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Introducción

Para muchas especies la movilidad es un rasgo fundamental que les permite sobre-
vivir. Es a través de diferentes estrategias y mecanismos que los microorganismos
celulares se enfrentan a las condiciones ambientales adversas y maximizan las posi-
bilidades de sobrevivencia de sus especies.

Se ha observado que muchas cepas bacterianas como por ejemplo Escherichia
coli, Salmonela typhimurium, Bacillus subtilis, entre otras, desarrollan especta-
culares patrones morfológicos cuando crecen en cajas de Petri (sobre agar), bajo
condiciones adversas [20, 23, 29, 111, 138, 163]. Dichos patrones, también conoci-
dos como patrones de agregación, son el resultado de un comportamiento gre-
gario de las células que ha sido entendido como una respuesta de adaptación a un
medio dinámico, y que involucra la generación cooperativa de información y señales
para la formación de patrones espacio-temporales que incrementan la probabili-
dad de supervivencia de la especie. Uno de los mecanismos básicos de movilidad y
señalización es la quimiotaxis, esto es, el movimiento en respuesta a una sustancia
qúımica. Es fundamental entender los mecanismos que participan en la agregación
de microorganismos para poder comprender el desarrollo de organismos más com-
plejos.

En esta tesis estamos interesados en los patrones de agregación de la bacte-
ria B. subtilis [111], y nos concentramos en analizar los mecanismos básicos que
intervienen en el desarrollo de estos patrones, por ejemplo, la quimiotaxis bacte-
riana en respuesta a las sustancias atrayentes. La cepa B. subtilis tiene una vasta
morfoloǵıa y los patrones de colonias observados, dependiendo en la dureza de la
superficie (agar) y el nivel de nutriente, han sido clasificados en morfoloǵıa fractal,
de tipo Eden, de anillos concéntricos, de discos homogéneos y densamente rami-
ficada (ver Fig. 3.1 en el Caṕıtulo 3). La respuesta colectiva a nivel poblacional
hacia los atrayentes (nutrientes) juega un papel clave en la formación de estos
patrones [20].

En particular, en esta tesis estamos interesados en los patrones que corres-
ponden a las morfoloǵıas de discos homogéneos y densamente ramificadas. Las
observaciones experimentales de los patrones de B. subtilis muestran que el borde
o frente de las colonias crece en la dirección externa, y que las bacterias que se
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encuentran en el frente son las que dirigen la dinámica de las colonias y la formación
de los patrones. Este tipo de comportamiento ha sido previamente identificado
como ondas biológicas o frentes biológicos de invasión [141].

La descripción matemática continua determinista de los patrones de agregación
bacteriana ha sido previamente hecha usando sistemas de ecuaciones diferenciales
de reacción difusión, los cuales están incluidos en el marco teórico de las ecuaciones
diferenciales parciales parabólicas cuasi lineales [20, 55, 73, 105, 106]. Estos mode-
los toman en cuenta los procesos básicos que están presentes en el desarrollo de
las colonias tales como el movimiento bacteriano, la proliferación y la interacción
entre las células individuales.

Nosotros seguimos este enfoque, y proponemos un nuevo modelo de reacción
difusión quimiotaxis para los patrones de agregación bacteriana, el cual está basado
en el modelo de Kawasaki et al. [73].

Esta tesis está organizada en cinco caṕıtulos. En el Caṕıtulo 2, empezamos
dando una breve exposición de los antecedentes biológicos y de la modelación
matemática de la quimiotaxis.

En el Caṕıtulo 3 presentamos un resumen de los patrones morfológicos de la
bacteria B. subtilis. Además, revisamos el modelo original de Kawasaki et al. [73].
Después, discutimos el papel que tiene la quimiotaxis inducida por nutrientes en el
desarrollo de patrones bacterianos. Luego, proponemos un término quimiotáctico
adecuado que está motivado por observaciones biológicas [55] y lo agregamos al mo-
delo original de Kawasaki. Exploramos los efectos del nuevo término quimiotáctico
en los patrones de agregación realizando simulaciones numéricas de alta resolución
del nuevo modelo usando tarjetas de procesamiento gráfico (o GPU’s por sus siglas
en inglés) y técnicas de cómputo en paralelo.

En el Caṕıtulo 4 continuamos explorando el impacto del término de quimio-
taxis en los patrones de agregación, y nos concentramos en analizar los efectos
en el frente envolvente de la colonia, ya que esta región es la que dirige el creci-
miento de los patrones. De esta manera, exploramos los efectos que el término
quimiotáctico tiene en la velocidad de propagación del frente envolvente de la
colonia. Estimamos numéricamente la velocidad del frente, y haciendo ciertas su-
posiciones, aproximamos asintóticamente la velocidad de propagación. Mostramos
que la velocidad es una función creciente del nivel de nutriente y de la sensibilidad
quimiotáctica.

Las observaciones del comportamiento del frente de la colonia como una onda
biológica viajera, y la deducción de una ecuación escalar aproximada para la den-
sidad bacteriana nos motivó para estudiar las soluciones de tipo onda viajera
de dicha ecuación. Espećıficamente, en el Caṕıtulo 5 estudiamos la estabilidad,
en espacios exponencialmente pesados, de ciertos subconjuntos del espectro corre-
spondiente al operador linealizado alrededor de ondas viajeras suaves monótonas y
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degeneradas de ecuaciones de reacción difusión de tipo Fisher-KPP con coeficiente
de difusión no lineal degenerado.

Finalmente, en el Caṕıtulo 6 presentamos algunas observaciones y conclusiones.
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Chapter 1

Introduction

Motility is a fundamental trait for many organisms in order to survive. It is through
different strategies and mechanisms that cellular microorganisms deal with adverse
environmental conditions to maximize the chances of their species.

It has been observed that many bacterial strains such as Escherichia coli,
Salmonela typhimurium, Bacillus subtilis, among others, develop spectacular mor-
phologic patterns when they grow on agar plates under adverse conditions [20,
23, 29, 111, 138, 163]. Such patterns, also known as aggregation patterns, are the
result of a gregarious cellular behavior that has been understood as an adapta-
tion response to a dynamic environment, and involves the cooperative generation
of information and signaling for the formation of spatio-temporal patterns that
improve the chance of survivability of the species. One of the basic signaling and
motility mechanisms is chemotaxis, that is, the movement in response to a chem-
ical queue. It is fundamental to understand the mechanisms that are involved in
the aggregation of microorganisms, in order to understand the dynamics in the
development of higher organisms.

In this thesis we are interested in the aggregation patterns of the bacterium
B. subtilis [111], and we focus on analyzing the basic mechanisms involved in the
development of theses patterns, for instance, the bacterial chemotaxis response
to attractants. The strain B. subtilis has a rich morphology and the observed
colony patterns, depending on the hardness of the surface (agar) and the nutrient
level, have been classified in fractal, Eden, concentric rings, homogeneous disks
and densely ramified morphologies (see Fig. 3.1 in Chapter 3). The collective
response at the populations level to attractants (nutrients) play a key role in the
formation of these patterns [20].

In particular, in this thesis we are interested in the patterns pertaining to the
homogeneous disks and densely ramified morphologies. The experimental obser-
vations of B. subtilis patterns show that the edge or front of the colony grows
in the outward direction, being the bacteria at the front the ones that lead the
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colony dynamics and the formation of the patterns. This type of behavior has
been identified as biological waves or biological fronts of invasion [141].

The continuous-deterministic mathematical description of bacterial aggrega-
tion patterns has been previously done using reaction-diffusion systems of equa-
tions, which are included in theoretical framework of quasilinear parabolic partial
differential equations [20, 55, 73, 105, 106]. These models consider the basic pro-
cesses that take part in the colonial development such as bacterial movement,
proliferation and interaction between individual cells.

We followed this continuous approach and we propose a new reaction-diffusion-
chemotaxis model for bacterial aggregation patterns, which is based on the model
by Kawasaki et al. [73].

The thesis is organized in five chapters. In Chapter 2, we begin by giving a brief
account of the biological background and mathematical modeling of chemotaxis.

In Chapter 3 we give a summary of the morphological patterns of B. subtilis.
In addition, we review the original model by Kawasaki et al. [73]. Afterwards, we
discuss the role of the chemotaxis produced by nutrients in the development of
bacterial patterns. Then, we propose a suitable chemotactic term that is moti-
vated by biological observations [55] and add it to the original Kawasaki’s model.
We explore the effects of the new chemotactic term in the aggregation patterns
by doing high resolution numerical simulations of the new model using Graphic
Processing Units and parallel computation techniques.

In Chapter 4 we continue exploring the impact of the chemotaxis term on the
aggregation patterns, and we focus on analyzing the effects at the colony envelope
front, since this region is the one leading the growth of the patterns. In this
fashion, we explore the effects that the chemotactic term has on the propagation
velocity of the colony envelope front. We estimate numerically the velocity of the
front, and under certain simplifying assumptions we approximate asymptotically
the propagation velocity. We show that the velocity is an increasing function
nutrient level and chemotactic sensitivity.

Motivated by the observations on the behavior of the colony front as a trav-
eling biological wave, and the derivation of an approximated scalar equation for
the bacterial density we then analyze the traveling wave solutions of such an equa-
tion. In particular, in Chapter 5 we study the stability in exponentially weighted
spaces of certain subsets of the spectrum corresponding to the linearized opera-
tor around smooth-monotone-degenerate traveling waves supported by reaction-
diffusion equations of Fisher-KPP type with non-linear degenerate diffusion coef-
ficient.

Finally, in Chapter 6 we present some concluding remarks.
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Chapter 2

Biological background and
mathematical modeling

Complex biological phenomena are ubiquitous in nature and their mathematical
description consists of the development of models that shed some light on the un-
derstanding of these phenomena. One reason for using mathematics as a tool in
biological sciences is to guide intuition derived from experience (experimentation),
as well as to provide a theoretical framework to draw conclusions. Mathematical
models should be designed carefully, based on biological facts, and they often rep-
resent a simplification of phenomena under consideration. The complexity involved
in biochemical phenomena force mathematical modeling to make models of models,
being this a vital step of the process: the exercise of effective simplification. For
this, we should identify the most important factors involved in a biological situa-
tion. The analysis of a mathematical model should provide additional information
(both qualitative and quantitative) of the biological system under consideration
and, in the best scenario, it should serve as basis for new experiments or draw con-
cluding arguments. It is worth noting that a model could motivate new hypotheses
and the design of experimental programs in a more efficient manner. Mathemati-
cal models applied to biological/chemical systems are often too complicated to be
analyzed using standard analytic techniques, and thus, it is common to conduct
numerical simulations. The interpretation of these simulations should be carefully
made, and in certain cases may lead to further improvements of the model.

Mathematical models can take different forms, for example, differential equa-
tions, dynamical systems, stochastic models, among others. One example of a
type of model are the reaction-diffusion (R-D) systems that are contained in the
framework of partial differential equations of parabolic type.

R-D systems describe the concentration of one or more substances by means
of two mechanisms: the local transformation of the constituents into each other
according to a certain process, and the transport into space by diffusion. These
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systems have been applied naturally in chemistry, but also there are examples of
applications to others fields such as biology, ecology, medicine, etc. In general,
R-D systems are often applicable to ecosystems with diffusing populations [112].

The mechanism of R-D systems was proposed by Turing [151] to establish the
chemical basis of morphogenesis, and has served as base model for theoretical
biology. More recent works [105, 106] have explained the coat patterns found in
zebras, leopards, butterflies, and others.

In the field of medicine, great effort has been made to understand diseases
such as cancer, and the flexibility of R-D models has allowed to consider elements
of the complex process of tumoral angiogenesis, which is the development of new
blood vessels. For instance, Anderson and Chaplain [9] developed a hybrid model,
discrete and continuous, to explain the formation of capillary networks due to a
tumoral chemical stimulus. For a review on the mathematical modeling of vascu-
logenesis and angiogenesis, see [133].

Migration of populations in biology is a multiple-scales phenomenon that has
been studied thoroughly because of its impact on human society. Examples of
migrating animals (mammals and birds), insects and plants have been observed as
biological invasions that give rise to expansion patterns also known as biological
waves (see [141]). At smaller scale, examples of traveling cell populations can be
found in (biological) processes such as wound healing [45], inflammatory response
of the immune system [88], and growth patterns in bacterial cultures [20].

The deterministic continuous approach to model migrating populations is based
on R-D systems, which describe the time evolution of the population density ac-
cording to interactions among the individuals, such as birth, death, competition,
cooperation, and dispersal in space. In the following section we make a heuristical
derivation of R-D equations from simple ideas involving conservation laws.

2.1 Formal derivation of equations

Reaction-diffusion equations arise in a natural way in the process of mathematical
modeling of spatio-temporal phenomena that involve a general conservation law.
We describe their derivation as follows.

In the continuous approach to model the migrating behavior of populations (e.g.
cells or animals), the distribution of interacting individuals is described through
density functions.

The individuals are contained within a region, which we denote V , and we
assume that it is an open subset, V ⊂ Rn, n ≥ 1, with a smooth boundary
S = ∂V . In particular, we are interested in the cases n = 1, 2 and 3.

Let u(x, t) : V × R+ → R, be the density function that represents the concen-
tration of matter or biomass (e.g. population density). The general conservation
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equation says that the rate change of the amount of matter in V is equal to the
rate flow of matter across S into V plus the matter created in V .

Hence
∂

∂t

∫
V

u(x, t)dv = −
∫
S

J · n̂dS +

∫
V

fdv,

where n̂ is the unit exterior normal vector to the boundary S, J is the matter flux
and f is the source or interaction term among individuals that could depend on
u, x and t. Using the divergence theorem we get∫

V

(
∂u

∂t
+∇ · J − f(u, x, t)

)
dv = 0.

Since the volume V is arbitrary, the integrand must be zero. Thus, we obtain the
balance equation

∂u

∂t
= −∇ · J + f(u, x, t). (2.1.1)

For an specific model, the terms f and J must be supplied. The general flux term
J must be specified in each situation which population migration is conveyed by
diffusion, advection or other directional movement mechanisms such as chemotaxis.
For example, considering Fick’s Law [112], J = −D∇u, we get the general reaction-
diffusion system

∂u

∂t
= ∇ · (D∇u) + f(u, x, t), (2.1.2)

where D is the constant of diffusivity.
In a more general situation, we can consider various interacting populations,

each one with population density ui(x, t), for i = 1, ...,m. Then, U(x, t) =
(u1(x, t), ..., um(x, t)) ∈ Rm, represents a vector of densities of interacting species.
Thus, equation (2.1.2) is generalized to the R-D system of m equations

∂U

∂t
= ∇ · (D∇U) + F (U, x, t), (2.1.3)

where now D is the matrix of diffusivities and F denotes the vector of reaction
among all the populations, and could depend on x and t as well. Observe that the
term D∇U is a matrix, and hence ∇ · (D∇U) is a vector. When the matrix D is
diagonal, there are no terms of cross diffusion.

For example, consider two populations with density functions u1(x, t) and
u2(x, t), and diffusion constants D11 and D22, respectively. This species interact
among themselves through the reaction function F (U) = (f1(u1, u2), f2(u1, u2)),
which is, in general, non-linear. Suppose that D = (Dij), for 1 ≤ i, j ≤ 2, is a
general matrix of diffusivities. Hence, in this case system (2.1.3) has the form(

∂tu1

∂tu2

)
=

(
D11∆u1 +D12∆u2

D21∆u1 +D22∆u2

)
+

(
f1(u1, u2)
f2(u1, u2)

)
.
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The terms of cross-diffusion arise when D12, D21 6= 0.
Equation (2.1.2) and system (2.1.3) belong to the semi-linear parabolic equa-

tion type. The monograph of Fife [48] is an excellent reference for the fundamentals
on the mathematical theory of these equations, (see also [146] and [57]).

In the sequel, let us consider the case of a single species, that is, m = 1. In the
case that we consider Fick’s Law, with D > 0, and no reaction term, f ≡ 0, we
obtain the well known linear diffusion or heat equation

∂u

∂t
= D∆u.

The heat equation may be derived in alternative way such as random walk models
[105,112] or Brownian motion [32].

The canonical example of a R-D model is based on the seminal work of Fisher
[50] and Kolmogorov, Petrovsky and Piskunov (KPP) [81]. In 1937, Fisher pro-
posed the non-linear scalar R-D equation

∂u

∂t
= D∆u+ ru

(
1− u

K

)
, (2.1.4)

as model for the propagation of and advantageous gene in a population. He con-
sidered that the increased in the gene frequency should propagate as a wave of
stationary form advancing with constant speed. He used an heuristic reasoning to
obtain the propagation speed of the wave. On the other hand, Kolmogorov et al.
obtained the first analytic results on existence and stability of solutions.

Equation (2.1.4) is known as Fisher-KPP equation in the literature, but as was
pointed out by Murray [105] (see also [142]), it was Luther [89] the first one who
proposed this equation and performed a traveling wave analysis in the context of
chemical reactions.

The non-linearity comes from the reaction term f(u) = ru(1−u/K), also known
as logistic growth law and was first proposed by Verhulst [153]. The parameter
r > 0 is called the intrinsic reproduction rate, and K > 0 is called the carrying
capacity of the environment.

Specifically, the logistic growth term is based on the assumption that an in-
crease in population density leads to a decrease in birth rate and increase death
rate. But, this assumption may not always be valid, as observed by Allee [5], for
some species a higher density is better, regarding to cooperative hunting or de-
fense. Hence for these species, their population may proliferate at higher densities,
while at lower densities it may decline. This phenomenon is known as an Allee
effect [105], and has been mathematically modeled by a density dependent growth
function f(u), that is negative at small positive values for u. An example of such
a function is

f(u) = ru
(

1− u

K

)
(u− a),
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where the parameters r,K are positive and a ∈ (0, K). The parameter a is the
critical threshold density value, with the feature that density populations starting
above this level will grow to the maximum level allowed by the carrying capacity
K. Populations with density bellow a will decrease to zero. The R-D diffusion
equation considering Fick’s Law and the Allee effect has the following form

∂u

∂t
= D∆u+ ru

(
1− u

K

)
(u− a),

and is sometimes refered as reduced Nagumo equation [105].
Skellam [144] considered the random walk model and various modes of popu-

lation growth to explain in a systematic way the dispersal of animals (muskrats).
The work of Skellam has served as a basis for the understanding of migration and
dispersal of populations. Nevertheless, this model assumes that individuals make
complete random paths, and predicts that an organism will move at infinite veloc-
ity (see [64]). In a subsequent work, Skellam [145] considered a generalized random
walk, where if an organism move along a line it may have a biased movement, i.e.,
the probability of taking a step to the right or left is not equal and may depend on
the space. This supposition accounts for the fact that an organism do not move
completely random and respond to the environmental stimuli.

More realistic models of population diffusion have been derived considering
further observable situations, for instance, population pressure. This is the effect
by which the dispersal of a population is enhanced as its density increases, and
was discussed first by Morisita in 1950 (cf. [101]), as he observed this phenomenon
in a natural population of water striders.

Rather than consider the random motility of individuals, Gurtin and Mac-
Camy [60] supposed that, in some biological situations, dispersal of population
is promoted by densely inhabited regions; hence individuals avoid overcrowding.
The authors proposed a non-linear degenerate R-D equation, where the diffusivity
is density-dependent. The authors also proposed that the constitutive equation
for the population flux must be non-linear.

The flux can be written as

J = −D(u)∇u, (2.1.5)

where diffusion coefficient D(u) now depends on the population density. For exam-
ple, the authors in [60] took D(u) = kun−1, with n ≥ 2, and derived the following
equation

∂u

∂t
= k∆(un−1∇u) + f(u), (2.1.6)

that combines the mechanisms of the porous medium equation [13,152] and the in-
teraction of individuals. We note that equation (2.1.6) degenerates at points where
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u = 0, that is, where there is no individuals and the diffusion coefficient vanishes.
The degeneracy has an important mathematical feature: a population which is ini-
tially confined to a bounded region spreads out with finite speed. This contrasts
with the constant diffusion case, where all disturbance propagate from rest with
infinite speed. A similar model was derived from probabilistic considerations by
Gurney and Nisbet [58]; see also [12].

As we have mentioned, R-D equations are used as a model to describe the
migration of populations. One particular migration situation is the invasion of
species, that usually takes place as the propagation of an invading population
front. Therefore, we will be interested in the solutions that have a traveling wave
behavior. Hence we introduce the following

Definition 1. Let us consider the R-D equation

ut = (D(u)ux)x + f(u), (x, t) ∈ R× R+, (2.1.7)

where u = u(x, t), f(u) is the reaction term and D(u) is a general diffusion coef-
ficient that could be constant, D = D0 > 0, for linear diffusion or non-linear. A
traveling wave solution (TWS) of front type is a solution that do not change its
profile in time and travels with constant velocity. Hence, traveling fronts are of
the form

u(x, t) = ϕ(x− ct) = ϕ(ξ),

where c ∈ R is the velocity of the front and ϕ : R→ R is the profile function of the
wave. In an unbounded domain, the propagation of a traveling front corresponds
to the following conditions at infinity

u− = lim
ξ→−∞

ϕ(ξ), u+ = lim
ξ→+∞

ϕ(ξ),

and we say that the front connects the equilibria u− and u+. The asymptotic limits
are equilibrium points of the reaction function in consideration, that is, f(u±) = 0.

In case that we consider a degenerate density-dependent diffusion coefficient,
D(u), equation (2.1.7) will support a TWS of sharp type, ϕ(ξ), for which there
will be a finite point ξ∗ ∈ (−∞,+∞) where its derivative is discontinuous. For a
rigorous definition of sharp front see [126].

Sometimes TWS of front type are called smooth TWS, in contrast with the
sharp ones, since its derivative is continuous at every point.

As mentioned earlier, the population flux function J must be specified for each
migration situation. One of these specific situations is the bacterial chemotaxis,
and we shall review some of its the basic biological aspects.
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2.2 Chemotaxis

The response of an organism to a external stimulus is called “taxis”. When the
organism movement is response to a chemical substances is called chemotaxis.
Horstmann [66] defines chemotaxis as “...the influence of chemical substances in
the environment on the movement of mobile species.”

If the organism moves towards the source of the chemical substance we say that
the chemotaxis is positive, and the chemical substance is called a chemoattractor.
A movement in the direction toward lower concentration areas is called negative
chemotaxis, and the substance is a chemorepellent.

Chemotaxis is a phenomena present in many biological and physiological sys-
tems, such as the human immune system. Neutrophils (a type of white blood
cells), are guided to the sites of bacterial infection through a system of chemotac-
tic receptors which detect certain types of amino acids produced by bacteria [70].

Bacterial chemotaxis is an example of migration of cells and it was discovered
more than a century ago by Engelmann [42] and Pfeffer [123, 124]. This phe-
nomenon has become one of the most studied and well documented systems in
biology, serving as a model for higher organisms.

The biochemical processes involved in chemotaxis were first studied in the
pioneer works by Adler [1, 2] on the bacterium Escherichia coli. This strain has
served as a model organism to further investigate this phenomenon in many other
bacterial species, e.g., Salmonella typhimurium [91] and Bacillus subtilis [114].

Bacteria move using flagella, whip-like appendages randomly located in their
membrane. The number and position of flagella varies between species, and as a
consequence bacteria have developed different types of motility. Swimming and
tumbling are two of the most common motility strategies that depend on flagella.
See [40] for a list of flagella distribution and motility mechanism; see also [20,55].

In the absence of stimuli bacteria move in a random walk, as result of a sequence
of swimming and tumbling movements. E. coli alternates between 1.0 second
swims and 0.1 second tumbles [68].

In non homogeneous environments, external stimuli (positive or negative) in-
duces a random walk biased towards chemoattractants or avoiding chemorepel-
lents [40]. The movement of bacteria cells is produced by rotation of the flagellar
motor. Hence, bacteria move in random walks composed of (long) swims, due to
a counterclockwise (CCW) rotation of the motor, and (short) tumbles, due to a
clockwise (CW) rotation. CCW rotation makes the flagella come together into a
bundle propelling the cell forward, meanwhile CW rotation disrupts the flagellar
bundle causing the cell to randomly reorientate in a new direction [157]. Therefore,
movement of bacteria across a gradient of attractant produces less CW rotations,
decreasing cell reorientation, and favors CCW rotations resulting in longer swims
into the “right” direction.
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Therefore, the bias of the movement is controlled by chemical sensing of pos-
itive or negative signals. The core mechanism of chemotaxis lies in the signal
transduction pathway, which is a complex intracellular system that change the
direction of flagellar rotation upon detection of chemical concentration, in their
immediate surroundings, using dedicate transmembrane receptors [40,82,157].

Being so small, bacteria can not sense chemical gradients spatially, instead,
they rely on temporal sensing of chemical concentrations [82], and compare be-
tween sequential registers of their occupied chemoreceptors [40]. Bacteria dy-
namically adapt to respond to higher concentrations of attractant; this has been
previously explained through Weber’s law [98], that states that the minimum de-
tectable difference on the intensity of a stimulus is proportional to the previous
stimulus intensity.

The dynamic response, also known as adaptation, is a feedback system that en-
compasses different time scales, a fast excitatory response upon binding of chemo-
effector, and a slow reset of chemoreceptors to a prestimulus state [84]. This
mechanism, present in bacteria, has been conceptualized as “short-term memory”,
proposed for the first time by Macnab and Koshlad [91]. More recent works, have
established that memory length, the time needed by bacteria to return its chemo-
taxis pathway to its steady state, is not fixed and depend, among other factors,
on the gradient steepness of the stimulus [156]. Furthermore, in order to maintain
adaptation, the memory length should match the time scale of long swims [82].

2.3 Chemotaxis modeling

Chemotaxis is a multi-scale phenomenon that is present at the individual (single
cell) to the population scale, and its study comprehends the work from several
disciplines (e.g. biology, chemistry, biophysics, mathematics and others ).

At the single-cell scale, there have been studied specific chemotactic processes
such as signal detection, adaptation response to chemical gradients, intra-cellular
signal transduction, and the cell swimming mechanism [150]. At macroscopic level,
the objective is to understand the dynamics and the behavior of chemotactic cell
populations taking into account the chemotactic mechanisms from the individual
scale. The mathematical modeling of chemotaxis it has been done from different
approaches, e.g. stochastic, discrete and continuous deterministic. In the latter
case, macroscopic models take the form of systems of PDE’s that are based on
phenomenological assumptions as well as on the microscopic description of the
chemotactic processes.

The mathematical modeling of chemotaxis goes back to the pioneer works
by Patlak in 1953 [121], Keller and Segel in the 70s decade [75–77], and more
recently Alt [6]. Considered as one of the seminal works on the mathematical
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modeling of chemotaxis, the Keller-Segel model has prevailed as mathematical tool
to understand the gregarious behavior of certain chemotactic cell populations, in
biological systems.

The generalized Keller-Segel model [63] has the following form:

ut = ∇ · (D(u, v)∇u) + f(u, v)−∇ · (χ(u, v)∇v),

vt = Dv∆v + g(u, v)− h(u, v)v,
(2.3.1)

where u = u(x, t) and v = v(x, t) denote the populations density and the concen-
tration of the chemo-attractor, respectively, in a space point x and time t. The
coefficient D(u, v) represents the diffusivity of the population, while χ(u, v) is the
chemotactic sensitivity function; both functions might depend on u, v or both. The
reaction term f(u, v) denotes the population growth, and g(u, v), h(u, v) are the
production and the degradation of the chemical signal, respectively. Dv ≥ 0 is the
constant diffusion coefficient of the chemo-attractor. The system (2.3.1) is solved
for initial distributions u(x, 0) = u0(x) and v(x, 0) = v0(x) of cells and chemical
respectively, and appropriate boundary conditions.

2.3.1 Derivation of chemotaxis equations

Under favorable food conditions, cells of the slime mold Dictystelium discoideum
forage independently; while under starvation the population aggregates into a
motile slug, and then differentiate into a fruiting body which scatters spores into
environment to search for better conditions. During the aggregation process, single
amoebas migrate as a response to a chemo-attractor called cyclic-AMP (cAMP)
which is produced by the amoebas themselves [105]. It has been shown that the
amoebas also secrete an extracellular enzyme, phosphodiesterase, which reacts
with the cAMP into a neutral waste complex.

The Keller-Segel (KS) model [75] was introduced to explain the aggregation
process of the slime mold D. discoideum and is based on phenomenological as-
sumptions of how cells respond to the external cAMP signal. The authors in [75]
originally introduced a system of four parabolic R-D equations strongly coupled,
for modeling the population migration due to the attractor cAMP, and which re-
acts with an extra cellular enzyme. Under certain assumptions, Keller and Segel,
simplified the biochemical reactions between cAMP and the enzyme, and proposed
a reduced model of two non-linear coupled parabolic equations. Following [75], we
give a heuristic derivation based on phenomenological assumptions and general
balance equations, of the two-equation reduced model, also known as the classical
Keller-Segel model.

Consider an arbitrary fixed region A in the plane, with smooth boundary S =
∂A. Denote the amoeba density by the continuous function a(x, y, t) at the point
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(x, y) ∈ A and time t. The concentration of the chemo-attractor is denoted by
ρ(x, y, t).

The general balance equation for the amoeba mass is

∂

∂t

∫∫
A

adxdy =

∫∫
A

fdxdy −
∫
S

Ja · n̂dS, (2.3.2)

where f(a) is the growth term of the amoebas per unit area per unit time, Ja(x, y, t)
is the biomass flux, and n̂ is the unit exterior normal to the boundary S. Applying
the divergence theorem to (2.3.2) and in conjunction with the arbitrary choice of
A, we have

∂a

∂t
= f(a)−∇ · Ja. (2.3.3)

Analogous equation holds for ρ, namely

∂ρ

∂t
= g(a, ρ)−∇ · Jρ, (2.3.4)

where g(a, ρ) is the source/degradation term for the attractor.
The flux function for the amoebas Ja has two components, one due to the

random motion of cells and other due to chemotaxis. Thus, the flux function has
the following form

Ja = JDiff + JChem. (2.3.5)

The diffusion contribution is given by Fick’s Law

JDiffusion = −Da(ρ)∇a, (2.3.6)

where Da(ρ) is the diffusion coefficient of the amoebas, possibly dependent on
the attractant concentration. The chemotactic flux, JChem, is proportional to the
gradient of the concentration, and the flux of amoebas will increase in proportion
with the density of cells. Hence, we may write the chemotactic flux as

JChem = aχ(ρ)∇ρ, (2.3.7)

where χ(ρ) > 0 denotes the response of amoeba to the attractant gradient. In
this case, the chemotaxis is considered as positive, since the biased movement is
towards the direction of ∇ρ, amoebas move from lower to higher concentrations of
the attractant ρ. The proliferation of amoebas is negligible during the aggregation
phase, thus we consider the growth term f(a) = 0. In addition, is assumed that the
diffusion coefficient for amoebas, Da(ρ) = Da, is constant. Combining equations
(2.3.3), (2.3.5), (2.3.6) and (2.3.7) we obtain the basic chemotaxis equation

∂a

∂t
= ∇ · (Da∇a− aχ(ρ)∇ρ). (2.3.8)
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On the other hand, we suppose that the attractor flux is given by simple diffusion,
Jρ = −Dρ∇ρ. Hence, we supplement equation (2.3.8) with the reaction-diffusion
for ρ

∂ρ

∂t
= ∇ ·Dρ∇ρ+ g(a, ρ), (2.3.9)

where Dρ is the constant of diffusivity of ρ. The system of equations (2.3.8)–(2.3.9)
is known the classical Keller-Segel model for chemotaxis [75–77].

Keller and Segel [75] obtained a simpler model based on the following assump-
tions. The chemotactic sensitivity function is, χ(ρ) = χ0 > 0, a positive constant.
Also, they proposed g(a, ρ) = f(ρ)a−k(ρ)ρ, the net source/degradation of attrac-
tant. The term f(ρ)a is the production rate by cells; while −k(ρ)ρ is the rate at
which attractant decays. Here, f(ρ) is the secretion rate per cell.

In their classical paper of 1971 [77], Keller and Segel used the chemotaxis
system (2.3.8)–(2.3.9) and sought for one dimensional traveling wave solutions to
explain the motility of bands of E. coli which had been observed by Adler [1].
The authors assumed g(a, ρ) = −k(ρ)ρ = −k0ρ, with k0 > 0. Furthermore, they
proposed the following singular chemotactic sensitivity

χ(ρ) =
χ0

ρ
,

where χ0 > 0 is constant and which is known as logarithmic sensitivity [105]. Such
a choice for the sensitivity function turns out to be necessary for the existence of
traveling waves [77]. Keller [74] discussed the validity of the above assumptions on
the functions χ(ρ), k(ρ) and Da(ρ), as well as the implications on the mathematical
modeling of the mobility behavior of chemotactic organism.

Another chemotactic sensitivity function previously considered is the receptor
law [83]:

χ(ρ) =
χ0

(K + ρ)2
,

which we will discuss in detail below (see Chapter 2).

Microscopic derivations

Segel and Jackson [136] used the continuous deterministic approach to develop a K-
S model type to explain the experimental observations reported by Dalquist et al.
[37] of the chemotactic response of bacteria Salmonela typhimurium. The authors
discussed the scope of the former approach since they observed that, assuming that
each member of the population responds in a similar way to the external stimuli,
a variation of the results arises. They concluded that is important to consider the
microscopic response of the individual cells into the macroscopic description of the
population dynamics, because the assumption that the coefficients of the model
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(e.g. diffusion and chemotaxis coefficients) are constant, is valid only when the
population is homogeneous.

Several authors have been interested in considering the individual bacterial be-
havior in the process of the derivation of the macroscopic equations of bacterial
migration and justify the phenomenological assumptions on the chemotaxis flux
(equation (2.3.5) was postulated as constitutive law in [75]). We briefly mention
some of the works where the authors gave alternative derivations of the classical
chemotaxis equation by means of different techniques, assuming certain micro-
scopic features of bacteria (e.g. intracellular kinetics) or taking into account the
microscopic description of the movement of cells.

Segel [134] included the attractant-receptor kinetics to explain the bacterial
chemotactic behavior, and justified the constitutive expression for the chemotactic
flux (2.3.5). Specifically, he considered the binding process of the enzymes located
at the receptors to the attractant molecules (sometimes called ligand). This pro-
cess elicits the starting reaction of chemotaxis. The author proposed a model of
enzyme-ligand interaction of four configuration states: enzyme can take the states
open or bent; and the ligand can be bounded or unbounded. Likewise, he con-
sidered that bacteria move in one dimension, either to right or left; and bacteria
change direction with certain probability, called reversal probability, that in turn
depends on the configuration of receptors. Ignoring both the attractor uptake and
the birth/death of bacterias and with the assumption that the attractant gradient
is small, Segel found that the density of bacteria b is governed by the conservation
equation bt = −Jx and the flux of cells is given by

J = −D(s)
∂b

∂x
+ χ(s)b

∂s

∂x
,

as in the classical Keller-Segel model [75, 76]. Segel found explicit expressions
for the diffusion coefficient D(s) and the chemotaxis sensibility χ(s) in terms of
microscopic variables, that in turn depend on the concentration of the attractant
s.

Othmer, Dunbar and Alt [117] introduced a theoretical framework to study
the dispersion of organism considering two characteristic modes for motility: one,
that is called space jump processes and considers that organisms follow a sequence
of jumps and pauses; and the second, that is called velocity jump processes that
consist of a series of alternating characteristic motions: a linear motion at approx-
imately constant speed called runs, followed by reorientations during which a new
direction and velocity is chosen. The changes in direction are discontinuous and
velocity is chose randomly by a Poisson process. The former processes are adequate
to describe the movement of “large” organism (e.g. kangaroos or grasshoppers),
where as the latter fit better to describe the cellular movement of bacteria (e.g. E.
coli).
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The velocity jump processes were used in [62,118] to derive the classical chemo-
taxis equation. The authors considered the diffusion-limit of transport equations,
and allowed the turning kernel to be dependent on an external bias signal. Using
perturbation analysis, they showed that the classical chemotaxis arises only if the
external signal is small.

As noted by Erban and Othmer [43], Patlak [121] was the first to derive the
chemotaxis sensitivity function from a velocity jump processes. The authors in [43]
developed a multi-scale model for bacterial chemotaxis, describing the individual
cells movement through velocity jump process, and each cell is considered to have
an internal state, determined by the excitation and adaptation response of the cell,
that evolve according to a linear ODE system. The turning rate of individuals de-
pend linearly on the internal state, which in turn it depends on the external signal.
Using moment-closure techniques in one dimension and appropriate scalings they
derived both a second order hyperbolic equation for the population density and the
classical chemotaxis equation. Erban and Othmer [44] generalized their results to
higher dimensions and discussed some aspects regarding to modeling of the internal
dynamics of bacteria, such as signal transduction. More recent works generalize
the results in [43, 44]; for instance, in [166] it is allowed that the turning rate
depends non-linearly on the internal state; and in [165], it is included a detailed
model of bio-chemestry of intracellular signaling, which is in general, nonlinear.
Both of this works, showed that under the assumption that the gradient of the
external signal is small, the evolution of bacterial density can be approximated by
the classical chemotaxis equation with signal-dependent chemotactic sensitivity.

Further approaches to derivate the classical chemotaxis equations from micro-
scopic assumptions are based on reinforced random walks [119] and interacting
stochastic many-particle system [148].

To finish this section we cite some review articles related to the mathematical
theory of chemotaxis, in particular to the Keller-Segel models and its variations.
The mathematical properties of these models such as existence of solutions, blow-
up, traveling wave solutions and asymptotic behavior have been summarized in
[16, 63, 66, 160]. Regarding to mathematical modeling of bacterial chemotaxis we
mention two articles: (i) [150] where is given an overview of the modeling of
chemotaxis at the single-cell level, and (ii) [149] where the authors review the
mathematical modeling of bacterial chemotaxis at macroscopic cell population
level.

2.4 Applications of the KS systems

We shall describe some of the applications where the mathematical modeling have
been done by using a Keller-Segel type system. The most of the fields where K-S
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models have been applied are related to biology, medicine or ecology due to the
ability of the model to capture the biased movement of organism involved in the
dispersion of species or the aggregation of cells populations [120].

Anderson and Chaplain [9] proposed a hybrid model, continuous and discrete,
of the process of tumor induced angiogenesis. A solid avascular tumor, when
reaches certain cell density (approx. 106 cells), have its growth limited to the dif-
fusion of nutrients. Thus, to further growth, the tumor induces the development
of new capillary network by “recruiting” the blood vessels in the periphery. The
angiogenesis process starts when tumor cells segregate the tumor angiogenic factor
(TAF), that diffuses in the surrounding tissue and forms a concentration gradient.
The endothelial cells of the pre-existing vasculature migrate towards the tumor in
a chemotactic response to TAF. In addition, the endothelial cells interact with the
fibronectin, a macromolecule present in the extracellular matrix, that promotes
the cell migration up a concentration gradient. This interaction is known as hap-
totaxis. The model by Anderson and Chaplain is composed of two parts, one uses
the continuous deterministic approach (reaction-diffusion-chemotaxis equations)
to describe the concentrations of TAF and fibronectin; and the second it considers
an automata-like model based on a biased random walk model to describe the
migration of endothelial cells.

Alt and Lauffenburger [7] proposed a K-S system to explain the leukocyte
chemotaxis on a inflammatory response to bacterial invassion on tissue. They for-
mulated a system of three reaction-diffusion-chemotaxis equations for the leuko-
cyte and bacterial densities, and a chemotactic attractant concentration that me-
diates the migration response of leukocyte to the affected area. The authors above
mentioned applied this model to explain observed clinical behavior of chemotaxis
defects in leukocytes. These defects were correlated to severe bacterial infections
on surgical patients, but not to the density level of leukocytes found in the affected
area. Alt and Lauffenburger concluded that the diminished effect of the inflam-
matory response was due to a deficiency of the leukocytes to found the bacteria
on the inflamed tissue.

Most of the times, microbial infections on the human body are not produced
by a sole microorganism species, but by a more harmful entities called biofilms.
Biofilms are complex ecosystems of microorganisms (e.g. bacteria, fungi, among
others) contained in a protective extracellular matrix of self-secreted polysaccha-
ride that adheres to a surface, either biotic or abiotic [35]. There is evidence that
biofilms are responsible for many of the infectious diseases in the body includ-
ing respiratory infections, caries and infections associated with indwelling medical
devices (e.g. catheters, implants and valves) [90]. Infections due to biofilms are
commonly acute and recurrent, since the coating from the extracellular matrix fa-
cilitates the avoidance of the immune system response and resistance antibiotics.
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In addition, the matrix provides mechanisms that promote horizontal gene trans-
fer that propagate the antibiotic resistance [36, 161]. The process of formation of
biofilms involves several mechanisms of growth, differentiation, communication and
movement, and from the modeling point of view, it represents a unique challenge.

The aggregation patterns exhibited by many bacterial strains in in-vitro ex-
periments are examples of simpler biofilms [20, 23, 29, 111, 138, 163]. Ben-Jacob
and coworkers [19], have shown experimental evidence that the bacterial aggre-
gation patterns undergo morphological changes under antibiotic stress, in such a
way that these changes optimize the survival of the colony. The authors discussed
the mechanism used by bacterial colonies to adapt to the hostile conditions, being
the chemotactic signaling the key strategy for their survival.

On the other hand, recent studies [113, 116] have put forward evidence that
shows that the antimicrobial and antibiotic resistance has become a global health
threat. It has been estimated that about 700,000 people die every year from drug-
resistance infections, and if the tendency is not reverted for 2050 the death toll
will be about 10 million people per year (cf. [113]).

This motivate us to use mathematical modeling as a tool for understanding
the underlying processes of development of patterns, such as communication and
movement. Ultimately, the level of knowledge that we can achieve by studying
bacterial patterns will contribute to the process of understanding of biofilms de-
velopment, and hopefully, in the future this will represent the right approach to
the increasing problem of antibiotic resistance.

In the following chapter we introduce a continuous reaction-diffusion-chemotaxis
model for B. subtilis colony patterns, and we carry out numerical studies to ex-
plore the underlying effects that chemotaxis signals have on the development of
aggregation structures of this specific bacterial strain.
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Chapter 3

Chemotaxis model - Numerical
simulations

In this chapter we propose a new R-D system for bacterial aggregation patterns
that considers nutrient chemotaxis and we explore the effects that the chemotactic
signal has over the development of the bacterial colony.

We begin by giving, in Section 3.1, a summary of the morphological patterns
of the bacterium Bacillus subtilis observed during in-vitro experiments. In Section
3.2 we review the original model by Kawasaki et al. [73] for growth patterns of
B. subtilis. Section 3.2.1 is concerned with the modeling of chemotaxis and the
role it has on the development of patterns. In Section 3.3, we introduce the new
chemotactic term into the original model. The resulting system is normalized in
Section 3.4, to reduce the number of free parameters. In Sections 3.5 and 3.6
contain the results of our numerical simulations. We compare the new emerging
chemotactic patterns to those without chemotaxis.

3.1 Bacterial pattern formation

Bacteria have developed highly complex strategies to cope with adverse environ-
mental conditions. These strategies include differentiation of cells, sophisticated
biochemical communications capabilities and even programmed cell death [137].
All these features show that individual cells cooperate to achieve a multicellular
organism behavior, which has been identified as characteristic bacterial trait [138].
The multicellular behavior is envisioned as communicating and decision-making
capabilities that allow bacteria to optimize the population survival. It has been
observed that, in some bacterial species, this survival behavior favors the spatial
self-organization of the colony, and through high adaptability of individual cells,
they form spatio-temporal patterns with very diverse morphologies.
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Bacteria do not store all the necessary information to create every morphol-
ogy; rather, additional information is cooperatively generated [22]. The pattern
that emerges depends on the bacterial strain and the environmental conditions.
Systematic studies of the morphological aggregation patterns exhibited by several
bacterial strains, such as Escherichia coli, Salmonela typhimurium, Bacillus sub-
tilis, among others, have been carried out by means of variations in the nutrient
level and agar concentration, during in-vitro experiments [23,29,111,138,163]. In
this section we give a summary of the experimental observations of colony patterns
in B. subtilis.

3.1.1 B. subtilis colony patterns

B. subtilis is a gram-positive bacterium which is found in soil and gastrointestinal
tract of some species of mammals, including humans. This bacterium strain has
been extensively studied at the physiological level, in genetic essays and is taken
as model organism for cell differentiation [147]. In addition, has been studied for
its stimulating effects over the immune activity including activation of secretion
of specific antibodies [33], and its antitumoral effects related to an augmented
cytotoxicity of NK cells when used as immunotherapeutic agent [143].

It is known that B. subtilis colonies exhibit a fractal morphology when inoc-
ulated on solid agar with low levels of nutrient, which resemble diffusion-limited
aggregation (DLA) (see [24,25,93,115]). DLA fractal morphology occurs when the
mobility of bacteria is very limited and growth process is controlled by nutrient
diffusion alone [24]. In the limit of low nutrient an underlying screening effect
is present, that is, the most advanced parts of the colony consume the nutrient
and the parts getting behind do not have access to enough nutrient to grow [154].
Keeping the agar concentration high and increasing the nutrient level, the screen-
ing effect is diminished and compact colonies with a rough (self-affine) interface
emerge; these aggregation structures are known as “Eden-like” patterns [26, 155].
When inoculated on semi-solid surface (intermediate agar concentration) with poor
nutrient level, bacterial colonies assume a dense branching morphology (DBM)
with a smooth round envelope that propagates outward [23,111].

DLA and DBM-like patterns are similar to those observed in non-living sys-
tems, e.g., in electrochemical deposition and crystal growth [21]. The underlying
mechanisms in such non-living systems is the Mullins-Sekerka or diffusive instabil-
ity, which is manifested when outward prostitutions at the interface advance faster
that their surroundings [85,154].

For an intermediate level of agar and high level of nutrient, patterns consisting
of concentric rings have been observed [52, 158]. Finally, on nutrient-rich soft
medium bacteria exhibit homogeneous compact colonies [159]. Detailed summary
of the experimental observations can be found on [73] (see also [55, 94] and the
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Figure 3.1: Depiction of the morphological diagram of the aggregation patterns
exhibited by colonies of B. subtilis as a function of the concentration nutrient Cn
(vertical axis) and the solidity of the agar medium expressed as 1/Ca (horizontal
axis). This diagram is redrawn from the one in [73].

references therein).
The observable patterns emerge depending on the nutrient level Cn and agar

concentration Ca. Typically, the experimental observations are summarized schemat-
ically in a morphological diagram as the one shown in Fig. 3.1.

The horizontal axis is the inverse of agar concentration, 1/Ca, and the vertical
axis is the nutrient level Cn. For high agar concentrations and low nutrient level,
patterns are DLA-like (region A). As the nutrient level increases, but still on a
hard surface, colony assumes an Eden-like configuration (region B). When agar’s
concentration is intermediate (semi-solid medium) and nutrient is low, DBM-like
patterns emerge (region E), with smooth round envelope propagating outward. In
nutrient-rich semi-solid medium the observed patterns are concentric rings (region
C). In region D, where the medium is softer and nutrient level is high, bacteria
develop homogeneous circular patterns with no openings. Dashed regions on Fig.
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3.1 represent regions for the growth parameters (agar and nutrient levels) where
the observed patterns show an ambiguous morphology.

Thanks to all the experimental work done, the qualitative picture of B. subtilis
colonies is well understood; nevertheless it is susceptible to further improvements:
for example, Bonachela et al. [28] propose the possibility of a richer morphological
variety for patterns in the Eden regime (region B) (see also [164]).

In order to explain the experimental observations, different phenomenological
mathematical models have been proposed, including continuous reaction-diffusion
systems [106] and hybrid models [23]. Depending on the biological, models have
been able to reproduce specific regions or all of the morphological diagram.

Typically, deterministic continuous modeling has been developed in the frame-
work of reaction diffusion systems, consisting usually of two coupled equations to
describe the evolution of bacteria and nutrient densities [106]. (It is to be observed,
though, that homogeneously spreading patterns (region D) have been found as the
solution of a single two-dimensional Fisher equation with linear diffusion [159].)

To reproduce more complex patterns, such as DLA and DBM-like, it is neces-
sary to consider mechanisms that trigger the Mullins-Sekerka instability, as argued
by Ben-Jacob and coworkers [20, 34, 55]. Examples of such mechanisms that have
been previously considered are a meta-stable diffusion term [95], motivated by
cell differentiation during growth process; a cut-off in the reaction term [78], due
to a discreteness of bacteria; the incorporation of an additional lubricating field
that influences the motion of bacteria [55]; and the inclusion of non-linear bacte-
rial diffusion [73, 80]. To gain further insights of the biological mechanisms of the
branching instability, these models have been compared and contrasted in [55] (see
also [20]).

In the mid-90’s Kawasaki et al. [73] introduced a R-D model with non-linear
density-dependent degenerate (cross) diffusion coefficient to explain the experi-
mental observations of Ohgiwari et al. [111] pertaining to DBM-like transition
patterns between regions E and D of the morphological diagram. This model
has been consistently studied due to its capabilities on reproducing the complex
dense morphology patterns and to its rich non-linear mathematical structure (see,
e.g., [47, 65,106,129]).

The aggregation patterns exhibited by bacteria are the result of a coopera-
tive behavior that involve highly complex adaptive capabilities, such as, bacterial
chemotaxis. Ben-Jacob and co-workers (cf. [17–20,22,23,55]) have suggested that
some of the features of the observable patterns can be only understood when the
chemotactic response of bacteria is included.

Chemotaxis towards nutrients it is a well studied phenomenon in many bacterial
species [1,2]. For instance, it is well documented that B. subtilis exhibits (positive)
chemotaxis towards high nutrient levels and multiple aminoacids (cf. [102,115]; see
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also [104,157]).
Experimental evidence and theoretical arguments were given by Ben-Jacob

et al. [20, 55] to justify the incorporation of nutrient chemotaxis into continu-
ous reaction-diffusion models for bacterial growth. They suggested that nutrient
chemotaxis play a key role in the branch-making dynamics, since it increases the
diffusive instability and provides an outward drift to cellular movement. Although
the authors did not propose a new chemotactic term for the particular model of
Kawasaki and collaborators, they certainly discussed what the relation between a
generic diffusion term an the appropriate chemotaxis should be (see Section 3.2.2
below).

In this fashion, we incorporate a suitable chemotactic term into the original
model by Kawasaki et al. and explore the effects that the new chemotaxis term
has on the bacterial aggregation patterns.

In the following section we briefly review the model of Kawasaki and collabo-
rators, discuss the mathematical modeling of chemotaxis and the role it takes in
the development of bacterial patterns.

3.2 The model by Kawasaki et al.

Kawasaki et al. [73] proposed a continuous model of reaction-diffusion type that
captures many of the experimental features of the bacterial growth patterns in for
the DBM and homogeneous circular morphologies.

We denote by Ω ⊂ R2 a bounded domain, every point by (x, y) ∈ Ω, and time
t ≥ 0 . The nutrient concentration and cell density are represented by n = n(x, y, t)
and b = b(x, y, t), respectively. The model has the following general form:

nt = Dn∆n− f(n, b)

bt = ∇ · (Db∇b) + θf(n, b).
(3.2.1)

It is supposed that the bacteria and the nutrient diffuses, with diffusion coefficient
Db and Dn, respectively. The coefficient Dn > 0 is constant.

The key feature of this model is the choice of the non-linear diffusion coefficient
Db, which depends proportionally on b and n, and its design was motivated by the
experimental findings of Ohgiwari et al. [111] on the growth patterns of bacterium
Bacillus subtilis on agar plates. The authors systematically change the growth
conditions, nutrient Cn and agar Ca concentrations, and found drastic morphology
changes. These findings are summarized in the morphology diagram (see Fig. 3.1).
They acknowledge that colonies apply different strategies to develop depending on
the environmental conditions. For hard agar conditions, high Ca (corresponding
to regions A and B in the morphological diagram), colonies tend to be more static,
since the outermost part of the colony grows by cell division and individuals in the
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inner part become dormant. In contrast, for soft agar (low and intermediate Ca)
colony growth is due to the dynamic movement of bacteria in the periphery. This
growth strategy correspond to regions C, D and E of the diagram, where softness
of the agar promotes bacterial movement. The colony envelope is determined by
a thin layer of bacteria whose movement is dull. Cells inside the colony, far from
the front, are inactive.

Kawasaki and co-workers conjectured that the bacteria are immotile when ei-
ther n or b is low and become active as n or b increases. Furthermore, they noted
that bacteria deviate from the random diffusion exhibiting stochastic fluctuations.
Hence, motivated by the previous observations, they proposed Db to be a non-
linear cross diffusion coefficient of the following form

Db = σnb, (3.2.2)

where σ = σ0(1 + ∆), denoting σ0 the inverse of the agar concentration. The
softness of the agar increases with σ0. The stochastic fluctuation of the movement
is introduced by the parameter ∆, which is drawn from a triangular distribution
with support in [−1, 1] (see Section 3.5.3 below).

The term f(n, b) represents the local interaction between the bacteria and the
nutrient, i.e., is the consumption rate. The term θf(n, b) is the growth rate of
bacteria, where θ > 0 is the conversion rate factor. The functional form of the
consumption rate f was assumed to be of Michaelis-Menten type,

f(n, b) =
κnb

1 + γn
, (3.2.3)

where κ > 0 and γ > 0 are constants. In the low-nutrient limit, f can be approx-
imated as

f(n, b) = κnb. (3.2.4)

The consumption rate (3.2.4) was adopted by Kawasaki and co-workers for the
majority of their analysis in [73], although, they also discuss the effects of the
saturation term γn. For the rest of the chapter, we shall use the consumption rate
defined in equation (3.2.4) for our calculations.

3.2.1 The role of chemotaxis in aggregation patterns

Ohgiwari et al. [111] discussed that for patterns in the regions C, D and E, the
active bacterial movement enhances the growth rate of the colony. In addition,
they noted that the DBM-like patterns cannot be described by the diffusion field
of nutrient alone and suggested that additional mechanisms must be considered to
explain some of the features of colony patterns.
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Ben-Jacob and co-workers [18, 20, 22, 55] have proposed that the development
of bacterial colonies is the result of a complex process of self-organization in which
individual bacteria and the colony use various communication capabilities to form
spatio-temporal patterns that enhance the adaptability to environmental condi-
tions. The communication is done through chemotatic signaling. They suggested
that there are at least three kinds of signals, each expected to be dominant in
different regimes of the morphology diagram. One of the signals is the nutrient at-
tractive chemotaxis, which is dominant for certain levels of the nutrient. Another
type of signal is a long-range repulsive one, secreted by starving bacteria at center
of the colony. The last one, is a short-range attractive signal produced at the front
of the colony where bacteria ask for help to metabolize the excess of toxic waste
products. The range of each signal is determined by the diffusion coefficient and
the rate of decomposition.

Although, bacterial patterns are reminiscent to those of inorganic material [21],
Ben-Jacob et al. [55] have pointed that in non-living systems, the DBM (lower
fractal dimension) patterns are observed for lower growth velocity. In contrast,
for bacterial colonies they have conjectured [20,55] that nutrient chemotaxis is the
mechanism responsible for faster growth velocity together with a ramified pattern
of low fractal dimension. Such a process should permit to increase the propagation
of the front.

In view of these observations, the model we propose considers the nutrient
chemotactic signal alone, inasmuch as it is the dominant signal in the DBM regime.
Thus, we introduce a nutrient chemotactic term into system (3.2.1). For that
purpose, we need to define a chemotaxis flux Jc which, in general, is written as

Jc = ξ(b)χ(n)∇n, (3.2.5)

where ξ = ξ(b) is the bacterial response to the nutrient gradient, and χ(n) is the
chemotactic sensitivity function.

3.2.2 Receptor’s Law and the bacteria response function

The detection of chemical signals is done by bacteria using dedicated membrane
receptors [157]. Bacteria can not sense chemical gradients spatially; instead, they
compare between sequential registers of their occupied chemoreceptors [40]. Bac-
teria dynamically adapt to respond to higher concentrations of attractant; this has
been previously explained through Weber’s law [98], that states that the minimum
detectable difference on the intensity of a stimulus is proportional to the previous
stimulus intensity.

The process of interaction between a receptor and substrate (nutrient) can
be explained through the law of mass-action (see [98, 119]). The binding of the
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nutrient n to a protein P of a chemoreceptor forms the complex Pn according to
P + n
 Pn. When the equilibrium of the reaction is reached we get

Kd =
[P ][n]

[Pn]

where Kd is the dissociation constant, and the brackets notation [ ] indicate the
corresponding concentration. Assuming that the velocity of association and dis-
sociation are the same, and that the concentration of free protein [P ] is the total
binding protein [PT ] minus the concentration of the complex [Pn], we can derive
the following equation

[Pn] =
[PT ][n]

[Pn]
.

Then, the ratio of saturation of the chemoreceptors is expressed as

φ(n) =
Occupied Receptors

Total Receptors
=

[Pn]

[PT ]
=

[n]

Kd + [n]
.

This allows us to consider the chemotactic potential φ(n), and we define the chemo-
tactic sensitivity as χ(n) = φ′(n). The dissociation constant Kd has nutrient units,
and is the concentration of nutrient needed for half of receptor to be occupied.
Moreover, Kd is the nutrient level where the chemotactic sensitivity χ(n) is maxi-
mum.

In the literature, cf. [55,106], this form for the chemotactic sensitivity is known
as “receptor’s law” and was proposed by Lapidus and Schiller [83],

χ(n) =
χ0Kd

(Kd + n)2
(3.2.6)

where χ0 > 0 is a constant that represents the strength of the chemotaxis. The
chemotactic response vanishes for large nutrient concentrations due to the satura-
tion of the receptors. This receptor sensitivity law has been derived and applied
in several models for chemotaxis [51, 134, 135]. (See [149] for a review on mathe-
matical modeling of bacterial chemotaxis, including a comparison of models that
consider different chemotactic sensitivity functions.)

It is to be noted that the dissociation constant Kd for the attractor-receptor
molecular interaction has a unique value that depends on the bacterial strain, nu-
trient type and other in-vitro conditions, and has to be determined experimentally
(see [56] for values of Kd on various substrates of B. subtilis). We shall use Kd as
normalization factor, as we shall see below.

The bacterial response function ξ = ξ(b) is positive for attractive chemotaxis
and negative for a repulsive one. In [55] (see also [20]), Ben-Jacob and his group
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suggest that, if the bacteria move within a liquid and the colony density is low,
then the bacterial response should be proportional to the bacteria concentration
times the diffusion, i.e.,

|ξ(b)| ∝ bDb. (3.2.7)

For the linear (constant) diffusion case the bacterial response function is propor-
tional to the density b, as in the classical Keller-Segel model [76, 77]. When a
non-linear diffusion coefficient Db is considered, the authors suggested that, the
chemotactic flux Jc should be changed according to (3.2.7) in order to incorporate
the density dependence of the bacterial movement. For example, for the non-linear
diffusion Db = D0b

k where D0 is constant and k > 0 is an integer, as considered
by Kitzunezaki [80], the adequate response function is ξ(b) = bDb = D0b

k+1.

3.3 Nutrient chemotaxis

We introduce a suitable nutrient chemotaxis term into system (3.2.1), that is
compatible with (3.2.7). Thus, considering the non-linear diffusion (3.2.2) we
propose the following attractive chemotactic flux

Jc = σnb2χ(n)∇n, (3.3.1)

where χ(n) is the receptor law. Subtracting the divergence of Jc to the bacterial
density evolution equation we obtain

nt = Dn∆n− κnb,

bt = ∇ · (σnb∇b) + θκnb−∇ ·
(
σnb2 χ0Kd

(Kd + n)2
∇n
)
,

(3.3.2)

for (x, y) ∈ Ω, t ≥ 0. Initial conditions are given as

n(x, y, 0) = n̄0, b(x, y, 0) = b̄0(x, y), (3.3.3)

where n̄0 is the uniformly distributed initial constant concentration of nutrient,
and b̄0 is a given function that represents the initial inoculum of bacteria. Further,
no-flux boundary conditions are imposed on system (3.3.2),

∇n · ν = 0, ∇b · ν = 0, (x, y) ∈ ∂Ω, (3.3.4)

where ν ∈ R2, is the unitary outer normal vector to the boundary of the domain.
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3.4 Normalization

In order to reduce the number of free parameters in system (3.3.2) we consider the
following non-dimensional rescaled variables:

x̄ =

(
θKdκ

Dn

)1/2

x, ȳ =

(
θKdκ

Dn

)1/2

y, t̄ = (θKdκ)t,

n̄ =
n

Kd

, b̄ =
b

θKd

, σ̄ =

(
θK2

d

Dn

)
σ.

The partial derivatives change in the following manner

∂

∂t
= (θKdκ)

∂

∂t̄
,

∂

∂x
=

(
θKdκ

Dn

)1/2
∂

∂x̄
.

Then, vector operators change as

∇x =

(
θKdκ

Dn

)1/2

∇x̄, ∆x =

(
θKdκ

Dn

)
∆x̄,

where the subscripts x and x̄ stands for old and new variables, respectively. Upon
substitution of the rescaled variables into (3.3.2) we obtain for the nutrient equa-
tion

(θKdκ)(Kdn̄)t̄ =
θKdκ

Dn

Dn∆x̄(Kdn̄)− κ(Kdn̄)(θKdb̄)

(θK2
dκ)n̄t̄ = (θK2

dκ)∆x̄n̄− (θK2
dκ)n̄b̄

n̄t̄ = ∆x̄n̄− n̄b̄,
and for the bacterial density equation

(θKdκ)(θKd)b̄t̄ =

=

(
θKdκ

Dn

)1/2

∇x̄ ·

(
Dn

θK2
d

σ̄(Kdn̄)(θKdb̄)

(
θKdκ

Dn

)1/2

∇x̄(θKdb̄)

)
+ θκ(Kdn̄)(θKdb̄)

−
(
θKdκ

Dn

)1/2

∇x̄ ·

(
Dn

θK2
d

σ̄(Kdn̄)(θKdb̄)
2 χ0Kd

(Kd +Kdn̄)2

(
θKdκ

Dn

)1/2

∇x̄(Kdn̄)

)
,

which simplifies to

b̄t̄ = ∇x̄ ·
(
σ̄n̄b̄∇x̄b̄

)
+ n̄b̄−∇x̄ ·

(
σ̄n̄b̄2 χ0

(1 + n̄)2
∇x̄n̄

)
.
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We drop the bar notation for simplicity and obtain the following rescaled system
of equations

nt = ∆n− nb,

bt = ∇ · (σnb∇b) + nb− χ0∇ ·
(

σnb2

(1 + n)2
∇n
)
,

(3.4.1)

where σ = σ0(1 + ∆), and ∆ is the stochastic fluctuation, drawn from a trian-
gular distribution with support in [−1, 1] (see Section 3.5.3 below) . The initial
conditions are

n(x, y, 0) = n̂0/Kd ≡ n0,

b(x, y, 0) = b̂0/(θKd) ≡ b0(x, y),
(3.4.2)

for (x, y) ∈ Ω. We impose the no-flux boundary conditions on the rescaled variables

∇n · ν = 0, ∇b · ν = 0, (x, y) ∈ ∂Ω. (3.4.3)

For the rescaled system (3.4.1) the free parameters are σ0 > 0, that represents
the hardness of the agar, n0 > 0 measures the initial nutrient concentration, and
χ0 ≥ 0, is the chemotactic signal strength. The stochastic

3.5 Numerical Simulations

In order to explore the qualitative effects of the chemotactic signal in the colony
patterns, we performed several numerical simulations of system (3.4.1) for various
values of the free parameters. We implemented a explicit second order Runge-
Kutta and finite differences numerical scheme using the NVIDIA CUDA libraries
for the C/C++ programming language. CUDA is a general purpose parallel com-
puting platform that is designed to run in the Graphic Processing Units (GPUs)
compute architecture [79]. The GPUs are well-suited to address problems that can
be expressed as data-parallel computations, the same program (finite differences)
is executed on many data elements (grid points) at once [109]. This programming
model is known as simple program/multiple data (SPMD). The parallel program-
ming model allowed us to process large data sets, and thus we overcome the incon-
venience of small time steps required by explicit numerical schemes for solving stiff
equations. In this fashion, we speeded up the computations and made thousand
of iterations in a couple of hours. Our numerical simulations were performed on a
NVIDIA Tesla c© C2070 graphics card with 448 CUDA cores.

In the following section we describe the numerical scheme for which we consid-
ered a square of side L = 680 as the spatial domain. We selected a square lattice
mesh of N = 2048 points per side, i.e., a mesh containing more than 4 million
points (see discussion below on Section 3.5.3). Therefore, the used grid width was

28



Figure 3.2: The bacteria density scale used for plotting solutions.

∆x = ∆y = L/N ≈ 0.3320. We considered two values for the time step depending
on the value of σ0. For σ0 = 1, we used ∆t = 0.0231, and for σ0 = 4, we used
∆t = 0.0110. Although we did not include a proper stability analysis, we observed
that the numerical scheme was not susceptible to the round-off errors induced by
the discretization for the values of ∆t that we considered.

The visualization of the results was made with Paraview c© [3]. Simulations
data are plotted as a 3-D surface, this means that bacteria density is the height
(positive z-axis) plotted over the mesh points(x-y plane), and the view is of the
positive z-axis pointing outward of the paper. The colonies are colored according
to the bacterial density level. Figure 3.2 shows the scale of the color map used for
all numerical simulations, where purple is the maximum and white is the minimum
of the bacterial density. For all simulations, the minimum is zero, but in each case,
the maximum varies.

For the sake of comparison, following reference [73], we took the initial con-
ditions as n0 = 0.71 and 1.07, for the initial uniformly distributed nutrient level.
For the bacteria we took the initial inoculum

b0(x, y) = bMe
−(x2+y2)/6.25,

where bM = 0.71 is the maximum density at the center of the domain. For a
summary of the values of the free parameters used in the numerical simulations
see Table 3.1.

We remark that for the chemotaxis strength χ0 we included the value χ0 = 0,
this means that we solved the original system (3.2.1) (in its normalized version).
As the reader may see below (see Section 3.6), we compare the simulations of
system (3.4.1) when the chemotactic signal is present to those without chemotaxis,
and confirm that the colony speed of propagation is enhanced by the nutrient
chemotaxis as predicted by asymptotic calculations.

3.5.1 Numerical scheme

In the implementation of the finite difference for discretizing space, and of the
second order Runge-Kutta numerical scheme for the resulting ODE system we
discretized system (3.4.1). To proceed so, let us write the system (3.4.1) in the
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Description Symbol Values

Initial condition for the nutrient n0 1.07, 0.71
Agar softness σ0 1.0, 4.0
Chemotactic signal strength χ0 0, 2.5, 5.0, 7.5, 10.0

Table 3.1: Free parameter values used during the numerical simulations.

following explicit form

nt = ∆n− nb,
bt = σ

(
nb∆b+ n|∇b|2 + b∇b · ∇n

)
+ nb

− χ0σ

(1 + n)2

(
nb2∆n+ 2nb∇b · ∇n+ b2

(
1− 2n

1 + n

)
|∇n|2

)
.

(3.5.1)

Let ∆x, ∆y denote the spatial step increments, and ∆t the time step. We made
the numerical computations in the domain

{(x, y, t) : 0 ≤ x, y ≤ L, t ≥ 0},

which we discretized considering a regular squared grid, that is defined by the
discrete point set

{(i∆x, j∆y, k∆t) : i, j = 0, . . . , N, k ≥ 0}.

In all our computations we took ∆x = ∆y = L/N , where N = 2048.
We considered approximations to the derivatives using central finite differences

for the spatial derivatives and forward differences for the temporal derivative [69].
Thus, for the first order spatial derivatives of the bacteria density we have

∂b

∂x
(x, y, t) =

1

2∆x
(b(x+ ∆x, y, t)− b(x−∆x, y, t)) + O((∆x)2),

∂b

∂y
(x, y, t) =

1

2∆y
(b(x, y + ∆y, t)− b(x, y −∆y, tk)) + O((∆y)2).

(3.5.2)

And for the second order derivatives we have

∂2b(x, y, t)

∂x2
=

1

(∆x)2
(b(x+ ∆x, y, t)− 2b(x, y, t) + b(x−∆x, y, t)) + O((∆x)2),

∂2b(x, y, t)

∂x2
=

1

(∆y)2
(b(x, y + ∆y, t)− 2b(x, y, t) + b(x, y −∆y, t)) + O((∆y)2).

(3.5.3)
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Therefore, for the laplacian operator we have the approximation known as the five
point stencil

∆b(x, y, t) =
∂2b(x, y, t)

∂x2
+
∂2b(x, y, t)

∂x2

' b(x+ ∆x, y, t)− 2b(x, y, t) + b(x−∆x, y, t)

(∆x)2

+
b(x, y + ∆y, t)− 2b(x, y, t) + b(x, y −∆y, t)

(∆y)2
.

(3.5.4)

For the temporal derivative we have the approximation,

∂b

∂t
(x, y, t) =

1

∆t
(b(x, y, t+ ∆t)− b(x, y, t)) + O(∆t). (3.5.5)

Similar approximations hold for the first and second order derivatives of the nu-
trient concentration n(x, y, t).

We denote an approximation to the bacterial and nutrient densities, b(xi, yj, tk)
and n(xi, yj, tk), at the mesh points (xi, yj, tk) = (i∆x, j∆y, k∆t) by

bki,j ' b(xi, yj, tk), nki,j ' n(xi, yj, tk).

Note that the superscript denotes the time step.
Let h = ∆x = ∆y, denote the regular spatial spacing in both space coordinates.

Substituting the approximations of the derivatives, (3.5.2) and (3.5.4), at the grid
points in the vector differential operators for the bacterial density we have:

∆bki,j =

(
bki+1,j + bki−1,j + bki,j+1 + bki,j−1 − 4bki,j

)
h2

, (3.5.6)

|∇bki,j|2 =

(
bki+1,j − bki−1,j

2h

)2

+

(
bki,j+1 − bki,j−1

2h

)2

, (3.5.7)

similar approximations hold for nki,j. For the inner product ∇b · ∇n we have

∇bki,j · ∇nki,j =

(
bki+1,j − bki−1,j

2h

)(
nki+1,j − nki−1,j

2h

)
+

+

(
bki,j+1 − bki,j−1

2h

)(
nki,j+1 − nki,j−1

2h

)
.

(3.5.8)

For notational convenience, we define the right-hand side of (3.5.1) as the functions

F (b, n) := ∆n− nb,
G(b, n) := σ

(
nb∆b+ n|∇b|2 + b∇b · ∇n

)
+ nb

− χ0σ

(1 + n)2

(
nb2∆n+ 2nb∇b · ∇n+ b2

(
1− 2n

1 + n

)
|∇n|2

)
.
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Therefore, using expression (3.5.6) for nki,j we obtain

F (bki,j, n
k
i,j) = ∆nki,j − nki,jbki,j. (3.5.9)

The expression for G is long, so we divide it in two pieces

G(b, n) = Gr−d(b, n) +Gchem(b, n),

where

Gr−d(b, n) = σ
(
nb∆b+ n|∇b|2 + b∇b · ∇n

)
+ nb,

Gchem(b, n) = − χ0σ

(1 + n)2

(
nb2∆n+ 2nb∇b · ∇n+ b2

(
1− 2n

1 + n

)
|∇n|2

)
.

Hence, substituting the approximation of the derivatives, (3.5.6), (3.5.7) and
(3.5.8), we have

Gr−d(b
k
i,j, n

k
i,j) = σ

(
nki,jb

k
i,j∆b

k
i,j + nki,j|∇bki,j|2 + bki,j∇bki,j · ∇nki,j

)
+ bki,jn

k
i,j,
(3.5.10)

Gchem(bki,j, n
k
i,j) = − χ0σ

(1 + nki,j)
2

(
nki,j(b

k
i,j)

2∆nki,j + 2nki,jb
k
i,j∇bki,j · ∇nki,j

+ (bki,j)
2

(
1−

2nki,j
1 + nki,j

)
|∇nki,j|2

)
,

(3.5.11)

and hence
G(bki,j, n

k
i,j) = Gr−d(b

k
i,j, n

k
i,j) +Gchem(bki,j, n

k
i,j). (3.5.12)

For the temporal derivative, we use the forward approximation (3.5.5) that,
when considered at the mesh points, has the following form

∂bki,j
∂t

=
bk+1
i,j − bki,j

∆t
,

∂nki,j
∂t

=
nk+1
i,j − nki,j

∆t
.

Hence, substituting the previous approximation into system (3.5.1) and considering
the expressions for the right-hand sides, (3.5.9) and (3.5.12), yields the Euler
method

nk+1
i,j = nki,j + ∆tF (bki,j, n

k
i,j),

bk+1
i,j = bki,j + ∆tG(bki,j, n

k
i,j).

Using the Euler method, we implemented a second order Runge-Kutta method
of two-stages. The first stage considers the Euler method with half time step,

n
k+1/2
i,j = nki,j +

∆t

2
F (bki,j, n

k
i,j),

b
k+1/2
i,j = bki,j +

∆t

2
G(bki,j, n

k
i,j),

(3.5.13)
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and the second stage consists of the Euler method with full time step, but the
right-hand sides are evaluated at the previous “halfway” approximations of the
first stage, namely

nk+1
i,j = nki,j + ∆tF (b

k+1/2
i,j , n

k+1/2
i,j ),

bk+1
i,j = bki,j + ∆tG(b

k+1/2
i,j , n

k+1/2
i,j ).

(3.5.14)

The numerical scheme (3.5.13)-(3.5.14) is defined for k ≥ 0, i, j = 1, ..., N −1. For
the points at the boundaries, we apply the no-flux boundary conditions (3.4.3).

We supplement the initial conditions (3.4.2), discretized according to the grid
points

n0
i,j = n(xi, yj, 0) = n0, b0

i,j = b0(xj, yj).

3.5.2 Parallelization and boundary conditions

Graphics Processing Units (GPUs) are parts of a computer that produce high qual-
ity graphics, providing accelerations on 2D and 3D images and light transforms.
Since the year 2000, GPUs allow to apply arithmetic operations simultaneously on
pixels using stream multiprocessors (SMs). Later applications of this operations to
other data resulted in the development of general purpose graphics processing unit
(GPGPU) computing. CUDA was first proposed in 2007 by NVIDIA to unify the
GPGPU programming model on their own video cards, but other programming
models on GPUs have been proposed such as OpenCL and OpenACC.

Typically processing units on GPUs are simpler and slower if compared with
traditional CPUs. It is the number of cores in SM that provides a graphics card
more computational power; a GPU can have over 100 times more cores that a
CPU. GPUs are designed to deliver maximum throughput and are very efficient
at performing repetitive tasks in which only data change. In this sense, the par-
allelism model offered by GPUs consists of executing a single program on many
data elements. This programming model is known as simple program/multiple
data (SPMD), and in CUDA consists in that all cores execute the same instruc-
tions with different data. In our case, it is the finite differences scheme applied to
the different grid points.

On the other hand, the architecture of GPUs includes different types of memory
that are located physically at different places, for instance on-board and on-chip.
Moreover, the CUDA programming platform is designed to launch the programs
from a host (CPU) and run on separated device (GPU), maintaining their mem-
ories separated. For this reason, CUDA programming is focused to minimize the
data transfer between host and device, since these operations are significantly time
consuming.

CUDA model offers different types of memory, being the global, shared and
texture the most commonly used in practice. In the implementation of finite
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differences scheme we used a combination of both global and texture memories.
Global memory is the most used since it can be accessed by all SMs. It is

the largest of all types, being measured in Gigabytes, but it is also the slowest.
The texture memory has important features over the other types of memory from
which we benefited in the coding of the numerical scheme.

We took advantage of the spatial locality feature of texture memory (data can
be handled in 2D arrays), in contrast with global memory which only access data as
a 1D array. In this way, the coding of the local interactions of the finite differences
was more transparent.

Figure 3.3: Graphical representation of the spatial locality of finite differences
interactions. Example of texture memory clamping on the boundaries.

The most important capability of texture memory that we benefited from is
the address mode: it describes the behavior of out-of-range data fetching. In
particular, we used the cudaAddressModeClamp [110], which specifies that an out-
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of-bounds coordinates are replaced with the closest boundary. In the context of
finite differences method this is equivalent to automatically impose no-flux bound-
ary conditions with no further coding. For example, consider the approximation
of the nutrient density at right boundary, this is nkN,j = n(N∆x, j∆y, k∆t), for
0 ≤ j ≤ N and k ≥ 0. The discrete no-flux boundary condition at the right
boundary considering a forward approximation for the derivative is

nkN+1,j − nkN,j
∆x

= 0.

Thus we have the condition at the right boundary nkN+1,j = nkN,j. Similar con-
ditions hold for the other boundaries, using the appropriate shifted derivative
approximations, for both bacterial and nutrient densities. (See Figure 3.3.)

3.5.3 A note on the grid size, symmetry and random fluc-
tuations

It has been suggested that numerical simulations might depend on the grid size
[100]. Presumably, it is necessary to consider high spatial resolutions to correctly
display the finer structures present in the solutions, e.g., authors in [73] used a grid
size of 1600 × 1600 in their simulations. To avoid this possibility, we performed
simulations with parameter values σ0 = 1, n0 = 0.71 and χ0 = 5, for the following
grid size: 1024× 1024, 2048× 2048, 4096× 4096 and 8192× 8192. The results are
depicted in Fig. 3.4.

Notice that for the grid size 1024 × 1024 (Fig. 3.4(a)) solutions have a cross
shape with a rhomboid envelope, resembling DLA clusters in discrete growth mod-
els [96]. When grid size is increased to 2048×2048 (Fig. 3.4(b)), we observe drastic
morphology changes. Solutions exhibit a more dense branching morphology, with
radially oriented ramifications having a round envelope. For the bigger grid size of
4096×4096, these morphological features are kept by solutions, as can be observed
in Figs. 3.4(c). (We must point that the results for the grid size 8192× 8192 are
not shown here, due to technical limitations. It can be seen in Fig. 4(d), page
5653 of reference [86].) Therefore, since there is no major morphological changes
between higher grid sizes and 2048× 2048, we select this last one as the grid size
for all the numerical simulation that we performed.

On the other hand, models that reproduce fingering patterns are susceptible
to anisotropy, including continuous [20, 80] and discrete [96, 103]. The underlying
square lattice imposes an artificial anisotropy to growth patterns, giving rise to
symmetries in the numerical solutions. However, these might not be a feature of
the model.

One way to reduce induced symmetries is to consider random lattices [80].
In our setting, we introduced a random fluctuation into the diffusion coefficient
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(a) 1024× 1024 (b) 2048× 2048

(c) 4096× 4096

Figure 3.4: Simulations of system (3.4.1), with parameter values σ0 = 1, n0 = 0.71
and χ0 = 5, under random fluctuation for the diffusion coefficient for different grid
sizes. Symmetries shown in the patterns are due to the implicit anisotropy of the
grid.

of bacteria, relying on the fact that bacteria move performing biased random
walks. This alternative was also considered by authors in [73]. Hence, the diffusion
coefficient for bacteria σ is perturbed from the mean σ0 through a stochastic
fluctuation ∆,

σ = σ0(1 + ∆),

where σ0 is the agar softness. The stochastic fluctuation was applied to the diffu-
sion coefficient on every grid point, at every time step.

We used the inversion method [38] to generate ∆ as random variable with a
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triangular distribution with support in [−1, 1], defined in the following form:

∆ =

{√
2u− 1, 0 ≤ u < 1/2,

1−
√

2(1− u), 1/2 ≤ u < 1,

where u is a uniform [0, 1] random variable. The variable u was generated using
a pseudo-random number generator from the CUDA CURAND library, which
is optimize to produce highly independent pseudo-random numbers in parallel
computations.

The introduction of the random perturbation ∆ serves as a way to consider
a more realistic model, but is not enough to prevent symmetries in the patterns.
Figure 3.5 shows a highly symmetric pattern, less branched (compare with Fig.
3.4(b)) as the result of simulation of system (3.4.1) without the random fluctuation,
i.e., ∆ = 0.

Figure 3.5: Simulations of system (3.4.1), with parameter values n0 = 0.71 and
χ0 = 5, in the absence of random fluctuations for the diffusion coefficient (σ =
σ0 = 1) on a grid of size 2048× 2048. The reader may observe a higher degree of
symmetry due to the implicit anisotropy of the grid.

In the following section we present and discuss the results of the numerical
simulations.
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3.6 Results

We present the results of the numerical simulations of system (3.4.1) with initial
conditions (3.4.2) and subject to boundary conditions (3.4.3).

We consider two regimes in the agar softness parameter σ0 value, namely, semi-
solid agar that corresponds to σ0 = 1, and soft agar that corresponds to the value
σ0 = 4. The morphology of the reproducible patterns correspond to regions D and
E in the morphology diagram, and the transition region between theses (see the
region enclosed by rectangle in Fig. 3.1). Solutions to the bacterial density b are
shown in Figs. 3.6 through 3.10. Each figure has two columns and four rows. The
rows represent different time steps and each column is associated to a value of the
chemotaxis strength parameter χ0.

We remark that the main qualitative effect of the chemotactic term of the
bacterial patterns is the enhancement of the growth speed of the outer envelope,
as expected from the asymptotic estimations of the speed (see Chapter 4).

3.6.1 Semi-solid agar

This case corresponds to the parameter value σ0 = 1. The agar concentration
is intermediate and the diffusion of bacteria is limited. The morphological fea-
tures are from dense branching morphology patterns pertaining to region E of the
morphological diagram (Fig. 3.1).

Fig. 3.6 shows the time evolution of ramified patterns for the initial nutrient
level n0 = 0.71. On the left column it is shown the time evolution in the case
without chemotaxis, i.e., χ0 = 0. This case corresponds to the original model by
Kawasaki et al., and the observed patterns are comparable to those of the authors
(see Fig 3 (b) in Ref. [73]). To be more precise, for the case χ = 0 we solved the
original system of [73], but due to the random fluctuation included in the diffusion
coefficient, the patterns we obtained have the same qualitative features to those
in [73] but are not totally equal. On the right column we observe the case where
the chemotaxis sensitivity is χ0 = 5. The morphology is similar in both cases,
ramified patterns with radially aligned branches. Taking a closer look, we can
see that the number of branches is consistent. In both cases, with and without
chemotaxis, the number of branches is of the same order. We remark that there
is an increase in the growth speed of the outer envelope of the branches when the
chemotaxis signal is present.

The results of the numerics for the nutrient level n0 = 1.07 are shown in Fig.
3.7 . Once again, left column displays the pattern evolution for the case without
chemotaxis, χ0 = 0. At the center of the colony there is a peak of bacterial
concentration, shown by dark purple dot that according to the coloring scale in
Fig. 3.2 corresponds to the maximum of the bacterial density. This is so, because
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at early times bacteria deplete the nutrient at the inoculum site. This is a feature
of the model, as mentioned before, bacteria move around actively when both n or
b are high. Meanwhile, bacteria at the interior of the colony become stationary
because the nutrient is depleted. This behavior allows the leading branches at
the front of the colony to search for higher concentrations of food, while, inner
bacteria have its movement limited by the lowered nutrient concentration. Then,
every branch tip at the front is immersed in similar environmental conditions,
favoring the evenly expansion of colony by which a round envelope is developed.

In the right column of Fig. 3.7 are depicted patterns corresponding to case
with chemotaxis strength χ0 = 5. It can be observed that chemotaxis provides
an outward drift to the movement of bacteria, increasing the speed of propagation
of the envelope, as discussed in [55]. Comparing Fig. 3.7(h) with Fig. 3.7(g) we
observe that when the chemotaxis signal is present the pattern has a more ramified
structure with almost a size twice as large.
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(a) χ0 = 0, t = 694.5 (b) χ0 = 5, t = 694.5

(c) χ0 = 0, t = 1389.0 (d) χ0 = 5, t = 1389.0

(e) χ0 = 0, t = 2083.5 (f) χ0 = 5, t = 2083.5

(g) χ0 = 0, t = 2824.0 (h) χ0 = 5, t = 2824.0

Figure 3.6: Colony growth snapshots as a result of simulations of system (3.4.1),
taking σ0 = 1.0, n0 = 0.71, with chemotaxis sensitivity χ0 = 0 (no chemotaxis -
left), and χ0 = 5.0 (right), at different running times (values of t). The four-fold
symmetry of the branching patterns is due to an inherent anisotropy due to the
square lattice.
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(a) χ0 = 0, t = 115.7 (b) χ0 = 5, t = 115.7

(c) χ0 = 0, t = 231.5 (d) χ0 = 5, t = 231.5

(e) χ0 = 0, t = 370.4 (f) χ0 = 5, t = 370.4

(g) χ0 = 0, t = 509.3 (h) χ0 = 5, t = 509.3

Figure 3.7: Colony growth snapshots as a result of simulations of system (3.4.1),
taking σ0 = 1.0, n0 = 1.07, with chemotaxis sensitivity χ0 = 0 (no chemotaxis -
left), and χ0 = 5.0 (right), at different running times (values of t).
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3.6.2 Soft agar

We set the value of parameter σ0 = 4. Recall that the agar hardness decreases
as the value of the parameter σ0 increases. Hence, the diffusion of the bacteria is
increased in this case. The reproducible patterns belong to region D of homoge-
neous circular colonies for high enough initial nutrient level, but for lower levels
patterns fall into DBM-like region E of the morphological diagram.

The results for n0 = 0.71 are shown in Figs. 3.8 and 3.9. In this case the com-
parison is made through the two figures, where the initial nutrient level is fixed
and we took the values χ0 = 0, 2.5, 5 and 7.5 for the chemotaxis sensitivity. Left
column of Fig. 3.8 shows the case without chemotaxis. It can be observed that
the colony has thick radially oriented branches with round envelope. On the right
column of Fig. 3.8 the colony growth, for χ0 = 2.5, is shown. Comparing both
columns of Fig. 3.8, we observe that the patterns exhibit similar morphologies, but
as expected the growth speed is increased when the chemotactic signal is present
(compare Figs. 3.8(g) and 3.8(h)). In addition to the greater propagation speed of
the envelope, we observe morphological changes for higher values of χ0. Presum-
ably, at higher values of χ0, the enhanced mobility of bacteria at the front, due to
a stronger chemotactic signal, makes thin branches start to fuse (slower tips catch
up faster ones) (Fig. 3.9(g)). Eventually, patterns show no more branches and be-
come homogeneous disks (Fig. 3.9(h)). In other words, bacteria at the front move
faster, allowing them to close the dips that form at the front due to the diffusing
instability of the nutrient field. Hence, the results of Figs. 3.8 and 3.9 suggest
that the underlying mechanism responsible for transitions between patterns in
region E and D, is the suppressing effect of the chemotaxis on the onset of the
diffusing instability (as discussed on [15]). Therefore, the effect of increasing the
chemotaxis strength is the homogenization of patterns and the expected increased
velocity of propagation of the envelope. At χ0 = 7.5 colony has almost doubled
its size (compare Figs. 3.8(h) and 3.9(h)). Finally, in Fig. 3.10 are depicted the
results for the nutrient level n0 = 1.07, and chemotaxis sensitivities χ0 = 0 and
χ0 = 7.5. The observable patterns are homogeneous disks belonging to region D of
the morphological diagram. Left column shows the case when there is no chemo-
taxis signal, and it can be observed the evolution of an homogeneous disk with
a peak concentration at the center of the colony (dark purple dot). In the right
column, it is observed the increase of the speed of propagation of the envelope due
to the chemotaxis signal with strength χ0 = 7.5. The pattern is an homogeneous
disk with a small depression at the center, shown as a red spot which according to
the coloring scale (Fig. 3.2) is a lower than the maximum (dark purple) bacterial
density. This last feature presumably is due to the enhanced mobility of bacteria,
that allows them to leave the center before the nutrient is depleted. In this case,
we observe an increased envelope velocity with no significant morphology change.
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(a) χ0 = 0, t = 92.6 (b) χ0 = 2.5, t = 92.6

(c) χ0 = 0, t = 162.0 (d) χ0 = 2.5, t = 162.0

(e) χ0 = 0, t = 231.5 (f) χ0 = 2.5, t = 231.5

(g) χ0 = 0, t = 324.0 (h) χ0 = 2.5, t = 324.0

Figure 3.8: Colony growth snapshots as a result of simulations of system (3.4.1),
taking σ0 = 4.0, n0 = 0.71, with chemotaxis sensitivity χ0 = 0 (left) and χ0 = 2.5
(right), at different running times (values of t).
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(a) χ0 = 5, t = 92.6 (b) χ0 = 7.5, t = 92.6

(c) χ0 = 5, t = 162.0 (d) χ0 = 7.5, t = 162.0

(e) χ0 = 5, t = 231.5 (f) χ0 = 7.5, t = 231.5

(g) χ0 = 5, t = 324.0 (h) χ0 = 7.5, t = 324.0

Figure 3.9: Colony growth snapshots as a result of simulations of system (3.4.1),
taking σ0 = 4.0, n0 = 0.71, with chemotaxis sensitivity χ0 = 5.0 (left) and χ0 = 7.5
(right), at different running times (values of t).

44



(a) χ0 = 0, t = 33.0 (b) χ0 = 7.5, t = 33.0

(c) χ0 = 0, t = 66.0 (d) χ0 = 7.5, t = 66.0

(e) χ0 = 0, t = 88.0 (f) χ0 = 7.5, t = 88.0

(g) χ0 = 0, t = 110.2 (h) χ0 = 7.5, t = 110.2

Figure 3.10: Colony growth snapshots as a result of simulations of system (3.4.1),
taking σ0 = 4.0, n0 = 1.07, with chemotaxis sensitivity χ0 = 0 (left) and χ0 = 7.5
(right), at different running times (values of t).
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3.7 Discussion

The bacterial aggregation patterns have interested many researchers from various
fields such as biology, chemistry, physics and mathematics.

In particular, the morphological diversity shown by the bacterium B. subtilis
[94, 111], summarized in the morphological diagram (see Fig. 3.1), has motivated
many models, including continuous deterministic [73,80,100,132,159] and discrete
ones [23], to explain the growth patterns that have been classified in five distinct
types (regions A to E in the morphological diagram).

The models reproduce parts of the morphological diagram depending on the
phenomenological assumptions made to include the key features involved in the
development of patterns. Two of the biological features may be the reproduc-
tion and the motility of bacteria. During in-vitro experiments, these features are
“controlled” by changing the nutrient and agar concentrations.

It is to be highlighted that none of the models available in the literature has
been able to reproduce all the morphological diagram, except for the model re-
cently proposed by Schwarcz et al. [132]. The authors in [132] proposed a reaction-
diffusion system for bacterial and nutrient densities. The model considers the
reproduction and mortality of the bacteria, and includes two novel modeling fea-
tures. First, a non-linear density dependent diffusion coefficient for the bacterial
density, Db = D0b

k, with k = k(t) as a time dependent parameter that is defined
in terms of the hardness of the agar and takes the values 0 or 1. This feature makes
the diffusion coefficient Db to switch between non-linear (density dependent) and
linear regimes. This allows the model to include different mechanism, such as
the hardness of the substrate, that modify the bacterial motion. And second, an
adaptive bacterial reproduction rate defined through non-local mechanisms based
on colony-level communication.

On the other hand, an important aspect of the mathematical modeling of the
branched bacterial patterns has been to consider mechanisms that trigger the
Mullins-Sekerka or diffusive instability. An example of such a mechanism is the
non-linear density dependent diffusion, and is included in the model originally
proposed by Kawasaki et al. [73], that considers a non-linear cross degenerate
diffusion, and it is recognized for being able to successfully reproduce the patterns
in regions D and E of the morphological diagram.

Ben-Jacob and coworkers [20,34,55] claim that the diffusion of bacteria alone is
not capable of explaining some of the experimental observations, and it is necessary
to consider additional mechanism, such as bacterial chemotaxis.

In the light of these arguments, we introduced a suitable chemotactic term
into system (3.2.1), the model of Kawasaki et al., and we proposed a new reaction-
diffusion-chemotaxis system (3.3.2). The definition of the chemotactic term that
we considered was based on the experimental findings and theoretical arguments
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of Ben-Jacob and co-workers [20, 55], and considers only the chemotaxis due to
the nutrient field. They suggested that nutrient chemotaxis is the mechanism
responsible for a increased growth velocity in conjunction with a pattern equally
ramified.

Although is not theoretically justified, for example from microscopic consider-
ations, the chemotactic flux that we proposed (see equation (3.3.1)) is biological
supported by the observations of Ben-Jacob’s group of the bacterial response func-
tion (see equation (3.2.7)), and it is compatible with the non-linear cross diffusion
of the model by Kawasaki and collaborators. In this way, the density dependence
is introduced in the biased movement produced by the nutrient chemotaxis.

We explored the effects of the new chemotactic term on the aggregation pat-
terns by doing high resolution numerical simulations of system (3.4.1) for several
values of the free parameters (see Table 3.1), including the case without chemo-
taxis. Thus, comparing the numerical simulation between the cases with and
without chemotaxis, we highlight that the main qualitative effects of the nutrient
chemotaxis over the patterns are:

(i) Enhancement of the growth speed when the chemotactic signal is present.

(ii) Morphological change for the soft agar, poor nutrient regime.

Concerning point (i), we may observe in figures 3.6 to 3.10 of section 3.6 that
when the chemotaxis signal is present the bacterial movement is greatly increased
in the outward direction, hence, increasing the propagation of the envelope front
of the colony. The morphology of patterns show no major changes, except in the
regime of soft agar and poor nutrient regime, in relation to point (ii). Compare
figures 3.8 and 3.9 of section 3.6.2, where it is observed that chemotaxis induces a
homogenization of the patterns as the chemotaxis strength is increased. There is a
morphological transition between branching patterns of region E to homogeneously
spreading disks pertaining to region D, of the morphological diagram.

The following chapter is devoted to address point (i). We explore the effects
of the chemotactic term has on the propagation velocity of the envelope front of
the colony. We estimate the velocity of the envelope front numerically, and doing
asymptotic calculations we predict the velocity of the front as a function of both
the nutrient concentration and the chemotaxis strength. The results of this chapter
have been reported in [86].
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Chapter 4

Chemotaxis model -
approximation of propagation
velocity

In this chapter we continue exploring the effects that nutrient chemotaxis has on
the bacterial aggregation patterns. The chemotactic signal provides an outward
drift to the bacterial movement, and hence, increasing the propagation rate of the
colony envelope front, as the numerical simulations contained in Chapter 3 showed.
Therefore, in this chapter we focus on exploring the effects of chemotaxis on the
velocity of the front.

In Section 4.1 we numerically estimated the velocity of the envelope front.
Then, in section 4.2 we present an asymptotic approximation of the propagation
velocity of the front. We compare both theoretical and numerical approximations
of the velocity when the chemotaxis is present, to those approximations without
chemotaxis.

4.1 Numerical approximation of the velocity

We are interested in the effects that the chemotactic term induces in the colony
pattern, in particular in the propagation velocity of the front. Hence, we consider
that the influence of the stochastic fluctuations on the diffusion is negligible for
the approximation of the propagation speed. Thus, we approximate σ ≈ σ0;
furthermore, for simplicity we consider a constant chemotactic sensitivity function,
χ = χ0. Hence, the system of equations that we consider now has the form

nt = ∆n− nb, (4.1.1a)

bt = ∇ · (σ0nb∇b) + nb− χ0σ0∇ ·
(
nb2∇n

)
. (4.1.1b)
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As discussed by Kawasaki and coworkers [73], despite the fact that colony
patterns grow in two dimensions on a Petri dish, the tip of each branch extends
linearly in one dimension. This is clearly observed in our numerical simulations (see
Section 3.6 on Chapter 3), since branches are radially oriented. We approximate
the velocity of front solving numerically the one-dimensional version of system
(4.1.1). This is

∂n

∂t
=

(
∂n

∂x

)
x

− nb,

∂b

∂t
= σ0

(
nb
∂b

∂x

)
x

+ nb− χ0σ0

(
nb2∂n

∂x

)
x

,

(4.1.2)

together with the initial conditions

n(x, 0) = n0, b(x, 0) = bMe
−x2/6.25, (4.1.3)

where bM = 0.71. The simulations were performed on the spatial domain [0, 20].
We imposed zero-flux boundary conditions. The free parameters are: n0 that
denote the initial level of nutrient, χ0 which measures the chemotaxis strength,
and σ0 the hardness of the agar. In all simulations we fixed σ0 = 1, and took
several values of n0 = {0.35, 0.71, 1.07, 2, 3, 4} and χ0 = {0, 1, 2.5, 5, 10}. Figure
4.1 depicts numerical solutions for system (4.1.2) at different time steps, and for
various values of n0 and χ0.

It is to be noted that solutions for the bacteria do not exhibit a traveling
wave profile initially, but eventually solutions resemble a traveling wave. Thus, we
considered profiles at later time steps and selected points around b = 0.5 of the
bacteria density to estimate the velocity, as shown in figure 4.1.

4.2 Approximation of the speed

We now discuss the consequences on the envelope propagation speed by means of
an asymptotic geometric front expansion.

We will explore the reduction proposed by Kawasaki et al. [73]. They made a
simplifying assumption to obtain an approximate scalar equation for the bacterial
concentration b. They noted that in the absence of diffusion the total mass is
conserved.

In our setting, ignoring both diffusion and chemotaxis in system (4.1.1) we
have

ṅ = −nb,
ḃ = nb.

(4.2.1)
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(a) n0 = 0.71, χ0 = 10 (b) n0 = 2, χ0 = 2.5

(c) n0 = 3, χ0 = 1 (d) n0 = 4, χ0 = 1

Figure 4.1: Numerical solution of the bacterial density b from the system (4.1.2)
at different time steps and different values of n0 and χ0. The corresponding time
intervals are: (a) t ∈ [0, 35], (b) t ∈ [0, 5], (c) t ∈ [0, 3.3] and (d) t ∈ [0, 1.9] . Circles
represent selected points to numerically estimate the velocity of the profile.

Adding both equations we obtain

d

dt
(n+ b) = 0,

and integrating in time once we have

n+ b = C, (4.2.2)

where C is a constant of integration, that we choose as C = n0. Thus n = n0 − b,
and substituting in (4.2.1) we obtain a logistic equation for b,

bt = n0b

(
1− b

n0

)
. (4.2.3)

This equation represents the nutrient-limited growth of bacteria. In order to obtain
a approximated scalar equation for b, Kawasaki et al. substituted σ0nb by σ0n0b
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and nb by n0b(1 − b/n0). They arrive to a porous medium reaction-diffusion
equation of the form

bt = σ0n0(bbx)x + n0b(1− b/n0), (4.2.4)

for which the authors quoted results by Newman [107] to approximate the growth
velocity.

In our case, we substitute (4.2.2) into (4.1.1b) to get

bt = ∇ · (σ0(n0 − b)b∇b) + (n0 − b)b− χ0σ0∇ ·
(
(n0 − b)b2∇(n0 − b)

)
, (4.2.5)

which is an approximated scalar equation for b with a Fisher-KPP reaction term.
Equation (4.2.5) represents a more accurate approximation and as we will see below
it is also consistent with the numerical simulations which, at first order, show that
the conservation of mass (4.2.2) is valid away from the front. The diffusion and
chemotaxis terms, in equation (4.2.5), can be rearranged into one term written in
divergence form to arrive to

bt = σ0∇ · (D̃(b, χ0)∇b) + g(b), (4.2.6)

where

D̃(b, χ0) = n0b

(
1− b

n0

)
(1 + χ0b), (4.2.7)

may be interpreted as a effective diffusion term that incorporates contributions
from both diffusion and chemotaxis. We notice that the non-linear diffusion
D̃(b, χ0) is doubly degenerated, it vanishes at b = 0 and b = n0; meanwhile,
the diffusion coefficient for (4.2.4) only vanishes at b = 0. The reaction term is of
Fisher-KPP type

g(b) = n0b

(
1− b

n0

)
. (4.2.8)

We assume that the location of the front is known, although the task of describ-
ing the front position at every time is a non-linear free boundary two dimensional
problem [8]. We describe the motion of the front in local curvilinear coordinates
with components ζ(x, y, t) and τ(x, y, t), the normal and tangent unitary vectors
to the front, respectively. According to custom, ζ is the normal component point-
ing inside the colony front, so that −ζt is the outer normal speed. We assume that
the dependence of b with respect to the tangent component is negligible and we
consider the approximation

b(x, y, t) ≈ b̄(ζ(x, y, t)). (4.2.9)
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We substitute b̄ into equation (4.2.6) to obtain

b̄′ζt = σ0(∇D̃(b, χ0) · ∇b+ D̃(b, χ0)∆b) + g(b)

= σ0(D̃′(b, χ0)b̄′∇ζ · b̄′∇ζ + D̃(b, χ0)(b̄′∆ζ + b̄′′|∇ζ|2)) + g(b)

= σ0(D̃′(b, χ0)(b̄′)2 + D̃(b̄, χ0)b̄′∆ζ + D̃(D)(b̄, χ0)b̄′′) + g(b)

= σ0(D̃(b, χ0)b̄′)′ + σ0D̃(b, χ0)∆ζb̄′ + g(b).

(4.2.10)

Hence, dropping the bar notation for convenience, we arrive to the ordinary dif-
ferential equation

−cb′ = σ0(D̃(b, χ0)b′)′ + b(n0 − b), (4.2.11)

where
c = −ζt + σ0D̃(b, χ0)∆ζ, (4.2.12)

and −ζt is the velocity we want to estimate.
The approximated equation (4.2.6) is similar to those studied by Malaguti and

Marcelli [92], and in the next section we summarize the theoretical results of the
authors that we applied to prove that the speed of the envelope front is greater
when the chemotaxis terms is present. Recall that we have mentioned earlier (see
Definition 1 in Chapter 2) the concept of traveling wave solutions of front and
sharp type.

4.2.1 Bounds for the velocity

In [130] the authors stated the problem of traveling wave solutions (TWS) for
a double degenerate diffusion equation, and they used numerical techniques to
study the wavefront profiles. Afterwards, Malaguti and Marcelli [92] showed the
existence of TWS of equation

ut = (D(u)ux)x + g(u), (4.2.13)

with D ∈ C1([0, 1]), g ∈ C1([0, 1]), where the diffusion satisfies

D(0) = D(1) = 0, D(u) > 0, u ∈ (0, 1),

and the reaction term is of Fisher-KPP type,

g(0) = g(1) = 0, g(u) > 0, u ∈ (0, 1).

They proved that TWS of equation (4.2.13) exhibit a minimal threshold velocity
feature. This means that there exists c∗ > 0 such that equation (4.2.13) has

(i) no TWS for 0 < c < c∗,
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(ii) a monotone TWS of sharp type with wave speed c = c∗,

(iii) a monotone TWS of front type for every wave speed c > c∗,

and c∗ satisfies

0 < c∗ ≤ 2

√
sup
s∈(0,1]

D(s)g(s)

s
. (4.2.14)

The authors discussed that the double degeneracy of the diffusion coefficient
D(u) do not produce any further sharpness phenomenon at the degeneracy point
u = 1. In other words, the TWS for the speed c = c∗ is of (single) sharp type
connecting the equilibrium u = 1 to u = 0.

The authors carried out the proof showing that the existence of TWS for
(4.2.13) is equivalent to the existence of a negative solution z = z(u) of the
boundary-value problem

dz

du
= −c− D(u)g(u)

z
,

z(0+) = z(1−) = 0,

for fixed c > 0, and u ∈ (0, 1).
The aforementioned result can be extrapolated to a one dimensional equation

of the form
bt = (D̃(b, χ0)bx)x + g(b), (4.2.15)

on [0, n0] and D̃(b, χ0), g(b) are as in (4.2.7) and (4.2.8), respectively. For each
χ0, the one dimensional threshold wave speed can be estimated in terms of χ0, n0,
and the functions D̃ and g. We want to compare the velocity in the cases with
and without chemotaxis.

The existence of a TWS to the equation (4.2.15) with χ0 > 0 is related to the
solution to the boundary-value problem

dz

db
= −c− D̃(b, χ0)g(b)

z
,

z(0+) = z(n−0 ) = 0.

(4.2.16)

For the case without chemotaxis, χ0 = 0, the existence of TWS is related to the
boundary-value problem

dz

db
= −c− D̃(b, 0)g(b)

z
,

z(0+) = z(n−0 ) = 0.

(4.2.17)
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Following Theorem 9 in Ref. [92] we may consider the sets

Aχ0 = {c > 0 : problem (4.2.16) has a non-positive solution}, (4.2.18)

A0 = {c > 0 : problem (4.2.17) has a non-positive solution}, (4.2.19)

that define the range of velocities c for which there exist a TWS to equation
(4.2.15). These sets are non empty and its infimum, in either case, correspond to
the threshold speed c∗. In addition, the one dimensional TWS to equation (4.2.15)
must travel with velocity c(χ0), bounded below by c(χ0) ≥ c∗(χ0), where c∗(χ0)
satisfies the bound

0 < c∗(χ0) ≤ c̄(n0, χ0) := 2

√
sup

b∈(0,n0]

σ0D̃(b, χ0)g(b)

b
,

with D̃ and g given by (4.2.7) and (4.2.8). We shall compute the bound c̄(n0, χ0);
substituting D̃ and g, we arrive to

c̄(n0, χ0) = 2n0

√
σ0

√
max
b∈[0,n0]

ψ̃(b),

where

ψ̃(b) := b

(
1− b

n0

)2

(1 + χ0b),

is a non-negative function for each χ0 ≥ 0 and 0 ≤ b ≤ n0. To be more specific,

ψ̃(0) = ψ̃(n0) = 0, ψ̃(b) > 0, b ∈ (0, n0).

Thus,

ψ̃′(b) =
(b− n0)

n2
0

(4χ0b
2 + (3− 2n0χ0)b− n0),

and the critical points of ψ̃(b) are

b1 = n0, b
±
2 =

1

2

(
n0

2
− 3

4χ0

)
± 1

2

√(
n0

2
− 3

4χ0

)2

+
n0

χ0

.

Therefore, ψ̃(b) attains its global maximum ψ̃max = ψ̃(b∗) at

b∗ =
1

2

(
n0

2
− 3

4χ0

)
+

1

2

√(
n0

2
− 3

4χ0

)2

+
n0

χ0

∈ (0, n0),
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for all values of χ0 and any fixed value of n0 > 0. Hence,

c̄(n0, χ0) = 2n0

√
σ0

√
ψ̃max. (4.2.20)

If there is no chemotaxis, i.e. χ0 = 0, ψ̃(b) reduces to

ψ(b) = b

(
1− b

n0

)2

,

and

ψ′(b) =
(b− n0)(3b− n0)

n2
0

,

whose zeros are b = n0 and b = n0/3. Hence, ψ has global maximum

ψmax = ψ
(n0

3

)
=

4n0

27
.

This implies that

c̄(n0, 0) = 2n0

√
σ0

√
4n0

27
=

4

3
√

3
n

3/2
0 σ

1/2
0 . (4.2.21)

The bounds for the velocity are given by (4.2.20) and (4.2.21), for the cases with
and without chemotaxis. These equations predict the speed of a sharp front, and
will be used when comparing the numerical estimates of the velocity.

The following proposition compares the two velocity thresholds (with and with-
out chemotaxis).

Proposition 4.2.1. For any fixed value of n0 > 0 and for all values of χ0 ≥ 0
there hold,

(i) c̄(χ0) ≥ c̄(0), and

(ii) c∗(χ0) ≥ c∗(0).

Proof. The proof of (i) is straightforward: for all values of χ0 ≥ 0 and for each
b ∈ (0, n0) there holds

ψ(b, χ0) = b(1− b/n0)2(1 + χ0b) ≥ ψ(b, 0) = b(1− b/n0)2.

Therefore maxb∈[0,n0] ψ(b, χ0) ≥ maxb∈[0,n0] ψ(b, 0), yielding (i).
To show (ii), let us suppose that c > 0 is a velocity such that c ∈ Aχ0 for some

χ0 > 0. This means that the problem (4.2.16) has a non-positive solution ζ(b).
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Therefore, since D̃(b, χ0) > D̃(b, 0) for all b ∈ (0, n0) inasmuch as χ0 > 0, we have
that

dζ

db
= −c− D̃(b, χ0)

ζ(b)
> −c− D̃(b, 0)

ζ(b)
.

By Lemma 8 in [92], there exists a negative solution z = z(b) to problem (4.2.17),
with the same constant c. This shows that c ∈ A0. Therefore, Aχ0 ⊆ A0 for all
χ0 ≥ 0, and consequently c∗(χ0) = inf Aχ0 ≥ c∗(0) = inf A0. This yields (ii).

We are assuming that the propagation of the front of the colony is only in the
radial direction (see (4.2.9)), and estimate the normal velocity s = −ζt. Hence, we
compare the one dimension TWS speed for equation (4.2.15) with (4.2.12). The
existence of the TWS is guaranteed for c ≥ c∗, thus

c = −ζt + σ0D̃(b)∆ζ ≥ c∗(χ0).

We are considering regions where the colony exhibit an outer growth. Recall that
for this regions the local curvature is positive there, i.e., κ = −∆ζ > 0. This
implies that

s = −ζt ≥ c∗(χ0) + σ0D̃(b)κ > 0.

It follows from Proposition 4.2.1 that

s = −ζt ≥ c∗(χ0) + σ0D̃(b)κ ≥ c∗(0) + σ0D̃(b)κ ≥ c∗(0). (4.2.22)

Therefore, the normal outer velocity is greater than the wave speed correspond-
ing to the sharp TWS without chemotaxis, and that it is increased/decreased by
a term proportional to the local curvature and the chemotactic strength χ0 > 0.

We highlight that in the vicinity of the front the diffusion coefficient D̃ vanishes,
there is no bacteria ahead of the envelope front. Therefore, regardless of the
curvature sign, we may approximate the normal velocity s by the one dimensional
sharp front velocity when the chemotaxis signal is present,

s & c∗(χ0). (4.2.23)

Assuming the conservation of total mass, equation (4.2.23) and Proposition
4.2.1 (ii) imply that the population front will propagate faster, in the normal
direction, when the chemotaxis signal is present.

4.2.2 Comparison of velocity approximations

In this section, we present the comparison between the numerical estimates for
the speed of propagation of solutions of the one-dimensional system (4.1.2) and
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the theoretical predictions for the speed of the sharp front defined in equations
(4.2.20), (4.2.21) for the cases with and without chemotaxis, respectively.

We plotted equations (4.2.20) for χ0 > 0, and (4.2.21) for χ0 = 0, as functions
of the initial nutrient level n0, and these are shown as solid lines in Fig. 4.2. The
numerical estimates of the speed for the 1-D system (4.1.2) are shown as solid dots
in Fig. 4.2.

We may observe that there is a match between the numerical estimates (solid
dots) and the theoretical thresholds (solid lines) defined for the scalar equation
(4.2.15) for b. Therefore, this shows that the assumption on the conservation of
total mass (see equation (4.2.2)) represents a good approximation to solutions of
the system (4.1.1).

4.3 Discussion

We explored the effects of the nutrient chemotaxis on the propagation velocity
of colony envelope front. We numerically estimated the velocity of the front by
solving numerically system (4.1.2), a one-dimensional version of system (4.1.1).
Afterwards, we applied an asymptotic geometric front approach, and we approx-
imated the velocity of propagation of the front. Under the assumption of mass
conservation (see Eq. (4.2.2)) we found an approximated scalar equation for the
bacterial density (Eq. (4.2.6)). Then, applying a result from Malaguti and Mar-
celli [92] we proved that the normal velocity is greater than the speed associated
to the sharp front when there is no chemotaxis. We derived theoretical speed
thresholds, defined in Eqs. (4.2.20) and (4.2.21), for the sharp front associated
to the scalar equation (4.2.5). We then compare both, numerical and theoretical,
velocity approximations (see Fig. 4.2) from which we note the following:

(i) The velocity of propagation is increased when the nutrient chemotaxis is
present.

(ii) Numerical estimates approximate well the velocity thresholds for the sharp
traveling wave solution (TWS) for equation (4.2.5).

The observation of point (i) was expected from the numerical simulations of the full
PDE system in 2-D shown in Chapter 3. Moreover, the asymptotic approximation
predicts the front velocity as an increasing function of the chemotactic strength
parameter χ0. The observation from point (ii) implies that the conservation-like
Eq. (4.2.2) is a good approximation to solutions of system (4.1.1).

On the other hand, our results for the case without chemotaxis (Fig. 4.2(a))
are comparable to those found by Kawasaki et al. [73], however we note that in
our calculations we used a more accurate approximation to the bacterial density.
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(a) χ0 = 0 (b) χ0 = 1.0

(c) χ0 = 2.5 (d) χ0 = 5.0

(e) χ0 = 10.0

Figure 4.2: Comparison of the propagation speeds of the front for the one-
dimensional system (4.1.2) as a function of the initial nutrient concentration for
different values of the chemotactic sensitivity χ0. The solid dots depict the nu-
merical estimations of the velocity. The solid line is the velocity threshold given
by equation (4.2.21) in the absence of chemotaxis (case 4.2(a)), and by equation
(4.2.20) when chemotactic term is present (cases 4.2(b), 4.2(c), 4.2(d) and 4.2(e)),
both as functions of the initial nutrient concentration n0. Here σ0 = 1.
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Bacterial populations develop well defined spatially structures (aggregation
patterns) that have been experimentally observed [20,111]. These structures have
been recognized as biological waves or traveling invasion fronts [141]. We used
mathematical modeling, in particular reaction-diffusion models, to explain the ba-
sic mechanism behind the formation of such patterns. These patterns are the
result of the interaction of two basic physical/biological phenomena, namely, dif-
fusion and chemotaxis. As we observed in the numerical simulation from Chapter
3, bacterial colonies spread towards the diffusing nutrient field which they seek
chemotactically. Bacteria propagate (approximately) in one dimension for the
dense branch and homogeneous disk morphologies. These results have been re-
ported in [86].

The mathematical representation of the propagating biological waves is given
by the traveling wave solutions to the reaction-diffusion system used for the math-
ematical modeling of the biological systems. The relevance of TWS’s stem from
the phenomenological and mathematical point of view. Biologically, TWS’s repre-
sent a structure that in time does not change of form yet it moves with a constant
speed, propagating information in one direction that either could be the concen-
tration of certain substance or biomass. Mathematically speaking, the method of
looking for TWS is one of few methods known to analytically deal with non-linear
partial differential equations.

On the other hand, once it is known a TWS exist, it is of great importance to
determine if it is stable under perturbations of the initial conditions. The stable
TWS’s are those that represent in a more realistic manner the waves that we
observe in nature.

Therefore, motivated by the derivation of the scalar equation (4.2.5) for the
bacterial density b and the evidence that the speed of its TWS represent a fair
approximation to the velocity of the solutions of system (4.1.2), we decided to delve
into the stability of TWS to degenerate scalar reaction-diffusion equations of the
form (4.2.5). This seems to be a natural approach to gain further understanding
on the mechanics of the spreading bacterial patterns.

It is to be highlighted that equation (4.2.5) represents an approximation, based
on the conservation-like principle (4.2.2), to the solutions of proposed system
(4.1.1). Thus, the stability of the TWS to the scalar equation will not imply
directly the stability of the full model. Although, we can not expect stability of
the solutions to the full model without the stability of the solutions to the scalar
equation.

In the following chapter we will address the stability in exponentially weighted
spaces of some subsets of the spectrum corresponding to the linearized opera-
tor around smooth-monotone-degenerate traveling waves supported by degenerate
scalar reaction-diffusion with reaction term of Fisher-KPP type. The multidimen-
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sional stability of TWS for systems poses a fairly complicated problem that we
will not discuss in this thesis.
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Chapter 5

Stability of diffusion-degenerate
traveling fronts

In this chapter we establish the stability, in exponential weighted spaces, of a subset
of the spectrum of the linearized differential operator around smooth traveling
monotone fronts for reaction diffusion equations of Fisher-KPP type with nonlinear
degenerate diffusion coefficient.

In Section 5.1 we explain the motivation and give a brief background to the
stability problem we are interested in. Afterwards, in Section 5.2, we cite the
results of Sánchez-Garduño and Maini [126, 127] on the existence of sharp and
smooth degenerate traveling fronts supported by the non-linear scalar reaction-
diffusion equation (5.1.1), and we present information about the structure of the
fronts. In Section 5.3 we define the spectral problem by linearizing equation (5.1.1)
around the degenerate front. Later, we introduce an alternative partition of the
spectrum of the linearized operator and rigorously define the spectral stability of
the degenerate Fisher-KPP fronts. We prove the stability of the point spectrum
by using energy estimates technique in Section 5.4. In Section 5.5 we introduce a
regularization technique to circumvent the difficulties posed by the degeneracy in
diffusion, and in Section 5.6 we prove the generalized convergence of the family of
regularized operators to the original degenerate operator. In turn, this will allow
us to locate a subset of the compression spectrum. In Section 5.7 we introduce
exponentially weighted spaces and prove that under certain restriction on the
velocity of the front, we can find an appropriate weighted space where the point
spectrum and subset of the compression spectrum of the linearized operator are
stable. Finally, in Section 5.8 we give a detailed analysis of the asymptotic behavior
of the solutions to the spectral equation on the degenerate side. These decay
estimates are needed to close the energy estimates of Section 5.4.

61



5.1 Motivation and background

We will study the scalar reaction-diffusion equation

ut = (D(u)ux)x + f(u), (x, t) ∈ R× R+, (5.1.1)

where u = u(x, t), and the diffusion coefficient D(u) is a nonlinear non-negative
function which is degenerate at u = 0. We consider the following hypothesis on
D,

D(0) = 0 and D(u) > 0, for u ∈ (0, 1],

D ∈ C2([0, 1],R) with D′(u) > 0 and D′′(u) 6= 0, ∀u ∈ [0, 1].
(5.1.2)

The reaction term f(u) is supposed to be of Fisher-KPP type [50, 81], more
precisely,

f(0) = f(1) = 0, and f(u) > 0, ∀u ∈ (0, 1),

f ∈ C2([0, 1],R) with f ′(0) > 0 and f ′(1) < 0.
(5.1.3)

Specific examples of diffusion and reaction functions satisfying the above hy-
pothesis are

D(u) = u2 + bu, f(u) = u(1− u),

for a constant b > 0.
Reaction-diffusion equations of the form (5.1.1) arise in the modeling of biolog-

ical phenomena such as population migrations. These models are more realistic,
when compared with the classical constant diffusivity models, since they consider
that diffusivity of individuals may depend on the population density. For in-
stance, in some biological situations, individuals avoid overcrowded areas moving
away from highly populated regions [30]; or in other situations it is the popula-
tion that segregates the individuals exerting a repulsive influence, increasing the
dispersion [101,140].These biological situations have been previously considered in
various mathematical models [59, 60, 112, 140]. In the context of development of
bacterial colonies these models have been used as tool to understand the aggrega-
tion patterns, as we saw in Chapters 3 and 4 (see also [20, 55,80,86]).

One of the characteristic behaviors of spreading populations is that of develop-
ing a well-defined spatial distribution (or structure) that does not change its form
with time, yet it moves at constant speed. This behavior has been recognized in
invading species, and sometimes is termed as biological waves or traveling fronts of
invasion [141]. Mathematically speaking, this type of behavior corresponds to the
emergence of traveling front solutions to the models of interest. As we observed in
Chapters 3 and 4, the behavior of traveling front is present in the development of
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bacterial colonies, and can be seen in the outward growth of the colony envelope
front which propagates (approximately) in one dimension for patterns pertaining
to morphologies densely ramified and of homogeneous disks. Our main subject of
study in this chapter will be the traveling wave solution of front type (see Definition
1 in Chapter 2).

The introduction of the degeneration in the diffusion has various important
mathematical features that contrast with those of the classical strict parabolic case
of constant diffusion [144]. One is the finite speed of propagation of disturbances
from rest. Biologically speaking, this means that a population that it is initially
confined to a bounded region will spread at finite rate. In contrast, for the constant
diffusion case, perturbations propagate with a infinite speed. Again, in biological
terms this means that a population initially confined to a bounded region will
spread instantly to all space [60]. Other important mathematical feature, is the
emergence of the traveling front solutions of sharp type, as well as smooth front
waves [11, 126]. In contrast, the constant diffusion case only supports smooth
front waves. Briefly, the difference between the sharp and smooth fronts, is that
the former have a discontinuity in their derivative at a finite point in space; while
the latter have a continuous derivative.

In 1937, Kolmogorov et al. [81] and Fisher [50] introduced the model

ut = uxx + f(u), (5.1.4)

where f(u) = u(1 − u), to describe the propagation of an advantageous gene
in a population within a one-dimensional habitat. These pioneer works lay the
foundations for the theory of existence of traveling wave solutions to reaction-
diffusion equations, and the methods (phase plane analysis) introduced in [81]
represent now the classical approach to delve in the existence of traveling waves
solutions. The authors showed that there exists c∗ > 0 such that equation (5.1.4)
has monotonically decreasing front that travels with velocity c ≥ c∗, and that
there are no traveling fronts for c < c∗. This means that the velocity c defines
an infinite family of traveling fronts. In addition, in [81] the authors obtain the
first results on stability of traveling fronts for the equation (5.1.4) in the following
sense, they proved that for a class on initial conditions the solutions to the initial
value problem (IVP) converge in certain sense to the traveling wave with minimum
speed c∗.

Since the publication of the now classical works [50] and [81], traveling wave
solutions have attracted great interest, and extension and generalization to the
analysis of Kolmogorov et al. of equation (5.1.4) regarding traveling fronts can be
seen in [14,48,49,105].

The existence of fronts for reaction-diffusion equations with degenerate diffu-
sion was first analyzed for the particular case of porous medium diffusion type,
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D(u) = um and m ≥ 1, in [11, 105, 107, 108]. For results on existence of traveling
waves for more general equations of reaction-diffusion-convection type see [53].

The first general existence results for degenerate diffusion satisfying hypotheses
(5.1.2), and generic reaction functions of Fisher-KPP type satisfying (5.1.3), is due
to Sánchez-Garduño and Maini [126, 127]. In these works, the authors prove the
existence of a positive threshold speed c∗ > 0 such that: (i) there exist no traveling
fronts with speed 0 < c < c∗; (ii) there exists a traveling wave of sharp type with
speed c = c∗, with ϕ(−∞) and ϕ(ξ) = 0 for all ξ ≥ ξ∗ with ξ∗ ∈ R; and (iii) there
exist a family of smooth monotone decreasing traveling fronts with speed c > c∗,
and such that ϕ(−∞) = 1 and ϕ(+∞) = 0 (see Theorem 5.2.1 below). In this
chapter we are interested in analyzing the stability properties of smooth monotone
Fisher-KPP degenerated fronts (case (iii) above).

The study of the stability properties of traveling waves is fundamental, since the
stable TWS to an equation that models a phenomenon will be the only solutions
physically relevant.

One approach to the stability of traveling waves is to linearize the non-linear
partial differential equation around the wave. Hence, the stability problem consists
of two parts: (i) Localize the spectrum of the linearized differential operator; and
(ii) use the linear information to prove the non-linear stability, that is, stability of
the wave with respect to the full non-linear partial differential equation.

Earlier results for point (ii) in the case of semi-linear parabolic equations are
due to Sattinger [131] and Henry [61]. More recent results for (i) and (ii) in the
case of quasi-linear parabolic equations with non-degenerate density dependent
diffusion coefficient are provide by Meyries et al. [99].

The methods to study the stability of traveling waves incorporate the tech-
niques of functional analysis and dynamical systems, and the paper by Alexander,
Gardner and Jones [4] is a canonical reference. In addition, we refer to the review
article by Sandstede [128] and the recent monograph by Kapitula and Promis-
low [71] for an updated exposition on the subject and additional references related
to the stability of traveling waves.

There exist previous results regarding the stability of traveling fronts to reaction-
diffusion equations with degenerate diffusion. Hosono [67] showed the existence
of smooth and sharp fronts to the porous medium degenerate reaction-diffusion
equation

ut = (um)xx + u(1− u)(u− α),

where m > 1 and α ∈ (0, 1). Using techniques from parabolic PDEs the au-
thor constructed sub and supersolutions, and then using comparison techniques
he proved that solutions to IVP with initial conditions close to the stationary front
converge asymptotically to a translated of the front. These results rely heavily of
the properties of the porous medium equation.
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For the case of Fisher-KPP reaction type and a diffusion coefficient of the
form D(u) = u, Sherrat and Marchant [139] studied numerically the asymptotic
behavior of solutions, and they showed that for certain initial conditions, the
solutions to the IVP evolve to a traveling wave solution. Biró [27] and Medevev et
al. [97] showed, for equations of porous medium type together with a reaction of
Fisher-KPP type and more general coefficients, using comparison techniques that
solutions with initial data with compact support converge to the traveling wave
with minimum velocity (the sharp wave).

In this chapter we are interested in studying the spectral stability of the smooth
degenerate Fisher-KPP fronts to equation (5.1.1). The spectral stability, formally
is the non-existence of eigenvalues with positive real part of the linearized differ-
ential operator around the front (see Definition 3 below). We highlight that our
analysis is based on the spectral analysis of operators, and we do not use tech-
niques from parabolic PDEs. As we shall se below, the degeneracy in the diffusion
poses various technical difficulties that are not present in the standard parabolic
case.

In particular, the degeneracy of the diffusion at one of the equilibrium points of
the reaction term precludes the application of the standard methods to localize the
essential spectrum of the linearized operator around the wave. Hence, we propose
an alternative but equivalent partition of the spectrum of the linearized operator
in the form σ = σpt ∪ σπ ∪ σδ, where σpt is the point spectrum, σπ is a subset
of the approximate spectrum and σδ is a subset of the compressed spectrum (see
Definition 2 below).

Our primary interest is to prove the spectral stability (see Definition 3), of
the smooth degenerate Fisher-KPP fronts to equation (5.1.1). In this chapter we
provide the proof for the stability of the subsets of spectrum σpt and σδ.

Using an appropriate change of variables and energy estimates we show the
stability of the point spectrum σpt. To justify the change of variables, a detailed
analysis of the asymptotic behavior of the eigenfunctions at the degenerates sta-
tionary state is performed.

In addition, we introduced a regularization technique which, together with
the generalized convergence of operators, allowed us to exploit the robustness of
the Fredholm properties under “small” perturbations to localize the subset σδ
of the compressed spectrum. This approach relates the Fredholm properties of
the regularized operators to those of the original degenerate operator. Fredholm
borders determine the location of σδ.

It is known from the parabolic Fisher-KPP case [61, 131] that is it necessary
to recast the spectral problem in an exponentially weighted space. In particular,
point spectrum σpt is invariant under conjugation by an exponential weight, while
the Fredholm borders are pushed into the stable region of the complex with the
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same weight (see [71]). Thus, we show that if the velocity of the front satisfy
certain restriction then there exist an appropriate weighted L2- space, in which σpt
and σδ are stable.

In the following section we review the existence results of smooth degenerate
traveling front to equation (5.1.1) due to Sanchez-Garduño and Maini [126,127].

5.2 Structure of the traveling wave fronts

In this section we state the results of Sánchez-Garduño and Maini [126] concerning
the existence of traveling wave solutions of equation (5.1.1). For further details,
see [126,127].

Consider a solution u(x, t) = ϕ(x− ct) = ϕ(ξ) of (5.1.1), where c ∈ R denotes
the wave velocity and ξ is the galilean variable in the co-moving frame of the
traveling wave. Substituting the solution ϕ in (5.1.1) we arrive to the profile
equation

(D(ϕ)ϕξ)ξ + cϕξ + f(ϕ) = 0. (5.2.1)

Boundary conditions are imposed, requiring that the traveling wave have finite
asymptotic limits

u− := lim
ξ→−∞

ϕ(ξ) = 1, u+ := lim
ξ→+∞

ϕ(ξ) = 0. (5.2.2)

In this framework, the traveling wave solutions of equation (5.1.1) with speed c
correspond to solutions of the second order ODE (5.2.1) for the same speed. The
asymptotic limits u± are assumed to be equilibrium points of the reaction function
f .

We rewrite equation (5.2.1) as first order ODE system, of the following form

dϕ

dξ
= v,

D(ϕ)
dv

dξ
= −cv −D′(ϕ)v2 − f(ϕ).

(5.2.3)

Observe that system (5.2.3) has a singularity at ϕ = 0, since D(0) = 0. To
overcome this singularity, Aronson [11] introduced the change of variable τ = τ(ξ)
such that

dτ

dξ
=

1

D(ϕ(ξ))
. (5.2.4)

We define
ϕ(ξ) = ϕ(τ(ξ)), v(ξ) = v(τ(ξ)).
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Hence, the derivative with respect the new independent variable τ is given by

dϕ

dξ
=

1

D(ϕ)

dϕ

dτ
,

dv

dξ
=

1

D(ϕ)

dv

dτ
. (5.2.5)

Substituting in (5.2.3) we arrive to the non-singular system

dϕ

dτ
= D(ϕ)v,

dv

dτ
= −cv −D′(ϕ)v2 − f(ϕ),

(5.2.6)

which have the equilibrium points (ϕ, v) = P0 = (0, 0), P1 = (1, 0), and Pc =
(0,−c/D′(0)). As Aronson [11] points out, the effect of the change of variable
(5.2.4) is to resolve the singularity at ϕ = 0 into two critical points (0, 0) and
(0,−c/D′(0)). Also, observe that relation (5.2.5) states a reparametrization of
the trajectories of systems (5.2.3) and (5.2.6), and since D(ϕ) > 0 for ϕ > 0 the
orientation of trajectories is the same. This means that systems (5.2.3) and (5.2.6)
are topologically equivalent in the region {(ϕ, v)|ϕ > 0,−∞ < v <∞}.

Linear analysis of equilibria shows that (1, 0) and (0,−c/D′(0)) are a saddle
points and (0, 0) is a non-hyperbolic point with a center eigenspace of dimension
one. Then, it is necessary to consider higher order terms in the Taylor series to
determine the behavior of the trajectories in the vicinity of the origin. Applying
the methods from Andronov et al. [10] it is found that the equilibrium (0, 0) is a
saddle-node for system (5.2.6) and for system (5.2.3) as well.

Sánchez-Garduño and Maini [126] proved the existence of traveling waves by
doing a detailed phase plane analysis of system (5.2.6). They showed that there ex-
ists a c∗, such that for each c > c∗ there exists a heteroclinic trajectory connecting
the equilibrium points (0, 0) and (0, 1), corresponding to a decreasing smooth trav-
eling wave with speed c that satisfies boundary conditions (5.2.2). Furthermore,
for 0 < c < c∗, the authors proved that the trajectory leaving the equilibrium (0, 1)
terminates at (−∞, 0), implying that there is no traveling wave; and for c = c∗
the trajectory hits the equilibrium (0,−c∗/D′(0)), this corresponds to a “sharp”
traveling wave. In particular they proved the following (see Theorem 2 in [126])

Theorem 5.2.1. If the function D = D(u) satisfies (5.1.2) and f = f(u) is of
Fisher-KPP type satisfying (5.1.3), then there exist a unique speed value c∗ > 0
such that equation (5.1.1) has:

(i) No traveling wave solutions for 0 < c < c∗,

(ii) A traveling wave solution u(x, t) = φ(x − c∗t) of sharp type satisfying:
φ(−∞) = 1, φ(ξ) = 0 ∀ξ ≥ ξ∗; φ′(−∞) = 0, φ′(ξ∗) = − c∗

D′(0)
and

φ′(ξ) = 0 ∀ξ ≥ ξ∗,
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(iii) A monotone decreasing traveling front ϕ for each c > c∗, with

u+ = ϕ(+∞) = 0, u− = ϕ(−∞) = 1,

and ϕξ < 0 for all ξ ∈ R. Each front is diffusion degenerate at u+ = 0, as
ξ → +∞.

In this chapter we are interested in analyzing the stability properties of the
family of monotone decreasing smooth Fisher-KPP degenerate traveling fronts
indexed by the velocity c, that connect the equilibrium points u− = 1 and u+ = 0,
which existence is given by point (iii) of Theorem 5.2.1. We give the asymptotic
behavior of the monotone decreasing degenerate traveling fronts in the following

Lemma 5.2.2 (asymptotic decay). Let ϕ = ϕ(ξ) be a monotone decreasing Fisher-
KPP degenerate front, traveling with speed c > c∗ > 0, and with u+ = 0, u− = 1.
Then ϕ behaves asymptotically as

|∂jξ(ϕ− u+)| = |∂jξϕ| = O(e−f
′(0)ξ/c), as ξ → +∞, j = 0, 1,

on the degenerate side; and as,

|∂jξ(ϕ− u−)| = |∂jξ(ϕ− 1)| = O(eηξ), as ξ → −∞, j = 0, 1,

on the non-degenerate side, with η = (2D(1))−1
(
−c+

√
c2 − 4D(1)f ′(1)

)
> 0.

Proof. The asymptotic decay of the front ϕ on the non degenerate side, as ξ →
−∞, can be found using the linearization of the profile equation (5.2.1) around
the point ϕ̃ = ϕ− 1, that has the following form

D(1)ϕ̃′′ + cϕ̃′ + f ′(1)ϕ̃ = 0. (5.2.7)

The general solution of the second order constant coefficient ODE (5.2.7) is a linear
combination of the form ϕ̃ = C1e

ηξ + C2e
%ξ where

η =
−c+

√
c2 − 4D(1)f ′(1)

2D(1)
> 0, % =

−c−
√
c2 − 4D(1)f ′(1)

2D(1)
< 0.

Therefore, ϕ̃ will decay as ξ → −∞ only if C2 = 0. Hence, the decaying solutions
of equation (5.2.7) have the form ϕ̃ = eηξ. Thus, we have the exponential decay

|ϕ− 1| ∼ eηξ, as ξ → −∞.

Likewise, we have
|∂ξ(ϕ− 1)| ∼ Ceηξ, as ξ → −∞.
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The authors in [126] showed that the trajectory coming from P1 approaches P0

through the local center manifold of system (5.2.6) at P0. This is because P0 is a
non-hyperbolic equilibrium point. The Centre Manifold Theorem [31] guarantees
that the dynamics around P0 is given by the dynamics on the centre manifold. In
general, the centre manifold is no unique, but the equilibrium P0 will be contained
in any centre manifold. Moreover, all approximations of centre manifolds coincide
at all orders. Thus, to verify the asymptotic decay rate on the degenerate side we
have to approximate the centre manifold.

The decay rate of ϕ, as ξ → +∞ depends on the leading order of v = h(ϕ),
where h(ϕ) is the approximated centre manifold of the system (5.2.6) at equilib-
rium (0, 0). Up to second order, we found that the centre manifold for system
(5.2.6) (and hence for system (5.2.3)) has the following form (details can be found
in [126]):

h(ϕ) = −f
′(0)

c
ϕ− 1

2c3
(f ′′(0)c2 + 4D′(0)f ′(0)2)ϕ2 + O(ϕ3),

as ϕ→ 0.
Thus, the reduced dynamics on the center manifold is given by

dϕ

dτ
= D(ϕ)v = D(ϕ)h(ϕ).

Returning to the original galilean variable, via equation (5.2.5), we have

dϕ

dξ
= h(ϕ) ≈ −f

′(0)

c
ϕ ≤ 0, (5.2.8)

as ξ → +∞. Therefore, we obtain the asymptotic behavior

ϕ = O(e−f
′(0)ξ/c),

as ξ → +∞. Finally, taking the absolute value of (5.2.8) and substituting the
previous decay rate we have

|∂ξϕ| = O(e−f
′(0)ξ/c),

as ξ → +∞.

Lemma 5.2.3. Let ϕ = ϕ(ξ) be a monotone decreasing Fisher-KPP degenerate
front, traveling with speed c > c∗ > 0. Then, ϕξ ∈ H2(R).

Proof. We corroborate that ∂jξ(ϕ) ∈ L2(R), for j = 1, 2, 3.
For j = 1, it holds that ϕξ ∈ L2(R). This is a consequence of Lemma 5.2.2,

because of the exponential decay to zero, ϕξ → 0, as |ξ| → ∞.

69



From the profile equation (5.2.1) we have that

ϕξξ = − 1

D(ϕ)

(
cϕξ + f(ϕ) +D′(ϕ)(ϕξ)

2
)
.

In order to find the asymptotic behavior of ϕξξ on the degenerate side, as ξ → +∞,
we take the following Taylor expansions around ϕ = 0:

D(ϕ) = D′(0)ϕ+ O(ϕ2), D(ϕ)−1 = D′(0)−1ϕ−1 + O(1),

D′(ϕ) = D′(0) + O(ϕ), f(ϕ) = f ′(0)ϕ+ O(ϕ2)

Likewise, we use the centre manifold approximation

ϕξ = −f ′(0)ϕ/c+ O(ϕ2).

Hence, as ϕ→ 0, we have

ϕξξ =−
(
ϕ−1

D′(0)
+ O(1)

)(
c

(
−f

′(0)

c
ϕ+ O(ϕ2)

)
+ f ′(0)ϕ+ O(ϕ2) + (D′(0) + O(ϕ))

(
f ′(0)2

c2
ϕ2 + O(ϕ3)

))
=−

(
ϕ−1

D′(0)
+ O(1)

)(
f ′(0)2

c2
ϕ2 + O(ϕ2) + O(ϕ3)

)
=−

(
ϕ−1

D′(0)
+ O(1)

)
O(ϕ2) = O(ϕ).

(5.2.9)

Therefore,
|ϕξξ| = O(e−f

′(0)ξ/c), as ξ → +∞. (5.2.10)

On the non degenerate side, it follows from Lemma 5.2.2 that

|ϕξξ| = O(eηξ), as ξ → −∞. (5.2.11)

Therefore, ϕξξ decays exponentially to zero as |ξ| → ∞. This implies that ϕξξ ∈
L2(R).

Observe that from the center manifold approximation (5.2.8) we have

ϕξ = h(ϕ) = −f
′(0)

c
ϕ+ αϕ2 + O(ϕ3),

as ϕ→ 0 and where

α = −f
′′(0)c2 + 4D′(0)f ′2(0)

2c3
.
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Then, we differentiate twice h(ϕ) with respect ξ, arriving to

ϕξξξ =
f ′(0)

c
ϕξξ + 2α(ϕϕξξ + ϕ2

ξ).

Then, as ϕ→ 0, the nonlinear terms ϕϕξξ and ϕ2
ξ are smaller than the linear term

ϕξξ, and hence

ϕξξξ ≈
f ′(0)

c
ϕξξ.

Hence it follows from (5.2.10) that on the degenerate side we have

|ϕξξξ| = O(e−f
′(0)ξ/c), as ξ → +∞.

On the other hand, to find the decay for ϕξξξ at the non-degenerate side, as
ξ → −∞, we differentiate once the profile equation (5.2.1) with respect ξ, and we
get

(D(ϕ)ϕξ)ξξ + cϕξξ + f ′(ϕ)ϕξ = 0.

Hence, as ξ → −∞, the solutions of the previous equations are approximated by
the solutions of

D(1)ϕξξξ + cϕξξ + f ′(1)ϕξ = 0.

Thus,

ϕξξξ = − 1

D(1)
(cϕξξ + f ′(1)ϕξ),

and it follows from Lemma 5.2.2 and (5.2.11) that

|ϕξξξ| = O(eηξ), as ξ → −∞.

Therefore, ϕξξξ decays exponentially to zero as |ξ| → ∞. This implies that ϕξξξ ∈
L2(R). Then the proof follows.

In the following section we define the spectral problem by linearizing the non-
linear reaction-diffusion equation (5.1.1) around the front ϕ. We introduce an
alternative but equivalent partition of the spectrum of the linearized operator (see
Definition 2), and we give the rigorous definition of spectral stability (see Definition
3).

5.3 Spectral problem

Let us consider equation (5.1.1) under assumptions (5.1.2) and (5.1.3). Suppose
that u(x, t) = ϕ(x− ct) is a monotone traveling front solution to equation (5.1.1)
with velocity c > c∗ > 0. For notation simplicity, we make the change of variables

71



x → x − ct, where now x denotes the Galilean variable of translation. Thus,
equation (5.1.1) written in the co-moving frame of the Galilean variable is

ut = (D(u)ux)x + cux + f(u). (5.3.1)

Traveling fronts with velocity c, u(x, t) = ϕ(x), correspond to stationary solutions
of above equations, and satisfy

(D(u)ϕx)x + cϕx + f(ϕ) = 0. (5.3.2)

Now, we consider solutions of equation (5.3.1) that are perturbations of the trav-
eling front ϕ(x) of the form ϕ(x) + u(x, t). Substituting in (5.3.1) we obtain a
nonlinear perturbation equation

ut = (D(ϕ+ u)(ϕ+ u)x)x + c(ϕ+ u)x + f(ϕ+ u). (5.3.3)

Linearizing around the front ϕ(x) we obtain

ut =((D(ϕ) +D′(ϕ)u)(ϕx + ux))x + cϕx + ux + f(ϕ) + f ′(ϕ)u

=(D(ϕ)ϕx)x + (D(ϕ)ux)x + (D′(ϕ)ϕxu)x + (D′(ϕ)uux)x

+ cϕx + cux + f(ϕ) + f ′(ϕ)u.

(5.3.4)

On account of the profile equation (5.3.2) and keeping only the linear terms we
arrive to

ut = (D(ϕ)u)xx + cux + f ′(ϕ)u. (5.3.5)

We can rewrite the linear evolution equation (5.3.5) as ut = Lu, where L is the
linear operator

L : D(L) ⊂ X → X,

Lu = (D(ϕ)u)xx + cux + f ′(ϕ)u,
(5.3.6)

acting on an adequate Banach space X. We may define the spectral problem as

Lu = λu, (5.3.7)

where λ ∈ C is the spectral parameter.
The spectral stability of the traveling front ϕ(x), formally, is defined as the

non-existence of solutions u ∈ X to equation (5.3.7) for Reλ > 0 (see Definition 3
below). This condition assures the non-existence of solutions to equation (5.3.5)
of the form eλtu that grow exponential in time.
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5.3.1 Spectral stability

This section is devoted to define rigorously the concept of spectral stability. We
begin giving a particular partition of the spectra of a linear operator, suitable for
our needs.

Let X and Y be Banach spaces, and let C (X, Y ) and B(X, Y ) denote the
sets of all closed and bounded linear operators from X to Y , respectively. For
any L ∈ C (X, Y ) we denote its domain as D(L) ⊂ X and its range as R(L) :=
L(D(L)) ⊆ Y . We say that L is densely defined if D(L) = X.

Definition 2. The resolvent set ρ(L) of a closed, densely defined operator L ∈
C (X, Y ) is the set of all scalars λ ∈ C for which L − λ is bijective with bounded
inverse, this is,

ρ(L) := {λ ∈ C : L − λ is injective, R(L − λ) = Y , and (L − λ)−1 ∈ B(Y,X)}.

Its spectrum is defined as σ(L) := C \ ρ(L). We define the following subsets of the
complex plane, characterized by the way in which the invertibility of L − λ could
fail.

σpt(L) := {λ ∈ C : L − λ is not injective},
σδ(L) := {λ ∈ C : L − λ is injective, R(L − λ) is closed, and R(L − λ) 6= Y },
σπ(L) := {λ ∈ C : L − λ is injective, R(L − λ) is not closed}.

The set σpt(L) is called the point spectrum. Each λ ∈ σpt(L) is called an
eigenvalue, and each u ∈ D(L), u 6= 0 such that (L − λ)u = 0, is called an
eigenfunction associated to λ.

Remark 1. For a closed operator L ∈ C (X, Y ), if L − λ is bijective, for some
λ ∈ C, then (L− λ)−1 is alway bounded (cf. [72, p. 167]). It is clear that the sets
σpt(L), σπ(L) and σδ(L) are pairwise disjoint, and that

σ(L) = σpt(L) ∪ σπ(L) ∪ σδ(L).

Additional partitions of the spectrum for an unbounded operator are found in
the literature, for instance, the larger subset of approximate spectrum, defined as

σapp(L) := {λ ∈ C : L − λ is not injective or R(L − λ) is not closed}.

It is clear from the definition that σπ(L) ⊂ σapp(L) and σpt(L) ⊂ σapp(L). The
set σapp(L) is characterized by the following fact (cf. [41, p. 242]): λ ∈ σapp(L)
if and only if there exist a sequence {un} ∈ D(L) with ||un|| = 1, called singular
sequence, such that (L − λ)un → 0 in Y as n → ∞. The elements of σapp(L) are
called approximate eigenvalues.
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The set σδ(L) is contained in the residual spectrum, also called the compression
spectrum (see [125]),

σδ(L) ⊂ σcom(L) := {λ ∈ C : L − λ is injective, R(L − λ) 6= Y }.

(Since R(L − λ) 6= Y it is said that the range has been compressed).
In Definition 2, we propose a partition of the spectrum in which the nature of

the failure of the invertibility of L − λ is given by the points for which the range
L − λ is closed and those for which is not. Obviously this is not the only way in
which the invertibility of L − λ could fail. In contrast, the classical partition of
spectrum of continuous, residual and point spectra (cf. [39]), is defined in terms
of points for which the range of L − λ is dense and those for which is not.

Definition 3. We say the traveling front ϕ is X-spectrally stable if

σ(L) ⊂ {λ ∈ C : Reλ ≤ 0}.

We shall consider X = L2(R;C) and D(L) = H2(R;C), so that L is closed,
densely defined operator acting on L2. Definition 3 in conjunction with choice of
the base space L2 correspond to the stability analysis with respect to spatially
localized perturbations. In the following, σ(L) will denote the L2-spectrum of
the linearized operator (5.3.6) with domain D = H2, except where it is otherwise
computed with respect to a space X and explicitly denoted as σ(L)|X .

Definition 4. Let L ∈ C (X, Y ), and denote the nullity and deficiency of L as
nulL = dim kerL, defL = codimR(L), respectively. The operator L is said to be
Fredholm if its range R(L) is closed, and its nullity and deficiency are both finite.
The operator L is said to be semi-Fredholm if R(L) is closed and at least one of
nulL and defL is finite. In both cases, the index of L is defined (see [71]) as

indL = nulL − defL.

Usually, in the framework of spectral stability analysis of traveling waves the
partition of the spectrum is defined in terms of the Fredholm properties of the lin-
earized operator around the wave, and relies on the hyperbolicity of the asymptotic
rest states [71, 128]. This partition of the spectrum is composed of the essential
spectrum, σess(L), which is the set of λ ∈ C such that L − λ is not Fredholm or
is Fredholm with index not zero. The point spectrum σ̃pt(L) is the complement of
σess(L), that is, the set of λ ∈ C such that L−λ is Fredholm with index zero, but
the kernel is not trivial. This definition of spectrum, σ(L) = σess(L) ∪ σ̃pt(L), is
due to Weyl [162] and makes the essential spectrum σess a larger set but easier to
compute, while σ̃pt only contains isolated eigenvalues (see Remark 2.2.4 in [128]).
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In our setting, this definition of the spectrum for the linearized operator L
around one of the degenerate traveling fronts ϕ is not particularly useful, since
upon substitution of the coefficients of L by their constant values at ±∞, the
degeneracy of the diffusion coefficient precludes a direct application of standard
techniques to localize the essential spectrum [71, 128]. Such approach rely on the
hyperbolicity of the asymptotic matrices (see Section 5.5 below). In particular for
the operator L the asymptotic matrix, at the stationary state u+, in +∞ is not
well defined.

5.4 Stability of the point spectrum

This section concerns with the stability of the point-spectrum of the monotone
diffusion-degenerate Fisher-KPP fronts. We use energy estimates in conjunction
with an appropriate change of variables, which is motivated by the monotonicity
of the fronts. In order to justify the change of variables, a detailed analysis of the
asymptotic behavior of solution to the spectral equation is necessary (see Section
5.8 for details).

5.4.1 Energy estimate

Let ϕ(x) be any member of the family of monotone diffusion-degenerate Fisher-
KPP fronts, and L the corresponding linearized operator around ϕ defined in
(5.3.6). Let λ ∈ C be fixed. Assume that there exists a solution u ∈ D(L) =
H2(R;C) of the spectral equation

(L − λ)u = 0

D(ϕ)uxx + (2D(ϕ)x + c)ux + (D(ϕ)xx + f ′(ϕ)− λ)u = 0.
(5.4.1)

Let x0 ∈ R be fixed, but arbitrary. Denote the function

θ(x) := − c
2

∫ x

x0

ds

D(ϕ(s))
. (5.4.2)

Observe that θ(x) is well defined for all x ∈ R, and satisfies

θx = − c

2D(ϕ(x))
, θxx =

c

2

D(ϕ)x
D(ϕ)2

,

for all x ∈ R. Consider the transformation

u(x) = w(x)eθ(x). (5.4.3)
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We compute the first and second derivatives of (5.4.3),

ux = wxe
θ(x) + wθxe

θ(x)

=

(
wx −

c

2D(ϕ)
w

)
eθ(x),

(5.4.4)

uxx = wxxe
θ(x) + 2wxθxe

θ(x) + wθxxe
θ(x) + wθ2

xe
θ(x)

=

(
wxx −

c

D(ϕ)
wx +

(
cD(ϕ)x
2D(ϕ)2

+
c2

4D(ϕ)2

)
w

)
eθ(x).

(5.4.5)

Thus, upon substitution of equations (5.4.4) and (5.4.5) in equation (5.4.1) we
arrive to

D(ϕ)wxx + 2D(ϕ)xwx +H(x)w − λw = 0, (5.4.6)

where

H(x) = D(ϕ)xx + f ′(ϕ)− c

2

D(ϕ)x
D(ϕ)

− c2

4D(ϕ)
.

Observe that e−θ(x) may diverge as x→ +∞. Nevertheless, we have that w ∈ H2

whenever u ∈ H2, and the details are provided by the following

Lemma 5.4.1. Let x0 ∈ R be fixed, but arbitrary. If u ∈ H2(R;C) is a solution
to the spectral equation (L − λ)u = 0, for fixed λ ∈ C, then

w(x) = exp

(
c

2

∫ x

x0

ds

D(ϕ(s))

)
u(x),

belongs to H2(R;C).

Proof. On the non degenerate side, as x→ −∞, observe that∫ x

x0

ds

D(ϕ)
= −

∫ x0

x

ds

D(ϕ)
≤ 0,

for all x ≤ x0, since the integrand is positive. Denote

Θ(x) := exp

(
c

2

∫ x

x0

ds

D(ϕ)

)
Hence, Θ(x)→ 0 as x→ −∞. Thus Θ(x) is bounded and

Θ(x) ≤ 1

for x ∈ (−∞, x0).This implies that

|w(x)| = Θ(x)|u(x)| ≤ |u(x)|
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for x ∈ (−∞, x0], and hence w ∈ L2(−∞, x0).
For x0 ∈ R fixed, let

δ0 := inf
x∈(−∞,x0]

D(ϕ(x)) > 0.

Thus, for all x < x0

c

2

∫ x

x0

ds

D(ϕ)
≤ c

2

∫ x

x0

ds

δ0

= − c

2δ0

|x− x0|.

This implies that

Θ(x) ≤ exp

(
− c

2δ0

|x− x0|
)
→ 0,

as x→ −∞.
Computing the derivative Θ(x) with respect x we have

Θx =
c

2

Θ(x)

D(ϕ)
.

Thus, due to the monotonicity of D = D(·) we obtain

0 <
c

2

Θ(x)

D(1)
≤ Θx ≤

c

2δ0

Θ(x)→ 0,

as x→ −∞. This implies that wx = Θxu+ Θux ∈ L2(−∞, x0).
The second derivative of Θ(x) with respect x is

Θxx =

(
c2

4D(ϕ)
− c

2

D′(ϕ)ϕx
D(ϕ)2

)
Θ(x).

Denote δ1 = sup
x∈(−∞,x0)

|D′(ϕ(x))ϕx(x)| <∞. Hence, we estimate

|Θxx| ≤
(
c2

4δ2
0

+
c

2

δ1

δ0

)
Θ(x)→ 0

as x→ −∞. This implies that wxx = Θxxu+ 2Θxux + Θuxx ∈ L2(−∞, x0).
On the degenerate side, as x → +∞, for x0 � 1 fixed, by Lemma 5.8.5 we

have w(x) = Cζ(x) ∈ H2(x0,+∞). This implies w ∈ H2(R;C), and the proof is
complete.
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Multiply equation (5.4.6) by D(ϕ), and arrange terms to get

(D(ϕ)2wx)x +D(ϕ)H(x)w − λD(ϕ)w = 0. (5.4.7)

Recall that ϕx ∈ kerL, thus u = ϕx is solution to equation (5.4.1) for λ = 0.
Consider the transformation

ϕx = ψ(x)eθ(x), (5.4.8)

and substituting in (5.4.1), with λ = 0, we obtain

D(ϕ)ψxx + 2D(ϕ)xψx +H(x)ψ = 0.

Multiplying last equation by D(ϕ) yields

(D(ϕ)2ψx)x +D(ϕ)H(x)ψ = 0.

Observe that ψ(x) 6= 0 for all x ∈ R, due to the monotonicity of the front, ϕx < 0.
Therefore, we may write

D(ϕ)H(x) = −(D(ϕ)2ψx)x
ψ

. (5.4.9)

Hence, substituting (5.4.9) in (5.4.7) yields

(D(ϕ)2wx)x −
(D(ϕ)2ψx)x

ψ
w = λD(ϕ)w.

Take the L2-product of w with last equation, we obtain

λ

∫
R
D(ϕ)|w|2dx =

∫
R
(D(ϕ)2wx)xw

∗dx−
∫
R

(D(ϕ)2ψx)x
ψ

|w|2dx. (5.4.10)

Integrate by parts on the right hand side of (5.4.10) to get

λ

∫
R
D(ϕ)|w|2dx = −

∫
R
D(ϕ)2|wx|2dx+

∫
R
D(ϕ)2ψx

(
|w|2

ψ

)
x

dx

=

∫
R
D(ϕ)2

(
ψx

(
|w|2

ψ

)
x

− |wx|2
)
dx.

(5.4.11)

Before proceeding any further we provide the following

Lemma 5.4.2.

ψx

(
|w|2

ψ

)
x

− |wx|2 = −ψ2

∣∣∣∣(wψ
)
x

∣∣∣∣2 .
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Proof. The proof is straightforward. Observe that by definition ψ(x) < 0 for all
x ∈ R. Thus,

ψ2

∣∣∣∣(wψ
)
x

∣∣∣∣2 = ψ2

(
w

ψ

)
x

(
w

ψ

)
x

= ψ2

(
wxψ − wψx

ψ2

)(
w̄xψ − w̄ψx

ψ2

)
=

1

ψ2

(
|wx|2ψ2 − (wxw̄ + ww̄x)ψψx + |w|2ψ2

x

)
=

1

ψ2

(
|wx|2ψ2 − (ww̄)xψψx + |w|2ψ2

x

)
=

1

ψ2

(
|wx|2ψ2 − (|w|2)xψψx + |w|2ψ2

x

)
= |wx|2 −

ψx
ψ2

(
(|w|2)xψ − |w|2ψx

)
= |wx|2 − ψx

(
|w|2

ψ

)
x

(5.4.12)

Therefore, using the identity from Lemma 5.4.2 in equation (5.4.11) we obtain

λ

∫
R
D(ϕ)|w|2dx = −

∫
R
D(ϕ)2ψ2

∣∣∣∣(wψ
)
x

∣∣∣∣2 dx. (5.4.13)

Let us denote the standard L2-product as

〈u, v〉L2 =

∫
R
u∗v dx, ‖u‖2

L2 = 〈u, u〉L2 .

Hence, we may write equation (5.4.13) as

λ〈D(ϕ)w,w〉L2 = −‖D(ϕ)ψ(w/ψ)x‖2
L2 .

Remark 2. Observe that, thanks to Lemma 5.4.1, w ∈ H2, ψ ∈ H2. Due to
monotonicity of the front, ψ < 0, then the L2-products of last equation are well-
defined.

We summarize these calculations as follows.

Proposition 5.4.3 (basic energy estimate). For any λ ∈ C, suppose that there
exist a solution u ∈ H2(R;C) to the spectral equation (L − λ)u = 0. Then there
holds the energy estimate

λ〈D(ϕ)w,w〉L2 = −‖D(ϕ)ψ(w/ψ)x‖2
L2 .

where w = e−θu ∈ H2(R;C), and ψ = e−θϕx ∈ H2(R;C) is a non-vanishing real
function, and θ = θ(x) is defined in (5.4.2).
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5.4.2 Localization of the point spectrum

This section is concerned with the stability of the point spectrum, σpt(L). For that
purpose, we apply the basic energy estimate to show that the point spectrum is
real and non-positive. We have the following

Theorem 5.4.4. All monotone fronts of diffusion degenerate Fisher-KPP equa-
tions are point spectrally stable. More precisely,

σpt(L) ⊂ (−∞, 0]

that is, L2-point spectrum and non positive.

Proof. Let ϕ = ϕ(x) be a degenerate Fisher-KPP monotone front and L the
linearized operator around ϕ defined in (5.3.6). Let λ ∈ σpt(L). Therefore, there
exist u ∈ H2(R;C) such that (L − λ)u = 0. Applying the Proposition 5.4.3 we
arrive to the energy estimate

λ〈D(ϕ)w,w〉L2 = −‖D(ϕ)ψ(w/ψ)x‖2
L2 ≤ 0. (5.4.14)

The inequality holds because the diffusion coefficient D(ϕ) > 0 for all x ∈ R.
Therefore, we conclude that λ ∈ R and λ ≤ 0.

Corolary 5.4.5. λ = 0 has geometric multiplicity equal to one, that is, dim kerL =
1. Moreover, kerL = span{ϕx}.

Proof. It follows from equation (5.4.14), for λ = 0, that

‖D(ϕ)ψ(w/ψ)x‖2
L2 =

∫
R
D(ϕ)2ψ2

∣∣∣∣(wψ
)
x

∣∣∣∣2 dx = 0.

Thus, since D(ϕ) > 0 and ψ(x) > 0 for all x ∈ R, we have that(
w

ψ

)
x

= 0, a.e. in R.

Hence, w = αψ for some constant α 6= 0. Therefore,

u = αϕx,

and we conclude that if u ∈ kerL then necessarily is a constant multiple of ϕx,
and the proof is complete.

80



5.5 Localization of the compressed spectrum

In this section we introduce a regularization technique to circumvent the degener-
acy of the diffusion coefficient, and to locate a subset of the compressed spectrum
of the linearized operator around the front. This approach is based on the general-
ized convergence of operators and exploits the robustness of Fredholm properties.

5.5.1 The perturbed operator

Let ε > 0. We denote
Dε(ϕ) := D(ϕ) + ε (5.5.1)

as a perturbation of the diffusion coefficient D(ϕ). We define the regularized
operator as

Lε : D(Lε) = H2(R;C) ⊂ L2(R;C→ L2(R;C)

Lεu = (Dε(ϕ)u)xx + cux + f ′(ϕ)u.
(5.5.2)

Observer that, for every ε > 0, operator −Lε is a linear, closed, densely defined
and strongly elliptic operator acting on L2, since Dε(ϕ) ≥ ε > 0. For the same
reason, multiplication by Dε(ϕ)−1 is an isomorphism. Thus, Fredholm properties
of (Lε − λ) and those of the operator J ε(λ) : H2(R;C) ⊂ L2(R;C) → L2(R;C)
defined as

J ε(λ) := Dε(ϕ)−1(Lε − λ)u

= uxx +Dε(ϕ)−1a1(x)ux +Dε(ϕ)−1(a0(x)− λ)u
(5.5.3)

for u ∈ H2(R;C), are the same. The coefficients a1(x), a0(x) are

a1(x) = 2Dε(ϕ)x + c, a0(x) = D(ϕ)xx + f ′(ϕ).

Following Alexander, Gardner and Jones [4], we rewrite operator (5.5.2) as a
first order operator of the form

T ε(λ) : H1(R;C2) ⊂ L2(R;C2)→ L2(R;C)

T ε(λ) := ∂x − Aε(·;λ),
(5.5.4)

where

Aε(x;λ) =

(
0 1

Dε(ϕ)−1(λ− a0(x)) −Dε(ϕ)−1a1(x)

)
.

It is a known fact (cf. [71, 128]) that operators T ε(λ) and J ε(λ) share the
same Fredholm properties, and as result, Lε − λ will too (see Theorem 3.2 in
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Ref. [99]). Furthermore, the Fredholm properties depend upon hyperbolicity of
the asymptotic matrices [128]

Aε
±(λ) := lim

x→±∞
Aε(x;λ) =

(
0 1

Dε(u±)−1(λ− f ′(u±)) −Dε(u±)−1c

)
. (5.5.5)

Thus, we have to characterize the λ ∈ C for which Aε
±(λ) lose their hyperbolicity.

For that purpose we compute the matrix eigenvalues, and define the characteristic
polynomial of Aε

±(λ) as

πε±(λ, µ) := det(Aε±(λ)− µ). (5.5.6)

Observe that the matrix eigenvalues µ depend continuously on the spectral
parameter λ. By definition, asymptotic matrices will lose its hyperbolicity when
there exist a matrix eigenvalue with zero real part, i.e., Reµ(λ) = ik for k ∈ R.
We introduce the complex dispersion relation

πε±(λ, ik) = −k2 + ikcDε(u±)−1 +Dε(u±)−1(f ′(u±)− λ) = 0. (5.5.7)

Thus, the λ-roots of the dispersion relation (5.5.7) define algebraic curves in λ-
complex plane with the following form

λε±(k) := −D(u±)k2 + ick + f ′(u±), (5.5.8)

parametrized by the real parameter k ∈ R. We note that for each curve λε±(k)
the point at rightmost position is f ′(u±). Consider the following open connected
subset of the complex plane

Ω := {λ ∈ C : Reλ > max{f ′(u−), f ′(u+)}},

which is called the region of consistent splitting. We denote, for each fixed λ ∈ C
and ε > 0, Sε±(λ), U ε

±(λ) and Cε
±(λ) as the stable, unstable and center eigenspaces

of Aε
±(λ) in C2, respectively.

Lemma 5.5.1. For each λ ∈ Ω and all ε > 0, the asymptotic matrices Aε
±(λ) have

no center eigenspace and dimSε±(λ) = U ε
±(λ) = 1.

Proof. A point λ ∈ C will be on the curves λε±(k) precisely when there exist
a matrix eigenvalue that satisfy µ(λ) = ik for k ∈ R. Thus, if λ ∈ Ω then
dimCε

±(λ) = 0, since by definition

Reλ > max
k∈R

Reλε±(k) = f ′(u±),
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and this last quantity is independent of ε. The characteritic polynomial (5.5.6)
has one positive and one negative root:

µ1 =
1

2Dε(u±)

(
−c+

√
c2 + 4Dε(u±)(η − f ′(u±)

)
> 0,

µ2 =
1

2Dε(u±)

(
−c−

√
c2 + 4Dε(u±)(η − f ′(u±)

)
< 0,

(5.5.9)

for η > max{f ′(u±)} large enough. By continuity on λ and by connectedness Ω,
the dimensions dimSε±(λ) = dimU ε

±(λ) = 1 remain constant in Ω.

Lemma 5.5.2. For all ε > 0 and for each λ ∈ Ω, the operator Lε− λ is Fredholm
with index zero.

Proof. Let λ ∈ Ω. Thus, by Lemma 5.5.1, the matrices Aε
±(λ) are hyperbolic. It

follows from Theorem 3.3 in Ref. [128] that the system has exponential dychotomies
on R±, with Morse indices i±(λ) = dimU ε

±(λ) = 1. It follows from Theorem 3.2
(and Remark 3.3) in [128], that the operators T ε(λ) are Fredholm with index

indT ε(λ) = i−(λ)− i+(λ) = 0.

Therefore, we conclude that J ε(λ) and Lε − λ are Fredholm with index zero, as
well.

5.6 Generalized convergence

We shall seize the robustness of Fredholm properties under “small” perturbations
of a closed operator, and use the independence of ind(Lε−λ) with respect of ε > 0
to make conclusions about the Fredholm properties of L−λ. In turn, this will aid
us to locate σδ(L). We introduce the succeeding notation following Kato [72].

Definition 5. Let Z be a Banach space, M and N nontrivial closed subspaces of
Z. We denote by SM the unitary sphere of M (the set of all u ∈M with ||u|| = 1).
For any two closed subspaces M,N we set

δ(M,N) = sup
u∈SM

dist(u,N),

δ̂(M,N) = max[δ(M,N), δ(N,M)].

δ̂ is called the gap between M and N .
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Remark 3. In general, δ̂(M,N) does not satisfy the triangle inequality, so the
function δ̂ can not be used to define a distance between M and N . We modify
slightly the definition of δ̂; we set

d(M,N) = sup
u∈SM

dist(u, SN),

d̂(M,N) = max[d(M,N), d(N,M)].

The functions d and d̂ satisfy the triangle inequality; d̂(M,N) is called the distance
between M and N . Furthermore, we have the following inequalities

δ(M,N) ≤ d(M,N) ≤ 2δ(M,N)

δ̂(M,N) ≤ d̂(M,N) ≤ 2δ̂(M,N).

Definition 6. Let X, Y be Banach spaces. Consider C (X, Y ), set of all closed
operators from X to Y . If T, S ∈ C (X, Y ), then the graphs G(T ), G(S) are closed
subspaces of X × Y , and we set

d(T, S) = d(G(T ), G(S)),

d̂(T, S) = max[d(T, S), d(S, T )].

A sequence Tn ∈ C (X, Y ) converges to T ∈ C (X, Y ) if d̂(Tn, T )→ 0.

Remark 4. It follows from Remark 3 that the convergence d̂(Tn, T )→ 0 is equiv-
alent to δ̂(Tn, T ) → 0. In this case we say that Tn converges to T (Tn → T ) in a
generalized sense.

Lemma 5.6.1. For each fixed λ ∈ C, the operators Lε−λ converge in generalized
sense to L − λ as ε→ 0+.

Proof. From the definition of d(·, ·) we have

d(Lε − λ,L − λ) = d(G(Lε − λ), G(L − λ)) = sup
v∈SG(Lε−λ)

(
inf

w∈SG(L−λ)
‖v − w‖

)
.

Let v ∈ SG(Lε−λ) be such that v = {p, (Lε − λ)p} for p ∈ D(Lε − λ) = H2, and

‖v‖2
L2×L2 = ‖p‖2

L2 + ‖(Lε − λ)p‖2
L2 = 1.

In a similar manner, let w ∈ SG(L−λ) be such that w = {u, (L − λ)u}, for
u ∈ D(L − λ) = H2 and

‖w‖2
L2×L2 = ‖u‖2

L2 + ‖(L − λ)u‖2
L2 = 1.
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Now, we find a upper bound for ‖v − w‖L2×L2 so the set consisting of the
infima taken over SG(L−λ) is bounded, and consequently the supremum of SG(Lε−λ)

is bounded. Consider

‖v − w‖2
L2×L2 = ‖p− u‖2

L2 + ‖(Lε − λ)p− (L − λ)u‖2
L2 (5.6.1)

If we keep v ∈ SG(Lε−λ) fixed, then it suffices to take w = {p, (L − λ)p}, since
p ∈ D(Lε − λ) = D(L− λ). Observe that (L− λ)p = (Lε − λ)p− εpxx. Therefore
equation (5.6.1) reduces to

‖v − w‖2
L2×L2 = ‖(Lε − λ)p− (L − λ)p‖2

L2 = ‖εpxx‖2
L2 .

If we regard ∂2
x as a closed, densely defined operator acting on L2(R;C), with

domain D = H2(R;C), then it follows [72, Remark 1.5, pp. 191] that ∂2
x is (Lε −

λ)−bounded, i.e., there exist a constant C > 0 such that

‖pxx‖2
L2 ≤ C(‖p‖2

L2 + ‖(Lε − λ)p‖2
L2) = C,

for all p ∈ H2.
We shall find an expression for C. For that purpose, we write down operator

(Lε − λ)p,

(Lε − λ)p = (D(ϕ) + ε)pxx + (2D(ϕ)x + c)px + (D(ϕ)xx + f ′(ϕ)− λ)p.

We denote
m2 = inf

x∈R
(D(ϕ) + ε),

M1 = sup
x∈R
|2D(ϕ)x + c|,

M0 = sup
x∈R
|D(ϕ)xx + f ′(ϕ)− λ|.

(5.6.2)

Observe that m2 = ε > 0, and M1,M0 <∞. Thus, we have the lower bound

‖(Lε − λ)p‖L2 ≥ m2‖pxx‖L2 −M1‖px‖L2 −M0‖p‖L2 . (5.6.3)

Let µ > 0 be an arbitrary positive constant. By Lemma VI.6.1 in [54], there
exist a constant Cµ > 0 such that

‖px‖L2 ≤ µ‖pxx‖L2 + Cµ‖p‖L2 . (5.6.4)

Hence, substituting (5.6.4) in (5.6.3) we obtain

‖(Lε − λ)p‖L2 ≥ (m2 − µM1)‖pxx‖L2 − (M0 + Cµ)‖p‖L2 (5.6.5)
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Let µ be such that m2 > µM1.Then

1

(m2 − µM1)
‖(Lε − λ)p‖L2 ≥ ‖pxx‖L2 − (M0 + Cµ)

(m2 − µM1)
‖p‖L2 .

Then,
1

(m2 − µM1)
‖(Lε − λ)p‖L2 +

(M0 + Cµ)

(m2 − µM1)
‖p‖L2 ≥ ‖pxx‖L2 .

Denote,

a =
1

(m2 − µM1)
, b =

(M0 + Cµ)

(m2 − µM1)
. (5.6.6)

Let η > 0. Hence,

(a2 + ηab)‖(Lε − λ)p‖2
L2 + (b2 + ab/η)‖p‖2

L2 ≥ ‖pxx‖2
L2 . (5.6.7)

We can choose
C = max

(
a2 + ηab, b2 + ab/η

)
. (5.6.8)

Therefore
‖v − w‖2

L2×L2 = ‖εpxx‖2
L2 ≤ ε2C,

yielding
d(Lε − λ,L − λ) ≤ ε2C.

In a similar fashion it can be proved that

d(L − λ,Lε − λ) ≤ ε2C.

This shows
d̂(Lε − λ,L − λ)→ 0

as ε→ 0, and the result is proved.

We quote the following result from Kato [72], is known as the general stability
theorem, and is the main tool to conclude the robustness of Fredholm properties.

Theorem 5.6.2 ( [72]). Let T, S ∈ C (X, Y ) and let S be Fredholm. If

δ̂(S, T ) < γ(1 + γ2)−1/2,

where γ = γ(S), then T is Fredholm and

nul(T ) ≤ nul(S), def(T ) ≤ def(S).

Furthermore, there exists δ > 0 such that δ̂(S, T ) < δ implies

ind(S) = ind(T ).
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Remark 5. If X, Y are Hilbert spaces we can take δ = γ(1 + γ2)−
1
2 (cf. [72]).

Theorem 5.6.3. Let ϕ = ϕ(x) be a diffusion-degenerate Fisher-KPP front, and
let L ∈ C (L2) be the linearized operator around ϕ defined in (5.3.6). Then

σδ(L) ⊂ C \ Ω.

Proof. Let λ ∈ σδ(L). By definition, R(L − λ) is closed and L − λ is injective.
Thus, nul(L − λ) = 0. In addition, being λ in the compression spectrum, the
range R(L − λ) is not all L2 and L − λ is not surjective. This implies that
def(L − λ) = codimR(L − λ) > 0. Thus, L − λ is semi-Fredholm with index
ind(L − λ) 6= 0.

Now, we proceed by contradiction and suppose that λ ∈ σδ(L) ∩ Ω. Hence,
γ := γ(L − λ) > 0, since R(L − λ) is closed (see Theorem 5.2 in [72, p. 231].

By Lemma 5.6.1, δ̂(Lε−λ,L−λ)→ 0 as ε→ 0+. This implies that there exist
ε > 0 small enough such that

δ̂(Lε − λ,L − λ) < γ(1 + γ2)−1/2.

Since X = L2(R;C) is a Hilbert space, Theorem 5.6.2 implies that

ind(L − λ) = ind(Lε − λ) = 0,

due to λ ∈ Ω and Lemma 5.5.2. This is a contradiction with ind(L − λ) 6= 0.
Therefore, σδ(L) ∩ Ω = ∅, and

σδ(L) ⊂ C \ Ω.

Remark 6. Observe that the definition of the region of consistent splitting Ω
depends on f ′(u±). This in turn implies that the location, and hence stability
of σδ(L) depend on the sign of f ′(u±). In this case, f ′(0) > 0, making σδ(L)
unstable. It is, however, sensitive to changes at spatial infinity, and it is possible
to find exponentially weighted spaces where the stability of σδ holds.

5.7 Spectral stability in exponentially weighted

spaces

In this section we introduce the exponentially weighted spaces. Under certain
conditions on the velocity, we found an appropriated weight function. Thus, in this
suitable weighted space, the subset σδ of the spectrum of the linearized operator
computed with respect to the new space, is stable.

87



5.7.1 Exponentially weighted spaces

We introduce the exponentially weighted spaces

Hm
a (R;C) = {v : eaxv(x) ∈ Hm(R;C)},

for m ∈ N ∪ {0} and any a ∈ R. These weighted spaces are Hilbert spaces with
the inner product and norm

〈u, v〉Hm
a

:= 〈eaxu, eaxv〉Hm , ‖v‖2
Hm
a

:= ‖eaxv‖2
Hm = 〈v, v〉Hm

a
.

As usual, we denote L2
a(R;C) = H0(R;C), equipped with the norm

‖v‖2
L2
a

:=

∫ +∞

−∞
|eaxv(x)|2dx.

Note that the norms ‖·‖L2
a

for different values of a are not equivalent.
It is known [71] that if the spectral problem is recast in a exponentially weighted

space then the Fredholm borders may move depending on the sign of a. In the
sequel, we consider the operator L acting on L2

a

L : Da := H2
a(R;C) ⊂ L2

a(R;C)→ L2
a(R;C),

and compute its spectrum with respect to the norm ‖·‖L2
a

for appropriate values
of a. To be more specific, for a > 0 the norm ‖·‖L2

a
penalizes perturbations at

+∞, while it tolerates perturbations at −∞ which may grow exponentially with
any rate less than a > 0. Thus, Fredholm borders calculated in the norm ‖·‖L2

a

move to the left, whereas the point spectrum remains the same [71].
Let v = eaxu, thus u ∈ L2

a(R) if and only if v ∈ L2(R). The spectral problem
for the operator L in L2

a is taken to one for the conjugated operator La := eaxLe−ax
in L2, where

La : D(La) := H2(R;C) ⊂ L2(R;C)→ L2(R;C).

Consider the operator L defined in (5.3.6), thus operator La has the explicit form

Lau = eax[L(e−axu)]

= eax
[
(D(ϕ)e−axu)xx + c(e−axu)x + f ′(ϕ)e−axu

]
= eax

[
D(ϕ)(uxx − 2aux + a2u)e−ax + (2D(ϕ)x + c)(ux − au)e−ax+

+ (D(ϕ)xx + f ′(ϕ))ue−ax
]

= D(ϕ)uxx + (2D(ϕ)x − 2aD(ϕ) + c)ux+

+ (D(ϕ)xx + f ′(ϕ) + a2D(ϕ)− 2aD(ϕ)x − ac)u

(5.7.1)

for all u ∈ H2. La is a closed, densely defined operator in L2.
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5.7.2 Calculation of the Fredholm curves

To select an appropriate value for the parameter a, we shall compute the curves
that limit the set σδ(La) in order to find in which form the weight function eax

moves the set σδ(L).
We follow the methods of Section 5.5, and introduce a perturbation of the

diffusion coefficient Dε(ϕ) = D(ϕ) + ε, for 0 < ε � 1. Thus, the regularized
operator Lεa is defined by substituting D(ϕ)ε in (5.7.1), and has the following form

Lεau = Dε(ϕ)uxx+ (2Dε(ϕ)x − 2aDε(ϕ) + c)ux+

+ (Dε(ϕ)xx + f ′(ϕ) + a2Dε(ϕ)− 2aDε(ϕ)x − ac)u.

Accordingly, for any λ ∈ C we define

J ε
a (λ) := Dε(ϕ)−1(Lεa − λ)u

= uxx +Dε(ϕ)−1bε1,a(x)ux +Dε(ϕ)−1(bε0,a(x)− λ)u,
(5.7.2)

where
bε1,a(x) = 2Dε(ϕ)x − 2aDε(ϕ) + c,

bε0,a(x) = Dε(ϕ)xx + f ′(ϕ) + a2Dε(ϕ)− 2aDε(ϕ)x − ac.
(5.7.3)

We recast the spectral problem as a first order system of the form

Wx = Aε
a(x, λ)W,

where

W =

(
u
ux

)
∈ H2(R;C2), Aεa(x;λ) =

(
0 1

Dε(ϕ)−1(λ− bε0,a(x)) −Dε(ϕ)−1bε1,a(x)

)
.

The constant asymptotic matrices are

Aε,±
a (λ) := lim

x→±∞
Aε
a(x;λ) =

(
0 1

Dε(u±)−1(λ− bε,±0,a ) −Dε(u±)−1bε,±1,a

)
, (5.7.4)

where
bε,±1,a := lim

x→±∞
bε1,a(x) = c− 2aD(u±)ε,

bε,±0,a := lim
x→±∞

bε0,a(x) = f ′(u±) + a2Dε(u±)− ac.

To compute the matrix eigenvalues of Aε,±
a (λ), we introduce the characteristic

polynomial
πε,±a (λ, µ) = det(Aε,±

a (λ)− µI),

and for each k ∈ R we have the complex dispersion relation

πε,±a (λ, ik) = −k2 + ikDε(u±)−1bε,±1,a −Dε(u±)−1(λ− bε,±0,a ).
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The λ-roots of the complex dispersion relation define algebraic curves parametrized
by the parameter k ∈ R, the Fredholm curves, in the λ-complex plane of the form

λε,±a (k) = −Dε(u±)k2 + ikbε,±1,a + bε,±0,a

= −Dε(u±)k2 + ik(c− 2aDε(u±)) + f ′(u±) + a2Dε(u±)− ac
= Dε(u±)(a2 − k2)− ac+ f ′(u±) + ik(c− 2aDε(u±)).

Observe that for each curve λε,±a (k), the point at rightmost position is found
by evaluating at k = 0, this is,

max
k∈R

Reλε,±a (k) = λε,±a (0) = Dε(u±)a2 − ac+ f ′(u±).

Thus, the region of consistent splitting is the set

Ω(a, ε) := {λ ∈ C : Reλ > max{Dε(u+)a2−ac+f ′(u+), Dε(u−)a2−ac+f ′(u−)}}.

We denote, for each fixed λ ∈ C, ε > 0 and a ≥ 0, Sε,±a (λ), U ε,±
a (λ) as the stable

and unstable eigenspaces of Aε,±
a (λ) in C2, respectively. Arguing as in Lemma

5.5.1 we recognize that for λ ∈ Ω(a, ε) the matrices Aε,±
a (λ) have no center space,

and dimSε,±a (λ) = dimU ε,±
a (λ) = 1.

Lemma 5.7.1. Let ϕ be a monotone front and La the conjugated linear operator
defined in (5.7.1). Then

σδ(La) ⊂ C \ Ω(a),

where Ω(a) := Ω(a, 0).

Proof. Let λ ∈ C. If we keep a ∈ R constant, we may apply the same proof of
Lemma 5.6.1 to conclude that Lεa − λ converge in generalized sense to La − λ as
ε→ 0+.

Now suppose that λ ∈ Ω(a, ε). Following the lines of the proof of Lemma 5.5.2
we conclude that Lεa−λ is Fredholm with index zero. We may apply Theorem 5.6.2
and argument as in Theorem5.6.3 to conclude that for 0 < ε � 1, the operators
Lεa − λ and La − λ have the same Fredholm properties.

Finally, we follow the arguments of Theorem 5.6.3. Let λ ∈ σδ(La). Hence, by
definition La−λ is semi-Fredholm with ind(La−λ) 6= 0. Arguing by contradiction,
we suppose that λ ∈ σδ(La) ∩ Ω(a, ε), for 0 < ε � 1. Therefore, ind(La − λ) =
ind(Lεa − λ) = 0; and at the same time ind(La − λ) 6= 0. This is a contradiction,
and hence for 0 < ε � 1 small enough we have that σδ(La) ∩ Ω(a, ε) = ∅ and
σδ(La) ⊂ C \ Ω(a, ε). By continuity, taking the limit ε→ 0+, we have

σδ(La) ⊂ C \ Ω(a).
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Proposition 5.7.2. Let ϕ be a monotone front and L the associated linearized
operator in L2. Then, for any appropriate weight a ≥ 0, we have:

σpt(L) = σpt(La). (5.7.5)

(Here, σpt(·) is computed with respect to the space L2(R;C).)

Proof. Let λ ∈ σpt(L). Then, there exists u(x) ∈ D(L) = H2 such that Lu = λu.
For any appropriate a ≥ 0, suppose that

v(x) = eaxu(x) ∈ H2. (5.7.6)

Hence, u ∈ H2
a if and only if v ∈ H2.

We have that

Lav = eax(L(e−axv)) = eax(Lu) = eaxλu = λv,

and this implies that λ ∈ σpt(La), proving the result.

5.7.3 Choice of the weight a ≥ 0.

The location of the region of consistent splitting Ω(a) depends on value of f ′(u±).
In addition, the stability of σδ(La) depends on the sign of f ′(u±), since it lies
on the left of Ω(a). Thus, the appropriate weight a is the one that pushes the
boundary between this two sets into the left stable semiplane.

For a non-linearity of Fisher-KPP type, u− = 1 and u+ = 0, f ′(0) > 0 and
f ′(1) < 0, and the fronts travel with velocity c > c∗ > 0. Then, the region of
consistent splitting is

Ω(a) = {λ ∈ C : Reλ > max{f ′(0)− a,D(1)a2 − ac+ f ′(1)}},

for any a ∈ R.
We must find a ∈ R such that f ′(0)−ac < 0 and p(a) := D(1)a2−ac+f ′(1) < 0

simultaneously. Observe that, p(0) = f ′(1) < 0 and p(a) < 0 for a ∈ [0, a0), where

a0(c) = (2D(1))−1
(
c+

√
c2 − 4D(1)f ′(1)

)
,

is the first positive root of p(a) = 0. Therefore, we have to find a such that

0 <
f ′(0)

c
< a < a0(c). (5.7.7)
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Hence, this condition imposes the restriction f ′(0)/c < a0(c) on the speed c.
This last condition implies√

c2 − 4D(1)f ′(1) >
2f ′(0)D(1)

c
− c

Squaring both sides, we obtain

c2 − 4D(1)f ′(1) >
4f ′(0)2D(1)2

c2
− 4f ′(0)D(1) + c2,

thus,
4c2D(1)(f ′(0)− f ′(1)) > 4f ′(0)2D(1)2.

Finally, we arrive to

c2 >
D(1)f ′(0)2

f ′(0)− f ′(1)
. (5.7.8)

Therefore, if restriction (5.7.8) holds, then we can choose a ∈ R such that
0 < f ′(0)/c < a < a0(c). Thus, with this appropriate weight we have

σδ(La) ⊂ C \ Ω(a) ⊂ {λ ∈ C : Reλ ≤ 0}.

Before we apply Proposition 5.7.2 we must verify that condition (5.7.6) holds
for a defined by equations (5.7.7) and (5.7.8). To verify condition (5.7.6), we have
to find the asymptotic behavior at ±∞ of solutions u ∈ H2 to the spectral equation
Lu = λu.

At the non-degenerate side, as x → −∞, following Alexander et al. [4] we
rewrite the spectral equation as the first order system of the form

W ′ = A(x, λ)W, (5.7.9)

where

W =

(
u
ux

)
∈ H2(R;C2),

A(x;λ) =

(
0 1

D(ϕ)−1(λ−D(ϕ)xx − f ′(ϕ)) −D(ϕ)−1(2D(ϕ)x + c)

)
.

The asymptotic matrix is

A−(λ) := lim
x→−∞

A(x, λ) =

(
0 1

D(1)−1(λ− f ′(1)) −D(1)−1c

)
.

We invoke the Gap Lemma [167] to relate the solutions of the variable-coefficient
system (5.7.9) to the solutions of its constant-coefficient asymptotic system

W ′ = A−(λ)W,
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as x→ −∞. To apply the Gap Lemma we need to verify that A(x, λ) approaches
exponentially fast to its limit A−(λ) as x→ −∞.

We develop D(ϕ) in Taylor series around ϕ = 1,

D(ϕ) = D(1) +D′(1)(ϕ− 1) + O((ϕ− 1)2),

where by hypothesis D(1), D′(1) > 0. Then, we make Taylor expansions around
ϕ = 1 of the form

1

D(ϕ)
=

1

D(1)
− D′(1)

D(1)2
(ϕ− 1) + O((ϕ− 1)2),

D′(ϕ) = D′(1) + O(ϕ− 1),

D′′(ϕ) = D′′(1) + O(ϕ− 1),

f ′(ϕ) = f ′(1) + O(ϕ− 1).

(5.7.10)

By Lemma 5.2.2 the wave and its derivatives decay as ∂jx(ϕ − 1) = O(eηx) as
x→ −∞, for j = 0, 1, 2, with η > 0.

Hence we find
D(ϕ)x = D′(ϕ)ϕx

= (D′(1) + O(ϕ− 1))ϕx

= D′(1)ϕx + ϕx O(ϕ− 1)

= O(eηx) + O(e2ηx)

= O(eηx)

(5.7.11)

as x→ −∞. In as similar fashion, we have

D(ϕ)xx = D′(ϕ)ϕxx +D′′(ϕ)ϕ2
x

= D′(1)ϕxx + O((ϕ− 1)2)

= O(eηx) + O(e2ηx)

= O(eηx)

(5.7.12)

as x→ −∞.
Now, we look at the difference

A(x, λ)− A−(λ) =(
0 0

D(ϕ)−1(λ−D(ϕ)xx − f ′(ϕ))−D(1)−1(λ− f ′(1)) −D(ϕ)−1(2D(ϕ)x + c) +D(1)−1c

)
.
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Thus, substituting Taylor expansions (5.7.10) and (5.7.12), we have

λ−D(ϕ)xx − f ′(ϕ)

D(ϕ)
− λ− f ′(1)

D(1)
= (λ−D(ϕ)xx − f ′(ϕ))

(
1

D(1)
+ O(ϕ− 1)

)
− λ− f ′(1)

D(1)

= −f
′(1)

D(1)
+ O(ϕ− 1) + O((ϕ− 1)2) +

f ′(1)

D(1)

= O(ϕ− 1)

= O(eηx)
(5.7.13)

as x→ −∞.
On the other hand, substituting Taylor expansions (5.7.10) and (5.7.11), we

have

−2D(ϕ)x − c
D(ϕ)

+
C

D(1)
= (−2D(ϕ)x − c)

(
1

D(1)
+ O(ϕ− 1)

)
+

C

D(1)

= −2D(ϕ)x
D(1)

+D(ϕ)x O(ϕ− 1)

= O(ϕ− 1) + O((ϕ− 1)2)

= O(eηx)

(5.7.14)

as x→ −∞. Therefore,

A(x, λ)− A−(λ) = O(eηx), as x→ −∞.

It follows from the Gap Lemma that for all η̄ < η and any λ ∈ σpt(L), system
(5.7.9) has solutions Wj(x, λ), j = 1, 2, which satisfy

Wj(x, λ) = eµj(λ)x(Vj(λ) + O(e−η̄|x||Vj(λ)|)), x < 0, (5.7.15)

where µj(λ) are the eigenvalues of A−(λ) with associated eigenvectors Vj(λ), j =
1, 2.

The eigenvalues of A−(λ) are the µ-roots of the polynomial

det(A−(λ)− µI) = D(1)µ2 + cµ+ f ′(1)− λ = 0.

Hence,

µ1,2(λ) =
−c±

√
c2 + 4D(1)(λ− f ′(1))

2D(1)
, (5.7.16)

and the corresponding eigenvectors are

V1,2(λ) =

(
1

µ1,2(λ)

)
. (5.7.17)
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For λ ∈ σpt(L), a solution u to the spectral equation Lu = λu, must decay to
zero at −∞, so we have u ∈ H2. Then, we verify that at least one of µ1,2(λ) has
positive real part for λ ∈ σpt(L). Observe that

µ1(λ) + µ2(λ) = − c

D(1)
< 0, (5.7.18)

and

µ1(λ) · µ2(λ) =
f ′(1)− λ
D(1)

. (5.7.19)

Since λ ∈ σpt(L) ⊂ (−∞, 0], then λ is real and negative. We look at different
cases depending on the sign of equation (5.7.19).

If f ′(1) < λ ≤ 0, then µ1(λ) · µ2(λ) < 0. Hence, the discriminant ∆ =
c2 + 4D(1)(λ − f ′(1)) > 0, implying that both roots µ1(λ), µ2(λ) ∈ R and with
opposite sign. We have µ1(λ) > 0 > µ2(λ).

If λ = f ′(1), then µ1(λ) = 0 and µ2(λ) = −c/D(1).
If λ < f ′(1), then µ1(λ) · µ2(λ) > 0. In this case we have two alternatives,

either µ1 and µ2 are both negative, since µ1(λ) + µ2(λ) < 0; or µ1 and µ2 are
complex conjugates with negative real part.

We conclude that for λ ∈ (f ′(1), 0] the solution

W1(x, λ) = eµ1(λ)x(V1(λ) + O(e−η̄|x||V1(λ)|)),

decays exponentially as x → −∞. Therefore, for λ ∈ (f ′(1), 0] the decaying
solution u to the spectral equation Lu = λu behaves like

u(x) ∼ eµ1(λ)x,

u(x)x ∼ µ1(λ)eµ1(λ)x,
(5.7.20)

as x→ −∞.
Finally, from the second equation of system (5.7.9) and using equations (5.7.13)

and (5.7.14) we have

uxx =
λ−D(ϕ)xx − f ′(ϕ)

D(ϕ)
u+
−2D(ϕ)x − c

D(ϕ)
ux

=

(
λ− f ′(1)

D(1)
+ O(eηx)

)
O(eµ1(λ)x) +

(
−c
D(1)

+ O(eηx)

)
O(eµ1(λ)x)

= O(eµ1(λ)x) + O(e(η+µ1(λ))x)

= O(eµ1(λ)x),

(5.7.21)

as x→ −∞.
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For x0 > 0 fixed and large enough, we verify that for a ∈ R such that 0 <
f ′(0)/c < a < a0(c), v(x) = eaxu(x) ∈ H2(−∞,−x0). It follows from (5.7.20) that
there exists a uniform constant C1 > 0 such that

|u(x)| ≤ C1e
µ1(λ)x, x < −x0.

Thus,

‖v‖2
L2(−∞,−x0) =

∫ −x0
−∞

e2ax|u(x)|2dx ≤ C2
1

∫ −x0
−∞

e2(a+µ1(λ))xdx <∞,

because a+ µ1(λ) > f ′(0)/c+ µ1(λ) > 0. Then v ∈ L2(−∞,−x0).
Notice that

vx = eaxux + aeaxu,

vxx = eaxuxx + 2aeaxux + a2eaxu.
(5.7.22)

Applying Minkowski inequality we have

‖vx‖L2(−∞,−x0) ≤ ‖eaxux‖L2(−∞,−x0) + a‖eaxu‖L2(−∞,−x0),

‖vxx‖L2(−∞,−x0) ≤ ‖eaxuxx‖L2(−∞,−x0) + 2a‖eaxux‖L2(−∞,−x0) + a2‖eaxu‖L2(−∞,−x0).
(5.7.23)

Thus, we verify that the norms ‖eaxux‖L2(−∞,−x0) and ‖eaxuxx‖L2(−∞,−x0) are
finite. From equation (5.7.20) we have ux = O(eµ1(λ)x) as x → −∞, then there
exist an uniform constant C2 > 0 such that

|ux| ≤ C2e
µ1(λ)x, x < −x0.

Hence,

‖eaxux‖2
L2(−∞,−x0) =

∫ −x0
−∞

e2ax|ux|2dx ≤ C2
2

∫ −x0
−∞

e2(a+µ1(λ))xdx <∞,

because a+ µ1(λ) > f ′(0)/c+ µ1(λ) > 0. Thus, eaxux ∈ L2(−∞,−x0).
In a similar fashion, it can be proved that eaxuxx ∈ L2(−∞,−x0), using the

fact that uxx = O(eµ1(λ)x) as x→ −∞.
The previous calculations and equation (5.7.23) imply that

‖vx‖L2(−∞,−x0) <∞, ‖vxx‖L2(−∞,−x0) <∞.

Therefore, we conclude that v ∈ H2(−∞,−x0).
At the degenerate side, as x → +∞, suppose that u is an H2-solution to

equation Lu = λu. Thus, by Lemma 5.8.5 u is written as

u = CΘ̃(x)ζ(x),
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with Θ̃(x) ∈ H2(x0,+∞) an ζ(x) ∈ H2(x0,+∞). We verify that v = eaxu ∈
H2(x0,+∞), for all a > f ′(0)/c > 0.

Observe that eaxu ∈ L2(x0 +∞). To see this, recall that the behavior of u as
x→ +∞ is given by equation (5.8.80),

|u1(x)| ∼ |C| exp (n1x) exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
→ 0,

where

n1 =
k

2
+
cd̂

2
− B

2A
=

1

c
(2f ′(0)− Reλ) + c

D′′(0)

2D′(0)2
.

Thus, due to the fast decaying term

exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
,

any possible diverging behavior at +∞ provided by the term eax is controlled.
Then, we have

|v| ∼ |C|eax exp (n1x) exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
→ 0,

as x→ +∞. Hence v ∈ L2(x0 +∞).
On the other hand, notice that from equation (5.8.81) we have

|eaxux| ≤ C1e
ax exp ((n1 + k)x) exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
→ 0,

for some uniform C1 > 0, as x → +∞. Thus, eaxux ∈ L2(x0,+∞). Therefore,
applying Minkowski inequality to equation (5.7.22) we have

‖vx‖L2(x0,+∞) ≤ ‖eaxux‖L2(x0,+∞) + a‖eaxu‖L2(x0,+∞) <∞.

Hence, vx ∈ L2(x0,+∞).
Finally, it follows from equation (5.8.82) that

|eaxuxx| ≤ C2e
ax exp (η̂x) exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
→ 0,

for some uniform C2 > 0, as x → +∞. Thus, eaxuxx ∈ L2(x0,+∞). Therefore,
applying Minkowski inequality to equation (5.7.22) we have

‖vxx‖L2(x0,+∞) ≤ ‖eaxuxx‖L2(x0,+∞) + 2a‖eaxux‖L2(x0,+∞) + a2‖eaxu‖L2(x0,+∞) <∞.

Hence vxx ∈ L2(x0,+∞). Therefore, v(x) = eaxu(x) ∈ H2(x0,+∞), for any
a > f ′(0)/c > 0.

If u ∈ H2, then for fixed x0 ∈ R, it is clear that v(x) = eaxu(x) ∈ H2(−x0, x0).
In conclusion v(x) = eaxu(x) ∈ H2(R;C), and condition (5.7.6) holds.
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Remark 7. It is to be observed that the analysis of the asymptotic behavior at
−∞ of solutions u ∈ H2 to the spectral equation Lu = λu, imposes a restriction
on the acceptable values of the associated eigenvalue λ, which must be in the
interval (f ′(1), 0]. We do not have an equivalent restriction in the analysis of the
asymptotic behavior at +∞ of the solutions of the spectral equation, however,
we must consider this restriction on the degenerate side in order to construct the
eigenfunction on the whole real line.

Therefore, for all λ ∈ (f ′(1), 0] the equation Lu = λu has a solution u(x) ∈ H2

such that decay exponentially to zero as x → ±∞. On the non-degenerate side,
we choose u(x) as the solution that behaves like equation (5.7.20) as x→ −∞. At
the degenerate side, as x→ +∞, we choose u(x) as the solution given by Lemma
5.8.5 and which behaves as equation (5.8.80).

We apply Proposition 5.7.2, Theorem 5.4.4 and the preceding Remark 7 to
conclude that

σpt(La) ⊂ (f ′(1), 0].

In conclusion, we have proved that for any diffusion degenerate traveling front
with speed c such that

c > max

{
c∗,

√
D(1)f ′(0)√
f ′(0)− f ′(1)

}
> 0, (5.7.24)

there exist a ∈ R satisfying (5.7.7), such that

σpt(L) = σpt(La) ⊂ (f ′(1), 0] ⊂ {λ ∈ C : Reλ ≤ 0},
σδ(L)L2

a
= σδ(La) ⊂ {λ ∈ C : Reλ ≤ 0}.

(5.7.25)

5.8 Asymptotic decay of solutions of spectral equa-

tion

In this section we provide the analysis of the asymptotic behavior of solutions
u ∈ H2 to the spectral equation

(L − λ)u = 0, (5.8.1)

where λ ∈ C is fixed.
We consider the eigenproblem (L − λ)u = 0, that is

D(ϕ)uxx + (2D(ϕ)x + c)ux + (D(ϕ)xx + f ′(ϕ)− λ)u = 0.

Upon dividing by D(ϕ) we arrive to

uxx + ρ(x)ux + q(x)u = 0, (5.8.2)
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where

ρ(x) =
2D(ϕ)x + c

D(ϕ)
, q(x) =

D(ϕ)xx + f ′(ϕ)− λ
D(ϕ)

. (5.8.3)

Let us consider the change of variables

u(x) = exp

(
−1

2

∫ x

x0

ρ(s)ds

)
z(x). (5.8.4)

We compute the first and second derivatives of (5.8.4) with respect to x,

ux =

(
−1

2
ρz + zx

)
exp

(
−1

2

∫ x

x0

ρ(s)ds

)
,

and

uxx =

(
zxx − ρzx −

1

2
ρxz +

1

4
ρ2z

)
exp

(
−1

2

∫ x

x0

ρ(s)ds

)
.

Substituting (5.8.4) and its derivatives in (5.8.2) we have

zxx − ρzx −
1

2
ρxz +

1

4
ρ2z + ρ

(
−1

2
ρz + zx

)
+ q(x)z = 0, (5.8.5)

which reduces to
zxx − F (x, λ)z = 0, (5.8.6)

where

F (x, λ) :=
1

2
ρx +

1

4
ρ2 − q(x). (5.8.7)

We shall analyze the asymptotic behavior of solutions to equation (5.8.6) as
x → +∞, and using (5.8.4) we shall find the corresponding behavior of solutions
to equation (5.8.2). We notice that

−1

2

∫ x

x0

ρ(s)ds = −1

2

∫ x

x0

(
2D(ϕ)x
D(ϕ)

+
c

D(ϕ)

)
ds

= −
∫ x

x0

d

ds
ln|D(ϕ)|ds− c

2

∫ x

x0

ds

D(ϕ)

= ln|D(ϕ(x0))| − ln|D(ϕ)| − c

2

∫ x

x0

ds

D(ϕ)
.

(5.8.8)

Thus,

exp

(
−1

2

∫ x

x0

ρ(s)ds

)
=

C0

D(ϕ)
exp

(
− c

2

∫ x

x0

ds

D(ϕ)

)
, (5.8.9)
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where C0 = D(ϕ(x0)) > 0. To simplify the notation, we denote

Θ̃(x) := exp

(
− c

2

∫ x

x0

ds

D(ϕ)

)
.

Hence, substituting (5.8.9) in (5.8.4) we arrive to

u(x) = exp

(
−1

2

∫ x

x0

ρ(s)ds

)
z(x)

= C0ζ(x)Θ̃(x),

(5.8.10)

where ζ = z/D(ϕ) and z is solution to (5.8.6).
In order to find the behavior of solutions to (5.8.6) we make direct application

of a result in [46, Chp.2, p. 50 ], which for reader’s convenience we state below:

Theorem 5.8.1. Let Q(x) ∈ C2(R+) be complex-valued satisfying

Q(x) 6= 0 and Re
√
Q(x) ≥ 0,

for x� 1. Denote

α1(x) =
1

8

Q′′(x)

Q(x)3/2
− 5

32

Q′(x)2

Q(x)5/2
.

If the integral ∫ ∞
x

|α1(s)|ds <∞, (5.8.11)

then the homogeneous equation

zxx −Q(x)z = 0,

has a fundamental system of solutions satisfying for x→∞

z(x) ∼ Q(x)−1/4 exp

(
±
∫ x

x0

Q(s)1/2ds

)
. (5.8.12)

If in addition
Q′(x)Q(x)−3/2 → 0, as x→∞,

then the asymptotic formula (5.8.12) can be differentiated twice, that is

z(x)(j) ∼ (±Q(x)1/2)jQ(x)−1/4 exp

(
±
∫ x

x0

Q(s)1/2ds

)
, (5.8.13)

as x→ +∞, for j = 1, 2.

In the following subsections we describe the asymptotic behavior of the coeffi-
cient F (x, λ) as x→ +∞, in order to apply Theorem 5.8.1 to equation (5.8.6).

In Section 5.8.1 we find the behavior of coefficients involving D(ϕ) and f(ϕ).
Afterwards, in Section 5.8.2 we describe the behavior of F (x;λ) and its derivatives
to estimate the integral (5.8.11) in Section 5.8.3. The detailed behavior of solutions
to the spectral equation (5.8.1), as x→ +∞, is contained in Section 5.8.4.
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5.8.1 Asymptotic behavior of coefficients

We shall describe the asymptotic behavior of coefficients for x� 1 large enough.
According to Lemma 5.2.2 the front ϕ(x) satisfies the decay rate

ϕ(x) = O(e−kx), as x→ +∞,

where

k :=
f ′(0)

c
> 0,

since by hypothesis f ′(0) > 0 and c > c∗ > 0.
Additionally, since ϕx ∈ H2 by Lemma 5.2.3, we may write

ϕx(x) = −kϕ+ O(ϕ2),

ϕxx(x) = C2ϕ+ O(ϕ2),

ϕxxx(x) = C3ϕ+ O(ϕ2),

(5.8.14)

for ϕ near 0, as x→ +∞.
For future reference, in the following we make Taylor expansions near ϕ = 0

of coefficients that involve D(ϕ) and f(ϕ). Observe that due to the exponential
decay of the front ϕ at x = +∞, these expansion are valid near ϕ = 0, as x→ +∞.

Taylor expansions

The Taylor expansion of D(ϕ) around ϕ = 0 is,

D(ϕ) = D′(0)ϕ+
D′′(0)

2
ϕ2 + O(ϕ3),

where, by hypothesis, D′(0) > 0 and D′′(0) 6= 0. Thus, we have

1

D(ϕ)
=

1

D′(0)ϕ+ dϕ2 + O(ϕ3)
=

1

D′(0)ϕ
· 1

(1 + dϕ+ O(ϕ2))
,

where d = D′′(0)/2D′(0). Hence, we have

1

D(ϕ)
=

1

D′(0)ϕ
(1− dϕ+ O(ϕ2))

=
1

D′(0)ϕ
− d̂+ O(ϕ),

where

d̂ =
d

D′(0)
=

D′′(0)

2D′(0)2
6= 0.
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The sign of d̂ depends on the sign of D′′(0). In the following, we will consider the
approximation up to the constant term, i.e.,

1

D(ϕ)
=

1

D′(0)ϕ
+ O(1), as ϕ→ 0. (5.8.15)

In addition, we may derive the expansion of 1/D(ϕ)2 as

1

D(ϕ)2
=

(
1

D′(0)ϕ
+ O(1)

)2

=
1

D′(0)2ϕ2
+ O(ϕ−1).

(5.8.16)

On the other hand, we have the expansions near ϕ = 0

D′(ϕ) = D′(0) + O(ϕ),

f ′(ϕ) = f ′(0) + O(ϕ),

D′′(ϕ) = D′′(0) + O(ϕ).

(5.8.17)

We may derive more Taylor expansion near ϕ = 0, using (5.8.14). For instance

D(ϕ)x = D′(ϕ)ϕx = (D′(0) + O(ϕ))(−kϕ+ O(ϕ2))

= −D′(0)kϕ+ O(ϕ2);
(5.8.18)

furthermore, for the second derivative of D(ϕ) we have

D(ϕ)xx = D′(ϕ)ϕxx +D′′(ϕ)ϕ2
x

= (D′(0) + O(ϕ))(C2ϕ+ O(ϕ2)) + (D′′(0) + O(ϕ))(k2ϕ2 + O(ϕ3))

= D′(0)C2ϕ+ O(ϕ2),
(5.8.19)

and
f(ϕ)x = f ′(ϕ)ϕx = (f ′(0) + O(ϕ))(−kϕ+ O(ϕ2))

= −f ′(0)kϕ+ O(ϕ2).
(5.8.20)

5.8.2 Asymptotic behavior of F (x;λ) and its derivatives

We shall describe the behavior of F (x;λ), F ′(x;λ) and F ′′(x;λ) as x → +∞,
considering λ ∈ C arbitrary but fixed. The prime ′ denotes differentiation with
respect to x.
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Behavior of F (x;λ)

Using expressions for ρ(x) and q(x) defined in (5.8.3), we observe that F (x;λ) has
the following form

F (x;λ) =
1

2
ρx +

1

4
ρ2 − q(x)

=
2D(ϕ)xxD(ϕ)− 2(D(ϕ)x)

2 − cD(ϕ)x
2D(ϕ)2

+
4(D(ϕ)x)

2 + 4cD(ϕ)x + c2

4D(ϕ)2
−

− D(ϕ)xx + f ′(ϕ)− λ
D(ϕ)

=
1

D(ϕ)2

(
D(ϕ)xxD(ϕ)− (D(ϕ)x)

2 − c

2
D(ϕ)x + (D(ϕ)x)

2 + cD(ϕ)x+

+
c2

4
−D(ϕ)D(ϕ)xx +D(ϕ)(λ− f ′(ϕ))

)
=

c2

4D(ϕ)2
+
c

2

D(ϕ)x
D(ϕ)2

+
λ− f ′(ϕ)

D(ϕ)
.

The function F (x;λ) is complex-valued. We may write its real and imaginary
parts separately, that is

F (x;λ) =
c2

4D(ϕ)2
+
c

2

D(ϕ)x
D(ϕ)2

+
Reλ− f ′(ϕ)

D(ϕ)
+ i

Imλ

D(ϕ)
. (5.8.21)

We may use the information of the Taylor expansion near ϕ = 0 found in
Section 5.8.1 to find the behavior of the real and imaginary parts in equation
(5.8.21). For instance, we use (5.8.16) to find

c2

4D(ϕ)2
=

c2

4D′(0)2
ϕ−2 + O(ϕ−1),

and substituting (5.8.16) and (5.8.18), we obtain

c

2

D(ϕ)x
D(ϕ)2

=
c

2

(
−D′(0)kϕ+ O(ϕ2)

)( 1

D′(0)2ϕ2
+ O(ϕ−1)

)
= − ck

2D′(0)
ϕ−1 + O(1).

Using equations (5.8.17) and (5.8.15) we have

Reλ− f ′(ϕ)

D(ϕ)
= (Reλ− f ′(0) + O(ϕ))(D′(0)−1ϕ−1 + O(1))

=
Reλ− f ′(0)

D′(0)
ϕ−1 + O(1).

103



Therefore, the real part of F (x;λ) has the behavior

ReF (x;λ) =
c2

4D′(0)2
ϕ−2 + O(ϕ−1). (5.8.22)

Finally, the behavior imaginary part of F (x;λ) is given by

ImF (x;λ) =
Imλ

D(ϕ)
=

Imλ

D′(0)
ϕ−1 + O(1). (5.8.23)

Behavior of F ′(x;λ)

We compute the derivative of F (x;λ) with respect x, by deriving termwise:

d

dx

(
c2

4D(ϕ)2

)
= −c

2

2

D(ϕ)x
D(ϕ)3

,

d

dx

(
c

2

D(ϕ)x
D(ϕ)2

)
=
c

2

(
D(ϕ)xx
D(ϕ)2

− 2(D(ϕ)x)
2

D(ϕ)3

)
,

d

dx

(
λ− f ′(ϕ)

D(ϕ)

)
= −f

′(ϕ)x
D(ϕ)

+
(f ′(ϕ)− λ)D(ϕ)x

D(ϕ)2
.

Therefore,

F ′(x;λ) = − 1

D(ϕ)3

(
c2

2
D(ϕ)x + c(D(ϕ)x)

2

)
︸ ︷︷ ︸

I

+

+
1

D(ϕ)2

( c
2
D(ϕ)xx + (f ′(ϕ)− Reλ)D(ϕ)x

)
︸ ︷︷ ︸

II

−f
′(ϕ)x
D(ϕ)︸ ︷︷ ︸
III

−

+ i
−ImλD(ϕ)x

D(ϕ)2︸ ︷︷ ︸
IV

.

(5.8.24)

For the term I in equation (5.8.24) it follows from equation (5.8.18) that

c2

2
D(ϕ)x + c(D(ϕ)x)

2 = −c
2

2
D′(0)kϕ+ O(ϕ2) + cD′(0)2k2ϕ2 + O(ϕ3)

= −c
2

2
D′(0)kϕ+ O(ϕ2).
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Hence, we have

I = −
(

1

D′(0)3
ϕ−3 + O

(
ϕ−2

))(
−c

2

2
D′(0)kϕ+ O(ϕ2)

)
=

c2k

2D′(0)
ϕ−2 + O(ϕ−1).

(5.8.25)

For the term II in (5.8.24) we observe that upon substitution of (5.8.19) and

(5.8.18), the terms in the parenthesis behave as

c

2
D(ϕ)xx =

c

2
C2D

′(0)ϕ+ O(ϕ2),

(f ′(ϕ)− Reλ)D(ϕ)x = (f ′(0)− Reλ+ O(ϕ))(−D′(0)kϕ+ O(ϕ2))

= (Reλ− f ′(0))D′(0)kϕ+ O(ϕ2).

Thus, we have

II =

(
1

D′(0)2
ϕ−2 + O

(
ϕ−1

))(( c
2
C2D

′(0) + (Reλ− f ′(0))D′(0)k
)
ϕ+ O(ϕ2)

)
=

(
C2c

2D′(0)
+

(Reλ− f ′(0))k

D′(0)

)
ϕ−1 + O(1).

(5.8.26)
Observe that,

f ′(ϕ)x = f ′′(ϕ)ϕx.

By the hypothesis (5.1.3) on f , we may assume that f ′′(0) 6= 0 and take

f ′′(ϕ) = f ′′(0) + O(ϕ),

hence we obtain
f ′(ϕ)x = (f ′′(0) + O(ϕ))(−kϕ+ O(ϕ))

= −kf ′′(0)ϕ+ O(ϕ2)

Thus, for the term III in (5.8.24) we have

III = −
(

1

D′(0)
ϕ−1 + O(1)

)
(−kf ′′(0)ϕ+ O(ϕ2))

=
kf ′′(0)

D′(0)
+ O(ϕ).

(5.8.27)

Therefore, substituting equations (5.8.25), (5.8.26) and (5.8.27), the real part of
F ′(x;λ) has the behavior

ReF ′(x;λ) = I + II + III =
c2k

2D′(0)
ϕ−2 + O(ϕ−1) (5.8.28)
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On the other hand, for the imaginary part of F ′(x;λ) the only the term con-

tributing is IV in (5.8.24). Substituting Taylor expansion for D(ϕ)x defined in

(5.8.18) we have

ImF ′(x;λ) = −Imλ

(
1

D′(0)2
ϕ−2 + O

(
ϕ−1

))
(−D′(0)kϕ+ O(ϕ2))

=
Imλ

D′(0)
kϕ−1 + O(1).

(5.8.29)

Behavior of F ′′(x;λ)

We compute the second derivative of F (x;λ) with respect to x. Deriving (5.8.24)
termwise, we have

d

dx

(
−c

2

2

D(ϕ)x
D(ϕ)3

)
= −c

2

2

(
D(ϕ)xx
D(ϕ)3

− (D(ϕ)x)
2

D(ϕ)4

)
,

d

dx

(
−c(D(ϕ)x)

2

D(ϕ)3

)
= −c

(
2D(ϕ)xD(ϕ)xx

D(ϕ)3
− 3(D(ϕ)x)

3

D(ϕ)4

)
,

d

dx

(
c

2

D(ϕ)xx
D(ϕ)2

)
=
c

2

(
D(ϕ)xxx
D(ϕ)2

− 2D(ϕ)xD(ϕ)xx
D(ϕ)3

)
,

d

dx

(
f ′(ϕ)D(ϕ)x
D(ϕ)2

)
=
f ′(ϕ)xD(ϕ)x + f ′(ϕ)D(ϕ)xx

D(ϕ)2
− 2f ′(ϕ)(D(ϕ)x)

2

D(ϕ)3
,

d

dx

(
−λD(ϕ)x

D(ϕ)2

)
= −λ

(
D(ϕ)xx
D(ϕ)2

− 2(D(ϕ)x)
2

D(ϕ)3

)
,

d

dx

(
−f

′(ϕ)x
D(ϕ)

)
=
f ′(ϕ)xD(ϕ)x

D(ϕ)2
− f ′(ϕ)xx

D(ϕ)
.
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Therefore,

F ′′(x;λ) =
1

D(ϕ)4

(
3c2

2
(D(ϕ)x)

2 + 3c(D(ϕ)x)
3

)
︸ ︷︷ ︸

I

+

+
1

D(ϕ)3

(
−c

2

2
D(ϕ)xx − 3cD(ϕ)xD(ϕ)xx + 2(Reλ− f ′(ϕ))(D(ϕ)x)

2

)
︸ ︷︷ ︸

II

+

+
1

D(ϕ)2

( c
2
D(ϕ)xxx + 2f ′(ϕ)xD(ϕ)x + (f ′(ϕ)− Reλ)D(ϕ)xx

)
︸ ︷︷ ︸

III

−

+
1

D(ϕ)
(−f ′(ϕ)xx)︸ ︷︷ ︸
IV

+i

(
2Imλ(D(ϕ)x)

2

D(ϕ)3︸ ︷︷ ︸
V

−ImλD(ϕ)xx
D(ϕ)2︸ ︷︷ ︸

VI

)

(5.8.30)
For I in equation (5.8.30), observe that for the terms in the parenthesis

(D(ϕ)x)
3 is smaller than (D(ϕ)x)

2, for ϕ near 0. Hence, the behavior of I in
equation (5.8.30) is

I =

(
1

D′(0)4
ϕ−4 + O(ϕ−3)

)(
3

2
c2D′(0)2k2ϕ2 + O(ϕ3)

)
=

3

2

c2k2

D′(0)2
ϕ−2 + O(ϕ−1).

(5.8.31)

For each term in the parenthesis of term II in equation (5.8.30), we have

−c
2

2
D(ϕ)xx = −c

2C2D
′(0)

2
ϕ+ O(ϕ2),

−3cD(ϕ)xxD(ϕ)x = −3c(C2D
′(0)ϕ+ O(ϕ2))(−D′(0)kϕ+ O(ϕ2))

= 3cC2D
′(0)2kϕ2 + O(ϕ3),

and,
2(Reλ− f ′(ϕ))(D(ϕ)x)

2 = 2(Reλ− f ′(0))D′(0)2k2ϕ2 + O(ϕ3).

Hence,

II =

(
1

D′(0)3
ϕ−3 + O(ϕ2)

)(
−c

2C2D
′(0)

2
ϕ+ O(ϕ2)

)
= − c2C2

2D′(0)2
ϕ−2 + O(ϕ−1).

(5.8.32)
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The next term in (5.8.30) is III . For the first term in the parenthesis we

observe that

D(ϕ)xxx = D′(ϕ)ϕxxx + 3D′′(ϕ)ϕxxϕx +D′′′(ϕ)ϕ3
x,

and notice that the dominant term is D′(ϕ)ϕxxx, since near ϕ = 0,

ϕxxx = O(ϕ), ϕxxϕx = O(ϕ2), ϕ3
x = O(ϕ3).

Thus we have
c

2
D(ϕ)xxx =

c

2
D′(0)C3ϕ+ O(ϕ2).

The remaining terms in the parenthesis are

2f ′(ϕ)xD(ϕ)x = 2f ′′(ϕ)ϕxD(ϕ)x

= 2(f ′′(0) + O(ϕ))(−kϕ+ O(ϕ2))(−D′(0)kϕ+ O(ϕ2))

= 2f ′′(0)D′(0)k2ϕ2 + O(ϕ3),

and

(f ′(ϕ)− Reλ)D(ϕ)xx = ((f ′(0)− Reλ) + O(ϕ))(D′(0)C2ϕ+ O(ϕ2))

= (f ′(0)− Reλ)D′(0)C2ϕ+ O(ϕ2).

Thus, we have

III =

(
1

D′(0)2
ϕ−2 + O(ϕ−1)

)(( c
2
D′(0)C3 + (f ′(0)− Reλ)D′(0)C2

)
ϕ+ O(ϕ2)

)
=

(
c

2

C3

D′(0)
+
f ′(0)− Reλ

D′(0)
C2

)
ϕ−1 + O(1).

(5.8.33)

Last term on equation (5.8.30) contributing to the real part is IV . Observe that

f ′(ϕ)xx = f ′′(ϕ)ϕxx + f ′′′(ϕ)ϕ2
x,

and in this case the dominant term is f ′′(ϕ)ϕxx, since near ϕ = 0,

ϕxx = O(ϕ), ϕ2
x = O(ϕ2).

We have

IV =
−f ′(ϕ)xx
D(ϕ)

=

(
1

D′(0)
ϕ−1 + O(1)

)
(−C2f

′′(0)ϕ+ O(ϕ2))

=
C2f

′′(0)

D′(0)
+ O(ϕ).

(5.8.34)
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Therefore, substituting equations (5.8.31), (5.8.32), (5.8.33) and (5.8.34), the
real part of F ′′(x;λ) has the behavior

ReF ′′(x;λ) = I + II + III + IV

=

(
3

2

c2k2

D′(0)2
− c2C2

2D′(0)

)
ϕ−2 + O(ϕ−1).

(5.8.35)

The contributions to the imaginary part of F ′′(x, λ) are from terms V and

VI in equation (5.8.30). We then have

2Imλ(D(ϕ)x)
2 = 2ImλD′(0)2k2ϕ2 + O(ϕ3);

hence

V =
2Imλ(D(ϕ)x)

2

D(ϕ)3
=

(
1

D′(0)3
ϕ−3 + O(ϕ−2)

)
2ImλD′(0)2k2ϕ2 + O(ϕ3)

= 2Imλ
k2

D′(0)
ϕ−1 + O(1).

Finally, upon substitution of (5.8.19) we obtain for the last term

VI = −ImλD(ϕ)xx
D(ϕ)2

= −
(

1

D′(0)2
ϕ−2 + O(ϕ−1)

)
(ImλD′(0)C2ϕ+ O(ϕ2))

= − Imλ

D′(0)
C2ϕ

−1 + O(1).

Finally, the behavior imaginary part of F ′′(x;λ) is given by

ImF ′′(x, λ) = V + VI = Imλ

(
2k2

D′(0)
− C2

D′(0)

)
ϕ−1 + O(1). (5.8.36)

5.8.3 Asymptotic behavior of α1(x)

Now we analyze the asymptotic behavior of α1(x). Recall that

α1(x) =
1

8

Q′′(x)

Q(x)3/2
− 5

32

Q′(x)2

Q(x)5/2
.

Hence

|α1(x)| ≤ 1

8
|Q′′(x)||Q(x)−3/2|+ 5

32
|Q′(x)2||Q(x)−5/2|.
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Using equations (5.8.22) and (5.8.23) we compute the modulus of F (x;λ):

|F (x;λ)| =
(
(ReF (x;λ))2 + (ImF (x;λ))2

)1/2

=

((
c2

4D′(0)

)2

ϕ−4 + O(ϕ−3) +

(
Imλ

D′(0)

)2

ϕ−2 + O(ϕ−1)

)1/2

=

((
c2

4D′(0)

)2

ϕ−4 + O(ϕ−3)

)1/2

=
c2

4D′(0)
ϕ−2(1 + O(ϕ))1/2.

To simplify last expression we use the Taylor series around ϕ = 0 of the term
(1 + O(ϕ))1/2, hence we have

|F (x;λ)| = c2

4D′(0)
ϕ−2(1 + O(ϕ))1/2

=
c2

4D′(0)
ϕ−2(1 +

1

2
O(ϕ) + O(O(ϕ)2))

=
c2

4D′(0)2
ϕ−2(1 + O(ϕ)).

(5.8.37)

Last expression holds because, O(ϕ)2 = O(ϕ2) and O(O(·)) = O(·). In a similar
way, upon substitution of (5.8.35) and (5.8.36), we compute

|F ′′(x;λ)| =
(
γ2

1ϕ
−4 + O(ϕ−3) + γ2

2ϕ
−2 + O(ϕ−1)

)1/2

=
(
γ2

1ϕ
−4 + O(ϕ−3)

)1/2

= (γ2
1ϕ
−4)1/2(1 + O(ϕ))1/2

= γ1ϕ
−2(1 + O(ϕ)),

(5.8.38)

where

γ1 =
3

2

c2k2

D′(0)2
− c2C2

2D′(0)
.

It follows from equation (5.8.37) that

|F (x;λ)|−3/2 =

(
c2

4D′(0)2
ϕ−2

)−3/2

(1 + O(ϕ))−3/2

=

(
c

2D′(0)

)−3

ϕ3(1 + O(ϕ)),

(5.8.39)
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and

|F (x;λ)|−5/2 =

(
c2

4D′(0)2
ϕ−2

)−5/2

(1 + O(ϕ))−5/2

=

(
c

2D′(0)

)−5

ϕ5(1 + O(ϕ)).

(5.8.40)

On the other hand, it follows from equations (5.8.28) and (5.8.29) that

|F ′(x;λ)|2 = η2
1ϕ
−4 + O(ϕ−3) + η1ϕ

2 + O(ϕ−1)

= η2
1ϕ
−4 + O(ϕ−3),

(5.8.41)

where

η1 =
c2k

2D′(0)2
.

Hence, equations (5.8.38) and (5.8.39) yield

1

8
|F ′′(x;λ)||F (x;λ)|−3/2 =

1

8
(γ1ϕ

−2 + O(ϕ−1))

((
c

2D′(0)

)−3

ϕ3 + O(ϕ4)

)

=
1

8
γ1

(
c

2D′(0)

)−3

ϕ+ O(ϕ2),

(5.8.42)
and equations (5.8.41) and (5.8.40) give

5

32
|F ′(x;λ)|2|F (x;λ)|−5/2 =

5

32
(η1ϕ

−4 + O(ϕ−3))

((
c

2D′(0)

)−5

ϕ5 + O(ϕ6)

)

=
5

32
η1

(
c

2D′(0)

)−5

ϕ+ O(ϕ2).

(5.8.43)
Therefore, upon substitution of (5.8.42) and (5.8.43) we arrive at

|α1(s)| ≤

(
1

8
γ1

(
c

2D′(0)

)−3

+
5

32
η1

(
c

2D′(0)

)−5
)
ϕ+ O(ϕ2).

Due to the exponential decay of ϕ(s) = O(e−ks), as s→ +∞, higher order terms
O(ϕ2) decay faster and we estimate for s� 1 large enough

|α1(s)| ≤ C̃1ϕ(s) ≤ C̃2e
−ks,

for some uniform C̃1, C̃2 > 0.
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Therefore, ∫ ∞
x

|α1(s)|ds ≤ C̃2

∫ ∞
x

e−ksds <∞.

Furthermore, there holds that

lim
x→∞

F ′(x;λ)F (x;λ)−3/2 = 0.

To see this, observe that follows from equations (5.8.41) and (5.8.39) that

|F ′(x;λ)||F (x;λ)|−3/2 =

((
c2k

2D′(0)2

)
ϕ−2 + O(ϕ−1)

)((
c

2D′(0)

)−3

ϕ3 + O(ϕ4)

)

=

(
c2k

2D′(0)2

)(
c

2D′(0)

)−3

ϕ+ O(ϕ2)→ 0,

(5.8.44)
as x→ +∞.

Therefore, by Theorem 5.8.1 the homogeneous equation

zxx − F (x;λ)z = 0,

has two linearly independent solutions z1(x) and z2(x) decaying and diverging at

+∞, respectively, as (5.8.12). Moreover, their derivatives z
(j)
1 and z

(j)
2 (j = 1, 2)

decay and diverge at +∞ as (5.8.13).
It is to be noted that for fixed λ ∈ C, the leading term of α1(x) is independent

of λ, because the contribution of λ to the asymptotic behavior of α1(x) enters at a
lower order. In other words, the existence of solutions to the homogeneous equation
(5.8.6) given by Theorem 5.8.1 is granted for arbitrary λ ∈ C. Nevertheless, in
the next section we shall write detailed expression for solutions z1 and z2; not only
considering leading terms, but also the next lower term where λ appears .

5.8.4 Detailed behavior of solutions to the homogeneous
equation

We consider the expansion for D(ϕ)−1 found in Section 5.8.1

1

D(ϕ)
=

1

D′(0)
ϕ−1 − d̂+ O(ϕ), (5.8.45)

as ϕ → 0, with d̂ = D′′(0)/2D′(0)2. We shall obtain an expression for F (x;λ) in
powers of ϕ to O(1). Recall that

F (x;λ) =
c2

4D(ϕ)2
+
c

2

D(ϕ)x
D(ϕ)2

+
Reλ− f ′(ϕ)

D(ϕ)
+ i

Imλ

D(ϕ)
.
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For each term of F (x;λ), using the expansion (5.8.45) we have

c2

4D(ϕ)2
=
c2

4

(
1

D′(0)2
ϕ−2 − 2d̂

D′(0)
ϕ−1 + O(1)

)
.

cD(ϕ)x
2D(ϕ)2

=

(
−D′(0)f ′(0)

2
ϕ+ O(ϕ2)

)(
1

D′(0)2
ϕ−2 − 2d̂

D′(0)
ϕ−1 + O(1)

)

=− f ′(0)

2D′(0)
ϕ−1 + O(1).

The third term is

Reλ− f ′(ϕ)

D(ϕ)
=

Reλ− f ′(0)

D′(0)
ϕ−1 + O(1).

Therefore, near ϕ = 0 the real part of F (x;λ) is

ReF (x;λ) =
c2

4D′(0)2
ϕ−2 +

(
Reλ− f ′(0)

D′(0)
− c2d̂

2D′(0)
− f ′(0)

2D′(0)

)
ϕ−1 + O(1),

and the imaginary part of F (x;λ) is

ImF (x;λ) =
Imλ

D′(0)
ϕ−1 + O(1).

For notation simplicity, we denote the constants in ReF (x;λ) and ImF (x;λ)
as

A =
c

2D′(0)
, B =

Reλ− f ′(0)

D′(0)
− c2d̂

2D′(0)
− f ′(0)

2D′(0)
, I =

Imλ

D′(0)
. (5.8.46)

Thus,
F (x;λ) = A2ϕ−2 +Bϕ−1 + O(1) + i

(
Iϕ−1 + O(1)

)
,

as ϕ→ 0+.
Upon taking the modulus of F (x;λ) we arrive to

|F (x;λ)| =
(
A4ϕ−4 + 2A2Bϕ−3 + O(ϕ−2)

)1/2

= (A4ϕ−4)1/2

(
1 +

2B

A2
ϕ+ O(ϕ2)

)1/2

.

Observe that(
1 +

2B

A2
ϕ+ O(ϕ2)

)1/2

= 1 +
1

2

(
2B

A2
ϕ+ O(ϕ2)

)
+ O

((
2B

A2
ϕ+ O(ϕ2)

)2
)

= 1 +
B

A2
ϕ+ O(ϕ2),

113



as ϕ→ 0+. This implies that

|F (x;λ)| =A2ϕ−2

(
1 +

B

A2
ϕ+ O(ϕ2)

)
=A2ϕ−2 +Bϕ−1 + O(1),

(5.8.47)

as ϕ→ 0+.
In order to calculate

√
F (x;λ), we write

F (x;λ) = |F (x;λ)|eiθ(x),

where θ(x) = arctan(ImF (x;λ)/ReF (x;λ)). Hence√
F (x;λ) = |F (x;λ)|1/2ei

θ(x)
2 .

First, we compute |F (x;λ)|1/2. We proceed as in the previous calculations:

|F (x;λ)|1/2 =
(
A2ϕ−2 +Bϕ−1 + O(1)

)1/2

= (A2ϕ−2)1/2

(
1 +

B

A2
ϕ+ O(ϕ2)

)1/2

= Aϕ−1

(
1 +

B

2A2
ϕ+ O(ϕ2)

)
= Aϕ−1 +

B

2A
+ O(ϕ),

(5.8.48)

as ϕ→ 0+.
For the argument of F (x;λ) we have

ImF (x;λ)

ReF (x;λ)
=

Iϕ−1 + O(1)

A2ϕ−2 +Bϕ−1 + O(1)

=
Iϕ−1(1 + O(ϕ))

A2ϕ−2(1 + B
A2ϕ+ O(ϕ2))

=
I

A2
ϕ (1 + O(ϕ))

(
1− B

A2
ϕ+ O(ϕ2))

)
=

I

A2
ϕ+ O(ϕ2).

Using the Taylor expansion around y = 0, arctan(y) = y + O(y3), we have

θ(x) = arctan

(
I

A2
ϕ+ O(ϕ2)

)
=

I

A2
ϕ+ O(ϕ2), (5.8.49)
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as ϕ→ 0+.
Hence,

ei
θ(x)
2 = cos

(
θ(x)

2

)
+ i sin

(
θ(x)

2

)
= 1 + O(ϕ2) + i

(
I

2A2
ϕ+ O(ϕ2)

)
.

(5.8.50)

Therefore, upon substitution of (5.8.48) and (5.8.50) we reckon√
F (x;λ) = |F (x;λ)|1/2ei

θ(x)
2

=

(
Aϕ−1 +

B

2A
+ O(ϕ)

)(
1 + O(ϕ2) + i

(
I

2A2
ϕ+ O(ϕ2)

))
= Aϕ−1 +

B

2A
+ O(ϕ) + i

(
I

2A
+ O(ϕ)

)
.

(5.8.51)
On the other hand, we may compute

F (x;λ)−1/4 = |F (x;λ)|−1/4e−i
θ(x)
4 .

Substituting (5.8.47), we find

|F (x;λ)|−1/4 =
(
A2ϕ−2 +Bϕ−1 + O(1)

)−1/4

= (A2ϕ−2)−1/4

(
1 +

B

A2
ϕ+ O(ϕ2)

)−1/4

= A−1/2ϕ1/2

(
1− B

4A2
ϕ+ O(ϕ2)

)
= A−1/2ϕ1/2 − B

4A5/2
ϕ3/2 + O(ϕ5/2).

Hence,
|F (x;λ)|−1/4 ∼ A−1/2e−kx/2, x→ +∞. (5.8.52)

Similarly,

e−i
θ(x)
4 = cos

(
θ(x)

4

)
− i sin

(
θ(x)

4

)
= 1 + O(ϕ2)− i

(
I

4A2
ϕ+ O(ϕ2)

)
.

(5.8.53)

Therefore, we have

F (x;λ)−1/4 =
(
A−1/2ϕ1/2 + O(ϕ3/2)

)(
1 + O(ϕ2)− i

(
I

4A2
ϕ+ O(ϕ2)

))
= A−1/2ϕ1/2 + O(ϕ3/2)− i

(
I

4A5/2
ϕ3/2 + O(ϕ5/2)

)
.

(5.8.54)
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Now, we are in position to compute the detailed behavior of solutions to the
homogeneous equation (5.8.3). According to Theorem 5.8.1 the decaying solution
z1(x) behave as

z1(x) ∼ F (x;λ)−1/4 exp

(
−
∫ x

x0

F (s;λ)1/2ds

)
. (5.8.55)

Observe that∫ x

x0

F (s;λ)1/2ds =

∫ x

x0

ReF (s;λ)1/2ds+ i

∫ x

x0

ImF (s;λ)1/2ds.

Then substituting (5.8.51) we have∫ x

x0

ReF (s;λ)1/2ds =

∫ x

x0

(
Aϕ(s)−1 +

B

2A
+ O(ϕ(s))

)
ds

=

∫ x

x0

(
Aeks +

B

2A
+ O(e−ks)

)
ds

=
A

k
(ekx − ekx0) +

B

2A
(x− x0) + O(e−kx),

(5.8.56)

for x > x0 � 1 sufficiently large. Hence,

exp

(
−
∫ x

x0

ReF (s;λ)1/2ds

)
= exp

(
−A
k

(ekx − ekx0)− B

2A
(x− x0) + O(e−kx)

)
= m1 exp

(
−A
k
ekx − B

2A
x

)
exp(O(e−kx))

= m1 exp

(
−A
k
ekx − B

2A
x

)
(1 + o(1)),

(5.8.57)
as x→ +∞, with

m1 = exp

(
A

k
ekx0 +

B

2A
x0

)
. (5.8.58)

In a similar way, we have∫ x

x0

ImF (s;λ)1/2ds =

∫ x

x0

(
I

2A
+ O(ϕ(s))

)
ds

=
I

2A
(x− x0) + O(e−kx),

(5.8.59)
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for x > x0 � 1 sufficiently large. Hence we have

exp

(
−i
∫ x

x0

ImF (s;λ)1/2ds

)
= exp

(
−i I

2A
(x− x0) + O(e−kx)

)
= m̃1 exp

(
−i I

2A
x

)
(1 + o(1)),

(5.8.60)

as x→ +∞, with

m̃1 = exp

(
i
I

2A
x0

)
.

Therefore, substituting equations (5.8.52), (5.8.57) and (5.8.60) in (5.8.55) we
obtain

z1(x) ∼ |F (x;λ)|−1/4 exp

(
−
∫ x

x0

ReF (s;λ)1/2ds

)
e−i

θ(x)
4 exp

(
−i
∫ x

x0

ImF (s;λ)1/2ds

)
∼ m1m̃1A

−1/2e−kx/2 exp

(
−A
k
ekx − B

2A
x

)
e−i

θ(x)
4 exp

(
−i I

2A
x

)
,

(5.8.61)
as x→ +∞. Since

A

k
=

c2

2D′(0)f ′(0)
> 0,

z1(x) decays as

|z1(x)| ∼M1e
−kx/2 exp

(
−A
k
ekx − B

2A
x

)
→ 0, (5.8.62)

as x→ +∞. Here M1 = |m1m̃1A
−1/2| = m1(2D′(0)/c)1/2.

On the other hand, we compute the behavior for the diverging solution z2(x) to
the homogeneous equation. By Theorem 5.8.1 the diverging solution z2(x) behave
as

z2(x) ∼ F (x;λ)−1/4 exp

(∫ x

x0

F (s;λ)1/2ds

)
.

Substituting equations (5.8.52), (5.8.56) and (5.8.59) we reckon

z2(x) ∼ |F (x;λ)|−1/4 exp

(∫ x

x0

ReF (s;λ)1/2ds

)
ei
θ(x)
4 exp

(
i

∫ x

x0

ImF (s;λ)1/2ds

)
∼ m2m̃2A

−1/2e−kx/2 exp

(
A

k
ekx +

B

2A
x

)
exp

(
i
I

2A
x

)
ei
θ(x)
4 ,

as x→ +∞, and where m2 = m−1
1 and m̃2 = m̃−1

1 . Thus, z2(x) diverges as

|z2(x)| ∼M2e
−kx/2 exp

(
A

k
ekx +

B

2A
x

)
→∞, (5.8.63)
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as x→ +∞. Here M2 = |m2m̃2A
−1/2| = m2(2D′(0)/c)1/2.

To complete the information about the decaying solution z1(x), now we esti-
mate the behavior of its derivatives ∂xz1 and ∂xxz1. By Theorem 5.8.1 the deriva-
tives of z1 behave like

∂xz1 ∼ −F (x;λ)1/4 exp

(
−
∫ x

x0

F (s;λ)1/2ds

)
,

∂xxz1 ∼ F (x;λ)3/4 exp

(
−
∫ x

x0

F (s;λ)1/2ds

)
,

as x→ +∞. We write

F (x;λ)1/4 = |F (x;λ)|1/4eiθ(x)/4.

Substituting equation (5.8.47) we have

|F (x;λ)|1/4 =
(
A2ϕ−2 +Bϕ−1 + O(1)

)1/4

= A1/2ϕ−1/2

(
1 +

B

4A2
ϕ+ O(ϕ2)

)
= A1/2ϕ−1/2 +

B

4A3/2
ϕ1/2 + O(ϕ3/2).

Thus |F (x;λ)|1/4 diverges like

|F (x;λ)|1/4 ∼ A1/2ekx/2, x→ +∞. (5.8.64)

Therefore, substituting equations (5.8.57), (5.8.60) and (5.8.64) we obtain

∂xz1 ∼ −m1m̃1A
1/2ekx/2 exp

(
−A
k
ekx − B

2A
x

)
exp

(
−i I

2A
x

)
eiθ(x)/4, (5.8.65)

as x→ +∞. Thus, ∂xz1 decays like

|∂xz1| ∼M11e
kx/2 exp

(
−A
k
ekx − B

2A
x

)
→ 0, (5.8.66)

as x→ +∞. Here M11 = |m1m̃1A
1/2|.

In a similar fashion, we estimate

|F (x;λ)|3/4 =
(
A2ϕ−2 +Bϕ−1 + O(1)

)3/4

= A3/2ϕ−3/2

(
1 +

3B

4A2
ϕ+ O(ϕ2)

)
= A3/2ϕ−3/2 +

3B

4A1/2
ϕ−1/2 + O(ϕ1/2).
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Thus |F (x;λ)|3/4 diverges like

|F (x;λ)|3/4 ∼ A3/2e3kx/2, x→ +∞.

Therefore,

∂xxz1 ∼ m1m̃1A
3/2e3kx/2 exp

(
−A
k
ekx − B

2A
x

)
exp

(
−i I

2A
x

)
ei3θ(x)/4.

Hence,

|∂xxz1| ∼M12e
3kx/2 exp

(
−A
k
ekx − B

2A
x

)
→ 0, (5.8.67)

as x→ +∞. Here M12 = |m1m̃1A
3/2|.

Therefore, we summarize the proceeding calculations in the following

Lemma 5.8.2. Let λ ∈ C be fixed and x0 ∈ R fixed, x0 � 1 sufficiently large.
Then the homogeneous equation

zxx − F (x;λ)z = 0, (5.8.68)

with F (x;λ) given by (5.8.21) has a solution z1(x) ∈ H2(x0,+∞), defined in
equation (5.8.61) and decaying to zero as x→ +∞ like

|z1(x)| ∼M1e
−f ′(0)x/2c exp

(
− c2

2D′(0)f ′(0)
ef
′(0)x/c

)
exp

(
− B

2A
x

)
,

where M1 > 0 is constant and

B

2A
=

1

c

(
Reλ− 3

2
f ′(0)− c2D′′(0)

4D′(0)2

)
.

The decaying solution to the homogeneous equation (5.8.2) satisfy (5.8.10),
that is

u1(x) = C0ζ(x)Θ̃(x) = C0
z1(x)

D(ϕ)
Θ̃(x),

where z1 is solution to (5.8.6) given by Lemma 5.8.2. Before analyzing the decaying

behavior of u1(x) as x → +∞, we have two lemmas on the behavior of Θ̃(x) and
ζ(x).

Lemma 5.8.3. For x0 ∈ R fixed, x0 � 1 sufficiently large, the function

Θ̃(x) = exp

(
− c

2

∫ x

x0

ds

D(ϕ(s))

)
,
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belongs to H2(x0,+∞), and satisfies

Θ̃(x) ∼ C̃0 exp

(
− c

2kD′(0)
ekx +

cd̂

2
x

)
, (5.8.69)

as x→ +∞, for some constant C̃0 > 0.

Proof. We substitute the expansion (5.8.45) of D(ϕ)−1 to estimate∫ x

x0

ds

D(ϕ(s))
=

∫ x

x0

(
eks

D′(0)
− d̂+ O(e−ks)

)
ds

=
1

kD′(0)
(ekx − ekx0)− d̂(x− x0) + O(e−kx),

(5.8.70)

for x > x0 � 1, sufficiently large. Therefore,

Θ̃(x) = exp

(
− c

2kD′(0)
(ekx − ekx0) +

cd̂

2
(x− x0) + O(e−kx)

)

= C̃0 exp

(
− c

2kD′(0)
ekx +

cd̂

2
x

)
(1 + o(1)),

(5.8.71)

where d̂ = D′′(0)/2D′(0)2, and

C̃0 = exp

(
c

2kD′(0)
ekx0 − cd̂

2
x0

)
> 0. (5.8.72)

Hence, equation (5.8.69) holds with C̃0 defined in (5.8.72). Regardless of the sign

of d̂, observe that Θ̃(x) decay to zero as x → +∞. This implies that Θ̃(x) ∈
L2(x0,+∞). Furthermore, for x0 � 1 large enough, due to the fast exponential

decay of Θ̃(x) at +∞, we have that

∂x(Θ̃(x)) = − c
2

1

D(ϕ(x))
Θ̃(x)

∼ − C̃0c

2D′(0)
ekx exp

(
− c

2kD′(0)
ekx +

cd̂

2
x

)
→ 0,

(5.8.73)

as x→ +∞. Therefore, ∂x(Θ̃(x)) ∈ L2(x0,+∞).
And for the second derivative we have

∂xx(Θ̃(x)) =

(
c2

4

1

D(ϕ)2
+
c

2

D(ϕ)x
D(ϕ)2

)
Θ̃(x).
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Observe that

1

D(ϕ)2

(
c2

4
+
c

2
D(ϕ)x

)
=

(
1

D′(0)2
ϕ−2 + O(ϕ−1)

)(
c2

4
− c

2
D′(0)kϕ+ O(ϕ2)

)
=

c2

4D′(0)2
ϕ−2 + O(ϕ−1),

as ϕ→ 0. Hence we have

1

D(ϕ)2

(
c2

4
+
c

2
D(ϕ)x

)
∼ c2

4D′(0)2
e2kx, x→ +∞.

Therefore,

∂xx(Θ̃(x)) ∼ c2C̃0

4D′(0)2
e2kx exp

(
− c

2kD′(0)
ekx +

cd̂

2
x

)
→ 0, (5.8.74)

as x→ +∞. Hence ∂xx(Θ̃(x)) ∈ L2(x0,+∞). We conclude that Θ̃(x) ∈ H2(x0,+∞),
and the proof is complete.

Lemma 5.8.4. For x0 ∈ R fixed, x0 � 1 sufficiently large, the function

ζ(x) =
z1(x)

D(ϕ(x))
,

where z1(x) is the decaying solution to equation (5.8.68) given in Lemma 5.8.2
belongs to H2(x0,+∞), and satisfies

|ζ(x)| ∼ M̃1e
f ′(0)x/2c exp

(
− c2

2D′(0)f ′(0)
ef
′(0)x/c

)
e−Bx/2A, (5.8.75)

as x→ +∞, for some constant M̃1 > 0.

Proof. By Lemma 5.8.2 we observe that

|ζ(x)| = |z1(x)|
D(ϕ)

∼ M1

D′(0)
ef
′(0)x/2c exp

(
− c2

2D′(0)f ′(0)
ef
′(0)x/c

)
e−Bx/2A → 0,

(5.8.76)

as x → +∞. The constant M̃1 = M1/D
′(0) > 0, where M1 > 0 is given by

equation (5.8.62). Thus, ζ ∈ L2(x0,+∞).
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We estimate the derivatives ∂xζ and ∂xxζ. We observe that

∂xζ =
∂xz1

D(ϕ)
− D(ϕ)xz1

D(ϕ)2
.

Thus,

|∂xζ| ≤
|∂xz1|
|D(ϕ)|

+
|D(ϕ)x|
|D(ϕ)2|

|z1|.

Substituting equations (5.8.66) and (5.8.62) we have

|∂xζ| ≤ Ĉ1(e3kx/2 + ekx/2) exp

(
−A
k
ekx − B

2A
x

)
≤ Ĉ1e

3kx/2 exp

(
−A
k
ekx − B

2A
x

)
→ 0,

(5.8.77)

as x→ +∞, for some uniform Ĉ1 > 0. Thus, ∂xζ ∈ L2(x0,+∞).
On the other hand, we observe that

∂xxζ =
∂xxz1

D(ϕ)
− 2∂xz1

D(ϕ)x
D(ϕ)2

− z1

(
D(ϕ)xx
D(ϕ)2

− 2
(D(ϕ)x)

2

D(ϕ)2

)
,

hence

|∂xxζ| ≤
|∂xxz1|
|D(ϕ)|

+ 2|∂xz1|
|D(ϕ)x|
|D(ϕ)2|

+ |z1|
|D(ϕ)xx|
|D(ϕ)2|

+ 2|z1|
|(D(ϕ)x)

2|
|D(ϕ)2|

.

Substituting equations (5.8.62), (5.8.66) and (5.8.67) we notice that

|∂xxζ| ≤ Ĉ2

(
ekxe3kx/2 + ekxekx/2 + ekxe−kx/2 + e−kx/2

)
exp

(
−A
k
ekx − B

2A
x

)
≤ Ĉ2e

5kx/2 exp

(
−A
k
ekx − B

2A
x

)
→ 0,

(5.8.78)

as x → +∞, for some uniform Ĉ2 > 0. Hence ∂xxζ ∈ L2(x0,+∞). We conclude
that ζ(x) ∈ H2(x0,+∞).

Finally, we substitute equations (5.8.61) and (5.8.71) to find the detailed asymp-
totic behavior of u1(x). We have

u1(x) = C0
z1(x)

D(ϕ)
Θ̃(x)

∼ Ce−kx/2ekx exp

(
−A
k
ekx − B

2A
x

)
e−i

θ(x)
4 exp

(
−i I

2A
x

)
exp

(
− c

2kD′(0)
ekx +

cd̂

2
x

)

= C exp

((
k

2
+
cd̂

2
− B

2A

)
x

)
exp

(
− c2

D′(0)f ′(0)
ekx
)
e−iθ(x)/4e−iIx/2A,

(5.8.79)
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as x→ +∞ and where the constant C = C0C̃0m1m̃1A
−1/2D′(0)−1.

Thus, u1(x) decays like

|u1(x)| ∼ |C| exp

((
k

2
+
cd̂

2
− B

2A

)
x

)
exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
→ 0,

(5.8.80)
as x → +∞. Hence u1(x) ∈ L2(x0,+∞). Moreover, we may use the decaying

behavior of ζ(x), Θ̃(x) and their derivatives to prove that u1(x) ∈ H2(x0,+∞).
Notice that

∂xu1 = C0

(
∂xζΘ̃ + ζ∂xΘ̃

)
.

Upon substitution of equations (5.8.71), (5.8.73), (5.8.76) and (5.8.77) we arrive
at

|∂xu1| ≤ C0

(
|∂xζΘ̃|+ |ζ∂xΘ̃|

)
≤ C1 exp

((
3k

2
+
cd̂

2
− B

2A

)
x

)
exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
→ 0,

(5.8.81)
as x→ +∞, for some uniform C1 > 0. Thus, ∂xu1(x) ∈ L2(x0,+∞).

We compute the second derivative of u1 with respect to x, we have

∂xxu1 = C0

(
∂xxζΘ̃ + 2∂xζ∂xΘ̃ + ζ∂xxΘ̃

)
.

Hence, substituting equations (5.8.71), (5.8.73), (5.8.74), (5.8.76), (5.8.77) and
(5.8.78), we arrive at

|∂xxu1| ≤ C0

(
|∂xxζΘ̃|+ 2|∂xζ∂xΘ̃|+ |ζ∂xxΘ̃|

)
≤ C2e

η̂x exp

(
− c2

D′(0)f ′(0)
ef
′(0)x/c

)
→ 0,

(5.8.82)

as x→ +∞, for some uniform C2 > 0. Here, η̂ is a constant depending on c, A,B, d̂
and k. Thus, ∂xxu1(x) ∈ L2(x0,+∞).

We summarize the results of this section into the following

Lemma 5.8.5. Suppose that ϕ is a Fisher-KPP diffusion-degenerate front. Then,
for any fixed λ ∈ C, any H2-solution u to the spectral equation (L − λ)u = 0 can
be written as

u(x) = C exp

(
− c

2

∫ x

x0

ds

D(ϕ)

)
ζ(x)

for x > x0, x0 ∈ R fixed, x0 � 1 sufficiently large, with some constant C ∈ C, and
where ζ(x) ∈ H2(x0,+∞) decay to zero as x→ +∞ like
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ζ(x) ∼ ef
′(0)x/2c exp

(
− c2

2D′(0)f ′(0)
ef
′(0)x/c

)
e−Bx/2A, (5.8.83)

and
B

2A
=

1

c

(
Reλ− 3

2
f ′(0)− c2D′′(0)

4D′(0)2

)
.

On the other hand, for completeness we write down the behavior of the diverg-
ing solution u2(x) to equation (5.8.2), which is of the form

u2(x) = C0Θ̃(x)
z2(x)

D(ϕ)
, (5.8.84)

where z2(x) is the diverging solution of (5.8.6). Substituting (5.8.71) and
(5.8.63)

|u2(x)| ∼ exp

(
− c2

2D′(0)f ′(0)
ekx +

cd̂

2
x

)
ekx/2 exp

(
c2

2D′(0)f ′(0)
ekx +

B

2A
x

)

= exp

((
cd̂

2
+
k

2
+

B

2A

)
x

)
,

as x→ +∞. Observe that

cd̂

2
+
k

2
+

B

2A
=
cd̂

2
+
f ′(0)

2c
+
D′(0)

c

(
Reλ− f ′(0)

D′(0)
− c2d̂

2D′(0)
− f ′(0)

2D′(0)

)

=
cd̂

2
+
f ′(0)

2c
+

1

c

(
Reλ− f ′(0)− c2d̂

2
− f ′(0)

2

)

=
Reλ− f ′(0)

c
.

Therefore, u2(x) diverges for Reλ > f ′(0), as x→ +∞.

5.9 Discussion

In this chapter we have studied the spectral stability of the linearized differential
operator around any diffusion-degenerate Fisher-KPP traveling front. We have
shown that, according to the partition of the spectrum given in Definition 2, the
subsets σpt and σδ are stable when they are computed with respect to an appro-
priate exponentially weighted L2-space. More precisely, if the velocity of the front
satisfies (5.7.24), it is possible to find a weighted space where the set σpt and σδ
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are localized in the stable complex semi-plane, {λ ∈ C : Reλ ≤ 0} (see equation
(5.7.25)).

In particular, we have shown that the point spectrum σpt(L) is stable using
energy estimates (see Proposition 5.4.3). It is to be observed that the monotonicity
of the traveling front was crucial to achieve such an estimate, since it motivated
the appropriate change of variables (see equation (5.4.3)) that allowed us to close
the energy estimate. In order to justify the change of variables, we performed a
detailed asymptotic analysis of the decay of solutions to the spectral equation (see
Section 5.8).

We introduced a regularization technique to circumvent the degeneration of
the diffusion and locate the subset σδ of the compression spectrum. We proved
that regularized operators converge in generalized sense to the original degener-
ate operator as ε → 0+. The independence of regularization parameter ε of the
Fredholm properties of the regularized operators in conjunction with the gener-
alized convergence, allowed us to exploit the robustness of Fredholm properties
under small perturbations. Therefore, we related the Fredholm properties of the
regularized operators to those of the original degenerate operator.

It is to be highlighted that the regularization technique is not useful to control
the whole of the Weyl essential spectrum σess(L), because the reduced minimum
modulus of the perturbed operator γ(Lε−λ) might go to zero as ε→ 0+. Therefore,
it is vital to sort out the points where the operator L− λ has a closed range. It is
at these points where Fredholm properties can be defined. This is the main reason
behind the proposed partition of the spectrum in Definition 2, σ = σpt ∪ σδ ∪ σπ.
We notice that with this partition the point spectrum σpt(L) is not necessarily
composed of isolated eigenvalues (see Remark 2.2.4 in [128]).

On the other hand, we point out that the technique of energy estimates we
applied in Section 5.4.1 is limited by the change of variables (5.4.3). To be more
specific, the restriction comes from the justification of the change of variables, as
we need w ∈ H2 whenever u ∈ H2 (see Lemma 5.4.1).

In addition, we remark that we have not proved the existence of a “spectral
gap”, that is, σ ⊂ {Reλ ≤ −$ < 0} ∪ {0}, for some $ > 0. The existence of an
spectral gap is important because it allows to study the non-linear orbital stability
using the standard semigroup theory (see [41, 61, 71, 122, 128]). The contents of
this chapter have been reported in [87].
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Chapter 6

Conclusions

In Chapter 3 we introduced a model of reaction-diffusion-chemotaxis for bacterial
aggregation patterns which is based on the system originally proposed by Kawasaki
et al. [73]. Motivated by the experimental observations of Ben-Jacob et al. [20,55]
we incorporated a nutrient chemotaxist term into system (3.2.1) that is compatible
with the non-linear diffusion.

We explored the effects of the new chemotactic term on the aggregation pat-
terns by performing high-resolution numerical simulations of system (3.4.1) for var-
ious values of the parameters (see table 3.1), including the case without chemotaxis
in order to compare with those simulations with the chemotactic signal switched
on. Hence, we reproduce the numerical results obtained by Kawasaki et al. in [73].

Our numerical simulations show that the main qualitative effect of nutrient
chemotaxis on the bacterial patterns is the enhancement of the growth velocity of
the colony when the chemotactic term is present. This can be observed in Figures
3.6 to 3.10 of section 3.6. When the chemotaxis signal is present, the bacterial
movement is greatly increased in the outward direction and, hence increasing the
propagation of the envelope front of the colony.

Another qualitative effect of nutrient chemotaxis is the change of morphology in
the regime of soft agar, poor nutrient. Compare figures 3.8 and 3.9 of section 3.6.2,
where it is observed that chemotaxis induces a homogenization of the patterns as
the chemotaxis strength is increased. There is a morphological transition between
branching patterns of region E to homogeneously spreading disks pertaining to
region D, of the morphological diagram.

In Chapter 4 we explored the effects of the chemotactic term has on the prop-
agation velocity of the envelope front of the colony. We numerically solved a
one-dimensional version of system (4.1.1) in order to estimate the propagation
velocity of the front. Subsequently, by doing asymptotic calculations we found
the velocity of the front as a function of both the nutrient concentration and the
chemotaxis strength. Under the assumption of mass conservation (see equation
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(4.2.2)) we found an approximated scalar equation for the bacterial density (Eq.
(4.2.6)). Then, applying a result from Malaguti and Marcelli [92] we proved that
the normal velocity is greater than the speed associated to the sharp front when
there is no chemotaxis. Hence, the colony envelope will propagate faster when
the chemotaxis signal is present, as expected from the numerical simulations from
Chapter 3. Moreover, the asymptotic approximation to the front velocity is in-
creased when the chemotaxis signal is present. These observations provide support
to the claim of Ben-Jacob and co-workers [20, 55], that food chemotaxis is a ba-
sic mechanism involved in the development of bacterial colonies that increase the
growth velocity, maintaining and even decreasing the degree of ramification of the
patterns.

The theoretical speed thresholds, derived for the scalar equation (4.2.5) and
defined in equations (4.2.20) and (4.2.21), were compared with the numerical es-
timations (see Fig. 4.2). This comparison reveals two facts: (1) the velocity of
propagation is increased when the nutrient chemotaxis signal is present, and (2)
it shows a good match between both, theoretical and numerical, estimations of
the velocity. This implies that the conservation-like equation (4.2.2) is a good
approximation to solutions of system (4.1.1). Our results for the case without
chemotaxis (Fig. 4.2(a)) are comparable to those found by Kawasaki et al. [73],
we note however, that in our calculations we used a more accurate approximation
to the bacterial density.

In Chapter 5 we have studied the stability of subsets of the spectrum of the
linearized differential operator around any smooth-monotone-degenerate Fisher-
KPP traveling front supported by the scalar reaction-diffusion equation (5.1.1).
The existence of such fronts has been studied by the Sánchez-Garduño and Maini
[126,127].

In order to circumvent the difficulties posed by the degeneracy of the diffusion,
we introduced an alternative partition of the spectrum of the linearized operator
in the form σ = σpt∪σδ∪σπ (see Definition 2, Chapter 5). We have shown that the
subsets σpt and σδ are stable when are computed with respect to an appropriated
exponentially weighted L2-space.

Using energy estimates we have shown that the point spectrum is stable (see
Theorem 5.4.4). Moreover, we were able to close the energy estimates thanks to
an appropriate change of variables that was motivated by the monotonicity of the
fronts. In order to justify the change of variables, in Section 5.8 we made a detailed
analysis of the asymptotic behavior of eigenfunctions on the degenerate side.

The degeneracy of the diffusion coefficient at one of the equilibrium points of
the reaction function precludes a direct application of the standard methods to
localize the essential spectrum. Those methods are based on the hyperbolicity
of the asymptotic matrices associated to the spectral problem recast as a first
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order differential system. For the degenerate linearized differential operator this
hyperbolicity is lost on the degenerate side.

Thus, to locate the subset σδ of the compression spectrum we introduced a reg-
ularization technique. This approach is based on the robustness of the Fredholm
properties under small perturbations. We showed that the family of regularized
operators converge in a generalized sense to the original degenerate operator. In
turn, this convergence allowed us to relate the Fredholm properties of the regu-
larized operators to those of the degenerate operator, and finally locate σδ (see
Theorem 5.6.3).

The location of σδ is determined by the Fredholm borders which turned to be
unstable when computed with respect to L2 (see Remark 6). Hence, since Fredholm
borders are sensitive to changes at spatial infinity, we introduced exponentially
weighted spaces where the stability of σδ holds. To be more specific, we proved
that if the velocity of the front satisfies (5.7.24), it is possible to find a weighted
space where the set σpt and σδ are localized in the stable complex semi-plane,
{λ ∈ C : Reλ ≤ 0} (see equation (5.7.25)).
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