UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

ESTUDIO TEÓRICO DE LA ADSORCIÓN DE CO₂ POR EL LÍQUIDO IÓNICO 1-ALQUIL-3-PROPILAMINA IMIDAZOL DE TETRAFLUOROBORATO

TESIS

Que para obtener el título de

Ingeniera Química

PRESENTA

Beatriz Tlelo Bárcena

DIRECTOR DE TESIS

Dr. Isidoro García Cruz

ASESOR TÉCNICO

I.Q. Carlos Álvarez Maciel

Ciudad Universitaria, Cd. Mx., 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE: DR. FRANCISCO MIGUEL DE JESÚS CASTRO MARTÍNEZ

VOCAL: I.Q. CARLOS ÁLVAREZ MACIEL

SECRETARIO: DR. ISIDORO GARCÍA CRUZ

1er. SUPLENTE: DR. BRUNO CHRISTIAN LANDEROS RIVERA

2DO SUPLENTE: DR. FEDERICO DANIEL SANDOVAL IBARRA

SITIO DONDE SE DESARROLLÓ EL TEMA:

EDIFICIO 6-122 GERENCIA DE REFINACIÓN DE HIDROCARBUROS, DIRECCIÓN DE INVESTIGACIÓN EN TRANSFORMACIÓN DE HIDROCARBUROS, INSTITUTO MEXICANO DEL PETRÓLEO, CIUDAD DE MÉXICO. CP. 07730.

ASESOR DEL TEMA:

DR. ISIDORO GARCÍA CRUZ

SUPERVISOR TÉCNICO:

ING. CARLOS ÁLVAREZ MACIEL

SUSTENTANTE:

BEATRIZ TLELO BÁRCENA

Índice General

Índice de Figuras4
Índice de Tablas5
Abreviaturas
Capítulo 1. Introducción
1.1 Antecedentes
1.2 Importancia del CO $_{\rm 2}$
1.3 Líquidos iónicos
1.4 Captura de CO $_2$ por líquidos iónicos16
1.5 Proceso de absorción de gases en torres de absorción17
1.5.1 Elección de torres de platos y empacadas18
1.5.2 Factores para la elección del líquido absorbente19
Capítulo 2. Objetivo e hipótesis del trabajo21
2.1 Objetivo general
2.2 Objetivos particulares
2.3 Planteamiento del problema21
2.4 Hipótesis de trabajo
Capítulo 3. Metodología computacional23
3.1 Metodología teórica. Construcción y optimización de los sistemas estudiados
3.2 Metodología teórica del diseño y simulación de un proceso de absorción de CO $_2$ en el LI 25
3.2.1 Ecuaciones del balance de materia de una torre de absorción
3.2.2 Ecuaciones para la curva de equilibrio y curva de operación
3.2.3 Ecuaciones para el diseño de una torre de absorción
3.2.4 Ecuaciones para la optimización del proceso
Capítulo 4. Resultados y discusión
4.1 Resultados de estructura electrónica
4.1.1 Estructuras optimizadas de LIs aislados con los funcionales B3LYP y wB97XD
4.1.2 Estructuras optimizadas con B3LYP y wB97XD para los líquidos iónicos interaccionando con CO ₂ 43
4.1.3 Propiedades electrónicas de los LIs aislados48
4.1.4 Propiedades energéticas y electrónicas de los LIs y su interacción con CO ₂

4.1.5 Análisis poblacional por cargas de Mulliken de los LIs aislados con el funcio wB97XD	onal B3LYP y 54
4.1.6 Análisis poblacional de los LIs interaccionando con CO ₂	56
4.1.7 ΔE de la interacción LIs con CO₂ con los funcionales B3LYP y wB97XD	58
4.2 Simulación del proceso	60
4.2.1 Curva de equilibrio y curva de operación	60
4.2.2 Diseño de la torre de absorción	65
4.2.3 Optimización del proceso	67
4.2.4 Selección de la cadena alquílica	76
4.2.5 Aplicación a la captura de CO $_2$ a partir de otras fuentes	79
Capítulo 5. Conclusiones	
Anexos	
Anexo I. Metodología teórica	
A.I.1 Ecuación de Schrödinger independiente del tiempo	
A.I.2 Teoría de funcionales de la densidad	86
A.I.3 Funciones de base	91
A.I.4 Funciones de base con polarización	91
A.I.5 Funciones de base con pseudopotenciales (core potencial)	91
A.I.6 Funciones de bases numéricas	92
A.I.7 Propiedades electrónicas	92
A.I.8 Energía del gap, Eg, brecha electrónica o separación electrónica	93
A.I.9 Teorema de Koopmans	94
A.I.10 Análisis de población de carga atómica	95
A.I.11 Análisis de población por el método de Mulliken	95
ANEXO II. Correlaciones de propiedades de los LIs	97
A.II.1 Correlación de densidad	97
A.II.2 Correlación de viscosidad	
A.II.3 Correlación de tensión superficial	110
A.II.4 Correlación de las constantes de la Ley de Henry	115
A.II.5 Correlación de la masa molecular	
A.II.6 Correlación del costo de los LIs	
ANEXO III. Hoja de datos de la torre de absorción	123

Referencias bibliográficas

Índice de Figuras

Figura 1.1 Emisiones de gases de efecto invernadero por tipo de gas en México	12
Figura 1.2 Porcentaje de emisiones de CO ₂ por sector industrial	13
Figura 1.3 Esquema de captura de CO2 el líquido iónico 1-amino-propil-3-butil-imidazolio	1
de tetrafluoroborato [APBIm] ⁺ [BF ₄] ⁻ 1	16
Figura 3.1 Esquema representativo de un líquido iónico a base de 1-butil-3-propilamina	
imidazolio de tetrafluoruro de boro	24
Figura 3.2 Representación de la línea de operación y la curva de equilibrio	28
Figura 3.3 Torre de absorción isotérmica a contracorriente	28
Figura 3.4 Representación del domo en la torre de absorción	29
Figura 3.5 Inundación en torres de platos (Gráfica de Fair)	33
Figura 4.1 Estructuras optimizadas del LI con una cadena alquílica de cuatro átomos de	
carbono: a) Estructura del LI antes de la optimización de la geometría; b) Estructura del L	_
después de la optimización de la geometría, con B3LYP/6-31+G**	39
Figura 4.2 Geometrías optimizadas de los LIs con B3LYP/6-31+G** desde una cadena	
alquílica de uno a veinte átomos de carbono	13
Figura 4.3 Estructuras optimizadas de la reacción del LI tipo 1-alquil-3-propilamina-	
imidazolio de tetrafluoroborato con CO2, obtenidas con B3LYP/6-31+G**	14
Figura 4.4 Estructura optimizada del LI-CO ₂ obtenido con B3LYP/6-31+G**	14
Figura 4.5 Correlación de la energía total de los LIs en función del NC en la cadena	
alquílica	19
Figura 4.6 Comportamiento del Δ_{H-L} (eV) de los LIs en función del NC en la cadena	
alquílica	50
Figura 4.7 Correlación de la energía total de los LIs con el NC en la cadena alquílica 5	51
Figura 4.8 Comportamiento del Δ_{H-L} (eV) de los LIs con el NC en la cadena alquílica 5	52
Figura 4.9 Torre de absorción isotérmica a contracorriente con los datos base	52
Figura 4.10 Líneas de equilibrio y operación para el sistema CO ₂ -LI para una cadena	
alquílica de cuatro átomos de carbono	55
Figura 4.11 Costo total de la torre (US\$) contra el NC a una p = 220 bar y T = 85 °C 7	70
Figura 4.12 Altura de la torre (HT) contra el NC a una p = 220 bar y T = 85°C	70
Figura 4.13 Eficiencia de la torre contra el NC a una p = 220 bar y $T = 85^{\circ}C$	71
Figura 4.14 Costo total del proceso en función del NC para cadenas alquílicas de dos a	
doce átomos de carbono	76
Figura 4.15 Trazado de líneas tangentes de la altura de la torre (HT) contra el NC	78
Figura 4.16 Trazado de líneas tangentes de la eficiencia de la torre contra el número de	
carbonos	79

Figura I. I Diferencia entre los niveles HOMO-LOMO y la brecha electronica
Figura II.1 Densidad ρ (g/cm ³) contra temperatura T (°C) de los líquidos iónicos
[bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y [emim] ⁺ [Tf ₂ N] ⁻
Figura II.2 Valores de la constante A contra el NC de los líquidos iónicos [bmim] ⁺ [Tf ₂ N] ⁻ y
[emim] ⁺ [Tf ₂ N] ⁻
Figura II.3 Valores de la constante B contra el NC de los líquidos iónicos [bmim] ⁺ [Tf ₂ N] ⁻ y
$[emim]^{+}[Tf_2N]^{-}$
Figura II.4 Valores de la constante C contra el NC de los líquidos iónicos [bmim] ⁺ [Tf ₂ N] ⁻ y
[emim] ⁺ [Tf ₂ N] ⁻
Figura II.5 Tensión superficial (σ) contra temperatura (T) para dos, tres, cuatro, cinco y
seis átomos de carbono de la cadena alquílica del líquido iónico tipo [Cnmim]+[BF4] ⁻ y su
respectiva ecuación lineal
Figura II.6 Valor de la constante A contra el NC de las ecuaciones obtenidas en la Figura
II.5 y su respectiva ecuación polinómica de segundo grado
Figura II.7 Valor de la constante B contra el NC de las ecuaciones obtenidas en la Figura
II.5 y su respectiva ecuación polinómica de segundo grado
Figura II.8 Valores de las constantes de Henry contra la temperatura, así como su
respectiva ecuación para el [bmim] ⁺ [Tf ₂ N] ⁻
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim] ⁺ [BF ₄] ⁻
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim] ⁺ [BF ₄] ⁻
Figura II.9Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim] ⁺ [BF_4] ⁻ 116Figura II.10Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [pmmim] ⁺ [Tf_2N] ⁻ 117
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim]*[BF4] ⁻
Figura II.9Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim] ⁺ [BF4] ⁻ 116Figura II.10Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [pmmim] ⁺ [Tf2N] ⁻ 117Figura II.11Valor de la constante A contra el NC y su respectiva ecuación del [bmim] ⁺ [Tf2N] ⁻ 118
Figura II.9Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim]*[BF4]*116Figura II.10Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [pmmim]*[Tf2N]*117Figura II.11Valor de la constante A contra el NC y su respectiva ecuación del [bmim]*[Tf2N]*118Figura II.12Valor de la constante B contra el NC y su respectiva ecuación del
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim]*[BF4] ⁻
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim]*[BF4] ⁻
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim]*[BF4]* Figura II.10 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [pmmim]*[Tf2N]* 117 Figura II.11 Valor de la constante A contra el NC y su respectiva ecuación del [bmim]*[Tf2N]* y [pmmim]*[Tf2N]* 118 Figura II.12 Valor de la constante B contra el NC y su respectiva ecuación del [bmim]*[Tf2N]* y [pmmim]*[Tf2N]* 118 Figura II.13 Valor de la constante C contra el NC y su respectiva ecuación del [bmim]*[Tf2N]* y [pmmim]*[Tf2N]* 118 Figura II.13 Valor de la constante C contra el NC y su respectiva ecuación del [bmim]*[Tf2N]* y [pmmim]*[Tf2N]*
Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim] ⁺ [BF ₄] ⁻ 116 Figura II.10 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [pmmim] ⁺ [Tf ₂ N] ⁻ 117 Figura II.11 Valor de la constante A contra el NC y su respectiva ecuación del [bmim] ⁺ [Tf ₂ N] ⁻ y [pmmim] ⁺ [Tf ₂ N] ⁻ 118 Figura II.12 Valor de la constante B contra el NC y su respectiva ecuación del [bmim] ⁺ [Tf ₂ N] ⁻ y [pmmim] ⁺ [Tf ₂ N] ⁻ 118 Figura II.12 Valor de la constante C contra el NC y su respectiva ecuación del [bmim] ⁺ [Tf ₂ N] ⁻ y [pmmim] ⁺ [Tf ₂ N] ⁻ 118 Figura II.13 Valor de la constante C contra el NC y su respectiva ecuación del [bmim] ⁺ [Tf ₂ N] ⁻ y [pmmim] ⁺ [Tf ₂ N] ⁻ 119 Figura II.14 Tendencia de los costos de los LIs de tipo [alquil] ⁺ [BF ₄] ⁻ en función del NC y

Índice de Tablas

Tabla 1.1 Estructuras moleculares de los cationes de los LIs	. 14
Tabla 1.2 Estructuras moleculares de los aniones de los LIs	. 15
Tabla 4.1 Distancias de enlace y ángulos de enlace con diferente tamaño de cadena	
alquílica de uno hasta veinte átomos de carbono, obtenida con B3LYP/6-31+G**	. 40
Tabla 4.2 Distancias de enlace, ángulos de enlace y ángulo diedro de los LIs con	
diferente tamaño de cadena alquílica desde C1 hasta C20, obtenida con wB97XD/6-	
31+G**	. 42
Tabla 4.3 Geometría optimizada del CO2 aislado a un nivel de teoría B3LYP/6-31+G**.	EI
funcional wB97XD muestra resultados muy similares	. 46

Tabla 4.4 Distancias de enlace y ángulos de enlace de la interacción LI-CO₂ con diferente tamaño de cadena alquílica desde C1 hasta C20 obtenida con B3LYP/6-31+G** 46 **Tabla 4.5** Distancias de enlace y ángulos de enlace de la interacción LI-CO₂ con diferente tamaño de cadena alquílica desde C1 hasta C20 obtenida con wB97XD/6-31+G** 47 **Tabla 4.6** Energía HOMO, energía LUMO, gap ΔE_{L-H}, de los LI con diferentes tamaños de **Tabla 4.** 7 Energía HOMO, energía LUMO, gap ΔE_{L-H} , de los LI con diferentes tamaños de cadena alquílica, desde C1 hasta C20 obtenida con wB97XD/6-31+G**51 **Tabla 4.8** Energía total, energía HOMO, energía LUMO, gap ΔE_{L-H} de la interacción LI-CO₂ con diferentes tamaños de cadena alquílica, desde C1 hasta C20 obtenida con **Tabla 4.9** Energía total, energía HOMO, energía LUMO, gap ΔE_{L-H} de la interacción LI-CO2 con diferentes tamaños de cadena alquílica, desde C1 hasta C20 obtenida con
 Tabla 4.10 Cargas de Mulliken de los Lls con diferente tamaño de cadena alquílica desde
 C1 a C20 obtenida a nivel B3LYP/6-31+G**.....55
 Tabla 4.11
 Cargas de Mulliken de los LIs con diferente tamaño de cadena alquílica desde
 C1 a C20 obtenida a nivel wB97XD/6-31+G**.....56 Tabla 4.12 Cargas de Mulliken del LI con diferente tamaño de cadena alquílica desde C1 hasta C20 interaccionando con CO2 obtenida con B3LYP/6-31+G** 57 Tabla 4.13 Cargas de Mulliken del LI con diferente tamaño de cadena alquílica desde C1 hasta C20 interaccionando con CO2 obtenida con wB97XD/6-31+G** 58 **Tabla 4.14** $\Delta E_{\text{Reacción}}$, $\Delta H_{\text{Reacción}}$, $\Delta G_{\text{Energía Gibbs}}$, de la reacción entre el LI y el CO₂ desde Tabla 4.15 Método numérico por la regla del trapecio para una cadena alquílica de C4..64 Tabla 4.16 Variaciones de la T, manteniendo fija la p y el NC con su respectivo diámetro de la torre, número de platos, viscosidad, eficiencia de la torre y costo total de la torre.... 68 **Tabla 4.17** Variaciones de la p, manteniendo fija la T y el NC con su respectivo diámetro de la torre, número de platos, viscosidad, eficiencia de la torre y costo total de la torre.... 68 Tabla 4.18 Variaciones del NC, manteniendo fija la T y p con su respectivo L₁, L₂, diámetro de la torre, número de platos, viscosidad, eficiencia de la torre y costo total de la Tabla 4.19 Valores respectivos de whp y hp para cada cadena alquílica, de dos a doce átomos de carbono......71 **Tabla 4.20** Valores respectivos de eficiencia de la bomba para cada cadena alguílica,
 Tabla 4.21
 Valores respectivos de bhp y energía para el bombeo del LI para cada cadena
 alguílica desde C2 hasta C12......72 Tabla 4.23 Costo de la energía eléctrica en dólares, del proceso de la torre de absorción de CO₂ en el LI para un periodo de 4 años73 Tabla 4.24 Costo en dólares de la bomba referente al año 2016 desde una cadena alguílica de C2 a C12.....74

Table 4.25 Costos totales del LI necesario en el proceso en dolares para cadenas
alquílicas de dos hasta doce átomos de carbono
Tabla 4.26 Costos fijos, costos variables y costos totales del proceso en una torre de
absorción de CO ₂ en LI en un periodo de 4 años a T = 85° C y p = 220 bar
Tabla 4.27 Análisis Horizontal-Vertical para la selección de la cadena alquílica óptima 78
Tabla 4.28 Principales parámetros de la torre y costo total del proceso para una cadena
alquílica de C8 a 85 °C y 220 bar para gases de combustión, biogás y aire atmosférico en
un periodo de 4 años
Tabla II.1 Densidad a diferentes temperaturas del líquido iónico [bmim]+[BF ₄] ⁻
Tabla II.2 Densidad a diferentes temperaturas del líquido iónico [bmim]+[Tf ₂ N]97
Tabla II.3 Densidad a diferentes temperaturas del líquido iónico [emim] ⁺ [Tf ₂ N] ⁻ 97
Tabla II.4 Valores A, B y C de las ecuaciones polinómicas de 2º grado de los líquidos
iónicos [bmim] ⁺ [Tf ₂ N] ⁻ y [emim] ⁺ [Tf ₂ N] ⁻ a diferentes cadenas alquílicas
Tabla II.5 Relación [BF ₄] ⁻ /[Tf ₂ N] ⁻ para las constantes A, B y C de los líquidos iónicos
[bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻
Tabla II.6 Comparación de la densidad experimental y densidad calculada a partir de la
correlación de la Ec. II.2 a diferentes temperaturas, así como el % error del [bmim]+[BF4]
Tabla II.7 Comparación de la densidad experimental y densidad calculada a partir de la
correlación de la Ec. II.1 a diferentes temperaturas, así como el % error del [bmim]+[Tf ₂ N]-
Tabla II.8 Comparación de la densidad experimental y densidad calculada a partir de la
correlación de la Ec. II.1 a diferentes temperaturas, así como el % error del [emim] $+[Tf_2N]^-$
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa Tabla II.10 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y
Tabla II.9Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104 Tabla II.10 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105 Tabla II.11 Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻
Tabla II.9Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105Tabla II.11Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ para observar el cambio de anión a su respectiva temperatura106
Tabla II.9Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105Tabla II.11Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ para observar el cambio de anión a su respectiva temperatura106Tabla II.12Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻
Tabla II.9Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105Tabla II.11Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ para observar el cambio de anión a su respectiva temperatura106Tabla II.12Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 0.1MPa107
Tabla II.9Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105Tabla II.11Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ para observar el cambio de anión a su respectiva temperatura106Tabla II.12Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 0.1MPa107Tabla II.13Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y [emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa 104 Tabla II.10 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y 105 [emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa 105 Tabla II.11 Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ para observar el cambio de anión a su respectiva temperatura 106 Tabla II.12 Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 0.1 MPa 107 Tabla II.13 Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 70 MPa 107
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim]*[BF4] ⁻ , [bmim]*[Tf2N] ⁻ y[emim]*[Tf2N] ⁻ a presión de 0.1 MPa104Tabla II.10 Viscosidad a diferentes temperaturas del [bmim]*[BF4] ⁻ , [bmim]+[Tf2N] ⁻ y105[emim]*[Tf2N] ⁻ a presión de 70 MPa105Tabla II.11 Relación de la viscosidad de los líquidos iónicos [bmim]*[BF4] ⁻ y [bmim]*[Tf2N] ⁻ 106Tabla II.12 Valores estimados de la viscosidad a diferentes temperaturas del [emim]*[BF4] ⁻ 107Tabla II.13 Valores estimados de la viscosidad a diferentes temperaturas del [emim]*[BF4] ⁻ 107Tabla II.14 Matriz para la viscosidad (μL1) en función del número de carbonos (NC),107
Tabla II.9Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105Tabla II.11Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ para observar el cambio de anión a su respectiva temperatura106Tabla II.12Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 0.1 MPa107Tabla II.13Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 70 MPa107Tabla II.14Matriz para la viscosidad (µLI) en función del número de carbonos (NC), temperatura (T) y presión (p)108
Tabla II.9Viscosidad a diferentes temperaturas del [bmim]+[BF4] ⁻ , [bmim]+[Tf2N] ⁻ y[emim]+[Tf2N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim]+[BF4] ⁻ , [bmim]+[Tf2N] ⁻ y[emim]+[Tf2N] ⁻ a presión de 70 MPa105Tabla II.11Relación de la viscosidad de los líquidos iónicos [bmim]+[BF4] ⁻ y [bmim]+[Tf2N] ⁻ para observar el cambio de anión a su respectiva temperatura106Tabla II.12Valores estimados de la viscosidad a diferentes temperaturas del [emim]+[BF4] ⁻ a 0.1MPa107Tabla II.13Valores estimados de la viscosidad a diferentes temperaturas del [emim]+[BF4] ⁻ a 70MPa107Tabla II.14Matriz para la viscosidad (μLI) en función del número de carbonos (NC),temperatura (T) y presión (p)108Tabla II.15Valores de los coeficientes desde k1 hasta k8 correspondientes a la Ec. II.3
Tabla II.9Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105Tabla II.11Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ para observar el cambio de anión a su respectiva temperatura106Tabla II.12Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 0.1 MPa107Tabla II.13Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ a 70 MPa107Tabla II.14Matriz para la viscosidad (μLI) en función del número de carbonos (NC),temperatura (T) y presión (p)108Tabla II.15Valores de los coeficientes desde k ₁ hasta k ₈ correspondientes a la Ec. II.3Tabla II.16Cálculo del % error de los valores de viscosidad experimental y la viscosidad
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim] ⁺ [Tf ₂ N] ⁻ y[emim] ⁺ [Tf ₂ N] ⁻ a presión de 0.1 MPa104Tabla II.10 Viscosidad a diferentes temperaturas del [bmim] ⁺ [BF ₄] ⁻ , [bmim]+[Tf ₂ N] ⁻ y105[emim] ⁺ [Tf ₂ N] ⁻ a presión de 70 MPa105Tabla II.11 Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF ₄] ⁻ y [bmim] ⁺ [Tf ₂ N] ⁻ 105para observar el cambio de anión a su respectiva temperatura106Tabla II.12 Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ 107Tabla II.13 Valores estimados de la viscosidad a diferentes temperaturas del [emim] ⁺ [BF ₄] ⁻ 107Tabla II.14 Matriz para la viscosidad (µLI) en función del número de carbonos (NC),108Tabla II.15 Valores de los coeficientes desde k ₁ hasta k ₈ correspondientes a la Ec. II.3 108108Tabla II.16 Cálculo del % error de los valores de viscosidad experimental y la viscosidad108
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim]*[BF ₄]', [bmim]*[Tf ₂ N]' y [emim]*[Tf ₂ N]' a presión de 0.1 MPa104Tabla II.10 Viscosidad a diferentes temperaturas del [bmim]*[BF ₄]', [bmim]+[Tf ₂ N]' y [emim]*[Tf ₂ N]' a presión de 70 MPa105Tabla II.11 Relación de la viscosidad de los líquidos iónicos [bmim]*[BF ₄]' y [bmim]*[Tf ₂ N]' para observar el cambio de anión a su respectiva temperatura106Tabla II.12 Valores estimados de la viscosidad a diferentes temperaturas del [emim]*[BF ₄]' a 0.1 MPa107Tabla II.13 Valores estimados de la viscosidad a diferentes temperaturas del [emim]*[BF ₄]' a 70 MPa107Tabla II.14 Matriz para la viscosidad (μLI) en función del número de carbonos (NC), temperatura (T) y presión (p)108Tabla II.15 Valores de los coeficientes desde k ₁ hasta k ₈ correspondientes a la Ec. II.3 108108Tabla II.16 Cálculo del % error de los valores de viscosidad experimental y la viscosidad calculada en función del número de carbonos (NC), temperatura (T) y presión (p) de los líquidos iónicos [1-alquil-3-PAM]*[BF ₄]'
Tabla II.9 Viscosidad a diferentes temperaturas del [bmim]*[BF4]*, [bmim]*[Tf2N]* y[emim]*[Tf2N]* a presión de 0.1 MPa104Tabla II.10 Viscosidad a diferentes temperaturas del [bmim]*[BF4]*, [bmim]+[Tf2N]* y[emim]*[Tf2N]* a presión de 70 MPa105Tabla II.11 Relación de la viscosidad de los líquidos iónicos [bmim]*[BF4]* y [bmim]*[Tf2N]*para observar el cambio de anión a su respectiva temperatura106Tabla II.12 Valores estimados de la viscosidad a diferentes temperaturas del [emim]*[BF4]*107Tabla II.13 Valores estimados de la viscosidad a diferentes temperaturas del [emim]*[BF4]*107Tabla II.13 Valores estimados de la viscosidad a diferentes temperaturas del [emim]*[BF4]*107Tabla II.14 Matriz para la viscosidad (μLI) en función del número de carbonos (NC),108Tabla II.15 Valores de los coeficientes desde k1 hasta k8 correspondientes a la Ec. II.3 108108Tabla II.16 Cálculo del % error de los valores de viscosidad experimental y la viscosidad109Tabla II.17 Datos experimentales de la tensión superficial (σ) a diferentes temperaturas109

Tabla II.18 Constantes A y B de las ecuaciones lineales obtenidas en la Figura II.5 con su
respectivo número de carbonos de la cadena alquílica112
Tabla II.19 Datos calculados de la tensión superficial (σ) en dyn/cm a diferentes
temperaturas del líquido iónico [Cnmim] ⁺ [BF ₄] ⁻ utilizando la Ec. II.6
Tabla II.20 Cálculo del % error de los valores calculados con la Ec. II.6 respecto a los
experimentales, de las tensiones interfaciales del líquido iónico [Cnmim] ⁺ [BF ₄] ⁻ a diferentes
temperaturas
Tabla II.21 Constantes de la Ley de Henry del CO ₂ (bar) en los líquidos iónicos
$[bmim]^{+}[Tf_2N]^{-}$, $[bmim]^{+}[BF_4]^{-}$ y $[pmmim]^{+}[Tf_2N]^{-}$ a diferentes temperaturas
Tabla II.22 Constantes A, B y C de la ecuación polinómica de 2° grado para los líquidos
iónicos [bmim] ⁺ [Tf ₂ N] ⁻ , [bmim] ⁺ [BF ₄] ⁻ y [pmmim] ⁺ [Tf ₂ N] ⁻
Tabla II.23 Relación BF ₄ /Tf ₂ N para las constantes A, B y C de los LIs [bmim] ⁺ [BF ₄] ⁻ y
$[bmim]^{+}[Tf_2N]^{-}$
Tabla II.24 Porcentaje de error de la constante de Henry del CO ₂ en [bmim] ⁺ [BF ₄] ⁻ 120
Tabla II.25 Costo de los líquidos iónicos en dólares por kg (US\$/kg) para el año 2017 y
2016

Abreviaturas

CO₂ Dióxido de Carbono.

 ρ_G Densidad del gas.

 ρ_{ll} Densidad del líquido iónico.

GEI Gases de efecto invernadero.

GGA Aproximación de gradiente generalizado.

G1 Flujo molar de gases de combustión.

G2 Flujo de gas de salida.

HOMO Orbital molecular más alto ocupado.

LIs Líquidos iónicos.

LUMO Orbital molecular más bajo desocupado.

L1 Cantidad de líquido iónico a la salida de la torre de absorción.

L₂ Cantidad de líquido iónico absorbente necesario en la torre de absorción.

Mt Millones de toneladas

NC Número de carbonos de la cadena alquílica del líquido iónico.

OM Orbitales moleculares.

p Presión.

PM_G Masa molecular de los gases de combustión.

PMLI Masa molecular de los líquidos iónicos.

T Temperatura.

μ Momento dipolar.

 μ_{LI} Viscosidad del líquido iónico.

ΔH Entalpía de reacción.

 ΔG Energía libre de Gibbs.

ΔE Energía de interacción entre los líquidos iónicos y el CO₂.

 ΔE_{H-L} Energía de separación o gap electrónico HOMO y LUMO.

[APBIm]⁺[BF₄]⁻ 1-amino-propil-3-butil-imidazolio de tetrafluoroborato.

[bmim]⁺[BF₄]⁻ butil-metil-imidazolio de tetrafluoroborato.

[bmim]⁺[Tf₂N]⁻ 1-butil-3-metilimidazolio bis(trifluorometilsulfonilo)amida.

[emim]⁺[Tf₂N]⁻ 1-etil-3-metilimidazolio bis(trifluorometilsulfonilo)amida.

Capítulo 1. Introducción

1.1 Antecedentes

Una de las grandes problemáticas a nivel mundial es la contaminación atmosférica a consecuencia de la emisión de gases de efecto invernadero, tales como, dióxido de carbono (CO₂), vapor de agua (H₂O), metano (CH₄), óxidos de nitrógeno (NO_x), y clorofluorocarbonos. El CO₂ es el gas de efecto invernadero que se encuentra en mayor concentración en la atmósfera. El desgaste de la capa de ozono como consecuencia de los gases de efecto invernadero, conlleva a que la radiación ultravioleta (UV) sea más penetrante y con ello se incremente la temperatura media de la atmósfera terrestre y los océanos, originando el calentamiento global causando grandes daños al ecosistema y los seres vivos. Para disminuir este efecto, se pueden reducir las emisiones, cambiando la generación de electricidad a partir de combustibles fósiles a energías de fuente renovable.

Hoy en día, se continúa en la búsqueda de metodologías alternas para la captura, almacenamiento y transformación de CO₂. Hasta ahora, la principal metodología empleada es la captura de CO₂ con disoluciones de aminas acuosas como la monoetanolamina (MEA), debido a que es muy reactiva. Esta es una metodología de captura de CO₂ de bajo costo y relativamente tiene una buena capacidad de absorción (1 mol CO₂/2 mol de amina), pero tienen algunos inconvenientes, tales como la corrosión, la degradación oxidativa y la pérdida de disolventes debido a la evaporación, que eventualmente contribuyen a una mayor contaminación ambiental, así como un costo adicional de operación a través de la sustitución de disolventes.¹

Por otra parte, los líquidos iónicos (LIs) son considerados como solventes verdes y se han propuesto como candidatos para reemplazar a las disoluciones acuosas de aminas, ya que no son volátiles, son muy estables y no son inflamables.¹

1.2 Importancia del CO₂

Entre los gases de efecto invernadero (GEI) más importantes, en mayor proporción se encuentra el CO₂. El CO₂ es un gas, que a temperatura ambiente es incoloro, inodoro, no inflamable y denso. Su concentración en la atmósfera terrestre es de 0.033% en volumen y tiene un papel fundamental en el control del clima. Es parte fundamental en los ciclos naturales y se elimina por las plantas a través de la fotosíntesis:²

$$6CO_2(g) + 6H_2O(l) \rightarrow C_6H_{12}O_6(ac) + 6O_2(g)$$

El Instituto Scripps de Oceanografía (SOI, por sus siglas en inglés) con sede en San Diego, California ha monitoreado la cifra actualizada a diario de la concentración de CO₂ en la atmósfera y establece que, en el año 2017 se tiene una concentración mayor a 400 ppm, cuando en el año 1958 la concentración era de 316 ppm. La concentración ha aumentado más del 40% durante los últimos 200 años, con la tendencia de aumentar por entre 2 y 2.5 ppm cada año mientras que no se controle o mitigue la emisión excesiva de CO₂ a la atmosfera.³

Después de la Convención de Cambio Climático en París (COP21) de 2015, en donde participaron alrededor de 150 presidentes y Jefes de Estado, algunos países se comprometieron a presentar planes voluntarios de reducción de emisiones para impedir que la temperatura del planeta suba más de dos grados a finales del siglo, en donde México se comprometió a reducir un 25% sus emisiones de gases de efecto invernadero para el año 2030.⁴

En México las emisiones de gases de efecto invernadero⁵ se muestran en la Figura 1.1, siendo el CO₂ el gas de efecto invernadero más abundante y el que mayor efecto tiene en la actividad humana.

Figura 1.1 Emisiones de gases de efecto invernadero por tipo de gas en México

En lo que respecta a los sectores industriales destacan cuatro que por su gran cantidad de emisiones se convierten en los principales prospectos para estudiar la posibilidad de capturar y almacenar el CO₂ que emiten. Dichos sectores son las industrias⁶: 1) Fuentes móviles (vehículos de carga y de transporte), 2) Generación eléctrica (termoeléctricas, carboeléctricas y ciclo combinado), 3) Industria Química y 4) Petróleo y Gas (extracción, procesamiento y transporte), como se muestra en la Figura 1.2.

Figura 1.2 Porcentaje de emisiones de CO₂ por sector industrial

Con base a los datos recabados por la Secretaría de Energía y la Agencia Internacional de Energía, el 19% de la mitigación de GEI debe provenir de la tecnología de Captura y Almacenamiento de CO₂ (CCS, por sus siglas en inglés) y más específicamente, se debe disminuir el 10% en la generación de energía eléctrica. Esto significa que el sector eléctrico tendría que reducir, por este medio, 20 Mt de CO₂ anualmente, lo cual representa un reto dadas las condiciones de la tecnología actual en México.⁷

Actualmente, las emisiones de CO₂ muestran una regulación ambiental a nivel mundial y es necesario atacar de inmediato este problema de manera efectiva y rápida.

1.3 Líquidos iónicos

Los líquidos iónicos se componen de distintos cationes y aniones, en forma de sales fundidas de baja temperatura. Debido a la atracción coulómbica entre los iones de estos líquidos, presentan una presión de vapor > 300°C, por lo que su volatilidad es despreciable, tienen alta estabilidad térmica y poca o nula inflamabilidad. Además, la afinidad química de los LIs proporciona innumerables oportunidades para diseñar LIs con características deseables adecuadas para la captura de CO₂ mediante la elección de un catión y un anión. También son considerados como "sólidos-líquidos", incorporando algunas de las propiedades físicas más útiles de las dos fases.^{1,8} Las Tablas 1.1 y 1.2 muestran algunas de las estructuras moleculares de los cationes y aniones de los LIs respectivamente.⁹

Cationes					
1-Etil-3-metilimidazolio; $R_1 = CH_3$, $R_2 = C_2H_5$ 1-Butil-3-metilimidazolio; $R_1 = CH_3$, $R_2 = C_4H_9$	[emim] ⁺ [bmim] ⁺				
1-Hexil-3-metilimidazolio; $R_1 = CH_3$, $R_2 = C_6H_{13}$	[hmim] ⁺	/\			
1-Aminopropil-3-butilimidazolio; $R_1 = C_4H_9$, $R_2 = C_3H_8N$	[apbim]+				
1-Dimetilaminoetil-3-butilimidazolio; $R_1 = C_4H_9$, $R_2 = C_5H_{12}N$	$[dmapbim]^+$ R ₁	\sim			
1-Dietilaminoetil-3-butilimidazolio; $R_1 = C_4H_9$, $R_2 = C_6H_{14}N$	[deaebim]+				
1-Etilpiridina-3-butilimidazolio; R1 = C4H9, R2 = C7H14N	[epbim]+				
1-Dimetilaminoetil-3-butilimidazolio; $R_1 = C_4H_9$, $R_2 = C_4H_{10}N$	[dmaebim]+				
1-N-butil-3-metilpiridina; R = C₄H ₉	[bmpy]+	+ N R			
Trihexiltetradecilfosf onio	[P(14)666] ⁺ H ₃ C(H ₂ C) ₅ -	$(CH_2)_5CH_3$ P^+ (CH_2)_1_3CH_3 (CH_2)_5CH_3			

Tabla 1.1 Estructuras moleculares de los cationes de los LIs

Tabla 1.2 Estructuras moleculares de los aniones de los LIs

1.4 Captura de CO₂ por líquidos iónicos

Se pueden diseñar líquidos iónicos para tareas específicas (TSILs, por sus siglas en inglés), que consisten en iones funcionalizados, los cuales son atractivos para la separación de gases y en su regeneración son económicos, pueden ajustarse a diferentes materiales absorbentes con una gran capacidad de adsorción y una elevada tasa de absorción de captura de CO₂.¹⁰ En general, los absorbentes a base de LIs, deben tener las siguientes características básicas: alta capacidad de absorción, baja viscosidad, beneficios económicos y un menor requerimiento de energía para su regeneración.¹¹

El líquido iónico de tarea específica 1-amino-propil-3-butil-imidazolio de tetrafluoroborato [APBIm]⁺[BF₄]⁻ es un líquido iónico amino-funcionalizado, en donde el catión consiste en un ion imidazolio y está enlazado covalentemente a una amina primaria. Esta sal absorbe fácil y de manera reversible una gran cantidad de CO₂, como se muestra en la Figura 1.3

Figura 1.3 Esquema de captura de CO₂ el líquido iónico 1-amino-propil-3-butil-imidazolio de tetrafluoroborato [APBIm]⁺[BF₄]⁻

Este LI se prepara a partir de materiales de partida disponibles comercialmente. El núcleo de cationes se ensambla mediante la reacción del 1-butilimidazol con bromohidrato de 2-bromopropilamina en etanol. Después de 24 horas a reflujo, el etanol se elimina a vacío y el residuo sólido se disuelve en una cantidad mínima de agua que se lleva a acabo aproximadamente a un pH de 8 mediante la adición, en pequeñas porciones de KOH sólido. El producto bromuro de imidazolio se separa del subproducto KBr por evaporación del agua, seguido por extracción del residuo con etanol-THF, en el que la sal de imidazolio es soluble. Posteriormente, el intercambio iónico con NaBF₄ en etanol/agua genera la sal del compuesto **1** de la figura 1.3 con un 58% de rendimiento global. Los análisis fisicoquímicos de resonancia magnética nuclear (RMN) y espectrometría de masas verifican la

estructura y composición del LI. Después de secar a vacío a 80°C, el producto es relativamente viscoso, libre de agua (hasta los límites de detección de RMN), por lo que este líquido puede ser utilizado directamente para la captura de CO₂.

La absorción molar de CO₂ por mol de TSIL durante el período de exposición de 3 horas se aproxima a 0.5 mol, el máximo teórico para el secuestro de CO₂ como un carbamato de amonio. Su absorción es comparable a la de la monoetanolamina (MEA), β , β '-hidroxiaminoetil éter (DGA) y di-isopropanol-amina (DIPA), las cuales son aminas capaces de adsorber CO₂. El CO₂ se extrae a partir del LI tras un calentamiento de 80 a 100°C, durante varias horas a vacío. El líquido iónico recuperado es reciclado repetidamente para la absorción de CO₂ (cinco ciclos) sin pérdida alguna.⁸

La absorción de CO₂ por LI es altamente deseable y para ello es necesario hacer un estudio teórico general en donde haremos uso de dos metodologías; una mediante cálculos de estructura electrónica aplicando teoría de funcionales de la densidad (TFD) y otra mediante un proceso de ingeniería química. La primera, nos dará información de la viabilidad de absorción de CO₂ por el líquido iónico [APBIm]⁺[BF₄]⁻, y la segunda nos permitirá conocer el costo económico para que esa viabilidad teórica sea posible a escala industrial.

La metodología teórica, se describirá en el ANEXO I, mientras que la metodología de ingeniería de proceso se describirá brevemente a continuación.

1.5 Proceso de absorción de gases en torres de absorción

La absorción es el proceso de transferencia de masa gas-líquido en el cual un componente de la mezcla gaseosa es disuelto en el líquido, con la finalidad de eliminar a ese componente del gas. La absorción se selecciona cuando la diferencia en los puntos de ebullición entre los componentes del gas y líquido es muy grande. Este proceso se lleva a cabo en torres de absorción y éstas pueden ser empacadas o de platos.¹²

1.5.1 Elección de torres de platos y empacadas

La elección entre el uso de una torre de platos o de una torre empacada para una operación de transferencia de masa dada, debería basarse en un análisis de costos detallado para cada uno de estos casos. Por lo tanto, el diseño económico óptimo para cada tipo sería desarrollado en detalle y la elección final se basaría en una consideración de costos y beneficios en las condiciones óptimas. En muchos casos la decisión puede tomarse sobre la base de un análisis cualitativo de las ventajas y desventajas relativas y se elimina la necesidad de una comparación detallada de los costos. Se deben tener en cuenta las siguientes ventajas y desventajas generales de las torres de platos y empaques cuando se debe elegir entre estos dos tipos de elementos de contacto entre las fases:¹²

- Las eficiencias de las etapas para torres empacadas se basan en ensayos experimentales con cada tipo de empaque de relleno. El rendimiento varía no sólo con el tipo y tamaño del empaque, sino también con las velocidades del fluido, las propiedades del fluido, el diámetro de la columna, la presión de funcionamiento y en general, el grado de dispersión del líquido sobre la superficie de empaque disponible.
- Debido a las dificultades de dispersión de líquido en torres empacadas, el diseño de torres de platos es considerablemente más fiable y requiere menos factor de seguridad cuando la relación de masa velocidad líquida a masa velocidad de gas es baja.
- Las torres de platos se pueden diseñar para manejar amplias gamas de flujos de líquido sin inundaciones.
- Si la operación involucra líquidos que contienen sólidos dispersos, se prefiere el uso de una torre de platos porque las placas planas de los mismos son más accesibles para la limpieza.
- 5. Se prefieren torres de platos si se requiere enfriamiento entre etapas para eliminar los calores de reacción o de solución.
- 6. El peso total de una torre de platos suele ser menor que el de una torre empacada diseñada para la misma carga. Sin embargo, si se toma en

consideración la retención de líquidos durante el funcionamiento, ambos tipos de torres tienen aproximadamente el mismo peso.

- Cuando se producen grandes cambios de temperatura, como en las operaciones de destilación, a menudo se prefieren torres de platos porque la expansión térmica o la contracción de los componentes del equipo pueden aplastar el empaque.
- 8. La información de diseño para torres de platos generalmente está más disponible y es más confiable que para torres empacadas.
- 9. Si se manejan fluidos altamente corrosivos, las torres empacadas resultan ser más baratas y fáciles de construir que las torres de platos.
- 10. Normalmente se prefieren torres empacadas si los líquidos tienen una gran tendencia a espumar.

11.

12. La caída de presión a través de torres empacadas puede ser menor que la caída de presión a través de torres de platos diseñadas para el mismo servicio. Esta ventaja deriva del hecho de que el empaque sirve para disminuir la posibilidad de colapso de la pared de la torre y hace que las torres compactadas sean particularmente deseables para el funcionamiento en vacío.

1.5.2 Factores para la elección del líquido absorbente

Para la elección adecuada del disolvente, es necesario considerar varias propiedades, tales como:¹³

1. Solubilidad del gas. Esta debe ser elevada, a fin de aumentar la rapidez de la absorción y disminuir la cantidad requerida de disolvente. En general, los disolventes de naturaleza química similar a la del soluto que se va a absorber proporcionan una buena solubilidad. Para los casos en que las soluciones formadas son ideales, la solubilidad del gas es la misma para todos los disolventes. Sin embargo, es mayor para los disolventes de bajo peso molecular y, por ende, deben utilizarse masas menores de estos disolventes, medidos en libras. Con frecuencia, la reacción química del disolvente con el soluto produce una solubilidad elevada del gas, pero si se quiere recuperar el disolvente para volverlo a utilizar, la reacción debe ser reversible.

- Volatilidad. El disolvente debe tener una presión baja de vapor, puesto que el gas saliente en una operación de absorción generalmente está saturado con el disolvente y en consecuencia, puede perderse una gran cantidad.
- 3. *Corrosión.* Los materiales de construcción que se necesitan para el equipo no deben ser raros o costosos.
- 4. *Costo.* El disolvente debe ser barato, de forma que las pérdidas no sean costosas y debe obtenerse fácilmente.
- Viscosidad. Se prefiere la viscosidad baja debido a la rapidez en la absorción, mejores características en la inundación de las torres de absorción, bajas caídas de presión en el bombeo y buenas características de transferencia de calor.
- Misceláneos. El disolvente no debe ser tóxico, ni inflamable, debe ser estable químicamente y debe tener un punto bajo de congelamiento y un punto alto de ebullición.

Capítulo 2. Objetivo e hipótesis del trabajo

2.1 Objetivo general

Estudiar la estructura del líquido iónico 1-alquil-3-propilamina imidazolio de tetrafluoroborato, para entender el proceso de captura de CO₂ por este LI. Posteriormente, se evaluará el efecto de la longitud de la cadena alquílica en el proceso de captura de CO₂ a través de una torre de absorción.

2.2 Objetivos particulares

Para cumplir con el objetivo general del trabajo se plantean los siguientes objetivos particulares, con metodologías de modelación molecular y con ingeniería de proceso.

En la primera parte se realizará la:

- Construcción de los líquidos iónicos y la interacción CO₂-LI
- Optimización de los líquidos iónicos y la interacción CO₂-LI con diferentes funcionales.
- Cuantificar el efecto de la cadena alquílica del líquido iónico en las variables del proceso de captura de CO₂ de gases de combustión

En la segunda parte se realizará la:

- Correlación las dimensiones del equipo de proceso (torre de absorción) con la longitud de la cadena alquílica del líquido iónico.
- Selección la longitud de la cadena alquílica del líquido iónico que optimiza el proceso de captura de CO₂ a partir de gases de combustión.

2.3 Planteamiento del problema

La enorme cantidad de CO₂ en la atmósfera, provoca el calentamiento global del planeta. Por eso, cualquier iniciativa que se tome, para regular la emisión y absorción de CO₂ es un avance significativo para mejorar las condiciones

ambientales de nuestro planeta. Una medida importante al respecto, es considerar la eliminación de CO₂ de una corriente de gases de combustión con un flujo estándar de 100,000 kg/día, para lo cual consideramos como líquido absorbente el líquido iónico 1-alquil-3-propilamina imidazolio de tetrafluoroborato y evaluando los incrementos en la longitud de la cadena alquílica de este líquido iónico. En este caso, la estructura electrónica del LI nos indicará la posible captura de CO₂ por un líquido iónico del tipo 1-alquil-3-propilamina imidazolio de tetrafluoroborato. Se sabe que los gases de combustión tienen una composición típica de 79% mol N₂, 13% mol CO₂, 7% mol O₂ y 1% mol de otros gases. La finalidad es disminuir el CO₂ de los gases de combustión hasta 1% mol en una torre de absorción con las condiciones de operación más apropiadas. Los estudios de ingeniería de proceso nos indicará la viabilidad económica de la captura de CO₂ por el líquido iónico 1-alquil-3-propilamina imidazolio de tetrafluoroborato.

2.4 Hipótesis de trabajo

El CO₂ es un compuesto muy estable termodinámicamente y presenta un momento dipolar cero y su composición en exceso en la atmósfera provoca el calentamiento global, razón por la cual es necesaria la captura, almacenamiento y transformación de CO₂. Se ha observado que los TSIL a base 1-alquil-3-propilamina imidazolio de tetrafluoroborato son una alternativa adecuada para absorber o adsorber el CO₂, según sea el caso y además se ha observado que el tamaño de la cadena alquílica mejora su capacidad de absorción de este gas.

Cabe aclarar que cuando la cadena alquílica de este líquido iónico es corta, este TSIL está en fase líquida a condiciones normales; en este caso, el CO₂ es capturado por el líquido iónico mediante absorción. Pero cuando la cadena alquílica es larga, este TSIL se encuentra en estado sólido a las mismas condiciones, por lo cual el CO₂ es adsorbido por el líquido iónico. En ambos casos, la molécula de CO₂ interacciona químicamente con la molécula del TSIL estudiado.

Capítulo 3. Metodología computacional

En este capítulo se describe la construcción de los líquidos iónicos aislados y los líquidos iónicos interaccionando con CO₂, mediante una metodología computacional optimizando todos los sistemas químicos considerados en este trabajo de tesis. El líquido iónico considerado es el 1-alquil-3-propilamina imidazol de tetrafluoroborato [1-alquil-3-PAIM]⁺[BF₄]⁻ y sus derivados dependiendo del tamaño de la cadena alquílica, donde la cadena alquílica se incrementa de uno hasta veinte átomos de carbonos, con la finalidad de entender el efecto de la cadena alquílica en el proceso de adsorción.

Por otra parte, para la simulación de un proceso de absorción de CO₂ en el líquido iónico antes descrito, en una hoja de Excel se programó el proceso de absorción de CO₂ en el LI en una torre de absorción, con la finalidad de ver el efecto que tiene la cadena alquílica del líquido iónico estudiado en el proceso y así saber qué tendencias hay y cuál es la cadena alquílica más apropiada para este proceso de ingeniería, mediante la optimización por costos.

3.1 Metodología teórica. Construcción y optimización de los sistemas estudiados

Se estudió la estructura electrónica de los líquidos iónicos aislados con diferente tamaño en la cadena alquílica, así como la interacción entre la amina primaria del líquido iónico, [1-alquil-3-PAIM]⁺[BF₄]⁻ y el CO₂.⁸ El estudio se realizó con una metodología de modelación molecular con teoría de funcionales de la densidad (TFD) mediante la optimización de geometría de los sistemas químicos involucrados, utilizando el programa Gaussian09, de Gaussian Inc.¹⁴ Para los cálculos se consideraron todos los electrones, un conjunto de bases 6-31G+G^{**}, así como un funcional híbrido de gradiente generalizado (GGA) B3LYP¹⁵. Para efectos de comparación de las propiedades electrónicas de los líquidos iónicos de manera aislada y de la interacción de los líquidos iónicos con el CO₂ se consideró el funcional wB97XD¹⁶ que se le adiciona un término de dispersión.

Para generar las estructuras de las moléculas de los líquidos lónicos con uno hasta veinte átomos de carbono se consideró la estructura de la Figura 3.1, incrementando la cadena a partir del átomo 13, usando el programa GaussView. Además, con el mismo programa se generó la estructura de la molécula del CO₂ y anión BF₄⁻. Para realizar los cálculos de estructura electrónica se utilizó el programa Gaussian09, de Gaussian Inc.

Hemos considerado cadenas alquílicas pares a partir de cuatro átomos de carbono, es decir, butil-, etil-, butil-, hexil-, octil-, etc., debido a que experimentalmente es difícil sintetizar LIs con tamaño de cadena pequeña e impar. Para los cálculos de estructura electrónica en los líquidos iónicos aislados y los líquidos iónicos interaccionando con CO₂, se consideró una carga igual a cero, debido a que estos sistemas completos son neutros.

Para estar seguros de que se obtuvo una estructura en equilibrio de mínima energía, se determinaron los modos normales de vibración. Si la dE/t es mayor a cero, todos

los modos normales de vibración son reales por lo que las frecuencias de vibración presentan valores positivos, mientras que, si la dE/t es menor a cero, hay al menos un modo normal de vibración negativo, lo que representa una frecuencia de vibración imaginaria, con un valor negativo que indica que no se ha alcanzado una estructura de equilibrio de mínima energía, más bien es un estado de transición. En todos los casos estudiados, todas las frecuencias de vibración fueron positivas, lo que nos asegura que se obtuvieron estructuras de equilibrio de mínima energía en la superficie de potencial.

Una vez alcanzada la estructura de mínima energía, se determinó la energía total del sistema, la forma de los orbitales moleculares, el orbital más alto ocupado (HOMO) y el orbital más bajo desocupado (LUMO), las energías orbitales HOMO y LUMO y el gap o energía de separación HOMO-LUMO, así como las cargas de todos los átomos mediante un análisis poblacional de Mulliken, la geometría por medio de las distancias de enlace, los ángulos de enlace de las moléculas y el momento dipolar. También se hizo el cálculo del $\Delta H_{Reacción}$ mediante las energías totales de todas las moléculas involucradas en la reacción.

Con los datos obtenidos, se realizaron gráficas de la energía total y el gap HOMO-LUMO para entender el comportamiento de los LIs en la absorción de CO₂ en función del número de carbonos de la cadena alquílica.

3.2 Metodología teórica del diseño y simulación de un proceso de absorción de CO₂ en el LI

En una hoja de Excel se simuló el proceso de absorción del CO₂ en un líquido absorbente como el 1-alquil-3-propilamina imidazol de tetrafluoroborato, donde se inicia considerando la composición de gases de alguna corriente que contenga CO₂. En este caso se consideraron los gases de combustión, biogás y aire atmosférico con una composición molar de CO₂ del 13%, 35% y 0.04% respectivamente. Posteriormente, se inician los cálculos para trazar las líneas de equilibrio y operación y así saber las etapas de equilibrio que nos ayudará en el diseño de la torre de platos. La hoja programada en Excel permite cambiar variables de

operación como temperatura (T, °C), presión (p, bar), numero de átomos de carbono de la cadena alquílica del líquido lónico (NC) y el flujo másico de una corriente de gases que contenga el gas CO₂ (W, kg/día).

Con datos experimentales reportados en la literatura,^{17,18,19,20} se realizaron correlaciones de densidad (ρ , g/cm³), viscosidad (μ , cp), tensión superficial (σ , dinas/cm) y constante de la Ley de Henry de los LIs (*H*, bar). Estas correlaciones nos ayudan a entender el comportamiento de los LIs en la absorción de CO₂ mediante una hoja de Excel programada, considerando ecuaciones que quedan en función de las variables de proceso. Las correlaciones pueden quedar como ecuaciones lineales, polinómicas o no lineales, dependiendo del valor del coeficiente de correlación R² más cercano a 1. Es necesario considerar que las correlaciones se limitan a una cadena alquílica no mayor a doce átomos de carbono, debido a que los LIs cambian de líquido a especies más viscosas después de ocho átomos de carbono en la cadena alquílica, modificando sus propiedades, para los cuales no se cuenta con información reportada experimentalmente. Una vez que se lleva a cabo el diseño de la torre de absorción, se obtienen las dimensiones de la torre, tales como diámetro y altura, las cuales se utilizarán en la optimización del proceso.

El parámetro fundamental en la optimización del proceso son los costos, en donde se consideran los costos fijos y costos variables, cuya suma nos da el costo total del proceso. Los costos fijos consideran el costo de la torre, costo de las bombas y el costo del LI, mientras que los costos variables consideran el costo de la energía eléctrica y el mantenimiento de la torre. Todos los costos están considerados en dólares. La elección del proceso más óptimo es aquel que tenga un menor costo total del proceso y esto depende de las variables de operación, tales como: temperatura, presión y tamaño de la cadena alquílica del LI.

El algoritmo base de esta simulación en la hoja de Excel nos arroja principalmente el diámetro de la torre (ft), altura de la torre (ft), eficiencia de la torre (%), cantidad de los LIs absorbentes (galones por minuto) y los costos totales del proceso (US\$), así como sus respectivas gráficas en función del número de átomos de carbono de la cadena del LI estudiado.

3.2.1 Ecuaciones del balance de materia de una torre de absorción

La Figura 3.3 muestra la torre de absorción isotérmica a contracorriente y la Figura 3.4 el domo de la torre. Los balances pueden apreciarse de la siguiente forma:

Balance General

Global:
$$G_1 + L_2 = G_2 + L_1$$
 Ec. 3. 1

Componente CO₂:
$$y_{CO_2}^1 G_1 + x_{CO_2}^2 L_2 = y_A^2 G_2 + x_{CO_2}^1 L_1$$
 Ec. 3. 2

Balance en el domo

Global:
$$G + L_2 = G_2 + L$$
 Ec. 3. 3

Componente CO₂:
$$y_{CO_2}G + x_{CO_2}^2L_2 = y_{CO_2}^2G_2 + x_{CO_2} + x_{CO_2}L$$
 Ec. 3. 4

Despejando y_{CO_2} del balance del componente CO_2 en el domo:

$$y_{CO_2} = \frac{L}{G} x_{CO_2} + \frac{y_{CO_2}^2 G_2 - x_{CO_2}^2 L_2}{G}$$
 Ec. 3. 5

Ésta ecuación representada en un diagrama $y_{CO_2}x_{CO_2}$ que describe una línea recta, tiene la forma: y = mx +b (línea de operación de la torre de absorción).

Los resultados del proceso de absorción, describen entre otras cosas la línea de operación y la curva de equilibrio, como se muestra en Figura 3.2:

Figura 3.2 Representación de la línea de operación y la curva de equilibrio

Figura 3.3 Torre de absorción isotérmica a contracorriente

Figura 3.4 Representación del domo en la torre de absorción

3.2.2 Ecuaciones para la curva de equilibrio y curva de operación

Para el proceso de absorción del CO₂ en los LIs considerados, es necesario trazar la línea de operación y la curva de equilibrio como se muestra en la Figura 3.2 y para ello requerimos de ecuaciones que se describen a continuación.

• Flujo molar de gases de combustión (G1)

$$G_1 = \frac{W}{Masa \ molar \ del \ gas}$$
 Ec. 3. 6

• Cálculo del flujo de gas de salida (G₂)

$$G_2 = \left(\frac{1 - y_{CO_2}^1}{1 - y_{CO_2}^2}\right) G_1$$
 Ec. 3. 7

• Cálculo de *CO*₂ absorbido

$$CO_2 absorbido = G_1 - G_2$$
 Ec. 3.8

• Pendiente (m) de la Curva de Equilibrio

$$m_{eq} = \frac{H_{CO_2 - LI}}{p_{operación}}$$
 Ec. 3. 9

• Componente $x_{CO_2}^{1*}$

$$x_{CO_2}^{1*} = \frac{y_{CO_2}^1}{m_{eq}}$$
 Ec. 3. 10

Donde:

 $x_{CO_2}^{1*}$ es la composición del CO₂ en la curva de equilibrio.

 m_{eq} es la pendiente de la curva de equilibrio

• Cálculo del $\left(\frac{L}{G}\right)_{min}$

 $EI\left(\frac{L}{G}\right)_{min}$ es la condición mínima en la que opera la torre y es la situación con el menor requerimiento de líquido absorbente.

$$\left(\frac{L}{G}\right)_{min} = \frac{y_{CO_2}^2 - y_{CO_2}^2}{x_{CO_2}^2 - x_{CO_2}^{1*}}$$
 Ec. 3. 11

• Cálculo del $\left(\frac{L}{G}\right)_{op}$

Para seleccionar el $\left(\frac{L}{G}\right)$ de operación o de diseño, se recomienda determinar el $\left(\frac{L}{G}\right)$ económicamente óptimo y para ello se considera una regla heurística que dice lo siguiente:

$$1.1 \left(\frac{L}{G}\right)_{min} \le \left(\frac{L}{G}\right)_{op} \le 1.5 \left(\frac{L}{G}\right)_{min}$$

Por lo tanto, se considera:

$$\left(\frac{L}{G}\right)_{op} = 1.5 \left(\frac{L}{G}\right)_{min}$$
 Ec. 3. 12

• Cantidad de líquido iónico absorbente (L2) necesario

$$L_2 = G_2 \left(\frac{L}{G}\right)_{op}$$
 Ec. 3. 13

• Cantidad de L_1 a la salida

 $L_1 = L_2 + Cantidad \ de \ CO_2 \ absorbido$ Ec. 3. 14

• Cálculo de x¹_{CO2} de la línea de operación

$$x_{CO_2}^1 = \frac{CO_2 \ absorbido}{L_1}$$
 Ec. 3. 15

• Componentes m y b de la línea de operación

$$m_{op} = \left(\frac{L}{G}\right)_{op}$$
 Ec. 3. 16

Para la obtención de "b" de la recta se sabe que la ecuación de la recta tiene la forma y =mx + b, por lo que se despeja "b" y se cumple lo siguiente:

$$b = y_{CO_2}^2 - m_{op}(x_{CO_2}^2)$$
 Ec. 3. 17

• Cálculo del Número de Unidades de Transferencia (NTU)

$$NTU = \int_{y_{CO_2}}^{y_{CO_2}^1} \frac{dy_{CO_2}}{y_{CO_2} - y_{CO_2}^*} \longrightarrow f(x_{CO_2})$$
 Ec. 3. 18

Línea de Operación Curva de Equilibrio

El NTU se puede calcular por método numérico:

$$NTU = \int_{y_{CO_2}}^{y_{CO_2}^1} \left(\frac{1}{y_{CO_2} - y_{CO_2}^*}\right) dy_{CO_2}$$
 Ec. 3. 19

El método numérico seleccionado es la regla del trapecio en donde:

$$Tamaño \ de \ paso = \frac{x_{CO_2}^1 - x_{CO_2}^2}{N\acute{u}m. \ de \ intervalos}$$
 Ec. 3. 20

3.2.3 Ecuaciones para el diseño de una torre de absorción

Para el diseño de la torre de absorción es necesario considerar datos base, espaciamiento entre platos, parámetro de flujo, parámetro de capacidad, diámetro de la torre y altura de la torre, por lo que a continuación se describen sus respectivas ecuaciones.²¹

- 1) Datos Base
- Presión: p
- Temperatura: T
- Número de Carbonos de la cadena alquílica del LI: NC
- Masa molecular de los gases de combustión: PMG
- Masa molecular del líquido iónico = PMLI
- 2) Espaciamiento entre platos (Ts)

La elección del espaciamiento entre platos se puede seleccionar a nuestro criterio a partir de la Gráfica de Fair, correspondiente a la Figura 3.5.

3) Parámetro de flujo (FP)

$$FP = \frac{L}{G} \sqrt{\frac{\rho_G}{\rho_{LI}}}$$
 Ec. 3. 21

Donde:

L = Promedio de los flujos de entrada y salida del Líquido lónico ($L_1 y L_2$)

$$L = \frac{L_1 + L_2}{2}$$
 Ec. 3. 22

G = Promedio de los flujos de entrada y salida de los gases de combustión ($G_1 y G_2$)

$$G = \frac{G_1 + G_2}{2}$$
 Ec. 3.23

 ρ_G = Densidad de los gases de combustión

$$\rho_G = \frac{P(PM_G)}{RT}$$
 Ec. 3.24

 ho_{LI} = Densidad del líquido iónico dependiendo de la cadena alquílica, Ec. II.2 correspondiente al Anexo II

4) Parámetro de Capacidad (C_{SB})

i) Gráfica de Fair:

De la Figura 3.5 sobre la inundación de torres en platos perforados²² se lee el valor de C_{SB} , teniendo el valor calculado para FP y el espaciamiento entre platos:

FP, Ts $\rightarrow C_{SB}$

Figura 3.5 Inundación en torres de platos (Gráfica de Fair)

i) Corrección por tensión superficial (σ)

$$C_{SB} = C_{SB \ gráfica} \left(\frac{\sigma}{20}\right)^{0.2}; \quad \sigma = \frac{dina}{cm}$$
 Ec. 3. 25

Donde:

 σ = Tensión superficial dependiendo de la cadena alquílica, Ec. II.6 correspondiente al Anexo II

ii) Corrección por el tipo de sistema:

$$C_{SB} = C_{SB \ anterior} FS$$
 Ec. 3. 26

Donde:

Para un sistema moderadamente espumante: FS = 0.85

iii) Corrección por área de orificios o de aberturas:

$$C_{SB} = C_{SB \ anterior} F_{SA}$$
 Ec. 3. 27

Donde:

$$F_{SA} = 5\left(\frac{\% Aa}{100}\right) + 0.5$$
 Ec. 3.28

Aa = porcentaje de área de abertura = 14

iv) Corrección por inundación:

$$C_{SB \ operación} = C_{SB \ anterior} \left(\frac{\% F}{100}\right)$$
 Ec. 3.29

Donde:

Considerando un sistema no espumante: % F = Porcentaje de inundación = 82

- 5) Diámetro de la torre (D_T)
- i) Velocidad máxima permitida del gas:

$$U_{N} = \frac{C_{SB}}{\left(\frac{\rho_{G}}{\rho_{LI}}\right)^{1/2}}; \quad U_{N} = \frac{ft}{s} \qquad \rho_{G}, \ \rho_{LI} = \frac{lb}{ft^{3}}$$
 Ec. 3.30
ii) Área transversal de la columna (A_T) :

$$A_T = \frac{V}{\rho_G U_N}; \quad \rho_G = \frac{lb}{ft^3}$$
 Ec. 3. 31

Donde:

 $V = Flujo \ masico \ del \ gas \ \left(\frac{lb}{h}\right)$

iii) Diámetro de la torre (D_T) :

$$D_T = \sqrt{\frac{4A_T}{\pi}}$$
 Ec. 3.32

6) Altura de la torre (Z_T) :

 $Z_T = NP * Ts$ Ec. 3. 33

Donde:

NP = Número de platos

$$NP = NTU\left(\frac{100}{E_0}\right)$$
 Ec. 3. 34

 $E_0 = Eficiencia global$

$$E_0 = 1.2(7.3989 \ln(x) + 40.692)$$
 Ec. 3. 35

$$x = 0.062 \left(\frac{\rho_{LI} p}{\mu_{LI} H_{LI-CO_2} PM_{LI}} \right); \quad \rho_{LI} = \frac{Kg}{m^3}, \ p = bar, \ \mu_{LI} = cp, \ H_{LI-CO_2} = bar \ \text{Ec. 3.36}$$

Donde:

 PM_{LI} = masa molecular dependiendo de la cadena alquílica, Ec. II.9 correspondiente al Anexo II

 $\mu_{LI}(cp)$ = Viscosidad del LI dependiendo de la cadena alquílica, Ec. II.4 correspondiente al Anexo II

3.2.4 Ecuaciones para la optimización del proceso

El parámetro para elegir lo más óptimo son los costos. Los costos están actualizados al año 2016 con el último valor CEPCI (siglas en inglés de Chemical Engineering Plant Cost Index) reportado en la revista Chemical Engineering para los equipos. A continuación, se describen las ecuaciones correspondientes a los costos²³:

Costo total de la torre

Costo Total de la Torre = $(NP)(10^{(1.313*log_{10}(D_T)+2.8996)}) * CEPCI_{\frac{2016}{2012}}$ Ec. 3. 37

Donde:

NP = Número de platos

 D_T = Diámetro de la torre

$$CEPCI_{\frac{2016}{2012}} = 1.632$$

• Potencia de la bomba

De la gráfica B-7 del Crane, con la altura total de la torre (H_T) en ft, y el flujo del líquido iónico necesario (L_2) en gpm respectiva a una cadena alquílica del líquido iónico, se obtiene los caballos de fuerza del bombeo de líquido iónico (whp, siglas en inglés de work-horse-power). Para ello, primero se obtiene el valor correspondiente para mover agua:

$$whp = f(H_T(ft) \ y \ L_2(gpm))$$
 Ec. 3.38

Para obtener la potencia de la bomba (hp) de líquido iónico, se deben transformar los caballos de fuerza del agua mediante las densidades del líquido iónico y el agua, de manera que:

$$hp = whp * \frac{\rho_{LI}}{\rho_{H_2O}^{60^\circ F}}$$
 Ec. 3.39

Donde:

$$\rho_{H_2 0}^{60^{\circ}F} = 0.99897 \ \frac{g}{cm^3}$$

• Eficiencia de la bomba

De la gráfica 14-36 del Peters¹¹ (Curvas características para una bomba centrífuga típica que muestra el efecto de la viscosidad), se puede obtener la eficiencia de la bomba (η_{bomba}), dado el flujo del líquido iónico (L₂) y la viscosidad cinemática ν_{LI} en centistokes (cst), por lo que:

$$\eta_{bomba} = f(L_2(gpm), \nu_{LI}(cst))$$
 Ec. 3. 40

Donde:
$$v_{LI} (cst) = \frac{\mu_{LI}}{\rho_{LI}}; \quad \mu_{LI} = cp, \quad \rho_{LI} = \frac{g}{cm^3}$$

Costo de la energía para el bombeo

$$bhp = \frac{hp}{\eta_{bomba}}$$
 Ec. 3. 41

$$E = (bhp)(t)$$
 Ec. 3. 42

Donde:

$$hp = \frac{BTU}{h}$$

t = tiempo = 24 h

E =Energía para el bombeo en kWh

Costo de la bomba

El costo de la bomba (API 610, horizontal) en dólares, se obtiene mediante la Figura 14-41 (Costo de bomba centrifuga. Precio del motor incluido) del Peters¹¹, dado el L_2 (*gpm*) * $\Delta P(psi)$ y correspondiente a la línea de API-610, horizontal.

$$L_2 * \Delta P = 1714.2 * hp$$
 Ec. 3. 43

costo de la bomba (US\$) =
$$f(L_2 * \Delta P, API - 610 horizontal)$$
 Ec. 3. 44

Capítulo 4. Resultados y discusión

En este capítulo se presentan y discuten los resultados obtenidos en este trabajo de tesis, acerca de la estructura electrónica de los LIs a base de 1-alquil-3-propilamina-imidazolio de tetrafluoroborato aislado y su interacción con CO₂, mediante cálculos teóricos aplicando teoría de funcionales de la densidad (TDF), así como con un estudio de simulación mediante el diseño de una torre de absorción para el proceso de captura o de absorción de CO₂ con los LIs, antes mencionados.

4.1 Resultados de estructura electrónica

En esta sección se muestran y discuten los resultados obtenidos de la modelación molecular de los LIs, así como para la absorción de CO₂ aplicando TDF, utilizando dos funcionales, uno con aproximación de gradiente generalizado (GGA) el B3LYP y el wB97XD con un término de dispersión.^{15,16}

4.1.1 Estructuras optimizadas de LIs aislados con los funcionales B3LYP y wB97XD

En esta sección se presentan y discuten los resultados de la optimización de geometría de los LIs aislados con los funcionales B3LYP y wB97XD. La Tabla 4.1 muestra las distancias y ángulos de enlace al ir incrementando la cadena alquílica de los LIs de acuerdo a la Figura 3.1 del Capítulo 3 y la Figura 4.1 del presente capítulo con el funcional B3LYP, mientras que la Tabla 4.2 muestra las distancias y ángulos de enlace al ir incrementando la cadena alquílica y ángulos de enlace al ir incrementando la cadena alquílica de los LIs aislados con el funcional B3LYP, mientras que la Tabla 4.2 muestra las distancias y ángulos de enlace al ir incrementando la cadena alquílica de los LIs aislados con el funcional wB97XD.

La Figura 4.1 muestra la geometría de los LIs antes y después de la optimización geométrica, en donde se puede observar que hay un ligero acercamiento por parte del anión BF⁴⁻ al anillo imidazolinico a una distancia H18-F20 de 2.608 Å hacia el grupo amino, el cual se estabiliza por la presencia de posibles enlaces por puentes de hidrógeno.

Figura 4.1 Estructuras optimizadas del LI con una cadena alquílica de cuatro átomos de carbono: **a)** Estructura del LI antes de la optimización de la geometría; **b)** Estructura del LI después de la optimización de la geometría, con B3LYP/6-31+G**

Como se puede observar en la Tabla 4.1, no hay variaciones significativas en las distancias y ángulos de enlace al incrementar la cadena alquílica. En la Figura 4.1**b** se observa que el N1, C2 y N3 están en resonancia y no hay un doble enlace formal entre el N1=C2 y por encima de éstos átomos se encuentra el anión BF₄⁻ estabilizándose mediante distancias con posibles puentes de hidrógeno H14-F21 de 2.373 Å, H18-F20 de 2.608 Å y a una distancia de enlace del catión-anión, C2-B23 de 3.389 Å. La distancia de enlace N1-C2 es de 1.338 Å, N1-C5 de 1.384 Å, N3-C2 de 1.336 Å, N3-C4 de 1.381 Å y C4-C5 de 1.363 Å, las cuales presentan una leve modificación cuando se incrementa la cadena alquílica y esto se debe a que todas las estructuras de los LIs son resonantes, como consecuencia de que el anillo imidazolinico es muy aromático. La distancia catión-anión, C2-B23 obtenida con B3LYP/6-31+G^{**} de 3.389 Å es mayor a la reportada en la literatura con un nivel de teoría MP2 / 6-31G^{*} de 3.02 Å y menor a la obtenida con el campo de fuerza de 3.40 Å.²⁴

Por otra parte, el ángulo de enlace C8-N9-H18 es de ~109° en todas las estructuras de los LIs, el cual queda orientado hacia el grupo BF4⁻, favoreciendo la interacciones por puente de hidrógeno, mientras que el H17 no forma algún puente de hidrógeno

con algún átomo de F, por lo que el átomo N9 puede quedar libre y puede formar un enlace con otra molécula, que en este caso puede ser una interacción con el CO₂.

Parámetro	C1	C4	C8	C12	C16	C20		
Distancia de enlace (Å)								
N3-C4	1.381	1.381	1.381	1.381	1.381	1.381		
C4-C5	1.363	1.363	1.363	1.363	1.363	1.363		
N1-C5	1.383	1.384	1.384	1.384	1.384	1.384		
N1-C2	1.338	1.338	1.338	1.339	1.338	1.338		
N3-C2	1.337	1.336	1.336	1.336	1.336	1.336		
N3-C10	1.470	1.478	1.478	1.478	1.478	1.478		
N1-C6	1.480	1.480	1.480	1.480	1.479	1.479		
C8-N9	1.463	1.464	1.464	1.464	1.464	1.464		
N9-H17	1.016	1.016	1.016	1.016	1.016	1.016		
N9-H18	1.019	1.019	1.019	1.019	1.019	1.019		
H14-F21	2.225	2.373	2.373	2.374	2.383	2.383		
H18-F20	2.717	2.608	2.606	2.605	2.599	2.598		
C2-B23	3.374	3.389	3.389	3.389	3.389	3.389		
		Angulo d	e enlace (°)				
C2-N3-C10	125.261	125.423	125.441	125.450	125.471	125.474		
C2-N1-C6	126.447	126.480	126.487	126.491	126.491	126.492		
C8-N9-H17	110.216	110.242	110.239	110.240	110.244	110.245		
C8-N9-H18	109.138	108.921	108.914	108.911	108.892	108.892		

Tabla 4.1 Distancias de enlace y ángulos de enlace con diferente tamaño de cadena alquílica de uno hasta veinte átomos de carbono, obtenida con B3LYP/6-31+G**

La Tabla 4.2 presenta los resultados de la optimización de geometría con el funcional wB97XD y como en el resultado anterior con B3LYP, se observa que no hay variaciones significativas en las distancias de enlace y ángulos de enlace al incrementar la cadena alquílica. Para este funcional, las distancias de enlace por puentes de hidrógeno son de H14-F21 2.552 Å, H18-F20 de 2.430 Å y a una distancia de enlace del catión-anión, C2-B23 de 3.428 Å. La distancia de enlace son N1-C2 de 1.332 Å, N1-C5 de 1.378 Å, N3-C2 de 1.329 Å, N3-C4 de 1.376 Å y C4-C5 de 1.358 Å y de igual forma que con el funcional B3LYP, presentan solo una leve variación debido a la resonancia de las estructuras de los LIs por la presencia del anillo imidazolinico, que es muy aromático y resonante. La distancia catión-anión, C2-B23 obtenida con wB97XD/6-31+G** de 3.428 Å es mayor a la reportada en la literatura²⁴ con un nivel de teoría MP2 / 6-31G* de 3.02 Å y mayor a la obtenida con el campo de fuerza, 3.40 Å.

El ángulo de enlace C8-N9-H18 de ~108° en todos los LIs queda orientado hacia el grupo BF4⁻, favoreciendo la interacción por puente de hidrógeno y de igual manera como en el caso del funcional B3LYP, el H17 no forma algún puente de hidrógeno con algún átomo de F, por lo que el átomo N9 puede quedar libre para desplazar el H17 y formar un enlace con el CO₂.

Parámetro	C1	C4	C8	C12	C16	C20			
	Distancia de enlace (Å)								
N3-C4	1.376	1.376	1.376	1.376	1.376	1.376			
C4-C5	1.358	1.358	1.358	1.358	1.358	1.358			
N1-C5	1.378	1.378	1.378	1.378	1.378	1.378			
N1-C2	1.332	1.332	1.332	1.332	1.332	1.332			
N3-C2	1.329	1.329	1.329	1.329	1.329	1.329			
N3-C10	1.461	1.467	1.467	1.467	1.467	1.467			
N1-C6	1.470	1.470	1.470	1.470	1.470	1.470			
C8-N9	1.457	1.457	1.457	1.457	1.457	1.457			
N9-H17	1.014	1.014	1.014	1.014	1.014	1.014			
N9-H18	1.018	1.018	1.018	1.018	1.018	1.018			
H14-F21	2.502	2.552	2.554	2.555	2.554	2.553			
H18-F20	2.466	2.430	2.430	2.431	2.432	2.432			
C2-B23	3.421	3.428	3.427	3.384	3.384	3.384			
H18-F20	2.655	2.582	2.573	2.431	2.432	2.432			
		Ángı	ulo de enlac	e (°)					
C2-N3-C10	125.718	125.622	125.621	125.612	125.596	125.593			
C2-N1-C6	126.206	126.173	126.167	126.165	126.166	126.167			
C8-N9-H17	110.089	110.102	110.097	110.095	110.094	110.094			
C8-N9-H18	108.59744	108.50547	108.5007	108.5048	108.51408	108.52081			

Tabla 4.2 Distancias de enlace, ángulos de enlace y ángulo diedro de los LIs con diferente tamaño de cadena alquílica desde C1 hasta C20, obtenida con wB97XD/6-31+G**

La Figura 4.2 muestra la geometría optimizada con el funcional B3LYP de todos los Lls y no se observan cambios significativos en la geometría al incrementar la cadena alquílica y algo muy similar se presenta para las estructuras optimizadas con el funcional wB97XD donde no se muestran cambios significativos de acuerdo a las Tablas 4.1 y 4.2

Figura 4.2 Geometrías optimizadas de los LIs con B3LYP/6-31+G** desde una cadena alquílica de uno a veinte átomos de carbono

4.1.2 Estructuras optimizadas con B3LYP y wB97XD para los líquidos iónicos interaccionando con CO₂

Los resultados de la optimización de geometría de los LIs interaccionando con CO₂, se muestran en la Tabla 4.3, en donde no se observan variaciones significativas en las distancias de enlace y ángulos de enlace al incrementar la cadena alquílica. La Figura 4.3 muestra la absorción de CO₂ por el LI, optimizado con el funcional B3LYP/6-31+G^{**}. Como se había mencionado, el H17 del LI queda libre para formar el enlace con el CO₂, por lo que se puede formar el enlace C17-O34 y C17-O35, a una distancia de enlace de 1.270 Å y 1.263 Å respectivamente, para una cadena alquílica de cuatro átomos de carbono. La distancia de enlace de 1.270 Å y 1.263 Å indica que en la interacción LI-CO₂, la distancia de enlace C17-O34 y C17-O35 se alarga en comparación a la distancia de enlace del CO₂ aislado, que es de 1.169 Å. Este alargamiento se debe a que el CO₂ ha interaccionado con el LI.

Figura 4.3 Estructuras optimizadas de la reacción del LI tipo 1-alquil-3-propilaminaimidazolio de tetrafluoroborato con CO₂, obtenidas con B3LYP/6-31+G^{**}

La Figura 4.4 muestra más claramente la absorción del CO₂, por el líquido iónico 1-butil-3-propilamina-imidazolio de tetrafluoroborato, obtenidas con B3LYP/6-31+G**. Una estructura similar se observa para el funcional wB97XD.

Figura 4.4 Estructura optimizada del LI-CO2 obtenido con B3LYP/6-31+G**

Como se puede observar en la Tabla 4.4, para una cadena alquílica de cuatro átomos de carbono, la distancia de enlace N9-H17 del LI aislado es de 1.016 Å y al desplazar el H17 por el CO₂, la distancia de enlace N9-C17 que se forma en la reacción aumenta a 1.417 Å. Este alargamiento de enlace se debe a que el radio

atómico del C es más grande que el H, por lo que la distancia núcleo a núcleo incrementa. Este comportamiento también se observa en el ángulo de enlace del C8-N9-H17 que es de 110.242° en el LI aislado y al ser desplazado el H17 por el C del CO₂, el nuevo enlace C8-N9-C17 es de 121.667°. La diferencia entre ángulos es grande de ~11.425° y también se debe a que el átomo de C es más grande que el H y por lo tanto incrementa el ángulo.

Por otra parte, cuando se lleva a cabo la interacción entre el LI y el CO₂, la geometría de los sistemas estudiados, no se modifican significativamente, salvo donde tiene lugar la reacción, es decir, en la región del N9. Así la distancia de enlace C8-N9 del LI de 1.464 Å pasa a 1.445 Å al reaccionar con el CO₂. Esta disminución indica que el átomo de N ha reaccionado con el CO₂. Como se indica en la Tabla 4.3, el ángulo de enlace O-C-O del CO₂ aislado es de 180° y cuando el LI interacciona con el CO₂, el ángulo O34-C17-O35 ahora es de 127.302° (Tabla 4.4 y Tabla 4.5). Esto quiere decir que la molécula de CO₂ se distorsionó tanto, que dejó de ser una molécula lineal muy estable para interaccionar con el LI, modificando su momento dipolar (μ), que ahora es diferente de cero.

En cuanto a los ángulos de enlace, el C2-N3-C10 del LI en todos los LIs aislados, es de ~125° y al interaccionar con el CO₂ pasa a ~123° por lo que su variación es poca y lo mismo sucede en el ángulo de enlace C2-N1-C6 que es de ~126° y pasa a ~125° al interaccionar con el CO₂. Esta pequeña diferencia entre estos ángulos también nos indica que no hay una variación significativa en la geometría.

La Tabla 4.3 muestra la geometría optimizada del CO₂ aislado con los dos funcionales considerados en este trabajo de tesis. Como se puede observar, ambos funcionales generan la misma estructura, salvo en la distancia de enlace C-O, que el funcional B3LYP proporciona una distancia ligeramente mayor a la del funcional wB97XD, de 1.169Å y de 1.165 Å, es decir una diferencia de 0.004 Å

Tabla 4.3 Geometría optimizada del CO₂ aislado a un nivel de teoría B3LYP/6-31+G**. El funcional wB97XD muestra resultados muy similares

Funcional	Momento dipolar	Distancia de enlace (Å)	Ángulo de enlace (°)	Cargas de Mulliken (e)		en (e)
	0-C-0	C-0	0-C-0	0	С	0
B3LYP	0	1.169	180.00	-0.370	0.750	-0.375
wB97XD	0	1.165	180.00	-0.375	0.750	-0.375

Como se puede observar en las Tablas 4.4 y 4.5, todas las distancias de enlace y los ángulos de enlace se modifican ligeramente con respecto a los LIs aislados. Esto es una consecuencia de la interacción entre el LI y el CO₂. El CO₂ al acercarse al LI, va forzando a que las distancias de enlace se vayan alargando.

	C1	C4	C8	C12	C16	C20
		D	istancia de	enlace (Å)	
N3-C4	1.384	1.384	1.384	1.384	1.384	1.384
C4-C5	1.364	1.364	1.364	1.364	1.364	1.364
N1-C5	1.386	1.386	1.386	1.386	1.386	1.386
N1-C2	1.340	1.340	1.340	1.340	1.340	1.340
N3-C2	1.338	1.338	1.338	1.338	1.338	1.338
N3-C10	1.468	1.478	1.477	1.477	1.477	1.477
N1-C6	1.481	1.481	1.481	1.481	1.481	1.481
C8-N9	1.445	1.445	1.445	1.445	1.445	1.445
N9-C17	1.417	1.417	1.417	1.417	1.417	1.417
C17-O34	1.270	1.270	1.271	1.271	1.271	1.271
C17-O35	1.263	1.263	1.263	1.263	1.263	1.263

Tabla 4.4 Distancias de enlace y ángulos de enlace de la interacción LI-CO₂ con diferente tamaño de cadena alquílica desde C1 hasta C20 obtenida con B3LYP/6-31+G**

	C1	C4	C8	C12	C16	C20
			Ángulo de	enlace (°)		
C2-N3-C10	122.911	123.210	123.149	123.133	123.283	123.303
C2-N1-C6	125.264	125.195	125.275	125.264	125.273	125.274
C8-N9-C17	121.511	121.667	121.707	121.715	121.681	121.686
N9-C17-O34	116.394	116.405	116.388	116.379	116.400	116.398
N9-C17-O35	116.126	116.136	116.148	116.160	116.114	116.117
O34-C17-O35	127.321	127.302	127.301	127.298	127.324	127.324

Las diferencias principales se observan en los resultados de optimización de geometría con el funcional wB97XD/6-31+G**, donde las distancias de enlace son ligeramente más cortas que las obtenidas con el funcional B3LYP.

Parámetro	C1	C4	C8	C12	C16	C20
		Distancia de	e Enlace (Å))		
N3-C4	1.378	1.379	1.379	1.379	1.379	1.378
C4-C5	1.359	1.358	1.358	1.358	1.358	1.358
N1-C5	1.380	1.380	1.380	1.380	1.380	1.380
N1-C2	1.333	1.333	1.333	1.333	1.333	1.332
N3-C2	1.332	1.330	1.330	1.330	1.330	1.330
N3-C10	1.461	1.471	1.471	1.471	1.471	1.468
N1-C6	1.472	1.471	1.471	1.471	1.471	1.470
C8-N9	1.439	1.438	1.438	1.438	1.438	1.438
N9-C17	1.411	1.411	1.410	1.410	1.410	1.412
C17-O34	1.263	1.265	1.265	1.265	1.265	1.265
C17-O35	1.258	1.257	1.257	1.257	1.257	1.257

Tabla 4.5 Distancias de enlace y ángulos de enlace de la interacción LI-CO₂ con diferente tamaño de cadena alquílica desde C1 hasta C20 obtenida con wB97XD/6-31+G^{**}

Parámetro	C1	C4	C8	C12	C16	C20
			Ángulo de	Enlace (°)		
C2-N3-C10	122.861	124.622	124.690	124.630	124.538	122.743
C2-N1-C6	125.461	125.027	124.976	124.939	124.936	124.575
C8-N9-C17	121.764	122.303	122.448	122.680	122.549	120.536
N9-C17-O34	116.540	116.505	116.480	116.477	116.480	116.187
N9-C17-O35	115.908	115.941	115.918	115.905	115.934	116.108
O34-C17-O35	127.380	127.392	127.442	127.450	127.421	127.186

4.1.3 Propiedades electrónicas de los LIs aislados

La Tabla 4.6 muestra los resultados obtenidos con B3LYP donde se observa que a medida que aumenta el número de átomos de carbono en la cadena alquílica, la energía de separación o gap electrónico HOMO y LUMO en todos los LIs estudiados se modifica ligeramente y se observa que para el HOMO presenta un valor de ~-6.3 eV y para el LUMO muestra un valor de ~-1.4 a 1.5 eV. El momento dipolar µ se mantiene de ~12 Debyes en todos los casos, lo que hace que todas las moléculas sean muy polares. En la Figura 4.5 se muestra una correlación lineal entre la energía total y el número de átomos de la cadena alquílica, que indica que a medida que el tamaño de la cadena alquílica del LI aumenta se vuelve más estable, mientras que en la Figura 4.6 se muestra una correlación entre el ΔE_{H-L} de los Lls, en donde las cadenas cortas de uno, dos, cuatro, seis y ocho átomos de carbono, el gap ΔE_{H-L} aumenta ligeramente al incrementarse la cadena alquílica y se mantiene constante en 4.88 eV para cadenas alquílicas de diez a veinte átomos de carbonos. Los valores de ΔE_{L-H} de las cadenas de uno, dos, cuatro, seis y ocho átomos de carbono son menores en comparación de las cadenas alquílicas mayores a diez átomos de carbono, por lo que son más reactivos, como se muestran en la Tabla 4.6

NC	Еномо (eV)	E _{LUMO} (eV)	ΔE _{L-H} (eV)	μ (Debye)
1	-6.337	-1.523	4.82	12 <mark>.</mark> 11
2	-6.304	-1.441	4.86	12.13
4	-6.286	-1.412	4.87	12.11
6	-6.281	-1.403	4.88	12.11
8	-6.280	-1.399	4.88	12.11
10	-6.279	-1.398	4.88	12.11
12	-6.278	-1.397	4.88	12.11
14	-6.278	-1.397	4.88	12.11
16	-6.279	-1.397	4.88	12.11
18	-6.278	-1.396	4.88	12.11
20	-6.278	-1.396	4.88	12.11

Tabla 4.6 Energía HOMO, energía LUMO, gap ΔE_{L-H} , de los LI con diferentes tamaños de cadena alquílica, desde C1 hasta C20 obtenida con B3LYP/6-31+G^{**}

Figura 4.6 Comportamiento del Δ_{H-L} (eV) de los LIs en función del NC en la cadena alquílica

La Tabla 4.7 muestra los resultados obtenidos con el funcional wB97XD donde puede apreciarse que a medida que aumenta el número de átomos de carbono en la cadena alquílica, la energía de separación o gap electrónico HOMO y LUMO en todos los LIs estudiados se modifica ligeramente y se observa que para el HOMO presenta un valor de ~-8.35 eV y para el LUMO muestra un valor de ~-0.49 a 0.58 eV. El momento dipolar μ se mantiene entre 11.54 a 11.67 en todos los casos, lo que hace que todas las moléculas sean polares. En la Figura 4.7 se muestra una correlación lineal entre la energía total y el número de átomos de la cadena alquílica, que indica que a medida que el tamaño de la cadena alquílica del LI aumenta se vuelve más estable, mientras que en la Figura 4.8 se muestra una correlación entre el ΔE_{H-L} de los LIs, en donde el gap electrónico aumenta ligeramente al incrementarse la cadena alguílica y se mantiene constante en 8.94 eV para cadenas alquílicas de ocho a veinte átomos de carbono. Los valores de ΔE_{L-H} de las cadenas de uno, dos y cuatro átomos de carbono son menores en comparación de las cadenas alguílicas mayores a seis átomos de carbono, por lo que son más reactivos, como se muestran en la Tabla 4.7

NC	Еномо (eV)	Есимо (eV)	ΔE∟н (eV)	μ (Debye)
1	-8.395	0.490	8.89	11.54
2	-8.375	0.558	8.93	11.66
4	-8.359	0.578	8.94	11.67
6	-8.355	0.584	8.94	11.67
8	-8.354	0.587	8.94	11.68
10	-8.353	0.588	8.94	11.68
12	-8.353	0.588	8.94	11.68
14	-8.352	0.589	8.94	11.68
16	-8.352	0.589	8.94	11.68
18	-8.351	0.589	8.94	11.68
20	-8.351	0.589	8.94	11.68

Tabla 4. 7 Energía HOMO, energía LUMO, gap ΔE_{L-H} , de los LI con diferentes tamaños de cadena alquílica, desde C1 hasta C20 obtenida con wB97XD/6-31+G^{**}

Figura 4.7 Correlación de la energía total de los LIs con el NC en la cadena alquílica

Figura 4.8 Comportamiento del Δ_{H-L} (eV) de los LIs con el NC en la cadena alquílica

4.1.4 Propiedades energéticas y electrónicas de los LIs y su interacción con CO₂

La Tabla 4.8 muestra las energías de interacción de los LIs con el CO₂, donde se observa que a medida que aumenta el número de átomos de carbono en la cadena alquílica, la energía total disminuye, haciéndose más estable. La energía HOMO y LUMO en toda la interacción LI-CO₂ estudiada, casi no se modifica manteniéndose en un valor de ~-5.3 eV para el HOMO y de ~-1 eV para el LUMO. El ΔE_{L-H} de la interacción de LIS-CO₂ va de 4.22 a 4.29 eV.

Si comparamos los valores de energía HOMO y energía LUMO de la Tabla 4.6 que corresponden al LI aislado, con los valores de la Tabla 4.8 que corresponden al LI interaccionando con el CO₂, se observa que las energías aumentan y esto provoca que el ΔE_{L-H} disminuya en la interacción del LI con el CO₂. Por otra parte, el momento dipolar (µ) en la interacción del LI con el CO₂ disminuye a medida que aumenta la cadena alquílica, pero aun así el momento dipolar es alto de ~10 Debye.

	E Total (Ha)	E HOMO (eV)	E LUMO (eV)	∆E _{L-н} (eV)	μ (Debye)
C1	-627.412661	-5.306	-1.085	4.22	10.06
C2	-666.733385	-5.281	-0.998	4.28	9.98
C4	-745.368501	-5.260	-0.978	4.28	9.89
C6	-824.003311	-5.254	-0.971	4.28	9.84
C 8	-902.638044	-5.252	-0.969	4.28	9.84
C10	-981.272778	-5.252	-0.968	4.28	9.83
C12	-1059.907507	-5.252	-0.968	4.28	9.82
C14	-1138.542166	-5.251	-0.966	4.29	9.77
C16	-1217.176890	-5.251	-0.966	4.29	9.77
C18	-1295.811618	-5.251	-0.966	4.29	9.76
C20	-1374.446330	-5.251	-0.965	4.29	9.75

Tabla 4.8 Energía total, energía HOMO, energía LUMO, gap ΔE_{L-H} de la interacción LI-CO₂ con diferentes tamaños de cadena alquílica, desde C1 hasta C20 obtenida con B3LYP/6-31+G^{**}

En la Tabla 4.9 se muestra la interacción de los LIs con el CO₂ con cálculos de estructura electrónica con el funcional wB97XD y de igual forma, a medida que aumenta el número de átomos de carbono en la cadena alquílica, la energía total disminuye, haciéndose más estable. La energía HOMO y LUMO en todos los LI-CO₂ estudiados, casi no se modifica manteniéndose en un valor de ~-7.5 eV para el HOMO y de ~-0.9 eV para el LUMO. El ΔE_{L-H} de la interacción de LIs-CO₂ va de 8.36 a 8.46 eV.

Si comparamos los valores de energía HOMO y energía LUMO de la Tabla 4.6 que corresponden al LI aislado, con los valores de la Tabla 4.8 que corresponden al LI interaccionando con el CO₂, se observa que las energías aumentan y esto provoca que el ΔE_{L-H} disminuya en la interacción del LI con el CO₂. Por otra parte, el momento dipolar (µ) disminuye en la interacción del LI con el CO₂ con un valor de ~10 Debye pero, aun así, el momento dipolar es alto. Para este funcional wB97XD

el momento dipolar disminuye en ~2 Debye con respecto al resultado con B3LYP, pero aun así todos los líquidos iónicos son polares.

Tabla 4.9 Energía total, energía HOMO, energía LUMO, gap ΔE_{L-H} de la interacción LI-CO₂ con diferentes tamaños de cadena alquílica, desde C1 hasta C20 obtenida con wB97XD/6-31+G**

	E Total (Ha)	Еномо (eV)	ELUMO (eV)	ΔE _{L-H} (eV)	μ (Debye)
C1	-627.222220	-7.500	0.864	8.36	10.01
C2	-666.533149	-7.480	0.993	8.47	9.64
C4	-745.145852	-7.475	0.992	8.47	9.42
C6	-823.758278	-7.460	0.984	8.44	9.33
C8	-902.370556	-7.460	0.988	8.45	9.29
C10	-980.982708	-7.464	0.987	8.45	9.29
C12	-1059.594956	-7.464	0.987	8.45	9.29
C14	-1138.207254	-7.465	0.988	8.45	9.29
C16	-1216.819557	-7.467	0.990	8.46	9.29
C18	-1295.431896	-7.467	0.989	8.46	9.29
C20	-1374.044227	-7.468	0.990	8.46	9.29

4.1.5 Análisis poblacional por cargas de Mulliken de los LIs aislados con el funcional B3LYP y wB97XD

La Tabla 4.10 muestra los resultados del análisis poblacional de cargas de Mulliken más relevantes de los átomos de los LIs, en donde se observa que, al aumentar la cadena alquílica, las variaciones son mínimas, mientras que en los átomos N9, H14, H17 y H18 hay cambios notables. Así, por ejemplo, para una cadena alquílica de cuatro carbonos, las cargas de Mulliken en el N1 y N3 se observa que la carga del

N1 es -0.019 *e* y la del N3 es de -0.065 *e* son grandes en comparación a la carga del N9 que es de -0.591 *e*, mientras que la carga del C del CO₂ aislado es de 0.75 *e*, lo cual hace que el átomo de C del CO₂ pueda interaccionar con el N9 para compensar cargas y se favorezca la interacción con el líquido iónico.

Átomo	1C	4C	8C	12C	16C	20C
N1	-0.059	-0.019	-0.017	-0.016	-0.016	-0.016
C2	-0.350	-0.270	-0.216	-0.219	-0.206	-0.209
N3	-0.054	-0.065	-0.008	-0.007	-0.005	-0.007
C4	0.007	0.080	0.169	0.159	0.179	0.169
C5	-0.035	-0.070	-0.098	-0.098	-0.108	-0.104
N9	-0.586	-0.591	-0.592	-0.592	-0.592	-0.592
H14	0.233	0.220	0.220	0.219	0.219	0.219
H17	0.285	0.284	0.284	0.284	0.284	0.284
H18	0.322	0.322	0.322	0.322	0.322	0.322

Tabla 4.10 Cargas de Mulliken de los LIs con diferente tamaño de cadena alquílica desde C1 a C20 obtenida a nivel B3LYP/6-31+G**

Mientras que en la Tabla 4.11 se muestran los resultados del análisis poblacional de cargas de Mulliken más relevantes de los átomos de los LIs obtenidas con el funcional wB97XD, en donde se observa que al aumentar la cadena alquílica, las variaciones son mínimas, como en los átomos N9, H14, H17 y H18 y en otros casos si hay cambios notables; así por ejemplo, las cargas de Mulliken en el N1, C2, N3, C4 y C5 las cuales aumentan considerablemente. Para una cadena alquílica de cuatro átomos de carbono, se observa que la carga del N1 es -0.078 *e* y la del N3 es de -0.159 *e* son muy altas en comparación a la carga del N9 que es de -0.623 *e*, mientras que la carga del C del CO₂ aislado es de 0.75 *e* y de igual forma, como en el caso del funcional B3LYP, el átomo de C del CO₂ puede interaccionar con el N9 para compensar cargas y se favorece la interacción con el líquido iónico.

Átomo	1C	4C	8C	12C	16C	20C
N1	-0.115	-0.078	-0.068	-0.068	-0.066	-0.067
C2	-0.205	-0.188	-0.125	-0.135	-0.124	-0.131
N3	-0.119	-0.159	-0.106	-0.105	-0.099	-0.101
C4	-0.013	0.045	0.111	0.097	0.117	0.107
C5	-0.102	-0.117	-0.125	-0.121	-0.129	-0.125
N9	-0.620	-0.623	-0.625	-0.625	-0.625	-0.625
H14	0.237	0.232	0.232	0.232	0.232	0.232
H17	0.297	0.296	0.296	0.296	0.296	0.296
H18	0.333	0.334	0.335	0.335	0.335	0.335

Tabla 4.11 Cargas de Mulliken de los LIs con diferente tamaño de cadena alquílica desde C1 a C20 obtenida a nivel wB97XD/6-31+G**

4.1.6 Análisis poblacional de los LIs interaccionando con CO₂

La Tabla 4.12 muestra las cargas de Mulliken de algunos átomos en la interacción del LI con el CO₂ obtenidos con B3LYP, en donde se observa que al incrementar la cadena alquílica los átomos N9, H18, C17, O34 y O35 mantienen carga electrónica sin cambios importantes. La carga del átomo C17 va de 0.51 *e* a 0.53 *e*, por lo que se favorece la interacción C17 del CO₂ y el N9 del grupo amino terminal. El átomo N9 en el LI pasó de tener una carga de -0.59 *e* en el LI a -0.45 *e* al interaccionar con el CO₂. Tal disminución, indica que el C del CO₂ aislado tiene una carga de 0.75 *e* y el oxígeno tiene una carga de -0.37 *e* y cuando interacciona el CO₂ con el LI, el N9 cede carga al C del CO₂ y a la vez, el C cede carga a los oxígenos para mantener estable a la molécula y la geometría de ésta, por lo que el N9 disminuye su carga, pero los oxígenos aumentan su carga, es decir, el O34 y O35 ahora tienen una carga de -0.63 *e*.

Átomo	C1	C4	C8	C12	C16	C20
N1	0.035	0.078	0.086	0.093	0.091	0.088
C2	-0.652	-0.781	-0.752	-0.762	-0.798	-0.789
N3	0.040	0.125	0.157	0.156	0.171	0.172
C4	0.078	0.147	0.151	0.135	0.144	0.148
C5	-0.059	-0.009	0.009	0.024	0.026	0.021
N9	-0.458	-0.458	-0.454	-0.453	-0.453	-0.454
H18	0.286	0.285	0.285	0.285	0.285	0.285
C17	0.512	0.537	0.526	0.520	0.529	0.532
O34	-0.630	-0.630	-0.627	-0.626	-0.628	-0.629
O35	-0.615	-0.593	-0.589	-0.589	-0.586	-0.586

Tabla 4.12 Cargas de Mulliken del LI con diferente tamaño de cadena alquílica desde C1 hasta C20 interaccionando con CO₂ obtenida con B3LYP/6-31+G**

En la Tabla 4.13 se muestra el análisis de carga poblacional por Mulliken, para algunos átomos en la interacción del LI con el CO₂, donde se observa que al incrementar la cadena alquílica los átomos N9, H18, C17, O34 y O35 mantienen carga electrónica sin cambios significativos. La carga del átomo C17 es de 0.52 *e*, por lo que se favorece la interacción C17 del CO₂ y el N9 del grupo amino terminal. El átomo N9 en el LI tiene una carga de -0.62 *e*, mientras en la interacción LI-CO₂ presenta una carga de -0.49 *e*. El C del CO₂ aislado y el oxígeno tiene una carga de -0.375 *e* y cuando interacciona el CO₂ con el LI, el N9 cede carga al C del CO₂ y a la vez, el C cede carga, la carga del N9 disminuye y también disminuye la carga del C, pero los oxígenos aumentan su carga, es decir, el O34 y O35 ahora tienen una carga de ~-0.65 y ~-0.61 *e*, respectivamente.

Átomo	1C	4C	8C	12C	16C	20C
N1	0.008	0.110	0.112	0.119	0.117	0.117
C2	-0.569	-0.909	-0.852	-0.885	-0.882	-0.881
N3	0.036	0.035	0.066	0.077	0.083	0.081
C4	0.021	0.038	0.024	0.048	0.056	0.054
C5	-0.079	0.091	0.138	0.128	0.119	0.122
N9	-0.490	-0.493	-0.496	-0.498	-0.495	-0.495
H18	0.306	0.305	0.306	0.306	0.306	0.306
C17	0.521	0.524	0.523	0.524	0.523	0.523
O34	-0.656	-0.658	-0.658	-0.656	-0.656	-0.656
O35	-0.642	-0.618	-0.612	-0.615	-0.615	-0.615

Tabla 4.13 Cargas de Mulliken del LI con diferente tamaño de cadena alquílica desde C1 hasta C20 interaccionando con CO₂ obtenida con wB97XD/6-31+G**

4.1.7 ΔE de la interacción Lls con CO₂ con los funcionales B3LYP y wB97XD

Finalmente, en la Tabla 4.14 se presentan los resultados para la Δ H de reacción obtenidos con cálculos de estructura electrónica, los cuales se encuentran entre 255 y 262 kcal/mol con el funcional B3LYP, que indica que la captura del CO₂ por los LIs es viable y se puede llevar a cabo mediante un proceso de fisisorción. El funcional wB97XD muestra valores mayores con respecto al funcional B3LYP y esto es debido al término de dispersión involucrado en este funcional, el wB97XD. Para los dos funcionales considerados, a medida que se incrementa el número de carbonos en la cadena alquílica, la energía de reacción (Δ H_{Reacción}) disminuye, lo que hace que sean más estables con cadenas alquílicas más grandes.

	B3LYP	wB97XD	B3LYP	wB97XD	B3LYP	wB97XD
	kcal/mol	kcal/mol	kcal/mol	kcal/mol	kcal/mol	kcal/mol
	ΔE _{Re}	eacción	ΔH_{Re}	eacción	$\Delta G_{Energ(a G bbs)}$	
C1	262.376	269.151	261.052	267.113	244.955	252.220
C2	259.622	266.154	258.411	264.503	242.815	251.364
C4	257.781	264.585	256.518	262.891	240.197	249.439
C6	257.177	263.991	254.629	262.710	241.808	249.816
C8	256.912	263.753	255.637	262.391	239.277	249.061
C10	257.149	263.798	255.607	261.557	236.745	245.608
C12	257.93	263.727	255.352	261.601	237.316	244.949
C14	256.698	263.695	255.019	261.240	236.675	244.878
C16	256.675	263.742	254.973	261.206	235.211	245.172
C18	256.659	263.709	254.940	261.104	235.277	244.773
C20	256.644	264.159	254.941	261.082	235.563	244.560

Tabla 4.14 $\Delta E_{Reacción}$, $\Delta H_{Reacción}$, $\Delta G_{Energía Gibbs}$, de la reacción entre el LI y el CO₂ desde una cadena alquílica desde C1 hasta C20 con los funcionales B3LYP y wB97XD

Es bien sabido que la $\Delta E_{Reacción}$ sobrestima la energía de reacción, mientras que la $\Delta H_{Reacción}$ y la $\Delta G_{Energía}$ Gibbs generan energías de reacción más adecuados, ya que para determinar la $\Delta H_{Reacción}$ y $\Delta G_{Energía}$ Gibbs se considera la termoquímica de los sistemas involucrados, los LIs y el CO₂, considerando los modos normales de vibración y la corrección de la energía en el punto cero. Como se puede observar de la Tabla 4.14, con ambos funcionales, la energía de fisisorción obtenida de entre 248 kcal/mol y ~260 kcal/mol, indican que la absorción de CO₂ en los LIs considerados es un proceso viable, lo cual se verá reflejado en la simulación del proceso de ingeniería.

4.2 Simulación del proceso

En este apartado, se presentan los cálculos y resultados de la simulación del proceso en donde se desea eliminar CO₂ de una corriente de gases de combustión con un flujo de 100,000 kg/día estándar. El líquido iónico absorbente es un LI a base de 1-alquil-3-propilamina imidazol de tetrafluoroborato. Los gases de combustión tienen una composición molar de 79% N₂, 13% CO₂, 7% O₂ y 1 % de otros gases. La finalidad es disminuir el CO₂ de los gases de combustión hasta 1% mol en una torre de absorción con las condiciones de operación más apropiadas. Las correlaciones que se presentan, están desarrolladas en el ANEXO II.

La torre de absorción considerada, es una torre de platos, debido a que su diseño permite el flujo de líquidos con viscosidad alta y en ella se pueden manejar amplias gamas de flujos de líquido sin inundaciones. También son más accesibles al mantenimiento que una torre empacada.²²

Para los LIs, se consideraron cadenas alquílicas de dos a doce átomos de carbono, debido a que al incrementar la cadena alquílica, los LIs comienzan a ser más viscosos, por lo que se requeriría del diseño de torres de adsorción más específicas para estas condiciones de LIs viscosos, pero en este trabajo de tesis está fuera del alcance y nos centramos a encontrar una tendencia del diseño de las torres de absorción al incrementar la cadena alquílica y posteriormente encontrar una cadena alquílica óptima junto con las condiciones de operación, pero solamente del rango manejado, es decir, de dos a doce átomos de carbono.

4.2.1 Curva de equilibrio y curva de operación

A continuación, se presentan los resultados al sustituir las ecuaciones del capítulo 3 para el LI con una cadena alquílica de cuatro átomos de carbono, debido a que en la literatura se cuenta con más datos sobre este tipo de moléculas.

Los gases de combustión tienen una composición molar de 79% N₂, 13% CO₂, 7% O₂ y 1 % de otros gases, por lo que su masa molar es de 30.26 kg/kgmol. Sustituyendo en la Ec. 3.6, el flujo molar de los gases de combustión es:

$$G_1 = \frac{10000 \frac{kg}{dia}}{30,26 \frac{kg}{kgmol}} = 3304.693 \frac{kgmol}{dia}$$

Sustituyendo en la Ec. 3.7, el flujo de gas de salida es:

$$G_{2} = \left(\frac{1 - 0.13}{1 - 0.01}\right) * 3304.693 \frac{kgmol}{dia}$$
$$G_{2} = 2904.124 \frac{kgmol}{dia}$$

Sustituyendo la Ec. 3.8, se puede saber el CO₂ absorbido de la siguiente manera:

$$CO_2 \ absorbido = 3304.693 \frac{kgmol}{dia} - 2904.124 \frac{kgmol}{dia}$$

$$CO_2 absorbido = 400.569 \frac{kgmol}{dia}$$

Como lo indica este planteamiento, los gases de combustión contienen el 13% mol de CO₂, por lo que la fracción molar es:

$$y_{CO_2}^1 = \frac{13}{100} = 0.13$$

Como la finalidad del problema es disminuir el CO₂ de los gases de combustión hasta el 1% mol, entonces la fracción molar es:

$$y_{CO_2}^2 = \frac{1}{100} = 0.01$$

A la entrada de la torre, el LI no contiene nada de CO₂, por lo que la fracción molar es:

$$x_{CO_2}^2 = 0$$

En la Figura 4.9 pueden apreciarse de manera más detallada los componentes y su fracción molar, así como los flujos de los datos bases de la torre de absorción. La *p* de la torre se considera de 220 bar y la T de 85°C, ya que, a altas temperaturas y presiones, es mayor la eficiencia de la torre y el diseño va siendo más óptimo.

Figura 4.9 Torre de absorción isotérmica a contracorriente con los datos base

De acuerdo con la Ec. 3.9, el cálculo de la pendiente de la curva de equilibrio, se estima de la siguiente forma:

$$m_{eq} = \frac{125.7597 \ bar}{220 \ bar} = 0.5716$$

La Ec. 3.10 correspondiente a la composición del CO₂ en la curva de equilibrio, da como resultado:

$$x_{CO_2}^{1*} = \frac{0.13}{0.5716} = 0.2274$$

El $\left(\frac{L}{G}\right)_{min}$ de acuerdo a la Ec. 3.11 queda de la siguiente forma:
 $\left(\frac{L}{G}\right)_{min} = \frac{0.13 - 0.01}{0.2274 - 0} = 0.5276$
El $\left(\frac{L}{G}\right)$ de operación o de diseño, queda de la siguiente forma de acuerdo a la Ec.
3.12

$$\left(\frac{L}{G}\right)_{op} = 1.5 * 0.5276 = 0.6859$$

Sustituyendo en la Ec. 3.13, la cantidad de líquido iónico absorbente necesario es:

$$L_2 = 2904.124 \frac{kgmol}{dia} * 0.6859 = 1992.119 \frac{kgmol}{dia}$$

La cantidad de líquido iónico a la salida, sustituyendo en la Ec. 3.14 es:

$$L_1 = 1992.119 \frac{kgmol}{dia} + 400.569 \frac{kgmol}{dia} = 2392.688 \frac{kgmol}{dia}$$

El cálculo de $x_{CO_2}^1$ de la línea de operación sustituyendo en la Ec. 3.15

$$x_{CO_2}^1 = \frac{400.569 \frac{kgmol}{dia}}{2392.688 \frac{kgmol}{dia}} = 0.1674$$

La pendiente *m* de la línea de operación es igual al $\left(\frac{L}{G}\right)_{op}$ y el valor de *b* se calcula con la Ec. 3.16, de manera que su valor es:

b = 0.01 - 0.68(0) = 0.01

Para saber el número de unidades de transferencia (NTU) se utiliza la Ec. 3.19 y el método numérico seleccionado es por la regla del trapecio en donde el número de intervalos son 10 y el tamaño de paso es de 0.0257 al sustituir en la Ec. 3.20

La Tabla 4.15 toma como ejemplo el método numérico por la regla del trapecio para una cadena alquílica de cuatro átomos de carbono, en donde se obtiene el NTU y los valores para la construcción de la línea de operación y de equilibrio.

<i>xc0</i> ²	<i>yco</i> ₂	<i>y</i> [*] _{<i>c</i>02}	$\begin{array}{c} \mathbf{y}_{\boldsymbol{c}\boldsymbol{o}_2} \\ - \mathbf{y}_{\boldsymbol{c}\boldsymbol{o}_2}^* \end{array}$	$\frac{1}{y_{CO_2}-y_{CO_2}^*}$	$\left(\frac{1}{y_{CO_2}-y_{CO_2}^*}\right)_{prom}$	dy _{CO2}	$\left(\frac{1}{y_{CO_2}-y_{CO_2}^*}\right)_{prom}dy_{CO_2}$
0.00	0.01	0.00	0.01	100.00	91.97	0.01	1.06
0.02	0.02	0.01	0.01	83.93	78.13	0.01	0.90
0.03	0.03	0.02	0.01	72.32	67.92	0.01	0.78
0.05	0.04	0.03	0.02	63.52	60.08	0.01	0.69
0.07	0.06	0.04	0.02	56.64	53.87	0.01	0.62
0.08	0.07	0.05	0.02	51.10	48.82	0.01	0.56
0.10	0.08	0.06	0.02	46.55	44.64	0.01	0.51
0.12	0.09	0.07	0.02	42.74	41.12	0.01	0.47
0.13	0.10	0.08	0.03	39.51	38.12	0.01	0.44
0.15	0.11	0.09	0.03	36.73	35.52	0.01	0.41
0.17	0.12	0.10	0.03	34.32		NTU	6.43

 Tabla 4.15 Método numérico por la regla del trapecio para una cadena alquílica de C4

La Figura 4.10 presenta los valores de la línea de operación y equilibrio para una cadena alquílica de cuatro átomos de carbono, en donde el trazado de la línea de operación toma los valores y_{CO_2} vs x_{CO_2} y la línea de equilibrio toma los valores de $y_{CO_2}^*$ vs x_{CO_2} vs x_{CO_2} vs x_{CO_2} del método del trapecio de la Tabla 4.15.

Figura 4.10 Líneas de equilibrio y operación para el sistema CO₂-LI para una cadena alquílica de cuatro átomos de carbono

4.2.2 Diseño de la torre de absorción

Para una cadena alquílica de cuatro átomos de carbono, las dimensiones de la torre de absorción, tales como el diámetro y altura, es necesario saber el parámetro de capacidad (C_{SB}), el cual se obtiene de la Gráfica de Fair con una elección de espaciamiento entre platos de 12" debido a que la torre no es tan alta. El parámetro de flujo (FP) se calcula con la Ec. 3.21 y queda de la siguiente forma:

$$FP = \frac{585540.48}{93939.39} \sqrt{\frac{223.71}{1169.24}} = 2.72$$

Donde la sustitución de la Ec. 3.22, 3.23, 3.24 y 6.2, arrojan valores de:

$$L = 585540.48 \frac{kg}{dia}$$

$$G = 93939.39 \frac{kg}{dia}$$

$$\rho_G = 223.71 \frac{kg}{m^3}$$
$$\rho_{LI} = 1169.24 \frac{kg}{m^3}$$

El parámetro de capacidad C_{SB} obtenido de la Figura 3.1 al leer el valor calculado FP = 2.72 y el espaciamiento entre platos de 12" es de 0.033.

La corrección del C_{SB} por tensión superficial, tipo de sistema y área de orificios de las Ecs. 3.25, 3.26 y 3.27, nos lleva al cálculo del C_{SB} de operación necesario para el diámetro de la torre. Sustituyendo los valores en la Ec. 3.29:

$$C_{SB \ operación} = 0.038 \left(\frac{82}{100}\right) = 0.031$$

La velocidad máxima permitida del gas se calcula de acuerdo a la Ec. 3.30 y la sustitución queda de la siguiente forma:

$$U_N = \frac{0.031}{\left(\frac{13.95\frac{lb}{ft^3}}{72.92\frac{lb}{ft^3}}\right)^{1/2}} = 0.065\frac{ft}{s}$$

Donde la densidad del gas se calcula con la Ec. 3.24 y la densidad del LI con la Ec. 6.2 en $\frac{lb}{ft^3}$

El área transversal de la columna se calcula a partir del flujo másico del gas (W, $\frac{lb}{h}$) y la velocidad máxima permitida del gas. Sustituyendo la Ec. 3.31, el cálculo es de la siguiente forma:

$$A_T = \frac{8629.116\frac{lb}{h}}{\left(13.953\frac{lb}{ft^3}\right)\left(\frac{0.065ft}{s}\right)} = 2.630 ft^2$$

A partir del área transversal de la columna, es posible conocer el diámetro de la torre (D_T) con la Ec. 3.32:

$$D_T = \sqrt{\frac{4(2.630\,ft^2)}{\pi}} = 1.829\,ft$$

pero se redondea a un diámetro de 2 ft, quedando como diámetro nominal.

La altura de la torre (Z_T) se calcula con la Ec. 3.33, a partir del número de platos y el espaciamiento entre platos en pies (ft). El número de platos se calcula con la Ec. 3.34, 3.35 y 3.36. Sustituyendo los valores en la Ec. 3.33:

$$Z_T = 30 * 1 ft = 30 ft$$

Las Tabla 4.18 presenta los valores de diseño de la torre de absorción para diferentes tamaños de cadena alquílica, a una T y *p* óptimos para el proceso.

4.2.3 Optimización del proceso

Para seleccionar la cadena alquílica óptima del LI para el proceso y las condiciones de operación, se elaboraron las Tablas 4.16 y 4.17 que comparan las condiciones de operación y la Tabla 4.18 que compara las cadenas alquílicas.

Se elaboró una hoja programada de Excel con los cálculos para el diseño de la torre de absorción, antes mencionados. Todas las ecuaciones están fijas para que sólo se cambie la T, *p* y NC principalmente, aunque también puede cambiarse el flujo de entrada a la torre de algún gas que contenga CO₂, así como su respectiva composición.

En la Tabla 4.16, se fijó una *p* de 190 bar y una cadena alquílica de cuatro átomos de carbono y se varió la T de 40 a 85 °C y en donde saliera el menor costo total de la torre, ese era el óptimo. Se observa que a medida que se incrementa la T, la μ del LI disminuye, la eficiencia de la torre aumenta y el costo total de la torre disminuye. La eficiencia y el costo total de la torre se calculan con las ecuaciones 3.35 y 3.37.

NC	р	Т	Diámetro	Número	Viscosidad	Eficiencia	Costo Total
	(bar)	(°C)	de la	de platos	(cp)	de la	de la Torre
			Torre en	(NP)		Torre	(US\$ 2016)
			ft (Dт)				
4	190	40	2	97	87	6.28%	\$312,182.18
4	190	70	2	61	36	10.60%	\$196,320.75
4	190	80	2	42	18.79	15.34%	\$135,171.66
4	190	85	2	32	10.26	20.24%	\$102,987.93

Tabla 4.16 Variaciones de la T, manteniendo fija la *p* y el NC con su respectivo diámetro de la torre, número de platos, viscosidad, eficiencia de la torre y costo total de la torre

En la Tabla 4.17, se mantuvo fija la cadena alquílica de cuatro átomos de carbono y también se fijó una T de 85 °C, ya que como se muestra en la Tabla 4.16, esa T es la menor y, por ende, la óptima. Posteriormente se varió la p de 75 a 220 bar y aquella que tuviera el menor costo total de la torre, era el óptimo. Se observa que a medida que se incrementa la p, la μ del Ll aumenta, la eficiencia de la torre aumenta y el costo total de la torre disminuye.

NC	р	T (°C)	Diámetro	Número	Viscosidad	Eficiencia	Costo Total
	(bar)		de la	de	del LI (cp)	de la Torre	de la Torre
			Torre en	platos			(US\$ 2016)
			ft (Dт)	(NP)			
4	75	85	3	55	9.6	12.52%	\$301,444.16
4	100	85	3	46	9.79	14.95%	\$252,116.94
4	150	85	2	36	10.05	18.32%	\$115,861.43
4	190	85	2	32	10.26	20.24%	\$102,987.93
4	220	85	2	30	10.41	21.41%	\$96,551.19

Tabla 4.17 Variaciones de la *p*, manteniendo fija la T y el NC con su respectivo diámetro de la torre, número de platos, viscosidad, eficiencia de la torre y costo total de la torre

En la Tabla 4.18, se mantuvo fija la T de 85°C y *p* de 220 bar, ya que las Tablas 4.16 y 4.17 nos muestran que tienen el menor costo de la torre, lo que indica ser lo más óptimo. Posteriormente, se varió la cadena alquílica y observamos que a medida que se incrementa la cadena alquílica, la μ_{LI} aumenta, la eficiencia de la torre aumenta y los costos totales de la torre disminuyen.

Tabla 4.18 Variaciones del NC, manteniendo fija la T y p con su respectivo L₁, L₂, diámetro de la torre, número de platos, viscosidad, eficiencia de la torre y costo total de la torre

NC	р	Т	Diámetro	Número	Altura	Viscosidad	Eficiencia	Costo Total
	(bar)	(°C)	de la	de	de la	del LI (cp)	de la Torre	de la Torre
			Torre en	platos	torre			(US\$ 2016)
			ft (D⊤)	(NP)	en ft			
					(HT)			
2	220	85	2	31	36	10.22	21.24%	\$99,769.56
4	220	85	2	30	35	10.41	21.41%	\$96,551.19
6	220	85	2	28	33	10.61	21.94%	\$90,114.44
8	220	85	2	26	31	10.8	23.24%	\$83,677.70
10	220	85	2	21	26	10.99	25.82%	\$67,585.83
12	220	85	1	13	18	11.19	31.88%	\$16,839.43

En la Figura 4.11 se observa que a medida que aumenta la cadena alquílica, el costo total de la torre disminuye a una T de 85° C y *p* de 220 bar.

Figura 4.11 Costo total de la torre (US\$) contra el NC a una p = 220 bar y T = 85 °C

En la Figura 4.12 se observa que al incrementarse la cadena alquílica, la altura de la torre disminuye, lo cual hace que la torre sea más económica.

Figura 4.12 Altura de la torre (HT) contra el NC a una p = 220 bar y T = 85°C
La Figura 4.13 muestra que al incrementarse de longitud la cadena alquílica, la eficiencia de la torre aumenta.

Figura 4.13 Eficiencia de la torre contra el NC a una p = 220 bar y T = 85°C

La Tabla 4.19 muestra los respectivos caballos de fuerza (whp) y la potencia de la bomba (hp) para cada cadena alquílica de los LIs calculados con las ecuaciones 3.38 y 3.39 y se observa que estos disminuyen al aumentar la cadena alquílica.

NC	H⊤ (ft)	L₂ (gpm)	Whp	ρ _⊔ (g/cm³)	hp	
2	36	2410.41	0.79	1.23	0.98	
4	35	1992.12	0.71	1.17	0.83	
6	33	1573.83	0.61	1.11	0.67	
8	31	1155.54	0.53	1.05	0.56	
10	26	737.25	0.32	0.99	0.31	
12	18	318.97	0.10	0.93	0.09	

 Tabla 4.19
 Valores respectivos de whp y hp para cada cadena alquílica, de dos a doce átomos de carbono

La Tabla 4.20 muestra la eficiencia de la bomba η_{bomba} respectiva de cada cadena alquílica de los LIs calculada con la Ec. 3.40

NC	L ₂ (gpm)	µ (cp)	ρ (g/cm³)	μ (cst)	η _{bomba}
2	2410.41	10.22	1.23	8.32	48%
4	1992.12	10.42	1.17	8.91	46%
6	1573.83	10.61	1.11	9.56	45%
8	1155.54	10.80	1.05	10.28	41%
10	737.25	10.99	0.99	11.08	32%
12	318.97	11.19	0.93	11.99	18%

Tabla 4.20 Valores respectivos de eficiencia de la bomba para cada cadena alquílica, desdeC2 a C12

La Tabla 4.21 muestra el respectivo *bhp* y la energía para el bombeo de los LIs en la torre de absorción con una longitud de cadena alquílica desde dos hasta doce átomos de carbono, calculados con la Ec. 3.41 y 3.42 respectivamente. Se observa que al aumentar la cadena alquílica del LI, la energía para el bombeo disminuye.

Та	abla 4.2 [°]	1 Valores	respectivos	de bhp y	[,] energía	para e	el bombeo	del LI	para	cada	cadena
alo	quílica d	esde C2	hasta C12								

NC	Bhp	E (KWh)
2	2.039	36.489
4	1.799	32.195
6	1.497	26.787
8	1.380	24.694
10	0.981	17.556
12	0.524	9.383

La Tabla 4.22 presenta los costos de la energía en \$/kWh correspondiente a la tarifa industrial HM^{25,26}, los cuales posteriormente se convertirán a \$US/kWh mediante el tipo de cambio peso-dólar para el año 2016. El tipo de cambio usado es un promedio mensual.

Fecha	*Tarifa \$/KWh	**Tipo de cambio	Tarifa (\$US/KWh)
feb-16	0.8255	18.3	0.0451
feb-17	1.2551	20	0.0627

Tabla 4.22 Costos de energía correspondientes a la tarifa industrial

La Tabla 4.23 muestra el costo de la energía en dólares para un periodo de 4 años, variando la cadena alquílica. Se observa que al aumentar la cadena alquílica, el costo de la energía disminuye.

Tabla 4.23 Costo de la energía eléctrica en dólares, del proceso de la torre de absorción de CO₂ en el LI para un periodo de 4 años

NC	\$US K	Wh/4 años
2	\$	8,878
4	\$	7,833
6	\$	6,517
8	\$	6,008
10	\$	4,272
12	\$	2,283

La Tabla 4.24 muestra el costo en dólares de la bomba para cada $L_2 * \Delta P$ desde una cadena alquílica de dos hasta doce átomos de carbono utilizando las ecuaciones 3.43 y 3.44 y se observa que es el mismo para todos los casos, ya que la línea permanece constante en los valores obtenidos.

NC	ΔP*L ₂	US\$ (bomba) 2016
2	1677.61	\$	2,513.84
4	3083.73	\$	2,513.84
6	2565.69	\$	2,513.84
8	2365.30	\$	2,513.84
10	1681.58	\$	2,513.84
12	898.73	\$	2,513.84

Tabla 4.24 Costo en dólares de la bomba referente al año 2016 desde una cadena alquílicade C2 a C12

La Tabla 4.25 presenta los costos del LI necesario (L₂) para el proceso obtenido a partir de la Ec. 6.10, en donde se observa que al incrementarse la longitud de la cadena alquílica del LI, los costos disminuyen.

NC	L ₂ (Kgmol/día)	L ₂ (Kg)	Costo Total del LI
			(US\$) Feb 2016
2	2410.407	4164.57511	38234630.96
4	1992,119	3718.06877	30342564.32

3027.17649

2258.59439

1264.2488

182.737023

21616340.82

13824133.51

6448427.421

745662.0772

1573.831

1155.543

737.2549

318.9669

6

8

10

12

Tabla 4.25 Costos totales del LI necesario en el proceso en dólares para cadenas alquílicasde dos hasta doce átomos de carbono

Para obtener el costo total del proceso en un periodo de 4 años (Tabla 4.26) a una T de 85 °C y p de 220 bar, se consideraron los costos fijos y variables.

Los costos fijos involucran el costo total de la torre, costo de las bombas y el costo del LI en dólares. Los costos variables involucran el costo de la energía eléctrica y el mantenimiento de la torre. El mantenimiento de la torre se considera como el 10%

de los costos fijos. Los costos totales son resultado de la suma de los costos fijos y variables.

La Tabla 4.26 muestra los costos fijos, costos variables y costos totales del proceso en un periodo de 4 años, en donde se observa que a medida que al aumentar de longitud la cadena alquílica, los costos totales del proceso disminuyen.

Tabla 4.26 Costos fijos, costos variables y costos totales del proceso en una torre de absorción de CO₂ en LI en un periodo de 4 años a T = 85° C y *p* = 220 bar

NC	Costos Fijos (\$US)	Costos variables	Costos Totales
		(\$US)	(\$US)
2	\$38,339,428	\$30,689,299	\$69,028,727
4	\$30,444,143	\$24,370,981	\$54,815,124
6	\$21,711,483	\$17,382,221	\$39,093,704
8	\$13,912,839	\$11,142,288	\$25,055,127
10	\$6,521,041	\$5,225,376	\$11,746,417
12	\$767,529	\$618,589	\$1,386,118

La Figura 4.14 muestra el costo total del proceso en función del NC y se observa que al aumentar el NC, el costo total del proceso disminuye desde una cadena alquílica de dos hasta doce átomos de carbono, pero como lo indica la Tabla 4.14, a medida que aumenta la cadena alquílica, la viscosidad aumenta y esto repercute en el bombeo del LI y probablemente tengamos que usar solventes en mayor cantidad y esto involucre más costos, los cuales no están considerados en este trabajo de tesis y es por eso que debemos centrarnos en un valor donde la cadena alquílica no sea tan corta y tampoco muy larga, sino en un punto intermedio donde el costo total sea mínimo. Por otra parte, la gráfica tiene una tendencia lineal con pendiente negativa y pareciera que, si seguimos incrementando la cadena alquílica, el costo total del proceso sería negativo, lo cual es incongruente y esto es debido a que, a cadenas alquílicas mayores, la viscosidad aumenta hasta llegar a hacerse sólidos y por ende, tendríamos el diseño de una torre de adsorción para el manejo

de sólidos, pero está fuera del alcance en este trabajo de tesis. Las líneas rojas de la Figura 4.14 son líneas tangentes para marcar el valor donde cambia de rapidez la tendencia de la gráfica, valor conocido como punto de quiebre, y de esta forma seleccionar a la cadena más óptima. Se observa que el punto de quiebre se encuentra entre ocho y diez átomos de carbono, por lo que es necesario hacer conjuntamente un análisis tanto a nivel molecular como a nivel proceso para seleccionar la cadena más óptima. Más adelante se describe tal análisis.

Figura 4.14 Costo total del proceso en función del NC para cadenas alquílicas de dos a doce átomos de carbono

4.2.4 Selección de la cadena alquílica

El análisis para determinar la cadena alquílica óptima se realizará mediante el método Horizontal-Vertical (Tabla 4.27), en donde está involucrado un factor de peso para los parámetros moleculares y macroscópicos y un puntaje total, en donde el valor más alto es determinante para la cadena alquílica óptima. Las cadenas que involucramos son las de seis, ocho y diez átomos de carbono, ya que, como vimos anteriormente, el punto de quiebre está entre ocho y diez átomos de carbono, pero también se eligió un valor antecesor a ocho carbonos, que es el de seis carbonos, para tener un punto previo de comparación. El puntaje va de una calificación de 1 a

3, donde el 1 es una calificación de baja importancia y con 3 de alta importancia, así como valores intermedios a éstos. Para el análisis molecular, se utilizó la Tabla 4.6 con el funcional B3LYP y el parámetro GapHOMO-LUMO del LI en la cadena alquílica de seis átomos de carbono, se le dio mayor calificación considerando que tomamos el valor más bajo, ya que la diferencia gap más baja implica más reactividad. Al parámetro de energía HOMO del LI se le asignó la mayor calificación considerando a la cadena alquílica que presentara el valor más bajo y a la energía LUMO se le asignó la calificación más alta por presentar el valor más alto y esto es debido a que la diferencia entre éstos, harían el gap más pequeño y, por ende, más reactivo. Así mismo, el valor HOMO que tuvo menor cantidad fue la cadena alquílica de diez átomos de carbono y el valor LUMO que tuvo mayor cantidad fue el de la cadena alquílica de seis átomos de carbono.

A nivel macroscópico en donde está involucrado el proceso de la torre de absorción, al parámetro de la altura de la torre, eficiencia de la torre y costo total del proceso, se le asignó la calificación más alta a la cadena alquílica de ocho átomos de carbono, ya que el trazado de las líneas tangentes indicadoras del punto de quiebre, mostradas en las Figuras 4.14, 4.15 y 4.16 están más cercanas a ocho átomos de carbono.

El puntaje total más alto obtenido es el de la cadena alquílica de ocho átomos de carbono, por lo que es la molécula óptima para el proceso de la torre de absorción de CO₂ en LI desarrollado en este trabajo de tesis.

			Ν	IC óptimo	
	Parámetro	Factor de Peso	6	8	10
<u>ب</u>	Gap HOMO-LUMO del LI	0.5	3	2	2
cula	Energía HOMO del LI	0.3	1	2	3
lole	Energía LUMO del LI	0.2	3	2	1
2		Puntaje Total	2.4	2	2.1
lico	Altura de la Torre	0.2	1	3	2
cóp	Eficiencia de la Torre	0.3	1	3	2
cros	Costo Total del Proceso	0.5	1	3	2
Mag		Puntaje Total	1	3	2
	Puntaje T	otal	3.4	5	4.1

Tabla 4.27 Análisis Horizontal-Vertical para la selección de la cadena alquílica óptima

Figura 4.15 Trazado de líneas tangentes de la altura de la torre (HT) contra el NC

Figura 4.16 Trazado de líneas tangentes de la eficiencia de la torre contra el número de carbonos

4.2.5 Aplicación a la captura de CO₂ a partir de otras fuentes

Una vez que hemos encontrado las condiciones de operación y la cadena alquílica óptima, es decir, a una temperatura de 85°C y presión de 220 bar con una cadena alquílica de ocho átomos de carbono en gases de combustión, se dimensionó la torre de absorción a partir de otras fuentes en donde se involucran las emisiones de CO₂. Tales fuentes son el biogás y el aire atmosférico, a las cuales se les aplicaron las mismas ecuaciones del capítulo 3. Así mismo, la Tabla 4.28 resume las propiedades más relevantes.

Como las condiciones de operación son las mismas y el flujo de entrada de los gases es de 100,000 kg/día, el diámetro, eficiencia y altura de la torre son casi los mismos, pero difiere en la cantidad de LI absorbente, debido a que se trata de diferentes composiciones de entrada de CO₂ dependiendo de la fuente, por lo que los costos totales del proceso también cambian, siendo los gases de combustión lo más caro y el aire atmosférico el más barato.

Tabla 4.28 Principales parámetros de la torre y costo total del proceso para una cadena alquílica de C8 a 85 °C y 220 bar para gases de combustión, biogás y aire atmosférico en un periodo de 4 años

	Gases de Combustión	Biogás	Aire atmosférico
Fracción molar de CO₂ en la entrada	13%	35%	0.04%
Diámetro de la Torre (ft)	2	2	2
Eficiencia de la Torre (%)	23.24	23.28	23.28
Altura de la Torre (ft)	31	31	31
Cantidad de Ll absorbente (gpm)	65.48	59.77	53.63
Costos Totales del Proceso (\$US)	25,055,126	22,886,167	20,542,820

De acuerdo al proceso de ingeniería química considerado, se establece que el incremento de la cadena alquílica en el proceso en una torre de absorción, mejora el diseño de la torre y la capacidad de absorción, en donde la cadena alquílica de ocho átomos de carbono muestra ser la más viable en el proceso, en cuanto a los costos totales del proceso en un periodo de cuatro años. Esto correlaciona bien con lo establecido en los resultados de estructura electrónica, ya que, entre cuatro a ocho átomos de carbono en la cadena alquílica de los LIs considerados, el gap electrónico casi no varía y la energía de fisisorción obtenida para estos LIs es de entre 255 kcal/mol y ~262 kcal/mol y las propiedades extensivas de los LIs como tensión superficial, densidad y viscosidad, indica que la absorción de CO₂ en los LIs considerados es un proceso viable.

Capítulo 5. Conclusiones

Con base a los resultados teóricos aplicando TFD con el funcional B3LYP se encontró que los LIs presentan una energía HOMO de -6.3 eV y una energía LUMO de~-1.4 a 1.5 eV. El momento dipolar μ para los LIs estudiados se mantiene de ~12 Debyes en todos los casos, por lo que todos los LIs muy polares. El gap electrónico ΔE_{H-L} de los LIs, con cadenas alquílicas cortas de uno, dos, cuatro, seis y átomos de carbono, aumenta ligeramente al incrementarse la cadena alquílica y se mantiene constante en 4.88 eV para cadenas alquílicas de diez a veinte átomos de carbono.

En las interacciones del LI con el CO₂, con el funcional B3LYP se obtiene un valor de -5.3 eV para la energía HOMO y de ~-1 eV para la energía LUMO. El gap electrónico ΔE_{L-H} va de 4.22 a 4.29 eV y el momento dipolar es de ~10 Debyes. Es decir, el gap electrónico en la interacción LI-CO₂ disminuye, lo que indica que el sistema LIs-CO₂ es más reactivo que las especies por separado.

Por otra parte, los resultados obtenidos con el funcional wB97XD presentan una energía HOMO de ~-8.35 eV y una energía LUMO de ~-0.49 a 0.58 eV. El momento dipolar μ se mantiene entre 11.54 a 11.67 Debye en todos los LIs, lo que hace que todos los LIs sean polares. El gap electrónico ΔE_{H-L} en cadenas alquílica de uno hasta seis átomos de carbono aumenta ligeramente al incrementarse la cadena alquílica y se mantiene constante en 8.94 eV para cadenas alquílicas de ocho a veinte átomos de carbono.

En las interacciones del LI con el CO₂, con el funcional wB97XD se obtiene una energía HOMO de -7.5 eV y una energía LUMO de ~-0.9 eV. El gap electrónico ΔE_{L-H} va de 8.36 a 8.47 eV. El momento dipolar es de ~10 Debye. Es decir, el gap electrónico en la interacción LIs-CO₂ aumenta, lo que indica que el sistema LIs-CO₂ es menos reactivo que las especies por separado. Esta diferencia tal vez se deba al término de dispersión considerando el funcional wB97XD.

Los resultados de energía total, obtenidos con los dos funcionales el B3LYP y el wB97XD presentan la misma tendencia, donde se observa que al incrementar la cadena alquílica, el LI es más estable. El gap electrónico ΔE_{L-H} define la reactividad de los LIs, en donde el funcional B3LYP con cadena alquílica de uno, dos, cuatro, seis y ocho átomos de carbono son más reactivas, mientras que el funcional wB97XD muestra que en cadenas alquílicas de uno, dos y cuatro átomos son más reactivas.

Para los dos funcionales utilizados, las distancias y ángulos de enlace al incrementar la cadena alquílica no presentan variaciones significativas, por lo que las estructuras no se ven modificadas con el incremento de la cadena alquílica.

Las cargas de Mulliken en el átomo de N9 para ambos funcionales es de -0.591 e y-0.62 e respectivamente, mientras que la carga del C del CO₂ aislado es de 0.75 e, lo cual hace que el átomo de C del CO₂ pueda interaccionar con el N9 para compensar cargas y se favorezca la interacción con el líquido iónico. Cuando interactúa el LI con el CO₂, la carga del N9 disminuye, de manera que ahora es de -0.45 e y - 0.49 e respectivamente.

Para el funcional B3LYP, la Δ H de reacción se encuentran entre 255 y 262 kcal/mol, lo cual indica que la absorción del CO₂ por los LIs es viable y se puede llevar a cabo mediante un proceso de fisisorción. El funcional wB97XD muestra valores entre 262 y 268 kcal/mol y son mayores con respecto al funcional B3LYP, este incremento en la energía de reacción, tal vez se deba al término de dispersión involucrado en este funcional, pero también es un proceso viable. Esto correlaciona bien con los resultados de absorción mediante la simulación una torre de absorción.

Los resultados obtenidos con la simulación de la torre de absorción presenta condiciones óptimas a una T de 85°C y *p* de 220 bar y, a medida que aumenta la cadena alquílica, el costo total de la torre disminuye. Por otra parte, a medida que se incrementa la cadena alquílica, la eficiencia de la torre aumenta y el costo total del proceso en un periodo de cuatro años, disminuye.

El tamaño de la cadena alquílica influye en el proceso de absorción, de manera que, al aumentar la cadena alquílica genera mejores resultados, aunque el inconveniente es que la viscosidad aumenta y sería necesario utilizar solventes que podrían aumentar el costo del proceso, por lo cual es mejor utilizar una cadena alquílica corta entre cuatro y ocho carbonos; esto correlaciona bien entre el proceso de ingeniería y los resultados de estructura electrónica.

Finalmente, podemos establecer que la absorción de CO₂ con los LIs a base de una amina primaria de [1-alquil-3-PAIM]⁺[BF₄]⁻ y el CO₂, preferentemente con cadena alquílica de entre cuatro y ocho átomos de carbono, es un proceso viable y accesible de bajo costo. Esto como resultado de una buena correlación entre la modelación molecular y el proceso de una torre de absorción.

Anexos

Anexo I. Metodología teórica

La química computacional implica el uso de modelos matemáticos para la predicción de propiedades químicas y físicas de compuestos empleando computadoras. La química teórica proporciona métodos teóricos a través de la química computacional, haciendo uso del modelado molecular, la dinámica molecular clásica la dinámica molecular cuántica, con la que se hace una descripción adecuada de un sistema químico, determinando su estructura electrónica, energía y otras propiedades moleculares de interés.

En este anexo se mencionan los principales aspectos de la teoría utilizada en este trabajo de tesis en que se basan los métodos y las técnicas de la química computacional sin entrar en detalle ni demostraciones.

A.I.1 Ecuación de Schrödinger independiente del tiempo

La química cuántica a partir de la aplicación de los principios de la mecánica cuántica, explica el comportamiento y las propiedades de los fenómenos químicos en diferentes áreas como la catálisis, la ciencia de materiales y la electroquímica, entre otras. Todos los fenómenos que se desarrollan en éstas áreas normalmente son muy complejos implicando interacciones difíciles de describir a simple vista. La mecánica cuántica no relativista postula que la energía total de un sistema, *E*, se puede obtener a partir de la función de onda asociada al sistema, Ψ , por medio de la ecuación de Schrödinger independiente del tiempo.

 $\hat{H}\psi(\vec{r}) = E\psi(\vec{r})$ (1.1)

A partir de la de la solución de la ecuación de Schrödinger se pueden obtener la energía total de un sistema molecular y otras propiedades. En esta ecuación, *E* es la energía del sistema, ψ es una función de onda multi-electrónica y \hat{H} es el operador Hamiltoniano. La solución exacta de la ecuación (1.1), solo se puede obtener para sistemas pequeños de uno y dos electrones, como el átomo de hidrógeno, el átomo de helio y la molécula de hidrógeno H_2^+ . Por el contrario, para sistemas de interés en las áreas antes mencionadas, que se caracterizan por su gran tamaño y su complejidad, ha sido necesario emplear métodos aproximados de la química cuántica. Afortunadamente, hoy en día, el desarrollo computacional, permite contar con ordenadores cada vez más potentes, tanto en el poder de cómputo, como en la velocidad de procesamiento y capacidad de almacenamiento, con los cuales, se puede proporcionar soluciones de manera más precisa a problemas más complicados.

Los diferentes métodos que ofrece la mecánica cuántica se agrupan en dos grandes grupos: *i*) métodos semi-empíricos y *ii*) métodos *ab initio* Hartree-Fock (HF) y post-Hartree-Fock (post-HF).^{27,28} Los primeros no tienen correlación electrónica y la solución a la ecuación de Schrodinger se basa en una parametrización, mientras que los métodos post-HF sí presentan correlación electrónica, entre estos se encuentran los métodos de interacción de configuraciones (*CI*),^{29,30,31} y los métodos basados en la teoría de perturbaciones Moller-Plesset de orden *n* (*MP*^{*n*}).³² En una categoría aparte, se encuentran los métodos basados en la teoría de funcionales de la densidad (TFD) que calcula la energía de los sistemas moleculares de estudio teniendo como variable básica a la densidad electrónica ρ , expresándola como un funcional de la densidad.^{33,34}

Los métodos semi-empíricos se ajustan a algunos parámetros moleculares, como las distancias y los ángulos de enlace, para obtener soluciones más adecuadas a la ecuación de Schrödinger, mientras que los métodos HF, se basan en la solución de las ecuaciones de Hartree-Fock. Debido a que los métodos teóricos antes mencionados han sido explicados ampliamente en la literatura especializada, a continuación solo se presenta una breve descripción sobre la teoría empleada en

este trabajo para el tratamiento de los sistemas de estudio.^{35,36,37,38,39} Los métodos empleados en este trabajo son los basados en la TFD, los cuales se describen brevemente a continuación.

A.I.2 Teoría de funcionales de la densidad

Esta teoría se basa en la idea de que a partir de la densidad electrónica ρ es posible obtener la energía de un sistema de manera que no es necesario conocer la forma completa de la función de onda, ψ . La idea de expresar la energía de un sistema electrónico en términos de la densidad electrónica ρ ha estado presente desde los primeros planteamientos de la mecánica cuántica, empleada principalmente en el estudio de la física del estado sólido, en los trabajos de Thomas, Fermi, Dirac y Wigner. La teoría de Fermi y Dirac, en la década de los treinta, expresa a la energía electrostática y a la energía cinética como función de la densidad electrónica.⁴³ El método Hartree-Fock-Slater o método χ_a surge de un trabajo de Slater, en el cual el autor propone representar el potencial de intercambio y correlación por medio de una función proporcional a la densidad electrónica elevada a la potencia $\frac{1}{3}$, de acuerdo a J. C. Slater, **1974.** En 1964 Hohenberg y Khon,⁴⁰ mostraron que la energía del estado fundamental de un sistema de *N* electrones que interaccionan entre sí, está determinado por la densidad electrónica ρ del estado fundamental considerando de los siguientes dos teoremas.

Teorema 1. A la densidad electrónica del estado fundamental de un sistema no degenerado de varios electrones, le corresponde un potencial externo o un múltiplo suyo. A partir de este teorema se deriva que la energía del estado fundamental del sistema puede ser obtenida a partir de la densidad electrónica ρ del estado fundamental. Es decir, la energía $E=\rho(\vec{r})$ puede escribirse como un funcional de la densidad de carga electrónica $\rho(\vec{r})$, que es a su vez, una función de la posición \vec{r} de cada partícula del sistema.

Teorema 2. Existe un funcional $E_{el}[\rho(\vec{r})]$ que toma su valor mínimo (la energía del estado fundamental) para la densidad de carga electrónica correcta $n(\vec{r}) = \rho(\vec{r})$ de

entre toda la densidad de carga $n(\vec{r})$ correspondiente a un sistema de *N* electrones en un potencial externo V_{ext} .

La implementación práctica de estos teoremas fue posible gracias a Khon y Sham,⁴¹ que propusieron expresar la energía de un sistema de partículas interactuantes en términos de un sistema de partículas independientes, por medio de un funcional único $E_{el}[\rho(\vec{r})]$, que tiene la forma de:

$$E_{el}\left[\rho\left(\vec{r}\right)\right] = T_{s}\left[\rho\left(\vec{r}\right)\right] + \int dr V_{ext}\left(\vec{r}\right)\rho\left(\vec{r}\right) + \frac{e^{2}}{2} \iint dr dr' \frac{\rho\left(\vec{r}\right)\rho\left(\vec{r}'\right)}{\left|\vec{r}-\vec{r}'\right|} + E_{'xc}\left[\rho\left(\vec{r}\right)\right]$$
(1.2)

donde, $T_s[\rho(\vec{r})]$ es la energía cinética del sistema considerándolo como partículas independientes, V_{ext} es el potencial externo al que están sujetos los electrones, el tercer término corresponde a la repulsión Coulómbica entre cada par electrónico (uno en la posición \vec{r} y otro en $\vec{r'}$) y $E_{xc}[\rho(\vec{r})]$ es la energía de intercambio y correlación cuya forma exacta aún hoy en día es desconocida. Por ese motivo se pueden emplear funcionales modelo dentro de alguna aproximación para expresar el funcional de intercambio y correlación.

En la aproximación de la densidad local (LDA),⁴² los efectos de intercambio y correlación dependen localmente de la densidad, es decir están determinados por la densidad electrónica en cada punto, el funcional de intercambio y correlación están expresados en la ecuación (1.3). Con estos métodos se obtienen valores de geometría y frecuencias de vibración cercanos a los datos experimentales, sin embargo esta aproximación no describe correctamente la termoquímica de los sistemas, como la energía de adsorción y la energía de cohesión.^{43,44}

$$E_{xc}^{LDA} = \int d\vec{r} \rho \left(\vec{r}\right) \mathcal{E}_{xc} \left[\rho \left(\vec{r}\right)\right] d\vec{r}$$
(1.3)

En la expresión anterior, el funcional de intercambio y correlación se expresa como la suma del término de intercambio y del término de correlación. Para expresar el término de intercambio han surgido varias propuestas, como la establecida por Dirac que tiene la forma que se describe en la ecuación (1.4), pero no se conoce la expresión analítica del término de correlación, por lo que se utilizan expresiones analíticas aproximadas y ajustadas a valores obtenidos con cálculos de Monte Carlo.^{45,46}

$$\mathcal{E}_{xc}\left[\rho\left(\vec{r}\right)\right] = \frac{3}{4}\left(\frac{3}{\pi}\right)^{1/3}\rho\left(\vec{r}\right)^{1/3}$$
(1.4)

Otra aproximación consiste en incluir los gradientes de la densidad en la descripción de los efectos de intercambio y correlación obteniéndose de ésta forma el valor de la densidad en cada punto y su variación alrededor de éste. Con esta aproximación de gradiente generalizado (GGA), se obtienen buenos resultados de geometrías de equilibrio, frecuencias y densidades electrónicas, aunque las energías de adsorción obtenidas con esta aproximación están muy sobreestimadas.^{47,48} La expresión de los términos de intercambio y correlación, dentro de esta aproximación, se muestra en la ecuación (1.5) donde cada funcional propuesto tiene una forma específica con algunos parámetros ajustados con el fin de describir adecuadamente las propiedades del funcional universal de intercambio y correlación.

$$\boldsymbol{E}_{xc} = \left[\boldsymbol{\rho} \begin{pmatrix} \vec{r} \\ r \end{pmatrix} \right] = \int f \left[\boldsymbol{\rho} \begin{pmatrix} r \\ r \end{pmatrix} \nabla \boldsymbol{\rho} \begin{pmatrix} \vec{r} \\ r \end{pmatrix} \right] d\vec{r}$$
(1.5)

Cualquier funcional de intercambio se puede combinar con cualquier funcional de correlación. Por ejemplo, la denotación BLYP define un cálculo con funcionales de la densidad, considerando el funcional de intercambio de Becke y el funcional de correlación de Lee, Yang y Parr.⁴⁹

Por otra parte, también se han propuesto funcionales híbridos que combinan términos locales y no locales, como el funcional híbrido de intercambio y correlación

B3LYP, que se muestra en la siguiente ecuación (1.6).⁵⁰ Este funcional combina el intercambio de Hartree-Fock, el funcional de intercambio propuesto por Becke, el funcional de correlación propuesto por Vosko, Wilk y Nusair y el funcional de correlación propuesto por Lee, Yang y Parr en 1988, que incluyen términos locales y no locales.^{51,52} A. Becke determinó las constantes *A*, *B* y *C* ajustándolas a propiedades termoquímicas de un conjunto de moléculas orgánicas. El funcional B3LYP proporciona una buena representación de las propiedades termoquímicas de compuestos orgánicos con átomos de C, O, S, N, H, así como, de elementos de metales de transición, a pesar de que estos últimos no se consideraron en el ajuste.

$$E_{xc}^{B3LYP} = (1 - A - B)E_{xc}^{LDA} + AE_{x}^{HF} + BE_{x}^{B88} + CE_{c}^{LYP} + (1 - C)E_{c}^{vwn}$$
(1.6)

En la teoría de orbitales moleculares por Kohn-Sham para el estado electrónico fundamental, solamente se necesita aproximar el funcional de densidad de espín $E_{xc}[n_{\uparrow}, n_{\downarrow}]$ para la energía de intercambio- correlación. El funcional obtenido $\delta E_{xc}/\delta n_{\sigma}(r)$ juega el papel de espín-dependiente del cambio del potencial de correlación en los cálculos de orbitales moleculares auto-consistentes que se parecen a los cálculos obtenidos con la teoría de Hartree-Fock. La aproximación densidad de espín local (LSD), se obtiene por;

$$E_{xc}^{LSD}[n_{\uparrow}, n_{\downarrow}] = \int d^3 r n(r) \varepsilon_{xc} \left(n(r), \xi(r) \right)$$
(1.7)

donde, $\varepsilon_{xc}(n,\xi)$ es la energía de intercambio-correlación por partícula en un gas de electrones con densidad uniforme $n = n_{\uparrow}, n_{\downarrow}$ y la polarización de espín es $\xi = (n_{\uparrow}, n_{\downarrow})/n$. La ecuación (1.7) ha tenido un notable éxito, pero también tiene algunas deficiencias conocidas. Por ejemplo, el funcional LSD exagera las energías de cohesión o energía de adsorción electrónica y de enlace y predice un estado fundamental erróneo para el átomo de hierro (estructura FCC, no magnético), aunque el cálculo de estructura electrónica es adecuado.

La aproximación LSD es el primer término de una expansión asintótica de Taylor en el gradiente de la densidad. Sin embargo, el segundo término en la aproximación del gradiente de expansión (GEA) se define por;

$$E_{xc}^{GEA}[n_{\uparrow}, n_{\downarrow}] = \int d^3 r n \varepsilon_{xc}(n, \xi) + \int d^3 r C_{xc(n, \xi) |\nabla_n|^2} / n^{4/3}, \qquad (1.8)$$

el cual, no proporciona ninguna mejora sistemática. No obstante, el éxito del funcional LSD, se debe a que las densidades reales no varían lentamente en todo el espacio. En principio, la ecuación (1.8) también debería involucrar el término $\nabla \xi$, pero para simplificar esta dependencia relativamente poco importante, en esta ecuación se ha eliminado.

La aproximación de gradiente generalizado (GGA) definida por:

$$E_{xc}^{GGA}[n_{\uparrow}, n_{\downarrow}] = \int d^3 r f(n, \xi, |\nabla_n|)$$
(1.9)

genera una medida sencilla pero potencialmente muy precisa más allá de aproximaciones locales. Esta aproximación inicia a partir de la expansión de gradiente a primeros principios para la energía de intercambio-correlación alrededor del electrón, a continuación, truncamos o cortamos la expansión para obtener propiedades exactas, que no lo hace el funcional GEA. El funcional resultante para el intercambio (con los puntos de corte realizados en el espacio real) y de correlación (con el corte realizado en el espacio del vector de onda) mejora considerablemente las propiedades calculadas de átomos, moléculas y sólidos. En TFD, la densidad electrónica ρ está bien descrita por los funcionales de intercambio y correlación antes descritos, mientras que la química está en función de onda electrónica, considerando los orbitales moleculares.

En este trabajo de tesis para la determinación de la energía total, la brecha o gap electrónico HOMO-LUMO y demás propiedades electrónicas de líquidos iónicos, CO₂, y la interacción entre ellos, se han utilizado los funcionales B3LYP y wB97XD. El funcional wB97XD de Head-Gordon, incluye un término de dispersión, además de correcciones de largo alcance.¹⁶

A.I.3 Funciones de base

Una función de base, es la descripción matemática de los orbitales moleculares de un sistema que se combinan para aproximarse a la función de onda electrónica y que se utiliza para realizar cálculos de estructura electrónica.⁵³ El tamaño de la base es importante para obtener una descripción más precisa de la química. Las funciones de base por orbitales moleculares se obtienen a través de una combinación lineal de funciones atómicas gaussianas para formar funciones de orbitales gaussianas. Los programas de cálculo *ab initio* de estructura electrónica, como Gaussian 09 o GAMESS, contienen un conjunto de bases pre-definidas, que se clasifican de acuerdo al número y tipo de funciones que contiene.^{54,55} Las funciones de base asignan un grupo de funciones matemáticas a cada átomo dentro de una molécula para aproximar a sus orbitales. Cada una de estas funciones, presenta una aproximación diferente, de acuerdo a los orbitales atómicos considerados. A continuación, se define algunas funciones de base.

A.I.4 Funciones de base con polarización

Las funciones de base polarizadas adicionan funciones d a los átomos de carbono, funciones f a los metales de transición, y funciones p a los átomos de hidrógeno. Esta función de base, se denota con la notación 6-31G (d) o bien 6-31G*, lo cual significa que se han agregado funciones d a los átomos pesados, mientras que una función 3-21G (d, p) o 3.21G** consideran funciones p a los átomos de hidrógeno además de funciones d a los átomos pesados (cualquier átomo diferente al hidrógeno). El mismo caso se presenta para una función 6-31G (d, p) o 6-31G**. Las funciones de base están centradas en los núcleos de los átomos, lo cual restringe su flexibilidad para describir distribuciones electrónicas entre ellos; la inclusión de polarización contribuye a disminuir este problema y permite una descripción más adecuada del enlace en muchos sistemas de interés.⁵⁶

A.I.5 Funciones de base con pseudopotenciales (core potencial)

Para algunos átomos de la tabla periódica los electrones de valencia determinan la mayoría de las propiedades químicas en las moléculas. Los electrones de core o

núcleo son afectados ligeramente por el ambiente químico y actúan como protección contra el núcleo. Por lo que proveen un campo efectivo para los electrones de valencia. Los potenciales efectivos de core (ecp) remplazan a los electrones de core en cierto tipo de cálculos de estructura electrónica.⁴⁰ En los cálculos de estructura electrónica, las funciones de base con pseudopotenciales únicamente consideran electrones de valencia.

A.I.6 Funciones de bases numéricas

Existen, códigos computacionales de estructura electrónica, en que se consideran funciones de base numéricas, donde la densidad electrónica está expandida sobre bases numéricas tipo doble-zeta. Este tipo de bases están implementadas en el programa DMol^{3,57} Existen varios tipos de bases numéricas, entre ellas están: *i)* las bases mínimas (*min*), que utilizan un orbital atómico por cada orbital ocupado en el átomo libre; *ii)* las bases numéricas dobles (*DN*) que usan aproximadamente 2 orbitales atómicos por cada orbital ocupado en el átomo libre; *iii)* las bases numéricas dobles (*DN*) que usan aproximadamente 2 orbitales atómicos por cada orbital ocupado en el átomo libre; *iii)* las bases numéricas dobles, más funciones *d*, donde no se usan funciones *p* para el átomo de hidrógeno; y *iv)* las bases numéricas dobles con un momento angular mayor que el momento angular del orbital más alto ocupado del átomo libre, en este caso las funciones de polarización sobre el H es 2*p*, sobre el C es 3*d* y sobre el Fe es 4*p*.

Las bases numéricas dobles tipo DNP son comparables con las bases Gaussianas por orbitales moleculares 6-31G* y las bases numéricas dobles más polarización son comparables a las funciones Gaussianas por orbitales moleculares 6-31G**. Sin embargo, las bases numéricas dobles con polarización son más adecuadas que las funciones Gaussianas, para sistemas químicos de gran tamaño.

A.I.7 Propiedades electrónicas

Las propiedades electrónicas de los átomos, moléculas y sólidos están directamente relacionadas con su estructura electrónica y en particular con la energía del gap o brecha electrónica entre la banda de valencia (BV) y la banda de

conducción (BC).⁵⁸ En química, el valor del gap de un material se relaciona con la energía más baja permitida y con el ancho de banda resultante del traslape entre los orbitales HOMO-LUMO, en otras palabras, la diferencia de energía del orbital molecular más alto ocupado (HOMO) y la energía del orbital molecular más bajo desocupado (LUMO), ⁵⁹ como se muestra en la Figura I.1

Figura I.1 Diferencia entre los niveles HOMO-LUMO y la brecha electrónica

A.I.8 Energía del gap, Eg, brecha electrónica o separación electrónica

Experimentalmente, el valor de la energía del gap o brecha electrónica se puede obtener a partir de los espectros de adsorción o emisión electrónica o considerando la diferencia de potencial redox en experimentos de voltamperometría cíclica.⁶⁰ En ambos casos, los valores de la energía de la brecha es proporcional a la diferencia de energía entre los orbitales moleculares más alto ocupado y más bajo desocupado, $\Delta_{HOMO-LUMO}$. En física del estado sólido, HOMO se relaciona con la BV y el LUMO con la BC.

Desde el punto de vista teórico, se pueden obtener las energías de excitación a través de tres diferentes métodos. El primero es calcular la energía del estado basal y del estado excitado, y obtener la diferencia de energía correspondiente. Para estados excitados que no pueden ser descritos por funciones de onda con un solo determinante, los efectos de correlación dinámica y no-dinámica son muy importantes. Para obtener valores razonables de energías de correlación,^{61,62} es necesario utilizar funciones de onda que estén altamente correlacionadas.^{63,64} Para

estudiar un conjunto amplio de sistemas moleculares de gran tamaño y establecer correlaciones con propiedades de interés, este tipo de cálculos de gran nivel no son una herramienta práctica debido a la cantidad de tiempo de cómputo y memoria requeridos, es decir se requiere de un alto costo computacional.

El segundo método es calcular la energía de excitación como la diferencia entre el potencial de ionización (*I*) y la afinidad electrónica (*A*).⁶⁵ En términos de física del estado sólido, el *I* y la *A* se consideran como energías de cuasipartículas. Estas energías se pueden calcular con una gran precisión usando funciones de Green, pero este camino es extremadamente demandante a nivel computacional.^{66,67} En sistemas finitos, los *I* y las *A* se obtienen con gran precisión como diferencias de energía entre el catión o el anión y el sistema en estado neutro.

El tercer método se basa en estimar la energía de excitación como la diferencia de la energía entre el orbital molecular más alto ocupado (HOMO) y el orbital molecular más bajo desocupado (LUMO).⁶⁸ Esta aproximación se conoce como "la aproximación de orbital congelado", ya que los orbitales del estado basal o fundamental se utilizan para estimar la energía del estado excitado. Este criterio es el que usamos para determinar la energía $\Delta_{HOMO-LUMO}$ de los sistemas estudiados en esta tesis. Para la determinación de los valores de *I* y de *A*, se parte del teorema de Koopmans que se describe a continuación.

A.I.9 Teorema de Koopmans

Los orbitales moleculares, OM, canónicos permiten la interpretación física de los multiplicadores de Lagranje. Si se considera la energía de un sistema con un electrón que ha sido removido del orbital numero k y se asume que los OM son idénticos para los dos sistemas, por lo que la energía se puede escribir como:

$$E_{N} = \sum_{i=1}^{N} h_{i} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (J_{ij} - K_{ij}) + V_{nn}$$

(1.10)

$$E_{N-1}^{k} = \sum_{i=1}^{N-1} h_{i} + \frac{1}{2} \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} (J_{ij} - K_{ij}) + V_{nn}$$

Restando los valores de las dos energías totales, se llega a la expresión:

$$E_{N} - E_{N-1}^{k} = h_{k} + \frac{1}{2} \sum_{i=1}^{N} (J_{ij} - K_{ij}) + \frac{1}{2} \sum_{j=1}^{N} (J_{kj} - K_{kj})$$
(1.11)

Las dos últimas sumas son idénticas y la diferencia de energía se convierte en:

$$E_{N} - E_{N-1}^{k} = h_{k} + \sum_{i=1}^{N} (J_{ki} - K_{ki}) = \mathcal{E}_{k}$$
(1.12)

que de acuerdo con la ecuación (1.10) es exactamente la energía orbital \mathcal{E}_{k} .

En el contexto de la aproximación de "orbitales moleculares congelados", la energía de ionización o potencial de ionización (*I*), es la energía orbital HOMO con signo negativo, lo cual es conocido como el teorema de Koopmans.⁶⁹ De manera similar la afinidad electrónica (*A*) es la energía del orbital LUMO con signo negativo.

$$-\varepsilon_{HOMO} = I \tag{1.13}$$

$$-\varepsilon_{LUMO} = A \tag{1.14}$$

A.I.10 Análisis de población de carga atómica

En cálculos de estructura electrónica es difícil asociar el número de electrones correspondientes a cada átomo dentro de una molécula. Existen diversas técnicas de análisis de población que intentan asignar la carga electrónica de cada átomo que constituye una molécula. Razón por la cual existen diferentes métodos análisis de población de carga atómica. A continuación, describiremos dos de métodos de análisis de carga más conocidos.

A.I.11 Análisis de población por el método de Mulliken

El procedimiento más empleado es el análisis de población de Mulliken,⁷⁰ el cual parte de la definición de la densidad de carga, como se muestra en la ecuación

(1.15) y el número total de electrones *N* de una función de onda mono-determinantal o de un solo determinante, descrita en la ecuación (1.16).

$$\rho\left(\vec{r}\right) = \sum_{\mu} \sum_{\nu} P_{\mu\nu} \Phi_{\mu}\left(\vec{r}\right) \Phi_{\nu}^{*}\left(\vec{r}\right)$$
(1.15)

$$N = 2\sum_{i}^{N/2} \int d\vec{r} \left| \psi_{i} \left(\stackrel{\rightarrow}{r} \right)^{2} \right|$$
(1.16)

donde, $P_{\mu\nu}$ es la matriz de ocupación que distribuye el número total de electrones en orbitales moleculares Ψ_i doblemente ocupados, estos orbitales moleculares se expanden, ecuación (1.17) en función de orbitales atómicos Φ_{μ} , para obtener:

$$N = \sum_{\mu} \sum_{\nu} P_{\mu\nu} S_{\mu\nu} = \sum_{\mu} (PS)_{\mu\nu} = tr PS$$
(1.17)

donde, $P_{\mu\nu}$ es la matriz de ocupación y *S* es la matriz de traslape o solapamiento, $(P_{\mu\nu})$, y se puede interpretar como el número de electrones asociados al orbital atómico Φ_{μ} . De esta manera, al asumir que las funciones de base están centradas en un núcleo atómico, el número de electrones asociados al átomo *A* será la suma de la ecuación (1.17) sobre todas las funciones de base centradas en ese átomo: por lo tanto la carga asociada a cada átomo q_A , se calcula como:

$$q_{A} = Z_{A} - \sum_{\mu \in A} (PS)_{\mu\mu}$$

$$(1.18)$$

donde, Z_A es la carga del núcleo atómico de A y el índice de la sumatoria indica que se suman todas las funciones de base centradas en A. Este análisis de población se caracteriza por su simplicidad, pero tiene el inconveniente de que depende del tamaño de la función de base utilizada.

ANEXO II. Correlaciones de propiedades de los LIs

A.II.1 Correlación de densidad

Considerando el trabajo, "Thermophysical properties of imidazolium-based ionic liquids" de J. Chem. Eng. Data⁷¹ se obtuvieron datos de densidad a diferentes temperaturas de diferentes líquidos iónicos: $[bmim]^+[BF_4]^-$, $[bmim]^+[Tf_2N]^-$ y $[emim]^+[Tf_2N]^-$.

Las Tablas II.1, II.2 y II.3 muestran las densidades del [bmim]⁺[BF₄]⁻, [bmim]⁺[Tf₂N]⁻ y [emim]⁺[Tf₂N]⁻ respectivamente a diferentes temperaturas.

Tabla II.1 Densidad a diferentes temperaturas	s del líquido iónico	[bmim] ⁺ [BF ₄] ⁻
---	----------------------	---

т (°С)	ρ (g/cm3)
22.3	1.2048
30.7	1.2005
40.4	1.194
55.1	1.185
70.7	1.1737

Tabla II.2 Densidad a diferentes temperaturas del líquido iónico [bmim]+[Tf2N]-

T (°C)	ρ (g/cm3)
23.3	1.4386
31	1.4336
40.3	1.4247
50.2	1.4142
60.6	1.4054

Tabla II.3 Densidad a diferentes temperaturas del líquido iónico [emim]+[Tf₂N]-

T (°C)	ρ (g/cm3)
23	1.5213
30.8	1.5159
40.7	1.5065
50.3	1.4967
60.5	1.4858

Posteriormente se graficaron las densidades a diferentes temperaturas de cada uno de los líquidos iónicos como lo indica la Figura II.1 obteniendo su respectiva ecuación y R². Para todos los casos, se agregó la línea de tendencia polinómica de orden 2.

Figura II.1 Densidad ρ (g/cm³) contra temperatura T (°C) de los líquidos iónicos [bmim]⁺[BF₄]⁻, [bmim]⁺[Tf₂N]⁻ y [emim]⁺[Tf₂N]⁻

Por lo tanto, la correlación para la densidad tiene la forma: $\rho = AT^2 + BT + C$ y falta aún definir las constantes A, B y C en función del número de carbonos de la cadena alquílica y el tipo de anión.

En la Tabla II.4 se detallan los valores de A, B y C de las ecuaciones polinómicas de 2° grado obtenidos de la Figura II.1 de los líquidos iónicos [bmim]⁺[Tf₂N]⁻ y [emim]⁺[Tf₂N]⁻ a diferentes cadenas alquílicas (de dos y cuatro átomos de carbonos).

Estos valores se graficaron y se muestran en las Figuras II.2, II.3 y II.4 respectivamente, en donde se muestra su respectiva ecuación y el valor de R².

Tabla II.4 Valores A, B y C de las ecuaciones polinómicas de 2° grado de los líquidosiónicos [bmim]+[Tf₂N]⁻ y [emim]+[Tf₂N]⁻ a diferentes cadenas alquílicas

	NC	Α	В	С
[bmim] ⁺ [Tf ₂ N] ⁻	4	-3.00E-06	-0.0007	1.4568
[emim] ⁺ [Tf ₂ N] ⁻	2	-6.00E-06	-0.0005	1.5357

Figura II.3 Valores de la constante B contra el NC de los líquidos iónicos [bmim]⁺[Tf₂N]⁻ y [emim]⁺[Tf₂N]⁻

Figura II.4 Valores de la constante C contra el NC de los líquidos iónicos $[bmim]^+[Tf_2N]^- y$ [emim]⁺ $[Tf_2N]^-$

Como puede observarse, las Figuras II.2, II.3 y II.4 muestran los valores de las constantes A, B y C en función del número de átomos de carbonos de la cadena alquílica, quedando de la siguiente forma:

$$A = 2X10^{-6}NC - 9X10^{-6}$$
$$B = -1X10^{-4}NC - 0.0003$$
$$C = -0.0395NC + 1.6146$$

Acomodando las constantes A, B y C, la ecuación de densidad queda de la siguiente forma:

$$\rho = \left(2X10^{-6}\text{NC} - 9X10^{-6}\right)\text{T}^2 + (-1X10^{-4}\text{NC} - 0.0003)\text{T} + (-0.0395\text{NC} + 1.6146) \\ \text{Ec. II.1}$$

Para definir el cambio en el tipo de anión es necesario hacer la relación entre diferentes aniones dependiendo de las constantes A, B y C obtenidas de la Figura II.1. Esta relación considera los líquidos iónicos $[bmim]^+[BF_4]^-$ y $[bmim]^+[Tf_2N]^-$, ya que tienen la misma cadena alquílica, pero difieren en el tipo de anión $([BF_4]^-$ y $[Tf_2N]^-)$.

En la Tabla II.5 se muestra la relación $[BF_4]^{-1}/[Tf_2N]^{-1}$ de las constantes A, B y C. Estos nuevos valores son las constantes k₁, k₂ y k₃, respectivamente.

Tabla	II.5	Relación	$[BF_4]^{-1}/[Tf_2N]^{-1}$	para	las	constantes	Α,	Ву	С	de	los	líquidos	iónicos
[bmim]	+[BF	4] ⁻ y [bmin	∩]⁺[Tf₂N]⁻										

	Α	В	С
[bmim] ⁺ [Tf ₂ N] ⁻	-3.00E-06	-0.0007	1.4568
[bmim] ⁺ [BF ₄] ⁻	-2.00E-06	-0.0005	1.216
[BF ₄] ⁻ /[Tf ₂ N] ⁻	0.667	0.714	0.835

Los valores de A, B y C quedan multiplicados por las constantes k_1 , k_2 y k_3 de la siguiente forma:

$$A = 2X10^{-6}NC - 9X10^{-6} * k_1$$
$$B = -1X10^{-4}NC - 0.0003 * k_2$$
$$C = -0.0395NC + 1.6146 * k_3$$

Por lo tanto, la ecuación final para la densidad de los líquidos iónicos [1-alquil-3-PAM]⁺[BF4]⁻ que utilizaremos en este trabajo de tesis queda de la siguiente forma:

 $\label{eq:rescaled_$

NC = Número de carbonos de la cadena alquílica

T = Temperatura (°C)

Las Tablas II.6, II.7 y II.8 muestran la comparación de la densidad experimental y la densidad calculada con la correlación obtenida (Ec. II.2) para el líquido iónico: [bmim]⁺[BF₄]⁻ y la Ec. II.1 para los líquidos iónicos: [bmim]⁺[Tf₂N]⁻ y [emim]⁺[Tf₂N]⁻ respectivamente, así como su respectivo porcentaje de error (% error).

Tabla II.6 Comparación de la densidad experimental y densidad calculada a partir de la correlación de la Ec. II.2 a diferentes temperaturas, así como el % error del [bmim]⁺[BF₄]⁻

	ρ (g/cm³)							
T (°C)	Experimental	Calculada	% error					
22.3	1.2048	1.2048	0.004%					
30.7	1.2005	1.2004	-0.010%					
40.4	1.194	1.1951	0.093%					
55.1	1.185	1.1869	0.158%					
70.7	1.1737	1.1778	0.351%					

	ρ (g/cm³)								
T (°C)	Experimental	Calculada	% error						
23.3	1.4386	1.4397	0.080%						
31	1.4336	1.4339	0.024%						
40.3	1.4247	1.4268	0.145%						
50.2	1.4142	1.4189	0.335%						
60.6	1.4054	1.4105	0.363%						

Tabla II.7 Comparación de la densidad experimental y densidad calculada a partir de la correlación de la Ec. II.1 a diferentes temperaturas, así como el % error del [bmim]⁺[Tf₂N]⁻

Tabla II.8 Comparación de la densidad experimental y densidad calculada a partir de la correlación de la Ec. II.1 a diferentes temperaturas, así como el % error del [emim]⁺[Tf₂N]⁻

ρ (g/cm³)							
T (°C)	Experimental	Calculada	% error				
23	1.5213	1.5215	0.010%				
30.8	1.5159	1.5155	-0.029%				
40.7	1.5065	1.5070	0.031%				
50.3	1.4967	1.4978	0.073%				
60.5	1.4858	1.4870	0.084%				

La Ec. II.1 se utilizó para los líquidos iónicos $[bmim]^+[Tf_2N]^-$ y $[emim]^+[Tf_2N]^-$ porque el anión es el mismo $[Tf_2N]^-$ y sólo hay cambio en el número de átomos de carbono de la cadena alquílica.

La Ec. II.2 se utilizó para el líquido iónico [bmim]⁺[BF₄]⁻ porque en éste hubo cambios del número de átomos de carbono de la cadena alquílica y el tipo de anión respecto a los líquidos iónicos [bmim]⁺[Tf₂N]⁻ y [emim]⁺[Tf₂N]⁻.

Las ecuaciones II.1 y II.2 son válidas para el tipo de líquido iónico que le corresponda a cualquier temperatura (T) en °C y número de carbonos (NC), presentando un % error muy bajo.

A.II.2 Correlación de viscosidad

Considerando el trabajo reportado, "Viscous Behavior of Imidazolium-Based Ionic Liquids" de la revista Ind. Eng. Chem. Res.⁷², se obtuvieron datos de viscosidad a diferentes temperaturas de diferentes líquidos iónicos: [bmim]⁺[BF₄]⁻, [bmim]⁺[Tf₂N]⁻ y [emim]⁺[Tf₂N]⁻, y a presiones de 1 MPa y 70 MPa.

Tabla	II.9	Viscosidad	а	diferentes	temperaturas	del	[bmim] ⁺ [BF ₄] ⁻ ,	[bmim] ⁺ [Tf ₂ N] ⁻	у
[emim]	+[Tf ₂ l	N] ⁻ a presión	de	0.1 MPa					

<i>р</i> (Мра)	0.1						
[bmim] ⁺ [BF ₄] ⁻							
Т (К)	μ_{LI} (cp)						
303	70.5						
353	15						
[bmim]	⁺[Tf₂N] ⁻						
Т (К)	μ_{LI} (cp)						
303	50						
353	12.5						

[emim] ⁺ [Tf ₂ N] ⁻						
T (K)	μ_{LI} (cp)					
303	30.5					
353	10					

Tabla II.10 Viscosidad a diferentes temperaturas del [bmim]⁺[BF_4]⁻, [bmim]+[Tf_2N]⁻ y[emim]⁺[Tf_2N]⁻ a presión de 70 MPa

<i>р</i> (Мра)	70	
[bmim] ⁺ [BF ₄] ⁻		
T (K)	μ_{LI} (cp)	
303	196	
353	30	
[bmim]+[Tf ₂ N]-		
Т (К)	μ_{LI} (cp)	
303	125	
353	23	
[emim] ⁺ [Tf ₂ N] ⁻		
Т (К)	µ (cp)	
303	60	
353	16	

La viscosidad depende de tres variables: temperatura, presión y número de carbonos de la cadena alquílica, por lo que la correlación quedará en función de éstas.

Es necesario hacer la comparación de los líquidos iónicos variando el número de átomos de carbono de la cadena alquílica ($[bmim]^+$ y $[emim]^+$) y también de los aniones ($[BF_4]^-$ y $[Tf_2N]^-$), pero carecemos de los datos de $[emim]^+[BF_4]^-$ para comparar el cambio de anión: $[emim]^+[Tf_2N]^-$, por lo cual realizamos una relación de los datos de viscosidades con cambio de anión que sí conocemos: $[bmim]^+[BF_4]^-$ y $[bmim]^+[Tf_2N]^-$ con su respectiva temperatura (ver Tabla II.11).

Tabla II.11 Relación de la viscosidad de los líquidos iónicos [bmim] ⁺ [BF_4] ⁻ y [bmim] ⁺ [Tf_2N]-
para observar el cambio de anión a su respectiva temperatura	

presión (MPa)	0.1	70
	Relación BF ₄ ⁻ /Tf ₂ N ⁻	Relación BF ₄ ⁻ /Tf ₂ N ⁻
T = 303 K	1.41	1.57
T = 353 K	1.2	1.30

Posteriormente, se estiman los valores del líquido iónico [emim]⁺[BF₄]⁻, multiplicando los valores de viscosidad a la presión de 0.1 MPa del [emim]⁺[Tf₂N]⁻ con los valores de la relación de los aniones calculados en la Tabla II.11 a su respectiva temperatura. Lo mismo se hace para la presión de 70 MPa. Tales resultados se muestran en las Tablas II.12 y II.13
Tabla II.12 Valores estimados de la viscosidad a diferentes temperaturas del [emim]⁺[BF₄]⁻a 0.1 MPa

[emim] ⁺ [BF ₄] ⁻	valores estimados
Т (К)	μ_{LI} (cp)
303	43.005
353	12

Tabla II.13 Valores estimados de la viscosidad a diferentes temperaturas del [emim]⁺[BF₄]⁻ a 70 MPa

valores estimados
μ_{LI} (cp)
94.08
20.8695652

Para efectuar la correlación de la viscosidad en función de la temperatura, presión y número de carbonos del anión [BF₄]⁻, se hizo una matriz y posteriormente una estimación lineal con la ayuda de la hoja de cálculo de Excel y para ello se elaboró la siguiente tabla:

μ_{LI}	NC	т	р	T*NC	p*NC	<i>p</i> *T	<i>p</i> *T*NC
70.5	4	303	0.1	1212	0.4	30.3	121.2
15	4	353	0.1	1412	0.4	35.3	141.2
196	4	303	70	1212	280	21210	84840
30	4	353	70	1412	280	24710	98840
43.00	2	303	0.1	606	0.2	30.3	60.6
12	2	353	0.1	706	0.2	35.3	70.6
94.08	2	303	70	606	140	21210	42420
20.87	2	353	70	706	140	24710	49420

Tabla II.14 Matriz para la viscosidad (μ_{LI}) en función del número de carbonos (NC), temperatura (T) y presión (*p*)

Los productos T*NC, p*NC, p*T, p*T*NC son las todas las combinaciones posibles de NC, T y p, quedando entonces una matriz de 8X7.

Por lo tanto, la ecuación representativa es la siguiente:

 $\mu_{LI} = k_1 * p * NC + k_2 * p * T + k_3 * p * NC + k_4 * T * NC + k_5 * p + k_6 * T + k_7 * NC + k_8$ Ec. II.3

Donde: $k_1, k_2, k_3, k_4, k_5, k_6, k_7$ y k_8 son constantes que deben ser encontradas en la solución de la matriz.

La solución de la matriz se hizo en Excel, mediante la función: **=ESTIMACION.LINEAL()**, quedando así los valores de los coeficientes:

Tabla II.15 Valores de los coeficientes desde k_1 hasta k_8 correspondientes a la Ec. II.3

k 1	k 2	k ₃	k 4	k 5	k ₆	k 7	k ₈
-0.00977	0.00746	3.49278	-0.24397	-2.59585	-0.13095	87.61807	55.22019

Por lo tanto, la correlación final de la viscosidad en función del número de carbonos (NC), temperatura (T) y presión (p) de los líquidos iónicos [1-alquil-3-PAM]⁺[BF₄]⁻ es la siguiente:

$$\mu = -0.00977 * p * NC + 0.00746 * p * T + 3.49278 * p * NC - 0.24397 * T * NC - 2.5958 * p - 0.13095 * T + 87.61807 * NC + 55.22019$$
Ec. II.4

Posteriormente se calculó el % error de la viscosidad experimental y la viscosidad de la ecuación generada, obteniéndose un % error demasiado bajo, por lo que la ecuación es válida para el cambio del número de carbonos, temperatura y presión de los líquidos iónicos [1-ALQUIL-3-PAM]⁺[BF4]⁻ expuestos en este trabajo.

Tabla II.16 Cálculo del % error de los valores de viscosidad experimental y la viscosidad calculada en función del número de carbonos (NC), temperatura (T) y presión (p) de los líquidos iónicos [1-alquil-3-PAM]⁺[BF₄]⁻

μ_{LI} experimental	NC	Т	p	μ_{LI} calculada	% error
70.5	4	303	0.1	70.5	-0.000000000000008
15	4	353	0.1	15	-0.000000000000265
196	4	303	70	196	-0.0000000000000007
30	4	353	70	30	-0.000000000000038
43.005	2	303	0.1	43.005	-0.000000000000026
12	2	353	0.1	12	-0.0000000000000071
94.08	2	303	70	94.08	-0.0000000000000017
20.869565	2	353	70	20.86956522	-0.0000000000000065

A.II.3 Correlación de tensión superficial

Considerando el trabajo reportado "Density, Surface Tension, and Refractive Index of Ionic Liquids Homologue of 1-Alkyl-3-methylimidazolium Tetrafluoroborate $[C_nmim]^+[BF_4]^-$ " de la revista J. Chem. & Eng,⁷³ se obtuvieron los datos experimentales para la tensión superficial (σ) en dyn/cm de cadenas alquílicas de dos, tres, cuatro, cinco y seis átomos de carbono con el anión BF₄⁻ a diferentes temperaturas (°C), (Tabla II.17).

σ (dyn/cm) del [Cnmim]+[BF4] ⁻						
T (°C)	2	3	4	5	6	
25	50.1	47	44.7	42.9	41	
30	49.7		44.3	42.5	40.7	
35	49.3	46.4	44	42.1	40.3	
40	49	46.1	43.6	41.7	39.9	
45	48.7	45.8	43.3	41.3	39.4	
50	48.4	45.4	42.9	40.9	39	
55	48	45	42.5	40.5	38.6	
60	47.6	44.5	42.1	40.2	38.3	
65	47.3	44.1	41.7	39.9	38	

Tabla II.17 Datos experimentales de la tensión superficial (σ) a diferentes temperaturas del líquido iónico [C_nmim]⁺[BF₄]⁻ donde el subíndice n es el NC de la cadena alquílica

Posteriormente, se graficó la tensión superficial (σ) contra la temperatura (°C) para cada cadena alquílica con diferente número de átomos de carbono y se obtuvo su respectiva ecuación. La tendencia fue lineal para todos los casos (Figura II.5).

Por lo tanto, la ecuación de la tensión superficial tiene la forma:

$$\sigma = AT + B$$
 Ec. II.5

Para correlacionar todos los datos experimentales, se agruparon las constantes A y B obtenidas de las ecuaciones de la Figura II.5 para cada número de átomos de carbono de la cadena alquílica (Tabla II.18) y así graficarlas para obtener una ecuación única para A y B en función del número de carbonos (NC) y temperatura (T) en °C (Figuras II.6 y II.7).

Carbonos	Α	В		
2	-0.069	51.783		
3	-0.073	48.961		
4	-0.0743	46.578		
5	-0.0763	44.768		
6	-0.0783	42.992		

Tabla II.18 Constantes A y B de las ecuaciones lineales obtenidas en la Figura II.5 con surespectivo número de carbonos de la cadena alquílica

Figura II.7 Valor de la constante B contra el NC de las ecuaciones obtenidas en la Figura II.5 y su respectiva ecuación polinómica de segundo grado

Las Figuras II.6 y II.7 nos muestran las ecuaciones para las constantes A y B que hacían falta en la Ec. II.5:

$$A = 0.0002NC^{2} - 0.0041NC - 0.0621$$
$$B = 0.1904NC^{2} - 3.7004NC + 58.391$$

Por lo tanto, la ecuación para la tensión superficial de los líquidos iónicos [1-alquil-3-PAM]⁺[BF₄]⁻ queda de la siguiente manera:

$$\sigma = (0.0002NC^2 - 0.0041NC - 0.0621)T + (0.1904NC^2 - 3.7004NC + 58.391)$$
 Ec. II.6

En donde la temperatura (T), está en °C.

Posteriormente, la Tabla II.19 nos muestra los valores calculados con la Ec. II.6 y en la Tabla II.20 se muestra el % error de los valores calculados respecto a los experimentales, en donde se observa que se obtienen valores pequeños, por lo que la ecuación es válida.

σ (dyn/cm) del [C _n mim]⁺[BF₄]⁻								
T (°C)	2	3	4	5	6			
25	50.0143	47.1884	44.7533	42.709	41.0555			
30	49.6668	46.8254	44.3768	42.321	40.658			
35	49.3193	46.4624	44.0003	41.933	40.2605			
40	48.9718	46.0994	43.6238	41.545	39.863			
45	48.6243	45.7364	43.2473	41.157	39.4655			
50	48.2768	45.3734	42.8708	40.769	39.068			
55	47.9293	45.0104	42.4943	40.381	38.6705			
60	47.5818	44.6474	42.1178	39.993	38.273			
65	47.2343	44.2844	41.7413	39.605	37.8755			

Tabla II.19 Datos calculados de la tensión superficial (σ) en dyn/cm a diferentes temperaturas del líquido iónico [C_nmim]⁺[BF₄]⁻ utilizando la Ec. II.6

Tabla II.20 Cálculo del % error de los valores calculados con la Ec. II.6 respecto a los experimentales, de las tensiones interfaciales del líquido iónico [C_nmim]⁺[BF₄]⁻ a diferentes temperaturas

% error del [C _n mim] ⁺ [BF ₄] ⁻									
T (°C)	2	3	4	5	6				
25	-0.171%	0.401%	0.119%	-0.445%	0.135%				
30	-0.067%		0.173%	-0.421%	-0.103%				
35	0.039%	0.134%	0.001%	-0.397%	-0.098%				
40	-0.058%	-0.001%	0.055%	-0.372%	-0.093%				

T (°C)	2	3	4	5	6
45	-0.155%	-0.139%	-0.122%	-0.346%	0.166%
50	-0.255%	-0.059%	-0.068%	-0.320%	0.174%
55	-0.147%	0.023%	-0.013%	-0.294%	0.183%
60	-0.038%	0.331%	0.042%	-0.515%	-0.070%
65	-0.139%	0.418%	0.099%	-0.739%	-0.328%

A.II.4 Correlación de las constantes de la Ley de Henry

Considerando el trabajo reportado "lonic liquids for CO₂ capture-Development and progress" de la revista Chem. Eng. Proc.⁷⁴ se obtuvieron las constantes de la Ley de Henry del CO₂ en líquidos iónicos a diferentes temperaturas como lo muestra la Tabla II.21

Tabla II.21 Constantes de la Ley de Henry del CO2 (bar) en los líquidos iónicos $[bmim]^+[Tf_2N]^-$, $[bmim]^+[BF_4]^-$ y $[pmmim]^+[Tf_2N]^-$ a diferentes temperaturas

	Temperatura (°C)					
Líquido Iónico	10	20	25	30	40	50
[bmim]+[Tf ₂ N] ⁻	28	30.7	34.3	42	45	51
[bmim] ⁺ [BF ₄] ⁻	41.9	52	56	63	73	84
[pmmim]+[Tf ₂ N] ⁻	29.6	34	38.5	40.4	46	53

Para la realización de la correlación, se observa que las constantes de la Ley de Henry están en función del número de carbonos y la temperatura, por lo que la ecuación nos quedará en función de éstos parámetros. A continuación, se graficaron las constantes de Henry contra la temperatura (Figuras II.8, II.9 y II.10), correspondientes a cada líquido iónico de la Tabla II.21 y su respectiva ecuación.

Figura II.8 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim]⁺[Tf₂N]⁻

Figura II.9 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [bmim]⁺[BF₄]⁻

Figura II.10 Valores de las constantes de Henry contra la temperatura, así como su respectiva ecuación para el [pmmim]⁺[Tf_2N]⁻

Como puede observarse, en las Figuras II.8, II.9 y II.10 se obtuvieron ecuaciones polinómicas de segundo grado, por lo que la ecuación para la correlación de las constantes de Henry queda de la siguiente forma:

$$H_{CO_2} = AT^2 + BT + C$$
 Ec. II.7

Tabla II.22 Constantes A, B y C de la ecuación polinómica de 2° grado para los líquidos iónicos $[bmim]^{+}[Tf_2N]^{-}$, $[bmim]^{+}[BF_4]^{-}$ y $[pmmim]^{+}[Tf_2N]^{-}$

	NC	A	В	С
[bmim] ⁺ [Tf ₂ N] ⁻	4	0.0007	0.5674	21.214
[pmmim] ⁺ [Tf ₂ N] ⁻	3	0.0019	0.4668	24.655
[bmim] ⁺ [BF ₄] ⁻	4	0.0018	0.9489	32.136

Posteriormente, se grafican las constantes A, B y C del $[bmim]^+[Tf_2N]^-$ y $[pmmim]^+[Tf_2N]^-$ con su correspondiente número de carbonos (NC) para saber el efecto que tiene la cadena alquílica y su respectiva ecuación.

Figura II.11 Valor de la constante A contra el NC y su respectiva ecuación del [bmim]⁺[Tf₂N]⁻ y [pmmim]⁺[Tf₂N]⁻

Figura II.12 Valor de la constante B contra el NC y su respectiva ecuación del [bmim]⁺[Tf₂N]⁻ y [pmmim]⁺[Tf₂N]⁻

Figura II.13 Valor de la constante C contra el NC y su respectiva ecuación del [bmim]⁺[Tf₂N]⁻ y [pmmim]⁺[Tf₂N]⁻

Las Figuras II.11, II.12 y II.13 presentan ecuaciones lineales para cada constante como sigue:

A = -0.0012NC + 0.0055

B = 0.1006NC + 0.165

C = -3.441NC + 34.978

Tales constantes pueden ser sustituidas en la Ec. II.7, pero aún falta saber la relación que existe entre los aniones y tal valor será considerado en la ecuación final para tener la correlación completa. La Tabla II.23 muestra tal relación y en ésta se considera los líquidos iónicos [bmim]⁺[BF₄]⁻ y [bmim]⁺[Tf₂N]⁻, ya que tienen el mismo número de la cadena alquílica, pero difieren en el tipo de anión ([BF₄]⁻ y [Tf₂N]⁻).

	Α	В	С
[bmim] ⁺ [BF ₄] ⁻	0.0018	0.9489	32.136
[bmim] ⁺ [Tf ₂ N] ⁻	0.0007	0.5674	21.214
[BF ₄] ⁻ /[Tf ₂ N] ⁻	2.5714	1.6723	1.5148

Tabla II.23 Relación BF_4/Tf_2N para las constantes A, B y C de los LIs [bmim]⁺[BF_4]⁻ y [bmim]⁺[Tf_2N]⁻

Los valores de A, B y C quedan multiplicados por las relaciones $[BF_4]^{-}/[Tf_2N]^{-}$, que les llamamos las constantes k₁, k₂ y k₃ respectivamente de la siguiente forma:

 $A = -0.0012NC + 0.0055 * k_1$ $B = 0.1006NC + 0.165 * k_2$ $C = -3.441NC + 34.978 * k_3$

Por lo tanto, la correlación final para la constante de la Ley de Henry para los líquidos iónicos [1-alquil-3-PAM]⁺[BF₄]⁻ queda de la siguiente forma:

$$H_{CO_2} = (-0.0012NC + 0.0055)(2.5714)T^2 + (0.1006NC + 0.165)(1.6723)T - 3.441NC + 34.978(1.5148)$$
 Ec. II.8

En donde la Temperatura está en °C.

T(°C)	10	20	25	30	40	50
H _{real}	41.9	52	56	63	73	84
Hcalculada	41.78	51.81	56.96	62.20	72.94	84.05
%error	0.27%	-0.36%	1.71%	-1.27%	-0.07%	0.06%

Tabla II.24 Porcentaje de error de la constante de Henry del CO₂ en [bmim]⁺[BF₄]⁻

A.II.5 Correlación de la masa molecular

La correlación para la masa molecular de los LIs dependiendo de la cadena alquílica, se calcula a partir de las masas atómicas de los átomos involucrados como puede observarse en la Figura 3.1, por lo que las masas atómicas del N, B, F, C, H, son de 14.0067 g/mol, 10.811 g/mol, 18.998 g/mol, 12.011 g/mol, 1.007 g/mol respectivamente. Así mismo, el anión BF₄⁻ tiene masa molecular de 86.802 g/mol. El conjunto de átomos N9, C8, C7, C6, N1, C2, N3, C4 y C5 junto con sus respectivos hidrógenos, arrojan un peso molecular de 123.159 g/mol, mientras que la cadena alquílica dependiendo de los carbonos, se multiplica por el peso atómico que es de 12.011 y los hidrógenos correspondientes también dependen del número de carbonos, donde por cada carbono que se agregue, hay dos hidrógenos y el último carbono contiene tres hidrógenos, por lo que su ecuación queda de la siguiente forma:

$$PM_{LI} = 86.802 + 123.159 + 12.011 * NC + (2 * NC + 1) * 1.008$$
 Ec. II.9

A.II.6 Correlación del costo de los LIs

La Tabla II.25 presenta los costos de los líquidos iónicos⁷⁵ utilizados, que van de una cadena alquílica de dos átomos de carbono hasta ocho átomos de carbono. Claramente se observa que el LI con cadena alquílica de cuatro átomos de carbono es el más económico, mientras que el LI con cadena alquílica de dos átomos de carbono de carbono es más caro.

IL	NC	US\$ marzo	US\$/kg	Masa	US\$/kg feb	
		2017	marzo 2017	(Kg)	2016	
[emim] ⁺ [BF ₄] ⁻	2	299	11960	25	11641.27	
[bmim] ⁺ [BF ₄] ⁻	4	80	3200	25	3114.72	
[hmim]⁺[BF₄] ⁻	6	253	10120	25	9850.30	
[omim] ⁺ [BF ₄] ⁻	8	154	6160	25	5995.84	

Tabla II.25 Costo de los líquidos iónicos en dólares por kg (US\$/kg) para el año2017 y 2016

Estos datos nos ayudaron a elaborar una correlación general para el costo de los Lls en dólares por kg como se observa en la Figura II.14, por lo que:

Costo LI
$$\left(\frac{US\$}{kg}\right) = -510.04NC + 10201 * CEPCI_{\frac{2016}{2017}}$$
 Ec. II.10

Donde:

Figura II.14 Tendencia de los costos de los LIs de tipo [alquil]⁺[BF₄]⁻ en función del NC y su ecuación

ANEXO III. Hoja de datos de la torre de absorción

HOJA DE DATOS PARA TORRE DE PLATOS

COMPAÑÍA	GASXYZ, S.A. DE C.V.											
ΡΙΑΝΤΑ												
CLAVE DEL EQUIPO	DA-101	DA-101 DA-101					RO DE UNIDA	ADES 1 unidad				
SERVICIO	ABSORCIÓN DE CO2 D	E GASES DE	COMBI	ΙSTΙÓΝ								
TAMAÑO: D	IÁMFTRO 2 ft	2 0/ 1020 02	ALTURA TOTAL -0.2098C ² +1.2375C+33.9 [ft] ESPACIAM				ENTO	ENTRE PLATOS	1 ft			
							-1	ESPESOR 0.009 ET (0.109 in)				
VERTEDERO: A	VERTEDERO: ALTURA 0.167 ft (2 in)			SITUD 17ft (2	0 4 in)			CLARO BALANTE = 0.125 ft (1.5 in)				
CAPACTERISTICAS DEL ELEMENTO DE RURRUUEO			VÁLV									
(Dт											
1'	\sim		PRESION: OPERACION 3190.8 psia (220 bar)					DISENC)	3654.8 ps	g	
Ī (TEMPERATURA: OPERACIÓN 185 °F					DISENC)	210 °F	2	
V Eli	minador de Niebla		DENS	SIDAD DEL CON	TENIDO: GAS	\$ 13.9	15 lb/ft ³	LIQUID	0	65.57 lb/f	t ³	
			MAT	MATERIALES: CUERPO ACERO AL CARBON TAPAS ACERO AL CARBÓN								
I ' ∾ (A)⊢	NP TU			FAL	DA ACERO	O AL CA	ARBON	LINEAS	ACERC	AL CARBON		
			CORE	ROSION PERMIT	IDA 0.00	98 ft (3	3 mm)	-				
3			AISLA	ANTE: MATERIA	L PERLITA	MINERA	AL	ESPESOR	0.16	ft (2 in)		
				BOQUILLAS								
2				SERVICIO	CANTIDA	٩D	TAMAÑO	PRESIÓ	N	UNIÓN	CLAVE	
			Entra	ida Líquido	1		2 in	3205.3 p	osia	SOLDADA	A	
မြို့	- 20 H(F)		Entra	ida gas	1		1 ¼ in	3219.8 p	osia	SOLDADA	В	
- * - -			Salid	a Líquido	1		2 ½ in	3219.8 p	osia	SOLDADA	С	
		×	Salid	a Gas	1		1 ¼ in	3190.8 p	osia	SOLDADA	D	
		18	Dren	e	1		2 ½ in	3219.8 p	osia	SOLDADA	E	
		L D	Regis	tro Hombre								
	11	lâ l	Regis	tro de Mano	4*	5	5 ½ x 9 ³/ ₈ in	3219.8 p	osia	BRIDADA	F	
<u>™</u> +-	<u>-</u> Lo	d d										
[–] ¥	<u>10</u>	E	Miril	а								
			Válvu	ıla de								
6			Segu	ridad								
			Cont	rol de Nivel								
	1		Term	iopozo								
- -			Toma	a de Presión								
	Nivel de		* Dor	pondo dol númo	ro do carbo	nos · 2 e	< C < 8 > 1 /	7 $-10 \rightarrow 2$	// C -	12 2 2		
6 10	Eliquido		Del			FI F		$\frac{10}{2} = 10 = 37$	// C = .	12 7 2		
**+		<u>v</u>				ELE	INIEN I OS	INTERNO	15			
T N			ELIM	INADOR DE NIE	BLA: ESPES	OR 0.3	.33 ft (4 in)	MATE	ERIAL	ACERO AL CARBO	DN	
	\sim		E	LEMENTO	CANTIDA	AD .	TAMANO	TIPO		MATE	RIAL	
	5 Lol											
	e c											
) A	()											
					I		NOT	·Λς				
IVIAS							la iónica					
2) El fluio de gases de combustión de diseño es 220. 762.4 lb/d (100.000 kg/d)												
		NPT	1) FI	número de nlat	os denende	del nún	mero de carb	nnos NP = 0	02205	+ 0 252C ² - 1 550	9 (+ 33 333	
REVISIÓN	0	1	/ _/	2		3		4	5220	5	6	
FECHA	ABRIL 2017					-					v	
ELAB. POR	ВТВ											
	CAM											
Art. PUK	CAIVI											

Referencias bibliográficas

³ Instituto Scripps de Oceanografía, **2017**, https://scripps.ucsd.edu/programs/keelingcurve/

- ⁵ Elaboración propia con datos de la CMNUCC **2010**
- ⁶ Elaboración propia con datos del Inventario Nacional de Emisiones de Gases y
- Compuestos de Efecto Invernadero (Secretaría de Energía) 2014
- ⁷ Secretaria de Energía y Comisión Federal de Electricidad, 2012, http://co2.energia.gob.mx
 ⁸ E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis. J. Am. Chem. Soc. 2002, 124, 926
- ⁹ Y.S. Sistla, A. Khanna. *Journal of Industrial and Engineering Chemistry*. **2014**, 20, 2500 ¹⁰ A. Pérez-Salgado Kamps, D. Tuma, J. Xia, G. Maurer. J. Chem. Eng. Data **2003**, 48, 746

¹¹ F. Jutz, J. –M. Andanson, A. Baiker. Chem. Rev. **2011**, 111, 322; b) H. Ngo, K. LeCompte, L. Hargens, A. B. McEwen. Thermohim. Acta **2000**, 357; c) M. Antonietti, D. Kuang. D. Smarsly, Y. Zhou. Angew. Chem. Int. Ed. **2004**, 43, 4988, d) T. Welton. Chem Rev. **1999**, 99, 2071

¹² M. S. Peters, K. D. Timmerhaus. "*Plant Design and Economics for Chemical Engineers*", 4^a Edición, McGraw-Hill, New York, USA, **1991**

¹³ R. E. Treybal. "<u>Operaciones de Transferencia de Masa</u>", 2ª Edición, McGraw-Hill, México, **2000**

¹⁴ Frisch, M. J. et al. *Gaussian 09* Gaussian, Inc., Wallingford CT, 2009

¹⁵ C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B 37, 785 – Published 15 January 1988; Becke, A.D. Functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98*, 5648–5652

¹⁶ J.-D. Chai, M. Head-Gordon. J. Chem. Phys. 128, 084106, **2008**

¹⁷ C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke. J. Chem. Eng. Data. **2004**, 49, 954

¹⁸ M. Atilhan, J. Jacquenim, D. Rooney, M. Khraisheht, S. Aparicio. Ind. Eng. Chem. Res. **2013**, 52, 16774

¹⁹ W. Xu, L. Li, X. Ma. J. Wei, W. Duan, W. Guan, J. Yang. J. Chem. & Eng. Data. **2012**, 57, 2177

²⁰ M. H. Rahman, M. Siaj, F. Larachi. Chem. Eng. and Process. **2010**, 49, 313

²¹ W. L. McCabe, J.C. Smith, P. "*<u>Harriott. Operations of Chemical Engineering</u>*", 5^a Edición, McGraw-Hill, Singapur, 1993

²² LUDWIG, E.E.; <u>Applied Process Design for Chemical and Petrochemical Plants</u>; Gulf Publishing, USA: 1997, 3^a ed., vol. 2

²³ M. S. Peters, K. D. Timmerhaus. "*Plant Design and Economics for Chemical Engineers*",
 ⁴ Edición, McGraw-Hill, New York, USA, 1991

²⁴ C.E. Resende, L. C. Gomide. J. Mol. Struct. 2007, 847, 95

²⁵ Comisión Federal de Electricidad, **2017**, http://app.cfe.gob.mx

²⁶ Banco de México, **2017**, http://www.banxico.org.mx/portal-mercado-cambiario/index.html

²⁷ D. R. Hatree. Proceedings of the Cambridge Philosophical Society, **1928**, 24, 89

¹ S. Seo, L.D. Simoni, M. Ma, M. A. DeSilva, Y. Huang, M.A. Stadtherr, J. F. Brennecke. *Am. Chem. Soc.* **2014**, 28, 5968

² R. Chang. "<u>QUÍMICA</u>", 10^a Edición, McGraw-Hill, México, **2010**

⁴ IMCO, **2017**, http://imco.org.mx/medio_ambiente/emisiones-de-co2-a-nivel-global-via-el-pais/

- ³¹ S. F. Boys. Proceedings of the Royal Society of London A, **1950**, 201, 125
- ³² C. Mollër, M. S. Plesset. Physical Review, **1934**, 46, 618
- ³³ P. Hohenberg, W. Khon. Physical Review B, **1964**, 136, 864
- ³⁴ W. Khon, L. J. Sham. Physical Review A, **1965**, 140, 1133
- ³⁵ A. Szabo, N. S. Ostlund. "Modern Quantum Chemistry", McMillan Publishing Co. Inn. New York, **1982**
- ³⁶ I. Levine. "Quantum Chemistry", Prentice Hall, USA, **1991**
- ³⁷ R. G. Parr. W. Yang. "Density Functional Theory of Atoms and Molecules", Oxford, New York, USA, **1989**
- ³⁸ N. W. Ascroft, N. D. Nermin. "Solid State Physics", Saunders College, Philadelphia, USA, **1976**
- ³⁹ J. C. Slater. McGarw-Hill, New York, **1974**
- ⁴⁰ P. Hohenberg, W. Khon. Physical Review B, **1964**, 136, 864
- ⁴¹ W. Khon, L. J. Sham. Physical Review A, **1965**, 140, 1133
- ⁴² A. Szabo, N. S. Ostlund. "Modern Quantum Chemistry", McMillan Publishing Co. Inn. New York, **1982**
- ⁴³ R. O Jones, O. Gunnarsson. Reviews of Modern Physic, **1989**, 61, 689
- ⁴⁴ M. Ernzerhof, G. E. Scuseria. The Journal of Physical Chemistry, **1999**, 110, 5029
- ⁴⁵ J. P. Perdew, K. Burke, M. Ernzerhof. Physical Review Letters, **1996**, 77, 3865
- ⁴⁶ S. J. Vosko, L. Wilk, M. Nusair. Canadian Journal of Physics, **1980**, 58, 1200
- ⁴⁷ P. J. Feibelman, B. Hammer, J. K. Norskov, F. Warner, M. Scheffler, R. Stumpf, R.
- Waywe, J. Dumesic. The Journal of Physical Chemistry B, 2001, 105, 4018
- ⁴⁸ B. Hammer, L. B. Hansen, J. K. Norskov. Physical Review B, **1999**, 59, 7413
- ⁴⁹ A. D. Becke. The Journal of Chemical Physics, **1993**, 98, 5648
- ⁵⁰ C. Lee, W. Yang, R. G. Parr. Physical Review B, **1988**, 37, 785
- ⁵¹ P. J. Feibelman, B. Hammer, J. K. Norskov, F. Warner, M. Scheffler, R. Stumpf, R.
- Waywe, J. Dumesic. The Journal of Physical Chemistry B, 2001, 105, 4018
- ⁵² A. D. Becke. The Journal of Chemical Physics, **1993**, 98, 5648

⁵³ W. J. Hehre, L. Radom, J. A. Pople. "Ab initio Molecular Orbital", John Wiley & Sons Inc., New York, **1986**

⁵⁴ M. J. Frisch, G. W. Trucks, H. P. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, V. G. Zarkrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Varone, M. Cossi, R. Cammi, B. Menucci, C., Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, L. R. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98 Revision A.7; Gaussian Inc.: Pittsburgh, PA USA, **1999**

- ⁵⁵ M.W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery. Journal of Computational Chemistry, **1993**, 14, 1347
- ⁵⁶ W. J. Hehre, L. Radom, J. A. Pople. "Ab initio Molecular Orbital", John Wiley & Sons Inc., New York, **1986**
- ⁵⁷ B. Delley, The Journal of Chemical Physics, **1990**, 92, 508

⁵⁸ A.K. Bakhshi. Materials Science and Engineering C, **1995**, 3, 249

²⁸ V. Z. Fock. Physik, **1939**, 61, 126

²⁹ E. A. Hylleraas. Physik, **1928**, 48, 469

³⁰ D. P. Craig. Proceedings of the Royal Society of London A, **1950**, 200, 474

- ⁵⁹ U. Salzner, J. B. Logowski, P. G. Pickup, R. A. Poirier. Journal of Computational Chemistry, **1997**, 18, 1943
- ⁶⁰ Y. Sakamoto, S. Komatsu, T. Suzuki. Journal of the American Chemical Society, **2001**, 123, 4643
- ⁶¹ T. Hashimoto, N. Nakano, K. Hirao. Journal of Chemical Physics, **1996**,104, 6244
- ⁶² H. Nakano, T. Tsuneda, T. Hashimoto, K. Hirao. The Journal of Chemical Physics, **1996**, 104, 2312
- ⁶³ R. J. Cave, E. R. Davidson. Journal of Physical Chemistry, **1988**, 92, 614
- ⁶⁴ R. J. Cave, E. R. Davidson. Journal of Physical Chemistry, **1988**, 92, 2173
- ⁶⁵ R. M. Dreizler, E. K. U. Gross. "Density Functional Theory", Springer, Berlin, **1990**
- ⁶⁶ R. W. Godby, M. Schlüter, L. J. Sham. Physical Review B, **1988**, 37, 10159
 ⁶⁷ L. Fritsche. Physica B, **1991**, 172, 7
- ⁶⁸ R. J. Cave, E. R. Davidson. Journal of Physical Chemistry, **1988**, 92, 2173
- ⁶⁹ T. A. Koopmans. Physica, **1933**, 1, 104
- ⁷⁰ R. S. Mulliken. Journal of Chemical Physics, **1955**, 23, 1833
- ⁷¹ C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke. *J. Chem. Eng. Data.* **2004**, 49, 954
- ⁷² M. Atilhan, J. Jacquenim, D. Rooney, M. Khraisheht, S. Aparicio. *Ind. Eng. Chem. Res.* **2013**, 52, 16774
- ⁷³ W. Xu, L. Li, X. Ma. J. Wei, W. Duan, W. Guan, J. Yang. *J. Chem. & Eng. Data.* **2012**, 57, 2177
- ⁷⁴ M. H. Rahman, M. Siaj, F. Larachi. Chem. Eng. and Process. 2010, 49, 313
- ⁷⁵ TCI America, **2017**, http://www.tcichemicals.com/eshop/en/us/category_index/12755/