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Resumen

El desarrollo alcanzado por la cosmoloǵıa en los últimos veinticinco años ha marcado
el inicio de lo que se considera una época dorada en cuanto a nuestro conocimiento del
pasado y evolución del universo a gran escala. Sobre la base de la teoŕıa general de la
relatividad y la f́ısica de las interacciones fundamentales que conocemos, el modelo cos-
mológico estándar (ΛCDM) se presenta como el esquema teórico más simple con el que
se puede describir consistentemente la evidencia observacional disponible en la actuali-
dad. En este esquema, la expansión acelerada del universo tard́ıo descubierta a finales
del siglo pasado y su confirmación en los años subsiguientes, requiere de la introducción
de una forma exótica de materia denominada como enerǵıa oscura parametrizada por
una constante cosmológica Λ en las ecuaciones del modelo. Al margen del éxito de la
teoŕıa, la identificación de la naturaleza de la enerǵıa oscura permanece como uno de los
más grandes desaf́ıos de la f́ısica moderna. La dificultad más importante se encuentra
en la existencia de una fuerte discrepancia entre las estimaciones teóricas al valor de
Λ dadas por la f́ısica de altas enerǵıas, y las cotas extráıdas de las observaciones. En
el advenimiento de la era de la alta precisión en la cosmoloǵıa, esta dificultad vuelve
indispensable la búsqueda de escenarios alternativos que proporcionen una respuesta
más satisfactoria a la cuestión del origen de la enerǵıa oscura.

El objetivo de este trabajo es evaluar la viabilidad del modelo de Enerǵıa Oscura Li-
gada (BDE) como una de las posibles alternativas a la constante cosmológica. En nuestro
estudio presentamos los fundamentos teóricos del modelo, describimos su fenomenoloǵıa
tanto a nivel de fondo como en las perturbaciones, exploramos las implicaciones cos-
mológicas y encontramos las constricciones a sus parámetros a partir de evidencia ob-
servacional reciente.

La idea central del modelo BDE consiste en introducir un grupo de norma oscuro
no abeliano SU(Nc) de part́ıculas ligeras con Nc = 3 colores y Nf = 6 sabores en su
representación fundamental. Partiendo de la escala de unificación Λgut ∼ 1016 GeV, la
interacción entre las part́ıculas del grupo oscuro con las del Modelo Estándar es pura-
mente gravitacional, mientras que el acoplamiento entre ellas inicialmente es pequeño,
de manera que las part́ıculas son libres. Luego, a medida que el universo se expande
y la temperatura desciende, la constante de acomplamiento crece de modo que estas
part́ıculas dejan de ser libres y pasan a formar estados ligados de manera similar a
como lo hacen los quarks en la interacción fuerte. En el escenario más simple, la tran-
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sición de fase del grupo oscuro se da únicamente a un mesón ultraligero descrito por
un campo escalar ϕ con un potencial de ley inversa de potencias V (ϕ) = Λ4+α

c ϕ−α, en
donde la escala de la condensación del campo Λc = 34+16

−11 eV, la época a la que ocurre
ac = 1.0939 × 10−4/(Λc/eV), el exponente del potencial α = 2/3 y las condiciones
iniciales del campo, son cantidades derivadas que sólo dependen de los parámetros
Nc y Nf del grupo oscuro y de la escala de enerǵıa y la constante de acoplamiento
g2
gut = 4π/(25.83± 0.16) en la unificación. La enerǵıa oscura corresponde precisamente

a este mesón escalar ϕ y dado que el mecanismo que origina al mesón es el confinamiento
de part́ıculas libres, el modelo recibe el nombre de Enerǵıa Oscura Ligada.

A diferencia del esquema tradicional de quintaesencia en donde el campo escalar
sólo es relevante en épocas tard́ıas a pesar de estar presente a lo largo de toda la histo-
ria del universo, en el modelo BDE el parámetro de densidad del campo escalar cuando
ocurre la condensacion en ac (mucho antes de la época de igualdad de materia-radiación)
no es despreciable. Sin embargo, esta cantidad de enerǵıa oscura temprana se diluye
rápidamente después de ac, siendo subdominante la mayor parte del tiempo hasta volver
a ser relevante en épocas tard́ıas como lo requiere las observaciones. Téoricamente este
escenario resulta atractivo por tres razones importantes:

(i) El número de parámetros cosmológicos baśicos del modelo BDE es uno menos que
los de ΛCDM, por lo que no introducimos parámetros básicos adicionales, como
en otros modelos alternativos.

(ii) El mecanismo que da origen a la enerǵıa oscura proviene de f́ısica de primeros
principios mediante la que es la más simple extensión al Modelo Estándar de las
part́ıculas elementales.

(iii) El modelo BDE no requiere de un ajuste fino en sus parámetros para reproducir
las observaciones.

La dinámica de la enerǵıa oscura en el modelo BDE afecta tanto la evolución del uni-
verso de fondo como las perturbaciones, llevando a diferencias respecto a ΛCDM prin-
cipalmente en: i) las distancias cosmológicas, ii) la fracción de núcleos ligeros (helio y
deuterio) producidos en el universo temprano, iii) el espectro de potencias de materia
a escalas pequeñas y iv) el espectro de potencias de las anisotroṕıas de la temperatura
de la radiación cósmica de fondo (CMB) a multipolos pequeños. En nuestro estudio
consideramos datos recientes de las distancias de supernovas del tipo Ia (SNeIa), de la
señal de las oscilaciones acústicas de bariones (BAO) impresas en censos de galaxias
y mediciones del espectro de anisotroṕıas del CMB para constreñir las condiciones a
las que se da la condensación del campo escalar, aśı como el valor de los parámetros
cosmológicos en nuestra época. Los resultados que encontramos muestran que el modelo
BDE es consistente con las observaciones cuando la condensación tiene lugar a una escala
Λc = 44.09±0.28 eV, en una época dada por ac = (2.48±0.02)×10−6, con una densidad



inicial del campo de ΩBDEc = 0.112. El valor actual de la ecuación de estado de la ener-
ǵıa oscura, la tasa de expansión y la densidad de materia es wBDE0 = −0.9294± 0.0007,
H0 = 67.82 ± 0.55 km · s−1Mpc−1 y Ωm = 0.304 ± 0.007, respectivamente, siendo estos
dos últimos resultados consistentes con las constricciones al modelo ΛCDM usando los
mismos datos observacionales. Esta concordancia también la obtenemos para el resto de
los parámetros cosmológicos, con excepción de las abundancias de helio y deuterio pri-
mordiales, en donde el modelo BDE arroja una fracción más elevada de estos elementos,
que por el momento no puede ser verificada por las observaciones dada la dispersión de
los datos. No obstante, resulta particularmente estimulante que la calidad del ajuste de
nuestro modelo es mejor que la de ΛCDM, concretamente en la información de BAO, en
donde se espera obtener mediciones más precisas en los años venideros que habrá que
seguir con detenimiento.

Nuestra conclusión principal es que el modelo BDE se mantiene como una opción
viable a la constante cosmológica, que cumple con los requerimientos indispensables de
fundamentación teórica y consistencia con las observaciones. En la medida en la que se
diversifiquen las observables cosmológicas, aumente la precisión de los datos y se identi-
fiquen claramente las tensiones con el modelo estándar, será posible establecer un ruta
clara hacia el entendimiento de la naturaleza de la enerǵıa oscura.





Abstract

In this work we assess the viability of a dark energy model derived from a natural
extension of the Standard Model of particle physics as a possible alternative to the
cosmological constant (ΛCDM). Dark energy corresponds to the lightest meson state
generated during the phase transition of a hidden gauge group occurring at an energy
scale Λc and scale factor ac. The resulting dark energy meson is described by a mini-
mally coupled scalar field ϕ with an inverse power law potential V (ϕ) = Λ

4+2/3
c ϕ−2/3,

where the value of Λc and ac, the exponent n = −2/3 of the potential and the initial
conditions of the scalar field at the phase transition are quantities derived from theoret-
ical considerations. Moreover, Λc and ac are related by an exact theoretical constraint
acΛc/eV = 1.0939 × 10−4. Our model does not introduce extra free cosmological pa-
rameters, but in principle it also has one less free parameter than ΛCDM. We study
the cosmological implications of the model both at the background and at the per-
turbative level, particularly its effects on the cosmological distances, the evolution of
matter inhomogeneities and radiation anisotropies, and the production of light nuclei
in the early universe. We constrain the model using recent observations of the lumi-
nosity distance of type Ia supernovae (SNeIa), the baryon acoustic oscillations (BAO)
feature in galaxy surveys, and measurements of the temperature anisotropy spectrum of
the Cosmic Microwave Background radiation (CMB). The constraint Λc = 44.09± 0.28
eV we find is consistent with our theoretical expectations Λth

c = 34+16
−11 eV, leading to

ac = (2.48 ± 0.02) × 10−6. Remarkably our model not only fits well the data but it
also improves the ΛCDM fit to BAO measurements by 21%. This result, together with
distinctive signatures in the matter power spectrum and definite predictions on the abun-
dance of light nuclei produced during Big Bang Nucleosynthesis, open the possibility of
discriminate our model from the cosmological constant in the forthcoming years.
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Introduction

The detection of the anisotropies in the Cosmic Microwave Background Radiation
(CMB) [1] at the end of the past century has set the beginning of a golden age in cosmol-
ogy, characterised by the increasing precision of the observations and the diversification
of the cosmological probes. The progress achieved during these years has revealed us
a detailed picture of the history of the universe to an unprecedented level of accuracy.
Based on the general theory of relativity and the Standard Model of particle physics, the
standard cosmological model (ΛCDM) is the simplest account of the universe at large
scales that is consistent with the observations. According to this model, the discovery
of the late time accelerated expansion of the universe [2, 3] together with the evidence
gathered over the following years [4–9] requires the introduction of an exotic form of
matter called dark energy, which is simply parameterized by a cosmological constant
Λ. However, despite the success of the ΛCDM model in fitting the observations, the
physical explanation of the nature of the dark energy remains as one of the most chal-
lenging problems of modern science. If dark energy is due to the vacuum energy of all
the fields present in the universe, the most conservative calculations based on quantum
field theory overestimate the observed value of Λ by many orders of magnitude [10,
11]. Moreover, there is no a natural explanation of why the value of the cosmological
constant that is realised in nature is such that the universe has just entered the epoch of
dark energy dominance [12]. Since dark energy amounts to almost the 70% of the energy
content of the universe at present, this means that we are missing the physics behind
the main ingredient the universe is made of. In the era of high precision in cosmology,
these two shortcomings of the ΛCDM paradigm impel us to find alternative scenarios
that provide a more satisfactory answer to the problem of the physical origin of the dark
energy.

There have been many attempts to solve the problem including the reinterpretation
of the observational evidence [13, 14], the effects of an inhomogeneous distribution of
matter [15, 16], the replacement of the cosmological constant by some scalar field [17],
and even modifications to the general theory of relativity [18]. These proposals (or any
other) will be considered as possible solutions to the dark energy problem or will be
ruled out insofar they consistently describe the increasing amount of observational data
[19]. The goal of this study is to assess the possibility of describing dark energy as a
particle condensate generated during a phase transition in the history of the universe.
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Our dark energy model [20–23] introduces a non-Abelian supersymmetric gauge
group SU(Nc) of light particles with Nc colours and Nf flavours in its fundamental
representation. Below the unification scale Λgut our dark group is coupled with the
particles of the Standard Model only through gravity. Initially, the gauge interaction
of the dark group is weak, so the corresponding elemental particles are free and its en-
ergy density evolves as radiation. Then, as the expansion proceeds and the temperature
drops off, the gauge interaction becomes strong and now the particles of the dark group
bind together forming dark hadrons and mesons at a condensation scale Λc and scale
factor ac. Dark energy is just the lightest scalar meson formed by the non-perturbative
interaction of the dark group at low energies. This picture is similar to Quantum Chro-
modynamics, where the hadrons form due to the strong binding of elemental quarks
below the condensation scale ΛQCD ≈ 200 MeV. Since in this case the physical mecha-
nism generating the dark energy is the binding of initially free particles, we refer to our
model as Bound Dark Energy (BDE). The evolution of the light meson corresponding
to the dark energy is described by the dynamics of a scalar field ϕ with an inverse power
law potential V (ϕ) = Λ

4+2/3
c ϕ−2/3, where the condensation scale Λc, the exponent of the

potential n = −2/3, and the initial conditions of the scalar field at the phase transition
are all derived quantities.

We see then, that unlike traditional quintessence models, where the scalar field is
a fundamental entity present in the whole history of the universe (although it is only
relevant at late times), the particle condensates representing the dark energy in our
BDE model are only present after the phase transition at ac; before that, there was an
extra amount of radiation due to the SU(Nc) group. Among the distinctive theoretical
features of our model we may list: i) once we set the fundamental parameters of the
dark group Nc and Nf , all the relevant quantities of the model are determined, so we are
not introducing any extra free cosmological parameter, ii) we don’t need to fine tune the
parameters of the model to reproduce the observations, and iii) dark energy is explained
from first principles by using what seems to be the most viable extension of the Standard
Model of particle physics. Although the theoretical foundations and the basic features
of the model were extensively studied in the early 2000’s, these analyses were limited to
the evolution of the background and the observational evidence available at that time
was insufficient to yield accurate constraints. As we mentioned at the beginning of this
section, cosmology has undergone a profound transformation since the discovery of the
anisotropies of the CMB and we expect that in this high precision era we unravel the
true nature of the dark energy. Here we present the first precision constraints on the
BDE model, extending the analysis to include dark energy inhomogeneities and the ef-
fects on the dynamics of matter and radiation perturbations.

This document is organised as follows. In chapter (1) we do a short review of the
ΛCDM model, focusing on the relevant aspects to our research such as the evolution of
the homogeneous universe and the essentials of perturbation theory. Then, in chapter
(2) we discuss the observational evidence appealing for the introduction of the dark



energy in cosmology and the problems of describing it through a cosmological constant.
Here we make some comments about the role played by scalar field theories as possible
candidates for dark energy. We present our BDE model in chapter (3). Since the aim
of this research is to assess the viability of this model as a dark energy candidate, we
focus on its cosmological implications rather than on its high-energy physics theoretical
foundations, which are fully explained in [20–23]. Here we introduce the parameters
of the model and we show the evolution of dark energy both at the background and
perturbation level. The cosmological implications of the model are explored in chapter
(4). We compare the predictions of our model on cosmological distances, the fraction
of light nuclei produced in the early universe, the evolution of matter overdensities and
the CMB power spectrum, with a ΛCDM cosmology running with the same set of basic
parameters. This shows us the intrinsic differences that arise from the effects of the
dynamics of the dark energy in our model. Then, in chapter (5) we present the con-
straints on the BDE model obtained from multiple datasets and we use these results to
set predictions that might help us to discriminate between our model and ΛCDM in the
future. Finally we give our conclusions.

In this document we adopt the usual conventions on notation and terminology found
in the literature: repeated indices are implicitly summed over and a zero subfix/superfix
denotes the value of a given quantity at the present epoch. Unfortunately, there are few
important exceptions that we have to be aware of. Some authors denote the matter
density parameter today by Ωm0, but others use Ωm. Moreover, we rapidly run short of
letters and it is common to find that τ is used to designate the conformal time and the
optical depth. In any case, we make sure to explain the meaning of each term in our
expressions.





Chapter 1

The standard cosmological model

The standard csomological model (ΛCDM) is based on two fundamental hypotheses: i)
the universe is homogeneous and isotropic at large scales (the cosmological principle)
and ii) the dominant interaction at cosmological scales is gravity, which is well described
by the general theory of relativity (GR). Although the assumption of these hypotheses is
justified by the success of the model in describing the observations available at present,
it is important to be aware of the physical conditions under which these statements
provide an accurate picture of the universe as a whole. The homogeneity and isotropy
of the universe are features that only arise when we consider large enough volumes
of space spanning distances of the order of hundreds of megaparsecs (Mpc), where
the distribution of matter and radiation can be considered as uniform. At this level,
the universe looks the same for any observer at any place1. On the other hand, the
dominance of gravity over the other interactions means that gravity is the only force
driving the expansion of the universe, although the electromagnetic and the weak and
strong nuclear forces also leave important imprints on the early universe that can be
tracked by the current cosmological probes. In this chapter we do a review of the basic
elements of the standard cosmological model. We don’t intend to make an exhaustive
account of the state of the art, but only a short compilation of the results that we will
be using throughout our work, omitting detailed calculations that can be carried out by
oneself and verified by consulting the references we quote. This review will also serve
as a theoretical reference against which we will compare the results of our dark energy
model. The chapter is organized as follows. In section (1.1) we introduce the basic
terminology and discuss the evolution of the homogeneous universe. We then depart
from this simplified picture in section (1.2) and present the foundations of cosmological
perturbation theory. We start by setting out the general equations of motion. Then we
present the initial conditions needed to solve these equations and finally we discuss the
evolution of matter and radiation perturbations.

1In this sense, the cosmological principle is compatible with a cosmic version of the Copernican
principle, which at the time deprived Earth (and humankind) of a privileged position in the cosmos.
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16 CHAPTER 1. THE STANDARD COSMOLOGICAL MODEL

1.1 The homogeneous universe

The two fundamental cosmological hypotheses together with the empirical observation of
the systematic recession of the farthest galaxies impel us to choose a convenient system
of comoving coordinates where the position of free particles does not change with the
expansion of the universe. In this system, the line element in the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric adopts the simple form:

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (1.1)

where t is the (comoving) time measured by an observer at rest in the comoving frame,
r, θ and φ are radial and angular comoving spherical coordinates, a(t) is the scale factor
relating physical and comoving distances dphys = a(t)dcom, and the constant K = 1,−1, 0
is the curvature corresponding to a closed, open and a flat universe, respectively. The
observational evidence of the last years [24–26] favours the flat geometry over the non-
flat scenarios, so from now on we will take K = 0 and omit any curvature term in our
equations. In this case, the line element of equation (1.1) can be rewritten in rectangular
coordinates as:

ds2 = −dt2 + a2(t)δijdx
idxj, (1.2)

where δij is the Kronecker delta and the scale factor relates the physical (x̄phys) with the
comoving (x̄) coordinates at any time as x̄phys(t) = a(t)x̄. This is the only metric that
describes a uniform and isotropic distribution of matter and energy in a flat universe
[27].

The evolution of the scale factor over the time is determined by the Einstein field
equations:

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν , (1.3)

which in turn follows from varying the Einstein-Hilbert action:

SEH =
1

16πG

∫
d4x
√
−g(R− 2Λ) + Sm (1.4)

with respect to the metric tensor gµν [12]. In these expressions, Rµν is the Riemann
tensor whose components are given by gµν and its derivatives, R = RµνRµν is the Ricci
scalar, G is the universal gravitational constant, Tµν is the energy momentum tensor
defined from the variation of the matter action Sm of the contents of the universe,√
−g = det(gµν), and Λ is a cosmological constant whose presence in the equations is

justified by the indeterminacy of the Einstein-Hilbert action up to an additive constant.
Whether or not the current accelerated expansion of the universe is due to this constant,
one of the most challenging problems of modern physics is to find the mechanism that
sets Λ to its real value. We will come back to this point in chapter 2.
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In order to set out the equations of motion for the scale factor, we need to know
the components of the energy-momentum tensor on the right hand side of the Einstein
equations. Regardless the specific properties of the constituents of the universe, the
simplest form the energy-momentum tensor may assume consistent with the symmetries
of the FLRW metric is given by [28]:

T µν = diag(−ρ, P, P, P ), (1.5)

which is the corresponding form of a perfect fluid. Here ρ is the energy density and P is
the pressure, both quantities depending only on the time. In the standard cosmological
model the contributions to ρ come from the photons (γ), neutrinos (ν), baryons (b), and
the cold dark matter (c or CDM), while the dark energy density is directly related with
the cosmological constant by:

ρΛ =
Λ

8πG
, (1.6)

with pressure
PΛ = −ρΛ (1.7)

Substituting equations (1.2) and (1.5) into (1.3) we arrive at the two Friedmann equa-
tions:

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
(1.8)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
, (1.9)

where H ≡ ȧ/a is known as the Hubble expansion rate and the dots stand for comoving
time derivatives. Using equations (1.6) and (1.7), these expressions can be rewritten as:

H2 =
8πG

3
ρt (1.10)

ä

a
= −4πG

3
(ρt + 3Pt), (1.11)

where ρt = ρ + ρΛ and Pt = P + PΛ. Whenever is not necessary to make explicit the
sum involved in ρt and Pt, we’ll simply write ρ and P to denote the total energy density
and pressure including the contribution from the dark energy. If we now take the time
derative of H in equation (1.10) and substitute (1.11), we get the continuity equation:

ρ̇+ 3H(ρ+ P ) = 0 (1.12)

valid for every single fluid as long as it is decoupled from the others. Taking the time
derivative of H in equation (1.10) once again but now using the continuity equation, we
find:

Ḣ = −4πG(ρ+ P ) (1.13)
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Of course only two of these four expressions are independent and the use of any of them
is often driven by the physical information it may render in a specific problem. In any
case, we still need additional equations to solve for all the unknown functions we have,
namely, the scale factor and the density ρi and pressure Pi of each one of the species
i. For the cosmological constant we have PΛ = −ρΛ as stated in equation (1.7); for the
other components the missing equations are obtained by computing the density and the
pressure using the corresponding distribution functions fi(p̄) in the phase space [28]:

ρi =
gi

(2π)3

∫
d3p Efi(p̄) (1.14)

Pi =
gi

(2π)3

∫
d3p
|p̄|2

3E
fi(p̄), (1.15)

where gi is the degeneracy, E the comoving energy and p̄ is the proper momentum
defined so that E2 = |p̄|2 + m2 [29]. Note that for relativistic particles (radiation),
E ' |p̄| and therefore:

Pi '
1

3

gi
(2π)3

∫
d3p Efi(p̄) =

1

3
ρi (1.16)

irrespective of the statistics obeyed by the particles. On the other hand, if the particles
are non-relativistic (matter), that is, if the mass m is much larger than the temperature,
we have [28]:

ρi = gim

(
mT

2π

)3/2

e−(m−µ)/T (1.17)

Pi = giT

(
mT

2π

)3/2

e−(m−µ)/T , (1.18)

where µ is the chemical potential. Since in this case m � T , the pressure of matter
can be neglected. The preceding results can be summarised introducing the equation of
state parameter wi relating the density and the pressure as:

Pi = wiρi where wi =


1/3 radiation
0 matter
−1 cosmological constant

(1.19)

The classification of a particle species into matter or radiation is not always straightfor-
ward but may depend on the temperature. Photons are always relativistic whereas cold
dark matter particles are non-relativistic. Electrons are relativistic at the very early uni-
verse. However, for most of the calculations we are concerned with we can regard them
as matter since these calculations correspond to late time epochs when the temperature
has dropped off below the mass. On the other hand, although neutrinos have a tiny
non-zero mass, the constraints from earth based experiments and cosmological probes
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are still vague. Moreover, their contribution to the matter content of the universe is
minimal in comparison with baryons and cold dark matter. Therefore, throughout our
analysis we regard them as relativistic particles. So, unless otherwise stated, we regard
photons and neutrinos as radiation and cold dark matter and baryons as matter.

Even if we don’t solve the Friedmann equations we can use the scale factor as the
time variable instead of the comoving time and see how the energy densities of the
different fluids evolve. Substituting wi into the continuity equation we find:

dρi
ρi

= −3(1 + wi)
da

a
⇒ ρi(a) = ρi0

(
a

a0

)−3(1+wi)

, (1.20)

where ρi0 and a0 are the energy density and the scale factor at present. It is customary
to define a0 = 1 so it can be omitted in the equations:

ρi(a) =


ρi0a

−4 radiation
ρi0a

−3 matter
ρi0 cosmological constant

(1.21)

The energy density at present time is inferred from the observational data. Except for
the photons and neutrinos whose density is well known —see below— from the mea-
surements of the temperature of the Cosmic Microwave Background Radiation (CMB),
the density of matter and dark energy still lack of an accurate determination, although
significant progress over the last twenty years has been made using the information of
the current expansion rate H0 as well as other cosmological probes.

Figure (1.1a) shows the evolution of the energy densities according to equations
(1.21). The content of the early universe is dominated by relativistic particles. How-
ever, since the matter dilutes slowlier it becomes the dominant component of the universe
once its energy density equals the density of radiation at aeq. For most of the time the
dark energy density lies constant at an incredibly small value and plays no role in the
expansion of the universe until late times when the matter has diluted too much. Figure
(1.1b) shows a close-up of the transition from the matter dominated universe to the dark
energy era as a funcion of the redshift z defined as:

1 + z =
a0

a
=

1

a
, (1.22)

where z = 0 corresponds to the present time. From equation (1.11) we see that as the
dark energy becomes dominant, the therm ρ + 3P goes from a positive value (ρm) to
a negative value (−2ρΛ), leading to an accelerated expansion corresponding to ä > 0.
Therefore, we can split up the dynamical evolution of the whole universe in three main
stages characterised by the dominance of a single fluid (radiation, matter, dark energy)
over the others. The contribution of any species to the energy content of the universe
is quantified by the energy density parameter Ωi defined as:

Ωi =
ρi
ρc
, i = γ, ν, b,CDM,Λ, (1.23)
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Figure 1.1: (a) Evolution of the energy density of radiation (dotted orange), matter
(dash-dotted black) and dark energy (dashed red) in the ΛCDM model. The vertical
dotted lines mark the matter-radiation equality epoch (aeq), the matter-dark energy
equality epoch (aDE), and the present time (a0). (b) Close-up of the energy density
of matter and dark energy at late times. The vertical dotted lines mark the equality
between matter and dark energy (zDE) and the present time (z0).

where:

ρc =
3H2

8πG
(1.24)

is the critical energy density determined by the expansion rate. In general, the curvature
term contributes to ρc by ρK(a) = −3K/(8πGa2). However, in the case of the flat
geometry we are considering, the critical density is simply the sum of the densities of
all the species:

ρc =
∑
i

ρi, i = γ, ν, b,CDM,Λ, (1.25)

so we are lead to:

Ωr(a) + Ωm(a) + ΩΛ(a) = 1, (1.26)

valid at any time, no matter which epoch we are considering. Of course well deep into
the radiation era we may take Ωr(a) ≈ 1 and analogously Ωm(a) ≈ 1 and ΩΛ(a) ≈ 1
in the matter and dark energy epochs, respectively. If we denote the present value of
the density parameter of matter (radiation, dark energy) by Ωm (Ωr, ΩΛ) and we write

ρi(a) = ρ0ia
−3(1+wi) = Ωi

3H2
0

8πG
(1 + z)3(1+wi) using equations (1.21), (1.22) and (1.23), the

first Friedmann equation (1.10) is left as:

H(z) = H0

[
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ

]1/2
(1.27)



1.1. THE HOMOGENEOUS UNIVERSE 21

This expression lies at the heart of many calculations affecting both homogeneous an
perturbed cosmological quantities.

Whereas it is easy to describe the dynamical evolution of the universe, the thermal
history is quite another matter. We will review some important results in the following.
As we mentioned before, the energy density of the photons and neutrinos can be inferred
from the temperature of the CMB (Tγ). Solving the integral in equation (1.14) we get:

ργ(a) =
π2

30
gγT

4
γ (a) =

π2

15
T 4
γ (a) (1.28)

ρν(a) =
7

8
· π

2

30
gνT

4
ν (a) =

7

8
· π

2

5
T 4
ν (a), (1.29)

where we use a Bose-Einstein distribution for the photons and a Fermi-Dirac distribution
for the neutrinos (in both cases with zero chemical potential [29]), gγ = 2 accounting
for the two spin states of the photon and gν = 6 considering three massless neutrino
species and their antiparticles. In any case, if we substitute equation (1.21) on the left
hand side we obtain:

aT = const, (1.30)

which means that the temperature redshifts as a−1. Consequently, the entropy per
comoving volume defined as:

S ≡ a3(ρ+ P )

T
(1.31)

remains constant. From equations (1.17) and (1.18) we see that the entropy density
S/a3 for non-relativistic particles is exponentially small:

ρ+ P

T
' ρ

T
=
gm

T

(
mT

2π

)3/2

e−(m−µ)/T (1.32)

Therefore, the major contribution to the entropy content of the universe comes from the
radiation. These results allow us to find the relation between the temperatures of pho-
tons and neutrinos. Before the synthesis of light nuclei takes place, electrons, positrons,
heavy baryons, photons, and neutrinos were tightly coupled in thermal equilibrium via
the weak and electromagnetic interactions. As the universe cools down the weak inter-
actions become less efficient and neutrinos decouple from the plasma at a scale factor
aνdec and temperature about Tνdec ∼ 1 MeV [28]. Some time later, when the tempera-
ture of the plasma falls about to 500 keV, electrons and positrons annihilate each other
but there is not enough energy for pair production, heating the photon bath further. If
we consider the period between the neutrino decoupling and some time after electron-
positron annihilation, entropy conservation for the barotropic fluid and neutrinos states
that:

4

3
· π

2

30
gγeT

3
νdeca

3
νdec =

4

3
· π

2

30
gγT

3
γ (a)a3 (1.33)
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4

3
· 7

8
· π

2

30
gνT

3
νdeca

3
νdec =

4

3
· 7

8
· π

2

30
gνT

3
ν (a)a3, (1.34)

where gγe = 2 + 7
8
· 2 · 2 = 11

2
accounting for the photons and the two spin states of

electrons and positrons. Dividing these expressions we find:

Tγ(a) =

(
gγe
gγ

)1/3

Tν(a) =

(
11

4

)1/3

Tν(a) (1.35)

as expected. If we substitute this result into equation (1.29) we get:

ρν(a) =
7

8
· π

2

5

(
4

11

)4/3

T 4
γ (a) =

7

8
· 3 ·

(
4

11

)4/3

ργ(a), (1.36)

which amounts to 68% the energy density of photons. At present time, the temperature
of the CMB has been measured accurately Tγ(a0) = 2.72548± 0.00057 K [30] so ργ0 =
2.00 × 10−15 eV4 and ρν0 = 1.36 × 10−15 eV4. Although cosmological neutrinos have
evaded so far direct detection [31] they do play an important role in the synthesis of
light nuclei in the early universe, the evolution of the CMB anisotropies and the late-time
growth of matter perturbations [32].

1.2 Perturbations

1.2.1 Basic perturbation theory

As we stated at the beginning of this chapter, the homogeneity and isotropy of the
universe are features that arise only when we average over large volumes of space. The
existence of discrete sources of radiation and clustered matter even at cosmological scales
means that the simplified picture we have just discussed needs to be refined to account
for all the departures from homogeneity and isotropy we observe. If such departures are
small it is possible to develop a linear theory to describe their evolution by considering
small perturbations to the smooth background. Let’s first write the perturbed metric
gµν as a sum of the FLRW metric ḡµν and a perturbation hµν :

gµν = ḡµν + hµν (1.37)

From now on and unless otherwise stated, a bar will denote any homogeneous quantity.
Moreover, it will be convenient to introduce the conformal time τ defined as:

τ =

∫ t

0

1

a(t′)
dt′, (1.38)

so dτ = dt/a(t). The components of hµν and the perturbed energy-momentum tensor
δTµν can be decomposed into terms transforming as scalars, vectors, or tensors under
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coordinate transformations [33]. By applying differential operators to the Einstein equa-
tions we obtain separate expressions involging only scalar, vector, or tensor terms, so
these components evolve independently. The crucial point is that density perturbations,
which are the matter of interest of our study, only couple with the scalar terms [12, 29,
33] so we can restrict our analysis to the scalar perturbations of the metric.

The perturbation of any quantity is defined as the difference between the value
it assumes in the perturbed spacetime and the value it assumes in the homogeneous
background at the same coordinate values. This requires to define a coordinate trans-
formation relating the points of these two spacetimes [34]. Note that this is not a
transformation of coordinates between two different observers in the same spacetime,
but a map between different spacetimes seen by the same observer [12]. Moreover, this
map is not unique and the adoption of a particular choice is known as fixing the gauge.
This freedom is reflected in the indeterminacy of the form of hµν .

In the netwonian gauge the line element in a flat universe can be written as:

ds2 = a2(τ)[−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx
idxj], (1.39)

where the gravitational potential Ψ and the spatial curvature perturbation Φ are two
scalar functions that depend on the time and position. The coordinate frame in this
gauge is defined by attaching observers to the unperturbed comoving grid where the
expansion appears isotropic. These observers measure non-zero peculiar velocities of
massive particles moving on the grid and matter fluctuations grow as a result of gravi-
tational collapse. If we split the energy-momentum tensor into its FLRW homogeneous
part T̄µν and a perturbation δTµν as in equation (1.37):

Tµν = T̄µν + δTµν (1.40)

and substitute the metric (1.39) into the Einstein field equations (1.3) retaining only
the first order terms, the linear perturbed Einstein equations in Fourier space read as
[35]:

k2Φ + 3H(Φ′ +HΨ) = 4πGa2δT 0
0 (1.41)

k2(Φ′ +HΨ) = 4πGa2(ρ̄+ P̄ )θ (1.42)

Φ′′ +H(Ψ′ + 2Φ′) +

(
2
a′′

a
−H2

)
Ψ +

k2

3
(Φ−Ψ) =

4πG

3
a2δT ii (1.43)

k2(Φ−Ψ) = 12πGa2(ρ̄+ P̄ )σ, (1.44)

where the primes stand for conformal time derivatives, H ≡ a′/a is the conformal
expansion rate related to H by H = aH, k is the norm of the Fourier mode (k̄ = kk̂)
and the divergence of the velocity θ and the shear σ are defined respectively as:

(ρ̄+ P̄ )θ ≡ ikjδT 0
j (1.45)
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(ρ̄+ P̄ )σ ≡ −
(
k̂ik̂j −

1

3
δij

)
Σi
j , Σi

j ≡ δT ij −
δij
3
δT kk (1.46)

At linear order the components of the perturbed energy-momentum tensor are related
to the perturbations of the density δρ = ρ(τ, x̄)− ρ̄(τ) and pressure δP = P (τ, x̄)− P̄ (τ)
as:

δT 0
0 = −δρ (1.47)

δT 0
i = (ρ̄+ P̄ )vi = −δT i0 (1.48)

δT ij = δPδij + Σi
j (1.49)

where vi = dxi/dτ are the components of the peculiar velocity on the expanding grid
related to θ as θ = ikjvj and Σi

i = 0. The terms on the right hand side of these equations
include the contributions from all the components of the universe, except for the dark
energy which in the ΛCDM model is assumed to be homogeneous. Just as we did when
we derived the continuity equation (1.12), it turns out to be convenient to deduce also
other results by combining equations (1.41)-(1.44) or by applying the energy-momentum
conservation theorem:

∂µT
µν + ΓµαµT

αν + ΓναµT
µα = 0 (1.50)

This leads to the following equations of motion for the density contrast δ ≡ δρ/ρ̄ and θ
in Fourier space [35]:

δ′i + (1 + wi)(θi − 3Φ′) + 3H
(
δPi
δρi
− wi

)
δi = 0 (1.51)

θ′i +

[
H(1− 3wi) +

w′i
1 + wi

]
θi −

δPi/δρi
1 + wi

k2δi + k2(σi −Ψ) = 0 (1.52)

valid for every single fluid as long as it is decoupled from the others.
We may alternatively consider the synchronous gauge where the line element can be

written as:

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj] (1.53)

The scalar component of the metric perturbation hij is also determined by two functions
depending on the time and position: one of them may be the trace h = Tr(hij) while
the other (η) is defined so that the conversion from the Fourier space to real space is
given by [35]:

hij(τ, x̄) =

∫
d3keik̄·x̄

[
k̂ik̂jh+

(
k̂ik̂j −

1

3
δij

)
6η

]
(1.54)

In this case, the linear-order Einstein equations in Fourier space are [35]:

k2η − 1

2
Hh′ = 4πGa2δT 0

0 (1.55)
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k2η′ = 4πGa2(ρ̄+ P̄ )θ (1.56)

h′′ + 2Hh′ − 2k2η = −8πGa2δT ii (1.57)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = −24πGa2(ρ̄+ P̄ )σ, (1.58)

while the conservation equations read as:

δ′i + (1 + wi)

(
θi +

1

2
h′
)

+ 3H
(
δPi
δρi
− wi

)
δi = 0 (1.59)

θ′i +

[
H(1− 3wi) +

w′i
1 + wi

]
θi −

δPi/δρi
1 + wi

k2δi + k2σi = 0 (1.60)

Although the conservation equations (1.51)-(1.52) and (1.59)-(1.60) look like similar, the
perturbations of the density and pressure are quantities whose value and evolution differ
from gauge to gauge, which is a natural consequence of the definition of the coordinate
grid in each case. In the synchronous gauge observers are usually attached to free-
falling cold dark matter particles, so in this case the observers measure zero peculiar
velocities of these particles and matter fluctuations grow as a result of the dilation of
the coordinate grid rather than gravitational infall [36].

There are other gauges and the use of one or another is a matter or choice, but of
course there are some advantages associated with each one. For example, calculations
in the newtonian gauge are easier to interpret in terms of our physical intuition of the
gravitational collapse, but they are more difficult to be carried out numerically than in
the syncrhonous gauge. The important thing is that observable quantities are gauge
independent. We may therefore take advantage of this fact and solve the equations in
the synchronous gauge while analise and discuss the results in the newtonian one. In
doing so, we need the convertion formulas for the density contrast and the divergence
of the velocity between these gauges [35]:

δi(new) = δi(syn)− 3(1 + wi)

k2
H[3η′ − δ′c(syn)] (1.61)

θi(new) = θi(syn)− [3η′ − δ′c(syn)], (1.62)

where δc is the overdensity of cold dark matter. Whenever is clear which gauge we are
using, we will omit the new and syn labels in δ and θ.

The specific perturbation equations for each one of the cosmological species can be
derived from equations (1.51) and (1.52) or (1.59) and (1.60), depending on the gauge
choice. Using the cold dark matter synchronous gauge, where θc = 0 and σc = 0 [35],
we first get the evolution equations of the metric potentials. From equations (1.55) and
(1.56) we easily find:

h′ =
2

H

[
k2η + 4πGa2

∑
i

ρ̄iδi

]
, (1.63)
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k2η′ = 4πGa2
[
ρ̄bθb + 4

3
ρ̄γθγ + 4

3
ρ̄νθν

]
, (1.64)

where we have taken into account the total contribution to δT 0
0 and (ρ̄ + P̄ )θ on the

right hand side. Note that δc is directly proportional to h as can be readily seen by
substituting the constant zero equation of state w and the null pressure perturbation
δP in equation (1.59):

δ′c = −h
′

2
= − a

a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν) + k2η] (1.65)

The evolution of baryons and photons is more difficult to describe since they are coupled
before recombination2, so we need to correct the corresponding perturbation equations
to account for such interaction. The resulting equations for the baryons are:

δ′b = −θb −
h′

2
= −θb −

a

a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν) + k2η], (1.66)

θ′b = −a
′

a
θb + k2c2

s,bδb +
aneσT
Rs

(θγ − θb), (1.67)

where aneσT(θγ − θb)/Rs is the interaction term with ne the number density of free
electrons, σT the Thomson cross section and Rs ≡ 3ρ̄b/(4ρ̄γ) the baryon-to-photon
energy density ratio. In the last expression, the k2c2

s,bδb term where c2
s,b = δPb/δρb is

only important for small modes (high k) and we are neglecting the baryon shear stress
σb [35]. For the photons we have:

δ′γ = −4

3
θγ −

2

3
h′ = −4

3
θγ −

4a

3a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν) + k2η], (1.68)

θ′γ = k2

(
1

4
δγ − σγ

)
+ aneσT (θb − θγ), (1.69)

where now the photon shear σγ cannot be neglected and it is determined by an infinite
series of coupled equations which has to be truncated at some point depending on
the desired accuracy [35]. In this respect, modern Boltzmann codes such as CAMB [37]
implements the appropiate machinery to cope with such approximation issues. Finally,
neutrinos are not coupled with the other fluids during the whole range of time where
we solve the system of differential equations (nearly from Big Bang Nucleosynthesis to
the present epoch). Therefore, there is no interaction term in the equations, but the
shear σν cannot be neglected and the same thing happens as with σγ. The perturbation
equations in this case are:

δ′ν = −4

3
θν −

2

3
h′ = −4

3
θν −

4a

3a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν) + k2η], (1.70)

2Baryons are still coupled to photons until the drag epoch zdrag, shortly after recombination z∗.
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θ′ν = k2

(
1

4
δν − σν

)
(1.71)

Note that the density perturbation in all species are directly coupled with the syn-
chronous potential η.

1.2.2 Initial conditions

In order to solve the system of perturbation equations we need to specify the corre-
sponding initial conditions. One of the most challenging problems in modern cosmology
is to explain where the primeval inhomogeneities came from. So far the most accepted
scenario is the theory of cosmic inflation [38], which in its simplest implementation intro-
duces a scalar field that drives the expansion of the early universe at an exponential rate
a ∼ eHt between 10−36s and 10−32s after the Bang (a = 0). Among the pleasing results
of this theory are the plausible solutions to the flatness and the horizon problems, as
well as it provides a natural mechanism to generate the primeval inhomogeneities that
gave rise to the anisotropies and structure we see at present. However, the occurrence
of an inflationary stage in the early universe has not been unambiguously confirmed by
the cosmological observations, which in this case is the only way we have to test the
theory since the involved energy scales are well beyond the reach of accelerators even in
the future.

For the purposes of this study, we can assume the initial conditions derived from the
superhorizon approximation [35]:

δγ = −2

3
h (1.72)

δc = δb =
3

4
δγ =

3

4
δν (1.73)

θb = θγ = − 1

18
C(k4τ 3) (1.74)

θν =
23 + 4Rν

15 + 4Rν

θγ (1.75)

σν =
4C

3(15 + 4Rν)
(kτ)2 (1.76)

h = C(kτ)2 (1.77)

η = 2C − 5 + 4Rν

6(15 + 4Rν)
C(kτ)2, (1.78)

where C is an arbitrary dimensionless constant and Rν = ρ̄ν/(ρ̄γ + ρ̄ν) accounts for
the contribution of neutrinos and extra relativistic species other than photons to the
total content of radiation. We start solving the equations at aini ∼ 10−9 after Big Bang
Nucleosynthesis, when all the modes of interest still lie outside the horizon, that is,
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when the corresponding length of a given mode λ = 2π/k is larger than the distance dH
travelled by the light since the Bang:

dH(t) =

∫ t

0

1

a(t′)
dt′ (1.79)

Note that dH(t) is just the conformal time τ given by equation (1.38). At these times,
neutrinos are already decoupled from baryons, while these latter are tightly coupled
with the photons via the Compton scattering, which isotropizes the multipole moments
of the photons above the dipole, so σν 6= 0 and σγ = 0 [29, 36, 39].

The initial conditions (1.72)-(1.78) converted into the newtonian gauge are [35]:

δγ = −2Ψ (1.80)

δc = δb =
3

4
δγ =

3

4
δν (1.81)

θc = θb = θγ = θν =
1

2
(k2τ)Ψ (1.82)

σν =
1

15
(kτ)2Ψ (1.83)

Φ =

(
1 +

2

5
Rν

)
Ψ (1.84)

Ψ =
20C

15 + 4Rν

(1.85)

Note that the relation between the matter and radiation overdensities is the same in both
gauges. Initial conditions fulfilling this relation are called adiabatic initial perturbations.
The amplitude of the initial density fluctuations is the same for all the modes3 and it
depends solely on a single metric potential h or Ψ, according to the case. However, since
the background density of the neutrinos is proportional to the background density of
the photons (c.f. equation (1.36)), Rν is constant and therefore Ψ is constant too. This
implies that before the modes enter the horizon, matter perturbations in the newtonian
gauge are frozen (keep constant) at their initial value, while they change (grow) in time
in the synchronous gauge.

1.2.3 Evolution of cosmological perturbations

Figure (1.2) shows the evolution of matter perturbations (baryons + cold dark matter)
in the newtonian gauge for modes entering the horizon before (k = 1Mpc−1, 0.1Mpc−1)
and after (k = 0.005Mpc−1, 0.001Mpc−1) the matter-radiation equality epoch. Initially,

3In that case, the primordial spectrum is called a scale-invariant spectrum. See next section.
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when all the modes are outside the horizon, δm is constant as we have just discussed.
Then, matter perturbations start growing once the modes enter the horizon at τh =
2π/k, which means that small modes (large k) cross the horizon earlier than the large
modes (small k) do, as expected. Alternatively, the entry epoch is also defined in terms
of the Hubble radius by solving for the scale factor in the following equation:

k = ahH(ah) (1.86)

The growth rate of matter perturbations depends on which fluid drives the expansion.
Since the baryon content of the universe is low, matter perturbations are mostly deter-
mined by the dynamics of the cold dark matter δc ≈ δm. Let’s then consider a simple
model consisting of cold dark matter and radiation. If we neglect the anisotropic shear,
equation (1.44) reduces to:

Φ = Ψ (1.87)

We have to bear in mind that this is just a rough approximation, especially if we
consider equation (1.84), where Rν = 0.405 and therefore the relation between the
initial potentials is Φ = 1.162Ψ. The continuity equations (newtonian gauge) (1.51)
and (1.52) in this case are:

δ′m = −θm + 3Φ′, (1.88)

θ′m = −Hθm + k2Φ, (1.89)

δ′r = −4

3
(θr − 3Φ′) , (1.90)

θ′r =
k2

4
δr + k2Φ, (1.91)

while the perturbed Einstein equations (1.41) and (1.42) read as:

k2Φ + 3H(Φ′ +HΦ) = −3

2
H2(Ωmδm + Ωrδr), (1.92)

k2(Φ′ +HΦ) =
3

2
H2

(
Ωmθm +

4

3
Ωrθr

)
, (1.93)

where we have used H = aH and equation (1.24). These two expressions can be com-
bined into:

k2Φ +
9

2

H3

k2

(
Ωmθm +

4

3
Ωrθr

)
= −3

2
H2 (Ωmδm + Ωrδr) (1.94)

For modes well within the horizon k � H, the second term on the left hand side is
small compared with the other terms and therefore it can be neglected, leading to:

k2Φ = −3

2
H2 (Ωmδm + Ωrδr) (1.95)
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Figure 1.2: Evolution of matter overdensities (baryons + cold dark matter) in the
newtonian gauge for modes entering the horizon before (k = 1Mpc−1, 0.1Mpc−1) and
after (k = 0.005Mpc−1, 0.001Mpc−1) the matter-radiation epoch aeq (vertical dotted
line).

If we derive this result and substitute into equation (1.88) we find:

δ′m = −θm −
9

2

H2

k2

(
Ωiδ

′
i + Ω′iδi +

2H′

H
Ωiδi

)
, i = m, r (1.96)

The second term on the right hand side can be neglected by the same token, so

δ′m = −θm (1.97)

and equation (1.90) turns into:

δ′r = −4

3
θr (1.98)

Now, if we derive equation (1.97) and substitute equations (1.89) and (1.95), we find:

δ′′m +Hδ′m −
3

2
H2(Ωmδm + Ωrδr) = 0 (1.99)
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Following the same procedure, we derive equation (1.90) and substitute equations (1.91)
and (1.95), leading to:

δ′′r +
k2

3
δr −

3

2
H2(Ωmδm + Ωrδr) = 0, (1.100)

where we can neglect the third term on the left hand side, since k � H:

δ′′r +
k2

3
δr = 0 (1.101)

Equations (1.99) and (1.101) govern the growth of matter and radiation perturbations
well within the horizon. The solution:

δr(τ) = A cos(kτ/
√

3) +B sin(kτ/
√

3), A,B = const (1.102)

describes rapid oscillations for the modes we are considering kτ � 1, so taking the time
average we get 〈δr〉 = 0 and therefore equation (1.99) simplifies further to:

δ′′m +Hδ′m −
3

2
H2Ωmδm = 0 (1.103)

Actually, the evolution of radiation perturbations is more complex and we will review
some important results in the next chapter when we consider the evidence of dark energy.
The important thing is that radiation fluctuations never grow and we can study them
accurately through a linear approach. During radiation domination the matter content
Ωm of the universe is negligible, so equation (1.103) reads as:

δ′′m +Hδ′m = 0 (1.104)

Since the background density of radiation redshifts as ρ̄r ∝ a−4, from the Friedmann
equation (1.10) we have H ∝ a−1 and a ∝ τ . The solution is given by:

δm(τ) = A+B ln(τ), A,B = const, (1.105)

which in terms of the scale factor yields:

δm(a) = A+B ln(a), (1.106)

meaning that matter perturbations grow slightly during radiation dominance at a loga-
rithmic rate δm ∝ ln a. When the matter drives the expansion Ωm ≈ 1 and now equation
(1.103) reads as:

δ′′m +Hδ′m −
3

2
H2δm = 0, (1.107)

where H ∝ a−1/2 and a ∝ τ 2. In terms of the scale factor, the solution is given by [12]:

δm(a) = Aa−3/2 +Ba, A,B = const (1.108)
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The decaying solution Aa−3/2 rapidly vanishes, so matter perturbations grow linearly as
the scale factor δm ∝ a during matter domination. This result is particularly important,
since it implies that the scalar potential Φ is constant in this epoch. From equation
(1.95) we have:

k2Φ = −3

2
H2δm ∝ a−1a ∝ const (1.109)

The transition from matter to dark energy domination at late times produces a time
variation of the scalar potential (Φ′ 6= 0) leaving an observable imprint on the temper-
ature anisotropy spectrum of the CMB.

Both the logarithmic and the linear growth of small-scale matter perturbations
(k & 1Mpc−1) can be seen in the plot; large modes (k � 1Mpc−1) only evolve lin-
early. Unlike radiation perturbations, matter overdensities grow and eventually become
non-linear when their amplitude is about δm ≈ 1. At that point, the linear theory we
have been discussing is not valid and we need to implement other methods to study the
structures we see today. Of course, small modes reach the non-linear regime earlier than
the large modes do, as they have had more time to grow since the horizon crossing. It
is common to take knl = 0.1hMpc−1 ≈ 0.07Mpc−1 as the limiting scale (k < knl) where
perturbation theory provides accurate results at present time. Figure (1.3) shows the
resulting matter power spectrum at z = 0 defined as:

P (k, a) =
2π2

k3
PsT

2
m(k, a), (1.110)

where Ps is the primordial spectrum given by the scalar spectral index ns and the
amplitude As as:

Ps = As

(
k

k0

)ns−1

, k0 = 0.05Mpc−1, (1.111)

and Tm is the matter transfer function that parameterizes the evolution of matter per-
turbations from their initial amplitude δmi(k):

δm(k, a) = δmi(k)Tm(k, a) (1.112)

Actually, the primordial spectrum is not scale-invariant, but there is a very slight
dependence on k, which means that the initial amplitude of matter perturbations is not
the same for all the modes and it is given instead by:

δmi(k) =

√
As

(
k

k0

)ns−1

, (1.113)

where ns ≈ 1. Moving from large to small scales, the matter power spectrum grows
as P ∝ kns reaching its maximum at keq corresponding to the mode that enters the
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Figure 1.3: Matter power spectrum at z = 0 for the ΛCDM model with ΩΛ = 0.7 and
h = 0.68. The vertical dotted lines mark the mode keq that enters the horizon at the
matter-radiation equality epoch and the scale knl that separates the perturbative regime
from the non-linear region of the spectrum, respectively.

horizon at the matter-radiation equality epoch aeq, and then it decreases for large k as
P ∝ kns−4(ln k)2 [12]. We also see the scale knl that separates the perturbative regime
from the non-linear part of the spectrum. Is in this region where we find the wiggles
corresponding to the baryon acoustic oscillations that arise from the coupling of baryons
with photons before recombination. After performing the Fourier transform of P (k) [12]:

ξ(r̄) =
1

(2π)3

∫
d3k P (k̄)eik̄·r̄, (1.114)

these wiggles turn into a peak in the two-point correlation function [4]:

ξ(r̄) ≡ 〈δ(x̄+ r̄)δ(x̄)〉, (1.115)

which measures the excess of clustering of matter at some distance r̄.





Chapter 2

The cosmological constant problem

Unlike the introduction of dark matter in the ΛCDM model whose presence is purely
justified by the observations, the simplest theoretical way to describe the dark energy
is by associating it with the cosmological constant in the Einstein-Hilbert action (1.4)
as we have just seen in the previous chapter. However, this standard approach leads to
serious discrepancies with respect to crude estimations based on quantum field theory,
so as long as particle physics does not provide a satisfactory explanation of the origin
of the dark energy, this misterious component (and dark matter too) is parameterised
by its contribution to the energy content of the universe at present.

In this chapter we address the cosmological constant problem. We first review in
section (2.1) the evidence supporting the presence of dark energy. This evidence involves
the effects of the dark energy on the background and pertubations dynamics and it
has widened and strengthened over the last twenty years. Our analysis includes the
luminosity distance of type Ia supernovae, the imprint of the distribution of galaxies
on the baryon acoustic oscillations, the temperature anistotropy spectrum of the CMB,
and consistency checks with respect to lower bounds on the age of the universe. In
section (2.2) we discuss the theoretical difficulties arising when we describe dark energy
as a cosmological constant. These difficulties is what motivates the quest of alternative
scenarios for explaining dark energy. There has been done a lot of research on the subject
whose detailed analysis is beyond the scope of this document. However, in preparation
for the next chapter, we will focus on scalar field theories which initially received much
attention given their natural connection with fundamental particle physics. We present
a short review of these theories in section (2.3).

35



36 CHAPTER 2. THE COSMOLOGICAL CONSTANT PROBLEM

2.1 Evidence of dark energy

2.1.1 Type Ia Supernovae

The use of type Ia supernovae (SNeIa) as a cosmological probe is based on the fact
that most of these objects show a homogeneous behaviour in terms of their spectra,
light curves and peak absolute magnitudes, which makes them nearly ideal standard
candles [40]. Type Ia supernovae are thought to arise from a thermonuclear explosion
when a white dwarf belonging to a binary system has reached a critical mass close to the
Chandrasekhar limit after accreting matter from its partner. The defining characteristic
of SNeIa is the lack of hydrogen absorption lines in contraposition to the presence of
a strong Si II line in the spectra. The key feature that makes them useful as distance
indicators is the correlation between the absolute magnitude and the shape of the light
curve [40]. This curve can be obtained by measuring the light flux over some weeks
[2]. Although it remains unknown some of the physics behind SNeIa explosions, the
observation of these objects provided the first quantitative evidence of an accelerating
universe [2, 3].
The luminosity distance (dL) of a source located at a comoving distance χ is defined as:

dL(a) ≡ χ(a)

a
=

1

a

∫ 1

a

1

a′2H(a′)
da′, (2.1)

Substituting equation (1.27) for a flat space and leaving all in terms of the redshift we
have:

dL(z) =
1 + z

H0

∫ z

0

1

[Ωm(1 + z′)3 + Ωr(1 + z′)4 + ΩΛ]1/2
dz′ (2.2)

At low redshifts the expansion is driven by matter and dark energy, so we can neglect
radiation and thus the luminosity distance is approximately given by:

dL(z) =
1 + z

H0

∫ z

0

1

[Ωm(1 + z′)3 + ΩΛ]1/2
dz′, (2.3)

where Ωm + ΩΛ = 1. Figure (2.1) shows the dependence of dL with z for different values
of ΩΛ. Whereas the four models lead to almost the same results in the region z � 1, as
we move to higher redshifts the luminosity distance is larger as the dark energy content
increases. We can explain this behaviour by expanding the integrand of equation (2.3)
for low z:

1

[Ωm(1 + z′)3 + ΩΛ]1/2
' 1− 3

2
ΩΛz +O(2) (2.4)

Therefore:

dL(z) =
1 + z

H0

∫ z

0

[
1− 3

2
ΩΛz +O(2)

]
dz′ =

1

H0

[
z +

z2

4
+

3

4
ΩΛz

2 +O(3)

]
, (2.5)
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Figure 2.1: Luminosity distance (in units of H−1
0 ) as a function of the redshift in a flat

universe for different values of ΩΛ. We have neglected the contribution from radiation,
so the present matter content is given by Ωm = 1− ΩΛ.

so the contribution from dark energy becomes important as we take larger values of ΩΛ.
The luminosity distance of SNeIa can be probed by measurements of their light fluxes
F . Both quantities are related by [17]:

F =
Ls

4πd2
L

, (2.6)

where Ls is the intrinsic luminosity of the source. Usually the flux is expressed in terms
of the apparent magnitude (m) defined as:

m = −5

2
log10F + c, (2.7)

where c is a reference constant. If we substitute equation (2.6) and rename the constant
after dumping into it the 4π factor we have:

m = −5

2
log10 Ls + 5 log10 dL + c (2.8)

Since the absolute magnitude (M) is defined as the apparent magnitude the source
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Figure 2.2: Top. Distance modulus of the SNeIa samples analysed by the High-z Su-
pernova Search Team. The curves are the theoretical predictions for: the best fit for a
ΛCDM model (solid), a flat Einstein-de Sitter universe with Ωm = 1, ΩΛ = 0 (dashed)
and an open Einstein-de Sitter universe with Ωm = 0.20, ΩΛ = 0 (dotted). The bottom
panel shows the residuals with respect to the latter. The figure has been taken from [2].

would have if it were located at 10 pc from the observer we obtain a similar relation:

M = −5

2
log10 Ls + 5 log10 10pc + c (2.9)

Substituting equation (2.8) into (2.9) we get:

µ ≡ m−M = 5 log10

(
dL

10pc

)
(2.10)

The term m −M is known as the distance modulus µ. As we mentioned, for SNeIa
M can be determined from the shape of the light curve. In real life it is necessary
to introduce some corrections to account for the remaining variability of these objects
[41]. However, the essential point is that equation (2.10) relates an observable quan-
tity (µ) with a theoretical prediction (dL) so in principle it is possible to discriminate
cosmological models. Figure (2.2) displays the distance modulus of 50 SNeIa analysed
by the High-z Supernova Search Team in 1998 together with the theoretical curves for
three cosmologies [2]. The bottom panel shows the residuals with respect to an open
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Einstein-de Sitter model with Ωm = 0.20 and ΩΛ = 0. Whereas the low-redshift mea-
surements don’t seem to favour any model, the models without dark energy are clearly
inconsistent with the high-z sample, so dark energy must be introduced to fit better the
whole set. The same conclusion were reached the next year by the Supernova Cosmology
Project [3] and more recently by the Supernova Legacy Survey (SNLS) [42] programs.
Assuming a flat ΛCDM cosmology the constraints on Ωm have varied as the number of
SNeIa increases and the observational techniques improves. Some of these constraints
are: Ωm = 0.287+0.068

−0.063 [43], Ωm = 0.274+0.040
−0.037 [44], Ωm = 0.295 ± 0.034 [41], which con-

sistently point out that dark energy amounts to nearly 70% the total energy content of
the universe at present.

2.1.2 Baryon Acoustic Oscillations

Baryon acoustic oscillations (BAO) are a powerful tool for probing the imprints left on
the late-time distribution of matter and galaxies by sound waves in the early barotropic
fluid. These waves arise from the tight-coupling between photons and baryons before
recombination. Figure (2.3) presents a series of snapshots showing the propagation of
the waves in comoving distance scales. During the tight copupling regime, the baryon
overdensities are pulled outwards by the radiation pressure of the photons, whereas the
cold dark matter is partially dragged because of gravity. Then, shortly after decoupling
the baryons are released from the photons pressure at the drag epoch (zdrag). This
delay is because there are many more photons than baryons, so photons stop feeling
the Compton interaction before the baryons do and hence they decouple firstly. The
comoving distance traveled by the wave before the drag epoch is called the sound horizon
and it is given by:

rdrag =

∫ ηdrag

0

cs(η)dη, (2.11)

where here η denotes the conformal time, c2
s = 1/[3(1 + Rs)] is the effective sound

speed squared of the barotropic fluid, and Rs = (3/4)ρb(a)/ργ(a). The value of zdrag is
approximately1 given by [46]:

zdrag = 1291
(Ωmh

2)0.251

1 + 0.659(Ωmh2)0.828
[1 + b1(Ωbh

2)b2 ], (2.12)

where b1 = 0.313(Ωmh
2)−0.419[1 + 0.607(Ωmh

2)0.674] and b2 = 0.238(Ωmh
2)0.223, so rdrag

solely depends on the present baryon and matter physical densities ωb ≡ Ωbh
2, and

ωm ≡ Ωmh
2, respectively.

1This fitting formula is inaccurate by some percentage points so in precision calculations zdrag
is determined numerically by solving for the time ηdrag when the drag optical depth equals one:
τop(ηdrag) =

∫ ηdrag

η0
τ̇op/Rs = 1 [26, 45]. For the present discussion such refinement is not required.
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Figure 2.3: Propagation of acoustic waves in the early barotropic fluid and the generation
of the BAO signature. The panels show the mass profile ∼ r2δ versus the comoving radius
of initially pointlike overdensities located at the origin for each species: baryons (blue), CDM
(black), photons (red), and neutrinos (green). The units of the mass profile are arbitrary. The
time after the bang and the corresponding redshift of each snapshot is indicated. Top. At
early times baryons and photons are tightly coupled. The radiation pressure of the photons
pulls the wave outwards, while the CDM is indirectly dragged by gravity. Middle. After the
drag epoch baryons decouple from photons: whereas the photon wave continues leaking away,
the baryon shell stops propagating at rdrag ≈ 150 Mpc. Bottom. Once the pressure of the
photons is absent gravitational instability takes over. Structure formation is expected near
the origin but also at rdrag. This picture has been taken from [47].
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Once the baryons are decoupled from the photons the matter (baryons + CDM)
overdensities are completely subject to the gravitational interaction. Matter finally
clusters around the origin of the initial perturbations but there is a remnant of the early
wave located at rdrag. When we map the distribution of galaxies in the late-time universe
we expect to see a peak in the pair correlation function at rdrag and this is precisely what
the Sloan Digital Sky Survey (SDSS) and the 2dF Galaxy Redshift Survey (2dFGRS)
detected for the first time in 2005 [4, 5]. The permanence of the BAO signal at low
redshifts makes this characteristic length scale a standard ruler with which is possible
to constrain cosmological parameters. If we map a sample of galaxies around some
redshift z, the angular size ∆θ and the redshift separation ∆zq along the line-of-sight
direction of the BAO length scale is given by [48]:

∆θ =
rdrag

(1 + z)DA(z)
, ∆zq = rdragH(z), (2.13)

where DA(z) is the angular diameter distance related with the luminosity distance by:

DA(z) =
dL(z)

(1 + z)2
(2.14)

This relation is valid whether or not the universe is flat or the radiation content is ne-
glected at late times as in equation (2.3) [12]. So far galaxy surveys are not large enough
to measure the angular and the radial separation of the BAO length scale separately
[49]. The data can constrain the quotient

rBAO(z) =
rdrag

DV (z)
, (2.15)

where DV (z) is a geometrical mean of the radial and the two transverse directions:

DV (z) ≡
[
(1 + z)2D2

A(z)
z

H(z)

]1/3

(2.16)

Figure (2.4) shows the BAO ratio has a function of the redshift for three flat cosmologies
Ωm + ΩΛ = 1. We include the measurements of the BOSS-DR12 survey at z = 0.32
and z = 0.57 [50], the measurement of the 6dF Galaxy Survey at z = 0.106 [51], the
measurement of the SDSS-DR7 survey at z = 0.15 [52], and the results of the WiggleZ
Dark Energy Survey at z = 0.44, 0.6, and 0.73 [53]. Clearly the Einstein-de Sitter
model with no dark energy is inconsistent with the data. The same thing happens for a
model with about 5% of baryon content and the rest in the form of dark energy with no
dark matter. BAO measurements can be combined with CMB information to constrain
other cosmological parameters. Since rdrag solely depends on ωm and ωb and these two
parameters can be inferred from the height and shape of the first acoustic peaks of the
CMB spectrum [49], it is possible to obtain rdrag alone. Substituting rBAO and rdrag in
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Figure 2.4: BAO ratio as a function of the redshift in a flat universe (Ωm + ΩΛ = 1)
for three different values of ΩΛ. The points are the measurements of the BOSS-DR12
galaxy survey at z = 0.32 and z = 0.57 [50], the 6dF Galaxy Survey at z = 0.106
[51], the SDSS-DR7 survey at z = 0.15 [52], and the WiggleZ Dark Energy Survey at
z = 0.44, 0.6, and 0.73 [53]. In this plot h = 0.7 and ωb = 0.0224.

equation (2.15) we can solve for DV and thus constrain the parameters embedded in
H(z). The results of this joint analysis made by the Planck collaboration for the ΛCDM
model are Ωm = 0.310± 0.008 and H0 = (67.6± 0.6) km s−1 Mpc−1 [26]. As in the case
of SNeIa the present content of dark energy is about 70%.

2.1.3 CMB anisotropies

Even though radiation fluctuations do not grow appreciably with time, the most accu-
rate source of cosmological information comes from the anisotropies of the CMB. The
shape of the power spectrum is affected by phenomena that took place at recombina-
tion, when free electrons were captured by atomic nuclei, and long time after, when
reionization happens and the dark energy took over the expansion of the universe. As
far as our research is concerned, the imprints of the dark energy on the CMB is reflected
in the location of the acoustic peaks and in the low multipole region of the spectrum
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corresponding to large angular scales. Here we quote some important results.
Since the energy density of the photons depends on the temperature2 ρ ∝ T 4, the

anisotropies manifest as temperature fluctuations δT , which depend on the time, the
position (x̄) and also on the momentum (p̄) inasmuch the interaction term between
photons and baryons before recombination depends on p̄ too. Actually, the dependence
of δT on the momentum is only through its direction p̂, since the magnitude of the
momentum is approximately conserved in Compton scattering [12, 29, 39]. If we define
the fractional fluctuation:

Θ(τ, x̄, p̂) ≡ δT

T
, (2.17)

the perturbed distribution function of the photons is given by:

f(τ, x̄, p̂) =

[
exp

{
p

T (τ)[1 + Θ(τ, x̄, p̂)]

}
− 1

]−1

(2.18)

The evolution of Θ is determined by the Boltzmann equation:

∂f

∂τ
+
∂f

∂xi
dxi

dτ
+
∂f

∂p

dp

dτ
+
∂f

∂p̂i
dp̂i

dτ
= C[f ], (2.19)

where C[f ] is the interaction term, and the fourth term on the left hand side can be
neglected at first order [29]. The resulting equation of motion in Fourier space is [12,
29, 36, 54]:

Θ′ + ikµΘ = Φ′ − ikµΨ− τ ′op[Θ0 −Θ + µvb], (2.20)

where µ ≡ k̂ · p̂, vb is the velocity of the baryons, and Θ0 is the monopole of Θ defined
by the expansion in Legendre (Pl) series:

Θl =
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ(µ), l = 0, 1, 2, ... (2.21)

Before recombination the isotropizing effect of the Compton scattering washes out all
the multipole moments above the dipole Θ1 [39], so the anisotropies during this epoch
are well described only by Θ0 and Θ1. Once the photons decouple from the baryons
they stream freely across the universe and now the higher multipoles start evolving. It
can be shown [29, 54] that the multipoles at the present time (τ0) can be approximately
given by the monopole and the dipole momenta at recombination (τ∗) by:

Θl(τ0, k) ' [Θ0(τ∗, k) + Ψ(τ∗, k)]jl[k(τ0 − τ∗)]

+3Θ1(τ∗, k)

{
jl−1[k(τ0 − τ∗)]−

(l + 1)jl[k(τ0 − τ∗)]
k(τ0 − τ∗)

}
+

∫ τ0

0

dτ e−τop [Ψ′(τ, k)− Φ′(τ, k)]jl[k(τ0 − τ)], (2.22)

2For the sake of clarity in the notation, we omit the γ subindex in this section.
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where jl is the spherical Bessel function of order l. When we perform a map of the
sky, we don’t measure these multipole moments Θl(τ0, k), but temperature variations
between different spots label by the direction p̂ of the incoming photons. The fractional
fluctuations of equation (2.17) can be expanded in spherical harmonics series:

Θ(τ, x̄) =
∞∑
l=1

l∑
m=−l

alm(τ, x̄)Ylm(p̂), (2.23)

where the entire collection of coefficients alm contain the same information as Θ. Actu-
ally, what we really measure is the variance CTT

l of such coefficients at τ0:

〈alma∗l′m′〉 = δll′δmm′C
TT
l , (2.24)

where CTT
l is related to the multipole moments in Fourier space Θl(τ0, k) by [12]:

CTT
l =

2

π

∫ ∞
0

dk k2|Θl(k)|2 (2.25)

Figure (2.5) shows the power spectrum Dl ≡ l(l + 1)CTT
l /(2π2) for three flat ΛCDM

cosmologies Ωm + ΩΛ = 1 together with the 2015 measurements of the Planck satellite
[26]. In all cases the baryon density is the same Ωb = 0.05, but the content of cold
dark matter varies as Ωc = Ωm − Ωb. The relative heights of the peaks depend on the
difference between the amount of cold dark matter and baryons [36], so they are not
of our primary interest here. On the contrary, we note that the more content of dark
energy we have, the more shifted to the right the peaks are. This is simply because the
location of the peaks is given by [12, 36, 55]:

ln =
nπ

2rs(z∗)
(1 + z∗)DA(z∗), n = 1, 2, 3, ... (2.26)

Since DA ∝ dL as stated in equation (2.14), and since dL increases for large ΩΛ as shown
in figure (2.1), then ln increases for large ΩΛ. We see that regardless of the amplitude
of the oscillations, the model with low content of dark energy is inconsistent with the
measurements of the location of the peaks. If we now take into account the height of
the peaks, the preferred scenario corresponds to ΩΛ to be around 0.7.

As we mentioned before, the other effect of dark energy on the spectrum manifests at
low multipoles. This effect comes from the last term on the right hand side of equation
(2.22) and it is known as the Integrated Sachs-Wolfe effect (ISW) [56]. The asymptotic
behaviour of the Bessel function makes this term relevant only for low−l [12, 29]. If
we neglect the time lapse of radiation domination and if we consider a universe made
only of matter, this term would be zero since in that case the potentials Φ and Ψ would
be constant as we showed in equation (1.109) of section (1.2.3). On the other hand, if
the dark energy content of the universe is small, the contribution from the ISW term
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Figure 2.5: CMB temperature anisotropy spectrum for three ΛCDM flat cosmologies
Ωm + ΩΛ = 1. The baryon content in all cases is the same Ωb = 0.05. The grey dots
correspond to Planck 2015 data [26]. We use a logarithmic scale for multipoles between
2 6 l 6 30 and then a linear scale for higher multipoles.

is also small and the spectrum is suppressed, as shown in the plot. However, in this
case it is not possible to discriminate between these models, since the error bars due
to the cosmic variance are large enough to embrace the curves of the three models.
Nevertheless, despite this intrinsic limitations, it has been possible to detect the ISW
effect by cross-correlating the CMB anisotropies with tracers of matter distribution [6–9,
57]. Therefore, a universe without dark energy is clearly inconsistent with the positive
detection of the ISW effect.

2.1.4 Age of the universe

Although the age of the universe (t0) is not an observable quantity, it is possible to
determine lower bounds based on the estimated ages of the oldest astronomical objects,
so any cosmological model must be consistent with these bounds. Table 2.1 quotes the
age of some metal-poor stars and globular clusters (GC) in our galaxy. Despite the size
of the uncertainties, we see that most estimations place t0 above 10 Gyr.
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Table 2.1: Estimated age of some old stars and globular clusters in the Milky Way.

type of object name age (Gyr)

star

CS 31082-001 14.1 ± 2.5 [58]

BD +17◦3248 13.8 ± 4 [59]

HD 221170 11.7 ± 2.8 [60]

GC
various 12.9 ± 2.9 [61]

M4 12.7 ± 0.7 [62]

The age of the universe can be calculated from the definition of the expansion rate (H):

t0 =

∫ a0

0

1

aH(a)
da =

∫ ∞
0

1

(1 + z)H(z)
dz (2.27)

Substituting equation (1.27) we have:

t0 =
1

H0

∫ ∞
0

1

(1 + z)[Ωm(1 + z)3 + Ωr0(1 + z)4 + ΩΛ]1/2
dz (2.28)

We can neglect the contribution from radiation since at low redshifts the expansion is
driven by matter and dark energy. On the other hand, at high redshifts (i.e. z & zeq)
1/Ωr(1 + z)4 � 1 and hence the time elapsed during the radiation domination epoch
only amounts to a negligible fraction of t0. We have then:

t0 '
1

H0

∫ ∞
0

1

(1 + z)[Ωm(1 + z)3 + ΩΛ]1/2
dz (2.29)

Let’s first consider an Einstein-de Sitter universe where Ωm = 1 and ΩΛ = 0. Equation
(2.29) leads to:

tEdS
0 =

2

3H0

(2.30)

Using a loose constraint H0 = 72 ± 6 km·s−1Mpc−1, the age of the universe without a
cosmological constant lies in the range 8.36 Gyr < tEdS

0 < 9.88 Gyr. This range falls
below the ages of the globular clusters listed in table (2.1). The discrepancy is small
but in order to get tEdS

0 > 10 Gyr it is needed to have H0 6 65.23 km·s−1Mpc−1, which
is not favoured by local measurements of H0 [63], [64]. The inclusion of the dark energy
as a cosmological constant solves this problem since it allows to get larger values of t0.
In this case equation (2.29) leads to:

tΛ0 =
2

3H0

[
1√
ΩΛ

arcsinh

√
ΩΛ

Ωm

]
, (2.31)
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Figure 2.6: Age of the universe in units of H−1
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globular clusters and the Planck-2015 constraints for the base ΛCDM model [26]. The
vertical dashed lines mark the constraints on Ωm which yield a cosmic age consistent
with Planck data, while the red circle at Ωm = 1 marks the prediction for the Einsten-de
Sitter universe.

where Ωm + ΩΛ = 1. Note that tΛ0 → tEdS
0 when Ωm → 1, while tΛ0 →∞ when Ωm → 0,

so it is now possible to find proper values of Ωm that yield a cosmic age consistent
with the bounds of table (2.1). Figure (2.6) shows the plot of tΛ0 as a function of Ωm.
When we take into account the Planck-2015 constraints t0 = 13.807 ± 0.026 Gyr and
H0 = 67.51± 0.64 km·s−1Mpc−1 [26] for the ΛCDM model, the current matter density
given by equation (2.31) lies in the range 0.300 < Ωm < 0.326.

2.2 The cosmological constant problem

We have seen the necessity of introducing the cosmological constant term in the Fried-
mann equations to describe the observational evidence. Actually, the ΛCDM model is
so successful not only because it fits the data, but also because the constraints obtained
from independent observations are consistent each other. This is of the utmost impor-
tance, since in cosmology the consistency is often the only way we have to test a model.
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For this reason, ΛCDM is also referred to as the concordance model. However, some
problems arise when we consider the physical origin of Λ. From the point of view of the
general theory of relativity, there is no special reason to keep this term or drop it from
the equations. It is then a free parameter whose value (or equivalently ρΛ, c.f. equation
(1.6)) is determined from observations [11]. Since the universe is dominated by the dark
energy at late times, ρΛ is approximately given by:

ρobsΛ ≈
3H2

0

8πG
∼ 10−47GeV4, (2.32)

where we have used (1.10) and H0 ≈ 70 km · s−1Mpc−1. If we now consider quantum
field theory, Lorentz invariance implies that the contribution to the energy-momentum
tensor due to the zero-point (vacuum) energy of all the fields present in the universe
must be of the form [10]:

T vacµν = −ρvacgµν , (2.33)

where ρvac is constant [11]. Comparing this result with equation (1.3) we conclude that
Λ must be somehow related to ρvac. Moreover, ρvac can be estimated through [12, 17]:

ρvac =
1

2

∫ kcut

0

d3k

(2π)3

√
k2 +m2 ' k4

cut

16π2
, (2.34)

where kcut (� m) is some cut-off scale. Here is where the first problem arises. If
we take the cut-off scale to be any characteristic scale in nature such as the Planck
scale kPl = mPl ∼ 1019 GeV, the electroweak scale kEW ≈ 246 GeV, or the QCD scale
kQCD ≈ 200 GeV, the estimations we get are well beyond ρobsΛ : ρvac(kPl) ∼ 1074 GeV4,
ρvac(kEW) ∼ 108 GeV4, and ρvac(kQCD) ∼ 10−2 GeV4, respectively. This discrepancy
clearly indicates that the zero-point energy is not the only mechanism behind Λ, but
there must be other phenomena leading to the almost complete cancellation of the
vacuum energy from ρvac to the observed value ρobsΛ . The fine-tuning problem of the
ΛCDM model just refers to the lack of a natural explanation of the hidden mechanism
producing this cancellation.

The question of the origin of the cosmological constant gets worse if we recall the
evolution of the energy density of the contents of the universe as shown in figure (1.1a).
Since ρΛ keeps constant over the time (c.f. equation (1.21)), it seems very unnatural
that among all the infinite possibilities, the value of ρΛ realised in nature is just the one
that equals ρm at late-times. The coincidence problem refers to the lack of a natural
explanation of why the universe has just entered the dark energy domination age.

These two difficulties might suggest that although ΛCDM is so successful fitting the
observations, the model is just a parametric description of the universe awaiting to be
embraced by a deeper theoretical framework. From this point of view, dark energy is not
due to a cosmological constant, but it is due to to a still unknown mechanism. We note
that even if we drop Λ from our equations, the issue of the cancellation of the vacuum
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energy still remains as one of the most challenging problems of theoretical physics and
indeed this question has been addressed long before the discovery of the accelerated
expansion of the universe at the end of the XX century. In this regard, the model we
propose here has nothing new to say.

2.3 Scalar field theories

Among the proposed alternatives to the cosmological constant, scalar field theories re-
ceive special attention because of the possibility of explaining dark energy from first
principles through physics beyond the Standard Model [17, 65]. After all, if dark en-
ergy and dark matter turned out to be real fluids, we would expect to find a particle
physics description of them. Early research on cosmological scalar fields as dark en-
ergy candidates dates back to the late 1980’s [66–68]. However, despite much of the
phenomenology was studied in the following years [69–75], it has been only possible to
constrain these models until recently [76–79], thanks to the growing amount of observa-
tional evidence and the diversification of the cosmological probes. Scalar field theories
aimed to describe dark energy are generically called quintessence models.

In the simplest implementation of quintessence [80, 81], we replace the cosmological
constant term in the Einstein-Hilbert action (1.4) by the minimally coupled lagrangian:

L =
1

2
gµν∂µϕ∂νϕ+ V (ϕ), (2.35)

where the functional form of the potential V (ϕ) might be justified by some theoretical
model. Unlike the cosmological constant, the equation of state of the scalar field (wϕ)
varies over the time. Quintessence potentials are roughly classified into freezing or
thawing potentials, depending on the way wϕ approaches to −1 at late times [80]. In
any case, there are three conditions that must be fulfilled [67]:

(i) The energy density of the scalar field in the early universe has to be small so that
Big Bang Nucleosynthesis constraints are not spoiled.

(ii) There has to be a long enough epoch of matter dominance to allow structures to
be formed.

(iii) The scalar field must roll slowly ϕ̇ � V at late times to ensure a dark energy
behaviour (wϕ ≈ −1).

Moreover, it has been shown [70, 72] that some kind of potentials possess attractor
solutions, where the dark energy evolution is not sensitive to the initial conditions. This
is a nice result since the energy scales of the theories on which these models are built on
are well beyond the reach of particle accelerators and therefore we can’t be pretty sure
on the physical conditions when the scalar field starts evolving. The low sensitivity on
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the initial conditions could be also a possible answer to the coincidence problem, since
in this case the universe is now dominated by dark energy because it is old enough to
reach the attractor solution. However, we have to be aware that coincidence might arise
when selecting the values of the parameters of the potentials.

Here we present a dark energy model with an inverse power law potential V ∼ ϕ−n.
Quintessence models of this kind have been extensively studied and constrained [66,
72, 76, 77, 79]. Nevertheless, we point out that in most analyses the scalar field is a
fundamental entity present over the whole history of the universe, that is, its existence
is justified by the same reason that of the photons and the other components. On
the contrary, in our model the scalar field arises from a phase transition that tooks
place at some point after the Big Bang Nucleosynthesis epoch; before that, the field is
absent. Therefore, the physical interpretation, the cosmological consequences, and the
constraints on the parameters are quite different in both scenarios.



Chapter 3

The Bound Dark Energy Model

In order to be considered as a viable alternative to ΛCDM, any dark energy model must
not only fulfil consistency with the observations, but the model also has to avoid the
naturalness and coincidence problems as well as being based on theoretical foundations
[72]. In this work, we show that the Bound Dark Energy model (BDE) satisfies all these
requirements. The core idea of the model is to describe the origin of dark energy as a
phase transition phenomenon very often found in high energy physics. The basic pic-
ture is the following [20–23]. We introduce a hidden non-Abelian dark gauge group with
very light particles that interact with the Standard Model (SM) only through gravity.
Initially, the gauge coupling of the dark group is small at high energies, so the dark
particles are free and its energy density redshifts as radiation. Then, as the universe
expands and the temperature drops off, the dark interaction becomes strong and now
the dark particles bind together forming composite states as is the case in the strong
interaction, where hadrons form as a result of the non-perturbative dynamics of the
elementary quarks. The lightest composite state corresponds to a scalar meson repre-
sented by a scalar field ϕ with an effective inverse power law potential V = Λ4+α

c ϕ−α,
where the condensation energy scale Λc, the exponent of the potential α, the condensa-
tion epoch ac, and the initial conditions of the scalar field are quantities derived from
the parameters of the dark group and other high-energy characteristic quantities. Dark
energy corresponds to this light scalar particle formed at the phase transition undergone
by the dark group when the gauge coupling becomes strong.

In this chapter we present the Bound Dark Energy model focusing on its cosmological
aspects rather than on its high-energy physics theoretical foundations, which are fully
explained in [20–23]. In section (3.1) we describe the evolution of the dark group before
the dark particles condense into the scalar meson ϕ. Then, in section (3.2) we review
the physical mechanism leading to the scalar field potential, and finally we explore the
evolution of homogeneous dark energy and its perturbations in sections (3.3) and (3.4),
respectively.

51
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3.1 Before the phase transition

The dark energy model we study introduces a supersymmetric hidden dark group
SU(Nc) with Nc colours and Nf elementary massless fields in its fundamental repre-
sentation [20–23]. These colours and flavours have the same fundamental status than
the colours and flavours of the gauge groups of the Standard Model (SM), in the sense
that they are quantities not derived from a more fundamental theory. We assume gauge
coupling unification of all the groups at the unification scale Λgut as expected from string
theory. Below this scale, the dark group and the SM particles interact only via grav-
ity. The possible values of Nc and Nf were extensively explored in [22, 23]. Using the
limited observational evidence available at that time and imposing the gauge coupling
unification constriction, the preferred model has Nc = 3 and Nf = 6 [22]. We take these
values as the input parameters of our model.

Before the condensation, when the coupling strength of the dark group is weak, the
fields of the dark group contribute to the total content of radiation of the universe so its
energy density redshifts simply as ρDG ∝ a−4. In terms of the degrees of freedom gDG

and the temperature TDG the energy density is given by:

ρDG(TDG) =
π2

30
gDGT

4
DG, (3.1)

where [22]:

gDG =

(
1 +

7

8

)[
2(N2

c − 1) + 2NcNf

]
= 97.5 (3.2)

This value keeps constant until the phase transition at ac, since the elementary fields of
the dark group are massless and they don’t decay/condense into other particles before
that time. Analogously, the energy density of the SM particles is given by:

ρSM(TSM) =
π2

30
gSMT

4
SM, (3.3)

where the degrees of freedom gSM is a function of the temperature that decreases as the
universe cools down and the particles become non-relativistic [28]. For the Minimum
Supersymmetrical extension of the Standard Model, ggutSM = 228.75 at the unification
epoch agut [22], so TSM(agut) = TDG(agut) and the ratio of the energy densities are:

ρDG(agut)

ρSM(agut)
=
gDG

ggutSM

= 0.426, (3.4)

which means that the dark group amounts to 30% the energy content of the universe at
that time:

ΩDG(agut) =
ρDG(agut)

ρSM(agut) + ρDG(agut)
= 0.299 (3.5)
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As we stated before, below the unification scale the dark group and the SM particles
interact only via gravity and they are no longer kept in thermal equilibrium. However,
we can use entropy conservation to relate their temperatures below this point. Since now
they are decoupled, the entropy per comoving volume S = 2π2

45
gT 3a3 is independently

conserved [22]. Let’s first consider the period between the unification scale and the
neutrino decoupling at aνdec (T ∼ 1MeV). For the dark group we have:

gDGT
3
DG(agut)a

3
gut = gDGT

3
DG(aνdec)a

3
νdec, (3.6)

while for the SM particles:

ggutSMT
3
SM(agut)a

3
gut = gνdecSM T 3

SM(aνdec)a
3
νdec (3.7)

Since TSM(agut) = TDG(agut) we divide these expressions to get:

TDG(aνdec)

TSM(aνdec)
=

(
gνdecSM

ggutSM

)1/3

, (3.8)

where gνdecSM = 2 + 7
8
[2(3) + 2(2)] = 10.75 accounting for the photons, three massless

neutrino species (with their antiparticles), electrons, and positrons. Now let’s consider
the period between aνdec and the BDE field condensation epoch ac. During this stage we
have three decoupled fluids: the barotropic component consisting of photons, electrons
and positrons, the dark group, and the neutrinos. Entropy conservation now states that:

barotropic fluid: gγeT
3
SM(aνdec)a

3
νdec = gγT

3
γ (ac)a

3
c (3.9)

neutrinos: gνT
3
SM(aνdec)a

3
νdec = gνT

3
ν (ac)a

3
c (3.10)

dark group: gDGT
3
DG(aνdec)a

3
νdec = gDGT

3
DG(ac)a

3
c , (3.11)

where Tγ (Tν) is the temperature of the photons (neutrinos), gγe = 2 + 7
8
[2(2)] = 11

2
and

gγ = 2, this latter assuming that electrons and positrons annihilate before ac so only
photons contribute to the entropy [23]. Dividing equations (3.9) and (3.10) we recover
the well-known relation between the photon and neutrino temperatures evaluated at ac
(1.35):

Tγ(ac) =

(
gγe
gγ

)1/3

Tν(ac) =

(
11

4

)1/3

Tν(ac) (3.12)

This relation holds for arbitrary a below neutrino decoupling since both temperatures
redshift as a−1. If we now divide equations (3.10) and (3.11) we get:

Tν(ac) =
TSM(aνdec)TDG(ac)

TDG(aνdec)
(3.13)
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Substituting this result and equation (3.8) into (3.12) we obtain:

Tγ(ac) =

(
11

4
· g

gut
SM

gνdecSM

)1/3

TDG(ac) (3.14)

On the other hand, the energy density of photons and neutrinos after aνdec is given by
[28]:

ρr =
π2

30
grT

4
γ , (3.15)

where the degrees of freedom are:

gr = 2 +
7

8
(2)Nν

(
Tν
Tγ

)4

= 2 +
7

4
Nν

(
4

11

)4/3

= 3.383, (3.16)

with Nν = 3.046 accounting for neutrino decoupling effects [82]. Combining equations
(3.1), (3.15) and (3.14), the ratio of the energy density of the dark group to the standard
radiation consisting of photons and neutrinos at the phase transition (ρrc) is:

ρDGc

ρrc
=
gDG

gr

(
4

11
· g

νdec
SM

ggutSM

)4/3

= 0.1268, (3.17)

which means that the dark group still amounts to a non-negligible fraction of the energy
content of the universe when the BDE field condensation occurs:

ΩDGc =
ρDGc

ρrc + ρDGc

= 0.113 (3.18)

As we will see in section (3.3) the energy density of the dark group just at this time is
given by:

ρDGc = 3Λ4
c , (3.19)

where Λc is the condensation scale, while the density of photons and neutrinos is simply
ρrc = ρr0a

−4
c . Substituting these results into equation (3.17) we arrive at:

acΛc

eV
=

(
ρr0

3eV4 ·
gDG

gr

)1/4(
4

11
· g

νdec
SM

ggutSM

)1/3

= 1.0939× 10−4, (3.20)

which is a meaningful constriction of the model relating the epoch and the energy scale
of the BDE phase transition. This quantity can be used to parameterize the amount
of non-standard radiation due to the dark group before the condensation. We recall
that the energy density ρ = ρν + ρext of relativistic fluids other than photons is usually
parameterized by Neff defined as [26]:

ρ = Neff
7

8

(
4

11

)4/3

ργ, (3.21)
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where Neff = Nν +Next. Using equations (1.36), (3.15) and (3.16) we simplify to:

ρext = Next
7

8

(
4

11

)4/3

ργ (3.22)

If we evaluate this equation at ac taking ρext = ρDGc = 3Λ4
c and solve for Next we get:

Next =
3(acΛc)

4

ργ0

· 8

7

(
11

4

)4/3

(3.23)

Substituting acΛc from equation (3.20) we obtain:

Next =
4

7
gDG

(
gνdecSM

ggutSM

)4/3

= 0.945, (3.24)

where we use ρr0 = gr
2
ργ0 from (3.15) and (3.16). It is important to bear in mind that

unlike the usual extensions of the ΛCDM model where Next keeps constant over the
whole history of the universe, in the BDE model the extra amount of radiation is only
present before the phase transition and it vanishes once the condensation occurs. More
precisely:

Next =


0.945 if a < ac

0 if a > ac

(3.25)

Equations (3.24) and (3.2) show the relation between this amount of early radiation
and the fundamental parameters of the model, to wit, the colours and flavours of the
dark group. A change in Nc, Nf , the mechanism the BDE field condenses [22], the
supersymmetric extension of the SM or even a purely phenomenological model where
we have a transition from early dark radiation to a scalar field without a dark group
would imply a different Next. In those scenarios Next can be calculated from equation
(3.23) where ac and Λc may be independent quantities not related by an expression of
the form of (3.20). In any case the energy density before ac redshifts as radiation ∝ a−4.
For our BDE model we use equation (3.19) so:

ρDG(a) = ρDGc(a/ac)
−4 = 3(acΛc)

4a−4 for a < ac (3.26)

and the expansion rate during that period is given by:

H2(a) =
8πG

3

[
ρm0a

−3 + ρr0a
−4 + ρDGc(a/ac)

−4
]

for a < ac (3.27)
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3.2 The BDE potential

As the universe expands and the temperature decreases, the gauge coupling of the dark
group becomes strong and the dark quarks stop being free, forming composite states
which also interact with the particles of the Standard Model only through gravity. The
condensation scale Λc at which this occurs is given by [22, 83]:

Λc = Λgut · exp
(
− 8π2

b0α2
gut

)
, (3.28)

where b0 = 3Nc−Nf = 3 is the one-loop beta function, Λgut is the unification scale and
αgut is the gauge coupling at that time. Taking Λgut = (1.05 ± 0.07) × 1016 GeV and
α2
gut = 4π/(25.83± 0.16) [84] we find:

Λc = 34+16
−11 eV (3.29)

As we mentioned before, the lightest composite state corresponds to a meson represented
by a scalar field ϕ. We assume that any other heavier state will decay into this meson
rapidly [22]. At first sight this might seem a very artificial assumption, especially if we
consider the whole variety of particles produced in QCD. However, even in this case
the only free stable particle is the proton, so our hypothesis is not unnatural after all.
Therefore, all the energy of the dark group is transferred to the scalar field at the phase
transition and:

ρDGc = ρBDEc (3.30)

The potential V of the scalar field arising from the non-perturbative effects of the strong
interaction of the particles of the dark group can be calculated from the Affleck-Dine-
Seiberg superpotential [85] for a non-Abelian SU(Nc) group with Nf massless fields,
which in this case leads to an inverse power law potential [22]:

V (ϕ) =
Λ4+n
c

ϕn
, (3.31)

where the exponent is given by:

n = 2

(
1 +

2

Nc −Nf

)
(3.32)

This potential is stable against radiative corrections [22, 23]. Note that all the relevant
quantities we have introduced so far (c.f. equations (3.2), (3.20), (3.24), (3.28), and
(3.32)) depend only on the parameters of the dark group and other quantities that we
may know (gr, g

νdec
SM ), or we can measure with enough accuracy (ρr0), or that are fixed in

nature if unification and supersymmetry turn out to be real (Λgut, αgut, g
gut
SM). Therefore,

we are not introducing extra free parameters other than Nc and Nf and once we set
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their values, these quantities are automatically fixed and cannot be varied arbitrarily,
excepting Λc whose uncertainties come from the inaccuracy of Λgut and αgut. Thus, for
Nc = 3 and Nf = 6 the potential of the scalar BDE meson is:

V (ϕ) =
Λ

4+2/3
c

ϕ2/3
(3.33)

3.3 BDE background evolution

Once the condensation occurs the evolution of the scalar field is described by the same
theoretical machinery as canonical quintessence. The term with the cosmological con-
stant (Λ/(8πG)) in the Einstein-Hilbert action (1.4) is replaced by the minimally coupled
lagrangian:

L =
1

2
gµν∂µϕ∂νϕ+ V (ϕ), (3.34)

where V (ϕ) = Λ
4+2/3
c ϕ−2/3 as stated in equation (3.33). The components of the energy-

momentum tensor can be readily obtained following the Noether’s prescription:

Tµν =
∂L

∂(∂µϕ)
∂νϕ− Lδµν = gαµ∂αϕ∂νϕ− Lδµν (3.35)

Let’s firstly consider a homogeneous field ϕ = ϕ(t) in a flat universe described by the
FLRW metric (1.2). The density and the pressure of the BDE field are:

ρBDE = −T 0
0 =

1

2
ϕ̇2 + V PBDE =

T ii
3

=
1

2
ϕ̇2 − V, (3.36)

so the equation of state wBDE = PBDE/ρBDE is given by:

wBDE =
1
2
ϕ̇2 − V

1
2
ϕ̇2 + V

(3.37)

Unlike the ΛCDM model where the DE equation of state wΛ = −1 is constant in time,
the magnitude and sign of wBDE at every moment depends on the interplay between
the kinetic (ϕ̇2) and the potential (V ) terms. However, the concordance of the ΛCDM
model with the observations enforces a slow-roll condition of the scalar field at present:

wBDE(a0) ≈ −1 ⇒ ϕ̇2(a0)� V (ϕ0) (3.38)

We can derive the Klein-Gordon equation governing the evolution of the BDE field
by substituting the expressions of the energy density and the pressure (3.36) into the
continuity equation (1.12):

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 (3.39)
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The Friedmann equation now reads as:

H2 =
8πG

3
(ρr + ρm + ρBDE), (3.40)

where we have replaced the energy density of the dark group by the energy density of
the BDE field. In solving the system of equations (3.39) and (3.40) we must specify the
initial conditions. On this regard, since Λc is the relevant energy scale of the binding
process of the elementary fields of the dark group, the natural initial condition of the
scalar field at the condensation is:

ϕc = Λc (3.41)

If we substitute this value into equations (3.36) and (3.37) and solve for ϕ̇ we find:

ϕ̇c =

√
2Λ4

c

(
1 + wBDEc

1− wBDEc

)
, (3.42)

where wBDEc is the equation of state of the scalar field at the phase transition. We may
assume that wBDEc = 1/3, since the dark group evolves as radiation before ac and the
effective mass of the scalar meson mϕ =

√
d2V/dϕ2 = 1.05Λc at the condensation epoch

is comparable to the temperature of the dark group at that time TDG(ac) = 24.4 eV
(c.f. equation (3.14)). In any case, we find that the late-time parameters H0, ΩBDE0

and wBDE0 are not sensitively affected by the choice of wBDEc. From now on, we’ll take
wBDEc = 1/3. The crucial point is that we don’t need to know the dark energy density
today to set the initial conditions of the scalar field. This is a remarkable difference with
respect to other models where the scalar field is elemental. In such models the value of
ϕ and ϕ̇ at some initial time has to be set properly to retrieve the current value of the
dark energy density. On the other hand, in the BDE model the initial conditions can be
set naturally from physical considerations. Moreover, taking as input the value of the
physical density of matter Ωmh

2 and the condensation scale Λc we solve the system of
equations (3.39) and (3.40) with the initial conditions (3.41) and (3.42) to find a, ϕ and
ϕ̇ at any time. The dark energy density at present is given by evaluating the solution
thus obtained at z = 0:

ρBDE0 =
1

2
ϕ̇2

0 + V (ϕ0), (3.43)

which directly leads to the current value of the expansion rate H0. We see then, that
in the BDE model the present content of dark energy is a derived quantity instead of
being a free parameter. This appealing feature not only distinguish the BDE model
from other scalar field theories, but also from the ΛCDM one. On this regard, we recall
that in ΛCDM the dark energy density is given by ρΛ = Λ/8πG, where the cosmological
constant Λ is a free parameter to be determined by the observations. Therefore, we
conclude that the BDE model has one less free parameter than ΛCDM. We’ll come back
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to this point in section (5.1.2). When solving equations (3.39) and (3.40) it is convenient
to introduce the variables [17]:

x ≡ ϕ̇

MPl

√
6H

, y ≡
√
V

MPl

√
3H

(3.44)

λ ≡ −MPlV
′

V
, Γ ≡ V V ′′

(V ′)2
, (3.45)

where MPl = (8πG)−1/2 is the reduced Planck mass and the primes stand for derivatives
with respect to ϕ. We note that x and y are simply the square root of the kinetic and
the potential terms of ρBDE divided by the critical density, respectively. From the above
definitions the density parameter and the equation of state of the scalar field can be
expressed as:

ΩBDE = x2 + y2 (3.46)

wBDE =
x2 − y2

x2 + y2
, (3.47)

whereas the slow-roll condition of equation (3.38) now reads as:

x2
0 � y2

0 (3.48)

If we introduce the total energy density of matter and radiation and its effective equation
of state:

ρs(a) = ρm(a) + ρr(a), (3.49)

ws(a) =
1

3

ρr(a)

ρr(a) + ρm(a)
, (3.50)

we find:
Ωm(a)

Ωr(a)
=
ρm0a

ρr0
=

1− 3ws(a)

3ws(a)
(3.51)

Substituting this result into the flatness relation Ωm(a) + Ωr(a) + ΩBDE(a) = 1, the
density parameter of matter and radiation at any time is given by:

Ωm(a) = [1− 3ws(a)][1− ΩBDE(a)] , Ωr(a) = 3ws(a)[1− ΩBDE(a)] (3.52)

Now we may take the time derivative of the Friedmann equation (3.40) and use expres-
sions (3.39), (3.44), (3.49) and (3.50) to obtain:

Ḣ

H2
= −3

2

[
2x2 + (1− x2 − y2)(1 + ws)

]
(3.53)

All these results show that the background quantities can be expressed by simple rela-
tions involving the dynamical variables defined in (3.44) and (3.45). In the same way,
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the equations (3.39) and (3.40) can be transformed into a system of equations for these
variables. Taking the number of e-foldings after the condensation N = log(a/ac) as the
independent variable instead of the cosmic time and using the chain rule d

dt
= dN

dt
d
dN

, we
find:

xN = −3x+

√
6

2
λy2 +

3

2
x[2x2 + (1− x2 − y2)(1 + ws)], (3.54)

yN = −
√

6

2
λxy +

3

2
y[2x2 + (1− x2 − y2)(1 + ws)], (3.55)

λN = −
√

6(Γ− 1)xλ2, (3.56)

where fN ≡ df/dN . In the case of the potential (3.33), Γ = 5/2 so the dynamical system
(3.54)-(3.56) is closed1 but not autonomous since ws explicitly depends on N . However,
when the matter-radiation fluid is dominated by one of its components, ws ' 0 or 1/3
so in these epochs the equations (3.54)-(3.56) can be consider as an autonomous system.
The energy density of the BDE field at ac is obtained by evaluating the initial conditions
(3.41) and (3.42) in the expression of ρBDE of equations (3.36):

ρBDEc =
1

2
ϕ̇2
c +

Λ
4+2/3
c

ϕc
= 3Λ4

c (3.57)

As we stated before, this is the density of the dark group at the condensation scale
ρDGc assuming all the composite dark hadrons decay into the lightest meson ϕ. The
corresponding density parameter is:

ΩBDEc =
ρBDEc

ρrc + ρmc + ρBDEc

=
3(Λcac)

4

ρr0 + ρm0ac + 3(Λcac)4
(3.58)

The initial conditions for x and y follow from equations (3.46) and (3.47). Solving for
each one we obtain:

xc =

√
ΩBDEc

2
(1 + wBDEc) =

√
2

3
ΩBDEc (3.59)

yc =

√
ΩBDEc

2
(1− wBDEc) =

√
1

3
ΩBDEc, (3.60)

whereas the initial condition for λ follows directly form its definition and equation (3.41):

λc =
2

3

(
MPl

Λc

)
(3.61)

Figure (3.1a) shows the solution for x and y for Λc = 44.02 eV, Ωch
2 = 0.1173, and

1That is, the equations don’t involve any other dependent variable than x, y, and λ.
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Figure 3.1: Background evolution in the BDE model. a, Solution for the dynamical
variables x and y defined in equations (3.44). b, The path of the solution in the phase
space. c, Evolution of the equation of state of the BDE scalar field. The dashed line
corresponds to the equation of state wDG = 1/3 of the dark group. d, Density parameter
of matter, radiation, and dark energy (first as the dark group, then as the BDE scalar
field). Letters A and F mark the condensation and the present epochs, respectively,
while the rest correspond to other important stages described in the text. In all these
plots Λc = 44.02 eV, Ωch

2 = 0.1173, and Ωbh
2 = 0.02252.

Ωbh
2 = 0.02252. From the constriction (3.20) we obtain ac = 2.48× 10−6. Substituting

these values into equation (3.58) the density parameter of the BDE field at ac is ΩBDEc =
0.1117, so xc = 0.2729, yc = 0.1930, and λc = 3.7 × 1025. The condensation and the
present epoch are indicated by A and F , respectively; the other letters mark specific
stages in the dynamical evolution of the system. As we have seen, initially x and y
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have similar values but then y undergoes a sudden drop of several orders of magnitude
until reaches a minimum value at B almost instantly. From this time onwards it grows
monotonically. On the other hand, x takes a little leap and then it falls too, but the fall
is smooth and takes much more time before reaching the minimum, so immediately after
the transition x dominates over y. This situation reverses between C and D where we
can observe the cross-over. Then x reaches its minimum and starts growing but always
keeping below y. The maximum close up occurs between E and the present epoch
after which x reaches a maximum value and then decreases again, whereas y approaches
asymptotically to 1. The path in the phase space can be seen in figure (3.1b), where the
stars mark the corresponding epochs of figure (3.1a). The initial drop of y is depicted
as fast move from A to B. Every time some variable reaches an extreme there is a
turnaround in the curve. The stability conditions of the solution [70]:

Γ > 1 ,

∣∣∣∣ dΓ

dN

∣∣∣∣� 1 (3.62)

are plenty satisfied by our potential (3.33), which means that although the present values
of the solution may depend on the initial conditions, these are not fine-tuned [21]. The
effect on the equation of state is shown in figure (3.1c). Before the phase transition
the dark group evolves as radiation with wDG = 1/3. Once the condensation occurs the
initial drop of y leads to a sudden leap to 1. Since x is much larger than y between
B and C the equation of state stays at this value as we can see by taking x � y in
equation (3.47). The cross-over and the dominance of the potential term is reflected in
the change from 1 to −1. Here we have y � x so equation (3.47) this time leads to
wBDE ' −1. Although the scale factor when this happens depends predominantly on
Λc and Ωch

2 we will see that for the models favoured by the observations C is located
shortly after decoupling. This implies that for most of the cosmic time the equation of
state behaves like a cosmological constant. Finally, when x gets closer to y between E
and the present epoch, the equation of state grows to a larger value and eventually it
will be approaching to −1 in the future. The evolution of the density parameter of the
scalar field, matter, and radiation is shown in figure (3.1d). Before the phase transition
the density parameter of the dark group is:

ΩDG(a < ac) =
ΩDGc

Ωrc + Ωmc(a/ac) + ΩDGc

, (3.63)

where ΩDGc = ΩBDEc = 0.1117 as we have seen, and Ωmc and Ωrc is the value of
the density parameter of matter and standard radiation (photons and neutrinos) at
ac, respectively. These can be obtained by substituting ΩBDEc and ac into equations
(3.50) and (3.52). Since in these times the matter density is negligible ΩDG(a < ac) ≈
ΩDGc/(Ωrc+ΩDGc). When the condensation occurs the equation of state leaps to 1. This
implies that the energy density of the BDE field dilutes faster than matter and radiation
as ρBDE ∼ a−6, reaching its minimum in the cross-over of x and y. From this time
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onwards, ΩBDE grows monotonically equating the matter density in the recent past and
since then driving the expansion as required by the observations. Some of the dynamics
shown in figure (3.1) turns out to be irrelevant for the cosmological observations since the
BDE field component remains subdominant over almost all the history of the universe
until late times. However, the dark group amounts to a non-negligible fraction of the
energy density in the early universe. Therefore, besides the late-time effects of the
dark energy we expect additional imprints left by the early contribution of the dark
group. This is one of the main differences of the BDE model with respect to ordinary
quintessence.

3.4 BDE perturbations

The smooth background approximation must be refined to account for the inhomo-
geneities of matter and radiation we observe. These inhomogeneities are also present
both in the dark group and the BDE field since they are coupled with the other fluids
through the metric, so a physical realistic description must include perturbations in
the dark group and the scalar field too [69]. We assume that before ac the dark group
perturbations behave as the neutrino perturbations. This assumption relies on the fact
that at the initial time when we start solving the equations, the neutrinos are already
decoupled from the electrons, so they interact with the other particles only via gravity
making no difference with respect the dynamics of the particles of the dark group. We’ll
come back to this point in section (4.3). Once the transition occurs, we decompose the
BDE field into a homogeneous part (denoted with a bar as in section (1.2) and a small
position-dependent perturbation:

ϕ(τ,x) = ϕ̄(τ) + δϕ(τ,x), (3.64)

where τ is the conformal time. The lagrangian of equation (3.34) is now given by:

L =
1

2
gµν(∂µϕ̄+ ∂µδϕ)(∂νϕ̄+ ∂νδϕ) + V (ϕ̄+ δϕ) (3.65)

If we perform a Taylor expansion about ϕ̄ we get:

V (ϕ̄+ δϕ) = V (ϕ̄) +
dV

dϕ

∣∣∣
ϕ=ϕ̄

δϕ (3.66)

From now on, we denote V = V (ϕ̄), dV
dϕ

∣∣∣
ϕ=ϕ̄

= Vϕ, and d2V
dϕ2

∣∣∣
ϕ=ϕ̄

= Vϕϕ. Working in the

synchronous gauge (1.53) the perturbations of the energy density and the pressure are:

δρBDE = −δT 0
0 =

ϕ̄′δϕ′

a2
+ Vϕδφ, δPBDE =

1

3
Tr(δT ij ) =

1

3
Tr

[(
ϕ̄′δϕ′

a2
− Vϕδϕ

)
δij

]
(3.67)
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We see that δT ij = 0 for i 6= j, which means that the BDE field has no anisotropic shear
σ = 0 (c.f. equation (1.46)). The other components of the perturbed energy-momentum
tensor are:

δT i0 = −δT 0
i =

ϕ̄′

a2
∂iδϕ (3.68)

Taking the Fourier transform, the velocity divergence eq. (1.45) is given by:

(ρ̄BDE + P̄BDE)θBDE = ikjδT
0
j =

k2

a2
ϕ̄′δϕ ⇒ θBDE =

k2δϕ

ϕ̄′
, (3.69)

where we have used equations (3.36) and transformed to conformal time derivatives ac-
cording to equation (1.38). In this regard, the Klein-Gordon equation (3.39) in conformal
time reads as:

ϕ̄′′ + 2Hϕ̄′ + a2Vϕ = 0, (3.70)

while the continuity equation (1.12) has the same form by placing H instead of H:
ρ̄′ + 3H(ρ̄ + P̄ ) = 0. Using equations (3.67), (3.69), (3.70), (3.37) and (1.12) the
evolution of the BDE scalar field overdensities δBDE ≡ δρBDE/ρ̄BDE are given by:

δ′BDE =
1

a2ρ̄BDE

[
ϕ̄′δϕ′′ −H(1− 3wBDE)ϕ̄′δϕ′ + a2(ϕ̄′Vϕϕ + 3H(1 + wBDE)Vϕ)δϕ

]
(3.71)

Substituting this result into the conservation equation (1.59) and after doing some al-
gebraic manipulation we arrive at a Klein-Gordon equation for δϕ:

δϕ′′ + 2Hδϕ′ + (k2 + a2Vϕϕ)δϕ = −1

2
ϕ̄′h′ (3.72)

As we can see (c.f. section (4.3)), the scalar field inhomogeneities are coupled with
the perturbation equations of the other fluids through the synchronous potential h (or
equivalently, the cold dark matter perturbations δc). In order to solve equation (3.72), we
need to set the initial conditions for δϕ and δϕ′ at the condensation epoch ac. However,
it has been shown [72] that for inverse power law potentials the perturbed solutions
are insensitive to the initial conditions, so we are free to select them arbitrarily. In
our case, we match the overdensities of the dark group and the BDE field at ac, i.e.,
δDG(ac) = δBDE(ac), where

δBDE =

(
ϕ̄′δϕ′

a2
+ Vϕδφ

)
/ρ̄BDE (3.73)

Substituting equations (3.41) and (3.57) into this expression we can solve either for
δϕ(ac), δϕ

′(ac) or both of them. We consider three cases:

i) δϕ′(ac) = 0 and δϕ(ac) = −9

2
ΛcδDG(ac) (3.74)
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Figure 3.2: Evolution of dark energy overdensities (solid) and matter (dashed) in
the newtonian gauge for modes entering the horizon before (k = 0.1Mpc−1), at
(k = 0.01Mpc−1) and after (k = 0.001Mpc−1) the matter-radiation epoch aeq (verti-
cal dotted). In order to show the fluctuations below the background ρ̄BDE we plot the
absolute value |δBDE|; in the case of the matter overdensities, |δm| = δm.

ii) δϕ(ac) = 0 and δϕ′(ac) =
3

2
acΛ

2
cδDG(ac) (3.75)

iii)
ϕ̄′δϕ′

a2
= 2Vϕδϕ 6= 0 with δϕ(ac) = −3

2
ΛcδDG(ac) , δϕ′(ac) = acΛ

2
cδDG(ac) (3.76)

We verified that the solutions obtained in each case are the same as expected. Once we
solve for δϕ and get δBDE from equation (3.73) using the background solution, we can
substitute this result into equation (1.61) to convert it to the newtonian gauge. Figure
(3.2) shows the evolution of BDE overdensities for modes entering the horizon before,
at, and after the matter-radiation equality epoch aeq. For the sake of comparison we
also plot the matter overdensities. The modes entering the horizon before aeq are char-
acterised by rapid oscillations whose amplitudes are initially enhanced and subsequently
damped from a ∼ 2 × 10−3 to the present epoch. For these modes the time average is
zero < δBDE >' 0 so at small scales the dark energy is very homogeneous. On the
other hand, for large modes these oscillations are less present and particularly at late
times there is a growth of dark energy structure, but even in those cases the growth is
negligible in comparison with the matter, so at large scales the dark energy is also very
homogeneous.





Chapter 4

Cosmological implications

The distinctive dynamics of the dark energy in the BDE model has effects on the physical
quantities that can be measured through the cosmological probes we review in the
previous chapter. These effects manifest both at the background and perturbation level,
and unlike traditional quintessence models, the influence of the dark energy component
(first as the dark group and then as the scalar field) is present not only at late times,
but also in the early universe. In this chapter we study the cosmological implications of
the BDE model and its main differences with respect to ΛCDM. To that end, we adopt
a fiducial ΛCDM cosmology running with the following set of basic parameters: Ωbh

2 =
0.02252, Ωch

2 = 0.1173, H0 = 67.68 km · s−1Mpc−1, ns = 0.9774, As = 2.367 × 10−9

and optical depth τ = 0.117. We have shown that in the BDE model the present
content of dark energy or H0 can be calculated from ρm0 ∝ Ωmh

2 and Λc. The value
of the condensation scale consistent with these fiducial values of Ωbh

2, Ωch
2 and H0 is

Λc = 44.02eV. Thus, throughout this chapter both the matter and the dark energy
content of the universe at present time and the primordial power spectrum will be the
same in both models, so all the differences arise because of the effect of the dark group
and the scalar field. This allows us to identify where the BDE model deviates from the
ΛCDM scenario the most and it will be a very useful tool to analyse the results when
we fit the data in the next chapter. In section (4.1) we study the differences on the
expansion rate and the cosmological distances probed by SNeIa and BAO information.
We study the impact of the dark group in the production of light nuclei during Big
Bang Nucleosynthesis (BBN) in section (4.2). The perturbation equations (synchronous
gauge) of the BDE model when the dark group and the scalar field is present are shown
in section (4.3). Then we study the evolution of matter perturbations and the imprint
left on the matter power spectrum. Finally in section (4.4) we discuss the effects on the
temperature anisotropy spectrum of the CMB.

67
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4.1 The expansion rate and cosmological distances

The immediate consequence of considering other mechanism than the cosmological con-
stant as the physical origin of the dark energy is the modification of the expansion rate.
We recall that in the BDE and ΛCDM models this quantity is given by:

H2
BDE(a) =


8πG

3
[ρm0a

−3 + ρr0a
−4 + ρDGc(a/ac)

−4] if a < ac

8πG
3

[ρm0a
−3 + ρr0a

−4 + ρBDE] if a > ac

(4.1)

H2
ΛCDM(a) = 8πG

3
[ρm0a

−3 + ρr0a
−4 + ρΛ] (4.2)

As we have shown in the previous chapter, the large value of acΛc/eV (resulting from
the degrees of freedom of the dark group prior the condensation, c.f. eq(3.20)) leads to
a non-negligible contribution of the dark group to the energy content of the universe at
early times. This contribution can be expressed in terms of additional radiation before
the phase transition as stated in equation (3.25). We therefore expect to see major
deviations from the ΛCDM model not only at late times when the dark energy obeys a
quite distinct dynamics, but also when the extra relativistic degrees of freedom due to
the dark group are present.

Figure (4.1) shows the ratio HBDE/HΛCDM as a function of the scale factor. Before
the phase transition the ratio is nearly constant HBDE/HΛCDM ≈

√
1 + ρDGc/ρrc = 1.062

since the matter content is negligible during the radiation epoch a . 3 × 10−4. When
the condensation occurs the BDE scalar field component quickly dilutes because the
equation of state immediately leaps to 1 as shown in figure (3.1c) making the field red-
shift as ρBDE ∝ a−6 in this period. The dilution of the scalar field proceeds so quickly
that long before the matter-radiation equality takes place the expansion rate in both
models are the same. This situation prevails over the matter epoch until the dark energy
becomes relevant at late times. Note that for our specific choice of cosmological param-
eters ρBDE(a0) = ρΛ, so HBDE/HΛCDM = 1 also today. However, since the equation of
state of the scalar field departs from −1 to a larger value at low redshifts (c.f. fig(3.1c)),
ρBDE ∝ a−3(1+wBDE) > ρΛ which implies that HBDE/HΛCDM > 1 leading to the peak
observed in the plot.

We can verify that the peak is due to the difference of the dark energy dynamics
at late times by plotting the ratio for a ΛCDM model with extra relativistic degrees of
freedom Nex = 0.945 over the whole history of the universe. At early times the ratio
is the same as BDE, but now there isn’t a rapid dilution of the scalar field at ac. In-
stead, the total amount of radiation dilutes slowly shifting the equality epoch to a later
time. Once the content of radiation is negligible, HΛCDM(Nex)/HΛCDM ≈ 1, and since
the dynamics of the dark energy is the same in both models the ratio is not modified
at late times when the dark energy drives the expansion, so the peak is absent in this
case. The cosmological implications of the different expansion rate both at early and
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Figure 4.1: Comparison of the expansion rate between the BDE and the ΛCDM models.
The blue curve shows the ratio HBDE/HΛCDM before and after the phase transition as
given by equations (4.1) and (4.2). The vertical dotted line marks the condensation
epoch. The red curve shows the ratio of the expansion rate for a ΛCDM cosmology with
Nex = 0.945 extra relativistic degrees of freedom to standard ΛCDM with only three
massless neutrino species.

late times in the BDE model is reflected in all the observables we discussed in chapter 2.
Let’s first consider distance measurements at low redshifts. If we express the luminosity
distance of equation (2.1) in terms of the redshift we have:

dL(z) = (1 + z)

∫ z

0

1

H(z′)
dz′ (4.3)

This is a general expression also valid for the BDE model. Since HΛCDM < HBDE at
z . 4, the luminosity distance in the BDE model is smaller than in ΛCDM. Now, from
the definition of the distance modulus in equation (2.10), this implies that µBDE <
µΛCDM as shown in figure (4.2a), where we plot the ratio µBDE/µΛCDM in the range of
redshifts accessible by present day SNeIa and BAO measurements. Therefore, for this
combination of parameters light sources appear slightly fainter in a ΛCDM cosmology.
On the other hand, angular diameter distances are smaller in the BDE model as can be
immediately deduced from equation (2.14). We have then (D2

A/H)BDE < (D2
A/H)ΛCDM
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Figure 4.2: Effect of the expansion rate on SNeIa and BAO distance measurements. a,
Comparison of the distance modulus µ for the BDE and ΛCDM models. b, Comparison
of the BAO ratio.

and therefore DV (BDE) < DV (ΛCDM). If we recall that the sound horizon at the drag
epoch depends predominantly on Ωbh

2 and Ωch
2, we get rs(BDE) ≈ rs(ΛCDM) and thus

rBAO(ΛCDM) < rBAO(BDE) as shown in figure (4.2b). We stress that these conclusions
are valid only when both models run with the same parameters. As we will see in section
(5) when fitting to measurements the values of the parameters may change from model
to model and therefore both the amount of deviation and even the relative order of µ
and rBAO won’t be necessarily the same. In any case, note that rBAO is more sensitive
than µ to the underlying cosmology. This is because µ is a logarithmic function of dL
instead of an algebraic one as rBAO, making more difficult to observe deviations in the
SNeIa diagrams.

4.2 Light element abundances

The freeze-out temperature at which neutrinos decouple from the electrons and positrons
before the onset of BBN is given by Tf ' (H/GF )1/5 [87]. Consequently, a higher
expansion rate H leads to a higher temperature Tf . Since the neutron-to-proton ratio
at freeze-out depends on Tf as (n/p)f ' e−(mn−mp)/Tf and the helium-4 abundance
roughly depends on (n/p)BBN —which is slightly smaller than (n/p)f because of the
decays of free neutrons between the freeze-out and the beginning of BBN— as Y BBN

P =
2(n/p)BBN/[1+(n/p)BBN], a larger value of Tf automatically yields an increased fraction
of helium [87]. The same conclusion is also valid for deuterium production. Therefore,
the enhanced expansion rate in the BDE model due to the presence of the massless
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Figure 4.3: Standard BBN predictions for the abundances of primordial helium-4 (top)
and deuterium (bottom) according to the fitting formulae (4.4) and (4.5) provided by
the PArthENoPE code team [26, 86]. The grey band marks the 68% confidence limits
on the physical density of baryons (ωb) found by the Planck collaboration using only
the temperature anisotropy spectrum of the CMB [26].

particles of the dark group before the condensation leads to an increased fraction of
light elements produced during BBN. This is not a unique feature of BDE, but is a
general result of any model introducing extra relativistic degrees of freedom Next in the
early universe. In the standard BBN scenario, the abundances of light nuclei depend
also on the cross sections of the nuclear reactions involved in each case, the neutron
mean lifetime, and the baryon-to-photon ratio η ≡ nb/nγ which is related to the physical
density of baryons ωb ≡ Ωbh

2 up to a negligible correction involving Y BBN
P [87]. Assuming

updated measurements of the nuclear cross sections and a neutron lifetime τn = 880.3±
1.1 s [88], the abundance of helium-4 (Y BBN

P ≡ 4nHe/nb) and deuterium (105D/H ≡
105nD/nH) can be parameterised by Next and ωb according to the following formulae
[26, 86]:

Y BBN
P = 0.2311 + 0.9502ωb − 11.27ω2

b

+Next(0.01356 + 0.008581ωb − 0.1810ω2
b )

+N2
ext(−0.0009795− 0.001370ωb + 0.01746ω2

b ) (4.4)
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105D/H = 18.754− 1534.4ωb + 48656ω2
b − 552670ω3

b

+Next(2.4914− 208.11ωb + 6760.9ω2
b − 78007ω3

b )

+N2
ext(0.012907− 1.3653ωb + 37.388ω2

b − 267.78ω3
b ) (4.5)

Figure (4.3) shows these predicted abundances for the BDE —with Next = 0.945 for
a < ac— and ΛCDM —with Next = 0— models as a function of ωb. Note the mild
dependence of Y BBN

P on ωb in contrast with the high sensitivity of 105D/H on this
parameter. The grey band marks the 1σ bounds on ωb found by the Planck collaboration
using only measurements of the CMB temperature anisotropy spectrum. The extra
amount of early radiation in the BDE model leads to a marked excess of about 4.8%
and 12.7% of helium and deuterium, respectively. Although these numbers are by no
means a small difference, we will see in section (5.4) that the current astrophysical
observations are too sparse to provide uncontroversial evidence of such excess.

4.3 Evolution of matter perturbations

The particular dynamics of the dark energy in the BDE model is interestingly reflected
in the evolution of matter fluctuations since in this case the effects of the new dynamics
manifest simultaneously not only at early and at late times as we may expect from our
previous results, but also when the transition from the dark group to the scalar field
occurs. Just like we did before, we solve the perturbation equations in the synchronous
gauge and convert the solutions to the newtonian gauge to analyse the results. We need
to adapt equations (1.64)-(1.71) to our model, according to whether the dark group
or the BDE scalar field is present. As we mentioned before, prior the phase transition
when we start solving the equations, the dark group particles behave as neutrinos, so the
effective number of relativistic degrees of freedom besides photons is Neff = Nν+Next =
3.991 instead of Neff = 3.046 for three massless neutrino species. The contribution of
the dark group to the total density perturbation −δT 0

0 is ρ̄DGδDG. Taking δDG = δν and
θDG = θν , the modified version of equations (1.64), (1.65), (1.66), (1.68), and (1.70) in
the synchronous gauge before the phase transition takes place is:

k2η′ = 4πGa2
[
ρ̄bθb + 4

3
ρ̄γθγ + 4

3
(ρ̄ν + ρ̄DG)θν

]
(4.6)

δ′c = − a
a′

[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + (ρ̄ν + ρ̄DG)δν) + k2η] (4.7)

δ′b = −θb −
a

a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + (ρ̄ν + ρ̄DG)δν) + k2η] (4.8)

δ′γ = −4

3
θγ −

4a

3a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + (ρ̄ν + ρ̄DG)δν) + k2η] (4.9)

δ′ν = −4

3
θν −

4a

3a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + (ρ̄ν + ρ̄DG)δν) + k2η], (4.10)
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The equations of the velocity divergence (1.67), (1.69), and (1.71) remain unchanged,
since they don’t depend directly on (ρ̄ + P̄ )θ or δT 0

0 . When the condensation occurs,
(ρ̄DG + P̄DG)θDG = 4

3
ρ̄DGθDG is replaced by:

(ρ̄BDE + P̄BDE)θBDE =
k2

a2
ϕ̄′δϕ (4.11)

and ρ̄DGδν by:

ρ̄BDEδBDE =
ϕ̄′δϕ′

a2
+ Vϕδϕ, (4.12)

where we have used equations (3.67) and (3.68).Therefore, the perturbation equations
in this case are:

k2η′ = 4πGa2
[
ρ̄bθb + 4

3
ρ̄γθγ + 4

3
ρ̄νθν + k2

a2
ϕ̄′δϕ

]
(4.13)

δ′c = − a
a′

[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν + ρ̄BDEδBDE) + k2η] (4.14)

δ′b = −θb −
a

a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν + ρ̄BDEδBDE) + k2η] (4.15)

δ′γ = −4

3
θγ −

4a

3a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν + ρ̄BDEδBDE) + k2η] (4.16)

δ′ν = −4

3
θν −

4a

3a′
[4πGa2(ρ̄bδb + ρ̄cδc + ρ̄γδγ + ρ̄νδν + ρ̄BDEδBDE) + k2η], (4.17)

where δϕ is given by the perturbed Klein-Gordon equation (3.72). The influence of
BDE perturbations on the evolution of dark matter overdensities is clearly seen by
substituting equation (1.55) into (1.57):

h′′ +Hh′ = −8πGa2(δT ii − δT 0
0 ) (4.18)

Since δ′c = −h′/2 in the synchronous gauge, we obtain:

δ′′c +Hδ′c = 4πGa2(δT ii − δT 0
0 ), (4.19)

where δT ii − δT 0
0 = 3δP + δρ = δρ(3c2

s + 1) and 4πGa2δρ = 3
2
H2Ωδ. If we consider all

the fluids we arrive at:

δ′′c +Hδ′c −
3

2
H2
∑
i

Ωiδi(3c
2
s,i + 1) = 0, i = b, γ, ν, c,BDE, (4.20)

so dark energy inhomogeneities act as a source term for dark matter perturbations.
Figure (4.4a) shows the resulting matter perturbations δm(BDE) (baryons + CDM)

in the newtonian gauge divided by the corresponding solutions in ΛCDM for modes
entering the horizon before, near, and after ac. Since we will compare these results
with the results we will obtain after fitting the data where h (the adimensional Hubble
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Figure 4.4: (a) Quotient of matter perturbations in the newtonian gauge for the BDE
and ΛCDM models running with the same set of cosmological parameters for k =
10Mpc−1 (yellow), 5Mpc−1 (green), 1Mpc−1 (blue), 0.05Mpc−1 (red), and 0.005Mpc−1

(black). The vertical dotted lines mark the condensation epoch ac and the matter-
radiation equality era aeq, respectively. (b) Close-up of the ratio of matter perturbations
at late times for the modes shown in the left panel.

constant) is different from model to model, we don’t use the h factors to express the
units of the wavenumber and the power spectrum. Initially, when all modes lie outside
the horizon, matter perturbations remain constant as expected, so the ratio is constant
too as shown in the left side of the plot. However, we note a small suppression in BDE
of about the 1.7%. This suppression is an direct consequence of the effect of the extra
relativistic degrees of freedom of the dark group on the gravitational potentials. From
the initial condition (1.85) we get:

Ψ(ΛCDM) =
20C

15 + 4Rν(ΛCDM)
= 1.203C (4.21)

Ψ(BDE) =
20C

15 + 4Rν(BDE)
= 1.184C, (4.22)

where Rν(ΛCDM) = 0.405 and Rν(BDE) = 0.473 according to expressions (1.36) and
(3.22). Since initial δc and δb depend on δγ and δγ depends on Ψ, the ratio of the initial
matter overdensities are:

δm(BDE)

δm(ΛCDM)
=

Ψ(BDE)

Ψ(ΛCDM)
= 0.984, (4.23)
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so δm(BDE) < δm(ΛCDM). We now discuss the evolution of matter perturbations.
Let’s begin with small modes k > kc (yellow and green curves), where kc ≡ acH(ac) =
0.925Mpc−1 is the mode entering the horizon at ac long before the matter-radiation
equality. We have seen that matter perturbations grow as δm ∝ ln a during radiation
domination. However, the horizon crossing time is not the same for both models. Par-
ticularly, these modes enter the horizon earlier in ΛCDM allowing more time the matter
overdensities to grow and therefore suppressing further the ratio δm(BDE)/δm(ΛCDM).
To see this, we take the horizon crossing equation (1.86) for the same mode and solve
for the ratio ahBDE/a

h
ΛCDM of the corresponding scale factors at the entrance:

kBDE = kΛCDM ⇒ ahBDEH(ahBDE) = ahΛCDMH(ahΛCDM) (4.24)

Using equations (4.1) and (4.2) neglecting the matter term and ρΛ in ΛCDM we obtain:

1

ahBDE

√
ρr0 + ρDGca4

c =
1

ahΛCDM

√
ρr0 (4.25)

Therefore:

ahBDE

ahΛCDM

=

√
1 +

ρDGca4
c

ρr0
=

√
1 +

ρDGc

ρrc
= 1.062, (4.26)

so ahBDE > ahΛCDM. We see then, that this extra suppression effect is also due to the
extra relativistic degrees of freedom of the dark group. Once the modes enter the hori-
zon in BDE, the suppression slows eventually halting and then the ratio starts growing.
This is simply because during this epoch δ′m ∝ H and since H(BDE) > H(ΛCDM) the
growth rate of matter fluctuations in BDE is larger. As we have seen, when the phase
transition occurs, all the extra amount of radiation due to the particles of the dark
group turns into the dark meson representing the dark energy whose equation of state
initially leaps to 1 leading to its rapid dilution just after the condensation. The effect
of the condensation and the subsequent rapid dilution of the scalar field on the matter
perturbations is a mode-dependent boosting of the growth rate which considerably en-
hances the ratio δm(BDE)/δm(ΛCDM). Note that the enhancement effect extends up
to the matter equality epoch aeq when the density of the scalar field has decreased to a
negligible fraction of the content of the universe ΩBDE ∼ 4 × 10−6 (c.f. figure (3.1d)).
Then, during the matter domination era the matter overdensities grow at the same rate
in both models as δm ∝ a, so their ratio keeps constant at the value it has when the
rapid dilution ends. Finally, at late times when the dark energy becomes dominant, the
larger amount of dark energy in the BDE model (as shown in the right side of figure
(4.1)) slows the growth rate of the matter overdensities leading to a slight suppression
that can be seen with more detail in figure (4.4b). In this case, the late-time suppression
effect is mode-independent reducing the ratio δm(BDE)/δm(ΛCDM) 1.14% with respect
to the constant value in the matter epoch.

Excepting the early suppression effect due to the difference in the horizon crossing
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Figure 4.5: Matter power spectrum at z = 0 for the BDE (blue) and ΛCDM (red)
models running with the same set of basic parameters. The bottom panel shows the
ratio with respect to ΛCDM.

time given by equation (4.26), the enhancement of matter perturbations due to the rapid
dilution of the scalar field and the suppression effect due to the late-time dynamics of
the dark energy are also present in large modes k < kc (red and black curves) entering
the horizon after ac. However, here the enhancement effect takes place when the modes
still lie outside the horizon, and although it is more prominent than for small modes,
the effect is transient leaving at the end the perturbations with the same amplitude as
ΛCDM, so these curves overlap in the plot. The transient enhancement is also observed
for modes entering the horizon shortly before ac as shown by the blue curve correspond-
ing to k = 1Mpc−1.

The resulting matter power spectrum is shown in figure (4.5). Our model repro-
duces the shape of the curve and the baryonic wiggles as should be. The bottom panel
displays the quotient PBDE/PΛCDM. Since both models run with the same primordial
spectrum (same ns and As), the differences arise only because of the transfer function
(c.f. equations (1.110) and (1.111)). The late suppression effect leaves the BDE spec-
trum below ΛCDM for k < 1.14Mpc−1, while the rapid dilution effect leaves a bump
in the small mode region peaking at k ≈ 4.3Mpc−1. Of course, these modes are in the



4.4. THE CMB POWER SPECTRUM 77

non-linear regime and therefore a non-linear approach needs to be used to study their
evolution. However, it is expected [89] that this peak is not completely washed out
in N-body simulations [90], opening the possibility of finding results where our model
departs significantly from the ΛCDM paradigm.

4.4 The CMB power spectrum

So far we have seen that dark energy affects the CMB temperature anisotropy spectrum
through the position of the acoustic peaks and the ISW effect determined by the expan-
sion rate and the variation of the gravitational potential at late times, respectively. Since
dark energy evolves differently in BDE and ΛCDM, its effect on the expansion rate and
the gravitational potential leads to a change in the position of the peaks and the amount
of power in the low multipole region of the spectrum. Moreover, BDE also affects the
CMB anisotropies by additional contributions from the scalar field inhomogeneities and
the different amount of primordial helium. Figure (4.6) shows the spectrum for both
models. The green curve displays the spectrum for BDE when we turn off the dark
group and the scalar field perturbations, so that we can evaluate solely the effect of the
homogeneous component of the dark energy. For the combination of parameters used in
the plot, the sound horizon at decoupling is practically the same (difference ∼ 0.08%),
so from equation (2.26) the difference in the position of the peaks depends only on the
angular diameter distance as:

∆ln =
nπ

2rs(z∗)
(1 + z∗)[D

BDE
A (z∗)−DΛCDM

A (z∗)] (4.27)

Since H(BDE) > H(ΛCDM) and DA(BDE) < DA(ΛCDM) as we found in section (4.1),
we get ln(BDE) < ln(ΛCDM). This means that the CMB spectrum in ΛCDM is shifted
to the right towards smaller angular scales [72]. The shift is almost not visible in the plot
due to the width of the curves, but it is clearly seen in the oscillations of the residuals
∆DTT

l in the bottom panel. The amplitude of the ISW effect depends on the background
history and the presence of dark energy perturbations [73, 74]. Let’s first consider the
effect of the homogeneous component of BDE. Since we are running the models with the
same content of matter and current expansion rate H0, ρBDE(a) > ρΛ as we previously
found. This implies that the matter-dark energy equality epoch occurs later in BDE, so
the the interval where the gravitational potential varies over the time (Φ′ 6= 0) is shorter
in BDE and the contribution to the ISW integral (c.f. equation (2.22)) is smaller [73],
leading to less power than ΛCDM as shown by the green curve. On the other hand,
it has been found [73, 74] that when we include dark energy perturbations, the ISW
source term Φ′ becomes larger in models where wDE > −1 as a result of matter growth
suppression at late times, leading to an enhancement of the CMB power that overcomes
the effect caused by the background that we have just discussed. This is the case for
the BDE model, where the dark energy equation of state lies above −1 and the matter
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Figure 4.6: CMB temperature anisotropy spectrum for the BDE (blue) and ΛCDM
(red) models. The green curve shows the spectrum for BDE when we turn off the
perturbations of the dark group and the scalar field. We use a logarithmic scale for
multipoles between 2 6 l 6 30 and then a linear scale for higher multipoles (vertical
dashed line). The bottom panel shows the residuals ∆DTT
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l (ΛCDM).

fluctuations grow slowlier than ΛCDM at late times as seen in figures (3.1c) and (4.4b),
respectively. Here we get more power in the low multipole region of the spectrum as
shown by the blue curve in the plot.

Although the extra relativistic degrees of freedom due to the dark group vanish
once the BDE condensation occurs and therefore they don’t exert direct influence on
the physical processes involved in recombination, the enhanced fraction of primordial
helium left by this extra early radiation modifies the damped tail of the CMB spectrum.
The damping factor [36]:

Dγ(k) =

∫ τ0

0

dτ τ ′ope
−τope−[k/kD(τ)]2 (4.28)

depends on the optical depth τop and the damping wavenumber kD which is inversely
proportional to the root square of the number density of free electrons ne, kD ∝ 1/

√
ne

[29]. Since the ionization energy of neutral helium is higher than hydrogen, an enhanced
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amount of primordial helium reduces the number of free electrons left before recombi-
nation starts, so kD(z∗) and e−[k/kD(z∗)]2 get smaller, which leads to a more damped
spectrum [91, 92]. Unlike the ISW effect, the damping of the CMB spectrum occurs at
small angular scales at large multipoles. In figure (4.6) we see that the extra damping of
the spectrum in the BDE model due to the enhanced production of primordial helium
manifests at l & 1000, where BDE lies below ΛCDM.





Chapter 5

Constraints

So far we have studied the dynamics of the dark energy in the BDE model and its
cosmological implications. However, in order to determine under which conditions our
model provides a realistic account of the history of the universe, we need to constrain
its parameters through observational evidence. In this chapter we analyse how BDE fits
the data and how its constraints compare with those of ΛCDM. In general, when we fit
two models to the observations, the resulting constraints on the parameters are different
from model to model and we expect to find some tensions which give us the possibility
to discriminate between them. In section (5.1) we document the modifications to the
codes we used to implement our analysis and we show the constraints that result from
the datasets we considered. The rest of the chapter is aimed to explore the consequences
of such constraints. Note that in this case the BDE and the ΛCDM models run with their
own best fit parameters, so now the discrepancies arise not only because of the different
dynamics of the dark energy, but also because the matter and the dark energy content of
the universe at present time, and the primordial power spectrum in the early universe is
not necessarily the same. In section (5.2) we discuss the implications of the constraints
we found on the background history of the universe, the expansion rate and the fits to
the SNeIa and BAO data. In section (5.3) we revisit the growth of matter perturbations
and study the predictions on the power spectrum and the parameters that characterise
structure formation . We also outline the predictions on the mass function according
to the Press-Schechter theory. Then, in section (5.4) we assess the consistency between
the expected fraction of primordial helium and deuterium with current astrophysical
bounds. Finally, we end our analysis in section (5.5) by discussing the fit of our model
to the CMB temperature anisotropy spectrum measurements.

81
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5.1 Constraints

5.1.1 CAMB

The Code for Anisotropies in the Microwave Background (CAMB) [37] is a program used
for computing the CMB anisotropy and the matter power spectra by solving the per-
turbation equations for each one of the cosmological fluids up to linear order. The code
is based on CMBFAST [93] written by Uros Seljak and Matias Zaldarriaga and it has been
updated almost 60 times since the original release was launched in 1999. The modular
architecture of the program makes easier to adapt the code to the user’s specific needs
since all the modules, subroutines, and functions are distributed in different files with
minimum dependencies. Among the main features of the software we may quote:

• written in fortran 90. The code is available at http://camb.info; The installation
on a linux machine is straightforward.

• all the calculations are performed in the synchronous gauge. The recent versions
incorporate a python wrapper that makes easy the transformation of quantities
into the newtonian gauge.

• support for scalar, vector, and tensor perturbations.

• support for flat and curved geometries.

• inclusion of different types of initial conditions.

• implementation of special modules for non-standard cosmologies, such as time-
varying dark energy equation of state, massive neutrinos, and quintessence.

In this work we use the November 2016 release and the base code equations quint.f90

for standard quintessence. The main modifications we made to the code are:

• Background equations. The Klein-Gordon (3.39) and the Friedmann (3.40) equa-
tions are implemented as the system of equations (3.54)-(3.56) with initial condi-
tions (3.59)-(3.61). However, the numerical integrator routine dverk available in
CAMB probes to be useless because of the initial drop of y depicted in figure (3.1a).
We solve this difficulty by implementing the equations in a python script where
we use the odeint solver of the scipy library. The solutions thus obtained are in
agreement with other powerful integrators such as those available in Mathematica.

• H0 and the dark energy EOS. Since in the BDE model H0 is not a free parameter
but a derived quantity, we implement the proper code to compute it. In terms of

http://camb.info
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the BDE density parameter and the physical densities of matter and radiation, H0

is given from equation (3.40) by:

H0 = 102

√
Ωrh2 + Ωmh2

1− ΩBDE0

km s−1Mpc−1, (5.1)

where ΩBDE0 is determined by the solution for x and y at z = 0 as stated in
equation (3.46):

ΩBDE0 = x2
0 + y2

0 (5.2)

Analogously, from equation (3.47) the BDE equation of state at z = 0 is simply:

wBDE0 =
x2

0 − y2
0

x2
0 + y2

0

(5.3)

• Perturbation equations. We implement the perturbation equations before and af-
ter the phase transition (4.6)-(4.10) and (4.13)-(4.17) within the subroutine derivs
in equations.f90. The initial conditions of the scalar field inhomogeneities are
set according to equations (3.74). In the code, we match δDG with δBDE at ac in
the subroutine CalcScalarSources in cmbmain.f90.

• Additional outputs. Besides the usual outputs of the program, to wit, the CMB
and the matter power spectra and the transfer functions, we implement additional
code to retrieve useful information such as the luminosity and the angular diam-
eter distances (eqs (2.1) and (2.14)), the distance modulus (eq.(2.10)), the BAO
ratio (eq.(2.15)), and the root mean square of matter fluctuations in linear theory
(eq.(5.8)).

5.1.2 CosmoMC

The Cosmological Monte-Carlo (CosmoMC) code [94] is a Markov-Chain Monte-Carlo
engine used to explore and constrain the parameter space of a cosmological model using
observational data. Like CAMB, CosmoMC is built on a modular architecture scheme
reducing the number of dependencies across the code and thus helping to adapt the
program to the user’s needs. The code has been developed in close connection with
CAMB and the dataset releases from different experiments and has been updated 47
times since its first version launched in November 2002. Among the main features of
the software we may quote:

• written in fortran 90. The code is available at http://cosmologist.info/cosmomc;
a very useful installation guide is found in [95].

http://cosmologist.info/cosmomc
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• optimized to run in parallel with OpenMP. This allows to explore efficiently the
parameter space within acceptable computational times by exploiting the facilities
of multiprocessor machines and clusters.

• implementation of two sampling methods: a vanilla Metropolis algorithm and a
fast-slow dragging algorithm specially efficient for Planck runs [96]. Other sam-
pling methods such as slice sampling and directional gridding that were available
in previous versions have not been updated in the last actualizations.

• support for different tasks (actions): sampling of the parameter space via Monte-
Carlo Markov chains, best fit point determination, importance sampling, and fast
calculation of the likelihood for a specific combination of parameters.

• support for different cosmological probes: SNeIa, BAO, CMB temperature, po-
larization and lensing spectra, local H0, weak lensing, large scale distribution of
large red galaxies, and primordial helium and deuterium abundances. For most of
these probes there are multiple datasets provided by different collaborations (e.g.,
Union, SNLS and JLA for SNeIa; WMAP and Planck for CMB and so on)

In our analysis we use the November 2016 version. The main modifications we made to
the code are:

• The cosmological model. We replace the CosmoMC default distribution of CAMB

with our implementation of the BDE model described above.

• Basic and derived parameters. We recall that the number of basic parameters
of the ΛCDM model are six. These can be chosen as: the present physical den-
sities of baryons and cold dark matter Ωbh

2 and Ωch
2, respectively, the present

expansion rate H0 (or 100θMC according to the Planck collaboration, see below),
the amplitude of the primordial curvature perturbations As, the spectral scalar
index ns, and the reionization optical depth τ . However, in our BDE model H0 is
not a free parameter but a derived since it is determined by the present day dark
energy density which in turn depends on the condensation scale Λc through the
initial conditions (3.59)-(3.61) as shown in equation (5.1). Therefore, we don’t use
H0 to sample the parameter space thus reducing in principle the number of basic
parameters to five. Nevertheless, we remark that although Λc is a quantity whose
value is given by the colours Nc and the massless fields Nf of our dark group, the
unification scale Λgut, and the unified coupling strength ggut, a precise value of
Λc is still unknown because of the uncertainties of the latter two [84, 97]. Conse-
quently, in spite of not being a free parameter of the model, we allow Λc to vary
freely from 10−3 to 103 eV much wider than the theoretical estimations of equation
(3.29). Hence, the set of basic parameters we use in CosmoMC for our BDE model
are: Ωbh

2, Ωch
2, Λc, As (more precisely, log(1010As)), ns, and τ . For all them we
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assume wide flat priors to assert a complete exploration of the tails of the posterior
distributions, the convergence of the chains and the location of the best fit point
[98]. The epoch of the phase transition (ac) and the energy density of the BDE
field at that time are obtained from equations (3.20) and (3.58), respectively; once
we solve for the dynamical variables x, y, and λ (c.f. equations (3.44) and (3.45))
we get the present value of the equation of state wBDE0, the density parameter
ΩBDE0, and H0 according to equations (5.1)-(5.3). On the other hand, we use the
CosmoMC interpolation tables prepared with the PArthENoPE code [86] to get the
abundances of primordial helium (Y P

BBN) and deuterium (105D/H) formed during
Big Bang Nucleosynthesis from Ωbh

2 and the number of extra relativistic degrees
of freedom (Next) given by (3.24).

• Relation between H0 and θMC. The angular size of the sound horizon at recombi-
nation (θ∗) is well approximated by:

θMC =

(∫ as

10−8

da/[ȧ
√

3(1 +R)]

)
/

(∫ 1

as

da/ȧ

)
; R =

3

4
· ρb(a)

ργ(a)
(5.4)

where as = 1/(1 + zs) [99]:

zs = 1048 ∗
(
1 + 0.00124(Ωbh

2)−0.738
)
∗ (1 + g1(Ωmh

2)g2), (5.5)

g1 =
0.0783(Ωbh

2)−0.238

1 + 39.5(Ωbh2)0.763
,

g2 = 0.560/[1 + 21.1(Ωbh
2)1.81]

In the CosmoMC default implementation of the ΛCDM model, θMC (more precisely,
100θMC) is used as a basic parameter instead of H0 to sample the parameter space,
since θ∗ is better constrained [25, 26]. H0 is thus determined through its implicit
relation with θMC in equation (5.4) by a binary search which finds the value of
h consistent with the proposal of 100θMC made by the sampling algorithm. In
the BDE model there is no need of such procedure because as we have seen the
initial conditions (3.59)-(3.61) determine the expansion rate at all times and so
both H0 and θMC are directly obtained from the background solution through
equations (5.1) and (5.4). In the code, these changes are implemented in the
TP ParamToTheoryParams subroutine in CosmologyParameterizations.f90.

5.1.3 Datasets

Our analysis includes measurements of the CMB temperature anisotropy spectrum, the
BAO signal, and the luminosity distance of well-identified type Ia supernovae. At present
time, these data provide the most robust constraints since they are less affected by
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experimental systematics and theoretical assumptions in comparison with other probes.
For example, local H0 measurements are sensitive to calibration systematics leading to
discrepant results with respect to the CMB [63]; the estimations on primordial light
element abundances rely strongly on nuclear cross sections and the neutron mean life,
which is still unknown with enough accuracy [87]; weak lensing calculations are affected
by non-linear dynamics [100], and the constraints from LSS galaxy surveys depend on
the bias between the visible and dark matter [101]. Therefore, the results we report in
this work are only based on recent, uncontroversial and accurate observations available
at present. The datasets we considered were:

• The Planck 2015 CMB temperature spectrum (Planck TT). These are the mea-
surements of the temperature anisotropy power spectrum DTT

l ≡ l(l + 1)CTT
l /2π

released by the Planck collaboration in 2015 [102]. The baseline dataset covers
the multipole region l = 2 − 2508 divided into a low and a high-l subsamples
ranging from l = 2 − 29 and l = 30 − 2508, respectively. The release includes
a supplementary code for computing the likelihood using a different algorithm in
each subsample1.

• The Joint Light-curve Analysis sample (JLA). This catalog contains the mea-
surements of the luminosity distance of 740 confirmed type Ia supernovae in the
redshift range 0.01 . z . 1.3 compiled mainly from the SDSS-II survey, the
first three seasons of the SNLS project, and the Harvard Smithsonian Center for
Astrophysics (CfA) [41].

• The BOSS Data Release 12 (DR12) measurement of the BAO scale extracted from
two samples called LOWZ and CMASS which contain 361 762 galaxies mapped
in the range 0.15 6 z 6 0.43 with an effective redshift of zLOWZ = 0.32 and 777
202 galaxies between 0.43 6 z 6 0.70 with an effective redshift of zCMASS = 0.57,
respectively [50].

• The Main Galaxy Sample (MGS) measurement of the BAO scale taken from the
SDSS Data Release 7 with selected galaxies at a lower redshift than BOSS z < 0.2
with an effective redshift of zMGS = 0.15 [52].

• The 6dF Galaxy Survey (6dF) measurement of the BAO scale taken from a sample
of 75 117 galaxies at an effective redshift of z6dF = 0.106 [51].

5.1.4 Results

Table (5.1) lists the mean with the 68% confidence limits (CL), the best fit values of
selected parameters and the goodness of fit (χ2) for each model.

1For more details, see the Planck 2015 Release Explanatory Supplement available at
https://pla.esac.esa.int/pla/#home

https://pla.esac.esa.int/pla/#home
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Table 5.1: Best fit, mean and 68% confidence limits for the BDE and ΛCDM models from

the Planck 2015 temperature spectrum [26] in combination with the JLA type Ia supernovae

catalog and the measurements of the BAO scale from the DR12-LOWZ, DR12-CMASS [50],

MGS [52] and 6dF [51] samples.

Parameter

BDE ΛCDM

Best fit 68% limits Best fit 68% limits

Λc [eV] 44.02 44.09 ± 0.28 — —

106ac 2.48 2.48 ± 0.02 — —

ΩBDEc 0.1117 0.11174 ± 0.00001 — —

Ωbh
2 0.02252 0.02257 ± 0.00021 0.02243 0.02238 ± 0.00021

Ωch
2 0.1173 0.1171 ± 0.0013 0.1181 0.1182 ± 0.0012

100θMC 1.04106 1.04112± 0.00043 1.04113 1.04112 ± 0.00042

ln(1010As) 3.164 3.179+0.055
−0.048 3.165 3.150 ± 0.052

ns 0.9774 0.9780 ± 0.0050 0.9710 0.9701 ± 0.0049

τ 0.117 0.124+0.028
−0.025 0.118 0.110 ± 0.027

H0 [km s−1Mpc−1] 67.68 67.82 ± 0.55 68.64 68.57 ± 0.58

ΩDE0 0.695 0.696 ± 0.007 0.702 0.701 ± 0.007

Ωm 0.305 0.304 ± 0.007 0.298 0.299 ± 0.007

wDE0 -0.9296 -0.9294 ± 0.0007 −1 −1

σ8(z = 0) 0.8551 0.861 ± 0.022 0.8707 0.864 ± 0.022

Age [Gyr] 13.74 13.74 ± 0.03 13.75 13.75 ± 0.03

H(0.57) [km s−1Mpc−1] 94.04 94.12 ± 0.31 93.53 93.49 ± 0.29

rdrag/DV (0.57) 0.07238 0.07248 ± 0.00044 0.07230 0.07228 ± 0.00043

fσ8(0.57) 0.4883 0.491 ± 0.012 0.5013 0.498 ± 0.012

σ8(0.57) 0.6396 0.644 ± 0.017 0.6507 0.646 ± 0.017

zrei 13.2 13.7 +2.3
−1.7 13.2 12.5+2.4

−1.8

zdrag 1060.51 1060.58 ± 0.47 1059.93 1059.82 ± 0.47

rdrag [Mpc] 147.52 147.54 ± 0.34 147.53 147.56 ± 0.34

z∗ 1089.98 1089.90 ± 0.32 1089.68 1089.75 ± 0.32

rs(z∗) [Mpc] 144.89 144.91 ± 0.32 144.88 144.89 ± 0.31

DA(z∗) [Gpc] 13.92 13.92 ± 0.03 13.91 13.92 ± 0.03

zeq 3342 3338 ± 29 3359 3360 ± 29

keq [Mpc−1] 0.0102 0.01019 ± 0.00009 0.0103 0.01025 ± 0.00009

kD [Mpc−1] 0.1400 0.13998 ± 0.00045 0.1404 0.14037 ± 0.00045

Y BBN
P 0.2588 0.2588 ± 0.0001 0.2467 0.2467 ± 0.0001

105D/H 2.89 2.88 ± 0.04 2.58 2.59 ± 0.04

χ2(BDE) = 5.609 (BAO) + 776.510 (CMB) + 695.668 (SNeIa) + 1.833 (prior) = 1479.621

χ2(ΛCDM) = 7.115 (BAO) + 776.884 (CMB) + 695.075 (SNeIa) + 1.681 (prior) = 1480.754
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Figure 5.1: Samples in the Ωm − H0 (a) and wBDE0 − H0 (b) planes coloured by the
condensation scale Λc. The stars mark the location of the best fit point.

The first three parameters are the characteristic quantities of our BDE model. Then we
have the six ΛCDM base parameters; the next six describe the present state of the uni-
verse followed by the constraints on late-time quantities (z = 0.57) that can be inferred
from LSS, BAO, and SNeIa observations. Then we proceed to earlier times, namely, the
reionization epoch (zrei), the baryon drag, recombination, the matter-radiation equality
and finally we end up with the theoretical estimations on the abundances of primordial
helium and deuterium formed during BBN. For the sake of comparison we include the
constraints on the ΛCDM model using the same datasets. In each case, we performed
the parameter space exploration with eight Markov chains long enough to satisfy the
Gelman-Rubin convergence diagnostics R− 1 < 0.01, leaving about 136K samples after
a burn-in period of 30% [98]. We also ran two more realisations leading to the same
results. When fitting to the data, we performed several runs starting from different
initial positions in the parameter space ensuring the stability of the best fit point [98].

The constraints on Λc lie within the theoretical estimations (3.29). From the best
fit values we see that the phase transition takes place well within the radiation era
nearly 5 e−folds before the matter-radiation equality, when the temperature of photons
is Tγ(ac) = 2.7255K/ac = 94.7eV and the density of radiation and matter is Ωrc = 0.881
and Ωmc = 0.007, respectively. Figure (5.1) shows the effect of Λc on the current ex-
pansion rate, the matter content, and the equation of state. We see that larger values
of Λc lead to larger H0 and wBDE0 and smaller Ωm, the former two being tightly con-
strained. Note that the results for H0 are still in tension with recent local measurements
such as H0 = 73.24± 1.74 km · s−1Mpc−1 [63] reinforcing the suggestion that the origin
of this discrepancy may be not in the cosmological model but in the datasets themselves.
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Figure 5.2: Effect of the polarization measurements of the CMB on the parameter
constraints for the BDE model. The solid lines are the marginal distributions from the
combination Planck TT + JLA + BAO datasets listed in section (5.1.3); the dashed
lines are obtained by replacing Planck TT with polarization data lowP + TT, TE, EE
[102]. LowP measurements include the cross-spectra TT, TE, EE, TB, EB, and BB in
the range l = 2− 29, while TT, TE, and EE data cover the range l = 30− 1996.

We can assess the robustness of our constraints by including additional datasets or by
testing specific features of the model. In the former case, figure (5.2) shows the marginal
distributions of the parameters of BDE as well as H0, ΩBDE0, and wBDE0 when we include
measurements of the CMB polarization in the range l = 2−1996 [102]. The condensation
scale Λc is slightly smaller and consequently the phase transition occurs later according
to equation (3.20). However, the marginal limits of these and the other parameters still
agree at the 1σ level. On the other hand, we test our constraint of equation (3.20) by
allowing ac and Λc to vary freely and independently. In this case, we find for the best fit
Λc = 44.06eV and ac = 2.48 × 10−6, which lead to acΛc/eV = 1.0916 × 10−4 deviating
from (3.20) only by 0.2%.

Except for the abundances of helium and deuterium, the marginal limits for BDE
and ΛCDM agree at the 1σ level. However, we can see that the BDE model fits better
the data since χ2(BDE) < χ2(ΛCDM) and the number of basic parameters varied in
CosmoMC are the same. In this regard, we recall that a direct comparison between the
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Table 5.2: Goodness of fit of the BDE and ΛCDM models for the datasets analysed in
this work.

Dataset χ2(BDE) χ2(ΛCDM)

Planck TT low-l 14.462 15.822

Planck TT high-l 762.049 761.062

JLA 695.668 695.075

DR12-LOWZ 0.411 0.508

DR12-CMASS 3.520 4.389

MGS 1.677 2.194

6dF 0.002 0.025

goodness of fit of two models does not necessarily tell if a model is more appealing than
the other: a model A with more basic parameters than a model B leads in general to
χ2(A) < χ2(B), but the reduction of χ2 is obtained at the expense of the simplicity of the
underlying theory [103]. In order to make a fair comparison it is important to compute
the reduced χ2 or consider some information criteria which penalize the introduction
of additional parameters [103]. In our case, since the number of varied parameters of
BDE is the same than ΛCDM, we are not introducing any extra free parameters and so a
direct comparison of χ2 may serve to evaluate the performance of our model. Table (5.2)
shows the details of the fits. We see that the performance for the CMB and SNeIa data
are very similar, but there are significant reductions in χ2 for the BAO measurements
ranging from 19% for LOWZ and CMASS to 92% for 6dF. Clearly, the BAO information
favours a dynamical dark energy model.

Figure (5.3) shows the joint constraints on the six base ΛCDM parameters coloured
by the condensation scale. We see that most of the samples lie within the 2σ contours
(in red) of ΛCDM. However, the samples with large Λc (from orange to red points)
fall outside the contours, the effect markedly observed when the physical density of
cold dark matter Ωch

2 is involved. Although the constraints on these parameters agree
within the 1σ level it is interesting to consider the combinations with other parameters
such as H0 and Ωm as shown in figure (5.4). The contours for Ωbh

2 and As still agree
within the 1σ level; we observe slight tensions with ns, and there are tensions at more
than 2σ level with Ωch

2 and the BAO ratio at z = 0.57, where our model fits better the
data than ΛCDM. These tensions are not observed in all dynamical dark energy models.
Figure (5.5) shows the results for a dark energy model with a CPL equation of state
w(a) = w0 + wa(1 − a) [104, 105] where the contours are wide enough to embrace the
ΛCDM constraints. Undoubtedly, it will be interesting to monitor the results of future
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Figure 5.3: Joint constraints on the six base ΛCDM parameters coloured by the con-
densation scale Λc. The red lines mark the 68% and 95% confidence contours for the
ΛCDM model.

galaxy surveys such as DESI to see if the tension between ΛCDM and BDE remains
and if BDE still fits better the data not only at a single redshift. If so, this would be a
suggestive evidence for a time-varying equation of state.
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planes from the datasets considered in this work for a CPL model (grey) and ΛCDM
(red).

5.2 Background evolution and cosmological distances

The preceding analysis set the limits on the parameter space where the BDE and ΛCDM
models are consistent with the datasets we are considering. In the following sections
we use these constraints to track the cosmological evolution in each model, looking



5.2. BACKGROUND EVOLUTION AND COSMOLOGICAL DISTANCES 93

to identify the departures from the ΛCDM scenario where future observations might
provide evidence in favour of some model. Note that unlike the previous chapter, we
now run the models with their specific fitting values so besides the inherent differences
due to the dynamics, there is now an additional effect due to the difference in the
parameter values with which the models run.

Figure (5.6a) shows the evolution of the BDE equation of state for the best fit point.
As we have already mentioned, before the phase transition the dark group evolves as
radiation so wBDE(a < ac) = 1/3. When the condensation occurs, the equation of state
leaps to 1 and lies at this value up to a time shortly after the decoupling epoch a∗.
Then it drops to −1 behaving as a cosmological constant for most of the cosmic time
and finally it starts growing in the recent past to reach wBDE0 = −0.93 at present.
Figure (5.6b) displays the late-time behaviour of the equation of state. The grey band
marks the 95% C.L. obtained with the Markov chains. From the thickness of the band
and the distribution of the samples in the wBDE0 − H0 plane of figure (5.1b), we see
that the equation of state in BDE is tightly constrained, so we can draw accurate
conclusions from the best fit alone. The bounds we obtain are wBDE 6 −0.99,−0.95
for 102 > z > 1.8, 3.5, respectively and wBDE(zDE) = −0.949 in the matter-dark energy
equality epoch zDE = 0.339. This happens shortly after zeff = 0.650 where the equation
of state reaches the mid point between −1 and its current value:

wBDE(zeff ) =
−1 + wBDE0

2
= −0.965 (5.6)

with a rate of change of dw
dz

(zeff ) = −1.26. The effect on the evolution of the dark energy
density is shown in figure (5.6c) where we also display the matter, radiation and the
dark energy density as a cosmological constant for the best fit. Since the particles of the
dark group redshift as a−4 and they amount to an important fraction of the energy con-
tent of the early universe varying from 30% at the unification scale (c.f. equation (3.5))
to 11% after the neutrino decoupling (c.f. equation (3.18)), their energy density evolves
closely to the standard radiation as depicted in the plot. Then, the BDE component
quickly dilutes as a result of the equation of state wBDE = 1 just after the phase tran-
sition as we previously discussed in section (3.3). The rapid dilution of the scalar field
proceeds until the equation of state drops to −1 some time after recombination. The
dark energy density reaches a minimum value and then keeps at this value mimicking
the evolution of a cosmological constant. However, since the matter and radiation are
diluting, the density parameter ΩBDE grows monotonically as shown in figure (3.1d), but
even so during this period the dark energy is still subdominant. Finally, the late-time
growth of the equation of state produces a slight further dilution of the dark energy
density as can be seen in figure (5.6d), where the crossing with the matter density at
zDE = 0.339 marks the beginning of the dark energy dominance epoch. We obtain the
bounds ΩBDE 6 1%, 0.1% for z > 5.3, 12.7, respectively. It is hardly to overemphasize
the conceptual differences and the observational consequences that this scenario implies
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Figure 5.6: (a) Evolution of the equation of state for the best fit BDE model. The
vertical dotted lines mark the condensation epoch (ac), the matter-radiation equality
(aeq), recombination (a∗) and the matter-dark energy equality era (aDE). (b) Close-up
of the BDE equation of state at late times. The narrow grey band marks the 95% C.L.
obtained from the Markov chains. (c) Evolution of the energy density of matter (dash-
dotted black), standard radiation (dotted orange), dark energy as BDE (solid blue) and
dark energy as a cosmological constant (dashed red). (d) Close-up of the energy density
of matter and dark energy at late times.

with respect to the ΛCDM paradigm. Both figure (1.1) and the dashed red line of figure
(5.6c) clearly expose the fine-tuning and the coincidence problems present in ΛCDM.
Moreover, the slight dilution of ρBDE at late times leads to a universe with less dark en-
ergy content today ρDE0 ∝ ΩDE0h

2 than ΛCDM of about 3.7% as may be deduced from
the results of table (5.1). On the contrary, the matter content ρm0 ∝ Ωmh

2 at present
is almost the same in both models with a tiny excess of 0.5% in ΛCDM. Consequently,
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models. The grey band marks the 95% C.L. for the BDE model obtained from the
Markov chains. The bottom panel shows the fractional difference with respect to ΛCDM.

the current expansion rate is slower in BDE by 1.39% as seen in figure (5.7). However,
ρBDE grows faster than ρΛ as we go to the past because of the slight dilution of BDE
due to the late-time departure of the equation of state from −1. ρBDE becomes larger
than ρΛ at z & 0.25 (c.f. figure (5.6d)) leading to a higher expansion rate between
0.25 . z . 2.4 with a maximum deviation from ΛCDM of 0.6% around z ≈ 0.7. For
higher redshifts in the matter domination era the difference in the dark energy content
becomes irrelevant and it is the tiny difference of 0.5% in ρm0 what makes the expansion
rate slower in BDE once again. Note the difference with respect to the case where both
models have the same content of matter and dark energy today and therefore have the
same expansion rate at present as shown in figure (4.1). In that case ρBDE(a) > ρΛ(a)
for all a, which yields HBDE(a) > HΛCDM(a) leading to a smaller angular diameter dis-
tance DA(z) = (1 + z)−1

∫ z
0
dz′/H(z′) for BDE. However, when fitting to the data, the

CMB information constrains very well the angular size of the sound horizon at recom-
bination θ∗ = r∗/DA(z∗) and since r∗ and z∗ are practically the same in both models,
then DA(z∗) must agree too as can be seen in the best fit, mean and marginal limits
in table (5.1) and the marginal distribution of θMC in figure (5.3). This automatically
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Figure 5.8: (a) BDE and ΛCDM fits to the modulus distance measurements of the
JLA type Ia supernovae compilation. The lower panel shows the absolute residual
µ−µ(ΛCDM). (b) Fits to the BAO ratio measurements of the four datasets considered
in our analysis. The lower panel shows the absolute residual rBAO − rBAO(ΛCDM).

excludes the scenario where HBDE(a) > HΛCDM(a) or HBDE(a) < HΛCDM(a) for all a,
enforcing HBDE(a) < HΛCDM(a) in a late-time period preceded by an earlier epoch where
HBDE(a) > HΛCDM(a) (as shown in figure (5.7)) to make the angular diameter distance
to the last scattering surface to be the same.

As we previously discussed, the size and the evolution of the expansion rate affect
the cosmological distances probed by SNeIa and BAO observations. Figures (5.8a) and
(5.8b) show the best fit to the distance modulus (binned in z) and BAO measurements
of the datasets we consider. Since HBDE < HΛCDM for z . 0.25, dL(BDE) > dL(ΛCDM)
and therefore µ(BDE) > µ(ΛCDM) in this range, which means that light sources would
appear fainter in a ΛCDM cosmology in the very low-z region. Nevertheless, the dif-
ference in µ is less than 0.15% which still lies beyond the accuracy of the data. On
the other hand, as we move to higher redshifts where HΛCDM > HBDE the integral
dL ∝

∫ z
0
dz′/H(z′) over the whole range of z is the same compensating the initial dif-

ference and leading to µ(BDE) ≈ µ(ΛCDM) as shown in the plot. In the same way,
DV ∝ (D2

A/H)1/3 ∼ 1/H for z � 1, leading to DV (ΛCDM) < DV (BDE) and since rdrag

is practically the same (c.f. table (5.1)), we have rBAO(BDE) < rBAO(ΛCDM) as can be
seen. However, the difference in the BAO ratio is larger (up to 0.4%) because rBAO is
an algebraic function of the distance, unlike µ where the dependence is logarithmic.
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Figure 5.9: (a) Quotient of matter perturbations in the newtonian gauge for the best
fit BDE and ΛCDM models for k = 10Mpc−1 (yellow), 5Mpc−1 (green), 1Mpc−1 (blue),
0.05Mpc−1 (red), and 0.005Mpc−1 (black). The vertical dotted lines mark the conden-
sation epoch ac and the matter-radiation equality era aeq, respectively. (b) Close-up of
the ratio of matter perturbations at late times for the modes shown in the left panel.

5.3 Matter perturbations

5.3.1 The matter power spectrum

Figures (5.9a) and (5.9b) show the ratio δm(BDE)/δm(ΛCDM) of matter perturbations
(baryons + cold dark matter) in the newtonian gauge for the best fit models. For the
sake of comparison, we plot the same modes as in figures (4.4a) and (4.4b), where both
models run with the same set of parameters. Comparing with those results, we first
note that when the modes are outside the horizon, the initial suppression in BDE due
to the extra relativistic degrees of freedom of the dark group is not the same for all
the modes, which is a direct consequence of the different initial amplitude given by ns
and As in equation (1.113). The effects of the further suppression due to the difference
in the horizon crossing time, the enhancement of matter perturbations because of the
rapid dilution of the scalar field after ac, and the late-time suppression due to the BDE
dark energy dynamics are still present, but some differences arise between ac and aeq.
When fitting to the data, the enhancement between ac and aeq is more prominent for
small modes k > kc = 0.925Mpc−1 (yellow, green and blue curves) crossing the horizon
before ac, while in this period there is no noticeable difference for modes entering the
horizon near ac (red curve) and the enhancement is less prominent for large modes
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(black curve). However, before reaching the full dominance of matter around a ∼ 10−3

(where matter perturbations scale as δm ∝ a in both models leading to a constant ratio
δm(BDE)/δm(ΛCDM)) there is a slight suppression affecting all the modes that already
entered the horizon. The late-time suppression effect is also less prominent and now
the ratio δm(BDE)/δm(ΛCDM) drops only 0.62% with respect to the constant value
during matter domination. Figure (5.10) shows the resulting power spectra for the
best fit. Since the models now run with different parameters, the final shape of the
quotient PBDE/PΛCDM shown in the bottom panel is a combination of the present value
of T 2

m(BDE)/T 2
m(ΛCDM) determined by the growth of matter perturbations, and the

ratio Ps(BDE)/Ps(ΛCDM) of the primordial spectra determined by the difference in ns
and As:

PBDE

PΛCDM

=
Ps(BDE)

Ps(ΛCDM)
· T 2

m(BDE)

T 2
m(ΛCDM)

, (5.7)

...... """,,''', .. 
-: ~ ....... " --_ ...... 



5.3. MATTER PERTURBATIONS 99

where we have used equations (1.110) and (1.111). We can see where is dominant each
term. At large scales k . 5 × 10−3Mpc−1 the difference between BDE and ΛCDM are
due to the distinct primordial spectrum, while the the matter transfer function is nearly
the same. On the other hand, the differences at small scales k & 6× 10−2Mpc−1 comes
mostly from the matter growth. Once again, the peak at k ≈ 4.3Mpc−1 lies in the
non-linear regime so it will be interesting to see how much of this signature remains
when the complex non-linear effects are take into account [90].

5.3.2 Parameters

Let’s now see the imprints of this dynamics on the parameters that characterise structure
formation. Figure (5.11) shows the root mean square matter fluctuations in a sphere of
radius R = 8h−1 Mpc. This parameter is defined for a general radius R as:

σ2
R(z) ≡ 〈δ2

R(x̄, z)〉 =
1

V

∫
d3x δ2

R(x̄, z), (5.8)

where the brackets denote the average over all space (with volume V ) and δR is the
matter density contrast convolved with a window function WR(x̄− x̄′) given by:

δR(x̄, z) ≡
∫
d3x′ δm(x̄, z)WR(x̄− x̄′) (5.9)

We can express σ2
R in terms of the matter power spectrum P (k) using the definition

of the correlation function ξ(r) and the relation between ξ(r) and P (k) as stated in
equations (1.115) and (1.114):

σ2
R(z) =

1

V

∫
d3xd3y′d3y′′ δm(x̄− ȳ′, z)δm(x̄− ȳ′′, z)WR(ȳ′)WR(ȳ′′)

=

∫
d3y′d3y′′ ξ(ȳ′ − ȳ′′, z)WR(ȳ′)WR(ȳ′′)

=
1

(2π)3

∫
d3kd3y′d3y′′ P (k, z)eik̄·(ȳ

′−ȳ′′)WR(ȳ′)WR(ȳ′′)

=
1

(2π)3

∫
d3k P (k, z)

∫
d3y′ WR(ȳ′)eik̄·ȳ

′
∫

d3y′′WR(ȳ′′)e−ik̄·ȳ
′′

(5.10)

Since WR is real, WR(ȳ) = W ∗
R(ȳ) so:

σ2
R(z) =

1

(2π)3

∫
d3k P (k, z)|WR(k̄)|2 =

1

2π2

∫ ∞
0

dlnk k3P (k, z)|WR(k̄)|2 (5.11)

Normally one considers2 the top-hat spherical window function defined as:

WR(x̄− x̄′) =

{
1 if |x̄− x̄′| 6 R
0 if |x̄− x̄′| > R,

(5.12)

2This is the case in CAMB.
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Figure 5.11: Evolution of the root mean square of matter fluctuations at late times in
a sphere of radius R = 8h−1 Mpc for the best fit BDE (blue) and ΛCDM (red) models.
The grey band marks the 95% C.L. for the BDE model obtained from the Markov chains.
The bottom panel shows the relative difference with respect to ΛCDM.

whose Fourier transform is simply given by:

WR(k̄) =
3

(Rk)3
[sin(Rk)−Rk cos(Rk)], (5.13)

where k = |k̄|. Although the constraints on σ8 for BDE and ΛCDM are consistent within
the 95% C.L. as shown in the grey band in the plot, we see that for the best fit models
σ8(BDE) < σ8(ΛCDM), where the relative difference slightly varies from 1.8% at z = 0
to 1.4% at z = 1.5. At first sight this result seems to contradict what we found in figure
(5.10) where the matter power spectrum of BDE at z = 0 is significantly enhanced
for k & 0.7 Mpc−1. However, the dominant contribution to the integral in equation
(5.11) comes from the modes in the range 10−3 Mpc−1 6 k 6 10−1 Mpc−1; for smaller
modes k3P (k) is suppressed by the cubic power of k, while for larger modes k3P (k) is
suppressed by the window function (5.13). In figure (5.10) PBDE(k) < PΛCDM(k) and
|WR(k̄)|2 ' const in this range, which implies that σ8(BDE) < σ8(ΛCDM). However,
the difference still lies below the precision limits of the measurements: σ8 = 0.83 ± 0.1
[106], σ8 = 0.91+0.22

−018 [107], σ8 = 0.81± 0.26 [108].
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Figure 5.12: (a) Evolution of the growth function at late times for the best fit BDE
(blue) and ΛCDM (red) models. The bottom panel shows the relative difference with
respect to ΛCDM. (b) Predictions on fσ8 for the best fit BDE (blue) and ΛCDM (red)
models. We append the observational points measured by the 6dFG survey [109], SDSS-
MGS [110] and SDSS-LRG [111], BOSS-LOWZ and BOSS-CMASS [112], WIGGLEZ
[113], and the VIPERS survey [114]. The empty markers correspond to measurements
where the Alcock-Paczynski effect was neglected. The grey band marks the 95% C.L.
for the BDE model obtained from the Markov chains. The bottom panel shows the
relative difference with respect to ΛCDM.

Figure (5.12a) shows the growth function f defined as:

f ≡ d ln δm
d ln a

=
1

H

δ̇m
δm

(5.14)

at late times. From the analysis of section (1.2.3) we see that f = 1 during the matter
domination era, since δm ∝ a for all modes within the horizon in that period. As we
approach the present epoch and dark energy becomes dominant exerting a negative
pressure, matter growth slows down and therefore f departs from 1 towards smaller
values. For the best fit f(BDE) > f(ΛCDM) in z . 0.16 and then f(BDE) < f(ΛCDM)
for larger z. However, in both cases the relative difference does not exceed the 1%. The
compelling reason to determine f is the possibility of studying the clustering of matter
(including unseen components such as the CDM) through the relation between the
peculiar velocity field ū of visible galaxies with the total matter density contrast δm



102 CHAPTER 5. CONSTRAINTS

[12]:

∇ · ū = −Hfδm (5.15)

Measurements of redshift space distortions (RSD) in galaxy redshift maps actually con-
strain the combination fσ8. Figure (5.12b) shows the predictions for the best fit models
together with the observational points of some surveys [109–114]. From figure (5.11)
we see that the difference σ8(BDE) < σ8(ΛCDM) is large enough to compensate the
difference f(BDE) > f(ΛCDM) in fσ8 for z . 0.16; for larger redshifts both f and
σ8 are smaller in BDE and therefore f(BDE) < f(ΛCDM). However, although the
discrepancies are about 2.6% in 0.4 6 z 6 1 the predictions of ΛCDM still lie within
the 95% C.L. of BDE. Moreover, the observational techniques still need to be improved
taking into account important sources of error such as the modelling of nonlinearities
and the subtraction of the Alcock-Paczynski effect [26] which might bias the results as
shown by the empty and filled triangles of the BOSS-LOWZ and BOSS-CMASS surveys
in the plot.

Matter growth history is compactly parameterised by the growth index γ defined by
the expression [115]:

f = Ωγ
m(a) ⇒ γ ≡ ln f

ln Ωm(a)
(5.16)

This parameter proves to be very useful not only in analyses of dark energy models but
also in studies of modified gravity theories, where its value, its time behaviour and scale
dependence might be quite different than γ(ΛCDM) ' 0.55 in ΛCDM [116]. Strictly
speaking γ(ΛCDM) is not constant but varies in time. However, the time dependence
is very mild so it can be assumed constant to high accuracy. Moreover, it has been
found [117] that γ ' const is also a good approximation for a variety of dynamical dark
energy models, although if we consider strong clustering of the dark energy component
γ may vary considerably in time so this approximation is no longer accurate [118]. Here
we present the full evolution of the growth index at late times. Figure (5.13) shows
the predicted bounds on γ derived from our fits for the BDE and ΛCDM models. We
find γ(BDE) > γ(ΛCDM) at more than 2σ level. Nevertheless, the difference lies below
0.3% which is far beyond the precision of the observational bounds: γ = 0.55+0.13

−0.14 [107],
γ = 0.64± 0.09 [110], γ = 0.547± 0.088 [109]. Note that since the growth index evolves
similarly in both models we may also assume γ ' const for BDE. Using the fitting
formula provided in [117]:

γ = 0.55± 0.05[1 + w(z = 1)], (5.17)

and wBDE(z = 1) = −0.98 as shown in figure (5.6b), we obtain γ(BDE) ' 0.551 which
is only 0.18% larger than γ(ΛCDM).



5.3. MATTER PERTURBATIONS 103

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.546

0.549

0.552

0.555

0.558
γ

BDE
ΛCDM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

0.002

0.000

0.002

0.004

∆
/
Λ

C
D

M

Figure 5.13: Evolution of the growth index at late times for the best fit BDE (blue
solid) and ΛCDM (red solid) models. The narrow grey band marks the 95% C.L. for
the BDE model obtained from the Markov chains. The dashed horizontal lines are the
γ ' const approximations derived from the fitting formula γ = 0.55±0.05[1+w(z = 1)]
[117] where w(z = 1) = −0.98 for BDE. The bottom panel shows the relative difference
with respect to ΛCDM.

5.3.3 Large Scale Structure

Unlike radiation perturbations whose amplitude remains small over the whole history of
the universe, matter fluctuations do grow and eventually they become so large that first
order perturbation theory ceases to be a good approximation. At this point new phys-
ical phenomena come into play and we need to implement other analytical/numerical
techniques to study matter structure growth. However, we can still use our results to
explore the intermediate regime between the linear theory and the full nonlinear dy-
namics only accessible through N-body simulations.

The spherical collapse model [12, 28] provides a simplified but a powerful picture
that captures the essentials of the processes leading to the formation of nonlinear struc-
tures. The idea is to consider a spherical overdense region embedded in a flat FLRW
background. Whereas the evolution of the background proceeds as we saw in chapter
1 —for the ΛCDM model— the overdense region behaves like a closed universe with a
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FLRW metric with positive curvature [28]. Initially both the overdense region and the
background universe expand at the same rate. However, since the matter density within
the sphere is larger than the critical density, the expansion of the sphere slows eventually
halting and decoupling completely from the background, and then it collapses. The con-
traction of the sphere does not proceed indefinitely until reaching the unphysical state
of a singularity, but it stops before when a mechanism known as violent relaxation viri-
alizes the system making the kinetic energy of the cold dark matter particles within the
sphere equal to half the gravitational potential energy. The virialization time is almost
the same that the collapse time [12], which in turn is twice the turnaround epoch defined
by the beginning of the contraction when the sphere reaches its maximum radius. As
a result of these processes, the final radius of the sphere will be half the radius at the
turnaround and the linear theory extrapolation of the matter overdensity at the time
of collapse in ΛCDM is δcoll ≈ 1.686. Although this value depends both on the model
and the values of the cosmological parameters [119], the dependence is mild [120] so for
comparison purposes it can be used also in BDE.

We can estimate the abundance of collapsed objects using the Press-Schechter the-
ory [121]. The main idea of the model is to describe the matter overdensity field in
real space by a smooth gaussian field whose variance on a sphere of radius R is given
by equation (5.11). Note that here we are considering the linear power spectrum given
by the solution of the perturbed equations. If we now smooth the matter fluctuations
δR on the sphere as prescribed in equation (5.9), the probability that at some time δR
exceeds the linear overdensity at collapse δcoll is [12]:

P>δcoll(M, z) =
1√

2πσR(z)

∫ ∞
δcoll

exp

(
− δ2

R

2σ2
R(z)

)
dδR, (5.18)

where M = 4
3
πR3ρ̄m is the mean mass enclosed within the sphere. Then, the number of

collapsed objects per unit volume with mass between M and M + dM is given by [12]:

dn = −
√

2

π

dσR
dM
·
(
ρ̄mδcoll
Mσ2

R

)
exp

(
− δ

2
coll

2σ2
R

)
dM (5.19)

Figure (5.14) shows the differential mass function dn/dlnM for the best fit BDE
and ΛCDM models at z = 0. Since M ∝ R3 and R = π/k, then the mass of the
object is inversely proportional to the wavenumber, which means that large masses
correspond to small modes (large scales) and vice versa. Moreover, since the matter
content ρ̄m in both models is almost the same (c.f. section (5.2)), when we compare the
differential mass function at a particular mass scale we are also comparing that function
practically at the same mode. We observe an opposite behaviour for large and small
scales. The number of structures with M & 1014M� corresponding to k . 0.4Mpc−1

is clearly suppressed in BDE, while there is a slight excess of collapsed objects in the
range 9 × 109M� . M . 1 × 1014M� where 8Mpc−1 & k & 0.4Mpc−1 peaking at
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Figure 5.14: Differential mass function at z = 0 for the best fit BDE (blue) and ΛCDM
models using the Press-Schechter formula [121]. The bottom panel shows the relative
difference with respect to ΛCDM. The mass M is expressed in units of solar masses
M� = 1.9885× 1030 kg [122].

M ≈ 1.5×1012M�. Since the age of the universe is almost the same in both models (c.f.
table (5.1)), these results mean that large structures take more time to form in BDE,
while small objects form more quickly. Therefore, we expect to observe less massive
galaxy clusters (with Ng & 100 galaxies) and more light structures (isolated galaxies and
poorly populated clusters) in a BDE universe. Of course, the numbers we found cannot
be taken too seriously given the intrinsic limitations of the Press-Schechter approach
[12], but it will be interesting to see if this tendency still keeps in N-body simulations
[90].

5.4 BBN consistency

The marginal limits of the abundances of primordial helium and deuterium listed in the
last two rows of table (5.1) show a marked discrepancy between our BDE model and
ΛCDM. The excess of 4.9% of helium and 12% of deuterium in the BDE model is a
direct consequence of the extra relativistic degrees of freedom due to the dark group
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Table 5.3: Astrophysical bounds on primordial helium-4 and deuterium abundances.

Helium (Y BBN
P ) Deuterium (105D/H)

0.2574± 0.0036 [124] 2.87± 0.22 [125]

0.2535± 0.0036 [126] 2.53± 0.04 [127]

0.2551± 0.0022 [128] 2.45± 0.28 [129]

present during the BBN epoch, as we have already expected from the discussion of
section (4.2). These marginal limits are obtained from theoretical predictions based
on the standard BBN theoretical framework, which takes as input the physical baryon
density Ωbh

2 (varied in the Markov chains) and the number of extra relativistic degrees
of freedom Next if present (Next = 0.945 held fixed for a < ac in our BDE model as stated
in equation (3.25)). It is therefore interesting to compare these theoretical predictions
derived from our fits with the astrophysical data available at present. Before doing this,
it is important to bear in mind that although signficant progress has been made in the
last two decades [87], the uncertainties in the theoretical calculations and the precision
of the observational evidence still lie beyond the required accuracy to make primordial
light element abundances a precise cosmological probe useful to make conclusive model
selection.

On the theoretical side, the uncertainties in the BBN predictions are mainly affected
by the experimental errors in the cross sections of the nuclear reactions involved in
the production of light nuclei as well as by the neutron mean lifetime τn [87], which is
not well determined at present, showing a discrepancy between τ = 880.3 ± 1.1 s [88]
obtained from experiments using ultracold neutrons in traps and τ = 887.7±2.3 s [123]
measured in decays in flight beams. The situation is not better on the observational
side where the limited amount of data and the systematics don’t allow to set tight
constraints below the percent level. For example, the helium abundance is determined
from measurements of emission lines in extragalatic HII regions, but the number of such
regions where the theoretical models of the emission flux fit well the observations so that
a reliable estimation of the abundance can be extracted does not exceed 30 [87]. On
the other hand, although all observed deuterium is of primordial origin since there are
not known astrophysical phenomena that produce it, there is also evidence of deuterium
depletion in the interestellar and galactic medium, which affects the accurate estimation
of its primordial fraction [87]. All these difficulties are reflected in the dispersion of recent
observational constraints quoted in table (5.3). We see that the theoretical predictions
for the BDE model agree with most of these bounds, while ΛCDM falls short of helium
production. However, if the helium fraction is determined from a linear extrapolation
to zero metallicity in the Y BBN

P −O/H diagram instead from the weighted mean of the
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data, the value obtained in [126] is Y BBN
P = 0.2465 ± 0.0097, which is consistent with

the ΛCDM prediction. Therefore, BBN constraints depend not only on the data, but
also on the estimation method used. Given the state of the art, the excess of helium and
deuterium in the BDE model is only a preliminary result that needs to be confirmed
by different estimation methods and much more precise measurements coming in the
following years.

5.5 The CMB power spectrum

Figure (5.15) shows the fit of the BDE (in blue) and ΛCDM (in red) models to the
Planck 2015 measurements of the temperature anisotropies of the CMB. The results in
table (5.2) show a slight preference for BDE in the low multipole region as opposed to
the better performance of ΛCDM at high resolution data. However, these two effects
cancel each other and the overall fit of both models is practically equivalent (see bottom
of table (5.1)). It is important to stress that unlike standard extensions of the ΛCDM
model [25, 26] where the extra relativistic degrees of freedom Next are present over the
whole history of the universe, in BDE this extra amount of radiation vanishes once
the scalar field forms long before recombination, so its influence on the CMB is only
indirectly given by the enhanced amount of helium. Therefore, the stringent constraints
on Next such as Next = 0.104± 0.23 [26] found in these studies using CMB information
don’t apply here, since the BDE model describes a completely different cosmological
scenario than usual constant Next.

The most prominent deviations from ΛCDM lie in the range 2 6 l 6 30 where the
discrepancies are up to the 1.7%. Unfortunately this is the region where the cosmic
variance sets unavoidable limitations in reducing the error bars of the measurements.
Nevertheless it is impressive to see the progress made in the precision of the data since
the launch of the COBE satellite in 1989 [24, 130–132]. It is interesting to compare this
plot with figure (4.6) where both models run with the same set of parameters. We note
that the position of the peaks now coincide and therefore the oscillations of the residuals
∆DTT

l gone. This can be immediately inferred from equation (4.27) where the shift of
the peaks now vanishes given the similarity of the values of rs(z∗), z∗ and DA(z∗) in
table (5.1). On the other hand, the extra damping of the spectrum at high multipoles
due to the enhanced production of helium in BDE also vanishes. In this case the
damping wavenumber kD is still smaller in BDE so e−(1/k2D)(BDE) < e−(1/k2D)(ΛCDM),
but this effect is compensated by a larger optical depth τ with e−τ (ΛCDM) < e−τ (BDE)
leaving the total damping factor of equation (4.28) approximately unchanged. Finally,
the enhanced power of BDE at low multipoles now turns into a suppression. This
suppression is a direct consequence of the different tilt ns and amplitude As used in
each model. To see this, the green curve shows the CMB power spectrum for the BDE
model with ns and As set equal to ΛCDM but the rest of the parameters kept to their
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Figure 5.15: Fit of the BDE (blue) and ΛCDM (red) models to the Planck 2015 mea-
surements of the temperature anisotropy spectrum of the CMB (grey circles). The green
curve shows the spectrum for a BDE model with ns and As set equal to the best fit
ΛCDM values while the rest of the basic parameters kept to the BDE best fit. We use
a logarithmic scale for multipoles between 2 6 l 6 30 and then a linear scale for higher
multipoles (vertical dashed line). The bottom panel shows the residuals with respect to
ΛCDM.

best fit values. We recover the enhanced power at low multipoles and we get also an
extra bump around the first peak l ≈ 220. From l & 900 onwards there is a very
slight suppression of the green spectrum that can be neglected, so we conclude that
the influence of ns and As on the fit of BDE manifests at low multipoles extending
up to the location of the first peak. As happened when we analysed the results of the
matter power spectrum, we have identified where the effects of the primordial spectrum
parameters ns and As set predominantly the difference with respect to ΛCDM and where
this difference arises because of the intrinsic dynamics of our model.



Conclusions

In this work we assessed the viability of the Bound Dark Energy model as a possible
alternative to the cosmological constant. The BDE mechanism explains the origin of
the dark energy from first principles using what seems to be the most viable extension
of the Standard Model of particle physics. Unlike other implementations of quintessence
and even other dark energy models, we don’t introduce additional cosmological free pa-
rameters. The condensation scale Λc of the light meson representing dark energy, the
epoch of the condensation ac, the exponent of the potential n = −2/3, and the initial
conditions of the scalar field are quantities determined once we set the fundamental
parameters Nc and Nf of the gauge group and therefore we don’t have a fine-tuning
problem in the theory. In fact, we demonstrated that in principle our model has one less
free parameter than ΛCDM, but since the unification scale is not well constrained given
the uncertainties of the gauge couplings of the Standard Model, a precise value of Λc is
still unknown at present time. In any case, the evolution of dark energy is not sensitive
to the initial conditions and therefore we don’t have a coincidence problem either.

The effects of the dynamics of the dark energy in the BDE model manifest both
at the background and the perturbative level not only at late times, but also in the
early universe. We explored the imprints of these effects on the cosmological distances,
the abundances of primordial light nuclei produced during Big Bang Nucleosynthesis,
the evolution of matter perturbations and the temperature anisotropy spectrum of the
CMB. We constrained our model using recent measurements of the luminosity distance
of type Ia supernovae, the BAO ratio of different galaxy surveys and data of the CMB
spectrum from the Planck mission. The constraint Λc = 44.09 ± 0.28 eV is consistent
with our theoretical expectations Λth

c = 34+16
−11 eV, placing the epoch of the condensa-

tion of the dark energy meson at ac = (2.48 ± 0.02) × 10−6, almost 5 e−folds before
the matter radiation equality. BDE fits slightly better the data than ΛCDM, but it is
important to note the systematic improvement for the BAO measurements. The better
performance of BDE in this case is reflected in manifest tensions with ΛCDM for cer-
tain combination of parameters involving the current expansion rate H0, the cold dark
matter density Ωch

2 and the BAO ratio rdrag/DV . Undoubtedly, it will be interesting
to see if these results are also observed in the next generation galaxy surveys.

Although most of the constraints on the cosmological parameters in BDE and ΛCDM
are consistent at the 1σ level, we found additional discrepancies where future observa-
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tions will provide the definite answers. The BDE scenario predicts an enhanced amount
of primordial helium and deuterium, but the current astrophysical bounds are not pre-
cise enough to settle this issue. On the other hand, there is a clear signature of the scalar
field dilution on the matter power spectrum at small scales. Although these scales cor-
respond to the non-linear regime of the spectrum, we expect to see part of this signature
when we take into account the non-linear corrections in N-body simulations.

The problem of the dark energy requires the introduction of new physics. Given the
success of the general theory of relativity, the robustness of the observational evidence
gathered during these years, and the intimate link between particle physics and cos-
mology, we think that the most natural place to look for answers is in theories beyond
the Standard Model. At the present time, every attempt to explain dark energy from
elementary particle physics has to rely on simplifying assumptions that at first sight
might sound artificial. The BDE model is not the exception. However, the history
of science has shown that the construction of a new paradigm goes from simplicity to
complexity. Having this in mind, we conclude that our BDE model is a viable scenario
for elucidating the nature of the dark energy.



Bibliography

1. Smoot, G. F. et al. Structure in the COBE differential microwave radiometer first
year maps. Astrophys. J. 396, L1–L5 (1992).

2. Riess, A. G. et al. Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant. The Astronomical Journal 116, 1009
(1998).

3. Perlmutter, S. et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae.
The Astrophysical Journal 517, 565 (1999).

4. Eisenstein, D. J. et al. Detection of the Baryon Acoustic Peak in the Large-Scale
Correlation Function of SDSS Luminous Red Galaxies. The Astrophysical Journal
633, 560 (2005).

5. Cole, S. et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the
final data set and cosmological implications. Monthly Notices of the Royal Astro-
nomical Society 362, 505–534 (2005).

6. Boughn, S. & Crittenden, R. A correlation between the cosmic microwave back-
ground and large-scale structure in the Universe. Nature 427, 45–47 (2004).

7. Nolta, M. R. et al. First Year Wilkinson Microwave Anisotropy Probe Observa-
tions: Dark Energy Induced Correlation with Radio Sources. The Astrophysical
Journal 608, 10 (2004).
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74. Bean, R. & Doré, O. Probing dark energy perturbations: The dark energy equation
of state and speed of sound as measured by WMAP. Phys. Rev. D 69, 083503
(2004).

75. De la Macorra, A. & Piccinelli, G. Cosmological evolution of general scalar fields
and quintessence. Phys. Rev. D 61, 123503 (2000).

76. Chen, Y., Geng, C.-Q., Cao, S., Huang, Y.-M. & Zhu, Z.-H. Constraints on a
φCDM model from strong gravitational lensing and updated Hubble parameter
measurements. JCAP 2015, 010 (2015).

77. Wang, P.-Y., Chen, C.-W. & Chen, P. Confronting tracker field quintessence with
data. Journal of Cosmology and Astroparticle Physics 2012, 016 (2012).

78. Smer-Barreto, V. & Liddle, A. R. Planck satellite constraints on pseudo-Nambu-
Goldstone boson quintessence. JCAP 2017, 023 (2017).

79. Alimi, J.-M. et al. Imprints of dark energy on cosmic structure formation I.
Realistic quintessence models and the non-linear matter power spectrum. Monthly
Notices of the Royal Astronomical Society 401, 775–790 (2010).

80. Linder, E. V. The dynamics of quintessence, the quintessence of dynamics. General
Relativity and Gravitation 40, 329–356 (2008).

81. Tsujikawa, S. Quintessence: a review. Class. Quantum Grav. 30, 214003 (2013).

82. Mangano, G., Miele, G., Pastor, S. & Peloso, M. A precision calculation of the
effective number of cosmological neutrinos. Physics Letters B 534, 8 –16. issn:
0370-2693 (2002).

83. Binétruy, P. Models of dynamical supersymmetry breaking and quintessence.
Phys. Rev. D 60, 063502 (1999).

84. Amaldi, U., de Boer, W. & Fürstenau, H. Comparison of grand unified theories
with electroweak and strong coupling constants measured at LEP. Physics Letters
B 260, 447 –455 (1991).

85. Affleck, I., Dine, M. & Seiberg, N. Dynamical supersymmetry breaking in four
dimensions and its phenomenological implications. Nuclear Physics B 256, 557
–599. issn: 0550-3213 (1985).

86. Pisanti, O. et al. PArthENoPE: Public algorithm evaluating the nucleosynthesis
of primordial elements. Computer Physics Communications 178, 956 –971 (2008).

87. Cyburt, R. H., Fields, B. D., Olive, K. A. & Yeh, T.-H. Big bang nucleosynthesis:
Present status. Rev. Mod. Phys. 88, 015004 (2016).



88. Olive, K. & Group, P. D. Review of Particle Physics. Chinese Physics C 38,
090001 (2014).

89. Ma, Z. The Nonlinear Matter Power Spectrum. The Astrophysical Journal 665,
887 (2007).

90. Almaraz, E., Li, B. & de la Macorra, A. in preparation (2018).

91. Trotta, R. & Hansen, S. H. Constraining the helium abundance with CMB data.
Phys. Rev. D 69, 023509 (2004).

92. Ichikawa, K. & Takahashi, T. Reexamining the constraint on the helium abun-
dance from the CMB. Phys. Rev. D 73, 063528 (2006).

93. Seljak, U. & Zaldarriaga, M. A Line of Sight Approach to Cosmic Microwave
Background Anisotropies. Astrophys. J. 469, 437–444 (1996).

94. Lewis, A. & Bridle, S. Cosmological parameters from CMB and other data: A
Monte Carlo approach. Phys. Rev. D 66, 103511 (2002).

95. Li, M.-H., Wang, P., Chang, Z. & Zhao, D. CosmoMC Installation and Running
Guidelines. arXiv: 1409.1354 (2014).

96. Lewis, A. Efficient sampling of fast and slow cosmological parameters. Phys. Rev.
D 87, 103529 (2013).

97. Bourilkov, D. Strong coupling running, gauge coupling unification and the scale
of new physics. Journal of High Energy Physics 2015, 117 (2015).

98. Trotta, R. Bayesian Methods in Cosmology in (2017). arXiv: 1701.01467.

99. Hu, W. & Sugiyama, N. Small-Scale Cosmological Perturbations: An Analytic
Approach. The Astrophysical Journal 471, 542 (1996).

100. Hearin, A. P., Zentner, A. R. & Ma, Z. General requirements on matter power
spectrum predictions for cosmology with weak lensing tomography. Journal of
Cosmology and Astroparticle Physics 2012, 034 (2012).

101. Tegmark, M. et al. Cosmological constraints from the SDSS luminous red galaxies.
Phys. Rev. D 74, 123507 (2006).

102. Planck Collaboration et al. Planck 2015 results. XI. CMB power spectra, likeli-
hoods, and robustness of parameters. A&A 594, A11 (2016).

103. Liddle, A. R. How many cosmological parameters. Monthly Notices of the Royal
Astronomical Society 351, L49–L53 (2004).

104. Chevallier, M. & Polarski, D. Accelerating Universes with Scaling Dark Matter.
International Journal of Modern Physics D 10, 213–223 (2001).

105. Linder, E. V. Exploring the Expansion History of the Universe. Phys. Rev. Lett.
90, 091301 (2003).

http://arxiv.org/abs/1409.1354
http://arxiv.org/abs/1701.01467


106. Ettori, S. et al. Mass profiles and c −MDM relation in X-ray luminous galaxy
clusters. A&A 524, A68 (2010).
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