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RESUMEN

La migración mesenquimática es una estrategia de movimiento celular individual en la cual,
para formar rutas de migración, las células liberan enzimas proteoĺıticas que degradan las
fibras de colágeno que conforman la estructura tridimensional de la matriz extracelular.
En esta tesis realizamos un estudio de las familias de soluciones de ondas estacionarias y
viajeras de la versión unidimensional del modelo M5, éste fue propuesto por Hillen para
describir el movimiento celular.

Resaltamos la relación entre el tamaño de la población celular y el tipo de rastro de
fibras reorientadas que las células dejan a su paso. Estudiamos además el comportamiento
asintótico de los perfiles de onda estacionarios y viajeros; mediante el uso de series de Taylor
demostramos que estos perfiles convergen de manera exponencial a sus estados estacionar-
ios. Por otro lado, hemos construido anaĺıticamente aproximaciones de las soluciones de
ondas estacionarias y viajeras; nuestra técnica consiste en obtener mediante el método de
polinomios de Lagrange un sistema de ecuaciones aproximadas con solución exacta. Como
parte de la investigación, analizamos la estabilidad espectral de los miembros de las fa-
milias de ondas estacionarias y viajeras. Nos encontramos con que las ondas estacionarias
son espectralmente estables y que el espectro del operador linealizado alrededor de ellas
consiste únicamente de espectro esencial. Para demostrar que en el caso estacionario el
espectro puntual es el conjunto vaćıo, usamos estimadores de enerǵıa junto con la técnica
de Goodman de la variable integrada. Para las ondas viajeras el panorama es diferente,
estos perfiles son espectralmente inestables debido a que el espectro esencial alcanza el
semiplano derecho cerrado. Con miras a conseguir estabilidad espectral, construimos un
espacio de Sobolev pesado donde el espectro esencial es parte del semiplano izquierdo
abierto. El problema de la localización del espectro puntual no ha podido ser resuelto
hasta el momento.
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ABSTRACT

Mesenchymal migration refers to a proteolytic and path generating strategy of individual
cell motion across the network of collagen fibres that compose the 3D extracellular matrix.
In this thesis we inquire into the families of standing and traveling wave solutions of the
one-dimensional version of the M5-model, which was put forward by Hillen to describe the
mesenchymal cell movement.

We highlight the relation between the size of the cell population and the trail of reorga-
nized fibres that cells leave behind their wake. The long-time asymptotic behaviour of the
standing and traveling wave profiles is examined; using Taylor expansions we show that
each of these profiles converges exponentially to its end states. We have constructed ana-
lytic expressions that approximate the standing and traveling wave solutions, our technique
consists in getting an exactly solvable approximate system through the use of Lagrange’s
interpolation method. It is explored the spectral stability of the members of the families
of standing and traveling waves. Regarding the standing waves, they are spectrally stable
and the spectrum of the linearized operator around the waves consists solely of essential
spectrum. To prove that in the standing case the point spectrum is empty we use energy
estimates together with the integrated-variable technique of Goodman. The panorama is
completely different in the traveling case; the wave profiles are spectrally unstable due to
the fact that the essential spectrum reaches the closed right-half complex plane. In our
pursuit of spectral stability we have constructed a weighted Sobolev space where the es-
sential spectrum lies inside the open left-half complex plane. The question of where is the
point spectrum still remains open.
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INTRODUCCIÓN

Con el propósito de propagarse a otras partes del cuerpo, las células metastásicas se li-
beran del tumor primario, invaden el tejido circundante y logran intravasarse en los vasos
linfáticos y sangúıneos para viajar a través de la vasculatura; eventualmente las células
tumorales se extravasan en el parénquima—tejido que conduce la función espećıfica del
órgano y que por lo general comprende la mayor parte de éste—de un órgano distante,
donde finalmente se establecen y proliferan para formar un tumor secundario [22, 55].
Las células cancerosas muestran dos tipos de estrategias de migración: la colectiva y la
individual [14]. La migración colectiva es un fenómeno en el que las células mantienen
adhesiones entre ellas, el movimiento es grupal en la forma de hebras, láminas o racimos
[18]. En cambio, durante la migración individual no hay interacciones célula-célula, cada
célula se mueve sola y hay poca relación entre el patrón de migración de una célula y el de
sus vecinas [4]. Este tipo de movimiento a su vez se divide en mesenquimático y ameboide
[18]. El movimiento mesenquimático involucra degradación proteoĺıtica y remodelación—
creación de rutas de migración—de la matriz extracelular (MEC). A diferencia de las células
mesenquiáticas, las células ameboides no intervienen en la remodelación de los componentes
de la MEC [37, 18, 57]. La MEC es una malla tridimensional compuesta por un entretejido
de fibras formadas por una mezcla de protéınas estructurales [9]. El entramado de la MEC
actúa como un andamio que estabiliza la estructura f́ısica de los tejidos, y desempeña
además un papel activo en la regulación de las funciones celulares tales como la adhesión,
proliferación y migración. En particular, en el fenómeno de migración celular, la topograf́ıa
del sustrato extracelular proporciona orientación por contacto, con la cual las células son
impulsadas a migrar en una dirección paralela a la orientación local de las fibras de la
matriz [39].

En este trabajo nos centramos en la migración mesenquimática. En [24], Hillen pro-
puso un modelo mesoscópico (a nivel individual) n-dimensional para el movimiento mesen-
quimático, en el que se incluyen la orientación por contacto y la degradación preoteoĺıtica.
Este modelo, al que nos referiremos como el modelo M5, está basado en el modelo integro-
diferencial de transporte, formulado por Othmer et al. [40] para describir el proceso de
salto de velocidad, que consiste de periodos de recorridos en una cierta dirección inter-
rumpidos por reorientaciones instantáneas. El modelo M5 es un sistema de dos ecuaciones
integro-diferenciales, una de ellas es una ecuación de transporte para el movimiento celular.
En la formulación de ésta la dirección de movimiento es dictada por un peso probabiĺıstico,
el cual representa a la distribución ángular de las fibras. El cambio de la probabilidad en
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el espacio y el tiempo es descrito por una ecuación dinámica. En el modelo, la acción
proteoĺıtica sobre la matriz depende de la orientación relativa entre la dirección de la fibra
y la dirección de movimiento, y depende también del tipo de tejido, que puede ser no
dirigido o dirigido. En el tejido no dirigido las fibras son axialmente simétricas, debido a
esto las células no son capaces de distinguir entre los dos sentidos opuestos de una fibra.
Los tejidos dirigidos, por el contrario, están formados por fibras asimétricas que poseen su
propia polaridad.

En [5], Chauviere et al. extendieron el modelo M5 para incluir quimiotaxis—movimiento
hacia o lejos de una sustancia qúımica—y las interacciones célula-célula. En el caso del
movimiento ameboide, Chauviere y Preziosi modificaron en [6] la ecuación de transporte
para considerar que la frecuencia de las reorientaciones de las células puede depender de
factores ambientales tales como la densidad celular y/o la densidad de la MEC. Reciente-
mente, mediante un escalamiento parabólico de la ecuación integral de transporte, Painter
y Hillen obtuvieron una ecuación de difusión que modela macroscópicamente la invasión de
células de glioma [42]. Esta misma ecuación también ha sido aplicada por Hillen y Painter
[26] en los patrones de movimiento de los lobos. Engwer et al. [10] hicieron modifica-
ciones al modelo de Painter y Hillen para considerar de manera expĺıcita los mecanismos
de adhesión entre las células de gliomas y los tractos de materia blanca cerebral.

Para entender qué papeles desempeñan la orientación por contacto y la remodelación
de la MEC en la organización espacial de las células, Painter [41] hizo cambios a la versión
del modelo M5 para tejidos dirigidos. En su versión, la formulación del modelo depende
de la dinámica de la matriz, en la que se involucran la ruptura de la MEC por degradación
proteoĺıtica focalizada, y la producción y montaje de nuevos componentes de la matriz.
Painter resolvió el modelo de manera numérica en un dominio rectangular, y encontró
que, dentro de un arreglo inicial de fibras orientadas aleatoriamente, la acción conjunta
de orientación por contacto y remodelación de la MEC puede generar patrones estacionar-
ios estables en forma de red. Esta forma de red se debe a la interconexión de cadenas
celulares—células formadas en fila india—densas, las cuales son mantenidas por caminos
de fibras alineadas predominantemente con la dirección de migración. Dichos caminos
están rodeados por zonas de fibras aleatoriamente orientadas donde la densidad de células
es menor.

Motivados por los resultados nuḿericos de Painter, Hillen et al. [25] investigaron los
estados estacionarios del modelo M5 para el caso del tejido no dirigido. Interesados en
obtener soluciones con validez biológica, los autores construyeron un espacio adecuado
de soluciones que admitiera funciones medibles. En Rn, Hillen et al. descubrieron que
una distribución radial uniforme de células y fibras (tejido homogéneo) da forma a un
estado estacionario del sistema. Para diseñar tejidos más complejos, con caminos y con
campos de fibras dispuestas en paralelo, Hillen y colaboradores hicieron uso de la función
delta de Dirac para representar una masa de fibras alineadas en una sola dirección. Con el
propósito de poder considerar distribuciones δ para las fibras, y lograr aśı construir estados
estacionarios tipo red, Hillen et al. [25] introdujeron los conceptos de estado estacionario
débil y de estado estacionario puntual. Con el primer concepto consiguen categorizar
como estados estacionarios a los arreglos de fibras colocadas completamente en paralelo
(tejidos estrictamente alineados). El segundo concepto les permitió incluir, en R2, estados
estacionarios tipo parches y estados estacionarios del tipo red. El primer tipo consiste
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de tejidos homogéneos montados sobre conjuntos disjuntos; los conjuntos están divididos
por curvas de longitud finita que pueden ser cerradas pero sin intersecciones entre ellas;
sobre éstas la orientación de las células y las fibras está determinada en cada punto por
la dirección del vector tangente. Es segundo tipo de estado estacionario es similar, pero
difiere en que las intersecciones son permitidas.

Con la idea de idetificar los mecanismos de migración que podŕıan llevar a la agregación
celular en la migración mesenquimática en dimensiones mayores, Wang et al. [56] estu-
diaron en la versión unidimensional del modelo M5, el cual corresponde al caso en el que
las células se mueven en un medio de tejidos estrictamente alineados. Abordando el caso
unidimensional se pueden hacer descubrimientos importantes. Por ejemplo, Doyle et al. [8]
descubrieron que la topograf́ıa unidimensional de la MEC induce una rápida diseminación
de las células y una migración uniaxial similar a la que ocurre en una MEC tridimen-
sional orientada. En [56], Wang et al. encontraron que la agregación celular es posible
en tejidos dirigidos pero no lo es en los tejidos no dirigidos, los autores demostraron que
para los tejidos dirigidos existen familias de ondas estacionarias y viajeras. Las familias
están conformadas por pulsos para las células y frentes decrecientes para la matriz. Estas
familias están indizadas por un continuo de velocidades de onda, y dentro de cada familia
sus miembros tienen diferentes amplitudes. Nuestro estudio parte de estos resultados.

En esta tesis, después de exponer detalladamente en el Caṕıtulo 1 los antecedentes
biológicos y el modelo matemático que motivó nuestro estudio, presentaremos en el Caṕıtulo
2 los resultados obtenidos por Wang et al. [56] sobre la existencia de las soluciones de on-
das estacionarias y viajeras de la versión unidimensional del modelo M5. En el caṕıtulo
profundizamos además en la naturaleza de las familias de los perfiles de onda; en particu-
lar, nos encontramos con que los pulsos más altos (los cuales tienen una mayor densidad
celular) viajan a menor velocidad que los pulsos de menor amplitud. Ampliamos los resul-
tados de Wang et al. [56] con respecto a la relación entre los dos extremos de los frentes
de onda. Concluimos el caṕıtulo demostrando que los perfiles de onda tienden de manera
exponencial a sus estados estacionarios.

En el Caṕıtulo 3 obtenemos de manera anaĺıtica soluciones aproximadas de las ondas
estacionarias y viajeras del modelo M5 unidimensional. Tomamos ventaja del hecho de
contar con una expresión expĺıcita de la órbita heterocĺınica que da origen a los dos perfiles
de onda. Usamos dicha expresión para desacoplar la ecuación para el frente de onda,
sin embargo, ésta no puede ser resuelta anaĺıticamente debido a la presencia de una no
linealidad logaŕıtmica. Interpolando dicha no linealidad mediante el método de Lagrange
obtenemos una ecuación aproximada con solución exacta. Nuestra idea viene del trabajo
de Petrovskii et al. [47] en la ecuación unidimensional de Fisher-Kolmogoroff, quienes
usaron una técnica basada en aproximaciones lineales a trozos para conseguir de manera
aproximada una solución continua de frente de onda decreciente.

Debido a que estamos interesados en la naturaleza de los perfiles de onda, es de gran
interés determinar la estabilidad espectral de los perfiles de onda estacionarios y viajeros.
La estabilidad espectral se refiere a que el conjunto fλ 2 Cnf0g jReλ � 0g no contiene
parte alguna del espectro del operador linealizado alrededor de estos perfiles. En el Caṕıtulo
4 formulamos el problema espectral para las ondas estacionarias y damos las definiciones
de conjunto resolvente, espectro y estabilidad espectral. El espectro se define como la
unión de dos conjuntos disjuntos: el espectro puntual y el espectro esencial. En este
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caṕıtulo demostramos que todos los miembros de la familia de ondas estacionarias son
espectralmente estables y que, de hecho, el espectro es puramente esencial. Encontramos
además que el eigenvalor cero tiene asociado un eigenespacio de dimensión infinita, lo que
hace que pertenezca al espectro esencial y no al espectro puntual. En lo que respecta a cómo
se determinó el espectro puntual, resultó de gran ayuda excluir el eigenvalor cero, debido
a que esto nos permitió llevar el problema espectral original a un problema equivalente
escalar de eigenvalores cuadráticos. La formulación escalar nos permitió usar la técnica de
Goodman [21] de la variable integrada para establecer, mediante estimadores de enerǵıa,
que el espectro puntual es el conjunto vaćıo. El espectro esencial en el caso viajero es
estudiado en el Caṕıtulo 5. Hemos hallado que los miembros de todas las familias de ondas
viajeras son espectralmente inestables, lo que se debe a que parte del espectro esencial toca
al eje imaginario. Para recorrer el espectro esencial hacia el semiplano izquierdo abierto
hemos construido un espacio de Sobolev pesado-exponencialmente. En dicho espacio el
cero es un eigenvalor simple que pertenece al espectro puntual. La estabilidad espectral
de las ondas viajeras aún no ha podido ser determinada, ya que la ubicación del espectro
puntual supone un problema que no ha podido ser resuelto hasta el d́ıa de hoy. Por último,
en el Caṕıtulo 6 presentamos una discusión general de los resultados presentados en esta
tesis y las perspectivas de investigación futuras.



INTRODUCTION

In order to spread to other parts of the body, metastatic tumor cells shed from the
primary solid tumor, invade the surronding tissue and intravasate into lymphatic and
blood vessels to transit through the vasculature, eventually tumor cells extravasate into
the parenchyma—the tissue which conducts the specific function of the organ and which
usually comprises the bulk of the organ—of a distant organ and proliferate to form a sec-
ondary tumor [22, 55]. Cancer cells exhibit two different strategies of migration, they move
either collectivelly or individually [14]. Collective migration occurs when cells retain cell-
cell junctions; in such strategy groups of cells migrate as strands, sheets, or clusters [18].
On the contrary, during individual migration there is an absence of cell-cell interactions,
every single cell makes the journey alone and the migration pattern between a cell and
its neighbors is low correlated [4]. Additionally, individual cell movement can be broken
down into mesenchymal and amoeboid [18]. Mesenchymal motion involves the protease-
mediated degradation and remodeling—creation of migration tracks—of the extracellular
matrix (ECM). In contrast to mesenchymal cells, amoeboid cells do not cause remodeling
of ECM components [37, 18, 57]. The ECM is a 3D network constructed with interwoven
fibres composed of a mixture of structural proteins [9]. The architecture of ECM provides
a scaffolding that stabilizes the physical structure of tissues, and it also plays an important
role in regulating cellular functions such as cell adhesion, proliferation and migration. In
particular, in the cell migration phenomenon the topography of the extracellular substra-
tum provides contact guidance, wherein cells are induced to migrate parallel to the local
orientation of the matrix fibres [39].

In this work, the focus is on mesenchymal migration. In [24], Hillen proposed an
n-dimensional mesoscopic (individual level) model, to which we refer hereafter as the M5-
model, for mesenchymal motion which includes contact guidance and proteolytic degra-
dation. The model is based on the integral transport model formulated by Othmer et al.
[40] to describe the velocity-jump process, where periods of runs in a given direction are
interrupted by instants of reorientation. The M5-model is a system of two coupled integro-
differential equations, one is an integral transport equation for the cell motion in which the
direction of movement is fixed by a probability weight that models the local angular dis-
tribution of matrix fibres. The change for the space-time-varying probability is described
by an evolution equation. In the model the proteolytic action on the matrix is dependent
on the relative orientation between the fibre direction and the movement direction, and
on the type of tissue which can be either undirected or directed. In undirected tissues
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the fibres are axially symmetric, so that cells are unable to distinguish between the two
opposite fibre directions. Conversely, directed tissues are composed of asymmetric fibres
that have ends possessing their own polarity.

In [5], Chauviere et al. further developed the M5-model to include chemotaxis—
movement either toward or away from a chemical stimulus—and cell-cell interactions. In
the case of amoeboid movement, Chauviere and Preziosi modified in [6] the transport model
to account that the frequency of turning of cells may depend on environmental factors such
as the cell density and/or the ECM density. More recently, Painter and Hillen [42] applied
a parabolic scaling to the integral transport equation in order to obtain a diffusion equa-
tion that models the macroscopic process of glioma invasion. This last equation has also
been applied by Hillen and Painter [26] in the movement patterns of wolves. Engwer et
al. [10] extended the model provided by Painter and Hillen to explicitly consider adhesion
mechanisms between glioma cells and the myelinated fiber tracts of white matter ECM.

To understand the role of contact guidance and ECM remodeling on the spatial orga-
nization of the cells, Painter performed in [41] adaptations of the M5-model for undirected
tissues. The model is formulated for different matrix dynamics which involves matrix
degradation due to focussed proteolysis and the production and assembly of new matrix
components. Painter solved numerically the model in 2D rectangular domains, he found
that for an initially random orientation of matrix fibres, the combination of contact guid-
ance and ECM remodeling can generate stable steady network patterns. These networks
are structured by interlocked dense cell-chains—cells following each other in Indian file—
sustained by pathways of fibres predominantly aligned along the direction of migration,
which are enclosed by zones with fibres randomly oriented where the density of cells is
lower.

Inspired by Painter’s numerical results, Hillen et al. [25] investigated the steady states
of the M5-model for the particular case of undirected tissue. To obtain biologically mean-
ingful solutions the authors constructed a suitable solution framework of measure-valued
functions. For Rn, it was found by Hillen et al. that cells uniformly distributed in ori-
entation and density borne up by fibres uniformly radially oriented (homogeneous tissue)
compose a steady state of the system. To design more complex tissues with tracks and
fields of parallel-oriented fibres, Hillen and coworkers made use of the Dirac delta function
to represent a mass of fibres concentrated entirely in a single direction. In order to allow for
δ-distributions for the fibres and then manage to build network type steady states, Hillen
et al. introduced the concepts of weak steady state and pointwise steady state. With the
first concept, arrangements of cells and fibres aligned in a totally parallel fashion (strictly
aligned tissues) are distinguished as steady states of the system. The second concept allows
to include, in R2, patchy steady states and steady states of network type. The former con-
sists of homogeneous tissue disposed over disjoint open sets, which are divided by curves
of finite length possibly closed but without intersections between them, the orientation of
cells and fibres along the curves is fully determined by the direction of the tangent vector
at each point. The latter is similar, differing in that intersections are admissible.

With the aim of identifying migratory mechanisms that could lead to cellular aggre-
gation in the high dimensional mesenchymal migration, Wang et al. [56] studied the
one-dimensional version of the M5-model, which corresponds to the case where cells move
inside an environment of strictly aligned tissues. Important insights can be gained through
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the one-dimensional approach either at the theoretical or experimental levels; for example,
Doyle et al. [8] discovered that the 1D ECM topography induces a rapid cell spreading
and uniaxial migration similar to what occurs in an oriented 3D ECM. In [56], Wang et al.
found that celluar aggregation is possible for directed tissue but not for the undirected one;
the authors proved that, for directed tissue, there exist families of standing and traveling
wave solutions. The families are composed of pulses for the cells and decreasing fronts for
the matrix. These families are indexed by a continuum of wave speeds, and inside each
family their members have different amplitudes among them. Our study depart from these
results.

In this thesis, after presenting in detail in Chapter 1 the biological background and the
mathematical model that motivated our study, we recall in Chapter 2 the results obtained
by Wang et al. [56] on the existence of standing and traveling wave solutions to the one-
dimensional version of the M5-model. Besides, in the chapter, we go deeper into the nature
of the families of wave profiles. We have discovered that the higher amplitude pulses (which
have a greater cell density) travel slower than the shorter ones. We extend the results of
Wang et al. [56] on the relation between the two ends of the wave fronts. We finish the
chapter by showing that the wave profiles tend exponentially to their end states.

In Chapter 3 we find approximate analytical standing and traveling wave solutions to
the one-dimensional M5-model. To do so, we took advantage of the fact that we have
an explicit expression of the heteroclinic that gives rise to both wave profiles. We used
that expression to decouple the equation of the wave front, which cannot be solved ana-
lytically due to the presence of a logarithmic nonlinearity. Using Lagrange’s method we
interpolate that nonlinerity, obtaining in this way an exactly solvable approximate equa-
tion. Our inspiration comes from the work of Petrovskii et al. [47] on the one-dimensional
Fisher-Kolmogoroff equation, in which the authors used a technique based on a piecewise-
linear approximation in order to provide an approximate continuous decreasing wave front
solution.

Since the nature of the wave profiles is our main concern, it is of great interest de-
termining the spectral stability of the standing and traveling wave profiles. By spectral
stability we mean the requirement that the set fλ 2 Cnf0g jReλ � 0g contains no part
of the spectrum of the linearized operator around the standing- or traveling-wave profiles.
In Chapter 4 we formulate the spectral problem for the standing waves and give the def-
initions of resolvent set, spectrum and spectral stability. The spectrum is defined as the
union of two disjoint sets: the point spectrum and the essential spectrum. In the chapter
we show that all the members of the family of standing waves are spectrally stable, and
that indeed the spectrum is purely essential. We find that the eigenvalue zero is associated
to an infinite dimensional eigenspace, which makes it belong to the essential spectrum
and not to the point spectrum. In regard to determination of the point spectrum, it was
helpful to exclude the zero eigenvalue since this allowed us to bring the original spectral
problem into an equivalent scalar quadratic eigenvalue problem. The scalar formulation
has enabled us to use Goodman’s integrated variable technique [21] to establish, via energy
methods, that the point spectrum is empty. The essential spectrum for the traveling case
is studied in Chapter 5. We found out that the members of all the families of traveling
waves are spectrally unstable, this is because part of the essential spectrum reaches the
imaginary axis. To move the essential spectrum to the open left-half complex plane we



8

have constructed an appropriate exponentially-weighted Sobolev space. In such space, zero
is a simple eigenvalue that belongs to the point spectrum. The question about the spectral
stability of the traveling waves remains open since the issue of locating the point spectrum
entails a problem that has not been overcome yet. A general discussion of both the results
of this thesis and the perspectives of future work is left to Chapter 6.



CHAPTER

ONE

THE M5-MODEL FOR MESENCHYMAL MIGRATION INSIDE
DIRECTED TISSUES

1.1

Biological Background

Tumor invasion and metastasis constitute one of the so-called “hallmarks of cancer”. To
metastasize, neoplastic cells detach from the primary tumor, invade the host stroma, then
penetrate into the bloodstream or the lymphatic circulation (intravasation). If cancer
cells survive to the hostile environment that represents the circulatory system (due to the
impossibility to absorb nutrients, immune defenses and turbulent forces of movement),
they leave the vascular or lymphatic channels (extravasation) and form a secondary tumor
elsewhere in the body (colonization) [12, 22, 55].

To reach lymph or blood vessels, tumor cells move through the extracellular matrix
(ECM) [30]. The ECM is a 3D fibre network composed primarily of collagen, laminin,
fibronectin and proteoglycans [9]. Collagen fibrils (about 20–200 nm in diameter), which
reach lengths of the order of several hundred of micrometers, often aggregate into larger
cablelike bundles to form microscale collagen fibers [34]. Besides serving as a physical
support to the tissue, the fibrous architecture of the ECM provides the required scaffold
to support cell adhesion, proliferation, differentiation and migration [23, 35]. ECM acts as
a highway system along which cells move. During cell migration, directional information
can be provided by the orientation of the matrix fibres, in the process known as contact
guidance the matrix facilitates movement in either direction parallel to the fibres [39].
Figure 1.1 shows a schematic representation of the extracellular matrix and the movement
of cells inside thereof.

To perform migration, a cell requires to modify the morphology and stiffness of its body
to interact dynamically with the structure of the host tissue [18]. Cell migration in normal
and cancer cells involves a series of continuous cycles of cell protrusion-contraction together
with cell adhesion to and deadhesion from the ECM substrate [17, 18]. Traction forces
generated by contractile cell-matrix interactions result in a forward gliding of the cell body

9
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Figure 1.1: Cross-view illustration of the extracellular matrix and cell migration.
Illustration by Ramiro Chávez Tovar.

and its rear end [18]. According to Friedl et al. [17, 18], migration of most cells consists
of a cyclic five-step process. First, at the leading edge of the moving cells, pseudopods are
formed by intracellular polymerization of actin filaments (step 1). Then, these protrusions
come into contact with ECM ligands, forming focal contacts through the clustering of
adhesion proteins (step 2). To overcome the physical barrier that the components of the
ECM represent cells locally degrade the ECM substrate, via the activation of cell surface
proteases (proteolytic/degrading enzymes like MT1-MMP and uPA/uPAR), to create the
space necessary for migration (step 3). Actomyosin contraction (step 4), driven by the
binding of actin filaments to myosin II, results in the disassembly of focal adhesions in
the back of the cells (step 5). While weakening of adhesion strength occurs at the trailing
edge, substrate binding at the leading edge remains and elongation continues further.

A number of in vitro and in vivo studies suggest that cells move inside the surrounding
tissue by two different migration modes [18]: collective and individual. In the former, cells
move as solid strands, sheets or clusters, which are maintained by cell-to-cell adhesions.
Collective migration represents the predominant mechanism of invasion and metastasis in
lobular breast cancer, epithelial prostate cancer and large-cell lung cancer [17, 18]. It also
plays an important role in normal physiological functions, among them tissue repair and
embryological development [16]. Individual migration refers to the dissemination of single
cells once homophilic adhesions to neighboring cells have been broken [15, 18], it takes
place in the spreading of leukaemias, lymphomas and sarcomas [18].

Individual cell migration, in turn, exhibits two different phenotypes of movement: mes-
enchymal and amoeboid. The key difference between the two strategies of migration re-
sides in the mechanisms employed to cross the ECM barrier. In mesenchymal migration
the action of proteases is present, they execute degradation and remodeling of the local
extracellular environment, creating tube-like matrix defects along the path of migration
[18, 57]. Amoeboid migration, on the other hand, does not require proteolytic activation,
instead, cells squeez through narrow gaps in the ECM, suffering frequent modifications in
their shape without altering the ECM structure. The migration velocity represents an-
other difference in the modes of cell migration: mesenchymal cells are characterized by
developing strong and lasting focal contacts with the extracellular substratum, and these
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attributes make them move slowly, with velocities varying from 0.1 to 2 µm/min. In con-
trast, amoeboid cells are faster: achieving velocities up to 20 µm/min, they move inside
the tissue forming brief and weak focal adhesions with matrix fibres [37, 18]. In this work
we focus our study on mesenchymal migration.

1.2

The M5-Model

The main purpose of the current chapter is to introduce the transport model developed by
T. Hillen [24] for the movement of mesenchymal cells inside tissue. The model formulation
encompasses the cell motion within undirected tissues and inside directed tissues. In undi-
rected tissues the fibres are symmetric, so that the cells are unable to distinguish between
two opposite directions of migration. In directed tissues the fibres are asymmetric and the
two ends have a specific polarity (up/down, forward/backward). This is the one we are
interested in here.

It is assumed that the motion of each cell is governed by the velocity-jump process, in
which periods of straight motion called runs, alternate at discrete times with an instanta-
neous reorientation tumbling. It is also assumed that the preferred directions of movement
are determined by the angular distribution of the matrix fibres; this is the previously
mentioned contact guidance. In addition, the influence of cell-to-cell interactions (among
them, adhesion and contact inhibition) is neglected, which means that the cell movement
is dominated by cell-ECM interactions. Another assumption is that during migration cells
neither proliferate nor die, that is, cell density is conserved.

The transport model proposed by Hillen [24], hereafter referred to as the M5-Model,
for mesenchymal cell movement describing a velocity-jump processes inside directed tissues
reads

pt(x, t, v) + v � rp(x, t, v) = �µp(x, t, v) + µ
q(x, t, v̂)

ω
ρ(x, t),

qt(x, t, θ) = κ (Πd(x, t, θ)�Ad(x, t)) ρ(x, t)q(x, t, θ).
(1.1)

The function p(x, t, v) denotes the density of cells at location x 2 Rn, at time t � 0, moving
with velocity v 2 V . The velocity space V � Rn is radially symmetric and is given by
V = [s1, s2]� Sn�1, where 0 < s1 � s2 <1 is the range of all possible speeds and Sn�1 is
the unit sphere in Rn. The macroscopic cell density denoted by ρ(x, t) is the total amount
of cells at x and is calculated by

ρ(x, t) =

Z
V
p(x, t, v) dv.

The transport term v � rp represents the fact that every single cell moves with its own
velocity. The terms on the right-hand side of the first equation describe the reorientation
of the cells: cells turn away from velocity v with a turning rate µ > 0 (1/mean run-time)
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and choose velocity v with a probability q(x, t, v̂)/ω. Here we assume that µ is a constant,
but in principle it may depend on environmental factors like the number of cells and/or the
ECM density [6]. The probability density q(x, t, θ) describes the fibres at location x 2 Rn
and at time t � 0 with orientation θ 2 Sn�1, and satisfiesZ

Sn�1

q(x, t, θ) dθ = 1. (1.2)

We write v̂ to denote the unit vector v̂ = v/ kvk in direction of v, and ω denotes the weight
parameter defined by

ω =

� sn2�sn1
n , for s1 < s2,

sn�1, for s1 = s2 = s.

Hence, cells select the velocity v 2 V with a probability q(x, t, v̂)/ω, this reflects the effect
of contact guidance as a driver of cell migration. The quotient q/ω defines a probability
density in V and satisfies Z

V

q(x, t, v̂)

ω
dv = 1.

The constant κ > 0 denotes the rate of matrix degradation, which represents the proteolytic
action per cell on the ECM. Πd(x, t, θ) denotes the mean projection of the direction of cell
movement along a fibre with orientation θ, it is computed by

Πd(x, t, θ) =
1

ρ(x, t)

Z
V
θ � v̂ p(x, t, v) dv.

This is a measure of the encounter angle between the migrating cell population and fibres
with a given orientation θ. In other words, it gives the level of alignment of the cells with
such fibres. The major fibre cleavage occurs when cells move in a direction v̂ opposite to
that of the fibres (θ � v̂ = �1), which is when the movement turns out to be impossible
without destroying the fibres. Then, the mean projection is Πd(x, t, θ) = �1 when the
entire population displaces in counter direction of θ. Fibre degradation is also expected
when cells and matrix fibres meet at a right angle (θ � v̂ = 0); the value Πd(x, t, θ) = 0
corresponds to the situation when every cell has a direction of propagation orthogonal to
θ. In contrast, fibres oriented parallel to the movement direction (θ � v̂ = 1) are left intact,
as if all moving cells are aligned with θ then we have that Πd(x, t, θ) = 1.

The relative alignment is the mean value of the mean projections over all fibre direc-
tions, it measures the local aligment of cells and fibres. It is given by

Ad(x, t) =

Z
Sn�1

Πd(x, t, θ)q(x, t, θ) dθ.

1.2.1

The one-dimensional M5-model

In this work we are interested in the one-dimensional version of the transport model for
mesenchymal cell movement inside a directed tissue, which describes the case where mes-
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enchymal cell population moves within a directed tissue made up of highly aligned fibres.
The one-dimensional model may seem somewhat unrealistic, but indeed it is not. Us-
ing microphotopatterned ECM protein lines, Doyle and colleagues found in their research
that the 1D ECM topography closely mimics rapid cell spreading and uniaxial migration
triggered by oriented 3D ECM [8].

In a wide range of tissues of the human body, from myocardial to connective tissues,
tissue function is dictated by the cell and ECM organization [59]. In a recent study
Xing et al. used synthetic nanogratings to produce highly aligned nanofibrous natural
ECM scaffold. Their results revealed that such aligned scaffold can effectively support
human mesenchymal stem cells proliferation and has a superior inflammatory response in
comparison with its unaligned counterpart [59].

Human tissues composed of highly ordered arrays of matrix fibres is a significant part
of white matter tracts such as the corpus callosum of the human brain [2]. Using aligned
electrospun nanofibers, which mimic the white matter morphology, Johnson et al. [32]
provide evidence that malignant gliomas travel faster in aligned nanofibers when compared
to randomly organized nanofibers. On aligned fibers the effective velocities are 4.2 �
0.39µm/h while on random fibers are 0.8 � 0.08µm/h, values which closely match those
from experimental observations in vivo.

Below, we repeat Hillen’s derivation of the one-dimensional version the M5-model (see
[24]). It is assumed that the cell population moves with a fixed speed jvj = s; since in one
dimension cells can only move towards the right or the left, we have that S0 = f�1,+1g,
thus θ = �1, V = fsg � S0 and v̂ = �1.

We introduce the notation:

p�(x, t) = p(x, t,�s) and q�(x, t) = q(x, t,�1).

Condition (1.2), in this case, becomes

q+(x, t) + q�(x, t) = 1.

The mean projection on both directions, θ = �1, is calculated by the formula

Πd(x, t, θ) =
1

p+ + p�
�
θ(+1)p+ + θ(�1)p�

�
.

Defining

Π�d := Πd(x, t,�1) = �p
+ � p�

p+ + p�
,

the relative alignment comes from

Ad(x, t) = Π+
d q

+ + Π�d q
� =

p+ � p�

p+ + p�
�
q+ � q�

�
.

Then, according with the equation for q(x, t, θ) in (1.1) we arrive at

q+
t = κ

�
p+ � p�

� �
q� � q+ + 1

�
q+

and
q�t = κ

�
p+ � p�

� �
q� � q+ � 1

�
q�.



14

Therefore the one-dimensional M5-model reads:

p+
t + sp+

x = �µp+ + µq+
�
p+ + p�

�
,

p�t � sp�x = �µp� + µq�
�
p+ + p�

�
,

q+
t = κ

�
p+ � p�

� �
q� � q+ + 1

�
q+,

q�t = κ
�
p+ � p�

� �
q� � q+ � 1

�
q�.

(1.3)

In [56], Wang et al. proved that q+ +q� = 1 is an invariant manifold, this finding allows to
convert system (1.3) into a system of equations for the total cell population p = p+ + p�,
the population flux j = s(p+ � p�) and the probability of moving to the right q+. The
equivalent system writes as

pt + jx = 0,

jt + s2px = �µj + µs
�
2q+ � 1

�
p,

q+
t =

2κ

s
jq+

�
1� q+

�
.

(1.4)

In order to see the kind of movement patterns emerge during the invasion of the tissue
by the cells, Wang et al. [56] sought traveling wave solutions for system (1.4). The authors
showed the existence of standing and traveling pulse solutions for the population of invasive
cells and traveling front waves for the completely oriented fibres. Henceforth, our task will
be to study the structural nature and stability properties of these solutions.



CHAPTER

TWO

EXISTENCE AND NATURE OF M5-STANDING AND
TRAVELING WAVES

2.1

The Existence

We begin the chapter by exposing how the system of traveling wave equations is derived,
and by summing up the results of existence of standing and traveling wave solutions re-
ported by Wang et al. in [56].

Making use of the traveling wave ansatz,

p(x, t) = p̄(z), j(x, t) = j̄(z), q+(x, t) = q̄+(z), z = x� ct,

with wave speed 0 � c � s, system (1.4) turns into the system of ordinary differential
equations:

�cp̄z + j̄z = 0,

�cj̄z + s2p̄z = �µj̄ + µs
�
2q̄+ � 1

�
p̄,

�cq̄+
z =

2κ

s
j̄q̄+

�
1� q̄+

�
.

(2.1)

The solutions must satisfy the boundary conditions

lim
z!�1

p̄(z) = lim
z!�1

j̄(z) = 0,

lim
z!+1

q̄+(z) = q+
r ,

lim
z!�1

q̄+(z) = q+
l with 0 � q+

r < q+
l � 1.

(2.2)

As suggested by the boundary conditions, the solutions that are of interest are two
traveling pulses that approach the origin as z ! �1, and a traveling wave front joining
up q+

l and q+
r .

15
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The difference between the magnitudes of the boundary conditions for solution q̄+(z)
represents that the amount of right-oriented fibres changes as cells move along ECM fibres,
which is due to the ability of cells to reorient collagen fibres. The pulses mean that the
reoriented ECM structure, in turn, directs cells to form cellular aggregates with density
p̄(z).

The interesting thing about this kind of solutions is that they can give us an idea of
the potential effect of unidirectional scaffolds on the migratory behavior of cells, which is
relevant because of its applications in biomedicine. For example, Gallego-Perez et al. [19]
studied directional tumor cell migration guided by a 1D line-patterned microfabricated
platform. During the migration assay, time-lapse microscopy was used to track migratory
behaviors of glioblastoma multiforme (GBM), and adenocarcinoma of the lung and colon.
The results showed that all the tumor cells exhibited persistently unidirectional motility,
with percentages of unidirectionally of 84.0 � 3.5%, 58.3 � 6.8% and 69.4 � 5.4% for the
GBM, lung, and colon tumor cells, respectively. Jain et al. [31] have designed a promis-
ing technology for the treatment of GBM that exploits its migratory and invasive ability.
The authors fabricated a tumor guide consisting of aligned PCL nanofibres that provide
topographical cues that mimic blood vessels and white matter tracts. In their study, the
PLC guidance conduit was implanted near U87MG-eGFP human glioblastoma cells to
encourage unidirectional movement towards an extracortical sink containing an apoptosis-
inducing hydrogel. Jain et al. observed that the tumor volume in the brain, outside the
aligned fiber conduit, is significantly smaller in comparison with no implant. Current thera-
pies include surgical removal, radiotherapy and chemotherapy, however, in some cases, the
tumor may be inoperable because of the size or location. In some other cases, because
hypoxic tumor cells are resistant to radiation and to anticancer drugs, radiotherapy and
chemotherapy are ineffective to eliminate tumor cells. This technology brings new options
for brain cancer treatments, in which, cancer cells would be completely removed by direct-
ing inaccessible tumors to the surface of the brain to be surgically removed or by directing
cells to an apoptotic sink.

From the integration of the first equation in (2.1) and the boundary conditions, it is
obtained the invariant of motion

j̄ = cp̄. (2.3)

Substituting (2.3) into the last two equations of (2.1) produces the system�
c2 � s2

�
p̄z = µp̄

�
c� s(2q̄+ � 1)

�
,

q̄+
z = �2κ

s
p̄
�
1� q̄+

�
q̄+.

(2.4)

As noted by Wang et al. [56], when c = s the equation for p̄ becomes singular, then
it happens that q̄+ = 1 is a homogeneous steady solution, which means that the whole
cell population spreads to the right all the time. This solution, however, does not fit the
boundary conditions of the problem, therefore the case c = s is neglected. Thus, (2.4) is
written in the form

p̄z =
µ

c2 � s2
p̄
�
c� s

�
2q̄+ � 1

��
,

q̄+
z = �2κ

s
p̄
�
1� q̄+

�
q̄+.

(2.5)
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The system is characterized by having a continuum of steady states:�
(p̄, q̄+) j p̄ = 0, q̄+ = θ with 0 � θ � 1

	
.

Here θ does not denote fibres orientation as in Section 1.2; just for keeping the notation
of the authors in [56], hereinafter θ is a continuum probability parameter representing the
probability that cells move to the right.

It was shown by Wang et al. [56] that for every value of c on the interval 0 � c < s,
there is a critical value θ� = c+s

2s such that the steady state (0, θ) is stable for all 0 < θ < θ�,
and unstable for all θ� < θ < 1. More precisely, the authors proved the following.

Lemma 2.1. [56] Assume 0 � c < s. Let (p̄, q̄+) be a solution of (2.5) subject to initial
conditions p̄I > 0 and 0 < q̄+

I < 1. Then the ω-limit set of solutions to system (2.5) is
contained in the following set:

N =
�

(p̄, q̄+) j p̄ = 0, 0 < q̄+ < θ�
	
,

and the α-limit set is contained in the set

G =
�

(p̄, q̄+) j p̄ = 0, θ� < q̄+ < 1
	
,

where θ� is a constant between 0 and 1 determined by θ� = c+s
2s .

In view of the foregoing, a traveling (or a standing) wave solution is determined by
a heteroclinic orbit departing from a left steady state (0, q+

l ), with θ� < q+
l < 1, and

asymptotically arriving at some right steady state (0, q+
r ), with 0 < q+

r < θ�. In regard to
q̄+ = 0 and q̄+ = 1, by solving (2.5) it is seen that if q̄+ = 0 then p̄ ! +1 as z ! �1,
and that when q̄+ = 1, p̄ ! +1 as z ! +1. This implies that neither a heteroclinic
connection to (0, 0), nor a heteroclinic connection from (0, 1), have the chance to exist.

The results on existence of standing and traveling wave solutions obtained by Wang et
al. [56] are stated as follows:

Theorem 2.2. [56] Let us consider the system (2.5) given traveling speed c with 0 � c < s
and θ� = c+s

2s . Then for any equilibrium (0, c1) with θ� < c1 < 1 there exists another
equilibrium (0, c2) with 0 < c2 < θ� such that there is a bounded, nonnegative, heteroclinic
orbit connecting (0, c1) to (0, c2). That is, there exists a traveling solution (p̄, q̄+) of the
system (2.5) connecting two equilibria. Particularly, the system (2.5) admits a standing
wave for c = 0.

According to Theorem 2.2 we have for the boundary conditions (2.2) that 0 < q+
r < θ�

and θ� < q+
l < 1. Moreover, we have that every left steady state (0, q+

l ) connects with
some right steady state (0, q+

r ). Indeed, in [56] Wang et al. derived a relation between the
left end state q+

l and the right end state q+
r by proving the following
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Figure 2.1: Family of heteroclinic orbits corresponding to a fixed wave speed c. Arrows
indicate the direction of the trajectories. The wave speed is c = 0.25µm/min and we have
taken s = 0.5µm/min, µ = 0.05/min and κ = 0.1. Parameter values were obtained from
[41].

Lemma 2.3. [56] Given a speed c satisfying 0 � c < s, the left and right equilibria (0, q+
l )

and (0, q+
r ) are related as

�
1� q+

r

1� q+
l

�s�c
=

�
q+
l

q+
r

�s+c
, 0 � c < s. (2.6)

Theorem 2.2 tell us that for every c fixed, system (2.5) admits a family of traveling
wave pairs (p̄, q̄+), in which p̄ is a pulse for the total cell population and q̄+ is a probabilty
density front. Each one of these families corresponds to a family of heteroclinic orbits
like the one portrayed in Figure 2.1. The families are different from one another; due to
relation (2.6) every couple of orbits that share the same left equilibrium point (0, q+

l ), but
are indexed by different wave speeds, do not have the same right equilibrium point. In
terms of the wave fronts this means that two wave fronts starting at the same left end q+

l ,
propagating with different speeds, will converge to different right ends. This issue will be
discussed in greater depth in the following section.

Another remarkable feature of the solutions is that all members of the families of
traveling waves are invariant under the translation x ! x + a, with a 2 R, which is
grounded in the fact that system (2.5) is autonomous.
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2.2

The Nature of the M5-Traveling Waves

The aforementioned heteroclinic orbits were computed explicitly by Wang et al. [56], which
are given by the formula

p̄(q̄+) =
µs

2κ
ln

"�
1� q̄+

1� q+
l

� 1
c+s
�
q̄+

q+
l

� 1
s�c
#
. (2.7)

From this expression it is manifest that the heteroclinic trajectory is a function of c and
the left end state q+

l . Wang et al. found that for fixed values of c and q+
l , p̄(q̄+) reaches

its maximum value when q̄+ = θ�, which is

p̄max =
µs

2κ
ln

"�
1� θ�

1� q+
l

� 1
c+s
�
θ�

q+
l

� 1
s�c
#
, θ� =

c+ s

2s
. (2.8)

For the traveling wave pair (p̄, q̄+) this means that the pulse p̄ attains its maximum
value at the point where the wave front q̄+ takes the value θ�. In addition, Wang et
al. stand out that within a family of traveling wave pairs propagating with speed c, the
amplitude p̄max of the family of pulses is an increasing function with respect to q+

l (see
Figure 2.2 (a)). Concerning the fronts within a familiy of traveling waves, we estabish
below the relationship between their amplitude q+

l � q
+
r and the left end q+

l . Going a little
further, we characterize the dependence of p̄max and the amplitude of q̄+ on the wave speed
c, that is to say, we characterize their behaviour among families with distinct wave speeds.

2.2.1

Within a family

As with pulses, the change in the amplitude of wave fronts spreading with the same speed
is correlated with the left end q+

l . In Figure 2.2 (b), for wave fronts with a fixed wave
speed, we notice that the amplitude grows as q+

l moves up away from θ� since q+
r in turn

goes down to zero. More concretely, we have the following result.

Proposition 2.4. Let c be a given wave speed. Then the right end q+
r is a decreasing

function of the left end.

Proof. We use (2.6) to obtain

∂q+
r

∂q+
l

=

�
2sq+

l � (s+ c)
�
q+
r (1� q+

r )�
2sq+

r � (s+ c)
�
q+
l

�
1� q+

l

� .
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(a)

𝑝  

𝑧 

(b)

𝑞 + 

𝑧 

Ѳ∗ 

Figure 2.2: Illustration of a family of traveling waves of fixed wave speed in which the
members are parametrized by the left end q+

l . Parameters are s = 0.5µm/min, c =
0.25µm/min, µ = 0.05/min and κ = 0.1. (a) p̄max increases as q+

l increases; the shortest
pulse is produced by q+

l = 0.85, the middle one by q+
l = 9 and the tallest one by q+

l = 0.99.
(b) q+

r decreases with respect to q+
l ; q+

l = 0.85 bears the biggest right end, q+
r � 0.6279,

q+
l = 0.9 bears the middle one, q+

r � 0.5419, and q+
l = 0.99 the smallest one, q+

r � 0.2330.

By Theorem 2.2, 2sq+
l � (s+ c) > 0 and 2sq+

r � (s+ c) < 0, hence, since 0 < q+
r , q

+
l < 1,

we conclude that ∂q+
r /∂q

+
l < 0.

Proposition 2.4 and the positive relation between p̄max and q+
l gives us good grounds

for saying that, according to the M5-model, cells form big assemblies when they face zones
containing in great abundance fibres pointing in a direction opposite to that of motion,
and that such assemblies leave in their wake a track of fibres aligned predominantly in the
direction of propagation. For our population of cell moving to the right, this translates to
q+
r almost zero and q+

l close to 1.

On the other hand, small cellular aggregates are expected in regions where matrix
fibres are more or less aligned with the direction of motion, in this case matrix suffers
minor changes after passage of such aggregates. The present situation corresponds to q+

r

nearby θ� and both q+
l � q

+
r and p̄max small.

On these facts, there is enough evidence to conclude that the larger is the pulse the
wider is the wave front.
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2.2.2

Among families

In the current work we have discovered that among cellular aggregates that leave behind
almost the same orientation distribution of fibres, those of larger amplitude propagate
slower than the ones of lower amplitude (see Proposition 2.5 below). Based on this result, it
becomes evident that the M5-model suggests that dense cellular aggregates spread through
the host tissue at speeds below those at which less dense cellular accumulations propagate.

In terms of pulses and wave fronts, cellular aggregates that generate similar trails of
realigned matrix are traveling pulses that are associated to wave fronts with the same left
end q+

l . Then we have obtained the following:

Proposition 2.5. Let q+
l be a given left state. Then the maximum value p̄max is a decreasing

function of the wave speed.

Proof. Taking a derivative in the parameter c in (2.8), we get

∂p̄max

∂c
=
µs

2κ

�
1

(c+ s)2

�
ln(1� q+

l )� ln(1� θ�)
�

+
1

(s� c)2

�
ln(θ�)� ln(q+

l )
��

.

Since q+
l > θ�, we have that ln(1 � q+

l ) < ln(1� θ�) and ln(θ�) < ln(q+
l ) for all c 2 [0, s),

and therefore ∂p̄max/∂c < 0.

To illustrate Proposition 2.5, in Figure 2.3 (a) depicts traveling pulse solutions gener-
ated by the same boundary condition q+

l and different speeds. The smallest value assigned
to c in system (2.5) gave rise to the tallest pulse.

As we have seen before, small pulses and flat wave fronts (q+
l � q

+
r small) coexist, thus

for the present case where q+
l is fixed and p̄max reduces as the pulse p̄ goes faster, q+

r needs
to increase to reduce the size of the difference q+

l � q
+
r . The following result relates q+

r

with the wave speed.

Proposition 2.6. Fix q+
l . Then the right end q+

r is an increasing function of the wave
speed.

Proof. We differentiate implicitly relation (2.6) with respect to c to get the partial deriva-
tive of q+

r with respect to c. Thus

∂q+
r

∂c
= �

q+
r (1� q+

r ) ln
�
(1� q+

r ) q+
l /
�
1� q+

l

�
q+
r

�
2sq+

r � (s+ c)
;

Given that 0 < q+
r < q+

l < 1, it is not hard to check that (1� q+
r ) q+

l /
�
1� q+

l

�
q+
r > 1;

therefore ∂q+
r /∂c > 0 because θ� > q+

r .
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(a)

𝑝  

𝑧 

(b)

𝑞 + 

𝑧 

Figure 2.3: Members of three families of traveling waves moving with different speeds; one
member per family, all of them are indexed by the same left end q+

l . Parameters are set as
s = 0.5µm/min, µ = 0.05/min, κ = 0.1 and q+

l = 0.95. (a) p̄max decreases as c increases;
the tallest pulse corresponds to c = 0µm/min, the middle one to c = 0.25µm/min and
the shortest one to c = 0.35µm/min. (b) q+

r increases with respect to c; c = 0 carries to
the smallest right end, q+

r � 0.05, c = 0.25 carries to the middle one, q+
r � 0.4195, and

c = 0.35 to the biggest one, q+
r � 0.6875.

Plots in Figure 2.3 (b) correspond to wave fronts having the same left end q+
l and

different speeds; we observe that the faster is the front, narrower is the amplitude. We also
observe in Figure 2.3 that flat wave fronts are associated to short pulses.

2.3

Exponential Convergence

In this section we analyze the asymptotic behaviour of the traveling waves as z ! �1. We
deduce that for each c in the interval 0 � c < s the pulses and fronts tend exponentially
toward their limits.
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Lemma 2.7. Traveling wave solutions p̄ and q̄+ satisfy��di/dzi �q̄+ (z)� q+
r

��� � C exp

�
�(c+ s� 2sq+

r )µ

s2 � c2
z

�
, as z ! +1,

��di/dzi �q̄+ (z)� q+
l

��� � C exp

�
�

(c+ s� 2sq+
l )µ

s2 � c2
z

�
, as z ! �1,

��di/dzi (p̄ (z))
�� � C exp

�
�(c+ s� 2sq+

r )µ

s2 � c2
z

�
, as z ! +1,

��di/dzi (p̄ (z))
�� � C exp

�
�

(c+ s� 2sq+
l )µ

s2 � c2
z

�
, as z ! �1,

(2.9)

for i = 0, 1, and some uniform C > 0.

Proof. We begin by obtaining an uncoupled differential equation for q̄+. Upon substituting
formula (2.7) into the equation for q̄+ in (2.5) we arrive at

q̄+
z = �µ ln

"�
1� q̄+

1� q+
l

� 1
c+s
�
q̄+

q+
l

� 1
s�c
# �

1� q̄+
�
q̄+. (2.10)

Computing the Taylor series of the right-hand side of this equation we find that, as z !
+1.

q̄+
z = �(c+ s� 2sq+

r )µ

s2 � c2
(q̄+ � q+

r ) +O
�
(q̄+ � q+

r )2
�
, (2.11)

and, that

q̄+
z = �

(c+ s� 2sq+
l )µ

s2 � c2
(q̄+ � q+

l ) +O
�
(q̄+ � q+

l )2
�
, (2.12)

as z ! �1. Hence, from (2.11) we obtain��q̄+ (z)� q+
r

�� � C1 exp

�
�(c+ s� 2sq+

r )µ

s2 � c2
z

�
, (2.13)

as z ! +1, for some constant C1 > 0. In addition, upon substituting (2.13) into (2.11),
we get that��d/dz �q̄+ (z)� q+

r

��� � (c+ s� 2sq+
r )µ

s2 � c2
C1 exp

�
�(c+ s� 2sq+

r )µ

s2 � c2
z

�
,

as z ! +1.
Likewise, from (2.12) we have that

��q̄+ (z)� q+
l

�� � C2 exp

�
�

(c+ s� 2sq+
l )µ

s2 � c2
z

�
, (2.14)

as z ! �1, for some constant C2 > 0. In view of this, we use (2.12) and (2.14) to get

��d/dz �q̄+ (z)� q+
l

��� � �(c+ s� 2sq+
l )µ

s2 � c2
C2 exp

�
�

(c+ s� 2sq+
l )µ

s2 � c2
z

�
,
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as z ! �1.
Proceeding analogously as before, it results from equation (2.7) that

p̄(q̄+) =
µs(c+ s� 2sq+

r )

2κq+
r (1� q+

r )(s2 � c2)
(q̄+ � q+

r ) +O
�
(q̄+ � q+

r )2
�
, (2.15)

as z ! +1, and also that

p̄(q̄+) =
µs(c+ s� 2sq+

l )

2κq+
l (1� q+

l )(s2 � c2)
(q̄+ � q+

l ) +O
�
(q̄+ � q+

l )2
�
, (2.16)

as z ! �1.
We substitute (2.13) into the absolute value of (2.15) to obtain

jp̄(z)j � µs(c+ s� 2sq+
r )

2κq+
r (1� q+

r )(s2 � c2)
C1 exp

�
�(c+ s� 2sq+

r )µ

s2 � c2
z

�
, (2.17)

as z ! +1. Similarly, from (2.14) and (2.16) we can deduce that, as z ! �1,

jp̄(z)j � �
µs(c+ s� 2sq+

l )

2κq+
l (1� q+

l )(s2 � c2)
C2 exp

�
�

(c+ s� 2sq+
l )µ

s2 � c2
z

�
. (2.18)

Write now the equation for p̄ in (2.5) as

p̄z =
µ

c2 � s2
p̄[c+ s� 2sq+

r � 2s(q+ � q+
r )]. (2.19)

Upon substituting (2.13) and (2.17) into (2.19) we find that p̄z satisfies

jdp̄/dzj � µ2s(c+ s� 2sq+
r )2

2κq+
r (1� q+

r )(s2 � c2)2
C1 exp

�
�(c+ s� 2sq+

r )µ

s2 � c2
z

�
,

as z ! +1.
In a similar manner, (2.14) and (2.18) lead to

jdp̄/dzj �
µ2s(c+ s� 2sq+

l )2

2κq+
l (1� q+

l )(s2 � c2)2
C2 exp

�
�

(c+ s� 2sq+
l )µ

s2 � c2
z

�
,

as z ! �1.
Finally, we let C be the upper bound of all constant terms that multiply the exponential

functions.



CHAPTER

THREE

APPROXIMATE TRAVELING WAVE SOLUTIONS AND EXACT
STANDING WAVE SOLUTIONS

3.1

The Approximation

With the aim of approximating the traveling wave front solution of the one-dimensional
Fisher-Kolmogoroff equation, Petrovskii et al. use in [47] a piecewise linear function to
approximate the nonlinear term that describes the logistic population growth. As a result,
upon substituting the traveling wave ansatz, they obtain two exactly solvable linear ODEs
instead of one nonlinear ODE. For a population density in the interval [0, 1], one of the
equations is for the dynamics of the population with density in the interval

�
1
2 , 1
�

over the
left-half of the traveling axis; the other one is defined in the complement of the traveling
axis for the dynamics of the population with density between 0 and 1

2 . Under appropriate
boundary conditions Petrovskii et al. match the solutions of the two ODEs, obtaining in
this way an approximate continuous decreasing wave front that connects 1 to 0.

With a different approach, for a one-dimensional Fisher equation with degenerate dif-
fusion, Sánchez-Garduño and Maini obtained in [51] an approximation to its sharp front
solution. The sharp corresponds to a saddle-saddle heteroclinic trajectory connecting the
stationary points (1, 0) and (0, 0) of the system of first-order ODEs that arise from putting
the degenerate Fisher equation into a traveling coordinate system. The authors use a
perturbation method to obtain an analytic approximation of the heteroclinic trajectory,
through which they decouple the equation for the sharp in the system of ODEs. Then the
approximate sharp front arises from solving that equation.

Inspired by the ideas developed in [47] and [51], in this chapter we obtain exactly solv-
able approximate equations for system (2.5), intended to obtain analytic approximations
to the pulse and wave front solutions.

Our analysis departs from the uncoupled differential equation for q̄+ gotten in the
proof of Lemma 2.7 (see Eq. (2.10)). In this chapter, for ease of notation, we drop the
superscripts on p̄ and q̄+, then equation (2.10) reads

25
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𝑞 + 

𝑃2 𝑞 +  

𝑞 𝑧
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Figure 3.1: q+
z (solid line) is approximated by quadratic polynomial P2(q+) (dashed line).

Parameters values are set at s = 0.5µm/min, c = 0.25µm/min, µ = 0.05/min and q+
l =

0.95.

q+
z = �µ ln

"�
1� q+

1� q+
l

� 1
c+s
�
q+

q+
l

� 1
s�c
# �

1� q+
�
q+. (3.1)

As required, q+
l and q+

r are steady states of equation (3.1). Clearly, function on the right-
hand side in (3.1) is 0 at q+

l . On the other hand, due to relation (2.6), the argument of
the logarithmic term is equal to 1 at q+

r , implying that q+
z is zero as promised. In Figure

3.1 we show the graphic of q+
z , as a function of q+, for specific values of the parameters.

In view that the plot resembles a parabola we approximate the right-hand side in (3.1)
by a quadratic function (see Figure 3.1), for this purpose we use the Lagrange polynomial
method.

In order to construct the interpolating polynomial we choose three values of q+: q+
r ,

θ� and q+
l . We have taken q+

r and q+
l to ensure that they remain as steady states, and we

take q+ = θ� for the sole reason that we know that it lies between q+
r and q+

l .
Since (3.1) vanishes at q+

r and q+
l , it is not hard to see that the Lagrange polynomial

that interpolates q+
z (as a function of q+) is

P2(q+) = β0(q+ � q+
r )(q+ � q+

l ),

where

β0 = �µ ln

"�
1� θ�

1� q+
l

� 1
c+s
�
θ�

q+
l

� 1
s�c
#

(1� θ�)θ�

(θ� � q+
r )(θ� � q+

l )
.

In this manner, the approximate equation for q+ takes the form

d

dz
q+
app = �β0(q+

app � q+
r )(q+

l � q
+
app). (3.2)
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We consider the initial condition q+
app(0) = θ�, the initial point is arbitrary because of the

translational invariance of (3.2).
The problem can be solved by separation of variables, thusZ

dq+
app

(q+
app � q+

r )(q+
l � q+

app)
= �β0 (z � z0) , (3.3)

where z0 is the integration constant.
Computing the integral in the left-hand side of (3.3), yields

1

q+
l � q

+
r

ln

 
q+
app � q+

r

q+
l � q+

app

!
= �β0 (z � z0) .

The approximate wave front takes the following form:

q+
app(z) =

γq+
r e

βz + q+
l

γeβz + 1
, (3.4)

where

β = (q+
l � q

+
r )β0 and γ =

q+
l � θ

�

θ� � q+
r
.

We now substitute (3.4) into the equation for p in (2.5) in order to obtain the equation
for the approximate pulse. Therefore we have to solve

d

dz
papp =

µ

c2 � s2
papp

 
c+ s� 2s

 
γq+

r e
βz + q+

l

γeβz + 1

!!
. (3.5)

According to the analysis performed in Chapter 2, the pulse p takes the value pmax in the
same point where q+ passes through θ�, thus the initial condition for (3.5) is papp(0) = pmax.

Separating variables and then integrating from 0 up to z gives

ln papp(z)� ln pmax =
µ

c2 � s2

 
(c+ s)z � 2s

Z z

0

γq+
r e

βτ + q+
l

γeβτ + 1
dτ

!

=
µ

c2 � s2

 
(c+ s)z + ln

�
γ + 1

γeβz + 1

� 2s
β
q+r

� 2sq+
l

Z z

0

dτ

γeβτ + 1

!
.

(3.6)

We calculate the remaining integral by setting

τ =
1

β
ln y, dτ =

dy

βy
.

Making this, we haveZ z

0

dτ

γeβτ + 1
=

1

β

Z eβz

1

dy

y(γy + 1)
= z + ln

�
γ + 1

γeβz + 1

� 1
β

. (3.7)
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Figure 3.2: Comparison of the approximate solutions (dashed lines) with the numeri-
cally computed traveling wave solutions (solid lines) obtained for the parameters s =
0.5µm/min, c = 0.35µm/min, µ = 0.05/min, κ = 0.1, (a) q+

l = 0.99 and (b) q+
l = 0.89.

Substituting (3.7) into (3.6), we get

ln papp(z)− ln pmax =
µ

c2 − s2

 
(c+ s− 2sq+

l )z + ln

�
γ + 1

γeβz + 1

� 2s
β
q+r

+ ln

�
γ + 1

γeβz + 1

�− 2s
β
q+l
!

=
µ

c2 − s2

 
(c+ s− 2sq+

l )z + ln

�
γ + 1

γeβz + 1

� 2s
β

(q+r −q+l )
!
.

Therefore papp is given by

papp(z) = pmax

�
γ + 1

γeβz + 1

� 2µs

β(s2−c2)
(q+l −q

+
r )

exp

�
−

(c+ s− 2sq+
l )µ

s2 − c2
z

�
. (3.8)

In Figures 3.2 and 3.3 we compare the approximate solutions (3.8) and (3.4) with
the numerical solutions of (2.5). Upon using Maple, parameter q+

r was computed from
equation (2.6) for each given value of q+

l . It is observed that the agreement between the
analytic approximate solutions and the numerically computed solutions is not quite good
enough for the pulses featuring large amplitudes. The difference between the analytic and
approximate wave fronts of large amplitud seems not to be significant, since (3.4) preserves
the form and the steepness of the fronts. With regard to pulses of small amplitude, (3.8)
fits very well with the numerical solution. Since the length of the pulses and the amplitude
of the fronts change with respect to q+

l , from these observations it may be concluded that
the smaller is q+

l the better are the approximations.
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Figure 3.3: Comparison of the approximate solutions (dashed lines) with the numeri-
cally computed traveling wave solutions (solid lines) obtained for the parameters s =
0.5µm/min, c = 0.25µm/min, µ = 0.05/min, κ = 0.1, (a) q+

l = 0.95 and (b) q+
l = 0.80.

3.2

The Approximate-but-Exact Stationary Wave Profiles

In the standing case c = 0, in which case z = x, the approximate solutions (3.8) and (3.4)
of system (2.5) are indeed exact stationary wave solutions of system (1.4). The reason is
that in the stationary version of system (1.4) one of the equations is jx = 0, which by
the boundary conditions (2.2) implies that j is indentically zero. Then, as a consequence,
any function q+ solves the third stationary equation in (1.4). Thus the stationary problem
reduces to solving the scalar equation

px =
µ

s

(
2q+ − 1

�
p, (3.9)

with p(�1) = 0, for any given function q+ satisfying (2.2). But this problem has already
been solved, since q+

app satisfies (2.2) and papp solves (3.9) under the prescribed boundary
conditions.
In the present case, where c = 0, for a wave front of amplitude ε = q+

l − q
+
r , 0 < ε < 1,

one can find that

q+
l =

1

2
(1 + ε) and q+

r =
1

2
(1− ε). (3.10)
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Figure 3.4: Comparison of the approximate solutions (dashed lines) with the numeri-
cally computed traveling wave solutions (solid lines) obtained for the parameters s =
0.5µm/min, c = 0µm/min, µ = 0.05/min, κ = 0.1, (a) q+

l = 0.95 and (b) q+
l = 0.55.

Thanks to this result, (3.8) and (3.4) can be written as

p0 (x) =
βsε

2κ

�
sech

�
βx

2

�� 2µε
βs

and q+
0 (x) =

1

2
− ε

2
tanh

�
βx

2

�
,

respectively; with

β =
µ

sε
ln

�
1

1− ε2

�
.

The form that take the standing solutions (3.2) may look more familiar; p0 (x) resembles
the solitary wave solution of the generalized KdV equation and q0 (x) is similar to wave
profiles in equations of gas dynamics, see for example [46] and [60].

In Figure 3.4 we again observe that better approximations are produced when we reduce
the amplitudes of the wave profiles.

In summary, p0 and q+
0 together with j � 0 are stationary solutions of (1.4), but this

couple of functions do not solve system (2.5).
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FOUR

SPECTRAL STABILITY IN THE FAMILY OF M5�STANDING
WAVES

4.1

Motivating the Analysis of Stability

ECM fibres alignment has a crucial role in normal tissue development and homeostasis;
since their particular orientation endows tissues their functional properties. For example,
tissues in muskoloskeletal system have a highly organized structure: skeletal muscle is
composed of aligned bundles of multinucleated spindle shaped myotubes formed by the
fusion of myoblasts [45]. This alignment provides mechanical properties to such tissues;
in tendons and ligaments, collagen fibers align in parallel bundles along the direction of
greatest tension [3]. Similarly, the myocardium is a highly organized tissue comprised of
cardiomyocytes and fibroblasts, which facilitate the coordinated electrical and mechanical
signal propagation among the cardiac muscle [38]. On the other hand, neurite outgrowth
extends directionally parallel to uniaxially aligned ECM pathways [36].

Whether due to traumatic injury, muscular dystrophy or aging, damaged tissue often
can neither be repaired nor recover in a satisfactory way, as a consequence, native tissue
properties are not completely regenerated and tissue mechanical quality is inferior. Focused
on the development of engineered tissues capable of repairing, maintaining, or improving
the function of native tissues that are defective due to pathological conditions, the growing
tissue engineering applies principles and methods of engineering, material science, and cell
and molecular biology. A persistent challenge in tissue regeneration is to devise adequate
structural templates capable of guiding the assembly of cells and ECM into such arrange-
ments that the physical and mechanical properties of the undamaged tissue are maintained
[54]. For example, Huang et al. [27] report that fabricated micron scale micropatterned
PDMS, with parallel microgrooves, can promote myoblast cellular alignment along the di-
rection of the microgrooves. In contrast, non-patterned PDMS films, with arbitrary axes
of alignment, were unable to promote cell alignment, as myocytes remained randomly ori-
ented after 7 days in culture. According to Huang et al., creating aligned skeletal muscle
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has potential for the treatment of muscular injury or muscular dysfunction. Singh et al.
[54] utilized a striped pattern to direct fibroblasts. The authors used NIH 3T3 fibroblasts
plated on a micron scale stripe-patterned ECM/PET substrate. Singh et al. have observed
that fibroblasts spread in alignment with the pattern. After 10 days of seeded, fibroblasts
assembled fibronectin ECM fibrils parallelly aligned to the underlying patterned stripes.
The authors showed that oriented neurite outgrowt is supported by such cell-assembled
aligned ECM. Their system provides a template for studying the effects of alignment in
nervous system repair devices. These two studies suggest that, once ECM alignment is
achieved, cells will orient in line with the underlying pattern. And conversely, that it will
result in an aligned ECM arrangement from aligned patterned cell cultures.

All this highlights the importance of spatial alignment in functional tissues and their
potential clinical uses. Therefore, maintaining the structural integrity of the ECM is an
important aspect as the orientation of the fibers influences the cell mass needed for tissue
structure and function, or allows guiding invasive brain tumor cells for a complete removal
(see Chapter 2).

During the previous chapters we have seen that the M5-model suggests that cellular
aggregates have no characteristic sizes and that these might depend on their wave speed.
Such difference in the sizes leads to different topographic patterns. We would like to iden-
tify, according to the model, which of the paths of reoriented fibres, formed by spreading
pulse-shaped aggregates, can persists over a long time. This question is associated with the
concept of orbital asymptotic stability, which refers to whether a solution to (1.4) starting
close to a certain standing- or traveling-wave profile will tend to some translate thereof as
time increases.

Recently, in a study on stability of traveling waves in nonstrictly hyperbolic systems,
Rottmann-Matthes [49] proved linear stability—the decay of the solutions of a linearized
PDE-system around the wave profiles—from the spectral stability of traveling wave solu-
tions in systems of the form

vt = Bvx + f(v). (4.1)

Later, based on linear estimates from [49], Rottmann-Matthes showed in [50] nonlinear
asymptotic stability with asymptotic phase of a traveling wave. Their results apply to
systems where f 2 C3(Rm;Rm) and B 2 Rm�m is a diagonal matrix with diagonal entries
b11 � � � � � bmm.

In a moving frame, the linearization of (4.1) aroud a traveling wave v with wave speed
λ writes

vt = (λI +B)vx + fv(v)v =: (λI +B)vx + C(x)v =: Pv. (4.2)

Rottmann-Matthes considers the following assumptions on the linear operator P :

1. λI +B 2 Rm�m is an invertible diagonal matrix with r positive and m� r negative
eigenvalues.

2. C is a matrix valued function in C1
b (R,Rm�m) having the limits

lim
x!�1

C(x) = C� and lim
x!�1

Cx(x) = 0.
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3. There is δ > 0 so that s 2 fs 2 C j det(sI � iω(λI +B)� C�)g for some ω 2 R
implies Res � �δ.

4. Zero is an algebraically simple eigenvalue of P and σpt(P )\fRes > �δg = f0g, with
σpt(P ) denoting the point spectrum of P .

The results of Rottmann-Matthes were a source of motivation to study the spectral
stability of the standing and traveling wave solutions of the one-dimesional M5-model. In
this chapter, we show that the members of the family of standing waves are spectrally
stable. We have found from our investigation that the results of Rottmann-Matthes [50]
do not cover the standing case since several of the assumptions can not be satisfied. Up
to now we have not found a way to overcome such a difficulty and the question about
the asymptotic stability of the standing pulses and wave fronts remains open. The results
presented in this chapter may be seen as the first step in the search of nonlinear stability
of such standing wave profiles and as our contribution to the theory of spectral stability.
All of the results in the chapter have recently been published in [7].

Notation. Throughout this and the next chapter, L2 denotes the space of all square inte-
grable functions on R with norm kfkL2 = (

R
R jf(x)j2 dx)1/2. We denote by Hn (n � 1) the

usual Sobolev space on R with norm kfkHn = (
Pn

i=0

∂ixf2

L2)1/2.

4.2

The Spectral Problem

This section is concerned with the formulation of the spectral stability problem for the
members of the family of standing wave solutions of system (1.4), whose existence and
structure has been established by the results of Theorem 2.2, Lemma 2.3 and the results
derived therefrom (see Section 2.2). All members of this family consist of a function
identically zero, j̄ � 0, which emerges from taking c = 0 in formula (2.3), and a wave
profile (p̄, q̄+) that satisfies system (2.5). For c = 0, the latter reads

p̄x =
µ

s
p̄(2q̄+ � 1),

q̄+
x = �2κ

s
p̄
�
1� q̄+

�
q̄+,

(4.3)

and is subject to the boundary conditions p̄(�1) = 0, q̄+(�1) = q+
l and q̄+(+1) = q+

r ,
where q+

l and q+
r are given by (3.10).

To study the spectral stability, for each member (p̄(x), j̄(x), q̄+(x)) of the family of
standing waves we consider a solution to system (1.4) of the form

(p(x, t), j(x, t), q+(x, t)) = (p̄(x), 0, q̄+(x)) + (p̃(x, t), j̃(x, t), q̃+(x, t)), (4.4)
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where p̃(x, t), j̃(x, t) and q̃+(x, t) are perturbations. Perturbations initially small at time
t = 0 may not remain so, indeed their moduli may grow in time without bound. For
example, in [11], certain solutions to a class of KleinGordon-type equations with initial
data arbitrarily close to traveling wave solutions blow up in finite time.

We substitute (4.4) into (1.4), getting a nonlinear system for p̃, j̃ and q̃+:

p̃t = �j̃z,
j̃t = �s2p̃z � µj̃ + µs

��
2q̄+ � 1

�
p̃+ 2p̄q̃+ + 2p̃q̃+

�
,

q̃+
t =

2κ

s

�
q̄+
�
1� q̄+

�
j̃ + (1� 2q̄+)j̃q̃+ � j̃(q̃+)2

�
.

Then, we neglect the nonlinear terms in the perturbations in order to obtain a linearized
system around the wave profiles:

p̃t = �j̃x,
j̃t = �s2p̃x � µj̃ + µs

��
2q̄+� 1

�
p̃+ 2p̄q̃+

�
,

q̃+
t =

2κ

s
q̄+
�
1� q̄+

�
j̃.

Upon seeking for perturbations of the form eλtp(x), eλtj(x) and eλtq+(x), with λ 2 C, one
obtains the spectral problem

λp = �jx,
λj = �s2px � µj + µs

��
2q̄+� 1

�
p+ 2p̄q+

�
,

λq+ =
2κ

s
q̄+
�
1� q̄+

�
j.

(4.5)

We are interested in solutions of problem (4.5) in the Sobolev space H1(R;C3). We
start our study by giving some definitions used in the stability theory [33].

Definition 4.1. Let X be a Banach space and let L : D(L)! X be a linear operator with
dense domain D(L) � X . The resolvent set of L is the set of all numbers λ 2 C such that
the operator L� λI has a bounded inverse. The complement of the resolvent is called the
spectrum σ(L). We say that λ 2 σ(L) is an eigenvalue of L if L � λI has a nontrivial
kernel.

Definition 4.2. Let L : D(L) ! X be a linear, closed, densely defined operator. Its
spectrum is divided into the point spectrum σpt(L), which is composed of those eigenvalues
λ such that L� λI is Fredholm with index zero, and the essential spectrum σess(L) which
is the complementary part; σess(L) = σ(L)nσpt(L).

Recall that a linear operator L : X ! Y is said to be a Fredholm operator whenever
its range R(L) is closed, and dim[N(L)] and codim[R(L)] are both finite.
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Remark 1. In general, the point spectrum does not represent the entire set of eigenvalues
since some eigenvalues may belong to the essential spectrum. Indeed, we show in Lemma
4.4 immediately below that λ = 0 is an eigenvalue, but nevertheless it does not lie in the
point spectrum; it belongs to the essential spectrum instead because the operator fails to
be Fredholm. The same situation occurs in combustion fronts [20], KdV solitons [46] and
fronts in isothermal autocatalytic chemical reactions [58], just to mention a few.

The spectral problem (4.5) can be written in operator notation as

L

0@ p
j
q+

1A = λ

0@ p
j
q+

1A ,

0@ p
j
q+

1A 2 H1(R;C3),

where the operator L : H1(R;C3)! L2(R;C3) is defined by

L =

0@ 0 �∂x 0
�s2∂x + µs(2q̄+ � 1) �µ 2µsp̄

0 2κ
s q̄

+(1� q̄+) 0

1A .

Definition 4.3. Let (p̄(x), q̄+(x)) be a wave solution given by system (4.3), and let j̄(x) be
an identically zero function. We say that the triad (p̄(x), j̄(x), q̄+(x)) is spectrally stable if
no element of the spectrum of L has strictly positive real part; that is

σ(L) \ fλ 2 C j Reλ � 0g = f0g .

Otherwise, the triad is spectrally unstable.

Lemma 4.4. λ = 0 is an eigenvalue of L embedded in the essential spectrum with an
infinite dimensional eigenspace.

Proof. Take λ = 0 in the spectral system (4.5); since j must belong to H1(R;C), from the
first equation in (4.5) it immediately follows that j � 0. Therefore, it all comes down to
solve the differential equation

�s2px + µs
��

2q̄+ � 1
�
p+ 2p̄q+

�
= 0. (4.6)

The problem consists of finding nontrivial solutions (p, q+) in the space H1(R;C2).
The existence of one of the desired solutions follows from the first equation in (4.3).

If we differentiate the first equation in (4.3), multiply by s2, and move all terms to the
right-hand side, we can infer that (p̄x, q̄

+
x ) satisfies (4.6). In fact, it turns out that for

q+ = q̄+
x equation (4.6) has an infinite number of linearly independent solutions p belonging

to H1(R;C). In other words, f(p, q̄+
x )g is an infinite collection of linearly independent

solutions in the prescribed space H1(R;C2) provided p is a solution of (4.6). In order to
obtain such solutions, we first show that q̄+

x 2 H1(R;C). Thereafter we solve (4.6) and
verify that the solutions p belong to H1(R;C) for given q+ = q̄+

x .
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Since q̄+
x is continuous and decays exponentially to zero as jxj ! +1 according to

Lemma 2.7, then q̄+
x 2 L2(R;C).

Now, differentiating the second equation in (4.3), we find

q̄+
xx = �2κ

s

�
p̄x(1� q̄+)q̄+ + p̄(1� 2q̄+)q̄+

x

�
.

We apply the triangle inequality to the right-hand side and take squares. We then integrate
over R to obtainq̄+

xx

2

L2 �
4κ2

s2

Z
R

�
jp̄xj2

��q̄+(1� q̄+)
��2 + 2 jp̄xj

��q̄+
x

�� ��p̄q̄+(1� q̄+)(1� 2q̄+)
��

+
��p̄(1� 2q̄+)

��2 ��q̄+
x

��2� dx. (4.7)

We want to prove that the right-hand side of this inequality is uniformly bounded.
From (3.10) and given that q+

r � q̄+ � q+
l , we get

��q̄+(1� q̄+)
�� � �1

2
+
ε

2

�2

and
��p̄(1� 2q̄+)

�� � εp̄max. (4.8)

Upon applying Hölder’s inequality to (4.7) and upon using (4.8), we obtain

q̄+
xx

2

L2 �
4κ2

s2

 �
1

2
+
ε

2

�4

kp̄xk2L2

+2p̄maxε

�
1

2
+
ε

2

�2

kp̄xkL2

q̄+
x


L2 + ε2(p̄max)2

q̄+
x

2

L2

!
.

We can conclude that q̄+
xx 2 L2(R;C) because of continuity of p̄x and its exponentially

decaying at �1 provided by Lemma 2.7. It is thus proven that q̄+
x 2 H1(R;C).

Next we solve equation (4.6) for the variable p. The approach is the following. From
the equation for p̄ in (4.3) we have

p̄x
p̄

=
µ

s

�
2q̄+ � 1

�
. (4.9)

Taking q+ = q̄+
x in (4.6), after the substitution of (4.9), we get

px �
p̄x
p̄
p =

2µ

s
p̄q̄+
x . (4.10)

Upon solving (4.10) for p, we get

p(x) = p̄(x)

�
C +

2µ

s

�
q̄+(x)� q+

l

��
, C 2 C. (4.11)

Note that for C = µ
s (2q+

l � 1) we recover the solution p = p̄x, which is detemined by the
equation for p̄ in (4.3).
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We then show that p is an element of H1(R;C). To this end we make estimates for p
and px. Thus

kpk2L2 =

Z
R
p̄2(x)

����C +
2µ

s

�
q̄+(x)� q+

l

�����2 dx,
hence the right-hand side of the above equation is bounded above by�

jCj+ 2µ

s
ε

�2

kp̄k2L2 .

That p̄ 2 L2(R;C) is a consequence of Lemma 2.7. Therefore, the above estimate implies
that p 2 L2(R;C).

Now, from (4.10) and the triangle inequality we have that

kpxk2L2 �
Z
R

 �
p̄x
p̄

�2

jpj2 +
4µ

s
jp̄xj

��pq̄+
x

��+
4µ2

s2
p̄2
��q̄+
x

��2! dx. (4.12)

Hölder’s inequality applied to (4.12) and the absolute value of (4.9) combined with
(4.8) give

kpxk2L2 �
�µε
s

�2
kpk2L2 +

4µ2ε

s2
p̄max kpkL2

q̄+
x


L2 +

4µ2

s2
(p̄max)2

q̄+
x

2

L2 .

This shows that p 2 H1(R;C).
The infinite dimension of the eigenspace is a direct consequence of the linear indepen-

dence of the solutions given by formula (4.11): let p1 and p2 be two solutions corresponding
to two different values of C, say C1 and C2; it is not difficult to check that the Wronskian
of these solutions is W (p1, p2)(x) = 2µ

s p̄
2q̄+
x (C1 � C2). Since p̄ > 0 and 0 < q̄+ < 1 on the

whole real line, we see from the equation for q̄+ in (4.3) that q̄+
x < 0 for all x 2 R. Then it

holds that W (p1, p2)(x) 6= 0 for all x 2 R. Therefore, the equation (4.6) has infinitely many
linearly independent solutions. Since f(p, 0, q̄+

x )g, with p given by (4.11), is part of the set
of eigenfuntions associated to λ = 0, the latter implies that the eigenspace associated to
λ = 0 is infinite-dimensional.

According to the definition of Fredholm operator, the last statement above means that
the operator L is not Fredholm. Thus, it follows that λ = 0 is an eigenvalue that belongs
to the essential spectrum; see Definition 4.2. This completes the proof.

4.3

The Quadratic Eigenvalue Problem

With the purpose of characterizing the whole spectrum we assume λ 6= 0 in (4.5). We then
multiply by λ the second equation in (4.5) to obtain

λ2j = �s2λpx � µλj + µs[(2q̄+ � 1)λp+ 2p̄λq+],
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from the first and third equations in (4.5), we have

λ2j = s2jxx � µλj � µs
�
(2q̄+ � 1)jx � 2p̄

�
2κ

s
q̄+(1� q̄+)

�
j

�
, (4.13)

by substituting the equation for q̄+ in (4.3) into (4.13), we get the quadratic eigenvalue
problem (also known as a quadratic pencil)

s2jxx � µs[(2q̄+ � 1)jx + 2q̄+
x j]� (λ2 + µλ)j = 0, λ 6= 0, j 2 H2(R;C). (4.14)

The reformulation (4.14) of the eigenvalue problem led us to the following result:

Lemma 4.5. �µ is an eigenvalue of L embedded in the essential spectrum associated with
the one-dimensional eigenspace spanned by (p̄x/µ, p̄, q̄

+
x /µ).

Proof. We begin by noting that (4.14) can be written in the form

s2jxx � µs
d

dx

��
2q̄+ � 1

�
j
�

= (λ2 + µλ)j. (4.15)

Using (4.9) to substitute 2q+� 1 = sp̄x/µp̄ into (4.15) gives us

s2 d

dx

�
jx �

p̄x
p̄
j

�
= (λ2 + µλ)j.

Letting λ = �µ, leads us to the equation

d

dx

�
jx �

p̄x
p̄
j

�
= 0.

By intregrating this equation, we have

jx �
p̄x
p̄
j = C, (4.16)

for an arbitrary constant C.
Recalling (3.10), we deduce from (4.9) that p̄x/p̄ ! �εµ/s as x ! �1. From this,

and the requirement j, jx ! 0 as x! �1, we infer that the left-hand side of (4.16) tends
to 0 as x! �1, which implies that C = 0.
We multiply (4.16) by 1/p̄ to obtain

d

dx

�
j

p̄

�
= 0.

Thus, the solution is j = C0p̄, for some constant C0.
Now, substituting λ = �µ and j = p̄ into the first and third equation in (4.5) we obtain

that p = p̄x/µ and q+ = q̄+
x /µ. To obtain q+ it is necessary to use the second equation of

(4.3). We conclude therefore that �µ is an eigenvalue of L associated with the eigenspace
spanned by (p̄x/µ, p̄, q̄

+
x /µ).

The fact the �µ is an element of the essential spectrum is because the differential
operator defined by (4.14) is not Fredholm when λ = �µ. For convenience, we provide this
result at the end of Section 4.5 below.
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4.4

The Spectrum

To treat problem (4.14) it is useful to introduce the parameter λ̃ := λ2 + µλ. Thus, the
eigenvalue problem now reads

s2jxx � µs
�
(2q̄+� 1)jx + 2q̄+

x j
�

=: Lj = λ̃j, , j 2 H2(R;C). (4.17)

so that the eigenvalues of (4.14) and consequently those of (4.5) are given by solutions of
the equation

λ2 + µλ� λ̃ = 0.

Remark 2. From the proof of Lemma 4.5, λ̃ = 0 is an eigenvalue of L associated to the
eigenfunction p̄.

4.4.1

The essential spectrum

In order to analyze the spectrum of L, we proceed as Alexander et al. [1] by rewriting
(4.17) as the first-order system

Yx = A(x, λ̃)Y (4.18)

where Y = (j, jx)t and

A(x, λ̃) =

0@ 0 1

λ̃
s2

+ 2µ
s q̄

+
x

µ
s (2q̄+� 1)

1A . (4.19)

The aim of the reformulation is to use the exponential dichotomies enjoyed by (4.18).
Hence, we introduce the definition of exponential dichotomy and Morse index given by
Sandstede and Scheel in [53].

Definition 4.6. Consider the differential equation

ux = A(x, λ)u, u 2 Cn. (4.20)

Let I = R+,R� or R, and fix λ� 2 C. We say that (4.20), with λ = λ� fixed, has an
exponential dichotomy on I if there exist positive constants K, ks and ku and a family of
projections P (x) defined and continuous for x 2 I such that the following is true.
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1. For any fixed y 2 I and u0 2 Cn, there exists a solution ϕs(x, y)u0 of (4.20) with
initial value ϕs(y, y)u0 = P (y)u0 for x = y, and

jϕs(x, y)j � Ke�ksjx�yj, for all x � y, x, y 2 I.

2. For any fixed y 2 I and u0 2 Cn, there exists a solution ϕu(x, y)u0 of (4.20) with
initial value ϕu(y, y)u0 = (I � P (y))u0 for x = y, and

jϕu(x, y)j � Ke�kujx�yj, for all x � y, x, y 2 I.

3. The solutions ϕs(x, y)u0 and ϕu(x, y)u0 satisfy

ϕs(x, y)u0 2 R(P (x)) for all x � y, x, y 2 I,
ϕu(x, y)u0 2 N(P (x)) for all x � y, x, y 2 I.

The x-independent dimension of N(P (x)) is referred to as the Morse index i(λ�) of the
exponential dichotomy on I. If (4.20) has exponential dichotomies on R+ and on R�, the
associated Morse indices are denoted by i+(λ�) and i�(λ�), respectively.

Following the ideas of Flores and Plaza [13], and Sandstede [52], we consider the family
of operators

T (λ̃) : H1(R;C2)! L2(R;C2), Y 7! Yx �A(x, λ̃)Y, (4.21)

for λ̃ 2 C.
By Lemma 2.7, A(x, λ̃)! A�(λ̃) exponentially fast as x! �1, with

A�(λ̃) =

0@ 0 1

λ̃
s2
�µ
s ε

1A . (4.22)

The operators L� λ̃ and T (λ̃) are linked by their Fredholm properties. In this sense,
if one operator is Fredholm so is the other, in addition to having the same Fredholm index
(see [52] and the references therein). In turn, T (λ̃) is Fredholm if and only if (4.18) has
an exponential dichotomy on both half-lines R+ = [0,1) and R� = (�1, 0], [43, 44]. In
such case the Fredholm index is computed by

ind T (λ̃) = i�(λ̃)� i+(λ̃).

Here is where the asymptotic matrices A�(λ̃) come into play. An exponential dichotomy
on R+ exists if and only if A+(λ̃) is hyperbolic, in which case, the Morse index i+(λ̃) is
equal to the dimension of the unstable eigenspace of A+(λ̃). Likewise, the hyperbolicity
of A�(λ̃) determines the existence of an exponential dichotomy on R� and i�(λ̃) is given
by the dimension of the unstable eigenspace of A+(λ̃) (cf. [52]).

In the light of all this, the essential spectrum of L comprises all λ̃ for which (4.18)
has exponential dichotomies on both R+ and R� with distinct Morse indices, that is
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ind T (λ̃) 6= 0, and those λ̃ such that (4.18) has no an exponential dichotomy on at least
one half-line.

Regarding the point spectrum of L, this encompasses the values λ̃ for which T (λ̃) has
a nontrivial kernel (and thus (4.17) has a nonzero solution j) and (4.18) has exponential
dichotomies on R+ and on R� with the same Morse index .

We begin by identifying the set of λ̃ where the asymptotic matrices A�(λ̃) are not
hyperbolic. Thus, consider the setsn

λ̃ 2 C j det(A�(λ̃)� aiI) = 0, for a 2 R
o
. (4.23)

By straightforward calculations we obtain that the elements of (4.23) are points on the
algebraic curves n

λ̃�(a) = �s2a2 � µsεai, for a 2 R
o
. (4.24)

Note that the curves λ̃�(a) describe in fact one single parabola.

The parabola plays a key role in the hyperbolicity of the asymptotic matrices. Along
the parabola the matrices A�(λ̃) have at least one purely imaginary eigenvalue, and on its
lateral sides the matrices are hyperbolic.

Denote Ω to be the open set in the complex plane bounded on the left by the parabola
(4.24), and let Θ denote the complemet of the closure of Ω. We further denote by Es�(λ̃)

and Eu�(λ̃) the stable and unstable eigenspaces of A�(λ̃), respectively.

Proposition 4.7. The following statements are true.

(i) For each λ̃ 2 Ω, dim[Es�(λ̃)] = dim[Eu�(λ̃)] = 1.

(ii) For all λ̃ 2 Θ, dim[Eu�(λ̃)] = dim[Es+(λ̃)] = 2.

Proof. The eigenvalues of A�(λ̃) and A+(λ̃) are given by

η�1,2(λ̃) =
1

2s

�
µε�

q
µ2ε2 + 4λ̃

�
and η+

1,2(λ̃) =
1

2s

�
�µε�

q
µ2ε2 + 4λ̃

�
. (4.25)

Clearly Reη�1 (λ̃) > 0 and Reη+
2 (λ̃) < 0 for all λ̃ 2 Ω. Since η�2 (λ̃) = �η+

1 (λ̃), the first
statement of the proposition will be proved as soon as we have shown that Reη�2 (λ̃) < 0
for all λ̃ 2 Ω.

Taking the real part of η�2 (λ̃), we have

Reη�2 (λ̃) =
1

2s

�
µε�Re

q
µ2ε2 + 4λ̃

�
,

from this expression we see that Reη�2 (λ̃) < 0 if and only if�
Re

q
µ2ε2 + 4λ̃

�2

> µ2ε2. (4.26)
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Computing the left-hand side of the above inequality gives

1

2

 
µ2ε2 + 4Reλ̃+

r�
µ2ε2 + 4Reλ̃

�2
+ 16(Imλ̃)2

!
> µ2ε2.

After some calculations we get that the inequality (4.26) is satisfied if and only if

(Imλ̃)2 > �µ2ε2Reλ̃. (4.27)

Consider λ̃ 2 C with negative real part, we have that Reλ̃ = Reλ̃�(a) = �a2s2 for some
a 2 R, thus, if λ̃ 2 Ω it happens that (Imλ̃)2 > (Imλ̃�(a))2 = a2s2µ2ε2, that is to say,
(Imλ̃)2 > �µ2ε2Reλ̃, hence the inequality (4.26) holds and consequently Re η�2 (λ̃) < 0.
By connectedness of the set Ω and continuity of η�2 (λ̃) in λ̃, the sign of Re η�2 (λ̃) must
remain constant on that region. Therefore, we conclude that Reη�2 (λ̃) < 0 for all λ̃ 2 Ω.

We turn to the second statement of the Proposition. We have that every λ̃ 2 Θ has
real part Reλ̃ = Reλ̃�(a) = �a2s2 with a 2 Rnf0g, then, because (Imλ̃)2 < (Imλ̃�(a))2

for all λ̃ 2 Θ and all a 2 Rnf0g, it follows that

(Imλ̃)2 < (Imλ̃�(a))2 = a2s2µ2ε2 = �µ2ε2Reλ̃, 8 λ̃ 2 Θ, 8 a 2 Rnf0g .

By virtue of this result, inequality (4.26) is not satisfied, thus Reη�2 (λ̃) > 0 and Reη+
1 (λ̃) <

0 for all λ̃ 2 Θ. This proves the second statement of the proposition, since Reη�1 (λ̃) > 0
and Reη+

2 (λ̃) < 0 are also true inside Θ.

Lemma 4.8. The essential spectrum of L is the whole region to the left of the parabola
described by (4.24), including the parabola.

Proof. Suppose that the matrices A�(λ̃) are hyperbolic. By Theorem 3.3 in [52], this
leads to the existence of exponential dichotomies for the equation (4.18) on R+ and R�.
Additionally, Theorem 3.3 tells us that the Morse indices i�(λ̃) are equal to dim[Eu�(λ̃)].

According to Lemma 4.2 of [43], this means that T (λ̃) is Fredholm with index

ind T (λ̃) = i�(λ̃)� i+(λ̃).

Statement (i) of Proposition 4.7 yields that ind T (λ̃) = 0 for all λ̃ 2 Ω, which implies that
σess(L) � C n Ω. To show that σess(L) covers C n Ω we argue as follows. From statement
(ii) of Proposition 4.7 we obtain that ind T (λ̃) = 2 for all λ̃ 2 Θ, therefore Θ � σess(L). In
accordance with Theorem 3.3, the lack of hyperbolicity A�(λ̃) on the set (4.24) results in
the absence of exponential dichotomies of (4.18). By Palmer’s Theorem in [44], this entails
that T (λ̃) is not Fredholm, thereby the parabola described by (4.24) is a subset of σess(L).
Since

C n Ω = Θ [
n
λ̃�(a) = �s2a2 � µsεai, for a 2 R

o
,

we deduce that C n Ω � σess(L), and hence that σess(L) = C n Ω.
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From the above lemma we observe that the point spectrum of L must only contain complex
numbers that belong to the region Ω. Accordingly, λ̃ = 0 is an eigenvalue that does not
belong to the point spectrum, σpt(L).

We show below that for all λ̃ 2 σpt(L) any nontrivial function in the kernel of the
operator T (λ̃) must have exponential decay. To this end, as in [33, 46], we rewrite equation
(4.18) in the following form

Yx = [A�(λ̃) + R(x, λ̃)]Y for x < 0 and Yx = [A+(λ̃) + R(x, λ̃)]Y for x � 0,

where

R(x, λ̃) =

�
A(x, λ̃)�A�(λ̃), x < 0,

A(x, λ̃)�A+(λ̃), x � 0.

We have by Lemma 2.7 that

jR(x, λ̃)j = jA(x, λ̃)�A�(λ̃)j � C̃e�
εµ
s
jxj as jxj ! 1, (4.28)

for all λ̃ 2 σpt(L).
According to the Gap Lemma [61], if V �j (λ̃) are eigenvectors of A�(λ̃) associated with

the eigenvalues η�j (λ̃), j = 1, 2, the decay estimate (4.28) implies that for all α < µε
s , the

system (4.18) has a set of solutions Y�j (x, λ̃), j = 1, 2, that satisfy

Y�j (x, λ̃) =
�
V �j (λ̃) +O

�
e�αjxj

���V �j (λ)
����� eη�j (λ̃)x, (j = 1, 2) x < 0,

Y+
j (x, λ̃) =

�
V +
j (λ̃) +O

�
e�αjxj

���V +
j (λ)

����� eη+j (λ̃)x, (j = 1, 2) x > 0,
(4.29)

for any λ̃ 2 σpt(L). The importance of these relations stems from the fact that they allow
us to characterize the asymptotic behaviour of the elements of the kernel of T (λ̃). Indeed,
we have found previously that Reη�1 (λ̃) > 0 and Reη�2 (λ̃) < 0 provided that λ̃ 2 Ω,
since we are interested in solutions to (4.18) in H1(R;C2), we observe from (4.29) that
one can construct such solutions only if they decay exponentially to zero as jxj ! +1.
Thus, a vector-valued function Y(x, λ̃) 2 N(T (λ̃)) is spanned by Y�1 (x, λ̃) in x < 0 and
by Y+

2 (x, λ̃) in x > 0, meaning that Y(x, λ̃) = α0Y
�
1 (x, λ̃) = β0Y

+
2 (x, λ̃) for some nonzero

α0, β0 2 C.
Furthermore, we have the following:

Proposition 4.9. Let λ̃ 2 σpt(L) and Y(x, λ̃) 2 N(T (λ̃)), then there are nonzero constants
α0, β0 2 C such that Y(x, λ̃) decays exponentially fast as jxj ! +1 satisfying

Y(x, λ̃)! α0V
�

1 (λ̃)eη
�
1 (λ̃)x as x! �1,

Y(x, λ̃)! β0V
+

2 (λ̃)eη
+
2 (λ̃)x as x! +1,

where V �1 (λ̃) and V +
2 (λ̃) are eigenvectors associated to the unstable and stable eigenvalues

η�1 (λ̃) and η+
2 (λ̃), respectively.

There is hereby established that for every λ̃ 2 σpt(L) the associated eigenfunction j
approaches exponentially to zero as jxj ! +1.
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4.4.2

Integrated equation

Suppose that λ̃ 2 σpt(L) is an eigenvalue with a corresponding eigenfunction j 2 H2(R;C).
Let us rewrite equation (4.17) in the form

s2jxx � µs
�
(2q̄+� 1)j

�
x

= λ̃j,

from which we obtain

s2 d

dx

�
jx �

µ

s
(2q̄+� 1)j

�
= λ̃j. (4.30)

Applying the technique conceived by Goodman [21], we introduce the integrated vari-
able

w(x) :=

Z x

�1
j(y)dy. (4.31)

We integrate (4.30) from �1 to x and obtain

λ̃w(x) = λ̃

Z x

�1
j(y)dy = s2

�
jx(x)� µ

s
(2q̄+� 1)j(x)

�
, (4.32)

then, we substitute j for w in (4.32) in order to obtain the integrated eigenvalue equation

s2
�
wxx �

µ

s
(2q̄+� 1)wx

�
=: Lw = λ̃w. (4.33)

The significance of the above equation arises from the fact that the point spectra of
L and L are the same (see Proposition 4.10 below). This result will prove very useful
for characterizing the point spectrum of L as the integrated eigenvalue problem (4.33) will
provide the required information. The same approach has been carried out by Zumbrun
[60] and Humpherys [29] in the context of viscous conservation laws.

The family of operators associated with (4.33) is given by

T I(λ̃) : H1(R;C2)! L2(R;C2),

W 7!Wx �AI(x, λ̃)W, λ̃ 2 Cnf0g ,

where W = (w,wx)t and

AI(x, λ̃) =

0@ 0 1

λ̃
s2

µ
s (2q̄+� 1)

1A .

Remark 3. We point out that AI(x, λ̃) has the same asymptotic limits as A(x, λ̃). Thus
the essential spectrum of L and L coincide, and therefore the point spectrum of L is also
contained in the set Ω. We may use arguments similar to those that led to Proposition
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4.9, to conclude that for a given λ̃ 2 σpt(L ), there exist nonzero constants α0, β0 2 C such
that the corresponding function W(x, λ̃) 2 N(T I(λ̃)) has the asymptotic behaviour

W(x, λ̃)! α0V
�

1 (λ̃)eη
�
1 (λ̃)x as x! �1,

W(x, λ̃)! β0V
+

2 (λ̃)eη
+
2 (λ̃)x as x! +1.

Proposition 4.10. The point spectrum of L and point spectrum of L coincide.

Proof. We begin by proving that σpt(L) � σpt(L ). Observe that the existence of the
eigenpair (j, λ̃) of (4.17) gives rise to a solution (w, λ̃) of equation (4.33), then the problem
consists in checking that w belongs to H2(R;C). Since j 2 H2(R;C), it is clear that
wx, wxx 2 L2(R;C). Thus, we only need to show that w 2 L2(R;C). By Plancherel’s
theorem, it suffices to show that ŵ 2 L2(R;C). For this purpose, we differentiate (4.31)
and take the Fourier transform to obtain ikŵ(k) = ĵ(k). So we have that

kŵk2L2 =

Z
R

jĵ(k)j2

k2
dk.

The above integral may be split into three partsZ
R

jĵ(k)j2

k2
dk =

Z �a
�1

jĵ(k)j2

k2
dk +

Z a

�a

jĵ(k)j2

k2
dk +

Z +1

a

jĵ(k)j2

k2
dk,

with a > 1. The first and the last integral converge because are both bounded above by
kĵk2L2 . Given that ĵ(k) is a continuous function, then to establish the convergence of the

second integral we only need to show that ĵ(k)/k tends to a finite limit as k ! 0. First
note that

w(+1) =

Z +1

�1
j(y) dy =

p
2πĵ(0).

On the other hand, since λ̃ 6= 0 and, j and jx decay to zero at x = �1, it follows from
(4.32) that w approaches zero as x ! +1. Which implies that ĵ(0) = 0. Hence, using
L’Hospital’s rule, we get

lim
k!0

ĵ(k)

k
= lim

k!0

d

dk
ĵ(k) =

Z
R
yj(y) dy.

The fact that j decays exponentially fast to zero as jyj ! 1 ensures the convergence of
the integral.

Next we show that σpt(L ) � σpt(L). Let w 2 H2(R;C) be an eigenfunction of (4.33)
for λ̃ 2 σpt(L ). Setting j = wx, it is readily seen that

w(x) =

Z x

�1
j(y)dy. (4.34)

Upon substituting wx = j and (4.34) into (4.33), and differentiating, we readily obtain

s2 d

dx

�
jx �

µ

s
(2q̄+� 1)j

�
= λ̃j.
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Thus, if we show that j belongs to the desired space H2(R;C), then it would follow that
σpt(L ) � σpt(L). Clearly j 2 H1(R;C). Then it is only necessary to check that jxx 2
L2(R;C). This is achieved by showing that wxxx 2 L2(R;C). Hence, after differentiation
of (4.33) and upon substituting wxx from (4.33), we arrive at

s2wxxx = (2µsq̄+
x + µ2(2q̄+ � 1)2 + λ̃)wx +

µ

s
λ̃(2q̄+ � 1)w.

Therefore, we use the exponential decay of w and wx together with the boundedness of q̄+

and q̄+
x , to conclude that wxxx 2 L2(R;C).

4.4.3

Energy estimates

In what follows we use energy methods [13, 20, 28] to prove that the point spectrum of the
operator L is the empty set.

Lemma 4.11. The point spectrum of L is empty.

Proof. We use (4.9) to substitute 2q+� 1 = sp̄x/µp̄ into (4.33). This gives

s2

�
wxx �

p̄x
p̄
wx

�
= λ̃w. (4.35)

Upon multiplying (4.35) by the integrating factor 1/p̄, we obtain that w satisfies

s2 d

dx

�
wx
p̄

�
= λ̃

w

p̄
. (4.36)

We now multiply (4.36) by the complex conjugate w� and integrate over R to obtain

s2

Z
R

d

dx

�
wx
p̄

�
w� dx = λ̃

Z
R

jwj2

p̄
dx.

Claim. w/
p
p̄, wx/

p
p̄! 0 exponentially as jxj ! +1.

Indeed, from Lemma 2.7 and Remark 3 we have that

p̄�
1
2 W(x, λ̃) � CαV �1 (λ̃)e(η�1 (λ̃)�µε

2s
)x = CαV

�
1 (λ̃)e

1
2s

p
µ2s2+4λ̃x as x! �1,

p̄�
1
2 W(x, λ̃) � CβV +

2 (λ̃)e(η+2 (λ̃)+µε
2s

)x = CβV
+

2 (λ̃)e�
1
2s

p
µ2s2+4λ̃x as x! +1,

for some nonzero Cα, Cβ 2 C.
Recall that W = (w,wx)t. Thus, upon noticing that

Re

q
µ2s2 + 4λ̃ = jµ2s2 + 4λ̃j

1
2 cos(arg(µ2s2 + 4λ̃)/2)
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is positive for all λ̃ 2 σpt(L ) � Ω, we obtain the exponential convergence to zero.
In view of the claim, we can integrate the left-hand side by parts. We infer that

�s2

Z
R

jwxj2

p̄
dx = λ̃

Z
R

jwj2

p̄
dx.

This shows that λ̃ < 0. But this contradicts λ̃ 2 σpt(L ) � Ω, because of the fact that the
negative half-real line is a subset of σess(L ) = CnΩ (see Lemma 4.8). Therefore, there is
no point spectrum for L .

4.4.4

The point spectrum of L

The results of Proposition 4.10 and Lemma 4.11 come together in the following theorem.

Theorem 4.12. The point spectrum of the quadratic eigenvalue problem (4.14) is the empty
set.

4.5

Spectral stability

We begin the section with our main result.

Theorem 4.13. The family of standing waves is spectrally stable.

In view of Theorem 4.12, the point spectrum of L is empty, meaning that the spectrum
is made up completely of essential spectrum. This being so, we must show that the rest
of the essential spectrum, namely the non-zero elements, is composed of complex numbers
with negative real part. In this fashion, we finish the proof of Theorem 4.13. For this
purpose, we will show that the essential spectrum of the equivalent problem (4.14) is a
subset of the stable half-plane. As before, we may associate (4.14) with the family of
operators

T (λ2 + µλ) = Yx �A(x, λ2 + µλ)Y, for λ 2 Cnf0g .

Proposition 4.14. Let ΩS = fλ 2 Cnf0g j Reλ � 0g. Then, for all λ 2 ΩS, the matrices
A�

�
λ2 + µλ

�
are hyperbolic with one-dimensional eigenspaces Es�(λ2 + µλ) and Eu�(λ2 +

µλ).
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Proof. We begin by proving that the set�
λ 2 Cnf0g j det(A�(λ2 + µλ)� aiI) = 0, for a 2 R

	
(4.37)

contains only complex numbers with negative real part.
Computing the determinant, one may write (4.37) as�

λ 2 Cnf0g j λ2 +B(a)λ+ C(a) = 0, for a 2 R
	
, (4.38)

where B(a) = µ and C(a) = a2s2 � aµsεi.
Solving the characteristic polynomial, we find that (4.37) consists of the curves

λ1,2(a) =
�B(a)�

p
D(a)

2
, a 2 R, (4.39)

where D(a) = µ2 � 4(a2s2 � aµsεi).
Since B(a) < 0, then clearly Reλ2(a) < 0 for all a 2 R. On the other hand, observe

that Reλ1(a) < 0 if and only if

(ReB (a))2 >
�
Re
p
D (a)

�2
=

1

2

�
ReD (a) +

p
(ReD (a))2 + (ImD (a))2

�
,

for all a 2 Rnf0g. We deduce from this observation that Reλ1(a) is negative if and only if

(ImD(a))2 + 4(ReB(a))2ReD(a)� 4(ReB(a))4 < 0, a 2 Rnf0g . (4.40)

We have excluded a = 0 because λ(0) = 0; such value was left out of the analysis of the
quadratic eigenvalue problem.

After some elementary calculations, we have

(ImD(a))2 + 4(ReB(a))2ReD(a)� 4(ReB(a))4 = �16µ2a2s2(1� ε2),

for all a 2 Rnf0g, therefore we can conclude (4.40) since 1� ε2 > 0 as 0 < ε < 1. Thus, it
follows that matrices A�(λ2 + µλ) are hyperbolic on ΩS .
It remains to verify that the stable and unstable eigenspaces are one-dimensional. Consider
λ = ζ 2 R+ � ΩS , it is clear that ζ2+µζ 2 Ω, then by Proposition 4.7, dim[Es�(ζ2+µζ)] = 1
and dim[Eu�(ζ2 + µζ)] = 1. Therefore, from the fact that ΩS is connected and η�1,2(�)
are continuous, it follows that dim[Es�(λ2 + µλ)] = 1 and dim[Eu�(λ2 + µλ)] = 1 for all
λ 2 ΩS .

Lemma 4.15. The rest of the essential spectrum of L is a subset of the open left-half
complex plane.

Proof. By similar arguments as used in the proof of Lemma 4.8, one can show that

σess(L)nf0g � fλ 2 C j Reλ < 0g .
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4.5.1

End of the proof of Lemma 4.5.

Observe that (λ, a) = (�µ, 0) is a solution of the characteristic polynomial in (4.38), which
means that 0 is an eigenvalue of the asymptotic matrices A�(0). In other words, A�(0)
are nonhyperbolic. As consequence of the Theorem 3.3 of [52] and Palmer’s Theorem in
[44], the operator T (0) is not Freholm, therefore �µ belongs to the essential spectrum of
L.





CHAPTER

FIVE

THE UNSTABLE SPECTRUM IN THE FAMILY OF
M5-TRAVELING WAVES

In this chapter we collect the results that we have obtained so far on the spectral stability
of the M5-traveling waves. We show that they are spectrally unstable in H1(R;C3) as the
essential spectrum includes the imaginary axis. To remedy this we have built a weighted
Sobolev space where the essential spectrum lies on the open left-half complex plane, away
from the imaginary axis. The results in the current chapter look promising since among the
conditions considered by Rottmann-Matthes [50] it only remains to ensure that the nonzero
elements of the point spectrum belong to the open left-half complex plane, although up
until now this has represented a great research challenge.

5.1

The Spectral Problem the for M5-Traveling Waves

In the moving coordinate frame (z, t) = (x � ct, t), where 0 < c < s, traveling waves p̄, j̄
and q̄+ are time-independent solutions of the system

pt = cpz � jz,
jt = �s2pz + cjz � µj + µs

�
2q+ � 1

�
p,

q+
t = cq+

z +
2κ

s
jq+

�
1� q+

�
,

(5.1)

which is why their spectral stability is determined by linearizing (5.1) around them:

pt = cpz � jz,
jt = �s2pz + cjz � µj + µs

��
2q̄+ � 1

�
p+ 2p̄q+

�
,

q+
t = cq+

z +
2κ

s

�
q̄+
�
1� q̄+

�
j + j̄

�
1� 2q̄+

�
q+
�
.

51
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Then, considering pertubations of the form eλtp(z), eλtj(z) and eλtq+(z), with λ 2 C,
we have the spectral problem

λp = cpz � jz,
λj = �s2pz + cjz � µj + µs

��
2q̄+ � 1

�
p+ 2p̄q+

�
,

λq+ = cq+
z +

2κ

s

�
q̄+
�
1� q̄+

�
j + j̄

�
1� 2q̄+

�
q+
�
,

(5.2)

which can be formulated as the spectral system

Lc
0@ p

j
q+

1A = λ

0@ p
j
q+

1A ,

0@ p
j
q+

1A 2 H1(R;C3), (5.3)

where the operator Lc : H1(R;C3)! L2(R;C3) is defined by

Lc =

0BB@
c∂z �∂z 0

�s2∂z + µs(2q̄+ � 1) c∂z � µ 2µsp̄

0 2κ
s q̄

+(1� q̄+) c∂z + 2κ
s j̄ (1� 2q̄+)

1CCA , 0 < c < s.

5.2

The Eigenvalue λ = 0

In this section we show that unlike the standing case, for all wave speed c 2 (0, s), zero is
an eigenvalue whose eigenspace has dimension one.

Lemma 5.1. For each wave speed 0 < c < s, λ = 0 is an eigenvalue of Lc with a 1-
dimensional eigenspace generated by (p̄z, j̄z, q̄

+
z ).

Proof. Set λ = 0 in (5.3), integration in (�1, z) of the first equation there, together with
the condition (p, j, q+) 2 H1(R;C3), yields

j = cp. (5.4)

By substitution of (5.4) into (5.3), and considering λ = 0, problem (5.3) reduces to the
system

pz =
µ

s2 � c2

�
(2sq̄+ � (c+ s))p+ 2sp̄q+

�
,

q+
z = �2κ

s
(q̄+

�
1� q̄+

�
p+ p̄

�
1� 2q̄+

�
q+);

(5.5)
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in the equation for q+ we have used the invariant of motion j̄ = cp̄. As a result of
this reduction, the spectral problem (5.3) may have at most two linearly independent
eigenfunctions associated to λ = 0. Thus, in order to find the solutions of (5.3) for such
λ, all we need is to solve the system (5.5). Next we show that (p̄z, q̄

+
z ) and (p̄q+l

, q̄+

q+l
) are

linearly independent solutions of (5.5).

We differentiate (2.5) with respect to z and rearrange the terms to obtain that (p̄z, q̄
+
z )

is a solution of (5.5), that is,

p̄zz =
µ

s2 � c2

�
(2sq̄+ � (c+ s))p̄z + 2sp̄q̄+

z

�
,

q̄+
zz = �2κ

s
(q̄+

�
1� q̄+

�
p̄z + p̄

�
1� 2q̄+

�
q̄+
z ).

(5.6)

Similarly, differentiating (2.5) partially with respect to the left state q+
l , we find that

(p̄q+l
, q̄+

q+l
) is a solution to system (5.5). Hence

p̄q+l z
=

µ

s2 � c2

�
(2sq̄+ � (c+ s))p̄q+l ,

+ 2sp̄q̄+

q+l

�
,

q̄+

q+l z
= �2κ

s
(q̄+

�
1� q̄+

�
p̄q+l

+ p̄
�
1� 2q̄+

�
q̄+

q+l
).

To be sure that (p̄z, q̄
+
z ) and (p̄q+l

, q̄+

q+l
) are linearly independent we have to check that their

Wronskian is different from zero at least at one point.

We thus proceed as follows. Wang et al. [56] observed that for all left state θ� < q+
l < 1,

the pulse p̄ attains its maximum when q̄+ = θ� (recall θ� = c+s
2s ); due to the translation

invariance of the traveling waves we can assume that such values of p̄ and q̄+ are reached
at z = 0. We then have that p̄z(0) = 0 and q̄+

q+l
(0) = ∂q+l

θ� = 0. On the other hand, Wang

and coworkers further noted that the maximum of p̄ is a increasing function with respect
to q+

l , this means that p̄q+l
(0) = ∂q+l

p̄max > 0. Hence, from all these results and the fact

that q̄+
z < 0 for all z 2 R, we have that the Wronskian at z = 0 is positive:

w(0) =

�
p̄z q̄

+

q+l
� p̄q+l q̄

+
z

�
z=0

= �p̄q+l (0)q̄+
z (0) > 0.

Actually, (p̄q+r , q̄
+

q+r
) is also a solution of (5.5), but in view of Proposition 2.4 we can

write
∂p̄

∂q+
l

=
∂p̄

∂q+
r

∂q+
r

∂q+
l

and
∂q̄+

∂q+
l

=
∂q̄+

∂q+
r

∂q+
r

∂q+
l

,

which we use to compute the Wroskian of f(p̄q+l , q̄
+

q+l
), (p̄q+r , q̄

+

q+r
)g, obtaining that it is zero

and consequently that this pair of solutions is linearly dependent.

Below we deduce that the associated eigenspace has dimension equal to one. From
(5.6) and the results of Lemma 2.7 on the exponential decay of p̄z and q̄+

z , we have that

(p̄z, j̄z, q̄
+
z ) = (p̄z, cp̄z, q̄

+
z ) 2 H1(R;C3).
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Therefore, λ = 0 is an eigenvalue and (p̄z, j̄z, q̄
+
z ) is an associated eigenfunction. To prove

that this is the only eigenfunction we will show that (p̄q+l
, q̄+

q+l
) tends to a nonzero limit as

z ! �1, which automatically leaves the function (p̄q+l
, j̄q+l

, q̄+

q+l
) = (p̄q+l

, cp̄q+l
, q̄+

q+l
) out of

L2(R;C3) and therefore out of H1(R;C3).
Let us write (5.5) in the vector form

Wz = A (z) W, (5.7)

where W = (p, q+)t and

A (z) =

0@ (2sq̄+�(c+s))µ
s2�c2

2µsp̄
s2�c2

�2κq̄+(1�q̄+)
s �2κp̄(1�2q̄+)

s

1A .

Define the parameters

αr := lim
z!+1

(c+ s� 2sq̄+)µ

2(s2 � c2)
=

(c+ s� 2sq+
r )µ

2(s2 � c2)
> 0,

αl := lim
z!�1

(c+ s� 2sq̄+)µ

2(s2 � c2)
=

(c+ s� 2sq+
l )µ

2(s2 � c2)
< 0.

Letting z ! �1, we obtain

A� := lim
z!�1

A(z)

=

0@ �2αm 0

�2κq+m(1�q+m)
s 0

1A ,

where m = r, l at �1, respectively.
It happens that A(z) approaches exponentially to its limits A� as z ! �1, which is

a direct consequence of the exponential convergence of the waves to their steady states.
Well, from the results in Lemma 2.7 we are able to obtain the exponential decay estimates

jA(z)� A�j � Ce�2αmz, for z ! �1, (5.8)

with αm = αr,l at �1.
This makes it possible to use the Gap Lemma [61] to establish a relation between the

solutions of (5.7) and the solutions of the constant coefficient systems

Zz = A�Z. (5.9)

The idea consists in using such relation to deduce that the limit of q̄+

q+l
as z ! �1 must

be nonzero.
The eigenvalues of A� and their respective associated eigenvectors are

ν�1 = 0, ν�2 = �2αm,

v�1 =

�
0
1

�
, v�2 =

 
1

�2κq+m(1�q+m)

sν�2

!
.
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Then the solutions of (5.9) are given by

Z�j = v�j e
ν�j z, j = 1, 2.

We now apply the Gap Lemma [61], according to which the existence of the uniform decay
rates (5.8) implies that the system (5.5) has a set of solutions W�

j (z), j = 1, 2, satisfying

W�
j (z) =

�
v�j +O

�
e�αjxj

���v�j ����� eν�j z, (j = 1, 2) z < 0,

W+
j (z) =

�
v+
j +O

�
e�αjxj

���v+
j

����� eν+j z, (j = 1, 2) z > 0,

for all α < �2αl, 2αr.
In other words, the Gap Lemma says that there exist solutions W�

j (z), j = 1, 2, with
the asymptotic limits

lim
z!�1

W�
1 (z) = (0, 1)t and lim

z!�1
W�

2 (z) = (0, 0)t. (5.10)

Since p̄z, q̄
+
z ! 0 as z ! �1, we can conclude that (p̄z, q̄

+
z )t in z > 0 is spanned by W+

2 (z)
and is spanned by W�

2 (z) in z < 0. Thus, (p̄z, q̄
+
z )t = α0W

+
2 (z) = β0W

�
2 (z) for some

nonzero constants α0, β0 2 C
For its part, (p̄q+l

, q̄+

q+l
)t is spanned by

�
W+

1 (z),W+
2 (z)

	
in z > 0, meanwhile it is

spanned by
�
W�

1 (z),W�
2 (z)

	
in z < 0. Then

(p̄q+l
, q̄+

q+l
)t =

(
α�0 W�

1 (z) + β�0 W�
2 (z), for z < 0,

α+
0 W+

1 (z) + β+
0 W+

2 (z), for z > 0,
(5.11)

for nonzero α�0 2 C and some β�0 2 C. From this and (5.10) we have that

lim
z!�1

(p̄q+l
, q̄+

q+l
)t = α�0 (0, 1)t, α�0 6= 0.

Thus (p̄q+l
, j̄q+l

, q̄+

q+l
) /2 H1(R,C3) and consequently (p̄z, j̄z, q̄

+
z ) is the only eigenfunction

associated to λ = 0. This proves Lemma 5.1.

5.3

The Unstable Spectrum

Definition 5.2. Let c 2 (0, s) be fixed. A traveling wave solution (p̄(z), j̄(z), q̄+(z)) of
system (1.4) is spectrally stable if no element of the spectrum of Lc has strictly positive
real part; that is

σ(Lc) \ fλ 2 C j Reλ � 0g = f0g .

Otherwise, we say that the traveling wave is spectrally unstable.
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Traveling wave profiles have quite different spectral features from those of standing
waves. Our assertion follow from the result in Lemma 5.1 about the dimension one of
the eigenspace associated to the zero eigenvalue, and mainly from the spectral instability
stated in the next theorem.

Theorem 5.3. For each fixed c satisfying 0 < c < s, the corresponding family of traveling
waves is spectrally unstable, that is, σ(Lc) \ fλ 2 Cnf0g j Reλ � 0g 6= ;.

In order to prove the theorem we shall show that the essential spectrum touches the
closed right-half complex plane.

5.3.1

The unstable essential spectrum

As we did in Chapter 4 we recast (5.3) as a first order ODE system

Yz = A(z, λ)Y, (5.12)

with Y = (p, j, q+)t and

A (z, λ) =

0BBBBB@
1

c2�s2 (�µs (2q̄+ � 1) + cλ) 1
c2�s2 (µ+ λ) � 2µsp̄

c2�s2

1
c2�s2

�
�cµs (2q̄+ � 1) + s2λ

�
c

c2�s2 (µ+ λ) � 2cµsp̄
c2�s2

0 �2κq̄+(1�q̄+)
cs �2κj̄(1�2q̄+)

cs + λ
c

1CCCCCA , 0 < c < s,

(5.13)
and consider the family of linear, closed and densely defined operators

T c(λ) : H1(R;C3)! L2(R;C3),

Y 7! Yz �A(z, λ)Y, λ 2 C.

As jzj ! +1 in (5.12) we obtain the constant-coefficient limiting system

Yz = A�(λ)Y, (5.14)

where
A�(λ) := lim

z!�1
A(z, λ).

These asymptotic matrices are

A� (λ) =

0BB@
(�µs(2q+

m � 1) + cλ)/(c2 � s2) (µ+ λ)/(c2 � s2) 0

(�cµs(2q+
m � 1) + s2λ)/(c2 � s2) c (µ+ λ) /(c2 � s2) 0

0 �2κq+
m(1� q+

m)/cs λ/c

1CCA ,
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with q+
m = q+

r,l at z = �1, respectively.

Let C+ denote the open right-half complex plane fλ 2 C j Reλ > 0g, and let Es�(λ)
and Eu�(λ) denote the stable and unstable eigenspaces of A� (λ), respectively. In order to
determine the location of the essential spectrum we begin with the following lemma.

Lemma 5.4. For all λ 2 C+, the asymptotic matrices A� (λ) are hyperbolic and dim[Es�(λ)] =
1 and dim[Eu�(λ)] = 2.

Proof. We start by proving that the matrices A� (λ) have purely imaginary eigenvalues
only if λ 2 CnC+.

If ai, with a 2 R, is an eigenvalue of A� (λ), it solves the equation

det (A� (λ)� aiI) = 0.

It is straightforward to compute that the characteristic equation is�
λ

c
� ai

��
λ2 +B (a)λ+ C (b)

�
= 0, (5.15)

where

B (a) = µ� 2aci, C (a) = a2
�
s2 � c2

�
+ aµ

�
2sq+

m � (c+ s)
�
i,

with q+
m = q+

r,l at z = �1, respectively.

Equation (5.15) has three roots

λ1(a) = aci and λ2,3(a) =
�B (a)�

p
D (a)

2
,

where

D (a) = B2 (a)� 4C (a) = µ2 � 4a2s2 � 4aµs(2q+
m � 1)i.

It is clear that Reλ1(a) = 0 for all a 2 R. This shows that A� (λ) are nonhyperbolic
matrices when λ is an element of the imaginary axis.

Now, taking the real part of λ2,3(a) yields

Reλ2,3(a) =
�
�ReB (a)�Re

p
D (a)

�
/2.

Since ReB (a) > 0, then clearly Reλ3(a) < 0 for all a 2 R. On the other hand, we observe
that Reλ2(a) � 0 if and only if

(ReB (a))2 �
�
Re
p
D (a)

�2
=

1

2

�
ReD (a) +

p
(ReD (a))2 + (ImD (a))2

�
.

It is not hard to see the above inequality is satisfied if and only if

(ImD (a))2 + 4 (ReB (a))2 ReD (a)� 4 (ReB (a))4 � 0. (5.16)



58

One can get that

(ImD (a))2 + 4 (ReB (a))2 ReD (a)� 4 (ReB (a))4

= (4aµs(2q+
m � 1))2 + 4µ2

�
µ2 � 4a2s2

�
� 4µ4 = �64a2µ2s2q+

m(1� q+
m),

since 0 < q+
m < 1, it follows that inequality (5.16) is true for all a 2 R, which implies that

Reλ2(a) � 0 for all a 2 R. This, together with the fact that Reλ1(a) = 0 for all a 2 R,
lead us to conclude that whenever the asymptotic matrices A� (λ) are nonhyperbolic, it
holds that λ belongs to the closed left-half complex plane. Therefore the matrices A� (λ)
are hyperbolic in C+.

The next concern is to calculate dim[Es�(λ)] and dim[Eu�(λ)] in C+, for this purpose
we find the eigenvalues of A�(λ), which turn out to be

η�1 (λ) =
λ

c
,

η�2,3(λ) =
c(µ+ 2λ)� µs(2q+

m � 1)�
q

(c(µ+ 2λ)� µs(2q+
m � 1))2 + 4(s2 � c2)λ(µ+ λ)

2(c2 � s2)
.

Clearly Reη�1 (λ) > 0 for all λ 2 C+. Set now λ = β 2 R+ = (0,+1), we have that
η�2 (β) < 0 and η�3 (β) > 0, because c < s. Since η�2,3(λ) are continuous functions and C+

is connected, their real part does not change sign on C+, and consequently Reη�2 (λ) < 0
and Reη�3 (λ) > 0 for all λ 2 C+. Hence, dim[Es�(λ)] = 1 and dim[Eu�(λ)] = 2 for all
λ 2 C+.

Lemma 5.5. The essential spectrum is a subset of the left-half complex plane and contains
the imaginary axis.

Proof. Let λ 2 C+, from Lemma 5.4 we know that A+(λ) and A�(λ) are hyperbolic matri-
ces, which, by Theorem 3.3 in [52] implies that equation (5.12) has exponential dichotomies
in R+ and R� with Morse indices i+(λ) = dim[Eu+(λ)] = 2 and i�(λ) = dim[Eu�(λ)] = 2,
respectively. Hence, as a consequence of Lemma 4.2 in [43], this signifies that T c(λ) is
Fredholm with index zero, given by

ind T c(λ) = i�(λ)� i+(λ) = 0.

Therefore, according to the definition of essential spectrum we have that the essential
spectrum lies outside C+, that is, σess(T c) � C n C+.

From the proof of Lemma 5.4 we have that A�(λ) are nonhyperbolic for all λ 2 iR,
thus, in view of Theorem 3.3 in [52], the equation (5.12) has no exponetial dichotomies
nethier on R+ nor R�. Thus, due to Palmer’s Theorem [44], T c(λ) is not Fredholm, which
lead us to conclude that iR � σess(T c).

Corollary 5.6. The eigenvalue λ = 0 is embedded in the essential spectrum.
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Despite the result in Theorem 5.3, there is still the possibility of achieving spectral
stability; our hope is to find a suitable weighted space in which the essential spectrum can
be shifted to the left, so that none of the elements of the imaginary axis belongs to the
essential spectrum. It should be emphasized, however, that the existence of such space does
not assure spectral stability because we do not know the location of the point spectrum.

5.4

The Impossible Weighted Space

To stabilize the essential spectrum it seems natural to work on the weighted Sobolev space

H1
w(R;C3) =

�
(p, j, q+) jw(∂izp, ∂

i
zj, ∂

i
zq

+) 2 L2(R;C3) for i = 0, 1
	
, (5.17)

where the weight function w satisfies
wz
w

(+1) = w+ and
wz
w

(�1) = w�, w� 2 R.

The technique consists of choosing a suitable positive weight function w so that the essential
spectrum can be shifted to the left. Unfortunately, in regard to our problem, this is not
possible. It will be shown below that the existence of such function is impossible. However,
the possibilities do not end here, in the subsequent section, Section 5.5, we reach the
desired stabilization when perturbations are constrained to belong to a weighted space
H1
wα(R;C2)�H1

wε(R;C), for suitable choices of wα and wε.
To prove the impossibility of existence of the space (5.17) we proceed as follows. Sup-

pose that (p, j, q+) 2 H1
w(R;C3) for some weight function w, then there exists a vector

function (p̃, j̃, q̃+) 2 H1(R;C3) such that (p, j, q+) = w�1(p̃, j̃, q̃+) (see the Appendix).
Upon substituting the latter into (5.3), we reach the eigenvalue problem

λp̃ = p̃z � cp̃
wz
w
� j̃z + j̃

wz
w
,

λj̃ = �s2p̃z + s2p̃
wz
w

+ cj̃z � cj̃
wz
w
� µj̃ + µs

��
2q̄+ � 1

�
p̃+ 2p̄q̃+

�
,

λq̃+ = cq̃+
z � cq̃+wz

w
+

2κ

s

�
q̄+
�
1� q̄+

�
j̃ + j̄

�
1� 2q̄+

�
q̃+
�
.

(5.18)

For notational convenience, the superscript tilde notation will be omitted on p̃, j̃ and q̃+.
We recast (5.18) as the first order system

Yz = Aw(z, λ)Y,

where Y = (p, j, q+)t and

Aw (z, λ) =

0BBBBB@
wz
w + 1

c2�s2 (�µs (2q̄+ � 1) + cλ) 1
c2�s2 (µ+ λ) � 2µsp̄

c2�s2

1
c2�s2

�
�cµs (2q̄+ � 1) + s2λ

�
wz
w + c

c2�s2 (µ+ λ) � 2cµsp̄
c2�s2

0 �2κq̄+(1�q̄+)
cs

wz
w �

2κj̄(1�2q̄+)
cs + λ

c

1CCCCCA .
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The asymptotic matrices are given by

Aw
� (λ) =

0BBBBB@
w� + 1

c2�s2 (�µs (2q+
m � 1) + cλ) 1

c2�s2 (µ+ λ) 0

1
c2�s2

�
�cµs (2q+

m � 1) + s2λ
�

w� + c
c2�s2 (µ+ λ) 0

0 �2κq+m(1�q+m)
cs w� + λ

c

1CCCCCA ,

with q+
m = q+

r,l at �1, respectively.
We find that λ is a root of the characteristic polynomial

det
�
Aw
� (λ)� aiI

�
, a 2 R,

if and only if �
λ

c
+ w� � ai

��
λ2 +B(a)λ+ C(a)

�
= 0,

where
B(a) = µ+ 2c(w� � ai)

and

C(a) = �w�µ(2sq+
m� (s+c))+(c2�s2)(w2

��a2)+(µ(2sq+
m� (s+c))�2w�(c2�s2))ai.

As before, the characteristic equation has three roots

λ1(a) = �w�c+ aci and λ2,3(a) =
�B (a)�

p
D (a)

2
,

where D(a) = B2(a)� 4C(a).
Notice that, in order to shift the essential spectrum to the left, it is necessary that

w� > 0 and Reλ2,3(a) < 0 for all a 2 R. Upon assuming the former, we have that
Reλ2,3(a) < 0 if and only if

(ImD (a))2 + 4 (ReB (a))2 ReD (a)� 4 (ReB (a))4 < 0, 8a 2 R. (5.19)

One can derive that ImD (a) = �4as(µ(2q+
m�1)+2sw�). By plugging this, together with

ReD (a) = (ReB (a))2 � (ImB (a))2 � 4ReC (a), into (5.19), we find that

(ImD (a))2 � 4 (ReB (a))2 ((ImB (a))2 + 4ReC (a))

= 16a2s2(µ(2q+
m � 1) + 2sw�)2

� 4(µ+ 2cw�)2(4a2c2 + 4(�w�µ(2sq+
m � (s+ c)) + (c2 � s2)(w2

� � a2)))

= 16a2s2((µ(2q+
m � 1) + 2sw�)2 � (µ+ 2cw�)2)

+ 16w�(µ+ 2cw�)2(µ(2sq+
m � (s+ c)) + w�(s2 � c2)).

We observe that this quantity is negative for all a 2 R if and only if

(µ(2q+
m�1)+2sw�)2�(µ+2cw�)2 < 0 and µ(2sq+

m�(s+c))+w�(s2�c2) < 0. (5.20)
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Now, see that the second inequality in (5.20) follows if and only if

w�(s2 � c2) < �µ(2sq+
m � (s+ c)).

In the case q+
m = q+

l we have that 2sq+
l � (s+ c) > 0, since from Theorem 2.2 one has that

q+
l > (c+ s)/2s. Thus, it is impossible to satisfy the latter inequality since w�(s2 � c2) is

positive and �µ(2sq+
l �(s+c)) is negative. The previous analysis shows that the existence

of the weighted space of the type of (5.17) is impossible.

5.5

An Appropriate Weighted Space

In this section we move the essential spectrum to the left of the imaginary axis. To
resolve the issue that the essential spectrum reaches the imaginary axis, rather than taking
perturbations in H1(R;C3) we restrict to perturbations that belong to the weighted space

H1
wα(R;C2)�H1

wε(R;C)

=
�

(p, j, q+) jwα(∂izp, ∂
i
zj) 2 L2(R;C2) andwε∂

i
zq

+ 2 L2(R;C) for i = 0, 1
	

;

where the weight functions are wα(z) = eαlz + eαrz and wε(z) = e�αlεz, with ε > 0 small.

Recall that

αl =
(c+ s� 2sq+

l )µ

2(s2 � c2)
< 0 and αr =

(c+ s� 2sq+
r )µ

2(s2 � c2)
> 0.

Let (p, j, q+) 2 H1
wα(R;C2)�H1

wε(R;C), since w0α/wα and w0ε/wε tend to a finite limit
as z ! �1, it turns out that (p, j, q+) = (w�1

α p̃, w�1
α j̃, w�1

ε q̃+) for (p̃, j̃, q̃+) 2 H1(R;C3)
(see the Appendix).

In the variables p̃, j̃ and q̃+, the spectral problem (5.3) becomes

λp̃ = cp̃z � cp̃
w0α
wα
� j̃z + j̃

w0α
wα

,

λj̃ = �s2p̃z + s2p̃
w0α
wα

+ cj̃z � cj̃
w0α
wα
� µj̃ + µs

��
2q̄+ � 1

�
p̃+ 2p̄q̃+wα

wε

�
,

λq̃+ = cq̃+
z + cαlεq̃

+ +
2κ

s

�
q̄+
�
1� q̄+

�
j̃
wε
wα

+ j̄
�
1� 2q̄+

�
q̃+

�
.

(5.21)

We drop the tilde notation and rewrite system (5.21) as

Yz = Aα,ε(z, λ)Y,
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where Y = (p, j, q+)t and

Aα,ε (z, λ) =

0BBBBBB@

w0α
wα

+ 1
c2�s2 (�µs (2q̄+ � 1) + cλ) 1

c2�s2 (µ+ λ) � 2µsp̄wα
(c2�s2)wε

1
c2�s2

�
�cµs (2q̄+ � 1) + s2λ

� w0α
wα

+ c
c2�s2 (µ+ λ) � 2cµsp̄wα

(c2�s2)wε

0 �2κq̄+(1�q̄+)wε
cswα

w0ε
wε
� 2κj̄(1�2q̄+)

cs + λ
c

1CCCCCCA .

To calculate the limit of Aα,ε (z, λ) as z ! �1, we will first show that

lim
z!�1

wα
wε
p̄ = 0 and lim

z!�1

wε
wα

= 0. (5.22)

In fact, by Lemma 2.7 we have that

p̄ = O(e�2αlz), z < 0, and p̄ = O(e�2αrz), z > 0.

We therefore obtain

wα
wε
p̄ =

(
O(e�αl(1�ε)z + e(�2αl(1�ε/2)+αr)z), z < 0,

O(e(αl(1+ε)�2αr)z + e(αlε�αr)z), z > 0.

Hence, the first limit in (5.22) is true, because �αl > 0, �αr < 0 and ε is a small positive
number.

Finally, through a direct computation we have

wε
wα

=
1

eαl(1+ε)z + e(αr+αlε)z
.

The second limit in (5.22) holds since αr + αlε > 0 if ε is chosen small enough.
In view of (5.22), when z ! �1, Aα,ε(z, λ) approaches to

Aα,ε
� (λ) =

0BBBBB@
αm + 1

c2�s2 (�µs (2q+
m � 1) + cλ) 1

c2�s2 (µ+ λ) 0

1
c2�s2

�
�cµs (2q+

m � 1) + s2λ
�

αm + c
c2�s2 (µ+ λ) 0

0 0 �αlε+ λ
c

1CCCCCA ,

where αm = αr,l at �1, respectively.
The λ-roots of the characteristic polynomial

det
�
Aα,ε
� (λ)� aiI

�
, a 2 R, (5.23)

satisfy �
λ

c
� αlε� ai

��
λ2 +B(a)λ+ C(a)

�
= 0,

where B(a) = µ+ 2cαm � 2aci and C(a) = (s2 � c2)(α2
m + a2).
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Such roots are

λ1(a) = αlεc+ aci and λ2,3(a) =
�B (a)�

p
D (a)

2
,

where

D(a) = B2 (a)� 4C (a) = (µ+ 2cαm)2 � 4α2
m(s2 � c2)� 4a2s2 � 4ac(µ+ 2cαm)i.

Notice that Reλ1(a) is negative for all a 2 R. Our concern is now to ensure that,
for all a 2 R, Reλ2,3(a) is negative as well. To this end, we begin by asserting that
ReB(a) = µ + 2cαm is positive. For αm = αr this is obvious, since αr > 0. Regarding
αm = αl, from the facts that c < s and q+

l < 1, there holds

µ+ 2cαl = µ+
c(c+ s� 2sq+

l )µ

s2 � c2
> µ+

c(c+ s� 2s)µ

s2 � c2
= µ� cµ

s+ c
> µ� cµ

2c
=
µ

2
> 0.

Thanks to the positivity of ReB(a) we have that

Reλ3(a) � Reλ2(a), 8a 2 R.

Thus, it all reduces to show that Reλ2(a) < 0 for all a 2 R. The real part of λ2(a) is
determined by

Reλ2(a) =
1

2

 
�ReB(a) +

1p
2

r
ReD(a) +

q
(ReD(a))2 + (ImD(a))2

!
. (5.24)

In what follows, we first prove that the quantity ReD(a) + 4a2s2 = (µ + 2cµαm)2 �
4α2

m(s2 � c2) is positive. Secondly, from this fact we check that the inequalityq
(ReD(a))2 + (ImD(a))2 � ReD(a) + 8a2s2, 8a 2 R, (5.25)

holds true.

To show that (µ+ 2cαm)2 � 4α2
m(s2 � c2) is positive, we write

(µ+ 2cαm)2 � 4α2
m(s2 � c2) =

�
µ+ 2cαm � 2αm

p
s2 � c2

��
µ+ 2cαm + 2αm

p
s2 � c2

�
.

In turns out that the factors are both positive. Certainly, in the case αm = αl, the first
factor is posivitive because µ + 2cαl > 0 and �αl > 0. Concerning the second factor, it
can be seen that

µ+ 2cαl + 2αl
p
s2 � c2 > µ+ 2cαl + 2αls

= µ+ 2αl(s+ c) = µ+
(c+ s� 2sq+

l )µ

s� c

> µ+
(c+ s� 2s)µ

s� c
= µ� (s� c)µ

s� c
= 0.

(5.26)
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When αm = αr, the second factor is the sum of positive numbers. As regards the first
factor, we derive

µ+ 2cαr � 2αr
p
s2 � c2 > µ+ 2cαr � 2αrs

= µ� 2αr(s� c) = µ� (c+ s� 2sq+
r )µ

s+ c

> µ+
2sµq+

r

s+ c
� µ =

2sµq+
r

s+ c
> 0.

(5.27)

We now proceed to verify (5.25). The inequality is true if and only if

(ReD(a))2 + (ImD(a))2 �
�
ReD(a) + 8a2s2

�2
,

() (ImD(a))2 � 16a2s2ReD(a)� 64a4s4 � 0, 8a 2 R.
(5.28)

Substitution of ReD(a) and ImD(a) yields, after a straightforward calculation,

(ImD(a))2 � 16a2s2ReD(a)� 64a4s4 = �16a2(s2 � c2)
�
(µ+ 2cαm)2 � 4s2α2

m

�
.

Inequality (5.28) will follow as soon as we establish that (µ + 2cαm)2 � 4s2α2
m > 0. This

can be factored as

(µ+ 2αm(s+ c))(µ� 2αm(s� c)).

For αm = αr the first factor is positive, and for αm = αl the second factor is positive too.
That µ+ 2αl(s+ c) and µ� 2αr(s� c) are positive has already been proved in (5.26) and
(5.27), respectively. Then inequality (5.28) is true, therefore so is inequality (5.25).

We will use (5.25) in order to find a negative upper bound for Reλ2(a). Applying this
inequality in (5.24) we get

Reλ2(a) <
1

2

�
�ReB(a) +

p
ReD(a) + 4a2s2

�
=

1

2

�
�(µ+ 2cµαm) +

p
(µ+ 2cµαm)2 � 4α2

m(s2 � c2)
�
, 8a 2 R.

The resulting bound is negative because (µ + 2cµαm)2 � 4α2
m(s2 � c2) > 0 is lower that

µ + 2cµαm > 0 for αm = αr,l. So we have that Reλ3(a) < Reλ2(a) < 0 for all a 2 R.
Finally, we can choose ε sufficiently small in such a way that αlεc, the real part of λ1(a),
is larger than

1

2

�
�(µ+ 2cµαm) +

p
(µ+ 2cµαm)2 � 4α2

m(s2 � c2)
�
.

We denote by Ω the open connected region in C that is bounded on the left by λ1(a),
namely

Ω = fλ 2 C jReλ > αlεcg .

To summarize, we have found that the parameter λ belongs to the complement of Ω
whenever the matrices Aα,ε

� (λ) are nonhyperbolic. That shows the first statement of the
following lemma.
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Lemma 5.7. Let λ be an element of Ω. Then, the asymptotic matrices Aα,ε
� (λ) are hyper-

bolic. Furthermore, the stable and unstable eigenspaces Eα,s� (λ) and Eα,u� (λ) have dimension
1 and 2, respectively.

Proof. To prove the second statement, we need to compute the eigenvalues of the matrices
Aα,ε
� (λ). A direct calculation yields

ηα,�1 (λ) = �αlε+
λ

c
,

ηα,�2,3 (λ) = � cλ

s2 � c2
�

s�
cλ

s2 � c2
+ αm

�2

+
λ(µ+ λ)

s2 � c2
,

with αm = αr,l at �1.
Since �αl > 0, we have that Reηα,�1 (λ) > 0 for all λ 2 Ω. Set now λ = 0 in (5.5), we

get ηα,�2,3 (0) = �αl and ηα,+2,3 (0) = �αr, thus we have that ηα,�2 (0) < 0 and ηα,�3 (0) > 0.

Due to the fact that Ω is a connected set, this is enough to conclude that Reηα,�2 (λ) < 0
and Reηα,�3 (λ) > 0 for all λ 2 Ω, so the proof of the lemma is complete.

5.5.1

The stable essential spectrum

The question of finding the essential spectrum of the operator Lc, restricted to the space
H1
wα(R;C2)�H1

wε(R;C), corresponds to the problem of determining the essential spectrum
of the operator

T c(λ) : H1
wα(R;C2)�H1

wε(R;C)! L2
wα(R;C2)� L2

wε(R;C)

Y 7! Yz �A(z, λ)Y, λ 2 C.
(5.29)

For our purpose of locating the region where the essential spectrum is contained, we con-
sider the matrix

Q(z) :=

0@ 1
wα

0 0

0 1
wα

0

0 0 1
wε

1A ,

and define the family of operators

T α(λ) : H1(R;C3)! L2(R;C3)

Ỹ 7! Ỹz �Aα,ε(z, λ)Ỹ, λ 2 C.
(5.30)

For Ỹ 2 H1(R;C3) we substitute Y = Q(z)Ỹ 2 H1
wα(R;C2)�H1

wε(R;C) in (5.29) to find
the relation:

T c(λ)Y = Q(z)T α(λ)Ỹ, Ỹ = Q�1(z)Y 2 H1(R;C3). (5.31)
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Proposition 5.8. The operator T c(λ), restricted to the space H1
wα(R;C2) �H1

wε(R;C), is
Fredholm if and only if T α(λ) is, in which case their Fredholm indices agree.

Proof. Assume that T c(λ) is a Fredholm operator.

1. From (5.31) we infer that

R(T c(λ)) = fQ(z)f j f 2 R(T α(λ))g =: Q(z)R(T α(λ)), or, equivalently

R(T α(λ)) = Q�1(z)R(T c(λ)).
(5.32)

This implies that R(T α(λ)) must be closed. Indeed, suppose by contradiction that
ffng � R(T α(λ)) is a sequence that converges to f /2 R(T α(λ)). Because fn =
Q�1(z)gn for gn 2 R(T c(λ)) for all n 2 N, we have that for each ε > 0 there exists
N > 0 such that

ε > jfn � f jL2(R;C3) =
��Q�1(z) (gn �Q(z)f)

��
L2(R;C3)

= jgn �Q(z)f jL2
wα (R;C2)�L2

wε (R;C) , whenever n > N.

This means that gn ! Q(z)f . Note that Q(z)f belongs to L2
wα(R;C2) � L2

wε(R;C)
but not to R(T c(λ)); if it did, f = Q�1(z)Q(z)f would belong to R(T α(λ)). This
leads to a contradiction, since R(T c(λ)) contains all of its limit points due to fact
it is closed inasmuch as T α(λ) is Fredhom; therefore we conclude that R(T α(λ)) is
closed.

2. It also follows from (5.31) that

ker(T c(λ)) = Q(z)ker(T α(λ)), or, equivalently

ker(T α(λ)) = Q�1(z)ker(T c(λ)).
(5.33)

From the bijective relation that (5.33) represents, it results that dim[ker(T α(λ))] =
dim[ker(T c(λ))] <1.

Let fY1,Y2, . . . ,Yng a basis of ker(T c(λ)) and let Ỹ 2 ker(T α(λ)) be arbitrary. By
(5.33), Ỹ = Q�1(z)Y for some Y 2 ker(T c(λ)), hence

Ỹ = Q�1(z)Y = Q�1(z)(a1Y1 + a2Y2 + � � �+ anYn)

= a1Q
�1(z)Y1 + a2Q

�1(z)Y2 + � � �+ anQ
�1(z)Yn,

for some constants a1, a2, . . . , an 2 C. Thus

Span(ker(T α(λ))) = Q�1(z)Span(ker(T c(λ))).

3. Note in addition that

L2
wα(R;C2)� L2

wε(R;C) = Q(z)L2(R;C3), or, equivalently

L2(R;C3) = Q�1(z)L2
wα(R;C2)� L2

wε(R;C).
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4. Next we show that the codimension of R(T α(λ)) equals the codimension of R(T c(λ)).
To do so, we use (5.32) and (5.33) to see that

L2(R;C)/R(T α(λ)) = L2(R;C) + R(T α(λ))

= Q�1(z)
�
L2
wα(R;C2)� L2

wε(R;C) + R(T c(λ))
�
,

from which we get

Span
�
L2(R;C)/R(T α(λ)

�
= Q�1(z)Span

�
L2
wα(R;C2)� L2

wε(R;C)/R(T c(λ))
�

;

the statement can be proven analogously to point 2.

Therefore

codim[R(T α(λ))] = dim
�
L2(R;C)/R(T α(λ))

�
= dim

�
L2
wα(R;C2)� L2

wε(R;C)/R(T c(λ))
�

= codim[R(T c(λ))] <1.

5. It follows from all the previous points that T α(λ) is a Fredholm operator with index

ind T α(λ) = dim[ker(T α(λ))]� codim[R(T α(λ))]

= dim[ker(T c(λ))]� codim[R(T c(λ))] = ind T c(λ).

The converse implication, that if T α(λ) is Fredholm then is T c(λ), follows analogously.

Theorem 5.9. The essential spectrum of Lc in the space H1
wα(R;C2)�H1

wε(R;C) is con-
tained in the stable complex half plane.

Proof. We know that σess(Lc) is given by σess(T c), and in turn, from Proposition 5.8,
σess(T c) in H1

wα(R;C2)�H1
wε(R;C) is given by σess(T α). Therefore, the proof consists in

finding the region where the essential spectrum of T α resides.
With the same arguments as in the proof of Lemma 5.5 we infer from Lemma 5.7 that,

for all λ 2 Ω, T α(λ) is Fredholm with index zero, which comes from

ind T α(λ) = iα�(λ)� iα+(λ) = 0.

This allows us to conclude that σess(T α) � C nΩ. Proving the theorem.

5.5.2

The multiplicity of λ = 0

Following Flores and Plaza [13], and Sandstede [52], we express the matrix (5.13) as

A(z, λ) = A0(z) + λA1,
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where

A0 (z) =

0BBBBBB@

�µs(2q̄+�1)
c2�s2

µ
c2�s2 � 2µsp̄

c2�s2

�cµs(2q̄+�1)
c2�s2

cµ
c2�s2 � 2cµsp̄

c2�s2

0 �2κq̄+(1�q̄+)
cs �2κj̄(1�2q̄+)

cs

1CCCCCCA
and

A1 =

0BBBBB@
c

c2�s2
1

c2�s2 0

s2

c2�s2
c

c2�s2 0

0 0 1
c

1CCCCCA .

Definition 5.10. Consider λ 2 σpt(T c). The maximal number of linearly independet
eigenfuntions of T c(λ) is called the geometric multiplicity of λ. Suppose that ker(T c(λ)) =
Span fY1g, the eigenvalue λ is said to have algebraic multiplicity m if there is a solution
to

T c(λ)Yj = A1Yj�1,

for each j = 2, . . . ,m, with Yj 2 H1
wα�H

1
wε , but there does not exist a H1

wα�H
1
wε solution

to
T c(λ)Y = A1Ym.

If λ 2 σpt(T c) has geometric multiplicity `, that is to say, ker(T c(λ)) = Span fY1 . . .Y`g,
the algebraic multiplicity is the sum of the algebraic multiplicities of a maximal set of
linearly independent eigenfunctions of T c(λ).

We say that λ is simple if the geometric and algebraic multiplicity are equal to 1.

Lemma 5.11. In H1
wα(R;C2)�H1

wε(R;C), λ = 0 is an element of σpt(Lc) and it is simple.

Proof. Lemma 5.1 establishes that in H1(R;C3) the eigenspace associated to λ = 0
is spanned by the eigenfunction (p̄z, j̄z, q̄

+
z ). In addition, from Theorem 5.9, indLc =

ind T α(0) = 0, thus, by proving that this function also belongs to H1
wα(R;C2)�H1

wε(R;C),
it follows that λ = 0 is an element of σpt(Lc) with geometric multiplicity 1 in this weighted
space.

Verification of (p̄z, j̄z, q̄
+
z ) 2 H1

wα(R;C2)�H1
wε(R;C) requires showing that wα∂

i
z p̄ and

wε∂
i
z q̄

+ belong to L2(R;C) for i = 1, 2. Since, once achieved that, we will have(p̄z, j̄z, q̄
+
z )
2

H1
wα (R;C2)�H1

wε (R;C)
=
�
kwαp̄zk2L1(R;C) + kwαp̄zzk2L1(R;C)

� �
1 + c2

�
+
wεq̄+

z

2

L1(R;C)
+
wεq̄+

zz

2

L1(R;C)
<1.

According to Lemma 2.7,

p̄z, q̄
+
z = O(e�2αlz), z < 0, and p̄z, q̄

+
z = O(e�2αrz), z > 0.
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Then we get

wαp̄z =

(
O(e�αlz + e(αr�2αl)z), z < 0,

O(e(αl�2αr)z + e�αrz), z > 0,
and wεq̄

+
z =

(
O(e�αl(2+ε)z), z < 0,

O(e�(2αr+αlε)z), z > 0.

(5.34)
This suffices to conclude that wαp̄z and wεq̄

+
z are elements of L2(R;C), provided ε is small

enough.
From (5.6), wαp̄zz and wεq̄

+
zz are given by

wαp̄zz =
µ

s2 � c2

�
(2sq̄+ � (c+ s))wαp̄z + 2swαp̄q̄

+
z

�
,

wεq̄
+
zz = �2κ

s
(q̄+

�
1� q̄+

�
wεp̄z + p̄

�
1� 2q̄+

�
wεq̄

+
z ).

(5.35)

Thus, to check that both belong to L2(R;C) we only need verify that all the terms in the
sums on the right-hand side of (5.35) belong to L2(R;C).

We can estimate(2sq̄+ � (c+ s))wαp̄z

L2(R;C)

< (s+ c) kwαp̄zkL2(R;C) ,

and, from the second equation in (2.5),wαp̄q̄+
z


L2(R;C)

=
2κ

s

wαp̄2(1� q̄+)q̄+

L2(R;C)

<
2κ

s
pmaxq

+
l kwαp̄kL2(R;C) ;

employing Lemma 2.7, we derive

wαp̄ =

(
O(e�αlz + e(αr�2αl)z), z < 0,

O(e(αl�2αr)z + e�αrz), z > 0,

which guarantees that kwαp̄kL2(R;C) exists.
Similarly,

wεp̄z =

(
O(e�αl(2+ε)z), z < 0,

O(e�(2αr+αlε)z), z > 0,

hence, wεq̄+(1� q̄+)p̄z

L2(R;C)

< kwεp̄zkL2(R;C) <1.

Finally, we have the boundwεp̄(1� 2q̄+)q̄+
z


L2(R;C)

< p̄max

wεq̄+
z


L2(R;C)

.

As a consequence of the asymptotic behaviour of wεq̄
+
z , described in (5.34), the right-hand

side converges. Hence, it is true that wαp̄zz, wεq̄
+
zz 2 L2(R;C).

Concerning the algebraic multiplicity, we take λ = 0 in (5.2) and derive with respect
to c. Then,

cp̄cz � j̄cz = �p̄z,
�s2p̄cz + cj̄cz � µj̄c + µs

��
2q̄+ � 1

�
p̄c + 2p̄q̄+

c

�
= �j̄z,

cq+
cz +

2κ

s

�
q̄+
�
1� q̄+

�
j̄c + j̄

�
1� 2q̄+

�
q̄+
c

�
= �q̄+

z .

(5.36)
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We write (5.36) as the equivalent system

T c(0)Y2 = ∂xY2 �A(z, 0)Y2 = A1Y1,

where Y1 = (p̄z, j̄z, q̄
+
z )t and Y2 = �(p̄c, j̄c, q̄

+
c )t.

Despite the fact that Y2 solves equation

T c(0)Y = A1Y1,

the Jordan chain ends with algebraic multiplicity 1, the reason is that Y2 does not belong
to L2(R;C3), which means that it is not a member of the space H1

wα(R;C2)�H1
wε(R;C).

Certainly, we compute q̄+
c through

∂q̄+

∂c
=
∂q̄+

∂q+
l

∂q+
l

∂q+
r

∂q+
r

∂c
.

From Propositions 2.4 and 2.6, and by (5.11), q̄+
c tends to a nonzero limit whose value

depends on the wave speed and the end states. This leaves Y2 out of L2(R;C3).
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DISCUSSION

According to the M5-model, an architecture of matrix fibres organized in parallel promotes
the formation of cellular aggregates in the form of stationary and traveling pulses. After
their run trough the extracelular matrix (ECM) such pulses leave behind tracks of prote-
olytically reoriented fibres. This results in the formation of decreasing wave fronts that
connect zones where most matrix fibres point to the right with zones where the amount of
right-oriented fibres is lower. Our findings support an association of high-amplitude wave
fronts with the presence of tall pulses, which suggests a positive correlation between the
height of the pulses and the amplitude of the wave fronts.

We obtained analytical approximate expressions for the standing and traveling pulses
and wave fronts. We observed through graphical comparisons that the approximate stand-
ing and traveling wave profiles better approximate the solutions obtained numerically as
they amplitude is reduced. A very interesting result would be to prove analytically that
the error can be controlled, which is highly desirable in order to ensure the accuracy of the
approximations in the cases of short pulses and flat wave fronts.

In view of the important role of patterns of cells and ECM unidirectionally aligned
on performance and maintenance of specialized functions of tissues, and on their medical
applications, we would like to know which of the cellular aggregates and oriented structures
of ECM can persist for a long time. So, our interest has focused on the spectral stability
of the standing and traveling wave profiles, which according to the results of Rottmann-
Matthes [49, 50], is an important step to determine orbital asymptotic stability. We have
proved that each standing pulse and its corresponding wave front are spectrally stable;
nevertheless, up to now this result has not been enough to conclude orbital stability. One
of the difficulties we encountered when trying to apply the results of asymptotic stability
of Rottmann-Matthes is the infinite-dimensional nature of the zero eigenvalue, which is far
from the assumptions considered by the author. With regard to the members of the family
of traveling waves, we have made significant progress towards obtaining their spectral
stability. Although in principle these traveling waves are spectrally unstable, since the
linearized operator has essential spectrum up to the imaginary axis, we have constructed
an appropriate Sobolev weighted space where the essential spectrum lies inside the open
left-half complex plane. The location of the point spectrum is still an open question, our
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work continues in this direction with a view to doing the analysis of orbital stability.



APPENDIX

In this appendix we show that for a function u 2 H1
w(R;C), with a positive weight function

w satisfying
wz
w

(+1) = w+ and
wz
w

(�1) = w�, w� 2 R, (6.1)

there exists a function ũ 2 H1(R;C) such that u = w�1ũ.
Let ũ := wu, since clearly ũ 2 L2(R;C), we need only prove that ũz 2 L2(R;C). So we

differentiate ũ to get

ũz = wzu+ wuz = u
wz
w

+ wu,

from which we have that
jũzj �

���uwz
w

���+ jwuj . (6.2)

Squaring in (6.2) and integrating over R,Z
R
jũzj2 dz

Z
R
�
���uwz
w

���2 dz + 2

Z
R

���uwz
w

��� jwuj dz +

Z
R
jwuj2 dz

� 2

�Z
R

���uwz
w

���2 dz +

Z
R
jwuj2 dz

�
= 2

�
kũkL2(R;C) +

Z
R

���uwz
w

���2 dz� .
By condition (6.1) for a given ε > 0 there exist N > 0 such that jwz/w � w�j < ε for

jzj > N , therefore

Z
R

���uwz
w

���2 dz =

Z �N
�1

���uwz
w

���2 dz +

Z N

�N

���uwz
w

���2 dz +

Z 1
N

���uwz
w
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R
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Z
R
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From this, ũz 2 L2(R;C) and then ũ 2 H1(R;C).
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