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Introduction

The sample d-copula of order m is a new way to estimate a d copula, see [24], it is an estimator

which is already a copula, unlike the empirical copula which is only a subcopula.

In this thesis we will study the main two properties of the sample d-copula, that is, a Glivenko-
Cantelli’s theorem and the asymptotic properties of its associated empirical process. The main
objective of this work is to obtain the same results that exist for the empirical copula. The parameter
m, which it is an integer with 2 < m < n, where n is the sample size, is not difficult to estimate
and in most cases it is less than n. Besides the evaluation of the sample copula is fairly simple and

quicker than the empirical copula.

In Chapter 1 we given a review of the basic results of the theory of copulas and we describe the

main definitions needed for the rest of the thesis.

In Chapter 2 we provide definitions and results corresponding to the sample and empirical copula
and we give the proof of a version of the Glivenko-Cantelli’s theorem for the sample d-copula. We
also provide a large number of simulations to compare the approximation of the empirical copula
and the sample d-copula to the real copula based on samples. At the end of this chapter we provide
a method to estimate the order m, with 2 < m < n, of the sample d-copula using the estimated value

of the Sperman’s rho in dimension two, and we also provide a methodology for higher dimensions.

In Chapter 3 we present the behavior of the random variables associated with the counting process
generated by the sample d-copula. We obtain similar results to the ones found in [8] for the two

dimensional case, and we extend the study of the these random variables for higher dimensions.

In Chapter 4 we found the weak convergence of the process generated by the sample d-copula
using the convergence result of the empirical copula process. We obtain the weak convergence to
a Gaussian process, and we evaluate its variance-covariance structure. Finally, in this chapter we

provide several simulations to test the convergence of this process at each point.

In the final remarks we point out the advantages of using the sample d-copula instead of the em-
pirical copula and we also give several possibles extensions and applications of the sample d-copula

for real data.



1 Preliminaries

This chapter describes the basic results about copulas used in this work, we provide some exam-
ples related to the Archimedean copulas and the relations between copulas and other dependence

measures. Most of the results presented here can be found in Nelsen’s book [37].

1.1 Basic definitions and properties of copulas

Definition 1.1 Ler S1,5, C R be not empty sets, with R = [—o0, 0] the extended real line. A
function H : S| X S, — R is grounded if there exists a least element a; € S| and a least element
a, € S, such that H(x,a,) = H(a;,y) =0 forall (x,y) € S| X S,.

Definition 1.2 Ler S1,S, C R be not empty sets, with R = [—o0, co] the extended real line. Let
B = [x1, x2]1X[y1, y2] be a box with vertices in the domain of the function H, we define the H-volume
of B by

Vu(B) = H(x2,y2) = H(x2,y1) — H(x1,y2) + H(x1, 1)

Definition 1.3 Ler S, S, C R be not empty sets and let H : §1 X S, — R be a bivariate function.
We say that H is 2-increasing if Vy(B) > 0 for every box B with vertices in the domain of the H

function.

Definition 1.4 A two-dimensional subcopula (or 2-subcopula, or briefly subcopula) is a function

C’ with the following properties

1. Dom(C") = S§1XS,, where S|y S, are subsets of I = [0, 1] such that 0,1 € S, and 0,1 € S,.
2. C’ is a grounded function and is 2-increasing.
3. Forallu e S, andforallv € S,,

Cu,)=u y C'(1,v)=v.

The range of the function C’ is a subset of 1 = [0, 1].

Definition 1.5 A two-dimensional copula (or 2-copula, or briefly copula) is a 2-subcopula C with
domain equal to I* = [0, 11*. That is, a copula C is a function with domain I* = [0, 11> and range

I = [0, 1] that satisfies the following properties

1. Forallu,vel
C(u,0)=0=C(0,v)

and
Cu,1)=u and C(,v)=v.



2. Forall uy,uy,vy,vy € Isuch that u; < u, and vy < v,

C(uz,v2) — C(up, vi) — C(uy, v2) + C(uy,vy) > 0.

Example 1.6 An example of a copula is the function 1% : [0,1]> — [0, 1] defined by I1*(u,v) =
u - v, this function satisfies the above conditions. If we define W*(u,v) = max{0,u + v — 1} and
M?*(u,v) = min{u, v} then M*> and W? are also copulas which satisfy that for every subcopula or

copula C we have that
W2(u,v) < C(u,v) < M*(u,v) for every u,ve|0,1].
The copulas W? and M? are called the lower and upper Fréchet-Hoeffding bounds
Lemma 1.7 For every C subcopula and for every u,,u,, vy, v, € [0, 1] we have that
|C (1, v1) = Clua, vo)l < luy — up| + vy = val,
which guarantees that C is uniformly continuous (Lipschitz).

Following, the above definitions extends to the case n-dimensional.

Definition 1.8 Let S,,---,S, C R be not empty sets, with R = [—o0, 0] the extended real line.
A function H : S| X --- X S, — R is grounded if there exists a least element a; € Sy for every
ke{l,---,n}, such that H(t) = 0 for all t € Dom(H), with t, = a, for at least one k € {1,---,n}.

Definition 1.9 LerS,,---,S, C R be not empty sets, with R = [~o0, 0] the extended real line. Let
H:S§x---xS, — Rbea function and let B = [a, b] be a n-box with vertices in the domain of
the H, we define the H-volume of B by

Vi(B) = ) sgn(©)H(c), (1)
where the sum is considered on all vertices c of B and we define

(©) = 1 if ¢y = ay for an even number of values k
SO =1 ~1 if cx = ayi for an odd number of values k.

Example 1.10 Ler H : @3 —> R be a function and let B = [x1, x] X [y1, y2] X [z1, 22] be a 3-box.
Then the H-volume of B is given by

Vu(B) = H(xz,yz,Zz) - H(xz,yz,Zl) - H(X2,y1, 22) — H(x1,Y2, 22)
+H(x2,y1,21) + H(x1,y2,21) + H(x1, 1, 22) — H(x1, 1, 21).



Definition 1.11 LetS,,---,S, C R be not empty setsand let H : S| X---XS, — R be a n-variate
Sfunction. We say that H is n-increasing if Vy(B) > 0 for all n-box B with vertices in the domain of
the function H.

Definition 1.12 Ler Sy,---,S, C R be not empty sets and let H : S1 X --- XS, — R be a
n-variate function. If every set S, has a maximum element by, k € {1,---,n}, we say that the H
function has marginals and we define the k-th marginal function of one dimension of H, denoted
byH;:S, — Rby

Hi(x) = H(by, -+, b1, %, Dy, -, by).

for all x € S;. We can define marginals of higher order that one (k-marginals), setting fewer

positions in the domain of H.

Definition 1.13 A n-dimensional subcopula (or n-subcopula) is a function C’ with the following

properties
1. Dom(C")=81x---Xx8,, withS; CIsuchthat0,1 € Sy for everyk € {1 ---,n}.
2. C’ is grounded and is n-increasing.

3. C’ has marginals and each marginal C, for every k € {1 -- -, n}, satisfies

C,(u) =u paratodau e Sy.

The range of the C’ function is a subset of 1 = [0, 1].

Definition 1.14 A n-dimensional copula (or n-copula) is a n-subcopula C with domain equal to
I" = [0,1]". That is, a n-copula C is a function with domain 1" and range 1 that satisfies the

following properties

1. Foralluel”

C(u) = 0 if at least one coordinate of u is 0

and, if every coordinate of u are 1 except uy, then C(u) = uy.

2. Foralla,b € 1", such that a < b, that is, a; < by for every k € {1,---,n}, we have that

Ve(la, b)) > 0.

Remark 1.15 For all 2 < k < n, every k—marginal function of C is a k-copula.



Lemma 1.16 Let C : [0, 1]¢ — [0, 1] be a d-copula. We define for every U= Up,...,uy) € I =
[0,11¢

W(u) = max(0,

1

d
ui—d+1) and M%(u) = min(u,, ..., uy).
=1

Then we have that for every d-copula or d-subcopula C ,

W) < C(u) < M*(u). (2)

In this case M? is always a d-copula. However, W¢ is never a d-copula for d > 2, because the
volume of the box R = [1/2,1]% is given by Vya(R) = 1 — (d/2) < O for every d > 2. However; the
inequality (2) is sharp because for every u € [0, 1]¢ there exists a d-copula C depending on u, such

that the left inequality in (2) becomes an equality.

Lemma 1.17 For every u,v € [0, 1]¢ and every d-subcopula C we have that

d
C@w = CwI < D luy = vil
i=1

Again any d-copula C is a continuous (Lipschitz) function.

Theorem 1.18 (Sklar’s Theorem) Let H be a joint d-distribution function for d > 2 with margins

F\,F,,...,Fy Then there exists a d-copula C such that for every (x1,x2,...,X4) € IRY,
H(xi,x2,...,x5) = C(Fi(x1), Fa(x2), ..., Fa(x2)). 3)

IfFi, F,,..., F,are continuous, then C is unique; otherwise, C is uniquely determined on Ran(F)x
Ran(F5,) X --- X Ran(F ;). Conversely, if C is a d-copula and F1, F», ..., F, are distribution func-

tions, then the function H defined in equation (3) is a joint d-distribution function.

Definition 1.19 Given a copula C and a,b € [0, 1] we define the horizontal section of C at a by
h,(t) = C(t,a) and the vertical section of C at b by v,(t) = C(b,t) for every t € [0, 1].

Remark 1.20 Using equation (1) we can see that the functions h,(t) and v,(t) are increasing func-

tions.
Definition 1.21 We define the diagonal section of C by

oc(t) =C(t,t) forevery te]0,1].



Remark 1.22 We can see that 6¢(t) is also an increasing function and, in the case of d-copulas
C, with d > 2, we have equivalent definitions for each coordinate by fixing d — 1 coordinates, and
defining 6c(t) = C(t,t,...,1).

Remark 1.23 Given a d-copula C for any (vi,...Vi_1,Vis1,- .., Vq) € [0, 119" we have that
oC
G_(VI’ LRCI ’vi—l’ ui’ vi+1’ o ’vd)
Ui

exists for almost every u; € [0, 1] and for everyi € {1,...,d}. In fact,

0
0< _C(Vla"-avi—lauiavi+1,'- .,Vd) < L.

N (914,-

The last inequality follows from the Lipschitz continuity of C. Furthermore the partials are defined

]d—l

and nondecreasing almost everywhere (a.e.) on [0, 1 with respect to Lebesgue measure.

The mixed partials of C also exist almost everywhere with respect to Lebesgue measure. In fact,

d

c(uy,...,cq) = ” Cluy, ..., uq)
d

Ouy---0
also exists a.e. and it is defined as the density function c of the distribution function C.

For example, in the case of 11 we have that its density is given simply by n(u,, ...,ugz) = 1 for

every (ui, ...,ug) € [0, 1]%
Definition 1.24 We define the support of a d-copula C by
supp(C) = {u € [0, 114 Ve(R,) > 0 forevery r > 0},

where R, = [u—r,u+r] c[0,1) andr = (r,r,...,r) (d times).

Example 1.25 We have that the support of the copula M? is given by the main diagonal D

{(u,v) € [0,11%|u = v}. Similarly the support of the copula W? is the secondary diagonal D,
{w,v) € [0, 1 |u+v=1)}.

Definition 1.26 For any d-copula C we define

Uy Ud ad
Cac(uy, ... ug) Zf ' f a—C(Vla cesV)dvg .. dv
0 0 Ovi---0vy



where a.c. stands for absolutely continuous. Also define
Cs(ury..uq) = Cuy, ..., ug) = Coe Uy, . .., ug),
where s. stands for singular.

If C = C,.. we say that C is absolutely continuous, if C = C, we say C is singular, in any other

case C is hybrid.

We can observe that C;(1,...,1) is the measure of the singular part if it exists.

1.2 Archimedean copulas and types of dependence

Definition 1.27 Let ¢ : [0, 1] — [0, o] be a continuous, strictly decreasing, convex function, that
is, ifu,v € [0,1]and 0 < a < 1 then p(au + (1 — a@)v) < ap(u) + (1 — a)e(v), such that (1) = 0,

in this case we will call ¢ a generator. Then, if we define

Ciea | '@ if 0<t<(0)
Y (l)_{o if @0)<t< oo,

called pseudo-inverse of ¢, and we define

Cu,v) = ¢~ Npu) + @(v) for every (u,v) € [0,1]%. “4)

Then C is always a copula with generator ¢, ¢ is strict if ¢(0) = oo and non-strict if ¢(0) < co.

The copulas given in equation (4) are called Archimedean copulas.

Lemma 1.28 Let ¢ be a generator of C as in equation (4). Then

i) C is symmetric, that is, C(u,v) = C(v, u) for every (u,v) € [0, 1]%

ii) C is associative, that is, C(C(u,v),w) = C(u, C(v,w)) for every u,v,w € [0, 1].
iii) If c > O then = ¢ - ¢ is also a generator of C.

Theorem 1.29 C is an Archimedean copula if and only if C is an associative copula such that
oc(t) =C(t,t) < t, forevery t € (0,1).

Remark 1.30 We have the following observations:

a) If we define o(t) = —In(?), then ¢ is a strict generator with o!1(t) = ¢™1(t) = exp(~1), and using
equation (4) we have that T1? is an Archimedean copula.

b) If we define ¢(t) = 1 — t, then ¢ is a non-strict generator with ¢'=(f) = max{1 — t,0}. Hence,
W2 is also Archimedean.

c) However, using Theorem 1.29, M? is not Archimedean because 6,(t) = t for every t € [0, 1].

6



Remark 1.31 Several families of copulas used in practice for modeling are Archimedean among

them we have:

1. Clayton Family, with generator ¢(t) = max{0, é(t‘e — 1), where 0 € [—1, 00)\{0}.
2. Ali-Mikhail-Haq (AMH), with generator ¢(t) = In (W) where 6 € [—1,1).

3. Gumbel, with generator ¢(t) = (—In(t))? where 6 € [1, o).

4. Frank, with generator ¢(t) = —In (27;1;((__09?__11) where 0 € (—o0, 00)\{0}.

Definition 1.32 Let U, = {(x1,y1),...(Xs, Yn)} be a random sample from a bivariate continuous
vector (X,Y), for every 1 <i < j < nwe say that (x;,y;) and (x;,y;) are concordant if and only if
(x; = x))(yi = y;) > 0 and they are discordant if (x; — x;)(y; — y;) < 0. The sample Kendall’s tau is
defined as

c—d n
T:m=(c—d)/(2),

where ¢ and d are the number of pairs which are concordant and discordant respectively. It can
be thought as the probability of concordance minus the probability of discordance. Therefore, the
population version of Kendall’s tau is defined by

T =1xy = P[(X; = X5)(Y1 = Y2) > 0] = P[(X; — Xo)(Y) - Y2) < 0],

where (X1, Y1) and (X3, Y,) are independent and identically distributed random vectors with com-

mon joint distribution F.

Theorem 1.33 Let (X1, Y)) and (X3, Y>) be independent vectors of continuous random variables
with joint distributions H, and H,, respectively, with common margins F of (X, and X;) and F, of
(Y1 and Y,). Let Cy and C, be the respective copulas of (X1, Y1) and (X5, Y,). Let

Q = Q(Cy, (7)) = P[(X; = X5)(Y = Y2) > 0] = P[(X; = X5)(Y; — Y2) <0].

Then

Q(C1,C2)=4ff Co(u,v)dCi(u,v) - 1. (&)
[0,112

Remark 1.34 We can see that Q(C,, C») = Q(C,, C;). We also have that Q(M?*, M?) = 1, Q(M?,11?) =
1/3, 0(M?*, W?) =0, Q(W?,11?) = —1/3, Q(W?, W?) = —1 and Q(I1%,11%) = 0.



Lemma 1.35 If X and Y are continuous random variables with copula C. Then the population

version of Kendall’s tau is given by
Txy = Q(C,C) = 4ff C(u,v)dC(u,v)y—1=4E(C(U,V)) - 1.
[0,1)2

It also denoted by t¢. Hence, we have that Ty = 1, T2 = 0 and T2 = 1.7

In fact, if C(u,v) < Ca(u,v) for every (u,v) € [0,1]* then 7¢, < 7c,, and using the Fréchet-
Hoeffding bounds we have that —1 < 1¢ < 1 for every copula C.

Example 1.36 For the Clayton family Cy with parameter 6 > —1, we have that ¢, = 0/(6 + 2).

Another example is the Gumbel family with parameter 8 > 1, in this case, we have that T¢, =

@-1)/6.

Example 1.37 If C is Archimedean with generator ¢ then we can find Kendall’s tau using the

1
TC:1+4f ¢ 4
o @)

formula

Definition 1.38 Another measure of association is Sperman’s rho. Let (X1, Y1), (X2, Y>) and (X3, Y3)
be three independent random vectors with common continuous joint distribution F with margins
Fy and F,. The population version of Spearman’s rho is defined as proportional to the proba-
bility of concordance minus the probability of discordance of the vectors (X1, Y,) and (X5, Y3). In

fact,
vo = pxy = 3(P[(X; — X)(Y; — ¥3) > 0] = P[(X; — X5)(Y; — ¥3) < O0)).

Therefore, using (5) we have that if X and Y are continuous random variables with copula C then

Pxy = Pc = 3Q(C’ Hz)

V= 12ff uvdC(u,v) -3
[0,17?

= 12ff C(u,v)dudv - 3 (6)
[0,112

Example 1.39 We have that convex combinations of copulas are copulas. Then, we can consider
the Fréchet family of copulas defined as Co5(u,v) = @- M*(u,v) + (1 —a =B -I1*(u, v) + B W?(u, v)
for every a, 8 > 0 such that a + 8 < 1 and for every (u,v) € [0, 11%. Using the previous results, we
have that Q(C,p) = «Q(M?*,T1*) + (1 — a — B)QI12,11?) + BO(W2,11?). So,

Pc,; = a—p-

8



We also observe that from the previous observations we have that
-1 <pc <1 foreverycopula C.

Remark 1.40 If U and V are uniform (0, 1) random variables with copula C, then

pc = 12ff uvdC(u,v) — 3
[0,17?

= 12E(UV)-3
E(UV)—1/4
1/12
E(UV) - E(U)E(V)
VVar(U) \Var(V)

Here, we used that E(U) = 1/4 and Var(U) = 1/12. Hence, Sperman’s rho for a pair of continuous
random variables X and Y is identical to Pearson’s correlation coefficient for the random variables
U=F(X)andV = F,(Y).

Lemma 1.41 If X and Y are continuous random variables, then

-1<3r-2p<1.
1+p l1+71 dl—p 1-7\
2 2 2 T\ 2
Fort>0
3r-1 1+2r-12
<p< ,
2 2
andift <0
?4+21-1 1+37

Definition 1.42 Let X and Y be random variables. Then X and Y are positively quadrant depen-
dent if for every (x,y) € IR?

PX <x,Y<y)>PX<x)PY <y). (7)

Equivalently,
P(X>x,Y >y)>PX > x)P(Y >y).

If equation (7) holds we will write PQD(X,Y). In terms of copulas (7) can be written as
C(u,v) > uv =I1%(u,v) forevery (u,v)el0,1].

9



Negative quadrant dependence is defined analogously, by reversing the inequalities. If POQD(X,Y)
then
3txy = pxy = 0.

Definition 1.43 Let X, Y be two random variables, we will say that Y is left tail decreasing in X,
denoted LTD(Y|X) if and only if P(Y < y|X < x) is a decreasing function of x for all y, equivalently,

if and only if C(u,v)/u is decreasing in u or if and only if 0C(u,v)/0u < C(u,v)/u for almost every
u.

We will say that Y is right tail increasing in X, denoted RTI(Y|X) if and only if P(Y > y|X > x)
is a increasing function of x for all y or equivalently, if and only if 1 —u —v + C(u,v)/(1 — u) is

decreasing in u or if and only if 0C(u,v)/0u > [v — C(u,v)]/(1 — u) for almost every u.

LTD(X|Y) RTI(X|Y) are defined by interchanging X and Y and we have that tail monotonicity
implies PQD.

We will use later on the Spearman’s rho to define a methodology to establish the order of the

sample copula in the two-dimensional case.

10



2 Comparison between the empirical copula and the sample d-
copula of order m

The d-sample copula of order m, C7', is a d-copula which is a sample estimator of C™ the checker-
board approximation of order m of a given d-copula C, see [36] and [9], as we will see the estimator
C™ approaches C™ as the sample size n increases. If m is relatively large, C™ is a very good ap-
proximation of C. Hence, C' can be thought as a quasi-nonparametric method to estimate the real

d-copula C, and it becomes a nonparametric estimator when we choose the order m.

In this Chapter we make an extensive comparison of the supremum distance between the empirical
copula C, and the real copula C, and the supremum distance between the real copula and the
sample copula of order m, C;' which is simply the multilinear interpolation used in the proof of
Sklar’s Theorem, based on a sample of size n and a regular partition of order m in m¢ d-boxes
of Lebesgue measure 1/m? of [0, 1]¢. The same partition is used to define C™ the checkerboard
approximation. We used different samples sizes n, and we consider a large class of frequently used

families of copulas, and some interesting families of singular copulas.

We simulated a large number of samples of each copula with sample sizes n = 20, n = 30 and n =
50, and we obtain the basic statistics of the supremum distance when we vary m from 2 up to n. We
observed that always there exist values of m, in general far smaller that n, such that the supremum
distance between the sample d-copula of order m and the real copula C gives better approximations
than using the supremum distance between the empirical copula and the real copula. We also
prove a Glivenko-Cantelli’s Theorem for the sample copula, and we provide a method to estimate

the value of m such that C”

m

the sample d-copula of order m is a good approximation of the real

d-copula C based on the simulations.

In the last section we give some remarks and observations which include an important comment on
why the case m = n is not a good option. We also see that we can easily simulate from the sample
copula C}, and that these simulated samples are quite similar to the original sample. On the other

hand, we give strong evidence that it is possible to obtain a Glivenko-Cantelli’s Theorem for the

total variation distance for the checkerboard approximation C™ and the sample copula C™.

2.1 Definitions and results about the empirical copula
We start this section by recalling the principal results about the empirical copulas.

Definition 2.1 (Rank Function) Let Xi,---,X, be a random sample of size n of a continuous

random variables X and let X1, - - -, Xy be their order statistics. The rank functionr : {1,...,n}X

11



IR" — {1,...,n} is defined by
r(j, X1,-+,X,) =k, ifandonly if X; = Xy, where jk €{1,...,n}.

Definition 2.2 (Modified Sample or Pseudosample) Let X |,---, X be a random sample of size

n of a continuous random vector X of dimension d, where X, = (X;1,...,Xiq) € IRY, for every
i=1,...,n Letié€ I, the i-th modified sample Y . = (Y;,---,Y.4), is defined by

1
Yij=—r(i,Xj,....X,,) forevery j € I,.
n

Here we observe that the modified sample {Y |,..., Y }is always a subset of I
Definition 2.3 (Empirical Copula) Let X ,---,X  be a random sample of size n of a random
vector X of dimension d, with continuous joint distribution H, where X, = (X; 1, -+, Xiq) € IRY, for

everyi=1,...,n. LetY, ---,Y bethe corresponding modified sample. We define the empirical
copula denoted by C, : 1¢ — 1 by

1 n
Couy, ..., ug) = p Z Ly, <, Yig<ug (U1, - - -, g) for every (uy, ... ug) € I, (8)
i=1

Remark 2.4 The empirical copula C, is an approximation of the real copula C. The empirical
copula C, given in equation (8) has jumps of magnitude 1/n at each Y . of the modified sample
for every i € I, almost surely. Hence, C, is not continuous, and therefore C, is not a d-copula.
However, C,, is a d-subcopula if we restrict the domain to be T¢ where T =1{0,1/n,2/n,...(n —
1)/n, 1}. This follows easily by observing that from the continuity of the joint distribution function
H of the random vector X, the ranks in each coordinate vary from one to n. Using Sklar’s Theorem
for the continuous joint distribution H in Definition 2.3 there exists a unique d-copula C such that
equation (3) holds.

If we are sampling from a d-copula C instead of a joint distribution function H the Definition 2.3
of the empirical copula still holds using modified samples.

A very important result about empirical copulas is the Glivenko-Cantelli’s Theorem which states

that the empirical copula C, approaches the real copula C in supremum norm almost surely.

Theorem 2.5 (Glivenko-Cantelli) Let C, the empirical copula constructed from a sample of size
n of a continuous joint distribution H with d-copula C, or from a d-copula C, as in Remark (2.4).

Then

lim sup |C(uy, up, ... ug) — C(uy, up, ... ,ug) =0 almost surely. 9)
= 4y .oy )W
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It is quite important to observe here, that the empirical copula has been used extensively in statisti-
cal applications to model multivariate data, see for example [4], [5], [6], [7], [10], [12], [14], [16],
[18], [19], [20], [22], [23], [28], [30], [31], [39], [42], [45] and [48], just to cite some of them.
However, as observed above the empirical d-copula is not a d-copula. In order to correct this pro-
blem some authors have proposed some modifications of the empirical copulas such as the linear
B-spline copulas, see [43] and [17]. We will see later on that this approximation corresponds to our
sample d-copula of order m = n, but we will also see that, in many instances, this approximation of
the real copula does not improve the approximation given by the empirical copula. Another well
known approximation for a copula is the Bernstein copula, which is based on polynomial approx-
imations of a d-copula, see for example [41] or [36]. We will see that our proposal is far easier to
implement specially in higher dimensions and even with large sample sizes.

The empirical d-copula , based on the theory of empirical processes includes two important results
which justify its use: The first one is the Glivenko-Cantelli Theorem, stated above, which states
that for n large enough it approximates the real copula almost surely, and the second one is the
asymptotic theory which states that the normalized process converges to a Gaussian process with
a given covariance structure, see for example [8], [13] and [44]. As we will see in this paper, using
the checkerboard approximation of order m, see [36], which is a very good approximation of a
d-copula C, that when m increases, approaches rapidly C, we can obtain the Glivenko-Cantelli’s

result for the sample d-copula of order m. See also, [9] and [35].

First, we observe that in dimension one, if we have a univariate distribution function F and a
random sample X = {X|, X5, ..., X,} from F of size n. We know that the empirical distribution
function is defined by

Foux)=(1/m) ) liyey forevery xeR
i=1

If F is continuous then with probability one F,, has jumps of magnitude 1/n at each point X; of the
sample. If we let F(y denote the distribution function of the constant random variable X, = 0, and
taking order statistics we can assume that the sample satisfies —oo < X; < X; < --- < X, < 0o, then
F,(x) = YL ,(1/n)Fo(x — X;) for every x € R. So, if we assume that F is continuous, it is easy to

see that

SUp, g [Fn(x) = F(x)| max <<y, (Max (|F,(Xx—) — FXOI, [Fo(Xi) — F(X)D)

L FX)| . |5 - Fxl)).

n

(10)

maxj<i<, (max (

b

On the other hand, we have that for every k € I,, min(max(|(k — 1)/n — F(Xy)|, |k/n — F(x)|))
is attained when F(X,) = (2k — 1)/2n, and in this case min(|(k — 1)/n — F(Xp)|, |k/n — F(xy)|) =

13



max(|(k—1)/n—F(X;)|, |k/n—F(x;)|) = 1/2n for every k € I,. So, if we define X;, = F~1((2k—1)/2n)
for every k € I,, we have, using equation (10), that

1
sup |[Fyy(x) — F(x)| = o (11)
x€lR n

Therefore, we have proved the following Lemma, which we could not find a reference for it

Lemma 2.6 Let F be a univariate continuous distribution function and let X = {X,,X>, ..., X,} be

a random sample of size n > 1 from F. Then
1
sup |F,(x) = F(x)| > — a.s.[Pr],
xelR 2n

where P is the probability measure induced by F on IR.

For an upper bound on the tail probabilities we have the Dvoretzky-Kiefer-Wolfowitz inequality,
improved by Massart, see [11] and [34], which states that for every € > 0 and for every n > 1

Psup|F,(x) - F(x)| > €] < 27 (12)
x€lR

If we take € = 1/(2n) in (12) we observe that that the minimum of the right hand side is attained at

n = 1 where it takes the value 2 exp(—1/2) = 1.2103 > 1 which agrees with Lemma 2.6

Let us return to the case d > 2, let H be a continuous joint distribution d-dimensional and let C the
unique d-copula given in equation (3) of Sklar’sTheorem. Let X ,,---, X be a random sample of
size n of a random vector X of dimension d, with continuous joint distribution H, and letY ,,---, Y

n

be the corresponding modified sample. Define the empirical copula C, as in equation (8), then as
observed in Remark 2.4 we have that C,, : T¢ — [0, 1], where T = {0,1/n,...,(n — 1)/n,1} is a
d-subcopula, but not a d-copula when defined on I¢. If 0 < € < 1/n, since C is a d-copula then
C(e 1,...,1) = €. However, C,(¢, 1,...,1) = 0, because € < 1/n. So, letting € approach 1/n from
the left we have that

lim [C(e, 1,...,1) = Cy(e, 1,..., )| = 1/n.

eT(1/n)
Therefore we have proved the following:

Lemma 2.7 Let H be a continuous joint distribution d-dimensional for d > 2, let C the unique

d-copula given in equation (3) of Sklar’sTheorem. Let X |,---,X  be a random sample of size n of

14



a random vector X of dimension d, with continuous joint distribution H, and let Y |,---,Y  be the

corresponding modified sample. Define the empirical copula C, as in equation (8). Then

1
sup IC(x1, ..., x0) — Co(x1, ..., x)| = —  a.s.[Pcl, (13)

(X1,X25..,Xq)€I? n

where Pc is the probability function induced by the copula C on IR®.

2.2 Sample d-copula of order m

We start this section by defining the concept of generalized transformation matrix given in [15]

and extended in [46] in the construction of fractal copulas.

Definition 2.8 Let I, = {1,2,---,n}, with n > 1. For dimension d > 2, let m € N, we define

7. . d . . .
¢ = xflzllm. Let T a probability measure in (I¢,2'), T is known as a generalized transformation

matrix if forall j € {1,---,d} and for all k € {1,---,m}

> >0

ield i=k

where i = (i1, -+,1j-1,1; = k,ijs1,"-+,1q) € Iffl. T can be thought as a d-dimensional matrix T,

considering
@) =70, I i= (1,0 0,ig) €10,
Example 2.9 Letd =2, m = 3. Then

L ={1,2,3).

We define two probability measures T, and 7, in (I?, 2 given by the following matrices

1’6 0 O 1/6 0 1/6
= 0 1/3 0 and T,=|1/6 0 1/6
0 0 1/2 2/6 0 O

We can see by adding the elements in each row and column that 7, is a transformation matrix, but

T, is not since the sum of the entries in the second column equals zero.

Definition 2.10 Let T = (7, )i je(1,.-.my be a generalized transformation matrix where d = 2. Define

{g10-91.1, > qim} and {q20, G215 - - » Qo,m} two partitions of [0, 1], such that q, = g2 = 0 and for
i, j € I, we have that

i J
qii = E § Ty and QZ,j:§ E Tijs

=1 jely, j=1 i€l,
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we also define the partition induced by T on I? by

O = (qui-1,q14] X <q2,j—l,CI2,j] forevery (i, ) € Iy X I,

where the { notation indicates that the left end of the interval is closed if i = 1 or j = 1, and open

in any other case. Let II* be the product 2-copula, we define the T(I1?) transformation by

2 U—4di,i-1 V=421
APy = Y b S ST S

viip<j qi,i — 4q1,i-1 < 92.j — 92.j-i 55
U—(q1,i-1 V={3,j-1
+Ti,jH2( ] (14)
qii —4q1,i-1 42, — 42,j-1

with u,v € QF, for every i, j € L.

It is easy to see that 7(I1?) is always a 2-copula. Evenmore, it is not difficult to see that equa-

tion (14) coincides exactly with equation (2.3.2) in Lemma 2.3.5 in the proof of Sklar’s Theorem
in [37], where a; = qi-1, a2 = qi;, b1 = qojo1, by = @y, A = W= q1-1)/(q1i — G1i-1)s
1= =92;-0/(q2j = q2.j-1), C"(a1,b1) = XisijejTrj, C'(a1,02) = Xirsij<; Tirjrs €7 (a2, b1) =

Dir<ij<j Ty and C”(az, by) = ¥y, y<; Tr. - Hence equation (14) is simply a bilinear interpolation.
This definition can be extended to dimension d > 2 using the product d-copula I1¢ with a d-linear

interpolation.

Definition 2.11 Let m > 2 and let T = (7;,...;,), ...per2. be a generalized transformation matrix.

We define q10 = qa0 = -+ = qao = 0, and for every j € {1,---,d} and for every k € {1,---,m}
k m m m m
=S S

ij=1 i1=1 ij_1=1 ij+1=1 ig=1

Then 0 = qjo < gj1 <+ < qjm1 < qjm = 1 is a partition of the [0, 1] interval, induced for the

matrix T in the j-coordinate. For every i = (iy, ..., i4) € I¢ we define
O = {q1,6-1 qri ] X (@2 i-1)> G2 ] X -+ X (G ig-1)> Gaia)- (15)
Then the family (Q}");cja is a partition of | G

Now we can give the definition of the sample copula of order m, based on a random sample of size

n, where 2 < m < n, coming from a continuous joint d-distribution function H or a d-copula C.

16



Definition 2.12 (Sample Copula of order m) Let 2 < m < nand let X ,...,X, be a random
sample of size n of a random vector X of dimension d, with continuous joint distribution H or
d-copula C, where X, = (Xi1,--+, Xiq) € IRY, foreveryi=1,...,n Let U, ={Y,,...,Y } be the

corresponding modified sample.

Define the uniform partition of size m of I, where for every i = (iy,...,i;) € 19
C 1 1
R;n:<“ ,l—l]x ><<’d ,’—d]. (16)
‘ m m m m
Define
card(R" N'U,)
semo— L7 (17)

i15esld n

where card(-) denotes the cardinality of a set. Let
_ (Ju(m)
S = (i it (18)

then S}, is always a d-dimensional generalized transformation matrix. Let (Q7"),c;a be the partition

of 19 induced by the generalized transformation matrix S" given in equation (15). Using the

partition (Q7"),c;a, we define the sample d-copula of order m by

Co(ur, ... ug) = STy, ... ug), (19)
as in the generalization of equation (14), where 11? is the product copula in [0, 1]°.
To clarify this definition we give a simple example

Example 2.13 We took a sample of size n = 4 from a bivariate normal distribution with mean
1 = (0,0) and correlation coefficient p = 0.5. The observations were X, = (0.662,0.895), X, =
(-1.352,-0.174), X, = (1.304,-0.682), and X, = (0.651,0.137), the corresponding modified
sample is Uy ={Y , =(3/4,1),Y,=01/4,2/4),Y,=,1/4,), Y, = (2/4,3/4)}.

First, let m = 2, then using equation (16) we have that

R NUs=1{Y,), Ri,NUs=1{Y,}, R NUs=(Y,}, and R, NUs=1{Y}.

Then si’jfz) = 1/4 for every i, j € I?, that is,

gi_ (14 1/4
2=\ 14 174 )
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Therefore, S ‘2‘ is clearly a transformation matrix, which induces the partitions q,o = g9 = 0 <
q11 = q21 = 1/2 < q12 = 22 = 1 on the first and second coordinates, see Definition 2.10. Observe

that the partition (Ql.% Dijer, induced by the matrix §%, given in Definition 2.10 coincides with the
uniform partition of size 2 (R; Dijer- So, using equation (14), it is easy to see that C; = S5(I1%) is
the copula which has joint density cé(u, v) = 1 for every (u,v) € I2. Observe that in all four cases

e, v) = si’jz) [ %(Q; ;) where A% is the Lebesgue measure in IR>.

Second, let us assume that m = 3 and let us take {R3 }; jer, the uniform partition of size 3 of |

2Y)

Then we have that
Ri,NUs={Y,}, R;NUs={Y,}, R NUs={Y,}, and Ri;NUs={Y},

and for the remaining boxes R? iNUs= 0. Then

GO :{ /4 if G, )ei,2),(23),3,1),3,3)}
H 0 i G)e(dx\(1,2),(2,3),3,1),3,3)).

Hence,
0 1/4 0
Si=| 0 0 1/4 ],
1/4 0 1/4

which is clearly a transformation matrix. The partitions in [0, 1] induced by the matrix S g are

Gi0=q0=0<q11=q21 =1/4<qi2=¢q22=2/4 <q13 = q23 = 1. Define as Definition 2.10
Q?,j = (q1,i-1, 911 X(q2,j-1, q2,;] for every i, j € L.

So, using Definition 2.10 again, it is easy to see that the sample copula Cg‘ = S;‘(Hz) of order 3,

has a joint density cg' given by

if wv)eol,
if (wv)eQl,
f () €0l
if v eQl,
if ) eP\(Q,U03, U0, UQ,)

4
c;(u,v) =

= SR CREN
<

Observe that again, in all cases c;‘(u, V) = si’]@ / /lz(Qij).
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Finally, assume that m = n = 4 and let us take {Ri j},-, je, the uniform partition of size 4 of 1>. Then

we have that

RL]t,z N U4 = {XZ}’ Rg,g N U4 = {Z4}’ R§,4 N U4 = {X3}s and Ri] N U4 = {Xl}a
and for the remaining boxes R;‘, iNUs = Q. Then

@ :{ /4 if () €{(1,2),(2,3),(3,4), (4, 1)}
i O l]f (l’ .]) € ((14 X 14)\{(17 2)? (2’ 3)’ (37 4)? (4’ 1)})

Hence,

A

0
0
0
1/4

which is clearly a transformation matrix. The partitions in [0, 1] induced by the matrix S are

G0=q0=0<qri=q1=1/4<qio=qr=2/4<q13=¢q23=3/4<q14=qr4 = 1. Define
as in Definition 2.10

O} = (qri-1, 9111 X {qo,j-1, qo,;] for every i, j € I,

and in this case again, the partition (Q;f Dijels of I? coincides with the uniform partition of size 4
(R;t Dijety of order 4 of 12. So, using Definition 2.10 again, it is easy to see that the sample copula

Cj = Si(HZ) of order 4, has a joint density cj given by

A, v) = { 4w E0],U 05U 05, U0
e 0 if (uv)eP\(Q,UQ3,U03,U0})

Observe again, that ¢3(u,v) = si’f) ey ) foreveryi, j € L.

We will use the previous Example in order to see that even if Definitions 2.10, 2.11 and 2.12 seem
to be quite cumbersome, in the case of the sample copula of order m they become quite simple,
this will become apparent in the next:

Theorem 2.14 Let2 <m <nandletX,,...,X, K be arandom sample of size n of a random vector
X of dimension d, with continuous joint distribution H or d-copula C, where X . = (X, -, Xiq) €
IRY, for everyi=1,...,n. Let U, = {Y,,...., Y, } be the corresponding modified sample.
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Let 2 < m < n fixed and define (R")ca the uniform partition of size m of I as in equation

n,(m) . . . . . n . .
(16), Si,...., a8 in equation (17), the generalized transformation matrix S', as in equation (18), the

partition (Q7");ca of I¢ induced by S", given in equation (15), and C" the sample copula order m

as in equation (19). Then
i) For the partitions of (Q}"),c;c we know that 0 = q10 < q1.1 < -+ < q1.m = 1, but we also have that

qj0 =910 = 0, dixr = q11:9;2 =412, sqjm = qim = 1 forevery je{2,3,...,d}, (20)

that is, in the d coordinates the partition of 0, 1] does not change. Evenmore, with probability one,
the partition 0 = g9 < q1.1 < -+ < q1.m = 1 only depends on n and m, and does not depend on the
sample, in fact we have that

1 |j-n .

ql,jz—-{—J forevery je{0,1,2,...,m}, 21)

n L m
where |a| denotes the greatest integer less than or equal to a.
ii) For every 2 < m < n, C} is always a d-copula.
iii) Assume that m divides n, then the partition (Q}");c;a of I¢ induced by S" coincides with the
uniform partition (R}"),c;a of size m.
iv) Let 14 be the Lebesgue measure on the measurable space (IR, BUR')), where B(UR') denotes

the o-algebra of Borel. If Cl, is the sample copula of order m, let us denote by c”, its joint density

Sfunction. Then

..... i
at most n d-boxes with positive density.

v) If m = n there are exactly n elements of the partition (Q}");cs = (R}");ci2 on which the density

equals n®~" and the remaining elements have density zero.

Proof: i) We first observe that the modified sample satisfies that in each coordinate the different
values are 1/n,2/n,...,(n—1)/n,n/n = 1, then for any 2 < m < n we have that equations (20) and
(21) hold. We also have that the matrix S, is always a generalized transformation matrix. Hence,
by the definition of the sample d-copula of order m given in equation (19) and using the results in
[15] and [46] we obtain ii).
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Assume that m divides n, to see that iii) holds is enough to observe that we obtain always integers

in the expressions | -] in equation (21) and that g, ; = j/m for every j € {1,2,...,m}.

iv) We know from equation (19) that the d-sample copula of order m is a multilinear function

..........

i, 18 a constant, the result now follows directly from evaluating the

the density on each d-box Q7

constant in the integral expression.

v) follows directly from parts iii) and iv). O

Observe that from Theorem 2.14 the two partitions of I¢, that is, the uniform partition of size m

(R{")ie2, where 2 < m < n, and the partition induced by the generalized transformation matrix S}

m>
(Ojert do not always coincide. Using equation (16), if we define 0 = rp < 1/m =1 <2/m =
fip <o <(m=1)/m=rim <1=ry,forevery k € {1,2,...,d}, then (r j)rer,,je(0,1,..my Provides
the partition in each coordinate induced by the uniform partition of size m. We define the distance
between (R}");c and (Q7"),cpe by

......

m Rm s o = i il
en((R"), (Q7") je{ronlaxm}lrl,, q1,l

where g, ; is given in equation (21). Then e, measures the “distortion” of the uniform partition

of size m, caused by the sample size n. It is easy to see that max,<,<, e,((R!"),(Q7") < (n —

2)/((n — 1)n) < 1/n, that is, the maximum is attained when m = n — 1, and this maximum distance

is always smaller that 1/n. Using part iii) of Theorem 2.14, we have that if m divides n, then

en((R), (Q7") = 0.

In Theorem 2.14, part iv) we give the joint density ¢, associated to Cj, the sample copula of
order m, from this density the evaluation of C}, is absolutely trivial, and easily implemented in any
computer.

Part v) of Theorem 2.14, implies that most of the d-boxes in the partition of I¢ have zero den-
sity. For example if the sample size n = 100 and d = 4, we have that only one hundred out of
100, 000, 000 4-boxes have positive density. In this example is quite important to notice that the
one hundred 4-boxes with positive density include the support of the empirical copula C", which
is included in 79, where T = {0, 1/n,2/n, ..., 1} given in Definition 2.3 and Remark 2.4. Besides,

the sample copula C” is a d-copula unlike the empirical copula C", which is only a d-subcopula.
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Now we will see, that in some cases, C), the sample copula of order m may coincide with C, the

d-copula we are sampling from, that is, sup,, e |Cp (1, ... ug) = Cuy, ..., uqg)| = 0.

.....

Lemma 2.15 Letd > 2 be an integer and let n > 2 be an even integer. Then there exist2 < m < n,

C a d-copula and a sample of size n from C, such that

sup |Cp(uy,...,ug) —Cluy,...,ug)| =0. (23)

Proof: Let d > 2 be an integer and let n > 2 be an even integer. Let C be a d-copula with density

¢ given by
( )= 24-1 if  (uy,...,ug) €[0,1/2190(1/2,1})¢
AL ) =1 it (... ug) € T\([0,1/2]9 U (1/2,1]%).
Let m = 2. The uniform partition of size 2 of I is such that Ry ;_; = [0,1/2]¢ and Ry, , =
(1/2,1]¢ accumulate all the mass of the d-copula C. Let X \»+--»X, be arandom sample of size n

from the d-copula C, and assume that exactly n/2 points of the sample fall in the d-box R, ;. i, then

,,,,,

on any other d-box of the uniform partition of size 2. Let U, = {Y Y } be the corresponding

Y,..r,
modified sample, then it is obvious that this modified sample satisfies exactly the same conditions.
n2  _ 2

Hence, using equation (17), s" | = s, , = 1/2 and the remaining sz(i)ld = 0. Therefore,

using Theorem 2.14, part iv), the density of the sample d-copula of order 2 is given by

n 24-1 if  (uy,...,ug) €[0,1/2190(1/2,1})¢
(U, ... ug) = . d d d
0 if (..o ug) € (0, 1/2]70 (172, 19),
which is exactly the density of the d-copula C, and the result follows. O

However, observe that from Lemma 2.7, the empirical copula C, satisfies that

sup  |Cp(uy,...,ug) — Cuy,...,ug) = 1/n

almost surely.

Since we are using the product copula in order to define the sample d-copula of order m, see
equation (19), we have to see what is the largest error we can incur by doing so. First we observe
that for d = 2, we have that

sup |IT%(u,v) — M*(u,v)| = sup |TT(u,v) — W(u,v)| = 1/4, (24)

(u,v)el? (u,v)el?
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where the supremum is attained at u = v = 1/2 in both cases, as can be easily checked. Hence,

from equation (24) we have that for every 2-copula C, using the Fréchet-Hoeffding’s bounds,
SUp e M, v) = C(u,v)| < 1/4.

For the case d > 3, we have that

d-1
d d _
sup le (u1,--~,ud)—M(Ml,---,ud)|—W, (25)
(uy,...,uq)€l

where the supremum is attained at u; = uy = ---uy = 1/d"/@=D,
For every C,, C, d-copulas let us define

dsup(C1,Cy) = sup  [Ci(uy, U, ..., ug) — Coluy, ua, ..., ug)l. (26)

(u1,uz,...,ug)EN?

Then clearly dsup is a metric in the set of all d-copulas.
Definition 2.16 Let 2 < m < nand let X |,...,X  be a random sample of size n of a random

vector X of dimension d, with continuous joint distribution H with d-copula C, or from the d-

copula C where X, = (Xj1,-+,Xiq) € IRY, for everyi =1,...,n. Let U, = Y,.,....Y, } be the

corresponding modified sample.

n
m

Let C,, be the empirical copula defined in equation (8), and let C
m defined as in equation (19) of Definition 2.12. We define

be the sample copula of order

o . o : 1
dsup,(Co, ©) =max| — sup  |Cy(ii/m,iafn,...0a/m) = Clir/n, o[, ... Qg ] (2T)

(i1,25eeesid)EL

and
ct,C) = sup |Cy(i1/n,ix/n, ... iq/n) = C(i/n,ix/n,..., i;/n). (28)

m?
(1502 yeensia)EL?

dsupn,(m)
By equation (13) we now that dsyp(C,, C) > 1/n almost surely, that is why the term 1/n appears
in equation (27). Hence dsupn(cm () is never a metric. However, dsupn (m)(C ", C) in equation (28)

is a pseudometric in the family of all d-copulas. In order to see that this statement holds just

observe that C is always a d-copula, and for any d-copula C such that C, (i, /n,i2/n, ..., i;/n) =
C(iy/n,iy/n,...,iy/n) for every (i1, i, ...,1;) € I,% we have that dsuPW) (Ch,C) = 0. In particular,

if C = €, we have that dsup,  (C,,C) = 0.

23



Of course we have from equations (26), (27) and (28)that

dsup(Cy, C) 2 dsup, (C,, €)  and  dsup(C,,, C) 2 dsup,  (C,,,C), (29)

for every integers 2 < m < n and for every d-copula C. We will show with an easy example that
the first inequality in equation (29) can be strict, but the second one is an equality.

Letd = 2, n = 2 and let C = II? be the product copula. Then the modified sample is U, =
{(1/2,2/2 = 1),(2/2 = 1,1/2)} or U, = {(1/2,1/2),(1 = 2/2,1 = 2/2)} each with probability
1/2. In the first case, the mass of the empirical copula is concentrated in the two points (1/2, 1)
and (1, 1/2), therefore, it is quite easy to see from equation (27) that dsupz(cz, I1?) = max{|0 —
1/4],1/2} = 1/2. But, if we take any 0 < € < 1 then we have that dsup(Cz, I1?) > |Ca(l—€,1 —€)—
(I-e)’| = (1-¢€)*, soif welet € | 0 we have that dsup(C,, I1%) = 1 > 1/2 = dsup,(C5, IT). Observe
that in this example we obtain the upper bound, since dsup(C, D) < 1 for any two distribution
functions C and D on I?. Since n = 2, then we have that m = 2 for the sample copula, and
in this case we have that the sample copula of order m = 2 gives uniform masses 1/2 to the
boxes Ry, = [0,1/2] x (1/2,1] and R,; = (1/2,1] x [0, 1/2], so using equation (28) we have that
dsupz,(z)(CZ,Hz) =|C5(1/2,1/2) —=11*(1/2,1/2)| = 1/4 = dsup(CZ,Hz).

In the second case, the mass of the empirical copula is concentrated in the two points (1/2, 1/2) and
(1, 1), so, from equation (27) we have that dsupz(cz, 1) = max{|1/2-1/4|,1/2} = 1/2. Using (13)
we can see that dsup(Ca, I1?) = 1/2. In this case we have that the sample copula of order m = 2
gives uniform masses 1/2 to the boxes Ry ; = [0, 1/2]* and R,, = (1/2, 1]?, so using equation (28)
we have that dsupz,(z)(Cz,Hz) =1C5(1/2,1/2) = 11%(1/2,1/2)| = 1 /4 = a’sup(Cz,HZ).

Let X ,,...,X, bearandom sample of size n from the d-copula M“. Let U, = {Y

LETERE

,Y }bethe

" almost surely. So, it is obvious

corresponding modified sample, then {Y. = (i/n,i/n,...,i/n)}.,

that sup;, ;, inera |Culin/n,i2/n, ... ig/n) — M, /n,iy/n,...,iz/n)| = 0, but from equation (13)
dsup(Cy, C) = 1/n.

We finish this section by proving a Glivenko-Cantelli’s Theorem for the sample d-copula of order
m.

Theorem 2.17 Let C be a d-copula, let m > 2 and let n be a multiple of m, let C', be the sample
copula built from a modified sample of size n from C. Then

lim sup |Cp(u,v) - Cu,v)| =0 a.s.

m=—e , y)eI?
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Proof: We prove the result for d = 2. Using the notation in Lemma 2.3.5 in Nelsen’s book [37]:

For (a, b) € [0, 1]*> and a subcopula C’ with domain finite S| X S, let a; and a, be, respectively,
the greatest and least elements of S that satisfy a; < a < a,; and let b; and b, be, respectively,
the greatest and least elements of S, that satisfy by < b < b,. If a € S, then a; = a = a,, and if
beS, thenb, =b =b,. Let

a—ap)/(a; —a if a<a
/ll(a,b):/h:{( i) i <o

and

ui(a, b) = :{ (b—=b1)/(ba=by) if by <by

1 if by =bs.

We will consider the following representation of the the sample copula C7, see [26].

m?

Chiuv) = ZZ[l(H,“ (i v)((l—w (L = 1 (,C, ( — )

i—1

-1 )ml(u W = 1, )G ( Q)
m

mm

5 | ~.

+(1 = Ay (u, v))u(u, v),C, (

+ A (u, vIp(u, v)C, (é’ é))]

where C, is the empirical copula built from the modified sample, and the checkerboard approxi-

mation C™, see [33], given by

Cmwv) = ) ) [l(fml,” (0] ) ((1 = )L =, v))C(

~
s‘l
—
N —

-1
m l’l’l

)

+(1 = A (u, v))u (u, V)C

A

)+ Ay (u, v)(1 =y (u, V))C(

g [~
~.
.

+ A (u, v)u(u, V)C(

SRS
3 |~

for all (u,v) € I?.

Let (u*,v*) € I? and m > 2, where m divides n, such that (u*,v*) € R, = <%, IZ] X <u i]

m > m

where the notation “(” indicates that the left end of interval is closed if i* = 1 or j* = 1 and open

in any other case, then
1 1
IC v = CP v < (1= 4, v))(1 - o (’ e ) -C (’ e )‘
m m m m
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+(1 = 4@ v ), v)|C,

m m m m
m m m m

Hence, using Glivenko-Cantelli’s Theorem for the empirical copula, we have that

+ A, V(L = (e, v))

+A (V) (", v')

Ch(u,v) = C™(u,v)| =0 a.s.

m

lim sup
M= . v)el?

From [33], we have that, for every m > 1,

2
sup |C™(u,v) = Cu, v)| < ~

(u,v)el?

and
lim sup |C(’")(u, v) — C(u, v)| =0.

M=% (yv)el?

From these relations we get that

lim sup |C),(u,v)— C(u, v)| =0 a.s.

M= 4 v)el?
The proof of the case d-dimensional, where d > 2, is performed similarly.

2.3 Simulation study: dimension two

For this section we performed a large simulation study in order to compare the supremum distance

defined on equation (26), between the real copula and the empirical copula and then the supremum

distance between the real copula and the sample copula of order m. Here we used equations (27)

and (28), which are good approximations of the supremum distance (26).

In this subsection, we study twenty five different families in dimension d = 2, which include

several of the most used families of copulas such as: Ali-Mikhail-Haq, Clayton, Frank, Gumbel,

Joe, Normal, Plackett, Product and t-Student. We also include some copulas that are singular such

as M?, W2, Examples 3.3, 3.4, 3.5 and the circular distribution copula from Nelsen‘s book [37]. We

also include an example of an absolutely continuous copula whose support is [0, 1/2]*> U (1/2, 1]?
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and we call it the protocol copula. We also study increasing and decreasing transformations of
the coordinates of a copula in the Plackett and the Gumbel families. Finally we study a couple of
examples of mixtures of copulas to study the behavior of asymmetric copulas. The study consisted
in taking random samples of sizes n = 20,30 and n = 50 with N = 2000 or N = 10000 repetitions
for the first two values of n and N = 1500 repetitions for n = 50. We obtained the sample copulas
C), for every 2 < m < n and the empirical copula C, and we approximate the supremum distance
using equations (27) and (28). Finally we report the mean values, minima and maxima of the N
iterations in the first figures, the straight lines correspond to the minima, mean values and maxima

of a’supn(C,,, C) and the other lines correspond to the same statistics for dSUPn.(m(CZ’ C). In the

second figures we report for some of the cases the comparisons of the variances.

We report the values of Spearman’s p, which is a common concordance measure, instead of the

parameters of the families in order to make comparisons.

From now on, we will say that C” is a better approximation than C, to the real copula C for

a given value of 2 < m < n if the mean value of the iterations satisfy that dsupn(m)(C,'q’q, C) <

dsupn(C,,, C). We will make some remarks about the variances later on.

First, we start to the case of the product copula I1?, see Figure 2.11, in which we show that for
n = 20,30 and n = 50 we have that for every 2 < m < n, C), is a better approximation than C,,
and the variances in all three cases are quite similar for 3 < m < n, even for m = 2 where the
variance difference is the greatest we also have that the difference between the mean values is quite
remarkable. However, these facts are expected since in the construction of the d-sample copula of

order m we used uniform masses.

Second, for the Ali-Mikhail-Haq family we have in Figure 2.1 the results for 6 € (—1,0) and in
Figure 2.2 for 6 € (0, 1). As we can see for every 2 < m < n CJ is a better approximation than C»,
and in some instances these mean values are even smaller than the minimum of dsupm (20)(C20, O)

for m = 2. The behavior of this family follows since it is known that its dependence is short of
independence, because —0.27106 < p < 04784.

Third, the Clayton family is a symmetric one and its results are given in Figures 2.3 and Figure
2.4, the first one includes the results for —1 < p < 0, we know that the limit of this family as 6
approaches —1 is W2, an when 6 approaches zero its limit is the product copula IT?, and for 6 close
to —1 is quite similar to the case W2. Observe that for every m > 5 we have that C?° is a better
approximation than C,. In Figure 2.4 we show the results for 0 < p < 1, in this case we know

that whenever 6 increases to co the copula tends to M?. Recall that a family which has limits W?
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and M? it is called comprehensive, here we also observe that for every m > 5 we have that C2° is a

better approximation than Cy.

Fourth, the Frank family is also a symmetric and comprehensive set of copulas when 6 tends to
—oo the copula approaches W2, and when 6 tends to co the copula approaches M?. We observe that
for values of p which are not too far from zero we have that C2° is a better approximation than Cs

for several values of m, see Figure 2.5 and Figure 2.6. In fact, this holds to be true for any p if
m>n/2 = 10.

Fifth, the Gumbel family is a symmetric family such that for # = 1 we obtain the product copula
I1> with p = 0, and when 6 tends to oo the copula approaches M?. Again, for values of p close to
zero C% is a better approximation than Cy for every 2 < m < 20, and for large values of p it also
holds for m > n/2 = 10 see Figure 2.7.

Sixth, the Joe family is also symmetric and it behaves quite similar to the Gumbel family, see

Figure 2.8.

Seventh, the normal family is symmetric, comprehensive and it is parametrized via its correlation
coeflicient p, it can be seen that for [o| < 0.9, C? is a better approximation than C,, for every

3 < m < n. But for |p| close to one it starts to behaves like W? or M? depending on the sign of p.

Eighth, the Plackett family is symmetric with parameter p € (-1, 1), for € near zero it behaves
like W2, for @ = 1 it is I1?, and for very large values of @ it behaves like M?, so this family is
also comprehensive. Hence, C2 is a better approximation than C,q for several values of m if |p| is

relatively larger than zero and not too large, see Figure 2.10.

Ninth, the #-Student family is also symmetric, comprehensive and it is parametrized via its corre-
lation coefficient p, it can be seen that for [o| < 0.95, C?° is a better approximation than C,, for
every 2 < m < 20. The only difference respect to the normal case is the fact that the #-Student has

heavier tail behavior, see Figure 2.12.

Tenth, the cases of M? and W? are of particular importance. To begin with they are the upper
and lower bounds for every copula, besides, they represent extreme dependence, because they
are the copulas of random variables X and Y for which Y is a strictly increasing or a strictly
decreasing function of X, with p = 1 and p = —1, respectively. Besides, both copulas are singular
with supports the main diagonal and the second diagonal, respectively. From Figure 2.13 left two

graphs, we see that they have similar behavior and that for m > 5 we have that C?° is a better
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approximation than Cy. As we have seen above, several families of copulas with limit cases M>
or W? have pretty similar behavior to the first two graphs in Figure 2.13. It is also very important
to observe that for any given sample of size n, the minimum and the maximum coincide with the

mean value, this happens because the modified samples are always the same.

Eleventh, the cases of the circular uniform distribution and Example 3.5 given in Nelsen’s book
[37] are examples of singular copulas, the second one with support on two quarters of circles of
radius one, see Figure 3.5 in [37], as we can see in the right graphs of Figure 2.13 we have that C2°

is a better approximation than C,, for every 2 < m < 20.

Twelfth, the case of Example 3.3 in [37] is another case of singular copulas with given support the
segment of lines joining (0, 0) with (6, 1), and (0, 1) with (1,0), for 8 € [0, 1]. As we can see in
Figure 2.14 the behavior of the difference between the supremum distances behaves like the case

of M? for p = @ = 1 and like W? forp = § = 0.

Thirteenth, the case of Example 3.4 in Nelsen’s book [37], it is simply shuffles of M? with support
the segment of lines joining (0, #) with (6, 0), and (6, 1) with (1, 8), where 8 € [0, 1]. for a general
definition of shuffle see [35] or [37], for the multivariate case see [9]. In this case, see Figure 2.15,

we have that C% is a better approximation than Cy for 10 = n/2 < m < n = 20 with a similar

behavior to W2. This case is the one that presents smaller differences between the mean values for
0.1<6<009.

Fourteenth, the case of what we called the protocol copula, which has incomplete support given
by [0,1/2]? and (1/2, 1]*> with uniform masses on each square it is quite important. We can see
from Figure 2.16 left graph, that C3° is a better approximation than Cy, but C3° is not a better
approximation than C,y, in fact, we can see that the behavior of the graph oscillates between
even and odd values of m this can be easily explained due to the form of its support. It is also
very important to see that the minimum of the observed supremum distances between C3° and the

protocol copula is zero.

Fifteenth, recall that from Theorem 2.4.4 in [37] if two random variables U and V have copula C,
then we can give just in terms of C the copulas of the pairs (U, 1 -V), (1-U, V) and (1-U, 1-V), we
will denote these cases by ID, DI and DD, where I means a strictly increasing transformation and
D denotes a strictly decreasing transformation. We studied these transformation for the Gumbel
and the Plackett families, we choose these two families to obtain asymmetric copulas with the
transformations /D and DI. The result for the Gumbel family are shown in Figure 2.16 last three

graphs, Figure 2.17 and Figure 2.18. For the Plackett family we refer to Figure 2.19, Figure 2.20
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and Figure 2.21. We can observe that the values of the parameters that we used were the same for

each family, and that the graphs look very much alike in each case.

Sixteenth, the last three cases are mixtures; First of Gumbel, GumbelID (GID), and GumbelDI
(GDI), second GID, Frank and Joe, in both cases we obtain highly asymmetric copulas; and third
a mixture of M? and W? which is singular. The results are shown in Figure 2.22, Figure 2.23 and

Figure 2.24 and the comments are quite similar to some of the previous cases. For the PlackettID
we will use the abbreviation (PID), for PlackettDI (PDI) and for PlackettDD (PDD).

Summing up, the results for all the families of copulas absolutely continuous with complete support
are quite similar as a function of the Spearman’s p. However, for the families of singular copulas
the results are sometimes comparable to those of M? or W2, and they depend strongly on their
supports. When the copula is absolutely continuous, but it does not have complete support, the

behavior may be alittle erratic as shown by the protocol copula in Figure 2.16.

We can observe that when m = n, the sample copula CJ, is at least as good an approximation to
the real copula C as the empirical copula C,,, and in many cases a better approximation, when |p| is
close to one. In fact, in many cases the best approximation is given with values of m quite smaller

than n, and this value of m depends strongly on the value of Spearman’s p.
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Figure 2.2: Ali-Mikhail-Haq d = 2 for p = 0.0342,0.1924,0.4070 and 0.4706 with n = 20
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Figure 2.4: Clayton d = 2 for p = 0.2955, 0.8848,0.9582 and 0.9915 with n = 20
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Figure 2.7: Gumbel d = 2 for p = 0.6828,0.9935,0.9963 and 0.999 with n = 20
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Figure 2.9: Normal d = 2 for p = —0.9889, —0.4825,0.0955 and 0.6829 with n = 20
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Figure 2.10: Plackett d = 2 for p = —0.9881, —0.2274,0.6536 and 0.9881 with n = 20
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Figure 2.11: Product d = 2 with p = 0 for n = 20, 30 and 50

Supremum Distance Tstudent(0.99,d=2)n20iters10000

Supremum Distance Tstudent(-0.6,d=2)n20iters2000 Supremum Distance Tstudent(-0.34=2)n20iters2000 Supremum Distance Tstudent(0.5,d=2)n20iters2000
— somplecopula  +— sample maximum — samplecopula = sample maximum 030} — samplecopula  «— sample maximum oz0L — samplecopua  +— sample maximum
0.25|. > empirical copula > empirical minimun 030} % empirical copula >+ empirical minimun = empirical copula  »—+ empirical minimun %= empirical copula >~ empirical minimun
= sample minimun >+ empirical maximum = sample minimun  »—+ empirical maximum ags| ~ semPleminimun -+ empiical maximum ~— sample minimun >+ empirical maximum
[ i1 NN NN
[N NN
020
0.0
015
0 0. . . . X 0.
5 10 15 20 5 10 15 20 s 10 15 20 5 10 15 20
m value (minimun mean sample copula for m = 2) m value (minimun mean sample copula for m = 7)

m value (minimun mean sample copula for m = 2) m value (minimun mean sample copula for m = 2)

Figure 2.12: t-Student d = 2 for p
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Figure 2.13: M*p = 1, W?p = —1, Circular p = 0 and Examp. 3.5 of Nelsen p.286 with n = 20
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Figure 2.14: Example 3.3 of Nelsen for p = —0.9,-0.4,0.2 and 0.8 with n = 20
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Figure 2.15: Example 3.4 of Nelsen for p = —0.0396,0.5,0.2591 and —0.7151 with n = 20
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Figure 2.17: Copulas GumbelDI for p = —.8487, —.9431, —.9855 and —.9963 with n = 20
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Figure 2.18: Copulas GumbelDD for p = .8494, .9434, 9854 and .9963 with n = 20

upremum Supremum Distance PlackettiD(3,d=2)n20iters2000 Supremum Distance PlackettiD(S0;
020 T T . : T . = T T . T T
— samplecopula  +— sample maximum 030 — semplecopula = sample maximum — samplecopula = sample maximum ogs] — samplecopua  +— sample maximum
%= empiical copula >~ empirical minimun %= empirical copula >~ empirical minimun 025} % empirical copula >+ empirical minimun " %= empirical copula >~ empirical minimun
= sample minimun >+ empirical maximum = sample minimun  »—+ empirical maximum = sample minimun  »—+ empirical maximum = sample minimun >+ empirical maximum
025
NN o 0201 > o0 N
020 \/—/\/\/“W
015] 015
015
010
010
0.05
0. . . . . Y . . . . 0.0
5 10 15 20 s 10 15 20 5 10 15 20
m value (minimun mean sample copula for m = 10) m value (minimun mean sample copula for m = 2) m value (minimun mean sample copula for m = 3) m value (minimun mean sample copula for m = 6)

Figure 2.19: Copulas PlackettID for p = 0.9880, —.3521, —.6537 and —.8780 with n = 20
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Figure 2.20: Copulas PlackettDI for p = 0.9880, —.3521, —.6537 and —.8780 with n = 20
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Figure 2.21: Copulas PlackettDD for p = —0.9881,.3517, .6532 and .8778 with n = 20
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Figure 2.22: Mixt. of G, GID and GDI with p= -.54459, -.19608, .59829 and .18460 with n = 20
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Figure 2.23: Mixt. of GID, Fr. and Joe with p = .39085, .79548, .77585 and -.600093 with n = 20

. ‘Supremum Distance Mix25(0.25,d=2)n20iters10000 ‘Supremum Distance Mix25(0.5,d=2)n20iters10000 Supremum Distance Mix25(0.75,d=2)n20iters10000 Supremum Distance Mix25(0.9,d=2)n20iters2000
4 T . T T T v . ™ T . T : 030 T v T T
— sample copula = sample maximum 030F — sample copula — sample maximum 035F — sample copula — sample maximum — sample copula — sample maximum
035} % empirical copula >+ empirical minimun %= empirical copula > empirical minimun = empirical copula  »—+ empirical minimun %= empirical copula >~ empirical minimun
= sample minimun >+ empirical maximum 025~ sampleminimun  ~—» empiical maximum 0.30F +— sample minimun  »—+ empirical maximum 025F ~— sample minimun >+ empirical maximum
030
[N NN [ 025l IR IR AR, o,
025 \/W\/WW‘ o o
020
020 015 015
015
e ——
13 S NN
0 0. 0.
5 10 15 20 5 10 15 20 s 10 15 20 5 10 15 20
m value (minimun sample mean copula for m = 4) m value (minimun sample mean copula for m = 2) m value (minimun sample mean copula for m = 4) m value (minimun mean sample copula for m = 9)

20

Figure 2.24: Mixt. of M? and W? with p = —0.5,0,0.5 and 0.8 with n
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Now we make a quick study of the variances for the twenty five families with n = 20 related to
all the Figures considerd above. In Figure 2.25, Figure 2.26, ..., Figure 2.30 and Figure 2.31

we include the behavior of the variances of the statistics that measure the differences between
the supremum distance between the sample copula of order m and the real copula, and also the

supremum distance between the empirical copula and the real copula. We chose only one value
of the parameter in everyone of the previous Figures. For each family, the chosen parameter best
describes the behavior of the variance, leaving out the limit cases. In all graphs we give the value

of p.

First we observe that from Figure 2.25 the variances for the Ali-Mikhail-Haq family behave like the
variance given for the product copula I1? in Figure 2.27, this fact follows from what we explained
before for Figures 2.1 and 2.2. Observe that the biggest variance is given for m = 2, but the
difference of the variance of the sample copula and the variance for the empirical copula in this
case is only of magnitude 0.0005. For larger values of m, the sample copula has practically the

same variance as the empirical copula.

In the cases of the Clayton, Frank, Gumbel, Joe, Normal, Plackett and #-Student families, the
variance of the sample copula of order m for 10 < m < 20 = n is close to the variance of the
empirical copula, and in some cases the variances of the sample copula of order m are smaller than
the ones reported for the empirical copula for some values of m, see Figure 2.25, Figure 2.26 and
Figure 2.27.

In the case of singular copulas such as the circular distribution, Example 3.3, Example 3.4 and
Example 3.5 we see that in average the variance of the sample copula of order m is smaller than
the variance for the empirical case.

For the protocol copula, see Figure 2.29, we observe that the oscillating behavior of the variances
for 2 < m < n = 20 follows the pattern of the mean, minimum and maximum given in Figure 2.16,

giving greater variances to even values of m and smaller variances for odd values of m.

In the case of considering increasing and decreasing transformations in the Gumbel and Plackett
families, we observe that the variances graphs in Figure 2.29 and Figure 2.30 have a similar be-
havior when we keep the parameter fixed in the cases GumbellD, GumbelDI and GumbelDD, and
also fixed in the cases PlackettID, PlackettDI and PlackettDD. If we observe that the cases ID, DD
and DI correspond of rotations of 90, 180 and 270 degrees of the original copula around the point
(1/2,1/2), then we have that there is a certain invariance of the graphs, this invariance can also be
observed in Figure 2.16, Figure 2.17 and Figure 2.18, and in Figure 2.19, Figure 2.20 and Figure
2.21.
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For the case of mixtures we denote Mix23 the mixture of Gumbel, GumbellD and GumbelDI,
Mix24 is the mixture of GID, Frank and Joe, in this two cases the first three numbers correspond to
the parameters of each member of the mixture, and the last three correspond to the weights. Mix25
is the mixture of M? and W2, In these cases we observe that the variances for the sample copula of

order m remain below the variances of the empirical copula almost in all cases.
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Figure 2.25: Var. of AMH(-0.148), AMH(0.192), Clay.(-0.467) and Clay.(0.844) with n = 20
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Figure 2.26: Var. of Fr.(-0.860), Fr.(0.763), Gum.(0.993) and Joe(0.854) with n = 20
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Figure 2.27: Var. of Norm.(-0.482), Plack.(0.654), Prod.(0) and #-Student(-0.582) with n = 20
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Figure 2.28: Var. of Circ.(0), Ex.3.5(.286), Ex.3.3(0.2) and Ex.3.4(0.5) with n = 20
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Figure 2.29: Var. of Protocol(.75), GID(-.985), GDI(-.985) and GDD(.985) with n = 20
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Figure 2.30: Var. of PID(-.653), PDI(-.653) and PDD(.653) with n = 20
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Figure 2.31: Var. of Mix23(0.5977), Mix24(0.7758) and Mix25(0)

We also performed several simulations for sample sizes n = 30 and n = 50 in these two cases we
obtained very similar graphs to the ones obtained above in Figures one to thirty one, but of course
in different scales. We do not present all these results because the differences are pretty much

negligible.

In the next Subsection we will see that we can extend the previous results for higher dimensions.

2.4 Simulation study: dimension three

In this subsection, we study eleven different families in dimension d = 3, which include families
of copulas such as: Clayton, Frank, Gumbel, Normal, Product and t-Student. We also included
the copula M> and its transformations by increasing and decresing families to obtain 3-copulas

with support in every diagonal of I3, these are examples of singular copulas. We also give a
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3-dimensional version of the protocol copula to see what happens when we have an absolutely
continuous 3-copula with support [0, 1/2]* U (1/2, 1]°. We also include just as an interesting re-

ference a 3-copula denoted by C =*“W?” such that C(2/3,2/3,2/3) = 0, that is, it behaves like W3,
which is not a 3-copula at the point (2/3,2/3,2/3). Finally we include two families of mixtures of

3-copulas to study the behavior under asymmetric 3-copulas.

For the product copula IT* in d = 3, see Figure 2.34 first graph, the behavior of the difference
between the supremum distances is quite similar to the case d = 2 with n = 30, see Figure 11.

Hence, we have that C2° is a better approximation than Cs, for every 2 < m < n = 30. Observe

that the variances have the same behavior as in dimension 2, see Figure 2.27 and Figure 2.40.

As can be seen in Figure 2.32, Figure 2.33, Figure 2.34, Figure 2.35 and Figure 2.36, the cases

Clayton, Frank, Gumbel, Normal and Clayton have similar behavior, and at least at these graphs,
C30 is a better approximation than Cs for every 6 < m < n = 30. The same similarity holds for the

graphs of the variances in Figure 2.40, Figure 2.41 and Figure 2.42.

In Figure 2.37 we show the results for singular copulas, the first graph corresponds to the copula
M?, the second, third and fourth graphs for M>1ID, M>IDI and M>DII, that is, if the vector (U, V, W)
has copula M 3. Then the vector (U, V, 1 — W) has copula M 31ID, the vector (U, 1 =V, W) has copula
M?IDI and the vector (1 — U, V, W) has copula M>DII, these three copulas have supports on the

other three diagonals of the unit cube [0, 1]%, and its existence is guaranteed by an easy extension

of Theorem 2.4.4 in [37]. As in the case of dimension d = 2, the variances in the four cases are
Zero.

The case that we called protocol consists of a 3-copula which has incomplete support given by
[0,1/2]* U (1/2,1]%, with uniform masses on each cube. We can see from the first graph in Figure
2.38, that C3° is a better approximation than Csy and C;° is a better approximation than Cs, but
C3° is not a better approximation than Csy and C2° is not a better approximation than Cs, that is
the oscillating pattern is also present in dimension d = 3. In this case C3 is a better approximation

than Cj for every 6 < m < 30 = n. In the case of the variance, see Figure 2.41, this oscillation is

also evident with larger variances for even values of m and smaller variances for odd values of m.

The case Mixture 9 is just a convex combination of a Clayton, a Gumbel and a Frank, in Figure
2.38 we present the results when the corresponding parameters are 10, 15 and 20 respectively, and
with weights 0.2,0.3 and 0.5 in different orders. As we can see C-° is a better approximation than
Cs forevery 5 < m < 30 = n. The variances are almost always below the variance of the empirical

copula, see Figure 2.42.
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The case Mixture 10 which corresponds to a convex combination of Gumbel, GumbelID, Gumbe-
1IDI and GumbelDII, defined as in the case of M?> above. This family is highly assymetric in all
directions. We present two cases the first when the parameters are 5, 10, 15 and 20 with weights
0.1,0.2,0.3 and 0.4 in three different orders, and the second when all the parameters are equal to
10 and all the weights are equal to 0.25. The results are presented in Figure 2.39, and in these cases
we have that C%j is a better approximation than C3, for every 2 < m < 30 = n. The variances are

again almost always below the variance of the empirical copula, see Figures 2.40, 2.41 and 2.42.

The variance of the copula denoted by “W?” is presented in Figure 2.40 last graph.
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Figure 2.33: Frank d = 3 for p = 0.1644,0.6434,0.8035 and 0.8602 with n = 30
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Figure 2.35: Normal d = 3 for 6
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Figure 2.42: Variances of #-St.(5), Mix9(10, 15, 20, .3, .2,.5) and Mix10(5, 10, 15, 20, .4, .3, .2,.1)

As we have seen in all these simulations not only in dimension d = 3, but also in dimension d = 2,

we can say that there exists at least one m such C}, is a better approximation than C,, and that this

value of m is smaller than n.

The results that we obtained for n = 20, which are not presented here, have many features in

common with the case n = 30.

It is obvious that these results can be extended to higher dimensions. In fact, the programs that we

wrote in language R can be easily extended to at least dimension d = 5 without any problems.
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2.5 A method for estimating an adequate m

From all the examples in Section 3 we can observe that even for a small value of n, that is, n = 20

in dimension d = 2, we can find an m with 2 < m < n, such that C7,

the sample copula of order
m is a better approximation than the empirical copula C,. In fact, in all cases, we can also find
a value of m that minimizes the expected value of the difference between C), and the real copula
C, observe all the comments between parenthesis below each of the graphs in Figures 2.1 through
Figure 2.24. It is quite important to observe that this minimum is reached at m = 2 when the real
copula C is “close” to the product copula IT?, and that this minimum increases as the real copula C
approaches the Frechet-Hoeffding bounds M? and W2, in fact, as observed in Figure 2.13, in these
two cases the minimum is reached at m = n, this also holds for the Example 3.4 of Nelsen’s book

which is a singular copula, see Figure 2.15.

As observed in Section 3, in the case of dimension d = 2, when we have an absolutely continuous
copula with complete support, which by the way is the most interesting case in applications, we
have a function that relates the Spearman’s p with the value of m that minimizes the expected value

of the difference between Cj, and the real copula C.

In Figure 2.43 we graph the value of m which minimizes the expected value of the supremum
distance between the sample copula C), and the real copula C, for sample sizes n = 20,30 and
n = 50, for the families of absolutely continuous copulas with complete support which include
AMH, Clayton, Gumbel, Frank, Joe, Plackett, Normal, t, Plackett ID, Plackett DI, Plackett DD
and Gumbel DD, for different values of p between p = 0.1 and p = .99. As can be seen from these
graphs, for p fixed, the value of m is quite stable and it is always smaller than the sample size n.
This result provides a natural way to give an estimator of the parameter m based on the sample

Spearman’s p.

Now we propose a method to estimate m for the sample copula of order m based on a random

sample of size n:

e Obtain the modified sample.

Graph the points of the modified sample. If the data does not follow a clear pattern which

indicates that the copula C is a discrete copula then

Estimate the Spearman’s rho using the sample value p of the Spearman’s p.

If |p| < 0.25 we can take m = 2 for any sample size.

If |p] = .95 we have to take a large value of m. Let us say 10 < m < 15.
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e If 0.25 < |p| < 0.95 take 3 < m < 10, with a linear approximation which depends on the
value of p.

p=01 p=02 p=05
WFT T T 111111 1T 1] NET T T 1T 1 1 11 1 1T 113 NET T T 1T 1T 1T 1T 1T 1T T 1]
— =20 0030 00050 — =20 0030 00050 — =20 0030 00050
: 15 c 15F : 15
B Eu B
3 3 3
5 5k 5
0 I I I A | 0 I I A | 0 I I S A A I A B |
CIAMHGu Fr | P T N PD PDIPDDGDD CIAMHGu Fr | P T N PD PDI PDDGDD O G fr ) P T N PD PDIPDDGDD
family family family
p=0.T5 p=09 p=0%
WET T T 1 1 1T 1 1 T T 1] NET T T 1T 1T 1T 1 1T 1T T 1] NET T T 1T 1 1T 1 1T T T 1]
— =20 0030 00050 — =20 0030 00050 — 0= 0030 00050
c 15 c 15F c 15
? 10 E ? 10 R ? 10 W_\ g
£ £ IR = | : w
EESZS=S b S S | -
0 I I I A A A B | 0 I I I A A A B | 0 I I S A A I A B |
O G fr ) P T N PD PDIPDGDD O G fr ) P T N PD PDIPDDGDD O G fr ) P T N PD PDIPDDGDD
family family family
p=099
NET T T 1T 1T 1 1 1T 1T T 1]
— =20 0030 00050
-E 15- .—ﬂ—ﬂ—A—/\'/\ 1
Eu
3
5k
0 I I I A A A B |
O G fr ) P T N PD PDIPDGDD
family
Figure 2.43

If the modified sample shows a pattern which indicates a singular support we may need to take

larger values of m, but not larger than 15.

We also observe that for d > 3 the same methodology can be used for Archimedean copulas, since
all of their margins have the same parameter, hence, the same value of Spearman’s p for each pair

of random variables. This behavior was observed in Figure 2.32, Figure 2.33 and Figure 2.34.
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For dimension d > 3 we are still working on the possibility of estimating m using the averages of

all the estimated Spearman’s p for every pair of random variables.

Also, for dimension d > 3, we know from all the Figures, that there exists a value 2 < my < n
such that for every my < m < n, C}, is a better approximation than C,, of course, the minimum
value of m is among them. We would like to find a method of estimation of m, given a fix sample
(X,,...,X,) of size n from an unknown continuous joint distribution function H with copula C,
such that my < m < n. Since the copula C is also unknown, we will use all the remarks that we have
made in order to establish a “measure of discrepancy” between the sample and the product copula
I12, which may be used to estimate the value of m. Besides, from Figure 2.32 through Figure 2.42
we observe that all the previous comments apply to n = 30 in dimension d = 3, this also holds

when n = 20.

We start by defining our proposal of the “measure of discrepancy” in any dimension d > 2 for n a

fixed positive integer.

Definition 2.18 Let 2 < m < nand let (X,,...,X,) be a random sample from a random vector

X of dimension d > 2 with continuous joint distribution H or d-copula C. Let U, = (Y |,...,Y )

be the corresponding modified sample. Define (Q}")icit, (R!")ieja, s

n n . .
dy Si i S" and C as in equations

(15), (16), (17), (18) and (19) respectively. Let T the product d-copula, since C" the sample

d-copula of order m is always a d-copula, define for every (i, ..., i) € I¢

m

Ve (O i) =si™ and  Viu(Qfr ) = AQ) ), (30)

-------- l ey seey
seeey

where A% is the Lebesgue measure on (R, BUR"). We define

1 L iy | Ve (@) = V(@)
aryC =3 [ it = fulaa! - , G1)
2 [0’1]2 2
We first observe that from equations (30), (17) and (31) we have that
card®rrnu,) "
Sieate |5 - ﬁ(Qi")‘ Diety |~ AU
dpy(Cp, T = — - — = 5 (32)

So, if we assume that n = m? and that card(R" N U,) = 1 forevery i € I,‘fp we have from equation

(32) that dpy (C?,, TT¢) = 0.
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Now, we assume that the sample of size 7 is taken from the the copula M?, then clearly the modified

sample is givenby U, = (Y |,....,Y ), where Y; = (j/n, j/n,..., j/n) forevery j € {1,2,...,n}.

First, if m divides n then we know from Theorem 2.14, part iii) that (Q}"),;« coincides with (R}"),¢;a,
s0, A4(Q™) = (1/m)? for every i € 1. Since the modified sample lies on the main diagonal of the

unit d cube I¢, then we have from equation (21) that for every i € I,, if R i) = [(i—1)/m,i/m]?

card®r;nu,
then #

= (n/m)/n = 1/m. Hence, using equation (32) we have that

1 d-1 _ 1 1 d -1 _ 1 1
VP RITESEE R TN R

Second, if m does not divide m then Theorem 2.14 part i) we have that

Oiii .y = (/MG = 1) -m)/m], (1/n) LG - n)/m]]*

for every i € I,. So, in this case, 1% ;":(l.’l. 7777 l.)) = (1/(n®) (LG - n)/m] - [(G=1)-n)/m])? and

Ve (O™ ) = (1/n)(li/m] — (i — 1)/m]) for every i € I,,. So, using the fact that the sum of all

1= (i)

the volumes of the d-boxes in the partition (Q;");« is one, it is easy to see that

md—l m 1 . '
dTV(CZde) = (m) 1- Z E (LG-n)/m] - [(G—-1)- n)/mJ)d
i=1
md=! 1
= (=)l =
where the inequality follows from Lagrange multiplier applied to the function A(xy,...,x,) =
1 —(x?+---+ x%) with conditions x| + x, + ... + x,, = L and xy,..., x,, > 0.

Hence, if we change the denominator 2 by K,,;, = 2(1 - 1 /m®') in equation 31, we have that

0 <dpy(Cy, I19) < 1, and this what we will do in what follows.

In order to see how this density difference works, we show the averages of 10000 simulations when
the sample size is n = 100 and we evaluate 7,,2(C}?) for m between 2 and 10 for several of the

families studied in Section 3, we use only values of p > 0, but the results for p < 0 follow the same
pattern.

In Figures 2.44 and 2.45, we have the results for the families Clayton,Frank, Gumbel, Plackett,

Normal and t-Student. It can be easily observed that for all these families of copulas which are
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absolutely continuous and with complete support. the graphs are almost identical, which indicates
that they can be used to estimate the value of the order m of the sample d-copula. We have similar
results for d = 3 and we are working in a resampling method to estimate the graph given a fixed

sample of size n.

As can be see in Figure 2.46, the graphs for singular copulas can be quite different as the absolutely
continuous case, and it depends strongly on the support of the copula. But, as observed above, in

these cases we always need larger values of m. Observe that for the last graph which corresponds

to the copula M?, the graph is the constant 1, as expected.
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Figure 2.44: Averages of 1,,, for the Clayton, Frank and Gumbel families with positive p
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Figure 2.45: Averages of n,,, for the Plackett, Normal and tStudent families with positive p
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Figure 2.46: Averages of 1,,, for the Example 3.3, Example 3.4 and M? families with positive p
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A last very important result is the following: Recall that the total variation distance of two proba-
bility measures P and Q in (IR, B), where B denotes the Borel o--algebra, with Radon-Nykodim’s
derivatives fp and fp is defined by dy(P, Q) = sup,g|P(A) — Q(A)| = % R’ Ifp — foldd < 1,
where A is the Lebesgue measure in (IR, B). Let us assume that we take a random sample from IT¢
the independent copula of size n > 2 and we we take m = n in the definition of the sample copula,
which corresponds to the linear B-spline copula construction in [43]. Since in this case, we are

considering the uniform partition of order n of [0, 1], that is, (R?)gezg, using part v) of Theorem

2.14, we have that only 7 of the d-boxes in the uniform partition have density n¢~! and the remain-
ing boxes have density 0. Let J be the subset of 7 indices i € 19 with positive density. Then, using

the above definition we have that

1
dry . ch = 5 [ V- sl
2 [O,I]d

1

= 5 Zf|l—nd_lld/l+ Z fll—Old/l]
ie] VK ie(Id\J) Ry

1 n(nd‘1—1)+(nd—n)
2 nd nd

1 1 1
) l_nd—1+1_nd—1)

1

= - (33)

The last equality implies that, with probability one, if we let n go to infinity then dpy (I, C) T 1.
Hence, it can be thought as an “anti” Glivenko-Cantelli’s result. Even more, if we let the dimension
d go to infinity for any fixed n > 2 then again dTV(Hd ,C") T 1. This argument tell us that using

m = n is not a really good option at all.

On the other hand, if we take d = 2, m = 2 and we assume that the sample size » is a multiple of
m? = 4, and that we are sampling from IT2. Then with positive probability ((n/2))*/(n!- ((n/4)!)*),
see [26], we have that each 2-box of the uniform partition of order m = 2 has exactly n/4 points.
So, using Theorem 2.14, we have that the density of the sample copula of order 2 is one on each
2-box of the uniform partition. But in this case we have that dv (C 2 T1%) = 0. In Figure 11 we can
see that when n = 20 the minimum value of the simulations attains O, when m = 2. In fact, it is not

difficult to see that 0 < dpvy/(Cz, I1?) < 1/2 with probability one. Of course, the above argument

works also when d > 2, m > 2 and the sample size n is a multiple of m?.
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Finally, we have observed using simulations, that the total variation distance may be used to mea-
sure the distance between C), the d-sample copula of order m, and C™ the checkerboard approx-
imation of size m, and that when the sample size increases to infinity as a multiple of m, then we
obtain a Glivenko-Cantelli’s theorem. Observe that this happens even using the strongest distance,

that is, the total variation, which in this case is surprisingly easy to evaluate.

In Tables 1 to 7, we present the results of evaluating the total variation distance between C!' the
sample copula of order m = 10 and C"? the checkerboard approximation, with 1000 simulations
of sample sizes varying between n = 10 and n = 50000, the rows include basic statistics such
as mean, variance, minimum and maximum. We used some of the absolutely continuous families
in Section 3, specifically the AMH, Clayton, Frank, Gumbel and Plackett copulas with different
values of Spearman’s p. We also include with m = 15 I1? the product copula in dimension 2, with
n varying from 15 to 60000, and also, IT? the product copula in dimension 3 when m = 2, when n
varies from n = 2 up to n = 49152. As can be seen in all cases, the statistics mean, minimum and
maximum decrease to zero as n increases, and the variance also decrease to zero for n large, which
gives evidence of the existence of a Glivenko-Cantelli’s theorem for the total variation distance.
Observe also, that the first columns in Table 6 and Table 7 agree with the result given in equation
(33). Even more, in the two last tables it is obvious that the checkerboard approximations coincides
with the real copulas, that is, I1?> and IT3, so, we have a real Glivenko-Cantelli’s theorem between
C? and C the true copula.

Table 1 Total Variation Distance for AMH (p = 0.3451) with m = 10

n 10 100 500 1000 2000 10000 | 50000
mean 0.8874 | 0.3532 | 0.1573 | 0.1108 | 0.0786 | 0.0350 | 0.0156
variance | 0.00015 | 0.00079 | 0.00017 | 0.00008 | 0.00004 | 8 e-06 | 1e-06
minimum | 0.8577 | 0.2605 | 0.1189 | 0.0758 | 0.0582 | 0.0248 | 0.0118
maximum | 0.9244 | 0.4879 | 0.2037 | 0.1443 | 0.1032 | 0.0436 | 0.0204

Table 2 Total Variation Distance for Clayton (p = 0.9582) with m = 10

n 10 100 500 1000 2000 10000 | 50000
mean 0.5915 | 0.1757 | 0.0788 | 0.0555 | 0.0389 | 0.0175 | 0.0078
variance | 0.00720 | 0.00090 | 0.00014 | 0.00007 | 0.00003 | 7e-06 | 1e-06
minimum | 0.4521 | 0.1013 | 0.0459 | 0.0304 | 0.02236 | 0.0104 | 0.0043
maximum | 0.8579 | 0.2835 | 0.1153 | 0.0847 | 0.0616 | 0.0279 | 0.0124
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Table 3 Total Variation Distance for Frank (o = —0.64348) with m = 10

n 10 100 500 1000 2000 10000 | 50000
mean 0.8559 | 0.3316 | 0.1456 | 0.1029 | 0.0730 | 0.0324 | 0.0145
variance | 0.00050 | 0.00072 | 0.00016 | 0.00008 | 0.00005 | 9e-06 | 1e-06
minimum | 0.7966 | 0.2514 | 0.1019 | 0.0749 | 0.0505 | 0.0240 | 0.0107
maximum | 0.9254 | 0.4144 | 0.1873 | 0.1325 | 0.0946 | 0.0433 | 0.0192

Table 4 Total Variation Distance for Gumbel (p = 0.84816) with m = 10

n 10 100 500 1000 2000 10000 | 50000
mean 0.7539 | 0.2658 | 0.1206 | 0.0854 | 0.0604 | 0.0268 | 0.0119
variance | 0.00268 | 0.00085 | 0.00016 | 0.00007 | 0.00004 | 8 e-06 | 1e-06
minimum | 0.6556 | 0.1887 | 0.0841 | 0.0553 | 0.0407 | 0.0188 | 0.0080
maximum | 0.9092 | 0.3548 | 0.1659 | 0.1141 | 0.0825 | 0.0363 | 0.0169

Table 5 Total Variation Distance for Plackett (o = —0.90005) with m = 10

n 10 100 500 1000 2000 10000 | 50000
mean 0.7110 | 0.2351 | 0.1105 | 0.0782 | 0.0552 | 0.0246 | 0.0109
variance | 0.00509 | 0.00082 | 0.00016 | 0.00007 | 0.00004 | 8 e-06 1 e-06
minimum | 0.5367 | 0.1460 | 0.0715 | 0.0528 | 0.0391 | 0.01644 | 0.0077
maximum | 0.8907 | 0.03555 | 0.1542 | 0.1017 | 0.0896 | 0.0350 | 0.01570

Table 6 Total Variation Distance for Product d = 2 (p = 0) withm = 15

n 15 225 750 1500 3000 12000 | 60000
mean 0.9333 | 0.3421 | 0.2067 | 0.1453 | 0.1017 | 0.0509 | 0.0227
variance 0 0.00044 | 0.00011 | 0.00005 | 0.00002 | 7e-06 | 1e-06
minimum | 0.9333 | 0.2755 | 0.1746 | 0.1253 | 0.0855 | 0.0415 | 0.0187
maximum | 0.9333 | 0.4044 | 0.2382 | 0.1702 | 0.1180 | 0.0603 | 0.0274

Table 7 Total Variation Distance for Productd = 3 (p = 0) with m = 2

n

2

16

48

192

6144

24576

49152

mean

0.7500

0.1890

0.1150

0.0569

0.0101

0.0050

0.0035

variance

0

0.00567

0.00191

0.00045

0.00001

3 e-06

1 e-06

minimum

0.7500

0

0

0.0104

0.00162

0.0010

0.00038

maximum

0.7500

0.3750

0.29166

0.1718

0.0273

0.0112

0.0080
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The sample d-copula of order m is already a d-copula which provides a quasi-nonparametric
method to estimate a d-copula C. Once m has been chosen, it becomes a nonparametric estimator
of the checkerboard approximation C™, which is a good estimator of C, even for m relatively
small. After C;, has been constructed, since we know that its density is constant on each of the
d-boxes of the partition of [0, 1] that it generates, it is absolutely trivial to generate random sam-
ples of size N > 2 from it. We have written a program using the package R, that generates these
samples. Using this program; First, we generated a sample of size n, that we called original sample
size, denoted by OSS, from this sample we obtain the original modified sample generated from the
absolutely continuous copulas Clayton, AMH, Gumbel, Plackett, Normal, t-Student and Product,
respectively, using different values of Spearman’s rho . Second, for a given value of m, we ob-
tained C), the sample copula of order m, corresponding to each of the original modified samples.
Third, using our program we generated a sample from the copula C’, in each case of size N, that
we called simulated sample size, denoted by SSS. In Figures 2.47 through Figure 2.53, we took
OSS = 5000, SSS = 5000 and m = 50, on the left hand side of each Figure we show the original
modified sample, and on the right hand side we show the simulated sample, as can be easily seen,
both samples are quite similar in all cases, which indicates that C}, , the sample copula of order 50

is a really good estimator of the original copula C.

In Figure 2.54, we took OSS = 20, m = 20, that is, the case m = n, SSS = 1000, and the sample
was taken from IT? the product copula, in this case the original modified sample on the left hand
side looks like an independent sample, but the simulated sample on the right hand side does not

look at all, like an independent sample on [0, 1]°. In this case the sample copula C3) corresponds

to the linear B-spline given in [43], which generates poor samples for the independence copula IT%.
In Figures 2.55, 2.56 2.57 and 2.58, we sample from M? , Example 3.3, Example 3.4 and Example
3.5 in Nelsens book [37]. We took OSS = 5000, SSS = 5000 and m = 50, except on Figure 2.58,
in which m = 100. As we can see in all these four Figures the simulated samples replicate the real
supports of these four singular copulas. The only difference is that the supports of the simulated
samples are slightly enlarged versions (mounted on little squares) of the real support, due to the
definition of the sample copula of order m. However, from looking at these simulated samples, it
is obvious, that we can deduce if the original copulas are singular.
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Figure 2.47: p = -0.7921, OSS=5000, SSS=5000, m = 50
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Figure 2.48: p = 0.3451, OSS=5000, SSS=5000, m = 50
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Figure 2.49: p = 0.4412, OSS=5000, SSS=5000, m = 50
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Figure 2.50: p = —0.9262, OSS=5000, SSS=5000, m = 50
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Figure 2.51: p = 0.7341, OSS=5000, SSS=5000, m = 50
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Figure 2.52: p = 0.7341, OSS=5000, SSS=5000, m = 50
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Figure 2.53: p = 0, OSS=5000, SSS=5000, m = 50
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Figure 2.55: p = 1, OSS=5000, SSS=5000, m = 50
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Figure 2.57: p = 0.75, OSS=5000, SSS=5000, m = 50
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Figure 2.58: p = 0.286, OSS=5000, SSS=5000, m = 100
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Mixture G—GIID-GIDI-GDII Copula

Original Sample Simulated Sample

Figure 2.59: Dimension 3, model = 10, OSS=2000, SSS=2000, m = 50

Finally, in Figure 2.59 we sample in dimension d = 3 from model 10, which is a mixture of
Gumbel, GumbellID, GumbelIDI and GumbelDII, and allows us to have different dependencies

on the vertices of the cube [0, 1] , with OSS = 2000, SSS = 2000 and m = 50, by its shape we
call this the pinhata copula, and both samples look alike. From all the Figures it is clear that the
sample copula of order m is a very nice estimator of the original copula C, when the sample size n

is not too small, and the value of the order m is not close to n. In general, we recommend to take

values of m < n'/?,
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3 Moments of some of the random variables associated with
the sample copula

In this section we show the characteristics of the distributions associated to the count of the boxes
generated by the uniform partition of order m of I = [0, 1]*.

We obtained similar results to the ones in [8], the identities corresponding to permutations and
combinations, used in this section, can be found in [27]. We use the following notation to indicate
the k-permutations of n

" n!

= -k

To note that our case of study corresponds to observations of the modified sample from a d-copula
C or a continuous joint distribution H. Let I, = {1,---,m}, if we consider the sample without
applying the rank transformation, then by [24] and [25] and considering m > 2, d > 2 and for

m <ll -1 l]] <id_1 ld]
Ri = — X X s
- m m m m

the uniform partition of size m of I¢ = [0, 1]¢, where the notation “(” indicates “(” if i ;> 1and

. . . d
every i = (i, --,ig) € I},

“[”ifi; = 1, for all j € I,,, the random vector

(Nili=Groevig) € 1)

have a multinomial distribution with parameters p; = Volc(R!"), the C-volume of the region R,

for all i = (iy,---,iy) € 1%; [25] affirms that it is only necessary to consider d(m — 1) + 1 of these

parameters as free, the remaining parameters are determined by the properties that satisfy a copula.

For the case of the original sample, in dimension d = 2, we have the following lemma (see [25],
for the proof of this result),

Lemma 3.1 Let m > 2, we consider the uniform partition R;;, i, j € {1,---,m}, of I* = [0, 1], and

given a 2-copula C we define, for all i, j € {1,---, m}

pij = Ve(R;j)

61



Pim | P2m o Pmm

s‘:

Pim-1|P2m—-1| - |Pmm—1

S

P11 | P21 o0 | Pml

0 1

m

S
‘\

Figure 3.1: Uniform partition in I? = [0, 1]?

We have the following relations
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Let n,m > 2, where m divides n, and R;j, i, j € {1,---,m}, the uniform partition of I = [0,1]~
Let N;j, i, j € {1,---,m}, be the random variables that indicates the number of observation in the

regions R;j, i, j € {1,---,m}, respectively, then the distribution of the random vector
(Nij’ iaj € {1$ e $m})

is multinomial with parameters n and p;;, i, j € {1, -+, m}. It is important to note that only (m—1)?
values of the probabilities p;;j, i, j € {1,---,m— 1}, are free, the remaining probabilities p;;, can be

written in terms of the previous probabilities (in the Figure 3.1 they are appear in red).
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In dimension d = 3 we have the following lemma (in [25], we found the proof of this result),

Lemma 3.2 Let m > 2, we consider the uniform partition R, i, j,k € {1,---,m}, of the unit cube

I? = [0, 1], given a 3-copula C we define

Dijk = Ve(Riji)
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Figure 3.2: Uniform partition in I* = [0, 1]*

We have the following relations,

Letie{l,---, m—1}

1
0< k< —.
= Z Pijk m
el L, m)2\{(m,m)}
Letje{l,---,m—1}
1
0< < —.
= Z Dijk m
(iK)E(1, - m\{(m,m))}
Letke{l,---,m—1}
1
0< Z Dijk < —

We define

Ifn,r ={(i1, -, ig) € {1,---,m}* | (d — r) coordinates equal to m}

also it holds

2 —

3
m

<

r

2

m

1

m—
m
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3
(
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1

2
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We observe that the probabilities
Pimms " s Pm=1mm> Pmims " s Pmm—1m> Pmm1s " " s Pmmm—=1 Y  Pmmm

can be written in terms of the other probabilities p; ., for example

1 3 :
Pimm = — — Z Pijk Y pmmm:__2+z (r=1) Z Dijk |-
m m
(el L, my2\ ((m,m)) r=2 (il
Similarly to the case d = 2, let n,m > 2, where m divides n, and R;j, i, j,k € {1,---,m}, the regions

corresponding to the uniform partition of the unit cube P =1[0,1]%. Let Nijw, 1, j,k € {1,---,m},
be the random variables that indicates the number of observations in the regions Rj, i, j,k €

{1,---,m}, respectively, then the distribution of de random vector
(Nijk> 1, ok €{1,---,m})

is multinomial with parameters n and p;j, 1, j,k € {1,---,m}. Regarding to the probabilities p;j,

i, j,k € {1,---,m} is only necessary to consider m> — (3m — 2) free parameters (in the Figure 3.2

they are marked with red color the regions determined for the remaining regions).

The distributions described in the above lemmas corresponds to the case where we considered the
original sample, that is, the sample without the rank transformation. Following we present the

procedure to make the count of the observations in the boxes considering the modified sample.

Remark 3.3 In the grid of I> = [0, 11%, generated by the partitions P, = {0, 1/n,---,(n— 1)/n, 1},
in the first coordinate X and P, = {0,1/n,---,(n — 1)/n, 1} in the second coordinate Y, there exist
n! different ways in which can be observed n rank statistics from a sample of size n, because points

are not considered if they have the same value in some coordinate.

Figure 3.3: Grid in I? = [0, 1]

In the Figure 3.3 we show, in red, a point that should not be considered, because it has the same

second coordinate as another point (marked in blue).
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We consider n > m > 2, where m divides n, and | = n/m. let Ry; = [0,1/n]* and let Ny, be the
random variable that indicates the number of the observations k in Ry, with k € {0, 1,---,1} (see
Figure 3.4).

S

Figure 3.4: Region Ry,

To calculate P{Ny, = k}, with k € {0, 1,---,1}, we first select the number of ways in which we can

select the coordinates in the first coordinate X, from these k observations, this count corresponds

to (]i) (see Figure 3.5).

We select k posibilities
(marked in red) among the /

I

I

I

I

I

|

! .

| total options
! regardless of the order
I

I

I

I

|

|

Figure 3.5

subsequently we calculate the number of ways in which we can select the coordinates in the second

coordinate Y from these k observations, this count is given by P\ (see Figure 3.6).
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We select k posibilities
(marked in red) among the /
total options
considering the order

Let Ry, = [0,1/n] X [I/n, 1], the coordinates in the first coordinate X of the | — k points that we must
see in the region Ry, can be selected of (ﬁ::) = 1 way, the coordinates in the second coordinate Y,

can be selected of P} different ways (see Figure 3.7).

Figure 3.7

Let Ry, = [I/n,11x[0, 1], the n—1 points that we must see in this region, they have (n —1)! different
ways to appear (see Figure 3.8).

Figure 3.8
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From this observations, the number in which k points can be observed in the region Ry; = [0, // n)?,

[ - k points in the region R, = [0, {/n] X (I/n, 1] and n— [ points in the region R» = (I/n, 11x[0, 1],

l [—k
(k)P,i( ,_ k)P?:é(n - 1!

1S

from n! possibilities.

The counting procedure described above, it can be generalized to higher dimensions, considering

permutations in the counting process of the different coordinates respect to the first coordinate axis.

3.1 Case: dimension two when m divides n

In this part, we present the distribution and moments of the random variables associated to the
counting in the boxes generated by the uniform partition of size m, with m > 2, of I = [0, 1],

induced by the modified sample from the product copula.

Definition 3.4 Let m > 2, n € N, where m divides n, and | = n/m. We define the following regions

in the unit square 1> = [0, 1]?

Ry = [0,1/n] x[0,1/n]
Ry = [0,I/n]x(/n,1]
R = (I/n,1]1x[0,1].

Remark 3.5 In the following results we consider that in the unit square I* exists n points corres-

ponding to the rank transformation of a sample of size n from the product copula.

The following results describe the probability distribution of the random variables associated with

the counting of observations in the boxes generated by the uniform partition.

Lemma 3.6 Let ky be the number of points in the region Ry, and x| the number of points in the

3 (J)Pl,((l—kl)Pn_lzp,;_
ki+x1=1 kl I xl 1

region R, we have that

Proof: We can observe that
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then

l -k l
Pl Pn—l — Pl Pn—l
Z (kl) k’( X1 ) . Z (kl) s

ki+x1=1 el
_ ! i (=1
ky+xi =l kil =k (I =k)! (n—1-xp)!
_ Z [ L (n-10!
ky+x=I k(M =k)! x)'(n—1—-x))!

I\(n—1
= [
k;:‘:z(l‘l)( X1 )

= | ‘(rll) (Vandermonde’s identity)
= P
O

Lemma 3.7 Let Ny; be the random variable that indicates the number of observations falling in

the region Ryy, then the following equality holds

Mn-D'(1 -1
P{Ny1 = ki} —(nn! ) (kl)(ln— kl)

()("%)
(7

and the random variable Ny, has a hypergeometric distribution con parameters: n the population

size, [ the class size and [ the sample size.

Proof: From the proof of Lemma 3.6, we have

2 et U= 2N
ki+x1=Il kl xl k1+x1:l kl xl

this equality indicates the number of ways in which we can have k; + x; points in the region
Ry U Ry; fixing the value ki, this result is multiplied by (n — [)! (number of ways that we can have
n — [ points in the region R discarding [/ possibilities corresponding to the coordinates occupied by

the observations in the region Ry; U R;) and divided by n!, the total number of ways that we can

observe n points in I> = [0, 1]%. ]
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Then

/

Z l!(n—l)!(l)(n—l)
ol n! k] l—k]
L(i\(n-1

D

k=1

i
D PNy =)
ki=1

(n=10
n!

3 n=-0n!_,
- n! Pi
= 1.

Theorem 3.8 Let n and m be integers greater than or equal to two, where m divides n, and | = n/m.
Let Ny, be the random variable indicating the number of observations falling in R,,, when we take

a sample of size n from the product copula, then

. Pl-17% 1
E(Nyi/n) = m?’ E((N11/n)*) = n3((n - i) nim?
and
CPe-1? 1 (1
Var(Ny,/n) = - 1) * nm? (ﬁ) .

Proof: From the Lemma 3.7, we have

/

Nn-=DV1\(n-1
E(Ny) = by ————
o = SN
~ mm—nzjlz—l n—1
I = AR VA S
M- S (1-1\ n-1
n! MIZ:;) up I\l—1-u ( ! )
NMn =10 (n-1
= #(7 1) (Vandermonde’s identity)
n. -
12
T on
n
R

and

1
E(Ny/n) = ok
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Then,

S o Nn=D1\(n-1
2y _ 2207 U
E(Nu)) = klz_;)kl oy (k])(l_kl)
) ) Nn-01\(n-1
= Z(kl(kl D+ k)= (kl)(l_kl)
i Bon=D!(1\(n=1\ <, Mo=D!(1\(n—1
) ;kl(kl_l) n! (kl)(_kl)-'-l;)kl n! (kl)(l—kl)
~ D=0 -2\(n-1\ n
)
- S T P
= ’(H)é( u )(<I—2>—u1)+$ n=f=2
_ D=0l 2\, n
= p Il 1)( 2)+m2
PRI n
- nan-1)  m?
Therefore
_12(1—1)2 L

and

Var(Ny,/n) E((Ny1/n)* — (E(Ny,/n))?

207 _ 1\2 2
1“(l 1)+ 1 _(Lz)

mn-1) nm* \m

O

Remark 3.9 7o evaluate the covariance, we consider two cases, corresponding to the position of

the boxes in the square 1> = [0, 112, as illustrated in Figure 3.9.
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si-
s

Figure 3.9: Covariances cases d = 2.

The results presented below correspond to the calculation of the covariances for the first case.

Definition 3.10 Let r € {2, - -, m}, we define the following region in the unit square I* = [0, 1]

Ry, = [0,1/n] X ((I/n)(r = 1),(/n)r].

Lemma 3.11 Let ky be the number of points in Ry, let k, be the number of points in Ry, r €
{2,---,m}, and let x, be the number of points in ([0, [/n] X [0, 1])\(R;; U R;,), then

l -k -k —k
g e E
ki+ky+x1=1 kl k2 xl

l—kl —k2 _ X1 -1
X1 - X1 -
and

[ -k =k —ky\ [ -k .
e
ki +hota =1 Vo 2 X ki +xy =1 V1 2

3 Z I! I (I =k)!
B kil =k)' (= k) k(L= ky — ko)!

ki+ky+x1=1

Proof: We have that

o (n —20)!
(I—ko)! (n =20 - x})!

SRR
-

= P




O

Lemma 3.12 Let Ny be the random variable indicating the number of observations falling in R,

and let Ny,, r € {2,---,m}, be the random variable indicating the number of observations falling
in Ry, then
Nn=D'(1\[1 n—2I
P{Ny, =k,N|, =k} = ———— .
{Ni1 = ki, N, 2} py (kl)(kz)(l— ki — kz)

Proof: We consider

I 4 o R

k1+k2+xlzl

from the proof of Lemma 3.11, using the notation of the Definition 3.4, this equality indicates the
number of ways in which we can have k; + k, + x; points in the region Ry; U R;; similarly to the
Lemma 1.4, setting the values k; and k,, this result is multiplied by (n — /)! (number of ways that
we can have n — [ points in the region R discarding [ possibilities corresponding to the coordinates
occupied by the observations in the region R;; U R;) and divided by n!, the total number of ways

that we can observe n points in I? = [0, 1]°. ]

We can observe that

Nn-D'[1\[1 -2l
Z P{Ni = ki, Ny = ko) = Z mn—!)(kl)(kZ)(l—nkl_kz)

ki+ky=1 ky+ky=1
_ (n _'l)!l! Z (l)(l)(n— 21)
n: ky+ky+x1=1 kl k2 H
A
_ oDy,
n!
= 1.

Theorem 3.13 Let n and m be integers greater than or equal to two, where m divides n, and
|l = n/m. Let Ny, be the random variable indicating the number of observations falling in Ry,
(Definition 3.4) and let Ny,, r € {2,---,m}, be the random variable indicating the number of
observations falling in R,, (Definition 3.10), when we consider a sample of size n from the product

copula, then

B -1 1Y
Cov(Ny1/n, Ny /n) = ﬁ - (%) .
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Proof:

Hin=DV1\(! -2l
E(NuNy,) = EZMM(Z,w X)L” )

ki +l=l ki J\koJ\l — k1 — ko
I(n—-1)! )
e
n: ky+ky+x1=1 kl k2 X1
nm—nzkzt—zﬁ (ZXZ)
= kik,
B l!(n—l)!lzi(n—ﬂ) Z (1_1)(1_1)
4 =0\ U o D=(-2-x =1V =1
_ l!(”—l)!lzi n=20\ 2[-2
) nt x1=0 X1 (I-2)-x

_ NMn-DIP(n-2
B n! 1-2
NBn-0! (n-2)
nl (A=-2)!n-10D!

CPU-1)
" n(n-1)
and
Cov(Ny1/n,Ny./n) = E((Ny1/n)(Ny./n)) — E(N11/n)E(N,,./n)

B -1) _(L)z
mnn-1) \m?]

The next results correspond to the calculation of the covariances in the second case.

Lemma 3.14 Let k|, x; and x, be the number of observed points in the regions Ry, (Definition
3.4), Ry = [0,1/n] X (I/n,2l/n] and R}; = [0,1/n] X (2l/n, 1], respectively, let y,, ko and y, be
the number of observed points in Ryy = (I/n,2l/n] X [0,[/n], Ry, = (I/n,2l/n] X (I/n,2l/n] and
R, = (I/n,2l/n] X 2l/n, 1], respectively, then

Z Z (kl)Pkl( X )Px1( X5 )sz

kl +X1 +)C2=l k2+y1 +)72=l
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l I—k l_y1 I—x l_yl - k2 n—21—x n—I pn
'()’I)PYI I( k> )sz | » P = PP

Proof: We have that

(l—kl—x1):1 (l—yl—kz)zl
X2 ’ 2
Z Z ! p [ -k pl pr-2 l pl-ki L=y pl—x pn-2-x
kl ki X1 X" X Vi 1 k2 ky 2
k1 +x1+x2=l ko+y1+y2=I

LN I \(n=20\[] = k1\[] — x;\(n — 2] — x
S S
* k1+J;+xz:l k2+ylz+:yz:, (kl)(xl)( X2 )( N\ k »
5 NI \(n=20\[n—k —x1 —xy
) klﬂg‘ﬁz, (kl)(xl)( X )( ! )
ofn—1 L\[1l\[n—-2l
"), 2 L)

)

n—I pn
PP

and

O

Lemma 3.15 Let Ny, be the random variable indicating the number of observations falling in
Ry, (Definition 3.4) and N, the random variable indicating the number of observations falling in
Ry = (I/n,2l/n] X (I/n,2l/n] then

3 3 _(l!)z(n—21)! I\ I \(n=20\(l -k \\[l—x;\[n—-2]—-x,
PN = o, o = o) = n! Z Z (kl)(xl)( X2 )( Y1 )( k> )( Y2 )

X1 +x2:l—k1 yit+y2 :l—kz

Proof: This equality is obtained from the proof Lemma 3.14, setting the values k; and k,, and
multiplying by (n—2/)! (number of ways that we can have n—2I[ points in the region (2//n, 1]x[0, 1]
discarding 2/ possibilities corresponding to the coordinates occupied by the observations in the
region [0, 2//n] X [0, 1]) and divided by n!, the total number of ways that we can observe n points
in I? = [0, 1]°.
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We can note that

[ i
=200 .,
D7 PN = ki, Ny = k) PP

|
k1=0 k=0 n:

O

Theorem 3.16 Let n and m be integers greater than or equal to two, where m divides n, and

[ = n/m, with the same hypothesis of the Lemma 3.15 we have

A 1
Cov(Ny1/n, Ny /n) = pET L —
Proof:
IN*(n = 2D)! I\ \[n-2] [ —ki\[l—x\[n—-2]—x
s = 52 5 ) 3 N
n: ki+x1+xy=[ 1 xl xz kz+y1+y2:l yl 2 ))2

B AN U(n = 21)! Z (l— 1 )(l)(n—Zl
B n! (ki =1)+x1 +x2=0~1 ki = D\xi/\ X
a3 ()
(ky=1)y1+y2=1-1
= e e
(k1=1)+x1 +x2=1-1
B (l!)zlz(n—Zl)!(n—l—l) Z (l—l)(l)(n—Zl)
n! [-1 (k1 =1)+x1 +x2=I—1 k= 1\a\ x
_(l!)2lz(n—21)!(n—1—l) Z (l—l)(l—l)(n—2l)
n! [-1 PRI o S ky —1\x; — 1)\ x;

~ (1!)212(n—21)!(n—1—1) n—l)_ n-2

B n! I-1 I-1 -2

INPm=2D)! (n—-1-=10! ( m-n! (@=2)! )
n! n=20I-=IN\I-Dn=0D" (=2n-10!

UNPn-1D!n-1-D! _ UNPn-2)!(n—-1-D"
nl((I-1DH%(n-1)! n!(l— DI -2)!(n-1)!
I _ “I-1)

nn=-0) nn-1n-1

75



l4
nn—1)

and
4

E((N11/n)(Nxz/n)) = e

Therefore

Cov(Ny1/n, Ny /n) E((N11/n)(N2z/n)) — E(N11/n)E(Nyz/n)
o1
nhn-1) m*

O

We finalized this section with a theorem that indicates the joint probability distribution of the boxes

generated for the uniform partition of size m, with m > 2, when m divides n.

Theorem 3.17 Let m > 2, n € N, where m divides n, | = n/m and I,, = {1,---m}, let R;;, with

i, j € L., be the boxes of the uniform partition of size m of I* = [0, 11> and let N;; be the random
variables that indicate the number of observations falling in R;;, respectively, for all i, j € I,,, when
we consider a sample of size n from the product copula; let n;j, with i, j € 1,,, be zero or a positive

integer, satisfying the following restrictions

Z njj =1 (forallieI,), n;=1 (forall j€l,),

m
Jj=1 i=1

then

P{ ()N = ”"f}} ! e, iy

i,jely

Proof: Proceeding as in Remark 3.3, first for the region R, second for the region R}, and succes-
sively to the regions Ry3, -+, Ry, Ro1, -+, R, Ryt * -, Ry, We have that the number of ways in

which we can observe n;; points in each region R;;, i, j € I,,, is given by

m—1
! pl [ =nn plo... =2 mj p!
nll niy n12 ni2 nlm Nim

m—1
. l Pl—n” - U Pl—mz . l- Zj=l n2j Pl—nlm
naq n n2m
ns1 ny nom
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m—1
(! Pl [ =1 pEitna [ =70 N S
n Nm1 N2 Mnm

ml L27%) Nm

(1H>

"
Hi,jelm ni;:

finally, we divided between n!, the total number of possibilities in which we can see n points in

I> = [0,1]%, corresponding to the modified sample of the a sample of size n from the product

copula, therefore

=R s =
/ / n! Hi,je],,, ”ij!

i,jeln

3.2 Case: dimension three when m divides n

In a similar way to the previous section, we present the distribution and moments of the random

variables associated to the counting in the boxes generated by the uniform partition of size m, with

m > 2, of I’ = [0, 1]°, induced by the modified sample from the product copula.

Theorem 3.18 Let n and m be integers greater than or equal to two, where m divides n, and

| = n/m. Let Ny be the random variable that indicates the number of observations falling in

Ry11 = [0,1/n)? when we consider a sample of size n from the product copula, then

Bl-1)> 1

nt(n—-172% nm?

1
E(Nyi/n) = pocE E((Ny1/n)*) =

and

B -1)> 1 1)’
Var(Ni11/n) = ¢-1) —( )

nt(n-12% nm? \m?

Remark 3.19 Figure 3.10 shows the related boxes to the count of the number of observations
associated to the random variable Ny, the Figure 3.11 show the region R = (I/n, 1]X[0, 1]X[O0, 1],

in this region exist (n — [)!)* ways in which we can graph the transformed sample data, since that

[ points are observed in the region Ry = [0,1/n] X [0, 1] X [0, 1].
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By Bar 3 4

Figure 3.10: Box Ry Figure 3.11: Box R
e
ol
;(,

Figure 3.12: Box R;

Remark 3.20 The Figure 3.12 it shows the region R, = [0, [/n]x[0, 1]1X[0, 1], this region is divided
on three parts, Ry, = [0,1/n]?, Ri1» = [0, 1/n]x[0,1/n]x(I/n, 1] and R,», = [0, I/n]x(l/n, 11X[0, 1],
the number of observations in the regions are denoted, respectively, by k, x; and x,. The number
of ways in which we can select the value of k is (,i)PiPi, the number of ways in which we can select

I-k

. )Pi‘lkPﬁl‘l and the number of possibilities of the value x; is,

the value of x,, given the value k, is (

. I—k—x1 n—1 pn—k—xi
given the values k and x, ( . )sz P, .

Definition 3.21 Let k € {0, 1,---,1}, we define

[—k I—k—x
Gn,l — Pl—kPn—l 1Pn—1Pn—k—x1
¢ x1+;l—k( X1 ) S X2 S
-k
_ L= K\ ik gl = k= X1\ 5y n—k—x
~ li (1 - k) (I-k! (=D n-0! (m—k-x)!
B x1:0x1!(l—k—x1)!(l—k—x])!(n—l—xl)!(n—21+k+x1)! (n=1D0!
HKin—k—x n—1 \(n-1
= ((I-k)")> ! .
(( )));)(l—k—xl)(l—k—xl)( )Cl)
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Remark 3.22 We have,

S (1
> ( k)P,QP’kG;’J = (P

k=0

(1 ) S (n—k-xi\( n—-1 \(n—I ) )
A e T o [

x1=0

then

Remark 3.23 Lek€{0,1,---,1}, we have

l

P{N:k}:(k

)Pf(Pf{GZ’l((n - DY?/(n!)?

Using Remark 3.23, we can proof the Theorem 3.18,

5 (1 < (n—k - —1 \(n-1I
E(Nim) = Zk(k)a!)Z[Z(’Z_ k_;l)(l_”k_xl)(”x )]((n—l>!>2/<n!)2

1

k=0 x1=0
L(1-1 D -1 - (k=1)-x
_ B _ 2 1
) l;(k—l)((l 1)!)[ Z;) ((l—l)—(k—l)—xl)

( (n—1)—-(=1) )((n—l)—(l—l)

2 2
(I=1)=(k=1)-x )](((n—l)—(l—l))!) /(n!)

X1
o (-1 & (-1 —u—x
_ B 12 1
B ZZ;( u )((l DY [Z) ((1—1>—u—x1)

((” ~D-0- ”)((” -h-U- ”)] (0= 1) = (= /()

(-1 —u-—x X1
P((n—1)!)?
= W (Remark 3.22)
3 n 1
T o2
_on
T om
and
N
E(ﬁ) _ 1
n m3
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The second moment is obtained from the following equalities

l l HKn—k—x n-1 n-—1
2 _ 2 2 1 N2 2
E(Nyy) = ;k(k)(l!) [);)(l_k_xl)(l_k_xl)( x| )]((n DY /(n!)
l ! Kn—k-x\( n=1 \(n-1
_ _ 2 N2 2
= ki 1)+k](k 1) L;(l_k—xl)(l—k_xl)( . )}«n DY?*/(n)
! l = n—k—x n—1 \(n-1 n
_ _ 2 _ 2 2 -
- 2 k(k 1)(k)(1!) »;(Z—k—xl)(l—k—xl)( N )]((n DI /(1) + —
L (1-2 2 (-2) - (k-2) - x
_ N3 _ 2 1
- 1));(k—2)((l 2)!)[ ZO ((1—2>—<k—2)—x1)
n-2)-(1-2) \(n=-2)-(1-2) 2 » I
((1_2)_(k_2)_xl)( N )](((n—2>—<l—2>>!> Jn)) + =
) S (n=2)—u—x
_ _ 3 _ 2 1
= (-1) ZO( ) )((l 2)1) [ZO ((1_2)_u_xl)
((”‘2)‘(’ _2))((”_2)_(’_2))]«(:1—2)—(l—2>>!>2/<n!)2+13
(I-2)—u—x X m
A -D)P((m-2)  n
= )2 + e (Remark 3.22)
R
C on2(n-12 m¥
and
N\ Pa-1)? 1
E(( n ))_n4(n—1)2+nm3'
Finally

E((Ni11/n)*) = (E(N111/n))?
B -1y 1 _(1)2

Var(Nyyi/n)

ot -12 nm®  \md
O

Remark 3.24 To evaluate the covariance, we consider three cases, with respect to the position
of the boxes Ry, = [0,1/n] x [0,1/n] X (I/n,2l/n], R, = [0,l/n] X (I/n,2l/n] X (I/n,2l/n] and
Ry = (I/n,21/n)3, relatives to the box Ry;.

80



Figure 3.13: Case 1

li;
22

Figure 3.15: Case 3

Lemma 3.25 (Case 1) Let n and m be integers greater than or equal to two, where m divides n,

and | = n/m. Let k, be the number of observations falling in R\, = [0,1/n)?, k, the number of
observations falling in Ry, = [0,1/n] x [0,1/n] X (I/n,2l/n], x| be the number of observations
falling in Ry;5 = [0,1/n] X [0,1/n] X (I/n,1] and x, the number of observations falling in R* =
[0,1/n] X (I/n,1] X [0, 1], when we considered a sample of size n from the product copula, then

) I [ - k] I—k1 1l [- kl - k2 [—ky—k, pn—21
k )Pklpkl( )sz 1sz le l Zle

k X
k1+k2+xl+X2:l( 1 2 1

(l—kl—kz—xl

n—I pn—x;—kj— 1\2
)szlpx2 1—k1—k2 :(Pl) )
X2

Proof: We note

l—kl—kz—xl -1
X2 B

and

! [ pl l_kl -k pl l_kl_kz [~k —ky pn—21
> (kl)Pk]Pk‘( o )Pk21Pk2 M

ki+ko+x1+x3=[

(l—kl—kz—xl

n—I pn—x;—ki—ky
)sz sz
X2

81



= Z [ Pl Pl [ - kl Pl—k1Pl [ - kl - k2 Pl—kl—kan—Zan—an_xl_kl_kz
ky+ky+x1+x2=1 kl ft k2 ko ko X1 X1 X1 X2 X

B 5 IN(I\(n=20\n—N\(n—x1—k —k,
= k1+k2+Zx1+x2:l(kl)(k2)( Xy )( X2 )( X )
3 5 I\ I\(n=20\(n—N\(n-(-x)
= kl+k2§+m:l(k1)(k2)( Xy )( X )( X )

o S WA

x2=0 ki+ky+x1=I-xp
B n—(-x) n
P G

/

= (Y n!);)h!(n—l—Xz)!XZ!(l_XZ)!
G TRATIAY.
R 1)'2()62)(("—1) x2)

Yy’ ( n )
S Um-D"\n—-1

(P

O

Remark 3.26 Let n and m be integers greater than or equal to two, where m divides n, and | =
n/m. Let Nyj; be the random variable indicating the number of observations falling in Ry1; =
[0,1/n)? and let Nyi» be the random variable indicating the number of observations falling in
Ri1» = [0,1/n] X [0,1/n] X (I/n,2l/n], when we take a sample of size n from the product copula,
using the proof of the Lemma 3.25 we have

A=D1 "G (= \n— - x)\[ 1\ ! n—2I
P =l N =l = =6 Zf) ( X2 )( X )(kl)(kz)(l—xz—kl—b)

Xp=

Theorem 3.27 With the same hypothesis of Remark 3.26, we have

Ba-12 (1Y
Cov(Ni11/n,Ni2/n) = E 1))2 (m3)
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Proof: From Lemma 3.25 and Remark 3.26 we have

and

E(N111N112)

-2

B (l!)z((n—l)!)2 n—Nn—-(U-x) [\ [ \[n-2]
B (n!)? Z ( x2 )( ) ) Z klkz(kl)(]@)( x| )

x2=0 ki+ky+x1=I-x;
PN ((n = I)!)? 122: n—1 (n —(l—x)
(n!)? oo\ 2 X2

' Z (l_l)(l—l)(n—m)
(st =2z, K1~ D\ = 1\ 3

P (=D S n=N\n—-(>1-x)\| n-2
(n!)? Z X X2 (l-2)-x

x=0

P ((n = D)2 (n = 2)! li (n—l)( [-2 )
P -D-2)! =\ x» \1-2)-x

P ((n = D) (n—2)! (n - 2)

mN2(n-D'1-2)! \I-2
*(1-1)
n?(n—-1)%
Cov(Ni11/n,Nip/n) = E((Ni11/n)(Ni2/n)) — E(Ni11 /n)E(Ni12/n)

P - 1) _( 1 )2

T - 12 \md

O

Remark 3.28 (Case 2) Let n and m be integers greater than or equal to two, where m divides n,

and | = n/m, we consider the following regions

Ry = [0,1/n] x[0,1/n] X [0,1/n]
Ry = [0,1/n] x[0,1/n] X (I/n,2l/n]
Riiz = [0,1/n] x[0,1/n] x (2l/n,1]
Ry = [0,1/n] x(I/n,2l/n] X [0,1/n]
Ry = [0,1/n] x (l/n,2l/n] x (I/n,2l/n]
Rz = [0,1/n] x (I/n,2l/n] x 2l/n,1]

]

Rz = [0,1/n] x 2l/n, 1] x [0,1/n]
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]
e
(9%)
[\e)

|

[0,1/n] X (21/n, 1] X (I/n,2]/n]
[0,1/n] x 21/n,1]1 X (21/n, 1],

=
Z
@
@D

|

let xy, x3, X3, X4, X5, Xg, X7, X3 and xg be, respectively, the number of observations in the regions
Ri11,R12, Ri13, Ri21, R122, R123, Ri31, Ri32 and R 3.

We define
X1+x+x = A
Xa+Xs+Xs = Aj
X7+ xg+x9 = Aj
X1+ X4+x7 = By
Xo+Xx5+x3 = By
X3+ Xe+Xx9 = Bs.

To count the number of ways in which we can select | from n points in the region R* = [0,1/n] X
[0, 1] X [0, 1] we consider

1. Number of ways to select the first coordinate X

IN[L=x )\[l=x1 =\l —x1 —x0—x3\[l — X1 — X2 — x3 — X4
X1 X2 X3 X4 X5

(l—xl—xz—x3—x4—x5)(l—x1—xz—x3—x4—x5—x6)

CcX

X6 X7

(l—xl—XZ—X3—X4—X5—X6—X7)(Z—X1—XZ—X3—X4—X5—X6—X7—X8)

X3 X9

gttt
- 'xl!xz!x3!x4!x5!x6!x7!x8!x9!'

2. Number of ways to select the second coordinate Y

cY

[ I—x1 pl-x1—x3 pl pl-x4 pl—x4—x5 pn—-21 pn—21—-x7; pn—2l—x7—xg
lesz Px3 PMPX5 Px(, Px7 ng ng

l! l! (n=2D)!
I-AD!'I-A)!'(n—21-A3)!

3. Number of ways to select the third coordinate Z

_ [ [ n—21 pl-x| pl-x; pn—2l-x3 pl-x1—x4 pl-x3—x5 pn—2l—-x3—x¢
Cz = PP, pr2phaphaprdionplasyplass pr- .

X7 X7 X3
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Lemma 3.29 Using the notation of Remark 3.28 we have

> > oex-cy-cz= (P

A1+A2+A3=l X1+X2+Xx3=A] X4+X5+X6=A2 X7+Xx3+X9=A3

Proof: We have the following identities

2 a2

2: CX-CY-CZ

A1+A2+A3=l X1+x2+X3=A] X4+x5+x6:A2 X7+Xx8+Xx9=A3

2,

Z I l! l! (n—2D)!
A=A (- A)! (n—21- A3)!

Aq +A2+A3:l X1+xz+X3=A1 X4+X5+X6=A2 X7+Xx3+X9=A3

(919 A (0 G ey (i (e G

(n —2D)!

[ [!
B A.+§A3:

['n! I\
RCR) Aﬁ,;AFl (Al)(Az)( As
_ I'n! (n)

(n—-D'\1
= (P

I . . (fl)(l’l—Al)(l’l—Al —Az)
, (A=ADI I =AN!'(n=21-ANN\A N\ A, As

n—ZZ)

O

Remark 3.30 Let n and m be integers greater than or equal to two, where m divides n, and | =

n/m, we consider the following regions

Ry = (I/n,21/n] X [0,1/n] X [0,1/n]

Ry = (I/n,2l/n] X [0,1/n] X (I/n,2l/n]
Ry;3 = (I/n,2l/n] X [0,1/n] x (21/n,1]

Ry = (U/n,2l/n] X (I/n,21/n] X [0,1/n]
Ry, = (I/n,2l/n] x (I/n,2l/n] X (I/n,2l/n]
Rys = (I/n,2l/n] X (I/n,2l/n] X (21/n,1]
Ry = (I/n,2l/n] X (21/n,1]1 %X [0,1/n]
Ry = (I/n,2l/n] x 2l/n, 1] X (I/n,2l/n]
Ry = [I/n,2l/n] X (2l/n, 1] X (21/n, 1],
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let y1,¥2,¥3, V4, V5, V6, V7, Vs and yy be, respectively, the number of observations in the regions
Ro11, Ra12, Ra13, Roots Rana, Roos, Rosis Razo and Ross.

We define

yi+y+ys = A
Ya+ys+ys = A
yi+ys+yo = As
yitysty; = B
V2+ys+ys = B

y3+ys+tys = Bi.

To count the number of ways in which we can select | from n — [ points in the region R =
(I/n,21/n] x [0, 1] x [0, 1] we consider

1. Number of ways to select the first coordinate X

( [ )(l - yl)(l -y = yz)(l -y =y — ys)(l —Vi—Y - )’3)
Y1 Y2 Y3 Ya s

_(l—)’1 —yz—y3—Y4—)’5)(l—)’1 —yz—)’3—Y4—yS—y6)
Yo Y1

cX

(—m—m—n—m—%—%—ww—m—n—m—ﬂ—%—%—w—m)
Y8 Y9

- — .
Yi!yalystyal ys!ys! y7!ys! yo!

2. Number of ways to select the second coordinate Y (we consider the notation of Remark 3.28)

_ [-Az pl-Ax—ys pl-A2—y4—ys pl—-A1 pl-A1=y2 pl-A1=y2-y1 pn—2l-A3 pn—2I-A3—ys pn—2l-A3—ys—y7
CY - PyS Py4 Pys P)'Z Py 1 Py3 P}’S P)’7 P)’9 -

3. Number of ways to select the third coordinate Z (we consider the notation of Remark 3.28)

— =B I-B1—y1 [=B1=y1-y4 I-B; I-By—y> I-By—y>—ys n—2l-B; n—=2l-B3-y3
CZ = P Y1 P Y4 P Y7 P »2 P Y5 P )8 P y3 P Y6

. n—ZI—Bz—ys—ysp
Y9

(1-B))! (1-By)! (n—21- By)!
(I-B,—B)!'(l-By—By)! (n—2—-B; — B3)!
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Lemma 3.31 Using the notation of Remark 3.30 and Remark 3.28, we have that
Z Z Z Z CX-CY-CZ =P,
Bi+Ba+Bs=l yr+ys+ys=Ba y1+ya+y1=Bi y3+y6+yo=5s

Proof: We have the following identities

> > > > cx-cy-cz

By +By+B3=1 y,+ys+ys=B, y1+ys+y7=B1 y3+y6+yo=B3

— B3)Y

_ B))! (I- B! (n-21 !
B Z Z Z Z —B)'(I-B,—B)!(n-21— By — By)!

Bi+By+B3=1 y2+ys+ys=By y1+ya+y7=B1 y3+y6+yo=B3

(l — Az)(l - A])(Vl -2l - A3)(l — A2 - ys)(l — A] — yz)(l’l -2l - A3 - yg)
Vs Y2 )8 Ya Vi Y1

.(I_Az_yzt_YS)(l_Al _yZ_YI)(n_ZI_A3_y8_Y7)
Yo Y3 Yo

Z (=B (I B! (n— 21— By)! (n—l)
‘(I-B,—B)!'(I-By— By (n—21-B;— B3)!\ B

n—l—Bz n—l—E]—éz
(Y
B Z (n—l)'( )(l—B2)(n—2l—Bg)
) babay (120! 5 B, B,
_ o (n-10! n—l)
T =20\ 1

= (P~

E] +l§2+l§3:l

Remark 3.32 We use the notation on Remark 3.28 and Remark 3.30, and the results in the proofs
of the Lemma 3.29 and the Lemma 3.31. Let n and m be integers greater than or equal to two, where
m divides n, and | = n/m. Let Ny, be the random variable indicating the number of observations

falling in Ry, and N,», the random variable indicating the number of observations falling in Ry,

when we considered a sample of size n from the product copula, then

A1+A2+A3:l X2+x3=A1—X1 X4+x5+x(,:A2 X7+Xx8+Xx9=A3

(n—20)! ( [ )( l )(n — 21)(1 - xl)(l - xz)(n -2l —x3
(l’l -2 - Ag)’ X1/\X2 X3 X4 X5 X6
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(z - x);— x4)(l - xig_ xs)(n ~21 ;9x3 - xﬁ)] - [ YOy o

Bi+By+B3=1 yy+ys=Ba-ys

(I - B))! (I - B,)! (n—-21-B;)! (l—Ag)(l—Al)
(I-B —B)!(I-B,—B)!'(n=21-B;— B)!\ Vs y2

(n -2l —A3)(n - Bz)(n —1-B - Bz)] _ [((n - 21)!)2]
V8 B, B; (n!)? '

Remark 3.33 If we use the notation on Remark 3.28 and Remark 3.30, then

Z Z I (I- B))! (I- B,)! (n—21- By)! (1—A2—1)
(=B —=B)(I=B,—B)! (n=21—Bs— By)!\ ys—1

(Z—Al)(l’l - 2[—A3)(7’L —-1- 32)(11 -1 - B] - Bz)

Y2 Y8 El 33

~ Z (=B (- By)! (n — 21— Bs)! (n—l—l)(n—l—ﬁz)
(1-B, —B)!'(I-By—B,)! (n—21— By - B!\ B.—1 B,

Bi+By+B3=1y, +yg+(ys—1)=B,—1

B|+l§2+g3:l
I’l—l—Bl—Ez
By
~ Z U= B! (I - By)! (n=20-By)! (-I1-D!'1 1 1
‘(=B —B)!'(I-By—By)!(n—21— By — By)! (B,—1)! B! B;! (n—2)!

B|+Bz+B3=l

Nn-1-1)! [—Bi\({l-B,—1\[n—-2l—- B;
TE RIS (31 )( B-1 )( B, )

31—1+Bz+5’3=1—1

_ NMNn-1- 1)!(1_82)(n—l— 1).

(n—2D)! -1

Remark 3.34 Using the notation on Remark 3.28 and Remark 3.30, we have

l l—X2 l—)CQ—)C5 Al (l—XZ)! (Z—XZ—X5)!
X2 X5 Xg )Cz!(l — )Cz)! X5!(l — Xy — )C5)! Xg!(l — X2 — X5 — )Cg)!
[ (-1 [ —x; (l=x, = 1)!

l—XQXZ!(l—Xz—1)!I—X2—X5X5!(Z—X2—X5—1)!

[— X, — x5 (=% —-x5-1)!

.l—Xz—X5—Xng!(l—Xz—)@—Xg—1)!
_ l -1 l—l—Xz l—l—xz—x5
B l—Bz X2 X5 Xg '
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Theorem 3.35 With the same hypothesis as in Remark 3.32, we have

16 1 2
Cov(Nyi1/n, Naxpy/n) = m _ ($) .

Proof: From Remark 3.32, Remark 3.33 and Remark 3.34 we have

! [ (n-2D!
E(NiiNox) =[ )IED VD VDY S A U= Al (n— 21— Ay)!

A1+Ar+A3=l X1 +x3+x3=A1 X4+X5+X6=A2 X7+Xx3+X9=A3
LN I \(n=20\[l — x1\[] = x2\(n — 21 — x3\[l — x1 — x4 \[L — X2 — X5
X1 /\X2 X3 X4 X5 X6 X7 X8

l’l—2[—)€3—x6 (l—Bl)' (l—Bz)'
: E E I - =
( X9 )] [ (I=Bi - B)!(-B,— By)!

Bi+By+B3=l yr+ys+ys=B,
(n—21 - By)! (l—Az)(l—Al)(n—2l—A3)(n—l—Bg)
(n—2l-B; — 33)! Ys Y2 ys 31
n—1-B, -B, (n = 2D)!)?
B, (n!)?

I! I (n - 21!
- [ Z Z Z Z l!(l—Al)!(l—Az)!(n—2l—A3)!

A1+A2+A3:l X1+Xx2+Xx3=A1 X4+X5+X6=A3 X7+X3+X9=A3
; =1\ 1 \(n—=20\[] — x1\[l = x2\[n — 21 — x3\[l — x1 — x4 \[] — X2 — X5
X1 — 1 X2 X3 X4 X5 X6 X7 X8

n—2[—X3—X6 (l—Bl)' (l—Bz)'
: !
( Xo )] Z Z (I-By-B)!'(I-B,- B!

Bi+By+B3=1yr+yg+(ys—1)=B,—1

(- Ay (n— 21— Bj)! (Z—Az—1)(Z—A1)(n—21—A3)(n—l—l§’2)
Ym-20-Bs-By!\ ys-1 N\ » s B,

(n —1-B, - Bz)] - [((n - 21)!)2]
B, (n!)?

ANIn-1-1D)(n-1-1
reert AP ED YD VD VDY

A1+Ar+A3=] X1 +X2+X3=A]| X4+X5+X6=A2 X7+X3+X9=A3

Al [ (n—=20)! [—1\1\[n-2I
U= A U= A -2 At~ A= B”(xl - 1)(xz)( X3 )

L= x)\[l = x\[n =21 —x3\[l — x1 — xa\[] — X2 — X5
X4 X5 X6 X7 X8
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therefore

Remark 3.36 (Case 3) Using the notation in Remark 3.28 and the results in Lemma 3.29, let n
and m be integers greater than or equal to two, where m divides n, and | = n/m. Let Ny, be the

random variable indicating the number of observations falling in Ry, and let N1y, be the random

Cov (Ni11/n, Ny /n)

.(n — 21— x5 — x6) [((n —2D)1)?

X9 (n!)?

NP —1-1)n-1-1
(n —21)! (1—1) 2 2 2. 2,

A1+Ar+Az=l x1+x2+x3 =A] Xa+Xx5+x6=A2 X7+x8+X9=A3

] (using Remark 3.33)

I! (- 1)! (n - 21)! [—1\(l=1\(n—2I
'(l—Al)!(l—Az—1)1(n—21—A3)!(1_A2)(l_32)(x1—1)( X )( X3 )

'(l - xl)(l -1- xz)(n - 21— Xg)(l - x| — x4)(l —1-x- x5)
X4 X5 X6 X7 X3
.(n — 21— x5 — x(,) [((n —2D)1)?

X9 (n!)?

AYPn—-1- 1)!(n —1- 1) Z ! (-1 (n—20)!
(n—=20)! -1 JU=ADN T = Ay = D! (n - 2] - A3)!

] (using Remark 3.34)

A1+Ar+A3=

(n-2 (n—l—Al)n—l—Al—A2 ((n —2D)")>?
A -1 A, As (n!)?

(l!)zl“(n—l—l)!(n—l—l) (n-2)! (1—1)
A1+Ar+A3=

(n—2D! -1 l(n—l—l)! A -1

.(l - 1)(11 - 21) ((n = 2D")?

A2 A3 (I’l')2

UNPFn-1-1)! n-2) (n-2 n—l—l) ((n=2D")?
=21 m-1-p\i—1)\ 1-1 )

AP —-1-Dl(n-2)! (n-2)! n=I1-1D! ((n-2D)?
m=-2Dn-1-=-0! (A-Dn-1-D{I-Dln-=-2)" (@©?
l6
n?(n—-1)%’

E ((N111/n)(Na2 /1)) — E(N111/n)E(Nxa /1)

[° 1\’
ntn-1? (%) '
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variable indicating the number of observations falling in R, when we consider a sample of size

n from the product copula, then

P{Nii1 = x1, N1 = x5} = Z Z Z Z l!(l_lill)!(l_li‘z)!

A1+Ar+A3=l xp+x3=A1—X| X4+x6=A2—X5 X7+X3+X9=A3

(n—20)! ( [ )( l )(n — 21)(1 - xl)(l - xz)(n -2l - x3)
(n 21— Ag)' X1 /\X2 X3 X4 X5 X6
(l - X - x4)(l - X — x5)(n -2l — x5 — x6) ((n—D"?

X7 Xg X9 (n!)?

Theorem 3.37 If we consider the same hypothesis of Remark 3.36, then

B(l-1 1y
Cov(Ny11/n, Ninz/n) = RACR (_3) :

nn-172% \m

Proof: From Remark 3.36, we have

Al (n—2)!
E(Ni11Ni») = Z Z Z Z (1_ O (= A)! (n =21 - A3)!

A1+Ar+As=l x1+x2+X3=A1 Xa+Xx5+X6=A2 X7+X3+X9=A3

(-1 1 (=D (n=20\(1-x),
S =) (=) - =-DI\ x5 )\ x 2

_(=x-D)! (n—ZI—x3) I —x; — x4 (l—xz—x5 (n—21—x3—x6
x5!l — xp — x5)! Xg X7 Xg X9
((n — nh)?

Cm)?

1! (n = 21)!
Z Z Z Z (1_ N (= A)! (n—20-Ay)!

A|+A2+A'g 1X1+X2+X’§—Al X4+X5+X6= Az X7+X8+X9=. A;

L PO o G o iy (|
S

_ . I I (n—-2D! 12((n—l)!)2(n—2
B A=A -A)'(n-20-Ay)! @) \4, -1

A1+A2+A3=l
n—l—Al I’l—Al—A2
A, —1 A,
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_DNP((n =D ( I i (n —20)!
T @Y, A \U-AD - A (-2 - A3)!
(n—-2)! (n—1-Ap)! (n—Al—Az)!)

A - DIn—1-AD! (A — DI(n— A, —A)! Asl(n—D)!
_DNP((n =D B(n—2)! 5 ( (-1) d-1)
T @ @-bt, A A= DI AN (A - DI - Ay)!

(n - 21)! )

Asl(n — 20— A3)!

N (=D (n - 2)! 3 I-1\(1-1 (n—2l)
- mPm-nt A \A =1\ A= 1)\ As

(= DY(n - 2)! (n - 2)
B (n!)2(n —1)! -2

N ((n—=D)*(n - 2)! (n—-2)!
(n"H2(n-1)! =2 (n-=-D
Pl-1)
n2(n — 1)’

therefore
B-1 1\
Cov(Nyy1/n, Nipn/n) = ¥ ( ) .

nn—-12 \m

O

The following theorem describes the joint probability distribution of the boxes generated for the

uniform partition of size m, with m > 2, when m divides n, in the three dimensional case.

Theorem 3.38 Let m > 2, n € N, where m divides n, | = n/m and I,, = {1,---m}, let R,
with i, j,k € I,, be the uniform partition of size m of P’ = [0, 1]* and N;j the random variables
that indicates the number of observations falling in R;j, respectively, for all i, j,k € I,, when we
consider a sample of size n from the product copula; let n;j, with i, j,k € I,, be zero or positive

integer satisfying the following restrictions

Domp=1 (forallicl,), » muy=1 (oralljel,), » muy=1 (forallkel,),
Jik=1 ik=1 ij=1
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then

il 3m
P ﬂ {Nijk = nijk} @

3 .
i, kel (nD* T, jker,, 1ijic!

Proof: Similarly to the proof of the Theorem 3.17, we will use the counting methodology provided
on the Remark 3.3, using permutations for the counting of the third coordinate Z. The order count
is

Ru, Rz, -5 R+ Rumts Rimz, =+ 5 Runm

Roi1, Ro1z, -+ Rotms -+ Romts Roma, + - -

lemelZa o 'alema o 'aRmml’Rmm29' )

The number of possibilities for / observations in the region R, =1[0,1 /n]1x[0,1] %[0, 1] is given by

< l ! i [-n I 1 Zk 1 Mk o= e pl
Nl B [( )P"HIP"HI P"l:lzlllpﬂuz o Pnllmk 1 Pn“m
ni ni

Nim

[(l - 221:1 n“k)Pl p- ﬂlll(l — 21— ka=1 nllk)Pl na1 pl=m

ni21° ni21 ni22 ni22
ni21 n122

n ni2m n12m Niml
12m

m—1 m
(l - Zk:l Nk — Zk:l nllk)Plemll nIZkPI_nHm:| .. [( Z Zk 1 nljk)Pl
Nim1

Niml Nm2 nim2
Nim2

m—1 m
(l_ ke 1 Nimk — Zj=l 2kl ”ljk)Pl—ZZ”;ﬂnnmkPl PI 1"1;k]
b

Nlmm Nimm
Nimm

and the number of possibilities for / observations in the region R, = (I(s—1)/n,1s/n]x[0, 11x[0, 1],
forall s € 2,---,m, is given by

sl ns11 ns12 ns12
U ns12

N = [( l )Pl—ZL—l‘ Py "ilkPl—Zf:ll i niji (l - nSl])Pl_nSU_ZiS;I] it "ilkpl_z?:'l Ljmmip
S - n

Nsim ns21
Nsim N1

m—1 - m
(l - Zk:] ”Slk)Pl—ZZ':_ll nslk_z;:ll Z;"zl ”ilkPI_ZiLll Z?;l l’lijm:| [(l - 21(21 nslk)Pl— ;.:1] Z;"zl ik
Nsim

— s—1 vm
(R ETE Y Yl niZkPl_n“z_Zi:l 2y nij2

ns21 ns22 ns22

m
Pl Ng11— ZY Ly ”t/l(l_ ngy — Zk:l nslk)P
ns22
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m m—1 ) _ m
(l — Do Pslk = Dopey nszk) Pl_ka;II T S YT Pl—nxlm— o n,-_,-m] o [(1 -2 jk=1 ”sjk)

Ns2m Ns2m
Nom Nym1

Nsm1 Nsm1 Nsm2

- -1 —1 — —_ym . -
PI—Z;LI' ZranI Nimk PZ_ZT=1 nSjl_Z?:l Z;'nzl nij1 (l N1 Zj,k:] n‘Y]k)Pl_”sml_z;?:ll Z;n:l Nimk
Ngm2

Nsm2 Nsmm

m
Pl ZJ | nsp=Xis X i ( Zk 1 Msmj — Zj,k:l l’lsjk)Pl—kall Nonk— 2328 S0 ik

n smm

Nsmm

-1 -1
1—2';':1 nsjm_z;;l Z;n:l nijm]

we have that

m . N 3m
HNS ( : 1
) Hz kel i -
We divided between (n!)?, the total number of possibilities in which we can see n points in I? =
[0, 1]°, corresponding to the modified sample of the a sample of size n from the product copula,
therefore
(l!)Sm
(n!)Z ITi,j,keIm nljk

P ﬂ {Nijk = njjxy ¢ =

i, j.k€l

3.3 Summary of results and generalizations

We present a summary of the precedent results and the generalizations of the previous expressions

for the moments in dimension greater than three.

1. Dimension two. Let m > 2, n € N, where m divides n, and [ = n/m, let N;;, N1, and N,, be
the random variables that indicates the number of observations on the boxes R;; = [0, [/n]?,
Ry> = [0,1/n]x(l/n,21/n] and Ry, = (I/n,2l/n]?, respectively, when we consider the modified

sample of a sample of size n from the product copula.

(a) First Moment.

E(Nyi/n) = —

(b) Second Moment.

CPU-1? 1
E((Ny1/n)*) = B D) o
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(c) Variance.

(d) Covariance 1.

(e) Covariance II.

. Dimension three. Let m > 2, n € N, where m divides n, and [ = n/m, let Ny11, Ni12, Ni2»
and N,y be the random variables that indicates the number of observations on the boxes
Ryt = [0,1/n], Ry12 = [0,1/n] X[0,1/n] x (I/n,21/n], Riz = [0,1/n]x(I/n,21/n] x (I/n,21/n]

and Ry, = (I/n,21/n]?, respectively, when we consider the modified sample of a sample of

PA-17 1 1
Var(Ny/n) = n3(n_ D + P - %

Pd-1 1
Cov(N11/n,Niz/n) = ﬁ T

I 1
Cov(Ny1/n, Ny /n) = prTpT

size n from the product copula.

(a) First Moment.

(b) Second Moment.

(¢) Variance.

(d) Covariance I.

(e) Covariance II.

(f) Covariance III.

1
E(Nyj1/n) = e

B(-1)> 1

nt(n—-172% nm?

E((Ny11/n)%) =

Pdi-1)° 1 1
Var(Nyi/n) = =17 ST

l4(l— 1)2 1
Cov(Niy1/n, Nyi2/n) = n4(n——1)2 - %

Pl-1 1
Cov(Ny11/n, Nipa/n) = ﬁ ~ 5

1 1
COV(N]]]/n,szz/n) = m _ %
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3. General case. Let m > 2, n € N, where m divides n, [ = n/m,d > 2,1 = (1,---,1) (d

times) and 2 = (2,---,2) (d times), let N; be the random variable that indicates the number

of observations on the box R; = [0,/ n]?, when we consider the modified sample of a sample

of size n from the product copula.

(a) First Moment.

1
E(N/n) = v

(b) Second Moment.

(1 - 1) 1
2\
E((Ny/n)") = n*l(n - 1)1 nmd
(c) Variance.
di] _ 1\d
Vargvm = K=t LL

ndtl(n — 1d-1 " pmd — m2d
(d) Covariance 1.
P4 1

Cov(Ny/n,N,/n) = W T

where N, is the random variable that indicates the number of observations on the box R, =

(I/n,21/n]".
(e) Covariance II. Letl' =, -, ja) € 11,2}, l # 1,2, if we define

A~ A~

R]: IX"'XId

where

S oumif =1
Yl d/n2ln) if =2

~

forie{l,---,d}, then

lZd—k(l_ 1)k 1
COV(NL/I/L,NJ/H) = m — W

where N is the random variable that indicates the number of observations on the box R; and
k the number of coordinates equals to one in j.

(f) Joint distribution. Let d > 2, and let N,,..;, be the random variable that indicates the

number of observations in the box R;,..;,, = ((i; — 1)/m, i;/m]X---X{(iz — 1)/m, iz/m], where
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i1, --,ig € I, and the notation “{” indicates “(” if iy — 1 > Oand “[” if iy — 1 = 0, for all

k € I,, when we consider the modified sample of size n from the product copula IT¢. Then

(l!)dm
P {Niyoiy = iy} ¢ = .
{1 ﬂ o o } (n!)* Hil”"aidEIm nil---id!

i1, 5ia€ln

3.4 Case: m does not divide n

In the next pages we show that we can obtain similar results to what was done previously, now

without the hypothesis m divides n. We exemplify with the two dimensional case.

The following results establish the properties of random variables associated with the observations
in the boxes from a not uniform partition of order m, that is, a partition of the box I? = [0, 1]?
generated by dividing the two intervals I = [0, 1] in the Cartesian product into m parts, where m

does not divide n.

Definition 3.39 Letn >2,0< 1y <lhb <nand0 < j; < j, < n be integers with j, — j, = l,. We

define the following regions in the unit square 1> = [0, 1]

R;; [0, 1, /n] X (ji/n, j2/n]
R, ([0, 11 /n] X [0, ID\Ry;;

R = (li/n,1]1x][0,1].

Remark 3.40 In the following results we consider than in the unit square I* = [0, 1]? there exists

n points corresponding to the range statistics from a sample of size n from the product copula.

Lemma 3.41 Let k; be the number of points in R, ; and x| the number of points in R, we have that

L\ i [l = ki) oo .
5

k1+X1:ll
ll —kl _ X1 -1
X1 X1

I o (I = k0 poy I\ pis po-
e - 3 e

k
k] +X1 =ll 1

Proof: We can observe that

then



ll' lz‘ (l’l—lz)'
k' (L = k) (b = k) (n =1 — xp)!

k1+X1:ll

~ Z I I! (n—10L)!
B klx)! (L — k) (n =1 — x;)!

ki+x1=0

lz I’L—lz
- 3 )l)
lierl::h kiJ\ x

= ll!(ln) (Vandermonde’s identity)
1

_ 7
= P
O

Lemma 3.42 Let N,; be the random variable that indicates the number of observations falling in

R\ j, then the following equality holds

_ _ ll'(l’l—ll)' lz n—12
Pt = k) T(kl)(h ~ kl)

("+)

this probability corresponds to a hypergeometric distribution with parameters: n the population

size, [; the class size and [, the sample size.

Proof: We obtained the equality considering

[ I —k [ -1
2 (e 2 L)
k1+X1:ll kl xl k1+X1:ll kl .X]

from the proof of Lemma 3.42, this equality indicates the number of ways in which we can have
ki +x; points in the region R, ;UR; setting the value k;, this result is multiplied by (n—1;)! (number
of ways in which we can have n —[; points in the region R discarding /; possibilities corresponding

to the coordinates occupied by the observations in the region R;; U R;) and divided by n!, the total

number of ways that we can observe 7 points in I> = [0, 1]°. O

Theorem 3.43 Let N,; be the random variable that indicates the number of observations falling

in R, j when we consider a sample of size n from the product copula, then

L(L—-DLL-1) L
+ —_—
nn-1) n3

Il
E(Ny,/n) = 5, E((Ny;/n)®) =
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and

Var(Nyj/n) =

bb=Dh(i=1) Ll (LbLY
+ — .
nn-1) n3 n

Proof:

ikll!(n—ll)! L\(n -1
Y ki \l -k,

k1=0

~ ll!lz(n—ll)!i L—1\(n-b
B n! kl—l ll—kl

k1=1

ll!lz(l’l—ll)! de 12—1 n—12
= _— :k —1
n! Z up ll -1- u (I/ll : )

u;=0
. ll!lz(n—ll)! n—1
B n! L -1

L1h(n—1)! (n—1)!
n! (L= Din-=10)!

E(N,;)

and

We have,
E(N}) = Zkzll’(”_ll)'( )(z1 —kl)
Iy
LWn—=IDY L[ n-1
_ ky(ky — 1) + kp)2—
klzz;)( 1(ky )+ ki) n! (k1)(11—k1)
) Zkl(k1—1>M( )(Z:lz) Zklzu(n—zl).( )(zl—kl)
_ oyl (b =2) (=) bl
= Z PG 1)( 2)(z]—k1)+ n

k1=2

_ l]'(l’l _ lg I’l—lz ﬂ _ _
- D=t 1)2( “ )((11—2)—u1)+ = =ki-2)
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Ll -1D)! B n-—2 @
Y R (> 1)(11 _ 2) +
b -DhLL -1 N Ly
B nn—1) n’
Therefore
2 _ b -DLth -1 Lb
E(Nw) = T
and
Va”(Nij/n) = E((Nij/n)z)_(E(Nij/n))z

b= Dh(h =1 bl _ (@)2

mn-1) n3 n?
O

In a similar way to the case where m divides n, the calculus of the covariances is divided in two

cases. The following result corresponds to the first one.

Definition 3.44 Letn > 2,0 < [,5,l3 <nand 0 < j, < j, < j3 < n be integers with j, — j; =

and jiy — j, = l3. We define the following regions in the unit square I* = [0, 1]*

Ry, = [0,;/n] X (ji/n, j»/n]

Ry;, = [0,11/n] X (ja/n, j3/n]
Ry = ([0,1;/n] X [0, 1D\(Ry;, URy},)
R = (i/n, 1] x[0,1].

Lemma 3.45 Let k| be the number of points in R,;,, ko the number of points in R,;, and x, the

number of points in Ry, then

O A R e e s
ki+ky+x1=0 kl 4 kz kz xl " 1

Proof: We have that

L\ (b =K\ (L — k1t — ko bty 1! T
Z (k)P"'( ka )P’” N Z PR AN

ki+ky+x1=04 1 ki+ky+x1=0

lz l3 n— lz - l3
> h
k] +k2+x1:11 1 2 xl
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n
= [!
l(ll)

1
P
O

Remark 3.46 Let Ny, be the random variable that indicates the number of observations falling in

Ryj, and let N,j, be the random variable that indicates the number of observations falling in R,

l]!(l/l—ll)! lz 13 I’l—lg—l3
P{N,; =k,N,;, =k} = ———— .
Wi = ki, Vi, = ha) n! (kl)(kz)(ll — Ky —kz)

then

Lemma 3.47 Whit the same hypothesis of Remark 3.46, we have

Li(L — Dl L\ (L1
Cov(Njj, /n, Njj,[n) = ](]—)23 _ (ﬁ) (ﬁ)

n*(n-1) n? |\ n?
Proof:
I
ll!(l’l—ll)!(lz)(l3)(n—lz—l3)
E(N{; Ny;,)) = kiky————
(N1j i) kl;:() o e\l -k -k
_ 2 ll!(n—ll)!lzl3(lz— 1)(13 - 1)(n—12—13)
ki a0 n! kl -1 k2 -1 ll — k1 - kz
_ W=l 2 (12— 1)(13 - 1)(11—12—13)
n! ki a0 kl—l kg—l ll—kl—kz
_ lll(l’l—ll)!lzlg n—2
B n! ll -2
_ Ll = Dbl
nn—-1) ~°
and
L = Dbl
E((Nyj, /n)(Nyj,/n)) = e
Therefore

Cov(Nyj,/n, Nij,/n) E((Nyj, /n)(N1j,/n)) — E(Nyj, /[n)E(Ny,/n)

Lh =Dbi (L) (L3
n(n—1) n? J\ n2 )]
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We use the next results for the calculation of the covariances for the second case.

Definition 3.48 Letn > 2,0 < [}, b, 5,1, <m 0< j1 < j, < j3<nand0 =i <i, <iz <nbe
integers with iy — iy =1, i3 — i, = I3, jo — j1 = b and j;3 — j, = l4. We define the following regions

in the unit square 12 = [0, 112
Ry, = [0,1;/n] X (ji/n, j2/n]
Ry;, = [0,11/n] % (j2/n, j3/n]
Ryj, = (ir/n,is/nl X (ji/n, jo/n]
Ryj, = (i2/n,iz/n] X (ja/n, j3/n]
R, = ([0,5;/n] X [0, 1D\(R;}, UR,;,)
Ry = ((i2/n,i3/n] X [0, 1D\(Ryj, U Ryj,).

Lemma 3.49 Let k; be the number of points in R, ;,, x; the number of points in R, ,, X, the number
of points in Ry, y, the number of points in R,j,, k, the number of points in R,;, and y, the number

of points in R,, then

L —k\(li -k
ol e e
2

k1+x1+x2 11)1+k2+y2 l";

.(l3 )(l3 - k2 l3 - k2 - V1 Plz—klpij—xlpn—lz—lz;—xz — P;l P;l—ll
ky Vi » M 2 »2 1

Proof:

ll ll - kl ll - kl P12 Pl4 P Iy
kl X k" x17 x2
k1 +Xx1 +x2:ll Y1 +k2+y2:l3

) l3 )(l3 - kZ)(l3 - k2 )Plzl—]q Pf:;—)q P;Z;lz_l4_xz

IS
|

_ ll' 12 l4 Pn -1y

k]'X]‘Xz' kl xl 2

. lz klPl4 len bh—ly—x
(kz'y1 'yz' }1 ko y2

S W G

kl +Xx1 +x2:11 Y1 +k2+y2:l3

SRR

k1+x1+x2:11 y1+k2+y2 13 1

L\l -bL -1 -1
R IAE N (e
kl +X1 +x2:11 kl xl x2 13
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n\(n-1[
= [5!
1 3(ll)( l; )

n ph—I
Pll Pl3 :

O

Remark 3.50 Let N,,;, be the random variable indicating the number of observations falling in
R,,j, and N;

i2j2

(n—ll—l3)! lz 14 l’l—lz—l4
O 1 7

x1+x2=l1—ki y1+y2=l3-kz !

(lz - kl)(l4 — )Cl)(l’l — lg — 14 - Xz)
Vi ky Y2 .
Lemma 3.51 With the same hypothesis of Remark 3.50, we have

LIl Lib\ (Ll
Cov(N,j, /n, N j,/n) = ey (?) (?)

the random variable indicating the number of observations falling in R, ;,, then

i2j27

Proof:

n—1 —105)! I\fn—101 -1
i < B 5 s oy

ky+x1+x2=l) y1+ka+y2=I3 X1

(12 - kl)(l4 - X])(I’L - lz — l4 - X2)
Y1 ky 2

(1’1—11—13)' -1 l4 14—1 l’l—lz—l4
= > > B!
kl -1 l4 — X1 X1 X2

k1+x1+x2 11 y1+k2+)2 l3

12 -1 l’l—lz—l4—)€2
L —
( Y1 )(4 1)( kz—l )( » )

— 1 - by)! —1\(ly=1\(n—-1, -1
I ] O Gy
ki—1 X1 X2

ki+x1+x3= 11)1+k2+V2 I3
(12 - kl)(l4 - X1 — 1)(71 - lz — l4 — XQ)
Y1 ky =1 Y2
-1 —1h)! L—=1\(ly—1\(n—-101 -1 -1-1
_ (n=1-1) Z IR 4 n—1I—Ili\(n |
n! X k1 -1 X1 X2 l3 -1
1+Xx1+Xx2= 11

_ (n-L-DB)! . -2\(n—-1-1;
- n! lll*lzl“ll—l -1
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_ b=l (n—2)! (n—1-1)

- n! P L D=L =D (5= D=1, — I3)!

Lkl

T onam-1)
and

INNNA
E((N;,j, /n)(Ny,j,/n)) = 2r-1)

Finally

Cov(N,j,/n,Nyyj,/n) = E((Nj,j,/n)(Ny,j,/n) = E(N;, j, [m)E(N, j, /1)

L1, L\ (Ll
n3(n—1) n? J\n?)
O

Finally, the next theorem describes the joint probability distribution of the boxes generated by the

not uniform partition of size m, with m > 2, of I> = [0, 1]%.

Theorem 3.52 Let m > 2, n € N, where m not necessarily divides n, and I, = {1,-- -k}, k € N, we
consider {ty,t1, -+, t,} CL,withO) =ty <t <---<t, =n Wedefinel; =t;,—t,_y, foralli € I,

and the partition, not necessarily uniform, of size m of I> = [0, 1]? by

tio1 4 ti_1 t;
(e
no n n n
foralli, j € I,, the notation “(” indicates “(” if ty_1 > 0 and “[ " ifty_; =0, for all k € I,,.

Let Njj be the random variables that indicates the number of observations falling in R;;, respec-
tively, for all i, j € I,,, when we consider a sample of size n from the product copula; let n;;, with

i, j € I, be zero or a positive integer that satisfies the following restrictions

m

Z nj =1 (forallie ly), Zl’lij =1; (forall j€l,),

j=1 i=1

and

Zm:lk =n
k=1

then

"L?
P{ﬂ{Nij — nl.j}} = M

T ATl . Nk
i j€lm n! 1 jer, nij!
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Proof: We use the counting methodology provided on the Remark 3.3 for the regions R;;, i, j € I,

in the following order
Rll’ e ’le9R215 e 5R2m,le9 e 9Rmm'

The number of ways in which we can observe n;; points in each region R;j, i, j € I,,, 1s given by

W\ i (=) i (= 2 p,
ni) "™\ np " Nim e

( L )Pll_nll(lz - nZI)Plz—mz .. (l2 h 27:1] nzj)le_"lm

nz1 n ny
N1 no» Mo "

m—1
( In )Pll—z?’l‘ nj| (lm - nml)Plz—Z§"11 ny (lm - Zj:l nmj)le—Zi-"ll R
1 Ny,

Nm1 Nm2 Nimm
Ny, 2 N

[T, @Y

' b
[Ti jes, nij!

and we divided between n!, the total number of possibilities in which we can see n points in
I? = [0, 1], corresponding to the modified sample of the original sample of size n from the product

copula, therefore

Hi‘il(li!)z
P {Nij=n;j}p = —/—"—.
{ﬂ ’ ! } n!Hi,jelm n;;!

i,jeln
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4 Convergence results of the sample copula

In this last chapter, we study the weak convergence of the sample copula process vn(C" — C), in
this way we will have, for the sample copula, a weak convergence theorem similar to that for the
empirical copula. This chapter is divided into three parts: In the first part we give a review of the

results in the theory of empirical processes, and the results of the weak convergence to a Gaussian

process of the empirical process n(C, — C) given in [13] because, using this convergence, we
obtain the corresponding convergence of the sample copula process; in the second part, and in
order to be able to apply the results given in the first part, we show that the sample copula can
be represented as a linear functional evaluated in the empirical copula, under this representation
we have Hadamard’s differentiation and then we can apply the delta method. In the third part we
perform several simulations of the sample copula process at a given point to analyze the properties

of the convergence to the Gaussian process with a given variance-covariance structure.

4.1 Weak convergence of empirical process

The weak convergence of an empirical process is studied extensively in Billingsley’s book [2] in
the case of processes with parameter space I = [0, 1]. The extensions of these results, that is,

processes with parameter space equal to I¢ = [0, 1], d > 1, can be found in [38]. We begin this

section with some of the main definitions and results of [38].

Definition 4.1 We define the unit cube in R¢ by
E;=[0,1]x---x[0,1] (d times)
forte E  witht = (t,---,1ty), it is considered
[t = max{|t;| |i=1,---,d}.

We define
P:{p:(pl"”'9pd)|pi:() é pizl, i:l’...’d}

as the set of the 2 vertices of E,.

Definition 4.2 Lett € E,; and p € P, we define the quadrants Q(p, t) and O(p, 1) in E, with vertex

t as follows
Qp, 1) = I(p1,11) X -+ - X I(pa, ta)

where

| [0,8) si r=0
I(r’s)_{(s,l] sio r=1
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and

Op, 1) = [(p1, 1) X -+ X [(pa, ta)

where
[0,s) si r=0 y s<1
A ) [0,11 si r=01y s=1
I(r.9) = 0 si r=11y s=1
[s,1] si r=1 y s<1.

Example 4.3 To exemplify the Definition 4.2, we consider d = 3, then
E3 = [O, 1] X [0’ 1] X [Oa 1]’
lett € E5, with t = (0.5,0.8,0) and p € P, with p = (0,1, 1). We have

Q(p,1) = 1(0,0.5) x I(1,0.8) x I(1,0)

with
1(0,0.5) = [0,0.5)
1(1,0.8) = (0.8,1]
I(1,0) = (0,1]
therefore,
O(p,1) = [0,0.5) x (0.8, 1] x (0, 1].
On the other hand
O(p, 1) = 1(0,0.5) x I(1,0.8) x I(1,0)
with
1(0,0.5) = [0,0.5)
1(1,0.8) = [0.8,1]
I(1,0) = [0,1]
therefore,

O(p, 1) = [0,0.5) x [0.8, 1] x [0, 1].

We note that Q is the closure, on the left side, of the intervals that define Q.

Remark 4.4 The quadrants Q(p, t) and Q(p, 1), called quadrants of continuity, satisfy the follow-

ing properties
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~

. Q(p,1) C Q(p, 1) C @(p, 7) (the notation A indicates the closure of set A).

2. Q(p, 1) = 0 if and only if O(p, 1) = 0.

W

. 0. N QD =0ifp+p.

4. Upyep O(0,0) = E; (t € Ey),

n

. Foreach t € E; exists only a vertex p = p(t), denoted by o, such as t € O(o, 1).

S

int(Q(o, 1) £ 0 y O(o, 1) = O(0, 1).

Definition 4.5 Let f : E; — R be a function. If for t € E;, p € P, with Q(p, t) # 0, and for every
sequence {t,},>1 C Q(p, 1), with t, — t, the sequence {f(t,)},>1 converges, then the only limit is
denoted by f(t +0,) and is called p-limit or quadrant limit.

Definition 4.6 The D0, 11¢ space is define as the set of all functions f : E; —> R for which the
p-limit of f in t, with t € E,, exists for all p € P such that Q(p,t) # O and they are continuous in
the following sense: f(t) = f(t + 0,).

Definition 4.7 We denote by A the set of all functions
4:10,11 — [0, 1]

increasing, continuous and surjectives. For A=, ) €Ay = AX--- XA (d times) and

t=(t1, -, 13) € Eg we define A(t) = (A1(t1), - - -, (1))

Definition 4.8 For u € A we define

u-—-v

{ (#(u)—u(V))
ogl——

}

llull = sup {

u,vel0,1],u#v

and we define the metric dy in D[0, 1]¢ by

do(f,g) = inf {8 > 0 | there exists A€ ANgwith |4l < &, i € 1, and sup |f(t) — g(A())| < 8}

teEy

for f,g € D|O, 114

Remark 4.9 The metric space (D[0,11%, dy) is a Polish space.
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Since the empirical distributions functions are functions that have discontinuities, then these are
elements of the metric space (D[0, 119, dy). We have that the space C[0, 1]¢, that is the space of

the real continuous functions with domain I¢ = [0, 1]%, is a subset of D[0, 1]¢, and in this case,
from [2] and [38], we can establish the equivalence between the dy metric, given in Definition 4.8

and the supreme metric given by dy,(f,8) = Yicpo.ry 1S (@) — g(0)| for all f,g € C[0,1]°. Among
the advantages of using the sample copula rather than empirical copula, is that the sample copula

is a continuous function, that is, for d > 2, the d-sample copula is an element of the metric
spaces CI[O0, 11¢ and D[0, 1]¢, while the empirical copula in dimension d, being a function with

discontinuities of the first order, is only an element of the space D[0, 114

The next results given in [38], are the basis for the study of weak convergence of the empirical

copula process under the independence case.

Remark 4.10 We consider U; = (Ujy,---,Ujq), j € N, random vector independent and identically
distributed, where U j; is an uniform random variable in (0,1), j € Nandi € {1,---,d}. For each

J € N the distribution function F of U satisfies the Lipschitz’s condition
|F(t)— F(t") < K|t — 1|
with a constant K and t,t" € [0, 1]°.

Definition 4.11 Let n € N, we define the random variables Y, in D[0, 11¢ by

n d
1 = —| S [ [toaWn -],

1
nz =1 =1

Theorem 4.12 Let r > 1 and let t,,---,t. € E,; under the assumption of independence in the

components of the random vector U, j € N, we have

D A
(Yn(tl)’ ey Yn(tr)) — N(O’ YY(tl’ T, tr))
with O the zero vector in E; and
d
(o) = || ] A ) = it
i=1 vp=1,r

The next definitions and results provide the principles to formulate the convergence of the empirical

processes using Hadamard’s derivative and the delta method, these methodologies allows us to
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study the convergence of an empirical process using a Taylor’s first order approximation applied
to a linear functional and the convergence in probability of the residual of the approximation from
the Slustky’s theorem. The delta method in empirical process with one dimension of the parameter
space is shown in [47] and the generalization for empirical process with higher dimension of the

parameter space can be found in [49].

Definition 4.13 A ropological vector space V on a field K is a vector space for which addition and
scalar multiplication are continuous operations, that is, if {X,}>1, Yulns1, X,y € V and {c,},>1,¢ €

K with x, — x, y, — y and ¢, — c, then x, +y, — x + y and c,x, — cx.

Remark 4.14 In the following results we use some concepts from von Mises calculus like Hadamard
differentiability in topological vector spaces, and we consider the hypothesis that space D0, 1]¢
is a topological vector space. We study the convergence of the sample copula from the results of
convergence of the empirical copula. However, the convergence of the sample copula can be found

in the space C|0, 11¢, because it is a continuous function.

Definition 4.15 Let D and E be metrizable, topological vector spaces, a map ¢ : D, C D — E
is called Hadamard differentiable at 6 € D,, if there is a continuous linear map ¢, : D — E such

that
QD(Q + z‘nhn) - QD(H)
I

— @y(h)

if n — oo, for all converging sequences t, — 0 and h, — h such that 6 + t,h, € D,, for all
n € N. We say that ¢ is Hadamard differentiable tangentially to a set Dy C D by requiring that
every h, — h has h € D,.

Definition 4.16 Ler (M, p) be a given separable, pseudometric space and let (Q, A, P) be a pro-
bability space. A stochastic process {G(t,w) : t € M,w € Q} is called separable if there exists a
null set N € A and a countable subset G C M such that, for all o ¢ N and t € M, there exists a
sequence t, € G, with t, — t and G(t,, w) — G(t, w).

Theorem 4.17 Let (M, p) be a given separable, pseudometric space and let (2, A, P) be a proba-
bility space. If there is a set A € A with probability zero such that for w ¢ A, G(t, w) is continuous
in t, then {G(t,w) : t € M, w € Q} is separable, and G C M can be taken as any countable dense
subset of M.

Theorem 4.18 (Delta Method) Let D and E be metrizable, topological vector spaces, let ¢ : D, C
D — E be Hadamard differentiable at 0 tangentially to Dy. Let X, : Q, — D, be maps with

D . .
r.(X, — 6,) — X for some sequence of constants r, — oo, where X is separable and takes its

values in Dy, and 6, — 6, then r,(¢(X,) — ¢(6,)) 3) p(X).
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The following theorem is given in [13], in this result the convergence of the empirical process
associated to the empirical copula to a Gaussian process is studied. This theorem is the main result
to obtain in the next section the convergence of the process associated to the sample copula, also
from this result we can extend the Theorem 4.12 to get weak convergence without the hypothesis

of independence, with some restrictions.

Theorem 4.19 Let H be a bivariate distribution function with continuous marginal distribution
Sfunctions and associated copula function C with continuous partial derivatives. Then the empirical

copula process
Ly = \/ﬁ(cn -0)

with C,, the empirical copula, converge weakly to the centered Gaussian process G in [°([0, 1]?),

the set of all uniformly bounded functions from I* = [0,1]* to R. The limiting Gaussian process

can be written as
Ge(u,v) = Bc(u,v) — 01C(u, v)Bc(u, 1) — 9:C(u, v)Be(1, v),
where B is the Brownian sheet on 1> = [0, 11> with covariance function

EBcu,v) -Bcw',v)=Clunu',v AV)—Clu,v)Cu',V).

4.2 Weak convergence of sample copula process

In this section the sample copula is represented as a linear functional evaluated in the empirical
copula, in order to apply the results described in the previous section to get the weak convergence
of the process associated with the sample copula. In this way, the weak convergence theorem for

the empirical copula can be extended for the sample copula.

We begin this section with a simple result which allows us the study of subcopulas with restricted
domains, because later we will consider the empirical copula with a restricted domain in the des-

cription of the sample copula.

Lemma 4.20 LetC’ : S1xS, — [0, 1] be a subcopula, let S, c S, and S, c S, suchas0,1 € S,
and 0,1 € 8, then C = C'ls s,, with C(u,v) = C(u,v) for all (u,v) € §1 xS, C S; XS, isa
subcopula.

Proof: We verified that C satisfies the subcopulas properties,

1. Dom(C)=8,%x8,c[0,1?and 0,1 8,NnS,.
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2. Letue S, andv € S,, then

C0,v)=C’(0,v) =0
C(u,0) = C’'(u,0) = 0.

Letay,a, € S, and by, b, € S,, with a; < a, and by < by, then

Vola(lay, ax] X [by,b2]) = é(az, by) - é(al’ by) - é(az, by) + é(al, by)
C'(az, by) — C'(ay,by) — C'(az, by) + C'(ay, by)
Vole([ay, ax] X [by, bs])

0.

\%

3. Letue S, andv € S,, then

Cu,H)=C'w,1)=u
C,v)=C'(1,v) = .

Therefore C is a subcopula.

Remark 4.21 In the following results we use the Nelsen’s notation [37]: For (a,b) € I*> = [0, 1]?
and a subcopula C' with domain S| X S,, let a; and a, be, respectively, the greatest and least
elements of S that satisfy ay < a < a,; and let by and b, be, respectively, the greatest and least
elements of S, that satisfy by < b < b,. Ifa € Sy, thena, = a = a», and if b € S, then by = b = b.
Let

Ai(a,b) = A, = { (@- “1)/1(“2 —a) Z “ s
and

mi(a,b) = py = { & - bl)/l(bz = by) Z Z} :lz:;
If we define

C(a,b) = (1 = A)(1 = u1)C’(ar, by) + (1 = A C’'(ar, by) + 41 (1 = uy)C'(az, by) + 4 C'(az, by)
then C is a copula that extends the subcopula C'.

Also, we considered C,, and C), (m > 2), respectively, the empirical copula and the sample copula,

build from the modified sample of a sample of size n from a copula C.
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In the following results the sample copula is represented like a linear functional evaluated in the
empirical copula and we proof that this functional is Hadamard differentiable. These properties
are required in order to use the delta method for the study of weak convergence of the process

associated to the sample copula.

Lemma 4.22 Let m > 2 and ¢,, : D[0, 11> — [°([0, 1]?), with

m m 1
en(H) = ZZ[ SV 1)(1—u1)H( - )
J=

i—1

1 .
+ (I -A)uH (7 i)-l'/ll(l—lll)H(— ]7)+/11,U1H(é é)l

then
(pm(cn) =C

Proof: We consider (a,b) € I> = [0, 1]* with (a,b) € (i — 1)/m,i/m] X ((j — 1)/m, j/m] and let A
be the Lebesgue’s measure in B([0, 1]1?). We define

SN

A [i—=1 j—1 A [i—1
Cla,b) = (I-a)1 _,ul)Cn( ,]—)+(1—/11)/11Cn( :
m m m

j—1 A
+1(1 = )G, (— ]—)Mmlc (+.2)
m m m m

where 4, = Ai(a,b) = (a—(i—-1)/m)[(i/m—(i=1)/m), p1 = p1(a,b) = (b-(j—1)/m)/(j/m—(j—1)/m)
and C, is the subcopula obtained from the empirical copula C, restricted to a domain consisting
of points of the form (i/m, j/m), with i, j € {1,---,m}, from the Lemma 4.20, C is a subcopula
and therefore C is a copula. We will denote C, by C, and we calculate with this definition the
C-volumen of the rectangle ((i — 1)/m,a] X ((j — 1)/m, b],

vl o] - el - 1)

where

~.
p—

a
—_—
R

~.
S|
p—
~———
Il

-1 P i—
)mcn(i,—J )
m m

i1 i
)+,ulcn( ,l),
m m

1
:|

(1 -a)C, (

—_—

~

“K‘.
|

a
—_
S|

[
S
~——
I

a —m)cn(’_
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and
-1 7—-1 -1 7—1
C(Z_,J_):Cn(l_,f_),
m m m m

we have that
Cla,b)-C(a, Z)-C(Eb)+ C(EL L) =
(1= (1 =) = (1= ) = (1= ) + 11C, (2, £)
+ (1= A =] Co (B L) + [ =) = 4] Co (2.2 + 4 €, (£, £)
= [Ca (4 2) - Cu (5L, 2) - G (B, 52 + 6 (51, 51)

Therefore

Now, we calculate the C-volume of the box ((i — 1)/m,i/m] X ((j — 1)/m, b],

Volc((l; %] (J’;l b]) C(ni;,b)—c(i;ql,b)—c(’%,%)+c(l;ll,%)

where
L_p i p— =L
C( ,b) = ( n — )Cn(i,‘] )+[ ’f ]Cn(i’i)’
m L=t m m L=t m m
- L_p -1 j—1) (b-L ~1
5t - (el el
m L _ 1 m m L= m
then
-1 -1 -1 -1 -1 j-1
| B | I B e e e e
m m m m m m  m




Finally, we calculate the C-volume of the box (i — 1)/m,a] X ((j — 1)/m, j/m],

vOlC((%,a] x(%é]) - C(a,n%)—C(i;ll,n%)—C(a, %)+C(.

where
c(ad) - ( )c( ,i) ( _ml)cn(i,i),
m i_% m m nﬁ-% m m
-1 L—q -1 j—1\ (a-% -1
o) - (2ol 5 =)o )
R R
then

X

—_———

~

oy

p—

|~

S —

N —

Il |
— a
|~ —_
S [

L

- [~
||_ ~——
~——— |
I a
—_ —_—
S — -~
SEIE
—_——— —
T .
3|0 5: ,
S|~ a
N — —
uQ

~

S| |

[E—
N —

+

a
—_—




|
<<
Q
S~
Q
I3
—_
—_
S|
[
Q

Because any box can be written as the union of boxes considered in the previous cases we can

conclude that
en(Cy) = C,,.

Lemma 4.23 Let m > 2 and ¢,, : D[0, 11> — [°([0, 1]?), with

I j-1
en(H) = ZZ[ ERVERE 1)(1—u1>H(7,’7)

j=1 i=1

i—-1 7 i — 1
+ (A-A)yH (— i)m(l—uoH(— U )mlu]H(
m m m

3 |\‘.

)
m

Proof: Let {h,},»; C DI[0,1]* H € D[0,1]% and {t,},>1 C R such as h, — h, with h € D[0,1]?,
and t, — 0. It holds

. (pm(H + tnhn) - (Pm(H) . o
A ' =, [ZZ[’(”,;] o e

—1 7—-1
+tnhn(’—,’ )) (- l)ul(H
n m
J

/\
A
I



S

m m 1 j_l
i ZZ[’(M,;] (f,,,zn](l—ﬂo(l—m)h( 7)
! ~1
+(1 - 1)ﬂ1h(— —)+/11(1—,u1)h(i J )
m m

m
m m

om(h).

Let ¢ € R and hy, hy € D[0, 1], we have

em(ch) + hy)

and ¢, is linear.

m m L
ZZ[ . ,1,(1—11)(1-ﬂ1)(ch1+h2)(7 17)

j=1 i=1

i — 1 i—1
+(1 = Ay (chy + h2>(’ J ) + 4y(1 = y)(chy + h2>( ’7)

mm

;o
+A1p1(chy + hz)(—, i)]
m’ m

ZZ[ (i 1= A0 =g |1

j=1 i=1

i—1 i j—1 i j
+(1—/11)u1h1( ")Ml(l ~ (— ’—) gy (=, 2]
m m m m m
noz i—1 ]—1
+ZZ i1 i /1/](1— A = phy | —, ——
]: l:1 m’>m n m

SRR
3 |~

i—1 i — 1
+(1 —mulhz( ])ml(l —,Ul)hz(— I )+m1h2(
m m m

com(hy) + @m(ho)
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Let {h,},>1 € DIO, 1]*> with h, — h € DI[0, 1], it holds

i-1 j-1
,,%ZZ[ S A en,:,“—ﬂl)(l—ﬂl)h( n ]7)

j=1 i=1

lim ¢,,(h,)

§|~
3 |~

-1 i— 1 j
+(1 = Ak (’7 )ml(l — Dy (— ’7) + iy (

- Zm]i[ B

J= =

SI&

) +A4,(1 —#1)h(i 7) +/11ﬂ1h(n%, é)]

3 |~

i—1
+(1 = A)wh (—
m
= ¢m(h)
and ¢, is continuous.

Therefore we can define the Hadamard derivative in H of ¢, as ¢,,(h) = ,(h), for all h € D[0, 1]*
O

Remark 4.24 The functional defined in Lemma 4.22 applied to C is exactly the checkerboard
copula of order m defined in [33], and the linear B-spline copula defined in [43], in the case m
equals to n. In Chapter 2 we can see that we obtain a better approximation to the real copula if we

consider m smaller than n.

Remark 4.25 Because in the proof of Lemma 4.23 the relations holds for every sequence {hy,},>1 C
DI0, 11? and h € D|0, 11? such that h, — h, particularly we can take h € C[0, 11*> ¢ D[0, 1]?, that
is, @ is Hadamard differentiable in every H € D|0, 11? tangentially at D, = C[0, 1]°.

The following theorem is the main result of this chapter, since it provides the weak convergence
of the process associated with the sample copula. It is important to notes that the proof of the
following theorem uses the convergence of the process associated to the empirical copula given in
the Theorem 4.19.

Theorem 4.26 Let m > 2 be fixed, let C be a copula with continuous partial derivatives and let
Ch, be the sample copula build from the modified sample of a sample of size n from C. Let {r,},>1

be a increasing sequence such as r, — oo and m divides r,, for alln € N, then

VA (C = 9u(C)) = 9e(Gie) = pu(Gi)

118



where ¢, is defined in the Lemma 4.23, and ¢.G¢) = ¢,(Gc¢) = G is defined by

ii[ (1 - 1><1—u]>Gc(%,%)

j=1 i=1
—1
)+/11(1—/11)Gc(— J—)
m

EI&

i
+(1 - /11),‘11@0(

i
w1 2)

Proof: Based on the Theorem 4.19 we have that

Vi (C, = C) = G,

if we define r,, = mn, for all n € N, then the above relation implies that

VA (C,, - C) = G,

when n — oo, the Lemma 4.23 and Remark 4.25 imply that ¢,, is Hadamard differentiable at
every H € D|0, 17? tangentially at C[O, 11?; we can consider, by Theorem 4.17, that the processes
G¢ € C[0,1]% is a separable stochastic process, because it is continuous almost surely respect to
a probability measure P. Applying the Delta Method (Theorem 4.18) with D, = D = DI[0, 1]%,
=1°([0,1]%), 6, = C,foralln € N, § = C, and D, = C[0, 1]*, we have that
Vi ((C1,) = en(C€)) = #/:(Ce) = ¢(Gc)

and, by the Lemma 4.22, it is satisfied that ¢,,(C,,) = C,;, therefore

Vi (€2 = 0,(C)) = @u(Ge) = (G,

In the following remark we make observations about the parameters in the Gaussian process.

Remark 4.27 Let (a,b) € I? = [0, 11?> with (a,b) € (i — 1,i/m] X (j — 1, j/m], because the linear
combination of the components of a Gaussian vector have normal distribution and the process G¢
is centered [29, Definition 16.1], we have that ¢ .(Gc)(a,b) = ¢,,(G¢)(a, b) = G(a, b) is normally
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distributed with mean equal to zero and variance given by (using the values A,(a, b) and u,(a, b),

)

given on the Remark 4.21, and the results from Theorem 4.19)

-1 -1 — 1
L ))+<1 —wu%Var(Gc(’ :
m m

S |~

Var(G(a,b)) = (1-21))*1 - ,ul)ZVar(GC( —

i
+/1%(1 - ,u])2Var (GC (L, ]—)) + /l%u%Var (GC(

m m

+2(1 = A1) (1 —m)E(Gc(i_ L= 1) : Gc(i_ L i))

+20,(1 = 1)1 = )*E (Gc (

i .
GC(’ ,J_).GC(L, i)
m m m m

o .
+22,(1 = A (1 —,Ul)E(GC(l é 'Gc(é,]T))

240 = Al — u)E

L o
24,1 - mﬂ%E(Gc(’ ,i) : Gc(i, i)
m m m

i j-1 i
221 —,ul)E(GC(—,]— -Gc(—,i))
m m m m

with

E [Gc(u,v) - Ge(u', V)] E[Bc(u,v) — 0,C(u,v)Bc(u, 1) — 9,C(u, v)Bc(1,v))
B, V) —0,CW ,V)Bc(', 1) — 0,Cu',v')Be(1,V))]
= E[Bc(u,v)Bc(',v)] = E [Be(u, v)0i C(u',vV)Be(u', 1)]
—E [Bc(u, v)O.C(W' ,v)Bc(1,V)] = E [0,C(u, v)Be(u, D)Be(u',v")]
+E[0:C(u,v)Bc(u, 1)0,C(u’,v')Be(u', 1)]
+E [0,C(u, v)Bc(u, 1)0,C(u',v)Be(1,V)]
—E[0,C(u,v)Bc(1,v)Be(u', V)]
+E [0,C(u, v)Bc(1,v)0,C(',v')Be(, 1)]
+E [0,C(u, v)Bc(1,v)0,C(u',v)Bc(1,V)]
= Clunu,vAv)—=Cu,v)C' V)
—0,CW' V) [CuAu',v)—u'C(u,v)]
—0,C(u' V) [C(u,v AV') =V C(u,v)]
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—01C(u,v) [C(u At/ , V') —uC(u',v")]
+01C(u, )0, C(W' V) [u A" — uu']
+0,C(u, v)O,C(W' V') [C(u, V') — u']
—0,C(u,v) [C(',v AV) —vCW', V)]
+0,C(u,v)0,C(W' , V) [C(W',v) — vu']
0LC(u, v),C(u' V) [v AV — W]
and
Var(Ge(u,v)) = C(u,v) — C(u,v)* — 8,C(u,v) [C(u, v) — C(u, v)u]
-0,C(u,v) [C(u,v) = C(u,v)v] = 0,C(u,v) [C(u,v) = C(u, v)u]
+0,C(u,v)0,C(u,v) (u - uz) + 0,C(u,v)0,C(u,v) [C(u,v) — uv]
—0,C(u,v) [C(u,v) = vC(u, v)] + 0,C(u,v)0,C(u, v) [C(u,v) — uv]
+0,C(u, v)0,C(u, v) (v - vz) .

Remark 4.28 In the case where the copula C is equal to the product copula, for all (a,b) € 1> =
[0, 112, using Nelsen’s notation given in the Remark 4.21 and taking a; = (i — 1)/m,a, = i/m, b, =

(j— 1)/mand b, = j/m, we have

C(a,b) = (1-4)1 —upll(a,by) + (1 = A)uill(ay, by) + (1 — py)(az, by) + i 1(az, by)
a —d bz—b a) —da b—bl
b b
(02—01)(192—[71)(11 1+(02—al)(b2—b1)a1 ’
a—da; bz—b a—da; b—b1
b b
+(a2—a1)(b2—b1)a2 ]+(a2—a1)(b2—b1)a2 ’
a —d a bz—b b—bl b+ a—a; a bz—b b—bl b
ay) —d; ! bz—bl bz—bl 2 ay —d; 2 bz—bl bz—bl 2
= (az_a)a]b-i-(a_al)azb
a —a a —a
ay — a

= ab

a) — dy
= ab
= Il(a, b).

Therefore the conclusion of Theorem 4.26, can we written as

VA (C =TT =5 ¢,(Ge) = pu(Go).
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In this case, the covariance and variance of Z = G¢ processes is given by
Cov(Z(s,1),Z(u,v)) = (s Au—su)t Av—1tv)

and
Var(Z(s, 1)) = (s — s°)(t — 1°).

Let (a,b) € 1> = [0, 11> with (a,b) € (i — 1,i/m] X (j — 1, j/m], for the calculus of variance of the

©m(Z)(a, b), normally distributed with mean equal to zero, we have the following relations

1 7-1
Var((l— 1)(1—u1)Z(T ’—))

m

- amwa-w (S (S5 )
)

Vi

v, = Var((l - /ll)ylZ(l -

= (- 1)“(’ (

Vs = Var(/ll(l—,ul)Z(

Il
;.a
—_ N
~
p—
|
=
—
\-/
/—\
§I~
—_
§I~
\_/
\_/
~.
§‘
[S—
|
—_
=[]
[E—
NS}
N —————

v, = Var(ﬁlmz(i i))
n m

- -2

1 i—-1 7
Cp = COV((I—/h)(l—ul)Z( —),u— oulZ( i))
m m m
- —1\V)(j-1 -1
- (1—ﬂl>2<1—u1)m( (’ ](’ _JU )),
m m
1 j-1 i j-
Cs = COV((l— 1)(1—#1)2(— — /11(1—/11)2(—,—))
m m

Jaa-srfy
2 S ()
2

Ciu = COV((l— 1)(1—u1)Z(



i — 1 -1 1 i(i—1
:al(l—mu](l—ul)(’m i ))(m J( ))’

m2 m?2

1 ] 1
Cy = Cov(u—m)uIZ(— i) al(l—m)Z(— —))
m m m m

i — 1 -1 1 i(i—1
:m(l—m)ul(l—m)(’m Al >)(m j( )),

m2 m?2

i-1 j i
C24 = COV((I—/ll)ﬂlz(—,i),/lllllz(_’i))
m m m m

) o L(i=1 iG=D\(J (Y
= A(1 /11)#1( m m2 )(m (m))’

P i1 .
Cyy = Cov(/ll(l—u])Z(—,—),/ll,Ulz( ’i))
m m m

. ) . o
2,01 ioij-1 JjGg-=1
= B m)(m (m))( — & )

and
VClI"(QOm(Z)(Cl, b)) = V] + V2 + V3 + V4 + 2(C]2 + C13 + C14 + C23 + C24 + C34) .

From [40], and using similar calculations as above, we can extend the convergence results of the

Theorem 4.26 to higher dimensions d > 2. This is given in the following theorem:

Theorem 4.29 Let d > 2, m > 2, let C be a d-copula with continuous partial derivatives and let

C" be the sample copula build from the modified sample of a sample of size n from C. Let {r,},>1

m

be a increasing sequence such as r, — oo and m divides r,, for alln € N, then

D ’
Vi (Cri = om(C)) — ¢(Ge) = ¢u(Ge)
where
d
GC = Bc(l/l],"',ud)_Zaic(ul,"‘,ud)Bc(l, la”'auia""l)
and B¢ is a Gaussian process with
EBc(ui, -, uq) - Be(uy, - uy) = Cluy A, -+ ug ANuly) — Cluy, -+, ug)C(uy, - - -, uy).

In the following section we given the results of perform several simulations of the associated

process of the sample copula given in Theorem 4.26 to exemplify its convergence.
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4.3 Simulation study: Gaussian process

In the next tables we present the results when we perform 1, 000 iterations from samples of size
50,000 for the process associated to some family of copulas with continuous partial derivatives.
The tables show the results when we repeat these simulations 100 times. The column 6 indicates
the parameter value, the column p indicates the value of the Spearman’s Rho associated to the
parameter of the copula, the column Point gives the point of evaluation of the process, the column
M. means is the mean of the means of the 100 simulations of the process (since the processes is a
centered one, this value most be close to zero), M. var denotes the mean of the variances obtained
form the 100 repetitions, Real var. denotes the real variance calculated using Remark 4.27, the
firsts three columns 0.01, 0.05 and 0.10 indicates the number of rejections of normality in the
100 simulations at @—level using the Anderson-Darling’s test, and the second three columns 0.01,
0.05 and 0.10 indicates the number of rejections of normality in the 100 simulations at a—level
using the Shapiro-Wilk’s test, the column UAD indicates the p-value of a Kolmogorov-Smirnov’s
uniformity test applied to the p-values of Anderson-Darling’s tests, and the column USW indicates
the p-value of a Kolmogorov-Smirnov’s uniformity test applied to the p-values of Shapiro-Wilk’s

tests. In all cases we consider the parameter m of the sample copula equals to 4.

’ 0 ‘ P ‘ Point ‘ M. means ‘ M. var. ‘ Real var. ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ UAD ‘ USW ‘
20 | 09578 | (0.8,0.9) | -0.00010 | 0.001643 | 0.001638 1 4 11 1 5 14 0.00032 | 0.02205
20 | 09578 | (0.1,0.2) | -0.00023 0.00163 0.00163 2 10 16 3 8 15 0.00036 | 0.01440
20 | 09578 | (0.4,0.6) | -0.00004 0.00220 0.00220 3 11 15 0 5 11 0.34306 | 0.38131
-20 | -0.9578 | (0.1,0.9) 0.00010 0.00040 0.00040 2 9 16 0 6 14 0.00299 | 0.00692
-20 | -0.9578 | (0.8,0.2) 0.00034 0.00654 0.00655 2 7 12 3 7 10 0.01939 | 0.12012
-20 | -0.9578 | (0.4,0.6) 0.00046 0.00252 0.00252 0 4 11 3 8 12 0.74344 | 0.98920
5 0.6434 | (0.1,0.2) | -0.00027 0.00378 0.00377 0 4 11 0 5 8 0.06614 | 0.75172
5 0.6434 | (0.8,0.9) | -0.00001 0.00377 0.00377 1 8 14 2 9 13 0.13685 | 0.27477
5 0.6434 | (0.4,0.6) | -0.00047 0.01665 0.01672 0 2 9 0 4 7 0.01777 | 0.57689
-5 | -0.6434 | (0.1,0.9) | -0.00002 0.00093 0.00094 2 6 17 1 7 14 0.00298 | 0.03665
-5 | -0.6434 | (0.8,0.2) 0.00005 0.01518 0.01508 1 5 10 2 9 16 0.04696 | 0.15866
-5 | -0.6434 | (0.4,0.6) 0.00040 0.01919 0.01916 1 2 4 1 3 5 0.017208 | 0.02306

Table 4.1 Simulations results (Frank Copula).
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’ [4 ‘ P Point ‘ M. means ‘ M. var. ‘ Real var. ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ UAD ‘ USw ‘
1.1 | 0.1341 (0.8,0.9) 0.00009 | 0.00400 | 0.00400 1 3 7 1 3 5 0.13436 | 0.59930
1.1 | 0.1341 (0.1,0.2) -0.00011 | 0.00383 | 0.00384 2 5 12 1 3 6 0.07756 | 0.24805
1.1 | 0.1341 (0.4,0.6) -0.00139 0.03150 | 0.03164 2 5 10 0 7 11 0.44923 | 0.48465
3 | 0.8481 | (0.8,0.81) -0.00027 | 0.00889 | 0.00891 1 7 20 3 10 19 | 0.00000 | 0.00000
3 0.8481 | (0.1,0.15) -0.00016 | 0.00171 | 0.00171 1 4 13 0 5 13 0.04158 | 0.44648
3 0.8481 | (0.45,0.5) 0.00029 | 0.02529 | 0.02537 3 5 11 2 6 8 0.99269 | 0.41925
8 09773 | (0.8,0.81) -0.00035 | 0.00346 | 0.00345 2 9 17 1 8 18 0.00000 | 0.01543
8 0.9773 | (0.1,0.13) -0.00005 | 0.00058 | 0.00058 2 8 18 3 8 16 0.00036 | 0.02517
8 0.9773 | (0.45,0.48) | -0.00078 | 0.00787 | 0.00785 2 6 10 2 4 6 0.67848 | 0.46945
20 | 0.9963 | (0.8,0.81) -0.00056 | 0.00138 | 0.00138 6 23 37 4 15 21 0.00000 | 0.00000
20 | 0.9963 | (0.1,0.11) -0.00018 | 0.00017 | 0.00017 0 14 31 4 11 19 | 0.00000 | 0.00000
20 | 0.9963 (0.4,0.6) -0.00020 | 0.00076 | 0.00076 2 10 26 2 10 20 | 0.00000 | 0.00000

Table 4.2 Simulations results (Gumbel Copula).

’ 0 ‘ P ‘ Point ‘ M. means ‘ M. var. ‘ Real var. ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ UAD USW
-0.9 | -0.8978 | (0.8,0.3) 0.00005 0.01399 | 0.01408 2 7 8 2 4 11 0.23918 | 0.39465
-0.9 | -0.8978 | (0.8,0.9) 0.00007 | 0.00078 | 0.00077 0 6 20 3 10 18 | 0.00000 | 0.00000
-0.5 | -0.9878 | (0.5,0.49) | -0.00014 | 0.05621 | 0.05624 1 3 8 2 3 7 0.74006 | 0.51611
-0.1 | -0.0787 | (0.8,0.9) -0.00022 | 0.00347 | 0.00346 1 3 5 1 4 6 0.00465 | 0.06234
-0.1 | -0.0787 | (0.8,0.3) -0.00052 | 0.02112 | 0.02131 0 2 6 0 3 4 0.78381 | 0.23228
-0.1 | -0.0787 | (0.2,0.9) -0.00012 | 0.00380 | 0.00378 1 6 11 2 6 11 0.00456 | 0.06511

5 0.8848 | (0.1,0.12) | -0.00019 | 0.00058 | 0.00058 0 9 12 2 10 19 | 0.01646 | 0.16689
5 0.8848 (0.8,0.78) -0.00126 0.1646 0.01647 0 4 11 0 5 13 0.08772 | 0.10310
5 0.8848 | (0.4,0.38) | -0.00068 | 0.00447 | 0.00446 1 4 8 1 5 10 | 0.50330 | 0.8815
20 0.9869 | (0.1,0.11) | -0.00014 | 0.00013 | 0.00013 2 15 30 1 7 20 | 0.00000 | 0.00000
20 0.9869 | (0.8,0.79) | -0.00052 | 0.00574 | 0.00573 4 15 16 3 11 18 0.00142 | 0.05822
20 0.9869 | (0.4,0.39) | -0.00046 | 0.00109 | 0.00109 0 0 8 0 2 6 0.06122 | 0.67889

Table 4.3 Simulations results (Clayton Copula).
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’ [4 ‘ P ‘ Point ‘ M. means ‘ M. var. ‘ Real var. ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ UAD ‘ USW ‘
1.1 | 0.0820 (0.8,0.9) -0.00016 0.00396 | 0.00393 2 4 7 2 6 9 0.29601 | 0.37343
1.1 | 0.0820 | (0.1,0.2) -0.00001 | 0.00371 | 0.00371 3 6 9 0 7 12 | 0.32767 | 0.58562
1.1 | 0.0820 | (0.4,0.6) 0.00008 | 0.03230 | 0.03214 3 8 13 1 7 13 0.63409 | 0.85489
3 0.6993 | (0.8,0.79) | -0.00035 | 0.01340 | 0.01332 0 7 11 1 6 8 0.18609 | 0.12258
3 0.6993 | (0.1,0.12) | 0.00014 | 0.00148 | 0.00147 2 5 12 3 6 11 0.50472 | 0.16758
3 0.6993 | (0.4,0.41) | -0.00065 | 0.02382 | 0.02363 2 5 10 1 4 15 0.56857 | 0.33761
8 | 0.9310 | (0.8,0.79) | -0.00047 | 0.00507 | 0.00506 2 10 19 1 11 20 | 0.00000 | 0.00000
8 0.9310 | (0.1,0.12) 0.00006 0.00104 | 0.00104 1 4 9 1 1 7 0.01724 | 0.42950
8 0.9310 | (0.4,0.41) | -0.00058 | 0.00566 | 0.00568 0 3 9 1 5 8 0.06168 | 0.12568
20 | 0.9860 | (0.7,0.7) -0.00064 | 0.00182 | 0.00181 2 4 9 1 7 12 | 0.71708 | 0.19691
20 | 09860 | (0.1,0.1) -0.00012 | 0.00033 | 0.00033 4 10 17 4 8 12 | 0.00094 | 0.09628
20 | 0.9860 | (0.4,0.4) -0.00040 | 0.00148 | 0.00148 2 4 9 1 7 12 | 0.96922 | 0.27021

Table 4.4 Simulations results (Joe Copula).

’ 0 P ‘ Point ‘ M. means ‘ M. var. ‘ Real var. ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ UAD ‘ USw
0.1 | -0.6536 | (0.8,0.2) 0.00004 | 0.01436 | 0.01445 2 2 8 2 7 11 0.14030 | 0.19872
0.1 | -0.6536 | (0.1,0.9) 0.00015 | 0.00089 | 0.00090 3 7 9 2 5 7 0.48364 | 0.61248
0.1 | -0.6536 | (0.4,041) | 0.00016 | 0.01803 | 0.01811 1 7 13 3 8 17 0.32480 | 0.0568
1.5 | 0.1344 (0.8,0.9) 0.00007 | 0.00392 | 0.00390 1 4 12 2 7 13 0.22429 | 0.58390
1.5 | 0.1344 (0.1,0.2) 0.00006 | 0.00391 | 0.00390 1 6 11 1 3 13 0.00762 | 0.58638
1.5 | 0.1344 (0.4,0.6) 0.00036 | 0.03165 | 0.03145 2 5 9 0 5 13 0.62387 | 0.13984
8 0.6067 | (0.8,0.79) | -0.00039 | 0.01646 | 0.01658 3 10 14 3 8 17 0.22829 | 0.48114
8 0.6067 | (0.1,0.11) | 0.00010 | 0.00113 | 0.00113 1 5 9 2 5 10 | 0.53682 | 0.92631
8 0.6067 (0.4,0.41) -0.00105 0.02172 | 0.02170 0 3 9 0 4 8 0.05772 | 0.04771
30 | 0.8263 | (0.8,0.79) | -0.00065 | 0.01200 | 0.01199 1 8 17 0 7 13 0.02233 | 0.09471
30 | 0.8263 | (0.1,0.11) | -0.00009 | 0.00082 | 0.00082 0 2 10 2 5 11 0.40344 | 0.60288
30 | 0.8263 | (0.4,0.41) | -0.00090 | 0.01093 | 0.01095 5 9 11 3 10 12 | 0.61730 | 0.82075

Table 4.5 Simulations results (Plackett Copula).

’ Point ‘ M. means ‘ M. var. ‘ Real var. ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ 0.01 ‘ 0.05 ‘ 0.10 ‘ UAD ‘ USw ‘

(0.8,0.9) | -0.00003 | 0.00366 | 0.00360 0 5 13 1 9 14 0.18762 | 0.91708
(0.1,0.2) 0.00028 0.00358 | 0.00352 1 7 15 4 10 15 0.09103 | 0.18777
(0.4,0.6) 0.00042 0.03242 | 0.03240 2 6 8 2 7 10 0.67877 | 0.41021
(0.1,0.9) 0.00002 0.00090 | 0.00090 3 6 9 1 5 8 0.04456 | 0.04697
(0.8,0.2) 0.00015 0.01439 | 0.01440 1 6 10 3 8 13 0.00066 | 0.00484

Table 4.6 Simulations results (Product Copula).
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In the previous results, it can be seen that in most cases the number of rejections are close to the
a-level. However in some cases we have large values in the columns that indicate the number
of rejections at a-level (rows in bold type). The problem occur in simulations where the point is
located near to the boundary of I? = [0, 1] x [0, 1] and in simulations where the copula is close to
one of the Fréchet-Hoeffding bounds and the point is not in the support of the copula M or copula
W. This also happens if the copula is singular. As a possible solution in such cases, we propose to
increase the sample size or consider points very close to the support of the copula M or copula W to
obtain a better approximation to the normal distribution with the parameters indicated in Remark
4.27. For example, if we consider a sample size of 100,000 instead of a sample size of 50,000 in
the simulation of the Gumbel copula with 8 = 20 in the point (0.8, 0.8) we obtain a mean of means
equal to —0.00039, a mean of variances equal to 0.00149, a real variance equal to 0.00153 and
4, 8 and 12 rejections of normality at a-level 0.01, 0.05 and 0.10, respectively, for the Anderson-
Darling’s test, and 1, 10 and 15 for the Shapiro-Wilk’s test, also we have a p-value of 0.79405 for
the Kolmogorov-Smirnov’s uniformity test applied to the p-values of the Anderson-Darling’s tests
and a p-value of 0.77178 for the Kolmogorov-Smirnov’s uniformity test applied to the p-values of
the Shapiro-Wilk’s tests.
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Conclusions

We know that Glivenko-Cantelli’s Theorem 2.5, is one out of two results which has made the study
of the empirical distribution functions a really important task. In our Theorem 2.17 we proved
that the sample copula also satisfies a Glivenko-Cantelli’s result. It is unquestionable that the
empirical distribution function in dimension d = 1 is the best possible approximation to the real
distribution function, a proof of that is the Dvoretzky-Kiefer-Wolfowitz’s inequality, see [11] and
[34]. However, for dimension higher than one, even if Glivenko-Cantelli’s Theorem still holds, the
price we have to pay is that we need very large sample sizes in order to obtain a good approximation
of the real distribution function, this needed sample size increases dramatically with the dimension
d. Besides, the evaluation of the empirical distribution function needs arrays of order n’ where
n is the sample size and this becomes a problem for large sample sizes even in relatively small
dimensions. On the other hand, for the sample d-copula or order m, if m is relatively small compare
to n the arrays we need for the construction of C” is only of order m?, which in general is a lot

smaller that n?.

We saw in every simulation of Chapter 2, that there exists a value of m for which CJ, is a better
approximation than the empirical copula C,. If we define m, the value of 2 < m < n such that C
is a better approximation C,, and it minimizes the mean value of the supremum distance between
C), and C the real copula, then we would have had selected the best possible m. Of course, when
we have only one sample from an unknown distribution it is not easy to select an appropriate
value of m. In Section 5 of the Chapter 2, for dimension d = 2 we are proposing a method to
estimate the value of m based on the sample Spearman’s p. This idea is based on the fact that
the best approximation of C” for I1¢ the product d-copula is always reached when m = 2 for any
sample size n, that is, when p = 0. This statement also suggests that we may use the total variation
between the sample copula and the product copula using only the densities induced by IT¢ and by

C), in order to estimate the parameter m.

As alast interesting remark, let us assume that d = 1 and that we have a random sample X;, X5, ..., X,
from a continuous distribution F, let ¥; = i/n for i € I, be the modified sample, and take 2 < m < n.
Then if we define the uniform partition of I = [0, 1] of size m and we construct C’; following the
same ideas as in Definition 2.12 for d > 2, but in dimension one. We have that C}, (u) = u for every
u € I. Therefore, C7 (u) is the distribution of F(X) independently of the selection of m. This state-
ment clearly indicates that using the ideas of Deheuvels [8] we always find the right distribution

independently of the real continuous F, the sample size n and the selected m.

The aim of Chapter 3 was to show that in addition to the comparative advantages shown in Chapter
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2 between the sample d-copula of order m and the empirical copula, we can obtain similar results
to those existing for the empirical copula given in [8] and that these results can be extended to
higher dimensions, in this way we obtain a complete description of the distributions associated to

the sample copula under the independence assumption.

As we mentioned before, the second result that makes important the use of F,, the empirical

distribution, or the empirical copula C, is the central limit theorem. In the Chapter 4 we proved

the convergence to a Gaussian process of the sample copula process yn(C” — C), from this result

m

we obtained a Central Limit Theorem similar to the existing one for the empirical copula process.

From the last two chapters of this thesis we can replicate, for the sample copula, the most important
results of the convergence of the empirical copula, and along with the results of Chapter 2 we can
consider that the sample copula could be a good approximation to the checkerboard copula and
therefore to the real copula in comparison to the approximation given for the empirical copula.
Among possible applications of the sample copula we have the study of the credit risk of the
financial institutions, in [32] a methodology is proposed to calculate the default correlations using
the Gaussian copula, although this work suffered several criticism because these models did not
provide adequate results under the conditions of the financial crisis of 2008, many efforts have
been made by using Gaussian model variants, see [3]. The sample copula can be used to model
the overall risk without assuming any specific family of copulas. We have also worked on an
algorithm to generate, from the sample copula, simulated samples that preserve the dependence
structure which may be used in methodologies related to tests of goodness of fit or parameter

estimation.
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