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Al Profesor Otilio Olgúın por enseñarme a nadar. El nadar ha sido para mi una
gran terapia en estos últimos años. Pero no solo el nadar, sino también el contar
con un gran equipo con quienes he viajado a diversas competencias: Juanita,
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ABSTRACT

We study two elliptic problems with critical Sobolev exponent. In the first one,
we show that the problem

−∆u = |u|
4

N−2u in Ω, u = 0 on ∂Ω,

has at least

max{cat(Θ,Θ rBrM), cupl(Θ,Θ rBrM) + 1} ≥ 2

pairs of nontrivial solutions in every domain Ω obtained by deleting from a given
bounded smooth domain Θ ⊂ RN a thin enough tubular neighborhood BrM of
a closed smooth submanifold M of Θ of dimension ≤ N − 2, where ”cat” is the
Lusternik-Schnirelmann category and ”cupl” is the cup-length of the pair.

For the second one, we consider a compact Riemannian manifold (M, g) without
boundary of dimensionm ≥ 3 and under some symmetry assumptions, we establish
existence and multiplicity of positive and sign changing solutions to the following
Yamabe type equation

−divg(a∇u) + bu = c|u|2∗−2u on M

where divg denotes the divergence operator on (M, g), a, b and c are smooth func-
tions with a and c positive, and 2∗ = 2m

m−2
denotes the critical Sobolev exponent.

In particular, if Rg denotes the scalar curvature, we give some examples where the
Yamabe equation

−4(m− 1)

m− 2
∆gu+Rgu = κu2∗−2 on M.

admits a prescribed number of sign changing solutions. We also study the lack
of compactness of these problems in a symmetric setting and how the symmetries
restore it at some energy levels. This allows us to use a suitable variational principle
to show the existence and multiplicity of such solutions.
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INTRODUCCIÓN (SPANISH
VERSION)

En el presente trabajo consideramos el problema anisotrópico con exponente cŕıtico

− divg(a∇gu) + bu = c|u|2∗−2u, en M (1)

donde (Mm, g) es una variedad Riemanniana, divg denota el gradiente respecto a
la métrica g, a, b, c ∈ C∞(M) y 2∗ = 2m/(m−2) es el exponente cŕıtico de Sobolev
del encaje H1

g (M) ↪→ Lpg(M). Este problema es una generalización del famoso
problema de Yamabe, que consiste en encontrar métricas que sean conformes con
g y para las cuales la curvatura escalar sea constante. Este problema resulta
ser equivalente a resolver un problema de exponente cŕıtico de la forma arriba
mencionada.

Derivados de esta formulación, distinguimos dos casos. El primero se obtiene
al considerar M = Ω como un abierto acotado de Rm con frontera suave, donde
a Rm lo dotamos de la metrica plana estándard. El problema con condiciones de
frontera {

−∆u = |u|2∗−2u en Ω,
u = 0 sobre ∂Ω,

se conoce como el problema de Bahri-Coron. En el caso en que (M, g) sea una
variedad riemanniana compacta y sin frontera, el problema

∆gu+
m− 2

4(m− 1)
Rgu = κ |u|2

∗−2 u, en M,

donde ∆g = −divg∇g es el operador de Laplace-Beltrami, Rg denota la curvatura
escalar y κ es una constante, es el problema de Yamabe clásico.

La principal dificultad de este tipo de problemas se debe a la falta de compaci-
dad. En efecto, ya sea que M se trate de una variedad Riemanniana compacta o
un dominio acotado y suave de Rm, el encaje de Sobolev H1

g (M) ↪→ L2∗
g (M) es con-

tinuo pero no es compacto. Esto último se debe a la invariancia bajo dilataciones
propia de este tipo de problemas. En ambos casos nos interesa obtener resulta-
dos de multiplicidad para soluciones positivas y que cambian de signo. Aunque
la multiplicidad de soluciones positivas para este problema es bien conocido (ver
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la Sección 1.1), se sabe muy poco sobre soluciones nodales al problema de Yama-
be. Obtendremos no sólo múltiples soluciones nodales para este problema, sino
también para el problema más general (1) bajo restricciones adecuadas en los coe-
ficientes a, b y c, y bajo condiciones de simetŕıa para la variedad (M, g). Los
resultados principales de esta tesis, aqúı ampliados, fueron escritos junto con mi
tutora de doctorado y están inclúıdos en los art́ıculos [26, 27].

Esta tesis está organizada como sigue. En el caṕıtulo 1 damos una breve in-
troducción histórica a ambos problemas y establecemos los resultados principales.
El primer resultado es sobre multiplicidad de soluciones positivas al problema de
Bahri-Coron, considerando dominios suaves y acotados a los que se les ha removido
una vecindad tubular suficientemente delgada de una subvariedad encajada en di-
cho dominio. Este resultado mejora al dado en [29] en la ausencia de simetŕıas en
algunos casos interesantes. En la subsecuente sección del mismo caṕıtulo estable-
cemos dos resultados de multiplicidad de soluciones nodales para el problema gen-
eral (1) en una variedad Riemanniana compacta y sin frontera, obteniendo como
corolarios la existencia de una infinidad de soluciones nodales para la ecuación de
Yamabe en el caso que la variedad tenga muchas simetŕıas, y, además, un resul-
tado en el que establecemos la existencia de un número prescrito de soluciones
de este tipo en problemas menos simétricos. Inclúımos además una sección con
una observación sobre la no existencia de soluciones de enerǵıa mı́nima para al-
gunos problemas de tipo Brezis-Nirenberg [19], que son, asimismo, derivados de la
ecuación general (1). En la última sección de este caṕıtulo proponemos algunos
problemas abiertos que se desprenden de la presente investigación y que nos gus-
taŕıa seguir estudiando. En el caṕıtulo 2 damos el planteamiento variacional al
problema de Bahri-Coron y probamos el resultado de multiplicidad de soluciones
establecido anteriormente en el caṕıtulo 1. En el tercer caṕıtulo damos el corre-
spondiente planteamiento variacional al problema general (1) y establecemos dos
resultados clave para la obtención de múltiples soluciones nodales: Un teorema
de compacidad tipo Struwe [94] para el problema anisotrópico con simetŕıas, el
cual nos permitirá restaurar bajo ciertas condiciones la compacidad, y un princi-
pio variacional para soluciones que cambian de signo, similar al dado por Clapp
y Pacella en [31] (ver los teoremas 3.1.1 y 3.1.2 más adelante). Pospondremos
la prueba de estos resultados para el caṕıtulo 4 y el apéndice C respectivamente.
En la siguiente sección, probamos los resultados principales del caṕıtulo usando
el teorema de compacidad y el principio variacional anteriormente mencionados,
mientras que en la última sección del mismo probamos el resultado de no existencia
para soluciones de enrǵıa mı́nima. El caṕıtulo 4 está enteramente orientado a la
prueba del teorema de compacidad 3.1.1. Agregamos tres apéndices: en el primero,
damos una breve introducción a la teoŕıa de integración sobre variedades rieman-
nianas y a los espacios y encajes de Sobolev asociados. En la primera sección del
apéndice B recordamos la definición de la categoŕıa de Lusternick-Schnirelmann y
su relación con el cup-length, dando asimismo las herramientas necesarias para pro-
bar el resultado de existencia de múltiples soluciones al problema de Bahri-Coron;
en la segunda sección damos la construcción del transfer de punto fijo adecuada a
nuestras necesidades y enunciamos sus principales propiedades. Finalmente, en el
tercer y último apéndice probamos el principio variacional para soluciones nodales
establecido en el caṕıtulo 3.



PREFACE (ENGLISH VERSION)

In this work we consider the general anisotropic critical Sobolev exponent problem

− divg(a∇gu) + bu = c|u|2∗−2u, on M (2)

where (Mm, g) is a Riemannian manifold, divg denotes the gradient with respect
to the metric g, a, b, c ∈ C∞(M) and 2∗ = 2m/(m − 2) is the critical Sobolev
exponent of the imbedding H1

g (M) ↪→ Lpg(M). This problem is a generalization of
the so called Yamabe problem consisting in finding metrics conformal to g such
that the scalar curvature is constant. It turns out that solving this problem is
equivalent to solving a critical exponent elliptic PDE in the form (2).

Derived from the above formulation, we distinguish two cases. In the first
one, taking M = Ω as an smooth and bounded domain in Rm with the standard
Euclidean metric, the boundary problem{

−∆u = |u|2∗−2u in Ω,
u = 0 on ∂Ω,

is known as the Bahri-Coron problem. In case (M, g) is a compact Riemannian
manifold without boundary, the problem

∆gu+
m− 2

4(m− 1)
Rgu = κ |u|2

∗−2 u, on M,

where ∆g = −divg∇g is the Laplace-Beltrami operator, Rg denotes the scalar
curvature and κ is a constant, is just the classical Yamabe problem.

The main difficulty in this kind of problems is the lack of compactness. Indeed,
whether M is a compact Riemannian manifolds or a bounded smooth domain of
Rm, the imbedding H1

g (M) ↪→ L2∗
g (M) is continuous but not compact, due to

the invariance under dilations. In both cases we are interested in obtaining mul-
tiplicity of positive and sign-changing solutions. Though multiplicity of positive
solutions to this problem is well understood (see Section 1.1), almost nothing is
known about nodal solutions to the Yamabe Problem. In this thesis we will also
obtain multiplicity of sign-changing solutions to the more general problem (2) un-
der suitable restrictions on the coefficients a, b and c, and under some symmetry
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assumptions on the manifold (M, g). The main results of this thesis, here revisited
and expanded, were written jointly with my PhD advisor are contained in the
papers [26, 27].

This thesis is organized as follows. In Chapter 1 we give a brief historical back-
ground of both problems and state the main results. The first one is a multiplicity
of positive solutions to the Bahri-Coron problem on domains obtained by remov-
ing a thin enough tubular neighborhood of a submanifold imbedded in a smooth
bounded domain in the Euclidean space. This result improves the one given in
[29] in the absence of symmetries in some interesting situations. In the following
section we state two results about multiplicity of sign-changing solution to the
more general problem (2) on a compact Riemannian manifold without boundary,
obtaining as corollaries the existence of an infinite number of solutions to the Yam-
abe problem in case we have a lot of symmetries, and the existence of a prescribed
number of sign changing solutions in less symmetric cases. We also include a
section with a remark about the nonexistence of ground state solutions to some
Brezis-Nirenberg type problems [19] derived from equation (2). In the final section
of this chapter we propose some open problems derived from this work, which are
interesting for further research. In Chapter 2 we set the variational framework
to prove the multiplicity result to the Bahri-Coron problem stated in Chapter 1.
In Chapter 3 we begin with the variational setting of the problem and state two
key ingredients to prove our multiplicity results: a Struwe compactness like theo-
rem [94] for the anisotropic problem with symmetries on Riemannian manifolds,
which allow us to restore compactness under suitable conditions, and a variational
principle for nodal solutions similar to the one given by Clapp and Pacella in [31]
(see Theorems 3.1.1 and 3.1.2 below). We postpone the proof of this results to
Chapter 4 and Appendix C respectively. In the following section of this same
chapter we prove the main results using these theorems and in the last section
we prove the nonexistence result. Chapter 4 is entirely devoted to the proof of
Theorem 3.1.1. There are three Appendixes: in the firs one we give a brief review
of integration on manifolds and Sobolev spaces and Sobolev imbeddings for Rie-
mannian manifolds. In the first section of Appendix B we recall the definition of
the Lusternick-Schnirelmann category and its relation with the cup-length, giving
the main tools to handle the proof of the multiplicity result for the Bahri-Coron
problem, while in the second section we give the construction of the fixed point
transfer we need in our situation, enouncing its general properties. Finally, in
Appendix C we prove the variational principle for sign changing solutions.
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CHAPTER 1

INTRODUCTION TO THE PROBLEM

In this work we consider the general anisotropic critical Sobolev exponent problem

− divg(a∇gu) + bu = c|u|2∗−2u, on M (℘g,a,b,c)

where (Mm, g) is a Riemannian manifold, divg denotes the divergence and ∇g the
gradient with respect to the metric g, a, b, c ∈ C∞(M) and 2∗ = 2m/(m− 2) is the
critical Sobolev exponent of the imbedding H1

g (M) ↪→ Lpg(M). In case M = Ω is
an smooth and bounded open subset of Rm with the standard Euclidean metric,
the boundary problem {

−∆u = |u|2∗−2u in Ω,
u = 0 on ∂Ω,

is known as the Bahri-Coron problem. In case (M, g) is a compact Riemannian
manifold without boundary, the problem

∆gu+
m− 2

4(m− 1)
Rgu = κ |u|2

∗−2 u, on M,

where ∆g = −divg∇g is the Laplace-Beltrami operator, Rg denotes the scalar
curvature and κ is a constant, is the so-called Yamabe problem.

The main difficulty in this kind of problems is the lack of compactness. Indeed,
whether M is a compact Riemannian manifolds or a bounded smooth subset of
Rm, the imbedding H1

g (M) ↪→ L2∗
g (M) is continuous but not compact, due to the

invariance under dilations. In both cases we are interested in obtaining multiplicity
of positive and sign-changing solutions. We will also obtain multiplicity of sign-
changing solutions to the more general problem (℘g,a,b,c) with suitable restrictions
on the coefficients a, b and c. The main results of this thesis, here revisited and
expanded, were written jointly with my PhD advisor are contained in the papers
[26, 27].
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The Yamabe and the Bahri-Coron Problems: Historical background

1.1 The Yamabe and the Bahri-Coron Problems:

Historical background

1.1.1 The Yamabe Problem

Given a closed Riemannian manifold (M, g) of dimension m ≥ 3, the Yamabe
problem consists in finding a metric conformal to g with constant scalar curva-
ture. In 1960, H. Yamabe [103] attempted to solve this problem using calculus
of variations techniques, but his proof had a gap, discovered by N. Trudinger [99]
in 1968. Trudinger was able to repair the proof, but only with very restrictive
hypothesis on the Riemannian manifold (M, g). In 1976, T. Aubin discovered the
difficulties of the problem and extended Trudinger’s result for a large class of closed
Riemannian manifolds. The remaining cases were studied by R. Schoen [96] and
his theorem completed the solution of the Yamabe problem.

Writing the conformal metric as ĝ = u4/(m−2)g with u ∈ C∞(M), u > 0, the
scalar curvature Rĝ satisfies the equation

Rĝu
2∗ = Rgu−

4(m− 1)

m− 2
∆gu. (1.1)

So, the Yamabe Problem is equivalent to solving (1.1) with constant Rĝ ≡ κ, where
the solution u must be positive and smooth. This leads to proving the existence
of a positive solution of the PDE

∆gu+
m− 2

4(m− 1)
Rgu = κ |u|2

∗−2 u, u ∈ C∞(M), (1.2)

with κ ∈ R.

Problem (1.2) has a natural variational formulation in terms of the Yamabe
functional

Yg(u) :=

∫
M
c−1
m |∇u|2 +Rgu

2dVg( ∫
M
|u|2∗dVg

)2/2∗
,

where cm = m−2
4(m−1)

. The proof of the existence of at least one positive solution to

problem (1.2) consist in showing that the infimum

Y (M, g) := inf
h∈[g]

∫
M
RhdVh

V ol(M,h)(m−2)/m
= inf

u∈C∞(M)
Yg(u)

is always attained by Yg [5, 96, 99, 103], where [g] denotes the conformal class of
g. This constant is called the Yamabe invariant or the Yamabe quotient and it
is conformally invariant, that is, if g1 and g2 are in the same conformal class [g],
then Y (M, g1) = Y (M, g2). Aubin [5] proved the following result.

Theorem 1.1.1 (Aubin, 1976) If (Sm, g0) denotes the unit round sphere, then
Y (M, g) ≤ Y (Sm, g0). Moreover, if we have the strict inequality, there is a positive
and smooth solution u to problem (1.2) with Rĝ = Y (M, g).



Introduction to the problem

To decide whether a Riemannian manifold satisfies the strict inequality or
not, lies in the heart of the problem. Aubin was able to construct “local” test
functions ϕ ∈ C∞(M) satisfying Yg(ϕ) < Y (Sm, g0), in case m ≥ 6 and M is not
locally conformally flat. As we have already mentioned, Schoen give a proof of
this inequality in the remainder cases and his theorem reads as follows.

Theorem 1.1.2 (Schoen, 1984) If M has dimension 3,4 or 5, or if M is locally
conformally flat, then Y (M, g) < Y (Sm, g0), unless it is conformally equivalent to
the round sphere (Sm, g0).

The proof of this theorem consisted in constructing a “global” test function such
that Yg(ϕ) < Y (Sm, g0). To this end, Schoen introduced two important new ideas.
First, he recognized the key role of the Green function for the operator ∆g +Rg; in
fact, his test function was simply the Green function with its singularity smoothed
out. Second, he discovered the unexpected relevance of the positive mass theorem
of general relativity, which was proved in dimensions 3 and 4 by Schoen and S.-T.
Tau [97, 98]. A curious feature of Schoen’s proof is that it works only in the cases
not covered by Aubin’s theorem. For more about the Yamabe Problem and its
solution, we refer the interested reader to the paper [69] or to the book [6] and the
references therein.

Multiplicity and uniqueness results are also very interesting. For instance, if the
Yamabe constant is negative, the Yamabe problem has a unique positive solution,
while for a zero Yamabe constant, the solution is unique up to a constant factor.
Another uniqueness result was obtained by Obata [87] in 1971, who showed that
if g is an Einstein metric, there exists a unique metric of constant scalar curvature
and unit volume. However, a richer set of solutions is obtained in the case of pos-
itive Yamabe constant. For example, the set of solutions of the Yamabe Problem
for the standard sphere (Sm, g0) is not compact. Ambrossetti and Malchiodi [2]
showed that the sphere (Sm, ĝ) has at least two solutions, where the metric ĝ is a
perturbation of the standard metric in Sm. This result was improved later by Berti
and Malchiodi in [13]. A very striking result was given by Pollack, who showed
in [86] the existence of a prescribed number of positive solutions to the Yamabe
problem with constant positive scalar curvature, for arbitrarily close metrics to
any given metric in the C0 topology. Khuri, Marques and Schoen [67] proved in
2009 that compactness of the set of positive solutions in the C2-topology for (M, g)
not conformally equivalent to the round sphere holds true up to dimension 24. In
contrast, Brendle [15] and Brendle and Marques [17] showed that compactness fails
in every dimensions grater than or equal to 25. For more about the compactness
problem, we recommend the article [67], the survey articles [78], [18] and [16] and
the references therein.

Concerning the qualitative behavior of the solutions, Hebey and Vaugon [59]
showed that, for any closed subgroup Γ of the group of isometries of (M, g) there
is a minimal Γ-invariant solution to the Yamabe problem. We recommend the
survey paper [58] and the references therein to learn more about the symmetric
Yamabe problem.

However, the question of multiplicity of nodal solutions to the Yamabe problem
is not yet well understood. Ammann and Humbert [4], based on the fact that the
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operator Lg := ∆g + cmRg has a discrete sprectrum

Spec(Lg) = {λ1(g), λ2(g), . . .},

where the eigenvalues satisfy

λ1(g) < λ2(g) ≤ λ3(g) ≤ · · ·λk(g) · · · → +∞

and inspired in the variational equality for the Yamabe constant

Y (M, g) = inf
ĝ∈[g]

λ1(ĝ)V ol(M, ĝ)2/m,

they defined the kth Yamabe invariant, k ≥ 2, as

Yk(M, g) = inf
ĝ∈[g]

λk(ĝ)V ol(M, ĝ)2/m

which is also a conformal invariant. The problem of finding nodal solutions is
closely related to the second Yamabe invariant. Indeed, it was proved by Ammann
and Humbert in [4] that the second invariant is never achieved by a Riemannian
metric. Nevertheless, allowing “generalized” metrics in the conformal class, they
showed that this infimum is achieved if the Yamabe invariant is nonnegative, M
not locally conformally flat and m ≥ 11. An extension of this result was given
later by El Sayed in [51]. In fact, a nodal solution to the Yamabe problems gives
rise to a generalized metric of the form ĝ = |u|2∗−2g. Notice ĝ is not a metric since
it is no longer smooth and it vanishes on the zero set of u. There are examples of
closed manifolds for which the second Yamabe invariant is never attained, even by
a generalized metric, as it is showed by the case of the sphere with the standard
metric. Using the approach of the second Yamabe invariant, Petean [83] and
Henry [60] showed the existence of nodal solutions on some product manifolds.
Other examples of existence results on nodal solutions to Yamabe-type equations
were given by Holcman [62, 63], Jourdain [65], Djadli-Jourdain [43] and Vétois
[100].

1.1.2 The Bahri-Coron Problem

The Yamabe problem on bounded smooth domains in Rm with Dirichlet boundary
condition is particularly interesting and it depends on the shape of the domain.
One of the first results is due to Pohozaev [85], who showed in 1965 that the
problem {

−∆u = |u|p−2u in Ω,
u = 0 on ∂Ω,

(1.3)

has no nontrivial solution if Ω is strictly starshaped and p ≥ 2∗. On the other
hand, the situation is completely different when Ω is an annulus

Ω := {x ∈ Rm : 0 < a < |x| < b}.

In this case, Kazdan and Warner [66] proved that the problem (1.3) has an infinite
number of radial solutions for every p > 2. The more general result on the existence
of at least one positive solution to this problem was given by Bahri and Coron [7].
They showed that if the domain has non trivial topology, then there exist a positive
solution to problem (1.3) for p = 2∗. Concretely, they proved the following.
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Theorem 1.1.3 (Bahri-Coron, 1988) If the reduced homology groups with co-
efficients in Z/2 of the domain satisfy H̃∗(Ω,Z/2) 6= 0, then, problem (1.3) with
p = 2∗ has at least one positive solution.

After this result, the Yamabe problem in smooth bounded domains in Rm is known
as the Bahri-Coron problem.

Nevertheless, nontrivial topology of the domain is not necessary for a solution
to exist. Examples of contractible domains for which problem the Bahri-Coron
problem has at least one nontrivial solution were given, for example, by Ding [42]
and Passaseo [82]. Concerning the multiplicity of positive and nodal solutions to
the Bahri-Coron problem, many result have been established in the presence of
symmetries (see for example [23, 24, 29, 35, 77, 82]). Multiplicity of positive and
nodal solutions under general conditions, as the one given by Bahri and Coron in
Theorem 1.1.3 is widely open.

1.2 Main results: Multiplicity of solutions to the

Bahri-Coron problem

Let Θ be a bounded smooth domain in RN , N ≥ 3, and let M be a compact smooth
submanifold of RN , without boundary, contained in Θ. Consider the problem{

−∆u = |u|2∗−2u in Θr,
u = 0 on ∂Θr,

(1.4)

where 2∗ := 2N
N−2

is the critical Sobolev exponent and

Θr := {x ∈ Θ : dist(x,M) > r}, r > 0.

Our aim is to establish multiplicity of solutions for r small.
If M is a point and r is small enough, Coron showed in [38] that this problem

has at least one positive solution. The existence of at least two solutions was
established by Clapp and Weth in [37]. More recently, Ge, Musso and Pistoia [53]
proved that the number of sign changing solutions becomes arbitrarily large as r
goes to zero. Their solutions are bubble-towers, i.e. they look like superpositions
of standard bubbles with alternating signs concentrating at the point M . Under
additional assumptions, positive and sign changing solutions which look like a sum
of standard bubbles one of which concentrates at the point M and the others at
some points in Θ r M were constructed in [30]. There are also various results
on the existence and shape of solutions to this problem when M is a finite set of
points and r is small enough, see e.g. [72, 73, 79, 89].

In contrast to this, if M has positive dimension only few results are known.
Hirano and Shioji established the existence of two solutions in an annular domain
with a thin straight tunnel in [61]. Some multiplicity results were recently obtained
by Clapp, Grossi and Pistoia in [29] when both Θ and M are invariant under the
action of some group of symmetries. They also showed that, without any symmetry
assumption, this problem has at least cat(Θ,Θr) positive solutions for small enough
r, where cat(Θ,Θr) is the Lusternik-Schnirelmann category of the pair (Θ,Θr).
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Here we show that for some domains there is an additional solution. We write
cupl(Θ,Θr) for the cup-length of the pair (Θ,Θr). The definitions of category and
cup-length are given in appendix B.1. We prove the following result.

Theorem 1.2.1 Assume that dimM ≤ N−2. Then there exists r0 > 0 such that,
if Ω is a bounded smooth domain in RN which satisfies

M ∩ Ω = ∅ and Θr ⊂ Ω ⊂ Θ,

for some r ∈ (0, r0), then problem{
−∆u = |u|2∗−2u in Ω,

u = 0 on ∂Ω,
(1.5)

has at least
max{cat(Θ,Θr), cupl(Θ,Θr) + 1} ≥ 2

pairs of nontrivial solutions.

It is well known that cat(Θ,Θr) ≥ cupl(Θ,Θr) (see Lemma B.1.1). So Theorem
1.2.1 improves Corollary 1.2 in [29] when cat(Θ,Θr) = cupl(Θ,Θr). There are some
interesting situations in which this occurs. For example, the following ones.

Example 1.2.2 If M is contractible in Θ, then cat(Θ,Θr) = cupl(Θ,Θr) = 1 for
r small enough.

Example 1.2.3 If Θ is a tubular neighborhood of M and cat(M) = cupl(M),
then cat(Θ,Θr) = cupl(Θ,Θr) = cupl(M) for r small enough.

Examples of manifolds M such that cat(M) = cupl(M) are those having the
homotopy type of a sphere Sk, of a real RP k, a complex CP k or a quaternionic
HP k projective space, or of a product of such spaces.

Note that both cat(Θ,Θr) and cupl(Θ,Θr) depend on the embedding of M into
Θ. For example, if M is the circle C := {(x1, x2, 0) ∈ R3 : x2

1 + x2
2 = 1} and Θ is

the torus {x ∈ R3 : dist(x,C) < 1
2
}, then Θ is a tubular neighborhood of M and

Example 1.2.3 gives

cat(Θ,Θr) = cupl(Θ,Θr) = cupl(S1) = 2

for r ∈ (0, 1
2
). On the other hand, if M is the circle {(x1, 0, x3) ∈ R3 : (x1 − 1)2 +

x2
3 = 1

4
}, then Example 1.2.2 gives cat(Θ,Θr) = cupl(Θ,Θr) = 1 for r ∈ (0, 1

4
).

Theorem 1.2.1 asserts the existence of three solutions in the first case, and two
solutions in the second one.

As we shall show in Proposition 2.3.1, at least cat(Θ,Θr) ≥ 1 solutions are
positive. Our methods do not allow us to conclude whether the additional solution
is sign changing or not.

We wish to stress the fact that multiplicity results for problem (1.5) are only
available for some particular types of domains. One expects to have multiple solu-
tions in every domain satisfying the hypothesis of the Bahri-Coron’s theorem, but,
as it was already mentioned in the previous section, the proof of this fact remains



Introduction to the problem

open. Classical variational methods cannot be applied to establish multiplicity
due to the lack of compactness of the associated energy functional. Under suitable
symmetry assumptions compactness is restored: if Ω is invariant under the action
of a group Γ of linear isometries of RN and every Γ-orbit in Ω is infinite, problem
(1.5) is known to have infinitely many Γ-invariant solutions [21]. Recently, Clapp
and Faya [23] considered domains having finite Γ-orbits and gave conditions for
the existence of a prescribed number of solutions.

In a non-symmetric setting, the Lyapunov-Schmidt reduction method has been
successfully applied to obtain multiplicity results for problem (1.4) when M is a
point or a finite set (see [53] and the references therein), but this method becomes
very hard to apply when M has positive dimension.

1.3 Main results: Multiplicity of nodal solutions

to the Yamabe problem

Let (M, g) be a closed Riemannian manifold of dimension m ≥ 3 and Γ be a
closed subgroup of the group of isometries Isomg(M) of (M, g). We denote by
Γp := {γp : γ ∈ Γ} the Γ-orbit of a point p ∈ M and by #Γp its cardinality. A
subset X of M is said to be Γ-invariant if Γx ⊂ X for every x ∈ X, and a function
f : X → R is Γ-invariant if it is constant on each orbit Γx of X.

We shall study the following Yamabe type equation{
− divg(a∇gu) + bu = c|u|2∗−2u,
u ∈ H1

g (M)Γ,
(1.6)

where ∇g denotes the gradient and divg the divergence operator on (M, g), a, b, c ∈
C∞(M) are Γ-invariant functions, a and c are positive on M, and

H1
g (M)Γ := {u ∈ H1

g (M) : u is Γ-invariant}.

For the definition and elementary properties of this the Sobolev spaces H1
g (M) and

H1
g (M)Γ, see Appendix A.

Set

µΓ
a,b(M, g) := inf

v∈H1
g (M)Γr{0}

∫
M

[a|∇gu|2 + b|u|2] dVg∫
M

[|∇gu|2 + |u|2] dVg
.

Observe that µΓ
a,b(M, g) > 0 if and only if the operator − divg(a∇g) + b is coercive

in H1
g (M)Γ; this means the existence of a positive constant C > 0 such that∫

M
a|∇u|2g + b|u|2dVg ≥ C‖u‖2

H1
g (M) for all u ∈ H1

g (M)Γ. If a ≡ c−1
m and b = Rg

then coercivity of −divg(a∇g) + b on H1
g (M)Γ implies the Yamabe invariant of

(M, g) is also positive (see [4])
We will prove the following result.

Theorem 1.3.1 If the operator −divg(a∇g) + b is coercive in H1
g (M)Γ and if

1 ≤ dim(Γp) < m for every p ∈ M , then problem (1.6) has at least one positive
solution and infinitely many sign-changing Γ-invariant solutions.

A special case is the following multiplicity result for the Yamabe problem (1.2).
Hereafter, we assume κ > 0.
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Corollary 1.3.2 If the operator ∆g + cmRg is coercive in H1
g (M)Γ and 1 ≤

dim(Γp) < m for all p ∈ M , then the Yamabe equation (1.2) has infinitely many
Γ-invariant sign-changing solutions in H1

g (M).

The following examples illustrate this result.

Example 1.3.3 S1 acts freely and isometrically on the round sphere S2k+1 =
(S2k+1, g0). So for k ≥ 1 the Yamabe equation (1.2) has infinitely many sign-
changing S1-invariantsolutions on S2k+1.

Example 1.3.4 Let (N, h) a Riemannian manifold of dimension n and f ∈ C∞(N)
be a positive function. Then S1 acts freely and isometrically on the warped prod-
uct N ×f S2k+1 = (N × S2k+1, g) by multiplication on the second factor, where
g = h+f 2g0. So, if k ≥ 0, 2k+n ≥ 2 and ∆g+cmRg is coercive in H1

g (N×fS2k+1)S
1
,

the Yamabe equation (1.2) has infinitely many S1-invariant sign-changing solutions
on N ×f S2k+1.

It was shown in [44] that the scalar curvatures Rh of N and Rh+f2g0
of N ×f

S2k+1 are related by the equation

2(2k + 1)

k + 1
∆hφ+Rhφ+ 2k(2k + 1)φ(k−1)/(k+1) = Rh+f2g0

φ,

where φ := fk+1.
As a special case we have that, if Rh > −2k(2k+1), the Yamabe equation (1.2)

has infinitely many S1-invariant sign-changing solutions on the product N×S2k+1.
This generalizes Theorem 1.2 in [83], which asserts the existence of one sign-
changing solution on N× S1.

Theorem 1.3.1 requires that the Γ-orbit of every point in M is infinite. Next,
we study a case in which M is allowed to have finite Γ-orbits. We consider the
following setting:

Let M be a closed smooth m-dimensional manifold and a, b, c ∈ C∞(M) be
such that a and c are positive on M . We fix an open subset Ω of M, a Riemannian
metric h on Ω and a compact subgroup Λ of Isomh(Ω) such that dim(Λp) < m
for all p ∈ Ω, the restrictions of a, b, c to Ω are Λ-invariant and the operator
−divh(a∇h) + b is coercive on the space C∞c (Ω)Γ of smooth Γ-invariant functions
with compact support in Ω. Under these assumptions, we will prove the following
multiplicity result.

Theorem 1.3.5 There exists an increasing sequence (`k) of positive real numbers,
depending only on (Ω, h), a, b, c and Λ, with the following property: For any Rie-
manniann metric g on M and any closed subgroup Γ of Isomg(M) which satisfy

1. g = h in Ω;

2. Γ is a subgroup of Λ and a, b, c are Γ-invariant;

3. −divg(a∇g) + b is coercive on H1
g (M)Γ ;
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4. min
p∈M

a(p)m/2 #Γp

c(p)
m−2

2
> `k;

problem (1.6) has at least k pairs of Γ-invariant solutions ±u1, . . . ,±uk such that
u1 is positive, u2, . . . , uk change sign, and∫

M

c |uj|2
∗
dVg ≤ `jS

m/2 for every j = 1, . . . , k, (1.7)

where S is the best Sobolev constant for the embedding D1,2(Rm) ↪→ L2∗(Rm).

If m ≥ 4, a = c ≡ 1 and ∆g + b is coercive on H1
g (M), Vétois showed that

problem (1.6) has at least n+2
2

solutions under the Brezis-Nirenberg-type hypoth-
esis that b(p0) < cmRg(p0) at some point p0 ∈ M [100], but nothing is said about
the sign of the solutions, except for the cases where the positive solution is known
to be unique. It is important to remark that the hypothesis considered by Vétois
are not satisfied by the Yamabe equation.

Theorem 1.3.5 provides sign-changing solutions for more general data, but sym-
metries are required. In fact, property (4) requires that the group Λ has large
enough subgroups. The group S1 has this property. Set Γn := {e2πij/n : j =
0, ..., n− 1}. The next application illustrates the role of the symmetries.

We derive the following multiplicity result for the Yamabe problem (1.2).

Corollary 1.3.6 Let (M,h) be a closed Riemannian manifold on which S1 acts
freely and isometrically, such that ∆h + cmRh is coercive on H1

h(M). Fix an open
S1-invariant subset Ω of M such that Rh > 0 on MrΩ. Then there exist a sequence
(`k) in (0,∞) and an open neighborhood O of h in the space of Riemannian metrics
on M with the C0-topology, with the following property: for every g ∈ O such that
g = h in Ω and Γn ⊂ Isomg(M) for some n > κ(m−2)/2`k, the Yamabe problem
(1.2) has at least k pairs of Γ-invariant solutions ±u1, . . . ,±uk such that u1 is
positive, u2, . . . , uk change sign, and∫

M

|uj|2
∗
dVg ≤ κ−1`jS

m/2 for every j = 1, . . . , k.

For instance, we may take Ω to be the complement of a closed tubular neighbor-
hood of an S1-orbit in (M,h) on which Rh > 0. Then MrΩ is S1-diffeomorphic to
S1×Bm−1, where Bm−1 is the closed unit ball in Rm−1. We choose n > κ(m−2)/2`k.
Then, if we modify the metric in the interior of the piece of M r Ω which corre-
sponds to {e2πiϑ/n : 0 ≤ ϑ ≤ 1} × Bm−1 and translate this modification to each
of the pieces corresponding to {e2πiϑ/n : j − 1 ≤ ϑ ≤ j} × Bm−1, j = 2, ..., n, we
obtain a metric g on M such that g = h in Ω and Γn ⊂ Isomg(M). If g is chosen to
be close enough to h, then the previous corollary asserts the existence of k pairs
of solutions to the Yamabe problem (1.2). This way we obtain many examples of
Riemannian manifolds with finite symmetries which admit a prescribed number
of solutions to the Yamabe problem. As far as we know, this is the first result of
multiplicity of nodal solutions to the Yamabe equation.

The main ingredients to prove these theorems are a compactness result and a
variational principle for sign changing critical points. The first one is Theorem
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3.1.1, stated in Chapter 3 and proved in Chapter 4. The variational principle we
use is an slight modification of the Clapp-Pacella’s variational principle for sign
changing solutions [31, Theroem 3.7]. In Appendix C we give the proof of the
fundamental lemma needed to follow the lines of the proof given in section 3 of
[31]

An interesting phenomenon about the existence of ground state solutions occurs
when the function b in equation (1.6) is taken strictly above or below cmRg. We
have the following.

Theorem 1.3.7 For the round sphere (Sm, g0) with m ≥ 3, equation

∆gu+ bu = |u|2∗−2u on (Sm, g0), (1.8)

admits no ground state solutions for any function b ∈ C∞(Sm) such that b ≥
cmRg0 = m(m−2)

4
and b 6≡ cmRg0, i.e.,

inf
u∈C∞(Sm)

u6=0

∫
Sm
[
|∇g0u|2g0

+ bu2
]
dVg0(∫

Sm |u|2
∗dVg0

)2/2∗

is not attained.

Following Aubin’s ideas in [5] in case b is taken strictly below cmRg0 , one can
show that equation (1.8) always admits a ground state solution. From this it is
evident that the Yamabe equation is a double limiting problem, first because of
the presence of the critical Sobolev exponent and, second, for the presence of the
function cmRg.

1.4 Open problems and further research

In this subsection we indicate some of the open problems which are motivated by
this work and which we plan to continue investigating.

1. It would be interesting to know the sign of the extra solution to the Bahri-
Coron problem obtained in Theorem 1.2.1. Our methods were not enough
to do so. To prove the existence of nodal solutions is a very difficult problem
due to the lack of compactness and little progress has been made in this
direction, for example, when the domain has many symmetries [23, 24, 29].

2. The supercritical Yamabe problem is difficult to handle due to the lack of a
Sobolev imbedding. The method of reducing a supercritical exponent prob-
lem to a critical or subcritical one via harmonic morphisms, has proved to
be a powerful tool to handle supercritical nonlinearities on bounded and
smooth domains (Cf. [90, 25] and more recently the survey paper [32]). In
case of supercritical problems on Riemannian manifolds, recent progress has
been made, for example, in the case of perturbations of the Yamabe problem
[28, 52, 84]. The important feature of this technique is that one reduces an
equation of the form

∆gu+ u = |u|p−2u, on (Mm, g)
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with p > 2m/(m− 2), m = dimM , to an anisotropic problem of the type

− divh(a∇hv) + b v = c |u|p−2u on (Nn, h) (1.9)

with the same exponent satisfying now that p ≤ 2n/(n − 2), where our
techniques could apply. For example, in [28] the case when M is a warped
product and the reduction is performed by the projection onto the first factor,
leads to an anisotropic problem of the form (1.9) with a and c positive. In
this case, the map M → N is not a harmonic morphism, for it does not
preserve the Laplace-Beltrami operator [9]. We would like to study more
general maps between Riemannian manifolds conserving a divergence type
operator, giving a relatively easy condition to decide whether a map is of this
kind or not, like the Baird- Eells formula [8], and apply then Theorem 1.3.5
to prove the existence of nodal solutions as it was done in [25, 34]. Some of
this type of maps were studied by Loubeau [74, 75] in case of p-Laplacian
preserving maps and more recently by Ou [88] for maps taking a divergence
type operator into a Laplace-Beltrami operator.

3. Theorem 1.3.7 suggests the problem of nonexistence of ground state solutions
to the equation

∆u+ bu = |u|2∗−2u, on M,

where b ∈ C∞(M) is such that b > cmRg. It would be interesting to know if
the Sobolev type constant

Sb := inf
u∈C∞(M)

u6=0

∫
M

[
|∇gu|2g + bu2

]
dVg(∫

M
|u|2∗dVg

)2/2∗

is equal to ScmRg or if it stabilizes above some critical function. The main
difficulty here is to find suitable tests functions to prove or disprove the
equality. We believe this is closely related to the solution of the Yamabe
problem given by Aubin and Schoen.

4. It could be interesting to obtain a global compactness result on closed Rie-
mannian manifolds in the presence of symmetries like the one obtained in
[24]. In the non symmetric case a compactness result has been obtained in
[49, Chapter 3]. In this same direction, we would like to study the Yam-
abe problem for non complete manifolds, in which the injectivity radius is
positive and the scalar and Ricci curvatures are bounded. An example of
this situation is provided by considering smooth open subsets of a closed
Riemannian manifold. This could be useful to get multiplicity results to the
Dirichlet problem {

∆gu = |u|p−2u in Ω,
u = 0 on ∂Ω,

(1.10)

where Ω is an open subset of a closed manifold M with nonempty smooth
boundary and p > 2.

This thesis is organized as follows. In Chapter 2 we set the variational frame-
work to prove Theorem 1.2.1. At the end of this chapter we prove examples 1.2.2
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and 1.2.3. In Chapter 3 we begin with the variational setting of the problem and
state two key ingredients to prove Theorems 1.3.1 and 1.3.5: a compactness theo-
rem for the anisotropic problem with symmetries on Riemannian manifolds, and
a variational principle for nodal solutions similar to the one given by Clapp and
Pacella in [31] (see Theorems 3.1.1 and 3.1.2 below). We postpone the proof of
this results to Chapter 4 and Appendix C. In section 3.2 we prove Theorems 1.3.1
and 1.3.5, and Corollary 1.3.6. In the following section we prove the nonexistence
result Theorem 1.3.7 translating the problem on the sphere to a critical exponent
problem on Rm, via the stereographic projection. Chapter 4 is entirely devoted
to the proof of Theorem 3.1.1. In the first section of this chapter, we develop the
main tools we need to prove it and, among them, we state and prove a compar-
ison result between the Lp-norms in the space H1

g (M) and the usual Lp-norms
on Lp(Rm). After that, we present a reduction argument consisting in reducing
the compactness problem for the functional associated to problem 1.6 to a simpler
functional with b = 0. In the final section of this chapter we give a complete
proof of the compactness theorem 3.1.1. There are three Appendices: in the firs
one we give a brief review of integration on manifolds and Sobolev spaces and
Sobolev imbeddings for Riemannian manifolds. In the first section of Appendix
B we recall the definition of the Lusternik-Schnirelmann category and its relation
with the cup-length, giving the main tools to handle the proof of Theorem 1.2.1,
while in the second section we give the construction of the fixed point transfer we
need in our situation, and state its general properties. Finally, in Appendix C we
prove the variational principle Theorem 3.1.2.



CHAPTER 2

MULTIPLE SOLUTIONS TO THE
BAHRI-CORON PROBLEM

This chapter is devoted to the proof of Theorem 1.2.1. Our proof of this theorem
uses variational methods and some tools from algebraic topology which include the
fixed point transfer introduced by Dold in [46]. Key elements of our variational
approach are a refinement of the deformation lemma which was proved in [37] and
a lower bound for the energy of sign changing solutions to the limit problem in
RN obtained by Weth in [101]. These results are stated in section 2.1. Section
2.2 is devoted to the construction of two auxiliary maps which play an important
role in the proof of Theorem 1.2.1. The proof of this theorem and of Examples
1.2.2 and 1.2.3 are given in section 2.3. In Appendix B we recall the definition and
properties of the Lusternik-Schnirelmann category, the cup-length and the fixed
point transfer. In this chapter, m will denote the dimension of a submanifold in
RN .

2.1 Variational setting

Let Ω be a bounded smooth domain in RN . We consider the Sobolev space H1
0 (Ω)

with the norm

‖u‖ :=

(∫
Ω

|∇u|2
)1/2

.

We write |u|p for the Lp-norm of u, 1 ≤ p ≤ ∞.
The solutions to problem (1.5) are the critical points of the energy functional

J : H1
0 (Ω)→ R given by

J(u) :=
1

2
‖u‖2 − 1

2∗
|u|2

∗

2∗ .

The nontrivial solutions are the critical points of the restriction of J to the Nehari
manifold

N := {u ∈ H1
0 (Ω) : u 6= 0, ‖u‖2 = |u|2∗2∗},

13
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which is a C2-manifold, radially diffeomorphic to the unit sphere in H1
0 (Ω) .

Recall that J is said to satisfy the Palais-Smale condition (PS)c on N at the
level c ∈ R if every sequence (uk) in N such that J(uk) → c and ∇NJ(uk) → 0
contains a convergent subsequence. Here ∇NJ denotes the gradient of the restric-
tion of J to N , i.e. ∇NJ(u) is the orthogonal projection of∇J(u) onto the tangent
space to N at u.

We write C1
0

(
Ω
)

for the Banach space of C1-functions on Ω which vanish on
∂Ω, endowed with the norm

‖u‖C1 := |u|∞ + |∇u|∞ .

For d ∈ R we write N d := {u ∈ N : J(u) ≤ d}. The following refinement of the
deformation lemma was proved in [37, Lemma 1].

Lemma 2.1.1 Assume that J has no critical values in the interval [b, d] and that
it satisfies (PS)c for every b ≤ c ≤ d. Then there exists a continuous map

η : [0, 1]×N d → N d

with the following properties:

(a) η(0, u) = u and η(1, u) ∈ N b for every u ∈ N d, and η(t, v) = v for every
v ∈ N b, t ∈ [0, 1].

(b) If u ∈ N d ∩ C1
0(Ω), then η(t, u) ∈ C1

0(Ω) for every t ∈ [0, 1].

(c) If B ⊂ N d∩C1
0(Ω) is bounded in C1

0(Ω), then B̂ := {η(t, u) : u ∈ B, t ∈ [0, 1]}
is bounded in C1

0(Ω).

(d) If u ∈ N d ∩ C1
0(Ω) and u ≥ 0, then η(t, u) ≥ 0 for every t ≥ 0.

Next, we consider the limit problem

−∆u = |u|2∗−2u, u ∈ D1,2
(
RN
)
, (2.1)

where the space D1,2(RN) is the completion of the space C∞c (RN) with respect

to the norm ‖u‖ :=
(∫

RN |∇u|
2
)1/2

. The energy functional J∞ : D1,2
(
RN
)
→ R

associated to (2.1) is given by

J∞(u) :=
1

2
‖u‖2 − 1

2∗
|u|2

∗

2∗ ,

and the Nehari manifold is

N∞ := {u ∈ D1,2
(
RN
)

: u 6= 0, ‖u‖2 = |u|2
∗

2∗}.

As usual we consider H1
0 (Ω) as a Hilbert subspace of D1,2

(
RN
)

via trivial exten-
sions. Then J is the restriction of J∞ to H1

0 (Ω) and N = N∞∩H1
0 (Ω) . The radial

projection ρ : D1,2
(
RN
)
\ {0} → N∞ onto the Nehari manifold is given by

ρ(u) =

(
‖u‖2

|u|2∗2∗

)N−2
4

u.
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Set
c∞ := inf

N∞
J∞.

The standard bubbles

Uλ,y(x) = [N(N − 2)]
N−2

4
λ
N−2

2

(λ2 + |x− y|2)
N−2

2

λ ∈ (0,∞), y ∈ RN ,

are the only positive solutions to problem (2.1). They satisfy J(Uλ,y) = c∞. It is
a well known fact that

inf
N
J = inf

N∞
J∞ = c∞,

independently of Ω, and that c∞ is not attained by J on N if Ω is bounded, see
e.g. [95, 102].

We consider the barycenter map β : H1
0 (Ω) \ {0} → RN , given by

β(u) :=

∫
RN x|u(x)|2∗dx∫
RN |u(x)|2∗dx

.

The following fact will be used below.

Lemma 2.1.2 Let X be a closed subset of RN such that Ω ∩X = ∅. Then

cX := inf{J(u) : u ∈ N , β(u) ∈ X} > c∞.

Proof. Arguing by contradiction, assume there exist uk ∈ N with β(uk) ∈ X
and J(uk) → c∞. Using Ekeland’s variational principle [50, 102], we may assume
that (uk) is a (PS)c∞ sequence. Then, by Struwe’s global compactness theorem
[94, 102], there exist yk ∈ Ω and λk > 0 such that, after passing to a subsequence,

‖uk − Uλk,yk‖ → 0 as k →∞.

It follows that |β(uk)− yk| → 0 as k →∞ and, hence, that dist(β(uk),Ω)→ 0 as
k →∞. This is a contradiction. �

We shall also use the following result, which was proved by Weth in [101].

Theorem 2.1.3 There exists an ε0 > 0 such that

J∞(u) > 2c∞ + 3ε0

for every sign changing solution u of problem (2.1).

2.2 Two auxiliary maps

Let Θ be a bounded smooth domain in RN and let M be a compact smooth
submanifold of Θ, without boundary, such that dimM ≤ N − 2. We write

d(x) := dist(x,M).
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For a > 0 we set

BaM := {x ∈ RN : d(x) < a},

and write BaM for its closure and SaM for its boundary in RN .

We fix R > 0 such that BRM is a tubular neighborhood of M in RN and
BRM ⊂ Θ. Then, for any x ∈ BRM , there is a unique point q(x) ∈M satisfying

d(x) = |x− q(x)|

and the map q : BRM →M is well defined and smooth (see [55]). For any a < R
and a monotone decreasing sequence of positive numbers (rk) ⊂ (0,∞) such that
rk → 0 as i→∞, 2rk+1 < rk and 2r1 < a, the the following statement holds true.

Lemma 2.2.1 There exists a sequence of functions (ψk) ⊂ C∞(RN) such that

ψk = 1 in BrkM, and suppψk ⊂ B2aM, for all k ∈ N.

Moreover ‖ψk‖, |ψk|2 → 0 as k →∞.

Proof. For each i ∈ N, define the function gk : RN → R by

gk(x) :=


1 if d(x) ≤ 4rk

3

5− 3d(x)
rk

if 4rk
3
≤ d(x) ≤ 5rk

3

0 if d(x) ≥ 5rk
3

Observe gk ∈ C0
c

(
RN
)

and note it is smooth in RN r (SrkM ∪ S2rkM). This
functions clearly satisfies

0 ≤ gk ≤ 1, supp(gk) = B 5rk
3

M, and gk = 1 in B 4rk
3

M.

We claim the existence of a constant C > 0 depending only on M,a,N, and m,
such that ∫

RN
|∇gk|2 ≤ C, for all i ∈ N.

In fact, since M is a compact submanifold of RN , it suffices to show the claim
when M has the form

M = {(x, F (x)) ∈ RN : x ∈ Bm1 }

where Bmr := {x ∈ Rm : |x| ≤ r} for r > 0, and F : Bm1 → RN−m is smooth.

Consider a diffeomorphism ϕ : Bm1 × BN−mR → BRM such that ϕ (Bm1 ) = M
and that it sends {x} × BN−mR isometrically onto the fiber q (ϕ(x))−1. Hence
|v| = d(ϕ(x), v), for all (x, v) ∈ Bm1 × BN−mR . Since rk ≤ R and N −m ≥ 2, we
have
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∫
RN
|∇gk(y)|2 dy =

∫
B 5rk

3

MrB 4rk
3

9/r2
k |∇d(y)|2 dy

≤ C1r
−2
k

∫
B 5rk

3

MrB 4rk
3

dy

≤ C2r
2
k

∫
Bm1 ×

(
BN−m5rk

3

rBN−m4rk
3

) dxdv

≤ C3r
−2
k

∫ 5rk
3

4rk
3

tN−m−1dt

= C4r
N−m−2
k

≤ C5 := C4R
N−m−2

where constant C1 depends on M and R, and the constant Cj depends on N,m,R
and M for j = 2, 3, 4 and 5, and the claim is proved.

Let η ∈ C∞c
(
RN
)

be the standard mollifier and, for all ε > 0 define

ηε := ε−Nη
(x
ε

)
.

Then ηε ∈ C∞c
(
RN
)

satisfies that supp(ηε) ⊂ Bε(0) and
∫
RN ηεdx = 1.

Next, for each k ∈ N, take εk <
rk
6

and consider the convolution

fk(y) := (ηεk ∗ gk)(y) =

∫
RN
ηεk(y − x)gk(x)dx.

Using the properties of the convolution, the sequence (fk) ⊂ C∞c
(
RN
)

have
the following properties:

1. 0 ≤ fk ≤ 1, suppfk ⊂ B2rkM, and fk = 1 in BrkM ;

2. supp(fk) ⊂ Int{fk = 1};

3. There exists C > 0 independent of rk such that∫
RN
|∇fk|2 ≤ C for all k ∈ N.

The first two are readily checked. Let us prove the third assertion:∫
RN
|∇fk|2 = |∇(ηεk ∗ gk)|

2
2

≤ |ηεk ∗ (∇gk)|22
≤ |ηεk |

2
1 |∇gk|

2
2 ≤ C5,

where C5 was the constant independent of rk obtained just above.
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Finally, set Sk =
∑k

i=1
1
i

and define ψk : RN → R by

ψk(y) =
1

Sk

k∑
i=1

fi(y)

i
.

The first two properties of ψk follow directly from the properties of fk. To prove
the third one, note that supp|∇fk| ⊂ B2rkM rB2rk+1

M , so

‖ψk‖2 =

∫
RN

∣∣∣∣∣ 1

Sk

k∑
i=1

∇fi(y)

i

∣∣∣∣∣
2

dy

=

(
1

Sk

)2 k∑
i=1

1

i2

∫
RN
|∇fi(y)|2 dy

≤ C

(
1

Sk

)2 k∑
i=1

1

i2

→ 0

as k →∞ as we wished. �

Fix u ∈ C∞c (RN) ∩N∞ and set uy(x) := u(x− y). If (1− ψk)uy 6= 0 we define

uk,y := ρ([1− ψk]uy).

where ρ is the radial projection onto N∞.

Lemma 2.2.2 Given ε > 0 there exists k0 ∈ N such that

(1− ψk)uy 6= 0, |J∞(uk,y)− J∞(uy)| < ε and |β(uk,y)− β(uy)| < ε

for all natural numbers k ≥ k0 and all y ∈ RN .

Proof. As u 6= 0, |u| > 0 in some ball of radius γ. Fix i ∈ N such that Bγ(y) r
BRriM 6= ∅ for every y ∈ RN . Then, (1 − ψk)uy 6= 0 for every k ≥ i and y ∈ RN .
Moreover, since u has compact support, there exists L > 0 such that uk,y = uy for
every k ≥ i and |y| ≥ L.

By Lemma 2.2.1,

‖uk,y − uy‖2 = ‖ψkuy‖2 =

∫
RN
|uy∇ψk − ψk∇uy|2

≤ 4

∫
RN
|uy|2|∇ψk|2 + |ψk|2|∇uy|2

≤ C
(
‖ψk‖2 + |ψk|22

)
→ 0 as k →∞.

The functions J∞ ◦ ρ and β ◦ ρ are both uniformly continuous on the compact set

K = {uy : |y| ≤M} ∪ {uk,y : |y| ≤M, k ≥ i} ⊂ D1,2(RN),

implying the existence of a natural number k0 ≥ i such that

|J∞(uk,y)− J∞(uy)| < ε and |β(uk,y)− β(uy)| < ε

for all i ≥ k0 and all y ∈ RN , as claimed. �

We can now construct a useful map form RN to N∞
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Lemma 2.2.3 For any given a ∈ (0, R) and ε > 0 there exists a0 ∈ (0, a) such
that, for every δ > 0, there is a continuous function hδ : RN → D1,2(RN) with the
following properties:

(a) hδ(y) ∈ N∞ ∩ C∞c (RN) and hδ(y) ≥ 0 for all y ∈ RN ,

(b) The C1-norm of hδ (y) is uniformly bounded on RN , i.e.

sup{|hδ (y)|∞ + |∇ (hδ (y))|∞ : y ∈ RN} <∞.

(c) J∞(hδ(y)) ≤ c∞ + ε for all y ∈ RN ,

(d) J∞(hδ(y)) ≤ c∞ + δ for all y ∈ RN rBaM .

(e) supp (hδ(y)) ⊂ Ba+δM rBa0M for all y ∈ BaM ,

(f) supp (hδ(y)) ⊂ Bδ(y) for all y ∈ RN rBaM ,

(g) β (hδ(y)) = y for all y ∈ RN rBaM ,

(h) β (hδ(y)) ∈ BaM for all y ∈ BaM, and there is a continuous map ϑ :
[0, 1]×BaM → BaM such that ϑ(0, y) = y, ϑ(1, y) = β (hδ(y)) for all y ∈
BaM, and ϑ(t, z) = z for all z ∈ SaM.

Proof. Let χ ∈ C∞c (RN) be a radial function such that χ(x) = 1 if |x| ≤ a
8
,

χ(x) ∈ (0, 1] if |x| < a
4

and χ(x) = 0 if |x| ≥ a
4
. Fix µ > 0 so that the function

w := ρ(χUµ,0)

satisfies J∞(w) ≤ c∞+ min{δ, ε
2
}, were Uµ,0 is the standard bubble. For λ > 0 and

y ∈ RN we define

wλ,y(x) := λ
2−N

2 w

(
x− y
λ

)
.

Then wλ,y ∈ N∞ ∩ C∞c (RN), J∞(wλ,y) = J∞(w) ≤ c∞ + min{δ, ε
2
}, supp(wλ,y) ⊂

Bλa
4

(y) and β(wλ,y) = y.

Set γ := min{δ, a
4
} > 0 and choose a nonincreasing function Λ ∈ C∞[0,∞) such

that Λ(t) = 1 if t ≤ a
2
, Λ(t) = 4γ

a
if t ≥ a and Λ(t) ≤ 4

a
(a + γ − t) for all t ≤ a.

Define h̃ : RN → N∞ ∩ C∞c (RN) as

h̃(y) := wΛ(d(y)),y.

Note that h̃(y) = w1,y if d(y) ≤ a
2
, supp(h̃(y)) ⊂ Bγ(y) if d(y) ≥ a and

supp(h̃(y)) ⊂ Ba−d(y)+γ(y) ⊂ Ba+δM for all y ∈ BaM.
Fix a1 ∈ (0, a

4
). Since dimM ≤ N − 2, for k > 1

a1
, Lemma 2.2.1 gives functions

ψk ∈ C∞c (RN) such that ψk(x) = 1 if d(x) ≤ 1
k
, ψk(x) = 0 if d(x) ≥ a1, and ‖ψk‖ →

0 as k → ∞. Then, [1− ψk] h̃(y) = h̃(y) 6= 0 if d(y) ≥ a
2

and [1− ψk] h̃(y) =

[1− ψk]w1,y 6= 0 if d(y) ≤ a
2
, because w1,y > 0 in Ba

4
(y) and Ba

4
(y) r Ba1M 6= ∅.

Therefore, the function h̃k : RN → N∞ ∩ C∞c (RN) given by

h̃k(y) := ρ([1− ψk] h̃(y))
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is well defined. It satisfies that supp(h̃k(y)) ⊂ Ba+δM r B 1
k
M for all y ∈ BaM.

Moreover, by Lemma 2.2.2 there exists k0 >
1
a1

such that∣∣∣J∞(h̃k(y))− J∞(h̃(y))
∣∣∣ < ε

2
and

∣∣∣β(h̃k(y))− y
∣∣∣ < a

2

for all k ≥ k0 and all y ∈ RN . Set

hδ(y) := h̃k0(y) and a0 :=
1

k0

.

Then, supp(h̃δ(y)) ⊂ Ba+δM r Ba0M for all y ∈ BaM and, since J∞(h̃(y)) ≤
c∞ + ε

2
, we have that

J∞(hδ(y)) ≤ c∞ + ε for all y ∈ RN ,

Clearly, hδ(y) satisfies (a) and (b) and, since hδ(y) = h̃(y) if d(y) ≥ a
2
, it also

satisfies properties (d), (f) and (g). The map ϑ(t, y) := (1− t)y+ tβ(hδ(y)) is well
defined and has the properties stated in (h). �

It is convenient sometimes to write the elements of BRM as

[ζ, t] := q(ζ) +
t

R
(ζ − q(ζ)) with ζ ∈ SRM and t ∈ [0, R]. (2.2)

Define
E := {u ∈ N : u+, u− ∈ N},

where u+ := max{u, 0} and u− := min{u, 0}. We prove the following statement.

Lemma 2.2.4 Given ε ∈ (0, c∞) there exist b0, b1, b2 ∈ (0, R) such that, if Ω is a
bounded smooth domain in RN which satisfies

M ∩ Ω = ∅ and (Θ rBrM) ⊂ Ω ⊂ Θ,

for some r ∈ (0, b0), and c∞ < c0 < c1 < c∞ + ε are such that J has no critical
values in (c1, c∞ + ε], then there exists a continuous map G : Bb1M × Bb2M → E
with the following properties:

(i) J(G(x, y)) ≤ 2c∞ + 2ε for all (x, y) ∈ Bb1M ×Bb2M,

(ii) J(G(x, y)) ≤ c0 + c1 for all (x, y) ∈
(
Sb1M ×Bb2M

)
∪
(
Bb1M × Sb2M

)
,

(iii) J(G(x, y)+) ≤ c0 and β(G(x, y)+) = x for all (x, y) ∈
(
Sb1M ×Bb2M

)
,

(iv) J(G(x, y)−) ≤ c0 and β(G(x, y)−) = y for all (x, y) ∈
(
Bb1M × Sb2M

)
.

Proof. Fix a1 ∈ (0, R). For a := a1 and the given ε, let a1,0 ∈ (0, a1) be as
in Lemma 2.2.3. Now fix a2 ∈ (0, a1,0) and, for a := a2 and the same ε, let
a2,0 ∈ (0, a2) be as in Lemma 2.2.3. Set b0 := a2,0 and r ∈ (0, b0). Let

δ :=
1

4
min{R− a1, a1,0 − a2, a2 − b0, b0 − r, 2ε, c0 − c∞, c∞ + ε− c1}
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and choose a function hiδ : RN → D1,2(RN) with the properties stated in Lemma
2.2.3 for ai, ε and ai,0.

Since

supp(hiδ(x)) ⊂
(
Bai+δM rBai,0M

)
⊂
(
BRM rBai,0M

)
for all x ∈ BaiM,

we have that

hiδ
(
BaiM

)
⊂ N ∩ C1

0(Ω) if r ∈ (0, b0), i = 1, 2,

In addition, hiδ(x) ≥ 0 and J(hiδ(x)) ≤ c∞+ε for all x ∈ BaiM ; J(hiδ(y)) ≤ c∞+δ,
supp (hiδ(y)) ⊂ Bδ(y) and β (hiδ(y)) = y for all y ∈ SaiM ; and the set {hiδ (x) : x ∈
BaiM} is bounded in C1

0(Ω).
Since J satisfies (PS)c at every c ∈ (c∞, 2c∞) and J has no critical values in

(c1, c∞ + ε], Lemma 2.1.1 yields a deformation

η : [0, 1]×N c∞+ε → N c∞+ε

such that η(0, u) = u and η(1, u) ∈ N c1+δ for every u ∈ N c∞+ε; η(t, v) = v for
every v ∈ N c1+δ, t ∈ [0, 1]; and η(t, hiδ(x)) ≥ 0 for every x ∈ BaiM. Moreover,
the sets

Ki := {η(t, hiδ(x)) : x ∈ BaiM, t ∈ [0, 1]}, i = 1, 2,

are compact in H1
0 (Ω) and, by statement (c) in Lemma 2.1.1, they are bounded

in the C1-norm.
Fix a radial function φ ∈ C∞(RN) such that φ(x) = 1 if |x| ≥ 2 and φ(x) = 0 if

|x| ≤ 1. Then, there is a γ ∈ (0, δ
2
) such that the function φx(y) := φ(y−x

γ
) satisfies

φxu 6= 0 and |J (ρ(φxu))− J(u)| < δ, for all (x, u) ∈ RN × (K1 ∪ K2),

see [37, Lemma 2]. Note that φxu ≡ 0 in Bγ(x) for every u ∈ K1 ∪ K2, x ∈ RN .
Next, we choose λi ∈ C∞[0,∞) nonincreasing and such that λi(t) = 1 if t ≤ ai

and λi(t) = γ
δ

if t ≥ ai + δ. Using the notation introduced in (2.2), we define

Gi : Bai+2δM → N as follows:

Gi([ζ, t]) :=

{
hiδ([ζ, t]) if t ∈ [0, ai], ζ ∈ SRM,
(hiδ([ζ, ai]))λ(t),[ζ,t]−λ(t)[ζ,ai]

if t ∈ [ai, ai + 2δ], ζ ∈ SRM,

where uλ,x(y) := λ
2−N

2 u(y−x
λ

). Then, J(Gi(y)) ≤ c∞ + δ and β (Gi(y)) = y if

ai ≤ d(y) ≤ ai + 2δ, and supp(Gi(y)) ⊂ Bγ(y) if ai + δ ≤ d(y) ≤ ai + 2δ.
We define G : Ba1+2δM × Ba2+2δM → E in the following way: for x ∈ Ba1+2δ,

y ∈ Ba2+2δM , let

G(x, y) :=


G1(x)−G2(y) if d(x) ≤ a1 + δ, d(y) ≤ a2 + δ,

ρ
[
φyη

(
d(y)−a2−δ

δ
, G1(x)

)]
−G2(y) if d(x) ≤ a1 + δ, a2 + δ ≤ d(y),

G1(x)− ρ
[
φxη

(
d(x)−a1−δ

δ
, G2(y)

)]
if a1 + δ ≤ d(x), d(y) ≤ a2 + δ,

G1(x)−G2(y) if a1 + δ ≤ d(x), a2 + δ ≤ d(y).

Note that in all four cases, the first summand and the second summand in the def-
inition of G(x, y) have disjoint supports. Therefore, the first summand is G(x, y)+
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and the second one is G(x, y)−. Since both summands belong to N we conclude
that G(x, y) ∈ E . Moreover,

J(G(x, y)) = J(G(x, y)+) + J(G(x, y)−).

Setting bi := ai + 2δ, one can easily check that G has the desired properties. �

2.3 Proof of Theorem 1.2.1

As before, we fix R small enough so that BRM is a tubular neighborhood of M
contained in Θ. Fix % ∈ (0,dist(BRM,∂Θ)) small enough so that B%(∂Θ) is a
tubular neighborhood of ∂Θ, and set Θ− := Θ rB%(∂Θ) and Θ+ := Θ ∪B%(∂Θ).
Define

d∗ := inf{J∞(u) : u ∈ N∞ ∩H1
0 (Θ), β(u) /∈ Θ+}.

By Lemma 2.1.2 we have that d∗ > c∞.
Choose ε0 ∈ (0, c∞

3
) as in Theorem 2.1.3 and such that c∞ + ε0 < d∗. For

ε := 3
2
ε0 fix b0, b1, b2 ∈ (0, R) as in Lemma 2.2.4, and for a := b1 and ε := ε0 fix

a0 ∈ (0, a) as in Lemma 2.2.3.
Set r0 := min{a0, b0} and let Ω be a bounded smooth domain in RN which

satisfies
M ∩ Ω = ∅ and

(
Θ rBrM

)
⊂ Ω ⊂ Θ

for some r ∈ (0, r0). Set r1 := 1
2
dist(Ω,M) and define

c∗ := inf{J(u) : u ∈ N , β(u) ∈ Br1M}.

By Lemma 2.1.2 we have that c∗ > c∞. Now fix a regular value c0 of J such that

c∞ < c0 < min{c∗, c∞ + ε0}.

Note that

β(u) ∈ Θ+ for all u ∈ N c with c ∈ (0, d∗),

β(u) ∈ Θ+ rBr1M for all u ∈ N c0 .

Let H∗ be C̆ech cohomology with Z/2-coefficients and define

c1 := inf{c ∈ [c0, d
∗) : β∗ : H∗(Θ+,Θ+rBr1M)→ H∗(N c,N c0) is a monomorphism}

For these data all statements below hold true.

Proposition 2.3.1 c0 < c1 ≤ c∞ + ε0, and problem (1.5) has at least

cat(Θ,Θ rBrM) ≥ 1

positive solutions with energy in [c0, c∞ + ε0], and at least

cupl(Θ,Θ rBrM) ≥ 1

positive solutions with energy in [c0, c1]. Moreover, c1 is a critical value of J.
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Proof. Since c0 ∈ (c∞, 2c∞) and (PS)c holds true for every c ∈ (c∞, 2c∞),
there exist α > 0 and a deformation of N c0+α into N c0 which keeps N c0 fixed.
Hence H∗(N c0+α,N c0) = 0. On the other hand, the inclusion i : (Br1M,Sr1M) ↪→
(Θ+,Θ+ rBr1M) induces an isomorphism in cohomology

i∗ : H∗(Θ+,Θ+ rBr1M) ∼= H∗(Br1M,Sr1M)

by excision. HN−m(Br1M,Sr1M) contains a nontrivial element: the Thom class of
the disk bundle q : Br1M → M, where m := dimM. Therefore, HN−m(Θ+,Θ+ r
Br1M) 6= 0. This implies that c1 ≥ c0 + α > c0. Note that it also implies that

cupl(Θ,Θ rBrM) = cupl(Θ+,Θ+ rBr1M) ≥ 1. (2.3)

Set δ := min{c0−c∞, %}. Then, Lemma 2.2.3 yields a map hδ : RN → D1,2(RN)
with supp(hδ(x)) ⊂ Θ r Ba0M ⊂ Ω for all x ∈ Θ−, which restricts to a map of
pairs

hδ : (Θ−,Θ− rBaM)→ (N c∞+ε0 ,N c0) (2.4)

such that the composition

(Θ−,Θ− rBaM)
hδ→ (N c∞+ε0 ,N c0)

β→ (Θ+,Θ+ rBr1M)

is homotopic to the inclusion ι : (Θ−,Θ− rBaM) ↪→ (Θ+,Θ+ rBr1M). Since

ι∗ = h∗δ ◦ β∗ : H∗(Θ+,Θ+ rBr1M)→ H∗(Θ−,Θ− rBrM)

is an isomorphism, we have that

β∗ : H∗(Θ+,Θ+ rBr1M)→ H∗(N c∞+ε0 ,N c0)

is a monomorphism. Hence, c1 ≤ c∞ + ε0.
If c ∈ (c0, 2c∞), the number of pairs ±u of critical points of J on N with

critical values in [c0, c] is at least cat(Ñ c, Ñ c0), where Ñ c is the quotient space
of N c obtained by identifying u with −u (see [10, 33]). Note that β(u) = β(−u).

Hence, there is a map β̃ : (Ñ c, Ñ c0) → (Θ+,Θ+ r Br1M) such that β̃ ◦ κ = β,

where κ : (N c,N c0)→ (Ñ c, Ñ c0) is the quotient map.

Set c := c∞+ε0 and let hδ be the map given in (2.4). Since β̃ ◦κ◦hδ = β ◦hδ is
homotopic to ι, and each of the inclusions (Θ−,Θ− r BaM) ↪→ (Θ,Θ r BrM) ↪→
(Θ+,Θ+ r Br1M) is a homotopy equivalence of pairs, using Lemma B.1.2 we
conclude that

cat(Ñ c∞+ε0 , Ñ c0) ≥ cat(Θ,Θ rBrM).

Hence, problem (1.5) has at least cat(Θ,Θ r BrM) pairs of solutions ±u with
J(u) ∈ [c0, c∞ + ε0]. Moreover, Lemma B.1.1 and inequality (2.3) allow us to
conclude that

cat(Θ,Θ rBrM) ≥ cupl(Θ,Θ rBrM) ≥ 1.

Now set c := c1. Since β∗ : H∗(Θ+,Θ+rBr1M)→ H∗(N c1 ,N c0) is a monomor-

phism, β̃∗ : H∗(Θ+,Θ+ r Br1M)→ H∗(Ñ c1 , Ñ c0) is also a monomorphism. Lem-
mas B.1.1 to B.1.3 imply that

cat(Ñ c1 , Ñ c0) ≥ cupl(Ñ c1 , Ñ c0) ≥ cupl(Θ+,Θ+ rBr1M) = cupl(Θ,Θ rBrM).
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Hence, problem (1.5) has at least cupl(Θ,Θ r BrM) ≥ 1 pairs of solutions ±u
with J(u) ∈ [c0, c1].

Note that c1 must be a critical value. Otherwise, for α > 0 small enough,
we would be able to deform N c1+α into N c1−α keeping N c0 fixed. Since β∗ :
H∗(Θ+,Θ+ r Br1M) → H∗(N c1+α,N c0) is a monomorphism, this would imply
that β∗ : H∗(Θ+,Θ+ r Br1M) → H∗(N c1−α,N c0) is also a monomorphism, con-
tradicting the definition of c1.

Finally, recall that every critical point u of J with J(u) ∈ (c∞, 2c∞) does not
change sign. Otherwise, we would have that u+ 6= 0 and u− 6= 0 and, hence, that
u± ∈ N , because ‖u±‖2−|u±|2

∗

2∗ = J ′(u)u± = 0. But then J(u) = J(u+)+J(u−) ≥
2c∞, which is a contradiction. �

To conclude the proof of Theorem 1.2.1 we shall show next that J has a critical
value in (c1, 2c∞ + 3ε0]. We need the following two lemmas.

Lemma 2.3.2 The connecting homomorphism δ∗ : H̃∗−1(Θ+rBr1M)→ H∗(Θ+,Θ+r
Br1M) of the reduced cohomology exact sequence of the pair (Θ+,Θ+ r Br1M) is
an epimorphism.

Proof. Since the sequence

H̃∗−1(Θ+ rBr1M)
δ∗−→ H∗(Θ+,Θ+ rBr1M)

j∗−→ H̃∗(Θ+)

is exact, we need only to show that the homomorphism j∗, induced by the inclusion,
is trivial. The diagram

H∗(RN ,RN rBr1M) −→ H̃∗(RN)
∼= ↓ ↓

H∗(Θ+,Θ+ rBr1M)
j∗−→ H̃∗(Θ+)

induced by inclusions, commutes. The left vertical arrow is an isomorphism by
excision. Since H̃∗(RN) = 0, we conclude that j∗ = 0. �

The next lemma is a consequence of Struwe´s global compactness theorem
[94, 102] and Theorem 2.1.3.

Lemma 2.3.3 If J does not have a critical value in (c1, 2c∞), then J satisfies
(PS)c for every c ∈ (c∞ + c1, 2c∞ + 3ε0].

Proof. See [37, Lemma 6]. �

Proposition 2.3.4 J has a critical value in (c1, 2c∞ + 3ε0].

Proof. Arguing by contradiction, assume that J does not have a critical value in
(c1, 2c∞+ 3ε0]. By Lemma 2.2.4 there is a continuous map G : Bb1M ×Bb2M → E
such that

J(G(x, y)) ≤ 2c∞ + 3ε0 for all (x, y) ∈ Bb1M ×Bb2M,

J(G(x, y)) ≤ c0 + c1 for all (x, y) ∈
(
Sb1M ×Bb2M

)
∪
(
Bb1M × Sb2M

)
,

J(G(x, y)+) ≤ c0 and β(G(x, y)+) = x for all (x, y) ∈
(
Sb1M ×Bb2M

)
,

J(G(x, y)−) ≤ c0 and β(G(x, y)−) = y for all (x, y) ∈
(
Bb1M × Sb2M

)
,
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where b1, b2 were chosen at the beginning of this section. By Lemma 2.3.3 there is
a continuous map

η : [0, 1]×N 2c∞+3ε0 → N 2c∞+3ε0

such that η(0, u) = u and η(1, u) ∈ N c0+c1 for every u ∈ N 2c∞+3ε0 , and η(t, v) =
v for every v ∈ N c0+c1 , t ∈ [0, 1].

For t ∈ [0, 1] we define gt : Bb1M ×Bb2M × [−1, 1]→ N 2c∞+3ε0 by

gt(x, y, λ) := η(t, ρ
(
(1 + λ)G(x, y)+ + (1− λ)G(x, y)−

)
),

where ρ is the radial projection onto N . Then,

gt(x, y, λ) = ρ ((1 + λ)G(x, y)+ + (1− λ)G(x, y)−)

for all (x, y) ∈ ∂
(
Bb1M ×Bb2M × [−1, 1]

)
.

Consider the sets

E∗ := {u ∈ E : β(u−) ∈M},
K := {z ∈ Bb1M ×Bb2M × [−1, 1] : g1(z) ∈ E∗}.

Since K is compact and

c0 + c1 ≥ J(g1(z)) = J(g1(z)+) + J(g1(z)−) > J(g1(z)+) + c0 for all z ∈ K,

we have that
d := max

z∈K
J(g1(z)+) < c1.

We claim that β : (N d,N c0)→ (Θ+,Θ+ rBr1M) induces a monomorphism

β∗ : H∗(Θ+,Θ+ rBr1M)→ H∗(N d,N c0). (2.5)

This contradicts the definition of c1, and proves the proposition by contradiction.
The rest of the argument is devoted to the proof of this claim. Let γ0 :

H1
0 (Ω)→ R be given by

γ0(u) :=

{
|u|2∗

2∗
‖u‖2 − 1 if u 6= 0,

−1 if u = 0.

Then γ0 is continuous, and γ0(u) = 0 iff u ∈ N . Define γ : N → R as

γ(u) := γ0(u+)− γ0(u−).

Note that

γ(u) = −1 iff u ≤ 0, γ(u) = 1 iff u ≥ 0, γ(u) = 0 iff u ∈ E .

Denote by z := (x, y, λ) ∈ Bb1M × Bb2M × [−1, 1] and, for each t ∈ [0, 1], define

β̃t : Bb1M ×Bb2M × [−1, 1]→ RN by

β̃t(z) :=

{
[1− γ(gt(z))]β(gt(z)−) + γ(gt(z))y if gt(z)− 6= 0,
y if gt(z)− = 0.
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This function is continuous and depends continuously on t.
Next, consider the map θt : Bb1M ×Bb2M × [−1, 1]→ RN × R defined by

θt(z) :=

{
(β̃t(z), γ(gt(z))) if t ∈ [0, 1],
−t(y, λ) + (1 + t)θ0(z) if t ∈ [−1, 0].

We write θt(z) = (θt,1(z), θt,2(z)) ∈ RN × R. It is easy to check that θt has the
following properties (cf. [37, Lemma 7]):

(a) If θt(z) ∈M × {0} then gt(z) ∈ E∗ for all t ∈ [0, 1].

(b) If λ ∈ {−1, 1} then θt,2(z) = λ for all t ∈ [−1, 1].

(c) If y ∈ Sb2M then θt,1(z) = y for all t ∈ [−1, 1].

(d) If (y, λ) ∈ ∂
(
Bb2M × [−1, 1]

)
then θt(z) /∈M × {0} for all t ∈ [−1, 1].

Performing a translation, if necessary, we may assume that 0 ∈ M. Now, for
each t ∈ [−1, 1], we define the map ft : Bb1M ×Bb2M × [−1, 1]→ RN × R by

ft(x, y, λ) := (x, (y, λ)− θt(x, y, λ)).

This is a map over Bb1M, i.e. p ◦ ft = p where p : Bb1M ×RN ×R→ Bb1M is the
projection. Its set of fixed points,

Fix(ft) := {(x, y, λ) ∈ Bb1M ×Bb2M × [−1, 1] : ft(x, y, λ) = (x, y, λ)},

is the set of zeroes of θt. Thus, by property (d), Fix(ft) ⊂ Bb1M ×Bb2M × (−1, 1)
and, since Fix(ft) is compact, the restriction p : Fix(ft)→ Bb1M of the projection
is a proper map. Hence, ft is compactly fixed in the sense of Dold [46], and there
exist transfer homomorphisms

tft : H∗ (Fix(ft),Fix(ft) ∩ p−1(Sb1M))→ H∗
(
Bb1M,Sb1M

)
,

tft : H∗ (Fix(ft) ∩ p−1(Sb1M))→ H∗ (Sb1M) ,

for each t ∈ [−1, 1]. The definition and properties of the fixed point transfer were
introduced in [46]. In section B.2 of the Appendix we give the definition and state
the elementary properties we need.

Observe that the map g+
1 : (Fix(f1),Fix(f1) ∩ p−1(Sb1M))→

(
N d,N c0

)
is well

defined, and consider the diagram

H∗−1(Θ+ rBr1M)
δ∗−→ H∗(Θ+,Θ+ rBr1M)

↓ β∗ ↓ β∗

H∗−1 (N c0)
δ∗−→ H∗

(
N d,N c0

)
↓ (g+

1 )∗ ↓ (g+
1 )∗

H∗−1 (Fix(f1) ∩ p−1(Sb1M))
δ∗−→ H∗ (Fix(f1),Fix(f1) ∩ p−1(Sb1M))

↓ tf1 ↓ tf1

H∗−1 (Sb1M)
δ∗−→ H∗

(
Bb1M,Sb1M

)
(2.6)



Multiple solutions to the Bahri-Coron problem

Due to the naturality property of the transfer, this diagram commutes.
Note that f−1 = s ◦ p, where s : Sb1M → Sb1M × Bb2M × [−1, 1] is the zero

section s(x) := (x, 0, 0). So the units property of the transfer gives

tf−1 = s∗ : H∗(s(Sb1M))→ H∗ (Sb1M) ,

and the homotopy property yields

tf1 ◦ p∗ = tf−1 ◦ p∗ = s∗ ◦ p∗ = id : H∗(Sb1M)→ H∗ (Sb1M) .

Note also that

β(g1(z)+) = β
(
G(x, y)+

)
= x = p(z) for all z = (x, y, λ) ∈ Fix(f1)∩p−1(Sb1M).

Therefore,

i∗ = tf1 ◦ (g+
1 )∗ ◦ β∗ : H∗(Θ+ rBr1M)→ H∗ (Sb1M) , (2.7)

where i : (Bb1M,Sb1M) ↪→ (Θ+,Θ+ rBr1M) is the inclusion. The commutativity
of the diagram (2.6) and equality (2.7) yield

tf1 ◦ (g+
1 )∗ ◦ β∗ ◦ δ∗ = δ∗ ◦ tf1 ◦ (g+

1 )∗ ◦ β∗ = δ∗ ◦ i∗ = i∗ ◦ δ∗.

Since δ∗ is an epimorphism (see Lemma 2.3.2), we conclude that

tf1 ◦ (g+
1 )∗ ◦ β∗ = i∗ : H∗(Θ+,Θ+ rBr1M)→ H∗

(
Bb1M,Sb1M

)
.

But i∗ : H∗(Θ+,Θ+ r Br1M) → H∗
(
Bb1M,Sb1M

)
is an isomorphism. Hence,

β∗ : H∗(Θ+,Θ+ rBr1M)→ H∗
(
N d,N c0

)
is a monomorphism, and claim (2.5) is

proved. �

Proof of Theorem 1.2.1. It follows immediately from Propositions 2.3.1 and
2.3.4. �

Proof of Example 1.2.2. Let R > 0 be such that BRM is a tubular neighbor-
hood of M contained in Θ. Since M is contractible in Θ, so is BRM. For every
r ∈ (0, R) we have that Θ = Θr ∪ BRM . Thus cat(Θ,Θr) ≤ 1. Lemma B.1.1 and
Proposition 2.3.1 yield 1 ≤ cupl(Θ,Θr) ≤ cat(Θ,Θr) ≤ 1. �

Proof of Example 1.2.3. If Θ = BRM is a tubular neighborhood of M and
r ∈ (0, R) then, for s ∈ (r, R), the inclusion (BsM,SsM) ↪→ (Θ,Θr) is a homotopy
equivalence of pairs. The Thom isomorphism theorem asserts that

Φ : H∗(M)→ HN−m+∗(BsM,SsM), Φ(ω) = τ ` q∗(ω),

is an isomorphism, where τ ∈ HN−m(BsM,SsM) is the Thom class of the disk
bundle q : BsM →M, see e.g. [93]. Hence, cupl(M) = cupl(BsM,SsM). Clearly,
cat(BsM,SsM) ≤ cat(BsM) = cat(M). Since we are assuming that cat(M) =
cupl(M), using Lemmas B.1.1 and B.1.2 we obtain

cat(Θ,Θr) = cat(BsM,SsM) = cat(M) = cupl(M)

= cupl(BsM,SsM) = cupl(Θ,Θr) ≤ cat(Θ,Θr),

which proves our claim. �





CHAPTER 3

MULTIPLICITY OF SOLUTIONS FOR
YAMABE TYPE EQUATIONS

In this chapter we will prove Theorems 1.3.1, 1.3.5 and 1.3.7. In the first section
we give the variational setting of the problem and state the compactness theorem
and the variational principle (Theorems 3.1.1 and 3.1.2 below) we need. Section
3.2 is devoted to prove the first two main theorems and Corollary 1.3.6. In the
third and final section we prove the nonexistence of ground states established in
Theorem 1.3.7.

3.1 Variational setting of the problem

Let (M, g) be a closed Riemannian manifold of dimension m ≥ 3, Γ be a closed
subgroup of Isomg(M), and a, b, c ∈ C∞(M) be Γ-invariant functions. Define

‖u‖g,a,b :=

(∫
M

[
a|∇gu|2g + bu2

])1/2

dVg

We will assume throughout that a > 0, c > 0. Notice the coercivity of
−divg(a∇g) + b on the space H1

g (M)Γ implies that

〈u, v〉g,a,b :=

∫
M

[a〈∇gu,∇gv〉g + buv] dVg

is an interior product in H1
g (M)Γ := {u ∈ H1

g (M) : u is Γ-invariant} and the
induced norm ‖ · ‖g,a,b, is equivalent to the standard norm ‖ · ‖g in H1

g (M)Γ. For
any p ∈ [1,∞),

|u|g,p :=

(∫
M

|u|p dVg
)1/p

will denote the standard norm in the space Lpg(M) and, for p =∞, |u|∞ will denote
the norm in L∞g (M). As c > 0,

|u|g,c,2∗ :=

(∫
M

c|u|2∗dVg
)1/2∗

29
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defines a norm in L2∗
g (M) which is equivalent to the standard norm | · |g,2∗ . In this

section we will assume that −divg(a∇g) + b is coercive on H1
g (M).

By the principle of symmetric criticality [81], the solutions to problem (1.6)
are the critical points of the energy functional

Jg(u) =
1

2

∫
M

[
a|∇gu|2g + bu2

]
dVg −

1

2∗

∫
M

c|u|2∗dVg

=
1

2
‖u‖2

g,a,b −
1

2∗
|u|2∗g,c,2∗

defined on the space H1
g (M)Γ. The nontrivial ones lie on the Nehari manifold

N Γ
g := {u ∈ H1

g (M)Γ : u 6= 0, ‖u‖2
g,a,b = |u|2∗g,c,2∗} (3.1)

which is of class C2, radially diffeomorphic to the unit sphere in H1
g (M)Γ, and a

natural constraint for Jg. Moreover, for every u ∈ H1
g (M)Γ, u 6= 0,

u ∈ N Γ
g ⇐⇒ Jg(u) = max

t≥0
Jg(tu). (3.2)

In fact, if u 6= 0, then tuu ∈ N Γ
g where

tu :=

(‖u‖2
g,a,b

|u|2∗g,c,2∗

)m−2
4

. (3.3)

For these and more properties of the Nehari manifold, we refer the reader to [3],
[22] and [102].

Set

τΓ
g := inf

NΓ
g

Jg. (3.4)

The continuity of the Sobolev embedding H1
g (M) ↪→ L2∗

g (M) (see Theorem A.2.3)
implies that τΓ

g > 0.

The proofs of Theorems 1.3.1 and 1.3.5 follow the scheme introduced in [23,
24, 33]. They are based on a compactness result and a variational principle for
sign-changing solutions, which we state next.

Definition 1 A Γ-invariant Palais-Smale sequence for the functional Jg at the
level τ is a sequence (uk) such that,

uk ∈ H1
g (M)Γ, Jg(un)→ τ, J ′g(uk)→ 0 in

(
H1
g (M)

)′
.

We shall say that Jg satisfies condition (PS)Γ
τ in H1

g (M) if every Γ-invariant
Palais-Smale sequence for Jg at the level τ contains a subsequence which converges
strongly in H1

g (M).

The presence of symmetries allows to increase the lowest level at which this
condition fails. The following result will be proved in Chapter 4.
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Theorem 3.1.1 (Compactness) The functional Jg satisfies condition (PS)Γ
τ in

H1
g (M) for every

τ <

(
min
q∈M

a(q)m/2 #Γq

c(q)(m−2)/2

)
1

m
Sm/2,

where S is the best Sobolev constant for the embedding D1,2(Rm) ↪→ L2∗(Rm).

With the hypothesis on a, b and c stated in the beginning of this section, the
variational principle that we will use is the following one.

Theorem 3.1.2 (Sign-changing critical points) Let W be a nontrivial finite
dimensional subspace of H1

g (M)Γ. If Jg satisfies (PS)Γ
τ in H1

g (M) for every τ ≤
supW Jg, then Jg has at least one positive critical point u1 and dimW − 1 pairs of
sign-changing critical points ±u2, ...,±uk in H1

g (M)Γ such that Jg(u1) = τΓ
g and

Jg(ui) ≤ supW Jg for i = 1, ..., k.

The proof, up to minor modifications, is the same as in Theorem 3.7 in [33].
For the reader convenience, we give a proof of this theorem in Appendix C.

Our main results follow from these two theorems.

3.2 Proof of the main theorems 1.3.1 and 1.3.5

Proof of Theorem 1.3.1. Take k ∈ N. M contains an open dense subset Ω such
that the Γ-orbit of each point p ∈ Ω is Γ-diffeomorphic to Γ/H for some fixed closed
subgroup H of Γ. Moreover, Γp has Γ-invariant neighborhood Ωp contained in Ω
which is Γ-diffeomorphic to B×Γ/H, where B is the euclidean unit ball of dimension
m−dim(Γp); see Theorem I.5.14 in [39]. Since we are assuming that dim(Γp) < m,
for any given k ∈ N we may choose k different Γ-orbits Γp1, . . . ,Γpk ⊂ Ω and Γ-
invariant neighborhoods Ωpi as before, with Ωpi ∩ Ωpj = ∅ if i 6= j. Then, we can
choose a Γ-invariant function ωi ∈ C∞c (Ωpi) for each i = 1, . . . , k.

Let W := span{ω1, . . . , ωk} be the linear subspace of H1
g (M)Γ spanned by

{ω1, . . . , ωk}. As ωi and ωj have disjoint supports for i 6= j, the set {ω1, . . . , ωk} is
orthogonal in H1

g (M)Γ. Hence, dimW = k. On the other hand, as dim(Γp) ≥ 1, we
have that #Γp =∞ for every p ∈ M. So, by Theorem 3.1.1, Jg satisfies (PS)Γ

τ in
H1
g (M) for every τ ∈ R. Therefore, Theorem 3.1.2 yields at least one positive and

k − 1 sign-changing Γ-invariant solutions to problem (1.6). As k ∈ N is arbitrary,
we conclude that there are infinitely many sign-changing solutions. �

Proof of Corollary 1.3.2. Just recall the curvature tensor is invariant under
isometries and, thus, the scalar curvature Rg is Γ-invariant for every subgroup Γ
of the isometry group Isomg(M). �

An easy modification of the proof of Theorem 1.2 in [24] yields Theorem 1.3.5.
We include the proof for the reader convenience.
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Proof of Theorem 1.3.5. We divide the proof into four steps.

Step 1. We define the sequence (`k) and show it is strictly increasing and consists
of positive real numbers.

After replacing Ω by a Λ-invariant open subset of it, if necessary, we may assume
that Λp is Λ-diffeomorphic to Λ/H for every p ∈ Ω and some fixed subgroup H of
Λ; see Theorem I.5.14 in [39]. Let P1(Ω) be the family of all nonempty Λ-invariant
open subsets of Ω and, for each Ω̃ ∈ P1(Ω), set

D(Ω̃) := {ϕ ∈ C∞c (Ω̃) : ϕ is Λ-invariant, ϕ 6= 0, ‖ϕ‖2
h,a,b = |ϕ|2∗h,c,2∗}.

For each k ∈ N let

Pk(Ω) := {(Ω1, . . . ,Ωk) : Ωi ∈ P1(Ω), Ωi ∩ Ωj = ∅ if i 6= j}.

Arguing as in the proof of Theorem 1.3.1 we see that Pk(Ω) 6= ∅ and D(Ω̃) 6= ∅.
Set

τk := inf

{
k∑
i=1

1

m
‖ϕi‖2

h,a,b : ϕi ∈ D(Ωi), (Ω1, . . . ,Ωk) ∈ Pk(Ω)

}
,

and define

`k := (
1

m
Sm/2)−1τk.

Next, we show that the sequence (`k) has the desired properties.
Fix k ∈ N, and let (M, g) be a Riemanniann manifold and Γ be a closed

subgroup of Isomg(M) which satisfy (1)-(4). As g = h in Ω and Γ is a subgroup
of Λ, extending ϕ ∈ C∞c (Ω̃) by zero outside Ω̃, we have that D(Ω̃) ⊂ N Γ

g for every

Ω̃ ∈ P1(Ω), Jg(ϕ) = 1
m
‖ϕ‖2

h,a,b for every ϕ ∈ D(Ω̃) and τ1 ≥ τΓ
g > 0. For arbitrary

(Ω1, . . . ,Ωk) ∈ Pk(Ω) and ϕi ∈ D(Ωi) we have

k∑
i=1

1

m
‖ϕi‖2

h,a,b =
k−1∑
i=1

1

m
‖ϕi‖2

h,a,b +
1

m
‖ϕk‖2

h,a,b ≥ τk−1 + τ1 > τk−1.

Hence τk ≥ τk−1+τ1 > τk−1 and the sequence (`k) is strictly increasing and consists
of positive numbers.

Step 2. For each ε ∈ (0, τ1), Jg has k pairs of critical points ±u1, . . . ,±uk ∈
H1
g (M)Γ such that u1 is positive, u2, . . . , uk change sign and

Jg(uj) ≤ τk, j = 1, . . . , k − 1, and Jg(uk) ≤ τk + ε.

Since we are assuming that

`Γ
a,c := min

p∈M

a(p)m/2 #Γp

c(p)(m−2)/2
> `k,

we may choose ε ∈ (0, τ1) such that τk + ε < `Γ
a,c(

1
m
Sm/2). Since g = h in Ω, by

definition of τk, there exist (Ω1, . . . ,Ωk) ∈ Pk(Ω) and ωi ∈ D(Ωi), such that

τk ≤
k∑
i=1

Jg(ωi) < τk + ε.
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For each n = 1, . . . , k set Wn := span{ω1 . . . , ωn}. As ωi and ωj have disjoint
supports for i 6= j, the set {ω1, . . . , ωk} is orthogonal in H1

g (M)Γ. Hence, dimWn =
n. Moreover, if u ∈ Wn, u =

∑n
i=1 tiωi, then∥∥∥ n∑

i=1

tiωi

∥∥∥2

g,a,b
=

n∑
i=1

‖tiωi‖2
g,a,b and

∣∣∣ n∑
i=1

tiωi

∣∣∣2∗
g,c,2∗

=
n∑
i=1

|tiωi|2
∗

g,c,2∗ .

Consequently, (3.2) yields

Jg(u) =
n∑
i=1

Jg(tiωi) ≤
n∑
i=1

Jg(ωi) < τk + ε.

Therefore,

σn := sup
Wn

Jg ≤ τk + ε < `Γ
a,c(

1

m
Sm/2).

So Theorems 3.1.1 and 3.1.2 yield a positive critical point u1 and n−1 pairs of sign
changing critical points ±un,2, . . . ,±un,n of Jg in H1

g (M)Γ such that Jg(u1) = τΓ
g

and
Jg(un,j) ≤ σn for all j = 2, . . . , n.

Now, for each 2 ≤ n ≤ k, we inductively choose un ∈ {un,2, . . . , un,n} such
that un 6= uj for all 1 ≤ j < n. Observe that τ1 ≤ Jg(ωi) for every i = 1, . . . , k.
Consequently, for each 2 ≤ n ≤ k we obtain

σn + (k − n)τ1 ≤
n∑
i=1

Jg(ωi) + (τ1 + · · · τ1)︸ ︷︷ ︸
k−n times

≤
n∑
i=1

Jg(ωi) +
k∑

i=n+1

Jg(ωi)

=
k∑
i=1

Jg(ωi) < τk + ε.

As ε ∈ (0, τ1), for k − n ≥ 1 this inequality actually gives

σn + (k − n)τ1 < τk + ε < τk + τ1 < τk + (k − n)τ1.

Subtracting (k − n)τ1 from both sides we conclude

Jg(un) ≤ σn < τk if n < k and Jg(uk) ≤ σk < τk + ε,

and Step 2 follows.

Step 3. Jg has k pairs of critical points ±u1, . . . ,±uk ∈ H1
g (M)Γ such that u1 is

positive, u2, . . . , uk are sign-changing and

Jg(un) ≤ τk, for every n = 1, . . . , k

Let (εl) ⊂ (0, τ1) be such that εl+1 < εl and εl → 0 as l →∞. For each l ∈ N,
Step 2 gives k pairs of critical points ±wl,1, . . . ,±wl,k ∈ H1

h(M)Γ for Jg so that wl,1
is positive, wl,2, . . . , wl,k are sign-changing, Jg(wl,j) < τk and Jg(wl,k) ≤ τk + εl. If
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Jg(wl0,k) ≤ τk for some l0 ∈ N, then u1 := wl0,1, . . . , uk := wl0,k satisfy what we
wanted. If not, then τk < Jg(wl,k) ≤ τk + ε for all l ∈ N and Jg(wl,k) → τk as
l→∞. Moreover, as wl,k is a critical point for Jg, J

′
g(wl,k) = 0 for all l ∈ N. This

implies that (wl,k) is a Palais-Smale sequence for Jg at the level τk. As we showed
in Step 2, τk < `Γ

a,b
1
m
Sm/2 and, therefore, Jg satisfies condition (PS)Γ

τk
, so, in a

suitable subsequence, wl,k → uk strongly in H1
g (M)Γ as l → ∞, with uk 6= 0 and

uk ∈ N Γ
g . By continuity of Jg and J ′g,

Jg(uk) = lim
l→∞

Jg(wl,k) = τk, and J ′g(uk) = lim
l→∞

Jg(wl,k) = 0,

and, hence, uk is a nontrivial critical point for Jg. Notice that if k = 1, then
wl,1 lies in the convex cone of positive functions in H1

h(M)Γ. This set is closed
in H1

g (M)Γ and, hence, u1 must be positive. If k ≥ 2, observe for each l ∈ N,
wl,k ∈ EΓ

g := {v ∈ N Γ
g : v+, v− ∈ N Γ

g } the equator of the Nehari manifold;
again, this set is closed in H1

h(M)Γ and uk changes sign. As Jg(w1,j) < τk for each
j = 1, . . . , k − 1, then uk 6= w1,j for each j = 1, . . . , k − 1. Taking uj := w1,j for
each j = 1, . . . , k − 1 and uk, we conclude the proof of Step 3.

Step 4. Jg has k pairs of critical points ±u1, . . . ,±uk ∈ H1
g (M)Γ such that u1 is

positive, u2, . . . , uk are sign-changing and

Jg(un) ≤ τn, for every n = 1, . . . , k

As `Γ
a,b > `k and as the sequence (`k) is strictly increasing, then `Γ

a,b > `n for
each n = 1, . . . , k. For each n = 1, . . . , k, using Step 3 we obtain n pairs of critical
points ±vn,1, . . . ,±vn,n ∈ H1

g (M)Γ such that Jg(vn,j) ≤ τn, j = 1, . . . , n, where
vn,1 is positive and the rest are sign-changing. As in Step 2, let u1 = v1,1 and for
2 ≤ n ≤ k choose inductively, un ∈ {vn,1, . . . , vn,n} such that un 6= uj if 1 ≤ j < n.
Thus, Jg(un) ≤ τn by construction.

Finally, notice that |un|g,c,2∗ = ‖un‖g,a,b because un ∈ N Γ
g . Therefore∫

M

c|un|2
∗

= mJg(un) ≤ mτn = `nS
m/2,

and this concludes the proof or Theorem 1.3.5. �

Proof of Corollary 1.3.6. Let M be the space of Riemannian metrics on M
with the distance induced by the C0-norm in the space of covariant 2-tensor fields
τ on M, taken with respect to the fixed metric h, i.e.

‖τ‖C0 := max
p∈M

max
X,Y ∈TpMr{0}

|τ(X, Y )|
|X|h |Y |h

.

As the functions M → C0(M) given by g 7→ Rg and g 7→
√
|g| are continuous,

where |g| := det(g), the sets

O1 :=

{
g ∈M :

1

2
Rh(p) < Rg(p) < 2Rh(p) ∀p ∈M r Ω

}
,

O2 :=

{
g ∈M :

1

2

√
|h| (p) <

√
|g| (p) < 2

√
|h| (p) ∀p ∈M r Ω

}
,
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are open neighborhoods of h in M, where cm = m−2
4(m−1)

. Moreover, as

|∇gu(p)|g = max
X∈TpMr{0}

|duX|
|X|g

,

for every u ∈ C∞(M) we have that

1

2
|∇hu|2h ≤ |∇gu|2g ≤ 2|∇hu|2h if ‖g − h‖C0 <

1

2
.

Set O := {g ∈ M : ‖g − h‖C0 < 1
2
} ∩ O1 ∩ O2. Then there are positive constants

C1 ≤ 1 and C2 ≥ 1 such that, for every g ∈ O and u ∈ C∞(M),∫
MrΩ

[
|∇gu|2 +

m− 2

4(m− 1)
Rg|u|2

]
dVg ≥ C1

∫
MrΩ

[
|∇hu|2 +

m− 2

4(m− 1)
Rh|u|2

]
dVh,∫

MrΩ

[
|∇gu|2 + |u|2

]
dVg ≤ C2

∫
MrΩ

[
|∇hu|2 + |u|2

]
dVh.

Therefore, if g ∈ O and g = h in Ω, we have that∫
M

[
|∇gu|2 + m−2

4(m−1)
Rg|u|2

]
dVg∫

M
[|∇gu|2 + |u|2] dVg

≥
C1

∫
M

[
|∇hu|2 + m−2

4(m−1)
Rh|u|2

]
dVh

C2

∫
M

[|∇hu|2 + |u|2] dVh

for every u ∈ C∞(M). So, if Γn ⊂ Isomg(M), setting bh := m−2
4(m−1)

Rh and b :=
m−2

4(m−1)
Rg, we obtain

µΓn
1,b(M, g) ≥ µΓn

1,bh
(M,h) ≥ µ1,bh(M,h) > 0,

and ∆g + cmRg is coercive on H1
h(M).

Set (Ω, h) as given, Λ = S1, a ≡ 1, b = cmRg and c ≡ κ. Then, if g ∈ O is such
that g = h in Ω and Γn ⊂ Isomg(M) for some n > κ(m−2)/2`k, these data satisfy
assumptions (1)-(4) in Theorem 1.3.5, and the conclusion follows. �

3.3 Nonexistence of ground state solutions

In this section we prove Theorem 1.3.7.Let (Sm, g0) be the round sphere and b ∈
C∞(Sm) be such that b ≥ cmRg0 = m(m−2)

4
and b 6≡ cmRg0 . Fix N := (0, . . . , 0, 1) ∈

Sm ⊂ Rm+1 and let σ : Sm r {N} → Rm be the stereographic projection, which is
given by

σ(x, t) :=
x

1− t
,

and its inverse is

ϕ(x); = σ−1(x) =

(
2x

1 + |x|2
, 1− 2

1 + |x|2

)
.

Notice
∂ϕk

∂xi
=

{
2

(|x|2+1)2

[
(|x|2 + 1) δik − 2xkxi

]
if k = 1, . . . ,m

2
(|x|2+1)2 (2xi) if k = m+ 1.
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Hence, the components of the metric in the coordinate (Rm, ϕ) are given by

g0,ii =

〈
∂ϕ

∂xi
,
∂ϕ

∂xi

〉
=

m+1∑
k=1

(
∂ϕk

∂xi

)2

=
4

(|x|2 + 1)4

[
m∑
k=1

4(xk)2(xi)2 − 4(xi)2
(
|x|2 + 1

)
+
(
|x|2 + 1

)2
+ 4(xi)2

]

=

(
2

|x|2 + 1

)2

,

while for i 6= j,

g0,ij =

〈
∂ϕ

∂xi
,
∂ϕ

∂xj

〉
=

m+1∑
k=1

∂ϕk

∂xi

∂ϕk

∂xi

=
m∑
k=1

4(xk)2xixj − 4xixj
(
|x|2 + 1

)
+ 4xixj = 0.

It follows that

gij0 =

{ [
2

|x|2+1

]−2

if i = j

0 if i 6= j.

and √
|g0| =

√
g0,11 · · · g0,mm =

√√√√ m∏
i=1

[
2

|x|2 + 1

]2

=

[
2

|x|2 + 1

]m
Denote z(x) = 2/(|x|2 + 1) and let ξ be the standard Euclidean metric in Rm.
Then σ−1 : (Rm, ξ)→ (Sm r {N}, g0) is a conformal equivalence such that

(σ−1)∗g0 = z2ξ = ψ
4

m−2 ξ,

where the function ψ := z
m−2

2 =
[

2
1+|x|2

]m−2
2

satisfies the scalar curvature equation

∆ξψ +
m− 2

4(m− 1)
Rξψ −

m− 2

4(m− 1)
Rg0ψ

2∗−1 = 0,

(see [41]). Since ∆ξ = −∆, Rg0 = m(m− 1) and Rξ = 0, this equation yields that

−∆ψ =
m(m− 2)

4
ψ2∗−1. (3.5)

Lemma 3.3.1 A function u ∈ C∞(M) solves

∆g0u+ bu = |u|2∗−2u, (3.6)

iff and only if

v(x) :=

(
2

1 + |x|2

)m−2
2

u(σ−1(x))
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is a solution of
−∆v + b̃v = |v|2

∗−2 v in Rm, (3.7)

where ∆ = div∇ is the usual Laplace operator on Rm (without a sign) and

b̃(x) :=

(
b(σ−1(x))− m(m− 2)

4

)(
2

1 + |x|2

)2

.

Moreover, u is a ground state for problem (3.6) iff v is a minimizer for

Sb := inf
v∈D1,2(Rm)

v 6=0

∫
Rm

(
|∇v|2 + b̃v2

)
dx(∫

Rm |v|
2∗ dx

)2/2∗
.

Proof. For simplicity, we adopt the notation û := u ◦ σ−1, b̂ := b ◦ σ−1. The
Laplace-Beltrami operator in coordinates given by the inverse of the stereographic
projection is

∆g0u = − 1√
|g0|

m∑
j=1

∂

∂xj

(√
|g0|gjj0

∂û

∂xj

)
= −(m− 2)z−3∇z · ∇û− z−2∆û.

Also observe that

∆(z
m−2

2 ) =
(m− 2)(m− 4)

4
z
m−6

2 |∇z|2 +
m− 2

2
z(m−3

2
)∆z

=
(m)(m− 2)

4
z
m+2

2 |x|2 − m(m− 2)

2
zm/2,

and that
|v|2∗−2v = z

m+2
2 |û|2∗−1û.

As a consequence of these identities we obtain

−∆v + (̂b− m(m− 2)

4
)z2v = −∆(z

m−2
2 û) +

(
b̂− m(m− 2)

4

)
z
m+2

2 û

= −z
m−2

2 ∆û− 2∇û · ∇(z
m−2

2 )− û∆(z
m−2

2 ) +

(
b̂− m(m− 2)

4

)
z
m+2

2 û

= z
m+2

2

(
−z−2∆û− (m− 2)z3∇û · ∇(z)

)
− û∆(z

m−2
2 ) +

(
b̂− m(m− 2)

4

)
z
m+2

2 û

= z
m+2

2

[
∆g0u− ûz−

m+2
2 ∆(z

m−2
2 )
]

+

(
b̂− m(m− 2)

4

)
û

= z
m+2

2

[
∆g0u+ ûb̂− û

(
(m)(m− 2)

4
|x|2 − m(m− 2)

2
z−1

)
+
m(m− 2)

4

]
= z

m+2
2

[
∆g0u+ ûb̂

]
.

Then v satisfies equation 3.7 if and only if

z
m+2

2

[
∆g0u+ ûb̂

]
= −∆v + b̃v = |v|2∗−2v

= z
m+2

2 |û|2∗−1v = z
m+2

2 |û|2∗−1û.
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As z(x) > 0 for every x ∈ Rm, this happens if an only if u is a solution of equation
3.7.

The second part of the lemma follows immediately from the following identity

∫
Sm

(
|∇g0u|

2
g0

+ bu2
)
dVg0(∫

Sm |u|
2∗ dVg0

)2/2∗
=

∫
Rm

(
|∇v|2 + b̃v2

)
dx(∫

Rm |v|
2∗ dx

)2/2∗
, (3.8)

Let us then show (3.8). Notice on the one hand that in the orthogonal coordinates
given by the stereographic projection the gradient is written as

∇g0u =
m∑
i=1

gii0
∂û

∂xi
∂

∂xi
,

so,

|∇g0u|2g0
=

m∑
i=1

(gii0 )2

(
∂û

∂xi

)
g0,ij = zm−2|∇û|2. (3.9)

On the other hand, multiplying equation (3.5) by ψû2, integrating and using
Green’s formula we obtain∫

Rm
∇ψ∇(ψû2)dx =

∫
Rm

m(m− 2)

4
ψ2∗û2dx. (3.10)

Hence, equalities (3.9) and (3.10) yield∫
Rm
|∇v|2dx =

∫
Rm
|∇(ψû)|2dx

=

∫
Rm

û2|∇ψ|2 + 2ûψ∇ψ∇û+ ψ2|∇û|2dx

=

∫
Rm

zmz−2|∇û|2dx+

∫
Rm

û2|∇ψ|2 + 2ûψ∇û∇ψdx

=

∫
Sr{N}

|∇g0u|2g0
dVg0 +

∫
Rm
∇ψ∇(ψû2)dx

=

∫
Sm
|∇g0u|2g0

dVg0 +

∫
Rm

m(m− 2)

4
ψ2∗û2dx

=

∫
Sm
|∇g0u|2g0

dVg0 +

∫
Rm

zm
m(m− 2)

4
û2dx

=

∫
Sm
|∇g0u|2g0

dVg0 +

∫
Smr{N}

m(m− 2)

4
u2dVg0

=

∫
S
|∇g0u|2g0

+
m(m− 2)

4
u2dVg0 .

From this we get
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∫
Sm

[∣∣∇g0u
2
∣∣2
g0

+ bu2
]
dVg0

=

∫
Sm

(
|∇g0u|

2
g0

+
m(m− 2)

4
u

)
dVg0 +

∫
Sm

[
b− m(m− 2)

4

]
u2dVg0

=

∫
Rm
|∇v|2 dx+

∫
Smr{N}

[
b− m(m− 2)

4

]
u2dVg0

=

∫
Rm
|∇v|2 dx+

∫
Rm

zm
[
b̂− m(m− 2)

4

]
û2dx

=

∫
Rm
|∇v|2 dx+

∫
Rm

[
b̂− m(m− 2)

4

]
z2v2dx

=

∫
Rm
|∇v|2 + b̃v2dx.

We conclude by noticing that

∫
Rm
|v|2

∗
dx =

∫
Rm

zm |û|2
∗
dx =

∫
Smr{N}

|u|2
∗
dVg0 =

∫
Sm
|u|2

∗
dVg0 .

�

If b ≡ m(m−2)
4

then b̃ ≡ 0 and Sm(m−2)
4

=: S is the best Sobolev constant for

the embedding D1,2(Rm) ↪→ L2∗(Rm). This constant is attained at the so-called
standard bubble

U(x) = [m(m− 2)]
m−2

4

(
1

1 + |x|2

)m−2
2

and at any dilation Uε(x) := ε
2−m

2 U
(
x
ε

)
of it, with ε > 0.

Lemma 3.3.2 If b ≥ m(m−2)
4

then Sb = S.

Proof. Clearly, Sb ≥ S. Fix α ∈ (1/2, 1). Then, for all ε ∈ (0, 1),

b̃(x)U2
ε (x) ≤ C

(
1

1 + |x|2

)2(
ε

ε2 + |x|2

)m−2

≤ Cεm−2

(
1

ε2 + |x|2

)m−2+α

.

Hence, we have that

0 ≤
∫
Rm

b̃(x)U2
ε (x)dx =

∫
|x|≤ε

b̃(x)U2
ε (x)dx+

∫
|x|≥ε

b̃(x)U2
ε (x)dx

≤ Cε2

∫
|y|≤1

U2(y)dy + Cεm−2

∫
|x|≥ε
|x|−2m+4−2αdx

= Cε2 + Cε2(1−α) −→ 0 as ε→ 0.

Therefore,

lim
ε→0

∫
Rm

(
|∇Uε|2 + b̃U2

ε

)
dx(∫

Rm |Uε|
2∗ dx

)2/2∗
=

∫
Rm |∇Uε|

2 dx(∫
Rm |Uε|

2∗ dx
)2/2∗

= S.



Nonexistence of ground state solutions

This shows that S ≥ Sb. �

Proof of Theorem 1.3.7. If Sb were attained at some ṽ ∈ D1,2(Rm) then, as

b̃ ≥ 0 and b̃ 6≡ 0, we would have that

S = Sb =

∫
Rm

(
|∇v|2 + b̃v2

)
dx(∫

Rm |v|
2∗ dx

)2/2∗
>

∫
Rm |∇v|

2 dx(∫
Rm |v|

2∗ dx
)2/2∗

≥ S,

a contradiction. �



CHAPTER 4

COMPACTNESS

This chapter is devoted to the proof of Theorem 3.1.1. The first section deals with
all the preliminary results we need to achieve this, among them, we prove some
useful comparison lemmas between the Lp-norms in Rm and the corresponding Lp

norms in M . After that, in the following section, we give some general properties
of the functional Jg and the Palais-Smale sequences. In the third one, we give
reduce the problem to a simpler energy functional. Then we state and prove a
Struwe-like compactness theorem in another section concluding with the proof of
Theorem 3.1.1.

4.1 Main Tools

First we begin with the following Brezis-Lieb type lemma. Let (X, σ, µ) where σ
is a σ-algebra of subsets of X and µ is a measure in (X, σ). If 1 ≤ p ≤ ∞, denote
by Lpµ(X) := Lp(X, σ, µ) the Lp-spaces associated to this data and let | · |p,µ be
their norm. The following statements holds true.

Lemma 4.1.1 Let p ∈ [1,∞), (ck), (ϕk) be two bounded sequences in L∞µ (X) and
(uk) a bounded sequence in Lpµ(X) satisfying ck(x)→ c̄(x), ϕk(x)→ 1 and uk(x)→
u(x) µ-a.e. in X respectively. Then u ∈ Lpµ(X) and

lim
k→∞

∫
X

(ck|uk|p − ck|uk − ϕku|p) dµ =

∫
X

c̄|u|pdµ. (4.1)

Proof. Let p ∈ [1,∞) and ε > 0. Here Cp,ε denotes a positive constant depending
only on p and ε, not necessarily the same one. With this, just note that, as (ϕk)
is bounded in L∞µ (X),∣∣∣|uk(x)|p − |uk(x)− ϕk(x)u(x)|p

∣∣∣− ε|uk(x)− ϕk(x)u(x)|p

≤ Cp,ε|ϕk(x)|p|u(x)|p ≤ Cp,ε|ϕk|L∞µ (X)|u(x)|p ≤ Cp,ε|u(x)|p.

This inequality and the fact uk(x) − ϕk(x)u(x) → 0 µ-a.e. in X, allow us
to replicate the proof of Lemma 3.4 in [24], to obtain a similar statement in our
situation. �
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Main Tools

Let now (M, g) be a compact Riemannian manifold without boundary with
dimension m ≥ 3. Denote by dg the geodesic distance in M induced by the metric
g. Then (M,dg) is a complete metric space and by the Hopf-Rinow Theorem, the
exponential map is defined on the whole tangent bundle exp : TM → M , and,
so, expp : Rm ≡ TpM → M is globally defined for all p ∈ M (see, for example,
[45, 71]). If ig denotes the injectivity radius of the manifold, compactness of M
implies ig > 0. Fix δ > 0 such that 3δ < ig.

Lemma 4.1.2 Then there positive constants A1, A2 such that for every q ∈ M
and every u ∈ H1

g (M),

A1

m∑
i=1

|∂iũ|2 ≤ |∇gu|2g ◦ expq ≤ A2

m∑
i=1

|∂iũ|2, (4.2)

where ũ = u◦expq is written in normal coordinates around q and |·| is the standard
Euclidean metric.

Proof. Let q ∈ M and write gij in normal coordinates. As the matrix G := (gij)
is symmetric and positive definite, it is diagonalizable and all its eigenvalues
λ1, . . . , λm are positive real numbers [76, Theorem 1.4 and 1.8]. By Schurs’ Decom-
position Theorem [76, Theorem 1.12 and 1.13], there exists an orthogonal matrix
Q such that QtGQ = D, where D is the diagonal matrix whose diagonal entries
are the eigenvalues of G. Now, if we take x ∈ Rm and set y := Qtx, then

xtGx = (QQtx)tG(QQtx) = (Qtx)tQtGQ(Qtx) = ytDy =
m∑
i=1

λiy
2
i , (4.3)

where y = (y1, . . . , ym). Since λi > 0 for all i = 1, . . . ,m, we obtain

min{λ1, . . . , λm}
(
ytImy

)
= min{λ1, . . . , λm}

(
m∑
i=1

y2
i

)

≤
m∑
i=1

λiy
2
i ≤ max{λ1, . . . , λm}

(
m∑
i=1

y2
i

)
= max{λ1, . . . , λm}

(
ytImy

)
.

Further, observe that

ytImy = (Qtx)tIm(Qtx) = xtQImQ
tx = xtQQtx = xtImx. (4.4)

Hence,

0 ≤ min{λ1, . . . , λm}
(
xtImx

)
≤ xtGx ≤ max{λ1, . . . , λm}

(
xtImx

)
,

As the eigenvalues of a matrix do not depend on the basis, the eigenvalues of
the metric g are independent of the chart in which we write the components gij.
Then, we have continuous functions λi : M → R, i = 1, . . . ,m, which achieve its
maximum and its minumum on the compact manifold M . Define

0 < A1 := min
p∈M

min{λ1(p), . . . , λm(p)} ≤ max
p∈M

max{λ1(p), . . . , λm(p)} =: A2.



Compactness

Now, if u ∈ H1
g (M), (∂1u(p), . . . , ∂mu(p)) ∈ Rm for each p ∈M and

A1

m∑
i=1

|∂iũ|2 ≤
m∑

i,j=1

gij(∂iu∂ju) ◦ expq = |∇gu|2g ≤ A2

m∑
i=1

|∂iũ|2,

and A1 and A2 do not depend on u. �

As a consequence, we have the following integral comparison lemma.

Lemma 4.1.3 With the same notation as in the previous lemma, there is a con-
stant C1 > 1 such that, for every q ∈M, % ∈ (0, 3δ], u ∈ H1

g (M) and s ∈ [1, 2∗],

C−1
1

∫
B(0,%)

|ũ|s dx ≤
∫
Bg(q,%)

|u|s dVg ≤ C1

∫
B(0,%)

|ũ|s dx, (4.5)

C−1
1

∫
B(0,%)

|∇ũ|2 dx ≤
∫
Bg(q,%)

|∇gu|2g dVg ≤ C1

∫
B(0,%)

|∇ũ|2 dx, (4.6)

where Bg(q, r) denotes the ball in (M, g) with center q and radius r.

Proof. Given a set A ⊂ Rm, we denote its closure respect to the Euclidean metric
as A. As M is compact, the set

K :=
⋃
q∈M

BTqM(0, 3δ) ⊂ TM.

is also compact. Since the exponential map exp : TM → M and the metric g
are continuous, writing g in normal coordinates around any q ∈ M with fixed
radius 3δ, we obtain that the function

√
|g| : K → Rm is continuous and positive.

Therefore, there exist two positive numbers B1 and B2, depending only on M, g
and δ, such that

0 < B1 ≤ (
√
|gq|(x) ≤ B2 (4.7)

for all q ∈M and all x ∈ B(0, %).

Take u ∈ H1
g (M), % ∈ (0, 3δ], q ∈ M and s ∈ [1, 2∗]. Hereafter, we identify

B(0, %) ≡ BTqM(0, 3δ). Then, the function ũu ◦ expq written in normal coordi-
nates around q is well defined in B(0, %), ũ ∈ Ls(B(0, %)) and |∇ũ|2 ∈ L2(B(0%).
Moreover, by Lemma (4.1.2)

A1|∇ũ|2 ≤ |∇gu|2g ◦ expq ≤ A2|∇ũ|2.

independently of u ∈ H1
g (M), q ∈M and x ∈ B(0, %).

Thus, on the one hand we have that



Main Tools

A1B1

∫
B(0,%)

|∇ũ|2 dx = A1B1

∫
B(0,%)

√
|g|
−1
|∇ũ|2

√
|g| dx

≤ A1

∫
B(0,%)

|∇ũ|2
√
|g| dx

≤
∫
B(0,%)

|∇gu|2 ◦ expq
√
|g| dx

=

∫
Bg(q,%)

|∇gu|2 dVg

≤ A2

∫
B(0,%)

|∇gu|2 ◦ expq dx

≤ A2B2

∫
B(0,%)

|∇u|2 dx.

And on the other hand

B1

∫
B(0,%)

|ũ|s dx = B1

∫
B(0,%)

√
|g|
−1
|ũ|s
√
|g| dx ≤

∫
B(0,%)

|ũ|s
√
|g| dx

=

∫
Bg(q,%)

|u|s dVg ≤ B2

∫
B(0,%)

|ũ|s dx.

independently of s ∈ [1, 2∗]. So, C1 := max{B−1
1 , A−1

1 B−1
1 , A2B2, B2} is the con-

stant we where looking for. �

Remark 4.1.4 From the proof of the previous lemma we can derive the following
inequality

C−1
1

∫
B(z,%)

|ũ|s dx ≤
∫

expq(B(z,%))

|u|s dVg ≤ C1

∫
B(z,%)

|ũ|s dx, (4.8)

for every q ∈ M , every % > 0 and every z ∈ Rm satisfying |z| + % < ig, where the
constant C1 is the same as before.

Lemma 4.1.5 For every 0 < a < ig, there exists a constant C2 ≥ 1 depending
only on (M, g) and a, such that, for all q ∈M

C−1
2 |y − z| ≤ dg(expq (y) , expq (z)) ≤ C2 |y − z| ∀y, z ∈ B(0, a) (4.9)

Proof. As 0 < a < ig, the metric hq := exp∗q g on B(0, a) ⊂ Rm is well defined for
every q ∈M . Denote by | · |hq(x) the induced norm and by | · | the usual Euclidean
metric in Rm.

Define the set

K := {(q, x, v) ∈M × TB(0, ig) : x ∈ B(0, a), v ∈ TxB(0, ig), |v| = 1}
≈ M ×B(0, a)× Sm−1,



Compactness

and the function
G : K → R, G(q, x, v) = |v|hq(x)

As M is compact, K is also compact and continuity of G gives a constant
C2 > 0 depending only on (M, g) and a, such

0 < C−1
2 ≤ G(q, x, v) ≤ C2,

for all (q, x, v) ∈M ×B(0, a)× Sm−1.
For w 6= 0 ∈ Rm, applying the previous inequality we obtain

0 < C−1
2 ≤ G(q, x, w/|w|) =

∣∣∣∣ w|w|
∣∣∣∣
hq(x)

=
1

|w|
|w|hq(x) ≤ C2.

Hence,
C−1

2 |w| ≤ |w|hq(x) ≤ C2|w|, (4.10)

for every q ∈M,x ∈ B(0, a) and w ∈ Rm.
Letting γ : [0, 1]→ B(0, a) be any admissible curve, this last inequality implies

C−1
2 |γ̇(t)| ≤ |γ̇(t)|hq(γ(t)) ≤ C2|γ̇(t)|, for almost all t ∈ [0, 1].

Integrating this inequality we obtain

C−1
2 Le(γ) = C−1

2

∫ 1

0

|γ̇(t)|dt ≤
∫ 1

0

|γ̇(t)|hqdt = Lhq(γ) ≤ C2

∫ 1

0

|γ̇(t)|dt = C2Le(γ),

where Le denotes the euclidian length induced by | · | and Lhq the corresponding
length induced by hq (see chapter 6 in [71]). Recall the length of admissible
curves is preserved under isometries. Since the distance between two points y, z ∈
Rm with the Euclidean metric is just |y − z| and since expq : (B(0, a), hq) →
(Bg(q, a), g) is an isometry for every q ∈ M , inequality (4.34) follows from the
definition of dg as an infimum of the length of admissible curves in M . �

4.2 Properties of the energy functional and Palais-

Smale sequences

Let (M, g) be a Riemannian manifold with dimension m ≥ 3, Γ be a closed sub-
group of Isomg(M), a, b, c ∈ C∞(M). Hereafter we use the notation introduced
in Chapter 3, considering a and c positive, but not assuming the coercivity of
−divg(a∇g) + b on the space H1

g (M)Γ, unless this is explicitly stated.
We shall need the following lemmas for functionals in a Hilbert space.

Lemma 4.2.1 Let (H, 〈·, ·〉, ‖ · ‖) be a Hilbert space and J : H → Rm be a func-
tional of class C1. If (vk) and (ϕk) are sequences in H such that J ′(vk)→ 0 in H ′

and (ϕk) is bounded in H, then

J ′(vk)ϕk → 0 as k →∞.



Properties of the energy functional and Palais-Smale sequences

Proof. Since (ϕk) is bounded in H, there exists a constant C > 0 such that
‖ϕ‖ ≤ C for all k. Now, J ′(vk)→ 0 in H ′ implies that ‖J ′(vk)‖H′ → 0 as k →∞
and , hence,

|J ′(vk)ϕk| ≤ ‖J ′(vk)‖H′‖ϕk‖ ≤ C‖J ′(v, k)‖H′ → 0

as k →∞ �

Lemma 4.2.2 Let (H, 〈·, ·〉, ‖ · ‖) be a Hilbert space, V be a dense subspace of H,
(un) a bounded subsequence in H and u ∈ H. If 〈un, ϕ〉 → 〈u, ϕ〉, for all ϕ ∈ V ,
then

〈un, v〉 → 〈u, v〉, for all v ∈ H.

Proof. Take v ∈ H, ε > 0 and let d > 0 be any bound for the sequence (‖un‖) ⊂
R. By density of V in H, there exists ϕ ∈ V such that

‖v − ϕ‖ < ε

2(d+ ‖u‖)

Now, by hypothesis, there exists N0 ∈ N such that, for all n ≥ N0,

|〈un − u, ϕ〉| <
ε

2
.

Then, for any n ≥ N0 we have by Cauchy-Schwartz inequality,

|〈un, v〉 − 〈u, v〉| ≤ |〈un − u, v − ϕ〉|+ |〈un − u, ϕ〉|
≤ ‖un − u‖‖v − ϕ‖+ |〈un − u, ϕ〉|
≤ (‖un‖+ ‖u‖)‖v − ϕ‖+ |〈un − u, ϕ〉|
< (d+ ‖u‖) ε

2(d+ ‖u‖)
+
ε

2
= ε,

and the result follows. �

The Γ-invariant Palais-Smale sequences for the functional Jg are bounded in
H1
g (M)Γ, as we show in the next result.

Lemma 4.2.3 Let (uk) be a Γ-invariant Palais-Smale sequence for the functional
Jg at the level τ . Then (uk) is bounded in H1

g (M).

Proof. Hereafter, C will denote a positive constant, not necessarily the same
one. Let (uk) be a sequence in H1

g (M) such that Jg(un) → τ and J ′g(uk) → 0 in(
H1
g (M)

)′
. Then, J ′g(uk)uk = o(‖uk‖g) and

|uk|2
∗

g,2∗ ≤ C

(
1

m
|uk|2

∗

g,c,2∗

)
= C

(
Jg(uk)−

1

2
J ′g(uk)uk

)
≤ C + o(‖uk‖g).

Hence,∫
M

a|∇gu|2 + b|u|2dVg = 2

(
Jg(uk) +

1

2∗
|uk|2

∗

g,c,2∗

)
≤ C + o(‖uk‖g). (4.11)



Compactness

Moreover, as (Jg(uk)) is bounded in R and M is compact, Hölder’s inequality
implies that

|uk|2g,2 ≤ C|uk|2g,2∗ ≤ C
(
|uk|2

∗

g,c,2∗

)2/2∗

= C
(
mJg(uk)−

m

2
J ′g(uk)uk

)2/2∗

≤ C + o(‖uk‖2/2∗

g ). (4.12)

As b is bounded, inequalities (4.11) and (4.12) yield

a0‖uk‖2
g ≤

∫
M

a|∇gu|2 + b|u|2dVg +

∫
M

(−b+ a0)u2
k dVg

≤
∫
M

a|∇gu|2 + b|u|2dVg + C|uk|2g,2

≤ C + o(‖uk‖g) + o(‖uk‖2/2∗

g ),

where a0 := minM a. This implies that (uk) is bounded in H1
g (M). �

Corollary 4.2.4 If (uk) is a Γ-invariant Palais-Smale sequence for Jg at the level
τ and uk → 0 in L2∗

g (M), then uk → 0 strongly in H1
g (M).

Proof. The norm

‖u‖g,a,1 :=

∫
M

a|∇uk|2 + |uk|2dVg

is well defined in H1
g (M) and it is equivalent to the standard one. As (uk) is

bounded in H1
g (M), Lemma 4.2.1 yields

‖uk‖2
a,1 − |uk|2

∗

g,c,2∗dVg = J ′g(uk)uk +

∫
M

(1− b)|uk|2dVg

≤ J ′g(uk)uk + C|uk|2g,2 = o(1) + C|uk|2g,c,2∗ . (4.13)

where C denotes a positive constant, not necessarily the same one. Since |uk|g,c,2∗ →
0, we conclude that ‖uk‖a,1 = o(1). Therefore, uk → 0 strongly in H1

g (M) �

4.3 Reduction argument

In this section we will give a well known reduction argument to reduce Palais-Smale
sequences for the functional Jg to Palais-Smale sequences for a simpler functional
not depending on b (Cf. [24, 102]). Consider the functional Jg with b = 0 and
denote it by Jg,0, i.e.,

Jg,0 :=
1

2

∫
M

a|∇u|gdVg −
1

2∗

∫
M

c|u|2∗dVg



Reduction argument

Lemma 4.3.1 Let a ∈ L∞g (M). If uk ⇀ u weakly in H1
g (M), then, up to a

subsequence ∫
M

a〈∇uk,∇ϕ〉gdVg →
∫
M

a〈∇u,∇ϕ〉gdVg as k →∞,

for all ϕ ∈ H1
g (M).

Proof. Take ϕ ∈ H1
g (M) and consider the linear functional Tϕ : H1

g (M) → R
given by

Tϕ(v) :=

∫
M

a〈∇v,∇ϕ〉gdVg.

This functional is linear and continuous, for Cauchy-Schwartz and Hölder’s in-
equalities yield

|Tϕ(v)| ≤ |a|∞
∫
M

|∇v|g|∇ϕ|gdVg ≤ |a|∞
(∫

M

|∇v|2gdVg
)1/2(∫

M

|∇ϕ|2gdVg
)1/2

≤ |a|∞‖ϕ‖g‖v‖g.

Since uk ⇀ u weakly in H1
g (M), then T (uk)→ T (u) and the limit follows. �

Lemma 4.3.2 Let ck, c̄ ∈ L∞g (M) and uk, u ∈ H1
g (M) such that (ck) is bounded

in L∞g (M), ck → c̄ almost everywhere in M and uk ⇀ u weakly in H1
g (M). Then,

up to a subsequence,∫
M

ck|uk|2
∗−2ukv dVg →

∫
M

c̄|u|2∗−2uv dVg for all v ∈ H1
g (M).

Proof. As uk converges weakly to u in H1
g (M), (uk) is bounded in H1

g (M). Up
to a subsequence, compactness of the imbedding H1

g (M) ↪→ L2∗−1
g (M) (Theorem

A.2.3) yields
uk → u in L2∗−1

g (M), uk → u a.e in M

and the existence of a function h ∈ L2∗−1
g (M) such that

|uk| ≤ h a.e. in M for all k

Since supk{|ck|∞} < ∞ and supk{‖uk‖g} < ∞, the above limits allow us to use
Lebesgue’s Dominated Convergence Theorem to obtain∫

M

ck|uk|2
∗−1ukϕdVg →

∫
M

c̄|u|2∗−1uϕdVg as k →∞.

for any ϕ ∈ C∞(M). To conclude this for all ϕ ∈ H1
g (M), define for each k the

functionals φk, φ̄ : H1
g (M)→ R,

φk(v) :=
1

2∗

∫
M

ck|v|2
∗
dVg

φ̄(v) :=
1

2∗

∫
M

c̄|v|2∗dVg
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By Frechet-Riez Representation Theorem and the above limit we obtain

〈∇φk(uk), ϕ〉H1
g (M) = φ′k(uk)ϕ =

∫
M

ck|uk|2
∗−1ukϕdVg

→
∫
M

c̄|u|2∗−1uϕdVg = φ̄′(u)v = 〈∇φ̄(u), ϕ〉H1
g (M)

for all ϕ ∈ C∞(M). Now we prove the sequence (∇φk(uk)) is bounded in H1
g (M):

Hereafter, C will denote a positive constant, not necessarily the same one. By
Hölder’s and Sobolev’s inequalities we obtain that∣∣〈∇φk(uk), v〉∣∣ = |φ′k(uk)v| ≤ C

∫
M

|uk|2
∗−1|v|dVg

≤ C

(∫
M

|uk|2
∗
) 2∗−1

2∗

|v|g,2∗ ≤ C‖uk‖2∗−1
g ‖v‖g ≤ C‖v‖g

for all v ∈ H1
g (M), where the constant C is independent of k. Hence

‖∇φk(uk)‖g ≤ C,

and the sequence (∇φk(uk)) is bounded in H1
g (M). Lemma 4.2.2 yields∫

M

ck|uk|2
∗−2ukv dVg = φ′k(uk)v = 〈∇φk(uk), v〉H1(M)

→ 〈∇φ̄(u), v〉H1
g (M) = φ̄′(u)v =

∫
M

c̄|u|2∗−2uv dVg,

for every v ∈ H1
g (M) as we wanted to prove. �

The following two lemmas are an adaptation of Lemmas 3.5 and 3.6 in [24].

Lemma 4.3.3 Let ak, ā ∈ L∞g (M) and uk, u ∈ H1
g (M) be such that (ak) is bounded

in L∞g , ak → ā in L∞g (M), and uk ⇀ u weakly in H1
g (M). Then, in a subsequence,

the following limit holds true

lim
k→∞

(∫
M

ak|∇uk|2g − ak|∇(uk − u)|2gdVg
)

=

∫
M

ā|∇u|2gdVg.

Proof. Write

ak|∇uk|2g − ak|∇(uk − u)|2g − ā|∇u|2g = ak〈2∇uk −∇u,∇u〉g − ā|∇u|2g
= (ak − ā)〈∇(2uk − u),∇u〉g + 2ā〈∇(uk − u),∇u〉g (4.14)

As uk ⇀ u weakly inH1
g (M), (uk) is bounded inH1

g (M). Let C := supn∈N ‖uk‖g.
On the one hand, Cauchy-Schwartz, Hölder’s and Sobolev’s inequalities give

∣∣∣ ∫
M

(ak − ā)〈∇(2uk − u),∇u〉gdVg
∣∣∣ ≤ |ak − ā|∞ ∫

M

|∇(2uk − u)|g|∇u|gdVg

≤ |ak − ā|∞
∫
M

2|∇uk|g|∇u|g + |∇u|2gdVg

≤ |ak − ā|∞

{
2

(∫
M

|∇uk|2gdVg
)1/2(∫

M

|∇u|2g
)1/2

+

∫
M

|∇u|2g

}
≤ |ak − ā|∞2

{
C‖u‖g + ‖u‖2

g

}
→ 0, (4.15)



Reduction argument

On the other hand, since uk ⇀ u weakly in H1
g (M), passing, if necessary to a

subsequence, Lemma 4.3.1 implies

lim
k→∞

∫
M

ā〈∇(uk − u),∇u〉gdVg = 0. (4.16)

Therefore identity (4.14) together with limits (4.15) and (4.16) give

limk→∞

∫
M

(
ak|∇uk|2g − ak|∇(uk − u)|2g − ā|∇u|2g

)
dVg

= lim
k→∞

[ ∫
M

(ak − ā)〈∇(2uk − u),∇u〉gdVg + 2

∫
M

ā〈∇(uk − u),∇u〉gdVg
]

= 0,

as claimed. �

Lemma 4.3.4 Let (ck) be a bounded sequence in L∞g (M) and c̄ ∈ L∞g (M) such
that ck → c̄ in L∞g (M). Let (uk) be a sequence in H1

g (M) such that uk ⇀ u weakly
in H1

g (M) with u ∈ L∞g (M). Then, up to a subsequence,

ck|uk|2
∗−2uk − ck|uk − u|2

∗−2(uk − u)→ c̄|u|2∗−2u in
(
H1
g (M)

)′
Proof. First notice the function

f : R→ R, f(t) := |t|2∗−2t

satisfies

|f(t+ s)− f(t)| ≤ (2∗ − 1)(|t|+ |s|)2∗−2|s|, for all s, t ∈ R (4.17)

Define ϕk : H1
g (M)→ R by

ϕk(v) :=

∫
M

ckf(uk)v − ckf(uk − u)v − c̄f(u)vdVg.

We need to show that.

‖ϕk‖(H1
g (M))′ = sup

v 6=0

|ϕk(v)|
‖v‖g

→ 0 as k →∞.

First notice that for any p ≤ 2∗, the inclusions

H1
g (M) ↪→ L2∗

g (M) ↪→ Lpg(M) (4.18)

are continuous, the first one been the Sobolev imbedding and the second one
because M is compact. Then, there exists a positive number C̃p > 0 such that
|v|p ≤ C̃p‖v‖g for any v ∈ H1

g (M)
Define r := 2m

5
> 1 and 1 < p := 2m

2m−5
≤ 2∗ and observe 1/p + 1/r = 1. If we

prove that

ckf(uk)− ckf(uk − u)− c̄f(u) ∈ Lrg(M), for all k ∈ N, (4.19)



Compactness

and that, up to a subsequence,

ckf(uk)− ckf(uk − u)→ c̄f(u) in Lrg(M), (4.20)

then Hölder’s inequality will allow us to conclude that

|ϕk(v)| ≤
∫
M

|ckf(uk)− ckf(uk − u)− c̄f(u)| |v|dVg

≤
(∫

M

|ckf(uk)− ckf(uk − u)− c̄f(u)|rdVg
)1/r

|v|g,p

≤ C̃p‖v‖g
(∫

M

|ckf(uk)− ckf(uk − u)− c̄f(u)|rdVg
)1/r

(4.21)

−→ 0

for every v ∈ H1
g (M), from which we will conclude the proof.

For the rest of the proof, C will denote a positive constant, not necessarily
the same one. We show the first assertion. As u, c̄ ∈ L∞g (M) and M is compact,
c̄f(u) ∈ Lrg(M). By (4.17), since u ∈ L∞g (M) and (ck) is bounded in L∞g (M), we
obtain

|ckf(uk)− ckf(uk − u)| ≤ C (|uk|+ |u|)2∗−2 |u|
≤ C|u|∞|uk|2

∗−2 + C|u|2∗−1
∞ ≤ C

(
|uk|2

∗−2 + 1
)
, (4.22)

almost everywhere in M . Thus,

|ckf(uk)− ckf(uk − u)|r ≤ C
(
|uk|(2

∗−2)r + 1
)
.

for every k ∈ N. Inclusions (4.18) allow to conclude that |uk|q ∈ L1
g(M) for

q := (2∗ − 2)r < 2∗. As constant functions lie in Lrg(M) when M is compact,
ckf(uk)−ckf(uk−u) ∈ Lrg(M), and therefore ckf(uk)−ckf(uk−u)−c̄f(u) ∈ Lrg(M)
as we claimed.

Next, we proceed to prove that, up to a subsequence, limit (4.20) holds true.
Consider again q = (2∗−2)r < 2∗. Since (uk) converges weakly in H1

g (M), it is
bounded in this space and compactness of the imbedding H1

g (M) ↪→ Lqg(M) gives
us the existence of a subsequence, which we denote the same, such that

uk → u in Lqg(M).

Passing again, if necessary, to a subsequence, we can suppose that

uk → u a.e. in M

and also the existence of a function h ∈ Lqg(M) such that

|uk| ≤ h, a.e. in M.

Then

|ckf(uk)− ckf(uk − u)− c̄f(u)| ≤ C
(
|uk|2

∗−2 + 1
)



Reduction argument

and the inequality holds a.e. in M , C is independent of k. Thus

|ckf(uk)− ckf(uk − u)− c̄f(u)|r ≤ C (hq + 1) .

a.e. in M . As ck → c̄ in L∞g (M), ck → c̄ a.e. in M and

|ckf(uk)− ckf(uk − u)− c̄f(u)|r → 0 a.e. in M.

Therefore, Lebesgue’s Dominated Convergence Theorem yields

|ckf(uk)− ckf(uk − u)− c̄f(u)|rr → 0,

and ckf(uk)− ckf(uk − u)− c̄f(u)→ 0 in Lrg(M) as we wanted. �

Proposition 4.3.5 Suppose a, b, c ∈ C∞(M) are Γ-invariant with a and c positive
and that −divg(a∇g) + b is coercive on H1

g (M)Γ. Let (uk) be a Γ-invariant Palais-
Smale sequence for Jg at the level τ and let u ∈ H1

g (M) be such that

uk ⇀ u weakly in H1
g (M),

uk → u strongly in L2
g(M), and

uk → u a.e. in M.

Then u ∈ H1
g (M)Γ, J ′g(u) = 0 and the sequence wk := uk − u ∈ H1

g (M)Γ satisfies,
in a subsequence, that

‖wk‖2
g = ‖uk‖2

g − ‖u‖2
H1
g (M) + o(1) (4.23)

Jg,0(wk) → τ − Jg(u) in R (4.24)

J ′g,0(wk) → 0 in
(
H1
g (M)

)′
(4.25)

where o(1) → 0 as k → ∞. In other words, (wk) is a Γ-invariant Palais-Smale
sequence for Jg,0 at the level Jg(u)− τ .

Proof. As H1
g (M)Γ is a closed subspace of H1

g (M), it is weakly closed. In this way,
weak convergence of the sequence (uk) implies u ∈ H1

g (M)Γ and wk = uk − u ∈
H1
g (M)Γ. To prove assertion (4.23), just note that uk ⇀ u implies 〈uk, u〉H1

g (M) =
〈u, u〉H1

g (M) + o(1) and, therefore,

‖wk‖2
H1
g (M) = ‖uk‖2

H1
g (M) − 2〈uk, u〉H1

g (M) + ‖u‖2
g

= ‖uk‖2
H1
g (M) − 2〈u, u〉H1

g (M) + ‖u‖2
g + o(1)

= ‖uk‖2
H1
g (M) − ‖u‖2

H1
g (M) + o(1).

Next, we prove that J ′g(u) = 0. Since uk ⇀ u weakly in H1
g (M), Lemma 4.3.2

gives, up to a subsequence, that∫
M

c|uk|2
∗−2ukϕdVg =

∫
M

c|u|2∗−2uϕdVg + o(1).
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As (uk) is a Palais-Smale sequence for the functional Jg and −divg(a∇g) + b is
coercive on H1

g (M)Γ this identity gives

o(1) = J ′g(uk)ϕ = 〈uk, ϕ〉g,a,b −
∫
M

c|uk|2
∗−2ukϕdVg

= 〈u, ϕ〉g,a,b −
∫
M

c|u|2∗−2uϕdVg + o(1)

= J ′g(u)ϕ+ o(1)

for every ϕ ∈ H1
g (M). Hence J ′g(u) = 0.

To prove (4.24), on the other hand, as uk converges weakly in H1
g (M), (uk) is

bounded in H1
g (M), in L2

g(M) and also in L2∗
g (M). By hypothesis uk → u a.e. in

M , so Lemma (4.1.1) and Lemma 4.3.3 yield

Jg(wk) = Jg(uk)− Jg(u) + o(1).

On the one hand we have that

Jg(wk)− Jg,0(wk) =
1

2

∫
M

b|wk|2dVg = o(1).

because wk → 0 strongly in L2
g(M). So,

Jg,0(wk) = Jg(wk) + o(1) = Jg(uk)− Jg(u) + o(1) = τ − Jg(u) + o(1).

Consequently, Jg,0(wk)→ τ − Jg(u) as we claimed.
Finally we show limit (4.25) holds true. Hereafter C will denote a positive

constant, not necessarily the same one, not depending on k. Notice that

J ′g(wk)− J ′g,0(wk)→ 0 in
(
H1
g (M)

)′
. (4.26)

Indeed, take ϕ ∈ H1
g (M), then Hölder’s inequality gives

∣∣J ′g(wk)ϕ− J ′0(wk)ϕ
∣∣ ≤ C

∫
M

|wk| |ϕ|dVg ≤ |wk|g,2‖ϕ‖g

Hence, for every non zero element ϕ ∈ H1
g (M) we have that∣∣J ′g(wk)ϕ− J ′0(wk)ϕ
∣∣

‖ϕ‖g
≤ C|wk|g,2 → 0

and limit (4.26) follows.
Now, we shall prove that

J ′g(wk)→ 0 in
(
H1
g (M)

)′
. (4.27)

As u is a critical point of Jg, regularity theory gives u ∈ L∞g (M) (Cf. [48]).
Then 4.3.4 yields
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∣∣J ′g(wk)ϕ∣∣
=

∣∣∣∣∣J ′g(uk)ϕ− J ′g(u)ϕ+

(∫
M

cf(uk)ϕ− cf(uk − u)ϕ− cf(u)ϕdVg

)∣∣∣∣∣
≤ ‖J ′g(uk)‖(H1

g (M))′‖ϕ‖g + o(‖ϕ‖g) = o(‖ϕ‖g)

because J ′g(uk) → 0 in
(
H1
g (M)

)′
for (uk) is a Γ-invariant Palais-Smale sequence.

Therefore limit (4.27) holds true.

From limits (4.26) and (4.27) we conclude that J ′g,0(wk)→ 0 in
(
H1
g (M)

)′
. �

4.4 Proof of Theorem 3.1.1

This section is devoted to the proof of Theorem 3.1.1. We use the notation intro-
duced in the previous sections. As in Chapter 2, we consider the Euclidean limit
problem {

−∆v = |v|2∗−2v,
v ∈ D1,2(Rm),

(4.28)

and its associated energy functional

J∞(v) :=
1

2

∫
Rm
|∇v|2dx− 1

2∗

∫
Rm
|v|2∗dx, v ∈ D1,2(Rm).

The following inequality will prove to be useful later on.

Lemma 4.4.1 If u ∈ D1,2(Rm) and v ∈ C∞c (Rm), then∫
Rm

v2|u|2∗dx ≤ S−1

(∫
supp(v)

|u|2∗dx
)2/m(∫

Rm
|∇(vu)|dx

)2/2∗

(4.29)

Proof. For the proof, see Lemma 8.12 in [102]. �

The proof of Theorem 3.1.1 will follow easily from Proposition 4.3.5 and the
following one.

Proposition 4.4.2 Assume that b ≡ 0. Let (uk) be a Γ-invariant Palais-Smale
sequence for J0 at the level τ > 0 such that uk ⇀ 0 weakly in H1

g (M). Then, after
passing to a subsequence, there exist a point p ∈M and a nontrivial solution v̂ to
problem (4.28) such that #Γp <∞ and

τ ≥
(
a(p)m/2 #Γp

c(p)(m−2)/2

)
J∞(v̂) ≥

(
min
q∈M

a(q)m/2 #Γq

c(q)(m−2)/2

)
1

m
Sm/2. (4.30)



Compactness

Proof. Fix δ such that 3δ ∈ (0, ig), where ig is the injectivity radius of M. Let
C1 > 0 be as in Lemma (4.1.3).

By Lemmas 4.2.3 and 4.2.1 we have that

|uk|2
∗

g,c,2∗ = m

(
J0(uk)−

1

2
J ′0(uk)uk

)
→ mτ =: β > 0.

So, as M is compact, after passing to a subsequence, there exist q0 ∈ M and
λ0 ∈ (0, β) such that ∫

Bg(q0,δ)

c|uk|2
∗
dVg ≥ λ0 ∀k ∈ N.

where, recall, Bg(q, r) denotes the ball in (M, g) with center q and radius r. For
each k, the Levy concentration function Qk : [0,∞)→ [0,∞) given by

Qk(r) := max
q∈M

∫
Bg(q,r)

c|uk|2
∗
dVg

is continuous, nondecreasing, and satisfies Qk(0) = 0 and Qk(δ) ≥ λ0. We fix
λ ∈ (0, λ0) such that

λ < C−m−1
1 (min

M
c)
[
2−1S(min

M
a)(max

M
c)−1

]m/2
. (4.31)

where S is the best Sobolev constant for the embedding D1,2(Rm) ↪→ L2∗(Rm).
Then, for each k ∈ N, continuity of Qk and compactness of M give the existence
of pk ∈M and rk ∈ (0, δ] such that

Qk(rk) =

∫
Bg(pk,rk)

c|uk|2
∗
dVg = λ (4.32)

and, after passing to a subsequence, pk → p in M.
Fix a cut-off function ζ ∈ C∞c (Rm) such that 0 ≤ ζ ≤ 1, ζ(y) = 1 if |y| ≤ 2δ

and ζ(y) = 0 if |y| ≥ 3δ. For each k, define

vk(x) := r
(m−2)/2
k (uk ◦ exppk)(rkx), ζk(x) := ζ(rkx),

ak(x) := (a ◦ exppk)(rkx) and ck(x) := (c ◦ exppk)(rkx).

Then, supp(ζkvk) ⊂ B(0, 3δr−1
k ) and, extending ζkvk by 0 outside B(0, 3δr−1

k ),
we have that ζkvk ∈ D1,2(Rm). As ζ ≡ 1 in B(0, rk), using (4.32) and (4.5) and
performing the change of variable y = rkx we obtain

0 < λ =

∫
Bg(pk,rk)

c|uk|2
∗
dVg ≤ C1

∫
B(0,rk)

(c ◦ exppk)|ζ(uk ◦ exppk)|
2∗dy (4.33)

= C1

∫
B(0,1)

ck|ζkvk|2
∗
dx ≤ C

∫
B(0,1)

|ζkvk|2
∗
dx.
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Here and hereafter C stands for a positive constant, not necessarily the same one.
Moreover, inequalities (4.5) and (4.6) yield

∫
B(0,3δr−1

k )

|∇ (ζkvk)|2 dx =

∫
B(0,3δ)

∣∣∇(ζ(uk ◦ exppk))
∣∣2 dy

≤ C

∫
B(0,3δ)

[
ζ2
∣∣∇(uk ◦ exppk)

∣∣2 + |∇ζ|2 (uk ◦ exppk)
2
]
dy

≤ C

∫
B(0,3δ)

[∣∣∇(uk ◦ exppk)
∣∣2 + (uk ◦ exppk)

2
]
dy

≤ C

∫
Bg(pk,3δ)

[
|∇guk|2g + u2

k

]
dVg

≤ C‖uk‖g,

so Lemma 4.2.3 implies that (ζkvk) is bounded inD1,2(Rm). Therefore, after passing
to a subsequence, we have that ζkvk ⇀ v weakly in D1,2(Rm), ζkvk → v in L2

loc(Rm)
and ζkvk → v a.e. in Rm. The proof of the proposition will follow from the next
three claims.

Claim 1. v 6= 0.

To prove this claim first note that, take C2 as in Lemma 4.1.5 so that for every
q ∈M,

C−1
2 |y − z| ≤ dg(expq (y) , expq (z)) ≤ C2 |y − z| ∀y, z ∈ B(0, 2δ). (4.34)

Set % := C−1
2 . Notice that if z ∈ Rm satisfies that |z| < 1 and if q = exppk(x) ∈

exppk B(rkz, rk%), then |rkz| ≤ 2δ, |x| ≤ 2δ and

dg(q, exppk(rkz)) ≤ C2|x− rkz| ≤ rk.

Hence, for every z ∈ B(0, 1) we have that

exppk B(rkz, rk%) ⊂ Bg(exppk(rkz), rk). (4.35)

Now, arguing by contradiction, assume that v = 0. Let ϑ ∈ C∞c (Rm) be such
that supp(ϑ) ⊂ B(z, %) for some z ∈ B(0, 1). Then, supp(ϑ) ⊂ B(0, 2). Set
ϑ̂k(q) := ϑ(r−1

k exp−1
pk

(q)). As ζk ≡ 1 in B(0, 2) ⊂ B(0, 2δr−1
k ), ζkvk → 0 in

L2
loc(Rm), J ′0(uk) → 0 in

(
H1
g (M)

)′
and (ϑ̂2

kuk) is bounded in H1
g (M), using in-



Compactness

equalities (4.5), (4.6) and 4.29 and Sobolev’s inequalities, we obtain∫
Rm
|∇ (ϑζkvk)|2 dx =

∫
B(0,2)

|∇ (ϑvk)|2 dx =

∫
B(0,2rk)

∣∣∣∇((ϑ̂kuk) ◦ exppk

)∣∣∣2 dy
≤ C3

∫
Bg(pk,2rk)

a
∣∣∣∇g(ϑ̂kuk)

∣∣∣2
g
dVg

= C3

∫
Bg(pk,2rk)

a

[
ϑ̂2
k |∇g (uk)|2g + 2ϑ̂kuk

〈
∇guk,∇gϑ̂k

〉
g

+
∣∣∣∇gϑ̂k

∣∣∣2 u2
k

]
dVg

= C3

∫
Bg(pk,2rk)

a
〈
∇guk,∇g(ϑ̂

2
kuk)

〉
g
dVg + C

∫
B(pk,2rk)

a|uk|2|∇ϑ̂k|2dVg

≤ C3

∫
Bg(pk,2rk)

a
〈
∇guk,∇g(ϑ̂

2
kuk)

〉
g
dVg + C

∫
B(0,2)

|ζkvk|2dx

= C3

∫
Bg(pk,2rk)

a
〈
∇guk,∇g(ϑ̂

2
kuk)

〉
g
dVg + o(1)

= CJ ′g,0(uk)(ϑ̂
2
kuk)−

∫
Bg(pk,2rk)

b u2
kϑ̂

2
kdVg + C3

∫
Bg(pk,2rk)

c |uk|2
∗−2 (ϑ̂kuk)

2 dVg + o(1)

= C3

∫
Bg(pk,2rk)

c |uk|2
∗−2 (ϑ̂kuk)

2 dVg + o(1)

≤ C4

∫
B(0,2)∩B(z,ρ)

|vk|2
∗−2 (ϑvk)

2 dx+ o(1)

≤ C4

(∫
B(z,ρ)

|vk|2
∗
dx

)2/m(∫
B(0,2)

|ϑζkvk|2
∗
dx

)2/2∗

+ o(1)

≤ C4S
−1

(∫
B(z,ρ)

|vk|2
∗
dx

)2/m ∫
Rm
|∇ (ϑζkvk)|2 dx+ o(1),

where C stands for constants, not necessarily the same ones, C3 := C1(minM a)−1

and C4 := C1(maxM c)C3. On the other hand, from (4.8), (4.35) and (4.32) we
derive ∫

B(z,ρ)

|vk|2
∗
dx =

∫
B(rkz,rkρ)

∣∣uk ◦ exppk(y)
∣∣2∗ dy

≤ C1

∫
exppk

(B(rkz,rkρ))

|uk|2
∗
dVg

≤ C1(min
M

c)−1

∫
Bg(exppk

(rkz), rk)

c |uk|2
∗
dVg

≤ C1(min
M

c)−1λ.

It follows from (4.31) that (C1(minM c)−1λ)2/m < 2−1C−1
4 S. Therefore,

lim
k→∞

∫
Rm
|∇ (ϑζkvk)|2 dx = 0

and Sobolev’s inequality yields

lim
k→∞

∫
Rm
|ϑζkvk|2

∗
dx = 0
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for every ϑ ∈ C∞c (Rm) such that supp(ϑ) ⊂ B(z, %) for some z ∈ B(0, 1). As B(0, 1)
can be covered by a finite number of balls B(zj, %) with zj ∈ B(0, 1), choosing a
partition of unity {ϑ2∗

j } subordinated to this covering, we conclude that∫
B(0,1)

|ζkvk|2
∗
dx ≤

∫
B(0,1)

∣∣(∑
j

ϑj
)
ζkvk

∣∣2∗dx ≤∑
j

∫
Rm
|ϑjζkvk|2

∗
dx −→ 0,

contradicting (4.33). This finishes the proof of Claim 1.

Claim 2. v̂ :=
(
c(p)
a(p)

)(m−2)/4

v is a nontrivial solution to problem (4.28).

First we show that, after passing to a subsequence, rk → 0. Arguing by
contradiction, assume that rk > θ > 0 for all k large enough. Then, as ζkvk → v

a.e. in Rm and supp(ζkvk) ⊂ B(0, 3δr−1
k ) ⊂ B(0, 3δθ−1), v 6= 0 in B(0, 3δθ).

Hence, since ζkvk → v in L2
loc(Rm), and 0 ≤ ζ ≤ 1, using inequality (4.5) and

performing again the change of variables y = rkx we obtain

0 6=
∫
B(0,3δθ−1)

|v|2 dx =

∫
B(0,3δθ−1)

|ζkvk|2 dx+ o(1)

=

∫
B(0,3δr−1

k )

|ζkvk|2 dx+ o(1)

= r−2
k

∫
B(0,3δ)

∣∣ζ(uk ◦ exppk)
∣∣2 dy + o(1)

≤ θ−2

∫
B(0,3δ)

∣∣uk ◦ exppk
∣∣2 dy + o(1)

≤ C1θ
−2

∫
Bg(pk,3δ)

|uk|2 dVg + o(1)

≤ C1θ
−2

∫
M

|uk|2dVg.

This yields a contradiction because, as we are assuming that uk ⇀ 0 weakly
in H1

g (M), we have that uk → 0 strongly in L2
g(M) by the compactness of the

imbedding H1
g (M) ↪→ L2

g(M).
Claim 2 is equivalent to showing that v satisfies

−a(p)∆v = c(p)|v|2∗−2v, v ∈ D1,2(Rm),

i.e. we need to show that∫
Rm

a(p) 〈∇v,∇ϕ〉 dx =

∫
Rm

c(p)|v|2∗−2vϕ dx ∀ϕ ∈ C∞c (Rm). (4.36)

To this end, take ϕ ∈ C∞c (Rm) and let R > 0 be such that supp(ϕ) ⊂ B(0, R).
For k such that Rrk < 2δ define ϕ̂k ∈ H1

g (M) by

ϕ̂k(q) := r
2−m

2
k ϕ(r−1

k exp−1
pk

(q)).

Note first that, as the exponential map exp : TM → M is continuous, then
exppk(rkx) → expp(0) = p for every x ∈ Rm. Consequently ak → a(p) and
ck → c(p) in L∞loc(Rm) and since ζkvk ⇀ v weakly in D1,2(Rm) we have that∫

Rm
ak 〈∇ (ζkvk) ,∇ϕ〉 dx =

∫
Rm

a(p) 〈∇v,∇ϕ〉 dx+ o(1).



Compactness

By Lemma 3.6 in [24] we also have that∫
Rm

ck|ζkvk|2
∗−2 (ζkvk)ϕdx =

∫
Rm

c(p)|v|2∗−2vϕ dx+ o(1).

Next observe that, if (gkij) is the metric g written in normal coordinates around pk,

(gjik ) is its inverse,
∣∣gk∣∣ := det(gkij) and (∂ji) is the identity matrix then, for every

i, j = 1, ...,m,

lim
|y|→0

gjik (y) = ∂ji and lim
|y|→0

∣∣gk∣∣1/2 (y) = 1, (4.37)

uniformly in k. Therefore, as supp(ϕ̂k ◦ exppk) ⊂ B(0, Rrk) ⊂ B(0, 2δ), rk → 0,
and (uk ◦ exppk) and (ϕ̂k ◦ exppk) are bounded in D1,2(Rm), we have that∫

Rm
(a ◦ exppk)

〈
∇(uk ◦ exppk),∇(ϕ̂k ◦ exppk)

〉
dy −

∫
M

a 〈∇guk,∇gϕ̂k〉g dVg

=
∑
i,j

∫
B(0,Rrk)

(a ◦ exppk)(∂
ji −

∣∣gk∣∣1/2 gjik ) ∂i(uk ◦ exppk) ∂j(ϕ̂k ◦ exppk) dy

= o(1),

and∫
Rm

(c ◦ exppk)|uk ◦ exppk |
2∗−2(uk ◦ exppk)(ϕ̂k ◦ exppk)dy −

∫
M

c |uk|2
∗−2 ukϕ̂kdVg

=

∫
B(0,Rrk)

(c ◦ exppk)|uk ◦ exppk |
2∗−2(uk ◦ exppk)(ϕ̂k ◦ exppk)(1−

∣∣gk∣∣1/2) dy

= o(1).

Finally, as J ′0(uk) → 0 in
(
H1
g (M)

)′
and (ϕ̂k) is bounded in H1

g (M) we conclude
from Lemma 4.2.1 that, for k large enough,∫

Rm
a(p) 〈∇v,∇ϕ〉 dx

=

∫
Rm

ak 〈∇ (ζkvk) ,∇ϕ〉 dx+ o(1)

=

∫
Rm

(a ◦ exppk)
〈
∇(uk ◦ exppk),∇(ϕ̂k ◦ exppk)

〉
dy + o(1)

=

∫
M

a 〈∇guk,∇gϕ̂k〉g dVg + o(1)

= J ′g,0(uk)(ϕ̂k) +

∫
M

c |uk|2
∗−2 ukϕ̂k dVg + o(1)

=

∫
M

c |uk|2
∗−2 ukϕ̂k dVg + o(1)

=

∫
Rm

(c ◦ exppk)|uk ◦ exppk |
2∗−2(uk ◦ exppk)(ϕ̂k ◦ exppk) dy + o(1)

=

∫
Rm

ck|ζkvk|2
∗−2 (ζkvk)ϕdx+ o(1)

=

∫
Rm

c(p)|v|2∗−2vϕ dx+ o(1).



Proof of Theorem 3.1.1

This proves (4.36).

Claim 3. #Γp <∞ and τ ≥
(
a(p)m/2 #Γp

c(p)(m−2)/2

)
J∞(v̂).

Let γ1p, ..., γnp be n distinct points in the Γ-orbit Γp of p, and fix η ∈ (0, δ]
such that dg(γip, γjp) ≥ 4η if i 6= j. For k sufficiently large, dg(pk, p) < η so, as γi
is an isometry, dg(γipk, γjpk) > 2η for all k ∈ N and i 6= j, for, if not,

dg(γip, γjp) ≤ d(γip, γipk) + dg(γipk, γjpk) + dg(γjpk, γjp)

= d(p, pk) + dg(γipk, γjpk) + dg(pk, p) < 4η,

a contradiction. Since c and uk are Γ-invariant, for each ρ ∈ (0, η] we obtain that

n

∫
Bg(pk,ρ)

c |uk|2
∗
dVg =

n∑
i=1

∫
Bg(γipk,ρ)

c |uk|2
∗
dVg ≤

∫
M

c |uk|2
∗
dVg. (4.38)

Let ε > 0. By (4.37) there exists ρ ∈ (0, η] such that (1 + ε)−1 <
∣∣gk∣∣1/2 < (1 + ε)

in B(0, ρ) for k large enough. As 1B(0,ρr−1
k )ck → c(p) and ζkvk → v a.e. in Rm,

Fatou’s lemma, inequality (4.38) and identity (A.1) yield

n

m

∫
Rm

c(p) |v|2
∗
dx ≤ lim inf

k→∞

n

m

∫
B(0,ρr−1

k )

ck |ζkvk|2
∗
dx

≤ lim inf
k→∞

n

m

∫
B(0,ρ)

(c ◦ exppk)
∣∣uk ◦ exppk

∣∣2∗ dy
≤ lim inf

k→∞

n

m

∫
B(0,ρ)

(1 + ε)
∣∣gk∣∣1/2 (c ◦ exppk)

∣∣uk ◦ exppk
∣∣2∗ dy

≤ (1 + ε) lim inf
k→∞

n

m

∫
Bg(pk,ρ)

c |uk|2
∗
dVg

≤ (1 + ε) lim
k→∞

1

m

∫
M

c |uk|2
∗
dVg = (1 + ε)τ.

This implies that n is bounded and, therefore, #Γp < ∞. Moreover, as ε is arbi-
trary, taking n = #Γp, we conclude that(

a(p)m/2 #Γp

c(p)(m−2)/2

)
J∞(v̂) =

(
a(p)m/2 #Γp

c(p)(m−2)/2

)
1

m

∫
Rm
|v̂|2

∗
dx

=
#Γp

m

∫
Rm

c(p) |v|2
∗
dx ≤ τ,

as claimed.

This finishes the proof of the proposition. �

Proof of Theorem 3.1.1. Let (uk) be a sequence in H1
g (M)Γ such that Jg(uk)→

τ < (minq∈M
a(q)m/2 #Γq

c(q)(m−2)/2 ) 1
m
Sm/2 and J ′g(uk) → 0 in

(
H1
g (M)

)′
. By Lemma 4.2.3,

(uk) is bounded in H1
g (M) so, after passing to a subsequence, uk ⇀ u weakly

in H1
g (M), uk → u strongly in L2

g(M) and uk → u almost everywhere in M . By
Proposition 4.3.5, u ∈ H1

g (M)Γ, J ′g(u) = 0. Moreover the sequence ũk := uk−u is a



Compactness

Γ-invariant Palais-Smale sequence for the functional Jg,0 at the level τ̃ := τ−Jg(u)
satisfying ũk ⇀ 0 weakly in H1

g (M). If τ̃ ≤ 0, then

0 ≥ τ̃ = lim
k→∞

Jg,0(ũk) = lim
k→∞

1

2
Jg,0(ũk)ũk + lim

k→∞

1

m
|ũk|2

∗

g,c,2∗ = lim
k→∞

1

m
|ũk|2

∗

g,c,2∗ ≥ 0,

and Lemma 4.2.4 implies uk → u strongly in H1
g (M) in a subsequence. If τ̃ <

(minq∈M
a(q)m/2 #Γq

c(q)(m−2)/2 ) 1
m
Sm/2, Proposition 4.4.2 implies that τ̃ = 0 and, by the above

remark, uk → u strongly in H1
g (M) in a subsequence. �





APPENDIX A

SOBOLEV SPACES ON MANIFOLDS

A.1 Integration on manifolds

We begin with the definition of the integral of continuous functions with compact
support.

Definition 2 Let (Mm, g) be a Riemannian manifold with dimM = m, {(Ωi, ϕi)}i∈I
a countable atlas for M and {γi}i∈I a partition of unity subordinated to the atlas.
Then, for all functions f : M → R which are continuous and compactly supported
on M , we define ∫

M

fdVg :=
∑
i∈I

∫
ϕ(Ωi)

(γi
√
|g|f) ◦ ϕ−1

i dx,

where |g| = det(gij) in the corresponding coordinates.

It can be readily checked that the definition does not depend on the atlas and
the subordinated partition of unity (Cf [56, Chapitre 4]).

Remark A.1.1 We will frequently encounter the following situation: If (Ω, ϕ) is
a chart for M and f : M → R is continuous with supp(f) ⊂ Ω, then we can simply
define the integral as follows∫

M

fdVg :=

∫
Ω

fdVg :=

∫
ϕ(Ω)

(
√
|g|f) ◦ ϕ−1dx, (A.1)

and, as before, this definition does not depend on the chart containing supp(f).

Since we will deal with more general functions on manifolds, it is desirable to
extend the definition of the integral. To do this, we use de Lebesgue measure on
Rm and define the Lebesgue volume measure on M , λM,g. A detailed exposition of
what follows can be found, for instance, in [1, Chapter XII].
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Integration on manifolds

First, we say that a subset A of M is Lebesgue measurable on M if for every
p ∈ A there exists a chart (Ω, ϕ) such that ϕ(Ω ∩ A) is a Lebesgue measurable
subset of Rm. We define

L(M) := {A ⊂M : A is Lebesgue measurable on M}.

This set is a σ-algebra over M and it contains the Borel σ-algebra of M .
Next, we proceed to define a volume for these sets. To do so, let {(Ωi, ϕi)}i∈I

an atlas for M and A ∈ L(M). Then, the volume of A is

V olg(A) :=
∑
i∈I

∫
ϕi(A∩Ωi)

√
|g| ◦ ϕ−1dx ∈ [0,∞].

It is not hard to see that this definition does not depend on the chosen atlas. We
define the Lebesgue measure on M,

λM,g : L(M)→ R, λM,g(A) := volg(A).

In this manner, we have defined a measure space (M,L(M), λM,g) and we can
define the integral in a measure theoretic way. For every subset Ω of M , we define
the set of measurable functions on Ω

L0(Ω, λM,g) := {f : Ω→ R ∪ {±∞} : f is λM,g measurable },

and the set of integrable functions on Ω,

L1(Ω, λM,g) := {f ∈ L0(Ω, λM,g) :

∫
Ω

|f |dλM,g <∞}.

We have the following characterization of λM,g− measurable and integrable
functions.

Proposition A.1.2 1. f ∈ L(M,λM,g) if and only if f ◦ ϕ−1 : ϕ(Ω) → R ∩
{±∞} is Lebesgue measurable for all charts (Ω, ϕ) on M .

2. If (Ω, ϕ) is a chart for M , and f ∈ L0(M,λM,g), then f ∈ L1(Ω, λM,g) if and

only if (f
√
|g|) ◦ ϕ−1 ∈ L1(ϕ(Ω)), and, in this case∫

Ω

fdλM,g =

∫
ϕ(Ω)

(f
√
|g|) ◦ ϕ−1dx

As a corollary we have the following result.

Corollary A.1.3 Let {(Ωi, ϕi)}i∈I be an atlas for M , {γi}i∈I a subordinated par-
tition of unity and f ∈ L0(M,λM,g). Then f ∈ L1(M,λM,g) if and only if
γif ∈ L1(Ωi, λM,g) for all i ∈ I and

∞∑
i=1

∫
Ωi

γi|f |dλM,g <∞.



Sobolev spaces on manifolds

In this case ∫
M

fdλM,g =
∑
i∈I

∫
Ωi

γifdλM,g (A.2)

=
∑
i∈I

∫
ϕ(Ωi)

(γif
√
|g|) ◦ ϕ−1dx.

In particular, if f : M → R is continuous and compactly supported on M , we
recover the former definition of the integral, that is∫

M

fdλM,g =

∫
M

fdVg =
∑
i∈I

∫
ϕ(Ωi)

(γif
√
|g|) ◦ ϕ−1dx

for every atlas {(Ωi, ϕi)}i∈I and every partition of unity {γi}i∈I subordinated to
the atlas.

We define the Lebesgue spaces by Lpg(M) := Lp(M,L(M), λM,g), for any p ∈
[1,∞]. In what follows, we will use only the notation dVg instead of the measure
theoretic one, dλM,g and we will denote the Lpg norm of f ∈ Lpg(M) simply by

|f |p := |f |Lpg(M) =

(∫
M

|f |pdVg
)1/p

if there is no risk of confusion. Instead of saying that a proposition happens
λM,g−a.e. in M , we will simply say that the proposition happens almost every-
where (a.e.) in M .

A.2 The space H1
g (M)

Here and hereafter, we shall consider only a compact manifolds without bound-
ary. For a treatment of the Sobolev spaces of non compact complete Riemannian
manifolds with or without boundary, we refer the reader to the books [6, 56, 57].

Let (Mm, g) a compact Riemannian manifold without boundary with dimM =
m and u : M → R smooth. If we denote by ∇u the first covariant derivative of u,
its Hilbert-Schmidt norm is defined in a local chart by

|∇u|2g := gij∂iu∂ju

where we have used the Einstein summation convention. For u ∈ C∞(M), the
integrals

∫
M
|u|2dVg and

∫
M
|∇u|2gdVg are both finite and we can define the norm

‖u‖g :=

(∫
M

|u|2dVg +

∫
M

|∇u|2gdVg
)1/2

.

Definition 3 The Sobolev space H1
g (M) is the completion of C∞(M) with respect

to the norm ‖ · ‖g.



Sobolev spaces with symmetries

Remark A.2.1 As (M, g) is compact and without boundary, it is a complete space
and the Sobolev space can be also defined as the closure of C∞c (M) with respect to
the norm ‖ · ‖g. If the manifold is not complete, this is true in general.

Notice a sequence (uk) in H1
g (M) converges strongly in this space if and only

if the sequences (uk) and (∂iuk) converge strongly in L2
g(M) for all i = 1, . . . ,m.

In fact, we have the following.

Lemma A.2.2 Let (uk) be a sequence in C∞(M) and u, v1 . . . , vm ∈ L2
g(M) such

that uk → u in L2
g(M) and ∂iuk → vi in L2

g(M) for all i = 1, . . . ,m. Then
u ∈ H1

g (M), ∂iu = vi and uk → u in H1
g (M).

Proof. First we show (uk) is a Cauchy sequence in H1
g (M). Let ε > 0, then the

convergence in L2
g(M) of the sequences (uk) and (∂iuk) imply they are Cauchy

sequences in L2
g(M) and there exist N0, N1, . . . , Nm ∈ N such that |uj − ul|22 ≤

ε/(m + 1) for every j, l ≥ N0 and |∂iuj − ∂iul|22 ≤ ε/(m + 1) if j, l ≥ Ni for each
i = 1, . . . ,m. Then, for every j, l ≥ N = max{N0, N1, . . . , Nm} we have that

‖uj − ul‖2
g = |uj − ul|22 +

N∑
i=1

|uj − ul|22 ≤ ε,

concluding that (uk) is a Cauchy sequence in H1
g (M). Therefore, there exists

w ∈ H1
g (M) such that uk → w in H

(
gM). Since |uk − w|2 ≤ ‖uk − w‖g and

|∂iuk−∂iw|2 ≤ ‖∂iuk−∂iw‖g for all i = 1, . . . ,m, then also uk → w in L2
g(M) and

∂iuk → ∂iw in L2
g(M) for all i = 1, . . . ,m. We conclude that u = w and vi = ∂iw

for all i = 1 . . . ,m. So, ∂iu = ∂iw = vi by definition, u ∈ H1
g (M) and uk → u in

H1
g (M). �

Because of this lemma, given a function u ∈ H1
g (M) r C∞(M), we denote by

∂iu to the limit in L2
g(M) of the converging sequence (∂iuk).

For any u ∈ H1
g (M), the positive part and the negative part of u, u+ :=

max{0, u} and u− := min{0, u}, also lie in this space. The proof of this fact is
entirely the same as in the Euclidean case, Cf. Corolary 20.12 in [64].

As in the Euclidean case, we have the following Sobolev’s imbedding Theorem
for compact manifolds

Theorem A.2.3 If (M, g) is a compact Riemannian manifold without boundary,
dimM ≥ 3, then the imbedding H1

g (M) ↪→ Lpg(M) is continuous for every 1 ≤ p ≤
2∗ and is compact for any 1 ≤ p < 2∗.

Proof. See Chapter 2 in [6] or the same chapter in [57]. �

A.3 Sobolev spaces with symmetries

To end this Appendix, we give a few words about Sobolev spaces in the presence
of symmetries.
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Given a compact Riemannian manifold (M, g), we denote by Isomg(M) = {γ :
(M, g) → (M, g) : γ is an isometry} its group of isometries. It is well known
that this is a Lie group acting smoothly on M and that it is compact whenever
M is compact (Cf. [68, Chapter II, Theorem 1.2]). Thus, every closed subgroup
Γ of Isomg(M) is also a compact Lie group by the Closed Subgroup Theorem
[70, Theorem 20.12]. For any closed subgroup Γ of isomg(M), we say a function
f : M → R is Γ-invariant if f ◦ γ = f for each γ ∈ Γ. Denote by

H1
g (M)Γ := {u ∈ H1

g (M) : u is Γ− invariant}.

the subspace of H1
g (M) consisting of Γ-invariant functions. This is a closed sub-

space of H1
g (M) and it is a Hilbert space endowed with the metric ‖ · ‖.

The following approximation result is useful.

Proposition A.3.1 The subspace

C∞(M)Γ := {u ∈ C∞(M) : u is Γ− invariant}

is dense in H1
g (M)Γ.

Proof. See Theorem VI.4.2 in [14]. �





APPENDIX B

TOPOLOGICAL METHODS

B.1 Category and cup-length

A pair consisting of a topological space X and a subset A of X is denoted by
(X,A). A map of pairs f : (X,A) → (Y,B) is a continuous function f : X → Y
such that f(a) ∈ B for every a ∈ A. Two maps of pairs f0, f1 : (X,A) → (Y,B)
are homotopic if there exists a map of pairs F : ([0, 1] × X, [0, 1] × A) → (Y,B)
such that F (0, x) = f0(x) and F (1, x) = f1(x) for every x ∈ X.

Definition 4 The Lusternik-Schnirelmann category of the pair (X,A) is the small-
est number k =: cat(X,A) such that there exists an open cover U0, U1, ..., Uk of X
with the following properties:

(LS1) A ⊂ U0 and there exists a homotopy F : ([0, 1] × U0, [0, 1] × A) → (X,A)
such that F (0, x) = x and F (1, x) ∈ A for every x ∈ U0,

(LS2) Uj is contractible in X for every j = 1, ..., k.

If no such cover exists we set cat(X,A) :=∞.

If A = ∅ we write cat(X) instead of cat(X, ∅).
Let H∗ be C̆ech cohomology with Z/2-coefficients. We write H̃∗ for reduced

C̆ech cohomology. The cup-product endowsH∗(X,A) with a (graded right)H∗(X)-
module structure

` : Hi(X,A)×Hj(X)→ Hi+j(X,A),

see e.g. [47].

Definition 5 The cup-length of (X,A) is the smallest number k ∈ N ∪ {0} such
that

ξ0 ` ζ1 ` · · · ` ζk = 0 for all ξ0 ∈ H∗(X,A), for all ζ1, . . . , ζk ∈ H̃∗(X).

We denote it by cupl(X,A). If no such number exists we define cupl(X,A) :=∞.
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Fixed Point transfer

We write cupl(X) instead of cupl(X, ∅).Note that cupl(X,A) ≥ 1 iffH∗(X,A) 6=
0.

The category and the cup-length are related as follows.

Lemma B.1.1 cat(X,A) ≥ cupl(X,A).

Proof. See [33, Proposition 4.3]. �

Lemma B.1.2 If f : (X,A)→ (Y,B) and h : (Y,B)→ (X,A) are maps of pairs
whose composition h ◦ f : (X,A)→ (X,A) is homotopic to the identity of the pair
(X,A) then

cat(X,A) ≤ cat(Y,B) and cupl(X,A) ≤ cupl(Y,B).

Proof. The proof is straightforward. �

Lemma B.1.3 If the map of pairs f : (X,A)→ (Y,B) induces a monomorphism
f ∗ : H∗(Y,B)→ H∗(X,A), then

cupl(Y,B) ≤ cupl(X,A).

Proof. Let ξ0 ∈ H∗(Y,B), ζ1, . . . , ζr ∈ H̃∗(Y ) be such that ξ0 ` ζ1 ` · · · ` ζr 6= 0.
Then, since f ∗ : H∗(Y,B)→ H∗(X,A) is a monomorphism, we have that

0 6= f ∗(ξ0 ` ζ1 ` · · · ` ζr) = f ∗(ξ0) ` f ∗(ζ1) ` · · · ` f ∗(ζr).

This proves our claim. �

If Θ is a bounded smooth domain in RN , M is an m-dimensional compact
smooth manifold without boundary, and BrM is a tubular neighborhood of M
contained in Θ, then the inclusion i : (BrM,SrM) ↪→ (Θ,Θ r BrM) induces an
isomorphism in cohomology

i∗ : H∗(Θ,Θ rBrM) ∼= H∗(BrM,SrM)

by excision. Let τ ∈ HN−m(BrM,SrM) be the Thom class of the disk bundle
q : BrM → M and let τ̃ ∈ HN−m(Θ,Θ r BrM) be such that i∗(τ̃) = τ. The
cup-lenght of (Θ,Θ rBrM) can be computed in terms of τ̃ , as follows.

Proposition B.1.4 cupl(Θ,Θ rBrM) is the smallest number k ∈ N such that

τ̃ ` ζ1 ` · · · ` ζk = 0 for all ζ1, . . . , ζk ∈ H̃∗(Θ). (B.1)

Proof. Let k ∈ N be such that (B.1) holds true, and let ξ0 ∈ H∗(Θ,Θ r BrM)

and ζ1, . . . ζk ∈ H̃∗(Θ). By the Thom isomorphism theorem, i∗(ξ0) = τ ` q∗(ω) =
i∗(τ̃) ` q∗(ω) for some ω ∈ H∗(M). Since τ̃ ` ζ1 ` · · · ` ζk = 0 we obtain that

i∗(ξ0 ` ζ1 ` · · · ` ζk) = τ ` q∗(ω) ` i∗(ζ1 ` · · · ` ζk)

= q∗(ω) ` i∗(τ̃) ` i∗(ζ1 ` · · · ` ζk)

= q∗(ω) ` i∗(τ̃ ` ζ1 ` · · · ` ζk) = 0

and, since i∗ : H∗(Θ,ΘrBrM)→ H∗(BrM,SrM) is an isomorphism, we conclude
that ξ0 ` ζ1 ` · · · ` ζn = 0. Hence cupl(Θ,ΘrBrM) ≤ k. The opposite inequality
is trivial. �



Topological methods

B.2 Fixed Point transfer

For convenience to the reader, we include the definition and properties of the fixed
point transfer used in this paper. The details can be found in [46].

Let B be a metric space, let U be an open subset of B → Rn, and let P :
B × Rn → B and π : B × Rn → Rn be the projections. A map F : U → B × Rn

is said to be compactly fixed over B if P (F (z)) = p(z) for every z ∈ U , Fix(F ) :=
{z ∈ UF (z) = z} ⊂ U , and there exists a continuous function % : B → (0,∞)
such that

Fix(F ) ⊂ T% := {(b, x) ∈ B × Rn : |x| ≤ %(b)}.

Let A be a closed subset of B. and let Y ⊂ X be open subsets of U such that

Fix(F ) ⊂ X, Fix(F ) ∩ (A× Rn) ⊂ Y, Fix(F ) ∩ (P (Y )× Rn) . (A.1)

Set B′ := B \ P (Fix(F )) and consider the following sequence of maps.

(X, Y )× (Rn,R\{0}) (id,i−F )← (X, (X \ Fix(F )) ∪ Y )
i1
↪→ (B × Rn, (B,R\Fix(F )) ∪ (P (Y )× Rn))
i2←↩ (B × Rn, (B × Rn \ T%) ∪ ((P (Y ) ∪B′)× Rn))
i3
↪→ (B,P (Y ) ∪B′)× (Rn,Rn \ {0})
i4←↩ (B, a)× (Rn,Rn \ {0})

where (id, i−F )(b, x) := (b, x, x−π(F (b, x))) and all other maps are inclusions.
Here we write, (B,A)× (D,C) := (B×D,B×C ∪A×D). Let H∗ the Alexander-
Spanier cohomology or any other continuous cohomology theory. The inclusion i1 is
an excision, so it induces an isomorphism in cohomology. The excision, homotopy
and exactness properties of cohomology ensures that the inclusion i3 induces an
isomorphism too. Hence, applying cohomology to this sequence of maps, and
composing both ends with the suspension isomorphism H i+n((B,A) × (Rn,Rn \
{0})) ∼= H i(B.A) we obtain a homomorphism

tX,YF : H∗(X, Y )→ H∗(B,A).

The set of all open subsets Y ⊂ X of U which satisfies (A.1) is a cofinal subset of
U := {(X, Y ) : X, Y open in B × Rn, X ⊃ Fix(F ), Y ⊃ Fix(F ) ∩ (A × Rn)}. So
passing to the direct limit

H∗(Fix(F ),Fix(F ) ∩ (A× Rn)) ∼= lim
←
{H∗(X, Y ) : (X, Y ) ∈ U}

we obtain a homomorphism

τF : H∗(Fix(F ),Fix(F ) ∩ (A× Rn))→ H∗(B,A)

called the (relative) fixed point transfer of F . We state the properties we need for
our purposes.
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Naturality: It commutes with connecting homomorphisms, that is, the dia-
gram

H i(Fix(F ) ∩ (A× Rn))

τF

��

δ∗−→ H i+1(Fix(F ),Fix(F ) ∩ (A× Rn))

τF

��
H i(A)

δ∗−→ H i+1(B,A)

commutes.
Units: If S : B → B×Rn is a section of P , (i.e, P ◦S = id) and F = S ◦P :

B × Rn → B × Rn, then Fix(F ) = S(B) and τF = S∗ : H∗(S(B))→ H∗(B).
Homotopy: Let h : W → B × [0, 1] × Rn be a compactly fixed map over

B × [0, 1]. For each t ∈ [0, 1] set Wt := {(b, x) ∈ B × Rn : (b, t, x) ∈ W} and let
ht : Wt → B × Rn be given by ht(b, x) := q(h(b, t, x)) where q : B × [0, 1]× Rn →
B × Rn is the projection. Then

τh0 ◦ P ∗ = τh1 ◦ P ∗.



APPENDIX C

A VARIATIONAL PRINCIPLE FOR
SIGN-CHANGING SOLUTIONS

Let (M, g) be a closed Riemannian manifold with dimension m ≥ 3, Γ a closed
subgroup of Isomg(M), a, b, c ∈ C∞(M)Γ. Since we are assuming that a > 0 and
the operator −divg(a∇g) + b is coercive on H1(M)Γ, there exists µ > 0 such that∫

M

[
a|∇gu|2 + b|u|2

]
dVg ≥ µ

∫
M

[
a|∇gu|2 + |u|2

]
dVg ∀u ∈ H1

g (M)Γ.

Fix θ > max{1, µ, |b|∞} and consider the scalar product

〈u, v〉g,a,θ :=

∫
M

[a〈∇gu,∇gv〉g + θuv] dVg (C.1)

in H1
g (M)Γ. As θ > 0, this interior product is well defined in this space and the

induced norm ‖ · ‖g,a,θ is equivalent to the standard one, ‖ · ‖g. For any closed
subset D of H1

g (M)Γ and any α > 0 we define

Bα(D) := {u ∈ H1
g (M)Γ : distθ(u,D) ≤ α}.

where distθ(u,D) := infv∈D ‖u−v‖g,a,θ. Continuity of the function u 7→ distθ(u,D)
imply Bα(D) is also closed in H1

g (M)Γ.
The gradient of the functional Jg : H1

g (M)Γ → R at u ∈ H1
g (M)Γ, with respect

to the scalar product (C.1), is the vector ∇Jg(u) which satisfies

〈∇Jg(u), v〉g,a,θ = J ′g(u)v = 〈u, v〉g,a,θ −
∫
M

(θ − b)uv dVg −
∫
M

c |u|2
∗−2 uv dVg

= 〈u, v〉g,a,θ − 〈L(u), v〉g,a,θ, − 〈G(u), v〉g,a,θ, ∀v ∈ H1
g (M)Γ,

i.e., ∇Jg(u) = u− Lu−Gu where Lu, Gu ∈ H1
g (M)Γ are the unique solutions to

−divg(a∇g(Lu)) + θ (Lu) = (θ − b)u, (C.2)

−divg(a∇g(Gu)) + θ (Gu) = c |u|2
∗−2 u. (C.3)
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Observe these functions are uniquely determined by the relations

〈L(u), v〉g,aθ =

∫
M

(θ − b)uv dVg, and 〈G(u), v〉g,aθ =

∫
M

c|u|2∗−2uv dVg (C.4)

for all v ∈ H1
g (M)Γ.

The proof of the following statement was suggested to us by Jérôme Vétois. It
fills in a small gap in the proof of Lemma 2.1 in [100].

Lemma C.0.1 For every u ∈ H1
g (M)Γ,

‖Lu‖g,a,θ ≤
θ − µ
θ + µ

‖u‖g,a,θ .

Proof. Note first that, for every u ∈ H1
g (M)Γ, coercivity of −divg(∇g) + b and

our election of θ imply∫
M

(θ − b)u2dVg =

∫
M

θu2dVg − bu2dVg

≤
∫
M

θu2dVg − µ
∫
M

[
a|∇gu|2 + |u|2

]
dVg +

∫
M

a |∇gu|2 dVg

= (θ − µ)

∫
M

u2dVg + (1− µ)

∫
M

a|∇gu|2dVg

= (
θ − µ
θ

)

∫
M

θu2dVg + (
θ − θµ
θ

)

∫
M

a|∇gu|2dVg

≤ (
θ − µ
θ

)

∫
M

θu2dVg + (
θ − µ
θ

)

∫
M

a|∇gu|2dVg

= (
θ − µ
θ

)‖u‖2
g,a,θ

Hence, from (C.4) we obtain

‖Lu‖2
g,a,θ = 〈L(u), L(u)〉g,a,θ =

∫
M

(θ − b)u(Lu) dVg ≤
1

2

∫
M

(θ − b)
[
u2 + (Lu)2

]
dVg

≤ θ − µ
2θ

(
‖u‖2

g,a,θ + ‖Lu‖2
g,a,θ

)
.

It follows that
θ + µ

2θ
‖Lu‖2

g,a,θ ≤
θ − µ

2θ
‖u‖2

g,a,θ ,

as claimed. �

As Jg is of class C2, −∇Jg : H1
g (M)Γ → H1

g (M)Γ is a C1 vector field in
the whole space H1

g (M)Γ. Therefore, −∇Jg is Lipschitz continuous and for any
u ∈ H1

g (M)Γ the Cauchy problem{
∂
∂t
ψ(t, u) = −∇Jg(ψ(u))
ψ(0, u) = u

,

has a unique solution defined for all 0 ≤ t < T (u), where T (u) ∈ (0,∞) is the
maximal existence time for this solution. Define G := {(t, u) : u ∈ H1

g (M)Γ, 0 ≤
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t < T (u)}. The negative gradient flow of Jg is the function ψ : G → H1
g (M)Γ

defined by the above Cauchy problem.
A subset D of H1

g (M)Γ is called strictly positively invariant under ψ if

ψ(t, u) ∈ intD for any u ∈ D and any t ∈ (0, T (u))

where intD denotes the interior of D in H1
g (M)Γ.

Let PΓ := {u ∈ H1
g (M)Γ : u ≥ 0} be the convex cone of nonnegative functions,

and
EΓ
g := {u ∈ N Γ

g : u+, u− ∈ N Γ
g },

where u+ := max{0, u}, u− := min{0, u} and N Γ
g is the Nehari manifold defined

in (3.1). Note that the sign-changing solutions to problem (1.6) lie in EΓ
g .

The proof of the following lemma is similar to that of Lemma 2 in [36]. We
give a sketch for the reader´s convenience.

Lemma C.0.2 There exists α0 > 0 such that, for every α ∈ (0, α0),

(a)
[
Bα(PΓ) ∪Bα(−PΓ)

]
∩ EΓ

g = ∅,

(b) Bα(PΓ) and Bα(−PΓ) are strictly positively invariant.

Proof. By symmetry considerations, it is enough to prove this only for Bα(PΓ).
(a): Note that |u−(p)| ≤ |u(p)− v(p)| for every u, v : M → R with v ≥ 0,

p ∈M. Sobolev’s inequality yields a positive constant C such that∣∣u−∣∣
g,c,2∗

= min
v∈PΓ
|u− v|g,c,2∗ ≤ C min

v∈PΓ
‖u− v‖g,a,θ = C distθ(u,PΓ) (C.5)

for every u ∈ H1
g (M)Γ. If u ∈ EΓ

g , then u− ∈ N Γ
g and, therefore, |u−|2

∗

g,c,2∗ =

mJg(u
−) ≥ mτΓ

g > 0. This proves that distθ(u,PΓ) ≥ α1 > 0 for all u ∈ EΓ
g .

(b): As the operator −divg(∇g) + (θ− b) is strictly elliptic and θ and θ− b are
nonngetaive, for any v ∈ PΓ, equations (C.2) and (C.3) give that−divg(a∇g(Lv))+
θ (Lv) ≥ 0 and −divg(a∇g(Gv)) + θ (Gv) ≥ 0. Hence, the weak maximum princi-
ple [54, Chapter 8] yields that Lv ∈ PΓ and Gv ∈ PΓ if v ∈ PΓ. As PΓ is closed
and convex in H1

g (M)Γ, for u ∈ H1
g (M)Γ, the orthogonal projection of u onto PΓ

v ∈ PΓ, is such that distθ(u,PΓ) = ‖u− v‖g,a,θ . Then, linearity of the function L
and Lemma C.0.1 yields

distθ(Lu,PΓ) ≤ ‖Lu− Lv‖g,a,θ ≤
θ − µ
θ + µ

‖u− v‖g,a,θ =
θ − µ
θ + µ

distθ(u,PΓ). (C.6)

On the other hand, from (C.4), Hölder and Sobolev’s inequality and (C.5) we get
that

distθ(Gu,PΓ)
∥∥G(u)−

∥∥
g,a,θ
≤
∥∥G(u)−

∥∥2

g,a,θ
=
〈
G(u), G(u)−

〉
g,a,θ

=

∫
M

c |u|2
∗−2 uG(u)− dVg ≤

∫
M

c
∣∣u−∣∣2∗−2

u−G(u)− dVg

≤
∣∣u−∣∣2∗−1

g,c,2∗

∣∣G(u)−
∣∣
g,c,2∗

≤ C2∗ distθ(u,PΓ)2∗−1
∥∥G(u)−

∥∥
g,a,θ

.
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Hence,
distθ(Gu,PΓ) ≤ C2∗ distθ(u,PΓ)2∗−1 ∀u ∈ H1

g (M)Γ. (C.7)

Fix ν ∈
(
θ−µ
θ+µ

, 1
)

and let α2 > 0 be such that C2∗α2∗−2
2 ≤ ν − θ−µ

θ+µ
. Then, from

inequalities (C.6) and (C.7) we obtain that

distθ(Lu+Gu,PΓ) ≤ ν distθ(u,PΓ) ∀u ∈ Bα(PΓ),

if α ∈ (0, α2). Therefore, Lu + Gu ∈ intBα(PΓ) if u ∈ Bα(PΓ). Since Bα(PΓ) is
closed and convex, Theorem 5.2 in [40] yields that

ψ(t, u) ∈ Bα(PΓ) for all t ∈ (0, T (u)) if u ∈ Bα(PΓ).

Now we can argue as in the proof of Lemma 2 in [36] to shows that Bα(PΓ) is
strictly positively invariant. �

Proof of Theorem 3.1.2. As the operator −divg(∇g)+b is coercive in H1
g (M)Γ

and dimW ≥ 1, the existence of a critical point follows from the classical mountain-
pass theorem, and a well-known argument (see [12]) shows that it does not change
sign. Once we have established Lemma C.0.2, the rest of the proof is completely
analogous to that of Theorem 3.7 in [33]. �
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