento normal, con edades del Mioceno tardío, Plioceno temprano y Pleistoceno. Estos autores reconocieron cuatro sistemas de fallas: 1) Fallas normales que cortan flujos de ceniza silícicas de 22–27 Ma y que no afectan rocas de un volcán en escudo fechado en 22 Ma, por lo que asignan límites del fallamiento entre 27 y 22 Ma; 2) fallas normales

norte-sur más jóvenes a 10 Ma; 3) fallamiento normal NW en Hostotipaquillo y Santa Rosa que limitan el Bloque Jalisco, que son de edad entre 5.5 y 1 Ma; 4) fallamiento lateral derecho en la presa de Santa Rosa. A diferencia de las interpretaciones de Nieto-Obregón *et al.* (1985), interpretan las estructuras como un conjunto de fracturas *en echelon*. Este fallamiento debe ser más joven de 13.6 Ma con base en una edad obtenida por Nieto-Obregón *et al.* (1985) para la brecha de falla.

Figura 1.2. Modelo de evolución tectónica del límite entre SMO y el BJ propuesto por Ferrari, 1995. A) Ambiente geodinámico a 12.92 Ma y 9 Ma. B) Interpretación de la tectónica en el continente en relación con la reorganización de placas en la boca del Golfo para los periodos de 14–12 Ma y 12–9 Ma. AM–Abanico Magdalena. Modificado de Ferrari, 1995.

En una revisión espacio-temporal de las relaciones entre la SMO y la FVTM, Ferrari *et al.* (1994), determinaron que la FVTM comenzó a formarse hace aproximadamente 16 Ma y la transición de una provincia volcánica a otra estuvo acompañada por deformación transcurrente.

La parte occidental de la FVTM presenta tres dominios estructurales de fallamiento extensional. Los tres sistemas tienen orientaciones N-S, E-W y NW-SE, denominados Colima, Chapala y Tepic-Zacoalco (Luhr *et al.*, 1985). El rift Tepic-Zacoalco, del cual algunas de sus estructuras se observan en el área de estudio, se caracteriza por fallas con rumbos WNW, NNW y NE y los planos de fallas muestran algunas veces superposición de tres familias de estrías (Ferrari *et al.*, 1994).

Ferrari (1995), realizó un estudio de la deformación miocénica en el límite entre la SMO y el BJ y su relación con la apertura del Golfo de California (Figura 1.2), en este trabajo se definió un evento de deformación que genera plegamiento transpresional, fallamiento lateral izquierdo y cabalgamientos menores entre 14.5 y 11.5 Ma e infiere una fase transtensional lateral derecha entre ~12 y 9 Ma, acompañada de volcanismo alcalino y extensión este-oeste en la boca del Golfo de California y el este del BJ. Estos eventos son explicados por el mismo autor como parte de una larga historia de extensión relacionada a la apertura del Golfo de California.

Rosas-Elguera *et al.* (1997) realizaron un estudio estratigráfico y tectónico de la unión triple conformada por los rifts de Tepic-Zacoalco, Colima y Chapala, en el área de Guadalajara. De acuerdo con este trabajo, las rocas volcánicas de la FVTM con edades que van del Mioceno tardío al Cuaternario cubren los límites entre la SMO y el BJ. Este volcanismo está representado por rocas máficas y sedimentos lacustres con edades de 11 a 8 Ma depositados en cuencas tectónicas en los rifts de Tepic-Zacoalco y Chapala. En este trabajo se rechaza la idea de una falla lateral activa que sigue el cauce del Rio Santiago. El graben Plan de Barrancas-Santa Rosa define el límite entre SMO y BJ y se conforma por las fallas normales NW-SE Santa Rosa-Cinco Minas y Plan de Barrancas que podría continuar por debajo del Volcán Tequila al sureste. Los autores mencionan que, con base en otros estudios y sus observaciones se demuestra que el fallamiento lateral en la presa de Santa Rosa afecta rocas del Mioceno medio y posteriormente se observa un fallamiento normal entre el Plioceno temprano y tardío.

En una revisión de la geología y estructura del Rift Tepic-Zacoalco, Ferrari y Rosas-Elguera (2000), presentan análisis estructurales y la estratigrafía de varias secciones comprendidas entre Aguamilpa, Nay. y el Lago de Chapala. Con base en sus resultados y datos geocronológicos, los

autores llegan a tres conclusiones principales: 1) El límite norte del BJ ha sufrido una tectónica extensional en el Plio-Cuaternario, 2) los sistemas de fallas extensionales en el Rift de Tepic-Zacoalco son geométrica y cronológicamente independientes, es decir, está formado por varios sistemas de fallas no conectados unos con otros, que además presentan variaciones tanto en edades como en sus geometrías y 3) la mayor parte de la deformación es pre-Pleistoceno y la tasa de deformación es baja y disminuye desde el Mioceno tardío.

Ferrari et al. (2000), presentan la estratigrafía y una compilación de datos geocronológicos desde el Oligoceno al Presente por distintos métodos presentados en distintas publicaciones para el oeste de la FVTM en el límite entre SMO y BJ. En este trabajo se menciona que la única localidad en la que rocas del BJ y la SMO se encuentran en contacto (tectónico) es al sur de Plan de Barrancas y que la frontera entre ambas provincias tectónicas sigue un patrón de zigzag debajo de los estratovolcanes San Juan, Tepeltitic, Ceboruco y Tequila. Además, este límite influye en la composición del volcanismo de la FVTM: las rocas emplazadas dentro del BJ son dominantemente máficas, mientras que las que se emplazaron por encima de la SMO presentan una composición bimodal. El contraste de altitud entre las rocas de la SMO y el BJ, además de la ausencia de rocas piroclásticas de la SMO depositadas directamente sobre el BJ, implica para los autores que el BJ ha sido levantado considerablemente antes del emplazamiento de las ignimbritas de la SMO y que debe existir una discontinuidad mayor entre los dos dominios. La SMO ha sido afectada por una deformación extensional a partir del Oligoceno o finales del Eoceno(?). Las estructuras predominantes desde el norte de la provincia hasta el sur son fallas normales que forman horsts y grabenes. Sin embargo, en el sector sur la deformación es más compleja. Ferrari et al. (2002) agruparon las estructuras del sur en tres dominios; occidental, oriental y sur (Figura 1.3). El dominio oriental se caracteriza por estructuras de graben con orientación N-S y NNE-SSW (p. Ej. Graben de Bolaños) que afectan ignimbritas del Oligoceno tardío y Mioceno temprano, el occidente por semigrábenes N-S y NNW-SSE que basculan ignimbritas del Mioceno temprano hacia el E-NE y el sur presenta estructuras de pliegues abiertos con arreglo *en échelon*, fallas inversas y fallas izquierdas desarrolladas en el Mioceno medio que afectan rocas del Oligoceno y Mioceno inferior. Ferrari et al. (2005, 2007) presentan la historia magmática y tectónica de la SMO, en donde resaltan características geoquímicas, geocronológicas y estructurales de la provincia silícica para dar una explicación a las enormes cantidades de rocas piroclásticas emplazadas en ella. Indican que los pulsos ignimbríticos de la SMO no presentan características normales típicas de volcanismo de arco, si no que más bien representan productos precursores de la ruptura litosférica que llevó a la formación del Golfo de California.

Además de los trabajos mencionados, se han realizado trabajos de tesis de maestría y licenciatura en las que se aborda la geología del área de estudio o una parte de ella. Páez (2010), realizó un análisis estructural en la región de Paso de la Yesca en ignimbritas de la SMO previo a la construcción de la presa homónima, identificando tres fases de deformación. Las primeras dos fases, registradas en ignimbritas a las que asigna edades del Mioceno con base en trabajos previos, son de tipo transpresional mientras que la última fase es extensional y afecta a rocas del Mioceno tardío. Silva-Fragoso (2015), estudió rocas volcánicas de la SMO y la FVTM en la zona de transición entre las dos provincias al norte de Guadalajara. En este trabajo presenta nuevas edades Ar-Ar y U-Pb y una cartografía geológico-estructural de la zona. En este trabajo se menciona que la estratigrafía en esta región se compone de: 1) ignimbritas de la SMO con edades que oscilan entre 26.3 y 22.3 Ma y lavas basálticas de 24.5 a 20.9 Ma, 2) una colada riodacítica de 15.5 Ma en la Presa de Santa Rosa (previamente fechada por Nieto-Obregón et al., 1985, en 13.5 Ma), 3) un grueso paquete de coladas basálticas de 13.1 y 10.4 Ma con una toba de 10.6 Ma intercalada, 4) domos riolíticos y flujos piroclásticos con edades entre 7.2 y 5.1 Ma, 5) una secuencia bimodal de 3.7 a 0.4 Ma y 6) rocas de composición intermedia de 0.2 Ma del Volcán Tequila. En el marco del mismo proyecto de este trabajo, García-Arreola (2016) presenta datos estructurales y geocronológicos en el área de estudio, entre Hostotipaquillo y el norte de la presa La Yesca (las edades U-Pb en zircones de García-Arreola (2016) son reinterpretadas en este trabajo en el capítulo 4). De acuerdo con el autor, la unidad más antigua es un paquete de andesitas que aflora en San Pedro Analco, la cual se encuentra intrusionada por un cuerpo granítico del Oligoceno tardío. Estas unidades se encuentran sobreyacidas por ignimbritas del Oligoceno, que a su vez se encuentran cubiertas discordantemente por ignimbritas del Mioceno temprano. Las ignimbritas del Oligoceno tardío y las del Mioceno temprano se encuentran separadas por una sucesión de capas rojas con una edad máxima de depósito de ~24 Ma. Las fallas son dominantemente normales con direcciones N-S, E-W y NW-SE. Las rocas mas antiguas, que afloran al norte de la presa La Yesca presentan un mayor grado de deformación y varios sistemas de fallas en un arreglo complejo.

La cartografía del Servicio Geológico Mexicano (SGM) es una herramienta para un primer acercamiento a distintas áreas en todo México. En el caso de la ZCRS se encuentran disponibles las cartas geológico-estructurales escala 1:50,000 Hostotipaquillo y La Yesca. En la cartografía

realizada por el SGM en la carta Hostotipaquillo, se reporta que en la región afloran ignimbritas de composición félsica que asignan al Supergrupo Volcánico Superior de la SMO en donde la unidad más antigua se conforma por andesitas a las que asignan una edad del Oligoceno, sobreyacida por lavas, ignimbritas y tobas félsicas del Mioceno, además de granitos del Mioceno sobre la traza del Río Santiago. Reportan tres sistemas de fallas con direcciones NW-SE, N-S y E-W. Las fallas NW-SE (Monte del Favor y Cinco Minas) son asociadas a mineralización epitermal. En la porción norte del área de estudio, en la carta geológica-minera La Yesca del SGM, reportan andesitas del Oligoceno tardío como la unidad más antigua, cubierta por tobas y lavas félsicas, intercaladas con

andesitas del Mioceno que son intrusionadas por un granito, además de rocas volcánicas de composición bimodal asociadas a la FVTM. Las estructuras reportadas son fallas normales con direcciones NW-SE y NE-SW. Se mencionan también áreas mineralizadas en La Yesca y El Pinabete.

El magmatismo y deformación ocurrida en el área de estudio presenta una mineralización epitermal asociada, reconocida principalmente en el área de Cinco Minas, en donde el sistema de vetas ocupa las tendencias de fallas mayores con rumbo N315° y echados de 60°-70° hacia el suroeste y las vetas han sido desplazadas por fallas laterales y/o normales con rumbo E-W. (Nebocat, 2002, Zahony, 1981; Black, 1981; Rivera y Vazquez, 1963; Wisser, 1930). De acuerdo con Nebocat (2002), las vetas epitermales presentan al menos tres fases de emplazamiento de mineralización. La mineralización es relacionada a stocks riolíticos. Además, menciona que la unidad más baja y antigua reconocida en el área está representada por andesitas con un espesor de ~450 metros. Camprubí et al. (2016) publicaron edades obtenidas por el método Ar⁴⁰/Ar³⁹ en adularia de una veta epitermal del distrito de Cinco Minas. La misma muestra, fechada en dos laboratorios distintos, proporcionó edades de 24.50 ± 0.07 y 23.46 ± 0.26 Ma.

1.4 METODOLOGÍA

La presente investigación se realizó con base en los siguientes procedimientos:

- Cartografía de rocas volcánicas, piroclásticas, sedimentarias y plutónicas en la región comprendida entre el poblado de la Yesca, Nayarit y San Pedro Analco, Jalisco, sobre la traza del Rio Santiago.
- Digitalización de mapas geológico-estructural (ArcGis y Qgis)
- Toma de datos estructurales y análisis estructural (Win Tensor). Se obtuvo un total de 386 datos estructurales (fallas, diques, estratificación).
- Se analizaron 63 láminas delgadas bajo el microscopio petrográfico.
- Se fecharon 7 muestras por geocronología U-Pb en zircones.
- Durante el desarrollo del presente trabajo se llevó a cabo la compilación y análisis de fuentes bibliográficas que permitieran junto con los datos obtenidos dar una interpretación conjunta de la tectónica del área de estudio.

Trabajo de campo

Se realizaron 5 jornadas de trabajo de campo de aproximadamente 8 días cada una, reconociendo relaciones estratigráficas y estructurales, así como descripciones texturales y de fabrica de las distintas unidades litológicas que afloran en el área de estudio. Los transectos que se recorrieron en campo fueron perpendiculares a las estructuras principales y a la traza del Río Santiago.

Figura 1.4. Muestra de una carta topográfica y ortofoto del área de Hostotipaquillo utilizadas para el trabajo de cartografía.

Figura 1.5. Vista de la pantalla principal de ArcGis durante el trabajo de digitalización de contactos y estructuras geológicas.

El trabajo de campo fue acompañado por interpretación de imágenes de satélite con ayuda del *software Google Earth* y ortofotos digitales (Figura 1.4) escala 1: 20,000, obtenidas del Instituto Nacional de Estadística, Geografía e Informática (INEGI). Las observaciones de campo fueron plasmadas en las cartas topográficas 1:50000 (Figura 1.4) obtenidas del INEGI; se utilizaron las cartas Ixtlán del Río (F13D42), Hostotipaquillo (F13D43), El Salvador (F13D44) y la Yesca (F13D33).

Posteriormente al trabajo de campo, las observaciones y datos recopilados fueron digitalizados en los softwares de información geográfica ArcGis (Figura 1.5) y Qgis para finalmente obtener un mapa geológico-estructural del área de estudio.

Geología estructural

Los datos estructurales medidos en campo corresponden a planos de fallas, estratificación, pseudoestratificación, fracturas y diques. En el caso de estructuras planares, las mediciones obtenidas fueron: rumbo, echado, dirección del echado y el pitch de las estrías. Si los planos de fallas medidos presentaban además de estrías, indicadores cinemáticos (Figura 1.6) tales como escalones congruentes e incongruentes, sigmoides, fallas R-R' entre otros, se determinó el sentido de movimiento de las fallas y se hizo una descripción de las estructuras (brecha de falla, espesor de la zona de daño, composición de diques, relación con otras estructuras).

Figura 1.6. Fotografías de plano de falla estriado (izquierda) y salbanda de falla de aproximadamente 10 cm en una falla normal. Sigmoide (derecha) en una falla inversa.

Los datos estructurales de fallas con *pitch* y cinemática medidos en campo en diferentes estaciones fueron graficados y analizados usando el software *Stereonet 9.9.6* (diseñado por Rick Allmendinger y Nestor Cardozo) para visualizar las estructuras medidas en las estaciones estructurales. Posteriormente, se utilizó el *software WinTensor* (Delvaux, 1993; Delvaux y Sperner, 2003) (Figura 1.7) para el análisis estructural dinámico. En primer lugar, se introdujeron todas las fallas medidas en campo y se hizo una separación de familias de fallas sin tomar en cuenta las relaciones geológicas observadas en campo, para comparar los resultados con aquellos que incluían las relaciones estratigráficas, esto se hizo utilizando el procedimiento de diedros rectos incluido en *WinTensor* (Figura 1.7). El procedimiento de diedros rectos en *WinTensor* evalúa de manera interactiva y por iteración, tensores de esfuerzos posibles para las familias de fallas que el programa pueda reconocer, iniciando por la familia de fallas con mayor número de datos. La Figura 1.8, muestra los resultados para dos subconjuntos de fallas separados por el método de diedros rectos.

central, la información de las fallas en el panel de la izquierda y las características de los valores asignados a ci falla en el panel de la derecha, los cuales se ven reflejadas en la tabla de atributos del panel inferior.

Posteriormente, los datos estructurales separados por estaciones, dominios estructurales y temporalidad, basado en consideraciones estratigráficas y observaciones de campo, se analizaron por el método de diedros rectos (Wintensor) el cual permite obtener direcciones de esfuerzos

discriminando datos incompatibles con la mayoría de datos en un conjunto de fallas, además de poder obtener parámetros estadísticos que evalúan la bondad de los resultados.

Finalmente, se hizo la interpretación de las fases de deformación tomando en cuenta las unidades estratigráficas a las que afectan las distintas familias de fallas, sus características cinemáticas y relaciones de corte.

Figura 1.8. Resultados arrojados usando el método de diedros rectos en WinTensor después de la separación de subconjuntos de todas las fallas E-W con planos estriados medidos en campo en este trabajo. La tabla de la izquierda (*subset manager*) muestra los subconjuntos de fallas separados de acuerdo a la compatibilidad con distintos tensores. El panel de la derecha muestra los resultados para los dos subconjuntos principales. En cada uno se muestran los parámetros estadísticos utilizados por el software y la proyección en el hemisferio inferior de las fallas con sus respectivas estrías, además de las direcciones de los componentes principales del tensor de esfuerzos; σ_1 , σ_2 y σ_3 , resultantes para cada subcojunto.

Muestreo

Durante las jornadas de campo se tomaron muestras para petrografía y para análisis de U-Pb. Las muestras para análisis geocronológicos fueron tomadas con base en distintos criterios: que tuvieran mineralogía de rocas ígneas silícicas, las cuales generalmente contienen cristales de zircón, las

rocas debían ser lo más frescas posible y para ello se limpiaron de la costra de intemperismo y así evitar efectos de procesos de meteorización en las concentraciones isotópicas de los minerales; además se tomaron muestras de rocas que marcaran niveles estratigráficos, rocas con distribución amplia e intrusiones silícicas para obtener edades de cristalización, en este caso las muestras fueron de aproximadamente cinco kilogramos procurando obtener datos representativos de la roca.

Fechamiento por geocronología U-Pb

Posteriormente a las jornadas de campo se procedió a la separación de zircones para el análisis U-Pb. Primero se pulverizaron y tamizaron las muestras, las rocas fueron trituradas con una prensa hidráulica (Figura 1.9A) en el taller de molienda y separación de minerales del Centro de Geociencias de la UNAM. Se utilizaron tamices de 4, 20 35 y 40 mallas para separar material de distinta granulometría. Con ayuda de una batea tipo "pan californiano" se separó una pequeña porción de material denso de la fracción más fina obtenida después de tamizar las rocas pulverizadas.

Figura 1.9. Instrumentación utilizada en la separación de zircones. A) Prensa hidráulica utilizada para la trituración de rocas. B) Mesa vibradora Frantz, utilizada para la separación de minerales magnéticos de los no magnético (p. Ej. Zircón).

El material denso obtenido con el uso de la batea se secó en un horno para posteriormente separar minerales magnéticos de los no magnéticos por medio de una mesa vibradora Frantz (Figura 1.9B). Habiendo separado la fracción de material no magnético, se separaron alrededor de 200 zircones por muestra bajo una lupa binocular. Los cristales de zircón separados se montaron en un vidrio con cinta adhesiva, ~120 zircones en el caso de rocas sedimentarias y ~60 para rocas ígneas, los cristales montados se fijaron con un adhesivo epóxico y se obtuvo una probeta con zircones. La probeta se pulió para poder obtener imágenes de catoluminiscencia para corroborar que los cristales montados correspondían a cristales de zircón, además de observar la estructura y las variaciones composicionales de los cristales de zircón. Finalmente se realizaron los análisis isotópicos por el método U-Pb.

Petrografía

Las láminas delgadas fueron elaboradas en el taller de laminación del Centro de Geociencias de la UNAM, algunas de las láminas analizadas fueron retomadas del trabajo realizado por García-Arreola (2016) en su tesis de licenciatura.

Para la elaboración de las láminas delgadas, las muestras de mano fueron cortadas con una cortadora de disco (Figura 1.10) en tamaños semejantes a los portaobjetos. Los fragmentos de roca usados se pulieron con abrasivos y posteriormente se pegaron en un portaobjetos abrasionado. Las muestras pegadas al portaobjetos se desbastaron hasta aproximadamente 30 micras tanto con discos de máquinas desbastadoras (Figura 1.10) como con abrasivos finos. Finalmente, a las muestras se les adhirió un cubreobjetos para mejorar la percepción de los minerales y texturas bajo el microscopio petrográfico

Figura 1.10. Maquinaria utilizada en el taller de laminación para la elaboración de secciones delgadas. Cortadora de disco cubierto de diamante, cortadora y desbastadora de secciones delgadas ya adheridas al portaobjetos y desbastadora de láminas delgadas hasta un espesor de ~30 μm.

La descripción petrográfica consistió del reconocimiento de texturas y estructuras de rocas volcánicas, subvolcánicas, plutónicas, piroclásticas, y sedimentarias volcanogénicas. Se describieron los componentes principales haciendo una estimación visual de las modas minerales para clasificar y correlacionar las distintas unidades que afloran en el área de estudio. El estudio de láminas delgadas se realizó en el de laboratorio petrografía del Centro de Geociencias de la UNAM.

1.5 LOCALIZACIÓN DEL ÁREA DE ESTUDIO

El área de estudio (Figura 1.11) se ubica en la porción occidental de México, en la traza este-oeste del Río Santiago y alrededores, localizado en el límite centro-norte de Jalisco y sur de Nayarit, aproximadamente 140 kilómetros al noroeste de Guadalajara.

La principal vía de acceso es la carretera federal número 15 que va de Guadalajara a Tepic. Por esta carretera se puede llegar al poblado de Tequila o a Plan de Barrancas más al oeste. Los principales transectos realizados partieron de Tequila hacía el noroeste, hasta llegar a La Quemada, en donde se toma la desviación hacía Hostotipaquillo por el camino pavimentado que conduce hacía la presa hidroeléctrica La Yesca. Desde Hostotipaquillo se puede ir hacía del norte para llegar a la presa La Yesca o bien, ir hacia el este por un camino de terracería que conduce al poblado de San Pedro Analco cruzando por un puente el Río Santiago.

Sobre el camino que conduce a la presa La Yesca se encuentran varias desviaciones por caminos de terracería que generalmente descienden hacia el Río Santiago. La construcción de la presa La Yesca permite el acceso a la vertiente norte del Río Santiago, en donde el camino de terracería conduce hasta el poblado de La Yesca. Una vía de acceso alterna es desde Plan de Barrancas, tomando la desviación hacia el norte por un camino de terracería que conduce a la porción occidental del área de estudio hasta llegar al Río Santiago.

2 MARCO TEÓRICO

2.1 GEOLOGÍA ESTRUCTURAL

Las estructuras geológicas son la configuración geométrica de las rocas. La geología estructural es el estudio de la geometría, distribución y formación de las estructuras geológicas creadas durante eventos de deformación. La tectónica es una disciplina ligada a la geología estructural, donde se identifican los procesos externos y regionales que generan conjuntos de estructuras característicos en un área o región (Fossen, 2010).

Las observaciones en campo de rocas deformadas y sus estructuras son la herramienta más directa e importante para la obtención de información sobre cómo se deformaron tales rocas. Otras herramientas utilizadas son las observaciones de percepción remota y de modelos digitales de elevación, y experimentos y modelos físicos a escala (analógicos) y numéricos, entre otros. El análisis tectónico incluye análisis dinámicos, cinemáticos y geométricos a escala regional.

2.1.1 DEFORMACIÓN Y ESFUERZO

El termino deformación se refiere a la transformación desde una geometría inicial a una final, esta transformación puede ser el resultado de traslación de cuerpo rígido, rotación de cuerpo rígido, deformación de cuerpo no rígido, distorsión (*strain*) y/o cambio de volumen. La distorsión (*strain*) se refiere al cambio en la forma, con o sin cambio de volumen. La distorsión implica que las partículas de una roca tengan cambios de posición relativa una respecto a la otra.

Dos tipos de deformación importantes son la cizalla pura y la cizalla simple (Figura 2.1). La cizalla pura es una deformación coaxial, es decir, que las líneas paralelas a los principales ejes de

deformación no han rotado desde su posición inicial hasta el estado deformado, un ejemplo de este tipo de deformación es la distorsión uniaxial en donde una roca se acorta o extiende en una sola dirección. La cizalla simple es una deformación por distorsión plana a volumen constante. Es una deformación no coaxial, es decir, que las líneas paralelas a los ejes de deformación han rotado desde su posición inicial. En este caso las orientaciones de los ejes de deformación son diferentes para cantidades diferentes de distorsión (Fossen, 2010).

La deformación está ligada al esfuerzo por medio de la reología de los materiales. El esfuerzo sobre una superficie es un vector, que matemáticamente puede ser representado con un tensor de primer orden. El esfuerzo sobre una superficie se define como la relación entre una fuerza y el área sobre la cual se aplica la fuerza.

Figura 2.1. Diagramas esquemáticos de cizalla simple (A) y cizalla pura (B). En el diagrama de cizalla simple se representa la cizalla angular (Ψ) que representa el cambio en ángulo entre dos líneas originalmente perpendiculares en un medio deformado y la distorsión por cizalla (γ) que es igual a la tangente de la cizalla angular. En el diagrama de cizalla pura se observa el alargamiento y el acortamiento en los ejes coordenados X y Y respectivamente, como en cizalla pura se preserva el volumen, K=1/K_x. Modificada de Fossen, 2010.

De manera general, se pueden definir dos tipos de esfuerzo: esfuerzo normal y esfuerzo de cizalla. El esfuerzo normal es un vector orientado perpendicular a la superficie sobre la que se aplica el esfuerzo, mientras que el esfuerzo de cizalla se refiere a un vector que actúa paralelo a la superficie. En tectónica es común realizar análisis de paleoesfuerzos. Es difícil o imposible predecir la distorsión que será resultado del esfuerzo, es relativamente más fácil relacionar la deformación a un estado de esfuerzos. Para realizar análisis de paleoesfuerzos de debe asumir que los ejes principales de deformación corresponden a las direcciones de esfuerzos principales.

Uno de los términos importantes de entender en análisis tectónicos es el esfuerzo tectónico. Fossen (2010) define los esfuerzos tectónicos como partes del estado de esfuerzo local que se desvía del

estado de esfuerzo de referencia como una consecuencia de procesos tectónicos. Anderson (1951), definió regímenes de esfuerzos tectónicos en tres tipos: normal, inverso y lateral (*strike-slip*). En estos regímenes se asume que el esfuerzo de cizalla es nulo en la superficie terrestre (los regímenes andersonianos solo son válidos en condiciones cercanas a la superficie), además se asume que uno de los esfuerzos principales es vertical, lo que implica que los otros dos son horizontales. En función de cuál de los tres esfuerzos principales es el vertical, Anderson definió los siguientes tres regímenes (Figura 2.2):

 $\sigma_v = \sigma_1$: régimen de falla normal

 $\sigma_v = \sigma_2$: régimen de falla lateral

 $\sigma_v = \sigma_3$: régimen de falla inversa

La clasificación de Anderson es válida únicamente en regímenes de deformación coaxial, además de que las rocas deformadas deberían ser isotrópicas.

Por otro lado, el esfuerzo vertical puede relacionarse al peso y la densidad de la columna de roca sobreyaciente ($\sigma_v = \rho gz$), que se define como carga litostática.

Figura 2.2. Relaciones de los esfuerzos principales y los regímenes tectónicos de acuerdo con Anderson (1951). Los estereogramas muestran los campos de compresión (P) y tensión (T).

2.1.2 FALLAS

Fossen (2010) define el termino falla como cualquier superficie o zona estrecha con desplazamiento por cizalla visible a lo largo de la zona o, en términos de geología de rocas deformadas de manera frágil, define a una falla como un volumen tabular de roca que consiste de

una superficie de desplazamiento central o núcleo, formado por intenso cizallamiento y un volumen de roca rodeándolo que ha sido afectado por deformación menos intensa espacial y genéticamente relacionada a la falla. De acuerdo con Ragan (2009), el aspecto más importante de una falla es su desplazamiento y existen dos casos especiales más importantes de desplazamiento: desplazamiento paralelo al echado de la falla (*dip slip*) y el desplazamiento paralelo al rumbo de la falla (*strike slip*). Los dos posibles sentidos de desplazamiento y las combinaciones de los posibles casos se muestran en la Tabla 2.1 y la Figura 2.3.

Tipos de fallas		
Desplazamiento paralelo al echado	Falla normal Falla inversa	
Desplazamiento paralelo al rumbo	Falla lateral derecha Falla lateral izquierda	
Desplazamiento oblicuo	Términos combinados de desplazamiento a rumbo y echado	
Tabla 2.1. Tipos de fallas de acuerdo a su desplazamiento. Modificado de Ragan (2009)		

El segundo aspecto importante de una falla es la actitud del plano de falla que permite describir el desplazamiento relativo de bloques limitados por fallas. Rickard (1972), ideó un diagrama romboidal que permite clasificar las fallas en función del ángulo del echado de la falla y el rake de la falla. Para cada posible par de echado-*rake (dip-rake o dip-pitch)* se asigna un índice único, por ejemplo, una falla con un echado de 60° y pitch de 80° tendría un índice $D_{60}R_{80}$ y esto representaría un punto en el diagrama de la Figura 2.3.

En los planos de falla, las estrías formadas por la cizalla entre los dos bloques que separa dicha estructura se encuentran orientadas con la dirección del desplazamiento de la falla. Durante el fallamiento frágil se desarrollan rasgos sobre las superficies de falla que pueden ser usados como indicadores cinemáticos, es decir, que definen el sentido de cizalla de la falla. Estas características son observables cuando un lado de la superficie de la falla queda expuesto. Generalmente los indicadores cinemáticos más comunes son escalones asimétricos denominados escalones congruentes e incongruentes (Figura 2.4B).

De acuerdo con Twiss y Moores (2007), los indicadores cinemáticos más comunes resultan de cinco procesos: 1) precipitación de minerales secundarios o disolución de material en la superficie

de la falla; 2) fracturamiento secundario; 3) formación de surcos en la superficie de la falla (*gouging o plucking*); 4) desgaste o pulido de la superficie y 5) acumulación y arrastre de salbanda (*gouge*) a lo largo de la superficie de la falla.

Figura 2.3. Diagrama de clasificación de fallas en función del ángulo del echado y pitch. En color azul se representa el campo de las fallas a rumbo (lateral izquierda y derecha) y las fallas con desplazamiento al echado (normal e inversa), en los campos en blanco se observa las fallas oblicuas. Modificado de Ragan (2009).

Petit (1987), identificó criterios para determinar el sentido de cizalla en fallas y denominó estos últimos como criterio T, criterio P y criterio R (Figura 2.4). El criterio T (Figura 2.4A) comprende

fracturas de tensión (T) que intersectan las superficies estriadas de la falla (M). Las fracturas T forman ángulos agudos con M. Las fallas P (Figura 2.4A) son caracterizadas por formar ángulos bajos respeto a M. El criterio R (Figura 2.4A) es el criterio cinemático más utilizado (Fossen, 2010), se basa en los ángulos agudos que forma la fractura R y la superficie M. La línea de intersección entre M y R forma un alto ángulo (~90°) con las estrías de la falla. También suelen formarse en este sistema, fracturas conjugadas con R denominadas R', las fracturas R y R' forman ángulos, de ~10° y ~75° respectivamente, con el plano de falla M.

Figura 2.4. Criterios cinemáticos para la determinación del sentido de cizalla en fallas. Los diagramas del panel A representan los criterios T, P y R descritos por Petit (1987). La figura B representa escalones incongruentes y congruentes típicos formados en superficies de fallas. La figura C muestra la relación geométrica de los las falla R, R', P y T respecto a la falla principal o maestra (M). Modificado de Fossen (2009) y Twiss y Moores (2007).

En zonas de cizalla frágil que se forman en los primeros diez kilómetros de la corteza, estructuras pre-ruptura son bien preservadas, las estructuras *Riedel* representan las más importantes de este tipo de estructuras. Las estructuras R deben ser tratadas con especial cuidado, pues un cuerpo de roca puede contener estructuras preexistentes que no se desarrollaron en este sistema de ruptura, para interpretaciones correctas las fracturas menores asociadas a un sistema *Riedel* deberían presentar evidencias de cizalla (planos estriados) (Allmendinger, 2017).
2.1.3 ANÁLISIS DE FALLAS

Las estructuras de deformación (fallas y fracturas) usualmente son utilizadas en tectónica para obtener paleoesfuerzos y con ello entender y reconstruir, acompañado de información geológica, la evolución tectónica de un área deformada. La dirección de paleoesfuerzos puede ser obtenida con base en observaciones de campo. Los datos de campo usados en el análisis de falla son: orientación del plano de falla, dirección de desplazamiento, sentido del desplazamiento, orientación local de estratificación, desplazamiento promedio y área de superficie de falla (Marrett y Allmendinger, 1990). Estos datos, pueden proporcionar información sobre los paleoesfuerzos, que son utilizados para reconstruir la evolución tectónica de una región.

Se han propuesto distintos métodos para el análisis de conjuntos de planos de fallas estriadas para determinar los paleoesfuerzos (*fault slip data analysis*) mismos que son resumidos en la Tabla 2.2. Se supone que las fallas de una misma fase de deformación se formaron bajo el mismo campo de esfuerzos. Los grupos de fallas de un área limitada pueden ser analizados para reconstruir el campo de paleoesfuerzos locales.

El caso más simple de deformación es la deformación plana, la cual se expresa en términos de sistemas de fallas conjugadas. Las fallas conjugadas se desarrollan simétricamente respecto a los esfuerzos principales en fallamiento normal, inverso y lateral, respondiendo al criterio de fractura de Coulomb que predice que las fallas o fracturas de cizalla se forman en un ángulo consistente con las propiedades mecánicas respecto a σ_1 y es controlado por la fricción interna de la roca. Este caso es el más sencillo para obtener una solución de análisis de fallas.

En caso de haber fallas conjugadas el eje del esfuerzo principal máximo bisecta el ángulo agudo formado por el conjunto de estas (Fossen, 2010), el esfuerzo principal mínimo bisecta el ángulo obtuso y el esfuerzo principal intermedio se encuentra en la intersección entre los dos esfuerzos principales.

En casos de conjuntos de fallas complejos, donde no se observan fallas conjugadas o fracturas tipo II y donde las fallas podrían ser producto de distintas fases de deformación se deben analizar fallas con métodos distintos (Tabla 2.2) al que se usa para fallas conjugadas. Una asunción obvia es que las fallas o las fracturas orientadas perpendicularmente a uno de los tres esfuerzos principales no se moverán, debido a que no hay cizalla en esta situación ($\sigma_0 = 0$).

La hipótesis más socorrida es la de Wallace-Bott que asume que el desplazamiento sobre una fractura planar ocurre paralelo al esfuerzo de cizalla más grande resuelto sobre ese plano. Esto implica que las fallas son planas, los bloques fallados son rígidos, la rotación de los bloques es despreciable y que las fallas fueron activadas durante una fase de deformación que corresponde a un campo de esfuerzos uniforme.

Para casos de conjuntos de fallas complejas se requieren métodos para conocer la orientación y el tamaño relativo de los ejes de esfuerzo. Estos métodos son conocidos como inversión de esfuerzos o técnicas de inversión de desplazamiento de fallas (*fault-slip data inversion*).

Para masas de roca que han sido afectadas por múltiples eventos tectónicos, el conjunto de datos consiste por varios subconjuntos (*subsets*) o sistemas de datos frágiles. Un subconjunto se define como un grupo de fallas y fracturas que se ha movido durante un evento tectónico o que han sido generados por un evento tectónico distinto (Delvaux y Sperner, 2003).

Aunque el uso de métodos de análisis de fallas es de gran ayuda en la separación de subconjuntos de fallas y en la interpretación de eventos de deformación, el criterio más importante para separar subpoblaciones de fallas y reconocer fases de deformación es la observación de campo, por ejemplo, la identificación de relaciones de corte de fallas de distinta fase y con cinemáticas inconsistentes y las características de fases minerales sobre las superficies de falla y características de salbanda y brecha de falla. De acuerdo con Marrett y Allmendinger (1990), la heterogeneidad cinemática de fallamiento, se observa en patrones multimodales de ejes de acortamiento y extensión, esto puede ser producido por distintos mecanismos: deformación triaxial (Reches, 1983), reactivación de anisotropía, compatibilidad de distorsión y/o deformación múltiple.

La inversión de desplazamiento de fallas reconstruye la orientación y forma del elipsoide de esfuerzo basado en datos de desplazamiento de fallas medidos. Los cálculos pueden ser llevados a cabo por programas de inversión de esfuerzos, muchos de los cuales están disponibles de manera libre. Los resultados se representan por medio de estereogramas que muestran la orientación de los principales ejes de esfuerzos. Los diagramas de Mohr reflejan las magnitudes relativas de los esfuerzos principales.

Los datos de desplazamiento de fallas pueden ser analizados de dos maneras: por medio de un análisis dinámico o un análisis cinemático. El análisis dinámico permite obtener el estado de paleoesfuerzo mientras que el análisis cinemático se deriva en términos de deformación (Blenkinsop, 2006).

	Método	Resultado	Observaciones	Ejemplos
Cinemático	Suma del tensor de momento (no ponderado)	Principales tasas de deformaciones/deformación incremental, e ₃ y e ₁ (extensión positiva)	Asume que la cinemática de las fallas es invariante con la escala	Marrett y Allmendinger (1990)
	Sumadeltensordemomento(ponderado)	Principalestasasdedeformaciones/deformaciónincremental, e_3 y e_1 (extensión positiva)	Requiereunaestimacióndedesplazamientopara cada falla	Marrett y Allmendinger (1990)
Dinámico	Dihedros rectos	Principales orientaciones de esfuerzos, σ_1 y σ_3 (compresión positiva).	El vector desplazamiento se encuentra en la dirección de esfuerzo resuelto El vector	Angelier y Mechler (1977)
	Trihedros rectos	Principales orientaciones de esfuerzos, σ_1 y σ_3 (compresión positiva)	desplazamiento se encuentra en la dirección de esfuerzo resuelto	Lisle (1987)
	Inversión de esfuerzo	Principales orientaciones de esfuerzos, σ_1 y σ_3 (compresión positiva)	Asume que el desplazamiento se encuentra en la dirección de máximo esfuerzo de cizalla.	Angelier (1984), Gephart y Forsyth (1984)

Tabla 2.2. Métodos utilizados para el análisis de fallas. Se dividen en dos categorías principales: cinemáticos y dinámicos

Existen varios procedimientos para el análisis de fallas frágiles y para la determinación de tensores de esfuerzo y amplia variedad de métodos y programas computacionales para su obtención. En los

últimos treinta años, la formación de fallas ha sido vista principalmente desde el punto de vista cinemático (Reches, 1983; Krantz, 1988; Twiss y Unruh, 1998). Los análisis cinemáticos son directamente comparables con las soluciones de mecanismos focales sísmicos (Marret y Allmendinger, 1990). De acuerdo con Blenkinsop (2006), el significado fundamental de datos de desplazamiento de fallas es cinemático porque el movimiento identificable sobre un plano de falla es un desplazamiento, no un esfuerzo.

Marrett y Allmendinger (1990) presentan una comparación entre métodos cinemáticos y dinámicos para el análisis de fallas, en este trabajo mencionan que los ejes obtenidos por medio del método cinemático grafico son básicamente una representación alternativa de los datos originales y fundamentan que este tipo de análisis proporciona mejores resultados que otros métodos donde se observa heterogeneidad del fallamiento.

Algunos softwares tales como *Faultkin* (Marret y Allmendinger, 1990; Allmendinger *et al.*, 2012), *WinTensor* (Delvaux y Sperner, 2003; Delvaux, 1993) permiten obtener soluciones de análisis de fallas por distintos métodos de manera interactiva.

El software *WinTensor*, implementa el uso del método de diedros rectos y un método iterativo de "optimización rotacional" para obtener tensores de esfuerzos para conjuntos de fallas. Además, permite separar subcojuntos de fallas y evaluar la calidad y compatibilidad de los resultados.

Las herramientas computacionales desarrolladas para el análisis de fallas, brindan una amplia gama de información, sin embargo, es importante que la interpretación de los resultados obtenidos mediante el uso de estos *softwares* sea acompañada por observaciones de campo y que tengan un sentido geológico.

2.2 GEOCRONOLOGÍA U-PB

En las últimas décadas, el fechamiento de rocas por geocronología U-Pb se ha vuelto una de las herramientas más utilizadas en geociencias, pues es un método que permite obtener edades precisas (<2% de error) y de manera rápida, en varios minerales accesorios.

El método está basado en el decaimiento radiactivo de U y Th a isotopos estables de Pb. El U y el Th son elementos incompatibles, por lo que, al haber procesos de fusión parcial de rocas, estos elementos se concentran en la fase liquida y son incorporados en los productos ígneos más ricos en sílice. Debido a las características geoquímicas de ambos elementos, durante los procesos de

diferenciación magmática en la corteza, las rocas de la corteza continental son enriquecidas en U y Th en comparación con las rocas del manto.

Las concentraciones de U y Th en minerales silicatados es uniformemente bajo, del orden de partes por millón o menos. Ambos elementos ocurren primariamente en algunos minerales accesorios tales como thorianita, uraninita, zircón, thorita, allanita, monazita, apatito, xenotima y esfena (Faure y Mensing, 2005). De estos el zircón es por mucho el más abundante.

El uranio tiene tres isotopos naturales radioactivos, ²³⁸U, ²³⁵U y ²³⁴U. En el caso de Th, existe primariamente como ²³²Th, mas otros cinco isotopos radioactivos hijos de vida corta que son intermedios entre ²³⁸U, ²³⁵U y ²³²Th. La Tabla 2.3 muestra las abundancias de los isotopos y sus constantes de decaimiento.

Isótopo	Abundancia	Vida media	Constante de	Referencia
	(%)	(años)	decaimiento (y-1)	
²³⁸ U	99.2743	4.468 x 10 ⁹	1.55125 x 10 ⁻¹⁰	Steiger y Jager, 1977
²³⁵ U	0.7200	0.7038 x 10 ⁹	9.8485 x 10 ⁻¹⁰	Steiger y Jager, 1977
²³⁴ U	0.0055	2.45 x 10 ⁵	2.829 x 10 ⁻⁶	Lide y Frederikse,1995
²³² Th	100.00	14.010 x 10 ⁹	4.9475 x 10 ⁻¹¹	Steiger y Jager, 1977

Tabla 2.3. Abundancia, vida media y constante de decaimiento para isótopos de uranio y torio. Faure y Mensing (2005).

Los principales isótopos de U y Th terminan la cadena de decaimiento en isotopos estables de Pb. Los mecanismos de decaimiento que ocurren en la cadena son decaimiento α y decaimiento β . Cada canal de decaimiento llega a formar isotopos específicos de Pb, el decaimiento de ²³⁸U produce ²⁰⁶Pb, el ²³⁵U produce ²⁰⁷Pb y el ²³²Th produce ²⁰⁸Pb.

Las vidas medias de los isótopos ²³⁸U, ²³⁵U y ²³²Th son mucho más grandes que las de sus respectivos isotopos hijos, esta característica satisface la condición para establecer el equilibrio secular, permitiendo que en minerales con contenido de U y Th las tasas de decaimiento de los isotopos hijos intermedios sean iguales a sus respectivos isótopos padre.

La acumulación de isotopos de Pb debido al decaimiento de sus isotopos padre, responde a la ley de la radioactividad y pueden representarse en las ecuaciones siguientes, escritas en términos de:

²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb y ²⁰⁸Pb/²⁰⁴Pb debido a que el ²⁰⁴Pb es el único isotopo no radiogénico de Pb.

$${}^{206}Pb/{}^{204}Pb = ({}^{206}Pb/{}^{204}Pb)_i + ({}^{238}U/{}^{204}Pb)(e^{\lambda It}-1)$$
$${}^{207}Pb/{}^{204}Pb = ({}^{207}Pb/{}^{204}Pb)_i + ({}^{235}U/{}^{204}Pb)(e^{\lambda 2t}-1)$$
$${}^{208}Pb/{}^{204}Pb = ({}^{208}Pb/{}^{204}Pb)_i + ({}^{232}Th/{}^{204}Pb)(e^{\lambda 3t}-1)$$

Donde:

 $\lambda_1, \lambda_2, \lambda_3 = constantes de decaimiento de {}^{238}U, {}^{235}U y {}^{232}Th respectivamente$ ${}^{238}U/{}^{204}Pb, {}^{235}U/{}^{204}Pb y {}^{232}Th/{}^{204}Pb = relaciones isotópicas calculadas a partir de concentraciones medidas de U, Th y Pb$

Subíndice i =valores iniciales de las relaciones ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb y ²⁰⁸Pb/²⁰⁴Pb

A diferencia de otros métodos isotópicos, en los que la manera gráfica de obtener edades es con una línea isócrona, en la geocronología U-Pb la edad se obtiene de manera gráfica por medio del diagrama de concordia de Wetherill (Wetherill, 1956; Ahrens, 1955). El diagrama de concordia (Figura 2.5A) es el método más utilizado para edades ígneas, sin embargo, existe un método alternativo, el diagrama de Tera-Wasserburg (Tera y Wasserburg, 1972) (Figura 2.5B). La diferencia entre estos métodos es que para graficar en el diagrama de Tera-Wasserburg no se requiere conocer las relaciones isotópicas iniciales de ²⁰⁶Pb/²⁰⁴Pb y ²⁰⁷Pb/²⁰⁴Pb. Tanto el diagrama de concordia de Wheterill como el de Tera-Waserburg pueden ser obtenidos usando la macro de Excel Isoplot (Ludwig, 2008). El efecto de la perdida de Pb o U y la ganancia de U en edades U-Pb de los minerales es compensada por los procedimientos gráficos (Faure y Mesing, 2005).

Las edades U-Pb que se grafican sobre la curva de concordia se denominan edades concordantes, aquellas que grafican fuera de la concordia se les denomina edades discordantes. Las edades concordantes se interpretan como edades de cristalización. Un conjunto de datos discordantes puede formar una línea recta que toca dos puntos de la concordia, la intercepta superior puede interpretarse como edad de cristalización, mientras que la intercepta inferior podría brindar información sobre la edad de eventos de pérdida de Pb por eventos tectonotérmicos, por ejemplo, metamorfismo de alto grado, siempre y cuando esté sustentado por otras evidencias geológicas.

Estudios modernos U-Pb en poblaciones de zircones de tobas fanerozoicas han mostrado que a menudo estos datos presentan un sesgo positivo (por xenocristales o núcleos) o negativo (por pérdida de Pb). Para evitar errores de este tipo, Ludwig y Mundil (2002), desarrollaron el algoritmo *TuffZirc* incluido en *Isoplot* que brinda una mayor robustez tanto con pérdida de Pb como en casos en los que se presenta herencia, sin ignorar la información proporcionada por los errores analíticos. Para el método U-Pb, el zircón es el mineral más usado, ya que cumple con las propiedades de un buen geocronómetro; el contenido de isotopo padre es abundante, no contiene isotopo hijo abundante de manera natural, tiene una estructura cristalina fuerte, es poco sensible a procesos de disolución o alteración y los procesos de decaimiento en el mineral se llevan a cabo como un sistema cerrado.

Figura 2.5. Diagramas de concordia para edades U-Pb. A) Diagrama de concordia de Wetherill. Se muestran los tres cronómetros comúnmente usados. La línea de concordia muestra la coincidencia de los tres cronómetros en función del tiempo (Wetherill, 1956). La relación ${}^{206}Pb^{*/238}Pb$ y ${}^{206}Pb^{*/207}Pb$ son las dos medidas independientes; ${}^{207}Pb/{}^{235}U$ es calculado a partir de estas relaciones y la relación ${}^{238}U/{}^{235}U$ (137.88). Modificada de Gehrels (2011). B) Diagrama de concordia de Tera-Waserburg. El eje X es $1/(e^{\lambda tt} - 1)$ y el eje y es igual a $\frac{1}{137.88} \left(\frac{e^{\lambda_2 t} - 1}{e^{\lambda_1 t} - 1}\right)$, asumiendo que $\lambda_1({}^{238}U)$ =1.55125 x x10⁻¹⁰ y⁻¹, λ_2 (${}^{235}U$)=9.8485 x 10⁻¹⁰ y⁻¹ y ${}^{238}U/{}^{235}U$ =137.88. Modificada de Faure y Mensing (2005).

Otra de las ventajas del zircón como geocronómetro es la temperatura de cierre para el sistema U-Pb, que es de aproximadamente 800 °C. El hecho de que la temperatura de cierre sea alta, permite que el sistema se mantenga cerrado aun cuando haya eventos térmicos menores a 800°C y permite obtener edades de cristalización y de metamorfismo de alto grado. Además de las características mencionadas, el zircón es un mineral de alta resistencia mecánica (dureza 7) y química (es un silicato resistente, se disuelve solo en condiciones de alta temperatura y presión).

La aplicación de la técnica de ablación laser en la geocronología U-Pb ha hecho posible analizar grandes cantidades de muestras de zircones individuales, lo cual permite analizar, por ejemplo, cientos de zircones en cuestión de horas, permitiendo la determinación de firmas típicas de rocas sedimentarias que contienen zircones detríticos. El análisis U-Pb en zircones detríticos es una de las herramientas más utilizadas para trazar procedencia, edades máximas de depósito y correlación estratigráfica en sucesiones sedimentarias.

La edad máxima de depósito obtenida por zircones detríticos está representada por los datos de edades más jóvenes. Los zircones más jóvenes representan el límite de temporalidad para el depósito de una sucesión sedimentaria, es decir, el depósito de estratos sedimentarios no puede ser más antiguo que los zircones más jóvenes, porque representan las rocas de menor edad que fueron erosionadas y cuyos sedimentos fueron depositados en dichos estratos.

Existen distintas maneras de obtener la edad máxima de depósito para una sucesión sedimentaria con base en edades U-Pb en zircones detríticos. De acuerdo con Dickinson y Gehrels (2009), una edad promedio de los tres granos más jóvenes (o más de tres) que se traslapan en una edad con un error de 2σ es la opción más consistentemente compatible con la edad de depósito. La edad máxima de depósito puede ser obtenida mediante otros métodos, por ejemplo, el pico más joven en un diagrama de densidad de probabilidad (PDP, *probability density plot*) o bien la edad del grano más joven, aunque esta edad podría no ser representativa de la edad real de depósito.

2.3 NOMENCLATURA DE ROCAS PIROCLÁSTICAS

La clasificación de rocas piroclásticas suele ser confusa debido a la amplia gama de componentes y texturas observadas en distintos depósitos piroclásticos. Uno de los trabajos más importantes para el estudio de rocas piroclásticas es el realizado por Ross y Smith (1961) en el que tratan la génesis, emplazamiento, soldamiento, cristalización y criterios de reconocimiento. De acuerdo con estos autores los estudios microscópicos de rocas piroclásticas revelan una amplia variabilidad, lo cual incluye variedades de estructuras de espículas de vidrio primario y variables resultados observados por compresión, soldamiento y devitrificación. Las rocas piroclásticas se componen de fragmentos de lava, difiriendo de ellas en que son depositados como sedimentos. Las rocas piroclásticas de composición silícica son las que se encuentran mayormente distribuidas alrededor del mundo.

Un término ampliamente utilizado para definir rocas que son producto del emplazamiento de flujos piroclásticos es el término toba. Wentworth y Williams, (1932), definieron una toba como "rocas piroclásticas endurecidas de tamaño de grano generalmente más fino que 4 mm, este tamaño de grano es equivalente a la ceniza volcánica".

Ross y Smith (1961) denominan como toba de flujo de ceniza (*ash-flow tuff*) a depósitos de ceniza volcánica que resultan a partir de un flujo de ceniza y es un término general para capas de flujos de ceniza consolidados que pueden estar o no soldados. Ellos también usan este término para indicar el mecanismo de dispersión y mencionan que una toba indica el estado y tamaño del material.

Pirsson (1915), define los términos de tobas de cristales, toba lítica y toba vítrea en función de los componentes principales de los depósitos, que es la principal clasificación de tobas.

El término ignimbrita fue propuesto por Marshall (1935) para definir rocas que han sido depositadas a partir de una nube inmensa conformada de fragmentos diminutos de magma caliente mezclada con gases. Las temperaturas de estos fragmentos son tan altas que pueden adherirse y soldarse después de haberse emplazado. Ignimbrita es usado para denominar una roca tobácea de composición acida que ha sido formada a partir de una "*nuée ardente Katmai René*" en la nomenclatura sugerida por Lacroix (1930). Sparks *et al.* (1973), definen ignimbrita como una roca piroclástica compuesta predominantemente por material juvenil vesiculado (pómez y espículas) mostrando características que indican un origen de flujo piroclástico. De acuerdo con estos autores cada unidad de ignimbritas se encuentra dividida en dos partes principales, una capa basal de grano fino y la capa que la sobreyace, la cual se encuentra estratificada debido a gradación en las pómez más grandes y clastos de líticos.

Muchas de las ignimbritas muestran texturas y estructuras desarrolladas en respuesta a las altas temperaturas postemplazamiento y retención de volátiles, como desarrollo de soldamiento, devitrificación y alteración fase-vapor (Freundt *et al.*, 1999). El soldamiento es la cohesión, deformación y coalescencia eventual de piroclastos a altas temperaturas bajo esfuerzo por carga litológica. En muestra de mano el soldamiento se observa por la cohesión de clastos en los puntos de contacto donde el esfuerzo por carga está centrado y pómez aplanados por la carga litológica.

En el caso de que el flujo piroclástico tenga alta temperatura y densidad puede fluir por gravedad después de haberse depositado como un líquido coherente (proceso denominado reomorfismo).

El análisis petrográfico es una herramienta importante para el reconocimiento de rocas piroclásticas. De acuerdo con Ross y Smith (1961) las características microscópicas mas importantes para denominar una roca como toba de flujo de ceniza son: A) el carácter piroclástico, evidentemente una toba es producto de actividad volcánica explosiva por lo que el material es vesiculado (por la presencia de gases) y fragmentado (por la explosividad de la erupción); B) fragmentos pumíceos, los fragmentos de pómez ocurren comúnmente en depósitos piroclásticos y son observables en afloramiento como bajo microscopio petrográfico, normalmente se asocian a productos vítreos; C) soldamiento, distorsión y elongación de los materiales piroclásticos, generalmente estas características desarrollan texturas eutaxíticas o foliadas; D) presencia de fenocristales y material accidental, hay dos tipos de cristales que pueden ocurrir, el primer tipo son cristales genéticamente relacionados al flujo piroclástico o los que son producto de devitrificación y el segundo tipo está representado por fragmentos ajenos no cogenéticos. En tobas riolíticas soldadas es característica la presencia de fenocristales euhedrales de feldespato y comúnmente cuarzo con engolfamiento, además de pequeñas cantidades de biotita. Otros materiales pueden ser muy variables, desde líticos de cualquier tipo de rocas hasta cristales accidentales incorporados por el flujo piroclástico; E) devitrificación: cristalización de minerales que se superpone a la textura vitroclástica original por efecto de altas temperaturas y baja presión, generalmente se forman minerales de cuarzo (cristobalita-tridimita), feldespato alcalino, celadonita y zeolitas (Lockwood y Hazlett, 2010).

De acuerdo con Sparks et al. (1973), se pueden distinguir tres tipos de depósitos piroclásticos:

1) *Depósitos piroclásticos de caída*. Producidos a partir de fragmentos eyectados explosivamente hacia la atmósfera produciendo una columna eruptiva en forma de una pluma convectiva y que recae hacia la superficie siendo ya solificado. Estos depósitos mantienen espesores uniformes, generalmente presentan estratificación y son bien clasificados.

2) *Depósitos piroclásticos de flujo*. Los flujos piroclásticos están formados por la parte más densa de la columna eruptiva que colapsa y fluye lateralmente casi siempre de manera turbulenta, siendo controlada por la gravedad. Son flujos calientes con dispersiones de gas/solido de alta concentración. Los depósitos resultantes son controlados por la topografía, rellenan valles y depresiones, son pobremente clasificados y algunas veces muestran gradación y fumarolas fósiles.

3) *Depósitos piroclásticos de oleadas (surge)*. Son producto de explosiones que expulsan lateralmente clastos en un flujo turbulento con dispersiones de gas/solido de baja concentración. Característicamente presentan estructuras sedimentarias unidireccionales (estratificación cruzada, dunas, laminación planar, antidunas, estructuras *pinch and swell* y *chute and pool*).

3 MARCO GEOLÓGICO 3.1 BLOQUE JALISCO

El Bloque Jalisco es un bloque cortical limitado por fallas ubicado al suroeste de México, forma parte del oeste del Terreno Guerrero (Campa y Coney, 1983) y representa una porción del complejo límite convergente de la subducción de las placas oceánicas de Rivera y Cocos debajo de la corteza continental de Norte América (Corbo-Camargo *et al.*, 2013). Los límites están conformados por el Rift de Colima al este y por el Rift Tepic-Zacoalco al norte y se ha propuesto que los limites fuera del continente corresponden a la falla Barra de Navidad y a la porción submarina de graben de Manzanillo (Bourgois *et al.*, 1988) (Figura 3.1).

La mayor parte del BJ está compuesta por el batolito Puerto Vallarta (Figura 3.2), emplazado en el Cretácico Tardío (100–75 Ma, Schaaf *et al.*, 1995). Este batolito constituye el conjugado de corteza continental del complejo batolítico de Los Cabos, que fue desplazado ~340 km al NW debido a la apertura del Golfo de California (Ortega-Gutiérrez *et al.*, 2014).

El basamento prebatolítico se compone por rocas metasedimentarias con edades que varían del Triásico (?) al Cretácico Temprano (Bissing *et al.*, 2008) que afloran en el Distrito Minero El Cuale. En los márgenes del batolito de Puerto Vallarta se han reportado esquistos y filitas de protolitos sedimentarios y vulcanosedimentarios con edades Jurásico-Cretácico Temprano (135–161 Ma, Valencia *et al.*, 2013).

Ignimbritas con edades similares o ligeramente más jóvenes a las del batolito se encuentran cubriendo la parte norte del batolito de Puerto Vallarta (59-92 Ma) (Valencia *et al.*, 2013).

De acuerdo con Ortega-Gutierrez *et al.* (2014) las edades determinadas para el batolito de Puerto Vallarta se pueden dividir en edades de intrusión (edades U-Pb, Schaaf *et al.*, 1995; Valencia *et al.*, 2013) y edades de enfriamiento (K-Ar y Ar-Ar) que acompañan la exhumación. Las edades disponibles han sido interpretadas por algunos autores como correspondientes a dos complejos

plutónicos separados (P. ej. Zimmerman *et al.*, 1988, revisado en Valencia *et al.*, 2013). Las edades de cristalización medidas por U-Pb en zircones varían entre 103 Ma (Shaaf *et al.*, 1995) y 59 Ma; el grupo más joven (59.4–71.8 Ma) procede de los afloramientos ubicados en la parte noreste del batolito en la región de Ameca (Valencia *et al.*, 2013), mientras que el grupo más antiguo corresponde al área costera y muestra edades de cristalización de 78.3 a 103 Ma. Las edades K-Ar en biotitas de Zimmerman *et al.*, (1988) que representan edades de enfriamiento y exhumación, exhiben un patrón similar desde la costa (85 Ma) al interior del continente (55 Ma).

Figura 3.1. Localización del Bloque Jalisco, límites y contexto tectónico del oeste de México. Modificado de Righter *et al.*, 1995.

Los estudios geoquímicos del batolito de Puerto Vallarta (Köhler *et al.*, 1988; Schaaf *et al.*, 1995; Schaaf y Bissing, 2003; Valencia *et al.*, 2013) muestran que la mayoría de las muestras cae en el campo de arco volcánico y un 20% de las muestras en el campo de granitos intraplaca en el diagrama de Pearce *et al.* (1984). Esta dualidad litotectónica se refleja también en la clasificación petrográfica que varia de granitos de feldespato alcalino (parte norte) a tonalitas (parte central), incluyendo granitos de dos micas al este (Ortega-Gutierrez *et al.*, 2014). Las relaciones isotópicas Nd y Sr (Shaaf *et al.*, 1995, 2003) sugieren la participación de corteza continental pre-cretácica o sedimentos en la formación del batolito (Ortega-Gutierrez *et al.*, 2014).

Una unidad litológica importante en el BJ es una secuencia de tobas de flujo de ceniza con edades del Cretácico-Paleoceno (sucesión volcánica de toba de flujo de ceniza silícica Carmichael de Valencia *et al.*, 2013) estudiadas por primera vez por Gastil *et al.* (1978). Esta unidad contiene litologías que incluyen tobas soldadas, tobas cristalinas, tobas líticas, brechas volcánicas y brechas tobáceas; estas rocas contienen partículas de tamaño de bloques, lapilli y ceniza con composición que varían de andesíticas a riolíticas. Las edades de la unidad tobácea se encuentran comprendidas entre 58 y 83 Ma (Valencia *et al.*, 2013). Las tobas de flujo de ceniza del BJ son contrastantes en edad con aquellas del sur de la SMO, las cuales tienen edades que van del Oligoceno al Mioceno

temprano. Este contraste sugiere un levantamiento pre-Oligoceno de las rocas del BJ y una frontera tectónica entre ambas provincias geológicas.

Dentro del BJ también se ha reconocido una suite intrusiva de dioritas, granodioritas y granitos con edades entre ~59 y 74 Ma (Valencia *et al.*, 2013) (Figura 3.2). Un estudio reciente (Valencia *et al.*, 2013) revela que el BJ tiene un origen autóctono respecto a Norte América además de que el BJ ha sufrido tasas de enfriamiento moderadas y altas tasas de levantamiento en el Paleógeno. Las rocas del Cretácico-Paleoceno del BJ se encuentran cubiertas por rocas volcánicas de la FVTM (Figura 3.2) con edades que van desde ~11 Ma hasta el Reciente, representadas por basaltos,

ignimbritas y basaltos alcalinos.

3.2 SIERRA MADRE OCCIDENTAL 3.2.1 ESTRATIGRAFÍA PRE-OLIGOCENO

La estratigrafía que antecede los principales eventos volcánicos de la SMO consiste de rocas de basamento del Precámbrico-Paleozoico, rocas metavolcánicas y metasedimentarias del Paleozoico al Cretácico Temprano y una cubierta sedimentaria principalmente marina con edades cretácicas. Estas rocas se encuentran distribuidas en los estados de Sonora, Chihuahua y Sinaloa (Ferrari *et al.*, 2017 y referencias incluidas en este trabajo) (Figura 3.3). Rocas intrusivas con edades que van del Cretácico al Eoceno y rocas volcánicas del Cretácico al Paleoceno conforman la estratigrafía del Complejo Volcánico Inferior (CVI) (Mcdowell y Keizer, 1977), el cual se encuentra distribuido en Sonora, Sinaloa y el Bloque Jalisco (Wilson y Rocha, 1949; Ferrari *et al.*, 2000; McDowell *et al.*, 2001; Valencia y Righter, 2013) (Figura 3.3). La actividad ígnea del Eoceno esta representada por rocas volcánicas e intrusivas de composición variable que afloran en Chihuahua, Sinaloa y Durango (Ferrari *et al.*, 2005 y 2007) (Figura 3.3).

3.2.2 OLIGOCENO-MIOCENO TEMPRANO

En la SMO, las rocas emplazadas durante el Oligoceno-Mioceno conforman el Supergrupo Volcánico Superior (SVS), el cual sobreyace discordantemente a rocas vulcano-plutónicas del CVI (McDowell y Keizer, 1977). El SVS está conformado por una potente secuencia de tobas de flujos piroclásticos, tobas de caída y lavas de composición silícica (Ferrari *et al.*, 2005) además de

subordinados flujos máficos (McDowell y Clabaugh, 1979). El volcanismo ignimbrítico que conforma la gran provincia ígnea silícica (SLIP) de la SMO, esta dividido en dos pulsos (*ignimbrite flare-ups*, McDowell y Clabaugh, 1979; Ferrari *et al.*,2005) (Figura 3.4), el primer pulso, del Oligoceno (33.5-27 Ma), es el más extenso y se presenta en toda la provincia volcánica (Figura 3.3), este pulso ha sido interpretado como un evento precedente a extensión de la corteza superior (Ferrari *et al.*, 2017). El segundo pulso ocurrió durante el Mioceno temprano (23.5-18 Ma) en la porción suroeste de la SMO (Figura 3.3) (Ferrari *et al.*, 2002, 2005, 2017) y es considerado como volcanismo sinextensional (Ferrari *et al.*, 2002, 2012; Murray *et al.*, 2010; Ramos-Rosique, 2013).

Las secuencias El Salto-Espinazo del Diablo (McDowell y Keizer, 1977), Las Canoas y El Nayar (Ferrari et al., 2002) representan el volcanismo del Mioceno temprano, sin embargo, las edades son de finales del Oligoceno hasta el Mioceno temprano (Figura 3.4), para términos prácticos, en este trabajo se tratará a estas secuencias como parte de un pulso volcánico del Mioceno temprano. La secuencia El Salto-Espinazo del Diablo consiste de ignimbritas y en menor cantidad lavas riolíticas y basálticas. Las edades K-Ar obtenidas para esta secuencia son de alrededor de 23.5 Ma (Mcdowell y Keizer, 1977; Iriondo et al., 2003) pero el fechamiento más preciso realizado por McDowell y McIntosh (2012) por el método Ar-Ar arroja una edad un poco más vieja de ~24 Ma. La secuencia Las Canoas consiste de ignimbritas fechadas en 23.5 Ma por K-Ar (Clark et al., 1981) y por ⁴⁰Ar/³⁹Ar (Ferrari *et al.*, 2002). Edades similares han sido reportadas en el graben de Bolaños, Teúl, la presa de Santa Rosa, Juchipila y en la Sierra de Pénjamo. (Nieto-Obregón et al., 1985; Scheubel et al., 1988; Moore et al., 1994; Webber et al., 1994). La secuencia El Nayar consiste de una faja con orientación NNW que alcanza su máximo espesor en la Mesa del Nayar. Ferrari et al. (2002) sugieren que en esta área pueden existir varias calderas que podrían ser la fuente de esta secuencia, para la cual obtuvo edades ⁴⁰Ar/³⁹Ar entre 21.2 y 19.9 Ma con un promedio de 20.9 Ma. Unidades correlacionables se encuentran en Santa María del Oro, Aguamilpa, el Graben de Bolaños

Figura 3.4. Síntesis de la estratigrafía de la SMO posterior al CVI, dividiendo el volcanismo por composición, siendo el volcanismo silícico el dominante en toda la provincia. SCORBA= Southern Cordillera Orogenic Basaltic Andesite (Cameron *et al.*, 1989).

y sur de Baja California (Gastil *et al.*, 1979; Damon *et al.*, 1979; Scheubel *et al.*, 1988; Hausback, 1984; Umhoefer *et al.*, 2001). El vulcanismo de la SMO no continua hacia el sur de la FVTM en el BJ, sin embargo, en Michoacán, al sur del Lago de Chapala y al sur de Morelia, se han reportado ignimbritas del Oligoceno y Mioceno Temprano (Rosas-Elguera *et al.*, 2003; Ferrari *et al.*, 2002; Pasquarè *et al.*, 1991).

En los estadios finales del volcanismo ignimbrítico de la SMO y al final de cada episodio, se emplazaron lavas basáltico-andesíticas con edades de Oligoceno al Mioceno temprano, principalmente en el norte de la provincia. Posteriormente, se tiene el registro de lavas basálticas alcalinas y rocas piroclásticas peralcalinas (Figura 3.4) principalmente en el norte de la SMO (Ferrari *et al.*, 2017 y referencias incluidas en este trabajo).

La tectónica de la SMO ha generado depósitos sinrift en distintos episodios de extensión a lo largo de la provincia. Estos depósitos continentales con menores cantidades de lavas intercaladas también separan las rocas del CVI de las del SVS o se encuentran separando las rocas del pulso ignimbrítico del Oligoceno de las del pulso del Mioceno temprano. Finalmente, este tipo de depósitos se encuentran sobreyaciendo a las rocas del Mioceno temprano, originados por la extensión del Mioceno temprano-medio.

En la porción meridional de la SMO (Figura 3.5) las ignimbritas del Oligoceno dominan en el este, en Aguascalientes, Zacatecas y el norte de Jalisco (Nieto-Samaniego *et al.*, 1999). Las edades en el área de Fresnillo varían de 29.1 a 27.5 Ma en ignimbritas y lavas riolíticas y de 33.5 a 32.2 Ma para cuerpos subvolcánicos con mineralización argentífera asociada (Lang *et al.*, 1988). Nieto-Obregón *et al.* (1981) reportaron edades K-Ar de 29.1 \pm 0.6 Ma (sanidino) en una ignimbrita entre Jalpa y Tlaltenango, en donde las ignimbritas del Oligoceno están separadas de rocas volcánicas andesíticas por capas continentales de areniscas y conglomerados. Ferrari *et al.* (2002) obtuvieron edades ⁴⁰Ar/³⁹Ar para ignimbritas y riolitas en la Sierra de Valparaiso de 31.5–28 Ma y al oeste del semigraben de Atengo de 27.9 \pm 0.3 Ma para un complejo de domos riolíticos exógenos similar al domo de las Adjuntas en Durango (McDowell y Kiezer, 1977).

Entre las regiones de Bolaños y Tepic el pulso del Mioceno Temprano es dominante (Figura 3.5). Las localidades más septentrionales de rocas silícicas del Mioceno Temprano se encuentran en la región de Tayoltita y Culiacán (Ferrari *et al.*, 2007). En Tayoltita las lavas e ignimbritas de la parte superior de la secuencia han sido datadas por K-Ar en 24.5 y 20.3 Ma (Enríquez y Rivera, 2001) y en Culiacán, Iriondo *et al.* (2003) obtuvo edades 40 Ar/ 39 Ar de 23.2 ± 0.15 (hornblenda) para un

plutón subvolcánico granodiorítico. Una edad obtenida en Milpillas es de 24.0 ± 1.0 Ma para una andesita basáltica que subyace las ignimbritas más superiores de la secuencia (Sole y Salinas, 2002).

Figura 3.5. Mapa geológico del sur de la Sierra Madre Occidental. Nótese que la parte oriental está dominada por la secuencia de ignimbritas del Oligoceno y la porción occidental se encuentra dominada por ignimbritas del Mioceno (Secuencia el Nayar), además, las estructuras predominantes son fallas extensionales y localmente laterales. Al sur, las estructuras son de un origen contraccional. Modificado de Ferrari *et al.* (2007).

3.2.3 TECTÓNICA DE LA PORCIÓN SUR

La SMO ha sido afectada dominantemente por una tectónica extensional desde finales del Eoceno hasta el Plioceno, excepto el núcleo de la provincia, el cual no ha sido afectado por la deformación extensional (Figura 3.6). El primer episodio documentado regionalmente a partir de evidencia estructural se desarrolló inmediatamente después del volcanismo silícico del Oligoceno (34–29 Ma) (McDowell y Clabaugh, 1979).

Ferrari et al. (2002), caracterizó los tres dominios estructurales que se observan en la porción sur (ver Figura 1.3). El dominio oriental está dominado por grabenes orientados NNE a N-S que cortan ignimbritas del Oligoceno tardío o Mioceno temprano, la extensión tiene una dirección WNW a E-W. Al occidente de las estructuras de graben, una serie de semi-grábenes (Sierra Alicia, Sierra Pajaritos, Jesús María) con dirección N-S a NNW-SSE son las estructuras dominantes, que basculan ignimbritas del Mioceno temprano (Secuencia El Nayar) hacia el NE y al WSW al norte de una zona de acomodo con dirección NE en el Río Mezquital; además de los sistemas de fallas normales Pochotitán y San Pedro. La deformación extensional de los grábenes y semigrábenes ha sido interpretada por Ferrari et al. (2013) entre 24 y 18 Ma. El sistema de fallas de Pochotitán corta rocas de 17 Ma y se encuentra cubierto por lavas de ~ 10 Ma (Ferrari y Rosas-Elguera, 2000) y se encuentran diques máficos asociados a la deformación por extensión con edades de 11.9 y 10.9 Ma (Ferrari et al., 2002) y la deformación tiene una edad de 18–11 Ma (Ferrari et al., 2003). El dominio sur, contrasta con la deformación extensional registrada en toda la SMO (Figura 3.6). En esta región, las secuencias volcánicas del Oligoceno y Mioceno temprano están caracterizadas por pliegues abiertos de dirección NW-SE con un arreglo en echelon, pequeñas fallas inversas y fallas laterales inversas que, con las edades disponibles se infiere desarrolladas en el Mioceno medio (Ferrari, 1995). Estas estructuras compresionales distribuidas en una franja WNW-ESE se encuentran en el límite de la SMO con el Bloque Jalisco y han sido interpretadas como una zona de cizalla transpresional producida por movimientos opuestos entre la SMO y el BJ durante la disminución de la subducción de la microplaca Magdalena (Ferrari, 1995). Los pliegues están cortados por diques máficos con edades de ~11 Ma (Damon *et al.*, 1979). Posteriormente a la fase transpresiva se tiene evidencia de una posible fase transtensiva lateral derecha entre ~12 y 9 Ma, acompañada de volcanismo alcalino y extensión este-oeste en la boca del Golfo de California y el este del BJ. Durante el Mioceno tardío hasta el Cuaternario el límite norte del BJ ha sufrido una deformación extensional con dirección noreste (Ferrari, 1995).

3.3 FAJA VOLCÁNICA TRANSMEXICANA

La Faja Volcánica Transmexicana (FVTM) es el arco volcánico del Neógeno más grande de Norteamérica, abarcando un área de 160,000 km² y una longitud de casi 1000 km en la parte central de México. Este arco continental presenta una amplia variación composicional y de estilo volcánico, además de una tectónica extensional intra-arco (Ferrari *et al.*, 2012). La FVTM (Figura

3.7) se ha formado sobre provincias magmáticas cretácicas y cenozoicas. El basamento es heterogéneo, pero puede dividirse en dos conjuntos tectonoestratigráficos distintos; corteza precámbrica-paleozoica al este con espesor de 50 a 55 km y arcos continentales y marinos del Jurásico al Cenozoico al oeste, con un espesor cortical de 35 a 40 km. La FVTM limita al este con el Golfo de México y al oeste termina justo al sur de la boca del Golfo de California. Geodinámicamente, se localiza en la frontera sur de la Placa Norteamericana bajo la cual subduce Placa Rivera en la porción suroccidental y por la Placa de Cocos en la porción surcentral y suroriental. Ferrari *et al.* (2012) caracterizó la FVTM en tres sectores principales (oeste, centro y este), los cuales se presentan de manera resumida en la Tabla 3.1

Figura 3.7. Localización de la FVTM en la parte central de México (enmarcada con una línea amarilla) con los principales estratovolcanes (triángulos rojos) y calderas (círculos rojos) así como los cuatro sectores descritos en la tabla 5 (líneas punteadas delgadas). Las dos unidades de corteza principales se marcan con líneas punteadas gruesas. El límite oriental del Terreno Compuesto Guerrero es inferido ya sea al oeste (Campa and Coney, 1983) o al este (Sedlock et al., 1993) de la Plataforma Guerrero-Morelos (GMP), pero la corteza continental puede extenderse incluso más al oeste como lo indica la presencia de xenolitos de corteza silícica encontrados en Pepechuca (Pe) y Rincón de Parangueo (RP). El Bloque Jalisco es parte del Terreno Compuesto Guerrero y podría estar subyacido por corteza pre-Mesozoico de acuerdo con los valores εNd y edades modelos de Nd de sus batolitos de Granitoides cretácicos. MC: Ciudad de México; Gdl: Guadalajara. Modificado de Ferrari *et al.*, 2012.

Sector	Oeste	Centro	Este	Parte más oriental
Límites	Oeste de 103º 00' W	103° 00′W-100° 30′W	100° 30′W-97° 30′W	Este de 97º 30'
Placa subducida	Rivera	Cocos al oeste de la zona d fractura de Orozco	Cocos entre zonas de fractura Orozco y O´Gorman	Cocos entre zona de fractura O´Gorman y fosa de Tehuantepec
Edad dela placa en la trinchera	~10 Ma	11–17.6 Ma	14.5-17-5 Ma	18-23 Ma
Inclinación del slab bajo el antearco y el arco	30°, 70°	35°, 60°	0º (plana), 75º	~15°, ~26°
Temperatura máxima en el frente volcánico actual	~1120 °C a una profundidad de ~67 km	~1110 °C a una profundidad de ~67 km	~1090 °C a una profundidad de 56 km	-
Naturaleza y edad del basamento	Mesozoico (Terreno Guerrero), posiblemente corteza continental antigua	Mesozoico (Terreno Guerrero), principalmente magmatismo máfico marino y metaflysh. Arco del Cretácico temprano en la parte mas oriental (Arco Teloloapan)	Corteza precámbrica y paleozoica (Terreno Mixteco y Oaxaca)	Precámbrico y Paleozoico (Terreno Maya) parcialmente adelgazado durante la apertura del Golfo de México
Magmatismo de arco continental previo	Granitoides batolíticos e ignimbritas silícicas del Cretácico Tardío-Paleoceno en el sur. Ignimbritas silícicas del Oligoceno y Mioceno Temprano en el norte	Principalmente lavas máficas a intermedias y plutones dioríticos a granodioríticos del Eoceno	No después del Jurásico (Arco Nazas)	No
Espesor de la corteza bajo el arco (Km)	35 a 40	35 a 40	45 a 50	20 a 35
Edad de inicio de la FVTM	~11 Ma	~11 Ma	~19 Ma	~16 Ma
Migración del frente volcánico	Hacía la trinchera desde ~10 Ma casi continuamente	Hacía la trinchera desde ~9 Ma en tres pulsos principales (Los Altos, Chapala, Campo volcánico Michoacán- Guanajuato)	Hacía el continente (moderadamente) entre ~16.5 Ma y ~9 Ma. Hacía la trinchera desde ~9 Ma	No, el arco permaneció en la misma posición
Migración de la parte trasera del arco	Insignificante. Arco ampliado al sur	Misma que en el frente	Rápido hacía el continente, arco ensanchado al norte después de 16.5 Ma. Moderado desde ~9 Ma, arco ensanchado al sur	No, el arco permaneció en la misma posición
Volcanismo silícico	Abundante, principalmente grandes complejos de domos, menores ignimbritas. Solo emplazados en la mitad posterior del arco	Casi ausente	Abundante, al menos 7 calderas y menos complejos de domos. Principalmente emplazados en la mitad posterior del arco	Casi ausente
Volcanismo alcalino intraplaca (OIB)	Desde el Plioceno Temprano en la parte posterior del arco	Raro en el Pleistoceno en el frente del arco (Campo volcánico Michoacán- Guanajuato)	Raro en el Pleistoceno en el frente del arco (Sierra de Chichinautzin)	Abundante desde el Mioceno Tardío

Tabla 3.1. Resumen de las características de la FVTM. Modificada de Ferrari et al., 2012.

3.3.1 OCCIDENTE DE LA FAJA VOLCÁNICA TRANSMEXICANA

Las rocas de la FVTM de la porción occidental cubren el límite entre la SMO y el Bloque Jalisco. De acuerdo con Ferrari *et al.* (2000), las rocas de la FVTM están separadas de las rocas predominantemente silícicas de la SMO por una discordancia producida en el Mioceno Medio. El primer episodio volcánico de la FVTM en la región está registrado en la parte centro-este de Nayarit y en el área de Guadalajara; está representado por un volcanismo máfico muy significativo, algunas veces de composición alcalina que ocurrió hace 11–8 Ma. Un periodo de reducida actividad volcánica entre 7.2 Ma y 5.5 Ma fue seguido por el emplazamiento de grandes volúmenes de riolitas y en menor cantidad ignimbritas del Plioceno Temprano. Desde hace ~4.5 Ma hasta el presente el volcanismo ha sido de intermedio a máfico con composición alcalina, aunque grandes complejos de domos dacíticos y riolíticos fueron emplazados entre Guadalajara y Tepic. Finalmente, en el Plioceno Tardío y Cuaternario se construyeron grandes estratovolcanes andesíticos a dacíticos en la parte norte del arco, mientras que volcanes en escudo basálticos y conos cineríticos son característicos del frente del arco.

Una sucesión volcánica importante es la denominada informalmente Basaltos San Cristobal (Moore *et al.*, 1994), expuestos a lo largo del cañón del Río Santiago. Las lavas máficas sobreyacen a rocas de la SMO en paquetes con espesores de 2 a 20 m y se encuentran ligeramente basculados (5° a 8°) hacia el SSE. Damon *et al.* (1979) y Moore *et al.* (1994), obtuvieron edades entre 11 y 10 Ma para la parte inferior del paquete volcánico. En el área de la presa de Santa Rosa, Nieto-Obregón *et al.* (1985), obtuvo una edad K-Ar de 8.52 ± 0.1 en un basalto calco-alcalino en la mesa de Mistemeque, lo que posiblemente es la parte superior de la secuencia, similar a la obtenida para un flujo basáltico o lacolito somero de 7.5 \pm 0.8 (K-Ar) al norte de Tesistán (Rossotti *et al.*, 2002).

De acuerdo con Rossotti *et al.* (2002), en la región oeste de la FVTM se pueden reconocer dos estadios volcánicos. El primer estadio, ocurrió en el Mioceno tardío y es caracterizado por lavas máficas y domos y depósitos de flujos piroclásticos silícicos seguido por basaltos alcalinos de afinidad intraplaca emplazados durante una primera etapa extensional. Un segundo pulso basáltico asociado con extensión ocurrió en el Plioceno tardío-Cuaternario.

3.3.2 TECTÓNICA DEL OCCIDENTE DE LA FAJA VOLCÁNICA TRANSMEXICANA

A diferencia de otros arcos volcánicos caracterizados por extensión en el trasarco, la FVTM presenta una extensión intra-arco (Ferrari *et al.*, 2000; Suter *et al.*, 2001). La parte centro y este de la FVTM está dominada por fallas extensionales agrupadas en distintos sistemas de fallas. La deformación es más intensa en la parte occidental y central que en el este. Los sistemas de fallas que afectan la FVTM (Figura 3.8) en esta región fueron activos en distintos tiempos (Mioceno–Reciente) y con direcciones diferentes (N-S, NNW-SSE, WSW-ENE, E-W) (Ferrari *et al.*, 2012 y referencias incluidas).

La parte occidental de la FVTM está caracterizada por tres sistemas de fallas principales (Figura 3.8). Estos sistemas de fallas forman una junta triple al sur de Guadalajara y se describen a continuación:

- *Rift Tepic-Zacoalco*. Está conformado por una serie de grabenes y semigrabens distribuidos a lo largo de dos dominios desarrollados en distintos episodios en el límite norte del BJ desde el Mioceno Tardío (Quintero Legorreta *et al.*, 1992; Ferrari, 1995). El dominio sur está representado por el graben de Puerto Vallarta, el semigraben de Amatlán de Cañas, las fallas Ameca y San Marcos y la Zona de Falla de Zacoalco. Estos sistemas presentan evidencia geomórficas de actividad neotectónica (Ferrari *et al.*, 1994; Rosas-Elguera *et al.*, 1997). El dominio norte está conformado por el graben San Pedro-Ceboruco y el graben Plan de Barrancas-Cinco Minas y coincide con lo que se considera el límite entre la SMO y el BJ (Ferrari y Rosas-Elguera, 2000; Ferrari *et al.*, 2003). La deformación en el Rift Tepic-Zacoalco es dominantemente extensional con una dirección del esfuerzo principal mínimo NNE-SSW activa durante el Plio-Pleistoceno (Ferrari y Rosas-Elguera, 2000).
- 2) Graben de Colima. Es una estructura extensional localizada al este del BJ, sobre una cuenca marina cretácica acortada por transpresión en el Cretácico Tardío-Paleoceno. Esta estructura fue inicialmente definida como un graben N-S de edad Plio-Cuaternario con al menos 2500 m de sedimentos rellenando el segmento norte (Allan, 1986; Allan *et al.*, 1991). Estudios recientes han demostrado que solo existe actividad neotectónica en las fallas N-S que limitan el rift de Colima y en las fallas ~E-W que afectan el volcán de Colima. Luhr *et al.* (1985) habían interpretado que el BJ estaba moviéndose hacia el SW y podría transferirse en el futuro a la placa del Pacífico. Sin embargo, estudios estructurales más

recientes demostraron que el movimiento principal del BJ es más bien hacia el SE y atribuyen la extensión al esfuerzo aplicado en los límites de las placas de Rivera-Cocos-Pacífico que reactivan estructuras antiguas que forman las fronteras del BJ (Rosas-Elguera *et al.*, 1996; Ferrari y Rosas-Elguera, 2000a).

3) Graben de Chapala. Es una estructura compuesta por dos semigrabens con rotaciones opuestas, hacia el sur en el oeste y hacia el norte en el este. Estas estructuras cortan solo a rocas del Plioceno temprano (Rosas-Elguera y Urrutia-Fucugauchi, 1998) y estas fallas no muestran escarpes frescos, lo que sugiere una inactividad a partir del Plioceno tardío. En cambio, al sur de Chapala, el graben de Citala presenta evidencia geomórfica de actividad neotectónica, por ejemplo, el desnivel de ~150 m por debajo del nivel del Lago de Chapala (Garduño-Monroy *et al.*, 1993; Rosas-Elguera y Urrutia-Fucugauchi, 1998).

Al este de Guadalajara, la meseta basáltica de los Altos de Jalisco es cortada por dos sistemas de fallas extensionales con una menor componente lateral derecha (Ferrari *et al.*, 2000). Estos sistemas están orientados WSW-ENE, paralelos al alineamiento de algunos conos de lava datados en ~9 Ma, lo que sugiere fallamiento al final de volcanismo máfico

Figura 3.8. Tectónica y estructuras volcánicas de la Faja Volcánica Transmexicana. Modificado de Ferrari *et al.*, 2012.

4 RESULTADOS 4.1 INTRODUCCIÓN

En este capítulo se presentan los resultados de la cartografía geológico-estructural (Figura 4.21) del área de estudio, los datos geocronológicos, petrográficos y estructurales, así como los resultados del análisis estructural. El presente trabajo se centra principalmente en la deformación que afecta las rocas de la SMO y las estructuras que afectan la FVTM serán descritas de manera general.

La primera parte del capítulo trata sobre la estratigrafía de la región, acompañada de descripciones de campo y petrografía de las distintas unidades litológicas, las edades U-Pb en zircón obtenidas y las relaciones estratigráficas y estructurales identificadas. Los nombres de las unidades que se presentan a continuación han sido asignados de manera informal con base en poblados en los que afloran, algunos nombres son retomados de García-Arreola (2016). Se presentan también edades U-Pb revisadas de un trabajo previo no publicado (García-Arreola, 2016) que se enmarca dentro del mismo proyecto en el que se llevó a cabo el presente trabajo.

La segunda parte, presenta los resultados de geología estructural incluyendo los datos estructurales detallados y el análisis de las fallas por diedros rectos usando *Wintensor* para familias de fallas caracterizadas de manera regional y para las estaciones estructurales con mayor número de datos.

4.2 ESTRATIGRAFÍA4.2.1 SIERRA MADRE OCCIDENTAL4.2.1.1 OLIGOCENO

Andesita San Pedro Analco

La unidad más antigua aflora en la porción suroriental del área de estudio, en el poblado de San Pedro Analco y hacía el sur y oeste de este pueblo. Esta unidad consiste de andesitas con estructura masiva de tonalidad gris a verde oscuro y rojizo al intemperismo. A escala de muestra de mano la roca exhibe una textura afanítica y ocasionalmente se observan cristales menores a 1 mm de plagioclasa y anfíbol. Estas lavas intermedias se encuentran sobreyacidas discordantemente por lavas de un domo del Mioceno temprano (Domo Las Ánimas) o por ignimbritas del Oligoceno tardío. En el contacto entre las andesitas y el domo Las Ánimas se observa una autobrecha o brecha basal a lo largo de una superficie irregular (Figura 4.1A).

Figura 4.1 Fotografías de afloramientos de la Andesita San Pedro Analco. A) Contacto discordante con brecha basal del domo Las Ánimas. B) Afloramiento de andesita pervasivamente oxidada intrusionada por dique granítico (SPA-22).

Petrográficamente, se observa holocristalina con textura fanerítica de grano fino. La forma de los cristales revela una textura panidiomórfica y el arreglo de los cristales exhibe una estructura traquítica. Se compone por cristales de plagioclasa alterada a sericita y relictos de minerales ferromagnesianos (~2%), posiblemente anfíbol por su forma romboédrica, reemplazados por óxidos. En algunas partes se observa vidrio en los intersticios entre los cristales de plagioclasa, desarrollando una textura intersertal. Se observa alteración de los feldespatos a minerales arcillosos, además de vetillas de calcita. En la Tabla 4.1 se presentan las descripciones petrográficas de muestras de estas andesitas. Esta unidad presenta una alteración pervasiva principalmente por arcillas, óxidos y silicificación, por lo que no fue factible fecharla.

Por su posición estratigráfica, las andesitas se suponen de edad Oligoceno ya que subyacen ignimbritas del Oligoceno tardío y se encuentran cortadas por un cuerpo subvolcánico granítico del Oligoceno tardío. Nieto-Obregón *et al.* (1985), reportaron edades K/Ar para una andesita y un dique microdiorítico de alrededor de 26 Ma al sur de San Pedro Analco, en el área de Cinco Minas. Un conjunto de diques de composición félsica a intermedia con direcciones NE-SW y NW-SE cortan las andesitas (Figura 4.1B). Esta unidad se encuentra afectada por fallas normales y normales oblicuas que también afectan rocas piroclásticas de la unidad sobreyaciente.

Tabla 4.1. Descripciones petrográficas de muestras de la Andesita San Pedro Analco. La localización geográfica de las muestras se encuentra en el Anexo 6. Anf–anfíbol, Cc–calcita, Pl–plagioclasa, Opx–ortopiroxeno, Cpx– clinopiroxeno, M–mesostasis, V–vidrio.

Granito Subvolcánico

En la porción suroriental del área de estudio, en el camino que conduce de Hostotipaquilo a San Pedro Analco aflora un cuerpo subvolcánico predominantemente félsico con estructura masiva y ocasionalmente presenta fracturas columnares (Figura 4.2A), además de intrusiones de composición intermedia. Se observa con tonalidad blanquecina y gris claro al intemperismo en las facies félsicas y verde oscuro en las facies intermedias. Ocasionalmente se observan xenolitos volcánicos oscuros inmersos en intrusiones félsicas (Figura 4.2B). Esta unidad aflora en una franja con dirección NW-SE paralela a la traza del Río Santiago y corta las lavas de la Andesita San Pedro Analco.

En muestra de mano las rocas félsicas presentan una textura porfírica a fanerítica con abundantes cristales anhedrales de cuarzo y feldespato, mientras que las rocas intermedias son afaníticas a porfíricas, las porfíricas contienen cristales de plagioclasa de hasta 6 cm (Figura 4.3F).

Figura 4.2. Granito subvolcánico. A) Estructura columnar de este cuerpo subvolcánico, la muestra SPA-31 fue recolectada de este afloramiento. B) Xenolitos volcánicos andesíticos inmersos en granito.

Figura 4.3. Diques que cortan la unidad subvolcánica del Oligoceno tardío. A) Vista de afloramiento de granito cortado por intrusivo andesítico (derecha). B) Diques graníticos que cortan intrusivo andesítico, el cual corta un granito subvolcánico. C) Dique máfico emplazado en falla normal. D) y E) Diques máficos a intermedios cortando granitos, en la esquina superior derecha se presentan diagramas de los diques y tipo de roca. F) Dique andesítico con cristales de plagioclasa centimétricos. G) Alteración por óxidos y pirita diseminada. H) Alteración a arcillas en granito en zona de diques máficos. I) Vetilla de cuarzo en granito.

Un enjambre de diques que varían de máficos a félsicos (Figura 4.3) emplazados principalmente en fallas normales con orientación NW-SE y NE-SW cortan este cuerpo subvolcánico.

Los diques generan una alteración a arcillas. También se observan cristales euhedrales de pirita diseminados y óxidos, además de abundantes vetillas de cuarzo y calcita (figuras 4.3F, G y H).

El análisis petrográfico (Tabla 4.2) permitió clasificar esta unidad con base en la composición modal, obtenida por estimación visual, como granito subvolcánico, ya que se conforma de cristales subhedrales a anhedrales de cuarzo y feldespato de grano fino y presentan texturas holocristalinas de fanerítica a porfírica. Además de las texturas holocristalinas mencionadas, también es posible observar el desarrollo de mirmekitas (textura micrográfica). Estos granitos contienen como minerales accesorios cristales de anfíbol y biotita.

Figura 4.4. Evidencias de deformación a microescala. A) Maclas dislocadas en plagioclasa. B) Líneas de clivaje deformadas en biotita (Bt). C) Cristal de clorita poikilotópica posiblemente formada durante deformación. D) Recristalización dinámica evidenciada por cristales de cuarzo (flecha roja) formados a partir de un cristal de mayor tamaño. E) Subgranos en cristal de feldespato. Las líneas rojas representan 1 mm.

Es posible observar, bajo el microscopio petrográfico, evidencia de deformación (Figura 4.4) con una incipiente recristalización dinámica con desarrollo de subgranos, extinción ondulante en los cristales de cuarzo, presencia de agregados policristalinos elongados, posibles maclas de deformación en los feldespatos y líneas de clivaje deformadas en cristales de biotita. Además de la mineralogía mencionada, la muestra SPA-29 (Tabla 4.2) presenta cristales de epidota y clorita, posiblemente relacionados a alteración y/o deformación.

Las intrusiones subvolcánicas se encuentran sobreyacidas discordantemente por ignimbritas del Oligoceno tardío que no presentan el mismo grado de alteración ni la abundante intrusión de diques. Se obtuvieron edades U-Pb en zircones de 26.70 ± 0.21 Ma y 26.45 ± 0.22 Ma (Figura 4.5). También se encuentran diques graníticos de edad y características texturales similares que intrusionan la Andesita San Pedro Analco (SPA-22) e ignimbritas del Oligoceno tardío al norte de la presa La Yesca (SPA-05). Estos diques produjeron edades de 27.52 ± 0.31 Ma y 27.21 ± 0.33 Ma (Figura 4.5).

La mayoría de las edades U-Pb en zircones individuales, son discordantes y muchas de ellas presentan discordancia mayor al 20%. La muestra SPA-28 consiste de edades con discordancia menor al 25 % y los datos utilizados para obtener la edad por promedio ponderado son aquellos que conforman el grupo de zircones más jóvenes y que tienen una discordancia menor al 15%, este criterio de discriminación de edades también se aplicó en la muestra SPA-31. En las muestras SPA-22 y SPA-05, los datos utilizados para obtener la edad por promedio ponderado son los que conforman el grupo de zircones más jóvenes sin discriminar aquellos con menor discordancia, sin embargo, la mayoría tienen discordancia menor al 25 % (ver Anexo II). Una característica de los zircones fechados para las intrusiones graníticas del Oligoceno tardío es que contienen zircones con edades de \sim 29 y \sim 30 Ma, comúnmente discordantes, que podrían representar edades de antecristales.

Los datos de la Figura 4.5, al igual que todos los datos U-Pb que se muestran en esta sección, son graficados en el diagrama de concordia de Tera-Wasserburg debido a que este diagrama permite la mejor visualización de los datos además de que la correlación de errores se ve minimizada.

Esta unidad se encuentra cortada por fallas normales principalmente con orientaciones NW-SE y NE-SW las cuales serán descritas en la siguiente sección.

Figura 4.5. Edades U-Pb en zircones de intrusiones graníticas. Para cada muestra se presenta el diagrama de concordia de Tera-Wasserburg (izquierda) y el diagrama de promedio ponderado de la edad $^{206}Pb/^{238}U$. Para cada edad individual graficada en el diagrama de concordia, se presenta la edad (rombos) y su error a 2 σ (elipses). Los datos en color rojo en el diagrama de concordia son los datos utilizados para obtener la edad de cristalización por promedio ponderado. Las muestras SPA-28 y SPA-31 corresponden a un cuerpo subvolcánico granítico que aflora el suroeste de San Pedro Analco. Las muestras SPA-22 y SPA-05 corresponden a diques que cortan las secuencias del Oligoceno tardío (Ver texto). Los datos graficados son el resultado de la revisión de las edades obtenidas por García-Arreola (2016) en su tesis de licenciatura.

Muestra	Fotomicrografía	Descripción
RS-10 Granito	<u>O.5 mm</u>	Roca holocristalina fanerítica. Presenta textura micrográfica y abundantes mirmekitas. Predominan los intercrecimientos de feldespato-cuarzo. Algunos fenocristales corresponden posiblemente a ortoclasa, se observan cristales de epidota como mineral de alteración.
RS-12 Granito	1 mm	Roca holocristalina, con textura porfírica. Se observan fenocristales de feldespato potásico rodeados por cristales mas pequeños con formas anhedrales a subhedrales de cuarzo y feldespato. Los cristales de cuarzo y feldespato de la mesostasis presentan contactos interlobados. Tambien se observan cristales de anfíbol de color verde y amarillo de segundo orden. Se observan intercrecimientos mirmekíticos de cuarzo- feldespato.

Tabla 4.2 Descripciones petrográficas de la unidad subvolcánica del Oligoceno tardío. También se muestran descripciones petrográficas de diques graníticos asociados a esta unidad por similitudes en edad y características mineralógicas y texturales. Bt–Biotita, Ep–Epidota, Es–Esferulita, F–Feldespato, Mk–Mirmekita, Qz–Cuarzo

Secuencia Volcánica Río Santiago

Esta secuencia aflora sobre el curso del Río Santiago y se extiende hacia el norte de la presa La Yesca, por esta razón se denomina informalmente en este trabajo como Secuencia volcánica Río Santiago. Consta de ignimbritas y tobas de flujo de ceniza riolíticas intercaladas con lavas intermedias intensamente deformadas de manera frágil (Figura 4.6).
Las ignimbritas presentan estructura masiva y estratificada. La estratificación la definen horizontes con limites definidos o la alineación de fiammes. A escala macroscópica, es posible observar la textura eutaxítica y en algunos niveles, una estructura reomórfica, además de líticos de lavas andesíticas de hasta 30 cm (Figura 4.6).

Las ignimbritas y tobas de esta unidad sobreyacen discordantemente al Granito subvolcánico y se encuentra sobreyacida discordantemente por la secuencia ignimbrítica Monte del Favor y por las Capas Rojas Las Juntas con las cuales también se encuentran en contacto tectónico (Figura 4.7). Las rocas piroclásticas que la conforman presentan una amplia variedad textural. Se pueden encontrar tobas líticas y vítreas, ignimbritas eutaxíticas y con textura fragmentada e ignimbritas reomórficas, todas de composición riolítica con abundantes cristaloclastos de feldespato y cuarzo, líticos volcánicos vítreos, felsíticos, microlíticos y lathwork inmersos en una matriz de ceniza y vidrio (Tabla 4.3).

Figura 4.6. Fotografías de afloramientos de ignimbritas de la secuencia volcánica Río Santiago. A) Estructura reomórfica. B) Bloques de lavas andesíticas en depósito piroclástico. C) Tobas verdes estratificadas. La muestra SPA-07 fue tomada de este afloramiento. C) y D) Intensa deformación frágil en ignimbritas al norte de la presa La Yesca. E) Falla normal que corta ignimbritas al norte de la Presa La Yesca.

Las lavas intercaladas con las ignimbritas (Figura 4.8), varían de latitas a traquitas (Tabla 4.3). Estas lavas son hipocristalinas y contienen menos del 5% de cuarzo y el resto consiste de fenocristales de feldespato, con fenocristales secundarios de hornblenda.

Esta unidad se encuentra cortada por diques subverticales máficos y félsicos (Figura 4.8), generalmente emplazados en fallas en las que se observan estrías subverticales.

Figura 4.7. Contacto entre ignimbritas oligocénicas y unidades más jóvenes. A) Contacto por falla normal entre ignimbritas del Mioceno inferior e ignimbritas de la secuencia volcánica Río Santiago (bloque de piso). B) Contacto discordante tectonizado entre capas rojas e ignimbritas oligocénicas.

Al norte de la presa La Yesca, una ignimbrita eutaxítica (SPA-07) arrojó una edad U-Pb en zircón de 26.65 ± 0.22 (promedio ponderado) y en San Pedro Analco una toba rica en cristales (SPA-02) y una ignimbrita (SPA-18C) arrojaron edades de 23.53 ± 0.47 y 26.17 ± 0.37 (Figura 4.9) respectivamente. Los datos de estas muestras son discordantes y para obtener las edades por promedio ponderado se discriminaron los granos que no pertenecieran al grupo más joven y aquellos con discordancias y errores grandes. En la muestra SPA-02 los datos utilizados para obtener la edad por promedio ponderado corresponden al grupo de zircones más jóvenes, eliminando aquellos que tienen un error mayor al 5% y sin tomar en cuenta el zircón más joven, ya que no se observa coherente con el grupo de granos seleccionados para obtener la edad. En la muestra SPA-18C se utilizan los zircones más jóvenes eliminando el grano más joven por que no se encuentra dentro del grupo seleccionado. En la muestra SPA-07 la edad por promedio ponderado

esta representada por los zircones más jóvenes, de los cuales, la mayoría tiene discordancias mayores al 30% y no fue posible obtener un resultado con edades poco discordantes.

Figura 4.8. Lavas félsicas e intrusiones que cortan la secuencia volcánica Río Santiago. A) Latita afectada por fallas inversas interpretadas con base en escalones incongruentes. La muestra RS-08 fue tomada de estas lavas. B) Diques máficos subverticales con respaldos en fallas normales cortando ignimbritas al norte de la presa La Yesca. C) Dique granítico del cual se obtuvo la muestra SPA-05 que corta ignimbritas del Oligoceno.

En este trabajo se obtuvo una edad U-Pb en zircones para la muestra RS-08 (Figura 4.9), la cual corresponde a una latita afectada por fallas inversas (Figura 4.8) en el nivel estructural más bajo de la secuencia volcánica a ~100 metros sobre el Río Santiago, a 580 msnm. Las edades individuales son concordantes y el grupo de zircones más jóvenes y con discordancia menor al 6% (Figura 4.9) muestra una edad por promedio ponderado para 7 granos de 26.53 ± 0.59 Ma con un MSWD de 1.4 (Figura 4.9). Un par de zircones heredados tienen edades de ~59 Ma y un zircón tiene una edad de 87.3 ± 2.3 Ma.

Familias de fallas con geometría compleja se encuentran cortando esta unidad. Estas fallas presentan una cinemática predominantemente normal y se superponen a familias de fallas inversas con componente lateral y laterales con componente normal e inverso. Las fallas inversas medidas en el área de estudio, únicamente cortan esta unidad volcánica del Oligoceno tardío.

Figura 4.9. Edades U-Pb de rocas piroclásticas del Oligoceno tardío. Se muestran los datos individuales para cada muestra en un diagrama de concordia de Tera-Wasserburg (izquierda) y la edad ²⁰⁶Pb/²³⁸U (derecha). En los diagramas Tera-Wasserburg se presentan las edades (rombos) y sus errores a 2 σ (elipses), los datos en color rojo representan aquellos que conforman la edad ²⁰⁶Pb/²³⁸U. Los gráficos presentados son el resultado de la revisión de las edades U-Pb de García-Arreola (2016).

Muestra	Fotomicrografía	Descripción
RS-11 Toba lítica	A mm	Presenta textura piroclástica. Se compone de granos mal clasificados de cuarzo, feldespato y líticos. Los tamaños de grano varían desde 0.05 mm hasta 3 mm. Presenta pomez riolítica con dominios de feldespatos y alteración a minerales de filosilicatos, tambien exhibe relictos de fiammes. Los cristales de cuarzo y feldespatos (plagioclasa) presentan formas generalmente subhedrales. Se observan abundantes líticos volcánicos con distintas texturas, es posible identificar líticos paleovolcánicos microlíticos, tobáceos y felsíticos vítreos, además de líticos cuarzofeldespáticos con texturas porfíricas. Los cristales de feldespato son mas abundantes que los cuarzos y generalmente presentan maclas polisintéticas y carlsbad, además de ocasionales maclas de deformación. Los cristaloclastos de cuarzo presentan formas subhedrales y extinción tanto recta como ondulante. También se observan cristaloclastos de anfíbol (<2%). Por sus características texturales se puede interpretar que es una toba no soldada.
RS-19 Ignimbrita devitrificada	1 mm	Presenta textura piroclástica, con cristales de cuarzo y feldespato además de líticos volcánicos rodeados por una matriz vítrea. Los cristaloclastos de cuarzo presentan formas suhedrales y algunos se encuentran fragmentados, generalmente presenta extinción recta, además, algunos cuarzos presentan golfos de corrosión. Los cristaloclastos de feldespato presentan macla en enrejado (microclina) y polisintética. La relación cuarzo-feldespato es aproximadamente 1:1. La matriz se encuentra devitrificada y exhibe una textura granofírica (cristales de cuarzo y feldespato) que oblitera la textura vitroclástica original. También se observan líticos paleovolcáncos microlíticos, tobáceos y felsíticos.
SPA-07 Ignimbrita	1 mm	Presenta textura eutaxítica. Se observan cristaloclastos de feldespato panidiomórfico y fiammes de pómez devitrificada en una matriz vítrea. Los feldespatos se encuentran reemplazados por calcita y arcillas. La devitrificación se observa por la cristalización de cuarzo- feldespato. Se observan líticos volcánicos andesíticos con textura lathwork, vítreos y cuarzo-feldespáticos.
SPA-11 Ignimbrita	LVV 1 mm	Presenta textrura granofírica. Se observan cristaloclastos de feldespato y cuarzo, que conforman aproximadamente el 30% de la roca. La matriz se encuentra completamente devitrificada, sin embargo, se preservan algunos fragmentos vítreos de pómez que desarrollan relictos de una textura eutaxítica. También se observan fragmentos líticos vítreos(<1%) con textura fragmentada.

Tabla 4.3. Descripciones petrográficas de rocas piroclásticas y lavas intermedias de la Secuencia volcánica Santiago. Cc–Calcita, Cl–Clorita, Es–Esferulita, F–Feldespato, Fm–Fiamme, Hb–Hornblenda, Lv–Lítico volcár Lf–Lítico felsítico, Lvv–Lítico volcánico vítreo, Lp–Lítico plutónico, M–Matriz, Pl–Plagioclasa, Px–Piroxeno, Pómez, Qz–Cuarzo, V–Vidrio.

Capas Rojas Las Juntas

Esta unidad aflora en cuencas locales en la porción central, occidental y norte del área de estudio. Consiste de una sucesión de conglomerados y areniscas de tonalidad rojiza al intemperismo con horizontes de tobas e ignimbritas intercaladas principalmente a la cima (Figura 4.10). Dentro de esta unidad, también se encontró en la porción occidental del área de estudio un horizonte de calizas de ~1.5 m de espesor (Figura 4.10F).

Los estratos de conglomerados y areniscas presentan gradación normal y estratificación y laminación paralela (Figura 4.10). Los clastos de los conglomerados tienen tamaños desde 2 mm hasta ~10 cm, se encuentran soportados por una matriz arenosa, mal clasificados y subredondeados. Se componen de rocas volcánicas máficas, clastos de rocas piroclásticas y en menor cantidad clastos subvolcánicos félsicos. En algunos horizontes se observa una incipiente imbricación de los clastos.

Figura 4.10. Fotografías de afloramiento de las Capas Rojas Las Juntas. A) Sucesión de conglomerados, areni e ignimbritas intercaladas, basculadas hacía el sur. B) Contacto erosional entre areniscas e ignimbritas del Mio temprano. C) Ignimbrita eutaxítica intercalada en conglomerados. D) Conglomerado masivo. E) Estratifica plana en areniscas. F) Calizas de grano fino estratificadas.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Las areniscas son textural y composicionalmente inmaduras (Tabla 4.4). Presentan una mala clasificación, granos subangulosos a subredondeados, soportados por matriz compuesta de limos. Los componentes consisten de granos de feldespato, cuarzo y líticos volcánicos. Los granos de feldespato en las areniscas son los componentes principales, se encuentran bien preservados y presentan maclas polisintéticas y tipo Carlsbad. El cuarzo presenta extinción recta y ondulada y se observan *Lamellaes de Boehm*. Los líticos que se encuentran en las areniscas son de origen volcánico, presentan texturas tipo lathwork, microlítica, felsítica y vítrea (Tabla 4.4). Esta unidad se encuentra sobreyaciendo discordantemente o en contacto tectónico con ignimbritas

de la Secuencia Volcánica Río Santiago y subyace de manera discordante ignimbritas del Mioceno inferior (Ignimbritas Monte del Favor), con las cuales también se encuentra en contacto tectónico (Figura 4.11).

Figura 4.11. Relación estratigráfica-estructural entre areniscas de las Capas Rojas Las Juntas con ignimbritas del Mioceno temprano. A) Contacto erosivo entre areniscas e ignimbritas. B) Discordancia angular entre areniscas e ignimbritas en la porción norte del área de estudio. C) Ignimbritas del Mioceno temprano en contacto por falla normal con areniscas del Oligoceno tardío. D) Contacto tectónico entre areniscas e ignimbritas al este de la falla Monte del Favor.

En la parte central del área de estudio, las capas rojas se encuentran basculadas hacia el SSW con una inclinación de $\sim 30^{\circ}$, debido a fallas normales WNW-ESE que buzan hacia el norte (Figura 4.10A). Sobre los planos de fallas se observan estructuras *roll-over*. También se encuentran cortadas por fallas laterales derechas con componente normal de rumbo NE-SW. Hacía el norte del Río Santiago, los estratos de areniscas se encuentran basculados hacia el NE-NW (Figura 4.11B). Los horizontes de ignimbritas y tobas intercalados en las areniscas tienen espesores de 15 a 30 cm, contienen abundante pómez, líticos volcánicos vítreos y desarrollan textura eutaxítica. Los afloramientos que se encuentran al norte del Río Santiago y los que se encuentran al sur presentan algunas diferencias; al norte los horizontes tobáceos son más abundantes, mientras que al sur se encuentran principalmente hacia la cima de la secuencia, además, el contacto con ignimbritas del Mioceno temprano en el sur está marcado por una discordancia erosional (Figura 4.11A), mientras que al norte se encuentra una discordancia angular (Figura 4.11B).

En el presente trabajo se obtuvieron edades en zircones detríticos para la muestra RS-05 (Figura 4.12), estos datos se complementan con edades en zircones de la muestra SPA 33A revisadas de García-Arreola (2016). La muestra SPA-33A presenta datos mayormente concordantes y algunos datos discordantes. Los datos discordantes presentan el mayor grado de error. Las edades se distribuyen entre ~23 y ~27 Ma y forman un pico principal en 24.2 Ma. El promedio ponderado con las 13 edades individuales concordantes más jóvenes arroja una edad de 24.03 \pm 0.18 Ma con un MSWD de 1.10, esta edad corresponde a la edad máxima de depósito. Edades más antiguas podrían corresponder a antecristales. La muestra RS-05 presenta una amplia variedad de edades concordantes Figura (4.12), desde Oligoceno tardío hasta Jurásico Medio. Además, se observa una edad del Triásico Tardío, una edad cámbrica y una edad neoproterozoica. También se observan edades paleoproterozoicas (ver Anexo 4).

Los picos principales en el diagrama de densidad de probabilidad (Figura 4.12E) son de 29.7, 73.4 y 97.2 Ma. Los datos más jóvenes (figuras 4.12D y 4.12E) forman picos principales en 34.3, 32.6, 31.3 y 29.7 Ma, siendo el pico de 29.7 Ma el más importante. La edad máxima de depósito obtenida por promedio ponderado de los 8 zircones más jóvenes (Figura 4.12F) es de 29.53 \pm 0.49 con un MSWD de 1.2 incluyendo el grano más joven de 27.7 \pm 1.4 Ma.

Figura 4.12. Edades U-Pb en zircones detríticos de areniscas de las Capas Rojas Las Juntas. A) Resultados para la muestra SPA-33A. Se presenta el diagrama de concordia de Tera-Wasserburg con las edades individuales revisadas de García-Arreola (2016) y el diagrama de densidad de probabilidad con los datos concordantes (elipses rojos y negros). B) Edad máxima de depósito de la muestra SPA-33A obtenida por promedio ponderado. Los datos representados corresponden a las elipses rojas en la Figura A. C) Datos totales de zircones detríticos de la muestra RS-05 graficados en el diagrama de concordia de Wetherill con un acercamiento a las edades Oligoceno al Jurásico. D) Diagrama de concordia de Wetherill con los zircones detríticos más jóvenes. Se presentan las edades con sus respectivos errores (rombos y elipses). Las elipses rojas representan los datos graficados en la Figura F. E) Diagramas de densidad de probabilidad con los datos concordantes. F) Edad máxima de depósito para la muestra RS-05 obtenida por promedio ponderado.

Tabla 4.4. Descripciones petrográficas de areniscas y una caliza de las Capas Rojas Las Juntas. Se muestra la clave de la muestra con su clasificación, fotomicrografías en luz cruzada y paralela y la descripción petrográfica. Cc-Calcita, F–Feldespato, Lv–Lítico volcánico, Lvf–Lítico volcánico felsítico, Lvl–Lítico volcánico lathwork, Lvm–Lítico volcánico nicrolítico, Lvv–Lítico volcánico vítreo, M–matriz, Qz–Cuarzo, V–Vidrio. Los triángulos negros representan gradación normal. NX–Nícoles cruzados, NII–Nicoles paralelos

4.2.1.2 MIOCENO INFERIOR

Ignimbritas Monte del Favor

Esta secuencia ignimbrítica aflora al sur-suroeste del Río Santiago. Se encuentra sobreyaciendo discordantemente ignimbritas del Oligoceno tardío y discordantemente la sucesión de capas rojas. A escala de afloramiento, se observan tanto con estructura masiva como estratificada, con tonalidades gris claro, rojo y rosa claro (Figura 4.13). Estas ignimbritas presentan mucho menor alteración que las rocas del Oligoceno tardío.

Los horizontes ignimbríticos se observan con textura eutaxítica desarrollada por fiammes de pómez de tamaños variables y cristaloclastos de feldespato (Figura 4.13C), además de estructura masiva y textura fragmentada. A escala de muestra de mano es posible observar abundantes líticos volcánicos, principalmente de origen piroclástico (Figura 4.13D).

Figura 4.13. Fotografías de afloramiento de ignimbritas Monte del Favor. A) Ignimbrita masiva cortada por falla en el camino Hostotipaquillo–presa La Yesca. B) Ignimbrita altamente fracturada que aflora en la porción occidental del área de estudio. C) Ignimbrita eutaxítica (HLP-03). D) Lítico ignimbrítico inmerso en la matriz de roca piroclástica.

Al sur del Río Santiago los paquetes de ignimbritas se encuentran cortados por fallas principalmente normales E-W que generan un basculamiento pronunciado hacia el SSW (Figura 4.14) y en menor cantidad por fallas laterales.

Bajo el microscopio petrográfico, las muestras analizadas (Tabla 4.5) presentan textura eutaxítica, fragmentada y granofírica; se clasificaron como tobas de flujos de ceniza, ignimbritas, tobas vítreas y tobas cristalinas. Los depósitos ignimbríticos son ricos en cristales de cuarzo, feldespato y líticos volcánicos. Los cristaloclastos de cuarzo se caracterizan por sus formas subhedrales a anhedrales, golfos de corrosión e intenso fracturamiento. Los cristaloclastos de feldespatos son euhedrales a subhedrales, con maclado polisintético, Carlsbad y en enrejado. Los líticos son de origen volcánico y presentan texturas felsítica, microlítica y vítrea (Tabla 4.5). Además, se observan cristaloclastos de biotita y anfíbol como componentes secundarios. Se observa devitrificación y alteración a arcillas.

Figura 4.14. Ignimbritas Monte del Favor basculadas hacia el SSW debido a fallas normales ~E-W que buzan al norte.

En este trabajo se obtuvieron edades U-Pb en zircones para dos ignimbritas (HLP-16 y RS-04) al suroeste del Río Santiago. Las edades obtenidas son 20.65 ± 0.31 y 19.18 ± 0.26 Ma (Figura 4.15) por promedio ponderado con un MSWD de 0.99 para ambas. La mayoría de los datos son concordantes y tienen discordancias menores a 15%. Las edades por promedio ponderado incluyen las edades de los zircones más jóvenes con discordancia menor al 15 % y con error menor al 6.5 % (HLP-16) y 7% (RS-04). En la muestra HLP-16 se encuentran posibles antecristales con edades de \sim 23 Ma.

Figura 4.15. Resultados U-Pb en zircones de ignimbritas Monte del Favor. Se muestran diagramas de concordia de Tera-Wasserburg (izquierda) y diagramas de promedio ponderado (derecha) de la edad ²⁰⁶Pb/²³⁸U. En los diagramas de concordia se observan las edades (rombos) con sus respectivos errores (elipses). Los datos en rojo representan los datos utilizados en los diagramas de promedio ponderado.

Muestra	Fotomicrografía	Descripción
RS-04 Ignimbrita	CONTRACTOR OF CO	Presenta textura fragmentada con ~40% de cristales inmersos en una matriz vítrea. Los cristaloclastos están representados por cuarzo y feldespatos. Los cristaloclastos de cuarzo presentan formas subhedrales a anhedrales y tamaños que varían de 0.2 mm a 2.5 mm, presentan fracturamiento y golfos de corrosión, además Lamellae de Böehm. Los feldespatos presentan tamaños de máximo 1 mm, formas subhedrales a anhedreles, maclas polisintéticas y en enrejado. La relación cuazo- feldespato es aproximadamente 1:1. También se observan ocasionales esferulitas, espículas de vidrio y líticos cuarzofeldespáticos, volcánicos vítreos y volcánicos. La mesostasis vítrea se encuentra alterada a arcillas y presenta una incipiente textura granofírica y eutaxítica
HLP-17 Toba cristalina	F F F F F F F F F F F F F F F F F F F	Presenta textura fragmentada con cristaloclastos euhedrales a subhedrales de feldespato inmersos en una matriz granofírica. Los feldespatos presentan maclas polisintéticas y combinadas. Se observan ocasionales cristales de anfíbol(?).
SPA-21C Toba cristalina		Presenta textura granofírica y micropoikilítica. Se observan cristaloclastos euhedrales de feldespatos alterados a calcita inmersos en un mosaico de microcristales de cuarzo y feldespato. Se observan cristales opacos isotrópicos (1%), muscovita (<1%) y zircón (<1%). Se observa clorita y calcita como minerales de alteración.
SPA-33B Toba vítrea		También podría clasificarse como toba de flujo de ceniza. Se encuentra predominantemente conformada por una matriz vítrea y fragmentos de pómez (fiammes). Se observan cristaloclastos (~10%) de cuarzo y feldespato. Se observa que la roca se encuentra soldada y desarrolla una incipiente textura eutaxítica, por fragmentos de pómez elongadas y cristaloclastos orientados en su eje largo. La roca se encuentra pervasivamente alterada por arcillas.

Muestra	Fotomicrografía	Descripción
HLP-15 Ignimbrita	Q2 PZ <u>1 mm</u>	Ignimbrita riolítica con textura eutaxítica. Presenta cristaloclastos de feldespato hipidiomórfico (~40%), espículas de vidrio y fiammes de pómez con textura esferulítica. Los ejes largos de los cristaloclastos de feldespato se encuentran orientados con la foliación que desarrollan las fiammes. Los cristalocalstos y los fragmentos pumíceos se encuentran en una matriz vítrea devitrificada que desarrolla una textura granofírica de cuarzo y feldespato.

Tabla 4.5. Descripciones petrográficas de rocas piroclásticas de las Ignimbritas Monte del Favor. La ubicación geográfica de las muestras se presenta en el Anexo 6. Es–Esferulitas, F–Feldespato, Gs–Espículas de vidrio (Glassy Shards), Qz–Cuarzo, Pz–Pómez, V–Vidrio, Z–Zeolitas.

Domos El Vigía

Se cartografiaron dos conjuntos de domos félsicos; un conjunto que forma un alineamiento NW-SE al sur del Río Santiago y un conjunto de domos localizados en la parte topográficamente más alta del área de estudio, al norte del Río Santiago. La base de ambos conjuntos de domos se encuentra en niveles topográficos con una diferencia de aproximadamente 700 m (Figura 4.22). Estos domos sobreyacen a las ignimbritas del Mioceno inferior y representan la última fase de volcanismo relacionado a la SMO en el área de estudio.

Figura 4.16. Fotografías de afloramiento de lavas de los Domos Riolíticos. A) Dacita porfírica con abundantes fenocristales de feldespato que corresponde a lavas del conjunto de domos El Vigía. Muestra RS-14. B) Riolita masiva de domo El Ocotillo al oeste de Michel. Muestra RS-07.

Estas lavas presentan estructura masiva y ocasionalmente reomórfica, son holocrostalinas a hipocristalinas, con textura porfírica y fanerítica (Figura 4.16). Las lavas que conforman estos domos fueron clasificados por estimación visual de componentes bajo el microscopio petrográfico como riolita, dacita, latita y andesita (RS-07, RS-14, RS-15 y HLP-09 respectivamente) (Tabla 4.6). Se componen por fenocristales de cuarzo y feldespato. Los fenocristales de cuarzo son subhedrales, presentan golfos de corrosión y *lamellaes de Boehm*. Los feldespatos son subhedrales a euhedrales, con maclado polisintético, carlsbad y en enrejado. También es posible observar esferulitas y minerales de alteración como epidota, clorita y sericita (Tabla 4.6).

86

Figura 4.17. Resultados geocronológicos U-Pb en zircones de lavas de domos félsicos. Se presentan los diagramas de concordia de Tera-Wasserburg (izquierda) en los cuales se presentan las edades (rombos) con sus respectivos errores (elipses) y la línea de discordia que resulta para cada conjunto de datos (línea punteada azul). Los datos en color negro representan los datos graficados en los diagramas de promedio ponderado (derecha).

Las muestras RS-07 y RS-14 fueron fechadas por U-Pb en zircones. La muestra RS-07 corresponde a una riolita del domo El Ocotillo, cerca del contacto con ignimbritas del Mioceno inferior en la parte central del área de estudio, los datos obtenidos son mayormente concordantes y el conjunto de zircones más jóvenes arroja una edad por promedio ponderado de 19.70 \pm 0.26 Ma con un MSWD de 1.10 (Figura 4.17). La muestra RS-14 corresponde a una dacita del conjunto de domos El Vigía en la porción más septentrional del área de estudio. Los datos son concordantes y la edad por promedio ponderado del grupo de zircones más jóvenes es 18.61 \pm 0.29 Ma con un MSWD de 1.03 (Figura 4.17), un zircón de esta muestra presenta una edad de 25.47 \pm 0.58 Ma y se considera como un xenocristal arrastrado por el flujo ignimbrítico.

Muestra	Fotomicrografía	Descripción
RS-07 Riolita	Or Contraction of the second sec	Roca volcánica holocristalina, con textura porfírica. Se observan cristales euhedrales de feldespato potásico y cuarzo (feldespato potásico>>cuarzo) inmersos en una mesostasis de cuarzo y feldespato. La textura, en función del tamaño de grano es seriada. El contacto entre cristales varia de recta a interlobada. Se observan abundantes esferulitas felsíticas radiales y se observa una estructura fluidal.
RS-14 Dacita	Imm	Roca holocristalina con textura porfírica. Se observan fenocristales de feldespato y cuarzo con formas subhedrales inmersos en una mesostasis microcristalina de cuarzo y feldespato. El cuarzo presenta extinción recta y ocasionalmente extinción ondulante. Se observan ocasionales cristales con golfos de corrosión. El feldespato esta representado por plagioclasas con maclado polisintético, posibles sanidinos con macla tipo carlsbad y microclina con maclado en enrejado. Se observan cristales de epidota como minerales de alteración.

En San Pedro Analco, Nieto-Obregón *et al.* (1985) obtuvo una edad K/Ar en separados de plagioclasa de 22.54 ± 0.47 Ma para el Domo Las Ánimas, el cual sobreyace discordantemente andesitas del Oligoceno.

Los domos coronan la secuencia volcánica del Mioceno inferior. Estos domos se encuentran cortados por fallas normales con direcciones E-W y se encuentran desplazados hacia el sur por la Falla Río Santiago.

Granito La Playa

En la porción occidental del área de estudio, al sur de La Playa, aflora un granito con estructura bandeada y masiva de tonalidad blanquecina. Este cuerpo granítico se encuentra afectado por fracturas con rumbo N80°/NW/46°. Este granito presenta textura fanerítica en muestra de mano con fenocristales principalmente de cuarzo y feldespato (Figura 4.18). La pseudofoliación que se

observa en este cuerpo granítico está conformada por bandas intercaladas de grano grueso y grano fino. La pseudofoliación tiene un rumbo N120º/SW/64º

Figura 4.18. Fotografías de afloramiento del Granito La Playa. A) Estructura bandeada del granito. B) Acercamiento a las bandas feldespáticas de grano fino y grano grueso.

Este granito se encuentra cortando ignimbritas del Mioceno inferior (Ignimbritas Monte del Favor). Petrográficamente, exhibe una textura holocristalina fanerítica conformada por fenocristales panidiomórficos a xenomórficos de feldespato, cuarzo y biotita (Tabla 4.7).

Figura 4.19. Resultados geocronológicos U-Pb en zircones de la muestra HLP-07 que corresponde al Granito La Playa recolectada cerca del Río Santiago. A) Diagrama de concordia Tera-Wasserburg con las edades individuales (rombos) y sus respectivos errores (elipses). B) Diagrama de promedio ponderado de la edad ²⁰⁶Pb/²³⁸U con todos los datos de la Figura A.

La muestra HLP-07 fue analizada por U-Pb en zircones para determinar la edad de cristalización. Los resultados arrojaron una edad por promedio ponderado de la edad 206 Pb/ 238 U de 18.35 ± 0.24 Ma con un MSWD de 1.20 (Figura 4.19). Casi todas las edades son concordantes y forman un grupo bien definido alrededor de 18 Ma en el diagrama de concordia (Figura 4.19). La edad de este granito coincide con la edad de la dacita fechada en los domos El Vigía (RS-14) por lo que podrían estar relacionados genéticamente.

Muestra	Fotomicrografía	Descripción
HLP-07 Granito	1 mm	Roca holocristalina con textura fanerítica. Se observan fenocristales panidiomórficos a xenomórficos de feldespato, cuarzo y biotita. El feldespato es mas abundante que los cristales de cuarzo. El cuarzo presenta extinción ondulante. Los fenocrsitales de feldespato presenta macla polisintética y extinción ondulante. Se observa una incipiente alineación de los minerales. Se observaron cristales de zircón como mineral accesorio.

Tabla 4.7. Descripción petrográfica de la muestra HLP-07 que corresponde al Granito La Playa. Bt–Biotita, F– Feldespato, Qz–Cuarzo.

4.2.2 FAJA VOLCÁNICA TRANSMEXICANA

La secuencia de la Faja Volcánica Transmexicana se compone principalmente de riolitas y basaltos, las cuales se encuentran coronando la secuencia de la SMO, principalmente en la porción más meridional del área de estudio. Además, los derrames basálticos se encuentran en los márgenes del Río Santiago, formando mesetas fácilmente cartografiables (Figura 4.20A).

Se realizaron descripciones petrográficas para las muestras RS-20 y SPA-35 (Tabla 4.8), que corresponden a un basalto y una andesita basáltica respectivamente. El grado de cristalinidad varia de holocristalinas a hipocristalinas, presentan textura porfírica y están conformadas principalmente por fenocristales de plagioclasa con maclado principalmente tipo carlsbad y ocasionales fenocristales oxidados de piroxeno y olivino. La muestra RS-20 es un derrame masivo que se encuentra en la porción noroccidental del área de estudio, al norte del Río Santiago y la muestra SPA-35 corresponde a la Mesa de Flores al sur de la presa La Yesca y consiste de un derrame

basáltico con estructura de prismas hexagonales que sobreyace un depósito de bloques y arenas mal consolidado (Figura 4.20B).

Figura 4.20. Fotografías de rocas volcánicas de la Faja Volcánica Transmexicana en el área de estudio. A) Basaltos que forman mesetas sobre el Río Santiago. B) Basaltos columnares sobreyaciendo depósito de bloques y arenas mal consolidado cerca de la presa La Yesca. C) Riolita reomórfica en el camino Hostotipaquillo–San Pedro Analco. D) Ignimbrita lítica con pómez claras y oscuras, asociada al Domo Hostotipaquillo.

Los derrames riolíticos se encuentran en la porción sur del área de estudio, presentan estructura masiva a reomórfica. Generalmente se observan de color rosa claro con bandas de vidrio con estructuras de flujo (pliegues) (Figura 4.20C)

El domo Hostotipaquillo consiste de lavas félsicas con un depósito piroclástico asociado. Este depósito presenta textura eutaxítica con pómez oscuras y claras inmersas en una matriz de ceniza (Figura 4.20D). Las lavas félsicas sobreyacen derrames basálticos del Plioceno temprano (Nieto-Obregón *et al.*, 1985; Moore *et al.*, 1994).

Edades K/Ar y Ar/Ar en basaltos de la secuencia volcánica de la FVTM en el área, corresponden al Plio-Cuaternario (Damon *et al.*, 1979; Nieto-Obregón *et al.*, 1985; Moore *et al.*, 1994).

Además de las lavas basálticas y riolíticas se encuentran depósitos piroclásticos y de caída intercalados principalmente hacia la cima de la secuencia.

Los basaltos del Plioceno temprano (3.7-3.3 Ma; Nieto *et al.*, 1985; Moore *et al.*, 1994) se encuentran cortados por fallas normales NW-SE y se encuentran ligeramente basculados (\sim 5°). Estas fallas corresponden al graben Cinco Minas–Plan de Barrancas (Figura 4.21).

4.2.3 DÍQUES MÁFICOS

En el área de estudio se encuentran abundantes intrusiones máficas asociadas con fallas normales en distintas direcciones. Estos diques son generalmente holocristalinos, presentan textura porfírica y consisten de fenocristales de plagioclasa, anfíbol y piroxeno inmersos en una mesostasis microcristalina o vítrea. Con base en la composición modal se clasifican como andesitas y basaltos (Tabla 4.9).

Tabla 4.9. Descripciones petrográficas de diques máficos en el área de estudio. La localización geográfica de muestras se presenta en el Anexo IV. Af–Anfíbol, M–Mesostasis, PI–Plagioclasa, Opx–Ortopiroxeno

4.3 GEOLOGÍA ESTRUCTURAL

En el área de estudio las estructuras son dominantemente fallas normales. Se observan tres fallas mayores: La Falla Río Santiago con orientación E-W y las fallas Plan de Barrancas y Cinco Minas con orientación NW-SE. La Falla Río Santiago se encuentra en la traza del Río Santiago (Figura 4.23) y pone en contacto rocas del Oligoceno tardío (al norte) con rocas del Mioceno temprano (al sur) (figuras 4.21 y 4.22). Las fallas NW-SE cortan la secuencia de la SMO y la de la FVTM y forman el Graben Plan de Barrancas-Cinco Minas dentro del cual se encuentran emplazadas rocas volcánicas de la FVTM (Figura 4.21).

En el área de estudio, se encuentran principalmente fallas menores normales E-W y ENE-WSW. Estas fallas normales afectan toda la secuencia de la SMO y no afectan las rocas volcánicas de la FVTM (figuras 4.21 y 4.22). Sin embargo, las rocas de la SMO se encuentran afectadas por varias familias de fallas a escala de afloramiento con geometría compleja y estructuras *Riedel* asociadas. Las fallas presentan zonas de falla que varían de unos cuantos centímetros hasta un máximo de ~5 metros. Las estrías generalmente son de débilmente marcadas a bien marcadas y los indicadores de sentido del movimiento (desplazamiento de capas, escalones de falla, estrías) de los bloques afallados generalmente son poco evidentes.

Los datos estructurales medidos en campo se obtuvieron en 19 estaciones distribuidas en las zonas con mayor accesibilidad en el área de estudio (Figura 4.23), de las cuales se eligieron los datos de fallas con estrías observadas y sentido del desplazamiento dado por indicadores cinemáticos para obtener soluciones de la inversión de estrías usando el software *Wintensor* (Delvaux y Sperner, 2003) en las estaciones con mayor número de datos. En algunas de las estaciones, las familias de fallas fueron separadas con base en observaciones de campo; como relaciones de corte, relaciones estratigráficas y asociaciones con estructuras regionales. Aquellas estaciones en las cuales los datos fueron insuficientes o con una alta dispersión fueron desechadas para los análisis estructurales.

En el área de estudio se pueden caracterizar las estructuras en tres dominios principales con base en la orientación y cinemática dominantes: el dominio oriental, el dominio centro-sur y el dominio norte. En las siguientes secciones se describen en detalle los tres dominios estructurales, definiendo direcciones de las estructuras, tipo de fallamiento, posición estratigráfica de las fallas y los resultados del análisis por diedros rectos (Angelier y Mechler, 1977) usando el *software Wintensor* para las principales estaciones estructurales.

Figura 4.23. Mapa estructural del área de estudio en el que se presentan las estaciones estructurales y los límites de los dominios estructurales en el área de estudio. Los datos medidos en cada estación se presentan en la tabla de la parte inferior. Los puntos en algunas ciclográficas representan la estría medida en esos planos. La zona en la que se concentra la mayor cantidad de estaciones es la zona con mayor complejidad estructural y direcciones de planos de falla.

Los resultados de diedros rectos representan direcciones de paleoesfuerzos e incluyen datos separados con base en la función de separación de subconjuntos compatibles con distintos estados de esfuerzos implementada en *Wintensor*. También se presenta la separación de subconjuntos con la función de diedros rectos mejorado de *Wintensor* al analizar todos los datos de fallas con estrías (*fault slip data*) medidos en todas las estaciones.

4.3.1 DOMINIO ORIENTAL

El dominio oriental se localiza en la región de Santo Domingo de Guzmán-San Pedro Analco (estaciones 1 y 2). La estratigrafía en esta región está conformada por rocas oligocénicas de las unidades Andesita San Pedro Analco, Granito Subvolcánico y la Secuencia Volcánica Río Santiago.

Los rumbos de las fallas en esta zona tienen dos direcciones preferenciales: NW-SE y NE-SW. Estas fallas son de tipo normal con una menor componente lateral derecha. Las fallas con dichas direcciones se encuentran dominantemente en el Granito Subvolcánico y generalmente se encuentran diques máficos asociados a las fallas (Figura 4.25). También se encuentran diques que no están emplazados en fallas, los cuales pueden tener composición de máfica a félsica, tienen geometrías complejas y son ramificados (Figura 4.24B).

Figura 4.24. Fotografías de fallas y diques representativos del dominio oriental. A) Falla normal que desplaza ignimbritas del Oligoceno tardío al norte del Domo Las Ánimas. B) Diques graníticos intrusionando a roca de composición intermedia que a su vez intrusiona el Granito Subvolcánico, cortado por fallas normales. C) Vista panorámica desde el NW del plano de falla de la Falla Cinco Minas que pone en contacto rocas de la SMO y la FVTM.
Hacia el poblado de San Pedro Analco el fallamiento y la intrusión de diques es menos intenso que en el Granito Subvolcánico. Además de fallas y diques NW-SE y NE-SW (Figura 4.24A) se encuentran fallas normales y diques principalmente félsicos orientados ENE-WSW (Estación 2). La estructura más importante de este dominio es la Falla Cinco Minas (Figura 4.24C), una falla normal con rumbo N120°–130° que forma parte del sistema Santa Rosa-Cinco Minas, el cual reactiva parcialmente una zona de falla con desplazamiento a rumbo más antigua (Quintero Legorreta *et al.*, 1992).

Las relaciones de corte y la inclinación de los diques demuestran que existen al menos tres generaciones de diques, siendo la generación más joven los diques máficos verticales a subverticales, con rumbos preferenciales NW-SE ya que cortan otros diques máficos-intermedios y félsicos (Figura 4.25). Aparentemente, los diques máficos a intermedios que son cortados por la generación de diques más joven, a su vez cortan a los diques félsicos (Figura 4.25). En general, los diques NW-SE generalmente tienen inclinaciones de ~50° a ~85° mientras que los NE-SW tienen inclinaciones de ~35° a ~80°.

Subvolcánico. Las fotografías de afloramiento corresponden a esta sección basada en observaciones de campo. Nótese que los diques máficos están asociados a las fallas normales y que estos diques son la generación más joven. La intrusión andesítica que hospeda el enjambre de diques se encuentra cortando granitos que afloran al SW y NE de la sección.

En el análisis de diedros rectos (Figura 4.26) se utilizaron las fallas de la estación 1 y los datos de diques subverticales NW-SE de la generación más joven. En ambos casos, la dirección del esfuerzo principal mínimo σ 3 resultante es NE-SW (N41° y N53°), σ 3 y σ 2 son subhorizontales, mientras que el esfuerzo principal máximo σ 1 es subvertical, lo cual describe fallamiento normal por

extensión NE-SW. La dirección de extensión obtenida corresponde con la esperada para fallas normales NW-SE del Rift Tepic Zacoalco (Plio-cuaternario). Sin embargo, estas estructuras están relacionadas a la fase más joven de estas fallas, pero existe evidencia de actividad de la falla Cinco Minas durante el Oligoceno tardío, como eventos de mineralización epitermal en vetas con edades

Figura 4.26. Resultados del análisis por diedros rectos de las fallas que cortan el Granito Subvolcánico en la estación 1. Se presentan los datos de fallas en un diagrama de Angelier (estereograma azul) y los mismos datos son graficados como lineación tangente (Hoeppener) en el diagrama de diedros rectos (estereograma de colores). También se muestra el análisis para 7 digues máficos NW-SE, el cual es muy similar al resultado obtenido para las fallas. Para los análisis de inversión de estrías se muestra la dirección de los esfuerzos principales, así como los parámetros R y R' que determinan el régimen de esfuerzos resultante. El parámetro CD determina la desviación de los datos respecto a estado de esfuerzos resultante, de acuerdo con Delvaux y Sperner (2003) los valores bajos de CD representan un mejor ajuste o compatibilidad de los datos con un estado resultante. La gama de colores en los estereogramas representa los promedios de los cuadrantes de extensión y compresión de los datos analizados determinados por la orientación de la falla, la orientación de la estría y el sentido de movimiento, estos cuadrantes son graficados en una malla de referencia y todas las orientaciones de la malla que corresponden a los cuadrantes extensionales tienen un valor de 100% mientras que los que corresponden a los cuadrantes compresionales tienen un valor de 0%, el procedimiento se repite para cada dato analizado y es promediado. La posible orientación de o1 y o3 están definidas por la orientación en la red de valores promedio con valores de 0% y 100% respectivamente (ver Delvaux y Sperner, 2003 para mayor detalle). El valor de la relación de esfuerzos (R) es únicamente una estimación obtenida por el software Win-Tensor.

de ~24 Ma (Camprubí *et al.*, 2016) emplazadas en el mismo sistema de fallas. Las fases de actividad de las fallas y la interpretación de las fases de deformación serán discutidas en el siguiente capítulo.

4.3.2 DOMINIO CENTRO-SUR

En la porción centro-sur del área de estudio (estaciones 3–7 y 9) predominan las fallas normales E-W, las cuales buzan principalmente hacia el norte y basculan la secuencia del Oligoceno tardío– Mioceno temprano hacía el sur, formando una estructura tipo "homoclinal" (ver Figura 4.22). Además, se observan fallas normales con componente lateral y laterales con componente normal con rumbos N-S y NE-SW. También se encontraron fallas inversas en ignimbritas ricas en cristaloclastos de cuarzo de la unidad Monte del Favor, estas estructuras, con desplazamientos verticales de pocos centímetros, son muy poco frecuentes en este dominio.

Las fallas normales E-W observadas en este dominio no cortan las rocas volcánicas Plio-Cuaternarias de la FVTM que afloran inmediatamente al sur de la secuencia de la SMO (figuras 4.21 y 4.22), pero las fallas NW-SE que se encuentran en rocas del Oligoceno tardío–Mioceno temprano tienen rumbos y características cinemáticas similares a las fallas que cortan rocas de la FVTM.

El dominio centro-sur está limitado al oeste por la Falla Plan de Barrancas y al sureste por la falla Cinco Minas, ambas son fallas normales que cortan rocas de la FVTM. La edad de la Falla Plan de Barrancas esta constreñida en >3.5 Ma y <0.66 Ma y para la Falla Cinco Minas en dos periodos; 5.5-3.9 Ma y 3.2-1 Ma (Ferrari y Rosas-Elguera, 2000a). El límite norte del dominio centro-sur es una falla normal con una ligera componente lateral derecha denominada Falla Río Santiago. Esta falla tiene un rumbo E-W y desplaza la secuencia del Mioceno temprano ~700 m hacia el sur (figuras 4.21 y 4.22).

La estratificación y pseudoestratificación (textura eutaxítica) en las Ignimbritas Monte del Favor buza predominantemente hacia el SSW con inclinaciones que varían desde ~21° hasta ~50° y la estratificación en areniscas y conglomerados de las Capas Rojas Las Juntas buza al SSW con inclinaciones de 22° a 42° (Figura 4.27).

Figura 4.27. Actitud estructural de los estratos en el dominio centro-sur. A) Polos de estratificación medidos en este dominio. B) Rosetas de fallas medidas en las en las Capas Rojas Las Juntas (Oligoceno tardío) e ignimbritas Monte del Favor (Mioceno temprano), determinando el trend principal de fallas normales y laterales. El fallamiento dominante es de tipo normal con rumbo E-W y coincide con el basculamiento del dominio centro-sur hacia el SSW como lo muestran los polos de estratificación de la figura de la izquierda. C) Areniscas y tobas estratificadas (Capas Rojas Las Juntas) basculadas hacía el sur e intrusión andesítica en falla normal. D) Depósitos piroclásticos estratificados de las Ignimbritas Monte del Favor basculadas hacía el SSW.

Las fallas laterales se encuentran predominantemente en las Capas Rojas Las Juntas y en la porción occidental del área de estudio, al sur de La Playa, donde se encuentran en el nivel estructural más bajo de las Ignimbritas Monte del Favor y en Ignimbritas de la Secuencia Volcánica Río Santiago (ver figura 4.21).

Las fallas laterales tienen rumbo principalmente NE-SW (Figura 4.27), además se encuentran fallas laterales con rumbos E-W. La mayoría de las fallas laterales en el área de estudio tienen una componente de deslizamiento normal y tienen sentido tanto derecho como izquierdo (en planos distintos). La cinemática de estas fallas generalmente está caracterizada por la inclinación de las estrías y escalones incongruentes, ocasionalmente pueden observarse estructuras asociadas a las fallas con geometría similar a sistemas tipo *Riedel* (Figura 4.28). En algunos puntos del área de estudio, planos de fallas laterales se encuentran truncados por fallas normales (Figura 4.28B). Existen fallas laterales N-S se encuentran asociadas a fallas normales mientras que las E-W no

presentan una asociación evidente con fallas normales. Estas últimas se observaron principalmente en niveles estructurales y estratigráficos inferiores en la porción occidental del área de estudio (estaciónes 3 y 4).

Figura 4.28. Fotografías de fallas laterales en el dominio centro-sur. Todas las fallas mostradas en las fotografías muestran una componente normal importante. A) Falla lateral-normal con estructuras asociadas con geometría tipo Riedel, en Ignimbritas Monte del Favor B) Plano de falla lateral-normal truncada por falla normal en Ignimbritas Monte del Favor. C) Plano de falla lateral-normal estriado en Ignimbritas Monte del Favor al norte de Hostotipaquillo. D) Falla lateral-normal que desarrolla sigmoides en zona de brecha y harina de falla, además de fracturas con geometría tipo Riedel.

Las fallas normales tienen rumbos predominantemente E-W a ESE-WNW (Figura 4.27) y generalmente tienen estrías con pitch cercano a 90°, también presentan estrías con una componente importante lateral derecha y en menor medida lateral izquierda, las cuales aparentemente son mas

Figura 4.29. Fotografías de fallas normales en el dominio centro-sur. A) Falla normal con sigmoide que define la cinemática de la falla. B) Falla normal con fracturas R. C) Falla normal con estructuras R y R' al sur de la presa La Yesca. D) Escalones incongruentes en plano de falla. E) Brecha cohesiva al sur de La Playa. F) Plano de falla estriado con brecha de falla. G) Brecha de falla cohesiva con fracturas con arreglo anastomosado. H) Plano de falla cortando areniscas y conglomerados de las Capas Rojas Las Juntas, en el cual se observaron estrías verticales y horizontales. I) Falla normal que desplaza horizonte rico en pómez en ignimbritas reomórficas.

antiguas que las estrías de ~90°. Los planos de las fallas desarrollan escalones congruentes e incongruentes, brechas de falla cohesivas y no cohesivas y estructuras tipo *Riedel* que incluso llegan a formar arreglos anastomosados y sigmoides (Figura 4.29). Estas fallas tienen inclinaciones que varían de ~50° a ~85° (Figura 4.29). Las zonas de brecha tienen espesores variables y se encuentran mejor preservadas en el dominio sur que en los otros dos dominios.

En las Capas Rojas Las Juntas se observaron planos de fallas normales con estrías al echado superpuestas a estrías horizontales ($\sim 5^{\circ}$), los planos de falla en los que se encuentran dos juegos de estrías buzan hacia el noreste con inclinaciones de $\sim 50^{\circ}$ (Figura 4.29).

Al sur de la Falla Monte del Favor aflora una zona de falla con planos débilmente estriados subhorizontales con rumbo NE-SW y estrías con un *rake* de 180 a 158°. Estos planos de falla presentan una rotación de más de 50° en un eje horizontal evidenciada por estratos de depósitos piroclásticos perpendiculares a las fallas, con inclinaciones de ~51° (Figura 4.30).

Figura 4.30. Fallas rotadas y proceso de restauración aplicado al plano de falla principal que pone en contacto areniscas y conglomerados con ignimbritas más jóvenes. A) Fotografía a escala de afloramiento de la zona de falla que se observa rotada al sur de la Falla Monte del Favor. B) Esquema de las principales estructuras observadas en la zona de falla. C) Datos estructurales de la falla principal y separación entre los horizontes pirocláticos desplazados. La ciclográfica roja representa el plano de estratificación y la ciclográfica negra representa el plano de falla con la dirección de las estrías. D) Bloque diagramático de la actitud actual de la falla y los estratos. E) Bloque diagramático y datos estructurales obtenidos después de la primera rotación. F) Bloque diagramático y representación en estereograma de lo que representaría la falla original. Los bloques diagramáticos se construyeron con ayuda de la aplicación en línea *visible geology*.

Los datos de estratificación y de actitud de las fallas en las que se observan horizontes tobáceos desplazados fueron rotados para determinar la posible orientación y cinemática de la falla original. La rotación de los planos de estratificación y de la falla principal se realizó en dos pasos; el primer paso con un eje de rotación determinado por la actitud principal de las Ignimbritas Monte del Favor y el segundo paso se realizó restaurando la actitud de las tobas después de la primera rotación.

La primera rotación se definió asumiendo que la fase más reciente de basculamiento es la que se observa en el dominio centro-sur representado por bloques que buzan al sur como resultado de fallas normales ~E-W que buzan al norte. La magnitud de la rotación de 25° es una aproximación a la inclinación promedio de las Ignimbritas Monte del Favor.

Esta zona de falla, observada a escala de afloramiento representa un bloque con fallamiento lateral rotado en sentido antihorario, posiblemente debido a una falla normal de bajo ángulo (?) perpendicular a las fallas del bloque rotado. El resultado final de la rotación determina un plano de falla con geometría y cinemática normal-dextral (Figura 4.30) con rumbo N321°/52°/NE, con un *rake* de la estría de 53°.

Las fallas que se encuentran en el dominio centro-sur tienen una cinemática dominantemente normal, sin embargo, existen distintas familias de fallas que podrían corresponder a distintas etapas de fallamiento. Las observaciones de campo permitieron diferenciar dos familias de fallas; fallas normales ~E-W asociadas con fallas laterales principalmente N-S y fallas laterales izquierdas y derechas con dirección NW-SE. Para apoyar estas observaciones, se analizaron las fallas medidas en las estaciones más representativas (estaciones 4 y 7) por el método de diedros rectos en *Wintensor* (Figura 4.31).

En la estación 4, la separación de subconjuntos por la función de diedros rectos produjo tres subconjuntos. Los subconjuntos 4.1, 4.2, y 4.3 (Figura 4.31) muestran la dirección del esfuerzo principal máximo σ 1 vertical y el esfuerzo principal mínimo σ 3 horizontal, lo cual determina un

régimen extensional. Sin embargo, la dirección de σ 3 es diferente para cada subconjunto. Los resultados arrojan tres direcciones de σ 3: N341, N224 y N91°

El análisis de los datos totales de la estación 4 muestra un resultado con σ 3 horizontal y σ 1 vertical, sin embargo, estadísticamente los datos no forman un tensor que sea compatible con todas las fallas, por lo que se interpreta que existen subconjuntos de fallas incompatibles entre sí.

Figura 4.31. Resultados del análisis de diedros rectos de las estaciones 4 y 7. Se muestran dos mapas geológico-estructurales del dominio sur para la mejor visualización de datos y estructuras. En cada mapa se ubica la localización de las estaciones analizadas. En el mapa de la izquierda también se muestra la localización de la falla de la Figura 4.30. La mitad inferior de la imagen muestra los resultados de la separación de subconjuntos de fallas arrojadas por el software Win-tensor con las ciclográficas de las fallas que conforman cada subconjunto y la orientación de los esfuerzos principales resultantes para cada subconjunto. En los diagramas de colores (resultados diedros rectos) las fallas están graficadas como lineación tangencial (Hoeppener). La descripción de los parámetros que se presentan en cada resultado y la gama de colores se presenta en la Figura 4.26. Para cada estación, el primer estereograma (color azul) y su respectivo análisis por diedros rectos incluyen todas las fallas medidas en la estación. También se muestra la estratigrafía del domino sur, acotada con flechas rojas.

Para la estación 7 se obtuvieron dos subconjuntos. El primer subconjunto es el que presenta la menor desviación entre el tensor resultante y los datos que son tomados como compatibles, este

subconjunto resulta en un régimen extensional con σ 3 subhorizontal con dirección N176°. El segundo subconjunto también presenta un régimen extensional con σ 3 subhorizontal con dirección N16°, sin embargo, la dispersión de los datos es grande y por lo tanto no está bien constreñido.

El análisis de todas las fallas en un mismo tensor resulta en un régimen extensional con σ 3 horizontal y una dirección N175°, lo cual evidentemente es la dirección promedio de σ 3 en los dos subconjuntos que se obtuvieron.

Todas las fallas medidas en el dominio centro-sur también se analizaron usando *Win-tensor* para evitar excluir las familias de fallas que pudieran encontrarse en estaciones distintas a las dos más representativas. En el análisis de un total de 73 fallas medidas en este dominio se obtuvieron seis subconjuntos de fallas compatibles con distintos tensores de paleoesfuerzos (Figura 4.32). Tres de los subconjuntos (1,0; 1,2; 1,3) resultan en regímenes extensionales en los que σ 3 es horizontal y tiene direcciónes N8°, N218° y N52°. De estos tres subconjuntos, el que se conforma del mayor número de datos es el subconjuto 1,0 y consiste dominantemente de fallas normales ESE-WNW a ENE-WSW con una ligera componente lateral.

Figura 4.32. Separación de subconjuntos por medio de la función de diedros rectos mejorada de Win-tensor para todas las fallas medidas en el dominio centro-sur. Las ciclográficas azules representan todas las fallas analizadas. Para cada subconjunto se presenta un estereograma con las ciclográficas que conforman el subconjunto y los resultados de las direcciones de los esfuerzos principales presentan mejor ajuste con cada subconjunto de fallas. En los diagramas de colores (resultados diedros rectos) las fallas están graficadas como lineación tangencial (Hoeppener). La descripción de los parámetros que se presentan en cada resultado y la gama de colores se presenta en la Figura 4.27.

El subconjunto 1,1 (Figura 4.32) representa un régimen transcurrente, en el que σ 1 y σ 3 son aproximadamente horizontales y tienen direcciones N228° y N328° respectivamente. Este subconjunto es conformado por fallas laterales izquierdas y derechas ~E-W y ~N-S.

El análisis de todas las fallas del dominio sur también arrojó dos resultados con σ 1 aproximadamente horizontal con direcciones N28° y N134° (subconjuntos 1,4 y 1,5). Estos resultados se conforman de fallas principalmente laterales y fallas inversas subordinadas (?). Ambos subconjuntos presentan un valor alto de CD y la gama de colores muestra que no se encuentran bien constreñidas las direcciones de σ 1 y σ 3 ya que no alcanzan los valores de 0% y 100% (Figura 4.32).

4.3.3 DOMINIO NORTE

El dominio norte (estaciones 8, 10–19) se localiza desde la traza E-W del Río Santiago, en la zona en la que se encuentra la Presa hidroeléctrica La Yesca, hasta aproximadamente la cota 1500 msnm hacia el norte. En este dominio, el fallamiento es mucho más intenso que en el sur, además de presentar mayor complejidad en la geometría de las estructuras. Este dominio está limitado al sur por la Falla Río Santiago y al norte por el conjunto de domos El Vigía. Al este y oeste no se conocen con certeza los límites hasta donde el estilo de fallamiento del dominio termina. La estratigrafía consiste principalmente de la Secuencia Volcánica Río Santiago y las Capas Rojas Las Juntas, las cuales se encuentran intensamente deformadas de manera frágil. En la porción más septentrional se encuentran rocas del Mioceno temprano de la unidad Ignimbritas El Llano de Michel y los Domos El Vigía, estas rocas no presentan el mismo grado de deformación que las rocas del Oligoceno tardío.

El intenso fallamiento en las rocas oligocénicas es principalmente de tipo normal con rumbos NE-SW, N-S, E-W y NW-SE. Se encuentran también fallas laterales NE-SW y NW-SE. En el nivel estructural y estratigráfico más bajo se encuentran fallas inversas con componente lateral con rumbos NW-SE, E-W y NNE-SSW (Figura 4.33). En las rocas del Mioceno temprano la deformación está representada por fallas normales ~E-W a escala de afloramiento.

Los estratos de depósitos piroclásticos y areniscas se encuentran basculados por efecto de las numerosas fallas que cortan estas rocas (Figura 4.34). Las areniscas se encuentran inclinadas ~40°

principalmente hacía el NW hasta el NE (Figura 4.33B), mientras que las ignimbritas se inclinan $\sim 30^{\circ}$ hacia norte y hacia el sur.

las fallas y fracturas. Se muestra la orientación principal de las fallas normales inversas y laterales. En el dominio norte, las fallas normales se encuentran en un amplio rango de direcciones. B) Polos de estratificación en ignimbritas de la Secuencia Volcánica Río Santiago y areniscas de las Capas Rojas Las Juntas.

Las fallas normales en el dominio norte tienen dirección predominante E-W. Sin embargo, se encuentran fallas con esta cinemática y fracturas en un amplio rango de direcciones. Estas fallas tienen numerosas fracturas secundarias asociadas, son generalmente verticales a subverticales, presentan planos centimétricos, desarrollan brechas de falla de máximo 10 cm y desplazan claramente horizontes tobáceos con separaciones máximas de ~1.5 m (Figura 4.34). En el área se encuentran diques máficos a intermedios asociados a las fallas normales, principalmente en las que buzan al sur. También se encuentran fallas normales conjugadas (Figura 4.34C). Las estrías medidas sobre los planos de fallas normales son generalmente verticales y muchas estrías presentan una componente lateral importante.

Las fallas inversas se encuentran dominantemente en el nivel estructural más bajo del dominio norte. Estas fallas son subparalelas a la traza del Río Santiago con direcciones E-W a ESE-WNW. Las estrías presentan una componente lateral izquierda y ocasionalmente se encuentran estrías paralelas al echado de las fallas. Las estructuras asociadas a los planos de fallas inversas son sigmoides, fallas tipo R y R' y brechas de falla con espesores menores a 10 cm (Figura 4.35). El fallamiento inverso se encuentra cortando únicamente ignimbritas y tobas félsicas ricas en cristales

Figura 4.34. Fotografías de afloramiento de fallas normales del dominio norte. A) Falla normal en ignimbrita intensamente fracturada. B) Estratos de areniscas basculadas al NW en discordancia angular. C) Fallas normales conjugadas. D) Falla normal que desplaza horizontes tobáceos. E) Dique máfico asociado a falla normal. F) Falla lateral normal en ignimbrita rica en micas con fracturamiento perpendicular a los planos de falla estriados.

y lavas félsicas del Oligoceno tardío fechadas entre ~27 Ma y ~25 Ma (ver figuras 4.21 y 4.22). Los planos y estructuras asociadas de fallas inversas se encuentran aparentemente cortados por planos verticales a subverticales muy débilmente estriados con rumbos principalmente E-W.

Figura 4. 35. Fotografías de afloramiento de las fallas inversas en el dominio norte. A) Falla inversa subhorizontal con fallas laterales-normales (?) como estructuras tipo R'. B) Fallas inversas con geometría de fallas R que presentan bordes de oxidación. C) Sigmoide que indica el sentido de movimiento de falla inversa. D) Falla inversa-izquierda que desarrolla planos de foliación perpendiculares a plano de falla. E) y F) Estructura Riedel en fallas inversas con planos subhorizontales, en la imagen F) se observa un plano ~E-W vertical que corta la falla inversa.

Al norte de este dominio se encuentra un conjunto de pliegues abiertos con arreglo *en-echelon* (Damon *et al.*, 1979; Ferrari, 1995) siendo la estructura más importante la Sierra El Pinabete, que consiste de un anticlinal con vergencia hacía el oeste. El flanco occidental de la Sierra El Pinabete buza hacía el oeste con una inclinación de 70° – 80° , mientras que el flanco oriental se inclina ligeramente (~10°) hacia el este. En el dominio norte, la actitud de los estratos de las rocas del Oligoceno tardío (Figura 4.33) muestra una estructura plegada poco evidente dentro del área de estudio. Sin embargo, en vista panorámica de la porción más septentrional se observa que los paquetes de ignimbritas buzan hacia el WNW y al ESE (Figura 4.36).

Figura 4.36. Fotografías panorámicas de la estructura plegada en el dominio norte. A) Anticlinales abiertos con ejes NW-SE. Vista desde el sur, sobre el camino antiguo a la presa La Yesca. B) Vista panorámica del flanco occidental del sur del anticlinal de la Sierra El Pinabete. Vista desde el sur. Fotografía tomada al oeste de Las Mesas.

Las fallas inversas y el plegamiento reportado por otros autores, se encuentran asociadas temporalmente entre sí dentro del área de estudio, ya que la estructura plegada poco evidente (Figura 4.33) se observa en ignimbritas de la Secuencia Volcánica Río Santiago y en Capas Rojas Las Juntas del Oligoceno tardío, con una edad máxima marcada por tobas intercaladas con areniscas de 24 Ma. Ello implica que la edad de plegamiento interpretada anteriormente podría ser mas antigua.

En el dominio norte, se eligieron las estaciones 13, 14 y 15 como las estaciones más representativas, además de ser las que contienen mayor número de datos. Las fallas medidas en estas estaciones se analizaron por la función de diedros rectos de *Win-tensor*, los resultados de la separación de

conjuntos de fallas cinemáticamente compatibles y las direcciones de los esfuerzos principales para cada conjunto se muestran en la Figura 4.37.

En el análisis por diedros rectos de la estación 13 (Figura 4.37), claramente se separan familias de fallas normales de fallas inversas, lo que coincide con la distinción de fallas basada en las observaciones de campo, las cuales evidencian que las fallas normales en el área de estudio representan un evento de deformación más joven, ya que cortan niveles estratigráficos más jóvenes, los cuales no se encuentran afectados por las fallas inversas. Se diferenciaron dos subconjuntos de fallas; el primer subconjunto corresponde a un régimen extensional con σ 3 con dirección N229° y σ 1 vertical, el segundo subconjunto corresponde a resultados en el que σ 1 es horizontal y tiene una dirección N192°.

Los resultados de la estación 14 muestran dos subconjuntos de fallas compatibles con distintas direcciones de los esfuerzos principales. El primer subconjunto corresponde a un régimen transcurrente con direcciones de $\sigma 1$ y $\sigma 3$ N131° y N224° respectivamente, representado principalmente por fallas laterales derechas. El segundo subconjunto muestra un régimen de acortamiento en el que $\sigma 1$ es horizontal y $\sigma 3$ vertical, $\sigma 1$ tiene una dirección N31°.

El análisis de la estación 15 arrojó tres subconjuntos de fallas; un subconjunto resulta en un régimen transcurrente, otro de acortamiento y otro de extensión. El primer subconjunto consiste de fallas normales y laterales izquierdas y las direcciones de los esfuerzos principales máximo y mínimo son N254° y 159° respectivamente. El segundo subconjunto consiste de fallas inversas con componente lateral y muestra un régimen resultante de acortamiento en el que σ 1 es horizontal y una orientación N115°. El tercer subconjunto contiene el menor número de fallas, las cuales son de tipo normal, que son compatibles con un régimen extensional en donde la dirección de σ 3 es N062°. En todos los resultados del análisis de las principales estaciones, la desviación de los datos respecto a las direcciones de los esfuerzos principales con las direcciones de esfuerzos principales resultantes.

En el dominio norte se midieron un total de 106 fallas con sus respectivas estrías, estos datos incluyen las fallas de todas las estaciones del dominio norte. El total de fallas fue analizado con la función de diedros rectos de *Win-tensor* para poder reconocer familias de fallas separadas mediante el *software* y comparar los datos de los subconjuntos de las estaciones principales, los subconjuntos del análisis del total de fallas y las observaciones de campo. La Figura 4.38 muestra los resultados de la separación de subconjuntos en todo el dominio norte.

Figura 4.37. Análisis de fallas de las principales estaciones del dominio norte. Se presenta el mapa geológicoestructural (imagen superior) que corresponde a este dominio en donde se observan las fallas principales y la localización de las estaciones estructurales analizadas. En la porción derecha del mapa se encuentra una columna estratigráfica en la que se acota la estratigrafía del dominio norte (flecha roja). La imagen inferior representa los resultados de la separación de familias de fallas por medio de la función de diedros rectos de Win-tensor. Para cada estación se muestran todas las ciclográficas de los planos de falla con su correspondiente estría (estereograma azul) y los resultados de las familias de fallas que resultan de la separación de subconjuntos. En cada subconjunto se muestra una red estereográfica con las fallas que lo conforman (estereograma negro) y las direcciones de los esfuerzos principales resultantes. En los estereogramas en negro y azul las fallas se grafican de acuerdo a Angelier y en los estereogramas de colores las fallas se grafican como Hoeppener. El estereograma con las ciclográficas rojas en la estación 13 representa fallas rechazadas, ya que no son identificadas como compatibles con alguno de los resultados. La metodología de separación y los parámetros que se obtienen para cada subconjunto son descritos en Delvaux y Sperner (2003).

El criterio principal de separación de las fallas del dominio norte más evidente en el análisis es distinguir fallas normales de fallas inversas y los subconjuntos consisten de una combinación de fallas inversas con fallas laterales compatibles o fallas normales con fallas laterales compatibles. En el análisis de inversión de estrías por diedros rectos del total de fallas (Figura 4.38) se obtuvieron resultados en regímenes de extensión, acortamiento y transcurrencia. Los subconjuntos 1.1 y 1.3, resultan en un régimen en el que σ 1 es vertical y σ 3 es horizontal, σ 3 tiene direcciones N239° y N190°. El subconjunto 1.2 y 1.4 representan los resultados de acortamiento, en ambos resultados σ 1 es horizontal y σ 3 subvertical. La dirección del esfuerzo principal máximo σ 1 muestra dos direcciones: N22° y N325°. Los subconjuntos 1.5 y 1.6 resultan en regímenes transcurrentes en los que $\sigma 1$ y $\sigma 3$ son aproximadamente horizontales y tienen direcciones N234° y N332° respectivamente para el subconjunto 1.5 y N138º y N233º para el subconjunto 1.6 (Figura 4.38). Los primeros cuatro subconjuntos tienen una desviación (valor CD) bajo, por lo que el resultado se encuentra bien constreñido con los datos que lo conforman. Para los últimos dos subconjuntos (1.5 y 1.6) el valor CD es relativamente alto, lo cual significa que los datos tienen una desviación relativamente alta con respecto a la dirección de los esfuerzos principales resultantes (Figura 4.38). Además del análisis de las estaciones principales y el total de fallas en cada dominio por medio de la función de diedros rectos de Win-tensor, también se realizó el análisis de todas las fallas medidas en el área de estudio para observar los subconjuntos posibles que podrían diferenciarse por su compatibilidad con distintos tensores de esfuerzos.

Figura 4.38. Análisis por diedros rectos y separación de subconjuntos del total de fallas medidas en el dominio norte, utilizando la función de diedros rectos mejorada de *Win-tensor*. El estereograma 1 muestra las ciclográficas de todas las fallas medidas con sus respectivas estrías. En los diagramas 1.1 hasta 1.6 se muestra un estereograma con las ciclográficas de las fallas que conforman cada subconjunto (estereograma en negro) y los resultados de las direcciones de los esfuerzos principales resultantes para cada subconjunto. En los resultados de inversión de estrías de cada subconjunto las fallas se grafican como lineación tangencial (Hoeppener). Una breve descripción de los parámetros que se presentan para el análisis de inversión en cada subconjunto se presenta en la Figura 4.27. La metodología de separación y la definición de los parámetros, así como las limitantes de la función de diedros rectos en *Win-tensor* se describe en Delvaux y Sperner (2003). El estereograma con las ciclográficas en rojo representa los datos rechazados que no fueron compatibles con alguno de los subconjuntos obtenidos.

El análisis de todas las fallas (planos estriados) medidos en el área de estudio incluye un total de 191 datos, de los cuales se obtuvieron nueve subconjuntos de fallas y se rechazaron 15 datos de fallas que aparentemente no muestran compatibilidad con los subconjuntos obtenidos (Figura 4.39).

Los subconjuntos de fallas obtenidos en el análisis de todas las fallas medidas en el área de estudio muestran resultados en tres regímenes: extensión, acortamiento y transcurrencia. Los resultados de extensión son predominantes y tienen direcciones de σ 3 N047° para un subconjunto de fallas principalmente normales NW-SE (1,0), N137° para un subconjunto de fallas NE-SW con componente lateral (1,1), N210° para un conjunto de fallas laterales-normales NE-SW, NW-SE, E-W y NNW-SSE (1,2); N042° para un subconjunto de fallas normales derechas e izquierdas NW-SE (1,3) y N334° para un subconjunto de fallas normales ~E-W, NE-SW y SE-NW; con σ 1 subvertical para las direcciones de σ 3 mencionadas. Las familias de fallas que conforman los subconjuntos de extensión se encuentran en todos los niveles estratigráficos. El resultado que representa un régimen de acortamiento muestra a σ 3 subvertical y σ 1 horizontal con una dirección N011°. Este resultado consiste de fallas inversas ESE-WNW a ENE-WSW y fallas laterales NW-SE y NE-SW derechas e izquierdas y son fallas que se encuentran dominantemente en el nivel estructural más bajo de las Secuencia Volcánica Río Santiago al norte de la Presa La Yesca.

Tres de los subconjuntos obtenidos después de la separación a partir del total de fallas medidas en el área de estudio arrojan regímenes trascurrentes con $\sigma 1$ y $\sigma 3$ aproximadamente horizontales. El subconjunto 1,6 corresponde a direcciones de $\sigma 1$ y $\sigma 3$ de N346° y N077° respectivamente y consiste de fallas laterales NNE-SSW y NW-SE. El subconjunto 1,7 consiste de fallas laterales NE-SW y NW-SE que corresponden a direcciones de $\sigma 1$ y $\sigma 3$ de N280° y N189° respectivamente.

Finalmente, el subconjunto 1.8 consiste de fallas laterales con componente normal principalmente NNE-SSW que corresponden a direcciones de σ 1 y σ 3 N042° y N300° respectivamente.

Figura 4.39. Análisis de inversión de estrías por diedros rectos y separación de subconjuntos de todas las fallas medidas en el área de estudio, utilizando Win-tensor. Cada subconjunto (1,0-1,8) presenta un estereograma con las ciclográficas de las fallas que los conforman (estereogramas en negro) y los resultados de las direcciones de los esfuerzos principales con la red de valores de conteo (gama de colores de azul a rojo), además de la dirección de $\sigma 1$, $\sigma 2$ y $\sigma 3$ (plunge/trend) y los parámetros R, R' y CD. El estereograma en rojo representa los datos rechazados que aparentemente no son compatibles con los subconjuntos obtenidos. La metodología de la implementación de la función de separación de subconjuntos en Win-tensor y la descripción de los parámetros utilizados son presentados en Delvaux y Sperner (2003).

Como se ha descrito previamente, las familias de fallas normales E-W, NE-SW y NW-SE se encuentran en todos los niveles estructurales y estratigráficos. Las fallas laterales con componente normal se encuentran dominantemente en rocas del Oligoceno tardío (Capas Rojas Las Juntas y Secuencia Volcánica Río Santiago) principalmente en los dominios centro-sur y norte. El fallamiento inverso y lateral inverso se encuentra exclusivamente en rocas de la Secuencia Volcánica Río Santiago en el dominio norte, en donde el grado de deformación frágil y la complejidad de las estructuras es mucho mayor que en los otros dominios. Las fallas inversas representan el evento de deformación más antiguo de acuerdo con las relaciones estratigráficas observadas en campo y en los análisis de inversión de estrías estas fallas son incompatibles con el resto de las familias de fallas.

El fallamiento normal aparentemente corresponde a tres conjuntos de fallas, los cuales corresponden a tres direcciones distintas del esfuerzo principal mínimo σ 3; una dirección NW-SE, otra dirección NE-SW y una dirección N-S.

El fallamiento lateral parece estar asociado a fallas normales o a fallas inversas, aunque es complejo reconocer la temporalidad de este fallamiento tanto en observaciones de campo como por el análisis

dinámico de fallas. Sin embargo, la evidencia de ocasionales planos de fallas que cortan rocas de Las Capas Rojas Las Juntas que presentan estrías verticales y horizontales, permiten definir de manera general que las fallas laterales que conforman los subconjuntos que corresponden a resultados trascurrentes se formaron en una etapa previa a las fallas normales principalmente con rumbo E-W.

La discusión de los resultados, la interpretación de la temporalidad de las familias de fallas y la evolución tectónica de la zona de cizalla del Río Santiago en el área de estudio se presentan en el Capítulo V.

5 DISCUSIÓN

La cartografía geológico-estructural de la zona de Cizalla del Río Santiago, la petrografía de rocas que conforman las distintas unidades reconocidas, las nuevas edades U-Pb en zircones y los análisis estructurales, permitieron interpretar la geología de la región en el marco de la tectónica regional del sur de la Sierra Madre Occidental, así como caracterizar con mayor detalle la deformación de esta zona de cizalla frágil. Uno de los aportes más importantes obtenido con base en nuevas edades y observaciones de campo, es la temporalidad de fases de deformación en un ejemplo con clara evidencia geológica de deformación polifásica.

Las rocas que se encuentran en el área de estudio pertenecen a dos provincias volcánicas: la Sierra Madre Occidental y la Faja Volcánica Transmexicana. La secuencia volcánica de la SMO se compone de tres episodios principales. El episodio más antiguo consiste de andesitas y cuerpos subvolcánicos dominantemente graníticos con edades de cristalización entre ~27 y ~26 Ma y una sucesión de depósitos piroclásticos, principalmente de flujos de alta densidad que forman ignimbritas con edades de ~26 Ma y lavas félsicas intercaladas de 26.6 Ma. El segundo episodio está relacionado a una etapa en la que el volcanismo es muy poco abundante en comparación con el primer episodio y está representado por el depósito de una sucesión de capas rojas de conglomerados, areniscas y horizontes de tobas intercaladas a la base y a la cima. Las edades en zircones detríticos en dos muestras de areniscas arrojaron edades de los grupos de circones más jóvenes de 29 Ma y 24 Ma y considerando que ambas muestras pertenecen a la misma unidad, la edad máxima de depósito es de 24 Ma. Esta sucesión separa el pulso volcánico del primer episodio del tercer episodio, el cual consiste del emplazamiento de abundantes flujos

ignimbríticos con edades U-Pb en zircones de 19–21 Ma, los cuales se encuentran coronados por lavas silícicas emplazadas en estructuras de domos de ~19.7–18.6 Ma.

Una sucesión volcánica de composición bimodal conforma la estratigrafía que corresponde al volcanismo de la FVTM. Varios derrames de basaltos que forman mesetas se encuentran principalmente sobre la traza del Río Santiago y se intercalan con lavas riolíticas y depósitos piroclásticos y de caída inmediatamente al sur de la secuencia de la SMO.

Las edades obtenidas en este trabajo y otros trabajos anteriores muestran que el volcanismo silícico de la SMO en el área de estudio termina aproximadamente a los 18 Ma y el volcanismo bimodal de la FVTM empieza aproximadamente a los 11 Ma, por lo que se encuentra un hiatus de cerca de 7 Ma entre el volcanismo de una y otra provincia.

5.1 OLIGOCENO TARDÍO

La unidad más antigua en el área de estudio la conforman las Andesitas San Pedro Analco para las cuales la edad es desconocida. Sin embargo, se encuentran cortadas por un conjunto de intrusiones subvolcánicas de composición dominantemente granítica de ~27–26 Ma.

En el área de Cinco Minas, Nieto *et al.* (1985) obtuvo una edad por el método K/Ar de 24.7 \pm 0.6 Ma para andesitas que podrían correlacionarse a las andesitas de San Pedro Analco, esta edad es muy similar a edades de mineralización de 24.5 \pm 0.14 Ma y 23.46 \pm 0.26 Ma obtenidas por Ar/Ar en adularia de vetas epitermales del distrito minero de Cinco Minas (Camprubí *et al.*, 2016). De acuerdo con las relaciones de corte entre el Granito Subvolcánico y las Andesitas San Pedro Analco y las edades U-Pb de los granitos, se interpreta que la edad de las andesitas es más antigua a la edad obtenida por Nieto *et al.* (1985) y se ubicaría entre el Chatiano y Rupeliano (?). Además, en el área de Cinco Minas la mineralización se encuentra emplazada en las andesitas fechadas por Nieto *et al.* (1985) por lo que deben ser más antiguas que la mineralización. En el sur de la SMO, la mineralización generalmente se encuentra asociada a intrusiones o rocas volcánicas silícicas. Las edades de mineralización muestran que los fluidos mineralizantes se emplazan en un lapso de ~2 Ma después del emplazamiento de las rocas silícicas (Clark y Fitch, 2009), por lo que la mineralización epitermal de Cinco Minas y San Pedro Analco-Santo Domingo estaría asociada al emplazamiento de cuerpos subvolcánicos graníticos del Oligoceno tardío que cortan a las andesitas de San Pedro Analco. Por otro lado, la similitud de la edad K-Ar reportada por Nieto *et al.* (1985)

y la edad de la mineralización sugiere que la primera puede ser una edad de reseteo asociada al sistema hidrotermal.

La unidad denominada informalmente como Sucesión Volcánica Río Santiago se puede correlacionar a la etapa tardía del pulso ignimbrítico del Oligoceno (34–28 Ma) de la SMO (Ferrari *et al.*, 2002; Bryan *et al.*, 2014). Esta sucesión volcánica de composición silícica está representada por abundantes rocas piroclásticas, predominantemente ignimbritas, emplazados a los ~26.6 Ma. La edad asignada al emplazamiento de la sucesión volcánica del Oligoceno tardío no está claramente representada en las edades U-Pb en zircones, ya que los datos son generalmente discordantes y no muestran un *cluster* bien definido. Los resultados U-Pb posiblemente tienen una mezcla de antecristales y posibles pérdidas de Pb que complican la interpretación de una edad robusta.

La muestra SPA-02 presenta una edad muy cercana al límite Oligoceno-Mioceno y aunque se agrupó dentro de las muestras del Oligoceno tardío, la edad podría ser ligeramente más joven. Como se observa en la Figura 4.9 la variabilidad de las edades individuales es muy alta por lo que existe una alta incertidumbre en la edad de esta muestra.

Las edades U-Pb en zircones de las rocas volcánicas oligocénicas muestran muy poca o nula evidencia de reciclaje de fuentes más antiguas. Solo en algunas muestras (p. Ej. RS-08) se obtuvieron edades heredadas del Cretácico Tardío y Paleoceno (ver capítulo IV y Anexo II para mayor detalle).

La sucesión de capas rojas presenta características de depósitos de abanicos aluviales, las característica texturales y composicionales de las areniscas determinan fuentes locales y poco grado de transporte de los componentes principales de areniscas y conglomerados. La edad máxima de depósito se encuentra entre ~29 Ma y 24 Ma. La edad máxima de depósito es más antigua en la porción occidental, en el área de La Playa (muestra RS-05), en donde el grupo de zircones más jóvenes es ligeramente más antiguo que las edades obtenidas para las rocas volcánicas del Chatiano, lo que posiblemente se debe a fuentes locales con esas edades.

Las fuentes de las areniscas son rocas volcánicas y piroclásticas de la Sucesión Volcánica Río Santiago evidenciada por las texturas de los líticos y por la predominancia de zircones detríticos del Oligoceno tardío, principalmente en la muestra SPA-33A. Además del grupo de zircones detríticos del Oligoceno tardío en areniscas ricas en líticos de las Capas Rojas Las Juntas, se encuentran grupos de zircones más antiguos en la muestra RS-05, estos grupos presentan edades que van desde el Triásico Tardío hasta el Eoceno. El grupo más importante es del Cretácico Tardío (grupo principal en la muestra RS-05). También se encuentran zircones subordinados con edades del Cámbrico, Neoproterozoico y Paleoproterozoico. Las edades detríticas más antiguas del Eoceno son edades correlacionables a las edades reportadas para el Bloque Jalisco y el grupo principal del Cretácico Tardío corresponde a un pico del Batolito de Puerto Vallarta. Estas edades evidencian que rocas del Bloque Jalisco se encontraban expuestas hacía el sur del área de estudio al menos hasta el Oligoceno tardío y que el límite entre la SMO y el BJ se encuentra justo al sur de la Zona de Cizalla del Río Santiago.

Las capas rojas se encuentran basculadas hacia el SSW en el dominio centro-sur y hacia el NE-NW en el dominio norte. El basculamiento en ambos dominios se debe al fallamiento normal, el cual tiene orientación E-W y se inclina hacía el norte y hacía el sur.

Las Capas Rojas Las Juntas son un marcador estratigráfico importante, ya que definen un periodo de disminución considerable del volcanismo y marcan el inicio de un periodo de deformación dominantemente extensional (figuras 5.2 y 5.3). Esta sucesión sedimentaria se encuentra en discordancia angular con ignimbritas del Mioceno temprano (Ignimbritas Monte del Favor), que es más evidente en el dominio norte que en el sur. Esta discordancia, no ha sido fechada por métodos isotópicos, sin embargo, la edad máxima de depósito y la edad de ignimbritas que sobreyacen la discordancia permiten interpretar que se desarrolló entre finales del Chatiano e inicios del Burdigaliano.

Una característica de los depósitos de capas rojas estudiadas es que desarrollan estructuras de *rollover* sobre los planos de falla, este tipo de estructuras se asocia a una sedimentación sintectónica y zonas de despegue lístricas en el subsuelo.

Las intrusiones subvolcánicas silícicas que afloran en la región de Santo Domingo muestran una incipiente evidencia de deformación cristal-plástica, por lo que se interpreta que fueron emplazadas en una etapa temprana de actividad de la Falla Cinco Minas. Esta etapa temprana es varios millones de años más antigua a la edad de la Falla Cinco Minas asignada en trabajos previos (Ferrari y Rosas-Elguera, 2000 y referencias en este trabajo) y con base en la edad de los cuerpos subvolcánicos emplazados en una franja con la misma dirección que la Falla Cinco Minas, la edad de actividad más antigua de esta estructura se ubicaría en el Chatiano.

Las edades del Oligoceno tardío reinterpretadas de un trabajo previo no publicado (García-Arreola, 2016) representan las edades más meridionales de este periodo conocidas en el sur de la SMO.

5.2 MIOCENO TEMPRANO

Las rocas volcánicas del Mioceno temprano son dominantemente de origen piroclástico y de composición silícica, determinada por el alto contenido de cristaloclastos de cuarzo y feldespato. Estas rocas desarrollan textura fragmentada, eutaxítica y vítrea. Una característica de las rocas piroclásticas del Mioceno temprano es que tienen un alto contenido de líticos vítreos cuyo origen se asocia a las tobas e ignimbritas de la Secuencia Volcánica Río Santiago.

La sucesión de rocas piroclásticas conforma la unidad denominada Ignimbritas Monte del Favor, el emplazamiento de estos depósitos se dio entre 19 y 21 Ma definido por las edades U-Pb en zircones. En su artículo, Bryan *et al.* (2008) fechan varias ignimbritas por el método U-Pb y también Ar-Ar y K/Ar concluyendo que estas últimas son más cercanas a la edad de emplazamiento que las edades U-Pb. En el mismo sentido, las edades obtenidas en el presente trabajo para las Ignimbritas Monte del Favor, podrían ser ligeramente más antiguas que la edad real de erupción ya que algunos zircones podrían ser antecristales. La diferencia entre las edades K/Ar y U-Pb también podría estar asociada a distintas edades aparentes de las fases minerales presentes en el magma (biotita y zircón en este caso) o a la incertidumbre analítica de los métodos isotópicos (Bachmann *et al.*, 2007).

El volcanismo del Mioceno temprano culmina en el área de estudio con el emplazamiento de domos silícicos con alto contenido de cuarzo y feldespato y texturas porfíricas. Estos domos tienen edades U-Pb en zircones de 19.7 Ma y 18.6 Ma y representan la edad máxima de actividad de la Falla Río Santiago, ya que se encuentran dos conjuntos de domos de edad y características similares al norte y al sur de la falla con una diferencia topográfica mayor a 700 m.

Tanto las Ignimbritas Monte del Favor como los domos El Vigía forman parte del segundo pulso ignimbrítico reconocido entre 24 y 18 Ma en el sur de la SMO (Ferrari *et al.*, 2002; Bryan *et al.*, 2014) y representan el final del volcanismo silícico en el sur de la SMO.

Un cuerpo intrusivo granítico que aflora al sur de La Playa con edad de 18.35 ± 0.24 Ma se puede asociar con las lavas riolíticas de los domos El Vigía en el dominio sur y representaría la parte intrusiva de las lavas silícicas.

5.3 PLIO-CUATERNARIO

Las rocas plio-cuaternarias fueron descritas únicamente de manera general en este trabajo y corresponden a basaltos y riolitas intercalados con depósitos piroclásticos. Estas rocas se encuentran cortadas por las fallas mayores de Cinco Minas y Plan de Barrancas.

La edad de la secuencia bimodal del plio-cuaternario va desde el Mioceno tardío hasta el Cuaternario, principalmente definida por los basaltos fechados en distintos puntos en trabajos previos (Watkins *et al.*, 1971; Moore *et al.*, 1994; Nieto-Obregón *et al.*, 1985) (ver Anexo 1). Las rocas que conforman la estratigrafía del Plio-cuaternario evidentemente forman parte del volcanismo de la FVTM.

La traza del Río Santiago, evidentemente es una zona en la que se ha concentrado la deformación por cizalla, principalmente entre el Oligoceno-Mioceno temprano. Sin embargo, se encuentran también varios derrames de basaltos plio-cuaternarios que forman mesetas en las laderas del río, lo que sugiere que la zona de la Falla Río Santiago jugó un papel importante también en tiempos mas recientes.

5.3 FASES DE DEFORMACIÓN

La determinación y caracterización espacio-temporal de fases de deformación desarrolladas en la Zona de Cizalla del Río Santiago es compleja, debido a la falta de evidencias claras de relaciones de corte en las estructuras y pocos marcadores estratigráficos que representen el inicio y final de los eventos de deformación. Sin embargo, las observaciones de campo y los análisis estructurales de planos de fallas y fracturas medidas en este trabajo y trabajos previos no publicados (Páez, 2010; García-Arreola, 2016), evidencian orientaciones de fallas en casi cualquier dirección, lo que se puede asociar a la superposición de fases de deformación además de la activación de estructuras primarias típicas en rocas volcánicas y piroclásticas (fracturas por enfriamiento, estructuras de flujo como reomorfismo, psudoestratificación).

Los análisis por diedros rectos tienen la ventaja de que se pueden separar distintos subconjuntos de fallas que son compatibles con distintas direcciones de esfuerzos principales, además de que se pueden obtener valores estadísticos que permiten evaluar la robustez de los resultados. El *software Win-tensor* es una herramienta de gran utilidad para separar familias de fallas compatibles. En los

análisis de las estaciones principales, fallas agrupadas por dominios y en el análisis del total de fallas medidas en este trabajo, se obtuvieron varios resultados de subconjuntos. Sin embargo, cabe resaltar que el resultado de cada subconjunto no precisamente representa una fase de deformación, si no familias de fallas que dentro de un rango de error corresponden a un tensor de esfuerzos reducido en específico. La separación de fallas con base en el análisis automatizado de *Win-tensor* en conjunto con observaciones de campo y consideraciones estratigráficas permite interpretar fases de deformación y su posible cronología y temporalidad.

Las observaciones de campo son el parámetro más importante para diferenciar fases de deformación. A partir de estas observaciones se puede llegar a una primera descripción de las posibles fases de deformación, que se pueden resumir en los siguientes puntos:

- En la zona de La Presa La Yesca, en el nivel estructural más bajo del dominio norte se encuentran fallas inversas que desarrollan estructuras tipo *Riedel* y arreglos anastomosados. Estas estructuras tienen una componente lateral principalmente izquierda y se encuentran cortando únicamente el nivel estructural más bajo de la Secuencia Volcánica Río Santiago.
- En el dominio oriental, la zona en la que aflora el Granito Subvolcánico, es una zona con abundante fallamiento e intrusión de diques asociados a las fallas, además de una alteración pervasiva asociada a mineralización.
- El Granito Subvolcánico aflora en una franja NW-SE que coincide con la dirección de la Falla Cinco Minas, lo que sustenta la idea de que existe una relación entre el emplazamiento de estos cuerpos intrusivos con la ubicación y actividad de la falla.
- Existen dos direcciones de fallas normales dominantes; una dirección NW-SE similar a las estructuras asociadas al Rift Tepic-Zacoalco y una dirección E-W a NE-SW responsable del basculamiento de las Capas Rojas Las Juntas y las Ignimbritas Monte del Favor. Estas direcciones de fallas se encuentran en los tres dominios estructurales.
- Las fallas normales generalmente presentan una componente lateral derecha y en menor medida lateral izquierda.
- Existen familias de fallas laterales que son dominantes en las unidades estratigráficas del Oligoceno tardío.
- Las principales direcciones de fallas normales seguramente representan la deformación más reciente ya que se encuentran mejor preservadas que las estructuras con distintas direcciones.

Figura 5.1. Deformación oligocénica extensional contemporánea con edad de estructuras compresionales (líneas rojas) en la ZCRS. Se muestran las direcciones y edad de extensión (Con base en Ferrari et al., 2013) y de acortamiento (con base en este trabajo).

• Existen evidencias de más de una fase de deformación: 1) rotaciones mayores a 50° de planos de estratificación de depósitos piroclásticos que originalmente debieron ser horizontales, 2) dos familias de estrías en un mismo plano de falla en areniscas de Las Capas Rojas Las Juntas, 3) incremento en el grado de deformación y patrones de fallamiento en rocas oligocénicas respecto a las rocas del Mioceno temprano y rocas pliocuaternarias, estas últimas, son evidentemente las menos deformadas.

El fallamiento inverso con componente lateral que corta ignimbritas del Chatiano representa la fase de deformación más antigua caracterizada por estructuras subhorizontales a subverticales y estructuras Riedel que se observan a escala de afloramiento. Estas estructuras se pueden correlacionar con pliegues abiertos con vergencia hacia el oeste (Sierra El Pinabete) reportados en trabajos previos (Damon *et al.*, 1979; Ferrari, 1995b; Ferrari *et al.*, 2002) al norte del área de estudio.

Las estructuras inversas se observan en rocas con edades U-Pb de ~ 26.6 Ma. Estas fallas son ocasionalmente observadas en Las Capas Rojas Las Juntas, aunque en estas últimas con un alto nivel de incertidumbre en la cinemática, lo cual hace dudar si existen fallas inversas en esta unidad o son fallas normales que podrían ser erróneamente interpretadas como fallas inversas.

Los análisis estructurales de las fallas inversas muestran que estas estructuras ESE-WNW a ENE-WSW son compatibles con fallas laterales principalmente izquierdas con rumbos NW-SE y E-W y que se asocian a un régimen compresional en el que σ 1 es horizontal y tiene una dirección N11°. Ferrari (1995) había definido una fase de deformación transpresional asociada a los pliegues al este de Santa María del Oro, al norte del área de estudio y a fallamiento lateral izquierdo desarrollado entre 19 y 12 Ma en la Presa de Santa Rosa, donde la edad de la deformación está definida entre la de las ignimbritas plegadas y las de diques basálticos verticales que cortan a estas ignimbritas. Sin embargo, la evidencia de una fase de acortamiento en la ZCRS determinada por fallas inversas en la Secuencia Volcánica Río Santiago demuestra que la deformación por acortamiento es más antigua de 19 Ma. Aunque no existe suficiente evidencia para determinar la edad oligocénica del plegamiento que se observa principalmente en la Sierra El Pinabete, posiblemente este asociada con el fallamiento inverso, si bien en trabajos previos se determinó que las rocas plegadas tienen alrededor de 19 Ma, Damon *et al.* (1979), obtuvieron una edad K/Ar de 34.06 ± 0.73 Ma en una ignimbrita riolítica en el núcleo del pliegue de la Sierra El Pinabete, que es más consistente con las rocas deformadas por acortamiento en la zona de la Presa La Yesca. Con base en esta observación,

la deformación transpresional se puede acotar entre la edad de las Ignimbritas de la Secuencia Volcánica Río Santiago (\sim 26.6) y la edad máxima de depósito de las areniscas de Las Capas Rojas Las Juntas, de \sim 24 Ma. Con base en la geometría de las fallas inversas y los pliegues abiertos, respecto a los resultados de la dirección del esfuerzo máximo obtenido por la inversión de estrías se interpreta una deformación de tipo transpresional izquierdo que ocurrió por un movimiento en el límite entre SMO y BJ.

La edad de la deformación por acortamiento en el dominio norte coincide con las edades U-Pb del Granito Subvolcánico (27–26 Ma). Las evidencias de deformación cristal-plástica en los granitos demuestran que podrían ser de origen sintectónico. En el área de San Pedro Analco-Santo Domingo no se observaron estructuras compresionales y no se puede asociar con certeza el emplazamiento de estos cuerpos subvolcánicos con la deformación por acortamiento que afecta rocas oligocénicas de la Secuencia Volcánica Río Santiago, sin embargo, la edad de ambas unidades es similar.

Las estructuras extensionales observadas en el Granito subvolcánico, la abundante intrusión de diques y la alteración pervasiva podrían estar superpuestas a una deformación asociada al emplazamiento de los granitos, la cual no es evidente por que ha sido obliterada por estructuras más jóvenes relacionadas a la fase de actividad más reciente de la Falla Cinco Minas.

La edad de la fase transpresional coincide con la deformación extensional E-W reportada en Sinaloa y Durango (Ferrari *et al.*, 2013) (Figura 5.1), por lo que una deformación transpresional a lo largo del límite entre la SMO y el BJ se debe al desacoplamiento mecánico entre ambas provincias, mientras en el norte las rocas de la SMO fueron afectadas por extensión, el límite entre ambas provincias, el cual posiblemente tenía una geometría en zigzag predispuesta y se desplazaba de manera lateral para acomodar la deformación que sucedía en la SMO y que en cambio no se observa en el BJ.

En las unidades del Oligoceno se encuentran fallas laterales dominantemente NNE-SSW que corresponden a resultados de direcciones principales de paleoesfuerzos en los que $\sigma 1$ y $\sigma 3$ son horizontales, es decir, compatibles con un régimen transcurrente (Figura 5.2). Las direcciones de $\sigma 1$ y $\sigma 3$ resultantes para este conjunto de fallas son N346° y N077° respectivamente. Estas fallas laterales pueden representar una etapa transicional entre la fase de deformación transpresiva y una fase dominante de tipo extensional. En vista de que estas fallas se encuentran en las unidades del Oligoceno se interpreta que pudieron desarrollarse entre ~24 Ma y ~21 Ma. El límite inferior de

esta fase está definido por la edad máxima de depósito para Las Capas Rojas Las Juntas y la edad de mineralización en Cinco Minas, posiblemente depositadas y emplazada respectivamente en este periodo y el límite superior se define por la edad U-Pb máxima para las Ignimbritas Monte del Favor, las cuales no se observan afectadas por estas fallas laterales, sin embargo, la edad mínima para estas fallas no se encuentra bien definida.

Posterior a la deformación transpresiva, la cual se observa en el domino norte, comenzó una fase de deformación extensional durante un largo periodo. Esta fase de deformación generó fallas normales en distintas orientaciones.

Los análisis estructurales de las fallas post-oligoceno y las consideraciones estratigráficas sugieren que la deformación extensional comenzó posterior a ~24 Ma con el depósito sintectónico de las Capas Rojas Las Juntas, las cuales presentan estructuras *roll-over* que se asocia al fallamiento contemporáneo con deformación.

La transición de la fase transpresiva a la fase de extensión es compleja, como se mencionó anteriormente, existen fallas laterales que corresponden a un régimen transcurrente principalmente en rocas oligocénicas en el dominio norte. Aparentemente esta fase de transcurrencia es dominantemente transtensional derecha.

En los análisis estructurales, se observan resultados con menos de 10 fallas, en los que el régimen resultante, en función de las orientaciónes de los esfuerzos principales y las direcciones de acortamiento y extensión, es transcurrente. Estas fallas laterales que no muestran compatibilidad con el fallamiento normal o inverso se observan a escala de afloramiento y posiblemente puede ser parte de la fase transicional entre la transpresión y la extensión.

Los análisis de fallas normales muestran dos orientaciones principales del esfuerzo principal mínimo resultante (Figura 5.2):

- Extensión N-S que corresponde a fallas ~E-W que generan el basculamiento de la secuencia de Ignimbritas Monte del Favor hacia el sur en el dominio centro-sur y hacia el norte en la porción septentrional del área de estudio. La falla Río Santiago, es una falla normal con rumbo ~E-W que buza hacia el sur y representa la principal estructura de este periodo de extensión.
- Extensión NE-SW correspondiente a fallas normales NW-SE. La orientación de estas fallas coincide con las estructuras principales del Rift Tepic-Zacoalco.

Las direcciones del esfuerzo principal mínimo, que varían de WSW-ENE a NE-SW son el reflejo de un largo periodo de deformación extensional en el cual se observa posible rotación en sentido horario hasta llegar a la última etapa en la que se construyó el Rift Tepic-Zacoalco.

La edad de las etapas de extensión no fue posible definirla con base en consideraciones estratigráficas o relaciones de corte. La etapa de extensión N-S es la mejor preservada ya que bascula bloques de ignimbritas y areniscas y conglomerados y la principal estructura y con mayor desplazamiento, la Falla Río Santiago, tuvo su máximo desplazamiento durante esta etapa y diques máficos con la misma orientación se asocian a la misma etapa de extensión. Esta deformación se puede acotar entre 17.5 Ma ~5.5 Ma, dado por la edad mínima (Bryan *et al.*, 2008) para las rocas del Mioceno temprano y por la edad máxima del graben Cinco Minas-Plan de Barrancas dentro del Rift Tepic Zacoalco. Regionalmente, la extensión N-S se puede asociar a fallas normales E-W que cortan basaltos de ~9 Ma al este del área de estudio (Rossotti *et al.*, 2002; Ferrari *et al.*, 2012) . Finalmente, la extensión NE-SW se desarrolló posterior a ~5.5 Ma hasta 0.66 Ma, dado por las edades conocidas para las Fallas Cinco Minas y Plan de Barrancas.

Los abundantes diques máficos NW-SE que se encuentran en el Granito Subvolcánico se asocian al último periodo extensional. Las relaciones de corte observadas en la región de Santo Domingo-San Pedro Analco permiten interpretar que existen al menos dos eventos de generación de diques, el más antiguo consiste de diques graníticos con geometrías complejas y la generación más joven consiste de diques máficos subverticales con la misma orientación de la Falla Cinco Minas. La generación de diques graníticos posiblemente es contemporánea con la mineralización en Cinco Minas y los diques máficos pueden estar asociados a la extensión NE-SW durante el Mioceno tardío.

Las fallas Cinco Minas y Monte del Favor corresponden a la extensión NE-SW, en ambas fallas se encuentran emplazadas vetas mineralizadas, las cuales, al menos en el área de Cinco Minas fueron emplazadas durante el Chatiano, por lo que esta dirección de extensión pudo ser activa durante el Oligoceno tardío y durante el Pliocuaternario.

Las interpretaciones tectónicas de los autores anteriores para la ZCRS incluían una secuencia de deformación transpresiva y fases extensionales. Sin embargo, la temporalidad de la deformación basada en la edad de las unidades volcánicas no estaba claramente definida, pues se tenían pocos datos geocronológicos. Con este trabajo se han definido con mucha mayor precisión tanto la temporalidad como la variabilidad espacial y temporal de la deformación en esta región. La figura

5.3 muestra esquemáticamente la evolución de la ZCRS interpretada con base en los resultados de este trabajo.

6 CONCLUSIONES

Los resultados obtenidos en este trabajo permitieron reconocer dos episodios volcánicos mayores en la Zona de Cizalla del Río Santiago. El primer episodio inicia con derrames de lavas andesíticas pre-Chatiano, seguido del emplazamiento de ignimbritas y tobas de flujos de ceniza y granitos durante el Chatiano (~27 a 26 Ma). El segundo episodio consiste del emplazamiento de abundantes rocas piroclásticas silícicas con edades de 19–21 Ma. Este episodio culmina con el emplazamiento de domos félsicos con edades de 19.5–18.3 Ma. Ambos episodios volcánicos se pueden asociar a los pulsos ignimbríticos del Oligoceno tardío y Mioceno temprano reconocidos en el sur de la Sierra Madre Occidental.

Los dos episodios volcánicos se encuentran separados por el depósito en cuencas locales de capas rojas con edad máxima de depósito de 24 Ma. Estos depósitos tienen fuentes claramente distintivas; tales como fuentes de rocas volcánicas y piroclásticas del Oligoceno tardío y rocas del Bloque Jalisco, evidenciado por las edades de los zircones detríticos y la petrografía de areniscas.

Sobre las rocas de Oligoceno tardío-Mioceno temprano, se encuentran rocas de composición bimodal que conforman el volcanismo Plio-cuaternario de la Faja Volcánica Transmexicana en la región.

La zona de cizalla del Río Santiago es una zona polideformada de manera frágil. Algunos antecedentes han determinado distintas interpretaciones sobre la evolución de esta región, considerada el límite entre el Bloque Jalisco y la Sierra Madre Occidental.

Con base en la estratigrafía, análisis estructurales y nuevas edades U-Pb en zircones se logró definir la historia de deformación espacio temporal con mayor precisión. Se reconoció una fase de deformación traspresional poco preservada en fallamiento inverso y lateral con un eje de acortamiento NE-SW. Las fallas inversas se correlacionan con un conjunto de pliegues al norte del área de estudio y con extensión E-W en Durango y Sinaloa, esta fase de deformación se acota entre ~26.6 y >24 Ma. La transpresión fue seguida de un largo periodo de extensión que inicia con fallamiento transtensional que refleja la transición de la deformación por acortamiento a la deformación por extensión y está acompañada por mineralización en el área de Cinco Minas. Esta fase de extensión, aparentemente consiste de varias etapas en las que el eje de extensión rotó en sentido horario desde una orientación WSW-ENE hasta NE-SW.

La principal etapa de extensión registrada en rocas de la Sierra Madre Occidental se caracteriza por fallas normales ~E-W que basculan las secuencias del Oligoceno y Mioceno temprano hacía el norte y hacia el sur, durante esta etapa, tuvo su máximo desplazamiento la Falla Río Santiago, que es el principal rasgo estructural del área de estudio. El eje de extensión resultante para estas fallas tiene una orientación N-S. Dicho fallamiento normal se puede asociar a fallas normales que cortan basaltos de ~9 Ma al este del área de estudio, por lo que se puede asignar una edad de ~9 Ma a 5.5 Ma, el límite superior corresponde al inicio del fallamiento en el graben Cinco Minas-Plan de Barrancas. El final de la extensión se da por el desarrollo durante el Plio Cuaternario de fallas normales con orientación NW-SE asociadas a la actividad del Rift Tepic-Zacoalco.

La complejidad estructural de la Zona de Cizalla Río Santiago y la deformación polifásica en un corto periodo de tiempo en lo que representa el límite entre dos provincias geológicas con características distintas, tuvo que ser el reflejo de la tectónica regional del occidente de México. Considerando lo anterior la compleja evolución de la ZCRS puede estar asociada a la evolución de Golfo de California, un límite de placas complejo que paso de un ambiente convergente con subducción asociada a un límite transformante que comenzó con un largo periodo de extensión desde ~30 Ma.
BIBLIOGRAFÍA

- Ahrens, L.H., 1955, Implications of the Rhodesia age pattern: Geochemica et Cosmochimica Acta, v. 8, p. 1–15.
- Allan, J., 1986, Geology of the Colima and Zacoalco grabens, SW Mexico: Late Cenozoic rifting in the Mexican Volcanic Belt: GSA, Bulletin, v. 97, p. 473–485.
- Allan, J., Nelson, S., Luhr, J.F., Carmichael, I., Wopat, M., y Wallace, P., 1991, Pliocene-Recent rifting in SW Mexico and associated volcanism: An exotic terrain in the making, *in* Dauphin, J. and Simoneit, B. eds., Peninsular province of the Californias, American Association of Petroleum Geologists Memoir, p. 425–445.
- Allmendinger, R., 2017, Modern Structural Practice: 314 p.
- Allmendinger, R.W., Cardozo, N.C., y Fisher, D., 2012, Structural Geology Algorihms: Vectors & Tensors: Cambridge, England, Cambridge University Press, 289 p.
- Anderson, E., 1951, The dynamics of faulting and dyke formation with applications to Britain.: Edinburgh, Oliver and Boyd, http://www.worldcat.org/title/dynamics-of-faulting-and-dyke-formation-with-applications-to-britain/oclc/547021.
- Angelier, J., y Mechler, P., 1977, Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie : la methode des diedres droits: Bulletin de la Societe Geologique de France, v. S7–XIX, p. 1309–1318.
- Bachmann, O., Oberli, F., Dungan, M.A., Meier, M., Mundil, R., y Fischer, H., 2007, 40Ar/39Ar and U–Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: Evidence for an extended crystallization history: Chemical Geology, v. 236, p. 134–166.
- Bissing, T., Mortensen, J., y M, T.R., 2008, The ryolite-hosted volcanogenic masive solfide District of Cuale, Guerrero terrane West-Centro Mexico: silver-rich, base metal mineralization emplaced in a shallow marine continental margin setting: Economic Geology, v. 103, p. 141–159.
- Blenkinsop, T.G., 2006, Kinematic and dynamic fault slip analyses: implications from the surface rupture of the 1999 Chi-Chi, Taiwan, earthquake: Journal of Structural Geology, v. 28, p. 1040–1050.
- Bourgois, J., Renard, V., Aubouin, J., Bandy, W., Barrier, E., Calmus, T., Carfantan, J., Guerrero,C., Mammerickx, J., Mercier de Lepinay, B., Michaud, F., y Sosson, M., 1988, Active

fragmentation of the North American plate: offshore boundary of the Jalisco block off Manzanillo: Comptes Rendues, Académie des Sciences Paris, v. 307, p. 1121–1130.

- Bryan, S.E., y Ferrari, L., 2013, Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years: GSA, Bulletin, v. 125, p. 1053–1078.
- Bryan, S.E., Ferrari, L., Reiners, P.W., Allen, C.M., Petrone, C.M., Ramos-rosique, A., y Campbell, I.H., 2008, New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental province, Mexico, revealed by U-Pb geochronology: Journal of Petrology, v. 49, p. 47–77.
- Bryan, S.E., Orozco-Esquivel, T., Ferrari, L., y López-Martínez, M., 2014, Pulling apart the Mid to Late Cenozoic magmatic record of the Gulf of California: is there a Comondú Arc? Geological Society, London, Special Publications, v. 385, p. 389–407.
- Bryan, S.E., Riley, T.R., Jerram, D. a., Stephens, C.J., y Leat, P.T., 2002a, Silicic volcanism: An undervalued component of large igneous provinces and volcanic rifted margins, *in* Menzies, M. A., Klemperer, S. L., Ebinger, C. J., Baker, J. (eds), Volcanic Rifted MArgins, GSA, Bulletin, v. Special pa, p. 97–118.
- Bryan, S.E., Riley, T.R., Jerram, D. a., Stephens, C.J., y Leat, P.T., 2002b, Silicic volcanism: An undervalued component of large igneous provinces and volcanic rifted margins: Menzies, M. A., Klemperer, S. L., Ebinger, C. J., Baker, J. (eds), Volcanic Rifted MArgins, GSA, Bulletin, v. Special pa, p. 99–120.
- Cameron, K.L., Nimz, G.J., y Kuentz, D., 1989, Southern Cordilleran basaltic andesite suite, southern Chihuahua, Mexico: a link between Tertiary continental arc and flood basalt magmatism in North America: Journal of Geophysical Research, v. 94, p. 7817–7840.
- Campa, M.F., y Coney, P.J., 1983, Tectono-stratigraphic terranes and mineral resources distributions in Mexico: Can. Journal earth sciences, v. 20, p. 1040–1051.
- Camprubí, A., Iriondo, A., López-martínez, M., y Ramos-rosique, A., 2016, Short Note Geochronology of Mexican mineral deposits . IV : the Cinco Minas epithermal deposit , Jalisco: Boletín De La Sociedad Geológica Mexicna, v. 68, p. 357–364.
- Clark, K.F., Damon, P.E., Shafiquillah, M., Ponce, B.F., y Cárdenas, D., 1981, Sección geológicaestructural a través de la parte sur de la Sierra Madre Occidental, entre Fresnillo y la costa de Nayarit: Asociacion de ingenieros de minas, metalurgistas y geólogos México, Memoria técnica, v. XIV, p. 69–99.

- Clark, K.F., y Fitch, D.C., 2009, Evolution of metallic deposits in time and space in Mexico:, http://www.geo.utep.edu/pub/Clark-Fitch/ClarkandFitchJan2013.pdf.
- Corbo-Camargo, F., Arzate-Flores, J.A., Álvarez-Béjar, R., Aranda-Gómez, J.J., and Yutsis, V., 2013, Subduction of the rivera plate beneath the jalisco block as imaged by magnetotelluric data: Revista Mexicana de Ciencias Geologicas, v. 30, p. 268–281.
- Damon, P.E., Nieto-Obregón, J., y Delgado-Argote, L., 1979, Un plegamiento neogénico en Nayarit y Jalisco, y evolución geomórfica del Río Grande de Santiago.: Asociacion de ingenieros de minas, metalurgistas y geólogos México, Memoria técnica, v. XIII, p. 156–191.
- Delvaux, D., 1993, The TENSOR program for paleostress reconstruction: examples from the east African and the Baikal rift zones: Terra nova, v. 5, p. 216.
- Delvaux, D., y Sperner, B., 2003, New aspects of tectonic stress inversion with reference to the TENSOR program, *in* Nieuwland, D. A. (ed) New insights into structural interpretation ans modeling. Geological Society of London, v. Special pu, p. 75–100.
- Demant, A., 1981, Interpretación geodinámica del volcanismo del Eje Neovolcánico Transmexicano: Revista Instituto de Geología, v. 5, p. 217–222.
- Dickinson, W., y Gehrels, G., 2009, Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database: Earth and Planetary Sciences Letters, v. 288, p. 115–125.
- Enríquez, E., y Rivera, R., 2001, Timing of magmatic and hydrothermal activity in the San Dimas District, Durango, Mexico, *in* New Mines and Mineral Discoveries in Mexico and Central America, Society of Economic Geologists Speciaal Publication, n. 8, p. 33–38.
- Faure, G., y Mensing, T., 2005, Isotopes principles ans aplications: New Jersey, John Wiley & Sons, Inc, 873 p.
- Ferrari, L., 1995, Miocene shearing along the northern boundary of the Jalisco Block and the opening of the southern Gulf of California: Geology, v. 23, p. 751–754.
- Ferrari, L., Garduno-Monroy, V., Pasquare, G., y Tibaldi, A., 1994, Volcanic and tectonic evolution of the central Mexico:Oligocene to present: Geofisica Internacional, v. 33, p. 91– 105.
- Ferrari, L., López-Martínez, M., Aguirre-Díaz, G., y Carrasco-Núñez, G., 1999, Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt: Geology, v. 27, p. 303–306.

- Ferrari, L., López-Martínez, M., Orozco-Esquivel, T., Bryan, S.E., Duque-Trujillo, J., Lonsdale, P., y Solari, L., 2013, Late Oligocene to Middle Miocene rifting and synextensional magmatism in the southwestern Sierra Madre Occidental, Mexico: The beginning of the Gulf of California rift: Geosphere, v. 9, p. 1161–1200.
- Ferrari, L., López-Martínez, M., y Rosas-Elguera, J., 2002, Ignimbrite flare-up and deformation in the southern Sierra Madre Occidental, western Mexico: Implications for the late subduction history of the Farallon plate: Tectonics, v. 21, p. 1–25.
- Ferrari, L., Orozco-Esquivel, T., Bryan, S.E., López-Martínez, M., y Silva-Fragoso, A., 2017, Cenozoic magmatism and extension in western Mexico: Linking the Sierra Madre Occidental silicic large igneous province and the Comondú Group with the Gulf of California rift: Earth-Science Reviews, p. 1–38.
- Ferrari, L., Orozco-Esquivel, T., Lopez-Martínez, M., Duque-Trujillo, J., Bryan, S. E., y Cerca, M., 2012, 25 million years to break a continent: Early to middle Miocene rifting and synextensional magmatism in the southern Gulf of California: Geological Society of America Abstracts with Programs, v. 44, no. 3, p. 6.
- Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M., 2012, The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone: Tectonophysics, v. 522–523, p. 122–149.
- Ferrari, L., Pasquare, G., Venegas-Salgado, S., y Romero-Ríos, F., 2000, Geology of the western Mexican Volcanic Belt and adjacent Sierra Madre Occidental and Jalisco block, *in* Delgado-Granados, H., Aguirre-Díaz, G., Stock, J. M., eds., Cenozoic tectonics and volcanism of Mexico, GSA Special Paper, v. 334, p. 1995.
- Ferrari, L., Petrone, C.M., Francalanci, L., Tagami, T., Eguchi, M., Conticelli, S., Manetti, P., y Venegas-Salgado, S., 2003, Geology of the San Pedro - Ceboruco Graben, western Trans-Mexican Volcanic Belt: Revista Mexicana de Ciencias Geologicas, v. 20, p. 165–181.
- Ferrari, L., y Rosas-Elguera, J., 2000b, Late Miocene to Quaternary Extension at the Northern Bundary of The Jalisco Block, western Mexico: The Tepic-Zacoalco rift revised, *in* Delgado-Granados, H., Aguirre-Díaz, G.J., and Stock, J.M. eds., Cenozoic tectonics and volcanism of Mexico, Geological Society of America Special paper, p. 41–64.
- Ferrari, L., Valencia-Moreno, M., y Bryan, S., 2007, Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America:

Geological Society of America, v. Special pa, p. 1–39.

Ferrari, L., Valencia-Moreno, M., y Bryan, S., 2005, Magmatismo y tectónica en la Sierra Madre Occidental y su relación con la evolución de la margen occidental de Norteamérica: Boletín de la Sociedad Geológica Mexicana, v. LVII, p. 343–378, http://eprints.kingston.ac.uk/1747/.

Fossen, H., 2010, Structural Geology: New York, Cambridge University Press, 463 p.

- Fragoso-Silva, A., 2015, Tectonica y volcanismo bimodal en la zona de transición entre la Sierra Madre Occidental uy la Faja Volcánica Transmexicana al norte de Guadalajara, Jalisco: UNAM, 128 p.
- Freundt, A., Wilson, C.J.N., y Carey, S., 1999, Ignimbrites and block-and-ash flow deposits, *in* Sigurdsson, B., Mcnutt, S.R., Rymer, H., and Stix, J. eds., Encyclopedia of volcanoes, Academic Press, p. 581–599.
- García-Arreola, O.A., 2016, Magmatismo y tectónica de la parte oriental de la zona de cizalla del Río Santiago , Jalisco: UNAM, 90 p.
- Garduño-Monroy, V. H., Spinnler, J., Ceragiolo, E., 1993, Geological and structural study of the Chapala Rift, State of Jalisco, Mexico, Geofíssica Internacional, v. 32, p 487-499.
- Gastil, R.G., Krummenacher, D., and Jensky, W.E., 1978, Reconnaissance geology of west-central
- Nayarit, Mexico: Geological Society of America, text to accompany Map and Chart Series, Map MC-24,.
- Gastil, R.G., Krummenacher, D., y Minch, J., 1979, The record of Cenozoic vulcanism around the Gulf of California: Geological Society of America Bulletin, v. 90, p. 839–857.
- Hausback, B.P., 1984, Cenozoic volcanic and tectonic evolution of Baja California Sur, Mexico, *in* Frizzell, A. ed., Geology of the Baja Peninsula, Society of Economic Paleontologists and Mineralogists Speciaal Paper 39, p. 219–236.
- Iriondo, A., Kunk, M.J., Winick, J.A., y Consejo de Recursos Minerales, 2003, 40Ar/39Ar dating studies of minerals and rocks in various areas in Mexico: USGS/CRM Scientific Collaboration (Part II): U. S. Geological Survey Open- File Report, v. 1444, p. 46.
- Köhler, H., Schaaf, P., Müller-Sohnius, D., Emmerman, R., Negendank, J., y Tobschall, H., 1988, Geochrological and geochemical investigations on plutonic rocks from the complex of Puerto Vallarta, Sierra Madre del Sur: Geofisica Internacional, v. 27, p. 519–542.
- Krantz, R.W., 1988, Multiple fault sets and three-dimensional strain: theory and application: Journal of Structural Geology, v. 10, p. 225–237.

- Lacroix, A., 1930, Remarques sur les matériaux de projection des volcans et sur la génèse des roches pyroclastiques qu'ils constituent: Soc. Geol. France, v. 2, p. 431-.
- Lang, B., Steinitz, G., Sawkins, F.J., y Simmons, S.F., 1988, K-Ar age studies in the Fresnillo silver district, Zacatecas, Mexico: Economic Geology y Bulletin of the Society of Economig Geologists, v. 83, p. 1642–1646.
- Lockwood, J.P., y Hazlett, R.W., 2010, Volcanoes global perspectives: Wiley-Blackwel, 541 p.
- Ludwig, K.L., 2008, Isoplot 3.7. A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication, p. 77.
- Ludwig, K.R., y Mundil, R., 2002, Extracting reliable U-Pb ages and errors form complex populations of zircons from Phanerozoic tuffs: Goldschmidt Conference Abstracts, p. A463.
- Luhr, J., Nelson, S., Allan, J., y Carmichael, I., 1985, Active rifting in south-western Mexico:manifestations of an incipient eastward spreading-ridge jump: Geology, v. 13, p. 54– 57.
- Marrett, R., y Allmendinger, R.W., 1990, Kinematic analysis of fault-slip data: Journal of Structural Geology, v. 12, p. 973–986.
- Marshall, P., 1935, Acid rocks of Taupo-Rotorua volcanic district: Trans., Royal Soc. New Zeland, v. 64, p. 323–366.
- McDowell, F.W., y Clabaugh, S.E., 1979, Ignimbrites of the Sierra Madre Occidental and their relation to the tectonic history of western Mexico: GSA, Bulletin, v. 180, p. 113–124.
- Mcdowell, F.W., y Keizer, R.P., 1977, Timing of mid-Tertiary volcanism in the Sierra Madre Occidental between Durango City and Mazatlan, Mexico: GSA, Bulletin, v. 88, p. 1479–1487.
- McDowell, F., y McIntosh, W.C., 2012, Timing of intense magmatic episodes in the northern and
- Moore, G., Marone, C., Carmichael, I.S.E., y Renne, P., 1994, Basaltic volcanism and extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt: GSA Short Course Notes, v. 106, p. 383–394.
- Mooser, F., 1972, The Mexican volcanic belt structure and tectonics: Geofísica Internacional, v. 12, p. 55–70.
- Murray, B.P., Busby, C. J., Ferrari, L. y Solari, L., 2010, Tectonic controls on the Late Oligocen volcanism in the Guazapares mining district, northwestern Sierra Madre Occidental, Mexico: Geological Society of America Abstracts with Programs, v. 42, no. 5, p. 344

Nebocat, J., 2002, Tumi Resources Limited The Geology, Mineralization and Proposed

Exploration Program of the Historic Cinco Minas Silver-Gold Mine.

- Nieto-Obregón, J., Delgado-Argote, L., y Damon, P.E., 1985, Geochronologic, petrologic, and structural datarelated to large morphologic features between the Sierra Madre Occidental and the Mexican Volcanic Belt: Geofisica Internacional, v. 24, p. 623–663.
- Nieto-Obregón, J., Delgado, L., y E, D.P., 1981, Relaciones petrológicas y geocronológicas del magmatismo de la Sierra Madre Occidental y el Eje Neovolcánico en Nayarit, Jalisco y Zacatecas: Asociacion de ingenieros de minas, metalurgistas y geólogos México, Memoria técnica, v. XIV, p. 327–361.
- Nieto-Samaniego, Á.F., Ferrari, L., Alaniz-Alvarez, S.A., Labarthe-Hernández, G., y Rosas-Elguera, J., 1999, Variation of Cenozoic extension and volcanism across the southern Sierra Madre Occidental volcanic province, Mexico: GSA, Bulletin, v. 111, p. 347–363.
- Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D.J., Solari, L., Luna-González, L., y Schaaf, P., 2014, A review of batholiths and other plutonic intrusions of Mexico: Gondwana Research, v. 26, p. 834–868.
- Páez, V., 2010, Análisis estructural en la región de Paso de la Yesca, límite entre los estados de Jalisco y Nayarit: UNAM, 133 p.,
- Pasquarè, G., Ferrari, L., Garduno-Monroy, V., Tibaldi, A., y Vezzoli, L., 1991, Geological map of the central sector of Mexican Volcanic Belt, States of Guanajuato and Michoacan: Geological Society of America Map and Chart Series, MCH063, v. 1 sheet, p. 20.
- Pearce, J.N., Harris, N.B.W., y Tindle, A., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956–983.
- Petit, J.P., 1987, Criteria for the sense of movement on fault surfaces in brittle rocks: Journal of Structural Geology, v. 9, p. 597–608.
- Pirsson, L. V, 1915, Miscroscopical character of volcanic tuffs: American Journal of Science, v. 40, p. 191–211.
- Quintero-Legorreta, O., Michaud, F., Bourgois, J., y Barrier, E., 1992, Evolución de la frontera septentrional del bloque de Jalisco, México, desde hace 17 Ma: Instituto de Geologia, UNAM, v. 10, p. 111–117.
- Ragan, D., 2009, Structural Geology An introduction to geometrical techniques: Cambidge. England, Cambridge University Press, 602 p.
- Reches, Z., 1983, Faulting of rocks in three-dimensional strain fields: II. Theoretical analysis:

Tectonophysics, v. 95, p. 133–156.

Rickard, M.J., 1972, Fault Classification: Discussion: GSA Bulletin, v. 83, p. 2545–2546.

- Righter, K., Carmichael, I.S.E., Becker, T.A., y Renne, P.R., 1995, Pliocene-Quaternary Volcanism and Faulting At the Intersection of the Gulf of California and the Mexican Volcanic Belt: GSA, Bulletin, v. 107, p. 612–626.
- Rodríguez-Castañeda, J.L., y Rodríguez-Torres, R., 1992, Geología estructural y estratigrafía del área entre Guadalajara y Tepic, Estados de Jalisco y Nayarit, México: Revista del Instituto de Geología. UNAM, v. 10, p. 99–110.
- Rosas-Elguera, J., Alva- Valdivia, L.M., Goguitchaichvili, A., y Urrutia-Fucugauchi, J., 2003, Counterclockwise rotation of the Michoacan block: International Geology Review, v. 45, p. 814–826.
- Rosas-Elguera, J., Ferrari, L., Garduno-Monroy, V., y Urrutia-Fucugauchi, J., 1996, Continental boundaries of the Jalisco block and their influence in the Pliocene-Quaternary kinematics of western Mexico: Geology, v. 24, p. 921–924.
- Rosas-Elguera, J., Ferrari, L., Martinez, M.L., y Urrutia-Fucugauchi, J., 1997, Stratigraphy and Tectonics of the Guadalajara Region and Triple-Junction Area, Western Mexico: International Geology Review, v. 39, p. 125–140.
- Rosas-Elguera, J., y Urrutia-Fucugauchi, J., 1998, Tectonic Control of the Volcano-Sedimentary Sequence of the Chapala Graben, Western Mexico: International Geology Review, v. 40, p. 350–362.
- Ross, C., y Smith, R.L., 1961, Ash-Flow Tuffs : Their Origin, Geologic Relations and Identification and Zones: US Geological Survey Professional Paper, v. 366, p. 1–77.
- Rossotti, A., Ferrari, L., López-Martinez, M., y Rosas-Elguera, J., 2002, Geology of the boundary between the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt in the Guadalajara region, western Mexico: Revista Mexicana de Ciencias Geologicas, v. 19, p. 1–15.
- Schaaf, P., y Bissing, T., 2003, The Puerto Vallarta Batholith and Cuale Mining District, Jalisco, Mexico–high diversity parent-hood of continental arc magmas and Kuroko-type volcanogenic massive sulphide deposits., *in* Universidad Nacional Autónoma de México, Instituto de Geología, Publicación especial 1, F. trip 8 ed., Geologic transects across Cordilleran Mexico, Guidebook for field trips 99^a Annual Meeting of the Coordilleran Section of the Geological Society of America, México, D. F. 31 Marzo, 2003, p. 183–199.

- Schaaf, P., Morán-Zenteno, D., Hernández-Bernal, M. del S., Solís-Pichardo, G., Tolson, G., y Köhler, H., 1995, Paleogene continental margin truncation in southwestern Mexico: Geochronological evidence: Tectonics, v. 14, p. 1339–1350.
- Scheubel, F.R., Clark, K.F., y Porter, E.W., 1988, Geology, tectonic environment, structural controls in the San Martín de Bolaños District, Jalisco: Economic Geology y Bulletin of the Society of Economic Geologists, v. 83, p. 1703–1720.
- Sedlock, R., Ortega-Gutierrez, F., y Speed, R., 1993, Tectonostratigraphic terranes and the tectonic evolution of Mexico.: GSA, Bulletin, v. 278, p. 153.
- Sole, J., y Salinas, J.C., 2002, Edades K-Ar de 54 rocas ígneas y metamórficas del occidente, centro y sur de México: GEOS, Boletín de la Unión Geofísica Mexicana, v. 22, p. 260.
- Sparks, R.S.J., Self, S., y Walker, G.P.L., 1973, Products of ignimbrite eruptions: Geology, v. 1.
- Suter, M., López-Martínez, M., Quintero-Legorreta, O., y Carrillo-Martínez, M., 2001, Quaternary intra-arc extension in the central Trans-Mexican volcanic belt: Geological Society of America Bulletin, v. 113, p. 693–703.
- Tera, F., y Wasserburg, G.J., 1972, U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks: Earth and Planetary Sciences Letters, v. 14, p. 281–304.
- Twiss, R., y Moores, E.M., 2007, Structural Geology: New York, W. H. Freeman, 736 p., Twiss,
 R.J., and Unruh, J.R., 1998, Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research: Solid Earth, v. 103, p. 12205–12222.
- Umhoefer, P.J., Dorsey, R., Willsey, S., Mayer, L., y Renne, P., 2001, Stratigraphy and geochronology of the Comondú Group near Loreto, Baja California Sur, Mexico: Sedimentary
- Valencia, V.A., Righter, K., Rosas-Elguera, J., López-Martínez, M., y Grove, M., 2013, The age and composition of the pre-Cenozoic basement of the Jalisco Block: Implications for and relation to the Guerrero composite terrane: Contributions to Mineralogy and Petrology, v. 166, p. 801–824.
- Watkins, N.D., Gunn, B.M., Baksi, A.K., York, D., y Ade-Hall, J., 1971, Paleomagnetism, geochemistry and potassium-argon ages of the Rio Grande de Santiago volcanics: Central Mexico: Geological Society of America Bulletin, v. 82, p. 1955–1968.
- Webber, K.L., Fernandéz, L.A., y Simmons, W.B., 1994, Geochemistry and mineralogy of the Eocene-Oligocene volcanic sequence, southern Sierra Madre Occidental, Juchipila, Zacatecas, Mexico: Geofisica Internacional, v. 33, p. 77–89.

- Wentworth, C., y Williams, H., 1932, The classification and terminology of the pyroclastic rocks: Natl. Research Council Bulletin, v. 89, p. 19–53.
- Wetherill, G.W., 1956, Discordant uranium-lead ages: Trans. Am. Geophys. Union., v. 37, p. 320–326.

			An	exo I. Edades	de otros au	tores		
Edad	Error	Método	Autor	Tipo de roca	UTM este	UTM norte	Localidad	Clave
0.97	0.2	K/Ar	Nieto-Obregón et al., 1985	Basalto alcalino			Tequilizintla, Jal.	Jal 5
1.34	0.2	K/Ar	Nieto-Obregón et al., 1985	Basalto alcalino	635205.95	2311627.68	Presa de Santa Rosa, Jal	Jal 6
2.5	0.06	K/Ar	Nieto-Obregón et al., 1985	Basalto			Mesa de Santa Rosa, Jal	PED JAL 20
2.8	0.1	K/Ar	Damon et al., 1979	Andesita- Basáltica	594040.29	2334773.85	El Sombrero	Ped Jal 3/79
3.19	0.26	K/Ar	Moore et al., 1995	Basalto	609108.00	2325826.62	Hostotipaquillo, Jal	TQ-308
3.26	0.18	K/Ar	Moore et al., 1994	Basalto	668378.24	2217825.53	Norte de Hostotipaquillo, Jal	Mas 530
3.72	0.025	U/Pb	Fragoso-Silva, 2015	Ignimbrita	630676.7	2319515.28	El Salvador, Jal	SMB 44
3.72	0.06	K/Ar	Nieto-Obregón et al., 1981	Basalto			Mesa Mistemeque	PED-JAL- 23
3.97	0.09	K/Ar	Nieto-Obregón et al., 1981	Basalto			Mesa Mistemeque	PED-JAL- 24
4.7	0.1	K/Ar	Watkins et al, 1971	Basalto	673855.60	2296484.81	Río Santiago, Jal	7
4.8	0.1	K/Ar	Watkins et al, 1971	Ignimbrita	673855.60	2296484.81	Río Santiago, Jal	6
5.5	0.1	K/Ar	Watkins et al, 1971	Andesita	656113.37	2300739.13	Río Santiago, Jal	5
9	0.2	K/Ar	Watkins et al, 1971	Basalto	673798.33	2302020.07	Río Santiago, Jal	4
9.1	0.1	K/Ar	Watkins et al, 1971	Ignimbrita	675856.98	2304255.90	Río Santiago, Jal	3
9.2	0.1	K/Ar	Watkins et al, 1971	Basalto	673752.42	2306448.31	Río Santiago, Jal	2
9.5	0.1	K/Ar	Watkins et al, 1971	Basalto	675833.74	2306470.04	Río Santiago, Jal	1
10.45	0.41	Ar/Ar	Fragoso-Silva, 2015	Basalto	687694.74	2340779.88	Sur Moyahua de Estrada, Zac	SMB 06
10.55	0.21	Ar/Ar	Fragoso-Silva, 2015	Basalto	665852.36	2336682.2	Sur de Mezquital del Oro	SMB 37
10.66 4	0.085	U/Pb	Fragoso-Silva, 2015	Ignimbrita	663429.46	2333870.92	Norte de San Cristobal de la Barranca, Jal	SMB 36
11	0.13	Ar/Ar	Fragoso-Silva, 2015	Basalto	676706	2350777.49	Noreste de Mezquital del Oro, Zac	SMB 09
11.48	0.24	K/Ar	Damon et al., 1979	Dique basáltico	572605.15	2355511.16	La Yesca, Nay	Ped Nay 3
12.02	0.17	Ar/Ar	Fragoso-Silva, 2015	Basalto	681702.93	2352779.88	Oeste Moyahua de Estrada, Zac	SMB 08

12.48	0.15	Ar/Ar	Fragoso-Silva, 2015	Basalto	673493.58	2355397.29	Noreste de García de la	SMB 34
13.16	0.18	Ar/Ar	Fragoso-Silva, 2015	Basalto	661918.89	2338870.73	Sur García de la Cadena, Zac	SMB 10
13.6	0.1	K/Ar	Nieto-Obregón et al., 1985	Ignimbrita riolítica	635205.95	2311627.68	Presa de Santa Rosa, Jal	RGS 12
14.5	0.41	K/Ar	Moore et al., 1994	Gouge en ignimbrita	634156.88	2312726.22	Presa de Santa Rosa, Jal	Mas 714
14.7	0.7	K/Ar	Rodriguez y Rodriguez, 1992	Andesita	527924.08	2401859.76	El Cajón , Nay	PHA 85
15.2	2.5	K/Ar	Moore et al., 1994	Gouge en ignimbrita	634156.88	2312726.22	Presa de Santa Rosa, Jal	Mas 712
15.54	0.17	U/Pb	Fragoso-Silva, 2015	Riolita- riodacita	634314.55	2312546.71	Norte de Amatitán, Jal	SMB 45
16.2	0.34	K/Ar	Clarck et al., 1981	Latita	551807.55	2372034.36	Río Santiago, ladera oeste	79-12
16.9	0.5	K/Ar	Nieto et al., 1981	Ignimbrita	551807.55	2372034.36	Presa de Santa Rosa, Jal	Ped Jal 22
17.2	1	K/Ar	Rodriguez y Rodriguez, 1992	Granito	551807.55	2372034.36	El Cajón , Nay	PHC 85
17.7	0.5	K/Ar	Bryan et al., 2008	Ignimbrita cristalina			Río Santiago. Cerca de Paso de la Yesca, Jal	PDY4
18.3	1.4	K/Ar	Soto y Ortega, 1982	Cuarzo- monzonita			El Sordo, Aguamilpa, Nay.	*D
19.5	0.5	K/Ar	Nieto et al., 1985	Dique feldespático	608018.23	2333567.92	San Pedro Analco, Jal	RGS 10
20.2	0.5	K/Ar	Nieto et al., 1985	Ignimbrita	611171.58	2328054.18	Cinco Minas, Jal	CM 6
20.9	0.87	U/Pb	García-Arreola, 2016	Ignimbrita	606297	2336133	San Pedro Analco, Jal	SPA-18C
22.23	0.48	K/Ar	Nieto-Obregón et al., 1981	Ignimbrita			Oeste de Bolaños, Zac	PED JAL 4
22.3	0.19	U/Pb	Fragoso-Silva, 2016	Ignimbrita	660926.9	2336595.96	Norte de San Cristobal de la Barranca, Jal	SMB 12
22.54	0.47	K/Ar	Nieto et al., 1981	Latita	609035.03	2336895.39	San Pedro Analco, Jalisco	Ped Jal 19
22.89	0.78	U/Pb	García-Arreola, 2016	Ignimbrita	606400	2340486	San Pedro Analco, Jal	SPA-2
22.92	0.5	Ar/Ar	Moore et al., 1994	Ignimbrita	658737.36	2352798.73	Norte de García de la Cadena	IL 89 12, I1 89 10
23.46	0.26	Ar/Ar	Camprubí et al., 2016	Adularia	611341.34	2327017.88	Cinco Minas, Jal	5M-1
23.5		U/Pb	García-Arreola, 2016	Arenisca	595598	2338857	Norte de Hostotipaquillo, Jal	SPA-33A
23.84	0.13	U/Pb	Fragoso-Silva, 2015	Ignimbrita	687221.3	2340996	Sureste de Mezquital del Oro, Zac	SMB 07
24.5	0.14	Ar/Ar	Camprubí et al., 2016	Adularia	611341.34	2327017.88	Cinco Minas, Jal	5M-1

24.7	0.6	K/Ar	Nieto et al., 1985	Andesita	614304.08	2325861.61	Cinco Minas, Jal	CM 3
25.55	0.96	U/Pb	García-Arreola, 2016	Ignimbrita	594563	2348657	Norte de presa La Yesca, Jal	SPA-7
25.8	0.12	U/Pb	Fragoso-Silva, 2015	Ignimbrita	612888	2327273	Este de Hostotipaquillo, Jal	SMB 49
26.05	0.29	U/Pb	García-Arreola, 2016	Intrusión silícia	606703	2332341	Oeste de San Pedro Analco, Jal	SPA-31
26.27	0.36	U/Pb	García-Arreola, 2016	Intrusión silícia	606713	2332677	Oeste de San Pedro Analco, Jal	SPA-28
26.6	0.6	K/Ar	Nieto et al., 1985	Granodiorita	609071.56	2331360.99	San Pedro Analco, Jal	RGS 11
26.7	0.6	K/Ar	Nieto et al., 1985	Dique microdioritico	613264.86	2325854.48	Cinco Minas, Jal	CM 2
26.77	0.19	U/Pb	García-Arreola, 2016	Intrusión silícia	606713	2332677	Oeste de San Pedro Analco, Jal	SPA-29
27.44	0.4	U/Pb	García-Arreola, 2016	Intrusión silícia	606999	2335318	San Pedro Analco, Jal	SPA-22
27.54	0.26	U/Pb	García-Arreola, 2016	Intrusión silícia	592843	2345049	Presa La Yesc, Jal	SPA-5
34.06	0.73	K/Ar	Damon et al., 1979	Ignimbrita riolítica	572363.88	2379418.34	La Soyatera, Nay	Ped Nay 4- 79
35.00	2	K/Ar	Rodriguez y Rodriguez, 1992	Granito	556933.85	2387547.39	El Cajón , Nay	PHC 85
25.01	0.17	Ar/Ar	Fragoso-Silva, 2015	Basalto	644959.25	2356126.31	Norte de Huitzila, Zac	SMB 40

zircones
e
U-Pb
ogía
Geocronol
Ħ.
Anexo

							Relacione	es isotópicas e	orregidas						E	da des co	rregidas	(Ma)			
	U (mqq)	(ppm)	Th/U	$^{207}Pb/^{206}Pb$	±2s abs	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	±2s abs	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s E	DAD Ma) ≟	2s Dis	°, 2
RS-08																					
Zircon_70	177	119	0.67	0.0640	0.0160	0.0342	0.0093	0.0039	0.0003	0.0017	0.0003	0.3739	25.4	2	33.8	6	330	460	25.4 2	2.0 24	.85
Zircon_57	791	905	1.14	0.0490	0.0057	0.0279	0.0034	0.0040	0.0002	0.0013	0.0001	0.1544	25.9	0.97	28.4	3.3	150	230	25.9	.0	80
Zircon_44	414	176	0.43	0.0508	0.0090	0.0282	0.0051	0.0041	0.0002	0.0016	0.0002	0.28198	26.1	1.5	28.1	Ś	250 50	320	26.1	5.7	12
Zircon_40	1722	105	070	0.0480	0.00.45	0.0250	0.00/8	0.0041	0.0004	0.0013	0.0001	7201800 0	7.97	4.7	0.82	× ^r	-80	0001	7.07	4. C	21 21
Zircon_32	C C 7 1	C 64	0.58	0.0530	01100	00200	0.0060	0.0041	0.0003	0.0016	100000	-0.00100/	47.07 76.3	1 7 1	F.07	2 0	010	100	7.02	יי די די	10.24
Zircon 39	272	178	0.65	0.0500	0.0110	0.0277	0.0054	0.0041	0.0002	0.0010	0.0002	-0.033249	26.4	1.6	27.6	5 5 5 5	280	320	26.4	9	35.3
Zircon 56	193	193	1.00	0.0540	0.0160	0.0280	0.0092	0.0041	0.0003	0.0014	0.0002	0.14895	26.4	1.7	27.7	8.9	20	500	26.4	4	69
Zircon_38	1084	375	0.35	0.0495	0.0043	0.0281	0.0026	0.0041	0.0002	0.0014	0.0001	0.05263	26.52	0.99	28.1	2.5	130	170	26.5	.0 5.	62
Zircon_42	1010	323	0.32	0.0490	0.0044	0.0279	0.0025	0.0041	0.0001	0.0012	0.0001	0.0054688	26.56	0.88	28	2.4	140	180	26.6 (.9 5.	14
Zircon_63	121	129	1.07	0.0620	0.0180	0.0320	0.0110	0.0042	0.0004	0.0015	0.0003	0.05275	26.7	2.6	32	= 1	380	500	26.7	5.6 16	56
Zircon_41	43.6	20.8	0.48	0.0580	0.0280	0.0360	0.0160	0.0042	0.0004	0.0017	0.0005	0.21732	26.8	2.6	35	16	-150	810	20.8	2.6 23	4 M 1
Zircon_51	299	176	0.59	0.0580	0.0120	0.0342	0.0070	0.0043	0.0002	0.0015	0.0002	-0.18022	27.4	1.0 -	33.9	8.9 8.0	280	380	4. 12	51 5	L
Zircon_45	191	8 C I	0.50	0050.0	0.0140	0.0317	C800.0	0.0043	0.0005	010018	0.000.0	0.16046	9.17	1.7	30.8	7 R 7 R	001	490	0.12	101	0 K
Zircon 54	103	t: 60	0000	01000	0410.0	003000	0.0000	0.0043	2000.0	0.0016	0.0004	0.10001.0	0.14	1.0	0.00	o; c	110	270	0.12		7 4
Zircon 46	185	1 1 0 Z	0.52	0.0520	0.0140	0.0306	0.212.0	0.0043	0.0003	0.0013	5000.0 20000.0	0.04089	28.1	7.7	30.2	71	-30	450	6.12	2 9 7 8	95
Zircon 53	281	169	0.60	0.0457	0.0087	0.0297	0.0057	0.0044	0.0002	0.0015	0.0002	0.14938	28.1	1.5	29.6	5.6	30	360	28.1	i vi	07
Zircon 61	740	980	1.32	0.0463	0.0050	0.0287	0.0033	0.0045	0.0002	0.0016	0.0001	0.29869	28.7	1.3	28.7	3.2	10	220	28.7	.3	00
Zircon 65	403	426	1.06	0.0498	0.0097	0.0311	0.0059	0.0045	0.0002	0.0015	0.0002	-0.065646	28.8	1.4	31.8	5.8	20	340	28.8	.4	43
Zircon 36	446	442	0.99	0.0504	0.0067	0.0304	0.0038	0.0046	0.0002	0.0014	0.0001	-0.055334	29.2	1.1	30.3	3.7	100	260	29.2	.1 3.	63
Zircon 37	868	586	0.68	0.0449	0.0059	0.0287	0.0037	0.0045	0.0002	0.0014	0.0001	0.058323	29.2	1.1	28.7	3.7	-60	250	29.2	- I.	.74
Zircon_67	626	356	0.57	0.0482	0.0061	0.0304	0.0031	0.0045	0.0002	0.0015	0.0002	-0.1832	29.2	1.3	30.4	3.1	70	230	29.2	.3	95
Zircon_58	131	115	0.88	0.0660	0.0190	0.0407	0.0095	0.0046	0.0004	0.0014	0.0002	0.23546	29.3	2.5	40	9.3	510	510	29.3 2	26	.75
Zircon 49	133	90.8	0.68	0.0570	0.0140	0.0352	0.0077	0.0046	0.0004	0.0020	0.0004	-0.34766	29.4	2.7	34.8	7.8	300	470	29.4	2.7 15	52
Zircon_48	26.7	18.8	0.70	0.6400	0.5800	0.0390	0.0350	0.0054	0.0008	0.0024	0.0008	0.10595	34.6	5.2	33	32	100	2000	34.6	4	.85
Zircon_66	228	179	0.79	0.0522	0.0081	0.0631	0.0097	0.0090	0.0005	0.0031	0.0003	0.17682	57.8	2.9	61.6	9.3	210	300	57.8 2	.9 6.	17
Zircon_64	264	149	0.56	0.0449	0.0058	0.0596	0.0081	0.0095	0.0004	0.0034	0.0003	0.1043	60.8	2.4	58.5	7.7	-30	250	80.8	4. 6	.93
Zircon_68	1031	670	0.65	0.0463	0.0035	0.0876	0.0066	0.0136	0.0004	0.0041	0.0003	0.034117	87.3	2.3	85.1	6.2	0	150	87.3	1	.59
RS-05																					
Zircon_78	692	759	1.097	0.0509	0.0057	0.0301	0.0031	0.00431	0.00022	0.00133	0.00011	-0.18631	27.7	1. 4. (30.1	3.1 7,7	240	210	27.7	4.0	97
Zircon_91	502	605 103	2701	1010	210.0	0.0213	C/00.0	0.00449	050000	0.00152	1000.0	-0.14205 2020100	6.82	C.7	0.15	j c j r	140	100	78.9	5 L C	4 6
Zircon_98 Zircon_58	337	504 143	0.474	0.0456	0.0077	0.0286	0.0049	0.00459	0.00017	20100.0	0.00014	-0.048/9- 0.1797	29.40 20.5	1 1	28.5	7.7	30	190 280	0 20 5 00	رة. 1. ب	17
Zircon 71	694	757	1.091	0.0528	0.0082	0.0327	0.0048	0.00462	0.00017	0.00141	0.0001	-0.20002	29.7	1.1	32.6	4.7	290	310	29.7		06
Zircon_47	1141	1101	0.965	0.0468	0.0041	0.0298	0.0025	0.00462	0.00012	0.001466	0.000072	-0.1523	29.74	0.76	29.7	2.4	30	170 2	9.74 0	.76 -0	.13
Zircon_46	775	524	0.676	0.0485	0.0058	0.0302	0.0035	0.00465	0.00014	0.001437	0.000098	-0.038084	29.9	0.88	30.2	3.4	80	240	29.9 0	.88	66
Zircon_13	357	249	0.697	0.0496	0.0083	0.0319	0.0051	0.00465	0.00022	0.00149	0.00018	-0.15467	29.9	1.4	31.8	s.	160	340	29.9	4. j	97
Zircon_04	C/ 8	757	0.818	0.049	0.0039	0.0312	0.0026	0.0047	0.00012	0.00150	6/00000	0.15746	30.23	0./9 1 2	6.15 C.15	4.7	200	160	0.23 0	./. 	50 -
Zircon 33	104	700	0 576	0.0514	0.0054	0.0344	0.0033	0.004/5	0.00016	0.00157	0.00014	01/07/10	4:00 30 0	<u>.</u> -	24 10 24 26	0.0	000	220	1.00		1 10
Zircon 34	975	480	0.492	0.0485	0.0043	0.0325	0.003	0.00486	0.00013	0.00163	0.00011	0.11141	31.27	0.85	32.4	2.9	80	180	1.27 0	85	49
Zircon 14	377	250	0.663	0.0627	0.0091	0.0411	0.0048	0.00487	0.00019	0.00218	0.00019	-0.091272	31.3	1.2	40.8	4.7	660	310	31.3	.2 23	28
Zircon_17	1290	766	0.594	0.0477	0.0029	0.0318	0.002	0.00488	0.00012	0.001517	0.00009	0.042528	31.41	0.77	31.7	1.9	70	130 3	1.41 0	.77 0.	91
Zircon_10	1080	452	0.419	0.052	0.0041	0.0361	0.0028	0.00501	0.00015	0.00168	0.00013	0.0059706	32.2	0.95	36	2.7	300	180	32.2 0	.95 10	56
$Zircon_{76}$	642	842	1.312	0.0494	0.0054	0.0334	0.0036	0.00506	0.00018	0.001461	0.000078	-0.01131	32.6	1.2	33.3 2	3.6 2.0	100	220	32.6	0 F	10
Zircon_82 Zircon_95	148U 64.6	6011 64	0.001	0.0479	0.035	0.038	0.018	80200.0	0.00075	91C100.0	0.00000	10/5000	23.4	0./0	6.66 75	7.7	80 -50	. 140 840	23.4	1 0 8 1	80 73
Zircon 12	160	130	0.813	0.06	0.012	0.0433	0.0083	0.00529	0.00028	0.00225	0.00021	0.024389	5 7 7	o 7	42.7	<u>`</u> ~	-30 430	640 400	4. 70 1. 40 1. 1. 10	. 8 . 8	57
Zircon_21	2740	2630	0.96	0.0491	0.0022	0.0363	0.0019	0.00533	0.0001	0.001701	0.000057	0.059019	34.29	0.65	36.2	1.8	180	110	4.29 0	.65 5.	28
Zircon_56	1180	1500	1.271	0.0489	0.0034	0.0377	0.0026	0.00555	0.00014	0.00169	0.000064	-0.02365	35.68	0.91	37.6	2.5	140	140	5.68 0	.91 5. -	= :
Zircon_32	694 ° 30	214 %60	0.308	0.0465	0.0055	0.0369	0.004	0.0057	0.00019	0.00168	0.00014	-0.049761	36.6 20.3	1.2	36.8 17 1	3.9 1 k	0 007	220	36.6	0,4	54
Zircon 90	0 C O O O	355 355	0.535	0.0486	0.0067	0.0503	0.0068	0.00729	0.00022	0.00222	0.00018	-0.084258 -0.084258	د. ۲ د 46.8	1.4	40.7	4.0 6.6	48U 120	280	46.8	- 4 - 1	840
Zircon_79	69	48.5	0.703	0.054	0.014	0.073	0.019	0.00997	0.00078	0.00327	0.00056	-0.055918	63.9	. 2	70	18	160	510	63.9	5	71

4.02	3.70	-0.57	5.39	3.86	0.95	1.87	-0.27	3.03	0.40 0.40	0.26	4.66	4.07	-1.57	1.02	-0.75	14.59	10.38	0.00	-0.83	0.69	-3.76	1.45	8.10	0.96	6.45 -1.49	-0.31	20.05	-0.10	-2.95	3.61	-3.30	0.69	3.92	0.73	1.52	5.36	2.05	4.25 4.6 4.6 6	1.11	2.73	2.20	0.08	13.02	0.12	-0.67	0.24	-0.17	0.40
1.2	1.9	1.3 L	4	2.3 2	1.7	1.8 2 2	2.7	°,	0. 1. 1. 4.	1.4	~ 7	۲.7	2.9	1.5	<u>, 1</u>	2.4	1.5	1.6 1	1.9	2.4	° °	2.5	3.6	1.9	ю с 1. 4	2.5	3.5	1.7	4.5	3.1 7 7	, 4 4	3.4 4.6	4 C 7 4	3.7	1.7 1	3.6	2.4	5.8 9.7	2.8 2.8	4.6	4.5	0.8 U	20	25	21	21	5 L C	7 73 73
64.4	65.1 66.0	71.1	71.9	72.2	73.2	73.4	73.6	73.7	74.9	76	76.3	17 3	77.6	77.6	1.1.1	80.8	82.9	83.3 83.3	85.3	86.9	88.4	91.00	91.9	92.5	94.3 95.6	95.7	95.7	0.06 97.6	97.8	98.9 00 1	100.2	101.3	103.1	108.2	110.1	130.6	133.8	1 4 6.5	160.4	167.3	168.8	211.8	82.2	1606	1638	1656	1/18	1738
140	160	110	280	240	110	120	220	160	94	120	170	140	210	110	110	200	170	130	130	140	160	150	270	110	240 190	170	170	120	280	190	310	250	260 130	240	130	170	130	160	80	170	130	150	0.01	47	44	42	CC 75	40
140	110	30	220	09	140	06	30	150	64 0 64	140	-60	110	0	120	110	470	310	70	70	130	0	141	320	110	260 120	130	600	067 01	50	140	170	140	380	80	150	290	130	184	169	230	240	340 410	1220	1606	1638	1656	1725	1738
4.2	4 r 8 -	3.7	Ξ	6 3	4.1	4.4 1-4	*	4.7	3.6	3.8	6.7	4 v v x	5.8 4.8	4 v 4 v	0 4 v. c	∱∞	7	5.1	5.1	5.4	6.5 6.5	5.0 6.1	Ξ	4.7 L.1	7.9 7.9	T.T	9.9	0.0 5.8	13	8.7 0	16	= :	13	12	7.3 2.5	10	7.8	1 %	5.9	14	9.5	18 30	7.2	27	26	27	76	26
67.1	67.6	70.7	76	75.1	73.9	74.8	73.4	76	75.2	76.2	72.9	78.5	76.4	78.4	80 5	94.6	92.5	83.3 6 6 7 9	84.6	87.5	85.2	92.2	100	93.4	100.8 94.2	95.4	119.7	07.5 07.5	95	102.6 07.6	97	102	8118	109	111.8	138	136.6	153.7	162.2	172	172.6	224	945	1607	1654	1663	1727	1734
1.2	1.9	1.3 L	4	2.3 2	1.7	1.8 2 2	2.7	~ ,	0 1. 4.	1.4	~ 7	1.7	2.9	1.5	0.1 9	2.4	1.5	1.6 2	1.9	2.4	۰ <mark>،</mark>	1.8 2.5	3.6	1.9		2.5		1.7 1.7	4.5	3.1 7 7	- 4 4.	3.4	4 C 7 4	3.7	2.7 7	3.6	2.4	5.8 2.6	2.8	4.6	4.5	6.8 C	20	25	21	21	10 74	23
64.4	65.1 66.0	71.1	71.9	72.2	73.2	73.4	73.6	73.7	74.9	76	76.3	11 3	77.6	77.6 5.77	1.1.1	80.8	82.9	83.3	85.3	86.9	88.4	91.00	91.9	92.5	94.3 95.6	95.7	95.7	0.06 97.6	97.8	98.9 1 00	100.2	101.3	103.1	108.2	110.1	130.6	133.8	1 50 1	160.4	167.3	168.8	211.8	212	1605	1665	1659	1/14	1727
-0.056802	-0.1488	-0.13415	0.0088338	0.14356	0.15669	0.043154	0.19577	-0.12206	-0.060092	-0.12274	0.28676	0.0/9925	0.29202	0.059129	0.071573	0.26145	-0.1802	-0.11643	-0.13294	0.029594	-0.030319	0.17018 0.17018	-0.12907	-0.075839	0.011531 0.028348	0.11889	0.18257	0.13536	0.19392	0.023994	-0.069805	-0.10863	0.069965	0.037531	0.17815	-0.21314	-0.1117	0.096021	-0.23074	0.2618	0.050127	0./488	-0.04/401 0.37511	0.13117	0.2308	0.64376	17616.0	0.26337
0.00017	0.0002	0.00011	0.00032 -	0.00024	0.00017	0.00021	0.00036	0.00013	0.00013	0.0002	0.0003	0.00024	0.00034	0.00018	0.00016	0.00028	0.00023	0.00021	0.00022	0.00026	0.00027	0.0002	0.00047	0.00023	0.00045	0.00031	0.00051	0.00017	0.00052	0.00035	0.00043	0.00027	0.0004	0.00054	0.00026	0.00061	0.00032	0.0000 0.00000	0.00022	0.00025	0.00042	0.0000 0.0000	0.002	0.0029	0.0042	0.0026	0.0023	0.0025
0.00342	0.00322	0.00329	0.00325	0.00377	0.0038	0.00362	0.00349	0.00385	0.00377	0.0038	0.00414	20200.0 0 00392	0.00354	0.00363	0.00374	0.00411	0.00398	0.00436	0.00419	0.00424	0.00432	0.0044	0.00504	0.0046	0.00473 0.0046	0.00454	0.00511	0.00472	0.00449	0.00544	0.00481	0.00454	0.00571	0.00525	0.00557	0.00683	0.00623	0.00/64	0.00774	0.00783	0.00842	0.0166	0.0489	0.0773	0.0855	0.084	0.0856	0.0894
																									-	0																						
0.00019	0.0003	0.0002	0.00062	0.00036	0.00026	0.00027	0.00043	0.00032	0.00021	0.00023	0.00031	0.00033	0.00045	0.00023	0.00024	0.00037	0.00024	0.00025	0.00029	0.00038	0.00031	0.00039	0.00057	0.00031	0.00059	0.00039	0.00055	0.00027	0.0007	0.0005	0.00073	0.00054	0.00038	0.00058	0.00042	0.00057	0.00037	0.0006	0.00044	0.00073	0.00072	0.0014	0.0035	0.0049	0.0042	0.0043	0.0048	0.0046
0.01004 0.00019	0.01015 0.0003	0.01109 0.0002	0.01121 0.00062	0.01126 0.00036	0.01142 0.00026	0.01146 0.00027	0.01148 0.00043	0.01149 0.00032	0.01169 0.00021	0.01187 0.00023	0.01191 0.00031	0.01201 0.00033	0.01211 0.00045	0.01212 0.00023	0.01213 0.00024	0.01261 0.00037	0.01295 0.00024	0.01301 0.00025	0.01333 0.00029	0.01357 0.00038	0.01381 0.00031	0.01422 0.00039	0.01436 0.00057	0.01446 0.00031	0.01473 0.00059 0.00053	0.01495 0.00039 (0.01495 0.00055	0.01526 0.00027	0.01529 0.0007	0.01546 0.0005	0.01554 0.00073	0.01584 0.00054	0.01613 0.00067 0.0165 0.00038	0.01693 0.00058	0.01722 0.00042	0.02046 0.00057	0.02098 0.00037	0.02299 0.0006 0.0006	0.02519 0.00044	0.02629 0.00073	0.02653 0.00072	0.0334 0.0014	0.136 0.0035	0.2828 0.0049	0.2947 0.0042	0.2936 0.0043	0.304/ 0.0064	0.3072 0.0046
0.0044 0.01004 0.00019	0.005 0.01015 0.0003	0.0039 0.01109 0.0002	0.011 0.01121 0.00062	0.0098 0.01126 0.00036	0.0043 0.01142 0.00026	0.0046 0.01146 0.00027	0.0085 0.01148 0.00043	0.005 0.01149 0.00032	0.0037 0.01169 0.00037 0.00021	0.0041 0.01187 0.00023	0.0071 0.01191 0.00031	0.0048 0.01201 0.00033 0.0062 0.00031	0.0089 0.01211 0.00045	0.0047 0.01212 0.00023	0.0056 0.01213 0.00024	0.0087 0.01261 0.00037	0.0075 0.01295 0.00024	0.0055 0.01301 0.00025	0.0054 0.01333 0.00029	0.0058 0.01357 0.00038	0.0069 0.01381 0.00031	0.0066 0.01229 0.00028 0.0066 0.01422 0.00039	0.012 0.01436 0.00057	0.0051 0.01446 0.00031	0.011 0.01473 0.00059 0.0085 0.01494 0.00053	0.0083 0.01495 0.00039 (0.011 0.01495 0.00055	0.0063 0.01526 0.00027	0.015 0.01529 0.0007	0.0094 0.01546 0.0005	0.017 0.01554 0.00073	0.012 0.01584 0.00054	0.014 0.01613 0.00067 0.0072 0.0165 0.00038	0.013 0.01693 0.00058	0.0081 0.01722 0.00042	0.012 0.02046 0.00057	0.009 0.02098 0.00037	0.012 0.02299 0.0006 0.0066 0.02355 0.00041	0.0068 0.02519 0.00044	0.015 0.02629 0.00073	0.011 0.02653 0.00072	0.022 0.0334 0.0014	0.067 0.136 0.0035	0.13 0.2828 0.0049	0.14 0.2947 0.0042	0.14 0.2936 0.0043	0.10 0.304/ 0.0064 0.14 0.3079 0.0048	0.14 0.3072 0.0046
0.0684 0.0044 0.01004 0.00019	0.0689 0.005 0.01015 0.0003	0.0721 0.0039 0.01109 0.0002	0.078 0.011 0.01121 0.00062	0.0759 0.0098 0.01126 0.00036 0.076 0.0062 0.01131 0.00031	0.0755 0.0043 0.01142 0.0026	0.0765 0.0046 0.01146 0.00027 0.075 0.0054 0.01146 0.00026	0.0753 0.0085 0.01148 0.00043	0.0778 0.005 0.01149 0.00032	0.0764 0.0037 0.01169 0.00021	0.078 0.0041 0.01187 0.00023	0.0748 0.0071 0.01191 0.00031	0.0/23 0.0048 0.01201 0.00033 0.0805 0.0062 0.01206 0.00031	0.0784 0.0089 0.01211 0.00045	0.0804 0.0047 0.01212 0.00023	0.0842 0.0026 0.01213 0.00024 0.0826 0.0046 0.01250 0.00026	0.0979 0.0087 0.01261 0.00037	0.0954 0.0075 0.01295 0.00024	0.0857 0.0055 0.01301 0.00025	0.087 0.0054 0.01333 0.00029	0.0901 0.0058 0.01357 0.00038	0.0877 0.0069 0.01381 0.00031	0.0952 0.0066 0.01422 0.0039	0.104 0.012 0.01436 0.00057	0.0964 0.0051 0.01446 0.00031	0.105 0.011 0.01473 0.0029 0.0975 0.0085 0.01494 0.00053	0.0988 0.0083 0.01495 0.00039 (0.126 0.011 0.01495 0.00055	0.1009 0.0063 0.01526 0.00027	0.099 0.015 0.01529 0.0007	0.1067 0.0094 0.01546 0.0005	0.101 0.017 0.01554 0.00073	0.107 0.012 0.01584 0.00054	0.123 0.014 0.01613 $0.000670.1143$ 0.0072 0.0165 0.00038	0.114 0.013 0.01693 0.00058	0.1166 0.0081 0.01722 0.00042	0.146 0.012 0.02046 0.00057	0.143 0.009 0.02098 0.00037	0.163 0.012 0.02299 0.0006 0.1634 0.0066 0.02355 0.00041	0.1733 0.0068 0.02519 0.0044	0.184 0.015 0.02629 0.00073	0.186 0.011 0.02653 0.00072	0.248 0.022 0.0334 0.0014	1.538 0.067 0.136 0.0035	3.87 0.13 0.2828 0.0049	4.09 0.14 0.2947 0.0042	4.15 0.14 0.2936 0.0043 4.30 0.16 0.3047 0.0064	4.29 0.10 0.504 / 0.0064 4.48 0.14 0.3079 0.0048	4.52 0.14 0.3072 0.0046
0.0033 0.0684 0.0044 0.01004 0.00019	0.0038 0.0689 0.005 0.01015 0.0003	0.0025 0.0721 0.0039 0.01109 0.0002	0.0082 0.078 0.011 0.01121 0.00062	0.0061 0.0759 0.0098 0.01126 0.00036	0.0027 0.0755 0.0043 0.01142 0.00026	0.0025 0.0765 0.0046 0.01146 0.00027 0.0023 0.075 0.0054 0.01146 0.00035	0.0052 0.0753 0.0085 0.01148 0.00043	0.0035 0.0778 0.005 0.01149 0.00032	0.0021 0.0764 0.0037 0.01169 0.0021	0.0027 0.078 0.0041 0.01187 0.00023	0.0041 0.0748 0.0071 0.01191 0.00031	0.0028 0.0725 0.0048 0.01201 0.00033 0.0034 0.0805 0.0062 0.01206 0.00031	0.0049 0.0784 0.0089 0.01211 0.00045	0.0025 0.0804 0.0047 0.01212 0.00023	0.0029 0.0842 0.0056 0.01213 0.0024 0.0024 0.0826 0.0046 0.01259 0.00026	0.0049 0.0979 0.0087 0.01261 0.00037	0.004 0.0954 0.0075 0.01295 0.00024	0.0029 0.0857 0.0055 0.01301 0.00025 0.0020 0.0866 0.0060 0.013 0.00025	0.0031 0.087 0.0054 0.01333 0.00029	0.003 0.0901 0.0058 0.01357 0.00038	0.0037 0.0877 0.0069 0.01381 0.00031	0.0033 0.0952 0.0066 0.01299 0.0028	0.0066 0.104 0.012 0.01436 0.00057	0.0025 0.0964 0.0051 0.01446 0.00031	0.007 0.105 0.011 0.01473 0.00059 0.0046 0.0975 0.0085 0.01494 0.00053	0.0041 0.0988 0.0083 0.01495 0.00039 (0.005 0.126 0.011 0.01495 0.00055	0.0026 0.1009 0.0063 0.01526 0.00027	0.0073 0.099 0.015 0.01529 0.0007	0.0043 0.1067 0.0094 0.01546 0.0005 0.0047 0.1014 0.0099 0.01554 0.0007	0.0086 0.101 0.017 0.01554 0.0073	0.0059 0.107 0.012 0.01584 0.00054	0.0071 0.123 0.014 0.01613 0.00067 0.003 0.1143 0.0072 0.0165 0.00038	0.0056 0.114 0.013 0.01693 0.0058	0.0032 0.1166 0.0081 0.01722 0.00042 0.002 0.1202 0.0061 0.01791 0.00033	0.0045 0.146 0.012 0.02046 0.00057	0.0031 0.143 0.009 0.02098 0.00037	0.004 0.163 0.012 0.02299 0.0006 0.0017 0.1634 0.0066 0.02355 0.00041	0.0018 0.1733 0.0068 0.02519 0.0044	0.0039 0.184 0.015 0.02629 0.00073	0.0032 0.186 0.011 0.02653 0.00072	0.0033 0.248 0.022 0.0334 0.0014	0.0032 1.538 0.067 0.136 0.0035	0.0027 3.87 0.13 0.2828 0.0049	0.0024 4.09 0.14 0.2947 0.0042	0.0022 4.15 0.14 0.2936 0.0043 0.0028 4.39 0.16 0.3047 0.0064	0.0028 4.29 0.10 0.504/ 0.0064 0.0021 4.48 0.14 0.3079 0.0048	0.0023 4.52 0.14 0.3072 0.0046
0.0495 0.0033 0.0684 0.0044 0.01004 0.00019	0.0489 0.0038 0.0689 0.005 0.01015 0.0003 0.0482 0.068 0.068 0.003 0.01042 0.0003	0.0467 0.0025 0.0721 0.0039 0.01109 0.0002	0.0508 0.0082 0.078 0.011 0.01121 0.00062	0.0481 0.0061 0.0759 0.0098 0.01126 0.00036 0.0485 0.0020 0.076 0.062 0.01131 0.00031	0.048 0.0027 0.0755 0.0043 0.01142 0.00026	0.0471 0.0025 0.0765 0.0046 0.01146 0.00027 0.0484 0.0023 0.075 0.0054 0.01146 0.00025	0.0464 0.0052 0.0753 0.0085 0.01148 0.0043	0.049 0.0035 0.0778 0.005 0.01149 0.00032	0.0474 0.0021 0.0764 0.0037 0.01169 0.00021	0.0483 0.0027 0.078 0.0041 0.01187 0.00023	0.045 0.0041 0.0748 0.0071 0.01191 0.00031	0.0487 0.0014 0.0026 0.0805 0.0069 0.01210 0.00030 0.001210 0.00034 0.0805 0.006	0.0458 0.0049 0.0784 0.0089 0.01211 0.00045	0.0488 0.0025 0.0804 0.0047 0.01212 0.00023	0.0496 0.0029 0.0842 0.0056 0.01213 0.00024 0.0482 0.0024 0.0826 0.0046 0.01250 0.0076	0.0562 0.0049 0.0979 0.0087 0.01261 0.00037	0.0524 0.004 0.0954 0.0075 0.01295 0.00024	0.0477 0.0029 0.0857 0.0055 0.01301 0.00025	0.0478 0.0031 0.087 0.0054 0.01333 0.00029	0.0479 0.003 0.0901 0.0058 0.01357 0.00038	0.0461 0.0037 0.0877 0.0069 0.01381 0.00031	0.048 0.0017 0.0957 0.0059 0.01599 0.00028 0.0488 0.0033 0.0952 0.0066 0.01422 0.00039	0.0536 0.0066 0.104 0.012 0.01436 0.00057	0.0485 0.0025 0.0964 0.0051 0.01446 0.00031	0.0524 0.007 0.105 0.011 0.01473 0.00059 0.0488 0.0046 0.0975 0.0085 0.01494 0.00053	0.0469 0.0041 0.0988 0.0083 0.01495 0.0039 (0.0615 0.005 0.126 0.011 0.01495 0.00055	0.0468 0.0026 0.1009 0.0063 0.01526 0.00027	0.0489 0.0073 0.099 0.015 0.01529 0.007	0.0491 0.0043 0.1067 0.0094 0.01546 0.0005 0.0479 0.0047 0.1014 0.0096 0.01554 0.00043	0.048 0.0086 0.101 0.017 0.01554 0.00073	0.0491 0.0059 0.107 0.012 0.01584 0.00054	0.0559 0.0071 0.123 0.014 0.01613 0.00067 0.0493 0.003 0.1143 0.0072 0.0165 0.00038	0.0479 0.0056 0.114 0.013 0.01693 0.00058	0.049 0.0032 0.1166 0.0081 0.01722 0.00042 0.0484 0.002 0.1202 0.0061 0.01701 0.00033	0.0524 0.0045 0.146 0.012 0.02046 0.00057	0.0487 0.0031 0.143 0.009 0.02098 0.00037	0.0506 0.004 0.163 0.012 0.02299 0.0006 0.0499 0.0017 0.1634 0.0066 0.03355 0.00041	0.0497 0.0018 0.1733 0.0068 0.02519 0.00044	0.0508 0.0039 0.184 0.015 0.02629 0.00073	0.0517 0.0032 0.186 0.011 0.02653 0.00072	0.0542 0.0033 0.248 0.022 0.0334 0.0014 0.0562 0.0030 0.654 0.048 0.0820 0.0019	0.0808 0.0032 1.538 0.067 0.136 0.0035	0.0988 0.0027 3.87 0.13 0.2828 0.0049	0.101 0.0024 4.09 0.14 0.2947 0.0042	0.1017 0.0022 4.15 0.14 0.2936 0.0043 0.1051 0.0028 4.30 0.16 0.3047 0.0054	0.1021 0.0026 4.29 0.10 0.2047 0.0064 0.0064 0.0064 0.0063 0.0021 4.48 0.14 0.3079 0.0048	0.1066 0.0023 4.52 0.14 0.3072 0.0046
0.497 0.0495 0.0033 0.0684 0.0044 0.01004 0.0019	0.681 0.0489 0.0038 0.0689 0.005 0.01015 0.0003 0.601 0.0489 0.0058 0.058 0.0075 0.01042 0.00032	0.893 0.0467 0.0025 0.0721 0.0039 0.01109 0.0002	0.822 0.0508 0.0082 0.078 0.011 0.01121 0.00062	0.826 0.0481 0.0061 0.0759 0.0098 0.01126 0.00036 0.842 0.0485 0.0030 0.076 0.0062 0.01131 0.00031	0.544 0.048 0.0027 0.0755 0.0043 0.01142 0.0026	0.422 0.0471 0.0025 0.0765 0.0046 0.01146 0.00027 0.201 0.0484 0.0022 0.075 0.054 0.01146 0.00025	0.419 0.0464 0.0052 0.0753 0.0085 0.01148 0.00043	0.843 0.049 0.0035 0.0778 0.005 0.01149 0.00032	0.002 0.0469 0.007 0.008 0.012 0.01138 0.00021 0.886 0.0474 0.0021 0.0764 0.0037 0.01169 0.00021	0.402 0.0483 0.0027 0.078 0.0041 0.01187 0.00023	0.324 0.045 0.0041 0.0748 0.0071 0.01191 0.00031	0.41 0.0401 0.0028 0.0.073 0.0048 0.01201 0.00033 0.371 0.0487 0.0034 0.0805 0.0067 0.01206 0.00031	0.44 0.0458 0.0049 0.0784 0.0089 0.01211 0.00045	0.493 0.0488 0.0025 0.0804 0.0047 0.01212 0.00023	0.889 0.0496 0.0029 0.0842 0.0056 0.01213 0.00024 0.496 0.0482 0.0024 0.0826 0.0046 0.01250 0.00026	0.708 0.0562 0.0049 0.0979 0.0087 0.01261 0.00037	0.728 0.0524 0.004 0.0954 0.0075 0.01295 0.00024	0.38 0.0477 0.0029 0.0857 0.0055 0.01301 0.00025 0.711 0.0484 0.0020 0.0855 0.0050 0.012 0.00025	0.508 0.0478 0.0031 0.087 0.0054 0.01333 0.00029	0.446 0.0479 0.003 0.0901 0.0058 0.01357 0.00038	0.536 0.0461 0.0037 0.0877 0.0069 0.01381 0.00031 0.854 0.040 0.0017 0.0027 0.0020 0.01300 0.00038	0.854 0.049 0.001/ 0.095/ 0.0059 0.01599 0.00028 0.607 0.0488 0.0033 0.0952 0.0066 0.01422 0.00039	0.465 0.0536 0.0066 0.104 0.012 0.01436 0.00057	0.509 0.0485 0.0025 0.0964 0.0051 0.01446 0.00031	0.573 0.0524 0.007 0.105 0.011 0.01473 0.00059 0.754 0.0488 0.0046 0.0975 0.0085 0.01494 0.00053	0.392 0.0469 0.0041 0.0988 0.0083 0.01495 0.00039 (0.523 0.0615 0.005 0.126 0.011 0.01495 0.00055	0.663 0.0468 0.0026 0.1009 0.0063 0.01526 0.00027	0.577 0.0489 0.0073 0.099 0.015 0.01529 0.0007	0.521 0.0491 0.0043 0.1067 0.0094 0.01546 0.0005 0.275 0.0479 0.0047 0.1014 0.0009 0.01554 0.0007	0.419 0.048 0.0086 0.101 0.017 0.0154 0.00073	0.783 0.0491 0.0059 0.107 0.012 0.01584 0.00054	0.421 0.0559 0.0071 0.123 0.014 0.01613 0.00067 0.297 0.0493 0.003 0.1143 0.0072 0.0165 0.00038	0.508 0.0479 0.0056 0.114 0.013 0.01693 0.0058	0.348 0.049 0.0032 0.1166 0.0081 0.01722 0.00042 0.594 0.0484 0.002 0.1202 0.0061 0.01791 0.00033	0.401 0.0524 0.0045 0.146 0.012 0.02046 0.00057	0.57 0.0487 0.0031 0.143 0.009 0.02098 0.00037	0.421 0.0206 0.004 0.163 0.012 0.02299 0.0006 0.503 0.0499 0.0017 0.1634 0.0066 0.02355 0.00041	1.018 0.0497 0.0018 0.1733 0.0068 0.02519 0.00044	1.756 0.0508 0.0039 0.184 0.015 0.02629 0.00073	0.692 0.0517 0.0032 0.186 0.011 0.02653 0.00072	0.412 0.0542 0.0033 0.248 0.022 0.0334 0.0014 0.856 0.0563 0.0030 0.654 0.048 0.0820 0.0019	0.020 0.0203 0.0032 0.024 0.046 0.0629 0.0019 0.459 0.0808 0.0032 1.538 0.067 0.136 0.0035	0.17 0.0988 0.0027 3.87 0.13 0.2828 0.0049	0.065 0.101 0.0024 4.09 0.14 0.2947 0.0042	0.211 0.1017 0.0022 4.15 0.14 0.2936 0.0043 0.054 0.1051 0.0028 4.30 0.16 0.3047 0.0054	0.924 0.1051 0.0028 4.29 0.10 0.5047 0.0064 0.923 0.1053 0.0021 4.48 0.14 0.3079 0.0048	0.422 0.1066 0.0023 4.52 0.14 0.3072 0.0046
506 0.497 0.0495 0.0033 0.0684 0.0044 0.01004 0.00019	419 0.681 0.0489 0.0038 0.0689 0.005 0.01015 0.0003 162 0.601 0.0489 0.0058 0.068 0.0075 0.01042 0.00032	1000 0.893 0.0467 0.0025 0.0721 0.0039 0.01109 0.0002	148 0.822 0.0508 0.0082 0.078 0.011 0.01121 0.00062	233 0.826 0.0481 0.0061 0.0759 0.0098 0.01126 0.00036 532 0.842 0.0485 0.0030 0.776 0.062 0.01131 0.00031	447 0.544 0.048 0.0027 0.0755 0.0043 0.01142 0.00026	460 0.422 0.0471 0.0025 0.0765 0.0046 0.01146 0.00027 115.6 0.201 0.0484 0.0023 0.075 0.0054 0.01146 0.00035	117 0.419 0.0464 0.0052 0.0753 0.0085 0.01148 0.00043	1180 0.843 0.049 0.0035 0.0778 0.005 0.01149 0.00032	102 0.002 0.0469 0.001 0.00 0.00 0.002 0.0012 0.01169 0.00021 1107 0.886 0.0474 0.0021 0.0764 0.0037 0.01169 0.00021	425 0.402 0.0483 0.0027 0.078 0.0041 0.01187 0.00023	135 0.324 0.045 0.0041 0.0748 0.0071 0.01191 0.00031	234 0.41 0.0461 0.0028 0.075 0.0048 0.01201 0.00053 337 0.371 0.0487 0.0034 0.0805 0.067 0.01206 0.00031	133 0.44 0.0458 0.0049 0.0784 0.0089 0.01211 0.00045	398 0.493 0.0488 0.0025 0.0804 0.0047 0.01212 0.00023	802 0.889 0.0496 0.0029 0.0842 0.0056 0.01213 0.00024 339 0.406 0.0487 0.0074 0.0876 0.0046 0.01750 0.00076	529 0.708 0.0562 0.0049 0.0979 0.0087 0.01261 0.00037	504 0.728 0.0524 0.004 0.0954 0.0075 0.01295 0.00024	278 0.38 0.0477 0.0029 0.0857 0.0055 0.01301 0.00025 303 0.111 0.0484 0.0020 0.0855 0.0050 0.013 0.00035	307 0.508 0.0478 0.0031 0.087 0.0054 0.01333 0.00029	374 0.446 0.0479 0.003 0.0901 0.0058 0.01357 0.00038	209 0.536 0.0461 0.0037 0.0877 0.0069 0.01381 0.00031 2040 0.854 0.040 0.0017 0.0027 0.0020 0.01300 0.00038	2040 0.854 0.049 0.001/ 0.095/ 0.0059 0.01599 0.00028 308 0.607 0.0488 0.0033 0.0952 0.0066 0.01422 0.00039	141 0.465 0.0536 0.0066 0.104 0.012 0.01436 0.00057	504 0.509 0.0485 0.0025 0.0964 0.0051 0.01446 0.00031	106 0.573 0.0524 0.007 0.105 0.011 0.01473 0.00059 0 297 0.754 0.0488 0.0046 0.0975 0.0085 0.01494 0.00053	133 0.392 0.0469 0.0041 0.0988 0.0083 0.01495 0.00039 (87.4 0.523 0.0615 0.005 0.126 0.011 0.01495 0.00055	389 0.663 0.0468 0.0026 0.1009 0.0063 0.01526 0.00027	69.2 0.577 0.0489 0.0073 0.099 0.015 0.01529 0.0007	115.1 0.521 0.0491 0.0043 0.1067 0.0094 0.01546 0.0005 776 0.775 0.0470 0.0047 0.1014 0.0000 0.01554 0.00042	46.1 0.419 0.048 0.0086 0.101 0.017 0.01554 0.00073	199 0.783 0.0491 0.0059 0.107 0.012 0.01584 0.00054	282 0.421 0.0559 0.0071 0.123 0.014 0.01613 0.00067 202 0.297 0.0493 0.003 0.1143 0.0072 0.0165 0.00038	96 0.508 0.0479 0.0056 0.114 0.013 0.01693 0.00058	170 0.348 0.049 0.0032 0.1166 0.0081 0.01722 0.00042 641 0.504 0.0484 0.002 0.1202 0.0661 0.01761 0.0033	114 0.401 0.0524 0.0045 0.146 0.012 0.02046 0.00057	278 0.57 0.0487 0.0031 0.143 0.009 0.02098 0.00037	88.9 0.421 0.0206 0.004 0.163 0.012 0.02299 0.0006 1037 0.503 0.0499 0.0017 0.1634 0.0066 0.02355 0.00041	1670 1.018 0.0497 0.0018 0.1733 0.0068 0.02519 0.00044	388 1.756 0.0508 0.0039 0.184 0.015 0.02629 0.00073	166 0.692 0.0517 0.0032 0.186 0.011 0.02653 0.00072	183 0.412 0.0542 0.0033 0.248 0.022 0.0334 0.0014 07 0.856 0.0562 0.0030 0.654 0.048 0.020 0.0010	7 0.620 0.020 0.003 0.003 0.034 0.046 0.0629 0.0019 163 0.459 0.0808 0.0032 1.538 0.067 0.136 0.0035	95 0.17 0.0988 0.0027 3.87 0.13 0.2828 0.0049	22.5 0.065 0.101 0.0024 4.09 0.14 0.2947 0.0042	122 0.211 0.1017 0.0022 4.15 0.14 0.2936 0.0043 144 0.554 0.1051 0.0028 4.39 0.16 0.2047 0.0054	144 0.524 0.1021 0.0028 4.29 0.10 0.5047 0.0064 529 0.923 0.1053 0.0021 4.48 0.14 0.3079 0.0048	144 0.422 0.1066 0.0023 4.52 0.14 0.3072 0.0046
1019 506 0.497 0.0495 0.0033 0.0684 0.0044 0.01004 0.00019	615 419 0.681 0.0489 0.0038 0.0689 0.005 0.01015 0.0003 271 152 0.501 0.0493 0.0058 0.058 0.0575 0.11042 0.0003	1120 1000 0.893 0.0467 0.0025 0.0721 0.0039 0.01109 0.0002	180 148 0.822 0.0508 0.0082 0.078 0.011 0.01121 0.00062	282 233 0.826 0.0481 0.0061 0.0759 0.0098 0.01126 0.00036 633 533 0.842 0.0485 0.0030 0.075 0.0062 0.01131 0.00031	821 447 0.544 0.048 0.0027 0.0755 0.0043 0.01142 0.00026	1090 460 0.422 0.0471 0.0025 0.0765 0.0046 0.01146 0.00027 307 1156 0.201 0.0484 0.0022 0.075 0.0054 0.01146 0.00026	279 117 0.419 0.0464 0.0052 0.0753 0.0085 0.01148 0.00043	1400 1180 0.843 0.049 0.0035 0.0778 0.005 0.01149 0.00032 154 102 0.220 0.0480 0.0037 0.09 0.01158 0.00052	1.24 1.02 0.002 0.04489 0.001 0.056 0.012 0.01169 0.00021 1.250 1107 0.886 0.0474 0.0021 0.0764 0.0037 0.01169 0.00021	1056 425 0.402 0.0483 0.0027 0.078 0.0041 0.01187 0.00023	417 135 0.324 0.045 0.0041 0.0748 0.0071 0.01191 0.00031	020 234 0.41 0.0461 0.0028 0.0733 0.0048 0.01201 0.00033 638 337 0.371 0.0487 0.0034 0.0805 0.0067 0.01206 0.00031	302 133 0.44 0.0458 0.0049 0.0784 0.0089 0.01211 0.00045	807 398 0.493 0.0488 0.0025 0.0804 0.0047 0.01212 0.00023	902 802 0.889 0.0496 0.0029 0.0842 0.0056 0.01213 0.00024 683 330 0.496 0.0487 0.0074 0.0876 0.0046 0.01759 0.0075	747 529 0.708 0.0562 0.0049 0.0979 0.0087 0.01261 0.00037	692 504 0.728 0.0524 0.004 0.0954 0.0075 0.01295 0.00024	732 278 0.38 0.0477 0.0029 0.0857 0.0055 0.01301 0.00025	604 307 0.508 0.0478 0.0031 0.087 0.0054 0.01333 0.00029	839 374 0.446 0.0479 0.003 0.0901 0.0058 0.01357 0.00038	390 209 0.536 0.0461 0.0037 0.0877 0.0069 0.01381 0.00031 3300 2040 0.854 0.040 0.0017 0.0027 0.0020 0.01300 0.00038	2590 2040 0.834 0.048 0.0017 0.0957 0.0059 0.0028 0.0028 507 308 0.607 0.0488 0.0033 0.0952 0.0066 0.01422 0.00039	303 141 0.465 0.0536 0.0066 0.104 0.012 0.01436 0.00057	990 504 0.509 0.0485 0.0025 0.0964 0.0051 0.01446 0.00031	185 106 0.573 0.0524 0.007 0.105 0.011 0.01473 0.00059 1 394 297 0.754 0.0488 0.0046 0.0975 0.0085 0.01494 0.00053	339 133 0.392 0.00469 0.0041 0.0988 0.0083 0.01495 0.00039 0	167 87.4 0.523 0.0615 0.005 0.126 0.011 0.01495 0.00055	527 152 0.591 0.0009 0.0044 0.0026 0.1009 0.0063 0.01526 0.00027 587 389 0.663 0.0468 0.0026 0.1009 0.0063 0.01526 0.00027	120 69.2 0.577 0.0489 0.0073 0.099 0.015 0.01529 0.0007	221 115.1 0.521 0.0491 0.0043 0.1067 0.0094 0.01546 0.0005 282 776 0.275 0.0479 0.0047 0.1014 0.0099 0.01554 0.00042	110 46.1 0.419 0.048 0.0086 0.101 0.017 0.01554 0.00073	254 199 0.783 0.0491 0.0059 0.107 0.012 0.01584 0.00054	670 282 0.421 0.0559 0.0071 0.123 0.014 0.01613 0.00067 680 202 0.297 0.0493 0.003 0.1143 0.0072 0.0165 0.00038	189 96 0.508 0.0479 0.0056 0.114 0.013 0.01693 0.00058	489 170 0.348 0.049 0.0032 0.1166 0.0081 0.01722 0.00042 1080 641 0.594 0.0484 0.002 0.1202 0.0061 0.01791 0.00033	284 114 0.401 0.0524 0.0045 0.146 0.012 0.02046 0.0057	488 278 0.57 0.0487 0.0031 0.143 0.009 0.02098 0.00037	211 88.9 0.421 0.0006 0.004 0.163 0.012 0.02299 0.0006 2060 1037 0.503 0.0499 0.0017 0.1634 0.0066 0.02355 0.00041	1640 1670 1.018 0.0497 0.0018 0.1733 0.0068 0.02519 0.00044	221 388 1.756 0.0508 0.0039 0.184 0.015 0.02629 0.00073	240 166 0.692 0.0517 0.0032 0.186 0.011 0.02653 0.00072	444 183 0.412 0.0542 0.0053 0.248 0.022 0.0334 0.0014 113.3 07 0.856 0.0562 0.0030 0.654 0.048 0.0829 0.0010	355 163 0.459 0.0808 0.0032 1.538 0.067 0.136 0.0035	559 95 0.17 0.0988 0.0027 3.87 0.13 0.2828 0.0049	345 22.5 0.065 0.101 0.0024 4.09 0.14 0.2947 0.0042	578 122 0.211 0.1017 0.0022 4.15 0.14 0.2936 0.0043 151 144 0.554 0.1051 0.0028 4.30 0.15 0.2047 0.0054	151 144 0.504 0.100 0.0028 4.59 0.10 0.504/ 0.004 573 599 0993 01053 0.0021 4.48 0.14 0.3079 0.0048	341 144 0.422 0.1066 0.0023 4.52 0.14 0.3072 0.0046

0.40	25.56 4.74 9.42 9.42 12.88 3.77 3.77 13.61 13.61 12.85 3.77 12.85 3.77 12.85 12.	11.65 0.53 0.53 0.53 15.00 15.00 15.00 17.03 17.03 17.03 17.03 17.03 17.03 17.48 17.48 17.48 17.48 17.62 1.748 17.62 1.748 17.01 1.748 17.01 1.748 11.731 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.01 1.748 11.731 1.748 11.7331 11.7331 11.7331 11.7331 11.7331 11.7331 11.73311	9.33 8.60 118.29 25.44 12.42 12.15 4.88
33	$\begin{array}{c} 1.1\\ 1.1\\ 1.2\\ 1.3\\ 2.1\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1$	112 112 112 113 113 113 113 113 113 113	0.65 0.88 0.64 0.75 0.76 0.87 0.87
1764	20.1 20.1 20.2 20.3 20.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	$ \begin{smallmatrix} 18.7\\ 18.7\\ 18.7\\ 18.7\\ 18.7\\ 18.7\\ 18.7\\ 19.5\\ 19.3\\ 19.4\\ 19.5\\ 19.5\\ 19.5\\ 19.5\\ 19.6\\ 19.6\\ 19.6\\ 19.6\\ 19.6\\ 20.3\\ 20.3\\ 20.5\\ 21.4\\ 19.6\\ 21.4\\ 20.5\\ 21.5\\ 21.4\\ 21.4\\ 21.5\\ 2$	19.04 19.56 19.61 19.61 19.88 20.03 20.07
48	610 590 660 660 660 610 610 630 630 650 650 650 650 650 650 650 650 650 65	320 320 410 250 250 190 190 190 250 330 330 330 330 330 330 330 330 330 3	210 270 240 230 280 280 280 280
1764	650 10 170 170 170 320 320 170 170 170 160 550 570 550 570 550 160 160 550 570 570 570 110 110 110 110 110 110 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 1000 1000 1000 1000000	200 200 500 202 202 120 50 140 140 140 140 140 140 190 280 280 280 280 280 280 280 280 280 28	140 150 480 590 330 310 0
30	к. к. к. 4. 9. к. 4. 8. к. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	к. к. к. к. – с, 4, – г. 4, 4, к. к. к. к. к. к. – с, 4, – г. 4, 4, к. к. – к. к. 4, к. к. 4, к. е, к. 4, к. е, к. с, 4, к. е, к. с, б. с, с, с, с, с	2.2 3.2 3.3 8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
1755	2223 2333 22333 22333 22535 225555 225555 225555 225555 225555 225555 2255555 2255555 2255555 22555555	20.6 18.7 19.9 19.6 19.7 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	21 21.4 24 26.3 222.7 21.1
33	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	0.65 0.88 0.64 0.75 0.76 0.87 0.87
1748	20.1 20.2 20.3 20.3 20.3 20.4 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	18.7 18.7 18.7 18.7 18.7 19.3 19.4 19.4 19.5 19.5 19.5 19.5 20.5 20.5 20.5 21.5	19.04 19.56 19.61 19.88 19.88 20.03
0.47351	-0.08651 -0.25265 -0.024506 -0.028287 -0.028287 -0.028281 -0.028281 -0.028281 -0.028281 -0.028281 -0.028281 -0.028281 -0.028582 -0.024855 -0.0285382 -0.028582	0.041056 -0.033027 -0.0050044 0.16053 -0.081477 -0.081477 -0.081477 0.12229 0.1243 0.047045 0.047045 0.047045 0.047045 -0.1277 0.1277 0.12779 0.1077918 0.047045 0.047045 0.047045 0.12777 0.12779 0.12777 0.12779 0.127777 0.127777 0.127777 0.127777 0.127777 0.127777 0.127777 0.127777 0.127777 0.127777 0.127777 0.1277770 0.1277770 0.1277770 0.1277770 0.1277770 0.1277770 0.12777700 0.12777700 0.127777000 0.12777700000000000000000000000000000000	0.046395 -0.14451 -0.026629 0.42449 -0.049578 -0.25974 0.16464
0.0025	$\begin{array}{c} 0.00011\\ 0.00013\\ 0.00015\\ 0.00015\\ 0.00016\\ 0.00016\\ 0.00016\\ 0.00016\\ 0.00013\\ 0.00013\\ 0.00012\\ 0.00012\\ 0.00012\\ 0.00012\\ 0.00012\\ 0.00012\\ 0.00012\\ 0.00012\\ 0.00013\\ 0.00012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.000012\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.00000\\ 0.00000\\ 0.000\\ 0.0000\\ 0.0000\\$	$\begin{array}{c} 0.00013\\ 0.00014\\ 0.00012\\ 0.00028\\ 0.000091\\ 0.000094\\ 0.00016\\ 0.00016\\ 0.00016\\ 0.00012\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.00017\\ 0.00002\\ 0.00017\\ 0.00002\\ 0.00002\\ 0.000017\\ 0.00002\\ 0.00002\\ 0.000017\\ 0.00002\\ 0.00002\\ 0.000017\\ 0.00002\\ 0.000017\\ 0.00002\\ 0.000017\\ 0.00002\\ 0.000017\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ $	0.000078 0.00012 0.000066 0.000068 0.000068 0.00012 0.00012
0.0867	$\begin{array}{c} 0.00101\\ 0.00108\\ 0.00094\\ 0.0011\\ 0.000105\\ 0.00111\\ 0.001034\\ 0.00121\\ 0.00121\\ 0.00121\\ 0.0010117\\ 0.001119\\ 0.001119\\ 0.001119\\ 0.001108\\ 0.001108\\ 0.001018\\ 0.001016\\ 0.001015\\ 0.00105\\ 0.00105\\ 0.00105\\ 0.00105\\ 0.00106\\ 0.00106\\ 0.00106\\ 0.00105\\ 0.00106\\ 0.00106\\ 0.000105\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.000005\\ 0.0005\\ 0.0005\\ 0.00005\\ 0.00005\\ 0.00005\\ 0.00005\\ 0.00005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\$	0.00088 0.00118 0.00131 0.00152 0.00152 0.00142 0.00114 0.00113 0.001128 0.00102 0.001028 0.00119 0.00102 0.00119 0.00119 0.00128 0.000128 0.000128 0.000128 0.000128 0.000128 0.00017 0.00178	0.000924 0.00099 0.001045 0.001063 0.001105 0.001105 0.00116
0.0067	$\begin{array}{c} 0.00017\\ 0.00016\\ 0.00016\\ 0.00012\\ 0.00012\\ 0.00015\\ 0.00015\\ 0.00018\\ 0.00018\\ 0.00019\\ 0.00019\\ 0.00019\\ 0.00016\\ 0.00016\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.00018\\ 0.000018\\ 0.000018\\ 0.000026\\ 0.000018\\ 0.000018\\ 0.000026\\ 0.000018\\ 0.000026\\ 0.0000026\\ 0.0000026\\ 0.000026\\ 0.000026\\ 0.000026\\ 0.000026\\ 0.000026\\ 0.0000026\\ 0.000026\\ 0.000026\\ 0.000026\\ 0.000026\\ 0.000026\\ 0.000$	$\begin{array}{c} 0.00018\\ 0.00017\\ 0.00018\\ 0.00018\\ 0.00015\\ 0.00015\\ 0.00015\\ 0.00015\\ 0.00019\\ 0.00019\\ 0.00019\\ 0.00012\\ 0.00002\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.00$	0.0001 0.00014 0.0001 0.00012 0.00012 0.00012
0.3116	0.00313 0.00314 0.00315 0.00315 0.00317 0.00317 0.00317 0.00325 0.00333 0.00333 0.00333 0.00335 0.00035 0.00335 0.0005 0.0005 0	0.00282 0.00289 0.00291 0.00291 0.00293 0.00295 0.00295 0.00295 0.00301 0.00315 0.00315 0.00315 0.00315 0.00317 0.00317 0.00315 0.00317 0.00317 0.00315 0.00317 0.00332	0.00296 0.00304 0.00305 0.00305 0.00309 0.00311
0.17	$\begin{array}{c} 0.003 \mathrm{I} \\ 0.003 \mathrm{R} \\ 0.004 \mathrm{S} \\ 0.004 \mathrm{S} \\ 0.003 \mathrm{S} \\ 0.003 \mathrm{S} \\ 0.003 \mathrm{S} \\ 0.003 \mathrm{S} \\ 0.004 \mathrm{I} \\ 0.003 \mathrm{S} \\ 0.004 \mathrm{T} \\ 0.004 $	$\begin{array}{c} 0.0038\\ 0.0039\\ 0.00356\\ 0.0037\\ 0.0011\\ 0.0019\\ 0.0049\\ 0.0043\\ 0.0043\\ 0.0043\\ 0.0043\\ 0.0043\\ 0.0043\\ 0.0043\\ 0.0046\\ 0.0036\\ 0.0036\\ 0.0036\\ 0.0046\\ 0.0046\\ 0.0046\\ 0.0046\\ 0.0046\\ 0.0046\\ 0.0042\\ 0.004\\ 0.0042\\$	0.0021 0.003 0.0027 0.0027 0.0033 0.0033
4.64	0.0271 0.0234 0.0234 0.0234 0.0234 0.02345 0.02245 0.02245 0.02245 0.02245 0.02245 0.02245 0.02245 0.02245 0.02245 0.02245 0.0225 0.0225 0.0225 0.0225 0.0255 0.00555 0.0255 0.005555 0.005555 0.005555 0.005555 0.005555 0.005555 0.005555 0.005555 0.005555 0.0055555 0.005555 0.0055555555	0.0206 0.0187 0.0251 0.0187 0.0196 0.0196 0.0235 0.0235 0.0235 0.02235 0.02235 0.02214 0.0214 0.0214 0.02214 0.02219 0.02219 0.02219 0.02219 0.02219 0.02219 0.02219 0.02219	0.0204 0.0213 0.02339 0.0257 0.0257 0.0227 0.0227
0.0031	$\begin{array}{c} 0.017\\ 0.017\\ 0.017\\ 0.013\\ 0.013\\ 0.016\\ 0.016\\ 0.015\\ 0.015\\ 0.016\\ 0.017\\ 0.018\\ 0.012\\ 0.018\\ 0.0018\\ 0.001$	$\begin{array}{c} 0.01\\ 0.01\\ 0.015\\ 0.0082\\ 0.007\\ 0.007\\ 0.011\\ 0.013\\ 0.013\\ 0.0092\\ 0.0093\\ 0.0093\\ 0.0098\\ 0.0098\\ 0.0098\\ 0.013\\ 0.0013\\ 0.0013\\ 0.011\\ 0.0013\\ 0.011\\ 0.0013\\ 0.011\\ 0.00\\ 0.011\\ 0.00\\ 0.0$	0.0055 0.0079 0.0066 0.0081 0.007 0.007
0.1075	$\begin{array}{c} 0.062\\ 0.053\\ 0.056\\ 0.054\\ 0.043\\ 0.054\\ 0.054\\ 0.052\\ 0.052\\ 0.052\\ 0.053\\ 0.053\\ 0.053\\ 0.05\\ 0.053\\ 0.05\\ 0.0$	$\begin{array}{c} 0.053\\ 0.053\\ 0.048\\ 0.0438\\ 0.058\\ 0.058\\ 0.054\\ 0.056\\ 0.054\\ 0.054\\ 0.054\\ 0.054\\ 0.056\\ 0.054\\ 0.058\\ 0.053\\ 0.055\\ 0.053\\ 0$	0.0493 0.0526 0.0582 0.0644 0.0565 0.054 0.054
0.611	$\begin{array}{c} 0.653\\ 1.122\\ 0.619\\ 0.739\\ 0.739\\ 0.733\\ 0.733\\ 0.733\\ 0.733\\ 0.733\\ 0.733\\ 0.733\\ 0.733\\ 0.733\\ 0.733\\ 0.726\\ 0.844\\ 0.844\\ 0.844\\ 0.873\\ 0.726\\ 0.$	$\begin{array}{c} 0.496\\ 0.546\\ 0.546\\ 0.546\\ 0.507\\ 0.507\\ 0.519\\ 0.519\\ 0.519\\ 0.571\\ 0.575\\ 0.571\\ 0.575\\ 0.575\\ 0.575\\ 0.575\\ 0.575\\ 0.565\\ 0.465\\ 0.465\\ 0.661\\ 0.565\\ 0.465\\ 0.565\\ 0.465\\ 0.565\\ 0.$	0.75 0.465 1.254 1.621 0.573 0.511
143	335 587 167 167 583 583 583 982.8 982.8 982.8 982.8 982.8 982.8 982.8 982.8 182 182 182 182 182 182 182 182 182 18	202 202 202 202 201 104 104 104 104 103 103 202 113 203 113 203 113 203 113 203 113 203 113 203 113 203 113 203 113 202 104 104 104 104 104 104 104 104 104 104	1260 337 1530 1430 433 318 318
234	528 528 528 528 528 497 113 113 113 113 113 113 113 113 113 11	407 427 242 7205 7205 7205 7205 7205 7205 7205 721 1319 1319 1318 3383 340 547 547 547 547 547 547 547 547 547 547	1680 724 1220 882 756 582 624

9.51 8.61 23.48	25.81 24.45	30.23	6.03		2.78	4.82	-5.81	2.87	27.17	-3.33	26.54	19.62	23.81	33.79	8.57	35.00	-8.20	-8.20	13.91	21.74	-5.79	0.19	1.82	1.66	00	14.00	-2.94
$\begin{array}{c} 0.87 \\ 0.64 \\ 0.76 \end{array}$	0.68 1.1	0.59	0.77		2.7	0.63	1.6	0.54	2.5	2.3	3.6	0.74	1.7	1.8	2.4	0.8	1.1	1.4	2.2	-	2.4	0.5	2.2	0.58	-		12
20.27 20.38 20.43	20.7 20.7	20.86	21.05		17.5	18.18	18.2	18.26	18.5	18.6	19.1	19.13	19.2	19.2	19.2	19.37	19.8	19.8	19.8	19.8	20.1	20.76	21.6	25.47	t T	7.71	C/1 2/1
210 240 310	190 320	160	220		1300	210	740	210	720	950	1400	250	650	840	1200	230	360	590	850	300	660	190	720	140		050	600 590
260 180 460	660 600	850	330		-1200	100	-480	70	630	-420	-600	560	730	270	-800	970	-110	-220	-90	610	40	20	-80	70	ŝ	00	-250
2.9 3.9	2.8 4.1	3.5	2.3		14	1.9	7.6	2.2	9.6	10	20	б	9.2	14	14	5.5	3.7	6.7	13	3.8	20	1.8	10	1.7	-		4 4
22.4 22.3 26.7	27.9 27.4	29.9	22.4		18	19.1	17.2	18.8	25.4	18	26	23.8	25.2	29	21	29.8	18.3	18.3	23	25.3	19	20.8	22	25.9	ġ	07	C.12
0.87 0.64 0.76	0.68 1.1	0.59	0.77		2.7	0.63	1.6	0.54	2.5	2.3	3.6	0.74	1.7	1.8	2.4	0.8	1.1	1.4	2.2	-	2.4	0.5	2.2	0.58	:		- 2
20.27 20.38 20.43	20.7 20.7	20.86	21.05		17.5	18.18	18.2	18.26	18.5	18.6	19.1	19.13	19.2	19.2	19.2	19.37	19.8	19.8	19.8	19.8	20.1	20.76	21.6	25.47	t	7.11	0/1 2/1
0.077116 -0.086021 0.18542	0.36723 -0.11518	-0.15839	0.16572		0.075515	-0.036792	-0.12659	0.55472	-0.099633	-0.13795	0.041073	-0.011889	-0.10361	-0.10494	0.14806	0.028807	-0.0042309	0.048303	-0.10849	0.099548	0.16879	-0.033137	0.092403	0.25817		0.16924	0.011109
$\begin{array}{c} 0.00013\\ 0.000081\\ 0.000094\end{array}$	0.00011	0.000078	0.0001		0.00041	0.000064	0.00024	0.000033	0.00027	0.00022	0.00048	0.000061	0.00017	0.00029	0.00032	0.00012	0.00011	0.00022	0.00026	0.000083	0.00089	0.000071	0.0003	0.000099		C1000.0	0.00014
0.00103 0.001148 0.001029	0.00132 0.00117	0.001216	0.00121		0.00113	0.000926	0.00105	0.000916	0.00112	0.00099	0.00176	0.000922	0.00088	0.00097	0.00117	0.00131	0.00098	0.00102	0.0011	0.001111	0.00088	0.001091	0.00128	0.001307		0.000.0	0.00072
$\begin{array}{c} 0.00014 \\ 0.0001 \\ 0.00012 \end{array}$	0.00011 0.00018	0.000092	0.00012		0.00042	0.000098	0.00026	0.000084	0.00039	0.00036	0.00057	0.00012	0.00027	0.00028	0.00038	0.00012	0.00017	0.00022	0.00035	0.00016	0.00038	0.000078	0.00034	0.000091	010000	0.00018	0.00016
0.00315 0.00317 0.00317	0.00322 0.00321	0.003242	0.00327		0.00272	0.002824	0.00282	0.002837	0.00288	0.00288	0.00296	0.00297	0.00299	0.00298	0.00299	0.00301	0.00308	0.00307	0.00307	0.00307	0.00312	0.003226	0.00335	0.003959		070070	0.00272
$\begin{array}{c} 0.0025 \\ 0.0029 \\ 0.0039 \end{array}$	0.0029 0.0041	0.0036	0.0024		0.014	0.0019	0.0075	0.0022	0.0098	0.01	0.021	0.0031	0.0093	0.015	0.015	0.0057	0.0037	0.0067	0.012	0.0039	0.029	0.0019	0.0097	0.0017		0.0041	0.0043
0.0223 0.0223 0.0268	0.0279 0.0274	0.0299	0.0224		0.019	0.019	0.0175	0.0187	0.0257	0.018	0.028	0.0237	0.0256	0.03	0.022	0.0299	0.0183	0.0184	0.022	0.0253	0.019	0.0207	0.0224	0.0259		20.0	0.0206
$\begin{array}{c} 0.0058\\ 0.0065\\ 0.009\end{array}$	0.0056 0.0096	0.007	0.006		0.041	0.0056	0.022	0.0054	0.028	0.035	0.069	0.0084	0.028	0.043	0.048	0.013	0.01	0.018	0.046	0.0089	0.058	0.0046	0.027	0.0032		0.01/	0.018
0.0537 0.0492 0.0615	0.063 0.0601	0.0669	0.0542		0.039	0.0484	0.053	0.0487	0.08	0.05	0.127	0.0577	0.082	0.08	0.075	0.072	0.045	0.049	0.082	0.0596	0.045	0.047	0.061	0.0472		0.034	0.042
0.603 0.747 0.859	$0.584 \\ 0.457$	1.487	0.716		0.744	1.163	0.74	2.445	0.812	1.15	0.767	2.033	0.963	0.859	1.068	0.527	1.633	0.772	1.104	1.298	1.281	0.774	0.883	0.388		0./30	0.58
396 881 562	788 158	4640	713		29	1018	57	1538	56	69	23	856	79	55	47	291	276	98	53	388	333	621	53	421		707	129
657 1180 654	1350 346	3120	966		39	875	LL	629	69	60	30	421	82	64	44	552	169	127	48	299	260	802	60	1085	t	C17	305 243
Zircon_73 Zircon_71 Zircon_88	Zircon_83 Zircon_89	Zircon 90	Zircon_76	RS-14	Zircon_45	Zircon_54	Zircon_51	Zircon_49	Zircon_35	Zircon_46	Zircon_47	Zircon_40	$Zircon_31$	Zircon_39	Zircon_50	Zircon_41	Zircon_32	Zircon_34	Zircon_48	Zircon_55	Zircon 56	Zircon_57	Zircon 33	Zircon_58	HLP-07	Zircon_/0	Zircon_/4 Zircon_79

	18.60	-2.94	6.38	13.17	19.46	4.07	4.26	9.09	12.52	14.22	8.96	8.96	14.49	12.57	1.60	9.31	10.34	19.13	5.56	13.02	5.53	7.80	4.55	5.94	24.22	8.88	12.16	7.48
	-	1.2	1.4	1.1	1.1	1.1	1	1.2	0.83	1.1	1.5	1.2	1.3	0.99	1	1.2	0.9	1.3	1.1	1.1	1.6	1.2	1.5	1.5	1.3	-	1.1	4.3
	17.5	17.5	17.6	17.8	17.8	17.9	18	18	18.02	18.1	18.3	18.3	18.3	18.36	18.4	18.5	18.56	18.6	18.7	18.7	18.8	18.9	18.9	19	19.4	19.5	19.5	59.4
2	600	590	650	570	630	600	590	630	630	620	660	640	760	580	640	620	550	700	580	720	790	650	650	620	640	620	680	570
5	200	-250	-300	110	620	-90	-160	20	270	70	190	140	300	70	-10	-30	250	380	200	430	-10	140	10	-210	340	340	400	260
	4	4.3	5.7	3.6	3.9	3.6	3.7	4.2	б	3.7	6.1	4.7	5.6	3.4	4.1	4.5	2.8	4.6	3.1	4.4	7.2	4.1	4.6	5.5	3.7	4.2	5.5	6.4
	21.5	17	18.8	20.5	22.1	17.2	18.8	19.8	20.6	21.1	20.1	20.1	21.4	21	18.7	20.4	20.7	23	19.8	21.5	19.9	20.5	19.8	20.2	25.6	21.4	22.2	64.2
	-	1.2	1.4	1.1	1.1	1.1	-	1.2	0.83	1.1	1.5	1.2	1.3	0.99	-	1.2	0.9	1.3	1.1	1.1	1.6	1.2	1.5	1.5	1.3	-	1.1	4.3
1	17.5	17.5	17.6	17.8	17.8	17.9	18	18	18.02	18.1	18.3	18.3	18.3	18.36	18.4	18.5	18.56	18.6	18.7	18.7	18.8	18.9	18.9	19	19.4	19.5	19.5	59.4
	0.22872	0.011109	0.32798	0.36365	0.010474	-0.078402	0.036973	0.090776	0.065512	-0.23835	-0.063061	-0.081947	-0.03283	0.17773	-0.048798	-0.054547	0.30219	0.33952	-0.0074486	-0.17722	-0.31373	-0.052037	0.081109	0.039747	-0.13238	0.098282	-0.01863	0.29983
	0.00017	0.00014	0.00017	0.00015	0.00014	0.00015	0.00013	0.00021	0.00013	0.00015	0.00025	0.00013	0.00023	0.00015	0.00017	0.0002	0.000089	0.00016	0.000095 -	0.00013	0.00028	0.00018	0.00013	0.0002	0.00017	0.0001	0.00015	0.00039
	0.00088	0.00072	0.00092	0.00099	0.00087	0.00084	0.00083	0.00101	0.00078	0.0009	0.00099	0.00073	0.00104	0.00094	0.00088	0.001	0.000735	0.00093	0.000769	0.00078	0.00092	0.00075	0.0007	0.00091	0.00104	0.00092	0.00084	0.00233
0.0000	0.00016	0.00019	0.00022	0.00018	0.00017	0.00018	0.00016	0.00019	0.00013	0.00017	0.00024	0.00019	0.0002	0.00015	0.00016	0.00019	0.00014	0.0002	0.00017	0.00017	0.00025	0.00019	0.00024	0.00024	0.00021	0.00016	0.00017	0.00067
	0.00272	0.00272	0.00273	0.00276	0.00276	0.00279	0.00279	0.0028	0.0028	0.00282	0.00284	0.00284	0.00284	0.00282	0.00286	0.00287	0.00288	0.00288	0.00291	0.00291	0.00291	0.00293	0.00293	0.00294	0.00301	0.00303	0.00303	0.00926
	0.004	0.0043	0.0058	0.0036	0.0039	0.0036	0.0037	0.0042	0.0031	0.0037	0.0062	0.0047	0.0057	0.0035	0.0041	0.0045	0.0028	0.0046	0.0031	0.0045	0.0073	0.0041	0.0046	0.0056	0.0037	0.004	0.0055	0.0068
	0.0206	0.017	0.0189	0.0197	0.0221	0.0172	0.0187	0.0198	0.0196	0.0211	0.0201	0.0202	0.0215	0.021	0.0187	0.0204	0.0202	0.023	0.0198	0.0215	0.02	0.0205	0.0198	0.0193	0.0256	0.0214	0.0222	0.0656
	0.018	0.017	0.021	0.016	0.021	0.016	0.015	0.017	0.018	0.017	0.024	0.019	0.025	0.016	0.018	0.019	0.016	0.023	0.017	0.023	0.038	0.019	0.018	0.019	0.019	0.021	0.026	0.015
	0.053	0.042	0.048	0.059	0.068	0.046	0.045	0.049	0.057	0.05	0.05	0.051	0.068	0.049	0.051	0.053	0.052	0.058	0.053	0.066	0.055	0.055	0.051	0.047	0.058	0.056	0.065	0.052
	0.423	0.58	0.949	0.59	0.6	0.553	0.751	0.462	0.722	0.611	0.622	0.787	0.455	0.608	0.698	0.566	1.323	0.428	1.102	0.586	0.379	0.437	0.847	0.618	0.531	1.557	0.547	0.582
	129	141	188	227	252	189	325	139	275	243	219	210	81.9	248	236	162	729	137	542	195	64	116.2	216	119.3	169	914	156	283
1	305	243	198	385	420	342	433	301	381	398	352	267	180	408	338	286	551	320	492	333	169	266	255	193	318	587	285	486
	Zircon_74	Zircon_79	Zircon_96	Zircon_93	Zircon_103	Zircon_98	Zircon_73	Zircon_100	Zircon_81	Zircon_95	Zircon_71	Zircon_83	Zircon_104	Zircon_91	Zircon_80	Zircon_92	Zircon_84	Zircon_101	Zircon_87	Zircon_105	Zircon_72	Zircon_86	Zircon_90	Zircon_75	Zircon_77	Zircon_82	Zircon_102	Zircon_89

		Anexo III A	A. Planos de estratificación		
Rumbo	Echado	Rumbo del echado	Tipo de roca	UTM este	UTM norte
82	53	SE	Ignimbrita lítica	604843	2332211
74	36	SE	Areniscas	586698	2334377
105	54	SW	Ignimbrita	586698	2334377
50	40	SE	Ignimbrita	586000	2335868
74	33	SE	Ignimbrita	585264	2336106
160	0	SW	Ignimbrita	595700	2338300
160	36	SW	ignimbrita lítica	595718	2338314
130	22	SW	Aeniscas	595660	2338652
107	59	SW	Ignimbrita	593800	2339800
130	33	SW	Areniscas y tobas	595301	2340419
107	32	SW	Areniscas y tobas	595301	2340419
100	42	SW	Areniscas y tobas	595301	2340419
155	40	SW	Areniscas tobáceas	595296	2341262
290	21	NW	Ignimbrita	583686	2341476
190	26	NW	Ignimbrita lítica	595280	2341525
70	21	SE	Ignimbrita	583300	2341644
80	23	SE	ignimbrita	583545	2341679
65	25	SE	ignimbrita	583165	2342191
321	22	NE	Ignimbrita	583213	2342208
115	38	SW	ignimbrita	583402	2342263
90	30	S	Ignimbrita	583718	2342609
107	20	SW	ignimbrita verde	577000	2343000
120	64	SW	Granito	584082	2343262
126	21	SW	Areniscas, conglomerados, tobas	578479	2343370
160	0	SW	Ignimbrita	593353	2343720
285	25	NE	ignimbrita verde	593584	2345034
285	35	NE	Ignimbrita cristalina	593544	2345232
178	40	SW	Aeniscas	589626	2346466
184	30	NW	ignimbrita	589626	2346466
16	43	SE	Ignimbrita	594803	2347023
108	14	SW	Ignimbrita	594980	2347750
150	41	SW	Ignimbrita	588674	2347997

2	34	SE	Areniscas, conglomerados, tobas	594505	2348525
305	35	NE	Aeniscas	594447	2348723
215	25	NW	ignimbrita	594076	2349572
145	61	SW	Areniscas, conglomerados, tobas	594189	2350141
205	24	NW	Areniscas, conglomerados, tobas	594189	2350141
245	40	NW	Areniscas, conglomerados, tobas	594189	2350141
190	21	NW	ignimbrita	593108	2350754
75	30	SE	Ignimbrita lítica	596636	2352917

			Anexo III B.	Diques		
					Localizació	n
Rumbo	Echado	Rumbo del echado	Respaldo en falla	Tipo de roca	UTM este	UTM norte
150	75	NW		dique máfico	Dominio no	rte
135	70	SW	Normal	dique máfico	San Dadra A	nalaa
185	50	NW	Normal	dique máfico	Sall I euro P	liaico
212	40	NW		dique máfico	594922	2347563
275	70	NE		dique intermedio	593150	2344845
335	57	NE		dique intermedio	593815	2346041
222	31	NW		dique máfico	592524	2345235
112	55	NW		dique félsico	592524	2345235
160	75	SW		dique félsico	592524	2345235
196	65	Ν		dique intermedio	592524	2345235
70	40	SE		dique intermedio	594596	2351296
348	60	NE	Normal	dique intermedio	594189	2350141
125		SW		dique félsico		·
265	80	NW		dique félsico	Can Dadua A	
334	82	NE		dique félsico	San Pedro A	maico
190	33	NW		dique máfico		
42	35	SE		dique máfico	577000	2343000
30	64	SE		dique máfico	577000	2343000
260	70	NW		dique máfico	593224	2343771
190	72	NW		dique intermedio		
178	54	SW		dique máfico	606297	2336133
183	65	NW		dique máfico	606297	2336134
270	64	Ν		dique intermedio	606939	2335427
80	80	SE		dique intermedio	606939	2335428
245	60	NW		dique intermedio	606939	2335429
130	80	SW		dique máfico	607317	2334296
305	66	NE		dique félsico	607317	2334297
315	83	NE		dique máfico	607317	2334298
270	43	N		dique félsico	607227	2333890
150	50	SW		dique máfico	606713	2332677
145	45	SW		dique máfico	606713	2332678
128	25	SW		dique félsico	606713	2332679

336	86	NE	dique máfico	606642	2332166
305	83	NE	dique máfico	606642	2332167
335	75	NE	dique máfico	606642	2332168
260	70	NW	dique intermedio	593193	2343978

	Anexo III C. Fallas											
				Estación	1							
Rumbo	Echado	Rake	Rumbo del	Tipo de	Tipo de	UTM	UTM					
			echado	falla	roca	Este	Norte					
121	60	78	SW	N	ignimbrita	595580	2333184					
138	72		SW	N	zona de intrusivos	606757	2332567					
					zona de intrusivos							
115	75		SW		zona de intrusivos	607272	2334183					
330	55		NE	N	zona de intrusivos							
140	51	80	SW	N	zona de intrusivos							
170	85	40	SW	L	zona de intrusivos							
13	42		SE	N	zona de intrusivos							
156	85		SW	N	zona de intrusivos							
316	51	98	NE	N	zona de intrusivos							
109	82	125	NW	L	zona de intrusivos							
358	64	112	NE	N	zona de intrusivos							
210	67	35	NW	L	zona de intrusivos							
308	56	125	NE	N	zona de intrusivos							
31	69	133	SE	N	zona de intrusivos							
340	90	45	NE	L	zona de intrusivos							
315	83	82	NE	N	zona de intrusivos							
215	55	130	NW	N	zona de intrusivos							
25	85	85	SE	N	zona de intrusivos							
2	60	73	SE	N	zona de intrusivos	606625	2331727					
283	64	97	NE		zona de intrusivos	606625	2331727					
235	72		NW		zona de intrusivos	606625	2331727					
45	84	140	SE		Ignimbrita	607357	2334099					
355	68		NE		zona de intrusivos	606967	2334667					
22	79		SE	N	Zona de intrusivos							

Estación 2

Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte
55	60		SE		Granito		
9	77	118	SE				
255	79		NW				
35	55	90	SE				
85	78		SE	DN			
265	57		NW		Domo dacítico		
250	40	95	NW	Ν	Ignimbrita lítica	604300	2331156
325	70	50	NE	Ν	Ignimbrita lítica	606432	2331112
142	50	70	SW	Ν	Ignimbrita lítica	606432	2331112
				Estación	3		

Rumbo	Echado	Pitch	Rumbo del	Tipo de	Tipo de	UTM	UTM
			echado	falla	roca	Este	Norte
25	31		SE			586698	2334377
1	37		SE			586698	2334377
40	80	145	SE	SN	Ignimbrita con arenisca roja	586698	2334377
65	42		SE	LS		586698	2334377
158	88		SW			586698	2334377
110	59		SW			586698	2334377
65	61		SE		roca piroclastica estratificada	585264	2336106
20	60		SE			586717	2334180
60	15		SE			586717	2334180
50	34		SE			586717	2334180
355	18		NE			586717	2334180
5	42		SE			586717	2334180
42	38		SE			586717	2334180
34	49		SE			586717	2334180
323	72		NE			586717	2334180
70	60	158	SE			586717	2334180
62	46		SE			586717	2334180
72	58		SE			586717	2334180
20	85		SE			586717	2334180
180	90		W			586717	2334180

Estación 4												
Rumbo	Echado	Pitch	Rumbo del	Tipo de	Tipo de	UTM	UTM					
			echado	falla	roca	Este	Norte					
320	60	120	NE	N	Ignimbrita o toba lítica	583598	2341467					
20	76	140	SE	N	Ignimbrita o toba lítica	583598	2341467					
355	60	140	NE	L	Ignimbrita	583801	2341561					
265	35		NW		Ignimbrita rojiza	583300	2341644					
275	39	70	NE	N	Ignimbrita rojiza	583300	2341644					
288	36	78	NE	N	Ignimbrita rojiza	583300	2341644					
255	31		NW		Ignimbrita rojiza	583300	2341644					
195	85	20	NW	L	Ignimbrita rojiza	583628	2341673					
252	58	12	NW	LS		583518	2341693					
350	77	145	NE	LD		583518	2341693					
89	70	110	SE	N		583210	2341791					
340	60	20	NE	SN	Toba litica	583309	2341814					
335	85	22	NE	SN	Toba litica	583309	2341814					
282	68	115	NE	N		583258	2341847					
282	68	115	NE	N	Ignimbrita	583259	2341849					
295	70	135	NE	N	Ignimbrita	583250	2341876					
270	17	90	N	N	Ignimbrita	583250	2341878					
90	70	110	S	N	Ignimbrita	583215	2341927					
340	60	20	NE	LN	Ignimbrita	583173	2341978					
252	58	12	NW	SN		583173	2341978					
330	63	60	NE	N	Ignimbrita	583234	2341986					
260	33		NW		ignimbrita cristalina	583234	2341986					
253	30		NW		ignimbrita cristalina	583234	2341986					
136	76	155	SW	L	ignimbrita cristalina	583234	2341986					

170	83	64	SW	N		583482	2341999
174	80	40	SW	L		583482	2341999
305	35	91	NE	N		583482	2341999
255	55		NW		ignimbrita cristalina	583482	2341999
297	41		NE		ignimbrita cristalina	583482	2341999
255	45	90	NW	N	ignimbrita cristalina	583153	2342034
107	68	5	SW	L		583161	2342035
17	68	5	SE	LN	Ignimbrita	583161	2342035
297	29		NE		Ignimbrita	583458	2342165
350	30	85	NE	N	Ignimbrita	583444	2342174
285	35		NE		Ignimbrita	583146	2342198
350	77	145	NE	N		583209	2342204
270	52	110	N	N	Ignimbrita	583213	2342208
135	78	155	SW	L	Ignimbrita	583213	2342208
200	90	159	NW	L	Ignimbrita	583409	2342213
215	30	90	NW	I (?)	Ignimbrita	583409	2342213
200	25		NW	LS	Ignimbrita	583235	2342259
289	63		NE		Ignimbrita	583235	2342259
260	60	20	NW	L	Ignimbrita	583402	2342263
260	60	20	NW	L	Ignimbrita	583406	2342264
5	76	145	SE	L	Ignimbrita	583406	2342264
115	38		SW		Ignimbrita	583406	2342264
238	43		NW		Ignimbrita	583409	2342305
260	40		NW		Ignimbrita	583409	2342305
200	90	159	NW	L	Ignimbrita	583259	2342313
221	68		NW	Ι	ignimbrita-riolita	583667	2342326
260	63	85	NW	Ι	ignimbrita-riolita	583667	2342326
260	60		NW	N	Ignimbrita	583621	2342544
265	70	80	NW	N	Ignimbrita	583621	2342544
265	70	80	NW	N	Ignimbrita	583625	2342550
270	45		N		Ignimbrita	583701	2342609
265	45		NW		Ignimbrita	583652	2342638
240	20	90	NW	N	Ignimbrita	577000	2343000
145	80		SW		Ignimbrita	577000	2343000

	Estación 5												
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte						
350	42		NE	NS	Capas rojas e ignimbritas	594852	2338248						
98	89	90	SW	N*I	Capas rojas	595193	2338555						
345	40	5	NE	L		595193	2338555						
245	10	00		NT		505102	2220555						
345	40	90	NE	IN		595193	2338555						
263	64	50	NW	N	Ignimbrita	595532	2338852						
85	50	130	SE	N	Ignimbrita	595532	2338852						
40	85	115	SE	N	Ignimbrita	595532	2338852						
270	73	100	N	N	Ignimbrita								
30	63		SE	N									
30	85	70	SE	I*									
70	58		SE										
250	39	83	NW	N	Ignimbrita	595930	2336445						
285	55	37	NE	N	Ignimbrita	595930	2336445						

270	63	38	N	N	Ignimbrita	595930	2336445
330	67	90	NE	N	Ignimbrita	595718	2338314

	Estación 6											
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM Este	UTM Norte					
230	45	90	NW	N	ignimbrita rojiza con pomez verde	594807	2339465					
330	66		NE	N	contacto ign roja con ign poco soldada	594945	2339611					
180	80	60	W	N	contacto ign roja con ign poco soldada	594945	2339611					
315	36		NE	N	areniscas con tobas e ignimbritas	595301	2340419					
280	39		NE	N	areniscas con tobas e ignimbritas	595301	2340419					
115	79		SW	N	areniscas con tobas e ignimbritas	595301	2340419					
244	70		NW	N	areniscas con tobas							
286	71		NE	N	Ignimbrita	595293	2340720					
285	80	92	NE	N	Ignimbrita	595293	2340720					

				Estación 7			
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM Este	UTM Norte
125	62	80	SW	N	Toba	595339	2341106
233	32	160	NW	L	Arenisca y toba	595339	2341106
170	70		SW		Contacto por falla	595339	2341106
75	55	60	SE	N*	Ignimbrita reomórfica	595339	2341106
75	76	60	SE	N*	Ignimbrita reomórfica	595339	2341106
70	70		NE		Ignimbrita reomórfica	595339	2341106
355	70	20	NE	L	Ignimbrita reomórfica	595339	2341106
15	55	117	SE	N*	Ignimbrita reomórfica	595339	2341106
80	90	100	SE	N*	Ignimbrita reomórfica	595339	2341106
110	50	0	SW	L	Ignimbrita reomórfica	595339	2341106
45	46	160	SE	L	Ignimbrita reomórfica	595339	2341106
140	70	90	SW	N		595305	2341254
250	40		NW	N		595296	2341262
240	30	135	NW	L	Arenisca y toba	595285	2341291
80	65	90	SE	N		595315	2341344
220	85	80	NW	N		595338	2341373
225	85	90	NW	N		595338	2341373

335	65		NE	N		595333	2341387
320	75		NE	N		595316	2341421
65	65		SE			595355	2341430
55	60		SE	N		595356	2341449
230	81	120	NW	N	Ignimbrita reomórfica	594732	2339036
290	80		NE	N	Ignimbrita reomórfica	594732	2339036
340	55	60	NE	N	Ignimbrita reomórfica	594732	2339036
120	52	45	SW	N	Ignimbrita lítica	595280	2341525

	Estación 8											
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM Este	UTM Norte					
293	74	110	NE	N*	dacita-riodacita	595582	2342822					
254	72	110	NW	N*	dacita-riodacita	595582	2342822					
307	80	75	NE		dacita-riodacita	595582	2342822					
310	57		NE		Ignimbrita reomórfica	594631	2342822					

				Estación	9		
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM Este	UTM Norte
262	79		NW		ignimbrita reomórfica	593990	2342868
25	48		SE		Ignimbrita	594065	2342899
86	78		SE			594065	2342899
20	65		SE			594264	2343298
115	80		SW			594264	2343298
15	65	1	SE		ignimbrita de dos líticos	594209	2343409
216	67	1	NW		ignimbrita de dos líticos	594209	2343409
195	50		NW	N	ignimbrita de dos líticos	594209	2343409
40	85		SE	N	ignimbrita de dos líticos	594209	2343409
8	75		SE	N	ignimbrita de dos líticos	594209	2343409
305	60		NE	N	ignimbrita de dos líticos	594209	2343409
190	70	170	NW	L		592283	2344617
50	48		SE		Ignimrbrita reomórfica		
10	50		SE		Ignnimbrita		
240	55	100	NW	N		592893	2343294
290	55	120	NE	N	Ignnimbrita	592966	2343355

340	81	45	NE	N	Ignnimbrita	594122	2343296

				Estación 10			
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte
258	78		NW		Ignimbrita eutaxítica	588035	2347605
198	80	171	NW	L	Ignimbrita eutaxítica	588035	2347605
80	90	25	SE	L	Toba	588712	2348031
340	55	100	NE	N	Toba	589744	2346455
125	28	20	SW	L	Areniscas	589626	2346466
0	48	105	Е	N	Ignimbrita	589626	2346466
115	78	95	SW	N	Ignimbrita	589626	2346466
155	36		SW		Ignimbrita	589626	2346466
28	20		SE		Ignimbrita	589626	2346466
161	32	90	SW	N	Ignimbrita	589626	2346466
9	20		SE		Ignimbrita	589626	2346466
166	80	40	SW	LN	Ignimbrita	589626	2346466
180	65	95	W	N	Ignimbrita	589698	2346467

				Estación 11	l		
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte
30	25	42	SE	L	Toba lítica	591229	2345378
36	55	25	SE	L	Toba lítica	591229	2345378
28	42	62	SE	N	Toba lítica	591229	2345378
40	45	62	SE	N	Toba lítica	591229	2345378
261	50	123	NW	Ι	Toba lítica	591229	2345378
340	45	40	NE	SN	Toba lítica	591071	2345525

				Estación 12	2		
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte
185	55	0	NW	L	Granito	592206	2344629
230	65	130	NW	Ι	Ignmbrita	592213	2344640
190	70	150	NW	S	Ignmbrita	592210	2344656
220	68	125	NW	Ι	Granito	592524	2345235
226	39	136	NW	IS	Ignmbrita	592524	2345235
340	38	16	NE	LD	Ignmbrita	592524	2345235
220	32		NW	I	Ignmbrita	592524	2345235

	Estación 13									
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte			
100	52	120	SW	N	Ignimbrita	593150	2344845			
290	16		NE		Toba cristalina	593398	2344859			
300	68	160	NE	LD	Toba cristalina	593398	2344859			
245	44	140	NW	NL	Toba cristalina	593398	2344859			

132	64	19	SW	LD	Toba cristalina	593398	2344859
18	30	35	SE	LN	Toba cristalina	593398	2344859
175	90	90	SW	N	Toba cristalina	593398	2344859
254	65	100	NW	N*	Toba verde	593038	2344860
30	72	110	SE	Ι	Ignimbrita	593849	2344956
332	79	110	NE	Ι	Ignimbrita	593849	2344956
290	88	70	NE	N	Ignimbrita	593849	2344956
333	87	143	NE	LS	Ignimbrita	593849	2344956
310	50		NE	N	Ignimbrita	593116	2345043
265	20	115	NW	N	Ignimbrita	593122	2345048
120	75	160	SW	D	Ignimbrita	593426	2345049
240	35	30	NW	L	Ignimbrita	593361	2345050
248	85	50	NE	NS	Toba verde	593321	2345056
260	45	140	NW	L	Ignimbrita	593340	2345107
54	19	89	SE	Ι	Ignimbrita		
190	45	160	NW	L	Ignimbrita		
300	40	120	NE	Ι	granito (?)		
286	40	100	NE	Ι	granito (?)		
130	55	130	SW	Ι	granito (?)		
180	26		W		Ignimbrita	591971	2345507
290	44		NE		Ignimbrita	591971	2345507
120	28		SW		Ignimbrita	591971	2345507
290	54		NE		Ignimbrita	591971	2345507
60	41		SE		Ignimbrita	591971	2345507
165	55		SW		Ignimbrita	591971	2345507
56	56		SE		Ignimbrita	591971	2345507
45	44		SE		Ignimbrita	591971	2345507
10	47		SE		Ignimbrita	591971	2345507
320	77		NE		Ignimbrita	591971	2345507
322	77		NE		Ignimbrita	591971	2345507
316	80		NE		Ignimbrita	591971	2345507
328	85		NE		Ignimbrita	591971	2345507
210	60		NW		Ignimbrita	591971	2345507
156	87		SW		Ignimbrita	591971	2345507
170	65		SW		Ignimbrita	591971	2345507
156	83		SW		Ignimbrita	591971	2345507

				Estación 14			
Rumbo	Echado	Pitch	Rumbo del	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte
			echado		1000	2.500	
252	82	128	NW	Ι	Ignimbrita	593838	2345685
330	75	120	NE	I*	Ignimbrita	593838	2345685
85	35	145	SE	Ι	Granito	593838	2345685
245	28	125	NW		Granito	593838	2345685
187	32		NW		Granito	593838	2345685
305	30	115	NE	N	Ignimbrita	593792	2345711
330	75	120	NE	Ι	Ignimbrita	593794	2345714
255	35	40	NW	L	Ignimbrita	593795	2345890
315	50	90	NE	Ι	Ignimbrita	593815	2346041
5	33	140	SE	Ι	Ignimbrita	593815	2346041
270	65	115	N	N	Ignimbrita	593798	2346238
305	50	120	NE	N	Ignimbrita	593790	2346240
270	45	145	N	LN	Ignimbrita	593768	2346245

250	80	80	NW	I	Ignimbrita	593818	2346253
305	55	110	NE	N	Ignimbrita	593821	2346255
				Estación 15			
Rumbo	Echado	Pitch	Rumbo	Tipo de	Tipo de	UTM.	UTM.
			del echado	falla	roca	Este	Norte
335	63	143	NE	L	Ignimbrita	594777	2346447
240	60	40	NW	L	Ignimbrita	594777	2346447
225	60	135	NW	LN	Ignimbrita	594777	2346447
92	68	150	SW	SN*	Ignimbrita	594777	2346447
260	80	135		LI*	Ignimbrita	594784	2346618
354	76	125	NE	N	Ignimbrita	594766	2346634
225	60	135		LN*	Ignimbrita	594748	2346649
60	54		SE		Ignimbrita	594700	2346650
123	69		SW		Ignimbrita	594750	2346994
285	54	33	NE	L	Ignimbrita	594803	2347023
270	50	45	Ν	LN	Ignimbrita	594803	2347023
290	68		NE	N*	Ignimbrita	594806	2347072
262	47	90	NW	N	Ignimbrita	594806	2347072
228	44	176	NW	L	Ignimbrita	594806	2347072
254	40		NW		Ignimbrita	594806	2347072
315	50	110	NE	Ι	Ignimbrita	594898	2347108
315	50	110	NE	IS	Ignimbrita	594842	2347119
260	75	70	NW	N	Ignimbrita	594694	2347205
285	59	33	NE	L	Ignimbrita	594762	2347219
10	88	43	SE	LN	Ignimbrita	594712	2347248
265	74	40		LI	Ignimbrita	594712	2347248
265	85	120	NW	L	Ignimbrita	594713	2347253
162	47	90	SW	N	Ignimbrita	594751	2347322

				Estación 16			
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte
135	42	124	SW	*	Toba	594934	2347584
170	62	80	SW	L*	Toba	594934	2347584
155	40	105	SW	L*	Toba	594934	2347584
150	48		SW		Toba	594980	2347750
310	90	150	NE	L	Toba	594882	2347849
240	75	1	NW	L	Toba	594906	2347885
90	80	150	S	DN	Toba	594854	2347953
200	45	125		N	Ignimbrita	594884	2347985
95	65	50	SW	N	Ignimbrita	594884	2347985

	Estación 17									
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte			
230	32		Е		Ignimbrita	594520	2348376			
220	60	35	NW	LD	Arenisca	594505	2348525			
220	60	35	NW	LD	Arenisca	594451	2348712			
135	65	12	SW	LN	Ignimbrita	594440	2348749			
175	50	90	SW	N	Ignimbrita	594445	2348772			

185	40	65	NW	Ν	Ignimbrita	594360	2348904

Estación 18							
Rumbo	Echado	Pitch	Rumbo del echado	Tipo de falla	Tipo de roca	UTM. Este	UTM. Norte
40	55		SE	N	Ignimbrita	594137	2349539
280	75	120	NE	N	Ignimbrita	594076	2349572
6	88	65	NW	N	Ignimbrita	594189	2350141
0	69	50	E	N	Areniscas y tobas	594189	2350141
282	59	112	NE	N	Areniscas y tobas	594189	2350141
324	75	85	NE	N	Areniscas y tobas	594189	2350141
40	50		SE		Toba lítica	594189	2350141
135	54	82	SW	N	Toba lítica	594189	2350141
45	85	160	NW	L	Toba lítica	594189	2350141

Estación 19							
Rumbo	Echado	Pitch	Rumbo	Tipo de	Tipo de	UTM.	UTM.
			del	falla	roca	Este	Norte
			echado				
340	60	75	NE	NS	Ignimbrita	594553	2351483
140	50	70	SW	N	Ignimbrita	595524	2351989
140	54	70	SW	ND	Arenisca	596636	2352917
170	50	84	SW	N	Arenisca	596636	2352917
122	82		SW		Arenisca	596636	2352917
220	51	58	NW	ND	Arenisca	596636	2352917
140	50	110	SW	N	Ignimbrita	596636	2352917
331	71	62	NE	N	Areniscas		
319	84	60	NE	N	Areniscas		
210	55		NW	N	Areniscas		
215	45		NW	N	Areniscas		
50	60		SE	N	Areniscas		
265	35	90	NW	N	Areniscas		
270	48		N	N	Areniscas		

Anexo IV. Localización geográfica de muestras						
Muestra	UTM este	UTM norte	Tipo de roca			
SPA1	608245	2339571	Andesita/basalto			
SPA2	606400	2340486	Toba			
SPA3	607791	2337466	Andesita			
SPA4	594824	2339783	Andesita			
SPA5	592843	2345049	Granito subvolcánico			
SPA6	594689	2346710	intrusivo subvolcánico			
SPA7	594563	2348657	Ignimbrita			

SPA8	594563	2348657	Andesita	
SPA9	594481	2342525	Riolita	
SPA10	595014	2336996	Ignimbrita	
SPA11	608959	2337582	Ignimbrita	
SPA12	608691	2337553	Ignimbrita	
SPA13	608214	2337620	Toba	
SPA13-a	608214	2337620	Toba	
SPA14	607456	2337197	Toba vítrea	
SPA15	606388	2336681	Toba	
SPA16	606145	2336535	Toba vítrea	
SPA17-a	605934	2336224	Andesita	
SPA17-b	605934	2336224	Andesita	
SPA18-a	606297	2336133	Microbrecha andesítica	
SPA18-b	606297	2336133	Dique fanerítico	
SPA18-c	606297	2336133	Ignimbrita	
SPA19-a	606345	2336033	Basalto	
SPA19-b	606345	2336033	Andesita	
SPA20	606553	2335895	Intrusivo diorítico	
SPA21	606939	2335427	Intrusivo diorítico	
SPA22	606999	2335318	Granito subvolcánico	
SPA23	607004	2335284	Granito subvolcánico	
SPA24-a	606954	2334819	Ignimbrita	
SPA24-b	606954	2334819	Andesita	
SPA25	607201	2334446	cuerpo brechado silicificado	
SPA26-a	607190	2334072	Dique andesítico	
SPA26-b	607190	2334072	Toba	
SPA27	606912	2333344	Granito subvolcánico	
SPA28	606713	2332677	Granito subvolcánico	
SPA29	606713	2332677	Granito subvolcánico	
SPA30	606703	2332341	Basalto	
SPA31	606703	2332341	Granito subvolcánico	
SPA32-a	606909	2331988	Andesita	
SPA32-b	606909	2331988	Intermedia con mica	
SPA33-a	595598	2338857	Arcosa lítica	
SPA33-b	595598	2338857	Toba vítrea	

SPA34	593370	2343899	Traquita-latita
SPA35	594515	2343198	Andesita
SPA36	594479	2342539	Ignimbrita reomórfica
HLP1	586698	2334377	Litarenita
HLP2	586706	2334439	Ignimbrita
HLP3	584883	2336789	Ignimbrita
HLP4	585264	2336160	Arenisca
HLP5	585263	2336146	Caliza
HLP6	586000	2335868	Toba
HLP7	584142	2343202	Granito
HLP8	584142	2343202	Ignimbrita
HLP9	583517	2343080	Diorita
HLP10	583405	2343047	Diorita
HLP11	583629	2342859	Toba
HLP12	583667	2342326	Toba
HLP13	583648	2342326	Toba
HLP14	583482	2341999	Toba
HLP15	583454	2342078	Ignimbrita
HLP16	583332	2342109	Ignimbrita
HLP17	583287	2341826	Ignimbrita
HLP18	583686	2341476	Ignimbrita
RS1	594777	2346447	Toba
RS2	594750	2346994	Ignimbrita
RS3	594934	2347584	Ignimbrita
RS4	577500	2342000	Ignimbrita
RS5	578479	2343370	Arenisca
RS6	587279	2333722	Andesita/basalto
RS7	587162	2335676	Riolita
RS8	595582	2342822	Latita/andesita
RS9	595339	2341106	Andesita
RS10	593838	2345685	Granito
RS11	593838	2345685	Toba lítica
RS12	593815	2346041	Granito
RS13	593849	2344956	Toba
RS14	596636	2352917	Dacita

RS15	595341	2352119	Latita/andesita
RS16	595341	2352119	Dique andesítico
RS17	594425	2348709	Toba
RS18	594425	2348709	Toba
RS19	589626	2346466	Ignimbrita
RS20	588316	2347758	Basalto
RS21	606699	2335318	Andesita
RS22	606699	2335318	Andesita