

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Desarrollo y validación de un método analítico para cuantificar, por ICP-OES, los elementos pertenecientes al grupo de las tierras raras: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu, en jales mineros.

TESIS

QUE PARA OBTENER EL TÍTULO DE: LICENCIADO EN QUÍMICA INDUSTRIAL

PRESENTA: JORGE EDUARDO DE LA CRUZ MORENO

Asesora: Dra. Águeda Elena Ceniceros Gómez

CUAUTITLÁN IZCALLI, ESTADO DE MÉXICO

AÑO 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN UNIDAD DE ADMINISTRACIÓN ESCOLAR DEPARTAMENTO DE EXÁMENES PROFESIONALES

Vniver4dad NacionaL AvTryma de Mexico

M. en C. JORGE ALFREDO CUÉLLAR ORDAZ DIRECTOR DE LA FES CUAUTITLAN PRESENTE

ASUNTO: VOTO APROBATORIO

FIRMA

ATN: I.A. LAURA MARGARITA CORTAZAR FIGUEROA Jefa del Departamento de Exámenes Profesionales de la FES Cuautitlán.

Con base en el Reglamento General de Exámenes, y la Dirección de la Facultad, nos permitimos comunicar a usted que revisamos el: <u>Trabajo de Tesis</u>

Desarrollo y validación de un método analítico para cuantificar, por ICP-OES, los elementos pertenecientes al grupo de las tierras raras: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu, en jales mineros.

Que presenta el pasante: Jorge Eduardo de la Cruz Moreno Con número de cuenta: 410059966 para obtener el Título de la carrera: Licenciatura en Química Industrial

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el EXAMEN PROFESIONAL correspondiente, otorgamos nuestro VOTO APROBATORIO.

ATENTAMENTE

"POR MI RAZA HABLARÁ EL ESPÍRITU" Cuautitlán Izcalli, Méx. a 13 de Enero de 2017.

PROFESORES QUE INTEGRAN EL JURADO

NOMBRE

PRESIDENTE	Dra. Frida María León Rodríguez	Trolo Van N
VOCAL	Dra. Agueda Elena Ceniceros Gómez	Douede Uniceros.
	and the second	· 0
SECRETARIO	Dra. Alma Luisa Revilla Vázquez	Celinalan
		Hall
1er. SUPLENTE	Dra. María del Rosario Moya Hernández	XXX.
		- H
2do. SUPLENTE	Dr. Julio Cesar Morales Mejía	Julit

NOTA: los sinodales suplentes están obligados a presentarse el día y hora del Examen Profesional (art. 127).

LMCF/cga*

Dedicado a

Las tantas personas con las que he compartido buenos y malos momentos, valiosas pláticas y sentimientos, todo para fortalecer mi formación.

Y a mi familia, donde nadie se olvida, que está unida encuentre éxito o no y es más fuerte cada año.

"Un hombre se aventura por el mundo para comprender la naturaleza, pero siempre vuelve a su hogar donde se encuentra la felicidad"

Índice

iv

Símbolos y abreviaturas	V
Lista da tablas	v
Lista de tablas	vi
Desumen	VII iv
	·····IX
UDJELIVOS	X
Introduccion	XI
Justincación	XIII 1
1 1 Desemble y velideción de métodes englíticos	1 1
1.2 Espectrometría de amigión ántica por plasma acontado inductivamento (ICD OES)	۱۱ ۵
1.2. Espectrometria de emisión optica por plasma acopiado inductivamente (ICF-OES)	
1.4. Los inlos minoros	14
Canítula 2 Deservalle experimental	19
2 1 Muostro do jol	····· 22
2.1. Muestra de jai	22
2.2. Material de referencia certificado (solucion).	23
2.4. Equipos meteriolos reactivos y disclusiones	23 24
2.4. Equipos, inateriales, reactivos y disorderones	24
2.5. Fian de Vandación	20
2.0. Desarrono del metodo de cuantineación.	31
2.8. Experimentación de la compreheción del método	55
2.0. Muestres de control de colided	50
2.9. Muestras de control de candad.	40
2 1 Selectivided	42
2.2. Validación dal sistema	42
2.2. Validacion del sistema.	42 50
2.4. A pairis de las muestres de control de calidad	50
2.5. A nélisis de la muestra de jel	01
S.S. Analisis de la muestra de jai.	00
Capitulo 4. Conclusiones	09
Lista ut itititias	/ I 76
	/0
AIICXUS	12/

Símbolos y abreviaturas

Símbolos

[#]	- Entre corchetes se señala el número de la referencia bibliográfica.
Ko	- Factor para estimar el LC.
Δy	- Delta y= y "final" – y "inicial".
Δx	- Delta $x = x$, final" - x, inicial".
S	- Desviación estándar.
U	- Incertidumbre.
Κ	- Grados Kelvin.
ms	- Milisegundos.
m	- Sensibilidad ó pendiente.
b	- Intersección al eje u ordenada al origen.

Abreviaturas

- Límite de detección.
- Límite de cuantificación.
- Límite de detección del sistema.
- Límite de cuantificación del sistema.
- Límite de detección del método.
- Límite de cuantificación del método.
- Unión Internacional de Química Pura y Aplicada.
- Desviación estándar relativa.
- Material de referencia.
- Material de referencia certificado.
- Muestras de control de calidad.
- Espectrometría de emisión óptica por plasma acoplado inductivamente.
- Espectro ultravioleta y espectro visible.
- Rare earth elements; en español "Elementos tierras raras".
- Consejo Nacional de Ciencia y Tecnología.
- Laboratorio de biogeoquímica ambiental de la UNAM.
- Horno de microondas Milestone Ethos Easy.
- Programa de Apoyo a Proyectos de Investigación e Innovación
Tecnológica.
- Intervalo lineal.
- Fluorescencia de rayos X.

Lista de tablas

Tabla 1.1. Principales usos de las tierras raras	19
Tabla 2.1. Resumen de las concentraciones de tierras raras en el MRC OREAS	24
Tabla 2.2. Condiciones de análisis en el ICP-OES	25
Tabla 2.3. Resumen del plan de validación del sistema	29
Tabla 2.4. Resumen del plan de confirmación del método	30
Tabla 2.5. Longitudes de onda evaluadas	31
Tabla 2.6. Condiciones de las pruebas de digestión asistida por horno de microondas	32
Tabla 2.7. Curva de calibración	34
Tabla 2.8. Diluciones al MRC OREAS	37
Tabla 2.9. Parámetros de las muestras de control de calidad	41
Tabla 3.1. Análisis de 5 curvas de calibración de Ce	42
Tabla 3.2. Datos de regresión lineal para Ce	43
Tabla 3.3. Resumen de resultados para IL y sensibilidad	44
Tabla 3.4. Muestras de blanco del sistema, para Ce	45
Tabla 3.5. Resumen de los LDs y LCs de todos los elementos	46
Tabla 3.6. Resultados de la prueba de recobro del sistema para Ce	47
Tabla 3.7. Resumen de resultados del recobro del sistema	48
Tabla 3.8. Datos para el cálculo de repetibilidad del sistema en Ce	49
Tabla 3.9. Resumen de resultados de repetibilidad del sistema	49
Tabla 3.10. Muestras de MRC matriz a bajas concentraciones para LDm y LCm	50
Tabla 3.11. Resumen de los resultados para los párametros LDm y LCm	51
Tabla 3.12. Resultados de la prueba de recobro del método para Ce	53
Tabla 3.13. Resumen de resultados del recobro del método	53
Tabla 3.14. Datos para el cálculo de repetibilidad del método en Ce	54
Tabla 3.15. Resumen de resultados de repetibilidad del método	55
Tabla 3.16. Datos para el cálculo de reproducibilidad en Ce	56
Tabla 3.17. Resumen de resultados de reproducibilidad del método	57
Tabla 3.18. Análisis de reproducibilidad del Sc	58
Tabla 3.19. Análisis de reproducibilidad del Tb	58
Tabla 3.20. Incertidumbre relativa (k=2)	60
Tabla 3.21. Resultados en las muestras control de calidad	61
Tabla 3.22. Resumen de resultados de validación	63
Tabla 3.23. Concentración de tierras raras en la muestra de jal J1A-336-16	67
Tabla 3.24. Composición de algunos minerales de tierras raras	68

Lista de figuras

Figura 1. Presa de jales mineros	xi
Figura 2. Justificación de la cuantificación de tierras raras	xiii
Figura 3. El proceso de validación de un método	2
Figura 4. Ejemplo de una curva de respuesta	5
Figura 5. Relación entre conceptos para describir la calidad de un método	
Figura 6. El sesgo medido total	8
Figura 7. Intervalo de incertidumbre y su relación con el sesgo	9
Figura 8. Elementos que se pueden cuantificar por ICP-OES	10
Figura 9. Esquema simplificado de un ICP-OES	11
Figura 10. Esquema de una antorcha en un ICP-OES	13
Figura 11. Partes de un nebulizador	14
Figura 12. Los elementos tierras raras en la tabla periódica	15
Figura 13. Abundancia de los elementos en la corteza continental	16
Figura 14. Producción mundial de tierras raras	17
Figura 15. Evidencia fotográfica de la toma del jal	22
Figura 16. MRC multielemental ICP-AM-MISA5	
Figura 17. Espectrómetro de emisión óptico por plasma acoplado inductivamente	25
Figura 18. Horno de microondas Mileston Ethos Easy	26
Figura 19. Diagrama causa-efecto para la estimación de incertidumbre	39
Figura 20. Curva de calibración para el Ce	43
Figura 21. Gráfico de los residuales para el Ce	43

Agradecimientos

A la Universidad Nacional Autónoma de México por las facilidades que me dio para cursar con un nivel de excelencia una carrera que de otra forma hubiera sido económicamente difícil de estudiar. ¡Por mi raza, hablará el espíritu!

A la Q.I. Griselda Ávila Enríquez coordinadora de la Licenciatura en Química Industrial, por su atención y motivación para salir adelante.

Al equipo del laboratorio de biogeoquímica ambiental, en especial a:

- La Dra. Águeda Elena Ceniceros Gómez mi asesora y responsable del proyecto.
- La M. en C. Raquel Domínguez Martínez, por el apoyo brindado en la realización de esta tesis, por su paciencia y consejos.
- A la Dra. Margarita E. Gutiérrez Ruiz responsable del LABQA.
- Al proyecto "Extracción y recuperación de elementos estratégicos y tierras raras a partir de residuos mineros", con clave IA105216 financiado por el Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) que me otorgo una beca económica durante el desarrollo de la tesis.

Todos los que directa o indirectamente ayudaron a la realización de esta tesis.

¡Muchas gracias a todos!

Resumen

Durante el desarrollo del método; primero, en la preparación de la muestra, se probaron dos métodos de digestión total asistida por horno de microondas, de los cuales se seleccionó el método que consiste en pesar una muestra de 0.200 gramos y con una mezcla de 5 mL de HF, 3 mL de HNO₃ y 2 mL de HClO₄ llevar la muestra a digestión en horno de microondas, seguida de un lavado a los vasos de digestión con 4 mL de HCl, posteriormente se evapora el HF y finalmente se afora con ácido nítrico al 2% para la introducción al equipo ICP-OES, además para determinar la reproducibilidad se realizó la evaluación de una digestión total abierta; segundo, para el análisis en el ICP-OES, para cada elemento se probaron distintas longitudes de onda, en tres diferentes curvas de calibración (0.01-0.1 mg/L, 0.2-3.5 mg/L y 1-25 mg/L), seleccionando las longitudes de onda que mejor cumplen el parámetro de linealidad en el intervalo de trabajo seleccionado de 0.2-3.5 mg/L.

La validación se presenta en dos partes, *validación del sistema y confirmación del método*, estableciéndose los siguientes parámetros de desempeño: Linealidad, sensibilidad analítica, límite de detección (LD) y cuantificación (LC), precisión (por medio de repetibilidad y reproducibilidad), exactitud (recobro) y además se realizó la estimación de la incertidumbre. Los parámetros de desempeño evaluados son los establecidos en el Manual de Calidad y Procedimientos del Laboratorio de Biogeoquímica Ambiental de la UNAM.

Para la *validación del sistema* y preparación de las curvas de calibración, se utilizó el MRC multielemental de nombre comercial "JCP-AM-MISA5" que contiene 100 mg/L de cada elemento del grupo de las tierras raras. Para la *confirmación del método* se empleó el MRC de nombre comercial "OREAS 465" el cual contiene 9.88% del conjunto de los elementos del grupo de las tierras raras en una matriz de suelo latérico.

Con la *validación del sistema de medición* para todos los elementos en estudio (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu) se comprobó que se tiene una respuesta del equipo (cuentas/segundo) que en función de la concentración (mg/L) muestra una relación lineal, además, la medición de dichos elementos es precisa y exacta; en la *confirmación del método* (en matriz sólida y usando el método de tratamiento de la muestra seleccionado de digestión total asistida por horno de microondas) se comprobó que la medición de los elementos Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu, es precisa y para Y, La, Ce, Pr,

Nd, Sm, Eu, Gd, Tb, Dy e Yb, es exacta. Sin embargo la medición del elemento Sc es precisa y exacta únicamente por el método de tratamiento de la muestra de digestión total abierta.

Finalmente empleando el método desarrollado se comprobó la presencia de los elementos Ce, Er, Gd, La, Nd, Pr, Tb e Y, en una muestra de jal proveniente de un complejo minero en el estado de Michoacán.

Objetivo general

Desarrollar y validar un método analítico con el fin de cuantificar los elementos Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu, mediante espectrometría de emisión óptica por plasma acoplado inductivamente, para ser usado en la determinación de dichos elementos en muestras de jales mineros previamente digeridos.

Objetivos particulares

- Determinar los parámetros de validación para el sistema de medición ICP-OES para Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu.
- 2. Realizar la confirmación en matriz con una muestra sólida determinando los parámetros de validación para Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu.
- 3. Implementar el procedimiento propuesto en muestras de jales.

Introducción

Una de las actividades antropogénicas de mayor preocupación ambiental a nivel mundial es la minería, la cual, produce grandes cantidades de residuos, entre ellos los "jales" que debido a sus características fisicoquímicas son clasificados como residuos peligrosos y ocasionan un impacto ambiental. La Figura 1 muestra una presa de jales, se pueden apreciar las grandes cantidades en las que se acumulan. Dicha preocupación lleva a buscar alternativas para atender la problemática, una alternativa es la de evaluar en los jales el potencial para generar ganancias económicas si se logran obtener de ellos ciertos elementos de interés industrial, entre ellos los denominados tierras raras. Las tierras raras se han convertido en los metales "desconocidos" que están detrás de los prodigiosos dispositivos electrónicos actuales, pues la miniaturización de los dispositivos se consigue gracias a las propiedades fisicoquímicas de estos elementos.

Figura 1. Presa de jales mineros, Estado de Michoacán.

Antes de poder realizar la valoración de los residuos y confirmar la viabilidad de extracción de dichos elementos se requiere "desarrollar y validar un método para cuantificar las tierras raras en jales mineros". El desarrollo y validación del método implica definir los requisitos y parámetros analíticos que son necesarios para que el método sea adecuado al uso que se le pretende dar. Para la cuantificación de las tierras raras (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu) el método de espectrometría de emisión óptica por plasma acoplado inductivamente da el beneficio de un análisis multielemental y permite la cuantificación de dichos elementos a concentraciones de partes por millón (mg/kg), características que lo hacen "adecuado para el uso", por lo que este trabajo realiza una evaluación a dicho método.

El presente trabajo de tesis fue financiado por el PAPIIT mediante el proyecto "Extracción y recuperación de elementos estratégicos y tierras raras a partir de residuos mineros", con clave IA105216 coordinado por la Dra. Águeda Elena Ceniceros Gómez del LABQA de la Facultad de Química.

Justificación

Una alternativa para contrarrestar el impacto generado por los jales es recuperar de los mismos, elementos de interés como lo son las tierras raras, para lo cual es necesario realizar una valoración económica y un previo análisis de cuantificación (Figura 2); el presente trabajo de tesis plantea la cuantificación por espectrometría de emisión óptica por plasma acoplado inductivamente, de los elementos tierras raras (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu) a partir de un método desarrollado y validado en jales, como parte importante en la valoración de un proyecto que busca un beneficio económico y ambiental de dichos residuos mineros que permitan su reutilización.

Figura 2. Justificación de la cuantificación de tierras raras.

Capítulo 1 Marco teórico

1.1. Desarrollo y validación de métodos analíticos

Millones de pruebas, mediciones y exámenes se hacen cada día en miles de laboratorios de todo el mundo. Hay innumerables razones que sustentan la importancia de desarrollar y validar métodos, por ejemplo para valorar bienes con fin comercial. Está claro que es importante hacer una correcta medición y ser capaz de demostrar que el resultado es correcto [1].

Si el resultado de un análisis no genera confianza, entonces tiene poco valor y el análisis puede no llevarse a cabo. El desarrollo y validación de métodos permite a los químicos demostrar que un método es "adecuado para el uso previsto". El resultado analítico de un método que es adecuado para su uso, implica que éste debe ser lo suficientemente fiable para que cualquier decisión basada en él, pueda ser tomada con confianza [1].

1.1.1. Desarrollo de métodos analíticos

El trabajo de validación está precedido de una fase de desarrollo que puede realizarse de varias formas. Desde un extremo, el desarrollo de un método puede involucrar el adaptar un método existente realizando cambios menores, por ejemplo en el proceso de toma de muestra y/o el tratamiento previo al análisis, de tal manera que sea adecuado a su nueva aplicación. La etapa de medición puede o no ser precedida de una etapa de separación o preparación [1].

Figura 3. El proceso de validación de un método [1].

1.1.2. Validación de métodos analíticos

En la Figura 3 se muestra el proceso de validación de un método. Validar un método es básicamente el proceso para definir un requisito analítico y la confirmación de que cuenta con capacidades consistentes con aplicaciones requeridas [1].

Una vez finalizado el desarrollo inicial del método, el laboratorio debe documentar en detalle el procedimiento de medición. Este procedimiento documentado es el que se toma para la validación formal del método [1].

Para la validación de un método existen dos estrategias fundamentales; el uso de resultados inter-laboratorios y la validación individual del laboratorio. No siempre los

métodos que pueda necesitar un laboratorio se encuentran publicados como normas. Si el método ha sido desarrollado para usarlo por un solo laboratorio, por ejemplo, porque no es de interés general o por que otros laboratorios son competidores, el enfoque de validación a partir de datos individuales del laboratorio es el apropiado [1].

Parámetros de desempeño de un método.

Entre los principales parámetros a determinar en la validación de un método se encuentran los siguientes:

Selectividad. Es necesario establecer que la señal producida en la etapa de medición o alguna otra propiedad medida, la cual se atribuye al analito, se debe únicamente al analito y no a la presencia de algo química o físicamente similar o que surja como una coincidencia; esta es la confirmación de la identidad. La interferencia de otros compuestos en la medición del analito, depende de la efectividad de la etapa de separación y de la selectividad/especifidad de la etapa de medición [1].

La selectividad analítica se relaciona con "el grado en el que un método puede ser utilizado para determinar analitos particulares en mezclas o matrices sin interferencias de otros componentes de comportamiento similar" [2]. En general, los métodos analíticos consisten de una etapa de medición, en la que se cuantifica una propiedad específica. Por lo tanto, es crucial establecer que la propiedad medida solo se debe al analito y no está influenciado por otros compuestos en la muestra [1, 4].

Límite de detección y límite de cuantificación. Es importante conocer la concentración más baja del analito que puede ser detectada por el método a un nivel de confianza especificado, por lo que en el proceso de validación se determina el "límite de detección" (LD) como tres veces la desviación estándar de la respuesta del equipo de medición (Ec. 1.1) en un número representativo de blancos de muestra (6 a 10 blancos) [1]. En la Figura 4 se ilustra una relación lineal especificando los parámetros de LD, LC, sensibilidad, intervalo lineal y de trabajo.

$$LD=3s$$
 (1.1)

Es adicionalmente importante establecer el nivel más bajo en el cual el desempeño del método de medición es aceptable para una aplicación dada. Este concepto es referido como el "límite de cuantificación" (LC). El LC es el mínimo nivel de analito que puede ser determinado con desempeño aceptable. El LC se calcula de acuerdo a la mayoría de las convenciones como la concentración del analito correspondiente a la desviación estándar obtenida a niveles bajos multiplicada por un factor de "Ko" (Ec. 1.2). El valor por defecto para Ko es 10 según IUPAC [1].

$$LC=10s$$
 (1.2)

También es necesario distinguir entre el límite de detección del instrumento y el límite de detección del método. El límite de detección del instrumento puede basarse en el análisis de una muestra, usualmente un blanco de reactivo, sometido directamente al instrumento (es decir, omitiendo cualquier paso de preparación de la muestra), o en la relación señal/ruido [1].

Para estimar LD y LC las muestras usadas deben ser preferentemente o bien: a) muestras blanco ó b) muestras de ensayo con concentraciones de analito cercanas o por debajo de LC esperable. Utilizando un número de réplicas suficiente (6 a 10 réplicas) para obtener un estimado adecuado de la desviación estándar [1].

Figura 4. A) Ejemplo típico de una curva de respuesta obtenida con un método instrumental. Se identifican las características de desempeño "Intervalo de trabajo", "Intervalo lineal", "Sensibilidad analítica", "LD" y "LC" (En la figura se encuentran señalados como LOD y LOQ por sus siglas en inglés). B) Ejemplo típico de una curva obtenida con un procedimiento de medición en el que se representa la concentración medida en función de la concentración de la muestra de ensayo [1].

Intervalo de trabajo. El "intervalo de trabajo" es el intervalo en el cual el método proporciona resultados con una incertidumbre aceptable. El extremo inferior del intervalo de trabajo está determinado por el límite de cuantificación (LC). El extremo superior del intervalo de trabajo está definido por las concentraciones en las cuales se observan anomalías significativas en la sensibilidad analítica [1].

Sensibilidad analítica. La sensibilidad de un método de análisis es la capacidad que tiene para discriminar entre pequeñas diferencias en la cantidad de analito (concentración), es decir, el gradiente ó más comúnmente llamada la pendiente de la curva de respuesta [3], una buena sensibilidad no garantiza, pero si es necesaria para tener un buen límite de detección [4].

Veracidad y sesgo. Veracidad es una expresión de la proximidad de la media de un número infinito de resultados (producidos con el método) a un valor de referencia. Puesto que no es posible realizar un número infinito de mediciones, no se puede medir la veracidad. Sin embargo, podemos realizar una evaluación práctica de la veracidad. Por lo general, esta evaluación se expresa cuantitativamente en términos de "sesgo" (Figura 5) [1].

El sesgo del método surge de los errores sistemáticos inherentes a este, independientemente del laboratorio que lo utilice. El sesgo del laboratorio surge de errores sistemáticos adicionales específicos del laboratorio y la interpretación que éste hace del método (Figura 6) [1].

Una determinación práctica del sesgo se basa en la comparación de la media de los resultados repetibles del método candidato con un valor de referencia adecuado. Existen tres enfoques generales: a) análisis de materiales de referencia, b) experimentos de recuperación utilizando muestras adicionadas, y c) comparación con resultados obtenidos mediante otro método [1].

El sesgo se puede determinar utilizando un material de referencia certificado (MRC), determinando la media y la desviación estándar de una serie de mediciones repetidas y se comparan los resultados con el valor asignado para la propiedad del MR [1].

Un material de referencia es un material, suficientemente homogéneo y estable con propiedades especificadas, y el cual se ha establecido idóneo para el uso previsto en la medición de propiedades nominales [4].

Figura 5. Ilustración de las relaciones entre algunos conceptos fundamentales utilizados para describir la calidad de los resultados de medición [1].

Repetibilidad. La precisión es una medida de cuán cerca están los resultados entre sí. Por lo general, se expresa mediante parámetros estadísticos que describen la propagación de los resultados, típicamente la desviación estándar calculada a partir de los resultados obtenidos mediante la realización de mediciones repetidas en un material adecuado en condiciones específicas [1].

La repetibilidad, es una medida de la variabilidad en los resultados cuando una medición se lleva a cabo por un solo analista utilizando el mismo equipo en un corto plazo de tiempo [1].

Reproducibilidad. La reproducibilidad, es una medida de la variabilidad de resultados entre laboratorios usando el mismo método o también puede referirse a la variación observada entre laboratorios utilizando diferentes métodos, pero con la intención de medir la misma magnitud y supone dar la mayor variabilidad en los resultados [1].

Figura 6. El sesgo medido total está compuesto del sesgo del método y el sesgo de laboratorio [1].

Incertidumbre de medida. La incertidumbre es un intervalo asociado con la dispersión de un resultado de medida que expresa el intervalo de valores que razonablemente pueden atribuirse a la cantidad que se está midiendo. Una estimación de la incertidumbre debe tener en cuenta todos los efectos reconocidos que operan en el resultado. En la Figura 7 se puede observar que la incertidumbre es un intervalo que esta remarcado en color verde e incluye ampliamente el sesgo. Las incertidumbres asociadas con cada efecto se combinan de acuerdo con procedimientos bien establecidos [1].

Figura 7. Intervalo de incertidumbre "U" y su relación con el sesgo [4].

1.2. Espectrometría de emisión óptica por plasma acoplado inductivamente (ICP-OES)

En la espectrometría óptica de emisión, los elementos presentes en una muestra se convierten en átomos o iones elementales en estado gaseoso por medio de un proceso denominado atomización. Generalmente, el proceso de atomización no solo transforma los componentes de la muestra en átomos o iones elementales sencillos, sino que también durante el proceso, excitan una parte de estas especies a estados electrónicos superiores y la rápida relajación de las especies excitadas va acompañada de la producción/emisión de espectros de líneas ultravioletas y visibles que son útiles para el análisis cualitativo y cuantitativo de los elementos [20].

En la espectrometría de emisión óptica con plasma acoplado por inducción (ICP-OES, por sus siglas en inglés) los iones generados emiten radiación a la longitud de onda característica de cada uno de los elementos presentes en la muestra, la cual es transmitida a través del sistema óptico a un detector, donde la imagen capturada se convierte a señal de intensidad para cada elemento y consecuentemente a la concentración en la muestra [21].

Se puede encontrar una línea apropiada para identificar cualquier elemento. En la Figura 8 se muestran los elementos que se determinan por esta técnica y el número de líneas de emisión. La selección depende de la consideración de qué elementos aparte del analito, podrían estar presentes en la muestra y de si existe la posibilidad de que las líneas de estos elementos se traslapen con las líneas del analito.

Η]																He
Li	Ba	1										В	С	N	0	F	Ne
1-2	3-6											3-6	1-2	20100			
Na	Mg	1										AI	Si	P	S	CI	Ar
1-2	3-6											3-6	11-16		0.852		
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
1-2	3-6	17-24	7-10	11-16	7-10	3-6	11-16	7-10	11-16	7-10	3-6	3-6	11-16	3-6	1988). -	25:540/	33325
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	3-6	11-16	17-24	11-16	3-6		11-16	11-16	11-16	5.75	36	3-6	3-6	3-6	3-6		
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	3-6	17-24	17-24	17-24	3-6	3-6	11-16	3-6	11-16	3-6	1-2	1-2	3-6	3-6			
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uud
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Th	Dv	Ho	Fr	Tm	Yh	In
				11-16	7-10	11-16		7-10	7-10	11-16	11-16	11-16	1-2	11-16	11-16	11-16	11-16
				Th 17-24	Pa	U 7-10	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Figura 8. En gris se muestran los elementos que se pueden cuantificar por ICP-OES junto con el número de líneas de emisión factibles para análisis, que van de 1-2, 3-6, 7-10, 11-16 y 17 a 24. Elaboración propia a partir de [22].

La espectrometría de emisión de plasma tiene varias ventajas si se le compara con los métodos de absorción de llama y electro-térmicos. Entre las ventajas está su baja susceptibilidad a las interferencias químicas, la cual es un resultado directo de las temperaturas superiores. En segundo lugar están los espectros que resultan para la mayoría de los elementos con un solo grupo de condiciones de excitación. Por consiguiente, se pueden registrar en forma simultánea los espectros de docenas de elementos. Otra ventaja de las fuentes de plasma, más energéticas, es que facilitan la determinación de concentraciones bajas de elementos que tienden a formar compuestos refractarios, es decir, aquellos que son muy resistentes a la descomposición térmica, como los óxidos de niobio [22].

En desventaja, en la espectrometría de emisión que se basa en el empleo de un plasma, se requiere mayor resolución y equipo óptico más caro que el necesario en los métodos de absorción atómica con fuentes de llama o electro-térmicas; además los procedimientos con equipos ICP-OES requieren mayor habilidad del operador, que los procedimientos de absorción atómica, para obtener resultados satisfactorios [22].

1.2.1. Funcionamiento y componentes del equipo ICP-OES

La Figura 9 muestra un esquema simplificado de un ICP-OES, donde el proceso de análisis inicia con la toma de muestra en solución acuosa a través de una manguera, donde el flujo es generado por una bomba peristáltica que lleva la muestra a un nebulizador para posteriormente entrar por la parte inferior a la antorcha donde el plasma de argón aumenta la energía de los elementos presentes ocasionando emisión de luz al momento de disminuir la temperatura, emisión que entra a un sistema óptico donde las longitudes de onda son separadas y medidas por materiales fotosensibles que generan señales de cuantos de luz por segundo la cual se relaciona con la concentración del analito de interés.

Un plasma es una mezcla gaseosa eléctricamente conductora que contiene una concentración importante de cationes y electrones (las concentraciones de ambos son tales que la carga neta es cero). En el plasma de argón, los iones y los electrones de argón son las especies conductoras principales, aunque los cationes provenientes de la muestra también están presentes en cantidades pequeñas. Los iones de argón, una vez formados en el plasma, son capaces de absorber suficiente potencia de una fuente externa para conservar la temperatura en un nivel en el que la ionización posterior mantiene indefinidamente el plasma [13].

Una fuente característica para plasma acoplado por inducción llamada "antorcha" está formada por tres tubos concéntricos de cuarzo a través de los cuales fluyen corrientes de argón. La parte superior de este tubo está rodeada por una bobina de inducción. La ionización del argón que fluye se inicia mediante una chispa que proviene de una bobina Tesla. Los iones resultantes y sus electrones asociados interaccionan entonces con un campo magnético oscilante producido por la bobina de inducción. Esta interacción fuerza a los iones y los electrones dentro de la bobina a moverse en trayectorias circulares opuestas. La resistencia que manifiestan los iones y los electrones a este flujo de carga es la causa del calentamiento óhmico del plasma [22] (Figura 10).

La temperatura del plasma así formado es lo suficientemente elevada como para que el cilindro exterior de cuarzo requiera aislamiento térmico. Para lograrlo, se hace fluir argón de forma tangencial alrededor de las paredes del tubo. Este flujo tangencial enfría las paredes interiores del tubo central y concentra radialmente el plasma.

Figura 10. Esquema de una antorcha en un ICP-OES[24].

Las muestras se introducen en el plasma acoplado por inducción mediante un flujo de argón por el tubo central de cuarzo. El medio más común para introducir la muestra es el nebulizador concéntrico de vidrio (Figura 11). La muestra se transporta hasta la punta por medio del efecto Bernoulli (aspiración o succión). La alta velocidad del gas divide al líquido en gotitas finas de varios tamaños que son transportadas hacia el interior del plasma.

En los espectrómetros de plasma acoplado por inducción, la antorcha se puede ver radialmente (perpendicular a su eje), axialmente (paralelo al eje) o pueden contener un sistema de conmutación controlado mediante computadora para ver ambos esquemas. La decisión sobre qué configuración usar depende del comportamiento químico del analito en el plasma, la línea espectral elegida para el análisis, la calidad de los datos requeridos y la naturaleza detallada del experimento.

Figura 11. Partes de un nebulizador (elaboración propia).

El tiempo de residencia de los átomos de la muestra es de unos 2 ms antes de alcanzar el punto de observación. Durante ese lapso los átomos experimentan temperaturas que varían entre 5500 y 8000 °K. El corte transversal de la temperatura del plasma es relativamente uniforme; por consiguiente no se presentan tan a menudo efectos de auto-absorción y auto-inversión. Por tanto, las curvas de calibración suelen ser lineales y abarcan varios órdenes de magnitud de concentración [22].

1.3. Los elementos "tierras raras"

La Unión Internacional de Química Pura y Aplicada (IUPAC) identifica a los elementos llamados tierras raras como el grupo de 15 elementos químicos en la tabla periódica, específicamente los lantánidos, además de también a los dos elementos escandio e itrio (ver Figura 12) se les refiere como parte del grupo de las tierras raras [5, 6]. La denominación de "tierras raras" procede de la denominación en inglés, Rare Earth Elements (REEs), ya que literalmente son minerales escasos. A pesar de lo que parece indicar el nombre del grupo, muchos de ellos no son difíciles de encontrar, siendo al

contrario más numerosos que la mayoría de los metales comunes (Figura 13). El nombre alude más bien al escaso conocimiento que había sobre ellos. La similitud de sus propiedades físicas y químicas hace inevitable que aparezcan juntos en minerales a lo largo de la corteza terrestre, lo que dificulta mucho los procesos de separación para conseguir los metales puros [7].

En 1913 Moseley demostró que había 14 números atómicos entre el lantano y el hafnio. En 1907 se identificaron y prepararon todos ellos con cierto grado de pureza, excepto el prometio de número atómico 61, que no fue aislado hasta 1948 por Marinsky y Coryell gracias a la técnica de cromatografía iónica, partiendo de los productos de fisión del uranio. Aunque son relativamente abundantes en la corteza terrestre, las tierras raras rara vez se producen o encuentran en formas concentradas, lo que supone un reto técnico y económico [8].

	2																10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
1 H																	He
3 Li	4 Ba											5 B	6 C	7 N	80	9 F	10 Ne
11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	A1 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
										_							
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Figura 12. Los elementos tierras raras remarcados en color gris en la tabla periódica (elaboración propia).

1.3.1. Producción de los REEs

La extracción mundial de estos metales se ha ido incrementando conforme aumentan los diferentes usos de los mismos. Inicialmente era muy escasa y prácticamente comenzó a mediados del siglo XX. En la actualidad el suministro de lantánidos en todas sus formas químicas está dominado por China, que consigue prácticamente el 97% de la producción mundial (Figura 14) [21].

Figura 13. Abundancia (fracción de átomos) de los elementos químicos en la corteza continental superior de la Tierra en función del número atómico. Los elementos menos abundantes marcados en amarillo. Con letras en azul los elementos tierras raras, se puede observar que son más abundantes que por ejemplo Au y Ag [13].

La producción de tierras raras es algo más compleja que la de otros metales. Esto es debido a que un mineral puede contener hasta 16 elementos diferentes. No se conoce un mineral que contenga uno solo de los elementos lantánidos como componente principal. El prometio prácticamente no aparece en la naturaleza, tan solo cantidades traza de prometio han sido detectados en minerales de uranio 238 [7].

Para convertirse en productos económicamente viables estos elementos se tienen que separar. Actualmente hay poca capacidad de separación. Los óxidos de tierras raras se convierten en metales de alta pureza o aleaciones de tierras raras normalmente utilizando uno de dos métodos, electrólisis o reducción metalotérmica [7].

El desarrollo de China en la explotación y fabricación de tecnología empleando tierras raras ha ocasionado en el resto del mundo un déficit de infraestructura intelectual para este campo, por lo cual se están realizando esfuerzos para la explotación y desarrollo de tecnología con tierras raras en otros países [21].

Figura 14. Producción mundial de tierras raras expresada en kilo toneladas de óxidos, de 1950 a 2011, en cuatro categorías: Resto de países, EE.UU., China y Total global [5].

1.3.2. Panorama de los elementos tierras raras en México

En México la Comisión de Ciencia y Tecnología de la Cámara de Diputados logró poner en el acuerdo de desarrollo minero 2013-2018 la iniciativa estratégica para impulsar la búsqueda de tierras raras [10], misma que se concretó en un apoyo del CONACYT al Campus Morelos de UNAM para liderar un consorcio con la Universidad Autónoma del Estado de Morelos y empresas vinculadas al Parque Científico y Tecnológico del Estado de Morelos PCYTEM.

El Instituto de Ciencias Físicas de la UNAM dirigió en 2013 una primera fase de trabajo para el análisis de las formaciones geológicas mexicanas más afines a las tierras raras, en el que destacan en Oaxaca, Hidalgo, Coahuila, Durango, Sinaloa y Sonora [9]. Actualmente el consorcio continúa con trabajo de investigación en la metalurgia extractiva y exploración en Baja California y el norte de Chihuahua [11, 12].

1.3.3. Aplicaciones de las tierras raras

Las tierras raras se han convertido en los metales desconocidos que están detrás de los prodigiosos dispositivos electrónicos actuales. No se suelen encontrar como metales que den forma a los productos, las tierras raras las tenemos que buscar dentro de la composición compleja de los componentes internos o integrados como adiciones del acero. La miniaturización de los dispositivos se consigue gracias a las propiedades de estos elementos. De esta manera, un moderno teléfono inteligente emite luz y sonido, unos imanes de neodimio se usan para que funcione el altavoz, el motor vibratorio y los intra-auculares, la pantalla de cristal líquido usa europio para los colores rojos y terbio para el verde. En la Tabla 1.1 se resumen los principales usos de las tierras raras [12].

Elemento	Principales usos
Escandio	Iluminación fluorescente, pigmentos y trazadores médicos.
Lantano	Motores híbridos, baterías híbridas y aleaciones metálicas.
Cerio	Catalizador en automóviles, refinerías de petróleo, aleaciones metálicas,
	motores híbridos y baterías hibridas.
Praseodimio	Imanes, motores híbridos, baterías hibridas, discos duros de computadora,
	teléfonos móviles, cámaras, reflectores y piezas de aviones.
Prometio	Unidades portátiles de rayos x.
Neodimio	Imanes de alta fuerza, catalizador de automóviles, refinerías de petróleo,
	discos duros de computadora y laptops, teléfonos móviles, auriculares,
	cámaras, motores híbridos y baterías hibridas.
Samario	Imanes.
Europio	Color rojo para pantallas de televisión, de computadoras y fibra óptica.
Gadolinio	Imanes.
Disprosio	Imanes permanentes, motores híbridos, baterías híbridas, discos duros de
	computadora, teléfonos móviles y cámaras.
Terbio	Con fósforo para el color rojo en pantallas LCD, PDR y CTR, imanes
	permanentes, discos duros de computadora, teléfonos móviles y cámaras.
Erbio	Con fosforo para el color rojo en pantalla LCD, PDR y CTR .
Itrio	Color rojo, lámparas fluorescentes, cerámica, aleaciones metálicas y fibra
	óptica.
Holmio	Coloración de vidrio y laser.
Tulio	Instrumentos médicos como rayos x.
Lutecio	Catalizador en la refinación de petróleo.
Yterbio	Láser y aleaciones de acero.

Tabla 1.1. Principales usos de las tierras raras [12].

1.4. Los jales mineros

Se le denomina jal (del náhuatl xalli, que significa arenas finas) al producto de desecho de la roca generado tras trituración y molienda de los minerales, una vez que se han recuperado los metales económicos [15, 16].

Los jales son residuos sólidos generados en las operaciones primarias de separación y concentración de minerales. Los jales mineros, por sus características tóxicas, determinadas por su composición u oxidación y por su forma de manejo, pueden representar un riesgo para el equilibrio ecológico, el ambiente y la salud de la población en general, por lo que es necesario establecer los criterios y procedimientos para su correcta disposición [14].

Generalmente el tamaño del material que constituye el jal está en el intervalo de centímetros o milímetros. Estos residuos poseen características físicas particulares; Las más importantes son: Composición mineralógica, tamaño de partícula (granulometría medida en cm, mm y micrómetros), densidad, porosidad (cantidad de huecos, poros o fisuras dentro del depósito por donde circula el agua), permeabilidad y color (parámetro que refleja características químicas como la oxidación, mostrando un color café-rojizo, mientras que jales inalterados presentan coloraciones grisáceas) [16].

Los problemas ambientales relacionados al mal manejo de jales mineros tienden a cambiar y tener efectos en el ambiente tales como [17]:

- o Destrucción del suelo y la cobertura vegetal del área.
- Generación de drenaje ácido de mina.
- Acumulación de material con altos contenidos de efluentes potencialmente tóxicos.
- Modificación de habitat.

1.4.1. Mineralogía de los jales

La mineralogía de los jales está estrechamente relacionada con la composición química y mineralógica del yacimiento de origen. La mineralogía puede ser una característica representativa de los jales por lo que la clasificación de los minerales presentes en los jales permite diferenciar los minerales que no han sido alterados químicamente y que se encuentran en su estado original, de los que cristalizan por reacciones químicas y los que se forman durante el secado de los jales y que afloran en la superficie de los mismos. De acuerdo con Jambor y Blowes (1994) [18] se tiene la siguiente clasificación:

- Minerales primarios; se nombra así, a los que no han sufrido cambios físicos durante el proceso metalúrgico de extracción, y su composición es similar a la del yacimiento original. En general son sulfuros metálicos, carbonatos, aluminosilicatos, hidróxidos, etc.
- Minerales secundarios; éstos se pueden formar durante los procesos de flotación, sin embargo, por lo regular son el producto de los cambios que ocurren en la presa de jales (intemperismo), así como, por la precipitación de constituyentes derivados de la oxidación de los sulfuros metálicos y alteración o disolución de los carbonatos, aluminosilicatos e hidróxidos. Los minerales secundarios más importantes son los oxihidróxidos de Fe (goethita) y sulfatos (jarosita y yeso).
- Minerales terciarios; son aquellos que cristalizan cuando los jales comienzan a drenarse en el depósito. Estos minerales precipitan en los poros del jal dándole cohesión y cementándolo rígidamente, por lo regular forman superficies blancas donde existen minerales de sulfatos como el yeso.

Capítulo 2 Desarrollo experimental

2.1. Muestra de jal

La muestra de jal que se analizó con el método de cuantificación de tierras raras para la confirmación de matriz fue tomada el 14 de septiembre de 2016 en el estado de Michoacán (UTM X: 0781843 y Y: 1997270), la muestra se encuentra resguardada en el LABQA con código J1-A-336-16 (Figura 15). Para su análisis en el ICP-OES se prepararon seis repeticiones de la muestra de jal.

Nota: Para la selección del sitio de muestreo se realizó un trabajo previo de exploración analizando por ICP-MS concentraciones de tierras raras en presas de jales, seleccionando la presa que mostro mayor probabilidad de encontrar dichos elementos.

Figura 15. Evidencia fotográfica de la toma del jal J1-A.
2.2. Material de referencia certificado (solución)

Para la preparación de las curvas de calibración se empleó el estándar de referencia "JCP-AM-MISA5" el cual contiene una concentración de 100 mg/L de cada uno de los elementos tierras raras en una solución de HNO₃ al 2% [25, 32] (Anexo 1).

Figura 16. MRC ICP-AM-MISA5.

2.3. Material de referencia certificado (matriz)

Se empleó el MRC OREAS 465 el cual contiene 9.88% de tierras raras en una matriz de suelo latérico, el MRC fue preparado y certificado por la empresa Ore Research & Exploration. Los materiales que lo constituyen proceden del depósito central de lantánidos en Australia. La Tabla 2.1 muestra las concentraciones de los elementos de

tierras raras de interés para el presente trabajo (el certificado se encuentra en el Anexo 2) [28].

4-Acid Digestion					
Elemento	Unidades	Valor certificado			
Sc	ppm	149			
Y	ppm	478			
La	wt.%	2.27			
Ce	wt.%	3.91			
Pr	ppm	3670			
Nd	wt.%	1.1			
Sm	ppm	1307			
Eu	ppm	282			
Gd	ppm	581			
Tb	ppm	57			
Dy	ppm	215			
Но	ppm	26.8			
Er	ppm	47.3			
Tm	ppm	3.82			
Yb	ppm	14.9			
Lu	ppm	1.72			

Tabla 2.1.Resumen de las concentraciones de tierras raras certificadas en el MRC OREAS 465 [28].

Nota: ppm se refiere a mg/kg y wt% a %masa/masa

2.4. Equipos, materiales, reactivos y disoluciones

2.4.1. Equipos

 Espectrómetro de emisión óptico por plasma acoplado inductivamente (ICP-OES) marca Agilent modelo 5100 (Figura 17), con auto-muestreador y bomba SVS2+ controlado por computadora con corrector de fondo. La Tabla 2.2 muestra las condiciones de trabajo del equipo establecidas en el análisis de muestras.

Figura 17. Espectrómetro de emisión óptico por plasma acoplado inductivamente *(ICP-OES) en el LABQA.*

Parámetros	Condición
Réplicas por muestra	3
Retraso de toma de muestra	10 segundos
Tiempo de lectura	3 segundos
Potencia de RF	1.20 kW
Tiempo de estabilización	5 segundos
Altura de visualización	8 mm
Flujo de nebulizador	0.70 L/min.
Flujo de plasma	12.0 L/min.
Flujo auxiliar 1	0.70 L/min.
Flujo auxiliar 2	0.50 L/min.

Tabla 2.2. Condiciones de análisis en el ICP-OES.

Nota: La temperatura ambiente fue controlada por un sistema de

aire acondicionado a 16°C.

Horno de microondas Milestone Ethos Easy (HMOMEE) con rotor SK-15 de alta presión.

Figura 18. Horno de microondas Milestone Ethos Easy.

- Balanza analítica OHAUS.
- Parrilla eléctrica.

2.4.2. Materiales

- Micro pipeta y *puntas 1-10 mL.
- Micro pipeta y *puntas 100-1000 microlitros.
- *Matraz aforado de 10 mL, 25 mL y 50 mL.
- *Vasos de precipitados de teflón de 50 mL.
- Termómetro de mercurio 1 a 100 grados centígrados.
- Papel filtro Whatman 42 R.U.

- Micro espátula.

(*) NOTA: Este material siguió el proceso de lavado validado por el LABQA en el ,apéndice A" se detalla dicho proceso. El material de vidrio volumétrico que se empleo es tipo A [30].

2.4.3. Reactivos

- Ácido nítrico 70% bidestilado, Meyer.
- Ácido nítrico 70%, Meyer.
- Ácido fluorhídrico 51% bidestilado, Repro-Quifin.
- Ácido perclórico 70% bidestilado, Química dinámica.
- Ácido clorhídrico 36.5% bidestilado, Química didáctica.
- Agua grado reactivo, calidad tipo 1 (18 M Ω).

2.4.4. Preparación de disoluciones

Muestra para digestión en horno de microondas:

- En charola de plástico de 1 gramo, se pesan 0.200 g de muestra identificándola en el registro de la balanza analítica (no se pesa directamente en el vaso de digestión porque la estática del vaso causa mediciones erróneas).
- 2. La muestra se traspasa al vaso de digestión, para asegurar que no queden residuos en la charola se puede limpiar al momento de agregar los ácidos del paso 3.
- Se agregan al vaso de digestión 3 mL de ácido nítrico, seguido de 2 mL de ácido perclórico y 5 mL de ácido fluorhídrico.
- 4. Los vasos se cierran al terminar la efervescencia que se presenta (aproximadamente al pasar 1 minuto).

*Ácido nítrico 2%:

 En un matraz aforado de 1L se agregan aproximadamente de 100 mL a 500 mL de agua tipo 1 (que se emplea como cama de agua).

- Con el dispensador de ácido nítrico al 70% se agregan 20 mL de ácido nítrico al matraz y se afora con agua tipo 1.
- 3. Se homogeniza a solución liberando el gas producido.
- (*) NOTA: Empleado en la preparación de las soluciones para la curva de calibración.

*Blanco del sistema:

- En un vaso de digestión se agregan 3 mL de ácido nítrico, seguido de 2 mL de ácido perclórico y 5 mL de ácido fluorhídrico (no se agrega muestra).
- Se realiza el proceso de digestión y el proceso de evaporación de ácido fluorhídrico.
- 3. Se afora a 25 mL con HNO_3 al 2%.

(*) NOTA: Blanco sometido a todo el proceso de preparación de muestra, empleado para determinar el LD y LC del sistema.

2.5. Plan de validación

Para facilitar el análisis de los resultados, los parámetros de desempeño se dividen en dos grupos: validación del sistema y validación del método. La Tabla 2.3 presenta un resumen de la validación del sistema así como la Tabla 2.4 presenta un resumen del plan de confirmación del método.

Parámetro	Analizar	Obtener	Criterio
Intervalo de trabajo, Linealidad y sensibilidad analítica	Se prepararon 5 curvas de calibración independientes con 8 niveles de concentración. Realizar el ajuste de la curva por mínimos cuadrados de la respuesta del equipo en función de la concentración del analito.	Coeficiente de correlación lineal (r). m(pendiente).	r ≥ 0.995 La pendiente ó sensibilidad analítica se obtiene de la curva de calibración.
LD y LC	Se prepararon 6 blancos del sistema. Lectura de los 6 blancos en el ICP-OES.	En unidades de concentración (mg/L) LD = (3*s)/m $LC = (10*s)/m$ s: Es la desviación estándar de la respuesta del ICP-OES.	
Recobro	Se prepararon 6 soluciones independientes de MRC (solución) de concentración 2mg/L. Lectura de las 6 soluciones. Calcular concentración de los elementos recuperados del MRC y obtener el porcentaje de recobro con respecto al valor adicionado.	$R = \frac{\overline{C_{obtenida}}}{\overline{C_{esperada}}} x100$ $\overline{\overline{C_{obtenida}}} : Media de la concentración (mg/L) obtenida de las repeticiones. Cesperada: Concentración esperada (2 mg/L).$	Desviación máxima de 100±3%
Repetibilidad	Se prepararon 6 soluciones independientes de MRC (solución) de concentración en un punto medio dentro de la curva de calibración (2 mg/L). Determinar la concentración de las disoluciones a través de la curva de calibración.	$DER = \left(\frac{S}{\overline{C_{obtenida}}}\right) X100$ s: Desviación estándar de la concentración mg/L.	Desviación estándar relativa (DER) igual o menor al 3%.

 Tabla 2.3. Resumen del plan de validación del sistema.

Parámetro	Analizar	Obtener	Criterio
	Se prepararon 7 muestras de MRC	En unidades de concentración	
	(matriz solida) de bajas concentración	(mg/kg)	
LD y LC	en el intervalo de la linealidad del		
	sistema, las muestras pasan por todo	$IDm = \frac{3s}{r} r \frac{V_{aforo}}{V_{aforo}}$	
	l proceso de digestion.	$LDm = \frac{1}{m} x \frac{1}{M_{muestra}}$	
	OFS		
		$10s V_{aforo}$	
		$LCm = \frac{1}{m} x \frac{1}{M_{muestra}}$	
		s: Es la desviación estándar de la	
		respuesta del ICP-OES.	
		V _{aforo} : Volumen de aforo (25mL)	
		M _{muestra} : Masa de la muestra (0.2g)	
	Se prepararon / muestras de MRC	Ē	Desvia-
Recobro	(matriz), se realizan las diluciones	$R = \frac{c}{C} \times 100$	ción
	que de dentro del intervalo lineal del	C certificada	máxima
	sistema y se miden en el ICP-OES.	\overline{C} : Media de las concentraciones	de
	Calcular la concentración (mg/kg) de	(mg/kg) determinadas.	100±20%
	los elementos recuperados y el	C _{certificada:} Concentración (mg/kg)	
	porcentaje de recobro con respecto al	certificada.	
	valor certificado.	(\$)	
	Se prepararon / muestras de MRC	$DER = \left(\frac{3}{\overline{C}}\right) X100$	
Repetibilidad	para que la concentración (mg/L)		DER
-	quede dentro del intervalo lineal del	s: Desviación estándor de la	$\leq 20\%$
	sistema y se miden en el ICP-OES.	concentración mg/kg	
	Calcular la concentración (mg/kg) de		
	los elementos recuperados.	2	
	Con el apoyo del laboratorio de	$DER = \left(\frac{S}{\overline{c}}\right) X100$	
Reproducibili-	geoquímica ambiental del instituto de		DER
dad	MRC (matriz) por un método de	s: Desviación estándar de la	$\leq 20\%$
	digestión total abierta y se midieron	concentración (mg/kg) del conjunto	
	en el ICP-OES. Se determina la	de muestras de repetibilidad y	
	concentración (mg/kg) de los	\overline{C} : Media de las concentraciones	
	elementos recuperados del MRC.	(mg/kg) de repetibilidad v	
		reproducibilidad determinadas.	
	Se evalúan todas las contribuciones a	Calcular la incertidumbre	
Incertidum-	la incertidumbre. Se plantea la	combinada y expandida.	
bre	ecuación para estimar la		
	incertidumbre combinada.		

Tabla 2.4. Resumen del plan de confirmación del método.

2.6. Desarrollo del método de cuantificación

2.6.1. Selección de longitud de onda

El equipo ICP-OES Agilent 5100 contiene una base de datos con líneas de emisión recomendadas por Agilent Technologies, además el equipo puede medir la emisión axial y radial por separado [33]. Por lo cual se realizaron pruebas de selección de longitudes de onda en vista axial y se tomaron en cuenta los siguientes parámetros para la selección en el intervalo de trabajo de 0.2 a 3.5 mg/L (Tabla 2.5) [31]:

- Desviación estándar relativa de la intensidad en cada concentración de la curva de calibración debe ser igual o menor a 3.0%.
- Coeficiente de correlación lineal (r) debe ser mayor o igual a 0.995.

	Tubiu 2.5. Longitudes de ondu evaluadus.
Elemento	Longitudes de onda (nm) evaluadas en vista axial
Се	<i>413.380/</i> 418.659 / <i>422.260/ 456.236</i>
Dy	<i>340.780/ 353.171/ 353.602/ 387.211/ 394.468</i>
Er	<i>326.478/349.910/369.256/389.623</i>
Eu	381.967/412.972/ 420.50 4
Gd	<i>301.013/310.050/342.246/364.620/376.840</i>
Но	339.895/341.644/ 345.600 /351.559
La	333.749 / 379.082/ 379.477
Lu	219.556 /261.340/261.541/290.030/291.139/307.760/547.668
Nd	<i>399.174/399.467/406.108/410.907</i>
Pr	<i>390.843/396.525/405.653/410.072/418.948</i>
Sc	255.235/256.023/335.372/358.092/ 361.383 /365.179
Sm	<i>356.827/360.428/388.528/431.893/445.272/446.734</i>
Tb	<i>321.998/332.440/350.914/365.889/367.636/370.285</i>
Tm	<i>336.261/346.220/370.026/379.576</i>
Y	224.303/320.027/321.668/360.074/ 361.104 /371.029/377.433/
	378.869/488.368
Yb	211.667/222.447/289.138/297.056/328.937/ 369.419

Tabla 2.5. Longitudes de onda evaluadas.

Nota: En el presente trabajo para cada elemento se presenta sólo la longitud de onda que mejor cumplió con los criterios de aceptación tanto de la validación del sistema como de la confirmación del método (en la Tabla 2.5 dichas longitudes de onda se encuentran marcadas en negritas).

2.6.2. Método de digestión

El proyecto busca la cuantificación de los elementos tierras raras totales por lo que se realizó la evaluación de un método de digestión total asistida por horno de microondas [27, 28]. La Tabla 2.6 muestra las condiciones y características del método de digestión asistida por microondas. En el Apéndice B se encuentra detallado el procedimiento de digestión.

Parámetro	Condición	
Muestra	0.2 g de muestra	
Ácidos empleados para la digestión	3 mL de HNO ₃ + 2 mL de HClO ₄ + 5 mL de HF	
Condiciones de temperatura y	T1=180°C en t1=25 min.	
tiempo en el HMOMEE	T2=180°C durante t2=25 min.	
Lavado de vasos de digestión	2 mL + 2 mL de HCl	
Tratamiento posterior a la digestión	Evaporación del HF y aforo con HNO ₃ al 2%.	

Tabla 2.6. Condiciones de pruebas de digestión asistida por horno demicroondas.

2.7. Experimentación de la validación del sistema

2.7.1. Linealidad del sistema

El intervalo de concentraciones se seleccionó en base a que se esperan bajas concentraciones (mg/kg) de tierras raras en muestras de jal y a experimentos previos de estudio de curvas de calibración a bajas concentraciones (0.01-0.1 mg/L) y altas concentraciones (1 a 25 mg/L), seleccionando el intervalo que mejor cumplió el criterio de linealidad para el todo el conjunto de elementos. Para validar la linealidad del sistema

se midieron cinco curvas de calibración independientes (ver Tabla 2.7), los datos obtenidos, de las cinco curvas, se graficaron (la respuesta del equipo en función de la concentración) para cada elemento, además se realizó un análisis de la distribución de los residuales para confirmar la linealidad y se determinaron los parámetros de regresión lineal por el método de mínimos cuadrados [31]:

- La sensibilidad (m) se evaluó a partir de la ecuación 2.1 (pendiente de una recta) en la regresión lineal.

$$m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2} \qquad (2.1)$$

Donde:

- N (40) es el número de parejas de datos experimentales (5*8=40).
- y: es la propiedad medida, intensidad (cuentas de área por segundo).
- x: es la concentración (mg/L) con la que se relaciona a la propiedad y cada punto de la curva de calibración.
- El coeficiente de correlación lineal de Pearson fue evaluado y el criterio de aceptación es que debe ser mayor o igual a 0.995 [31].

$$r = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}} \quad (2.2)$$

Donde:

- x̄: Son las medias de concentración para cada punto de la curva de calibración.
- y: Son las medias de intensidad para cada punto de la curva de calibración.

Concentración (mg/L)	Estándar ICP-AM-MISA5 (mL)	Aforo con HNO ₃ al 2% (mL)
**0.2	0.400	10
**0.5	1.000	10
*1	0.100	10
*1.5	0.150	10
*2	0.200	10
*2.5	0.250	10
*3	0.300	10
*3.5	0.350	10
(*) Nota: Preparand ICP-AM- (**) Nota: Preparad	o a partir del estándar High purity MISA5 de 100 mg/L. o a partir de estándar de 5 mg/L.	<u>.</u>

Tabla 2.7. Curva de calibración.

2.7.2. Límite de detección (LDs) y límite de cuantificación (LCs) del sistema

Se evaluaron LD y LC del sistema (LDs y LCs) midiendo seis muestras de "blanco del sistema" (ver. capítulo 2.4.4) y con los datos de respuesta del equipo ICP-OES los parámetros se calcularon de la siguiente manera [31]:

$$LDs = \frac{3s}{m}$$
(2.3)
$$LCs = \frac{10s}{m}$$
(2.4)

Donde:

- "s"es la desviación estándar de la respuesta del equipo (cuentas por segundo)
- "m"es la sensibilidad de la curva de calibración (cuentas*L/seg.*mg).

2.7.3. Recobro del sistema (R_s)

Para la determinación del recobro se prepararon, con MRC (solución ICP-AM-MISA5), seis muestras independientes de concentración 2 mg/L de cada elemento de las tierras raras y se midieron en el ICP-OES. El recobro expresado en porcentaje se calculó de la siguiente forma:

$$R_s = \frac{\overline{C_{obtenida}}}{C_{esperada}} x100$$
 (2.5)

Donde:

 $\overline{C_{obtenida}}$: Media de la concentración (mg/L) obtenida de las repeticiones. $C_{esperada}$: Concentración esperada (2 mg/L).

El criterio de aceptación fue de 100±3% de recobro [31].

2.7.4. Repetibilidad del sistema

Se prepararon, con MRC (solución multi-elemental 100mg/L) seis muestras independientes de concentración 2 mg/L de cada elemento de tierras raras y se midieron en el ICP-OES. Se realizó por el mismo analista y se utilizó el mismo instrumental.

La precisión de repetibilidad se evaluó calculando la desviación estándar relativa de las concentraciones (mg/L) obtenidas:

$$DER = \left(\frac{s}{\overline{C_{obtenida}}}\right) X100 \tag{2.6}$$

Donde:

 $\overline{C_{obtenida}}$: Media de la concentración (mg/L) obtenida de las repeticiones.

s: Desviación estándar de las repeticiones (mg/L).

Como criterio de aceptación se estableció que el sistema era repetible si la desviación estándar relativa era igual o menor al 3% [31].

2.8.1. Límite de detección (LDm) y límite de cuantificación (LCm) del método

Se prepararon 7 muestras de MRC (matriz OREAS 465) a bajas concentraciones las cuales pasan por todo el proceso de tratamiento de muestras. Los parámetros en unidades de mg/kg se calcularon de la siguiente manera:

$$LD_m = \frac{3s}{m} x \frac{V_{aforo}}{M_{muestra}}$$
(2.7)

$$LC_m = \frac{10s}{m} x \frac{V_{aforo}}{M_{muestra}}$$
(2.8)

Donde:

- "s"es la desviación estándar de la respuesta del equipo (cuentas por segundo).
- "m"es la sensibilidad de la curva de calibración (cuentas*L/seg.*mg).
- V_{aforo} es el volumen de aforo en litros (0.025 L).
- $M_{muestra}$ es la masa de la muestra en kg (0.0002 kg).

2.8.2. Recobro del método (R_m)

Se sometieron a digestión y midieron 7 muestras de MRC (matriz OREAS 465). Para que las concentraciones de los elementos tierras raras queden dentro del intervalo de lineal (0.2 a 3.5 mg/L) se realizaron las diluciones indicadas en la Tabla 2.8. El criterio de aceptación es un porcentaje de recobro de 100±20% el cual se calcula de la siguiente forma:

$$R_m = \frac{\bar{X}_{Calculada}}{X_{MRC}} \times 100 \qquad (2.9)$$

Donde:

- $\overline{X}_{calculada}$: Es la concentración (mg/kg) calculada para cada elemento.
- X_{MRC}: Es la concentración (mg/kg) que se encuentra indicada en el certificado del material de referencia (Anexo 2).

	Dilución 1.	Dilución 2.	Dilución 3.
Flomonto	Después de la digestión	1 mL de ,,dilución 1"	1 mL de "dilución 2"
Liemento	y aforo a 25 mL	en 50 mL	en 10 mL
	(mg/L)	(mg/L)	(mg/L)
Sc	1.19	-	
Y	3.82	0.076	
La	181.60	3.632	0.363
Ce	312.80	6.256	0.626
Pr	29.36	0.587	
Nd	88.00	1.760	
Sm	10.45	0.209	
Eu	2.256		
Gd	4.64	0.093	
Tb	0.456		
Dy	1.72		
Но	0.214		
Er	0.378		
Tm	0.031		
Yb	0.119		
Lu	0.014		

Tabla 2.8. Diluciones al MRC (matriz) OREAS, para que las concentraciones se encuentren dentro del intervalo de lineal de 0.2 a 3.5 mg/L.

2.8.3. Repetibilidad del método

Se prepararon, con MRC (matriz OREAS) siete muestras independientes con concentraciones dentro del intervalo de trabajo del método y se midieron en el ICP-OES. Se realizó por el mismo analista, se utilizó el mismo instrumental y se determinó con el mismo equipo. La repetibilidad se evaluó calculando la desviación estándar relativa de las concentraciones (mg/kg) obtenidas, dividiéndola entre la media de las repeticiones (mg/kg) y multiplicando por cien (ecuación 2.6).

Como criterio de aceptación se estableció que el sistema era preciso si la desviación estándar relativa era igual o menor al 20% [31].

2.8.4. Reproducibilidad del método

Para el parámetro de reproducibilidad (precisión) se contó con el apoyo del laboratorio de ICP-MS del Instituto de Geofísica de la UNAM, donde se prepararon seis muestras de MRC (matriz OREAS) por un método de digestión total abierta, por un analista diferente y con instrumental perteneciente a dicho laboratorio. La reproducibilidad se evaluó calculando la desviación estándar de las concentraciones en matriz (mg/kg) obtenidas en el conjunto de las muestras de ambos laboratorios, dividiendo entre la media de los resultados (mg/kg) y multiplicando por cien para reportar la reproducibilidad como DER (ecuación 2.6):

Como criterio de aceptación se estableció que el sistema era preciso si la desviación estándar relativa era igual o menor al 20% [31].

El procedimiento de digestión total abierta, que empleo el laboratorio del instituto de geofísica es el siguiente:

- 1. Pesar de 0.200 a 0.250 g de muestra y traspasar a un vaso de precipitados de teflón de 50 mL.
- En campana de extracción agregar al vaso de precipitados 10 mL de HF y 4 mL de HClO₄ y dejar reposar 24 horas cubriendo los vasos con papel parafilm.
- 3. Llevar a cabo evaporación hasta residuo húmedo.
- 4. Agregar 5 mL de HF y 2 mL de HClO₄.
- 5. Llevar a cabo evaporación hasta residuo húmedo.
- 6. Agregar 2 mL de HClO₄.
- Llevar a cabo evaporación hasta residuo húmedo, el cual se afora a 25 mL con HNO₃ al 2%.

Nota: Residuo húmedo se refiere a una consistencia gelatinosa que queda al evaporar casi en su totalidad la muestra.

2.8.5. Estimación de la incertidumbre de medida

Para realizar el análisis de las fuentes de incertidumbre se tomó como base el "Seminario Internacional de Metrología Química" impartido por el Dr. Ivo Leito del 25 de abril al 3 de mayo de 2016 por parte de la FQ de la UNAM [4]; como también el procedimiento de estimación de incertidumbre del LABQA [29, 34].

El siguiente diagrama causa-efecto identifica las fuentes más importantes de incertidumbre de medida involucradas en la medición de los elementos empleando ICP-OES.

Figura 19. Diagrama causa-efecto para la medición de los elementos, empleando ICP.

De esta forma es posible diseñar un modelo matemático de la incertidumbre combinada (2.10), a partir de la cual podemos calcular la incertidumbre expandida con un factor de cobertura k=2 e intervalo de confianza del 95% (2.11), para finalmente multiplicar por cien y reportar el resultado como incertidumbre relativa (2.12):

$$U_{C} = \sqrt{u_{c.c.}^{2} + u_{d}^{2} + u_{repe}^{2} + u_{repro}^{2}}$$
(2.10)

$$U_{exp.(k=2)} = U_c \ x \ 2 \tag{2.11}$$

$$U_{rel.(k=2)} = U_{exp.(k=2)} X \ 100 \tag{2.12}$$

Donde:

- U_c es la incertidumbre combinada.
- u_{c.c.} es la contribución de incertidumbre debido a la curva de calibración.
- u_d es la contribución de incertidumbre debido a las diluciones del MRC (matriz).
- u_{repe} es la contribución de incertidumbre debido a la repetibilidad.
- u_{repro} es la contribución de incertidumbre debido a la reproducibilidad.
- U_{exp.(k=2)} es la incertidumbre expandida con factor de cobertura k=2 a un intervalo de confianza del 95%.
- U_{rel.(k=2)} es la incertidumbre relativa con factor de cobertura k=2 para un intervalo de confianza del 95%.

2.9. Muestras para el control de calidad de los resultados en la medición en el equipo ICP-OES

Las muestras para el control de calidad son evidencia de la limpieza en la preparación de muestras y durante su medición en el sistema del equipo ICP-OES [1], sus criterios de aceptación son indicados en la Tabla 2.9. Y se prepararon con el MRC multielemental (solución ICP-AM-MISA5).

		*		
¿Cuándo se	Tipo de muestra	Criterio de aceptación		
aplica?	control			
	Verificación de	Desviación estándar relativa de la intensidad		
	3.5 mg/L	menor a 3%.		
Cada que se mide		Recobro 100± 10%.		
una curva de	de Blanco inicial Concentración menor al LC			
calibración Verificación inicial		Desviación estándar relativa de la intensidad		
	de 1 mg/L	menor a 3%.		
	Recobro 100±10			
	Blanco continuo	Concentración menor al LCm.		
Cada 10 muestras	Verificación	Desviación estándar relativa de la intensidad		
	continua de 1 mg/L	menor a 3%.		
		Recobro±10%.		

Tabla 2.9. Parámetros de aceptación para los controles de calidad.

Capítulo 3 Resultados y análisis

3.1. Selectividad

El equipo ICP-OES Agilent 5100 cuenta con auto-corrector de fondo, una base de datos que indica las longitudes de onda más selectivas y posibles interferencias para cada elemento, la selectividad se sustenta con la correcta selección de las longitudes de onda sin interferencias espectrales y con buen desempeño en los parámetros de validación. En el Apéndice C, se encuentran los gráficos de las longitudes de onda seleccionadas.

3.2. Validación del sistema de medición

3.2.1. Linealidad y sensibilidad analítica

A continuación se muestran los resultados de la evaluación de la linealidad y sensibilidad para el Ce λ =418.659 nm (Tabla 3.1, 3.2 y Figura 20 y 21). Los gráficos y tablas de los demás elementos se encuentran en el Apéndice D.

Concentración analito (mg/L)	Respuesta 1 (cuentas/s)	Respuesta 2 (cuentas/s)	Respuesta 3 (cuentas/s)	Respuesta 4 (cuentas/s)	Respuesta 5 (cuentas/s)
0.2	5875	6007	6010	6025	5984
0.5	15118	15242	15324	15288	14693
1.0	31141	31038	30718	31540	31558
1.5	47810	46430	46936	45178	45777
2.0	60704	60526	60743	60836	60721
2.5	76959	78176	77617	75015	76417
3.0	91523	92176	90288	91063	89348
3.5	105188	107364	104588	104566	105395

Tabla 3.1. Análisis de 5 curvas de calibración independientes de Ce λ =418.659 nm.

Figura 20. Curva de calibración para la prueba de linealidad de Ce λ =418.659 nm.

<i>Taba 3.2</i> .	Datos d	de la	regresión	lineal para	<i>Ce</i> $\lambda = 418.659$	nm
1	Duros		1081051011	meen pen ei	0011 110.0071	

Ecuación de la recta	т	b	r
	(L cuentas mg/s)	(cuentas/s)	
y=(30186.4*x)+491.7	30186.4	491.7	0.9996

Figura 21. Gráfico de los residuales para el Ce λ =418.659 nm.

De la misma forma se obtienen los resultados para cada uno de los demás elementos, en la Tabla 3.3 se muestra el resumen de resultados.

Elemento	Ce	Dy	Er	Eu	Gd	Но
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600
IL (mg/L)	0.2-3.5	0.2-3.5	0.2-3.5	0.2-3.5	0.2-3.5	0.2-3.5
Sensibilidad (L*cuentas/mg*s)	30186.4	55116.7	56331.8	524442.4	72840.3	31746.0
b (cuentas/s)	491.7	872.5	1038.7	7056.5	1138.8	644.5
r	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996

Tabla 3.3. Resumen de resultados para intervalo lineal (IL) y sensibilidad.

Elemento	La	Lu	Nd	Pr	Sc	Sm
λ (nm)	333.749	219.556	406.108	405.653	361.383	388.528
IL (mg/L)	0.2-3.5	0.2-3.5	0.2-3.5	0.2-3.5	0.2-3.5	0.2-3.5
Sensibilidad (L*cuentas/mg*s)	107453.	7372.6	33438.6	15546.6	517816.5	32741.8
b (cuentas/s)	1720.5	162.8	675.3	340.5	10065.6	533.3
r	0.9995	0.9992	0.9995	0.9997	0.9997	0.9996

Elemento	Tb	Тт	Y	Yb
λ (nm)	367.636	379.576	361.104	369.419
IL (mg/L)	0.2-3.5	0.2-3.5	0.2-3.5	0.2-3.5
Sensibilidad (L*cuentas/mg*s)	23544.0	61430.0	152111.3	456165.4
b (cuentas/s)	464.6	867.9	3708.9	11990.2
r	0.9996	0.9997	0.9996	0.9996

El criterio estadístico de linealidad es el coeficiente de correlación "r^r igual o mayor que 0.995 el cual se corrobora a partir de los análisis estadísticos de regresión lineal por mínimos cuadrados que se muestra en la Tabla 3.3, observando que para los 16 elementos se cumple dicho criterio de aceptación.

En cuanto a la sensibilidad analítica se puede apreciar que, a comparación de elementos de menor número atómico, todos los elementos de las tierras raras presentan

altos valores, lo cual es característico para ICP-OES en dichos elementos, siendo el Eu λ = 420.504 nm el más sensible y el Lu λ = 219.556 nm el menos sensible esto es indicador de la susceptibilidad a los cambios de concentración.

También se muestra en la Figura 21 los residuales con los datos de las 5 curvas de calibración independientes; al notar una tendencia de distribución aleatoria en los puntos del gráfico se infiere que el intervalo de concentraciones en estudio se puede evaluar con un análisis estadístico de regresión lineal. En el Apéndice D se encuentran los gráficos de los residuales para los demás elementos.

Cabe mencionar que el software del equipo ICP-OES indica error y no acepta la calibración cuando la desviación estándar relativa de la intensidad medida en cada punto de la curva de calibración rebasa el 3.0%, esto es un indicador de estabilidad en la respuesta del equipo (no se presentan datos), por lo cual, los datos de respuesta del instrumento de todos los elementos se consideran con una respuesta estable.

3.2.2. Límite de detección (LDs) y límite de cuantificación (LCs) del sistema

Como ejemplo del tratamiento de datos para la obtención del LDs y LCs se presentan los datos de Ce λ = 418.659 nm. Los datos gráficos obtenidos para los demás elementos se encuentran en el Apéndice E.

Identificación de la muestra	Respuesta (cuentas*s ⁻¹)
Blanco reactivo 1	190.7
Blanco reactivo 2	1.7
Blanco reactivo 3	138.6
Blanco reactivo 4	32.6
Blanco reactivo 5	10.2
Blanco reactivo 6	47.5
Desviación estándar (cuentas*s ⁻¹)	76.7

Tabla 3.4. Muestras de blanco del sistema, para Ce λ =418.659 nm.

El cálculo de LDs y LCs se realiza empleando las ecuaciones 2.3 y 2.4 de la siguiente forma:

$$LDs = \frac{3 * \left(76.7 \frac{cuentas}{s}\right)}{30186.4 L * \frac{cuentas}{mg * s}} = 0.0076 \frac{mg}{L}$$
$$LCs = \frac{10 * \left(76.7 \frac{cuentas}{s}\right)}{30186.4 L * \frac{cuentas}{mg * s}} = 0.0254 \frac{mg}{L}$$

La Tabla 3.5 presenta los resultados de LDs y LCs de todos los elementos evaluados de igual forma que en el ejemplo anterior.

Elemento	Ce	Dy	Er	Eu	Gd	Но
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600
LDs (mg/L)	0.0076	0.0006	0.0007	0.0002	0.0004	0.0006
LCs (mg/L)	0.0254	0.0019	0.0024	0.0006	0.0012	0.0018

Tabla 3.5. Resumen de los LDs y LCs de todos los elementos evaluados.

Elemento	La	Lu	Nd	Pr	Sc	Sm
λ (nm)	333.749	219.556	406.108	405.653	361.383	388.528
LDs (mg/L)	0.0031	0.0019	0.0015	0.0008	0.0004	0.0019
LCs (mg/L)	0.0103	0.0062	0.0050	0.0025	0.0014	0.0063

Elemento	Tb	Тт	Y	Yb
λ (nm)	367.636	379.576	361.104	369.419
LDs (mg/L)	0.0013	0.0005	0.0003	0.0001
LCs (mg/L)	0.0044	0.0015	0.0009	0.0005

A partir de los resultados de la Tabla 3.5 se puede observar que los LDs y LCs se encuentran por debajo de 0.20 mg/L, el cual es el punto más bajo en las curvas de calibración, lo que indica que el intervalo seleccionado del sistema es adecuado para

determinaciones, siendo el elemento Ce λ =418.659 nm el que presenta LDs y LCs más elevados. Los LDs se encuentran en un intervalo entre 0.0001 mg/L para Yb y 0.0076 mg/L para Ce y en promedio el LDs se encuentra en 0.0014 mg/L, mientras que los LCs se encuentran en un intervalo entre 0.0005 mg/L para Yb y 0.0254 mg/L para Ce y en promedio el LCs se encuentra en 0.0045 mg/L.

3.2.3. Recobro del sistema

A continuación en la Tabla 3.6 se presenta el análisis de datos para la determinación de la exactitud en la cuantificación del Ce λ = 418.659 nm.

Cantidad adicionada (mg/L)	Cantidad recuperada (mg/L)	Promedio (mg/L)	Recobro (%)
	1.943		
	1.991		
2.00	2.060	2 005	100.2
2.00	2.013	2.005	100.2
	2.021		
	2.001		

Tabla 3.6. Resultados de la prueba de recobro del sistema para Ce λ = 418.659 nm.

El cálculo del recobro del sistema en el Ce λ =418.659 nm se realizó de la siguiente forma:

$$Rs = \frac{2.005}{2}x100 = 100.2\%$$

La Tabla 3.7 muestra un resumen con los resultados del porcentaje de recobro evaluado de la misma manera que para el Ce λ =418.659 nm para cada elemento.

Elemento	Ce	Dy	Er	Eu	Gd	Но
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600
Recobro (%)	100.2	100.0	100.9	99.2	99.4	99.8
Elemento	La	Lu	Nd	Pr	Sc	Sm
Elemento λ (nm)	<i>La</i> 333.749	<i>Lu</i> 219.556	<i>Nd</i> 406.108	<i>Pr</i> 405.653	Sc 361.383	Sm 388.528
Elemento λ (nm) Recobro (%)	<i>La</i> 333.749 100.7	<i>Lu</i> 219.556 98.33	<i>Nd</i> 406.108 100.8	<i>Pr</i> 405.653 98.0	<i>Sc</i> 361.383 37.3	<i>Sm</i> 388.528 100.1

 Tabla 3.7. Resumen de resultados para el cálculo del recobro del sistema.

Elemento	Tb	Тт	Y	Yb
λ (nm)	367.636	379.576	361.104	369.419
Recobro (%)	99.9	100.6	100.8	99.7

A partir de la Tabla 3.7 se puede observar que a excepción del Sc todos los demás elementos cumplen con el criterio de aceptación de un recobro de 100±3% por lo cual 15 elementos, a excepción del Sc, nos dan mediciones exactas en el sistema en el intervalo de trabajo de estudiado.

Para el caso del Sc, en el apéndice J, se muestran los resultados de los parámetros de validación del sistema para una curva de calibración a concentraciones de 1 a 25 mg/L intervalo en el cual se cumplen los parámetros de linealidad y recobro de dicho elemento.

3.2.4. Repetibilidad del sistema

Se presenta el ejemplo del cálculo de repetibilidad para el Ce λ =418.659 nm (Tabla 3.8).

Cantidad adicionada (mg/L)	Cantidad recuperada (mg/L)	Desviación estándar (mg/L)	Promedio (mg/L)	Repetibilidad DER (%)
	1.943			
2.00	1.991	0.0383	2 005	1 0
2.00	2.060	0.0305	2.005	1.7
	2.013			
	2.021			
	2.001			

Tabla 3.8. Datos para el cálculo de repetibilidad del sistema en Ce λ =418.659 nm.

El cálculo de repetibilidad (DER) se hace empleando la ecuación 2.6 de la siguiente forma:

$$DER = \frac{0.0383 \ mg/L}{2.005 \ mg/L} x \ 100 = 1.9\%$$

A continuación se presenta en la Tabla 3.9 un resumen de resultados de repetibilidad para cada elemento, los datos fueron tratados de igual forma como se muestra en el ejemplo para el Ce λ =418.659 nm.

Elemento Ce Er Eu Gd Но Dy λ (nm) 418.659 353.171 369.256 420.504 342.246 345.600 Repetibilidad DER (%) 1.90 2.11 2.14 1.89 1.62 1.84 Elemento Lu Nd Pr La Sc Sm λ (nm) 333.749 219.556 406.108 405.653 361.383 388.528 Repetibilidad DER (%) 1.92 1.39 2.64 2.18 34.30 1.71 Elemento Tb Тт Y Yb λ (nm) 367.636 379.576 361.104 369.419

1.96

2.10

2.04

1.67

Repetibilidad DER (%)

Tabla 3.9. Resumen de resultados de repetibilidad del sistema.

Al realizar los cálculos estadísticos de los datos obtenidos para la prueba de repetibilidad se observa que 15 elementos son repetibles debido a que su DER cumple con el criterio de aceptación para repetibilidad en el sistema (DER \leq 3.0%), mientras que no lo es así para el Sc λ =361.383 nm en el intervalo lineal de 0.2 a 3.5 mg/L.

Nota: En el apéndice J se muestran los datos de validación del sistema del Sc en una curva de calibración de 1 a 25 mg/L donde el cálculo de repetibilidad para dicho elemento cumple con el criterio de validación establecido.

3.3. Confirmación del método

3.3.1. Límite de detección (LDm) y límite de cuantificación (LCm) del método

A continuación se presentan los datos obtenidos para el Ce λ = 418.659 nm (tabla 3.10) como ejemplo del tratamiento de datos para la obtención del LDm y LCm. Los datos obtenidos para los demás elementos se encuentran en el apéndice E.

Identificación de la muestra (MRC matriz, Diluciones Tabla 2.6)	Respuesta (cuentas/segundo)	Desviación estándar (cuentas/segundo)
Dilución 3. Repetición.1	19083.2	
Dilución 3. Repetición.2	18808.3	543.7
Dilución 3. Repetición.3	17818.5	
Dilución 3. Repetición.4	18316.1	
Dilución 3. Repetición.5	18264.0	
Dilución 3. Repetición.6	18722.4	
Dilución 3. Repetición.7	19428.3	

Tabla 3.10. Muestras de MRC_{Matriz} a bajas concentraciones para el cálculo de los $LDm \ y \ LCm \ del \ Ce \ \lambda = 418.659 \ nm.$

Y el cálculo para LDm y LCm se realiza empleando las ecuaciones 2.7 y 2.8 primero de la siguiente forma:

$$LDm = \frac{3x \left(543.7 \frac{cuentas}{segundo}\right)}{30186.4 \ L * \frac{cuentas}{mg * segundo}} = 0.0540 \frac{mg}{L}$$

$$LCm = \frac{10x \left(543.7 \frac{cuentas}{segundo}\right)}{30186.4 \ L * \frac{cuentas}{mg * segundo}} = 0.1801 \frac{mg}{L}$$

Y posteriormente para obtenerlos en unidades de mg/kg se multiplica por el volumen de aforo y se divide entre la masa de la muestra:

$$LDm = \frac{0.0540 \ mg}{L} x \frac{0.025 \ L}{0.0002 \ kg} = 7 \frac{mg}{kg}$$

$$LCm = \frac{0.1801 \, mg}{L} x \frac{0.025 \, L}{0.0002 \, kg} = 22 \frac{mg}{kg}$$

A continuación se presenta la Tabla 3.11 con un resumen de todos los LDm y LCm evaluados.

Elemento Ce Dy Er Eu Gd Но λ (nm) 418.659 353.171 369.256 420.504 342.246 345.600 LDm (mg/L)0.0540 0.0028 0.0024 0.0077 0.0208 0.0383 LCm (mg/L)0.1801 0.0093 0.1275 0.0081 0.0258 0.0694 LDm (mg/kg) 7.0 5.0 0.3 3.0 0.3 1.0 LCm (mg/kg) 22.0 1.2 16.0 1.0 3.2 9.0

 Tabla 3.11. Resumen de los resultados para los parámetros LDm y LCm.

		paran	ieiros LDII	i y LCm.		
Elemento	La	Lu	Nd	Pr	Sc	Sm
λ (nm)	333.749	219.556	406.108	405.653	361.383	388.528
LDm (mg/L)	0.0292	0.0155	0.0125	0.0086	0.0085	0.0105
LCm (mg/L)	0.0975	0.0517	0.0418	0.0285	0.0283	0.0351
LDm (mg/kg)	4.0	2.0	2.0	1.0	1.0	1.0
LCm (mg/kg)	12.0	6.0	5.0	4.0	4.0	4.0

Continuación... **Tabla 3.11**. Resumen de los resultados para los

Elemento	Tb	Tm	Y	Yb
λ (nm)	367.636	379.576	361.104	369.419
LDm (mg/L)	0.0083	0.0055	0.0091	0.0239
LCm (mg/L)	0.0278	0.0182	0.0303	0.0796
LDm (mg/kg)	1.0	1.0	1.0	3.0
LCm (mg/kg)	3.0	2.0	4.0	10.0

Los 16 elementos muestran a los LDm y LCm por debajo de 0.20 mg/L el cual es el punto más bajo de la curva de calibración; en el LDm se tiene un intervalo que va de 0.3 mg/kg para Dy y Eu, a un máximo de 7.0 mg/kg del Ce y de manera general se tiene una media de 2.1 mg/kg; el LCm tiene un intervalo que va de 1.0 mg/kg para Eu a un máximo de 22 mg/kg del Ce y en promedio es de 6.65 mg/kg.

Comparando a los LCs, los obtenidos sin matriz, con los LCm, una vez presente la matriz, los segundos tienen un valor más elevado en todos los elementos, lo cual se esperaba debido a que con presencia del MRC_{matriz} existe un mayor número de fuentes de error que generan una mayor variación en las determinaciones, a lo cual se le llama efectos de matriz, que dependen esencialmente de las propiedades fisicoquímicas de la muestra, debido a que interfieren en el proceso de la formación del aerosol. Este tipo de fenómenos afecta directamente en la sensibilidad y en la precisión del equipo, por lo que los LDm y LCm también se ven afectados. Estos efectos de matriz no afectan de manera considerable a los 16 elementos debido a que ninguno es mayor al punto más bajo de la curva de calibración de 0.2 mg/L.

3.3.2. Recobro del método

A continuación en la Tabla 3.12 se presenta el análisis de datos del Ce λ = 418.659 nm.

Cantidad certificada (mg/kg)	Cantidad recuperada (mg/kg)	Promedio (mg/L)	Recobro (%)
	38368		
	37875		
	35796		
39100	36815	37460	95.8
	36714		
	37601		
	39053		

Tabla 3.12. Resultados de la prueba de recobro del método para el Ce λ = 418.659 nm.

La siguiente tabla muestra un resumen con los resultados de los elementos evaluados (Tabla 3.13). En el apéndice F se encuentran los datos para el cálculo de recobro de los todos los elementos.

Elemento	Ce	Dy	Er	Eu	Gd	Но
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600
Recobro (%)	95.8	100.2	68.12	83.8	116.2	36.5
Elemento	La	Lu	Nd	Pr	Sc	Sm
λ (nm)	333.749	219.556	406.108	405.653	361.383	388.528
	07.47	101 5	00 75	00.4	07.1	01.2

Tabla 3.13. Resumen de resultados para el cálculo del recobro del método.

Elemento	Тb	Тт	Y	Yb
λ (nm)	367.636	379.576	361.104	369.419
Recobro (%)	101.0	138.3	80.5	91.9

Los elementos Er, Ho, Lu y Tm se encuentran en concentraciones cercanas del límite de cuantificación del método por lo cual el porcentaje de recobro que presentan no cumple con el criterio de recobro el cual debe ser 100±20%, para esos elementos el recobro con matriz se debe evaluar con otro material que cumpla con el intervalo de trabajo o con adiciones patrón de Er, Ho, Lu y Tm.

A partir de la Tabla 3.13 se puede observar que para los elementos que se encuentran en concentraciones dentro del intervalo de trabajo en estudio a excepción del Sc λ =361.383 nm, se pueden llevar mediciones exactas en el sistema, las cuales incluyen la preparación, es decir, no hay perdida de elementos durante la preparación y las interferencias espectrales son mínimas.

Para el Sc se validó el recobro con el método de digestión abierta el cual se muestra en el apéndice G, debido a que la digestión abierta implica el uso de una mayor cantidad de ácidos y tiempo, ésta es más eficiente lo cual favorece directamente en un mejor recobro y repetibilidad del método.

3.3.3. Repetibilidad del método

Se presenta el ejemplo del cálculo de repetibilidad para el Ce λ =418.659 nm (Tabla 3.14).

Cantidad recuperada (mg/kg)	Desviación estándar (mg/kg)	Promedio (mg/L)	Repetibilidad DER (%)	
38368				
37875	1103	37460	29	
35796	1105	57100	2.9	
36815				
36714				
37601				
39053				

Tabla 3.14. Datos para el cálculo de repetibilidad del método en Ce λ =418.659 nm.

El cálculo de repetibilidad (DER) se hace empleando la ecuación 2.6 de la siguiente forma:

$$DER = \frac{1103 \ mg/kg}{37460 \ mg/kg} x \ 100 = 2.9\%$$

A continuación la Tabla 3.15 presenta el resumen de resultados de repetibilidad, los datos fueron tratados de igual forma como se muestra en el ejemplo para el Ce λ =418.659 nm. Los datos para todos los elementos se encuentran en el apéndice F.

 Tabla 3.15. Resumen de resultados de repetibilidad del método.

Elemento	Ce	Dy	Er	Eu	Gd	Но
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600
Repetibilidad DER (%)	2.9	3.58	4.9	3.11	2.35	8.79

Elemento	La	Lu	Nd	Pr	Sc	Sm
λ (nm)	333.749	219.556	406.108	405.653	361.383	388.528
Repetibilidad DER (%)	2.70	16.7	1.9	2.11	37	1.84

Elemento	Tb	Тт	Y	Yb
λ (nm)	367.636	379.576	361.104	369.419
Repetibilidad DER (%)	19.7	4.37	4.87	7.17

Al realizar los cálculos estadísticos de los datos obtenidos para la prueba de repetibilidad se observa que a excepción del Sc λ =361.383 nm los demás elementos son repetibles debido a que su DER cumple con el criterio de aceptación para repetibilidad en el método y con presencia de matriz (DER $\leq 20\%$), siendo el Nd quien tiene una menor DER, lo cual indica que hay una menor variación en los resultados obtenidos entre las distintas muestras de matriz; mientras que el Tb tiene la mayor DER cercana al criterio de aceptación pero que cumple con la validación.

Para el Sc se validó la repetibilidad con el método de digestión abierta, el cual se muestra en el apéndice G.

3.3.4. Reproducibilidad del método

El cálculo de reproducibilidad se presenta para todos los elementos con el fin de realizar la comparación entre las concentraciones obtenidas por los métodos de digestión de ambos laboratorios. A modo de ejemplo se muestra como se obtuvo la reproducibilidad para el Ce λ =418.659 nm (Tabla 3.16), donde primero se calcula la desviación estándar de la concentración (mg/kg) con los datos en conjunto de ambos laboratorios, para después dividirla entre el promedio de las concentraciones (mg/kg) y multiplicando por 100 para obtener el resultado de reproducibilidad en porcentaje (DER).

Laboratorio	Cantidad recuperada (mg/kg)	Desviación estándar (mg/kg)	Promedio (mg/kg)	Reproducibilidad DER (%)
	38368			
	37875			
LABQA	35796	1 4 4 5	20400	2.5
	36815	1445	38489	3.7
	36714			
	37601			
	39053			
	39401			
	40396			
Instituto de	39762			
geofísica	39205			
	40348			
	39018			

Tabla 3.16. Datos para el cálculo de reproducibilidad en Ce λ =418.659 nm.

El cálculo de reproducibilidad (DER) se hace de la siguiente forma:

$$DER = \frac{1445 \ mg/kg}{38489 \ mg/kg} x \ 100 = 3.7\%$$

A continuación la Tabla 3.17 presenta el resumen de resultados de reproducibilidad; en el apéndice G se encuentran los datos para cada elemento.

Elemento	Ce	Dy	Er	Eu	Gd	Но
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600
Reproducibilidad DER (%)	3.7	2.55	4.8	2.20	4.89	14.6
	-					
Elemento	La	Lu	Nd	Pr	Sc	Sm
Elemento λ (nm)	<i>La</i> 333.749	<i>Lu</i> 219.556	<i>Nd</i> 406.108	<i>Pr</i> 405.653	Sc 361.383	Sm 388.528

Tabla 3.17. Resumen de resultados de reproducibilidad del método.

Elemento	Tb	Тт	Y	Yb
λ (nm)	367.636	379.576	361.104	369.419
Reproducibilidad DER (%)	47	6.45	10.2	6.06

La reproducibilidad supone dar la mayor variación en los resultados, es una medida de la variabilidad en los resultados entre laboratorios, métodos o analistas [4]. Para el caso del Sc λ =361.383 nm se presenta la mayor variación de la reproducibilidad, analizando las concentraciones (mg/kg) que se obtienen con el método de digestión abierta, se puede observar que dicho método cumple con los criterios de porcentaje de recobro y repetibilidad como se muestra en la Tabla 3.18. En el capítulo 2.8.5 se indica que el método de digestión abierta implica el uso de una mayor cantidad de ácidos y tiempo para la digestión, por lo que es más eficiente en comparación con el método de

digestión asistido por horno de microondas (Capitulo 2.6.2), permitiendo cumplir con los parámetros de recobro y repetibilidad para el Sc λ =361.383.

Laboratorio	Concentración certificada. MRC Matriz (mg/kg)	Recobro por laboratorio (%)	Repetibilidad por laboratorio DER (%)	Reproducibilidad DER (%)
LABQA	149	27	37	44
Instituto de Geofísica		94	0.6	

Tabla 3.18. Análisis de reproducibilidad del Sc λ =361.383 nm.

En cuanto al Tb λ = 367.636 nm la digestión abierta no cumple con el parámetro de recobro, como se muestra en la Tabla 3.19, lo cual ocasiona una reproducibilidad que se encuentra arriba del parámetro de validación.

Laboratorio	Concentración certificada. MRC Matriz (mg/kg)	Recobro por laboratorio (%)	Repetibilidad por laboratorio DER (%)	Reproducibilidad DER (%)
LABQA	57	100.1	19.7	47
Instituto de geofísica		262	0.02	

Tabla 3.19. Análisis de reproducibilidad del Tb λ =367.636 nm.

El Lu λ =219.556 nm tiene alta desviación estándar cercana a 20% debido a que se encuentra en concentraciones por debajo del límite de cuantificación.
Los elementos restantes cumplen con el criterio de reproducibilidad que se indica debe ser igual o menor al 20%.

3.3.5. Estimación de la incertidumbre

A continuación se muestra el ejemplo de estimación de incertidumbre relativa para el Ce λ =418.659 nm; una explicación más detallada de la obtención de la incertidumbre debida a la curva de calibración y a las diluciones se da en el apéndice H.

Primero se obtiene la incertidumbre combinada como la raíz cuadrada de la suma de las varianzas de cada contribución:

$$U_{c.Ce\lambda=418.659nm} = \sqrt{(0.0040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2} = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.0021)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.0021)^2 + (0.0029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0021)^2 + (0.0021)^2 + (0.0029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0017)^2 + (0.0021)^2 + (0.0029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0017)^2 + (0.0021)^2 + (0.0029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0017)^2 + (0.0021)^2 + (0.0029)^2 + (0.037)^2 = 0.0473$$

$$(1.00040)^2 + (0.0017)^2 + (0.0017)^2 + (0.0017)^2 + (0.0017)^2 + (0.0017)^2 + (0.0017)^2 = 0.0473$$

Entonces para obtener la incertidumbre expandida con un nivel de confianza del 95% se multiplica por el factor de cobertura correspondiente k=2:

$$U_{exp. Ce\lambda=418.659nm} = 0.0945$$

Y para obtener la incertidumbre relativa se multiplica por 100:

$$U_{rel.}(k=2)=9.45\%$$

Los resultados del cálculo de la incertidumbre a un nivel de confianza del 95% (k=2) se muestran en la Tabla 3.20.

E	lemento	Ce	Dy	Er	Eu	Gd	Но
	λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600
Urelat	tiva (K=2) (%)	9.45	8.84	13.75	7.68	10.89	34.10
E	lemento	La	Lu	Nd	Pr	Sc	Sm
	λ (nm)	333.749	219.556	406.108	405.653	361.383	388.528
Urelat	tiva (K=2) (%)	9.42	-	5.80	5.82	-	5.71
	Eleme	ento	Tb	Тт	Y	Yb	
	λ (ni	m)	367.636	379.576	361.104	369.419	
	U _{relativa (K}	(%)	39.41	15.63	22.63	18.80	

Tabla 3.20. Incertidumbre relativa (K=2).

Al realizar los cálculos de incertidumbre se observó que las principales fuentes de incertidumbre son la repetibilidad y la reproducibilidad, mientras que la contribución de la curva de calibración y las diluciones afectan de manera constante en no más del 1% (apéndice H).

Finalmente al comparar las incertidumbres obtenidas, Ho, Y e Yb son los elementos con mayor incertidumbre, debido a las contribuciones de repetibilidad y reproducibilidad que si bien cumplen con los criterios establecidos estos resultan elevados por encontrarse cerca al LCm.

Si bien no es un criterio de aceptación una incertidumbre $U_{rel.}(k=2) \le 10\%$, es deseable, y los elementos Ce, Dy, Eu, Gd, La, Nd, Pr y Sm presentan dicho valor, mientras que $15\% \le U_{rel.}$ (k=2)<10% se consideran aceptables dicho valor lo presentan Gd y Tm, lo cual es indicador de la buena precisión y exactitud.

3.4. Análisis de las muestras de control de calidad

A continuación la Tabla 3.21 muestra el resultado del análisis por ICP-OES de las muestras de control de calidad para el conjunto de elementos analizados.

	Elemento			
	Ce	Dy	Er	Eu
Tipo de muestra control	418.659	353.171	369.256	420.504
	Recobro (%)			
Verificación 3.5 mg/L	97.6	97.5	97.8	97.6
Verificación inicial (1 mg/L)	97.7	99.1	99.1	98.6
Verificación continua (1 mg/L)	99.6	101.1	100.9	99.5
	Concentración (mg/L)			
Blanco inicial	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>
Blanco continuo	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>

Tabla 3.21. Resultados en los controles de calidad.

	Elemento			
	Gd	Ho	La	Lu
Tipo de muestra control	342.246	345.6	333.749	219.556
	Recobro (%)			
Verificación 3.5 mg/L	98.6	98.1	98.4	98.1
Verificación inicial (1 mg/L)	99.0	98.3	99.0	98.5
Verificación continua (1 mg/L)	99.5	100.1	99.4	98.4
	Concentración (mg/L)			
Blanco inicial	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>
Blanco continuo	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>

	Elemento			
	Nd	Pr	Sc	Sm
Tipo de muestra control	406.108	405.653	361.383	388.528
		Recob	ro (%)	
Verificación 3.5 mg/L	98.5	96.5	98.1	98.4
Verificación inicial (1 mg/L)	98.7	98.7	98.7	98.4
Verificación continua (1 mg/L)	100.2	99.8	100.3	100.1
	Concentración (mg/L)			
Blanco inicial	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>
Blanco continuo	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>

	Elemento			
	Tb	Tm	Y	Yb
Tipo de muestra control	367.636	379.576	361.104	369.419
		Recob	ro (%)	
Verificación 3.5 mg/L	97.5	97.6	98.0	98.7
Verificación inicial (1 mg/L)	98.6	98.9	98.5	99.6
Verificación continua (1 mg/L)	100.22	101.1	100.3	100.9
	Concentración (mg/L)			
Blanco inicial	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>
Blanco continuo	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<></td></l.d.m<>	<l.d.m< td=""><td><l.d.m< td=""></l.d.m<></td></l.d.m<>	<l.d.m< td=""></l.d.m<>

Continuación... Tabla 3.21. Resultados de los controles de calidad

Como se puede observar en la Tabla 3.21 para todos los elementos los controles verificación 3.5 mg/L, verificación inicial y continúa cumplen con el criterio de aceptación, el cual es un porcentaje de recobro de $100\pm3\%$. Además, las concentraciones calculadas en los controles blanco inicial y continuo se encuentran por debajo del límite de detección del método. Estos resultados en los controles de calidad comprueban la limpieza de sistema al momento de realizar los análisis en el equipo ICP-OES.

En la Tabla 3.22 se muestra un resumen de los parámetros de validación del sistema y comprobación del método.

Elemento		Ce	Dy	Er	Eu
Longitud d	le onda (nm)	418.659	353.171	369.256	420.504
	Coeficiente de correlación lineal "r"	0.9996	0.9996	0.9996	0.9996
Validación del	Sensibilidad (cuentas*L/mg)	30186.4	55116.7	56331.8	524442.4
sistema	LD (mg/L)	0.0076	0.0006	0.0007	0.0002
515001114	LC (mg/L)	0.0254	0.0019	0.0024	0.0006
	Recobro (%)	100.2	100.0	100.9	99.2
	Repetibilidad DER (%)	1.9	2.11	2.14	1.62
	LD (mg/kg)	7.0	0.3	5.0	0.3
	LC (mg/kg)	22.0	1.2	16.0	1.0
Comprobación	Recobro (%)	95.8	100.2	68.12	83.8
del método	Repetibilidad DER (%)	2.9	3.58	4.9	3.11
	Reproducibilidad DER (%)	3.7	2.55	4.8	2.20
	$\overline{\mathrm{U}_{\mathrm{rel.}k=2}(\%)}$	9.45	8.84	13.75	7.68

Tabla 3.22. Resumen de resultados de validación.

Elemento		Gd	Но	La	Lu
Longitud de onda (nm)		342.246	345.600	333.749	219.556
	Coeficiente de correlación lineal "r"	0.9996	0.9996	0.9995	0.9992
Validación del	Sensibilidad (cuentas*L/mg)	72840.3	31746.0	107453.0	7372.3
sistema	LD (mg/L)	0.0004	0.0006	0.0031	0.0019
Sistema	LC (mg/L)	0.0012	0.0018	0.0103	0.0062
	Recobro (%)	99.4	99.8	100.7	98.33
	Repetibilidad DER (%)	1.89	1.84	1.92	1.39
	LD (mg/kg)	1.0	3.0	4.0	2.0
	LC (mg/kg)	3.2	9.0	12.0	6.0
Comprobación	Recobro (%)	116.2	36.5	97.47	191.5
del método	Repetibilidad DER (%)	2.35	8.79	2.70	16.7
	Reproducibilidad DER (%)	4.89	14.6	3.83	27
	$\overline{\mathrm{U}_{\mathrm{rel.}k=2}\left(\% ight)}$	10.89	34.10	9.42	-

Continuación... Tabla 3.22. Resumen de resultados de validación.

Elemento		Nd	Pr	Sc	Sm
Longitud d	le onda (nm)	406.108	405.653	361.383	388.528
	Coeficiente de correlación lineal "r"	0.9995	0.9997	0.9997	0.9996
Validación del	Sensibilidad (cuentas*L/mg)	33438.6	15546.6	517816.5	32741.8
sistema	LD (mg/L)	0.0015	0.0008	0.0004	0.0019
515001114	LC (mg/L)	0.0050	0.0025	0.0014	0.0063
	Recobro (%)	100.8	98.0	37.3	100.1
	Repetibilidad DER (%)	2.64	2.18	34.3	1.71
	LD (mg/kg)	2.0	1.0	1.0	1.0
	LC (mg/kg)	5.0	4.0	4.0	4.0
Comprobación	Recobro (%)	98.75	99.4	27.1	91.3
del método	Repetibilidad DER (%)	1.9	2.11	37	1.84
	Reproducibilidad DER (%)	2.1	1.90	62	2.13
	$\overline{\mathrm{U}_{\mathrm{rel.}k=2}\left(\% ight)}$	5.80	5.82	-	5.71

Continuación... Tabla 3.22. Resumen de resultados de validación.

Elemento		Tb	Tm	Y	Yb
Longitud d	le onda (nm)	367.636	379.576	361.104	369.419
	Coeficiente de correlación lineal "r"	0.9996	0.9997	0.9996	0.9996
Validación del	Sensibilidad (cuentas*L/mg)	23544.0	61430.0	152111.3	456165.4
sistema	LD (mg/L)	0.0013	0.0005	0.0003	0.0001
Sistema	LC (mg/L)	0.0044	0.0015	0.0009	0.0005
	Recobro (%)	99.9	100.6	100.8	99.7
	Repetibilidad DER (%)	1.96	2.10	2.04	1.67
	LD (mg/kg)	1.0	1.0	1.0	3.0
	LC (mg/kg)	3.0	2.0	4.0	10.0
Comprobación	Recobro (%)	101.0	138.3	80.5	91.9
del método	Repetibilidad DER (%)	19.7	4.37	4.87	7.17
	Reproducibilidad DER (%)	47	6.45	10.2	6.06
	$U_{\text{rel. }k=2}$ (%)	39.41	15.63	22.63	18.80

Continuación... Tabla 3.22. Resumen de resultados de validación.

3.5. Análisis de la muestra de jal

Una vez obtenidos los parámetros de validación en sistema y matriz se realizó el análisis de las concentraciones de los elementos de interés en la muestra real del jal J1-A-336-16 proveniente del beneficio del hierro. La Tabla 3.23 muestra un resumen de los resultados de dicho análisis.

Elemento	Concentración (mg/kg) U(k=2)	
Ce	10.53 ±1.0 <lcm< td=""></lcm<>	
Dy	<ldm< td=""></ldm<>	
Er	0.99 ±0.14 <ldm< td=""></ldm<>	
Eu	<ldm< td=""></ldm<>	
Gd	35.68 ±3.89	
Но	<ldm< td=""></ldm<>	
La	6.35 ±0.60 <lcm< td=""></lcm<>	
Lu	<ldm< td=""></ldm<>	
Nd	16.60 ± 0.96	
Pr	4.09 ±0.24	
Sm	<ldm< td=""></ldm<>	
Tb	132 ± 51	
Tm	<ldm< td=""></ldm<>	
Y	2.98 ±0.67 <lcm< td=""></lcm<>	
Yb	<ldm< td=""></ldm<>	

Tabla 3.23. Concentración de los elementos tierras raras en la muestra de jal J1-A-336-16.

<LDm: Menor al límite de detección del método.

<LCm: Menor al límite de cuantificación del método.</p>

En el jal J1-A-336-16, el elemento que se encuentra en mayor concentración es el Tb, los elementos de interés que le siguen en mayor concentración es el Gd seguido del Nd. Mientras que no se detectaron Dy, Eu, Ho, Lu, Sm, Tm e Yb, no se presenta el resultado para el Sc debido a que la digestión del jal se realizó con el método de digestión por horno de microondas y no por digestión abierta, el cual si se validó para dicho elemento.

El método de cuantificación por ICP-OES permitió realizar el presente trabajo analizando de manera simultánea a todo el conjunto de elementos de interés, además que permitió el establecimiento de una curva de calibración que cambia en orden de magnitud lo cual amplia el intervalo de trabajo (mg/kg) en beneficio de una menor manipulación de la muestra real de jal.

Realizando una comparación entre las concentraciones de tierras raras en minerales (Tabla 3.24), claramente se aprecia que en el jal analizado (Tabla 3.23) las concentraciones son menores, por lo cual, para que una extracción sea económicamente viable, antes se debe realizar un proceso de concentración del grupo de elementos tierras raras.

Tabla 3.24. Composición de algunos minerales encontrados en los principalesdepósitos mundiales, expresados como porcentaje en masa (%) de los óxidos delelemento correspondiente [21].

Elemento	Monacita, costa este, Brasil	Bastnasita, Mountain Pass, California, EEUU	Monacita, North Capel, Australia occidental
Ce	47.00	49.10	46.00
Dy	0.40	Traza	0.70
Er	0.10	Traza	0.20
Eu	0.10	0.10	0.05
Gd	1.00	0.20	1.49
Но	Traza	Traza	0.05
La	24.00	33.20	23.90
Lu	N.D.	Traza	Traza
Nd	18.50	12.00	17.40
Pr	4.50	4.34	5.00
Sm	3.00	0.80	2.53
Tb	0.10	Traza	0.04
Tm	Traza	Traza	Traza
Yb	0.02	Traza	0.10
Y	1.40	0.10	2.40

Capítulo 4

Conclusiones

4.1. Conclusiones

- Para las condiciones de trabajo seleccionadas, se desarrolló y validó un método de cuantificación con el propósito de determinar todos los elementos evaluados, mediante la técnica de espectrometría de emisión óptica por plasma acoplado inductivamente, probando dicho método en una muestra de jal.
- Fue correcta la iniciativa de implementar curvas de calibración a bajas concentraciones ya que con el análisis del jal se confirma que se encontraron en niveles de traza, por lo cual el método es adecuado para su uso en el proyecto "Extracción y recuperación de elementos estratégicos y tierras raras a partir de residuos mineros" que buscará el estudio de un método de concentración de las tierras raras a niveles que pudieran ser económicamente viables para una recuperación.
- Con la validación del sistema de medición para todos los elementos en estudio (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu) se comprobó que se tiene una respuesta (cuentas/segundo), del equipo ICP-OES, que en función de la concentración (mg/L) muestra una relación lineal, además, la medición de dichos elementos es precisa y exacta.
- Con la confirmación del método (en matriz sólida y usando el método de tratamiento de la muestra seleccionado de digestión total asistida por horno de microondas) se comprobó que la medición de los elementos Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu, es precisa y para Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy e Yb, es exacta.
- La medición del elemento Sc es precisa y exacta por el método alterno de preparación de digestión total abierta.
- Finalmente empleando el método desarrollado se comprobó la presencia de los elementos Ce, Er, Gd, La, Nd, Pr, Tb e Y, en una muestra de jal proveniente de un complejo minero en el estado de Michoacán.

4.2. Recomendaciones

- Realizar una prueba con muestras de MRC_{matriz} adicionadas con MRC_{calibrante}, con el fin de aumentar la respuesta del equipo en los elementos de baja concentración como el lutecio y realizar pruebas aumentando la cantidad de MRC_{matriz} para digestiones a 0.4 gramos.
- En base a la experiencia que dejó este trabajo se deben determinar los límites prácticos de detección y cuantificación con el fin de disminuir el porcentaje de error cuando las concentraciones se encuentran cercanas a dichos límites.
- Probar una modificación al método de digestión y ya que no se puede agregar más de 10 mL de ácidos a los vasos de digestión, se puede probar realizando una combinación con una digestión abierta, agregando ácidos posterior a la digestión en horno de microondas, lo cual debe disminuir los efectos de matriz en el caso del elemento escandio.

4.3. Perspectivas a futuro

- Con el método de cuantificación desarrollado se puede iniciar un análisis completo de las concentraciones de tierras raras en presas de jales, además del análisis de la viabilidad económica de realizar la extracción de dichos elementos.
- Debido a que en México es reciente el inicio de la exploración minera de tierras raras, el método de cuantificación también es útil para continuar y apoyar dicha exploración en distintas regiones del país.

Lista de referencias

[1] Morillas, P. (1er. ed. 2016). Guía Eurachem: La adecuación al uso de los métodos analíticos - Una Guía de laboratorio para la validación de métodos y temas relacionados. Disponible en www.eurachem.org. España: Eurolab.

[2] Selectivity in analytical chemistry (IUPAC recommendations 2001), Pure Appl. Chem., 2001, 73(8), 1381.

[3] BIPM. (2008). International vocabulary of metrology. Basic and general concepts an associated terms (pág. 40). Geneva: ISO/IEC.

[4] Leito, I. (2016). Metrology in chemistry. Seminario Internacional de Metrología en Química en la UNAM. México, D.F.: University of Tartu.

[5] U.S. Environmental Protection Agency. (2012). Rare earth elements: A review of production, processing, recycling, and associated environmental issues. EPA Research and Development Office.

[6] International Union of Pure and Applied Chemistry. (2005). Nomenclature of inorganic chemistry. Reino Unido: RSC Publishing.

[7] Flores, G. M. (2013). Desarrollo de un sistema modular de membranas líquidas para separación y determinación de lantánidos, utilizando el ácido di(2-etilhexil) fósforico como transportador. Barcelona, España: Universidad Autónoma de Barcelona.

[8] Marinsky, J. A., Gledenin, L. E., & Coryell, C. D. (1947). The chemical identification of radioisotops of neodymium and of element 61. J. Am. Chem. Soc. , 2781-2785.

[9] Gómez, D. L. (19 de 02 de 2014). CRÓNICA.com.mx. Recuperado el 07 de 06 de 2016, de http://www.cronica.com.mx/notas/2014/816398.html

[10] Secretaria de Economía. (09 de mayo de 2014). Acuerdo por el que se aprueba el programa de desarrollo minero 2013 2018. Estados Unidos Mexicanos: Diario Oficial de la Federación.

[11] Suárez, K. (11 de Julio de 2015). Ampliarán exploración en tierras raras. Reforma.

[12] El Innovador. (9 de Abril de 2014). Impulsan investigación para explotar tierras raras y metales estratégicos para energías sostenibles. Recuperado el 11 de Agosto de 2016, de http://www.elinnovador.mx/noticia.php?w=1005

[13] U.S. Geological Survey. (2002). pubs.usgs.gov. Recuperado el 08 de 08 de 2016, de Rare Earth Elements-Critical Resources for High Technology: http://pubs.usgs.gov/fs/2002/fs087-02/fs087-02.pdf

[14] SEMARNAT. (13 de septiembre de 2004). Norma Oficial Mexicana NOM-141-SEMARNAT-2003, Que establece el procedimiento para caracterizar los jales, así como las especificaciones y criterios para a caracterización y preparación del sitio, proyecto, construcción, operación y postoperación de presas . México: Diario Oficial de la Federación.

[15] Armienta, M. A., Villaseñor, G., & Romero, F. M. (2005). Propuesta de estrategia metodológica para la evaluación de la peligrosidad de jales mineros en México. XXVI Convención Internacional de Minería (págs. 371-374). Veracruz, Ver., México: Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México.

[16] García-Meza, J. (1999). Algas de jales mineros. Tesis de Maestría. UNAM, Distrito Federal, México: Facultad de Ciencias. [17] Salomons, W. (1995). Environmental impact of metals derived from mining activities:Proces, prediction, prevention. Journal of Geochemical exploration, 52, 5-23.

[18] Jambor, J.L., Blowes, D.W., Ptacek, C.J., (2000). Mineralogy of mine wastes and strategies for remediation. In: European Mineralogical Union Notes in Mineralogy, Vol. 2, Environmental Mineralogy, Vaughan, D.J. and Wogelius, R.A. (Eds.), Cap. 7, Etvs University Press, Budapest, 255-290.

[19] ISO 9000:2005 Quality management systems - Fundamentals and vocabulary, ISO Geneva.

[20] Figueroa, G. (2006). Desarrollo de una metodología analítica para el análisis de elementos tierras raras (REE) y traza en rocas, utilizando LA-ICP-AES. Hermosillo, Sonora: Departamento de Geología.

[21] Hill, Steve J. (2007) Inductively coupled plasma spectrometry and its applications. Oxford, UK .

[22] Skoog, D. A., Holler, F. J., & Stanley, R. C. (2008). Principios de análisis instrumental. En D. A. Skoog, F. J. Holler, & R. C. Stanley, Principios de análisis instrumental (pág. 267). México, D.F.: CENGAGE Learning.

[23] RoHS Testing Laboratory. (s.f.). http://www.rohs-cmet.in/. Recuperado el 9 de Agosto de 2016, de http://www.rohs-cmet.in/content/icp-oes

[24] College of Arts and Sciences. (2006). New Mexico State University. Recuperado el 11 de Agosto de 2016, de Introduction to ICP Instrumentation: https://web.nmsu.edu/~kburke/Instrumentation/NMSU\ Optima2100.html [25] High Purity Standards. (2016). PRODUCT DESCRIPTION. Recuperado el 23 de agosto de 2016, de ICP-AM-MISA5: http://highpuritystandards.com/icp-am-misa5/

[26] PAPIIT. (2016). Proyecto IA105216. Extracción y recuperación de elementos estratégicos y tierras raras a partir de residuos mineros . Distrito Federal, México.

[27] EPA. (Diciembre de 1996). METHOD 3052. Microwave assisted acid digestion of siliceous and organically based matrices . U.S.A.

[28] ORE Research & Exploration Pty Ltd. (28 de Abril de 2015). Certified Reference Material OREAS 465. Certificate of analysis for carbonatite supergene REE-Nb ORE (TREO 9.88\%). Bayswater North VIC 3153, Australia.

[29] Martín del Campo, J. M. (2000). Evaluación de la incertidumbre en datos experimentales. Ciudad de México: Instituto de Física, UNAM.

[**30**] LABQA. (25 de 08 de 2014). Manual de calidad y procedimientos. LABQA-IT-10 Lavado de material para determinación de metales por ICP . Ciudad de México, México: Laboratorio de biogeoquímica ambiental-UNAM.

[31] LABQA. (05 de 01 de 2016). Manual de calidad y procedimientos. LABQA-PI-13 Validación de métodos analitícos. Ciudad de México, México: Laboratorio de biogeoquímica ambiental-UNAM.

[32] HIGH-PURITY STANDARDS. (February 5,2016). Certificate of analysis. Product description: ICP-AM-MISA5. Charleston, SC 29423: HIGH-PURITY STANDARDS.

[33] Agilent Technologies. (2016). Home-Promotions-5100 ICP-OES. Recuperado el 21 de 10 de 2016, de 5100 ICP-OES: http://www.agilent.com/en-us/promotions/5100icp-oes.

[34] LABQA. (23 de 04 de 2015). Manual de calidad y procedimientos. LABQA-PIII-ICP-02 Estimación de la incertidumbre de medida en mediciones en el ICP-OES. Ciudad de México, México: Laboratorio de biogeoquímica ambiental-UNAM.

Apéndices

Apéndice A

Lavado de material para determinación de metales por ICP-OES:

- 1. El material debe estar libre de disoluciones y/o residuos. Quitar marcas y etiquetas adheridas al material.
- 2. Se enjuaga tres veces con agua corriente.
- Sumergir el material en agua con detergente libre de fosfatos para limpieza de cristalería y material de laboratorio (Ejemplo HYCLIN). Dejar reposar por mínimo una hora.
- 4. Sacar el material y tallar con una fibra suave o cepillo en caso de los matraces.
- 5. Se enjuaga una vez con agua corriente hasta que el jabón sea eliminado y dejar escurrir.
- Después que el material se haya secado, sumergir en ácido nítrico (grado técnico) al 10% mínimo durante 12 horas.
- 7. Enjuagar 2 veces con agua corriente.
- 8. Enjuagar 2 veces con agua destilada.
- 9. Enjuagar 2 veces con agua desionizada.
- Se deja secar en el área correspondiente libre de corrientes de aire y polvo (no se emplea vacío y/o ningún tipo de trapo o servilleta).

Apéndice B

Procedimiento detallado de digestión de muestras

Figura Ap-B1. Simbología empleada en el diagrama de flujo.

	D Digestión	Digestión para analisís de elemen	tos tierras raras
N°		Descripción	Criterio
1	j Ö	Encender el HMOMEE.	Enciende el display y sistema de extracción de vapores.
2	Þ	Dejar que el HMOMEE se estabilize.	10 minutos.
3	<u>↑</u>	Verificar potencia empleada.	1500W +/- 300W.
4		Identificar cada vaso de digestión en un lugar o gradilla numerada.	No usar plumon ni etiquetas sobre los vasos de digestión.
5	•	Con la llave matraca del rotor, cerrar adecuadamente el vaso de digestión colocando contratapas y portavaso.	Cuando la llave matraca del rotor ya no presiona más es indicador de que el vaso de digestión ya esta cerrado correctamente.
6	>Ŏ	Colocar adecuadamente el sensor de temperatura y los vasos en el rotor SK del HMOMEE.	Se deben mantener fijos al momento de realizar la prueba del rotor
7		Verificar que el rotor gira sin problemas.	El sensor de temperatura y los vasos se mantienen fijos al rotor.
8	Ŏ	Cerrar la puerta del HMOMEE e iniciar el método denominado TR.	El equipo no permite iniciar un método si la puerta no esta cerrada.

Tabla Ap-B1. Procedimiento detallado de digestión asistida por microondas, elaboración propia.

9	è	En el display del HMOMEE selecciónar el método de 'TR' (Tierras raras) y presionar el botón de inicio.	Método TR: Alcanzar T1=180°C en t1=25min. Mantener T2=180°C durante t2=25min.
10	5	Esperar el enfriamiento del equipo.	El equipo no abre a temperaturas mayores de 100°C
11		Sacar los vasos de digestión del HMOMEE y colocarlos en campana de extracción para que tomen la temperatura ambiente.	Esto evitara que al momento de abrir los vasos se presente perdida de sustancia.
12		Retirar el portavasos y abrir los vasos de digestión.	Usando equipo de seguridad y dentro de la campana de extracción.
13	é	Verter el contenido del vaso de digestión a un vaso de precipitados de teflon, realizando limpieza del vaso de digestión con áci do clorhídrico concentrado.	Se emplea vaso de precipitados de teflon debido a que el ácido fluorhídrico presente reacciona con el vidrio.
14	\	Colocar el vaso de teflon con muestra en una parrilla electrica, evaporando hasta que se presente un residuo humedo.	Se evapora el ácido fluorhidrico para evitar que dañe el material de vidrio en los siguientes pasos
15	Ď	Dejar enfriar el vaso de teflon que contiene muestra.	Evitar colocar sustancias calientes en el matrazaforado
16	ļ	Verter el contenido del vaso de teflon a un matraz aforado de 25 mL.	Realizando la limpieza del vaso de tefion y el aforo del matraz con ácido nitrico al 2%
17	FIN	Verter del matraz aforado a los frascos de plasticos para el resguardo de muestra.	Frascos correctamente identificados con tipo y numero de muestra.

Continuación... Tabla Ap-B1. Procedimiento detallado de digestión asistida por microondas, elaboración propia.

Apéndice C Líneas de emisión seleccionadas para el método de cuantificación

Posibles interferencias en Pr (405.653 nm)

Apendice D

Gráficas de las curvas de calibración y residuales

*	1	1 1				1		
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	m	b
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje
0.2	5875	6007	6010	6025	5984			
0.5	15118	15242	15324	15288	14693			
1.0	31141	31038	30718	31540	31558	0.9996	30186.4	491.7
1.5	47810	46430	46936	45178	45777			
2.0	60704	60526	60743	60836	60721			
2.5	76959	78176	77617	75015	76417			
3.0	91523	92176	90288	91063	89348			
3.5	105188	107364	104588	104566	105395			

Tabla Ap-D.1.Respuesta del equipo en 5 curvas de calibración para el Ce λ =418.659 nm.

Figura Ap-D.1.1. Curva de calibración Ce λ =418.659 nm.

Figura Ap-D.1.2. Residuales de la regresión lineal para el Ce λ =418.659 nm.

	$Dy \kappa 555.171 \text{ mm}.$										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b			
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al			
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje			
0.2	10739	11023	11141	11090	11000						
0.5	27510	27809	28103	27968	26976						
1.0	56578	55760	56578	59130	57101	0.9996	55116.7	872.5			
1.5	85962	84851	84896	83972	84897						
2.0	108860	110156	110254	111157	110969						
2.5	141087	141370	141581	136360	140723						
3.0	164677	167499	165507	163543	165661						
3.5	193167	195298	190903	192680	193651						

Tabla Ap-D.2. Respuesta del equipo en 5 curvas de calibración para el $Dv \lambda = 353.171 \text{ nm.}$

Figura Ap-D.2.1. Curva de calibración Dy λ =353.171 nm.

Figura Ap-D.2.2. Residuales de la regresión lineal para el Dy λ =353.171 nm.

Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje
0.2	11122	11343	11457	11612	11341			
0.5	28406	28539	28922	28824	27835			
1.0	58101	57035	57413	60164	59534	0.9996	56331.8	1038.7
1.5	88850	86170	86721	85700	85608			
2.0	112047	114256	112283	112467	113514			
2.5	144472	145977	144946	140457	141388			
3.0	168739	171980	170775	168886	169082			
3.5	197156	199730	195893	196529	195838			

Tabla Ap-D.3.Respuesta del equipo en 5 curvas de calibración para el Er λ =369.265 nm.

Figura Ap-D.3.1. Curva de calibración Er λ =369.265 nm.

Figura Ap-D.3.2. Residuales de la regresión lineal para el Er λ =369.265 nm.

			$Lu \wedge \neg$	120.304 nii	ι.			
Concentración analito (mg/L)	Respuesta 1 (cuentas/s)	Respuesta 2 (cuentas/s)	Respuesta 3 (cuentas/s)	Respuesta 4 (cuentas/s)	Respuesta 5 (cuentas/s)	r Coef. corr. lineal	m pendiente	b int. al eje
0.2	100306	106851	102503	106029	104592			
0.5	257386	267034	265865	269918	259896			
1.0	539414	523745	530200	555147	542464	0.9996	524442.4	7056.5
1.5	808117	807396	807273	805917	795419			
2.0	1054745	1052546	1042705	1062025	1046077			
2.5	1340698	1319389	1348373	1298637	1346024			
3.0	1590948	1608129	1568267	1547970	1555404			
3.5	1826902	1861338	1824501	1821136	1846381			

Tabla Ap-D.4. Respuesta del equipo en 5 curvas de calibración para el Eu λ =420.504 nm.

Figura Ap-D.4.1. Curva de calibración Eu λ =420.504 nm.

Figura Ap-D.4.2. Residuales de la regresión lineal para el Eu λ =420.504 nm.

Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	m	b		
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al		
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje		
0.2	14488	14666	14717	14602	14470					
0.5	37163	36969	37118	36874	35509					
1.0	76874	74499	73875	75589	75357	0.9996	72840.3	1138.8		
1.5	116381	111534	112352	108568	111692					
2.0	145844	146752	145962	145536	145305					
2.5	187644	187107	186220	178726	183583					
3.0	220189	223737	217389	217091	216078					
3.5	256832	260414	253223	252148	254134					

Tabla Ap-D.5. Respuesta del equipo en 5 curvas de calibración para el Gd λ =342.246 nm.

Figura Ap-D.5.1. Curva de calibración Gd λ =342.246 nm.

Figura Ap-D.5.2. Residuales de la regresión lineal para el Gd λ =342.246 nm.

	110 × 545.000 mm.										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b			
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al			
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje			
0.2	6241	6357	6455	6453	6367						
0.5	15874	16154	16183	16278	15709						
1.0	32619	31953	32454	33659	32954	0.9996	31746	644.5			
1.5	50286	49407	49887	48989	48985						
2.0	64052	63882	63726	64673	64058						
2.5	81158	81173	81342	78045	80604						
3.0	95287	97307	94673	95044	94816						
3.5	110918	112986	110607	110287	111842						

Tabla Ap-D.6. Respuesta del equipo en 5 curvas de calibración para el Ho $\lambda = 345.600$ nm.

Figura Ap-D.6.1. Curva de calibración Ho λ =345.600 nm.

Figura Ap-D.6.2. Residuales de la regresión lineal para el Ho λ =345.600 nm.

Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r Coef corr	m nandianta	b int al			
ununio (mg/L)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal	penuienie	eje			
0.2	21482	21696	21584	21357	21252						
0.5	54615	54560	54553	54181	52562						
1.0	113533	109996	109557	111624	111942	0.9995	107453	1720.5			
1.5	172345	165047	165201	161738	162344						
2.0	216308	215525	214021	215957	213408						
2.5	276916	277373	273338	265727	268215						
3.0	330203	325312	321549	320289	322460						
3.5	379565	385499	373905	370853	370393						

Tabla Ap-D.7. Respuesta del equipo en 5 curvas de calibración para el $La \lambda = 333.749$ nm.

Figura Ap-D.7.1. Curva de calibración La λ =333.749 nm.

Figura Ap-D.7.2. Residuales de la regresión lineal para el La λ =333.749 nm.

	$Eu \kappa 219.550 m$.										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	m	b			
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al			
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje			
0.2	1531	1508	1496	1482	1475						
0.5	3878	3777	3768	3728	3607						
1.0	7843	7571	7483	7697	7620	0.9992	7372.6	162.8			
1.5	11926	11415	11432	11184	11051						
2.0	15272	14915	14706	14774	14631						
2.5	19278	18877	18699	18208	18470						
3.0	22777	22707	22122	21904	21680						
3.5	26365	26213	25399	25376	25436						

Tabla Ap-D.8. Respuesta del equipo en 5 curvas de calibración para el $Lu \lambda = 219.556$ nm.

Figura Ap-D.8.1. Curva de calibración Lu λ =219.556 nm.

Figura Ap-D.8.2. Residuales de la regresión lineal para el Lu λ =219.556 nm.

	Nu x 400.100 nm.										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b			
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al			
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje			
0.2	6531	6767	6755	6855	6691						
0.5	16558	17014	17076	17267	16569						
1.0	34278	33758	34078	35479	34612	0.9995	33438.6	675.3			
1.5	52772	52138	52812	51411	51519						
2.0	66396	67037	67280	67901	67750						
2.5	85424	86943	86284	82648	83477						
3.0	101035	103206	100508	99962	99656						
3.5	116289	119256	116393	114810	117960						

Tabla Ap-D.9. Respuesta del equipo en 5 curvas de calibración para el $Nd \lambda = 406.108 \text{ nm}.$

Figura Ap-D.9.1. Curva de calibración Nd λ =406.108 nm.

Figura Ap-D.9.2. Residuales de la regresión lineal para el Nd λ =406.108 nm.

	177.705.055 mm.										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	m	b			
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al			
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje			
0.2	3080	3244	3265	3297	3235						
0.5	7747	7970	7975	8014	7792						
1.0	16133	15974	15866	16586	16445	0.9997	15546.6	340.5			
1.5	24300	23975	24119	23874	23687						
2.0	31251	30953	31226	31633	31342						
2.5	39515	40171	39222	38464	39553						
3.0	47154	47490	46747	46591	46834						
3.5	53711	55868	54027	54361	54735						

Tabla Ap-D.10. Respuesta del equipo en 5 curvas de calibración para el Pr $\lambda = 405.653$ nm.

Figura Ap-D.10.1. Curva de calibración $Pr \lambda = 405.653$ nm.

Figura Ap-D.10.2. Residuales de la regresión lineal para el Pr λ =405.653 nm.

	SC X 501.505 MM.											
Concentración	Respuesta 1	Respuesta 2	Respuesta 3	Respuesta 4	Respuesta 5	r	т	b				
analito (mg/L)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	Coef. corr.	pendiente	int. al eje				
						lineal						
0.2	101064	106486	104564	104903	103900							
0.5	260066	268800	266128	263765	255207							
1.0	531082	525340	527008	551256	543400	0.9997	517816.5	10065.6				
1.5	806356	795582	803920	799428	792617							
2.0	1047443	1051320	1031754	1045545	1040587							
2.5	1320729	1315432	1329143	1287083	1324264							
3.0	1555449	1593047	1558847	1541830	1544646							
3.5	1803540	1839174	1793367	1806796	1826726							

Tabla Ap-D.11. Respuesta del equipo en 5 curvas de calibración para el $Sc \lambda = 361.383$ nm.

Figura Ap-D.11.1. Curva de calibración Sc λ =361.383 nm.

Figura Ap-D.11.2. Residuales de la regresión lineal para el Sc λ =361.383 nm

	Sin K 566.520 nin.										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b			
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al			
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje			
0.2	6394	6543	6654	6566	6476						
0.5	16253	16598	16623	16808	16224						
1.0	33602	32880	33201	34708	33849	0.9996	32741.8	533.6			
1.5	51442	50426	51074	50041	50081						
2.0	64957	64972	65292	66172	65913						
2.5	84196	84651	83464	82030	83080						
3.0	97847	101033	97994	97724	98319						
3.5	113564	116716	113433	112784	115418						

Tabla Ap-D.12. Respuesta del equipo en 5 curvas de calibración para el $Sm \lambda = 388.528 nm.$

Figura Ap-D.12.1. Curva de calibración Sm λ =388.528 nm.

Figura Ap-D.12.2. Residuales de la regresión lineal para el Sm λ =388.528 nm

107 307.030 mm.										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b		
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al		
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje		
0.2	4612	4671	4702	4793	4643					
0.5	11810	11880	11948	12064	11638					
1.0	24575	24666	23996	24960	24541	0.9996	23544	464.6		
1.5	37247	36102	36697	35187	35976					
2.0	47307	46831	47449	47635	47726					
2.5	60250	61634	59654	58440	59686					
3.0	71709	71619	70721	70951	71359					
3.5	82578	83319	81356	81784	81495					

Tabla Ap-D.13. Respuesta del equipo en 5 curvas de calibración para el Tb λ =367.636 nm.

Figura Ap-D.13.1. Curva de calibración Tb λ =367.636 nm.

Figura Ap-D.13.2. Residuales de la regresión lineal para el Tb λ =367.636 nm.

1 <i>m x</i> 577.570 <i>n</i> m.										
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b		
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al		
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje		
0.2	11999	12325	12348	12561	12268					
0.5	30587	31120	31379	31331	30237					
1.0	63038	62944	62174	64636	64367	0.9997	61430	867.9		
1.5	96931	93752	95648	92013	93102					
2.0	121955	122213	122913	123228	123070					
2.5	154609	159644	155494	152310	154241					
3.0	185097	186550	184839	185429	185455					
3.5	213017	218779	214571	213733	214392					

Tabla Ap-D.14. Respuesta del equipo en 5 curvas de calibración para el $Tm \lambda = 379.576 nm.$

Figura Ap-D.14.1. Curva de calibración Tm λ =379.576 nm.

Figura Ap-D.14.2. Residuales de la regresión lineal para el Tm λ =379.576 nm.

	17, 501.104 mm.											
Concentración	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b				
analito (mg/L)	1	2	3	4	5	Coef. corr.	pendiente	int. al				
	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		eje				
0.2	30516	31030	31111	30780	30792							
0.5	77491	78968	78148	77009	74601							
1.0	160469	156563	156075	160703	159427	0.9996	152111.3	3708.9				
1.5	242739	234992	237823	232594	232245							
2.0	306683	306442	307925	307737	307785							
2.5	389904	397083	392895	381097	384804							
3.0	459087	466395	457025	452787	451796							
3.5	531973	540463	526388	530432	535481							

Tabla Ap-D.15. Respuesta del equipo en 5 curvas de calibración para el $Y\lambda=361.104$ nm.

Figura Ap-D.15.1. Curva de calibración Y λ =361.104 nm.

Figura Ap-D.15.2. Residuales de la regresión lineal para el Y λ =361.104 nm.

			$IU \lambda - J$	09.419 mm.				
Concentra-	Respuesta	Respuesta	Respuesta	Respuesta	Respuesta	r	т	b
ción	1	2	3	4	5	Coef.	pendiente	int. al
analito	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	(cuentas/s)	corr.		eje
(mg/L)						lineal		
0.2	89710	94842	92665	93192	91612			
0.5	232479	238865	235837	233061	224394			
1.0	486406	472884	475645	480862	479655	0.9996	456165	11990
1.5	715153	707698	712688	710406	697439			
2.0	922334	927463	912223	925078	919054			
2.5	1178311	1153206	1181644	1135944	1175872			
3.0	1385309	1409765	1368270	1352254	1356544			
3.5	1600984	1622482	1574966	1595178	1604979			

Tabla Ap-D.16. Respuesta del equipo en 5 curvas de calibración para el Yb λ =369.419 nm.

Figura Ap-D.16.1. Curva de calibración Yb λ =369.419 nm.

Figura Ap-D.16.2. Residuales de la regresión lineal para el Yb λ =369.419 nm.

Apéndice E

Datos de los límites de detección y cuantificación

Elemento	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600	333.749	219.556	
Identificación			Resp	uesta (cue	entas/segi	undo)			
de la muestra									
Bco. sist. rep.1	191	27	88	76	21	28	76	15	
Bco. sist. rep.2	2	16	77	40	23	18	80	18	
Bco. sist. rep.3	139	45	114	113	43	28	347	11	
Bco. sist. rep.4	33	33	99	117	31	13	73	23	
Bco. sist. rep.5	10	36	107	65	41	19	51	19	
Bco. sist. rep.6	48	40	92	131	21	20	128	23	
]	Límites d	e detecció	ón y cuan	tificaciór	ı		
LDs (mg/L)	0.0076	0.0006	0.0007	0.0002	0.0004	0.0006	0.0031	0.0019	
LCs (mg/L)	0.0254	0.0019	0.0024	0.0006	0.0012	0.0018	0.0103	0.0062	

Tabla Ap-E.1. Límites de detección y cuantificación del sistema.

Elemento	Nd	Pr	Sc	Sm	Tb	Tm	Y	Yb
λ (nm)	406.108	405.653	361.383	388.528	367.636	379.576	361.104	369.419
Identificación			Resp	uesta (cue	entas/seg	undo)		
de la muestra								
Bco. sist. rep.1	54	153	71	28	36	35	61	47
Bco. sist. rep.2	78	160	26	48	28	36	41	21
Bco. sist. rep.3	98	153	220	30	46	42	64	64
Bco. sist. rep.4	82	148	57	76	17	26	44	26
Bco. sist. rep.5	67	153	40	55	25	46	25	20
Bco. sist. rep.6	56	152	95	22	22	53	47	69
		Límite	es de dete	cción y c	uantificad	ción del s	istema	
LDs (mg/L)	0.0015	0.0008	0.0004	0.0019	0.0013	0.0005	0.0003	0.0001
LCs (mg/L)	0.0050	0.0025	0.0014	0.0063	0.0044	0.0015	0.0009	0.0005

Elemento	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600	333.749	219.556	
Dilución	3	2	1	2	2	1	3	1	
Identificación			Resp	uesta (cue	entas/segi	undo)			
de la muestra									
MRC Dil. 3. r.1	19083	2393	15458	24711	9250	3201	41270	363	
MRC Dil. 3. r.2	18808	2375	15548	24586	9160	2875	40014	389	
MRC Dil. 3. r.3	17818	2255	14723	23496	8770	3044	38624	386	
MRC Dil. 3. r.4	18316	2317	15407	24055	8923	3136	39562	409	
MRC Dil. 3. r.5	18264	2341	15714	23808	8898	3206	38757	448	
MRC Dil. 3. r.6	18722	2309	16107	23943	8958	2931	39674	442	
MRC Dil. 3. r.7	19428	2393	17046	24181	9241	3540	41165	346	
		Límite	es de dete	cción y c	uantificad	ción del n	nétodo		
LDm (mg/kg)	7.0	0.3	5.0	0.3	1.0	3.0	4.0	2.0	
LCm (mg/kg)	22.0	1.2	16.0	1.0	3.2	9.0	12.0	6.0	

Continuación... Tabla Ap-E.1. Límites de detección y cuantificación del sistema.

Nota. Dilución 1 Son 0.2 g del MRC matriz en 25 mL.

Dilución 2 Es la dilución 1 seguida de una dilución 1 mL en 50 mL. Dilución 3 Es la dilución 2 seguida de una dilución 1 mL en 10 mL.

Elemento	Nd	Pr	Sc	Sm	Tb	Tm	Y	Yb	
λ (nm)	406.108	405.653	361.383	388.528	367.636	379.576	361.104	369.419	
Dilución	3	3	2	2	2	1	2	1	
Identificación			Resp	uesta (cue	entas/seg	undo)			
de la muestra									
MRC Dil. 3. r.1	6097	1110	4783	6977	361	3587	12153	64090	
MRC Dil. 3. r.2	6006	1114	4411	6922	293	3601	11933	60213	
MRC Dil. 3. r.3	5739	1073	3057	6637	423	3460	11219	59838	
MRC Dil. 3. r.4	5876	1029	3647	6813	317	3419	11565	60629	
MRC Dil. 3. r.5	5770	1013	3187	6744	417	3549	11512	57313	
MRC Dil. 3. r.6	5915	1126	3309	6745	467	3365	11618	64329	
MRC Dil. 3. r.7	6066	1051	7213	6785	441	3314	12591	68134	
		Límite	es de dete	cción y c	uantificad	ción del n	nétodo		
LDm (mg/kg)	2.0	1.0	1.0	1.0	1.0	1.0	1.0	3.0	
LCm (mg/kg)	5.0	4.0	4.0	4.0	3.0	2.0	4.0	10.0	

Nota. Dilución 1 Son 0.2 g del MRC matriz en 25 mL.

Dilución 2 Es la dilución 1 seguida de una dilución 1 mL en 50 mL. Dilución 3 Es la dilución 2 seguida de una dilución 1 mL en 10 mL.

Apéndice F. Calculo del porcentaje de recobro y repetibilidad.

Elemento	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600	333.749	219.556	
Identificación			Resp	ouesta (cue	ntas/segu	ndo)			
de la muestra									
2 mg/L rep.1	58787	107430	110480	1016561	140312	61996	208377	14039	
2 mg/L rep.2	60226	110359	113118	1038506	144559	63526	214809	14327	
2 mg/L rep.3	62284	113575	117310	1054409	147602	65468	219605	14541	
2 mg/L rep.4	60872	111068	114858	1049848	145242	63985	217059	14336	
2 mg/L rep.5	61122	113757	115961	1062404	147797	64297	219183	14495	
2 mg/L rep.6	60524	111970	113174	1058383	144483	64594	214855	14570	
				Recobi	:o (%)				
	100.2	100.0	100.9	99.2	99.4	99.8	100.7	98.3	
	Repetibilidad DER (%)								
	1.9	2.11	2.14	1.62	1.89	1.84	1.92	1.39	

Tabla Ap-F.1. Porcentaje de recobro del sistema.

Elemento	Nd	Pr	Sc	Sm	Tb	Tm	Y	Yb		
λ (nm)	406.108	405.653	361.383	388.528	367.636	379.576	361.104	369.419		
Identificación			Resp	ouesta (cue	entas/segu	indo)				
de la muestra										
2 mg/L rep.1	64938	29620	378167	64503	46090	120045	298160	892300		
2 mg/L rep.2	66832	30735	404775	65359	46680	122855	306832	919055		
2 mg/L rep.3	70075	31502	619443	67427	48665	127724	316062	920489		
2 mg/L rep.4	68221	30824	237955	65812	47347	125104	311411	915103		
2 mg/L rep.5	68933	31331	288538	67223	48016	125306	312795	934710		
2 mg/L rep.6	67948	31027	435227	66332	47341	124187	307293	932622		
				Recobi	ro (%)					
	100.8	98.0	37.3	100.1	99.9	100.6	100.8	99.7		
		Repetibilidad DER (%)								
	2.64	2.18	34.3	1.71	1.96	2.10	2.04	1.67		

Elemento	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600	333.749	219.556	
Dilución	3	1	1	1	2	1	3	1	
Identificación			Resp	ouesta (cue	ntas/segu	ndo)			
de la muestra									
MRC matriz rep.1	19083	96157	15458	1007496	9250	3201	41270	363	
MRC matriz rep.2	18808	94358	15548	982992	9160	2875	40014	389	
MRC matriz rep.3	17818	91122	14723	955834	8770	3044	38624	386	
MRC matriz rep.4	18316	94750	15407	993010	8923	3136	39562	409	
MRC matriz rep.5	18264	95675	15714	992224	8898	3206	38757	448	
MRC matriz rep.6	18722	98507	16107	1027698	8958	2931	39674	442	
MRC matriz rep.7	19428	102203	17046	1053702	9241	3540	41165	346	
				Recobi	co (%)				
	95.8	100.2	68.12	83.8	116.2	36.5	97.47	191.5	
	Repetibilidad DER (%)								
	2.9	3.58	4.9	3.11	2.35	8.79	2.70	16.7	

Tabla Ap.F.2. Porcentaje de recobro y repetibilidad del método.

Nota. Dilución 1 Son 0.2 g del MRC matriz en 25 mL.

Dilución 2 Es la dilución 1 seguida de una dilución 1 mL en 50 mL.

Dilución 3 Es la dilución 2 seguida de una dilución 1 mL en 10 mL.

Elemento	Nd	Pr	Sc	Sm	Tb	Tm	Y	Yb
λ (nm)	406.108	405.653	361.383	388.528	367.636	379.576	361.104	369.419
Dilución	2	2	1	2	1	1	2	1
Identificación			Resp	uesta (cue	ntas/segu	ndo)		
de la muestra								
MRC matriz rep.1	60519	9763	190125	6977	9109	3587	12153	64090
MRC matriz rep.2	60234	9549	185531	6922	9738	3601	11933	60213
MRC matriz rep.3	57631	9189	122132	6637	10478	3460	11219	59838
MRC matriz rep.4	59149	9456	151565	6813	16650	3419	11565	60629
MRC matriz rep.5	58263	9273	140030	6744	13558	3549	11512	57313
MRC matriz rep.6	58310	9326	147590	6745	13582	3365	11618	64329
MRC matriz rep.7	58559	9506	308992	6785	19409	3314	12591	68134
				Recobi	o (%)			
	98.75	99.4	27.1	91.3	101.0	138.3	80.5	91.9
	Repetibilidad DER (%)							
	1.9	2.11	37	1.84	19.7	4.37	4.87	7.17

Nota. Dilución 1 Son 0.2 g del MRC matriz en 25 mL.

Dilución 2 Es la dilución 1 seguida de una dilución 1 mL en 50 mL.

Dilución 3 Es la dilución 2 seguida de una dilución 1 mL en 10 mL.

Apéndice G Datos de reproducibilidad

Elemento	Ce	Dy	Er	Eu	Gd	Но	La	Lu
λ (nm)	418.659	353.171	369.256	420.504	342.246	345.600	333.749	219.556
Dilución	3	1	1	1	2	1	3	1
Identificación			Resp	ouesta (cue	ntas/segu	ndo)		
de la muestra								
MRC matriz rep.1	23950	119938	20034	1235005	11747	4318	51580	302
MRC matriz rep.2	24465	119227	20436	1233114	11982	4466	52462	342
MRC matriz rep.3	24337	119896	20359	1246844	11667	4422	52119	298
MRC matriz rep.4	23899	118917	20008	1240992	11890	4478	51281	301
MRC matriz rep.5	24592	119145	20125	1237448	11919	4508	52760	317
MRC matriz rep.6	24049	121582	20827	1253835	11839	4594	51757	339
				Recobr	o (%)			
	101.5	100.4	72.5	83.7	126.85	47.2	103.8	144.5
			R	epetibilida	d DER (%	6)		
	1.47	0.50	1.64	0.14	1.08	1.97	1.11	10.90
			Rep	roducibili	lad DER	(%)		
	3.7	2.55	4.80	2.20	4.89	14.6	3.83	27

Tabla Ap-G.1. Datos para el cálculo de la reproducibilidad. Digestión abierta en el laboratorio de ICP-MS del instituto de geofísica. UNAM. También se muestran el recobro y la repetibilidad propios del método de digestión abierto

Nota. Dilución 1 Son 0.2 g del MRC matriz en 25 mL.

Dilución 2 Es la dilución 1 seguida de una dilución 1 mL en 50 mL.

Dilución 3 Es la dilución 2 seguida de una dilución 1 mL en 10 mL.

Recordar que el cálculo de reproducibilidad se hace en conjunto con los datos de concentración (mg/kg) de LABQA, dichas concentraciones se obtienen con los datos de la Tabla Ap-F.2.

Elemento	Nd	Pr	Sc	Sm	Tb	Tm	Y	Yb
λ (nm)	406.108	405.653	361.383	388.528	367.636	379.576	361.104	369.419
Dilución	2	2	1	2	1	1	2	1
Identificación			Resp	uesta (cue	ntas/segu	ndo)		
de la muestra								
MRC matriz rep.1	72417	11668	734414	8427	35248	4185	16321	71404
MRC matriz rep.2	74300	11967	732050	8623	35793	3530	16661	76435
MRC matriz rep.3	69312	11534	735184	8219	15429	3976	15918	72818
MRC matriz rep.4	72900	11601	742357	8540	35827	3795	16396	72652
MRC matriz rep.5	73866	11816	736109	8549	35542	3723	16517	72292
MRC matriz rep.6	73090	11759	751156	8511	33869	3740	16473	73560
			Por	centaje de	recobro	(%)		
	98.9	100.2	94.8	93.1	237	130	96.8	97.4
			R	epetibilida	d DER (%	6)		
	2.45	1.69	0.57	2.07	0.26	7.48	1.82	2.64
			Rep	roducibili	dad DER	(%)		
	2.1	1.90	62	2.13	47	6.45	10.2	6.06

Continuación... Tabla Ap-G.1. Datos para el cálculo de la reproducibilidad. Digestión abierta en el laboratorio de ICP-MS del instituto de geofísica. UNAM. También se muestran el recobro y la repetibilidad propios del método de digestión abierto.

Nota. Dilución 1 Son 0.2 g del MRC matriz en 25 mL.

Dilución 2 Es la dilución 1 seguida de una dilución 1 mL en 50 mL.

Dilución 3 Es la dilución 2 seguida de una dilución 1 mL en 10 mL.

Recordar que el cálculo de reproducibilidad se hace en conjunto con los datos de concentración (mg/kg) de LABQA, dichas concentraciones se obtienen con los datos de la Tabla Ap-F.2.

Apéndice H Cálculo de incertidumbres

A continuación, primero se demuestra cómo se obtiene la contribución de la incertidumbre debida a las diluciones; en el cálculo final de incertidumbre relativa esta contribución es igual para todos los elementos, siempre que solo se realice una dilución a la muestra que se analizará como fue el caso del presente trabajo. Después se demuestra la contribución de incertidumbre debida a la curva de calibración, en está se considera la incertidumbre del MRC ICP-AM-MISA5 la cual está divida en dos grupos de elementos ya que Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Sm, Tb, Yb e Y tienen una incertidumbre (k=2) de ± 0.6 mg/L, mientras Nd, Pr, Sc y Tm tienen una incertidumbre (k=2) de ± 1 mg/L todos en una solución de 100 mg/L para cada elemento. Finalmente se considera la incertidumbre debida a las diluciones que implica la preparación de la curva de calibración.

Contribución de incertidumbre debida a las diluciones:

1. Contribución del matraz aforado:

Variabilidad en la medición del volumen: Se realizaron 10 mediciones (n=10) de la masa de agua (g) contenida en el volumen asignado al material volumétrico (Tabla Ap-H.1) y se estima la repetibilidad a través del cálculo de la desviación estándar ,*s*[°] de las mediciones de la masa en un volumen asignado.

$$u_{m.a.} = \frac{s_v}{\sqrt{n}}$$

Donde:

s_v es la desviación estándar de la masa media (g) del volumen empleado de agua. n Número de mediciones.

Numero de	Masa del agua
repetición	(g)
1	10.02100
2	9.98760
3	10.02588
4	9.98880
5	9.99338
6	9.98922
7	10.02292
8	9.98267
9	9.98356
10	10.01059
Desviación estándar	0.0174958

Tabla Ap-H.1. Medición de masa de agua en el matraz aforado.

Entonces:

$$u_{m.a.} = \frac{0.0174958}{\sqrt{10}} = 0.0055 \text{ g}$$

• Variación de la temperatura del agua: Con respecto a la temperatura de calibración del material volumétrico, la incertidumbre de medida se estima sobre la base del coeficiente de expansión del volumen para el agua es $\alpha = 0.00021^{\circ}C^{-1}$.

$$u_{\Delta T} = \frac{\left[(T - T_{20}) x \ \alpha \ x \ V \right]}{\sqrt{3}}$$

$$u_{\Delta T} = \frac{\left[(19^{\circ}C - 20^{\circ}C)x\ 0.00021^{\circ}C^{-1}\ x\ 10mL\right]}{\sqrt{3}} = 0.0012\ mL$$

• Tolerancia del material volumétrico: Se toma de la especificación del material volumétrico correspondiente que proporciona el proveedor y para

convertir la incertidumbre de medida estándar se asume una distribución rectangular dividiendo entre $\sqrt{3}$. El matraz aforado de 10 mL indica una incertidumbre con k=2 de ±0.04mL por lo cual se divide entre dos y se divide entre $\sqrt{3}$:

$$u_{tol.} = \frac{0.02 \, mL}{\sqrt{3}} = 0.01155 \, mL$$

Y la contribución de la incertidumbre debida al matraz se calcula:

$$u_{matraz} = \sqrt{(0.0055)^2 + (0.0012)^2 + (0.01155)^2} = 0.01285 \ mL$$

Y considerando que el matraz es de 10 mL, obtenemos la incertidumbre relativa:

$$u_{rel.matraz} = \frac{0.01285 \, mL}{10 \, mL} x100 = 0.13\%$$

2. Contribución de la micropipeta 100-1000 μ L: Para el cálculo de incertidumbre, debido a la micro pipeta, los pasos son los mismos que para el matraz aforado, por lo cual, solo se pondrán las ecuaciones con las que se obtuvieron los valores de incertidumbre.

• Variabilidad en la medición del volumen.

тисто-рирени	100-1000µL.		
Numero de	Masa de agua		
repetición	(g)		
1	0.98834		
2	0.99280		
3	0.99336		
4	0.99348		
5	0.99663		
6	0.99394		
7	1.00479		
8	0.99464		
9	0.99777		
10	0.99980		
Desviación estándar	0.00449175		

Tabla Ap-H.2. Medición de masa de agua en micro-pipeta 100-1000µL

$$u_{m.a.m.pipeta} = \frac{0.00449175g}{\sqrt{10}} = 0.0014g$$

• Variación de la temperatura del agua:

$$u_{\Delta T} = \frac{\left[(19^{\circ}C - 20^{\circ}C)x\ 0.00021^{\circ}C^{-1}\ x\ 1mL\right]}{\sqrt{3}} = 0.000121244\ mL$$

• Tolerancia del material volumétrico:

$$u_{tol.micropipeta} = \frac{0.00095 \, mL}{\sqrt{3}} = 0.0005484 \, mL$$

Y la contribución de la incertidumbre debida a la micro-pipeta de 100-1000 μ L se calcula:

 $u_{micropipeta} = \sqrt{(0.0014)^2 + (0.000121244)^2 + (0.0005484)^2} = 0.0015 \text{mL}$

Y considerando que la micro-pipeta es de 1 mL, obtenemos la incertidumbre relativa:

$$u_{rel.micropipeta} = \frac{0.0015 \, mL}{1 \, mL} x100 = 0.15\%$$

Contribución de la incertidumbre debida a la curva de calibración:

 Incertidumbre debida al material de referencia: El valor certificado del material de referencia tiene una incertidumbre de medida asociada que debe ser obtenida del certificado del material de referencia ICP-AM-MISA05 con el que se preparan las curvas de calibración. Para los elementos Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Sm, Tb, Yb e Y el certificado indica una incertidumbre (k=2) de ± 0.6 mg/L (entonces la incertidumbre estándar es 0.3 mg/L), mientras Nd, Pr, Sc y Tm tienen una incertidumbre (k=2) de ± 1 mg/L (entonces la incertidumbre estándar es 0.5 mg/L) todos en una solución de 100 mg/L para cada elemento, entonces obtenemos la incertidumbre relativa:

$$u_{rel.certificado} = \frac{0.3 mg/L}{100 mg/L} x 100 = 0.3\%$$

Y para el cálculo de la contribución de incertidumbre debida a la curva de calibración se adicionan las incertidumbres debidas a la dilucion que implica la preparación de la curva de calibración, obteniendo la raíz de la suma de las varianzas:

$$u_{curva\ de\ calibraci\ ón} = \sqrt{(0.003)^2 + (0.0013)^2 + (0.0015)^2} = 0.0037$$

Entonces, en porcentaje la incertidumbre relativa debida a la curva de calibración

es: urel. curva de calibración=0.37%

Este valor es el mismo para los elementos Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Sm, Tb, Yb e Y.

Para los elementos Nd, Pr, Sc y Tm los cálculos son los siguientes:

$$u_{rel.certificado} = \frac{0.5 mg/L}{100 mg/L} x100 = 0.5\%$$
$$u_{curva \ de \ calibraci \ ón} = \sqrt{(0.005)^2 + (0.0013)^2 + (0.0015)^2} = 0.0054$$

Entonces en porcentaje la incertidumbre relativa debida a la curva de calibración

es: u_{rel. curva de calibración}=0.54%

En la Tabla Ap-H.3. Se colocan los datos de las contribuciones de incertidumbres relativas para cada elemento, junto con la incertidumbre estándar y la incertidumbre expandida para un confianza del 95% (k=2).

Elemento	Ce	Dy	Er	Eu	Gd	Но			
λ	418.659	353.171	369.256	420.504	342.246	345.600			
Contribución de incertidumbre (%)									
Matraz aforado		0.15							
Micro pipeta		0.13							
Curva de	0.37								
calibración									
Repetibilidad	2.9	3.58	4.9	3.11	2.35	8.79			
Reproducibilidad	3.7	2.55	4.8	2.20	4.89	14.6			
	I	ncertidumbr	e del método	• (%)					
u _{rel. del método}	4.72	4.42	6.87	3.84	5.44	17.05			
U _{rel. (k=2)}	9.45	8.84	13.75	7.68	10.89	34.10			

Tabla Ap-H.3. Resumen de contribuciones a la incertidumbre del método por elemento e $U_{rel. (k=2)}$.

Elemento	La	Lu	Nd	Pr	Sc	Sm			
λ	333.749	219.556	406.108	405.653	361.383	388.528			
Contribución de incertidumbre (%)									
Matraz aforado		0.15							
Micro pipeta		0.13							
Curva de	0.	37		0.37					
calibración									
Repetibilidad	2.70	16.7	1.9	2.11	37	1.84			
Reproducibilidad	3.83	27	2.1	1.90	62	2.13			
	Ι	Incertidumbre del método (%)							
u _{rel. del método}	4.71	-	2.90	2.91	-	2.85			
U _{rel. (k=2)}	9.42	-	5.80	5.82	-	5.71			

Elemento	Тb	Tm	Y	Yb					
λ	367.636	379.576	361.104	369.419					
	Contribu	ción de incertidum	bre (%)						
Matraz aforado		0.	15						
Micro pipeta		0.	13						
Curva de	0.37	0.54	0.	37					
calibración									
Repetibilidad	19.7	4.37	4.87	7.17					
Reproducibilidad	-	6.45	10.2	6.06					
	Incertidumbre del método (%)								
u _{rel. del método}	19.71	7.81	11.31	9.90					
$U_{\text{rel.}(k=2)}$	39.4	15.63	22.63	18.80					

Continuación...Tabla Ap-H.3. Resumen de contribuciones a la incertidumbre del método por elemento e $U_{rel.(k=2)}$.

Apéndice J Escandio. Curva de calibración 1 a 25 mg/L

Tabla Ap-J.1. Respuesta del equipo en 3 curvas de calibración para el Sc λ =363.074 nm radial.

Concentración	Respuesta	Respuesta	Respuesta	r	т	b
analito	1	2	3	Coef. corr.	pendiente	int.
(mg/L)	(cuentas/s)	(cuentas/s)	(cuentas/s)	lineal		al eje
1	19653	20215	20513			
5	92354	94473	94491	0.9998	18308	2742
10	182925	188871	189428			
15	274017	278160	283100			
20	365719	371018	371601			
25	457707	456943	462308]		

Figura Ap-J.1. Curva de calibración Sc λ =363.074nm radial.

Figura Ap-J.1. Residuales de la resgresión lineal para el Sc λ =363.074 nm radial.

Elemento	Sc
λ (nm)	363.074
Identificación de la	Respuesta
muestra	(cuentas/segundo)
Add. 5 mg/L rep.1	96558
Add. 5 mg/L rep.2	95559
Add. 5 mg/L rep.3	95532
Add. 5 mg/L rep.4	96762
Add. 5 mg/L rep.5	96256
Add. 5 mg/L rep.6	97121
Add. 5 mg/L rep.7	95895
Add. 5 mg/L rep.8	95015
Add. 5 mg/L rep.9	95112
Add. 5 mg/L rep.10	97605
Recobro (%)	102.0
Repetibilidad DER (%)	0.93

Tabla Ap-J.2. Datos de validación del sistema para del Sc λ =363.074 nm radial de los parámetros de recobro y repetibilidad.

Anexos

Anexo 1. Certificado del estándar para las curvas de calibración ICP-AM-MISA5.

Matrix: Purity:

Certified Values:

Element	$(\mu g/mL)$	SRM ID	SRM Lot#	Element	(µg/mL)	SRM ID	SRM Lot#	
Ce	100.0 ± 0.6	3110	090504	Pr	100 ± 1	3142a	990501	
Dy	100.0 ± 0.6	3115a	990504	Sm	100.0 ± 0.6	3147a	892911	
Er	100.0 ± 0.6	3116a	000831	Sc	100 ± 1	3148a	100701	
Eu	100.0 ± 0.6	3117a	120705	ТЬ	100.0 ± 0.6	3157a	100518	
Gđ	100.0 ± 0.6	3118a	992004	Th	100 ± 1			
Ho	100.0 ± 0.6	3123a	090408	Tm	100 ± 1	3160a	790912	
La	100.0 ± 0.6	3127a	890402	УЪ	100.0 ± 0.6			
Lu	100.0 ± 0.6	3130a	100503	Y	100.0 ± 0.6	3167a	120314	
Nd	100 ± 1	3135a	992803					

The Certified values are based on gravimetric and volumetric preparation, and verified against SRM 3100 series via either inductively coupled plasma optical emission spectrometry (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS) using an internal laboratory developed method. The uncertainty in the certified value is calculated for a 95% confidence interval and coverage factor k is about 2. * Refer to Traceability Information, Section d

1.017 g/mL ± 0.002 g/mL @ 22.7°C

2% HNO3

99.98% - 99.999%

Preparation Information:

The standard is generally manufactured from CRM single element solutions that were prepared using the methods developed at NIST for SRM Spectrometric Standard Solutions under appropriate laboratory conditions. Sub-boiling distilled high-purity acid has been used to place the materials in solution and to stabilize the standard. The matrix is as noted above in 18 megaohm deionized water.

Stability of this product is based upon rigorous short term and long term testing of the solution for the certified value. This testing includes, but is not limited to, the effect of temperature and packaging on the product.

Intended Use:

Density:

The CRM is intended for use as a calibration standard and QC control for instruments such as ICPOES, ICPMS, AAS and XRF, and validation of analytical methods. It also can be used in EPA, ASTM and other methods.

Traceability Information:

The traceability of this standard is maintained through an unbroken chain of comparisons to appropriate standards with suitable procedure and measurement uncertainties. The maintenance of the base and derived units of International System of Units (SI) with traceability of measurement results (contemporary metrology) to SI ensures their comparability over time as follows.

a. Standard Weight and Analytical Balance

Lot No.: 1603508 Rev. No.: 4.2.0 Page 1 of 2

High-Purity Standards is certified to ISO 9001:2008 and accredited to ISO/IEC 17025:2005 and ISO Guide 34:2009.

The standard weights (NBS weights Inventory No 20231A) are calibrated every two years by South Carolina Metrology Laboratory that is a participant in "NIST Weights and Measures Measurement Assurance Program" with a certificate of measurement traceability to NIST primary standards. The balances are calibrated yearly by the ISO 17025 accredited metrology service, and are verified weekly by an in-house method using standard weights.

b. Volumetric Device

The calibration of volumetric vessels is checked annually using the ASTM method E542.

с. Thermometer

The standard thermometers are calibrated every year by the ISO 17025 accredited metrology service. The thermometers used in-house are verified against the standard thermometers yearly.

d. Calibration Standards

The Calibration Standards are traceable to SRM 3100 Series Spectrometric Standard Solutions or second sources.

Packaging and Storage Conditions:

The standard is packaged in a pre-cleaned polyethylene bottle. To maintain the integrity of this product, the solution should be kept tightly capped and stored under normal laboratory conditions.

Refer to Material Safety Datasheet (MSDS) for hazardous information.

Expiration Information:

The expiry date is guaranteed to be valid for twelve months from the shipping date provided. For this reason, standards from the same lot may have different expiration dates.

Preparation Date:	February 4, 2016			
Shipped Date:	10/11/2016			
Expire Date:	October 11, 2017			
Certificate Issue Date:	February 5 2016			

Ouality Information:

ISO/IEC 17025:2005 Accreditation Certificate Number AT-1529

Moven Mututurarii Moven T. Mututuvari, Ph.D. Laboratory Manager

ISO Guide 34:2009 (RMP) Accreditation Certificate Number AR-1436

NOTICE: 10% products are intended for fabricatory use eely. All products should be bandled and used by trained prefactional personnel. The responsibility for the safe handling and use of these products rests solely with the baye and/or aire. The data and information as stated was familiated by the manufacture of the product. The information provided in this correlfcate areas between only in the kin number specification. None of the information provided in this correlfcate areas be used. reproduced or manufacture of any form or by any manufacture wither approval from High Parity Standards.

Lot No.: 1603508

Rev. No.: 4.2.0 Page 2 of 2 High-Purity Standards is certified to ISO 9001:2008 and accredited to ISO/IEC 17025:2005 and ISO Guide 34:2009.

Anexo 2. Certificado OREAS 465 (MRC).

El certificado completo se encuentra en: <u>http://www.ore.com.au/crm/oreas-465</u>

ORE RESEARCH & EXPLORATION PIL ABN 28 005 859 856 37A Hosie Street - Bayswater North - VIC 3153 - AUSTRALIA 61 3 9729 0333 % 61 3 9729 8338 D info@ore.com.au @www.ore.com.au

CERTIFICATE OF ANALYSIS FOR

CARBONATITE SUPERGENE REE-Nb ORE (TREO 9.88%) CERTIFIED REFERENCE MATERIAL

OREAS 465

Constituent	Certified	100	95% Confid	ence Limits	95% Tolera	ance Limita
Constituent	Value	150	Low	High	Low	High
Borate / Peroxide Fusion ICP	and a				a 10.000 - 1	
CeOs, Cerium(IV) axide (wt.%)	4.86	0.166	4.75	4.96	4.76	4.95
Dy ₂ O ₂ , Dysprosium(III) axide (ppm)	249	14	240	257	241	256
En/Os, Erbium(III) coode (ppm)	58	3.6	56	60	56	60
Eu:Os, Europium(III) axide (ppm)	331	13	324	338	321	341
GdsOs, Gadolinium(III) axide (ppm)	674	35	654	693	656	691
Ho ₂ O ₂ , Holmium(III) axide (ppm)	31.7	2.44	30.4	33.1	30.6	32.8
La ₂ O ₃ , Lanthanum(III) oxide (wt.%)	2.83	0.097	2.78	2.88	2.77	2.89
Lu;Os, Lutebum(III) code (ppm)	2.39	0.138	2.34	2.45	2.27	2.52
Nb:Os, Niobium(V) axide (ppm)	6695	431	6383	7007	6341	7049
Nd ₂ O ₃ , Neodymium(III) axide (wt.%)	1.37	0.059	1.34	1.41	1.34	1.40
Pr ₁ O ₁₁ , Preseodymium(III,IV) oxide (ppm)	4557	198	4443	4672	4435	4679
Sm2Os, Samarium(III) oxide (ppm)	1578	42	1560	1597	1527	1630
TbrOr, Terbium(III,IV) oxide (ppm)	67	3.7	65	69	64	69
ThOs, Thorium dicade (ppm)	985	49	956	1013	961	1008
Tm ₂ O ₃ , Thulium(III) axide (ppm)	5.16	0.299	5.02	5.31	4.90	5.43
UiOs, Urenium(V,VI) axide (ppm)	16.0	0.47	15.8	16.3	15.4	16.7
Y:Ox, Ythrium(III) axide (ppm)	665	42	640	691	639	691
YbsOs, Ytterbium(III) axide (ppm)	21.6	0.83	21.2	22.0	20.4	22.8
ZrO ₂ , Zirconium diaxide (ppm)	2539	274	2280	2798	2382	2696

Note: Intervais may appear asymmetric due to rounding.

Template: BUP-70-10-01.docx - 1.0 (Aprv.[1.0] or: [5-Feb-2015]) Project COA-057-OREAS465

Printed 28-April-2015

Constituent	Certified Value	Absolute Standard Deviations					Relative Standard Deviations			5% window	
		18D	28D Low	28D Hgh	38D Low	38D Hgh	1R6D	2RBD	3R6D	Low	High
4-Acid Digest	ion continu	ed				ia 4					
Ba, ppm	4350	158	4043	4675	3885	4833	3.62%	7.25%	10.87%	4141	4577
Be, ppm	11.6	6.76	10.1	13.1	0.3	13.9	6.52%	13.04%	19.56%	11.0	12.2
Bi, ppm	17.3	1.03	15.2	19.3	14.2	20.4	5.96%	11.92%	17.80%	16.4	18.1
Ca, wt.%	0.872	0.062	0.748	0.995	0.687	1.067	7.08%	14,15%	21.23%	0.828	0.915
Cd, ppm	1.20	0.14	0.92	1.49	0.78	1.63	11.83%	23.66%	35.49%	1.14	1.28
Ce. wt.%	3.91	0.149	3.61	4.20	3.46	4.35	3.81%	7.62%	11.43%	3.71	4.10
Co, ppm	18.7	1.26	16.2	21.2	14.9	22.5	6.74%	13.40%	20.23%	17.8	19.6
Cis, ppm	<0.1	IND	ND.	ND	IND	ND	IND	IND	IND	ND.	ND
Cu, ppm	128	5	117	138	112	144	4.17%	8.34%	12.51%	121	134
Dy, ppm	215	9	197	234	187	243	4.30%	8.61%	12.91%	204	226
Er, ppm	47.3	2.61	42.2	52.3	39.7	54.8	5.31%	10.61%	15.92%	44.9	49.6
Eu, ppm	282	12	259	306	247	318	4.18%	8.37%	12,55%	268	296
Fe, wt.%	29.55	2.025	25.50	33.60	23.48	35.63	6.85%	13:70%	20.55%	28.08	31.03
Ga, ppm	188	31	127	250	96	281	18.34%	32.69%	49.03%	179	198
us, ppm	581	æ	5039	603	4/4	689	8.76%	12.85%	18.45%	362	ຣານ
Hf, ppm	14.4	1.9	10.5	18.3	8.6	20.2	13.42%	26,84%	40.26%	13.7	15.1
Ho, ppm	26.8	0.94	24.9	28.6	24.0	29.8	3.49%	6.99%	10.48%	25.4	28.1
in, ppm	3.18	0.208	2.77	3.60	2.56	3.81	8.54%	13,08%	19.62%	3.02	3.34
La wi%	2.27	0.093	2.09	2.48	2.00	2.55	4.09%	8.18%	12.27%	2.18	2.39
Li, ppm	3.04	0.33	2.38	3.71	2.05	4.04	10.91%	21.83%	32,74%	2.89	3.10
Lu, ppm	1.72	0.28	1.18	2.28	0.88	2.57	16.37%	32.74%	49.11%	1.63	1.81
Mg. wt %	0.374	0.026	0.322	0.426	0.296	0.452	6.58%	13.96%	20.95%	0.355	0.393
Mn, w£ %	0,198	0.022	0.153	0.243	0.130	0.265	11.36%	22.71%	34.07%	0.188	0.208
Mo, ppm	98	10	78	118	68	128	10.35%	20.71%	31.06%	93	103
Na, wt.%	< 0.2	IND	IND	ND	IND	IND	IND	IND	IND	IND	ND
N4, wt.%	1.10	0.043	1.01	1.18	0.97	1.22	3.93%	7.86%	11.78%	1.04	1.15
Ni, ppm	106	14	79	133	65	146	12.80%	25.61%	38.41%	101	111
P. wt.%	3,15	0.38	2.40	3.90	2.02	4.28	11.92%	23.84%	35 75%	2.99	3.31
Pb, ppm	673	16	540	605	524	621	2.81%	5.61%	8.42%	544	601
Pt, ppm	3670	193	3284	4065	3002	4248	5.25%	10.50%	15.76%	3486	3853
Rb, ppm	0.43	0.05	0.32	0.53	0.25	0.59	12.75%	25.50%	38.25%	0.40	0.45
Re, ppm	< 0.05	IND	ND	ND	ND	IND	IND	IND	IND	ND	ND

Table 3 continued

Note: intenais may appear asymmetric due to rounding.

COA-957-OREAS465

DAL

12
Table 5 continued.											
Constituent	Certified Value	Absolute Standard Deviations					Relative Standard Deviations			5% window	
		18D	280 Low	28D High	38D Low	38D High	1R6D	2R8D	3880	Low	High
4-Acid Digest	Son continu	ed									
Sc, ppm	149	9	130	167	121	176	8.11%	12.23%	18.34%	141	156
Sm, ppm	1307	81	1145	1468	1064	1549	6.18%	12.37%	18.55%	1241	1372
St, wt.%	0.505	0.026	0.453	0.558	0.427	0.584	5 19%	10.39%	15.58%	0.480	0.531
Tb, ppm	67	3.3	50	64	47	67	5.83%	11.66%	17.50%	54	60
Te, ppm	<1	IND	ND	IND	ND	ND	IND	IND	ND	IND	ND
Th, ppm	805	150	505	1104	356	1254	18.60%	37.20%	55.79%	764	845
TI, ppm	0.087	0.009	0.069	0.105	0.061	0.114	10.22%	20.44%	30.66%	0.083	0.092
Tm, ppm	3.82	0.274	3.28	4.37	3.00	4.65	7.17%	14,34%	21,51%	3.63	4.01
U, ppm	12.6	0.68	11.2	14.0	10.6	14.6	5.38%	10.77%	18.15%	12.0	13.2
V, ppm	427	60	289	565	220	634	16.17%	32.34%	48.51%	405	448
Y, ppm	478	32	413	543	381	575	6.77%	13.54%	20.32%	454	502
Yb, ppm	14.9	0.95	13.0	16.8	12.0	17.8	6.30%	12.78%	19.17%	14.2	15.6
Zn, ppm	921	133	655	1187	522	1320	14.44%	28.87%	43.31%	875	967

Note: intervals may appear asymmetric due to rounding.

Tolerance Limits (ISO Guide 3207) were determined using an analysis of precision errors method and are considered a conservative estimate of true homogeneity. The meaning of tolerance limits may be illustrated for La2O3 by fusion ICP, where 99% of the time (1a=0.99) at least 95% of subsamples (p=0.95) will have concentrations lying between 2.77 and 2.89 wt.%. Put more precisely, this means that if the same number of subsamples were taken and analysed in the same manner repeatedly, 99% of the tolerance intervals so constructed would cover at least 95% of the total population, and 1% of the tolerance intervals would cover less than 95% of the total population (ISO Guide 35).

The homogeneity of OREAS 465 has also been evaluated in an ANOVA study for all certified analytes. This study tests the null hypothesis that no statistically significant difference exists between the between-unit variance and the within-unit variance (i.e. pvalues <0.05 indicate rejection of the null hypothesis). Of the 99 certified values, no failures were observed indicating no evidence to reject the null hypothesis.

Based on the statistical analysis of the results of the inter-laboratory certification program it can be concluded that OREAS 465 is fit-for-purpose as a certified reference material (see 'Intended Use' below).

PARTICIPATING LABORATORIES

- 1. ALS, Brisbane, QLD, Australia
- 2. ALS, Lima, Peru
- ALS, Loughrea, Galway, Ireland 3.
- ALS, Perth, WA, Australia 4.

00A-957-0REA3465