

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Diseño y fabricación de una microválvula para sistemas Lab-on-a-Chip

TESIS Que para obtener el título de Ingeniero Mecánico

PRESENTA

Óscar Ignacio Mora Hernández

DIRECTORA DE TESIS

Dra. Laura Adriana Oropeza Ramos

Ciudad Universitaria, Cd. Mx., 29 de noviembre de 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

A mis papás, por apoyarme. A mi hermano. A mi directora de tesis, por la oportunidad de trabajar en el laboratorio. A mis compañeros de laboratorio, por su ayuda y el aprendizaje que obtuvimos juntos.

Agradecimientos Institucionales

Al Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) de la UNAM por el financiamiento de este trabajo por medio de la beca de conclusión de estudios de licenciatura otorgada con el proyecto IN115116 "Estudio de la interacción hidro-electrocinética en un dispositivo microfluídico: Bases para la organización espacial de micro-entidades biológicas en chip"

Índice

Introduc	ción	3
Plante	amiento del problema	3
Objeti	νο	3
1. MA	RCO TEÓRICO Y ESTADO DEL ARTE	4
1.1.	Técnicas de microfabricación	4
Lito	grafía: Breve nota histórica	4
Foto	olitografía	5
Lito	grafía suave	7
Rec	ubrimiento por centrifugación (<i>spin coating</i>)	8
Adh	esión	9
1.2.	Sistemas Bio-MEMS y Lab-on-a-Chip	11
1.3.	Microválvulas	14
2. DISE	EÑO DEL DISPOSITIVO	20
2.1.	Concepto y principio de funcionamiento	20
2.2.	Circuito hidráulico	20
3. PRC	DCESO DE MICRO FABRICACIÓN	25
3.1.	Molde de canales microfluídicos fabricado por fotolitografía	25
3.2. Lit	tografía suave: Réplicas del molde en PDMS	27
3.3. Ao	dhesión: Tratamiento de superficie a través de la descarga corona	30
Pre	paración del sustrato y las réplicas	30
Adh	esión	30
3.4.	Membrana flexible	31
Mol	ldes	31
Dep	ósito de PDMS por centrifugación	33
3.5.	Adhesión selectiva	35
Más	scara de cristales de sal	35
Adh	esión	37
Disc	olución de la máscara	38
4. RES	ULTADOS	42
4.1.	Funcionamiento	42
4.2.	Determinación de la velocidad utilizando particle tracking	44
4.3.	Cálculo de la presión necesaria para cerrar la válvula	51
4.4.	Resistencia hidráulica de la válvula en estado abierto	53

CONCLUSIONES	. 56
ANEXOS	. 57
Hoja de especifiaciones de micro esferas fluorescentes de poliestireno FluoSpheres	. 57
Prontuario para tomar mediciones de una foto tomada en el microscopio	. 60
Coordenadas registradas de cada partícula para el cálculo de resultados.	. 61
Tablas A.1 – A.10: Estado abierto – Sección A	. 61
Tablas A.11 – A.20: Estado abierto – Sección B	. 71
Tablas A.21 – A.25: Estado abierto – Sección C	. 81
Tablas A.26 – A.35: Estado cerrado – Sección A	. 86
Tablas A.36 – A.45: Estado cerrado – Sección C	. 96
Referencias	106

Introducción

Planteamiento del problema.

Los micro-sistemas BioMEMS o Lab-on-a-Chip son sistemas o dispositivos construidos a partir de técnicas inspiradas de la fabricación a micro y nano escala que son utilizados para el procesamiento, suministro, manipulación, análisis o construcción de entidades biológicas o químicas [1]. En estos sistemas microfluídicos, células y bio partículas de interés viajan a través de un canal dentro de un fluido de transporte. El transporte controlado, inmovilización y manipulación de las entidades de interés son características importantes que deben ser incorporadas a un sistema microfluídico para lograr la integración de distintas etapas de análisis dentro de un sistema Lab-on-a-Chip y llevar a cabo ensayos bioquímicos, biológicos y celulares. El control de fluidos involucra casi siempre el uso de válvulas, y para la creación de dispositivos microfluídicos completamente integrados es necesario el desarrollo de componentes microfluídicos como las micro válvulas y micro bombas.

Objetivo.

Diseñar y fabricar una microválvula para sistemas microfluídicos Lab-on-a-Chip con aplicaciones BIO (biológicas, bioquímicas y biomédicas) que permita la manipulación de entidades de interés dentro de un dispositivo Bio-MEMS por medio de la dirección de un flujo, así como la compartimentación de procesos.

El alcance de este trabajo es el diseño y fabricación de una microválvula que pueda ser implementada en un dispositivo Bio-MEMS. En el dispositivo fabricado no se realizó ningún tipo de ensayo o prueba biológica, bioquímica o biomédica.

1. MARCO TEÓRICO Y ESTADO DEL ARTE

1.1. Técnicas de microfabricación

Litografía: Breve nota histórica

Después de experimentar con varias resinas expuestas a la luz solar, Nicéphore Niépce (1765-1833) logró copiar un grabado en papel aceitado al colocarlo sobre una placa de vidrio cubierto con asfalto disuelto en aceite de lavanda. Después de dos o tres horas de exposición, las zonas no cubiertas con asfalto se endurecieron en comparación con las zonas no expuestas, las cuales permanecieron más solubles y pudieron ser removidas con una mezcla de trementina y aceite de lavanda. El proceso realizado por Niépce corresponde a aquel de fotolitografía con resina fotosensible de tipo negativo. Cinco años después, en 1827, utilizando un ácido fuerte, el grabador parisino Lemaître reprodujo un grabado del Cardenal d'Amboise a partir de una placa desarrollada por Niépce. Esto representa el primer ejemplo de transferencia de patrones por fotolitografía y fresado químico. La precisión de esta técnica era aproximadamente de 0.5 a 1 milímetros. La palabra litografía (del griego lithos [piedra] y gráphein [escribir]) se refiere al proceso inventado en 1796 por Aloys Senefelder. Senefelder descubrió que la piedra al ser apropiadamente entintada y tratada con químicos, podía transferir una imagen tallada al papel. Debido al tratamiento químico de la piedra, las áreas pertenecientes a la imagen y aquellas que no lo eran se volvían hidrofóbicas e hidrofílicas respectivamente, atrayendo la tinta hacia el área que correspondía a la imagen y atrayendo agua hacia las áreas no correspondientes a la imagen. El proceso de Niépce anunció el advenimiento de la fotografía. Mucho más tarde, el uso de foto-máscaras, seguido de procesamiento químico, condujo a la fotolitografía hoy utilizada en la fabricación de circuitos integrados y en la ciencia de la miniaturización. No fue hasta la Segunda Guerra Mundial, más de 100 años después, que las primeras aplicaciones de la impresión de tarjetas de circuitos surgieron. En 1961, fueron ideados métodos que permitían producir una gran cantidad de transistores en una capa delgada de silicio (Si). En ese entonces, la resolución no era mejor que 5 [µm]. Hoy en día, la fotolitografía, la litografía por rayos X y la litografía de partículas cargadas pueden lograr una precisión de impresión menor a 1 [µm]. [2]

<u>Fotolitografía</u>

La fotolitografía es la forma de litografía más ampliamente utilizada. En la industria de los circuitos eléctricos, la transferencia de patrones de máscaras a capas delgadas se logra casi exclusivamente por medio de la fotolitografía [2]. El conjunto de pasos de estos métodos se resume en la **Figura 1.1**. En este ejemplo se utilizan una oblea de silicio oxidada y una resina fotosensible negativa:

La oblea de silicio (1) se cubre con una capa de 1 [μ m] de espesor de resina fotosensible negativa (2). Después de la exposición (3), la oblea se enjuaga en una solución reveladora o rociada con un revelador en aerosol, lo cual remueve las áreas no expuestas de la resina fotosensible y deja un patrón de óxido expuesto y cubierto con la resina en la superficie de la oblea (4). El patrón de la resina es la imagen negativa del patrón en la foto máscara. El siguiente paso típicamente consiste en colocar la oblea en una solución de HF o HF + NH₄F, la cual ataca el óxido pero no a la resina fotosensible o al silicio subyacente (5). La resina fotosensible protege las áreas de óxido que cubre. Una vez que el óxido expuesto ha sido removido, la resina restante puede ser disuelta con un ácido fuerte como H₂SO₄ o una combinación ácido-oxidante como H₂SO₄- Cr₂O₃, atacando así a la resina, pero no al óxido o al silicio (6).

La litografía sigue utilizando en la mayoría de los casos máscaras, pero debido a los inconvenientes que ocasionan, como su costo y el tiempo de fabricación, contaminación provocada por ellas, su desecho y las dificultades para su alineamiento, la investigación en el campo la litografía por proyección óptica sin máscaras (MOPL por sus siglas en inglés) crece rápidamente. En el mercado es posible encontrar dispositivos cuyo funcionamiento se basa en dispositivos de micro espejos y en tecnologías de modulación espacial de luz utilizadas en proyectores digitales y televisores de alta definición (**Figura 1.2**) [3]. La resolución de la litografía basada en DMDs (1 [μ m] [4]) es significativamente menor que la de otras técnicas como litografía con rayo de electrones (0.25 [μ m]), pero para muchas aplicaciones, como la microfluídica, esto no representa un obstáculo [5].

1) Oxidación

Figura 1.1 Proceso de fotolitografía y transferencia de patrones. 1) Oxidación 2) Preparación litográfica 3) Exposición 4) Remoción de la resina fotosensible no expuesta por medio de un agente revelador e) Grabado del óxido de silicio utilizando HF + NH₄F 5) Remoción de la resina utilizando H₂SO₄

Figura 1.2 Intellingent Micro Patterning SF-100 XCEL. Sistema de litografía basada en dispositivos de micro espejos [3].

Litografía suave.

La litografía suave es el nombre colectivo para un conjunto de técnicas: moldeo de réplica (REM por sus siglas en inglés), micro impresión de contacto (μ CP), micro moldeo en capilaridades (MIMIC), moldeo por micro transferencia (μ TM), micro moldeo asistido por solventes (SAMIM) y fotolitografía utilizando una máscara elastomérica de cambio de fase. Todos estos métodos usan un elastómero patronado como estampa, molde o máscara para generar micro patrones y microestructuras en lugar de una foto máscara rígida [2].

En la litografía suave, un molde maestro se hace primero por medio de técnicas litográficas y un sello de elastómero es generado a partir de este molde maestro. Un procedimiento para hacer un sello de polidimetilsiloxano (PDMS) a partir de una capa fotolitográficamente patronada de resina fotosensible como molde maestro se describe en la **Figura 1.3**. Una capa delgada de resina SU-8 es grabada por fotolitografía. Después del revelado, la resina es tratada con vapor de triclorosilano para facilitar la remoción del PDMS una vez curado. Se deposita una mezcla con relación 10:1 de pre polímero PDMS y agente curante, y es curado durante 60 minutos a 60 [°C] en un horno.

Figura 1.3 Proceso de litografía suave utilizando PDMS.

Recubrimiento por centrifugación (spin coating)

El recubrimiento por centrifugación (en inglés *spin coating*) es la técnica predominante utilizada para producir películas delgadas de materiales orgánicos fotosensibles con espesores del orden de micrómetros y nanómetros. En muchos casos se trata de materiales poliméricos en forma de una solución de la cual el solvente se evapora [6]. El material es aplicado sobre una oblea o el sustrato a recubrir. El sustrato es después sometido a altas velocidades de giro, de modo que la fuerza centrífuga hace fluir el material de forma radial hacia y es expulsado del borde del sustrato. Sobre la superficie de la oblea permanece el residuo debido a la tensión superficial. La película formada continúa adelgazándose hasta alcanzar un espesor de equilibrio o la viscosidad aumenta considerable mente debido a la evaporación de solventes [2] [7].

El proceso de recubrimiento por centrifugación puede ser dividido en 4 etapas principales (**Figura 1.4**): (1) Dispensación del fluido, (2) aceleración, (3) flujo estable y (4) evaporación de solventes. Las etapas 3 y 4 tienen el mayor impacto en el espesor final del recubrimiento. Ambos fenómenos ocurren simultáneamente durante el proceso, sin embargo, en una etapa temprana son los efectos de flujo viscoso los que predominan mientras que hacia final del proceso es predominante la evaporación de solventes [6].

Figura 1.4 Etapas del proceso de recubrimiento por centrifugación. ω = Velocidad angular.

Entre las ventajas que posee este proceso se encuentra la uniformidad de las películas formadas. Entre más se adelgazan durante el proceso, más uniforme es el espesor de ésta. Si en algún punto del proceso el espesor llega a ser completamente uniforme, se mantendrá así hasta el final del proceso. Por otra parte, el proceso carece de eficiencia en el uso de materiales. Normalmente sólo entre el 2 y el 5 % del material dispensado sobre el sustrato es utilizado mientras que el resto es repelido y desechado [6].

Adhesión

Una consideración crítica en el desarrollo de sistemas microfluídicos fabricados con múltiples capas de PDMS es el método de adhesión. Existen distintos factores que influyen en la calidad de la adhesión, como son la técnica utilizada, la limpieza de las superficies a adherir, y la proporción pre polímero – agente curante. La aplicación y la complejidad del diseño determinan qué técnica es requerida para cumplir con los criterios del dispositivo. Algunas técnicas alteran las propiedades químicas de la superficie dentro de los micro canales, lo que en el caso de aplicaciones biomédicas puede ser útil o representar un problema. Un factor a veces ignorado en las etapas de investigación del desarrollo de un dispositivo microfluídico es el volumen de producción requerido, lo cual limita el rango de técnicas de adhesión disponibles al fabricar dispositivos comerciales [8].

Una de las primeras técnicas reportadas consiste en colocar un microchip sobre un sustrato de PDMS o vidrio. Los micro canales quedan herméticamente sellados sin la necesidad de aplicar fuerza externa, soportando hasta 1 [bar] de presión. Este método es fácilmente reversible y permite remover un dispositivo tapado para ser limpiado y reutilizado [9]. Duffy *et al* presentaron la oxidación de superficie para incrementar la fuerza de la adhesión al activar capas de PDMS con enlaces cruzados con plasma de oxígeno [10]. Se cree que la oxidación de superficies expone la superficie de PDMS a grupos de silanol que al entrar en contacto forman enlaces covalentes de siloxano (Si-O-Si). Esta técnica vuelve los canales más hidrofílicos, sin embargo pueden rápidamente volver a su tendencia hidrofóbica si se exponen a la atmósfera. Otra de las ventajas que ofrece el tratamiento con plasma de oxígeno es el permitir la adhesión a otros materiales, tales como el vidrio. Por otra parte, las desventajas incluyen la necesidad de colocar las superficies

en un ambiente de bajo vacío en la presencia de oxígeno, equipos voluminosos, la necesidad de un cuarto limpio, costos y mantenimiento del equipo [8] [11].

Una alternativa al tratamiento de superficies por medio de plasma es la activación de superficies a través de descargas de efecto corona, reportada por Beebe et al [11]. Utilizando un tratador de corona (mostrado en la Figura 1.5), el aire circundante es ionizado por el gran potencial en el electrodo, creando así plasma localizado. Este dispositivo puede ser utilizando en un cuarto a presión atmosférica. Para realizar el procedimiento, las superficies a unir deben ser colocadas sobre una superficie no conductora. El electrodo debe realizar un recorrido sobre las superficies a una distancia aproximada de 5-10 [mm] por un tiempo de 5-20 [s]. Las superficies tratadas son posteriormente presionadas una contra la otra y no deben ser manipuladas por lo menos durante una hora (un día completo asegura una unión completa). Entre las ventajas que ofrece esta técnica se encuentran el hecho de que las muestras de PDMS pueden ser tratados inmediatamente después de ser removidas del molde, lo cual minimiza la probabilidad de ser contaminadas, así como ser un procedimiento seguro y fácil. Por otra parte algunas precauciones deben ser tomadas en cuenta. Debido a la cantidad de ozono que se produce, debe realizarse en un área ventilada; el equipo genera ruido en radio frecuencia, por lo que dispositivos electrónicos deben mantenerse alejados a una distancia de 1 [m]; y debe realizarse sobre una superficie no conductora.

Electrodo

Figura 1.5 Tratador de efecto corona

1.2. Sistemas Bio-MEMS y Lab-on-a-Chip

Desde la concepción de los sistemas micro electro mecánicos (MEMS por sus siglas en inglés) a principios de la década de 1970 se destacó la importancia de las aplicaciones biomédicas de estos sistemas miniatura. Los sistemas micro electro mecánicos biomédicos o biológicos (BioMEMS) son hoy en día un área extensamente investigada con una amplia variedad de importantes aplicaciones biomédicas. Los BioMEMS pueden ser definidos como *sistemas o dispositivos construidos a partir de técnicas inspiradas de la fabricación a micro y nano escala que son utilizados para el procesamiento, suministro, manipulación, análisis o construcción de entidades biológicas (1].*

Las áreas de investigación y aplicaciones en BioMEMS varían desde los diagnósticos hasta nuevos materiales para la fabricación de Bio-MEMS, microfluídica, ingeniería de tejido, modificación de superficie, BioMEMS implantables, sistemas para suministro de fármacos, etc. Los dispositivos y sistemas integrados que utilizan BioMEMS también son conocidos como sistemas lab-on-a-chip (LOC) y micro sistemas de análisis total (micro-TAS, µTAS).

Los materiales con los que pueden ser fabricados fueron clasificados por Bashir [1] en tres categorías. (I) Materiales relacionados con la microelectrónica (silicio, vidrio y materiales relacionados utilizados para micro electrónica y MEMS), (II) materiales plásticos y poliméricos (polidimetilsiloxano [PDMS]) y (III) materiales y entidades biológicos (proteínas, células y tejidos). Sin embargo hoy en día se puede agregar una cuarta categoría: (IV) materiales precursores de carbono, los cuales a través del proceso de pirólisis abren una nueva y amplia gama de aplicaciones y áreas de estudio [12][13].

A pesar de que la industria de la micro electrónica desarrolló la fotolitografía y técnicas asociadas para fabricar circuitos integrados, como el grabado químico, y el micro maquinado de silicio había sido desarrollado para la fabricación de MEMS y estas técnicas fueron las primeras en ser adaptadas para la fabricación de microestructuras para investigación biológica, éstas técnicas

de fotolitografía eran limitadas en su aplicación a la biotecnología y biología debido a que es costosa, proporciona un control limitado de las superficies, con frecuencia no es directamente aplicable a células y proteínas, se requieren tiempos largos para el desarrollo de prototipos y la mayoría de los biólogos no están familiarizados con estas técnicas, por lo que para promover el uso de dispositivos microfluídicos en la biología era necesario un método de fabricación más rápido, menos costoso y menos especializado. Una solución ha sido encontrada con el procesamiento de dispositivos BioMEMS utilizando polímeros como PDMS y litografía suave ya que esta representa una ruta poco costosa y al no requerir un alto grado de experiencia, con otras ventajas como una alta biocompatibilidad [1] [14] [15] [16].

El PDMS y otros polímeros con base de siloxano son hoy ampliamente utilizados en la fabricación de sellos y moldes para la litografía suave. Los dispositivos microfluídicos construidos con estos materiales han generado más interés que sus competidores convencionales ya que existe una gama de estos materiales que cumplen con características requeridas como biocompatibilidad, propiedades mecánicas y químicas y ofrecen la posibilidad de crear dispositivos microfluídicos desechables, ser producidos en un alto volumen y para una gran variedad de aplicaciones [17]. El PDMS, por ejemplo, posee una útil combinación de propiedades, como un módulo de Young que lo hace un elastómero moderadamente rígido (1 [MPa]) y el ser ópticamente transparente a longitudes de onda del orden de 300 [nm] [14]. Las técnicas de fotolitografía han progresado para lograr resoluciones menores con el desarrollo de máscaras de alta calidad y aunados a técnicas de fabricación con materiales poliméricos, como la litografía suave, se pueden obtener mejores resoluciones y lograr dispositivos que se adaptan a distintas aplicaciones Lab-on-a-Chip [17].

Los dispositivos con aplicaciones en el área de diagnósticos también son conocidos como *BioChips* y son utilizados para detectar células, microorganismos, virus, proteínas y moléculas de interés bioquímico. El uso de la tecnología para la detección a micro y nano escala se justifica por la reducción del elemento sensor a la escala del objetivo, aportando así una mayor sensibilidad; volúmenes de reactivos y costos asociados reducidos; reducción en el tiempo de obtención de resultados; y miniaturización y portabilidad del sistema [1].

Los bio sensores son dispositivos analíticos que combinan un elemento biológicamente sensible con un transductor físico o químico y detectan cuantitativamente la presencia de compuestos específicos en un entorno [18]. Algunos de estos dispositivos permiten incluso monitoreo y detección en tiempo real. Los métodos de detección utilizados en estos dispositivos incluyen, pero no se limitan a, métodos mecánicos, eléctricos y ópticos.

Los sistemas *Lab-on-a-Chip* son dispositivos y sensores con algún nivel de integración de diferentes funciones y funcionalidad como manejo y preparación de muestras, mezcla, separación, lisis y detección celular, etc. Muchos de estos sistemas incluyen más de un paso de análisis. En la **Figura 1.6** [1] se muestra un diagrama de un sistema integrado con las funciones para el estudio de células. Todas las funciones mostradas pueden no ser siempre utilizadas.

El uso y desarrollo de los micro sistemas de análisis total o dispositivos *Lab-on-a-Chip* se ha extendido en nuevos campos y disciplinas, abarcando desde la investigación a aplicaciones comerciales. Esto se ve reflejado en el creciente número y calidad de artículos publicados [19] que reportan desarrollos en técnicas de microfabricación, control de flujo, instrumentación, métodos de preparación de muestra, detección, micro gotas [20] [21], así como aplicaciones en las áreas de diagnósticos, bio fluidos y prueba de fármacos.

Figura 1.6 Posible plataforma integrada de un dispositivo Lab-on-a-Chip para la detección de células y microorganismos [1].

1.3. Microválvulas

En un sistema microfluídico, células y bio partículas viajan a través de un canal dentro de un flujo laminar estable, lo que es útil y permite una manipulación efectiva y precisa, e incluso permiten exponer a células a estímulos a los que son sometidas en su ambiente natural de manera controlada y altamente reproducible que no puede ser fácilmente lograda por medio del cultivo convencional de tejidos [22]. El transporte controlado, inmovilización y manipulación de bio moléculas y células son funciones importantes que deben ser incorporadas a un sistema microfluídico para llevar a cabo experimentos bioquímicos, biológicos y celulares [23].

El control de los fluidos involucra casi inevitablemente válvulas y uno de los pilares para la exitosa miniaturización y comercialización de dispositivos microfluídicos completamente integrados era el desarrollo de componentes microfluídicos como las micro válvulas y micro bombas [24]. Las micro válvulas poseen ventajas sobre las válvulas tradicionales, como bajos tiempos de respuesta, consumo de energía y volúmenes muertos pequeños, así como una alta reproductibilidad y la posibilidad de ser integradas con otras funciones, como sensores micro mecánicos. Debido a la naturaleza planar del método de fabricación, el diseño de micro-válvulas que incorporan diafragmas como elemento móvil ha sido favorecido, ofreciendo además la ventaja de separar al fluido del actuador, lo cual evita posibles fallas por sedimentación o bloqueos y permite cumplir demandas de limpieza [25].

De acuerdo con Oh y Ahn [24], las microválvulas pueden ser clasificadas en dos categorías principales: microválvulas activas, que utilizan partes móviles mecánicas y no-mecánicas, así como sistemas externos; y microválvulas pasivas, con partes móviles tanto mecánicas como no-mecánicas. Las micro válvulas mecánicas consisten típicamente en membranas móviles unidas a métodos de actuación magnéticos, eléctricos, piezoeléctricos o térmicos. Las válvulas no-mecánicas pueden ser operadas mediante el uso de materiales inteligentes. Las micro válvulas externas son actuadas con ayuda de sistemas externos, como bombas neumáticas. Asimismo, con base en su estado inicial, las válvulas pueden ser clasificadas en normalmente cerradas, normalmente abiertas o biestables. Esta clasificación se muestra en la **Tabla 1.1**.

Distintos principios de actuación pueden ser adaptados a las partes mecánicas móviles de las micro válvulas activas. La mayoría de las micro válvulas activas unen una membrana flexible a métodos de actuación magnéticos, piezoeléctricos, térmicos u otros (**Figura 1.7**) [24].

Las válvulas magnéticas pueden integrar imanes permanentes fijos en forma de solenoide o móviles actuados por solenoides externos; o bien emplear una parte móvil metálica. El uso de imanes permanentes incrementa la fuerza magnética de actuación con un menor consumo de energía.

	Mecánicas	Magnéticas	Campos magnéticos externos
			Inductores magnéticos integrados
		Eléctricas	Electroestáticas
			Electrocinéticas
		Piezoeléctricas	
		Térmicas	Bimetálicas
			Termo neumáticas
Activas			Aleación de memoria de forma
		Bi-estables	
	No-mecánicas	Electroquímicas	
		Cambio de fase	Hidrogel
			Sol-gel
			Parafina
		Reológicas	Electro-reológicas
			Ferro fluidos

Tabla 1.1 Clasificación de las micro válvulas [24]

	Externas	Modulares	Incorporadas
			Rotatorias
		Neumáticas	Membrana
			En línea
	Mecánicas	Válvulas check	Aleta
			Membrana
			Bola
			Estructura móvil en línea
Pasivas	No-mecánicas		Difusor
		Capilaridad	Abruptas
			Activadas por líquidos
			Ráfaga
			Válvula hidrofóbica

Han sido reportadas válvulas electrostáticas que emplean tanto membranas flexibles [26] como membranas rígidas [27]. La mayoría de las válvulas electrostáticas encontraron una aplicación en la regulación de flujos gaseosos en vez de líquidos debido a la electrólisis de líquidos a altos voltajes. Adicionalmente a los principios de actuación electrostáticos, principios de actuación electro cinéticos pueden ser empleados para el desarrollo de micro válvulas activas [28].

Figura 1.7 Principios de actuación de micro válvulas activas con partes mecánicas móviles. (a) Electromagnético, (b) electrostático, (c) piezoeléctrico, (d) bimetálico, (e) termo neumático, (f) aleación con memoria de forma [24].

El uso de micro válvulas térmicamente actuadas (bimetálicas, termo neumáticas, aleaciones de memoria de forma) representa un alto consumo de energía y tiempos de respuesta mayores debido a los cambios de temperatura requeridos para la actuación. Esta desventaja, así como la necesidad un suministro de energía constante en el caso de las microválvulas activas convencionales para mantenerlas abiertas o cerradas, en el caso de válvulas normalmente cerradas o normalmente abiertas, respectivamente, se soluciona con la implementación de métodos de actuación biestables que requieren de energía únicamente durante la transición entre dos posiciones estables. A través de medios de actuación electromagnéticos se han fabricado válvulas biestables [29] [30] [31].

Los métodos de actuación no mecánicos de las micro válvulas activas incluyen principios basados en cambio de fase electroquímico; materiales reológicos; cambio de fase de materiales como hidrogel, sol-gel, parafina; y materiales electro reológicos o ferro fluidos. Estos métodos son de particular interés debido a que requieren estructuras simples para su implementación y son fácilmente desechables, lo cual los hace ideales para aplicaciones en las ciencias biológicas. Los hidrogeles inteligentes son capaces de cambiar su volumen de manera reversible y reproducible. Dicho cambio puede ser respuesta a distintos estímulos o entradas, tales como cambios en el pH, concentración de glucosa, temperatura, campo eléctrico, luz, carbohidratos y antígenos. Dado que la velocidad de respuesta de estos materiales es relativamente lento, estos son adecuados para aplicaciones de suministro de fármacos.

Los ferro fluidos son líquidos magnéticos creados a partir de la suspensión de partículas ferromagnéticas de 10 [nm] en un líquido de transporte, como pueden ser el agua, di ésteres, hidrocarbonos o fluorocarbonos. Los ferro fluidos adoptan la forma del canal, sellándolo, y respondiendo a fuerzas magnéticas localizadas externamente para abrir o cerrar el canal (**Figura 1.8** [32]).

Figura 1.8 Funcionamiento de válvulas con ferro fluidos [32].

El uso de sistemas externos es una solución práctica en el diseño de micro válvulas. Ofrece ventajas como el soportar altas presiones de entrada sin mostrar fugas, sin embargo la miniaturización es difícil debido a los sistemas externos requeridos, como es el caso de las válvulas neumáticas. De este tipo se han construido principalmente válvulas cuyas partes móviles son membranas, hechas de silicio [33], látex [34], PDMS y membranas con centro grueso [35].

Figura 1.9 Diagrama del funcionamiento de una válvula neumática con membrana flexible en sus estados abierto (a) y cerrado (b).

Las micro válvulas pasivas (o válvulas *check*) consisten en partes móviles como membranas, aletas, esferas u otras estructuras que se abren únicamente cediendo ante la presión del flujo en un solo sentido, mostrando un comportamiento análogo al de un diodo. Las válvulas pasivas son típicamente incorporadas a las entradas y salidas de micro bombas de desplazamiento recíproco [24].

2. DISEÑO DEL DISPOSITIVO

2.1. Concepto y principio de funcionamiento

Como principio de funcionamiento para el dispositivo, fue seleccionado el método de actuación neumático, debido a que las técnicas empleadas durante el proceso de fabricación, así como los materiales necesarios, se adecúan más a los recursos y equipo disponibles en el Laboratorio de Micro Sistemas Bio-MEMS y Lab-on-a-Chip de la Facultad de Ingeniería, donde el proyecto fue desarrollado. El dispositivo consta de cuatro capas: un sustrato de vidrio, una réplica de PDMS del circuito hidráulico, una membrana flexible de PDMS y una cámara de aire fabricada también con PDMS. El circuito hidráulico contiene un canal interrumpido que conduce a la cámara, conectada a su vez con un segundo canal. La membrana flexible cubre la entrada y la salida que conectan a los canales con la cámara, fungiendo así como el elemento móvil de la válvula (al sellar la entrada y la salida o permitir el paso del fluido) y como una barrera que separa el fluido de trabajo del aire contenido en la cámara. Ver **Figura 2.1**.

Figura 2.1 Diagrama de las capas que conforman el dispositivo.

2.2. Circuito hidráulico

La **Figura 2.2** muestra un diagrama del circuito hidráulico. Consta de una entrada (1) a un canal que conduce a una bifurcación (2). Uno de los canales en los que se divide el canal original conduce a través de un serpentín hacia una de las salidas del circuito (3). El otro canal conduce a una terminal donde es interrumpido y que lo conecta con la micro cámara (4). En la dirección del mismo canal que se interrumpió, se encuentra una segunda terminal que comunica la segunda sección del canal con la micro cámara, quedando así ambas secciones a su vez comunicadas entre

sí a través de la micro cámara. La segunda sección del canal conduce a una segunda salida del circuito (5).

Figura 2.2 Diagrama del circuito hidráulico.

Debido a que los dispositivos microfluídicos normalmente están conformados por largos micro canales con geometrías delgadas, dentro de ellos se generan flujos unidireccionales que pueden ser representados por medio del flujo Poiseuille y las redes de micro canales pueden ser representadas en analogía como un circuitos eléctrico, estableciendo una relación entre la caída de presión y el flujo a lo largo de los canales, siendo el flujo análogo a la corriente eléctrica, la caída de presión a la caída de potencial y la resistencia hidráulica a la resistencia eléctrica. Esta descripción es conocida como Ley Hagen-Poiseuille, descrita por la ecuación (**2.1**)(**4.12**) [36].

$$Q = \frac{\Delta P}{R_h} \tag{2.1}$$

Donde:

Q = Flujo $\Delta P = Diferenci \quad de \ presión$ $R_h = Resistencia \ hidráulica$

Figura 2.3 Red hidráulica y su análogo eléctrico [36].

La resistencia hidráulica de un canal cilíndrico se define como:

$$R_h = \frac{8\eta L}{AR^2} \tag{2.2}$$

Donde:

$$L = Longitud \ del \ canal$$

$$A = \acute{A}rea \ de \ la \ sección \ transversal \ del \ canal$$

$$\eta = Viscosidad \ dinámica \ del \ fluido$$

$$R = Rad \quad del \ canal$$

En el caso de canales con una sección no circular, como es el caso de los canales microfluídicos que por el método de fabricación resultan de sección transversal rectangular, la resistencia hidráulica puede ser aproximada como:

$$R_h \approx \frac{8\eta L}{Ar_h^2} \tag{2.3}$$

Donde r_h es el radio hidráulico, una relación geométrica entre la sección transversal del canal y su perímetro empleada como herramienta para aproximar el cálculo como si se tratara de una tubería de sección trasnversal circular. El radio hidráulico se define como:

$$r_h = \frac{2A}{P} Donde P = Perímetro$$
(2.4)

La **Figura 2.4** muestra esquemas del circuito hidráulico con sus dimensiones, así como la nomenclatura de las resistencias hidráulicas asignadas a cada una de sus secciones, las presiones en las terminales y el gasto volumétrico para el análisis del circuito.

Figura 2.4 Esquema del circuito hidráulico con dimensiones (arriba) y nomenclatura asignada para su análisis (abajo).

 P_0 es la presión a la entrada del circuito y dado que las salidas son abiertas se considera que se encuentran a presión atmosférica. R_0, R_1, R_2, R_4 son las resistencias hidráulicas correspondientes a las secciones de los canales indicados en la **Figura 2.4**. Q_T es el gasto volumétrico total que ingresa al circuito; Q_1 y Q_2 representan los gastos que circulan por cada una de las rutas que conducen a las salidas, y cuya suma es igual al gasto total, regidos por la ley de conservación de la materia.

 R_3 representa la resistencia de la válvula en estado abierto, es decir, la micro cámara por la cual circula el fluido cuando la membrana flexible no sella la entrada y salida de ésta. En su estado cerrado, ésta puede representarse como una resistencia cuyo valor tiende al infinito, es decir como un circuito abierto, en su análogo eléctrico.

Figura 2.5 Análogos eléctricos del circuito hidráulico en los estados abierto (arriba) y cerrado (abajo) de la válvula.

3. PROCESO DE MICRO FABRICACIÓN

3.1. Molde de canales microfluídicos fabricado por fotolitografía

Por medio de un proceso de fotolitografía se fabricó el molde de los canales que conformarían el dispositivo. Como substrato se empleó una oblea de silicio de 76.2 [mm] (3 [in]) de diámetro. Para ser limpiada, ésta fue colocada dentro de un *spin coater*, en el cual fue cubierta con acetona y posteriormente se ejecutó el proceso de limpieza descrito en la **Tabla 3.1**. El proceso se repitió utilizando alcohol isopropílico. Una vez limpia, la oblea fue retirada del *spin coater* y se colocó en una parrilla a 230 [°C] durante 1 [h] con el fin de ser deshidratada y promover la adhesión de la resina fotosensible SU-8 2100 de Micro Chem[®] que posteriormente fue depositada sobre ella.

Paso 1			
Velocidad [rpm] Aceleración[rpm/s] Tiempo			
500	100	10	
Paso 2			
Velocidad [rpm]	Aceleración[rpm/s]	Tiempo [s]	
2000	300	30	

Tabla 3.1 Proceso de limpieza programado en el Spin Coater

Una vez deshidratada, se introdujo nuevamente la oblea dentro del *spin coater* para realizar el depósito de resina fotosensible. Se empleó la resina fotosensible negativa SU-8 2100 de Micro Chem[®], con la cual fue cubierta la superficie de la oblea. Para realizar el recubrimiento por centrifugación, se programó en el *spin coater* el proceso correspondiente indicado en la hoja de especificaciones del proveedor [37] descrito en la **Tabla 3.2**.

Al concluir el depósito de la resina por centrifugación, se sometió la oblea con la resina al proceso de cocido suave con el fin de que los solventes que mantienen la resina en estado líquido fueran evaporados. La oblea fue colocada en una parrilla eléctrica con una temperatura de 75 [°C] durante 5 [min] y posteriormente en otra parrilla con una temperatura de 105 [°C] durante 20 [min].

Resina	MicroChem SU-8 2100		
Espesor [µm] 100			
Paso 1			
Velocidad [rpm]	Aceleración[rpm/s] Tiempo [s		
500	500 100 10		
Paso 2			
Velocidad [rpm]	Aceleración[rpm/s]	Tiempo [s]	
2500	300	30	

Tabla 3.2 Proceso de recubrimiento por centrifugación para la resina MicroChem SU-8 2100

Una vez transcurrido el tiempo, la oblea fue retirada de la parrilla y se le permitió alcanzar nuevamente la temperatura ambiente para poder ser manipulada y colocada dentro del equipo de fotolitografía, donde fue expuesta al diseño empleando una longitud de onda de 365 [nm] y un tiempo de exposición de 5 [s].

Finalizada la exposición de la resina, se realizó el proceso de cocido post-exposición nuevamente en parrillas eléctricas. Durante 5 [min] fue expuesta la oblea a una temperatura de 75 [°C] y durante 10 [min] a 105 [°C].

Tras el cocido post-exposición la resina fue revelada. Se colocó ésta dentro de un cristalizador que contenía revelador para SU-8 Micro Chem[®] el cual se agitó con ayuda de un agitador orbital. La oblea fue expuesta al revelador dentro del recipiente durante 14 [min], tras los cuales fue enjuagada con ayuda de una pipeta rociando sobre ella revelador sin utilizar y secada con nitrógeno para remover residuos de resina que no fue revelada apropiadamente durante el proceso en el agitador orbital. Este proceso se realizó reiteradamente hasta que la oblea no mostró residuos de resina.

Para finalizar, se realizó al molde un proceso de cocido fuerte (*hard bake*), para lo cual el molde fue colocado sobre una parrilla eléctrica a 150 [°C] durante 30 [min]. Transcurrido el tiempo, se apagó la parrilla y se le dejó alcanzar la temperatura ambiente, pudiendo así ser manipulado el molde para su almacenamiento dentro de una caja de Petri.

3.2. Litografía suave: Réplicas del molde en PDMS

Para fabricar las réplicas de los canales microfluídicos a partir del molde de silicio y resina SU-8, éste fue colocado dentro de una caja de Petri y cubierto con PDMS. Para obtener réplicas de 4 [mm] de altura dentro de un recipiente (caja de Petri) de 85 [mm] de diámetro fueron preparados 25.2 [g] de PDMS, a partir del cálculo realizado descrito por las ecuaciones (**3.1**) a (**3.4**).

$$V = A h \tag{3.1}$$

Donde:

$$A = \pi \frac{\phi^2}{4} = \pi \frac{(85 \ [mm])^2}{4} \approx 5676.5 \ [mm^2]$$

h = 4 [mm]

Sustituyendo en la ecuación (4.12) se obtiene:

$$V = 22\ 698\ [mm^3]$$

Multiplicando el volumen por la densidad del PDMS ($\rho_{PDMS} = 1.11 * 10^{-3} [\frac{g}{mm^3}]$) se obtiene la masa necesaria:

$$m_{PDMS} = V \rho_{PDMS} \tag{3.2}$$

$$m_{PDMS} \approx 25.2 [g]$$

El PDMS es preparado a partir de un pre-polímero y un agente curante, en una proporción 10:1. Para obtener las cantidades necesarias de cada uno se planteó el sistema de ecuaciones formado por las ecuaciones (**3.3**) y (**3.4**):

$$m_{PDMS} = m_{PP} + m_{AC} \tag{3.3}$$

$$m_{PP} = 10 \ m_{AC}$$
 (3.4)

Donde:

$m_{PP} = masa \ de \ prepolímero$ $m_{AC} = masa \ de \ agente \ curante$

Despejando la masa del agente curante de la ecuación (**4.12**) y sustituyéndola en función del pre polímero en la ecuación (**3.3**) se obtiene:

$$m_{PP} \approx .909 m_{PDMS}$$

Sustituyendo el valor de la masa de PDMS se obtiene:

$$m_{PP} \approx 22.9 [g]$$

 $m_{AC} \approx 2.2 [g]$

Las cantidades necesarias de pre-polímero y agente curante se vertieron dentro de un vaso de precipitados y mezcladas con un agitador durante 1 [min]. Durante el proceso de mezclado burbujas de aire quedan atrapadas dentro de la mezcla de PDMS. Para removerlas, el vaso de precipitados fue colocado dentro de una campana de vacío hasta que no hubo burbujas visibles en la mezcla. Posteriormente, el PDMS fue vertido dentro de la caja de Petri y ésta fue colocada a su vez dentro de la campana de vacío para extraer el aire que fue atrapado durante este segundo proceso.

Cuando el PDMS se encontró por completo libre de aire, fue curado dentro de un horno que se mantuvo encendido a 60 [°C] durante 30 [min]. Transcurrido el tiempo el horno fue apagado y se dejó reposar el PDMS dentro de él durante una noche.

Las réplicas fueron extraídas recortando el área de PDMS que contiene el diseño utilizando navajas y bisturíes; y removiendo con ayuda de una espátula.

Figura 3.1 Molde de resina fotosensible SU-8 sobre un sustrato de silicio contenido en una caja de Petri con PDMS, del que ya han sido retiradas las réplicas..

Para fabricar réplicas posteriores, se preparó la cantidad de PDMS necesaria sólo para cubrir el área en la que se contiene el diseño, realizando el cálculo descrito en las ecuaciones (**3.1**) a (**3.4**) sustituyendo el área de la caja de Petri por el área recortada, obteniendo:

$$A \approx 2014 \ [mm^2]$$

$$m_{PP} \approx 8.12 [g]$$

$$m_{AC} \approx 0.812 [g]$$

Utilizando un sacabocados Harris Uni-Core de 1.2 [mm] de diámetro en las terminales de las réplicas se realizaron agujeros para permitir la inserción de tubería flexible a través de la cual puede ser inyectado un fluido. Una vez perforadas las terminales, las réplicas fueron limpiadas con ayuda de cinta mágica para remover las partículas encontradas en la superficie. Después de ser limpiadas, las réplicas se envolvieron con un trozo nuevo de cinta para evitar ser contaminadas por nuevas partículas y poder ser almacenadas dentro de una caja de Petri.

3.3. Adhesión: Tratamiento de superficie a través de la descarga corona

Preparación del sustrato y las réplicas

Para formar un chip con micro canales, se utilizaron porta objetos de vidrio como sustratos a los que las réplicas de PDMS fueron adheridas. Los porta objetos fueron limpiados con aire comprimido y un paño para tareas delicadas humedecido con alcohol isopropílico. Posteriormente fueron introducidos al horno con una temperatura de 60 [°C] durante 30 [min] con el fin de evaporar los residuos del alcohol, ya que la humedad afecta negativamente a la adhesión del sustrato con las réplicas de PDMS.

Utilizando cinta adhesiva mágica, las partículas contaminantes fueron removidas de la superficie de las réplicas que sería adherida.

Adhesión

Una vez que los sustratos fueron preparados los sustratos y las réplicas, las superficies entre las cuales se llevaría a cabo la adhesión fueron expuestas a una descarga emitida por un tratador de efecto corona. La superficie del sustrato fue expuesta durante 80 [s] y la superficie de las réplicas 40 [s]. Inmediatamente después de la exposición a la descarga, la réplica es colocada sobre el sustrato presionando con los dedos con un movimiento de adentro hacia afuera para extraer las burbujas de aire atrapadas entre ambas superficies. Una vez unidas ambas superficies, para ejercer fuerza entre ambas superficies y favorecer la adhesión, la réplica y el sustrato son

envueltos con cinta adhesiva. Posteriormente fueron colocados dentro del horno con una temperatura de 50 [°C] durante 20 [h] debajo de un bloque de vidrio cuyo peso favorece asimismo la unión de ambas superficies.

3.4. Membrana flexible

<u>Moldes</u>

Para la fabricación de membranas flexibles que pudieran ser adheridas selectivamente se fabricaron dos moldes por medio de fotolitografía sobre sustratos de vidrio con el diseño de micro canales que delimitaran la zona que no se deseaba adherir.

Como sustrato se emplearon dos portaobjetos de vidrio con dimensiones de 25 x 75 [mm], sobre cada cual se reprodujo 3 veces el diseño que delimita la zona no adherible. El diseño consta de un micro canal de 200 [µm] de ancho y altura h = 30 [µm] delimitando un área interior con la forma de un elipse cuyas dimensiones son $\phi_1 = 7$ [mm] y $\phi_2 = 3$ [mm]. El diseño se muestra en la **Figura 3.2**.

Figura 3.2 Patrón de microcanal delimitante del área no adherible.

El proceso de fotolitografía fue descrito anteriormente en este capítulo y fue repetido sobre los porta objetos, empleando los parámetros descritos en la **Tabla 3.3**, **Tabla 3.4**, **Tabla 3.5** y **Tabla 3.6**, seleccionados con base en las hojas de especificaciones del proveedor [37][38].

Molde 1				
Resina Micro Chem SU-8 3035				
Espesor 30				
Paso 1				
Aceleración[rpm/s]	Tiempo [s]			
100	10			
Paso 2				
Aceleración[rpm/s]	Tiempo [s]			
300	30			
	Molde 1 Micro Chem SU-8 30 Paso 1 Aceleración[rpm/s] 100 Paso 2 Aceleración[rpm/s] 300			

Tabla 3.3 Parámetros del proceso de recubrimiento por centrifugación para el molde 1 de la membrana flexible.

Tabla 3.4 Parámetros del proceso de recubrimiento por centrifugación para el molde 2 de la membrana flexible.

Molde 2			
Resina Micro Chem SU-8 2035			
Espesor [µm]	Espesor [µm] 30		
	Paso 1		
Velocidad [rpm]	Aceleración[rpm/s]	Tiempo [s]	
500	100	15	
Paso 2			
Velocidad [rpm]	Aceleración[rpm/s]	Tiempo [s]	
4500	300	30	

Molde 1			
Cocido suave			
Dese 1	T [°C]	t [min]	
Paso 1	75	1	
Paso 2	T [°C]	t [min]	
F d S U Z	105	20	
Tiempo de exposición [s]	Tiempo de exposición [s]		
Cocido post-exposició	ón		
Paso 1	T [°C]	t [min]	
1 430 1	75	1	
Dasa 2	T [°C]	t [min]	
Fasu 2	105	6	
Tiempo de revelado [min]	8		
Cocido para ondurocimiento	T [°C]	t [h]	
	200	2	

Tabla 3.5 Parámetros del proceso de fotolitografía del el molde 1 de la membrana flexible

Tabla 3.6 Parámetros del proceso de fotolitografía del molde 2 de la membrana flexible.

Molde 2			
Cocido suave			
D 1	T [°C]	t [min]	
Paso 1	75	3	
Daca 2	T [°C]	t [min]	
Fasu z	105	6	
Tiempo de exposición [s]		6.4	
Cocido post-exposició	ón		
Paco 1	T [°C]	t [min]	
Paso 1	75	1	
Daga 2	T [°C]	t [min]	
	105	6	
Tiempo de revelado [min]	4		
Cocido para enduracimiento	T [°C]	t [h]	
	200	2	

Depósito de PDMS por centrifugación

Por medio de recubrimiento por centrifugación sobre los moldes fue depositada una capa de PDMS. Los moldes fueron colocados dentro de un *spin coater* para PDMS en el Laboratorio de
Micro y Nano Tecnología del Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia de la Facultad de Ciencias. Los moldes se adhirieron al *spin coater* mediante el uso de papel aluminio y cinta adhesiva doble cara. Su superficie fue cubierta con una mezcla de PDMS en estado líquido que fue preparada con una relación 10:1 de pre-polímero y agente curante como está descrito en el capítulo 0.

Se hizo girar el *spin coater* con una velocidad aproximada de 3000 [rpm] durante 5 [s]. Más PDMS fue agregado a la superficie ya cubierta y se repitió el proceso de recubrimiento por centrifugación.

Figura 3.3 Spin coater para PDMS del Laboratorio de Micro y Nano Tecnología de la Facultad de Ciencias.

Los moldes fueron introducidos a un horno que se mantuvo encendido con una temperatura de 60 [°C] durante 30 [min]. Transcurrido el tiempo el horno fue apagado y el PDMS se dejó a curar dentro del horno en este estado durante 20 [h]. Habiendo sido curado el PDMS, la capa de PDMS fue desprendida del molde obteniendo así una membrana con el patrón del molde grabado en ella. Para su manipulación las membranas fueron colocadas sobre papel parafinado, al cual no se adhieren.

3.5. Adhesión selectiva

Máscara de cristales de sal

Con base en el procedimiento utilizado por Baek *et al* [35] se creó una máscara de cristales de sal a partir de una solución de poli vinil alcohol (PVA) y sal que impide la adhesión del área cubierta con la máscara al proteger la superficie de la exposición a la descarga de efecto corona. La solución fue preparada con una concentraciones masa del 5 % para el PVA y 7.5 % para la sal en agua destilada.

El PVA es soluble en agua a 80 [°C], por lo que 2 [ml] de agua destilada fueron colocados en una parrilla eléctrica a esta temperatura. Fue agregado el PVA (0.1 [g]) y se dejó disolver durante 2 [h] con un agitador magnético.

A continuación la temperatura fue ajustada a 50 [°C] y se agregó la sal (0.15 [g]) con el agitador magnético en funcionamiento.

Figura 3.4 Cristales de sal observados a través de un microscopio óptico con un lente 10X.

En la **Figura 3.5** se ilustra el procedimiento para la generación de la máscara de cristales de sal a partir de la solución preparada. La superficie de la membrana de PDMS fue expuesta a la descarga de efecto corona durante 40 [s] (1) e inmediatamente después se depositó la cantidad de la solución necesaria para cubrir la superficie sobre la cual se deseaba generar la máscara (2). El microcanal en la membrana evitó que la solución se extendiera más allá del área deseada. La solución se dejó secar durante 24 [h], tras las cuales una capa de color blanco se podía observar en la superficie central (3), en la cual es posible observar los cristales de sal con un microscopio. La **Figura 3.4** muestra cristales de sal formados a partir de la solución de PVA.

Figura 3.5 Proceso para la generación de la máscara de cristales de sal.

<u>Adhesión</u>

Para poder ser manipulada, la membrana de PDMS reposaba aún sobre papel parafinado, apoyada sobre la superficie que no deseaba ser adherida y no contenía la máscara de sal. Sobre el papel fue recortada con las dimensiones de 25 x 15 [mm]

Para adherir la membrana con el dispositivo, ambas superficies fueron expuestas a la descarga de efecto corona, durante 40 [s] la superficie de la membrana y 80 [s] la superficie del dispositivo, siguiendo el procedimiento descrito anteriormente en el capítulo 3.3. La **Figura 3.6** ilustra este procedimiento.

Figura 3.6 Proceso de adhesión selectiva por descarga de efecto corona de la membrana flexible y el dispositivo.

Disolución de la máscara

Para remover la máscara del dispositivo, se hizo circular agua caliente por este de modo que se disolvieran en ella el PVA y la sal, como se ilustra en la **Figura 3.7**. Para tal efecto se colocó al dispositivo sobre una parrilla eléctrica con una temperatura aproximada de 108 [°C] durante 15 [min] antes de hacer circular agua por el dispositivo, tras los cuales el dispositivo alcanzó una temperatura aproximada de 80 [°C] (1). Se dejó circular agua por el dispositivo durante 30 [min] (2). Posteriormente, el dispositivo fue retirado de la parrilla y se hizo circular por él alcohol isopropílico durante 20 [min] con el fin de remover partículas residuales que pudieran obstruir los micro canales (3).

Figura 3.7 Proceso de disolución de la máscara de cristales de sal y limpieza del dispositivo.

Figura 3.8 Membrana adherida al micro chip después del proceso de disolución de la máscara de sal.

3.1. Cámara de aire

Se fabricó un molde de ácido poli láctico (PLA por sus siglas en inglés) impreso en 3D, cuyas dimensiones se muestran en la **Figura 3.9**. El molde fue diseñado utilizando el software Siemens NX[®] y exportado en formato STL para su impresión.

Figura 3.9 Dimensiones del molde de PLA de la cámara de aire. Unidades: [mm]

Figura 3.10 Interfaz del software de impresión 3D Cura[®] que muestra el molde de la cámara de aire listo para su impresión.

A partir del molde se generaron réplicas de PDMS de la cámara de aire siguiendo el procedimiento descrito en el capítulo 0. A la réplica se le hizo un orificio en la parte superior por medio del cual puede ser conectada a tubería flexible y una bomba.

Figura 3.11 Molde de PLA (izquierda) y réplica en PDMS de la cámara neumática (derecha).

Tras ser perforada, la cámara fue adherida a la superficie superior de la membrana de PDMS siguiendo el procedimiento descrito anteriormente en el capítulo 3.3. Los tiempos de exposición de cada superficie se especifican en la **Tabla 3.7**.

Tabla 3.7 Tiempos de exposición a la descarga de efecto corona para la adhesión de la cámara de aire.

Superficie	Tiempo de exposición [s]
Membrana	80
Cámara de aire	40

Figura 3.12 Proceso de fabricación de réplicas de la cámara de aire de PDMS a partir de un molde de PLA impreso por manufactura aditiva en 3D.

Adhesión por exposición a descarga de efecto corona

Figura 3.13 Proceso de adhesión de la cámara de aire al dispositivo por exposición a descarga de efecto corona.

4. <u>RESULTADOS</u>

4.1. Funcionamiento

Para verificar el funcionamiento del dispositivo, se hizo circular a través de los canales agua coloreada (con el fin de que fuera apreciable su presencia dentro de las distintas secciones del circuito) a razón de 10 [µl/min]. La cámara de aire se conectó por medio de tubería flexible (insertada en la perforación de la cámara) a una jeringa para insulina de 1 [ml], con el émbolo en una posición inicial de 50 unidades (0.5 [ml]). Para incrementar la presión dentro de la cámara, el émbolo se desplazó a la posición de 40 unidades, con lo cual se lleva a la válvula a su estado cerrado. En este estado se observó que el agua no circulaba por la cámara y únicamente salía del dispositivo por la terminal conectada con el serpentín. Para el estado abierto, el émbolo se llevó a la posición de 60 unidades, con lo cual una presión de vacío se ejerce sobre la membrana, levantándola y permitiendo que la cámara se inunde y el fluido circule a través de ella. En este estado el agua salía del dispositivo a tanto a través de la terminal conectada con la cámara como de la terminal conectada con el serpentín.

Con base en la ley general de los gases ideales, expresada por:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \tag{4.1}$$

Donde:

 $P_{1,2} = Presion absoluta en los estados inicial y final <math>V_{1,2} = Volumen en los estados inicial y final T_{1,2} = Temperatura absoluta en los estados inicial y final$

Figura 4.1 Arreglo experimental.

Y sustituyendo para el estado inicial, correspondiente a la posición del émbolo al ensamblar el dispositivo (5 unidades) los valores $P_1 = 77.814 [kPa]$ (presión atmosférica en la ciudad de México [39], $V_1 = 5 \times 10^{-7} [m^3]$, $T_1 = 293.15 [K]$; así como para el estado final (émbolo en la posición 4 unidades, estado cerrado de la válvula) los valores $V_2 = 4 \times 10^{-7} [m^3]$ y $T_2 = 293.15 [K]$ se puede determinar la presión en el interior de la cámara neumática cuando la válvula se encuentra en estado cerrado:

$$P_{2} = \frac{(77.814 \,[kPa])(5 \,x \,10^{-7} \,[m^{3}])}{4 \,x \,10^{-7} \,[m^{3}]}$$
$$P_{2} = 97.26 \,[kPa] \tag{4.2}$$

Figura 4.2 (a) Estado cerrado. El fluido circula únicamente por el serpentín. (b) Estado abierto. El líquido circula por ambos canales, la cámara comienza a inundarse. (c) Estado abierto. La cámara se encuentra completamente llena y el agua coloreada sale por ambas terminales.

4.2. Determinación de la velocidad utilizando particle tracking

Para determinar la velocidad dentro de los microcanales se empleó la técnica conocida como *particle tracking* [40]. Se preparó una suspensión de micro esferas fluorescentes de poliestireno FluoSpheres de Molecular Probes[®] cuyo diámetro es de 1 [μ m] y que poseen una longitud de onda de absorción, es decir, la longitud de onda de luz a la que deben exponerse para ser excitadas, de 450 [nm] (azul) y una longitud de onda de emisión (longitud de onda que emiten tras ser excitadas) de 465 [nm] (verde). La hoja de especificaciones se incluye en la sección de anexos. Las partículas fueron suspendidas en una solución de NaCl y H₂O con una concentración de 2.12 molar.

La solución se hizo circular por el dispositivo a razón de 500 [µl/h], en los estados tanto abierto como cerrado. Para observar la trayectoria seguida por las partículas, la prueba se realizó en un microscopio invertido de fluorescencia, utilizando un filtro color azul para que el haz de luz que incidía sobre el dispositivo excitara las partículas y éstas pudieran ser observadas. Se capturó el video de las trayectorias de las partículas con ayuda del software Phantom Cine Viewer de una cámara Phantom Miro M110 montada sobre el microscopio con un lente 20X. La resolución del video y la velocidad de captura empleada fueron definidas con los valores 512x280 pixeles y 2500 [c/s] respectivamente. Esta prueba se realizó en el Laboratorio de Bio Fisico Química de la Facultad de Química el cual se encuentra bajo la supervisión del Dr. Luis Olguín.

La zona de interés que se grabó corresponde a la bifurcación del canal de entrada, en donde se dividen el canal que conduce hacia la válvula y el canal que conduce al serpentín. Esta zona fue definida y seleccionada para su análisis con el fin de obtener datos de la velocidad de las partículas en las regiones mostradas en la **Figura 4.3**

Figura 4.3 Zona de interés mostrada en el diagrama el circuito eléctrico (arriba) y fotografía de la zona de interés que muestra las regiones definidas para el análisis obtenida a través de un microscopio con un lente de 20X (abajo)

Para el análisis de los videos obtenidos, estos fueron procesados con el software Phantom Cine Viewer ajustando los valores de brillo, ganancia y gama y aplicando el filtro "Laplaciano 3x3" en el panel "herramientas de imagen", de manera que la fluorescencia de las micro esferas pudiera ser apreciada de una mejor manera. Una vez obtenidos los ajustes deseados, se seleccionaron muestras representativas de los videos y fueron exportados en formato JPEG cuadro a cuadro.

Figura 4.4 Partículas fluorescentes mostradas en un cuadro de video antes de aplicar el filtro (arriba) y después de aplicarlo (abajo).

Utilizando el software ImageJ y siguiendo el procedimiento descrito en el prontuario para realizar mediciones a partir de una fotografía tomada con un microscopio del Laboratorio de Micro Sistemas Bio-MEMS y Lab-on-a-Chip elaborado por Arturo Islas, incluido en la sección de anexos, se midió el ancho del canal a partir de la fotografía mostrada en la **Figura 4.5**, obteniendo el valor de 110 [µm]. A partir de este valor conocido y siguiendo el procedimiento del prontuario, se

obtuvo una relación 0.5995 [pix/ μ m] y fue establecida la escala correspondiente a los cuadros con resolución 512x280 pixeles exportados a partir de los archivos de video.

Figura 4.5 Fotografía de la zona de interés tomada a través de un microscopio con un lente de 20x empleando el software Scope Photo en la que se indica el ancho del canal medido.

Empleando la herramienta *multi-punto* de ImageJ, las coordenadas de 10 partículas en cada sección en el estado abierto, y 10 partículas en las regiones A y C en el estado cerrado fueron marcadas en 25 cuadros consecutivos para cada una. Con estos datos fue posible calcular el desplazamiento de las partículas entre un cuadro y otro, y conociendo el periodo (tiempo transcurrido entre un cuadro y otro) su velocidad promedio en cada una de las secciones. Para la sección C en estado abierto, únicamente se rastrearon 5 partículas ya que la concentración de partículas era mucho menor. De igual manera la velocidad de las partículas era significativamente menor, por lo que el registro de coordenadas se realizó cada 30 cuadros, con el fin de registrar un desplazamiento apreciable. Los resultados se muestran en la **Tabla 4.1**. Las coordenadas registradas de cada partícula se muestran en las **Tablas A.1 – A.45** en la sección de anexos.

	Estado abierto			Estado	cerrado
Partícula No.	Región A (Entrada)	Región B (Hacia la válvula)	Región C (Hacia el serpentín)	Región A (Entrada)	Región C (Hacia el serpentín)
1	15254	13833	255	14465	15567
2	11475	9894	296	14481	11894
3	14576	14707	210	11159	13309
4	12257	11464	269	12576	10864
5	13965	14171	165	13642	10411
6	12690	14051	-	12775	13073
7	14473	13302	-	10174	10024
8	13772	13947	-	10602	10571
9	13076	13160	-	10170	11116
10	15502	13851	-	10283	11363
Promedio	13704	13238	239	12033	11819
σ	1314	1463	52	1768	1707

 Tabla 4.1 Velocidades promedio obtenidas por región en los estados abierto y cerrado. Resultados reportados +/- la desviación estándar (σ).Unidades: [μm/s]

Suponiendo una velocidad uniforme en la sección transversal del canal, es decir, suponiendo un perfil de velocidades recto y no el perfil parabólico del flujo Poiseuille (**Figura 4.6**), se puede estimar la velocidad promedio con la que circularán las partículas a través del canal con el gasto de entrada empleado durante el experimento Q = 500 [μ l/h] = 1.388 x 10⁻¹⁰ [m³/s] y el área de la sección transversal del canal A = 1.13 10⁻⁸ [m²] calculada a partir de las dimensiones obtenidas a partir de una fotografía capturada a través de un microscopio con ayuda del programa Scope Photo (ancho: 110 [μ m], altura: 102 [μ m]):

$$u_{z} = \frac{Q}{A} = \frac{1.388 \ x \ 10^{-10} \ [\frac{m^{3}}{s}]}{1.13x \ 10^{-8}}$$
$$u_{z} = 12 \ 196 \ [\frac{\mu m}{s}] \tag{4.3}$$

Figura 4.6 Flujo Poiseuille en una tubería de sección circular. Imagen tomada de [36].

Comparando el valor de velocidad promedio calculado (expresión **(4.12)**) con los valores de velocidad en la región A en el estado abierto; y en las regiones A y C para el estado cerrado de la **Tabla 4.1**, que se espera sean cercanos al valor teórico, ya que por ellas circula en su totalidad el flujo de entrada, se obtuvieron los valores de error relativo expresados en la **Tabla 4.2**.

	Velocidad promedio por sección[µm/s]				
	Estado abierto Estado cerrado				
Valor teórico	A A		С		
12196	13704 12033		11820		
ε [%]	12.3 1.3 3.1				

 Tabla 4.2 Error relativo de la velocidad promedio de las partículas por región y estado.

De acuerdo con la ley de conservación de la materia, la suma de los gastos de las regiones B y C en el estado abierto debe ser igual al gasto de entrada (región A), por lo que se espera que así suceda de igual manera con las velocidades, así como para las regiones A y C en el estado cerrado. La Tabla 4.3 muestra el cálculo del error relativo para la ley de la conservación de la materia.

Tuble 4.5 Culculo del el los relativo pura la ley de conservación de la mater	Tabla 4.3 Calculo del error relativo para	a la ley de cons	servación de la materi
--	---	------------------	------------------------

	Velocidad p	Velocidad promedio por sección[µm/s]			
	Región A	Región B	Región C	Región B + C	ε [%] = ((B+C)-A)/A
Estado abierto	13704	13238	239	13477	1.6
Estado cerrado	12033	-	11819	11819	1.7

4.3. Cálculo de la presión necesaria para cerrar la válvula

La velocidad promedio dentro de una tubería de sección circular es función del gradiente de presión a lo largo de ésta y se expresa [36]:

$$u_z = \left(-\frac{\partial P}{\partial z}\right) \frac{R^2}{8\eta} \tag{4.4}$$

Donde:

$$u_z = velocidad \ promedio$$

 $R = radio \ de \ la \ tubería$
 $\eta = viscosidad \ dinámica$
 $\frac{\partial P}{\partial z} = gradiente \ de \ presión \ a \ lo \ largo \ de \ la \ tub$ ía

Debido a que el canal del dispositivo no es de sección transversal circular, se sustituirá en la expresión **(4.12)** el radio de la tubería el radio hidráulico definido en la expresión **(2.4)** del capítulo 2, resultando así:

$$u_z = \left(-\frac{\partial P}{\partial z}\right) \frac{r_h^2}{8\eta} \tag{4.5}$$

Calculando el radio hidráulico:

$$r_{h} = \frac{2(102.95 \ x \ 10^{-6} \ [m])(102.95 \ x \ 10^{-6} \ [m])}{2(102.95 \ x \ 10^{-6} \ [m] + 102.95 \ x \ 10^{-6} \ [m])}$$

$$r_{h} = 106.61 \ x \ 10^{-6} \ [m]$$
(4.6)

Despejando la variación de la presión con respecto a z de la ecuación **(4.12)**, y sustituyendo los valores del radio hidráulico; la velocidad promedio, calculada y expresada en **(4.3)**; y el valor de la viscosidad dinámica del agua η =1.002x10⁻³ [Pa s] se obtiene:

$$\frac{\partial P}{\partial z} = -\frac{u_z \, 8\eta}{R^2}$$

$$\frac{\partial P}{\partial z} = -\frac{12196 \, x \, 10^{-6} \left[\frac{m}{s}\right] \, 8 \, (1.002 x \, 10^{-3}) [Pa \, s]}{(106.61 \, x \, 10^{-6} [m])^2}$$

$$\frac{\partial P}{\partial z} = -8.601 [\frac{kPa}{m}]$$
(4.7)

Conociendo la caída de presión a lo largo del canal y su longitud, y considerando presión atmosférica a la salida, ya que ésta está abierta al ambiente, es posible conocer la presión a la entrada del dispositivo:

$$P_0 = Patm - \frac{\partial P}{\partial z} L$$

Donde:

$$L = longitud del canal desde la entrada hasta la sali$$

Para realizar el cálculo, se consideró el estado cerrado de la válvula y la longitud recorrida por el fluido en las regiones A y C (L = 35 [mm]), de modo que:

$$P_0 = 77.814 [kPa] + (8.601 \left[\frac{kPa}{m}\right]) (35x \ 10^{-3} [m])$$

$$P_0 = 78.1150 [kPa]$$
(4.8)

A partir de la presión de entrada P₀, o bien siguiendo el mismo procedimiento con el cual ésta fue calculada, es posible determinar la presión P₁ (ver **Figura 4.7**) en el nodo en el que el canal de entrada se bifurca, y cuyo valor permanece constante a lo largo del canal que conduce a la entrada a la cámara de la válvula, ya que se trata del mismo nodo, y por lo que debe ser menor a la presión dentro de la cámara para impedir el paso del fluido y mantener la válvula en estado cerrado:

$$P_1 = P_0 + \frac{\partial P}{\partial z} L_1$$

Donde:

$$\begin{split} L_1 &= longitud \; de \; la \; sección \; del \; circuito \; desde \; la \; entrada \; al \; nodo \; 1 \\ P_1 &= 78.1150 \; [kPa] - (8.601 \left[\frac{kPa}{m}\right]) \; (4.5x \; 10^{-3}[m]) \end{split}$$

$$P_1 = 78.076 \,[kPa] \tag{4.9}$$

La presión P₁ calculada es menor a la presión al interior de la cámara obtenida en (4.2)

Figura 4.7 Diagrama del circuito eléctrico en el cual se indican la longitud L₁ y la ubicación del nodo correspondiente a la presión P₁.

4.4. Resistencia hidráulica de la válvula en estado abierto

Despejando la resistencia hidráulica de la ecuación (2.1) puede definirse como:

$$R_H = \frac{\Delta P}{Q}$$

A partir del valor de la presión en el nodo 1 calculado y expresado en (**4.12**) y de los valores de velocidad promedio en las secciones B y C en el estado abierto mostrados en la **Tabla 4.1**, ya que

el gasto puede ser definido como el producto de la velocidad promedio y el área de la sección transversal ($Q = u_z A$) es posible conocer los valores de la resistencia hidráulica en las regiones correspondientes como se muestra en la **Figura 4.8**.

Figura 4.8 Resistencias hidráulicas calculadas a partir de la diferencia de presiones entre el nodo P₁ y las salidas del circuito; y las velocidades promedio calculadas en cada sección.

$$R_{HC} = \frac{P_1 - P_{atm}}{u_{zC} A}$$

$$R_{HC} = \frac{78.076x \ 10^{3} [Pa] - 77.814 \ x \ 10^{3} [Pa]}{(239.24 \ x \ 10^{-6} [\frac{m}{s}])(1.13 \ x \ 10^{-8} \ [m^{2}])}$$
$$R_{HC} = 9.6911 \ x \ 10^{13} [\frac{Pa \ s}{m^{3}}]$$
(4.10)

$$R_{HB} = \frac{P_1 - P_{atm}}{u_{zB} A}$$

$$R_{HB} = \frac{78.076x \ 10^{3} [Pa] - 77.814 \ x \ 10^{3} [Pa]}{(13238 \ x \ 10^{-6} [\frac{m}{s}])(1.13 \ x \ 10^{-8} \ [m^{2}])}$$

$$R_{HB} = 1.7514 \ x \ 10^{12} [\frac{Pa \ s}{m^{3}}]$$
(4.11)

Dividiendo (4.10) entre (4.11) se obtiene una relación de la resistencia hidráulica de cada sección:

$$\frac{R_{HC}}{R_{HB}} = 55.37 \tag{4.12}$$

CONCLUSIONES

En este trabajo se presentó el diseñó y proceso de fabricación de una micro válvula para sistemas microfluídicos Bio-MEMS y Lab-on-a-Chip con el fin de controlar la dirección de un flujo para la manipulación de partículas y entidades de interés.

Para el diseño del dispositivo se contemplaron la viabilidad y complejidad de su desarrollo con base en las técnicas de fabricación necesarias para su construcción. Se emplearon técnicas de fotolitografía, litografía suave y manufactura aditiva por impresión 3D. La descripción detallada del proceso de fabricación presentada en este trabajo permitirá a actuales y futuros miembros del Laboratorio de Micro Sistemas Bio-MEMS y Lab-on-a-Chip, y de otros laboratorios en los que se desarrollen sistemas microfluídicos con diversas aplicaciones, la reproducción del dispositivo.

La válvula presentada en este trabajo consiste en una membrana flexible actuada neumáticamente a través de un émbolo conectado a una cámara de aire, que al ser retraído provoca una deflexión en la membrana, permitiendo así el paso del fluido de trabajo a través de una entrada y una salida que comunican dos secciones de un canal interrumpido con la cámara.

Los resultados obtenidos muestran que en el estado cerrado de la válvula las partículas siguen la trayectoria deseada. En el estado abierto no lo hacen en su totalidad. Es posible observar, aunque en una mínima cantidad, algunas partículas circulando por el canal que conduce al serpentín. La presencia de las partíulas en la trayectoria del serpentín hizo posible determinar el gasto que circula por este canal así como la resistencia hidráulica de ambas trayectorias y la relación entre ambas, comprobando la consevación de flujo con errores menores al 2 %. Con una relación mayor cercana a 50 fue posible dirigir la mayor cantidad de partículas por la trayectoria deseada. Incrementando ésta relación hasta que el gasto de la región C sea despreciable se espera dirigir a la totalidad de las partículas por la trayectoria deseada, es decir, hacia la micro cámara. Esto puede lograrse incrementando la longitud del serpentín, o bien, implementando una segunda válvula que lo sustituya, pues se observó que el estado cerrado de la válvula impide el flujo de partículas en dirección a ella.

Con base en lo expresado en el párrafo anterior, se puede concluir que se logró el diseño de una micro válvula que puede ser implementada en el diseño y fabricación de un dispositivo micro fluídico que a partir de la inclusión de múltiples válvulas permita el control de reactivos y partículas de interés así como la separación de procesos dentro del dispositivo.

<u>ANEXOS</u>

Hoja de especifiaciones de micro esferas fluorescentes de poliestireno FluoSpheres

FluoSpheres[®] Fluorescent Microspheres for Tracer Studies

Introduction

FluoSpheres* fluorescent microspheres for tracer studies are 1.0 μ m polystyrene beads maximally loaded with fluorescent dyes. Because the dye content of these microspheres is much higher than that of other fluorescent microspheres, stronger signals can be generated using fewer microspheres per tracing experiment. Recently, aerosols containing these heavily dye-loaded fluorescent microspheres have been used to acquire high-resolution maps of regional pulmonary ventilation.¹² Transport of fluorescent microspheres through tissues can be quantified using methods that have been developed for regional blood flow determination. The microspheres and the fluorescent dyes they contain are extracted from the tissue. Fluorescence is then quantified using readily available instrumentation such as spectro-fluorometers or fluorescence microplate readers.

Materials

These products are uniform polystyrene microspheres with a nominal diameter of 1 µm; the actual measured diameter for each lot is printed on the product label. The microspheres are supplied in unit sizes of 5 mL, as suspensions at a concentration of 1.0×10^{10} microspheres per mL in distilled water with 0.02% thimerosal. Each microsphere reagent contains a single fluorescent dye whose fluorescence is well resolved from all of the others (Figure 1, Table 1). The exact excitation and emission spectra may vary somewhat with the solvent used to extract the fluorescence in the beads is partially quenched. Maximum fluorescence occurs once the dyes have been released by dissolution of the beads.

Storage and Handling

The microspheres should be stored at 4°C, protected from light, when not in use. DO NOT FREEZE. Thimerosal has been added to maintain sterility; however, the use of sterile technique in withdrawing samples is required to avoid potential contamina-

Figure 1. Normalized fluorescence emission spectra of the dyes contained in the FluoSpheres* fluorescent microspheres for tracer studies, after extraction into 2-ethoxyethyl acetate (Cellosolve* acetate). The four types of microspheres represented are: 1) blue-green, 2) yellowgreen, 3) orange and 4) red.

tion. The microspheres are stable for at least one year, provided the recommended storage conditions are strictly observed.

Experimental Protocols

Overview

FluoSpheres beads are administered by appropriate techniques into the subject animal. The experimental conditions are planned and carried out in the same manner as if radioactive microspheres were used. After tissue samples are collected,

Table 1. Absorption maximum and emission maximum wavelengths of FluoSpheres fluorescent microspheres for tracer studies.

Fluorescent Color *	Abs (nm)†	Em (nm)‡	
Blue-green (430/465)	427	468	
Yellow-green (505/515)	495	505	
F-13082 Orange (540/560)		554	
Red (580/605)	570	598	
	Pillorescent Color - Blue-green (430/465) Yellow-green (505/515) Orange (540/560) Red (580/605)	Priorescent Color Abs (nm) † Blue-green (430/465) 427 Yellow-green (505/515) 495 Orange (540/560) 534 Red (580/605) 570	

* The number pairs next to the color in the product names are the nominal excitation and emission maxima, in nm, for the fluorescent beads suspended in water. † The absorption maxima were determined for dyes extracted from beads in Cellosolve acetate. Wavelengths may differ somewhat in other solvents. Excitation maxima are essentially the same as the absorption maxima; however, it is sometimes advisable to excite with slightly lower wavelengths, to obtain optimal peak resolution and to isolate emission from scattered excitation light. ‡ The emission maxima were determined for dyes extracted from beads in Cellosolve acetate. the fluorescent microspheres can be directly extracted from lung tissue samples by use of an appropriate solvent. The fluorescence of the dye-containing solvent is then quantified with a fluorometer.

Materials That May Be Required But Are Not Provided

· 2-Ethoxyethyl acetate (Cellosolve* acetate) or xylene

Assay Procedure

Introducing Microspheres Into Tissue

Accurate measurements require that the microspheres are uniformly dispersed prior to use. Aggregation of the microspheres should be minimized by ultrasonicating the microsphere suspension before use and vigorously vortexing them prior to introduction into tissue. Microsphere suspensions may be diluted using distilled water. Solutions containing salts should not be used since they will cause the microspheres to aggregate. A protocol is described in the literature for introducing microspheres into lung tissues using aerosols.¹

Dissolution of Fluorescent Microspheres

Since air-dried lung is less dense than other tissues, the fluorescent dyes can be extracted without first digesting the tissue. By soaking the tissue in an appropriate solvent, the polystyrene microspheres will dissolve, releasing the fluorescent dye. Appropriate solvents include 2-ethoxyethyl acetate (Cellosolve acetate) or xylene (note A). The tissue should be completely immersed and allowed to soak for at least 24 hours in an airtight vial to ensure against evaporation of the solvent and protected from light. Because the relative number of microspheres in each sample is determined from the concentration of extracted dye, it is critical that solvent volumes are kept constant from sample to sample.

Measurement and Quantitation of Fluorescence

1. Instrumentation: Almost any fluorometer that is equipped with a monochromator capable of scanning excitation and emission wavelengths from about 350 nm to 650 nm can be used to measure the fluorescence of the dissolved microspheres. Instruments of this type allow a wide selection of excitation and emission wavelengths with narrow bandpasses, resulting in good spectral separation of complex mixtures of dyes. Fluorometers with fixed-wavelength filter sets are not well suited, unless the filters have narrow bandpass (about 4 nm) and correspond to the excitation and emission properties of the FluoSpheres beads, which are summarized in Table 1. The samples can be measured in 1 cm pathlength cells, flow cells or, in some cases, 96-well microplates.

2. Measurement of Fluorescence: The fluorescence of the samples can be measured in two ways: 1) by exciting the dyes at specific wavelengths and recording the emission light at their respective maximum emission wavelengths, or 2) by scanning both the excitation and emission wavelengths simultaneously with a fixed wavelength interval between the excitation and emission (synchronous scan). Both methods have been shown to give excellent quantitation of the fluorescence of sample mixtures containing all of the fluorescent dyes used in FluoSpheres tracer reagents. Because each of the dyes has excitation and emission at distinct and well separated wavelengths from all

of the others, it is necessary to measure only the peak emission intensity of each dye in order to obtain accurate quantitation. No special software is necessary to compensate for spectral spillover, because there is essentially none.² It is important to understand that measured fluorescence intensities and spectra will vary with each individual instrument due to the wavelengthdependent efficiency of both the excitation source lamp and the photomultiplier (detector).

Fluorescence Intensity: In dilute solutions, the intensity of the fluorescence signal is linearly proportional to the concentration of fluorescent dye (note B). The fluorescence signal from each tissue sample will be proportional to the number of microspheres dissolved in solution if the volume of solvent used for all tissue is constant. It is therefore critical that precise volumes of solvent are used for all samples (see also *Measurement and Quantitation of Fluorescence*).

Stokes Shift: The Stokes shift is the difference between the wavelengths for maximum excitation and for maximum emission. The dyes used in FluoSpheres beads have Stokes shifts ranging from about 10 nm to about 60 nm. The actual excitation wavelengths used in an experiment can be optimized empirically to give maximum fluorescence intensity, while retaining acceptable peak resolution (note C); often, these optimal excitation wavelengths are slightly lower than the absorption maxima given in Table 1.

Slit Widths: The slit width or bandpass regulates the amount of exciting light admitted to the sample and the amount of emission light that is recorded by the detector. An excitation wavelength of 530 nm with a slit width of 4 nm means that light with wavelength from 528–532 nm is used to excite the sample. Increasing the slits will increase the fluorescence signal intensity at a given wavelength, but can also result in interference (spectral spillover) from other dyes present in the solution.

3. Resolving Multiple Fluorescent Colors: The number of fluorescent colors that need to be resolved depends on the type of experiment carried out. It should be noted that detectors in fluorometers are often more sensitive to one part of the spectral range than another, and therefore the type of detector may dictate to some extent the choice of colors used in an experiment.

- Synchronous Scanning: The sample is placed in the instrument and analyzed in synchronous scan mode, using a wavelength offset of about 15 nm (note D). This method increases the resolution of closely spaced spectral peaks.³ The relative number of microspheres is obtained from the maximum intensity of each peak.
- Specific Excitation/Emission Pairs: In this method, the sample is analyzed by exciting sequentially at the wavelength optimal for each dye component, and the peak emissions are recorded to give the relative number of microspheres (Table 1). This method may be very fast and simple in some instruments in which these parameters can be easily controlled by the software. This method may also give better overall signal intensities than the synchronous scan method.

Notes

[A] The solvents listed in section 3.2 are inexpensive and have been shown to readily dissolve the microspheres and the dyes. Do not confuse Cellosolve acetate (2-ethoxyethyl acetate) with ethyl Cellosolve (2-ethoxyethanol), which will not dissolve the microspheres. It has been reported by Dr. R. Glenny (FMRC) that 2-(2-ethoxy-ethoxy)ethyl acetate (Carbitol* acetate) works well for extracting all of the dyes used in FluoSpheres polystyrene microspheres for fluorescent tracing. Extraction of lung tissue directly with Carbitol acetate required approximately 96 hours before dye signals were stable, as compared to 48 hours for extraction with Cellosolve acetate. All potential solvents have not yet been tested, and therefore others may give satisfactory results; however, it is advantageous to use a solvent with low volatility to minimize evaporation. Dimethylsulfoxide and dimethylformamide are not suitable solvents. The microspheres will not dissolve in dimethylsulfoxide and the fluorescent dyes are not stable in dimethylformamide.

[B] If fluorescent dye solutions are too concentrated, quenching (reduction) of the fluorescent signal can occur as a result of physical interaction of the dye molecules in solution, leading to erroneous results. Usually, the solutions will be dilute enough that this will not occur, but if quenching is suspected, it can be confirmed by carrying out a twofold dilution of the sample in the extraction solvent. The fluorescence reading should be 50% of the original solution if quenching is not present. If quenching is present, the diluted solution will have greater than 50% of the fluorescence of the original solution. [C] At equal concentrations, some of the fluorescent microspheres give a greater signal intensity than others when the recommended wavelength pairs from Table 1 are used. If it is desired to decrease one or more of the individual peak emission intensities so that all peaks are at about the same intensity, this can be done selectively by either reducing the microsphere concentration, moving the excitation to a shorter, less optimum wavelength or changing the slit width to a narrower setting. Optimal conditions can be worked out in control experiments using fixed numbers of pure beads. Likewise, correction factors can be determined to allow for the different signal intensities.

[D] Experiments have shown that a wavelength offset of about 15 nm between excitation and emission gives the greatest signal and separation of all of the colors in the solvent systems tested; however, if not all of the colors are used in the experiment, it may be possible to optimize this interval further.

Fluorescent Microsphere Resource Center

A Fluorescent Microsphere Resource Center (FMRC) has been established at the University of Washington (Seattle, WA) to compile and disseminate information on fluorescent microsphere techniques for measuring regional blood flow. The FMRC is a useful source for information on extracting the fluorescent dyes from FluoSpheres microspheres and performing fluorescence measurements. The FMRC center has developed a technical manual describing fluorescent microsphere methodology, and can be contacted by phone at (206) 685-9479, by fax at (206) 685-9480 or visit their Web site at http:// fmrc.pulmcc.washington.edu/FMRC/fmrc.html.

References

1. J Appl Physiol 85, 2344 (1998); 2. J Appl Physiol 88, 1551 (2000).

Prontuario para tomar mediciones de una foto tomada en el microscopio

Elaborado por Arturo Islas

1.-Abrir el programa del microscopio Scopephoto verificando que previamente esté conectada la cámara del microscopio

2.-Una vez se ha seleccionado el objetivo con el cual se quiere observar la muestra y se ha enfocado correctamente la misma presionar el comando Control+V lo cual generara una foto de la muestra y la cual guardaremos en el equipo

- 3.-Abrir el programa ImageJ
- 4.-Arrastrar el archivo de la imagen de interés a la barra de trabajo de ImageJ

5.-Dirigirse al menú Analyse y presionar la opción Set Scale

6.-En la ventana emergente llenar según los datos correspondientes a la foto tomada en el microscopio que nos interesa medir:

Aumento del objetivo	Relación pixeles/um	Unidad
4x	0.690	um
10x	1.840	um
20x	3.5	um
40x	7.2	um

7.-Pulsar el icono de trazo de línea y dibujar la línea entre los dos puntos cuya distancia nos interesa conocer, en caso que la orientación del segmento entre los dos puntos de la imagen este a 0°,45°, 90° o 135° presionar la tecla shift mientras se dibuja la línea para que esta esté completamente alineada con el ángulo de orientación del segmento a medir.

8.-Una vez trazado el segmento presionar el comando Control+M con lo cual se accionará la opción Measure del menú Analize y se desplegara una ventana en la cual aparece la referencia de la medida del segmento que acabamos de dibujar.

9.-Si deseamos que dicho segmento no desaparezca al realizar la medición de otro segmento en la foto verificar en el menú Analize en la opción Set measurement que la casilla Add to overlay este seleccionada.

10.-Repetir los pasos 7 y 8 de manera cíclica para todas las mediciones que deseemos hacer en la misma foto en caso de cambiar de foto habrá que verificar con qué objetivo fue tomada y repetir la secuencia desde el paso 4.

Coordenadas registradas de cada partícula para el cálculo de resultados.

Tablas A.1 – A.10: Estado abierto – Sección A

Dartícula 1	Estado	Sección	fps	Periodo [t]		
Particula 1	Abierto	А	2500	0.0004		
Posición	x	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	756.881	110.926				
2	751.877	110.926	-5.004	0	5.0040	12510.0000
3	745.065	111.76	-6.812	0.834	6.8629	17157.1596
4	738.393	111.76	-6.672	0	6.6720	16680.0000
5	733.667	111.76	-4.726	0	4.7260	11815.0000
6	726.717	111.76	-6.95	0	6.9500	17375.0000
7	720.878	111.76	-5.839	0	5.8390	14597.5000
8	715.04	111.76	-5.838	0	5.8380	14595.0000
9	709.758	111.76	-5.282	0	5.2820	13205.0000
10	703.642	111.76	-6.116	0	6.1160	15290.0000
11	697.526	111.76	-6.116	0	6.1160	15290.0000
12	691.688	111.76	-5.838	0	5.8380	14595.0000
13	685.015	111.76	-6.673	0	6.6730	16682.5000
14	679.177	111.76	-5.838	0	5.8380	14595.0000
15	672.505	111.76	-6.672	0	6.6720	16680.0000
16	666.667	111.76	-5.838	0	5.8380	14595.0000
17	660.55	111.76	-6.117	0	6.1170	15292.5000
18	654.434	111.76	-6.116	0	6.1160	15290.0000
19	648.04	111.76	-6.394	0	6.3940	15985.0000
20	642.202	111.76	-5.838	0	5.8380	14595.0000
21	635.808	111.76	-6.394	0	6.3940	15985.0000
22	629.969	112.038	-5.839	0.278	5.8456	14614.0354
23	623.019	111.76	-6.95	-0.278	6.9556	17388.8944
24	616.903	111.76	-6.116	0	6.1160	15290.0000
25	610.509	111.76	-6.394	0	6.3940	15985.0000
					Promedio	15253.6496

Tabla A. 1

Tabla A. 2

Dartícula 2	Estado	Sección	fps	Periodo [t]		
Particula 2	Abierto	А	2500	0.0004		
Posición	х	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	710.036	107.034				
2	705.588	107.034	-4.448	0	4.4480	11120.0000
3	701.14	107.034	-4.448	0	4.4480	11120.0000
4	696.136	107.312	-5.004	0.278	5.0117	12529.2907
5	692.244	107.034	-3.892	-0.278	3.9019	9754.7898
6	686.961	107.312	-5.283	0.278	5.2903	13225.7734
7	682.513	107.034	-4.448	-0.278	4.4567	11141.6976
8	677.787	107.034	-4.726	0	4.7260	11815.0000
9	673.061	107.034	-4.726	0	4.7260	11815.0000
10	668.613	107.034	-4.448	0	4.4480	11120.0000
11	663.609	106.756	-5.004	-0.278	5.0117	12529.2907
12	659.16	106.756	-4.449	0	4.4490	11122.5000
13	654.99	106.756	-4.17	0	4.1700	10425.0000
14	649.986	106.756	-5.004	0	5.0040	12510.0000
15	644.704	106.756	-5.282	0	5.2820	13205.0000
16	641.09	107.034	-3.614	0.278	3.6247	9061.6913
17	636.086	107.312	-5.004	0.278	5.0117	12529.2907
18	631.359	107.034	-4.727	-0.278	4.7352	11837.9192
19	626.355	107.034	-5.004	0	5.0040	12510.0000
20	621.351	107.034	-5.004	0	5.0040	12510.0000
21	617.459	107.034	-3.892	0	3.8920	9730.0000
22	613.011	107.034	-4.448	0	4.4480	11120.0000
23	607.173	107.034	-5.838	0	5.8380	14595.0000
24	603.837	107.034	-3.336	0	3.3360	8340.0000
25	599.944	107.034	-3.893	0	3.8930	9732.5000
					Promedio	11474.9893

Tabla	А.	3
-------	----	---

Dartícula 2	Estado	Sección	fps	Periodo [t]		
Falticula 5	Abierto	А	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	688.907	95.913				
2	682.791	96.191	-6.116	0.278	6.1223	15305.7873
3	678.065	96.191	-4.726	0	4.7260	11815.0000
4	673.061	96.191	-5.004	0	5.0040	12510.0000
5	666.945	96.191	-6.116	0	6.1160	15290.0000
6	661.662	96.191	-5.283	0	5.2830	13207.5000
7	655.268	96.191	-6.394	0	6.3940	15985.0000
8	649.986	95.913	-5.282	-0.278	5.2893	13223.2768
9	643.87	95.913	-6.116	0	6.1160	15290.0000
10	638.588	96.191	-5.282	0.278	5.2893	13223.2768
11	632.471	96.191	-6.117	0	6.1170	15292.5000
12	626.355	96.191	-6.116	0	6.1160	15290.0000
13	620.517	96.191	-5.838	0	5.8380	14595.0000
14	614.679	96.191	-5.838	0	5.8380	14595.0000
15	607.729	96.469	-6.95	0.278	6.9556	17388.8944
16	602.168	96.469	-5.561	0	5.5610	13902.5000
17	596.052	96.747	-6.116	0.278	6.1223	15305.7873
18	589.936	96.747	-6.116	0	6.1160	15290.0000
19	583.82	96.469	-6.116	-0.278	6.1223	15305.7873
20	578.26	96.747	-5.56	0.278	5.5669	13917.3642
21	572.421	97.025	-5.839	0.278	5.8456	14614.0354
22	565.749	97.025	-6.672	0	6.6720	16680.0000
23	560.467	96.747	-5.282	-0.278	5.2893	13223.2768
24	554.907	97.303	-5.56	0.556	5.5877	13969.3271
25	549.069	97.303	-5.838	0	5.8380	14595.0000
					Promedio	14575.5964

Tabla	Α.	4
-------	----	---

Partícula 4	Estado	Sección	fps	Periodo [t]		
Particula 4	Abierto	А	2500	0.0004		
Posición	x	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	758.132	95.913				
2	752.85	95.913	-5.282	0	5.2820	13205.0000
3	748.123	95.913	-4.727	0	4.7270	11817.5000
4	743.119	95.913	-5.004	0	5.0040	12510.0000
5	738.393	95.913	-4.726	0	4.7260	11815.0000
6	733.389	95.913	-5.004	0	5.0040	12510.0000
7	728.663	95.913	-4.726	0	4.7260	11815.0000
8	723.103	95.913	-5.56	0	5.5600	13900.0000
9	718.098	95.913	-5.005	0	5.0050	12512.5000
10	713.094	95.913	-5.004	0	5.0040	12510.0000
11	707.534	96.191	-5.56	0.278	5.5669	13917.3642
12	703.086	96.191	-4.448	0	4.4480	11120.0000
13	698.082	96.191	-5.004	0	5.0040	12510.0000
14	693.356	95.913	-4.726	-0.278	4.7342	11835.4235
15	688.629	95.913	-4.727	0	4.7270	11817.5000
16	684.181	96.191	-4.448	0.278	4.4567	11141.6976
17	679.177	95.913	-5.004	-0.278	5.0117	12529.2907
18	673.895	96.191	-5.282	0.278	5.2893	13223.2768
19	669.169	96.191	-4.726	0	4.7260	11815.0000
20	663.887	96.191	-5.282	0	5.2820	13205.0000
21	659.716	96.191	-4.171	0	4.1710	10427.5000
22	654.712	96.469	-5.004	0.278	5.0117	12529.2907
23	649.986	96.191	-4.726	-0.278	4.7342	11835.4235
24	645.26	96.469	-4.726	0.278	4.7342	11835.4235
25	640.534	96.191	-4.726	-0.278	4.7342	11835.4235
					Promedio	12257.1923

Tabla	А.	5
-------	----	---

Partícula 5	Estado	Sección	fps	Periodo [t]		
Particula 5	Abierto	А	2500	0.0004		
Posición	x	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	705.866	112.316				
2	700.862	112.316	-5.004	0	5.0040	12510.0000
3	695.024	112.316	-5.838	0	5.8380	14595.0000
4	688.351	112.316	-6.673	0	6.6730	16682.5000
5	681.401	112.038	-6.95	-0.278	6.9556	17388.8944
6	676.953	112.316	-4.448	0.278	4.4567	11141.6976
7	670.837	112.316	-6.116	0	6.1160	15290.0000
8	665.833	112.316	-5.004	0	5.0040	12510.0000
9	660.272	112.038	-5.561	-0.278	5.5679	13919.8610
10	654.712	112.038	-5.56	0	5.5600	13900.0000
11	648.04	112.038	-6.672	0	6.6720	16680.0000
12	643.314	112.316	-4.726	0.278	4.7342	11835.4235
13	638.31	112.316	-5.004	0	5.0040	12510.0000
14	633.028	112.038	-5.282	-0.278	5.2893	13223.2768
15	626.355	112.316	-6.673	0.278	6.6788	16696.9707
16	620.795	112.316	-5.56	0	5.5600	13900.0000
17	614.957	112.316	-5.838	0	5.8380	14595.0000
18	609.675	112.038	-5.282	-0.278	5.2893	13223.2768
19	604.671	112.038	-5.004	0	5.0040	12510.0000
20	599.666	112.038	-5.005	0	5.0050	12512.5000
21	593.828	112.038	-5.838	0	5.8380	14595.0000
22	588.824	112.038	-5.004	0	5.0040	12510.0000
23	583.264	112.316	-5.56	0.278	5.5669	13917.3642
24	577.426	112.038	-5.838	-0.278	5.8446	14611.5382
25	571.865	112.038	-5.561	0	5.5610	13902.5000
					Promedio	13965.0335

Tabla A. 6

Partícula 6	Estado	Sección	fps	Periodo [t]		
Falticula o	Abierto	А	2500	0.0004		
Posición	х	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	754.24	120.656				
2	749.514	120.656	-4.726	0	4.7260	11815.0000
3	744.231	120.656	-5.283	0	5.2830	13207.5000
4	740.061	120.656	-4.17	0	4.1700	10425.0000
5	734.779	120.656	-5.282	0	5.2820	13205.0000
6	729.775	120.656	-5.004	0	5.0040	12510.0000
7	725.327	120.656	-4.448	0	4.4480	11120.0000
8	718.932	120.656	-6.395	0	6.3950	15987.5000
9	713.928	120.656	-5.004	0	5.0040	12510.0000
10	708.646	120.656	-5.282	0	5.2820	13205.0000
11	702.808	120.656	-5.838	0	5.8380	14595.0000
12	697.804	120.934	-5.004	0.278	5.0117	12529.2907
13	693.078	120.934	-4.726	0	4.7260	11815.0000
14	687.795	120.934	-5.283	0	5.2830	13207.5000
15	682.235	120.934	-5.56	0	5.5600	13900.0000
16	677.231	121.212	-5.004	0.278	5.0117	12529.2907
17	671.671	120.934	-5.56	-0.278	5.5669	13917.3642
18	666.667	120.934	-5.004	0	5.0040	12510.0000
19	661.384	120.934	-5.283	0	5.2830	13207.5000
20	656.102	121.212	-5.282	0.278	5.2893	13223.2768
21	651.376	120.934	-4.726	-0.278	4.7342	11835.4235
22	646.372	121.212	-5.004	0.278	5.0117	12529.2907
23	641.646	120.934	-4.726	-0.278	4.7342	11835.4235
24	636.92	120.934	-4.726	0	4.7260	11815.0000
25	632.471	120.934	-4.449	0	4.4490	11122.5000
					Promedio	12689.8692

Tabla A. 7

Partícula 7	Estado	Sección	fps	Periodo [t]		
Falticula 7	Abierto	А	2500	0.0004		
Posición	х	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	714.762	103.837				
2	709.55	104.254	-5.212	0.417	5.2287	13071.6375
3	702.252	104.045	-7.298	-0.209	7.3010	18252.4801
4	697.665	103.837	-4.587	-0.208	4.5917	11479.2838
5	691.41	104.045	-6.255	0.208	6.2585	15646.1435
6	683.695	103.837	-7.715	-0.208	7.7178	19294.5084
7	678.899	104.045	-4.796	0.208	4.8005	12001.2708
8	673.895	104.254	-5.004	0.209	5.0084	12520.9068
9	669.308	104.254	-4.587	0	4.5870	11467.5000
10	662.219	104.254	-7.089	0	7.0890	17722.5000
11	658.048	104.254	-4.171	0	4.1710	10427.5000
12	652.836	104.254	-5.212	0	5.2120	13030.0000
13	646.58	104.254	-6.256	0	6.2560	15640.0000
14	640.534	104.462	-6.046	0.208	6.0496	15123.9421
15	634.696	104.462	-5.838	0	5.8380	14595.0000
16	629.483	104.462	-5.213	0	5.2130	13032.5000
17	623.228	104.462	-6.255	0	6.2550	15637.5000
18	617.598	104.462	-5.63	0	5.6300	14075.0000
19	610.717	104.462	-6.881	0	6.8810	17202.5000
20	605.296	104.462	-5.421	0	5.4210	13552.5000
21	599.041	104.671	-6.255	0.209	6.2585	15646.2268
22	592.994	104.879	-6.047	0.208	6.0506	15126.4406
23	587.156	105.088	-5.838	0.209	5.8417	14604.3497
24	581.943	104.879	-5.213	-0.209	5.2172	13042.9698
25	575.897	105.296	-6.046	0.417	6.0604	15150.9086
					Promedio	14472.6487

Tabla A. 8

Partícula 8	Estado	Sección	fps	Periodo [t]		
Falticula o	Abierto	A	2500	0.0004		
Posición	х	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	742.285	117.598				
2	737.837	117.598	-4.448	0	4.4480	11120.0000
3	731.999	118.154	-5.838	0.556	5.8644	14661.0411
4	727.551	117.876	-4.448	-0.278	4.4567	11141.6976
5	722.269	117.876	-5.282	0	5.2820	13205.0000
6	715.596	118.154	-6.673	0.278	6.6788	16696.9707
7	711.148	117.876	-4.448	-0.278	4.4567	11141.6976
8	704.476	118.154	-6.672	0.278	6.6778	16694.4729
9	699.75	118.154	-4.726	0	4.7260	11815.0000
10	693.912	118.154	-5.838	0	5.8380	14595.0000
11	688.907	118.154	-5.005	0	5.0050	12512.5000
12	683.347	118.154	-5.56	0	5.5600	13900.0000
13	677.509	117.876	-5.838	-0.278	5.8446	14611.5382
14	671.671	118.154	-5.838	0.278	5.8446	14611.5382
15	666.945	118.432	-4.726	0.278	4.7342	11835.4235
16	660.55	118.154	-6.395	-0.278	6.4010	16002.5992
17	655.268	118.154	-5.282	0	5.2820	13205.0000
18	649.43	118.432	-5.838	0.278	5.8446	14611.5382
19	643.87	118.154	-5.56	-0.278	5.5669	13917.3642
20	638.866	118.432	-5.004	0.278	5.0117	12529.2907
21	633.028	118.154	-5.838	-0.278	5.8446	14611.5382
22	627.189	118.71	-5.839	0.556	5.8654	14663.5298
23	622.463	118.432	-4.726	-0.278	4.7342	11835.4235
24	616.625	118.71	-5.838	0.278	5.8446	14611.5382
25	610.231	118.988	-6.394	0.278	6.4000	16000.1016
					Promedio	13772.0751

Tabla	А.	9
-------	----	---

Dartícula 0	Estado	Sección	fps	Periodo [t]		
Falticula 9	Abierto	А	2500	0.0004		
Posición	x	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	718.932	91.743				
2	713.928	92.021	-5.004	0.278	5.0117	12529.2907
3	709.202	92.021	-4.726	0	4.7260	11815.0000
4	704.476	92.021	-4.726	0	4.7260	11815.0000
5	698.916	91.465	-5.56	-0.556	5.5877	13969.3271
6	694.19	92.299	-4.726	0.834	4.7990	11997.5602
7	689.185	92.299	-5.005	0	5.0050	12512.5000
8	683.347	92.299	-5.838	0	5.8380	14595.0000
9	678.343	92.299	-5.004	0	5.0040	12510.0000
10	673.061	92.021	-5.282	-0.278	5.2893	13223.2768
11	668.335	92.021	-4.726	0	4.7260	11815.0000
12	663.053	92.021	-5.282	0	5.2820	13205.0000
13	658.048	92.021	-5.005	0	5.0050	12512.5000
14	652.488	92.021	-5.56	0	5.5600	13900.0000
15	647.762	92.021	-4.726	0	4.7260	11815.0000
16	642.202	92.021	-5.56	0	5.5600	13900.0000
17	636.642	92.021	-5.56	0	5.5600	13900.0000
18	630.525	92.021	-6.117	0	6.1170	15292.5000
19	625.243	92.021	-5.282	0	5.2820	13205.0000
20	620.239	91.743	-5.004	-0.278	5.0117	12529.2907
21	615.235	92.021	-5.004	0.278	5.0117	12529.2907
22	609.397	92.021	-5.838	0	5.8380	14595.0000
23	604.115	92.299	-5.282	0.278	5.2893	13223.2768
24	598.832	92.021	-5.283	-0.278	5.2903	13225.7734
25	593.55	92.021	-5.282	0	5.2820	13205.0000
					Promedio	13075.8161
Dartícula 10	Estado	Sección	fps	Periodo [t]		
--------------	---------	---------	--------	-------------	----------------	------------------
	Abierto	А	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	705.588	104.532				
2	699.472	104.532	-6.116	0	6.1160	15290.0000
3	693.634	104.532	-5.838	0	5.8380	14595.0000
4	686.683	104.532	-6.951	0	6.9510	17377.5000
5	681.123	104.81	-5.56	0.278	5.5669	13917.3642
6	675.007	104.254	-6.116	-0.556	6.1412	15353.0518
7	668.335	104.532	-6.672	0.278	6.6778	16694.4729
8	661.662	104.254	-6.673	-0.278	6.6788	16696.9707
9	656.102	104.254	-5.56	0	5.5600	13900.0000
10	649.708	104.254	-6.394	0	6.3940	15985.0000
11	643.592	104.254	-6.116	0	6.1160	15290.0000
12	637.198	104.254	-6.394	0	6.3940	15985.0000
13	630.247	104.254	-6.951	0	6.9510	17377.5000
14	624.409	104.254	-5.838	0	5.8380	14595.0000
15	618.015	104.254	-6.394	0	6.3940	15985.0000
16	611.899	104.254	-6.116	0	6.1160	15290.0000
17	605.505	104.254	-6.394	0	6.3940	15985.0000
18	600.222	104.254	-5.283	0	5.2830	13207.5000
19	593.272	104.254	-6.95	0	6.9500	17375.0000
20	587.434	104.254	-5.838	0	5.8380	14595.0000
21	581.596	104.532	-5.838	0.278	5.8446	14611.5382
22	575.48	104.254	-6.116	-0.278	6.1223	15305.7873
23	568.807	104.254	-6.673	0	6.6730	16682.5000
24	563.247	103.976	-5.56	-0.278	5.5669	13917.3642
25	556.853	104.532	-6.394	0.556	6.4181	16045.3210
					Promedio	15502.3696

Tabla A. 10

Tablas A.11 – A.20: Estado abierto – Sección B

Dartícula 1	Estado	Sección	fps	Periodo [t]		
	Abierto	В	2500	0.0004		
Posición	х	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	346.122	95.357				
2	341.674	95.079	-4.448	-0.278	4.4567	11141.6976
3	335.835	95.357	-5.839	0.278	5.8456	14614.0354
4	330.831	95.357	-5.004	0	5.0040	12510.0000
5	326.383	95.357	-4.448	0	4.4480	11120.0000
6	320.267	95.357	-6.116	0	6.1160	15290.0000
7	314.707	95.079	-5.56	-0.278	5.5669	13917.3642
8	308.59	95.357	-6.117	0.278	6.1233	15308.2847
9	304.142	95.357	-4.448	0	4.4480	11120.0000
10	299.138	95.079	-5.004	-0.278	5.0117	12529.2907
11	292.188	95.079	-6.95	0	6.9500	17375.0000
12	286.628	94.801	-5.56	-0.278	5.5669	13917.3642
13	279.121	95.079	-7.507	0.278	7.5121	18780.3642
14	274.395	95.079	-4.726	0	4.7260	11815.0000
15	270.225	95.079	-4.17	0	4.1700	10425.0000
16	263.275	94.801	-6.95	-0.278	6.9556	17388.8944
17	259.105	95.357	-4.17	0.556	4.2069	10517.2584
18	253.545	94.801	-5.56	-0.556	5.5877	13969.3271
19	247.706	95.079	-5.839	0.278	5.8456	14614.0354
20	241.868	95.357	-5.838	0.278	5.8446	14611.5382
21	235.752	95.079	-6.116	-0.278	6.1223	15305.7873
22	230.748	95.357	-5.004	0.278	5.0117	12529.2907
23	224.076	95.357	-6.672	0	6.6720	16680.0000
24	218.793	95.635	-5.283	0.278	5.2903	13225.7734
25	213.511	95.079	-5.282	-0.556	5.3112	13277.9564
					Promedio	13832.6359

Dartícula 2	Estado	Sección	fps	Periodo [t]		
Particula 2	Abierto	В	2500	0.0004		
Posición	х	у	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	312.761	120.1				
2	308.312	120.378	-4.449	0.278	4.4577	11144.1927
3	303.864	120.1	-4.448	-0.278	4.4567	11141.6976
4	299.972	120.1	-3.892	0	3.8920	9730.0000
5	296.08	120.378	-3.892	0.278	3.9019	9754.7898
6	291.91	120.1	-4.17	-0.278	4.1793	10448.1410
7	288.852	120.378	-3.058	0.278	3.0706	7676.5259
8	284.96	120.378	-3.892	0	3.8920	9730.0000
9	279.956	120.656	-5.004	0.278	5.0117	12529.2907
10	274.951	120.656	-5.005	0	5.0050	12512.5000
11	271.615	120.378	-3.336	-0.278	3.3476	8368.9082
12	268.279	120.1	-3.336	-0.278	3.3476	8368.9082
13	262.997	119.822	-5.282	-0.278	5.2893	13223.2768
14	259.105	120.1	-3.892	0.278	3.9019	9754.7898
15	255.491	120.1	-3.614	0	3.6140	9035.0000
16	250.765	120.656	-4.726	0.556	4.7586	11896.4837
17	248.262	120.656	-2.503	0	2.5030	6257.5000
18	244.37	120.656	-3.892	0	3.8920	9730.0000
19	240.756	120.378	-3.614	-0.278	3.6247	9061.6913
20	236.308	120.1	-4.448	-0.278	4.4567	11141.6976
21	232.138	120.378	-4.17	0.278	4.1793	10448.1410
22	228.802	120.656	-3.336	0.278	3.3476	8368.9082
23	225.188	120.656	-3.614	0	3.6140	9035.0000
24	221.574	120.378	-3.614	-0.278	3.6247	9061.6913
25	217.959	120.378	-3.615	0	3.6150	9037.5000
					Promedio	9894.0264

Tabla A. 12

Dartíoula 2	Estado	Sección	fps	Periodo [t]]		
Particula 3	Abierto	В	2500	0.0004			
Posición	х	у	Δx	Δy	Desplazamiento	Velocidad [µm/s]	
1	325.827	110.926					
2	319.989	110.926	-5.838	0	5.8380	14595.0000	
3	314.707	110.926	-5.282	0	5.2820	13205.0000	
4	307.756	111.204	-6.951	0.278	6.9566	17391.3924	
5	302.752	111.204	-5.004	0	5.0040	12510.0000	
6	296.914	110.926	-5.838	-0.278	5.8446	14611.5382	
7	291.91	111.204	-5.004	0.278	5.0117	12529.2907	
8	285.238	111.204	-6.672	0	6.6720	16680.0000	
9	278.287	111.482	-6.951	0.278	6.9566	17391.3924	
10	272.449	111.204	-5.838	-0.278	5.8446	14611.5382	
11	266.611	111.482	-5.838	0.278	5.8446	5.8446 14611.5382	
12	260.217	112.038	-6.394	0.556	6.4181	16045.3210	
13	255.491	111.482	-4.726	-0.556	4.7586	11896.4837	
14	248.54	111.482	-6.951	0	6.9510	17377.5000	
15	242.702	111.76	-5.838	0.278	5.8446	14611.5382	
16	236.308	111.482	-6.394	-0.278	6.4000	16000.1016	
17	230.192	111.76	-6.116	0.278	6.1223	15305.7873	
18	225.188	111.76	-5.004	0	5.0040	12510.0000	
19	219.349	111.76	-5.839	0	5.8390	14597.5000	
20	213.789	110.926	-5.56	-0.834	5.6222	14055.5051	
21	206.283	111.76	-7.506	0.834	7.5522	18880.4780	
22	201.279	111.76	-5.004	0	5.0040	12510.0000	
23	195.163	112.038	-6.116	0.278	6.1223	15305.7873	
24	189.602	112.038	-5.561	0	5.5610	13902.5000	
25	184.876	112.316	-4.726	0.278	4.7342	11835.4235	
					Promedio	14707.1090	

Tabla A. 13

Dartícula 4	Estado	Sección	fps	Periodo [t]			
Particula 4	Abierto	В	2500	0.0004			
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]	
1	365.582	107.59					
2	361.69	107.312	-3.892	-0.278	3.9019	9754.7898	
3	356.686	107.034	-5.004	-0.278	5.0117	12529.2907	
4	352.516	106.756	-4.17	-0.278	4.1793	10448.1410	
5	348.902	107.034	-3.614	0.278	3.6247	9061.6913	
6	345.01	106.756	-3.892	-0.278	3.9019	9754.7898	
7	341.396	106.756	-3.614	0	3.6140	9035.0000	
8	335.557	107.034	-5.839	0.278	5.8456	14614.0354	
9	330.275	106.756	-5.282	-0.278	5.2893	13223.2768	
10	325.827	106.756	-4.448	0	4.4480	11120.0000	
11	319.711	107.034	-6.116	0.278	6.1223	15305.7873	
12	315.263	106.756	-4.448	-0.278	4.4567	7 11141.6976	
13	309.703	107.312	-5.56	0.556	5.5877	13969.3271	
14	305.81	107.034	-3.893	-0.278	3.9029	9757.2835	
15	302.752	107.034	-3.058	0	3.0580	7645.0000	
16	297.748	107.034	-5.004	0	5.0040	12510.0000	
17	293.3	107.59	-4.448	0.556	4.4826	11206.5383	
18	286.906	107.312	-6.394	-0.278	6.4000	16000.1016	
19	282.736	106.756	-4.17	-0.556	4.2069	10517.2584	
20	279.678	107.034	-3.058	0.278	3.0706	7676.5259	
21	275.229	107.312	-4.449	0.278	4.4577	11144.1927	
22	269.669	107.034	-5.56	-0.278	5.5669	13917.3642	
23	264.665	107.312	-5.004	0.278	5.0117	12529.2907	
24	259.939	107.034	-4.726	-0.278	4.7342	11835.4235	
25	255.769	107.312	-4.17	0.278	4.1793	10448.1410	
					Promedio	11464.3728	

Tabla A. 14

Dartíoula F	Estado	Sección	fps	Periodo [t]]	
Particula 5	Abierto	В	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	335.835	96.747				
2	330.553	96.747	-5.282	0	5.2820	13205.0000
3	325.271	96.747	-5.282	0	5.2820	13205.0000
4	318.599	96.469	-6.672	-0.278	6.6778	16694.4729
5	313.595	96.469	-5.004	0	5.0040	12510.0000
6	307.2	96.469	-6.395	0	6.3950	15987.5000
7	302.196	96.469	-5.004	0	5.0040	12510.0000
8	295.802	96.469	-6.394	0	6.3940	15985.0000
9	290.242	96.191	-5.56	-0.278	5.5669	13917.3642
10	283.848	96.469	-6.394	0.278	6.4000	16000.1016
11	278.565	96.191	-5.283	-0.278	5.2903	13225.7734
12	273.005	96.469	-5.56	0.278	5.5669	13917.3642
13	266.333	96.191	-6.672	-0.278	6.6778	16694.4729
14	260.217	96.191	-6.116	0	6.1160	15290.0000
15	255.213	96.191	-5.004	0	5.0040	12510.0000
16	248.54	96.191	-6.673	0	6.6730	16682.5000
17	243.536	95.913	-5.004	-0.278	5.0117	12529.2907
18	237.698	96.191	-5.838	0.278	5.8446	14611.5382
19	232.138	95.913	-5.56	-0.278	5.5669	13917.3642
20	227.134	96.191	-5.004	0.278	5.0117	12529.2907
21	221.296	95.913	-5.838	-0.278	5.8446	14611.5382
22	215.735	96.191	-5.561	0.278	5.5679	13919.8610
23	209.063	95.913	-6.672	-0.278	6.6778	16694.4729
24	204.337	96.191	-4.726	0.278	4.7342	11835.4235
25	199.889	96.191	-4.448	0	4.4480	11120.0000
					Promedio	14170.9720

Tabla A. 15

Dartícula 6	Estado	Sección	fps	Periodo [t]]	
Particula o	Abierto	В	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	271.059	114.262				
2	266.055	114.262	-5.004	0	5.0040	12510.0000
3	260.773	114.262	-5.282	0	5.2820	13205.0000
4	254.935	114.262	-5.838	0	5.8380	14595.0000
5	249.93	114.262	-5.005	0	5.0050	12512.5000
6	243.536	114.262	-6.394	0	6.3940	15985.0000
7	238.532	114.262	-5.004	0	5.0040	12510.0000
8	233.528	114.262	-5.004	0	5.0040	12510.0000
9	227.412	114.54	-6.116	0.278	6.1223	15305.7873
10	221.574	114.262	-5.838	-0.278	5.8446	14611.5382
11	215.179	114.262	-6.395	0	6.3950	15987.5000
12	210.175	114.262	-5.004	0	5.0040	12510.0000
13	204.337	114.262	-5.838	0	5.8380	14595.0000
14	199.055	114.262	-5.282	0	5.2820	13205.0000
15	193.217	114.262	-5.838	0	5.8380	14595.0000
16	187.656	113.984	-5.561	-0.278	5.5679	13919.8610
17	181.262	114.262	-6.394	0.278	6.4000	16000.1016
18	175.424	114.54	-5.838	0.278	5.8446	14611.5382
19	169.864	114.262	-5.56	-0.278	5.5669	13917.3642
20	163.748	114.54	-6.116	0.278	6.1223	15305.7873
21	158.187	114.262	-5.561	-0.278	5.5679	13919.8610
22	153.739	114.262	-4.448	0	4.4480	11120.0000
23	147.067	114.262	-6.672	0	6.6720	16680.0000
24	141.229	114.54	-5.838	0.278	5.8446	14611.5382
25	136.225	114.54	-5.004	0	5.0040	12510.0000
					Promedio	14051.3907

Tabla A. 16

Dartícula 7	Estado	Sección	fps	Periodo [t]]	
Particula 7	Abierto	В	2500	0.0004		
Posición	x	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	260.217	109.536				
2	255.213	109.536	-5.004	0	5.0040	12510.0000
3	249.096	109.258	-6.117	-0.278	6.1233	15308.2847
4	244.37	109.536	-4.726	0.278	4.7342	11835.4235
5	239.366	109.258	-5.004	-0.278	5.0117	12529.2907
6	233.528	108.98	-5.838	-0.278	5.8446	14611.5382
7	228.524	109.258	-5.004	0.278	5.0117	12529.2907
8	222.964	109.258	-5.56	0	5.5600	13900.0000
9	217.959	108.98	-5.005	-0.278	5.0127	12531.7868
10	211.565	108.702	-6.394	-0.278	6.4000	16000.1016
11	205.727	108.98	-5.838	0.278	5.8446	14611.5382
12	200.723	108.98	-5.004	0	5.0040	12510.0000
13	194.607	108.98	-6.116	0	6.1160	15290.0000
14	188.768	108.98	-5.839	0	5.8390	14597.5000
15	184.042	108.98	-4.726	0	4.7260	11815.0000
16	178.76	109.258	-5.282	0.278	5.2893	13223.2768
17	173.478	108.98	-5.282	-0.278	5.2893	13223.2768
18	168.474	108.98	-5.004	0	5.0040	12510.0000
19	163.748	109.258	-4.726	0.278	4.7342	11835.4235
20	158.465	109.258	-5.283	0	5.2830	13207.5000
21	153.183	109.536	-5.282	0.278	5.2893	13223.2768
22	147.901	109.536	-5.282	0	5.2820	13205.0000
23	142.897	109.258	-5.004	-0.278	5.0117	12529.2907
24	137.615	109.258	-5.282	0	5.2820	13205.0000
25	132.611	109.258	-5.004	0	5.0040	12510.0000
					Promedio	13302.1583

Tabla A. 17

Dartícula 9	Estado	Sección	fps	Periodo [t]		
Particula o	Abierto	В	2500	0.0004		
Posición	х	у	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	193.773	101.751				
2	189.324	101.751	-4.449	0	4.4490	11122.5000
3	184.042	101.473	-5.282	-0.278	5.2893	13223.2768
4	178.204	102.029	-5.838	0.556	5.8644	14661.0411
5	173.478	101.751	-4.726	-0.278	4.7342	11835.4235
6	167.918	102.307	-5.56	0.556	5.5877	13969.3271
7	162.636	102.029	-5.282	-0.278	5.2893	13223.2768
8	156.519	102.029	-6.117	0	6.1170	15292.5000
9	150.681	102.029	-5.838	0	5.8380	14595.0000
10	145.399	102.307	-5.282	0.278	5.2893	13223.2768
11	139.561	102.307	-5.838	0	5.8380	14595.0000
12	134.279	102.307	-5.282	0	5.2820	13205.0000
13	128.44	102.863	-5.839	0.556	5.8654	14663.5298
14	122.602	103.142	-5.838	0.279	5.8447	14611.6574
15	117.598	102.863	-5.004	-0.279	5.0118	12529.4296
16	112.594	102.863	-5.004	0	5.0040	12510.0000
17	105.644	102.863	-6.95	0	6.9500	17375.0000
18	98.693	102.863	-6.951	0	6.9510	17377.5000
19	93.689	102.863	-5.004	0	5.0040	12510.0000
20	88.129	102.585	-5.56	-0.278	5.5669	13917.3642
21	82.013	103.142	-6.116	0.557	6.1413	15353.2784
22	76.453	102.863	-5.56	-0.279	5.5670	13917.4892
23	70.614	102.863	-5.839	0	5.8390	14597.5000
24	65.61	102.863	-5.004	0	5.0040	12510.0000
25	60.05	103.142	-5.56	0.279	5.5670	13917.4892
					Promedio	13947.3275

Tabla A. 18

Dartíoula O	Estado	Sección	fps	Periodo [t]]	
Particula 9	Abierto	В	2500	0.0004	-	
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	319.989	117.042				
2	315.819	116.764	-4.17	-0.278	4.1793	10448.1410
3	310.815	117.042	-5.004	0.278	5.0117	12529.2907
4	305.81	116.764	-5.005	-0.278	5.0127	12531.7868
5	300.806	117.042	-5.004	0.278	5.0117	12529.2907
6	295.246	117.32	-5.56	0.278	5.5669	13917.3642
7	290.52	117.32	-4.726	0	4.7260	11815.0000
8	285.794	117.32	-4.726	0	4.7260	11815.0000
9	280.79	117.042	-5.004	-0.278	5.0117	12529.2907
10	274.951	117.042	-5.839	0	5.8390	14597.5000
11	268.835	117.32	-6.116	0.278	6.1223	15305.7873
12	262.997	117.042	-5.838	-0.278	5.8446	14611.5382
13	257.993	117.32	-5.004	0.278	5.0117	12529.2907
14	252.433	117.042	-5.56	-0.278	5.5669	13917.3642
15	246.594	117.042	-5.839	0	5.8390	14597.5000
16	241.034	117.042	-5.56	0	5.5600	13900.0000
17	235.474	117.042	-5.56	0	5.5600	13900.0000
18	230.192	117.32	-5.282	0.278	5.2893	13223.2768
19	224.632	117.042	-5.56	-0.278	5.5669	13917.3642
20	219.071	117.598	-5.561	0.556	5.5887	13971.8147
21	214.623	117.598	-4.448	0	4.4480	11120.0000
22	209.063	117.598	-5.56	0	5.5600	13900.0000
23	204.059	117.598	-5.004	0	5.0040	12510.0000
24	199.055	117.598	-5.004	0	5.0040	12510.0000
25	193.773	117.598	-5.282	0	5.2820	13205.0000
					Promedio	13159.6500

Tabla A. 19

Dartícula 10	Estado	Sección	fps	Periodo [t]		
	Abierto	В	2500	0.0004		
Posición	х	у	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	306.922	117.598				
2	302.196	117.598	-4.726	0	4.7260	11815.0000
3	295.802	117.598	-6.394	0	6.3940	15985.0000
4	291.632	117.876	-4.17	0.278	4.1793	10448.1410
5	286.35	118.154	-5.282	0.278	5.2893	13223.2768
6	280.234	118.154	-6.116	0	6.1160	15290.0000
7	274.395	118.154	-5.839	0	5.8390	14597.5000
8	268.279	118.432	-6.116	0.278	6.1223	15305.7873
9	262.441	118.432	-5.838	0	5.8380	14595.0000
10	256.603	118.71	-5.838	0.278	5.8446	14611.5382
11	251.321	118.432	-5.282	-0.278	5.2893	13223.2768
12	245.482	118.71	-5.839	0.278	5.8456	14614.0354
13	240.478	118.988	-5.004	0.278	5.0117	12529.2907
14	234.362	118.988	-6.116	0	6.1160	15290.0000
15	228.524	118.988	-5.838	0	5.8380	14595.0000
16	222.686	119.266	-5.838	0.278	5.8446	14611.5382
17	217.125	118.988	-5.561	-0.278	5.5679	13919.8610
18	211.287	118.988	-5.838	0	5.8380	14595.0000
19	205.171	118.71	-6.116	-0.278	6.1223	15305.7873
20	199.889	118.71	-5.282	0	5.2820	13205.0000
21	194.885	118.71	-5.004	0	5.0040	12510.0000
22	190.158	118.71	-4.727	0	4.7270	11817.5000
23	184.876	118.988	-5.282	0.278	5.2893	13223.2768
24	179.872	118.988	-5.004	0	5.0040	12510.0000
25	174.034	118.71	-5.838	-0.278	5.8446	14611.5382
					Promedio	13851.3478

Tabla A. 20

Tablas A.21	– A.25:	Estado	abierto	– Sección	С

					1
Estado	Sección	fps	Periodo [t]	30 cuadros	
Abierto	С	2500	0.0004	0.012	
х	У	Δx	Δу	Desplazamiento	Velocidad [µm/s]
273.005	318.599				
271.059	320.267	-1.946	1.668	2.5630	213.5861
268.835	322.213	-2.224	1.946	2.9552	246.2650
266.611	324.993	-2.224	2.78	3.5601	296.6781
264.387	326.383	-2.224	1.39	2.6226	218.5539
262.441	328.607	-1.946	2.224	2.9552	246.2650
260.217	331.387	-2.224	2.78	3.5601	296.6781
257.993	333.611	-2.224	2.224	3.1452	262.1009
256.047	335.557	-1.946	1.946	2.7521	229.3383
253.267	338.337	-2.78	2.78	3.9315	327.6261
251.599	340.006	-1.668	1.669	2.3596	196.6346
250.209	341.952	-1.39	1.946	2.3914	199.2872
247.15	344.732	-3.059	2.78	4.1335	344.4589
244.926	346.678	-2.224	1.946	2.9552	246.2650
243.258	348.346	-1.668	1.668	2.3589	196.5757
241.034	350.57	-2.224	2.224	3.1452	262.1009
238.254	353.628	-2.78	3.058	4.1328	344.3973
236.586	355.018	-1.668	1.39	2.1712	180.9375
234.084	357.52	-2.502	2.502	3.5384	294.8635
232.138	359.744	-1.946	2.224	2.9552	246.2650
229.914	361.69	-2.224	1.946	2.9552	246.2650
227.968	363.914	-1.946	2.224	2.9552	246.2650
225.466	366.138	-2.502	2.224	3.3476	278.9636
223.52	368.363	-1.946	2.225	2.9559	246.3278
221.296	370.587	-2.224	2.224	3.1452	262.1009
				Promedio	255.3667
	Estado Abierto x 273.005 271.059 268.835 266.611 264.387 262.441 260.217 257.993 256.047 253.267 253.267 253.267 251.599 250.209 247.15 244.926 243.258 241.034 238.254 238.254 236.586 234.084 232.138 229.914 227.968 225.466 223.52 221.296	EstadoSecciónAbiertoCxy273.005318.599271.059320.267268.835322.213266.611324.993264.387326.383262.441328.607260.217331.387257.993333.611256.047335.557253.267338.337251.599340.006250.209341.952247.15344.732244.926346.678243.258348.346241.034350.57238.254353.628236.586355.018234.084357.52232.138359.744229.914361.69227.968363.914225.466366.138223.52368.363221.296370.587	EstadoSecciónfpsAbiertoC2500xyΔx273.005318.599-271.059320.267-1.946268.835322.213-2.224266.611324.993-2.224264.387326.383-2.224262.441328.607-1.946260.217331.387-2.224257.993333.611-2.224256.047335.557-1.946253.267338.337-2.78251.599340.006-1.668250.209341.952-1.39247.15344.732-3.059244.926346.678-2.224243.258348.346-1.668241.034350.57-2.224238.254353.628-2.78236.586355.018-1.668234.084357.52-2.502232.138359.744-1.946229.914361.69-2.224227.968363.914-1.946225.466366.138-2.50223.52368.363-1.946221.296370.587-2.224	EstadoSecciónfpsPeriodo [t]AbiertoC25000.0004xyΔxΔy273.005318.599-271.059320.267-1.9461.668268.835322.213-2.2241.946266.611324.993-2.2242.78264.387326.383-2.2241.39262.441328.607-1.9462.224260.217331.387-2.2242.78257.993333.611-2.2242.224256.047335.557-1.9461.946253.267338.337-2.782.78251.599340.006-1.6681.669250.209341.952-1.391.946247.15344.732-3.0592.78244.926346.678-2.2241.946243.258348.346-1.6681.668241.034350.57-2.2242.224238.254353.628-2.783.058236.586355.018-1.6681.39234.084357.52-2.5022.502232.138359.744-1.9462.224225.466366.138-2.5022.224225.466366.138-2.5022.224223.52368.363-1.9462.225221.296370.587-2.2242.224	Estado Sección fps Periodo [t] 30 cuadros Abierto C 2500 0.0004 0.012 x y Δx Δy Desplazamiento 273.005 318.599 - - - 271.059 320.267 -1.946 1.668 2.5630 268.835 322.213 -2.224 1.946 2.9552 266.611 324.993 -2.224 1.39 2.6226 262.441 328.607 -1.946 2.244 2.9552 260.217 331.387 -2.224 2.78 3.5601 257.993 333.611 -2.224 2.78 3.9315 256.047 335.557 -1.946 1.946 2.7521 253.267 338.337 -2.78 2.78 3.9315 251.599 340.006 -1.668 1.669 2.3596 250.209 341.952 -1.39 1.946 2.9552 243.258 348.346 -1.668 1.668 <t< td=""></t<>

	Estado	Sección	fns	Periodo [t]	30 cuadros	
Partícula 2	Abierto	C	2500	0.0004	0.012	
Posición	x	v	Δx	Δν	Desplazamiento	Velocidad [um/s]
1	314 429	303.03			Despiazamento	
2	311 093	305 532	-3 336	2 502	4 1700	347 5000
3	307 756	307 756	-3 337	2.302	4 0102	334 1838
4	306.088	309,981	-1.668	2.225	2,7808	231,7333
5	303.03	312 761	-3.058	2 78	4 1328	344 3973
6	299 972	315 541	-3.058	2.78	4 1328	344 3973
7	297.748	317,765	-2.224	2.73	3,1452	262,1009
8	296.08	320.545	-1.668	2.78	3,2420	270,1674
9	293,856	322,769	-2.224	2.224	3,1452	262,1009
10	291.076	326,105	-2.78	3,336	4.3425	361,8749
11	287.74	328,885	-3.336	2.78	4,3425	361,8749
12	286.072	330,831	-1.668	1.946	2,5630	213,5861
13	283.57	333,889	-2.502	3.058	3,9511	329,2602
14	281.068	336.113	-2.502	2.224	3.3476	278.9636
15	278.009	339.172	-3.059	3.059	4.3261	360.5066
16	274.951	342.786	-3.058	3.614	4.7342	394.5141
17	272.449	345.566	-2.502	2.78	3.7401	311.6756
18	269.947	347.512	-2.502	1.946	3.1697	264.1406
19	267.723	349.736	-2.224	2.224	3.1452	262.1009
20	264.387	352.516	-3.336	2.78	4.3425	361.8749
21	262.441	354.462	-1.946	1.946	2.7521	229.3383
22	260.495	356.686	-1.946	2.224	2.9552	246.2650
23	257.715	359.466	-2.78	2.78	3.9315	327.6261
24	256.047	360.856	-1.668	1.39	2.1712	180.9375
25	254.101	362.802	-1.946	1.946	2.7521	229.3383
L		1	1	1	Promedio	296.2691

Tabla A. 22

Dortíoulo 2	Estado	Sección	fps	Periodo [t]	30 cuadros	
Particula 3	Abierto	С	2500	0.0004	0.012	
Posición	х	у	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	316.097	289.408				
2	314.429	290.867	-1.668	1.459	2.2161	184.6713
3	312.761	292.744	-1.668	1.877	2.5110	209.2538
4	311.093	294.829	-1.668	2.085	2.6701	222.5086
5	309.425	296.914	-1.668	2.085	2.6701	222.5086
6	307.131	298.999	-2.294	2.085	3.0999	258.3288
7	304.629	301.084	-2.502	2.085	3.2569	271.4062
8	302.961	302.752	-1.668	1.668	2.3589	196.5757
9	301.084	304.42	-1.877	1.668	2.5110	209.2538
10	299.625	306.088	-1.459	1.668	2.2161	184.6713
11	297.748	307.756	-1.877	1.668	2.5110	209.2538
12	296.08	309.633	-1.668	1.877	2.5110	209.2538
13	294.412	311.301	-1.668	1.668	2.3589	196.5757
14	292.744	312.761	-1.668	1.46	2.2167	184.7262
15	291.493	314.22	-1.251	1.459	1.9219	160.1580
16	289.825	315.888	-1.668	1.668	2.3589	196.5757
17	288.157	317.348	-1.668	1.46	2.2167	184.7262
18	286.697	319.016	-1.46	1.668	2.2167	184.7262
19	284.821	320.892	-1.876	1.876	2.6531	221.0887
20	282.944	323.812	-1.877	2.92	3.4712	289.2703
21	281.276	325.897	-1.668	2.085	2.6701	222.5086
22	279.817	327.565	-1.459	1.668	2.2161	184.6713
23	278.148	329.233	-1.669	1.668	2.3596	196.6346
24	276.063	331.109	-2.085	1.876	2.8047	233.7288
25	274.395	332.986	-1.668	1.877	2.5110	209.2538
					Promedio	210.0971

Tabla A. 23

Deutieule 4	Estado	Sección	fps	Periodo [t]	30 cuadros	
Particula 4	Abierto	С	2500	0.0004	0.012	
Posición	x	у	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	317.765	297.54				
2	316.097	299.833	-1.668	2.293	2.8355	236.2919
3	314.429	302.752	-1.668	2.919	3.3620	280.1635
4	311.51	304.629	-2.919	1.877	3.4704	289.2002
5	309.633	306.505	-1.877	1.876	2.6538	221.1477
6	307.756	308.173	-1.877	1.668	2.5110	209.2538
7	304.212	311.093	-3.544	2.92	4.5920	382.6655
8	302.544	313.595	-1.668	2.502	3.0070	250.5858
9	299.833	315.888	-2.711	2.293	3.5507	295.8905
10	297.331	318.807	-2.502	2.919	3.8446	320.3792
11	296.08	320.892	-1.251	2.085	2.4315	202.6256
12	292.952	323.603	-3.128	2.711	4.1393	344.9427
13	291.284	326.105	-1.668	2.502	3.0070	250.5858
14	289.199	328.399	-2.085	2.294	3.0999	258.3288
15	286.697	330.067	-2.502	1.668	3.0070	250.5858
16	284.821	332.777	-1.876	2.71	3.2960	274.6649
17	282.736	334.862	-2.085	2.085	2.9486	245.7196
18	281.485	336.322	-1.251	1.46	1.9227	160.2212
19	277.94	339.241	-3.545	2.919	4.5921	382.6768
20	275.855	341.743	-2.085	2.502	3.2569	271.4062
21	273.144	344.454	-2.711	2.711	3.8339	319.4944
22	271.268	345.913	-1.876	1.459	2.3766	198.0470
23	269.391	347.998	-1.877	2.085	2.8054	233.7846
24	266.681	350.292	-2.71	2.294	3.5506	295.8807
25	264.595	353.003	-2.086	2.711	3.4207	285.0550
					Promedio	269.1499

Tabla A. 24

Deutécula E	Estado	Sección	fps	Periodo [t]	30 cuadros	
Particula 5	Abierto	С	2500	0.0004	0.012	
Posición	х	у	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	337.156	254.379				
2	335.071	256.047	-2.085	1.668	2.6701	222.5086
3	333.403	257.923	-1.668	1.876	2.5103	209.1916
4	332.569	259.174	-0.834	1.251	1.5035	125.2929
5	331.735	261.051	-0.834	1.877	2.0539	171.1620
6	330.275	262.927	-1.46	1.876	2.3772	198.0982
7	328.607	264.595	-1.668	1.668	2.3589	196.5757
8	326.939	265.847	-1.668	1.252	2.0856	173.8000
9	325.897	266.889	-1.042	1.042	1.4736	122.8009
10	324.854	267.932	-1.043	1.043	1.4750	122.9187
11	323.603	269.391	-1.251	1.459	1.9219	160.1580
12	322.143	270.851	-1.46	1.46	2.0648	172.0627
13	321.101	272.102	-1.042	1.251	1.6281	135.6764
14	319.641	273.77	-1.46	1.668	2.2167	184.7262
15	318.182	275.229	-1.459	1.459	2.0633	171.9448
16	316.931	276.48	-1.251	1.251	1.7692	147.4318
17	315.68	278.148	-1.251	1.668	2.0850	173.7500
18	314.637	279.608	-1.043	1.46	1.7943	149.5235
19	312.969	280.651	-1.668	1.043	1.9673	163.9375
20	311.927	282.11	-1.042	1.459	1.7929	149.4073
21	310.467	283.153	-1.46	1.043	1.7943	149.5235
22	309.425	284.612	-1.042	1.459	1.7929	149.4073
23	307.756	286.072	-1.669	1.46	2.2175	184.7889
24	306.505	287.74	-1.251	1.668	2.0850	173.7500
25	305.254	289.199	-1.251	1.459	1.9219	160.1580
					Promedio	165.3581

Tabla A. 25

Tablas A.26 – A.35: Estado cerrado – Sección A

Dartícula 1	Estado	Sección	fps	Periodo [t]]	
Particula I	Cerrado	А	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	743.536	75.48				
2	737.698	75.48	-5.838	0	5.8380	14595.0000
3	731.443	75.48	-6.255	0	6.2550	15637.5000
4	724.771	75.48	-6.672	0	6.6720	16680.0000
5	719.349	75.48	-5.422	0	5.4220	13555.0000
6	713.928	75.48	-5.421	0	5.4210	13552.5000
7	707.673	75.48	-6.255	0	6.2550	15637.5000
8	701.418	75.48	-6.255	0	6.2550	15637.5000
9	695.58	75.48	-5.838	0	5.8380	14595.0000
10	689.741	75.48	-5.839	0	5.8390	14597.5000
11	684.737	75.48	-5.004	0	5.0040	12510.0000
12	679.316	75.48	-5.421	0	5.4210	13552.5000
13	672.644	75.48	-6.672	0	6.6720	16680.0000
14	666.806	75.48	-5.838	0	5.8380	14595.0000
15	661.384	75.48	-5.422	0	5.4220	13555.0000
16	655.129	75.48	-6.255	0	6.2550	15637.5000
17	650.125	75.48	-5.004	0	5.0040	12510.0000
18	644.704	75.48	-5.421	0	5.4210	13552.5000
19	639.283	75.48	-5.421	0	5.4210	13552.5000
20	633.862	75.48	-5.421	0	5.4210	13552.5000
21	628.023	75.48	-5.839	0	5.8390	14597.5000
22	622.185	75.48	-5.838	0	5.8380	14595.0000
23	616.764	75.48	-5.421	0	5.4210	13552.5000
24	611.76	75.48	-5.004	0	5.0040	12510.0000
25	604.671	75.48	-7.089	0	7.0890	17722.5000
					Promedio	14465.1042

Dortíoulo 2	Estado	Sección	fps	Periodo [t]		
Particula 2	Cerrado	А	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	737.281	75.897				
2	731.721	75.897	-5.56	0	5.5600	13900.0000
3	725.049	75.897	-6.672	0	6.6720	16680.0000
4	719.766	75.897	-5.283	0	5.2830	13207.5000
5	714.206	75.897	-5.56	0	5.5600	13900.0000
6	708.368	75.897	-5.838	0	5.8380	14595.0000
7	701.696	75.897	-6.672	0	6.6720	16680.0000
8	696.414	75.897	-5.282	0	5.2820	13205.0000
9	690.575	75.897	-5.839	0	5.8390	14597.5000
10	685.293	75.897	-5.282	0	5.2820	13205.0000
11	680.289	75.897	-5.004	0	5.0040	12510.0000
12	673.061	75.897	-7.228	0	7.2280	18070.0000
13	667.223	75.897	-5.838	0	5.8380	14595.0000
14	661.662	75.897	-5.561	0	5.5610	13902.5000
15	655.546	75.897	-6.116	0	6.1160	15290.0000
16	651.098	76.175	-4.448	0.278	4.4567	11141.6976
17	645.26	76.175	-5.838	0	5.8380	14595.0000
18	638.31	76.175	-6.95	0	6.9500	17375.0000
19	632.75	76.175	-5.56	0	5.5600	13900.0000
20	627.189	76.175	-5.561	0	5.5610	13902.5000
21	623.019	76.175	-4.17	0	4.1700	10425.0000
22	617.459	76.175	-5.56	0	5.5600	13900.0000
23	613.011	76.175	-4.448	0	4.4480	11120.0000
24	604.949	76.453	-8.062	0.278	8.0668	20166.9792
25	598.276	76.453	-6.673	0	6.6730	16682.5000
					Promedio	14481.0907

Tabla A. 27

Tabla A. 28

Dartícula 2	Estado	Sección	fps	Periodo [t]		
Falticula 5	Cerrado	А	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	730.609	57.131				
2	726.856	57.131	-3.753	0	3.7530	9382.5000
3	722.269	56.992	-4.587	-0.139	4.5891	11472.7639
4	717.264	56.714	-5.005	-0.278	5.0127	12531.7868
5	712.538	56.714	-4.726	0	4.7260	11815.0000
6	708.646	56.992	-3.892	0.278	3.9019	9754.7898
7	704.198	56.714	-4.448	-0.278	4.4567	11141.6976
8	698.916	56.714	-5.282	0	5.2820	13205.0000
9	694.468	56.714	-4.448	0	4.4480	11120.0000
10	691.132	56.714	-3.336	0	3.3360	8340.0000
11	686.683	56.992	-4.449	0.278	4.4577	11144.1927
12	681.401	56.714	-5.282	-0.278	5.2893	13223.2768
13	677.231	56.714	-4.17	0	4.1700	10425.0000
14	672.227	56.992	-5.004	0.278	5.0117	12529.2907
15	666.945	56.714	-5.282	-0.278	5.2893	13223.2768
16	661.662	56.714	-5.283	0	5.2830	13207.5000
17	657.77	56.714	-3.892	0	3.8920	9730.0000
18	654.156	56.714	-3.614	0	3.6140	9035.0000
19	648.874	56.714	-5.282	0	5.2820	13205.0000
20	643.87	56.714	-5.004	0	5.0040	12510.0000
21	639.978	56.436	-3.892	-0.278	3.9019	9754.7898
22	634.696	56.436	-5.282	0	5.2820	13205.0000
23	630.803	56.436	-3.893	0	3.8930	9732.5000
24	626.911	56.714	-3.892	0.278	3.9019	9754.7898
25	623.575	56.992	-3.336	0.278	3.3476	8368.9082
					Promedio	11158.8360

Tabla A. 29

Partícula 4	Estado	Sección	fps	Periodo [t]		
	Cerrado	А	2500	0.0004		
Posición	x	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	711.704	97.303				
2	706.144	97.303	-5.56	0	5.5600	13900.0000
3	701.974	97.303	-4.17	0	4.1700	10425.0000
4	698.082	97.581	-3.892	0.278	3.9019	9754.7898
5	693.078	97.859	-5.004	0.278	5.0117	12529.2907
6	687.517	97.581	-5.561	-0.278	5.5679	13919.8610
7	682.235	97.581	-5.282	0	5.2820	13205.0000
8	677.231	97.859	-5.004	0.278	5.0117	12529.2907
9	673.339	97.581	-3.892	-0.278	3.9019	9754.7898
10	668.335	97.581	-5.004	0	5.0040	12510.0000
11	663.887	97.859	-4.448	0.278	4.4567	11141.6976
12	659.438	97.581	-4.449	-0.278	4.4577	11144.1927
13	654.434	97.581	-5.004	0	5.0040	12510.0000
14	648.874	97.581	-5.56	0	5.5600	13900.0000
15	643.87	97.581	-5.004	0	5.0040	12510.0000
16	638.866	97.581	-5.004	0	5.0040	12510.0000
17	633.584	97.859	-5.282	0.278	5.2893	13223.2768
18	628.579	97.581	-5.005	-0.278	5.0127	12531.7868
19	622.463	97.581	-6.116	0	6.1160	15290.0000
20	617.737	97.581	-4.726	0	4.7260	11815.0000
21	613.011	97.581	-4.726	0	4.7260	11815.0000
22	608.007	97.581	-5.004	0	5.0040	12510.0000
23	602.446	97.581	-5.561	0	5.5610	13902.5000
24	596.052	97.581	-6.394	0	6.3940	15985.0000
25	591.048	97.581	-5.004	0	5.0040	12510.0000
					Promedio	12576.1032

					_	
Dartícula E	Estado	Sección	fps	Periodo [t]]	
Falticula 5	Cerrado	А	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	755.908	90.909				
2	749.791	90.631	-6.117	-0.278	6.1233	15308.2847
3	743.953	90.909	-5.838	0.278	5.8446	14611.5382
4	738.949	90.909	-5.004	0	5.0040	12510.0000
5	733.945	90.909	-5.004	0	5.0040	12510.0000
6	727.551	90.909	-6.394	0	6.3940	15985.0000
7	721.991	90.909	-5.56	0	5.5600	13900.0000
8	716.986	90.909	-5.005	0	5.0050	12512.5000
9	711.426	90.909	-5.56	0	5.5600	13900.0000
10	705.31	90.909	-6.116	0	6.1160	15290.0000
11	700.306	90.909	-5.004	0	5.0040	12510.0000
12	694.19	90.909	-6.116	0	6.1160	15290.0000
13	688.629	90.909	-5.561	0	5.5610	13902.5000
14	683.069	90.909	-5.56	0	5.5600	13900.0000
15	678.621	90.909	-4.448	0	4.4480	11120.0000
16	673.617	90.909	-5.004	0	5.0040	12510.0000
17	667.501	90.909	-6.116	0	6.1160	15290.0000
18	662.219	90.909	-5.282	0	5.2820	13205.0000
19	657.214	90.909	-5.005	0	5.0050	12512.5000
20	651.932	90.631	-5.282	-0.278	5.2893	13223.2768
21	646.094	90.631	-5.838	0	5.8380	14595.0000
22	640.534	90.631	-5.56	0	5.5600	13900.0000
23	634.696	90.631	-5.838	0	5.8380	14595.0000
24	629.969	90.631	-4.727	0	4.7270	11817.5000
25	624.965	90.631	-5.004	0	5.0040	12510.0000

Tabla A. 30

13642.0042

Promedio

Dartícula 6	Estado	Sección	fps	Periodo [t]		
Particula o	Cerrado	А	2500	0.0004		
Posición	х	у	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	740.339	87.851				
2	735.891	87.851	-4.448	0	4.4480	11120.0000
3	730.609	87.573	-5.282	-0.278	5.2893	13223.2768
4	726.439	87.851	-4.17	0.278	4.1793	10448.1410
5	721.713	87.573	-4.726	-0.278	4.7342	11835.4235
6	715.874	87.851	-5.839	0.278	5.8456	14614.0354
7	710.592	87.573	-5.282	-0.278	5.2893	13223.2768
8	704.476	87.573	-6.116	0	6.1160	15290.0000
9	700.028	87.573	-4.448	0	4.4480	11120.0000
10	693.912	87.573	-6.116	0	6.1160	15290.0000
11	689.741	87.573	-4.171	0	4.1710	10427.5000
12	683.625	87.573	-6.116	0	6.1160	15290.0000
13	677.787	87.573	-5.838	0	5.8380	14595.0000
14	672.227	87.573	-5.56	0	5.5600	13900.0000
15	667.779	87.573	-4.448	0	4.4480	11120.0000
16	662.497	87.573	-5.282	0	5.2820	13205.0000
17	658.326	87.573	-4.171	0	4.1710	10427.5000
18	654.434	87.573	-3.892	0	3.8920	9730.0000
19	650.264	87.573	-4.17	0	4.1700	10425.0000
20	644.704	87.573	-5.56	0	5.5600	13900.0000
21	639.7	87.573	-5.004	0	5.0040	12510.0000
22	633.306	87.573	-6.394	0	6.3940	15985.0000
23	628.301	87.573	-5.005	0	5.0050	12512.5000
24	623.575	87.573	-4.726	0	4.7260	11815.0000
25	617.737	87.573	-5.838	0	5.8380	14595.0000
					Promedio	12775.0689

Tabla A. 31

Dortíoulo 7	Estado	Sección	fps	Periodo [t]]	
Particula 7	Cerrado	A	2500	0.0004		
Posición	х	у	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	733.945	80.623				
2	730.887	80.623	-3.058	0	3.0580	7645.0000
3	727.273	80.901	-3.614	0.278	3.6247	9061.6913
4	722.547	80.901	-4.726	0	4.7260	11815.0000
5	716.708	80.901	-5.839	0	5.8390	14597.5000
6	713.372	80.901	-3.336	0	3.3360	8340.0000
7	709.758	81.179	-3.614	0.278	3.6247	9061.6913
8	706.144	80.901	-3.614	-0.278	3.6247	9061.6913
9	702.808	80.901	-3.336	0	3.3360	8340.0000
10	698.36	80.901	-4.448	0	4.4480	11120.0000
11	694.746	80.901	-3.614	0	3.6140	9035.0000
12	691.132	80.901	-3.614	0	3.6140	9035.0000
13	686.683	80.901	-4.449	0	4.4490	11122.5000
14	682.235	80.901	-4.448	0	4.4480	11120.0000
15	678.343	80.901	-3.892	0	3.8920	9730.0000
16	674.729	80.901	-3.614	0	3.6140	9035.0000
17	670.281	81.179	-4.448	0.278	4.4567	11141.6976
18	665.833	80.901	-4.448	-0.278	4.4567	11141.6976
19	661.941	80.901	-3.892	0	3.8920	9730.0000
20	657.77	81.179	-4.171	0.278	4.1803	10450.6354
21	653.6	80.901	-4.17	-0.278	4.1793	10448.1410
22	649.986	80.623	-3.614	-0.278	3.6247	9061.6913
23	646.65	80.623	-3.336	0	3.3360	8340.0000
24	640.812	80.623	-5.838	0	5.8380	14595.0000
25	636.364	80.901	-4.448	0.278	4.4567	11141.6976
					Promedio	10173.7764

Tabla A. 32

Tabla A. 33

Dartícula 9	Estado	Sección	fps	Periodo [t]		
Falticula o	Cerrado	А	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	752.016	68.946				
2	747.567	68.946	-4.449	0	4.4490	11122.5000
3	744.231	68.946	-3.336	0	3.3360	8340.0000
4	739.227	69.224	-5.004	0.278	5.0117	12529.2907
5	735.891	68.946	-3.336	-0.278	3.3476	8368.9082
6	732.277	68.946	-3.614	0	3.6140	9035.0000
7	727.551	68.946	-4.726	0	4.7260	11815.0000
8	723.659	68.946	-3.892	0	3.8920	9730.0000
9	718.654	68.946	-5.005	0	5.0050	12512.5000
10	715.318	68.946	-3.336	0	3.3360	8340.0000
11	710.87	68.946	-4.448	0	4.4480	11120.0000
12	706.7	68.946	-4.17	0	4.1700	10425.0000
13	702.53	68.946	-4.17	0	4.1700	10425.0000
14	698.36	68.946	-4.17	0	4.1700	10425.0000
15	694.19	68.946	-4.17	0	4.1700	10425.0000
16	690.019	69.224	-4.171	0.278	4.1803	10450.6354
17	686.127	69.224	-3.892	0	3.8920	9730.0000
18	681.123	69.224	-5.004	0	5.0040	12510.0000
19	677.509	69.224	-3.614	0	3.6140	9035.0000
20	672.783	69.224	-4.726	0	4.7260	11815.0000
21	668.613	69.224	-4.17	0	4.1700	10425.0000
22	664.165	69.224	-4.448	0	4.4480	11120.0000
23	659.438	69.224	-4.727	0	4.7270	11817.5000
24	655.268	69.224	-4.17	0	4.1700	10425.0000
25	650.264	69.224	-5.004	0	5.0040	12510.0000
					Promedio	10602.1389

Tabla A. 34

Partícula 0	Estado	Sección	fps	Periodo [t]		
Particula 9	Cerrado	А	2500	0.0004		
Posición	x	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1						
1	742.563	88.407				
2	740.895	87.573	-1.668	-0.834	1.864880693	4662.201733
3	737.003	87.851	-3.892	0.278	3.90191594	9754.789849
4	733.389	88.129	-3.614	0.278	3.624676537	9061.691343
5	728.663	87.851	-4.726	-0.278	4.73416941	11835.42352
6	724.215	87.851	-4.448	0	4.448	11120
7	720.878	87.851	-3.337	0	3.337	8342.5
8	715.874	87.851	-5.004	0	5.004	12510
9	711.982	87.573	-3.892	-0.278	3.90191594	9754.789849
10	708.09	88.129	-3.892	0.556	3.931513703	9828.784258
11	703.92	87.851	-4.17	-0.278	4.179256393	10448.14098
12	699.194	87.851	-4.726	0	4.726	11815
13	695.302	87.851	-3.892	0	3.892	9730
14	690.853	87.573	-4.449	-0.278	4.457677086	11144.19271
15	687.239	87.573	-3.614	0	3.614	9035
16	683.069	87.851	-4.17	0.278	4.179256393	10448.14098
17	679.177	87.851	-3.892	0	3.892	9730
18	675.285	87.851	-3.892	0	3.892	9730
19	670.837	87.573	-4.448	-0.278	4.456679033	11141.69758
20	666.945	87.851	-3.892	0.278	3.90191594	9754.789849
21	662.775	87.851	-4.17	0	4.17	10425
22	658.604	87.573	-4.171	-0.278	4.180254179	10450.63545
23	653.878	87.573	-4.726	0	4.726	11815
24	650.542	87.573	-3.336	0	3.336	8340
25	645.26	87.573	-5.282	0	5.282	13205
					Promedio	10170.11575

Tabla	А.	35
-------	----	----

Partícula 10	Estado	Sección	fps	Periodo [t]		
	Cerrado	А	2500	0.0004		
Posición	х	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	728.385	89.241				
2	723.937	89.241	-4.448	0	4.4480	11120.0000
3	720.601	89.241	-3.336	0	3.3360	8340.0000
4	715.874	89.519	-4.727	0.278	4.7352	11837.9192
5	711.982	89.519	-3.892	0	3.8920	9730.0000
6	708.368	89.519	-3.614	0	3.6140	9035.0000
7	703.92	89.519	-4.448	0	4.4480	11120.0000
8	699.75	89.519	-4.17	0	4.1700	10425.0000
9	695.024	89.519	-4.726	0	4.7260	11815.0000
10	691.688	89.519	-3.336	0	3.3360	8340.0000
11	688.073	89.241	-3.615	-0.278	3.6257	9064.1840
12	684.459	89.241	-3.614	0	3.6140	9035.0000
13	679.733	89.241	-4.726	0	4.7260	11815.0000
14	675.007	89.241	-4.726	0	4.7260	11815.0000
15	670.837	89.241	-4.17	0	4.1700	10425.0000
16	666.389	89.241	-4.448	0	4.4480	11120.0000
17	662.497	89.241	-3.892	0	3.8920	9730.0000
18	656.936	89.241	-5.561	0	5.5610	13902.5000
19	653.044	89.241	-3.892	0	3.8920	9730.0000
20	650.264	89.241	-2.78	0	2.7800	6950.0000
21	645.26	89.241	-5.004	0	5.0040	12510.0000
22	641.646	89.241	-3.614	0	3.6140	9035.0000
23	637.198	89.241	-4.448	0	4.4480	11120.0000
24	633.862	89.241	-3.336	0	3.3360	8340.0000
25	629.691	89.241	-4.171	0	4.1710	10427.5000
					Promedio	10282.5876

Tablas A.36 – A.45: Estado cerrado – Sección C

Dartícula 1	Estado	Sección	fps	Periodo [t]]	
Particula 1	Cerrado	С	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1						
2	251.321	368.085				
3	245.204	373.089	-6.117	5.004	7.9030	19757.5468
4	241.868	376.981	-3.336	3.892	5.1261	12815.1668
5	236.864	382.263	-5.004	5.282	7.2760	18189.8907
6	233.25	385.321	-3.614	3.058	4.7342	11835.4235
7	228.246	390.325	-5.004	5.004	7.0767	17691.8117
8	223.52	395.329	-4.726	5.004	6.8830	17207.3916
9	220.183	398.944	-3.337	3.615	4.9197	12299.3379
10	214.901	403.67	-5.282	4.726	7.0876	17719.0928
11	211.009	407.84	-3.892	4.17	5.7041	14260.2077
12	206.839	411.732	-4.17	3.892	5.7041	14260.2077
13	202.391	416.458	-4.448	4.726	6.4900	16224.9384
14	197.665	420.906	-4.726	4.448	6.4900	16224.9384
15	193.217	425.632	-4.448	4.726	6.4900	16224.9384
16	189.324	429.247	-3.893	3.615	5.3126	13281.4895
17	184.876	433.695	-4.448	4.448	6.2904	15726.0548
18	180.15	438.977	-4.726	5.282	7.0876	17719.0928
19	175.98	442.591	-4.17	3.614	5.5181	13795.3561
20	171.532	447.039	-4.448	4.448	6.2904	15726.0548
21	166.528	452.321	-5.004	5.282	7.2760	18189.8907
22	162.636	456.214	-3.892	3.893	5.5048	13762.0658
23	158.465	460.662	-4.171	4.448	6.0977	15244.2499
24	154.851	465.11	-3.614	4.448	5.7311	14327.7920
					Promedio	15567.4063

Dartícula 2	Estado	Sección	fps	Periodo [t]		
Particula 2	Cerrado	С	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	331.943	268.557				
2	327.773	272.727	-4.17	4.17	5.8973	14743.1764
3	324.437	276.48	-3.336	3.753	5.0213	12553.3623
4	321.101	279.817	-3.336	3.337	4.7185	11796.3090
5	317.765	283.153	-3.336	3.336	4.7178	11794.5411
6	314.429	286.906	-3.336	3.753	5.0213	12553.3623
7	311.093	290.659	-3.336	3.753	5.0213	12553.3623
8	307.756	293.995	-3.337	3.336	4.7185	11796.3090
9	304.42	297.331	-3.336	3.336	4.7178	11794.5411
10	301.501	300.667	-2.919	3.336	4.4328	11081.9270
11	298.165	304.003	-3.336	3.336	4.7178	11794.5411
12	294.829	307.756	-3.336	3.753	5.0213	12553.3623
13	291.493	311.093	-3.336	3.337	4.7185	11796.3090
14	288.574	314.429	-2.919	3.336	4.4328	11081.9270
15	286.072	317.348	-2.502	2.919	3.8446	9611.3751
16	282.736	320.684	-3.336	3.336	4.7178	11794.5411
17	279.399	324.02	-3.337	3.336	4.7185	11796.3090
18	275.646	327.773	-3.753	3.753	5.3075	13268.8587
19	271.893	331.526	-3.753	3.753	5.3075	13268.8587
20	268.557	334.862	-3.336	3.336	4.7178	11794.5411
21	265.638	337.781	-2.919	2.919	4.1281	10320.2235
22	262.302	341.118	-3.336	3.337	4.7185	11796.3090
23	258.966	344.454	-3.336	3.336	4.7178	11794.5411
24	256.047	347.373	-2.919	2.919	4.1281	10320.2235
25	252.711	350.709	-3.336	3.336	4.7178	11794.5411
					Promedio	11893.8897

Tabla A. 37

Dartícula 2	Estado	Sección	fps	Periodo [t]		
Particula 5	Cerrado	С	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	376.981	227.273				
2	370.309	232.694	-6.672	5.421	8.5967	21491.6881
3	367.389	236.864	-2.92	4.17	5.0907	12726.7681
4	364.47	240.2	-2.919	3.336	4.4328	11081.9270
5	360.3	243.953	-4.17	3.753	5.6102	14025.4031
6	355.713	247.706	-4.587	3.753	5.9267	14816.7089
7	352.377	251.043	-3.336	3.337	4.7185	11796.3090
8	348.346	254.657	-4.031	3.614	5.4139	13534.6678
9	342.786	259.661	-5.56	5.004	7.4802	18700.5374
10	339.45	263.831	-3.336	4.17	5.3402	13350.5140
11	337.503	265.777	-1.947	1.946	2.7528	6881.9170
12	332.777	269.947	-4.726	4.17	6.3027	15756.7398
13	329.441	273.005	-3.336	3.058	4.5255	11313.7803
14	326.105	276.341	-3.336	3.336	4.7178	11794.5411
15	321.935	280.234	-4.17	3.893	5.7048	14261.9137
16	318.599	283.292	-3.336	3.058	4.5255	11313.7803
17	315.819	286.628	-2.78	3.336	4.3425	10856.2470
18	311.649	289.964	-4.17	3.336	5.3402	13350.5140
19	308.034	293.022	-3.615	3.058	4.7349	11837.3321
20	304.976	296.358	-3.058	3.336	4.5255	11313.7803
21	300.806	301.362	-4.17	5.004	6.5137	16284.3706
22	296.636	304.42	-4.17	3.058	5.1711	12927.7473
23	293.022	309.147	-3.614	4.727	5.9503	14875.6355
24	290.242	312.483	-2.78	3.336	4.3425	10856.2470
25	286.072	316.375	-4.17	3.892	5.7041	14260.2077
					Promedio	13308.7199

Tabla A. 38

Dartícula 4	Estado	Sección	fps	Periodo [t]]	
Particula 4	Cerrado	С	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	327.356	310.259				
2	324.437	313.178	-2.919	2.919	4.1281	10320.2235
3	321.379	316.097	-3.058	2.919	4.2275	10568.7999
4	318.043	319.433	-3.336	3.336	4.7178	11794.5411
5	314.429	323.325	-3.614	3.892	5.3112	13277.9564
6	311.371	326.105	-3.058	2.78	4.1328	10331.9178
7	308.869	328.885	-2.502	2.78	3.7401	9350.2687
8	306.644	331.387	-2.225	2.502	3.3482	8370.5694
9	303.586	333.889	-3.058	2.502	3.9511	9877.8059
10	300.25	336.947	-3.336	3.058	4.5255	11313.7803
11	297.748	339.728	-2.502	2.781	3.7409	9352.1271
12	293.022	345.01	-4.726	5.282	7.0876	17719.0928
13	290.52	347.79	-2.502	2.78	3.7401	9350.2687
14	288.018	351.126	-2.502	3.336	4.1700	10425.0000
15	286.072	353.35	-1.946	2.224	2.9552	7387.9513
16	281.902	357.242	-4.17	3.892	5.7041	14260.2077
17	278.565	360.856	-3.337	3.614	4.9190	12297.5010
18	274.673	363.358	-3.892	2.502	4.6268	11567.1053
19	273.005	366.138	-1.668	2.78	3.2420	8105.0231
20	269.669	368.919	-3.336	2.781	4.3431	10857.8477
21	264.943	373.645	-4.726	4.726	6.6836	16708.9332
22	261.329	376.981	-3.614	3.336	4.9183	12295.8052
23	259.661	379.205	-1.668	2.224	2.7800	6950.0000
24	256.881	381.707	-2.78	2.502	3.7401	9350.2687
25	254.657	384.487	-2.224	2.78	3.5601	8900.3427
					Promedio	10863.8891

Tabla A. 39

Tabla A. 40

Dortículo E	Estado	Sección	fps	Periodo [t]		
Falticula 5	Cerrado	С	2500	0.0004		
Posición	x	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	356.964	280.234				
2	354.462	282.736	-2.502	2.502	3.5384	8845.9058
3	351.404	286.072	-3.058	3.336	4.5255	11313.7803
4	348.902	289.408	-2.502	3.336	4.1700	10425.0000
5	345.566	291.632	-3.336	2.224	4.0094	10023.4325
6	343.898	294.69	-1.668	3.058	3.4833	8708.3250
7	340.562	298.026	-3.336	3.336	4.7178	11794.5411
8	338.06	301.362	-2.502	3.336	4.1700	10425.0000
9	335.557	303.864	-2.503	2.502	3.5391	8847.6738
10	332.777	306.644	-2.78	2.78	3.9315	9828.7843
11	329.441	309.981	-3.336	3.337	4.7185	11796.3090
12	326.661	313.039	-2.78	3.058	4.1328	10331.9178
13	323.325	315.819	-3.336	2.78	4.3425	10856.2470
14	319.433	319.155	-3.892	3.336	5.1261	12815.1668
15	317.209	321.379	-2.224	2.224	3.1452	7863.0274
16	313.317	324.159	-3.892	2.78	4.7829	11957.2321
17	310.259	327.217	-3.058	3.058	4.3247	10811.6627
18	308.034	330.275	-2.225	3.058	3.7818	9454.4926
19	305.254	333.055	-2.78	2.78	3.9315	9828.7843
20	302.474	336.113	-2.78	3.058	4.1328	10331.9178
21	299.138	339.45	-3.336	3.337	4.7185	11796.3090
22	296.914	341.396	-2.224	1.946	2.9552	7387.9513
23	293.022	345.566	-3.892	4.17	5.7041	14260.2077
24	290.52	348.068	-2.502	2.502	3.5384	8845.9058
25	287.462	351.404	-3.058	3.336	4.5255	11313.7803
					Promedio	10410.9731

fps Estado Sección Periodo [t] Partícula 6 Cerrado С 2500 0.0004 Posición Δx Desplazamiento Velocidad [µm/s] х у Δy 1 407.423 215.596 2 -3.753 4.17 5.610161228 14025.40307 403.67 219.766 3 399.917 223.937 -3.753 4.171 5.610904562 14027.2614 4 395.329 228.802 -4.588 4.865 6.687149542 16717.87386 5 390.603 231.86 -4.726 3.058 5.629070971 14072.67743 6 386.989 236.864 -3.614 5.004 6.172601721 15431.5043 7 384.209 239.922 -2.78 3.058 4.132767112 10331.91778 8 380.317 243.258 -3.892 3.336 5.126066718 12815.1668 9 376.981 247.428 -3.336 4.17 5.340205614 13350.51404 10 373.645 250.487 -3.336 3.059 4.52618791 11315.46978 11 369.475 254.101 -4.17 3.614 5.518142441 13795.3561 12 365.86 256.881 -3.615 2.78 4.560331677 11400.82919 13 362.246 260.495 -3.614 3.614 5.110967814 12777.41954 14 358.354 263.831 -3.892 3.336 5.126066718 12815.1668 15 354.184 267.167 -4.17 3.336 5.340205614 13350.51404 16 350.57 270.781 -3.614 3.614 5.110967814 12777.41954 17 -4.17 4.17 346.4 274.951 5.897270555 14743.17639 18 343.342 278.009 -3.058 3.058 4.324665074 10811.66268 19 339.728 281.346 -3.614 3.337 4.919000407 12297.50102 20 336.669 285.238 -3.059 3.892 4.950267165 12375.66791 21 332.777 288.296 -3.892 3.058 4.949649281 12374.1232 22 328.607 292.188 -4.17 3.892 5.704083099 14260.20775 -3.336 23 325.271 295.524 3.336 4.717816444 11794.54111 24 321.935 299.138 -3.336 3.614 4.918322072 12295.80518 25 318.321 303.308 -3.614 4.17 5.518142441 13795.3561 Promedio 13073.02229

Tabla A. 41

Dartícula 7	Estado	Sección	fps	Periodo [t]		
Particula 7	Cerrado	С	2500	0.0004	-	
Posición	х	у	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	373.089	219.627				
2	370.587	222.686	-2.502	3.059	3.9519	9879.7410
3	367.25	225.466	-3.337	2.78	4.3433	10858.1677
4	365.026	228.246	-2.224	2.78	3.5601	8900.3427
5	361.134	231.304	-3.892	3.058	4.9496	12374.1232
6	356.964	234.918	-4.17	3.614	5.5181	13795.3561
7	353.628	238.81	-3.336	3.892	5.1261	12815.1668
8	350.292	241.868	-3.336	3.058	4.5255	11313.7803
9	346.678	245.204	-3.614	3.336	4.9183	12295.8052
10	343.62	248.818	-3.058	3.614	4.7342	11835.4235
11	341.396	251.321	-2.224	2.503	3.3483	8370.7769
12	337.781	253.823	-3.615	2.502	4.3964	10990.9704
13	334.723	256.881	-3.058	3.058	4.3247	10811.6627
14	332.499	259.105	-2.224	2.224	3.1452	7863.0274
15	329.997	261.885	-2.502	2.78	3.7401	9350.2687
16	326.939	264.943	-3.058	3.058	4.3247	10811.6627
17	324.715	267.445	-2.224	2.502	3.3476	8368.9082
18	322.213	269.669	-2.502	2.224	3.3476	8368.9082
19	319.711	272.171	-2.502	2.502	3.5384	8845.9058
20	317.487	274.673	-2.224	2.502	3.3476	8368.9082
21	314.707	277.453	-2.78	2.78	3.9315	9828.7843
22	312.483	279.956	-2.224	2.503	3.3483	8370.7769
23	309.703	282.18	-2.78	2.224	3.5601	8900.3427
24	307.2	285.238	-2.503	3.058	3.9518	9879.3892
25	305.254	287.462	-1.946	2.224	2.9552	7387.9513
					Promedio	10024.4229

Tabla A. 42

Dartícula 9	Estado	Sección	fps	Periodo [t]		
Particula o	Cerrado	С	2500	0.0004		
Posición	х	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	357.381	278.148				
2	354.462	281.485	-2.919	3.337	4.4335	11083.8086
3	351.96	284.404	-2.502	2.919	3.8446	9611.3751
4	350.014	286.628	-1.946	2.224	2.9552	7387.9513
5	346.956	289.964	-3.058	3.336	4.5255	11313.7803
6	344.176	293.3	-2.78	3.336	4.3425	10856.2470
7	340.84	296.08	-3.336	2.78	4.3425	10856.2470
8	337.503	299.416	-3.337	3.336	4.7185	11796.3090
9	334.167	302.474	-3.336	3.058	4.5255	11313.7803
10	331.665	305.254	-2.502	2.78	3.7401	9350.2687
11	329.441	308.312	-2.224	3.058	3.7812	9453.0220
12	326.939	311.649	-2.502	3.337	4.1708	10427.0001
13	324.159	314.151	-2.78	2.502	3.7401	9350.2687
14	321.657	316.931	-2.502	2.78	3.7401	9350.2687
15	318.321	320.267	-3.336	3.336	4.7178	11794.5411
16	315.541	323.325	-2.78	3.058	4.1328	10331.9178
17	312.205	326.661	-3.336	3.336	4.7178	11794.5411
18	308.869	329.997	-3.336	3.336	4.7178	11794.5411
19	304.698	333.333	-4.171	3.336	5.3410	13352.4663
20	302.474	335.557	-2.224	2.224	3.1452	7863.0274
21	299.138	338.616	-3.336	3.059	4.5262	11315.4698
22	295.524	341.952	-3.614	3.336	4.9183	12295.8052
23	292.744	345.288	-2.78	3.336	4.3425	10856.2470
24	289.686	348.068	-3.058	2.78	4.1328	10331.9178
25	286.906	350.848	-2.78	2.78	3.9315	9828.7843
					Promedio	10571.2327

Tabla A. 43

Tabla A. 44

Dartícula O	Estado	Sección	fps	Periodo [t]		
Falticula 9	Cerrado	С	2500	0.0004		
Posición	x	У	Δx	Δy	Desplazamiento	Velocidad [µm/s]
1	391.159	231.026				
2	388.24	234.362	-2.919	3.336	4.4328	11081.9270
3	384.904	238.115	-3.336	3.753	5.0213	12553.3623
4	381.151	241.451	-3.753	3.336	5.0213	12553.3623
5	378.232	244.37	-2.919	2.919	4.1281	10320.2235
6	374.479	248.123	-3.753	3.753	5.3075	13268.8587
7	370.726	251.043	-3.753	2.92	4.7551	11887.8638
8	367.389	254.796	-3.337	3.753	5.0220	12555.0234
9	364.47	257.715	-2.919	2.919	4.1281	10320.2235
10	361.134	261.051	-3.336	3.336	4.7178	11794.5411
11	358.215	264.387	-2.919	3.336	4.4328	11081.9270
12	354.879	267.723	-3.336	3.336	4.7178	11794.5411
13	351.96	271.059	-2.919	3.336	4.4328	11081.9270
14	349.041	273.561	-2.919	2.502	3.8446	9611.3751
15	346.122	276.48	-2.919	2.919	4.1281	10320.2235
16	343.203	279.817	-2.919	3.337	4.4335	11083.8086
17	340.284	282.319	-2.919	2.502	3.8446	9611.3751
18	337.364	286.489	-2.92	4.17	5.0907	12726.7681
19	333.611	289.408	-3.753	2.919	4.7545	11886.3288
20	331.109	291.91	-2.502	2.502	3.5384	8845.9058
21	328.19	294.829	-2.919	2.919	4.1281	10320.2235
22	325.271	297.748	-2.919	2.919	4.1281	10320.2235
23	322.352	301.084	-2.919	3.336	4.4328	11081.9270
24	319.016	304.003	-3.336	2.919	4.4328	11081.9270
25	316.514	306.922	-2.502	2.919	3.8446	9611.3751
					Promedio	11116.4684

Partícula 10	Estado	Sección	fps	Periodo [t]]	
	Cerrado	С	2500	0.0004		
Posición	х	У	Δx	Δγ	Desplazamiento	Velocidad [µm/s]
1	330.275	290.659				
2	327.773	293.578	-2.502	2.919	3.8446	9611.3751
3	324.854	296.914	-2.919	3.336	4.4328	11081.9270
4	321.935	300.25	-2.919	3.336	4.4328	11081.9270
5	318.599	303.169	-3.336	2.919	4.4328	11081.9270
6	315.68	306.505	-2.919	3.336	4.4328	11081.9270
7	311.927	310.676	-3.753	4.171	5.6109	14027.2614
8	308.59	314.012	-3.337	3.336	4.7185	11796.3090
9	304.837	317.348	-3.753	3.336	5.0213	12553.3623
10	301.918	320.684	-2.919	3.336	4.4328	11081.9270
11	298.582	324.02	-3.336	3.336	4.7178	11794.5411
12	294.829	327.773	-3.753	3.753	5.3075	13268.8587
13	292.327	331.109	-2.502	3.336	4.1700	10425.0000
14	289.408	334.445	-2.919	3.336	4.4328	11081.9270
15	286.489	337.781	-2.919	3.336	4.4328	11081.9270
16	283.153	341.118	-3.336	3.337	4.7185	11796.3090
17	279.817	344.037	-3.336	2.919	4.4328	11081.9270
18	276.897	346.956	-2.92	2.919	4.1288	10321.9914
19	274.395	349.041	-2.502	2.085	3.2569	8142.1853
20	271.476	351.543	-2.919	2.502	3.8446	9611.3751
21	268.557	355.713	-2.919	4.17	5.0901	12725.3342
22	265.221	358.632	-3.336	2.919	4.4328	11081.9270
23	262.302	361.551	-2.919	2.919	4.1281	10320.2235
24	258.549	364.887	-3.753	3.336	5.0213	12553.3623
25	254.796	369.058	-3.753	4.171	5.6109	14027.2614
					Promedio	11363.0039

Tabla A. 45
Referencias

- [1] R. Bashir, "BioMEMS: state-of-the-art in detection, opportunities and prospects," *Adv. Drug Deliv. Rev.*, vol. 56, no. 11, pp. 1565–1586, 2004.
- [2] M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, Second Edition. CRC Press, 2002.
- [3] "Intelligent Micro Patterning." [Online]. Available: http://www.intelligentmp.com/sf100xcel.html. [Accessed: 23-Aug-2016].
- [4] L. Imp, "SF-100 Platform Manual," 2012.
- [5] M. J. Madou, Fundamentals of Microfabrication and Nanotechnology, Volume II: Manufacturing Techniques for Microfabrication and Nanotechnology, Third Edit. CRC Press, 2012.
- [6] N. Sahu, B. Parija, and S. Panigrahi, "Fundamental understanding and modeling of spin coating process: A review," *Indian J. Phys.*, vol. 83, no. 4, pp. 493–502, 2009.
- [7] D. B. Hall, P. Underhill, and J. M. Torkelson, "Spin Coating of Thin and Ultrathin Polymer Films," *Liq. Film Coat.*, vol. 38, no. 12, p. 709, 1997.
- [8] M. a Eddings, M. a Johnson, and B. K. Gale, "Determining the optimal PDMS–PDMS bonding technique for microfluidic devices," J. Micromechanics Microengineering, vol. 18, no. 6, p. 067001, 2008.
- [9] C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, "Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips," *Anal. Chem.*, vol. 69, no. 17, pp. 3451–3457, 1997.
- [10] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," *Anal. Chem.*, vol. 70, no. 23, pp. 4974– 4984, 1998.
- [11] K. Haubert, T. Drier, and D. Beebe, "PDMS bonding by means of a portable, low-cost corona system.," *Lab Chip*, vol. 6, no. 12, pp. 1548–9, 2006.
- [12] M. J. Madou, V. H. Perez-Gonzalez, and B. Pramanick, *Carbon: The Next Silicon? Book 1 Fundamentals*. 2016.
- [13] M. J. Madou, V. H. Perez-Gonzalez, and B. Pramanick, *Carbon: The Next Silicon? Book 2 Applications*. 2016.
- [14] G. M. Whitesides, E. Ostuni, X. Jiang, and D. E. Ingber, "Soft Lithography in Biology," Annu. *Rev. Biomed. Eng.*, vol. 3, pp. 335–73, 2001.
- [15] D. J. Beebe, G. a Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology.," *Annu. Rev. Biomed. Eng.*, vol. 4, pp. 261–286, 2002.
- [16] P. Kim, K. W. Kwon, M. C. Park, S. H. Lee, and S. M. Kim, "Soft Lithography for Microfluidics : a Review," *Biochip J.*, vol. 2, no. 1, pp. 1–11, 2008.
- [17] J. Wu and M. Gu, "Microfluidic sensing: state of the art fabrication and detection techniques.," J. Biomed. Opt., vol. 16, no. 8, p. 080901, 2011.
- [18] T. Vo-Dinh and B. Cullum, "Biosensors and biochips: advances in biological and medical diagnostics.," *Fresenius. J. Anal. Chem.*, vol. 366, no. 6–7, pp. 540–551, 2008.
- [19] A. Arora, G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, "Latest developments in micro total analysis systems," *Anal. Chem.*, vol. 82, no. 12, pp. 4830–4847, 2010.
- [20] A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. deMello, "Microdroplets: A sea of applications?," *Lab Chip*, vol. 8, no. 8, p. 1244, 2008.
- [21] L. M. Fidalgo, G. Whyte, D. Bratton, C. F. Kaminski, C. Abell, and W. T. S. Huck, "From

microdroplets to microfluidics: Selective emulsion separation in microfluidic devices," *Angew. Chemie - Int. Ed.*, vol. 47, no. 11, pp. 2042–2045, 2008.

- [22] J. El-Ali, P. K. Sorger, and K. F. Jensen, "Cells on chips.," Nature, vol. 442, no. 7101, pp. 403– 411, 2006.
- [23] M. Yang, C. W. Li, and J. Yang, "Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device," *Anal. Chem.*, vol. 74, no. 16, pp. 3991–4001, 2002.
- [24] K. W. Oh and C. H. Ahn, "A review of microvalves," *J. Micromechanics Microengineering*, vol. 16, no. 5, pp. R13–R39, 2006.
- [25] P. Gravesen, J. Branebjerg, and O. Sondergard Jensen, "Microfluidics A Review," J. *Microchem. Microeng.*, vol. 3, pp. 162–183, 1993.
- [26] K. Sato and M. Shikida, "An electrostatically actuated gas valve with an S-shaped film element," J. Micromechanics Microengineering, vol. 4, no. 4, pp. 205–209, 1994.
- [27] L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, "A novel bulk-micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display," J. *Microelectromechanical Syst.*, vol. 10, no. 2, pp. 187–196, 2001.
- [28] B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink, "Voltage-addressable on/off microvalves for high-pressure microchip separations," J. Chromatogr. A, vol. 979, no. 1–2, pp. 147–154, 2002.
- [29] H. Ren and E. Gerhard, "Design and fabrication of a current-pulse-excited bistable magnetic microactuator," *Sensors Actuators A Phys.*, vol. 58, no. 3, pp. 259–264, 1997.
- [30] S. Böhm, G. J. Burger, M. T. Korthorst, and F. Roseboom, "Micromachined silicon valve driven by a miniature bi-stable electro-magnetic actuator," *Sensors Actuators, A Phys.*, vol. 80, no. 1, pp. 77–83, 2000.
- [31] M. Capanu, J. G. Boyd IV, and P. J. Hesketh, "Design, fabrication, and testing of a bistable electromagnetically actuated microvalve," J. Microelectromechanical Syst., vol. 9, no. 2, pp. 181–189, 2000.
- [32] H. Hartshorne, C. J. Backhouse, and W. E. Lee, "Ferrofluid-based microchip pump and valve," *Sensors Actuators, B Chem.*, vol. 99, pp. 592–600, 2004.
- [33] H. Takao, M. Ishida, and K. Sawada, "A pneumatically actuated full in-channel microvalve with MOSFET-like function in fluid channel networks," J. Microelectromechanical Syst., vol. 11, no. 5, pp. 421–426, 2002.
- [34] E. T. Lagally, P. C. Simpson, and R. A. Mathies, "Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system," *Sensors Actuators, B Chem.*, vol. 63, no. 3, pp. 138–146, 2000.
- [35] J. Y. Baek, J. Y. Park, J. Il Ju, T. S. Lee, and S. H. Lee, "A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development," *J. Micromechanics Microengineering*, vol. 15, no. 5, pp. 1015–1020, 2005.
- [36] B. J. Kirby, *Micro- and Nanoscale Fluid Mechanics*. Cambridge University Press, 2010.
- [37] Microchem, "SU-8 2000 Permanent Epoxy Negative Photoresist," *Process. Guidel.*, 2015.
- [38] Microchem, "SU-8 3000 Permanent Epoxy," Prod. Datasheet, vol. 20, 2000.
- [39] J. Carlos and V. García, "Valores gasométricos estimados para las principales poblaciones y sitios a mayor altitud en México," pp. 6–13, 2000.
- [40] E. Meijering, O. Dzyubachyk, and I. Smal, "Methods for Cell and Particle Tracking," vol. 504, no. February, 2012.