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RESUMEN

El Cálculo fraccional ha ganado una atención signi�cativa en la ciencia y la ingeniería

y es un campo emergente en la ingeniería de control. Esta rama de las matemáticas estudia

las derivadas e integrales de orden arbitrario y se ha demostrado que el uso de operadores

de orden fraccional en el diseño de controladores podría mejorar el desempeño, �exibilidad

y robustez de estos. El diseño de controladores basados en modelos de orden fraccional han

ganado un rápido desarrollo impulsado por el creciente número de investigaciones sobre la

estabilidad de los sistemas de orden fraccional. Entre esto, la investigación de controladores

adaptables ha sido un tema activo de investigación.

Este trabajo está dedicado al diseño de controladores adaptables, especí�camente, el en-

foque de control adaptable con modelo de referencia. En primer lugar, mejoramos resultados

previos sobre el esquema de control adaptatable con modelo de referencia de orden fraccional

al proponer una extensión del Lema de Barbalat. Esta extensión nos permite realizar un análi-

sis de estabilidad completo del esquema adaptable basado en el método directo de Lyapunov

y concluir la convergencia del error a cero. Además, aplicamos este análisis para diseñar un

esquema de control adaptable con modelo de referencia en lazo cerrado de orden fraccional

y como resultados complementarios, ampliamos dos esquemas de identi�cación para sistemas

de orden fraccional basados en el análisis de Lyapunov y presentamos un observador adapt-

able basado en un observador Luenberger para sistemas de orden fraccional y el esquema de

identi�cación diseñado.

Como caso de estudio, abordamos el problema de control de anestesia. Propusimos un

modelo simple de orden fraccional para representar la respuesta entrada-salida del modelo

PK/PD de un paciente. Este modelo propuesto supera muchas di�cultades, por ejemplo,

parámetros desconocidos, estados no accesibles para medición, variabilidad inter e intrapa-

ciente, retardo variable y no negativitadad que se encuentran al diseñar controladores basados

en el modelo PK/PD. En base a este modelo simple aplicamos los esquemas adaptables dis-

eñados. Los resultados se ilustran a través de simulaciones usando 30 pacientes virtuales, que

muestran que los esquemas adaptables de orden fraccional diseñados son robustos contra la

variabilidad inter e intrapaciente, el retraso de tiempo variable, las perturbaciones y el ruido.

Por lo tanto, proponemos una solución novedosa y simple para el control de la anestesia

utilizando un enfoque adaptable de orden fraccional.



ABSTRACT

Fractional Calculus has gained signi�cant attention in science and engineering and is an

emergent �eld in control engineering. This branch of mathematics studies the derivatives and

integrals of arbitrary order and has been shown that the use of fractional-order operators

in dynamical systems and control design could improve the modeling and the �exibility and

robustness of the controllers. The controller designs based on fractional-order models have

gained a rapid development impulsed by the growing number of research on the stability of

fractional-order systems. Among this, the research of fractional-order adaptive controllers has

been an active topic of research.

This work is devoted to the design of adaptive controllers, speci�cally, the model reference

adaptive control approach. First, we improve previous results on the fractional-order model

reference adaptive control scheme by proposing an extension of the Barbalat's Lemma. This

extension allows us to realize a full stability analysis of the adaptive scheme based on the

Lyapunov's direct method and concluding the convergence of the error to zero. Moreover, we

apply this analysis to design a fractional-order closed-loop model reference adaptive control

scheme, fractional-order closed-loop model reference adaptive control (FOCMRAC) scheme,

and as a complementary result, we extend two identi�cation schemes for fractional-order

systems based on Lyapunov's analysis and present an adaptive observer based on a Luenberger

observer for fractional-order systems and the identi�cation scheme designed.

As a study case, we deal with the problem of control of anesthesia. We proposed a simple

fractional-order model to represent the input-output behaviour of the PK/PD model of a

patient. This proposed model gets around many di�culties, for example, unknown param-

eters, lack of state measurement, inter and intra-patient variability, variable time-delay and

nonnegativity, encountered in controller designs based on the PK/PD model. Based on this

simple model we apply the adaptive schemes designed. The results are illustrated via simula-

tions using 30 virtual patients, showing that the fractional-order adaptive schemes designed

are robust against inter and intra-patient variability, variable time-delay, perturbations, and

noise. Therefore, proposing a novel and straightforward solution for the control of anesthesia

using a fractional-order adaptive approach.
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Chapter 1

Introduction

The introduction of fractional-order operators (integrals and derivatives of non-integer-

order) in the identi�cation and control �elds has gained considerable attention during the last

years. The nature of many complex systems can be more accurately modeled using fractional

di�erential equations (Freed and Diethelm 2007, Tejado et al. 2014). In that sense, the systems

to be controlled can now be described not only using integer-order di�erential equations but

using fractional di�erential equations as well.

Fractional calculus is the �eld of mathematical analysis which deals with the study and

application of integrals and derivatives of arbitrary order. Since the second half of the twen-

tieth century, many scienti�c studies have shown the importance of fractional derivatives,

fractional di�erential equations, and his applications in science and engineering (see e.g.,

(Podlubny 1999a, Kilbas et al. 2006) and the references therein). The related mathemati-

cal theory of fractional calculus is relatively well established (Kilbas et al. 2006, Miller and

Ross 1993, Ortigueira 2011, Petrá² 2011, Podlubny 1999a, Padula and Visioli 2015).

In recent years fractional calculus has been a growing �eld of research in science and

engineering (Oldham and Spanier 2002, Podlubny 1999a, Ortigueira 2011). In fact, there

are many �elds where the concepts of fractional calculus have been applied, among them

are: viscoelasticity and damping, di�usion and wave propagation, electromagnetism, chaos

and fractals, heat transfer, biology, electronics, signal processing, robotics, system identi�-

cation, tra�c systems, genetic algorithms, modelling and identi�cation, telecommunications,

chemistry, physics, control systems, economy and �nance (Machado et al. 2010, Barbosa

and Machado 2011, Bassingthwaighte et al. 1994, Magin 2006, West et al. 2003, Ionescu
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et al. 2013, Mainardi 2010, Hartley et al. 1995, Vinagre et al. 2003, Lo 1991).

The use of fractional operators in systems modeling leads to fractional-order models

(FOMs), that are mathematical representations of physical systems using fractional-order

di�erential equations. Since fractional calculus is a generalization of the conventional calculus,

it is expected that fractional models will provide a more accurate description of the dynamics

of physical systems than those based on classical di�erential equations, especially on those

systems with memory, hereditary or fractal properties given that the fractional operators have

richer and diverse dynamics (Podlubny 1999a, Monje et al. 2010).

Control is an interdisciplinary branch of engineering and mathematics that deals with the

design, identi�cation, and analysis of dynamical systems, and is aimed to modify the response

of those systems to achieve some desired behavior given in terms of a set of speci�cations or

a reference model. To achieve the desired behavior, a designed controller measure the system

variables and response, compares it to the desired behavior, computes corrective actions based

on the speci�cations or the reference model, and produce the control action to obtain the

desired changes.

To modify the dynamics of a system or a process, we need a model of the system, a tool

for its analysis, ways to specify the required behavior, methods to design the controller, and

techniques to implement them. The standard tools to model, and analyze dynamic systems

and control algorithms are mainly based on integrals and derivatives. Therefore, one could

think that extending the de�nition of integrals and derivatives to a non-integer order could

lead to more robust and �exible controllers, because of the richer dynamics of those operators

and the inclusion of a degree of freedom given by order of derivation.

Fractional calculus has been found especially useful in systems theory and automatic

control, where fractional di�erential equations are used to obtain more accurate models of

dynamic systems, develop new control strategies and enhance the characteristics of control

loops.

One more interesting applications of the fractional operators and fractional di�erential

equations is that of the study of the representation of an integer-order system by a fractional-

order system. The fractional systems make it possible to carry out an e�cient reduction of

high order integer-order systems so that we could represent those systems by a fractional

system characterized by lower fractional order (compared with the high order of the integer

2
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system) and a more simple structure (Mansouri et al. 2010, Pan and Das 2013).

The controller designs based on FOMs have gained rapid development impulsed by

the growing number of research on the stability of fractional-order systems (Li et al. 2010,

Diethelm 2010, Li and Zhang 2011, Aguila-Camacho et al. 2014, Padula and Visioli 2015).

The integer-order control schemes can be extended to their non-integer counterparts. For

example, fractional sliding mode control with fractional-order sliding surface dynamics (Zhang

et al. 2012), model reference adaptive control using fractional-order adaptive laws (Vinagre

et al. 2002). The opportunities for extensions of existing integer-order controls are almost

endless.

Lyapunov's theory has been a cornerstone in the study of the stability of nonlinear systems

and especially for adaptive systems. Since the publication of an extension of the Lyapunov�s

method for fractional-order systems (Li et al. 2010), the study and design of fractional adaptive

controllers has been grown (Duarte-Mermoud and Aguila-Camacho 2011, Aguila-Camacho

and Duarte-Mermoud 2013, Duarte-Mermoud et al. 2015, Chen et al. 2016, Navarro-Guerrero

and Tang 2017a).

In the results presented in (Duarte-Mermoud et al. 2015, Aguila-Camacho and Duarte-

Mermoud 2017, Fernandez-Anaya et al. 2017) the analysis proves stability in the Lyapunov

sense for fractional-order model reference adaptive control (FOMRAC) schemes. However,

no conclusion about the convergence of the error has made from this analysis for the lack

of a tool to prove the convergence in the fractional-order case. In the integer-order case, it

is used the Barbalat's lemma and his corollaries to conclude the convergence to zero. This

lemma is not applicable (or is very di�cult like it is shown in (Li and Chen 2014)) in the

fractional-order case because it required the knowledge that the integer-order integral of the

quadratic error is bounded, which is unknown in the fractional-order case.

Recently, a class of adaptive controller with a closed-loop reference model for integer-order

systems, named closed-loop model reference adaptive control (CMRAC) has been proposed

(Gibson et al. 2015). The main characteristic of this class of adaptive controllers is the inclu-

sion of a feedback gain in the reference model. Besides no state measurement is needed, this

scheme also gives an improved transient response. Moreover, an extension of this particular

adaptive scheme is presented in this work.

In medical practice, the application of general anesthesia plays a signi�cant role in the

3
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patient's well-being, through the administration of a combination of drugs that act to pro-

vide adequate hypnosis (unconsciousness and amnesia to avoid traumatic recalls), paralysis

or muscle relaxation (to attain immobility, an absence of re�exes, and proper operating con-

ditions), and analgesia (pain relief). This process is accomplished by an anesthesiologist who

must continuously observe and adjust the rates and overall amounts of anesthetic agents de-

livered to the patient, preserving the stability of the autonomic, cardiovascular, respiratory,

and thermoregulatory systems (Brown et al. 2010).

Even though it has been a subject of intense research in the last decades, the process of

anesthesia is a complicated process and is still not well understood, resulting in a challenging

control problem (Dumont et al. 2009, Ionescu et al. 2013, Nascu et al. 2015).

Moreover, in drug delivery systems, the controller has to tackle issues such as inter- and

intra-patient variability, multivariable characteristics, variable time delays, dynamics depen-

dent on the hypnotic agent, model variability, and stability issues (Absalom et al. 2011, Bailey

and Haddad 2005, Silva et al. 2015). The current state of the art in the understanding of

consciousness and the mechanisms of anesthetic-induced loss of consciousness is limited. Con-

sciousness is very subjective and ethereal that it is di�cult to model. At present, the models

available, are such as the mean �eld models of drug action (Absalom et al. 2011), which de-

scribe the phenomena presented in the electroencephalogram (EEG) associated with di�erent

brain states (Silva et al. 2015).

There have been many attempts to automatize this process, and the expectations of

the application of closed-loop control to drug delivery is that will assist anesthesiologists to

improve the safety of the patient by avoiding excessive over-dosages and under-dosages in their

patients, minimizing side e�ects and the risk of awareness and overdosing during anesthesia

(Lemos et al. 2014). Optimizing the delivery of anesthetics could lead the way for personalized

health care, where the individual patient characteristics are taken into account for optimal

and �exible drug administration. The �rst step towards an automated anesthesia process is

to derive a mathematical model that adequately describes the system (or the experimental

data), avoiding the very complex models that may contain too many parameters that cannot

be determined or estimated independently, mainly due to the lack of measurements and

adequate sensors.

Commonly, the mathematical model used to study the depth of anesthesia is a PK/PD
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(pharmacokinetic/pharmacodynamic) model, with a third-order linear PK model, and a PD

model consisting of a �rst-order linear transfer function (which represents the time-lag between

the drug infusion and the observed response) and a static nonlinearity (Wiener structure)

(Bailey and Haddad 2005). Despite its plausibility accepted by biomedical and control com-

munity, being a physiological based empirical model it presents many di�culties for controller

designs, namely, a large number of uncertain parameters due to signi�cant variability among

di�erent individuals, time delay, lack of state measurements and nonlinearity. The limited

amount of real-time data and the poor excitation properties of the input signals constitute

further challenges making the identi�cation of an individualized model on-line very di�cult.

Many attempts to simplify this model have been made: PK/PD model structures with some

�xed parameters (Coppens et al. 2011, Bibian et al. 2006), �rst-order plus time-delay models

with an output nonlinearity (Hahn et al. 2012, Wang et al. 2003), piece-wise linear models

(Lin et al. 2004), low-complexity control-oriented models (Hahn et al. 2012, Silva et al. 2010).

One notable di�erent approach was the recent introduction of fractional PK models

(Dokoumetzidis and Macheras 2009, Copot et al. 2013). In reference (Copot et al. 2014), the

authors presented the relationship between the di�usion process and fractional-order models.

Also, fractional-order pharmacokinetic models (Dokoumetzidis and Macheras 2009, Verotta

2010, Popovi¢ et al. 2011, Copot et al. 2013) that represent the experimental data in a more

precise way thanks to the t−α decay of the fractional operators, were introduced, and with

this, a new line of investigation on the area of drug delivery systems has opened.

The control of anesthesia has been an active subject of research for the past decades

and many control schemes have been developed, such as PID (Heusden et al. 2013), robust

control (Dumont et al. 2009), predictive control (Ionescu et al. 2008), adaptive (Haddad

et al. 2003a, Nino et al. 2009) and intelligent (Haddad et al. 2011) among others.

The implementation of such controllers is based on the assumption that the states are

available from the system measurements and that we have a clear and measurable output with

not much noise in�uence. However, in reality, the measured output may be noisy, and the

system measurements do not produce this information directly. Instead, the state information

needs to be inferred from the available output measurements. All of these challenges bring

us the need of using estimation techniques that can estimate the states of each patient and

adjust them based on the dynamics of the patient and deal with the system constraints (Chang
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et al. 2015).

This work is devoted to the design of adaptive controllers, speci�cally, the model reference

adaptive control approach. First, we improve previous results on the FOMRAC scheme

by proposing an extension of the Barbalat's lemma. This extension allows us to realize a

full stability analysis of the adaptive scheme based on the Lyapunov's direct method and

conclude the convergence of the error to zero. Moreover, we apply this analysis to design a

fractional-order closed-loop model reference adaptive control (FOCMRAC) scheme, and as a

complementary result, we extend two identi�cation schemes for fractional-order systems based

on Lyapunov's analysis and present an adaptive observer based on a Luenberger observer for

fractional-order systems and the identi�cation scheme designed.

As a study case, we deal with the problem of control of anesthesia. Based on the recent

paradigm of modeling in physiology, biology, and pharmacokinetics using fractional calculus

and knowing that the response of the PK/PD model of anesthesia has an S-shape response, we

proposed three simple fractional-order models to represent the input-output behavior of the

PK/PD model. These proposed models get around many di�culties, for example, unknown

parameters, lack of state measurement, inter and intra-patient variability, and variable time-

delay, encountered in controller designs based on the PK/PD model. Based on these simple

models we apply the adaptive schemes designed. The results are illustrated via simulations

using 30 virtual patients, showing that the fractional-order adaptive schemes designed are

robust against inter and intra-patient variability, variable time-delay, perturbations, and noise.

Therefore, proposing a novel and straightforward solution for the control of anesthesia using

a fractional-order adaptive approach.

1.1 State of the art

Fractional-order calculus was mainly restricted to the �eld of mathematics until the last

decade of the twentieth century when it became popular among physicists and engineers as a

powerful way to describe the dynamics of a variety of complex physical phenomena (Sokolov

et al. 2002).

Fractional calculus is considered as an emergent branch of applied mathematics with many

applications in the �elds of physics and engineering using fractional di�erential equations

to model the dynamics of di�erent processes, but also introduce more e�cient modeling
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in �elds as signal processing and control theory (Tenreiro Machado et al. 2011, Caponetto

et al. 2010, Klafter et al. 2011, Monje et al. 2009, Chen et al. 2013, Ortigueira 2011, Sabatier

et al. 2007, Machado 2002).

The fractional di�erential equations capture nonlocal relations in space and time with

power-law memory kernels, due to this fact, fractional di�erentials and integrals provide

more accurate models of systems with memory or anomalous behavior that are di�cult to

grasp with integer-order operators. Few examples of how many authors have demonstrated

the application of fractional calculus can be seen in: electrochemistry (Ichise et al. 1971),

thermal systems and heat conduction (Battaglia et al. 2001), viscoelastic materials (Adolfsson

et al. 2005), fractal electrical networks (Petrá² 2002), neural dynamics (Lundstrom et al. 2008,

Kaslik and Sivasundaram 2012) and many others areas.

Many researchers have extensively studied the problem of fractional-order dynamical

systems, some relevant and interesting results were proposed in the existing literature (see

(Hadi et al. 2012, Sabatier et al. 2015, Zhang et al. 2015) and references therein).

The main reason for using the integer-order models was the absence of analytical meth-

ods to solve fractional di�erential equations. At present, there are many methods for ap-

proximation of fractional derivatives and integrals (Vinagre et al. 2000, Machado 2001, Chen

et al. 2009).

Stability theory plays a crucial role in the study of dynamical systems and is essential

for both scientists and engineers. The stability theory of fractional-order systems has been

investigated extensively in recent years, and numerous papers have been published for the case

of fractional-order linear system (Matignon 1996, Tavazoei and Haeri 2009, Li and Zhang

2011). However, the stability of fractional-order nonlinear systems has not been studied

intensively as the case of the linear systems.

The Lyapunov's method for stability analysis for integer-order nonlinear systems has been

extended to fractional-order systems (Li et al. 2010). Also, has been constructed a quadratic

Lyapunov function that has been applied in many stability analysis of fractional-order systems

(Aguila-Camacho et al. 2014, Duarte-Mermoud et al. 2015). In (Li et al. 2009, Li et al. 2010),

Li and coworkers proposed the de�nition of Mittag-Le�er stability and analyzed the sta-

bility of fractional nonautonomous systems. By using a Lyapunov-like function, fractional

di�erential inequalities and comparison method, (Zhang et al. 2011) obtained some su�cient
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conditions on asymptotical stability for the nonlinear fractional di�erential system with Ca-

puto derivative. Other studies on the stability of nonlinear systems can be seen in (Wen

et al. 2008, Hadi et al. 2012).

In integer-order systems, Barbalat's lemma has been a well-known and useful tool to

deduce asymptotic stability of nonlinear uncertain and time-varying systems (like adaptive

systems). Due to some di�erent properties between fractional-order integral and integer-order

integral, it is not easy (but is possible) to use Barbalat's lemma in fractional-order systems.

There has been some extension of this lemma proposed in the literature, including the one

proposed in this thesis (Gallegos et al. 2015, Navarro-Guerrero and Tang 2017b, Zhang and

Liu 2017).

Besides the Lyapunov's method for the study of stability of adaptive systems, there is

another approach that uses a transformation of the error model of the adaptive system to a

continuous frequency distributed model. With this transformation, the system becomes an

integer-order model, and they use the well-known tools for analyzing the stability of those

systems (Shi et al. 2014, Wei et al. 2014, Chen et al. 2016).

Overall the stability of fractional-order nonlinear systems is still considered an open

problem, there exist many di�erent results based on a speci�c class of systems, and there

is not a general theory or consensus on this topic. The overall results are extensions of the

well-known results for integer-order systems.

There is an increasing interest related in the applications of fractional dynamical systems

towards the area of control theory, and this can be observed in the growing number of papers

and books published every year on the topic.

One of the early attempts to apply fractional-order derivative to systems control can be

found in (Manabe 1961), where the author's use the fractional-order operator for the control

of servos and systems with saturation.

The fractional-order PID (FOPID) controller was introduced by Podlubny in (Podlubny

et al. 1997, Podlubny 1999b) and some results suggest that FOPID controllers o�er superior

performance compared to conventional PID controllers (�ech and Schlegel 2006, Monje et al.

2008, Xue et al. 2006).

Many di�erent control schemes have been designed using fractional-order operators, for

instance, CRONE control (Oustaloup et al. 1993), fractional lead-lag compensator (Raynaud
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2000), sliding mode control (Zhang and Yang 2012), and fractional optimal control (Djennoune

and Bettayeb 2013). In these applications, fractional di�erentiation is used to model or control

phenomena that exhibit nonstandard dynamical behavior, with long memory or hereditary

e�ects (Herrmann 2011, Sun et al. 2011).

Fractional adaptive control combines fractional-order operators and systems with various

adaptive control laws resulting in a variety of fractional-order adaptive control techniques.

Numerous adaptive control strategies have been generalized using fractional operators.

The paper (Vinagre et al. 2002) was the �rst proposing the inclusion of fractional oper-

ators in Model Reference Adaptive Control (MRAC) schemes but without analytical sup-

port. Many works have been published regarding the fractional-order MRAC schemes (see

for example (Ladaci et al. 2006, Suarez et al. 2008, Ladaci et al. 2008, Ma et al. 2009, YaLi

and RuiKun 2010, Sawai et al. 2012, Aguila-Camacho and Duarte-Mermoud 2013, Charef

et al. 2013). Some researchers have reported advantages of using fractional operators in MRAC

schemes such as better management of noise (Ladaci et al. 2008), better behavior under dis-

turbances (Ladaci et al. 2006, Suarez et al. 2008, Aguila-Camacho and Duarte-Mermoud 2013)

and improvements in transient responses (Vinagre et al. 2002, Aguila-Camacho and Duarte-

Mermoud 2013), among others. Indirect fractional-order direct model reference adaptive con-

trol has been reported in (Chen et al. 2016), and combined fractional-order direct model ref-

erence adaptive control also has been reported (Aguila-Camacho and Duarte-Mermoud 2017).

In (Hemmerling et al. 2010, Neckebroek et al. 2013) through clinical experiments the

authors show that the administration of anesthesia via a PID control has signi�cant improve-

ments in comparison with the standard manual administration.

Many control schemes have been designed for anesthesia control like PID control (Kenny

and Mantzaridis 1999, Morley et al. 2000, Sakai et al. 2000, Absalom et al. 2002, Liu et al.

2006, Puri et al. 2007), adaptive controllers (Mortier et al. 1998, Haddad et al. 2003b, Haddad

et al. 2006), predictive controllers (Ionescu et al. 2008, Nino et al. 2009, Furutani et al. 2010),

sliding mode control (Castro et al. 2008), and neural networks (Haddad et al. 2007, Haddad

et al. 2011).

These proposed controllers mainly are based on the inversion of the nonlinearity of the

PD part of the PK/PD model, converting the Wiener model in a linear model and implement

a linear controller. The problem with this approach is that the parameters are unknown and
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the system states are not available for measurement, so using the inverse of the nonlinearity

they have to guess the initial values, adding more uncertainty in the most problematic phase

of the process, the induction phase. Moreover, the input of the process (the rate of infusion of

the drug) cannot be chosen freely making the online identi�cation of the patient model very

di�cult. To the best of the knowledge of the author, there has been only one attempted to

use a fractional-order controller for anesthesia using a CRONE controller (PID modi�cation)

(Dumont et al. 2009).

Even though control of anesthesia has been an active subject of research, it remains

an open problem, because of the challenges that the process presents and motivated by the

bene�ts of an automated drug delivered systems for anesthesia.

1.2 Motivation

The main motivation for this work arises from work done in the master's thesis. In this

work, the problem of control of anesthesia was addressed. Control of anesthesia is a challenging

problem because of the nature of the process where there is great uncertainty, like unknown

parameters, inter and intra-patient variability, lack of state measurement variable time-delay

and nonnegativity. All these uncertainties have to be addressed by the controller, making the

design problem very challenging. The common model used in control of anesthesia to model

a patient's response is the PK/PD model with a Wiener structure. This nonlinear model is

composed by an LTI system in cascade with a static nonlinearity, and we only have access to

the input of the LTI system and the output of the nonlinearity, also the states of the system

are not measurable which makes di�cult the identi�cation of the unknown parameters of each

part only with the information available. To tackle this problem a reduced model based on

the cancelation of adjacent poles and zeros presented in the PK part of the patient's model

was proposed. This reduced model is a �rst order nonlinear system with only two parameters.

Based on this proposed model an MRAC scheme was designed, the resulting adaptive

controller is robust against inter and inter-patient variability, and with overall good perfor-

mance. The disadvantage of this model is that the parameters lose there physical meaning,

also in order to reduce the order of the original model the lag present in the process it was

not taken into account. When the delay was taken into account, the adaptive controller

designed presented a poor performance with an oscillatory response. In order to solve this
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issue, it was reviewed di�erent techniques and approaches (especially under the approach of

adaptive systems), one of those approaches was the use of fractional-order operators. As a

�rst step, the previous nonlinear model proposed was "fractionalized", that is, it was used

fractional-order derivatives instead of integer-order derivatives, this �rst approach led us to a

fractional-order adaptive controller which give us an overall improvement in the performance

of the controlled system, with less amplitude and frequency in the patient response. This

�rst results motivate us to follow this approach, the use of fractional calculus and pursue the

design of fractional-order adaptive controllers for control of anesthesia.

After reviewing the literature on the topic (fractional calculus and fractional-order adap-

tive controllers), we notice that there was one important tool missing. In fractional-order

MRAC controllers reported in the literature were implemented with the well-known MIT rule

and gradient approach to develop the adaptive laws but without analytic support. Moreover,

in the case were Lyapunov's direct method were used to analyze the adaptive system they

only conclude the stability of the closed-loop system but not the convergence of the error to

zero, because of the lack of a mathematical tool to do it so, especially an extension of the

Barbalat's lemma. Another motivation to pursue this approach was that the use of fractional

controllers in the problem of control of anesthesia was almost nonexistent, there was only one

attempt reported in the literature, a CRONE controller (a fractional-order PID modi�cation).

All these points motivated us, and the results obtained are presented in this work.

1.3 Contributions

We can categorize the contributions of this thesis in general and speci�c contributions.

• The general contributions are in the area of fractional-order adaptive control.

The �rst contribution is an extension of the Barbalat's lemma for fractional-order sys-

tems. With this proposed lemma we conclude the convergence of the tracking error to

zero in a fractional MRAC scheme with state feedback (which was a missing part of the

results previously published).

Furthermore, we extend the closed-loop model reference adaptive control scheme for

fractional-order systems, and as a complementary result, we extend two identi�cation

schemes for fractional-order systems based on Lyapunov's analysis and present an adap-
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tive observer based on a Luenberger observer for fractional-order systems and the iden-

ti�cation scheme designed.

• The speci�c contribution is the application of the general contributions to the problem

control of anesthesia.

In control of anesthesia, there is a great variety of controller designed for this problem,

and we o�er a simple and novel solution using a fractional adaptive approach.

First, we propose a fractional-order model to represent the input-output behavior of

the PK/PD model of anesthesia. Then based on this model a fractional-order MRAC

scheme is designed.

Parts of this thesis are published in (Navarro-Guerrero and Tang 2015, Navarro-Guerrero

and Tang 2017a, Navarro-Guerrero and Tang 2017b, Navarro-Guerrero and Tang 2018).

1.4 Outline

This thesis is organized as follows:

In Chapter 2 the reader is introduced to the basic concepts of fractional calculus used in

fractional-order systems and control.

Chapter 3 is devoted to fractional-order Lyapunov theory, introducing the basic concepts

and theorem for the application of the fractional-order Lyapunov direct method. An extension

of the Barbalat�s lemma for fractional-order systems also is introduced.

The topic of Chapter 4 is the fractional-order model reference adaptive control scheme.

Here we use the extension of the Barbalat's lemma proposed to complement the previous

results reported in the literature of the FOMRAC scheme. Moreover, we extend the closed-

loop model reference adaptive control scheme for fractional-order systems. Also, we extend

two identi�cation schemes for fractional-order systems, and an adaptive observer.

In Chapter 5, we present our case of study, control of anesthesia. It is present the

concepts of general anesthesia, and the modeling and control challenges. Moreover, is proposed

simple fractional-order models to represent the input-output behavior of the PK/PD model

of anesthesia.

Chapter 6 presents the simulation results of applying the result of Chapter 4 and the

models proposed in Chapter 5 to the control of anesthesia using 30 virtual patients models.
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In Chapter 7 we draw some conclusions on the results of this work, discussing the ad-

vantages and disadvantages of the use of fractional calculus concepts to modeling and control

physical phenomena and process. Also, we propose some lines of investigation for future work.
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Chapter 2

Fractional-Order Systems

Fractional-order systems are mathematical representations of physical systems repre-

sented by integro-di�erential equations involving fractional-order operators. Fractional calcu-

lus is the generalization of the classical operations of derivation and integration to non-integer

order.

In this chapter, the basic de�nitions of fractional calculus and fractional-order dynamic

systems are presented.

2.1 Fractional calculus

One of the very powerful mathematical tools for modeling and analysis techniques at

our disposition is calculus and di�erential equations. The underlying mathematical basis of

almost all science and engineering disciplines has essentially been integer-order calculus.

Fractional calculus is a mathematical branch that studies the derivatives and integrals

of non-integer order (also called di�erintegrals or integro-di�erential operators). The history

of fractional calculus started almost at the same time when classical calculus was estab-

lished. It was �rst mentioned in Leibniz's letter to l'Hôpital in 1695, where the idea of

semi-derivatives ( d
1/2

dt1/2
) was suggested. With the passing time, fractional calculus was built

on formal foundations by many renowned mathematicians, like Abel, Euler, Fourier, Grün-

wald, Heaviside, Liouville, Riemann, among others. A detailed history of the development of

fractional calculus and his contributors can be found in (Oldham and Spanier 2002, Machado

and Kiryakova 2017).



CHAPTER 2. FRACTIONAL-ORDER SYSTEMS

Nowadays, fractional calculus has a wide range of applications, for instance bioengineering

(Magin 2006), physics (Hilfer 2000), chaos theory (Petrá² 2011), viscoelasticity (Mainardi

2010), and many others (see e.g. (Sabatier et al. 2007)).

In the next section, the de�nitions and properties of the fractional-order operators are

brie�y summarized.

2.1.1 De�nitions

The integro-di�erential operator is de�ned as

t0D
α
t =



dα

dtα
, α > 0,

1 α = 0,∫ t

t0

(dτ)α α < 0.

(2.1)

where t0 and t are the bounds of the interval of operation and α ∈ R

There are various de�nitions of the fractional derivatives. This problem emerges from

the lack of a unique concept explaining the geometrical and physical sense of the fractional

operations. So di�erent de�nitions arise from speci�c physical phenomena or models consid-

ered in various scienti�c �elds. For example, the more abstract mathematical studies usually

use the Riemann-Liouville de�nition, and the applied studies concerned with physics or con-

trol theory mostly use the de�nition of Caputo (arisen from the study of viscoelasticity), or

that of Grünwald-Letnikov which is more adequate in the numerical calculations (Butkovskii

et al. 2013). A review of the existing de�nitions of the fractional operator can be consulted

in (Capelas and Machado 2014).

The notion of fractional-order integral of order α > 0 ∈ R is a natural consequence

of Cauchy's formula for repeated integrals, which reduces the computation of the primitive

corresponding to the n-fold integral of a function f(t) to a simple convolution (Podlubny

1999a).

Next, the most common de�nitions of the fractional integral and fractional derivative are

present (Kilbas et al. 2006).

De�nition 2.1. The Riemann-Liouville integral (or, fractional integral) with fractional-order
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α ∈ R+ of a function f(t) is de�ned by

t0D
−α
t f(t) =t0 I

α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)1−α
dτ, (2.2)

where t = t0 is the initial time and

Γ(α) =

∫ ∞
0

tα−1e−tdt, (2.3)

is the Euler's gamma function.

The Gamma function is a generalization of the factorial function for real and complex

numbers.

De�nition 2.2. The Riemann-Liouville derivative with fractional-order α ∈ R+ of a function

f(t) is de�ned by

t0D
α
t f(t) =

dm

dtm
t0I

m−α
t =

1

Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1f(τ)dτ, (2.4)

where m− 1 < α < m ∈ Z+.

De�nition 2.3. The Caputo derivative with fractional-order α ∈ R+ of a function f(t) is

de�ned by

t0D
α
t f(t) =t0 I

n−α
t

dn

dtn
=

1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α−n+1
dτ, (2.5)

where n− 1 < α < n ∈ Z+.

One of the advantages of Caputo derivative, which is a modi�cation of the Riemann�Liouville

de�nition, is that the initial conditions for fractional di�erential equations take the same form

as those for integer-order di�erentiation, which has a well-understood physical meaning.

It is important noticed that, unlike the integer-order di�erentiation, fractional-order dif-

ferentiation is a nonlocal operation (the past values of the function are needed) that is de�ned

over an interval [t0, t].

As we can observe from the previous de�nitions, in the time domain, the fractional-order

derivative and integral are de�ned by a convolution operation. From (2.2) we have

t0I
α
t = Φα(t) ∗ f(t) =

∫ t

t0

Φα(t)f(t− τ)dτ, α ∈ R+, (2.6)

with
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Φα(t) =
tα−1

Γ(α)
, α ∈ R+. (2.7)

Therefore, we can view the fractional-order operators as a convolution between two func-

tions.

The memory e�ect of these operators, shown by the convolution integral, reveal the

unlimited memory of these operators, ideal for modeling hereditary and memory properties

in physical systems and materials.

The exponential function is another essential tool in the theory of integer-order di�erential

equations, and the generalization of this function, so-called Mittag-Le�er function, plays an

essential role in the theory of fractional di�erential equations.

The Mittag-Le�er of one and two-parameters are given by

Eα =
∞∑
k=0

zk

Γ(kα+ 1)
, (2.8)

Eα,β =

∞∑
k=0

zk

Γ(kα+ β)
, (2.9)

where α > 0, β > 0 and z ∈ C. For β = 1 in (2.9), we have Eα(z) = Eα,1(z). Also E1,1 = ex.

The two-parameter Mittag-Le�er function for a matrix is de�ned by

Eα,β(Az) =

∞∑
k=0

(Az)k

Γ(αk + β)
, α > 0, β > 0, z ∈ C. (2.10)

The main properties of fractional derivatives and integrals can be summarized as follows

(Petrá² 2011):

Property 2.1. If f(t) is an analytical function of t, then its fractional derivative 0D
α
t is an

analytical function of t, α.

Property 2.2. For α = n, where n is integer, the operation 0D
α
t gives the same result as

classical di�erentiation of integer-order n

Property 2.3. For α = 0 the operation 0D
α
t is the identity operator:

0D
α
t = f(t).
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Property 2.4. Fractional di�erentiation and fractional integration are linear operations:

t0D
α
t (λf(t) + µg(t)) = λt0D

α
t f(t) + µt0D

α
t g(t).

Property 2.5. The additive index law (semigroup property)

0D
α
t 0D

β
t f(t) =0 D

β
t 0D

α
t f(t) =0 D

α+β
t f(t),

holds under some reasonable constraints on the function f(t). The fractional-order derivative

commutes with integer-order derivative

dn

dtn
(t0D

α
t f(t)) =t0 D

α
t

(
dnf(t)

dtn

)
=t0 D

α+n
t f(t),

under the condition t = t0 we have f (k)(t0) = 0, with k = 0, 1, 2, ..., n − 1). The relationship

above says the operators dn

dtn and t0D
α
t commute.

Property 2.6. The Leibniz's rule for fractional di�erentiation is given as

t0D
α
t (φ(t)f(t)) =

∞∑
k=0

 α

k

φ(k)(t)t0D
α−k
t f(t),

if φ(t) and f(t) and all their derivatives are continuous in the interval [a, t].

Property 2.7. (Tarasov 2008) Newton-Leibniz formula generalization

t0I
α
t t0D

α
t f(x) = f(t)− f(t0). (2.11)

where t0D
α
t is represented for the Caputo derivative and t0I

α
t for the Riemann-Liouville inte-

gral.

Some other important properties of the fractional derivatives and integrals can be found

in several works such as (Magin 2006, Monje et al. 2010, Oldham and Spanier 2002, Podlubny

1999a, Kilbas et al. 2006, Padula and Visioli 2015).

2.1.2 Laplace transform

The Laplace transform is a practical and useful technique used to solve di�erential equa-

tions which frequently arise in applied science and engineering problems. This technique

converts linear di�erential equations to linear algebraic equations which can be solved easily.
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The Laplace transform of a function of time f(t) is de�ned by

L{f(t)} = F (s) =

∫ ∞
0

e−stf(t)dt, (2.12)

with f(t) = 0 for t < 0.

In the following, some important transformations for fractional-order operators are pre-

sented:

• Laplace transform of the Riemann-Liouville integral

L{0Iαt } = s−αF (s), α ≥ 0. (2.13)

• Laplace transform of the Riemann-Liouville derivative

L{0Dα
t } = sαF (s)−

m−1∑
k=0

sk[0D
α−k−1
t f(t)]|t=0, (2.14)

where m − 1 < α ≤ m, m ∈ N, α > 0 and 0D
α−k−1
t f(0) is the initial value of order

α− k − 1 of the function f(t) for k = 0, 1, 2, ...m− 1.

• Laplace transform of the Caputo derivative

L{0Dα
t } = sαF (s)−

m−1∑
k=0

sα−k−1[0D
α−k−1
t f(t)]|t=0, (2.15)

where m− 1 < α ≤ m, m ∈ N, α > 0 and 0D
k
t f(0) is the initial value of order k of the

function f(t) for k = 0, 1, 2, ...m− 1.

It can be noticed that for null initial conditions the Laplace transform of the Riemann-

Liouville derivative and the Caputo derivative give the same result.

Despite the complexity of fractional operators in the time domain, in the frequency

domain, they have a straightforward form. Under null initial conditions, the Laplace transform

becomes,

L{0Dα
t } = sαF (s), (2.16)

and it can be seen that this is a natural generalization for a non-integer order operators.

In the literature (Goren�o and Minardi 1997, Herrmann 2011, Kilbas et al. 2006, Petrá²

2011) it can be found in more detail the facts and properties of this transformation applied

to the fractional operators.
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2.1.3 Numerical evaluation

Due to the complexity of analytic solutions, or even the numerical solutions of fractional

di�erential equations (which are a recursive process that, in theory, requires an in�nite amount

of memory), the approximations based on the so-called short memory principle (Podlubny

1999a) are often used. A review of existing continuous and discrete time approximations of

fractional operators are given in (Vinagre et al. 2000). More recently, methods for analog

implementation of fractional-order systems and controllers were proposed in (Dor£ák et al.

2012). Digital approximations of fractional operators usually rely on power series expansion

or continued fraction expansion of corresponding generating functions (Chen et al. 2009), and

other methods based on discretization have been proposed (Machado 2001).

For example, one common approach to implement the fractional operators in simulations

and practical applications is through the use of an integer-order transfer function whose

behavior approximates the fractional operator C(s) = sα.

The Oustaloup's method (Oustaloup 1991) is one of the available methods to implement

this approximation, which use a distribution of N poles y N zeros of the form

C(s) = C0

N∏
n=1

1 + s/ωzn
1 + s/ωpn

,

ωzn = ωb

(
ωh
ωb

) r+N+0.5(1−α)
2N+1

,

ωpn = ωh

(
ωh
ωb

) r+N+0.5(1−α)
2N+1

,

C0 =

(
ωh
ωb

)−α
2

N∏
k=−N

ωpn
ωzp

,

where r ∈ R, the poles and zeros are distributed inside a frequency interval [ωb, ωh].

In (Petrá² (2011) and there references therein) we can �nd an explanation of the di�erent

methods to approximate the fractional operator, in the time domain and frequency domain.

To perform the simulations, we will use the Matlab toolbox for fractional control NIN-

TEGER v.2.3 developed by D. Valério (Valério and Sá da Costa 2005). In this toolbox are

implemented various numerical approximations for the fractional-order operators that are

explained in detail in (Valério and Sá da Costa 2005).
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The available approximations in this toolbox for the fractional-order operators in continuous-

time are brie�y summarized next:

• Crone (First generation Crone with n zeros and n poles)

• Carlson (Approximation with n zeros and n poles)

• Matsuda (Approximation with n zeros and n poles)

• Cfehigh (Approximation based on the expansion of continuous fractions of (1+s)α, with

n zeros and n poles)

• Cfelow (Approximation based on the expansion of continuous fractions of (1 + 1/s)α,

with n zeros and n poles)

To implement these approximations, we need to choose four options, the approximation,

the associated expansion (MacLaurin, continuous fraction expansion), the order n of the

approximation and the bandwidth [ωb, ωh].

In Figure 2.1 is show the step response of the sistem G(s) = 1
s1/2+1

using di�erent

approximations with n = 10 and [0.001 1000].

The quality of the simulations is related to the approximation used and his associated

parameters. In this work, we will use the Crone approximation with the MacLaurin expansion,

n=10 and a bandwidth [0.001 1000]. This approximation was chosen to make a trade-o�

between the quality of the simulation and the computing time.

In Figure 2.2 is show the Crone approximation with di�erent n and [ωb, ωh].

2.2 Fractional-order systems

The Caputo derivative provides an alternative to the Riemann-Liouville derivative. This

derivative, thanks to its properties, is a useful tool to describe physical phenomena (Ortigueira

2011). One of the main drawbacks of the Riemann-Liouville derivative is that they lead to

di�erential equations whose initial conditions are expressed in terms of fractional derivatives

as seen in (2.14). Fractional initial conditions have no clear physical interpretation.

Unlike the Riemann-Liouville derivative, the Caputo derivative leads to di�erential equa-

tions whose initial conditions are expressed as integer-order derivatives (thus having a clear

physical meaning) as seen in (2.15).
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Figure 2.1: Comparison between nemerical approximations

Figure 2.2: Crone approximation with di�erent parameters
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In general, when we work with dynamic systems, it is usual that we deal with causal

functions of t. Therefore throughout this work the initial time of the fractional operators t0D
α
t

and t0I
α
t it is assumed t0 = 0, and all the fractional derivatives used t0D

α
t are represented by

the Caputo derivative.

2.2.1 Fractional-order LTI systems: transfer function representation

The conventional input-output transfer function approach for integer-order systems can

be extended to the fractional-order case. For LTI systems de�ned by a fractional-order or-

dinary di�erential equation, the Laplace transform can be used to obtain a fractional-order

transfer function representation of the system.

Consider the following SISO fractional system described by the fractional-order di�eren-

tial equation:

n∑
k=0

ak0D
αk
t y(t) =

n∑
k=0

bk0D
βk
t u(t), (2.17)

where u(t) is the input, y(t) is the output, αk, βk ∈ R+, ak, bk ∈ R.

Applying the Laplace transform and under null initial conditions, independently from

the adopted de�nition of the fractional operator, the transfer function of the fractional-order

di�erential equation (2.17) is

G(s) =
Y (s)

U(s)
=

∑n
k=0 bks

βk∑n
k=0 aks

αk
=
bms

βm + bm−1s
βm−1 + · · ·+ bms

β0

ansαn + an−1sαn−1 + · · ·+ asα0
. (2.18)

In general, a fractional transfer function is the ratio of two fractional polynomials.

The characteristic polynomial of the fractional system (2.18) has the form

P (s) = ans
αn + an−1s

αn−1 + · · ·+ a0s
α0 . (2.19)

The polynomial (2.19) is a multivalued function whose domain is a Riemann surface. In

the general case, this surface has an in�nite number of sheets, and the fractional polynomial

(2.19) has an in�nite number of roots. Only a �nite number of these roots will be on the main

sheet of the Riemann surface and which determine the dynamic behavior (Monje et al. 2010).

The LTI systems can be classi�ed as follows
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LTI Systems


Non-integer


Commensurate


Rational

Irrational

Non-commensurate

Integer

taking this into account the fractional transfer function (2.18) is de�ned as (Monje et al. 2010):

• Commensurate order if

αi =iα, i = 0, 1, ..., n,

βk =kα, k = 0, 1, 2, ...,m,
(2.20)

where α, β > 0 are real numbers.

• Rational order if it is a commensurate order and α = 1
q , where q is a positive integer.

• Non-commensurate order if (2.20) does not hold.

As we can see later, the systems of commensurate-order enable a straightforward gener-

alization of the well-known results for integer-order LTI systems.

The transfer function of a commensurate fractional-order system can be written as

G(s) =
bms

mα + bm−1s
(m−1)α + · · ·+ b0

ansnα + an−1s(n−1)α + · · ·+ a0
. (2.21)

Substituting λ = sα in (2.21), we obtain the associated natural order transfer function

G(λ) =
bmλ

m + bm−1λ
m−1 + · · ·+ b0

anλn + an−1λn−1 + · · ·+ a0
. (2.22)

The poles of the commensurate transfer function (2.22) are located on the �rst sheet of

the Riemann surface.

2.2.2 Fractional-order LTI systems: state space representation

A useful representation for systems of fractional-order di�erential equations is the state

space representation. This representation is a generalization of the state space equations of

the integer-order system theory.
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Consider the state-space representation of a fractional-order LTI system given by

0D
α
t x(t) =Ax+Bu,

y =Cx,
(2.23)

where α = [α1, α2, · · ·, αn], u ∈ Rm is the input vector, x ∈ Rn is the state vector, y ∈ Rp is

the output vector, A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n is

the output matrix.

Given the nonlocality and in�nite dimension of the fractional operators, the description

of the state of such systems must take into consideration not only the values of the, generally

speaking, in�nite set of the system variables at a particular time instant, but also the system

history. The initial condition of a fractional-order system is a time-varying function called

initialization term (Hartley and Lorenzo 2002), for the time being, this problem remains

open, and the states and dynamics of the fractional systems are analyzed mostly by their

approximation with the use of �nite dynamic systems of integer-order (Butkovskii et al. 2013).

Therefore, the states of such systems are called "pseudo-states" (Trigeassou et al. 2012). For

simplicity in this work, we are going to use the term "states" instead of "pseudo-states"

throughout the remainder work, and we will assume null initial conditions.

The above fractional-order state space representation (2.23) can be simpli�ed in the

particular case when α = [α, α, · · ·, α], which represents a commensurate-order system.

Next, it shows the solution of a commensurate LTI fractional-order system with constant

coe�cients.

Consider the system

0D
α
t x(t) =Ax+Bu,

y =Cx,
(2.24)

where α = [α, α, · · ·, α], u ∈ Rm is the input vector, x ∈ Rn is the state vector, y ∈ Rp is the

output vector, A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n is the

output matrix, and initial condition x(0) = x0.

This system, in general, can be solved using the inverse Laplace transform, just as in the

integer-order case. From system (2.24) we have
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x(t) = L−1{X(s)} = L−1{(sαI −A)−1BU(s) + (sαI −A)−1sα−1x(0)}. (2.25)

De�ning

Φ̂ = L−1{(sαI −A)−1}, t ≥ 0. (2.26)

Φ = L−1{(sαI −A)−1sα−1}, t ≥ 0. (2.27)

Then

x(t) = Φx(0) + Φ̂ ∗ [Bu(t)] = Φx(0) +

∫ t

0
Φ̂(t− τ)Bu(τ)dτ. (2.28)

As can be seen in (2.28), Φ(t) is the matrix usually known as the state transition matrix.

Following a procedure similar to that used for integer-order linear systems, the form of the

state transition matrix can be determined. For that purpose the following expression will be

used: 0D
α
t x(t) = Ax with x(0) = 0. Taking into account the use of the Caputo derivative,

the solution can be expressed as

x(t) =

( ∞∑
k=0

Aktαk

Γ(1 + αk)

)
x0 = Eα,β(Atα)x0 = Φx0. (2.29)

Is clear that the Mittag�Le�er function here performs the same role as that performed by

the exponential function for the integer-order systems. The well known exponential matrix,

eAt is just a particular case of the generalized exponential matrix, Eα,1(Atα), which can be

called Mittag�Le�er matrix function (Monje et al. 2010).

As in the case of the state-space representation of integer-order, three canonical represen-

tations can be proposed, which are similar to the classical ones (controllable canonical form,

observable canonical form and modal canonical form) (Caponetto et al. 2010).

2.3 Stability

In this section, we brie�y explain the fundamentals and previous considerations needed

to understand the stability of fractional-order systems.
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The known stability methods for integer-order systems di�er from those that have been

proposed for fractional-order systems. The conditions under which linear time-invariant

fractional-order systems are stable were studied in (Matignon 1996).

To understand the dynamic behavior and stability properties of the system (2.23) is

necessary to analyze the eigenvalues of the system matrix A. For integer-order linear system

theory (α = 1), the eigenvalues of the matrix A are studied in the complex Laplace s−plane.

The stability boundary in the s − plane is the imaginary axis, any poles lying to the left of

the imaginary axis represent a stable time response, while the poles lying to the right of the

imaginary axis represent an unstable time response.

For commensurate fractional-order systems, the eigenvalues of the matrix A it must

now be evaluated in the sα − plane. Rather than dealing with the fractional power of s, the

analysis is simpli�ed if a change of variables is used. De�ning ω as ω = sα, then the eigenvalue

analysis will be performed in the new complex ω−plane, which is a mapping of the s−plane

(Podlubny 1999a, Li and Zhang 2011).

It is necessary to map the s − plane, along with the time-domain function properties

associated with each point, into the complex ω − plane. To simplify the discussion, we will

limit the order of the fractional operator to α ∈ (0, 1).

This section is based on Chapter 2 of (Monje et al. 2010) and the example to illustrate

the concepts is taken from there.

In general, the study of the stability of fractional-order systems can be carried out by

studying the solutions of the integrodi�erential equations that characterize them. An alter-

native way is the study of the transfer function of the system (2.17).

The characteristic polynomial (also called pseudo-characteristic polynomial) of the trans-

fer function (2.18)

P (s) = ans
αn + an−1s

αn−1 + · · ·+ a0s
α0 , (2.30)

is a multi-valued function of complex variable s, whose domain is a Riemann surface (Podlubny

1999a) of a number of sheets which is �nite only in the case of ∀i, αi ∈ Q+, being the principal

sheet de�ned by −π < arg(s) < π. This equation has an in�nite number of roots, among

which only a �nite number of roots will be on the main sheet of the Riemann surface. In the

case of αi ∈ Q+, that is, α = 1
q . where q is a positive integer, the q sheets of the Riemann
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surface are determined by

s = |s|ejφ, (2k + 1)π < φ < (2k + 3)π, k = −1, 0, · · ·q − 2. (2.31)

Where the case k = −1 corresponds to the main sheet. For the mapping ω = sα, these

sheets become the region of the plane ω de�ned by

ω = |s|ejθ, α(2k + 1)π < θ < α(2k + 3)π. (2.32)

All of the well-known control techniques concerning eigenvalues, or poles, can be used in

the ω − plane (Hartley and Lorenzo 2002).

To illustrate the previous concepts an example for the case of ω = s1/3 is presented. The

Riemann surface that represents the transformation ω = s1/3 is shown in Figure 2.3 and the

regions of stability on the complex plane ω are presented in Figure 2.4.

The three sheets correspond to:

k =


−1, −π < arg(s) < π, (the principal sheet)

0, π < arg(s) < 3π, (sheet 2)

1, 3π < arg(s) < 5π, (sheet 3)

The roots laying in the secondary sheets of the Riemann surface are related to solutions

that are always monotonically decreasing functions (they go to zero without oscillations when

t → ∞). Only the roots that are on the main sheet of the Riemann surface are responsible

for a di�erent dynamics, for example, damped oscillations, oscillations of constant amplitude,

oscillations of increasing amplitude with monotonic growth. The roots which are in the

principal sheet are called structural roots or relevant roots (Matignon 1996, Podlubny 1999a).

A more elaborate description of this topic can be seen in (Podlubny 1999a, Kilbas et al. 2006,

Petrá² 2011, Sabatier et al. 2015).

2.3.1 Stability of fractional-order LTI systems

It is known from the stability theory that an LTI system is stable if the roots of the char-

acteristic polynomial are negative or have negative real parts if they are complex conjugate.

It means that they are located on the left half of the complex plane. In the fractional-order
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Figure 2.3: Riemann surface for s1/3.

Figure 2.4: Stability regions of the ω − plain.
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LTI case, the stability is di�erent from the integer one. An interesting notion is that a stable

fractional system may have roots in the right half of complex plane (see Figure 2.4). It has

been shown that system (2.18) is stable if the following condition is satis�ed.

Theorem 2.1. (Matignon 1996) A commensurate-order system described by a rational trans-

fer function

G(λ) =
Q(λ)

P (λ)
, (2.33)

where λ = sα, α ∈ R+, 0 < α < 2, is stable if and only if

|arg(λi)| > α
π

2
, (2.34)

with ∀λi ∈ C being the i− th root of P (λ) = 0.

For α = 1 this is the classical theorem of pole location in the complex plane, that is, P

has no pole in the closed half plane of the �rst Riemann sheet.

Theorem 2.2. (Matignon 1998) The commensurate system (2.24) is stable if the following

condition is satis�ed (also if the triplet A, B, C is minimal)

|arg(eig(A))| > α
π

2
, (2.35)

where 0 < α < 2 and eig(A) represent the eigenvalues of the matrix A.

The frequency response approach applies directly to fractional-order systems as long as

the primary roots are used in the evaluation of the individual fractional elements. Likewise,

the root locus approach, Nyquist and Bode plots can be applied directly to fractional-order

systems as long as they are performed in the ω − plane.

2.3.2 Stability of fractional-order nonlinear systems

Stability of the fractional-order nonlinear system is very complex and is di�erent from

the fractional-order linear systems. The main di�erence is that for a nonlinear system it is

necessary to investigate steady states having two types: equilibrium point and limit cycle.

Nonlinear systems may have several equilibrium points, and there are many de�nitions of

stability (asymptotic, global, orbital).

A nonlinear fractional-order system can be described as (Podlubny 1999b)

t0D
α
t x(t) = f(x, t), (2.36)
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with initial conditions x(t0), where D denotes the Caputo fractional operator, α ∈ (0, 1),

f : Ω × R+ → Rn is piecewise continuous in t and locally Lipschitz in x on Ω × R+, and

Ω ∈ Rn is a domain that contains the origin x = 0.

When α ∈ (0, 1), the fractional-order system (2.36) has the same equilibrium points as

the integer-order system ẋ = f(t, x) (Li et al. 2010).

Next, some important de�nitions for fractional-order nonlinear systems are presented.

De�nition 2.4. (Li et al. 2009) The constant x0 is an equilibrium point of Caputo fractional

dynamical system (2.36), if and only if f(t, x0) = 0.

Theorem 2.3. (Existence and uniqueness Theorem (Podlubny 1999b)) Let f(t, x) be a real-

valued continuous function, de�ned in the domain G, satisfying the Lipschitz condition with

respect to x, i.e.

|f(t, x1)| − f(t, x2)| ≤ l|x1 − x2|,

where l is a positive constant, such that

|f(t, x) ≤M ≤ ∞ ∀(t, x) ∈ G.

Let also

K ≥ Mhσn−σ1+1

Γ(1 + σn
.

Then there exists in a region R(h,K) a unique and continuous solution y(t) of the following

initial-value problem,

t0D
σk
t x(t) = f(t, x), (2.37)

[t0D
σk
t x(t)]t=0 = bk, k = 1, 2, ..., n, (2.38)

where

t0D
σk
t ≡t0 D

αk
t t0D

αk−1

t ...t0D
α1
t ,

t0D
σk−1

t ≡t0 D
αk−1

t t0D
αk−2

t ...t0D
α1
t ,

σk =
k∑
j=1

αj (k = 1, 2, ...n),

0 < α < 1, (j = 1, 2, ...n),

Then if f(t, x) is locally bounded and is locally Lipschitz in x implies the existence and

uniqueness of the solution to the Caputo fractional-order system (2.36).
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Lemma 2.1. (Li et al. 2009) For the real-valued continuous f(t, x) in (2.36), we have ‖t0
Dα
t f(x, t) ‖≤t0 D−αt ‖ f(x, t) ‖, where α ≥ 0 and ‖ · ‖ denotes and arbitrary norm.

Theorem 2.4. (Li et al. 2010) If x = 0 is an equilibrium point of the system (2.36), f is

Lipschitz on x with Lipschitz constant l and is piecewise continuous with respect to t, then the

solution of (2.36) satis�es

‖ x(t) ‖≤‖ x(t0) ‖ Eα(l(t− t0)α), (2.39)

where α ∈ (0, 1).

Lemma 2.2. (Fractional comparison principle (Li et al. 2010)) Let t0D
α
t x(t) ≥t0 Dα

t y(t),

α ∈ (0, 1), and x(t0) = y(t0). Then x(t) ≥ y(t).

As mentioned in (Matignon 1996), exponential stability cannot be used to characterize

the asymptotic stability of fractional-order systems. A new de�nition was introduced

De�nition 2.5. (Oustaloup et al. 2008)(t−α stability or power-law stability) The trajectory

x(t) = 0 of the system (2.36) is t−α asymptotically stable if there is a possible real α so that:

∀ ‖ x(t) ‖ with t ≤ t0, ∃N(x(t)), such that ∀t ≥ t0, ‖ x(t) ‖≤ Nt−α.

The fact that the components of x(t) slowly decay towards zero following t−α leads

to fractional systems sometimes called long memory systems. Power law stability t−α is a

particular case of the Mittag-Le�er stability (Li et al. 2008) which will be de�ned in the next

chapter.

The next Theorem can be seen as an extension of the Lyapunov's indirect method.

Theorem 2.5. (Tavazoei and Haeri 2008) The equilibrium points xei of the fractional-order

commensurate system (2.36) are asymptotically stable if all eigenvalues λi with i = 1, 2, .., n,

of the Jacobian matrix J = ∂f
∂x , where f = [f1, f2, ..., fn]T , evaluated at the equilibrium xei ,

satisfy the condition

|arg(eig(J))| = |arg(λi)| > α
π

2
, i = 1, 2, ..., n. (2.40)

One of the most used tools to study the stability of nonlinear systems is the Lyapunov's

direct method, whose extension for fractional-order systems will be treated in the next chapter.
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2.3.3 Controllability and observability

The study of the observability and controllability of the fractional dynamical systems

are two important issues for many applied problems. It is well known that the problem of

controllability and observability is widely used in the analysis and design of control system.

Any system is said to be controllable if every state corresponding to this process can be

a�ected or controlled in �nite time by some controller. Observability is a measure of how well

internal states of a system can be inferred by knowledge of is external outputs.

There are few works reporting the study of observability and controllability of fractional

linear systems (see, for example, (Bettayeb and Djennoune 2008, Chen et al. 2006, Sabatier

et al. 2012)).

Next, the de�nitions and criterions of controllability and observability for fractional-order

systems are presented.

De�nition 2.6. The system (2.24) is controllable on [t0, t1] if for every pair of vectors x0,

x1 ∈ Rn, there is a control u(t) ∈ L2([t0, t1],Rm) such that the solution x(t) of (2.24) which

satis�es

x(t0) = x0,

x(t1) = x1.

We say that u(t) steers the system form x0 to x1 during the interval [t0, t1].

Lemma 2.3. The system (2.24) is controllable on [t0, t1] if and only if for each vector x1 ∈ Rn

there is a control u(t) ∈ L2([t0, t1],Rm) which steers x0 to x1 during [t0, t1].

Theorem 2.6. (Controllability criterion)(Monje et al. 2010) The system given by (2.24) is

controllable if and only if the matrix C de�ned by

C = [B,AB,A2B, · · · , An−1B], (2.41)

denoted as controllability matrix, is full-rank.

This controllability condition (2.41) for a commensurate fractional-order system is the

same as the well-known for integer-order systems.

The controllability property also can be studied through the controllability Grammian

matrix.
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Theorem 2.7. (Balachandran et al. 2013) The linear control system (2.24) is controllable on

[t0, t1] if and only if the controllability Grammian matrix

M =

∫ t1

t0

(t1 − τ)(α−1)Eα,α(A(t1 − τ)α)BBT × Eα,α(AT (t1 − τ)α), (2.42)

is positive de�nite, for some t1 > t0.

De�nition 2.7. The system (2.24) is observable on an interval [t0, t1] if

y(t) = Cx(t) = 0 t ∈ [t0, t1],

implies

x(t) = 0 t ∈ [t0, t1].

Theorem 2.8. (Observability criterion)(Monje et al. 2010) The system given by (2.24) is

observable if and only if the matrix O de�ned by

O =



C

CA

CA2

...

CAn−1


, (2.43)

called the observability matrix, is full-rank.

The observability condition for commensurate fractional-order LTI systems coincides with

the well-known criterion for integer-order LTI systems.

The observability property can also be studied through the observability Grammian ma-

trix.

Theorem 2.9. (Balachandran et al. 2013) The observed linear system (2.24) is observable

on [t0, t1] if and only if the observability Grammian matrix

W =

∫ t1

t0

Eα(AT (t− t0)α)CTCEα(AT (t− t0)α)dt, (2.44)

is positive de�nite.
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Chapter 3

Lyapunov Theory for Fractional-order

Systems

For nonlinear systems, Lyapunov's direct method provides a way to analyze the stability

of a system without explicitly solving the di�erential equations.

This method is one of the most useful tools to analyze the stability of adaptive systems,

given that allows us to design the adaptive laws based on the stability conditions arises in the

analysis.

In this Chapter, the basic concepts of the Lyapunov direct method for fractional-order

systems are presented.

3.1 Preliminaries

One of the classical analysis techniques, which is still widely used in the analysis of

stability and stabilization problems is the Lyapunov method. Many problems have been

approached by restricting the search of a candidate functions to quadratic polynomials of

the state variables, this makes the problem tractable and can often result in linear matrix

inequalities that can be solved easily. However, if the quadratic Lyapunov candidate cannot be

found, it is not possible to say that the system is unstable as there might be other nonlinear

function that proves the stability of the system. The choice of the Lyapunov candidate

function for such cases is very elusive and in general, depends on the intuition of the designer.

The Lyapunov candidate function in a sense gives the energy of a system qualitatively.
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If the �rst derivative of a Lyapunov function is less than zero, then it implies that the system

is a dissipative one and would lose energy in a �nite time, hence proving that it is stable.

However, we can consider the fractional-order derivative of the Lyapunov function, and this

also would indicate the rate at which the dissipation of energy is occurring in the system.

Furthermore, the dissipation of the fractional-order systems is not constrained only to an

exponential decay also can follow a generalized power law curve (t−α). This type of slow

dissipation may be desirable in many applications, adding an extra degree of �exibility.

In this section, the basics de�nitions needed for the Lyapunov's direct method (also called

Lyapunov's �rst method) are presented (Ioannou and Sun 1996).

De�nition 3.1. A continuos function ϕ : [0, r] 7→ R+ (or a continuous funtion ϕ : [0,∞] 7→

B+) is said to belong to class K if

1. ϕ(0) = 0.

2. ϕ is strictly increasing on [0, r] (or on [0,∞]).

De�nition 3.2. A continuos function ϕ : [0,∞] 7→ R+ is said to belong to class KR if

1. ϕ(0) = 0.

2. ϕ is strictly increasing on [0,∞].

3. limr→∞ϕ(r) =∞.

De�nition 3.3. A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) = 0 ∀t ∈ R+ is positive

de�nite if there exist a continuous function ϕ ∈ K such that V (t, x) ≥ ϕ(|x|) ∀t ∈ R+,

x ∈ B(r) and some r > 0. V (t, x) is called negative de�nite if −V (t, x) is positive de�nite.

De�nition 3.4. A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) = 0 ∀t ∈ R+ is said to be

positive (negative) semide�nite if V (t, x) ≥ 0 (V (t, x) ≤ 0) for all r ∈ R+ and x ∈ B(r)

for some r > 0.

De�nition 3.5. A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) = 0 ∀t ∈ R+ is said to be

decrescent if there exist ϕ ∈ K such that |V (t, x)| ≤ ϕ(|x|) ∀t ≥ 0 and ∀x ∈ B(r) for some

r > 0.
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De�nition 3.6. A function V (t, x) : R+ × Rn 7→ R with V (t, 0) = 0 ∀t ∈ R+ is said to be

radially unbounded if there exist ϕ ∈ KR such that V (t, x) ≥ ϕ(|x|) for all x ∈ Rn and

t ∈ R+.

Other important concepts are the positive realness (PR) and strictly positive realness

(SPR). According to (Ladaci et al. 2007, Ladaci et al. 2009) this concepts for integer-order

systems are valid for fractional-order commensurate systems with α ∈ (0, 1).

De�nition 3.7. The m×m transfer function matrix G(s) is called strictly positive real (SPR)

if

1. All elements of G(s) are analytic in R ≥ 0.

2. G(s) is real for real s.

3. G(s) +GT∗(s) for R ≥ 0 and �nite s.

3.2 Mittag-Le�er stability

Mittag-Le�er stability is a more general type of stability, whose decay is represented by

a Mittag-Le�er function, which has as special cases the tα stability and exponential stability

(Li et al. 2009, Yua et al. 2013).

De�nition 3.8. (Mittag-Le�er stability (Li et al. 2009)) The solution of (2.36) is said to be

Mittag-Le�er stable if

‖ x ‖≤ m[x(t0)]Eα(−λ(t− t0)α)b, (3.1)

where t0 is the initial time, α ∈ (0, 1), λ > 0, b > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally

lipschitz on x ∈ B ∈ Rn with Lipschitz constant m0.

It is worth noticing that Mittag-Le�er stability implies asymptotic stability.

3.3 Extension of the Lyapunov direct method

The idea behind the Lyapunov direct method is to search for a Lyapunov candidate

function for a given nonlinear system, and if such function exists, the system is stable.
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The Lyapunov direct method is a su�cient condition, so if we cannot �nd a Lyapunov

candidate function to conclude the system stability, the system may still be stable, and it

cannot conclude that the system is unstable.

Next, an extension of the Lyapunov direct method for fractional-order systems is pre-

sented.

Theorem 3.1. (Fractional-order extension of Lyapunov direct method (Li et al. 2010)) Let

x = 0 be an equilibrium point for the fractional-order system (2.36) and D ⊂ Rn be a domain

containing the origin. Let V (t, x(t)) : [0,∞)×D→ R be a continuously di�erentiable function

and locally Lipschitz with respect to x such that

γ1 ‖ x ‖≤ V (t, x(t)) ≤ γ2‖ x ‖ab, (3.2)

t0D
α
t V (t, x(t)) ≤ −γ3‖ x ‖ab, (3.3)

where t ≥ 0, x ∈ D, α ∈ (0, 1), γ1, γ2, γ3, a and b are arbitrary positive constants. Then

x = 0 is Mittag-Le�er stable. If the assumptions hold globally on Rn, then x = 0 is globally

Mittag-Le�er stable.

The idea of this fractional-order extension Lyapunov theorem is that the stability con-

dition is derived by constructing a positive de�nite function V and calculating the fractional

derivative of the function V .

Next, a version of Theorem 3.1, that is useful for the analysis of adaptive systems, espe-

cially when t0D
α
t V (x, t) is negative semide�nite is present.

Theorem 3.2. (Duarte-Mermoud et al. 2015) Let x = 0 be an equilibrium point for the

non autonomous fractional-order system (2.36). Let us assume that there exists a continuous

function V (x, t) such that

• V (x, t) is positive de�nite.

• t0D
α
t (x, t), with α ∈ (0, 1], is negative semide�nite.

Then the origin of system (2.36) is Lyapunov stable. Furthermore, if V (x(t), t) is decrescent,

then the origin of system (2.36) is Lyapunov uniformly stable.
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One of the most used Lyapunov candidate functions to analyze the stability of integer-

order system are the quadratic functions. However, in the fractional case, the use of these

functions are not immediate, since evaluating the fractional derivative of the Lyapunov candi-

date function, in general, involves the evaluation of in�nite sums, which include higher order

integrals and derivatives of the states of the fractional system (Aguila-Camacho et al. 2014).

Next, some inequalities that facilitate the use of quadratic Lyapunov candidate functions

in the analysis of stability of fractional-order system using Lyapunov's direct method are

presented.

Lemma 3.1. (Duarte-Mermoud et al. 2015) Let x(t) ∈ Rn be a vector of di�erentiable func-

tions. Then, for any time instant t ≥ t0, the following relationship holds

1

2
t0D

α
t (xT (t)Px(t)) ≤ xT (t)Pt0D

α
t x(t) (3.4)

where P ∈ Rnxn is a constant, square, symmetric and positive de�nite matrix.

Lemma 3.2. (Duarte-Mermoud et al. 2015) Let A(t) ∈ Rn be a time varying di�erentiable

matrix. Then, for any time instant t ≥ t0, the following relationship holds

t0D
α
t [tr(AT (t)PA(t))] 6 2tr(AT (t)t0PD

α
t A(t)), ∀α ∈ (0, 1] (3.5)

A more extense review on fractional-order Lyapunov theory can be consulted in (Gallegos

and Duarte-Mermoud 2016b, Gallegos and Duarte-Mermoud 2016a).

3.4 Extension of the Barbalat's lemma

The stability of fractional nonlinear systems and time-varying can be studied using the

extension of the Lyapunov direct method for fractional systems. Using this technique is usually

a di�cult task, since �nding a Lyapunov function for the fractional case is more complicated

than in the integer-order case. Also, when a candidate function of Lyapunov is found, in

some cases, especially in adaptive control, the derivative is only negative semi-de�nite, which

assures the stability of the system but not the convergence of the states of the system (or the

error of the system).

For the integer-order systems, the Barbalat lemma and some of its corollaries are used to

conclude the convergence of a function to zero based on some conditions of the integer-order
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integral of the function. However, in fractional systems, it is usually more complicated to

establish conditions on the integer-order integral of the function, and it can be challenging to

use these tools.

In the literature has been proposed some extensions of the Barbalat's lemma, a pre-

liminary version of the extension proposed in this work was published in (Navarro-Guerrero

and Tang 2015), and a version with an improved proof was published in (Navarro-Guerrero

and Tang 2017b). This extension of the Barbalat's lemma is very useful to conclude the

convergence of the error in fractional-order adaptive systems.

Next, this extension is presented.

Lemma 3.3. (Navarro-Guerrero and Tang 2017b)(Extension of the Barbalat's Lemma) Let

f : R → R+ be a function uniformly continuous, and t0I
α
t given by the Riemann-Liouville

integral with α ∈ (0, 1).

If lim
t→∞ t0I

α
t f(t) exists and is �nite, then f(t)→ 0, as t→∞.

Proof. By contradiction, assume that f(t) does not go to zero as t → ∞. Then exist ε > 0,

an increasing time sequence {ti}i∈N+ , with t1 > 0, ti+1 = ti +Ti for some Ti > 0 and a T > 0

such that ∀ti > T , f(ti) ≥ ε. As f(t) is uniformly continuous there exists δ > 0 such that

f(t) > ε/2, ∀ t ∈ [ti, ti + δ]. Now consider the Riemann-Liouville fractional integral

Γ(α)t0I
α
t f(t) =

∫ t

t0

f(τ)

(t− τ)1−α
dτ

=

∫ t−1

t0

f(τ)

(t− τ)1−α
dτ +

∫ t

t−1

f(τ)

(t− τ)1−α
dτ

≥
∫ t−1

t0

f(τ)

(t− τ)1−α
dτ

≥
∫ t−1

t0

f(τ)

t1−αi

dτ

≥ εδ

2

N∑
i=1

1

t1−αi

, (3.6)

40



CHAPTER 3. LYAPUNOV THEORY FOR FRACTIONAL-ORDER SYSTEMS

where N = max{i|ti ≤ t− 1}. De�ne SN =
∑N

i=1
1

t1−αi

then

SN =
N∑
i=1

1

t1−αi

=
1

t1−α1

1 +
1

(1 + T1
t1

)1−α
+

1

(1 + T1+T2
t1

)1−α
+ ...+

1

(1 +
∑N
j=1 Tj
t1

)1−α

 .

(3.7)

Let's consider �rst the case Ti <∞, ∀i ∈ N+. In this case, let Tmax = maxi∈N+{Ti} and

t1 > max{Tmax, T}. Then

1 +

∑n
j=1 Tj

t1
≤ 1 + n

Tmax
t1

< 1 + n, ∀n ∈ N+. (3.8)

Therefore

(1 +

∑n
j=1 Tj

t1
)1−α ≤ (1 +

∑n
j=1 Tj

t1
) < 1 + n, ∀n ∈ N+. (3.9)

This implies that

SN >
1

t1−α1

{
1 +

1

1 + 1
+ ...+

1

1 +N

}
→∞, N →∞. (3.10)

This together with (3.6) implies that lim
t→∞ t0I

α
t f(t) is unbounded, which is a contradiction.

For the case Ti → ∞ as i → ∞, it implies that f(ti) → 0 as i → ∞, which is again a

contradiction.
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Chapter 4

Fractional-order Model Reference

Adaptive Control

Adaptive control consists in adapting in real time the controller's parameters in response

to the plant variations to ensure stability and constant performance. Since its apparition half

a century ago, adaptive control maintains interest in the control community with a signi�cant

number of papers and many publications of specialized books every year.

In model reference adaptive control the desired performance of the closed-loop system is

expressed in terms of a reference model, that describe the desired input-output properties,

and the parameters of the controller are adjusted based on the error between the reference

model output and the output of the system.

In this chapter, the methodology based on the Lyapunov's direct method for the design

of fractional-order model reference adaptive control (FOMRAC) schemes is presented.

4.1 Model reference adaptive control

The adaptive control techniques were developed during the 1960s (Whitaker 1959, Osborn

et al. 1961). These developments did not catch the attention because at the time there was

not very much knowledge on stability analysis of controllers with nonstationary parameters,

and modern methods of stability analysis that had been developed by Lyapunov at the start

of the 19th century were not broadly known. After the initial problems with adaptive control

techniques of the 1960s, stability analysis has become a center point in new developments
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related to adaptive control.

Figure 4.1: Direct MRAC scheme

New tools and techniques have been used or developed explicitly for rigorous stability

analysis and led to successful proofs of stability, mainly based on the Lyapunov approach.

The standard adaptive control methodology is the MRAC (Figure 4.1) approach that,

as its name states, the plant follows the behavior of a reference model which represent the

desired performance.

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t), (4.1)

y(t) = Cx(t). (4.2)

and the reference model

ẋm(t) = Amxm(t) +Bmr(t), (4.3)

ym(t) = Cmxm(t). (4.4)

The control signals that feed the plant is a linear combination of the state variables

u(t) =
∑

kxixi(t) +
∑

kuiri(t) = Kxx(t) +Kur(t). (4.5)

If the plant parameters were fully known, one could compute the corresponding controller

gains that would force the plant to asymptotically behave exactly as the reference model, or
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x(t)→ xm(t), (4.6)

and

y(t)→ ym(t). (4.7)

When the plant parameters are not known, one could think of the use of adaptive gains.

The idea is that the plant is fed a control signal that is a linear combination of the model

states through some gains. If all gains are correct, the entire plant state vector will follow

the model reference exactly. However, if not all gains are correct, the plant does not exactly

behave such as the model reference, and its measured output di�ers from the output of the

model reference. The resulting tracking error is given by

e(t) = xm(t)− x(t), (4.8)

and can be monitored and used to generate the adaptive gains. Then, the basic idea of

adaptation is the following: assume that one component of the control signal (4.5) that is fed

to the plant is coming from the variable xi through the gain kxi. If the gain is not perfectly

correct, this component contributes to the tracking error, and therefore, the tracking error

and the component xi are correlated. This correlation is used to generate the adaptive gain

k̇xi(t) = γxie(t)xi, (4.9)

k̇ui(t) = γuie(t)ri, (4.10)

where γ∗i is the adaptation gain, a parameter that a�ects the rate of adaptation. The adapta-

tion continues until, under appropriate conditions, the correlation diminishes and ultimately

vanishes, and therefore, the gain derivative tends to zero, and the gain itself is supposed to

go to a constant value. In vectorial form,

K̇x(t) =
∑

γxie(t)xi = Γxe(t)x
T (t), (4.11)

K̇u(t) =
∑

γuie(t)ri = Γue(t)r
T (t), (4.12)

u(t) = Kx(t)x(t) +Kur(t). (4.13)

44



CHAPTER 4. FRACTIONAL-ORDER MODEL REFERENCE ADAPTIVE CONTROL

This basic approach was able to generate the �rst rigorous proof of stability that showed

that not only the tracking error but even the entire state error asymptotically vanishes. This

result implied that the plant behavior would asymptotically reproduce the stable model behav-

ior and would ultimately achieve the desired performance represented by the ideal reference

model. In particular, the Lyapunov stability technique revealed the prior conditions that had

to be satis�ed to guarantee stability and allowed getting rigorous proofs of stability of the

adaptive control system.

In practice only a nominal model of the real-world plant is usually available for the

control design and, furthermore, plant parameters may vary under various operational and

environmental conditions. Therefore, adaptive control methodologies seemed to be the natural

solution for these problems.

4.2 Fractional-order model reference adaptive control

In this section, the extension of MRAC for fractional-order systems is presented. Apply-

ing the extension of the Barbalat's lemma (Lemma 3.5) proposed, we realize a full stability

analysis and conclude the converge of the tracking error to zero in the FOMRAC scheme, show-

ing the importance of this lemma by improving the stability analysis presented in (Duarte-

Mermoud et al. 2015) where the authors do not conclude the convergence of the error for the

lack of a mathematical tool to do it.

In the following Theorem, the FOMRAC scheme is presented.

Theorem 4.1. Consider the fractional-order system given by

0D
α
t x(t) = Ax+Bu, x ∈ Rn, 0 < α < 1, (4.14)

where A ∈ Rnxn, B ∈ Rnxq are unknown constant matrices, and the reference model

0D
α
t xm(t) = Amxm +Bmr, (4.15)

where Am ∈ Rnxn is Hurwitz, Bm ∈ Rnxq are design matrices, and r ∈ Rq is a bounded

reference input vector, and the adaptive control law

u = −K(t)x+ L(t)r, (4.16)
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where K(t) and L(t) are the estimates of the true parameters K∗ ∈ Rqxn, L∗ ∈ Rqxq such that

A−BK∗ = Am and BL∗ = Bm. And the adaptive laws

0D
α
t Φ(t) = −γΨTPe, (4.17)

where P = P T > 0, and γ > 0 is the adaptation gain. Then all signals in the closed-loop

system given by (4.14), (4.15), (4.16) and (4.17) are bounded ∀t ≤ 0. Furthermore, the

tracking error e→ 0 when t→∞.

Proof. Consider the tracking error e = x− xm, and the error dynamics given by

0D
α
t e = Ame+ ΨTΦ, (4.18)

where ΨT = [x r], Φ = [Θ−Θm] = Θ̃, ΘT = [A−BK(t) BL(t)], ΘT
m = [Am Bm].

Consider the following Lyapunov candidate function

V (e,Φ) =
1

2
γeTPe+

1

2
ΦTΦ. (4.19)

Applying the Caputo derivative and Lemma 3.3 and substituting the error dynamics we

have

0D
α
t V (e,Φ) ≤ γeT [ATmP + PAm]e+ γeTPΨTΦ + ΦT

0D
α
t Φ,

since Am is Hurwitz, and there exists a matrix Q = QT > 0 such that ATmP + PAm = −Q,

then

0D
α
t V (e,Φ) ≤ −γeTQe+ γeTPΨTΦ + ΦT

0D
α
t Φ, (4.20)

we choose the update laws such that

γeTPΨTΦ + ΦT
0D

α
t Φ = 0, (4.21)

then we have

0D
α
t Φ = −γΨTPe. (4.22)

Using the adaptive laws given by (4.22), then
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0D
α
t V (e,Φ) ≤ −γeTQe, (4.23)

where γ > 0 is the adaptation gain. Since 0D
α
t V is negative semide�nite, from Theorem 3.4

the stability of the closed-loop can be concluded. So all the signals in the closed-loop are

bounded.

Applying the fractional integral and Property 2.7 we have

0I
α
t e

TQe ≤ V (0)

γ
. (4.24)

Then the integral (4.24) exist, and by Lemma 3.5 it concludes that the tracking error converge

to zero when t→∞.

4.2.1 Ilustrative example

In order to show the control scheme designed in Theorem 4.1 we carried out one simulation

with following model reference

D0.5xm(t) =

 0 1

−10 −5

xm +

0

2

 r,
ym(t) =[1 0]xm(t),

(4.25)

and the plant

D0.5x(t) =

 0 1

−6 −7

x+

0

8

u,
y(t) =[1 0]x(t),

(4.26)

with the update laws given by (4.17) with, γ = 10.

Figure 4.2 shown the output of the reference model, the output of the adaptive system,

the tracking error, and the controller parameters.

It can be observed that the scheme met the control objective and the tracking error e→ 0

when t→∞.
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Figure 4.2: Simulations results of the FOMRAC scheme
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4.3 Fractional-order closed-loop model reference adaptive con-

trol

One recent approach of adaptive control that improves transient behavior by using a

closed-loop architecture for reference models, named closed-loop model reference adaptive

control (CMRAC) has been proposed (Gibson et al. 2015). In this approach, the focus is

adaptive systems with output-feedback where it is shown that such closed-loop reference

models can lead to a separation principle based adaptive controller which is simpler to imple-

ment compared to the classical ones based on observers or �ltered signals. The simpli�cation

comes with the use of the reference model states in the construction of the regressor and not

the classic approach where the regressor is constructed from �ltered plant inputs and outputs.

Figure 4.3: FOCMRAC scheme.

Next, the generalization of this scheme (Figure 4.3), denoted, fractional-order closed-loop

model reference adaptive control (FOCMRAC) is presented. As far as the author's knowledge,

this extension was not reported in literature until (Navarro-Guerrero and Tang 2017a).

Consider the fractional-order system given by

0D
α
t x(t) =Ax(t)−BΛu(t),

z(t) =CTx(t),
(4.27)

where x ∈ Rn, u ∈ R, z ∈ R, and α ∈ (0, 1). A and Λ are unknown, B y C are known and

only z is available for measurement.
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The control objective is to design a control signal u such that x follow the state xm of

the reference model given by

0D
α
t xm(t) =Amxm(t)−Br(t)− L(z − zm),

zm(t) =CTxm(t),
(4.28)

where r ∈ R is the reference signal and L is a feedback gain to be designed.

The following assumptions are made:

• 1) The product CTB is full rank.

• 2) The pair Am, CT is observable.

• 3) The system in (4.27) is minimum phase.

• 4) There exist Θ∗ ∈ Rnx1 such that A+BΛΘ∗T = Am and K∗ ∈ R such that ΛK∗T = I

(matching conditions).

• 5) Λ is diagonal with positive elements.

• 6) The uncertain matching parameter Θ∗, and the input uncertainty matrix Λ have a

priori a upper bounds.

θ̄∗ , sup‖Θ∗‖ and λ̄ , sup‖Λ‖ (4.29)

Next, some results needed for the design and analysis of the control scheme are presented.

The proofs can be found in (Gibson et al. 2015).

These lemmas show how to choose L in order to have a stable closed-loop system when

a closed-loop reference model is used.

Lemma 4.1. For the SISO case the system (4.27) satisfying the suppositions 1-3, there exist

a Ls such that

CT (sI −Am − LsCT )−1B =
a

s+ ρ
, (4.30)

where ρ > 0 is an arbitrary parameter and a = CTB.
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Lemma 4.2. If Ls is chosen as (4.30) andM , CTB, the SISO transfer functionMTCT (sI−

Am − LsCT )−1B is SPR. Therefore, there exists P = P T > 0 and Qs = QTs > 0 such that

(Am + LsC
T )TP + P (Am + LsC

T ) =−Qs,

PB =CM.
(4.31)

Lemma 4.3. Choosing L = Ls−ρBMT where Ls is de�ned by (4.30) and is arbitrary, ρ > 0,

the transfer function MTCT (sI −Am − LCT )−1B is SPR and satis�es

(Am + LCT )TP + P (Am + LCT ) =−Q,

Q ,Qs + 2ρCMMTCT ,
(4.32)

where P y Qs are de�ned in (4.31) and M = CTB.

Assuming that L is choose using the above lemmas, in the following theorem the adaptive

scheme is formulated.

Theorem 4.2. (Navarro-Guerrero and Tang 2018) Consider the fractional-order system given

by (4.27) satisfying assumptions 1-6 and the closed-loop model reference given by (4.28) and

the control law

u(t) = ΘT (t)xm +KT (t)r(t), (4.33)

with adaptive laws

0D
α
t Θ =− Γxme

T
y ,

0D
α
t K =− ΓreTy ,

(4.34)

where ey = CT e, Γ > 0. Then all the signals in the closed-loop system given by (4.27), (4.28),

(4.33) and (4.34) are bounded ∀t ≥ 0. Futhermore, the tracking error e→ 0 when t→∞.

Proof. From (4.27) , (4.28) and (4.33) the dynamic of the error e = x− xm is given by

0D
α
t e =(Am + LCT )e+BΛ(Θ̃Txm + K̃T r),

ey =CT e.
(4.35)

51



CHAPTER 4. FRACTIONAL-ORDER MODEL REFERENCE ADAPTIVE CONTROL

Consider the Lyapunov candidate function

V =
1

2
eTPe+

1

2
tr

(
Θ̃TP Θ̃

Γ

)
+

1

2
tr

(
K̃TPK̃

Γ

)
, (4.36)

taking the Caputo derivative and applying Lemmas 3.3 and 3.4

0D
α
t V ≤ eTP 0D

α
t e+ tr

(
Θ̃TP 0D

α
t Θ̃

Γ

)
+ tr

(
K̃TP 0D

α
t K̃

Γ

)
, (4.37)

substitute (4.35), (4.31) and (4.32) we have

0D
α
t V ≤− eTQe− eTPBΘ̃Txm − eTPBK̃T r+

+ tr

(
Θ̃TP 0D

α
t Θ̃

Γ

)
+ tr

(
K̃TP 0D

α
t K̃

Γ

)
,

(4.38)

using the properties of the operator tr(∗) and the fact that ey = CT e and taking the adaptation

laws as (4.34) we have

0D
α
t V ≤ −eTQe. (4.39)

Given that γ > 0 and 0D
α
t V is negative semide�nite, from Theorem 3.4 it can be con-

cluded the stability of the closed-loop system. Applying the fractional integral and Property

2.7 to (4.39), we have

0I
α
t e

TQe ≤ V (0). (4.40)

Then the fractional integral (4.40) exits, and by Lemmas 3.5 it concludes that the tracking

error e→ 0 where t→∞.

4.3.1 Ilustrative example

In order to show the FOCMRAC scheme we carried out one simulation to illustrate the

scheme design in Theorem 4.2, with following model reference
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D0.5xm(t) =

 0 1

−10 −5

xm(t) +

0

2

 r(r) +

−10

−2

 (y − ym),

ym(t) =[1 0]xm(t),

(4.41)

and the plant

D0.5x(t) =

 0 1

−6 −7

x(t) +

0

8

u(t),

y(t) =[1 0]x(t),

(4.42)

with the adaptive laws given by (4.34) with, γ = 10.

Figure 4.4 shown the output of the reference model, the output of the adaptive system,

the tracking error, and the controller parameters.

It can be observed that the scheme met the control objective and the tracking error e→ 0

when t→∞.

4.4 Fractional-order parameter identi�er

Another important technique in adaptive systems is parameters estimation. In this sec-

tion, a parameter estimator for fractional-order systems is presented. The analysis is done

via the Lyapunov's direct method and the extension of the Barbalat's lemma proposed.

Consider the plant given by

0D
α
t x = Apx+Bpu, (4.43)

where x ∈ Rn and u ∈ Rr are available for measurement, Ap ∈ Rn×n, Bp ∈ Rn×r are unknown,

Ap is stable, and u is bounded.

Consider the model

0D
α
t x̂ = Âpx̂+ B̂pu, (4.44)

where Âp(t), B̂p(t) are the estimates of Ap, Bp, and x̂(t) is the estimate of the vextor x(t).
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Figure 4.4: Simulations results of the FOCMRAC scheme
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Theorem 4.3. Consider the system (4.43), the model (4.44) and the adaptive laws

0D
α
t Âp =γ1εx̂

T ,

0D
α
t B̂p =γ2εu

T ,
(4.45)

where γ1, γ2 > 0 are the adaptive gains, Âp(t), B̂p(t) are the estimates of the parameters of

(4.43) and the identi�cation error is given by ε = x− x̂. Then the identi�cation error ε→ 0

as t → ∞. Futhermore if the vector [xT , uT ] is of persistent exitation, then Âp → Ap and

B̂p → Bp.

Proof. From (4.43) and (4.44) the identi�cation error is given by

0D
α
t ε = Apε− Ãpx̂− B̃pu, (4.46)

where Ãp −Ap and B̃p −Bp.

Consider the Lyapunov candidate function

V (ε, Ãp, B̃p) =
1

2
εTPε+

1

2
tr

(
ÃTp PÃp

γ1

)
+

1

2
tr

(
B̃T
p PB̃p

γ2

)
, (4.47)

where tr(∗) denotes the trace operator, γ1, γ2 > 0 are constants and P = P T > 0 is chosen

as the solution of the Lyapunov equation

PAp +ATp = −Q. (4.48)

Taking the Caputo derivative (4.47) and applying the Lemmas 3.3 and 3.4 we have

0D
α
t V ≤ εTP 0D

α
t ε+ tr

(
ÃTp P 0D

α
t Ãp

γ1

)
+

1

2
tr

(
B̃T
p P 0D

α
t B̃p

γ2

)
, (4.49)

substituting (4.46) we have

0D
α
t V ≤ −εT [PAp+ATp P ]ε− εTPÂpx̂− εTPB̂pu+ tr

(
ÃTp P 0D

α
t Ãp

γ1

)
+

1

2
tr

(
B̃T
p P 0D

α
t B̃p

γ2

)
,

(4.50)

using the tr(∗) operator properties we known that
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εTPÂpx̂ =tr(ÂTp Pεx̂
T ),

εTPB̂pu =tr(B̂T
p Pεu

T ),
(4.51)

substituting (4.51) in (4.50) we have

0D
α
t V ≤ −εQε+ tr

(
−ÂTp Pεx̂T +

ÃTp P 0D
α
t Ãp

γ1

)
+ tr

(
−B̂T

p Pεu
T +

B̃T
p P 0D

α
t B̃p

γ2

)
, (4.52)

from (4.52) we need that the last two right-hand terms equal to zero, then choosing

0D
α
t Ãp =0D

α
t Âp = γ1εx̂

T ,

0D
α
t Ãp =0D

α
t B̂p = γ2εu

T ,
(4.53)

we have

0D
α
t V ≤ −εQε. (4.54)

Since (4.54) is negative semide�nite from Theorem 3.4 the stability of the closed-loop

system can be concluded.

Applying the Riemann-Liouville integral on both sides of the inequality (4.54) and Prop-

erty 2.7 we have

0I
α
t e

TQe ≤ V (0). (4.55)

Then the integral (4.55) exist and by Lemma 3.5 it concludes that the identi�cation error

e→ 0 when t→∞. Futhermore if the vector [xT , uT ] is of persistent exitation, then Âp → Ap

and B̂p → Bp.

4.4.1 Ilustrative example

To illustrate the identi�cation scheme of Theorem 4.3 we carried out one simulation.

Consider the plant given by
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0D
0.8
t x(t) =

−4 1

−6 0

x+

1

3

u,
y(t) =[1 0]x(t),

(4.56)

and the update laws given by (4.45) with, γ1 = 50, γ2 = 1, and u = 5sin(2.5t) + 6sin(5t).

Figure 4.5 shown the states of the plant, the states estimated and the errors. Figure 4.6

shown the parameters estimated, we can observe that the estimated parameters converge to

the parameters of the plant.

4.5 Fractional-order parameter identi�er with output feedback

The next identi�cation scheme is an extension for fractional-order systems of the scheme

presented in (Ioannou and Sun 1996). This identi�cation scheme does not need state mea-

surement and only used information of the input and output to construct the identi�er. This

scheme will be used in our case of study in Chapter 6.

Consider the commensurate fractional-order SISO system

0D
α
t x =Ax+Bu,

z =CTx,
(4.57)

where x ∈ Rn, and only y, u are available for measurement. The system (4.57) can be written

as

z =
B(λ)

A(λ)
u = CT (λI −A)−1Bu, (4.58)

where λ = sα and α is the commensurate order with 0 < α < 1, and A(λ), B(λ) are in the

form

A(λ) =λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

B(λ) =bmλ
m + bm−1λ

m−1 + . . . b1λb0,
(4.59)

where the constants ai, bi for i = 0, 1, 2, . . . , n − 1 are the system parameters. Now consider

the linear parameterization of (4.58)
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Figure 4.5: Identi�cation scheme with state measurement, states and states error, where p

and e indicates plant and estimate, respectively.
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Figure 4.6: Identi�cation scheme with state measurement, parameters estimates, where p and

e indicates plant and estimate, respectively.
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z = W (λ)θ∗Tψ, (4.60)

where θ∗T is the parameter vector, ψ is the regressor that contains the �ltered measurable

signals u, y, and W (λ) is a proper stable transfer function.

θ∗ = [bm, bm−1, . . . , b0, an−1, an−2, . . . , a0]
T , (4.61)

z =
1

Λ(λ)
y =

λn

Λ(λ)
y, (4.62)

φ =

[
βTn−1(λ)

Λ(λ)
u,−

βTn−1(λ)

Λ(λ)
y

]
, (4.63)

Λ(λ) = λn + ηn−1λ
n−1 + ηn−2λ

n−2 + · · ·+ η0 (4.64)

= λn + ηTβn−1(λ). (4.65)

With the parameterization (4.60) the signals z and ψ can be generated only with the

information of u and y.

Because θ∗ is a constant vector, we can write (4.60) in the form z = W (λ)L(λ)θ∗Tφ,

where φ = L−1(λ)ψ.

And L(s) is chosen so that L−1(λ) is a proper stable transfer function and W (λ)L(λ) is

a proper SPR transfer function.

A state-space representation of the parameterization (4.60) is given by

0D
α
t φ1 = Λcφ1 + lu,

0D
α
t φ2 = Λcφ2 + ly,

z = y + βTn−1φ2 = θ∗Tφ,

(4.66)

where

Λc =


−ηn−1 −ηn−2 . . . −η0

1 0 . . . 0
...

. . .
...

0 . . . 1 0

 , l =


1

0
...

0

 , (4.67)

because Λ(λ) = det(λI − Λc) and Λ(λ) is stable, it follows that Λc is a stable matrix.
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The state-space model (4.66) has the same input-output response as (4.57) and (4.58),

provided that all state initial condition are x0 = 0, φ1 = φ2 = 0.

Now the identi�cation scheme is formulated by the following theorem.

Theorem 4.4. (Navarro-Guerrero and Tang 2018) Consider the system (4.57), the linear

parameterization (4.60) and the matrices Ac, Bc and Cc associate with the state-space system

W (λ)L(λ) = CTc (λI −Ac)−1Bc, and the adaptive law

0D
α
t θ̂ = Γεφ (4.68)

where Γ > 0 is the adaptation gain and θ̂ are the estimates θ∗ in (4.60) and the identi�cation

error is given by e = z − ẑ and ε = Cce. Then the identi�cation error ε→ 0 as t→ 0.

Proof. The dynamics of the identi�cation error is given by

0D
α
t e = Ace−Bcθ̃φ, (4.69)

where the parameter error is de�ned as θ̃ = θ̂ − θ∗.

Consider the following Lyapunov candidate function

V (θ̃, e) =
1

2
eTPce+

1

2
θ̃TΓ−1θ̃. (4.70)

where Γ = ΓT > 0 is a constant matrix and Pc = P Tc > 0 satis�es the algebraic equation

PcAc +ATc Pc = −Q,

PcBc = Cc.
(4.71)

and applying the Caputo derivative to (4.70)

0D
α
t V ≤eTPc0Dα

t e+ θ̃TΓ−10D
α
t θ̃,

≤eT [PcAc +ATc Pc]e− eTPcBcθ̃φ+ θ̃TΓ−10D
α
t θ̃,

≤− eTQe− eTPcBcθ̃φ+ θ̃TΓ−10D
α
t θ̃.

(4.72)

From (4.72) we need that

− eTPcBcθ̃φ+ θ̃TΓ−10D
α
t θ̃ = 0, (4.73)
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from (4.71) we have PcBc = Cc which implies that eTPcBc = ε, then (4.73) can be written as

− θ̃Tφε+ θ̃TΓ−10D
α
t θ̃ = 0. (4.74)

which leads to (4.68).

Using the adaptation law given by (4.68), then

0D
α
t V ≤ −eTQe. (4.75)

Since (4.75) is negative semide�nite from Theorem 3.4 the stability of the closed-loop

system can be concluded.

Applying the Riemann-Liouville integral on both sides of the inequality (4.75) and Prop-

erty 2.7 we have

IαeTQe ≤ V (0). (4.76)

Then the integral (4.76) exist and by Lemma 3.5 it concludes that the identi�cation error

e→ 0 when t→∞. Futhermore if the vector [xT , uT ] is of persistent exitation, then θ̂p → θ∗.

4.5.1 Ilustrative example

To illustrate the identi�cation scheme of Theorem 4.4 we carried out one simulation.

D0.8x(t) =

−4 1

−6 0

x+

1

3

u,
y(t) =[1 0]x(t),

(4.77)

with Λc =

−5 −6

1 0

 and the update laws given by (4.68) with, Γ = 10 and u = 5sin(2.5t)+

6sin(5t).

Figure 4.7 shown the output of the plant, the estimated output, and the identi�cation

error. Figure 4.8 shown the parameters estimated, we can observe that the estimated param-

eters converge to the parameters of the plant with small oscillations around the real values,

which is translated in a small identi�cation error.
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Figure 4.7: Identi�cation scheme without state measurement, output and output error using

the Crone approximation
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Figure 4.8: Identi�cation scheme without state measurement, parameters estimates using the

Crone approximation
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This is an example of the how the numerical approximation used a�ects the results of

the simulations. This particular identi�cation scheme is more demanding, computational-wise

because it uses the �ltered input and output signals to construct the regressor. The simulation

use the crone approximation, with n = 10 and a bandwidth [0.01 100].

In the Figures 4.9 - 4.10 is shown the same simulation using the Matsuda approximation

with n = 50 and a bandwidth [0.0001 10000]. We can observe that the overall performance

improves, we obtain signals with fewer oscillations.

So we need to choose the numerical approximation that gives us the best result in the

particular case studied.

Figure 4.9: Identi�cation scheme without state measurement, parameters estimates using the

Matsuda approximation
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Figure 4.10: Identi�cation scheme without state measurement, parameters estimates using

the Matsuda approximation
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4.6 Observer for fractional-order systems

The reconstruction of system states from its inputs and outputs has received a great deal

of attention recently. In (Hartley and Lorenzo 2002, Doye et al. 2009) studied the fractional-

order Luenberger observer and observer-based controller design, and in (Wei et al. 2015)

present the design for a fractional-order adaptive observer.

Just like in integer-order system theory, it is important to create observers, or state

estimators, for fractional-order systems. The Luenberger type observer for commensurate

fractional-order systems has been previously reported in (Hartley and Lorenzo 2002), for

completeness, we present this results because this observer can be used in conjunction with

the FOMRAC scheme when the states are not available for measurement.

The fractional-order state estimator (Luenberger type observer) has the form

0D
α
t x̂(t) =Ax̂+Bu(t)− L(y(t)− ŷ(t)),

ŷ(t) =Cx̂(t).
(4.78)

The error e(t) is de�ned as the di�erence between the real system output x(t), and the

estimated observer output x̂(t).

e(t) = x(t)− x̂(t). (4.79)

The observer error gain L is determined to force the error between the two plant vectors

to go to zero. The dynamics of the error is obtained applying the fractional derivative to

(4.79),

0D
α
t e(t) =0 D

α
t x(t)−0 D

α
t x̂(t). (4.80)

Substituting the system equations from Equations (4.14) and (4.78) yields

0D
α
t e(t) = [Ax+Bu(t)]− [Ax̂+Bu(t)− L(y(t)− ŷ(t))]. (4.81)

Now replacing the measured system outputs, y(t) and ŷ(t) with the vector variables using

(4.14) and (4.78), yields

0D
α
t e(t) = [Ax+Bu(t)]− [Ax̂+Bu(t)− L(Cx(t)− Cx̂(t))]. (4.82)
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Replacing e(t) = x(t)− x̂(t), and combing terms, gives

0D
α
t e(t) = (A− LC)e(t). (4.83)

The matrix L is determined to force the observer error to zero by placing the eigenvalues

of A− LC in a stable region of the w − plane using standard methods.

4.6.1 Ilustrative example

To illustrate the fractional-order Luenberger observer (4.78) we carried out one simula-

tion.

Consider the plant

D0.5x(t) =

 0 1

−10 −5

x+

0

2

u,
y(t) =[1 0]x(t),

(4.84)

with the matrix (A− LC) =

 5 1

−15 −5

 and u = 5sin(2t).

Figure 4.11 shows the states of the plant, the states estimates and the evolution of the

state's error. We can observe that x̂→ x and e→ 0.

4.7 Fractional-Order Adaptive Observer

An adaptive observer can be built using the fractional-order Luenberger observer and

a parameters identi�er. In this case, the objective is to estimate both, the states and the

parameters of the system.

The structure of the adaptive observer is shown in Fig. 4.12.

Using the fractional-order Luenberger observer (4.78) and the parameter identi�er given

by Theorem 4.4 we construct an adaptive observer. To illustrate this observer, we carry a

simulation with the plant given by
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Figure 4.11: States estimates and identi�cation error.
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Figure 4.12: Adaptive Observer.

D0.7x(t) =

a1 1

a2 0

x+

b1
b2

u,
y(t) =[1 0]x(t),

(4.85)

where a1, a2, b1, b2 are the unknown parameters and u, y are the only signals available for

measurement.

From (4.78) the observer is given by

D0.7x̂(t) =

â1 1

â2 0

 x̂+

b̂1
b̂2

u,+
l1
l2

 (y − ŷ),

y(t) =[1 0]x̂,

(4.86)

where â1, â2, b̂1, b̂2 are the parameters estimates, and x̂, ŷ are the states and output estimates

of (4.85).

The parameter identi�er can be built using the results of Theorem 4.4 and is given by

Λ(λ) = (s+ 5)(s+ 6) = s2 + 11s+ 30, (4.87)
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and the vector φ = [φT1 , φ
T
2 ] is generating by

D0.7φ1 =

−11 −30

1 0

φ11
φ12

+

1

0

u, (4.88)

D0.7φ2 =

−11 −30

1 0

φ21
φ22

+

−1

0

 y, (4.89)

and the signals

z = y + 11φ21 + 30φ22, (4.90)

ẑ = b̂1φ12 + b̂2φ12 + â1φ21 + â2φ22, (4.91)

e = z − ẑ (4.92)

and the adaptive laws are given by

D0.7b̂1 =γ1eφ11,

D0.7b̂2 =γ1eφ12,
(4.93)

D0.7â1 =γ1eφ21,

D0.7â2 =γ1eφ22,
(4.94)

The real values of the plant parameters are a∗1 = −4, a∗2 = −6, b∗1 = 2, b∗2 = 3. The

simulation is carried out with l1 = 2, l2 = 11, γ1 = 1, γ2 = 0.5.

In Figure 4.13 shown the estimates of the states and in Figure 4.14 is shown the param-

eters estimates. We can observe that e→ 0 as t→∞ and â→ a∗, b̂→ b∗.
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Figure 4.13: States estimates and observation error.
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Figure 4.14: Parameters estimates.
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Chapter 5

Anesthesia Control

In medical practice, the application of general anesthesia plays a signi�cant role in the

patient's well-being, this is achieved through the administration of a combination of drugs

that act to provide adequate hypnosis (unconsciousness and amnesia to avoid traumatic re-

calls), paralysis or muscle relaxation (to attain immobility, an absence of re�exes, and proper

operating conditions), and analgesia (pain relief). This process is accomplished by an anesthe-

siologist who must continuously observe and adjust the rates and overall amounts of anesthetic

agents delivered to the patient, preserving the stability of the autonomic, cardiovascular, res-

piratory, and thermoregulatory systems.

The concepts of the general anesthesia, modeling, and the control challenges are presented

in this Chapter. Moreover, three fractional-order models with simple structures to represent

the input-output behavior of the PK/PD model of anesthesia are proposed.

5.1 General anesthesia

The e�ects of drugs on patients in the operating room vary with drug dosage, from pa-

tient to patient, and with time. Di�erent doses of drugs result in di�erent concentrations

in various tissues, producing a range of therapeutic and sometimes undesirable responses.

Responses depend on drug pharmacokinetics (time curse of drug concentration in the body)

and drug pharmacodynamics (the relationship between drug concentration and drug e�ect).

These processes may be in�uenced by factors including pre-existing disease, age, and genetic

variability. Patient responses to drugs may also dynamically altered by factors such as temper-
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ature, pH, circulating ion and protein concentration, levels of endogenous signaling molecules,

and coadministration of the drug in the operating room environment (Brown et al. 2010).

General anesthesia consists of providing the patient with a reversible state of loss of

consciousness (hypnosis), analgesia and muscle relaxation.

Figure 5.1: General anesthesia components

The purpose of general anesthesia is to allow the patient to be operated without pain, by

administering anesthetic drugs intravenously or inhaled, providing maximum safety, comfort

and vigilance during the surgical act. The description of the general process with its variables

is shown in Figure 5.2. As can be seen, the variables that can be manipulated are the

anesthetics, relaxants, and serums, the disturbances in the system are signals that can occur

at any time, such as surgical stimulation, and blood loss. The output variables are divided

into measurable and non-measurable, and the main interest in the control of anesthesia is

focused on the non-measurable variables: hypnosis, analgesia, and muscle relaxation.

In practice, an anesthesiologist has to observe and control a large number of hemodynamic
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Figure 5.2: Input-Output variables in anesthesia

and respiratory variables as well as clinical signs that indicate the state of hypnosis and

analgesia.

Most of the drugs used do not only operate on the desired e�ect but alter other aspects,

for example, the e�ects of the anesthetic drug propofol not only a�ect the level of hypnosis

but also increase the level of analgesia. The same behavior has the drug remifentanil whose

main objective is to increase the level of analgesia but as a side e�ect also increases the level

of hypnosis. Due to this cross e�ect between these drugs the anesthesiologist must adjust

the desired level of hypnosis and analgesia with di�erent amounts of both drugs. From the

point of view of control engineering, this problem is a problem of multiple inputs and multiple

outputs.

In the daily work routine, the anesthesiologist calculates the amount of the necessary

drug with the help of dose regimes given by the supplier of the drug, which in most cases are

based on the patient's body weight.

General anesthesia produces reversible behavioral and physiological phenomena (uncon-

sciousness, amnesia, analgesia) with the stability of the cardiovascular, respiratory and ther-
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moregulatory systems. Also generates distinct patterns in the electroencephalogram (EEG),

the most frequent being the progressive increase in the activity of low frequency and high

amplitude as the level of anesthesia deepens (Brown et al. 2010).

Recovery from general anesthesia is a passive process that depends on the number of drugs

administered, its places of action, potency, pharmacokinetics, the physiological characteristics

of the patient and the type and duration of the surgery (Brown et al. 2010).

General anesthesia is divided into three phases (Kellicker 2010):

• Induction phase: consists of administering drugs that cause the loss of consciousness.

Anesthetics are administered through an intravenous or gas within the lungs.

• Maintenance phase: drugs are administered continuously to maintain a stable thera-

peutic status.

• Emerging or recovery phase: this is the last phase. The drugs are stopped being ad-

ministered to slowly reverse the e�ects of the anesthesia and allow the patient to wake

up.

For a more detail description of the process of general anesthesia, the reader is referred

to (Bailey and Haddad 2005, Brown et al. 2010, V.V. 2011).

5.2 Pharmacokinetic/Pharmacodynamic model

The PK/PD models most frequently used for Propofol (hypnotic drug) are the fourth-

order compartmental model (Figure 5.3) (Schnider et al. 1998, Marsh et al. 1991). These

models, developed, tested, and validated on a wide range of real patient data are often used

in the literature for control of anesthesia (Beck 2015).

In this paper we use the model presented in (Schnider et al. 1998) given by

ẋ(t) =


−(a11 + a21 + a31) a12 a13

a21 −a12 0

a31 0 −a13

x(t) +


1

0

0

u(t), (5.1)

where x1 represents the concentration of the drug in the central compartment (intravascular

blood), x2 y x3 represent the concentration of the drug in the peripheral compartments, a12,
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Figure 5.3: PK/PD model.

a13, a21, a31 are positive constants representing the �ow between compartments, a11 is the

elimination rate of the drug through metabolism and u(t)[mg/min] is the rate of infusion of

anesthetic (propofol) in the central compartment, and aij are in [min−1] and xi are in [mg].

An additional compartment, namely, the e�ect compartment, is introduced to represent

the time-delay between the observed e�ect and the plasma concentration. The e�ect com-

partment model links the plasma concentration (concentration in the central compartment)

to the e�ect concentration with a �rst order di�erential equation

ẏ(t) = aeff (x1(t)− y(t)), y(0) = x1(0), t ≥ 0, (5.2)

where aeff is the time constant, x1(t) is the concentration in the central compartment de�ned

in (5.1) and y(t) is the concentration of the e�ect compartment.

The pharmacokinetic parameters can be obtained through the following equations (Schnider

et al. 1998):
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V1 = 4.27[l]

V2 = 18.9− 0.391(age− 53)[l]

V3 = 2.38[l]

C11 = 1.89 + 0− 0456(weight− 77)− 0.06681(ibm− 59)

+0.0264(height− 177)[l/min]

C12 = 1.29− 0.024(age− 53)[l/min]

C13 = 0.836[l/min]

a11 =
C11

V1
[min−1]; a12 =

C12

V1
[min−1]; a13 =

C13

V1
[min−1]

a21 =
C21

V2
[min−1]; a31 =

C13

V3
[min−1]

aeff = 0.456[min−1]

lbmm = 1.1 · weight− 128 · weight
2

height2

lbmf = 1.07 · weight− 148 · weight
2

height2

As we can observe in the previous equations, the PK parameters depend on the biomet-

rical characteristic of the patient.

The bispectral index (BIS) is a signal derived from the electroencephalogram (EEG) used

to assess the level of consciousness in anesthesia. A BIS value of 0 equals a �at line in the EEG

while a BIS value of 100 is the expected value of a fully conscious adult patient, 60− 70 and

40−60 range represent light and moderate hypnotic conditions (Figure 5.4), respectively. The

target value during surgery is 50, giving us a gap between 40 and 60 to guarantee adequate

sedation (Figure 5.5).

The BIS can be related to the concentration of the e�ect compartment by the nonlinear

static function, termed Hill equation (Bailey and Haddad 2005):

z = BIS(y) = E0 − Emax
yγ(t)

yγ(t) + ECγ50
, (5.3)

where E0 denotes the base value (awaken state) and by convention typically is given the value

of 100, Emax is the maximum e�ect achieved by drug infusion, EC50 is the drug concentration
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to half maximal e�ect and represents the patient's sensibility to the drug, and γ determines

the degree of nonlinearity of the function.

Figure 5.4: The BIS Index is scaled to correlate with important clinical end points during

administration of anesthetic agent (Kelley 2010).

The model of anesthesia, from physical considerations, describes a non-negative system,

that is, the state trajectories remain non-negative for non-negative initial conditions and a

non-negative control input, which must be taken into account for controller designs.

One of the signi�cant challenges in the control of anesthesia is the variability among

patients. This variability can occur as a result of patient physiology (age, gender, disease),

variations in PK processes (rate of absorption, distribution, metabolism, and elimination), and

di�erences in PD (sensitivity of receptor) (Shafer et al. 2010). Also, in the medical practice,

no state of this model is available for measurement, only the output (BIS) is measurable for

feedback.
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Figure 5.5: BIS Index Range (Kelley 2010).
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5.3 Anesthesia control

The problem of control of drug administration in anesthesia has been studied since the

1950s (Bickford 1950). Since then it has been clear that the control of anesthesia has many

challenges, such as multivariate features (Petersen-Felix et al. 1995), di�erent dynamics depen-

dent on the drug and place of administration (Curatolo et al. 1996, Struys et al. 2003), stability

problems (Asbury 1997) and performance of the control algorithm (Mainland et al. 2000, Ting

et al. 2004).

Given the complex nature and uncertainty of the process, it is not surprising that reliable

models for control of drug administration are not available.

Because the level of system uncertainty, �xed and robust gain controllers can unneces-

sarily sacri�ce system performance, while adaptive controls can tolerate much higher levels of

uncertainty and improve performance (Ioannou and Sun 1996).

The interaction between a drug and the body is divided into two phases: pharmacokinetics

(PK) and pharmacodynamics (PD). Pharmacokinetics described what the body does the drug

while the pharmacodynamics described what drug does to the body (Schnider et al. 1998).

Regarding the level of anesthesia or hypnosis (loss of consciousness), the body's response to

the administration of a hypnotic or anesthetic drug is commonly modeled as a Wiener model

of higher order, that is, a linear part corresponding to the pharmacokinetics, and a static

non-linearity corresponding to the pharmacodynamics (Bailey and Haddad 2005).

The concentration of the drug in the human body is not measurable online and also the

level of hypnosis is not measurable, so it is necessary to have a surrogate measurement as

variable to be controlled.

The bispectral index (BIS) has been tested and validated as a measurement of the hyp-

notic component of anesthesia and has been used in multiple studies as a variable to be

controlled.

In surgery, the level of hypnosis should be brought to a therapeutic value between 40 -

60 in a few minutes and kept there (Bailey and Haddad 2005). High values of the bispectral

index correspond to a low level of hypnosis, and the possibility of being aware during the

surgical procedure (Myles et al. 2004). Values below 40 are undesirable because they are

correlated with postoperative complications and with an increase in the mortality rate after

one year (Monk et al. 2005).
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Figure 5.6: Control of anesthesia implementation.

The application of a closed-loop system of drug administration is complex and require a

balance between all his basic components (O'Hara et al. 1992):

• A variable to be controlled representative of the desired therapeutic e�ect

• A clinically relevant reference value for this variable

• An actuator (in this case, an infusion pump)

• One system (the patient)

• An accurate, stable and robust control algorithm

In (Huang et al. 1999) and (Kenny and Mantzaridis 1999) it was proved that the anes-

thetic propofol has properties that make it appropriate for control of anesthesia. Many re-

search studies have been carried out using the anesthetic propofol as input to the system

and the bispectral index as a substitute measure of the level of hypnosis. In (Kenny and

Mantzaridis 1999, Morley et al. 2000, Sakai et al. 2000, Absalom et al. 2002, Liu et al. 2006,

Puri et al. 2007) were considered �xed-gain controllers, mostly PID. Adaptive controllers were

developed in (Mortier et al. 1998, Haddad et al. 2003b, Haddad et al. 2006). To deal with de-

lays in the system, predictive controllers were used in (Ionescu et al. 2008, Nino et al. 2009, Fu-

rutani et al. 2010). Also has been used sliding mode control in (Castro et al. 2008) and control

based on neural networks in (Haddad et al. 2007, Haddad et al. 2011). To the best of the

knowledge of the author, there has been only one attempted to use a fractional-order con-

troller for anesthesia using a CRONE controller (PID modi�cation) (Dumont et al. 2009).
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Results using FOMRAC and FOCMRAC for the control of anesthesia are presented in

(Navarro-Guerrero and Tang 2015, Navarro-Guerrero and Tang 2017b, Navarro-Guerrero and

Tang 2017a, Navarro-Guerrero and Tang 2018).

5.4 Challenges

Achieving the appropriate drug e�ect at any time during surgery, and after surgery is

an essential objective in anesthesia. The main drugs used to induce general anesthesia are

the hypnotics, analgesics and muscle relaxants, which are given to ensure unconsciousness, to

provide analgesia and suppress the hemodynamic response, and to suppress re�ex movements,

respectively. The dose of each drug is titrated against the individual patient's response to

achieve the intraoperative therapeutic goals. The patient should lose consciousness rapidly

after induction, the level of analgesia should follow the level of surgical stimulation closely,

and at the end of the operation, the drug e�ect should dissipate so that the patient wakes up,

has no residual muscle relaxation, and is pain-free. Unfortunately, at the end of a surgical

procedure, the desired intraoperative drug e�ects are viewed as side e�ects, for example,

excessive sedation and respiratory depression.

From a pharmacology perspective, anesthesia is concerned with controlling the time

course of drug e�ect. The drug e�ect is dependent on the site and rate of input of the

drug, the distribution of the drug within the body, the elimination of the drug from the body,

and the sensitivity of the patient to the drug. Innumerable anatomic, physiologic, and chem-

ical factors in�uence these processes. If we knew quantitatively all of the factors a�ecting the

distribution, elimination, and sensitivity to a drug in an individual patient, we could predict

the time course of the drug e�ect exactly. However, we only know a few of all the aspects of

the dose-response relationship.

Drug responses in humans are the results of integrated e�ects, including signal ampli�-

cation and dampening mechanisms at a cellular, tissue, and physiological systems level, and

the pharmacodynamic responses can be therapeutic, toxic, or lethal.

In anesthesiology, it is easy to observe that the response to the same drug dose vary

widely among patients. Part of the process of delivering anesthesia is titrating drug dose to

provide optimal therapy for a speci�c patient, mainly when the drug has signi�cant toxicities.

At the same time, the anesthesiologist must know dosing ranges that are appropriate for large
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populations of patients, to provide dosing guidelines.

The classical PK/PD models are coarse abstractions of a real distribution and elimina-

tion process. Still, these models describe the measured and observed concentrations. They

exist another more complex type of models called physiologically based models (Upton and

Ludbrook 2005), with these models it is possible to have more information available, for exam-

ple, the in�uence of changes in cardiac output and organ blood �ow on the time course of the

concentration in the blood and various organs and tissues. Unfortunately, the development

of such accurate models is expensive and can only be performed in animals. Furthermore,

this accurate models, are complex and have too many variables and parameters to be useful

in the development of controllers.

All these di�culties make the process of control of anesthesia a very challenging problem.

The potential bene�ts of a closed-loop system for anesthesia are: more consistent drug ad-

ministration, less inter and intra-patient variability, less over and under-dosage, faster control

action to unexpected arousal (perturbation rejection), smaller quantities of drug usage, faster

recovery of the patient, better hemodynamic control and less hypotension during induction

of anesthesia, all this bene�ts are what keeps the interest in the control community to design

reliable control schemes. Moreover, this problem is still considered an open problem.

5.5 Models for control of anesthesia

The current state of the art understanding the unconsciousness and the mechanisms of

drug-induced unconsciousness is limited, therefore is very challenging translated these little-

known mechanisms into an accurate mathematical model. At present, the models available

and most used are the mean �eld models of drug action such as the PK/PD model, which

describe the di�erent brain states associated with the electroencephalogram (EEG) (Absalom

et al. 2011).

The crucial step towards the control of anesthesia is to derive an adequate mathematical

model that describes the process. Is essential to �nd a good balance between the complex

models that may contain too many parameters that cannot be identi�ed for the lack of

appropriate measurements and sensors, and the over-simpli�ed model that might not capture

the system dynamics. In general, we should identify the objective of the model, be it prediction

or control, or both, and choose the structure of the model suitable for that objective.
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In this case is useful to remember the quote from George Box "All models are wrong, but

some are useful."

Another challenge is the identi�cation of a model from clinical data, is has been shown

(Silva et al. 2014) that the information available in the operating room (infusion rate of

the drug and BIS index usually) is insu�cient to identify a full-order PK/PD model. The

excitation in the input signal is not su�ciently frequency rich and is not able to excite all the

modes in the model because this input cannot be selected freely, additionally, this model has

a Wiener structure, which makes the task more di�cult. Therefore the task of identifying an

individualized model online is very challenging.

Linear and nonlinear reduced-order models have been proposed to improve the identi�a-

bility and the control synthesis of the anesthesia process.

One of the main characteristics of the models used for identi�cation and control of anes-

thesia is that they are simpli�ed models, for example, models with �xed parameters in the

PK or PD parts (linear or nonlinear), linearizations or order reduction.

In (Lin et al. 2004) the authors present a piece-wise linear model, with which they use

di�erent LTI models to represent di�erent phases of the process, for example, one model for

the induction phase and other for the maintenance phase. Then they synthesized a controller

for each phase, similar to gain scheduling schemes.

In (Sartori et al. 2005) is proposed a standard PK/PD model where the authors assume

that only the PD parameters are responsible for the inter-patient variability, and use an

extended PK model and linearized the model and identify the PD parameters and via a

Kalman �lter.

A �rst-order plus time-delay is proposed in (Bibian et al. 2006), here the PK parameters

are �xed, the Hill curve is linearized around an operating point, and the PD parameters are

calculated using a standard least square estimation.

In (Alonso et al. 2009) is presented a reduced-order model obtained using model reduction

technics. This model is an a�ne model with only four parameters and takes advantage of the

redundancy shown in the PK model, that is, the adjacent poles and zeros.

In (Silva et al. 2010) is proposed a MISO Wiener model for the pharmacokinetics and

pharmacodynamics of propofol and remifentanil. This model uses a PK part with a reduced

number of parameters (with a combination of three �xed parameters and one unknown), for
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the hypnotic drug and other for the analgesic. Also, a combine Hill equation (with a reduced

number of parameters) that combine the e�ect of both drug in the level of unconsciousness.

In (Navarro-Guerrero 2013) based on the cancellation of adjacent poles and zeros pre-

sented in the PK part of the PK / PD model, a non-linear �rst-order model with a linear

parameterization of two parameters is proposed. This model has the advantage that repre-

sents the input-output behavior of the PK/PD model, and do not rely on linearization by

the inversion of the nonlinearity and state measurement, but this model does not take into

account the time-delay in the PD part.

Every proposed model has his particulars advantages and disadvantage (which can be seen

in detail in his respective reference), but all these papers show us the necessity to develop

a simple model for identi�cation and control synthesis to circumvent the di�culties of using

the PK/PD model with a Wiener structure.

Moreover, the majority of the control schemes based on the proposed models relied on

the inversion of the non-linearity and supposed that the states are available for measurement,

However, in practice the parameters of the non-linearity are unknown, and the states are not

measurable online, thus adding more uncertainty in the control schemes presented.

5.6 New modeling paradigm: Fractional calculus

Some researchers had proposed the necessity for a fractal view of physiology that explicitly

takes into account the complexity of the living matter and its dynamics. Complexity in this

context incorporates the recent advances in physiology concerned with the applications of the

concepts from fractal geometry, fractal statistics, and nonlinear dynamics, to the formation

of a new kind of understanding within the life sciences.

The complexity of the human body and the characterization of that complexity through

fractal measures and their dynamics involve the use of fractional calculus. Not only anatomical

structures are fractal (Grizzi and Chiriva-Internati 2005), such as the convoluted surface of

the brain, the lining of the bowel, neural networks, and placenta, but the output of dynamical

physiologic networks are fractal as well (Bassingthwaighte et al. 1994).

The time series for the inter-beat intervals of the heart, inter-breath intervals, and inter-

stride intervals have all been shown to be fractal or multifractal statistical phenomena. Con-

sequently, the fractal dimension turns out to be a signi�cantly better indicator of organismic
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functions in health and disease than the traditional average measures, such as heart rate,

breathing rate, and stride rate. The observation that human physiology is primarily fractal

was �rst made in the 1980s (Bassingthwaighte et al. 1994).

Control of physiologic variables is one of the goals of medicine, in particular, understand-

ing and controlling physiological networks to ensure their proper operation.

Therefore it seems reasonable that one novel strategy for modeling the dynamics and

control of complex physiologic phenomena is through the application of the fractional calculus

(West 2009).

The fractional calculus has been used to model the interdependence, organization, and

concinnity of complex phenomena ranging from the vestibule-oculomotor system, to the elec-

trical impedance of biological tissue to the biomechanical behavior of physiologic organs (see,

for example, Magin (2006) for a review of these applications).

In (West 2009) is suggested that from the point of view of fractal physiology the blood

�ow and ventilation are delivered in a fractal manner in both space and time in a healthy

body.

A fundamental mechanism in the absorption of a drug in the human body is the process

of di�usion. In (Copot et al. 2014) the authors present the relation between the di�usion

process and fractional-order models. Also, the introduction of fractional-order pharmacoki-

netic models (Dokoumetzidis and Macheras 2009, Verotta 2010, Popovi¢ et al. 2011, Copot

et al. 2013) that represent the experimental data more precise way, thanks to the t−α decay of

the fractional operators, and with this a new line of investigation on the area of drug delivery

systems is open.

In (Magin 2006, Dokoumetzidis and Macheras 2009, Copot et al. 2014) it is suggested

that biological systems (like in pharmacology and bioengineering) could be represented with

a fractional-order model with a more simple structure compared with his integer-order coun-

terpart, simplifying the control design by using a less complex model.

So we can see that fractional calculus can o�er us a new point of view to understand

certain physical phenomena, especially those who from the point of view of integer-order

systems seems too complex.
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5.7 Proposed model

Under a process where exists a great uncertainty between individuals (inter-patient vari-

ability) and in the same individual (intra-patient variability), to have a deterministic model

valid is challenging (in practice almost impossible or too complex to be useful). So, if we could

have a model for a single patient, this model would only be valid for a period due to changes

in the physiological variables during surgery, which implies a change in the parameters of the

model, hence the need to update the online model. Therefore, it would be convenient to have

a generic model that has the ability of capture a wide range of dynamics (in this case the

range characterized for the inter-patient variability) and adapted online to individualize the

model for each patient.

Based on these facts a simple FOMs are considered. Three fractional commensurate order

models to represent the input-output behavior of the Wiener system (5.1-5.3) are proposed:

G1(λ) =
b0

λ+ a0
, (5.4)

G2(λ) =
b1λ+ b0

λ2 + a1λ+ a0
, (5.5)

G3(λ) =
b2λ

2 + b1λ+ b0
λ3 + a2λ2 + a1λ+ a0

, (5.6)

where λ = sα, s is the complex variable and α the commensurate order, with 0 < α < 1. a2,

a1, a0 and b2, b1, b0 are the model parameters.

These control-oriented models should be evaluated based on the performance in the

closed-loop, rather than from their prediction capabilities, because the latter is not the ob-

jective of the model, but ideally, a good prediction capability is also desired, as well as, not

instead of, a closed-loop performance.

The proposed fractional models have a generic structure, and it can be shown that the

input�output response of the patient models given by the PK/PD model can be captured by

the fractional models proposed, given that the S-shape response of the patient model is part

of all the possible responses of the proposed fractional models.

These models we can see them as phenomenological models (or some kind black-box

model), namely, models that can capture the input�output dynamics of the patient model,
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but with the disadvantage of the loss of physical meaning of the model parameters.

It was shown in reference(Gonzalez-Olvera et al. 2015) that a set of parameters exists

(depending on the respective structure) with which the fractional-order model can capture

the response of a particular patient's model. However, with the use of adaptive control, we

aim to control a large set of patients with one controller, so that we do not need to identify a

speci�c set of parameters for the FOM for a given patient�we only need a model structure

capable of capture the overall response.

It is known that the particular response of a PK/PD model has an S-shape response,

and reference (Isaksson and Graebe 1999, Tavakoli-Kakhki et al. 2010) showed that simple

structures like those proposed can capture this type of response.

Also, it is worth noting that one interesting application of the fractional operators and

fractional di�erential equations is that of the study of the representation of an integer-order

system by a fractional-order system. Fractional systems make it possible to carry out an

e�cient reduction of high-order integer-order systems, so we can represent those systems by

a fractional system characterized by lower fractional order (compared with the high-order of

the integer system) and a more simple structure (Mansouri et al. 2010, Pan and Das 2013).
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Chapter 6

Simulations

In this Chapter, the numerical simulations are presented, the FOMRAC and FOCMRAC

schemes designed are implemented in 30 virtual patients. The simulations test the robustness

of the control schemes against intra-patient variability, inter-patient variability, disturbance,

noise, and time-delay.

6.1 Identi�cation

To assess the variability among patients, 30 patient models (taken from di�erent studies,

patients 1-10 (Mendonça et al. 2012), patients 11-20 (Ionescu et al. 2008), patients 21-30

(Heusden et al. 2013)) are used to emphasize the variability among the population. Figure

6.1 shows the response of these models to a step input. Table 6.1 shows the pharmacodynamic

and the biometric characteristics of the 30 patients.

As can be observed in Table 6.1 the parameters of the PK/PD models have signi�cant

variations, depending on age, weight, height, and gender making a considerable variation in

the step response.

To verify the ability of the proposed fractional-order models to capture the dynamics of

the PK/PD model, a simulation is carried out with the three models proposed.

We use a nominal patient to carry out this simulation, in Figure 6.2 is shown the iden-

ti�cation scheme. Figure 6.3 shows the output, and the identi�cation error. We can observe

that the three fractional-order models proposed can capture the step response of the PK/PD

model. In Figure 6.4 is shown the parameters evolution of the models .



CHAPTER 6. SIMULATIONS

Tabla 6.1: Patient's pharmacodynamic parameters and biometric features

Patient Age Height Weight Gender EC50 γ

1 56 160 88 F 13.94 2.0321
2 48 158 52 F 13.88 1.0133
3 51 165 55 F 20 2.0196
4 56 160 65 F 20 1.8930
5 64 146 60 F 14.85 1.0702
6 59 159 110 F 20 2.6169
7 45 155 58 F 3.35 0.9172
8 51 163 55 F 12.17 1.8645
9 32 172 56 F 16.91 1.4517
10 68 160 64 F 15.52 0.9334
11 40 163 54 F 6.33 2.24
12 36 163 50 F 6.76 4.29
13 28 164 60 M 4.93 2.46
14 43 163 59 F 12.10 2.42
15 37 187 75 M 8.02 2.10
16 38 174 80 F 6.56 4.12
17 41 170 70 F 6.15 6.89
18 37 167 58 F 13.70 1.65
19 42 179 78 M 4.82 1.85
20 34 172 58 F 4.95 1.84
21 15 180.5 71 M 3.95 1.74
22 7 132 25.1 M 4.24 1.90
23 10 139 41.1 F 3.83 2.17
24 8 128 22 F 5.77 1.56
25 10 138 33.6 M 3.88 1.89
26 16 154.9 52.5 F 8.80 1.49
27 8 130 25.3 M 5.44 1.52
28 15 169 48 M 3.85 1.88
29 13 151 65 M 3.45 1.58
30 7 121 24 M 3.64 1.59
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Figure 6.1: Patient's response to a step input.

Figure 6.2: Identi�cation scheme

93



CHAPTER 6. SIMULATIONS

It can be seen that the input-output behavior of the PK/PD model is well captured by

the model structures proposed.

Figure 6.3: Identi�cation, BIS output of the PK/PD model and the proposed FOMs.

It is worth noting that the objective of this study is the design of an adaptive control

scheme, not to modeling a particular system, and for adaptive control, in general, only is

needed a model structure. So with the identi�cation scheme and the simulation presented

is shown that the proposed models can capture the input-output behavior of the patient's

model.

In the identi�cation error graph in Figure 6.3 we can observe that there exists a small

persistent error. It can be noticed that we are representing an integer-order Wiener system

with eight unknown parameters with a fractional-order model with 2, 4, or 6 parameters

depending on the structure used. So we can see that there is some small dynamics that

cannot be captured with those models. Nevertheless, as will be shown in the next simulations
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Figure 6.4: Identi�cation, model parameters.
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the adaptive schemes are robust against this unmodeled dynamics.

6.2 Control

In this section, it is illustrated via simulations the e�ectiveness of the adaptive schemes

designed in the previous Chapters (Figure 6.5). It is worth noticing that in the simulations

the plants (patients) are represented by the Wiener model (PK/PD model), the fractional-

order models proposed only are used to design and analyze the control schemes. Taking into

account that the proposed models represent the input-output behavior of the PK/PD model.

In the case of the FOMRAC scheme we only implement the controller based on the

model (5.4), because the states are not measurable, and for the other two models are needed

for feedback. So to use this scheme with the models (5.5) - (5.6) we would need to implement

an adaptive observer, and this con�guration is too complex and computational-wise very

demanding, thus defeating the premise of using a simple control scheme.

For the case of the FOCMRAC scheme is implemented with the three models proposed

and applied to the 30 virtual patients.

One important challenge presented in control of anesthesia is the nonnegativity of the

system. For any initial condition x0 ≥ 0, the states remain nonnegative as long as the input

u is nonnegative. This issue can be approached using the projection operator (Lavretsky and

Gibson 2011). We can use the information we have of the control laws designed in Theorem

4.1 and in Theorem 4.2, and as we can see the control signal remains nonnegative as long the

parameters are nonnegative.

As discussed above in the case of the FOMRAC scheme we will use only the scheme based

on the model (5.4). So we are going to considere an scalar systems and apply the projection

operator with the constrain θ̂ ≥ 0. The the following Theorem is presented.

Theorem 6.1. (Navarro-Guerrero and Tang 2017b) Consider the model

0D
α
t y = −ay − br, (6.1)

where 0D
α
t is given by the Caputo derivative, α ∈ (0, 1), and a, b are positive constants whose

"true" values depend on the set of parameters of a patient (see Table I), y is the output of the

system (BIS) and u is the control input (infusion rate).
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Figure 6.5: FOMRAC and FOCMRAC schemes implemented.
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And the reference model

0D
α
t y = −amzm − bmr, (6.2)

where am, bm > 0 are design parameters, r is the reference signal, α ∈ (0, 1), and the adaptive

control law

u = θ̂1y + θ̂2r, (6.3)

where θ̂1 and θ̂2 are the estimates of the "true" parameters with which the model matching of

the closed-loop system with the reference model would result. The update laws are given by

0D
α
t θ̂1 = Proj(Γey)


Γey, if θ̂1 > 0 or (θ̂1 = 0 and ey ≥ 0),

0 if θ̂1 = 0 and ez < 0,

(6.4)

0D
α
t θ̂2 = Proj(Γer)


Γer, if θ̂2 > 0 or (θ̂2 = 0 and er ≥ 0),

0 if θ̂2 = 0 and er < 0,

(6.5)

where Γ > 0 is the adaptation gain. Then all signals in the closed-loop system given by (6.1),

(6.2), (6.3), (6.4) and (6.5) are bounded and u ≥ 0, ∀t ≥ 0. Futhermore, the tracking error

e = y − ym → 0 for t→∞.

The proof is similar to the one presented in Chapter 4, the stability proof is show in

Appendix A.

For the FOCMRAC scheme, as we can see from the control law (4.33), the control signal

remains nonnegative as long Θ,K, xm, r ≥ 0. The signal xm and r are nonnegative by design,

so we are going to apply the projection operator with the constrain Θ̂, K̂ ≥ 0. The the

following Theorem is presented.

Theorem 6.2. Consider the fractional-order system given by (4.27) satisfying assumptions

1-6 and the closed-loop model reference given by (4.28) and the control law

u(t) = ΘT (t)xm +KT (t)r(t) (6.6)

with adaptive laws
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0D
α
t Θ̂ = Proj(Γxme

T
y )


Γxme

T
y , if Θ̂ > 0 or (Θ̂ = 0 and xme

T
y ≥ 0),

0 if Θ̂ = 0 and xmey < 0,

(6.7)

0D
α
t K̂ = Proj(ΓreTy )


ΓreTy , if K̂ > 0 or (K̂ = 0 and reTy ≥ 0),

0 if K̂ = 0 and reTy < 0,

(6.8)

where ey = CT e, Γ > 0. Then all the signals in the closed-loop system given by (4.27), (4.28),

(6.6) and (6.7), and (6.8) are bounded and u ≥ 0, ∀t ≥ 0. Futhermore, the tracking error

e→ 0 when t→∞.

The proof is similar to the one presented in Chapter 4, the stability proof is show in

Appendix B.

Table 6.2 shows the values of the design parameters of the control schemes implemented.

These values were chosen to make a trade-o� between speed of convergence and transient

performance.

The simulations are done with the PK/PD model of anesthesia given by (5.1-5.3), the

objective is to take the patient to the level of BIS = 50.

6.2.1 Inter-patient robustness

The inter-patient variability denotes the variation of the mathematical models among the

individuals. Every patient has his speci�c model.

The simulations were done using the 30 virtual patients applied to four di�erent control

schemes.

Figure 6.6 shows the response of the 30 virtual patients with the four control schemes.

We can observe that all scheme meet the control objective, take all the patients to BIS = 50.

It can be seen that the controllers based on the second and third-order models have better

performance in comparison with the controllers based on the �rst-order model.

Figure 6.7 show the control input of the four controllers implemented and it can be seen

a similar control e�ort between the controllers.

In Figure 6.8 is shown the tracking errors, the error of the FOMRAC scheme have more

oscillations in the induction phase and higher convergence time.
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Figure 6.6: BIS output of the 30 virtual patients with the FOMRAC and FOCMRAC schemes
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Figure 6.7: Control-input of the FOMRAC and FOCMRAC schemes with the 30 virtual

patients
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Figure 6.8: Tracking error of the FOMRAC and FOCMRAC schemes with the 30 virtual

patients
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Figure 6.9: Controller parameters of the FOMRAC scheme using the 1st order structure
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Figure 6.10: Controller parameters of the FCOMRAC scheme using the 1st order structure
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Figure 6.11: Controller parameters of the FOCMRAC scheme using the 2nd order structure
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Figure 6.12: Controller parameters of the FOCMRAC scheme using the 3rd order structure
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Tabla 6.2: Tuning parameters.

Control with 30 Patients

1st order FOMRAC 1st order FOCMRAC 2nd order FOCMRAC 3rd order FOCMRAC

α = 0.005 α = 0.05 α = 0.005 α = 0.1
γ = 0.0008 γ = 0.005 γ = 0.05 γ = 0.05

L = −30 L1 = −10 L1 = −10
L2 = −2 L2 = −0.5

L3 = −1

Control with Perturbations

1st order FOMRAC 1st order FOCMRAC 2nd order FOCMRAC 3rd order FOCMRAC

α = 0.005 α = 0.05 α = 0.005 α = 0.005
γ = 0.0008 γ = 0.0008 γ = 0.001 γ = 0.0008

L = −0.1 L1 = −0.5 L1 = 0.5
L2 = −0.1 L2 = −0.5

L3 = −0.05

Time-Delay Robustness

1st order FOMRAC 1st order FOCMRAC 2nd order FOCMRAC 3rd order FOCMRAC

α = 0.005 α = 0.05 α = 0.005 α = 0.1
γ = 0.0008 γ = 0.005 γ = 0.01 γ = 0.01

L = −25 L1 = −10 L1 = −10
L2 = −2 L2 = −0.5

L3 = −1

In Figures 6.9 - 6.12 are shown the evolution of the controller parameters.

To evaluate the controller performance, performance measures are calculated during the

maintenance phase of anesthesia according to (Liu et al. 2006).

Performance error (PE) was calculated as the di�erence between the actual and the target

values.

PE = 100

(
BISmeasured −BIStarget

BIStarget

)
, (6.9)

Bias or median performance error (MDPE) described whether the measured values were

either above or below the target values and thus represented the direction (undershot or

overshoot) of the PE.

MDPE = median(PE), (6.10)

Inaccuracy or median absolute performance error (MDAPE) described the size of the
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errors.

MDAPE = median(|PE|), (6.11)

The Wobble measured the intra-individual variability in the PE.

Wobble = median(|PE −MDPE|). (6.12)

The global score (GS) was calculated according to following equation:

GS =
MDAPE +Wobble

% time BIS value between 40 and 60
(6.13)

Their overall control performance of the FOMRAC scheme and the FOCMRAC scheme

proposed is shown in Table 6.3.

Tabla 6.3: Overall performance characteristics for the fractional-order adaptive controllers

applied to 30 virtual patients. The values are reported as mean values and the minimum and

maximum values within the 30 patients are presented.

Controller 1st Order FOMRAC 1st Order FOCMRAC 2nd Order FOCMRAC 3rd Order FOCMRAC

PE(%) [min, max] 2.0702 [−3.99, 6.38] 0.0803 [−1.74, 0.40] 0.1826 [0.09, 0.26] 0.1456 [0.06, 0.25]
MDPE(%) [min, max] 2.2505 [−1.94, 7.39] 0.2282 [−0.33, 0.12] 0.0986 [0.05, 0.21] 0.0759 [0.04, 0.15]
MDAPE(%) [min, max] 2.8269 [0.82, 7.34] 0.3478 [0.03, 3.24] 0.0986 [0.05, 0.21] 0.0759 [0.04, 0.15]
Wobble(%) [min, max] 0.5764 [−4×10−16, 4.92] 0.3196 [−6×10−16, 3.24] 0.0003 [−6×10−17, 0.005] 0.0028 [−6×10−18, 0.03]
Global score [min, max] 3.4033 [0.82, 12.26] 0.6674 [0.03, 6.48] 0.0986 [0.05, 0.22] 0.0787 [0.04, 0.16]

From Table 6.3 we can observe that the three FOCMRAC controllers have an overall

improved performance than the FOMRAC scheme. Moreover, the performance also improve

depending on the model used, for example, the MDPE, MDAPE, Wobble, and GS indices

decrease with the increase of the order of the controller, thus improving the performance.

6.2.2 Perturbations and noise robustness

During the maintenance phase is essential that the controller be capable of rejecting

disturbances occurred during surgery.

The second simulation illustrates the robustness of the control scheme to perturbations

and noisy measurements, speci�cally, to those perturbations that a�ect the value of the BIS
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index in the patients. These perturbations occur because of, for example, intubation of the

patient, painful stimuli or blood loss. In Figure 6.13 shows the arti�cial disturbance signal.

Figure 6.14 shows the BIS response of the patient 1 with the four control schemes. Notice

that the controllers are capable of compensating these perturbations and noise, although the

undershoots in the responses are accentuated for the value of the adaptive gain and the lack

of negative control. In Figure 6.15 it is shown the tracking error.

Figure 6.13: Arti�cial disturbance signal

Figure 6.14: BIS response under disturbances and noisy measuremens
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Figure 6.15: Tracking error of the adaptive schemes under disturbances and noisy measure-

mens

6.2.3 Time-delay robustness

The simulation illustrates the robustness of the control scheme to the time-delay, repre-

sented by the parameter aeff in the e�ect compartment (5.2) of the PD part of the PK/PD

model. In Figure 6.16 it is shown the step response of patient 1 for di�erent values of aeff .

Figures (6.17 - 6.20) shows the BIS output, control input and tracking error of patient 1

with di�erent time-delays, from 0 - 8 minutes, approximately. It can be observed that despite

the change of the time-delay, the four adaptive controllers are capable of compensating the

delay variation, thanks to the memory e�ect of the fractional operators.

6.2.4 Comparison between fractional-order and integer-order MRAC schemes

In the last simulation, we make a comparison between the fractional-order MRAC schemes

and his counterpart of integer-order applied to patient 1.

In Figure 6.21 and Figure 6.22 shown the adaptive schemes based on the �rst order model,

we can see that the controller of integer-order have an oscillatory response and in particular

the MRAC scheme become unstable.

Figure 6.23 show the schemes CMRAC schemes based on the second order model, we

can observe that the integer-order controller have a constant oscillatory response around the
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Figure 6.16: Patient's response under di�erent values of eeff in the PK/PD model

reference level.

In Figure 6.24 is illustrated the response of the CMRAC schemes based in the third order

model, we can observe that the integer-order controller have a damped oscillatory response

around the reference level but with a much larger control input.

These simulations show that a complex process like control of anesthesia can be controlled

and meet the control objective using simple fractional-order models, which is not possible with

the same simple models and controllers of integer-order.

While the integer-order MRAC schemes may go unstable or present a poor performance

in the presence of small disturbances or unmodeled dynamics as shown in the last simulation,

the fractional-order MRAC schemes are more robust against this uncertainties.

111



CHAPTER 6. SIMULATIONS

Figure 6.17: BIS response of patient 1 with di�erent time-delays using the 1st order FOMRAC

scheme.
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Figure 6.18: BIS response of patient 1 with di�erent time-delays using the 1st order FOCM-

RAC scheme.

113



CHAPTER 6. SIMULATIONS

Figure 6.19: BIS response of patient 1 with di�erent time-delays using the 2nd order FOCM-

RAC scheme.
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Figure 6.20: BIS response of patient 1 with di�erent time-delays using the 3rd order FOCM-

RAC scheme.
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Figure 6.21: Comparison between 1st order FOMRAC and MRAC, BIS output, control signal

and tracking error.
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Figure 6.22: Comparison between 1st order FOCMRAC and CMRAC, BIS output, control

signal and tracking error.
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Figure 6.23: Comparison between 2nd order FOCMRAC and CMRAC, BIS output, control

signal and tracking error.
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Figure 6.24: Comparison between 3rd order FOCMRAC and CMRAC, BIS output, control

signal and tracking error.
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Chapter 7

Conclusions

The application of fractional calculus can have a considerable impact on everyday life,

namely, in technology, social and health issues. Therefore, signi�cant challenges are still posed

to the scienti�c community that motivates researchers to explore new features of fractional

systems.

In the current state of the art of fractional-order modeling, there is a signi�cant gap

and disadvantages with respect to the integer-order modeling that prevents to become widely

used. Mainly is the lack of a clear physical interpretation, there exist a geometrical (Podlubny

2002, Tarasov 2016), and probabilistic (Machado 2009) interpretation. However, these inter-

pretation are not intuitive and are di�cult to grasp, which make more controversial the use

of fractional calculus to model physical phenomena. Furthermore, these interpretations are

not widely accepted, therefore there is no consensus in the community on this essential topic.

For example, suppose that we have an integer-order di�erential equation that describes

the velocity of some object Z, this equation is well understood, and we know the physical

interpretations of the integral and derivative of that expression, namely, position and accel-

eration, respectively. Now assume that we �nd (empirically for example) a fractional-order

model that describe more accurate and precise the velocity of the object Z. Then, will arise

some question, for example: a variable of a fractional-order equation could represent the

velocity of that object?, Which fractional integral or derivative de�nition we need to apply

to obtain the position and acceleration of the object?, This mathematical representation is

equivalent to his integer-order counterpart?, and ultimately, Are mathematical models with

fractional di�erential equations consistent with the laws of physics?. This fundamental ques-
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tions and the lack of clear answers is what prevents the widespread use of fractional calculus

in the modeling of physical phenomena. However, this controversial concepts could lead to

new directions of research.

On the other hand, view this approach as a mathematical tool has shown in diverse areas

and �elds an excellent improvement over his integer-order counterpart. In modeling (view

as an empirical or black-box model) showing the better �t of experimental data with a more

simple structure. Also, in control theory, showing more �exibility in the controller's design

and improve performance, opening a vast opportunity for research in this areas.

The utility of the Lyapunov theory to study the stability in many areas of mathematics

and engineering is manifest. However, many issues remain controversial in fractional-order

systems, for example, What is the state of a fractional-order system? Can a Lyapunov function

be de�ned for variables which are not the state of the system? Are fractional-order systems

dynamic ones?, Do Lyapunov stability concepts apply?.

These questions are an indicator that state of the art of the Lyapunov theory for fractional-

order systems is not fully developed and there is much more work to be done.

In the case of control of anesthesia, we deal with a process that is not fully understand,

and with the current integer-order model paradigm, dominated for the PK/PD approach,

despite his plausibility and the acceptance of the biomedical and control community, present

a signi�cant challenge not only by the nature of the processes (unknown parameters, unknown

time delay, states not available for measurement, positivity and poor excitation in the control

input) but also by the model structure (Wiener structure). The recent developments in

biology and physiology with a focus on fractal dynamics (Bassingthwaighte et al. 1994, Magin

2010, West 2010), pharmacology (Dokoumetzidis and Macheras 2009, Verotta 2010, Popovi¢

et al. 2011, Copot et al. 2014) and anesthesia (Chevalier et al. 2013, Copot et al. 2013),

using fractional calculus shown a new paradigm in the understanding and modeling of the

physical phenomena in this areas. This new paradigm suggests that the complex phenomena

(including anesthesia) can be modeled more precise, accurate and with a simple structure

with fractional-order tools.

In this thesis, we present some general and speci�c contributions. The general contribu-

tion is with regard to fractional-order adaptive control, an extension of the Barbalat's lemma

was proposed for fractional-order systems, which helps us to conclude the convergence of a
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function to zero based on considerations of the fractional integral. This extension allows

us to make a full stability analysis of adaptive systems in conjunction with the Lyapunov's

method and conclude the convergence of the tracking error to zero. We complete the results

on the stability proof of the FOMRAC scheme previously reported in the literature apply-

ing the extension of the Barbalat's lemma. Moreover, we extended the CMRAC scheme for

fractional-order systems, and as a complementary result, two identi�cation scheme and adap-

tive observer are presented. All these results based on the Lyapunov's direct method and the

extension of the Barbalat's lemma.

Concerning speci�c results, it was proposed fractional-order models to represent the

input-output behavior of the PK/PD model of anesthesia, showing his e�ectiveness through

the identi�cation scheme designed. Moreover, it can be seen that a simple fractional-order

structure can capture the response of the patient, which is represented by a nonlinear model

(Wiener model) by his integer-order counterpart. The disadvantage is that the proposed

fractional models have no physical interpretation and only can be seen as an empirical (phe-

nomenological) models.

Based on this fractional models proposed it was designed a fractional-order MRAC to

control the PK/PD model of anesthesia, showing through simulations that these controllers

meet the control objectives. Moreover, these schemes are robust again inter and intra-patient

variability, time delay, parameter uncertainty, perturbation, and noise.

These results represent a di�erent and novel approach to attack the problem of control

of anesthesia, which still is an open problem and an active topic of research.

Future Work

One possibility is reviewing all the results regarding the fractional-order model reference

adaptive control, namely, direct FOMRAC, indirect FOMRAC, adaptive observers and pa-

rameter identi�ers, to identify the missing theory in this area and gather all this results in

one place and make contributions.

In control of anesthesia, it is also an active area of research because the challenges involved

and the possible bene�ts of the automatization of this process, and we could deepen the

research on this topic using fractional-order control.
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Appendix A

Proof Theorem 6.1

Proof. The error dynamics is given by

0D
α
t e = −ame− b(θ̃1y + θ̃2r). (A.1)

Consider the Lyapunov function candidate

V (e, θ̃1, θ̃2) =
1

2
e2 +

b

2Γ
θ̃1

2
+

b

2Γ
θ̃2

2
. (A.2)

Applaying the Caputo derivative and the Lemma 3.3 it gets

0D
α
t V ≤ −ame2 − bθ̃1[ez −

1

Γ
0D

α
t θ̃1] + bθ̃2[er −

1

Γ
0D

α
t θ̃2]. (A.3)

Notice that under the adaptation laws (6.4-6.5), the last two right-hand terms are non-

positive. Therefore,

0D
α
t V ≤ −ame2. (A.4)

Since 0D
α
t V ≤ 0 is negative semi-de�nite, from Theorem 3.4 the stability of the closed-

loop system can be concluded. So, all the signals in the close-loop system are bounded.

Applying the fractional integral in both sides of the inequality

0I
α
t 0D

α
t V ≤ −0I

α
t λε

2. (A.5)

By Property 2.7 it follows that

0I
α
t ε

2 ≤ − 1

λ
[V (t)− V (0)] ≤ V (0)

λ
, (A.6)
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∀t ≥ 0. Letting t→∞ and by Lemma 3.5 it concludes that the identi�cation error converges

to zero when t→∞.

The nonnegativity of the control input follows from the control law (6.3) and the fact

that the controller parameters θ̂1, θ̂2 ≥ 0 under the adaptation laws (6.4-6.5).
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Appendix B

Proof Theorem 6.2

Proof. From (4.27) , (4.28) and (4.33) the dynamic of the error e = x− xm is given by

0D
α
t e =(Am + LCT )e+BΛ(Θ̃Txm + K̃T r),

ey =CT e.
(B.1)

Consider the Lyapunov candidate function

V =
1

2
eTPe+

1

2
tr

(
Θ̃TP Θ̃

Γ

)
+

1

2
tr

(
K̃TPK̃

Γ

)
, (B.2)

taking the Caputo derivative and applying Lemmas 3.3 and 3.4

0D
α
t V ≤ eTP 0D

α
t e+ tr

(
Θ̃TP 0D

α
t Θ̃

Γ

)
+ tr

(
K̃TP 0D

α
t K̃

Γ

)
, (B.3)

substitute (B.1), (4.31) and (4.32) we have

0D
α
t V ≤− eTQe− eTPBΘ̃Txm − eTPBK̃T r+

+ tr

(
Θ̃TP 0D

α
t Θ̃

Γ

)
+ tr

(
K̃TP 0D

α
t K̃

Γ

)
.

(B.4)

using the properties of the operator tr(∗) and the fact that ey = CT e and taking the adaptation

laws as (6.7)-(6.8) we have the follow cases:

The �rst case when 0D
α
t K̂ = Γxme

T
y and 0D

α
t K̂ = ΓreTy we have

0D
α
t V ≤ −eTQe. (B.5)
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Given that 0D
α
t V is negative semide�nite, from Theorem 3.4 it can be concluded the

stability of the closed-loop system. Applying the fractional integral and Property 2.7 to

(B.5), we have

0I
α
t e

TQe ≤ V (0). (B.6)

Then the fractional integral (B.6) exits, and by Lemma 3.5 it concludes that the tracking

error e→ 0 where t→∞.

The nonnegativity of the control input follows from the control law (6.6) and the fact

that the controller parameters Θ̂, K̂ ≥ 0 under the adaptation laws (6.7-6.8).

The second case when 0D
α
t K̂ = 0 and 0D

α
t K̂ = 0 we have

0D
α
t V < −eTQe− eTPBΘ̃Txm − eTPBK̃T r (B.7)

From (B.7) we can observe that 0D
α
t V is negative de�ne and from Theorem 3.3 we can

conclude that the closed-loop system is asymptotically stable.
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