

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DE LA TIERRA CENTRO DE GEOCIENCIAS GEOTERMIA

PROCESOS DE INTERACCIÓN AGUA-ROCA EN EL RESERVORIO GEOTÉRMICO DE ALTA ENTALPÍA LOS HUMEROS, PUEBLA, MÉXICO.

TESIS

QUE PARA OPTAR POR EL GRADO DE MAESTRO EN CIENCIAS DE LA TIERRA

PRESENTA: DAVID YÁÑEZ DÁVILA

Director de tesis: Dr. Eduardo González Partida Centro de Geociencias

Comité Tutorial:

Presidente: Dr. Luca Ferrari (Centro de Geociencias, UNAM) Secretario: Dr. Eduardo González Partida (Centro de Geociencias, UNAM) Vocales: Dr. Edgar Rolando Santoyo Gutiérrez (Instituto de Energías Renovables, UNAM) Dr. Carlos Canet Miquel (Instituto de Geofísica, UNAM) Dr. José Manuel Romo Jones (Geofísica Aplicada, CICESE)

Querétaro, enero 2017.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO Querétaro, México 2016

"Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales"

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

A quien estuvo por las mañanas, tardes y noches, quien compartió aquellos, mis momentos, mis sentires, a ti la mujer de mi vida, de mi amor...Mi Marijo.

> A quien me instruyo en lo más profundo de mi ser, para ser libre y consiente, a ti mi razón de ser y estar...Mi Madre.

> > A quien son mis dos mejores amigos que la vida me dio para ser mi inspiración para seguir creciendo... Mis Hermanos.

A quien son los pilares que me sostiene, y que me hacen mirar, en una sola dirección, hacia arriba...Mi Familia.

> A quienes sin su existencia este mundo sería un lugar monótono y gris, a ustedes...Mis Amigos

A quien está presente aquí, y en todas partes, quien sin él no hubiera logrado nada...Mi Dios

Gracias...

AGRADECIMIENTOS

Primeramente al Dr. Eduardo González Partida por invitarme a participar en su equipo de trabajo en el área de geotermia, por confiar en mi para realizar esta tesis y por compartir su conocimiento.

De igual manera a mi comité tutorial Dr. Luca Ferrari, Dr. Edgar Santoyo, Dr. Carlos Canet y Dr. José Manuel Romo, por aceptar formar parte de mi comité y sus observaciones acertadas para mejorar mi trabajo de tesis.

Al Consejo de Ciencia y Tecnología (CONACYT) por apoyar mis estudios de maestría otorgándome una becas para continuar mi desarrollo profesional.

Agradezco a mis compañeros geólogos que me ayudaron en el arduo trabajo de campo, Erick Gutiérrez, Carmen Romero, Marco Noé Yáñez, Erick Díaz, Luis González, Gonzalo Cid, Oscar Martínez, Vania Ferrer, Daniel Díaz, Juan Romero y Angélica Díaz.

A mis compañeros de generación, en especial a Cynthia, Ángeles, Aurora, Arlette, Erick, Lorena, Félix, Daniela.

Agradezco enormemente la disposición y el apoyo que me brindo el Dr. Juan Pablo Bernal para poder llevar a cabo los análisis y comprensión de FRX-ED, a la M. en C. Ofelia Pérez Arvizu por las asesorías y el apoyo en el laboratorio de estudios isotópicos para la realización de los análisis de ICP-MS, de igual manera agradezco todo el apoyo y ayuda que me brindo Erick Hugo Díaz Carreño para la realización de diversas imágenes y análisis, a Cynthia Córdova Molina por su objetivas observaciones, al laboratorio de Laminación en especial a Juan Tomás Vázquez por elaborar las láminas delgadas, al Dr. Alex Iriondo por acertado razonamiento geológico.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) y la Secretaría de Energía (SENER), que a través del Fondo Sectorial CONACyT-SENER Sustentabilidad Energética, creado el Centro Mexicano de Innovación en Energía Geotérmica (CEMIEGEO) de donde se desprende el proyecto PO-8 bajo la numeración 207032 el cual lleva como título "Desarrollo, implementación y aplicación de metodologías analíticas de procesos de interacción agua-roca en reservorios geotérmicos de baja y alta entalpía: Aplicación en campos Mexicanos", de donde se desprendió apoyo para la elaboración de esta tesis.

INDICE GENERAL

DEDICA	ATORIA	
AGRAD	DECIMIENTOS	
RESUM	1EN	10
ABSTR	ACT	
I G	ENERALIDADES DE LA GEOTERMIA	
1.1	PANORAMA GEOTÉRMICO EN LA ACTUALIDAD	
1.11	Producción Mundial	
II	ESTADO ACTUAL DE LA GEOTERMIA EN MÉXICO	15
11.1	México a Nivel Mundial	15
11.11	Μέχιςο y la Geotermia	
11.111	México, Futuras Expectativas en Geotermia	19
III. JU	USTIFICACIÓN Y OBJETIVOS	22
111.1	JUSTIFICACIÓN	22
.	OBJETIVOS	
. .	.I OBJETIVOS GENERALES	
IV.	GEOLOGÍA LOCAL, REGIONAL Y ELEMENTOS TECTÓNICOS RELACIONADOS AL CAMPO GEOTÉRN 23 Espozo del Cinturón Volcínico Trans Mexicano	AICO LOS HUMEROS
	ESBOZO DEL CINTURON VOLCANICO TRANS-IVIEXICANO	
IV.III	I GEOLOGÍA LOCAL DEL CAMPO GEOTÉRMICO LOS HUMEROS	
V. IN		31
V		22
V II	COMPORTAMIENTO DE LA ALTERACIÓN HIDROTERMAL DOPERINCIAL	
V.III	Petrografía y Mineragrafía	
V.IV	Inclusiones Fluidas	
V.V	Movilidad Elemental mediante la ecuación de Grant (1986)	
VI N	IÉTODOS Y MATERIALES	40
VI.I	Ткавајо де Самро	40
VI.II	TRABAJO DE LABORATORIO	40
VI.III	I Métodos Analíticos	
VI.III	I.I FLUORESCENCIA DE RAYOS X (FRX-WD)	
VI.III VI.III	I.II FLUORESCENCIA DE MASAS CON PLASMA DE ACORLAMIENTO INDUCIDO (ICP-MS)	
VI.III	I IV PETROGRAFÍA Y MINERALOGÍA	
VI.III	I.V ESPECTROSCOPIA DE REFLECTANCIA DE INFRARROJO DE ONDA CORTA (SWIR)	
VI.III	I.VI DIFRACCIÓN DE RAYOS X (DRX)	
VI.III	I.VII INCLUSIONES FLUIDAS	44
VII	RESULTADOS Y DISCUSIÓN	45
VII.I	Inclusiones Fluidas	45
VII.I.	I EVOLUCIÓN TÉRMICA DE LOS FLUIDOS	54
VII.II	I PETROGRAFÍA Y MINERAGRAFÍA	58
VII.II	II CARACTERIZACION DE LA ALTERACION HIDROTERMAL SUPERFICIAL	
VII.II \/II_II	Π.Ι DIFKACLION DE ΚΑΥΟΣ Χ (DXK) ΙΙ ΙΙ ΕΣΦΕCΤΡΟΣΟΩΙΑ DE REELECTANCIA DE ΟΝDΑ ΓΩΡΤΑ (S\M/IP)	62 دم
v II. II	II.II LIFLUTRUJUUFIA DE NEFLEUTANCIA DE UNDA CURTA (JVVIR)	

VII.IV GEOQUÍMICA	
VII.IV.I ELEMENTO MAYORES DE LA ALTERACIÓN HIDROTERMAL SUPERFICIAL	
VII.IV.I.I Índices de Alteración	
VII.IV.I.II DIAGRAMAS DE VARIACIÓN DE ELEMENTOS MAYORES	
VII.IV.II ELEMENTOS TRAZA Y TIERRAS RARAS DE LA ALTERACIÓN HIDROTERMAL SUPERFICIAL	75
VII.IV.II.I CLASIFICACIÓN QUÍMICA DE ROCAS	75
VII.IV.II.II DIAGRAMAS MULTIELEMENTOS	77
VII.IV.II.III DIAGRAMAS NORMALIZADOS DE REE	
VII.V FLUORESCENCIA DE RAYOS X (ED-FRX)	
VII.V.I DETERMINACIÓN DE LA MOVILIDAD ELEMENTAL MEDIANTE LA ECUACIÓN DE GRANT (1986)	
VII.V.II MÉTODO DE CORRELACIÓN GEOQUÍMICA BIVARIABLE	
VII INTERPOLACIÓN DE LOS DATOS MEDIANTE EL MÉTODO DE INTERPOLACIÓN KRIGING ORDINARIO	
VIII CONCLUSIONES	
VIII CONCLUSIONES	
VIII CONCLUSIONES REFERENCIAS	
VIII CONCLUSIONES REFERENCIAS ANEXOS I	107 110 121
VIII CONCLUSIONES REFERENCIAS ANEXOS I ANEXOS II	107 110 121 125
VIII CONCLUSIONES REFERENCIAS ANEXOS I ANEXOS II ANEXOS III	
VIII CONCLUSIONES REFERENCIAS ANEXOS I ANEXOS II ANEXOS III ANEXOS IV	
VIII CONCLUSIONES REFERENCIAS ANEXOS I ANEXOS II ANEXOS IV	
VIII CONCLUSIONES REFERENCIAS ANEXOS I ANEXOS II ANEXOS IV ANEXOS V	
VIII CONCLUSIONES REFERENCIAS ANEXOS I ANEXOS II ANEXOS III ANEXOS IV ANEXOS V	

ÍNDICE DE FIGURAS

Figura 1 Cantidades estimadas de la producción global de electricidad para fines del 2016 (Fuentes diversas)12
Figura 2 Capacidad geotérmica instalada para diciembre del 2015 (13.2 GW) en los principales países del mundo
Figura 3 Capacidad geotérmica instalada en México para diciembre del 201515
Figura 4 Generación de electricidad de las diferentes fuentes para el año 2015 en México, donde el 77.3% siguen siendo fuentes no renovables y solo el 22.7 % son fuentes renovables
Figura 5 Vistas panorámicas de los cuatro principales campos geotérmicos en México: a) Cerro Prieto en Baja California Norte, b) Los Azufres en Michoacán, c) Los Humeros en Puebla y d) Tres Vírgenes en Baja California Sur 18
Figura 6 Publicaciones científicas desde 1982-2012 referente a las energías renovables en México19
Figura 7 Energía geotérmica adicionada en el 2015 en el mundo20
Figura 8 Mapa de manifestaciones geotérmicas del Cinturón Volcánico Trans-Mexicano21
Figura 9 Distribución del vulcanismo de la CVTM y composición de los productos de los cuatro episodios que se ha reconocido en su evolución
Figura 10 Geología regional del campo geotérmico Los Humeros, Puebla
Figura 11 Columna Litoestratigrafía del campo Geotérmico Los Humeros, mostrando la edad de las rocas, la alteración de la roca y los principales minerales de alteración30
Figura 12 Paragénesis de minerales de alteración transparentes y opacos del campo geotérmico Los Humeros35
Figura 13 Temperatura de fusión (-Tm) contra temperatura de homogenización (Th) de las inclusiones fluidas de 11 pozos del campo geotérmico Los Humeros
Figura 14 Plano Geológico Local del Campo Geotérmico Los Humeros41
Figura 15 Microfotografía del pozo H-41, se observan diferentes fases de las IF
Figura 16 Microfotografía del pozo H-42 donde se observan IF en diferentes minerales huésped49
Figura 17 Microfotografía del pozo H-43 a una profundidad de 500 m de la muestra, cuyo mineral huésped es un cuarzo
Figura 18 Diagrama bivariante donde se grafica la temperatura de homogenización contra la salinidad de los pozos H-8, H-15, H-17, H-19, H-29, H-39 y H40 50
Figura 19 Diagrama bivariante donde se grafica la temperatura de homogenización contra la salinidad de los pozos H-41, H-42 y H-43 51
Figura 20 Diagrama bivariante donde se grafica la profundidad estimada vs la profundidad real de los pozos H-4, H-15, H-16, H-17, H-29, H-39, H-40, H-41, H-42 y H-43 53
Figura 21 Isotermas de IF y Temperaturas Estabilizadas de la sección longitudinal A-A' de N-S del CGH55
Figura 22 Isotermas de IF y Temperaturas Estabilizadas de la sección longitudinal B-B' de W-E del CGH57
Figura 23 Microfotografías de la muestra GH-1 (toba cristalina) perteneciente al pozo H-5 a 325 m de profundidad
Figura 24 Microfotografías de la muestra GH-6 (andesita) perteneciente al pozo H-25 a 2300 m de profundidad59

Figura 25 Microfotografías de la muestra GH-13 (andesita) perteneciente al pozo H-39 a 1800 m de profundidad.60
Figura 26 Microfotografías de la muestra GH-4 (andesita) perteneciente al pozo H-23 a 2496 m de profundidad60
Figura 27 Zonamiento mineralógico de minerales de alteración transparentes y opacos del campo geotérmico Los Humeros
Figura 28 Espectros representativos de los principales minerales de alteración obtenidos por difracción de rayos X (DRX) de las 12 muestras especiales de rocas alteradas del CGLH63
Figura 29 Espectros representativos de los principales minerales de alteración obtenidos por espectroscopia de reflectancia (SWIR) de las 12 muestras de rocas alteradas del CGLH
Figura 30 Fotografías de muestras especiales, EG-01, 02, 03, 04, 07, 08, 10, 11 y 1268
Figura 31 Diagramas de variación Harker de elementos mayores vs SiO2, mostrando la relación entre las rocas alteradas e inalteradas
Figura 32 Diagrama de clasificación para rocas alteradas Nb/Y vs Zr/Ti (Winchester y Floyd, 1977)76
Figura 33 Diagrama multielementos normalizados a manto primitivo de las muestras alteradas (líneas de color) con respecto a su roca inalterada (línea negra) del CGLH (Sun y McDonough, 1989)
Figura 34-a Diagrama de REE normalizados a condrita de las muestras alteradas (líneas de color) con respecto a su roca inalterada (línea negra) del CGLH (Sun y McDonough, 1989
Figura 34-b y c Diagrama de REE normalizados a condrita de las muestras alteradas (líneas de color) con respecto a su roca inalterada (línea negra) del CGLH (Sun y McDonough, 1989
Figura 35 Balance de Masas de la unidad litológica basaltos de olivino
Figura 36 Balance de Masas de la unidad litológica andesita – basalto90
Figura 37 Balance de Masas de la unidad litológica depósitos piroclástico91
Figura 38 Coeficientes de correlación bivariable del Si y Al con respectos a los elementos mayores y traza de la unidad litológica basaltos de olivino del CGH94
Figura 39 Coeficientes de correlación bivariable del Si y Al con respectos a los elementos mayores y traza de la unidad litológica andesita - basalto del CGH95
Figura 40 Coeficientes de correlación bivariable del Si y Al con respectos a los elementos mayores y traza de la unidad litológica identificada como depósitos piroclásticos del CGH96
Figura 41 Diagrama de flujo que sintetiza el procedimiento estadístico que se llevó acabo para el análisis espacial de los datos obtenido mediante el balance de masas de las muestras locales del CGH
Figura 42 Parámetros geoquímicos de una distribución normal98
Figura 43-a Anomalías geoquímicas predominantemente positivas del CGH de Torio
Figura 43-b Anomalías geoquímicas predominantemente positivas del CGH de Rubidio100
Figura 43-c Anomalías geoquímicas predominantemente positivas del CGH de Niobio101
Figura 44-a Anomalías geoquímicas predominantemente negativas del CGH de Aluminio103
Figura 44-b Anomalías geoquímicas predominantemente negativas del CGH de Calcio104
Figura 44-c Anomalías geoquímicas predominantemente negativas del CGH de Hierro105

ÍNDICE DE TABLAS

Tabla 1 Principales Instituciones por número de publicaciones desde 1982-201219
Tabla 2 Unidades litológicas del subsuelo propuestas para el campo geotérmico Los Humeros
Tabla 3 Estudios de Inclusiones Fluidas del campo geotérmico Los Humeros desde 1985-201645
Tabla 4 Numero de pozo y profundidad de las muestras analizadas mediante petrografía y mineragrafía58
Tabla 5 Síntesis del análisis petrográfico y mineragráficos de diversas muestras del CGH
Tabla 6 Composición mineralógica obtenida por espectroscopia de reflectancia de onda corta (SWIR) y difracción de rayos X (DRX)
Tabla 7 Ocurrencia de los principales minerales de alteración del CGLH en base a los obtenidos por espectroscopiade reflectancia de onda corta (SWIR) y difracción de rayos X (DRX)65
Tabla 8 Composición de elementos mayores de las 15 muestras de roca alterada de superficie. Las muestras en azul corresponden a rocas inalteradas
Tabla 9 Índice Químico de Alteración (IQA) de las 12 muestras superficiales de alteración
Tabla 10 Índice de Silicificación (IS) de las 15 muestras superficiales de alteración
Tabla 11 Elementos Mayores de las muestras de roca alterada (RA) de superficie y su correspondiente roca inalterada (RI)
Tabla 12 Composición de elementos traza de las 15 muestras de roca de superficie. De EG-01 a EG- 12 corresponden a rocas alteradas, de EG- 13 a EG-15 a rocas inalteradas
Tabla 13 Composición de elementos de tierra raras (REE) de las 12 muestras de roca alterada de superficie80
Tabla 14 Análisis por FRX-ED de las muestras regionales del CGH
Tabla 15 Análisis por FRX-ED de las muestras Locales del CGH
Tabla 16 Resultados del Balance de Masas de las muestras regionales del CGH
Tabla 17 Resultados del Balance de Masas de las muestras locales del CGH 88
Tabla 18 Resultados del Balance de Masas de las principales litologías superficiales de las zonas productoras del CGH

RESUMEN

Un estudio geoquímico de balance de masas, junto a otros de carácter multidisciplinario (inclusiones fluidas, petrográficos, análisis cualitativos de la alteración hidrotermal y correlaciones geoquímicas bivariables) permitieron evaluar los procesos de interacción agua-roca dentro del campo geotérmico de Los Humeros (CGH). Las inclusiones fluidas (IF) medidas en los pozos H-41, H-42 y H-43 permitieron determinar una zona con la mayor salinidad en el CGH (hasta 12.86 % en peso eq. de NaCl), lugar donde se muestra una área con IF en estado crítico a partir de 1,815 m de profundidad (H-43). Mediante el uso de isotermas de las temperaturas de homogenización de las IF y temperaturas estabilizadas se determinó que el CGH muestra un ligero enfriamiento térmico. El zoneamiento mineralógico de la alteración hidrotermal del subsuelo se dividió en cuatro zonas: zona I argílica (<400m), zona II propilítica, zona III con asociaciones paragenéticas de alta acidez y la zona IV con alteración hidrotermal tipo skarn (>1,800m).

La alteración superficial del CGH varía de argílica a argílica avanzada, argílica avanzada acido – sulfato y alteración silícica, donde los elementos mayores como el TiO₂, Al₂O₃, MnO, MgO, Na₂O y K₂O mostraron un enriquecimiento con respecto al SiO₂ y solo el Fe₂O_{3T} exhibió empobrecimiento. Los elementos traza de rocas alteradas presentaron una tendencia a disminuir su concentración con el incremento de la incompatibilidad de elementos de Cs a Lu, mostrando anomalías negativas en Nb y positivas en Th, U, Pb y Zr en los elementos de alto potencial iónico, mientras que en elementos litófilos de radio iónico grande las anomalías positivas fueron de Cs y las anomalías negativas en Sr y Rb. Los elementos de tierras raras mostraron para las muestras con alteración argílica y silícica un patrón mayormente empobrecido, mientras que las rocas que presentaron alteración argílica avanzada solo se muestran empobrecidas a partir el Pr y algunas muestras presentaron enriquecimiento en La, Ce, Nd y Sm.

El balance de masa mostró para las zonas productivas una movilidad elemental significativa en los elementos mayores, menores y traza con enriquecimiento en Mo, As, Nb, Pb, S, Th, Mo, Bi, U, SiO₂, Ti₂O, y Sr, y empobrecimiento en Al₂O₃, Fe₂O₃, MgO, CaO, K₂O, Cr y Zn. La correlación bivariable sugiere que los elementos que presentaron mayor proporción de enriquecimiento con respecto al SiO₂ son el Th, Rb, Bi, y Sr, por lo contrario los elementos mayormente empobrecidos con respecto al Al₂O₃ son el Cr, Cu, Zn, CaO y Fe₂O₃T.

Palabras clave: balance de masas, inclusiones fluidas, temperaturas estabilizadas, asociación paragenéticas, alteración hidrotermal, correlación bivariable.

ABSTRACT

Studies of geochemical mass balance, fluid inclusions, petrographic, hydrothermally altered qualitative analysis and bivariate geochemical analysis were carried out on suite of rocks allowed to evaluate the processes of water-rock interaction within the geothermal field of Los Humeros (GFH). The microthermometry data of fluid inclusions of the wells H-41, H-42 and H-43 allowed to determine an area with the highest salinity in GFH (until 12.86 wt. % eq. NaCl). They presented a peculiar behavior fluid inclusions at critical temperatures from 1815 m of deep (H-43). Using isotherms of the homogenization temperatures of the fluid inclusions and stabilized temperatures it was determined that the GFH showed a slight cooling. The subsurface hydrothermal zones, with mineral alteration, were divided into: zone I argillic (<400), zone II propylitic, zone III with high acidity paragenetic associations and zone IV type skarn alteration hydrothermal (>1800 m).

The surface hydrothermal alteration of the GFH varied from argillic to advanced argillic, acid-sulfate argillic advanced and silicic alteration. The mobility of major elements in rocks with hydrothermal alteration showed enrichment for TiO₂, Al₂O₃, MnO, MgO, Na₂O and K₂O with respect to SiO₂, and depletion for Fe₂O_{3T}. In that same rocks the mobility of trace elements showed a decrease in its concentration in ratio to the increase of the incompatibility of elements from Cs to Lu, showing negative anomalies in Nb and positive in Th, U, Pb and Zr in the high field strength elements; while in large-ion lithophile elements were positive anomalies of Cs and negative anomalies in Sr and Rb. While the rare earth elements showed a depletion pattern while the advanced argillic alteration showed depletion from Pr and in some samples were observed enrichment in La, Ce, Nd and Sm.

About the result of the mass balance is evident an elemental mobility significantly in major, minor and trace elements with enrichment in Mo, As, Nb, Pb, S, Th, Mo, Bi, U, SiO₂, Ti₂O, and Sr; also, a depletion in Al_2O_3 , Fe_2O_{3T} , MgO, CaO, K_2O , Cr and Zn. The bivariate geochemical studies indicated that the elements with the highest proportion of enrichment with respect to SiO₂ are Th, Rb, Bi, and Sr, whereas the elements most impoverished with respect to Al_2O_3 are Cr, Cu, Zn, CaO and Fe₂O_{3T}.

Keywords: mass balance, fluid inclusions, paragenetic associations, hydrothermal alteration, bivariate geochemical studies.

I-. GENERALIDADES DE LA GEOTERMIA

...en poco más de 150 años hemos quemado casi la mitad del petróleo que se ha formado en

millones de años y hemos transferido de la corteza terrestre a la atmósfera enormes

cantidades de carbono que están contribuyendo a modificar el clima."

Luca Ferrari, 2013.

I.I Panorama Geotérmico en la Actualidad

Los sistemas geotérmicos representan en la actualidad un recurso importante para la generación de electricidad a nivel mundial, basta con las 612 plantas geotérmicas operando en el mundo (REN21's, 2016), las cuales suman una capacidad instalada de 12.63 GW y aunque representan menos del 0.4% (Figura 1) de la energía eléctrica total generada en el mundo, la obtención de electricidad por medio de los sistemas geotérmicos ha crecido 16 % desde el 2010, en donde la producción era de 8.9 GW (Bertani, 2015).

Es de mencionar que la energía geotérmica es considerada como una fuente inagotable de recursos energéticos en "términos humanos", siendo solo comparable con la energía del sol, debido a lo anterior se le considera como un recurso renovable. En términos prácticos es definida como la utilización de la energía térmica que al ser trasportada a través de las rocas por medio de fluidos, se desplaza desde el interior de la corteza terrestre hacia niveles superiores de la misma (Armstead, 1983; Armstead, 1989; Dickson & Fanelli, 2005).

Figura 1. Cantidades estimadas de la producción global de electricidad para finales del 2015. Modificado de REN21's Renewables 2016 Global Status Report.

El calor generado continuamente en el interior de la tierra ya sea por el origen estelar de nuestro planeta (evolución de la tierra desde sus orígenes hace 4,470 Ma), cámaras magmáticas superficiales o por el decaimiento natural de isotopos radiactivos (Santoyo, E. & Torres, I., 2010; González-Ruiz *et. al.*, 2015) por ejemplo: en el caso del Th²³² y el U²³⁸, que en conjunto tiene una tasa energética de 860 EJ/año, lo que representa 2 veces la energía primaria consumida en el 2004 (463 EJ/año; MIT, 2006). Normalmente el gradiente geotérmico normal tiene un promedio de 33°C/Km, sin embargo en un sistema geotérmico se puede alcanzar temperaturas de 150°C/Km. Iglesias *et al.*, (2005) clasifico los sistemas geotérmicos de la siguiente manera:

• Sistemas Hidrotermales

• Sistemas de Roca Seca Caliente

• Sistemas Magmáticos

Sistemas Marinos

• Sistemas Geopresurizados

Este estudio se enfocara a los sistemas hidrotermales, debido a que en actualidad estos sistemas son los únicos que se explotan comercialmente para la generación de energía eléctrica los cuales están constituidos principalmente por: una fuente de calor (cámara magmática), agua (líquido y/o vapor) y la roca en donde se almacena el fluido. El agua de los sistemas hidrotermales es principalmente meteórica, la cual se infiltra lentamente al subsuelo, a través de poros y fracturas, penetrando varios kilómetros de profundidad en donde es calentada ya sea por conducción o por convección o por ambos, alcanzando en algunas ocasiones temperaturas de hasta >400°C (Santoyo-Gutiérrez & Torres-Alvarado, 2010). Estos sistemas pueden clasificarse en tres tipos principal-mente en: vapor dominante, líquido dominante de alta entalpía y líquido dominante de baja entalpía.

- (i) Vapor Dominante. Estos sistemas producen vapor seco saturado y ligeramente sobrecalentado a presiones por encima de la atmosférica, el agua y vapor coexisten pero la fase de vapor domina en el sistema. En México el campo geotérmico de Los Humeros presenta características de un sistema de vapor dominante.
- (ii) Líquido dominante (alta entalpía). Son sistemas de salmuera súper caliente, con temperaturas mayores a 180°C y son más abundantes que los anteriores. Ejemplo: Cerro Prieto (México), Wairakei (Nueva Zelanda), Tiwi (Filipinas).

(iii) Líquido Dominante (baja entalpía). Son sistemas con salmueras calientes, con temperaturas menores a 180°C, son más abundantes en comparación a los anteriores en una proporción de 10 a 1. Encontrándose en casi todos los países del mundo.

I.II Producción Mundial

El primer intento de producir electricidad por medio de la energía geotérmica inicio en Italia entre 1904-1905 en la zona de Larderello, pero no fue hasta en 1911 cuando se construye la primer planta de energía eléctrica (250 KW) en el Valle del Diablo, ya en 1950 se alcanzó los 300 KW en Italia hecho que demostró el importante valor industrial de la energía geotérmica y marcó el comienzo de la explotación de este recurso en el mundo y a partir de 1958 países como Nueva Zelandia (yacimiento de Wairakei), México (yacimiento de Pathé) y Estados Unidos (yacimiento de The Geysers) comienzan la producción geotermo-eléctrica (Pérez y Callejas, 2011).

En la actualidad una gran cantidad de países utilizan la geotermia de manera directa para diversas aplicaciones como (calefacción, balneario, agricultura, bombas de calor, etc.); sin embargo la generación de electricidad es la principal utilidad de la geotermia (Figura 2).

Figura 2. Capacidad geotérmica instalada para diciembre del 2015 (12.63 GW) en los principales países del mundo. Modificado de Bertani, 2015.

II-. ESTADO ACTUAL DE LA GEOTERMIA EN MÉXICO

II.I México a Nivel Mundial

Desde hace 58 años México figura como pionero y líder en el continente Americano en la explotación de recursos geotérmicos para la generación de electricidad. De los 78 países que disponen de información acerca del uso de la energía geotérmica (Santoyo, E. y Torres, I., 2010) solo 24 la utilizan para generar electricidad y de esa lista México (1,017 MW) ocupa el cuarto lugar a nivel mundial (Figura 3), estando por delante de él países como Estados Unidos (3,450 MW), Filipinas (1,870 MW) e Indonesia (1,340 MW) (Bertani, 2015).

En México son cinco los principales campos geotérmicos que se encuentran en operación para la producción de electricidad, de los cuales cuatro son de carácter federal: Cerro Prieto, Los Azufres, Los Humeros, Las Tres Vírgenes, y uno de iniciativa privada: Domo de San Pedro.

Figura 3. Capacidad geotérmica instalada y ampliada en México para diciembre del 2015. REN21's Renewables 2016 Global

Una de las nueve iniciativas de la Reforma Energética que fue decretada en diciembre del 2013, fue la nueva ley de energía geotérmica compuesta por 67 artículos y 13 transitorios, la cual pretende derribar las barreras, retos científicos y tecnológicos que enfrenta el país para el aprovechamiento sustentable de la energía, y médiate el Consejo Nacional de Ciencia y Tecnología (CONACyT), la Secretaría de Energía (SENER), y a través del Fondo Sectorial CONACyT-SENER-Sustentabilidad Energética se crea el Centro Mexicano de Innovación en Energía Geotérmica (CeMIEGeo) institución que busca estar a la vanguardia

a nivel mundial, y en conjunto con otras instituciones como CeMIESol, CeMIEBio, CeMIE-Eólico pretenden cumplir el acuerdo de la Ley General para el Cambio Climático, cuyo objetivo fijado es el generar 35 % de las necesidades energéticas del país a partir de las fuentes renovables para el 2024 (Santoyo *et al.*, 2015).

CeMIEGeo inició sus actividades en marzo del 2014, con 30 proyectos con 6 líneas de investigación, del cual se desprende el proyecto # 8, que tiene como misión el desarrollo, implementación y aplicación de metodologías analíticas de procesos de interacción agua-roca en reservorios geotérmicos de baja y alta entalpía para la aplicación en campos Mexicanos, proyecto a cargo del Dr. Eduardo González Partida investigador de la Universidad Nacional Autónoma de México (UNAM), campus Juriquilla. La presente tesis surge del desarrollo del proyecto mencionado anteriormente.

II.II México y la Geotermia

En 1959 se inauguró en México el primer campo geotérmico, el Pathé en el estado de Hidalgo, siendo esta la primer planta de energía geotérmica en el continente Americano la cual inició con una capacidad instalada de 3.5 MW, misma que estuvo funcionando hasta 1973 cuando fue desmantelada debido a que el vapor era insuficiente. En este mismo año Cerro Prieto comenzó la producción geotérmica industrial con la operación de dos primeras unidades con capacidad de 37.5 MW cada una, estas unidades, en conjunto con otras dos con la misma capacidad, se encuentran actualmente fuera de operación, después de haber concluido su periodo de vida útil (CeMIEGeo, 2016).

Los campos geotérmicos en México se han clasificado desde el punto de vista de su contenido energético en tres tipos: 1°- Sistemas de baja entalpía con temperaturas de 50° a 140 °C; 2°- Sistemas de moderada entalpia que tienen temperaturas de 140° a 200 °C; y 3°- Sistemas de alta entalpía 200° a 350 °C (González-Ruiz *et. al.*, 2015). En la actualidad México por medio de CFE ha venido operando los cuatro principales campos geotérmicos de tipo hidrotermal de alta entalpia, con una capacidad instalada de 1,017 MW (Bertani, 2015), lo que satisface a dos millones de hogares en promedio, sin embargo la generación de electricidad por este medio representa a nivel nacional el 3.6 % del total de energía neta generada (Figura 4).

Generación Nacional de Electricidad 2015

Figura 4. Generación de electricidad neta de las diferentes fuentes para el año 2015 en México, donde el 77.3% siguen siendo fuentes no renovables y solo el 22.7% son fuentes renovables. Informe anual de la CFE (2015).

El más grande campo geotérmico del país es Cerro Prieto en Baja California Norte (Figura 5-a), con una generación anual de 4,100 GWh, se localiza a unos 13 msnm en la planicie aluvial del Valle de Mexicali, dentro de una cuenca tectónica transtensional formada entre las fallas laterales Imperial y Cerro Prieto-Cucupah que pertenecen al sistema de San Andrés. Cerro Prieto es un campo instalado en un ambiente sedimentario, con un yacimiento geotérmico hidrotermal de líquido dominante, cuyos fluidos están contenidos en areniscas intercaladas con lutitas del Terciario Medio-Superior, que descansan sobre un basamento predominantemente granítico cretácico (CeMIEGeo, 2016).

El campo de Los Azufres en Michoacán (Figura 5-b) genera anualmente 1,550 GWh, una de las ventajas de este campo es que el sistema central no consume agua de enfriamiento ni emite gases de combustión. Está ubicado en la porción central de México, dentro del Cinturón Volcánico Trans-Mexicano (CVTM), a una altitud media de 2,850 msnm. Los Azufres es un campo volcánico cuyos fluidos están alojados en rocas principalmente andesíticas de edad Mioceno-Plioceno las cuales están cubiertas por riolitas de edad cuaternaria. Este es un yacimiento de líquido dominante, cuya fuente de calor parece ser la cámara magmática que alimenta al del Volcán San Andrés (CeMIEGeo, 2016).

Un tercer campo es Los Humeros en Puebla (Figura 5-c), con una generación anual de 340 GWh siendo el campo geotérmico con la temperatura más alta del país (hasta 400°C), se encuentra también dentro del CVTM en la porción oriental, a una elevación promedio similar a la de Los Azufres. La CFE ha desarrollado

este campo dentro de una caldera volcánica de unos cien mil años de antigüedad, llamada Caldera de Los Potreros, anidada en otra caldera mayor y ligeramente más antigua conocida como Caldera de Los Humeros. Los Humeros es un campo volcánico de vapor dominante cuya fuente de calor es la cámara magmática alimentadora de ambas calderas, cuyos fluidos están contenidos en una secuencia de andesitas y tobas de edad Mio-Pliocénica que descansan sobre un basamento calcáreo con intrusiones, existen zonas metamorfizadas las cuales son cubiertas por ignimbritas (CeMIEGeo, 2016).

El último campo geotérmico el de Las Tres Vírgenes en Baja California Sur (Figura 5-d) genera anualmente 55 GWh, está localizado a la mitad de la península de Baja California, dentro del complejo volcánico cuaternario del mismo nombre, a unos 750 metros de altitud sobre el nivel del mar. El campo contiene un yacimiento hidrotermal de líquido dominante en el que los fluidos están alojados en un basamento granítico cretácico, que forman parte del Batolito de California, cuya fuente de calor parece ser la cámara magmática que alimenta al volcán más reciente y más meridional de la línea de tres volcanes que le dan nombre al complejo (CeMIEGeo, 2016).

La CFE tiene en operación continua en esos campos más de 250 pozos geotérmicos con profundidades promedio de 2 mil 500 metros, estimándose un ahorro para México de más de 10 millones de barriles de petróleo al año (González-González, 2009).

Figura 5. Vistas panorámicas de los cuatro principales campos geotérmicos en México: a) Cerro Prieto en Baja California Norte, b) Los Azufres en Michoacán, c) Los Humeros en Puebla y d) Tres Vírgenes en Baja California Sur.

II.III México, Futuras Expectativas en Geotermia.

Desde 1982 la contribución científica para el desarrollo de las energías renovables en México se debe principalmente a instituciones privadas, públicas y gubernamentales teniendo un principal interés en el desarrollo de la biomasa seguido por la solar y solo un 4.5 % de las publicaciones científicas (revistas indexadas, revistas institucionales, simposios, etc.) son enfocadas a la geotermia (Figura 6). De este 4.5% el Instituto de Investigaciones Eléctricas cuenta con un 40.1 % de la publicaciones científicas, la Universidad Nacional de México cuenta con el 12.38 % e Instituciones gubernamentales como la CFE cuentan con el 7.43 % (Tabla 1) el resto pertenece a diversas universidades de carácter público (Alemán Nava *et al.*, 2014).

Figura 6. Publicaciones científicas desde 1982-2012 referente a energías renovables en México. Modificada de Alemán Nava et al., 2014

Institución	Geotermia (%)	Тіро
Instituto de Investigaciones Electricas	40.1	Privado
Universidad Nacional Autónoma de México	12.38	Publico
Comisión Federal de Electricidad	7.43	Publico
Universidad Autónoma de Baja California	1.98	Publico
Centro Nacional de Investigación y Desarrollo Tecnológico	1.98	
Instituto Nacional de Investigaciones Nucleares	1.98	Publico
Universidad Autónoma Metropolitana – Iztapalapa	1.98	Publico
Universidad Michoacana de San Nicolás de Hidalgo	1.98	Publico
Universidad Autónoma del Estado de Morelos	1.49	
Gerencia de Proyectos Geotermoelectricos	1.49	Gobierno

Tabla 1. Principales Instituciones por número de publicaciones desde 1982-2012. Tomado de Alemán Nava et al., 2014

Podemos destacar que México, aunque ocupa el 4to lugar mundial en producción de energía eléctrica por medio de la geotermia, es el 9no lugar en la contribución en estudios o publicaciones científicas con tan solo el 3 %, estando en primer lugar países como USA con 26.7 %, Alemania con 7.2 % y China con el 7.1 % (Alemán Nava *et al.*, 2014).

Pese a las estadísticas anteriores, existe un alto potencial en México, lo cual se demuestra en los siguientes puntos descritos a continuación:

1°- La continua ampliación de la capacidad instalada en los campos geotérmicos de México (Figura 7), como es el caso de Los azufres con una ampliación de 53.4 MW, siendo en 2015 uno de los 6 únicos países que ampliaron su producción (REN21's, 2016).

2°- El catálogo de anomalías térmicas que se creó en forma de censo (González-Ruiz *et al.*, 2015), con la finalidad de dar a conocer el potencial geotérmico del Cinturón Volcánico Trans-Mexicano (Figura 8), donde el 77 % de las manifestaciones termales de baja entalpía. El 18 % son de entalpías medias. El 5 % de las manifestaciones restantes presentan características de sistemas de alta o muy alta entalpía.

3°- El último punto pero no menos importantes son las estimaciones del potencial geotérmico echas a lo largo del desarrollo científico en México. Para yacimientos geotérmicos individuales de alta entalpia se estima que podrían alcanzar en conjunto los 1,000 MW (Gutiérrez-Negrín, 2007). En el caso de los recursos de media y baja temperatura (< 180°C) disponibles a lo largo del país, evaluaciones preliminares realizadas en sólo 276 manifestaciones hidrotermales en donde las temperaturas promedio de estos sitios es de 111 °C, se ha estimado que las cantidades de energía recuperables estén entre 21.4-23.9 x 10⁹ MW (Iglesias y Torres, 2009). La última estimación a nivel nacional concluyó que el potencial geotermoeléctrico es de 9686 MW (Ordaz-Méndez et al., 2011), sin embargo solo existen en la actualidad 20 zonas con el potencial económico que en conjunto estimado suma 762 MW (Hiriart *et al* 2011).

Mapa Geológico del Cinturon Volcánico Trans-Mexicano

LAVAS MÁFICAS CONOS MONOGENÉTICOS Y FLUJOS DE LAVAS ASOCIADOS Plioceno Tardio-Cuaternar CONGLOMERADOS Y SANDSTONE Plioceno-Cuaternario CONOS DE LAVAS Y ESCUDOS BASÁLTICOS Y ANDESÍTICOS Mioceno Tardío-Plioceno DOMOS SILÍCICOS, FLUJOS E IGNIMBRITAS

IGNIMBRITAS SILÍCICAS Plioceno Tardio-Pleistoceno Temprano

ROCAS GABROICAS A GRANODIORÍTICAS FLUJOS DE LAVAS BASÁLTICAS Y VOLCÁNES ESCUDOS

FLUJOS DE LAVA BASÁLTICA Y CONOS CIDERÍTICOS

LAHARES, DEPÓSITOS DE FLUJOS DE ESCOMBROS Y TOBAS

Mioceno Tardío

ioceno Medi

LAVAS BASÁLTICAS A DACÍTICAS

ROCAS INTRUSIVAS GRANÍTICAS A DIORÍTICAS ROCAS VOLCANOSEDIMENTARIAS Y VOLCANICAS MARINAS SUCESIONES METASEDIENTARIAS O VOLCANOSEDIMENTARIAS

Jurásico-Cretácico Temprano

ROCA PALEOZÓICO

ÁREA URBANA

Figura 8. Mapa de Anomalías Geotérmicas del Cinturón Volcánico Trans-Mexicano. Modificado de Ferrari *et αl.*, 2012 y <mark>Gómez-Tunea *et al*., 2007a y 2007b</mark>

III. JUSTIFICACIÓN Y OBJETIVOS

III.I Justificación

La mayoría de los estudios relacionados a la interacción agua-roca en el campo geotérmico Los Humeros (CGH) se han enfocado principalmente al subsuelo, originado por la existencia de pozos de exploración explotación, debido a lo anterior el presente trabajo se enfoca en los procesos superficiales de interacción agua-roca de este campo geotérmico. El análisis de la concentración de elementos mayores, menores y traza de las principales unidades litológicas superficiales que han sido afectadas por hidrotermalismo serán usados para determinar la movilidad elemental mediante diagramas bivariables y un balance de masas permitiendo conocer si las rocas sufrieron enriquecimiento o empobrecimiento elemental originado principalmente por la circulación de los fluidos hidrotermales. Complementando del análisis mencionado anteriormente se anexan nuevos estudios petrográficos y mineragráficos de diversos pozos de exploración, los cuales darán información más detallada de la mineralogía de alteración. Así mismo el estudio de inclusiones fluidas de diversos pozos nos dará información sobre la evolución de las temperaturas de los fluidos en el subsuelo en campo geotérmico Los Humeros.

Con base en esta justificación, este estudio contribuirá a ampliar el conocimiento sobre los procesos de interacción agua-roca del campo geotérmico de Los Humeros.

III.II Objetivos

III.II.I Objetivos Generales

Determinar la movilidad elemental que producen los procesos de interacción agua-roca en las rocas superficiales del reservorio geotérmico, con la finalidad de obtener información sobre el tipo de alteración, paragénesis mineral de alteración, los elementos enriquecidos o empobrecidos en las rocas superficiales alteradas y finalmente la evolución de las temperaturas de los fluidos del subsuelo.

III.II.II Objetivos Específicos

- Determinar la concentración de elementos mayores, menores y traza de las unidades litológicas que afloran en superficie del CGH, con la finalidad de conocer la movilidad elemental que han sufrido las rocas en debido a la interacción agua-roca
- 2) Obtener nuevos datos petrográficos y mineragráficos de diversos pozos de exploración- explotación, que complementen la información existente sobre la composición mineralógica de alteración y el zoneamiento mineralógico del CGH.

3) Obtener datos microtermométricos de las inclusiones fluidas de los pozos de exploración-explotación 41, 42 y 43, que en conjunto con los datos pre-existentes del CGH permitan realizar un análisis comparativo con las temperaturas estabilizadas medidas en los pozos a fin de establecer el comportamiento térmico evolutivo de fluidos.

IV. GEOLOGÍA LOCAL, REGIONAL Y ELEMENTOS TECTÓNICOS RELACIONADOS AL CAMPO GEOTÉRMICO LOS HUMEROS

IV.I Esbozo del Cinturón Volcánico Trans-Mexicano

El campo geotérmico de Los Humeros está localizado en el arco volcánico construido sobre la margen meridional de la placa norteamericana (Ferrari, 2000), denominada Cinturón Volcánico Trans-Mexicano (CVTM) la cual atraviesa al país de oeste a este, lugar donde se alojan el 79 % de las anomalías termales conocidas en México (González-Ruiz et al., 2015), y es probable que sea la región de México en la que se han concentrado la mayoría de las investigación geológicas, geofísicas y geoquímicas. Debido a estas investigaciones y a la abundancia de fechamientos isotópicos parecer ser clara la individualización del CVTM como una entidad geológica que ocurrió a finales del Mioceno temprano, como resultado de una rotación antihoraria del arco que formo la Sierra Madre Occidental (Ferrari et al., 1999). El CVTM está constituido por más de 8000 estructuras volcánicas y algunos cuerpos intrusivos que se extiende desde las costas del Pacifico en San Blás hasta Veracruz (Demant, 1978), tiene 1000 km de longitud y un ancho variable de 80-230 km aproximadamente y posee una distribución preferencial E-W en la parte central y oriental, mientras que en la parte occidental tiene una orientación W-NW. El arco volcánico presenta varias peculiaridades: 1) su parte central y oriental no son paralelas a la trinchera Mesoamericana por lo que se encuentra formando un ángulo de 16° con respecto a la trinchera, 2) sus principales estratovolcanes como los volcanes Cántaro – Nevado de Colima – Iztaccíhuatl – Popocatépetl o Pico de Orizaba-Cofre de Perote, están alineados transversalmente N-S con respecto al arco, 3) presenta una gran variabilidad geoquímica por tener productos de un ambiente de subducción e intraplaca, 4) las placas de subducción son relativamente jóvenes, 10 Ma para la placa Rivera y entre 11 y 23 Ma para la placa de Cocos, 5) ausencia de sismicidad por debajo de la zona volcánica (Ferrari et al., 2012). El CVTM empieza su actividad a finales del Mioceno temprano (~19 Ma) llegando a la época actual y contiene la mayor parte del volcanismo histórico y actual de México; vulcanismo que consiste en estratovolcanes andesíticos, campos de conos de ceniza, las apariciones aisladas de vulcanismo riolítico. La composición del CVTM es principalmente subalcalino con una cantidad menor de productos alcalinos y si se toma en cuenta la distribución espacial del vulcanismo y su composición, la historia geológica del CVTM se puede

dividir en cuatro episodios (Gómez-Tuena *et al.*, 2007b): 1) la instauración de un arco de composición intermedia en el Mioceno temprano a tardío (~19-8 Ma), 2) un episodio máfico del Mioceno tardío que va migrando de W-E y se ubica al norte del arco anterior (~11-3 Ma), 3) un episodio silícico a finales del

Figura. 9. Distribución del vulcanismo de la CVTM y composición de los productos de los cuatro episodios que se ha reconocido en su evolución A y E) instauración de un arco de composición intermedia en el Mioceno temprano a tardío, B y F) episodio máfico del Mioceno tardío que va migrando de W-E, C y G) episodio silícico a finales del Mioceno que llega a ser bimodal en el Plioceno temprano, D y H) reinstauración de un arco con gran variabilidad composicional a partir del Plioceno tardío. Tomado de Ferrari *et al.*, 2012

Mioceno que llega a ser bimodal en el Plioceno temprano y marca el regreso del vulcanismo hacia el sur (~7.5 - 3), 4) la re-instauración de un arco con gran variabilidad composicional a partir del Plioceno tardío (figura 9).

Para fines de este estudio hablaremos más del cuarto episodio donde se dio lugar la re-instauración de un arco con gran variedad composicional a partir del Plioceno tardío (Plt), llamado también como el CVTM moderno, (si se quiere indagar en los anteriores episodios volcánicos se tendrá que leer Gómez-Tuena *et al.*, (2007b) y Ferrari *et al.*, (2012)). A partir de esta época (Plt) el vulcanismo silícico y bimodal se ve reemplazado por productos volcánicos que cubren todo el rango composicional basáltica a riolítica (Figura 9, D y H). En el segmento occidental de este arco volcánico se emplazan lavas con características de intraplaca, mientras que la parte trasera del arco se construyen estratovolcanes como Tequila, Ceboruco, Las Navajas, etc., ~100 km detrás del frente volcánico, donde el complejo volcánico de Colima representa el mayor volumen de material volcánico emplazado en el CVTM, esto es debido a que se ubica por encima de la zona de desgarre entre la placa Rivera y la placa de Cocos. Hacia la porción central del CTVM se formó el campo volcánico Michoacán – Guanajuato con más de 1000 cono monogenéticos y 400 centros poligenéticos formados a partir de ~2.8 Ma, el cual continua activo hasta la actualidad como lo demuestran las erupciones del Jorullo y Parícutin (Hasenaka y Carmichael, 1985), más hacia el este se encuentran las calderas de Los Azufres, Zitácuaro y domos dacíticos emplazados a los alrededores de estas caldera. Ya en la fracción oriental del CVTM, composiciones máficas se concentran en los campo volcánicos de Sierra Chichinautzin, Apan – Tezontepec (Gómez-Tuena et al., 2007b). Los productos más evolucionados en el tiempo se encuentran en la caldera de Tulancingo – Acoculco (Verma, 2001), Los Humeros (Ferriz y Mahood, 1984) zona de estudio del presente trabajo y los domos de la región Libres — Oriental, Puebla. Al oriente del Valle de México se desarrolla la cadena volcánica con orientación N-S constituida por el Cerro de Tláloc, el complejo Iztaccíhuatl y el volcán Popocatépetl, con edades que se vuelven progresivamente más jóvenes hacia el sur. Un poco más hacia el oriente se encuentra el volcán de La Malinche y el alineamiento N-S del Pico de Orizaba – Cobre de Perote, todos con edades menores de 1 Ma (Ferrari *et al.*, 2012).

IV.II Geología Regional y elementos tectónicos de la Caldera de Los Humeros.

El marco geológico regional del CGH (Figura 10) ha sido descrito principalmente por Viniegra (1965), Yañez y García (1982), Negendank *et al.* (1985) y Campos y Garduño (1987), donde las rocas más antiguas que han sido reportadas corresponden a granitos y esquistos de edad Paleozoica los cuales forman el Macizo Teziutlán (De la Cruz, 1983) posteriormente a partir del Jurásico Medio inicia el depósito de lutitas negras carbonosas con intercalaciones de caliza arcillosa perteneciente a la Fm. Santiago descrita por Reyes (1964), la cual se depositó en un ambiente somero en condiciones euxínicas sobreyaciendo concordantemente a la unidad anterior se encuentra la Fm Tamán descrita por Heim (1926), compuesta por caliza negra de grano fino y caliza microcristalina que alterna con lutita negra, cuyo ambiente de formación está relacionado con cuencas intraplaca de tipo euxínicas, cuyo carácter es meramente transgresivo y representa el avance de la línea de costa sobre los altos estructurales. La serie Jurásica descrita anteriormente aflora principalmente en el norte del área.

Ya en el Cretácico, como consecuencia de la transgresión marina, se vio favorecido el depósito de sedimentos calcáreos que es la unidad más antigua que aflora en el área es la Fm Tamaulipas Inferior

descrita por Stepheson (1922), representada por bancos potentes de calizas cristalinas con lentes de pedernal negro, cuyo ambiente de formación para la parte inferior corresponde a marino somero de alta energía debido a los remanente topográficos del Jurásico. En el Cretácico Medio y Superior se depositaron calizas arcillosas de estratificación delgada y media con bandas de pedernal negro pertenecientes a la Fm. Tamaulipas Superior (Stepheson, 1922) le sobreyacen acumulaciones de calizas arcillosas en capas delgadas con alguna intercalación de lutitas pertenecientes a la Fm. Agua Nueva (Stepheson, 1922), cuyo ambiente de formación fluctuaba entre plataforma externa y cuenca intraplaca, a esta unidad le sobreyace transicional y concordante-mente la Fm. San Felipe descrita por Jeffreys (1910), compuesta por calizas arcillosas con intercalaciones de bentonita, indicando un ambiente de formación de plataforma externa y cuenca intraplaca, la presencia de bentonita indica vulcanismo del arco magmático del occidente contemporáneo al depósito. La secuencia sedimentaria Cretácica descrita, aflora en todas direcciones alrededor de la caldera de Los Humeros, al SW esta secuencia cretácica forma prominencias topográficas como la Sierra de Tepeyahualco; cabe mencionar que algunos de los pozos perforados atraviesan las unidades Cretácicas (González-Partida, 2001).

A finales del Cretácico y durante el Paleógeno tuvo lugar la orogenia Laramide, consecuencia de esfuerzos compresivos en dirección NE-SW, afectando la secuencia sedimentaria Jurásica – Cretácica generando pliegues principalmente al norte de la cuenca y cabalgaduras sobre calizas hacia el sur, los esfuerzos orogénicos produjeron bajo metamorfismo regional en el medio sedimentario. Al término del proceso orogénico comenzó una fase de distensión representado por el Graben de Libres – Oriental del Oligoceno y de tendencia NW-SW, caracterizado por fallas normales y fracturas (Garduño *et al.*, 1985). Intrusiones Oligocénicas – Miocenica de composición granodiorítica y sienítica afectaron localmente la secuencia sedimentaria para estas rocas dataron edades de 31 hasta 14.5 Ma (Yañez y García, 1982). Después de una etapa de quietud donde predomino la erosión, un sistema más reciente tuvo lugar durante Mio-Plioceno con dirección predominante N-S, siendo su principal elemento el lineamiento Tehuacán – Pico de Orizaba – Cofre de Perote.

El último proceso de deformación ocurrido en la caldera de Los Humeros está relacionado con el magmatismo que genero la actividad volcánica de esta zona. Las estructuras más importantes son fallas anulares (caldera Los Humeros y caldera Los Potreros), cuya formación fue debida a la extravasación de importante volumen de magma, produciendo un vacío parcial en la cámara magmática, causando el colapso de su techo formando estas fallas anulares las cuales posteriormente se rellenaron por magma líquido que posteriormente solidifico formando diques anulares.

Figura 10. Geología regional del campo geotérmico Los Humeros, Puebla.

IV.III Evolución de la Caldera de Los Humeros

La última actividad volcánica pre-caldera registrada que constituye la base de los productos volcánicos de la caldera de Los Humeros, se caracteriza por una andesita afanítica de color gris claro y lavas ferrobasálticas nombrada andesita Teziutlán, con edades de 5, 3.5 y 1.5 Ma por lo que se sitúa principalmente en el Plioceno - Pleistoceno (Yáñez y García, 1982; Ferriz y Mahood, 1984).

La evolución de la actividad volcánica de la caldera de Los Humeros ha sido dividida en tres estadios (Harris-Dávila, 2014), el primero de ellos y más importante marca la actividad silícea con la extrusión de lavas riolíticas y domos, seguida de una erupción explosiva de gran magnitud que origino las ignimbritas Xáltipan, esta erupción ocasiono la formación de la caldera de Los Humeros hace ~460 ka (miles de años). El segundo estadio (~360 ka) está marcado por tobas de caída aérea de composición riolita donde principalmente existen grandes acumulaciones de pumicita de caída la cual fue definida como toba Faby por Ferriz y Mahood (1984), este evento también fue acompañado por el emplazamiento de domos sobre la zona de fractura anular. Las extrusiones magmáticas continuaron con derrames de andesitas, andesitas basálticas y basaltos localizados en la parte central de la caldera, al sur tuvo lugar el tercer estadio (60 – 140 ka) representado por la Ignimbrita Zaragoza, que posteriormente provoco la formación de la caldera Los Potreros ubicada en el sector central de la caldera de Los Humeros. Después de esta extrusión mayor, se produjo la erupción postzaragoza la cual está distribuida hacia el este y sureste enmascarando los rasgos más antiguos de la zona, los productos volcánicos originados ppor esta erupción fueron principalmente de pómez de composición riodacítica y escoria de caída, que incluye el miembro Xoxoctic de pumicita de caída, el miembro Tilca rico en líticos, y finalmente el miembro Cuicuiltic el cual consta de intercalaciones de traquidacitas con basaltos-andesitas, pumicita y escoria. Finalmente el ultimo evento considerado post-calderico sucedió en la porción sur de la fractura anular de la caldera de Los Humeros, formando un arco de conos de escoria y derrames de lava de basalto de olivino, andesitas – basálticas, cuya extensión es de 15 km hacia el sur con edades menores a los 20 ka (Ferriz y Mahood, 1984, González-Partida, 2001).

Las unidades litológicas descritas anteriormente han sido cortadas por diversos pozos de exploraciónexplotación, descritas y clasificadas de acuerdo a diversos autores (Tabla 2) inicialmente se propuso dividirla en cuatro grandes grupos litoestratigráficos (Gutiérrez-Negrín, 1982; Viggiano y Robles, 1988a, b), posteriormente Cedillo *et al.* (1994) subdividió estos cuatro grandes grupos en nueve unidades litoestratigráficos y finalmente la última clasificación propuesta (Carrasco-Nuñez *et al.*, 2008; Pilar-Martínez, 2015) fue agruparlas en cuatro unidades que va desde la parte superior a la parte inferior: unidad 1. Post-calderico (<100 ka), unidad 2. Volcanismo calderico (510 — 100 ka), unidad 3. Vulcanismo pre-caldera (10 — 1.9 Ma), unidad 4. Basamento (140-31 Ma).

Tabla 2. Unidades litológicas del subsuelo propuestas para el campo geotérmico Los Humeros. Tomado de Pilar-Martínez, 2015.

Viggiano y Robles (1988)	Litología	Cedillo <i>et aL</i> (1994)	Litología	Carrasco- Núñez <i>et al.</i> (2008)		Litología		ilar- rtínez 2015)	Litología				
I	Andesitas de augita y basaltos	1	Pómez, basaltos y andesitas	Grupo Post- caldérico		Grupo Post- caldérico		Grupo Post- caldérico		Lavas-escorias basálticas, andesítico- basálticas y pómez		Grupo Post- caldérico	Lavas-escorias basálticas, andesítico- basálticas y pómez
п	Ignimbritas vítreas y líticas	2	Tobas líticas	dérico	Superior	Tobas riolíticas líticas- vítreas, andesitas y dacitas	dérico	I. Zaragoza	Tobas líticas dacíticas- riodacíticas, andesitas				
		3	Ignimbritas líticas y vítreas	C Principal Tobas riolíticas C Principal Vítreas- Ifticas	Tobas riolíticas vítreas- líticas	Grupo Cal	T. Faby	Tobas cristalinas-líticas dacíticas-andesíticas					
		4	Intercalaciones de andesitas e ignimbritas		Basal	Andesitas y tobas riolíticas		I. Xáltipan	Andesitas, a-basálticas, tobas riolíticas cristalinas-líticas				
	Andesitas de angita en la parte superior; andesitas de homblenda en la parte inferior. Localmente tobas y basaltos	5	Andesitas de augita	érico	Superior	Andesitas, dacitas y riodacitas	érico	Superior	Andesitas y dacitas porfidicas- microporfidicas				
ш		6	Toba vítrea Humeros	o Pre-cald		Tobas alteradas	so Pre-cald	Toba vitrea andesitica					
		7	Andesitas de homblenda	Grup	Inter- medio	Andesitas de piroxeno y basaltos	Grup	Inferior	Basaltos, andesitas y dacitas porfídicas-				
		8	Basaltos		Basal	Andesitas de homblenda y basaltos			microporfidicas				
IV	Hornfels de calcita, diópsida, wollastonita y granate; localmente calizas y granodioritas	9	Calizas, calizas metamorfizadas e intrusivos	Basamento pre-volcánico		Calizas metamorfizadas, hornfels y skams, rocas intrusivas (diabasas,	E v	asamento pre- olcánico	Calizas metamorfizadas, hornfels y skarns, rocas intrusivas (diabasas, granodioritas)				

Una división de unidades litológicas realizada en los pozos H-15, H-16, H-17, H-19 y H-12 (Martínez-Serrano y Alibert-Chantal, 1994) es la que enfatiza los minerales de alteración de cada unidad (Figura 11), determinando que las unidades litológicas de la zona de Colapso Central y Xalapazco son las misma y que solo existen diferencias en el espesor, logrando agruparlas en 7 unidades litológicas con las siguientes características principales: (1ª) Calizas con diversas texturas y fauna de edad Cretácico Superior descrita por Viniegra, (1965) esta es la unidad litológica más profundad y está siendo afectada por metamorfismo de contactos e hidrotermalismo de alta temperatura, debido a que se encuentra trasformada parcialmente a skarn de wollastonita, granate, clinopiroxeno y calcita recristalizada. (2ª) Andesitas y dacitas microlíticas, traquíticas y porfiríticas éstas cubren discordantemente a la unidad anterior, tiene espesores que van de 100 a 500 m, este conjunto de rocas se puede asociarse con la Formación Tezuitlan descrita por Yañez, (1980), los minerales de alteración observados en esta litología son epidota, anfíbol, cuarzo, piroxeno, clorita y biotita. (3ª) Riolitas y tobas riolíticas sobreyacen la unidad anterior, estas rocas presentan diferentes texturas y grados de consolidación y tiene un espesor de 50 a 100 m, en un grado menor existen tobas vitrosas, tobas líticas, los minerales de alteración son cuarzo, clorita y a veces epidota, cabe mencionar que la alteración es muy incipiente. (4ª) Andesitas, dacitas, tobas andesíticos y ciertos niveles de tobas riolíticas, las cuales alcanzan espesores promedio de 800 m, con texturas porfirítica y microlítica o traquítica, estas rocas presentan un mayor grado de alteración hidrotermal con hasta un 60% de minerales secundarios del total de la roca original, donde se observa epidota, clorita, feldespato K, cuarzo, anfíbol, un poco de granate y clinopiroxeno. (5ª) sobreyaciendo la unidad anterior se encuentran rocas de composición acida compuestas de dos subunidades, la unidad más profunda está constituida por tobas riolíticas, riolitas esferulíticas e ignimbritas con espesores que varían de 200 a 500 m, la unidad superior está formada por tobas líticas acidas, con espesores que varían de 100 a 300 m. (6ª) Andesitas – Basálticas de textura afanítica y microlítica, es la última unidad importante, los minerales de alteración observados son: calcedonia, calcita, minerales arcillosos, cloritas y algunas zeolitas, el espesor de esta unidad varia de 150 m en el Colapso Central a 400 m cerca de Xalapazco, lo cual indica que el conducto de la erupción se encuentra en las proximidades de Xalapazco. (7ª) Esta unidad solo está presente en algunas partes del campo geotérmico y consiste en una capa muy delgada de tobas acidas

<u> </u>	LITOLOGÍA	EDAD (ka)	TIPO DE ALTERACIÓN	MINERALES DE ALTERACIÓN
<u> </u>	Basalto soportado por olivino	<20	ARGILICA	Caolinita
00000000000000000000000000000000000000	Andesita Xalapazco Formación de estructura Xalapazco		AVANZADA	Montmorillonita Mica
	Riodacita y tobas andesíticas			Pirita
2070-92070-92070-92070-92070 1977-92070-92070-92070-92070 1977-92070-92070-92070-92070-92070-92070-92070-92070-92070-92070-92070-92070-92070	Tobas y lavas andesíticas			Hematita, Magnetita
and a set a set a set a	Andesitas - basalticas Xoxoctic y El Limón	40		Zoolita
	Andesita Formación de la Caldera de los Potreros	<60	PROPILITICA	Clorita
10 00 A 0 00 A	Toba lítica Zaragoza	60 - 140		Wairakita
	Domos riolíticos y tobas Faby	360 a 220		
	— Formación de la Caldera de los Humeros Ignimbrita Xáltipan	3		Pirita Pirrotita
	Riolitas			
	Andesitas Teziutlán	~ 460	PROPILITICA	Illita Clorita Anfibolita
	Calizas	3.5 a 1.55 Ma	Anno Mica Pirofi	Mica Pirofilita
	—Rocas ácidas intrusivas	Paleógeno		
	Secuencia de rocas clástica	Triásico - Jurásico Medio	SKARN	Granate Wollastonita Diónsido
	Complejo Metamórfico Teziutlán y rocas intrusivas	Paleozoico		Elopoido

Figura 11. Columna Litoestratigrafía del campo Geotérmico Los Humeros, mostrando la edad de las rocas, la alteración de la roca y los principales minerales de alteración. Reconstruida a partir de la información de Yáñez G. (1980); Ferriz y Mahood (1984);Prol-Ledesma y Browne (1989); Martínez-Serrano y Alibert (1994) y Prol-Ledesma (1998).

sin consolidar, mezcladas con material aluvial y suelos actuales, los cuales presentan sílice amorfa, calcedonia, sulfatos, minerales arcillosos y azufre nativo.

Como se describió anteriormente la actividad calderica presenta como primeros productos rocas riolitas de alto sílice a riodacitas emplazadas entre ~0.46 Ma y ~0.22 Ma, seguidos por el emplazamiento de rocas andesíticas a riodacíticas entre 0.24 y 0.02 Ma, y finalmente basaltos de olivino emplazados a <0.02 Ma, lo que sugiere una evolución magmática en el tiempo a composiciones más máficas. En esta secuencia, los magmas riolíticos de alto sílice dominan volumétricamente sobre los otros tipos de magma, donde las rocas más diferenciadas pertenecen a la serie calco-alcalina con alto contenido en potasio y son de carácter metaluminosas (Ferriz y Mahood, 1984; Ferriz, 1985; Gómez-Tuena *et al.*, 2007).

El sistema geotérmico se encuentra dentro de la caldera de Los Humeros, cuyo diámetro varía entre 14 y 21 km según diversos autores (Verma y López, 1982; González-Partida, 2001; Campos- Enríquez *et al.*, 2005) dicha caldera alberga dos colapsos Los Potreros, Colapso Central y una estructura volcánica Xalapazco (Campos- Enríquez *et al.*, 2005). Como todo sistema geotérmico convencional la fuente de calor es una cámara de magma parcialmente solidificada se estima está a una profundidad de 5-7 km (Castillo-Román *et al.*, 1991), donde una serie de ignimbritas cuaternarias de baja permeabilidad actúan como una capa sello para el yacimiento geotérmico (Hiriart, G., y Gutiérrez-Negrín, 2003).

V. INTERACCIÓN AGUA-ROCA

Las unidades litológicas descritas en el capítulo anterior, son cortadas por diversas fracturas y fallas formando cuencas (grabens) y pilares (horts) con un aspecto de un conjunto de bloques, mismos que son asociados con el proceso de formación del colapso calderico (Campos y Arredondo, 1992). Las fallas actúan como limites laterales de los fluidos geotérmicos siendo éste lugar por donde circulan la mayor cantidad de fluidos ya sean geotérmicos o superficiales.

La interacción fluido-roca provoca que algunos minerales modifiquen su equilibrio químico original (Arnorsson *et al.*, 1982; Fournier, 1977) provocando que los constituyentes primarios de la roca sean disueltos esencialmente por el metasomatismo del ion hidrogeno de donadores como el CO_2 disuelto (HCO_3), la sílice acuosa (H_4SiO_4) y el H_2S , generando así un fluido sobresaturado con algún mineral en particular que posteriormente por procesos dilución con fluidos más fríos, por enfriamiento, desgasificación, ebullición, etc., originen la depositación de minerales secundarios, produciendo que los constituyentes en el fluido tiendan a equilibrarse con los minerales de alteración que se encuentras precipitados, , los cuales representarían fases estables o metaestables a las nuevas condiciones físico -

químicas del sistema, mientras que los minerales de la roca primaria estarían bajo condiciones inestables.

Una de las principales características que presenta el campo geotérmico Los Humeros, es la elevada fracción de vapor de agua con salmuera moderadamente ácida con un pH de 3 a 5 en los fluidos de los pozos (Bernard, et. al., 2011) cuya presencia de fluido ácido es asociado a diversas causas como la actividad magmática del subsuelo, cambios naturales de temperatura, presión, la reactivación de fracturas, factores físico-químicos como la ebullición, la fugacidad de oxígeno, a la explotación e inyección de fluidos al reservorio y a la misma naturaleza del fluido ha provocado que la interacción que existe entre los fluidos geotérmicos con la secuencia estratigráfica del sistema de la caldera de Los Humeros genere que la concentración de HCl y HF aumentara (Prol-Ledesma, 1998), produciendo una variación significativa en la concentración de muchos iones, por ejemplo el cloruro ha variado de 1.4 a 982 ppm, mientras que el boro de 67 a 3169 mg/l esto ocasiona que las descargas de los pozos más profundos se mezclen aguas cloruradas con aguas bicarbonatadas producto de la interacción de aguas termales con a aquas superficiales, lo que ha llevado a modificar la condiciones del acuífero superficial (Tello-Hinojosa, 1992) manifestándose con la aparición y distribución de nuevos minerales (Martínez-Serrano y Dubois, 1998), donde el fluido acido es en parte neutralizado por la rocas circundantes manifestándose en las zonas con alteración hidrotermal, el resto del fluido no neutralizado es descargado en forma de fumarolas y suelos calientes vaporizantes.

Este desequilibrio químico entre los constituyentes disueltos y los minerales de alteración a lo largo de la evolución del sistema geotérmico Los Humeros (González-Partida *et al.*, 1991; Martínez-Serrano, 2002) ha ocasionado que diversos pozos tengan que ser abandonados por corrosión severa y la obturación de los mismos por la precipitación de nuevos minerales (Martínez-Serrano, 2002). Existen diversas hipótesis sobre el origen de la acidez en el CGH, donde el principal factor es el desequilibrio químico agua - roca donde los componentes magmáticos en los fluidos geotérmicos asociados al vulcanismo reciente (altas concentraciones de arsénico y boro) no son neutralizados por reacciones con los feldespatos, calcita (andesitas o hornfels) y micas, ocasionando altas concentraciones de HCl y HF (Tello-Hinojosa, 2000).

V.I Comportamiento de la Alteración Hidrotermal Superficial

La superficie del área del campo geotérmico Los Humeros es considerado como un sistema abierto, con flujos, mezclas de vapor de agua, compuestos volátiles, aguas subterráneas poco profundas y aguas superficiales no térmicas, por lo tanto el proceso de interacción agua-roca se considera un proceso

geoquímico incongruente, con elementos lixiviados de los minerales primarios, mientras que otros se precipitan como minerales secundarios (Markússon y Stefánsson, 2011).

Las manifestaciones termales, así como los pozos de exploración y producción se encuentran localizados en un área de aproximadamente 35 km² llamada Colapso Central – Xalapazco donde existe un superficie de aproximadamente 3 km² que ha sido alterada principalmente por una intensa caolinización y sílice residual esta alteración es observada alrededor de la falla Los Humeros y en diversos pozos principalmente en el pozo H-4. El CGH se caracteriza por no presentar manantiales calientes en superficie ni presentar descargas laterales evidentes como en la mayoría de los sistemas geotérmicos asociados a una cámara magmática (Los Azufres, Mich.) de esta manera la alteración hidrotermal de esta zona debió formarse principalmente por la interacción de vapor de origen profundo con aguas someras y la circulación de fluidos por la fallas principales del sistema, dando origen a aguas sulfatadas ácidas con pH ácido, con esto se origina como consecuencia una alteración argílica (Tello-Hinojosa, 2005), siendo esto muy probable debido a que esta zona se encuentra 1,000 m arriba de los alrededores del Valle de Perote donde el nivel freático es muy somero (Viggiano y Gutierrez, 1995).

V.II Comportamiento de la Alteración Hidrotermal Profunda

El campo geotérmico Los Humeros presenta una distribución gradual de la alteración hidrotermal ligada a la temperatura, con dos características peculiares, la primera de ellas es la alteración tipo skarn con una composición de granate + wollastonita + schelita + vesuvianita la cual se encuentra en la parte más profunda del sistema, la segunda zona presente solo en ciertos sectores del campo geotérmico como es el caso del pozo H-43 (>1,800 m), donde las temperaturas superan los 350°C, se presentan arcillas y minerales de alteración como la pirofilita, sericita, anhidrita, biotita y pirrotita (Prol-Ledezma, 1998).

Diversos estudios de mineralogía de alteración (Prol-Ledesma, 1989; Martínez-Serrano y Alibert, 1994; Martínez-Serrano, 2002) identificaron la aparición de al menos dos episodios térmicos en el sistema geotérmicos Los Humeros. El primer episodio se produjo a poca profundidad (<1,000 m), con una intensa actividad hidrotermal y temperaturas >250°C, durante este episodio los minerales de alta temperatura como la epidota (>180°-250°C), anfíboles (>280°-300°), granate (>325°-350°C) y micas (>350°-400°C) fueron depositados en niveles someros, y aunque no se ha determinado la edad de los minerales secundarios se ha considerado que el granate, la wollastonita y el clinopiroxeno de la asociación de skarn podrían haberse depositado al mismo tiempo en la parte inferior del depósito; el segundo período fue el sellado de las principales formaciones rocosas permeables produciendo una disminución de la interacción agua-roca a poca profundidad, aunado a la depositación de minerales de baja temperatura, como illitaclorita (>100°-200°C) caolinita-montmorillonita (<150°-200°C) (Martínez-Serrano, 2002).

Estudios realizados por Martínez-Serrano y Alibert-Chantal (1994) en los pozos H-15, H-16, H-17, H-19 y H-12, permitieron determinar que los principales minerales de alteración están alojados en cavidades, porosidades de las rocas, vetillas o como sustitución de minerales primarios, los cuales se encuentran distribuidos espacialmente de la siguiente forma: en las partes profundas >1,900 m se observaron fases minerales de biotita, granate, anfíbol y clinopiroxeno cuyas asociaciones paragenéticas son estables a temperaturas superiores a >300° C, mientras que en las partes intermedias entre 1,700 y 1,800 m se observó una cantidad importante de epidota, clorita, cuarzo, feldespato K, pirita y calcita, estas asociaciones paragenéticas indican una temperatura de estabilidad de 150 a 270 ° C; Martínez-Serrano (1993) considera que debido a la abundancia y distribución de estas fases minerales es en estos intervalos donde se sitúa el reservorio principal del sistema. Finalmente en las partes superficiales <700 m se observaron minerales como pirita, calcita abundante, clorita, cuarzo, minerales arcillosos, zeolitas, óxidos de hierro, sílice amorfa y azufre nativo, con temperaturas de estabilidad de 90° a 170°C. La distribución de los minerales hidrotermales es similar a las isotermas locales actuales, apoyando la hipótesis de que las condiciones térmicas del sistema se han mantenido constantes durante un tiempo suficientemente largo (González-Partida, 1991).

V.III Petrografía y Mineragrafía

Estudios petrográficos y mineragráficos llevados a cabo en el CGH por Viggiano y Robles (1988a), Prol-Ledesma y Browne (1989), Prol-Ledesma (1991), Izquierdo (1993), Martínez-Serrano y Alibert (1994), Prol-Ledesma (1998) y Tinoco (2008), mostraron que la secuencia de rocas volcánicas fueron y están siendo afectadas por la circulación de fluidos geotérmicos con temperaturas >290°C y con menos de 2500 mg/kg de solidos disueltos totales, transformando los minerales primarios de la roca a minerales más estables a las condiciones físico-químicas. Los análisis químicos de los fluidos descargados de los pozos sugieren que se trata de una salmuera de baja salinidad resultante de la mezcla entre fluidos geotérmicos y aguas subterráneas someras (Tello, 1992; Barragán *et al.*, 1991), donde la intensidad de la alteración hidrotermal está íntimamente relacionada con las fallas, ya que en esta zona se muestra un incremento en la alteración total lo cual evidencia una falta de equilibrio químico en la relación agua-roca (Prol-Ledezma, 1998).

Los principales minerales de alteración hidrotermal observado en el CGH son cuarzo, calcita, caolinita, illita, clorita, zeolitas, anfíboles (actinolita), azufre nativo, sulfatos, clinopiroxenos (diópsido), feldespato

potásico (adularia), biotita, granate, sulfuros (pirita y pirrotita), y óxidos de hierro (magnetita y hematita), en menor cantidad se observa wairakita, titanita, formando asociaciones paragenéticas bien

Figura 12. Paragénesis de minerales de alteración transparentes y opacos del campo geotérmico Los Humeros <mark>en esquirlas de diferentes pozos perforados</mark>. Tomado de Prol-Ledesma (1998).

definidas (Figura 12). La epidota es uno de los minerales más ampliamente distribuidos en el campo y está presente en zonas donde las temperaturas medidas directamente en pozo son de 120 a 250 °C, indicando que debió de haberse formado durante etapas de mayor temperatura, en el caso de las zeolitas han sido identificadas coexistiendo con granates y micas en pozos como el H-19, H-21 a profundidades de 900 y 980 m respectivamente el granate está incluido en vetas a estas profundidades pudiendo ser depositado por un proceso de telescopeo debido a que la estabilidad de este mineral está por encima de los 300°C (Prol-Ledesma, 1991; Izquierdo 1993; Martínez-Serrano y Alibert, 1994; Prol-Ledezma, 1998; Tinoco, 2008).

V.IV Inclusiones Fluidas

Durante las etapas de exploración y explotación del campo geotérmico Los Humeros, se han realizado en 43 de los 46 pozos perforados estudios microtermometría de inclusiones fluidas por González-Partida, (1985); Prol-Ledesma y Browne, (1989); González-Partida, (1991); González-Partida *et. al.*, (1996); Prol-Ledesma, (1998); González Partida *et al.*, (2009), así como diversas interpretaciones de los datos obtenidos (Izquierdo, *et. al.*, 2008; Gutiérrez-Negrín e Izquierdo-Montalvo, 2010).

En donde la mayoría de las inclusiones fluidas (IF) medidas en el campo geotérmico Los Humeros son de carácter bifásico, las cuales han sido agrupadas en cuatro tipos: 1) primarias ricas en líquido (L+V), 2) primarias ricas en vapor (V+L), 3) secundarias (posteriores a la cristalización) ricas en liquido (L₂+V) y tipo 4) inclusiones con hidrocarburos presente solo en el pozo H-14 a 1385 m de profundidad (Prol-Ledesma,
1998); sin embargo existen excepciones en niveles profundos donde se han reconocido inclusiones monofásicas (V). Las IF del CGH presentan baja salinidad y en general las temperaturas de homogenización aumentan progresivamente con respecto a la profundidad, sin embargo la temperatura de homogenización (Th) es más alta que la temperatura estabilizada medida en el pozo, excepto para los pozos H-8 (1,410 m) y H-14 (1,385); en algunas IF se muestra un descenso de temperatura después de la unidad litológica compuesta por toba vítrea o andesita de hornblenda, ésta puede estar relacionada a un proceso de ebullición antes de la explotación del yacimiento (Izquierdo, *et. al.*, 2008), cabe mencionar que las muestras analizadas de inclusiones fluidas corresponden a minerales secundarios de cuarzo, calcita, epidota tanto de núcleos como de esquirlas, donde en ninguna de las muestras se hicieron se hicieron presentes cristales hijos.

Los pozos ubicados en colapso Los Potreros (H-1, H-2, H-4, H-5, H-8, H-9), en la zona de colapso central (H-19, H-20, H-21 y H-22) y dentro del anillo de la caldera (H-14), presentaron inclusiones fluidas (IF) bifásicas ricas en líquido, excepto H-14 que presenta IF con hidrocarburos (González-Partida, 1985, Prol-Ledesma, 1998).

En la sección norte-sur (H-15, H-17, H-16, H-4, H-40 y H-39) presentada por Tinoco en 2008, los pozos del sector sur a profundidades de 2,100 m tienen valores de Tm = - 0.4 a - 0. °C, lo que equivale a salinidades aparentes de 0.71 a 1.57 % peso eq. NaCl; mientras que la zona de los pozos relacionados a la falla Humeros presentan Tm = - 0.1 a - 0.2°C, equivalente a 0.18 a 0.35 % peso eq. NaCl y a medida que el fluido es más somero se presenta un cambio en las Tm, pasando de - 0.3 a - 1 a una temperatura de -2°C (\cong 1.74 a 3.39 % peso eq. NaCl), donde en los primeros 400 m las Tm son de +1.5°C, lo que muestra una posible descarga de gases, principalmente de CO₂.

Dentro del colapso Los Potreros los datos de inclusiones fluidas son congruentes con la interpretación basada en la mineralogía de alteración observada por Viggiano y Robles (1988a), en donde las temperaturas de homogeneización no muestran evidencia de múltiples eventos térmicos, mientras que los pozos situados en las proximidades de la falla Los Humeros presentan un efecto peculiar de la inversión en el gradiente de temperatura por debajo de cierta profundidad, donde los datos de la inclusión de líquidos del pozo H-8 muestran claramente una disminución significativa en la temperatura de homogeneización con el aumento de la profundidad siendo de 288°C a 1410 m, y 254°C a 1724 m (Prol-Ledezma, 1998).

Los resultados obtenidos por Prol-Ledesma y Browne (1989) con base a la mineralogía de alteración y los datos de inclusiones fluidas muestran que el área que comprende el Colapso central y su alrededor parece ser la parte más térmicamente inestable del campo con temperaturas de hasta 340°C en donde la dilución

que presentan las IF en los diagramas Th vs Tm en esta zona indica que el agua caliente asciende a través de fallas en el área de Colapso Central la cual se mueve lateralmente hacia fuera a otro lugar dentro de la caldera. La temperatura de fusión de las inclusiones fluidas también indica un proceso de dilución que tiene lugar en profundidad y salinidad aparente baja, siendo el más alto 2,7% peso eq. de NaCl y la más baja de 0,2% peso eq. de NaCl para un grupo de inclusiones del H-19 a 1769 m de profundidad. La alta salinidad aparente es característica de las inclusiones con la más alta temperatura de homogeneización y el fluido atrapado en las inclusiones con temperaturas de homogeneización de baja salinidad baja debió

El diagrama que muestra los diversos procesos de evolución de los fluidos (Figura 13) presentado por Prol-Ledezma (1998) donde grafica la Th vs Tm, propone un fluido padre o progenitor con una temperatura de 350°C, el cual tiene una aparente salinidad de 2.7% peso eq. de NaCl (Tm = -1,6 ° C) debido principalmente a un alto contenido de CO₂ que después de la ebullición la salinidad aparente en la misma muestra se reduce a 0.2% eq. en peso de NaCl, la mezcla con agua fría y su consecuente dilución es observada en el pozo H-1 y H-8, mientras que los fluidos que han sido objeto de una sola etapa de ebullición se identifican con base a un aparente incremento de salinidad y temperatura en pozos H-9, H-19 y H-21. Después de la pérdida inicial del CO₂ la continua ebullición está representada por la tendencia general de las muestras a partir de profundidades mayores a 1000 m, en comparación a las muestras superficiales y hacia el límite de la caldera (H-14).

Figura 13.- Temperatura de fusión (-Tm) contra temperatura de homogenización (Th) de las inclusiones fluidas de 11 pozos del campo geotérmico Los Humeros (editado de Prol-Ledesma, 1998)

V.V Movilidad Elemental mediante la ecuación de Grant (1986)

Para determinar la movilidad elemental ocasionada por el hidrotermalismo en el campo geotérmico de Los Humeros utilizaremos la ecuación de Grant (1986), que deriva de la ecuación calculada por Gresens (1967) en el que el volumen (**V**) y la densidad (**p**) hacen referencia a la masa (**M**), masa = volumen x densidad, la ecuación de Gresens para el balance de masas relaciona el volumen y composición, la cual está dada por:

$$F_{v}\left(rac{
ho^{a}}{
ho^{o}}
ight)C_{n}^{a}-C_{n}^{o}=\Delta X_{n}$$
 (1)

donde los superíndices **o** y **a** hacen referencia al protolito o roca menos alterada (**o**) y a la roca alterada (**a**) respectivamente, $C^a{}_n \ C^o{}_n$ son la concentración del elemento **n** en la roca alterada y el protolito respectivamente, ΔX_n es el cambio de masa ganada o perdida en el elemento **n**, y F_v es el factor de volumen (es decir la proporción de volumen final con respecto al volumen inicial ($F_v = V^a/V^o$).

Si el cambio de volumen está dado por cualquier elemento inmóvil *i* (F_v^i) este puede ser obtenido por la sustitución de **Xn=o** en la anterior ecuación quedado como:

$$F_{v}^{i} = \frac{C_{i}^{o}}{C_{i}^{a}} \times \frac{\rho^{o}}{\rho^{a}}$$
(2)

donde F_v^i es el factor de volumen isoquímico del elemento *i*.

La ecuación (1) puede ser escrita como:

$$\binom{V^{a}}{V^{o}} \left(\frac{\rho^{a}}{\rho^{o}}\right) C_{n}^{a} - C_{n}^{o} = \Delta X_{n}$$

$$\left(\frac{M^{a}}{M^{o}}\right) C_{n}^{a} - C_{n}^{o} = \Delta X_{n}$$

$$C_{i}^{a} = \frac{M^{o}}{M^{a}} (C_{i}^{o} + \Delta X_{n})$$
(3)

En este caso los elemento inmóviles *i*, la $\Delta X = o_i$,

$$C_i^a = \frac{M^o}{M^a} C_i^o \qquad (4)$$

Esta ecuación puede ser considerada como la notación estándar de

$$Y = mX + C(5)$$

La cual corresponde a la ecuación de una línea recta cuya pendiente (m) está definida por $m=(M^{\circ}/M^{\alpha})$, pasando por el origen (C=o), cuya pendiente en la relación fundamental de masa que no muestra perdida o ganancia, definiendo los elemento inmóviles, esto puede hacerse gráficamente trazando en el eje de las abscisas ($X=C^{o}_{n}$,) las concentraciones de los elementos del protolito versus las concentración de los elementos de la roca alterada, en el eje de las ordenadas ($Y=C^{a}_{n}$), (Mukherjee and Gupta, 2008). Esta línea es llamada isocona (Grant, 1986), también es llamada como la línea que conecta a puntos con igual concentración geoquímica (Gary *et al.*, 1974), de esta forma la movilidad de los restantes componentes pude ser analizada a partir de la isocona surgida de los elementos relativamente inmóviles de comportamiento geoquímicos similar (Martínez y Dristas, 2007).

La ecuación (4) es la que obtuvo Grant en 1986, establece las variaciones en la concentración-volumen de un elemento, la cual una vez identificando los elementos inmóviles *i*, para lo cual $\Delta X=o$, M^o y M^a puede ser obtenida resolviendo el conjunto de ecuaciones simultáneamente de la forma:

$$C_i^a = \frac{M^o}{M^a} C_i^o$$

En donde la pendiente de la isocona, es la que determina el cambio de masa de **M**°, la cual se puede determinar por la agrupación de los datos **C**^a; **/C**°_i y por la asunción de la masa constante, cuyos elementos encontrados por encima de la isocona son lo que habrán sufrido ganancia, mientras que los que se encuentren por debajo, habrán experimentado perdida (Grant, 1986; Grant, 2005; Rubinstein et al., 2013), la pérdida o ganancia se obtiene por el desplazamiento de los elementos movibles tomando como referencia la isocona, por que se tendría que dividir ambos lados de la ecuación (3) por **C**°*i*:

$$\frac{C_i^a}{C_i^o} = \frac{M^o}{M^a} \left(\frac{C_i^o}{C_i^o} + \frac{\Delta X_n}{C_i^o} \right)$$

Acomodando la ecuación anterior, se obtiene la ecuación para determinar la pérdida o ganancia:

$$\left(\frac{\Delta X_n}{C_i^o}\right) = \left(\frac{M^a}{M^o}\right) \left(\frac{C_i^a}{C_i^o}\right) - 1 \qquad (6)$$

donde:

C^o_i = concentración inicial del protolito

 C^{a_i}/C^{o_i} = son los concentraciones de los elementos inmóviles i_i

M°/M^α = es la relación de la masa antes de la alteración y después de la alteración (pendiente de la línea de isocona) obtenida mediante el mejor ajuste por mínimos cuadrados.

VI MÉTODOS Y MATERIALES.

VI.I Trabajo de Campo

El trabajo de campo se llevó a cabo en una sola campaña de 5 día, realizada en el mes de Julio del 2014, con una brigada de 7 geólogos, 3 técnicos y el Dr. González Partida, apoyándonos con imágenes satelitales, mapas geológicos y el equipo necesario de campo, se realizó el reconocimiento general del campo geotérmico Los Humero, observando con mayor atención la alteración hidrotermal del entorno, las estructuras geológicas mayores, la litología del lugar y a partir de un muestreo sistemático con dos diferentes escalas, una regional y una local, se obtuvieron datos con el fin de poder visualizar de manera precisa los procesos de interacción agua-roca que se están llevando a cabo en la zona.

El muestreo se realizó mediante una retícula regional de 9 x 9 km, en donde se recolecto una muestra de roca alterada o en su defecto de roca fresca, esto se hizo aproximadamente a cada kilómetro, recolectando así un total de 69 muestras (Figura 14), el muestreo local se realizó sobre una de las zonas productoras del campo geotérmico en malla de 2 x 3.5 km recolectando una muestra aproximadamente cada 100 metros de roca alterada o fresca, obteniendo un total de 323 muestras (Figura 14). Para la caracterización de la alteración hidrotermal se recolectaron 12 muestras de roca alterada tomadas en fuentes activas y en el escarpe de las fallas, 3 muestras de rocas inalteradas que corresponden al mismo tipo de roca, a las cuales nos referiremos como muestras especiales. El control del muestreo se realizó tomando como premisa que para realizar un correcto balance de masas las muestras de rocas tanto alteradas deben corresponder al mismo tipo de roca y evento volcánico.

VI.II Trabajo de Laboratorio

Las muestras regionales (69), locales (323) y las muestras especiales (12 muestras de rocas alteradas y 3 muestras de rocas inalteradas) se prepararon en el Taller de Molienda y Pulverizado del Centro de Geociencias de la UNAM, en el campus Juriquilla, Qro., la trituración se realizó con una prensa neumática de marca Montequipo mod. LAB-20T-3HP, con capacidad de 2,500 kg/cm2, posteriormente se tamizo la muestra con un equipo U.S Standard Sieves con apertura del no. 100 equivalente a 150 micrones, aquí las muestras se cuartearon con la finalidad de obtener mejor representatividad, hasta obtener aproximadamente 50 gr; las muestras con contenido de humedad se secaron en un horno de secado de gran volumen (102x82x65 cm) marca Rio Rocha mod. Hs-102, a una temperatura de 40°c por 12 horas. Finalmente las muestras se guardaron en bolsas etiquetadas para su posterior análisis por fluorescencia de rayos X por dispersión de energías. Para el tratamiento de las 15 muestras especiales se utilizó un

equipo Shatterbox de 825 r.p.m, con una pulverizadora de alúmina marca SPEX dejando cada muestra por 3 minutos, alcanzando así la malla 200 que es el equivalente a 75 micrones, con las muestras homogenizadas se procedió a realizar su análisis por diferentes técnicas como son: Espectroscopia de Masas de Acoplamiento Inductivo, Difracción de Rayos X, Espectroscopia de Reflectancia de infrarrojo de onda corta y fluorescencia de rayos X por longitud de ondas.

Fig. 14.- Mapa del campo geotérmico Los Humeros, mostrando la geología local y el muestre sistemático llevado a cabo durante el trabajo de campo.

VI.III Métodos Analíticos

VI.III.I Fluorescencia de Rayos X (FRX-WD)

Se utilizó la técnica de FRX-WD con la finalidad de determinar elementos mayores de las 15 muestras especiales. Los análisis se realizaron siguiendo los procedimientos descritos por Lozano-Santa Cruz *et al.*

(1995), Verma *et al.* (1996), usando los materiales de referencia de Lozano y Bernal (2005), en el laboratorio de Geoquímica en el Instituto de Geología de la UNAM, en Ciudad Universitaria en la Ciudad de México, el equipo utilizado fue un espectrómetro secuencial de rayos X de marca Siemens SRS-3000 equipado con tubo de rodio y ventana de berilio de 125 micras.

VI.III.II Fluorescencia de Rayos X (FRX-ED)

Los análisis de las muestras regionales (69) y locales (323) se realizaron por la técnica de espectrometría de fluorescencia de Rayos X de dispersión de energía (ED-FRX), este se llevó acabo en el Laboratorio de Yacimientos Minerales del Centro de Geociencias de la UNAM en el campus Juriquilla, Qro; el equipo utilizado fue un espectrómetro de rayos X portátil Niton XL3t GOLDD+, sus características son: ánodo de Ag, voltaje de 50 KW Max, fuente de poder de 10 W Max y con un área del detector de 25 mm².

Para garantizar la confiabilidad de los resultados analíticos obtenidos mediante el equipo portátil de FRX Niton XL3t GOLDD+, se calibro el equipo mediante el método "sin-estándares", el cual equivale a trabajar con estándares seleccionados independientemente de las muestras a ser analizadas, por lo tanto no serán llamados estándares sino muestras de referencia geoquímicas, los materiales de referencia fueron realizados por Lozano y Bernal (2005). El análisis de elementos mayores y trazas utilizo matrices de muestras geológicas típicas de la serie IGL, compuesta de un suelo laterítico (excluida), una dolomía, una caliza, una andesita, tres diferentes tipos de sienita y un gabro, todos ellos colectados en diferentes localidades de México.

A continuación se describe brevemente los pasos que se siguieron durante las mediciones con el equipo Niton XL₃t GOLDD+ y cómo funciona el detector:

- Se calibró el equipo con los materiales de referencia obtenidos de Lozano y Bernal (2005), los resultados y curvas de calibración se encuentran en el Anexo I.
- Las muestra se introduce en un recipiente de polipropileno, previamente lavado y enjuagado con agua desionizada con una resistividad de 18.2 MΩ, usando una película de polipropileno con un calibre de 4µ de grosor y 2.5" de diámetro.
- Con base a lo publicado por Hall *et al.* (2014) se dejó irradiar por 60 segundos cada filtro del equipo (principal, alto, bajo y liviano).
- Los resultados se obtuvieron en composición química en porcentaje (%) o en partes por millón (ppm), dependiendo de cada elemento.

VI.III.III Espectroscopia de Masas con Plasma de Acoplamiento Inducido (ICP-MS)

Se utilizó ICP-MS para determinar tierras raras (REE) como elementos traza. El análisis se realizó con un espectrómetro de masas de analizador cuadrupolar con fuente de plasma acoplado inducido (Q-ICP-MS) Termo ICap Qc, en el cual esta acoplado a una celda de colisión/reacción (He, N2, NH3 y O2) para reducir interferencias espectrales. Las mediciones fueron realizadas en el laboratorio de Estudios Isotópicos en el Centro de Geociencias de la UNAM, en el campus Juriquilla, Qro., donde se obtuvieron los elementos trazas y las tierras raras (REE) de las 15 muestras especiales.

La digestión de la muestra se llevó acabo en el Laboratorio Ultralimpio el cual está libre de metales (clase 100-1000), usando reactivos de alta calidad, balanza de precisión, agua desionizada con resistividad de 18.2 MΩ, campanas de extracción y flujo laminar (clase 10), el procedimiento utilizado es el descrito por Mori *et al.* (2007).

VI.III.IV Petrografía y Mineralogía

Para el análisis de las muestras petrográficas y mineragráficas se utilizó un microscopio marca LEICA con aumentos de 10x, 20x, 40x y 80x, mediante luz trasmitida y luz reflejada respectivamente. La preparación de las muestras se llevó acabo en el taller de Laminación del centro de Geociencias de la UNAM, en el campus Juriquilla, Qro., a grandes rasgos la preparación de las muestras consiste en:

- 1. Selección y corte de las muestras, en briqueta el corte es redondo, en lámina delgada el corte es rectangular
- 2. Para las láminas delgadas la muestra se monta en los portaobjetos y usando pegamento epóxico para fijarlas, se deja secar en luz ultravioleta; posteriormente se desbastan las muestras con diferentes tamaños de abrasivos, en el caso de lámina delgada se desbasta hasta obtener un grosor de 30 micras.
- 3. Para el tratado de briquetas pulidas, estas se sumergen en resina, en un molde cilíndrico, se deja secar y se sacan del molde, finalmente se desbasta hasta quedar perfectamente pulidas y tener una superficie de espejo.

VI.III.V Espectroscopia de Reflectancia de Infrarrojo de Onda Corta (SWIR)

Las 15 muestras especiales se analizaron mediante la espectroscopia de Reflectancia llevado a cabo en el Departamento de Recursos Naturales del Instituto de Geofísica de la UNAM, en Ciudad Universitaria en la Ciudad de México, usando un espectrómetro de infrarrojo portátil marca LabSec Pro. Para este estudio se utilizó el rango de infrarrojo de onda corta SWIR (1300-2500 nm) (Canet *et al.*, 2015), debido a que este rango es sensible a ciertas moléculas y radicales como OH, H2O, CO3, NH4 y enlaces OH de cationes como Al-OH, Mg-OH y Fe-OH (Thompson *et al.*, 1999; Hauff, 1994), siendo esta técnica la ideal para determinar minerales de alteración hidrotermal.

El método de análisis es directo, se mide sobre la muestra o en este caso sobre el polvo (150 micrones) mediante el SWIR, de este modo la muestra se irradia directamente y se toma la lectura de la reflectancia mediante un software llamado ImagenProII donde se grafica la longitud de onda (nm) vs la reflectancia relativa es finalmente comparada con una base de datos de forma manual o con el software es ENVI 4.5 (conversación vía correo electrónico con candidato a Dr. Rodríguez-Díaz, 2015).

VI.III.VI Difracción de Rayos X (DRX)

La identificación cualitativa de las fases de la alteración hidrotermal de 12 de las 15 muestras especiales se realizó mediante la técnica de difracción de rayos X en polvos, cuyo agregado está orientado al azar. El análisis se realizó en el en el laboratorio de geoquímica de fluidos corticales, dentro del centro de Geociencias de la UNAM, en el campus Juriquilla, Qro; el equipo utilizado fue un difractómetro marca Rigaku Miniflex, las condiciones de trabajo fueron 35kw, 20mA, con un Angulo 20 de 2-70° en pasos de 0.02° y de 2s de tiempo de integración, utilizando radiación CuK y monocromador de grafito.

VI.III.VII Inclusiones Fluidas

Estas fueron analizadas en el Centro de Geociencias de la UNAM en el campus Juriquilla, Qro., con un equipo microtermométrico que consta de una platina calentadora y refrigerante marca Linkam THMSG 600 con 3 consolas programables que regulan la temperatura, un microscopio petrográfico marca Olympus BX51, con fuente de luz de 150w y sistema de video AxionCam ERc5C acoplado al microscopio con visualización hacia una pantalla HD de 42^{°′} marca Sony. El estudio óptico de las inclusiones fluidas se realizó principalmente en minerales translucidos cuarzo, calcita, epidota.

En el análisis únicamente se trabajó con IF primarias con tamaños <10 μ , preferentemente de 3-5 μ , previamente separadas por petrografía de IF, posterior a esto con la finalidad de evitar algún tipo de modificación en las IF, se determinó la temperatura de fusión y después la temperatura de homogenización, obteniéndose un promedio de 16 datos por muestra.

VII RESULTADOS Y DISCUSIÓN

VII.I Inclusiones Fluidas

"La mayor contribución de inclusiones fluidas radica en

el impacto sutil pero penetrante que han tenido en

la filosofía básica de exploraciones"

Ed Roedder, 1984.

Se realizó una síntesis de los estudios previos de inclusiones fluidas (Tabla 3) realizados en el CGH por González-Partida, (1985); Prol-Ledesma y Browne, (1989); González-Partida, (1991); González-Partida, *et. al.*, (1996); Prol-Ledesma, (1998); González-Partida, Pérez R. y Tinoco J., (2009). A partir de los datos obtenidos se recalculo la salinidad con base al logaritmo presentado por Bakker (2012) para soluciones H2O-NaCl-KCl, las cuales modela las ecuaciones polinómicas de temperatura, presión y composición obteniendo un mejor ajuste "best-fit". A estos datos se anexaron los resultados de las profundidades estimadas con base al modelo de salinidad variable por ebullición publicado por Cruz-Pérez *et al.*, (2016), y los resultados obtenidos de las inclusiones fluidas de los pozos H-41, H-42 y H-42.

Profundidad real	Pozo H4 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
300	Ca	192 a 230	209 (11)	-0.1 a -1.1	-0.7(11)	1.15	312
500	Qz	191 a 252	222 (8)	-0.1 a -0.4	-0.2 (9)	0.33	372
600	Ca	220 a 227	222 (4)	-0.5	-0.5 (4)	0.82	371
650	Qz	255 a 265	260 (3)	-2 a -2.5	-2.1 (4)	3.43	693
700	Qz	223 a 251	235 (9)	-0.2 a -3.1	-1.9 (5)	3.11	469
750	Qz	210 a 263	243 (11)	-4 a -0.3	-2.2 (11)	3.59	550
850	Qz	205 a 320	274 (3)	-1.6 a -2.3	-1.9 (3)	3.11	867
1050	Ca	243 a 327	302 (17)	-1.7 a -3.1	-1.9 (17)	3.23	1242
1250	Ep	321	321 (11)	-0.2	-0.2	0.33	1688
1450	Ep	336	336	-0.3	-0.3	0.49	2080
1550	Ep	312 a 365	336 (10)	-0.2	-0.2 (10)	0.33	2080
Profundidad real	Pozo H5 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
600	Qz	188 a 244	208 (24)	-0.1 a- 0.5	-0.3 (18)	0.49	286
Profundidad real	Pozo H8 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
1410	Ca	264 a 307	288 (25)	-0.2 a -1.2	-0.5	0.82	1022
1724	Ca	245 a 287	262 (12)	-0.1 a -0.5	-0.3	0.49	706

Tabla 3. Síntesis de los análisis diversos estudios de inclusiones fluidas realizados en el CGH, junto a los nuevos datos obtenidos de la salinidad y profundidad estimada, así como los resultados analizados de las inclusiones fluidas de los pozos H-41, H-42 y H-42. Nota los datos nuevos están marcados en color verde.

Profundidad real	Pozo H15 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
410	Qz	144 a 150	145 (4)	-0.3 a -0.3	-0.3 (4)	0.49	82
510	Qz	154 a 210	185 (16)	-0.3 a -0.3	-0.3 (16)	0.49	198
610	Qz	185 a 200	190 (2)	-0.1 a -0.3	-0.2 (2)	0.33	218
710	Qz	185 a 210	190 (6)	-0.6 a -0.6	-0.6 (16)	0.99	218
810	Qz	186 a 250	217 (8)	-1.1 a -1.1	-1.1 (8)	1.81	338
910	Qz	195 a 255	218 (12)	-0.6 a -0.6	-0.6 (12)	0.99	339
1010	Qz	206 a 270	229 (16)	-0.3 a -0.6	-0.5 (16)	0.82	439
1110	Ca	218 a 240	231 (11)	-1.2 a -1.5	-1.3 (11)	2.14	435
1210	Qz	250 a 290	261 (16)	-1 a -1.8	-1.4 (16)	2.3	698
1310	Qz	297 a 320	307 (13)	-1.1 a -1.4	-1.2 (13)	1.98	1344
1410	Qz	318 a 335	323 (5)	-0.7 a -0.9	-0.8 (5)	1.32	1672
1510	Qz	313 a 334	323 (2)	-0.8 a 0.8	-0.8 (2)	1.32	1672
1810	Qz	307	307 (1)	-0.3	-0.3 (1)	0.49	1364
1970	Qz	304	304 (4)	-0.3	-0.3 (4)	0.49	1364

Profundidad real	Pozo H16 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
410	Qz	139 a 165	155 (9)	-0.3 a -0.5	-0.4 (9)	0.66	106
510	Qz	141 a 160	153 (12)	-0.6 a -0.6	-0.6 (12)	0.99	94
710	Qz	185 a 252	216 (20)	-0.7 a -0.8	-0.78 (20)	1.28	339
810	Qz	216 a 222	220 (8)	-1	-1 (8)	1.65	369
910	Ca	221 a 260	230 (20)	-0.7 a -1	-0.9	1.48	437
1010	Qz	247 a 250	248 (4)	-1	-1	1.65	557
1110	Qz	251 a 252	251 (3)	-1	-1	1.65	602
1210	Qz	252 a 255	253 (4)	-1.2	-1.2	1.98	602
1310	Qz	298 a 310	306 (15)	-0.2	-0.2	0.33	1367
1410	Ep	308 a 340	326 (13)	-0.2 a -0.3	-0.2 a -0.3	0.41	1809
1510	Qz	289 a 335	310 (6)	-0.4	-0.4	0.66	1463
1610	Ep	328 a 332	329 (10)	-0.1	-0.1	0.16	1948
1710	Qz	333 a 340	338 (9)	-0.1	-0.1	0.16	2092
1810	Qz	290 a 305	303 (25)	-0.1	-0.1	0.16	1276
1910	Qz	330	330 (1)	-0.1	-0.1	0.16	1948
Profundidad real	Pozo H19 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
981	Ca	206 a 268	240 (16)	-0.4 a -1.7	-0.7	1.15	514
1769	Qz	332 a 366	347 (32)	-1.4 a -1.9	-1.6	2.63	2350

Profundidad real	Pozo H17 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
610	Qz	131 a 145	137 (2)	-0.1	-0.1 (2)	0.16	62
810	Qz	134 a 170	145 (16)	-0.2	-0.2 (16)	0.33	82
1010	Qz	168 a 204	191 (15)	-0.3	-0.3 (15)	0.49	218
1110	Qz	185 a 210	200 (5)	-0.2	-0.2	0.33	262
1210	Qz	250 a 270	264 (12)	-0.5	-0.5	0.82	759
1310	Qz	255 a 268	264 (12)	-0.5	-0.5	0.82	759
1410	Qz	273 a 302	288 (10)	-0.6	-0.6	0.99	1020
1470	Ep	277 a 310	304 (24)	-0.3	-0.3	0.49	1364
2010	Ep	319 a 330	321 (5)	-0.2	-0.2	0.33	1688
2110	Ep	324 a 340	328 (5)	-0.1 a -0.7	-0.5	0.82	1801
2230	Ep	325 a 345	331 (15)	-0.6	-0.6	0.99	1927

_	Profundid	ad Pozo	Rango de Th	Promedio Th	Rando de Tf	Promedio Tf	Salinidad % en peso eq.	Profundidad	
	real	Miner	°C	(n)	°C	(n)	NaCl	estimada	
-	602	Qz	161 a 163	162 (5)	-0.3	-0.3 (5)	0.49	120	
	802	Qz	173	173	-0.3	-0.3 (1)	0.49	163	
	1002	Qz	240 a 242	241 (6)	-0.3	-0.3 (6)	0.49	516	
	1100	Qz	266 a 280	270 (40)	-0.6	-0.6 (40)	0.99	819	
	1200	Qz	323 a 325	324 (10)	-0.8	-0.8 (10)	1.32	1792	
	1400	Ep	280	280 (1)	-0.3	-0.3	0.49	952	
	1400	Ca	282	282 (1)	-0.3	-0.3	0.49	952	
	1800	Ca	310 a 321	218 (50)	-0.5	-0.5 (50)	0.82	341	
	2000	Ep	324 a 326	325 (10)	-0.4	-0.4 (8)	0.66	1804	
	2000	Qz	325	325 (5)	-0.4	-0.4 (5)	0.66	1804	
	2200	Ep	325 a 328	327 (8)	-0.4	-0.4 (8)	0.66	1804	
_	2200	Qz	325 a 326	326 (6)	-0.4	-0.4 (6)	0.66	1804	
_	Drofondid	Poze) Banga da Th	Dramadia Th	Panda da Tf	Dromodia Tf	Salinidad %	Drafindidad	
	roal	H29				(r)	en peso eq.	Profundidad	
_	real	Miner	ral	(n)	-C	(n)	NaCl	estimada	
-	410	Qz	127 a 148	134 (22)	-0.8	-0.8 (22)	1.32	62	
	610	Qz	170 a 240	205 (9)	-0.5	-0.5 (9)	0.82	286	
	800	Qz	173 a 245	208 (21)	-0.1	-0.1 (21)	0.16	314	
	1010	Qz	268	268 (4)	-0.5 a0.6	-0.55 (4)	0.91	759	
	1100	Ep	288 a 310	304 (6)	-0.5 a0.6	-0.55 (6)	0.91	1266	
	1510	Qz	316 a 340	337 (24)	-0.5 a0.7	-0.6 (24)	0.99	2067	
_	1910	Qz	320 a 345	333 (32)	-0.5	-0.5 (32)	0.82	1931	
-	D	Poze) Banara da Th	Durant's Th	Danda da TE	Desma dia TE	Salinidad %	D	
	Profundid	ad H40) Kango de In	Promedio In	Kando de 11	Promedio 11	en peso eq.	Profundidad	
_	real	Miner	ral	(n)	ч с	(n)	NaCl	esumada	
_	402	Ca	137 a 140	138 (8)	1.5	+1.5 (8)	N.C.		
	402	Qz	134 a 136	135 (6)	2	+2 (6)	N.C.		
	600	Qz	161 a 168	165 (10)	-0.1	-0.1 (10)	0.16	133	
	801	Qz	202 a 205	203 (10)	-0.1	-0.1 (20)	0.16	262	
	1201	Qz	302 a 305	304 (25)	-0.4	-0.4 (20)	0.66	1362	
	1400	Qz	310 a 312	311 (10)	-0.3	-0.3 (11)	0.49	1463	
	1800	Ca	279 a 294	292 (10)	-0.5	-0.5 (20)	0.82	1098	
_	2100	Qz	287 a 310	310 (22)	-0.8	-0.8 (20)	1.32	1453	
		D					0 1 1	1.0/	
Profu	ndidad	Pozo	Rango de Th	Promedio Th	Rando de Tí	f Promedio	Tf Salinidad	1% Profund	didad
re	al	H41	°C	(n)	°C	(n)	en peso	eq. estima	ada
		Mineral	-	()		()	NaC	1	
39	90	Ca	123 a 133	129 (20)	-3.1 a -3.4	-3.1 (20)	5.01	43	
54	40	Ca	145 a 153	151 (12)	-3.0 a -3.2	-3.1 (12)	5.01	92	
60	00	Qz	172 a 192	183 (15)	-8.3 a -8.5	-8.4 (15)	12.17	/ 173	3
70	00	Qz	220 a 230	227 (18)	-6.6 a -6.6	-6.6 (18)	9.97	385	5
90	00	Qz	293 a 302	297.2 (18)	-5.9 a -6.1	-6.0 (18)	9.19	110	2
10	00	Qz	307 a 318	314.5 (15)	-6.0 a -6.2	-6.1 (15)	9.32	135	3
11	00	Ep	320 a 328	325.3 (13)	-5.6 a -5.8	-5.7 (13)	8.78	167	1
11	80	Oz	330 a 345	338.5 (15)	-5.5 a -5 8	-5.6 (15)	8 65	191	1
14	00	~~ 07	320 a 330	326 5 (20)	-40a-42	-4.1 (20)	6.52	170	7
14	00	₹ <u>₽</u> 07	340 a 345	3/1 5 (20)	-50 - 52	-5.1(20)	7 02	204	3
10	00	Q2	340 a 343	341.3(20)	-3.0 a -3.2	-3.1(20)	1.92	204	0
1/	00	Qz	542 a 559	552.5 (15)	-0.3 a -0.5	-0.3 (15)	9.58	231	U
18	00	Qz	355 a 368	363.5 (10)	-6.2 a -6.4	-6.3 (10)	9.58		

384.5 (12)

378 a 390

-6.9 a <u>-7.1</u>

-7.0 (12)

10.48

1900

Ер

Procesos de Interacción	Agua-Roca en e	l Reservorio Geote	érmico de Alta En	italpía; Los	s Humeros, 1	Puebla, Mé	éxico
-------------------------	----------------	--------------------	-------------------	--------------	--------------	------------	-------

Profundidad real	Pozo H42 Mineral	Rango de Th °C	Promedio Th (n)	Rando de Tf °C	Promedio Tf (n)	Salinidad % en peso eq. NaCl	Profundidad estimada
160	Qz	145 a 150	148 (10)	-0.1 a -1.3	-1.2 (10)	1.98	94
510	Qz	200 a 205	203 (11)	-1.2 a -1.4	-1.3 (11)	2.14	260
610	Qz	215 a 225	221.5 (20)	-7.9 a -8.1	-8.0 (20)	11.7	352
710	Qz	270 a 275	273 (14)	-8.3 a -8.6	-8.5 (14)	12.29	756
810	Qz	295 a 306	298 (28)	-7.8 a -8.2	-8.0 (28)	11.7	1082
920	Ep	300 a 305	301.2 (9)	-8.0 a -8.2	-8.1 (9)	11.82	1160
1010	Ca	294 a 305	300 (28)	-8 a -8.9	-8.7 (28)	12.52	1150
1210	Qz	303 a 310	307 (19)	-7.5 a -7.7	-7.6 (19)	11.22	1241
1510	Ep	325a 335	328.5 (12)	-7.5 a -7.7	-7.6 (12)	11.22	1620
1710	Ep	334 a 345	339 (22)	-7.1 a -7.4	-7.3 (22)	10.85	1981
2110	Ep	374 a 390	384 (17)	-8.9 a -9.2	-9.0 (17)	12.86	
2210	Px	365 a 375	371.6 (6)	-7.9 a -8.2	-8.1 (6)	11.82	
Profundidad	Pozo	Rongo de Th	Dramadia Th	Panda da Tf	Dramadia Tf	Salinidad %	Drafindidad
real	H43 Mineral	°C	(n)	°C	(n)	en peso eq. NaCl	estimada
real 200	H43 Mineral Ca	°C 150 a 162	(n) 158 (20)	°C -4.4 a -4.7	(n) -4.6 (20)	en peso eq. NaCl 7.25	estimada 103
real 200 300	H43 Mineral Ca Qz	°C 150 a 162 168 a 171	(n) 158 (20) 169 (10)	°C -4.4 a -4.7 -6.6 a -6.9	(n) -4.6 (20) -6.8 (10)	en peso eq. NaCl 7.25 10.23	estimada 103 145
real 200 300 400	H43 Mineral Ca Qz Qz	°C 150 a 162 168 a 171 190 a 220	(n) 158 (20) 169 (10) 212.5 (31)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1	(n) -4.6 (20) -6.8 (10) -8.0 (31)	en peso eq. NaCl 7.25 10.23 11.7	estimada 103 145 298
200 300 400 500	H43 Mineral Ca Qz Qz Qz	°C 150 a 162 168 a 171 190 a 220 232 a 253	(n) 158 (20) 169 (10) 212.5 (31) 241 (14)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14)	en peso eq. NaCl 7.25 10.23 11.7 10.73	estimada 103 145 298 528
real 200 300 400 500 605	H43 <u>Mineral</u> Ca Qz Qz Qz Qz Qz	°C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58	103 145 298 528 525
real 200 300 400 500 605 715	H43 Mineral Qz Qz Qz Qz Qz Qz	°C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7	estimada 103 145 298 528 525 610
real 200 300 400 500 605 715 815	H43 Mineral Qz Qz Qz Qz Qz Qz Qz Qz	°C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61	estimada 103 145 298 528 525 610 1432
real 200 300 400 500 605 715 815 905	H43 Mineral Qz Qz Qz Qz Qz Qz Qz Ep	°C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324 325 a 330	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15) 327 (8)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2 -7.3 a -7.5	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15) -7.4 (8)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61 10.98	estimada 103 145 298 528 525 610 1432 1620
real 200 300 400 500 605 715 815 905 995	H43 Mineral Qz Qz Qz Qz Qz Qz Qz Ep Ep	C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324 325 a 330 334 a 340	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15) 327 (8) 336.4 (13)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2 -7.3 a -7.5 -7.2 a -7.5	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15) -7.4 (8) -7.3 (13)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61 10.98 10.85	estimada 103 145 298 528 525 610 1432 1620 1854
real 200 300 400 500 605 715 815 905 995 1055	H43 Mineral Ca Qz Qz Qz Qz Qz Qz Ep Ep Ep	C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324 325 a 330 334 a 340 349 a 358	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15) 327 (8) 336.4 (13) 355 (14)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2 -7.3 a -7.5 -7.2 a -7.5 -8.1 a -8.4	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15) -7.4 (8) -7.3 (13) -8.2 (14)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61 10.98 10.85 10.94	estimada 103 145 298 528 525 610 1432 1620 1854 2107
real 200 300 400 500 605 715 815 905 995 1055 1345	H43 Mineral Qz Qz Qz Qz Qz Qz Qz Ep Ep Ep Ep Qz	°C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324 325 a 330 334 a 340 349 a 358 355 a 360	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15) 327 (8) 336.4 (13) 355 (14) 357 (27)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2 -7.3 a -7.5 -7.2 a -7.5 -8.1 a -8.4 -8.4 a -9.0	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15) -7.4 (8) -7.3 (13) -8.2 (14) -8.9 (27)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61 10.98 10.85 10.94 12.74	estimada 103 145 298 528 525 610 1432 1620 1854 2107
real 200 300 400 500 605 715 815 905 995 1055 1345 1405	H43 Mineral Qz Qz Qz Qz Qz Qz Qz Ep Ep Ep Ep Qz Qz	°C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324 325 a 330 334 a 340 349 a 358 355 a 360 375 a 390	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15) 327 (8) 336.4 (13) 355 (14) 357 (27) 383(10)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2 -7.3 a -7.5 -7.2 a -7.5 -8.1 a -8.4 -8.4 a -9.0 -8.0 a -9.9	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15) -7.4 (8) -7.3 (13) -8.2 (14) -8.9 (27) -8.8 (12)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61 10.98 10.85 10.94 12.74 12.63	estimada 103 145 298 528 525 610 1432 1620 1854 2107
real 200 300 400 500 605 715 815 905 995 1055 1345 1405 1506	H43 Mineral Ca Qz Qz Qz Qz Qz Ep Ep Ep Qz Qz Qz Qz Qz Qz	C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324 325 a 330 334 a 340 349 a 358 355 a 360 375 a 390 379 a 389	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15) 327 (8) 336.4 (13) 355 (14) 357 (27) 383(10) 384.5 (29)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2 -7.3 a -7.5 -7.2 a -7.5 -8.1 a -8.4 -8.4 a -9.0 -8.0 a -9.9 -7.9 a -8.3	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15) -7.4 (8) -7.3 (13) -8.2 (14) -8.9 (27) -8.8 (12) -8.0 (29)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61 10.98 10.85 10.94 12.74 12.63 11.7	103 145 298 528 525 610 1432 1620 1854 2107
real 200 300 400 500 605 715 815 905 995 1055 1345 1405 1506 1605	H43 Mineral Ca Qz Qz Qz Qz Qz Qz Ep Ep Ep Ep Qz Qz Qz Tr	°C 150 a 162 168 a 171 190 a 220 232 a 253 236 a 250 250 a 260 312 a 324 325 a 330 334 a 340 349 a 358 355 a 360 375 a 390 379 a 389 375 a 385	(n) 158 (20) 169 (10) 212.5 (31) 241 (14) 244 (18) 255 (13) 317.5 (15) 327 (8) 336.4 (13) 355 (14) 357 (27) 383(10) 384.5 (29) 380 (14)	-4.4 a -4.7 -6.6 a -6.9 -7.8 a -8.1 -7.0 a -7.3 -7.5 a -8.1 -7.9 a -8.1 -7.0 a -7.2 -7.3 a -7.5 -7.2 a -7.5 -8.1 a -8.4 -8.4 a -9.0 -8.0 a -9.9 -7.9 a -8.3 -8.0 a -8.0	(n) -4.6 (20) -6.8 (10) -8.0 (31) -7.2 (14) -7.9 (18) -8.0 (13) -7.1 (15) -7.4 (8) -7.3 (13) -8.2 (14) -8.9 (27) -8.8 (12) -8.0 (29) -8.0 (14)	en peso eq. NaCl 7.25 10.23 11.7 10.73 11.58 11.7 10.61 10.98 10.85 10.94 12.74 12.63 11.7 11.7	estimada 103 145 298 528 525 610 1432 1620 1854 2107

A partir de las mediciones directas de IF en los pozos H-41 (Figura 15), H-42 y H-43 se determinó para el pozo H-41 a 390 m de profundidad una salinidad de 5.1% en peso eq. de NaCl, esta se incrementó a 12.7% en peso eq. de NaCl después de los 600 m y conforme aumenta la profundidad el fluido se mantiene prácticamente isosalíno con un valor de 9 ± 1% en peso eq. de NaCl a excepción de los 1400 m de profundidad en donde la salinidad disminuye hasta 6.54% en peso eq. de NaCl. Se registró un incremento progresivo en las temperaturas de homogenización de 129 °C a 390 m hasta 384.5°C a 1900 m, implicado un gradiente térmico de 169.2°C/Km.

Figura 15. Microfotografía del pozo H-41, se observan diferentes fases de las IF. En la foto de la izquierda la muestra se ubicó a una profundidad de 605 m (L+V), en la foto del centro la muestra pertenece a profundidad de 900 m (L+V), mientras que la foto de la derecha la muestra es de una profundidad de 1000 m (L+V), las tres muestras se encuentran hospedadas en cuarzo.

El pozo H- 42 (Figura 16) presento una salinidad de 1.98 % en peso eq. de NaCl a 160 m de profundidad está incremento a 11.7 % en peso eq. de NaCl a los 610 m; a mayores profundidades se mantiene en una media de 11.8 % en peso eq. de NaCl, siendo este comportamiento muy similar al del pozo H-41. Las temperaturas de homogeneización fueron de 148 °C a 160 m y de 371 °C a 2210 m.

Para el pozo H- 43 (Figura 17) se determinó una salinidad 7.25 % en peso eq. de NaCl a niveles someros y una salinidad promedio de 11.43 % en peso eq. de NaCl a profundidades mayores. La temperatura de homogeneización incrementa de manera progresiva a medida que aumenta la profundidad, de 158 °C a 200 m a 381 °C a los 1815 m, a partir de esta profundidad solo se observaron IF en estado crítico.

Mediante el uso de diagramas bivariantes se inferirá los fenómenos que intervinieron en la modificación de la salmuera, en esto se grafica la temperatura de homogenización contra la salinidad (Wilkinson, 2012).

Figura 17. Microfotografía del pozo H-43 a una profundidad de 500 m de la muestra, cuyo mineral huésped es un cuarzo. Se puede observar la secuencia de eventos en función de los cambios de temperatura en una IF que van de: a) IF a 25°C en su estado natural con fases L+V; b) deformación de la fase vapor por los hidratos a - 60°C, con fusión final de hielo a TF = -7.2°C; c) IF a 200°C nótese disminución de la fase vapor; d) IF a 230 °C casi a punto de homogeneizar en fase líquida la Th final fue de 245 °C.

Con los datos recopilados de estudios previos al presente trabajo y ajustando la salinidad con base al logaritmo presentado por Bakker (2012) se determinó que las inclusiones fluidas presentan en su mayoría fenómenos de ebullición (H-8, H-15, H-17, H-19, H-29, H-39 y H40), a excepción de los pozos H-4 y H-16 que presentan ebullición con un enriquecimiento de salinidad, posteriormente una dilución posiblemente causada por fluidos superficiales (Figura 18).

Figura 18. Diagrama bivariante, graficando la temperatura de homogénización vs la salinidad de los pozos H-8, H-15, H-17, H-19, H-29, H-39 y H40.

Del análisis del diagrama bivariable que presenta el pozo H-43 muestra una tendencia inicial a la ebullición para después evolucionar a una dilución con fluidos superficiales someros, para el pozo H-42, se obtuvo

la misma tendencia que el H-43, se determinó que el fluido en ebullición se diluye hacia la superficie, originado por la presencia de aguas meteóricas superficiales, para el pozo H-41 se observa como el fluido aumenta su salinidad a los ±300 °C, siguiendo una tendencia similar a la de los pozos H-42 y H-43, finalmente a nivel somero se diluye con fluidos superficiales (Figura 19).

Los pozos mencionados anteriormente están ubicados en la zona productiva sur y son los que presentan mayor salinidad que los pozos de previos estudios (H-4. H-8, H-15, H-16 H-17, H-19, H-29, H-39 y H40), presentan rangos que van de 1.98 a 12.86 % en peso eq. de NaCl. El aumento de salinidad se debe a la presencia de fenómenos de ebullición, generando así la partición de sales dentro de las IF (L+V), y un líquido residual más salino (Wilkinson, 2012).

La ebullición de las IF posiblemente es debido al sistema de fallas que atraviesan los pozos, ocasionando así una despresurización de los fluidos y la ebullición de los mismos cabe mencionar que el pozo H-43 que presento una peculiaridad, IF monofásicas con temperaturas en estado crítico a partir de los 1815 m de profundidad, cabe mencionar que el principal objetivo estructural del pozo fue atravesar un sistema de fallas escalonado constituido por la falla Malpais, Antigua, La Cuesta, un bloque caído al oriente así como el colapso de Los Potreros (Armenta-Flores *et al.*, 2011) esta pérdida sistemática de la presión (pulsos de ebullición) hacia los niveles más someros se ve reflejada por el aumento de la fase de vapor como de

salinidad y una oxidación del sistema en general. Sin embargo este aumento de salinidad no es constante para los pozos H-41 y H-42 a los ±500 m de profundidad se observa una disminución de salinidad de 7 .16 y 9.56 % en peso eq. de NaCl respectivamente; para el pozo H-43 esta disminución en la salinidad se determinó a profundidades más someras ±200 m, reflejando pérdidas de 3.28 % en peso eq. de NaCl, lo cual concuerda con lo obtenido mediante el diagrama bivariante th *vs* salinidad en donde es causado por una dilución por fluidos superficiales de baja salinidad que se encuentran en niveles somero.

Se realizó un diagrama binario con base en los cálculos obtenidos por Cruz-Pérez *et al.*, (2016), del modelo de salinidad variable por ebullición de los sistemas hidrotermales activos y fósiles, a partir de estos datos se graficaron las profundidades reales de los diferentes pozo del CGH *vs* las profundidades estimadas con base a la salinidad y la temperatura.

El modelo de salinidad variable por ebullición considera dos aspectos de relevancia: 1) el aumento de salinidad debido a la perdida de vapor durante la ebullición y 2) el efecto de burbujas de vapor en la presión hidrostática, efecto que no había sido considerado en los anteriores modelos (Haas, 1971; Canet *et al.*, 2011), mejorando así los resultados. La aplicación de este modelo en el sistema hidrotermal vivo como es el caso del CGH proporciona profundidades estimadas que teóricamente deberían alcanzar una precisión del 99%, a excepción de zonas donde existen grandes concentraciones de CO2 en donde se obtendría un error del 30%. La presencia de CO2 en los fluidos geotérmicos provoca el aumento de la presión de vapor a lo largo de la curva liquido-gas, reduciendo así la temperatura de punto de ebullición (Hedenquist y Henley, 1985), ocasionando que el punto de ebullición de las IF se lleve a cabo a mayor profundidad que en ausencia de este gas.

Teóricamente si existe una constate ebullición y aumento de salinidad por la pérdida de vapor en un sistema geotérmico, esto bajo condiciones de nula o baja concentración de CO₂, se obtendría al graficar las profundidades estimadas *vs* las profundidades reales un comportamiento de la gráfica de la siguiente forma: Y = mX + C (5)

Donde **Y** (profundidad estimada) es una función lineal de **X** (profundidad real) y **m** es la pendiente cuya relación es igual a **1**, y **C** puede ser interpretado como el punto donde la recta se intersecta con el eje **Y**, es decir el valor de **Y** cuando **X=o**, cuyo valor teórico seria siempre **o**. De esta forma cualquier variación en la salinidad con respecto a la temperatura durante la evolución del fluido por ebullición afectara la profundidad estimada, lo cual nos indicaría dos fenómenos: **1**) ebullición intensa o mezcla isotérmica con fluidos más salados, fenómeno que se vería reflejado cuando la recta presentara una pendiente con mayor inclinación con respecto a las medidas anteriores, y **2**) el fenómeno detectable es una mezcla

isotérmica con fluidos menos salados o dilución con fluidos superficiales menos salados, lo que provocaría que la recta presente una pendiente negativa con respecto a las medida anteriores.

Es importante mencionar que debido a los márgenes de error del modelo en ebullición de salinidad (Cruz-Pérez *et al.*, 2016) que va de 1 a 30 %, las rectas formada entre mediciones presentaran una variación considerable, y solo en las pendiente muy prolongadas que salgan completamente de la tendencia se puede considerar la existencia de un fenómeno que pudiera modificar la salmuera.

Profundida Real Figura 20. Diagrama bivariante, graficando la profundidad estimada vs la profundidad real de los pozos H-4, H-15, H-16, H-17, H-29, H-39, H-40, H-41, H-42 y H-43.

En el diagrama bivariante en donde se grafica la profundidad estimada vs la profundidad real (Figura 20) se pueden apreciar dos tendencias, la primera se visualiza de manera muy tenue en los pozo H-16, H-29, H-15 y H-43, que corresponde a un aumento de pendiente la cual se aprecia principalmente en el pozo H-4; este aumento de pendiente se da a partir de los 500 m de profundidad hasta los 700 m, el aumento de profundidad puede estar relacionado con una intensa ebullición lo que se ve reflejado en un aumento de salinidad y por consecuencia de profundidad estimada. La segunda tendencia y más perceptible que la anterior es una disminución de profundidad estimada de los pozos H-15, H-16, H-29, H-39, H-40 y H-41, está pendiente negativa comienza de los 1180 a los 1810 m de profundidad, el fenómeno observado en estos pozos puede corresponder a la dilución con una mezcla de agua más fría; sin embargo una ebullición con pérdida de CO2 puede provocar un decremento en la salinidad aparente, dichos

fenómenos fueron anteriormente visualizados por Prol-Ledezma (1998). Estos fenómenos se correlacionan con los diagramas de th*vs* salinidad (Wilkinson, 2012) presentados en las Figuras 18 y 19, donde se observa fenómenos de ebullición y dilución, los cuales proporcionan robustez a los resultados obtenidos en el diagrama propuesto en el presente trabajo (Figura 20). Determinar las zonas de ebullcion en el sistema geotérmicos de Los Humeros es relevante ya que generan grandes proporciones de líquido a vapor y altas entalpias de descarga (Scott *et al.*, 2014). Dichas zonas fueron indicadas por Barragán *et al.*, (1991), y confirmadas mediante este estudio.

VII.I.I Evolución Térmica de los Fluidos

Para comprender la evolución térmica de los fluidos en el CGH, se realizó una comparación de las temperaturas estabilizadas en pozo por el Método Horner (Horner, 1951), y las temperaturas de homogenización (Th °C) promedio obtenidas de las IF, los resultados obtenidos se presentan gráficamente en las Figuras 21 y 22 mediante dos secciones N-S y W-E respectivamente, las cuales atraviesan las zonas productivas del CGH.

La Figura 21 presenta las isotermas de los valores promedio de las Th obtenidos de las IF (líneas azules a 150, 190, 230, 270, 310 y 370 °C) en una sección longitudinal N-S, donde se observan fluctuaciones de temperatura en los fluidos con respecto a la superficie; siendo estas ocasionadas principalmente por los sistema de fallas que atraviesan los pozos por ejemplo: el sistema de fallas que atraviesan los pozos H-39, H-42, H-43 este último presenta mayor movilidad de fluidos calientes con respecto a la superficie, los cuales pasan de 158 °C a los 200 m de profundidad aumentando hasta 384.5 °C a los 1500 m, lo que indica un gradiente geotérmico de 174.23 °C/km en esta zona.

Para la Figura 22, las isotermas obtenidas por las IF (líneas azules a 190, 230, 270 y 310 °C) de la sección longitudinal W-E, muestra que las fluctuaciones de calor son de menor grado, debido principalmente a falta de datos en cuanto a Th de IF, sin embargo se aprecia que la parte oeste de la sección es la zona en donde se alcanzan mayores temperaturas a profundidades someras, mientras que las temperaturas van disminuyendo conforme nos alejamos hacia el este, comportamiento observado tanto en la temperaturas obtenidas en IF como en las temperaturas estabilizadas en pozo (líneas rojas a 190, 230, 270 y 310 °C).

Figura 21. Isotermas de IF y Temperaturas Estabilizadas de la sección longitudinal A-A' de N-S del CGH.

Las temperaturas estabilizadas (líneas rojas a 150, 230 y 310 °C en la sección N-S y 190, 230, 270 y 310 °C) en la sección W-E están por debajo de las temperaturas de homogenización (líneas azules) sugiriendo que el reservorio del CGH se encuentra en enfriamiento ya que el fenómeno inverso implicaría un sistema en calentamiento o que las temperaturas estabilizadas estén ligeramente subestimadas, esto último es muy probable ya que aún no existe un método para estimar las temperaturas estabilizadas correctamente (Espinoza O., 2007).

Los resultados obtenidos en la sección N-S, son contrarios a los expuestos por Tinoco (2008), donde concluyó que el reservorio del CGH se encontraba en calentamiento por el hecho de que las isotermas obtenidas de las temperaturas estabilizadas estaban por encima de las isotermas de las IF. Esta diferencia de resultados se debe a que las temperaturas estabilizadas se pueden obtener generalmente por tres métodos diferentes: 1) Método Horner (MH) propuesto por Horner (1951), 2) Método Esférico radial (MER) propuesto por Ascencio *et al.*, (1994) y 3) Método Cilíndrico (MC) propuesto por Hasan y Kabir (1994), sin embargo en el área de estudio han sido empleados solo los dos primeros métodos (MH y MER) cuya diferencia entre ambos métodos radica en que el MER considera que en la zona perturbada por el pozo la roca es infinita, homogénea e isotrópica con propiedades termofísicas constantes y desprecia la convección en el pozo, siendo estas condiciones en la naturaleza imposibles de alcanzar, mientras que el método Horner se basa en un constante e infinita fuente de calor en una sección transversal que representa la perforación a pozo cerrado (sin circulación), donde la variables de la ecuación son la temperatura del pozo, el tiempo, el radio del pozo y la difusividad térmica de la formación (Andaverde *et al.*, 2004).

Las diferencias entre los métodos para la obtención de temperaturas estabilizadas en pozos geotérmicos, fue prevista y evaluada bajo métodos estadísticos y modelos de regresión por Andaverde *et al.*, (2004), donde con base en los resultados el Método Esférico Radial (MER), sobreestima las temperaturas hasta en un 10%, por lo que no es recomendable para la aplicación en sistemas geotérmicos, mientras que los métodos Horner y Cilíndrico proporcionan temperaturas más cercanas a las reales. Por lo anteriormente expuesto, para este trabajo se decidió utilizar el método Horner (MH) para obtener las temperaturas estabilizadas, por lo tanto los resultados obtenidos a partir de este son significativamente diferentes al resto de los trabajos ya publicados.

Figura 22. Isotermas de IF y Temperaturas Estabilizadas de la sección longitudinal B-B' de W-E del CGH.

VII.II Petrografía y Mineragrafía

Las descripciones petrográficas y mineragráficas se realizaron con la finalidad de distinguir las principales fases minerales primarias y de alteración hidrotermal, aspectos texturales, abundancia y grado de alteración hidrotermal, usando 16 secciones delgadas y briquetas pulidas. Se sintetizo la información petrográfica y mineragráfica de cada una de las muestras (Tabla 5), correspondientes a los diferentes pozos, las fichas del análisis se pueden observar en el **Anexo II**. Cabe mencionar que la nomenclatura de las muestras no corresponde directamente al pozo en estudio, en la Tabla 4 cuenta con la correcta correspondencia tanto en el pozo en estudio como en la profundidad de la muestra.

Tabla 4. Numero de pozo y profundidad de las muestras analizadas mediante petrografía y mineragrafía.

Pozo Geotérmico H-5 H-23 H-23 H-23 H-25 H-25 H-38 H-38 H-38 H-38 H-39 H-39 H-39 H-39 H-39 H-40 H-4 Profundidad (m) 225 1201 1025 2406 1710 2300 1102 1500 1053 1902 1200 1650 1900 2100 1612 240	Muestra	GH-01	GH-02	GH-03	GH-04	GH-05	GH-06	GH-07	GH-08	GH-09	GH-10	GH-11	GH-12	GH-13	GH-14	GH-15	GH-16
Profindided (m) 225 1201 1025 2406 1710 2200 1102 1500 1053 1802 1200 1650 1800 2100 1612 210	Pozo Geotérmico	H-5	H-23	H-23	H-23	H-25	H-25	H-38	H-38	H-38	H-38	H-39	H-39	H-39	H-39	H-40	H-40
Fromining (III) 323 1201 1923 2490 1710 2300 1105 1300 1933 1803 1200 1030 1800 2100 1012 210	Profundidad (m)	325	1201	1925	2496	1710	2300	1103	1500	1953	1803	1200	1650	1800	2100	1612	2100

	T:	Análisis Petrográfico - Mineralográfico						м		Minerales Producto de Alteración Hidrotermal								
Muestra	Tipo de roca		Analis	sis Pe	trogra	iico - Miin	eraloş	granco		IVI	atriz –		P	etrograf	ĭa		Miner	agrafía
		Cpx	Opx	Plg	Felk	Frag-rx	Bt	Ilm	Mag	Vidrio	Microlito	Cc	Qz	Ser	Clo	Ep	Hm	Ру
GH-01	Toba cristalina	х	х	х			х				х	х	х	х			х	х
GH-02	Andesita	х		х	х		х	х	х	х		х	х				х	
GH-03	Andesita		х	x			х	х	х	х		х	х			х	х	x
GH-04	Andesita		х	х	х					х			x	х		х	х	x
GH-05	Andesita - Basalto	х	х	x			х	х			х					х		х
GH-06	Andesita	х	х	x			х				х	х		х		х	х	x
GH-07	Andesita			x						х		х	x		х		х	x
GH-08	Andesita	х	х	x						х			х			х	х	х
GH-9	Toba lítica	х	х			х	х			х		х	х			х	х	х
GH-10	Andesita	х		x			х			х		х	х			х	х	х
GH-11	Andesita	х	х	x						х		х	х			х		х
GH-12	Andesita			x				х		х			х			х	х	
GH-13	Andesita		x	x								х	х	х	x	х	х	x
GH-14	Andesita			x						х		х		x		х	х	х
GH-15	Toba vítrea			x		х				х		х			х	х		х
GH-16	Basalto			x						х		х				х	х	х

Tabla 5. Síntesis del análisis petrográfico y mineragráficos de diversas muestras del CGLH.

Las fases más abundantes de minerales transparentes son las plagioclasas con una abundancia relativa entre el 50 y 70 %, presentándose como fenocristales euhedrales a subeuhedrales con tamaños que varían de 100 – 1000 micras (µ), comúnmente las plagioclasas exhiben maclado tipo albita y carlsbad con fracturas y bordes corroídos debido principalmente a la alteración hidrotermal a la que son expuestas, presentando en muchos casos reemplazamiento de epidota, se presentan también clinopiroxenos

(augita) y ortopiroxenos (enstatita) y en menor grado feldespato alcalino. Las muestras presentan tres texturas generales porfídicas, microlíticas y afaníticas (Figuras 23-A,B,E,F;24-A,B,E,F;25-A,B,E,F y 26-A,B,E,F).

Las fases de minerales opacos primarios solo se observan ilmenita y magnetita mientras que los minerales neoformados como la hematita y pirita son más abundantes que los anteriores. En cuanto a la mineralogía de alteración hidrotermal está constituida principalmente por epidota y en menor grado calcita, cuarzo, sericita y clorita, formando cristales de anhedrales a subeuhedrales (Figuras 23-C,D,G,H;24-C,D,G,H;25-C,D,G,H y 26-C,D,G,H).

Figura 23. Microfotografías de la muestra GH-1 (toba cristalina) perteneciente al pozo H-5 a 325 m de profundidad. A y E en luz trasmitida (LPP) y B, F en nicoles cruzados (LPA) las muestras presentan textura microlítica ofítica, con presencia de cristales subeuhedrales a anhedrales de plagioclasas (PI), ortopiroxenos (Cpx) y clinopiroxenos (Cpx), el cuarzo se presenta rellenando cavidades. En C, D, de briquetas pulidas se observa la presencia abundante de hematita y en G y H pirita en proporciones mucho menor. La alteración presente es de tipo sericítica observable en las muestras B y F.

Figura 24. Microfotografías de la muestra GH-6 (andesita) perteneciente al pozo H-25 a 2300 m de profundidad. A y E en LPP, B y F en LPA presentan textura microlítica ofítica con presencia de cristales subeuhedrales de plagioclasas con bordes corroídos y parcialmente alterados a epidota, en E y F existe también la presencia de clinopiroxeno. En C y G se observa la presencia de minerales neoformados de hm y py, mientras que las muestras D y H solo se observa magnetita.

Figura 25. Microfotografías de la muestra GH-13 (andesita) perteneciente al pozo H-39 a 1800 m de profundidad. A y E en LLP presentan fenocristales de horblenda (hbl) alterada, con una matriz microlítica de plagioclasas con reemplazamiento de epidota en B y F en LPA. En C, D, G y H se observa pirita y hematita como minerales neoformados, presentando una zona con oxidación moderada.

Figura 26. Microfotografías de la muestra GH-4 (andesita) perteneciente al pozo H-23 a 2496 m de profundidad. A y E en LPP, B y F en LPA presentan textura porfídica, con cristales subhedrales fracturados de plagioclasas en A y B donde la epidota (Ep) se encuentra reemplazando la Pl, mientras que E y F presentan abundante epidota y cuarzo rellenando cavidades. En C, D, G y H se presenta minerales opacos mayormente de ilmenita seguido de magnetita con minerales neoformados de hematita y pirita. La alteración presente es de tipo propilítica (Ep)

En el CGH la paragénesis mineral de alteración hidrotermal depende en gran parte de la temperatura (Figura 27), la cual se encuentran emplazados generalmente en fracturas y/o microfracturas y en vuggs, fenómenos previamente visualizados por Martínez-Serrano & Alibert, (1994) y Prol-Ledesma, (1998).

Con base en los datos anteriormente publicados (Viggiano & Robles, 1988a; Prol-Ledesma, 1991; Izquierdo 1993; Martínez-Serrano & Alibert, 1994; Prol-Ledesma, 1998; Tinoco, 2008) y los datos adquiridos en el presente estudio, los minerales de alteración están distribuida de la siguiente manera: La zona I o zona argílica (<600 m) con la presencia de zeolitas, calcita y óxidos. La zona II es de tipo propilítica (600 – 1700 m) con presencia de epidota, clorita, calcita, cuarzo y sulfuros. La zona III (>1815 m) está presente solo en ciertos sectores del campo geotérmico como es el caso del pozo H-43 donde las temperaturas superan los 350°C, en este se presentan minerales de alteración como la pirofilita, sericita, anhidrita, biotita y pirrotita. Finalmente en la zona IV y más profunda (>1700 m) con la presencia de calcita, diopsida, wollastonita, calcopirita, etc. La pirita es el mineral más abundante a través de la secuencia volcánica alterada.

La depositación de minerales hidrotermales ocurre principalmente en la Unidad III descrita en la geología local como productos de vulcanismo pre-calderico, lo que indica una fuerte interacción agua-roca. Las unidades I y II también han sido alteradas, pero debido a su baja permeabilidad (Viggiano y Gutiérrez, 1988a), la intensidad de alteración hidrotermal es escasa y actuando más como rocas relativamente impermeables. Las rocas encontradas en la Unidad II (600 – 1 200 m) actúan como la capa sello del reservorio más profundo, el cual se encuentra localizado en la Unidad III.

-INCREMENTO DE LA TEMPERATURA-

Figura 27. Zonamiento mineralógico de minerales de alteración transparentes y opacos del CGH. Modificado de Viggiano y Robles (1988a), Prol-Ledesma y Browne (1989), Prol-Ledesma (1991), Izquierdo (1993), Martínez-Serrano y Alibert (1994), Prol-Ledesma (1998) y Tinoco (2008).

VII.III Caracterización de la Alteración Hidrotermal Superficial

La caracterización cualitativa de la mineralogía de alteración hidrotermal superficial del CGH, se llevó a cabo a partir de las técnicas de difracción de rayos x (DRX) y espectroscopia de reflectancia de onda corta (SWIR), el uso de ambas técnicas complementan los resultados, debido a que la técnica de SWIR no identifica minerales que carezcan de enlaces OH, H₂O, SO₄, etc., como el cuarzo, cristobalita, hematita, albita, etc., los cuales son identificables por la técnica de DRX. Los resultados de las 12 muestras especiales de rocas alteradas obtenidas mediante SWIR y DRX se muestran en la Tabla 6:

Muestra	Relacion Litologica -	Estilo y Grado de Alteración	Minerales	Identificados	- Tino de Alteración
Widestia	Estructural	Estilo y Glado de Alteración	SWIR	DRX	npo de Alteración
EG-01	Basalto Alterado	Alteración pervasiva de intensidad debil	Sme, Kao	Kao, Mont, Qz	Argílica Avanzada
EG-02	Basalto Alterado	Alteración pervasiva de intensidad moderada	Sme	Qz, Mont, Kao, Crt	Argílica Avanzada
EG-03	Fuente activa	Alteracion pervasiva de intensidad fuerte	Sme, Op	Qz, Mont,	Argílica
EG-04	Falla Las Habas	Alteración pervasiva de intensidad moderada	Sme	Qz, Cc	Argílica
EG-05	Fuente activa	Alteracion pervasiva de intensidad fuerte	Sme	Qz, Kao	Argílica
EG-06	Fallas Arroyo Grande	Alteración no pervasiva de intensidad moderada	Sme, Op	Qz, Cc	Argílica
EG-07	Falla Xalapazco	Alteración pervasiva de intensidad debil	Sme, Dick	Crt, Hma, Alb	Silícica
EG-08	Falla Xalapazco	Alteración pervasiva de intensidad debil	Sme, Op	Qz, Gy	Argílica
EG-09	Fallas Arroyo Grande	Alteración pervasiva de intensidad moderada	Sme, Dick	Gy, Jrs	Argílica avanzada - acido-sulfato (Jarosita)
EG-10	Falla Humeros	Alteración selectiva con control estructural	Sme, Dick	Qz, Alu	Argílica avanzada - acido-sulfato (alunita)
EG-11	Falla Humeros	Alteración selectiva con control estructural	Dick, Op	Qz, Cc	Silícica
EG-12	Fuente activa	Alteracion pervasiva de intensidad fuerte	Sme, Op	Qz, Alu	Argílica avanzada - acido-sulfato (alunita)

Tabla 6. Composición mineralógica obtenida por espectroscopia de reflectancia de onda corta (SWIR) y difracción de rayos X (DRX).

VII.III.I Difracción de Rayos X (DXR)

Los minerales identificados mediante DRX, que son el resultado de los procesos de interacción agua-roca llevados a cabo en la superficie del CGH fueron los siguientes: caolinita, montmorillonita, cuarzo, cristobalita, calcita, hematita, albita, alunita, jarosita y yeso (Figura 28). Las asociaciones hidrotermales presentaron preferencia a una determinada litología, en el caso de la caolinita ± montmorillonita ± cuarzo se presentó en los basaltos, la alunita ± cuarzo se presentó solo en las andesitas, el cuarzo se hizo presente en las diferentes litologías principalmente en rocas que presentaban alteración pervasiva, la calcita ± cuarzo se presentó principalmente en tobas.

Figura 28. Espectros de los principales minerales de alteración obtenidos por DRX de las 12 muestras especiales de rocas alteradas del CGLH. Montmorillonita (Mont), caolinita (kao), cuarzo (Oz), calcita (Cc), yeso (Gy), alunita (Alu), cristobalita (Crt), jarosita (Ja), hematita (Hm) y fases minerales como plagioclasas; albita (Alb) y anortita (An).

VII.III.II Espectroscopia de Reflectancia de Onda Corta (SWIR)

De resultados obtenidos por el SWIR se determinó principalmente la presencia de esmectita en 11 de las 12 muestras especiales de roca alteradas (Figura 30), el ópalo se detectó principalmente en rocas que mostraron alteración pervasiva (alteración argílica – silícica), la caolinita predomino en basaltos y finalmente la dickita se presentó en basaltos, andesitas y tobas. Estos resultados son congruentes con lo obtenido mediante DRX, por lo que se infiere que la alteración hidrotermal a la que están sometidas dichas rocas varia de argílica, silícica, argílica avanzada y argílica avanzada - acido-sulfato ya sea con la presencia de alunita o jarosita según sea el caso, como producto de la alteración de fases minerales primarias (plagioclasas, piroxenos, feldespatos, magnetita, vidrio volcánico, etc.) con aguas acido sulfatadas, produciendo ensambles de minerales secundarios dominantemente por sílice amorfa, sulfatos de Ca/Fe/Al, filosilicatos (grupo de la caolinita y esmectitas) y óxidos (hidróxidos) de Fe.

Los resultados obtenidos mediante SWIR (Figura 29) reflejan una mezcla de fases debido a la gran cantidad de curvas presentes en el espectro, pertenecientes a diferentes grupos funcionales. Se identificó el grupo OH el cual está relacionado a las arcillas, específicamente el OH-Al con lo que se determinó que se trata de caolinita $(Al_2Si_2O_5(OH)_4)$ la cual se presentó en una sola muestra (EG-01) cuyo espectro característico presenta dos absorciones dobles, una en un rango de 2176 y 2215 nm y la segunda en 1434 y 1483 nm, la primer absorción corresponde a enlace AL-OH y la segunda a la vibración de H₂O molecular; la presencia de caolinita se confirmó mediante DRX. Por otro lado se encontro el grupo Si-O perteneciente a los silicatos en este caso se trata del ópalo (SiO₂.nH₂O) este presenta dos absorciones pronunciadas asimétricas con mínimos de reflectancia, con un primer rango de 1905 a 1927 mn y el segundo de 1410 a 1448 nm, que corresponden a aqua molecular y aqua ligada respectivamente (Canet et al., 2015) cuya presencia de ópalo fue confirmada por DRX con asociación de cuarzo y cristobalita (Tabla 6). Un mineral de alteración presente en 11 de las 12 muestras es la esmectita, cuyo espectro produce una absorción característica en 1410 nm y una reflectancia mínima a los 2210 a 2218 nm el cual corresponde a enlaces Al-OH otra absorción característica de esta ocurre a 1910 mn esto debido al aqua molecular y otra menos pronunciada y solo vista en algunas muestras a 2350 nm por enlaces Mg-OH, la presencia de esmectita se confirma por la presencia de montmorillonita, dickita y caolinita obtenida mediante DRX (Canet et al., 2015).

Con los resultados obtenidos mediante DRX y SWIR se realizó la clasificación de la alteración hidrotermal en base a las asociaciones minerales presentes en argílica, argílica avanzada, silícica y argílica avanzada – acido-sulfato ya sea con presencia de jarosita o alunita (Tabla 6). La alteración silícica está representada por cristobalita y ópalo, los cuales fueron identificados mediante DRX y SWIR respectivamente. Esta asociación indica temperaturas debajo de 150° C y condiciones de pH cercano al neutral (Henley y Ellis, 1983; White y Hedenquist, 1995). La alteración argílica avanzada está representada por asociaciones de caolinita, dickita, alunita, este tipo de asociación comúnmente es encontrada en depósitos epitermales de alta sulfuración; sin embargo en depósitos epitermales de baja sulfuración y sistemas geotérmicos esta se presenta asociada también a cristobalita, jarosita y ópalo ocasionada por una sobreimpresión debido al calentamiento de vapor por encima de la capa freática, asociado a la disolución y oxidación de H₂S en el condensado de vapor o agua superficial, bajo condiciones de pH ácido (2-3) y temperaturas alrededor de 100°C (White & Hedenquist, 1995; González-Partida *et al.*, 2005). La afluencia de gas H₂S (H₂S + 2O₂ = H₂SO₄) derivado del vapor, produce a su vez aguas acidas sulfatadas (Carson, 2015).

Mineral	Formula	Ocurrencia	DRX	SWIR
Caolinita	Al ₂ Si ₂ O ₅ (OH) ₄	Localizada en areas activas en pH aproximados a 4 en condiciones de temperarura <150-200 °C, asociada con montmorillonita ± cuarzo	х	х
Montmorillonita	$(Na,Ca)_{0,3}(Al,Mg)_2Si_4O_{10}(OH)_2 \bullet nH_2O$	Asociada principalmente a caolinita \pm cuarzo indicando alteracion argilica	х	х
Dickita	$Al_2Si_2O_5(OH)_4$	Asociada principalmente a alunita \pm caolinita \pm jarosita como fase accesorio, esta asociacion indica un grado extremo de hidrolisis		х
Esmectitas	Variable	Aparece todas las muestras, con asociaciones diferentes		х
Opalo	SiO ₂ •nH ₂ O	Aparece en asociaciones de cristobalita \pm cuarzo, cuyos minerales son estables en fluidos con pH <2 tipicamente a t° <100 °C		X
Cristobalita	SiO ₂	Comunmente formado en ambientes superficiales de un sistema hidrotermal, se presenta en asociacion con el opalo \pm esmectitas	X	
Cuarzo	SiO ₂	Aparece practicamente en todas las muestras, con asociaciones diferentes, cuya formacion esta siempre por encima de los 100 °C	Х	х
Calcita	CaCO ₃	Aparece asociada con esmectitas, se presentan en un amplio rango de pH	х	
Hematita	Fe ₂ O ₃	Aparece como producto de la oxidacion, posiblemente a una disminucion de la actividad de H_2S	х	
Albita	NaAlSi ₃ O ₈	Su presencia indica bajo grado de hidrolisis de los minerales de las rocas	X	
	Minerales acido	p-sulfato identificados		
Alunita	KAl ₃ (SO ₄) ₂ (OH) ₆	Zonas calentadas por vapor en baja sulfuracion, asocida con esmectita ± dickita ± cuarzo propia de la alteracion argilica avanzada	X	
Jarosita	$KFe_3^{+3}(SO_4)_2(OH)_6$	Localizado en areas de mediana activida, junto con yes o \pm esmectita \pm dickita	х	
Yeso	$CaSO_4 \cdot 2H_2O$	Precipita regularmente en areas de baja y alta actividad, asociado con jarosita \pm opalo \pm esmectita	х	

Tabla 7. Ocurrencia de los principales minerales de alteración del CGLH en base a los obtenidos por espectroscopia de reflectancia de onda corta (SWIR) y difracción de rayos X (DRX).

El CGH al no presentar pozas de lodo (mud pots), manantiales calientes (hot springs), ni descargas laterales, pero si zonas con escapes de vapor en forma de fumarolas y suelos calientes vaporizantes, manifestaciones que son liberadas en pequeñas cantidades de vapor a través de suelos porosos, con

temperaturas de entre $50 - 89^{\circ}$ C (Tinoco, 2009), por lo la alteración hidrotermal es originada principalmente a la interacción de vapor de origen profundo con aguas someras y a la circulación de fluidos por las fallas principales del sistema (Tello-Hinojosa, 2005), las asociaciones de alteración superficial identificadas en el presente estudio mediante DRX y SWIR son para rocas sin aparente fallamiento o fuente activa cercana esmectitas ± caolinita ± cuarzo ± cristobalita, para la zonas de alteración con control estructural muestran un mayor contenido de SiO₂ e incluye ópalo ± cristobalita ± cuarzo ± esmectitas ± dickita ± calcita y para las zonas activas (fumarolas) las asociaciones contiene minerales sulfatados alunita ± jarosita ± yeso ± esmectitas ± dickita + ópalo, los anteriores asociaciones indica que la alteración es producida por la segregación de vapor rica en volátiles como CO₂, H₂Sy H₂ (gas), gases que son separados de un cuerpo de agua debido a fenómenos de ebullición discutidos en la sección de IF en el presente trabajo donde principalmente es debido a la despresurización provocada por el sistema de fallas, posterior a la fase de segregación, la sublevación de vapores ricos en componentes volátiles reaccionan con aguas oxigenadas subterráneas produciendo aguas sulfatadas acidas con base a la siguiente reacción:

$$H_2S + 2O_2 = 2H^+ + SO_4^{2-}$$

Produciendo tres distintos grupos de agua geotérmica superficial basado en su composición: aguas ricas en NaCl (pH>8), aguas acido sulfatadas derivadas del vapor rico en volátiles (pH<4) y aguas geotérmicas mixtas (Carson, 2015), las cuales controlan la interacción agua - roca superficial. Se ha comprobado en diversos campos geotérmicos (Krafla, Námafjall) que la interacción de aguas sulfatadas con rocas básicas – intermedias produce ensambles mineralógicos característicos de alteraciones argílica, argílica avanzada y silicificación (Stefánsson, 1981; Carson, 2015).

Figura 29. Espectros representativos de los principales minerales de alteración obtenidos por espectroscopia de reflectancia (SWIR) de las 12 muestras de rocas alteradas del CGLH. Esmectita (Sme) cuyo espectro característico está marcado en gris claro, Caolinita (Kao), ópalo (Op), dickita (Dick).

Figura 30. Fotografías de muestras especiales, EG-01 basalto alterado, EG-02 basalto con un grado de alteración mayor, EG-03 roca con alteración pervasiva-intensa, EG-04 roca alterada de la Falla Las Habas, EG-07 roca con alteración pervasiva-intensa, EG-08 roca alterada de la Falla Xalapazco, EG-10 roca con minerales de alteración como esmectita, dickita y cuarzo, EG-11 roca con alteración argílica avanzada (falla Humeros) y finalmente la muestra EG-12 roca con alteración pervasiva con minerales de alteración como esmectita, ópalo yeso y jarosita.

Los minerales identificados como la esmectita, ópalo, caolinita y dickita, son fases de minerales reportados en otros sistemas geotérmicos en México (Acoculco, Azufres, La Primavera, etc.), y en depósitos epitermales cuya asociación indica alteración argílica avanzada (Stefánsson, 1981; Carson, 2015; Canet et al., 2015). En el caso del ópalo generalmente se produce en asociación con tridimita y anatasa cabe mencionar que estos minerales no fueron identificados mediante SWIR o DXR pero no se descarta su ocurrencia en el CGH la caolinita tiene mayor presencia en manifestaciones superficiales activas y se asocia a dickita, alunita, montmorillonita y a illita/esmectita, minerales si identificados mediante SWIR y DRX. Los minerales como ópalo, caolinita, esmectita y dickita son indicadores de condiciones específicas (pH ácido entre 2-4 y temperaturas <150°C) que rigen las reacciones agua-rocas que se están llevando a cabo en el CGH.

VII.IV Geoquímica

VII.IV.I Elemento Mayores de la Alteración Hidrotermal Superficial

Se le llama elementos mayores a aquellos que se presentan en altas concentraciones (>1% en peso), son estos controlan en gran medida la cristalización del magma. Se representan en forma de óxidos (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O y P₂O₅) y por lo general son utilizados en diagramas para la clasificación de rocas (TAS, AFM, Peacock) y diagramas de variación (Harker) estos son aplicables únicamente cuando la roca no presente ningún tipo de alteración hidrotermal. Los resultados del análisis geoquímico de elementos mayores de las 15 muestras especiales se muestran en la Tabla 8. Es de importancia mencionar que todas las rocas de EG-1 a EG-12 presentan algún tipo y grado de alteración, y solo EG-13, 14 y 15 son rocas inalteradas y cogenéticas de las alteradas, es importante señalar que la muestra EG-15 muestro un pequeño grado de alteración asociado a oxidación superficial.

Tabla 8. Composición de elementos mayores de las 15 muestras de roca alterada de superficie. Las muestras en azul corresponden a rocas inalteradas. El Hierro total viene expresado como Fe₂O₃.

Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	PXC	Suma
					%)						
EG-01	43.53	1.02	18.70	6.09	0.02	0.31	7.51	1.76	1.54	0.25	19.25	99.96
EG-02	79.80	1.26	6.75	2.13	0.03	0.53	1.21	0.71	0.72	0.25	6.56	99.94
EG-03	38.43	0.64	1.81	0.25	0.01	0.06	0.12	0.02	0.29	0.03	58.33	99.97
EG-04	62.82	0.58	18.22	3.38	0.05	0.59	0.96	0.52	2.63	0.09	10.10	99.93
EG-05	67.29	0.93	16.51	2.89	0.06	0.29	0.80	0.18	1.62	0.06	9.30	99.93
EG-06	64.92	0.52	15.92	3.01	0.06	0.79	1.88	3.61	4.20	0.14	4.87	99.92
EG-07	53.85	0.64	5.19	7.83	0.01	0.10	14.99	0.32	2.35	0.19	14.50	99.96
EG-08	61.35	0.96	16.89	5.26	0.09	2.24	4.55	4.15	2.17	0.26	2.00	99.92
EG-09	47.76	0.72	17.95	11.73	0.01	0.17	0.22	1.03	1.31	0.28	18.78	99.94
EG-10	54.78	0.86	17.21	2.63	0.02	0.31	0.59	1.43	3.07	0.24	18.79	99.93
EG-11	65.85	0.95	15.15	3.34	0.05	1.30	2.60	3.37	2.84	0.25	4.21	99.91
EG-12	74.62	0.86	10.90	2.47	0.04	0.46	0.71	0.37	2.14	0.08	7.23	99.88
EG-13	48.56	1.51	17.15	10.47	0.16	8.56	10.22	3.27	0.36	0.20	-0.58	99.89
EG-14	56.81	1.34	16.93	7.89	0.12	3.60	6.98	4.24	1.75	0.32	-0.11	99.87
EG-15	60.50	1.52	13.90	8.20	0.07	1.13	3.37	2.45	1.77	0.33	6.71	99.93

VII.IV.I.I Índices de Alteración

Se determinó el grado de alteración de las 12 muestras especiales que presentan hidrotermalismo para esto se hizo uso del Índice Químico de Alteración (IQA) este parámetro se utiliza para discriminar procesos de intemperismo reciente y la alteración hidrotermal en sistema hidrotermales fósiles, sin embargo en un sistema hidrotermal activo el IQA se ha utilizado para determinar la alteración argílica avanzada cuando los valores son cercanos o mayores a 80 (Nesbitt & Young, 1982). El IQA se basa en la inmovilidad del Al durante los procesos de alteración por intemperismo o hidrotermal este parámetro se calcula a partir de la siguiente formula (Ishikawa *et al.*, 1976):

$$IQA = \frac{100 \times Al_2O_3}{(Al_2O_3 + Na_2O + K_2O + CaO)}$$
(1)

Con base a los resultados obtenidos del cálculo del IQA (Tabla 9), las muestras que presentan alteración argílica avanzada son EG-03, EG-04, EG-05 y EG-09, las cuales fueron tomadas en fuentes activas (fumarolas) y zonas de intensa alteración. Las muestras del espejo de la falla de Los Humeros EG-10 y EG-12 aunque no presentan valores >80 en el IQA se encuentran muy cercanos a este valor; sin embargo de acuerdo a los resultados obtenidos por DRX y SWIR las asociaciones minerales de estas muestras nos indican una alteración argílica avanzada.

Tabla 9. Índice Químico de Alteración (IQA) de las 12 muestras superficiales de alteración

Muestra	EG-01	EG-02	EG-03	EG-04	EG-05	EG-06	EG-07	EG-08	EG-09	EG-10	EG-11	EG-12
IQA	63.37	71.95	80.94	81.63	86.39	62.16	22.72	60.82	87.53	77.17	63.21	77.16
Existe otro parámetro que se usa para determinar el índice de silicificación (IS), este mide relativamente												
el agotamiento del Al con respecto al enriquecimiento de Si, y se puede realizar el cálculo de este												
parámetro	o a parti	r de la si	guiente	formula	a (Ishika	wa et al	., 1976):					

$$IS = \frac{100 \times SiO_2}{(SiO_2 + Al_2O_3)}$$
(2)

Tabla 10. Índice de Silicificación (IS) de las 12 muestras superficiales de alteración.

Muestra EG-01 EG-02 EG-03 EG-04 EG-05 EG-06 EG-07 EG-08 EG-09 EG-10 EG-11 EG-12 IS 69.95 92.20 95.51 77.51 80.30 80.31 91.21 78.42 72.69 76.09 81.30 87.25 Los resultados obtenidos del IS nos indica que las muestras que presenta silicificación son EG-02, EG-03, EG-05, EG-06, EG-07, EG-11 y EG-12 el obtener un alto índice de silicificación indicaría un empobrecimiento con respecto al Al. Los resultados determinados son congruentes con el índice químico de alteración (Pirajno, 2009). La silicificación es producto de un intenso metasomatismo de H+ y una lixiviación acida de minerales aluminio-silicatos que puede dar un enriquecimiento de sílice (calcedonia, ópalo, cuarzo, etc.).

El índice de alteración (Pirajno, 2009) se resume de la siguiente forma:

$$Indice \ de \ Alteracion = \frac{Elemento \ Enriquecido}{Elemento \ enriquecido + Elemento \ Empobrecido} \times 100$$

El elemento enriquecido guarda una estrecha relación con el elemento empobrecido, debido a que ambos forman parte de la misma ecuación química en donde uno sustituye al otro durante la alteración hidrotermal.

Otra forma de hacer una aproximación al grado de alteración al que pudieron estar sujetas las rocas es por medio del valor de perdida por calcinación que se reporta en la Tabla 8, referido como PXC (Pilar-

Martínez, 2015), los valores obtenidos en las muestras de CGH son considerados altos con un máximo de 58.33% para las rocas alteradas, lo que indica gran contenido de H₂O probablemente en minerales sulfatados hidratados o arcillas. Cabe señalar que el Al es empobrecido en depósitos silícicos de moderada actividad superficial, mientras que en áreas donde la caolinita se hace presente se exhibe un enriquecimiento en Al, de esta forma la movilidad del Al está limitada por las zonas que están constituidas principalmente por caolinita, esmectitas y montmorillonita identificados por SWIR y DRX.

VII.IV.I.II Diagramas de Variación de Elementos Mayores

Se realizaron diagramas bivariantes o "diagramas de tipo Harker", esto se hizo con la finalidad de encontrar parámetros que muestren variaciones sistemáticas, que permitan inferir los procesos de enriquecimiento o empobrecimiento durante la alteración hidrotermal superficial del CGLH de manera gráfica. Para la obtención de estos diagramas se utilizaron los datos de la Tabla 11, que cuenta con los valores de los elementos mayores de las rocas inalteradas e alteradas.

Litologia	Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	PXC	Suma
			%										
R. Alterada	EG-01	43.53	1.02	18.70	6.09	0.02	0.31	7.51	1.76	1.54	0.25	19.25	99.96
R. Alterada	EG-02	79.80	1.26	6.75	2.13	0.03	0.53	1.21	0.71	0.72	0.25	6.56	99.94
R. Alterada	EG-04	62.82	0.58	18.22	3.38	0.05	0.59	0.96	0.52	2.63	0.09	10.10	99.93
Basalto - Andesita	EG-13	48.56	1.51	17.15	10.47	0.16	8.56	10.22	3.27	0.36	0.20	-0.58	99.89
R. Alterada	EG-07	53.85	0.64	5.19	7.83	0.01	0.10	14.99	0.32	2.35	0.19	14.50	99.96
R. Alterada	EG-08	61.35	0.96	16.89	5.26	0.09	2.24	4.55	4.15	2.17	0.26	2.00	99.92
Andesita	EG-14	56.81	1.34	16.93	7.89	0.12	3.60	6.98	4.24	1.75	0.32	-0.11	99.87
R. Alterada	EG-03	38.43	0.64	1.81	0.25	0.01	0.06	0.12	0.02	0.29	0.03	58.33	99.97
R. Alterada	EG-05	67.29	0.93	16.51	2.89	0.06	0.29	0.80	0.18	1.62	0.06	9.30	99.93
R. Alterada	EG-10	54.78	0.86	17.21	2.63	0.02	0.31	0.59	1.43	3.07	0.24	18.79	99.93
R. Alterada	EG-11	65.85	0.95	15.15	3.34	0.05	1.30	2.60	3.37	2.84	0.25	4.21	99.91
R. Alterada	EG-12	74.62	0.86	10.90	2.47	0.04	0.46	0.71	0.37	2.14	0.08	7.23	99.88
Andesita - Basalto	EG-15	60.50	1.52	13.90	8.20	0.07	1.13	3.37	2.45	1.77	0.33	6.71	99.93
R. Alterada	EG-06	64.92	0.52	15.92	3.01	0.06	0.79	1.88	3.61	4.20	0.14	4.87	99.92
R. Alterada	EG-09	47.76	0.72	17.95	11.73	0.01	0.17	0.22	1.03	1.31	0.28	18.78	99.94
Toba	TC-13A	66.10	0.67	16.82	4.18	0.08	0.97	2.14	5.21	3.67	0.17	3.58	100.01

Tabla 11. Elementos Mayores de las muestras de roca alterada (RA) de superficie y su correspondiente roca inalterada (RI). Los análisis de la muestra TC-13A fue tomado de Dávila-Harris y Carrasco Núñez, 2014. El Hierro total viene expresado como Fe₂O₃.

Los diagramas de variación química de elementos mayores de las muestras de superficie inalteradas muestran variación en la composición relativa con respecto a las rocas alteradas (RA). Para las rocas inalteradas (RI) se presentan tendencias lineales tanto negativas como positivas, para las negativas tenemos los siguientes elementos TiO₂, Al₂O₃, Fe₂O_{3T}, MnO, MgO y CaO y en las positivas Na₂O y K₂O,
estas se diferencian por el sombreado en gris (Figura 31). Estas tendencias se pueden explicar debido a los diferentes procesos de cristalización fraccionada durante la evolución de los líquidos magmáticos (Rollison, 1993). Las pendientes negativas de TiO₂, Fe₂O_{3T} y MgO observadas en los diagramas de variación corresponden al fraccionamiento de los minerales ferromagnesianos, mientras que las tendencias positivas en las RI de superficie fueron del Na₂O (2.14-10.60 %) y K₂O (0.26-3.67 %) observándose así un enriquecimiento con respecto al de SiO₂ (66.10-48.36 %), pudiendo estar relacionado con la acumulación del Na₂O y K₂O en el magma y su separación en etapas posteriores este tipo de proceso fue visualizado por Pilar-Martínez, (2015). El mecanismo que se mencionó anteriormente dio origen a las rocas del CGH desde los basaltos hasta la riolitas, estos fueron derivados de un mismo magma parental, cuya fuente se ubica en la parte superior del manto (Verma, 1983; 1984).

La relación entre las rocas inalteradas con respecto a las rocas alteradas, refleja en general una disminución de TiO₂, Fe₂O₃T, MnO, MgO, CaO y Na₂O; mientras que algunas muestran un enriquecimiento de Al₂O₃ y K₂O. Las rocas inalteradas de superficie muestran empobrecimiento en TiO₂ de 1.48 a 0.67 %, Fe₂O₃T de 10.94 a 4.18 %, MnO de 0.17 a 0.08 %, MgO de 8.51 a 0.97 % y CaO de 10.60 a 2.14 %, esto respecto al incremento de SiO₂ de 48.36 a 66.10 %. Para el Al₂O₃ fue de 17.37 a 16.77%, la tendencia fue atenuada por las rocas alteradas, sin embargo se observa una tendencia negativas como los demás elementos empobrecidos.

Las rocas alteradas mostraron tendencias más dispersas, que puede ser explicado por el grado de interacción agua – rocas. Las rocas que se consideraron originalmente como basaltos y andesitas presentaron empobrecimiento con respecto a las rocas inalteradas en elementos como TiO_2 , Fe_2O_{3T} , MnO, MgO, CaO. Algunas muestras que se consideraron como tobas mostraron un ligero enriquecimiento en Al₂O₃, Fe_2O_{3T} y K₂O con respecto a una disminución de SiO₂. Las tendencias observadas son muy diferentes a las de las rocas inalteradas, para el caso del TiO₂ (0.52-1.26 %) muestra un enriquecimiento con respecto al SiO₂ (38.43-79.80 %), otros elementos que presentaron enriquecimiento son Al₂O₃ (5.19-18.70 %), MnO (0.01-0.09 %), MgO (0.10-2.24 %), Na₂O (0.72-4.15), K₂O (0.72-4.20 %), sin embargo al tener varios puntos de inflexión hacen de estas una tendencias difusas. Solo el Fe₂O₃ (11.73-2.13) mostro una tendencia al empobrecimiento con respecto al SiO₂ (38.43-79.80 %). Las muestras que presentaron alteración pervasiva mostraron tendencias más claras, observándose en estas un enriquecimiento de todos los elemento (TiO₂, Al₂O₃, Fe₂O₃T, MnO, MgO, CaO, Na₂O y K₂O) con respecto al incremento del SiO₂.

Figura 31. Diagramas de variación Harker de elementos mayores vs SiO2, mostrando la relación entre las rocas alteradas e inalteradas Basaltos- Andesita EG-13, ◆ Andesita EG-14, ▲ Andesita – Basalto EG-15, ● Toba TC-13A y rocas alteradas ■ Basaltos-Andesita EG-01, 02 y 04, ◆ Andesita EG-07 y 08, ▲ Andesita – Basalto EG-03, 05, 10, 11 y 12, ● Toba EG-06 y 09. El Hierro total viene expresado como Fe₂O₃.

La superficie volcánica del CGH se puede considerar como un sistema abierto, donde los vapores volcánicos ascienden y se mezclan con aquas oxigenadas subterráneas y superficiales, de esta forma los cambios en la concentración de los elementos mayores son originados por el grado de interacción de la roca con los fluidos sulfatados ácidos cuyo pH< es controlado por diversos factores como la oxidación del H₂S a sulfato, por la acidez generada por la oxidación del azufre nativo por la reacción de S^o + 1.5 O₂ + $H_2O \longrightarrow 2H_1 + SO_4^{2-}$, por la oxidación del sulfuro disuelto que se produce lentamente de SO_3^{2-} y $S_2O_3^{2-}$ y finalmente a sulfato (Kaasalaninen & Stefánsson, 2011), el alto contenido generado de H⁺ en los fluidos ácidos es amortiguado por varios factores: por la segunda constante de disociación del ácido sulfúrico (HS_{L}/SO_{L}^{2-}) y principalmente por el consumo de H⁺ por la rocas (basalto – andesita –toba) amortiguando el pH y posteriormente liberando cationes a la solución SiO₂, Fe²⁺, Al³⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, etc., la liberación de cationes a la solución depende de la estabilidad de los minerales ígneos primarios bajo fluidos sulfatados ácidos del mas reactivo a menos reactivo bajo el siguiente orden: olivino > titanomagnetita > plagioclasas > clinopiroxeno (Stefánsson et al., 2001), esta movilidad ocasionada por la interacción agua-roca ocasiona el empobrecimiento progresivo de todos los elemento mayores, a excepción del Si, la movilidad elemental ha sido identificada y reportada en diversos campos geotérmicos como en Los azufres (Pandarinath et al., 2008), Krýsuvík en Islandia (Markússon & Stefánsson, 2011), Krafla y Námafjall al norte de Islandia (Carson, 2015), por ejemplo la movilidad del Al decrecer rápidamente con el incremente del pH, atribuido a la formación de caolinita en áreas de mediana y baja actividad (Markússon & Stefánsson, 2011), en este estudio se confirma que la caolinita es el mayor productor de alteración en el CGH, en el caso del ligero aumento de una de las muestras en Ca precisamente en una área de intensa actividad puede ser atribuido a la formación de yeso, para las excepciones de la muestras que presentaron incremento en Na, K y Fe, puede estar relacionado con la formación de alunita (KAl₃ (SO₄)2(OH)₆) y jarosita (KFe⁺³(SO₄)2(OH)₆), en el enriquecimiento de Si está directamente relacionado con la formación de cuarzo secundario, ópalo, y cristobalita principalmente en áreas de intensa actividad superficial.

La tendencia de las rocas alteradas al enriquecimiento de K_2O y empobrecimiento de Fe_2O_{3T} , ya había sido confirmado por Martínez-Serrano *et al.* (1994), quienes también determinaron que a medida que aumenta la profundidad a zonas más alteradas se mostraba un aumento de TiO₂, Fe₂O₃T, CaO, Na₂O y K_2O y una disminución de Si₂O y K_2O .

VII.IV.II Elementos Traza y Tierras Raras de la Alteración Hidrotermal Superficial

Se realizó el análisis de las 15 muestras especiales, de estas 12 corresponden a rocas alteradas y 3 a rocas inalteradas. Esta determinación se llevó a cabo por la técnica de ICP-MS para elementos traza y tierras raras (REE). Los resultados, se presentan en la siguiente tabla:

Tabla 12. Composición de elementos traza de las 15 muestras de roca de superficie. EG-01 a EG- 12 corresponden a rocas alteradas y EG- 13 a EG-15 corresponden a rocas inalteradas.

Muastra	TiO ₂	В	Li	Be	Sc	V	Cr	Co) N	Ni	Cu	Zn	Ga	Rb	S	r
Muestra	%							μg.g	-1							
EG-01	0.89	4.01	2.85	1.29	14.26	137.16	14.69	6.1	0 4.	45	35.26	38.80	15.58	28.14	331	.83
EG-02	1.13	7.61	2.34	0.99	5.16	62.68	7.85	4.3	3 2.	27	37.71	29.67	12.14	24.19	164	.33
EG-03	0.44	4.11	0.61	0.37	N.D	6.57	3.10	0.4	5 0.	13	3.91	15.77	2.47	8.60	10.	.97
EG-04	0.53	19.93	3.13	3.31	4.58	29.13	6.66	5.7	2 1.	29	6.97	44.49	20.09	82.29	100	.92
EG-05	0.82	11.18	1.85	3.87	3.88	9.51	3.23	2.6	2 0.	48	8.46	47.10	21.54	56.30	69.	71
EG-06	0.46	26.28	17.49	3.49	5.36	22.54	7.22	4.2	6 4.	39	6.99	49.30	19.33	104.80	153	.24
EG-07	0.48	2.36	0.64	0.25	2.94	24.85	21.64	0.8	97.	35	13.36	11.53	24.56	13.47	211	.25
EG-08	0.90	12.95	15.46	2.20	10.28	81.69	16.15	12.9	92 17	.02	26.48	61.46	20.49	46.91	380	.31
EG-09	0.67	2.63	1.04	1.43	13.98	110.85	22.80	1.1	91.	68	14.37	17.81	17.65	17.46	435	.22
EG-10	0.79	55.80	3.39	1.29	8.20	69.35	34.23	2.4	9 2.	86	16.51	24.56	20.11	51.21	345	.94
EG-11	0.90	10.85	10.87	1.90	9.48	78.93	36.48	7.2	9 13	.51	18.21	46.39	20.48	66.78	341	.31
EG-12	0.71	12.83	3.29	2.11	2.77	14.74	4.31	1.5	5 0.	46	7.10	27.82	16.39	47.96	92.	51
EG-13	1.51	1.35	5.96	1.00	30.98	200.72	139.64	43.3	39 34	.72	60.57	71.64	18.30	4.22	386	.40
EG-14	1.34	6.29	13.24	1.86	22.40	162.10	45.45	24.6	59 15	.04	35.85	75.76	20.81	47.51	456	.52
EG-15	1.43	6.16	4.44	1.95	12.50	142.18	15.03	12.0	01 5.	58	30.03	61.72	18.97	42.17	349	.61
	Y	Zr	Nb	Мо	Sn	Sb	Cs	Ba	Hf	Та	n W	/ T	I P	b T	'n	U
Muestra							μ	g.g ⁻¹								
EG-01	24.70	156.38	9.17	1.68	1.01	0.11	0.87 3	315.20	3.34	0.50	6 0.2	5 0.1	7 6.4	48 4.9	91	1.35
EG-02	8.47	242.88	12.00	1.83	1.29	0.18	1.94 4	432.36	4.75	0.8	7 0.3	2 0.7	3 8.4	46 3.2	24	0.83
EG-03	2.29	223.66	9.59	2.41	1.52	0.34	0.54 1	177.87	4.47	0.6	5 0.4	2 0.1	1 3.6	54 1.	69	0.56
EG-04	20.81	407.16	17.44	3.83	2.83	0.56	3.17 5	525.51	8.42	1.30	0 0.7	2 1.7	4 14.	77 12	.70	3.35
EG-05	29.52	617.99	26.63	3.90	4.14	0.61	3.37 5	593.15	12.90	2.02	2 0.8	0 1.1	3 23.	33 17	.99	4.79
EG-06	27.41	365.48	17.71	4.83	3.08	0.75	4.14 6	517.94	8.28	1.4	1 1.1	8 1.0	4 16.	76 17	.26	4.81
EG-07	3.90	160.95	7.39	0.93	0.87	0.20	0.77 2	203.76	3.19	0.40	6 0.2	4 0.2	4 6.3	30 2.3	31	0.66
EG-08	20.28	285.75	18.76	2.56	1.70	0.34	1.82 6	510.10	5.86	1.70	6 0.6	0.2	7 11.	72 9.	65	2.66
EG-09	5.79	156.62	8.23	2.37	1.08	0.29	1.30 4	146.53	3.38	0.54	4 0.2	8 0.6	67 8.2	21 8.3	30	1.09
EG-10	11.43	289.27	14.39	2.95	2.13	0.52	2.30 6	511.97	6.13	1.03	3 0.5	8 0.4	8 13.	15 9.	78	2.70
EG-11	20.78	312.24	16.40	3.20	2.19	0.48	2.00	711.46	6.78	1.12	2 0.6	6 0.4	7 14.	18 10	.93	3.42
EG-12	15.18	520.00	22.67	4.37	3.62	2.30	2.13 8	326.31	11.08	1.70	0 0.9	1 0.5	7 14.	35 12	.20	2.94
EG-13	24.70	131.68	5.66	1.20	1.06	0.06	0.03	91.69	2.92	0.39	9 0.0	6 0.0	4 1.7	74 0.'	72	0.20
EG-14	26.63	236.58	14.45	1.86	1.49	0.13	1.12 4	498.54	4.86	0.9	6 0.3	5 0.3	4 8.1	19 5.0	08	1.48
EG-15	24.09	268.79	15.51	2.41	1.68	0.18	1.60 5	578.17	5.75	0.9	7 0.4	2 0.5	2 10.	50 5.	74	1.70

VII.IV.II.I Clasificación Química de Rocas

La clasificación química de las rocas se realizó mediante el diagrama de Winchester y Floyd (1977) debido a que las rocas analizadas presentan diferente grados de alteración hidrotermal. El uso de este diagrama de discriminación plantea a los elementos traza relativamente inmóviles durante diferentes procesos (Nb/Y vs Zr/TiO₂), favoreciendo su uso para rocas alteradas por hidrotermalismo.

Figura 32. Diagrama de clasificación para rocas alteradas Nb/Y vs Zr/Ti (Winchester y Floyd, 1977). EG- 13 corresponde a la roca inalterada de EG-01, 02 y 04. EG-14 corresponde como roca inalterada a EG-07 y 08., y EG-15 es la roca inalterada de EG-03, 05, 10, 11 y 12.

Los resultados obtenidos en el diagrama de discriminación de elementos inmovibles Nb/Y vs Zr/Ti (Figura 32) indican que las rocas frescas de superficie varían de andesita - basalto (EG-13), andesita (EG-14) y basalto - andesita (EG-15), mientras que sus correspondientes rocas alteradas exhiben variaciones significativas cambiando de andesita - basalto (EG-13) a andesitas (EG-01), traquiandesitas (EG-02) y a basaltos (EG-03), para la andesita (EG-14) varia a traquiandesitas (EG-07 y 08), mientras que para los basaltos - andesita (EG-15) se modifica principalmente a traquiandesitas (EG-05, 10, 11 y 12) solo una de las muestras presento una variación a traquita (EG-30). La relación para las rocas alteradas varia en un rango de 0.37-4.19 ppm para Nb/Y, mientras que para Zr/Ti ppm es de 0.01-0.05 ppm.

Las tobas presentan una composición más acida a riodacita – dacita, esto a excepción de la muestra EGog que exhibió una composición química a traquiandesita.

Las variaciones más significativas se presentaron en rocas alteradas en fuentes termales activas (EG-03, EG-12 y EG-05), donde la alteración varia de argílica a argílica avanzada – acido sulfato (alunita). En general las rocas alteradas exhibieron cambios a una composición más acida a la original, observándose mayor dispersión a la composición original cuando es mayor el grado de interacción agua – roca.

Pilar-Martínez (2015) puso en evidencia la existencia de variación entre las mismas rocas con el uso de diagramas de clasificación de rocas en el CGH, ya sea el de Winchester y Floyd (1977) ó Le Bast *et al.* (1986) esta variación es debido principalmente a la alteración hidrotermal, demostrándose con base a

clasificaciones petrográficas que la clasificación de Winchester y Floyd (1977) era correcta. Sin embargo en los resultados obtenidos se observa que existe variación en la composición química de las rocas cogenéticas dentro de la misma clasificación de Winchester y Floyd (1977), lo cual obedece al grado de alteración de las rocas.

VII.IV.II.II Diagramas Multielementos

Los elementos traza son generalmente clasificados con base a su potencial iónico o densidad de carga (z/r: carga del ion/radio del ion), donde los elemento incompatibles (aquellos que tienen preferencia en concentrarse en la fase liquida durante la fusión y cristalización) se subdividen en alto y bajo potencial iónico (Rollinson, 1993). Los elementos de alto potencial iónico (**HFS**, *High Fiel Strength*), tienen un z/r > 2 e incluyen el Y, Th, U, Pb, Zr, Hf, Nb y Ta, mientras que los elementos de bajo potencial iónico conocidos como elementos litófilos de radio iónico grande (**LILE**, *Large Ion Lithophilo Elements*), los cuales tienen un z/r = < 2 e incluyen elementos como Cs, Rb, Ba, Sr y Eu.

Los resultados de las 15 muestras especiales de superficie (alteradas como inalteradas) se normalizaron con respectos al manto primitivo (composición del manto antes de que se formara la corteza continental), los valores utilizados fueron los de Sun y McDonough (1989) de 13 elementos traza y 12 elementos de REE, expresados en escala logarítmica en bases diez.

En el diagrama multielementos de las 15 muestras especiales (Figura 33 a, b y c), las rocas alteradas (RA) muestran una tendencia general a disminuir en su concentración elemental con respecto a la incompatibilidad de elementos del Cs al Lu, exhibiendo un patrón de comportamiento similar al de las rocas inalteradas (RI). Sin embargo las RA muestran una mayor concentración en HFS y LILE con respecto a las RI a excepción de la muestra EG-07 la cual presenta alteración silícica y EG-03 que corresponde a una muestra tomada en una fuente activa. Las rocas alteradas presentan anomalías negativas en Nb y positivas para Th, U, Pb y Zr en elementos HFS. En elementos LILE existen anomalías positivas para Cs, y anomalías negativas en Sr y Rb en EG-03 y EG-5 que pertenecen a fuentes activas. Cabe destacar que estas anomalías son más perceptibles en las muestras que fueron tomaron de fuentes activas (EG-03, o5 y 12) cuya roca presenta alteración argílica pervasiva de intensidad fuerte.

Figura 33. Diagrama multielementos, normalizados a manto primitivo de muestras alteradas (líneas de color) con respecto a su roca inalterada (línea negra) del CGLH (Sun y McDonough, 1989).

De acuerdo a lo expuesto por Pilar-Martínez (2015) el patrón mostrado para rocas inalteradas donde se observa un enriquecimiento en LILE y empobrecimiento en HSF reflejar el aporte de una fase acuosa transportada por la corteza oceánica subducida, característica distintiva de los magmas formados en ambientes de subducción en un arco volcánico como es el caso del CVTM, este mismo patrón se observa en rocas alteradas pero con concentraciones que difieren de acuerdo al grado de alteración de la rocas.

Por ejemplo en el caso de EG-03 y 07 muestran un patrón mayormente empobrecido con respecto a sus rocas cogenéticas. La movilidad del Cs, Rb, Ba, Th y Sr se debe a su bajo potencial iónico (carga/radio) lo que propicia su migración bajo fluidos hidrotermales durante a la alteración hidrotermal (Pearce, 1982, Kaasalainen, et al., 2015) de esta manera los elementos móviles actúan como vectores geoquímicos hace áreas de mayor flujo d fluido, mientras que los elementos inmóviles distinguen a las rocas precursoras de las alteradas. En el sistema geotérmico como lo es Los Humeros la identificación de zonas activas o inactivas de alto flujo de fluido proporciona zonas de alimentación de pozos (Mauriohooho et al., 2016). La movilidad del Cs, Rb y Ba observada en los diagramas multielementos refleja el aumento en la interacción agua-roca, muy probablemente por la formación de esmectita/illita, mientras que la movilización del Sr es consistente con la destrucción de plagioclasas cálcicas (sustitución del Sr por el Ca), por lo que es posible que las plagioclasas cálcicas hayan sido alteradas y reemplazadas por esmectita/illita (Mauriohooho et al., 2016, Kaasalainen, et al., 2015). Y aunque en el presente estudio no se analizaron fluidos geotérmicos, la movilidad de Cs, Rb, Ba, Th y Sr se ha confirmado en otros campos geotérmicos de Islandia debido a la concentración de los mismos en fluidos geotérmicos, donde el incremento de la concentración está en relación directa con el incremento de temperatura esto debido a la lixiviación y partición de las rocas con alto contenido en Na y K (Kaasalainen, et al., 2015). Es de observarse que en el primer diagrama (figura 33-a) en las rocas alteradas de basalto-andesita el Ba se presenta relativamente móvil durante la interacción agua-roca a diferencia de las otras dos unidades, este comportamiento es típico en las rocas de composición basálticas (Arnórsson & Andrésdóttir, 1995), haciendo del Ba un buen indicador de los procesos de lixiviación.

VII.IV.II.III Diagramas normalizados de REE

El grupo de elementos traza que representa un gran uso en las ciencias geológicas son los denominados elementos de tierras raras (**REE**, *Rare Earth Elements*). Este consta de 15 elementos que tienen números atómicos que van de 57 (Lantano) a 71 (Lutecio), 14 de ellos ocurren en forma natural (Hanson, 1980). Las REE son divididas de acuerdo a su número atómico, las REE ligeras (LREE) corresponden a las de menor número atómico, y REE pesada (HREE) tienen un número atómico mayor (Pirajno, 2009). Se muestran los resultados obtenidos en la siguiente tabla:

Marcatan	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
Niuestras							μg.g ⁻¹						
EG-01	20.75	40.10	5.32	22.51	5.32	1.45	4.96	0.77	4.63	0.96	2.62	2.69	0.41
EG-02	14.63	24.74	2.93	11.02	2.09	0.55	2.01	0.29	1.72	0.37	0.95	0.92	0.14
EG-03	3.77	6.55	0.67	2.76	0.47	0.15	0.50	0.07	0.46	0.11	0.28	0.27	0.05
EG-04	27.20	52.41	5.58	19.50	3.90	0.81	3.71	0.60	3.83	0.85	2.38	2.77	0.43
EG-05	40.78	73.71	8.34	29.08	5.82	1.06	5.35	0.84	5.34	1.16	3.21	3.72	0.58
EG-06	34.66	66.50	7.51	26.63	5.40	1.05	5.00	0.77	4.85	1.03	2.85	3.21	0.49
EG-07	12.25	19.25	2.31	9.56	2.25	0.54	1.71	0.23	1.16	0.21	0.45	0.30	0.05
EG-08	33.16	63.17	7.71	28.71	5.85	1.44	5.19	0.75	4.40	0.89	2.31	2.30	0.34
EG-09	28.84	57.10	7.80	32.05	5.04	0.89	2.86	0.37	1.60	0.29	0.79	0.65	0.10
EG-10	30.07	54.80	6.02	19.41	3.13	0.61	2.90	0.44	2.54	0.53	1.36	1.37	0.21
EG-11	32.04	58.92	7.29	26.88	5.23	1.33	4.60	0.68	3.97	0.82	2.21	2.31	0.35
EG-12	28.80	48.32	5.61	19.25	3.54	0.73	3.15	0.48	2.96	0.67	1.82	2.08	0.34
EG-13	8.58	21.89	3.11	14.39	3.87	1.31	4.30	0.70	4.48	0.92	2.49	2.38	0.35
EG-14	25.71	53.33	6.64	26.50	5.96	1.68	5.32	0.84	4.76	0.95	2.68	2.44	0.37
EG-15	25.43	48.36	6.19	24.23	5.17	1.35	4.99	0.75	4.47	0.93	2.45	2.41	0.36

Tabla 13. Composición de elementos de tierra raras (REE) de las 12 muestras de roca alterada de superficie.

Los resultados de las 3 muestras de rocas inalteradas correspondientes al mismo tipo de roca y evento volcánico de las 12 muestras de superficie alteradas se normalizaron con respecto a los valores de condrita de Sun y McDonough (1989). Estos son considerados material primitivo del sistema solar que pueden ser comparados con la abundancia original de REE en la tierra, la normalización se consideró para identificar procesos de fraccionamiento de estos elementos (Rollinson, 1993). El diagrama esta expresado en escala logarítmica en base diez, donde se graficó la concentración normalizadas vs el número atómico (Figura 34 a, b y c).

Figura 34-a. Diagrama de REE normalizados a condrita de las muestras alteradas (líneas de color) con respecto a su roca inalterada (línea negra) del CGLH (Sun y McDonough, 1989).

Figura 34-b y c. Diagrama de REE normalizados a condrita de las muestras alteradas (líneas de color) con respecto a su roca inalterada (línea negra) del CGLH (Sun y McDonough, 1989).

El diagrama normalizado de REE en las 12 muestras alteradas presenta patrones similares con respecto a las rocas inalteradas con enriquecimiento en LREE, empobrecimiento en HREE y una evidente anomalía de Eu, el cual está asociado al fraccionamiento de plagioclasas o feldespato alcalino (Rollinson, 1993) en rocas inalteradas sin embargo en rocas alteradas esta anomalía es aún más pronunciada (figura 34-c), esta movilidad del Eu es debido a las condiciones de redox en el sistema, donde una anomalía menor al patrón de referencia (roca inalterada) significaría condiciones hidrotermales oxidantes y baja temperatura por lo contrario y como se muestra en los resultados un patrón mayormente empobrecido al de la roca cogenética inalterada indica ambientes calientes y reducidos (Michard et al., 1983; Parr, 1992). Para EGo3 y o7 se muestra un patrón mayormente empobrecido con respecto a sus rocas cogenéticas, mientras que las muestras que presentan alteración argílica avanzada EG-o2, 10 y 12 evidencian un empobrecimiento a partir del elemento Pr. Las muestras EG-o1, o8, o5 y 11 presentan enriquecimiento con respecto a su roca cogenética de La, Ce, Pr, Nd y Sm.

La diferencia entre los patrones de REE en rocas cogenéticas alteradas e inalteradas ha sido estudiada en diferentes litologías de yacimientos minerales, cuya distribución en la roca o mineral está intimamente

relacionada con el ambiente de formación y el grado de interacción agua-roca, transporte y depositación (Fleischer, 1978; Hanson, 1980; Smith, 2000). Se ha demostrado que en estadios avanzados de alteración, de propilítica a fílica, las REE son empobrecidas debido a una constante lixiviación por la disminución del pH (incremento del ion H+), y al aumento de la intensidad de la interacción agua-roca provocando un decremento más pronunciado en las LREE que para HREE (Taylor y Fryer, 1982, 1983); siendo esto congruente con los resultados obtenidos para las muestras EG-02, 03 y 07, sin embargo estas observaciones no son consistentes con los resultados obtenidos para las muestras EG-01, 02, 08, 10, 11 y 12 que presentan mayor grado de alteración argílica – argílica avanzada, las cuales están mayormente empobrecidas en HREE y muestran enriquecimiento en LREE con respecto a las rocas inalteradas cogenéticas, lo cual implicaría que existe un proceso diferente a lo anteriormente visualizado por Taylor y Fryer (1982, 1983).

Mediante el análisis geoquímicos de fluidos en diferentes campos geotérmicos (Italia, Dominica, Caldera Valles, Mar de Salton) se ha podido determinar que el proceso por el cual se tiene enriquecimiento en LREE y empobrecimiento en HREE en estadios avanzados de la alteración podría deberse al contenido de REE en los fluidos geotérmicos, los cuales tienden a aumentar con la disminución del pH (incremento ion del H+), y la presencia de aguas cloruradas (Michard, 1989), estos posteriormente precipitan desde las soluciones acuosas en la química de los cristales de alteración (Lottermoser, 1992; Moller, 1998) o son integradas en la química de los minerales mediante procesos de sorción en la superficie del mismo (Bau, 1991) donde las REE con mayor movilidad son el La y Ce bajo complejos fluorurados o clorurados bajo temperaruras > 200 °C (Haas *et al.*, 1995). El proceso anteriormente mencionado es muy probable que esté ocurriendo en las muestras EG-01, 02, 08, 10, 11 y 12 las cuales presentan un mayor grado de alteración argílica – argílica avanzada ya que muestra congruencia con los resultados obtenidos.

VII.V Fluorescencia de Rayos X (ED-FRX)

Los resultados obtenidos para las muestras regionales y locales se muestran en las Tablas 14 y 15 mientras el resto de los resultados pueden ser consultados en el **Anexo III**. Se presentan tanto las rocas regionales y locales identificadas con la siguiente nomenclatura: L-1 a 69 y LL1-323 respectivamente para cada tipo de muestra. Los elementos en azul corresponden a los elementos mayores expresados en porcentaje en peso (%), y en negro se presentan los elementos menores y traza en partes por millón (µg/g), en sombreado gris los resultados de las muestras cogenéticas que no presentan alteración, estas últimas permitirán cuantificar la trasferencia de masa relacionada con la circulación de fluidos hidrotermales.

Tabla 14. Análisis por FRX-ED de las muestras regionales del CGH. Ba_Oliv: Basalto Olivino; Ba_And_Esc: escoria volcánica de Basalto − Andesita; Ba-And: Basalto − Andesita. El Hierro total viene expresado como Fe₂O₃.

Muestra	SiO2	TiO2	Al2O3	Fe2O3	MnO	MgO	CaO	K20	P2O5	Rb	Sr	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	s	As	Mo	Bi	U	Litología
muestru					%												μg.g ⁻¹								Entologia
L7-7	50.05	1.55	15.43	10.85	0.16	3.97	7.77	0.55	0.22	43.14	347.00	174.91	2.73	163.22	327.19	76.99	80.79	0.11	7.24	958.16	13.96	5.50			Ba_Oliv.
L7-8	42.54	1.49	19.17	11.21	0.18	7.19	9.30	0.17	0.14	7.02	375.05	162.99	3.67	178.77	330.05	65.10	91.02	0.11		857.20	5.7 9	4.20			Ba_Oliv.
L8-8	41.81	1.54	18.13	10.23	0.16	5.97	8.19	0.46	0.26	20.29	352.30	172.46	4.12	161.51	275.76	47.12	84.91	0.11	2.43	1429.53	6.62				Ba_Oliv.
L8-9	42.28	1.34	17.24	10.81	0.15	3.40	7.86	0.53	0.18	23.45	340.70	159.11	0.67	139.63	339.55	64.13	82.46	0.11	3.65	1964.12	5.06	4.45			Ba_Oliv.
L8-10	45.61	1.43	18.79	10.89	0.16	6.23	8.72	0.51	0.14	22.43	369.56	170.58	4.86	159.35	338.31	74.90	80.93	0.11	5.62	1709.36	4.94	3.13			Ba_Oliv.
L9-7	40.50	1.55	19.74	11.01	0.18	5.93	8.81	0.36	0.25	17.08	373.29	179.18	5.24	177.51	298.80	70.73	95.43	0.11	4.59	915.99		3.59			Ba_Oliv.
L9-8	41.92	1.49	20.36	10.36	0.17	5. 9 7	9.01	0.36	0.12	16.71	391.45	176.39	4.51	197.76	235. 09	75.32	83.60	0.11	5.14	972.87		3.87			Ba_Oliv.
Ba_Oliv.	48.15	1.35	21.10	10.07	0.11	8.52	9.60	0.49	0.27	5.17	373.48	126.97	3.65	188.46	194.34	64.22	76.06	0.01	5.85	407.10	4.73	3.62	0.01	0.01	Ba_Oliv.
L9-1	43.18	1.50	11.97	8.24	0.13		5.06	1.64	0.25	98.19	408.47	263.84	13.92	141.97	41.16	31.85	86.01	0.11	8.87	303.43		4.63			Ba_And_Esc.
L9-2	48.22	1.77	13.61	8.89	0.14	3.60	5.46	1.78	0.22	98.68	424.61	274.25	15.60	140.84	51.38	42. 9 7	88.28	3.96	11.07	329.21	4.18	6.97			Ba_And_Esc.
L9-3	46.88	1.71	13.93	8.83	0.14	1.11	5.39	1.57	0.29	94.89	422.08	273.44	15.21	159.56	63.83	46.00	91.45	4.03	8.80	455.70	4.68	8.63			Ba_And_Esc.
L9-4	48.76	1.66	13.73	8.88	0.13	3.44	5.40	1.74	0.20	96.14	413.53	268.28	14.46	168.36	62.60	52.76	90.01	4.63	10.69	383.78	3.99	7.87			Ba_And_Esc.
L9-5	48.45	1.78	13.84	9.03	0.14	1.12	5.38	1.61	0.24	88.22	422.11	280.68	14.56	138.12	58.82	23.03	105.60	0.11	9.83	0.00	4.88	7.84			Ba_And_Esc.
L9-6	51.87	1.77	15.62	9.71	0.15	1.98	5.54	1.81	0.25	100.75	426.81	278.57	14.73	125.90	63.13	61.79	104.49	6.19	12.49	410.66	4.58	9.93	5.28		Ba_And_Esc.
L8-5	49.15	1.58	14.18	8.39	0.14		5.17	1.71	0.26	104.43	428.75	282.82	14.97	151.39	19.64	28.49	99.60	4.38	8.38	1509.04	4.81	3.29			Ba_And_Esc
L7-5	41.68	0.85	10.55	4.29	0.08		1.86	2.43	0.11	163.22	208.56	364.23	17.58	31.79	17.02	15.67	56.04	10.80	14.00	881.01	3.42	3.63	9.61	7.54	Ba_And_Esc
Ba_And_Esc.	59.03	1.53	18.25	7.94	0.08	3.66	5.48	2.23	0.39	46.44	418.58	246.47	15.04	157.35	20.01	28.07	76.70	2.97	12.04	0.01	0.01	5.55	0.01	0.01	Ba_And_Esc.
L1-1	54.28	1.34	14.44	6.29	0.10	1.62	4.78	1.96	0.10	114.23	432.39	223.23	7.00	108.50	28.32	29.23	70.79	4.26	13.09	807.54		4.22			Ba_And.
L1-4	54.09	1.33	14.85	6.52	0.11	2.30	4.80	1.98	0.14	125.66	448.19	233.19	10.44	112.65	32.91	28.22	81.13	6.92	15.70	850.88		3.75	5.00		Ba_And.
L2-2	52.78	1.21	14.49	6.18	0.12	1.40	5.72	1.81	0.33	107.66	480.96	238.75	10.88	77.78	34.83	23.77	77. 9 4	4.84	8.20	1170.62	3.70		4.29		Ba_And.
L2-3	51.02	1.37	13.31	6.63	0.11	1.03	4.72	1.89	0.13	119.77	456.09	238.93	12.26	101.16	22.38	36.27	70.67	5.23	13.20	867.85		3.86			Ba_And.
L2-5	47.71	1.73	9.05	7.48	0.09		2.80	2.13	0.57	134.73	482.67	295.32	19.75	96.08		2.57	89.58	2. 9 5	10.15	155 99 .55	4.55				Ba_And.
L2-6	47.17	1.34	11.39	6.44	0.11		4.31	1.88	0.14	114.14	437.79	231.40	11.11	100.18		21.48	81.30	5.22	9.81	335.79					Ba_And.
L3-1	56.19	1.22	14.05	5.72	0.11		4.36	2.13	0.44	138.81	407.79	262.70	12.02	76.32	35.62	29.58	70.45	6.45	14.55	1034.37		4.22	4.84		Ba_And.
L3-3	49.18	1.36	12.63	6.48	0.10	1.03	4.51	1.87	0.14	121.49	432.88	234.58	11.30	96.94	20.34	19.67	75. 9 4	5.50	10.20	327.36		2.62			Ba_And.
L3-5	41.48	1.26	10.31	6.66	0.11		4.04	1.89	0.12	123.70	424.54	245.11	11.63	91.53	15.46	26.35	80.22	7.21	9.80	862.38	4.02	3.77	4.55		Ba_And.
L3-6	48.26	1.25	12.29	6.19	0.11	0.89	4.04	1.80	0.22	118.29	411.40	239.79	10.99	103.34	34.15	30.05	81.87	5.67	12.94	800.11			4.06		Ba_And.
L4-1	54.34	1.41	15.75	6.71	0.11	2.19	4.99	1.88	0.38	113.27	444.67	231.74	9.49	114.13	31.20	23.94	74.93	5.32	10.55	882.87		3.63	3.63		Ba_And.
L5-4	48.24	1.35	13.53	6.80	0.11	1.33	4.09	1.49	0.24	104.34	442.21	232.23	11.04	113.56	23.57	24.75	89.62	5. 9 5	13. 9 4	1060.01	8.85	4.44	4.71		Ba_And.
L6-1	50.43	1.31	14.32	6.70	0.12	1.45	5.34	1.80	0.10	111.33	462.11	253.05	11.71	93.40	33.48	36.38	74.28	6.08	15.54	369.59	4.16	4.07	4.49		Ba_And.
L7-1	54.50	0.77	10.84	4.93	0.11		4.35	2.86	1.77	86.50	300.90	365.40	18.63	33.44	46.50	26.94	95.38	10.15	19.04	2666.94	4.77	8.61	8.41	7.97	Ba_And.
L7-3	62.15	0.77	14.13	7.82	0.10		2.38	3.07	0.17	81.32	246.36	354.29	17.34	28.05	86.40	85.17	70.60	10.86	13.68	1072.70	7.05	17.83	9.34	9.76	Ba_And.
L8-1	62.42	0.89	15.47	7.20	0.12		2. 9 5	2.99	0.32	79.03	305.03	360.60	20.17	44.79	71.48	52.84	81.78	9.51	16.84	1397.54	7.93	15.48	8.92	5.89	Ba_And.
L8-2	60.83	0.97	15.21	7.32	0.13		3.29	2.87	0.38	73.45	341.03	341.58	18.44	45.2 9	83.59	53.75	7 6 .35	10.56	15.93	1483.75	7.26	14.39	9.77	5.45	Ba_And.
L8-3	60.02	0.93	14.94	7.14	0.11		2.99	2.77	0.22	73.21	311.49	349.66	19.32	53.22	88.21	49.38	67.71	9.53	16.74	1342.70	7.57	15.41	6.57		Ba_And.
Ba_And.	56.14	1.30	18.19	7.45	0.08	4.10	6.37	1.76	0.31	39.99	449.00	214.32	12.83	140.78	28.33	32.31	76.13	0.00	11.61	0.01	4.42	5.31	0.01	0.01	Ba_And.

Tabla 15. Análisis por FRX-ED de las muestras Locales del CGH. And: andesita; Ba_Olvi: Basalto de olivino. El Hierro total viene expresado como Fe₂O₃

	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	K ₂ O	P_2O_5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	s	As	Мо	Bi	U	D
Muestra					%												μg.g	1								коса
LL4-22	49.00	1.48	14.59	7.79	0.13	1.94	6.48	1.69	0.14	94.58	470.89	819.97	245.36	12.03	142.90	90.30	32.25	91.15	3.28	11.05	855.91	5.09	4.86			And.
LL4-26	49.13	1.89	14.91	9.12	0.15	1.74	6.23	1.58	0.23	77.10	429.55	869.24	277.63	17.21	171.65	80.46	27.13	105.70	0.11	8.92	404.07		4.70			And.
LL4-15	43.54	0.95	11.78	5.46	0.11	0.61	3.77	1.56	0.05	120.59	394.40	794.01	248.79	9.11	64.24	74.82	29.08	54. 66	6.81	10.27	1100.56		4.50	6.51		And.
LL4-29	57.12	1.20	14.96	5.68	0.11	0.84	4.16	2.07	0.31	105.80	334.34	685.41	333.43	16.03	74.06	37. 69		7 9 .27	7.56	12.08		4.27		5.78		And.
LL4-31	66.35	0.57	12.83	2.98	0.08		2.16	3.52	0.06	98.66	186.49	801.38	358.86	15.49	16.36	0.62		44.01	13.98	16.08	325.17	3.79	3.10	12.41	10.39	And.
LL4-34	64.38	0.56	10.62	2.61	0.07		1.20	4.28	0.06	124.95	99 .55		367.98	18.31	2.22			36.39	19.85	17.71		5.88	8.12	18.86	12.98	And.
LL4-24	50.93	1.37	15.31	6.81	0.12	1.16	4.23	1.71	0.27	105.49	323.08		290.93	12.53	97.20	45.17	0.33	74.55	6.17	6.92	219.83	5.41	3.29	4.29		And.
LL4-25	54.57	1.69	15.15	7.71	0.13	1.39	5.15	1.75	0.35	93.14	440.93	705.24	256.50	14.02	158.55	46.15	31.56	85.27	3.82	9.91	287.34		5.08			And.
LL4-30	71.75	0.63	11.59	3.02	0.07		1.45	2.87	0.12	186.55	137.43		358.52	15.29	6.00	12.53		26.09	13.88	7.96	118.26	3.96	2.95	13.55	7.19	And.
LL_And	57.22	1.21	14.10	6.06	0.10		4.17	2.62	0.21	151.63	328.28	639.39	322.95	13.78	7 9 .34	32.90		72.37	7.80	12.29	190.13		4.84	6.69		And.
LL18-29	51.40	1.50	15.01	9.02	0.13	2.84	7.12	0.59	0.25	30.40	329.45		184.12	5.00	144.33	261.05	33.96	79.44	0.11	3.02	1287.83	4.61	3.47			Ba_Olvi.
LL10-10	51.36	1.37	15.29	7.27	0.12		5.74	1.75	0.06	92.88	452.74	686.16	246.51	11.63	128.90	46.94	43.60	72.17	4.80	8.94	175.98		7.79	4.12		Ba_Olvi.
LL10-23	51.91	1.50	15.84	7.40	0.12	1.55	5.47	1.59	0.60	82.87	423.12	426.69	242.61	10.45	132.28	64.33	39.09	90.03	0.11	8.43	560.81	4.58	3.71			Ba_Olvi.
LL11-7	54.22	1.49	17.10	7.52	0.13	1.06	5.71	1.64	0.17	104.27	446.09	980.44	261.10	13.01	110.71	39.11	37.18	78.67	4.20	7.55	398.71	6.46	4.23			Ba_Olvi.
LL11-9	49.24	1.52	15.54	7.65	0.15	1.44	5.63	1.43	0.27	84.40	422.76	5 39.6 5	260.89	11.36	104.31	50.46	39.57	100.43	4.49	8.60			3.88			Ba_Olvi.
LL11-11	49.49	1.44	14.64	7.47	0.13		5.63	1.63	0.09	97.24	446.41	608.30	252.30	12.15	122.80	37.26	38.04	87.27	3.68	9.99	396.63	8.53	6.54			Ba_Olvi.
LL11-12	49.32	1.42	15.14	7.23	0.11		5.65	1.47	0.18	86.08	427.35	535.53	251.33	10.93	134.65	44.09	28.81	78.82	4.30	7.67	0.00	6.85	2.91			Ba_Olvi.
LL11-13	54.38	1.04	14.05	4.62	0.08		3.49	2.20	0.29	135.51	445. 99		262.70	12.58	66.28	61.04	0.17	56.91	9.05	11.84	9087.05	8.96	5.17	8.50		Ba_Olvi.
LL11-23	49.80	1.45	13.28	6.90	0.14	1.97	5.33	1.30	0.29	85.02	396.62		225.82	9.12	126.77	38.74	28.88	105.15	0.11	9.28	1252.26		2.79			Ba_Olvi.
LL11-25	53.71	1.60	12.17	6.52	0.10		4.42	1.48	0.44	77.69	423.18	600.27	244.86	10.12	94.55	37.49	26.75	66.21	2.69	12.67	3760.48		5.39			Ba_Olvi.
LL12-24	60.57	2.10	9.63	5.05	0.07		2.56	1.47	0.35	77.40	487.43	915.54	279.39	13.18	95.60	26.66	32.08	59.38	2.76	12.93	13918.64		4.22			Ba_Olvi.
LL12-26	67.82	1.96	6.64	3.41	0.06		1.17	1.27	0.22	87.25	210.03		331.79	15.12	109.51			31.30	4.32	14.39	8452.21	8.69	3.91			Ba_Olvi.
LL13-16	50.04	1.67	16.52	8.91	0.14	2.85	5.63	1.59	0.27	90.48	454.05	1503.26	269.34	15.81	171.87	96.9 5	51.88	105.63	3.81	12.50	711.99	6.96	7.91			Ba_Olvi.
LL13-17	51.62	1.44	13.20	8.77	0.14		5.30	1.54	0.18	95.76	409.25	835.27	224.11	9.70	158.44	77.35	46.06	88.10	0.11	5.78	1905.17		3.23			Ba_Olvi.
LL13-18	49.13	1.58	12.46	7.57	0.13	0.97	5.04	1.11	0.20	44.49	399.63	699.73	222.11	8.96	127.30	53.87	33.30	79.21	2.77	7.99	743.13		2.71			Ba_Olvi.
LL13-19	56.22	1.40	11.99	6.52	0.11		4.24	1.29	0.17	90.29	387.66	940.24	241.70	13.41	82.10	53.42	22.17	68.46	2.89	7.73	1553.84	4.64	2.93			Ba_Olvi.
LL13-23	48.87	1.73	14.81	9.26	0.08		3.40	1.34	0.17	55.35	432.40	515.23	238.76	10.28	145.08	59.67	38.47	56.89	0.11	7.58	20718.73		4.08			Ba_Olvi.
LL13-25	50.80	1.59	14.53	6.93	0.11		5.30	1.75	0.17	105.11	437.72	887.62	268.58	14.61	111.29	43.27	33.78	89.37	3.26	9.13	5682.04		5.21			Ba_Olvi.
LL14-12	53. 9 4	1.38	14.29	6.67	0.12		7.74	1.52	0.16	74.34	460.65	782.94	224.85	9.80	98.73	41.45	32.42	73.50	0.11	7.20	1020.07					Ba_Olvi.
LL15-16	49.29	1.45	13.50	8.60	0.14		4.50	1.58	0.19	78.77	401.73	607.38	222.20	9.64	156.98	49.92	40.89	91.37	2.91	8.76	7858.31	7.01	3.38			Ba_Olvi.
LL15-17	50.55	1.68	14.45	8.01	0.12		5.28	1.17	0.26	50.85	409.80	5 9 7.85	244.29	10.18	153.29	68.08	38.45	88.23	0.11	9.89	439.71		4.12			Ba_Olvi.
LL15-18	49 .45	1.64	15.06	7.83	0.13		5. 9 4	1.26	0.20	46.49	458.74	971.63	250.51	11.62	138.01	69.27	34.88	84.30	3.12	11.19	708.62		2.60			Ba_Olvi.
LL15-19	47.01	1.47	13.96	7.62	0.12		6.01	1.79	0.15	75.83	454.19	647.73	245.88	11.17	104.19	34.01	42.60	80.96	0.11	11.29	196.41		5. 9 4			Ba_Olvi.
LL15-20	49 .74	1.61	14.07	6.40	0.09	1.23	4.51	1.61	0.22	101.74	444.13	527.10	242.03	12.23	106.78	46.23	29.58	68.93	3.03	9 .50	13746.60					Ba_Olvi.
LL16-17	48.82	1.76	14.70	8.23	0.12	1.37	5.22	1.47	0.16	56.36	447.00	786.88	266.13	14.35	120.44	67.44	48.05	90.61	3.23	8.76	1307.77	5.30	6.77			Ba_Olvi.
Ba_Olv	48.15	1.35	21.10	10.07	0.11	8.52	9.60	0.49	0.27	5.17	373.48	422.17	126.97	3.65	188.46	194.34	64.22	76.06		5.85	407.10	4.73	3.62			Ba_Olvi.

VII.V.I Determinación de la Movilidad Elemental Mediante la Ecuación de Grant (1986)

Diversos autores consideraron algunos elementos como inmóviles durante la alteración hidrotermal, tal es el caso del Ti en vidrio volcánico (Dickin, 1981), el Zr en basaltos oceánicos (Humphis y Thompson, 1978), Al₂O₃ en granitos (O'Hara, 1990), etc., motivo por el cual autores como Pearce y Cann (1973); Winchester y Floyd (1977) han utilizado el Zr para la clasificar el ambiente tectónico, o en la clasificación de rocas ígneas que han sufrido hidrotermalismo o han sido metamorfoseadas. Browne y colaboradores (1992) además de considerar al Zr y Ti, además agregan otros elementos como el V y P a la lista de elementos inmóviles bajo la acción de fluidos hidrotermales. Pese a lo anterior se ha reportado que en rocas volcánicas, riolitas peralcalinas los elementos Zr y Ti pueden ser altamente móviles (Rubin et al., 1993; Kelepertsis & Esson, 1987). Debido a la movilidad elemental que se discutió anteriormente hacer uso de un método para el balance de masas donde previamente se establece que elementos deben considerarse inmóviles (Barret & MacLean, 1991), este resultaría muy poco representativo en un ambiente donde la interacción agua-roca es intensa (índices de alteración IQA >80 que se refleja en alteración argílica avanzada) y podría conducir a errores de interpretación. Por lo expuesto anteriormente se optó para el presente estudio usar el método de isocona de Grant (1986) el cual no establece previamente que elementos son inmóviles, y se puede elegir ya sea por medios estadísticos o gráficos los elementos inmóviles, permitiendo así una mejor interpretación de los datos.

Para determinar el enriquecimiento o empobrecimiento elemental ocasionada por la interacción de los fluidos hidrotermales con la litología superficial del CGH, se utilizó la ecuación para el balance de masas de Gresens' (1967) para la alteración metasomática, la cual fue modificada por Grant (1986) para proporcionar una solución simple llamada diagrama de isocona la cual consiste mediante el uso de un gráfico binario en donde se presenta la concentración de los elementos químicos de la roca inalterada, vs la concentración de los elementos de la roca alterada, y mediante una regresión lineal que conecte a los elementos químicos que no han sufrido un cambio de masa o volumen se obtiene la línea recta llamada isocona, en donde los elementos que estén por encima de la isocona son los que han sufrido enriquecimiento y los que estén por debajo de esta serán los que hayan sido empobrecidos durante la alteración hidrotermal (Izaguirre, 2012). Así este método nos proporciona un medio sencillo y eficaz de estimar cuantitativamente los cambios de masas (**M**) o volumen (**V**) y/o concentraciones durante el proceso de alteración hidrotermal (Grant, 1986; 2005), este será aplicado al campo geotérmico Los Humeros, para determinar la movilidad elemental, y al final del análisis poder determinar si existe una

relación directa con las zonas productoras del CGH y estos puedan ser usados como minerales índice en la exploración geotérmica.

La gran ventaja de este método es que no se necesita establecer previamente que elementos deben considerarse inmóviles, que a diferencia de otros métodos utilizados como los descritos por Barret y MacLean en 1991 o Barret en 1992, en los cuales la problemática reside en que hay que establecer, a priori, los elementos que deben considerarse inmóviles (Bustillo, y Bustillo, M., 1999).

Mediante el uso de la ecuación de Grant (1986), ver ecuación **(6)**, se realizó el balance de masas a cada una de las 392 muestras (69 regionales y 323 locales) mediante la hoja de cálculo EASYGRESGRANT esta se cuantifica mediante la ecuación de Grant (1986) los cambios de volumen y masa para llevar a cabo el modelado de balance de masas en sistemas metasomático (López-Moro, 2012). EASYGRESGRANT permite a diferencia de otros programas de balance de masas (Potdevin, 1993; Coelho, 2006), graficar la isocona a partir de herramientas de análisis estadísticas y graficas (ver **Anexo IV**) que ayudan a determinar los elementos inmóviles, el programa también proporciona una solución sutil al problema de escalar arbitrariamente los elementos mayores y traza en un mismo grafico el cual influía al ajuste de la isocona, conduciendo a errores en los cálculos de balance de masas (Mukherjee and Gupta, 2008).

El cálculo de balance de masas se llevó a cabo en las 69 muestras regionales y 323 muestras locales, parte de los resultados se muestran en las Tablas 16-17 mientras que el resto de los resultados esta contenidos en el **Anexo V**, en las tablas las rocas regionales están identificadas con la nomenclatura L-1-69 y las muestras locales con la nomenclatura de LL-1-323, en azul se tienen los elementos mayores en porcentaje en peso (%) y en negro los elementos menores y traza en partes por millón (µg/g), los elementos inmóviles para cada una de las litologías estan en sombreado azul.

Tabla 16. Resultados del Balance de Masas de las muestras regionales del CGH. Ba_Oliv: Basalto Olivino; Ba_And_Esc: escoria volcánica de Basalto — Andesita; Ba-And: Basalto — Andesita. El hierro total viene expresado como Fe₂O₃

	Coorde	nadas	SiO ₂	TiO ₂	Al ₂ O ₃	Fe_2O_3	MnO	MgO	CaO	K ₂ O	P_2O_5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	s	As	Мо	Bi	U	D
Muestra	Norte	Este					%												μg.g ⁻¹									коса
L7-7	2176035	661026	-1.04	0.11	-6.58	0.14	0.04	-4.79	-2.28	0.03	-0.06	35.44	-46.85	-54.32	37.68	-1.08	-34.82	113.64	8.25	-0.02	0.10	0.96	494.81	8.41	1.56			Ba_Oliv.
L7-8	2177038	661009	-12.56	-0.10	-5.06	-0.69	0.03	-2.51	-1.81	-0.35	-0.16	0.71	-59.68	-161.04	9.40	-0.58	-38.89	81.80	-9 .75	0.09	0.09		310.09	0.11	-0.11			Ba_Oliv.
L8-8	2177075	660023	-10.63	0.04	-4.84	-0.89	0.03	-3.17	-2.25	-0.08	-0.04	13.03	-57.39	-246.60	27.76	0.05	-43.55	53.07	-21.94	0.12	0.10	-3.67	875.49	1.21				Ba_Oliv.
L8-9	2178066	660098	-9.14	-0.11	-5.20	-0.10	0.02	-5.39	-2.34	-0.01	-0.11	16.46	-59.15		19.82	-3.03	-59.64	118.92	-5.05	0.01	0.10	-2.49	1404.98	-0.06	0.49			Ba_Oliv.
L8-10	2179019	660066	-5.30	-0.01	-3.45	0.16	0.04	-2.67	-1.40	-0.01	-0.14	15. 9 1	-26.24	-204.22	33.30	0.91	-38.74	123.52	6.15	-0.02	0.10	-0.57	1198.97	-0.09	-0.68			Ba_Oliv.
L9-7	2176023	659030	-15.79	-0.11	-5.33	-1.28	0.03	-3.79	-2.56	-0.21	-0.07	8.48	-75.27	28.31	16.17	0.54	-46.65	44.36	-7.71	0.17	0.08	-2.18	324.65		-0.75			Ba_Oliv.
L9-8	2177071	659047	-9.97	0.00	-2.56	-0.64	0.04	-3.08	-1.39	-0.17	-0.17	10.05	-16.92	-77.03	33.70	0.45	-8.33	19.79	4.39	0.08	0.10	-1.17	479.06		-0.09			Ba_Oliv.
L9-1	2170092	65907 4	-18.70	-0.13	-7.07	-0.25	0.04		-0.75	-0.70	-0.16	45.28	-36.99	-218.59	0.01	-2.04	-24.72	18.45	1.68	3.65	-2.88	-3.75	283.46		-1.22			Ba_And_Esc.
L9-2	2171071	659052	-15.69	0.06	-6.02	0.05	0.04	-0.43	-0.57	-0.64	-0.19	42.25	-36.97	-185.70	0.00	-1.03	-30.77	26.17	10.55	2.64	0.59	-2.09	295.87	3.76	0.71			Ba_And_Esc.
L9-3	2172011	659054	-16.77	0.01	-5.69	0.02	0.05	-2.66	-0.61	-0.82	-0.13	39.09	-38.12	-138.12	0.00	-1.33	-13.52	37.53	13.39	5.74	0.66	-4.11	410.77	4.22	2.23			Ba_And_Esc.
L9-4	2173010	65901 4	-14.24	-0.01	-5.64	0.21	0.04	-0.50	-0.51	-0.63	-0.21	41.88	-38.67	-244.33	-0.01	-1.76	-2.68	37.51	20.40	5. 99	1.28	-2.22	352.58	3.67	1.68			Ba_And_Esc.
L9-5	2174057	659034	-16.49	0.03	-6.09	-0.01	0.04	-2.68	-0.75	-0.82	-0.18	31.03	-47.92	-111.26	0.00	-2.26	-36.06	31.65	-7.85	16.03	-2.88	-3.41		4.29	1.33			Ba_And_Esc.
L9-6	2175087	659088	-13.14	0.03	-4.43	0.65	0.05	-1.92	-0.58	-0.63	-0.17	42.70	-40.98	-44.24	-0.02	-2.01	-45. 96	35.85	26.59	15.74	2.50	-0.99	363.31	4.05	3.24	4.67		Ba_And_Esc.
L8-5	2174076	660066	-16.19	-0.15	-5.89	-0.63	0.04		-0.97	-0.75	-0.17	44.58	-44.91	78.27	0.02	-1.99	-25.40	-2.89	-3.24	10.11	0.84	-4.73	1315.20	4.19	-2.68			Ba_And_Esc.
L7-5	2174002	661061	-30.81	-0.96	-11.11	-5.04	-0.03		-4.22	-0.59	-0.31	64.08	-277.36		0.16	-3.14	-135.82	-8.48	-17.46	-38.75	4.34	-2.56	596 .57	2.32	-3.09	6.51	5.11	Ba_And_Esc.
L1-1	2170035	667023	-4.03	-0.01	-4.33	-1.42	0.02	-2.54	-1.79	0.13	-0.21	69.68	-33.86	-760.52	0.00	-6.11	-36.61	-1.14	-4.24	-8.16	4.09	0.96	775.31		-1.26			Ba-And.
L1-4	2173012	667045	-6.43	-0.08	-4.55	-1.47	0.02	-1.99	-1.96	0.07	-0.18	75.50	-37.08	-349.29	0.00	-3.24	-37.24	1.92	-6.37	-1.56	6.36	2.82	782.04		-1.86	4.60		Ba-And.
L2-2	2171045	666070	-8.76	-0.21	-5.19	-1.90	0.02	-2.85	-1.24	-0.13	-0.02	56.65	-17.24	-477.04	0.00	-3.06	-70.95	2.94	-10.97	-6.16	4.34	-4.25	1050.87	-1.10		3.85		Ba-And.
L2-3	2172055	666077	-10.38	-0.07	-6.26	-1.50	0.02	-3.18	-2.14	-0.06	-0.20	67.44	-39.89	-437.57	0.00	-1.83	-50.03	-8.25	0.23	-12.73	4.69	0.23	778.46		-1.85			Ba-And.
L2-5	2174052	666024	-21.52	-0.04	-11.63	-2.02	-0.01		-4.34	-0.21	0.10	57.79	-98.71	-845.19	0.00	1.51	-71.05		-30.44	-11.12	2.14	-4.24	11321.08	-1.12				Ba-And.
L2-6	2175025	666083	-12.46	-0.06	-7.65	-1.49	0.02		-2.38	-0.01	-0.18	65.72	-43.52	-439.16	0.00	-2.54	-47.99		-12.42	-0.83	4.84	-2.52	311.01					Ba-And.
L3-1	2170035	665043	-10.30	-0.30	-6.73	-2.79	0.01		-2.82	-0.02	0.04	73.25	-116.32	-330.15	0.00	-3.02	-78.51	0.73	-8.18	-18.65	5.26	0.26	843.87		-1.87	3.95		Ba-And.
L3-3	2172067	665067	-11.21	-0.05	-6.6 5	-1.53	0.01	-3.17	-2.25	-0.04	-0.18	71.01	-53.50	-632.61	0.00	-2.50	-52.21	-9 .75	-14.34	-6.74	5.02	-2.29	299.09		-2.92			Ba-And.
L3-5	2174086	665093	-19.87	-0.19	-9.18	-1.63	0.01		-2.84	-0.11	-0.21	68.17	-77.79	-550.70	0.00	-2.65	- 6 0.75	-14.81	-9 .27	-5.98	6.31	-3.04	754.05	-0.90	-2.01	3.98		Ba-And.
L3-6	2175020	665076	-13.01	-0.18	-7.20	-1.92	0.01	-3.31	-2.76	-0.15	-0.11	65.73	-81.29	-609.33	0.00	-3.00	-48.41	2.19	-5.44	-2.95	5.07	-0.04	715.14			3.63		Ba-And.
L4-1	2170001	664 055	-5.88	0.00	-3.63	-1.24	0.02	-2.08	-1.76	-0.01	0.04	64.76	-37.75	-558.86	0.00	-4.05	-35.22	0.52	-10.16	-6.83	4.92	-1.85	816.51		-1.95	3.36		Ba-And.
L5-4	2173054	663028	-11.62	-0.05	-5.70	-1.17	0.02	-2.87	-2.60	-0.38	-0.10	56.30	-40.89	-361.43	0.00	-2.64	-35. 9 7	-6.58	-9.46	6.58	5.49	1.25	978.27	3.75	-1.21	4.35		Ba-And.
L6-1	2170050	662007	-13.43	-0.19	-6.06	-1.78	0.02	-2.87	-1.85	-0.23	-0.23	54.30	-57.61	-473.69	0.00	-2.91	-61.67	0.02	-1.49	-13.21	5.15	1.56	313.03	-0.90	-1.86	3.80		Ba-And.
L7-1	2170048	661019	-24.18	-0.84	-11.83	-4.56	-0.02		-3.82	-0.08	0.73	10.74	-272.51	-651.91	0.00	-1.90	-121.16	-1.05	-16.51	-20.18	5. 9 5	-0.44	1564.31	-1.62	-0.26	4.93	4.67	Ba-And.
L7-3	2172063	661037	-18.52	-0.83	-9.64	-2.72	-0.02		-4.93	0.10	-0.21	9.23	-299.87	-776.71	0.15	-2.33	-123.79	23.93	19.25	-33.39	6 .57	-3.33	649.35	-0.15	5.48	5. 6 5	5.91	Ba-And.
L8-1	2170061	660006	-19.04	-0.77	-9.00	-3.18	-0.01		-4.62	0.02	-0.12	6.98	-267.71	-649.90	0.00	-0.84	-114.15	14.16	-0.90	-27.52	5. 6 5	-1.60	830.64	0.29	3.89	5.30	3.50	Ba-And.
L8-2	2171088	660010	-17.98	-0.69	-8.65	-2.86	0.00		-4.31	0.04	-0.07	6.09	-235.02	-634.64	0.00	-1.26	-112.36	24.12	1.42	-28.22	6.63	-1.61	930.98	0.14	3.72	6.13	3.42	Ba-And.
L8-3	2172087	660077	-19.35	-0.73	-9.03	-3.08	-0.01		-4.54	-0.06	-0.18	4.88	-258.07	-640.41	0.00	-0.98	-108.16	25.74	-2.04	-34.62	5.84	-1.34	823.02	0.22	4.14	4.03		Ba-And.

Tabla 17. Resultados del Balance de Masas de las muestras locales del CGH. And: andesita; Ba_Olvi: Basalto de olivino. El hierro total viene expresado como Fe₂O₃

Musstra	Coorde	enadas	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	$\mathbf{K}_2\mathbf{O}$	P_2O_5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	s	As	Mo	Bi	U	Poor
Muestra	Norte	Este					%												μg.g ⁻¹									Roca
LL4-22	2176706	662701	7.27	0.74	5.10	4.20	0.07	2.56	4.36	-0.41	-0.03	-27.14	291.52	439.88	0.00	2.06	108.74	85.96	42.45	47.60	-3.48	2.26	936.45	6.70	1.56			And.
LL4-26	2177105	662710	-0.07	0.99	3.24	4.56	0.08	2.03	3.07	-0.79	0.06	-61.94	171.40	371.75	0.00	6.25	120.33	60.69	31.56	50.58	-7.68	-1.92	279.90		0.63			And.
LL4-15	2176001	662708	-0.70	0.03	1.19	1.03	0.04	0.79	0.72	-0.60	-0.14	4.91	183.69	391.29	0.00	-1.95	4.05	64.23	37.74	-1.42	1.03	1.04	1238.47		1.00	1.76		And.
LL4-29	2177402	662704	-1.89	-0.04	0.38	-0.56	0.00	0.81	-0.15	-0.62	0.09	-49 .15	-4.44	24.49	0.00	1.75	-7.60	3.60		4.41	-0.48	-0.59		4.13		-1.09		And.
LL4-31	2177605	662704	2.49	-0.70	-2.56	-3.38	-0.03		-2.23	0.55	-0.16	-62.84	-160.44	81.81	0.00	0.16	-64.62	-32.34		-32.77	4.78	2.18	102.51	3.41	-2.05	4.48	9.35	And.
LL4-34	2177905	662703	-0.72	-0.71	-4.78	-3.77	-0.04		-3.12	1.13	-0.15	-41.96	-240.91		0.00	2.30	-77.40			-40.44	9.62	3.25		5.16	2.29	9.86	11.39	And.
LL4-24	2176903	66 2705	-0.69	0.31	2.89	1.50	0.03	1.28	0.52	-0.73	0.09	-34.53	30.36		0.00	0.13	28.56	17.24	0.37	10.38	-0.96	-4.61	53.89	6.00	-1.19	-1.93		And.
LL4-25	2177009	662705	11.48	0.92	4.97	3.66	0.06	1.75	2.31	-0.42	0.23	-34.35	226.87	248.54	0.00	3.87	120.28	25.20	39.73	34.99	-2.99	0.19	171.64		1.56			And.
LL4-30	2177507	662702	7.41	-0.64	-3.66	-3.33	-0.03		-2.86	-0.04	-0.10	16.41	-204.48		0.00	0.00	-73.94	-21.62		-48.87	4.70	-5.12	-83.60	3.57	-2.18	5.52	6.48	And.
LL18-29	2177405	661309	1.07	0.09	-6.73	-1.44	0.01	-5.80	-2.78	0.07	-0.03	23.94	-58.04		49.32	1.14	-50.27	55.60	-31.70	0.00	0.10	-2.96	825.96	-0.32	-0.30			Ba_Olv.
LL10-10	2175502	662109	5. 9 7	0.10	-4.99	-2.41	0.01		-3.55	1.35	-0.21	92.72	103.64	300.93	132.82	8.61	-52.62	-144.87	-18.26	0.00	5.05	3.57	-221.64		4.59	4.34		Ba_Olv.
LL10-23	2176804	662108	-4.30	-0.09	-7.72	-3.82	-0.01	-7.21	-4.97	0.85	0.24	64.85	-16.00	-61.68	78.01	5.18	-76.70	-139.99	-31.19	0.00	0.09	1.27	66.71	-0.86	-0.49			Ba_Olv.
LL11-7	2175205	662005	4.28	0.09	-4.56	-2.80	0.01	-7.50	-4.08	1.09	-0.11	95.64	57.83	525.7 6	125.48	8.93	-81.42	-156.53	-28.27	0.00	4.06	1.44	-21.61	1.52	0.47			Ba_Olv.
LL11-9	2175404	662004	-10.85	-0.20	-9.33	-4.28	0.00	-7.44	-5.33	0.59	-0.07	58.76	-53.27	-13.44	70.63	4.95	-109.46	-156.13	-34.24	0.00	3.40	0.66			-0.68			Ba_Olv.
LL11-11	2175604	662008	-5.02	-0.09	-8.34	-3.56	0.00		-4.69	0.93	-0.20	79.59	15.62	108.04	92.94	6.93	-81.42	-161.87	-31.06	0.00	3.21	2.85	-61.39	2.70	2.08			Ba_Olv.
LL11-12	2175703	662007	-0.56	0.02	-6.49	-3.09	0.00		-4.14	0.93	-0.10	77.90	38.94	94.64	115.58	6.90	-58.52	-151.79	-36.42	0.00	4.15	1.55		1.88	-0.81			Ba_Olv.
LL11-13	2175809	662003	24.53	0.04	-2.32	-3.90	-0.01		-4.93	2.44	0.12	175. 9 4	222.60		224.13	13.16	-99.88	-112.77	-63.98	0.00	12.09	9.97	11737. 9 4	7.25	3.29	11.36		Ba_Olv.
LL11-23	2176810	662004	-12.12	-0.30	-11.49	-5.08	-0.01	-7.10	-5.74	0.45	-0.07	56.33	-86.55		36.40	2.95	-96 .75	-166.32	-43.32	0.01	0.08	0.86	498.82		-1.60			Ba_Olv.
LL11-25	2177009	662009	13.55	0.49	-7.12	-2.58	0.00		-4.52	1.20	0.23	84.08	112.66	267.39	154.32	7.97	- 79.8 5	-151.28	-33.48	-0.01	3.09	8.71	3912.79		2.57			Ba_Olv.
LL13-16	2176905	661910	-12.11	-0.14	-9.20	-3.66	-0.02	-6.47	-5.54	0.65	-0.08	59.99	-46.50	660.38	66.99	7.73	-64.69	-124.53	-26.86	0.00	2.74	3.15	105.63	0.28	2.08			Ba_Olv.
LL13-17	2177103	661907	-3.58	-0.11	-9.71	-2.50	0.01		-5.02	0.83	-0.12	77.51	-20.13	298.99	66.53	4.72	-51.66	-127.56	-24.45	0.00	0.09	-0.86	1237.82		-0.83			Ba_Olv.
LL13-18	2176106	661803	-0.94	0.17	-9.13	-2.80	0.01	-7.59	-4.75	0.58	-0.08	37.58	10.51	250.17	86.45	4.96	-66.14	-142.58	-32.22	0.04	2.66	1.82	306.95		-1.02			Ba_Olv.
LL13-19	2176204	6618 05	14.32	0.20	-7.78	-2.83	0.00		-4.89	0.94	-0.09	9 5.15	57.24	622.49	141.57	11.25	-97 .25	-134.99	-39.58	0.00	3.21	2.74	1319.32	0.43	-0.36			Ba_Olv.
LL13-23	2176303	66180 5	17.18	0.96	-1.30	2.31	0.00		-5.05	1.30	-0.05	68.82	204.57	266.60	192.21	10.08	5.49	-114.58	-12.79	-0.02	0.14	4.29	27290.27		1.83			Ba_Olv.
LL13-24	2176402	661810	10.63	0.49	-7.12	-2.39	-0.01		-5.49	1.34	0.00	96.04	73.43	724.59	166.37	9.81	-55. 60	-135.25	-8.63	-0.01	3.57	4.58	18298.15		3.16			Ba_Olv.
LL13-25	2176810	661806	-4.92	0.00	-8.73	-4.18	-0.02		-5.09	0.99	-0.13	84.29	-0.94	333.27	101.62	8.78	-9 3.75	-157.52	-35.47	0.00	2.78	1.92	4428.82		0.81			Ba_Olv.
LL14-12	2177004	661804	7.67	0.07	-6.31	-3.17	0.01		-1.58	1.08	-0.11	71.77	103.26	388.10	105.73	6.49	-86.29	-151.45	-30.66	0.00	0.11	1.60	648.59					Ba_Olv.
LL15-16	2175709	661702	-7.11	-0.14	-9.86	-2.91	0.00		-5.85	0.82	-0.12	60.41	-39.02	83.49	58.02	4.37	-57.77	-152.78	-30.17	0.00	2.42	1.44	6135.30	1.11	-0.81			Ba_Olv.
LL15-17	2176105	661604	-4.57	0.10	-8.65	-3.17	-0.01		-5.05	0.52	-0.05	38.67	-20.21	93.20	83.62	5.12	-56.32	-135.66	-31.07	0.00	0.09	2.67	-28.05		-0.07			Ba_Olv.
LL15-18	2176203	661608	-3.53	0.13	-7.51	-3.01	0.00		-4.23	0.64	-0.10	36.78	40.45	454.54	99.07	6.83	-63.93	-131.85	-32.74	0.00	2.82	4.24	232.30		-1.27			Ba_Olv.
LL15-19	2176305	661602	-3.98	0.04	-7.98	-2.92	0.00		-3.95	1.19	-0.13	66.07	53.25	186.40	104.05	6.84	-90 .57	-162.39	-24.19	0.00	0.10	4.75	-222.56		1.96			Ba_Olv.
LL15-20	2176405	661601	6.73	0.43	-5.57	-3.01	-0.01	-7.17	-4.62	1.28	-0.03	107.09	116.55	159.39	140.07	9.84	-70.64	-143.33	-31.58	-0.01	3.34	4.63	14759.81					Ba_Olv.
LL16-17	2176507	6616 05	-7.17	0.13	-8.76	-3.16	-0.02	-7.38	-5.21	0.74	-0.14	42.15	1.76	238.38	96.44	8.40	-87.36	-137.73	-23.88	0.00	2.71	1.50	690.72	-0.28	2.06			Ba_Olv.
LL16-23	2176203	661507	4.09	0.12	-7.56	-3.15	-0.01	-7.17	-5.22	1.07	-0.09	76 .55	36.40	174.94	106.94	7.57	-81.86	-146.40	-32.37	0.00	4.35	1.26	10223.70		1.17			Ba_Olv.
LL16-26	2176802	661508	-11.54	-0.16	-5.39	-1.37	0.01	-6.19	-3.19	-0.06	-0.12	12.41	-89.14	-217.13	5.86	-0.35	-55.68	15.30	15.30	0.00	0.08	-4.17	1431.99					Ba_Olv.
LL16-27	2177107	661501	11.20	0.59	-4.44	-0.56	0.03	-5.96	-2.08	0.21	-0.05	30.55	57.32	909.86	108.77	3.58	-12.76	68.15	-12.27	-0.01	0.12	0.52	4498.42	-0.01				Ba_Olv.

La zona productora del CGH está localizada dentro de la caldera de Los Potreros (Flores-Armenta *et al.*, 2011), en la parte norte existen 11 pozos productores (H-3, 9, 11, 15, 20, 30, 31, 32, 35, 36 y 37), en la parte central de la caldera Los Potreros cercanos a la falla de Los Humeros se encuentran 3 pozos productores más (H-1, 7 y 8) y al sur de la caldera Los Potreros se encuentra una tercer zona de producción en la inmediaciones del colapso Xalapazco y la traza de la falla Los Potreros donde existen 4 pozos productores (H-6, 12, 41, 42). La litología superficial donde están ubicados los pozos productores está constituida por depósitos piroclástico principalmente en la zona norte, basaltos de olivino en la zona central y andesitas – basaltos en la zona sur (Carrasco-Núñez *et al.*, 2015), dichas unidades litologías presentan grados de interacción agua-roca que varía de argílica a argílica avanzada y silicificación. El balance de masa (Figura 35, 36 y 37) en dichas zonas está representado por un promedio de 9 muestras (Tabla 18), las cuales tienen altos índices de alteración, IS entre 75-90 e IQA entre 60-70.

La Figura 35 muestra el balance de masas de la unidad litológica de basaltos de olivino de la zona productora central de la caldera Los Potreros cercano a la falla de Los Humeros, incluye el diagrama de isocona con sus graficas correspondientes del incremento de concentración, donde se muestra que la zona por encima de la isocona (sombreada en gris) son elemento que han sido enriquecidos durante los procesos de alteración hidrotermal (Bi, Th, Mo, As, Nb, Pb, Sr, Ba, Zn, Rb, S, SiO₂ y K₂O). Los elementos por debajo de la isocona son los elementos que sufrieron empobrecimiento durante los procesos de interacción agua-roca señalados con una línea punteada azul (Al₂O₃, Fe₂O₃, MgO, MnO, CaO, Cr y Cu).

El balance de masas de la unidad litológica andesita - basalto (Figura ₃6) de la zona productora sur de la caldera Los Potreros en las inmediaciones del colapso Xalapazco y la traza de la falla Los Potreros, se puede observar a los elemento inmóviles seleccionados mediante las herramientas estadísticas y graficas siendo los siguientes Zr, Ti₂O y MnO, los resultados muestra mediante el diagrama de isocona y sus correspondientes graficas del incremento de concentración que los elemento que han sido enriquecidos durante los procesos de alteración hidrotermal son el Rb, Th, Pb, Bi y S; siendo los siguientes elementos

los que sufrieron empobrecimiento durante los procesos de interacción agua-roca Al_2O_3 , Fe_2O_{3T} , SiO_2 , MgO, CaO, Nb, Cr, Cu, Zn, As y Mo.

La unidad litológica constituida por depósitos piroclásticos (Figura 37) de la zona productora norte de la caldera Los Potreros, muestra que la zona por encima de la isocona se encuentran elementos como el Cu, Th, Mo, Bi, U, SiO₂, Ti₂O, y Sr; mientras que los elementos por debajo de la isocona son los elementos que sufrieron empobrecimiento durante los procesos de interacción agua-roca siendo estos el Al₂O₃, MgO, CaO, K₂O, Cr y Zn. Esta unidad litológica presenta una ganancia del 27.14 % con respecto al total de la masa de la roca fresca. Cabe mencionar que el aluminio es considerado un elemento inmóvil debido a su baja solubilidad (O'Hara, 1990, Grant, 1986) sin embargo en el balance de masas de CGH el Al₂O₃ muestra un empobrecimiento mayor al 4% de su concentración original movilidad que ha sido reportada para los proceso de alteración hidrotermal (Izaquirre *et al.*, 2012).

Los resultados obtenidos por el balance de masas permitieron determinar de manera semicuantitativa el cambio de masa total de las tres zonas productivas del CGH, además del enriquecimiento y empobrecimiento e inmovilidad elemental asociado a los procesos de interacción agua/roca. El balance

de masas sugiere que la unidad de depósitos piroclásticos es más susceptible a la alteración hidrotermal y en consecuencia a cambiar la masa (27.14 %), seguido por la unidad de basaltos de olivino (15.17 %) y la unidad de andesitas – basaltos (-11.60%), siendo esta ultima la única unidad que presento una disminución de masa. Ambos procesos (pérdida o aumento de masas) están íntimamente relacionados con el porcentaje de interacción agua-roca, ya que aunque las tres zonas están presentes en la caldera de Los Potreros la alteración en la zona sur de andesitas – basaltos muestra mayormente silicificación y argilización, mientras que en la zona de basaltos de olivino la alteración varía de argílica a argílica avanzada con valores más altos en índices de argilización (>90) la zona norte de depósitos piroclásticos presenta en mayor medida alteración argílica – argílica avanzada.

Los datos obtenidos sugieren que las rocas que no presentan pérdida de masa (depósitos piroclásticos y basaltos de olivino) están mayormente enriquecidas en SiO₂, Bi, Th, Mo y Sr, y empobrecidas en Al₂O₃, CaO y Cr. Las rocas que presentan pérdida de masa son enriquecidas en Bi, Th y Rb, y empobrecidas en Al₂O₃, Fe₂O₃, Fe₂O₃, CaO, Cr y Cu los elementos mencionados son comunes en las tres litologías. Con estos resultados obtenidos se demuestra que el fluido que origina la alteración en el CGH tiene altas concentraciones en los elementos enriquecidos, y la capacidad de incorporar elementos a la roca encajonante.

El primer y único intento de un balance de masas realizado en el CGH se realizó en los pozos H-15, H-16, H-17, H-29 (zona de Colapso Central) y H-12 (próximo al colapso de Xalapazco) en donde se determinó que la disminución de potasio (K₂O) dentro de las unidades riolíticas y dacíticas (1300 m) se debía al procesos de albitización hidrotermal de los feldespatos primarios, este mismo fenómeno se presenta en los depósitos piroclástico superficiales. En el caso de las tobas acidas presentes a profundidades <1000 m, se observó altas concentración de Na₂O, lo cual se debe a la transformación de minerales primario a minerales arcillosos, zeolitas sódico-cálcicas y en el caso del SiO₂ en las rocas acidas disminuye. Para las andesitas y tobas riolíticas se aprecian fuertes aumentos de SiO₂ con respecto a las rocas sin alterar, fenómeno contrario a lo observado en superficie por parte de los depósitos piroclásticos, mientras que el caso del TiO₂ y el MgO muestran una menor movilidad bajo la acción de fenómenos de hidrotermalismo (Martínez-Serrano y Chantal, 1994), estos últimos elementos en superficie presentaron baja movilidad en las tres unidades litologicas. Tabla 18. Resultados del Balance de Masas de las principales litologías superficiales de las zonas productoras del CGH. El hierro total viene expresado como Fe₂O₃.

Balance de Masas para Basaltos Olivino del CGH

Balance de Masas para Andesitas - Basaltos del CGH

Balance de Masas para Depósitos Piroclasticos del CGH

		_												_			
		C	Cambio de masa e	en general (%)	15.17			C	ambio de masa e	en general (%)	-11.60			C	ambio de masa e	en general (%)	27.14
Tabla		Р	Pendiente de la Is	socona	0.87	Tabla		Р	endiente de la Iso	ocona	1.13	Tabla		Р	endiente de la Is	ocona	0.79
	Estadi	isticas de datos ge	oquimicos de las	s muestras alterad	as Ganancia/Perdida		Estadi	sticas de datos geo	oquimicos de las	muestras alterad	as Ganancia/Perdida		Estad	isticas de datos ge	oquimicos de las	muestras alterada	as Ganancia/Perdida
Muestra	n	M ediana	M edia	S.D	en wt.% ο μg*g-1	Muestra	n	Mediana	Media	S.D	en wt.% o µg*g-1	Muestra	n	Mediana	Media	S.D	en wt.% ο μg*g-1
0:0	0	~	55.0	5.6		0:0	0	10.6	40.7	2.0	12.07	<u> </u>	0	((2)	62.5	10.2	ΔC _i
S1O ₂	9	54.4	55.8	5.6	16.15	S1O ₂	8	49.6	48.7	2.0	-13.07	SiO ₂	9	66.3	63.5	10.2	15.74
T1O ₂	9	1.5	1.5	0.4	0.39	T1O ₂	8	1.4	1.4	0.1	-0.03	T1O ₂	9	0.8	1.1	0.5	0.68
Al_2O_3	9	12.6	12.1	2.6	-7.12	Al_2O_3	8	14.1	14.2	1.2	-5.66	Al_2O_3	9	8.4	8.8	2.9	-4.22
Fe ₂ O ₃	9	6.5	6.4	2.3	-2.75	Fe_2O_3	8	6.9	6.9	0.2	-1.33	Fe_2O_3	9	2.7	2.9	0.7	-0.16
MnO	9	0.1	0.1	0.0	0.01	MnO	8	0.1	0.1	0.0	0.02	MnO	9	0.1	0.1	0.0	0.00
MgO	9	3.9	1.1	1.1	-7.26	MgO	8	1.6	1.4	0.1	-2.85	MgO	9	0.7	0.1	0.0	-0.66
CaO	9	4.2	4.2	2.0	-4.71	CaO	8	4.6	4.6	0.3	-2.34	CaO	9	1.2	1.3	0.5	-0.54
K_2O	9	1.3	1.5	0.8	1.19	K_2O	8	1.7	1.7	0.1	-0.24	K_2O	9	1.7	2.2	0.9	-0.39
P_2O_5	9	0.3	0.3	0.1	0.04	P_2O_5	8	0.2	0.3	0.1	-0.07	P_2O_5	9	0.1	0.1	0.0	-0.01
Rb	9	85.0	85.9	42.3	93.73	Rb	8	110.7	106.1	17.7	53.84	Rb	9	107.0	119.3	62.8	60.72
Sr	9	387.7	366.7	87.0	48.92	Sr	8	448.4	449.9	15.2	-51.32	Sr	9	172.8	182.2	89.0	6.65
Ва	9	811.7	406.5	233.0	46.01	Ва	8	905.9	870.2	162.3	-482.94	Ва	9	0.0	0.0	0.0	0.00
Zr	9	244.9	254.7	65.7	166.43	Zr	8	241.5	242.5	9.9	0.00	Zr	9	318.4	319.3	38.3	0.00
Nb	9	12.6	10.7	5.6	8.63	Nb	8	11.5	11.3	1.1	-2.84	Nb	9	15.4	14.2	2.7	0.08
Cr	9	46.1	92.1	121.1	-88.25	Cr	8	27.8	30.1	6.0	-1.74	Cr	9	11.8	3.2	5.6	-0.90
Cu	9	28.9	24.8	23.1	-35.64	Cu	8	27.5	29.6	7.2	-6.17	Cu	9	2.6	0.9	0.0	1.09
Zn	9	64.1	66.0	19.7	-0.01	Zn	8	80.5	81.5	8.3	-4.11	Zn	9	26.1	26.1	16.8	-22.76
Th	9	2.8	3.9	4.4	4.49	Th	8	5.6	5.6	1.2	4.96	Th	9	9.8	9.5	4.0	0.59
Pb	9	11.8	10.6	4.4	6.34	Pb	8	12.7	15.1	7.9	1.71	Pb	9	13.1	13.3	5.8	1.88
S	9	3760.5	4853.8	4673.7	5183.24	S	8	937.1	1052.7	316.2	930.53	S	9	4146.4	8270.2	11756.8	10514.52
As	9	8.7	4.4	4.1	0.37	As	8	4.4	0.5	0.0	-3.99	As	9	3.3	1.5	0.5	-0.73
Mo	9	4.7	4.1	1.4	1.11	Mo	8	4.4	2.8	0.8	-2.86	Mo	9	4.7	4.7	1.6	1.43
Bi	9	10.8	2.4	3.2	2.76	Bi	8	3.7	2.2	0.8	1.98	Bi	9	10.6	7.5	2.7	9.58
U	9	0.0	0.0	0.0	0.00	U	8	0.0	0.0	0.0	0.00	U	9	6.9	5.4	3.8	3.31

VII.V.II Método de correlación geoquímica bivariable

Con los datos obtenidos mediante el balance de masas de las tres principales zona productoras del CGH, se realizaron matrices de correlación Pearson "r" (**Anexo VI**), con la finalidad de describir la relación lineal entre los conjuntos de variables a nivel de intervalo se consideró que el valor que estuvieran entre 0.7 a 0.9 corresponden a una correlación de los datos alta y se consideraron valores >0.9 como correlaciones muy altas, ambos valores pueden ser positivos o negativos (Vázquez., 2010, Izaguirre *et al.*, 2012). Debido a la gran variabilidad que presentan las matrices de correlación, y a los resultados del balance de masas se optó por realizar una correlación bivariable entre el Aluminio (Al) y los elementos mayores, menores y traza analizados, por ser este un elemento que se empobrece y que está presente en la alteración argílica –argílica avanzada, de igual manera se hizo la correlación del elemento Silicio (Si) por ser un elemento que se enriquece durante los procesos de silicificación (Figuras 38, 39 y 40). Los coeficientes de correlación varían entre -1 y +1, cuando r=0, significa una total independencia entre dos elemento analizados, cuando r=+1 indica una correlación directa y cuando r=-1, representa una correlación funcional inversa (Izaguirre *et al.*, 2012).

Figura 38. Coeficientes de correlación bivariable del Si y Al con respectos a los elementos mayores y traza de la unidad litológica basaltos de olivino del CGH. El hierro total viene expresado como Fe₂O₃.

Los resultados de la correlación geoquímica bivariable de la unidad litológica de basaltos olivino quedan ilustrados en los gráficos binarios de coeficiente de correlación del Si y Al *vs* elementos mayores, menores y traza (Figura ₃8), donde en el caso del Si muestra fuertes correlaciones positivas (0.7-0.9) con el Th y Al₂O₃, correlaciones moderadas positivas (0.5-0.7) con K₂O, Rb, Nb, Mo, Bi, Pb, y Sr. Los elementos Cu, As, CaO, Fe₂O₃T y Cr muestran una correlación negativa muy baja (o - 0.2), cabe señalar que solo se están tomando en cuenta en la descripción de los datos los elementos que han sido enriquecidos o empobrecidos durante los procesos de la interacción agua/roca. Las correlaciones geoquímicas del Al se muestran altas con respecto al SiO₂, Mo, Th y Bi, correlaciones moderadas con respecto a K₂O, Rb, Pb, S y Sr, correlaciones bajas con Nb y As, y correlaciones muy bajas con Cu, Cr, Ba, Fe₂O₃T, CaO. Para el Al no se presentó ninguna correlación negativa.

Figura 39. Coeficientes de correlación bivariable del Si y Al con respectos a los elementos mayores y traza de la unidad litológica andesita - basalto del CGH. El hierro total viene expresado como Fe₂O₃.

La correlación geoquímica bivariable de la unidad litológica de andesitas – basaltos, que corresponde a la zona sur productora del CGH, refleja para los coeficientes de correlación para el Si *vs* elementos mayores, menores y traza (Figura 39-a) que el único elemento que muestra fuerte correlación positiva es el Mo, mientras que los elementos S y Ba presentas muy baja correlación. En el caso de las correlaciones

negativas la unidad muestra muy bajas correlaciones para MgO, Cr, Nb, Sr, y CaO, bajas correlaciones para Al₂O₃, Fe₂O₃T y Pb, moderadas correlaciones geoquímicas para los elementos As, Rb, Cu y Zn, mientras que el Bi y Th presenta correlaciones negativas altas. Las correlaciones geoquímicas con respecto al Al se presentaron muy altas (>0.9) para el CaO, moderadas correlaciones para Zn y Rb, bajas correlaciones para Cu, Th y Nb, muy bajas correlaciones para Bi, Cr, As y Fe₂O₃T, y nulas correlaciones para el caso del MgO. Las correlaciones negativas para el Al se mostraron nulas para Ba, Pb y Sr, muy baja correlación para el SiO₂ y bajas correlaciones para P₂O₅.

Figura 40. Coeficientes de correlación bivariable del Si y Al con respectos a los elementos mayores y traza de la unidad litológica identificada como depósitos piroclásticos del CGH. El hierro total viene expresado como Fe₂O₃.

La unidad compuesta por depósitos piroclásticos (Figura 40), la cual corresponde a la zona productora norte, presenta altos coeficientes de correlación positivos para el Si para el elemento As, moderadas correlaciones para Sr, Bi, CaO, Al₂O₃ y K₂O, y muy bajas correlaciones positivas para el TiO₂ y Mo, nulas correlaciones para Rb, Pb, S, Th, MgO, Cu y Fe₂O₃T. Las correlaciones geoquímicas negativas de la unidad litológica se presentaron nulas para el Cr, muy bajas correlaciones para el Nb, y moderadas correlaciones para el Zn. Para el caso de las correlaciones negativas para el Al, los depósitos piroclásticos presentaron

moderadas correlaciones para el S y SiO₂, bajas correlaciones para Pb y TiO₂, muy bajas correlaciones Zn, Bi y As, y nulas correlaciones para Sr, Mo y U. Para las correlaciones negativas de la unidad litológica de la zona norte del CGH, presenta nulas para Cu y MgO, muy bajas correlaciones para CaO, Cr, Th y K₂O, y moderadas correlaciones para Fe₂O_{3T} y Rb.

La correlación bivariable realizada al balance de masas de las tres unidades litológicas del CGH, sugiere que los elementos que presentaron enriquecimiento (SiO₂, Th, Sr, Rb, Bi) coinciden con los elementos de mayor correlación positiva, por el contrario los elementos que presentaron una mayor correlación negativa (Zn y Fe₂O₃T) coinciden con elementos empobrecidos, sin embargo existe ciertos elementos con una fuerte correlación positiva en elementos empobrecidos como el CaO, Cu y Cr. El análisis de los resultados de la correlación bivariable apoyan lo obtenido mediante el balance de masas de manera consistente, sugiriendo una correlación en el comportamiento de los elementos con el estudio de balance de masas.

VII Interpolación de los Datos Mediante el Método de Interpolación Kriging Ordinario

Los datos discretos obtenidos en el balance de masas del muestreo local son los que se interpolaron, con el objetivo de proyectar mapas con superficies continuas, mientras que los datos obtenidos mediante el balance de masas del muestreo regional indica únicamente la distribución espacial y abundancia debido a que la densidad de datos es insuficientes para una interpolación representativa. El proceso que se llevó a cabo mediante la interpolación esta sintetizado mediante el diagrama de flujo de la Figura 41, este proceso optimiza el análisis espacial de los datos mediante la eliminación de tendencias que puedan presentar los datos (constante, 1er, 2do y 3er grado), lo que permite representar los valores más semejantes los unos con los otros (cálculo del variograma experimental), y así definir si existe efecto pepita en los datos utilizados y la existencia de cambios en la continuidad espacial de los datos con la dirección (anisotropía), finalmente los datos ajustados se modelan con un modelo teórico (esférico, gaussiano, exponencial, etc.), después se fija la cantidad de datos vecinos y se obtiene la validación cruzada de los datos, finalmente obtenemos la estimación de los datos mediante el kriging ordinario.

La representación gráfica del balance de masas del CGH mediante superficies continúas obtenidas por el método de interpolación kriging junto a la distribución espacial y abundancia del muestreo regional de las figuras 41-a,b,c, d y 42-a,b,c, d, e; obedecen a un análisis geoestadísticos con tres principales parámetros: 1.- medidas de tendencia central (media, mediana y moda) con la cuales identificamos el dato más representativo de la distribución del conjunto de datos, 2.- medidas de dispersión (desviación estándar, varianza y coeficientes de variación) las cuales nos indican la mayor o menor concentración de

los datos con respecto a las medidas de centralización dándonos una idea de la homogeneidad o que tan agrupados están los datos, 3.- coeficientes de forma de distribución (coeficiente de curtosis y coeficiente de sesgo o simetría) que miden el grado de deformación respecto a una curva o patrón (distribución normal).

Un parámetro adicional utilizado obedece a la estricta definición de anomalía geoquímica, la cual debe separarse de un grupo más amplio de datos (valor de fondo o background) donde para ser detectada la anomalía tiene que desviarse claramente de este grupo y debe estar por encima del límite superior de la fluctuaciones del background (umbral geoquímico o threshold), en sensu strito una anomalía geoquímica son aquellos valores que estén por encima del umbral geoquímico (+), que es la media poblacional más dos desviaciones estándar (anomalía positiva) (Figura 42) o el umbral geoquímico (-) que es la media poblacional menos dos desviaciones estándar (anomalía negativa).

Figura 41. Diagrama de flujo que sintetiza el procedimiento estadístico que se llevó acabo para el análisis espacial de los datos obtenido mediante el balance de masas de las muestras locales del CGH.

Figura 42. Parámetros geoquímicos de una distribución normal

Figura 43-a. Anomalías geoquímicas predominantemente positivas del CGH de Torio.

Figuran 43-b. Anomalías geoquímicas predominantemente positivas del CGH de Rubidio.

Figura 43-c. Anomalías geoquímicas predominantemente positivas del CGH de Estroncio.

Los resultados de las anomalías geoquímicas del torio (Figura 43-a) en el CGH son predominantemente positivas, con anomalías en el muestreo regional en la zona productora norte y sur del campo geotérmico, sin embargo son valores por debajo del umbral geoquímico (2σ) por lo que no se pueden considera anomalías significativas en el sentido estricto; en el muestreo local los valores obtenidos son significativos arriba de 3σ (10.26 – 16.01 ppm), el torio presentó pequeñas zonas de empobrecimiento al norte de la falla de los humeros. El rubidio presentó anomalías predominante-mente positivas (Figura 43-b), en el muestreo regional las anomalías están distribuidas tanto en la zona norte, central y sur del campo, con valores por encima del umbral geoquímico ($<2\sigma$), en el muestreo local se muestran zonas enriquecidas con valores arriba de 3σ (174.61 - 188.95 ppm), al igual que el torio el rubidio presentó anomalías empobrecidas al norte de la falla de los humeros. En el caso del Estroncio (Figura 43-c), este elemento presento enriquecimiento regional en la zona norte del campo geotérmico y empobrecimiento en un sector sur-oeste aislado de pozos exploratorios. Localmente se observa enriquecimientos por encima del umbral geoquímico 2σ (219.8 – 385.5 ppm) al noreste del muestreo local, y valores de cercanos al umbral geoquímicos alrededor de las fallas principales.

La distribución espacial de las anomalías elementales producto de la interacción agua-roca observada en las Figuras 43-a, b y c muestra patrones similares para los elementos enriquecidos, siguiendo trazas de fallas existentes como lo es la falla Arroyo Grande, Las Papas, Las Víboras, la falla de más extensión en la zona Los Humeros. Las dos principales unidades litológicas en la zona productora central y norte de la caldera de Los Potreros son basaltos de olivino y depósitos piroclásticos, ambas unidades presentan alteración argílica – argílica avanzada cuyo balance de masas mostro que los elementos enriquecidos durante los procesos de alteración hidrotermal son el Bi, Th, Mo, As, Nb, Pb, Sr, Ba, Zn, Rb, S, SiO₂, Cu, U, y K₂O. Para efectos de este estudio solo se muestran los resultados de Th, Rb y Sr debido a que la correlación bivariable realizada al balance de masas sugiere que los elementos Th, Rb y Sr son los de mayor coeficiente de correlación (>0.5).

Estos elementos pueden ser considerados bajo otros parámetros de exploración geológicos, geoquímicos y geofísicos como elementos indicadores de zonas productivas en el campo geotérmico de Los Humeros ya que indican fuerte correlación geoquímica con la alteración hidrotermal y las zonas de producción actual.

Figura 44-a. Anomalías geoquímicas predominantemente negativas del CGH de Aluminio.

Figura 44-b. Anomalías geoquímicas predominantemente negativas del CGH de Calcio.

Figura 44-c. Anomalías geoquímicas predominantemente negativas del CGH de Hierro.

Los resultados de las anomalías geoquímicas del aluminio (Figura 44-a) son predominantemente negativas, el muestreo regional muestra anomalías en la zona productora sur del campo geotérmico, con valores por encima del umbral geoquímico ($<2\sigma$); en el muestreo local existen valores obtenidos mediante el balance de masas están por encima de $>2\sigma$ (-13.98 - 9.60 ppm), el aluminio presento un pequeño de enriquecimiento en la zona norte en el muestreo regional. El calcio presento anomalías predominantemente negativas (Figura 44-b), en el muestreo regional las anomalías están distribuidas principalmente al sur del campo con valores por debajo del umbral geoquímico ($<1\sigma$), en el muestreo local se muestran zonas empobrecidas con valores arriba de $>2\sigma$ (-5.96 - -5.12 ppm), al igual que el aluminio el calcio presento pequeñas zonas con anomalías enriquecidas en la zona productora norte del campo geotérmico y al norte de la falla de los humeros. En el caso del hierro (Figura 44-c), este elemento presento empobrecimiento regional en la zona sur, con un enriquecimiento en la zona norte del campo geotérmico, localmente se observa enriquecimientos por encima del umbral geoquímico >2 (-6.18 - -3.94 ppm).

La distribución espacial de las anomalías elementales predominantemente negativas observada en las Figuras 44-a, b y c muestra patrones similares para los elementos empobrecidos, siguiendo trazas de fallas. Las dos principales unidades litológicas en la zona productora central y norte de la caldera de Los Potreros son basaltos de olivino y depósitos piroclásticos, ambas unidades presentan alteración argílica – argílica avanzada cuyo balance de masas mostro que los elementos enriquecidos durante los procesos de alteración hidrotermal son el Al₂O₃, Cr, Cu, Zn, CaO, MgO, K₂O y Fe₂O₃T. Para efectos de este estudio solo se muestras los resultados de Al₂O₃, CaO y Fe₂O₃ debido a que la correlación bivariable realizada al balance de masas sugiere que los elementos Al₂O₃, CaO y Fe₂O₃T son los de mayor coeficiente de correlación (> - 0.5).

A diferencia de las anomalías positivas las negativas no son usadas directamente para la exploración geoquímica, ya que el empobrecimiento puede no estar asociado directamente con la integración aguaroca, por lo que únicamente se puede utilizar como una aseveración más para la movilidad elemental del campo geotérmico de Los Humeros.

VIII CONCLUSIONES

Las inclusiones fluidas estudiadas en el presente trabajo (H-41, 42 y 43) son las de mayor salinidad con rangos máximos de 12.86 % en peso eq. de NaCl esta salinidad es debida a constantes procesos de ebullición generalmente ocasionado por una pérdida de presión hacia niveles someros originado muy probablemente por el sistema de fallas presente en la zona productora sur, propiciando una exceso de entalpia en esta zona. La temperatura medida de las inclusiones fluidas después de los 1815 m en el pozo H-43 en estado crítico muestra una zona donde la temperatura excede los 374°C, indicando un gradiente térmico superior a cualquier otra zona medida en el CGH.

Se determinó que uno de los principales fenómenos que ocurre en el CGH es de dilución por fluidos superficiales y ebullición.

El uso de diagrama bivariable de profundidades estimadas vs profundidades reales proporcionó resultados similares al diagrama comúnmente usado de temperatura de homogenización vs salinidad, siendo favorable su uso para el CGH.

La evolución térmica del CGH obtenida a partir de las inclusiones fluidas y las temperaturas estabilizadas indica que existe un proceso de enfriamiento debido a que las isotermas de las inclusiones fluidas están más someras que las isotermas de las temperaturas estabilizadas actualmente, sin embargo la afirmación anterior está sujeta a que exista la posibilidad de que las temperaturas estabilizadas estén subestimadas, y aunque existen nuevos método de estimación de temperaturas estabilizadas (Santoyo *et al.*, 2000) aún no existe un método exacto para el cálculo de temperaturas estabilizadas (Andaverde *et al.*, 2005).

En el CGH se destacan dos zonas donde el gradiente de temperatura es mayor (≥ 174.23 °C/km), ambas zonas corresponden con las zonas productoras norte y sur dentro de la caldera de Los Potreros, de igual manera se puede observar que las temperaturas disminuyen hacia el este de la caldera.

El zoneamiento mineralógico producto de la alteración hidrotermal del CGH obtenido por el análisis petrográfico y mineragráfico está dividido en cuatro zonas: zona I argílica (<400), zona II propilítica que es a su vez dividida en baja, media y alta temperatura, zona III con asociaciones paragenéticas de alta acidez presente solo en ciertos sectores del CGH y la zona IV alteración hidrotermal tipo skarn (>1800m).

Se determinó con base a las asociaciones mineralógicas obtenidas por DRX y SWIR que la alteración superficial existen en el CGH varían de argílica (esmectita + cuarzo + montmorillonita + calcita + ópalo), argílica avanzada (esmectita + caolinita + montmorillonita + cuarzo), silícica (esmectita + dickita + cristobalita + ópalo) y argílica avanzada – acido sulfato (esmectita + dickita + cuarzo + alunita + jarosita)
Los diagramas tipo hacker evidenció variaciones sistemáticas de los elementos mayores de las rocas alteradas, donde las tendencias lineales negativas del TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO y CaO y las positivas del Na₂O y K₂O de las muestras inalteradas son completamente difuminadas, mostrando para el caso del TiO₂, Al₂O₃, MnO, MgO, Na₂O y K₂O un enriquecimiento con respecto al SiO₂, solo el Fe₂O₃^T mostró un empobrecimiento respecto al incremento del SiO₂, este enriquecimiento y empobrecimiento demuestra la intensa movilidad elemental que existen en el CGH producto de la interacción agua/roca.

Mediante la clasificación de rocas por el diagrama de Winchester y Floyd (1977), se observó que las variaciones significativas se presentaron en rocas alteradas provenientes de fuentes activas, obedeciendo al grado de interacción agua/roca, presentando a su vez una composición con mayores tendencia acidas a la original.

El uso de los diagramas de multielemento permitió determinar la variación existente en elementos traza de las rocas alteradas con respecto a las inalteradas cogenéticas, donde las muestras alteradas presentan una tendencia a disminuir su concentración con el incremento de la incompatibilidad de elementos de Cs a Lu, mostrando anomalías negativas en Nb y positivas en Th, U, Pb y Zr en los elementos HFS, mientras que en los elementos LILE existen anomalías positivas Cs y anomalías negativas en Sr y Rb en muestra pertenecientes a fuentes activas, haciendo evidente la movilidad de elementos traza producto de la alteración hidrotermal.

Los diagramas normalizados de tierras raras mostraron patrones similares a las rocas inalteradas cogenéticas, sin embargo las muestras que presentó alteración argílica y silícica mostraron un patrón mayormente empobrecido, mientras que las rocas que presentaron alteración argílica avanzada solo se muestran empobrecidas a partir el praseodimio y solo algunas muestras presentaron enriquecimiento en La, Ce, Nd y Sm. Los cambios observados en REE obedecen al grado de interacción agua-roca y muy posiblemente al contenido de REE en los fluidos geotérmicos, mostrando una clara movilidad de REE en el CGH.

El balance de masas realizado a las tres zonas productoras identificadas dentro de la caldera Los Potreros, mostro para la zona norte constituida por depósitos piroclásticos con alteración que varía de argílica a argílica avanzada un enriquecimiento en Cu, Th, Mo, Bi, U, SiO₂, Ti₂O, y Sr y empobrecimiento en Al₂O₃, MgO, CaO, K₂O, Cr y Zn, mientras que la zona productora central constituida basaltos de olivino con alteración predominantemente argílica y argílica avanzada mostraron enriquecimiento en Bi, Th, Mo, As, Nb, Pb, Sr, Ba, Zn, Rb, S, SiO₂ y K₂O y empobrecimiento en Al₂O₃, Fe₂O₃T, MgO, MnO, CaO, Cr y Cu, finalmente la zona productora sur constituida por andesitas – basaltos que muestra mayormente silicificación y argilización presento enriquecimiento en Rb, Th, Pb, Bi y S y empobrecimiento en Al₂O₃, Fe₂O₃T, SiO₂, MgO, CaO, Nb, Cr, Cu, Zn, As y Mo.

La correlación bivariable realizada a las tres zonas productoras sugiere que los elementos que presentaron una mayor proporción de enriquecimiento en el análisis de balance de masas (SiO₂, Th, Rb, Bi, y Sr) coinciden con los elemento de altos coeficientes de correlación, por lo contrario los elementos mayormente empobrecidos en el balance de masas (Al₂O₃, Cr, Cu, Zn, CaO y Fe₂O₃T) coinciden con los elementos de alto coeficiente de correlación negativa.

La distribución espacial de las anomalías elementales ocasionadas por la interacción agua-roca muestra patrones similares para los elementos enriquecidos (SiO₂, Th, Rb, Bi, y Sr), los elementos empobrecidos (Al₂O₃, Cr, Cu, Zn, CaO y Fe₂O₃T) muestran tendencias más marcadas siguiendo las trazas de fallas existentes, estas observaciones espaciales son congruentes con las correlaciones bivariables realizadas en las zonas productiva y con dos de los tres sistemas estructurares principales que controlan el ascenso de fluidos definidos por Carrasco et al. (2015), el primero de ellos es el sistema de fallas de tendencia NW-SE dominadas por la falla Maztaloya, limitada hacia el sur del CGH y por último el sistema N-S, que es donde ocurre la principal actividad geotérmica activa. Por lo que el funcionamiento del campo geotérmico de Los Humeros y los planes para exploración adicional deben centrarse principalmente en el sistema de fallas de resurgimiento activo.

REFERENCIAS

- Andaverde, J., Verma, S. P. y Santoyo, E., 2004. Uncertainty estimates of static formation temperatures in boreholes and evaluation of regression models, Geophysical Journal International, v.160, pp. 1112-1122.
- Arnórsson, S., Sigurdsson, S., and Svavarsson, H., 1982. The chemistry of geothermal waters in Icenland. Calculation of aqueous speciation from o° to 370°C. Geochimica et Cosmochimica Acta, v.46, pp. 1513-1532.
- Arnórsson, S., Andrésdóttir, A., 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland, Geochim. Cosmochim, acta 59, pp. 4125–4146.
- Alemán-Nava, G., Casiano-Flores, V., Cárdenas-Chávez, D., Díaz-Chávez, R., Scarlat, N., Mahlknecht, J., Dallemand, J., Parra, R., 2014. Renewable energy research progressin Mexico: A review, Renewable and Sustainable Energy Reviews, v.32, pp.140-153.
- Armstead, H.C., 1983. Geothermal Energy: Its Past, Present and Future Contributions to the Energy Needs of Man, Spon Press, 2nd edition, pp. 448.
- Armstead, H. C., 1989. Energía Geotérmica, Limusa, México, pp. 504.
- Ascencio, F., García, A., Rivera, J., y Arellano, V., 1994. Estimation of undisturbed formation temperatures under sphericalradial heat flow conditions, Geothermics, v.23, pp.317–326.
- Bakker, R.J., 2012, Thermodinamic modelling and purely empirical equations for H2O-NaCl-KCl solutions. Mineralogy and Petrology, v. 105, pp. 1-29.
- Bau, M., 1991. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium, Chem. Geol. v. 93, pp. 219–230.
- Barragán R. R., Nieva G. D., Santoyo E., González P. E., Verma P. M. López M. J., 1991. Geoquímica de fluidos del campo geotérmico de Los Humeros Pue. (México). Geotermia Revista Mexicana Geoenergía. v.7 (1) pp. 23-48.
- Barret, T. J., y McLean, W. H. 1991, Chemical, mass and oxygen isotope changes during extreme chloritization and sericitization of an Archean rhyolite, Noranda area, Economic Geology, v. 86, pp. 406-414
- Bernard, R., Taran, Y., Pennisi, M., Tello, E., Ramirez A., 2011, Chloride and Boron behavior in fluids of Los Humeros geothermal field (Mexico): A model based on the existence of deep acid brine, Applied Geochemistry, v. 26 (12), pp. 2064–2073.
- Bertani, R., 2015. Geothermal Power Generation in the World 2010 2014 Update Report, Proceedings World Geothermal Congress 2015, Australia, pp. 19-25.
- Browne, P. R., Grahem, I. J., Parker, R.J., Wood, C.P., 1992. Subsurface andesite lavas and plutonic rocks in the Rotkawa and Ngaramariki geothermal systems, Taupo volcanic zone, New Zealand, Journal Volcanology Geothermal, v. 47, pp.149-159.
- Bustillo, M.A. y Bustillo, M., 1999. Los diagramas de isocon como método de estudio de cambios de masa y su aplicación a la génesis de silcretas, Boletin de la Sociedad Española de Mineralogía, v. 22-A, pp. 23-24.

- Canet, C., Franco, S.I., Prol-Ledesma, R.M., González-Partida, E., Villanueva-Estrada, R.E., 2011. A model of boiling for fluid inclusion studies: application to the Bolaños Ag– Au–Pb–Zn epithermal deposit, Western Mexico. Journal of Geochemical Exploration v.110, pp. 118–125.
- Canet, C., Hernández-Cruz, B., Jiménez-Franco, A., Pie, T., Peláez B., Villanueva-Estrada, R., Pura, A., González-Partida E., Salinas S., 2015. Combining ammonium mapping and short-wave infrared (SWIR) reflectance spectroscopy to constrain a model of hydrothermal alteration for the Acoculco geothermal zone, Eastern Mexico, Geothermics, v. 53, pp. 154–165.
- Campos-Enríquez, J.O. and Garduño, V.H., 1987. The shallow structure of the Los Humeros and Las Derrumbadas geothermal fields, Mexico. Journal of Volcanology and Geothermal Research v. 16, pp. 539-554.
- Campos, Enríquez, J.O. y Arredondo, F., 1992. Gravity study of Los Humeros caldera complex Mexico: structure an associated geotermal system, Journal of Volcanology, Geothermal, v. 51 pp. 199–215.
- Campos–Enríquez, J.O., Domínguez–Méndez, F., Lozada–Zumaeta, M., Morales–Rodríguez, H.F., Andaverde, J.A., 2005. Application of the Gauss theorem to the study of silicic calderas: The calderas of La Primavera, Los Azufres and Los Humeros (México), Journal of Volcanology and Geothermal Research, v. 147(1–2), pp. 39–67.
- Carson, G. L., 2015. Hydrothermal Acid-sulfate Alteration at Krafla and Námafjall, Ne Iceland: Implications for Gusev Crater and Meridiani Planum, Mars, Theses and Dissertations, pp. 35-97.
- Carrasco-Núñez, G., Gómez-Tuena, A., López, M., Vargas, V., Aranda-Gómez, J.J., Cedillo, F. y Origel, G., 2008. Estudio de estratigrafía volcánica de la secuencia andesítica del campo geotérmico de Los Humeros, Puebla: Gerencia de Proyectos Geotermoeléctricos, Comisión Federal de Electricidad. Informe Interno DEX-HT-19-08.
- Carrasco-Núñez, G., Arzate, J., Pablo-Bernal, J., Carrera, J., Cedillo, F., Dávila-Harris, P., Hernández, J., Hurwitz, S., Lermo, J., Levresse, G., López, P., Manea, V., Norini, G., Santoyo, E., Willcox, C., 2015. A New Geothermal Exploration Program at Los Humeros Volcanic and Geothermal Field (Eastern Mexican Volcanic Belt), Proceedings World Geothermal Congress 2015, pp. 1-10.
- Castillo-Roman, J., Verma, SP., Andaverde, J., 1991. Modelling of temperature under the Los Humeros Caldera, Puebla, Mexico, in terms of magma chamber depth, GeoFIS. Internat., v. 30, pp. 149-172.
- Cedillo, F., Viggiano, J. y Gutiérrez-Negrín, L., 1994. Columnas Petrográficas de los Pozos Geotérmicos de Los Humeros, Informe Inédito CFE.
- Coaguila, N.D., Tangerino, H.F., Da Silva, Y., Goncalvez, F.D., 2013. Análisis comparativo de método de interpolación espacial utilizando datos de evapotranspiración, XVI Simpósio Brasileiro de Sensoriamento Remoto SBSR, pp. 4080-4085.

Comisión Federal de Electricidad (CFE), 2015. Informa anual 2015, Recuperado de http://www.cfe.gob.mx

- Coelho, J., 2006. GEOISO—a Windows[™] program to calculate and plot mass balances and volume changes occurring in a wide variety of geologic processes, Computers and Geosciences, v.32, pp. 1523–1528.
- Davila-Harris P., y Carrasco-Núñez Gerardo., 2014, An unusual syn-eruptive bimodal eruption: The Holocene Cuicuiltic Member at Los Humeros caldera, Mexico, Journal of Volcanology and Geothermal Research v. 271, pp. 25-27.

- Demant, A., 1978. Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación, Revista Instituto de Geología, v. 2, pp. 172-187.
- Dickin, A.P., 1981. Hydrothermal leaching of rhyolite glass in the environment has implications for nuclear waste disposal, Nature, v.294, pp.342 – 347.
- Cruz-Pérez, M., Canet, C., Franco, S., Camprubí, A., Gonzalez-Partida, E., Rajabi, A., 2016. Boiling and depth calculations in active and fossil hydrothermal systems: A comparative approach based on fluid inclusion case studies from Mexico, Ore Geology Reviews v. 76, pp. 603-611.
- De la Cruz Martínez, V., 1983. Estudio geológico a detalle de la zona geotérmica de Los Humeros, Pue. CFE, internal report No. 10-83. Unpublished.
- Dickson, M.H., and Fanelli, M., 2005. Geothermal Energy: Utilization and Technology, Earthscan Publications Ltd., p. 226.
- Ellis, A. J., 1963. Solubility of calcite in sodium chloride solution at high temperatures, American Journal of Science, v. 261, p. 259-267.
- Espinoza, O. M., 2007. Evaluación de métodos analíticos para la estimación de temperaturas estabilizadas en pozos geotérmicos, Tesis de maestría, Centro de Investigación de Energía, pp. 27-57.
- Ferrari, L., López-Martínez, M., Aguirre-Díaz, G., Carrasco-Núñez, G., 1999. Space-time patterns of Cenozoic arc volcanism in central Mexico: from the Sierra Madre Occidental to the Mexican volcanic belt: Geology, v. 27, pp. 303-306.
- Ferrari, L., 2000. Avances en el conocimiento de la Faja Volcánica Trans-Mexicana durante la última década, Boletín de la Sociedad Geológica Mexicana, v. 53, pp. 84-92.
- Ferrari, L., Orozco-Esquivel, Ma. T., Manea, V., Manea, M., 2012. The dymanic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, v. 522-523, pp.122-149.
- Ferrari, L., 2013. Energía finita en un planeta finito. Revista Digital Universitaria. v. 14 (9), art. 30.
- Ferriz, H., Mahood, G., 1984. Eruption rates and compositional trends at Los Humeros Volcanic Center, Puebla, Mexico, Journal of Geophysical Research, v. 89, pp. 8511-8524.

doi:10.1029/JB089iB10p08511

- Ferriz, H., 1985. Zoneamiento composicional y mineralógico en los productos eruptivos del centro volcánico de Los Humeros, Puebla, México, Geof. Int., v. 24 (1), pp. 97-157.
- Fleischer M., 1978. Relative proportions of the lanthanides in minerals of the bastnasite group, Canadian Mineralogist, v. 16, pp. 361–363.
- Flores-Armenta, M., Ramírez-Montes, M., Sandoval-Medina, F., y Rosales-López, C., 2011. Resultados de la prueba de neutralización de fluidos ácidos en el pozo H-43, campo geotérmico de Los Humeros, Pue., Geotermia, v.24 (2), pp.32-38.
- Founier, R.O., 1977. Chemical geothermometers and mixing models for geothermal systems, Geothermics, v. 5, pp. 41-50.

- Garduño Monroy, V.H., F. Romero Ríos y R. Torres Hernández, 1985. Análisis estructural del campo geotérmico de Los Humeros, Pue. CFE internal report number 26-85. Unpublished
- Gary, M., McAfee, R., Jr., and Wolf, C. L., 1974. Glossary of geology: Washington, D. C., American Geologist Institute., pp. 374

Geotermia en México, (s.f). Recuperado el 02 agosto de 2016, de http://www.cemiegeo.org/

- González-González, M.A., 2009. Geotermia como alternativa energética en México, ¿es realmente viable?, Bol-e, pp.7.
- Gómez-Tuena, A., Langmuir, C.H., Goldstein, S.L., Straub, S.M., Ortega-Gutiérrez, F., 2007a. Geochemical evidence for slab meeting in the Trans-MexicanVolcanic Belt. Journal of Petrology v.48, pp.537–562.
- Gómez-Tuena, A., Orozco-Esquivel, T., Ferrari, L., 2007b. Igneous Petrogénesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Álvarez, S.A., Nieto-Samaniego, Á.F. (Eds.), Geology of México: celebrating the Centenary of the Geological Society of México: Geological Society of America Special Paper, v.422, pp. 1–53
- González-Partida, E., 1985. Etude métallogénique de la partie Centre-Occidentale du Mexique, these de doctorat, These de Doctorat D'EtatInstitut National Polytechnique de Lorraine, France, pp. 210.
- González-Partida, E., Barragán, R.M., Nieva, D., Quijano, J.L., López, J.M., Gutiérrez, P. H., 1991. Estudio de inclusiones fluidas en cuatro pozos del campo geotérmico de Los Humeros, Puebla, Geotermia, v. 7, pp. 201–229.
- González-Partida, E., e Izquierdo G. M., 1996.Estudios petrográficos, inclusiones fluidas y difracción de rayos-X, para las muestras y ripios de barrena de los pozos H-38, H-39 H-40 de Los Humeros, Pue. Informe Interno s/n del Instituto de Investigaciones Eléctricas. Inédito.
- González-Partida, E., Birkle, P. y Torres-Alvarado. 2000 a. Evolution of the hydrothermal system at the geothermal field of Los Azufres México based on fluid inclusions, isotopic and petrologic. Journal of Volcanology and Geothermal Research, v. 104, pp. 277-296.
- González-Partida, E., Tello Hinojosa, E. y Verma, Pal. 2000 b. Análisis geoquímico e isotópico de aguas geotérmicas y manantiales para definir el estado de equilibrio agua-roca del reservorio de los Azufres, Mich., México. Ingeniería Hidráulica en México, v. 15 (3), pp. 89-99.
- González-Partida, E., Tello Hinojosa, E. y Verma Pal. 2001. Interacción agua geotérmica-manantiales en el campo geotérmico de Los Humeros Puebla México. Ingeniería Hidráulica en México, v. 16 (2), pp. 185-194.
- González-Partida, E., Carrillo-Chávez, Levresse, G., Tritlla, J., Tello-Hinojosa, E., Venegas-Salgado, S., Ramírez-Silva, G., M. Verma Pal, and Camprubi, A. 2005. Hydro-geochemical and isotopicac fluid evolution of the los Azufres Geohermal field, Central México. Applied Geochemistry, v. 20, pp. 23-39.
- González-Partida, E., Pérez R., Tinoco J., 2009. Modelado numérico del equilibrio termodinámico entre fases fluidas y minerales presentes en el subsuelo del campo geotérmico de Los Humeros. Informe Interno, CFE. Inédito.
- González-Ruiz, L.E., González-Partida, E., Garduño-Monroy, V.H., Martínez, L., Pironon, J., Díaz-Carreño, E-H., Yáñez-Dávila, D., Romero-Rojas, W., Romero-Rojas, M.C., 2015. Distribución de Anomalías Geotérmicas en México: Una guía útil en la prospección geotérmica, Revista Internacional de Investigación e Innovación Tecnológica, pp. 1-8.

- Grant, J.A., 1986. The Isocon Diagram A Simple Solution to Gresens' Equation for Metasomatic Alteration, Economic Geology, v. 81, pp. 1976-1982.
- Grant, J.A., 2005. Isocon analysis: A brief review of the method and applications, Physics and Chemistry of the Earth, Parts A/B/C, v. 30 (17–18), pp. 997–1004.
- Gresens, R.L., 1967. Composition volume relationships of metasomatism. Chemical Geology v. 2, pp. 47–65.
- Gutiérrez-Negrín, L., 1982. Litología y Zoneamiento hidrotermal en los pozos H-1 y H-2 del campo geotérmico de Los Humeros, Puebla, Informe interno de C.F.E., pp. 23-82.
- Gutiérrez-Negrín, L.C.A., 2007. 1997-2006: A decade of geothermal power generation in Mexico, 2007 Annual Meeting GRC, Sparks, Nevada, pp. 11.
- Gutiérrez-Negrín L., e Izquierdo-Montalvo G., 2010. Review and Update of the Main Features of the Los Humeros Geothermal Field, Mexico, Proceedings World Geothermal Congress 2010, Bali, Indonesia, pp. 25-29.
- Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Economic Geology, v.66, pp. 940–946.
- Hall, G., Bonham-Carte, G., Buchar, A., 2014. Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials, Geochemistry: Exploration, Environment, Analysis, v. 14 (2) pp. 99-123.
- Hanson G.N., 1980. Rare earth elements in petrogenetic studies of igneous systems. Annu Rev Earth Planet Sci v. 8 pp. 371– 406.
- Hasenaka, T., Carmichael, I., 1985. The cinder cones at Michoacán Guanajuato, central Mexico: their age, volume, distribution, and magma discharge rate, Journal of Volcanology and Geothermal Research, v. 25, pp. 105-124.
- Hasan, A.R. y Kabir, C.S., 1994. Static reservoir temperature determination from transient data after mud circulation, SPE Drill, Completion, pp. 17–24.
- Haas, J. R., Shock, E. L., y Sassani, D. C., 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures, Geochim. Cosmochim. Acta v.59, pp. 4329–4350.
- Hauff, P.L., 1994. Applied Reflectance Spectroscopy with emphasis on data collection and data interpretation using the PIMA-II SWIR Spectrometer, Spectral International Inc., Arvada, Colorado pp. 600.
- Hedenquist, J., Henley, R., 1985. The importance of CO₂ on freezing point measurements of fluids inclusions: evidence from active geothermal systems and implications for epithermal ore deposition, Economic Geology v.80, pp. 1379–1406.
- Heim, A., 1926. Notes on the Jurassic of Tamazunchale (Sierra Madre Oriental, México). Eclogae Geol. Helvetiae, v. 20 (1), pp. 84-87.
- Hiriart L. B. G. y Gutiérrez-Negrín L. C. A., 2003, Main aspects of geothermal energy in Mexico, Geothermics, v. 32, (4-6), pp. 389-396.

- Hiriart, L.B.G., Gutiérrez-Negrín, L.C.A., Quijano-León, J.L., Ornelas-Celis, A., Espíndola, S., and Hernández, I., 2011. Evaluación de la Energía Geotérmica en México. In: Informe para el Banco Interamericano de Desarrollo y la Comisión Reguladora de Energía, D.F., México, pp. 167.
- Horner, D.R., 1951. Pressure build-up in wells, in Proc. 3rdWorld Petroleum Congress, The Hague, The Netherlands, pp. 503–519.
- Humphris, S.E., y Thompson, G., 1978. Hydrothermal alteration of oceanic basalts by seawater, Geochim. Cosmochim. Acta, v.42, pp.127-136.
- Iglesias, E.R., Torres, R.J., 2003. Low- to medium-temperature geothermal reserves in Mexico: A first assessment. Geothermics, v. 32, pp. 711-719,
- Izaguirre, A., Iriondo, A., Caballero-Martínez, J. A., Moreira-Rivera, F., Espinoza-Aramburú, E., 2012. Homogeneidad geoquímica de la alteración hidrotermal del cinturón de oro orogénico del NW de Sonora, México: Estudio de balance de masas en rocas encajonantes de la mineralización, Boletín de la Sociedad Geológica Mexicana, v. 64 (1), pp. 119-153.
- Izquierdo, G., 1993. Difracción de rayos X en la caracterización de especies arcillosas: un caso de aplicación en el pozo H29 del campo de Los Humeros, Puebla, México. Geofís. Int., v.32, pp. 321–329.
- Izquierdo G, Arellano V. M. y Aragón A., 2008. Características mineralógicas y microtermométricas del yacimiento geotérmico de Los Humeros, Pue., México, Geotermia, v. 21 (2), pp. 2-10.
- Ishikawa Y., Sawaguchi T., Iwaya S., Horiuchi M., 1976. Delineation of prospective targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos, Mining Geol., v.26 pp. 105–117.
- Jeffreys, G., 1910, Reporte Geológico de la American Gulf Oil Company. Reporte no publicado, in Muir, 1936.
- Kaasalainen, H., & Stefansson, A., 2011. Sulfur speciation in natural hydrothermal waters, Iceland, Geochimica et Cosmochimica Acta, v. 75, pp. 2777-2791.
- Kaasalainen, H., Stefánsson, A., Giroud, N., Arnórsson, S., 2015. The geochemistry of trace elements in geothermal fluids, Iceland, Applied Geochemistry, v. 62, pp. 207-223.
- Krige, D. G., 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand, J. of the Chem., Metal. and Mining Soc. of South Africa, v. 52 (6), pp.119-139
- Kelepertsis, A.E., Esson, J., 1987. Major- and trace-element mobility in altered volcanic rocks near Stypsi, Lesbos, Greece and genesis of a kaolin deposit, Appl. Clay Sci., v. 2, pp. 11–28.
- Le Bas, M.J., Lemaitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A Chemical Classification of Volcanic-Rocks Based on the Total Alkali Silica Diagram, Journal of Petrology v. 27 (3), pp. 745-750.
- López-Moro, J. F., 2012. EASYGRESGRANT—A Microsoft Excel spread sheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems, Computers & Geosciences, v.39, pp.191–196.
- Lottermose, B. G., 1992. Rare earth elements and hydrothermal ore formation processes, Ore Geology Reviews. 7, pp. 25– 41.

- Lozano, R., Verma, S.P., Girón, P., Velasco-Tapia, F., Morán-Zenteno, D., Viera, F., Chávez, G., 1995. Calibración preliminar de fluorescencia de rayos X para análisis cuantitativo de elementos mayores en rocas ígneas, Actas INAGEQ. 1, pp. 203-208.
- Lozano, R., Bernal J. P., 2005. Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis, Revista Mexicana de Ciencias Geológicas, v. 22 (3), pp. 329-344.
- Mauriohooho, k., Barker, S. L. L., Rae, A., 2016. Mapping lithology and hydrothermal alteration in geothermal systems using portable X-ray fluorescence (pXRF): A case study from the Tauhara geothermal system, Taupo Volcanic Zone, Geothermics, v. 64, pp. 125–134.
- Markússon, S. H., y Stefánsson, A., 2011. Geothermal surface alteration of basalts, Krýsuvík Iceland—Alteration mineralogy, water chemistry and the effects of acid supply on the alteration process, Journal of Volcanology and Geothermal Research, v. 206, l. 1–2, pp. 46–59.
- Massachusett Institute of Technology, MIT, 2006. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. MIT, USA, pp. 372.
- Martínez-Serrano, R.G., 1993. Caractérisation minéralogique, géochimique et isotopique du Champ géothermique de Los Humeros, Mexique. Interactions Fluide roche dans un Système à Fluide mixte (eau-vapeur), PhD thesis, INPL-CNRS, Nancy, France.
- Martínez-Serrano, R.G., y Alibert-Chantal., 1994. Características geoquímicas de las rocas volcánicas del sistema geotérmico Los Humeros, Puebla y su relación con la mineralogía de alteración, Geofísica Internacional, v.33 (4), pp. 585 – 605.
- Martinez-Serrano, R.G. and Dubois., 1998. Chemical variations in chlorite at the Los Humeros Geothermal System, Mexico, Clays and Clay Minerals, v.46, pp. 615–628.
- Martínez-Serrano, R.G., 2002. Chemical variations in hydrothermal minerals of the Los Humeros geothermal system, Mexico, Geothermics v. 31 (5), pp. 579–612.
- Martínez, J. C. y Dristas J. A., 2007. Paleoactividad hidrotermal en la discordancia entre el complejo Buenos Aires y la Formación La Tinta en el area de Barker, Tandilia, Revista de la Asociación Geológica Argentina v. 62 (3), pp. 375-386.
- Michard, A., Albaréde, F., Michard, G., Minster, J.F., Charlou, J.L., 1983, Rare–earth elements and uranium in high– temperature solutions from East Pacifc Rise hydrothermal vent feld, Nature, v.303, pp. 795–797.
- Michard, A., 1989. Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta, v.53 pp. 745– 750.
- Morí, L., Gómez-Tuena, A., Caib, Y., Goldsteinb, S., 2007. Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt, Chemical Geology, v. 244 (3–4), pp. 452–473.
- Moller, P., 1998. Rare earth elements and yttrium fractionation caused by fluid migration, Journal of the Czech Geological Society, v. 42 (3), pp. 43
- Mukherjee, P. K. y Gupta, P. K., 2008. Arbitrary scaling in ISOCON method of geochemical mass balance: An evaluation of the graphical approach, Geochemical Journal, v. 42, pp. 247-253.

- Murillo D., Ortega, I., Carrillo, J., Pardo, A., Redón, J., 2012. Comparación de métodos de interpolación para la generación de mapas de ruido en entornos urbanos, Ing. USBMEd, v. 3 (1), pp. 62-68
- Negendank, J.F.W., Emmermann, R., Krawczyk, R., Mooser, F., Tobschall, H., Werle, D., 1985. Geological and geochemical investigations on the Eastern Trans-Mexican Volcanic Belt. Geof. Inter. V. 24 (4), pp. 477-575.
- Nesbitt H.W., Young G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutitas, Nature, v.299 pp. 715–717.
- O'Hara, K., 1990. State of strain in mylonites from the western Blue Ridge province, southern Appalachians: the role of volume loss, Journal of Structural Geology, v.12, pp. 419–430
- Ordaz Méndez, C.A., Flores Armenta, M., y Ramírez Silva, G., 2011. Potencial geotérmico de la República Mexicana. Geotermia, v. 24-1, pp. 50-58.
- Pandarinath, K., Dulski, P., Torres-Alvarado, I., Verma, S., 2008. Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico, Geothermics, v. 7 (1), pp. 53-72.
- Parr, J.M., 1992, Rare–earth element distribution in exhalites associated with Broken Hill–type mineralisation at the Pinnacles Deposit, New South Wales, Australia: Chemical Geology, v.100, pp.73–91.
- Pearce, J. S., y Can, J. R., 1973. Tectonic setting of basic volcanic rocks determined using trace elements analysis, Earth Planet, Science Lett., v. 19, pp. 290-300
- Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (Ed.), Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, pp. 525–548.
- Pérez, A. y Callejas, J.L., 2011. Memoria del estudio geotérmico de la provincia de Granada, Tesis de Maestría, Universidad de Granada, España, pp. 5.
- Pilar Martínez, A., 2015. Caracterización petrográfica y geoquímica de una sección del subsuelo en el campo geotérmico de Los Humeros, Puebla: el caso del pozo h-42, Universidad Autónoma de Guerrero, Tesis de Licenciatura, pp. 47-77.
- Pirajno F., 2009. Hydrothermal Processes and Mineral Systems, ed. Springer, Geological Survey of Western, Australia, pp. 143-150
- Potdevin, J.L., 1993. Gresens 92: a simple Macintosh program of the Gresens method. Computers and Geosciences, v.19, pp. 1229 1238.
- Prol-Ledesma, R. M., 1986. El calor de la Tierra. Fondo de Cultura Económica, S.E.P., pp. 99.
- Prol-Ledezma, R. M., and Browne, P.R.L., 1989. Hydrothermal alteration and fluid inclusion geothermometry of Los Humeros geothermal field, Mexico, Geothermics, v. 18 (5/6), pp. 677-690.
- Prol-Ledesma, R.M., 1991. Terrestrial heat flow in Mexico, in: Cremák, V., Rybach, L. (Eds.), Exploration of the Deep Continental Crust. Springer-Verlag Berlin, pp. 475-485.
- Prol-Ledesma, R.M., 1998. Pre- and post-exploitation variations in hydrothermal activity in Los Humeros geothermal field, Mexico, Journal of Volcanology and Geothermal Research, v. 83, pp. 313–333.
- REN21's., 2015, Renewable Energy Policy Networld for the 21st Century, Renewables 2015 Global Status Report, Paris, Francia, pp. 21-51.
- REN21's., 2016, Renewable Energy Policy Networld for the 21st Century, Renewables 2015 Global Status Report, Paris, Francia, pp. 22-53.

- Reyes, E. D., 1964, El Jurásico Superior del área de Tamán, S. L. P. Petróleos Mexicanos, Zona Norte. Informe Geológico No. 508, inédito.
- Rodríguez-Díaz, A. (cand. a Dr.), Re: Análisis de SWIR Yañez-Dávila (correo electrónico), 10 de agosto del 2015, <u>geaard@hotmail.com</u>, comunicación personal.
- Roedder, E., 1984. Fluid inclusion, Min. Soc. Amer., Reviews in Mineralogy, pp. 12-64.
- Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation, edit. Routledge, pp. 15.
- Rubin, J.N., Henry, C.D., Price, J.G., 1993. The mobility of zirconium and other "immobile" elements during hydrothermal alteration, Chem. Geol., v. 110, pp. 29–47.
- Rubinstein, N., Gómez, A., y Kleiman L., 2013. Caracterización litofacial y geoquímica de las volcanitas del área del distrito minero El Infiernillo, Mendoza, Revista de la Asociación Geológica Argentina v. 70 (3), pp. 382-389.
- Sánchez–Guzmán, J., Sanz-López, L. y Ocaña-Robles, L., 2011. Evaluación del potencial de la energía geotérmica, estudio técnico 2011-2020, España, pp. 26.
- Santoyo, E., García, A., Espinosa, G., Hernández, I. & Santoyo, S., 2000. STATIC TEMP: a useful computer code for calculating static formation temperatures in geothermal wells, Comput. Geosci., v.26, pp. 201–217.
- Santoyo, E., y Torres, I., 2010. Escenario futuro de explotación de la energía geotérmica: hacia un desarrollo sustentable, Revista Digital Universitaria, Centro de Investigación en Energía, UNAM, v.11 (10), pp. 3-25.
- Santoyo, E., Guevara, M., Pérez-Zarate, D., 2015. Estrategia de transición para promover el uso de tecnologías y combustibles más limpios en el tema de energía geotérmica". Editado por el Centro Mario Molina, la Secretaria de Energía de México (SENER), pp. 14.
- Scott, S., Gunnarsson, I., Arnórsson, S., Stefánsson, A., 2014. Gas chemistry, boiling and phase segregation in a geothermal system, Hellisheidi, Iceland, Geochimica et Cosmochimica Acta, v.124, pp.170–189.
- Smith, M. P., Henderson, P., y Campbell, S., 2000. Fractionation of the REE during hydrothermal processes: Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China, Geochimica et Cosmochimica Acta, v.64, (18), pp. 3141– 3160.
- Stephenson, L. W., 1922. Some Upper Cretaceous Shells of the Rudistid Group from Tamaulipas, Mexico, Proc. U. S. Nat. Hist. Mus., art. 1, no. 2422, pp. 61.
- Stefansson, V. 1981. The Krafla geothermal field, north-east Iceland, In: L. Rybach and L.J.P. Muffler (eds) Geothermal Systems: Principles and Case Histories. Wiley, New York, N.Y. pp. 273-294.
- Stefansson, A., Gislason, S.R., Arnorsson, S., 2001. Dissolution of primary minerals in natural waters II: Mineral saturation state, Chemical Geology, v. 172, pp. 251-276.
- Sun, S.S. y McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes, Magmatism in ocean basins, Geological Society of London, Special Publication, v. 42, pp. 313-345.
- Taylor, R.P. and Fryer B.J., 1982. Rare earth element geochemistry as an aid to interpreting hydrothermal ore deposits, Mineralisation associated with acid magmatism, pp. 357–365.
- Taylor, R.P. and Fryer B.J., 1983. Rare earth element lithogeochemistry of granitoid mineral deposits, Canadian Institute of Mininig, Metallurgy and Petroleum, Bulletin v. 76, pp. 74–84.

- Tello-Hinojosa, E., 1991. Composición química de la fase liquida a descarga total y a condiciones de reservorio de pozos geotérmicos de Los Humeros, Puebla, México, Geofísica Internacional, v.31 (4), pp. 383-390.
- Tello-Hinojosa, E., 1992. Características geoquímicas e isotópicas de los fluidos producidos por los pozos de Los Humeros, Puebla, Geotermia v. 8, pp. 3-48.
- Tello-Hinojosa E., Verma, S. P., Tovar, R. A., 2000. Origin of acidity in the Los Humeros, México, geothermal reservoir, Proceedings World Geothermal Congress 2000, pp. 2959-2967.
- Tello-Hinojosa E., 2005. Estado de equilibrio soluto-mineral y saturación de minerales de alteración en sistemas geotérmicos, Tesis de Doctorado-UNAM-DEPFI, pp. 19-68.
- Tinoco-Michel, J. A., 2008. Desarrollo de un modelo termodinámico para mitigar la acidez del sistema actual del campo geotérmico de los Humeros, Puebla, México, Tesis de Maestría, UNAM, campus Juriquilla, Centro de Geociencias, pp. 7-30.
- Thompson, A.J.B., Hauff, P.L., Robitaille A.J., 1999. Alteration mapping in exploration: application of short-wave infrared (SWIR) spectroscopy, Soc. Econ. Geol. Newsl., v. 39, pp. 16-27
- Tobler W., 1970. A computer movie simulating urban growth in the Detroit region, Economic Geography, v.46 (2), pp.234-240.
- Vásquez Oliva, R., Palomino Colona, C. G., Chira Fernández, J. E., & Guillén Gómez, M., 2010. Anomalías geoquímicas secundarias negativas y positivas de rocas sedimentarias siliciclásticas cretáceas en el Perú central. Sociedad Geológica del Perú SGP, pp. 900-903
- Verma, S., y López, M., 1982. Goechemistry of Los Humeros Caldera, Puebla, México, Bull. Volcanol., v. 45 (1), pp. 63-69.
- Verma, S.P., 1983. Magma genesis and chamber processes at Los Humeros caldera, México—Nd and Sr isotope data, Nature, v. 301, pp. 52–55.
- Verma, S.P., 1984. Alkali and alkaline earth element geochemistry of Los Humeros caldera, Puebla, Mexico, Journal of Volcanology and Geothermal Research, v. 20, pp. 21-40.
- Verma, S., Lozano-Santa, C. R., Girón, P., Velasco-Tapia, F., 1996. Calibración preliminar de fluorescencia de rayos X para análisis cuantitativo de elementos traza en rocas ígneas, Actas INAGEQ 2, pp. 237-242.
- Verma, S., 2001. Geochemical evidence for a lithospheric source for magmas from Acoculco caldera, eastern Mexican Volcanic Belt: International Geology Review, v.43, pp. 31-51.
- Viggiano, J.C., Robles, J., 1988a. Mineralogía hidrotermal en el campo geotérmico de Los Humeros, Pue. Parte I: Sus usos como indicadora de temperatura y del régimen hidrológico, Geotermia, Rev. Mex. v. 4, pp. 15–28.
- Viggiano, J.C., Robles, J., 1988b. Mineralogía hidrotermal en el campo geotérmico de Los Humeros, Pue. Parte II: Geometría del yacimiento, Geotermia, Rev. Mex. v. 4, pp. 29–40.
- Viggiano-Guerra, J.C., and Gutiérrez-Negrín, L.C.A., 1995. Comparison between two contrasting geothermal fields in Mexico: Los Azufres and Los Humeros, Proceedings of the World Geothermal Congress, v. 3, pp. 18-31.
- Villatoro, M., Henríquez, C., Sancho, F., 2008. Comparación de los interpoladores IDW y Kriging en la variación espacial de pH, CA, CICE y P del suelo, Agronomía Costarricense, v. 32 (1), pp. 95-105.
- Viniegra, O., 1965. Geología del Macizo de Teziutlán y de la Cuenca Cenozoica de Veracruz, Boletín de la Asociación Mexicana de Geólogos Petroleros, v. 17 (7-12), pp. 100-135.
- Yañez, G., 1980, Informe geológico del proyecto geotérmico Los Humeros Derrumbadas, Estado de Puebla y Veracruz, Informe interno de C.F.E, pp. 59.

- Yañez García. C. y García Duran S., 1982. Exploración de la región geotérmicas Los Humeros-Las Derrumbadas, estado de Puebla y Veracruz, Comisión Federal de Electricidad, pp. 97.
- Winchester, J.A. y Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, v. 20, pp. 325-343.

Wilkinson, J.J., 2012. Fluid inclusions in hydrothermal ore deposits. Lithos, v. 55, pp. 229-272.

ANEXOS I

Tabla 19. Valo	ores de cal	ibración de	el equipo d	de ED-FRX	. El hierro to	otal viene ex	kpresado co	$mo Fe_2O_3$.
	IGLs-1	IGLd-1	IGLC-1	IGLa-1	IGLsy-1	IGLsy-2	IGLgb-3	IGLsy-4
			Eleme	ntos Ma	yores (w/	/w %)		
Reportado SiO ₂		1.74	0.07	60.52	52.15	57.99	38.73	54.99
60s		1.13	0.06	48.72	45.78	47.14	30.28	46.08
Calibrado		1.60	0.32	58.96	55.41	57.04	36.74	55.77
Reportado TiO₂	2.70			1.08	0.50	1.01	3.82	1.68
60s	2.37			0.90	0.38	0.80	3.78	1.54
Calibrado	2.53			1.08	0.57	0.98	3.93	1.72
Reportado Al ₂ O ₃	24.39			17.39	21.68			19.56
60s	13.54			9.41	12.27			11.14
Calibrado	23.75			16.65	21.57			19.62
Reportado Fe ₂ O ₃	12.99			6.12	4.19	3.91	14.48	5.56
60s	12.89			5.28	4.19	3.46	14.28	5.16
Calibrado	13.12			5.67	4.61	3.89	14.48	5.55
Reportado MnO	0.27			0.10			0.16	0.15
60s	0.30			0.07			0.17	0.16
Calibrado	0.28			0.10			0.18	0.17
Reportado MgO		18.59			0.32		6.11	1.64
60s		5.27			0.66		2.48	0.61
Calibrado		19.70			2.01		8.98	1.81
Reportado CaO	0.38	33.77	55.22	5.18	2.47	2.29	12.41	4.39
60s	0.38	41.27	67.68	5.55	2.78	2.38	14.18	5.01
Calibrado	0.80	33.96	55.37	4.99	2.75	2.42	12.00	4.56
Reportado K ₂ O	0.61			2.14	5.90	5.47	1.03	3.08
60s	0.61			1.85	5.52	4.61	1.06	2.96
Calibrado	0.60			2.01	6.17	5.15	1.11	3.27
Reportado P2O5	0.14					0.11	1.53	0.49
60s	0.37					0.30	1.84	0.64
Calibrado	0.17					0.10	1.53	0.42

Figura 45. Curvas de calibración de los elementos Mayores (w/w %)

Figura 45. Curvas de calibración de los elementos mayores (w/w %) El hierro total viene expresado como Fe₂O₃.

	IGLs-1	IGLd-1	IGLC-1	IGLa-1	IGLsy-1	IGLsy-2	IGLgb-3	IGLsy-4
			Elen	nentos 1	raza (μg∙į	g ⁻¹)		
Reportado Rb				32.00		142.00		59.00
60s				29.82		134.79		55.10
Calibrado				32.30		142.01		58.72
Reportado Sr		164.00	290.00	592.00	1578.00	992.00		1391.00
60s		167.59	320.67	563.83	1615.85	979.54		1393.92
Calibrado		164.14	315.82	556.77	1599.20	968.69		1379.29
Reportado Ba					2391.00	2422.00	592.00	13731.00
60s					764.28	975.26	338.21	5348.03
Calibrado					1967.00	2510.34	869.73	13771.66
Reportado Zr				224.00	361.00	464.00		153.00
60s				252.39	428.08	558.11		184.55
Calibrado				217.38	361.68	468.47		161.67
Reportado Nb				20.00		217.00	38.00	65.00
60s				14.33		143.87	30.24	49.36
Calibrado				17.60		218.38	42.26	71.89
Reportado V	293.00	8.00	3.00	97.00		44.00	439.00	
60s	516.30			141.05		93.25	810.31	
Calibrado	292.80			90.24		64.44	451.50	
Reportado Cr	267.00			27.00		12.00		
60s	424.67			169.42		162.89		
Calibrado	261.28			16.51		10.24		
Reportado Cu	58.00				20.00		47.00	
60s	48.36				16.41		45.18	
Calibrado	54.91				18.73		51.31	
Reportado Zn			2.00	74.00	106.00	89.00		
60s			11.00	67.11	116.27	88.85		
Calibrado			5.74	64.14	115.30	86.76		
Reportado Th					41.00	29.00		6.00
60s					41.17	27.43		8.14
Calibrado					42.26	27.48		6.73
Reportado Pb				11.00	20.00	14.00		
60s				12.63	23.67	13.11		
Calibrado				12.77	21.24	13.14		

Tabla 20. Valores de calibración del equipo de ED-FRX.

Figura 46. Curvas de calibración de los elementos traza ($\mu g \cdot g \cdot 1$)

ANEXOS II

Tabla 21. Fichas petrográficas de diversos pozos del CGH.

DATOS DE CAMPO				DATOS DE CAMPO			
Muestra: GH-1 (H-5)	Camp	o Geotérmico Los Humero	os, Puebla.	Muestra: GH-2(H-23)	Camp	oo Geotérmico Los Humero	s, Puebla.
Profundidad: 325m	Coordenadas:	Norte: 2175950	Este: 660540	Profundidad: 1201m	Coordenadas:	Norte: 2175459	Este: 664184
DESCRIPCIÓN GENER	RAL MICROSCÓPIO	A		DESCRIPCIÓN GENER	RAL MICROSCÓPI	CA	
Color:	Incoloro - Gris	Tamaño de cristal:	> 10 μ <50 μ	Color:	Gris oscuro	Tamaño de cristal:	> 50 μ <1000 μ
Textura:	Microlítica ofítica	Forma Cristalina	Alotriomorfo	Textura:	Porfídica	Forma Cristalina	Subidimorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1er orden y 3er orden	Cristalinidad:	Hipocristalina	Birrefringencia	1er orden
Forma del cristal	Anhedral	Estructuras:	Fracturas y clastos	Forma del cristal	Sub- euhedral	Estructuras:	Reemplazamiento
MINERALOGÍA :				MINERALOGÍA :			-
Transparentes	Secundario	os Transparentes	Primarios opacos	Transparentes	Secundari	os Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes		Esenciales	Accesorios	Secundarios Transparentes	Ilmenita 0.5 % Magnetita 2.0 %
Plagioclasas 60 %	Cuarzo 5 %	Calcita 1 %	Neoformados	Plagioclasas 70 %	Cuarzo 3 %	Calcita 3 %	Neoformados
(Albita) Ortopiroxeno 15 % (Enstatita) Clinopiroxeno 5 % (Augita)	Biotita 1 %	Sericita	Hematita 2.5 % Pirita 0.5 %	(Albita) Feldespato alcalino 10 % (Sanidina) Clinopiroxeno 5 % (Augita) Vidrio Volcánico 5 %	Biotita 1 %		Hematita 0.5 %
CLASIFICACIÓN				CLASIFICACIÓN			
Nombre de la roca:	Toba cristalina			Nombre de la roca:	Andesita		
Alteración : Sericítica		Oxidación: Débil (He)		Alteración : No presenta		Oxidación: Débil (Mag +	llm + He)
REGISTRO FOTOGRÁ	FICO			REGISTRO FOTOGRÁ	FICO		
					Ga Prime Prime Prime Prime Prime Pri		
		G T M			Bi Di Qz Ca	G Heni	11
Fecha: 13/01	1/2015	Petrógrafo: Erik H David Yáñ	ugo Díaz Carreño ez Dávila	Fecha: 13/03	1/2015	Petrógrafo: Erik H David Yáñ	ugo Díaz Carreño ez Dávila

oc Duchla	Feter 664184	LOTLOG INST	> 500 μ <1000 μ	Alotriomorfo	1er, 2do y 3erorden	Reemplazamiento		Primarios opacos	Ilmenita 1 % Magnetita 2.0 %	Neoformados	Hematita 2.5 % Pirita 0.5 %			lag + llm)	D Mag Ilm		tugo Díaz Carreño hez Dávila
o Ceotármico Los Humaro	Norte: 2175450	Y.	Tamaño de cristal:	Forma Cristalina	Birrefringencia	Estructuras:		os Transparentes	Secundarios Transnarentes	Epidota 10 %	Calcita 2 %		2	Oxidación: Débil (He + M	and the second se		Petrógrafo: Erik H David Yár
anne.	Coordenadae.	RAL MICROSCOPIC	Gris claro - verde	Porfídica	Hipocristalina	Anhedral		Secundario	Accesorios	Cuarzo 7 %	Biotita 0.5 %		Andesita	oderada (Ep + Ca) \FICO			1/2015
DATOS DE CAMPO	Profindidad: 1975m	DESCRIPCIÓN GENEI	Color:	Textura:	Cristalinidad:	Forma del cristal	MINERALOGIA:	Transparentes	Esenciales	Plagioclasas 70 %	(Albita) Vidrio volcánico 10% Ortopiroxeno 3 % (Enstatita)	CLASIFICACIÓN	Nombre de la roca:	Alteración : Propilítica m REGISTRO FOTOGRA		A Start Start Start Start	Fecha: 13/0

DATOS DE CAMPO			
Muestra: GH-4 (H-23)	Camp	oo Geotérmico Los Hum	eros, Puebla.
Profundidad: 2496m	Coordenadas:	Norte: 2175459	Este: 664184
DESCRIPCIÓN GENER	VAL MICROSCOPIC	CA	
Color:	Gris - verde	Tamaño de cristal:	> 100 µ <1000 µ
Textura:	Porfídica	Forma Cristalina	Subidimorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1 er y 2 de crden
Forma del cristal	Sub cuhcdral	Estructuras:	Rccmplazamicnto
MINERALOGIA:			
Transparentes	Secundario	os Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transnarentes	Ilmenita 1 % Maonetita 1.5 %
Distinctores 75 02	Current 0/	Fridata 8 00	Neoformadoe
radio and a construction of the construction o		Sericita	Hematita 2 % Pirta 0.5%
CLASIFICACIÓN			
Nombre de la roca:	Andesita		
Alteración : Propilítica mo REGISTRO FOTOGRA	oderada (Ep)	Oxidación: Moderada	l (He + Mag + Ilm)
			State of the second sec
		and the second s	

Petrógrafo: Erik Hugo Díaz Carreño David Yáñez Dávila

Fecha: 13/01/2015

DATOS DE CAMPO			
Muestra: GH-5 (H-25)	Cam	po Geotérmico Los Hume	ros, Puebla.
Profundidad: 1710m	Coordenadas:	Norte: 2176169	Este: 666396
DESCRIPCIÓN GENER	RAL MICROSCOP	ICA	
Color:	Gris oscuro	Tamaño de cristal:	> 10 µ <50 µ
Textura:	Microlítica ofítica	Forma Cristalina	Alotriomorfo
Cristalinidad:	Holocristalina	Birrefringencia	1er y 3er orden
Forma del cristal	Anhedral	Estructuras:	Fracturas
MINERALOGIA :	e. Na an anna		
Transparentes	Secundar	ios Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	Ilmenita 2 %
Plagioclasas 80 %	Biotita 2%	Epidota 3 %	Neoformados
(Ausita) Clinopiroxeno 10 % (Augita) Ortopiroxeno 5 % (Enstatita)			Pirita 5%
CLASIFICACIÓN Nombre de la roca:	Andesita microlític	a - Basalto	
Alteración : Propilítica m	oderada (Fn)	Oxidación: Déhil (Ilm)	
REGISTRO FOTOGRA	FICO	Oxidation Deon (mil)	
an an an an an an an an an an an an an a			
Fecha: 13/02	1/2015	Petrógrafo: Erik	cHugo Díaz Carreño

DATOS DE CAMPO			
Muestra: GH-6 (H-25)	Camp	oo Geotérmico Los Humero	os, Puebla.
Profundidad: 2300m	Coordenadas:	Norte: 2176169	Este: 666396
DESCRIPCIÓN GENER	AL MICROSCOPIO	CA	
Color:	Incoloro - Amarillo	Tamaño de cristal:	> 10 µ <50 µ
Textura:	Microlítica ofítica	Forma Cristalina	Idiomorfo
Cristalinidad:	Holocristalina	Birrefringencia	1er, 2do y 3er orden
Forma del cristal	Euhedral	Estructuras:	Fracturas y reemplazamiento
MINERALOGIA :			
Transparentes	Secundario	os Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	Ilmenita 0.5% Magnetita 0.5%
Plagioclasas 80 %	Biotita 1%	Epidota 5 %	Neoformados
(Albita) Clinopiroxeno 8 % (Augita) Ortopiroxeno 2% (Enstatita)		Ĉalcita 2 % Sericita	Hematita 2 % Pirita 0.7 -1 %
CLASIFICACIÓN			
Nombre de la roca:	Andesita		
Alteración : Propilítica mo	oderada (Ep)	Oxidación: Débil (He + M	ag + Ilm)
REGISTRO FOTOGRA	FICO		
	Provide states of the second s		
Fecha: 13/01	1/2015	Petrógrafo: Erik H David Yáň	lugo Díaz Carreño lez Dávila

Muestra: GH-7 (H-38)	Cam	uno Geotérmico Los Hume	ros Puebla
Profundidad: 1103m	Coordenadas	Norte: 2178155	Fste: 661897
DESCRIPCIÓN GENE	RAL MICROSCOPI	CA	Luc. 001077
Color	Gris	Tamaño de cristal:	> 100 µ < 1000 µ
Textura:	Porfídica	Forma Cristalina	Subidimorfo
Cristalinidad	Holocristalina	Rirrefringencia	1 ^{er} orden
Forma del cristal	Sub-enhedral	Estructuras	Fracturas
MINERALOGIA :	Sub cullcular	- Lot decuras.	W/
Transparentes	Secundar	ios Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	
Plagioclasas 80 %	Cuarzo 1 - 2 %	Calcita 5 %	Neoformados
(Albita) (Oligoclasa) Vidrio volcánico 10%		Clorita 3 %	Pirita 3.5 - 4 % Hematita 1 %
CLASIFICACIÓN Nombre de la roca:	Andesita		
Alteración : Propilítica m	oderada (Ep + Ca)	Oxidación: Débil (He)	
	N	By S	D them The D D D D D D D D D D D D D D D D D D D
Fecha: 13/0	1/2015	Petrógrafo: Erik	Hugo Díaz Carreño

DATOS DE CAMPO			
Muestra: GH-8 (H-38)	Camp	oo Geotérmico Los Humero	os, Puebla.
Profundidad: 1500m	Coordenadas:	Norte: 661897	Este: 661897
DESCRIPCIÓN GENER	RAL MICROSCOPIO	A	
Color:	Gris - Negro	Tamaño de cristal:	>10 µ <700 µ
Textura:	Porfídica	Forma Cristalina	Alotriomorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1er, 2da y 3er orden
Forma del cristal	Anhedral	Estructuras:	Reemplazamiento
MINERALOGIA :	2 		ar an
Transparentes	Secundario	os Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	
Plagioclasas 75 %	Cuarzo 1 %	Epidota 5 %	Neoformados
(Oligoclasa) Vidrio volcánico 10% Clinopiroxeno 5 % (Augita) Ortopiroxeno 3 % (Enstatita)	anti-1805-194 Annu 1996	40. - - 1 ¥391764.0.5340401	Pirita 0.7 – 1.0 % Hematita 0.3 %
CLASIFICACIÓN Nombre de la roca:	Andesita		
Alteración : Propilítica mo	oderada (Ep)	Oxidación: No presenta	
REGISTRO FOTOGRA	FICO		
	W P Th H w		
Fecha: 13/02	Cpa	Petrógrafo: Erik I	ilem Hugo Díaz Carreño
		David Ya	iez David

lugo Díaz Carreño Jez Dávila	Petrógrafo: Erik H David Yáñ	1/2015	Fecha: 13/0
5	The state	а 19 19	
	Uxidacion: No presenta	VFICO	REGISTRO FOTOGRA
	A	I oba litica	Nombre de la roca:
		T 1 101	CLASIFICACION
Neoformados Pirita 0.5 % Hematita 0.5 %	Epidota 5 % Calcita 1 %	Biotita 1 %	Fragmentos de roca 40% Cuarzo 20 % Ortopiroxeno 15 % (Enstatita) Vidrio volcánico 10 % Clinopiroxeno 5 % (Augita)
	Secundarios Transparentes	Accesorios	Esenciales
Primarios opacos	s Transparentes	Secundario	Transparentes
			MINERALOGIA :
Fracturas y clastos	Estructuras:	Anhedral	Forma del cristal
1er y 3er orden	Birrefringencia	Hipocristalina	Cristalinidad:
Alotriomorfo	Forma Cristalina	Porfídica	Textura:
> 10 µ <50 µ	Tamaño de cristal:	Incoloro - Gris	Color:
	Ä	VAL MICROSCÓPIC	DESCRIPCIÓN GENEI
Este: 661897	Norte: 2178155	Coordenadas:	Profundidad: 1953m
s, Puebla.	o Geotérmico Los Humero	Camp	Muestra: GH-9 (H38)
			DATOS DE CAMPO

Fecha: 13/01			Alteración : Propilítica mo REGISTRO FOTOGRA	Nombre de la roca:	CLASIFICACIÓN	(Albita) Vidrio volcánico 15 % Clinopiroxeno 2 % (Augita)	Daniana ana 70 0/	Esenciales	Transparentes	MINERALOGÍA :	Forma del cristal	Cristalinidad:	Textura:	Color:	DESCRIPCION GENER	Profundidad: 1803m	Muestra: GH-10 (H38)	DATOS DE CAMPO
/2015			oderada (Ep + Ca) I HICO	Andesita		Biotita 0.5 %	Citamo A 0/	Accesorios	Secundario		Sub- euhedral	Hipocristalina	Porfídica	Gris - Negro	VAL MICROSCOPIO	Coordenadas:	Camp	C.
Petrógrafo: Erik H David Yái	0)	Oxidación: Débil (Hem)	14 2.4567615144 - 16946 - 204640416		Epidota 3 %	Calcita 5 0/	Secundarios Transparentes	os Transparentes		Estructuras:	Birrefringencia	Forma Cristalina	Tamaño de cristal:	CA	Norte: 2178155	o Geotérmico Los Humero	
lugo Díaz Carreño iez Dávila						Pirita 0.7 -1.0 % Hematita 0.3 %	Neoformadae		Primarios opacos		Reemplazamiento	1er, 2do y 3er orden	Subidimorfo	> 100 µ <1000 µ		Este: 661897	os, Puebla.	

DATOS DE CAMPO			
Muestra: GH-11 (H39)	Can	npo Geotérmico Los Hume	ros, Puebla.
Profundidad: 1200m	Coordenadas:	Norte: 2173291	Este: 663365
DESCRIPCIÓN GENE	RAL MICROSCOP	ICA	
Color:	Gris - verde	Tamaño de cristal:	> 50 μ <1000 μ
Textura:	Porfídica	Forma Cristalina	Subidimorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1º y 3er orden
Forma del cristal	Sub- euhedral	Estructuras:	Vetillas y fracturamiento
MINERALOGIA :			
Transparentes	Secunda	rios Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	
Plagioclasas 70 %	Cuarzo 5 %	Calcita 8 %	Neoformados
(Albita) Vidrio volcánico 10 % Ortopiroxeno 5 % (Enstatita) Clinopiroxeno 3 % (Augita)		Epidota 3 %	Pirita 2.0 - 2.5 %
CLASIFICACIÓN	Andesita		
Alteración · Pronilítica h	aia (Fn)	Oxidación: No presenta	
REGISTRO FOTOGR	AFICO	ondación no presenta	
	n H H Org Ca		
			II V V II II II II II II II II
Fecha: 13/0	01/2015	Petrógrafo: Eril David Y	k Hugo Díaz Carreño 'áñez Dávila

DATOS DE CAMPO	с.		
Muestra: GH-12 (H39)	Camp	o Geotérmico Los Humer	os, Puebla.
Profundidad: 1650m	Coordenadas:	Norte: 2173291	Este: 663365
DESCRIPCIÓN GENER	RAL MICROSCOPI	CA	
Color:	Gris - verde	Tamaño de cristal:	> 50 µ <1000 µ
Textura:	Porfídica	Forma Cristalina	Subidimorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1er y 3er orden
Forma del cristal	Sub- euhedral	Estructuras:	Reemplazamiento
MINERALOGIA :			
Transparentes	Secundario	os Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	Ilmenita 0.3 - 0.5%
Plagioclasas 75%	Cuarzo 5 %	Epidota 3 %	Neoformados
(Albita) Vidrio volcánico 20 %			Hematita 2 %
CLASIFICACIÓN Nombre de la roca:	Andesita		
Alteración : Propilítica mo	oderada (Ep)	Oxidación: Moderado (H	iem + Ilm)
REGISTRO FOTOGRÁ	FICO		
	ан салан салан Салан салан сал	There but	9 Alan Alan
B I I I I I I I I I I I I I I I I I I I	8p - 29		
Fecha: 13/01	1/2015	Petrógrafo: Erik I David Yá	Hugo Díaz Carreño ñez Dávila

DATOS DE CAMPO			
Muestra: GH-13 (H39)	Car	npo Geotérmico Los Hume	eros, Puebla.
Profundidad: 1800m	Coordenadas:	Norte: 663365	Este: 2173291
DESCRIPCIÓN GENE	RAL MICROSCOP	ICA	
Color:	Gris - Negro	Tamaño de cristal:	> 100 µ <1000 µ
Textura:	Porfídica	Forma Cristalina	Subidimorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1er y 2do orden
Forma del cristal	Sub- euhedral	Estructuras:	Reemplazamiento
MINERALOGIA :			
Transparentes	Secunda	rios Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	Ilmenita 0.5%
Plagioclasas 65 %	Cuarzo 2 %	Epidota 3 %	Neoformados
(Albita) Anfibol15 % (Hornblenda) Ortopiroxeno 10 % (Enstatita)		Calcita 1 % Clorita 0.5 %	Hematita 2 % Pirita 0.7 -1 %
CLASIFICACIÓN Nombre de la roca:	Andesita	Orida i for Malanda	(U
REGISTRO FOTOGRA	AFICO	Oxidacion: Moderada	Hem + lim)
	B ED - A Finite Construction Co	Lin C Liem Py	
	2" in		II Py Henn A Py 200
Fecha: 13/(01/2015	Petrógrafo: Eri David J	k Hugo Díaz Carreño Záñez Dávila

DATOS DE CAMPO			
Muestra: GH-14 (H39)	Camp	oo Geotérmico Los Humer	os, Puebla.
Profundidad: 2100m	Coordenadas:	Norte: 2173291	Este: 663365
DESCRIPCIÓN GENER	RAL MICROSCOPI	CA	
Color:	Gris - verde	Tamaño de cristal:	> 50 µ <1000 µ
Textura:	Porfídica	Forma Cristalina	Subidimorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1er y 2do orden
Forma del cristal	Sub- euhedral	Estructuras:	Reemplazamiento
MINERALOGIA :			
Transparentes	Secundari	os Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	Ilmenita 0.5% Magnetita 0.5%
Plagioclasas 75%	Cuarzo 2 %	Epidota 3 %	Neoformados
(Albita)		Calcita 1 %	Hematita 0.5 %
Vidrio volcánico 20 %		Clorita 0.7 - 1.0 %	Pirita 3.0 -3.5 %
CLASIFICACIÓN Nombre de la roca:	Andesita		
Alteracion : Propilitica m	oderada (Epidota)	Oxidacion: Moderado (Hem + IIm + Mag J
REGISTRO FOTOGRA	IFICO		
	1 - P - Vi - Kit	Alar Alar Ilan Ilan	D Im Im Im
	Hr BI		Trên. Îlên Tiên Lên
Fecha: 13/0	1/2015	Petrógrafo: Erik I David Yá	Hugo Díaz Carreño ñez Dávila

DATOS DE CAMPO			
Muestra: GH-15 (H40)	Cam	po Geotérmico Los Humer	os, Puebla.
Profundidad: 1612m	Coordenadas:	Norte: 2175711	Este: 661754
DESCRIPCIÓN GENEI	RAL MICROSCOP	ICA	al and a second s
Color:	Incoloro - Gris	Tamaño de cristal:	> 10 µ <200 µ
Textura:	Afanítica	Forma Cristalina	Alotriomorfo
Cristalinidad:	Hipocristalina	Birrefringencia	1er y 3er orden
Forma del cristal	Anhedral	Estructuras:	No presenta
MINERALOGIA :	9.	N2	10 U
Transparentes	Secundar	ios Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	
Vidrio volcánico 70 %	Cuarzo 2 %	Epidota 3 %	Neoformados
Plagioclasas 20% (Albita) Fragmentos de roca 5 %		Calcita 1 % Clorita 0.7 - 1.0 %	Pirita 1.5 -2 %
CLASIFICACIÓN	# 	45	w.
Nombre de la roca:	Toba vítrea		
Alteración : Propilítica m	oderada (Epidota)	Oxidación: Débil	
REGISTRO FOTOGRA	AFICO		4
A	Vi Ca BR	3 20 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
En En	Ep 1/2015	Petrógrafia Faile	Here Dizz Carreio.
1ecua: 15/0	1,0010	David Yá	ñez Dávila

DATOS DE CAMPO			
Muestra: GH-16 (H40)	Cam	po Geotérmico Los Hume	ros, Puebla.
Profundidad: 2100m	Coordenadas:	Norte: 2175711	Este: 661754
DESCRIPCIÓN GENEI	RAL MICROSCOP	ICA	
Color:	Gris oscuro	Tamaño de cristal:	> 10 µ <500 µ
Textura:	Microlítica	Forma Cristalina	Subidimorfo
Cristalinidad:	Holocristalina	Birrefringencia	1er y 3er orden
Forma del cristal	Sub- euhedral	Estructuras:	Fracturas
MINERALOGIA :			And the state of the second state
Transparentes	Secundar	ios Transparentes	Primarios opacos
Esenciales	Accesorios	Secundarios Transparentes	•
Plagioclasas 68%	2	Calcita 1 %	Neoformados
(Albita) Vidrio volcánico 30 %		Epidota 0.5 %	Hematita 1% Pirita 0.2 %
CLASIFICACIÓN Nombre de la roca: Alteración : Propilítica in	Basalto tensa (Ca + Ep)	Oxidación: Moderado (Hem)
REGISTRO FOTOGR	AFICO		
	el vi , el contra en contra en contra en contra en contr		
Fecha: 13/0	1/2015	Petrógrafo: Erik David Y.	n Hugo Díaz Carreño áñez Dávila

ANEXOS III

	And_l	Ba_Ag	lu: and	esita – l	basalt	os y a <u>c</u>	glutina	Tab antes;	la 22. A An_Ri	Análisis o: Ande	por FR esitas –	X-ED d Riolita	e las m s; Dep <u>.</u>	uestras _Piro: d	s regior epósito	iales de os piroc	el CGH. clástico	s. El hi	ierro to	otal viene	expre	sado d	:omo F	e₂O ₃ .	
Muestra	SiO2	TiO2	Al2O3	Fe2O3	MnO	MgO	CaO	K20	P2O5	Rb	Sr	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	s	As	Mo	Bi	U	Litología
					%												μg.g ⁻¹								
L5-2	49.68	1.40	16.13	6.94	0.14	1.52	4.56	1.69	0.55	66.80	463.75	249.69	11.46	110.78	38.63	34.45	99.79	4.10	18.11	1184.68					And_Ba_Aglu
L5-3	49.75	1.49	15.31	6.80	0.11	1.57	4.19	1.53	0.38	103.51	443.41	244.38	11.99	100.25	26.48	24.54	82.73	5.11	14.56	1780.97		2.77	3.48		And_Ba_Aglu
L4-2	51.11	1.36	14.07	6.62	0.11	1.58	5.05	1.95	0.23	121.68	460.25	231.80	10.63	112.72	27.83	38.64	73.72	4.97	7.72	851.21	4.35	4.44			And_Ba_Aglu
L4-4	48.57	1.46	13.87	7.06	0.12	1.61	4.74	1.81	0.15	122.57	466.25	258.09	12.94	89.67	35.63	27.49	85.90	6.42	11.31	813.44		4.26	4.22		And_Ba_Aglu
L4-5	45.20	1.40	13.09	7.06	0.11	1.32	4.63	1.70	0.16	110.77	448.35	240.09	11.35	112.26	23.70	38.75	80.54	5.72	12.39	853.02		3.99	3.53		And_Ba_Aglu
L3-2	49.86	1.41	14.60	6.64	0.12	1.33	4.53	1.64	0.18	96.49	447.89	237.87	11.62	103.93	24.89	18.77	73.72	7.93	33.53	937.06			5.28		And_Ba_Aglu
L3-4	46.48	1.36	12.38	6.94	0.12	1.61	4.42	1.78	0.27	110.72	432.05	228.80	9.30	116.06	38.01	25.03	79.84	5.56	12.88	1033.15					And_Ba_Aglu
L2-4	48.32	1.49	13.58	6.95	0.12	2.21	4.56	1.76	0.20	116.19	463.54	241.53	9.89	127.64	24.73	25.84	73.53	5.66	12.45	911.23		4.47			And_Ba_Aglu
L1-3	49.60	1.53	14.60	7.36	0.12		4.39	1.63	0.37	106.55	423.42	249.83	12.54	122.75	30.85	32.56	83.48	5.02	12.67	1109.19		5.03	3.65		And_Ba_Aglu
And_Ba_Aglu	63.73	0.96	16.24	5.19	0.04	2.50	4.05	2.75	0.29	74.48	375.45	252.54	13.60	98.18	11.59	14.05	58.42	7.46	11.35	487.45	0.01	5.56	8.42	0.01	And_Ba_Aglu
L1-8	45.88	1.24	13.47	6.43	0.10	1.42	5.48	1.43	0.15	83.39	461.53	186.28	7.00	93.79	33.28	2.57	73.30	0.11	5.02	479.61		3.06			And_Rio.
L1-11	50.29	1.54	13.97	7.53	0.14	1.40	3.99	1.45	0.37	113.36	434.64	255.75	13.71	121.50	21.33	39.03	98.84	5.50	12.59	612.29		5.48			And_Rio.
L2-10	60.26	1.40	17.07	6.54	0.11	1.22	4.23	2.28	0.24	132.09	404.09	267.55	14.33	103.18	34.09	31.30	75.84	5.55	13.64	351.75		3.31			And_Rio.
L2-11	50.71	1.51	13.34	7.53	0.13		4.32	1.86	0.14	123.54	455.12	267.50	13.89	97.76	16.66	52.88	87.52	5.82	11.64	846.89	4.87	6.97	4.38		And_Rio.
L3-11	40.03	1.52	13.68	7.31	0.14	1.46	4.51	1.82	0.67	123.87	417.48	275.72	10.30	138.14	24.79	33.08	92.64	6.76	13.91	1119.53	4.25	4.13	5.39		And_Rio.
L3-10	51.28	1.74	14.71	7.22	0.13	2.38	4.58	1.95	0.17	125.94	430.65	280.30	15.81	112.29	27.07	36.69	92.28	6.07	12.48	898.26		0.42	5.23		And_Rio.
L1-10	57.60	1.54	16.12	7.04	0.12		4.50	2.11	0.21	120.85	448.19	200.80	15.04	124.45	35.95	39.84	87.84	6.03	12.61	822.83		3.69			And_Rio.
L5-11	52.84	1.57	14.62	7.31	0.13	2.27	4.71	2.07	0.23	129.48	436.71	285.41	15.23	126.60	17.34	41.04	92.50	7.23	10.91	829.30	5.01	6.05	5.80		And_Rio.
And_Kio.	60.87	1.35	17.82	7.15	0.07	2.60	4.98	2.25	0.34	52.03	440.23	225.15	13.97	140.99	7.00	39.04	77.15	3.39	11.88	0.01	4.39	5.04	0.01	0.01	And_Rio.
L1-0	61.21	0.39	11.02	3.08	0.07		1.74	4.29	0.00	100.79	174.33	338.38	15.09	9.08	7.00	2.57	44.57	12.03	19.08	997.83	2.01	5.32	12.23	7.88	Dep_Piro.
L2-7	53.95	0.73	11.10	3.77	0.08		1.99	3.04	0.09	170.04	201.55	329.18	15.02	9.92	4.44	2.57	01.57	9.82	11.80	308.88	3.81	2.48	1.47	8.34	Dep_Piro.
L4-0	51.50	0.85	13.95	4.22	0.10		2.08	2.45	0.15	175.20	2/0.09	380.58	19.37	25.79	10.09	2.57	08.49	12.75	17.47	898.77	2 70	3.80	10.00	0.90	Dep_Piro.
L4-8	33.14	0.71	10.77	3.05	0.08		1.91	2.99	0.00	182.92	192.54	343.32	17.87	9.78	1.33	2.57	39.83	10.08	13.37	900.27	3.79	3.80	8.03	7.34	Dep_Piro.
L4-10	41.74	1.42	10.95	7.10	0.12		3.90	1.80	0.14	117.00	410.49	211.08	10.00	101.59	14.40	21.87	/8.09	2.83	10.38	1/8.92		5.09	3.49	10.01	Dep_Piro.
L3-3	50.01	0.78	12.40	3.99	0.09		2.17	2.80	0.11	1/4.08	200.99	206.02	19.90	12.55	14.40	2.57	07.32	14.20	10.09	800.37	4.06	2.28	12.44	6.24	Dep_Piro.
L5-0	50.01	0.87	14.43	4.58	0.09		1.87	2.08	0.12	100.95	221.85	380.03	18.87	33.05	7.24	2.57	13.13	14.28	18.11	1490.00	4.00	2.43	13.44	0.34	Dep_Piro.
L3-9	55.74	1.20	10.51	5.39	0.08		2.21	2.98	0.10	120.60	202.01	201.05	13.03	62.26	20.02	2.57	24.20	7.41	14.8/	1838.49	2.12	2.04	11.05	5.00	Dep_Pho.
L5-10	20.82	1.20	13.08	5.74	0.10		3.31	2.48	0.18	139.08	327.81	291.85	14.70	02.20	30.03	2.57	74.38	7.41	9.05	2300.08	3.13	2 70	4.75	5.89	Dep_Piro.
L0-3	39.82	1.04	6.00	5.57	0.08		1.70	1.52	0.03	146.69	1/1.50	267.04	12.20	1.91		2.57	50.02	0.92	12.22	278.20		3.19	4.94	5.02	Dep_Pito.
L0-9	40.02	0.70	12 10	3.32	0.10		2.09	2.70	0.04	109.80	292.00	255.09	17.07	18.20	16 07	2.57	50.05	3.33	0.94	1100.52	2.02	5 90	0.02	7.06	Dep_Piro.
L7-4	49.93	0.79	15.16	4.45	0.09	1.24	2.00	2.10	0.17	1/0.45	227.70	204.66	17.87	18.20	10.87	2.57	17.62	7.65	10.17	1070.32	2.95	2.07	9.05	1.00	Dep_Pito.
L7-0	40.32	0.90	8.92	4.03	0.09	1.54	2.13	2.19	0.00	142.23	219.85	304.00	14.43	37.79	21.02	2.57	47.03	12.02	9.58	1070.32	3.00	3.33	3.32	4.55	Dep_Piro.
L/-11	40.48	1.12	10.70	5.01	0.09		2.23	2.17	0.20	141.82	238.83	408.31	20.42	42.92	31.93	2.57	56.12	10.03	15.02	11/2.18	4.14	5.01	12.09	5.90	Dep_Pfro.
L9-10	43.34	1.18	13.91	5.91	0.09		2.19	2.04	0.14	120.04	240.20	393.83	18.01	00.43	39.48	2.57	50.13	10.97	15.92	008.19	4.01	5.20	9.74		Dep_Piro.
L2-8	50.05	0.75	13.30	2.69	0.08		2.14	3.25	0.09	174.22	200.75	250.00	14.93	10.10	11.81	2.57	27.41	9.80	15.84	1015.12	2.60	5.60	1.42	0.44	Dep_Pfro.
L0-8	26.04	0.73	10.05	2.40	0.00		1.10	1.72	0.10	1/4.39	00.49	306.02	12.00	0.30		2.57	25.74	12.81	11.43	61092.16	2.09	5.09	11.04	1.35	Dep_Piro.
L0-10	27.50	1.70	10.25	2.22	0.05	0.70	0.70	2.73	0.10	12.43	246.97	220.03	13.25	13.29		2.27	0.12	12.38	12.94	20625.56	2 10		12.09	4 71	Dep_Piro.
L/-10	57.58	1.70	15.10	2.19	0.00	0.70	0.74	2.15	0.09	42.91	240.87	332.00	14.10	15.57	5.00	2.57	9.12	9.78	0.80	0.01	3.10	4.50	0.40	4./1	Dep_Piro.
WIIIX-01	05.01	0.07	15.47	3.89	0.08	0.76	2.23	3.15	0.17	91.00	225.00	400.00	18.00	25.00	5.00	0.01	20.00	11.50	15.00	0.01	2.00	4.50	0.01	3.50	Dep_Piro.

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Tabla 23. Análisis por FRX-ED de las muestras Locales del CGH. Ba_Olvi: basalto de olivino; And: andesita; Esc_Volc: escoria volcánica; Lapi: Lapilli; Pumic: Pumicita. El Hierro total viene expresado como Fe₂O₃.

Muestra	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	$\mathbf{K}_2\mathbf{O}$	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Roca
Mucom					%												μg.g	1								itota
LL16-23	54.15	1.52	14.04	7.18	0.11	1.40	4.53	1.62	0.20	84.71	424.86	618.94	242.46	11.63	110.49	49.70	33.01	78.84	4.51	7.37	11019.28		4.96			Ba_Olvi.
LL16-26	45.40	1.48	19.48	10.79	0.15	2.90	7.95	0.53	0.20	21.80	352.64	254.30	164.74	4.09	164.67	260.01	98.61	94.34	0.11	2.09	2280.85					Ba_Olvi.
LL16-27	51.67	1.69	14.51	8.28	0.12	2.23	6.54	0.61	0.19	31.10	375.08	1159.78	205.25	6.30	152.98	228.55	45.23	66.22	0.11	5.55	4271.16	4.11				Ba_Olvi.
LL17-25	45.79	1.42	15.96	9.46	0.15	6.44	7.86	0.54	0.27	32.28	358.14	262.93	169.66	5.64	174.04	324.84	70.51	103.51	0.11	5.84	861.30		3.25			Ba_Olvi.
LL17-27	50.53	1.85	12.65	9.66	0.13		6.40	0.52	0.19	21.25	326.49		193.54	3.77	176.00	293.88	50.85	59.30	0.11	2.36	3019.01	4.00				Ba_Olvi.
LL17-29	46.02	1.52	18.15	10.32	0.15	4.68	8.32	0.45	0.38	20.08	355.61		168.81	2.06	165.50	269.82	54.76	79.17	0.11		761.74	5.18	2.74			Ba_Olvi.
LL17-30	46.10	1.49	16.47	9.88	0.16	5.51	7.42	0.54	0.51	28.70	327.94		170.37	3.31	176.73	293.73	41.67	90.90	0.11	4.82	817.77	5.65				Ba_Olvi.
LL17-31	45.14	1.39	17.32	9.71	0.15	4.36	8.34	0.43	0.13	22.31	359.63	221.57	164.05	2.06	174.91	311.21	51.70	85.95	0.11	6.48	713.45		2.55			Ba_Olvi.
LL17-32	52.45	1.77	13.74	8.24	0.14	3.01	5.32	0.82	0.37	45.67	304.33		180.78	2.60	147.08	274.70	22.16	65.14	0.11	4.17	3600.80	4.45				Ba_Olvi.
LL18-24	48.97	1.64	14.81	10.25	0.13	2.83	5.81	0.86	0.34	37.18	335.63		177.55	2.72	157.27	259.00	35.99	77.37	0.11	2.00	6730.29	5.57				Ba_Olvi.
LL18-25	46.99	1.52	16.19	9.51	0.14	4.59	7.91	0.49	0.24	24.11	354.98	274.28	171.61	3.32	175.02	330.11	48.09	78.36	0.11	3.78	1197.08					Ba_Olvi.
LL18-27	44.55	1.51	14.76	10.88	0.13	2.61	7.13	0.34	0.11	13.55	320.33	271.37	170.94	1.23	159.64	306.73	52.27	73.28	0.11	2.05	816.14					Ba_Olvi.
LL18-28	49.27	1.24	13.78	8.17	0.14	4.17	6.27	0.77	0.23	54.76	317.41		164.48	1.77	133.04	240.80	43.25	80.80	0.11	3.99	1104.25	3.88				Ba_Olvi.
LL18-30	43.86	1.46	18.67	10.25	0.16	6.20	8.93	0.37	0.09	15.88	376.88	223.99	165.04	3.02	165.64	341.64	36.08	77.47	0.11	4.91	467.78		3.21			Ba_Olvi
LL18-31	42.13	1.46	13.90	9.35	0.14	3.53	7.38	0.73	0.22	34.36	358.18		167.37	3.04	151.56	348.57	54.06	93.75	0.11	5.42	1205.80	5.70				Ba_Olvi.
LL18-32	43.40	1.45	17.78	10.09	0.16	6.40	8.01	0.49	0.37	22.13	350.60		166.79	2.92	165.56	297.66	59.16	90.70	0.11	2.67	1110.73	5.59				Ba_Olvi
LL18-33	48.15	1.51	16.75	9.67	0.15	5.90	8.08	0.44	0.19	20.55	347.75		170.85	3.99	170.29	336.92	45.07	78.80	0.11	4.10	999.63		2.73			Ba_Olvi.
LL18-34	41.64	1.55	16.90	10.55	0.16	5.09	7.42	0.40	0.14	22.81	331.76		163.54	2.14	170.55	314.30	43.77	82.08	0.11	2.02	1728.11	5.14				Ba_Olvi.
LL19-11	56.57	0.91	13.45	4.63	0.11		2.96	3.04	0.19	158.34	272.50	811.70	366.18	18.49	34.95	17.89		62.05	13.06	16.88	235.64		7.03	13.09		Ba_Olvi.
LL19-19	43.63	1.44	17.53	10.36	0.17	7.08	8.78	0.37	0.11	16.07	372.10	286.21	166.74	3.63	156.01	325.76	57.94	88.21	0.11	2.08	618.63	4.82				Ba_Olvi.
LL19-24	43.30	1.59	18.94	11.57	0.14	5.65	7.46	0.57	0.20	24.93	360.42	246.21	175.41	3.67	178.66	294.24	56.31	74.02	0.11	3.17	1451.52		2.77			Ba_Olvi.
LL19-25	43.79	1.55	16.79	10.70	0.16	3.43	7.55	0.40	0.25	22.17	351.72		164.71	2.68	174.48	349.52	48.77	74.68	0.11		1061.85	4.91				Ba_Olvi.
LL19-26	43.00	1.54	17.01	10.96	0.19	4.70	7.26	0.51	0.24	29.62	322.89	220.77	164.01	3.18	154.50	272.06	92.10	94.94	0.11	1.44		5.07	3.20			Ba_Olvi.
LL19-27	44.24	1.43	15.62	9.54	0.16	2.80	7.83	0.50	0.09	19.37	357.41	165.76	168.37	4.63	137.36	290.19	57.88	79.46	0.11	4.49	778.05		3.28			Ba_Olvi.
LL19-28	53.31	1.61	12.56	8.72	0.11	3.93	6.20	0.54	0.29	18.17	330.33		165.34	1.23	127.40	266.61	36.26	64.09	0.11	2.28	4466.15	3.64				Ba_Olvi.
LL19-29	46.44	1.53	19.14	10.08	0.16	5.01	8.71	0.41	0.11	11.41	368.04	203.13	167.96	5.13	160.83	325.83	46.35	81.45	0.11	1.25		4.60	3.27			Ba_Olvi.
LL19-30	43.92	1.47	16.59	9.33	0.17	5.29	7.43	0.56	0.32	30.16	341.36		172.17	3.44	139.34	278.02	45.23	90.85	0.11	5.67	732.33	4.37	3.32			Ba_Olvi.
LL19-31	44.23	1.36	16.19	9.43	0.15	3.87	8.11	0.50	0.20	28.02	353.28		159.12	0.78	168.22	300.89	66.01	87.23	0.11	2.13	500.45	4.01				Ba_Olvi.
LL19-32	44.06	1.36	16.52	9.98	0.16	4.90	8.56	0.36		14.80	371.68	259.06	162.22	3.98	155.65	304.10	56.38	85.89	0.11	4.16	467.66		3.72			Ba_Olvi.
LL19-33	46.23	1.48	17.95	10.07	0.15	5.39	8.39	0.39	0.16	14.42	357.39	339.95	179.35	4.86	164.48	236.52	41.70	85.62	0.11	3.41	1021.88		3.13			Ba_Olvi.
LL19-34	49.33	1.64	16.05	11.16	0.13	2.98	7.03	0.39	0.17	18.14	321.28		165.19	1.26	189.35	323.14	60.45	70.78	0.11		3271.09	6.85				Ba_Olvi.
LL20-9	58.77	1.05	16.12	5.42	0.11	1.76	4.15	2.71	0.19	133.95	358.39		292.93	14.11	50.23	18.60		58.76	8.62	10.24	116.35	3.88	4.97	7.59		Ba_Olvi.
LL20-16	42.05	1.38	15.59	9.92	0.16	4.96	8.37	0.42	0.14	20.15	369.56	269.11	168.92	2.19	161.72	321.88	57.31	89.46	0.11	2.76	704.46	4.62	3.83			Ba_Olvi
LL20-18	44.54	1.39	19.16	10.16	0.16	5.62	9.07	0.32	0.08	8.01	383.62	175.00	137.15	2.80	170.44	321.66	61.52	81.41	0.11	1.14	371.59	5.31	3.32			Ba_Olvi.
LL20-19	43.05	1.44	15.29	10.07	0.16	3.00	8.08	0.55	0.10	23.47	363.18	203.08	172.24	3.05	154.84	333.60	52.07	88.81	0.11	2.15	880.72	6.02	4.20			Ba_Olvi
LL20-20	44.13	1.29	13.66	8.96	0.15	3.25	7.10	0.76	0.18	45.22	345.61	304.90	164.05	2.25	140.41	298.42	43.38	86.83	0.11	4.33	767.98		3.04			Ba_Olvi.
LL20-21	47.92	1.37	18.94	9.65	0.16	7.98	8.22	0.58	0.13	28.32	362.80	237.64	165.71	2.80	155.48	371.00	65.04	99.22	0.11	5.13	630.17	4.57	2.64			Ba_Olvi.
LL20-22	42.16	1.46	17.33	10.40	0.17	5.80	8.64	0.39	0.10	17.56	374.15	358.37	168.92	3.66	185.09	349.64	66.34	<mark>87.1</mark> 2	0.11	2.65	885.87	5.47	3.16			Ba_Olvi.

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Ba_Ohi.				00.2	66.274	1.43	11.0	85.26	46.14	345.13	67 ⁻⁶ /1	3.28	163.24	88 [.] LSZ	362.22	15.77	07.0	6.33	5L-8	\$2.25	L1.0	10.21	58.71	85.1	45.32	rr50-53
Ba_Ohi.			14.2		\$C7.24	48.2	11.0	40°16	28.22	300 ⁻ 66	6L.041	5.54	10.001		40.748	50.55	\$0.05	44. 0	L9 ⁻ L	3.29	51.0	LL ⁻ 6	10.01	25.1	41.55	rr50-54
Ba_Ohi.					1353.14	00.2	11.0	\$5.08	£7.94	252.32	122.26	18.4	88.161		92.205	20 [.] 25	0.23	69.0	6.44	4.39	41.0	60'6	13.82	951	56.44	FF50-52
Ba_Ohi.				0L ⁻	61.5204	40.	11.0	81.23	15.10	\$5.925	320,38	51.2	82.581	523.76	19.855	22.11	0.24	55.0	58°L	5.55	51.0	59.11	17.34	72-1	\$0.04	LL20-27
Ba_Ohi.			L0.4	3.92	98.8469	5.60	11.0	10.19	20.28	L2.862	\$5.21	4.84	19 ⁻ 191	490.10	44 .868	15.96	6.03	6.43	96.8	573	91.0	10.22	51721	1.47	45.92	FF50-58
Ba_Ohi.			- 20787		65.4802	10.4	11.0	09.49	74.72	328.99	12.661	52.2	\$5.6LI	471.22	415.55	15.51	41.0	74.0	8.03	25.22	6.13	25.6	14.91	1.62	18.37	LL20-29
Ba_Ohi			96.2		1304.18	88.9	11.0	92.58	21.9/	308.12	65.201	5.30	£L'691	283.12	361.50	85.12	6.03	97.0	8.03	65.0	51.0	89.6	10.46	65.1	01'9 1	TT50-35
Ba_Ohi.			11 MARA	1999-50	\$77.34	18.0	11.0	61.18	68.65	317.28	168.41	5.84	86.851	183.97	\$5.205	₩9°L	10.14	67.0	18.8	75.34	51.0	10.36	60.81	0+1	96.64	LL20-33
Ba_Ohi.			69.5	88.2	L6 +5L	\$7.5	11.0	07.16	22.09	327.34	75.701	5.32	01.201	25.712	62.825	20.67	0.20	97.0	8.23	26.5	91.0	51.01	54.91	1.43	45.84	LL20-34
Ba_Ohi			16.5	4.82	227.03	85.9	11.0	78.98	L5.64	121.125	12.581	50.5	180.43	\$8.81L	26.172	4I.8I	95.0	0.42	8.24	LL'E	81.0	68.01	10.00	95.1	41.30	FT50-32
Ra_Ohr			3.62	\$1.14	01.704	58.5		90.9/	27.42	194.34	97.881	59.5	126.921	455'JJ	84.572	41.2	12.0	6t 0	09.6	75'8	IT 0	/0.01	01.12	SET	51.84	Ba_Olv
Esc_Volc.			£6.4	11.11	96.411	65.6	11.0	01.96	34.05	76.28	06.541	11.63	728272	19.588	460.23	8.98	0.13	55°T	24.0	77.1	61.0	8L'L	13.74	64.1	\$5.74	TT5-55
Esc_Volc.		61.61	99.8	LST		47.41	18.84	16.02	1998	18.6		81.61	26.985		134.28	96'027	90.0	37.8	74.I	05.5	80.0	3.23	00.21	69.0	56.65	TT3-58
Esc_Volc.			98.2	55257		£6'L	84.4	to.08	12.81	51.29	60.26	11.12	733.62	\$6.108	439.52	120.64	91.0	56.1	98.4	00°E	01.0	29.9	13.22	14.1	25.36	LL4-23
Esc_Volc.			45.4	99'11	220.23	IL'L	71.5	L6.48	45.71	08.30	64.841	12.38	544.54	27.887	68.194	02.28	51.0	05.1	44.9	50°T	61.0	LSL	68.51	44.I	\$1.14	LL4-28
Esc_Volc.		85. Y	61.0	89.6	25.216	17.62	12.5	28.501	27.17	15.17	95.621	11.23	740.22	610.03	06.944	86.38	91.0	72.1	9.28	61.5	£1.0	89.7	96.61	54.I	25.12	TT2-53
Esc_Volc.		65-5		8696	66.765	54.01	t0.2	18.18	54.36	14.54	14.26	14.73	88.182		336.72	67.06	SL'O	67.1	£9'E	68.0	0.12	10°L	80.21	65.1	\$9.74	LT-911
Esc_Volc.			80°E	94.5		15.53	81.4	SZ 8L	65.75	31.44	106.38	12.01	530.14	†8.8 †9	476.26	110.001	81.0	56.1	09.4		11.0	6.63	90.4I	07.1	07.55	TT9-33
Esc_Volc.			05.20	81.9	60°+01	10.12	79.4	50.8/	71.84	80.62	55.611	11.33	66'857	931.20	79.444	123.30	91.0	96.1	58.4	1.1	11.0	18.0	55.61	1.42	22.03	SE-977
Esc_Volc.			16.2		00.0	84.5	11.0	23.22	59.25	64.45	58.901	91.6	509.36	10.111	\$5.874	18.23	0.12	54.1	91.9	7.04	11.0	51.9	52.91	1.26	95.64	57-L'TT
Esc_Volc.			05.5		99.467	66.5	II.0	£1.68	t9.84	07.8/	IT.8EI	89.11	51.652	\$7.509	55.404	59.68	91.0	65 I	55.0	57.1	£1.0	597	98.41	1.44	12.64	61-8-11
Esc_Volc.			10.2			11.01	49.4	67.5L	62.05	57.43	65.46	95.6	526.06	06.102	436.46	172.69	11.0	00.2	69 [.] t	40.I	01.0	82.9	14.73	44.I	19.42	TT8-59
Esc_Volc.		88.5	40.4		12 320	£0.01	87.4	05.01	08.12	67.6	04.201	t9:01	18.877	(0. Fcc	10.884	CP.811	91.0	\$6 I	£5.4	£7.1	11.0	9/.0	65.41	74.1	67.40	/7-8-11
Esc_Voic.		05.4	01.0	00 2	±/.C/7	16.0	14.0	16.67	0/ 85	50.67	C6.C01	70.01	\$6.077	70.000	+C.+++	68.121	20.0	56.T	17 ⁻		11.0	58.0	14.11	86.1	14.04	87-877
Esc_Voic.		10.0	7/10	06.0	77.4+07	C/-/	06.4	14.61	+/.0C	C7:70	01.201	60.71	0+.050	04./201	77.55+	26.06	01.0	0+.1	60.0	100	ST.0	+0.1	CCCT	02.1	C8.CF	51-0177
TSC_VOIC		13 6	06.0	06.01	00.2100	14:0H	11.0	16.121	+/.7C	00.011	77.011	C/ TT	00.702	CC.CCC0	1/.110	C+.00	01.0	/+ T	90 V	107	+1.0	TC.1	70.71	00.1	+/-0+	00-7177
ESC_VOIC		155	71.0	61.7	SI-197	C8.4	11.0	08.90	+6.00	00 01	60.41	90.0	1/./17	71-055	CO.C2+	SC.CII	10.0	80.1	00.4	CC.I	01.0	100	76.6	C7.1	14:04	CC-7177
Esc_Volc			00 2		07.075	17.0	41.0	58 82	10.41	19 09	00 011	91.01	06.077	10 1/19	+/.04C	FF.001	41.0	22.1	61.4	05.7	013	CT.0	CF.11	+7.1	LV 8V	05-1177
Ese Volc			66.5		CC.2CT	76.0	11.0	10.57	60°+C	19.70	07.611	CL.ZI	CT 147	17.4/0	11 000	16.70	91.0	00 1	C9 V	77.1	CT-0	P0.1	70.01	1 30	90 LV	00-0177
Here Volc			59 6		14:007	00.01	70.1	91.58	00.0	SPSL	17:001	11 33	28 LEC	LL 985	8V 05V	LL 28	51.0	SPI	20.1	111	013	OC D	17.71	NP L	C8 LV	01-011
	50.5	263	52 7		95 005	79 21	88 L	85 79	36.55	79 19 Chici	96 65	86 11	20 656	81 188	89 665	11:00	EPO	110	677	11.1	010	255	18 11	C6 0	97 CS	51-611
T ani	05 7	88.9	55.6	OL C	12 27867	19.5	29.8	05.90	67.66	132 10	20 89	LL S	96 500	0/:/00	26 222	20 811	CI 0	881	CI I		50.0	CT C	21 21	00 1	12 67	91-711
ine. I	0.51	LT L	164	88 6	16 175	11 24	25.8	66 SL	95 21	27 29	82 87	55 11	16 786		66 528	144 30	11.0	07.0	01 7		010	01.2	1051	1 10	10.01	10-177
ine. I	92 4	66 L	25 2	00.7	312.85	98 91	10 04	LCCL	0.5117	31 50	22.22	25 91	ES 2EE	25 899	09 808	142.04	10	18.2	98 2		010	165	13 33	801	96.05	71-9'I'I
ine.1	0/11	101	08 5		60:716	99 01	454	09 92	91 07	69 67	25 501	52.6	18 700	09 219	19 807	10711	110	90 0	177		110	599	69 11	1 38	19 67	11.077
ine. I			\$6 7		10103	08.9	110	97 LL	41 00	25 68	01 001	916	18 412	07 219	09 225	2413		1 30	65.9	£9 I	110	789	02 81	113	66 77	22-271
ias.I			96.5	12.7	50. <u>688</u>	82.51	91.4	69 ⁻ 8L	£9 ⁻ 6£	\$2.08	66.011	01.21	238.54	65.787	\$1.724	05.48	0.26	£9 ⁻ 1	18.2	2.36	61.0	84 L	20.21	1.43	58.84	E-8.1.1
.iqs.I			5083	122032	1-000010	10.04	4.92	64.8L	04.24	<i>L</i> \$.24	88.76	74.11	246.90	48.128	87.784	\$6°6L	20.0	1.30	4.39	86.1	11.0	19.7	12.93	49.1	26.14	LL8-15
1.0								0000	03 10	20 10	10 101	CF 01	9L 100	CV L09	LV UOV	00 00	310	13.1			** 0	00 -	03.44	101	02 01	10011

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Musstra	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	K_2O	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Pees
Muestra					%												µg.g	1								Roca
LL9-12	55.65	1.15	13.52	5.70	0.10		2.82	2.86	0.11	176.01	23 <mark>4.8</mark> 2		346.59	16.84	69.44	30.2 <mark>4</mark>		60.91	11.75	12.06			4.74	10.43	6.71	Lapi.
LL9-17	41.94	1.77	14.29	7.26	0.11	0.65	3.22	0.83	0.09	68.62	351.41		275.45	12.46	60.41	57.09	21.96	85.42	3.33	7.29						Lapi.
LL9-30	42.61	1.29	12.90	5.86	0.10	0.76	2.64	1.57	0.07	105.30	325.64		306.05	14.32	60.12	42.98	16.78	68.95	6.34	14.32	85.19		3.58	4.04		Lapi.
LL10-11	55.99	0.84	11.50	4.21	0.09		2.27	3.19	0.05	185.96	238.51		348.62	17. 9 5	25.45	21.22		64.52	10.93	13.86			8.35	10.85		Lapi.
LL11-32	51.15	1.61	15.86	7.05	0.12		3.14	1.70	0.17	103.04	301.38	714.41	318.77	15.47	76.66	60.56		73.86	8.23	11.67	407.22	5.42		6.74	4.93	Lapi.
LL12-10	55.58	1.38	13.85	6.30	0.10		3.98	2.34	0.18	133.48	379.75	580.75	284.92	15.57	78.43	31.81		78.30	5.24	11.05	<mark>440.9</mark> 6			4.47		Lapi.
LL13-13	47.42	1.11	9.24	1.01	0.05		0.78	1.90	0.10	71.42	367.49		188.48	6.31	31.56				5.63	7.39	50321.38		5.13	4.79		Lapi.
LL13-15	61.30	0.87	10.26	3.25	0.07		1.15	1.50	0.03	81.76	232.23	1359.55	266.96	13.49	17.37	26.80		183.89	7.49	8.53	10251.71	6.75	5.31	6.40		Lapi.
LL14-19	49.13	0.78	15.20	4.02	0.05		0.92	2.10	0.06	82.92	212.13		235.64	9.62	28.41			12.79	6.88	9.28	53151.19		4.22	5.56		Lapi.
LL_Lap	55.17	1.77	14.77	7.70	0.12	1.99	4.56	2.09	0.26	123.99	428.63	877.22	283.41	15.92	105.78	26.34	34.41	79.09	7.74	11.21	130.54	5.02	7.67	7.53		Lapi.
LL1-1	52.61	0.78	11.92	3.78	0.08	0.78	1.89	2.84		155.96	174.07		338.64	13.92	4.71	0.73		52.53	12.03	11.99	203.40	3.66	7.08	13.05		Pumic.
LL1-6	58.14	0.86	15.37	4.49	0.09	1.33	2.15	2.69	0.09	166.38	226.41		357.33	17.28	13.02	28.52		59.99	11.67	14.51		3.66	5.82	10.65		Pumic.
LL1-7	57.39	0.82	14.70	4.08	0.08		2.01	3.20	0.11	168.00	195.78		379.23	18.12	19.69	29.91		58.70	12.60	14.45			2.75	10.77	7.19	Pumic.
LL1-11	55.22	0.81	13.28	4.09	0.09		1.97	3.00	0.01	175.28	206.86		407.10	18.38	3.69	37.91		57.06	13.46	16.12	233.51	3.64	10.25	12.85		Pumic.
LL1-14	56.84	0.89	15.98	4.31	0.09		2.02	2.69	0.09	165.48	220.92		379.31	19.16	14.70	22.61		64.05	14.79	13.43		3.41		13.35	7.42	Pumic.
LL1-15	59.40	0.62	10.56	2.99	0.07		1.38	3.94	0.04	221.80	114.37		332.41	15.42	4.25	15.17		36.15	12.68	15.06			8.27	12.14	4.54	Pumic.
LL1-16	56.82	0.84	13.72	4.24	0.09		2.07	3.03	0.13	180.14	271.46		370.93	19.88	28.76	22.20		68.88	12.38	15.15	410.11	3.43	3.84	11.64	6.60	Pumic.
LL1-17	52.77	0.86	13.81	4.46	0.09		2.12	2.63	0.13	147.57	194.85		308.14	13.46	36.18	34.85		50.23	11.27	11.70	237.88	3.01	5.01	10.38	6.17	Pumic.
LL1-18	57.45	1.00	16.15	4.85	0.10		2.30	2.15	0.34	141.38	236.90		334.69	16.12	42.41	36.25		60.16	11.12	14.22	524.90	3.12	2.54	9_17	8.11	Pumic.
LL1-21	58.36	0.71	11.67	3.35	0.07		1.73	3.46	0.15	211.24	137.48		356.11	16.72	9.92	26.28		48.59	15.01	16.20	469.21	3.11	5.29	13.86	7.41	Pumic.
LL1-22	55.59	0.79	12.52	3.96	0.08		2.03	2.83	0.14	170.22	189.28		322.91	14.57	20.38	24.19		62.18	9.43	14.63	302.52		3.20	8.13	6.10	Pumic.
LL2-2	58.26	0.76	13.92	3.94	0.08		1.93	3.15	0.07	181.88	191.62		361.48	16.17	17.95	27.44		56.51	12.53	15.25			6.20	11.95	6.66	Pumic.
LL2-7	49.99	0.87	13.99	4.53	0.09		1.96	2.59	0.14	148.82	186.48		429.09	21.86	32.33	28.10		67.65	13.37	20.08	324.91		3.34	12.89	7.76	Pumic.
LL2-10	57.98	0.79	13.98	4.05	0.08	0.80	2.02	3.24	0.08	177.24	192.23		360.72	17.39	6.08	21.49		65.90	11.39	14.23		3.99	6.48	10.31	4.52	Pumic.
LL2-12	57.06	0.80	14.69	4.14	0.09		2.08	2.95	0.10	178.09	272.13		391.93	19.56	11.38	21.70		66.56	14.05	16.76		3.00	6.24	13.76	4.86	Pumic.
LL2-13	56.93	0.81	14.68	4.11	0.09		1.95	2.67	0.07	164.54	206.63		377.51	19.15	12.35	17.20		64.75	13.83	16.82	242.12		3.55	12.99	6.74	Pumic.
LL2-15	55.19	0.99	13.09	4.77	0.09	1.13	4.01	2.81	0.12	160.23	360.55		272.84	11.22	45.22	43.17		52.24	7.66	7.48	107.60	2.93	4.76	6.75		Pumic.
LL2-18	51.27	0.85	11.20	4.53	0.09		2.40	2.84	0.08	169.68	243.26		329.03	15.26	17.70	23.43		62.63	9.15	13.43	183.72	3.08	7.21	7.77		Pumic.
LL2-30	60.97	0.92	14.51	4.52	0.09		2.40	2.92	0.14	178.02	226.11		315.30	14.56	27.74	24.32		52.17	11.05	15.15	244.87	5.58	6.92	10.91		Pumic.
LL2-32	57.62	0.72	12.47	3.82	0.08		1.89	3.29	0.02	200.14	191.94		384.01	20.58	8.50			60.04	14.08	15.32			4.91	13.75	5.01	Pumic.
LL3-1	56.00	0.80	13.85	4.00	0.09	0.99	2.03	2.84	0.13	159.73	201.49		374.88	17.88	5.50	20.64		62.83	10.97	17.10			2.84	9.16	7.15	Pumic.
LL3-3	57.05	0.81	14.53	4.18	0.08		2.02	2.82	0.06	168.21	216.91		350.29	16.60	6.28	12.77		66.38	10.85	17.79	106.53		7.47	10.80		Pumic.
LL3-8	54.67	0.78	12.37	3.92	0.08		1.98	3.03	0.07	161.74	187.41		346.90	16.52	19.12	21.06		58.46	11.54	15.01	248.44		4.78	10.53	7.55	Pumic.
LL3-9	54.02	0.81	14.10	4.16	0.08	1.04	1.94	2.82	0.03	141.19	165.60		328.87	14.35	19.85	28.82		58.51	10.96	11.86	200.07	2.60	6.87	9.93		Pumic.
LL3-12	52.61	0.77	13.05	4.09	0.09		1.84	2.77	0.07	158.37	232.23		350.26	17.68	20.78	14.14		64.91	11.30	15.96	64.73	3.75	6.43	11.44		Pumic.
LL3-13	57.80	0.78	12.54	3.89	0.08		2.02	3.16	0.14	182.16	207.68		362.35	17.95	15.45	24.28		66.30	11.38	15.52	71.79		2.96	10.03	10.74	Pumic.
LL4-8	58.25	0.76	12.47	3.81	0.08		1.98	3.20	0.06	188.38	190.02		350.76	17.05	23.46	5.67		60.13	12.53	13.51		2.82	3.51	11.96	6.15	Pumic.
LL4-12	51.91	0.83	15.89	4.41	0.08		1.97	2.36	0.18	143.92	219.14		394.43	17.20	23.31	25.04		55.66	11.19	14.99	399.04		3.79	9.91	6.77	Pumic.
LL4-14	57.02	0.77	12.55	3.99	0.08		1.98	3.01		80.04	244.72		365.90	17.56	10.13	14.20		58.43	12.93	15.44	165.08		10.65	14.78		Pumic.
LL4-17	62.99	0.83	13.21	3.79	0.08		2.10	3.59	0.15	220.43	183.14		353.61	17.53	24.82	18.64		47.20	14.44	15.87			4.72	13.44	6.31	Pumic.

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Muestra	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	$\mathbf{K}_2\mathbf{O}$	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Roca
Muestia					%												μg.g	1								Roca
LL4-27	61.08	0.71	11.87	3.51	0.08		1.81	3.72	0.03	96.23	164.37		384.86	19.45	8.34	20.53		57.11	13.06	17.85	94.82	4.62	8.19	12.84	5.54	Pumic.
LL4-33	66.25	0.74	13.74	3.64	0.08		1.89	3.63	0.14	202.69	168.85		373.98	18.12	18.56	16.69		62.05	12.76	16.38		5.59	2.50	11.36	11.96	Pumic.
LL5-3	47.50	0.79	12.20	3.95	0.08		1.79	2.83	0.07	175.05	198.98		362.79	17.60	7.04	9.84		45.40	13.50	12.66	192.25	5.05	4.32	12.56	8.22	Pumic.
LL5-6	48.64	0.88	16.58	4.47	0.08		1.76	2.32	0.12	138.83	179.75		376.08	18.17	11.27	19.24		61.36	10.90	15.69		3.54	5.81	10.50		Pumic.
LL5-8	55.48	0.85	14.61	4.42	0.08		1.96	2.60	0.14	148.59	169.31		286.72	13.25	31.31	21.18		72.03	8.45	19.48	384.45		4.92	6.99	6.08	Pumic.
LL5-9	56.78	0.81	13.57	4.25	0.09		2.10	2.88	0.08	172.31	212.01		318.78	14.27	24.95	24.11		59.48	8.70	14.23	372.06		7.90	7.68		Pumic.
LL5-11	48.11	0.89	12.26	4.44	0.09		1.51	2.89	0.04	95.08	154.07	701.61	424.65	20.81	26.81	28.14		52.25	17.04	17.70	416.57		7.63	17.33	5.49	Pumic.
LL5-12	48.98	0.84	10.97	4.42	0.08		2.29	2.80	0.08	182.61	251.15		348.11	17.24	24.18			53.24	14.16	12.62	276.84	6.69	5.15	13.94	7.94	Pumic.
LL5-15	57.03	0.92	13.02	4.42	0.09		2.43	2.87	0.17	177.10	219.42		338.42	16.17	44.46	31.19		62.51	9.95	15.69		3.81	3.97	8.48	5.93	Pumic.
LL5-16	53.08	1.09	13.72	5.10	0.09		2.97	2.56	0.14	145.85	299.6 5		295.62	15.21	62.00	30.83		63.45	9.02	11.45	363.04		3.53	6.83	4.99	Pumic.
LL5-17	55.82	0.82	12.69	4.06	0.09		1.97	3.38	0.02	188.20	204.00		383.99	19.82	14.35	25.68		55.10	11.86	17.25			8.00	11.71		Pumic.
LL5-20	53.23	0.94	17.82	4.70	0.10		1.98	1.97	0.26	124.13	197.68		354.46	15.77	31. <mark>8</mark> 3	24.86		60.20	11.16	18.67	260.44		5.31	10.73		Pumic.
LL5-24	61.31	1.11	14.11	5.02	0.09	1.27	2.88	2.56	0.12	133.39	269.09		315.78	14.70	42.69	48.05		64.03	8.30	11.13	198.16		4.77	6.58	4.23	Pumic.
LL5-35	56.25	0.86	11.21	4.27	0.09		2.37	3.10	0.07	183.84	212.99		325.28	15.81	2 <mark>9.8</mark> 1	20.73		58.06	9.51	12.77			6.76	9.52		Pumic.
LL6-1	47.49	0.85	13.13	4.49	0.08		1.83	2.42	0.03	153.02	200.01		370.41	19.37	26.11	32.96		59.17	10.13	19.23	291.66		4.63	9.07	5.52	Pumic.
LL6-3	54.22	0.91	15.15	4.64	0.08		1.94	2.67	0.03	158.37	225.60		392.05	19.37	21.23	25.80		55.04	12.12	22.01			6.02	12.35		Pumic.
LL6-5	57.84	0.83	14.42	4.22	0.08		1.94	2.90	0.03	144.96	181.05		369.61	16.99	10.37	24.82		54.05	11.16	16.78			6.49	10.40		Pumic.
LL6-6	55.59	0.81	12.98	4.03	0.08		2.09	2.68	0.09	157.78	223.89		351.70	16.54	17.47	14.10		52.19	10.42	15.78	270.98		4.28	8.90	6.28	Pumic.
LL6-7	53.99	0.83	14.28	4.41	0.08		2.00	2.48	0.10	156.13	206.19		363.54	16.14	22.47	24.15		47.95	10.13	16.77	78.04	4.24	5.03	9.63		Pumic.
LL6-9	49.42	0.83	15.60	4.72	0.09		1.79	2.30	0.12	145.57	182.83		391.00	17.64	28.35	18.87		45.94	10.17	13.71	244.33	3.40	5.25	8.29	5.54	Pumic.
LL6-10	54.53	0.77	13.62	4.30	0.10		1.91	2.84	0.19	175.35	198.34		368.22	17.42	24.04	37.43		68.09	11.17	15.80	491.46	5.78	5.66	9.74	5.65	Pumic.
LL6-15	55.17	1.01	13.75	4.71	0.09		2.48	2.84	0.15	143.87	235.31		321.70	15. 9 2	47.67	24.19		60.63	10.10	11.94	250.55		4.41	7_86		Pumic.
LL6-16	53.17	0.88	13.08	4.27	0.09		2.09	3.46	0.10	181.76	217.69		395.70	19.62	10.34	18.43		64.57	15.52	17.36	421.29		2.94	15.58	8.46	Pumic.
LL6-24	67.70	0.64	12.93	3.12	0.08	0.85	2.20	3.58	0.17	204.29	212.38		361.47	16.88	11.95	7.14		37.81	15.01	53.73			6.33	14.77	6.66	Pumic.
LL6-25	58.68	0.67	11.73	3.30	0.07		1.80	3.78	0.15	212.87	148.32		356.30	18.15	10.95	13.20		47.93	14.91	12.02		4.79	3.82	13.44	10.20	Pumic.
LL6-28	56.19	0.82	12.52	3.97	0.09		1.97	3.07	0.11	189.11	204.15		380.39	19.48	18.20	18.29		61.02	12.44	14.48		3.91	4.52	12.03	5.02	Pumic.
LL7-1	56.40	0.90	15.55	4.49	0.09		2.39	2.02	0.13	132.05	269.10		314.91	12.91	29.32	31.69		55.61	10.55	13.31	359.01		3.84	9_86		Pumic.
LL7-3	60.74	0.72	14.08	3.83	0.08		1.90	3.15	0.05	183.60	203.39		366.06	17. 6 9	3 <mark>.</mark> 87	19.69		53.77	11.42	14.21	63.55		6.31	9.74	6.18	Pumic.
LL7-5	57.17	0.81	12.11	4.05	0.08		1.92	2.91	0.09	157.64	186.84		340.35	13.97	19.59	33.05		51.39	13.28	13.05	522.20	2.89	2.86	11.75	5.77	Pumic.
LL7-16	47.90	0.84	11.68	4.28	0.09		1.86	3.21	0.07	169.46	187.06		377.94	19.31	18.76	12.76		63.44	12.64	13.33			2.72	10.98	9.38	Pumic.
LL7-18	42.62	1.16	12.07	5.72	0.10		2.71	1.38	0.10	112.44	302.95		295.18	13.42	57.45	33.13		64.71	7.92	12.87	340.97		3.91	7.20		Pumic.
LL7-29	54.18	0.77	11.82	4.08	0.08		2.01	3.13	0.10	187.75	199.54		376.66	20.36	10.59	13.65		63.56	12.60	15.54	230.27	3.08	4.01	11.19	8.25	Pumic.
LL7-31	61.80	0.78	13.23	3.57	0.08		1.77	3.41	0.19	214.11	151.04		383.54	20.71	19.11			55.82	15.18	16.73	139.09	3.51	4.48	13.87	7.72	Pumic.
LL7-32	50.57	1.36	16.15	6.06	0.11		3.21	1.67	0.31	113.08	325. <mark>1</mark> 7		284.33	11.97	86.32	30.79		72.84	6.86	11.19	794.32		3.27	4.62		Pumic.
LL7-33	31.07	1.05	7.93	4.93	0.09		2.36	1.61	0.09	117.11	272.79	922.21	288.72	12.78	41.45			69.40	6.85	13.96	244.47		3.99	6_81		Pumic.
LL7-34	57.92	0.81	13.19	3.70	0.08		1.90	3.17	0.24	196.21	159.27		378.56	18.75	16.80	22.19		48.23	14.23	20.08	87.31		4.28	14.21	8.51	Pumic.
LL8-6	58.09	0.75	13.16	3.91	0.08		1.99	3.10	0.01	173.16	188.40		341.62	15.89		20.57		52.26	10.07	17.12	239.95		8.05	10.03		Pumic.
LL8-10	64.94	0.74	13.48	3.70	0.08		1.99	3.41	0.09	198 .12	196.97		352.80	17.80	17.77	18.88		54.93	11.88	14.67	0.00		6.15	10.23		Pumic.
LL8-11	52.16	0.91	15.21	4.46	0.09		1.97	2.60	0.11	155.77	243.07		380.86	18.07	27.95	19.03		63.47	14.16	16.54	167.86			14.00	6.64	Pumic.
LL8-12	59.75	0.81	15.58	4.15	0.08		2.19	3.24	0.11	177.03	189.23		328.21	16.43	17.63	21.07		53.16	10.69	15.05	245.38	5.06	3.23	9.12	7.88	Pumic.

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Muestra	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	K_2O	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Roca
Muestra					9⁄0												μg.g	1								Roca
LL8-13	45.37	1.04	13.93	5.19	0.09	0.63	1.94	2.09	0.06	122.17	200.18		369.82	17.80	36.42	38.70		72.22	13.79	14.13	227.51		3.87	13.32	5.26	Pumic.
LL8-14	61.63	0.73	13.21	3.79	0.08		1.91	3.47	0.07	191.59	186.57		370.27	17.47	10.70	18.23		56.87	12.69	14.49	314.47		2.80	11.78	10.42	Pumic.
LL8-20	50.45	1.22	14.83	5.44	0.10		2.58	2.07	0.19	115.53	226.66		310.09	15.44	50.16	39.51		76.86	8.28	11.51			4.69	7.03		Pumic.
LL9-4	59.77	0.75	12.49	3.73	0.08		1.96	3.20	0.05	188.67	195.41		348.35	16.83	4.89			56.46	11.65	14.89			3.51	11.75	6.73	Pumic.
LL9-6	56.68	0.69	11.91	3.70	0.08		1.93	3.14	0.07	187.70	206.80		355.55	17.83	12.46			60.05	11.75	14.30	183.57	6.30	3.15	10.69	6.62	Pumic.
Willx-01	65.01	0.67	15.47	3.89	0.08	0.76	2.23	3.15	0.17	91.00	225.00	758.00	406.00	18.00	25.00		0.00	56.00	11.50	15.00	0.00	2.60	4.50	0.00	3.50	Pumic.
LL9-8	62.17	0.80	13.22	4.24	0.09		2.27	3.10	0.10	188.76	229.02		342.79	15.47	22.02	12.22		59.36	12.80	15.55	186.79	3.35	8.23	12.49	5.55	Pumic.
LL9-10	63.28	0.48	12.21	2.44	0.07		1.10	4.41	0.08	129.83	72.24		366.09	17.91				31.36	19.45	18.19	162.71	3.93	6.19	18.52	15.83	Pumic.
LL9-13	56.79	0.69	11.32	3.45	0.07		1.85	3.91	0.04	191.85	146.76		319.63	15.50	20.91	13.14		40.94	12.41	13.56			5.72	11.18	6.93	Pumic.
LL9-14	59.06	0.69	12.84	3.43	0.07		1.77	4.43	0.07	217.70	153.89		376.15	18.62	4.97	2.80		43.59	15.31	16.13		3.10	6.82	14.44	7.22	Pumic.
LL9-16	57.65	0.74	12.32	3.40	0.07		2.05	3.92	0.12	208.01	186.79		353.95	17.53	7.78	1.60		38.89	13.48	13.35		3.51	4.80	11.78	7.84	Pumic.
LL9-21	50.39	1.52	13.63	6.25	0.10	0.77	3.37	1.85	0.24	123.87	328.51		327. <mark>0</mark> 6	20.97	102.02	63.13	24.09	82.01	9.36	11.03				8.06		Pumic.
LL2-10	57.98	0.79	13.98	4.05	0.08	0.80	2.02	3.24	0.08	177.24	192.23		360.72	17.39	6.08	21.49		65.90	11.39	14.23		3.99	6.48	10.31	4.52	Pumic.
LL2-12	57.06	0.80	14.69	4.14	0.09		2.08	2.95	0.10	178.09	272.13		391.93	19.56	11.38	21.70		66.56	14.05	16.76		3.00	6.24	13.76	4.86	Pumic.
LL2-13	56.93	0.81	14.68	4.11	0.09		1.95	2.67	0.07	164.54	206.63		377.51	19.15	12.35	17.20		64.75	13.83	16.82	242.12		3.55	12.99	6.74	Pumic.
LL2-15	55.19	0.99	13.09	4.77	0.09	1.13	4.01	2.81	0.12	160.23	360.55		272.84	11.22	45.22	43.17		52.24	7.66	7.48	107.60	2.93	4.76	6.75		Pumic.
LL2-18	51.27	0.85	11.20	4.53	0.09		2.40	2.84	0.08	169.68	243.26		329.03	15.26	17.70	23.43		62.63	9.15	13.43	183.72	3.08	7.21	7.77		Pumic.
LL2-30	60.97	0.92	14.51	4.52	0.09		2.40	2.92	0.14	178.02	226.11		315.30	14.56	27.74	24.32		52.17	11.05	15.15	244.87	5.58	6.92	10.91		Pumic.
LL2-32	57.62	0.72	12.47	3.82	0.08		1.89	3.29	0.02	200.14	191.94		384.01	20.58	8.50			60.04	14.08	15.32			4.91	13.75	5.01	Pumic.
LL3-1	56.00	0.80	13.85	4.00	0.09	0.99	2.03	2.84	0.13	159.73	201.49		374.88	17.88	5.50	20.64		62.83	10.97	17.10			2.84	9.16	7.15	Pumic.
LL3-3	57.05	0.81	14.53	4.18	0.08		2.02	2.82	0.06	168.21	216.91		350.29	16.60	6.28	12.77		66.38	10.85	17.79	106.53		7.47	10.80		Pumic.
LL3-8	54.67	0.78	12.37	3.92	0.08		1.98	3.03	0.07	161.74	187.41		346.90	16.52	19.12	21.06		58.46	11.54	15.01	248.44		4.78	10.53	7.55	Pumic.
LL3-9	54.02	0.81	14.10	4.16	0.08	1.04	1.94	2.82	0.03	141.19	165.60		328.87	14.35	19.85	28.82		58.51	10.96	11.86	200.07	2.60	6.87	9.93		Pumic.
LL3-12	52.61	0.77	13.05	4.09	0.09		1.84	2.77	0.07	158.37	232.23		350.26	17.68	20.78	14.14		64.91	11.30	15.96	64.73	3.75	6.43	11.44		Pumic.
LL3-13	57.80	0.78	12.54	3.89	0.08		2.02	3.16	0.14	182.16	207.68		362.35	17.95	15.45	24.28		66.30	11.38	15.52	71.79		2.96	10.03	10.74	Pumic.
LL4-8	58.25	0.76	12.47	3.81	0.08		1.98	3.20	0.06	188.38	190.02		350.76	17.05	23.46	5.67		60.13	12.53	13.51		2.82	3.51	11.96	6.15	Pumic.
LL4-12	51.91	0.83	15.89	4.41	0.08		1.97	2.36	0.18	143.92	219.14		394.43	17.20	23.31	25.04		55.66	11.19	14.99	399.04		3.79	9.91	6.77	Pumic.
LL4-14	57.02	0.77	12.55	3.99	0.08		1.98	3.01		80.04	244.72		365.90	17.56	10.13	14.20		58.43	12.93	15.44	165.08		10.65	14.78		Pumic.
LL4-17	62.99	0.83	13.21	3.79	0.08		2.10	3.59	0.15	220.43	183.14		353.61	17.53	24.82	18.64		47.20	14.44	15.87			4.72	13.44	6.31	Pumic.
LL4-27	61.08	0.71	11.87	3.51	0.08		1.81	3.72	0.03	96.23	164.37		384.86	19.45	8.34	20.53		57.11	13.06	17.85	94.82	4.62	8.19	12.84	5.54	Pumic.
LL4-33	66.25	0.74	13.74	3.64	0.08		1.89	3.63	0.14	202.69	168.85		373.98	18.12	18.56	16.69		62.05	12.76	16.38		5.59	2.50	11.36	11.96	Pumic.
LL5-3	47.50	0.79	12.20	3.95	0.08		1.79	2.83	0.07	175.05	198.98		362.79	17.60	7.04	9.84		45.40	13.50	12.66	192.25	5.05	4.32	12.56	8.22	Pumic.
LL5-6	48.64	0.88	16.58	4.47	0.08		1.76	2.32	0.12	138.83	179.75		376.08	18.17	11.27	19.24		61.36	10.90	15.69		3.54	5.81	10.50		Pumic.
LL5-8	55.48	0.85	14.61	4.42	0.08		1.96	2.60	0.14	148.59	169.31		286.72	13.25	31.31	21.18		72.03	8.45	19.48	384.45		4.92	6.99	6.08	Pumic.
LL5-9	56.78	0.81	13.57	4.25	0.09		2.10	2.88	0.08	172.31	212.01		318.78	14.27	24.95	24.11		59.48	8.70	14.23	372.06		7.90	7.68		Pumic.
LL5-11	48.11	0.89	12.26	4.44	0.09		1.51	2.89	0.04	95.08	154.07	701.61	424.65	20.81	26.81	28.14		52.25	17.04	17.70	416.57		7.63	17.33	5.49	Pumic.
LL5-12	48.98	0.84	10.97	4.42	0.08		2.29	2.80	0.08	182.61	251.15		348.11	17.24	24.18			53.24	14.16	12.62	276.84	6.69	5.15	13.94	7.94	Pumic.
LL5-15	57.03	0.92	13.02	4.42	0.09		2.43	2.87	0.17	177.10	219.42		338.42	16.17	44. <mark>4</mark> 6	31.19		62.51	9.95	15.69		3.81	3.97	8.48	5. <mark>9</mark> 3	Pumic.
LL5-16	53.08	1.09	13.72	5.10	0.09		2.97	2.56	0.14	145.85	299.65		295.62	15.21	62.00	30.83		63.45	9.02	11.45	363.04		3.53	6.83	4.99	Pumic.
LL5-17	55.82	0.82	12.69	4.06	0.09		1.97	3.38	0.02	188.20	204.00		383.99	19.82	14.35	25.68		55.10	11.86	17.25			8.00	11.71		Pumic.

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Musstra	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	K ₂ O	P ₂ O ₅	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Poss
Muestra					9⁄0												μg.g	1								Roca
LL5-20	53.23	0.94	17.82	4.70	0.10		1.98	1.97	0.26	124.13	197.68		354.46	15.77	31.83	24.86		60.20	11.16	18.67	260.44		5.31	10.73		Pumic.
LL5-24	61.31	1.11	14.11	5.02	0.09	1.27	2.88	2.56	0.12	133.39	269.09		315.78	14.70	42.69	48.05		64.03	8.30	11.13	198.16		<mark>4.7</mark> 7	6.58	4.23	Pumic.
LL5-35	56.25	0.86	11.21	4.27	0.09		2.37	3.10	0.07	183.84	212.99		325.28	15.81	29.81	20.73		58.06	9.51	12.77			6.76	9.52		Pumic.
LL6-1	47.49	0.85	13.13	4.49	0.08		1.83	2.42	0.03	153.02	200.01		370.41	19.37	26.11	32.96		59.17	10.13	19.23	291.66		4.63	9.07	5.52	Pumic.
LL6-3	54.22	0.91	15.15	4.64	0.08		1.94	2.67	0.03	158.37	225.60		392.05	19.37	21.23	25.80		55.04	12.12	22.01			6.02	12.35		Pumic.
LL6-5	57.84	0.83	14.42	4.22	0.08		1.94	2.90	0.03	144.96	181.05		369.61	16.99	10.37	24.82		54.05	11.16	16.78			6.49	10.40		Pumic.
LL6-6	55.59	0.81	12.98	4.03	0.08		2.09	2.68	0.09	157.78	223. <mark>8</mark> 9		351.70	16.54	17.47	14.10		52.19	10.42	15.78	270.98		4.28	8.90	6.28	Pumic.
LL6-7	53.99	0.83	14.28	4.41	0.08		2.00	2.48	0.10	156.13	206.19		363.54	16.14	22.47	24.15		47.95	10.13	16.77	78.04	4.24	5.03	9.63		Pumic.
LL6-9	49.42	0.83	15.60	4.72	0.09		1.79	2.30	0.12	145.57	182.83		391.00	17.64	28.35	18.87		45.94	10.17	13.71	244.33	3.40	5.25	8.29	5.54	Pumic.
LL6-10	54.53	0.77	13.62	4.30	0.10		1.91	2.84	0.19	175.35	198.34		368.22	17.42	24.04	37.43		68.09	11.17	15.80	491.46	5.78	5.66	9.74	5.65	Pumic.
LL6-15	55.17	1.01	13.75	4.71	0.09		2.48	2.84	0.15	143.87	235.31		321.70	15.92	47.67	24.19		60.63	10.10	11.94	250.55		4.41	7_86		Pumic.
LL6-16	53.17	0.88	13.08	4.27	0.09		2.09	3.46	0.10	181.76	217.69		395.70	19.62	10.34	18.43		64.57	15.52	17.36	421.29		2.94	15.58	8.46	Pumic.
LL6-24	67.70	0.64	12.93	3.12	0.08	0.85	2.20	3.58	0.17	204.29	212.38		361.47	16.88	11.95	7.14		37.81	15.01	53.73			6.33	14.77	6.66	Pumic.
LL6-25	58.68	0.67	11.73	3.30	0.07		1.80	3.78	0.15	212.87	148.32		356.30	18.15	10.95	13.20		47.93	14.91	12.02		4.79	3.82	13.44	10.20	Pumic.
LL6-28	56.19	0.82	12.52	3.97	0.09		1.97	3.07	0.11	189.11	204.15		380.39	19.48	18.20	18.29		61.02	12.44	14.48		3.91	4.52	12.03	5.02	Pumic.
LL7-1	56.40	0.90	15.55	4.49	0.09		2.39	2.02	0.13	132.05	269.10		314.91	12.91	29.32	31.69		55.61	10.55	13.31	359.01		3.84	9.86		Pumic.
LL7-3	60.74	0.72	14.08	3.83	0.08		1.90	3.15	0.05	183.60	203.39		366.06	17.69	3.87	19.69		53.77	11.42	14.21	63.55		6.31	9.74	6.18	Pumic.
LL7-5	57.17	0.81	12.11	4.05	0.08		1.92	2.91	0.09	157.64	186.84		340.35	13. 9 7	19.59	33.05		51.39	13.28	13.05	522.20	2.89	2.86	11.75	5.77	Pumic.
LL7-16	47.90	0.84	11.68	4.28	0.09		1.86	3.21	0.07	169.46	187.06		377.94	19.31	18.76	12.76		63.44	12.64	13.33			2.72	10.98	9.38	Pumic.
LL7-18	42.62	1.16	12.07	5.72	0.10		2.71	1.38	0.10	112.44	302.95		295.18	13.42	57.45	33.13		64.71	7.92	12.87	340.97		3.91	7_20		Pumic.
LL7-29	54.18	0.77	11.82	4.08	0.08		2.01	3.13	0.10	187.75	199.54		376.66	20.36	10.59	13.65		63.56	12.60	15.54	230.27	3.08	4.01	11.19	8.25	Pumic.
LL7-31	61.80	0.78	13.23	3.57	0.08		1.77	3.41	0.19	214.11	151.04		383.54	20.71	19.11			55.82	15.18	16.73	139.09	3.51	4.48	13.87	7.72	Pumic.
LL7-32	50.57	1.36	16.15	6.06	0.11		3.21	1.67	0.31	113.08	325.17		284.33	11.97	86.32	30.79		72.84	6.86	11.19	794.32		3.27	4.62		Pumic.
LL7-33	31.07	1.05	7.93	4.93	0.09		2.36	1.61	0.09	117.11	272.79	922.21	288.72	12.78	41.45			69.40	6.85	13.96	244.47		3.99	6.81		Pumic.
LL7-34	57.92	0.81	13.19	3.70	0.08		1.90	3.17	0.24	196.21	159.27		378.56	18.75	16.80	22.19		48.23	14.23	20.08	87.31		4.28	14.21	8.51	Pumic.
LL8-6	58.09	0.75	13.16	3.91	0.08		1.99	3.10	0.01	173.16	188.40		341.62	15.89		20.57		52.26	10.07	17.12	239.95		8.05	10.03		Pumic.
LL8-10	64.94	0.74	13.48	3.70	0.08		1.99	3.41	0.09	198.12	196.97		352.80	17.80	17.77	18.88		54.93	11.88	14.67	0.00		6.15	10.23		Pumic.
LL8-11	52.16	0.91	15.21	4.46	0.09		1.97	2.60	0.11	155.77	243.07		380.86	18.07	27.95	19.03		63.47	14.16	16.54	167.86			14.00	6.64	Pumic.
LL8-12	59.75	0.81	15.58	4.15	0.08		2.19	3.24	0.11	177.03	189.23		328.21	16.43	17.63	21.07		53.16	10.69	15.05	245.38	5.06	3.23	9.12	7.88	Pumic.
LL8-13	45.37	1.04	13.93	5.19	0.09	0.63	1.94	2.09	0.06	122.17	200.18		369.82	17.80	36.42	38.70		72.22	13.79	14.13	227.51		3.87	13.32	5.26	Pumic.
LL8-14	61.63	0.73	13.21	3.79	0.08		1.91	3.47	0.07	191.59	186.57		370.27	17.47	10.70	18.23		56.87	12.69	14.49	314.47		2.80	11.78	10.42	Pumic.
Willx-01	65.01	0.67	15.47	3.89	0.08	0.76	2.23	3.15	0.17	91.00	225.00	758.00	406.00	18.00	25.00		0.00	56.00	11.50	15.00	0.00	2.60	4.50	0.00	3.50	Pumic.
LL8-20	50.45	1.22	14.83	5.44	0.10		2.58	2.07	0.19	115.53	226.66		310.09	15.44	50.16	39.51		76.86	8.28	11.51			4.69	7.03		Pumic.
LL9-4	59.77	0.75	12.49	3.73	0.08		1.96	3.20	0.05	188.67	195.41		348.35	16.83	4.89			56.46	11.65	14.89			3.51	11.75	6.73	Pumic.
LL9-6	56.68	0.69	11.91	3.70	0.08		1.93	3.14	0.07	187.70	206.80		355.55	17.83	12.46			60.05	11.75	14.30	183.57	6.30	3.15	10.69	6.62	Pumic.
LL9-8	62.17	0.80	13.22	4.24	0.09		2.27	3.10	0.10	188.76	229.02		342.79	15.47	22.02	12.22		59.36	12.80	15.55	186.79	3.35	8.23	12.49	5.55	Pumic.
LL9-10	63.28	0.48	12.21	2.44	0.07		1.10	4.41	0.08	129.83	72.24		366.09	17.91				31.36	19.45	18.19	162.71	3.93	6.19	18.52	15.83	Pumic.
LL9-13	56.79	0.69	11.32	3.45	0.07		1.85	3.91	0.04	191.8 5	146.76		319.63	15.50	20.91	13.14		40.94	12.41	13.56			5.72	11.18	6.93	Pumic.
LL9-14	59.06	0.69	12.84	3.43	0.07		1.77	4.43	0.07	217.70	153.89		376.15	18.62	4.97	2.80		43.59	15.31	16.13		3.10	6.82	14.44	7.22	Pumic.
LL9-16	57.65	0.74	12.32	3.40	0.07		2.05	3.92	0.12	208.01	186.79		353.95	17.53	7.78	1.60		38.89	13.48	13.35		3.51	4.80	11.78	7.84	Pumic.

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Muestra	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	$\mathbf{K}_2\mathbf{O}$	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Roca
Mucotia		%			%												μg.g ⁻¹									Roca
LL9-21	50.39	1.52	13.63	6.25	0.10	0.77	3.37	1.85	0.24	123.87	328.51		327.06	20. <mark>9</mark> 7	102.02	63.13	24.09	82.01	9.36	11.03				8.06		Pumic.
LL17-6	52.23	1.08	15.46	5.59	0.10	0.76	3.27	2.19	0.16	125.73	288.22		320.85	12.51	50.81	34.55		56.13	8.49	13.11	227.58	3.71	2.64	7.06		Pumic.
LL17-7	55.48	0.95	16.42	4.70	0.10		2.21	2.31	0.18	147.64	230. <mark>8</mark> 2		376.26	18.19	36.44	26.77		60.80	12.12	14.40	72.99		4.94	11.79		Pumic.
LL17-9	53.53	1.38	14.57	б.12	0.10	0.72	3.25	2.19	0.18	125.75	309.83		312.44	15.58	68.54	39.52		76.72	8.73	11.70	88.04			7.24	4.31	Pumic.
LL17-10	61.34	0.78	11.91	3.58	0.08		1.82	3.43	0.10	203.35	173.54		338.36	15.82	19.64	11.34		45.87	11.52	17.19	2516.66		5.23	10.73	10.34	Pumic.
LL17-13	91.41	1.38	2.73	0.87	0.05		0.59	0.33	0.24	18.97	24.87		442.37	22.07	18.05				2.00	0.64	1528.83		3.77			Pumic.
LL17-14	77.10	1.40	5.89	2.08	0.05		1.09	1.22	0.14	58.20	91.91		281.96	13.44	19.63			<u>14.41</u>	2.73	4.25	842.11		6.22			Pumic.
LL17-20	71.30	2.13	8.36	3.02	0.06		1.18	1.49	0.24	97.17	229.91		355.35	16.76	94.63	13.86		23.47	4.64	12.39	9541.00		4.66			Pumic.
LL17-34	56.53	0.70	11.80	2.19	0.06	0.91	1.13	2.93	0.14	132.14	312.09		319.36	13.78	13.55	12.19		15.75	12.58	53.45	42152.88	5.69	5.37	11.24		Pumic.
LL17-35	75.15	0.85	8.37	2.48	0.05		0.98	1.80	0.06	119.56	130.72		334.16	15.92	10.31	4.58		16.82	7.35	11.03	12810.09	11.64	7.44	6.57	3.57	Pumic.
LL18-1	56.11	1.18	13.55	5.50	0.10		3.06	2.67	0.15	155.16	285.52		327.07	15.53	64.40	35.92		69.15	9.35	13.32	1025.35		4.93	7_86	5.81	Pumic.
LL18-4	46.22	0.91	20.43	5.01	0.09		1.78	1.76	0.20	113.60	182.27		413.10	19.75	44.42	18.27		38.71	12.50	14.21	287.15	4.90	3.95	11.94	4.21	Pumic.
LL18-6	46.51	0.84	13.93	4.48	0.11		1.90	2.26	0.19	148.82	214.60		375.19	16.99	24.99	24.11		60.93	9.77	18.12	301.68	4.97	5.93	9.75		Pumic.
LL18-7	48.36	1.36	14.81	6.38	0.10		3.19	2.02	0.06	124.77	315.00		311.88	14.67	71.81	32.62	20.66	70.35	8.08	13.54	218.17		6.70	7_79		Pumic.
LL18-8	56.83	0.91	13.66	4.45	0.09		2.24	2.90	0.12	168.97	203.76		331.39	15.25	22.46	20.07		58.49	8.20	15.49	191.24		4.63	7.29	4.08	Pumic.
LL18-10	53.24	1.06	13.13	2.41	0.05		0.77	2.97	0.07	59.64	382.41		269.28	12.37	34.59			8.38	9.96	12.88	59417.48		5.97	8.91		Pumic.
LL18-11	59.74	0.83	12.83	3.76	0.08		1.85	3.36	0.26	177.50	167.70		328.16	15.68	26.15	8.13		47.84	12.35	10.99	3803.76	4.15	3.46	10.35	6.25	Pumic.
LL18-12	40.19	0.75	9.11	3.86	0.08		1.83	2.19	0.07	143.14	183.02		312.12	12.67	27.03			47.02	10.97	13.32	943.27		4.59	9.56	5.61	Pumic.
LL18-14	58.27	0.93	12.90	4.34	0.09		2.29	3.23	0.14	182.80	202.76		338.27	16.43	31.67	11.86		54.87	13.08	15.52	1035.64		5.27	12.39	5.31	Pumic.
LL18-15	66.48	1.41	9.14	3.19	0.06		1.36	1.76	0.22	89.26	218.47		299.45	14. 0 5	44.42	1.85		25.27	7.25	9.57	13587.25	6.81	7.56	6.39		Pumic.
LL18-18	47.16	1.37	16.23	6.20	0.10		2.21	1.42	0.13	105.28	267.46		330.45	17.48	63.31	52.60		68.75	8.43	15.22				7.05		Pumic.
LL18-19	52.00	1.21	14.77	5.04	0.09		2.03	2.49	0.06	148.89	220.69		333.30	17.24	39.88	34.26		56.91	9.52	12.56	2812.89	4.89	5.61	8.54		Pumic.
LL18-21	70.99	0.89	8.96	2.98	0.06		1.29	1.88	0.04	131.32	109.87		356.84	17.40	4.94			31.15	7.67	11.92	1174.80		7.29	5.91		Pumic.
LL19-1	52.27	0.97	17.51	4.77	0.09		2.03	2.10	0.20	130.77	229.79		363.57	17.37	27.27	27.16		52.62	12.17	15.33	322.19	4.38	2.72	11.42	6.69	Pumic.
LL19-2	53.31	0.88	17.74	4.55	0.09		2.05	2.34	0.18	149.29	209.20		388.79	16.97	35.94	18.37		55.25	11.48	14.97		4.04		9.70	7.65	Pumic.
LL19-3	50.25	0.99	16.77	4.79	0.08		2.30	1.86	0.18	115.10	241.52		330.18	16.44	45.08	38.54		51.14	9.75	13.83	333.03	3.25		8.86		Pumic.
LL19-4	49.47	0.87	18.05	4.73	0.11		2.02	2.08	0.24	124.06	184.51		342.94	14.53	47.04	19.10		41.57	9.53	13.00			4.66	7_88	4.39	Pumic.
LL19-5	50.56	1.02	14.89	5.09	0.09		2.26	2.26	0.15	140.83	237.07		344.90	15.85	50.53	23.07		49.29	10.15	13.30	219.68			8.20	6.98	Pumic.
LL19-6	53.34	1.16	16.53	5.58	0.10		2.89	2.19	0.23	135.20	255.12		341.94	15.57	50.56	37.30		59.86	8.02	11.99		4.08		6.31	4.84	Pumic.
LL19-9	55.33	0.86	12.22	4.26	0.09		2.19	2.98	0.07	177.33	209.88		352.78	17.26	26.77	20.64		53.34	12.14	15.41			4.40	11.08		Pumic.
LL19-10	60.76	0.76	12.55	3.64	0.08		1.88	3.51	0.17	216.28	153.46		371.56	18.46	15.78	19.27		47.75	12.88	18.08	92.69	3.96	4.73	11.48	9.88	Pumic.
LL19-13	58.79	0.93	13.67	4.37	0.09	0.66	2.30	3.05	0.09	186.17	239.27		385.45	20.25	18.92	17.19		64.48	12.00	11.88		3.95	10.49	12.42		Pumic.
LL19-35	46.60	1.39	5.11	3.80	0.05		0.57	1.53	0.14	17.63	376.13		250.11	8.82	61.89				8.06	26.26	32394.48		2.44	6.86		Pumic.
LL20-1	50.80	0.85	15.04	4.29	0.10		2.09	2.43	0.28	147.43	210.00		356.62	16.19	42.92	27.63		57.33	10.37	14.21		4.41	3.32	9.96	4.19	Pumic.
LL20-5	44.34	0.92	13.74	4.83	0.09		1.99	2.03	0.19	144.42	225.53		387.17	18.83	28.90	7.63		54.04	12.29	15.51	307.52	4.13	6.08	12.79	4.61	Pumic.
LL20-11	55.51	0.67	12.01	3.55	0.09		1.88	3.32	0.11	99.48	200.98	658.47	391.48	19.62	0.54			45.71	16.68	12.99		4.99	6.43	16.64	7.98	Pumic.
LL20-15	58.24	0.72	11.18	3.45	0.08		1.75	3.48	0.14	217.39	156.55		351.46	16.64	18.51	12.37		52.23	13.84	17.21	452.31	4.28	6.68	12.27	7.25	Pumic.
LL20-17	58.62	1.01	12.27	4.34	0.08		2.30	2.61	0.21	160.32	204.51		316.49	14.38	44.29	23.28		59.82	11.90	14.41	2413.31	3.74	4.13	9_40	7.88	Pumic.
LL1-19	59.56	0.78	11.97	3.37	0.08		1.39	3.33	0.11	217.46	137.41		380.42	18.76	13.55	6.61		38.12	16.04	15.38	492.87	5.44	6.13	16.15	7.17	Pumic.
LL3-26	55.79	1.24	14.58	6.07	0.11		3.79	2.45	0.24	147.81	327.94	675.65	316.04	16.28	74.51	30.11	29.86	69.11	9.92	11.21	365.44		4.42	8.20	5.15	Pumic.

Muestra	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	$\mathbf{K}_2\mathbf{O}$	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Poss
					%												µg.g	1								Rota
LL3-31	66.74	0.57	13.12	2.73	0.07		1.87	3.69	0.14	103.94	167.95		356.41	16.01				28.61	13.64	13.69		4.35	5.15	12.14	9.83	Pumic.
LL3-33	66.27	0.54	12.48	2.65	0.06		1.78	3.79	0.11	107.02	151.25		356.82	15.36	3.38	3.33		28.50	14.73	14.02		3.21	3.79	13.58	13.71	Pumic.
LL5-2	63.44	0.62	13.42	3.82	0.08		1.65	3.66	0.12	106.46	142.31	1102.64	387.46	20.31	7. <mark>9</mark> 3	24.95		40.59	16.43	21.67	264.41	3.85	10.64	15.53	9.25	Pumic.
LL5-19	52.47	1.15	16.83	5.38	0.10		2.52	1.29	0.20	109.85	308.13		298.93	14.51	70.50	62.14		71.53	8.69	15.11	496.88		2.86	6.94		Pumic.
LL7-4	59.49	0.77	12.84	3.92	0.08		1.90	3.22	0.13	166.42	194.83		339.38	14. 9 4	10.52	17.96		53.29	10.64	14.28			5.08	8.29	5.83	Pumic.
LL7-8	68.38	0.44	12.19	2.32	0.07		1.12	4.39	0.12	130.16	86.92	617.94	394.88	18.95		4.95		27.42	19.14	14.11	335.08		6.74	19.16	14.21	Pumic.
LL7-9	64.29	0.46	11.52	2.36	0.07		1.00	4.29		139.04	68.08	744.51	369.80	19.58				26.55	22.08	19.83	169.37	5.44	10.90	21.39	10.58	Pumic.
LL7-14	70.50	0.46	13.21	2.45	0.06		1.13	4.31	0.06	126.98	94.15	595.40	365.92	17.79		13.96		24.16	16.84	15.28	364.12	3.23	6.96	15.64	12.46	Pumic.
LL8-8	71.73	0.47	12.71	2.52	0.07		1.06	4.38	0.02	147.27	78.47		373.87	18.87		7.31		22.31	17.87	18.03	84.78	4.64	7.33	16.78	13.18	Pumic.
LL10-34	53.96	1.15	15.12	3.48	0.07		1.23	1.62	0.08	130.33	191.76		305.25	14.69	63.48	15.61		35.23	8.52	8.82	14991.92	4.89	5.34	7.90	5.01	Pumic.
LL13-32	40.34	0.64	9.90	3.36	0.08		14.49	1.64		127.45	262.51		263.81	11.23	8.47	8.93		49.77	7.76	9.02	2595.97	6.47		6.19	6.51	Pumic.
LL15-33	71.26	1.12	7.14	2.30	0.05		0.94	1.54	0.13	74.34	172.76		293.43	10.88	48.59			7.45	8.06	9.35	21736.83		5.39	6.71	3.56	Pumic.
LL17-11	68.73	0.76	9.89	2.69	0.06	0.73	1.21	2.03	0.07	182.05	128.01		353.08	16.64	11.31			30.24	12.02	13.11	6454.38	3.98	7.26	10.63	5.56	Pumic.
LL20-14	57.19	1.00	15.87	4.97	0.10		3.50	2.51	0.28	145.45	321.26	782.06	321.89	15.15	50.36	26.28		67.69	10.89	11.85	291.48		5.77	9.95		Pumic.
Willx-01	65.01	0.67	15.47	3,89	0.08	0.76	2.23	3.15	0.17	91.00	225.00	758.00	406.00	18.00	25.00		0.00	56.00	11.50	15.00	0.00	2.60	4.50	0.00	3.50	Pumic.

ANEXOS IV

a)

Tres son las herramientas que facilitan la hoja de cálculo EASYGRESGRANT para determinar los elementos inmóviles para el cálculo de balance de masas, los cuales son utilizados como marco de referencia para el modelado del balance de masas: I) el cálculo de pendiente de cada uno de los elementos analizados (Figura 47-a), con el cierre de datos cercano al valor de 1 es considerado elemento inmóvil (Grant, 2005; Mukherjee y Gupta, 2008), II) el diagrama de isocona (Figura 47-b) donde los elementos con composición-volumen similar pueden ser usados para la selección de elementos inmóviles, cuya comprobacion se lleva a cabo por un método de regresión de mínimos cuadrados, III) el diagrama de relación de componentes (Figura 47-c), donde se grafican las relaciones de elementos de las rocas alterados e inalterados, los elementos inmóviles aparecerán encima de la línea de proporción 1:1, mientras que los elementos móviles estarán alejados de la línea 1:1 (Lopez-Moro., 2012), lo anteriormente mencionado se ejemplifica con la muestra regional L8-10 (Figura 47).

Easygresgrant_Basalt_Olivino_L8-10 - Microsoft Excel Cluster of Slopes × In this userform you select elements with similar slope to calculate the average of slopes and to have a reference frame Slope Slope Slope Slope 121890(1,04383 Bi C Sc 14740 U 1.04077 Sn K20 1063 0.98952 Th Sr 4.34042 0.96057 Rb РЬ s 4,19887 SiO2 0.94716 1,74078 0,90910 Cr CaO 1,43337 0.89044 MnC AI203 1,34346 0.86464 Zr Мо 0.73052 1,33014 Nb MgO 1,16631 0 54946 Cu Ba 1,08145 0.52289 Fe203 P2O5 1,06401 Zn Cd 1,05861 Cs TiO2 1,04439 На Mass balance results Isocon diagram Copy slope values Cancel

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Figura 47. Diagramas para determinar elementos inmóviles durante el balance de masas con la hoja de cálculo EASYGRESGRANT (López-Moro, 2012). El hierro total viene expresado como Fe₂O₃.
ANEXOS V

Tabla 24. Resultados del Balance de Masas de las muestras regionales del CGH.

And_Ba_Aglu: andesita – basaltos y aglutinantes; An_Rio: Andesitas – Riolitas; Dep_Piro: depósitos piroclásticos. El hierro total viene expresado como Fe₂O₃.

Musster	Coorde	enadas	SiO ₂	TiO ₂	Al ₂ O ₃	Fe_2O_3	MnO	MgO	CaO	K ₂ O	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	s	As	Мо	Bi	U	Page
Muestra	Norte	Este					%												μg.g ⁻¹									Koca
L5-2	2171025	663090	-13.49	0.45	0.07	1.83	0.11	-0.96	0.56	-1.04	0.27	-6.92	93.58	1096.42	-0.01	-2.01	13.87	27.48	20.79	42.51	-3.32	6.96	710.72					And_Ba_Aglu.
L5-3	2172078	66 3035	-12.31	0.58	-0.41	1.84	0.08	-0.87	0.27	-1.17	0.10	32.50	82.81	831.64	0.02	-1.22	5.43	15.78	11.31	27.08	-2.18	3.69	1353.16		-2.70	-4.82		And_Ba_Aglu.
L4-2	2171088	66 4055	-8.04	0.52	-0.91	2.03	0.09	-0.77	1.45	-0.63	-0.05	58.11	126.08	987.19	0.06	-2.02	24.66	18.74	28.06	21.90	-2.05	-2.94	440.11	4.74	-0.72			And_Ba_Aglu.
L4-4	2173015	664003	-16.18	0.47	-2.65	1.72	0.09	-0.92	0.59	-0.98	-0.14	45.53	81.08	1004.80	0.17	-0.93	-10.38	23.30	12.86	25.68	-1.17	-0.28	309.03		-1.39	-4.29		And_Ba_Aglu.
L4-5	2174052	664030	-16.16	0.51	-2.46	2.25	0.08	-1.11	0.82	-0.96	-0.12	42.10	96.44	812.19	0.15	-1.66	19.98	13.36	26.73	26.35	-1.44	1.69	410.35		-1.36	-4.70		And_Ba_Aglu.
L3-2	2171061	665016	-10.79	0.53	-0.73	1.86	0.09	-1.08	0.76	-1.01	-0.09	27.98	100.15	996 .54	0.05	-1.27	12.18	14.84	5.88	19.85	0.96	24.25	507.57			-2.81		And_Ba_Aglu.
L3-4	2173082	665010	-12.40	0.54	-2.56	2.47	0.09	-0.72	0.84	-0.79	0.00	47.80	101.72	636.99	0.16	-3.33	30.01	30.39	13.59	29.76	-1.32	2.87	653.60					And_Ba_Aglu.
L2-4	2173086	666038	-13.19	0.59	-2.04	2.09	0.09	-0.19	0.72	-0.91	-0.08	47.06	109.46	992.07	0.13	-3.25	35.35	14.29	12.98	18.50	-1.54	1.67	465.79		-0.88			And_Ba_Aglu.
L1-3	2172008	667046	-13.57	0.58	-1.47	2.25	0.09		0.39	-1.10	0.08	33.26	52.71	784.34	0.09	-0.92	25. 9 5	19.61	18.87	25. 99	-2.38	1.46	634.17		-0.47	-4.73		And_Ba_Aglu.
L1-8	2177034	667028	-5.42	0.14	-1.54	0.62	0.05	-0.94	1.65	-0.52	-0.17	48.75	111.54		-0.02	-5.52	-33.64	40.22	-35.93	11.44	-3.27	-5.81	57 9.6 2		-1.34			And_ Rio.
L1-11	2180038	667024	-16.59	0.00	-5.53	-0.52	0.05	-1.42	-1.46	-0.97	-0.02	47.77	-63.56	-218.90	0.02	-1.90	-40.02	18.78	-4.68	9.87	1.45	-0.79	539.07		-0.22			And_ Rio.
L2-10	2179072	666004	-10.14	-0.17	-3.46	-1.65	0.02	-1.63	-1.41	-0.33	-0.14	59 .15	-106.10	-336.10	0.05	-1.91	-60.14	28.69	-12.70	-13.31	1.28	-0.39	296.07		-2.25			And_ Rio.
L2-11	2180018	666066	-12.75	0.08	-5.17	-0.01	0.05		-0.88	-0.49	-0.21	65.18	-14.43	-112.76	28.64	-0.80	-54.24	14.03	11.12	5.89	2.13	-0.83	803.49	0.23	1.57	4.16		And_ Rio.
L3-11	2180070	665041	-22.78	-0.11	-6.6 5	-1.18	0.04	-1.46	-1.29	-0.77	0.21	49.13	-105.27	66.09	0.04	-0.61	-34.17	20.25	-12.02	-1.49	2.12	-0.52	914.32	-0.92	-1.67	4.40		And_ Rio.
L3-10	2179031	665031	-19.67	0.05	-6.00	-1.35	0.03	-0.74	-1.30	-0.69	-0.20	49.15	-100.25	44.46	0.04	-1.28	-56.77	21.75	-9 .57	-3.01	1.48	-1.85	721.65		0.12	4.20		And_ Rio.
L1-10	2179017	667056	-12.26	-0.06	-4.22	-1.21	0.03		-1.13	-0.47	-0.16	49.9 5	-68.03	47.93	0.04	-1.28	-41.98	30.33	-5.43	-3.02	1.70	-1.23	694.33		-1.93			And_ Rio.
L5-11	2180092	663003	-19.17	-0.12	-6.29	-1.39	0.03	-0.87	-1.26	-0.62	-0.16	50.12	-101.66	48.40	0.04	-1.96	-47.10	13.68	-6.19	-4.11	2.31	-3.27	654.32	0.04	-0.27	4.58		And_ Rio.
L1-6	2175069	66 7055	8.43	0.04	-2.25	-0.20	0.00		-0.14	2.00	-0.09	37.12	-15.85		-0.04	0.83	-13.39	3.40	3.09	-2.53	3.66	8.60	1197.13		1.88	14.67	5. 9 5	Dep_Piro.
L2-7	2176069	666013	1.53	0.23	-1.70	0.76	0.02		0.22	0.60	-0.05	126.11	23.58		-0.02	0.53	-12.76	0.48	3.17	19.94	0.61	-0.44	454. 9 4	2.10	-1.44	9.21	6.79	Dep_Piro.
L4-6	2175074	664053	-10.87	0.22	-0.82	0.54	0.02		-0.05	-0.58	-0.01	93.02	59.22	463.58	-0.10	2.34	2.08	12.52	2.70	15. 9 2	1.89	3.34	943.68		-0.45	11.19	3.74	Dep_Piro.
L4-8	2177056	664040	-2.19	0.17	-2.73	0.42	0.02		0.02	0.38	-0.09	125.24	2.62		-0.14	3.12	-13.44	-3.42	3.04	14.73	0.42	0.81	1135.21	1.88	-0.01	9.49	5.18	Dep_Piro.
L4-10	2179066	664044	-4.02	1.40	0.53	6.48	0.09		3.47	-0.52	0.04	80.06	374.84	324.84	-0.23	5.21	123.46		40.72	58.12	-2.98	0.17	1138.23		2.94	5.10		Dep_Piro.
L5-5	2174054	663071	-4.91	0.19	-1.78	0.52	0.02		0.16	0.00	-0.04	101.26	58.83	55.08	-0.17	3.97	-11.13	10.90	2.84	18.35	1.91	2.77	956.8 5		1.33	11.21	7.78	Dep_Piro.
L5-6	2175023	663034	-12.42	0.24	-0.29	0.92	0.01		-0.27	-0.33	-0.03	74.04	8.28		-0.08	1.85	9 .75	2.61	2.70	21.53	3.51	4.04	1567.48	1.67	-1.94	14.13	3.17	Dep_Piro.
L5-9	2178017	663051	-1.11	0.22	-2.32	0.69	0.02		0.21	0.65	-0.03	149.89	33.28		-0.08	1.92	-2.55		3.28	7.83	4.76	3.9 5	2343.60	1.66	-1.13	14.09	11.26	Dep_Piro.
L5-10	2179044	663039	12.52	1.00	3.56	4.09	0.06		2.37	0.29	0.08	103.26	230.91		-0.11	2.45	61.58	36.77	3.58	47.44	-1.20	-2.41	3199.74	1.75		6.61	4.69	Dep_Piro.
L6-5	2174095	662003	-8.80	0.25	-5.50	0.87	0.03		0.17	0.41	-0.09	119.18	16.89		0.03	-0.70	-13.75		3.63	17.50	-1.73	2.25	392.79		0.85	6.97	3.59	Dep_Piro.
L6-9	2178042	662089	-18.73	1.00	-5.52	4.94	0.08		2.40	-0.59	-0.09	84.76	242.49	31.51	0.07	-1.71	73.47		4.12	3 9 .77	-6.16	-0.68	354.55					Dep_Piro.
L7-4	2173060	661073	-8.77	0.21	-0.63	1.10	0.02		0.09	-0.11	0.02	100.96	31.50		-0.09	2.12	-4.51	14.00	2.90	10.50	1.46	3.21	1340.75	0.70	2.13	10.17	4.45	Dep_Piro.
L7-6	2175010	661053	-11.28	0.53	-3.58	2.28	0.03	1.02	0.61	-0.23	-0.08	98.51	67.95		-0.05	1.23	25.36		3.43	7.46	-1.31	-2.23	1426.15	1.48	-0.06	7.36	2.56	Dep_Piro.
L7-11	2180043	661096	-18.80	0.44	1.19	1.70	0.01		-0.02	-0.99	0.03	49.99	12.44		-0.10	2.30	17.66	26.74	2.56	4.45	1.45	-1.89	1165.25	1.52	-1.51	12.02	2.42	Dep_Piro.
L9-10	2179061	659062	-20.33	0.55	0.93	2.20	0.01		0.03	-1.05	-0.02	38.92	22.67		-0.02	0.57	43.48	35. 69	2.65	1.86	-0.19	1.41	688.79	2.15	0.92	10.04		Dep_Piro.
L2-8	2177039	666056	12.98	0.30	1.81	1.14	0.03		0.54	1.05	-0.04	134.33	42.39		-0.06	1.30	-11.86	10.28	3.33	18.25	1.18	2.90	1312.87		0.52	9.60	4.83	Dep_Piro.
L6-8	2177093	662059	4.34	0.18	-7.27	-1.12	-0.01		-0.89	-1.16	-0.05	110.72	-131.89		0.00	-0.07	-24.58		2.98	-28.54	3.31	-1.77	705.02	0.51	2.08	13.35	4.98	Dep_Piro.
L6-10	2179060	662072	-14.48	0.60	-1.41	-0.84	-0.01		-1.27	0.59	-0.03	8.34	296.70		-0.01	0.17	-6.78		3.53	-55.83	5.76	2.75	83772.76			16.58		Dep_Piro.
L7-10	2179009	661074	-19.13	1.40	0.52	-0.48	-0.02	0.10	-1.33	-1.30	-0.06	-38.62	76.38		0.03	-0.79	64.57		3.14	-44.13	0.44	-6.63	37399.08	1.18		10.25	2.25	Dep_Piro.

Tabla 25. Resultados del Balance de Masas de las muestras locales del CGH. And_Ba_Aglu: andesita – basaltos y aglutinantes; An_Rio: Andesitas – Riolitas; Dep_Piro: depósitos piroclásticos. El hierro total viene expresado como Fe₂O₃.

Musstan	Coorde	enadas	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	$\mathbf{K}_2\mathbf{O}$	P_2O_5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Been
Muestra	Norte	Este					%												μg.g ⁻¹									Koca
LL17-25	2177209	661502	-14.50	-0.31	- 9 .37	-3.12	0.00	-3.79	-3.82	-0.09	-0.07	18.56	-110.29	-228.95	-2.29	0.49	-60.56	44.38	-12.40	0.01	0.08	-1.56	225.86		-1.23			Ba_Olv.
LL17-27	2177006	661404	16.65	1.02	-4.87	2.31	0.05		-1.39	0.17	-0.03	22.09	45.25		121.24	1.18	37.26	182.55	1.00	-0.02	0.14	-2.83	3464.74	0.40				Ba_Olv.
LL17-29	2177202	661403	-3.94	0.11	-3.66	-0.16	0.03	-4.03	-1.61	-0.06	0.09	14.12	-31.83		35.21	-1.67	-29.46	64.87	-11.61	0.00	0.10		324.72	0.25	-0.99			Ba_Olv.
LL17-30	2177402	661401	- 9 .57	-0.11	-7.32	-1.80	0.02	-3.92	-3.39	-0.04	0.16	18.85	-99.06		15.59	-0.88	-40.57	51.45	-29.34	0.00	0.09	-1.82	277.21	0.00				Ba_Olv.
LL17-31	2177507	661403	-8.20	-0.11	-5.77	-1.48	0.02	-4.66	-2.22	-0.11	-0.16	14.58	-55.19	-226.08	18.22	-1.83	-33.66	81.09	-18.46	0.00	0.09	-0.12	224.32		-1.36			Ba_Olv.
LL17-32	2177603	661409	13.08	0.72	-5.06	-0.45	0.05	-5.01	-3.38	0.46	0.15	48.14	-18.18		84.08	-0.61	-16.75	126.36	-38.35	-0.01	0.12	-0.98	3796.71	0.47				Ba_Olv.
LL18-24	2177706	661410	-0.02	0.27	- 6 .55	0.00	0.02	-5.74	-3.88	0.35	0.06	31.38	-43.55		47.57	-0.98	-33.86	60.26	-28.84	0.00	0.10	-3.88	6208.87	0.75				Ba_Olv.
LL18-25	2176910	661306	-2.54	0.12	-5.38	-0.85	0.03	-4.07	-1.92	-0.02	-0.04	18.23	-28.93	-155.95	39.59	-0.43	-18.59	126.06	-17.54	0.00	0.10	-2.18	754.81					Ba_Olv.
LL18-26	2177002	661304	-2.01	0.38	-6.66	1.53	0.02	-4.18	-2.81	0.19	0.05	26.56	9.33		55.54	-1.32	-2.44	140.17	-19.03	-0.01	0.11	-1.94	8206.31	1.73				Ba_Olv.
LL18-27	2177208	661306	-1.91	0.22	-5.78	1.22	0.02	-5.81	-2.20	-0.14	-0.16	8.90	-40.97	-140.49	50.46	-2.38	-22.75	124.04	-9.96	0.00	0.11	-3.72	440.05					Ba_Olv.
LL18-28	2177305	661302	-1.76	-0.19	-8.13	-2.39	0.02	-4.60	-3.70	0.23	-0.06	46.39	-74.65		27.88	-1.98	-63.21	32.35	-23.50	0.00	0.10	-2.10	632.49	-1.08				Ba_Olv.
LL18-30	2177503	661308	-5.09	0.08	-2.77	-0.01	0.05	-2.44	-0.82	-0.13	-0.19	10.42	-3.45	-202.26	35.07	-0.69	-25.83	141.08	-28.80	0.00	0.10	-1.03	52.17		-0.47			Ba_Olv.
LL18-31	2177607	661302	-13.97	-0.16	-9.8 2	-2.49	0.00	-5.66	-3.60	0.10	-0.09	22.71	-82.86		8.83	-1.19	-65.49	88.48	-20.35	0.00	0.09	-1.45	571.25	-0.11				Ba_Olv.
LL18-32	2177709	661306	-11.75	-0.13	-6.19	-1.61	0.02	-3.16	-2.88	-0.08	0.04	13.39	-79.46		12.90	-1.20	-49.62	55.27	-14.60	0.00	0.09	-3.62	524.36	-0.04				Ba_Olv.
LL18-33	2177806	661301	-1.68	0.11	-4.93	-0.74	0.03	-2.83	-1.79	-0.07	-0.09	14.66	-37.83		37.93	0.20	-24.09	130.84	-20.72	0.00	0.10	-1.89	557.74		-0.99			Ba_Olv.
LL18-34	2177905	661309	-9 .57	0.09	-5.44	-0.30	0.03	-3.81	-2.72	-0.12	-0.14	15. 9 7	-66.05		24.57	-1.67	-30.42	96.90	-23.65	0.00	0.10	-3.98	1194.26	0.03				Ba_Olv.
LL19-11	2175603	661205	21.20	-0.24	-4.61	-4.40	0.02		-5. <mark>96</mark>	3.23	-0.04	188.95	-39.41	572. 9 3	321.94	19.02	-145.62	-172.42		0.00	16.01	14.84	-118.22		5.00	16.05		Ba_Olv.
LL19-19	2176404	661203	-10.52	-0.11	-5. 98	-1.14	0.03	-2.42	-2.03	-0.17	-0.18	8.69	-52.61	-175.37	16.81	-0.52	-53.93	86.57	-14.26	0.00	0.09	-4.06	126.36	-0.57				Ba_Olv.
LL19-24	2176907	661204	-3.66	0.28	-1.64	1.82	0.03	-2.72	-1.93	0.09	-0.07	20.45	-3.14	-169.19	53.27	0.12	-4.88	108.00	-6.36	0.00	0.11	-2.60	1084.36		-0.77			Ba_Olv.
LL19-25	2177001	661208	-3.56	0.23	-4.00	0.82	0.05	-5.03	-1.90	-0.08	-0.02	17.41	-15.27		40.77	-0.92	-10.76	161.62	-14.54	0.00	0.11		674.33	0.27				Ba_Olv.
LL19-26	2177104	661202	-13.70	-0.12	-7.47	-1.29	0.04	-4.76	-3.78	-0.09	-0.08	18.56	-114.77	-245.29	4.44	-1.10	-64.67	23.63	9.58	0.00	0.08	-4.70		-0.67	-1.06			Ba_Olv.
LL19-27	2177202	661201	-5.80	0.02	-6.1 5	-0.95	0.04	-5.84	-2.11	-0.02	-0.19	13.37	-31.36	-263.51	34.20	0.78	-56.98	83.42	-8.82	0.00	0.10	-1.55	337.64		-0.48			Ba_Olv.
LL19-28	2177310	661204	15.11	0.56	-6.19	0.27	0.01	-3.86	-2.23	0.14	0.07	16.39	18.52		69.24	-2.19	-37.28	122.03	-21.19	-0.01	0.13	-3.14	4892.74	-0.41				Ba_Olv.
LL19-29	2177402	661210	-4.78	0.08	-3.22	-0.66	0.03	-3.85	-1.47	-0.11	-0.17	5.48	-29.77	-232.48	29.89	1.14	-38.26	109.95	-20.93	0.00	0.10	-4.68		-0.43	-0.57			Ba_Olv.
LL19-30	2177508	661209	-11.37	-0.11	-7.21	-2.26	0.02	-4.10	-3.38	-0.02	-0.01	20.08	-87.67		17.18	-0.78	-71.80	38.43	-26.35	0.00	0.09	-1.10	206.04	-1.07	-0.84			Ba_Olv.
LL19-31	2177610	661203	-9.58	-0.16	-6.98	-1.85	0.02	-5.15	-2.52	-0.06	-0.10	19.26	- 6 5.41		11.78	-2.97	-41.77	68.03	-6.6 5	0.00	0.09	-4.00	29.29	-1.23				Ba_Olv.
LL19-32	2177702	661203	-9.13	-0.14	-6.47	-1.24	0.03	-4.18	-2.01	-0.17		7. 9 4	-44.29	-192.73	16.70	-0.13	-50.61	74.99	-14.28	0.00	0.09	-2.17	7.09		-0.33			Ba_Olv.
LL19-33	2177807	661204	-7.08	-0.03	-5.15	-1.12	0.02	-3.74	-2.14	-0.14	-0.13	7.64	-55. 96	-120.15	32.37	0.66	-42.34	15.79	-27.17	0.00	0.09	-2.82	500.76		-0.84			Ba_Olv.
LL19-34	2177901	661205	4.85	0.42	-3.86	1.92	0.03	-5.33	-2.04	-0.07	-0.09	14.33	-28.25		50.54	-2.30	15.00	152.88	0.74	-0.01	0.11		3107.80	2.63				Ba_Olv.
LL20-9	2175403	661104	27.93	0.02	-0.23	-3.05	0.02	-6.25	-4.22	3.02	-0.03	168.24	90.47		252.24	14.62	-123.44	-170.27		0.00	11.16	7.41	-256.48	0.29	2.81	9.82		Ba_Olv.
LL20-16	2176103	661108	-12.39	-0.18	-7.85	-1.63	0.02	-4.31	-2.47	-0.14	-0.16	11.96	-59.23	-193.35	16.67	-1.79	-50.95	79 .35	-15.48	0.00	0.09	-3.50	191.91	-0.80	-0.36			Ba_Olv.
LL20-18	2176306	661106	-6.49	-0.05	-3.18	-0.57	0.04	-3.27	-1.11	-0.19	-0.20	2.33	-14.69	-258.50	1.30	-1.04	-29.05	106.49	-6.68	0.08	0.10	-4.78	-59.56	0.24	-0.51			Ba_Olv.
LL20-19	2176410	661105	-11.28	-0.11	-8.01	-1.44	0.02	-5. 96	-2.67	-0.02	-0.19	14.93	-62.41	-248.24	20.56	-1.04	-55.84	91.38	-19.62	0.00	0.09	-4.01	347.24	0.43	-0.02			Ba_Olv.
LL20-20	2176509	661108	-9.49	-0.22	-9.13	-2.22	0.01	-5.68	-3.38	0.17	-0.11	34.45	-70.70	-155.06	16.75	-1.68	- 6 5.45	67.09	-26.21	0.00	0.09	-2.06	265.70		-0.96			Ba_Olv.
LL20-21	2176605	661109	-11.41	-0.30	- 6 .58	-2.67	0.01	-2.40	-3.29	-0.05	-0.17	16.55	-9 5.32	-239.98	0.08	-1.51	-69 .25	90.10	-14.35	0.00	0.08	-1.92	76.04	-1.23	-1.60			Ba_Olv.
LL20-22	2176705	661103	-11.34	-0.08	-5. 9 7	-0.99	0.03	-3.46	-2.05	-0.16	-0.18	10.16	-46.81	-109.29	20.51	-0.46	-26.86	110.92	-6.29	0.00	0.09	-3.54	366.34	0.05	-0.86			Ba_Olv.
LL20-23	2176801	661107	-13.38	-0.21	-6.43	-1.68	0.02	-3.80	-2.41	-0.22	-0.11	5.33	-75.85	-210.28	7.16	-0.96	-41.15	86.77	-29.75	0.00	0.09	-4.68	-15.99	-0.62				Ba_Olv.
LL20-24	2176906	661107	-13.43	-0.22	-7.67	-1.91	0.01	-5.78	-3.18	-0.13	-0.23	12.00	-83.50		11.80	-1.53	-65.81	57.16	-17.57	0.00	0.09	-0.97	100.30		0.90			Ba_Olv.

Mussta	Coorde	enadas	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	K20	P_2O_5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Peer
Muestra	Norte	Este					%												μg.g ⁻¹									Koca
LL20-25	2177008	661110	-5.71	0.13	-8.05	-1.49	0.01	-4.38	-3.51	0.10	-0.06	25.11	-87.60		54.21	0.95	-41.86	43.90	-17.26	0.00	0.10	-1.13	870.58					Ba_Olv.
LL20-27	2177203	661109	-10.65	0.26	-4.86	0.84	0.03	-6.13	-2.72	-0.16	-0.04	5.64	-56.40	-212.65	45.12	1.17	17.90	139.52	-6.81	0.00	0.10	-2.07	3388.26	-0.33				Ba_Olv.
LL20-28	2177305	661101	-12.28	-0.12	-6.77	-1.53	0.02	-3.74	-2.10	-0.13	-0.25	5.66	-44.65	-12.56	13.17	0.39	-41.75	54.95	4.33	0.00	0.09	-3.68	5400.24	-1.45	-0.22			Ba_Olv.
LL20-29	2177406	661105	8.80	0.55	-1.71	1.14	0.04	-5.56	-0.15	0.06	-0.11	9.56	112.19	132.56	84.39	-0.42	46.65	192.96	-11.58	-0.01	0.12	-1.13	5578.64					Ba_Olv.
LL20-32	2177703	661108	-7.26	-0.12	-6.50	-1.49	0.02	-2.86	-2.47	-0.08	-0.24	13.98	-52.85	-171.07	23.57	-1.61	-44.43	78.93	3.29	0.00	0.09	0.25	749.61		-0.99			Ba_Olv.
LL20-33	2177804	661101	-7.12	-0.04	-4.22	-0.40	0.03	-3.54	-1.32	-0.22	-0.15	1.96	-32.30	-250.47	21.41	-1.00	-31.27	101.79	-8.32	0.00	0.10	-5.09	-54.91					Ba_Olv.
LL20-34	2177905	661109	-12.50	-0.16	-7.41	-1.62	0.02	-5.26	-2.75	-0.11	-0.11	12.03	-74.89	-241.32	10.43	-1.72	-49.05	78.07	-14.10	0.00	0.09	-2.74	221.20	0.16	-0.55			Ba_Olv.
LL20-35	2178002	661103	-11.97	0.01	-7.08	-0.53	0.04	-5.22	-2.38	-0.12	0.04	10.73	-47.61	207.63	31.12	0.77	-27.94	87.66	-20.79	0.00	0.09	-0.13	54.66	-0.51	-0.14			Ba_Olv.
LL2-22	2176707	662908	1.27	0.00	1.54	1.54	0.03	0.06	3.07	-0.25	-0.10	-20.90	117.74	-65.65	0.00	-2.11	65.06	75.66	1.77	35.00	-7.61	-0.07	5.94	8.24	-1.82			Esc_Volc.
LL3-28	2177309	662804	-11.59	-1.27	-6.04	-5.35	-0.07		-3.48	0.66	-0.22	43.95	-331.00		0.12	-1.97		-19.21		-42.03	5.96	-0.49		-1.70	-1.37	6.86		Esc_Volc.
LL4-23	2176807	662702	8.35	-0.06	1.27	0.33	0.00	1.65	1.34	0.27	-0.06	22.37	104.57	95.65	0.00	-2.42	5.94	-0.51	-11.96	1.02	-2.30	-1.60			-0.56			Esc_Volc.
LL4-28	2177301	662702	4.09	-0.10	3.65	1.07	0.02	-0.78	2.90	-0.35	-0.08	-24.67	106.67	-26.88	0.00	-1.56	66.30	73.68	-14.09	19.39	-4.06	-2.28	124.69	8.49	-2.41			Esc_Volc.
LL5-29	2177404	662609	5.62	-0.07	4.06	1.36	0.02	1.78	2.85	-0.23	-0.06	-22.08	98.62	-157.52	0.00	-2.66	46.96	57.87	-8.26	43.40	-3.88	3.68	946.05	6.40	-0.44			Esc_Volc.
LL6-17	2176207	662501	-7.28	-0.17	0.40	-0.62	0.00	-1.09	-0.91	-0.59	-0.10	-33.06	-90.09		0.00	-1.10	-9.85	17.30	-9.92	3.17	-2.67	-0.70	239.45			-3.92		Esc_Volc.
LL6-33	2177804	662507	10.59	-0.05	2.55	0.46	0.01		1.11	0.32	-0.03	19.56	96.30	-78.18	0.00	-3.34	25.22	12.38	11.88	17.28	-1.86	4.21		1.70	-3.88			Esc_Volc.
LL6-35	2178004	662508	6.52	-0.08	1.06	0.38	0.01		1.20	0.23	-0.07	22.24	98.64	227.08	0.00	-2.48	35.99	8.15	-8.51	13.47	-2.26	0.79	-7.10	3.02	-1.38			Esc_Volc.
LL7-25	2177001	662405	11.64	-0.07	7.90	1.44	0.02	0.77	4.59	-0.13	-0.10	-18.09	219.16		0.00	-3.52	38.86	47.42	13.84	6.50	-7.60	-3.39			-3.73			Esc_Volc.
LL8-19	2176407	662301	3.14	-0.07	2.84	1.37	0.03	-0.51	3.20	-0.21	-0.07	-22.48	121.65	-159.97	0.00	-2.07	58.60	66.34	23.22	26.54	-7.61	-4.12	218.65		-3.52			Esc_Volc.
LL8-26	2177102	662301	13.36	0.03	3.70	0.73	0.01	-0.69	1.33	0.42	-0.05	29.83	118.55	-172.76	0.00	-3.94	12.81	8.05	4.18	15.31	-1.92	1.46			-1.39			Esc Volc.
LL8-27	2177205	662310	12.08	-0.01	3.06	0.68	0.01	-0.47	1.06	0.31	-0.06	22.73	107.78	-190.93	0.00	-2.73	22.29	-14.58	0.02	8.24	-2.44	1.22			-2.67	-2.72		Esc_Volc.
LL8-28	2177302	662302	2.78	-0.05	-0.52	0.83	0.01		0.78	0.31	-0.19	28.23	126.50	-57.99	0.00	-3.40	26.53	10.67	13.92	13.21	-0.91	-2.59	213.80		-0.05	-2.16		Esc_Volc.
LL10-19	2176401	662105	-2.24	-0.23	0.65	1.36	0.03		2.48	-0.38	-0.07	-24.31	96.96	389.90	0.00	-1.38	20.27	45.54	1.07	11.45	-2.01	-2.26	2922.45	-0.52	-3.37	-3.41		Esc_Volc.
LL12-30	2177509	661910	0.23	-0.23	0.08	0.96	0.04	0.75	3.12	-0.35	-0.14	-21.50	296.51	9262.56	0.00	-2.01	34.36	109.99	4.40	72.62	-1.61	44.40	6759.28	7.90	-2.98			Esc_Volc.
LL12-35	2178007	661903	-2.57	-0.17	-1.85	0.85	0.01	0.00	0.73	0.09	-0.24	23.61	122.84	-179.31	0.00	-3.73	-8.29		9.77	-1.24	-1.01	-4.90	244.02	-1.39	-1.00	-2.88		Esc_Volc.
LL14-30	2177504	661708	8.18	-0.22	-0.49	-0.02	0.00	1.01	0.68	0.15	-0.04	11.45	69.41		0.00	-3.48	1.98	-2.50	-10.29	11.03	-3.75	-0.96	519.28		-4.47			Esc_Volc.
LL15-30	2177501	661608	1.77	-0.05	0.88	1.28	0.03	-0.56	3.00	-0.27	-0.06	-26.52	107.17	-85.19	0.00	-1.65	34.25	47.45	6.57	13.55	-7.62	-0.73	24.92		-2.98			Esc_Volc.
LL9-5	2175006	662208	5.12	-0.13	0.58	0.57	0.01		1.25	0.29	-0.06	23.38	115.35	-109.59	0.00	-4.43	26.49		-33.69	12.70	-1.68	1.43	188.04					Esc_Volc.
LL9-19	2176404	662203	1.82	-0.05	1.82	1.51	0.03	-0.67	3.28	-0.36	-0.08	-24.17	118.91	-177.99	0.00	-2.42	52.91	63.57		22.40	-7.61	-4.19			-4.51			Esc_Volc.
LL3-15	2176001	662807	3.61	-0.74	-1.53	-1.46	-0.01		0.47	0.27	0.23	43.31	11.33	117.44	-0.02	-3.28	-46.44	42.72	2.84	-6.95	1.09	4.07	432.52		-2.80	-1.65	5.66	Lapi.
LL4-16	2176103	662705	12.68	-0.39	10.20	-4.37	-0.05		-3.01	0.49	-0.10	39.72	-121.81		0.00	-7.98	-12.17	159.57		-38.49	4.13	-3.50	68457.23	-1.30	-4.16	1.25	6.19	Lapi.
LL4-21	2176607	662707	-0.60	-0.67	0.40	-2.42	-0.03		-0.47	0.39	-0.15	19.91	-53.70		0.00	-4.40	-57.14	36.91	-16.90	-4.00	0.81	0.30	409.15	-2.15	-3.47	-0.08		Lapi.
LL6-14	2175906	662509	-12.38	-0.86	-3.67	-3.32	-0.04		-2.15	-0.15	-0.15	-4.72	-169.51	-315.89	0.00	-2.00	-44.72	-0.14		-18.40	0.69	2.53	132.15		-5.51	-0.82	4.00	Lapi
LL7-22	2176710	662406	7.54	-0.03	0.01	0.71	0.01		1.01	0.51	-0.09	32.97	106.67	-103.21	0.00	-4.11	27.53	36.44	16.32	17.70	-2.00	2.26			-0.97			Lapi.
LL7-27	2177201	662402	1.55	-0.28	3.31	1.33	0.03	0.17	4.14	-0.37		-26.18	267.47	-67.92	0.00	-3.84	26.28	25.81	19.68	23.11	-7.60	-2.24	257.26		-1.17			Lapi.
LL8-3	2174802	662309	2.87	-0.07	3.12	1.19	0.03	0.81	2.35	-0.15	0.06	-23.60	114.50	58.27	0.00	-1.54	26.08	45.25	12.67	14.41	-2.80	4.92	9242.35	3.55	-2.97			Lapi.
LL8-15	2176010	662306	-7.60	0.09	-0.11	0.93	0.00	0.26	0.42	-0.62	-0.17	-33.32	67.84	66.15	0.00	-2.90	5.22	25.35	17.07	9.92	-2.16	0.17						Lapi.
LL8-21	2176603	662302	8.45	-0.06	3.87	1.10	0.02	-0.56	3.27	-0.16	-0.05	-11.27	198.19	-100.92	0.00	-2.60	24.49	13.32	5.87	24.41	-1.42	0.77	384.93		-2.80	-3.02		Lapi.
LL9-12	2175707	662206	-9.67	-0.83	-3.71	-3.04	-0.04		-2.25	0.25	-0.16	19.94	-236.62		0.00	-2.14	-49.00	-1.61		-29.28	1.87	-1.35			-3.79	1.00	5.49	Lapi.
LL9-17	2176208	662207	-12.03	0.05	-0.07	-0.23	-0.01	-1.32	-1.24	-1.24	-0.17	-53.39	-67.08		0.00	-3.09	-43.63	32.41	-11.82	8.80	-4.31	-3.71						Lapi.
LL9-30	2177501	662202	-15.71	-0.57	-2.82	-2.27	-0.03	-1.28	-2.11	-0.64	-0.19	-26.47	-127.08		0.00	-2.66	-50.11	13.46	-18.87	-15.24	-1.87	2.04	-51.65		-4.35	-3.79		Lapi
LL10-11	2175607	662108	-9.66	-1.09	-5.42	-4.28	-0.05		-2.71	0.50	-0.21	27.19	-234.73		0.01	-1.33	-85.10	-9.09		-26.63	1.14	0.06			-0.88	1.29		Lapi.
LL11-32	2177709	662010	-9.69	-0.34	-0.67	-1.43	-0.02		-1.76	-0.58	-0.10	-32.38	-160.68	-242.05	0.00	-2.16	-37.63	27.51		-13.42	-0.43	-0.84	231.51	-0.20		-1.54	4.38	Lapi.

	Coorde	nadas	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	K ₂ O	P_2O_5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	D
Muestra	Norte	Este					%												μg.g ⁻¹	1								Koca
LL12-10	2175501	661901	0.11	-0.40	-0.99	-1.43	-0.02		-0.60	0.23	-0.07	8.79	-50.90	-299.56	0.00	-0.43	-27.77	5.30		-1.20	-2.53	-0.22	308.08			-3.08		Lapi.
LL13-13	2175805	661810	16.12	-0.10	-0.87	-6.18	-0.05		-3.38	0.77	-0.11	-16.60	123.95		0.00	-6.43	-58.33				0.72	-0.11	75536.19		0.04	-0.33		Lapi.
LL13-15	2176001	661810	9.90	-0.85	-3.87	-4.25	-0.05		-3.34	-0.50	-0.22	-37.19	-182.10	566.11	0.00	-1.60	-87.34	2.12		116.14	0.21	-2.16	10752.86	2.15	-2.03	-0.74		Lapi.
LL14-19	2176404	661705	3.92	-0.83	3.51	-2.86	-0.06		-3.45	0.43	-0.19	-24.26	-173.49		0.00	- 4 .35	-71.61			-63.70	0.53	-0.06	63796.43		-2.59	-0.84		Lapi.
LL1-1	2174602	663005	-1.94	0.26	-1.18	0.65	0.01	0.17	0.03	0.26		95.98	-16.31		-0.01	-1.31	-19.35	0.88		6.98	2.93	-0.63	243.85	1.79	3.99	15.64		Pumic.
LL1-6	2175109	663006	1.05	0.31	1.99	1.21	0.02	0.75	0.21	-0.09	-0.06	98.03	32.25		-0.01	1.63	-10.21	32.40		12.16	1.76	1.49		1.56	2.11	12.10		Pumic.
LL1-7	2175207	663007	-3.56	0.20	0.27	0.48	0.01		-0.07	0.28	-0.04	88.86	-15.40		0.00	1.40	-3.92	32.02		6.84	1.99	0.47			-1.56	11.53	4.20	Pumic.
LL1-11	2175610	663002	-9.94	0.14	-2.23	0.19	0.00		-0.27	-0.16	-0.15	83.81	-18.70		0.00	0.33	-21.32	37.80		0.90	1.92	1.07	232.88	1.03	5.72	12.81		Pumic.
LL1-14	2175905	663008	-4.17	0.28	1.64	0.72	0.02		-0.06	-0.27	-0.07	86.12	11.47		-0.01	2.51	-9.27	24.20		12.56	4.33	-0.62		1.05		14.29	4.44	Pumic.
LL1-15	2176001	663009	7.55	0.09	-2.58	-0.24	0.00		-0.54	1.66	-0.12	179.90	-85.31		0.00	0.84	-19.81	18.53		-11.84	3.99	3.40			5.60	14.83	2.05	Pumic.
LL1-16	2176104	663005	-2.81	0.25	-0.45	0.75	0.02		0.03	0.16	-0.03	106.17	72.12		-0.01	3.76	6.48	24.30		19.40	2.05	1.58	448.87	1.15	-0.30	12.74	3.72	Pumic.
LL1-17	2176201	663006	4.52	0.46	2.73	1.99	0.04		0.56	0.31	0.00	103.44	31.73		0.00	-0.27	22.67	45.91		10.19	3.35	0.42	313.42	1.37	2.10	13.68	4.63	Pumic.
LL1-18	2176308	663002	4.68	0.54	4.13	1.99	0.04		0.56	-0.54	0.25	80.49	62.37		-0.02	1.56	26.44	43.98		16.98	1.99	2.25	636.71	1.18	-1.42	11.12	6.34	Pumic.
LL1-21	2176609	663001	1.52	0.14	-2.17	-0.07	0.00		-0.26	0.79	0.00	149.84	-68.25		0.00	1.06	-13.69	29.96		-0.60	5.61	3.47	534.95	0.95	1.53	15.80	4.95	Pumic.
LL1-22	2176706	663005	4.88	0.32	0.28	1.09	0.02		0.32	0.41	0.01	123.01	12.98		-0.01	0.32	0.62	30.42		22.18	0.35	3.40	380.35		-0.48	10.22	4.17	Pumic.
LL2-2	2174709	662907	0.43	0.18	0.16	0.53	0.01		-0.06	0.38	-0.09	113.28	-9.78		0.00	0.16	-4.84	30.82		7.47	2.57	2.13			2.46	13.42	3.98	Pumic.
LL2-7	2175203	662901	-17.71	0.16	-2.23	0.40	0.00		-0.37	-0.70	-0.03	49.81	-48.55		0.00	2.69	5.59	26.59		8.01	1.15	4.00	307.43		-1.34	12.20	3.84	Pumic.
LL2-10	2175503	662906	0.25	0.22	0.27	0.67	0.01	0.14	0.04	0.50	-0.08	108.48	-8.64		-0.01	1.57	-18.16	24.18		18.17	1.32	1.02		1.89	2.79	11.60	1.59	Pumic.
LL2-12	2175702	662902	-5.90	0.16	-0.25	0.40	0.01		-0.08	-0.09	-0.06	93.48	56.90		0.00	2.26	-13.21	22.47		12.95	3.06	2.36		0.51	1.96	14.25	1.53	Pumic.
LL2-13	2175805	662907	-3.78	0.20	0.31	0.53	0.01		-0.13	-0.28	-0.09	85.96	-2.78		0.00	2.59	-11.71	18.50		13.64	3.37	3.09	260.39		-0.68	13.97	3.75	Pumic.
LL2-15	2176002	662904	17.10	0.80	4.00	3.21	0.05	0.92	3.74	1.03	0.02	147.41	311.48		-0.03	-1.31	42.28	64.24		21.73	-0.10	-3.86	160.10	1.76	2.58	10.04		Pumic.
LL2-18	2176309	662902	-1.74	0.38	-1.64	1.70	0.03		0.73	0.36	-0.07	118.39	75.19		0.05	0.83	-3.16	28.92		21.29	-0.21	1.58	226.72	1.20	4.40	9.59		Pumic.
LL2-30	2177509	662906	13.50	0.51	3.21	1.93	0.03		0.86	0.61	0.02	138.21	66.14		-0.02	0.75	10.71	31.31		11.17	2.73	4.51	315.29	4.58	4.41	14.05		Pumic.
LL2-32	2177710	662908	-4.09	0.09	-2.29	0.15	0.00		-0.23	0.33	-0.15	120.60	-22.07		0.00	3.76	-16.01			7.48	3.39	1.20			0.69	14.54	1.80	Pumic.
LL3-1	2174603	662806	-4.37	0.20	-0.47	0.44	0.01	0.31	-0.03	-0.07	-0.02	81.99	-6.78		0.00	1.37	-19.05	22.36		12.05	0.38	3.52			-1.42	9.92	4.24	Pumic.
LL3-3	2174810	662803	1.11	0.27	1.37	0.95	0.01		0.11	0.12	-0.09	103.97	26.41		-0.01	1.24	-17.72	14.80		20.93	1.07	5.61	123.47		4.16	12.52		Pumic.
LL3-8	2175301	662809	-1.03	0.24	-0.99	0.70	0.01		0.09	0.39	-0.09	98.29	-5.67		-0.01	1.34	-2.62	24.65		12.42	2.00	2.57	290.76		1.09	12.32	5.34	Pumic.
LL3-9	2175406	662808	1.67	0.33	1.94	1.24	0.02	0.53	0.16	0.33	-0.13	83.30	-20.56		-0.01	-0.28	-0.49	35.58		16.23	2.03	-0.36	246.99	0.61	3.98	12.26		Pumic.
LL3-12	2175701	662807	-4.03	0.22	-0.34	0.85	0.02		-0.10	0.06	-0.08	92.56	44.18		-0.01	2.49	-0.92	16.39		19.24	1.60	3.50	75.03	1.75	2.95	13.26		Pumic.
LL3-13	2175808	662803	-0.25	0.21	-1.42	0.47	0.01		0.04	0.39	-0.01	113.10	7.70		0.00	2.11	-7.69	27.20		18.29	1.26	2.39	80.44		-1.18	11.24	8.53	Pumic.
LL4-8	2175306	662710	2.42	0.21	-1.04	0.52	0.02		0.07	0.56	-0.09	127.05	-5.05		0.00	1.74	2.15	6.56		13.60	3.00	0.63		0.66	-0.44	13.84	3.62	Pumic.
LL4-12	2175701	662701	-11.57	0.18	0.88	0.65	0.00		-0.20	-0.73	0.02	57.14	0.57		-0.01	-0.30	-1.01	25.77		1.30	0.02	0.43	410.74		-0.60	10.20	3.47	Pumic.
LL4-14	2175906	662706	-1.74	0.19	-1.54	0.53	0.01		-0.03	0.19		-2.19	46.54		0.00	1.49	-13.76	15.76		8.83	2.84	2.14	183.17		7.32	16.40		Pumic.
LL4-17	2176204	662706	7.32	0.28	-0.30	0.46	0.01		0.18	0.97	0.01	162.09	-14.73		0.00	2.13	3.50	21.39		-1.81	5.08	3.22			0.92	15.43	3.74	Pumic.
LL4-27	2177207	662704	-0.58	0.08	-2.94	-0.19	0.00		-0.32	0.77	-0.13	10.52	-51.60		0.00	2.52	-16.20	21.66		4.24	2.28	3.83	100.03	2.27	4.14	13.54	2.34	Pumic
LL4-33	2177801	662704	6.92	0.13	-0.55	0.06	0.01		-0.18	0.79	-0.02	129.04	-41.69		0.00	1.67	-4.85	18.12		11.36	2.36	2.78		3.47	-1.79	12.33	9.48	Pumic.
LL5-3	2174802	662609	-11.85	0.21	-1.82	0.53	0.01		-0.23	0.02	-0.09	104.90	-2.33		0.00	1.69	-17.12	11.01		-5.19	3.60	-0.83	215.15	3.05	0.33	14.05	5.70	Pumic
LL5-6	2175109	662605	-12.50	0.28	2.43	0.93	0.01		-0.33	-0.64	-0.04	58.87	-30.96		-0.01	1.62	-12.83	20.76		10.24	0.26	1.94		1.22	1.77	11.33		Pumic
LL.5-8	2175307	662603	13.55	0.54	5,22	2.36	0.04		0.54	0.53	0.03	119 39	14.73		-0.02	0.76	19.33	29 99		45.99	0.47	12 58	544.35		2.47	9,90	5.11	Pumic
LL.5-9	2175402	662603	7.30	0.36	1.81	1.53	0.04		0.44	0.52	-0.07	128 45	45.01		-0.01	0.17	6.78	30 70		19.75	-0.41	3.12	473 84		5.56	9.78		Pumic
LL5-11	2175606	662603	-19.01	0.18	-3 74	0.35	0.00		-0.79	-0.39	-0.13	-0.10	-77 69	-87.21	0.00	1.89	0.63	26.90		-6.04	4.79	1.92	398.27		2.79	16.57	1.75	Pumic
LL5-12	2175703	662609	-7.89	0.31	-2.68	1.27	0.02		0.44	0.11	-0.07	121.97	67.91		-0.01	2.11	3.20			6.09	5.01	-0.28	322.87	5.20	1.51	16.26	5.76	Pumic

	Coorde	nadas	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	K20	P_2O_5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Property and
Muestra	Norte	Este	C. 1997 24				%												μg.g ⁻¹									Roca
LL5-15	2176010	662606	3.40	0.44	0.15	1.41	0.02		0.69	0.29	0.04	121.46	38.23		-0.01	1.40	28.33	37.41		18.99	0.44	3.82		1.97	0.26	10.17	3.61	Pumic.
LL5-16	2176101	662606	7.89	0.83	3.37	3.12	0.05		1.85	0.36	0.03	109.30	186.51		-0.03	2.89	60.15	42.34		31.14	0.89	0.72	498.56		0.35	9.38	3.35	Pumic.
LL5-17	2176209	662608	-5.99	0.20	-2.06	0.40	0.01		-0.15	0.43	-0.15	107.98	-9.31		0.00	2.95	-9.82	27.15		2.26	1.04	3.24			3.96	12.38		Pumic.
LL5-20	2176510	662607	-4.04	0.41	4.94	1.49	0.04		0.04	-0.89	0.13	51.17	1.42		-0.01	0.07	11.46	28.47		12.95	1.28	6.38	298.30		1.58	12.29		Pumic.
LL5-24	2176906	662606	13.81	0.76	2.67	2.56	0.04	0.87	1.48	0.14	-0.02	80.49	120.95		-0.02	0.90	29.88	61.77		26.32	-0.83	-0.69	254.76		1.63	8.46	1.94	Pumic.
LL5-35	2178004	662609	5.20	0.41	-1.47	1.44	0.03		0.72	0.72	-0.07	138.45	40.84		-0.01	1.73	12.21	25.87		16.47	0.37	<mark>0.94</mark>			3.94	11.88		Pumic.
LL6-1	2174610	662510	-12.96	0.27	-1.08	1.03	0.01		-0.22	-0.50	-0.13	76.72	-5.78		-0.01	3.23	3.62	36.13		8.86	-0.40	6.08	319.68		0.57	9.94	2.55	Pumic.
LL6-3	2174803	662502	-8.86	0.27	0.22	0.91	0.00		-0.22	-0.39	-0.13	73.00	8.62		-0.01	2.06	-3.01	26.71		1.00	1.05	7.79			1.73	12.79		Pumic.
LL6-5	2175001	662506	-1.47	0.25	0.37	0.75	0.00		-0.10	0.04	-0.13	68.23	-26.13		-0.01	0.66	-13.61	27.26		3.37	0.76	3.43			2.63	11.42		Pumic.
LL6-6	2175101	662510	-0.84	0.27	-0.49	0.77	0.01		0.19	-0.05	-0.06	91.14	33.45		-0.01	1.09	-4.83	16.28		4.25	0.53	3.21	312.81		0.44	10.27	3.75	Pumic.
LL6-7	2175203	662504	-4.72	0.26	0.48	1.04	0.01		0.00	-0.38	-0.05	83.36	5.26		-0.01	0.03	0.09	26.96		-2.46	-0.19	3.73	87.15	2.14	1.12	10.75		Pumic.
LL6-9	2175409	662506	-13.70	0.19	0.72	1.01	0.01		-0.38	-0.76	-0.04	60.15	-35.15		-0.01	0.32	4.43	19.59		-8.30	-0.94	-0.76	253.70	0.93	0.95	8.61	2.25	Pumic.
LL6-10	2175505	662501	-4.89	0.18	-0.45	0.86	0.02		-0.13	-0.01	0.05	102.34	-6.32		-0.01	1.21	1.50	41.27		19.08	0.82	2.42	541.88	3.77	1.74	10.74	2.73	Pumic.
LL6-15	2176003	662501	4.62	0.61	1.88	2.05	0.03		0.90	0.43	0.03	90.57	71.96		-0.02	2.09	35.15	30.53		20.51	1.24	0.06	316.19		1.07	9.92		Pumic.
LL6-16	2176106	662503	-10.45	0.23	-2.04	0.49	0.01		-0.08	0.40	-0.06	95.49	-1.65		0.00	2.14	-14.39	18.91		10.25	4.42	2.81	432.25		-1.48	15.98	5.18	Pumic.
LL6-24	2176902	662503	11.04	0.05	-0.94	-0.38	0.00	0.20	0.24	0.87	0.02	138.46	13.55		0.00	0.96	-11.58	8.02		-13.54	5.36	45.35			2.61	16.59	3.98	Pumic.
LL6-25	2177004	662502	1.86	0.10	-2.10	-0.13	0.00		-0.17	1.16	0.01	151.56	-55.99		0.00	2.69	-12.52	15.04		-1.38	5.49	-1.30		2.86	-0.15	15.31	8.12	Pumic.
LL6-28	2177301	662502	-5.04	0.21	-2.11	0.34	0.01		-0.13	0.12	-0.05	110.84	-7.11		0.00	2.79	-5.58	19.52		9.13	1.78	0.45		1.57	0.32	12.84	1.86	Pumic.
LL7-1	2174602	662410	7.71	0.49	4.58	1.90	0.03		0.85	-0.55	0.01	79.24	121.92		-0.02	-1.35	12.80	40.85		15.70	2.10	2.16	462.84		0.45	12.71		Pumic.
LL7-3	2174802	662406	2.36	0.13	0.14	0.36	0.01		-0.12	0.34	-0.11	112.63	0.57		0.00	1.62	-20.71	21.83		3.63	1.17	0.75	70.48		2.50	10.80	3.35	Pumic.
LL7-5	2175002	662407	3.19	0.29	-1.03	0.95	0.01		0.06	0.32	-0.06	97.04	-2.13		-0.01	-1.34	-1.63	39.42		5.31	4.34	0.57	622.91	0.85	-1.09	14.02	3.38	Pumic.
LL7-16	2176101	662409	-13.55	0.23	-2.93	0.71	0.01		-0.23	0.30	-0.09	91.04	-24.05		-0.01	2.74	-4.85	13.70		12.15	2.08	-0.68			-1.58	11.79	6.58	Pumic.
LL7-18	2176303	662408	-6.39	0.92	1.13	3.98	0.05		1.50	-1.26	-0.02	63.65	191.68		0.00	0.46	54.02	45.57		33.01	-0.60	2.70	468.97		0.88	9.90		Pumic.
LL7-29	2177406	662402	-6.61	0.16	-2.73	0.50	0.01		-0.06	0.23	-0.06	111.37	-9.92		0.00	3.95	-13.59	14.71		12.51	2.08	1.75	248.20	0.72	-0.18	12.06	5.39	Pumic.
LL7-31	2177603	662408	0.41	0.16	-1.46	-0.11	0.01		-0.36	0.46	0.03	135.66	-65.11		0.00	3.92	-4.77			3.09	4.57	2.71	147.24	1.12	0.24	14.68	4.67	Pumic.
LL7-32	2177701	662404	7.20	1.27	7.59	4.76	0.07		2.35	-0.76	0.28	70.46	239.31		0.00	-0.91	98.26	43.97		48.00	-1.71	0.98	1134.21		0.17	6.60		Pumic.
LL7-33	217/803	662403	-40.87	0.15	-9.31	-0.06	-0.01		-0.40	-1.90	-0.09	0.00	-13.02	-41.39	-181.65	-8.07	7.21			-2.07	-6.18	-4.15	189.97		-1.40	5.29		Pumic.
LL7-34	2177901	662404	-2.89	0.20	-1.33	0.08	0.00		-0.19	0.25	0.09	119.43	-54.19		0.00	2.10	-0.98	23.79		-4.28	3.76	0.54	93.64		0.09	15.24	5.03	Pumic.
LL8-0	2175109	002307	4.02	0.23	0.17	0.75	0.01		0.13	0.53	-0.15	114.79	-1.11		-0.01	0.88	1.55	24.44		0.11	0.47	2.30	285.10		5.07	11.92		Pumic.
LL8-10	2175504	662205	9.12	0.18	0.04	0.30	0.01		0.00	0.78	-0.00	130.99	1.0/		0.00	2.49	-4.55	21.73		1.21	2.17	1.88	170.04		2.58	11.77	2.50	Pumic.
LL8-11	21/5010	662201	-9.41	0.30	0.74	0.80	0.02		-0.13	-0.38	-0.05	107.00	34.12		-0.01	1.27	4.79	20.28		0.75	3.39	2.03	178.94	2 66	0.50	14.92	5.28	Pumic.
LL0-12	2175710	662204	8.90	0.34	0.10	1.24	0.02	0.07	0.47	0.80	-0.02	127.98	9.07		-0.01	1.52	-3.19	20.00		9.75	2.64	0.51	240.76	3.00	-0.50	14.60	0.25	Pumic.
LL0-13	2175007	662207	-15.20	0.12	-0.18	0.26	0.02	-0.07	-0.10	-0.65	-0.11	45.12	-5.25		-0.02	1.04	12.27	42.49		6.26	3.04	0.01	249.70		-0.23	12.02	2.27	Pumic.
LL0-14	2175907	662202	1.02	0.15	2.04	2.22	0.01		-0.15	0.03	-0.09	60.25	-20.45		0.00	2.21	-15.27	19.99		0.50	0.66	0.07	344.01		-1.45	0.20	1.93	Puinc.
LL8-20	2170304	662201	1.05	0.95	0.01	0.45	0.05		1.15	-0.45	0.08	120.00	2.75		-0.05	1.61	40.00	51.75		44.02	-0.00	0.07			0.41	9.20	1 24	Pumic.
LL9-4	2174907	662203	4.05	0.12	-0.91	0.45	0.01		0.03	0.38	-0.02	123.33	11 14		0.00	2.37	10.78			9.60	1.02	1.33	200 61	4 50	-0.41	12.09	4.04	Pumic.
TTO 8	2175100	662203	8 62	0.12	0.10	1.13	0.01		-0.03	0.52	-0.08	122.55	46.24		0.00	0.32	1.08	14 47		14.30	3.65	3.42	209.01	1.37	5 25	14.70	3.07	Pumic.
LL9-0	2175506	662201	5.17	-0.14	-1.93	-1.19	-0.01		-1.01	1.74	-0.05	52.00	-144 88		0.01	1.87	1.00	17.7/		-21.22	10.08	5.17	180.45	1.57	2 37	20.54	14.06	Pumic
LL9-13	2175801	662208	7.13	0.21	-1.09	0.50	0.01		0.12	1.82	-0.12	152.69	-38 58		0.00	1.69	1 56	16 69		-4 00	4 26	2.22	100.10	1.70	2.57	14 20	5 30	Pumic
LL9-14	2175902	662206	-1.27	0.08	-1.61	-0.18	0.00		-0.32	1.63	-0.09	143 97	-58.90		0.00	2 10	-19.63	3 02		-8.95	5.03	2.41		0.75	2.86	15 58	4 29	Pumic
LL9-16	2176102	662201	1.12	0.17	-1.34	0.02	0.00		0.12	1 35	-0.03	147 60	-10 74		0.00	2.11	-16 07	1.84		-11 39	3 96	0.31		1.43	1 01	13 51	5 49	Pumic
LL9-14 LL9-16	2175902 2176102	662206 662201	-1.27 1.12	0.08 0.17	-1.61 -1.34	-0.18 0.02	0.00		-0.32 0.12	1.63 1.35	-0.09 -0.03	143.97 147.60	-58.90 -10.74		0.00	2.10 2.11	-19.63 -16.07	3.02 1.84		-8.95 -11.39	5.03 3.96	2.41 0.31		0.75 1.43	2.86 1.01	15.58 13.51	4.29 5.49	Pumic. Pumic.

Procesos de Interacción Agua-Roca en el Reservorio Geotérmico de Alta Entalpía; Los Humeros, Puebla, México.

Massta	Coorder	nadas	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	K20	P_2O_5	Rb	Sr	Ba	Zr	Nb	V	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	Peee
Muestra	Norte	Este					%												μg.g ⁻¹									Roca
LL9-21	2176606	662205	-2.45	1.21	1.45	3.87	0.04	0.20	1.95	-0.85	0.14	62.77	182.80		0.00	8.03	101.64	78.37	29.90	45.80	0.12	-1.31				10.00		Pumic.
LL9-27	2177201	662203	-4.88	1.15	3.60	-0.54	-0.02		-1.19	0.41	0.00	-5.98	170.25		0.00	4.46	32.35	13.40		-42.83	-2.24	-4.06	73854.47		3.05	9.28		Pumic.
LL9-29	2177407	662204	2.99	0.60	1.39	2.01	0.04		0.87	0.23	-0.01	92.13	81.29		-0.02	1.45	3.99	30.09		27.75	0.15	3.73			0.13	8.23	3.48	Pumic.
LL9-31	2177610	662205	-0.73	1.40	5.21	5.21	0.07		2.31	-0.88	0.03	57.29	263.74	141.59	0.00	3.53	80.25	45.19	40.31	51.89	-2.39	4.48			1.72	7.34		Pumic.
LL9-32	2177701	662209	1.95	0.24	-0.36	0.94	0.02		0.08	0.85	-0.08	135.02	-13.93		-0.01	2.60	-3.52	28.41		16.06	4.26	-0.37	235.19	1.34	0.32	14.40	4.53	Pumic.
LL9-33	2177803	662202	-2.92	0.16	-2.04	0.37	0.01		-0.09	0.27	-0.12	110.07	5.14		0.00	2.46	-13.27	8.26		5.18	2.01	3.68	160.37		2.82	12.83	2.39	Pumic.
LL9-34	2177908	662204	-10.19	0.19	0.57	0.42	0.01		-0.22	-0.35	-0.04	84.67	55.51	-12.94	0.00	4.14	8.65	22.88		9.87	4.15	4.21			-1.07	15.21	2.86	Pumic.
LL9-35	2178003	662205	7.81	1.28	4.74	5.40	0.07		2.73	-0.18	0.03	74.96	277.67		0.00	0.37	75.58	64.76	28.52	56.61	-1.77	-1.70		4.59	0.28	9.67		Pumic.
LL10-2	2174707	662102	10.06	0.27	-0.37	0.99	0.02		0.41	1.05	-0.08	141.93	27.84		-0.01	1.89	-7.11	14.79		20.54	3.13	0.48		2.37	1.53	13.34		Pumic.
LL10-3	2174803	662105	-3.50	0.17	-0.69	0.41	0.01		-0.07	0.09	-0.09	99.75	14.76		0.00	1.17	-11.72	12.82		17.50	1.68	2.53			2.34	13.47		Pumic.
LL10-6	2175105	662110	-1.75	0.21	-0.17	0.42	0.01		-0.05	0.14	-0.04	106.86	0.54		0.00	0.72	-18.36	8.74		4.04	2.25	2.70			-0.23	12.15	3.68	Pumic.
LL10-7	2175202	662102	4.99	0.26	2.91	1.07	0.02	0.09	0.15	0.55	-0.08	106.22	11.07		-0.01	1.00	6.36	34.97		15.89	-0.43	3.47			2.24	8.88		Pumic.
LL10-8	2175308	662103	-1.53	0.11	-2.15	0.29	0.01		-0.10	0.49	-0.09	2.86	15.50	0.41	0.00	3.65	-11.89	15.61		6.79	1.97	4.46		0.98	0.84	11.59	4.65	Pumic.
LL10-9	2175409	662106	-0.07	0.27	1.46	0.84	0.02		0.15	0.18	-0.10	100.17	9.98		-0.01	1.90	-8.26	26.35		17.14	1.81	4.15	102.66		1.00	12.85	1.68	Pumic.
LL10-13	2175805	662105	-4.23	0.34	-0.83	0.86	0.01	0.90	-0.22	-0.44	-0.10	62.49	-40.24		-0.01	0.82	-4.31	31.62		4.80	0.41	-3.64	282.25	0.85	0.51	10.42	2.40	Pumic.
LL10-18	2176304	662110	15.00	0.24	1.80	1.16	-0.01		-0.90	0.11	-0.05	104.88	32.96		-0.01	-2.26	-8.13			-33.19	2.34	0.53	56941.36	3.08	2.71	11.97		Pumic.
LL10-24	2176902	662102	13.04	1.20	-12.88	-3.11	-0.04		-1.70	-3.01	-0.05	-76.41	-197.83		0.03	2.16	15.33				-11.41	-10.43	1386.18		1.98			Pumic.
LL10-26	2177102	662108	22.94	1.39	-12.25	-2.56	-0.03		-1.62	-2.64	0.03	-68.88	-181.87		0.02	2.84	27.66				-7.53	20.20	7106.60		3.05			Pumic.
LL10-31	2177601	662109	-8.21	0.18	3.71	-0.64	0.00		-0.87	1.70	-0.17	125.74	-23.57		0.01	-1.57	-13.98			-23.65	4.18	-2.73	68285.91	2.59	0.39	14.46	4.35	Pumic.
LL10-35	2178007	662109	5.43	0.74	2.55	2.80	0.04		1.31	0.19	-0.05	100.82	148.47		-0.02	2.66	24.58	26.73		35.91	-2.36	1.40			0.48	7.42		Pumic.
LL11-2	2174704	662001	-0.65	0.23	-3.05	0.74	0.02		0.29	0.59		131.20	31.42		-0.01	1.26	-8.51	4.22		13.35	1.60	1.28			2.89	13.02	2.89	Pumic.
LL11-5	2175007	662010	-1.05	0.21	-1.72	0.79	0.02	0.60	0.42	0.38	-0.08	117.91	77.41		-0.01	2.86	-4.92	26.52		16.55	0.80	3.75	224.71		5.59	10.47		Pumic.
LL11-15	2176009	662003	-4.93	0.10	-2.60	-0.19	0.00		-0.31	0.65	-0.04	113.95	-58.45		0.00	2.41	-15.14	11.02		-4.30	4.98	0.85			0.89	15.46	6.68	Pumic.
LL11-16	2176102	662003	0.20	0.21	-0.76	1.00	0.02	0.14	0.17	0.33	-0.09	118.21	50.82		-0.01	2.47	-14.85	21.82		14.35	1.01	-0.76	195.17	2.34	4.75	12.10		Pumic.
LL11-20	2176506	662008	-0.62	0.04	-13.91	-3.34	-0.04		-1.80	-3.02	-0.05	-74.04	-206.29		0.03	-0.81	-23.61				-9.78	-4.38	759.81		0.60			Pumic.
LL11-27	2177208	662008	31.83	1.04	-13.45	-3.16	-0.03		-1.58	-3.03	0.03	-68.96	-194.71		0.03	9.04	-7.37				-9.09	-12.29	2390.96		0.30			Pumic.
LL11-28	2177305	662003	13.61	0.46	-13.98	-3.33	-0.04		-1.75	-3.08	-0.03	-74.71	-208.44		0.03	3.24	-14.29				-11.41	-14.65	1674.80		3.58			Pumic.
LL11-30	2177506	662009	2.68	0.34	-2.65	1.89	0.00		-0.97	-0.33	-0.11	108.58	35.36		-0.02	-2.24	7.86			-38.23	2.29	-3.13	49668.80		3.79	12.91		Pumic.
LL11-31	2177607	662003	0.78	0.28	0.22	0.36	0.00		-0.20	0.74	-0.07	149.62	15.87		0.00	1.59	-9.16	16.40		-15.17	3.75	0.26	4106.48	2.08	2.86	14.76		Pumic.
LL11-33	2177801	662004	-7.60	0.25	0.03	0.72	0.01		-0.19	0.01	-0.06	72.36	-45.15		-0.01	2.14	-5.45	34.95		1.25	1.08	2.28				11.14	3.45	Pumic.
LL11-34	2177903	662009	1.05	0.19	-2.07	0.37	0.01		0.06	0.81	-0.10	131.69	-3.46		0.00	2.80	-15.16	9.24		9.57	2.96	2.15			3.00	14.51	5.15	Pumic.
LL11-35	2178009	662006	-1.89	0.23	-2.04	0.56	0.01	0.70	0.03	0.57	-0.10	114.01	-12.20		0.00	2.86	-3.46	15.81		13.89	4.13	0.84			3.84	15.93	1.53	Pumic.
LL12-1	2174605	661910	-0.03	0.19	0.35	0.46	0.01		-0.02	0.22	-0.11	111.14	13.85		-2.01	2.08	-18.97	10.06		12.40	2.41	1.08		0.78	1.52	13.26		Pumic.
LL12-5	2175001	661909	10.65	0.22	-0.16	0.73	0.02		0.26	0.90	-0.06	138.61	3.89		-0.01	2.08	-10.05	9.64		19.93	1.35	1.58		1.19	1.62	10.15	3.17	Pumic.
LL12-11	2175602	661909	-7.28	0.25	-4.47	0.83	0.02		0.36	0.55		139.66	46.73		-0.01	2.49	-9.14			6.96	1.43	1.71	132.18		3.19	11.54		Pumic.
LL12-19	2176408	661902	-6.20	0.23	-1.27	0.88	0.00		-0.21	0.71	-0.12	109.42	-38.24		-0.01	2.69	-1.74	38.77		5.93	5.25	3.02	217.38	0.78	0.84	15.36	4.08	Pumic.
LL12-20	2176506	661910	-17.69	0.27	-1.20	2.19	-0.01		-0.55	-0.37	-0.06	-8.71	-16.07		-0.02	2.75	16.98	44.89		-5.71	2.61	-1.33	5052.71	3.92	-1.20	12.12	2.75	Pumic.
LL12-27	2177209	661906	-2.15	0.53	6.47	-0.96	-0.02	0.17	-0.98	-0.84	-0.03	26.20	-14.03		0.01	2.23	3.29	6.91		-38.76	3.39	2.40	49787.17		-0.49	13.51	1.78	Pumic.
LL12-29	2177405	661906	-4.08	0.24	-2.01	-0.81	-0.01		-1.01	-0.20	-0.04	91.29	80.19		0.01	1.44	-0.63			-31.36	4.44	-0.68	53361.63		0.40	14.80	4.39	Pumic.
LL12-34	2177907	661908	-1.39	0.18	-3.45	0.36	0.01		0.15	1.14	-0.09	159.71	3.64		0.00	0.66	-11.93			3.70	5.31	0.58		2.85	5.89	16.83	3.18	Pumic.
LL13-14	2175907	661801	-14.92	0.34	-9.19	-1.41	-0.05		-1.85	-3.10	0.61	-71.45	-206.88		0.01	2.94	1.35	3.41		-36.91	-4.21	-4.61	876.04		-2.35	6.52		Pumic.
LL13-27	2177202	661809	15.40	2.38	-13.28	-2.84	0.00		-1.38		-0.09	-83.93	-198.06		0.02	1.18	67.84				-11.34	0.95	1346.74		1.96			Pumic.
LL13-2/	2177202	001809	15.40	2.38	-13.28	-2.84	0.00		-1.38		-0.09	-03.93	-198.00		0.02	1.18	07.84				-11.34	0.93	1340.74		1.90			PuillC.

	Coorder	nadas	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	K20	P2O5	Rb	Sr	Ba	Zr	Nb	v	Cr	Cu	Zn	Th	Pb	S	As	Mo	Bi	U	D
Muestra	Norte	Este				2.0.4.02	%			£2.						7			μg.g ⁻¹									Koca
LL13-29	2177402	661806	6.45	2.38	-12.85	-2.56	-0.01		-1.38	-3.01	-0.09	-68.82	-183.98		0.02	1.35	44.61				-8.85	-8.52	2685.71		5.38			Pumic.
LL14-23	2176809	661710	-1.07	0.63	9.32	2.06	0.01		-0.50	-0.50	-0.12	78.80	-2.08		-0.02	0.58	21.55	51.83		0.06	-0.76	-1.14	36109.68	2.35	1.74	9.90		Pumic.
LL14-25	2177003	661704	36.79	1.92	-11.89	-2.83	0.00		-1.44	-2.75	0.11	-62.82	-182.70		0.02	1.11	29.27				-7.90	-5.92	3368.81		0.47			Pumic.
LL14-26	2177103	661705	17.86	0.72	-13.32	-3.18	-0.03		-1.60	-3.04	-0.16	-7 <mark>4</mark> .05	-190.10		0.03	3.75	-21.85				- <mark>8.3</mark> 7	-14.94	1708.07		5.02			Pumic.
LL15-1	2174601	661608	0.60	0.54	-0.04	2.31	0.04		1.25	-0.25	0.04	95.85	125.98		-0.02	-0.33	33.03	14.00		36.43	0.71	7.55	781.45		-0.50	9.90	5.47	Pumic.
LL15-4	2174902	661607	-2.99	0.28	1.05	1.11	0.02		0.21	-0.10	0.12	96.79	12.82		-0.01	2.68	5.82	29.00		15.56	0.98	2.02	260.69			10.77	6.03	Pumic.
LL15-5	2175009	661603	-6.07	0.36	0.10	1.46	0.03		0.08	-0.24		132.20	70.73		-0.01	2.38	-9.54	42.21		12.73	1.91	1.46	226.92	2.07	6.95	15.05		Pumic.
LL15-7	2175203	661609	4.95	0.25	0.72	1.11	0.02		0.17	0.28	-0.09	107.40	25.31		-0.01	2.55	-10.41	38.58		11.43	2.24	2.41			4.56	12.46	2.21	Pumic.
LL15-8	2175306	661601	-8.24	0.28	1.52	0.77	0.02		-0.16	-0.65	-0.09	77.85	32.47		-0.01	2.23	-14.68	20.99		10.46	0.40	3.82			3.06	11.65		Pumic.
LL15-9	2175409	661601	3.28	1.07	0.73	4.25	0.06		2.37	-0.14	0.03	91.03	251.58	63.26	0.00	2.39	60.99	21.59		47.35	-2.63	-3.01	193.29		-0.06	5.78		Pumic.
LL15-10	2175510	661606	-9.10	0.32	1.09	1.33	0.03		-0.06	-0.44	0.13	78.85	-2.83		-0.01	2.66	21.77	28.88		26.84	1.99	2.14	162.74	0.57	0.17	11.65	3.59	Pumic.
LL15-27	2177209	661604	31.98	2.18	-5.56	0.56	0.00		-0.31	-1.46	0.00	33.0 2	76.98		-0.01	0.06	83.37		23.39	-10.48	-7.17	0.90	13320.06		3.72			Pumic.
LL15-29	2177408	661610	-9.96	0.61	-13.59	-2.99	-0.03		-1.59	-3.05	-0.10	-76.56	-191.48		0.03	-0.35	-17.06				-11.39		746.69	-0.04	1.33			Pumic.
LL16-1	2174601	661502	-3.30	0.15	-1.34	0.59	0.01		0.08	0.31	-0.09	115.38	1.49		-0.01	1.79	-16.59	16.28		5.19	3.11	0.07		1.14	3.72	14.45		Pumic.
LL16-2	2174709	661507	2.16	0.26	0.24	0.61	0.01		0.11	0.29	-0.03	111.50	-1.67		-0.01	2.24	-11.88	1.22		11.66	1.11	-0.01		2.09	-1.01	10.84	1.83	Pumic.
LL16-4	2174910	661502	7.18	0.24	1.64	0.89	0.02	0.35	0.33	0.50	-0.06	113.50	19.37		-0.01	2.19	-6.27	34.07		5.55	1.74	4.28			2.14	12.71		Pumic.
LL16-5	2175003	661509	-4.36	0.36	0.80	0.88	0.02		-0.07	-0.41	-0.02	70.98	-2.56		-0.01	-0.21	2.50	11.19		25.93	-0.30	1.37	511.21	0.62	0.49	8.31	4.73	Pumic.
LL16-6	2175104	661502	1.40	0.25	0.90	0.75	0.02		0.01	0.21	-0.08	105.62	-3.89		-0.01	3.12	-18.53	10.71		12.17	2.27	0.78			1.45	12.58	2.35	Pumic.
LL16-8	2175304	661507	-4.38	0.47	0.79	1.49	0.02	0.13	0.60	-0.28	-0.01	87.07	55.43		-0.01	1.95	37.41	44.59		16.37	1.57	2.45			0.22	11.40	2.48	Pumic.
LL16-9	2175407	661504	2.98	0.92	1.10	3.32	0.04	0.76	1.80	0.05	0.02	95.37	154.08		-0.03	1.49	70.74	13.33	25.91	39.29	-1.13	3.47	113.28		2.19	9.27		Pumic.
LL16-13	2175803	661503	4.54	0.35	4.51	3.68	0.00		-0.96	0.34	-0.05	65.63	174.32		-0.03	-3.16	61.56	29.00		-35.89	-2.96	9.37	88855.54	17.59	-0.49	7.14		Pumic.
LL16-15	2176007	661504	23.04	0.45	-13.12	-3.13	-0.03	0.99	-1.67	-2.99	-0.06	-75.69	-199.31		0.03	1.51	-24.26				-9.46	- <mark>8</mark> .55	1618.41		3.14			Pumic.
LL17-1	2174603	661402	-9.08	0.27	-1.03	0.94	0.01		-0.07	-0.25	-0.01	99.98	-3.83		-0.01	3.70	-0.65	23.38		9.43	2.03	9.01	72.64	2.18	2.30	11.95	3.47	Pumic.
LL17-2	2174708	661409	3.41	0.33	-0.65	1.19	0.04		0.32	0.56	-0.01	119.13	16.95		-0.01	2.70	-7.98	30.04		28.84	4.22	1.69	595.16	5.07	0.44	14.26	3.95	Pumic.
LL17-3	2174804	661410	7.52	0.24	-0.22	0.83	0.01		0.10	0.58	-0.05	121.03	3.57		-0.01	0.35	-6.62	22.13		4.09	-0.43	1.49	144.99	0.71	3.67	9.05		Pumic.
LL17-4	2174903	661401	-2.58	0.23	1.93	0.91	0.02	0.29	0.00	0.07	-0.02	96.59	-18.93		-0.01	2.31	7.57	16.89		10.37	1.64	0.62	121.78	0.93	3.13	11.82	2.20	Pumic.
LL17-6	2175108	661401	1.09	0.70	4.09	3.19	0.05	0.20	1.91	-0.38	0.03	68.10	139.71		0.00	-2.17	39.29	43.72		15.02	-0.76	1.59	287.97	2.09	-1.16	8.93		Pumic.
LL17-7	2175201	661408	-5.15	0.35	2.25	1.18	0.02		0.15	-0.65	0.03	68.31	24.06		-0.01	1.62	14.32	28.88		9.60	1.57	0.54	78.76		0.83	12.72		Pumic.
LL17-9	2175409	661409	4.55	1.13	3.46	4.06	0.05	0.18	1.99	-0.31	0.07	72.41	177.61		0.00	2.25	64.06	51.36		43.70	-0.15	0.21	114.40			9.41	2.10	Pumic.
LL17-10	2175506	661404	8.59	0.27	-1.18	0.41	0.01		-0.05	0.97	-0.05	152.99	-16.78		0.00	0.98	-1.43	13.60		-0.97	2.32	5.62	3019.70		1.78	12.87	8.91	Pumic.
LL17-13	2175810	661410	18.89	0.60	-12.97	-3.09	-0.04		-1.69	-2.85	0.05	-73.59	-202.18		0.03	2.26	-8.43				-9.66	-14.41	1403.21		-1.04			Pumic.
LL17-14	2175901	661406	46.01	1.35	-6.99	-0.90	-0.01		-0.66	-1.39	0.04	-7.19	-92.66		0.01	1.35	3.27			-35.25	-7.58	-8.88	1212.58		4.46			Pumic.
LL17-20	2176502	661406	16.45	1.77	-5.92	-0.44	-0.01		-0.88	-1.45	0.11	20.03	37.68		0.00	1.15	83.12	15.83		-29.18	-6.19	-0.84	10901.06		0.82			Pumic.
LL17-34	2177904	661404	6.85	0.22	-0.46	-1.10	-0.01	0.39	-0.79	0.57	0.01	76.99	171.77		0.01	-0.49	-7.78	15.50		-35.97	4.50	52.95	53589.85	4.63	2.33	14.29		Pumic.
LL17-35	2178006	661408	26.30	0.37	-5.30	-0.87	-0.02		-1.04	-0.97	-0.09	54.26	-66.17		0.01	1.34	-12.48	5.56		-35.57	-2.56	-1.60	15564.22	11.54	4.54	7.98	0.84	Pumic.
LL18-1	2174610	661302	4.64	0.79	1.35	2.94	0.04		1.56	0.17	0.01	101.59	129.41		-0.03	1.28	54.94	44.59		29.84	0.11	1.54	1272.71		1.62	9.76	3.71	Pumic.
LL18-4	2174906	661301	-19.58	0.22	4.61	1.03	0.00		-0.48	-1.42	0.03	20.64	-45.86		-0.01	1.41	18.66	17.95		-17.95	0.79	-1.04	282.21	2.22	-0.62	11.73	0.64	Pumic.
LL18-6	2175101	661309	-14.68	0.24	-0.39	0.96	0.03		-0.18	-0.70	0.04	70.04	7.22		-0.01	0.38	2.04	26.09		9.94	-0.93	4.60	326.45	2.78	1.92	10.55		Pumic.
LL18-7	2175202	661303	-2.06	1.10	3.81	4.41	0.05		1.92	-0.51	-0.09	71.42	185.06		0.00	1.10	68.48	42.46	26.89	35.58	-0.99	2.63	284.01		4.22	10.14		Pumic.
LL18-8	2175305	661308	4.61	0.45	1.27	1.56	0.03		0.51	0.40	-0.02	116.00	24.63		-0.01	0.68	2.51	24.58		15.65	- <mark>1.4</mark> 6	3.98	234.29		1.17	8.93	1.50	Pumic.
LL18-10	2175506	661303	15.27	0.93	4.32	-0.26	-0.01		-1.07	1.33	-0.07	-1.08	351.56		0.00	0.65	27.15			-43.37	3.52	4.42	89585.09		4.50	13.43		Pumic.

Roca	n	Bi	oW	z A	s	ЪР	ЧТ	uZ	ng	cı.	Λ	٩N	JZ	Ba	R	Rb	⁵ O ⁷ d	K ⁵ O	CgO	OgM	OulV	Ee ³ O3	^c O ⁷ IV	⁷ O!L	⁷ OIS	seper	Coorden	ertseul.
									1-2-24												%			F		Este	Sorte	
Pumic.	4.23	12.80	-0.22	2.53	88.2074	04.1-	8 <i>L</i> .£	81.5		90 [.] 01	SE.7	1.40	10.0-		£5.71-	158.60	51.0	10.1	\$0 [.] 0		10.0	92.0	04.0	95.0	68.8	808199	\$095LIZ	IT18-11
Pumic.	3.80	12.43	147		1526.94	5.33	LL'7	91.2			51.01	-1.52	10.0-		13.06	61.26	80.0-	-0.30	51.0		20.0	£1.1	29.8-	15.0	+1.21-	2021307	6025217	TT18-15
Pumic.	18.2	14.87	1.83	100	1545.98	29.5	4.20	58.6		14.24	10.61	1.72	10.0-		58.81	128.40	00.0	£L'0	25.0		20.0	15.1	10.0	54.0	76.4	\$021302	9065/17	FT18-14
Pumic.		99.8	52.5	£9 [.] 9	18451.64	-5.03	L9.1-	+2.12-		5.50	35.22	50°I	00.0		11.20	10.05	41.0	92.0-	65.0-		00.0	44.0	70.8-	1.24	21.22	102199	0109/17	SI-8177
Pumic.		99.8			20,000	01.5	4I.I-	97.82		29.49	82.28	3.48	£0.0-		85.501	38.34	00.0	14.1-	67.0		t0.0	52.5	14.4	70.1	80°L-	021304	6029/17	81-81TT
-During		04.01	88.7	95.5	17.9755	05.0	60.0	75.61		£/[‡	85.52	00.5	20.0-		18.54	95.06	01.0-	71.0-	52.0		20.0	57.7	757	18.0	/9'I-	202130	+0+9/17	6I-8LTT
-Sumc	100	7/ 9	6/ 5	000	00.0221	£4.1-	11.7-	95.07-		00.00	/8.61-	08.1	00.0		66.66-	14.80	21.0-	10.1-	9/.0-		10.0-	05.0-	87°C-	55.0	9/. CT	202100	9099/17	17-8177
-Sume	165	5/.71	0 1 .1-	67.7	8/ 605	71.7	60.7	9/7		75.05	04.0	07.1	10.0-		10.12	£0.cc	CO.0	18.0-	£0.0		20.0	25.0	80.4	14:0	£0.0-	017100	019#/17	1-6177
-Suma	64.4	CT.01		70'1	0V 00V	50.0	84.0	60.1		81.61	CC 71	87.0-	T0:0-		+C.0-	06.40	20.0	0/-0-	60.0-		10.0	08.0	00.6	\$7.0	45.6-	017100	70/+/17	7-6177
-Sumo	021	0 33	01	04.1	84.604	00.2	64.0	88.0		65.14	20 60 09 05	77.7	70:0-		95.9	CC.UC	C0.0	08.0-	00.0		70.0	00.7	C1.C	+C.0	\$7.5-	017100	COOPLIC COSt/17	F-6177
Pumic.	0/ T	22.6	70.1		05 050	65.0	77.0-	8/10-		10.77	80.00	08.0-	10:0-		00.0-	18.CC	71.0	80.0-	01.0		50.0	1/1	90 C	05.0	60.2	107100	706+/17	5-6177
-Sume	7/.+	C0.6		100	85.857	C0.0	PP.0	70.7		CT./7	84.46	00.0	70:0-		CU.FC	8/.4/	10.0	64.0-	64.0		70.0	01.7	00.7	50.0	64.6-	C07100	0100/17	C-6177
-Suma	\$7.7	65.1	930	\$ 7.7		//:0-	/6.1-	10.CI		87.44	20.62	84.0	70'0-		06.11	75.60	01.0	cc.0-	07.1		£0.0	t/7	01.4	1/.0	80.1-	107100	0115/17	0-6177
'Sume	UC L	\$7.71	00.0	01 1	00 101	51.7	/ + 7	85.0		9/.57	18.0	98.1	10:0-		+C.01	80.211	80.0-	87.0	67.0		70'0	70°T	04.1-	75.0	55.1-	507190	80+5/17	6-6177
-Sume	05.1	+C'71	70.0	6/.1 32 r	87.101	0/.4	/57	78.6-		00.12	0/1-	/1.7	00.0		15.16-	CC.CF1	70.0	80.0	81.0-	90.0	10.0	60.0	0/ T-	01.0	30.5	/07100	1000/17	01-6177
Pumic.		80.CT	CC.0	00.1	20 69265	64.7-	41.1 02 f	76.11		11.01	90.C-	89 E-	10:0-		25 582	60.001	90.0	10.0	61.0	00-0-	10.0	7/10	/0.1-	12.0	60°C-	007100	CO85/17	51-6177
Dumic	LCI	65 11	+0.0-	CFC	C0.79676	211	050	96.0		96 15	98 20	27 U	70:0-		LU P1	65.70-	21.0	10.0-	00.1-		20.0	17.7	591	000	81 L	011199	7009/17	110011
Dumic	17.1	13 93	881	76.7	LUCCE	801	05.0	εL U 07.4		10.8	PE 5	LL 1	10:0-		8L 11	£9.07	50.0	60.0-	PL 0-		10.0	00.T	50 1- CO.T	67.0	97.7-	011100	0005/17	1-0777
Dumic	8L V	96.71	LI C	85 0	10.775	25 L- 97 T	04.1	6/10		10.0	+0.0) 32 // T	65:0	01 52-	95 91-	70.00	50.0-	70.1-	\$C 0-		10.0	02.0-	10 2-	67.0	04:01-	(01100	009521C	C-0777
-Dimir T	184	111	11.2	75.0	67 225	4 88	67 7	133		14 28	19 8-	1 33	00.0	01.01-	91 77-	(1.21	00.0	18 0	02.0-		10.0	60.0	55 6-	91.0	LCC	011199	7009/17	51-0717
Pumic.	6.63	12.08	18.0	17.7	3101.72	3.53	3.80	50.89		16 67	31.92	61-0	11.0		37.84	50.211	01.0	0.20	0717		20.02	89.1	0'30	0.63	10.33	011199	5176204	LL20-17
Pumic.	\$1.4	17.24	2.04	12.6	20.022	1.42	29.2	15.21-		50°L	42.01-	2.02	00.0		SE.87-	141.09	40.0-	040	SL'0-		00.0	62.0-	-5.70	91.0	-1.44	800899	5176408	61-177
. Pumic.	51.5	95.01	61.1		410.73	95.0-	1.28	33.02	34.85	87.85	L6'0L	86.2	60'I	115.32	24.791	07.66	41.0	00.0	59.2		90.0	56.5	15.5	26.0	58.9	¢08299	5117106	FF3-50
. Pumic.	17.7	13.84	75.1	5.36		19.0	20.4	-53.39				\$2.0	72.0		95.55-	27.48	10.0-	90°I	01.0-		10.0-	82.0-	-0.52	20.0-	70.11	908799	8092212	112-31
Pumic.	60.21	15.44	61.0-	20.1		\$6.0	92.26	65.52-		62.8	21.15	52.0-	81.0-		86.22-	30.72	1 0.0-	21.15	12.0-		10.0-	78.0-	82.1-	90.0-	95.01	108299	2117807	EE-271
Pumic.	49.9	49.8	9£.1-		374.32	95.0-	27.0-	20.01		31.20	18.9	95.0	65.0		10.22	74.06	41.0	£1.0-	81.0		20.0	96.0	74.2	L2.0	66.1	80/299	21122109	PT4-6
. Pumic.	61.9	16.27	\$9.8	1.43	80.772	17.7	27.2	94.61-		51.92	69.91-	3.29	6.03	397.50	18.21-	20.56	1 0.0-	69.0	05.0-		10.0	11.0	14.1-	-0.02	74.I	909799	8074712	LL5-2
.omur.		54.6	09.0-		10.778	65.2	55.0	41.46		19.48	90°12	LL.I	05.1		48.401	19.82	11.0	9£.1-	1.20		0.05	3.45	9ħ.T	68.0	64.9	809799	5116410	61-577
Pumic.	3.48	26.6	82.1			2.10	1.24	18.7		21.50	-12.40	11.0-	55.0		82.8	108.26	10.0-	02.0	20.05		10.0	08.0	01.0-	52.0	12.0	014209	2064712	FL7-4
. Dumic.	01.11	89.91	2.42		344.22	12.0-	91.8	-27.83		80.2		74.I	95.0-	12.521-	17.251-	45.71	₽ 0.0-	9E'I	80-I-		10.0-	12.1-	-2.95	-0'55	5.24	907799	8085712	8-L77
.2imic.	8.12	84.82	74.T	75.5	26.281	82.9	12.75	-56.85				3.49	00.00	04.62	-120.26	99'19		95°I	£1.1-		10.0-	-1'56	-2.83	L1.0-	85.2	907799	2175405	6-L77
Pumic.	10.33	25.71	3.22	86.0	10.404	96 ⁻ I	81.7	-59.20		15.49		1.74	10.0	LE-16-	-120.54	68.64	01.0-	1.63	86.0-		10.0-	LI'I-	18.0-	91.0-	13.21	962403	8065217	71-14
Pumic.	18.01	18.22	3.46	2.44	70.29	82.4	16.7	77.1£-		\$6 .7		2.50	10.0		62.951-	86.83	₽1.0-	19.1	80°I-		10.0-	21.1-	99.1-	ST.0-	15.89	6 62304	\$085712	RL8-8
Pumic.	81.5	£2.01	79.2	3.92	<i>\$L`6L66</i> I	-3.24	1 .0-	90.6-		50.80	09.62	72.I	08.0		30.55	69.28	90.0-	-1.00	65.0-		10.0	<i>†L</i> [•] 0	89.4	98.0	16.9	011799	L06LL17	LL10-34
Pumic.	45.0	\$ 5.6		LE.T	4001.93	01.1-	94.0	20.72		92.51	46.II-	89.0-	69'0		89 [.] 6/1	84.201		79-0-	11.02		† 0'0	67.1	12.0-	0.32	-5.82	808199	1022212	LL13-32
-2 -	1.43	87.6	96.2	553	99 [.] 9200£	-5.06	+6.0-	69.24-			45.23	+6.2-	10.0		50.41	98.11	20.0	-1.02	£6 ⁻ 0-	1001	10.0-	11.0-	65'5-	88.0	65.55	909199	108//17	FT12-33
	58.2	17.22	3.85	86.1	85.5247	80'0	2.33	-51.23		200000	-12.00	1.13	60.0	151018-157C	LL'LL-	85.811	80.0-	-0.82	1 8.0-	80.0	10.0-	6L'0-	01.4-	0.20	14.04	207199	9095/17	11-2177
Pumic.		12.58	5L7		368.42	-0.02	5.26	29.55		33.21	38.66	21.1	58.0	230.49	181.06	58.26	61.0	0.03	2.20		50.0	5.39	65.4	65.0	LT.T	011199	2175909	LL20-14

ANEXOS VI

	8:02	T:02	41202	E-101	16-0	W-0	C-0	VIO	Paos	DL	C	D-	7	NIL	C	C	7	ть	DL	6	4-	W .	D:	T
8:02	1.00	1102	AI203	re203	MnO	мgO	CaU	K20	F205	K0	sr	Ба	Lr	IND	Cr	Cu	Zn	11	PO	3	As	MO	ы	U
5102	0.19	1.00																						
A12O3	0.18	0.02	1.00													Alta (Correla	cion						
Fe203	0.04	0.02	0.04	1.00																				
MnO	0.12	-0.10	0.33	0.44	1.00											Muv	Alta C	orrela	cion					
MaO	0.88	0.14	0.61	-0.25	0.02	1.00										,								
CaO	-0.19	0.70	0.01	0.98	0.35	-0.39	1.00									Correl	acion	Negat	tiva					
K20	0.69	-0.53	0.66	-0.66	0.13	0.66	-0.71	1.00					I		I									
P205	0.33	0.53	0.35	0.12	-0.34	0.24	0.17	0.08	1 00															
Rh	0.67	-0.56	0.64	-0.71	0.05	0.69	-0.75	0.98	0.02	1 00														
Sr	0.57	0.48	0.50	0.02	-0.49	0.57	0.04	0.14	0.63	0.23	1.00													
Ba	0.47	-0.18	0.06	-0.39	0.14	0.71	-0.58	0.50	-0.35	0.52	-0.06	1.00												
Zr	0.78	-0.41	0.68	-0.56	0.20	0.76	-0.65	0.98	0.08	0.95	0.16	0.62	1.00											
Nb	0.66	-0.50	0.48	-0.72	0.02	0.78	-0.82	0.92	-0.08	0.95	0.17	0.75	0.94	1.00										
Cr	-0.20	0.52	0.07	0.93	0.46	-0.48	0.96	-0.62	0.03	-0.67	-0.10	-0.61	-0.58	-0.78	1.00									
Cu	-0.04	-0.19	0.13	0.30	0.93	-0.11	0.21	0.13	-0.30	0.01	-0.69	0.15	0.19	0.01	0.33	1.00								
Zn	0.21	-0.66	0.00	-0.92	-0.42	0.22	-0.91	0.65	-0.17	0.66	-0.09	0.43	0.58	0.68	-0.81	-0.27	1.00							
Th	0.70	-0.54	0.72	-0.59	0.22	0.62	-0.63	0.99	0.03	0.97	0.12	0.46	0.97	0.89	-0.52	0.20	0.60	1.00						
Pb	0.60	-0.50	0.60	-0.63	0.16	0.65	-0.69	0.96	0.19	0.93	0.13	0.47	0.94	0.89	-0.64	0.20	0.53	0.93	1.00					
s	0.41	0.36	0.53	0.08	-0.48	0.20	0.19	0.06	0.66	0.12	0.86	-0.47	0.02	-0.06	0.13	-0.66	-0.07	0.08	0.00	1.00				
As	-0.07	-0.03	0.40	0.31	0.23	-0.14	0.40	-0.11	0.05	-0.02	0.30	-0.54	-0.19	-0.23	0.43	0.00	-0.52	-0.03	-0.06	0.43	1.00			
Mo	0.65	-0.31	0.79	-0.27	0.44	0.57	-0.32	0.86	0.29	0.79	0.12	0.25	0.86	0.67	-0.25	0.43	0.21	0.87	0.90	0.09	0.14	1.00		
Bi	0.61	-0.61	0.71	-0.55	0.28	0.47	-0.56	0.95	0.00	0.91	0.00	0.32	0.91	0.79	-0.41	0.28	0.58	0.98	0.88	0.06	0.02	0.87	1.00	
U	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

Tabla 26. Resultados de la correlación de Person "r" de la unidad de basaltos de olivino. El hierro total viene expresado como Fe₂O₃.

Tabla 27. Resultados de la correlación de Person "r" de la unidad de andesitas – basaltos. El hierro total viene expresado como Fe₂O₃.

	SiO2	TiO2	Al2O3	Fe2O3	MnO	MgO	CaO	K2O	P2O5	Rb	\mathbf{Sr}	Ba	Zr	Nb	Cr	Cu	Zn	Th	Pb	s	As	Mo	Bi	U
SiO2	1.00																							
TiO2	0.48	1.00																						
Al2O3	-0.34	-0.60	1.00													Alta O	orrela	icion						
Fe2O3	-0.34	0.26	0.22	1.00																				
MnO	-0.36	-0.22	0.67	0.69	1.00											Muy	Alta C	orrela	cion					
MgO	-0.06	-0.28	0.03	-0.23	-0.22	1.00																		
CaO	-0.28	-0.56	0.90	0.15	0.77	-0.18	1.00									Correl	acion	Negat	tiva					
K2O	-0.49	-0.64	0.89	0.34	0.66	-0.15	0.82	1.00																
P2O5	0.38	0.95	-0.52	0.21	-0.22	-0.48	-0.46	-0.52	1.00															
Rb	-0.52	-0.75	0.57	-0.14	0.47	0.32	0.66	0.42	-0.75	1.00														
Sr	-0.19	0.51	-0.10	0.89	0.32	-0.23	-0.24	0.07	0.48	-0.51	1.00													
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00												
Zr	0.33	0.35	-0.54	-0.17	-0.31	0.58	-0.56	-0.78	0.10	0.00	-0.08	0.00	1.00											
Nb	-0.11	-0.29	0.38	-0.29	0.29	0.22	0.59	0.17	-0.29	0.67	-0.60	0.00	0.02	1.00										
Cr	-0.08	0.29	0.33	0.07	0.13	-0.21	0.26	0.09	0.41	0.04	0.04	0.00	-0.13	0.33	1.00									
Cu	-0.56	-0.52	0.45	0.23	0.70	-0.25	0.66	0.45	-0.46	0.77	-0.16	0.00	-0.22	0.42	0.03	1.00								
Zn	-0.60	-0.24	0.62	0.80	0.90	-0.07	0.62	0.67	-0.25	0.41	0.46	0.00	-0.32	0.22	0.16	0.62	1.00							
Th	-0.76	-0.79	0.43	0.19	0.28	0.15	0.31	0.66	-0.72	0.47	0.06	0.00	-0.43	-0.16	-0.38	0.43	0.43	1.00						
Pb	-0.44	0.25	-0.07	0.86	0.28	-0.09	-0.24	0.17	0.21	-0.35	0.93	0.00	-0.12	-0.59	-0.11	-0.05	0.54	0.35	1.00					
s	0.09	0.57	-0.44	0.58	-0.09	-0.09	-0.62	-0.29	0.50	-0.68	0.85	0.00	0.21	-0.86	-0.20	-0.43	0.00	-0.03	0.77	1.00				
As	-0.50	-0.66	0.27	-0.20	0.06	0.66	0.23	0.33	-0.69	0.60	-0.32	0.00	-0.03	0.40	-0.36	0.14	0.17	0.60	-0.09	-0.37	1.00			
Mo	0.73	0.10	-0.41	-0.64	-0.54	0.45	-0.38	-0.64	-0.09	-0.07	-0.56	0.00	0.70	0.11	-0.27	-0.37	-0.67	-0.51	-0.61	-0.17	-0.06	1.00		
Bi	-0.69	-0.79	0.37	0.15	0.21	0.18	0.24	0.60	-0.74	0.42	0.04	0.00	-0.39	-0.22	-0.47	0.37	0.35	0.99	0.34	0.00	0.59	-0.42	1.00	
U	-0.60	-0.80	0.62	-0.07	0.33	-0.10	0.66	0.81	-0.62	0.55	-0.28	0.00	-0.76	0.29	-0.13	0.47	0.35	0.75	-0.09	-0.51	0.61	-0.54	0.71	1.00

Tabla 28. Resultados de la correlación de Person "r" de la unidad de depósitos piroclásticos. El hierro total viene expresado como Fe₂O₃.

	\$:02	T:02	41203	Fe203	MnO	MaO	CaO	K20	P205	Ph	S.,	P.	7.	Nh	Cr	Cn	7.	ть	Ph	C	Ac	Mo	D;	TI
8:02	1.002	1102	AI203	16203	MIIO	MgO	CaU	R20	1203	KU	51	Da	21	140	CI	Cu	Zii	11	10	3	ла	MO	ы	U
5102	0.22	1.00																						
1102	0.55	1.00	1.00													Alta (
AI203	0.53	0.04	1.00	4.00												Alla	Joneia	icion						
Fe2O3	0.00	0.44	-0.50	1.00																				
MnO	0.06	-0.52	0.46	-0.12	1.00											Muy.	Alta C	orrela	cion					
MgO	0.07	0.56	-0.06	0.43	0.02	1.00																		
CaO	0.56	-0.21	-0.13	0.22	-0.05	-0.23	1.00									Correl	lacion	Nega	tiva					
K2O	0.51	-0.19	-0.29	0.35	-0.02	-0.10	0.94	1.00																
P2O5	0.10	-0.01	0.68	-0.07	0.70	0.28	-0.41	-0.36	1.00															
Rb	0.19	0.35	-0.64	0.37	-0.77	0.12	0.52	0.60	-0.76	1.00														
Sr	0.58	-0.31	0.10	-0.01	0.04	-0.61	0.85	0.78	-0.25	0.28	1.00													
Ba	0.13	-0.67	0.54	-0.84	0.44	-0.41	0.13	-0.05	0.13	-0.45	0.23	1.00												
Zr	-0.53	-0.04	-1.00	0.49	-0.46	0.06	0.13	0.29	-0.68	0.64	-0.10	-0.54	1.00											
Nb	-0.28	0.10	0.16	-0.59	-0.31	0.14	-0.46	-0.63	-0.15	-0.11	-0.57	0.40	-0.16	1.00										
Cr	-0.07	-0.37	-0.14	0.20	0.63	0.18	-0.01	0.26	0.41	-0.21	0.02	-0.09	0.14	-0.62	1.00									
Cu	0.02	-0.22	-0.06	0.31	0.07	0.10	0.52	0.45	0.08	0.16	0.29	0.05	0.06	-0.19	-0.06	1.00								
Zn	-0.31	-0.49	0.29	-0.05	0.78	-0.05	-0.33	-0.23	0.80	-0.75	-0.13	0.17	-0.29	-0.33	0.64	0.18	1.00							
Th	0.11	0.13	-0.28	-0.06	-0.38	-0.36	0.17	0.09	-0.73	0.33	0.21	-0.03	0.28	0.11	-0.36	-0.58	-0.70	1.00						
Pb	0.19	0.03	0.38	-0.27	0.22	-0.35	-0.17	-0.32	-0.03	-0.43	0.05	0.26	-0.38	0.13	-0.23	-0.65	-0.15	0.67	1.00					
s	0.16	0.50	0.53	-0.11	-0.07	0.09	-0.56	-0.52	0.59	-0.30	-0.24	-0.24	-0.53	0.02	-0.07	-0.31	0.24	-0.34	0.04	1.00				
As	0.72	-0.01	0.18	-0.01	-0.11	0.04	0.83	0.76	-0.15	0.48	0.66	0.25	-0.18	-0.18	-0.11	0.56	-0.32	-0.14	-0.37	-0.23	1.00			
Mo	0.25	-0.25	0.04	0.31	0.69	0.15	0.34	0.37	0.14	-0.26	0.19	0.11	-0.04	-0.45	0.49	0.01	0.20	0.16	0.37	-0.51	0.05	1.00		
Bi	0.56	-0.35	0.25	0.15	0.64	-0.14	0.60	0.68	0.32	-0.12	0.68	0.18	-0.25	-0.78	0.64	0.22	0.38	-0.18	0.01	-0.16	0.47	0.65	1.00	
U	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00